1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 int 613 softdep_prerename(fdvp, fvp, tdvp, tvp) 614 struct vnode *fdvp; 615 struct vnode *fvp; 616 struct vnode *tdvp; 617 struct vnode *tvp; 618 { 619 620 panic("softdep_prerename called"); 621 } 622 623 int 624 softdep_prelink(dvp, vp, will_direnter) 625 struct vnode *dvp; 626 struct vnode *vp; 627 int will_direnter; 628 { 629 630 panic("softdep_prelink called"); 631 } 632 633 #else 634 635 FEATURE(softupdates, "FFS soft-updates support"); 636 637 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 638 "soft updates stats"); 639 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 640 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 641 "total dependencies allocated"); 642 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 643 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 644 "high use dependencies allocated"); 645 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 646 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 647 "current dependencies allocated"); 648 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 649 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 650 "current dependencies written"); 651 652 unsigned long dep_current[D_LAST + 1]; 653 unsigned long dep_highuse[D_LAST + 1]; 654 unsigned long dep_total[D_LAST + 1]; 655 unsigned long dep_write[D_LAST + 1]; 656 657 #define SOFTDEP_TYPE(type, str, long) \ 658 static MALLOC_DEFINE(M_ ## type, #str, long); \ 659 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 660 &dep_total[D_ ## type], 0, ""); \ 661 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 662 &dep_current[D_ ## type], 0, ""); \ 663 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 664 &dep_highuse[D_ ## type], 0, ""); \ 665 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 666 &dep_write[D_ ## type], 0, ""); 667 668 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 669 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 670 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 671 "Block or frag allocated from cyl group map"); 672 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 673 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 674 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 675 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 676 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 677 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 678 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 679 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 680 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 681 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 682 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 683 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 684 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 685 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 686 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 687 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 688 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 689 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 690 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 691 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 692 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 693 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 694 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 695 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 696 697 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 698 699 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 700 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 701 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 702 703 #define M_SOFTDEP_FLAGS (M_WAITOK) 704 705 /* 706 * translate from workitem type to memory type 707 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 708 */ 709 static struct malloc_type *memtype[] = { 710 NULL, 711 M_PAGEDEP, 712 M_INODEDEP, 713 M_BMSAFEMAP, 714 M_NEWBLK, 715 M_ALLOCDIRECT, 716 M_INDIRDEP, 717 M_ALLOCINDIR, 718 M_FREEFRAG, 719 M_FREEBLKS, 720 M_FREEFILE, 721 M_DIRADD, 722 M_MKDIR, 723 M_DIRREM, 724 M_NEWDIRBLK, 725 M_FREEWORK, 726 M_FREEDEP, 727 M_JADDREF, 728 M_JREMREF, 729 M_JMVREF, 730 M_JNEWBLK, 731 M_JFREEBLK, 732 M_JFREEFRAG, 733 M_JSEG, 734 M_JSEGDEP, 735 M_SBDEP, 736 M_JTRUNC, 737 M_JFSYNC, 738 M_SENTINEL 739 }; 740 741 #define DtoM(type) (memtype[type]) 742 743 /* 744 * Names of malloc types. 745 */ 746 #define TYPENAME(type) \ 747 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 748 memtype[type]->ks_shortdesc : "???") 749 /* 750 * End system adaptation definitions. 751 */ 752 753 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 754 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 755 756 /* 757 * Internal function prototypes. 758 */ 759 static void check_clear_deps(struct mount *); 760 static void softdep_error(char *, int); 761 static int softdep_prerename_vnode(struct ufsmount *, struct vnode *); 762 static int softdep_process_worklist(struct mount *, int); 763 static int softdep_waitidle(struct mount *, int); 764 static void drain_output(struct vnode *); 765 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 766 static int check_inodedep_free(struct inodedep *); 767 static void clear_remove(struct mount *); 768 static void clear_inodedeps(struct mount *); 769 static void unlinked_inodedep(struct mount *, struct inodedep *); 770 static void clear_unlinked_inodedep(struct inodedep *); 771 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 772 static int flush_pagedep_deps(struct vnode *, struct mount *, 773 struct diraddhd *, struct buf *); 774 static int free_pagedep(struct pagedep *); 775 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 776 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 777 static int flush_deplist(struct allocdirectlst *, int, int *); 778 static int sync_cgs(struct mount *, int); 779 static int handle_written_filepage(struct pagedep *, struct buf *, int); 780 static int handle_written_sbdep(struct sbdep *, struct buf *); 781 static void initiate_write_sbdep(struct sbdep *); 782 static void diradd_inode_written(struct diradd *, struct inodedep *); 783 static int handle_written_indirdep(struct indirdep *, struct buf *, 784 struct buf**, int); 785 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 786 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 787 uint8_t *); 788 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 789 static void handle_written_jaddref(struct jaddref *); 790 static void handle_written_jremref(struct jremref *); 791 static void handle_written_jseg(struct jseg *, struct buf *); 792 static void handle_written_jnewblk(struct jnewblk *); 793 static void handle_written_jblkdep(struct jblkdep *); 794 static void handle_written_jfreefrag(struct jfreefrag *); 795 static void complete_jseg(struct jseg *); 796 static void complete_jsegs(struct jseg *); 797 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 798 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 799 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 800 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 801 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 802 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 803 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 804 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 805 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 806 static inline void inoref_write(struct inoref *, struct jseg *, 807 struct jrefrec *); 808 static void handle_allocdirect_partdone(struct allocdirect *, 809 struct workhead *); 810 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 811 struct workhead *); 812 static void indirdep_complete(struct indirdep *); 813 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 814 static void indirblk_insert(struct freework *); 815 static void indirblk_remove(struct freework *); 816 static void handle_allocindir_partdone(struct allocindir *); 817 static void initiate_write_filepage(struct pagedep *, struct buf *); 818 static void initiate_write_indirdep(struct indirdep*, struct buf *); 819 static void handle_written_mkdir(struct mkdir *, int); 820 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 821 uint8_t *); 822 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 823 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 824 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 825 static void handle_workitem_freefile(struct freefile *); 826 static int handle_workitem_remove(struct dirrem *, int); 827 static struct dirrem *newdirrem(struct buf *, struct inode *, 828 struct inode *, int, struct dirrem **); 829 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 830 struct buf *); 831 static void cancel_indirdep(struct indirdep *, struct buf *, 832 struct freeblks *); 833 static void free_indirdep(struct indirdep *); 834 static void free_diradd(struct diradd *, struct workhead *); 835 static void merge_diradd(struct inodedep *, struct diradd *); 836 static void complete_diradd(struct diradd *); 837 static struct diradd *diradd_lookup(struct pagedep *, int); 838 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 839 struct jremref *); 840 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 841 struct jremref *); 842 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 843 struct jremref *, struct jremref *); 844 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 845 struct jremref *); 846 static void cancel_allocindir(struct allocindir *, struct buf *bp, 847 struct freeblks *, int); 848 static int setup_trunc_indir(struct freeblks *, struct inode *, 849 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 850 static void complete_trunc_indir(struct freework *); 851 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 852 int); 853 static void complete_mkdir(struct mkdir *); 854 static void free_newdirblk(struct newdirblk *); 855 static void free_jremref(struct jremref *); 856 static void free_jaddref(struct jaddref *); 857 static void free_jsegdep(struct jsegdep *); 858 static void free_jsegs(struct jblocks *); 859 static void rele_jseg(struct jseg *); 860 static void free_jseg(struct jseg *, struct jblocks *); 861 static void free_jnewblk(struct jnewblk *); 862 static void free_jblkdep(struct jblkdep *); 863 static void free_jfreefrag(struct jfreefrag *); 864 static void free_freedep(struct freedep *); 865 static void journal_jremref(struct dirrem *, struct jremref *, 866 struct inodedep *); 867 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 868 static int cancel_jaddref(struct jaddref *, struct inodedep *, 869 struct workhead *); 870 static void cancel_jfreefrag(struct jfreefrag *); 871 static inline void setup_freedirect(struct freeblks *, struct inode *, 872 int, int); 873 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 874 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 875 ufs_lbn_t, int); 876 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 877 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 878 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 879 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 880 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 881 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 882 int, int); 883 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 884 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 885 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 886 static void newblk_freefrag(struct newblk*); 887 static void free_newblk(struct newblk *); 888 static void cancel_allocdirect(struct allocdirectlst *, 889 struct allocdirect *, struct freeblks *); 890 static int check_inode_unwritten(struct inodedep *); 891 static int free_inodedep(struct inodedep *); 892 static void freework_freeblock(struct freework *, u_long); 893 static void freework_enqueue(struct freework *); 894 static int handle_workitem_freeblocks(struct freeblks *, int); 895 static int handle_complete_freeblocks(struct freeblks *, int); 896 static void handle_workitem_indirblk(struct freework *); 897 static void handle_written_freework(struct freework *); 898 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 899 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 900 struct workhead *); 901 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 902 struct inodedep *, struct allocindir *, ufs_lbn_t); 903 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 904 ufs2_daddr_t, ufs_lbn_t); 905 static void handle_workitem_freefrag(struct freefrag *); 906 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 907 ufs_lbn_t, u_long); 908 static void allocdirect_merge(struct allocdirectlst *, 909 struct allocdirect *, struct allocdirect *); 910 static struct freefrag *allocindir_merge(struct allocindir *, 911 struct allocindir *); 912 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 913 struct bmsafemap **); 914 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 915 int cg, struct bmsafemap *); 916 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 917 struct newblk **); 918 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 919 static int inodedep_find(struct inodedep_hashhead *, ino_t, 920 struct inodedep **); 921 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 922 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 923 int, struct pagedep **); 924 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 925 struct pagedep **); 926 static void pause_timer(void *); 927 static int request_cleanup(struct mount *, int); 928 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 929 static void schedule_cleanup(struct mount *); 930 static void softdep_ast_cleanup_proc(struct thread *); 931 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 932 static int process_worklist_item(struct mount *, int, int); 933 static void process_removes(struct vnode *); 934 static void process_truncates(struct vnode *); 935 static void jwork_move(struct workhead *, struct workhead *); 936 static void jwork_insert(struct workhead *, struct jsegdep *); 937 static void add_to_worklist(struct worklist *, int); 938 static void wake_worklist(struct worklist *); 939 static void wait_worklist(struct worklist *, char *); 940 static void remove_from_worklist(struct worklist *); 941 static void softdep_flush(void *); 942 static void softdep_flushjournal(struct mount *); 943 static int softdep_speedup(struct ufsmount *); 944 static void worklist_speedup(struct mount *); 945 static int journal_mount(struct mount *, struct fs *, struct ucred *); 946 static void journal_unmount(struct ufsmount *); 947 static int journal_space(struct ufsmount *, int); 948 static void journal_suspend(struct ufsmount *); 949 static int journal_unsuspend(struct ufsmount *ump); 950 static void add_to_journal(struct worklist *); 951 static void remove_from_journal(struct worklist *); 952 static bool softdep_excess_items(struct ufsmount *, int); 953 static void softdep_process_journal(struct mount *, struct worklist *, int); 954 static struct jremref *newjremref(struct dirrem *, struct inode *, 955 struct inode *ip, off_t, nlink_t); 956 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 957 uint16_t); 958 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 959 uint16_t); 960 static inline struct jsegdep *inoref_jseg(struct inoref *); 961 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 962 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 963 ufs2_daddr_t, int); 964 static void adjust_newfreework(struct freeblks *, int); 965 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 966 static void move_newblock_dep(struct jaddref *, struct inodedep *); 967 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 968 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 969 ufs2_daddr_t, long, ufs_lbn_t); 970 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 971 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 972 static int jwait(struct worklist *, int); 973 static struct inodedep *inodedep_lookup_ip(struct inode *); 974 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 975 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 976 static void handle_jwork(struct workhead *); 977 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 978 struct mkdir **); 979 static struct jblocks *jblocks_create(void); 980 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 981 static void jblocks_free(struct jblocks *, struct mount *, int); 982 static void jblocks_destroy(struct jblocks *); 983 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 984 985 /* 986 * Exported softdep operations. 987 */ 988 static void softdep_disk_io_initiation(struct buf *); 989 static void softdep_disk_write_complete(struct buf *); 990 static void softdep_deallocate_dependencies(struct buf *); 991 static int softdep_count_dependencies(struct buf *bp, int); 992 993 /* 994 * Global lock over all of soft updates. 995 */ 996 static struct mtx lk; 997 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 998 999 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 1000 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 1001 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 1002 1003 /* 1004 * Per-filesystem soft-updates locking. 1005 */ 1006 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 1007 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 1008 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 1009 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 1010 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 1011 RA_WLOCKED) 1012 1013 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1014 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1015 1016 /* 1017 * Worklist queue management. 1018 * These routines require that the lock be held. 1019 */ 1020 #ifndef /* NOT */ INVARIANTS 1021 #define WORKLIST_INSERT(head, item) do { \ 1022 (item)->wk_state |= ONWORKLIST; \ 1023 LIST_INSERT_HEAD(head, item, wk_list); \ 1024 } while (0) 1025 #define WORKLIST_REMOVE(item) do { \ 1026 (item)->wk_state &= ~ONWORKLIST; \ 1027 LIST_REMOVE(item, wk_list); \ 1028 } while (0) 1029 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1030 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1031 1032 #else /* INVARIANTS */ 1033 static void worklist_insert(struct workhead *, struct worklist *, int, 1034 const char *, int); 1035 static void worklist_remove(struct worklist *, int, const char *, int); 1036 1037 #define WORKLIST_INSERT(head, item) \ 1038 worklist_insert(head, item, 1, __func__, __LINE__) 1039 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1040 worklist_insert(head, item, 0, __func__, __LINE__) 1041 #define WORKLIST_REMOVE(item)\ 1042 worklist_remove(item, 1, __func__, __LINE__) 1043 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1044 worklist_remove(item, 0, __func__, __LINE__) 1045 1046 static void 1047 worklist_insert(head, item, locked, func, line) 1048 struct workhead *head; 1049 struct worklist *item; 1050 int locked; 1051 const char *func; 1052 int line; 1053 { 1054 1055 if (locked) 1056 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1057 if (item->wk_state & ONWORKLIST) 1058 panic("worklist_insert: %p %s(0x%X) already on list, " 1059 "added in function %s at line %d", 1060 item, TYPENAME(item->wk_type), item->wk_state, 1061 item->wk_func, item->wk_line); 1062 item->wk_state |= ONWORKLIST; 1063 item->wk_func = func; 1064 item->wk_line = line; 1065 LIST_INSERT_HEAD(head, item, wk_list); 1066 } 1067 1068 static void 1069 worklist_remove(item, locked, func, line) 1070 struct worklist *item; 1071 int locked; 1072 const char *func; 1073 int line; 1074 { 1075 1076 if (locked) 1077 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1078 if ((item->wk_state & ONWORKLIST) == 0) 1079 panic("worklist_remove: %p %s(0x%X) not on list, " 1080 "removed in function %s at line %d", 1081 item, TYPENAME(item->wk_type), item->wk_state, 1082 item->wk_func, item->wk_line); 1083 item->wk_state &= ~ONWORKLIST; 1084 item->wk_func = func; 1085 item->wk_line = line; 1086 LIST_REMOVE(item, wk_list); 1087 } 1088 #endif /* INVARIANTS */ 1089 1090 /* 1091 * Merge two jsegdeps keeping only the oldest one as newer references 1092 * can't be discarded until after older references. 1093 */ 1094 static inline struct jsegdep * 1095 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1096 { 1097 struct jsegdep *swp; 1098 1099 if (two == NULL) 1100 return (one); 1101 1102 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1103 swp = one; 1104 one = two; 1105 two = swp; 1106 } 1107 WORKLIST_REMOVE(&two->jd_list); 1108 free_jsegdep(two); 1109 1110 return (one); 1111 } 1112 1113 /* 1114 * If two freedeps are compatible free one to reduce list size. 1115 */ 1116 static inline struct freedep * 1117 freedep_merge(struct freedep *one, struct freedep *two) 1118 { 1119 if (two == NULL) 1120 return (one); 1121 1122 if (one->fd_freework == two->fd_freework) { 1123 WORKLIST_REMOVE(&two->fd_list); 1124 free_freedep(two); 1125 } 1126 return (one); 1127 } 1128 1129 /* 1130 * Move journal work from one list to another. Duplicate freedeps and 1131 * jsegdeps are coalesced to keep the lists as small as possible. 1132 */ 1133 static void 1134 jwork_move(dst, src) 1135 struct workhead *dst; 1136 struct workhead *src; 1137 { 1138 struct freedep *freedep; 1139 struct jsegdep *jsegdep; 1140 struct worklist *wkn; 1141 struct worklist *wk; 1142 1143 KASSERT(dst != src, 1144 ("jwork_move: dst == src")); 1145 freedep = NULL; 1146 jsegdep = NULL; 1147 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1148 if (wk->wk_type == D_JSEGDEP) 1149 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1150 else if (wk->wk_type == D_FREEDEP) 1151 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1152 } 1153 1154 while ((wk = LIST_FIRST(src)) != NULL) { 1155 WORKLIST_REMOVE(wk); 1156 WORKLIST_INSERT(dst, wk); 1157 if (wk->wk_type == D_JSEGDEP) { 1158 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1159 continue; 1160 } 1161 if (wk->wk_type == D_FREEDEP) 1162 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1163 } 1164 } 1165 1166 static void 1167 jwork_insert(dst, jsegdep) 1168 struct workhead *dst; 1169 struct jsegdep *jsegdep; 1170 { 1171 struct jsegdep *jsegdepn; 1172 struct worklist *wk; 1173 1174 LIST_FOREACH(wk, dst, wk_list) 1175 if (wk->wk_type == D_JSEGDEP) 1176 break; 1177 if (wk == NULL) { 1178 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1179 return; 1180 } 1181 jsegdepn = WK_JSEGDEP(wk); 1182 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1183 WORKLIST_REMOVE(wk); 1184 free_jsegdep(jsegdepn); 1185 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1186 } else 1187 free_jsegdep(jsegdep); 1188 } 1189 1190 /* 1191 * Routines for tracking and managing workitems. 1192 */ 1193 static void workitem_free(struct worklist *, int); 1194 static void workitem_alloc(struct worklist *, int, struct mount *); 1195 static void workitem_reassign(struct worklist *, int); 1196 1197 #define WORKITEM_FREE(item, type) \ 1198 workitem_free((struct worklist *)(item), (type)) 1199 #define WORKITEM_REASSIGN(item, type) \ 1200 workitem_reassign((struct worklist *)(item), (type)) 1201 1202 static void 1203 workitem_free(item, type) 1204 struct worklist *item; 1205 int type; 1206 { 1207 struct ufsmount *ump; 1208 1209 #ifdef INVARIANTS 1210 if (item->wk_state & ONWORKLIST) 1211 panic("workitem_free: %s(0x%X) still on list, " 1212 "added in function %s at line %d", 1213 TYPENAME(item->wk_type), item->wk_state, 1214 item->wk_func, item->wk_line); 1215 if (item->wk_type != type && type != D_NEWBLK) 1216 panic("workitem_free: type mismatch %s != %s", 1217 TYPENAME(item->wk_type), TYPENAME(type)); 1218 #endif 1219 if (item->wk_state & IOWAITING) 1220 wakeup(item); 1221 ump = VFSTOUFS(item->wk_mp); 1222 LOCK_OWNED(ump); 1223 KASSERT(ump->softdep_deps > 0, 1224 ("workitem_free: %s: softdep_deps going negative", 1225 ump->um_fs->fs_fsmnt)); 1226 if (--ump->softdep_deps == 0 && ump->softdep_req) 1227 wakeup(&ump->softdep_deps); 1228 KASSERT(dep_current[item->wk_type] > 0, 1229 ("workitem_free: %s: dep_current[%s] going negative", 1230 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1231 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1232 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1233 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1234 atomic_subtract_long(&dep_current[item->wk_type], 1); 1235 ump->softdep_curdeps[item->wk_type] -= 1; 1236 #ifdef INVARIANTS 1237 LIST_REMOVE(item, wk_all); 1238 #endif 1239 free(item, DtoM(type)); 1240 } 1241 1242 static void 1243 workitem_alloc(item, type, mp) 1244 struct worklist *item; 1245 int type; 1246 struct mount *mp; 1247 { 1248 struct ufsmount *ump; 1249 1250 item->wk_type = type; 1251 item->wk_mp = mp; 1252 item->wk_state = 0; 1253 1254 ump = VFSTOUFS(mp); 1255 ACQUIRE_GBLLOCK(&lk); 1256 dep_current[type]++; 1257 if (dep_current[type] > dep_highuse[type]) 1258 dep_highuse[type] = dep_current[type]; 1259 dep_total[type]++; 1260 FREE_GBLLOCK(&lk); 1261 ACQUIRE_LOCK(ump); 1262 ump->softdep_curdeps[type] += 1; 1263 ump->softdep_deps++; 1264 ump->softdep_accdeps++; 1265 #ifdef INVARIANTS 1266 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1267 #endif 1268 FREE_LOCK(ump); 1269 } 1270 1271 static void 1272 workitem_reassign(item, newtype) 1273 struct worklist *item; 1274 int newtype; 1275 { 1276 struct ufsmount *ump; 1277 1278 ump = VFSTOUFS(item->wk_mp); 1279 LOCK_OWNED(ump); 1280 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1281 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1282 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1283 ump->softdep_curdeps[item->wk_type] -= 1; 1284 ump->softdep_curdeps[newtype] += 1; 1285 KASSERT(dep_current[item->wk_type] > 0, 1286 ("workitem_reassign: %s: dep_current[%s] going negative", 1287 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1288 ACQUIRE_GBLLOCK(&lk); 1289 dep_current[newtype]++; 1290 dep_current[item->wk_type]--; 1291 if (dep_current[newtype] > dep_highuse[newtype]) 1292 dep_highuse[newtype] = dep_current[newtype]; 1293 dep_total[newtype]++; 1294 FREE_GBLLOCK(&lk); 1295 item->wk_type = newtype; 1296 } 1297 1298 /* 1299 * Workitem queue management 1300 */ 1301 static int max_softdeps; /* maximum number of structs before slowdown */ 1302 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1303 static int proc_waiting; /* tracks whether we have a timeout posted */ 1304 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1305 static struct callout softdep_callout; 1306 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1307 static int req_clear_remove; /* syncer process flush some freeblks */ 1308 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1309 1310 /* 1311 * runtime statistics 1312 */ 1313 static int stat_flush_threads; /* number of softdep flushing threads */ 1314 static int stat_worklist_push; /* number of worklist cleanups */ 1315 static int stat_blk_limit_push; /* number of times block limit neared */ 1316 static int stat_ino_limit_push; /* number of times inode limit neared */ 1317 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1318 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1319 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1320 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1321 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1322 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1323 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1324 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1325 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1326 static int stat_journal_min; /* Times hit journal min threshold */ 1327 static int stat_journal_low; /* Times hit journal low threshold */ 1328 static int stat_journal_wait; /* Times blocked in jwait(). */ 1329 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1330 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1331 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1332 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1333 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1334 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1335 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1336 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1337 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1338 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1339 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1341 &max_softdeps, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1343 &tickdelay, 0, ""); 1344 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1345 &stat_flush_threads, 0, ""); 1346 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1347 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1348 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1349 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1350 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1351 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1352 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1353 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1354 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1355 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1356 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1357 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1358 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1359 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1360 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1361 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1362 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1363 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1364 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1365 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1366 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1367 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1368 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1369 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1370 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1371 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1372 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1373 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1374 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1375 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1376 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1377 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1378 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1379 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1380 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1381 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1382 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1383 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1384 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1385 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1386 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1387 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1388 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1389 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1390 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1391 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1392 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1393 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1394 1395 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1396 &softdep_flushcache, 0, ""); 1397 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1398 &stat_emptyjblocks, 0, ""); 1399 1400 SYSCTL_DECL(_vfs_ffs); 1401 1402 /* Whether to recompute the summary at mount time */ 1403 static int compute_summary_at_mount = 0; 1404 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1405 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1406 static int print_threads = 0; 1407 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1408 &print_threads, 0, "Notify flusher thread start/stop"); 1409 1410 /* List of all filesystems mounted with soft updates */ 1411 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1412 1413 static void 1414 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp, 1415 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp) 1416 { 1417 struct diradd *dap; 1418 1419 /* 1420 * Requeue unfinished dependencies before 1421 * unlocking buffer, which could make 1422 * diraddhdp invalid. 1423 */ 1424 ACQUIRE_LOCK(VFSTOUFS(mp)); 1425 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1426 LIST_REMOVE(dap, da_pdlist); 1427 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1428 } 1429 FREE_LOCK(VFSTOUFS(mp)); 1430 1431 bp->b_vflags &= ~BV_SCANNED; 1432 BUF_NOREC(bp); 1433 BUF_UNLOCK(bp); 1434 } 1435 1436 /* 1437 * This function fetches inode inum on mount point mp. We already 1438 * hold a locked vnode vp, and might have a locked buffer bp belonging 1439 * to vp. 1440 1441 * We must not block on acquiring the new inode lock as we will get 1442 * into a lock-order reversal with the buffer lock and possibly get a 1443 * deadlock. Thus if we cannot instantiate the requested vnode 1444 * without sleeping on its lock, we must unlock the vnode and the 1445 * buffer before doing a blocking on the vnode lock. We return 1446 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1447 * that the caller can reassess its state. 1448 * 1449 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1450 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1451 * point. 1452 * 1453 * Since callers expect to operate on fully constructed vnode, we also 1454 * recheck v_data after relock, and return ENOENT if NULL. 1455 * 1456 * If unlocking bp, we must unroll dequeueing its unfinished 1457 * dependencies, and clear scan flag, before unlocking. If unlocking 1458 * vp while it is under deactivation, we re-queue deactivation. 