1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/racct.h> 73 #include <sys/rwlock.h> 74 #include <sys/stat.h> 75 #include <sys/sysctl.h> 76 #include <sys/syslog.h> 77 #include <sys/vnode.h> 78 #include <sys/conf.h> 79 80 #include <ufs/ufs/dir.h> 81 #include <ufs/ufs/extattr.h> 82 #include <ufs/ufs/quota.h> 83 #include <ufs/ufs/inode.h> 84 #include <ufs/ufs/ufsmount.h> 85 #include <ufs/ffs/fs.h> 86 #include <ufs/ffs/softdep.h> 87 #include <ufs/ffs/ffs_extern.h> 88 #include <ufs/ufs/ufs_extern.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_extern.h> 92 #include <vm/vm_object.h> 93 94 #include <geom/geom.h> 95 96 #include <ddb/ddb.h> 97 98 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 99 100 #ifndef SOFTUPDATES 101 102 int 103 softdep_flushfiles(oldmnt, flags, td) 104 struct mount *oldmnt; 105 int flags; 106 struct thread *td; 107 { 108 109 panic("softdep_flushfiles called"); 110 } 111 112 int 113 softdep_mount(devvp, mp, fs, cred) 114 struct vnode *devvp; 115 struct mount *mp; 116 struct fs *fs; 117 struct ucred *cred; 118 { 119 120 return (0); 121 } 122 123 void 124 softdep_initialize() 125 { 126 127 return; 128 } 129 130 void 131 softdep_uninitialize() 132 { 133 134 return; 135 } 136 137 void 138 softdep_unmount(mp) 139 struct mount *mp; 140 { 141 142 panic("softdep_unmount called"); 143 } 144 145 void 146 softdep_setup_sbupdate(ump, fs, bp) 147 struct ufsmount *ump; 148 struct fs *fs; 149 struct buf *bp; 150 { 151 152 panic("softdep_setup_sbupdate called"); 153 } 154 155 void 156 softdep_setup_inomapdep(bp, ip, newinum, mode) 157 struct buf *bp; 158 struct inode *ip; 159 ino_t newinum; 160 int mode; 161 { 162 163 panic("softdep_setup_inomapdep called"); 164 } 165 166 void 167 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 168 struct buf *bp; 169 struct mount *mp; 170 ufs2_daddr_t newblkno; 171 int frags; 172 int oldfrags; 173 { 174 175 panic("softdep_setup_blkmapdep called"); 176 } 177 178 void 179 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 180 struct inode *ip; 181 ufs_lbn_t lbn; 182 ufs2_daddr_t newblkno; 183 ufs2_daddr_t oldblkno; 184 long newsize; 185 long oldsize; 186 struct buf *bp; 187 { 188 189 panic("softdep_setup_allocdirect called"); 190 } 191 192 void 193 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 194 struct inode *ip; 195 ufs_lbn_t lbn; 196 ufs2_daddr_t newblkno; 197 ufs2_daddr_t oldblkno; 198 long newsize; 199 long oldsize; 200 struct buf *bp; 201 { 202 203 panic("softdep_setup_allocext called"); 204 } 205 206 void 207 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 208 struct inode *ip; 209 ufs_lbn_t lbn; 210 struct buf *bp; 211 int ptrno; 212 ufs2_daddr_t newblkno; 213 ufs2_daddr_t oldblkno; 214 struct buf *nbp; 215 { 216 217 panic("softdep_setup_allocindir_page called"); 218 } 219 220 void 221 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 222 struct buf *nbp; 223 struct inode *ip; 224 struct buf *bp; 225 int ptrno; 226 ufs2_daddr_t newblkno; 227 { 228 229 panic("softdep_setup_allocindir_meta called"); 230 } 231 232 void 233 softdep_journal_freeblocks(ip, cred, length, flags) 234 struct inode *ip; 235 struct ucred *cred; 236 off_t length; 237 int flags; 238 { 239 240 panic("softdep_journal_freeblocks called"); 241 } 242 243 void 244 softdep_journal_fsync(ip) 245 struct inode *ip; 246 { 247 248 panic("softdep_journal_fsync called"); 249 } 250 251 void 252 softdep_setup_freeblocks(ip, length, flags) 253 struct inode *ip; 254 off_t length; 255 int flags; 256 { 257 258 panic("softdep_setup_freeblocks called"); 259 } 260 261 void 262 softdep_freefile(pvp, ino, mode) 263 struct vnode *pvp; 264 ino_t ino; 265 int mode; 266 { 267 268 panic("softdep_freefile called"); 269 } 270 271 int 272 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 273 struct buf *bp; 274 struct inode *dp; 275 off_t diroffset; 276 ino_t newinum; 277 struct buf *newdirbp; 278 int isnewblk; 279 { 280 281 panic("softdep_setup_directory_add called"); 282 } 283 284 void 285 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 286 struct buf *bp; 287 struct inode *dp; 288 caddr_t base; 289 caddr_t oldloc; 290 caddr_t newloc; 291 int entrysize; 292 { 293 294 panic("softdep_change_directoryentry_offset called"); 295 } 296 297 void 298 softdep_setup_remove(bp, dp, ip, isrmdir) 299 struct buf *bp; 300 struct inode *dp; 301 struct inode *ip; 302 int isrmdir; 303 { 304 305 panic("softdep_setup_remove called"); 306 } 307 308 void 309 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 310 struct buf *bp; 311 struct inode *dp; 312 struct inode *ip; 313 ino_t newinum; 314 int isrmdir; 315 { 316 317 panic("softdep_setup_directory_change called"); 318 } 319 320 void 321 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 322 struct mount *mp; 323 struct buf *bp; 324 ufs2_daddr_t blkno; 325 int frags; 326 struct workhead *wkhd; 327 { 328 329 panic("%s called", __FUNCTION__); 330 } 331 332 void 333 softdep_setup_inofree(mp, bp, ino, wkhd) 334 struct mount *mp; 335 struct buf *bp; 336 ino_t ino; 337 struct workhead *wkhd; 338 { 339 340 panic("%s called", __FUNCTION__); 341 } 342 343 void 344 softdep_setup_unlink(dp, ip) 345 struct inode *dp; 346 struct inode *ip; 347 { 348 349 panic("%s called", __FUNCTION__); 350 } 351 352 void 353 softdep_setup_link(dp, ip) 354 struct inode *dp; 355 struct inode *ip; 356 { 357 358 panic("%s called", __FUNCTION__); 359 } 360 361 void 362 softdep_revert_link(dp, ip) 363 struct inode *dp; 364 struct inode *ip; 365 { 366 367 panic("%s called", __FUNCTION__); 368 } 369 370 void 371 softdep_setup_rmdir(dp, ip) 372 struct inode *dp; 373 struct inode *ip; 374 { 375 376 panic("%s called", __FUNCTION__); 377 } 378 379 void 380 softdep_revert_rmdir(dp, ip) 381 struct inode *dp; 382 struct inode *ip; 383 { 384 385 panic("%s called", __FUNCTION__); 386 } 387 388 void 389 softdep_setup_create(dp, ip) 390 struct inode *dp; 391 struct inode *ip; 392 { 393 394 panic("%s called", __FUNCTION__); 395 } 396 397 void 398 softdep_revert_create(dp, ip) 399 struct inode *dp; 400 struct inode *ip; 401 { 402 403 panic("%s called", __FUNCTION__); 404 } 405 406 void 407 softdep_setup_mkdir(dp, ip) 408 struct inode *dp; 409 struct inode *ip; 410 { 411 412 panic("%s called", __FUNCTION__); 413 } 414 415 void 416 softdep_revert_mkdir(dp, ip) 417 struct inode *dp; 418 struct inode *ip; 419 { 420 421 panic("%s called", __FUNCTION__); 422 } 423 424 void 425 softdep_setup_dotdot_link(dp, ip) 426 struct inode *dp; 427 struct inode *ip; 428 { 429 430 panic("%s called", __FUNCTION__); 431 } 432 433 int 434 softdep_prealloc(vp, waitok) 435 struct vnode *vp; 436 int waitok; 437 { 438 439 panic("%s called", __FUNCTION__); 440 } 441 442 int 443 softdep_journal_lookup(mp, vpp) 444 struct mount *mp; 445 struct vnode **vpp; 446 { 447 448 return (ENOENT); 449 } 450 451 void 452 softdep_change_linkcnt(ip) 453 struct inode *ip; 454 { 455 456 panic("softdep_change_linkcnt called"); 457 } 458 459 void 460 softdep_load_inodeblock(ip) 461 struct inode *ip; 462 { 463 464 panic("softdep_load_inodeblock called"); 465 } 466 467 void 468 softdep_update_inodeblock(ip, bp, waitfor) 469 struct inode *ip; 470 struct buf *bp; 471 int waitfor; 472 { 473 474 panic("softdep_update_inodeblock called"); 475 } 476 477 int 478 softdep_fsync(vp) 479 struct vnode *vp; /* the "in_core" copy of the inode */ 480 { 481 482 return (0); 483 } 484 485 void 486 softdep_fsync_mountdev(vp) 487 struct vnode *vp; 488 { 489 490 return; 491 } 492 493 int 494 softdep_flushworklist(oldmnt, countp, td) 495 struct mount *oldmnt; 496 int *countp; 497 struct thread *td; 498 { 499 500 *countp = 0; 501 return (0); 502 } 503 504 int 505 softdep_sync_metadata(struct vnode *vp) 506 { 507 508 panic("softdep_sync_metadata called"); 509 } 510 511 int 512 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 513 { 514 515 panic("softdep_sync_buf called"); 516 } 517 518 int 519 softdep_slowdown(vp) 520 struct vnode *vp; 521 { 522 523 panic("softdep_slowdown called"); 524 } 525 526 int 527 softdep_request_cleanup(fs, vp, cred, resource) 528 struct fs *fs; 529 struct vnode *vp; 530 struct ucred *cred; 531 int resource; 532 { 533 534 return (0); 535 } 536 537 int 538 softdep_check_suspend(struct mount *mp, 539 struct vnode *devvp, 540 int softdep_depcnt, 541 int softdep_accdepcnt, 542 int secondary_writes, 543 int secondary_accwrites) 544 { 545 struct bufobj *bo; 546 int error; 547 548 (void) softdep_depcnt, 549 (void) softdep_accdepcnt; 550 551 bo = &devvp->v_bufobj; 552 ASSERT_BO_WLOCKED(bo); 553 554 MNT_ILOCK(mp); 555 while (mp->mnt_secondary_writes != 0) { 556 BO_UNLOCK(bo); 557 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 558 (PUSER - 1) | PDROP, "secwr", 0); 559 BO_LOCK(bo); 560 MNT_ILOCK(mp); 561 } 562 563 /* 564 * Reasons for needing more work before suspend: 565 * - Dirty buffers on devvp. 566 * - Secondary writes occurred after start of vnode sync loop 567 */ 568 error = 0; 569 if (bo->bo_numoutput > 0 || 570 bo->bo_dirty.bv_cnt > 0 || 571 secondary_writes != 0 || 572 mp->mnt_secondary_writes != 0 || 573 secondary_accwrites != mp->mnt_secondary_accwrites) 574 error = EAGAIN; 575 BO_UNLOCK(bo); 576 return (error); 577 } 578 579 void 580 softdep_get_depcounts(struct mount *mp, 581 int *softdepactivep, 582 int *softdepactiveaccp) 583 { 584 (void) mp; 585 *softdepactivep = 0; 586 *softdepactiveaccp = 0; 587 } 588 589 void 590 softdep_buf_append(bp, wkhd) 591 struct buf *bp; 592 struct workhead *wkhd; 593 { 594 595 panic("softdep_buf_appendwork called"); 596 } 597 598 void 599 softdep_inode_append(ip, cred, wkhd) 600 struct inode *ip; 601 struct ucred *cred; 602 struct workhead *wkhd; 603 { 604 605 panic("softdep_inode_appendwork called"); 606 } 607 608 void 609 softdep_freework(wkhd) 610 struct workhead *wkhd; 611 { 612 613 panic("softdep_freework called"); 614 } 615 616 #else 617 618 FEATURE(softupdates, "FFS soft-updates support"); 619 620 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 621 "soft updates stats"); 622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 623 "total dependencies allocated"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 625 "high use dependencies allocated"); 626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 627 "current dependencies allocated"); 628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 629 "current dependencies written"); 630 631 unsigned long dep_current[D_LAST + 1]; 632 unsigned long dep_highuse[D_LAST + 1]; 633 unsigned long dep_total[D_LAST + 1]; 634 unsigned long dep_write[D_LAST + 1]; 635 636 #define SOFTDEP_TYPE(type, str, long) \ 637 static MALLOC_DEFINE(M_ ## type, #str, long); \ 638 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 639 &dep_total[D_ ## type], 0, ""); \ 640 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_current[D_ ## type], 0, ""); \ 642 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 643 &dep_highuse[D_ ## type], 0, ""); \ 644 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 645 &dep_write[D_ ## type], 0, ""); 646 647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 650 "Block or frag allocated from cyl group map"); 651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 675 676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 677 678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 681 682 #define M_SOFTDEP_FLAGS (M_WAITOK) 683 684 /* 685 * translate from workitem type to memory type 686 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 687 */ 688 static struct malloc_type *memtype[] = { 689 M_PAGEDEP, 690 M_INODEDEP, 691 M_BMSAFEMAP, 692 M_NEWBLK, 693 M_ALLOCDIRECT, 694 M_INDIRDEP, 695 M_ALLOCINDIR, 696 M_FREEFRAG, 697 M_FREEBLKS, 698 M_FREEFILE, 699 M_DIRADD, 700 M_MKDIR, 701 M_DIRREM, 702 M_NEWDIRBLK, 703 M_FREEWORK, 704 M_FREEDEP, 705 M_JADDREF, 706 M_JREMREF, 707 M_JMVREF, 708 M_JNEWBLK, 709 M_JFREEBLK, 710 M_JFREEFRAG, 711 M_JSEG, 712 M_JSEGDEP, 713 M_SBDEP, 714 M_JTRUNC, 715 M_JFSYNC, 716 M_SENTINEL 717 }; 718 719 #define DtoM(type) (memtype[type]) 720 721 /* 722 * Names of malloc types. 723 */ 724 #define TYPENAME(type) \ 725 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 726 /* 727 * End system adaptation definitions. 728 */ 729 730 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 731 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 732 733 /* 734 * Internal function prototypes. 735 */ 736 static void check_clear_deps(struct mount *); 737 static void softdep_error(char *, int); 738 static int softdep_process_worklist(struct mount *, int); 739 static int softdep_waitidle(struct mount *, int); 740 static void drain_output(struct vnode *); 741 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 742 static int check_inodedep_free(struct inodedep *); 743 static void clear_remove(struct mount *); 744 static void clear_inodedeps(struct mount *); 745 static void unlinked_inodedep(struct mount *, struct inodedep *); 746 static void clear_unlinked_inodedep(struct inodedep *); 747 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 748 static int flush_pagedep_deps(struct vnode *, struct mount *, 749 struct diraddhd *); 750 static int free_pagedep(struct pagedep *); 751 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 752 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 753 static int flush_deplist(struct allocdirectlst *, int, int *); 754 static int sync_cgs(struct mount *, int); 755 static int handle_written_filepage(struct pagedep *, struct buf *, int); 756 static int handle_written_sbdep(struct sbdep *, struct buf *); 757 static void initiate_write_sbdep(struct sbdep *); 758 static void diradd_inode_written(struct diradd *, struct inodedep *); 759 static int handle_written_indirdep(struct indirdep *, struct buf *, 760 struct buf**, int); 761 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 762 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 763 uint8_t *); 764 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 765 static void handle_written_jaddref(struct jaddref *); 766 static void handle_written_jremref(struct jremref *); 767 static void handle_written_jseg(struct jseg *, struct buf *); 768 static void handle_written_jnewblk(struct jnewblk *); 769 static void handle_written_jblkdep(struct jblkdep *); 770 static void handle_written_jfreefrag(struct jfreefrag *); 771 static void complete_jseg(struct jseg *); 772 static void complete_jsegs(struct jseg *); 773 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 774 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 775 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 776 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 777 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 778 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 779 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 780 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 781 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 782 static inline void inoref_write(struct inoref *, struct jseg *, 783 struct jrefrec *); 784 static void handle_allocdirect_partdone(struct allocdirect *, 785 struct workhead *); 786 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 787 struct workhead *); 788 static void indirdep_complete(struct indirdep *); 789 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 790 static void indirblk_insert(struct freework *); 791 static void indirblk_remove(struct freework *); 792 static void handle_allocindir_partdone(struct allocindir *); 793 static void initiate_write_filepage(struct pagedep *, struct buf *); 794 static void initiate_write_indirdep(struct indirdep*, struct buf *); 795 static void handle_written_mkdir(struct mkdir *, int); 796 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 797 uint8_t *); 798 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 799 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 800 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 801 static void handle_workitem_freefile(struct freefile *); 802 static int handle_workitem_remove(struct dirrem *, int); 803 static struct dirrem *newdirrem(struct buf *, struct inode *, 804 struct inode *, int, struct dirrem **); 805 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 806 struct buf *); 807 static void cancel_indirdep(struct indirdep *, struct buf *, 808 struct freeblks *); 809 static void free_indirdep(struct indirdep *); 810 static void free_diradd(struct diradd *, struct workhead *); 811 static void merge_diradd(struct inodedep *, struct diradd *); 812 static void complete_diradd(struct diradd *); 813 static struct diradd *diradd_lookup(struct pagedep *, int); 814 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 817 struct jremref *); 818 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 819 struct jremref *, struct jremref *); 820 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 821 struct jremref *); 822 static void cancel_allocindir(struct allocindir *, struct buf *bp, 823 struct freeblks *, int); 824 static int setup_trunc_indir(struct freeblks *, struct inode *, 825 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 826 static void complete_trunc_indir(struct freework *); 827 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 828 int); 829 static void complete_mkdir(struct mkdir *); 830 static void free_newdirblk(struct newdirblk *); 831 static void free_jremref(struct jremref *); 832 static void free_jaddref(struct jaddref *); 833 static void free_jsegdep(struct jsegdep *); 834 static void free_jsegs(struct jblocks *); 835 static void rele_jseg(struct jseg *); 836 static void free_jseg(struct jseg *, struct jblocks *); 837 static void free_jnewblk(struct jnewblk *); 838 static void free_jblkdep(struct jblkdep *); 839 static void free_jfreefrag(struct jfreefrag *); 840 static void free_freedep(struct freedep *); 841 static void journal_jremref(struct dirrem *, struct jremref *, 842 struct inodedep *); 843 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 844 static int cancel_jaddref(struct jaddref *, struct inodedep *, 845 struct workhead *); 846 static void cancel_jfreefrag(struct jfreefrag *); 847 static inline void setup_freedirect(struct freeblks *, struct inode *, 848 int, int); 849 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 850 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 851 ufs_lbn_t, int); 852 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 853 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 854 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 855 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 856 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 857 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 858 int, int); 859 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 860 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 861 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 862 static void newblk_freefrag(struct newblk*); 863 static void free_newblk(struct newblk *); 864 static void cancel_allocdirect(struct allocdirectlst *, 865 struct allocdirect *, struct freeblks *); 866 static int check_inode_unwritten(struct inodedep *); 867 static int free_inodedep(struct inodedep *); 868 static void freework_freeblock(struct freework *); 869 static void freework_enqueue(struct freework *); 870 static int handle_workitem_freeblocks(struct freeblks *, int); 871 static int handle_complete_freeblocks(struct freeblks *, int); 872 static void handle_workitem_indirblk(struct freework *); 873 static void handle_written_freework(struct freework *); 874 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 875 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 876 struct workhead *); 877 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 878 struct inodedep *, struct allocindir *, ufs_lbn_t); 879 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 880 ufs2_daddr_t, ufs_lbn_t); 881 static void handle_workitem_freefrag(struct freefrag *); 882 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 883 ufs_lbn_t); 884 static void allocdirect_merge(struct allocdirectlst *, 885 struct allocdirect *, struct allocdirect *); 886 static struct freefrag *allocindir_merge(struct allocindir *, 887 struct allocindir *); 888 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 889 struct bmsafemap **); 890 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 891 int cg, struct bmsafemap *); 892 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 893 struct newblk **); 894 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 895 static int inodedep_find(struct inodedep_hashhead *, ino_t, 896 struct inodedep **); 897 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 898 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 899 int, struct pagedep **); 900 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 901 struct pagedep **); 902 static void pause_timer(void *); 903 static int request_cleanup(struct mount *, int); 904 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 905 static void schedule_cleanup(struct mount *); 906 static void softdep_ast_cleanup_proc(struct thread *); 907 static int process_worklist_item(struct mount *, int, int); 908 static void process_removes(struct vnode *); 909 static void process_truncates(struct vnode *); 910 static void jwork_move(struct workhead *, struct workhead *); 911 static void jwork_insert(struct workhead *, struct jsegdep *); 912 static void add_to_worklist(struct worklist *, int); 913 static void wake_worklist(struct worklist *); 914 static void wait_worklist(struct worklist *, char *); 915 static void remove_from_worklist(struct worklist *); 916 static void softdep_flush(void *); 917 static void softdep_flushjournal(struct mount *); 918 static int softdep_speedup(struct ufsmount *); 919 static void worklist_speedup(struct mount *); 920 static int journal_mount(struct mount *, struct fs *, struct ucred *); 921 static void journal_unmount(struct ufsmount *); 922 static int journal_space(struct ufsmount *, int); 923 static void journal_suspend(struct ufsmount *); 924 static int journal_unsuspend(struct ufsmount *ump); 925 static void softdep_prelink(struct vnode *, struct vnode *); 926 static void add_to_journal(struct worklist *); 927 static void remove_from_journal(struct worklist *); 928 static bool softdep_excess_items(struct ufsmount *, int); 929 static void softdep_process_journal(struct mount *, struct worklist *, int); 930 static struct jremref *newjremref(struct dirrem *, struct inode *, 931 struct inode *ip, off_t, nlink_t); 932 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 933 uint16_t); 934 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 935 uint16_t); 936 static inline struct jsegdep *inoref_jseg(struct inoref *); 937 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 938 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 939 ufs2_daddr_t, int); 940 static void adjust_newfreework(struct freeblks *, int); 941 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 942 static void move_newblock_dep(struct jaddref *, struct inodedep *); 943 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 944 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 945 ufs2_daddr_t, long, ufs_lbn_t); 946 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 947 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 948 static int jwait(struct worklist *, int); 949 static struct inodedep *inodedep_lookup_ip(struct inode *); 950 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 951 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 952 static void handle_jwork(struct workhead *); 953 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 954 struct mkdir **); 955 static struct jblocks *jblocks_create(void); 956 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 957 static void jblocks_free(struct jblocks *, struct mount *, int); 958 static void jblocks_destroy(struct jblocks *); 959 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 960 961 /* 962 * Exported softdep operations. 963 */ 964 static void softdep_disk_io_initiation(struct buf *); 965 static void softdep_disk_write_complete(struct buf *); 966 static void softdep_deallocate_dependencies(struct buf *); 967 static int softdep_count_dependencies(struct buf *bp, int); 968 969 /* 970 * Global lock over all of soft updates. 971 */ 972 static struct mtx lk; 973 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 974 975 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 976 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 977 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 978 979 /* 980 * Per-filesystem soft-updates locking. 981 */ 982 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 983 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 984 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 985 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 986 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 987 RA_WLOCKED) 988 989 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 990 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 991 992 /* 993 * Worklist queue management. 994 * These routines require that the lock be held. 995 */ 996 #ifndef /* NOT */ DEBUG 997 #define WORKLIST_INSERT(head, item) do { \ 998 (item)->wk_state |= ONWORKLIST; \ 999 LIST_INSERT_HEAD(head, item, wk_list); \ 1000 } while (0) 1001 #define WORKLIST_REMOVE(item) do { \ 1002 (item)->wk_state &= ~ONWORKLIST; \ 1003 LIST_REMOVE(item, wk_list); \ 1004 } while (0) 1005 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1006 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1007 1008 #else /* DEBUG */ 1009 static void worklist_insert(struct workhead *, struct worklist *, int); 1010 static void worklist_remove(struct worklist *, int); 1011 1012 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1013 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1014 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1015 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1016 1017 static void 1018 worklist_insert(head, item, locked) 1019 struct workhead *head; 1020 struct worklist *item; 1021 int locked; 1022 { 1023 1024 if (locked) 1025 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1026 if (item->wk_state & ONWORKLIST) 1027 panic("worklist_insert: %p %s(0x%X) already on list", 1028 item, TYPENAME(item->wk_type), item->wk_state); 1029 item->wk_state |= ONWORKLIST; 1030 LIST_INSERT_HEAD(head, item, wk_list); 1031 } 1032 1033 static void 1034 worklist_remove(item, locked) 1035 struct worklist *item; 1036 int locked; 1037 { 1038 1039 if (locked) 1040 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1041 if ((item->wk_state & ONWORKLIST) == 0) 1042 panic("worklist_remove: %p %s(0x%X) not on list", 1043 item, TYPENAME(item->wk_type), item->wk_state); 1044 item->wk_state &= ~ONWORKLIST; 1045 LIST_REMOVE(item, wk_list); 1046 } 1047 #endif /* DEBUG */ 1048 1049 /* 1050 * Merge two jsegdeps keeping only the oldest one as newer references 1051 * can't be discarded until after older references. 1052 */ 1053 static inline struct jsegdep * 1054 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1055 { 1056 struct jsegdep *swp; 1057 1058 if (two == NULL) 1059 return (one); 1060 1061 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1062 swp = one; 1063 one = two; 1064 two = swp; 1065 } 1066 WORKLIST_REMOVE(&two->jd_list); 1067 free_jsegdep(two); 1068 1069 return (one); 1070 } 1071 1072 /* 1073 * If two freedeps are compatible free one to reduce list size. 1074 */ 1075 static inline struct freedep * 1076 freedep_merge(struct freedep *one, struct freedep *two) 1077 { 1078 if (two == NULL) 1079 return (one); 1080 1081 if (one->fd_freework == two->fd_freework) { 1082 WORKLIST_REMOVE(&two->fd_list); 1083 free_freedep(two); 1084 } 1085 return (one); 1086 } 1087 1088 /* 1089 * Move journal work from one list to another. Duplicate freedeps and 1090 * jsegdeps are coalesced to keep the lists as small as possible. 1091 */ 1092 static void 1093 jwork_move(dst, src) 1094 struct workhead *dst; 1095 struct workhead *src; 1096 { 1097 struct freedep *freedep; 1098 struct jsegdep *jsegdep; 1099 struct worklist *wkn; 1100 struct worklist *wk; 1101 1102 KASSERT(dst != src, 1103 ("jwork_move: dst == src")); 1104 freedep = NULL; 1105 jsegdep = NULL; 1106 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1107 if (wk->wk_type == D_JSEGDEP) 1108 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1109 else if (wk->wk_type == D_FREEDEP) 1110 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1111 } 1112 1113 while ((wk = LIST_FIRST(src)) != NULL) { 1114 WORKLIST_REMOVE(wk); 1115 WORKLIST_INSERT(dst, wk); 1116 if (wk->wk_type == D_JSEGDEP) { 1117 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1118 continue; 1119 } 1120 if (wk->wk_type == D_FREEDEP) 1121 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1122 } 1123 } 1124 1125 static void 1126 jwork_insert(dst, jsegdep) 1127 struct workhead *dst; 1128 struct jsegdep *jsegdep; 1129 { 1130 struct jsegdep *jsegdepn; 1131 struct worklist *wk; 1132 1133 LIST_FOREACH(wk, dst, wk_list) 1134 if (wk->wk_type == D_JSEGDEP) 1135 break; 1136 if (wk == NULL) { 1137 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1138 return; 1139 } 1140 jsegdepn = WK_JSEGDEP(wk); 1141 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1142 WORKLIST_REMOVE(wk); 1143 free_jsegdep(jsegdepn); 1144 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1145 } else 1146 free_jsegdep(jsegdep); 1147 } 1148 1149 /* 1150 * Routines for tracking and managing workitems. 1151 */ 1152 static void workitem_free(struct worklist *, int); 1153 static void workitem_alloc(struct worklist *, int, struct mount *); 1154 static void workitem_reassign(struct worklist *, int); 1155 1156 #define WORKITEM_FREE(item, type) \ 1157 workitem_free((struct worklist *)(item), (type)) 1158 #define WORKITEM_REASSIGN(item, type) \ 1159 workitem_reassign((struct worklist *)(item), (type)) 1160 1161 static void 1162 workitem_free(item, type) 1163 struct worklist *item; 1164 int type; 1165 { 1166 struct ufsmount *ump; 1167 1168 #ifdef DEBUG 1169 if (item->wk_state & ONWORKLIST) 1170 panic("workitem_free: %s(0x%X) still on list", 1171 TYPENAME(item->wk_type), item->wk_state); 1172 if (item->wk_type != type && type != D_NEWBLK) 1173 panic("workitem_free: type mismatch %s != %s", 1174 TYPENAME(item->wk_type), TYPENAME(type)); 1175 #endif 1176 if (item->wk_state & IOWAITING) 1177 wakeup(item); 1178 ump = VFSTOUFS(item->wk_mp); 1179 LOCK_OWNED(ump); 1180 KASSERT(ump->softdep_deps > 0, 1181 ("workitem_free: %s: softdep_deps going negative", 1182 ump->um_fs->fs_fsmnt)); 1183 if (--ump->softdep_deps == 0 && ump->softdep_req) 1184 wakeup(&ump->softdep_deps); 1185 KASSERT(dep_current[item->wk_type] > 0, 1186 ("workitem_free: %s: dep_current[%s] going negative", 1187 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1188 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1189 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1190 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1191 atomic_subtract_long(&dep_current[item->wk_type], 1); 1192 ump->softdep_curdeps[item->wk_type] -= 1; 1193 free(item, DtoM(type)); 1194 } 1195 1196 static void 1197 workitem_alloc(item, type, mp) 1198 struct worklist *item; 1199 int type; 1200 struct mount *mp; 1201 { 1202 struct ufsmount *ump; 1203 1204 item->wk_type = type; 1205 item->wk_mp = mp; 1206 item->wk_state = 0; 1207 1208 ump = VFSTOUFS(mp); 1209 ACQUIRE_GBLLOCK(&lk); 1210 dep_current[type]++; 1211 if (dep_current[type] > dep_highuse[type]) 1212 dep_highuse[type] = dep_current[type]; 1213 dep_total[type]++; 1214 FREE_GBLLOCK(&lk); 1215 ACQUIRE_LOCK(ump); 1216 ump->softdep_curdeps[type] += 1; 1217 ump->softdep_deps++; 1218 ump->softdep_accdeps++; 1219 FREE_LOCK(ump); 1220 } 1221 1222 static void 1223 workitem_reassign(item, newtype) 1224 struct worklist *item; 1225 int newtype; 1226 { 1227 struct ufsmount *ump; 1228 1229 ump = VFSTOUFS(item->wk_mp); 1230 LOCK_OWNED(ump); 1231 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1232 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1233 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1234 ump->softdep_curdeps[item->wk_type] -= 1; 1235 ump->softdep_curdeps[newtype] += 1; 1236 KASSERT(dep_current[item->wk_type] > 0, 1237 ("workitem_reassign: %s: dep_current[%s] going negative", 1238 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1239 ACQUIRE_GBLLOCK(&lk); 1240 dep_current[newtype]++; 1241 dep_current[item->wk_type]--; 1242 if (dep_current[newtype] > dep_highuse[newtype]) 1243 dep_highuse[newtype] = dep_current[newtype]; 1244 dep_total[newtype]++; 1245 FREE_GBLLOCK(&lk); 1246 item->wk_type = newtype; 1247 } 1248 1249 /* 1250 * Workitem queue management 1251 */ 1252 static int max_softdeps; /* maximum number of structs before slowdown */ 1253 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1254 static int proc_waiting; /* tracks whether we have a timeout posted */ 1255 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1256 static struct callout softdep_callout; 1257 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1258 static int req_clear_remove; /* syncer process flush some freeblks */ 1259 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1260 1261 /* 1262 * runtime statistics 1263 */ 1264 static int stat_flush_threads; /* number of softdep flushing threads */ 1265 static int stat_worklist_push; /* number of worklist cleanups */ 1266 static int stat_blk_limit_push; /* number of times block limit neared */ 1267 static int stat_ino_limit_push; /* number of times inode limit neared */ 1268 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1269 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1270 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1271 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1272 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1273 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1274 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1275 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1276 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1277 static int stat_journal_min; /* Times hit journal min threshold */ 1278 static int stat_journal_low; /* Times hit journal low threshold */ 1279 static int stat_journal_wait; /* Times blocked in jwait(). */ 1280 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1281 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1282 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1283 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1284 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1285 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1286 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1287 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1288 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1289 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1290 1291 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1292 &max_softdeps, 0, ""); 1293 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1294 &tickdelay, 0, ""); 1295 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1296 &stat_flush_threads, 0, ""); 1297 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1298 &stat_worklist_push, 0,""); 1299 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1300 &stat_blk_limit_push, 0,""); 1301 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1302 &stat_ino_limit_push, 0,""); 1303 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1304 &stat_blk_limit_hit, 0, ""); 1305 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1306 &stat_ino_limit_hit, 0, ""); 1307 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1308 &stat_sync_limit_hit, 0, ""); 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1310 &stat_indir_blk_ptrs, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1312 &stat_inode_bitmap, 0, ""); 1313 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1314 &stat_direct_blk_ptrs, 0, ""); 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1316 &stat_dir_entry, 0, ""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1318 &stat_jaddref, 0, ""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1320 &stat_jnewblk, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1322 &stat_journal_low, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1324 &stat_journal_min, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1326 &stat_journal_wait, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1328 &stat_jwait_filepage, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1330 &stat_jwait_freeblks, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1332 &stat_jwait_inode, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1334 &stat_jwait_newblk, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1336 &stat_cleanup_blkrequests, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1338 &stat_cleanup_inorequests, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1340 &stat_cleanup_high_delay, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1342 &stat_cleanup_retries, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1344 &stat_cleanup_failures, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1346 &softdep_flushcache, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1348 &stat_emptyjblocks, 0, ""); 1349 1350 SYSCTL_DECL(_vfs_ffs); 1351 1352 /* Whether to recompute the summary at mount time */ 1353 static int compute_summary_at_mount = 0; 1354 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1355 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1356 static int print_threads = 0; 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1358 &print_threads, 0, "Notify flusher thread start/stop"); 1359 1360 /* List of all filesystems mounted with soft updates */ 1361 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1362 1363 /* 1364 * This function cleans the worklist for a filesystem. 1365 * Each filesystem running with soft dependencies gets its own 1366 * thread to run in this function. The thread is started up in 1367 * softdep_mount and shutdown in softdep_unmount. They show up 1368 * as part of the kernel "bufdaemon" process whose process 1369 * entry is available in bufdaemonproc. 1370 */ 1371 static int searchfailed; 1372 extern struct proc *bufdaemonproc; 1373 static void 1374 softdep_flush(addr) 1375 void *addr; 1376 { 1377 struct mount *mp; 1378 struct thread *td; 1379 struct ufsmount *ump; 1380 1381 td = curthread; 1382 td->td_pflags |= TDP_NORUNNINGBUF; 1383 mp = (struct mount *)addr; 1384 ump = VFSTOUFS(mp); 1385 atomic_add_int(&stat_flush_threads, 1); 1386 ACQUIRE_LOCK(ump); 1387 ump->softdep_flags &= ~FLUSH_STARTING; 1388 wakeup(&ump->softdep_flushtd); 1389 FREE_LOCK(ump); 1390 if (print_threads) { 1391 if (stat_flush_threads == 1) 1392 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1393 bufdaemonproc->p_pid); 1394 printf("Start thread %s\n", td->td_name); 1395 } 1396 for (;;) { 1397 while (softdep_process_worklist(mp, 0) > 0 || 1398 (MOUNTEDSUJ(mp) && 1399 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1400 kthread_suspend_check(); 1401 ACQUIRE_LOCK(ump); 1402 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1403 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1404 "sdflush", hz / 2); 1405 ump->softdep_flags &= ~FLUSH_CLEANUP; 1406 /* 1407 * Check to see if we are done and need to exit. 1408 */ 1409 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1410 FREE_LOCK(ump); 1411 continue; 1412 } 1413 ump->softdep_flags &= ~FLUSH_EXIT; 1414 FREE_LOCK(ump); 1415 wakeup(&ump->softdep_flags); 1416 if (print_threads) 1417 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1418 atomic_subtract_int(&stat_flush_threads, 1); 1419 kthread_exit(); 1420 panic("kthread_exit failed\n"); 1421 } 1422 } 1423 1424 static void 1425 worklist_speedup(mp) 1426 struct mount *mp; 1427 { 1428 struct ufsmount *ump; 1429 1430 ump = VFSTOUFS(mp); 1431 LOCK_OWNED(ump); 1432 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1433 ump->softdep_flags |= FLUSH_CLEANUP; 1434 wakeup(&ump->softdep_flushtd); 1435 } 1436 1437 static int 1438 softdep_speedup(ump) 1439 struct ufsmount *ump; 1440 { 1441 struct ufsmount *altump; 1442 struct mount_softdeps *sdp; 1443 1444 LOCK_OWNED(ump); 1445 worklist_speedup(ump->um_mountp); 1446 bd_speedup(); 1447 /* 1448 * If we have global shortages, then we need other 1449 * filesystems to help with the cleanup. Here we wakeup a 1450 * flusher thread for a filesystem that is over its fair 1451 * share of resources. 1452 */ 1453 if (req_clear_inodedeps || req_clear_remove) { 1454 ACQUIRE_GBLLOCK(&lk); 1455 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1456 if ((altump = sdp->sd_ump) == ump) 1457 continue; 1458 if (((req_clear_inodedeps && 1459 altump->softdep_curdeps[D_INODEDEP] > 1460 max_softdeps / stat_flush_threads) || 1461 (req_clear_remove && 1462 altump->softdep_curdeps[D_DIRREM] > 1463 (max_softdeps / 2) / stat_flush_threads)) && 1464 TRY_ACQUIRE_LOCK(altump)) 1465 break; 1466 } 1467 if (sdp == NULL) { 1468 searchfailed++; 1469 FREE_GBLLOCK(&lk); 1470 } else { 1471 /* 1472 * Move to the end of the list so we pick a 1473 * different one on out next try. 1474 */ 1475 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1476 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1477 FREE_GBLLOCK(&lk); 1478 if ((altump->softdep_flags & 1479 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1480 altump->softdep_flags |= FLUSH_CLEANUP; 1481 altump->um_softdep->sd_cleanups++; 1482 wakeup(&altump->softdep_flushtd); 1483 FREE_LOCK(altump); 1484 } 1485 } 1486 return (speedup_syncer()); 1487 } 1488 1489 /* 1490 * Add an item to the end of the work queue. 1491 * This routine requires that the lock be held. 1492 * This is the only routine that adds items to the list. 1493 * The following routine is the only one that removes items 1494 * and does so in order from first to last. 1495 */ 1496 1497 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1498 #define WK_NODELAY 0x0002 /* Process immediately. */ 1499 1500 static void 1501 add_to_worklist(wk, flags) 1502 struct worklist *wk; 1503 int flags; 1504 { 1505 struct ufsmount *ump; 1506 1507 ump = VFSTOUFS(wk->wk_mp); 1508 LOCK_OWNED(ump); 1509 if (wk->wk_state & ONWORKLIST) 1510 panic("add_to_worklist: %s(0x%X) already on list", 1511 TYPENAME(wk->wk_type), wk->wk_state); 1512 wk->wk_state |= ONWORKLIST; 1513 if (ump->softdep_on_worklist == 0) { 1514 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1515 ump->softdep_worklist_tail = wk; 1516 } else if (flags & WK_HEAD) { 1517 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1518 } else { 1519 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1520 ump->softdep_worklist_tail = wk; 1521 } 1522 ump->softdep_on_worklist += 1; 1523 if (flags & WK_NODELAY) 1524 worklist_speedup(wk->wk_mp); 1525 } 1526 1527 /* 1528 * Remove the item to be processed. If we are removing the last 1529 * item on the list, we need to recalculate the tail pointer. 1530 */ 1531 static void 1532 remove_from_worklist(wk) 1533 struct worklist *wk; 1534 { 1535 struct ufsmount *ump; 1536 1537 ump = VFSTOUFS(wk->wk_mp); 1538 if (ump->softdep_worklist_tail == wk) 1539 ump->softdep_worklist_tail = 1540 (struct worklist *)wk->wk_list.le_prev; 1541 WORKLIST_REMOVE(wk); 1542 ump->softdep_on_worklist -= 1; 1543 } 1544 1545 static void 1546 wake_worklist(wk) 1547 struct worklist *wk; 1548 { 1549 if (wk->wk_state & IOWAITING) { 1550 wk->wk_state &= ~IOWAITING; 1551 wakeup(wk); 1552 } 1553 } 1554 1555 static void 1556 wait_worklist(wk, wmesg) 1557 struct worklist *wk; 1558 char *wmesg; 1559 { 1560 struct ufsmount *ump; 1561 1562 ump = VFSTOUFS(wk->wk_mp); 1563 wk->wk_state |= IOWAITING; 1564 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1565 } 1566 1567 /* 1568 * Process that runs once per second to handle items in the background queue. 1569 * 1570 * Note that we ensure that everything is done in the order in which they 1571 * appear in the queue. The code below depends on this property to ensure 1572 * that blocks of a file are freed before the inode itself is freed. This 1573 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1574 * until all the old ones have been purged from the dependency lists. 1575 */ 1576 static int 1577 softdep_process_worklist(mp, full) 1578 struct mount *mp; 1579 int full; 1580 { 1581 int cnt, matchcnt; 1582 struct ufsmount *ump; 1583 long starttime; 1584 1585 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1586 if (MOUNTEDSOFTDEP(mp) == 0) 1587 return (0); 1588 matchcnt = 0; 1589 ump = VFSTOUFS(mp); 1590 ACQUIRE_LOCK(ump); 1591 starttime = time_second; 1592 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1593 check_clear_deps(mp); 1594 while (ump->softdep_on_worklist > 0) { 1595 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1596 break; 1597 else 1598 matchcnt += cnt; 1599 check_clear_deps(mp); 1600 /* 1601 * We do not generally want to stop for buffer space, but if 1602 * we are really being a buffer hog, we will stop and wait. 1603 */ 1604 if (should_yield()) { 1605 FREE_LOCK(ump); 1606 kern_yield(PRI_USER); 1607 bwillwrite(); 1608 ACQUIRE_LOCK(ump); 1609 } 1610 /* 1611 * Never allow processing to run for more than one 1612 * second. This gives the syncer thread the opportunity 1613 * to pause if appropriate. 1614 */ 1615 if (!full && starttime != time_second) 1616 break; 1617 } 1618 if (full == 0) 1619 journal_unsuspend(ump); 1620 FREE_LOCK(ump); 1621 return (matchcnt); 1622 } 1623 1624 /* 1625 * Process all removes associated with a vnode if we are running out of 1626 * journal space. Any other process which attempts to flush these will 1627 * be unable as we have the vnodes locked. 1628 */ 1629 static void 1630 process_removes(vp) 1631 struct vnode *vp; 1632 { 1633 struct inodedep *inodedep; 1634 struct dirrem *dirrem; 1635 struct ufsmount *ump; 1636 struct mount *mp; 1637 ino_t inum; 1638 1639 mp = vp->v_mount; 1640 ump = VFSTOUFS(mp); 1641 LOCK_OWNED(ump); 1642 inum = VTOI(vp)->i_number; 1643 for (;;) { 1644 top: 1645 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1646 return; 1647 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1648 /* 1649 * If another thread is trying to lock this vnode 1650 * it will fail but we must wait for it to do so 1651 * before we can proceed. 1652 */ 1653 if (dirrem->dm_state & INPROGRESS) { 1654 wait_worklist(&dirrem->dm_list, "pwrwait"); 1655 goto top; 1656 } 1657 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1658 (COMPLETE | ONWORKLIST)) 1659 break; 1660 } 1661 if (dirrem == NULL) 1662 return; 1663 remove_from_worklist(&dirrem->dm_list); 1664 FREE_LOCK(ump); 1665 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1666 panic("process_removes: suspended filesystem"); 1667 handle_workitem_remove(dirrem, 0); 1668 vn_finished_secondary_write(mp); 1669 ACQUIRE_LOCK(ump); 1670 } 1671 } 1672 1673 /* 1674 * Process all truncations associated with a vnode if we are running out 1675 * of journal space. This is called when the vnode lock is already held 1676 * and no other process can clear the truncation. This function returns 1677 * a value greater than zero if it did any work. 1678 */ 1679 static void 1680 process_truncates(vp) 1681 struct vnode *vp; 1682 { 1683 struct inodedep *inodedep; 1684 struct freeblks *freeblks; 1685 struct ufsmount *ump; 1686 struct mount *mp; 1687 ino_t inum; 1688 int cgwait; 1689 1690 mp = vp->v_mount; 1691 ump = VFSTOUFS(mp); 1692 LOCK_OWNED(ump); 1693 inum = VTOI(vp)->i_number; 1694 for (;;) { 1695 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1696 return; 1697 cgwait = 0; 1698 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1699 /* Journal entries not yet written. */ 1700 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1701 jwait(&LIST_FIRST( 1702 &freeblks->fb_jblkdephd)->jb_list, 1703 MNT_WAIT); 1704 break; 1705 } 1706 /* Another thread is executing this item. */ 1707 if (freeblks->fb_state & INPROGRESS) { 1708 wait_worklist(&freeblks->fb_list, "ptrwait"); 1709 break; 1710 } 1711 /* Freeblks is waiting on a inode write. */ 1712 if ((freeblks->fb_state & COMPLETE) == 0) { 1713 FREE_LOCK(ump); 1714 ffs_update(vp, 1); 1715 ACQUIRE_LOCK(ump); 1716 break; 1717 } 1718 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1719 (ALLCOMPLETE | ONWORKLIST)) { 1720 remove_from_worklist(&freeblks->fb_list); 1721 freeblks->fb_state |= INPROGRESS; 1722 FREE_LOCK(ump); 1723 if (vn_start_secondary_write(NULL, &mp, 1724 V_NOWAIT)) 1725 panic("process_truncates: " 1726 "suspended filesystem"); 1727 handle_workitem_freeblocks(freeblks, 0); 1728 vn_finished_secondary_write(mp); 1729 ACQUIRE_LOCK(ump); 1730 break; 1731 } 1732 if (freeblks->fb_cgwait) 1733 cgwait++; 1734 } 1735 if (cgwait) { 1736 FREE_LOCK(ump); 1737 sync_cgs(mp, MNT_WAIT); 1738 ffs_sync_snap(mp, MNT_WAIT); 1739 ACQUIRE_LOCK(ump); 1740 continue; 1741 } 1742 if (freeblks == NULL) 1743 break; 1744 } 1745 return; 1746 } 1747 1748 /* 1749 * Process one item on the worklist. 1750 */ 1751 static int 1752 process_worklist_item(mp, target, flags) 1753 struct mount *mp; 1754 int target; 1755 int flags; 1756 { 1757 struct worklist sentinel; 1758 struct worklist *wk; 1759 struct ufsmount *ump; 1760 int matchcnt; 1761 int error; 1762 1763 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1764 /* 1765 * If we are being called because of a process doing a 1766 * copy-on-write, then it is not safe to write as we may 1767 * recurse into the copy-on-write routine. 1768 */ 1769 if (curthread->td_pflags & TDP_COWINPROGRESS) 1770 return (-1); 1771 PHOLD(curproc); /* Don't let the stack go away. */ 1772 ump = VFSTOUFS(mp); 1773 LOCK_OWNED(ump); 1774 matchcnt = 0; 1775 sentinel.wk_mp = NULL; 1776 sentinel.wk_type = D_SENTINEL; 1777 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1778 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1779 wk = LIST_NEXT(&sentinel, wk_list)) { 1780 if (wk->wk_type == D_SENTINEL) { 1781 LIST_REMOVE(&sentinel, wk_list); 1782 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1783 continue; 1784 } 1785 if (wk->wk_state & INPROGRESS) 1786 panic("process_worklist_item: %p already in progress.", 1787 wk); 1788 wk->wk_state |= INPROGRESS; 1789 remove_from_worklist(wk); 1790 FREE_LOCK(ump); 1791 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1792 panic("process_worklist_item: suspended filesystem"); 1793 switch (wk->wk_type) { 1794 case D_DIRREM: 1795 /* removal of a directory entry */ 1796 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1797 break; 1798 1799 case D_FREEBLKS: 1800 /* releasing blocks and/or fragments from a file */ 1801 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1802 flags); 1803 break; 1804 1805 case D_FREEFRAG: 1806 /* releasing a fragment when replaced as a file grows */ 1807 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1808 error = 0; 1809 break; 1810 1811 case D_FREEFILE: 1812 /* releasing an inode when its link count drops to 0 */ 1813 handle_workitem_freefile(WK_FREEFILE(wk)); 1814 error = 0; 1815 break; 1816 1817 default: 1818 panic("%s_process_worklist: Unknown type %s", 1819 "softdep", TYPENAME(wk->wk_type)); 1820 /* NOTREACHED */ 1821 } 1822 vn_finished_secondary_write(mp); 1823 ACQUIRE_LOCK(ump); 1824 if (error == 0) { 1825 if (++matchcnt == target) 1826 break; 1827 continue; 1828 } 1829 /* 1830 * We have to retry the worklist item later. Wake up any 1831 * waiters who may be able to complete it immediately and 1832 * add the item back to the head so we don't try to execute 1833 * it again. 1834 */ 1835 wk->wk_state &= ~INPROGRESS; 1836 wake_worklist(wk); 1837 add_to_worklist(wk, WK_HEAD); 1838 } 1839 /* Sentinal could've become the tail from remove_from_worklist. */ 1840 if (ump->softdep_worklist_tail == &sentinel) 1841 ump->softdep_worklist_tail = 1842 (struct worklist *)sentinel.wk_list.le_prev; 1843 LIST_REMOVE(&sentinel, wk_list); 1844 PRELE(curproc); 1845 return (matchcnt); 1846 } 1847 1848 /* 1849 * Move dependencies from one buffer to another. 1850 */ 1851 int 1852 softdep_move_dependencies(oldbp, newbp) 1853 struct buf *oldbp; 1854 struct buf *newbp; 1855 { 1856 struct worklist *wk, *wktail; 1857 struct ufsmount *ump; 1858 int dirty; 1859 1860 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1861 return (0); 1862 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1863 ("softdep_move_dependencies called on non-softdep filesystem")); 1864 dirty = 0; 1865 wktail = NULL; 1866 ump = VFSTOUFS(wk->wk_mp); 1867 ACQUIRE_LOCK(ump); 1868 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1869 LIST_REMOVE(wk, wk_list); 1870 if (wk->wk_type == D_BMSAFEMAP && 1871 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1872 dirty = 1; 1873 if (wktail == NULL) 1874 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1875 else 1876 LIST_INSERT_AFTER(wktail, wk, wk_list); 1877 wktail = wk; 1878 } 1879 FREE_LOCK(ump); 1880 1881 return (dirty); 1882 } 1883 1884 /* 1885 * Purge the work list of all items associated with a particular mount point. 1886 */ 1887 int 1888 softdep_flushworklist(oldmnt, countp, td) 1889 struct mount *oldmnt; 1890 int *countp; 1891 struct thread *td; 1892 { 1893 struct vnode *devvp; 1894 struct ufsmount *ump; 1895 int count, error; 1896 1897 /* 1898 * Alternately flush the block device associated with the mount 1899 * point and process any dependencies that the flushing 1900 * creates. We continue until no more worklist dependencies 1901 * are found. 1902 */ 1903 *countp = 0; 1904 error = 0; 1905 ump = VFSTOUFS(oldmnt); 1906 devvp = ump->um_devvp; 1907 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1908 *countp += count; 1909 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1910 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1911 VOP_UNLOCK(devvp, 0); 1912 if (error != 0) 1913 break; 1914 } 1915 return (error); 1916 } 1917 1918 #define SU_WAITIDLE_RETRIES 20 1919 static int 1920 softdep_waitidle(struct mount *mp, int flags __unused) 1921 { 1922 struct ufsmount *ump; 1923 struct vnode *devvp; 1924 struct thread *td; 1925 int error, i; 1926 1927 ump = VFSTOUFS(mp); 1928 devvp = ump->um_devvp; 1929 td = curthread; 1930 error = 0; 1931 ACQUIRE_LOCK(ump); 1932 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1933 ump->softdep_req = 1; 1934 KASSERT((flags & FORCECLOSE) == 0 || 1935 ump->softdep_on_worklist == 0, 1936 ("softdep_waitidle: work added after flush")); 1937 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1938 "softdeps", 10 * hz); 1939 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1940 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1941 VOP_UNLOCK(devvp, 0); 1942 ACQUIRE_LOCK(ump); 1943 if (error != 0) 1944 break; 1945 } 1946 ump->softdep_req = 0; 1947 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1948 error = EBUSY; 1949 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1950 mp); 1951 } 1952 FREE_LOCK(ump); 1953 return (error); 1954 } 1955 1956 /* 1957 * Flush all vnodes and worklist items associated with a specified mount point. 1958 */ 1959 int 1960 softdep_flushfiles(oldmnt, flags, td) 1961 struct mount *oldmnt; 1962 int flags; 1963 struct thread *td; 1964 { 1965 #ifdef QUOTA 1966 struct ufsmount *ump; 1967 int i; 1968 #endif 1969 int error, early, depcount, loopcnt, retry_flush_count, retry; 1970 int morework; 1971 1972 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1973 ("softdep_flushfiles called on non-softdep filesystem")); 1974 loopcnt = 10; 1975 retry_flush_count = 3; 1976 retry_flush: 1977 error = 0; 1978 1979 /* 1980 * Alternately flush the vnodes associated with the mount 1981 * point and process any dependencies that the flushing 1982 * creates. In theory, this loop can happen at most twice, 1983 * but we give it a few extra just to be sure. 1984 */ 1985 for (; loopcnt > 0; loopcnt--) { 1986 /* 1987 * Do another flush in case any vnodes were brought in 1988 * as part of the cleanup operations. 1989 */ 1990 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1991 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1992 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1993 break; 1994 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1995 depcount == 0) 1996 break; 1997 } 1998 /* 1999 * If we are unmounting then it is an error to fail. If we 2000 * are simply trying to downgrade to read-only, then filesystem 2001 * activity can keep us busy forever, so we just fail with EBUSY. 2002 */ 2003 if (loopcnt == 0) { 2004 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2005 panic("softdep_flushfiles: looping"); 2006 error = EBUSY; 2007 } 2008 if (!error) 2009 error = softdep_waitidle(oldmnt, flags); 2010 if (!error) { 2011 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2012 retry = 0; 2013 MNT_ILOCK(oldmnt); 2014 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 2015 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 2016 morework = oldmnt->mnt_nvnodelistsize > 0; 2017 #ifdef QUOTA 2018 ump = VFSTOUFS(oldmnt); 2019 UFS_LOCK(ump); 2020 for (i = 0; i < MAXQUOTAS; i++) { 2021 if (ump->um_quotas[i] != NULLVP) 2022 morework = 1; 2023 } 2024 UFS_UNLOCK(ump); 2025 #endif 2026 if (morework) { 2027 if (--retry_flush_count > 0) { 2028 retry = 1; 2029 loopcnt = 3; 2030 } else 2031 error = EBUSY; 2032 } 2033 MNT_IUNLOCK(oldmnt); 2034 if (retry) 2035 goto retry_flush; 2036 } 2037 } 2038 return (error); 2039 } 2040 2041 /* 2042 * Structure hashing. 2043 * 2044 * There are four types of structures that can be looked up: 2045 * 1) pagedep structures identified by mount point, inode number, 2046 * and logical block. 2047 * 2) inodedep structures identified by mount point and inode number. 2048 * 3) newblk structures identified by mount point and 2049 * physical block number. 2050 * 4) bmsafemap structures identified by mount point and 2051 * cylinder group number. 