1459 */ 1460 static int 1461 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp, 1462 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp, 1463 struct vnode **rvp) 1464 { 1465 struct vnode *pvp; 1466 int error; 1467 bool bplocked; 1468 1469 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1470 for (bplocked = true, pvp = NULL;;) { 1471 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1472 FFSV_FORCEINSMQ); 1473 if (error == 0) { 1474 /* 1475 * Since we could have unlocked vp, the inode 1476 * number could no longer indicate a 1477 * constructed node. In this case, we must 1478 * restart the syscall. 1479 */ 1480 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1481 if (bp != NULL && bplocked) 1482 get_parent_vp_unlock_bp(mp, bp, 1483 diraddhdp, unfinishedp); 1484 if (VTOI(pvp)->i_mode == 0) 1485 vgone(pvp); 1486 error = ERELOOKUP; 1487 goto out2; 1488 } 1489 goto out1; 1490 } 1491 if (bp != NULL && bplocked) { 1492 get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); 1493 bplocked = false; 1494 } 1495 1496 /* 1497 * Do not drop vnode lock while inactivating. This 1498 * would result in leaks of the VI flags and 1499 * reclaiming of non-truncated vnode. Instead, 1500 * re-schedule inactivation hoping that we would be 1501 * able to sync inode later. 1502 */ 1503 if ((vp->v_iflag & VI_DOINGINACT) != 0) { 1504 VI_LOCK(vp); 1505 vp->v_iflag |= VI_OWEINACT; 1506 VI_UNLOCK(vp); 1507 return (ERELOOKUP); 1508 } 1509 1510 VOP_UNLOCK(vp); 1511 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1512 FFSV_FORCEINSMQ); 1513 if (error != 0) { 1514 MPASS(error != ERELOOKUP); 1515 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1516 break; 1517 } 1518 if (VTOI(pvp)->i_mode == 0) { 1519 vgone(pvp); 1520 vput(pvp); 1521 pvp = NULL; 1522 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1523 error = ERELOOKUP; 1524 break; 1525 } 1526 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1527 if (error == 0) 1528 break; 1529 vput(pvp); 1530 pvp = NULL; 1531 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1532 if (vp->v_data == NULL) { 1533 error = ENOENT; 1534 break; 1535 } 1536 } 1537 if (bp != NULL) { 1538 MPASS(!bplocked); 1539 error = ERELOOKUP; 1540 } 1541 out2: 1542 if (error != 0 && pvp != NULL) { 1543 vput(pvp); 1544 pvp = NULL; 1545 } 1546 out1: 1547 *rvp = pvp; 1548 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1549 return (error); 1550 } 1551 1552 /* 1553 * This function cleans the worklist for a filesystem. 1554 * Each filesystem running with soft dependencies gets its own 1555 * thread to run in this function. The thread is started up in 1556 * softdep_mount and shutdown in softdep_unmount. They show up 1557 * as part of the kernel "bufdaemon" process whose process 1558 * entry is available in bufdaemonproc. 1559 */ 1560 static int searchfailed; 1561 extern struct proc *bufdaemonproc; 1562 static void 1563 softdep_flush(addr) 1564 void *addr; 1565 { 1566 struct mount *mp; 1567 struct thread *td; 1568 struct ufsmount *ump; 1569 1570 td = curthread; 1571 td->td_pflags |= TDP_NORUNNINGBUF; 1572 mp = (struct mount *)addr; 1573 ump = VFSTOUFS(mp); 1574 atomic_add_int(&stat_flush_threads, 1); 1575 ACQUIRE_LOCK(ump); 1576 ump->softdep_flags &= ~FLUSH_STARTING; 1577 wakeup(&ump->softdep_flushtd); 1578 FREE_LOCK(ump); 1579 if (print_threads) { 1580 if (stat_flush_threads == 1) 1581 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1582 bufdaemonproc->p_pid); 1583 printf("Start thread %s\n", td->td_name); 1584 } 1585 for (;;) { 1586 while (softdep_process_worklist(mp, 0) > 0 || 1587 (MOUNTEDSUJ(mp) && 1588 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1589 kthread_suspend_check(); 1590 ACQUIRE_LOCK(ump); 1591 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1592 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1593 "sdflush", hz / 2); 1594 ump->softdep_flags &= ~FLUSH_CLEANUP; 1595 /* 1596 * Check to see if we are done and need to exit. 1597 */ 1598 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1599 FREE_LOCK(ump); 1600 continue; 1601 } 1602 ump->softdep_flags &= ~FLUSH_EXIT; 1603 FREE_LOCK(ump); 1604 wakeup(&ump->softdep_flags); 1605 if (print_threads) 1606 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1607 atomic_subtract_int(&stat_flush_threads, 1); 1608 kthread_exit(); 1609 panic("kthread_exit failed\n"); 1610 } 1611 } 1612 1613 static void 1614 worklist_speedup(mp) 1615 struct mount *mp; 1616 { 1617 struct ufsmount *ump; 1618 1619 ump = VFSTOUFS(mp); 1620 LOCK_OWNED(ump); 1621 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1622 ump->softdep_flags |= FLUSH_CLEANUP; 1623 wakeup(&ump->softdep_flushtd); 1624 } 1625 1626 static void 1627 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags) 1628 { 1629 struct buf *bp; 1630 1631 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1632 return; 1633 1634 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1635 bp->b_iocmd = BIO_SPEEDUP; 1636 bp->b_ioflags = flags; 1637 bp->b_bcount = omin(shortage, LONG_MAX); 1638 g_vfs_strategy(ump->um_bo, bp); 1639 bufwait(bp); 1640 free(bp, M_TRIM); 1641 } 1642 1643 static int 1644 softdep_speedup(ump) 1645 struct ufsmount *ump; 1646 { 1647 struct ufsmount *altump; 1648 struct mount_softdeps *sdp; 1649 1650 LOCK_OWNED(ump); 1651 worklist_speedup(ump->um_mountp); 1652 bd_speedup(); 1653 /* 1654 * If we have global shortages, then we need other 1655 * filesystems to help with the cleanup. Here we wakeup a 1656 * flusher thread for a filesystem that is over its fair 1657 * share of resources. 1658 */ 1659 if (req_clear_inodedeps || req_clear_remove) { 1660 ACQUIRE_GBLLOCK(&lk); 1661 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1662 if ((altump = sdp->sd_ump) == ump) 1663 continue; 1664 if (((req_clear_inodedeps && 1665 altump->softdep_curdeps[D_INODEDEP] > 1666 max_softdeps / stat_flush_threads) || 1667 (req_clear_remove && 1668 altump->softdep_curdeps[D_DIRREM] > 1669 (max_softdeps / 2) / stat_flush_threads)) && 1670 TRY_ACQUIRE_LOCK(altump)) 1671 break; 1672 } 1673 if (sdp == NULL) { 1674 searchfailed++; 1675 FREE_GBLLOCK(&lk); 1676 } else { 1677 /* 1678 * Move to the end of the list so we pick a 1679 * different one on out next try. 1680 */ 1681 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1682 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1683 FREE_GBLLOCK(&lk); 1684 if ((altump->softdep_flags & 1685 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1686 altump->softdep_flags |= FLUSH_CLEANUP; 1687 altump->um_softdep->sd_cleanups++; 1688 wakeup(&altump->softdep_flushtd); 1689 FREE_LOCK(altump); 1690 } 1691 } 1692 return (speedup_syncer()); 1693 } 1694 1695 /* 1696 * Add an item to the end of the work queue. 1697 * This routine requires that the lock be held. 1698 * This is the only routine that adds items to the list. 1699 * The following routine is the only one that removes items 1700 * and does so in order from first to last. 1701 */ 1702 1703 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1704 #define WK_NODELAY 0x0002 /* Process immediately. */ 1705 1706 static void 1707 add_to_worklist(wk, flags) 1708 struct worklist *wk; 1709 int flags; 1710 { 1711 struct ufsmount *ump; 1712 1713 ump = VFSTOUFS(wk->wk_mp); 1714 LOCK_OWNED(ump); 1715 if (wk->wk_state & ONWORKLIST) 1716 panic("add_to_worklist: %s(0x%X) already on list", 1717 TYPENAME(wk->wk_type), wk->wk_state); 1718 wk->wk_state |= ONWORKLIST; 1719 if (ump->softdep_on_worklist == 0) { 1720 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1721 ump->softdep_worklist_tail = wk; 1722 } else if (flags & WK_HEAD) { 1723 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1724 } else { 1725 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1726 ump->softdep_worklist_tail = wk; 1727 } 1728 ump->softdep_on_worklist += 1; 1729 if (flags & WK_NODELAY) 1730 worklist_speedup(wk->wk_mp); 1731 } 1732 1733 /* 1734 * Remove the item to be processed. If we are removing the last 1735 * item on the list, we need to recalculate the tail pointer. 1736 */ 1737 static void 1738 remove_from_worklist(wk) 1739 struct worklist *wk; 1740 { 1741 struct ufsmount *ump; 1742 1743 ump = VFSTOUFS(wk->wk_mp); 1744 if (ump->softdep_worklist_tail == wk) 1745 ump->softdep_worklist_tail = 1746 (struct worklist *)wk->wk_list.le_prev; 1747 WORKLIST_REMOVE(wk); 1748 ump->softdep_on_worklist -= 1; 1749 } 1750 1751 static void 1752 wake_worklist(wk) 1753 struct worklist *wk; 1754 { 1755 if (wk->wk_state & IOWAITING) { 1756 wk->wk_state &= ~IOWAITING; 1757 wakeup(wk); 1758 } 1759 } 1760 1761 static void 1762 wait_worklist(wk, wmesg) 1763 struct worklist *wk; 1764 char *wmesg; 1765 { 1766 struct ufsmount *ump; 1767 1768 ump = VFSTOUFS(wk->wk_mp); 1769 wk->wk_state |= IOWAITING; 1770 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1771 } 1772 1773 /* 1774 * Process that runs once per second to handle items in the background queue. 1775 * 1776 * Note that we ensure that everything is done in the order in which they 1777 * appear in the queue. The code below depends on this property to ensure 1778 * that blocks of a file are freed before the inode itself is freed. This 1779 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1780 * until all the old ones have been purged from the dependency lists. 1781 */ 1782 static int 1783 softdep_process_worklist(mp, full) 1784 struct mount *mp; 1785 int full; 1786 { 1787 int cnt, matchcnt; 1788 struct ufsmount *ump; 1789 long starttime; 1790 1791 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1792 if (MOUNTEDSOFTDEP(mp) == 0) 1793 return (0); 1794 matchcnt = 0; 1795 ump = VFSTOUFS(mp); 1796 ACQUIRE_LOCK(ump); 1797 starttime = time_second; 1798 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1799 check_clear_deps(mp); 1800 while (ump->softdep_on_worklist > 0) { 1801 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1802 break; 1803 else 1804 matchcnt += cnt; 1805 check_clear_deps(mp); 1806 /* 1807 * We do not generally want to stop for buffer space, but if 1808 * we are really being a buffer hog, we will stop and wait. 1809 */ 1810 if (should_yield()) { 1811 FREE_LOCK(ump); 1812 kern_yield(PRI_USER); 1813 bwillwrite(); 1814 ACQUIRE_LOCK(ump); 1815 } 1816 /* 1817 * Never allow processing to run for more than one 1818 * second. This gives the syncer thread the opportunity 1819 * to pause if appropriate. 1820 */ 1821 if (!full && starttime != time_second) 1822 break; 1823 } 1824 if (full == 0) 1825 journal_unsuspend(ump); 1826 FREE_LOCK(ump); 1827 return (matchcnt); 1828 } 1829 1830 /* 1831 * Process all removes associated with a vnode if we are running out of 1832 * journal space. Any other process which attempts to flush these will 1833 * be unable as we have the vnodes locked. 1834 */ 1835 static void 1836 process_removes(vp) 1837 struct vnode *vp; 1838 { 1839 struct inodedep *inodedep; 1840 struct dirrem *dirrem; 1841 struct ufsmount *ump; 1842 struct mount *mp; 1843 ino_t inum; 1844 1845 mp = vp->v_mount; 1846 ump = VFSTOUFS(mp); 1847 LOCK_OWNED(ump); 1848 inum = VTOI(vp)->i_number; 1849 for (;;) { 1850 top: 1851 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1852 return; 1853 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1854 /* 1855 * If another thread is trying to lock this vnode 1856 * it will fail but we must wait for it to do so 1857 * before we can proceed. 1858 */ 1859 if (dirrem->dm_state & INPROGRESS) { 1860 wait_worklist(&dirrem->dm_list, "pwrwait"); 1861 goto top; 1862 } 1863 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1864 (COMPLETE | ONWORKLIST)) 1865 break; 1866 } 1867 if (dirrem == NULL) 1868 return; 1869 remove_from_worklist(&dirrem->dm_list); 1870 FREE_LOCK(ump); 1871 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1872 panic("process_removes: suspended filesystem"); 1873 handle_workitem_remove(dirrem, 0); 1874 vn_finished_secondary_write(mp); 1875 ACQUIRE_LOCK(ump); 1876 } 1877 } 1878 1879 /* 1880 * Process all truncations associated with a vnode if we are running out 1881 * of journal space. This is called when the vnode lock is already held 1882 * and no other process can clear the truncation. This function returns 1883 * a value greater than zero if it did any work. 1884 */ 1885 static void 1886 process_truncates(vp) 1887 struct vnode *vp; 1888 { 1889 struct inodedep *inodedep; 1890 struct freeblks *freeblks; 1891 struct ufsmount *ump; 1892 struct mount *mp; 1893 ino_t inum; 1894 int cgwait; 1895 1896 mp = vp->v_mount; 1897 ump = VFSTOUFS(mp); 1898 LOCK_OWNED(ump); 1899 inum = VTOI(vp)->i_number; 1900 for (;;) { 1901 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1902 return; 1903 cgwait = 0; 1904 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1905 /* Journal entries not yet written. */ 1906 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1907 jwait(&LIST_FIRST( 1908 &freeblks->fb_jblkdephd)->jb_list, 1909 MNT_WAIT); 1910 break; 1911 } 1912 /* Another thread is executing this item. */ 1913 if (freeblks->fb_state & INPROGRESS) { 1914 wait_worklist(&freeblks->fb_list, "ptrwait"); 1915 break; 1916 } 1917 /* Freeblks is waiting on a inode write. */ 1918 if ((freeblks->fb_state & COMPLETE) == 0) { 1919 FREE_LOCK(ump); 1920 ffs_update(vp, 1); 1921 ACQUIRE_LOCK(ump); 1922 break; 1923 } 1924 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1925 (ALLCOMPLETE | ONWORKLIST)) { 1926 remove_from_worklist(&freeblks->fb_list); 1927 freeblks->fb_state |= INPROGRESS; 1928 FREE_LOCK(ump); 1929 if (vn_start_secondary_write(NULL, &mp, 1930 V_NOWAIT)) 1931 panic("process_truncates: " 1932 "suspended filesystem"); 1933 handle_workitem_freeblocks(freeblks, 0); 1934 vn_finished_secondary_write(mp); 1935 ACQUIRE_LOCK(ump); 1936 break; 1937 } 1938 if (freeblks->fb_cgwait) 1939 cgwait++; 1940 } 1941 if (cgwait) { 1942 FREE_LOCK(ump); 1943 sync_cgs(mp, MNT_WAIT); 1944 ffs_sync_snap(mp, MNT_WAIT); 1945 ACQUIRE_LOCK(ump); 1946 continue; 1947 } 1948 if (freeblks == NULL) 1949 break; 1950 } 1951 return; 1952 } 1953 1954 /* 1955 * Process one item on the worklist. 1956 */ 1957 static int 1958 process_worklist_item(mp, target, flags) 1959 struct mount *mp; 1960 int target; 1961 int flags; 1962 { 1963 struct worklist sentinel; 1964 struct worklist *wk; 1965 struct ufsmount *ump; 1966 int matchcnt; 1967 int error; 1968 1969 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1970 /* 1971 * If we are being called because of a process doing a 1972 * copy-on-write, then it is not safe to write as we may 1973 * recurse into the copy-on-write routine. 1974 */ 1975 if (curthread->td_pflags & TDP_COWINPROGRESS) 1976 return (-1); 1977 PHOLD(curproc); /* Don't let the stack go away. */ 1978 ump = VFSTOUFS(mp); 1979 LOCK_OWNED(ump); 1980 matchcnt = 0; 1981 sentinel.wk_mp = NULL; 1982 sentinel.wk_type = D_SENTINEL; 1983 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1984 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1985 wk = LIST_NEXT(&sentinel, wk_list)) { 1986 if (wk->wk_type == D_SENTINEL) { 1987 LIST_REMOVE(&sentinel, wk_list); 1988 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1989 continue; 1990 } 1991 if (wk->wk_state & INPROGRESS) 1992 panic("process_worklist_item: %p already in progress.", 1993 wk); 1994 wk->wk_state |= INPROGRESS; 1995 remove_from_worklist(wk); 1996 FREE_LOCK(ump); 1997 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1998 panic("process_worklist_item: suspended filesystem"); 1999 switch (wk->wk_type) { 2000 case D_DIRREM: 2001 /* removal of a directory entry */ 2002 error = handle_workitem_remove(WK_DIRREM(wk), flags); 2003 break; 2004 2005 case D_FREEBLKS: 2006 /* releasing blocks and/or fragments from a file */ 2007 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 2008 flags); 2009 break; 2010 2011 case D_FREEFRAG: 2012 /* releasing a fragment when replaced as a file grows */ 2013 handle_workitem_freefrag(WK_FREEFRAG(wk)); 2014 error = 0; 2015 break; 2016 2017 case D_FREEFILE: 2018 /* releasing an inode when its link count drops to 0 */ 2019 handle_workitem_freefile(WK_FREEFILE(wk)); 2020 error = 0; 2021 break; 2022 2023 default: 2024 panic("%s_process_worklist: Unknown type %s", 2025 "softdep", TYPENAME(wk->wk_type)); 2026 /* NOTREACHED */ 2027 } 2028 vn_finished_secondary_write(mp); 2029 ACQUIRE_LOCK(ump); 2030 if (error == 0) { 2031 if (++matchcnt == target) 2032 break; 2033 continue; 2034 } 2035 /* 2036 * We have to retry the worklist item later. Wake up any 2037 * waiters who may be able to complete it immediately and 2038 * add the item back to the head so we don't try to execute 2039 * it again. 2040 */ 2041 wk->wk_state &= ~INPROGRESS; 2042 wake_worklist(wk); 2043 add_to_worklist(wk, WK_HEAD); 2044 } 2045 /* Sentinal could've become the tail from remove_from_worklist. */ 2046 if (ump->softdep_worklist_tail == &sentinel) 2047 ump->softdep_worklist_tail = 2048 (struct worklist *)sentinel.wk_list.le_prev; 2049 LIST_REMOVE(&sentinel, wk_list); 2050 PRELE(curproc); 2051 return (matchcnt); 2052 } 2053 2054 /* 2055 * Move dependencies from one buffer to another. 2056 */ 2057 int 2058 softdep_move_dependencies(oldbp, newbp) 2059 struct buf *oldbp; 2060 struct buf *newbp; 2061 { 2062 struct worklist *wk, *wktail; 2063 struct ufsmount *ump; 2064 int dirty; 2065 2066 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 2067 return (0); 2068 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 2069 ("softdep_move_dependencies called on non-softdep filesystem")); 2070 dirty = 0; 2071 wktail = NULL; 2072 ump = VFSTOUFS(wk->wk_mp); 2073 ACQUIRE_LOCK(ump); 2074 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2075 LIST_REMOVE(wk, wk_list); 2076 if (wk->wk_type == D_BMSAFEMAP && 2077 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2078 dirty = 1; 2079 if (wktail == NULL) 2080 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2081 else 2082 LIST_INSERT_AFTER(wktail, wk, wk_list); 2083 wktail = wk; 2084 } 2085 FREE_LOCK(ump); 2086 2087 return (dirty); 2088 } 2089 2090 /* 2091 * Purge the work list of all items associated with a particular mount point. 2092 */ 2093 int 2094 softdep_flushworklist(oldmnt, countp, td) 2095 struct mount *oldmnt; 2096 int *countp; 2097 struct thread *td; 2098 { 2099 struct vnode *devvp; 2100 struct ufsmount *ump; 2101 int count, error; 2102 2103 /* 2104 * Alternately flush the block device associated with the mount 2105 * point and process any dependencies that the flushing 2106 * creates. We continue until no more worklist dependencies 2107 * are found. 2108 */ 2109 *countp = 0; 2110 error = 0; 2111 ump = VFSTOUFS(oldmnt); 2112 devvp = ump->um_devvp; 2113 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2114 *countp += count; 2115 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2116 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2117 VOP_UNLOCK(devvp); 2118 if (error != 0) 2119 break; 2120 } 2121 return (error); 2122 } 2123 2124 #define SU_WAITIDLE_RETRIES 20 2125 static int 2126 softdep_waitidle(struct mount *mp, int flags __unused) 2127 { 2128 struct ufsmount *ump; 2129 struct vnode *devvp; 2130 struct thread *td; 2131 int error, i; 2132 2133 ump = VFSTOUFS(mp); 2134 devvp = ump->um_devvp; 2135 td = curthread; 2136 error = 0; 2137 ACQUIRE_LOCK(ump); 2138 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2139 ump->softdep_req = 1; 2140 KASSERT((flags & FORCECLOSE) == 0 || 2141 ump->softdep_on_worklist == 0, 2142 ("softdep_waitidle: work added after flush")); 2143 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2144 "softdeps", 10 * hz); 2145 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2146 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2147 VOP_UNLOCK(devvp); 2148 ACQUIRE_LOCK(ump); 2149 if (error != 0) 2150 break; 2151 } 2152 ump->softdep_req = 0; 2153 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2154 error = EBUSY; 2155 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2156 mp); 2157 } 2158 FREE_LOCK(ump); 2159 return (error); 2160 } 2161 2162 /* 2163 * Flush all vnodes and worklist items associated with a specified mount point. 2164 */ 2165 int 2166 softdep_flushfiles(oldmnt, flags, td) 2167 struct mount *oldmnt; 2168 int flags; 2169 struct thread *td; 2170 { 2171 #ifdef QUOTA 2172 struct ufsmount *ump; 2173 int i; 2174 #endif 2175 int error, early, depcount, loopcnt, retry_flush_count, retry; 2176 int morework; 2177 2178 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 2179 ("softdep_flushfiles called on non-softdep filesystem")); 2180 loopcnt = 10; 2181 retry_flush_count = 3; 2182 retry_flush: 2183 error = 0; 2184 2185 /* 2186 * Alternately flush the vnodes associated with the mount 2187 * point and process any dependencies that the flushing 2188 * creates. In theory, this loop can happen at most twice, 2189 * but we give it a few extra just to be sure. 2190 */ 2191 for (; loopcnt > 0; loopcnt--) { 2192 /* 2193 * Do another flush in case any vnodes were brought in 2194 * as part of the cleanup operations. 2195 */ 2196 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2197 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2198 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2199 break; 2200 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2201 depcount == 0) 2202 break; 2203 } 2204 /* 2205 * If we are unmounting then it is an error to fail. If we 2206 * are simply trying to downgrade to read-only, then filesystem 2207 * activity can keep us busy forever, so we just fail with EBUSY. 2208 */ 2209 if (loopcnt == 0) { 2210 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2211 panic("softdep_flushfiles: looping"); 2212 error = EBUSY; 2213 } 2214 if (!error) 2215 error = softdep_waitidle(oldmnt, flags); 2216 if (!error) { 2217 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2218 retry = 0; 2219 MNT_ILOCK(oldmnt); 2220 morework = oldmnt->mnt_nvnodelistsize > 0; 2221 #ifdef QUOTA 2222 ump = VFSTOUFS(oldmnt); 2223 UFS_LOCK(ump); 2224 for (i = 0; i < MAXQUOTAS; i++) { 2225 if (ump->um_quotas[i] != NULLVP) 2226 morework = 1; 2227 } 2228 UFS_UNLOCK(ump); 2229 #endif 2230 if (morework) { 2231 if (--retry_flush_count > 0) { 2232 retry = 1; 2233 loopcnt = 3; 2234 } else 2235 error = EBUSY; 2236 } 2237 MNT_IUNLOCK(oldmnt); 2238 if (retry) 2239 goto retry_flush; 2240 } 2241 } 2242 return (error); 2243 } 2244 2245 /* 2246 * Structure hashing. 2247 * 2248 * There are four types of structures that can be looked up: 2249 * 1) pagedep structures identified by mount point, inode number, 2250 * and logical block. 2251 * 2) inodedep structures identified by mount point and inode number. 2252 * 3) newblk structures identified by mount point and 2253 * physical block number. 2254 * 4) bmsafemap structures identified by mount point and 2255 * cylinder group number. 2256 * 2257 * The "pagedep" and "inodedep" dependency structures are hashed 2258 * separately from the file blocks and inodes to which they correspond. 2259 * This separation helps when the in-memory copy of an inode or 2260 * file block must be replaced. It also obviates the need to access 2261 * an inode or file page when simply updating (or de-allocating) 2262 * dependency structures. Lookup of newblk structures is needed to 2263 * find newly allocated blocks when trying to associate them with 2264 * their allocdirect or allocindir structure. 2265 * 2266 * The lookup routines optionally create and hash a new instance when 2267 * an existing entry is not found. The bmsafemap lookup routine always 2268 * allocates a new structure if an existing one is not found. 2269 */ 2270 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2271 2272 /* 2273 * Structures and routines associated with pagedep caching. 2274 */ 2275 #define PAGEDEP_HASH(ump, inum, lbn) \ 2276 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2277 2278 static int 2279 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2280 struct pagedep_hashhead *pagedephd; 2281 ino_t ino; 2282 ufs_lbn_t lbn; 2283 struct pagedep **pagedeppp; 2284 { 2285 struct pagedep *pagedep; 2286 2287 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2288 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2289 *pagedeppp = pagedep; 2290 return (1); 2291 } 2292 } 2293 *pagedeppp = NULL; 2294 return (0); 2295 } 2296 /* 2297 * Look up a pagedep. Return 1 if found, 0 otherwise. 2298 * If not found, allocate if DEPALLOC flag is passed. 2299 * Found or allocated entry is returned in pagedeppp. 2300 */ 2301 static int 2302 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2303 struct mount *mp; 2304 struct buf *bp; 2305 ino_t ino; 2306 ufs_lbn_t lbn; 2307 int flags; 2308 struct pagedep **pagedeppp; 2309 { 2310 struct pagedep *pagedep; 2311 struct pagedep_hashhead *pagedephd; 2312 struct worklist *wk; 2313 struct ufsmount *ump; 2314 int ret; 2315 int i; 2316 2317 ump = VFSTOUFS(mp); 2318 LOCK_OWNED(ump); 2319 if (bp) { 2320 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2321 if (wk->wk_type == D_PAGEDEP) { 2322 *pagedeppp = WK_PAGEDEP(wk); 2323 return (1); 2324 } 2325 } 2326 } 2327 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2328 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2329 if (ret) { 2330 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2331 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2332 return (1); 2333 } 2334 if ((flags & DEPALLOC) == 0) 2335 return (0); 2336 FREE_LOCK(ump); 2337 pagedep = malloc(sizeof(struct pagedep), 2338 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2339 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2340 ACQUIRE_LOCK(ump); 2341 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2342 if (*pagedeppp) { 2343 /* 2344 * This should never happen since we only create pagedeps 2345 * with the vnode lock held. Could be an assert. 2346 */ 2347 WORKITEM_FREE(pagedep, D_PAGEDEP); 2348 return (ret); 2349 } 2350 pagedep->pd_ino = ino; 2351 pagedep->pd_lbn = lbn; 2352 LIST_INIT(&pagedep->pd_dirremhd); 2353 LIST_INIT(&pagedep->pd_pendinghd); 2354 for (i = 0; i < DAHASHSZ; i++) 2355 LIST_INIT(&pagedep->pd_diraddhd[i]); 2356 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2357 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2358 *pagedeppp = pagedep; 2359 return (0); 2360 } 2361 2362 /* 2363 * Structures and routines associated with inodedep caching. 2364 */ 2365 #define INODEDEP_HASH(ump, inum) \ 2366 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2367 2368 static int 2369 inodedep_find(inodedephd, inum, inodedeppp) 2370 struct inodedep_hashhead *inodedephd; 2371 ino_t inum; 2372 struct inodedep **inodedeppp; 2373 { 2374 struct inodedep *inodedep; 2375 2376 LIST_FOREACH(inodedep, inodedephd, id_hash) 2377 if (inum == inodedep->id_ino) 2378 break; 2379 if (inodedep) { 2380 *inodedeppp = inodedep; 2381 return (1); 2382 } 2383 *inodedeppp = NULL; 2384 2385 return (0); 2386 } 2387 /* 2388 * Look up an inodedep. Return 1 if found, 0 if not found. 2389 * If not found, allocate if DEPALLOC flag is passed. 2390 * Found or allocated entry is returned in inodedeppp. 2391 */ 2392 static int 2393 inodedep_lookup(mp, inum, flags, inodedeppp) 2394 struct mount *mp; 2395 ino_t inum; 2396 int flags; 2397 struct inodedep **inodedeppp; 2398 { 2399 struct inodedep *inodedep; 2400 struct inodedep_hashhead *inodedephd; 2401 struct ufsmount *ump; 2402 struct fs *fs; 2403 2404 ump = VFSTOUFS(mp); 2405 LOCK_OWNED(ump); 2406 fs = ump->um_fs; 2407 inodedephd = INODEDEP_HASH(ump, inum); 2408 2409 if (inodedep_find(inodedephd, inum, inodedeppp)) 2410 return (1); 2411 if ((flags & DEPALLOC) == 0) 2412 return (0); 2413 /* 2414 * If the system is over its limit and our filesystem is 2415 * responsible for more than our share of that usage and 2416 * we are not in a rush, request some inodedep cleanup. 2417 */ 2418 if (softdep_excess_items(ump, D_INODEDEP)) 2419 schedule_cleanup(mp); 2420 else 2421 FREE_LOCK(ump); 2422 inodedep = malloc(sizeof(struct inodedep), 2423 M_INODEDEP, M_SOFTDEP_FLAGS); 2424 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2425 ACQUIRE_LOCK(ump); 2426 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2427 WORKITEM_FREE(inodedep, D_INODEDEP); 2428 return (1); 2429 } 2430 inodedep->id_fs = fs; 2431 inodedep->id_ino = inum; 2432 inodedep->id_state = ALLCOMPLETE; 2433 inodedep->id_nlinkdelta = 0; 2434 inodedep->id_nlinkwrote = -1; 2435 inodedep->id_savedino1 = NULL; 2436 inodedep->id_savedsize = -1; 2437 inodedep->id_savedextsize = -1; 2438 inodedep->id_savednlink = -1; 2439 inodedep->id_bmsafemap = NULL; 2440 inodedep->id_mkdiradd = NULL; 2441 LIST_INIT(&inodedep->id_dirremhd); 2442 LIST_INIT(&inodedep->id_pendinghd); 2443 LIST_INIT(&inodedep->id_inowait); 2444 LIST_INIT(&inodedep->id_bufwait); 2445 TAILQ_INIT(&inodedep->id_inoreflst); 2446 TAILQ_INIT(&inodedep->id_inoupdt); 2447 TAILQ_INIT(&inodedep->id_newinoupdt); 2448 TAILQ_INIT(&inodedep->id_extupdt); 2449 TAILQ_INIT(&inodedep->id_newextupdt); 2450 TAILQ_INIT(&inodedep->id_freeblklst); 2451 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2452 *inodedeppp = inodedep; 2453 return (0); 2454 } 2455 2456 /* 2457 * Structures and routines associated with newblk caching. 2458 */ 2459 #define NEWBLK_HASH(ump, inum) \ 2460 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2461 2462 static int 2463 newblk_find(newblkhd, newblkno, flags, newblkpp) 2464 struct newblk_hashhead *newblkhd; 2465 ufs2_daddr_t newblkno; 2466 int flags; 2467 struct newblk **newblkpp; 2468 { 2469 struct newblk *newblk; 2470 2471 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2472 if (newblkno != newblk->nb_newblkno) 2473 continue; 2474 /* 2475 * If we're creating a new dependency don't match those that 2476 * have already been converted to allocdirects. This is for 2477 * a frag extend. 2478 */ 2479 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2480 continue; 2481 break; 2482 } 2483 if (newblk) { 2484 *newblkpp = newblk; 2485 return (1); 2486 } 2487 *newblkpp = NULL; 2488 return (0); 2489 } 2490 2491 /* 2492 * Look up a newblk. Return 1 if found, 0 if not found. 2493 * If not found, allocate if DEPALLOC flag is passed. 2494 * Found or allocated entry is returned in newblkpp. 2495 */ 2496 static int 2497 newblk_lookup(mp, newblkno, flags, newblkpp) 2498 struct mount *mp; 2499 ufs2_daddr_t newblkno; 2500 int flags; 2501 struct newblk **newblkpp; 2502 { 2503 struct newblk *newblk; 2504 struct newblk_hashhead *newblkhd; 2505 struct ufsmount *ump; 2506 2507 ump = VFSTOUFS(mp); 2508 LOCK_OWNED(ump); 2509 newblkhd = NEWBLK_HASH(ump, newblkno); 2510 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2511 return (1); 2512 if ((flags & DEPALLOC) == 0) 2513 return (0); 2514 if (softdep_excess_items(ump, D_NEWBLK) || 2515 softdep_excess_items(ump, D_ALLOCDIRECT) || 2516 softdep_excess_items(ump, D_ALLOCINDIR)) 2517 schedule_cleanup(mp); 2518 else 2519 FREE_LOCK(ump); 2520 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2521 M_SOFTDEP_FLAGS | M_ZERO); 2522 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2523 ACQUIRE_LOCK(ump); 2524 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2525 WORKITEM_FREE(newblk, D_NEWBLK); 2526 return (1); 2527 } 2528 newblk->nb_freefrag = NULL; 2529 LIST_INIT(&newblk->nb_indirdeps); 2530 LIST_INIT(&newblk->nb_newdirblk); 2531 LIST_INIT(&newblk->nb_jwork); 2532 newblk->nb_state = ATTACHED; 2533 newblk->nb_newblkno = newblkno; 2534 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2535 *newblkpp = newblk; 2536 return (0); 2537 } 2538 2539 /* 2540 * Structures and routines associated with freed indirect block caching. 2541 */ 2542 #define INDIR_HASH(ump, blkno) \ 2543 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2544 2545 /* 2546 * Lookup an indirect block in the indir hash table. The freework is 2547 * removed and potentially freed. The caller must do a blocking journal 2548 * write before writing to the blkno. 2549 */ 2550 static int 2551 indirblk_lookup(mp, blkno) 2552 struct mount *mp; 2553 ufs2_daddr_t blkno; 2554 { 2555 struct freework *freework; 2556 struct indir_hashhead *wkhd; 2557 struct ufsmount *ump; 2558 2559 ump = VFSTOUFS(mp); 2560 wkhd = INDIR_HASH(ump, blkno); 2561 TAILQ_FOREACH(freework, wkhd, fw_next) { 2562 if (freework->fw_blkno != blkno) 2563 continue; 2564 indirblk_remove(freework); 2565 return (1); 2566 } 2567 return (0); 2568 } 2569 2570 /* 2571 * Insert an indirect block represented by freework into the indirblk 2572 * hash table so that it may prevent the block from being re-used prior 2573 * to the journal being written. 2574 */ 2575 static void 2576 indirblk_insert(freework) 2577 struct freework *freework; 2578 { 2579 struct jblocks *jblocks; 2580 struct jseg *jseg; 2581 struct ufsmount *ump; 2582 2583 ump = VFSTOUFS(freework->fw_list.wk_mp); 2584 jblocks = ump->softdep_jblocks; 2585 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2586 if (jseg == NULL) 2587 return; 2588 2589 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2590 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2591 fw_next); 2592 freework->fw_state &= ~DEPCOMPLETE; 2593 } 2594 2595 static void 2596 indirblk_remove(freework) 2597 struct freework *freework; 2598 { 2599 struct ufsmount *ump; 2600 2601 ump = VFSTOUFS(freework->fw_list.wk_mp); 2602 LIST_REMOVE(freework, fw_segs); 2603 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2604 freework->fw_state |= DEPCOMPLETE; 2605 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2606 WORKITEM_FREE(freework, D_FREEWORK); 2607 } 2608 2609 /* 2610 * Executed during filesystem system initialization before 2611 * mounting any filesystems. 2612 */ 2613 void 2614 softdep_initialize() 2615 { 2616 2617 TAILQ_INIT(&softdepmounts); 2618 #ifdef __LP64__ 2619 max_softdeps = desiredvnodes * 4; 2620 #else 2621 max_softdeps = desiredvnodes * 2; 2622 #endif 2623 2624 /* initialise bioops hack */ 2625 bioops.io_start = softdep_disk_io_initiation; 2626 bioops.io_complete = softdep_disk_write_complete; 2627 bioops.io_deallocate = softdep_deallocate_dependencies; 2628 bioops.io_countdeps = softdep_count_dependencies; 2629 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2630 2631 /* Initialize the callout with an mtx. */ 2632 callout_init_mtx(&softdep_callout, &lk, 0); 2633 } 2634 2635 /* 2636 * Executed after all filesystems have been unmounted during 2637 * filesystem module unload. 2638 */ 2639 void 2640 softdep_uninitialize() 2641 { 2642 2643 /* clear bioops hack */ 2644 bioops.io_start = NULL; 2645 bioops.io_complete = NULL; 2646 bioops.io_deallocate = NULL; 2647 bioops.io_countdeps = NULL; 2648 softdep_ast_cleanup = NULL; 2649 2650 callout_drain(&softdep_callout); 2651 } 2652 2653 /* 2654 * Called at mount time to notify the dependency code that a 2655 * filesystem wishes to use it. 2656 */ 2657 int 2658 softdep_mount(devvp, mp, fs, cred) 2659 struct vnode *devvp; 2660 struct mount *mp; 2661 struct fs *fs; 2662 struct ucred *cred; 2663 { 2664 struct csum_total cstotal; 2665 struct mount_softdeps *sdp; 2666 struct ufsmount *ump; 2667 struct cg *cgp; 2668 struct buf *bp; 2669 u_int cyl, i; 2670 int error; 2671 2672 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2673 M_WAITOK | M_ZERO); 2674 MNT_ILOCK(mp); 2675 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2676 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2677 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2678 MNTK_SOFTDEP | MNTK_NOASYNC; 2679 } 2680 ump = VFSTOUFS(mp); 2681 ump->um_softdep = sdp; 2682 MNT_IUNLOCK(mp); 2683 rw_init(LOCK_PTR(ump), "per-fs softdep"); 2684 sdp->sd_ump = ump; 2685 LIST_INIT(&ump->softdep_workitem_pending); 2686 LIST_INIT(&ump->softdep_journal_pending); 2687 TAILQ_INIT(&ump->softdep_unlinked); 2688 LIST_INIT(&ump->softdep_dirtycg); 2689 ump->softdep_worklist_tail = NULL; 2690 ump->softdep_on_worklist = 0; 2691 ump->softdep_deps = 0; 2692 LIST_INIT(&ump->softdep_mkdirlisthd); 2693 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2694 &ump->pagedep_hash_size); 2695 ump->pagedep_nextclean = 0; 2696 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2697 &ump->inodedep_hash_size); 2698 ump->inodedep_nextclean = 0; 2699 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2700 &ump->newblk_hash_size); 2701 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2702 &ump->bmsafemap_hash_size); 2703 i = 1 << (ffs(desiredvnodes / 10) - 1); 2704 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2705 M_FREEWORK, M_WAITOK); 2706 ump->indir_hash_size = i - 1; 2707 for (i = 0; i <= ump->indir_hash_size; i++) 2708 TAILQ_INIT(&ump->indir_hashtbl[i]); 2709 #ifdef INVARIANTS 2710 for (i = 0; i <= D_LAST; i++) 2711 LIST_INIT(&ump->softdep_alldeps[i]); 2712 #endif 2713 ACQUIRE_GBLLOCK(&lk); 2714 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2715 FREE_GBLLOCK(&lk); 2716 if ((fs->fs_flags & FS_SUJ) && 2717 (error = journal_mount(mp, fs, cred)) != 0) { 2718 printf("Failed to start journal: %d\n", error); 2719 softdep_unmount(mp); 2720 return (error); 2721 } 2722 /* 2723 * Start our flushing thread in the bufdaemon process. 2724 */ 2725 ACQUIRE_LOCK(ump); 2726 ump->softdep_flags |= FLUSH_STARTING; 2727 FREE_LOCK(ump); 2728 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2729 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2730 mp->mnt_stat.f_mntonname); 2731 ACQUIRE_LOCK(ump); 2732 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2733 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2734 hz / 2); 2735 } 2736 FREE_LOCK(ump); 2737 /* 2738 * When doing soft updates, the counters in the 2739 * superblock may have gotten out of sync. Recomputation 2740 * can take a long time and can be deferred for background 2741 * fsck. However, the old behavior of scanning the cylinder 2742 * groups and recalculating them at mount time is available 2743 * by setting vfs.ffs.compute_summary_at_mount to one. 2744 */ 2745 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2746 return (0); 2747 bzero(&cstotal, sizeof cstotal); 2748 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2749 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2750 fs->fs_cgsize, cred, &bp)) != 0) { 2751 brelse(bp); 2752 softdep_unmount(mp); 2753 return (error); 2754 } 2755 cgp = (struct cg *)bp->b_data; 2756 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2757 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2758 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2759 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2760 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2761 brelse(bp); 2762 } 2763 #ifdef INVARIANTS 2764 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2765 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2766 #endif 2767 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2768 return (0); 2769 } 2770 2771 void 2772 softdep_unmount(mp) 2773 struct mount *mp; 2774 { 2775 struct ufsmount *ump; 2776 #ifdef INVARIANTS 2777 int i; 2778 #endif 2779 2780 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2781 ("softdep_unmount called on non-softdep filesystem")); 2782 ump = VFSTOUFS(mp); 2783 MNT_ILOCK(mp); 2784 mp->mnt_flag &= ~MNT_SOFTDEP; 2785 if (MOUNTEDSUJ(mp) == 0) { 2786 MNT_IUNLOCK(mp); 2787 } else { 2788 mp->mnt_flag &= ~MNT_SUJ; 2789 MNT_IUNLOCK(mp); 2790 journal_unmount(ump); 2791 } 2792 /* 2793 * Shut down our flushing thread. Check for NULL is if 2794 * softdep_mount errors out before the thread has been created. 2795 */ 2796 if (ump->softdep_flushtd != NULL) { 2797 ACQUIRE_LOCK(ump); 2798 ump->softdep_flags |= FLUSH_EXIT; 2799 wakeup(&ump->softdep_flushtd); 2800 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2801 "sdwait", 0); 2802 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2803 ("Thread shutdown failed")); 2804 } 2805 /* 2806 * Free up our resources. 2807 */ 2808 ACQUIRE_GBLLOCK(&lk); 2809 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2810 FREE_GBLLOCK(&lk); 2811 rw_destroy(LOCK_PTR(ump)); 2812 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2813 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2814 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2815 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2816 ump->bmsafemap_hash_size); 2817 free(ump->indir_hashtbl, M_FREEWORK); 2818 #ifdef INVARIANTS 2819 for (i = 0; i <= D_LAST; i++) { 2820 KASSERT(ump->softdep_curdeps[i] == 0, 2821 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2822 TYPENAME(i), ump->softdep_curdeps[i])); 2823 KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]), 2824 ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt, 2825 TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i]))); 2826 } 2827 #endif 2828 free(ump->um_softdep, M_MOUNTDATA); 2829 } 2830 2831 static struct jblocks * 2832 jblocks_create(void) 2833 { 2834 struct jblocks *jblocks; 2835 2836 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2837 TAILQ_INIT(&jblocks->jb_segs); 2838 jblocks->jb_avail = 10; 2839 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2840 M_JBLOCKS, M_WAITOK | M_ZERO); 2841 2842 return (jblocks); 2843 } 2844 2845 static ufs2_daddr_t 2846 jblocks_alloc(jblocks, bytes, actual) 2847 struct jblocks *jblocks; 2848 int bytes; 2849 int *actual; 2850 { 2851 ufs2_daddr_t daddr; 2852 struct jextent *jext; 2853 int freecnt; 2854 int blocks; 2855 2856 blocks = bytes / DEV_BSIZE; 2857 jext = &jblocks->jb_extent[jblocks->jb_head]; 2858 freecnt = jext->je_blocks - jblocks->jb_off; 2859 if (freecnt == 0) { 2860 jblocks->jb_off = 0; 2861 if (++jblocks->jb_head > jblocks->jb_used) 2862 jblocks->jb_head = 0; 2863 jext = &jblocks->jb_extent[jblocks->jb_head]; 2864 freecnt = jext->je_blocks; 2865 } 2866 if (freecnt > blocks) 2867 freecnt = blocks; 2868 *actual = freecnt * DEV_BSIZE; 2869 daddr = jext->je_daddr + jblocks->jb_off; 2870 jblocks->jb_off += freecnt; 2871 jblocks->jb_free -= freecnt; 2872 2873 return (daddr); 2874 } 2875 2876 static void 2877 jblocks_free(jblocks, mp, bytes) 2878 struct jblocks *jblocks; 2879 struct mount *mp; 2880 int bytes; 2881 { 2882 2883 LOCK_OWNED(VFSTOUFS(mp)); 2884 jblocks->jb_free += bytes / DEV_BSIZE; 2885 if (jblocks->jb_suspended) 2886 worklist_speedup(mp); 2887 wakeup(jblocks); 2888 } 2889 2890 static void 2891 jblocks_destroy(jblocks) 2892 struct jblocks *jblocks; 2893 { 2894 2895 if (jblocks->jb_extent) 2896 free(jblocks->jb_extent, M_JBLOCKS); 2897 free(jblocks, M_JBLOCKS); 2898 } 2899 2900 static void 2901 jblocks_add(jblocks, daddr, blocks) 2902 struct jblocks *jblocks; 2903 ufs2_daddr_t daddr; 2904 int blocks; 2905 { 2906 struct jextent *jext; 2907 2908 jblocks->jb_blocks += blocks; 2909 jblocks->jb_free += blocks; 2910 jext = &jblocks->jb_extent[jblocks->jb_used]; 2911 /* Adding the first block. */ 2912 if (jext->je_daddr == 0) { 2913 jext->je_daddr = daddr; 2914 jext->je_blocks = blocks; 2915 return; 2916 } 2917 /* Extending the last extent. */ 2918 if (jext->je_daddr + jext->je_blocks == daddr) { 2919 jext->je_blocks += blocks; 2920 return; 2921 } 2922 /* Adding a new extent. */ 2923 if (++jblocks->jb_used == jblocks->jb_avail) { 2924 jblocks->jb_avail *= 2; 2925 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2926 M_JBLOCKS, M_WAITOK | M_ZERO); 2927 memcpy(jext, jblocks->jb_extent, 2928 sizeof(struct jextent) * jblocks->jb_used); 2929 free(jblocks->jb_extent, M_JBLOCKS); 2930 jblocks->jb_extent = jext; 2931 } 2932 jext = &jblocks->jb_extent[jblocks->jb_used]; 2933 jext->je_daddr = daddr; 2934 jext->je_blocks = blocks; 2935 return; 2936 } 2937 2938 int 2939 softdep_journal_lookup(mp, vpp) 2940 struct mount *mp; 2941 struct vnode **vpp; 2942 { 2943 struct componentname cnp; 2944 struct vnode *dvp; 2945 ino_t sujournal; 2946 int error; 2947 2948 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2949 if (error) 2950 return (error); 2951 bzero(&cnp, sizeof(cnp)); 2952 cnp.cn_nameiop = LOOKUP; 2953 cnp.cn_flags = ISLASTCN; 2954 cnp.cn_thread = curthread; 2955 cnp.cn_cred = curthread->td_ucred; 2956 cnp.cn_pnbuf = SUJ_FILE; 2957 cnp.cn_nameptr = SUJ_FILE; 2958 cnp.cn_namelen = strlen(SUJ_FILE); 2959 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2960 vput(dvp); 2961 if (error != 0) 2962 return (error); 2963 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2964 return (error); 2965 } 2966 2967 /* 2968 * Open and verify the journal file. 2969 */ 2970 static int 2971 journal_mount(mp, fs, cred) 2972 struct mount *mp; 2973 struct fs *fs; 2974 struct ucred *cred; 2975 { 2976 struct jblocks *jblocks; 2977 struct ufsmount *ump; 2978 struct vnode *vp; 2979 struct inode *ip; 2980 ufs2_daddr_t blkno; 2981 int bcount; 2982 int error; 2983 int i; 2984 2985 ump = VFSTOUFS(mp); 2986 ump->softdep_journal_tail = NULL; 2987 ump->softdep_on_journal = 0; 2988 ump->softdep_accdeps = 0; 2989 ump->softdep_req = 0; 2990 ump->softdep_jblocks = NULL; 2991 error = softdep_journal_lookup(mp, &vp); 2992 if (error != 0) { 2993 printf("Failed to find journal. Use tunefs to create one\n"); 2994 return (error); 2995 } 2996 ip = VTOI(vp); 2997 if (ip->i_size < SUJ_MIN) { 2998 error = ENOSPC; 2999 goto out; 3000 } 3001 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 3002 jblocks = jblocks_create(); 3003 for (i = 0; i < bcount; i++) { 3004 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 3005 if (error) 3006 break; 3007 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 3008 } 3009 if (error) { 3010 jblocks_destroy(jblocks); 3011 goto out; 3012 } 3013 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 3014 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 3015 ump->softdep_jblocks = jblocks; 3016 out: 3017 if (error == 0) { 3018 MNT_ILOCK(mp); 3019 mp->mnt_flag |= MNT_SUJ; 3020 mp->mnt_flag &= ~MNT_SOFTDEP; 3021 MNT_IUNLOCK(mp); 3022 /* 3023 * Only validate the journal contents if the 3024 * filesystem is clean, otherwise we write the logs 3025 * but they'll never be used. If the filesystem was 3026 * still dirty when we mounted it the journal is 3027 * invalid and a new journal can only be valid if it 3028 * starts from a clean mount. 3029 */ 3030 if (fs->fs_clean) { 3031 DIP_SET(ip, i_modrev, fs->fs_mtime); 3032 ip->i_flags |= IN_MODIFIED; 3033 ffs_update(vp, 1); 3034 } 3035 } 3036 vput(vp); 3037 return (error); 3038 } 3039 3040 static void 3041 journal_unmount(ump) 3042 struct ufsmount *ump; 3043 { 3044 3045 if (ump->softdep_jblocks) 3046 jblocks_destroy(ump->softdep_jblocks); 3047 ump->softdep_jblocks = NULL; 3048 } 3049 3050 /* 3051 * Called when a journal record is ready to be written. Space is allocated 3052 * and the journal entry is created when the journal is flushed to stable 3053 * store. 3054 */ 3055 static void 3056 add_to_journal(wk) 3057 struct worklist *wk; 3058 { 3059 struct ufsmount *ump; 3060 3061 ump = VFSTOUFS(wk->wk_mp); 3062 LOCK_OWNED(ump); 3063 if (wk->wk_state & ONWORKLIST) 3064 panic("add_to_journal: %s(0x%X) already on list", 3065 TYPENAME(wk->wk_type), wk->wk_state); 3066 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 3067 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 3068 ump->softdep_jblocks->jb_age = ticks; 3069 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 3070 } else 3071 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 3072 ump->softdep_journal_tail = wk; 3073 ump->softdep_on_journal += 1; 3074 } 3075 3076 /* 3077 * Remove an arbitrary item for the journal worklist maintain the tail 3078 * pointer. This happens when a new operation obviates the need to 3079 * journal an old operation. 3080 */ 3081 static void 3082 remove_from_journal(wk) 3083 struct worklist *wk; 3084 { 3085 struct ufsmount *ump; 3086 3087 ump = VFSTOUFS(wk->wk_mp); 3088 LOCK_OWNED(ump); 3089 #ifdef INVARIANTS 3090 { 3091 struct worklist *wkn; 3092 3093 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3094 if (wkn == wk) 3095 break; 3096 if (wkn == NULL) 3097 panic("remove_from_journal: %p is not in journal", wk); 3098 } 3099 #endif 3100 /* 3101 * We emulate a TAILQ to save space in most structures which do not 3102 * require TAILQ semantics. Here we must update the tail position 3103 * when removing the tail which is not the final entry. This works 3104 * only if the worklist linkage are at the beginning of the structure. 3105 */ 3106 if (ump->softdep_journal_tail == wk) 3107 ump->softdep_journal_tail = 3108 (struct worklist *)wk->wk_list.le_prev; 3109 WORKLIST_REMOVE(wk); 3110 ump->softdep_on_journal -= 1; 3111 } 3112 3113 /* 3114 * Check for journal space as well as dependency limits so the prelink 3115 * code can throttle both journaled and non-journaled filesystems. 3116 * Threshold is 0 for low and 1 for min. 3117 */ 3118 static int 3119 journal_space(ump, thresh) 3120 struct ufsmount *ump; 3121 int thresh; 3122 { 3123 struct jblocks *jblocks; 3124 int limit, avail; 3125 3126 jblocks = ump->softdep_jblocks; 3127 if (jblocks == NULL) 3128 return (1); 3129 /* 3130 * We use a tighter restriction here to prevent request_cleanup() 3131 * running in threads from running into locks we currently hold. 3132 * We have to be over the limit and our filesystem has to be 3133 * responsible for more than our share of that usage. 3134 */ 3135 limit = (max_softdeps / 10) * 9; 3136 if (dep_current[D_INODEDEP] > limit && 3137 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3138 return (0); 3139 if (thresh) 3140 thresh = jblocks->jb_min; 3141 else 3142 thresh = jblocks->jb_low; 3143 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3144 avail = jblocks->jb_free - avail; 3145 3146 return (avail > thresh); 3147 } 3148 3149 static void 3150 journal_suspend(ump) 3151 struct ufsmount *ump; 3152 { 3153 struct jblocks *jblocks; 3154 struct mount *mp; 3155 bool set; 3156 3157 mp = UFSTOVFS(ump); 3158 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3159 return; 3160 3161 jblocks = ump->softdep_jblocks; 3162 vfs_op_enter(mp); 3163 set = false; 3164 MNT_ILOCK(mp); 3165 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3166 stat_journal_min++; 3167 mp->mnt_kern_flag |= MNTK_SUSPEND; 3168 mp->mnt_susp_owner = ump->softdep_flushtd; 3169 set = true; 3170 } 3171 jblocks->jb_suspended = 1; 3172 MNT_IUNLOCK(mp); 3173 if (!set) 3174 vfs_op_exit(mp); 3175 } 3176 3177 static int 3178 journal_unsuspend(struct ufsmount *ump) 3179 { 3180 struct jblocks *jblocks; 3181 struct mount *mp; 3182 3183 mp = UFSTOVFS(ump); 3184 jblocks = ump->softdep_jblocks; 3185 3186 if (jblocks != NULL && jblocks->jb_suspended && 3187 journal_space(ump, jblocks->jb_min)) { 3188 jblocks->jb_suspended = 0; 3189 FREE_LOCK(ump); 3190 mp->mnt_susp_owner = curthread; 3191 vfs_write_resume(mp, 0); 3192 ACQUIRE_LOCK(ump); 3193 return (1); 3194 } 3195 return (0); 3196 } 3197 3198 /* 3199 * Called before any allocation function to be certain that there is 3200 * sufficient space in the journal prior to creating any new records. 3201 * Since in the case of block allocation we may have multiple locked 3202 * buffers at the time of the actual allocation we can not block 3203 * when the journal records are created. Doing so would create a deadlock 3204 * if any of these buffers needed to be flushed to reclaim space. Instead 3205 * we require a sufficiently large amount of available space such that 3206 * each thread in the system could have passed this allocation check and 3207 * still have sufficient free space. With 20% of a minimum journal size 3208 * of 1MB we have 6553 records available. 3209 */ 3210 int 3211 softdep_prealloc(vp, waitok) 3212 struct vnode *vp; 3213 int waitok; 3214 { 3215 struct ufsmount *ump; 3216 3217 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3218 ("softdep_prealloc called on non-softdep filesystem")); 3219 /* 3220 * Nothing to do if we are not running journaled soft updates. 3221 * If we currently hold the snapshot lock, we must avoid 3222 * handling other resources that could cause deadlock. Do not 3223 * touch quotas vnode since it is typically recursed with 3224 * other vnode locks held. 3225 */ 3226 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3227 (vp->v_vflag & VV_SYSTEM) != 0) 3228 return (0); 3229 ump = VFSTOUFS(vp->v_mount); 3230 ACQUIRE_LOCK(ump); 3231 if (journal_space(ump, 0)) { 3232 FREE_LOCK(ump); 3233 return (0); 3234 } 3235 stat_journal_low++; 3236 FREE_LOCK(ump); 3237 if (waitok == MNT_NOWAIT) 3238 return (ENOSPC); 3239 /* 3240 * Attempt to sync this vnode once to flush any journal 3241 * work attached to it. 3242 */ 3243 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3244 ffs_syncvnode(vp, waitok, 0); 3245 ACQUIRE_LOCK(ump); 3246 process_removes(vp); 3247 process_truncates(vp); 3248 if (journal_space(ump, 0) == 0) { 3249 softdep_speedup(ump); 3250 if (journal_space(ump, 1) == 0) 3251 journal_suspend(ump); 3252 } 3253 FREE_LOCK(ump); 3254 3255 return (0); 3256 } 3257 3258 /* 3259 * Try hard to sync all data and metadata for the vnode, and workitems 3260 * flushing which might conflict with the vnode lock. This is a 3261 * helper for softdep_prerename(). 3262 */ 3263 static int 3264 softdep_prerename_vnode(ump, vp) 3265 struct ufsmount *ump; 3266 struct vnode *vp; 3267 { 3268 int error; 3269 3270 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3271 if (vp->v_data == NULL) 3272 return (0); 3273 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3274 if (error != 0) 3275 return (error); 3276 ACQUIRE_LOCK(ump); 3277 process_removes(vp); 3278 process_truncates(vp); 3279 FREE_LOCK(ump); 3280 return (0); 3281 } 3282 3283 /* 3284 * Must be called from VOP_RENAME() after all vnodes are locked. 3285 * Ensures that there is enough journal space for rename. It is 3286 * sufficiently different from softdep_prelink() by having to handle 3287 * four vnodes. 3288 */ 3289 int 3290 softdep_prerename(fdvp, fvp, tdvp, tvp) 3291 struct vnode *fdvp; 3292 struct vnode *fvp; 3293 struct vnode *tdvp; 3294 struct vnode *tvp; 3295 { 3296 struct ufsmount *ump; 3297 int error; 3298 3299 ump = VFSTOUFS(fdvp->v_mount); 3300 3301 if (journal_space(ump, 0)) 3302 return (0); 3303 3304 VOP_UNLOCK(tdvp); 3305 VOP_UNLOCK(fvp); 3306 if (tvp != NULL && tvp != tdvp) 3307 VOP_UNLOCK(tvp); 3308 3309 error = softdep_prerename_vnode(ump, fdvp); 3310 VOP_UNLOCK(fdvp); 3311 if (error != 0) 3312 return (error); 3313 3314 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3315 error = softdep_prerename_vnode(ump, fvp); 3316 VOP_UNLOCK(fvp); 3317 if (error != 0) 3318 return (error); 3319 3320 if (tdvp != fdvp) { 3321 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3322 error = softdep_prerename_vnode(ump, tdvp); 3323 VOP_UNLOCK(tdvp); 3324 if (error != 0) 3325 return (error); 3326 } 3327 3328 if (tvp != fvp && tvp != NULL) { 3329 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3330 error = softdep_prerename_vnode(ump, tvp); 3331 VOP_UNLOCK(tvp); 3332 if (error != 0) 3333 return (error); 3334 } 3335 3336 ACQUIRE_LOCK(ump); 3337 softdep_speedup(ump); 3338 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3339 if (journal_space(ump, 0) == 0) { 3340 softdep_speedup(ump); 3341 if (journal_space(ump, 1) == 0) 3342 journal_suspend(ump); 3343 } 3344 FREE_LOCK(ump); 3345 return (ERELOOKUP); 3346 } 3347 3348 /* 3349 * Before adjusting a link count on a vnode verify that we have sufficient 3350 * journal space. If not, process operations that depend on the currently 3351 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3352 * and softdep flush threads can not acquire these locks to reclaim space. 3353 * 3354 * Returns 0 if all owned locks are still valid and were not dropped 3355 * in the process, in other case it returns either an error from sync, 3356 * or ERELOOKUP if any of the locks were re-acquired. In the later 3357 * case, the state of the vnodes cannot be relied upon and our VFS 3358 * syscall must be restarted at top level from the lookup. 3359 */ 3360 int 3361 softdep_prelink(dvp, vp, will_direnter) 3362 struct vnode *dvp; 3363 struct vnode *vp; 3364 int will_direnter; 3365 { 3366 struct ufsmount *ump; 3367 int error, error1; 3368 3369 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3370 if (vp != NULL) 3371 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3372 ump = VFSTOUFS(dvp->v_mount); 3373 3374 /* 3375 * Nothing to do if we have sufficient journal space. 3376 * If we currently hold the snapshot lock, we must avoid 3377 * handling other resources that could cause deadlock. 3378 * 3379 * will_direnter == 1: In case allocated a directory block in 3380 * an indirect block, we must prevent holes in the directory 3381 * created if directory entries are written out of order. To 3382 * accomplish this we fsync when we extend a directory into 3383 * indirects. During rename it's not safe to drop the tvp 3384 * lock so sync must be delayed until it is. 3385 * 3386 * This synchronous step could be removed if fsck and the 3387 * kernel were taught to fill in sparse directories rather 3388 * than panic. 3389 */ 3390 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) { 3391 error = 0; 3392 if (will_direnter && (vp == NULL || !IS_SNAPSHOT(VTOI(vp)))) { 3393 if (vp != NULL) 3394 VOP_UNLOCK(vp); 3395 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 3396 if (vp != NULL) { 3397 error1 = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 3398 if (error1 != 0) { 3399 vn_lock_pair(dvp, true, vp, false); 3400 if (error == 0) 3401 error = ERELOOKUP; 3402 } else if (vp->v_data == NULL) { 3403 error = ERELOOKUP; 3404 } 3405 } 3406 } 3407 return (error); 3408 } 3409 3410 stat_journal_low++; 3411 if (vp != NULL) { 3412 VOP_UNLOCK(dvp); 3413 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3414 vn_lock_pair(dvp, false, vp, true); 3415 if (dvp->v_data == NULL) 3416 return (ERELOOKUP); 3417 } 3418 if (vp != NULL) 3419 VOP_UNLOCK(vp); 3420 ffs_syncvnode(dvp, MNT_WAIT, 0); 3421 VOP_UNLOCK(dvp); 3422 3423 /* Process vp before dvp as it may create .. removes. */ 3424 if (vp != NULL) { 3425 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3426 if (vp->v_data == NULL) { 3427 vn_lock_pair(dvp, false, vp, true); 3428 return (ERELOOKUP); 3429 } 3430 ACQUIRE_LOCK(ump); 3431 process_removes(vp); 3432 process_truncates(vp); 3433 FREE_LOCK(ump); 3434 VOP_UNLOCK(vp); 3435 } 3436 3437 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3438 if (dvp->v_data == NULL) { 3439 vn_lock_pair(dvp, true, vp, false); 3440 return (ERELOOKUP); 3441 } 3442 3443 ACQUIRE_LOCK(ump); 3444 process_removes(dvp); 3445 process_truncates(dvp); 3446 VOP_UNLOCK(dvp); 3447 softdep_speedup(ump); 3448 3449 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3450 if (journal_space(ump, 0) == 0) { 3451 softdep_speedup(ump); 3452 if (journal_space(ump, 1) == 0) 3453 journal_suspend(ump); 3454 } 3455 FREE_LOCK(ump); 3456 3457 vn_lock_pair(dvp, false, vp, false); 3458 return (ERELOOKUP); 3459 } 3460 3461 static void 3462 jseg_write(ump, jseg, data) 3463 struct ufsmount *ump; 3464 struct jseg *jseg; 3465 uint8_t *data; 3466 { 3467 struct jsegrec *rec; 3468 3469 rec = (struct jsegrec *)data; 3470 rec->jsr_seq = jseg->js_seq; 3471 rec->jsr_oldest = jseg->js_oldseq; 3472 rec->jsr_cnt = jseg->js_cnt; 3473 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3474 rec->jsr_crc = 0; 3475 rec->jsr_time = ump->um_fs->fs_mtime; 3476 } 3477 3478 static inline void 3479 inoref_write(inoref, jseg, rec) 3480 struct inoref *inoref; 3481 struct jseg *jseg; 3482 struct jrefrec *rec; 3483 { 3484 3485 inoref->if_jsegdep->jd_seg = jseg; 3486 rec->jr_ino = inoref->if_ino; 3487 rec->jr_parent = inoref->if_parent; 3488 rec->jr_nlink = inoref->if_nlink; 3489 rec->jr_mode = inoref->if_mode; 3490 rec->jr_diroff = inoref->if_diroff; 3491 } 3492 3493 static void 3494 jaddref_write(jaddref, jseg, data) 3495 struct jaddref *jaddref; 3496 struct jseg *jseg; 3497 uint8_t *data; 3498 { 3499 struct jrefrec *rec; 3500 3501 rec = (struct jrefrec *)data; 3502 rec->jr_op = JOP_ADDREF; 3503 inoref_write(&jaddref->ja_ref, jseg, rec); 3504 } 3505 3506 static void 3507 jremref_write(jremref, jseg, data) 3508 struct jremref *jremref; 3509 struct jseg *jseg; 3510 uint8_t *data; 3511 { 3512 struct jrefrec *rec; 3513 3514 rec = (struct jrefrec *)data; 3515 rec->jr_op = JOP_REMREF; 3516 inoref_write(&jremref->jr_ref, jseg, rec); 3517 } 3518 3519 static void 3520 jmvref_write(jmvref, jseg, data) 3521 struct jmvref *jmvref; 3522 struct jseg *jseg; 3523 uint8_t *data; 3524 { 3525 struct jmvrec *rec; 3526 3527 rec = (struct jmvrec *)data; 3528 rec->jm_op = JOP_MVREF; 3529 rec->jm_ino = jmvref->jm_ino; 3530 rec->jm_parent = jmvref->jm_parent; 3531 rec->jm_oldoff = jmvref->jm_oldoff; 3532 rec->jm_newoff = jmvref->jm_newoff; 3533 } 3534 3535 static void 3536 jnewblk_write(jnewblk, jseg, data) 3537 struct jnewblk *jnewblk; 3538 struct jseg *jseg; 3539 uint8_t *data; 3540 { 3541 struct jblkrec *rec; 3542 3543 jnewblk->jn_jsegdep->jd_seg = jseg; 3544 rec = (struct jblkrec *)data; 3545 rec->jb_op = JOP_NEWBLK; 3546 rec->jb_ino = jnewblk->jn_ino; 3547 rec->jb_blkno = jnewblk->jn_blkno; 3548 rec->jb_lbn = jnewblk->jn_lbn; 3549 rec->jb_frags = jnewblk->jn_frags; 3550 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3551 } 3552 3553 static void 3554 jfreeblk_write(jfreeblk, jseg, data) 3555 struct jfreeblk *jfreeblk; 3556 struct jseg *jseg; 3557 uint8_t *data; 3558 { 3559 struct jblkrec *rec; 3560 3561 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3562 rec = (struct jblkrec *)data; 3563 rec->jb_op = JOP_FREEBLK; 3564 rec->jb_ino = jfreeblk->jf_ino; 3565 rec->jb_blkno = jfreeblk->jf_blkno; 3566 rec->jb_lbn = jfreeblk->jf_lbn; 3567 rec->jb_frags = jfreeblk->jf_frags; 3568 rec->jb_oldfrags = 0; 3569 } 3570 3571 static void 3572 jfreefrag_write(jfreefrag, jseg, data) 3573 struct jfreefrag *jfreefrag; 3574 struct jseg *jseg; 3575 uint8_t *data; 3576 { 3577 struct jblkrec *rec; 3578 3579 jfreefrag->fr_jsegdep->jd_seg = jseg; 3580 rec = (struct jblkrec *)data; 3581 rec->jb_op = JOP_FREEBLK; 3582 rec->jb_ino = jfreefrag->fr_ino; 3583 rec->jb_blkno = jfreefrag->fr_blkno; 3584 rec->jb_lbn = jfreefrag->fr_lbn; 3585 rec->jb_frags = jfreefrag->fr_frags; 3586 rec->jb_oldfrags = 0; 3587 } 3588 3589 static void 3590 jtrunc_write(jtrunc, jseg, data) 3591 struct jtrunc *jtrunc; 3592 struct jseg *jseg; 3593 uint8_t *data; 3594 { 3595 struct jtrncrec *rec; 3596 3597 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3598 rec = (struct jtrncrec *)data; 3599 rec->jt_op = JOP_TRUNC; 3600 rec->jt_ino = jtrunc->jt_ino; 3601 rec->jt_size = jtrunc->jt_size; 3602 rec->jt_extsize = jtrunc->jt_extsize; 3603 } 3604 3605 static void 3606 jfsync_write(jfsync, jseg, data) 3607 struct jfsync *jfsync; 3608 struct jseg *jseg; 3609 uint8_t *data; 3610 { 3611 struct jtrncrec *rec; 3612 3613 rec = (struct jtrncrec *)data; 3614 rec->jt_op = JOP_SYNC; 3615 rec->jt_ino = jfsync->jfs_ino; 3616 rec->jt_size = jfsync->jfs_size; 3617 rec->jt_extsize = jfsync->jfs_extsize; 3618 } 3619 3620 static void 3621 softdep_flushjournal(mp) 3622 struct mount *mp; 3623 { 3624 struct jblocks *jblocks; 3625 struct ufsmount *ump; 3626 3627 if (MOUNTEDSUJ(mp) == 0) 3628 return; 3629 ump = VFSTOUFS(mp); 3630 jblocks = ump->softdep_jblocks; 3631 ACQUIRE_LOCK(ump); 3632 while (ump->softdep_on_journal) { 3633 jblocks->jb_needseg = 1; 3634 softdep_process_journal(mp, NULL, MNT_WAIT); 3635 } 3636 FREE_LOCK(ump); 3637 } 3638 3639 static void softdep_synchronize_completed(struct bio *); 3640 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3641 3642 static void 3643 softdep_synchronize_completed(bp) 3644 struct bio *bp; 3645 { 3646 struct jseg *oldest; 3647 struct jseg *jseg; 3648 struct ufsmount *ump; 3649 3650 /* 3651 * caller1 marks the last segment written before we issued the 3652 * synchronize cache. 3653 */ 3654 jseg = bp->bio_caller1; 3655 if (jseg == NULL) { 3656 g_destroy_bio(bp); 3657 return; 3658 } 3659 ump = VFSTOUFS(jseg->js_list.wk_mp); 3660 ACQUIRE_LOCK(ump); 3661 oldest = NULL; 3662 /* 3663 * Mark all the journal entries waiting on the synchronize cache 3664 * as completed so they may continue on. 3665 */ 3666 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3667 jseg->js_state |= COMPLETE; 3668 oldest = jseg; 3669 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3670 } 3671 /* 3672 * Restart deferred journal entry processing from the oldest 3673 * completed jseg. 3674 */ 3675 if (oldest) 3676 complete_jsegs(oldest); 3677 3678 FREE_LOCK(ump); 3679 g_destroy_bio(bp); 3680 } 3681 3682 /* 3683 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3684 * barriers. The journal must be written prior to any blocks that depend 3685 * on it and the journal can not be released until the blocks have be 3686 * written. This code handles both barriers simultaneously. 3687 */ 3688 static void 3689 softdep_synchronize(bp, ump, caller1) 3690 struct bio *bp; 3691 struct ufsmount *ump; 3692 void *caller1; 3693 { 3694 3695 bp->bio_cmd = BIO_FLUSH; 3696 bp->bio_flags |= BIO_ORDERED; 3697 bp->bio_data = NULL; 3698 bp->bio_offset = ump->um_cp->provider->mediasize; 3699 bp->bio_length = 0; 3700 bp->bio_done = softdep_synchronize_completed; 3701 bp->bio_caller1 = caller1; 3702 g_io_request(bp, ump->um_cp); 3703 } 3704 3705 /* 3706 * Flush some journal records to disk. 3707 */ 3708 static void 3709 softdep_process_journal(mp, needwk, flags) 3710 struct mount *mp; 3711 struct worklist *needwk; 3712 int flags; 3713 { 3714 struct jblocks *jblocks; 3715 struct ufsmount *ump; 3716 struct worklist *wk; 3717 struct jseg *jseg; 3718 struct buf *bp; 3719 struct bio *bio; 3720 uint8_t *data; 3721 struct fs *fs; 3722 int shouldflush; 3723 int segwritten; 3724 int jrecmin; /* Minimum records per block. */ 3725 int jrecmax; /* Maximum records per block. */ 3726 int size; 3727 int cnt; 3728 int off; 3729 int devbsize; 3730 3731 if (MOUNTEDSUJ(mp) == 0) 3732 return; 3733 shouldflush = softdep_flushcache; 3734 bio = NULL; 3735 jseg = NULL; 3736 ump = VFSTOUFS(mp); 3737 LOCK_OWNED(ump); 3738 fs = ump->um_fs; 3739 jblocks = ump->softdep_jblocks; 3740 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3741 /* 3742 * We write anywhere between a disk block and fs block. The upper 3743 * bound is picked to prevent buffer cache fragmentation and limit 3744 * processing time per I/O. 3745 */ 3746 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3747 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3748 segwritten = 0; 3749 for (;;) { 3750 cnt = ump->softdep_on_journal; 3751 /* 3752 * Criteria for writing a segment: 3753 * 1) We have a full block. 3754 * 2) We're called from jwait() and haven't found the 3755 * journal item yet. 3756 * 3) Always write if needseg is set. 3757 * 4) If we are called from process_worklist and have 3758 * not yet written anything we write a partial block 3759 * to enforce a 1 second maximum latency on journal 3760 * entries. 3761 */ 3762 if (cnt < (jrecmax - 1) && needwk == NULL && 3763 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3764 break; 3765 cnt++; 3766 /* 3767 * Verify some free journal space. softdep_prealloc() should 3768 * guarantee that we don't run out so this is indicative of 3769 * a problem with the flow control. Try to recover 3770 * gracefully in any event. 3771 */ 3772 while (jblocks->jb_free == 0) { 3773 if (flags != MNT_WAIT) 3774 break; 3775 printf("softdep: Out of journal space!\n"); 3776 softdep_speedup(ump); 3777 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3778 } 3779 FREE_LOCK(ump); 3780 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3781 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3782 LIST_INIT(&jseg->js_entries); 3783 LIST_INIT(&jseg->js_indirs); 3784 jseg->js_state = ATTACHED; 3785 if (shouldflush == 0) 3786 jseg->js_state |= COMPLETE; 3787 else if (bio == NULL) 3788 bio = g_alloc_bio(); 3789 jseg->js_jblocks = jblocks; 3790 bp = geteblk(fs->fs_bsize, 0); 3791 ACQUIRE_LOCK(ump); 3792 /* 3793 * If there was a race while we were allocating the block 3794 * and jseg the entry we care about was likely written. 3795 * We bail out in both the WAIT and NOWAIT case and assume 3796 * the caller will loop if the entry it cares about is 3797 * not written. 3798 */ 3799 cnt = ump->softdep_on_journal; 3800 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3801 bp->b_flags |= B_INVAL | B_NOCACHE; 3802 WORKITEM_FREE(jseg, D_JSEG); 3803 FREE_LOCK(ump); 3804 brelse(bp); 3805 ACQUIRE_LOCK(ump); 3806 break; 3807 } 3808 /* 3809 * Calculate the disk block size required for the available 3810 * records rounded to the min size. 3811 */ 3812 if (cnt == 0) 3813 size = devbsize; 3814 else if (cnt < jrecmax) 3815 size = howmany(cnt, jrecmin) * devbsize; 3816 else 3817 size = fs->fs_bsize; 3818 /* 3819 * Allocate a disk block for this journal data and account 3820 * for truncation of the requested size if enough contiguous 3821 * space was not available. 