2052 * 2053 * The "pagedep" and "inodedep" dependency structures are hashed 2054 * separately from the file blocks and inodes to which they correspond. 2055 * This separation helps when the in-memory copy of an inode or 2056 * file block must be replaced. It also obviates the need to access 2057 * an inode or file page when simply updating (or de-allocating) 2058 * dependency structures. Lookup of newblk structures is needed to 2059 * find newly allocated blocks when trying to associate them with 2060 * their allocdirect or allocindir structure. 2061 * 2062 * The lookup routines optionally create and hash a new instance when 2063 * an existing entry is not found. The bmsafemap lookup routine always 2064 * allocates a new structure if an existing one is not found. 2065 */ 2066 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2067 2068 /* 2069 * Structures and routines associated with pagedep caching. 2070 */ 2071 #define PAGEDEP_HASH(ump, inum, lbn) \ 2072 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2073 2074 static int 2075 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2076 struct pagedep_hashhead *pagedephd; 2077 ino_t ino; 2078 ufs_lbn_t lbn; 2079 struct pagedep **pagedeppp; 2080 { 2081 struct pagedep *pagedep; 2082 2083 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2084 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2085 *pagedeppp = pagedep; 2086 return (1); 2087 } 2088 } 2089 *pagedeppp = NULL; 2090 return (0); 2091 } 2092 /* 2093 * Look up a pagedep. Return 1 if found, 0 otherwise. 2094 * If not found, allocate if DEPALLOC flag is passed. 2095 * Found or allocated entry is returned in pagedeppp. 2096 * This routine must be called with splbio interrupts blocked. 2097 */ 2098 static int 2099 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2100 struct mount *mp; 2101 struct buf *bp; 2102 ino_t ino; 2103 ufs_lbn_t lbn; 2104 int flags; 2105 struct pagedep **pagedeppp; 2106 { 2107 struct pagedep *pagedep; 2108 struct pagedep_hashhead *pagedephd; 2109 struct worklist *wk; 2110 struct ufsmount *ump; 2111 int ret; 2112 int i; 2113 2114 ump = VFSTOUFS(mp); 2115 LOCK_OWNED(ump); 2116 if (bp) { 2117 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2118 if (wk->wk_type == D_PAGEDEP) { 2119 *pagedeppp = WK_PAGEDEP(wk); 2120 return (1); 2121 } 2122 } 2123 } 2124 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2125 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2126 if (ret) { 2127 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2128 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2129 return (1); 2130 } 2131 if ((flags & DEPALLOC) == 0) 2132 return (0); 2133 FREE_LOCK(ump); 2134 pagedep = malloc(sizeof(struct pagedep), 2135 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2136 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2137 ACQUIRE_LOCK(ump); 2138 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2139 if (*pagedeppp) { 2140 /* 2141 * This should never happen since we only create pagedeps 2142 * with the vnode lock held. Could be an assert. 2143 */ 2144 WORKITEM_FREE(pagedep, D_PAGEDEP); 2145 return (ret); 2146 } 2147 pagedep->pd_ino = ino; 2148 pagedep->pd_lbn = lbn; 2149 LIST_INIT(&pagedep->pd_dirremhd); 2150 LIST_INIT(&pagedep->pd_pendinghd); 2151 for (i = 0; i < DAHASHSZ; i++) 2152 LIST_INIT(&pagedep->pd_diraddhd[i]); 2153 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2154 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2155 *pagedeppp = pagedep; 2156 return (0); 2157 } 2158 2159 /* 2160 * Structures and routines associated with inodedep caching. 2161 */ 2162 #define INODEDEP_HASH(ump, inum) \ 2163 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2164 2165 static int 2166 inodedep_find(inodedephd, inum, inodedeppp) 2167 struct inodedep_hashhead *inodedephd; 2168 ino_t inum; 2169 struct inodedep **inodedeppp; 2170 { 2171 struct inodedep *inodedep; 2172 2173 LIST_FOREACH(inodedep, inodedephd, id_hash) 2174 if (inum == inodedep->id_ino) 2175 break; 2176 if (inodedep) { 2177 *inodedeppp = inodedep; 2178 return (1); 2179 } 2180 *inodedeppp = NULL; 2181 2182 return (0); 2183 } 2184 /* 2185 * Look up an inodedep. Return 1 if found, 0 if not found. 2186 * If not found, allocate if DEPALLOC flag is passed. 2187 * Found or allocated entry is returned in inodedeppp. 2188 * This routine must be called with splbio interrupts blocked. 2189 */ 2190 static int 2191 inodedep_lookup(mp, inum, flags, inodedeppp) 2192 struct mount *mp; 2193 ino_t inum; 2194 int flags; 2195 struct inodedep **inodedeppp; 2196 { 2197 struct inodedep *inodedep; 2198 struct inodedep_hashhead *inodedephd; 2199 struct ufsmount *ump; 2200 struct fs *fs; 2201 2202 ump = VFSTOUFS(mp); 2203 LOCK_OWNED(ump); 2204 fs = ump->um_fs; 2205 inodedephd = INODEDEP_HASH(ump, inum); 2206 2207 if (inodedep_find(inodedephd, inum, inodedeppp)) 2208 return (1); 2209 if ((flags & DEPALLOC) == 0) 2210 return (0); 2211 /* 2212 * If the system is over its limit and our filesystem is 2213 * responsible for more than our share of that usage and 2214 * we are not in a rush, request some inodedep cleanup. 2215 */ 2216 if (softdep_excess_items(ump, D_INODEDEP)) 2217 schedule_cleanup(mp); 2218 else 2219 FREE_LOCK(ump); 2220 inodedep = malloc(sizeof(struct inodedep), 2221 M_INODEDEP, M_SOFTDEP_FLAGS); 2222 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2223 ACQUIRE_LOCK(ump); 2224 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2225 WORKITEM_FREE(inodedep, D_INODEDEP); 2226 return (1); 2227 } 2228 inodedep->id_fs = fs; 2229 inodedep->id_ino = inum; 2230 inodedep->id_state = ALLCOMPLETE; 2231 inodedep->id_nlinkdelta = 0; 2232 inodedep->id_savedino1 = NULL; 2233 inodedep->id_savedsize = -1; 2234 inodedep->id_savedextsize = -1; 2235 inodedep->id_savednlink = -1; 2236 inodedep->id_bmsafemap = NULL; 2237 inodedep->id_mkdiradd = NULL; 2238 LIST_INIT(&inodedep->id_dirremhd); 2239 LIST_INIT(&inodedep->id_pendinghd); 2240 LIST_INIT(&inodedep->id_inowait); 2241 LIST_INIT(&inodedep->id_bufwait); 2242 TAILQ_INIT(&inodedep->id_inoreflst); 2243 TAILQ_INIT(&inodedep->id_inoupdt); 2244 TAILQ_INIT(&inodedep->id_newinoupdt); 2245 TAILQ_INIT(&inodedep->id_extupdt); 2246 TAILQ_INIT(&inodedep->id_newextupdt); 2247 TAILQ_INIT(&inodedep->id_freeblklst); 2248 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2249 *inodedeppp = inodedep; 2250 return (0); 2251 } 2252 2253 /* 2254 * Structures and routines associated with newblk caching. 2255 */ 2256 #define NEWBLK_HASH(ump, inum) \ 2257 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2258 2259 static int 2260 newblk_find(newblkhd, newblkno, flags, newblkpp) 2261 struct newblk_hashhead *newblkhd; 2262 ufs2_daddr_t newblkno; 2263 int flags; 2264 struct newblk **newblkpp; 2265 { 2266 struct newblk *newblk; 2267 2268 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2269 if (newblkno != newblk->nb_newblkno) 2270 continue; 2271 /* 2272 * If we're creating a new dependency don't match those that 2273 * have already been converted to allocdirects. This is for 2274 * a frag extend. 2275 */ 2276 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2277 continue; 2278 break; 2279 } 2280 if (newblk) { 2281 *newblkpp = newblk; 2282 return (1); 2283 } 2284 *newblkpp = NULL; 2285 return (0); 2286 } 2287 2288 /* 2289 * Look up a newblk. Return 1 if found, 0 if not found. 2290 * If not found, allocate if DEPALLOC flag is passed. 2291 * Found or allocated entry is returned in newblkpp. 2292 */ 2293 static int 2294 newblk_lookup(mp, newblkno, flags, newblkpp) 2295 struct mount *mp; 2296 ufs2_daddr_t newblkno; 2297 int flags; 2298 struct newblk **newblkpp; 2299 { 2300 struct newblk *newblk; 2301 struct newblk_hashhead *newblkhd; 2302 struct ufsmount *ump; 2303 2304 ump = VFSTOUFS(mp); 2305 LOCK_OWNED(ump); 2306 newblkhd = NEWBLK_HASH(ump, newblkno); 2307 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2308 return (1); 2309 if ((flags & DEPALLOC) == 0) 2310 return (0); 2311 if (softdep_excess_items(ump, D_NEWBLK) || 2312 softdep_excess_items(ump, D_ALLOCDIRECT) || 2313 softdep_excess_items(ump, D_ALLOCINDIR)) 2314 schedule_cleanup(mp); 2315 else 2316 FREE_LOCK(ump); 2317 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2318 M_SOFTDEP_FLAGS | M_ZERO); 2319 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2320 ACQUIRE_LOCK(ump); 2321 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2322 WORKITEM_FREE(newblk, D_NEWBLK); 2323 return (1); 2324 } 2325 newblk->nb_freefrag = NULL; 2326 LIST_INIT(&newblk->nb_indirdeps); 2327 LIST_INIT(&newblk->nb_newdirblk); 2328 LIST_INIT(&newblk->nb_jwork); 2329 newblk->nb_state = ATTACHED; 2330 newblk->nb_newblkno = newblkno; 2331 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2332 *newblkpp = newblk; 2333 return (0); 2334 } 2335 2336 /* 2337 * Structures and routines associated with freed indirect block caching. 2338 */ 2339 #define INDIR_HASH(ump, blkno) \ 2340 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2341 2342 /* 2343 * Lookup an indirect block in the indir hash table. The freework is 2344 * removed and potentially freed. The caller must do a blocking journal 2345 * write before writing to the blkno. 2346 */ 2347 static int 2348 indirblk_lookup(mp, blkno) 2349 struct mount *mp; 2350 ufs2_daddr_t blkno; 2351 { 2352 struct freework *freework; 2353 struct indir_hashhead *wkhd; 2354 struct ufsmount *ump; 2355 2356 ump = VFSTOUFS(mp); 2357 wkhd = INDIR_HASH(ump, blkno); 2358 TAILQ_FOREACH(freework, wkhd, fw_next) { 2359 if (freework->fw_blkno != blkno) 2360 continue; 2361 indirblk_remove(freework); 2362 return (1); 2363 } 2364 return (0); 2365 } 2366 2367 /* 2368 * Insert an indirect block represented by freework into the indirblk 2369 * hash table so that it may prevent the block from being re-used prior 2370 * to the journal being written. 2371 */ 2372 static void 2373 indirblk_insert(freework) 2374 struct freework *freework; 2375 { 2376 struct jblocks *jblocks; 2377 struct jseg *jseg; 2378 struct ufsmount *ump; 2379 2380 ump = VFSTOUFS(freework->fw_list.wk_mp); 2381 jblocks = ump->softdep_jblocks; 2382 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2383 if (jseg == NULL) 2384 return; 2385 2386 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2387 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2388 fw_next); 2389 freework->fw_state &= ~DEPCOMPLETE; 2390 } 2391 2392 static void 2393 indirblk_remove(freework) 2394 struct freework *freework; 2395 { 2396 struct ufsmount *ump; 2397 2398 ump = VFSTOUFS(freework->fw_list.wk_mp); 2399 LIST_REMOVE(freework, fw_segs); 2400 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2401 freework->fw_state |= DEPCOMPLETE; 2402 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2403 WORKITEM_FREE(freework, D_FREEWORK); 2404 } 2405 2406 /* 2407 * Executed during filesystem system initialization before 2408 * mounting any filesystems. 2409 */ 2410 void 2411 softdep_initialize() 2412 { 2413 2414 TAILQ_INIT(&softdepmounts); 2415 #ifdef __LP64__ 2416 max_softdeps = desiredvnodes * 4; 2417 #else 2418 max_softdeps = desiredvnodes * 2; 2419 #endif 2420 2421 /* initialise bioops hack */ 2422 bioops.io_start = softdep_disk_io_initiation; 2423 bioops.io_complete = softdep_disk_write_complete; 2424 bioops.io_deallocate = softdep_deallocate_dependencies; 2425 bioops.io_countdeps = softdep_count_dependencies; 2426 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2427 2428 /* Initialize the callout with an mtx. */ 2429 callout_init_mtx(&softdep_callout, &lk, 0); 2430 } 2431 2432 /* 2433 * Executed after all filesystems have been unmounted during 2434 * filesystem module unload. 2435 */ 2436 void 2437 softdep_uninitialize() 2438 { 2439 2440 /* clear bioops hack */ 2441 bioops.io_start = NULL; 2442 bioops.io_complete = NULL; 2443 bioops.io_deallocate = NULL; 2444 bioops.io_countdeps = NULL; 2445 softdep_ast_cleanup = NULL; 2446 2447 callout_drain(&softdep_callout); 2448 } 2449 2450 /* 2451 * Called at mount time to notify the dependency code that a 2452 * filesystem wishes to use it. 2453 */ 2454 int 2455 softdep_mount(devvp, mp, fs, cred) 2456 struct vnode *devvp; 2457 struct mount *mp; 2458 struct fs *fs; 2459 struct ucred *cred; 2460 { 2461 struct csum_total cstotal; 2462 struct mount_softdeps *sdp; 2463 struct ufsmount *ump; 2464 struct cg *cgp; 2465 struct buf *bp; 2466 int i, error, cyl; 2467 2468 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2469 M_WAITOK | M_ZERO); 2470 MNT_ILOCK(mp); 2471 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2472 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2473 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2474 MNTK_SOFTDEP | MNTK_NOASYNC; 2475 } 2476 ump = VFSTOUFS(mp); 2477 ump->um_softdep = sdp; 2478 MNT_IUNLOCK(mp); 2479 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2480 sdp->sd_ump = ump; 2481 LIST_INIT(&ump->softdep_workitem_pending); 2482 LIST_INIT(&ump->softdep_journal_pending); 2483 TAILQ_INIT(&ump->softdep_unlinked); 2484 LIST_INIT(&ump->softdep_dirtycg); 2485 ump->softdep_worklist_tail = NULL; 2486 ump->softdep_on_worklist = 0; 2487 ump->softdep_deps = 0; 2488 LIST_INIT(&ump->softdep_mkdirlisthd); 2489 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2490 &ump->pagedep_hash_size); 2491 ump->pagedep_nextclean = 0; 2492 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2493 &ump->inodedep_hash_size); 2494 ump->inodedep_nextclean = 0; 2495 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2496 &ump->newblk_hash_size); 2497 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2498 &ump->bmsafemap_hash_size); 2499 i = 1 << (ffs(desiredvnodes / 10) - 1); 2500 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2501 M_FREEWORK, M_WAITOK); 2502 ump->indir_hash_size = i - 1; 2503 for (i = 0; i <= ump->indir_hash_size; i++) 2504 TAILQ_INIT(&ump->indir_hashtbl[i]); 2505 ACQUIRE_GBLLOCK(&lk); 2506 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2507 FREE_GBLLOCK(&lk); 2508 if ((fs->fs_flags & FS_SUJ) && 2509 (error = journal_mount(mp, fs, cred)) != 0) { 2510 printf("Failed to start journal: %d\n", error); 2511 softdep_unmount(mp); 2512 return (error); 2513 } 2514 /* 2515 * Start our flushing thread in the bufdaemon process. 2516 */ 2517 ACQUIRE_LOCK(ump); 2518 ump->softdep_flags |= FLUSH_STARTING; 2519 FREE_LOCK(ump); 2520 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2521 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2522 mp->mnt_stat.f_mntonname); 2523 ACQUIRE_LOCK(ump); 2524 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2525 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2526 hz / 2); 2527 } 2528 FREE_LOCK(ump); 2529 /* 2530 * When doing soft updates, the counters in the 2531 * superblock may have gotten out of sync. Recomputation 2532 * can take a long time and can be deferred for background 2533 * fsck. However, the old behavior of scanning the cylinder 2534 * groups and recalculating them at mount time is available 2535 * by setting vfs.ffs.compute_summary_at_mount to one. 2536 */ 2537 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2538 return (0); 2539 bzero(&cstotal, sizeof cstotal); 2540 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2541 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2542 fs->fs_cgsize, cred, &bp)) != 0) { 2543 brelse(bp); 2544 softdep_unmount(mp); 2545 return (error); 2546 } 2547 cgp = (struct cg *)bp->b_data; 2548 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2549 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2550 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2551 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2552 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2553 brelse(bp); 2554 } 2555 #ifdef DEBUG 2556 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2557 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2558 #endif 2559 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2560 return (0); 2561 } 2562 2563 void 2564 softdep_unmount(mp) 2565 struct mount *mp; 2566 { 2567 struct ufsmount *ump; 2568 #ifdef INVARIANTS 2569 int i; 2570 #endif 2571 2572 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2573 ("softdep_unmount called on non-softdep filesystem")); 2574 ump = VFSTOUFS(mp); 2575 MNT_ILOCK(mp); 2576 mp->mnt_flag &= ~MNT_SOFTDEP; 2577 if (MOUNTEDSUJ(mp) == 0) { 2578 MNT_IUNLOCK(mp); 2579 } else { 2580 mp->mnt_flag &= ~MNT_SUJ; 2581 MNT_IUNLOCK(mp); 2582 journal_unmount(ump); 2583 } 2584 /* 2585 * Shut down our flushing thread. Check for NULL is if 2586 * softdep_mount errors out before the thread has been created. 2587 */ 2588 if (ump->softdep_flushtd != NULL) { 2589 ACQUIRE_LOCK(ump); 2590 ump->softdep_flags |= FLUSH_EXIT; 2591 wakeup(&ump->softdep_flushtd); 2592 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2593 "sdwait", 0); 2594 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2595 ("Thread shutdown failed")); 2596 } 2597 /* 2598 * Free up our resources. 2599 */ 2600 ACQUIRE_GBLLOCK(&lk); 2601 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2602 FREE_GBLLOCK(&lk); 2603 rw_destroy(LOCK_PTR(ump)); 2604 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2605 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2606 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2607 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2608 ump->bmsafemap_hash_size); 2609 free(ump->indir_hashtbl, M_FREEWORK); 2610 #ifdef INVARIANTS 2611 for (i = 0; i <= D_LAST; i++) 2612 KASSERT(ump->softdep_curdeps[i] == 0, 2613 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2614 TYPENAME(i), ump->softdep_curdeps[i])); 2615 #endif 2616 free(ump->um_softdep, M_MOUNTDATA); 2617 } 2618 2619 static struct jblocks * 2620 jblocks_create(void) 2621 { 2622 struct jblocks *jblocks; 2623 2624 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2625 TAILQ_INIT(&jblocks->jb_segs); 2626 jblocks->jb_avail = 10; 2627 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2628 M_JBLOCKS, M_WAITOK | M_ZERO); 2629 2630 return (jblocks); 2631 } 2632 2633 static ufs2_daddr_t 2634 jblocks_alloc(jblocks, bytes, actual) 2635 struct jblocks *jblocks; 2636 int bytes; 2637 int *actual; 2638 { 2639 ufs2_daddr_t daddr; 2640 struct jextent *jext; 2641 int freecnt; 2642 int blocks; 2643 2644 blocks = bytes / DEV_BSIZE; 2645 jext = &jblocks->jb_extent[jblocks->jb_head]; 2646 freecnt = jext->je_blocks - jblocks->jb_off; 2647 if (freecnt == 0) { 2648 jblocks->jb_off = 0; 2649 if (++jblocks->jb_head > jblocks->jb_used) 2650 jblocks->jb_head = 0; 2651 jext = &jblocks->jb_extent[jblocks->jb_head]; 2652 freecnt = jext->je_blocks; 2653 } 2654 if (freecnt > blocks) 2655 freecnt = blocks; 2656 *actual = freecnt * DEV_BSIZE; 2657 daddr = jext->je_daddr + jblocks->jb_off; 2658 jblocks->jb_off += freecnt; 2659 jblocks->jb_free -= freecnt; 2660 2661 return (daddr); 2662 } 2663 2664 static void 2665 jblocks_free(jblocks, mp, bytes) 2666 struct jblocks *jblocks; 2667 struct mount *mp; 2668 int bytes; 2669 { 2670 2671 LOCK_OWNED(VFSTOUFS(mp)); 2672 jblocks->jb_free += bytes / DEV_BSIZE; 2673 if (jblocks->jb_suspended) 2674 worklist_speedup(mp); 2675 wakeup(jblocks); 2676 } 2677 2678 static void 2679 jblocks_destroy(jblocks) 2680 struct jblocks *jblocks; 2681 { 2682 2683 if (jblocks->jb_extent) 2684 free(jblocks->jb_extent, M_JBLOCKS); 2685 free(jblocks, M_JBLOCKS); 2686 } 2687 2688 static void 2689 jblocks_add(jblocks, daddr, blocks) 2690 struct jblocks *jblocks; 2691 ufs2_daddr_t daddr; 2692 int blocks; 2693 { 2694 struct jextent *jext; 2695 2696 jblocks->jb_blocks += blocks; 2697 jblocks->jb_free += blocks; 2698 jext = &jblocks->jb_extent[jblocks->jb_used]; 2699 /* Adding the first block. */ 2700 if (jext->je_daddr == 0) { 2701 jext->je_daddr = daddr; 2702 jext->je_blocks = blocks; 2703 return; 2704 } 2705 /* Extending the last extent. */ 2706 if (jext->je_daddr + jext->je_blocks == daddr) { 2707 jext->je_blocks += blocks; 2708 return; 2709 } 2710 /* Adding a new extent. */ 2711 if (++jblocks->jb_used == jblocks->jb_avail) { 2712 jblocks->jb_avail *= 2; 2713 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2714 M_JBLOCKS, M_WAITOK | M_ZERO); 2715 memcpy(jext, jblocks->jb_extent, 2716 sizeof(struct jextent) * jblocks->jb_used); 2717 free(jblocks->jb_extent, M_JBLOCKS); 2718 jblocks->jb_extent = jext; 2719 } 2720 jext = &jblocks->jb_extent[jblocks->jb_used]; 2721 jext->je_daddr = daddr; 2722 jext->je_blocks = blocks; 2723 return; 2724 } 2725 2726 int 2727 softdep_journal_lookup(mp, vpp) 2728 struct mount *mp; 2729 struct vnode **vpp; 2730 { 2731 struct componentname cnp; 2732 struct vnode *dvp; 2733 ino_t sujournal; 2734 int error; 2735 2736 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2737 if (error) 2738 return (error); 2739 bzero(&cnp, sizeof(cnp)); 2740 cnp.cn_nameiop = LOOKUP; 2741 cnp.cn_flags = ISLASTCN; 2742 cnp.cn_thread = curthread; 2743 cnp.cn_cred = curthread->td_ucred; 2744 cnp.cn_pnbuf = SUJ_FILE; 2745 cnp.cn_nameptr = SUJ_FILE; 2746 cnp.cn_namelen = strlen(SUJ_FILE); 2747 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2748 vput(dvp); 2749 if (error != 0) 2750 return (error); 2751 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2752 return (error); 2753 } 2754 2755 /* 2756 * Open and verify the journal file. 2757 */ 2758 static int 2759 journal_mount(mp, fs, cred) 2760 struct mount *mp; 2761 struct fs *fs; 2762 struct ucred *cred; 2763 { 2764 struct jblocks *jblocks; 2765 struct ufsmount *ump; 2766 struct vnode *vp; 2767 struct inode *ip; 2768 ufs2_daddr_t blkno; 2769 int bcount; 2770 int error; 2771 int i; 2772 2773 ump = VFSTOUFS(mp); 2774 ump->softdep_journal_tail = NULL; 2775 ump->softdep_on_journal = 0; 2776 ump->softdep_accdeps = 0; 2777 ump->softdep_req = 0; 2778 ump->softdep_jblocks = NULL; 2779 error = softdep_journal_lookup(mp, &vp); 2780 if (error != 0) { 2781 printf("Failed to find journal. Use tunefs to create one\n"); 2782 return (error); 2783 } 2784 ip = VTOI(vp); 2785 if (ip->i_size < SUJ_MIN) { 2786 error = ENOSPC; 2787 goto out; 2788 } 2789 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2790 jblocks = jblocks_create(); 2791 for (i = 0; i < bcount; i++) { 2792 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2793 if (error) 2794 break; 2795 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2796 } 2797 if (error) { 2798 jblocks_destroy(jblocks); 2799 goto out; 2800 } 2801 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2802 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2803 ump->softdep_jblocks = jblocks; 2804 out: 2805 if (error == 0) { 2806 MNT_ILOCK(mp); 2807 mp->mnt_flag |= MNT_SUJ; 2808 mp->mnt_flag &= ~MNT_SOFTDEP; 2809 MNT_IUNLOCK(mp); 2810 /* 2811 * Only validate the journal contents if the 2812 * filesystem is clean, otherwise we write the logs 2813 * but they'll never be used. If the filesystem was 2814 * still dirty when we mounted it the journal is 2815 * invalid and a new journal can only be valid if it 2816 * starts from a clean mount. 2817 */ 2818 if (fs->fs_clean) { 2819 DIP_SET(ip, i_modrev, fs->fs_mtime); 2820 ip->i_flags |= IN_MODIFIED; 2821 ffs_update(vp, 1); 2822 } 2823 } 2824 vput(vp); 2825 return (error); 2826 } 2827 2828 static void 2829 journal_unmount(ump) 2830 struct ufsmount *ump; 2831 { 2832 2833 if (ump->softdep_jblocks) 2834 jblocks_destroy(ump->softdep_jblocks); 2835 ump->softdep_jblocks = NULL; 2836 } 2837 2838 /* 2839 * Called when a journal record is ready to be written. Space is allocated 2840 * and the journal entry is created when the journal is flushed to stable 2841 * store. 2842 */ 2843 static void 2844 add_to_journal(wk) 2845 struct worklist *wk; 2846 { 2847 struct ufsmount *ump; 2848 2849 ump = VFSTOUFS(wk->wk_mp); 2850 LOCK_OWNED(ump); 2851 if (wk->wk_state & ONWORKLIST) 2852 panic("add_to_journal: %s(0x%X) already on list", 2853 TYPENAME(wk->wk_type), wk->wk_state); 2854 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2855 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2856 ump->softdep_jblocks->jb_age = ticks; 2857 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2858 } else 2859 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2860 ump->softdep_journal_tail = wk; 2861 ump->softdep_on_journal += 1; 2862 } 2863 2864 /* 2865 * Remove an arbitrary item for the journal worklist maintain the tail 2866 * pointer. This happens when a new operation obviates the need to 2867 * journal an old operation. 2868 */ 2869 static void 2870 remove_from_journal(wk) 2871 struct worklist *wk; 2872 { 2873 struct ufsmount *ump; 2874 2875 ump = VFSTOUFS(wk->wk_mp); 2876 LOCK_OWNED(ump); 2877 #ifdef SUJ_DEBUG 2878 { 2879 struct worklist *wkn; 2880 2881 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2882 if (wkn == wk) 2883 break; 2884 if (wkn == NULL) 2885 panic("remove_from_journal: %p is not in journal", wk); 2886 } 2887 #endif 2888 /* 2889 * We emulate a TAILQ to save space in most structures which do not 2890 * require TAILQ semantics. Here we must update the tail position 2891 * when removing the tail which is not the final entry. This works 2892 * only if the worklist linkage are at the beginning of the structure. 2893 */ 2894 if (ump->softdep_journal_tail == wk) 2895 ump->softdep_journal_tail = 2896 (struct worklist *)wk->wk_list.le_prev; 2897 WORKLIST_REMOVE(wk); 2898 ump->softdep_on_journal -= 1; 2899 } 2900 2901 /* 2902 * Check for journal space as well as dependency limits so the prelink 2903 * code can throttle both journaled and non-journaled filesystems. 2904 * Threshold is 0 for low and 1 for min. 2905 */ 2906 static int 2907 journal_space(ump, thresh) 2908 struct ufsmount *ump; 2909 int thresh; 2910 { 2911 struct jblocks *jblocks; 2912 int limit, avail; 2913 2914 jblocks = ump->softdep_jblocks; 2915 if (jblocks == NULL) 2916 return (1); 2917 /* 2918 * We use a tighter restriction here to prevent request_cleanup() 2919 * running in threads from running into locks we currently hold. 2920 * We have to be over the limit and our filesystem has to be 2921 * responsible for more than our share of that usage. 2922 */ 2923 limit = (max_softdeps / 10) * 9; 2924 if (dep_current[D_INODEDEP] > limit && 2925 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2926 return (0); 2927 if (thresh) 2928 thresh = jblocks->jb_min; 2929 else 2930 thresh = jblocks->jb_low; 2931 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2932 avail = jblocks->jb_free - avail; 2933 2934 return (avail > thresh); 2935 } 2936 2937 static void 2938 journal_suspend(ump) 2939 struct ufsmount *ump; 2940 { 2941 struct jblocks *jblocks; 2942 struct mount *mp; 2943 2944 mp = UFSTOVFS(ump); 2945 jblocks = ump->softdep_jblocks; 2946 MNT_ILOCK(mp); 2947 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2948 stat_journal_min++; 2949 mp->mnt_kern_flag |= MNTK_SUSPEND; 2950 mp->mnt_susp_owner = ump->softdep_flushtd; 2951 } 2952 jblocks->jb_suspended = 1; 2953 MNT_IUNLOCK(mp); 2954 } 2955 2956 static int 2957 journal_unsuspend(struct ufsmount *ump) 2958 { 2959 struct jblocks *jblocks; 2960 struct mount *mp; 2961 2962 mp = UFSTOVFS(ump); 2963 jblocks = ump->softdep_jblocks; 2964 2965 if (jblocks != NULL && jblocks->jb_suspended && 2966 journal_space(ump, jblocks->jb_min)) { 2967 jblocks->jb_suspended = 0; 2968 FREE_LOCK(ump); 2969 mp->mnt_susp_owner = curthread; 2970 vfs_write_resume(mp, 0); 2971 ACQUIRE_LOCK(ump); 2972 return (1); 2973 } 2974 return (0); 2975 } 2976 2977 /* 2978 * Called before any allocation function to be certain that there is 2979 * sufficient space in the journal prior to creating any new records. 2980 * Since in the case of block allocation we may have multiple locked 2981 * buffers at the time of the actual allocation we can not block 2982 * when the journal records are created. Doing so would create a deadlock 2983 * if any of these buffers needed to be flushed to reclaim space. Instead 2984 * we require a sufficiently large amount of available space such that 2985 * each thread in the system could have passed this allocation check and 2986 * still have sufficient free space. With 20% of a minimum journal size 2987 * of 1MB we have 6553 records available. 2988 */ 2989 int 2990 softdep_prealloc(vp, waitok) 2991 struct vnode *vp; 2992 int waitok; 2993 { 2994 struct ufsmount *ump; 2995 2996 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 2997 ("softdep_prealloc called on non-softdep filesystem")); 2998 /* 2999 * Nothing to do if we are not running journaled soft updates. 3000 * If we currently hold the snapshot lock, we must avoid 3001 * handling other resources that could cause deadlock. Do not 3002 * touch quotas vnode since it is typically recursed with 3003 * other vnode locks held. 3004 */ 3005 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3006 (vp->v_vflag & VV_SYSTEM) != 0) 3007 return (0); 3008 ump = VFSTOUFS(vp->v_mount); 3009 ACQUIRE_LOCK(ump); 3010 if (journal_space(ump, 0)) { 3011 FREE_LOCK(ump); 3012 return (0); 3013 } 3014 stat_journal_low++; 3015 FREE_LOCK(ump); 3016 if (waitok == MNT_NOWAIT) 3017 return (ENOSPC); 3018 /* 3019 * Attempt to sync this vnode once to flush any journal 3020 * work attached to it. 3021 */ 3022 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3023 ffs_syncvnode(vp, waitok, 0); 3024 ACQUIRE_LOCK(ump); 3025 process_removes(vp); 3026 process_truncates(vp); 3027 if (journal_space(ump, 0) == 0) { 3028 softdep_speedup(ump); 3029 if (journal_space(ump, 1) == 0) 3030 journal_suspend(ump); 3031 } 3032 FREE_LOCK(ump); 3033 3034 return (0); 3035 } 3036 3037 /* 3038 * Before adjusting a link count on a vnode verify that we have sufficient 3039 * journal space. If not, process operations that depend on the currently 3040 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3041 * and softdep flush threads can not acquire these locks to reclaim space. 3042 */ 3043 static void 3044 softdep_prelink(dvp, vp) 3045 struct vnode *dvp; 3046 struct vnode *vp; 3047 { 3048 struct ufsmount *ump; 3049 3050 ump = VFSTOUFS(dvp->v_mount); 3051 LOCK_OWNED(ump); 3052 /* 3053 * Nothing to do if we have sufficient journal space. 3054 * If we currently hold the snapshot lock, we must avoid 3055 * handling other resources that could cause deadlock. 3056 */ 3057 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3058 return; 3059 stat_journal_low++; 3060 FREE_LOCK(ump); 3061 if (vp) 3062 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3063 ffs_syncvnode(dvp, MNT_WAIT, 0); 3064 ACQUIRE_LOCK(ump); 3065 /* Process vp before dvp as it may create .. removes. */ 3066 if (vp) { 3067 process_removes(vp); 3068 process_truncates(vp); 3069 } 3070 process_removes(dvp); 3071 process_truncates(dvp); 3072 softdep_speedup(ump); 3073 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3074 if (journal_space(ump, 0) == 0) { 3075 softdep_speedup(ump); 3076 if (journal_space(ump, 1) == 0) 3077 journal_suspend(ump); 3078 } 3079 } 3080 3081 static void 3082 jseg_write(ump, jseg, data) 3083 struct ufsmount *ump; 3084 struct jseg *jseg; 3085 uint8_t *data; 3086 { 3087 struct jsegrec *rec; 3088 3089 rec = (struct jsegrec *)data; 3090 rec->jsr_seq = jseg->js_seq; 3091 rec->jsr_oldest = jseg->js_oldseq; 3092 rec->jsr_cnt = jseg->js_cnt; 3093 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3094 rec->jsr_crc = 0; 3095 rec->jsr_time = ump->um_fs->fs_mtime; 3096 } 3097 3098 static inline void 3099 inoref_write(inoref, jseg, rec) 3100 struct inoref *inoref; 3101 struct jseg *jseg; 3102 struct jrefrec *rec; 3103 { 3104 3105 inoref->if_jsegdep->jd_seg = jseg; 3106 rec->jr_ino = inoref->if_ino; 3107 rec->jr_parent = inoref->if_parent; 3108 rec->jr_nlink = inoref->if_nlink; 3109 rec->jr_mode = inoref->if_mode; 3110 rec->jr_diroff = inoref->if_diroff; 3111 } 3112 3113 static void 3114 jaddref_write(jaddref, jseg, data) 3115 struct jaddref *jaddref; 3116 struct jseg *jseg; 3117 uint8_t *data; 3118 { 3119 struct jrefrec *rec; 3120 3121 rec = (struct jrefrec *)data; 3122 rec->jr_op = JOP_ADDREF; 3123 inoref_write(&jaddref->ja_ref, jseg, rec); 3124 } 3125 3126 static void 3127 jremref_write(jremref, jseg, data) 3128 struct jremref *jremref; 3129 struct jseg *jseg; 3130 uint8_t *data; 3131 { 3132 struct jrefrec *rec; 3133 3134 rec = (struct jrefrec *)data; 3135 rec->jr_op = JOP_REMREF; 3136 inoref_write(&jremref->jr_ref, jseg, rec); 3137 } 3138 3139 static void 3140 jmvref_write(jmvref, jseg, data) 3141 struct jmvref *jmvref; 3142 struct jseg *jseg; 3143 uint8_t *data; 3144 { 3145 struct jmvrec *rec; 3146 3147 rec = (struct jmvrec *)data; 3148 rec->jm_op = JOP_MVREF; 3149 rec->jm_ino = jmvref->jm_ino; 3150 rec->jm_parent = jmvref->jm_parent; 3151 rec->jm_oldoff = jmvref->jm_oldoff; 3152 rec->jm_newoff = jmvref->jm_newoff; 3153 } 3154 3155 static void 3156 jnewblk_write(jnewblk, jseg, data) 3157 struct jnewblk *jnewblk; 3158 struct jseg *jseg; 3159 uint8_t *data; 3160 { 3161 struct jblkrec *rec; 3162 3163 jnewblk->jn_jsegdep->jd_seg = jseg; 3164 rec = (struct jblkrec *)data; 3165 rec->jb_op = JOP_NEWBLK; 3166 rec->jb_ino = jnewblk->jn_ino; 3167 rec->jb_blkno = jnewblk->jn_blkno; 3168 rec->jb_lbn = jnewblk->jn_lbn; 3169 rec->jb_frags = jnewblk->jn_frags; 3170 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3171 } 3172 3173 static void 3174 jfreeblk_write(jfreeblk, jseg, data) 3175 struct jfreeblk *jfreeblk; 3176 struct jseg *jseg; 3177 uint8_t *data; 3178 { 3179 struct jblkrec *rec; 3180 3181 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3182 rec = (struct jblkrec *)data; 3183 rec->jb_op = JOP_FREEBLK; 3184 rec->jb_ino = jfreeblk->jf_ino; 3185 rec->jb_blkno = jfreeblk->jf_blkno; 3186 rec->jb_lbn = jfreeblk->jf_lbn; 3187 rec->jb_frags = jfreeblk->jf_frags; 3188 rec->jb_oldfrags = 0; 3189 } 3190 3191 static void 3192 jfreefrag_write(jfreefrag, jseg, data) 3193 struct jfreefrag *jfreefrag; 3194 struct jseg *jseg; 3195 uint8_t *data; 3196 { 3197 struct jblkrec *rec; 3198 3199 jfreefrag->fr_jsegdep->jd_seg = jseg; 3200 rec = (struct jblkrec *)data; 3201 rec->jb_op = JOP_FREEBLK; 3202 rec->jb_ino = jfreefrag->fr_ino; 3203 rec->jb_blkno = jfreefrag->fr_blkno; 3204 rec->jb_lbn = jfreefrag->fr_lbn; 3205 rec->jb_frags = jfreefrag->fr_frags; 3206 rec->jb_oldfrags = 0; 3207 } 3208 3209 static void 3210 jtrunc_write(jtrunc, jseg, data) 3211 struct jtrunc *jtrunc; 3212 struct jseg *jseg; 3213 uint8_t *data; 3214 { 3215 struct jtrncrec *rec; 3216 3217 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3218 rec = (struct jtrncrec *)data; 3219 rec->jt_op = JOP_TRUNC; 3220 rec->jt_ino = jtrunc->jt_ino; 3221 rec->jt_size = jtrunc->jt_size; 3222 rec->jt_extsize = jtrunc->jt_extsize; 3223 } 3224 3225 static void 3226 jfsync_write(jfsync, jseg, data) 3227 struct jfsync *jfsync; 3228 struct jseg *jseg; 3229 uint8_t *data; 3230 { 3231 struct jtrncrec *rec; 3232 3233 rec = (struct jtrncrec *)data; 3234 rec->jt_op = JOP_SYNC; 3235 rec->jt_ino = jfsync->jfs_ino; 3236 rec->jt_size = jfsync->jfs_size; 3237 rec->jt_extsize = jfsync->jfs_extsize; 3238 } 3239 3240 static void 3241 softdep_flushjournal(mp) 3242 struct mount *mp; 3243 { 3244 struct jblocks *jblocks; 3245 struct ufsmount *ump; 3246 3247 if (MOUNTEDSUJ(mp) == 0) 3248 return; 3249 ump = VFSTOUFS(mp); 3250 jblocks = ump->softdep_jblocks; 3251 ACQUIRE_LOCK(ump); 3252 while (ump->softdep_on_journal) { 3253 jblocks->jb_needseg = 1; 3254 softdep_process_journal(mp, NULL, MNT_WAIT); 3255 } 3256 FREE_LOCK(ump); 3257 } 3258 3259 static void softdep_synchronize_completed(struct bio *); 3260 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3261 3262 static void 3263 softdep_synchronize_completed(bp) 3264 struct bio *bp; 3265 { 3266 struct jseg *oldest; 3267 struct jseg *jseg; 3268 struct ufsmount *ump; 3269 3270 /* 3271 * caller1 marks the last segment written before we issued the 3272 * synchronize cache. 3273 */ 3274 jseg = bp->bio_caller1; 3275 if (jseg == NULL) { 3276 g_destroy_bio(bp); 3277 return; 3278 } 3279 ump = VFSTOUFS(jseg->js_list.wk_mp); 3280 ACQUIRE_LOCK(ump); 3281 oldest = NULL; 3282 /* 3283 * Mark all the journal entries waiting on the synchronize cache 3284 * as completed so they may continue on. 3285 */ 3286 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3287 jseg->js_state |= COMPLETE; 3288 oldest = jseg; 3289 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3290 } 3291 /* 3292 * Restart deferred journal entry processing from the oldest 3293 * completed jseg. 3294 */ 3295 if (oldest) 3296 complete_jsegs(oldest); 3297 3298 FREE_LOCK(ump); 3299 g_destroy_bio(bp); 3300 } 3301 3302 /* 3303 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3304 * barriers. The journal must be written prior to any blocks that depend 3305 * on it and the journal can not be released until the blocks have be 3306 * written. This code handles both barriers simultaneously. 3307 */ 3308 static void 3309 softdep_synchronize(bp, ump, caller1) 3310 struct bio *bp; 3311 struct ufsmount *ump; 3312 void *caller1; 3313 { 3314 3315 bp->bio_cmd = BIO_FLUSH; 3316 bp->bio_flags |= BIO_ORDERED; 3317 bp->bio_data = NULL; 3318 bp->bio_offset = ump->um_cp->provider->mediasize; 3319 bp->bio_length = 0; 3320 bp->bio_done = softdep_synchronize_completed; 3321 bp->bio_caller1 = caller1; 3322 g_io_request(bp, 3323 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3324 } 3325 3326 /* 3327 * Flush some journal records to disk. 3328 */ 3329 static void 3330 softdep_process_journal(mp, needwk, flags) 3331 struct mount *mp; 3332 struct worklist *needwk; 3333 int flags; 3334 { 3335 struct jblocks *jblocks; 3336 struct ufsmount *ump; 3337 struct worklist *wk; 3338 struct jseg *jseg; 3339 struct buf *bp; 3340 struct bio *bio; 3341 uint8_t *data; 3342 struct fs *fs; 3343 int shouldflush; 3344 int segwritten; 3345 int jrecmin; /* Minimum records per block. */ 3346 int jrecmax; /* Maximum records per block. */ 3347 int size; 3348 int cnt; 3349 int off; 3350 int devbsize; 3351 3352 if (MOUNTEDSUJ(mp) == 0) 3353 return; 3354 shouldflush = softdep_flushcache; 3355 bio = NULL; 3356 jseg = NULL; 3357 ump = VFSTOUFS(mp); 3358 LOCK_OWNED(ump); 3359 fs = ump->um_fs; 3360 jblocks = ump->softdep_jblocks; 3361 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3362 /* 3363 * We write anywhere between a disk block and fs block. The upper 3364 * bound is picked to prevent buffer cache fragmentation and limit 3365 * processing time per I/O. 3366 */ 3367 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3368 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3369 segwritten = 0; 3370 for (;;) { 3371 cnt = ump->softdep_on_journal; 3372 /* 3373 * Criteria for writing a segment: 3374 * 1) We have a full block. 3375 * 2) We're called from jwait() and haven't found the 3376 * journal item yet. 3377 * 3) Always write if needseg is set. 3378 * 4) If we are called from process_worklist and have 3379 * not yet written anything we write a partial block 3380 * to enforce a 1 second maximum latency on journal 3381 * entries. 3382 */ 3383 if (cnt < (jrecmax - 1) && needwk == NULL && 3384 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3385 break; 3386 cnt++; 3387 /* 3388 * Verify some free journal space. softdep_prealloc() should 3389 * guarantee that we don't run out so this is indicative of 3390 * a problem with the flow control. Try to recover 3391 * gracefully in any event. 3392 */ 3393 while (jblocks->jb_free == 0) { 3394 if (flags != MNT_WAIT) 3395 break; 3396 printf("softdep: Out of journal space!\n"); 3397 softdep_speedup(ump); 3398 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3399 } 3400 FREE_LOCK(ump); 3401 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3402 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3403 LIST_INIT(&jseg->js_entries); 3404 LIST_INIT(&jseg->js_indirs); 3405 jseg->js_state = ATTACHED; 3406 if (shouldflush == 0) 3407 jseg->js_state |= COMPLETE; 3408 else if (bio == NULL) 3409 bio = g_alloc_bio(); 3410 jseg->js_jblocks = jblocks; 3411 bp = geteblk(fs->fs_bsize, 0); 3412 ACQUIRE_LOCK(ump); 3413 /* 3414 * If there was a race while we were allocating the block 3415 * and jseg the entry we care about was likely written. 3416 * We bail out in both the WAIT and NOWAIT case and assume 3417 * the caller will loop if the entry it cares about is 3418 * not written. 3419 */ 3420 cnt = ump->softdep_on_journal; 3421 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3422 bp->b_flags |= B_INVAL | B_NOCACHE; 3423 WORKITEM_FREE(jseg, D_JSEG); 3424 FREE_LOCK(ump); 3425 brelse(bp); 3426 ACQUIRE_LOCK(ump); 3427 break; 3428 } 3429 /* 3430 * Calculate the disk block size required for the available 3431 * records rounded to the min size. 3432 */ 3433 if (cnt == 0) 3434 size = devbsize; 3435 else if (cnt < jrecmax) 3436 size = howmany(cnt, jrecmin) * devbsize; 3437 else 3438 size = fs->fs_bsize; 3439 /* 3440 * Allocate a disk block for this journal data and account 3441 * for truncation of the requested size if enough contiguous 3442 * space was not available. 3443 */ 3444 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3445 bp->b_lblkno = bp->b_blkno; 3446 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3447 bp->b_bcount = size; 3448 bp->b_flags &= ~B_INVAL; 3449 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3450 /* 3451 * Initialize our jseg with cnt records. Assign the next 3452 * sequence number to it and link it in-order. 3453 */ 3454 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3455 jseg->js_buf = bp; 3456 jseg->js_cnt = cnt; 3457 jseg->js_refs = cnt + 1; /* Self ref. */ 3458 jseg->js_size = size; 3459 jseg->js_seq = jblocks->jb_nextseq++; 3460 if (jblocks->jb_oldestseg == NULL) 3461 jblocks->jb_oldestseg = jseg; 3462 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3463 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3464 if (jblocks->jb_writeseg == NULL) 3465 jblocks->jb_writeseg = jseg; 3466 /* 3467 * Start filling in records from the pending list. 3468 */ 3469 data = bp->b_data; 3470 off = 0; 3471 3472 /* 3473 * Always put a header on the first block. 3474 * XXX As with below, there might not be a chance to get 3475 * into the loop. Ensure that something valid is written. 3476 */ 3477 jseg_write(ump, jseg, data); 3478 off += JREC_SIZE; 3479 data = bp->b_data + off; 3480 3481 /* 3482 * XXX Something is wrong here. There's no work to do, 3483 * but we need to perform and I/O and allow it to complete 3484 * anyways. 3485 */ 3486 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3487 stat_emptyjblocks++; 3488 3489 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3490 != NULL) { 3491 if (cnt == 0) 3492 break; 3493 /* Place a segment header on every device block. */ 3494 if ((off % devbsize) == 0) { 3495 jseg_write(ump, jseg, data); 3496 off += JREC_SIZE; 3497 data = bp->b_data + off; 3498 } 3499 if (wk == needwk) 3500 needwk = NULL; 3501 remove_from_journal(wk); 3502 wk->wk_state |= INPROGRESS; 3503 WORKLIST_INSERT(&jseg->js_entries, wk); 3504 switch (wk->wk_type) { 3505 case D_JADDREF: 3506 jaddref_write(WK_JADDREF(wk), jseg, data); 3507 break; 3508 case D_JREMREF: 3509 jremref_write(WK_JREMREF(wk), jseg, data); 3510 break; 3511 case D_JMVREF: 3512 jmvref_write(WK_JMVREF(wk), jseg, data); 3513 break; 3514 case D_JNEWBLK: 3515 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3516 break; 3517 case D_JFREEBLK: 3518 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3519 break; 3520 case D_JFREEFRAG: 3521 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3522 break; 3523 case D_JTRUNC: 3524 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3525 break; 3526 case D_JFSYNC: 3527 jfsync_write(WK_JFSYNC(wk), jseg, data); 3528 break; 3529 default: 3530 panic("process_journal: Unknown type %s", 3531 TYPENAME(wk->wk_type)); 3532 /* NOTREACHED */ 3533 } 3534 off += JREC_SIZE; 3535 data = bp->b_data + off; 3536 cnt--; 3537 } 3538 3539 /* Clear any remaining space so we don't leak kernel data */ 3540 if (size > off) 3541 bzero(data, size - off); 3542 3543 /* 3544 * Write this one buffer and continue. 3545 */ 3546 segwritten = 1; 3547 jblocks->jb_needseg = 0; 3548 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3549 FREE_LOCK(ump); 3550 pbgetvp(ump->um_devvp, bp); 3551 /* 3552 * We only do the blocking wait once we find the journal 3553 * entry we're looking for. 3554 */ 3555 if (needwk == NULL && flags == MNT_WAIT) 3556 bwrite(bp); 3557 else 3558 bawrite(bp); 3559 ACQUIRE_LOCK(ump); 3560 } 3561 /* 3562 * If we wrote a segment issue a synchronize cache so the journal 3563 * is reflected on disk before the data is written. Since reclaiming 3564 * journal space also requires writing a journal record this 3565 * process also enforces a barrier before reclamation. 3566 */ 3567 if (segwritten && shouldflush) { 3568 softdep_synchronize(bio, ump, 3569 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3570 } else if (bio) 3571 g_destroy_bio(bio); 3572 /* 3573 * If we've suspended the filesystem because we ran out of journal 3574 * space either try to sync it here to make some progress or 3575 * unsuspend it if we already have. 3576 */ 3577 if (flags == 0 && jblocks->jb_suspended) { 3578 if (journal_unsuspend(ump)) 3579 return; 3580 FREE_LOCK(ump); 3581 VFS_SYNC(mp, MNT_NOWAIT); 3582 ffs_sbupdate(ump, MNT_WAIT, 0); 3583 ACQUIRE_LOCK(ump); 3584 } 3585 } 3586 3587 /* 3588 * Complete a jseg, allowing all dependencies awaiting journal writes 3589 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3590 * structures so that the journal segment can be freed to reclaim space. 3591 */ 3592 static void 3593 complete_jseg(jseg) 3594 struct jseg *jseg; 3595 { 3596 struct worklist *wk; 3597 struct jmvref *jmvref; 3598 #ifdef INVARIANTS 3599 int i = 0; 3600 #endif 3601 3602 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3603 WORKLIST_REMOVE(wk); 3604 wk->wk_state &= ~INPROGRESS; 3605 wk->wk_state |= COMPLETE; 3606 KASSERT(i++ < jseg->js_cnt, 3607 ("handle_written_jseg: overflow %d >= %d", 3608 i - 1, jseg->js_cnt)); 3609 switch (wk->wk_type) { 3610 case D_JADDREF: 3611 handle_written_jaddref(WK_JADDREF(wk)); 3612 break; 3613 case D_JREMREF: 3614 handle_written_jremref(WK_JREMREF(wk)); 3615 break; 3616 case D_JMVREF: 3617 rele_jseg(jseg); /* No jsegdep. */ 3618 jmvref = WK_JMVREF(wk); 3619 LIST_REMOVE(jmvref, jm_deps); 3620 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3621 free_pagedep(jmvref->jm_pagedep); 3622 WORKITEM_FREE(jmvref, D_JMVREF); 3623 break; 3624 case D_JNEWBLK: 3625 handle_written_jnewblk(WK_JNEWBLK(wk)); 3626 break; 3627 case D_JFREEBLK: 3628 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3629 break; 3630 case D_JTRUNC: 3631 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3632 break; 3633 case D_JFSYNC: 3634 rele_jseg(jseg); /* No jsegdep. */ 3635 WORKITEM_FREE(wk, D_JFSYNC); 3636 break; 3637 case D_JFREEFRAG: 3638 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3639 break; 3640 default: 3641 panic("handle_written_jseg: Unknown type %s", 3642 TYPENAME(wk->wk_type)); 3643 /* NOTREACHED */ 3644 } 3645 } 3646 /* Release the self reference so the structure may be freed. */ 3647 rele_jseg(jseg); 3648 } 3649 3650 /* 3651 * Determine which jsegs are ready for completion processing. Waits for 3652 * synchronize cache to complete as well as forcing in-order completion 3653 * of journal entries. 3654 */ 3655 static void 3656 complete_jsegs(jseg) 3657 struct jseg *jseg; 3658 { 3659 struct jblocks *jblocks; 3660 struct jseg *jsegn; 3661 3662 jblocks = jseg->js_jblocks; 3663 /* 3664 * Don't allow out of order completions. If this isn't the first 3665 * block wait for it to write before we're done. 3666 */ 3667 if (jseg != jblocks->jb_writeseg) 3668 return; 3669 /* Iterate through available jsegs processing their entries. */ 3670 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3671 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3672 jsegn = TAILQ_NEXT(jseg, js_next); 3673 complete_jseg(jseg); 3674 jseg = jsegn; 3675 } 3676 jblocks->jb_writeseg = jseg; 3677 /* 3678 * Attempt to free jsegs now that oldestwrseq may have advanced. 3679 */ 3680 free_jsegs(jblocks); 3681 } 3682 3683 /* 3684 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3685 * the final completions. 3686 */ 3687 static void 3688 handle_written_jseg(jseg, bp) 3689 struct jseg *jseg; 3690 struct buf *bp; 3691 { 3692 3693 if (jseg->js_refs == 0) 3694 panic("handle_written_jseg: No self-reference on %p", jseg); 3695 jseg->js_state |= DEPCOMPLETE; 3696 /* 3697 * We'll never need this buffer again, set flags so it will be 3698 * discarded. 3699 */ 3700 bp->b_flags |= B_INVAL | B_NOCACHE; 3701 pbrelvp(bp); 3702 complete_jsegs(jseg); 3703 } 3704 3705 static inline struct jsegdep * 3706 inoref_jseg(inoref) 3707 struct inoref *inoref; 3708 { 3709 struct jsegdep *jsegdep; 3710 3711 jsegdep = inoref->if_jsegdep; 3712 inoref->if_jsegdep = NULL; 3713 3714 return (jsegdep); 3715 } 3716 3717 /* 3718 * Called once a jremref has made it to stable store. The jremref is marked 3719 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3720 * for the jremref to complete will be awoken by free_jremref. 3721 */ 3722 static void 3723 handle_written_jremref(jremref) 3724 struct jremref *jremref; 3725 { 3726 struct inodedep *inodedep; 3727 struct jsegdep *jsegdep; 3728 struct dirrem *dirrem; 3729 3730 /* Grab the jsegdep. */ 3731 jsegdep = inoref_jseg(&jremref->jr_ref); 3732 /* 3733 * Remove us from the inoref list. 3734 */ 3735 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3736 0, &inodedep) == 0) 3737 panic("handle_written_jremref: Lost inodedep"); 3738 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3739 /* 3740 * Complete the dirrem. 3741 */ 3742 dirrem = jremref->jr_dirrem; 3743 jremref->jr_dirrem = NULL; 3744 LIST_REMOVE(jremref, jr_deps); 3745 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3746 jwork_insert(&dirrem->dm_jwork, jsegdep); 3747 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3748 (dirrem->dm_state & COMPLETE) != 0) 3749 add_to_worklist(&dirrem->dm_list, 0); 3750 free_jremref(jremref); 3751 } 3752 3753 /* 3754 * Called once a jaddref has made it to stable store. The dependency is 3755 * marked complete and any dependent structures are added to the inode 3756 * bufwait list to be completed as soon as it is written. If a bitmap write 3757 * depends on this entry we move the inode into the inodedephd of the 3758 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3759 */ 3760 static void 3761 handle_written_jaddref(jaddref) 3762 struct jaddref *jaddref; 3763 { 3764 struct jsegdep *jsegdep; 3765 struct inodedep *inodedep; 3766 struct diradd *diradd; 3767 struct mkdir *mkdir; 3768 3769 /* Grab the jsegdep. */ 3770 jsegdep = inoref_jseg(&jaddref->ja_ref); 3771 mkdir = NULL; 3772 diradd = NULL; 3773 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3774 0, &inodedep) == 0) 3775 panic("handle_written_jaddref: Lost inodedep."); 3776 if (jaddref->ja_diradd == NULL) 3777 panic("handle_written_jaddref: No dependency"); 3778 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3779 diradd = jaddref->ja_diradd; 3780 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3781 } else if (jaddref->ja_state & MKDIR_PARENT) { 3782 mkdir = jaddref->ja_mkdir; 3783 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3784 } else if (jaddref->ja_state & MKDIR_BODY) 3785 mkdir = jaddref->ja_mkdir; 3786 else 3787 panic("handle_written_jaddref: Unknown dependency %p", 3788 jaddref->ja_diradd); 3789 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3790 /* 3791 * Remove us from the inode list. 3792 */ 3793 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3794 /* 3795 * The mkdir may be waiting on the jaddref to clear before freeing. 3796 */ 3797 if (mkdir) { 3798 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3799 ("handle_written_jaddref: Incorrect type for mkdir %s", 3800 TYPENAME(mkdir->md_list.wk_type))); 3801 mkdir->md_jaddref = NULL; 3802 diradd = mkdir->md_diradd; 3803 mkdir->md_state |= DEPCOMPLETE; 3804 complete_mkdir(mkdir); 3805 } 3806 jwork_insert(&diradd->da_jwork, jsegdep); 3807 if (jaddref->ja_state & NEWBLOCK) { 3808 inodedep->id_state |= ONDEPLIST; 3809 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3810 inodedep, id_deps); 3811 } 3812 free_jaddref(jaddref); 3813 } 3814 3815 /* 3816 * Called once a jnewblk journal is written. The allocdirect or allocindir 3817 * is placed in the bmsafemap to await notification of a written bitmap. If 3818 * the operation was canceled we add the segdep to the appropriate 3819 * dependency to free the journal space once the canceling operation 3820 * completes. 3821 */ 3822 static void 3823 handle_written_jnewblk(jnewblk) 3824 struct jnewblk *jnewblk; 3825 { 3826 struct bmsafemap *bmsafemap; 3827 struct freefrag *freefrag; 3828 struct freework *freework; 3829 struct jsegdep *jsegdep; 3830 struct newblk *newblk; 3831 3832 /* Grab the jsegdep. */ 3833 jsegdep = jnewblk->jn_jsegdep; 3834 jnewblk->jn_jsegdep = NULL; 3835 if (jnewblk->jn_dep == NULL) 3836 panic("handle_written_jnewblk: No dependency for the segdep."); 3837 switch (jnewblk->jn_dep->wk_type) { 3838 case D_NEWBLK: 3839 case D_ALLOCDIRECT: 3840 case D_ALLOCINDIR: 3841 /* 3842 * Add the written block to the bmsafemap so it can 3843 * be notified when the bitmap is on disk. 3844 */ 3845 newblk = WK_NEWBLK(jnewblk->jn_dep); 3846 newblk->nb_jnewblk = NULL; 3847 if ((newblk->nb_state & GOINGAWAY) == 0) { 3848 bmsafemap = newblk->nb_bmsafemap; 3849 newblk->nb_state |= ONDEPLIST; 3850 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3851 nb_deps); 3852 } 3853 jwork_insert(&newblk->nb_jwork, jsegdep); 3854 break; 3855 case D_FREEFRAG: 3856 /* 3857 * A newblock being removed by a freefrag when replaced by 3858 * frag extension. 3859 */ 3860 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3861 freefrag->ff_jdep = NULL; 3862 jwork_insert(&freefrag->ff_jwork, jsegdep); 3863 break; 3864 case D_FREEWORK: 3865 /* 3866 * A direct block was removed by truncate. 3867 */ 3868 freework = WK_FREEWORK(jnewblk->jn_dep); 3869 freework->fw_jnewblk = NULL; 3870 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3871 break; 3872 default: 3873 panic("handle_written_jnewblk: Unknown type %d.", 3874 jnewblk->jn_dep->wk_type); 3875 } 3876 jnewblk->jn_dep = NULL; 3877 free_jnewblk(jnewblk); 3878 } 3879 3880 /* 3881 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3882 * an in-flight allocation that has not yet been committed. Divorce us 3883 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3884 * to the worklist. 3885 */ 3886 static void 3887 cancel_jfreefrag(jfreefrag) 3888 struct jfreefrag *jfreefrag; 3889 { 3890 struct freefrag *freefrag; 3891 3892 if (jfreefrag->fr_jsegdep) { 3893 free_jsegdep(jfreefrag->fr_jsegdep); 3894 jfreefrag->fr_jsegdep = NULL; 3895 } 3896 freefrag = jfreefrag->fr_freefrag; 3897 jfreefrag->fr_freefrag = NULL; 3898 free_jfreefrag(jfreefrag); 3899 freefrag->ff_state |= DEPCOMPLETE; 3900 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3901 } 3902 3903 /* 3904 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3905 */ 3906 static void 3907 free_jfreefrag(jfreefrag) 3908 struct jfreefrag *jfreefrag; 3909 { 3910 3911 if (jfreefrag->fr_state & INPROGRESS) 3912 WORKLIST_REMOVE(&jfreefrag->fr_list); 3913 else if (jfreefrag->fr_state & ONWORKLIST) 3914 remove_from_journal(&jfreefrag->fr_list); 3915 if (jfreefrag->fr_freefrag != NULL) 3916 panic("free_jfreefrag: Still attached to a freefrag."); 3917 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3918 } 3919 3920 /* 3921 * Called when the journal write for a jfreefrag completes. The parent 3922 * freefrag is added to the worklist if this completes its dependencies. 3923 */ 3924 static void 3925 handle_written_jfreefrag(jfreefrag) 3926 struct jfreefrag *jfreefrag; 3927 { 3928 struct jsegdep *jsegdep; 3929 struct freefrag *freefrag; 3930 3931 /* Grab the jsegdep. */ 3932 jsegdep = jfreefrag->fr_jsegdep; 3933 jfreefrag->fr_jsegdep = NULL; 3934 freefrag = jfreefrag->fr_freefrag; 3935 if (freefrag == NULL) 3936 panic("handle_written_jfreefrag: No freefrag."); 3937 freefrag->ff_state |= DEPCOMPLETE; 3938 freefrag->ff_jdep = NULL; 3939 jwork_insert(&freefrag->ff_jwork, jsegdep); 3940 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3941 add_to_worklist(&freefrag->ff_list, 0); 3942 jfreefrag->fr_freefrag = NULL; 3943 free_jfreefrag(jfreefrag); 3944 } 3945 3946 /* 3947 * Called when the journal write for a jfreeblk completes. The jfreeblk 3948 * is removed from the freeblks list of pending journal writes and the 3949 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3950 * have been reclaimed. 3951 */ 3952 static void 3953 handle_written_jblkdep(jblkdep) 3954 struct jblkdep *jblkdep; 3955 { 3956 struct freeblks *freeblks; 3957 struct jsegdep *jsegdep; 3958 3959 /* Grab the jsegdep. */ 3960 jsegdep = jblkdep->jb_jsegdep; 3961 jblkdep->jb_jsegdep = NULL; 3962 freeblks = jblkdep->jb_freeblks; 3963 LIST_REMOVE(jblkdep, jb_deps); 3964 jwork_insert(&freeblks->fb_jwork, jsegdep); 3965 /* 3966 * If the freeblks is all journaled, we can add it to the worklist. 