3822 */ 3823 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3824 bp->b_lblkno = bp->b_blkno; 3825 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3826 bp->b_bcount = size; 3827 bp->b_flags &= ~B_INVAL; 3828 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3829 /* 3830 * Initialize our jseg with cnt records. Assign the next 3831 * sequence number to it and link it in-order. 3832 */ 3833 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3834 jseg->js_buf = bp; 3835 jseg->js_cnt = cnt; 3836 jseg->js_refs = cnt + 1; /* Self ref. */ 3837 jseg->js_size = size; 3838 jseg->js_seq = jblocks->jb_nextseq++; 3839 if (jblocks->jb_oldestseg == NULL) 3840 jblocks->jb_oldestseg = jseg; 3841 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3842 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3843 if (jblocks->jb_writeseg == NULL) 3844 jblocks->jb_writeseg = jseg; 3845 /* 3846 * Start filling in records from the pending list. 3847 */ 3848 data = bp->b_data; 3849 off = 0; 3850 3851 /* 3852 * Always put a header on the first block. 3853 * XXX As with below, there might not be a chance to get 3854 * into the loop. Ensure that something valid is written. 3855 */ 3856 jseg_write(ump, jseg, data); 3857 off += JREC_SIZE; 3858 data = bp->b_data + off; 3859 3860 /* 3861 * XXX Something is wrong here. There's no work to do, 3862 * but we need to perform and I/O and allow it to complete 3863 * anyways. 3864 */ 3865 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3866 stat_emptyjblocks++; 3867 3868 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3869 != NULL) { 3870 if (cnt == 0) 3871 break; 3872 /* Place a segment header on every device block. */ 3873 if ((off % devbsize) == 0) { 3874 jseg_write(ump, jseg, data); 3875 off += JREC_SIZE; 3876 data = bp->b_data + off; 3877 } 3878 if (wk == needwk) 3879 needwk = NULL; 3880 remove_from_journal(wk); 3881 wk->wk_state |= INPROGRESS; 3882 WORKLIST_INSERT(&jseg->js_entries, wk); 3883 switch (wk->wk_type) { 3884 case D_JADDREF: 3885 jaddref_write(WK_JADDREF(wk), jseg, data); 3886 break; 3887 case D_JREMREF: 3888 jremref_write(WK_JREMREF(wk), jseg, data); 3889 break; 3890 case D_JMVREF: 3891 jmvref_write(WK_JMVREF(wk), jseg, data); 3892 break; 3893 case D_JNEWBLK: 3894 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3895 break; 3896 case D_JFREEBLK: 3897 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3898 break; 3899 case D_JFREEFRAG: 3900 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3901 break; 3902 case D_JTRUNC: 3903 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3904 break; 3905 case D_JFSYNC: 3906 jfsync_write(WK_JFSYNC(wk), jseg, data); 3907 break; 3908 default: 3909 panic("process_journal: Unknown type %s", 3910 TYPENAME(wk->wk_type)); 3911 /* NOTREACHED */ 3912 } 3913 off += JREC_SIZE; 3914 data = bp->b_data + off; 3915 cnt--; 3916 } 3917 3918 /* Clear any remaining space so we don't leak kernel data */ 3919 if (size > off) 3920 bzero(data, size - off); 3921 3922 /* 3923 * Write this one buffer and continue. 3924 */ 3925 segwritten = 1; 3926 jblocks->jb_needseg = 0; 3927 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3928 FREE_LOCK(ump); 3929 bp->b_xflags |= BX_CVTENXIO; 3930 pbgetvp(ump->um_devvp, bp); 3931 /* 3932 * We only do the blocking wait once we find the journal 3933 * entry we're looking for. 3934 */ 3935 if (needwk == NULL && flags == MNT_WAIT) 3936 bwrite(bp); 3937 else 3938 bawrite(bp); 3939 ACQUIRE_LOCK(ump); 3940 } 3941 /* 3942 * If we wrote a segment issue a synchronize cache so the journal 3943 * is reflected on disk before the data is written. Since reclaiming 3944 * journal space also requires writing a journal record this 3945 * process also enforces a barrier before reclamation. 3946 */ 3947 if (segwritten && shouldflush) { 3948 softdep_synchronize(bio, ump, 3949 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3950 } else if (bio) 3951 g_destroy_bio(bio); 3952 /* 3953 * If we've suspended the filesystem because we ran out of journal 3954 * space either try to sync it here to make some progress or 3955 * unsuspend it if we already have. 3956 */ 3957 if (flags == 0 && jblocks->jb_suspended) { 3958 if (journal_unsuspend(ump)) 3959 return; 3960 FREE_LOCK(ump); 3961 VFS_SYNC(mp, MNT_NOWAIT); 3962 ffs_sbupdate(ump, MNT_WAIT, 0); 3963 ACQUIRE_LOCK(ump); 3964 } 3965 } 3966 3967 /* 3968 * Complete a jseg, allowing all dependencies awaiting journal writes 3969 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3970 * structures so that the journal segment can be freed to reclaim space. 3971 */ 3972 static void 3973 complete_jseg(jseg) 3974 struct jseg *jseg; 3975 { 3976 struct worklist *wk; 3977 struct jmvref *jmvref; 3978 #ifdef INVARIANTS 3979 int i = 0; 3980 #endif 3981 3982 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3983 WORKLIST_REMOVE(wk); 3984 wk->wk_state &= ~INPROGRESS; 3985 wk->wk_state |= COMPLETE; 3986 KASSERT(i++ < jseg->js_cnt, 3987 ("handle_written_jseg: overflow %d >= %d", 3988 i - 1, jseg->js_cnt)); 3989 switch (wk->wk_type) { 3990 case D_JADDREF: 3991 handle_written_jaddref(WK_JADDREF(wk)); 3992 break; 3993 case D_JREMREF: 3994 handle_written_jremref(WK_JREMREF(wk)); 3995 break; 3996 case D_JMVREF: 3997 rele_jseg(jseg); /* No jsegdep. */ 3998 jmvref = WK_JMVREF(wk); 3999 LIST_REMOVE(jmvref, jm_deps); 4000 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 4001 free_pagedep(jmvref->jm_pagedep); 4002 WORKITEM_FREE(jmvref, D_JMVREF); 4003 break; 4004 case D_JNEWBLK: 4005 handle_written_jnewblk(WK_JNEWBLK(wk)); 4006 break; 4007 case D_JFREEBLK: 4008 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 4009 break; 4010 case D_JTRUNC: 4011 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 4012 break; 4013 case D_JFSYNC: 4014 rele_jseg(jseg); /* No jsegdep. */ 4015 WORKITEM_FREE(wk, D_JFSYNC); 4016 break; 4017 case D_JFREEFRAG: 4018 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 4019 break; 4020 default: 4021 panic("handle_written_jseg: Unknown type %s", 4022 TYPENAME(wk->wk_type)); 4023 /* NOTREACHED */ 4024 } 4025 } 4026 /* Release the self reference so the structure may be freed. */ 4027 rele_jseg(jseg); 4028 } 4029 4030 /* 4031 * Determine which jsegs are ready for completion processing. Waits for 4032 * synchronize cache to complete as well as forcing in-order completion 4033 * of journal entries. 4034 */ 4035 static void 4036 complete_jsegs(jseg) 4037 struct jseg *jseg; 4038 { 4039 struct jblocks *jblocks; 4040 struct jseg *jsegn; 4041 4042 jblocks = jseg->js_jblocks; 4043 /* 4044 * Don't allow out of order completions. If this isn't the first 4045 * block wait for it to write before we're done. 4046 */ 4047 if (jseg != jblocks->jb_writeseg) 4048 return; 4049 /* Iterate through available jsegs processing their entries. */ 4050 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 4051 jblocks->jb_oldestwrseq = jseg->js_oldseq; 4052 jsegn = TAILQ_NEXT(jseg, js_next); 4053 complete_jseg(jseg); 4054 jseg = jsegn; 4055 } 4056 jblocks->jb_writeseg = jseg; 4057 /* 4058 * Attempt to free jsegs now that oldestwrseq may have advanced. 4059 */ 4060 free_jsegs(jblocks); 4061 } 4062 4063 /* 4064 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 4065 * the final completions. 4066 */ 4067 static void 4068 handle_written_jseg(jseg, bp) 4069 struct jseg *jseg; 4070 struct buf *bp; 4071 { 4072 4073 if (jseg->js_refs == 0) 4074 panic("handle_written_jseg: No self-reference on %p", jseg); 4075 jseg->js_state |= DEPCOMPLETE; 4076 /* 4077 * We'll never need this buffer again, set flags so it will be 4078 * discarded. 4079 */ 4080 bp->b_flags |= B_INVAL | B_NOCACHE; 4081 pbrelvp(bp); 4082 complete_jsegs(jseg); 4083 } 4084 4085 static inline struct jsegdep * 4086 inoref_jseg(inoref) 4087 struct inoref *inoref; 4088 { 4089 struct jsegdep *jsegdep; 4090 4091 jsegdep = inoref->if_jsegdep; 4092 inoref->if_jsegdep = NULL; 4093 4094 return (jsegdep); 4095 } 4096 4097 /* 4098 * Called once a jremref has made it to stable store. The jremref is marked 4099 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 4100 * for the jremref to complete will be awoken by free_jremref. 4101 */ 4102 static void 4103 handle_written_jremref(jremref) 4104 struct jremref *jremref; 4105 { 4106 struct inodedep *inodedep; 4107 struct jsegdep *jsegdep; 4108 struct dirrem *dirrem; 4109 4110 /* Grab the jsegdep. */ 4111 jsegdep = inoref_jseg(&jremref->jr_ref); 4112 /* 4113 * Remove us from the inoref list. 4114 */ 4115 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4116 0, &inodedep) == 0) 4117 panic("handle_written_jremref: Lost inodedep"); 4118 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4119 /* 4120 * Complete the dirrem. 4121 */ 4122 dirrem = jremref->jr_dirrem; 4123 jremref->jr_dirrem = NULL; 4124 LIST_REMOVE(jremref, jr_deps); 4125 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4126 jwork_insert(&dirrem->dm_jwork, jsegdep); 4127 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4128 (dirrem->dm_state & COMPLETE) != 0) 4129 add_to_worklist(&dirrem->dm_list, 0); 4130 free_jremref(jremref); 4131 } 4132 4133 /* 4134 * Called once a jaddref has made it to stable store. The dependency is 4135 * marked complete and any dependent structures are added to the inode 4136 * bufwait list to be completed as soon as it is written. If a bitmap write 4137 * depends on this entry we move the inode into the inodedephd of the 4138 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4139 */ 4140 static void 4141 handle_written_jaddref(jaddref) 4142 struct jaddref *jaddref; 4143 { 4144 struct jsegdep *jsegdep; 4145 struct inodedep *inodedep; 4146 struct diradd *diradd; 4147 struct mkdir *mkdir; 4148 4149 /* Grab the jsegdep. */ 4150 jsegdep = inoref_jseg(&jaddref->ja_ref); 4151 mkdir = NULL; 4152 diradd = NULL; 4153 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4154 0, &inodedep) == 0) 4155 panic("handle_written_jaddref: Lost inodedep."); 4156 if (jaddref->ja_diradd == NULL) 4157 panic("handle_written_jaddref: No dependency"); 4158 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4159 diradd = jaddref->ja_diradd; 4160 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4161 } else if (jaddref->ja_state & MKDIR_PARENT) { 4162 mkdir = jaddref->ja_mkdir; 4163 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4164 } else if (jaddref->ja_state & MKDIR_BODY) 4165 mkdir = jaddref->ja_mkdir; 4166 else 4167 panic("handle_written_jaddref: Unknown dependency %p", 4168 jaddref->ja_diradd); 4169 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4170 /* 4171 * Remove us from the inode list. 4172 */ 4173 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4174 /* 4175 * The mkdir may be waiting on the jaddref to clear before freeing. 4176 */ 4177 if (mkdir) { 4178 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4179 ("handle_written_jaddref: Incorrect type for mkdir %s", 4180 TYPENAME(mkdir->md_list.wk_type))); 4181 mkdir->md_jaddref = NULL; 4182 diradd = mkdir->md_diradd; 4183 mkdir->md_state |= DEPCOMPLETE; 4184 complete_mkdir(mkdir); 4185 } 4186 jwork_insert(&diradd->da_jwork, jsegdep); 4187 if (jaddref->ja_state & NEWBLOCK) { 4188 inodedep->id_state |= ONDEPLIST; 4189 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4190 inodedep, id_deps); 4191 } 4192 free_jaddref(jaddref); 4193 } 4194 4195 /* 4196 * Called once a jnewblk journal is written. The allocdirect or allocindir 4197 * is placed in the bmsafemap to await notification of a written bitmap. If 4198 * the operation was canceled we add the segdep to the appropriate 4199 * dependency to free the journal space once the canceling operation 4200 * completes. 4201 */ 4202 static void 4203 handle_written_jnewblk(jnewblk) 4204 struct jnewblk *jnewblk; 4205 { 4206 struct bmsafemap *bmsafemap; 4207 struct freefrag *freefrag; 4208 struct freework *freework; 4209 struct jsegdep *jsegdep; 4210 struct newblk *newblk; 4211 4212 /* Grab the jsegdep. */ 4213 jsegdep = jnewblk->jn_jsegdep; 4214 jnewblk->jn_jsegdep = NULL; 4215 if (jnewblk->jn_dep == NULL) 4216 panic("handle_written_jnewblk: No dependency for the segdep."); 4217 switch (jnewblk->jn_dep->wk_type) { 4218 case D_NEWBLK: 4219 case D_ALLOCDIRECT: 4220 case D_ALLOCINDIR: 4221 /* 4222 * Add the written block to the bmsafemap so it can 4223 * be notified when the bitmap is on disk. 4224 */ 4225 newblk = WK_NEWBLK(jnewblk->jn_dep); 4226 newblk->nb_jnewblk = NULL; 4227 if ((newblk->nb_state & GOINGAWAY) == 0) { 4228 bmsafemap = newblk->nb_bmsafemap; 4229 newblk->nb_state |= ONDEPLIST; 4230 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4231 nb_deps); 4232 } 4233 jwork_insert(&newblk->nb_jwork, jsegdep); 4234 break; 4235 case D_FREEFRAG: 4236 /* 4237 * A newblock being removed by a freefrag when replaced by 4238 * frag extension. 4239 */ 4240 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4241 freefrag->ff_jdep = NULL; 4242 jwork_insert(&freefrag->ff_jwork, jsegdep); 4243 break; 4244 case D_FREEWORK: 4245 /* 4246 * A direct block was removed by truncate. 4247 */ 4248 freework = WK_FREEWORK(jnewblk->jn_dep); 4249 freework->fw_jnewblk = NULL; 4250 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4251 break; 4252 default: 4253 panic("handle_written_jnewblk: Unknown type %d.", 4254 jnewblk->jn_dep->wk_type); 4255 } 4256 jnewblk->jn_dep = NULL; 4257 free_jnewblk(jnewblk); 4258 } 4259 4260 /* 4261 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4262 * an in-flight allocation that has not yet been committed. Divorce us 4263 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4264 * to the worklist. 4265 */ 4266 static void 4267 cancel_jfreefrag(jfreefrag) 4268 struct jfreefrag *jfreefrag; 4269 { 4270 struct freefrag *freefrag; 4271 4272 if (jfreefrag->fr_jsegdep) { 4273 free_jsegdep(jfreefrag->fr_jsegdep); 4274 jfreefrag->fr_jsegdep = NULL; 4275 } 4276 freefrag = jfreefrag->fr_freefrag; 4277 jfreefrag->fr_freefrag = NULL; 4278 free_jfreefrag(jfreefrag); 4279 freefrag->ff_state |= DEPCOMPLETE; 4280 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4281 } 4282 4283 /* 4284 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4285 */ 4286 static void 4287 free_jfreefrag(jfreefrag) 4288 struct jfreefrag *jfreefrag; 4289 { 4290 4291 if (jfreefrag->fr_state & INPROGRESS) 4292 WORKLIST_REMOVE(&jfreefrag->fr_list); 4293 else if (jfreefrag->fr_state & ONWORKLIST) 4294 remove_from_journal(&jfreefrag->fr_list); 4295 if (jfreefrag->fr_freefrag != NULL) 4296 panic("free_jfreefrag: Still attached to a freefrag."); 4297 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4298 } 4299 4300 /* 4301 * Called when the journal write for a jfreefrag completes. The parent 4302 * freefrag is added to the worklist if this completes its dependencies. 4303 */ 4304 static void 4305 handle_written_jfreefrag(jfreefrag) 4306 struct jfreefrag *jfreefrag; 4307 { 4308 struct jsegdep *jsegdep; 4309 struct freefrag *freefrag; 4310 4311 /* Grab the jsegdep. */ 4312 jsegdep = jfreefrag->fr_jsegdep; 4313 jfreefrag->fr_jsegdep = NULL; 4314 freefrag = jfreefrag->fr_freefrag; 4315 if (freefrag == NULL) 4316 panic("handle_written_jfreefrag: No freefrag."); 4317 freefrag->ff_state |= DEPCOMPLETE; 4318 freefrag->ff_jdep = NULL; 4319 jwork_insert(&freefrag->ff_jwork, jsegdep); 4320 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4321 add_to_worklist(&freefrag->ff_list, 0); 4322 jfreefrag->fr_freefrag = NULL; 4323 free_jfreefrag(jfreefrag); 4324 } 4325 4326 /* 4327 * Called when the journal write for a jfreeblk completes. The jfreeblk 4328 * is removed from the freeblks list of pending journal writes and the 4329 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4330 * have been reclaimed. 4331 */ 4332 static void 4333 handle_written_jblkdep(jblkdep) 4334 struct jblkdep *jblkdep; 4335 { 4336 struct freeblks *freeblks; 4337 struct jsegdep *jsegdep; 4338 4339 /* Grab the jsegdep. */ 4340 jsegdep = jblkdep->jb_jsegdep; 4341 jblkdep->jb_jsegdep = NULL; 4342 freeblks = jblkdep->jb_freeblks; 4343 LIST_REMOVE(jblkdep, jb_deps); 4344 jwork_insert(&freeblks->fb_jwork, jsegdep); 4345 /* 4346 * If the freeblks is all journaled, we can add it to the worklist. 4347 */ 4348 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4349 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4350 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4351 4352 free_jblkdep(jblkdep); 4353 } 4354 4355 static struct jsegdep * 4356 newjsegdep(struct worklist *wk) 4357 { 4358 struct jsegdep *jsegdep; 4359 4360 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4361 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4362 jsegdep->jd_seg = NULL; 4363 4364 return (jsegdep); 4365 } 4366 4367 static struct jmvref * 4368 newjmvref(dp, ino, oldoff, newoff) 4369 struct inode *dp; 4370 ino_t ino; 4371 off_t oldoff; 4372 off_t newoff; 4373 { 4374 struct jmvref *jmvref; 4375 4376 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4377 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4378 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4379 jmvref->jm_parent = dp->i_number; 4380 jmvref->jm_ino = ino; 4381 jmvref->jm_oldoff = oldoff; 4382 jmvref->jm_newoff = newoff; 4383 4384 return (jmvref); 4385 } 4386 4387 /* 4388 * Allocate a new jremref that tracks the removal of ip from dp with the 4389 * directory entry offset of diroff. Mark the entry as ATTACHED and 4390 * DEPCOMPLETE as we have all the information required for the journal write 4391 * and the directory has already been removed from the buffer. The caller 4392 * is responsible for linking the jremref into the pagedep and adding it 4393 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4394 * a DOTDOT addition so handle_workitem_remove() can properly assign 4395 * the jsegdep when we're done. 4396 */ 4397 static struct jremref * 4398 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4399 off_t diroff, nlink_t nlink) 4400 { 4401 struct jremref *jremref; 4402 4403 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4404 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4405 jremref->jr_state = ATTACHED; 4406 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4407 nlink, ip->i_mode); 4408 jremref->jr_dirrem = dirrem; 4409 4410 return (jremref); 4411 } 4412 4413 static inline void 4414 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4415 nlink_t nlink, uint16_t mode) 4416 { 4417 4418 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4419 inoref->if_diroff = diroff; 4420 inoref->if_ino = ino; 4421 inoref->if_parent = parent; 4422 inoref->if_nlink = nlink; 4423 inoref->if_mode = mode; 4424 } 4425 4426 /* 4427 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4428 * directory offset may not be known until later. The caller is responsible 4429 * adding the entry to the journal when this information is available. nlink 4430 * should be the link count prior to the addition and mode is only required 4431 * to have the correct FMT. 4432 */ 4433 static struct jaddref * 4434 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4435 uint16_t mode) 4436 { 4437 struct jaddref *jaddref; 4438 4439 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4440 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4441 jaddref->ja_state = ATTACHED; 4442 jaddref->ja_mkdir = NULL; 4443 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4444 4445 return (jaddref); 4446 } 4447 4448 /* 4449 * Create a new free dependency for a freework. The caller is responsible 4450 * for adjusting the reference count when it has the lock held. The freedep 4451 * will track an outstanding bitmap write that will ultimately clear the 4452 * freework to continue. 4453 */ 4454 static struct freedep * 4455 newfreedep(struct freework *freework) 4456 { 4457 struct freedep *freedep; 4458 4459 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4460 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4461 freedep->fd_freework = freework; 4462 4463 return (freedep); 4464 } 4465 4466 /* 4467 * Free a freedep structure once the buffer it is linked to is written. If 4468 * this is the last reference to the freework schedule it for completion. 4469 */ 4470 static void 4471 free_freedep(freedep) 4472 struct freedep *freedep; 4473 { 4474 struct freework *freework; 4475 4476 freework = freedep->fd_freework; 4477 freework->fw_freeblks->fb_cgwait--; 4478 if (--freework->fw_ref == 0) 4479 freework_enqueue(freework); 4480 WORKITEM_FREE(freedep, D_FREEDEP); 4481 } 4482 4483 /* 4484 * Allocate a new freework structure that may be a level in an indirect 4485 * when parent is not NULL or a top level block when it is. The top level 4486 * freework structures are allocated without the per-filesystem lock held 4487 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4488 */ 4489 static struct freework * 4490 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4491 struct ufsmount *ump; 4492 struct freeblks *freeblks; 4493 struct freework *parent; 4494 ufs_lbn_t lbn; 4495 ufs2_daddr_t nb; 4496 int frags; 4497 int off; 4498 int journal; 4499 { 4500 struct freework *freework; 4501 4502 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4503 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4504 freework->fw_state = ATTACHED; 4505 freework->fw_jnewblk = NULL; 4506 freework->fw_freeblks = freeblks; 4507 freework->fw_parent = parent; 4508 freework->fw_lbn = lbn; 4509 freework->fw_blkno = nb; 4510 freework->fw_frags = frags; 4511 freework->fw_indir = NULL; 4512 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4513 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4514 freework->fw_start = freework->fw_off = off; 4515 if (journal) 4516 newjfreeblk(freeblks, lbn, nb, frags); 4517 if (parent == NULL) { 4518 ACQUIRE_LOCK(ump); 4519 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4520 freeblks->fb_ref++; 4521 FREE_LOCK(ump); 4522 } 4523 4524 return (freework); 4525 } 4526 4527 /* 4528 * Eliminate a jfreeblk for a block that does not need journaling. 4529 */ 4530 static void 4531 cancel_jfreeblk(freeblks, blkno) 4532 struct freeblks *freeblks; 4533 ufs2_daddr_t blkno; 4534 { 4535 struct jfreeblk *jfreeblk; 4536 struct jblkdep *jblkdep; 4537 4538 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4539 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4540 continue; 4541 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4542 if (jfreeblk->jf_blkno == blkno) 4543 break; 4544 } 4545 if (jblkdep == NULL) 4546 return; 4547 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4548 free_jsegdep(jblkdep->jb_jsegdep); 4549 LIST_REMOVE(jblkdep, jb_deps); 4550 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4551 } 4552 4553 /* 4554 * Allocate a new jfreeblk to journal top level block pointer when truncating 4555 * a file. The caller must add this to the worklist when the per-filesystem 4556 * lock is held. 4557 */ 4558 static struct jfreeblk * 4559 newjfreeblk(freeblks, lbn, blkno, frags) 4560 struct freeblks *freeblks; 4561 ufs_lbn_t lbn; 4562 ufs2_daddr_t blkno; 4563 int frags; 4564 { 4565 struct jfreeblk *jfreeblk; 4566 4567 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4568 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4569 freeblks->fb_list.wk_mp); 4570 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4571 jfreeblk->jf_dep.jb_freeblks = freeblks; 4572 jfreeblk->jf_ino = freeblks->fb_inum; 4573 jfreeblk->jf_lbn = lbn; 4574 jfreeblk->jf_blkno = blkno; 4575 jfreeblk->jf_frags = frags; 4576 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4577 4578 return (jfreeblk); 4579 } 4580 4581 /* 4582 * The journal is only prepared to handle full-size block numbers, so we 4583 * have to adjust the record to reflect the change to a full-size block. 4584 * For example, suppose we have a block made up of fragments 8-15 and 4585 * want to free its last two fragments. We are given a request that says: 4586 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4587 * where frags are the number of fragments to free and oldfrags are the 4588 * number of fragments to keep. To block align it, we have to change it to 4589 * have a valid full-size blkno, so it becomes: 4590 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4591 */ 4592 static void 4593 adjust_newfreework(freeblks, frag_offset) 4594 struct freeblks *freeblks; 4595 int frag_offset; 4596 { 4597 struct jfreeblk *jfreeblk; 4598 4599 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4600 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4601 ("adjust_newfreework: Missing freeblks dependency")); 4602 4603 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4604 jfreeblk->jf_blkno -= frag_offset; 4605 jfreeblk->jf_frags += frag_offset; 4606 } 4607 4608 /* 4609 * Allocate a new jtrunc to track a partial truncation. 4610 */ 4611 static struct jtrunc * 4612 newjtrunc(freeblks, size, extsize) 4613 struct freeblks *freeblks; 4614 off_t size; 4615 int extsize; 4616 { 4617 struct jtrunc *jtrunc; 4618 4619 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4620 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4621 freeblks->fb_list.wk_mp); 4622 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4623 jtrunc->jt_dep.jb_freeblks = freeblks; 4624 jtrunc->jt_ino = freeblks->fb_inum; 4625 jtrunc->jt_size = size; 4626 jtrunc->jt_extsize = extsize; 4627 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4628 4629 return (jtrunc); 4630 } 4631 4632 /* 4633 * If we're canceling a new bitmap we have to search for another ref 4634 * to move into the bmsafemap dep. This might be better expressed 4635 * with another structure. 4636 */ 4637 static void 4638 move_newblock_dep(jaddref, inodedep) 4639 struct jaddref *jaddref; 4640 struct inodedep *inodedep; 4641 { 4642 struct inoref *inoref; 4643 struct jaddref *jaddrefn; 4644 4645 jaddrefn = NULL; 4646 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4647 inoref = TAILQ_NEXT(inoref, if_deps)) { 4648 if ((jaddref->ja_state & NEWBLOCK) && 4649 inoref->if_list.wk_type == D_JADDREF) { 4650 jaddrefn = (struct jaddref *)inoref; 4651 break; 4652 } 4653 } 4654 if (jaddrefn == NULL) 4655 return; 4656 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4657 jaddrefn->ja_state |= jaddref->ja_state & 4658 (ATTACHED | UNDONE | NEWBLOCK); 4659 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4660 jaddref->ja_state |= ATTACHED; 4661 LIST_REMOVE(jaddref, ja_bmdeps); 4662 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4663 ja_bmdeps); 4664 } 4665 4666 /* 4667 * Cancel a jaddref either before it has been written or while it is being 4668 * written. This happens when a link is removed before the add reaches 4669 * the disk. The jaddref dependency is kept linked into the bmsafemap 4670 * and inode to prevent the link count or bitmap from reaching the disk 4671 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4672 * required. 4673 * 4674 * Returns 1 if the canceled addref requires journaling of the remove and 4675 * 0 otherwise. 4676 */ 4677 static int 4678 cancel_jaddref(jaddref, inodedep, wkhd) 4679 struct jaddref *jaddref; 4680 struct inodedep *inodedep; 4681 struct workhead *wkhd; 4682 { 4683 struct inoref *inoref; 4684 struct jsegdep *jsegdep; 4685 int needsj; 4686 4687 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4688 ("cancel_jaddref: Canceling complete jaddref")); 4689 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4690 needsj = 1; 4691 else 4692 needsj = 0; 4693 if (inodedep == NULL) 4694 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4695 0, &inodedep) == 0) 4696 panic("cancel_jaddref: Lost inodedep"); 4697 /* 4698 * We must adjust the nlink of any reference operation that follows 4699 * us so that it is consistent with the in-memory reference. This 4700 * ensures that inode nlink rollbacks always have the correct link. 4701 */ 4702 if (needsj == 0) { 4703 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4704 inoref = TAILQ_NEXT(inoref, if_deps)) { 4705 if (inoref->if_state & GOINGAWAY) 4706 break; 4707 inoref->if_nlink--; 4708 } 4709 } 4710 jsegdep = inoref_jseg(&jaddref->ja_ref); 4711 if (jaddref->ja_state & NEWBLOCK) 4712 move_newblock_dep(jaddref, inodedep); 4713 wake_worklist(&jaddref->ja_list); 4714 jaddref->ja_mkdir = NULL; 4715 if (jaddref->ja_state & INPROGRESS) { 4716 jaddref->ja_state &= ~INPROGRESS; 4717 WORKLIST_REMOVE(&jaddref->ja_list); 4718 jwork_insert(wkhd, jsegdep); 4719 } else { 4720 free_jsegdep(jsegdep); 4721 if (jaddref->ja_state & DEPCOMPLETE) 4722 remove_from_journal(&jaddref->ja_list); 4723 } 4724 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4725 /* 4726 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4727 * can arrange for them to be freed with the bitmap. Otherwise we 4728 * no longer need this addref attached to the inoreflst and it 4729 * will incorrectly adjust nlink if we leave it. 4730 */ 4731 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4732 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4733 if_deps); 4734 jaddref->ja_state |= COMPLETE; 4735 free_jaddref(jaddref); 4736 return (needsj); 4737 } 4738 /* 4739 * Leave the head of the list for jsegdeps for fast merging. 4740 */ 4741 if (LIST_FIRST(wkhd) != NULL) { 4742 jaddref->ja_state |= ONWORKLIST; 4743 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4744 } else 4745 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4746 4747 return (needsj); 4748 } 4749 4750 /* 4751 * Attempt to free a jaddref structure when some work completes. This 4752 * should only succeed once the entry is written and all dependencies have 4753 * been notified. 4754 */ 4755 static void 4756 free_jaddref(jaddref) 4757 struct jaddref *jaddref; 4758 { 4759 4760 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4761 return; 4762 if (jaddref->ja_ref.if_jsegdep) 4763 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4764 jaddref, jaddref->ja_state); 4765 if (jaddref->ja_state & NEWBLOCK) 4766 LIST_REMOVE(jaddref, ja_bmdeps); 4767 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4768 panic("free_jaddref: Bad state %p(0x%X)", 4769 jaddref, jaddref->ja_state); 4770 if (jaddref->ja_mkdir != NULL) 4771 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4772 WORKITEM_FREE(jaddref, D_JADDREF); 4773 } 4774 4775 /* 4776 * Free a jremref structure once it has been written or discarded. 4777 */ 4778 static void 4779 free_jremref(jremref) 4780 struct jremref *jremref; 4781 { 4782 4783 if (jremref->jr_ref.if_jsegdep) 4784 free_jsegdep(jremref->jr_ref.if_jsegdep); 4785 if (jremref->jr_state & INPROGRESS) 4786 panic("free_jremref: IO still pending"); 4787 WORKITEM_FREE(jremref, D_JREMREF); 4788 } 4789 4790 /* 4791 * Free a jnewblk structure. 4792 */ 4793 static void 4794 free_jnewblk(jnewblk) 4795 struct jnewblk *jnewblk; 4796 { 4797 4798 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4799 return; 4800 LIST_REMOVE(jnewblk, jn_deps); 4801 if (jnewblk->jn_dep != NULL) 4802 panic("free_jnewblk: Dependency still attached."); 4803 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4804 } 4805 4806 /* 4807 * Cancel a jnewblk which has been been made redundant by frag extension. 4808 */ 4809 static void 4810 cancel_jnewblk(jnewblk, wkhd) 4811 struct jnewblk *jnewblk; 4812 struct workhead *wkhd; 4813 { 4814 struct jsegdep *jsegdep; 4815 4816 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4817 jsegdep = jnewblk->jn_jsegdep; 4818 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4819 panic("cancel_jnewblk: Invalid state"); 4820 jnewblk->jn_jsegdep = NULL; 4821 jnewblk->jn_dep = NULL; 4822 jnewblk->jn_state |= GOINGAWAY; 4823 if (jnewblk->jn_state & INPROGRESS) { 4824 jnewblk->jn_state &= ~INPROGRESS; 4825 WORKLIST_REMOVE(&jnewblk->jn_list); 4826 jwork_insert(wkhd, jsegdep); 4827 } else { 4828 free_jsegdep(jsegdep); 4829 remove_from_journal(&jnewblk->jn_list); 4830 } 4831 wake_worklist(&jnewblk->jn_list); 4832 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4833 } 4834 4835 static void 4836 free_jblkdep(jblkdep) 4837 struct jblkdep *jblkdep; 4838 { 4839 4840 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4841 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4842 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4843 WORKITEM_FREE(jblkdep, D_JTRUNC); 4844 else 4845 panic("free_jblkdep: Unexpected type %s", 4846 TYPENAME(jblkdep->jb_list.wk_type)); 4847 } 4848 4849 /* 4850 * Free a single jseg once it is no longer referenced in memory or on 4851 * disk. Reclaim journal blocks and dependencies waiting for the segment 4852 * to disappear. 4853 */ 4854 static void 4855 free_jseg(jseg, jblocks) 4856 struct jseg *jseg; 4857 struct jblocks *jblocks; 4858 { 4859 struct freework *freework; 4860 4861 /* 4862 * Free freework structures that were lingering to indicate freed 4863 * indirect blocks that forced journal write ordering on reallocate. 4864 */ 4865 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4866 indirblk_remove(freework); 4867 if (jblocks->jb_oldestseg == jseg) 4868 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4869 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4870 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4871 KASSERT(LIST_EMPTY(&jseg->js_entries), 4872 ("free_jseg: Freed jseg has valid entries.")); 4873 WORKITEM_FREE(jseg, D_JSEG); 4874 } 4875 4876 /* 4877 * Free all jsegs that meet the criteria for being reclaimed and update 4878 * oldestseg. 4879 */ 4880 static void 4881 free_jsegs(jblocks) 4882 struct jblocks *jblocks; 4883 { 4884 struct jseg *jseg; 4885 4886 /* 4887 * Free only those jsegs which have none allocated before them to 4888 * preserve the journal space ordering. 4889 */ 4890 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4891 /* 4892 * Only reclaim space when nothing depends on this journal 4893 * set and another set has written that it is no longer 4894 * valid. 4895 */ 4896 if (jseg->js_refs != 0) { 4897 jblocks->jb_oldestseg = jseg; 4898 return; 4899 } 4900 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4901 break; 4902 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4903 break; 4904 /* 4905 * We can free jsegs that didn't write entries when 4906 * oldestwrseq == js_seq. 4907 */ 4908 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4909 jseg->js_cnt != 0) 4910 break; 4911 free_jseg(jseg, jblocks); 4912 } 4913 /* 4914 * If we exited the loop above we still must discover the 4915 * oldest valid segment. 4916 */ 4917 if (jseg) 4918 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4919 jseg = TAILQ_NEXT(jseg, js_next)) 4920 if (jseg->js_refs != 0) 4921 break; 4922 jblocks->jb_oldestseg = jseg; 4923 /* 4924 * The journal has no valid records but some jsegs may still be 4925 * waiting on oldestwrseq to advance. We force a small record 4926 * out to permit these lingering records to be reclaimed. 4927 */ 4928 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4929 jblocks->jb_needseg = 1; 4930 } 4931 4932 /* 4933 * Release one reference to a jseg and free it if the count reaches 0. This 4934 * should eventually reclaim journal space as well. 4935 */ 4936 static void 4937 rele_jseg(jseg) 4938 struct jseg *jseg; 4939 { 4940 4941 KASSERT(jseg->js_refs > 0, 4942 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4943 if (--jseg->js_refs != 0) 4944 return; 4945 free_jsegs(jseg->js_jblocks); 4946 } 4947 4948 /* 4949 * Release a jsegdep and decrement the jseg count. 4950 */ 4951 static void 4952 free_jsegdep(jsegdep) 4953 struct jsegdep *jsegdep; 4954 { 4955 4956 if (jsegdep->jd_seg) 4957 rele_jseg(jsegdep->jd_seg); 4958 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4959 } 4960 4961 /* 4962 * Wait for a journal item to make it to disk. Initiate journal processing 4963 * if required. 4964 */ 4965 static int 4966 jwait(wk, waitfor) 4967 struct worklist *wk; 4968 int waitfor; 4969 { 4970 4971 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4972 /* 4973 * Blocking journal waits cause slow synchronous behavior. Record 4974 * stats on the frequency of these blocking operations. 4975 */ 4976 if (waitfor == MNT_WAIT) { 4977 stat_journal_wait++; 4978 switch (wk->wk_type) { 4979 case D_JREMREF: 4980 case D_JMVREF: 4981 stat_jwait_filepage++; 4982 break; 4983 case D_JTRUNC: 4984 case D_JFREEBLK: 4985 stat_jwait_freeblks++; 4986 break; 4987 case D_JNEWBLK: 4988 stat_jwait_newblk++; 4989 break; 4990 case D_JADDREF: 4991 stat_jwait_inode++; 4992 break; 4993 default: 4994 break; 4995 } 4996 } 4997 /* 4998 * If IO has not started we process the journal. We can't mark the 4999 * worklist item as IOWAITING because we drop the lock while 5000 * processing the journal and the worklist entry may be freed after 5001 * this point. The caller may call back in and re-issue the request. 5002 */ 5003 if ((wk->wk_state & INPROGRESS) == 0) { 5004 softdep_process_journal(wk->wk_mp, wk, waitfor); 5005 if (waitfor != MNT_WAIT) 5006 return (EBUSY); 5007 return (0); 5008 } 5009 if (waitfor != MNT_WAIT) 5010 return (EBUSY); 5011 wait_worklist(wk, "jwait"); 5012 return (0); 5013 } 5014 5015 /* 5016 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 5017 * appropriate. This is a convenience function to reduce duplicate code 5018 * for the setup and revert functions below. 5019 */ 5020 static struct inodedep * 5021 inodedep_lookup_ip(ip) 5022 struct inode *ip; 5023 { 5024 struct inodedep *inodedep; 5025 5026 KASSERT(ip->i_nlink >= ip->i_effnlink, 5027 ("inodedep_lookup_ip: bad delta")); 5028 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 5029 &inodedep); 5030 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 5031 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 5032 5033 return (inodedep); 5034 } 5035 5036 /* 5037 * Called prior to creating a new inode and linking it to a directory. The 5038 * jaddref structure must already be allocated by softdep_setup_inomapdep 5039 * and it is discovered here so we can initialize the mode and update 5040 * nlinkdelta. 5041 */ 5042 void 5043 softdep_setup_create(dp, ip) 5044 struct inode *dp; 5045 struct inode *ip; 5046 { 5047 struct inodedep *inodedep; 5048 struct jaddref *jaddref; 5049 struct vnode *dvp; 5050 5051 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5052 ("softdep_setup_create called on non-softdep filesystem")); 5053 KASSERT(ip->i_nlink == 1, 5054 ("softdep_setup_create: Invalid link count.")); 5055 dvp = ITOV(dp); 5056 ACQUIRE_LOCK(ITOUMP(dp)); 5057 inodedep = inodedep_lookup_ip(ip); 5058 if (DOINGSUJ(dvp)) { 5059 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5060 inoreflst); 5061 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 5062 ("softdep_setup_create: No addref structure present.")); 5063 } 5064 FREE_LOCK(ITOUMP(dp)); 5065 } 5066 5067 /* 5068 * Create a jaddref structure to track the addition of a DOTDOT link when 5069 * we are reparenting an inode as part of a rename. This jaddref will be 5070 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 5071 * non-journaling softdep. 5072 */ 5073 void 5074 softdep_setup_dotdot_link(dp, ip) 5075 struct inode *dp; 5076 struct inode *ip; 5077 { 5078 struct inodedep *inodedep; 5079 struct jaddref *jaddref; 5080 struct vnode *dvp; 5081 5082 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5083 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 5084 dvp = ITOV(dp); 5085 jaddref = NULL; 5086 /* 5087 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 5088 * is used as a normal link would be. 5089 */ 5090 if (DOINGSUJ(dvp)) 5091 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5092 dp->i_effnlink - 1, dp->i_mode); 5093 ACQUIRE_LOCK(ITOUMP(dp)); 5094 inodedep = inodedep_lookup_ip(dp); 5095 if (jaddref) 5096 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5097 if_deps); 5098 FREE_LOCK(ITOUMP(dp)); 5099 } 5100 5101 /* 5102 * Create a jaddref structure to track a new link to an inode. The directory 5103 * offset is not known until softdep_setup_directory_add or 5104 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 5105 * softdep. 5106 */ 5107 void 5108 softdep_setup_link(dp, ip) 5109 struct inode *dp; 5110 struct inode *ip; 5111 { 5112 struct inodedep *inodedep; 5113 struct jaddref *jaddref; 5114 struct vnode *dvp; 5115 5116 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5117 ("softdep_setup_link called on non-softdep filesystem")); 5118 dvp = ITOV(dp); 5119 jaddref = NULL; 5120 if (DOINGSUJ(dvp)) 5121 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 5122 ip->i_mode); 5123 ACQUIRE_LOCK(ITOUMP(dp)); 5124 inodedep = inodedep_lookup_ip(ip); 5125 if (jaddref) 5126 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5127 if_deps); 5128 FREE_LOCK(ITOUMP(dp)); 5129 } 5130 5131 /* 5132 * Called to create the jaddref structures to track . and .. references as 5133 * well as lookup and further initialize the incomplete jaddref created 5134 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 5135 * nlinkdelta for non-journaling softdep. 5136 */ 5137 void 5138 softdep_setup_mkdir(dp, ip) 5139 struct inode *dp; 5140 struct inode *ip; 5141 { 5142 struct inodedep *inodedep; 5143 struct jaddref *dotdotaddref; 5144 struct jaddref *dotaddref; 5145 struct jaddref *jaddref; 5146 struct vnode *dvp; 5147 5148 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5149 ("softdep_setup_mkdir called on non-softdep filesystem")); 5150 dvp = ITOV(dp); 5151 dotaddref = dotdotaddref = NULL; 5152 if (DOINGSUJ(dvp)) { 5153 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5154 ip->i_mode); 5155 dotaddref->ja_state |= MKDIR_BODY; 5156 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5157 dp->i_effnlink - 1, dp->i_mode); 5158 dotdotaddref->ja_state |= MKDIR_PARENT; 5159 } 5160 ACQUIRE_LOCK(ITOUMP(dp)); 5161 inodedep = inodedep_lookup_ip(ip); 5162 if (DOINGSUJ(dvp)) { 5163 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5164 inoreflst); 5165 KASSERT(jaddref != NULL, 5166 ("softdep_setup_mkdir: No addref structure present.")); 5167 KASSERT(jaddref->ja_parent == dp->i_number, 5168 ("softdep_setup_mkdir: bad parent %ju", 5169 (uintmax_t)jaddref->ja_parent)); 5170 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5171 if_deps); 5172 } 5173 inodedep = inodedep_lookup_ip(dp); 5174 if (DOINGSUJ(dvp)) 5175 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5176 &dotdotaddref->ja_ref, if_deps); 5177 FREE_LOCK(ITOUMP(dp)); 5178 } 5179 5180 /* 5181 * Called to track nlinkdelta of the inode and parent directories prior to 5182 * unlinking a directory. 5183 */ 5184 void 5185 softdep_setup_rmdir(dp, ip) 5186 struct inode *dp; 5187 struct inode *ip; 5188 { 5189 struct vnode *dvp; 5190 5191 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5192 ("softdep_setup_rmdir called on non-softdep filesystem")); 5193 dvp = ITOV(dp); 5194 ACQUIRE_LOCK(ITOUMP(dp)); 5195 (void) inodedep_lookup_ip(ip); 5196 (void) inodedep_lookup_ip(dp); 5197 FREE_LOCK(ITOUMP(dp)); 5198 } 5199 5200 /* 5201 * Called to track nlinkdelta of the inode and parent directories prior to 5202 * unlink. 5203 */ 5204 void 5205 softdep_setup_unlink(dp, ip) 5206 struct inode *dp; 5207 struct inode *ip; 5208 { 5209 struct vnode *dvp; 5210 5211 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5212 ("softdep_setup_unlink called on non-softdep filesystem")); 5213 dvp = ITOV(dp); 5214 ACQUIRE_LOCK(ITOUMP(dp)); 5215 (void) inodedep_lookup_ip(ip); 5216 (void) inodedep_lookup_ip(dp); 5217 FREE_LOCK(ITOUMP(dp)); 5218 } 5219 5220 /* 5221 * Called to release the journal structures created by a failed non-directory 5222 * creation. Adjusts nlinkdelta for non-journaling softdep. 5223 */ 5224 void 5225 softdep_revert_create(dp, ip) 5226 struct inode *dp; 5227 struct inode *ip; 5228 { 5229 struct inodedep *inodedep; 5230 struct jaddref *jaddref; 5231 struct vnode *dvp; 5232 5233 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5234 ("softdep_revert_create called on non-softdep filesystem")); 5235 dvp = ITOV(dp); 5236 ACQUIRE_LOCK(ITOUMP(dp)); 5237 inodedep = inodedep_lookup_ip(ip); 5238 if (DOINGSUJ(dvp)) { 5239 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5240 inoreflst); 5241 KASSERT(jaddref->ja_parent == dp->i_number, 5242 ("softdep_revert_create: addref parent mismatch")); 5243 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5244 } 5245 FREE_LOCK(ITOUMP(dp)); 5246 } 5247 5248 /* 5249 * Called to release the journal structures created by a failed link 5250 * addition. Adjusts nlinkdelta for non-journaling softdep. 5251 */ 5252 void 5253 softdep_revert_link(dp, ip) 5254 struct inode *dp; 5255 struct inode *ip; 5256 { 5257 struct inodedep *inodedep; 5258 struct jaddref *jaddref; 5259 struct vnode *dvp; 5260 5261 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5262 ("softdep_revert_link called on non-softdep filesystem")); 5263 dvp = ITOV(dp); 5264 ACQUIRE_LOCK(ITOUMP(dp)); 5265 inodedep = inodedep_lookup_ip(ip); 5266 if (DOINGSUJ(dvp)) { 5267 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5268 inoreflst); 5269 KASSERT(jaddref->ja_parent == dp->i_number, 5270 ("softdep_revert_link: addref parent mismatch")); 5271 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5272 } 5273 FREE_LOCK(ITOUMP(dp)); 5274 } 5275 5276 /* 5277 * Called to release the journal structures created by a failed mkdir 5278 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5279 */ 5280 void 5281 softdep_revert_mkdir(dp, ip) 5282 struct inode *dp; 5283 struct inode *ip; 5284 { 5285 struct inodedep *inodedep; 5286 struct jaddref *jaddref; 5287 struct jaddref *dotaddref; 5288 struct vnode *dvp; 5289 5290 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5291 ("softdep_revert_mkdir called on non-softdep filesystem")); 5292 dvp = ITOV(dp); 5293 5294 ACQUIRE_LOCK(ITOUMP(dp)); 5295 inodedep = inodedep_lookup_ip(dp); 5296 if (DOINGSUJ(dvp)) { 5297 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5298 inoreflst); 5299 KASSERT(jaddref->ja_parent == ip->i_number, 5300 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5301 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5302 } 5303 inodedep = inodedep_lookup_ip(ip); 5304 if (DOINGSUJ(dvp)) { 5305 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5306 inoreflst); 5307 KASSERT(jaddref->ja_parent == dp->i_number, 5308 ("softdep_revert_mkdir: addref parent mismatch")); 5309 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5310 inoreflst, if_deps); 5311 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5312 KASSERT(dotaddref->ja_parent == ip->i_number, 5313 ("softdep_revert_mkdir: dot addref parent mismatch")); 5314 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5315 } 5316 FREE_LOCK(ITOUMP(dp)); 5317 } 5318 5319 /* 5320 * Called to correct nlinkdelta after a failed rmdir. 5321 */ 5322 void 5323 softdep_revert_rmdir(dp, ip) 5324 struct inode *dp; 5325 struct inode *ip; 5326 { 5327 5328 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5329 ("softdep_revert_rmdir called on non-softdep filesystem")); 5330 ACQUIRE_LOCK(ITOUMP(dp)); 5331 (void) inodedep_lookup_ip(ip); 5332 (void) inodedep_lookup_ip(dp); 5333 FREE_LOCK(ITOUMP(dp)); 5334 } 5335 5336 /* 5337 * Protecting the freemaps (or bitmaps). 5338 * 5339 * To eliminate the need to execute fsck before mounting a filesystem 5340 * after a power failure, one must (conservatively) guarantee that the 5341 * on-disk copy of the bitmaps never indicate that a live inode or block is 5342 * free. So, when a block or inode is allocated, the bitmap should be 5343 * updated (on disk) before any new pointers. When a block or inode is 5344 * freed, the bitmap should not be updated until all pointers have been 5345 * reset. The latter dependency is handled by the delayed de-allocation 5346 * approach described below for block and inode de-allocation. The former 5347 * dependency is handled by calling the following procedure when a block or 5348 * inode is allocated. When an inode is allocated an "inodedep" is created 5349 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5350 * Each "inodedep" is also inserted into the hash indexing structure so 5351 * that any additional link additions can be made dependent on the inode 5352 * allocation. 5353 * 5354 * The ufs filesystem maintains a number of free block counts (e.g., per 5355 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5356 * in addition to the bitmaps. These counts are used to improve efficiency 5357 * during allocation and therefore must be consistent with the bitmaps. 5358 * There is no convenient way to guarantee post-crash consistency of these 5359 * counts with simple update ordering, for two main reasons: (1) The counts 5360 * and bitmaps for a single cylinder group block are not in the same disk 5361 * sector. If a disk write is interrupted (e.g., by power failure), one may 5362 * be written and the other not. (2) Some of the counts are located in the 5363 * superblock rather than the cylinder group block. So, we focus our soft 5364 * updates implementation on protecting the bitmaps. When mounting a 5365 * filesystem, we recompute the auxiliary counts from the bitmaps. 5366 */ 5367 5368 /* 5369 * Called just after updating the cylinder group block to allocate an inode. 5370 */ 5371 void 5372 softdep_setup_inomapdep(bp, ip, newinum, mode) 5373 struct buf *bp; /* buffer for cylgroup block with inode map */ 5374 struct inode *ip; /* inode related to allocation */ 5375 ino_t newinum; /* new inode number being allocated */ 5376 int mode; 5377 { 5378 struct inodedep *inodedep; 5379 struct bmsafemap *bmsafemap; 5380 struct jaddref *jaddref; 5381 struct mount *mp; 5382 struct fs *fs; 5383 5384 mp = ITOVFS(ip); 5385 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5386 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5387 fs = VFSTOUFS(mp)->um_fs; 5388 jaddref = NULL; 5389 5390 /* 5391 * Allocate the journal reference add structure so that the bitmap 5392 * can be dependent on it. 5393 */ 5394 if (MOUNTEDSUJ(mp)) { 5395 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5396 jaddref->ja_state |= NEWBLOCK; 5397 } 5398 5399 /* 5400 * Create a dependency for the newly allocated inode. 5401 * Panic if it already exists as something is seriously wrong. 5402 * Otherwise add it to the dependency list for the buffer holding 5403 * the cylinder group map from which it was allocated. 5404 * 5405 * We have to preallocate a bmsafemap entry in case it is needed 5406 * in bmsafemap_lookup since once we allocate the inodedep, we 5407 * have to finish initializing it before we can FREE_LOCK(). 5408 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5409 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5410 * creating the inodedep as it can be freed during the time 5411 * that we FREE_LOCK() while allocating the inodedep. We must 5412 * call workitem_alloc() before entering the locked section as 5413 * it also acquires the lock and we must avoid trying doing so 5414 * recursively. 5415 */ 5416 bmsafemap = malloc(sizeof(struct bmsafemap), 5417 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5418 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5419 ACQUIRE_LOCK(ITOUMP(ip)); 5420 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5421 panic("softdep_setup_inomapdep: dependency %p for new" 5422 "inode already exists", inodedep); 5423 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5424 if (jaddref) { 5425 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5426 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5427 if_deps); 5428 } else { 5429 inodedep->id_state |= ONDEPLIST; 5430 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5431 } 5432 inodedep->id_bmsafemap = bmsafemap; 5433 inodedep->id_state &= ~DEPCOMPLETE; 5434 FREE_LOCK(ITOUMP(ip)); 5435 } 5436 5437 /* 5438 * Called just after updating the cylinder group block to 5439 * allocate block or fragment. 5440 */ 5441 void 5442 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5443 struct buf *bp; /* buffer for cylgroup block with block map */ 5444 struct mount *mp; /* filesystem doing allocation */ 5445 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5446 int frags; /* Number of fragments. */ 5447 int oldfrags; /* Previous number of fragments for extend. */ 5448 { 5449 struct newblk *newblk; 5450 struct bmsafemap *bmsafemap; 5451 struct jnewblk *jnewblk; 5452 struct ufsmount *ump; 5453 struct fs *fs; 5454 5455 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5456 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5457 ump = VFSTOUFS(mp); 5458 fs = ump->um_fs; 5459 jnewblk = NULL; 5460 /* 5461 * Create a dependency for the newly allocated block. 5462 * Add it to the dependency list for the buffer holding 5463 * the cylinder group map from which it was allocated. 5464 */ 5465 if (MOUNTEDSUJ(mp)) { 5466 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5467 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5468 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5469 jnewblk->jn_state = ATTACHED; 5470 jnewblk->jn_blkno = newblkno; 5471 jnewblk->jn_frags = frags; 5472 jnewblk->jn_oldfrags = oldfrags; 5473 #ifdef INVARIANTS 5474 { 5475 struct cg *cgp; 5476 uint8_t *blksfree; 5477 long bno; 5478 int i; 5479 5480 cgp = (struct cg *)bp->b_data; 5481 blksfree = cg_blksfree(cgp); 5482 bno = dtogd(fs, jnewblk->jn_blkno); 5483 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5484 i++) { 5485 if (isset(blksfree, bno + i)) 5486 panic("softdep_setup_blkmapdep: " 5487 "free fragment %d from %d-%d " 5488 "state 0x%X dep %p", i, 5489 jnewblk->jn_oldfrags, 5490 jnewblk->jn_frags, 5491 jnewblk->jn_state, 5492 jnewblk->jn_dep); 5493 } 5494 } 5495 #endif 5496 } 5497 5498 CTR3(KTR_SUJ, 5499 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5500 newblkno, frags, oldfrags); 5501 ACQUIRE_LOCK(ump); 5502 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5503 panic("softdep_setup_blkmapdep: found block"); 5504 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5505 dtog(fs, newblkno), NULL); 5506 if (jnewblk) { 5507 jnewblk->jn_dep = (struct worklist *)newblk; 5508 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5509 } else { 5510 newblk->nb_state |= ONDEPLIST; 5511 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5512 } 5513 newblk->nb_bmsafemap = bmsafemap; 5514 newblk->nb_jnewblk = jnewblk; 5515 FREE_LOCK(ump); 5516 } 5517 5518 #define BMSAFEMAP_HASH(ump, cg) \ 5519 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5520 5521 static int 5522 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5523 struct bmsafemap_hashhead *bmsafemaphd; 5524 int cg; 5525 struct bmsafemap **bmsafemapp; 5526 { 5527 struct bmsafemap *bmsafemap; 5528 5529 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5530 if (bmsafemap->sm_cg == cg) 5531 break; 5532 if (bmsafemap) { 5533 *bmsafemapp = bmsafemap; 5534 return (1); 5535 } 5536 *bmsafemapp = NULL; 5537 5538 return (0); 5539 } 5540 5541 /* 5542 * Find the bmsafemap associated with a cylinder group buffer. 5543 * If none exists, create one. The buffer must be locked when 5544 * this routine is called and this routine must be called with 5545 * the softdep lock held. To avoid giving up the lock while 5546 * allocating a new bmsafemap, a preallocated bmsafemap may be 5547 * provided. If it is provided but not needed, it is freed. 5548 */ 5549 static struct bmsafemap * 5550 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5551 struct mount *mp; 5552 struct buf *bp; 5553 int cg; 5554 struct bmsafemap *newbmsafemap; 5555 { 5556 struct bmsafemap_hashhead *bmsafemaphd; 5557 struct bmsafemap *bmsafemap, *collision; 5558 struct worklist *wk; 5559 struct ufsmount *ump; 5560 5561 ump = VFSTOUFS(mp); 5562 LOCK_OWNED(ump); 5563 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5564 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5565 if (wk->wk_type == D_BMSAFEMAP) { 5566 if (newbmsafemap) 5567 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5568 return (WK_BMSAFEMAP(wk)); 5569 } 5570 } 5571 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5572 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5573 if (newbmsafemap) 5574 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5575 return (bmsafemap); 5576 } 5577 if (newbmsafemap) { 5578 bmsafemap = newbmsafemap; 5579 } else { 5580 FREE_LOCK(ump); 5581 bmsafemap = malloc(sizeof(struct bmsafemap), 5582 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5583 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5584 ACQUIRE_LOCK(ump); 5585 } 5586 bmsafemap->sm_buf = bp; 5587 LIST_INIT(&bmsafemap->sm_inodedephd); 5588 LIST_INIT(&bmsafemap->sm_inodedepwr); 5589 LIST_INIT(&bmsafemap->sm_newblkhd); 5590 LIST_INIT(&bmsafemap->sm_newblkwr); 5591 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5592 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5593 LIST_INIT(&bmsafemap->sm_freehd); 5594 LIST_INIT(&bmsafemap->sm_freewr); 5595 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5596 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5597 return (collision); 5598 } 5599 bmsafemap->sm_cg = cg; 5600 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5601 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5602 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5603 return (bmsafemap); 5604 } 5605 5606 /* 5607 * Direct block allocation dependencies. 5608 * 5609 * When a new block is allocated, the corresponding disk locations must be 5610 * initialized (with zeros or new data) before the on-disk inode points to 5611 * them. Also, the freemap from which the block was allocated must be 5612 * updated (on disk) before the inode's pointer. These two dependencies are 5613 * independent of each other and are needed for all file blocks and indirect 5614 * blocks that are pointed to directly by the inode. Just before the 5615 * "in-core" version of the inode is updated with a newly allocated block 5616 * number, a procedure (below) is called to setup allocation dependency 5617 * structures. These structures are removed when the corresponding 5618 * dependencies are satisfied or when the block allocation becomes obsolete 5619 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5620 * fragment that gets upgraded). All of these cases are handled in 5621 * procedures described later. 5622 * 5623 * When a file extension causes a fragment to be upgraded, either to a larger 5624 * fragment or to a full block, the on-disk location may change (if the 5625 * previous fragment could not simply be extended). In this case, the old 5626 * fragment must be de-allocated, but not until after the inode's pointer has 5627 * been updated. In most cases, this is handled by later procedures, which 5628 * will construct a "freefrag" structure to be added to the workitem queue 5629 * when the inode update is complete (or obsolete). The main exception to 5630 * this is when an allocation occurs while a pending allocation dependency 5631 * (for the same block pointer) remains. This case is handled in the main 5632 * allocation dependency setup procedure by immediately freeing the 5633 * unreferenced fragments. 5634 */ 5635 void 5636 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5637 struct inode *ip; /* inode to which block is being added */ 5638 ufs_lbn_t off; /* block pointer within inode */ 5639 ufs2_daddr_t newblkno; /* disk block number being added */ 5640 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5641 long newsize; /* size of new block */ 5642 long oldsize; /* size of new block */ 5643 struct buf *bp; /* bp for allocated block */ 5644 { 5645 struct allocdirect *adp, *oldadp; 5646 struct allocdirectlst *adphead; 5647 struct freefrag *freefrag; 5648 struct inodedep *inodedep; 5649 struct pagedep *pagedep; 5650 struct jnewblk *jnewblk; 5651 struct newblk *newblk; 5652 struct mount *mp; 5653 ufs_lbn_t lbn; 5654 5655 lbn = bp->b_lblkno; 5656 mp = ITOVFS(ip); 5657 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5658 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5659 if (oldblkno && oldblkno != newblkno) 5660 /* 5661 * The usual case is that a smaller fragment that 5662 * was just allocated has been replaced with a bigger 5663 * fragment or a full-size block. If it is marked as 5664 * B_DELWRI, the current contents have not been written 5665 * to disk. It is possible that the block was written 5666 * earlier, but very uncommon. If the block has never 5667 * been written, there is no need to send a BIO_DELETE 5668 * for it when it is freed. The gain from avoiding the 5669 * TRIMs for the common case of unwritten blocks far 5670 * exceeds the cost of the write amplification for the 5671 * uncommon case of failing to send a TRIM for a block 5672 * that had been written. 5673 */ 5674 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5675 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5676 else 5677 freefrag = NULL; 5678 5679 CTR6(KTR_SUJ, 5680 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5681 "off %jd newsize %ld oldsize %d", 5682 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5683 ACQUIRE_LOCK(ITOUMP(ip)); 5684 if (off >= UFS_NDADDR) { 5685 if (lbn > 0) 5686 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5687 lbn, off); 5688 /* allocating an indirect block */ 5689 if (oldblkno != 0) 5690 panic("softdep_setup_allocdirect: non-zero indir"); 5691 } else { 5692 if (off != lbn) 5693 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5694 lbn, off); 5695 /* 5696 * Allocating a direct block. 5697 * 5698 * If we are allocating a directory block, then we must 5699 * allocate an associated pagedep to track additions and 5700 * deletions. 5701 */ 5702 if ((ip->i_mode & IFMT) == IFDIR) 5703 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5704 &pagedep); 5705 } 5706 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5707 panic("softdep_setup_allocdirect: lost block"); 5708 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5709 ("softdep_setup_allocdirect: newblk already initialized")); 5710 /* 5711 * Convert the newblk to an allocdirect. 5712 */ 5713 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5714 adp = (struct allocdirect *)newblk; 5715 newblk->nb_freefrag = freefrag; 5716 adp->ad_offset = off; 5717 adp->ad_oldblkno = oldblkno; 5718 adp->ad_newsize = newsize; 5719 adp->ad_oldsize = oldsize; 5720 5721 /* 5722 * Finish initializing the journal. 5723 */ 5724 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5725 jnewblk->jn_ino = ip->i_number; 5726 jnewblk->jn_lbn = lbn; 5727 add_to_journal(&jnewblk->jn_list); 5728 } 5729 if (freefrag && freefrag->ff_jdep != NULL && 5730 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5731 add_to_journal(freefrag->ff_jdep); 5732 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5733 adp->ad_inodedep = inodedep; 5734 5735 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5736 /* 5737 * The list of allocdirects must be kept in sorted and ascending 5738 * order so that the rollback routines can quickly determine the 5739 * first uncommitted block (the size of the file stored on disk 5740 * ends at the end of the lowest committed fragment, or if there 5741 * are no fragments, at the end of the highest committed block). 5742 * Since files generally grow, the typical case is that the new 5743 * block is to be added at the end of the list. We speed this 5744 * special case by checking against the last allocdirect in the 5745 * list before laboriously traversing the list looking for the 5746 * insertion point. 5747 */ 5748 adphead = &inodedep->id_newinoupdt; 5749 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5750 if (oldadp == NULL || oldadp->ad_offset <= off) { 5751 /* insert at end of list */ 5752 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5753 if (oldadp != NULL && oldadp->ad_offset == off) 5754 allocdirect_merge(adphead, adp, oldadp); 5755 FREE_LOCK(ITOUMP(ip)); 5756 return; 5757 } 5758 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5759 if (oldadp->ad_offset >= off) 5760 break; 5761 } 5762 if (oldadp == NULL) 5763 panic("softdep_setup_allocdirect: lost entry"); 5764 /* insert in middle of list */ 5765 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5766 if (oldadp->ad_offset == off) 5767 allocdirect_merge(adphead, adp, oldadp); 5768 5769 FREE_LOCK(ITOUMP(ip)); 5770 } 5771 5772 /* 5773 * Merge a newer and older journal record to be stored either in a 5774 * newblock or freefrag. This handles aggregating journal records for 5775 * fragment allocation into a second record as well as replacing a 5776 * journal free with an aborted journal allocation. A segment for the 5777 * oldest record will be placed on wkhd if it has been written. If not 5778 * the segment for the newer record will suffice. 5779 */ 5780 static struct worklist * 5781 jnewblk_merge(new, old, wkhd) 5782 struct worklist *new; 5783 struct worklist *old; 5784 struct workhead *wkhd; 5785 { 5786 struct jnewblk *njnewblk; 5787 struct jnewblk *jnewblk; 5788 5789 /* Handle NULLs to simplify callers. */ 5790 if (new == NULL) 5791 return (old); 5792 if (old == NULL) 5793 return (new); 5794 /* Replace a jfreefrag with a jnewblk. */ 5795 if (new->wk_type == D_JFREEFRAG) { 5796 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5797 panic("jnewblk_merge: blkno mismatch: %p, %p", 5798 old, new); 5799 cancel_jfreefrag(WK_JFREEFRAG(new)); 5800 return (old); 5801 } 5802 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5803 panic("jnewblk_merge: Bad type: old %d new %d\n", 5804 old->wk_type, new->wk_type); 5805 /* 5806 * Handle merging of two jnewblk records that describe 5807 * different sets of fragments in the same block. 5808 */ 5809 jnewblk = WK_JNEWBLK(old); 5810 njnewblk = WK_JNEWBLK(new); 5811 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5812 panic("jnewblk_merge: Merging disparate blocks."); 5813 /* 5814 * The record may be rolled back in the cg. 5815 */ 5816 if (jnewblk->jn_state & UNDONE) { 5817 jnewblk->jn_state &= ~UNDONE; 5818 njnewblk->jn_state |= UNDONE; 5819 njnewblk->jn_state &= ~ATTACHED; 5820 } 5821 /* 5822 * We modify the newer addref and free the older so that if neither 5823 * has been written the most up-to-date copy will be on disk. If 5824 * both have been written but rolled back we only temporarily need 5825 * one of them to fix the bits when the cg write completes. 5826 */ 5827 jnewblk->jn_state |= ATTACHED | COMPLETE; 5828 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5829 cancel_jnewblk(jnewblk, wkhd); 5830 WORKLIST_REMOVE(&jnewblk->jn_list); 5831 free_jnewblk(jnewblk); 5832 return (new); 5833 } 5834 5835 /* 5836 * Replace an old allocdirect dependency with a newer one. 5837 */ 5838 static void 5839 allocdirect_merge(adphead, newadp, oldadp) 5840 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5841 struct allocdirect *newadp; /* allocdirect being added */ 5842 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5843 { 5844 struct worklist *wk; 5845 struct freefrag *freefrag; 5846 5847 freefrag = NULL; 5848 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5849 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5850 newadp->ad_oldsize != oldadp->ad_newsize || 5851 newadp->ad_offset >= UFS_NDADDR) 5852 panic("%s %jd != new %jd || old size %ld != new %ld", 5853 "allocdirect_merge: old blkno", 5854 (intmax_t)newadp->ad_oldblkno, 5855 (intmax_t)oldadp->ad_newblkno, 5856 newadp->ad_oldsize, oldadp->ad_newsize); 5857 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5858 newadp->ad_oldsize = oldadp->ad_oldsize; 5859 /* 5860 * If the old dependency had a fragment to free or had never 5861 * previously had a block allocated, then the new dependency 5862 * can immediately post its freefrag and adopt the old freefrag. 5863 * This action is done by swapping the freefrag dependencies. 5864 * The new dependency gains the old one's freefrag, and the 5865 * old one gets the new one and then immediately puts it on 5866 * the worklist when it is freed by free_newblk. It is 5867 * not possible to do this swap when the old dependency had a 5868 * non-zero size but no previous fragment to free. This condition 5869 * arises when the new block is an extension of the old block. 5870 * Here, the first part of the fragment allocated to the new 5871 * dependency is part of the block currently claimed on disk by 5872 * the old dependency, so cannot legitimately be freed until the 5873 * conditions for the new dependency are fulfilled. 5874 */ 5875 freefrag = newadp->ad_freefrag; 5876 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5877 newadp->ad_freefrag = oldadp->ad_freefrag; 5878 oldadp->ad_freefrag = freefrag; 5879 } 5880 /* 5881 * If we are tracking a new directory-block allocation, 5882 * move it from the old allocdirect to the new allocdirect. 