3967 */ 3968 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3969 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3970 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3971 3972 free_jblkdep(jblkdep); 3973 } 3974 3975 static struct jsegdep * 3976 newjsegdep(struct worklist *wk) 3977 { 3978 struct jsegdep *jsegdep; 3979 3980 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3981 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3982 jsegdep->jd_seg = NULL; 3983 3984 return (jsegdep); 3985 } 3986 3987 static struct jmvref * 3988 newjmvref(dp, ino, oldoff, newoff) 3989 struct inode *dp; 3990 ino_t ino; 3991 off_t oldoff; 3992 off_t newoff; 3993 { 3994 struct jmvref *jmvref; 3995 3996 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3997 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 3998 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3999 jmvref->jm_parent = dp->i_number; 4000 jmvref->jm_ino = ino; 4001 jmvref->jm_oldoff = oldoff; 4002 jmvref->jm_newoff = newoff; 4003 4004 return (jmvref); 4005 } 4006 4007 /* 4008 * Allocate a new jremref that tracks the removal of ip from dp with the 4009 * directory entry offset of diroff. Mark the entry as ATTACHED and 4010 * DEPCOMPLETE as we have all the information required for the journal write 4011 * and the directory has already been removed from the buffer. The caller 4012 * is responsible for linking the jremref into the pagedep and adding it 4013 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4014 * a DOTDOT addition so handle_workitem_remove() can properly assign 4015 * the jsegdep when we're done. 4016 */ 4017 static struct jremref * 4018 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4019 off_t diroff, nlink_t nlink) 4020 { 4021 struct jremref *jremref; 4022 4023 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4024 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4025 jremref->jr_state = ATTACHED; 4026 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4027 nlink, ip->i_mode); 4028 jremref->jr_dirrem = dirrem; 4029 4030 return (jremref); 4031 } 4032 4033 static inline void 4034 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4035 nlink_t nlink, uint16_t mode) 4036 { 4037 4038 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4039 inoref->if_diroff = diroff; 4040 inoref->if_ino = ino; 4041 inoref->if_parent = parent; 4042 inoref->if_nlink = nlink; 4043 inoref->if_mode = mode; 4044 } 4045 4046 /* 4047 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4048 * directory offset may not be known until later. The caller is responsible 4049 * adding the entry to the journal when this information is available. nlink 4050 * should be the link count prior to the addition and mode is only required 4051 * to have the correct FMT. 4052 */ 4053 static struct jaddref * 4054 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4055 uint16_t mode) 4056 { 4057 struct jaddref *jaddref; 4058 4059 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4060 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4061 jaddref->ja_state = ATTACHED; 4062 jaddref->ja_mkdir = NULL; 4063 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4064 4065 return (jaddref); 4066 } 4067 4068 /* 4069 * Create a new free dependency for a freework. The caller is responsible 4070 * for adjusting the reference count when it has the lock held. The freedep 4071 * will track an outstanding bitmap write that will ultimately clear the 4072 * freework to continue. 4073 */ 4074 static struct freedep * 4075 newfreedep(struct freework *freework) 4076 { 4077 struct freedep *freedep; 4078 4079 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4080 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4081 freedep->fd_freework = freework; 4082 4083 return (freedep); 4084 } 4085 4086 /* 4087 * Free a freedep structure once the buffer it is linked to is written. If 4088 * this is the last reference to the freework schedule it for completion. 4089 */ 4090 static void 4091 free_freedep(freedep) 4092 struct freedep *freedep; 4093 { 4094 struct freework *freework; 4095 4096 freework = freedep->fd_freework; 4097 freework->fw_freeblks->fb_cgwait--; 4098 if (--freework->fw_ref == 0) 4099 freework_enqueue(freework); 4100 WORKITEM_FREE(freedep, D_FREEDEP); 4101 } 4102 4103 /* 4104 * Allocate a new freework structure that may be a level in an indirect 4105 * when parent is not NULL or a top level block when it is. The top level 4106 * freework structures are allocated without the per-filesystem lock held 4107 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4108 */ 4109 static struct freework * 4110 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4111 struct ufsmount *ump; 4112 struct freeblks *freeblks; 4113 struct freework *parent; 4114 ufs_lbn_t lbn; 4115 ufs2_daddr_t nb; 4116 int frags; 4117 int off; 4118 int journal; 4119 { 4120 struct freework *freework; 4121 4122 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4123 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4124 freework->fw_state = ATTACHED; 4125 freework->fw_jnewblk = NULL; 4126 freework->fw_freeblks = freeblks; 4127 freework->fw_parent = parent; 4128 freework->fw_lbn = lbn; 4129 freework->fw_blkno = nb; 4130 freework->fw_frags = frags; 4131 freework->fw_indir = NULL; 4132 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4133 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4134 freework->fw_start = freework->fw_off = off; 4135 if (journal) 4136 newjfreeblk(freeblks, lbn, nb, frags); 4137 if (parent == NULL) { 4138 ACQUIRE_LOCK(ump); 4139 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4140 freeblks->fb_ref++; 4141 FREE_LOCK(ump); 4142 } 4143 4144 return (freework); 4145 } 4146 4147 /* 4148 * Eliminate a jfreeblk for a block that does not need journaling. 4149 */ 4150 static void 4151 cancel_jfreeblk(freeblks, blkno) 4152 struct freeblks *freeblks; 4153 ufs2_daddr_t blkno; 4154 { 4155 struct jfreeblk *jfreeblk; 4156 struct jblkdep *jblkdep; 4157 4158 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4159 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4160 continue; 4161 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4162 if (jfreeblk->jf_blkno == blkno) 4163 break; 4164 } 4165 if (jblkdep == NULL) 4166 return; 4167 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4168 free_jsegdep(jblkdep->jb_jsegdep); 4169 LIST_REMOVE(jblkdep, jb_deps); 4170 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4171 } 4172 4173 /* 4174 * Allocate a new jfreeblk to journal top level block pointer when truncating 4175 * a file. The caller must add this to the worklist when the per-filesystem 4176 * lock is held. 4177 */ 4178 static struct jfreeblk * 4179 newjfreeblk(freeblks, lbn, blkno, frags) 4180 struct freeblks *freeblks; 4181 ufs_lbn_t lbn; 4182 ufs2_daddr_t blkno; 4183 int frags; 4184 { 4185 struct jfreeblk *jfreeblk; 4186 4187 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4188 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4189 freeblks->fb_list.wk_mp); 4190 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4191 jfreeblk->jf_dep.jb_freeblks = freeblks; 4192 jfreeblk->jf_ino = freeblks->fb_inum; 4193 jfreeblk->jf_lbn = lbn; 4194 jfreeblk->jf_blkno = blkno; 4195 jfreeblk->jf_frags = frags; 4196 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4197 4198 return (jfreeblk); 4199 } 4200 4201 /* 4202 * The journal is only prepared to handle full-size block numbers, so we 4203 * have to adjust the record to reflect the change to a full-size block. 4204 * For example, suppose we have a block made up of fragments 8-15 and 4205 * want to free its last two fragments. We are given a request that says: 4206 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4207 * where frags are the number of fragments to free and oldfrags are the 4208 * number of fragments to keep. To block align it, we have to change it to 4209 * have a valid full-size blkno, so it becomes: 4210 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4211 */ 4212 static void 4213 adjust_newfreework(freeblks, frag_offset) 4214 struct freeblks *freeblks; 4215 int frag_offset; 4216 { 4217 struct jfreeblk *jfreeblk; 4218 4219 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4220 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4221 ("adjust_newfreework: Missing freeblks dependency")); 4222 4223 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4224 jfreeblk->jf_blkno -= frag_offset; 4225 jfreeblk->jf_frags += frag_offset; 4226 } 4227 4228 /* 4229 * Allocate a new jtrunc to track a partial truncation. 4230 */ 4231 static struct jtrunc * 4232 newjtrunc(freeblks, size, extsize) 4233 struct freeblks *freeblks; 4234 off_t size; 4235 int extsize; 4236 { 4237 struct jtrunc *jtrunc; 4238 4239 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4240 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4241 freeblks->fb_list.wk_mp); 4242 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4243 jtrunc->jt_dep.jb_freeblks = freeblks; 4244 jtrunc->jt_ino = freeblks->fb_inum; 4245 jtrunc->jt_size = size; 4246 jtrunc->jt_extsize = extsize; 4247 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4248 4249 return (jtrunc); 4250 } 4251 4252 /* 4253 * If we're canceling a new bitmap we have to search for another ref 4254 * to move into the bmsafemap dep. This might be better expressed 4255 * with another structure. 4256 */ 4257 static void 4258 move_newblock_dep(jaddref, inodedep) 4259 struct jaddref *jaddref; 4260 struct inodedep *inodedep; 4261 { 4262 struct inoref *inoref; 4263 struct jaddref *jaddrefn; 4264 4265 jaddrefn = NULL; 4266 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4267 inoref = TAILQ_NEXT(inoref, if_deps)) { 4268 if ((jaddref->ja_state & NEWBLOCK) && 4269 inoref->if_list.wk_type == D_JADDREF) { 4270 jaddrefn = (struct jaddref *)inoref; 4271 break; 4272 } 4273 } 4274 if (jaddrefn == NULL) 4275 return; 4276 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4277 jaddrefn->ja_state |= jaddref->ja_state & 4278 (ATTACHED | UNDONE | NEWBLOCK); 4279 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4280 jaddref->ja_state |= ATTACHED; 4281 LIST_REMOVE(jaddref, ja_bmdeps); 4282 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4283 ja_bmdeps); 4284 } 4285 4286 /* 4287 * Cancel a jaddref either before it has been written or while it is being 4288 * written. This happens when a link is removed before the add reaches 4289 * the disk. The jaddref dependency is kept linked into the bmsafemap 4290 * and inode to prevent the link count or bitmap from reaching the disk 4291 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4292 * required. 4293 * 4294 * Returns 1 if the canceled addref requires journaling of the remove and 4295 * 0 otherwise. 4296 */ 4297 static int 4298 cancel_jaddref(jaddref, inodedep, wkhd) 4299 struct jaddref *jaddref; 4300 struct inodedep *inodedep; 4301 struct workhead *wkhd; 4302 { 4303 struct inoref *inoref; 4304 struct jsegdep *jsegdep; 4305 int needsj; 4306 4307 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4308 ("cancel_jaddref: Canceling complete jaddref")); 4309 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4310 needsj = 1; 4311 else 4312 needsj = 0; 4313 if (inodedep == NULL) 4314 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4315 0, &inodedep) == 0) 4316 panic("cancel_jaddref: Lost inodedep"); 4317 /* 4318 * We must adjust the nlink of any reference operation that follows 4319 * us so that it is consistent with the in-memory reference. This 4320 * ensures that inode nlink rollbacks always have the correct link. 4321 */ 4322 if (needsj == 0) { 4323 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4324 inoref = TAILQ_NEXT(inoref, if_deps)) { 4325 if (inoref->if_state & GOINGAWAY) 4326 break; 4327 inoref->if_nlink--; 4328 } 4329 } 4330 jsegdep = inoref_jseg(&jaddref->ja_ref); 4331 if (jaddref->ja_state & NEWBLOCK) 4332 move_newblock_dep(jaddref, inodedep); 4333 wake_worklist(&jaddref->ja_list); 4334 jaddref->ja_mkdir = NULL; 4335 if (jaddref->ja_state & INPROGRESS) { 4336 jaddref->ja_state &= ~INPROGRESS; 4337 WORKLIST_REMOVE(&jaddref->ja_list); 4338 jwork_insert(wkhd, jsegdep); 4339 } else { 4340 free_jsegdep(jsegdep); 4341 if (jaddref->ja_state & DEPCOMPLETE) 4342 remove_from_journal(&jaddref->ja_list); 4343 } 4344 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4345 /* 4346 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4347 * can arrange for them to be freed with the bitmap. Otherwise we 4348 * no longer need this addref attached to the inoreflst and it 4349 * will incorrectly adjust nlink if we leave it. 4350 */ 4351 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4352 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4353 if_deps); 4354 jaddref->ja_state |= COMPLETE; 4355 free_jaddref(jaddref); 4356 return (needsj); 4357 } 4358 /* 4359 * Leave the head of the list for jsegdeps for fast merging. 4360 */ 4361 if (LIST_FIRST(wkhd) != NULL) { 4362 jaddref->ja_state |= ONWORKLIST; 4363 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4364 } else 4365 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4366 4367 return (needsj); 4368 } 4369 4370 /* 4371 * Attempt to free a jaddref structure when some work completes. This 4372 * should only succeed once the entry is written and all dependencies have 4373 * been notified. 4374 */ 4375 static void 4376 free_jaddref(jaddref) 4377 struct jaddref *jaddref; 4378 { 4379 4380 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4381 return; 4382 if (jaddref->ja_ref.if_jsegdep) 4383 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4384 jaddref, jaddref->ja_state); 4385 if (jaddref->ja_state & NEWBLOCK) 4386 LIST_REMOVE(jaddref, ja_bmdeps); 4387 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4388 panic("free_jaddref: Bad state %p(0x%X)", 4389 jaddref, jaddref->ja_state); 4390 if (jaddref->ja_mkdir != NULL) 4391 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4392 WORKITEM_FREE(jaddref, D_JADDREF); 4393 } 4394 4395 /* 4396 * Free a jremref structure once it has been written or discarded. 4397 */ 4398 static void 4399 free_jremref(jremref) 4400 struct jremref *jremref; 4401 { 4402 4403 if (jremref->jr_ref.if_jsegdep) 4404 free_jsegdep(jremref->jr_ref.if_jsegdep); 4405 if (jremref->jr_state & INPROGRESS) 4406 panic("free_jremref: IO still pending"); 4407 WORKITEM_FREE(jremref, D_JREMREF); 4408 } 4409 4410 /* 4411 * Free a jnewblk structure. 4412 */ 4413 static void 4414 free_jnewblk(jnewblk) 4415 struct jnewblk *jnewblk; 4416 { 4417 4418 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4419 return; 4420 LIST_REMOVE(jnewblk, jn_deps); 4421 if (jnewblk->jn_dep != NULL) 4422 panic("free_jnewblk: Dependency still attached."); 4423 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4424 } 4425 4426 /* 4427 * Cancel a jnewblk which has been been made redundant by frag extension. 4428 */ 4429 static void 4430 cancel_jnewblk(jnewblk, wkhd) 4431 struct jnewblk *jnewblk; 4432 struct workhead *wkhd; 4433 { 4434 struct jsegdep *jsegdep; 4435 4436 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4437 jsegdep = jnewblk->jn_jsegdep; 4438 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4439 panic("cancel_jnewblk: Invalid state"); 4440 jnewblk->jn_jsegdep = NULL; 4441 jnewblk->jn_dep = NULL; 4442 jnewblk->jn_state |= GOINGAWAY; 4443 if (jnewblk->jn_state & INPROGRESS) { 4444 jnewblk->jn_state &= ~INPROGRESS; 4445 WORKLIST_REMOVE(&jnewblk->jn_list); 4446 jwork_insert(wkhd, jsegdep); 4447 } else { 4448 free_jsegdep(jsegdep); 4449 remove_from_journal(&jnewblk->jn_list); 4450 } 4451 wake_worklist(&jnewblk->jn_list); 4452 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4453 } 4454 4455 static void 4456 free_jblkdep(jblkdep) 4457 struct jblkdep *jblkdep; 4458 { 4459 4460 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4461 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4462 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4463 WORKITEM_FREE(jblkdep, D_JTRUNC); 4464 else 4465 panic("free_jblkdep: Unexpected type %s", 4466 TYPENAME(jblkdep->jb_list.wk_type)); 4467 } 4468 4469 /* 4470 * Free a single jseg once it is no longer referenced in memory or on 4471 * disk. Reclaim journal blocks and dependencies waiting for the segment 4472 * to disappear. 4473 */ 4474 static void 4475 free_jseg(jseg, jblocks) 4476 struct jseg *jseg; 4477 struct jblocks *jblocks; 4478 { 4479 struct freework *freework; 4480 4481 /* 4482 * Free freework structures that were lingering to indicate freed 4483 * indirect blocks that forced journal write ordering on reallocate. 4484 */ 4485 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4486 indirblk_remove(freework); 4487 if (jblocks->jb_oldestseg == jseg) 4488 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4489 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4490 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4491 KASSERT(LIST_EMPTY(&jseg->js_entries), 4492 ("free_jseg: Freed jseg has valid entries.")); 4493 WORKITEM_FREE(jseg, D_JSEG); 4494 } 4495 4496 /* 4497 * Free all jsegs that meet the criteria for being reclaimed and update 4498 * oldestseg. 4499 */ 4500 static void 4501 free_jsegs(jblocks) 4502 struct jblocks *jblocks; 4503 { 4504 struct jseg *jseg; 4505 4506 /* 4507 * Free only those jsegs which have none allocated before them to 4508 * preserve the journal space ordering. 4509 */ 4510 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4511 /* 4512 * Only reclaim space when nothing depends on this journal 4513 * set and another set has written that it is no longer 4514 * valid. 4515 */ 4516 if (jseg->js_refs != 0) { 4517 jblocks->jb_oldestseg = jseg; 4518 return; 4519 } 4520 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4521 break; 4522 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4523 break; 4524 /* 4525 * We can free jsegs that didn't write entries when 4526 * oldestwrseq == js_seq. 4527 */ 4528 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4529 jseg->js_cnt != 0) 4530 break; 4531 free_jseg(jseg, jblocks); 4532 } 4533 /* 4534 * If we exited the loop above we still must discover the 4535 * oldest valid segment. 4536 */ 4537 if (jseg) 4538 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4539 jseg = TAILQ_NEXT(jseg, js_next)) 4540 if (jseg->js_refs != 0) 4541 break; 4542 jblocks->jb_oldestseg = jseg; 4543 /* 4544 * The journal has no valid records but some jsegs may still be 4545 * waiting on oldestwrseq to advance. We force a small record 4546 * out to permit these lingering records to be reclaimed. 4547 */ 4548 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4549 jblocks->jb_needseg = 1; 4550 } 4551 4552 /* 4553 * Release one reference to a jseg and free it if the count reaches 0. This 4554 * should eventually reclaim journal space as well. 4555 */ 4556 static void 4557 rele_jseg(jseg) 4558 struct jseg *jseg; 4559 { 4560 4561 KASSERT(jseg->js_refs > 0, 4562 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4563 if (--jseg->js_refs != 0) 4564 return; 4565 free_jsegs(jseg->js_jblocks); 4566 } 4567 4568 /* 4569 * Release a jsegdep and decrement the jseg count. 4570 */ 4571 static void 4572 free_jsegdep(jsegdep) 4573 struct jsegdep *jsegdep; 4574 { 4575 4576 if (jsegdep->jd_seg) 4577 rele_jseg(jsegdep->jd_seg); 4578 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4579 } 4580 4581 /* 4582 * Wait for a journal item to make it to disk. Initiate journal processing 4583 * if required. 4584 */ 4585 static int 4586 jwait(wk, waitfor) 4587 struct worklist *wk; 4588 int waitfor; 4589 { 4590 4591 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4592 /* 4593 * Blocking journal waits cause slow synchronous behavior. Record 4594 * stats on the frequency of these blocking operations. 4595 */ 4596 if (waitfor == MNT_WAIT) { 4597 stat_journal_wait++; 4598 switch (wk->wk_type) { 4599 case D_JREMREF: 4600 case D_JMVREF: 4601 stat_jwait_filepage++; 4602 break; 4603 case D_JTRUNC: 4604 case D_JFREEBLK: 4605 stat_jwait_freeblks++; 4606 break; 4607 case D_JNEWBLK: 4608 stat_jwait_newblk++; 4609 break; 4610 case D_JADDREF: 4611 stat_jwait_inode++; 4612 break; 4613 default: 4614 break; 4615 } 4616 } 4617 /* 4618 * If IO has not started we process the journal. We can't mark the 4619 * worklist item as IOWAITING because we drop the lock while 4620 * processing the journal and the worklist entry may be freed after 4621 * this point. The caller may call back in and re-issue the request. 4622 */ 4623 if ((wk->wk_state & INPROGRESS) == 0) { 4624 softdep_process_journal(wk->wk_mp, wk, waitfor); 4625 if (waitfor != MNT_WAIT) 4626 return (EBUSY); 4627 return (0); 4628 } 4629 if (waitfor != MNT_WAIT) 4630 return (EBUSY); 4631 wait_worklist(wk, "jwait"); 4632 return (0); 4633 } 4634 4635 /* 4636 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4637 * appropriate. This is a convenience function to reduce duplicate code 4638 * for the setup and revert functions below. 4639 */ 4640 static struct inodedep * 4641 inodedep_lookup_ip(ip) 4642 struct inode *ip; 4643 { 4644 struct inodedep *inodedep; 4645 4646 KASSERT(ip->i_nlink >= ip->i_effnlink, 4647 ("inodedep_lookup_ip: bad delta")); 4648 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4649 &inodedep); 4650 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4651 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4652 4653 return (inodedep); 4654 } 4655 4656 /* 4657 * Called prior to creating a new inode and linking it to a directory. The 4658 * jaddref structure must already be allocated by softdep_setup_inomapdep 4659 * and it is discovered here so we can initialize the mode and update 4660 * nlinkdelta. 4661 */ 4662 void 4663 softdep_setup_create(dp, ip) 4664 struct inode *dp; 4665 struct inode *ip; 4666 { 4667 struct inodedep *inodedep; 4668 struct jaddref *jaddref; 4669 struct vnode *dvp; 4670 4671 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4672 ("softdep_setup_create called on non-softdep filesystem")); 4673 KASSERT(ip->i_nlink == 1, 4674 ("softdep_setup_create: Invalid link count.")); 4675 dvp = ITOV(dp); 4676 ACQUIRE_LOCK(ITOUMP(dp)); 4677 inodedep = inodedep_lookup_ip(ip); 4678 if (DOINGSUJ(dvp)) { 4679 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4680 inoreflst); 4681 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4682 ("softdep_setup_create: No addref structure present.")); 4683 } 4684 softdep_prelink(dvp, NULL); 4685 FREE_LOCK(ITOUMP(dp)); 4686 } 4687 4688 /* 4689 * Create a jaddref structure to track the addition of a DOTDOT link when 4690 * we are reparenting an inode as part of a rename. This jaddref will be 4691 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4692 * non-journaling softdep. 4693 */ 4694 void 4695 softdep_setup_dotdot_link(dp, ip) 4696 struct inode *dp; 4697 struct inode *ip; 4698 { 4699 struct inodedep *inodedep; 4700 struct jaddref *jaddref; 4701 struct vnode *dvp; 4702 4703 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4704 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4705 dvp = ITOV(dp); 4706 jaddref = NULL; 4707 /* 4708 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4709 * is used as a normal link would be. 4710 */ 4711 if (DOINGSUJ(dvp)) 4712 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4713 dp->i_effnlink - 1, dp->i_mode); 4714 ACQUIRE_LOCK(ITOUMP(dp)); 4715 inodedep = inodedep_lookup_ip(dp); 4716 if (jaddref) 4717 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4718 if_deps); 4719 softdep_prelink(dvp, ITOV(ip)); 4720 FREE_LOCK(ITOUMP(dp)); 4721 } 4722 4723 /* 4724 * Create a jaddref structure to track a new link to an inode. The directory 4725 * offset is not known until softdep_setup_directory_add or 4726 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4727 * softdep. 4728 */ 4729 void 4730 softdep_setup_link(dp, ip) 4731 struct inode *dp; 4732 struct inode *ip; 4733 { 4734 struct inodedep *inodedep; 4735 struct jaddref *jaddref; 4736 struct vnode *dvp; 4737 4738 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4739 ("softdep_setup_link called on non-softdep filesystem")); 4740 dvp = ITOV(dp); 4741 jaddref = NULL; 4742 if (DOINGSUJ(dvp)) 4743 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4744 ip->i_mode); 4745 ACQUIRE_LOCK(ITOUMP(dp)); 4746 inodedep = inodedep_lookup_ip(ip); 4747 if (jaddref) 4748 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4749 if_deps); 4750 softdep_prelink(dvp, ITOV(ip)); 4751 FREE_LOCK(ITOUMP(dp)); 4752 } 4753 4754 /* 4755 * Called to create the jaddref structures to track . and .. references as 4756 * well as lookup and further initialize the incomplete jaddref created 4757 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4758 * nlinkdelta for non-journaling softdep. 4759 */ 4760 void 4761 softdep_setup_mkdir(dp, ip) 4762 struct inode *dp; 4763 struct inode *ip; 4764 { 4765 struct inodedep *inodedep; 4766 struct jaddref *dotdotaddref; 4767 struct jaddref *dotaddref; 4768 struct jaddref *jaddref; 4769 struct vnode *dvp; 4770 4771 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4772 ("softdep_setup_mkdir called on non-softdep filesystem")); 4773 dvp = ITOV(dp); 4774 dotaddref = dotdotaddref = NULL; 4775 if (DOINGSUJ(dvp)) { 4776 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4777 ip->i_mode); 4778 dotaddref->ja_state |= MKDIR_BODY; 4779 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4780 dp->i_effnlink - 1, dp->i_mode); 4781 dotdotaddref->ja_state |= MKDIR_PARENT; 4782 } 4783 ACQUIRE_LOCK(ITOUMP(dp)); 4784 inodedep = inodedep_lookup_ip(ip); 4785 if (DOINGSUJ(dvp)) { 4786 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4787 inoreflst); 4788 KASSERT(jaddref != NULL, 4789 ("softdep_setup_mkdir: No addref structure present.")); 4790 KASSERT(jaddref->ja_parent == dp->i_number, 4791 ("softdep_setup_mkdir: bad parent %ju", 4792 (uintmax_t)jaddref->ja_parent)); 4793 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4794 if_deps); 4795 } 4796 inodedep = inodedep_lookup_ip(dp); 4797 if (DOINGSUJ(dvp)) 4798 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4799 &dotdotaddref->ja_ref, if_deps); 4800 softdep_prelink(ITOV(dp), NULL); 4801 FREE_LOCK(ITOUMP(dp)); 4802 } 4803 4804 /* 4805 * Called to track nlinkdelta of the inode and parent directories prior to 4806 * unlinking a directory. 4807 */ 4808 void 4809 softdep_setup_rmdir(dp, ip) 4810 struct inode *dp; 4811 struct inode *ip; 4812 { 4813 struct vnode *dvp; 4814 4815 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4816 ("softdep_setup_rmdir called on non-softdep filesystem")); 4817 dvp = ITOV(dp); 4818 ACQUIRE_LOCK(ITOUMP(dp)); 4819 (void) inodedep_lookup_ip(ip); 4820 (void) inodedep_lookup_ip(dp); 4821 softdep_prelink(dvp, ITOV(ip)); 4822 FREE_LOCK(ITOUMP(dp)); 4823 } 4824 4825 /* 4826 * Called to track nlinkdelta of the inode and parent directories prior to 4827 * unlink. 4828 */ 4829 void 4830 softdep_setup_unlink(dp, ip) 4831 struct inode *dp; 4832 struct inode *ip; 4833 { 4834 struct vnode *dvp; 4835 4836 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4837 ("softdep_setup_unlink called on non-softdep filesystem")); 4838 dvp = ITOV(dp); 4839 ACQUIRE_LOCK(ITOUMP(dp)); 4840 (void) inodedep_lookup_ip(ip); 4841 (void) inodedep_lookup_ip(dp); 4842 softdep_prelink(dvp, ITOV(ip)); 4843 FREE_LOCK(ITOUMP(dp)); 4844 } 4845 4846 /* 4847 * Called to release the journal structures created by a failed non-directory 4848 * creation. Adjusts nlinkdelta for non-journaling softdep. 4849 */ 4850 void 4851 softdep_revert_create(dp, ip) 4852 struct inode *dp; 4853 struct inode *ip; 4854 { 4855 struct inodedep *inodedep; 4856 struct jaddref *jaddref; 4857 struct vnode *dvp; 4858 4859 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4860 ("softdep_revert_create called on non-softdep filesystem")); 4861 dvp = ITOV(dp); 4862 ACQUIRE_LOCK(ITOUMP(dp)); 4863 inodedep = inodedep_lookup_ip(ip); 4864 if (DOINGSUJ(dvp)) { 4865 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4866 inoreflst); 4867 KASSERT(jaddref->ja_parent == dp->i_number, 4868 ("softdep_revert_create: addref parent mismatch")); 4869 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4870 } 4871 FREE_LOCK(ITOUMP(dp)); 4872 } 4873 4874 /* 4875 * Called to release the journal structures created by a failed link 4876 * addition. Adjusts nlinkdelta for non-journaling softdep. 4877 */ 4878 void 4879 softdep_revert_link(dp, ip) 4880 struct inode *dp; 4881 struct inode *ip; 4882 { 4883 struct inodedep *inodedep; 4884 struct jaddref *jaddref; 4885 struct vnode *dvp; 4886 4887 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4888 ("softdep_revert_link called on non-softdep filesystem")); 4889 dvp = ITOV(dp); 4890 ACQUIRE_LOCK(ITOUMP(dp)); 4891 inodedep = inodedep_lookup_ip(ip); 4892 if (DOINGSUJ(dvp)) { 4893 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4894 inoreflst); 4895 KASSERT(jaddref->ja_parent == dp->i_number, 4896 ("softdep_revert_link: addref parent mismatch")); 4897 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4898 } 4899 FREE_LOCK(ITOUMP(dp)); 4900 } 4901 4902 /* 4903 * Called to release the journal structures created by a failed mkdir 4904 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4905 */ 4906 void 4907 softdep_revert_mkdir(dp, ip) 4908 struct inode *dp; 4909 struct inode *ip; 4910 { 4911 struct inodedep *inodedep; 4912 struct jaddref *jaddref; 4913 struct jaddref *dotaddref; 4914 struct vnode *dvp; 4915 4916 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4917 ("softdep_revert_mkdir called on non-softdep filesystem")); 4918 dvp = ITOV(dp); 4919 4920 ACQUIRE_LOCK(ITOUMP(dp)); 4921 inodedep = inodedep_lookup_ip(dp); 4922 if (DOINGSUJ(dvp)) { 4923 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4924 inoreflst); 4925 KASSERT(jaddref->ja_parent == ip->i_number, 4926 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4927 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4928 } 4929 inodedep = inodedep_lookup_ip(ip); 4930 if (DOINGSUJ(dvp)) { 4931 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4932 inoreflst); 4933 KASSERT(jaddref->ja_parent == dp->i_number, 4934 ("softdep_revert_mkdir: addref parent mismatch")); 4935 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4936 inoreflst, if_deps); 4937 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4938 KASSERT(dotaddref->ja_parent == ip->i_number, 4939 ("softdep_revert_mkdir: dot addref parent mismatch")); 4940 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4941 } 4942 FREE_LOCK(ITOUMP(dp)); 4943 } 4944 4945 /* 4946 * Called to correct nlinkdelta after a failed rmdir. 4947 */ 4948 void 4949 softdep_revert_rmdir(dp, ip) 4950 struct inode *dp; 4951 struct inode *ip; 4952 { 4953 4954 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4955 ("softdep_revert_rmdir called on non-softdep filesystem")); 4956 ACQUIRE_LOCK(ITOUMP(dp)); 4957 (void) inodedep_lookup_ip(ip); 4958 (void) inodedep_lookup_ip(dp); 4959 FREE_LOCK(ITOUMP(dp)); 4960 } 4961 4962 /* 4963 * Protecting the freemaps (or bitmaps). 4964 * 4965 * To eliminate the need to execute fsck before mounting a filesystem 4966 * after a power failure, one must (conservatively) guarantee that the 4967 * on-disk copy of the bitmaps never indicate that a live inode or block is 4968 * free. So, when a block or inode is allocated, the bitmap should be 4969 * updated (on disk) before any new pointers. When a block or inode is 4970 * freed, the bitmap should not be updated until all pointers have been 4971 * reset. The latter dependency is handled by the delayed de-allocation 4972 * approach described below for block and inode de-allocation. The former 4973 * dependency is handled by calling the following procedure when a block or 4974 * inode is allocated. When an inode is allocated an "inodedep" is created 4975 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4976 * Each "inodedep" is also inserted into the hash indexing structure so 4977 * that any additional link additions can be made dependent on the inode 4978 * allocation. 4979 * 4980 * The ufs filesystem maintains a number of free block counts (e.g., per 4981 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4982 * in addition to the bitmaps. These counts are used to improve efficiency 4983 * during allocation and therefore must be consistent with the bitmaps. 4984 * There is no convenient way to guarantee post-crash consistency of these 4985 * counts with simple update ordering, for two main reasons: (1) The counts 4986 * and bitmaps for a single cylinder group block are not in the same disk 4987 * sector. If a disk write is interrupted (e.g., by power failure), one may 4988 * be written and the other not. (2) Some of the counts are located in the 4989 * superblock rather than the cylinder group block. So, we focus our soft 4990 * updates implementation on protecting the bitmaps. When mounting a 4991 * filesystem, we recompute the auxiliary counts from the bitmaps. 4992 */ 4993 4994 /* 4995 * Called just after updating the cylinder group block to allocate an inode. 4996 */ 4997 void 4998 softdep_setup_inomapdep(bp, ip, newinum, mode) 4999 struct buf *bp; /* buffer for cylgroup block with inode map */ 5000 struct inode *ip; /* inode related to allocation */ 5001 ino_t newinum; /* new inode number being allocated */ 5002 int mode; 5003 { 5004 struct inodedep *inodedep; 5005 struct bmsafemap *bmsafemap; 5006 struct jaddref *jaddref; 5007 struct mount *mp; 5008 struct fs *fs; 5009 5010 mp = ITOVFS(ip); 5011 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5012 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5013 fs = VFSTOUFS(mp)->um_fs; 5014 jaddref = NULL; 5015 5016 /* 5017 * Allocate the journal reference add structure so that the bitmap 5018 * can be dependent on it. 5019 */ 5020 if (MOUNTEDSUJ(mp)) { 5021 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5022 jaddref->ja_state |= NEWBLOCK; 5023 } 5024 5025 /* 5026 * Create a dependency for the newly allocated inode. 5027 * Panic if it already exists as something is seriously wrong. 5028 * Otherwise add it to the dependency list for the buffer holding 5029 * the cylinder group map from which it was allocated. 5030 * 5031 * We have to preallocate a bmsafemap entry in case it is needed 5032 * in bmsafemap_lookup since once we allocate the inodedep, we 5033 * have to finish initializing it before we can FREE_LOCK(). 5034 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5035 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5036 * creating the inodedep as it can be freed during the time 5037 * that we FREE_LOCK() while allocating the inodedep. We must 5038 * call workitem_alloc() before entering the locked section as 5039 * it also acquires the lock and we must avoid trying doing so 5040 * recursively. 5041 */ 5042 bmsafemap = malloc(sizeof(struct bmsafemap), 5043 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5044 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5045 ACQUIRE_LOCK(ITOUMP(ip)); 5046 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5047 panic("softdep_setup_inomapdep: dependency %p for new" 5048 "inode already exists", inodedep); 5049 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5050 if (jaddref) { 5051 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5052 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5053 if_deps); 5054 } else { 5055 inodedep->id_state |= ONDEPLIST; 5056 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5057 } 5058 inodedep->id_bmsafemap = bmsafemap; 5059 inodedep->id_state &= ~DEPCOMPLETE; 5060 FREE_LOCK(ITOUMP(ip)); 5061 } 5062 5063 /* 5064 * Called just after updating the cylinder group block to 5065 * allocate block or fragment. 5066 */ 5067 void 5068 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5069 struct buf *bp; /* buffer for cylgroup block with block map */ 5070 struct mount *mp; /* filesystem doing allocation */ 5071 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5072 int frags; /* Number of fragments. */ 5073 int oldfrags; /* Previous number of fragments for extend. */ 5074 { 5075 struct newblk *newblk; 5076 struct bmsafemap *bmsafemap; 5077 struct jnewblk *jnewblk; 5078 struct ufsmount *ump; 5079 struct fs *fs; 5080 5081 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5082 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5083 ump = VFSTOUFS(mp); 5084 fs = ump->um_fs; 5085 jnewblk = NULL; 5086 /* 5087 * Create a dependency for the newly allocated block. 5088 * Add it to the dependency list for the buffer holding 5089 * the cylinder group map from which it was allocated. 5090 */ 5091 if (MOUNTEDSUJ(mp)) { 5092 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5093 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5094 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5095 jnewblk->jn_state = ATTACHED; 5096 jnewblk->jn_blkno = newblkno; 5097 jnewblk->jn_frags = frags; 5098 jnewblk->jn_oldfrags = oldfrags; 5099 #ifdef SUJ_DEBUG 5100 { 5101 struct cg *cgp; 5102 uint8_t *blksfree; 5103 long bno; 5104 int i; 5105 5106 cgp = (struct cg *)bp->b_data; 5107 blksfree = cg_blksfree(cgp); 5108 bno = dtogd(fs, jnewblk->jn_blkno); 5109 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5110 i++) { 5111 if (isset(blksfree, bno + i)) 5112 panic("softdep_setup_blkmapdep: " 5113 "free fragment %d from %d-%d " 5114 "state 0x%X dep %p", i, 5115 jnewblk->jn_oldfrags, 5116 jnewblk->jn_frags, 5117 jnewblk->jn_state, 5118 jnewblk->jn_dep); 5119 } 5120 } 5121 #endif 5122 } 5123 5124 CTR3(KTR_SUJ, 5125 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5126 newblkno, frags, oldfrags); 5127 ACQUIRE_LOCK(ump); 5128 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5129 panic("softdep_setup_blkmapdep: found block"); 5130 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5131 dtog(fs, newblkno), NULL); 5132 if (jnewblk) { 5133 jnewblk->jn_dep = (struct worklist *)newblk; 5134 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5135 } else { 5136 newblk->nb_state |= ONDEPLIST; 5137 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5138 } 5139 newblk->nb_bmsafemap = bmsafemap; 5140 newblk->nb_jnewblk = jnewblk; 5141 FREE_LOCK(ump); 5142 } 5143 5144 #define BMSAFEMAP_HASH(ump, cg) \ 5145 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5146 5147 static int 5148 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5149 struct bmsafemap_hashhead *bmsafemaphd; 5150 int cg; 5151 struct bmsafemap **bmsafemapp; 5152 { 5153 struct bmsafemap *bmsafemap; 5154 5155 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5156 if (bmsafemap->sm_cg == cg) 5157 break; 5158 if (bmsafemap) { 5159 *bmsafemapp = bmsafemap; 5160 return (1); 5161 } 5162 *bmsafemapp = NULL; 5163 5164 return (0); 5165 } 5166 5167 /* 5168 * Find the bmsafemap associated with a cylinder group buffer. 5169 * If none exists, create one. The buffer must be locked when 5170 * this routine is called and this routine must be called with 5171 * the softdep lock held. To avoid giving up the lock while 5172 * allocating a new bmsafemap, a preallocated bmsafemap may be 5173 * provided. If it is provided but not needed, it is freed. 5174 */ 5175 static struct bmsafemap * 5176 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5177 struct mount *mp; 5178 struct buf *bp; 5179 int cg; 5180 struct bmsafemap *newbmsafemap; 5181 { 5182 struct bmsafemap_hashhead *bmsafemaphd; 5183 struct bmsafemap *bmsafemap, *collision; 5184 struct worklist *wk; 5185 struct ufsmount *ump; 5186 5187 ump = VFSTOUFS(mp); 5188 LOCK_OWNED(ump); 5189 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5190 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5191 if (wk->wk_type == D_BMSAFEMAP) { 5192 if (newbmsafemap) 5193 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5194 return (WK_BMSAFEMAP(wk)); 5195 } 5196 } 5197 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5198 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5199 if (newbmsafemap) 5200 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5201 return (bmsafemap); 5202 } 5203 if (newbmsafemap) { 5204 bmsafemap = newbmsafemap; 5205 } else { 5206 FREE_LOCK(ump); 5207 bmsafemap = malloc(sizeof(struct bmsafemap), 5208 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5209 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5210 ACQUIRE_LOCK(ump); 5211 } 5212 bmsafemap->sm_buf = bp; 5213 LIST_INIT(&bmsafemap->sm_inodedephd); 5214 LIST_INIT(&bmsafemap->sm_inodedepwr); 5215 LIST_INIT(&bmsafemap->sm_newblkhd); 5216 LIST_INIT(&bmsafemap->sm_newblkwr); 5217 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5218 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5219 LIST_INIT(&bmsafemap->sm_freehd); 5220 LIST_INIT(&bmsafemap->sm_freewr); 5221 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5222 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5223 return (collision); 5224 } 5225 bmsafemap->sm_cg = cg; 5226 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5227 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5228 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5229 return (bmsafemap); 5230 } 5231 5232 /* 5233 * Direct block allocation dependencies. 5234 * 5235 * When a new block is allocated, the corresponding disk locations must be 5236 * initialized (with zeros or new data) before the on-disk inode points to 5237 * them. Also, the freemap from which the block was allocated must be 5238 * updated (on disk) before the inode's pointer. These two dependencies are 5239 * independent of each other and are needed for all file blocks and indirect 5240 * blocks that are pointed to directly by the inode. Just before the 5241 * "in-core" version of the inode is updated with a newly allocated block 5242 * number, a procedure (below) is called to setup allocation dependency 5243 * structures. These structures are removed when the corresponding 5244 * dependencies are satisfied or when the block allocation becomes obsolete 5245 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5246 * fragment that gets upgraded). All of these cases are handled in 5247 * procedures described later. 5248 * 5249 * When a file extension causes a fragment to be upgraded, either to a larger 5250 * fragment or to a full block, the on-disk location may change (if the 5251 * previous fragment could not simply be extended). In this case, the old 5252 * fragment must be de-allocated, but not until after the inode's pointer has 5253 * been updated. In most cases, this is handled by later procedures, which 5254 * will construct a "freefrag" structure to be added to the workitem queue 5255 * when the inode update is complete (or obsolete). The main exception to 5256 * this is when an allocation occurs while a pending allocation dependency 5257 * (for the same block pointer) remains. This case is handled in the main 5258 * allocation dependency setup procedure by immediately freeing the 5259 * unreferenced fragments. 5260 */ 5261 void 5262 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5263 struct inode *ip; /* inode to which block is being added */ 5264 ufs_lbn_t off; /* block pointer within inode */ 5265 ufs2_daddr_t newblkno; /* disk block number being added */ 5266 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5267 long newsize; /* size of new block */ 5268 long oldsize; /* size of new block */ 5269 struct buf *bp; /* bp for allocated block */ 5270 { 5271 struct allocdirect *adp, *oldadp; 5272 struct allocdirectlst *adphead; 5273 struct freefrag *freefrag; 5274 struct inodedep *inodedep; 5275 struct pagedep *pagedep; 5276 struct jnewblk *jnewblk; 5277 struct newblk *newblk; 5278 struct mount *mp; 5279 ufs_lbn_t lbn; 5280 5281 lbn = bp->b_lblkno; 5282 mp = ITOVFS(ip); 5283 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5284 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5285 if (oldblkno && oldblkno != newblkno) 5286 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5287 else 5288 freefrag = NULL; 5289 5290 CTR6(KTR_SUJ, 5291 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5292 "off %jd newsize %ld oldsize %d", 5293 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5294 ACQUIRE_LOCK(ITOUMP(ip)); 5295 if (off >= UFS_NDADDR) { 5296 if (lbn > 0) 5297 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5298 lbn, off); 5299 /* allocating an indirect block */ 5300 if (oldblkno != 0) 5301 panic("softdep_setup_allocdirect: non-zero indir"); 5302 } else { 5303 if (off != lbn) 5304 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5305 lbn, off); 5306 /* 5307 * Allocating a direct block. 5308 * 5309 * If we are allocating a directory block, then we must 5310 * allocate an associated pagedep to track additions and 5311 * deletions. 5312 */ 5313 if ((ip->i_mode & IFMT) == IFDIR) 5314 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5315 &pagedep); 5316 } 5317 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5318 panic("softdep_setup_allocdirect: lost block"); 5319 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5320 ("softdep_setup_allocdirect: newblk already initialized")); 5321 /* 5322 * Convert the newblk to an allocdirect. 5323 */ 5324 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5325 adp = (struct allocdirect *)newblk; 5326 newblk->nb_freefrag = freefrag; 5327 adp->ad_offset = off; 5328 adp->ad_oldblkno = oldblkno; 5329 adp->ad_newsize = newsize; 5330 adp->ad_oldsize = oldsize; 5331 5332 /* 5333 * Finish initializing the journal. 5334 */ 5335 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5336 jnewblk->jn_ino = ip->i_number; 5337 jnewblk->jn_lbn = lbn; 5338 add_to_journal(&jnewblk->jn_list); 5339 } 5340 if (freefrag && freefrag->ff_jdep != NULL && 5341 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5342 add_to_journal(freefrag->ff_jdep); 5343 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5344 adp->ad_inodedep = inodedep; 5345 5346 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5347 /* 5348 * The list of allocdirects must be kept in sorted and ascending 5349 * order so that the rollback routines can quickly determine the 5350 * first uncommitted block (the size of the file stored on disk 5351 * ends at the end of the lowest committed fragment, or if there 5352 * are no fragments, at the end of the highest committed block). 5353 * Since files generally grow, the typical case is that the new 5354 * block is to be added at the end of the list. We speed this 5355 * special case by checking against the last allocdirect in the 5356 * list before laboriously traversing the list looking for the 5357 * insertion point. 5358 */ 5359 adphead = &inodedep->id_newinoupdt; 5360 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5361 if (oldadp == NULL || oldadp->ad_offset <= off) { 5362 /* insert at end of list */ 5363 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5364 if (oldadp != NULL && oldadp->ad_offset == off) 5365 allocdirect_merge(adphead, adp, oldadp); 5366 FREE_LOCK(ITOUMP(ip)); 5367 return; 5368 } 5369 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5370 if (oldadp->ad_offset >= off) 5371 break; 5372 } 5373 if (oldadp == NULL) 5374 panic("softdep_setup_allocdirect: lost entry"); 5375 /* insert in middle of list */ 5376 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5377 if (oldadp->ad_offset == off) 5378 allocdirect_merge(adphead, adp, oldadp); 5379 5380 FREE_LOCK(ITOUMP(ip)); 5381 } 5382 5383 /* 5384 * Merge a newer and older journal record to be stored either in a 5385 * newblock or freefrag. This handles aggregating journal records for 5386 * fragment allocation into a second record as well as replacing a 5387 * journal free with an aborted journal allocation. A segment for the 5388 * oldest record will be placed on wkhd if it has been written. If not 5389 * the segment for the newer record will suffice. 5390 */ 5391 static struct worklist * 5392 jnewblk_merge(new, old, wkhd) 5393 struct worklist *new; 5394 struct worklist *old; 5395 struct workhead *wkhd; 5396 { 5397 struct jnewblk *njnewblk; 5398 struct jnewblk *jnewblk; 5399 5400 /* Handle NULLs to simplify callers. */ 5401 if (new == NULL) 5402 return (old); 5403 if (old == NULL) 5404 return (new); 5405 /* Replace a jfreefrag with a jnewblk. */ 5406 if (new->wk_type == D_JFREEFRAG) { 5407 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5408 panic("jnewblk_merge: blkno mismatch: %p, %p", 5409 old, new); 5410 cancel_jfreefrag(WK_JFREEFRAG(new)); 5411 return (old); 5412 } 5413 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5414 panic("jnewblk_merge: Bad type: old %d new %d\n", 5415 old->wk_type, new->wk_type); 5416 /* 5417 * Handle merging of two jnewblk records that describe 5418 * different sets of fragments in the same block. 5419 */ 5420 jnewblk = WK_JNEWBLK(old); 5421 njnewblk = WK_JNEWBLK(new); 5422 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5423 panic("jnewblk_merge: Merging disparate blocks."); 5424 /* 5425 * The record may be rolled back in the cg. 5426 */ 5427 if (jnewblk->jn_state & UNDONE) { 5428 jnewblk->jn_state &= ~UNDONE; 5429 njnewblk->jn_state |= UNDONE; 5430 njnewblk->jn_state &= ~ATTACHED; 5431 } 5432 /* 5433 * We modify the newer addref and free the older so that if neither 5434 * has been written the most up-to-date copy will be on disk. If 5435 * both have been written but rolled back we only temporarily need 5436 * one of them to fix the bits when the cg write completes. 5437 */ 5438 jnewblk->jn_state |= ATTACHED | COMPLETE; 5439 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5440 cancel_jnewblk(jnewblk, wkhd); 5441 WORKLIST_REMOVE(&jnewblk->jn_list); 5442 free_jnewblk(jnewblk); 5443 return (new); 5444 } 5445 5446 /* 5447 * Replace an old allocdirect dependency with a newer one. 5448 * This routine must be called with splbio interrupts blocked. 5449 */ 5450 static void 5451 allocdirect_merge(adphead, newadp, oldadp) 5452 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5453 struct allocdirect *newadp; /* allocdirect being added */ 5454 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5455 { 5456 struct worklist *wk; 5457 struct freefrag *freefrag; 5458 5459 freefrag = NULL; 5460 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5461 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5462 newadp->ad_oldsize != oldadp->ad_newsize || 5463 newadp->ad_offset >= UFS_NDADDR) 5464 panic("%s %jd != new %jd || old size %ld != new %ld", 5465 "allocdirect_merge: old blkno", 5466 (intmax_t)newadp->ad_oldblkno, 5467 (intmax_t)oldadp->ad_newblkno, 5468 newadp->ad_oldsize, oldadp->ad_newsize); 5469 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5470 newadp->ad_oldsize = oldadp->ad_oldsize; 5471 /* 5472 * If the old dependency had a fragment to free or had never 5473 * previously had a block allocated, then the new dependency 5474 * can immediately post its freefrag and adopt the old freefrag. 5475 * This action is done by swapping the freefrag dependencies. 5476 * The new dependency gains the old one's freefrag, and the 5477 * old one gets the new one and then immediately puts it on 5478 * the worklist when it is freed by free_newblk. It is 5479 * not possible to do this swap when the old dependency had a 5480 * non-zero size but no previous fragment to free. This condition 5481 * arises when the new block is an extension of the old block. 5482 * Here, the first part of the fragment allocated to the new 5483 * dependency is part of the block currently claimed on disk by 5484 * the old dependency, so cannot legitimately be freed until the 5485 * conditions for the new dependency are fulfilled. 5486 */ 5487 freefrag = newadp->ad_freefrag; 5488 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5489 newadp->ad_freefrag = oldadp->ad_freefrag; 5490 oldadp->ad_freefrag = freefrag; 5491 } 5492 /* 5493 * If we are tracking a new directory-block allocation, 5494 * move it from the old allocdirect to the new allocdirect. 5495 */ 5496 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5497 WORKLIST_REMOVE(wk); 5498 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5499 panic("allocdirect_merge: extra newdirblk"); 5500 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5501 } 5502 TAILQ_REMOVE(adphead, oldadp, ad_next); 5503 /* 5504 * We need to move any journal dependencies over to the freefrag 5505 * that releases this block if it exists. Otherwise we are 5506 * extending an existing block and we'll wait until that is 5507 * complete to release the journal space and extend the 5508 * new journal to cover this old space as well. 5509 */ 5510 if (freefrag == NULL) { 5511 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5512 panic("allocdirect_merge: %jd != %jd", 5513 oldadp->ad_newblkno, newadp->ad_newblkno); 5514 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5515 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5516 &oldadp->ad_block.nb_jnewblk->jn_list, 5517 &newadp->ad_block.nb_jwork); 5518 oldadp->ad_block.nb_jnewblk = NULL; 5519 cancel_newblk(&oldadp->ad_block, NULL, 5520 &newadp->ad_block.nb_jwork); 5521 } else { 5522 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5523 &freefrag->ff_list, &freefrag->ff_jwork); 5524 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5525 &freefrag->ff_jwork); 5526 } 5527 free_newblk(&oldadp->ad_block); 5528 } 5529 5530 /* 5531 * Allocate a jfreefrag structure to journal a single block free. 5532 */ 5533 static struct jfreefrag * 5534 newjfreefrag(freefrag, ip, blkno, size, lbn) 5535 struct freefrag *freefrag; 5536 struct inode *ip; 5537 ufs2_daddr_t blkno; 5538 long size; 5539 ufs_lbn_t lbn; 5540 { 5541 struct jfreefrag *jfreefrag; 5542 struct fs *fs; 5543 5544 fs = ITOFS(ip); 5545 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5546 M_SOFTDEP_FLAGS); 5547 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5548 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5549 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5550 jfreefrag->fr_ino = ip->i_number; 5551 jfreefrag->fr_lbn = lbn; 5552 jfreefrag->fr_blkno = blkno; 5553 jfreefrag->fr_frags = numfrags(fs, size); 5554 jfreefrag->fr_freefrag = freefrag; 5555 5556 return (jfreefrag); 5557 } 5558 5559 /* 5560 * Allocate a new freefrag structure. 5561 */ 5562 static struct freefrag * 5563 newfreefrag(ip, blkno, size, lbn) 5564 struct inode *ip; 5565 ufs2_daddr_t blkno; 5566 long size; 5567 ufs_lbn_t lbn; 5568 { 5569 struct freefrag *freefrag; 5570 struct ufsmount *ump; 5571 struct fs *fs; 5572 5573 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5574 ip->i_number, blkno, size, lbn); 5575 ump = ITOUMP(ip); 5576 fs = ump->um_fs; 5577 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5578 panic("newfreefrag: frag size"); 5579 freefrag = malloc(sizeof(struct freefrag), 5580 M_FREEFRAG, M_SOFTDEP_FLAGS); 5581 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5582 freefrag->ff_state = ATTACHED; 5583 LIST_INIT(&freefrag->ff_jwork); 5584 freefrag->ff_inum = ip->i_number; 5585 freefrag->ff_vtype = ITOV(ip)->v_type; 5586 freefrag->ff_blkno = blkno; 5587 freefrag->ff_fragsize = size; 5588 5589 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5590 freefrag->ff_jdep = (struct worklist *) 5591 newjfreefrag(freefrag, ip, blkno, size, lbn); 5592 } else { 5593 freefrag->ff_state |= DEPCOMPLETE; 5594 freefrag->ff_jdep = NULL; 5595 } 5596 5597 return (freefrag); 5598 } 5599 5600 /* 5601 * This workitem de-allocates fragments that were replaced during 5602 * file block allocation. 5603 */ 5604 static void 5605 handle_workitem_freefrag(freefrag) 5606 struct freefrag *freefrag; 5607 { 5608 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5609 struct workhead wkhd; 5610 5611 CTR3(KTR_SUJ, 5612 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5613 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5614 /* 5615 * It would be illegal to add new completion items to the 5616 * freefrag after it was schedule to be done so it must be 5617 * safe to modify the list head here. 5618 */ 5619 LIST_INIT(&wkhd); 5620 ACQUIRE_LOCK(ump); 5621 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5622 /* 5623 * If the journal has not been written we must cancel it here. 5624 */ 5625 if (freefrag->ff_jdep) { 5626 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5627 panic("handle_workitem_freefrag: Unexpected type %d\n", 5628 freefrag->ff_jdep->wk_type); 5629 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5630 } 5631 FREE_LOCK(ump); 5632 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5633 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5634 ACQUIRE_LOCK(ump); 5635 WORKITEM_FREE(freefrag, D_FREEFRAG); 5636 FREE_LOCK(ump); 5637 } 5638 5639 /* 5640 * Set up a dependency structure for an external attributes data block. 5641 * This routine follows much of the structure of softdep_setup_allocdirect. 5642 * See the description of softdep_setup_allocdirect above for details. 5643 */ 5644 void 5645 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5646 struct inode *ip; 5647 ufs_lbn_t off; 5648 ufs2_daddr_t newblkno; 5649 ufs2_daddr_t oldblkno; 5650 long newsize; 5651 long oldsize; 5652 struct buf *bp; 5653 { 5654 struct allocdirect *adp, *oldadp; 5655 struct allocdirectlst *adphead; 5656 struct freefrag *freefrag; 5657 struct inodedep *inodedep; 5658 struct jnewblk *jnewblk; 5659 struct newblk *newblk; 5660 struct mount *mp; 5661 struct ufsmount *ump; 5662 ufs_lbn_t lbn; 5663 5664 mp = ITOVFS(ip); 5665 ump = VFSTOUFS(mp); 5666 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5667 ("softdep_setup_allocext called on non-softdep filesystem")); 5668 KASSERT(off < UFS_NXADDR, 5669 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5670 5671 lbn = bp->b_lblkno; 5672 if (oldblkno && oldblkno != newblkno) 5673 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5674 else 5675 freefrag = NULL; 5676 5677 ACQUIRE_LOCK(ump); 5678 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5679 panic("softdep_setup_allocext: lost block"); 5680 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5681 ("softdep_setup_allocext: newblk already initialized")); 5682 /* 5683 * Convert the newblk to an allocdirect. 5684 */ 5685 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5686 adp = (struct allocdirect *)newblk; 5687 newblk->nb_freefrag = freefrag; 5688 adp->ad_offset = off; 5689 adp->ad_oldblkno = oldblkno; 5690 adp->ad_newsize = newsize; 5691 adp->ad_oldsize = oldsize; 5692 adp->ad_state |= EXTDATA; 5693 5694 /* 5695 * Finish initializing the journal. 