5883 */ 5884 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5885 WORKLIST_REMOVE(wk); 5886 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5887 panic("allocdirect_merge: extra newdirblk"); 5888 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5889 } 5890 TAILQ_REMOVE(adphead, oldadp, ad_next); 5891 /* 5892 * We need to move any journal dependencies over to the freefrag 5893 * that releases this block if it exists. Otherwise we are 5894 * extending an existing block and we'll wait until that is 5895 * complete to release the journal space and extend the 5896 * new journal to cover this old space as well. 5897 */ 5898 if (freefrag == NULL) { 5899 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5900 panic("allocdirect_merge: %jd != %jd", 5901 oldadp->ad_newblkno, newadp->ad_newblkno); 5902 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5903 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5904 &oldadp->ad_block.nb_jnewblk->jn_list, 5905 &newadp->ad_block.nb_jwork); 5906 oldadp->ad_block.nb_jnewblk = NULL; 5907 cancel_newblk(&oldadp->ad_block, NULL, 5908 &newadp->ad_block.nb_jwork); 5909 } else { 5910 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5911 &freefrag->ff_list, &freefrag->ff_jwork); 5912 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5913 &freefrag->ff_jwork); 5914 } 5915 free_newblk(&oldadp->ad_block); 5916 } 5917 5918 /* 5919 * Allocate a jfreefrag structure to journal a single block free. 5920 */ 5921 static struct jfreefrag * 5922 newjfreefrag(freefrag, ip, blkno, size, lbn) 5923 struct freefrag *freefrag; 5924 struct inode *ip; 5925 ufs2_daddr_t blkno; 5926 long size; 5927 ufs_lbn_t lbn; 5928 { 5929 struct jfreefrag *jfreefrag; 5930 struct fs *fs; 5931 5932 fs = ITOFS(ip); 5933 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5934 M_SOFTDEP_FLAGS); 5935 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5936 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5937 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5938 jfreefrag->fr_ino = ip->i_number; 5939 jfreefrag->fr_lbn = lbn; 5940 jfreefrag->fr_blkno = blkno; 5941 jfreefrag->fr_frags = numfrags(fs, size); 5942 jfreefrag->fr_freefrag = freefrag; 5943 5944 return (jfreefrag); 5945 } 5946 5947 /* 5948 * Allocate a new freefrag structure. 5949 */ 5950 static struct freefrag * 5951 newfreefrag(ip, blkno, size, lbn, key) 5952 struct inode *ip; 5953 ufs2_daddr_t blkno; 5954 long size; 5955 ufs_lbn_t lbn; 5956 u_long key; 5957 { 5958 struct freefrag *freefrag; 5959 struct ufsmount *ump; 5960 struct fs *fs; 5961 5962 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5963 ip->i_number, blkno, size, lbn); 5964 ump = ITOUMP(ip); 5965 fs = ump->um_fs; 5966 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5967 panic("newfreefrag: frag size"); 5968 freefrag = malloc(sizeof(struct freefrag), 5969 M_FREEFRAG, M_SOFTDEP_FLAGS); 5970 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5971 freefrag->ff_state = ATTACHED; 5972 LIST_INIT(&freefrag->ff_jwork); 5973 freefrag->ff_inum = ip->i_number; 5974 freefrag->ff_vtype = ITOV(ip)->v_type; 5975 freefrag->ff_blkno = blkno; 5976 freefrag->ff_fragsize = size; 5977 freefrag->ff_key = key; 5978 5979 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5980 freefrag->ff_jdep = (struct worklist *) 5981 newjfreefrag(freefrag, ip, blkno, size, lbn); 5982 } else { 5983 freefrag->ff_state |= DEPCOMPLETE; 5984 freefrag->ff_jdep = NULL; 5985 } 5986 5987 return (freefrag); 5988 } 5989 5990 /* 5991 * This workitem de-allocates fragments that were replaced during 5992 * file block allocation. 5993 */ 5994 static void 5995 handle_workitem_freefrag(freefrag) 5996 struct freefrag *freefrag; 5997 { 5998 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5999 struct workhead wkhd; 6000 6001 CTR3(KTR_SUJ, 6002 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 6003 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 6004 /* 6005 * It would be illegal to add new completion items to the 6006 * freefrag after it was schedule to be done so it must be 6007 * safe to modify the list head here. 6008 */ 6009 LIST_INIT(&wkhd); 6010 ACQUIRE_LOCK(ump); 6011 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 6012 /* 6013 * If the journal has not been written we must cancel it here. 6014 */ 6015 if (freefrag->ff_jdep) { 6016 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 6017 panic("handle_workitem_freefrag: Unexpected type %d\n", 6018 freefrag->ff_jdep->wk_type); 6019 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 6020 } 6021 FREE_LOCK(ump); 6022 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 6023 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 6024 &wkhd, freefrag->ff_key); 6025 ACQUIRE_LOCK(ump); 6026 WORKITEM_FREE(freefrag, D_FREEFRAG); 6027 FREE_LOCK(ump); 6028 } 6029 6030 /* 6031 * Set up a dependency structure for an external attributes data block. 6032 * This routine follows much of the structure of softdep_setup_allocdirect. 6033 * See the description of softdep_setup_allocdirect above for details. 6034 */ 6035 void 6036 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 6037 struct inode *ip; 6038 ufs_lbn_t off; 6039 ufs2_daddr_t newblkno; 6040 ufs2_daddr_t oldblkno; 6041 long newsize; 6042 long oldsize; 6043 struct buf *bp; 6044 { 6045 struct allocdirect *adp, *oldadp; 6046 struct allocdirectlst *adphead; 6047 struct freefrag *freefrag; 6048 struct inodedep *inodedep; 6049 struct jnewblk *jnewblk; 6050 struct newblk *newblk; 6051 struct mount *mp; 6052 struct ufsmount *ump; 6053 ufs_lbn_t lbn; 6054 6055 mp = ITOVFS(ip); 6056 ump = VFSTOUFS(mp); 6057 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6058 ("softdep_setup_allocext called on non-softdep filesystem")); 6059 KASSERT(off < UFS_NXADDR, 6060 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 6061 6062 lbn = bp->b_lblkno; 6063 if (oldblkno && oldblkno != newblkno) 6064 /* 6065 * The usual case is that a smaller fragment that 6066 * was just allocated has been replaced with a bigger 6067 * fragment or a full-size block. If it is marked as 6068 * B_DELWRI, the current contents have not been written 6069 * to disk. It is possible that the block was written 6070 * earlier, but very uncommon. If the block has never 6071 * been written, there is no need to send a BIO_DELETE 6072 * for it when it is freed. The gain from avoiding the 6073 * TRIMs for the common case of unwritten blocks far 6074 * exceeds the cost of the write amplification for the 6075 * uncommon case of failing to send a TRIM for a block 6076 * that had been written. 6077 */ 6078 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 6079 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 6080 else 6081 freefrag = NULL; 6082 6083 ACQUIRE_LOCK(ump); 6084 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 6085 panic("softdep_setup_allocext: lost block"); 6086 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6087 ("softdep_setup_allocext: newblk already initialized")); 6088 /* 6089 * Convert the newblk to an allocdirect. 6090 */ 6091 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 6092 adp = (struct allocdirect *)newblk; 6093 newblk->nb_freefrag = freefrag; 6094 adp->ad_offset = off; 6095 adp->ad_oldblkno = oldblkno; 6096 adp->ad_newsize = newsize; 6097 adp->ad_oldsize = oldsize; 6098 adp->ad_state |= EXTDATA; 6099 6100 /* 6101 * Finish initializing the journal. 6102 */ 6103 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6104 jnewblk->jn_ino = ip->i_number; 6105 jnewblk->jn_lbn = lbn; 6106 add_to_journal(&jnewblk->jn_list); 6107 } 6108 if (freefrag && freefrag->ff_jdep != NULL && 6109 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6110 add_to_journal(freefrag->ff_jdep); 6111 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6112 adp->ad_inodedep = inodedep; 6113 6114 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 6115 /* 6116 * The list of allocdirects must be kept in sorted and ascending 6117 * order so that the rollback routines can quickly determine the 6118 * first uncommitted block (the size of the file stored on disk 6119 * ends at the end of the lowest committed fragment, or if there 6120 * are no fragments, at the end of the highest committed block). 6121 * Since files generally grow, the typical case is that the new 6122 * block is to be added at the end of the list. We speed this 6123 * special case by checking against the last allocdirect in the 6124 * list before laboriously traversing the list looking for the 6125 * insertion point. 6126 */ 6127 adphead = &inodedep->id_newextupdt; 6128 oldadp = TAILQ_LAST(adphead, allocdirectlst); 6129 if (oldadp == NULL || oldadp->ad_offset <= off) { 6130 /* insert at end of list */ 6131 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 6132 if (oldadp != NULL && oldadp->ad_offset == off) 6133 allocdirect_merge(adphead, adp, oldadp); 6134 FREE_LOCK(ump); 6135 return; 6136 } 6137 TAILQ_FOREACH(oldadp, adphead, ad_next) { 6138 if (oldadp->ad_offset >= off) 6139 break; 6140 } 6141 if (oldadp == NULL) 6142 panic("softdep_setup_allocext: lost entry"); 6143 /* insert in middle of list */ 6144 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 6145 if (oldadp->ad_offset == off) 6146 allocdirect_merge(adphead, adp, oldadp); 6147 FREE_LOCK(ump); 6148 } 6149 6150 /* 6151 * Indirect block allocation dependencies. 6152 * 6153 * The same dependencies that exist for a direct block also exist when 6154 * a new block is allocated and pointed to by an entry in a block of 6155 * indirect pointers. The undo/redo states described above are also 6156 * used here. Because an indirect block contains many pointers that 6157 * may have dependencies, a second copy of the entire in-memory indirect 6158 * block is kept. The buffer cache copy is always completely up-to-date. 6159 * The second copy, which is used only as a source for disk writes, 6160 * contains only the safe pointers (i.e., those that have no remaining 6161 * update dependencies). The second copy is freed when all pointers 6162 * are safe. The cache is not allowed to replace indirect blocks with 6163 * pending update dependencies. If a buffer containing an indirect 6164 * block with dependencies is written, these routines will mark it 6165 * dirty again. It can only be successfully written once all the 6166 * dependencies are removed. The ffs_fsync routine in conjunction with 6167 * softdep_sync_metadata work together to get all the dependencies 6168 * removed so that a file can be successfully written to disk. Three 6169 * procedures are used when setting up indirect block pointer 6170 * dependencies. The division is necessary because of the organization 6171 * of the "balloc" routine and because of the distinction between file 6172 * pages and file metadata blocks. 6173 */ 6174 6175 /* 6176 * Allocate a new allocindir structure. 6177 */ 6178 static struct allocindir * 6179 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 6180 struct inode *ip; /* inode for file being extended */ 6181 int ptrno; /* offset of pointer in indirect block */ 6182 ufs2_daddr_t newblkno; /* disk block number being added */ 6183 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6184 ufs_lbn_t lbn; 6185 { 6186 struct newblk *newblk; 6187 struct allocindir *aip; 6188 struct freefrag *freefrag; 6189 struct jnewblk *jnewblk; 6190 6191 if (oldblkno) 6192 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6193 SINGLETON_KEY); 6194 else 6195 freefrag = NULL; 6196 ACQUIRE_LOCK(ITOUMP(ip)); 6197 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6198 panic("new_allocindir: lost block"); 6199 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6200 ("newallocindir: newblk already initialized")); 6201 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6202 newblk->nb_freefrag = freefrag; 6203 aip = (struct allocindir *)newblk; 6204 aip->ai_offset = ptrno; 6205 aip->ai_oldblkno = oldblkno; 6206 aip->ai_lbn = lbn; 6207 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6208 jnewblk->jn_ino = ip->i_number; 6209 jnewblk->jn_lbn = lbn; 6210 add_to_journal(&jnewblk->jn_list); 6211 } 6212 if (freefrag && freefrag->ff_jdep != NULL && 6213 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6214 add_to_journal(freefrag->ff_jdep); 6215 return (aip); 6216 } 6217 6218 /* 6219 * Called just before setting an indirect block pointer 6220 * to a newly allocated file page. 6221 */ 6222 void 6223 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 6224 struct inode *ip; /* inode for file being extended */ 6225 ufs_lbn_t lbn; /* allocated block number within file */ 6226 struct buf *bp; /* buffer with indirect blk referencing page */ 6227 int ptrno; /* offset of pointer in indirect block */ 6228 ufs2_daddr_t newblkno; /* disk block number being added */ 6229 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6230 struct buf *nbp; /* buffer holding allocated page */ 6231 { 6232 struct inodedep *inodedep; 6233 struct freefrag *freefrag; 6234 struct allocindir *aip; 6235 struct pagedep *pagedep; 6236 struct mount *mp; 6237 struct ufsmount *ump; 6238 6239 mp = ITOVFS(ip); 6240 ump = VFSTOUFS(mp); 6241 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6242 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6243 KASSERT(lbn == nbp->b_lblkno, 6244 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6245 lbn, bp->b_lblkno)); 6246 CTR4(KTR_SUJ, 6247 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6248 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6249 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6250 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6251 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6252 /* 6253 * If we are allocating a directory page, then we must 6254 * allocate an associated pagedep to track additions and 6255 * deletions. 6256 */ 6257 if ((ip->i_mode & IFMT) == IFDIR) 6258 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6259 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6260 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6261 FREE_LOCK(ump); 6262 if (freefrag) 6263 handle_workitem_freefrag(freefrag); 6264 } 6265 6266 /* 6267 * Called just before setting an indirect block pointer to a 6268 * newly allocated indirect block. 6269 */ 6270 void 6271 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 6272 struct buf *nbp; /* newly allocated indirect block */ 6273 struct inode *ip; /* inode for file being extended */ 6274 struct buf *bp; /* indirect block referencing allocated block */ 6275 int ptrno; /* offset of pointer in indirect block */ 6276 ufs2_daddr_t newblkno; /* disk block number being added */ 6277 { 6278 struct inodedep *inodedep; 6279 struct allocindir *aip; 6280 struct ufsmount *ump; 6281 ufs_lbn_t lbn; 6282 6283 ump = ITOUMP(ip); 6284 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6285 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6286 CTR3(KTR_SUJ, 6287 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6288 ip->i_number, newblkno, ptrno); 6289 lbn = nbp->b_lblkno; 6290 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6291 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6292 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6293 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6294 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6295 panic("softdep_setup_allocindir_meta: Block already existed"); 6296 FREE_LOCK(ump); 6297 } 6298 6299 static void 6300 indirdep_complete(indirdep) 6301 struct indirdep *indirdep; 6302 { 6303 struct allocindir *aip; 6304 6305 LIST_REMOVE(indirdep, ir_next); 6306 indirdep->ir_state |= DEPCOMPLETE; 6307 6308 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6309 LIST_REMOVE(aip, ai_next); 6310 free_newblk(&aip->ai_block); 6311 } 6312 /* 6313 * If this indirdep is not attached to a buf it was simply waiting 6314 * on completion to clear completehd. free_indirdep() asserts 6315 * that nothing is dangling. 6316 */ 6317 if ((indirdep->ir_state & ONWORKLIST) == 0) 6318 free_indirdep(indirdep); 6319 } 6320 6321 static struct indirdep * 6322 indirdep_lookup(mp, ip, bp) 6323 struct mount *mp; 6324 struct inode *ip; 6325 struct buf *bp; 6326 { 6327 struct indirdep *indirdep, *newindirdep; 6328 struct newblk *newblk; 6329 struct ufsmount *ump; 6330 struct worklist *wk; 6331 struct fs *fs; 6332 ufs2_daddr_t blkno; 6333 6334 ump = VFSTOUFS(mp); 6335 LOCK_OWNED(ump); 6336 indirdep = NULL; 6337 newindirdep = NULL; 6338 fs = ump->um_fs; 6339 for (;;) { 6340 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6341 if (wk->wk_type != D_INDIRDEP) 6342 continue; 6343 indirdep = WK_INDIRDEP(wk); 6344 break; 6345 } 6346 /* Found on the buffer worklist, no new structure to free. */ 6347 if (indirdep != NULL && newindirdep == NULL) 6348 return (indirdep); 6349 if (indirdep != NULL && newindirdep != NULL) 6350 panic("indirdep_lookup: simultaneous create"); 6351 /* None found on the buffer and a new structure is ready. */ 6352 if (indirdep == NULL && newindirdep != NULL) 6353 break; 6354 /* None found and no new structure available. */ 6355 FREE_LOCK(ump); 6356 newindirdep = malloc(sizeof(struct indirdep), 6357 M_INDIRDEP, M_SOFTDEP_FLAGS); 6358 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6359 newindirdep->ir_state = ATTACHED; 6360 if (I_IS_UFS1(ip)) 6361 newindirdep->ir_state |= UFS1FMT; 6362 TAILQ_INIT(&newindirdep->ir_trunc); 6363 newindirdep->ir_saveddata = NULL; 6364 LIST_INIT(&newindirdep->ir_deplisthd); 6365 LIST_INIT(&newindirdep->ir_donehd); 6366 LIST_INIT(&newindirdep->ir_writehd); 6367 LIST_INIT(&newindirdep->ir_completehd); 6368 if (bp->b_blkno == bp->b_lblkno) { 6369 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6370 NULL, NULL); 6371 bp->b_blkno = blkno; 6372 } 6373 newindirdep->ir_freeblks = NULL; 6374 newindirdep->ir_savebp = 6375 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6376 newindirdep->ir_bp = bp; 6377 BUF_KERNPROC(newindirdep->ir_savebp); 6378 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6379 ACQUIRE_LOCK(ump); 6380 } 6381 indirdep = newindirdep; 6382 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6383 /* 6384 * If the block is not yet allocated we don't set DEPCOMPLETE so 6385 * that we don't free dependencies until the pointers are valid. 6386 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6387 * than using the hash. 6388 */ 6389 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6390 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6391 else 6392 indirdep->ir_state |= DEPCOMPLETE; 6393 return (indirdep); 6394 } 6395 6396 /* 6397 * Called to finish the allocation of the "aip" allocated 6398 * by one of the two routines above. 6399 */ 6400 static struct freefrag * 6401 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6402 struct buf *bp; /* in-memory copy of the indirect block */ 6403 struct inode *ip; /* inode for file being extended */ 6404 struct inodedep *inodedep; /* Inodedep for ip */ 6405 struct allocindir *aip; /* allocindir allocated by the above routines */ 6406 ufs_lbn_t lbn; /* Logical block number for this block. */ 6407 { 6408 struct fs *fs; 6409 struct indirdep *indirdep; 6410 struct allocindir *oldaip; 6411 struct freefrag *freefrag; 6412 struct mount *mp; 6413 struct ufsmount *ump; 6414 6415 mp = ITOVFS(ip); 6416 ump = VFSTOUFS(mp); 6417 LOCK_OWNED(ump); 6418 fs = ump->um_fs; 6419 if (bp->b_lblkno >= 0) 6420 panic("setup_allocindir_phase2: not indir blk"); 6421 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6422 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6423 indirdep = indirdep_lookup(mp, ip, bp); 6424 KASSERT(indirdep->ir_savebp != NULL, 6425 ("setup_allocindir_phase2 NULL ir_savebp")); 6426 aip->ai_indirdep = indirdep; 6427 /* 6428 * Check for an unwritten dependency for this indirect offset. If 6429 * there is, merge the old dependency into the new one. This happens 6430 * as a result of reallocblk only. 6431 */ 6432 freefrag = NULL; 6433 if (aip->ai_oldblkno != 0) { 6434 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6435 if (oldaip->ai_offset == aip->ai_offset) { 6436 freefrag = allocindir_merge(aip, oldaip); 6437 goto done; 6438 } 6439 } 6440 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6441 if (oldaip->ai_offset == aip->ai_offset) { 6442 freefrag = allocindir_merge(aip, oldaip); 6443 goto done; 6444 } 6445 } 6446 } 6447 done: 6448 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6449 return (freefrag); 6450 } 6451 6452 /* 6453 * Merge two allocindirs which refer to the same block. Move newblock 6454 * dependencies and setup the freefrags appropriately. 6455 */ 6456 static struct freefrag * 6457 allocindir_merge(aip, oldaip) 6458 struct allocindir *aip; 6459 struct allocindir *oldaip; 6460 { 6461 struct freefrag *freefrag; 6462 struct worklist *wk; 6463 6464 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6465 panic("allocindir_merge: blkno"); 6466 aip->ai_oldblkno = oldaip->ai_oldblkno; 6467 freefrag = aip->ai_freefrag; 6468 aip->ai_freefrag = oldaip->ai_freefrag; 6469 oldaip->ai_freefrag = NULL; 6470 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6471 /* 6472 * If we are tracking a new directory-block allocation, 6473 * move it from the old allocindir to the new allocindir. 6474 */ 6475 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6476 WORKLIST_REMOVE(wk); 6477 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6478 panic("allocindir_merge: extra newdirblk"); 6479 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6480 } 6481 /* 6482 * We can skip journaling for this freefrag and just complete 6483 * any pending journal work for the allocindir that is being 6484 * removed after the freefrag completes. 6485 */ 6486 if (freefrag->ff_jdep) 6487 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6488 LIST_REMOVE(oldaip, ai_next); 6489 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6490 &freefrag->ff_list, &freefrag->ff_jwork); 6491 free_newblk(&oldaip->ai_block); 6492 6493 return (freefrag); 6494 } 6495 6496 static inline void 6497 setup_freedirect(freeblks, ip, i, needj) 6498 struct freeblks *freeblks; 6499 struct inode *ip; 6500 int i; 6501 int needj; 6502 { 6503 struct ufsmount *ump; 6504 ufs2_daddr_t blkno; 6505 int frags; 6506 6507 blkno = DIP(ip, i_db[i]); 6508 if (blkno == 0) 6509 return; 6510 DIP_SET(ip, i_db[i], 0); 6511 ump = ITOUMP(ip); 6512 frags = sblksize(ump->um_fs, ip->i_size, i); 6513 frags = numfrags(ump->um_fs, frags); 6514 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6515 } 6516 6517 static inline void 6518 setup_freeext(freeblks, ip, i, needj) 6519 struct freeblks *freeblks; 6520 struct inode *ip; 6521 int i; 6522 int needj; 6523 { 6524 struct ufsmount *ump; 6525 ufs2_daddr_t blkno; 6526 int frags; 6527 6528 blkno = ip->i_din2->di_extb[i]; 6529 if (blkno == 0) 6530 return; 6531 ip->i_din2->di_extb[i] = 0; 6532 ump = ITOUMP(ip); 6533 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6534 frags = numfrags(ump->um_fs, frags); 6535 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6536 } 6537 6538 static inline void 6539 setup_freeindir(freeblks, ip, i, lbn, needj) 6540 struct freeblks *freeblks; 6541 struct inode *ip; 6542 int i; 6543 ufs_lbn_t lbn; 6544 int needj; 6545 { 6546 struct ufsmount *ump; 6547 ufs2_daddr_t blkno; 6548 6549 blkno = DIP(ip, i_ib[i]); 6550 if (blkno == 0) 6551 return; 6552 DIP_SET(ip, i_ib[i], 0); 6553 ump = ITOUMP(ip); 6554 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6555 0, needj); 6556 } 6557 6558 static inline struct freeblks * 6559 newfreeblks(mp, ip) 6560 struct mount *mp; 6561 struct inode *ip; 6562 { 6563 struct freeblks *freeblks; 6564 6565 freeblks = malloc(sizeof(struct freeblks), 6566 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6567 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6568 LIST_INIT(&freeblks->fb_jblkdephd); 6569 LIST_INIT(&freeblks->fb_jwork); 6570 freeblks->fb_ref = 0; 6571 freeblks->fb_cgwait = 0; 6572 freeblks->fb_state = ATTACHED; 6573 freeblks->fb_uid = ip->i_uid; 6574 freeblks->fb_inum = ip->i_number; 6575 freeblks->fb_vtype = ITOV(ip)->v_type; 6576 freeblks->fb_modrev = DIP(ip, i_modrev); 6577 freeblks->fb_devvp = ITODEVVP(ip); 6578 freeblks->fb_chkcnt = 0; 6579 freeblks->fb_len = 0; 6580 6581 return (freeblks); 6582 } 6583 6584 static void 6585 trunc_indirdep(indirdep, freeblks, bp, off) 6586 struct indirdep *indirdep; 6587 struct freeblks *freeblks; 6588 struct buf *bp; 6589 int off; 6590 { 6591 struct allocindir *aip, *aipn; 6592 6593 /* 6594 * The first set of allocindirs won't be in savedbp. 6595 */ 6596 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6597 if (aip->ai_offset > off) 6598 cancel_allocindir(aip, bp, freeblks, 1); 6599 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6600 if (aip->ai_offset > off) 6601 cancel_allocindir(aip, bp, freeblks, 1); 6602 /* 6603 * These will exist in savedbp. 6604 */ 6605 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6606 if (aip->ai_offset > off) 6607 cancel_allocindir(aip, NULL, freeblks, 0); 6608 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6609 if (aip->ai_offset > off) 6610 cancel_allocindir(aip, NULL, freeblks, 0); 6611 } 6612 6613 /* 6614 * Follow the chain of indirects down to lastlbn creating a freework 6615 * structure for each. This will be used to start indir_trunc() at 6616 * the right offset and create the journal records for the parrtial 6617 * truncation. A second step will handle the truncated dependencies. 6618 */ 6619 static int 6620 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6621 struct freeblks *freeblks; 6622 struct inode *ip; 6623 ufs_lbn_t lbn; 6624 ufs_lbn_t lastlbn; 6625 ufs2_daddr_t blkno; 6626 { 6627 struct indirdep *indirdep; 6628 struct indirdep *indirn; 6629 struct freework *freework; 6630 struct newblk *newblk; 6631 struct mount *mp; 6632 struct ufsmount *ump; 6633 struct buf *bp; 6634 uint8_t *start; 6635 uint8_t *end; 6636 ufs_lbn_t lbnadd; 6637 int level; 6638 int error; 6639 int off; 6640 6641 freework = NULL; 6642 if (blkno == 0) 6643 return (0); 6644 mp = freeblks->fb_list.wk_mp; 6645 ump = VFSTOUFS(mp); 6646 /* 6647 * Here, calls to VOP_BMAP() will fail. However, we already have 6648 * the on-disk address, so we just pass it to bread() instead of 6649 * having bread() attempt to calculate it using VOP_BMAP(). 6650 */ 6651 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6652 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6653 if (error) 6654 return (error); 6655 level = lbn_level(lbn); 6656 lbnadd = lbn_offset(ump->um_fs, level); 6657 /* 6658 * Compute the offset of the last block we want to keep. Store 6659 * in the freework the first block we want to completely free. 6660 */ 6661 off = (lastlbn - -(lbn + level)) / lbnadd; 6662 if (off + 1 == NINDIR(ump->um_fs)) 6663 goto nowork; 6664 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6665 /* 6666 * Link the freework into the indirdep. This will prevent any new 6667 * allocations from proceeding until we are finished with the 6668 * truncate and the block is written. 6669 */ 6670 ACQUIRE_LOCK(ump); 6671 indirdep = indirdep_lookup(mp, ip, bp); 6672 if (indirdep->ir_freeblks) 6673 panic("setup_trunc_indir: indirdep already truncated."); 6674 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6675 freework->fw_indir = indirdep; 6676 /* 6677 * Cancel any allocindirs that will not make it to disk. 6678 * We have to do this for all copies of the indirdep that 6679 * live on this newblk. 6680 */ 6681 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6682 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6683 &newblk) == 0) 6684 panic("setup_trunc_indir: lost block"); 6685 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6686 trunc_indirdep(indirn, freeblks, bp, off); 6687 } else 6688 trunc_indirdep(indirdep, freeblks, bp, off); 6689 FREE_LOCK(ump); 6690 /* 6691 * Creation is protected by the buf lock. The saveddata is only 6692 * needed if a full truncation follows a partial truncation but it 6693 * is difficult to allocate in that case so we fetch it anyway. 6694 */ 6695 if (indirdep->ir_saveddata == NULL) 6696 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6697 M_SOFTDEP_FLAGS); 6698 nowork: 6699 /* Fetch the blkno of the child and the zero start offset. */ 6700 if (I_IS_UFS1(ip)) { 6701 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6702 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6703 } else { 6704 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6705 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6706 } 6707 if (freework) { 6708 /* Zero the truncated pointers. */ 6709 end = bp->b_data + bp->b_bcount; 6710 bzero(start, end - start); 6711 bdwrite(bp); 6712 } else 6713 bqrelse(bp); 6714 if (level == 0) 6715 return (0); 6716 lbn++; /* adjust level */ 6717 lbn -= (off * lbnadd); 6718 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6719 } 6720 6721 /* 6722 * Complete the partial truncation of an indirect block setup by 6723 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6724 * copy and writes them to disk before the freeblks is allowed to complete. 6725 */ 6726 static void 6727 complete_trunc_indir(freework) 6728 struct freework *freework; 6729 { 6730 struct freework *fwn; 6731 struct indirdep *indirdep; 6732 struct ufsmount *ump; 6733 struct buf *bp; 6734 uintptr_t start; 6735 int count; 6736 6737 ump = VFSTOUFS(freework->fw_list.wk_mp); 6738 LOCK_OWNED(ump); 6739 indirdep = freework->fw_indir; 6740 for (;;) { 6741 bp = indirdep->ir_bp; 6742 /* See if the block was discarded. */ 6743 if (bp == NULL) 6744 break; 6745 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6746 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6747 break; 6748 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6749 LOCK_PTR(ump)) == 0) 6750 BUF_UNLOCK(bp); 6751 ACQUIRE_LOCK(ump); 6752 } 6753 freework->fw_state |= DEPCOMPLETE; 6754 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6755 /* 6756 * Zero the pointers in the saved copy. 6757 */ 6758 if (indirdep->ir_state & UFS1FMT) 6759 start = sizeof(ufs1_daddr_t); 6760 else 6761 start = sizeof(ufs2_daddr_t); 6762 start *= freework->fw_start; 6763 count = indirdep->ir_savebp->b_bcount - start; 6764 start += (uintptr_t)indirdep->ir_savebp->b_data; 6765 bzero((char *)start, count); 6766 /* 6767 * We need to start the next truncation in the list if it has not 6768 * been started yet. 6769 */ 6770 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6771 if (fwn != NULL) { 6772 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6773 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6774 if ((fwn->fw_state & ONWORKLIST) == 0) 6775 freework_enqueue(fwn); 6776 } 6777 /* 6778 * If bp is NULL the block was fully truncated, restore 6779 * the saved block list otherwise free it if it is no 6780 * longer needed. 6781 */ 6782 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6783 if (bp == NULL) 6784 bcopy(indirdep->ir_saveddata, 6785 indirdep->ir_savebp->b_data, 6786 indirdep->ir_savebp->b_bcount); 6787 free(indirdep->ir_saveddata, M_INDIRDEP); 6788 indirdep->ir_saveddata = NULL; 6789 } 6790 /* 6791 * When bp is NULL there is a full truncation pending. We 6792 * must wait for this full truncation to be journaled before 6793 * we can release this freework because the disk pointers will 6794 * never be written as zero. 6795 */ 6796 if (bp == NULL) { 6797 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6798 handle_written_freework(freework); 6799 else 6800 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6801 &freework->fw_list); 6802 if (fwn == NULL) { 6803 freework->fw_indir = (void *)0x0000deadbeef0000; 6804 bp = indirdep->ir_savebp; 6805 indirdep->ir_savebp = NULL; 6806 free_indirdep(indirdep); 6807 FREE_LOCK(ump); 6808 brelse(bp); 6809 ACQUIRE_LOCK(ump); 6810 } 6811 } else { 6812 /* Complete when the real copy is written. */ 6813 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6814 BUF_UNLOCK(bp); 6815 } 6816 } 6817 6818 /* 6819 * Calculate the number of blocks we are going to release where datablocks 6820 * is the current total and length is the new file size. 6821 */ 6822 static ufs2_daddr_t 6823 blkcount(fs, datablocks, length) 6824 struct fs *fs; 6825 ufs2_daddr_t datablocks; 6826 off_t length; 6827 { 6828 off_t totblks, numblks; 6829 6830 totblks = 0; 6831 numblks = howmany(length, fs->fs_bsize); 6832 if (numblks <= UFS_NDADDR) { 6833 totblks = howmany(length, fs->fs_fsize); 6834 goto out; 6835 } 6836 totblks = blkstofrags(fs, numblks); 6837 numblks -= UFS_NDADDR; 6838 /* 6839 * Count all single, then double, then triple indirects required. 6840 * Subtracting one indirects worth of blocks for each pass 6841 * acknowledges one of each pointed to by the inode. 6842 */ 6843 for (;;) { 6844 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6845 numblks -= NINDIR(fs); 6846 if (numblks <= 0) 6847 break; 6848 numblks = howmany(numblks, NINDIR(fs)); 6849 } 6850 out: 6851 totblks = fsbtodb(fs, totblks); 6852 /* 6853 * Handle sparse files. We can't reclaim more blocks than the inode 6854 * references. We will correct it later in handle_complete_freeblks() 6855 * when we know the real count. 6856 */ 6857 if (totblks > datablocks) 6858 return (0); 6859 return (datablocks - totblks); 6860 } 6861 6862 /* 6863 * Handle freeblocks for journaled softupdate filesystems. 6864 * 6865 * Contrary to normal softupdates, we must preserve the block pointers in 6866 * indirects until their subordinates are free. This is to avoid journaling 6867 * every block that is freed which may consume more space than the journal 6868 * itself. The recovery program will see the free block journals at the 6869 * base of the truncated area and traverse them to reclaim space. The 6870 * pointers in the inode may be cleared immediately after the journal 6871 * records are written because each direct and indirect pointer in the 6872 * inode is recorded in a journal. This permits full truncation to proceed 6873 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6874 * 6875 * The algorithm is as follows: 6876 * 1) Traverse the in-memory state and create journal entries to release 6877 * the relevant blocks and full indirect trees. 