5696 */ 5697 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5698 jnewblk->jn_ino = ip->i_number; 5699 jnewblk->jn_lbn = lbn; 5700 add_to_journal(&jnewblk->jn_list); 5701 } 5702 if (freefrag && freefrag->ff_jdep != NULL && 5703 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5704 add_to_journal(freefrag->ff_jdep); 5705 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5706 adp->ad_inodedep = inodedep; 5707 5708 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5709 /* 5710 * The list of allocdirects must be kept in sorted and ascending 5711 * order so that the rollback routines can quickly determine the 5712 * first uncommitted block (the size of the file stored on disk 5713 * ends at the end of the lowest committed fragment, or if there 5714 * are no fragments, at the end of the highest committed block). 5715 * Since files generally grow, the typical case is that the new 5716 * block is to be added at the end of the list. We speed this 5717 * special case by checking against the last allocdirect in the 5718 * list before laboriously traversing the list looking for the 5719 * insertion point. 5720 */ 5721 adphead = &inodedep->id_newextupdt; 5722 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5723 if (oldadp == NULL || oldadp->ad_offset <= off) { 5724 /* insert at end of list */ 5725 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5726 if (oldadp != NULL && oldadp->ad_offset == off) 5727 allocdirect_merge(adphead, adp, oldadp); 5728 FREE_LOCK(ump); 5729 return; 5730 } 5731 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5732 if (oldadp->ad_offset >= off) 5733 break; 5734 } 5735 if (oldadp == NULL) 5736 panic("softdep_setup_allocext: lost entry"); 5737 /* insert in middle of list */ 5738 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5739 if (oldadp->ad_offset == off) 5740 allocdirect_merge(adphead, adp, oldadp); 5741 FREE_LOCK(ump); 5742 } 5743 5744 /* 5745 * Indirect block allocation dependencies. 5746 * 5747 * The same dependencies that exist for a direct block also exist when 5748 * a new block is allocated and pointed to by an entry in a block of 5749 * indirect pointers. The undo/redo states described above are also 5750 * used here. Because an indirect block contains many pointers that 5751 * may have dependencies, a second copy of the entire in-memory indirect 5752 * block is kept. The buffer cache copy is always completely up-to-date. 5753 * The second copy, which is used only as a source for disk writes, 5754 * contains only the safe pointers (i.e., those that have no remaining 5755 * update dependencies). The second copy is freed when all pointers 5756 * are safe. The cache is not allowed to replace indirect blocks with 5757 * pending update dependencies. If a buffer containing an indirect 5758 * block with dependencies is written, these routines will mark it 5759 * dirty again. It can only be successfully written once all the 5760 * dependencies are removed. The ffs_fsync routine in conjunction with 5761 * softdep_sync_metadata work together to get all the dependencies 5762 * removed so that a file can be successfully written to disk. Three 5763 * procedures are used when setting up indirect block pointer 5764 * dependencies. The division is necessary because of the organization 5765 * of the "balloc" routine and because of the distinction between file 5766 * pages and file metadata blocks. 5767 */ 5768 5769 /* 5770 * Allocate a new allocindir structure. 5771 */ 5772 static struct allocindir * 5773 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5774 struct inode *ip; /* inode for file being extended */ 5775 int ptrno; /* offset of pointer in indirect block */ 5776 ufs2_daddr_t newblkno; /* disk block number being added */ 5777 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5778 ufs_lbn_t lbn; 5779 { 5780 struct newblk *newblk; 5781 struct allocindir *aip; 5782 struct freefrag *freefrag; 5783 struct jnewblk *jnewblk; 5784 5785 if (oldblkno) 5786 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn); 5787 else 5788 freefrag = NULL; 5789 ACQUIRE_LOCK(ITOUMP(ip)); 5790 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5791 panic("new_allocindir: lost block"); 5792 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5793 ("newallocindir: newblk already initialized")); 5794 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5795 newblk->nb_freefrag = freefrag; 5796 aip = (struct allocindir *)newblk; 5797 aip->ai_offset = ptrno; 5798 aip->ai_oldblkno = oldblkno; 5799 aip->ai_lbn = lbn; 5800 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5801 jnewblk->jn_ino = ip->i_number; 5802 jnewblk->jn_lbn = lbn; 5803 add_to_journal(&jnewblk->jn_list); 5804 } 5805 if (freefrag && freefrag->ff_jdep != NULL && 5806 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5807 add_to_journal(freefrag->ff_jdep); 5808 return (aip); 5809 } 5810 5811 /* 5812 * Called just before setting an indirect block pointer 5813 * to a newly allocated file page. 5814 */ 5815 void 5816 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5817 struct inode *ip; /* inode for file being extended */ 5818 ufs_lbn_t lbn; /* allocated block number within file */ 5819 struct buf *bp; /* buffer with indirect blk referencing page */ 5820 int ptrno; /* offset of pointer in indirect block */ 5821 ufs2_daddr_t newblkno; /* disk block number being added */ 5822 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5823 struct buf *nbp; /* buffer holding allocated page */ 5824 { 5825 struct inodedep *inodedep; 5826 struct freefrag *freefrag; 5827 struct allocindir *aip; 5828 struct pagedep *pagedep; 5829 struct mount *mp; 5830 struct ufsmount *ump; 5831 5832 mp = ITOVFS(ip); 5833 ump = VFSTOUFS(mp); 5834 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5835 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5836 KASSERT(lbn == nbp->b_lblkno, 5837 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5838 lbn, bp->b_lblkno)); 5839 CTR4(KTR_SUJ, 5840 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5841 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5842 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5843 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5844 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5845 /* 5846 * If we are allocating a directory page, then we must 5847 * allocate an associated pagedep to track additions and 5848 * deletions. 5849 */ 5850 if ((ip->i_mode & IFMT) == IFDIR) 5851 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5852 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5853 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5854 FREE_LOCK(ump); 5855 if (freefrag) 5856 handle_workitem_freefrag(freefrag); 5857 } 5858 5859 /* 5860 * Called just before setting an indirect block pointer to a 5861 * newly allocated indirect block. 5862 */ 5863 void 5864 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5865 struct buf *nbp; /* newly allocated indirect block */ 5866 struct inode *ip; /* inode for file being extended */ 5867 struct buf *bp; /* indirect block referencing allocated block */ 5868 int ptrno; /* offset of pointer in indirect block */ 5869 ufs2_daddr_t newblkno; /* disk block number being added */ 5870 { 5871 struct inodedep *inodedep; 5872 struct allocindir *aip; 5873 struct ufsmount *ump; 5874 ufs_lbn_t lbn; 5875 5876 ump = ITOUMP(ip); 5877 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5878 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5879 CTR3(KTR_SUJ, 5880 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5881 ip->i_number, newblkno, ptrno); 5882 lbn = nbp->b_lblkno; 5883 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5884 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5885 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5886 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5887 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5888 panic("softdep_setup_allocindir_meta: Block already existed"); 5889 FREE_LOCK(ump); 5890 } 5891 5892 static void 5893 indirdep_complete(indirdep) 5894 struct indirdep *indirdep; 5895 { 5896 struct allocindir *aip; 5897 5898 LIST_REMOVE(indirdep, ir_next); 5899 indirdep->ir_state |= DEPCOMPLETE; 5900 5901 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5902 LIST_REMOVE(aip, ai_next); 5903 free_newblk(&aip->ai_block); 5904 } 5905 /* 5906 * If this indirdep is not attached to a buf it was simply waiting 5907 * on completion to clear completehd. free_indirdep() asserts 5908 * that nothing is dangling. 5909 */ 5910 if ((indirdep->ir_state & ONWORKLIST) == 0) 5911 free_indirdep(indirdep); 5912 } 5913 5914 static struct indirdep * 5915 indirdep_lookup(mp, ip, bp) 5916 struct mount *mp; 5917 struct inode *ip; 5918 struct buf *bp; 5919 { 5920 struct indirdep *indirdep, *newindirdep; 5921 struct newblk *newblk; 5922 struct ufsmount *ump; 5923 struct worklist *wk; 5924 struct fs *fs; 5925 ufs2_daddr_t blkno; 5926 5927 ump = VFSTOUFS(mp); 5928 LOCK_OWNED(ump); 5929 indirdep = NULL; 5930 newindirdep = NULL; 5931 fs = ump->um_fs; 5932 for (;;) { 5933 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5934 if (wk->wk_type != D_INDIRDEP) 5935 continue; 5936 indirdep = WK_INDIRDEP(wk); 5937 break; 5938 } 5939 /* Found on the buffer worklist, no new structure to free. */ 5940 if (indirdep != NULL && newindirdep == NULL) 5941 return (indirdep); 5942 if (indirdep != NULL && newindirdep != NULL) 5943 panic("indirdep_lookup: simultaneous create"); 5944 /* None found on the buffer and a new structure is ready. */ 5945 if (indirdep == NULL && newindirdep != NULL) 5946 break; 5947 /* None found and no new structure available. */ 5948 FREE_LOCK(ump); 5949 newindirdep = malloc(sizeof(struct indirdep), 5950 M_INDIRDEP, M_SOFTDEP_FLAGS); 5951 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5952 newindirdep->ir_state = ATTACHED; 5953 if (I_IS_UFS1(ip)) 5954 newindirdep->ir_state |= UFS1FMT; 5955 TAILQ_INIT(&newindirdep->ir_trunc); 5956 newindirdep->ir_saveddata = NULL; 5957 LIST_INIT(&newindirdep->ir_deplisthd); 5958 LIST_INIT(&newindirdep->ir_donehd); 5959 LIST_INIT(&newindirdep->ir_writehd); 5960 LIST_INIT(&newindirdep->ir_completehd); 5961 if (bp->b_blkno == bp->b_lblkno) { 5962 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5963 NULL, NULL); 5964 bp->b_blkno = blkno; 5965 } 5966 newindirdep->ir_freeblks = NULL; 5967 newindirdep->ir_savebp = 5968 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5969 newindirdep->ir_bp = bp; 5970 BUF_KERNPROC(newindirdep->ir_savebp); 5971 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5972 ACQUIRE_LOCK(ump); 5973 } 5974 indirdep = newindirdep; 5975 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5976 /* 5977 * If the block is not yet allocated we don't set DEPCOMPLETE so 5978 * that we don't free dependencies until the pointers are valid. 5979 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5980 * than using the hash. 5981 */ 5982 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5983 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5984 else 5985 indirdep->ir_state |= DEPCOMPLETE; 5986 return (indirdep); 5987 } 5988 5989 /* 5990 * Called to finish the allocation of the "aip" allocated 5991 * by one of the two routines above. 5992 */ 5993 static struct freefrag * 5994 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5995 struct buf *bp; /* in-memory copy of the indirect block */ 5996 struct inode *ip; /* inode for file being extended */ 5997 struct inodedep *inodedep; /* Inodedep for ip */ 5998 struct allocindir *aip; /* allocindir allocated by the above routines */ 5999 ufs_lbn_t lbn; /* Logical block number for this block. */ 6000 { 6001 struct fs *fs; 6002 struct indirdep *indirdep; 6003 struct allocindir *oldaip; 6004 struct freefrag *freefrag; 6005 struct mount *mp; 6006 struct ufsmount *ump; 6007 6008 mp = ITOVFS(ip); 6009 ump = VFSTOUFS(mp); 6010 LOCK_OWNED(ump); 6011 fs = ump->um_fs; 6012 if (bp->b_lblkno >= 0) 6013 panic("setup_allocindir_phase2: not indir blk"); 6014 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6015 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6016 indirdep = indirdep_lookup(mp, ip, bp); 6017 KASSERT(indirdep->ir_savebp != NULL, 6018 ("setup_allocindir_phase2 NULL ir_savebp")); 6019 aip->ai_indirdep = indirdep; 6020 /* 6021 * Check for an unwritten dependency for this indirect offset. If 6022 * there is, merge the old dependency into the new one. This happens 6023 * as a result of reallocblk only. 6024 */ 6025 freefrag = NULL; 6026 if (aip->ai_oldblkno != 0) { 6027 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6028 if (oldaip->ai_offset == aip->ai_offset) { 6029 freefrag = allocindir_merge(aip, oldaip); 6030 goto done; 6031 } 6032 } 6033 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6034 if (oldaip->ai_offset == aip->ai_offset) { 6035 freefrag = allocindir_merge(aip, oldaip); 6036 goto done; 6037 } 6038 } 6039 } 6040 done: 6041 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6042 return (freefrag); 6043 } 6044 6045 /* 6046 * Merge two allocindirs which refer to the same block. Move newblock 6047 * dependencies and setup the freefrags appropriately. 6048 */ 6049 static struct freefrag * 6050 allocindir_merge(aip, oldaip) 6051 struct allocindir *aip; 6052 struct allocindir *oldaip; 6053 { 6054 struct freefrag *freefrag; 6055 struct worklist *wk; 6056 6057 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6058 panic("allocindir_merge: blkno"); 6059 aip->ai_oldblkno = oldaip->ai_oldblkno; 6060 freefrag = aip->ai_freefrag; 6061 aip->ai_freefrag = oldaip->ai_freefrag; 6062 oldaip->ai_freefrag = NULL; 6063 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6064 /* 6065 * If we are tracking a new directory-block allocation, 6066 * move it from the old allocindir to the new allocindir. 6067 */ 6068 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6069 WORKLIST_REMOVE(wk); 6070 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6071 panic("allocindir_merge: extra newdirblk"); 6072 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6073 } 6074 /* 6075 * We can skip journaling for this freefrag and just complete 6076 * any pending journal work for the allocindir that is being 6077 * removed after the freefrag completes. 6078 */ 6079 if (freefrag->ff_jdep) 6080 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6081 LIST_REMOVE(oldaip, ai_next); 6082 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6083 &freefrag->ff_list, &freefrag->ff_jwork); 6084 free_newblk(&oldaip->ai_block); 6085 6086 return (freefrag); 6087 } 6088 6089 static inline void 6090 setup_freedirect(freeblks, ip, i, needj) 6091 struct freeblks *freeblks; 6092 struct inode *ip; 6093 int i; 6094 int needj; 6095 { 6096 struct ufsmount *ump; 6097 ufs2_daddr_t blkno; 6098 int frags; 6099 6100 blkno = DIP(ip, i_db[i]); 6101 if (blkno == 0) 6102 return; 6103 DIP_SET(ip, i_db[i], 0); 6104 ump = ITOUMP(ip); 6105 frags = sblksize(ump->um_fs, ip->i_size, i); 6106 frags = numfrags(ump->um_fs, frags); 6107 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6108 } 6109 6110 static inline void 6111 setup_freeext(freeblks, ip, i, needj) 6112 struct freeblks *freeblks; 6113 struct inode *ip; 6114 int i; 6115 int needj; 6116 { 6117 struct ufsmount *ump; 6118 ufs2_daddr_t blkno; 6119 int frags; 6120 6121 blkno = ip->i_din2->di_extb[i]; 6122 if (blkno == 0) 6123 return; 6124 ip->i_din2->di_extb[i] = 0; 6125 ump = ITOUMP(ip); 6126 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6127 frags = numfrags(ump->um_fs, frags); 6128 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6129 } 6130 6131 static inline void 6132 setup_freeindir(freeblks, ip, i, lbn, needj) 6133 struct freeblks *freeblks; 6134 struct inode *ip; 6135 int i; 6136 ufs_lbn_t lbn; 6137 int needj; 6138 { 6139 struct ufsmount *ump; 6140 ufs2_daddr_t blkno; 6141 6142 blkno = DIP(ip, i_ib[i]); 6143 if (blkno == 0) 6144 return; 6145 DIP_SET(ip, i_ib[i], 0); 6146 ump = ITOUMP(ip); 6147 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6148 0, needj); 6149 } 6150 6151 static inline struct freeblks * 6152 newfreeblks(mp, ip) 6153 struct mount *mp; 6154 struct inode *ip; 6155 { 6156 struct freeblks *freeblks; 6157 6158 freeblks = malloc(sizeof(struct freeblks), 6159 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6160 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6161 LIST_INIT(&freeblks->fb_jblkdephd); 6162 LIST_INIT(&freeblks->fb_jwork); 6163 freeblks->fb_ref = 0; 6164 freeblks->fb_cgwait = 0; 6165 freeblks->fb_state = ATTACHED; 6166 freeblks->fb_uid = ip->i_uid; 6167 freeblks->fb_inum = ip->i_number; 6168 freeblks->fb_vtype = ITOV(ip)->v_type; 6169 freeblks->fb_modrev = DIP(ip, i_modrev); 6170 freeblks->fb_devvp = ITODEVVP(ip); 6171 freeblks->fb_chkcnt = 0; 6172 freeblks->fb_len = 0; 6173 6174 return (freeblks); 6175 } 6176 6177 static void 6178 trunc_indirdep(indirdep, freeblks, bp, off) 6179 struct indirdep *indirdep; 6180 struct freeblks *freeblks; 6181 struct buf *bp; 6182 int off; 6183 { 6184 struct allocindir *aip, *aipn; 6185 6186 /* 6187 * The first set of allocindirs won't be in savedbp. 6188 */ 6189 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6190 if (aip->ai_offset > off) 6191 cancel_allocindir(aip, bp, freeblks, 1); 6192 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6193 if (aip->ai_offset > off) 6194 cancel_allocindir(aip, bp, freeblks, 1); 6195 /* 6196 * These will exist in savedbp. 6197 */ 6198 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6199 if (aip->ai_offset > off) 6200 cancel_allocindir(aip, NULL, freeblks, 0); 6201 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6202 if (aip->ai_offset > off) 6203 cancel_allocindir(aip, NULL, freeblks, 0); 6204 } 6205 6206 /* 6207 * Follow the chain of indirects down to lastlbn creating a freework 6208 * structure for each. This will be used to start indir_trunc() at 6209 * the right offset and create the journal records for the parrtial 6210 * truncation. A second step will handle the truncated dependencies. 6211 */ 6212 static int 6213 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6214 struct freeblks *freeblks; 6215 struct inode *ip; 6216 ufs_lbn_t lbn; 6217 ufs_lbn_t lastlbn; 6218 ufs2_daddr_t blkno; 6219 { 6220 struct indirdep *indirdep; 6221 struct indirdep *indirn; 6222 struct freework *freework; 6223 struct newblk *newblk; 6224 struct mount *mp; 6225 struct ufsmount *ump; 6226 struct buf *bp; 6227 uint8_t *start; 6228 uint8_t *end; 6229 ufs_lbn_t lbnadd; 6230 int level; 6231 int error; 6232 int off; 6233 6234 6235 freework = NULL; 6236 if (blkno == 0) 6237 return (0); 6238 mp = freeblks->fb_list.wk_mp; 6239 ump = VFSTOUFS(mp); 6240 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6241 if ((bp->b_flags & B_CACHE) == 0) { 6242 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6243 bp->b_iocmd = BIO_READ; 6244 bp->b_flags &= ~B_INVAL; 6245 bp->b_ioflags &= ~BIO_ERROR; 6246 vfs_busy_pages(bp, 0); 6247 bp->b_iooffset = dbtob(bp->b_blkno); 6248 bstrategy(bp); 6249 #ifdef RACCT 6250 if (racct_enable) { 6251 PROC_LOCK(curproc); 6252 racct_add_buf(curproc, bp, 0); 6253 PROC_UNLOCK(curproc); 6254 } 6255 #endif /* RACCT */ 6256 curthread->td_ru.ru_inblock++; 6257 error = bufwait(bp); 6258 if (error) { 6259 brelse(bp); 6260 return (error); 6261 } 6262 } 6263 level = lbn_level(lbn); 6264 lbnadd = lbn_offset(ump->um_fs, level); 6265 /* 6266 * Compute the offset of the last block we want to keep. Store 6267 * in the freework the first block we want to completely free. 6268 */ 6269 off = (lastlbn - -(lbn + level)) / lbnadd; 6270 if (off + 1 == NINDIR(ump->um_fs)) 6271 goto nowork; 6272 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6273 /* 6274 * Link the freework into the indirdep. This will prevent any new 6275 * allocations from proceeding until we are finished with the 6276 * truncate and the block is written. 6277 */ 6278 ACQUIRE_LOCK(ump); 6279 indirdep = indirdep_lookup(mp, ip, bp); 6280 if (indirdep->ir_freeblks) 6281 panic("setup_trunc_indir: indirdep already truncated."); 6282 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6283 freework->fw_indir = indirdep; 6284 /* 6285 * Cancel any allocindirs that will not make it to disk. 6286 * We have to do this for all copies of the indirdep that 6287 * live on this newblk. 6288 */ 6289 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6290 newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk); 6291 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6292 trunc_indirdep(indirn, freeblks, bp, off); 6293 } else 6294 trunc_indirdep(indirdep, freeblks, bp, off); 6295 FREE_LOCK(ump); 6296 /* 6297 * Creation is protected by the buf lock. The saveddata is only 6298 * needed if a full truncation follows a partial truncation but it 6299 * is difficult to allocate in that case so we fetch it anyway. 6300 */ 6301 if (indirdep->ir_saveddata == NULL) 6302 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6303 M_SOFTDEP_FLAGS); 6304 nowork: 6305 /* Fetch the blkno of the child and the zero start offset. */ 6306 if (I_IS_UFS1(ip)) { 6307 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6308 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6309 } else { 6310 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6311 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6312 } 6313 if (freework) { 6314 /* Zero the truncated pointers. */ 6315 end = bp->b_data + bp->b_bcount; 6316 bzero(start, end - start); 6317 bdwrite(bp); 6318 } else 6319 bqrelse(bp); 6320 if (level == 0) 6321 return (0); 6322 lbn++; /* adjust level */ 6323 lbn -= (off * lbnadd); 6324 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6325 } 6326 6327 /* 6328 * Complete the partial truncation of an indirect block setup by 6329 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6330 * copy and writes them to disk before the freeblks is allowed to complete. 6331 */ 6332 static void 6333 complete_trunc_indir(freework) 6334 struct freework *freework; 6335 { 6336 struct freework *fwn; 6337 struct indirdep *indirdep; 6338 struct ufsmount *ump; 6339 struct buf *bp; 6340 uintptr_t start; 6341 int count; 6342 6343 ump = VFSTOUFS(freework->fw_list.wk_mp); 6344 LOCK_OWNED(ump); 6345 indirdep = freework->fw_indir; 6346 for (;;) { 6347 bp = indirdep->ir_bp; 6348 /* See if the block was discarded. */ 6349 if (bp == NULL) 6350 break; 6351 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6352 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6353 break; 6354 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6355 LOCK_PTR(ump)) == 0) 6356 BUF_UNLOCK(bp); 6357 ACQUIRE_LOCK(ump); 6358 } 6359 freework->fw_state |= DEPCOMPLETE; 6360 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6361 /* 6362 * Zero the pointers in the saved copy. 6363 */ 6364 if (indirdep->ir_state & UFS1FMT) 6365 start = sizeof(ufs1_daddr_t); 6366 else 6367 start = sizeof(ufs2_daddr_t); 6368 start *= freework->fw_start; 6369 count = indirdep->ir_savebp->b_bcount - start; 6370 start += (uintptr_t)indirdep->ir_savebp->b_data; 6371 bzero((char *)start, count); 6372 /* 6373 * We need to start the next truncation in the list if it has not 6374 * been started yet. 6375 */ 6376 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6377 if (fwn != NULL) { 6378 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6379 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6380 if ((fwn->fw_state & ONWORKLIST) == 0) 6381 freework_enqueue(fwn); 6382 } 6383 /* 6384 * If bp is NULL the block was fully truncated, restore 6385 * the saved block list otherwise free it if it is no 6386 * longer needed. 6387 */ 6388 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6389 if (bp == NULL) 6390 bcopy(indirdep->ir_saveddata, 6391 indirdep->ir_savebp->b_data, 6392 indirdep->ir_savebp->b_bcount); 6393 free(indirdep->ir_saveddata, M_INDIRDEP); 6394 indirdep->ir_saveddata = NULL; 6395 } 6396 /* 6397 * When bp is NULL there is a full truncation pending. We 6398 * must wait for this full truncation to be journaled before 6399 * we can release this freework because the disk pointers will 6400 * never be written as zero. 6401 */ 6402 if (bp == NULL) { 6403 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6404 handle_written_freework(freework); 6405 else 6406 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6407 &freework->fw_list); 6408 } else { 6409 /* Complete when the real copy is written. */ 6410 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6411 BUF_UNLOCK(bp); 6412 } 6413 } 6414 6415 /* 6416 * Calculate the number of blocks we are going to release where datablocks 6417 * is the current total and length is the new file size. 6418 */ 6419 static ufs2_daddr_t 6420 blkcount(fs, datablocks, length) 6421 struct fs *fs; 6422 ufs2_daddr_t datablocks; 6423 off_t length; 6424 { 6425 off_t totblks, numblks; 6426 6427 totblks = 0; 6428 numblks = howmany(length, fs->fs_bsize); 6429 if (numblks <= UFS_NDADDR) { 6430 totblks = howmany(length, fs->fs_fsize); 6431 goto out; 6432 } 6433 totblks = blkstofrags(fs, numblks); 6434 numblks -= UFS_NDADDR; 6435 /* 6436 * Count all single, then double, then triple indirects required. 6437 * Subtracting one indirects worth of blocks for each pass 6438 * acknowledges one of each pointed to by the inode. 6439 */ 6440 for (;;) { 6441 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6442 numblks -= NINDIR(fs); 6443 if (numblks <= 0) 6444 break; 6445 numblks = howmany(numblks, NINDIR(fs)); 6446 } 6447 out: 6448 totblks = fsbtodb(fs, totblks); 6449 /* 6450 * Handle sparse files. We can't reclaim more blocks than the inode 6451 * references. We will correct it later in handle_complete_freeblks() 6452 * when we know the real count. 6453 */ 6454 if (totblks > datablocks) 6455 return (0); 6456 return (datablocks - totblks); 6457 } 6458 6459 /* 6460 * Handle freeblocks for journaled softupdate filesystems. 6461 * 6462 * Contrary to normal softupdates, we must preserve the block pointers in 6463 * indirects until their subordinates are free. This is to avoid journaling 6464 * every block that is freed which may consume more space than the journal 6465 * itself. The recovery program will see the free block journals at the 6466 * base of the truncated area and traverse them to reclaim space. The 6467 * pointers in the inode may be cleared immediately after the journal 6468 * records are written because each direct and indirect pointer in the 6469 * inode is recorded in a journal. This permits full truncation to proceed 6470 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6471 * 6472 * The algorithm is as follows: 6473 * 1) Traverse the in-memory state and create journal entries to release 6474 * the relevant blocks and full indirect trees. 6475 * 2) Traverse the indirect block chain adding partial truncation freework 6476 * records to indirects in the path to lastlbn. The freework will 6477 * prevent new allocation dependencies from being satisfied in this 6478 * indirect until the truncation completes. 6479 * 3) Read and lock the inode block, performing an update with the new size 6480 * and pointers. This prevents truncated data from becoming valid on 6481 * disk through step 4. 6482 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6483 * eliminate journal work for those records that do not require it. 6484 * 5) Schedule the journal records to be written followed by the inode block. 6485 * 6) Allocate any necessary frags for the end of file. 6486 * 7) Zero any partially truncated blocks. 6487 * 6488 * From this truncation proceeds asynchronously using the freework and 6489 * indir_trunc machinery. The file will not be extended again into a 6490 * partially truncated indirect block until all work is completed but 6491 * the normal dependency mechanism ensures that it is rolled back/forward 6492 * as appropriate. Further truncation may occur without delay and is 6493 * serialized in indir_trunc(). 6494 */ 6495 void 6496 softdep_journal_freeblocks(ip, cred, length, flags) 6497 struct inode *ip; /* The inode whose length is to be reduced */ 6498 struct ucred *cred; 6499 off_t length; /* The new length for the file */ 6500 int flags; /* IO_EXT and/or IO_NORMAL */ 6501 { 6502 struct freeblks *freeblks, *fbn; 6503 struct worklist *wk, *wkn; 6504 struct inodedep *inodedep; 6505 struct jblkdep *jblkdep; 6506 struct allocdirect *adp, *adpn; 6507 struct ufsmount *ump; 6508 struct fs *fs; 6509 struct buf *bp; 6510 struct vnode *vp; 6511 struct mount *mp; 6512 ufs2_daddr_t extblocks, datablocks; 6513 ufs_lbn_t tmpval, lbn, lastlbn; 6514 int frags, lastoff, iboff, allocblock, needj, error, i; 6515 6516 ump = ITOUMP(ip); 6517 mp = UFSTOVFS(ump); 6518 fs = ump->um_fs; 6519 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6520 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6521 vp = ITOV(ip); 6522 needj = 1; 6523 iboff = -1; 6524 allocblock = 0; 6525 extblocks = 0; 6526 datablocks = 0; 6527 frags = 0; 6528 freeblks = newfreeblks(mp, ip); 6529 ACQUIRE_LOCK(ump); 6530 /* 6531 * If we're truncating a removed file that will never be written 6532 * we don't need to journal the block frees. The canceled journals 6533 * for the allocations will suffice. 6534 */ 6535 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6536 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6537 length == 0) 6538 needj = 0; 6539 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6540 ip->i_number, length, needj); 6541 FREE_LOCK(ump); 6542 /* 6543 * Calculate the lbn that we are truncating to. This results in -1 6544 * if we're truncating the 0 bytes. So it is the last lbn we want 6545 * to keep, not the first lbn we want to truncate. 6546 */ 6547 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6548 lastoff = blkoff(fs, length); 6549 /* 6550 * Compute frags we are keeping in lastlbn. 0 means all. 6551 */ 6552 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6553 frags = fragroundup(fs, lastoff); 6554 /* adp offset of last valid allocdirect. */ 6555 iboff = lastlbn; 6556 } else if (lastlbn > 0) 6557 iboff = UFS_NDADDR; 6558 if (fs->fs_magic == FS_UFS2_MAGIC) 6559 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6560 /* 6561 * Handle normal data blocks and indirects. This section saves 6562 * values used after the inode update to complete frag and indirect 6563 * truncation. 6564 */ 6565 if ((flags & IO_NORMAL) != 0) { 6566 /* 6567 * Handle truncation of whole direct and indirect blocks. 6568 */ 6569 for (i = iboff + 1; i < UFS_NDADDR; i++) 6570 setup_freedirect(freeblks, ip, i, needj); 6571 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6572 i < UFS_NIADDR; 6573 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6574 /* Release a whole indirect tree. */ 6575 if (lbn > lastlbn) { 6576 setup_freeindir(freeblks, ip, i, -lbn -i, 6577 needj); 6578 continue; 6579 } 6580 iboff = i + UFS_NDADDR; 6581 /* 6582 * Traverse partially truncated indirect tree. 6583 */ 6584 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6585 setup_trunc_indir(freeblks, ip, -lbn - i, 6586 lastlbn, DIP(ip, i_ib[i])); 6587 } 6588 /* 6589 * Handle partial truncation to a frag boundary. 6590 */ 6591 if (frags) { 6592 ufs2_daddr_t blkno; 6593 long oldfrags; 6594 6595 oldfrags = blksize(fs, ip, lastlbn); 6596 blkno = DIP(ip, i_db[lastlbn]); 6597 if (blkno && oldfrags != frags) { 6598 oldfrags -= frags; 6599 oldfrags = numfrags(fs, oldfrags); 6600 blkno += numfrags(fs, frags); 6601 newfreework(ump, freeblks, NULL, lastlbn, 6602 blkno, oldfrags, 0, needj); 6603 if (needj) 6604 adjust_newfreework(freeblks, 6605 numfrags(fs, frags)); 6606 } else if (blkno == 0) 6607 allocblock = 1; 6608 } 6609 /* 6610 * Add a journal record for partial truncate if we are 6611 * handling indirect blocks. Non-indirects need no extra 6612 * journaling. 6613 */ 6614 if (length != 0 && lastlbn >= UFS_NDADDR) { 6615 ip->i_flag |= IN_TRUNCATED; 6616 newjtrunc(freeblks, length, 0); 6617 } 6618 ip->i_size = length; 6619 DIP_SET(ip, i_size, ip->i_size); 6620 datablocks = DIP(ip, i_blocks) - extblocks; 6621 if (length != 0) 6622 datablocks = blkcount(fs, datablocks, length); 6623 freeblks->fb_len = length; 6624 } 6625 if ((flags & IO_EXT) != 0) { 6626 for (i = 0; i < UFS_NXADDR; i++) 6627 setup_freeext(freeblks, ip, i, needj); 6628 ip->i_din2->di_extsize = 0; 6629 datablocks += extblocks; 6630 } 6631 #ifdef QUOTA 6632 /* Reference the quotas in case the block count is wrong in the end. */ 6633 quotaref(vp, freeblks->fb_quota); 6634 (void) chkdq(ip, -datablocks, NOCRED, 0); 6635 #endif 6636 freeblks->fb_chkcnt = -datablocks; 6637 UFS_LOCK(ump); 6638 fs->fs_pendingblocks += datablocks; 6639 UFS_UNLOCK(ump); 6640 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6641 /* 6642 * Handle truncation of incomplete alloc direct dependencies. We 6643 * hold the inode block locked to prevent incomplete dependencies 6644 * from reaching the disk while we are eliminating those that 6645 * have been truncated. This is a partially inlined ffs_update(). 6646 */ 6647 ufs_itimes(vp); 6648 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6649 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6650 (int)fs->fs_bsize, cred, &bp); 6651 if (error) { 6652 brelse(bp); 6653 softdep_error("softdep_journal_freeblocks", error); 6654 return; 6655 } 6656 if (bp->b_bufsize == fs->fs_bsize) 6657 bp->b_flags |= B_CLUSTEROK; 6658 softdep_update_inodeblock(ip, bp, 0); 6659 if (ump->um_fstype == UFS1) 6660 *((struct ufs1_dinode *)bp->b_data + 6661 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6662 else 6663 *((struct ufs2_dinode *)bp->b_data + 6664 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6665 ACQUIRE_LOCK(ump); 6666 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6667 if ((inodedep->id_state & IOSTARTED) != 0) 6668 panic("softdep_setup_freeblocks: inode busy"); 6669 /* 6670 * Add the freeblks structure to the list of operations that 6671 * must await the zero'ed inode being written to disk. If we 6672 * still have a bitmap dependency (needj), then the inode 6673 * has never been written to disk, so we can process the 6674 * freeblks below once we have deleted the dependencies. 6675 */ 6676 if (needj) 6677 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6678 else 6679 freeblks->fb_state |= COMPLETE; 6680 if ((flags & IO_NORMAL) != 0) { 6681 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6682 if (adp->ad_offset > iboff) 6683 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6684 freeblks); 6685 /* 6686 * Truncate the allocdirect. We could eliminate 6687 * or modify journal records as well. 6688 */ 6689 else if (adp->ad_offset == iboff && frags) 6690 adp->ad_newsize = frags; 6691 } 6692 } 6693 if ((flags & IO_EXT) != 0) 6694 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6695 cancel_allocdirect(&inodedep->id_extupdt, adp, 6696 freeblks); 6697 /* 6698 * Scan the bufwait list for newblock dependencies that will never 6699 * make it to disk. 6700 */ 6701 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6702 if (wk->wk_type != D_ALLOCDIRECT) 6703 continue; 6704 adp = WK_ALLOCDIRECT(wk); 6705 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6706 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6707 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6708 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6709 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6710 } 6711 } 6712 /* 6713 * Add journal work. 6714 */ 6715 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6716 add_to_journal(&jblkdep->jb_list); 6717 FREE_LOCK(ump); 6718 bdwrite(bp); 6719 /* 6720 * Truncate dependency structures beyond length. 6721 */ 6722 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6723 /* 6724 * This is only set when we need to allocate a fragment because 6725 * none existed at the end of a frag-sized file. It handles only 6726 * allocating a new, zero filled block. 6727 */ 6728 if (allocblock) { 6729 ip->i_size = length - lastoff; 6730 DIP_SET(ip, i_size, ip->i_size); 6731 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6732 if (error != 0) { 6733 softdep_error("softdep_journal_freeblks", error); 6734 return; 6735 } 6736 ip->i_size = length; 6737 DIP_SET(ip, i_size, length); 6738 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6739 allocbuf(bp, frags); 6740 ffs_update(vp, 0); 6741 bawrite(bp); 6742 } else if (lastoff != 0 && vp->v_type != VDIR) { 6743 int size; 6744 6745 /* 6746 * Zero the end of a truncated frag or block. 6747 */ 6748 size = sblksize(fs, length, lastlbn); 6749 error = bread(vp, lastlbn, size, cred, &bp); 6750 if (error) { 6751 softdep_error("softdep_journal_freeblks", error); 6752 return; 6753 } 6754 bzero((char *)bp->b_data + lastoff, size - lastoff); 6755 bawrite(bp); 6756 6757 } 6758 ACQUIRE_LOCK(ump); 6759 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6760 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6761 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6762 /* 6763 * We zero earlier truncations so they don't erroneously 6764 * update i_blocks. 6765 */ 6766 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6767 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6768 fbn->fb_len = 0; 6769 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6770 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6771 freeblks->fb_state |= INPROGRESS; 6772 else 6773 freeblks = NULL; 6774 FREE_LOCK(ump); 6775 if (freeblks) 6776 handle_workitem_freeblocks(freeblks, 0); 6777 trunc_pages(ip, length, extblocks, flags); 6778 6779 } 6780 6781 /* 6782 * Flush a JOP_SYNC to the journal. 6783 */ 6784 void 6785 softdep_journal_fsync(ip) 6786 struct inode *ip; 6787 { 6788 struct jfsync *jfsync; 6789 struct ufsmount *ump; 6790 6791 ump = ITOUMP(ip); 6792 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6793 ("softdep_journal_fsync called on non-softdep filesystem")); 6794 if ((ip->i_flag & IN_TRUNCATED) == 0) 6795 return; 6796 ip->i_flag &= ~IN_TRUNCATED; 6797 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6798 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6799 jfsync->jfs_size = ip->i_size; 6800 jfsync->jfs_ino = ip->i_number; 6801 ACQUIRE_LOCK(ump); 6802 add_to_journal(&jfsync->jfs_list); 6803 jwait(&jfsync->jfs_list, MNT_WAIT); 6804 FREE_LOCK(ump); 6805 } 6806 6807 /* 6808 * Block de-allocation dependencies. 6809 * 6810 * When blocks are de-allocated, the on-disk pointers must be nullified before 6811 * the blocks are made available for use by other files. (The true 6812 * requirement is that old pointers must be nullified before new on-disk 6813 * pointers are set. We chose this slightly more stringent requirement to 6814 * reduce complexity.) Our implementation handles this dependency by updating 6815 * the inode (or indirect block) appropriately but delaying the actual block 6816 * de-allocation (i.e., freemap and free space count manipulation) until 6817 * after the updated versions reach stable storage. After the disk is 6818 * updated, the blocks can be safely de-allocated whenever it is convenient. 6819 * This implementation handles only the common case of reducing a file's 6820 * length to zero. Other cases are handled by the conventional synchronous 6821 * write approach. 6822 * 6823 * The ffs implementation with which we worked double-checks 6824 * the state of the block pointers and file size as it reduces 6825 * a file's length. Some of this code is replicated here in our 6826 * soft updates implementation. The freeblks->fb_chkcnt field is 6827 * used to transfer a part of this information to the procedure 6828 * that eventually de-allocates the blocks. 6829 * 6830 * This routine should be called from the routine that shortens 6831 * a file's length, before the inode's size or block pointers 6832 * are modified. It will save the block pointer information for 6833 * later release and zero the inode so that the calling routine 6834 * can release it. 6835 */ 6836 void 6837 softdep_setup_freeblocks(ip, length, flags) 6838 struct inode *ip; /* The inode whose length is to be reduced */ 6839 off_t length; /* The new length for the file */ 6840 int flags; /* IO_EXT and/or IO_NORMAL */ 6841 { 6842 struct ufs1_dinode *dp1; 6843 struct ufs2_dinode *dp2; 6844 struct freeblks *freeblks; 6845 struct inodedep *inodedep; 6846 struct allocdirect *adp; 6847 struct ufsmount *ump; 6848 struct buf *bp; 6849 struct fs *fs; 6850 ufs2_daddr_t extblocks, datablocks; 6851 struct mount *mp; 6852 int i, delay, error; 6853 ufs_lbn_t tmpval; 6854 ufs_lbn_t lbn; 6855 6856 ump = ITOUMP(ip); 6857 mp = UFSTOVFS(ump); 6858 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6859 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6860 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6861 ip->i_number, length); 6862 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6863 fs = ump->um_fs; 6864 if ((error = bread(ump->um_devvp, 6865 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6866 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6867 brelse(bp); 6868 softdep_error("softdep_setup_freeblocks", error); 6869 return; 6870 } 6871 freeblks = newfreeblks(mp, ip); 6872 extblocks = 0; 6873 datablocks = 0; 6874 if (fs->fs_magic == FS_UFS2_MAGIC) 6875 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6876 if ((flags & IO_NORMAL) != 0) { 6877 for (i = 0; i < UFS_NDADDR; i++) 6878 setup_freedirect(freeblks, ip, i, 0); 6879 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6880 i < UFS_NIADDR; 6881 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6882 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6883 ip->i_size = 0; 6884 DIP_SET(ip, i_size, 0); 6885 datablocks = DIP(ip, i_blocks) - extblocks; 6886 } 6887 if ((flags & IO_EXT) != 0) { 6888 for (i = 0; i < UFS_NXADDR; i++) 6889 setup_freeext(freeblks, ip, i, 0); 6890 ip->i_din2->di_extsize = 0; 6891 datablocks += extblocks; 6892 } 6893 #ifdef QUOTA 6894 /* Reference the quotas in case the block count is wrong in the end. */ 6895 quotaref(ITOV(ip), freeblks->fb_quota); 6896 (void) chkdq(ip, -datablocks, NOCRED, 0); 6897 #endif 6898 freeblks->fb_chkcnt = -datablocks; 6899 UFS_LOCK(ump); 6900 fs->fs_pendingblocks += datablocks; 6901 UFS_UNLOCK(ump); 6902 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6903 /* 6904 * Push the zero'ed inode to to its disk buffer so that we are free 6905 * to delete its dependencies below. Once the dependencies are gone 6906 * the buffer can be safely released. 6907 */ 6908 if (ump->um_fstype == UFS1) { 6909 dp1 = ((struct ufs1_dinode *)bp->b_data + 6910 ino_to_fsbo(fs, ip->i_number)); 6911 ip->i_din1->di_freelink = dp1->di_freelink; 6912 *dp1 = *ip->i_din1; 6913 } else { 6914 dp2 = ((struct ufs2_dinode *)bp->b_data + 6915 ino_to_fsbo(fs, ip->i_number)); 6916 ip->i_din2->di_freelink = dp2->di_freelink; 6917 *dp2 = *ip->i_din2; 6918 } 6919 /* 6920 * Find and eliminate any inode dependencies. 6921 */ 6922 ACQUIRE_LOCK(ump); 6923 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6924 if ((inodedep->id_state & IOSTARTED) != 0) 6925 panic("softdep_setup_freeblocks: inode busy"); 6926 /* 6927 * Add the freeblks structure to the list of operations that 6928 * must await the zero'ed inode being written to disk. If we 6929 * still have a bitmap dependency (delay == 0), then the inode 6930 * has never been written to disk, so we can process the 6931 * freeblks below once we have deleted the dependencies. 6932 */ 6933 delay = (inodedep->id_state & DEPCOMPLETE); 6934 if (delay) 6935 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6936 else 6937 freeblks->fb_state |= COMPLETE; 6938 /* 6939 * Because the file length has been truncated to zero, any 6940 * pending block allocation dependency structures associated 6941 * with this inode are obsolete and can simply be de-allocated. 6942 * We must first merge the two dependency lists to get rid of 6943 * any duplicate freefrag structures, then purge the merged list. 6944 * If we still have a bitmap dependency, then the inode has never 6945 * been written to disk, so we can free any fragments without delay. 6946 */ 6947 if (flags & IO_NORMAL) { 6948 merge_inode_lists(&inodedep->id_newinoupdt, 6949 &inodedep->id_inoupdt); 6950 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 6951 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6952 freeblks); 6953 } 6954 if (flags & IO_EXT) { 6955 merge_inode_lists(&inodedep->id_newextupdt, 6956 &inodedep->id_extupdt); 6957 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6958 cancel_allocdirect(&inodedep->id_extupdt, adp, 6959 freeblks); 6960 } 6961 FREE_LOCK(ump); 6962 bdwrite(bp); 6963 trunc_dependencies(ip, freeblks, -1, 0, flags); 6964 ACQUIRE_LOCK(ump); 6965 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6966 (void) free_inodedep(inodedep); 6967 freeblks->fb_state |= DEPCOMPLETE; 6968 /* 6969 * If the inode with zeroed block pointers is now on disk 6970 * we can start freeing blocks. 6971 */ 6972 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6973 freeblks->fb_state |= INPROGRESS; 6974 else 6975 freeblks = NULL; 6976 FREE_LOCK(ump); 6977 if (freeblks) 6978 handle_workitem_freeblocks(freeblks, 0); 6979 trunc_pages(ip, length, extblocks, flags); 6980 } 6981 6982 /* 6983 * Eliminate pages from the page cache that back parts of this inode and 6984 * adjust the vnode pager's idea of our size. This prevents stale data 6985 * from hanging around in the page cache. 6986 */ 6987 static void 6988 trunc_pages(ip, length, extblocks, flags) 6989 struct inode *ip; 6990 off_t length; 6991 ufs2_daddr_t extblocks; 6992 int flags; 6993 { 6994 struct vnode *vp; 6995 struct fs *fs; 6996 ufs_lbn_t lbn; 6997 off_t end, extend; 6998 6999 vp = ITOV(ip); 7000 fs = ITOFS(ip); 7001 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7002 if ((flags & IO_EXT) != 0) 7003 vn_pages_remove(vp, extend, 0); 7004 if ((flags & IO_NORMAL) == 0) 7005 return; 7006 BO_LOCK(&vp->v_bufobj); 7007 drain_output(vp); 7008 BO_UNLOCK(&vp->v_bufobj); 7009 /* 7010 * The vnode pager eliminates file pages we eliminate indirects 7011 * below. 7012 */ 7013 vnode_pager_setsize(vp, length); 7014 /* 7015 * Calculate the end based on the last indirect we want to keep. If 7016 * the block extends into indirects we can just use the negative of 7017 * its lbn. Doubles and triples exist at lower numbers so we must 7018 * be careful not to remove those, if they exist. double and triple 7019 * indirect lbns do not overlap with others so it is not important 7020 * to verify how many levels are required. 7021 */ 7022 lbn = lblkno(fs, length); 7023 if (lbn >= UFS_NDADDR) { 7024 /* Calculate the virtual lbn of the triple indirect. */ 7025 lbn = -lbn - (UFS_NIADDR - 1); 7026 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7027 } else 7028 end = extend; 7029 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7030 } 7031 7032 /* 7033 * See if the buf bp is in the range eliminated by truncation. 7034 */ 7035 static int 7036 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7037 struct buf *bp; 7038 int *blkoffp; 7039 ufs_lbn_t lastlbn; 7040 int lastoff; 7041 int flags; 7042 { 7043 ufs_lbn_t lbn; 7044 7045 *blkoffp = 0; 7046 /* Only match ext/normal blocks as appropriate. */ 7047 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7048 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7049 return (0); 7050 /* ALTDATA is always a full truncation. */ 7051 if ((bp->b_xflags & BX_ALTDATA) != 0) 7052 return (1); 7053 /* -1 is full truncation. */ 7054 if (lastlbn == -1) 7055 return (1); 7056 /* 7057 * If this is a partial truncate we only want those 7058 * blocks and indirect blocks that cover the range 7059 * we're after. 7060 */ 7061 lbn = bp->b_lblkno; 7062 if (lbn < 0) 7063 lbn = -(lbn + lbn_level(lbn)); 7064 if (lbn < lastlbn) 7065 return (0); 7066 /* Here we only truncate lblkno if it's partial. */ 7067 if (lbn == lastlbn) { 7068 if (lastoff == 0) 7069 return (0); 7070 *blkoffp = lastoff; 7071 } 7072 return (1); 7073 } 7074 7075 /* 7076 * Eliminate any dependencies that exist in memory beyond lblkno:off 7077 */ 7078 static void 7079 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7080 struct inode *ip; 7081 struct freeblks *freeblks; 7082 ufs_lbn_t lastlbn; 7083 int lastoff; 7084 int flags; 7085 { 7086 struct bufobj *bo; 7087 struct vnode *vp; 7088 struct buf *bp; 7089 int blkoff; 7090 7091 /* 7092 * We must wait for any I/O in progress to finish so that 7093 * all potential buffers on the dirty list will be visible. 7094 * Once they are all there, walk the list and get rid of 7095 * any dependencies. 7096 */ 7097 vp = ITOV(ip); 7098 bo = &vp->v_bufobj; 7099 BO_LOCK(bo); 7100 drain_output(vp); 7101 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7102 bp->b_vflags &= ~BV_SCANNED; 7103 restart: 7104 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7105 if (bp->b_vflags & BV_SCANNED) 7106 continue; 7107 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7108 bp->b_vflags |= BV_SCANNED; 7109 continue; 7110 } 7111 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7112 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7113 goto restart; 7114 BO_UNLOCK(bo); 7115 if (deallocate_dependencies(bp, freeblks, blkoff)) 7116 bqrelse(bp); 7117 else 7118 brelse(bp); 7119 BO_LOCK(bo); 7120 goto restart; 7121 } 7122 /* 7123 * Now do the work of vtruncbuf while also matching indirect blocks. 7124 */ 7125 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7126 bp->b_vflags &= ~BV_SCANNED; 7127 cleanrestart: 7128 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7129 if (bp->b_vflags & BV_SCANNED) 7130 continue; 7131 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7132 bp->b_vflags |= BV_SCANNED; 7133 continue; 7134 } 7135 if (BUF_LOCK(bp, 7136 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7137 BO_LOCKPTR(bo)) == ENOLCK) { 7138 BO_LOCK(bo); 7139 goto cleanrestart; 7140 } 7141 bp->b_vflags |= BV_SCANNED; 7142 bremfree(bp); 7143 if (blkoff != 0) { 7144 allocbuf(bp, blkoff); 7145 bqrelse(bp); 7146 } else { 7147 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7148 brelse(bp); 7149 } 7150 BO_LOCK(bo); 7151 goto cleanrestart; 7152 } 7153 drain_output(vp); 7154 BO_UNLOCK(bo); 7155 } 7156 7157 static int 7158 cancel_pagedep(pagedep, freeblks, blkoff) 7159 struct pagedep *pagedep; 7160 struct freeblks *freeblks; 7161 int blkoff; 7162 { 7163 struct jremref *jremref; 7164 struct jmvref *jmvref; 7165 struct dirrem *dirrem, *tmp; 7166 int i; 7167 7168 /* 7169 * Copy any directory remove dependencies to the list 7170 * to be processed after the freeblks proceeds. If 7171 * directory entry never made it to disk they 7172 * can be dumped directly onto the work list. 7173 */ 7174 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7175 /* Skip this directory removal if it is intended to remain. */ 7176 if (dirrem->dm_offset < blkoff) 7177 continue; 7178 /* 7179 * If there are any dirrems we wait for the journal write 7180 * to complete and then restart the buf scan as the lock 7181 * has been dropped. 7182 */ 7183 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7184 jwait(&jremref->jr_list, MNT_WAIT); 7185 return (ERESTART); 7186 } 7187 LIST_REMOVE(dirrem, dm_next); 7188 dirrem->dm_dirinum = pagedep->pd_ino; 7189 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7190 } 7191 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7192 jwait(&jmvref->jm_list, MNT_WAIT); 7193 return (ERESTART); 7194 } 7195 /* 7196 * When we're partially truncating a pagedep we just want to flush 7197 * journal entries and return. There can not be any adds in the 7198 * truncated portion of the directory and newblk must remain if 7199 * part of the block remains. 7200 */ 7201 if (blkoff != 0) { 7202 struct diradd *dap; 7203 7204 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7205 if (dap->da_offset > blkoff) 7206 panic("cancel_pagedep: diradd %p off %d > %d", 7207 dap, dap->da_offset, blkoff); 7208 for (i = 0; i < DAHASHSZ; i++) 7209 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7210 if (dap->da_offset > blkoff) 7211 panic("cancel_pagedep: diradd %p off %d > %d", 7212 dap, dap->da_offset, blkoff); 7213 return (0); 7214 } 7215 /* 7216 * There should be no directory add dependencies present 7217 * as the directory could not be truncated until all 7218 * children were removed. 7219 */ 7220 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7221 ("deallocate_dependencies: pendinghd != NULL")); 7222 for (i = 0; i < DAHASHSZ; i++) 7223 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7224 ("deallocate_dependencies: diraddhd != NULL")); 7225 if ((pagedep->pd_state & NEWBLOCK) != 0) 7226 free_newdirblk(pagedep->pd_newdirblk); 7227 if (free_pagedep(pagedep) == 0) 7228 panic("Failed to free pagedep %p", pagedep); 7229 return (0); 7230 } 7231 7232 /* 7233 * Reclaim any dependency structures from a buffer that is about to 7234 * be reallocated to a new vnode. The buffer must be locked, thus, 7235 * no I/O completion operations can occur while we are manipulating 7236 * its associated dependencies. The mutex is held so that other I/O's 7237 * associated with related dependencies do not occur. 7238 */ 7239 static int 7240 deallocate_dependencies(bp, freeblks, off) 7241 struct buf *bp; 7242 struct freeblks *freeblks; 7243 int off; 7244 { 7245 struct indirdep *indirdep; 7246 struct pagedep *pagedep; 7247 struct worklist *wk, *wkn; 7248 struct ufsmount *ump; 7249 7250 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 7251 goto done; 7252 ump = VFSTOUFS(wk->wk_mp); 7253 ACQUIRE_LOCK(ump); 7254 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7255 switch (wk->wk_type) { 7256 case D_INDIRDEP: 7257 indirdep = WK_INDIRDEP(wk); 7258 if (bp->b_lblkno >= 0 || 7259 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7260 panic("deallocate_dependencies: not indir"); 7261 cancel_indirdep(indirdep, bp, freeblks); 7262 continue; 7263 7264 case D_PAGEDEP: 7265 pagedep = WK_PAGEDEP(wk); 7266 if (cancel_pagedep(pagedep, freeblks, off)) { 7267 FREE_LOCK(ump); 7268 return (ERESTART); 7269 } 7270 continue; 7271 7272 case D_ALLOCINDIR: 7273 /* 7274 * Simply remove the allocindir, we'll find it via 7275 * the indirdep where we can clear pointers if 7276 * needed. 7277 */ 7278 WORKLIST_REMOVE(wk); 7279 continue; 7280 7281 case D_FREEWORK: 7282 /* 7283 * A truncation is waiting for the zero'd pointers 7284 * to be written. It can be freed when the freeblks 7285 * is journaled. 7286 */ 7287 WORKLIST_REMOVE(wk); 7288 wk->wk_state |= ONDEPLIST; 7289 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7290 break; 7291 7292 case D_ALLOCDIRECT: 7293 if (off != 0) 7294 continue; 7295 /* FALLTHROUGH */ 7296 default: 7297 panic("deallocate_dependencies: Unexpected type %s", 7298 TYPENAME(wk->wk_type)); 7299 /* NOTREACHED */ 7300 } 7301 } 7302 FREE_LOCK(ump); 7303 done: 7304 /* 7305 * Don't throw away this buf, we were partially truncating and 7306 * some deps may always remain. 7307 */ 7308 if (off) { 7309 allocbuf(bp, off); 7310 bp->b_vflags |= BV_SCANNED; 7311 return (EBUSY); 7312 } 7313 bp->b_flags |= B_INVAL | B_NOCACHE; 7314 7315 return (0); 7316 } 7317 7318 /* 7319 * An allocdirect is being canceled due to a truncate. We must make sure 7320 * the journal entry is released in concert with the blkfree that releases 7321 * the storage. Completed journal entries must not be released until the 7322 * space is no longer pointed to by the inode or in the bitmap. 7323 */ 7324 static void 7325 cancel_allocdirect(adphead, adp, freeblks) 7326 struct allocdirectlst *adphead; 7327 struct allocdirect *adp; 7328 struct freeblks *freeblks; 7329 { 7330 struct freework *freework; 7331 struct newblk *newblk; 7332 struct worklist *wk; 7333 7334 TAILQ_REMOVE(adphead, adp, ad_next); 7335 newblk = (struct newblk *)adp; 7336 freework = NULL; 7337 /* 7338 * Find the correct freework structure. 7339 */ 7340 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7341 if (wk->wk_type != D_FREEWORK) 7342 continue; 7343 freework = WK_FREEWORK(wk); 7344 if (freework->fw_blkno == newblk->nb_newblkno) 7345 break; 7346 } 7347 if (freework == NULL) 7348 panic("cancel_allocdirect: Freework not found"); 7349 /* 7350 * If a newblk exists at all we still have the journal entry that 7351 * initiated the allocation so we do not need to journal the free. 7352 */ 7353 cancel_jfreeblk(freeblks, freework->fw_blkno); 7354 /* 7355 * If the journal hasn't been written the jnewblk must be passed 7356 * to the call to ffs_blkfree that reclaims the space. We accomplish 7357 * this by linking the journal dependency into the freework to be 7358 * freed when freework_freeblock() is called. If the journal has 7359 * been written we can simply reclaim the journal space when the 7360 * freeblks work is complete. 7361 */ 7362 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7363 &freeblks->fb_jwork); 7364 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7365 } 7366 7367 7368 /* 7369 * Cancel a new block allocation. May be an indirect or direct block. We 7370 * remove it from various lists and return any journal record that needs to 7371 * be resolved by the caller. 7372 * 7373 * A special consideration is made for indirects which were never pointed 7374 * at on disk and will never be found once this block is released. 7375 */ 7376 static struct jnewblk * 7377 cancel_newblk(newblk, wk, wkhd) 7378 struct newblk *newblk; 7379 struct worklist *wk; 7380 struct workhead *wkhd; 7381 { 7382 struct jnewblk *jnewblk; 7383 7384 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7385 7386 newblk->nb_state |= GOINGAWAY; 7387 /* 7388 * Previously we traversed the completedhd on each indirdep 7389 * attached to this newblk to cancel them and gather journal 7390 * work. Since we need only the oldest journal segment and 7391 * the lowest point on the tree will always have the oldest 7392 * journal segment we are free to release the segments 7393 * of any subordinates and may leave the indirdep list to 7394 * indirdep_complete() when this newblk is freed. 7395 */ 7396 if (newblk->nb_state & ONDEPLIST) { 7397 newblk->nb_state &= ~ONDEPLIST; 7398 LIST_REMOVE(newblk, nb_deps); 7399 } 7400 if (newblk->nb_state & ONWORKLIST) 7401 WORKLIST_REMOVE(&newblk->nb_list); 7402 /* 7403 * If the journal entry hasn't been written we save a pointer to 7404 * the dependency that frees it until it is written or the 7405 * superseding operation completes. 7406 */ 7407 jnewblk = newblk->nb_jnewblk; 7408 if (jnewblk != NULL && wk != NULL) { 7409 newblk->nb_jnewblk = NULL; 7410 jnewblk->jn_dep = wk; 7411 } 7412 if (!LIST_EMPTY(&newblk->nb_jwork)) 7413 jwork_move(wkhd, &newblk->nb_jwork); 7414 /* 7415 * When truncating we must free the newdirblk early to remove 7416 * the pagedep from the hash before returning. 7417 */ 7418 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7419 free_newdirblk(WK_NEWDIRBLK(wk)); 7420 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7421 panic("cancel_newblk: extra newdirblk"); 7422 7423 return (jnewblk); 7424 } 7425 7426 /* 7427 * Schedule the freefrag associated with a newblk to be released once 7428 * the pointers are written and the previous block is no longer needed. 7429 */ 7430 static void 7431 newblk_freefrag(newblk) 7432 struct newblk *newblk; 7433 { 7434 struct freefrag *freefrag; 7435 7436 if (newblk->nb_freefrag == NULL) 7437 return; 7438 freefrag = newblk->nb_freefrag; 7439 newblk->nb_freefrag = NULL; 7440 freefrag->ff_state |= COMPLETE; 7441 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7442 add_to_worklist(&freefrag->ff_list, 0); 7443 } 7444 7445 /* 7446 * Free a newblk. Generate a new freefrag work request if appropriate. 7447 * This must be called after the inode pointer and any direct block pointers 7448 * are valid or fully removed via truncate or frag extension. 7449 */ 7450 static void 7451 free_newblk(newblk) 7452 struct newblk *newblk; 7453 { 7454 struct indirdep *indirdep; 7455 struct worklist *wk; 7456 7457 KASSERT(newblk->nb_jnewblk == NULL, 7458 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7459 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7460 ("free_newblk: unclaimed newblk")); 7461 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7462 newblk_freefrag(newblk); 7463 if (newblk->nb_state & ONDEPLIST) 7464 LIST_REMOVE(newblk, nb_deps); 7465 if (newblk->nb_state & ONWORKLIST) 7466 WORKLIST_REMOVE(&newblk->nb_list); 7467 LIST_REMOVE(newblk, nb_hash); 7468 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7469 free_newdirblk(WK_NEWDIRBLK(wk)); 7470 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7471 panic("free_newblk: extra newdirblk"); 7472 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7473 indirdep_complete(indirdep); 7474 handle_jwork(&newblk->nb_jwork); 7475 WORKITEM_FREE(newblk, D_NEWBLK); 7476 } 7477 7478 /* 7479 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7480 * This routine must be called with splbio interrupts blocked. 7481 */ 7482 static void 7483 free_newdirblk(newdirblk) 7484 struct newdirblk *newdirblk; 7485 { 7486 struct pagedep *pagedep; 7487 struct diradd *dap; 7488 struct worklist *wk; 7489 7490 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7491 WORKLIST_REMOVE(&newdirblk->db_list); 7492 /* 7493 * If the pagedep is still linked onto the directory buffer 7494 * dependency chain, then some of the entries on the 7495 * pd_pendinghd list may not be committed to disk yet. In 7496 * this case, we will simply clear the NEWBLOCK flag and 7497 * let the pd_pendinghd list be processed when the pagedep 7498 * is next written. If the pagedep is no longer on the buffer 7499 * dependency chain, then all the entries on the pd_pending 7500 * list are committed to disk and we can free them here. 7501 */ 7502 pagedep = newdirblk->db_pagedep; 7503 pagedep->pd_state &= ~NEWBLOCK; 7504 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7505 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7506 free_diradd(dap, NULL); 7507 /* 7508 * If no dependencies remain, the pagedep will be freed. 7509 */ 7510 free_pagedep(pagedep); 7511 } 7512 /* Should only ever be one item in the list. */ 7513 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7514 WORKLIST_REMOVE(wk); 7515 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7516 } 7517 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7518 } 7519 7520 /* 7521 * Prepare an inode to be freed. The actual free operation is not 7522 * done until the zero'ed inode has been written to disk. 7523 */ 7524 void 7525 softdep_freefile(pvp, ino, mode) 7526 struct vnode *pvp; 7527 ino_t ino; 7528 int mode; 7529 { 7530 struct inode *ip = VTOI(pvp); 7531 struct inodedep *inodedep; 7532 struct freefile *freefile; 7533 struct freeblks *freeblks; 7534 struct ufsmount *ump; 7535 7536 ump = ITOUMP(ip); 7537 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7538 ("softdep_freefile called on non-softdep filesystem")); 7539 /* 7540 * This sets up the inode de-allocation dependency. 7541 */ 7542 freefile = malloc(sizeof(struct freefile), 7543 M_FREEFILE, M_SOFTDEP_FLAGS); 7544 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7545 freefile->fx_mode = mode; 7546 freefile->fx_oldinum = ino; 7547 freefile->fx_devvp = ump->um_devvp; 7548 LIST_INIT(&freefile->fx_jwork); 7549 UFS_LOCK(ump); 7550 ump->um_fs->fs_pendinginodes += 1; 7551 UFS_UNLOCK(ump); 7552 7553 /* 7554 * If the inodedep does not exist, then the zero'ed inode has 7555 * been written to disk. If the allocated inode has never been 7556 * written to disk, then the on-disk inode is zero'ed. In either 7557 * case we can free the file immediately. If the journal was 7558 * canceled before being written the inode will never make it to 7559 * disk and we must send the canceled journal entrys to 7560 * ffs_freefile() to be cleared in conjunction with the bitmap. 7561 * Any blocks waiting on the inode to write can be safely freed 7562 * here as it will never been written. 7563 */ 7564 ACQUIRE_LOCK(ump); 7565 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7566 if (inodedep) { 7567 /* 7568 * Clear out freeblks that no longer need to reference 7569 * this inode. 7570 */ 7571 while ((freeblks = 7572 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7573 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7574 fb_next); 7575 freeblks->fb_state &= ~ONDEPLIST; 7576 } 7577 /* 7578 * Remove this inode from the unlinked list. 7579 */ 7580 if (inodedep->id_state & UNLINKED) { 7581 /* 7582 * Save the journal work to be freed with the bitmap 7583 * before we clear UNLINKED. Otherwise it can be lost 7584 * if the inode block is written. 7585 */ 7586 handle_bufwait(inodedep, &freefile->fx_jwork); 7587 clear_unlinked_inodedep(inodedep); 7588 /* 7589 * Re-acquire inodedep as we've dropped the 7590 * per-filesystem lock in clear_unlinked_inodedep(). 7591 */ 7592 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7593 } 7594 } 7595 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7596 FREE_LOCK(ump); 7597 handle_workitem_freefile(freefile); 7598 return; 7599 } 7600 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7601 inodedep->id_state |= GOINGAWAY; 7602 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7603 FREE_LOCK(ump); 7604 if (ip->i_number == ino) 7605 ip->i_flag |= IN_MODIFIED; 7606 } 7607 7608 /* 7609 * Check to see if an inode has never been written to disk. If 7610 * so free the inodedep and return success, otherwise return failure. 7611 * This routine must be called with splbio interrupts blocked. 7612 * 7613 * If we still have a bitmap dependency, then the inode has never 7614 * been written to disk. Drop the dependency as it is no longer 7615 * necessary since the inode is being deallocated. We set the 7616 * ALLCOMPLETE flags since the bitmap now properly shows that the 7617 * inode is not allocated. Even if the inode is actively being 7618 * written, it has been rolled back to its zero'ed state, so we 7619 * are ensured that a zero inode is what is on the disk. For short 7620 * lived files, this change will usually result in removing all the 7621 * dependencies from the inode so that it can be freed immediately. 7622 */ 7623 static int 7624 check_inode_unwritten(inodedep) 7625 struct inodedep *inodedep; 7626 { 7627 7628 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7629 7630 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7631 !LIST_EMPTY(&inodedep->id_dirremhd) || 7632 !LIST_EMPTY(&inodedep->id_pendinghd) || 7633 !LIST_EMPTY(&inodedep->id_bufwait) || 7634 !LIST_EMPTY(&inodedep->id_inowait) || 7635 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7636 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7637 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7638 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7639 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7640 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7641 inodedep->id_mkdiradd != NULL || 7642 inodedep->id_nlinkdelta != 0) 7643 return (0); 7644 /* 7645 * Another process might be in initiate_write_inodeblock_ufs[12] 7646 * trying to allocate memory without holding "Softdep Lock". 7647 */ 7648 if ((inodedep->id_state & IOSTARTED) != 0 && 7649 inodedep->id_savedino1 == NULL) 7650 return (0); 7651 7652 if (inodedep->id_state & ONDEPLIST) 7653 LIST_REMOVE(inodedep, id_deps); 7654 inodedep->id_state &= ~ONDEPLIST; 7655 inodedep->id_state |= ALLCOMPLETE; 7656 inodedep->id_bmsafemap = NULL; 7657 if (inodedep->id_state & ONWORKLIST) 7658 WORKLIST_REMOVE(&inodedep->id_list); 7659 if (inodedep->id_savedino1 != NULL) { 7660 free(inodedep->id_savedino1, M_SAVEDINO); 7661 inodedep->id_savedino1 = NULL; 7662 } 7663 if (free_inodedep(inodedep) == 0) 7664 panic("check_inode_unwritten: busy inode"); 7665 return (1); 7666 } 7667 7668 static int 7669 check_inodedep_free(inodedep) 7670 struct inodedep *inodedep; 7671 { 7672 7673 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7674 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7675 !LIST_EMPTY(&inodedep->id_dirremhd) || 7676 !LIST_EMPTY(&inodedep->id_pendinghd) || 7677 !LIST_EMPTY(&inodedep->id_bufwait) || 7678 !LIST_EMPTY(&inodedep->id_inowait) || 7679 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7680 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7681 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7682 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7683 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7684 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7685 inodedep->id_mkdiradd != NULL || 7686 inodedep->id_nlinkdelta != 0 || 7687 inodedep->id_savedino1 != NULL) 7688 return (0); 7689 return (1); 7690 } 7691 7692 /* 7693 * Try to free an inodedep structure. Return 1 if it could be freed. 7694 */ 7695 static int 7696 free_inodedep(inodedep) 7697 struct inodedep *inodedep; 7698 { 7699 7700 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7701 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7702 !check_inodedep_free(inodedep)) 7703 return (0); 7704 if (inodedep->id_state & ONDEPLIST) 7705 LIST_REMOVE(inodedep, id_deps); 7706 LIST_REMOVE(inodedep, id_hash); 7707 WORKITEM_FREE(inodedep, D_INODEDEP); 7708 return (1); 7709 } 7710 7711 /* 7712 * Free the block referenced by a freework structure. The parent freeblks 7713 * structure is released and completed when the final cg bitmap reaches 7714 * the disk. This routine may be freeing a jnewblk which never made it to 7715 * disk in which case we do not have to wait as the operation is undone 7716 * in memory immediately. 7717 */ 7718 static void 7719 freework_freeblock(freework) 7720 struct freework *freework; 7721 { 7722 struct freeblks *freeblks; 7723 struct jnewblk *jnewblk; 7724 struct ufsmount *ump; 7725 struct workhead wkhd; 7726 struct fs *fs; 7727 int bsize; 7728 int needj; 7729 7730 ump = VFSTOUFS(freework->fw_list.wk_mp); 7731 LOCK_OWNED(ump); 7732 /* 7733 * Handle partial truncate separately. 7734 */ 7735 if (freework->fw_indir) { 7736 complete_trunc_indir(freework); 7737 return; 7738 } 7739 freeblks = freework->fw_freeblks; 7740 fs = ump->um_fs; 7741 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7742 bsize = lfragtosize(fs, freework->fw_frags); 7743 LIST_INIT(&wkhd); 7744 /* 7745 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7746 * on the indirblk hashtable and prevents premature freeing. 7747 */ 7748 freework->fw_state |= DEPCOMPLETE; 7749 /* 7750 * SUJ needs to wait for the segment referencing freed indirect 7751 * blocks to expire so that we know the checker will not confuse 7752 * a re-allocated indirect block with its old contents. 7753 */ 7754 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7755 indirblk_insert(freework); 7756 /* 7757 * If we are canceling an existing jnewblk pass it to the free 7758 * routine, otherwise pass the freeblk which will ultimately 7759 * release the freeblks. If we're not journaling, we can just 7760 * free the freeblks immediately. 7761 */ 7762 jnewblk = freework->fw_jnewblk; 7763 if (jnewblk != NULL) { 7764 cancel_jnewblk(jnewblk, &wkhd); 7765 needj = 0; 7766 } else if (needj) { 7767 freework->fw_state |= DELAYEDFREE; 7768 freeblks->fb_cgwait++; 7769 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7770 } 7771 FREE_LOCK(ump); 7772 freeblks_free(ump, freeblks, btodb(bsize)); 7773 CTR4(KTR_SUJ, 7774 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7775 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7776 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7777 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7778 ACQUIRE_LOCK(ump); 7779 /* 7780 * The jnewblk will be discarded and the bits in the map never 7781 * made it to disk. We can immediately free the freeblk. 7782 */ 7783 if (needj == 0) 7784 handle_written_freework(freework); 7785 } 7786 7787 /* 7788 * We enqueue freework items that need processing back on the freeblks and 7789 * add the freeblks to the worklist. This makes it easier to find all work 7790 * required to flush a truncation in process_truncates(). 7791 */ 7792 static void 7793 freework_enqueue(freework) 7794 struct freework *freework; 7795 { 7796 struct freeblks *freeblks; 7797 7798 freeblks = freework->fw_freeblks; 7799 if ((freework->fw_state & INPROGRESS) == 0) 7800 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7801 if ((freeblks->fb_state & 7802 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7803 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7804 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7805 } 7806 7807 /* 7808 * Start, continue, or finish the process of freeing an indirect block tree. 7809 * The free operation may be paused at any point with fw_off containing the 7810 * offset to restart from. This enables us to implement some flow control 7811 * for large truncates which may fan out and generate a huge number of 7812 * dependencies. 7813 */ 7814 static void 7815 handle_workitem_indirblk(freework) 7816 struct freework *freework; 7817 { 7818 struct freeblks *freeblks; 7819 struct ufsmount *ump; 7820 struct fs *fs; 7821 7822 freeblks = freework->fw_freeblks; 7823 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7824 fs = ump->um_fs; 7825 if (freework->fw_state & DEPCOMPLETE) { 7826 handle_written_freework(freework); 7827 return; 7828 } 7829 if (freework->fw_off == NINDIR(fs)) { 7830 freework_freeblock(freework); 7831 return; 7832 } 7833 freework->fw_state |= INPROGRESS; 7834 FREE_LOCK(ump); 7835 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7836 freework->fw_lbn); 7837 ACQUIRE_LOCK(ump); 7838 } 7839 7840 /* 7841 * Called when a freework structure attached to a cg buf is written. The 7842 * ref on either the parent or the freeblks structure is released and 7843 * the freeblks is added back to the worklist if there is more work to do. 7844 */ 7845 static void 7846 handle_written_freework(freework) 7847 struct freework *freework; 7848 { 7849 struct freeblks *freeblks; 7850 struct freework *parent; 7851 7852 freeblks = freework->fw_freeblks; 7853 parent = freework->fw_parent; 7854 if (freework->fw_state & DELAYEDFREE) 7855 freeblks->fb_cgwait--; 7856 freework->fw_state |= COMPLETE; 7857 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7858 WORKITEM_FREE(freework, D_FREEWORK); 7859 if (parent) { 7860 if (--parent->fw_ref == 0) 7861 freework_enqueue(parent); 7862 return; 7863 } 7864 if (--freeblks->fb_ref != 0) 7865 return; 7866 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7867 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7868 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7869 } 7870 7871 /* 7872 * This workitem routine performs the block de-allocation. 7873 * The workitem is added to the pending list after the updated 7874 * inode block has been written to disk. As mentioned above, 7875 * checks regarding the number of blocks de-allocated (compared 7876 * to the number of blocks allocated for the file) are also 7877 * performed in this function. 7878 */ 7879 static int 7880 handle_workitem_freeblocks(freeblks, flags) 7881 struct freeblks *freeblks; 7882 int flags; 7883 { 7884 struct freework *freework; 7885 struct newblk *newblk; 7886 struct allocindir *aip; 7887 struct ufsmount *ump; 7888 struct worklist *wk; 7889 7890 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7891 ("handle_workitem_freeblocks: Journal entries not written.")); 7892 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7893 ACQUIRE_LOCK(ump); 7894 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7895 WORKLIST_REMOVE(wk); 7896 switch (wk->wk_type) { 7897 case D_DIRREM: 7898 wk->wk_state |= COMPLETE; 7899 add_to_worklist(wk, 0); 7900 continue; 7901 7902 case D_ALLOCDIRECT: 7903 free_newblk(WK_NEWBLK(wk)); 7904 continue; 7905 7906 case D_ALLOCINDIR: 7907 aip = WK_ALLOCINDIR(wk); 7908 freework = NULL; 7909 if (aip->ai_state & DELAYEDFREE) { 7910 FREE_LOCK(ump); 7911 freework = newfreework(ump, freeblks, NULL, 7912 aip->ai_lbn, aip->ai_newblkno, 7913 ump->um_fs->fs_frag, 0, 0); 7914 ACQUIRE_LOCK(ump); 7915 } 7916 newblk = WK_NEWBLK(wk); 7917 if (newblk->nb_jnewblk) { 7918 freework->fw_jnewblk = newblk->nb_jnewblk; 7919 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7920 newblk->nb_jnewblk = NULL; 7921 } 7922 free_newblk(newblk); 7923 continue; 7924 7925 case D_FREEWORK: 7926 freework = WK_FREEWORK(wk); 7927 if (freework->fw_lbn <= -UFS_NDADDR) 7928 handle_workitem_indirblk(freework); 7929 else 7930 freework_freeblock(freework); 7931 continue; 7932 default: 7933 panic("handle_workitem_freeblocks: Unknown type %s", 7934 TYPENAME(wk->wk_type)); 7935 } 7936 } 7937 if (freeblks->fb_ref != 0) { 7938 freeblks->fb_state &= ~INPROGRESS; 7939 wake_worklist(&freeblks->fb_list); 7940 freeblks = NULL; 7941 } 7942 FREE_LOCK(ump); 7943 if (freeblks) 7944 return handle_complete_freeblocks(freeblks, flags); 7945 return (0); 7946 } 7947 7948 /* 7949 * Handle completion of block free via truncate. This allows fs_pending 7950 * to track the actual free block count more closely than if we only updated 7951 * it at the end. We must be careful to handle cases where the block count 7952 * on free was incorrect. 7953 */ 7954 static void 7955 freeblks_free(ump, freeblks, blocks) 7956 struct ufsmount *ump; 7957 struct freeblks *freeblks; 7958 int blocks; 7959 { 7960 struct fs *fs; 7961 ufs2_daddr_t remain; 7962 7963 UFS_LOCK(ump); 7964 remain = -freeblks->fb_chkcnt; 7965 freeblks->fb_chkcnt += blocks; 7966 if (remain > 0) { 7967 if (remain < blocks) 7968 blocks = remain; 7969 fs = ump->um_fs; 7970 fs->fs_pendingblocks -= blocks; 7971 } 7972 UFS_UNLOCK(ump); 7973 } 7974 7975 /* 7976 * Once all of the freework workitems are complete we can retire the 7977 * freeblocks dependency and any journal work awaiting completion. This 7978 * can not be called until all other dependencies are stable on disk. 7979 */ 7980 static int 7981 handle_complete_freeblocks(freeblks, flags) 7982 struct freeblks *freeblks; 7983 int flags; 7984 { 7985 struct inodedep *inodedep; 7986 struct inode *ip; 7987 struct vnode *vp; 7988 struct fs *fs; 7989 struct ufsmount *ump; 7990 ufs2_daddr_t spare; 7991 7992 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7993 fs = ump->um_fs; 7994 flags = LK_EXCLUSIVE | flags; 7995 spare = freeblks->fb_chkcnt; 7996 7997 /* 7998 * If we did not release the expected number of blocks we may have 7999 * to adjust the inode block count here. Only do so if it wasn't 8000 * a truncation to zero and the modrev still matches. 8001 */ 8002 if (spare && freeblks->fb_len != 0) { 8003 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8004 flags, &vp, FFSV_FORCEINSMQ) != 0) 8005 return (EBUSY); 8006 ip = VTOI(vp); 8007 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8008 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8009 ip->i_flag |= IN_CHANGE; 8010 /* 8011 * We must wait so this happens before the 8012 * journal is reclaimed. 8013 */ 8014 ffs_update(vp, 1); 8015 } 8016 vput(vp); 8017 } 8018 if (spare < 0) { 8019 UFS_LOCK(ump); 8020 fs->fs_pendingblocks += spare; 8021 UFS_UNLOCK(ump); 8022 } 8023 #ifdef QUOTA 8024 /* Handle spare. */ 8025 if (spare) 8026 quotaadj(freeblks->fb_quota, ump, -spare); 8027 quotarele(freeblks->fb_quota); 8028 #endif 8029 ACQUIRE_LOCK(ump); 8030 if (freeblks->fb_state & ONDEPLIST) { 8031 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8032 0, &inodedep); 8033 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8034 freeblks->fb_state &= ~ONDEPLIST; 8035 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8036 free_inodedep(inodedep); 8037 } 8038 /* 8039 * All of the freeblock deps must be complete prior to this call 8040 * so it's now safe to complete earlier outstanding journal entries. 8041 */ 8042 handle_jwork(&freeblks->fb_jwork); 8043 WORKITEM_FREE(freeblks, D_FREEBLKS); 8044 FREE_LOCK(ump); 8045 return (0); 8046 } 8047 8048 /* 8049 * Release blocks associated with the freeblks and stored in the indirect 8050 * block dbn. If level is greater than SINGLE, the block is an indirect block 8051 * and recursive calls to indirtrunc must be used to cleanse other indirect 8052 * blocks. 8053 * 8054 * This handles partial and complete truncation of blocks. Partial is noted 8055 * with goingaway == 0. In this case the freework is completed after the 8056 * zero'd indirects are written to disk. For full truncation the freework 8057 * is completed after the block is freed. 8058 */ 8059 static void 8060 indir_trunc(freework, dbn, lbn) 8061 struct freework *freework; 8062 ufs2_daddr_t dbn; 8063 ufs_lbn_t lbn; 8064 { 8065 struct freework *nfreework; 8066 struct workhead wkhd; 8067 struct freeblks *freeblks; 8068 struct buf *bp; 8069 struct fs *fs; 8070 struct indirdep *indirdep; 8071 struct ufsmount *ump; 8072 ufs1_daddr_t *bap1; 8073 ufs2_daddr_t nb, nnb, *bap2; 8074 ufs_lbn_t lbnadd, nlbn; 8075 int i, nblocks, ufs1fmt; 8076 int freedblocks; 8077 int goingaway; 8078 int freedeps; 8079 int needj; 8080 int level; 8081 int cnt; 8082 8083 freeblks = freework->fw_freeblks; 8084 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8085 fs = ump->um_fs; 8086 /* 8087 * Get buffer of block pointers to be freed. There are three cases: 8088 * 8089 * 1) Partial truncate caches the indirdep pointer in the freework 8090 * which provides us a back copy to the save bp which holds the 8091 * pointers we want to clear. When this completes the zero 8092 * pointers are written to the real copy. 8093 * 2) The indirect is being completely truncated, cancel_indirdep() 8094 * eliminated the real copy and placed the indirdep on the saved 8095 * copy. The indirdep and buf are discarded when this completes. 8096 * 3) The indirect was not in memory, we read a copy off of the disk 8097 * using the devvp and drop and invalidate the buffer when we're 8098 * done. 8099 */ 8100 goingaway = 1; 8101 indirdep = NULL; 8102 if (freework->fw_indir != NULL) { 8103 goingaway = 0; 8104 indirdep = freework->fw_indir; 8105 bp = indirdep->ir_savebp; 8106 if (bp == NULL || bp->b_blkno != dbn) 8107 panic("indir_trunc: Bad saved buf %p blkno %jd", 8108 bp, (intmax_t)dbn); 8109 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8110 /* 8111 * The lock prevents the buf dep list from changing and 8112 * indirects on devvp should only ever have one dependency. 8113 */ 8114 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8115 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8116 panic("indir_trunc: Bad indirdep %p from buf %p", 8117 indirdep, bp); 8118 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8119 NOCRED, &bp) != 0) { 8120 brelse(bp); 8121 return; 8122 } 8123 ACQUIRE_LOCK(ump); 8124 /* Protects against a race with complete_trunc_indir(). */ 8125 freework->fw_state &= ~INPROGRESS; 8126 /* 8127 * If we have an indirdep we need to enforce the truncation order 8128 * and discard it when it is complete. 8129 */ 8130 if (indirdep) { 8131 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8132 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8133 /* 8134 * Add the complete truncate to the list on the 8135 * indirdep to enforce in-order processing. 8136 */ 8137 if (freework->fw_indir == NULL) 8138 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8139 freework, fw_next); 8140 FREE_LOCK(ump); 8141 return; 8142 } 8143 /* 8144 * If we're goingaway, free the indirdep. Otherwise it will 8145 * linger until the write completes. 8146 */ 8147 if (goingaway) 8148 free_indirdep(indirdep); 8149 } 8150 FREE_LOCK(ump); 8151 /* Initialize pointers depending on block size. */ 8152 if (ump->um_fstype == UFS1) { 8153 bap1 = (ufs1_daddr_t *)bp->b_data; 8154 nb = bap1[freework->fw_off]; 8155 ufs1fmt = 1; 8156 bap2 = NULL; 8157 } else { 8158 bap2 = (ufs2_daddr_t *)bp->b_data; 8159 nb = bap2[freework->fw_off]; 8160 ufs1fmt = 0; 8161 bap1 = NULL; 8162 } 8163 level = lbn_level(lbn); 8164 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8165 lbnadd = lbn_offset(fs, level); 8166 nblocks = btodb(fs->fs_bsize); 8167 nfreework = freework; 8168 freedeps = 0; 8169 cnt = 0; 8170 /* 8171 * Reclaim blocks. Traverses into nested indirect levels and 8172 * arranges for the current level to be freed when subordinates 8173 * are free when journaling. 8174 */ 8175 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8176 if (i != NINDIR(fs) - 1) { 8177 if (ufs1fmt) 8178 nnb = bap1[i+1]; 8179 else 8180 nnb = bap2[i+1]; 8181 } else 8182 nnb = 0; 8183 if (nb == 0) 8184 continue; 8185 cnt++; 8186 if (level != 0) { 8187 nlbn = (lbn + 1) - (i * lbnadd); 8188 if (needj != 0) { 8189 nfreework = newfreework(ump, freeblks, freework, 8190 nlbn, nb, fs->fs_frag, 0, 0); 8191 freedeps++; 8192 } 8193 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8194 } else { 8195 struct freedep *freedep; 8196 8197 /* 8198 * Attempt to aggregate freedep dependencies for 8199 * all blocks being released to the same CG. 8200 */ 8201 LIST_INIT(&wkhd); 8202 if (needj != 0 && 8203 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8204 freedep = newfreedep(freework); 8205 WORKLIST_INSERT_UNLOCKED(&wkhd, 8206 &freedep->fd_list); 8207 freedeps++; 8208 } 8209 CTR3(KTR_SUJ, 8210 "indir_trunc: ino %d blkno %jd size %ld", 8211 freeblks->fb_inum, nb, fs->fs_bsize); 8212 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8213 fs->fs_bsize, freeblks->fb_inum, 8214 freeblks->fb_vtype, &wkhd); 8215 } 8216 } 8217 if (goingaway) { 8218 bp->b_flags |= B_INVAL | B_NOCACHE; 8219 brelse(bp); 8220 } 8221 freedblocks = 0; 8222 if (level == 0) 8223 freedblocks = (nblocks * cnt); 8224 if (needj == 0) 8225 freedblocks += nblocks; 8226 freeblks_free(ump, freeblks, freedblocks); 8227 /* 8228 * If we are journaling set up the ref counts and offset so this 8229 * indirect can be completed when its children are free. 8230 */ 8231 if (needj) { 8232 ACQUIRE_LOCK(ump); 8233 freework->fw_off = i; 8234 freework->fw_ref += freedeps; 8235 freework->fw_ref -= NINDIR(fs) + 1; 8236 if (level == 0) 8237 freeblks->fb_cgwait += freedeps; 8238 if (freework->fw_ref == 0) 8239 freework_freeblock(freework); 8240 FREE_LOCK(ump); 8241 return; 8242 } 8243 /* 8244 * If we're not journaling we can free the indirect now. 8245 */ 8246 dbn = dbtofsb(fs, dbn); 8247 CTR3(KTR_SUJ, 8248 "indir_trunc 2: ino %d blkno %jd size %ld", 8249 freeblks->fb_inum, dbn, fs->fs_bsize); 8250 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8251 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8252 /* Non SUJ softdep does single-threaded truncations. */ 8253 if (freework->fw_blkno == dbn) { 8254 freework->fw_state |= ALLCOMPLETE; 8255 ACQUIRE_LOCK(ump); 8256 handle_written_freework(freework); 8257 FREE_LOCK(ump); 8258 } 8259 return; 8260 } 8261 8262 /* 8263 * Cancel an allocindir when it is removed via truncation. When bp is not 8264 * NULL the indirect never appeared on disk and is scheduled to be freed 8265 * independently of the indir so we can more easily track journal work. 8266 */ 8267 static void 8268 cancel_allocindir(aip, bp, freeblks, trunc) 8269 struct allocindir *aip; 8270 struct buf *bp; 8271 struct freeblks *freeblks; 8272 int trunc; 8273 { 8274 struct indirdep *indirdep; 8275 struct freefrag *freefrag; 8276 struct newblk *newblk; 8277 8278 newblk = (struct newblk *)aip; 8279 LIST_REMOVE(aip, ai_next); 8280 /* 8281 * We must eliminate the pointer in bp if it must be freed on its 8282 * own due to partial truncate or pending journal work. 8283 */ 8284 if (bp && (trunc || newblk->nb_jnewblk)) { 8285 /* 8286 * Clear the pointer and mark the aip to be freed 8287 * directly if it never existed on disk. 8288 */ 8289 aip->ai_state |= DELAYEDFREE; 8290 indirdep = aip->ai_indirdep; 8291 if (indirdep->ir_state & UFS1FMT) 8292 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8293 else 8294 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8295 } 8296 /* 8297 * When truncating the previous pointer will be freed via 8298 * savedbp. Eliminate the freefrag which would dup free. 8299 */ 8300 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8301 newblk->nb_freefrag = NULL; 8302 if (freefrag->ff_jdep) 8303 cancel_jfreefrag( 8304 WK_JFREEFRAG(freefrag->ff_jdep)); 8305 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8306 WORKITEM_FREE(freefrag, D_FREEFRAG); 8307 } 8308 /* 8309 * If the journal hasn't been written the jnewblk must be passed 8310 * to the call to ffs_blkfree that reclaims the space. We accomplish 8311 * this by leaving the journal dependency on the newblk to be freed 8312 * when a freework is created in handle_workitem_freeblocks(). 8313 */ 8314 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8315 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8316 } 8317 8318 /* 8319 * Create the mkdir dependencies for . and .. in a new directory. Link them 8320 * in to a newdirblk so any subsequent additions are tracked properly. The 8321 * caller is responsible for adding the mkdir1 dependency to the journal 8322 * and updating id_mkdiradd. This function returns with the per-filesystem 8323 * lock held. 8324 */ 8325 static struct mkdir * 8326 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8327 struct diradd *dap; 8328 ino_t newinum; 8329 ino_t dinum; 8330 struct buf *newdirbp; 8331 struct mkdir **mkdirp; 8332 { 8333 struct newblk *newblk; 8334 struct pagedep *pagedep; 8335 struct inodedep *inodedep; 8336 struct newdirblk *newdirblk; 8337 struct mkdir *mkdir1, *mkdir2; 8338 struct worklist *wk; 8339 struct jaddref *jaddref; 8340 struct ufsmount *ump; 8341 struct mount *mp; 8342 8343 mp = dap->da_list.wk_mp; 8344 ump = VFSTOUFS(mp); 8345 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8346 M_SOFTDEP_FLAGS); 8347 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8348 LIST_INIT(&newdirblk->db_mkdir); 8349 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8350 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8351 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8352 mkdir1->md_diradd = dap; 8353 mkdir1->md_jaddref = NULL; 8354 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8355 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8356 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8357 mkdir2->md_diradd = dap; 8358 mkdir2->md_jaddref = NULL; 8359 if (MOUNTEDSUJ(mp) == 0) { 8360 mkdir1->md_state |= DEPCOMPLETE; 8361 mkdir2->md_state |= DEPCOMPLETE; 8362 } 8363 /* 8364 * Dependency on "." and ".." being written to disk. 8365 */ 8366 mkdir1->md_buf = newdirbp; 8367 ACQUIRE_LOCK(VFSTOUFS(mp)); 8368 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8369 /* 8370 * We must link the pagedep, allocdirect, and newdirblk for 8371 * the initial file page so the pointer to the new directory 8372 * is not written until the directory contents are live and 8373 * any subsequent additions are not marked live until the 8374 * block is reachable via the inode. 8375 */ 8376 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8377 panic("setup_newdir: lost pagedep"); 8378 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8379 if (wk->wk_type == D_ALLOCDIRECT) 8380 break; 8381 if (wk == NULL) 8382 panic("setup_newdir: lost allocdirect"); 8383 if (pagedep->pd_state & NEWBLOCK) 8384 panic("setup_newdir: NEWBLOCK already set"); 8385 newblk = WK_NEWBLK(wk); 8386 pagedep->pd_state |= NEWBLOCK; 8387 pagedep->pd_newdirblk = newdirblk; 8388 newdirblk->db_pagedep = pagedep; 8389 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8390 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8391 /* 8392 * Look up the inodedep for the parent directory so that we 8393 * can link mkdir2 into the pending dotdot jaddref or 8394 * the inode write if there is none. If the inode is 8395 * ALLCOMPLETE and no jaddref is present all dependencies have 8396 * been satisfied and mkdir2 can be freed. 8397 */ 8398 inodedep_lookup(mp, dinum, 0, &inodedep); 8399 if (MOUNTEDSUJ(mp)) { 8400 if (inodedep == NULL) 8401 panic("setup_newdir: Lost parent."); 8402 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8403 inoreflst); 8404 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8405 (jaddref->ja_state & MKDIR_PARENT), 8406 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8407 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8408 mkdir2->md_jaddref = jaddref; 8409 jaddref->ja_mkdir = mkdir2; 8410 } else if (inodedep == NULL || 8411 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8412 dap->da_state &= ~MKDIR_PARENT; 8413 WORKITEM_FREE(mkdir2, D_MKDIR); 8414 mkdir2 = NULL; 8415 } else { 8416 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8417 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8418 } 8419 *mkdirp = mkdir2; 8420 8421 return (mkdir1); 8422 } 8423 8424 /* 8425 * Directory entry addition dependencies. 8426 * 8427 * When adding a new directory entry, the inode (with its incremented link 8428 * count) must be written to disk before the directory entry's pointer to it. 8429 * Also, if the inode is newly allocated, the corresponding freemap must be 8430 * updated (on disk) before the directory entry's pointer. These requirements 8431 * are met via undo/redo on the directory entry's pointer, which consists 8432 * simply of the inode number. 8433 * 8434 * As directory entries are added and deleted, the free space within a 8435 * directory block can become fragmented. The ufs filesystem will compact 8436 * a fragmented directory block to make space for a new entry. When this 8437 * occurs, the offsets of previously added entries change. Any "diradd" 8438 * dependency structures corresponding to these entries must be updated with 8439 * the new offsets. 8440 */ 8441 8442 /* 8443 * This routine is called after the in-memory inode's link 8444 * count has been incremented, but before the directory entry's 8445 * pointer to the inode has been set. 8446 */ 8447 int 8448 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8449 struct buf *bp; /* buffer containing directory block */ 8450 struct inode *dp; /* inode for directory */ 8451 off_t diroffset; /* offset of new entry in directory */ 8452 ino_t newinum; /* inode referenced by new directory entry */ 8453 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8454 int isnewblk; /* entry is in a newly allocated block */ 8455 { 8456 int offset; /* offset of new entry within directory block */ 8457 ufs_lbn_t lbn; /* block in directory containing new entry */ 8458 struct fs *fs; 8459 struct diradd *dap; 8460 struct newblk *newblk; 8461 struct pagedep *pagedep; 8462 struct inodedep *inodedep; 8463 struct newdirblk *newdirblk; 8464 struct mkdir *mkdir1, *mkdir2; 8465 struct jaddref *jaddref; 8466 struct ufsmount *ump; 8467 struct mount *mp; 8468 int isindir; 8469 8470 mp = ITOVFS(dp); 8471 ump = VFSTOUFS(mp); 8472 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8473 ("softdep_setup_directory_add called on non-softdep filesystem")); 8474 /* 8475 * Whiteouts have no dependencies. 8476 */ 8477 if (newinum == UFS_WINO) { 8478 if (newdirbp != NULL) 8479 bdwrite(newdirbp); 8480 return (0); 8481 } 8482 jaddref = NULL; 8483 mkdir1 = mkdir2 = NULL; 8484 fs = ump->um_fs; 8485 lbn = lblkno(fs, diroffset); 8486 offset = blkoff(fs, diroffset); 8487 dap = malloc(sizeof(struct diradd), M_DIRADD, 8488 M_SOFTDEP_FLAGS|M_ZERO); 8489 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8490 dap->da_offset = offset; 8491 dap->da_newinum = newinum; 8492 dap->da_state = ATTACHED; 8493 LIST_INIT(&dap->da_jwork); 8494 isindir = bp->b_lblkno >= UFS_NDADDR; 8495 newdirblk = NULL; 8496 if (isnewblk && 8497 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8498 newdirblk = malloc(sizeof(struct newdirblk), 8499 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8500 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8501 LIST_INIT(&newdirblk->db_mkdir); 8502 } 8503 /* 8504 * If we're creating a new directory setup the dependencies and set 8505 * the dap state to wait for them. Otherwise it's COMPLETE and 8506 * we can move on. 8507 */ 8508 if (newdirbp == NULL) { 8509 dap->da_state |= DEPCOMPLETE; 8510 ACQUIRE_LOCK(ump); 8511 } else { 8512 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8513 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8514 &mkdir2); 8515 } 8516 /* 8517 * Link into parent directory pagedep to await its being written. 8518 */ 8519 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8520 #ifdef DEBUG 8521 if (diradd_lookup(pagedep, offset) != NULL) 8522 panic("softdep_setup_directory_add: %p already at off %d\n", 8523 diradd_lookup(pagedep, offset), offset); 8524 #endif 8525 dap->da_pagedep = pagedep; 8526 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8527 da_pdlist); 8528 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8529 /* 8530 * If we're journaling, link the diradd into the jaddref so it 8531 * may be completed after the journal entry is written. Otherwise, 8532 * link the diradd into its inodedep. If the inode is not yet 8533 * written place it on the bufwait list, otherwise do the post-inode 8534 * write processing to put it on the id_pendinghd list. 8535 */ 8536 if (MOUNTEDSUJ(mp)) { 8537 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8538 inoreflst); 8539 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8540 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8541 jaddref->ja_diroff = diroffset; 8542 jaddref->ja_diradd = dap; 8543 add_to_journal(&jaddref->ja_list); 8544 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8545 diradd_inode_written(dap, inodedep); 8546 else 8547 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8548 /* 8549 * Add the journal entries for . and .. links now that the primary 8550 * link is written. 8551 */ 8552 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8553 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8554 inoreflst, if_deps); 8555 KASSERT(jaddref != NULL && 8556 jaddref->ja_ino == jaddref->ja_parent && 8557 (jaddref->ja_state & MKDIR_BODY), 8558 ("softdep_setup_directory_add: bad dot jaddref %p", 8559 jaddref)); 8560 mkdir1->md_jaddref = jaddref; 8561 jaddref->ja_mkdir = mkdir1; 8562 /* 8563 * It is important that the dotdot journal entry 8564 * is added prior to the dot entry since dot writes 8565 * both the dot and dotdot links. These both must 8566 * be added after the primary link for the journal 8567 * to remain consistent. 8568 */ 8569 add_to_journal(&mkdir2->md_jaddref->ja_list); 8570 add_to_journal(&jaddref->ja_list); 8571 } 8572 /* 8573 * If we are adding a new directory remember this diradd so that if 8574 * we rename it we can keep the dot and dotdot dependencies. If 8575 * we are adding a new name for an inode that has a mkdiradd we 8576 * must be in rename and we have to move the dot and dotdot 8577 * dependencies to this new name. The old name is being orphaned 8578 * soon. 8579 */ 8580 if (mkdir1 != NULL) { 8581 if (inodedep->id_mkdiradd != NULL) 8582 panic("softdep_setup_directory_add: Existing mkdir"); 8583 inodedep->id_mkdiradd = dap; 8584 } else if (inodedep->id_mkdiradd) 8585 merge_diradd(inodedep, dap); 8586 if (newdirblk != NULL) { 8587 /* 8588 * There is nothing to do if we are already tracking 8589 * this block. 8590 */ 8591 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8592 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8593 FREE_LOCK(ump); 8594 return (0); 8595 } 8596 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8597 == 0) 8598 panic("softdep_setup_directory_add: lost entry"); 8599 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8600 pagedep->pd_state |= NEWBLOCK; 8601 pagedep->pd_newdirblk = newdirblk; 8602 newdirblk->db_pagedep = pagedep; 8603 FREE_LOCK(ump); 8604 /* 8605 * If we extended into an indirect signal direnter to sync. 8606 */ 8607 if (isindir) 8608 return (1); 8609 return (0); 8610 } 8611 FREE_LOCK(ump); 8612 return (0); 8613 } 8614 8615 /* 8616 * This procedure is called to change the offset of a directory 8617 * entry when compacting a directory block which must be owned 8618 * exclusively by the caller. Note that the actual entry movement 8619 * must be done in this procedure to ensure that no I/O completions 8620 * occur while the move is in progress. 8621 */ 8622 void 8623 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8624 struct buf *bp; /* Buffer holding directory block. */ 8625 struct inode *dp; /* inode for directory */ 8626 caddr_t base; /* address of dp->i_offset */ 8627 caddr_t oldloc; /* address of old directory location */ 8628 caddr_t newloc; /* address of new directory location */ 8629 int entrysize; /* size of directory entry */ 8630 { 8631 int offset, oldoffset, newoffset; 8632 struct pagedep *pagedep; 8633 struct jmvref *jmvref; 8634 struct diradd *dap; 8635 struct direct *de; 8636 struct mount *mp; 8637 struct ufsmount *ump; 8638 ufs_lbn_t lbn; 8639 int flags; 8640 8641 mp = ITOVFS(dp); 8642 ump = VFSTOUFS(mp); 8643 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8644 ("softdep_change_directoryentry_offset called on " 8645 "non-softdep filesystem")); 8646 de = (struct direct *)oldloc; 8647 jmvref = NULL; 8648 flags = 0; 8649 /* 8650 * Moves are always journaled as it would be too complex to 8651 * determine if any affected adds or removes are present in the 8652 * journal. 8653 */ 8654 if (MOUNTEDSUJ(mp)) { 8655 flags = DEPALLOC; 8656 jmvref = newjmvref(dp, de->d_ino, 8657 dp->i_offset + (oldloc - base), 8658 dp->i_offset + (newloc - base)); 8659 } 8660 lbn = lblkno(ump->um_fs, dp->i_offset); 8661 offset = blkoff(ump->um_fs, dp->i_offset); 8662 oldoffset = offset + (oldloc - base); 8663 newoffset = offset + (newloc - base); 8664 ACQUIRE_LOCK(ump); 8665 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8666 goto done; 8667 dap = diradd_lookup(pagedep, oldoffset); 8668 if (dap) { 8669 dap->da_offset = newoffset; 8670 newoffset = DIRADDHASH(newoffset); 8671 oldoffset = DIRADDHASH(oldoffset); 8672 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8673 newoffset != oldoffset) { 8674 LIST_REMOVE(dap, da_pdlist); 8675 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8676 dap, da_pdlist); 8677 } 8678 } 8679 done: 8680 if (jmvref) { 8681 jmvref->jm_pagedep = pagedep; 8682 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8683 add_to_journal(&jmvref->jm_list); 8684 } 8685 bcopy(oldloc, newloc, entrysize); 8686 FREE_LOCK(ump); 8687 } 8688 8689 /* 8690 * Move the mkdir dependencies and journal work from one diradd to another 8691 * when renaming a directory. The new name must depend on the mkdir deps 8692 * completing as the old name did. Directories can only have one valid link 8693 * at a time so one must be canonical. 8694 */ 8695 static void 8696 merge_diradd(inodedep, newdap) 8697 struct inodedep *inodedep; 8698 struct diradd *newdap; 8699 { 8700 struct diradd *olddap; 8701 struct mkdir *mkdir, *nextmd; 8702 struct ufsmount *ump; 8703 short state; 8704 8705 olddap = inodedep->id_mkdiradd; 8706 inodedep->id_mkdiradd = newdap; 8707 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8708 newdap->da_state &= ~DEPCOMPLETE; 8709 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8710 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8711 mkdir = nextmd) { 8712 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8713 if (mkdir->md_diradd != olddap) 8714 continue; 8715 mkdir->md_diradd = newdap; 8716 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8717 newdap->da_state |= state; 8718 olddap->da_state &= ~state; 8719 if ((olddap->da_state & 8720 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8721 break; 8722 } 8723 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8724 panic("merge_diradd: unfound ref"); 8725 } 8726 /* 8727 * Any mkdir related journal items are not safe to be freed until 8728 * the new name is stable. 8729 */ 8730 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8731 olddap->da_state |= DEPCOMPLETE; 8732 complete_diradd(olddap); 8733 } 8734 8735 /* 8736 * Move the diradd to the pending list when all diradd dependencies are 8737 * complete. 8738 */ 8739 static void 8740 complete_diradd(dap) 8741 struct diradd *dap; 8742 { 8743 struct pagedep *pagedep; 8744 8745 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8746 if (dap->da_state & DIRCHG) 8747 pagedep = dap->da_previous->dm_pagedep; 8748 else 8749 pagedep = dap->da_pagedep; 8750 LIST_REMOVE(dap, da_pdlist); 8751 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8752 } 8753 } 8754 8755 /* 8756 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8757 * add entries and conditonally journal the remove. 8758 */ 8759 static void 8760 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8761 struct diradd *dap; 8762 struct dirrem *dirrem; 8763 struct jremref *jremref; 8764 struct jremref *dotremref; 8765 struct jremref *dotdotremref; 8766 { 8767 struct inodedep *inodedep; 8768 struct jaddref *jaddref; 8769 struct inoref *inoref; 8770 struct ufsmount *ump; 8771 struct mkdir *mkdir; 8772 8773 /* 8774 * If no remove references were allocated we're on a non-journaled 8775 * filesystem and can skip the cancel step. 8776 */ 8777 if (jremref == NULL) { 8778 free_diradd(dap, NULL); 8779 return; 8780 } 8781 /* 8782 * Cancel the primary name an free it if it does not require 8783 * journaling. 8784 */ 8785 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8786 0, &inodedep) != 0) { 8787 /* Abort the addref that reference this diradd. */ 8788 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8789 if (inoref->if_list.wk_type != D_JADDREF) 8790 continue; 8791 jaddref = (struct jaddref *)inoref; 8792 if (jaddref->ja_diradd != dap) 8793 continue; 8794 if (cancel_jaddref(jaddref, inodedep, 8795 &dirrem->dm_jwork) == 0) { 8796 free_jremref(jremref); 8797 jremref = NULL; 8798 } 8799 break; 8800 } 8801 } 8802 /* 8803 * Cancel subordinate names and free them if they do not require 8804 * journaling. 8805 */ 8806 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8807 ump = VFSTOUFS(dap->da_list.wk_mp); 8808 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8809 if (mkdir->md_diradd != dap) 8810 continue; 8811 if ((jaddref = mkdir->md_jaddref) == NULL) 8812 continue; 8813 mkdir->md_jaddref = NULL; 8814 if (mkdir->md_state & MKDIR_PARENT) { 8815 if (cancel_jaddref(jaddref, NULL, 8816 &dirrem->dm_jwork) == 0) { 8817 free_jremref(dotdotremref); 8818 dotdotremref = NULL; 8819 } 8820 } else { 8821 if (cancel_jaddref(jaddref, inodedep, 8822 &dirrem->dm_jwork) == 0) { 8823 free_jremref(dotremref); 8824 dotremref = NULL; 8825 } 8826 } 8827 } 8828 } 8829 8830 if (jremref) 8831 journal_jremref(dirrem, jremref, inodedep); 8832 if (dotremref) 8833 journal_jremref(dirrem, dotremref, inodedep); 8834 if (dotdotremref) 8835 journal_jremref(dirrem, dotdotremref, NULL); 8836 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8837 free_diradd(dap, &dirrem->dm_jwork); 8838 } 8839 8840 /* 8841 * Free a diradd dependency structure. This routine must be called 8842 * with splbio interrupts blocked. 8843 */ 8844 static void 8845 free_diradd(dap, wkhd) 8846 struct diradd *dap; 8847 struct workhead *wkhd; 8848 { 8849 struct dirrem *dirrem; 8850 struct pagedep *pagedep; 8851 struct inodedep *inodedep; 8852 struct mkdir *mkdir, *nextmd; 8853 struct ufsmount *ump; 8854 8855 ump = VFSTOUFS(dap->da_list.wk_mp); 8856 LOCK_OWNED(ump); 8857 LIST_REMOVE(dap, da_pdlist); 8858 if (dap->da_state & ONWORKLIST) 8859 WORKLIST_REMOVE(&dap->da_list); 8860 if ((dap->da_state & DIRCHG) == 0) { 8861 pagedep = dap->da_pagedep; 8862 } else { 8863 dirrem = dap->da_previous; 8864 pagedep = dirrem->dm_pagedep; 8865 dirrem->dm_dirinum = pagedep->pd_ino; 8866 dirrem->dm_state |= COMPLETE; 8867 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8868 add_to_worklist(&dirrem->dm_list, 0); 8869 } 8870 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8871 0, &inodedep) != 0) 8872 if (inodedep->id_mkdiradd == dap) 8873 inodedep->id_mkdiradd = NULL; 8874 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8875 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8876 mkdir = nextmd) { 8877 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8878 if (mkdir->md_diradd != dap) 8879 continue; 8880 dap->da_state &= 8881 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8882 LIST_REMOVE(mkdir, md_mkdirs); 8883 if (mkdir->md_state & ONWORKLIST) 8884 WORKLIST_REMOVE(&mkdir->md_list); 8885 if (mkdir->md_jaddref != NULL) 8886 panic("free_diradd: Unexpected jaddref"); 8887 WORKITEM_FREE(mkdir, D_MKDIR); 8888 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8889 break; 8890 } 8891 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8892 panic("free_diradd: unfound ref"); 8893 } 8894 if (inodedep) 8895 free_inodedep(inodedep); 8896 /* 8897 * Free any journal segments waiting for the directory write. 8898 */ 8899 handle_jwork(&dap->da_jwork); 8900 WORKITEM_FREE(dap, D_DIRADD); 8901 } 8902 8903 /* 8904 * Directory entry removal dependencies. 8905 * 8906 * When removing a directory entry, the entry's inode pointer must be 8907 * zero'ed on disk before the corresponding inode's link count is decremented 8908 * (possibly freeing the inode for re-use). This dependency is handled by 8909 * updating the directory entry but delaying the inode count reduction until 8910 * after the directory block has been written to disk. After this point, the 8911 * inode count can be decremented whenever it is convenient. 8912 */ 8913 8914 /* 8915 * This routine should be called immediately after removing 8916 * a directory entry. The inode's link count should not be 8917 * decremented by the calling procedure -- the soft updates 8918 * code will do this task when it is safe. 8919 */ 8920 void 8921 softdep_setup_remove(bp, dp, ip, isrmdir) 8922 struct buf *bp; /* buffer containing directory block */ 8923 struct inode *dp; /* inode for the directory being modified */ 8924 struct inode *ip; /* inode for directory entry being removed */ 8925 int isrmdir; /* indicates if doing RMDIR */ 8926 { 8927 struct dirrem *dirrem, *prevdirrem; 8928 struct inodedep *inodedep; 8929 struct ufsmount *ump; 8930 int direct; 8931 8932 ump = ITOUMP(ip); 8933 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8934 ("softdep_setup_remove called on non-softdep filesystem")); 8935 /* 8936 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8937 * newdirrem() to setup the full directory remove which requires 8938 * isrmdir > 1. 8939 */ 8940 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8941 /* 8942 * Add the dirrem to the inodedep's pending remove list for quick 8943 * discovery later. 8944 */ 8945 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 8946 panic("softdep_setup_remove: Lost inodedep."); 8947 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8948 dirrem->dm_state |= ONDEPLIST; 8949 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8950 8951 /* 8952 * If the COMPLETE flag is clear, then there were no active 8953 * entries and we want to roll back to a zeroed entry until 8954 * the new inode is committed to disk. If the COMPLETE flag is 8955 * set then we have deleted an entry that never made it to 8956 * disk. If the entry we deleted resulted from a name change, 8957 * then the old name still resides on disk. We cannot delete 8958 * its inode (returned to us in prevdirrem) until the zeroed 8959 * directory entry gets to disk. The new inode has never been 8960 * referenced on the disk, so can be deleted immediately. 8961 */ 8962 if ((dirrem->dm_state & COMPLETE) == 0) { 8963 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8964 dm_next); 8965 FREE_LOCK(ump); 8966 } else { 8967 if (prevdirrem != NULL) 8968 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8969 prevdirrem, dm_next); 8970 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8971 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8972 FREE_LOCK(ump); 8973 if (direct) 8974 handle_workitem_remove(dirrem, 0); 8975 } 8976 } 8977 8978 /* 8979 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8980 * pd_pendinghd list of a pagedep. 8981 */ 8982 static struct diradd * 8983 diradd_lookup(pagedep, offset) 8984 struct pagedep *pagedep; 8985 int offset; 8986 { 8987 struct diradd *dap; 8988 8989 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8990 if (dap->da_offset == offset) 8991 return (dap); 8992 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8993 if (dap->da_offset == offset) 8994 return (dap); 8995 return (NULL); 8996 } 8997 8998 /* 8999 * Search for a .. diradd dependency in a directory that is being removed. 9000 * If the directory was renamed to a new parent we have a diradd rather 9001 * than a mkdir for the .. entry. We need to cancel it now before 9002 * it is found in truncate(). 9003 */ 9004 static struct jremref * 9005 cancel_diradd_dotdot(ip, dirrem, jremref) 9006 struct inode *ip; 9007 struct dirrem *dirrem; 9008 struct jremref *jremref; 9009 { 9010 struct pagedep *pagedep; 9011 struct diradd *dap; 9012 struct worklist *wk; 9013 9014 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9015 return (jremref); 9016 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9017 if (dap == NULL) 9018 return (jremref); 9019 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9020 /* 9021 * Mark any journal work as belonging to the parent so it is freed 9022 * with the .. reference. 9023 */ 9024 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9025 wk->wk_state |= MKDIR_PARENT; 9026 return (NULL); 9027 } 9028 9029 /* 9030 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9031 * replace it with a dirrem/diradd pair as a result of re-parenting a 9032 * directory. This ensures that we don't simultaneously have a mkdir and 9033 * a diradd for the same .. entry. 9034 */ 9035 static struct jremref * 9036 cancel_mkdir_dotdot(ip, dirrem, jremref) 9037 struct inode *ip; 9038 struct dirrem *dirrem; 9039 struct jremref *jremref; 9040 { 9041 struct inodedep *inodedep; 9042 struct jaddref *jaddref; 9043 struct ufsmount *ump; 9044 struct mkdir *mkdir; 9045 struct diradd *dap; 9046 struct mount *mp; 9047 9048 mp = ITOVFS(ip); 9049 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9050 return (jremref); 9051 dap = inodedep->id_mkdiradd; 9052 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9053 return (jremref); 9054 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9055 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9056 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9057 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9058 break; 9059 if (mkdir == NULL) 9060 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9061 if ((jaddref = mkdir->md_jaddref) != NULL) { 9062 mkdir->md_jaddref = NULL; 9063 jaddref->ja_state &= ~MKDIR_PARENT; 9064 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9065 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9066 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9067 journal_jremref(dirrem, jremref, inodedep); 9068 jremref = NULL; 9069 } 9070 } 9071 if (mkdir->md_state & ONWORKLIST) 9072 WORKLIST_REMOVE(&mkdir->md_list); 9073 mkdir->md_state |= ALLCOMPLETE; 9074 complete_mkdir(mkdir); 9075 return (jremref); 9076 } 9077 9078 static void 9079 journal_jremref(dirrem, jremref, inodedep) 9080 struct dirrem *dirrem; 9081 struct jremref *jremref; 9082 struct inodedep *inodedep; 9083 { 9084 9085 if (inodedep == NULL) 9086 if (inodedep_lookup(jremref->jr_list.wk_mp, 9087 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9088 panic("journal_jremref: Lost inodedep"); 9089 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9090 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9091 add_to_journal(&jremref->jr_list); 9092 } 9093 9094 static void 9095 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9096 struct dirrem *dirrem; 9097 struct jremref *jremref; 9098 struct jremref *dotremref; 9099 struct jremref *dotdotremref; 9100 { 9101 struct inodedep *inodedep; 9102 9103 9104 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9105 &inodedep) == 0) 9106 panic("dirrem_journal: Lost inodedep"); 9107 journal_jremref(dirrem, jremref, inodedep); 9108 if (dotremref) 9109 journal_jremref(dirrem, dotremref, inodedep); 9110 if (dotdotremref) 9111 journal_jremref(dirrem, dotdotremref, NULL); 9112 } 9113 9114 /* 9115 * Allocate a new dirrem if appropriate and return it along with 9116 * its associated pagedep. Called without a lock, returns with lock. 9117 */ 9118 static struct dirrem * 9119 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9120 struct buf *bp; /* buffer containing directory block */ 9121 struct inode *dp; /* inode for the directory being modified */ 9122 struct inode *ip; /* inode for directory entry being removed */ 9123 int isrmdir; /* indicates if doing RMDIR */ 9124 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9125 { 9126 int offset; 9127 ufs_lbn_t lbn; 9128 struct diradd *dap; 9129 struct dirrem *dirrem; 9130 struct pagedep *pagedep; 9131 struct jremref *jremref; 9132 struct jremref *dotremref; 9133 struct jremref *dotdotremref; 9134 struct vnode *dvp; 9135 struct ufsmount *ump; 9136 9137 /* 9138 * Whiteouts have no deletion dependencies. 