6878 * 2) Traverse the indirect block chain adding partial truncation freework 6879 * records to indirects in the path to lastlbn. The freework will 6880 * prevent new allocation dependencies from being satisfied in this 6881 * indirect until the truncation completes. 6882 * 3) Read and lock the inode block, performing an update with the new size 6883 * and pointers. This prevents truncated data from becoming valid on 6884 * disk through step 4. 6885 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6886 * eliminate journal work for those records that do not require it. 6887 * 5) Schedule the journal records to be written followed by the inode block. 6888 * 6) Allocate any necessary frags for the end of file. 6889 * 7) Zero any partially truncated blocks. 6890 * 6891 * From this truncation proceeds asynchronously using the freework and 6892 * indir_trunc machinery. The file will not be extended again into a 6893 * partially truncated indirect block until all work is completed but 6894 * the normal dependency mechanism ensures that it is rolled back/forward 6895 * as appropriate. Further truncation may occur without delay and is 6896 * serialized in indir_trunc(). 6897 */ 6898 void 6899 softdep_journal_freeblocks(ip, cred, length, flags) 6900 struct inode *ip; /* The inode whose length is to be reduced */ 6901 struct ucred *cred; 6902 off_t length; /* The new length for the file */ 6903 int flags; /* IO_EXT and/or IO_NORMAL */ 6904 { 6905 struct freeblks *freeblks, *fbn; 6906 struct worklist *wk, *wkn; 6907 struct inodedep *inodedep; 6908 struct jblkdep *jblkdep; 6909 struct allocdirect *adp, *adpn; 6910 struct ufsmount *ump; 6911 struct fs *fs; 6912 struct buf *bp; 6913 struct vnode *vp; 6914 struct mount *mp; 6915 daddr_t dbn; 6916 ufs2_daddr_t extblocks, datablocks; 6917 ufs_lbn_t tmpval, lbn, lastlbn; 6918 int frags, lastoff, iboff, allocblock, needj, error, i; 6919 6920 ump = ITOUMP(ip); 6921 mp = UFSTOVFS(ump); 6922 fs = ump->um_fs; 6923 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6924 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6925 vp = ITOV(ip); 6926 needj = 1; 6927 iboff = -1; 6928 allocblock = 0; 6929 extblocks = 0; 6930 datablocks = 0; 6931 frags = 0; 6932 freeblks = newfreeblks(mp, ip); 6933 ACQUIRE_LOCK(ump); 6934 /* 6935 * If we're truncating a removed file that will never be written 6936 * we don't need to journal the block frees. The canceled journals 6937 * for the allocations will suffice. 6938 */ 6939 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6940 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6941 length == 0) 6942 needj = 0; 6943 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6944 ip->i_number, length, needj); 6945 FREE_LOCK(ump); 6946 /* 6947 * Calculate the lbn that we are truncating to. This results in -1 6948 * if we're truncating the 0 bytes. So it is the last lbn we want 6949 * to keep, not the first lbn we want to truncate. 6950 */ 6951 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6952 lastoff = blkoff(fs, length); 6953 /* 6954 * Compute frags we are keeping in lastlbn. 0 means all. 6955 */ 6956 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6957 frags = fragroundup(fs, lastoff); 6958 /* adp offset of last valid allocdirect. */ 6959 iboff = lastlbn; 6960 } else if (lastlbn > 0) 6961 iboff = UFS_NDADDR; 6962 if (fs->fs_magic == FS_UFS2_MAGIC) 6963 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6964 /* 6965 * Handle normal data blocks and indirects. This section saves 6966 * values used after the inode update to complete frag and indirect 6967 * truncation. 6968 */ 6969 if ((flags & IO_NORMAL) != 0) { 6970 /* 6971 * Handle truncation of whole direct and indirect blocks. 6972 */ 6973 for (i = iboff + 1; i < UFS_NDADDR; i++) 6974 setup_freedirect(freeblks, ip, i, needj); 6975 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6976 i < UFS_NIADDR; 6977 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6978 /* Release a whole indirect tree. */ 6979 if (lbn > lastlbn) { 6980 setup_freeindir(freeblks, ip, i, -lbn -i, 6981 needj); 6982 continue; 6983 } 6984 iboff = i + UFS_NDADDR; 6985 /* 6986 * Traverse partially truncated indirect tree. 6987 */ 6988 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6989 setup_trunc_indir(freeblks, ip, -lbn - i, 6990 lastlbn, DIP(ip, i_ib[i])); 6991 } 6992 /* 6993 * Handle partial truncation to a frag boundary. 6994 */ 6995 if (frags) { 6996 ufs2_daddr_t blkno; 6997 long oldfrags; 6998 6999 oldfrags = blksize(fs, ip, lastlbn); 7000 blkno = DIP(ip, i_db[lastlbn]); 7001 if (blkno && oldfrags != frags) { 7002 oldfrags -= frags; 7003 oldfrags = numfrags(fs, oldfrags); 7004 blkno += numfrags(fs, frags); 7005 newfreework(ump, freeblks, NULL, lastlbn, 7006 blkno, oldfrags, 0, needj); 7007 if (needj) 7008 adjust_newfreework(freeblks, 7009 numfrags(fs, frags)); 7010 } else if (blkno == 0) 7011 allocblock = 1; 7012 } 7013 /* 7014 * Add a journal record for partial truncate if we are 7015 * handling indirect blocks. Non-indirects need no extra 7016 * journaling. 7017 */ 7018 if (length != 0 && lastlbn >= UFS_NDADDR) { 7019 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 7020 newjtrunc(freeblks, length, 0); 7021 } 7022 ip->i_size = length; 7023 DIP_SET(ip, i_size, ip->i_size); 7024 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7025 datablocks = DIP(ip, i_blocks) - extblocks; 7026 if (length != 0) 7027 datablocks = blkcount(fs, datablocks, length); 7028 freeblks->fb_len = length; 7029 } 7030 if ((flags & IO_EXT) != 0) { 7031 for (i = 0; i < UFS_NXADDR; i++) 7032 setup_freeext(freeblks, ip, i, needj); 7033 ip->i_din2->di_extsize = 0; 7034 datablocks += extblocks; 7035 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7036 } 7037 #ifdef QUOTA 7038 /* Reference the quotas in case the block count is wrong in the end. */ 7039 quotaref(vp, freeblks->fb_quota); 7040 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7041 #endif 7042 freeblks->fb_chkcnt = -datablocks; 7043 UFS_LOCK(ump); 7044 fs->fs_pendingblocks += datablocks; 7045 UFS_UNLOCK(ump); 7046 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7047 /* 7048 * Handle truncation of incomplete alloc direct dependencies. We 7049 * hold the inode block locked to prevent incomplete dependencies 7050 * from reaching the disk while we are eliminating those that 7051 * have been truncated. This is a partially inlined ffs_update(). 7052 */ 7053 ufs_itimes(vp); 7054 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 7055 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 7056 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 7057 NULL, NULL, 0, cred, 0, NULL, &bp); 7058 if (error) { 7059 softdep_error("softdep_journal_freeblocks", error); 7060 return; 7061 } 7062 if (bp->b_bufsize == fs->fs_bsize) 7063 bp->b_flags |= B_CLUSTEROK; 7064 softdep_update_inodeblock(ip, bp, 0); 7065 if (ump->um_fstype == UFS1) { 7066 *((struct ufs1_dinode *)bp->b_data + 7067 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 7068 } else { 7069 ffs_update_dinode_ckhash(fs, ip->i_din2); 7070 *((struct ufs2_dinode *)bp->b_data + 7071 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 7072 } 7073 ACQUIRE_LOCK(ump); 7074 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7075 if ((inodedep->id_state & IOSTARTED) != 0) 7076 panic("softdep_setup_freeblocks: inode busy"); 7077 /* 7078 * Add the freeblks structure to the list of operations that 7079 * must await the zero'ed inode being written to disk. If we 7080 * still have a bitmap dependency (needj), then the inode 7081 * has never been written to disk, so we can process the 7082 * freeblks below once we have deleted the dependencies. 7083 */ 7084 if (needj) 7085 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7086 else 7087 freeblks->fb_state |= COMPLETE; 7088 if ((flags & IO_NORMAL) != 0) { 7089 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 7090 if (adp->ad_offset > iboff) 7091 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7092 freeblks); 7093 /* 7094 * Truncate the allocdirect. We could eliminate 7095 * or modify journal records as well. 7096 */ 7097 else if (adp->ad_offset == iboff && frags) 7098 adp->ad_newsize = frags; 7099 } 7100 } 7101 if ((flags & IO_EXT) != 0) 7102 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7103 cancel_allocdirect(&inodedep->id_extupdt, adp, 7104 freeblks); 7105 /* 7106 * Scan the bufwait list for newblock dependencies that will never 7107 * make it to disk. 7108 */ 7109 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 7110 if (wk->wk_type != D_ALLOCDIRECT) 7111 continue; 7112 adp = WK_ALLOCDIRECT(wk); 7113 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 7114 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 7115 cancel_jfreeblk(freeblks, adp->ad_newblkno); 7116 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 7117 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7118 } 7119 } 7120 /* 7121 * Add journal work. 7122 */ 7123 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 7124 add_to_journal(&jblkdep->jb_list); 7125 FREE_LOCK(ump); 7126 bdwrite(bp); 7127 /* 7128 * Truncate dependency structures beyond length. 7129 */ 7130 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 7131 /* 7132 * This is only set when we need to allocate a fragment because 7133 * none existed at the end of a frag-sized file. It handles only 7134 * allocating a new, zero filled block. 7135 */ 7136 if (allocblock) { 7137 ip->i_size = length - lastoff; 7138 DIP_SET(ip, i_size, ip->i_size); 7139 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 7140 if (error != 0) { 7141 softdep_error("softdep_journal_freeblks", error); 7142 return; 7143 } 7144 ip->i_size = length; 7145 DIP_SET(ip, i_size, length); 7146 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 7147 allocbuf(bp, frags); 7148 ffs_update(vp, 0); 7149 bawrite(bp); 7150 } else if (lastoff != 0 && vp->v_type != VDIR) { 7151 int size; 7152 7153 /* 7154 * Zero the end of a truncated frag or block. 7155 */ 7156 size = sblksize(fs, length, lastlbn); 7157 error = bread(vp, lastlbn, size, cred, &bp); 7158 if (error == 0) { 7159 bzero((char *)bp->b_data + lastoff, size - lastoff); 7160 bawrite(bp); 7161 } else if (!ffs_fsfail_cleanup(ump, error)) { 7162 softdep_error("softdep_journal_freeblks", error); 7163 return; 7164 } 7165 } 7166 ACQUIRE_LOCK(ump); 7167 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7168 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7169 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7170 /* 7171 * We zero earlier truncations so they don't erroneously 7172 * update i_blocks. 7173 */ 7174 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7175 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7176 fbn->fb_len = 0; 7177 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7178 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7179 freeblks->fb_state |= INPROGRESS; 7180 else 7181 freeblks = NULL; 7182 FREE_LOCK(ump); 7183 if (freeblks) 7184 handle_workitem_freeblocks(freeblks, 0); 7185 trunc_pages(ip, length, extblocks, flags); 7186 7187 } 7188 7189 /* 7190 * Flush a JOP_SYNC to the journal. 7191 */ 7192 void 7193 softdep_journal_fsync(ip) 7194 struct inode *ip; 7195 { 7196 struct jfsync *jfsync; 7197 struct ufsmount *ump; 7198 7199 ump = ITOUMP(ip); 7200 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7201 ("softdep_journal_fsync called on non-softdep filesystem")); 7202 if ((ip->i_flag & IN_TRUNCATED) == 0) 7203 return; 7204 ip->i_flag &= ~IN_TRUNCATED; 7205 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7206 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7207 jfsync->jfs_size = ip->i_size; 7208 jfsync->jfs_ino = ip->i_number; 7209 ACQUIRE_LOCK(ump); 7210 add_to_journal(&jfsync->jfs_list); 7211 jwait(&jfsync->jfs_list, MNT_WAIT); 7212 FREE_LOCK(ump); 7213 } 7214 7215 /* 7216 * Block de-allocation dependencies. 7217 * 7218 * When blocks are de-allocated, the on-disk pointers must be nullified before 7219 * the blocks are made available for use by other files. (The true 7220 * requirement is that old pointers must be nullified before new on-disk 7221 * pointers are set. We chose this slightly more stringent requirement to 7222 * reduce complexity.) Our implementation handles this dependency by updating 7223 * the inode (or indirect block) appropriately but delaying the actual block 7224 * de-allocation (i.e., freemap and free space count manipulation) until 7225 * after the updated versions reach stable storage. After the disk is 7226 * updated, the blocks can be safely de-allocated whenever it is convenient. 7227 * This implementation handles only the common case of reducing a file's 7228 * length to zero. Other cases are handled by the conventional synchronous 7229 * write approach. 7230 * 7231 * The ffs implementation with which we worked double-checks 7232 * the state of the block pointers and file size as it reduces 7233 * a file's length. Some of this code is replicated here in our 7234 * soft updates implementation. The freeblks->fb_chkcnt field is 7235 * used to transfer a part of this information to the procedure 7236 * that eventually de-allocates the blocks. 7237 * 7238 * This routine should be called from the routine that shortens 7239 * a file's length, before the inode's size or block pointers 7240 * are modified. It will save the block pointer information for 7241 * later release and zero the inode so that the calling routine 7242 * can release it. 7243 */ 7244 void 7245 softdep_setup_freeblocks(ip, length, flags) 7246 struct inode *ip; /* The inode whose length is to be reduced */ 7247 off_t length; /* The new length for the file */ 7248 int flags; /* IO_EXT and/or IO_NORMAL */ 7249 { 7250 struct ufs1_dinode *dp1; 7251 struct ufs2_dinode *dp2; 7252 struct freeblks *freeblks; 7253 struct inodedep *inodedep; 7254 struct allocdirect *adp; 7255 struct ufsmount *ump; 7256 struct buf *bp; 7257 struct fs *fs; 7258 ufs2_daddr_t extblocks, datablocks; 7259 struct mount *mp; 7260 int i, delay, error; 7261 ufs_lbn_t tmpval; 7262 ufs_lbn_t lbn; 7263 7264 ump = ITOUMP(ip); 7265 mp = UFSTOVFS(ump); 7266 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7267 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7268 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7269 ip->i_number, length); 7270 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7271 fs = ump->um_fs; 7272 if ((error = bread(ump->um_devvp, 7273 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7274 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7275 if (!ffs_fsfail_cleanup(ump, error)) 7276 softdep_error("softdep_setup_freeblocks", error); 7277 return; 7278 } 7279 freeblks = newfreeblks(mp, ip); 7280 extblocks = 0; 7281 datablocks = 0; 7282 if (fs->fs_magic == FS_UFS2_MAGIC) 7283 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7284 if ((flags & IO_NORMAL) != 0) { 7285 for (i = 0; i < UFS_NDADDR; i++) 7286 setup_freedirect(freeblks, ip, i, 0); 7287 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7288 i < UFS_NIADDR; 7289 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7290 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7291 ip->i_size = 0; 7292 DIP_SET(ip, i_size, 0); 7293 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7294 datablocks = DIP(ip, i_blocks) - extblocks; 7295 } 7296 if ((flags & IO_EXT) != 0) { 7297 for (i = 0; i < UFS_NXADDR; i++) 7298 setup_freeext(freeblks, ip, i, 0); 7299 ip->i_din2->di_extsize = 0; 7300 datablocks += extblocks; 7301 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7302 } 7303 #ifdef QUOTA 7304 /* Reference the quotas in case the block count is wrong in the end. */ 7305 quotaref(ITOV(ip), freeblks->fb_quota); 7306 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7307 #endif 7308 freeblks->fb_chkcnt = -datablocks; 7309 UFS_LOCK(ump); 7310 fs->fs_pendingblocks += datablocks; 7311 UFS_UNLOCK(ump); 7312 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7313 /* 7314 * Push the zero'ed inode to its disk buffer so that we are free 7315 * to delete its dependencies below. Once the dependencies are gone 7316 * the buffer can be safely released. 7317 */ 7318 if (ump->um_fstype == UFS1) { 7319 dp1 = ((struct ufs1_dinode *)bp->b_data + 7320 ino_to_fsbo(fs, ip->i_number)); 7321 ip->i_din1->di_freelink = dp1->di_freelink; 7322 *dp1 = *ip->i_din1; 7323 } else { 7324 dp2 = ((struct ufs2_dinode *)bp->b_data + 7325 ino_to_fsbo(fs, ip->i_number)); 7326 ip->i_din2->di_freelink = dp2->di_freelink; 7327 ffs_update_dinode_ckhash(fs, ip->i_din2); 7328 *dp2 = *ip->i_din2; 7329 } 7330 /* 7331 * Find and eliminate any inode dependencies. 7332 */ 7333 ACQUIRE_LOCK(ump); 7334 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7335 if ((inodedep->id_state & IOSTARTED) != 0) 7336 panic("softdep_setup_freeblocks: inode busy"); 7337 /* 7338 * Add the freeblks structure to the list of operations that 7339 * must await the zero'ed inode being written to disk. If we 7340 * still have a bitmap dependency (delay == 0), then the inode 7341 * has never been written to disk, so we can process the 7342 * freeblks below once we have deleted the dependencies. 7343 */ 7344 delay = (inodedep->id_state & DEPCOMPLETE); 7345 if (delay) 7346 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7347 else 7348 freeblks->fb_state |= COMPLETE; 7349 /* 7350 * Because the file length has been truncated to zero, any 7351 * pending block allocation dependency structures associated 7352 * with this inode are obsolete and can simply be de-allocated. 7353 * We must first merge the two dependency lists to get rid of 7354 * any duplicate freefrag structures, then purge the merged list. 7355 * If we still have a bitmap dependency, then the inode has never 7356 * been written to disk, so we can free any fragments without delay. 7357 */ 7358 if (flags & IO_NORMAL) { 7359 merge_inode_lists(&inodedep->id_newinoupdt, 7360 &inodedep->id_inoupdt); 7361 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7362 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7363 freeblks); 7364 } 7365 if (flags & IO_EXT) { 7366 merge_inode_lists(&inodedep->id_newextupdt, 7367 &inodedep->id_extupdt); 7368 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7369 cancel_allocdirect(&inodedep->id_extupdt, adp, 7370 freeblks); 7371 } 7372 FREE_LOCK(ump); 7373 bdwrite(bp); 7374 trunc_dependencies(ip, freeblks, -1, 0, flags); 7375 ACQUIRE_LOCK(ump); 7376 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7377 (void) free_inodedep(inodedep); 7378 freeblks->fb_state |= DEPCOMPLETE; 7379 /* 7380 * If the inode with zeroed block pointers is now on disk 7381 * we can start freeing blocks. 7382 */ 7383 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7384 freeblks->fb_state |= INPROGRESS; 7385 else 7386 freeblks = NULL; 7387 FREE_LOCK(ump); 7388 if (freeblks) 7389 handle_workitem_freeblocks(freeblks, 0); 7390 trunc_pages(ip, length, extblocks, flags); 7391 } 7392 7393 /* 7394 * Eliminate pages from the page cache that back parts of this inode and 7395 * adjust the vnode pager's idea of our size. This prevents stale data 7396 * from hanging around in the page cache. 7397 */ 7398 static void 7399 trunc_pages(ip, length, extblocks, flags) 7400 struct inode *ip; 7401 off_t length; 7402 ufs2_daddr_t extblocks; 7403 int flags; 7404 { 7405 struct vnode *vp; 7406 struct fs *fs; 7407 ufs_lbn_t lbn; 7408 off_t end, extend; 7409 7410 vp = ITOV(ip); 7411 fs = ITOFS(ip); 7412 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7413 if ((flags & IO_EXT) != 0) 7414 vn_pages_remove(vp, extend, 0); 7415 if ((flags & IO_NORMAL) == 0) 7416 return; 7417 BO_LOCK(&vp->v_bufobj); 7418 drain_output(vp); 7419 BO_UNLOCK(&vp->v_bufobj); 7420 /* 7421 * The vnode pager eliminates file pages we eliminate indirects 7422 * below. 7423 */ 7424 vnode_pager_setsize(vp, length); 7425 /* 7426 * Calculate the end based on the last indirect we want to keep. If 7427 * the block extends into indirects we can just use the negative of 7428 * its lbn. Doubles and triples exist at lower numbers so we must 7429 * be careful not to remove those, if they exist. double and triple 7430 * indirect lbns do not overlap with others so it is not important 7431 * to verify how many levels are required. 7432 */ 7433 lbn = lblkno(fs, length); 7434 if (lbn >= UFS_NDADDR) { 7435 /* Calculate the virtual lbn of the triple indirect. */ 7436 lbn = -lbn - (UFS_NIADDR - 1); 7437 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7438 } else 7439 end = extend; 7440 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7441 } 7442 7443 /* 7444 * See if the buf bp is in the range eliminated by truncation. 7445 */ 7446 static int 7447 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7448 struct buf *bp; 7449 int *blkoffp; 7450 ufs_lbn_t lastlbn; 7451 int lastoff; 7452 int flags; 7453 { 7454 ufs_lbn_t lbn; 7455 7456 *blkoffp = 0; 7457 /* Only match ext/normal blocks as appropriate. */ 7458 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7459 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7460 return (0); 7461 /* ALTDATA is always a full truncation. */ 7462 if ((bp->b_xflags & BX_ALTDATA) != 0) 7463 return (1); 7464 /* -1 is full truncation. */ 7465 if (lastlbn == -1) 7466 return (1); 7467 /* 7468 * If this is a partial truncate we only want those 7469 * blocks and indirect blocks that cover the range 7470 * we're after. 7471 */ 7472 lbn = bp->b_lblkno; 7473 if (lbn < 0) 7474 lbn = -(lbn + lbn_level(lbn)); 7475 if (lbn < lastlbn) 7476 return (0); 7477 /* Here we only truncate lblkno if it's partial. */ 7478 if (lbn == lastlbn) { 7479 if (lastoff == 0) 7480 return (0); 7481 *blkoffp = lastoff; 7482 } 7483 return (1); 7484 } 7485 7486 /* 7487 * Eliminate any dependencies that exist in memory beyond lblkno:off 7488 */ 7489 static void 7490 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7491 struct inode *ip; 7492 struct freeblks *freeblks; 7493 ufs_lbn_t lastlbn; 7494 int lastoff; 7495 int flags; 7496 { 7497 struct bufobj *bo; 7498 struct vnode *vp; 7499 struct buf *bp; 7500 int blkoff; 7501 7502 /* 7503 * We must wait for any I/O in progress to finish so that 7504 * all potential buffers on the dirty list will be visible. 7505 * Once they are all there, walk the list and get rid of 7506 * any dependencies. 7507 */ 7508 vp = ITOV(ip); 7509 bo = &vp->v_bufobj; 7510 BO_LOCK(bo); 7511 drain_output(vp); 7512 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7513 bp->b_vflags &= ~BV_SCANNED; 7514 restart: 7515 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7516 if (bp->b_vflags & BV_SCANNED) 7517 continue; 7518 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7519 bp->b_vflags |= BV_SCANNED; 7520 continue; 7521 } 7522 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7523 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7524 goto restart; 7525 BO_UNLOCK(bo); 7526 if (deallocate_dependencies(bp, freeblks, blkoff)) 7527 bqrelse(bp); 7528 else 7529 brelse(bp); 7530 BO_LOCK(bo); 7531 goto restart; 7532 } 7533 /* 7534 * Now do the work of vtruncbuf while also matching indirect blocks. 7535 */ 7536 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7537 bp->b_vflags &= ~BV_SCANNED; 7538 cleanrestart: 7539 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7540 if (bp->b_vflags & BV_SCANNED) 7541 continue; 7542 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7543 bp->b_vflags |= BV_SCANNED; 7544 continue; 7545 } 7546 if (BUF_LOCK(bp, 7547 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7548 BO_LOCKPTR(bo)) == ENOLCK) { 7549 BO_LOCK(bo); 7550 goto cleanrestart; 7551 } 7552 bp->b_vflags |= BV_SCANNED; 7553 bremfree(bp); 7554 if (blkoff != 0) { 7555 allocbuf(bp, blkoff); 7556 bqrelse(bp); 7557 } else { 7558 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7559 brelse(bp); 7560 } 7561 BO_LOCK(bo); 7562 goto cleanrestart; 7563 } 7564 drain_output(vp); 7565 BO_UNLOCK(bo); 7566 } 7567 7568 static int 7569 cancel_pagedep(pagedep, freeblks, blkoff) 7570 struct pagedep *pagedep; 7571 struct freeblks *freeblks; 7572 int blkoff; 7573 { 7574 struct jremref *jremref; 7575 struct jmvref *jmvref; 7576 struct dirrem *dirrem, *tmp; 7577 int i; 7578 7579 /* 7580 * Copy any directory remove dependencies to the list 7581 * to be processed after the freeblks proceeds. If 7582 * directory entry never made it to disk they 7583 * can be dumped directly onto the work list. 7584 */ 7585 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7586 /* Skip this directory removal if it is intended to remain. */ 7587 if (dirrem->dm_offset < blkoff) 7588 continue; 7589 /* 7590 * If there are any dirrems we wait for the journal write 7591 * to complete and then restart the buf scan as the lock 7592 * has been dropped. 7593 */ 7594 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7595 jwait(&jremref->jr_list, MNT_WAIT); 7596 return (ERESTART); 7597 } 7598 LIST_REMOVE(dirrem, dm_next); 7599 dirrem->dm_dirinum = pagedep->pd_ino; 7600 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7601 } 7602 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7603 jwait(&jmvref->jm_list, MNT_WAIT); 7604 return (ERESTART); 7605 } 7606 /* 7607 * When we're partially truncating a pagedep we just want to flush 7608 * journal entries and return. There can not be any adds in the 7609 * truncated portion of the directory and newblk must remain if 7610 * part of the block remains. 7611 */ 7612 if (blkoff != 0) { 7613 struct diradd *dap; 7614 7615 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7616 if (dap->da_offset > blkoff) 7617 panic("cancel_pagedep: diradd %p off %d > %d", 7618 dap, dap->da_offset, blkoff); 7619 for (i = 0; i < DAHASHSZ; i++) 7620 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7621 if (dap->da_offset > blkoff) 7622 panic("cancel_pagedep: diradd %p off %d > %d", 7623 dap, dap->da_offset, blkoff); 7624 return (0); 7625 } 7626 /* 7627 * There should be no directory add dependencies present 7628 * as the directory could not be truncated until all 7629 * children were removed. 7630 */ 7631 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7632 ("deallocate_dependencies: pendinghd != NULL")); 7633 for (i = 0; i < DAHASHSZ; i++) 7634 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7635 ("deallocate_dependencies: diraddhd != NULL")); 7636 if ((pagedep->pd_state & NEWBLOCK) != 0) 7637 free_newdirblk(pagedep->pd_newdirblk); 7638 if (free_pagedep(pagedep) == 0) 7639 panic("Failed to free pagedep %p", pagedep); 7640 return (0); 7641 } 7642 7643 /* 7644 * Reclaim any dependency structures from a buffer that is about to 7645 * be reallocated to a new vnode. The buffer must be locked, thus, 7646 * no I/O completion operations can occur while we are manipulating 7647 * its associated dependencies. The mutex is held so that other I/O's 7648 * associated with related dependencies do not occur. 7649 */ 7650 static int 7651 deallocate_dependencies(bp, freeblks, off) 7652 struct buf *bp; 7653 struct freeblks *freeblks; 7654 int off; 7655 { 7656 struct indirdep *indirdep; 7657 struct pagedep *pagedep; 7658 struct worklist *wk, *wkn; 7659 struct ufsmount *ump; 7660 7661 ump = softdep_bp_to_mp(bp); 7662 if (ump == NULL) 7663 goto done; 7664 ACQUIRE_LOCK(ump); 7665 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7666 switch (wk->wk_type) { 7667 case D_INDIRDEP: 7668 indirdep = WK_INDIRDEP(wk); 7669 if (bp->b_lblkno >= 0 || 7670 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7671 panic("deallocate_dependencies: not indir"); 7672 cancel_indirdep(indirdep, bp, freeblks); 7673 continue; 7674 7675 case D_PAGEDEP: 7676 pagedep = WK_PAGEDEP(wk); 7677 if (cancel_pagedep(pagedep, freeblks, off)) { 7678 FREE_LOCK(ump); 7679 return (ERESTART); 7680 } 7681 continue; 7682 7683 case D_ALLOCINDIR: 7684 /* 7685 * Simply remove the allocindir, we'll find it via 7686 * the indirdep where we can clear pointers if 7687 * needed. 7688 */ 7689 WORKLIST_REMOVE(wk); 7690 continue; 7691 7692 case D_FREEWORK: 7693 /* 7694 * A truncation is waiting for the zero'd pointers 7695 * to be written. It can be freed when the freeblks 7696 * is journaled. 7697 */ 7698 WORKLIST_REMOVE(wk); 7699 wk->wk_state |= ONDEPLIST; 7700 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7701 break; 7702 7703 case D_ALLOCDIRECT: 7704 if (off != 0) 7705 continue; 7706 /* FALLTHROUGH */ 7707 default: 7708 panic("deallocate_dependencies: Unexpected type %s", 7709 TYPENAME(wk->wk_type)); 7710 /* NOTREACHED */ 7711 } 7712 } 7713 FREE_LOCK(ump); 7714 done: 7715 /* 7716 * Don't throw away this buf, we were partially truncating and 7717 * some deps may always remain. 7718 */ 7719 if (off) { 7720 allocbuf(bp, off); 7721 bp->b_vflags |= BV_SCANNED; 7722 return (EBUSY); 7723 } 7724 bp->b_flags |= B_INVAL | B_NOCACHE; 7725 7726 return (0); 7727 } 7728 7729 /* 7730 * An allocdirect is being canceled due to a truncate. We must make sure 7731 * the journal entry is released in concert with the blkfree that releases 7732 * the storage. Completed journal entries must not be released until the 7733 * space is no longer pointed to by the inode or in the bitmap. 7734 */ 7735 static void 7736 cancel_allocdirect(adphead, adp, freeblks) 7737 struct allocdirectlst *adphead; 7738 struct allocdirect *adp; 7739 struct freeblks *freeblks; 7740 { 7741 struct freework *freework; 7742 struct newblk *newblk; 7743 struct worklist *wk; 7744 7745 TAILQ_REMOVE(adphead, adp, ad_next); 7746 newblk = (struct newblk *)adp; 7747 freework = NULL; 7748 /* 7749 * Find the correct freework structure. 7750 */ 7751 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7752 if (wk->wk_type != D_FREEWORK) 7753 continue; 7754 freework = WK_FREEWORK(wk); 7755 if (freework->fw_blkno == newblk->nb_newblkno) 7756 break; 7757 } 7758 if (freework == NULL) 7759 panic("cancel_allocdirect: Freework not found"); 7760 /* 7761 * If a newblk exists at all we still have the journal entry that 7762 * initiated the allocation so we do not need to journal the free. 7763 */ 7764 cancel_jfreeblk(freeblks, freework->fw_blkno); 7765 /* 7766 * If the journal hasn't been written the jnewblk must be passed 7767 * to the call to ffs_blkfree that reclaims the space. We accomplish 7768 * this by linking the journal dependency into the freework to be 7769 * freed when freework_freeblock() is called. If the journal has 7770 * been written we can simply reclaim the journal space when the 7771 * freeblks work is complete. 7772 */ 7773 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7774 &freeblks->fb_jwork); 7775 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7776 } 7777 7778 /* 7779 * Cancel a new block allocation. May be an indirect or direct block. We 7780 * remove it from various lists and return any journal record that needs to 7781 * be resolved by the caller. 7782 * 7783 * A special consideration is made for indirects which were never pointed 7784 * at on disk and will never be found once this block is released. 7785 */ 7786 static struct jnewblk * 7787 cancel_newblk(newblk, wk, wkhd) 7788 struct newblk *newblk; 7789 struct worklist *wk; 7790 struct workhead *wkhd; 7791 { 7792 struct jnewblk *jnewblk; 7793 7794 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7795 7796 newblk->nb_state |= GOINGAWAY; 7797 /* 7798 * Previously we traversed the completedhd on each indirdep 7799 * attached to this newblk to cancel them and gather journal 7800 * work. Since we need only the oldest journal segment and 7801 * the lowest point on the tree will always have the oldest 7802 * journal segment we are free to release the segments 7803 * of any subordinates and may leave the indirdep list to 7804 * indirdep_complete() when this newblk is freed. 7805 */ 7806 if (newblk->nb_state & ONDEPLIST) { 7807 newblk->nb_state &= ~ONDEPLIST; 7808 LIST_REMOVE(newblk, nb_deps); 7809 } 7810 if (newblk->nb_state & ONWORKLIST) 7811 WORKLIST_REMOVE(&newblk->nb_list); 7812 /* 7813 * If the journal entry hasn't been written we save a pointer to 7814 * the dependency that frees it until it is written or the 7815 * superseding operation completes. 7816 */ 7817 jnewblk = newblk->nb_jnewblk; 7818 if (jnewblk != NULL && wk != NULL) { 7819 newblk->nb_jnewblk = NULL; 7820 jnewblk->jn_dep = wk; 7821 } 7822 if (!LIST_EMPTY(&newblk->nb_jwork)) 7823 jwork_move(wkhd, &newblk->nb_jwork); 7824 /* 7825 * When truncating we must free the newdirblk early to remove 7826 * the pagedep from the hash before returning. 7827 */ 7828 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7829 free_newdirblk(WK_NEWDIRBLK(wk)); 7830 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7831 panic("cancel_newblk: extra newdirblk"); 7832 7833 return (jnewblk); 7834 } 7835 7836 /* 7837 * Schedule the freefrag associated with a newblk to be released once 7838 * the pointers are written and the previous block is no longer needed. 7839 */ 7840 static void 7841 newblk_freefrag(newblk) 7842 struct newblk *newblk; 7843 { 7844 struct freefrag *freefrag; 7845 7846 if (newblk->nb_freefrag == NULL) 7847 return; 7848 freefrag = newblk->nb_freefrag; 7849 newblk->nb_freefrag = NULL; 7850 freefrag->ff_state |= COMPLETE; 7851 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7852 add_to_worklist(&freefrag->ff_list, 0); 7853 } 7854 7855 /* 7856 * Free a newblk. Generate a new freefrag work request if appropriate. 7857 * This must be called after the inode pointer and any direct block pointers 7858 * are valid or fully removed via truncate or frag extension. 