9139 */ 9140 if (ip == NULL) 9141 panic("newdirrem: whiteout"); 9142 dvp = ITOV(dp); 9143 ump = ITOUMP(dp); 9144 9145 /* 9146 * If the system is over its limit and our filesystem is 9147 * responsible for more than our share of that usage and 9148 * we are not a snapshot, request some inodedep cleanup. 9149 * Limiting the number of dirrem structures will also limit 9150 * the number of freefile and freeblks structures. 9151 */ 9152 ACQUIRE_LOCK(ump); 9153 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9154 schedule_cleanup(UFSTOVFS(ump)); 9155 else 9156 FREE_LOCK(ump); 9157 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9158 M_ZERO); 9159 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9160 LIST_INIT(&dirrem->dm_jremrefhd); 9161 LIST_INIT(&dirrem->dm_jwork); 9162 dirrem->dm_state = isrmdir ? RMDIR : 0; 9163 dirrem->dm_oldinum = ip->i_number; 9164 *prevdirremp = NULL; 9165 /* 9166 * Allocate remove reference structures to track journal write 9167 * dependencies. We will always have one for the link and 9168 * when doing directories we will always have one more for dot. 9169 * When renaming a directory we skip the dotdot link change so 9170 * this is not needed. 9171 */ 9172 jremref = dotremref = dotdotremref = NULL; 9173 if (DOINGSUJ(dvp)) { 9174 if (isrmdir) { 9175 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9176 ip->i_effnlink + 2); 9177 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9178 ip->i_effnlink + 1); 9179 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9180 dp->i_effnlink + 1); 9181 dotdotremref->jr_state |= MKDIR_PARENT; 9182 } else 9183 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9184 ip->i_effnlink + 1); 9185 } 9186 ACQUIRE_LOCK(ump); 9187 lbn = lblkno(ump->um_fs, dp->i_offset); 9188 offset = blkoff(ump->um_fs, dp->i_offset); 9189 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9190 &pagedep); 9191 dirrem->dm_pagedep = pagedep; 9192 dirrem->dm_offset = offset; 9193 /* 9194 * If we're renaming a .. link to a new directory, cancel any 9195 * existing MKDIR_PARENT mkdir. If it has already been canceled 9196 * the jremref is preserved for any potential diradd in this 9197 * location. This can not coincide with a rmdir. 9198 */ 9199 if (dp->i_offset == DOTDOT_OFFSET) { 9200 if (isrmdir) 9201 panic("newdirrem: .. directory change during remove?"); 9202 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9203 } 9204 /* 9205 * If we're removing a directory search for the .. dependency now and 9206 * cancel it. Any pending journal work will be added to the dirrem 9207 * to be completed when the workitem remove completes. 9208 */ 9209 if (isrmdir) 9210 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9211 /* 9212 * Check for a diradd dependency for the same directory entry. 9213 * If present, then both dependencies become obsolete and can 9214 * be de-allocated. 9215 */ 9216 dap = diradd_lookup(pagedep, offset); 9217 if (dap == NULL) { 9218 /* 9219 * Link the jremref structures into the dirrem so they are 9220 * written prior to the pagedep. 9221 */ 9222 if (jremref) 9223 dirrem_journal(dirrem, jremref, dotremref, 9224 dotdotremref); 9225 return (dirrem); 9226 } 9227 /* 9228 * Must be ATTACHED at this point. 9229 */ 9230 if ((dap->da_state & ATTACHED) == 0) 9231 panic("newdirrem: not ATTACHED"); 9232 if (dap->da_newinum != ip->i_number) 9233 panic("newdirrem: inum %ju should be %ju", 9234 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9235 /* 9236 * If we are deleting a changed name that never made it to disk, 9237 * then return the dirrem describing the previous inode (which 9238 * represents the inode currently referenced from this entry on disk). 9239 */ 9240 if ((dap->da_state & DIRCHG) != 0) { 9241 *prevdirremp = dap->da_previous; 9242 dap->da_state &= ~DIRCHG; 9243 dap->da_pagedep = pagedep; 9244 } 9245 /* 9246 * We are deleting an entry that never made it to disk. 9247 * Mark it COMPLETE so we can delete its inode immediately. 9248 */ 9249 dirrem->dm_state |= COMPLETE; 9250 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9251 #ifdef SUJ_DEBUG 9252 if (isrmdir == 0) { 9253 struct worklist *wk; 9254 9255 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9256 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9257 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9258 } 9259 #endif 9260 9261 return (dirrem); 9262 } 9263 9264 /* 9265 * Directory entry change dependencies. 9266 * 9267 * Changing an existing directory entry requires that an add operation 9268 * be completed first followed by a deletion. The semantics for the addition 9269 * are identical to the description of adding a new entry above except 9270 * that the rollback is to the old inode number rather than zero. Once 9271 * the addition dependency is completed, the removal is done as described 9272 * in the removal routine above. 9273 */ 9274 9275 /* 9276 * This routine should be called immediately after changing 9277 * a directory entry. The inode's link count should not be 9278 * decremented by the calling procedure -- the soft updates 9279 * code will perform this task when it is safe. 9280 */ 9281 void 9282 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9283 struct buf *bp; /* buffer containing directory block */ 9284 struct inode *dp; /* inode for the directory being modified */ 9285 struct inode *ip; /* inode for directory entry being removed */ 9286 ino_t newinum; /* new inode number for changed entry */ 9287 int isrmdir; /* indicates if doing RMDIR */ 9288 { 9289 int offset; 9290 struct diradd *dap = NULL; 9291 struct dirrem *dirrem, *prevdirrem; 9292 struct pagedep *pagedep; 9293 struct inodedep *inodedep; 9294 struct jaddref *jaddref; 9295 struct mount *mp; 9296 struct ufsmount *ump; 9297 9298 mp = ITOVFS(dp); 9299 ump = VFSTOUFS(mp); 9300 offset = blkoff(ump->um_fs, dp->i_offset); 9301 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9302 ("softdep_setup_directory_change called on non-softdep filesystem")); 9303 9304 /* 9305 * Whiteouts do not need diradd dependencies. 9306 */ 9307 if (newinum != UFS_WINO) { 9308 dap = malloc(sizeof(struct diradd), 9309 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9310 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9311 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9312 dap->da_offset = offset; 9313 dap->da_newinum = newinum; 9314 LIST_INIT(&dap->da_jwork); 9315 } 9316 9317 /* 9318 * Allocate a new dirrem and ACQUIRE_LOCK. 9319 */ 9320 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9321 pagedep = dirrem->dm_pagedep; 9322 /* 9323 * The possible values for isrmdir: 9324 * 0 - non-directory file rename 9325 * 1 - directory rename within same directory 9326 * inum - directory rename to new directory of given inode number 9327 * When renaming to a new directory, we are both deleting and 9328 * creating a new directory entry, so the link count on the new 9329 * directory should not change. Thus we do not need the followup 9330 * dirrem which is usually done in handle_workitem_remove. We set 9331 * the DIRCHG flag to tell handle_workitem_remove to skip the 9332 * followup dirrem. 9333 */ 9334 if (isrmdir > 1) 9335 dirrem->dm_state |= DIRCHG; 9336 9337 /* 9338 * Whiteouts have no additional dependencies, 9339 * so just put the dirrem on the correct list. 9340 */ 9341 if (newinum == UFS_WINO) { 9342 if ((dirrem->dm_state & COMPLETE) == 0) { 9343 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9344 dm_next); 9345 } else { 9346 dirrem->dm_dirinum = pagedep->pd_ino; 9347 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9348 add_to_worklist(&dirrem->dm_list, 0); 9349 } 9350 FREE_LOCK(ump); 9351 return; 9352 } 9353 /* 9354 * Add the dirrem to the inodedep's pending remove list for quick 9355 * discovery later. A valid nlinkdelta ensures that this lookup 9356 * will not fail. 9357 */ 9358 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9359 panic("softdep_setup_directory_change: Lost inodedep."); 9360 dirrem->dm_state |= ONDEPLIST; 9361 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9362 9363 /* 9364 * If the COMPLETE flag is clear, then there were no active 9365 * entries and we want to roll back to the previous inode until 9366 * the new inode is committed to disk. If the COMPLETE flag is 9367 * set, then we have deleted an entry that never made it to disk. 9368 * If the entry we deleted resulted from a name change, then the old 9369 * inode reference still resides on disk. Any rollback that we do 9370 * needs to be to that old inode (returned to us in prevdirrem). If 9371 * the entry we deleted resulted from a create, then there is 9372 * no entry on the disk, so we want to roll back to zero rather 9373 * than the uncommitted inode. In either of the COMPLETE cases we 9374 * want to immediately free the unwritten and unreferenced inode. 9375 */ 9376 if ((dirrem->dm_state & COMPLETE) == 0) { 9377 dap->da_previous = dirrem; 9378 } else { 9379 if (prevdirrem != NULL) { 9380 dap->da_previous = prevdirrem; 9381 } else { 9382 dap->da_state &= ~DIRCHG; 9383 dap->da_pagedep = pagedep; 9384 } 9385 dirrem->dm_dirinum = pagedep->pd_ino; 9386 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9387 add_to_worklist(&dirrem->dm_list, 0); 9388 } 9389 /* 9390 * Lookup the jaddref for this journal entry. We must finish 9391 * initializing it and make the diradd write dependent on it. 9392 * If we're not journaling, put it on the id_bufwait list if the 9393 * inode is not yet written. If it is written, do the post-inode 9394 * write processing to put it on the id_pendinghd list. 9395 */ 9396 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9397 if (MOUNTEDSUJ(mp)) { 9398 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9399 inoreflst); 9400 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9401 ("softdep_setup_directory_change: bad jaddref %p", 9402 jaddref)); 9403 jaddref->ja_diroff = dp->i_offset; 9404 jaddref->ja_diradd = dap; 9405 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9406 dap, da_pdlist); 9407 add_to_journal(&jaddref->ja_list); 9408 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9409 dap->da_state |= COMPLETE; 9410 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9411 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9412 } else { 9413 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9414 dap, da_pdlist); 9415 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9416 } 9417 /* 9418 * If we're making a new name for a directory that has not been 9419 * committed when need to move the dot and dotdot references to 9420 * this new name. 9421 */ 9422 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9423 merge_diradd(inodedep, dap); 9424 FREE_LOCK(ump); 9425 } 9426 9427 /* 9428 * Called whenever the link count on an inode is changed. 9429 * It creates an inode dependency so that the new reference(s) 9430 * to the inode cannot be committed to disk until the updated 9431 * inode has been written. 9432 */ 9433 void 9434 softdep_change_linkcnt(ip) 9435 struct inode *ip; /* the inode with the increased link count */ 9436 { 9437 struct inodedep *inodedep; 9438 struct ufsmount *ump; 9439 9440 ump = ITOUMP(ip); 9441 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9442 ("softdep_change_linkcnt called on non-softdep filesystem")); 9443 ACQUIRE_LOCK(ump); 9444 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9445 if (ip->i_nlink < ip->i_effnlink) 9446 panic("softdep_change_linkcnt: bad delta"); 9447 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9448 FREE_LOCK(ump); 9449 } 9450 9451 /* 9452 * Attach a sbdep dependency to the superblock buf so that we can keep 9453 * track of the head of the linked list of referenced but unlinked inodes. 9454 */ 9455 void 9456 softdep_setup_sbupdate(ump, fs, bp) 9457 struct ufsmount *ump; 9458 struct fs *fs; 9459 struct buf *bp; 9460 { 9461 struct sbdep *sbdep; 9462 struct worklist *wk; 9463 9464 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9465 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9466 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9467 if (wk->wk_type == D_SBDEP) 9468 break; 9469 if (wk != NULL) 9470 return; 9471 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9472 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9473 sbdep->sb_fs = fs; 9474 sbdep->sb_ump = ump; 9475 ACQUIRE_LOCK(ump); 9476 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9477 FREE_LOCK(ump); 9478 } 9479 9480 /* 9481 * Return the first unlinked inodedep which is ready to be the head of the 9482 * list. The inodedep and all those after it must have valid next pointers. 9483 */ 9484 static struct inodedep * 9485 first_unlinked_inodedep(ump) 9486 struct ufsmount *ump; 9487 { 9488 struct inodedep *inodedep; 9489 struct inodedep *idp; 9490 9491 LOCK_OWNED(ump); 9492 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9493 inodedep; inodedep = idp) { 9494 if ((inodedep->id_state & UNLINKNEXT) == 0) 9495 return (NULL); 9496 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9497 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9498 break; 9499 if ((inodedep->id_state & UNLINKPREV) == 0) 9500 break; 9501 } 9502 return (inodedep); 9503 } 9504 9505 /* 9506 * Set the sujfree unlinked head pointer prior to writing a superblock. 9507 */ 9508 static void 9509 initiate_write_sbdep(sbdep) 9510 struct sbdep *sbdep; 9511 { 9512 struct inodedep *inodedep; 9513 struct fs *bpfs; 9514 struct fs *fs; 9515 9516 bpfs = sbdep->sb_fs; 9517 fs = sbdep->sb_ump->um_fs; 9518 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9519 if (inodedep) { 9520 fs->fs_sujfree = inodedep->id_ino; 9521 inodedep->id_state |= UNLINKPREV; 9522 } else 9523 fs->fs_sujfree = 0; 9524 bpfs->fs_sujfree = fs->fs_sujfree; 9525 } 9526 9527 /* 9528 * After a superblock is written determine whether it must be written again 9529 * due to a changing unlinked list head. 9530 */ 9531 static int 9532 handle_written_sbdep(sbdep, bp) 9533 struct sbdep *sbdep; 9534 struct buf *bp; 9535 { 9536 struct inodedep *inodedep; 9537 struct fs *fs; 9538 9539 LOCK_OWNED(sbdep->sb_ump); 9540 fs = sbdep->sb_fs; 9541 /* 9542 * If the superblock doesn't match the in-memory list start over. 9543 */ 9544 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9545 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9546 (inodedep == NULL && fs->fs_sujfree != 0)) { 9547 bdirty(bp); 9548 return (1); 9549 } 9550 WORKITEM_FREE(sbdep, D_SBDEP); 9551 if (fs->fs_sujfree == 0) 9552 return (0); 9553 /* 9554 * Now that we have a record of this inode in stable store allow it 9555 * to be written to free up pending work. Inodes may see a lot of 9556 * write activity after they are unlinked which we must not hold up. 9557 */ 9558 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9559 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9560 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9561 inodedep, inodedep->id_state); 9562 if (inodedep->id_state & UNLINKONLIST) 9563 break; 9564 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9565 } 9566 9567 return (0); 9568 } 9569 9570 /* 9571 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9572 */ 9573 static void 9574 unlinked_inodedep(mp, inodedep) 9575 struct mount *mp; 9576 struct inodedep *inodedep; 9577 { 9578 struct ufsmount *ump; 9579 9580 ump = VFSTOUFS(mp); 9581 LOCK_OWNED(ump); 9582 if (MOUNTEDSUJ(mp) == 0) 9583 return; 9584 ump->um_fs->fs_fmod = 1; 9585 if (inodedep->id_state & UNLINKED) 9586 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9587 inodedep->id_state |= UNLINKED; 9588 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9589 } 9590 9591 /* 9592 * Remove an inodedep from the unlinked inodedep list. This may require 9593 * disk writes if the inode has made it that far. 9594 */ 9595 static void 9596 clear_unlinked_inodedep(inodedep) 9597 struct inodedep *inodedep; 9598 { 9599 struct ufsmount *ump; 9600 struct inodedep *idp; 9601 struct inodedep *idn; 9602 struct fs *fs; 9603 struct buf *bp; 9604 ino_t ino; 9605 ino_t nino; 9606 ino_t pino; 9607 int error; 9608 9609 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9610 fs = ump->um_fs; 9611 ino = inodedep->id_ino; 9612 error = 0; 9613 for (;;) { 9614 LOCK_OWNED(ump); 9615 KASSERT((inodedep->id_state & UNLINKED) != 0, 9616 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9617 inodedep)); 9618 /* 9619 * If nothing has yet been written simply remove us from 9620 * the in memory list and return. This is the most common 9621 * case where handle_workitem_remove() loses the final 9622 * reference. 9623 */ 9624 if ((inodedep->id_state & UNLINKLINKS) == 0) 9625 break; 9626 /* 9627 * If we have a NEXT pointer and no PREV pointer we can simply 9628 * clear NEXT's PREV and remove ourselves from the list. Be 9629 * careful not to clear PREV if the superblock points at 9630 * next as well. 9631 */ 9632 idn = TAILQ_NEXT(inodedep, id_unlinked); 9633 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9634 if (idn && fs->fs_sujfree != idn->id_ino) 9635 idn->id_state &= ~UNLINKPREV; 9636 break; 9637 } 9638 /* 9639 * Here we have an inodedep which is actually linked into 9640 * the list. We must remove it by forcing a write to the 9641 * link before us, whether it be the superblock or an inode. 9642 * Unfortunately the list may change while we're waiting 9643 * on the buf lock for either resource so we must loop until 9644 * we lock the right one. If both the superblock and an 9645 * inode point to this inode we must clear the inode first 9646 * followed by the superblock. 9647 */ 9648 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9649 pino = 0; 9650 if (idp && (idp->id_state & UNLINKNEXT)) 9651 pino = idp->id_ino; 9652 FREE_LOCK(ump); 9653 if (pino == 0) { 9654 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9655 (int)fs->fs_sbsize, 0, 0, 0); 9656 } else { 9657 error = bread(ump->um_devvp, 9658 fsbtodb(fs, ino_to_fsba(fs, pino)), 9659 (int)fs->fs_bsize, NOCRED, &bp); 9660 if (error) 9661 brelse(bp); 9662 } 9663 ACQUIRE_LOCK(ump); 9664 if (error) 9665 break; 9666 /* If the list has changed restart the loop. */ 9667 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9668 nino = 0; 9669 if (idp && (idp->id_state & UNLINKNEXT)) 9670 nino = idp->id_ino; 9671 if (nino != pino || 9672 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9673 FREE_LOCK(ump); 9674 brelse(bp); 9675 ACQUIRE_LOCK(ump); 9676 continue; 9677 } 9678 nino = 0; 9679 idn = TAILQ_NEXT(inodedep, id_unlinked); 9680 if (idn) 9681 nino = idn->id_ino; 9682 /* 9683 * Remove us from the in memory list. After this we cannot 9684 * access the inodedep. 9685 */ 9686 KASSERT((inodedep->id_state & UNLINKED) != 0, 9687 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9688 inodedep)); 9689 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9690 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9691 FREE_LOCK(ump); 9692 /* 9693 * The predecessor's next pointer is manually updated here 9694 * so that the NEXT flag is never cleared for an element 9695 * that is in the list. 9696 */ 9697 if (pino == 0) { 9698 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9699 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9700 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9701 bp); 9702 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9703 ((struct ufs1_dinode *)bp->b_data + 9704 ino_to_fsbo(fs, pino))->di_freelink = nino; 9705 else 9706 ((struct ufs2_dinode *)bp->b_data + 9707 ino_to_fsbo(fs, pino))->di_freelink = nino; 9708 /* 9709 * If the bwrite fails we have no recourse to recover. The 9710 * filesystem is corrupted already. 9711 */ 9712 bwrite(bp); 9713 ACQUIRE_LOCK(ump); 9714 /* 9715 * If the superblock pointer still needs to be cleared force 9716 * a write here. 9717 */ 9718 if (fs->fs_sujfree == ino) { 9719 FREE_LOCK(ump); 9720 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9721 (int)fs->fs_sbsize, 0, 0, 0); 9722 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9723 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9724 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9725 bp); 9726 bwrite(bp); 9727 ACQUIRE_LOCK(ump); 9728 } 9729 9730 if (fs->fs_sujfree != ino) 9731 return; 9732 panic("clear_unlinked_inodedep: Failed to clear free head"); 9733 } 9734 if (inodedep->id_ino == fs->fs_sujfree) 9735 panic("clear_unlinked_inodedep: Freeing head of free list"); 9736 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9737 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9738 return; 9739 } 9740 9741 /* 9742 * This workitem decrements the inode's link count. 9743 * If the link count reaches zero, the file is removed. 9744 */ 9745 static int 9746 handle_workitem_remove(dirrem, flags) 9747 struct dirrem *dirrem; 9748 int flags; 9749 { 9750 struct inodedep *inodedep; 9751 struct workhead dotdotwk; 9752 struct worklist *wk; 9753 struct ufsmount *ump; 9754 struct mount *mp; 9755 struct vnode *vp; 9756 struct inode *ip; 9757 ino_t oldinum; 9758 9759 if (dirrem->dm_state & ONWORKLIST) 9760 panic("handle_workitem_remove: dirrem %p still on worklist", 9761 dirrem); 9762 oldinum = dirrem->dm_oldinum; 9763 mp = dirrem->dm_list.wk_mp; 9764 ump = VFSTOUFS(mp); 9765 flags |= LK_EXCLUSIVE; 9766 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9767 return (EBUSY); 9768 ip = VTOI(vp); 9769 ACQUIRE_LOCK(ump); 9770 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9771 panic("handle_workitem_remove: lost inodedep"); 9772 if (dirrem->dm_state & ONDEPLIST) 9773 LIST_REMOVE(dirrem, dm_inonext); 9774 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9775 ("handle_workitem_remove: Journal entries not written.")); 9776 9777 /* 9778 * Move all dependencies waiting on the remove to complete 9779 * from the dirrem to the inode inowait list to be completed 9780 * after the inode has been updated and written to disk. Any 9781 * marked MKDIR_PARENT are saved to be completed when the .. ref 9782 * is removed. 9783 */ 9784 LIST_INIT(&dotdotwk); 9785 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9786 WORKLIST_REMOVE(wk); 9787 if (wk->wk_state & MKDIR_PARENT) { 9788 wk->wk_state &= ~MKDIR_PARENT; 9789 WORKLIST_INSERT(&dotdotwk, wk); 9790 continue; 9791 } 9792 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9793 } 9794 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9795 /* 9796 * Normal file deletion. 9797 */ 9798 if ((dirrem->dm_state & RMDIR) == 0) { 9799 ip->i_nlink--; 9800 DIP_SET(ip, i_nlink, ip->i_nlink); 9801 ip->i_flag |= IN_CHANGE; 9802 if (ip->i_nlink < ip->i_effnlink) 9803 panic("handle_workitem_remove: bad file delta"); 9804 if (ip->i_nlink == 0) 9805 unlinked_inodedep(mp, inodedep); 9806 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9807 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9808 ("handle_workitem_remove: worklist not empty. %s", 9809 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9810 WORKITEM_FREE(dirrem, D_DIRREM); 9811 FREE_LOCK(ump); 9812 goto out; 9813 } 9814 /* 9815 * Directory deletion. Decrement reference count for both the 9816 * just deleted parent directory entry and the reference for ".". 9817 * Arrange to have the reference count on the parent decremented 9818 * to account for the loss of "..". 9819 */ 9820 ip->i_nlink -= 2; 9821 DIP_SET(ip, i_nlink, ip->i_nlink); 9822 ip->i_flag |= IN_CHANGE; 9823 if (ip->i_nlink < ip->i_effnlink) 9824 panic("handle_workitem_remove: bad dir delta"); 9825 if (ip->i_nlink == 0) 9826 unlinked_inodedep(mp, inodedep); 9827 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9828 /* 9829 * Rename a directory to a new parent. Since, we are both deleting 9830 * and creating a new directory entry, the link count on the new 9831 * directory should not change. Thus we skip the followup dirrem. 9832 */ 9833 if (dirrem->dm_state & DIRCHG) { 9834 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9835 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9836 WORKITEM_FREE(dirrem, D_DIRREM); 9837 FREE_LOCK(ump); 9838 goto out; 9839 } 9840 dirrem->dm_state = ONDEPLIST; 9841 dirrem->dm_oldinum = dirrem->dm_dirinum; 9842 /* 9843 * Place the dirrem on the parent's diremhd list. 9844 */ 9845 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9846 panic("handle_workitem_remove: lost dir inodedep"); 9847 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9848 /* 9849 * If the allocated inode has never been written to disk, then 9850 * the on-disk inode is zero'ed and we can remove the file 9851 * immediately. When journaling if the inode has been marked 9852 * unlinked and not DEPCOMPLETE we know it can never be written. 9853 */ 9854 inodedep_lookup(mp, oldinum, 0, &inodedep); 9855 if (inodedep == NULL || 9856 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9857 check_inode_unwritten(inodedep)) { 9858 FREE_LOCK(ump); 9859 vput(vp); 9860 return handle_workitem_remove(dirrem, flags); 9861 } 9862 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9863 FREE_LOCK(ump); 9864 ip->i_flag |= IN_CHANGE; 9865 out: 9866 ffs_update(vp, 0); 9867 vput(vp); 9868 return (0); 9869 } 9870 9871 /* 9872 * Inode de-allocation dependencies. 9873 * 9874 * When an inode's link count is reduced to zero, it can be de-allocated. We 9875 * found it convenient to postpone de-allocation until after the inode is 9876 * written to disk with its new link count (zero). At this point, all of the 9877 * on-disk inode's block pointers are nullified and, with careful dependency 9878 * list ordering, all dependencies related to the inode will be satisfied and 9879 * the corresponding dependency structures de-allocated. So, if/when the 9880 * inode is reused, there will be no mixing of old dependencies with new 9881 * ones. This artificial dependency is set up by the block de-allocation 9882 * procedure above (softdep_setup_freeblocks) and completed by the 9883 * following procedure. 9884 */ 9885 static void 9886 handle_workitem_freefile(freefile) 9887 struct freefile *freefile; 9888 { 9889 struct workhead wkhd; 9890 struct fs *fs; 9891 struct inodedep *idp; 9892 struct ufsmount *ump; 9893 int error; 9894 9895 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9896 fs = ump->um_fs; 9897 #ifdef DEBUG 9898 ACQUIRE_LOCK(ump); 9899 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9900 FREE_LOCK(ump); 9901 if (error) 9902 panic("handle_workitem_freefile: inodedep %p survived", idp); 9903 #endif 9904 UFS_LOCK(ump); 9905 fs->fs_pendinginodes -= 1; 9906 UFS_UNLOCK(ump); 9907 LIST_INIT(&wkhd); 9908 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9909 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9910 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9911 softdep_error("handle_workitem_freefile", error); 9912 ACQUIRE_LOCK(ump); 9913 WORKITEM_FREE(freefile, D_FREEFILE); 9914 FREE_LOCK(ump); 9915 } 9916 9917 9918 /* 9919 * Helper function which unlinks marker element from work list and returns 9920 * the next element on the list. 9921 */ 9922 static __inline struct worklist * 9923 markernext(struct worklist *marker) 9924 { 9925 struct worklist *next; 9926 9927 next = LIST_NEXT(marker, wk_list); 9928 LIST_REMOVE(marker, wk_list); 9929 return next; 9930 } 9931 9932 /* 9933 * Disk writes. 9934 * 9935 * The dependency structures constructed above are most actively used when file 9936 * system blocks are written to disk. No constraints are placed on when a 9937 * block can be written, but unsatisfied update dependencies are made safe by 9938 * modifying (or replacing) the source memory for the duration of the disk 9939 * write. When the disk write completes, the memory block is again brought 9940 * up-to-date. 9941 * 9942 * In-core inode structure reclamation. 9943 * 9944 * Because there are a finite number of "in-core" inode structures, they are 9945 * reused regularly. By transferring all inode-related dependencies to the 9946 * in-memory inode block and indexing them separately (via "inodedep"s), we 9947 * can allow "in-core" inode structures to be reused at any time and avoid 9948 * any increase in contention. 9949 * 9950 * Called just before entering the device driver to initiate a new disk I/O. 9951 * The buffer must be locked, thus, no I/O completion operations can occur 9952 * while we are manipulating its associated dependencies. 9953 */ 9954 static void 9955 softdep_disk_io_initiation(bp) 9956 struct buf *bp; /* structure describing disk write to occur */ 9957 { 9958 struct worklist *wk; 9959 struct worklist marker; 9960 struct inodedep *inodedep; 9961 struct freeblks *freeblks; 9962 struct jblkdep *jblkdep; 9963 struct newblk *newblk; 9964 struct ufsmount *ump; 9965 9966 /* 9967 * We only care about write operations. There should never 9968 * be dependencies for reads. 9969 */ 9970 if (bp->b_iocmd != BIO_WRITE) 9971 panic("softdep_disk_io_initiation: not write"); 9972 9973 if (bp->b_vflags & BV_BKGRDINPROG) 9974 panic("softdep_disk_io_initiation: Writing buffer with " 9975 "background write in progress: %p", bp); 9976 9977 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 9978 return; 9979 ump = VFSTOUFS(wk->wk_mp); 9980 9981 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9982 PHOLD(curproc); /* Don't swap out kernel stack */ 9983 ACQUIRE_LOCK(ump); 9984 /* 9985 * Do any necessary pre-I/O processing. 9986 */ 9987 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9988 wk = markernext(&marker)) { 9989 LIST_INSERT_AFTER(wk, &marker, wk_list); 9990 switch (wk->wk_type) { 9991 9992 case D_PAGEDEP: 9993 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9994 continue; 9995 9996 case D_INODEDEP: 9997 inodedep = WK_INODEDEP(wk); 9998 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9999 initiate_write_inodeblock_ufs1(inodedep, bp); 10000 else 10001 initiate_write_inodeblock_ufs2(inodedep, bp); 10002 continue; 10003 10004 case D_INDIRDEP: 10005 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10006 continue; 10007 10008 case D_BMSAFEMAP: 10009 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10010 continue; 10011 10012 case D_JSEG: 10013 WK_JSEG(wk)->js_buf = NULL; 10014 continue; 10015 10016 case D_FREEBLKS: 10017 freeblks = WK_FREEBLKS(wk); 10018 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10019 /* 10020 * We have to wait for the freeblks to be journaled 10021 * before we can write an inodeblock with updated 10022 * pointers. Be careful to arrange the marker so 10023 * we revisit the freeblks if it's not removed by 10024 * the first jwait(). 10025 */ 10026 if (jblkdep != NULL) { 10027 LIST_REMOVE(&marker, wk_list); 10028 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10029 jwait(&jblkdep->jb_list, MNT_WAIT); 10030 } 10031 continue; 10032 case D_ALLOCDIRECT: 10033 case D_ALLOCINDIR: 10034 /* 10035 * We have to wait for the jnewblk to be journaled 10036 * before we can write to a block if the contents 10037 * may be confused with an earlier file's indirect 10038 * at recovery time. Handle the marker as described 10039 * above. 10040 */ 10041 newblk = WK_NEWBLK(wk); 10042 if (newblk->nb_jnewblk != NULL && 10043 indirblk_lookup(newblk->nb_list.wk_mp, 10044 newblk->nb_newblkno)) { 10045 LIST_REMOVE(&marker, wk_list); 10046 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10047 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10048 } 10049 continue; 10050 10051 case D_SBDEP: 10052 initiate_write_sbdep(WK_SBDEP(wk)); 10053 continue; 10054 10055 case D_MKDIR: 10056 case D_FREEWORK: 10057 case D_FREEDEP: 10058 case D_JSEGDEP: 10059 continue; 10060 10061 default: 10062 panic("handle_disk_io_initiation: Unexpected type %s", 10063 TYPENAME(wk->wk_type)); 10064 /* NOTREACHED */ 10065 } 10066 } 10067 FREE_LOCK(ump); 10068 PRELE(curproc); /* Allow swapout of kernel stack */ 10069 } 10070 10071 /* 10072 * Called from within the procedure above to deal with unsatisfied 10073 * allocation dependencies in a directory. The buffer must be locked, 10074 * thus, no I/O completion operations can occur while we are 10075 * manipulating its associated dependencies. 10076 */ 10077 static void 10078 initiate_write_filepage(pagedep, bp) 10079 struct pagedep *pagedep; 10080 struct buf *bp; 10081 { 10082 struct jremref *jremref; 10083 struct jmvref *jmvref; 10084 struct dirrem *dirrem; 10085 struct diradd *dap; 10086 struct direct *ep; 10087 int i; 10088 10089 if (pagedep->pd_state & IOSTARTED) { 10090 /* 10091 * This can only happen if there is a driver that does not 10092 * understand chaining. Here biodone will reissue the call 10093 * to strategy for the incomplete buffers. 10094 */ 10095 printf("initiate_write_filepage: already started\n"); 10096 return; 10097 } 10098 pagedep->pd_state |= IOSTARTED; 10099 /* 10100 * Wait for all journal remove dependencies to hit the disk. 10101 * We can not allow any potentially conflicting directory adds 10102 * to be visible before removes and rollback is too difficult. 10103 * The per-filesystem lock may be dropped and re-acquired, however 10104 * we hold the buf locked so the dependency can not go away. 10105 */ 10106 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10107 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10108 jwait(&jremref->jr_list, MNT_WAIT); 10109 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10110 jwait(&jmvref->jm_list, MNT_WAIT); 10111 for (i = 0; i < DAHASHSZ; i++) { 10112 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10113 ep = (struct direct *) 10114 ((char *)bp->b_data + dap->da_offset); 10115 if (ep->d_ino != dap->da_newinum) 10116 panic("%s: dir inum %ju != new %ju", 10117 "initiate_write_filepage", 10118 (uintmax_t)ep->d_ino, 10119 (uintmax_t)dap->da_newinum); 10120 if (dap->da_state & DIRCHG) 10121 ep->d_ino = dap->da_previous->dm_oldinum; 10122 else 10123 ep->d_ino = 0; 10124 dap->da_state &= ~ATTACHED; 10125 dap->da_state |= UNDONE; 10126 } 10127 } 10128 } 10129 10130 /* 10131 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10132 * Note that any bug fixes made to this routine must be done in the 10133 * version found below. 10134 * 10135 * Called from within the procedure above to deal with unsatisfied 10136 * allocation dependencies in an inodeblock. The buffer must be 10137 * locked, thus, no I/O completion operations can occur while we 10138 * are manipulating its associated dependencies. 10139 */ 10140 static void 10141 initiate_write_inodeblock_ufs1(inodedep, bp) 10142 struct inodedep *inodedep; 10143 struct buf *bp; /* The inode block */ 10144 { 10145 struct allocdirect *adp, *lastadp; 10146 struct ufs1_dinode *dp; 10147 struct ufs1_dinode *sip; 10148 struct inoref *inoref; 10149 struct ufsmount *ump; 10150 struct fs *fs; 10151 ufs_lbn_t i; 10152 #ifdef INVARIANTS 10153 ufs_lbn_t prevlbn = 0; 10154 #endif 10155 int deplist; 10156 10157 if (inodedep->id_state & IOSTARTED) 10158 panic("initiate_write_inodeblock_ufs1: already started"); 10159 inodedep->id_state |= IOSTARTED; 10160 fs = inodedep->id_fs; 10161 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10162 LOCK_OWNED(ump); 10163 dp = (struct ufs1_dinode *)bp->b_data + 10164 ino_to_fsbo(fs, inodedep->id_ino); 10165 10166 /* 10167 * If we're on the unlinked list but have not yet written our 10168 * next pointer initialize it here. 10169 */ 10170 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10171 struct inodedep *inon; 10172 10173 inon = TAILQ_NEXT(inodedep, id_unlinked); 10174 dp->di_freelink = inon ? inon->id_ino : 0; 10175 } 10176 /* 10177 * If the bitmap is not yet written, then the allocated 10178 * inode cannot be written to disk. 10179 */ 10180 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10181 if (inodedep->id_savedino1 != NULL) 10182 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10183 FREE_LOCK(ump); 10184 sip = malloc(sizeof(struct ufs1_dinode), 10185 M_SAVEDINO, M_SOFTDEP_FLAGS); 10186 ACQUIRE_LOCK(ump); 10187 inodedep->id_savedino1 = sip; 10188 *inodedep->id_savedino1 = *dp; 10189 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10190 dp->di_gen = inodedep->id_savedino1->di_gen; 10191 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10192 return; 10193 } 10194 /* 10195 * If no dependencies, then there is nothing to roll back. 10196 */ 10197 inodedep->id_savedsize = dp->di_size; 10198 inodedep->id_savedextsize = 0; 10199 inodedep->id_savednlink = dp->di_nlink; 10200 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10201 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10202 return; 10203 /* 10204 * Revert the link count to that of the first unwritten journal entry. 10205 */ 10206 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10207 if (inoref) 10208 dp->di_nlink = inoref->if_nlink; 10209 /* 10210 * Set the dependencies to busy. 10211 */ 10212 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10213 adp = TAILQ_NEXT(adp, ad_next)) { 10214 #ifdef INVARIANTS 10215 if (deplist != 0 && prevlbn >= adp->ad_offset) 10216 panic("softdep_write_inodeblock: lbn order"); 10217 prevlbn = adp->ad_offset; 10218 if (adp->ad_offset < UFS_NDADDR && 10219 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10220 panic("%s: direct pointer #%jd mismatch %d != %jd", 10221 "softdep_write_inodeblock", 10222 (intmax_t)adp->ad_offset, 10223 dp->di_db[adp->ad_offset], 10224 (intmax_t)adp->ad_newblkno); 10225 if (adp->ad_offset >= UFS_NDADDR && 10226 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10227 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10228 "softdep_write_inodeblock", 10229 (intmax_t)adp->ad_offset - UFS_NDADDR, 10230 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10231 (intmax_t)adp->ad_newblkno); 10232 deplist |= 1 << adp->ad_offset; 10233 if ((adp->ad_state & ATTACHED) == 0) 10234 panic("softdep_write_inodeblock: Unknown state 0x%x", 10235 adp->ad_state); 10236 #endif /* INVARIANTS */ 10237 adp->ad_state &= ~ATTACHED; 10238 adp->ad_state |= UNDONE; 10239 } 10240 /* 10241 * The on-disk inode cannot claim to be any larger than the last 10242 * fragment that has been written. Otherwise, the on-disk inode 10243 * might have fragments that were not the last block in the file 10244 * which would corrupt the filesystem. 10245 */ 10246 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10247 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10248 if (adp->ad_offset >= UFS_NDADDR) 10249 break; 10250 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10251 /* keep going until hitting a rollback to a frag */ 10252 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10253 continue; 10254 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10255 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10256 #ifdef INVARIANTS 10257 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10258 panic("softdep_write_inodeblock: lost dep1"); 10259 #endif /* INVARIANTS */ 10260 dp->di_db[i] = 0; 10261 } 10262 for (i = 0; i < UFS_NIADDR; i++) { 10263 #ifdef INVARIANTS 10264 if (dp->di_ib[i] != 0 && 10265 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10266 panic("softdep_write_inodeblock: lost dep2"); 10267 #endif /* INVARIANTS */ 10268 dp->di_ib[i] = 0; 10269 } 10270 return; 10271 } 10272 /* 10273 * If we have zero'ed out the last allocated block of the file, 10274 * roll back the size to the last currently allocated block. 10275 * We know that this last allocated block is a full-sized as 10276 * we already checked for fragments in the loop above. 10277 */ 10278 if (lastadp != NULL && 10279 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10280 for (i = lastadp->ad_offset; i >= 0; i--) 10281 if (dp->di_db[i] != 0) 10282 break; 10283 dp->di_size = (i + 1) * fs->fs_bsize; 10284 } 10285 /* 10286 * The only dependencies are for indirect blocks. 10287 * 10288 * The file size for indirect block additions is not guaranteed. 10289 * Such a guarantee would be non-trivial to achieve. The conventional 10290 * synchronous write implementation also does not make this guarantee. 10291 * Fsck should catch and fix discrepancies. Arguably, the file size 10292 * can be over-estimated without destroying integrity when the file 10293 * moves into the indirect blocks (i.e., is large). If we want to 10294 * postpone fsck, we are stuck with this argument. 10295 */ 10296 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10297 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10298 } 10299 10300 /* 10301 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10302 * Note that any bug fixes made to this routine must be done in the 10303 * version found above. 10304 * 10305 * Called from within the procedure above to deal with unsatisfied 10306 * allocation dependencies in an inodeblock. The buffer must be 10307 * locked, thus, no I/O completion operations can occur while we 10308 * are manipulating its associated dependencies. 10309 */ 10310 static void 10311 initiate_write_inodeblock_ufs2(inodedep, bp) 10312 struct inodedep *inodedep; 10313 struct buf *bp; /* The inode block */ 10314 { 10315 struct allocdirect *adp, *lastadp; 10316 struct ufs2_dinode *dp; 10317 struct ufs2_dinode *sip; 10318 struct inoref *inoref; 10319 struct ufsmount *ump; 10320 struct fs *fs; 10321 ufs_lbn_t i; 10322 #ifdef INVARIANTS 10323 ufs_lbn_t prevlbn = 0; 10324 #endif 10325 int deplist; 10326 10327 if (inodedep->id_state & IOSTARTED) 10328 panic("initiate_write_inodeblock_ufs2: already started"); 10329 inodedep->id_state |= IOSTARTED; 10330 fs = inodedep->id_fs; 10331 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10332 LOCK_OWNED(ump); 10333 dp = (struct ufs2_dinode *)bp->b_data + 10334 ino_to_fsbo(fs, inodedep->id_ino); 10335 10336 /* 10337 * If we're on the unlinked list but have not yet written our 10338 * next pointer initialize it here. 10339 */ 10340 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10341 struct inodedep *inon; 10342 10343 inon = TAILQ_NEXT(inodedep, id_unlinked); 10344 dp->di_freelink = inon ? inon->id_ino : 0; 10345 } 10346 /* 10347 * If the bitmap is not yet written, then the allocated 10348 * inode cannot be written to disk. 10349 */ 10350 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10351 if (inodedep->id_savedino2 != NULL) 10352 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10353 FREE_LOCK(ump); 10354 sip = malloc(sizeof(struct ufs2_dinode), 10355 M_SAVEDINO, M_SOFTDEP_FLAGS); 10356 ACQUIRE_LOCK(ump); 10357 inodedep->id_savedino2 = sip; 10358 *inodedep->id_savedino2 = *dp; 10359 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10360 dp->di_gen = inodedep->id_savedino2->di_gen; 10361 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10362 return; 10363 } 10364 /* 10365 * If no dependencies, then there is nothing to roll back. 10366 */ 10367 inodedep->id_savedsize = dp->di_size; 10368 inodedep->id_savedextsize = dp->di_extsize; 10369 inodedep->id_savednlink = dp->di_nlink; 10370 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10371 TAILQ_EMPTY(&inodedep->id_extupdt) && 10372 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10373 return; 10374 /* 10375 * Revert the link count to that of the first unwritten journal entry. 10376 */ 10377 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10378 if (inoref) 10379 dp->di_nlink = inoref->if_nlink; 10380 10381 /* 10382 * Set the ext data dependencies to busy. 10383 */ 10384 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10385 adp = TAILQ_NEXT(adp, ad_next)) { 10386 #ifdef INVARIANTS 10387 if (deplist != 0 && prevlbn >= adp->ad_offset) 10388 panic("softdep_write_inodeblock: lbn order"); 10389 prevlbn = adp->ad_offset; 10390 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10391 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10392 "softdep_write_inodeblock", 10393 (intmax_t)adp->ad_offset, 10394 (intmax_t)dp->di_extb[adp->ad_offset], 10395 (intmax_t)adp->ad_newblkno); 10396 deplist |= 1 << adp->ad_offset; 10397 if ((adp->ad_state & ATTACHED) == 0) 10398 panic("softdep_write_inodeblock: Unknown state 0x%x", 10399 adp->ad_state); 10400 #endif /* INVARIANTS */ 10401 adp->ad_state &= ~ATTACHED; 10402 adp->ad_state |= UNDONE; 10403 } 10404 /* 10405 * The on-disk inode cannot claim to be any larger than the last 10406 * fragment that has been written. Otherwise, the on-disk inode 10407 * might have fragments that were not the last block in the ext 10408 * data which would corrupt the filesystem. 10409 */ 10410 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10411 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10412 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10413 /* keep going until hitting a rollback to a frag */ 10414 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10415 continue; 10416 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10417 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10418 #ifdef INVARIANTS 10419 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10420 panic("softdep_write_inodeblock: lost dep1"); 10421 #endif /* INVARIANTS */ 10422 dp->di_extb[i] = 0; 10423 } 10424 lastadp = NULL; 10425 break; 10426 } 10427 /* 10428 * If we have zero'ed out the last allocated block of the ext 10429 * data, roll back the size to the last currently allocated block. 10430 * We know that this last allocated block is a full-sized as 10431 * we already checked for fragments in the loop above. 10432 */ 10433 if (lastadp != NULL && 10434 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10435 for (i = lastadp->ad_offset; i >= 0; i--) 10436 if (dp->di_extb[i] != 0) 10437 break; 10438 dp->di_extsize = (i + 1) * fs->fs_bsize; 10439 } 10440 /* 10441 * Set the file data dependencies to busy. 10442 */ 10443 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10444 adp = TAILQ_NEXT(adp, ad_next)) { 10445 #ifdef INVARIANTS 10446 if (deplist != 0 && prevlbn >= adp->ad_offset) 10447 panic("softdep_write_inodeblock: lbn order"); 10448 if ((adp->ad_state & ATTACHED) == 0) 10449 panic("inodedep %p and adp %p not attached", inodedep, adp); 10450 prevlbn = adp->ad_offset; 10451 if (adp->ad_offset < UFS_NDADDR && 10452 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10453 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10454 "softdep_write_inodeblock", 10455 (intmax_t)adp->ad_offset, 10456 (intmax_t)dp->di_db[adp->ad_offset], 10457 (intmax_t)adp->ad_newblkno); 10458 if (adp->ad_offset >= UFS_NDADDR && 10459 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10460 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10461 "softdep_write_inodeblock:", 10462 (intmax_t)adp->ad_offset - UFS_NDADDR, 10463 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10464 (intmax_t)adp->ad_newblkno); 10465 deplist |= 1 << adp->ad_offset; 10466 if ((adp->ad_state & ATTACHED) == 0) 10467 panic("softdep_write_inodeblock: Unknown state 0x%x", 10468 adp->ad_state); 10469 #endif /* INVARIANTS */ 10470 adp->ad_state &= ~ATTACHED; 10471 adp->ad_state |= UNDONE; 10472 } 10473 /* 10474 * The on-disk inode cannot claim to be any larger than the last 10475 * fragment that has been written. Otherwise, the on-disk inode 10476 * might have fragments that were not the last block in the file 10477 * which would corrupt the filesystem. 10478 */ 10479 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10480 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10481 if (adp->ad_offset >= UFS_NDADDR) 10482 break; 10483 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10484 /* keep going until hitting a rollback to a frag */ 10485 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10486 continue; 10487 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10488 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10489 #ifdef INVARIANTS 10490 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10491 panic("softdep_write_inodeblock: lost dep2"); 10492 #endif /* INVARIANTS */ 10493 dp->di_db[i] = 0; 10494 } 10495 for (i = 0; i < UFS_NIADDR; i++) { 10496 #ifdef INVARIANTS 10497 if (dp->di_ib[i] != 0 && 10498 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10499 panic("softdep_write_inodeblock: lost dep3"); 10500 #endif /* INVARIANTS */ 10501 dp->di_ib[i] = 0; 10502 } 10503 return; 10504 } 10505 /* 10506 * If we have zero'ed out the last allocated block of the file, 10507 * roll back the size to the last currently allocated block. 10508 * We know that this last allocated block is a full-sized as 10509 * we already checked for fragments in the loop above. 10510 */ 10511 if (lastadp != NULL && 10512 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10513 for (i = lastadp->ad_offset; i >= 0; i--) 10514 if (dp->di_db[i] != 0) 10515 break; 10516 dp->di_size = (i + 1) * fs->fs_bsize; 10517 } 10518 /* 10519 * The only dependencies are for indirect blocks. 10520 * 10521 * The file size for indirect block additions is not guaranteed. 10522 * Such a guarantee would be non-trivial to achieve. The conventional 10523 * synchronous write implementation also does not make this guarantee. 10524 * Fsck should catch and fix discrepancies. Arguably, the file size 10525 * can be over-estimated without destroying integrity when the file 10526 * moves into the indirect blocks (i.e., is large). If we want to 10527 * postpone fsck, we are stuck with this argument. 10528 */ 10529 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10530 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10531 } 10532 10533 /* 10534 * Cancel an indirdep as a result of truncation. Release all of the 10535 * children allocindirs and place their journal work on the appropriate 10536 * list. 10537 */ 10538 static void 10539 cancel_indirdep(indirdep, bp, freeblks) 10540 struct indirdep *indirdep; 10541 struct buf *bp; 10542 struct freeblks *freeblks; 10543 { 10544 struct allocindir *aip; 10545 10546 /* 10547 * None of the indirect pointers will ever be visible, 10548 * so they can simply be tossed. GOINGAWAY ensures 10549 * that allocated pointers will be saved in the buffer 10550 * cache until they are freed. Note that they will 10551 * only be able to be found by their physical address 10552 * since the inode mapping the logical address will 10553 * be gone. The save buffer used for the safe copy 10554 * was allocated in setup_allocindir_phase2 using 10555 * the physical address so it could be used for this 10556 * purpose. Hence we swap the safe copy with the real 10557 * copy, allowing the safe copy to be freed and holding 10558 * on to the real copy for later use in indir_trunc. 10559 */ 10560 if (indirdep->ir_state & GOINGAWAY) 10561 panic("cancel_indirdep: already gone"); 10562 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10563 indirdep->ir_state |= DEPCOMPLETE; 10564 LIST_REMOVE(indirdep, ir_next); 10565 } 10566 indirdep->ir_state |= GOINGAWAY; 10567 /* 10568 * Pass in bp for blocks still have journal writes 10569 * pending so we can cancel them on their own. 10570 */ 10571 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10572 cancel_allocindir(aip, bp, freeblks, 0); 10573 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10574 cancel_allocindir(aip, NULL, freeblks, 0); 10575 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10576 cancel_allocindir(aip, NULL, freeblks, 0); 10577 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10578 cancel_allocindir(aip, NULL, freeblks, 0); 10579 /* 10580 * If there are pending partial truncations we need to keep the 10581 * old block copy around until they complete. This is because 10582 * the current b_data is not a perfect superset of the available 10583 * blocks. 10584 */ 10585 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10586 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10587 else 10588 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10589 WORKLIST_REMOVE(&indirdep->ir_list); 10590 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10591 indirdep->ir_bp = NULL; 10592 indirdep->ir_freeblks = freeblks; 10593 } 10594 10595 /* 10596 * Free an indirdep once it no longer has new pointers to track. 10597 */ 10598 static void 10599 free_indirdep(indirdep) 10600 struct indirdep *indirdep; 10601 { 10602 10603 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10604 ("free_indirdep: Indir trunc list not empty.")); 10605 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10606 ("free_indirdep: Complete head not empty.")); 10607 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10608 ("free_indirdep: write head not empty.")); 10609 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10610 ("free_indirdep: done head not empty.")); 10611 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10612 ("free_indirdep: deplist head not empty.")); 10613 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10614 ("free_indirdep: %p still on newblk list.", indirdep)); 10615 KASSERT(indirdep->ir_saveddata == NULL, 10616 ("free_indirdep: %p still has saved data.", indirdep)); 10617 if (indirdep->ir_state & ONWORKLIST) 10618 WORKLIST_REMOVE(&indirdep->ir_list); 10619 WORKITEM_FREE(indirdep, D_INDIRDEP); 10620 } 10621 10622 /* 10623 * Called before a write to an indirdep. This routine is responsible for 10624 * rolling back pointers to a safe state which includes only those 10625 * allocindirs which have been completed. 10626 */ 10627 static void 10628 initiate_write_indirdep(indirdep, bp) 10629 struct indirdep *indirdep; 10630 struct buf *bp; 10631 { 10632 struct ufsmount *ump; 10633 10634 indirdep->ir_state |= IOSTARTED; 10635 if (indirdep->ir_state & GOINGAWAY) 10636 panic("disk_io_initiation: indirdep gone"); 10637 /* 10638 * If there are no remaining dependencies, this will be writing 10639 * the real pointers. 10640 */ 10641 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10642 TAILQ_EMPTY(&indirdep->ir_trunc)) 10643 return; 10644 /* 10645 * Replace up-to-date version with safe version. 10646 */ 10647 if (indirdep->ir_saveddata == NULL) { 10648 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10649 LOCK_OWNED(ump); 10650 FREE_LOCK(ump); 10651 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10652 M_SOFTDEP_FLAGS); 10653 ACQUIRE_LOCK(ump); 10654 } 10655 indirdep->ir_state &= ~ATTACHED; 10656 indirdep->ir_state |= UNDONE; 10657 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10658 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10659 bp->b_bcount); 10660 } 10661 10662 /* 10663 * Called when an inode has been cleared in a cg bitmap. This finally 10664 * eliminates any canceled jaddrefs 10665 */ 10666 void 10667 softdep_setup_inofree(mp, bp, ino, wkhd) 10668 struct mount *mp; 10669 struct buf *bp; 10670 ino_t ino; 10671 struct workhead *wkhd; 10672 { 10673 struct worklist *wk, *wkn; 10674 struct inodedep *inodedep; 10675 struct ufsmount *ump; 10676 uint8_t *inosused; 10677 struct cg *cgp; 10678 struct fs *fs; 10679 10680 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10681 ("softdep_setup_inofree called on non-softdep filesystem")); 10682 ump = VFSTOUFS(mp); 10683 ACQUIRE_LOCK(ump); 10684 fs = ump->um_fs; 10685 cgp = (struct cg *)bp->b_data; 10686 inosused = cg_inosused(cgp); 10687 if (isset(inosused, ino % fs->fs_ipg)) 10688 panic("softdep_setup_inofree: inode %ju not freed.", 10689 (uintmax_t)ino); 10690 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10691 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10692 (uintmax_t)ino, inodedep); 10693 if (wkhd) { 10694 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10695 if (wk->wk_type != D_JADDREF) 10696 continue; 10697 WORKLIST_REMOVE(wk); 10698 /* 10699 * We can free immediately even if the jaddref 10700 * isn't attached in a background write as now 10701 * the bitmaps are reconciled. 10702 */ 10703 wk->wk_state |= COMPLETE | ATTACHED; 10704 free_jaddref(WK_JADDREF(wk)); 10705 } 10706 jwork_move(&bp->b_dep, wkhd); 10707 } 10708 FREE_LOCK(ump); 10709 } 10710 10711 10712 /* 10713 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10714 * map. Any dependencies waiting for the write to clear are added to the 10715 * buf's list and any jnewblks that are being canceled are discarded 10716 * immediately. 10717 */ 10718 void 10719 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10720 struct mount *mp; 10721 struct buf *bp; 10722 ufs2_daddr_t blkno; 10723 int frags; 10724 struct workhead *wkhd; 10725 { 10726 struct bmsafemap *bmsafemap; 10727 struct jnewblk *jnewblk; 10728 struct ufsmount *ump; 10729 struct worklist *wk; 10730 struct fs *fs; 10731 #ifdef SUJ_DEBUG 10732 uint8_t *blksfree; 10733 struct cg *cgp; 10734 ufs2_daddr_t jstart; 10735 ufs2_daddr_t jend; 10736 ufs2_daddr_t end; 10737 long bno; 10738 int i; 10739 #endif 10740 10741 CTR3(KTR_SUJ, 10742 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10743 blkno, frags, wkhd); 10744 10745 ump = VFSTOUFS(mp); 10746 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10747 ("softdep_setup_blkfree called on non-softdep filesystem")); 10748 ACQUIRE_LOCK(ump); 10749 /* Lookup the bmsafemap so we track when it is dirty. */ 10750 fs = ump->um_fs; 10751 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10752 /* 10753 * Detach any jnewblks which have been canceled. They must linger 10754 * until the bitmap is cleared again by ffs_blkfree() to prevent 10755 * an unjournaled allocation from hitting the disk. 10756 */ 10757 if (wkhd) { 10758 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10759 CTR2(KTR_SUJ, 10760 "softdep_setup_blkfree: blkno %jd wk type %d", 10761 blkno, wk->wk_type); 10762 WORKLIST_REMOVE(wk); 10763 if (wk->wk_type != D_JNEWBLK) { 10764 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10765 continue; 10766 } 10767 jnewblk = WK_JNEWBLK(wk); 10768 KASSERT(jnewblk->jn_state & GOINGAWAY, 10769 ("softdep_setup_blkfree: jnewblk not canceled.")); 10770 #ifdef SUJ_DEBUG 10771 /* 10772 * Assert that this block is free in the bitmap 10773 * before we discard the jnewblk. 10774 */ 10775 cgp = (struct cg *)bp->b_data; 10776 blksfree = cg_blksfree(cgp); 10777 bno = dtogd(fs, jnewblk->jn_blkno); 10778 for (i = jnewblk->jn_oldfrags; 10779 i < jnewblk->jn_frags; i++) { 10780 if (isset(blksfree, bno + i)) 10781 continue; 10782 panic("softdep_setup_blkfree: not free"); 10783 } 10784 #endif 10785 /* 10786 * Even if it's not attached we can free immediately 10787 * as the new bitmap is correct. 10788 */ 10789 wk->wk_state |= COMPLETE | ATTACHED; 10790 free_jnewblk(jnewblk); 10791 } 10792 } 10793 10794 #ifdef SUJ_DEBUG 10795 /* 10796 * Assert that we are not freeing a block which has an outstanding 10797 * allocation dependency. 10798 */ 10799 fs = VFSTOUFS(mp)->um_fs; 10800 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10801 end = blkno + frags; 10802 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10803 /* 10804 * Don't match against blocks that will be freed when the 10805 * background write is done. 10806 */ 10807 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10808 (COMPLETE | DEPCOMPLETE)) 10809 continue; 10810 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10811 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10812 if ((blkno >= jstart && blkno < jend) || 10813 (end > jstart && end <= jend)) { 10814 printf("state 0x%X %jd - %d %d dep %p\n", 10815 jnewblk->jn_state, jnewblk->jn_blkno, 10816 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10817 jnewblk->jn_dep); 10818 panic("softdep_setup_blkfree: " 10819 "%jd-%jd(%d) overlaps with %jd-%jd", 10820 blkno, end, frags, jstart, jend); 10821 } 10822 } 10823 #endif 10824 FREE_LOCK(ump); 10825 } 10826 10827 /* 10828 * Revert a block allocation when the journal record that describes it 10829 * is not yet written. 10830 */ 10831 static int 10832 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10833 struct jnewblk *jnewblk; 10834 struct fs *fs; 10835 struct cg *cgp; 10836 uint8_t *blksfree; 10837 { 10838 ufs1_daddr_t fragno; 10839 long cgbno, bbase; 10840 int frags, blk; 10841 int i; 10842 10843 frags = 0; 10844 cgbno = dtogd(fs, jnewblk->jn_blkno); 10845 /* 10846 * We have to test which frags need to be rolled back. We may 10847 * be operating on a stale copy when doing background writes. 10848 */ 10849 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10850 if (isclr(blksfree, cgbno + i)) 10851 frags++; 10852 if (frags == 0) 10853 return (0); 10854 /* 10855 * This is mostly ffs_blkfree() sans some validation and 10856 * superblock updates. 10857 */ 10858 if (frags == fs->fs_frag) { 10859 fragno = fragstoblks(fs, cgbno); 10860 ffs_setblock(fs, blksfree, fragno); 10861 ffs_clusteracct(fs, cgp, fragno, 1); 10862 cgp->cg_cs.cs_nbfree++; 10863 } else { 10864 cgbno += jnewblk->jn_oldfrags; 10865 bbase = cgbno - fragnum(fs, cgbno); 10866 /* Decrement the old frags. */ 10867 blk = blkmap(fs, blksfree, bbase); 10868 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10869 /* Deallocate the fragment */ 10870 for (i = 0; i < frags; i++) 10871 setbit(blksfree, cgbno + i); 10872 cgp->cg_cs.cs_nffree += frags; 10873 /* Add back in counts associated with the new frags */ 10874 blk = blkmap(fs, blksfree, bbase); 10875 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10876 /* If a complete block has been reassembled, account for it. */ 10877 fragno = fragstoblks(fs, bbase); 10878 if (ffs_isblock(fs, blksfree, fragno)) { 10879 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10880 ffs_clusteracct(fs, cgp, fragno, 1); 10881 cgp->cg_cs.cs_nbfree++; 10882 } 10883 } 10884 stat_jnewblk++; 10885 jnewblk->jn_state &= ~ATTACHED; 10886 jnewblk->jn_state |= UNDONE; 10887 10888 return (frags); 10889 } 10890 10891 static void 10892 initiate_write_bmsafemap(bmsafemap, bp) 10893 struct bmsafemap *bmsafemap; 10894 struct buf *bp; /* The cg block. */ 10895 { 10896 struct jaddref *jaddref; 10897 struct jnewblk *jnewblk; 10898 uint8_t *inosused; 10899 uint8_t *blksfree; 10900 struct cg *cgp; 10901 struct fs *fs; 10902 ino_t ino; 10903 10904 /* 10905 * If this is a background write, we did this at the time that 10906 * the copy was made, so do not need to do it again. 10907 */ 10908 if (bmsafemap->sm_state & IOSTARTED) 10909 return; 10910 bmsafemap->sm_state |= IOSTARTED; 10911 /* 10912 * Clear any inode allocations which are pending journal writes. 10913 */ 10914 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10915 cgp = (struct cg *)bp->b_data; 10916 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10917 inosused = cg_inosused(cgp); 10918 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10919 ino = jaddref->ja_ino % fs->fs_ipg; 10920 if (isset(inosused, ino)) { 10921 if ((jaddref->ja_mode & IFMT) == IFDIR) 10922 cgp->cg_cs.cs_ndir--; 10923 cgp->cg_cs.cs_nifree++; 10924 clrbit(inosused, ino); 10925 jaddref->ja_state &= ~ATTACHED; 10926 jaddref->ja_state |= UNDONE; 10927 stat_jaddref++; 10928 } else 10929 panic("initiate_write_bmsafemap: inode %ju " 10930 "marked free", (uintmax_t)jaddref->ja_ino); 10931 } 10932 } 10933 /* 10934 * Clear any block allocations which are pending journal writes. 10935 */ 10936 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10937 cgp = (struct cg *)bp->b_data; 10938 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10939 blksfree = cg_blksfree(cgp); 10940 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10941 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10942 continue; 10943 panic("initiate_write_bmsafemap: block %jd " 10944 "marked free", jnewblk->jn_blkno); 10945 } 10946 } 10947 /* 10948 * Move allocation lists to the written lists so they can be 10949 * cleared once the block write is complete. 10950 */ 10951 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10952 inodedep, id_deps); 10953 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10954 newblk, nb_deps); 10955 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10956 wk_list); 10957 } 10958 10959 /* 10960 * This routine is called during the completion interrupt 10961 * service routine for a disk write (from the procedure called 10962 * by the device driver to inform the filesystem caches of 10963 * a request completion). It should be called early in this 10964 * procedure, before the block is made available to other 10965 * processes or other routines are called. 10966 * 10967 */ 10968 static void 10969 softdep_disk_write_complete(bp) 10970 struct buf *bp; /* describes the completed disk write */ 10971 { 10972 struct worklist *wk; 10973 struct worklist *owk; 10974 struct ufsmount *ump; 10975 struct workhead reattach; 10976 struct freeblks *freeblks; 10977 struct buf *sbp; 10978 10979 /* 10980 * If an error occurred while doing the write, then the data 10981 * has not hit the disk and the dependencies cannot be processed. 10982 * But we do have to go through and roll forward any dependencies 10983 * that were rolled back before the disk write. 10984 */ 10985 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 10986 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 10987 switch (wk->wk_type) { 10988 10989 case D_PAGEDEP: 10990 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 10991 continue; 10992 10993 case D_INODEDEP: 10994 handle_written_inodeblock(WK_INODEDEP(wk), 10995 bp, 0); 10996 continue; 10997 10998 case D_BMSAFEMAP: 10999 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11000 bp, 0); 11001 continue; 11002 11003 case D_INDIRDEP: 11004 handle_written_indirdep(WK_INDIRDEP(wk), 11005 bp, &sbp, 0); 11006 continue; 11007 default: 11008 /* nothing to roll forward */ 11009 continue; 11010 } 11011 } 11012 return; 11013 } 11014 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 11015 return; 11016 ump = VFSTOUFS(wk->wk_mp); 11017 LIST_INIT(&reattach); 11018 /* 11019 * This lock must not be released anywhere in this code segment. 11020 */ 11021 sbp = NULL; 11022 owk = NULL; 11023 ACQUIRE_LOCK(ump); 11024 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11025 WORKLIST_REMOVE(wk); 11026 atomic_add_long(&dep_write[wk->wk_type], 1); 11027 if (wk == owk) 11028 panic("duplicate worklist: %p\n", wk); 11029 owk = wk; 11030 switch (wk->wk_type) { 11031 11032 case D_PAGEDEP: 11033 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11034 WRITESUCCEEDED)) 11035 WORKLIST_INSERT(&reattach, wk); 11036 continue; 11037 11038 case D_INODEDEP: 11039 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11040 WRITESUCCEEDED)) 11041 WORKLIST_INSERT(&reattach, wk); 11042 continue; 11043 11044 case D_BMSAFEMAP: 11045 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11046 WRITESUCCEEDED)) 11047 WORKLIST_INSERT(&reattach, wk); 11048 continue; 11049 11050 case D_MKDIR: 11051 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11052 continue; 11053 11054 case D_ALLOCDIRECT: 11055 wk->wk_state |= COMPLETE; 11056 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11057 continue; 11058 11059 case D_ALLOCINDIR: 11060 wk->wk_state |= COMPLETE; 11061 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11062 continue; 11063 11064 case D_INDIRDEP: 11065 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11066 WRITESUCCEEDED)) 11067 WORKLIST_INSERT(&reattach, wk); 11068 continue; 11069 11070 case D_FREEBLKS: 11071 wk->wk_state |= COMPLETE; 11072 freeblks = WK_FREEBLKS(wk); 11073 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11074 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11075 add_to_worklist(wk, WK_NODELAY); 11076 continue; 11077 11078 case D_FREEWORK: 11079 handle_written_freework(WK_FREEWORK(wk)); 11080 break; 11081 11082 case D_JSEGDEP: 11083 free_jsegdep(WK_JSEGDEP(wk)); 11084 continue; 11085 11086 case D_JSEG: 11087 handle_written_jseg(WK_JSEG(wk), bp); 11088 continue; 11089 11090 case D_SBDEP: 11091 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11092 WORKLIST_INSERT(&reattach, wk); 11093 continue; 11094 11095 case D_FREEDEP: 11096 free_freedep(WK_FREEDEP(wk)); 11097 continue; 11098 11099 default: 11100 panic("handle_disk_write_complete: Unknown type %s", 11101 TYPENAME(wk->wk_type)); 11102 /* NOTREACHED */ 11103 } 11104 } 11105 /* 11106 * Reattach any requests that must be redone. 11107 */ 11108 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11109 WORKLIST_REMOVE(wk); 11110 WORKLIST_INSERT(&bp->b_dep, wk); 11111 } 11112 FREE_LOCK(ump); 11113 if (sbp) 11114 brelse(sbp); 11115 } 11116 11117 /* 11118 * Called from within softdep_disk_write_complete above. Note that 11119 * this routine is always called from interrupt level with further 11120 * splbio interrupts blocked. 11121 */ 11122 static void 11123 handle_allocdirect_partdone(adp, wkhd) 11124 struct allocdirect *adp; /* the completed allocdirect */ 11125 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11126 { 11127 struct allocdirectlst *listhead; 11128 struct allocdirect *listadp; 11129 struct inodedep *inodedep; 11130 long bsize; 11131 11132 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11133 return; 11134 /* 11135 * The on-disk inode cannot claim to be any larger than the last 11136 * fragment that has been written. Otherwise, the on-disk inode 11137 * might have fragments that were not the last block in the file 11138 * which would corrupt the filesystem. Thus, we cannot free any 11139 * allocdirects after one whose ad_oldblkno claims a fragment as 11140 * these blocks must be rolled back to zero before writing the inode. 11141 * We check the currently active set of allocdirects in id_inoupdt 11142 * or id_extupdt as appropriate. 11143 */ 11144 inodedep = adp->ad_inodedep; 11145 bsize = inodedep->id_fs->fs_bsize; 11146 if (adp->ad_state & EXTDATA) 11147 listhead = &inodedep->id_extupdt; 11148 else 11149 listhead = &inodedep->id_inoupdt; 11150 TAILQ_FOREACH(listadp, listhead, ad_next) { 11151 /* found our block */ 11152 if (listadp == adp) 11153 break; 11154 /* continue if ad_oldlbn is not a fragment */ 11155 if (listadp->ad_oldsize == 0 || 11156 listadp->ad_oldsize == bsize) 11157 continue; 11158 /* hit a fragment */ 11159 return; 11160 } 11161 /* 11162 * If we have reached the end of the current list without 11163 * finding the just finished dependency, then it must be 11164 * on the future dependency list. Future dependencies cannot 11165 * be freed until they are moved to the current list. 11166 */ 11167 if (listadp == NULL) { 11168 #ifdef DEBUG 11169 if (adp->ad_state & EXTDATA) 11170 listhead = &inodedep->id_newextupdt; 11171 else 11172 listhead = &inodedep->id_newinoupdt; 11173 TAILQ_FOREACH(listadp, listhead, ad_next) 11174 /* found our block */ 11175 if (listadp == adp) 11176 break; 11177 if (listadp == NULL) 11178 panic("handle_allocdirect_partdone: lost dep"); 11179 #endif /* DEBUG */ 11180 return; 11181 } 11182 /* 11183 * If we have found the just finished dependency, then queue 11184 * it along with anything that follows it that is complete. 11185 * Since the pointer has not yet been written in the inode 11186 * as the dependency prevents it, place the allocdirect on the 11187 * bufwait list where it will be freed once the pointer is 11188 * valid. 11189 */ 11190 if (wkhd == NULL) 11191 wkhd = &inodedep->id_bufwait; 11192 for (; adp; adp = listadp) { 11193 listadp = TAILQ_NEXT(adp, ad_next); 11194 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11195 return; 11196 TAILQ_REMOVE(listhead, adp, ad_next); 11197 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11198 } 11199 } 11200 11201 /* 11202 * Called from within softdep_disk_write_complete above. This routine 11203 * completes successfully written allocindirs. 11204 */ 11205 static void 11206 handle_allocindir_partdone(aip) 11207 struct allocindir *aip; /* the completed allocindir */ 11208 { 11209 struct indirdep *indirdep; 11210 11211 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11212 return; 11213 indirdep = aip->ai_indirdep; 11214 LIST_REMOVE(aip, ai_next); 11215 /* 11216 * Don't set a pointer while the buffer is undergoing IO or while 11217 * we have active truncations. 11218 */ 11219 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11220 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11221 return; 11222 } 11223 if (indirdep->ir_state & UFS1FMT) 11224 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11225 aip->ai_newblkno; 11226 else 11227 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11228 aip->ai_newblkno; 11229 /* 11230 * Await the pointer write before freeing the allocindir. 11231 */ 11232 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11233 } 11234 11235 /* 11236 * Release segments held on a jwork list. 11237 */ 11238 static void 11239 handle_jwork(wkhd) 11240 struct workhead *wkhd; 11241 { 11242 struct worklist *wk; 11243 11244 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11245 WORKLIST_REMOVE(wk); 11246 switch (wk->wk_type) { 11247 case D_JSEGDEP: 11248 free_jsegdep(WK_JSEGDEP(wk)); 11249 continue; 11250 case D_FREEDEP: 11251 free_freedep(WK_FREEDEP(wk)); 11252 continue; 11253 case D_FREEFRAG: 11254 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11255 WORKITEM_FREE(wk, D_FREEFRAG); 11256 continue; 11257 case D_FREEWORK: 11258 handle_written_freework(WK_FREEWORK(wk)); 11259 continue; 11260 default: 11261 panic("handle_jwork: Unknown type %s\n", 11262 TYPENAME(wk->wk_type)); 11263 } 11264 } 11265 } 11266 11267 /* 11268 * Handle the bufwait list on an inode when it is safe to release items 11269 * held there. This normally happens after an inode block is written but 11270 * may be delayed and handled later if there are pending journal items that 11271 * are not yet safe to be released. 11272 */ 11273 static struct freefile * 11274 handle_bufwait(inodedep, refhd) 11275 struct inodedep *inodedep; 11276 struct workhead *refhd; 11277 { 11278 struct jaddref *jaddref; 11279 struct freefile *freefile; 11280 struct worklist *wk; 11281 11282 freefile = NULL; 11283 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11284 WORKLIST_REMOVE(wk); 11285 switch (wk->wk_type) { 11286 case D_FREEFILE: 11287 /* 11288 * We defer adding freefile to the worklist 11289 * until all other additions have been made to 11290 * ensure that it will be done after all the 11291 * old blocks have been freed. 11292 */ 11293 if (freefile != NULL) 11294 panic("handle_bufwait: freefile"); 11295 freefile = WK_FREEFILE(wk); 11296 continue; 11297 11298 case D_MKDIR: 11299 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11300 continue; 11301 11302 case D_DIRADD: 11303 diradd_inode_written(WK_DIRADD(wk), inodedep); 11304 continue; 11305 11306 case D_FREEFRAG: 11307 wk->wk_state |= COMPLETE; 11308 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11309 add_to_worklist(wk, 0); 11310 continue; 11311 11312 case D_DIRREM: 11313 wk->wk_state |= COMPLETE; 11314 add_to_worklist(wk, 0); 11315 continue; 11316 11317 case D_ALLOCDIRECT: 11318 case D_ALLOCINDIR: 11319 free_newblk(WK_NEWBLK(wk)); 11320 continue; 11321 11322 case D_JNEWBLK: 11323 wk->wk_state |= COMPLETE; 11324 free_jnewblk(WK_JNEWBLK(wk)); 11325 continue; 11326 11327 /* 11328 * Save freed journal segments and add references on 11329 * the supplied list which will delay their release 11330 * until the cg bitmap is cleared on disk. 11331 */ 11332 case D_JSEGDEP: 11333 if (refhd == NULL) 11334 free_jsegdep(WK_JSEGDEP(wk)); 11335 else 11336 WORKLIST_INSERT(refhd, wk); 11337 continue; 11338 11339 case D_JADDREF: 11340 jaddref = WK_JADDREF(wk); 11341 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11342 if_deps); 11343 /* 11344 * Transfer any jaddrefs to the list to be freed with 11345 * the bitmap if we're handling a removed file. 11346 */ 11347 if (refhd == NULL) { 11348 wk->wk_state |= COMPLETE; 11349 free_jaddref(jaddref); 11350 } else 11351 WORKLIST_INSERT(refhd, wk); 11352 continue; 11353 11354 default: 11355 panic("handle_bufwait: Unknown type %p(%s)", 11356 wk, TYPENAME(wk->wk_type)); 11357 /* NOTREACHED */ 11358 } 11359 } 11360 return (freefile); 11361 } 11362 /* 11363 * Called from within softdep_disk_write_complete above to restore 11364 * in-memory inode block contents to their most up-to-date state. Note 11365 * that this routine is always called from interrupt level with further 11366 * interrupts from this device blocked. 11367 * 11368 * If the write did not succeed, we will do all the roll-forward 11369 * operations, but we will not take the actions that will allow its 11370 * dependencies to be processed. 11371 */ 11372 static int 11373 handle_written_inodeblock(inodedep, bp, flags) 11374 struct inodedep *inodedep; 11375 struct buf *bp; /* buffer containing the inode block */ 11376 int flags; 11377 { 11378 struct freefile *freefile; 11379 struct allocdirect *adp, *nextadp; 11380 struct ufs1_dinode *dp1 = NULL; 11381 struct ufs2_dinode *dp2 = NULL; 11382 struct workhead wkhd; 11383 int hadchanges, fstype; 11384 ino_t freelink; 11385 11386 LIST_INIT(&wkhd); 11387 hadchanges = 0; 11388 freefile = NULL; 11389 if ((inodedep->id_state & IOSTARTED) == 0) 11390 panic("handle_written_inodeblock: not started"); 11391 inodedep->id_state &= ~IOSTARTED; 11392 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11393 fstype = UFS1; 11394 dp1 = (struct ufs1_dinode *)bp->b_data + 11395 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11396 freelink = dp1->di_freelink; 11397 } else { 11398 fstype = UFS2; 11399 dp2 = (struct ufs2_dinode *)bp->b_data + 11400 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11401 freelink = dp2->di_freelink; 11402 } 11403 /* 11404 * Leave this inodeblock dirty until it's in the list. 11405 */ 11406 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11407 (flags & WRITESUCCEEDED)) { 11408 struct inodedep *inon; 11409 11410 inon = TAILQ_NEXT(inodedep, id_unlinked); 11411 if ((inon == NULL && freelink == 0) || 11412 (inon && inon->id_ino == freelink)) { 11413 if (inon) 11414 inon->id_state |= UNLINKPREV; 11415 inodedep->id_state |= UNLINKNEXT; 11416 } 11417 hadchanges = 1; 11418 } 11419 /* 11420 * If we had to rollback the inode allocation because of 11421 * bitmaps being incomplete, then simply restore it. 11422 * Keep the block dirty so that it will not be reclaimed until 11423 * all associated dependencies have been cleared and the 11424 * corresponding updates written to disk. 11425 */ 11426 if (inodedep->id_savedino1 != NULL) { 11427 hadchanges = 1; 11428 if (fstype == UFS1) 11429 *dp1 = *inodedep->id_savedino1; 11430 else 11431 *dp2 = *inodedep->id_savedino2; 11432 free(inodedep->id_savedino1, M_SAVEDINO); 11433 inodedep->id_savedino1 = NULL; 11434 if ((bp->b_flags & B_DELWRI) == 0) 11435 stat_inode_bitmap++; 11436 bdirty(bp); 11437 /* 11438 * If the inode is clear here and GOINGAWAY it will never 11439 * be written. Process the bufwait and clear any pending 11440 * work which may include the freefile. 11441 */ 11442 if (inodedep->id_state & GOINGAWAY) 11443 goto bufwait; 11444 return (1); 11445 } 11446 if (flags & WRITESUCCEEDED) 11447 inodedep->id_state |= COMPLETE; 11448 /* 11449 * Roll forward anything that had to be rolled back before 11450 * the inode could be updated. 11451 */ 11452 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11453 nextadp = TAILQ_NEXT(adp, ad_next); 11454 if (adp->ad_state & ATTACHED) 11455 panic("handle_written_inodeblock: new entry"); 11456 if (fstype == UFS1) { 11457 if (adp->ad_offset < UFS_NDADDR) { 11458 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11459 panic("%s %s #%jd mismatch %d != %jd", 11460 "handle_written_inodeblock:", 11461 "direct pointer", 11462 (intmax_t)adp->ad_offset, 11463 dp1->di_db[adp->ad_offset], 11464 (intmax_t)adp->ad_oldblkno); 11465 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11466 } else { 11467 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11468 0) 11469 panic("%s: %s #%jd allocated as %d", 11470 "handle_written_inodeblock", 11471 "indirect pointer", 11472 (intmax_t)adp->ad_offset - 11473 UFS_NDADDR, 11474 dp1->di_ib[adp->ad_offset - 11475 UFS_NDADDR]); 11476 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11477 adp->ad_newblkno; 11478 } 11479 } else { 11480 if (adp->ad_offset < UFS_NDADDR) { 11481 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11482 panic("%s: %s #%jd %s %jd != %jd", 11483 "handle_written_inodeblock", 11484 "direct pointer", 11485 (intmax_t)adp->ad_offset, "mismatch", 11486 (intmax_t)dp2->di_db[adp->ad_offset], 11487 (intmax_t)adp->ad_oldblkno); 11488 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11489 } else { 11490 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11491 0) 11492 panic("%s: %s #%jd allocated as %jd", 11493 "handle_written_inodeblock", 11494 "indirect pointer", 11495 (intmax_t)adp->ad_offset - 11496 UFS_NDADDR, 11497 (intmax_t) 11498 dp2->di_ib[adp->ad_offset - 11499 UFS_NDADDR]); 11500 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11501 adp->ad_newblkno; 11502 } 11503 } 11504 adp->ad_state &= ~UNDONE; 11505 adp->ad_state |= ATTACHED; 11506 hadchanges = 1; 11507 } 11508 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11509 nextadp = TAILQ_NEXT(adp, ad_next); 11510 if (adp->ad_state & ATTACHED) 11511 panic("handle_written_inodeblock: new entry"); 11512 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11513 panic("%s: direct pointers #%jd %s %jd != %jd", 11514 "handle_written_inodeblock", 11515 (intmax_t)adp->ad_offset, "mismatch", 11516 (intmax_t)dp2->di_extb[adp->ad_offset], 11517 (intmax_t)adp->ad_oldblkno); 11518 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11519 adp->ad_state &= ~UNDONE; 11520 adp->ad_state |= ATTACHED; 11521 hadchanges = 1; 11522 } 11523 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11524 stat_direct_blk_ptrs++; 11525 /* 11526 * Reset the file size to its most up-to-date value. 11527 */ 11528 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11529 panic("handle_written_inodeblock: bad size"); 11530 if (inodedep->id_savednlink > UFS_LINK_MAX) 11531 panic("handle_written_inodeblock: Invalid link count " 11532 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11533 inodedep); 11534 if (fstype == UFS1) { 11535 if (dp1->di_nlink != inodedep->id_savednlink) { 11536 dp1->di_nlink = inodedep->id_savednlink; 11537 hadchanges = 1; 11538 } 11539 if (dp1->di_size != inodedep->id_savedsize) { 11540 dp1->di_size = inodedep->id_savedsize; 11541 hadchanges = 1; 11542 } 11543 } else { 11544 if (dp2->di_nlink != inodedep->id_savednlink) { 11545 dp2->di_nlink = inodedep->id_savednlink; 11546 hadchanges = 1; 11547 } 11548 if (dp2->di_size != inodedep->id_savedsize) { 11549 dp2->di_size = inodedep->id_savedsize; 11550 hadchanges = 1; 11551 } 11552 if (dp2->di_extsize != inodedep->id_savedextsize) { 11553 dp2->di_extsize = inodedep->id_savedextsize; 11554 hadchanges = 1; 11555 } 11556 } 11557 inodedep->id_savedsize = -1; 11558 inodedep->id_savedextsize = -1; 11559 inodedep->id_savednlink = -1; 11560 /* 11561 * If there were any rollbacks in the inode block, then it must be 11562 * marked dirty so that its will eventually get written back in 11563 * its correct form. 11564 */ 11565 if (hadchanges) 11566 bdirty(bp); 11567 bufwait: 11568 /* 11569 * If the write did not succeed, we have done all the roll-forward 11570 * operations, but we cannot take the actions that will allow its 11571 * dependencies to be processed. 11572 */ 11573 if ((flags & WRITESUCCEEDED) == 0) 11574 return (hadchanges); 11575 /* 11576 * Process any allocdirects that completed during the update. 11577 */ 11578 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11579 handle_allocdirect_partdone(adp, &wkhd); 11580 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11581 handle_allocdirect_partdone(adp, &wkhd); 11582 /* 11583 * Process deallocations that were held pending until the 11584 * inode had been written to disk. Freeing of the inode 11585 * is delayed until after all blocks have been freed to 11586 * avoid creation of new <vfsid, inum, lbn> triples 11587 * before the old ones have been deleted. Completely 11588 * unlinked inodes are not processed until the unlinked 11589 * inode list is written or the last reference is removed. 11590 */ 11591 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11592 freefile = handle_bufwait(inodedep, NULL); 11593 if (freefile && !LIST_EMPTY(&wkhd)) { 11594 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11595 freefile = NULL; 11596 } 11597 } 11598 /* 11599 * Move rolled forward dependency completions to the bufwait list 11600 * now that those that were already written have been processed. 11601 */ 11602 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11603 panic("handle_written_inodeblock: bufwait but no changes"); 11604 jwork_move(&inodedep->id_bufwait, &wkhd); 11605 11606 if (freefile != NULL) { 11607 /* 11608 * If the inode is goingaway it was never written. Fake up 11609 * the state here so free_inodedep() can succeed. 11610 */ 11611 if (inodedep->id_state & GOINGAWAY) 11612 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11613 if (free_inodedep(inodedep) == 0) 11614 panic("handle_written_inodeblock: live inodedep %p", 11615 inodedep); 11616 add_to_worklist(&freefile->fx_list, 0); 11617 return (0); 11618 } 11619 11620 /* 11621 * If no outstanding dependencies, free it. 11622 */ 11623 if (free_inodedep(inodedep) || 11624 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11625 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11626 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11627 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11628 return (0); 11629 return (hadchanges); 11630 } 11631 11632 /* 11633 * Perform needed roll-forwards and kick off any dependencies that 11634 * can now be processed. 11635 * 11636 * If the write did not succeed, we will do all the roll-forward 11637 * operations, but we will not take the actions that will allow its 11638 * dependencies to be processed. 11639 */ 11640 static int 11641 handle_written_indirdep(indirdep, bp, bpp, flags) 11642 struct indirdep *indirdep; 11643 struct buf *bp; 11644 struct buf **bpp; 11645 int flags; 11646 { 11647 struct allocindir *aip; 11648 struct buf *sbp; 11649 int chgs; 11650 11651 if (indirdep->ir_state & GOINGAWAY) 11652 panic("handle_written_indirdep: indirdep gone"); 11653 if ((indirdep->ir_state & IOSTARTED) == 0) 11654 panic("handle_written_indirdep: IO not started"); 11655 chgs = 0; 11656 /* 11657 * If there were rollbacks revert them here. 11658 */ 11659 if (indirdep->ir_saveddata) { 11660 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11661 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11662 free(indirdep->ir_saveddata, M_INDIRDEP); 11663 indirdep->ir_saveddata = NULL; 11664 } 11665 chgs = 1; 11666 } 11667 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11668 indirdep->ir_state |= ATTACHED; 11669 /* 11670 * If the write did not succeed, we have done all the roll-forward 11671 * operations, but we cannot take the actions that will allow its 11672 * dependencies to be processed. 11673 */ 11674 if ((flags & WRITESUCCEEDED) == 0) { 11675 stat_indir_blk_ptrs++; 11676 bdirty(bp); 11677 return (1); 11678 } 11679 /* 11680 * Move allocindirs with written pointers to the completehd if 11681 * the indirdep's pointer is not yet written. Otherwise 11682 * free them here. 11683 */ 11684 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11685 LIST_REMOVE(aip, ai_next); 11686 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11687 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11688 ai_next); 11689 newblk_freefrag(&aip->ai_block); 11690 continue; 11691 } 11692 free_newblk(&aip->ai_block); 11693 } 11694 /* 11695 * Move allocindirs that have finished dependency processing from 11696 * the done list to the write list after updating the pointers. 11697 */ 11698 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11699 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11700 handle_allocindir_partdone(aip); 11701 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11702 panic("disk_write_complete: not gone"); 11703 chgs = 1; 11704 } 11705 } 11706 /* 11707 * Preserve the indirdep if there were any changes or if it is not 11708 * yet valid on disk. 11709 */ 11710 if (chgs) { 11711 stat_indir_blk_ptrs++; 11712 bdirty(bp); 11713 return (1); 11714 } 11715 /* 11716 * If there were no changes we can discard the savedbp and detach 11717 * ourselves from the buf. We are only carrying completed pointers 11718 * in this case. 11719 */ 11720 sbp = indirdep->ir_savebp; 11721 sbp->b_flags |= B_INVAL | B_NOCACHE; 11722 indirdep->ir_savebp = NULL; 11723 indirdep->ir_bp = NULL; 11724 if (*bpp != NULL) 11725 panic("handle_written_indirdep: bp already exists."); 11726 *bpp = sbp; 11727 /* 11728 * The indirdep may not be freed until its parent points at it. 11729 */ 11730 if (indirdep->ir_state & DEPCOMPLETE) 11731 free_indirdep(indirdep); 11732 11733 return (0); 11734 } 11735 11736 /* 11737 * Process a diradd entry after its dependent inode has been written. 11738 * This routine must be called with splbio interrupts blocked. 11739 */ 11740 static void 11741 diradd_inode_written(dap, inodedep) 11742 struct diradd *dap; 11743 struct inodedep *inodedep; 11744 { 11745 11746 dap->da_state |= COMPLETE; 11747 complete_diradd(dap); 11748 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11749 } 11750 11751 /* 11752 * Returns true if the bmsafemap will have rollbacks when written. Must only 11753 * be called with the per-filesystem lock and the buf lock on the cg held. 11754 */ 11755 static int 11756 bmsafemap_backgroundwrite(bmsafemap, bp) 11757 struct bmsafemap *bmsafemap; 11758 struct buf *bp; 11759 { 11760 int dirty; 11761 11762 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11763 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11764 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11765 /* 11766 * If we're initiating a background write we need to process the 11767 * rollbacks as they exist now, not as they exist when IO starts. 11768 * No other consumers will look at the contents of the shadowed 11769 * buf so this is safe to do here. 11770 */ 11771 if (bp->b_xflags & BX_BKGRDMARKER) 11772 initiate_write_bmsafemap(bmsafemap, bp); 11773 11774 return (dirty); 11775 } 11776 11777 /* 11778 * Re-apply an allocation when a cg write is complete. 11779 */ 11780 static int 11781 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11782 struct jnewblk *jnewblk; 11783 struct fs *fs; 11784 struct cg *cgp; 11785 uint8_t *blksfree; 11786 { 11787 ufs1_daddr_t fragno; 11788 ufs2_daddr_t blkno; 11789 long cgbno, bbase; 11790 int frags, blk; 11791 int i; 11792 11793 frags = 0; 11794 cgbno = dtogd(fs, jnewblk->jn_blkno); 11795 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11796 if (isclr(blksfree, cgbno + i)) 11797 panic("jnewblk_rollforward: re-allocated fragment"); 11798 frags++; 11799 } 11800 if (frags == fs->fs_frag) { 11801 blkno = fragstoblks(fs, cgbno); 11802 ffs_clrblock(fs, blksfree, (long)blkno); 11803 ffs_clusteracct(fs, cgp, blkno, -1); 11804 cgp->cg_cs.cs_nbfree--; 11805 } else { 11806 bbase = cgbno - fragnum(fs, cgbno); 11807 cgbno += jnewblk->jn_oldfrags; 11808 /* If a complete block had been reassembled, account for it. */ 11809 fragno = fragstoblks(fs, bbase); 11810 if (ffs_isblock(fs, blksfree, fragno)) { 11811 cgp->cg_cs.cs_nffree += fs->fs_frag; 11812 ffs_clusteracct(fs, cgp, fragno, -1); 11813 cgp->cg_cs.cs_nbfree--; 11814 } 11815 /* Decrement the old frags. */ 11816 blk = blkmap(fs, blksfree, bbase); 11817 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11818 /* Allocate the fragment */ 11819 for (i = 0; i < frags; i++) 11820 clrbit(blksfree, cgbno + i); 11821 cgp->cg_cs.cs_nffree -= frags; 11822 /* Add back in counts associated with the new frags */ 11823 blk = blkmap(fs, blksfree, bbase); 11824 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11825 } 11826 return (frags); 11827 } 11828 11829 /* 11830 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11831 * changes if it's not a background write. Set all written dependencies 11832 * to DEPCOMPLETE and free the structure if possible. 11833 * 11834 * If the write did not succeed, we will do all the roll-forward 11835 * operations, but we will not take the actions that will allow its 11836 * dependencies to be processed. 11837 */ 11838 static int 11839 handle_written_bmsafemap(bmsafemap, bp, flags) 11840 struct bmsafemap *bmsafemap; 11841 struct buf *bp; 11842 int flags; 11843 { 11844 struct newblk *newblk; 11845 struct inodedep *inodedep; 11846 struct jaddref *jaddref, *jatmp; 11847 struct jnewblk *jnewblk, *jntmp; 11848 struct ufsmount *ump; 11849 uint8_t *inosused; 11850 uint8_t *blksfree; 11851 struct cg *cgp; 11852 struct fs *fs; 11853 ino_t ino; 11854 int foreground; 11855 int chgs; 11856 11857 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11858 panic("handle_written_bmsafemap: Not started\n"); 11859 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11860 chgs = 0; 11861 bmsafemap->sm_state &= ~IOSTARTED; 11862 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11863 /* 11864 * If write was successful, release journal work that was waiting 11865 * on the write. Otherwise move the work back. 11866 */ 11867 if (flags & WRITESUCCEEDED) 11868 handle_jwork(&bmsafemap->sm_freewr); 11869 else 11870 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11871 worklist, wk_list); 11872 11873 /* 11874 * Restore unwritten inode allocation pending jaddref writes. 11875 */ 11876 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11877 cgp = (struct cg *)bp->b_data; 11878 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11879 inosused = cg_inosused(cgp); 11880 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11881 ja_bmdeps, jatmp) { 11882 if ((jaddref->ja_state & UNDONE) == 0) 11883 continue; 11884 ino = jaddref->ja_ino % fs->fs_ipg; 11885 if (isset(inosused, ino)) 11886 panic("handle_written_bmsafemap: " 11887 "re-allocated inode"); 11888 /* Do the roll-forward only if it's a real copy. */ 11889 if (foreground) { 11890 if ((jaddref->ja_mode & IFMT) == IFDIR) 11891 cgp->cg_cs.cs_ndir++; 11892 cgp->cg_cs.cs_nifree--; 11893 setbit(inosused, ino); 11894 chgs = 1; 11895 } 11896 jaddref->ja_state &= ~UNDONE; 11897 jaddref->ja_state |= ATTACHED; 11898 free_jaddref(jaddref); 11899 } 11900 } 11901 /* 11902 * Restore any block allocations which are pending journal writes. 11903 */ 11904 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11905 cgp = (struct cg *)bp->b_data; 11906 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11907 blksfree = cg_blksfree(cgp); 11908 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11909 jntmp) { 11910 if ((jnewblk->jn_state & UNDONE) == 0) 11911 continue; 11912 /* Do the roll-forward only if it's a real copy. */ 11913 if (foreground && 11914 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11915 chgs = 1; 11916 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11917 jnewblk->jn_state |= ATTACHED; 11918 free_jnewblk(jnewblk); 11919 } 11920 } 11921 /* 11922 * If the write did not succeed, we have done all the roll-forward 11923 * operations, but we cannot take the actions that will allow its 11924 * dependencies to be processed. 11925 */ 11926 if ((flags & WRITESUCCEEDED) == 0) { 11927 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11928 newblk, nb_deps); 11929 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11930 worklist, wk_list); 11931 if (foreground) 11932 bdirty(bp); 11933 return (1); 11934 } 11935 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11936 newblk->nb_state |= DEPCOMPLETE; 11937 newblk->nb_state &= ~ONDEPLIST; 11938 newblk->nb_bmsafemap = NULL; 11939 LIST_REMOVE(newblk, nb_deps); 11940 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11941 handle_allocdirect_partdone( 11942 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11943 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11944 handle_allocindir_partdone( 11945 WK_ALLOCINDIR(&newblk->nb_list)); 11946 else if (newblk->nb_list.wk_type != D_NEWBLK) 11947 panic("handle_written_bmsafemap: Unexpected type: %s", 11948 TYPENAME(newblk->nb_list.wk_type)); 11949 } 11950 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11951 inodedep->id_state |= DEPCOMPLETE; 11952 inodedep->id_state &= ~ONDEPLIST; 11953 LIST_REMOVE(inodedep, id_deps); 11954 inodedep->id_bmsafemap = NULL; 11955 } 11956 LIST_REMOVE(bmsafemap, sm_next); 11957 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11958 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11959 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11960 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11961 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11962 LIST_REMOVE(bmsafemap, sm_hash); 11963 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11964 return (0); 11965 } 11966 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11967 if (foreground) 11968 bdirty(bp); 11969 return (1); 11970 } 11971 11972 /* 11973 * Try to free a mkdir dependency. 11974 */ 11975 static void 11976 complete_mkdir(mkdir) 11977 struct mkdir *mkdir; 11978 { 11979 struct diradd *dap; 11980 11981 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11982 return; 11983 LIST_REMOVE(mkdir, md_mkdirs); 11984 dap = mkdir->md_diradd; 11985 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11986 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11987 dap->da_state |= DEPCOMPLETE; 11988 complete_diradd(dap); 11989 } 11990 WORKITEM_FREE(mkdir, D_MKDIR); 11991 } 11992 11993 /* 11994 * Handle the completion of a mkdir dependency. 11995 */ 11996 static void 11997 handle_written_mkdir(mkdir, type) 11998 struct mkdir *mkdir; 11999 int type; 12000 { 12001 12002 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12003 panic("handle_written_mkdir: bad type"); 12004 mkdir->md_state |= COMPLETE; 12005 complete_mkdir(mkdir); 12006 } 12007 12008 static int 12009 free_pagedep(pagedep) 12010 struct pagedep *pagedep; 12011 { 12012 int i; 12013 12014 if (pagedep->pd_state & NEWBLOCK) 12015 return (0); 12016 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12017 return (0); 12018 for (i = 0; i < DAHASHSZ; i++) 12019 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12020 return (0); 12021 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12022 return (0); 12023 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12024 return (0); 12025 if (pagedep->pd_state & ONWORKLIST) 12026 WORKLIST_REMOVE(&pagedep->pd_list); 12027 LIST_REMOVE(pagedep, pd_hash); 12028 WORKITEM_FREE(pagedep, D_PAGEDEP); 12029 12030 return (1); 12031 } 12032 12033 /* 12034 * Called from within softdep_disk_write_complete above. 12035 * A write operation was just completed. Removed inodes can 12036 * now be freed and associated block pointers may be committed. 12037 * Note that this routine is always called from interrupt level 12038 * with further interrupts from this device blocked. 12039 * 12040 * If the write did not succeed, we will do all the roll-forward 12041 * operations, but we will not take the actions that will allow its 12042 * dependencies to be processed. 12043 */ 12044 static int 12045 handle_written_filepage(pagedep, bp, flags) 12046 struct pagedep *pagedep; 12047 struct buf *bp; /* buffer containing the written page */ 12048 int flags; 12049 { 12050 struct dirrem *dirrem; 12051 struct diradd *dap, *nextdap; 12052 struct direct *ep; 12053 int i, chgs; 12054 12055 if ((pagedep->pd_state & IOSTARTED) == 0) 12056 panic("handle_written_filepage: not started"); 12057 pagedep->pd_state &= ~IOSTARTED; 12058 if ((flags & WRITESUCCEEDED) == 0) 12059 goto rollforward; 12060 /* 12061 * Process any directory removals that have been committed. 12062 */ 12063 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12064 LIST_REMOVE(dirrem, dm_next); 12065 dirrem->dm_state |= COMPLETE; 12066 dirrem->dm_dirinum = pagedep->pd_ino; 12067 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12068 ("handle_written_filepage: Journal entries not written.")); 12069 add_to_worklist(&dirrem->dm_list, 0); 12070 } 12071 /* 12072 * Free any directory additions that have been committed. 12073 * If it is a newly allocated block, we have to wait until 12074 * the on-disk directory inode claims the new block. 12075 */ 12076 if ((pagedep->pd_state & NEWBLOCK) == 0) 12077 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12078 free_diradd(dap, NULL); 12079 rollforward: 12080 /* 12081 * Uncommitted directory entries must be restored. 12082 */ 12083 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12084 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12085 dap = nextdap) { 12086 nextdap = LIST_NEXT(dap, da_pdlist); 12087 if (dap->da_state & ATTACHED) 12088 panic("handle_written_filepage: attached"); 12089 ep = (struct direct *) 12090 ((char *)bp->b_data + dap->da_offset); 12091 ep->d_ino = dap->da_newinum; 12092 dap->da_state &= ~UNDONE; 12093 dap->da_state |= ATTACHED; 12094 chgs = 1; 12095 /* 12096 * If the inode referenced by the directory has 12097 * been written out, then the dependency can be 12098 * moved to the pending list. 12099 */ 12100 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12101 LIST_REMOVE(dap, da_pdlist); 12102 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12103 da_pdlist); 12104 } 12105 } 12106 } 12107 /* 12108 * If there were any rollbacks in the directory, then it must be 12109 * marked dirty so that its will eventually get written back in 12110 * its correct form. 12111 */ 12112 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12113 if ((bp->b_flags & B_DELWRI) == 0) 12114 stat_dir_entry++; 12115 bdirty(bp); 12116 return (1); 12117 } 12118 /* 12119 * If we are not waiting for a new directory block to be 12120 * claimed by its inode, then the pagedep will be freed. 12121 * Otherwise it will remain to track any new entries on 12122 * the page in case they are fsync'ed. 12123 */ 12124 free_pagedep(pagedep); 12125 return (0); 12126 } 12127 12128 /* 12129 * Writing back in-core inode structures. 12130 * 12131 * The filesystem only accesses an inode's contents when it occupies an 12132 * "in-core" inode structure. These "in-core" structures are separate from 12133 * the page frames used to cache inode blocks. Only the latter are 12134 * transferred to/from the disk. So, when the updated contents of the 12135 * "in-core" inode structure are copied to the corresponding in-memory inode 12136 * block, the dependencies are also transferred. The following procedure is 12137 * called when copying a dirty "in-core" inode to a cached inode block. 12138 */ 12139 12140 /* 12141 * Called when an inode is loaded from disk. If the effective link count 12142 * differed from the actual link count when it was last flushed, then we 12143 * need to ensure that the correct effective link count is put back. 12144 */ 12145 void 12146 softdep_load_inodeblock(ip) 12147 struct inode *ip; /* the "in_core" copy of the inode */ 12148 { 12149 struct inodedep *inodedep; 12150 struct ufsmount *ump; 12151 12152 ump = ITOUMP(ip); 12153 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12154 ("softdep_load_inodeblock called on non-softdep filesystem")); 12155 /* 12156 * Check for alternate nlink count. 12157 */ 12158 ip->i_effnlink = ip->i_nlink; 12159 ACQUIRE_LOCK(ump); 12160 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12161 FREE_LOCK(ump); 12162 return; 12163 } 12164 ip->i_effnlink -= inodedep->id_nlinkdelta; 12165 FREE_LOCK(ump); 12166 } 12167 12168 /* 12169 * This routine is called just before the "in-core" inode 12170 * information is to be copied to the in-memory inode block. 12171 * Recall that an inode block contains several inodes. If 12172 * the force flag is set, then the dependencies will be 12173 * cleared so that the update can always be made. Note that 12174 * the buffer is locked when this routine is called, so we 12175 * will never be in the middle of writing the inode block 12176 * to disk. 12177 */ 12178 void 12179 softdep_update_inodeblock(ip, bp, waitfor) 12180 struct inode *ip; /* the "in_core" copy of the inode */ 12181 struct buf *bp; /* the buffer containing the inode block */ 12182 int waitfor; /* nonzero => update must be allowed */ 12183 { 12184 struct inodedep *inodedep; 12185 struct inoref *inoref; 12186 struct ufsmount *ump; 12187 struct worklist *wk; 12188 struct mount *mp; 12189 struct buf *ibp; 12190 struct fs *fs; 12191 int error; 12192 12193 ump = ITOUMP(ip); 12194 mp = UFSTOVFS(ump); 12195 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12196 ("softdep_update_inodeblock called on non-softdep filesystem")); 12197 fs = ump->um_fs; 12198 /* 12199 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12200 * does not have access to the in-core ip so must write directly into 12201 * the inode block buffer when setting freelink. 12202 */ 12203 if (fs->fs_magic == FS_UFS1_MAGIC) 12204 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12205 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12206 else 12207 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12208 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12209 /* 12210 * If the effective link count is not equal to the actual link 12211 * count, then we must track the difference in an inodedep while 12212 * the inode is (potentially) tossed out of the cache. Otherwise, 12213 * if there is no existing inodedep, then there are no dependencies 12214 * to track. 12215 */ 12216 ACQUIRE_LOCK(ump); 12217 again: 12218 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12219 FREE_LOCK(ump); 12220 if (ip->i_effnlink != ip->i_nlink) 12221 panic("softdep_update_inodeblock: bad link count"); 12222 return; 12223 } 12224 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12225 panic("softdep_update_inodeblock: bad delta"); 12226 /* 12227 * If we're flushing all dependencies we must also move any waiting 12228 * for journal writes onto the bufwait list prior to I/O. 12229 */ 12230 if (waitfor) { 12231 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12232 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12233 == DEPCOMPLETE) { 12234 jwait(&inoref->if_list, MNT_WAIT); 12235 goto again; 12236 } 12237 } 12238 } 12239 /* 12240 * Changes have been initiated. Anything depending on these 12241 * changes cannot occur until this inode has been written. 12242 */ 12243 inodedep->id_state &= ~COMPLETE; 12244 if ((inodedep->id_state & ONWORKLIST) == 0) 12245 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12246 /* 12247 * Any new dependencies associated with the incore inode must 12248 * now be moved to the list associated with the buffer holding 12249 * the in-memory copy of the inode. Once merged process any 12250 * allocdirects that are completed by the merger. 12251 */ 12252 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12253 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12254 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12255 NULL); 12256 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12257 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12258 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12259 NULL); 12260 /* 12261 * Now that the inode has been pushed into the buffer, the 12262 * operations dependent on the inode being written to disk 12263 * can be moved to the id_bufwait so that they will be 12264 * processed when the buffer I/O completes. 12265 */ 12266 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12267 WORKLIST_REMOVE(wk); 12268 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12269 } 12270 /* 12271 * Newly allocated inodes cannot be written until the bitmap 12272 * that allocates them have been written (indicated by 12273 * DEPCOMPLETE being set in id_state). If we are doing a 12274 * forced sync (e.g., an fsync on a file), we force the bitmap 12275 * to be written so that the update can be done. 12276 */ 12277 if (waitfor == 0) { 12278 FREE_LOCK(ump); 12279 return; 12280 } 12281 retry: 12282 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12283 FREE_LOCK(ump); 12284 return; 12285 } 12286 ibp = inodedep->id_bmsafemap->sm_buf; 12287 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12288 if (ibp == NULL) { 12289 /* 12290 * If ibp came back as NULL, the dependency could have been 12291 * freed while we slept. Look it up again, and check to see 12292 * that it has completed. 12293 */ 12294 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12295 goto retry; 12296 FREE_LOCK(ump); 12297 return; 12298 } 12299 FREE_LOCK(ump); 12300 if ((error = bwrite(ibp)) != 0) 12301 softdep_error("softdep_update_inodeblock: bwrite", error); 12302 } 12303 12304 /* 12305 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12306 * old inode dependency list (such as id_inoupdt). This routine must be 12307 * called with splbio interrupts blocked. 12308 */ 12309 static void 12310 merge_inode_lists(newlisthead, oldlisthead) 12311 struct allocdirectlst *newlisthead; 12312 struct allocdirectlst *oldlisthead; 12313 { 12314 struct allocdirect *listadp, *newadp; 12315 12316 newadp = TAILQ_FIRST(newlisthead); 12317 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12318 if (listadp->ad_offset < newadp->ad_offset) { 12319 listadp = TAILQ_NEXT(listadp, ad_next); 12320 continue; 12321 } 12322 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12323 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12324 if (listadp->ad_offset == newadp->ad_offset) { 12325 allocdirect_merge(oldlisthead, newadp, 12326 listadp); 12327 listadp = newadp; 12328 } 12329 newadp = TAILQ_FIRST(newlisthead); 12330 } 12331 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12332 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12333 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12334 } 12335 } 12336 12337 /* 12338 * If we are doing an fsync, then we must ensure that any directory 12339 * entries for the inode have been written after the inode gets to disk. 12340 */ 12341 int 12342 softdep_fsync(vp) 12343 struct vnode *vp; /* the "in_core" copy of the inode */ 12344 { 12345 struct inodedep *inodedep; 12346 struct pagedep *pagedep; 12347 struct inoref *inoref; 12348 struct ufsmount *ump; 12349 struct worklist *wk; 12350 struct diradd *dap; 12351 struct mount *mp; 12352 struct vnode *pvp; 12353 struct inode *ip; 12354 struct buf *bp; 12355 struct fs *fs; 12356 struct thread *td = curthread; 12357 int error, flushparent, pagedep_new_block; 12358 ino_t parentino; 12359 ufs_lbn_t lbn; 12360 12361 ip = VTOI(vp); 12362 mp = vp->v_mount; 12363 ump = VFSTOUFS(mp); 12364 fs = ump->um_fs; 12365 if (MOUNTEDSOFTDEP(mp) == 0) 12366 return (0); 12367 ACQUIRE_LOCK(ump); 12368 restart: 12369 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12370 FREE_LOCK(ump); 12371 return (0); 12372 } 12373 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12374 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12375 == DEPCOMPLETE) { 12376 jwait(&inoref->if_list, MNT_WAIT); 12377 goto restart; 12378 } 12379 } 12380 if (!LIST_EMPTY(&inodedep->id_inowait) || 12381 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12382 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12383 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12384 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12385 panic("softdep_fsync: pending ops %p", inodedep); 12386 for (error = 0, flushparent = 0; ; ) { 12387 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12388 break; 12389 if (wk->wk_type != D_DIRADD) 12390 panic("softdep_fsync: Unexpected type %s", 12391 TYPENAME(wk->wk_type)); 12392 dap = WK_DIRADD(wk); 12393 /* 12394 * Flush our parent if this directory entry has a MKDIR_PARENT 12395 * dependency or is contained in a newly allocated block. 12396 */ 12397 if (dap->da_state & DIRCHG) 12398 pagedep = dap->da_previous->dm_pagedep; 12399 else 12400 pagedep = dap->da_pagedep; 12401 parentino = pagedep->pd_ino; 12402 lbn = pagedep->pd_lbn; 12403 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12404 panic("softdep_fsync: dirty"); 12405 if ((dap->da_state & MKDIR_PARENT) || 12406 (pagedep->pd_state & NEWBLOCK)) 12407 flushparent = 1; 12408 else 12409 flushparent = 0; 12410 /* 12411 * If we are being fsync'ed as part of vgone'ing this vnode, 12412 * then we will not be able to release and recover the 12413 * vnode below, so we just have to give up on writing its 12414 * directory entry out. It will eventually be written, just 12415 * not now, but then the user was not asking to have it 12416 * written, so we are not breaking any promises. 12417 */ 12418 if (vp->v_iflag & VI_DOOMED) 12419 break; 12420 /* 12421 * We prevent deadlock by always fetching inodes from the 12422 * root, moving down the directory tree. Thus, when fetching 12423 * our parent directory, we first try to get the lock. If 12424 * that fails, we must unlock ourselves before requesting 12425 * the lock on our parent. See the comment in ufs_lookup 12426 * for details on possible races. 12427 */ 12428 FREE_LOCK(ump); 12429 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12430 FFSV_FORCEINSMQ)) { 12431 error = vfs_busy(mp, MBF_NOWAIT); 12432 if (error != 0) { 12433 vfs_ref(mp); 12434 VOP_UNLOCK(vp, 0); 12435 error = vfs_busy(mp, 0); 12436 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12437 vfs_rel(mp); 12438 if (error != 0) 12439 return (ENOENT); 12440 if (vp->v_iflag & VI_DOOMED) { 12441 vfs_unbusy(mp); 12442 return (ENOENT); 12443 } 12444 } 12445 VOP_UNLOCK(vp, 0); 12446 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12447 &pvp, FFSV_FORCEINSMQ); 12448 vfs_unbusy(mp); 12449 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12450 if (vp->v_iflag & VI_DOOMED) { 12451 if (error == 0) 12452 vput(pvp); 12453 error = ENOENT; 12454 } 12455 if (error != 0) 12456 return (error); 12457 } 12458 /* 12459 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12460 * that are contained in direct blocks will be resolved by 12461 * doing a ffs_update. Pagedeps contained in indirect blocks 12462 * may require a complete sync'ing of the directory. So, we 12463 * try the cheap and fast ffs_update first, and if that fails, 12464 * then we do the slower ffs_syncvnode of the directory. 12465 */ 12466 if (flushparent) { 12467 int locked; 12468 12469 if ((error = ffs_update(pvp, 1)) != 0) { 12470 vput(pvp); 12471 return (error); 12472 } 12473 ACQUIRE_LOCK(ump); 12474 locked = 1; 12475 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12476 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12477 if (wk->wk_type != D_DIRADD) 12478 panic("softdep_fsync: Unexpected type %s", 12479 TYPENAME(wk->wk_type)); 12480 dap = WK_DIRADD(wk); 12481 if (dap->da_state & DIRCHG) 12482 pagedep = dap->da_previous->dm_pagedep; 12483 else 12484 pagedep = dap->da_pagedep; 12485 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12486 FREE_LOCK(ump); 12487 locked = 0; 12488 if (pagedep_new_block && (error = 12489 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12490 vput(pvp); 12491 return (error); 12492 } 12493 } 12494 } 12495 if (locked) 12496 FREE_LOCK(ump); 12497 } 12498 /* 12499 * Flush directory page containing the inode's name. 12500 */ 12501 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12502 &bp); 12503 if (error == 0) 12504 error = bwrite(bp); 12505 else 12506 brelse(bp); 12507 vput(pvp); 12508 if (error != 0) 12509 return (error); 12510 ACQUIRE_LOCK(ump); 12511 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12512 break; 12513 } 12514 FREE_LOCK(ump); 12515 return (0); 12516 } 12517 12518 /* 12519 * Flush all the dirty bitmaps associated with the block device 12520 * before flushing the rest of the dirty blocks so as to reduce 12521 * the number of dependencies that will have to be rolled back. 12522 * 12523 * XXX Unused? 12524 */ 12525 void 12526 softdep_fsync_mountdev(vp) 12527 struct vnode *vp; 12528 { 12529 struct buf *bp, *nbp; 12530 struct worklist *wk; 12531 struct bufobj *bo; 12532 12533 if (!vn_isdisk(vp, NULL)) 12534 panic("softdep_fsync_mountdev: vnode not a disk"); 12535 bo = &vp->v_bufobj; 12536 restart: 12537 BO_LOCK(bo); 12538 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12539 /* 12540 * If it is already scheduled, skip to the next buffer. 12541 */ 12542 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12543 continue; 12544 12545 if ((bp->b_flags & B_DELWRI) == 0) 12546 panic("softdep_fsync_mountdev: not dirty"); 12547 /* 12548 * We are only interested in bitmaps with outstanding 12549 * dependencies. 12550 */ 12551 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12552 wk->wk_type != D_BMSAFEMAP || 12553 (bp->b_vflags & BV_BKGRDINPROG)) { 12554 BUF_UNLOCK(bp); 12555 continue; 12556 } 12557 BO_UNLOCK(bo); 12558 bremfree(bp); 12559 (void) bawrite(bp); 12560 goto restart; 12561 } 12562 drain_output(vp); 12563 BO_UNLOCK(bo); 12564 } 12565 12566 /* 12567 * Sync all cylinder groups that were dirty at the time this function is 12568 * called. Newly dirtied cgs will be inserted before the sentinel. This 12569 * is used to flush freedep activity that may be holding up writes to a 12570 * indirect block. 12571 */ 12572 static int 12573 sync_cgs(mp, waitfor) 12574 struct mount *mp; 12575 int waitfor; 12576 { 12577 struct bmsafemap *bmsafemap; 12578 struct bmsafemap *sentinel; 12579 struct ufsmount *ump; 12580 struct buf *bp; 12581 int error; 12582 12583 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12584 sentinel->sm_cg = -1; 12585 ump = VFSTOUFS(mp); 12586 error = 0; 12587 ACQUIRE_LOCK(ump); 12588 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12589 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12590 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12591 /* Skip sentinels and cgs with no work to release. */ 12592 if (bmsafemap->sm_cg == -1 || 12593 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12594 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12595 LIST_REMOVE(sentinel, sm_next); 12596 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12597 continue; 12598 } 12599 /* 12600 * If we don't get the lock and we're waiting try again, if 12601 * not move on to the next buf and try to sync it. 12602 */ 12603 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12604 if (bp == NULL && waitfor == MNT_WAIT) 12605 continue; 12606 LIST_REMOVE(sentinel, sm_next); 12607 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12608 if (bp == NULL) 12609 continue; 12610 FREE_LOCK(ump); 12611 if (waitfor == MNT_NOWAIT) 12612 bawrite(bp); 12613 else 12614 error = bwrite(bp); 12615 ACQUIRE_LOCK(ump); 12616 if (error) 12617 break; 12618 } 12619 LIST_REMOVE(sentinel, sm_next); 12620 FREE_LOCK(ump); 12621 free(sentinel, M_BMSAFEMAP); 12622 return (error); 12623 } 12624 12625 /* 12626 * This routine is called when we are trying to synchronously flush a 12627 * file. This routine must eliminate any filesystem metadata dependencies 12628 * so that the syncing routine can succeed. 12629 */ 12630 int 12631 softdep_sync_metadata(struct vnode *vp) 12632 { 12633 struct inode *ip; 12634 int error; 12635 12636 ip = VTOI(vp); 12637 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12638 ("softdep_sync_metadata called on non-softdep filesystem")); 12639 /* 12640 * Ensure that any direct block dependencies have been cleared, 12641 * truncations are started, and inode references are journaled. 12642 */ 12643 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12644 /* 12645 * Write all journal records to prevent rollbacks on devvp. 12646 */ 12647 if (vp->v_type == VCHR) 12648 softdep_flushjournal(vp->v_mount); 12649 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12650 /* 12651 * Ensure that all truncates are written so we won't find deps on 12652 * indirect blocks. 12653 */ 12654 process_truncates(vp); 12655 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12656 12657 return (error); 12658 } 12659 12660 /* 12661 * This routine is called when we are attempting to sync a buf with 12662 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12663 * other IO it can but returns EBUSY if the buffer is not yet able to 12664 * be written. Dependencies which will not cause rollbacks will always 12665 * return 0. 12666 */ 12667 int 12668 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12669 { 12670 struct indirdep *indirdep; 12671 struct pagedep *pagedep; 12672 struct allocindir *aip; 12673 struct newblk *newblk; 12674 struct ufsmount *ump; 12675 struct buf *nbp; 12676 struct worklist *wk; 12677 int i, error; 12678 12679 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12680 ("softdep_sync_buf called on non-softdep filesystem")); 12681 /* 12682 * For VCHR we just don't want to force flush any dependencies that 12683 * will cause rollbacks. 12684 */ 12685 if (vp->v_type == VCHR) { 12686 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12687 return (EBUSY); 12688 return (0); 12689 } 12690 ump = VFSTOUFS(vp->v_mount); 12691 ACQUIRE_LOCK(ump); 12692 /* 12693 * As we hold the buffer locked, none of its dependencies 12694 * will disappear. 12695 */ 12696 error = 0; 12697 top: 12698 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12699 switch (wk->wk_type) { 12700 12701 case D_ALLOCDIRECT: 12702 case D_ALLOCINDIR: 12703 newblk = WK_NEWBLK(wk); 12704 if (newblk->nb_jnewblk != NULL) { 12705 if (waitfor == MNT_NOWAIT) { 12706 error = EBUSY; 12707 goto out_unlock; 12708 } 12709 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12710 goto top; 12711 } 12712 if (newblk->nb_state & DEPCOMPLETE || 12713 waitfor == MNT_NOWAIT) 12714 continue; 12715 nbp = newblk->nb_bmsafemap->sm_buf; 12716 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12717 if (nbp == NULL) 12718 goto top; 12719 FREE_LOCK(ump); 12720 if ((error = bwrite(nbp)) != 0) 12721 goto out; 12722 ACQUIRE_LOCK(ump); 12723 continue; 12724 12725 case D_INDIRDEP: 12726 indirdep = WK_INDIRDEP(wk); 12727 if (waitfor == MNT_NOWAIT) { 12728 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12729 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12730 error = EBUSY; 12731 goto out_unlock; 12732 } 12733 } 12734 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12735 panic("softdep_sync_buf: truncation pending."); 12736 restart: 12737 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12738 newblk = (struct newblk *)aip; 12739 if (newblk->nb_jnewblk != NULL) { 12740 jwait(&newblk->nb_jnewblk->jn_list, 12741 waitfor); 12742 goto restart; 12743 } 12744 if (newblk->nb_state & DEPCOMPLETE) 12745 continue; 12746 nbp = newblk->nb_bmsafemap->sm_buf; 12747 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12748 if (nbp == NULL) 12749 goto restart; 12750 FREE_LOCK(ump); 12751 if ((error = bwrite(nbp)) != 0) 12752 goto out; 12753 ACQUIRE_LOCK(ump); 12754 goto restart; 12755 } 12756 continue; 12757 12758 case D_PAGEDEP: 12759 /* 12760 * Only flush directory entries in synchronous passes. 12761 */ 12762 if (waitfor != MNT_WAIT) { 12763 error = EBUSY; 12764 goto out_unlock; 12765 } 12766 /* 12767 * While syncing snapshots, we must allow recursive 12768 * lookups. 12769 */ 12770 BUF_AREC(bp); 12771 /* 12772 * We are trying to sync a directory that may 12773 * have dependencies on both its own metadata 12774 * and/or dependencies on the inodes of any 12775 * recently allocated files. We walk its diradd 12776 * lists pushing out the associated inode. 12777 */ 12778 pagedep = WK_PAGEDEP(wk); 12779 for (i = 0; i < DAHASHSZ; i++) { 12780 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12781 continue; 12782 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12783 &pagedep->pd_diraddhd[i]))) { 12784 BUF_NOREC(bp); 12785 goto out_unlock; 12786 } 12787 } 12788 BUF_NOREC(bp); 12789 continue; 12790 12791 case D_FREEWORK: 12792 case D_FREEDEP: 12793 case D_JSEGDEP: 12794 case D_JNEWBLK: 12795 continue; 12796 12797 default: 12798 panic("softdep_sync_buf: Unknown type %s", 12799 TYPENAME(wk->wk_type)); 12800 /* NOTREACHED */ 12801 } 12802 } 12803 out_unlock: 12804 FREE_LOCK(ump); 12805 out: 12806 return (error); 12807 } 12808 12809 /* 12810 * Flush the dependencies associated with an inodedep. 12811 * Called with splbio blocked. 12812 */ 12813 static int 12814 flush_inodedep_deps(vp, mp, ino) 12815 struct vnode *vp; 12816 struct mount *mp; 12817 ino_t ino; 12818 { 12819 struct inodedep *inodedep; 12820 struct inoref *inoref; 12821 struct ufsmount *ump; 12822 int error, waitfor; 12823 12824 /* 12825 * This work is done in two passes. The first pass grabs most 12826 * of the buffers and begins asynchronously writing them. The 12827 * only way to wait for these asynchronous writes is to sleep 12828 * on the filesystem vnode which may stay busy for a long time 12829 * if the filesystem is active. So, instead, we make a second 12830 * pass over the dependencies blocking on each write. In the 12831 * usual case we will be blocking against a write that we 12832 * initiated, so when it is done the dependency will have been 12833 * resolved. Thus the second pass is expected to end quickly. 12834 * We give a brief window at the top of the loop to allow 12835 * any pending I/O to complete. 12836 */ 12837 ump = VFSTOUFS(mp); 12838 LOCK_OWNED(ump); 12839 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12840 if (error) 12841 return (error); 12842 FREE_LOCK(ump); 12843 ACQUIRE_LOCK(ump); 12844 restart: 12845 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12846 return (0); 12847 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12848 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12849 == DEPCOMPLETE) { 12850 jwait(&inoref->if_list, MNT_WAIT); 12851 goto restart; 12852 } 12853 } 12854 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12855 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12856 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12857 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12858 continue; 12859 /* 12860 * If pass2, we are done, otherwise do pass 2. 12861 */ 12862 if (waitfor == MNT_WAIT) 12863 break; 12864 waitfor = MNT_WAIT; 12865 } 12866 /* 12867 * Try freeing inodedep in case all dependencies have been removed. 12868 */ 12869 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12870 (void) free_inodedep(inodedep); 12871 return (0); 12872 } 12873 12874 /* 12875 * Flush an inode dependency list. 12876 * Called with splbio blocked. 12877 */ 12878 static int 12879 flush_deplist(listhead, waitfor, errorp) 12880 struct allocdirectlst *listhead; 12881 int waitfor; 12882 int *errorp; 12883 { 12884 struct allocdirect *adp; 12885 struct newblk *newblk; 12886 struct ufsmount *ump; 12887 struct buf *bp; 12888 12889 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12890 return (0); 12891 ump = VFSTOUFS(adp->ad_list.wk_mp); 12892 LOCK_OWNED(ump); 12893 TAILQ_FOREACH(adp, listhead, ad_next) { 12894 newblk = (struct newblk *)adp; 12895 if (newblk->nb_jnewblk != NULL) { 12896 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12897 return (1); 12898 } 12899 if (newblk->nb_state & DEPCOMPLETE) 12900 continue; 12901 bp = newblk->nb_bmsafemap->sm_buf; 12902 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12903 if (bp == NULL) { 12904 if (waitfor == MNT_NOWAIT) 12905 continue; 12906 return (1); 12907 } 12908 FREE_LOCK(ump); 12909 if (waitfor == MNT_NOWAIT) 12910 bawrite(bp); 12911 else 12912 *errorp = bwrite(bp); 12913 ACQUIRE_LOCK(ump); 12914 return (1); 12915 } 12916 return (0); 12917 } 12918 12919 /* 12920 * Flush dependencies associated with an allocdirect block. 12921 */ 12922 static int 12923 flush_newblk_dep(vp, mp, lbn) 12924 struct vnode *vp; 12925 struct mount *mp; 12926 ufs_lbn_t lbn; 12927 { 12928 struct newblk *newblk; 12929 struct ufsmount *ump; 12930 struct bufobj *bo; 12931 struct inode *ip; 12932 struct buf *bp; 12933 ufs2_daddr_t blkno; 12934 int error; 12935 12936 error = 0; 12937 bo = &vp->v_bufobj; 12938 ip = VTOI(vp); 12939 blkno = DIP(ip, i_db[lbn]); 12940 if (blkno == 0) 12941 panic("flush_newblk_dep: Missing block"); 12942 ump = VFSTOUFS(mp); 12943 ACQUIRE_LOCK(ump); 12944 /* 12945 * Loop until all dependencies related to this block are satisfied. 12946 * We must be careful to restart after each sleep in case a write 12947 * completes some part of this process for us. 12948 */ 12949 for (;;) { 12950 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12951 FREE_LOCK(ump); 12952 break; 12953 } 12954 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12955 panic("flush_newblk_deps: Bad newblk %p", newblk); 12956 /* 12957 * Flush the journal. 12958 */ 12959 if (newblk->nb_jnewblk != NULL) { 12960 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12961 continue; 12962 } 12963 /* 12964 * Write the bitmap dependency. 12965 */ 12966 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12967 bp = newblk->nb_bmsafemap->sm_buf; 12968 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12969 if (bp == NULL) 12970 continue; 12971 FREE_LOCK(ump); 12972 error = bwrite(bp); 12973 if (error) 12974 break; 12975 ACQUIRE_LOCK(ump); 12976 continue; 12977 } 12978 /* 12979 * Write the buffer. 12980 */ 12981 FREE_LOCK(ump); 12982 BO_LOCK(bo); 12983 bp = gbincore(bo, lbn); 12984 if (bp != NULL) { 12985 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12986 LK_INTERLOCK, BO_LOCKPTR(bo)); 12987 if (error == ENOLCK) { 12988 ACQUIRE_LOCK(ump); 12989 error = 0; 12990 continue; /* Slept, retry */ 12991 } 12992 if (error != 0) 12993 break; /* Failed */ 12994 if (bp->b_flags & B_DELWRI) { 12995 bremfree(bp); 12996 error = bwrite(bp); 12997 if (error) 12998 break; 12999 } else 13000 BUF_UNLOCK(bp); 13001 } else 13002 BO_UNLOCK(bo); 13003 /* 13004 * We have to wait for the direct pointers to 13005 * point at the newdirblk before the dependency 13006 * will go away. 13007 */ 13008 error = ffs_update(vp, 1); 13009 if (error) 13010 break; 13011 ACQUIRE_LOCK(ump); 13012 } 13013 return (error); 13014 } 13015 13016 /* 13017 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13018 * Called with splbio blocked. 13019 */ 13020 static int 13021 flush_pagedep_deps(pvp, mp, diraddhdp) 13022 struct vnode *pvp; 13023 struct mount *mp; 13024 struct diraddhd *diraddhdp; 13025 { 13026 struct inodedep *inodedep; 13027 struct inoref *inoref; 13028 struct ufsmount *ump; 13029 struct diradd *dap; 13030 struct vnode *vp; 13031 int error = 0; 13032 struct buf *bp; 13033 ino_t inum; 13034 struct diraddhd unfinished; 13035 13036 LIST_INIT(&unfinished); 13037 ump = VFSTOUFS(mp); 13038 LOCK_OWNED(ump); 13039 restart: 13040 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13041 /* 13042 * Flush ourselves if this directory entry 13043 * has a MKDIR_PARENT dependency. 13044 */ 13045 if (dap->da_state & MKDIR_PARENT) { 13046 FREE_LOCK(ump); 13047 if ((error = ffs_update(pvp, 1)) != 0) 13048 break; 13049 ACQUIRE_LOCK(ump); 13050 /* 13051 * If that cleared dependencies, go on to next. 13052 */ 13053 if (dap != LIST_FIRST(diraddhdp)) 13054 continue; 13055 /* 13056 * All MKDIR_PARENT dependencies and all the 13057 * NEWBLOCK pagedeps that are contained in direct 13058 * blocks were resolved by doing above ffs_update. 13059 * Pagedeps contained in indirect blocks may 13060 * require a complete sync'ing of the directory. 13061 * We are in the midst of doing a complete sync, 13062 * so if they are not resolved in this pass we 13063 * defer them for now as they will be sync'ed by 13064 * our caller shortly. 13065 */ 13066 LIST_REMOVE(dap, da_pdlist); 13067 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13068 continue; 13069 } 13070 /* 13071 * A newly allocated directory must have its "." and 13072 * ".." entries written out before its name can be 13073 * committed in its parent. 13074 */ 13075 inum = dap->da_newinum; 13076 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13077 panic("flush_pagedep_deps: lost inode1"); 13078 /* 13079 * Wait for any pending journal adds to complete so we don't 13080 * cause rollbacks while syncing. 13081 */ 13082 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13083 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13084 == DEPCOMPLETE) { 13085 jwait(&inoref->if_list, MNT_WAIT); 13086 goto restart; 13087 } 13088 } 13089 if (dap->da_state & MKDIR_BODY) { 13090 FREE_LOCK(ump); 13091 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13092 FFSV_FORCEINSMQ))) 13093 break; 13094 error = flush_newblk_dep(vp, mp, 0); 13095 /* 13096 * If we still have the dependency we might need to 13097 * update the vnode to sync the new link count to 13098 * disk. 13099 */ 13100 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13101 error = ffs_update(vp, 1); 13102 vput(vp); 13103 if (error != 0) 13104 break; 13105 ACQUIRE_LOCK(ump); 13106 /* 13107 * If that cleared dependencies, go on to next. 13108 */ 13109 if (dap != LIST_FIRST(diraddhdp)) 13110 continue; 13111 if (dap->da_state & MKDIR_BODY) { 13112 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13113 &inodedep); 13114 panic("flush_pagedep_deps: MKDIR_BODY " 13115 "inodedep %p dap %p vp %p", 13116 inodedep, dap, vp); 13117 } 13118 } 13119 /* 13120 * Flush the inode on which the directory entry depends. 13121 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13122 * the only remaining dependency is that the updated inode 13123 * count must get pushed to disk. The inode has already 13124 * been pushed into its inode buffer (via VOP_UPDATE) at 13125 * the time of the reference count change. So we need only 13126 * locate that buffer, ensure that there will be no rollback 13127 * caused by a bitmap dependency, then write the inode buffer. 13128 */ 13129 retry: 13130 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13131 panic("flush_pagedep_deps: lost inode"); 13132 /* 13133 * If the inode still has bitmap dependencies, 13134 * push them to disk. 13135 */ 13136 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13137 bp = inodedep->id_bmsafemap->sm_buf; 13138 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13139 if (bp == NULL) 13140 goto retry; 13141 FREE_LOCK(ump); 13142 if ((error = bwrite(bp)) != 0) 13143 break; 13144 ACQUIRE_LOCK(ump); 13145 if (dap != LIST_FIRST(diraddhdp)) 13146 continue; 13147 } 13148 /* 13149 * If the inode is still sitting in a buffer waiting 13150 * to be written or waiting for the link count to be 13151 * adjusted update it here to flush it to disk. 13152 */ 13153 if (dap == LIST_FIRST(diraddhdp)) { 13154 FREE_LOCK(ump); 13155 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13156 FFSV_FORCEINSMQ))) 13157 break; 13158 error = ffs_update(vp, 1); 13159 vput(vp); 13160 if (error) 13161 break; 13162 ACQUIRE_LOCK(ump); 13163 } 13164 /* 13165 * If we have failed to get rid of all the dependencies 13166 * then something is seriously wrong. 13167 */ 13168 if (dap == LIST_FIRST(diraddhdp)) { 13169 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13170 panic("flush_pagedep_deps: failed to flush " 13171 "inodedep %p ino %ju dap %p", 13172 inodedep, (uintmax_t)inum, dap); 13173 } 13174 } 13175 if (error) 13176 ACQUIRE_LOCK(ump); 13177 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13178 LIST_REMOVE(dap, da_pdlist); 13179 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13180 } 13181 return (error); 13182 } 13183 13184 /* 13185 * A large burst of file addition or deletion activity can drive the 13186 * memory load excessively high. First attempt to slow things down 13187 * using the techniques below. If that fails, this routine requests 13188 * the offending operations to fall back to running synchronously 13189 * until the memory load returns to a reasonable level. 13190 */ 13191 int 13192 softdep_slowdown(vp) 13193 struct vnode *vp; 13194 { 13195 struct ufsmount *ump; 13196 int jlow; 13197 int max_softdeps_hard; 13198 13199 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13200 ("softdep_slowdown called on non-softdep filesystem")); 13201 ump = VFSTOUFS(vp->v_mount); 13202 ACQUIRE_LOCK(ump); 13203 jlow = 0; 13204 /* 13205 * Check for journal space if needed. 13206 */ 13207 if (DOINGSUJ(vp)) { 13208 if (journal_space(ump, 0) == 0) 13209 jlow = 1; 13210 } 13211 /* 13212 * If the system is under its limits and our filesystem is 13213 * not responsible for more than our share of the usage and 13214 * we are not low on journal space, then no need to slow down. 13215 */ 13216 max_softdeps_hard = max_softdeps * 11 / 10; 13217 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13218 dep_current[D_INODEDEP] < max_softdeps_hard && 13219 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13220 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13221 ump->softdep_curdeps[D_DIRREM] < 13222 (max_softdeps_hard / 2) / stat_flush_threads && 13223 ump->softdep_curdeps[D_INODEDEP] < 13224 max_softdeps_hard / stat_flush_threads && 13225 ump->softdep_curdeps[D_INDIRDEP] < 13226 (max_softdeps_hard / 1000) / stat_flush_threads && 13227 ump->softdep_curdeps[D_FREEBLKS] < 13228 max_softdeps_hard / stat_flush_threads) { 13229 FREE_LOCK(ump); 13230 return (0); 13231 } 13232 /* 13233 * If the journal is low or our filesystem is over its limit 13234 * then speedup the cleanup. 13235 */ 13236 if (ump->softdep_curdeps[D_INDIRDEP] < 13237 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13238 softdep_speedup(ump); 13239 stat_sync_limit_hit += 1; 13240 FREE_LOCK(ump); 13241 /* 13242 * We only slow down the rate at which new dependencies are 13243 * generated if we are not using journaling. With journaling, 13244 * the cleanup should always be sufficient to keep things 13245 * under control. 13246 */ 13247 if (DOINGSUJ(vp)) 13248 return (0); 13249 return (1); 13250 } 13251 13252 /* 13253 * Called by the allocation routines when they are about to fail 13254 * in the hope that we can free up the requested resource (inodes 13255 * or disk space). 13256 * 13257 * First check to see if the work list has anything on it. If it has, 13258 * clean up entries until we successfully free the requested resource. 13259 * Because this process holds inodes locked, we cannot handle any remove 13260 * requests that might block on a locked inode as that could lead to 13261 * deadlock. If the worklist yields none of the requested resource, 13262 * start syncing out vnodes to free up the needed space. 13263 */ 13264 int 13265 softdep_request_cleanup(fs, vp, cred, resource) 13266 struct fs *fs; 13267 struct vnode *vp; 13268 struct ucred *cred; 13269 int resource; 13270 { 13271 struct ufsmount *ump; 13272 struct mount *mp; 13273 long starttime; 13274 ufs2_daddr_t needed; 13275 int error, failed_vnode; 13276 13277 /* 13278 * If we are being called because of a process doing a 13279 * copy-on-write, then it is not safe to process any 13280 * worklist items as we will recurse into the copyonwrite 13281 * routine. This will result in an incoherent snapshot. 13282 * If the vnode that we hold is a snapshot, we must avoid 13283 * handling other resources that could cause deadlock. 13284 */ 13285 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13286 return (0); 13287 13288 if (resource == FLUSH_BLOCKS_WAIT) 13289 stat_cleanup_blkrequests += 1; 13290 else 13291 stat_cleanup_inorequests += 1; 13292 13293 mp = vp->v_mount; 13294 ump = VFSTOUFS(mp); 13295 mtx_assert(UFS_MTX(ump), MA_OWNED); 13296 UFS_UNLOCK(ump); 13297 error = ffs_update(vp, 1); 13298 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13299 UFS_LOCK(ump); 13300 return (0); 13301 } 13302 /* 13303 * If we are in need of resources, start by cleaning up 13304 * any block removals associated with our inode. 13305 */ 13306 ACQUIRE_LOCK(ump); 13307 process_removes(vp); 13308 process_truncates(vp); 13309 FREE_LOCK(ump); 13310 /* 13311 * Now clean up at least as many resources as we will need. 13312 * 13313 * When requested to clean up inodes, the number that are needed 13314 * is set by the number of simultaneous writers (mnt_writeopcount) 13315 * plus a bit of slop (2) in case some more writers show up while 13316 * we are cleaning. 13317 * 13318 * When requested to free up space, the amount of space that 13319 * we need is enough blocks to allocate a full-sized segment 13320 * (fs_contigsumsize). The number of such segments that will 13321 * be needed is set by the number of simultaneous writers 13322 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13323 * writers show up while we are cleaning. 13324 * 13325 * Additionally, if we are unpriviledged and allocating space, 13326 * we need to ensure that we clean up enough blocks to get the 13327 * needed number of blocks over the threshold of the minimum 13328 * number of blocks required to be kept free by the filesystem 13329 * (fs_minfree). 13330 */ 13331 if (resource == FLUSH_INODES_WAIT) { 13332 needed = vp->v_mount->mnt_writeopcount + 2; 13333 } else if (resource == FLUSH_BLOCKS_WAIT) { 13334 needed = (vp->v_mount->mnt_writeopcount + 2) * 13335 fs->fs_contigsumsize; 13336 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13337 needed += fragstoblks(fs, 13338 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13339 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13340 } else { 13341 UFS_LOCK(ump); 13342 printf("softdep_request_cleanup: Unknown resource type %d\n", 13343 resource); 13344 return (0); 13345 } 13346 starttime = time_second; 13347 retry: 13348 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13349 fs->fs_cstotal.cs_nbfree <= needed) || 13350 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13351 fs->fs_cstotal.cs_nifree <= needed)) { 13352 ACQUIRE_LOCK(ump); 13353 if (ump->softdep_on_worklist > 0 && 13354 process_worklist_item(UFSTOVFS(ump), 13355 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13356 stat_worklist_push += 1; 13357 FREE_LOCK(ump); 13358 } 13359 /* 13360 * If we still need resources and there are no more worklist 13361 * entries to process to obtain them, we have to start flushing 13362 * the dirty vnodes to force the release of additional requests 13363 * to the worklist that we can then process to reap addition 13364 * resources. We walk the vnodes associated with the mount point 13365 * until we get the needed worklist requests that we can reap. 13366 * 13367 * If there are several threads all needing to clean the same 13368 * mount point, only one is allowed to walk the mount list. 13369 * When several threads all try to walk the same mount list, 13370 * they end up competing with each other and often end up in 13371 * livelock. This approach ensures that forward progress is 13372 * made at the cost of occational ENOSPC errors being returned 13373 * that might otherwise have been avoided. 13374 */ 13375 error = 1; 13376 if ((resource == FLUSH_BLOCKS_WAIT && 13377 fs->fs_cstotal.cs_nbfree <= needed) || 13378 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13379 fs->fs_cstotal.cs_nifree <= needed)) { 13380 ACQUIRE_LOCK(ump); 13381 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13382 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13383 FREE_LOCK(ump); 13384 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13385 ACQUIRE_LOCK(ump); 13386 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13387 FREE_LOCK(ump); 13388 if (ump->softdep_on_worklist > 0) { 13389 stat_cleanup_retries += 1; 13390 if (!failed_vnode) 13391 goto retry; 13392 } 13393 } else { 13394 FREE_LOCK(ump); 13395 error = 0; 13396 } 13397 stat_cleanup_failures += 1; 13398 } 13399 if (time_second - starttime > stat_cleanup_high_delay) 13400 stat_cleanup_high_delay = time_second - starttime; 13401 UFS_LOCK(ump); 13402 return (error); 13403 } 13404 13405 /* 13406 * Scan the vnodes for the specified mount point flushing out any 13407 * vnodes that can be locked without waiting. Finally, try to flush 13408 * the device associated with the mount point if it can be locked 13409 * without waiting. 13410 * 13411 * We return 0 if we were able to lock every vnode in our scan. 13412 * If we had to skip one or more vnodes, we return 1. 13413 */ 13414 static int 13415 softdep_request_cleanup_flush(mp, ump) 13416 struct mount *mp; 13417 struct ufsmount *ump; 13418 { 13419 struct thread *td; 13420 struct vnode *lvp, *mvp; 13421 int failed_vnode; 13422 13423 failed_vnode = 0; 13424 td = curthread; 13425 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13426 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13427 VI_UNLOCK(lvp); 13428 continue; 13429 } 13430 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13431 td) != 0) { 13432 failed_vnode = 1; 13433 continue; 13434 } 13435 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13436 vput(lvp); 13437 continue; 13438 } 13439 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13440 vput(lvp); 13441 } 13442 lvp = ump->um_devvp; 13443 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13444 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13445 VOP_UNLOCK(lvp, 0); 13446 } 13447 return (failed_vnode); 13448 } 13449 13450 static bool 13451 softdep_excess_items(struct ufsmount *ump, int item) 13452 { 13453 13454 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13455 return (dep_current[item] > max_softdeps && 13456 ump->softdep_curdeps[item] > max_softdeps / 13457 stat_flush_threads); 13458 } 13459 13460 static void 13461 schedule_cleanup(struct mount *mp) 13462 { 13463 struct ufsmount *ump; 13464 struct thread *td; 13465 13466 ump = VFSTOUFS(mp); 13467 LOCK_OWNED(ump); 13468 FREE_LOCK(ump); 13469 td = curthread; 13470 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13471 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13472 /* 13473 * No ast is delivered to kernel threads, so nobody 13474 * would deref the mp. Some kernel threads 13475 * explicitely check for AST, e.g. NFS daemon does 13476 * this in the serving loop. 13477 */ 13478 return; 13479 } 13480 if (td->td_su != NULL) 13481 vfs_rel(td->td_su); 13482 vfs_ref(mp); 13483 td->td_su = mp; 13484 thread_lock(td); 13485 td->td_flags |= TDF_ASTPENDING; 13486 thread_unlock(td); 13487 } 13488 13489 static void 13490 softdep_ast_cleanup_proc(struct thread *td) 13491 { 13492 struct mount *mp; 13493 struct ufsmount *ump; 13494 int error; 13495 bool req; 13496 13497 while ((mp = td->td_su) != NULL) { 13498 td->td_su = NULL; 13499 error = vfs_busy(mp, MBF_NOWAIT); 13500 vfs_rel(mp); 13501 if (error != 0) 13502 return; 13503 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13504 ump = VFSTOUFS(mp); 13505 for (;;) { 13506 req = false; 13507 ACQUIRE_LOCK(ump); 13508 if (softdep_excess_items(ump, D_INODEDEP)) { 13509 req = true; 13510 request_cleanup(mp, FLUSH_INODES); 13511 } 13512 if (softdep_excess_items(ump, D_DIRREM)) { 13513 req = true; 13514 request_cleanup(mp, FLUSH_BLOCKS); 13515 } 13516 FREE_LOCK(ump); 13517 if (softdep_excess_items(ump, D_NEWBLK) || 13518 softdep_excess_items(ump, D_ALLOCDIRECT) || 13519 softdep_excess_items(ump, D_ALLOCINDIR)) { 13520 error = vn_start_write(NULL, &mp, 13521 V_WAIT); 13522 if (error == 0) { 13523 req = true; 13524 VFS_SYNC(mp, MNT_WAIT); 13525 vn_finished_write(mp); 13526 } 13527 } 13528 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13529 break; 13530 } 13531 } 13532 vfs_unbusy(mp); 13533 } 13534 if ((mp = td->td_su) != NULL) { 13535 td->td_su = NULL; 13536 vfs_rel(mp); 13537 } 13538 } 13539 13540 /* 13541 * If memory utilization has gotten too high, deliberately slow things 13542 * down and speed up the I/O processing. 13543 */ 13544 static int 13545 request_cleanup(mp, resource) 13546 struct mount *mp; 13547 int resource; 13548 { 13549 struct thread *td = curthread; 13550 struct ufsmount *ump; 13551 13552 ump = VFSTOUFS(mp); 13553 LOCK_OWNED(ump); 13554 /* 13555 * We never hold up the filesystem syncer or buf daemon. 13556 */ 13557 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13558 return (0); 13559 /* 13560 * First check to see if the work list has gotten backlogged. 13561 * If it has, co-opt this process to help clean up two entries. 13562 * Because this process may hold inodes locked, we cannot 13563 * handle any remove requests that might block on a locked 13564 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13565 * to avoid recursively processing the worklist. 13566 */ 13567 if (ump->softdep_on_worklist > max_softdeps / 10) { 13568 td->td_pflags |= TDP_SOFTDEP; 13569 process_worklist_item(mp, 2, LK_NOWAIT); 13570 td->td_pflags &= ~TDP_SOFTDEP; 13571 stat_worklist_push += 2; 13572 return(1); 13573 } 13574 /* 13575 * Next, we attempt to speed up the syncer process. If that 13576 * is successful, then we allow the process to continue. 13577 */ 13578 if (softdep_speedup(ump) && 13579 resource != FLUSH_BLOCKS_WAIT && 13580 resource != FLUSH_INODES_WAIT) 13581 return(0); 13582 /* 13583 * If we are resource constrained on inode dependencies, try 13584 * flushing some dirty inodes. Otherwise, we are constrained 13585 * by file deletions, so try accelerating flushes of directories 13586 * with removal dependencies. We would like to do the cleanup 13587 * here, but we probably hold an inode locked at this point and 13588 * that might deadlock against one that we try to clean. So, 13589 * the best that we can do is request the syncer daemon to do 13590 * the cleanup for us. 13591 */ 13592 switch (resource) { 13593 13594 case FLUSH_INODES: 13595 case FLUSH_INODES_WAIT: 13596 ACQUIRE_GBLLOCK(&lk); 13597 stat_ino_limit_push += 1; 13598 req_clear_inodedeps += 1; 13599 FREE_GBLLOCK(&lk); 13600 stat_countp = &stat_ino_limit_hit; 13601 break; 13602 13603 case FLUSH_BLOCKS: 13604 case FLUSH_BLOCKS_WAIT: 13605 ACQUIRE_GBLLOCK(&lk); 13606 stat_blk_limit_push += 1; 13607 req_clear_remove += 1; 13608 FREE_GBLLOCK(&lk); 13609 stat_countp = &stat_blk_limit_hit; 13610 break; 13611 13612 default: 13613 panic("request_cleanup: unknown type"); 13614 } 13615 /* 13616 * Hopefully the syncer daemon will catch up and awaken us. 13617 * We wait at most tickdelay before proceeding in any case. 13618 */ 13619 ACQUIRE_GBLLOCK(&lk); 13620 FREE_LOCK(ump); 13621 proc_waiting += 1; 13622 if (callout_pending(&softdep_callout) == FALSE) 13623 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13624 pause_timer, 0); 13625 13626 if ((td->td_pflags & TDP_KTHREAD) == 0) 13627 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13628 proc_waiting -= 1; 13629 FREE_GBLLOCK(&lk); 13630 ACQUIRE_LOCK(ump); 13631 return (1); 13632 } 13633 13634 /* 13635 * Awaken processes pausing in request_cleanup and clear proc_waiting 13636 * to indicate that there is no longer a timer running. Pause_timer 13637 * will be called with the global softdep mutex (&lk) locked. 13638 */ 13639 static void 13640 pause_timer(arg) 13641 void *arg; 13642 { 13643 13644 GBLLOCK_OWNED(&lk); 13645 /* 13646 * The callout_ API has acquired mtx and will hold it around this 13647 * function call. 13648 */ 13649 *stat_countp += proc_waiting; 13650 wakeup(&proc_waiting); 13651 } 13652 13653 /* 13654 * If requested, try removing inode or removal dependencies. 13655 */ 13656 static void 13657 check_clear_deps(mp) 13658 struct mount *mp; 13659 { 13660 13661 /* 13662 * If we are suspended, it may be because of our using 13663 * too many inodedeps, so help clear them out. 13664 */ 13665 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13666 clear_inodedeps(mp); 13667 /* 13668 * General requests for cleanup of backed up dependencies 13669 */ 13670 ACQUIRE_GBLLOCK(&lk); 13671 if (req_clear_inodedeps) { 13672 req_clear_inodedeps -= 1; 13673 FREE_GBLLOCK(&lk); 13674 clear_inodedeps(mp); 13675 ACQUIRE_GBLLOCK(&lk); 13676 wakeup(&proc_waiting); 13677 } 13678 if (req_clear_remove) { 13679 req_clear_remove -= 1; 13680 FREE_GBLLOCK(&lk); 13681 clear_remove(mp); 13682 ACQUIRE_GBLLOCK(&lk); 13683 wakeup(&proc_waiting); 13684 } 13685 FREE_GBLLOCK(&lk); 13686 } 13687 13688 /* 13689 * Flush out a directory with at least one removal dependency in an effort to 13690 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13691 */ 13692 static void 13693 clear_remove(mp) 13694 struct mount *mp; 13695 { 13696 struct pagedep_hashhead *pagedephd; 13697 struct pagedep *pagedep; 13698 struct ufsmount *ump; 13699 struct vnode *vp; 13700 struct bufobj *bo; 13701 int error, cnt; 13702 ino_t ino; 13703 13704 ump = VFSTOUFS(mp); 13705 LOCK_OWNED(ump); 13706 13707 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13708 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13709 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13710 ump->pagedep_nextclean = 0; 13711 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13712 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13713 continue; 13714 ino = pagedep->pd_ino; 13715 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13716 continue; 13717 FREE_LOCK(ump); 13718 13719 /* 13720 * Let unmount clear deps 13721 */ 13722 error = vfs_busy(mp, MBF_NOWAIT); 13723 if (error != 0) 13724 goto finish_write; 13725 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13726 FFSV_FORCEINSMQ); 13727 vfs_unbusy(mp); 13728 if (error != 0) { 13729 softdep_error("clear_remove: vget", error); 13730 goto finish_write; 13731 } 13732 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13733 softdep_error("clear_remove: fsync", error); 13734 bo = &vp->v_bufobj; 13735 BO_LOCK(bo); 13736 drain_output(vp); 13737 BO_UNLOCK(bo); 13738 vput(vp); 13739 finish_write: 13740 vn_finished_write(mp); 13741 ACQUIRE_LOCK(ump); 13742 return; 13743 } 13744 } 13745 } 13746 13747 /* 13748 * Clear out a block of dirty inodes in an effort to reduce 13749 * the number of inodedep dependency structures. 13750 */ 13751 static void 13752 clear_inodedeps(mp) 13753 struct mount *mp; 13754 { 13755 struct inodedep_hashhead *inodedephd; 13756 struct inodedep *inodedep; 13757 struct ufsmount *ump; 13758 struct vnode *vp; 13759 struct fs *fs; 13760 int error, cnt; 13761 ino_t firstino, lastino, ino; 13762 13763 ump = VFSTOUFS(mp); 13764 fs = ump->um_fs; 13765 LOCK_OWNED(ump); 13766 /* 13767 * Pick a random inode dependency to be cleared. 13768 * We will then gather up all the inodes in its block 13769 * that have dependencies and flush them out. 13770 */ 13771 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13772 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13773 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13774 ump->inodedep_nextclean = 0; 13775 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13776 break; 13777 } 13778 if (inodedep == NULL) 13779 return; 13780 /* 13781 * Find the last inode in the block with dependencies. 13782 */ 13783 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13784 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13785 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13786 break; 13787 /* 13788 * Asynchronously push all but the last inode with dependencies. 13789 * Synchronously push the last inode with dependencies to ensure 13790 * that the inode block gets written to free up the inodedeps. 13791 */ 13792 for (ino = firstino; ino <= lastino; ino++) { 13793 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13794 continue; 13795 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13796 continue; 13797 FREE_LOCK(ump); 13798 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13799 if (error != 0) { 13800 vn_finished_write(mp); 13801 ACQUIRE_LOCK(ump); 13802 return; 13803 } 13804 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13805 FFSV_FORCEINSMQ)) != 0) { 13806 softdep_error("clear_inodedeps: vget", error); 13807 vfs_unbusy(mp); 13808 vn_finished_write(mp); 13809 ACQUIRE_LOCK(ump); 13810 return; 13811 } 13812 vfs_unbusy(mp); 13813 if (ino == lastino) { 13814 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13815 softdep_error("clear_inodedeps: fsync1", error); 13816 } else { 13817 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13818 softdep_error("clear_inodedeps: fsync2", error); 13819 BO_LOCK(&vp->v_bufobj); 13820 drain_output(vp); 13821 BO_UNLOCK(&vp->v_bufobj); 13822 } 13823 vput(vp); 13824 vn_finished_write(mp); 13825 ACQUIRE_LOCK(ump); 13826 } 13827 } 13828 13829 void 13830 softdep_buf_append(bp, wkhd) 13831 struct buf *bp; 13832 struct workhead *wkhd; 13833 { 13834 struct worklist *wk; 13835 struct ufsmount *ump; 13836 13837 if ((wk = LIST_FIRST(wkhd)) == NULL) 13838 return; 13839 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13840 ("softdep_buf_append called on non-softdep filesystem")); 13841 ump = VFSTOUFS(wk->wk_mp); 13842 ACQUIRE_LOCK(ump); 13843 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13844 WORKLIST_REMOVE(wk); 13845 WORKLIST_INSERT(&bp->b_dep, wk); 13846 } 13847 FREE_LOCK(ump); 13848 13849 } 13850 13851 void 13852 softdep_inode_append(ip, cred, wkhd) 13853 struct inode *ip; 13854 struct ucred *cred; 13855 struct workhead *wkhd; 13856 { 13857 struct buf *bp; 13858 struct fs *fs; 13859 struct ufsmount *ump; 13860 int error; 13861 13862 ump = ITOUMP(ip); 13863 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13864 ("softdep_inode_append called on non-softdep filesystem")); 13865 fs = ump->um_fs; 13866 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13867 (int)fs->fs_bsize, cred, &bp); 13868 if (error) { 13869 bqrelse(bp); 13870 softdep_freework(wkhd); 13871 return; 13872 } 13873 softdep_buf_append(bp, wkhd); 13874 bqrelse(bp); 13875 } 13876 13877 void 13878 softdep_freework(wkhd) 13879 struct workhead *wkhd; 13880 { 13881 struct worklist *wk; 13882 struct ufsmount *ump; 13883 13884 if ((wk = LIST_FIRST(wkhd)) == NULL) 13885 return; 13886 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13887 ("softdep_freework called on non-softdep filesystem")); 13888 ump = VFSTOUFS(wk->wk_mp); 13889 ACQUIRE_LOCK(ump); 13890 handle_jwork(wkhd); 13891 FREE_LOCK(ump); 13892 } 13893 13894 /* 13895 * Function to determine if the buffer has outstanding dependencies 13896 * that will cause a roll-back if the buffer is written. If wantcount 13897 * is set, return number of dependencies, otherwise just yes or no. 13898 */ 13899 static int 13900 softdep_count_dependencies(bp, wantcount) 13901 struct buf *bp; 13902 int wantcount; 13903 { 13904 struct worklist *wk; 13905 struct ufsmount *ump; 13906 struct bmsafemap *bmsafemap; 13907 struct freework *freework; 13908 struct inodedep *inodedep; 13909 struct indirdep *indirdep; 13910 struct freeblks *freeblks; 13911 struct allocindir *aip; 13912 struct pagedep *pagedep; 13913 struct dirrem *dirrem; 13914 struct newblk *newblk; 13915 struct mkdir *mkdir; 13916 struct diradd *dap; 13917 struct vnode *vp; 13918 struct mount *mp; 13919 int i, retval; 13920 13921 retval = 0; 13922 if (LIST_EMPTY(&bp->b_dep)) 13923 return (0); 13924 vp = bp->b_vp; 13925 13926 /* 13927 * The ump mount point is stable after we get a correct 13928 * pointer, since bp is locked and this prevents unmount from 13929 * proceed. But to get to it, we cannot dereference bp->b_dep 13930 * head wk_mp, because we do not yet own SU ump lock and 13931 * workitem might be freed while dereferenced. 13932 */ 13933 retry: 13934 if (vp->v_type == VCHR) { 13935 VI_LOCK(vp); 13936 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 13937 VI_UNLOCK(vp); 13938 if (mp == NULL) 13939 goto retry; 13940 } else if (vp->v_type == VREG) { 13941 mp = vp->v_mount; 13942 } else { 13943 return (0); 13944 } 13945 ump = VFSTOUFS(mp); 13946 13947 ACQUIRE_LOCK(ump); 13948 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13949 switch (wk->wk_type) { 13950 13951 case D_INODEDEP: 13952 inodedep = WK_INODEDEP(wk); 13953 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13954 /* bitmap allocation dependency */ 13955 retval += 1; 13956 if (!wantcount) 13957 goto out; 13958 } 13959 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13960 /* direct block pointer dependency */ 13961 retval += 1; 13962 if (!wantcount) 13963 goto out; 13964 } 13965 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13966 /* direct block pointer dependency */ 13967 retval += 1; 13968 if (!wantcount) 13969 goto out; 13970 } 13971 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13972 /* Add reference dependency. */ 13973 retval += 1; 13974 if (!wantcount) 13975 goto out; 13976 } 13977 continue; 13978 13979 case D_INDIRDEP: 13980 indirdep = WK_INDIRDEP(wk); 13981 13982 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13983 /* indirect truncation dependency */ 13984 retval += 1; 13985 if (!wantcount) 13986 goto out; 13987 } 13988 13989 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13990 /* indirect block pointer dependency */ 13991 retval += 1; 13992 if (!wantcount) 13993 goto out; 13994 } 13995 continue; 13996 13997 case D_PAGEDEP: 13998 pagedep = WK_PAGEDEP(wk); 13999 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14000 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14001 /* Journal remove ref dependency. */ 14002 retval += 1; 14003 if (!wantcount) 14004 goto out; 14005 } 14006 } 14007 for (i = 0; i < DAHASHSZ; i++) { 14008 14009 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14010 /* directory entry dependency */ 14011 retval += 1; 14012 if (!wantcount) 14013 goto out; 14014 } 14015 } 14016 continue; 14017 14018 case D_BMSAFEMAP: 14019 bmsafemap = WK_BMSAFEMAP(wk); 14020 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14021 /* Add reference dependency. */ 14022 retval += 1; 14023 if (!wantcount) 14024 goto out; 14025 } 14026 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14027 /* Allocate block dependency. */ 14028 retval += 1; 14029 if (!wantcount) 14030 goto out; 14031 } 14032 continue; 14033 14034 case D_FREEBLKS: 14035 freeblks = WK_FREEBLKS(wk); 14036 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14037 /* Freeblk journal dependency. */ 14038 retval += 1; 14039 if (!wantcount) 14040 goto out; 14041 } 14042 continue; 14043 14044 case D_ALLOCDIRECT: 14045 case D_ALLOCINDIR: 14046 newblk = WK_NEWBLK(wk); 14047 if (newblk->nb_jnewblk) { 14048 /* Journal allocate dependency. */ 14049 retval += 1; 14050 if (!wantcount) 14051 goto out; 14052 } 14053 continue; 14054 14055 case D_MKDIR: 14056 mkdir = WK_MKDIR(wk); 14057 if (mkdir->md_jaddref) { 14058 /* Journal reference dependency. */ 14059 retval += 1; 14060 if (!wantcount) 14061 goto out; 14062 } 14063 continue; 14064 14065 case D_FREEWORK: 14066 case D_FREEDEP: 14067 case D_JSEGDEP: 14068 case D_JSEG: 14069 case D_SBDEP: 14070 /* never a dependency on these blocks */ 14071 continue; 14072 14073 default: 14074 panic("softdep_count_dependencies: Unexpected type %s", 14075 TYPENAME(wk->wk_type)); 14076 /* NOTREACHED */ 14077 } 14078 } 14079 out: 14080 FREE_LOCK(ump); 14081 return (retval); 14082 } 14083 14084 /* 14085 * Acquire exclusive access to a buffer. 14086 * Must be called with a locked mtx parameter. 14087 * Return acquired buffer or NULL on failure. 14088 */ 14089 static struct buf * 14090 getdirtybuf(bp, lock, waitfor) 14091 struct buf *bp; 14092 struct rwlock *lock; 14093 int waitfor; 14094 { 14095 int error; 14096 14097 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14098 if (waitfor != MNT_WAIT) 14099 return (NULL); 14100 error = BUF_LOCK(bp, 14101 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14102 /* 14103 * Even if we successfully acquire bp here, we have dropped 14104 * lock, which may violates our guarantee. 14105 */ 14106 if (error == 0) 14107 BUF_UNLOCK(bp); 14108 else if (error != ENOLCK) 14109 panic("getdirtybuf: inconsistent lock: %d", error); 14110 rw_wlock(lock); 14111 return (NULL); 14112 } 14113 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14114 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14115 rw_wunlock(lock); 14116 BO_LOCK(bp->b_bufobj); 14117 BUF_UNLOCK(bp); 14118 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14119 bp->b_vflags |= BV_BKGRDWAIT; 14120 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14121 PRIBIO | PDROP, "getbuf", 0); 14122 } else 14123 BO_UNLOCK(bp->b_bufobj); 14124 rw_wlock(lock); 14125 return (NULL); 14126 } 14127 BUF_UNLOCK(bp); 14128 if (waitfor != MNT_WAIT) 14129 return (NULL); 14130 #ifdef DEBUG_VFS_LOCKS 14131 if (bp->b_vp->v_type != VCHR) 14132 ASSERT_BO_WLOCKED(bp->b_bufobj); 14133 #endif 14134 bp->b_vflags |= BV_BKGRDWAIT; 14135 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14136 return (NULL); 14137 } 14138 if ((bp->b_flags & B_DELWRI) == 0) { 14139 BUF_UNLOCK(bp); 14140 return (NULL); 14141 } 14142 bremfree(bp); 14143 return (bp); 14144 } 14145 14146 14147 /* 14148 * Check if it is safe to suspend the file system now. On entry, 14149 * the vnode interlock for devvp should be held. Return 0 with 14150 * the mount interlock held if the file system can be suspended now, 14151 * otherwise return EAGAIN with the mount interlock held. 14152 */ 14153 int 14154 softdep_check_suspend(struct mount *mp, 14155 struct vnode *devvp, 14156 int softdep_depcnt, 14157 int softdep_accdepcnt, 14158 int secondary_writes, 14159 int secondary_accwrites) 14160 { 14161 struct bufobj *bo; 14162 struct ufsmount *ump; 14163 struct inodedep *inodedep; 14164 int error, unlinked; 14165 14166 bo = &devvp->v_bufobj; 14167 ASSERT_BO_WLOCKED(bo); 14168 14169 /* 14170 * If we are not running with soft updates, then we need only 14171 * deal with secondary writes as we try to suspend. 14172 */ 14173 if (MOUNTEDSOFTDEP(mp) == 0) { 14174 MNT_ILOCK(mp); 14175 while (mp->mnt_secondary_writes != 0) { 14176 BO_UNLOCK(bo); 14177 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14178 (PUSER - 1) | PDROP, "secwr", 0); 14179 BO_LOCK(bo); 14180 MNT_ILOCK(mp); 14181 } 14182 14183 /* 14184 * Reasons for needing more work before suspend: 14185 * - Dirty buffers on devvp. 14186 * - Secondary writes occurred after start of vnode sync loop 14187 */ 14188 error = 0; 14189 if (bo->bo_numoutput > 0 || 14190 bo->bo_dirty.bv_cnt > 0 || 14191 secondary_writes != 0 || 14192 mp->mnt_secondary_writes != 0 || 14193 secondary_accwrites != mp->mnt_secondary_accwrites) 14194 error = EAGAIN; 14195 BO_UNLOCK(bo); 14196 return (error); 14197 } 14198 14199 /* 14200 * If we are running with soft updates, then we need to coordinate 14201 * with them as we try to suspend. 14202 */ 14203 ump = VFSTOUFS(mp); 14204 for (;;) { 14205 if (!TRY_ACQUIRE_LOCK(ump)) { 14206 BO_UNLOCK(bo); 14207 ACQUIRE_LOCK(ump); 14208 FREE_LOCK(ump); 14209 BO_LOCK(bo); 14210 continue; 14211 } 14212 MNT_ILOCK(mp); 14213 if (mp->mnt_secondary_writes != 0) { 14214 FREE_LOCK(ump); 14215 BO_UNLOCK(bo); 14216 msleep(&mp->mnt_secondary_writes, 14217 MNT_MTX(mp), 14218 (PUSER - 1) | PDROP, "secwr", 0); 14219 BO_LOCK(bo); 14220 continue; 14221 } 14222 break; 14223 } 14224 14225 unlinked = 0; 14226 if (MOUNTEDSUJ(mp)) { 14227 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14228 inodedep != NULL; 14229 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14230 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14231 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14232 UNLINKONLIST) || 14233 !check_inodedep_free(inodedep)) 14234 continue; 14235 unlinked++; 14236 } 14237 } 14238 14239 /* 14240 * Reasons for needing more work before suspend: 14241 * - Dirty buffers on devvp. 14242 * - Softdep activity occurred after start of vnode sync loop 14243 * - Secondary writes occurred after start of vnode sync loop 14244 */ 14245 error = 0; 14246 if (bo->bo_numoutput > 0 || 14247 bo->bo_dirty.bv_cnt > 0 || 14248 softdep_depcnt != unlinked || 14249 ump->softdep_deps != unlinked || 14250 softdep_accdepcnt != ump->softdep_accdeps || 14251 secondary_writes != 0 || 14252 mp->mnt_secondary_writes != 0 || 14253 secondary_accwrites != mp->mnt_secondary_accwrites) 14254 error = EAGAIN; 14255 FREE_LOCK(ump); 14256 BO_UNLOCK(bo); 14257 return (error); 14258 } 14259 14260 14261 /* 14262 * Get the number of dependency structures for the file system, both 14263 * the current number and the total number allocated. These will 14264 * later be used to detect that softdep processing has occurred. 14265 */ 14266 void 14267 softdep_get_depcounts(struct mount *mp, 14268 int *softdep_depsp, 14269 int *softdep_accdepsp) 14270 { 14271 struct ufsmount *ump; 14272 14273 if (MOUNTEDSOFTDEP(mp) == 0) { 14274 *softdep_depsp = 0; 14275 *softdep_accdepsp = 0; 14276 return; 14277 } 14278 ump = VFSTOUFS(mp); 14279 ACQUIRE_LOCK(ump); 14280 *softdep_depsp = ump->softdep_deps; 14281 *softdep_accdepsp = ump->softdep_accdeps; 14282 FREE_LOCK(ump); 14283 } 14284 14285 /* 14286 * Wait for pending output on a vnode to complete. 14287 */ 14288 static void 14289 drain_output(vp) 14290 struct vnode *vp; 14291 { 14292 14293 ASSERT_VOP_LOCKED(vp, "drain_output"); 14294 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14295 } 14296 14297 /* 14298 * Called whenever a buffer that is being invalidated or reallocated 14299 * contains dependencies. This should only happen if an I/O error has 14300 * occurred. The routine is called with the buffer locked. 14301 */ 14302 static void 14303 softdep_deallocate_dependencies(bp) 14304 struct buf *bp; 14305 { 14306 14307 if ((bp->b_ioflags & BIO_ERROR) == 0) 14308 panic("softdep_deallocate_dependencies: dangling deps"); 14309 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14310 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14311 else 14312 printf("softdep_deallocate_dependencies: " 14313 "got error %d while accessing filesystem\n", bp->b_error); 14314 if (bp->b_error != ENXIO) 14315 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14316 } 14317 14318 /* 14319 * Function to handle asynchronous write errors in the filesystem. 14320 */ 14321 static void 14322 softdep_error(func, error) 14323 char *func; 14324 int error; 14325 { 14326 14327 /* XXX should do something better! */ 14328 printf("%s: got error %d while accessing filesystem\n", func, error); 14329 } 14330 14331 #ifdef DDB 14332 14333 static void 14334 inodedep_print(struct inodedep *inodedep, int verbose) 14335 { 14336 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd" 14337 " saveino %p\n", 14338 inodedep, inodedep->id_fs, inodedep->id_state, 14339 (intmax_t)inodedep->id_ino, 14340 (intmax_t)fsbtodb(inodedep->id_fs, 14341 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14342 (intmax_t)inodedep->id_nlinkdelta, 14343 (intmax_t)inodedep->id_savednlink, 14344 inodedep->id_savedino1); 14345 14346 if (verbose == 0) 14347 return; 14348 14349 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 14350 "mkdiradd %p\n", 14351 LIST_FIRST(&inodedep->id_pendinghd), 14352 LIST_FIRST(&inodedep->id_bufwait), 14353 LIST_FIRST(&inodedep->id_inowait), 14354 TAILQ_FIRST(&inodedep->id_inoreflst), 14355 inodedep->id_mkdiradd); 14356 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 14357 TAILQ_FIRST(&inodedep->id_inoupdt), 14358 TAILQ_FIRST(&inodedep->id_newinoupdt), 14359 TAILQ_FIRST(&inodedep->id_extupdt), 14360 TAILQ_FIRST(&inodedep->id_newextupdt)); 14361 } 14362 14363 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 14364 { 14365 14366 if (have_addr == 0) { 14367 db_printf("Address required\n"); 14368 return; 14369 } 14370 inodedep_print((struct inodedep*)addr, 1); 14371 } 14372 14373 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 14374 { 14375 struct inodedep_hashhead *inodedephd; 14376 struct inodedep *inodedep; 14377 struct ufsmount *ump; 14378 int cnt; 14379 14380 if (have_addr == 0) { 14381 db_printf("Address required\n"); 14382 return; 14383 } 14384 ump = (struct ufsmount *)addr; 14385 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14386 inodedephd = &ump->inodedep_hashtbl[cnt]; 14387 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14388 inodedep_print(inodedep, 0); 14389 } 14390 } 14391 } 14392 14393 DB_SHOW_COMMAND(worklist, db_show_worklist) 14394 { 14395 struct worklist *wk; 14396 14397 if (have_addr == 0) { 14398 db_printf("Address required\n"); 14399 return; 14400 } 14401 wk = (struct worklist *)addr; 14402 printf("worklist: %p type %s state 0x%X\n", 14403 wk, TYPENAME(wk->wk_type), wk->wk_state); 14404 } 14405 14406 DB_SHOW_COMMAND(workhead, db_show_workhead) 14407 { 14408 struct workhead *wkhd; 14409 struct worklist *wk; 14410 int i; 14411 14412 if (have_addr == 0) { 14413 db_printf("Address required\n"); 14414 return; 14415 } 14416 wkhd = (struct workhead *)addr; 14417 wk = LIST_FIRST(wkhd); 14418 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 14419 db_printf("worklist: %p type %s state 0x%X", 14420 wk, TYPENAME(wk->wk_type), wk->wk_state); 14421 if (i == 100) 14422 db_printf("workhead overflow"); 14423 printf("\n"); 14424 } 14425 14426 14427 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 14428 { 14429 struct mkdirlist *mkdirlisthd; 14430 struct jaddref *jaddref; 14431 struct diradd *diradd; 14432 struct mkdir *mkdir; 14433 14434 if (have_addr == 0) { 14435 db_printf("Address required\n"); 14436 return; 14437 } 14438 mkdirlisthd = (struct mkdirlist *)addr; 14439 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14440 diradd = mkdir->md_diradd; 14441 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 14442 mkdir, mkdir->md_state, diradd, diradd->da_state); 14443 if ((jaddref = mkdir->md_jaddref) != NULL) 14444 db_printf(" jaddref %p jaddref state 0x%X", 14445 jaddref, jaddref->ja_state); 14446 db_printf("\n"); 14447 } 14448 } 14449 14450 /* exported to ffs_vfsops.c */ 14451 extern void db_print_ffs(struct ufsmount *ump); 14452 void 14453 db_print_ffs(struct ufsmount *ump) 14454 { 14455 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 14456 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 14457 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 14458 ump->softdep_deps, ump->softdep_req); 14459 } 14460 14461 #endif /* DDB */ 14462 14463 #endif /* SOFTUPDATES */ 14464