7859 */ 7860 static void 7861 free_newblk(newblk) 7862 struct newblk *newblk; 7863 { 7864 struct indirdep *indirdep; 7865 struct worklist *wk; 7866 7867 KASSERT(newblk->nb_jnewblk == NULL, 7868 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7869 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7870 ("free_newblk: unclaimed newblk")); 7871 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7872 newblk_freefrag(newblk); 7873 if (newblk->nb_state & ONDEPLIST) 7874 LIST_REMOVE(newblk, nb_deps); 7875 if (newblk->nb_state & ONWORKLIST) 7876 WORKLIST_REMOVE(&newblk->nb_list); 7877 LIST_REMOVE(newblk, nb_hash); 7878 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7879 free_newdirblk(WK_NEWDIRBLK(wk)); 7880 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7881 panic("free_newblk: extra newdirblk"); 7882 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7883 indirdep_complete(indirdep); 7884 handle_jwork(&newblk->nb_jwork); 7885 WORKITEM_FREE(newblk, D_NEWBLK); 7886 } 7887 7888 /* 7889 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7890 */ 7891 static void 7892 free_newdirblk(newdirblk) 7893 struct newdirblk *newdirblk; 7894 { 7895 struct pagedep *pagedep; 7896 struct diradd *dap; 7897 struct worklist *wk; 7898 7899 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7900 WORKLIST_REMOVE(&newdirblk->db_list); 7901 /* 7902 * If the pagedep is still linked onto the directory buffer 7903 * dependency chain, then some of the entries on the 7904 * pd_pendinghd list may not be committed to disk yet. In 7905 * this case, we will simply clear the NEWBLOCK flag and 7906 * let the pd_pendinghd list be processed when the pagedep 7907 * is next written. If the pagedep is no longer on the buffer 7908 * dependency chain, then all the entries on the pd_pending 7909 * list are committed to disk and we can free them here. 7910 */ 7911 pagedep = newdirblk->db_pagedep; 7912 pagedep->pd_state &= ~NEWBLOCK; 7913 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7914 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7915 free_diradd(dap, NULL); 7916 /* 7917 * If no dependencies remain, the pagedep will be freed. 7918 */ 7919 free_pagedep(pagedep); 7920 } 7921 /* Should only ever be one item in the list. */ 7922 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7923 WORKLIST_REMOVE(wk); 7924 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7925 } 7926 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7927 } 7928 7929 /* 7930 * Prepare an inode to be freed. The actual free operation is not 7931 * done until the zero'ed inode has been written to disk. 7932 */ 7933 void 7934 softdep_freefile(pvp, ino, mode) 7935 struct vnode *pvp; 7936 ino_t ino; 7937 int mode; 7938 { 7939 struct inode *ip = VTOI(pvp); 7940 struct inodedep *inodedep; 7941 struct freefile *freefile; 7942 struct freeblks *freeblks; 7943 struct ufsmount *ump; 7944 7945 ump = ITOUMP(ip); 7946 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7947 ("softdep_freefile called on non-softdep filesystem")); 7948 /* 7949 * This sets up the inode de-allocation dependency. 7950 */ 7951 freefile = malloc(sizeof(struct freefile), 7952 M_FREEFILE, M_SOFTDEP_FLAGS); 7953 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7954 freefile->fx_mode = mode; 7955 freefile->fx_oldinum = ino; 7956 freefile->fx_devvp = ump->um_devvp; 7957 LIST_INIT(&freefile->fx_jwork); 7958 UFS_LOCK(ump); 7959 ump->um_fs->fs_pendinginodes += 1; 7960 UFS_UNLOCK(ump); 7961 7962 /* 7963 * If the inodedep does not exist, then the zero'ed inode has 7964 * been written to disk. If the allocated inode has never been 7965 * written to disk, then the on-disk inode is zero'ed. In either 7966 * case we can free the file immediately. If the journal was 7967 * canceled before being written the inode will never make it to 7968 * disk and we must send the canceled journal entrys to 7969 * ffs_freefile() to be cleared in conjunction with the bitmap. 7970 * Any blocks waiting on the inode to write can be safely freed 7971 * here as it will never been written. 7972 */ 7973 ACQUIRE_LOCK(ump); 7974 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7975 if (inodedep) { 7976 /* 7977 * Clear out freeblks that no longer need to reference 7978 * this inode. 7979 */ 7980 while ((freeblks = 7981 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7982 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7983 fb_next); 7984 freeblks->fb_state &= ~ONDEPLIST; 7985 } 7986 /* 7987 * Remove this inode from the unlinked list. 7988 */ 7989 if (inodedep->id_state & UNLINKED) { 7990 /* 7991 * Save the journal work to be freed with the bitmap 7992 * before we clear UNLINKED. Otherwise it can be lost 7993 * if the inode block is written. 7994 */ 7995 handle_bufwait(inodedep, &freefile->fx_jwork); 7996 clear_unlinked_inodedep(inodedep); 7997 /* 7998 * Re-acquire inodedep as we've dropped the 7999 * per-filesystem lock in clear_unlinked_inodedep(). 8000 */ 8001 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 8002 } 8003 } 8004 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 8005 FREE_LOCK(ump); 8006 handle_workitem_freefile(freefile); 8007 return; 8008 } 8009 if ((inodedep->id_state & DEPCOMPLETE) == 0) 8010 inodedep->id_state |= GOINGAWAY; 8011 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 8012 FREE_LOCK(ump); 8013 if (ip->i_number == ino) 8014 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 8015 } 8016 8017 /* 8018 * Check to see if an inode has never been written to disk. If 8019 * so free the inodedep and return success, otherwise return failure. 8020 * 8021 * If we still have a bitmap dependency, then the inode has never 8022 * been written to disk. Drop the dependency as it is no longer 8023 * necessary since the inode is being deallocated. We set the 8024 * ALLCOMPLETE flags since the bitmap now properly shows that the 8025 * inode is not allocated. Even if the inode is actively being 8026 * written, it has been rolled back to its zero'ed state, so we 8027 * are ensured that a zero inode is what is on the disk. For short 8028 * lived files, this change will usually result in removing all the 8029 * dependencies from the inode so that it can be freed immediately. 8030 */ 8031 static int 8032 check_inode_unwritten(inodedep) 8033 struct inodedep *inodedep; 8034 { 8035 8036 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8037 8038 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 8039 !LIST_EMPTY(&inodedep->id_dirremhd) || 8040 !LIST_EMPTY(&inodedep->id_pendinghd) || 8041 !LIST_EMPTY(&inodedep->id_bufwait) || 8042 !LIST_EMPTY(&inodedep->id_inowait) || 8043 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8044 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8045 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8046 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8047 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8048 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8049 inodedep->id_mkdiradd != NULL || 8050 inodedep->id_nlinkdelta != 0) 8051 return (0); 8052 /* 8053 * Another process might be in initiate_write_inodeblock_ufs[12] 8054 * trying to allocate memory without holding "Softdep Lock". 8055 */ 8056 if ((inodedep->id_state & IOSTARTED) != 0 && 8057 inodedep->id_savedino1 == NULL) 8058 return (0); 8059 8060 if (inodedep->id_state & ONDEPLIST) 8061 LIST_REMOVE(inodedep, id_deps); 8062 inodedep->id_state &= ~ONDEPLIST; 8063 inodedep->id_state |= ALLCOMPLETE; 8064 inodedep->id_bmsafemap = NULL; 8065 if (inodedep->id_state & ONWORKLIST) 8066 WORKLIST_REMOVE(&inodedep->id_list); 8067 if (inodedep->id_savedino1 != NULL) { 8068 free(inodedep->id_savedino1, M_SAVEDINO); 8069 inodedep->id_savedino1 = NULL; 8070 } 8071 if (free_inodedep(inodedep) == 0) 8072 panic("check_inode_unwritten: busy inode"); 8073 return (1); 8074 } 8075 8076 static int 8077 check_inodedep_free(inodedep) 8078 struct inodedep *inodedep; 8079 { 8080 8081 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8082 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 8083 !LIST_EMPTY(&inodedep->id_dirremhd) || 8084 !LIST_EMPTY(&inodedep->id_pendinghd) || 8085 !LIST_EMPTY(&inodedep->id_bufwait) || 8086 !LIST_EMPTY(&inodedep->id_inowait) || 8087 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8088 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8089 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8090 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8091 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8092 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8093 inodedep->id_mkdiradd != NULL || 8094 inodedep->id_nlinkdelta != 0 || 8095 inodedep->id_savedino1 != NULL) 8096 return (0); 8097 return (1); 8098 } 8099 8100 /* 8101 * Try to free an inodedep structure. Return 1 if it could be freed. 8102 */ 8103 static int 8104 free_inodedep(inodedep) 8105 struct inodedep *inodedep; 8106 { 8107 8108 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8109 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 8110 !check_inodedep_free(inodedep)) 8111 return (0); 8112 if (inodedep->id_state & ONDEPLIST) 8113 LIST_REMOVE(inodedep, id_deps); 8114 LIST_REMOVE(inodedep, id_hash); 8115 WORKITEM_FREE(inodedep, D_INODEDEP); 8116 return (1); 8117 } 8118 8119 /* 8120 * Free the block referenced by a freework structure. The parent freeblks 8121 * structure is released and completed when the final cg bitmap reaches 8122 * the disk. This routine may be freeing a jnewblk which never made it to 8123 * disk in which case we do not have to wait as the operation is undone 8124 * in memory immediately. 8125 */ 8126 static void 8127 freework_freeblock(freework, key) 8128 struct freework *freework; 8129 u_long key; 8130 { 8131 struct freeblks *freeblks; 8132 struct jnewblk *jnewblk; 8133 struct ufsmount *ump; 8134 struct workhead wkhd; 8135 struct fs *fs; 8136 int bsize; 8137 int needj; 8138 8139 ump = VFSTOUFS(freework->fw_list.wk_mp); 8140 LOCK_OWNED(ump); 8141 /* 8142 * Handle partial truncate separately. 8143 */ 8144 if (freework->fw_indir) { 8145 complete_trunc_indir(freework); 8146 return; 8147 } 8148 freeblks = freework->fw_freeblks; 8149 fs = ump->um_fs; 8150 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 8151 bsize = lfragtosize(fs, freework->fw_frags); 8152 LIST_INIT(&wkhd); 8153 /* 8154 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 8155 * on the indirblk hashtable and prevents premature freeing. 8156 */ 8157 freework->fw_state |= DEPCOMPLETE; 8158 /* 8159 * SUJ needs to wait for the segment referencing freed indirect 8160 * blocks to expire so that we know the checker will not confuse 8161 * a re-allocated indirect block with its old contents. 8162 */ 8163 if (needj && freework->fw_lbn <= -UFS_NDADDR) 8164 indirblk_insert(freework); 8165 /* 8166 * If we are canceling an existing jnewblk pass it to the free 8167 * routine, otherwise pass the freeblk which will ultimately 8168 * release the freeblks. If we're not journaling, we can just 8169 * free the freeblks immediately. 8170 */ 8171 jnewblk = freework->fw_jnewblk; 8172 if (jnewblk != NULL) { 8173 cancel_jnewblk(jnewblk, &wkhd); 8174 needj = 0; 8175 } else if (needj) { 8176 freework->fw_state |= DELAYEDFREE; 8177 freeblks->fb_cgwait++; 8178 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8179 } 8180 FREE_LOCK(ump); 8181 freeblks_free(ump, freeblks, btodb(bsize)); 8182 CTR4(KTR_SUJ, 8183 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8184 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8185 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8186 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8187 ACQUIRE_LOCK(ump); 8188 /* 8189 * The jnewblk will be discarded and the bits in the map never 8190 * made it to disk. We can immediately free the freeblk. 8191 */ 8192 if (needj == 0) 8193 handle_written_freework(freework); 8194 } 8195 8196 /* 8197 * We enqueue freework items that need processing back on the freeblks and 8198 * add the freeblks to the worklist. This makes it easier to find all work 8199 * required to flush a truncation in process_truncates(). 8200 */ 8201 static void 8202 freework_enqueue(freework) 8203 struct freework *freework; 8204 { 8205 struct freeblks *freeblks; 8206 8207 freeblks = freework->fw_freeblks; 8208 if ((freework->fw_state & INPROGRESS) == 0) 8209 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8210 if ((freeblks->fb_state & 8211 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8212 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8213 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8214 } 8215 8216 /* 8217 * Start, continue, or finish the process of freeing an indirect block tree. 8218 * The free operation may be paused at any point with fw_off containing the 8219 * offset to restart from. This enables us to implement some flow control 8220 * for large truncates which may fan out and generate a huge number of 8221 * dependencies. 8222 */ 8223 static void 8224 handle_workitem_indirblk(freework) 8225 struct freework *freework; 8226 { 8227 struct freeblks *freeblks; 8228 struct ufsmount *ump; 8229 struct fs *fs; 8230 8231 freeblks = freework->fw_freeblks; 8232 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8233 fs = ump->um_fs; 8234 if (freework->fw_state & DEPCOMPLETE) { 8235 handle_written_freework(freework); 8236 return; 8237 } 8238 if (freework->fw_off == NINDIR(fs)) { 8239 freework_freeblock(freework, SINGLETON_KEY); 8240 return; 8241 } 8242 freework->fw_state |= INPROGRESS; 8243 FREE_LOCK(ump); 8244 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8245 freework->fw_lbn); 8246 ACQUIRE_LOCK(ump); 8247 } 8248 8249 /* 8250 * Called when a freework structure attached to a cg buf is written. The 8251 * ref on either the parent or the freeblks structure is released and 8252 * the freeblks is added back to the worklist if there is more work to do. 8253 */ 8254 static void 8255 handle_written_freework(freework) 8256 struct freework *freework; 8257 { 8258 struct freeblks *freeblks; 8259 struct freework *parent; 8260 8261 freeblks = freework->fw_freeblks; 8262 parent = freework->fw_parent; 8263 if (freework->fw_state & DELAYEDFREE) 8264 freeblks->fb_cgwait--; 8265 freework->fw_state |= COMPLETE; 8266 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8267 WORKITEM_FREE(freework, D_FREEWORK); 8268 if (parent) { 8269 if (--parent->fw_ref == 0) 8270 freework_enqueue(parent); 8271 return; 8272 } 8273 if (--freeblks->fb_ref != 0) 8274 return; 8275 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8276 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8277 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8278 } 8279 8280 /* 8281 * This workitem routine performs the block de-allocation. 8282 * The workitem is added to the pending list after the updated 8283 * inode block has been written to disk. As mentioned above, 8284 * checks regarding the number of blocks de-allocated (compared 8285 * to the number of blocks allocated for the file) are also 8286 * performed in this function. 8287 */ 8288 static int 8289 handle_workitem_freeblocks(freeblks, flags) 8290 struct freeblks *freeblks; 8291 int flags; 8292 { 8293 struct freework *freework; 8294 struct newblk *newblk; 8295 struct allocindir *aip; 8296 struct ufsmount *ump; 8297 struct worklist *wk; 8298 u_long key; 8299 8300 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8301 ("handle_workitem_freeblocks: Journal entries not written.")); 8302 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8303 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8304 ACQUIRE_LOCK(ump); 8305 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8306 WORKLIST_REMOVE(wk); 8307 switch (wk->wk_type) { 8308 case D_DIRREM: 8309 wk->wk_state |= COMPLETE; 8310 add_to_worklist(wk, 0); 8311 continue; 8312 8313 case D_ALLOCDIRECT: 8314 free_newblk(WK_NEWBLK(wk)); 8315 continue; 8316 8317 case D_ALLOCINDIR: 8318 aip = WK_ALLOCINDIR(wk); 8319 freework = NULL; 8320 if (aip->ai_state & DELAYEDFREE) { 8321 FREE_LOCK(ump); 8322 freework = newfreework(ump, freeblks, NULL, 8323 aip->ai_lbn, aip->ai_newblkno, 8324 ump->um_fs->fs_frag, 0, 0); 8325 ACQUIRE_LOCK(ump); 8326 } 8327 newblk = WK_NEWBLK(wk); 8328 if (newblk->nb_jnewblk) { 8329 freework->fw_jnewblk = newblk->nb_jnewblk; 8330 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8331 newblk->nb_jnewblk = NULL; 8332 } 8333 free_newblk(newblk); 8334 continue; 8335 8336 case D_FREEWORK: 8337 freework = WK_FREEWORK(wk); 8338 if (freework->fw_lbn <= -UFS_NDADDR) 8339 handle_workitem_indirblk(freework); 8340 else 8341 freework_freeblock(freework, key); 8342 continue; 8343 default: 8344 panic("handle_workitem_freeblocks: Unknown type %s", 8345 TYPENAME(wk->wk_type)); 8346 } 8347 } 8348 if (freeblks->fb_ref != 0) { 8349 freeblks->fb_state &= ~INPROGRESS; 8350 wake_worklist(&freeblks->fb_list); 8351 freeblks = NULL; 8352 } 8353 FREE_LOCK(ump); 8354 ffs_blkrelease_finish(ump, key); 8355 if (freeblks) 8356 return handle_complete_freeblocks(freeblks, flags); 8357 return (0); 8358 } 8359 8360 /* 8361 * Handle completion of block free via truncate. This allows fs_pending 8362 * to track the actual free block count more closely than if we only updated 8363 * it at the end. We must be careful to handle cases where the block count 8364 * on free was incorrect. 8365 */ 8366 static void 8367 freeblks_free(ump, freeblks, blocks) 8368 struct ufsmount *ump; 8369 struct freeblks *freeblks; 8370 int blocks; 8371 { 8372 struct fs *fs; 8373 ufs2_daddr_t remain; 8374 8375 UFS_LOCK(ump); 8376 remain = -freeblks->fb_chkcnt; 8377 freeblks->fb_chkcnt += blocks; 8378 if (remain > 0) { 8379 if (remain < blocks) 8380 blocks = remain; 8381 fs = ump->um_fs; 8382 fs->fs_pendingblocks -= blocks; 8383 } 8384 UFS_UNLOCK(ump); 8385 } 8386 8387 /* 8388 * Once all of the freework workitems are complete we can retire the 8389 * freeblocks dependency and any journal work awaiting completion. This 8390 * can not be called until all other dependencies are stable on disk. 8391 */ 8392 static int 8393 handle_complete_freeblocks(freeblks, flags) 8394 struct freeblks *freeblks; 8395 int flags; 8396 { 8397 struct inodedep *inodedep; 8398 struct inode *ip; 8399 struct vnode *vp; 8400 struct fs *fs; 8401 struct ufsmount *ump; 8402 ufs2_daddr_t spare; 8403 8404 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8405 fs = ump->um_fs; 8406 flags = LK_EXCLUSIVE | flags; 8407 spare = freeblks->fb_chkcnt; 8408 8409 /* 8410 * If we did not release the expected number of blocks we may have 8411 * to adjust the inode block count here. Only do so if it wasn't 8412 * a truncation to zero and the modrev still matches. 8413 */ 8414 if (spare && freeblks->fb_len != 0) { 8415 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8416 flags, &vp, FFSV_FORCEINSMQ) != 0) 8417 return (EBUSY); 8418 ip = VTOI(vp); 8419 if (ip->i_mode == 0) { 8420 vgone(vp); 8421 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8422 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8423 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8424 /* 8425 * We must wait so this happens before the 8426 * journal is reclaimed. 8427 */ 8428 ffs_update(vp, 1); 8429 } 8430 vput(vp); 8431 } 8432 if (spare < 0) { 8433 UFS_LOCK(ump); 8434 fs->fs_pendingblocks += spare; 8435 UFS_UNLOCK(ump); 8436 } 8437 #ifdef QUOTA 8438 /* Handle spare. */ 8439 if (spare) 8440 quotaadj(freeblks->fb_quota, ump, -spare); 8441 quotarele(freeblks->fb_quota); 8442 #endif 8443 ACQUIRE_LOCK(ump); 8444 if (freeblks->fb_state & ONDEPLIST) { 8445 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8446 0, &inodedep); 8447 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8448 freeblks->fb_state &= ~ONDEPLIST; 8449 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8450 free_inodedep(inodedep); 8451 } 8452 /* 8453 * All of the freeblock deps must be complete prior to this call 8454 * so it's now safe to complete earlier outstanding journal entries. 8455 */ 8456 handle_jwork(&freeblks->fb_jwork); 8457 WORKITEM_FREE(freeblks, D_FREEBLKS); 8458 FREE_LOCK(ump); 8459 return (0); 8460 } 8461 8462 /* 8463 * Release blocks associated with the freeblks and stored in the indirect 8464 * block dbn. If level is greater than SINGLE, the block is an indirect block 8465 * and recursive calls to indirtrunc must be used to cleanse other indirect 8466 * blocks. 8467 * 8468 * This handles partial and complete truncation of blocks. Partial is noted 8469 * with goingaway == 0. In this case the freework is completed after the 8470 * zero'd indirects are written to disk. For full truncation the freework 8471 * is completed after the block is freed. 8472 */ 8473 static void 8474 indir_trunc(freework, dbn, lbn) 8475 struct freework *freework; 8476 ufs2_daddr_t dbn; 8477 ufs_lbn_t lbn; 8478 { 8479 struct freework *nfreework; 8480 struct workhead wkhd; 8481 struct freeblks *freeblks; 8482 struct buf *bp; 8483 struct fs *fs; 8484 struct indirdep *indirdep; 8485 struct mount *mp; 8486 struct ufsmount *ump; 8487 ufs1_daddr_t *bap1; 8488 ufs2_daddr_t nb, nnb, *bap2; 8489 ufs_lbn_t lbnadd, nlbn; 8490 u_long key; 8491 int nblocks, ufs1fmt, freedblocks; 8492 int goingaway, freedeps, needj, level, cnt, i, error; 8493 8494 freeblks = freework->fw_freeblks; 8495 mp = freeblks->fb_list.wk_mp; 8496 ump = VFSTOUFS(mp); 8497 fs = ump->um_fs; 8498 /* 8499 * Get buffer of block pointers to be freed. There are three cases: 8500 * 8501 * 1) Partial truncate caches the indirdep pointer in the freework 8502 * which provides us a back copy to the save bp which holds the 8503 * pointers we want to clear. When this completes the zero 8504 * pointers are written to the real copy. 8505 * 2) The indirect is being completely truncated, cancel_indirdep() 8506 * eliminated the real copy and placed the indirdep on the saved 8507 * copy. The indirdep and buf are discarded when this completes. 8508 * 3) The indirect was not in memory, we read a copy off of the disk 8509 * using the devvp and drop and invalidate the buffer when we're 8510 * done. 8511 */ 8512 goingaway = 1; 8513 indirdep = NULL; 8514 if (freework->fw_indir != NULL) { 8515 goingaway = 0; 8516 indirdep = freework->fw_indir; 8517 bp = indirdep->ir_savebp; 8518 if (bp == NULL || bp->b_blkno != dbn) 8519 panic("indir_trunc: Bad saved buf %p blkno %jd", 8520 bp, (intmax_t)dbn); 8521 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8522 /* 8523 * The lock prevents the buf dep list from changing and 8524 * indirects on devvp should only ever have one dependency. 8525 */ 8526 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8527 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8528 panic("indir_trunc: Bad indirdep %p from buf %p", 8529 indirdep, bp); 8530 } else { 8531 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8532 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8533 if (error) 8534 return; 8535 } 8536 ACQUIRE_LOCK(ump); 8537 /* Protects against a race with complete_trunc_indir(). */ 8538 freework->fw_state &= ~INPROGRESS; 8539 /* 8540 * If we have an indirdep we need to enforce the truncation order 8541 * and discard it when it is complete. 8542 */ 8543 if (indirdep) { 8544 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8545 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8546 /* 8547 * Add the complete truncate to the list on the 8548 * indirdep to enforce in-order processing. 8549 */ 8550 if (freework->fw_indir == NULL) 8551 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8552 freework, fw_next); 8553 FREE_LOCK(ump); 8554 return; 8555 } 8556 /* 8557 * If we're goingaway, free the indirdep. Otherwise it will 8558 * linger until the write completes. 8559 */ 8560 if (goingaway) { 8561 KASSERT(indirdep->ir_savebp == bp, 8562 ("indir_trunc: losing ir_savebp %p", 8563 indirdep->ir_savebp)); 8564 indirdep->ir_savebp = NULL; 8565 free_indirdep(indirdep); 8566 } 8567 } 8568 FREE_LOCK(ump); 8569 /* Initialize pointers depending on block size. */ 8570 if (ump->um_fstype == UFS1) { 8571 bap1 = (ufs1_daddr_t *)bp->b_data; 8572 nb = bap1[freework->fw_off]; 8573 ufs1fmt = 1; 8574 bap2 = NULL; 8575 } else { 8576 bap2 = (ufs2_daddr_t *)bp->b_data; 8577 nb = bap2[freework->fw_off]; 8578 ufs1fmt = 0; 8579 bap1 = NULL; 8580 } 8581 level = lbn_level(lbn); 8582 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8583 lbnadd = lbn_offset(fs, level); 8584 nblocks = btodb(fs->fs_bsize); 8585 nfreework = freework; 8586 freedeps = 0; 8587 cnt = 0; 8588 /* 8589 * Reclaim blocks. Traverses into nested indirect levels and 8590 * arranges for the current level to be freed when subordinates 8591 * are free when journaling. 8592 */ 8593 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8594 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8595 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8596 fs->fs_bsize) != 0) 8597 nb = 0; 8598 if (i != NINDIR(fs) - 1) { 8599 if (ufs1fmt) 8600 nnb = bap1[i+1]; 8601 else 8602 nnb = bap2[i+1]; 8603 } else 8604 nnb = 0; 8605 if (nb == 0) 8606 continue; 8607 cnt++; 8608 if (level != 0) { 8609 nlbn = (lbn + 1) - (i * lbnadd); 8610 if (needj != 0) { 8611 nfreework = newfreework(ump, freeblks, freework, 8612 nlbn, nb, fs->fs_frag, 0, 0); 8613 freedeps++; 8614 } 8615 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8616 } else { 8617 struct freedep *freedep; 8618 8619 /* 8620 * Attempt to aggregate freedep dependencies for 8621 * all blocks being released to the same CG. 8622 */ 8623 LIST_INIT(&wkhd); 8624 if (needj != 0 && 8625 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8626 freedep = newfreedep(freework); 8627 WORKLIST_INSERT_UNLOCKED(&wkhd, 8628 &freedep->fd_list); 8629 freedeps++; 8630 } 8631 CTR3(KTR_SUJ, 8632 "indir_trunc: ino %jd blkno %jd size %d", 8633 freeblks->fb_inum, nb, fs->fs_bsize); 8634 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8635 fs->fs_bsize, freeblks->fb_inum, 8636 freeblks->fb_vtype, &wkhd, key); 8637 } 8638 } 8639 ffs_blkrelease_finish(ump, key); 8640 if (goingaway) { 8641 bp->b_flags |= B_INVAL | B_NOCACHE; 8642 brelse(bp); 8643 } 8644 freedblocks = 0; 8645 if (level == 0) 8646 freedblocks = (nblocks * cnt); 8647 if (needj == 0) 8648 freedblocks += nblocks; 8649 freeblks_free(ump, freeblks, freedblocks); 8650 /* 8651 * If we are journaling set up the ref counts and offset so this 8652 * indirect can be completed when its children are free. 8653 */ 8654 if (needj) { 8655 ACQUIRE_LOCK(ump); 8656 freework->fw_off = i; 8657 freework->fw_ref += freedeps; 8658 freework->fw_ref -= NINDIR(fs) + 1; 8659 if (level == 0) 8660 freeblks->fb_cgwait += freedeps; 8661 if (freework->fw_ref == 0) 8662 freework_freeblock(freework, SINGLETON_KEY); 8663 FREE_LOCK(ump); 8664 return; 8665 } 8666 /* 8667 * If we're not journaling we can free the indirect now. 8668 */ 8669 dbn = dbtofsb(fs, dbn); 8670 CTR3(KTR_SUJ, 8671 "indir_trunc 2: ino %jd blkno %jd size %d", 8672 freeblks->fb_inum, dbn, fs->fs_bsize); 8673 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8674 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8675 /* Non SUJ softdep does single-threaded truncations. */ 8676 if (freework->fw_blkno == dbn) { 8677 freework->fw_state |= ALLCOMPLETE; 8678 ACQUIRE_LOCK(ump); 8679 handle_written_freework(freework); 8680 FREE_LOCK(ump); 8681 } 8682 return; 8683 } 8684 8685 /* 8686 * Cancel an allocindir when it is removed via truncation. When bp is not 8687 * NULL the indirect never appeared on disk and is scheduled to be freed 8688 * independently of the indir so we can more easily track journal work. 8689 */ 8690 static void 8691 cancel_allocindir(aip, bp, freeblks, trunc) 8692 struct allocindir *aip; 8693 struct buf *bp; 8694 struct freeblks *freeblks; 8695 int trunc; 8696 { 8697 struct indirdep *indirdep; 8698 struct freefrag *freefrag; 8699 struct newblk *newblk; 8700 8701 newblk = (struct newblk *)aip; 8702 LIST_REMOVE(aip, ai_next); 8703 /* 8704 * We must eliminate the pointer in bp if it must be freed on its 8705 * own due to partial truncate or pending journal work. 8706 */ 8707 if (bp && (trunc || newblk->nb_jnewblk)) { 8708 /* 8709 * Clear the pointer and mark the aip to be freed 8710 * directly if it never existed on disk. 8711 */ 8712 aip->ai_state |= DELAYEDFREE; 8713 indirdep = aip->ai_indirdep; 8714 if (indirdep->ir_state & UFS1FMT) 8715 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8716 else 8717 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8718 } 8719 /* 8720 * When truncating the previous pointer will be freed via 8721 * savedbp. Eliminate the freefrag which would dup free. 8722 */ 8723 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8724 newblk->nb_freefrag = NULL; 8725 if (freefrag->ff_jdep) 8726 cancel_jfreefrag( 8727 WK_JFREEFRAG(freefrag->ff_jdep)); 8728 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8729 WORKITEM_FREE(freefrag, D_FREEFRAG); 8730 } 8731 /* 8732 * If the journal hasn't been written the jnewblk must be passed 8733 * to the call to ffs_blkfree that reclaims the space. We accomplish 8734 * this by leaving the journal dependency on the newblk to be freed 8735 * when a freework is created in handle_workitem_freeblocks(). 8736 */ 8737 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8738 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8739 } 8740 8741 /* 8742 * Create the mkdir dependencies for . and .. in a new directory. Link them 8743 * in to a newdirblk so any subsequent additions are tracked properly. The 8744 * caller is responsible for adding the mkdir1 dependency to the journal 8745 * and updating id_mkdiradd. This function returns with the per-filesystem 8746 * lock held. 8747 */ 8748 static struct mkdir * 8749 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8750 struct diradd *dap; 8751 ino_t newinum; 8752 ino_t dinum; 8753 struct buf *newdirbp; 8754 struct mkdir **mkdirp; 8755 { 8756 struct newblk *newblk; 8757 struct pagedep *pagedep; 8758 struct inodedep *inodedep; 8759 struct newdirblk *newdirblk; 8760 struct mkdir *mkdir1, *mkdir2; 8761 struct worklist *wk; 8762 struct jaddref *jaddref; 8763 struct ufsmount *ump; 8764 struct mount *mp; 8765 8766 mp = dap->da_list.wk_mp; 8767 ump = VFSTOUFS(mp); 8768 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8769 M_SOFTDEP_FLAGS); 8770 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8771 LIST_INIT(&newdirblk->db_mkdir); 8772 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8773 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8774 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8775 mkdir1->md_diradd = dap; 8776 mkdir1->md_jaddref = NULL; 8777 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8778 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8779 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8780 mkdir2->md_diradd = dap; 8781 mkdir2->md_jaddref = NULL; 8782 if (MOUNTEDSUJ(mp) == 0) { 8783 mkdir1->md_state |= DEPCOMPLETE; 8784 mkdir2->md_state |= DEPCOMPLETE; 8785 } 8786 /* 8787 * Dependency on "." and ".." being written to disk. 8788 */ 8789 mkdir1->md_buf = newdirbp; 8790 ACQUIRE_LOCK(VFSTOUFS(mp)); 8791 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8792 /* 8793 * We must link the pagedep, allocdirect, and newdirblk for 8794 * the initial file page so the pointer to the new directory 8795 * is not written until the directory contents are live and 8796 * any subsequent additions are not marked live until the 8797 * block is reachable via the inode. 8798 */ 8799 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8800 panic("setup_newdir: lost pagedep"); 8801 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8802 if (wk->wk_type == D_ALLOCDIRECT) 8803 break; 8804 if (wk == NULL) 8805 panic("setup_newdir: lost allocdirect"); 8806 if (pagedep->pd_state & NEWBLOCK) 8807 panic("setup_newdir: NEWBLOCK already set"); 8808 newblk = WK_NEWBLK(wk); 8809 pagedep->pd_state |= NEWBLOCK; 8810 pagedep->pd_newdirblk = newdirblk; 8811 newdirblk->db_pagedep = pagedep; 8812 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8813 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8814 /* 8815 * Look up the inodedep for the parent directory so that we 8816 * can link mkdir2 into the pending dotdot jaddref or 8817 * the inode write if there is none. If the inode is 8818 * ALLCOMPLETE and no jaddref is present all dependencies have 8819 * been satisfied and mkdir2 can be freed. 8820 */ 8821 inodedep_lookup(mp, dinum, 0, &inodedep); 8822 if (MOUNTEDSUJ(mp)) { 8823 if (inodedep == NULL) 8824 panic("setup_newdir: Lost parent."); 8825 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8826 inoreflst); 8827 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8828 (jaddref->ja_state & MKDIR_PARENT), 8829 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8830 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8831 mkdir2->md_jaddref = jaddref; 8832 jaddref->ja_mkdir = mkdir2; 8833 } else if (inodedep == NULL || 8834 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8835 dap->da_state &= ~MKDIR_PARENT; 8836 WORKITEM_FREE(mkdir2, D_MKDIR); 8837 mkdir2 = NULL; 8838 } else { 8839 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8840 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8841 } 8842 *mkdirp = mkdir2; 8843 8844 return (mkdir1); 8845 } 8846 8847 /* 8848 * Directory entry addition dependencies. 8849 * 8850 * When adding a new directory entry, the inode (with its incremented link 8851 * count) must be written to disk before the directory entry's pointer to it. 8852 * Also, if the inode is newly allocated, the corresponding freemap must be 8853 * updated (on disk) before the directory entry's pointer. These requirements 8854 * are met via undo/redo on the directory entry's pointer, which consists 8855 * simply of the inode number. 8856 * 8857 * As directory entries are added and deleted, the free space within a 8858 * directory block can become fragmented. The ufs filesystem will compact 8859 * a fragmented directory block to make space for a new entry. When this 8860 * occurs, the offsets of previously added entries change. Any "diradd" 8861 * dependency structures corresponding to these entries must be updated with 8862 * the new offsets. 8863 */ 8864 8865 /* 8866 * This routine is called after the in-memory inode's link 8867 * count has been incremented, but before the directory entry's 8868 * pointer to the inode has been set. 8869 */ 8870 int 8871 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8872 struct buf *bp; /* buffer containing directory block */ 8873 struct inode *dp; /* inode for directory */ 8874 off_t diroffset; /* offset of new entry in directory */ 8875 ino_t newinum; /* inode referenced by new directory entry */ 8876 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8877 int isnewblk; /* entry is in a newly allocated block */ 8878 { 8879 int offset; /* offset of new entry within directory block */ 8880 ufs_lbn_t lbn; /* block in directory containing new entry */ 8881 struct fs *fs; 8882 struct diradd *dap; 8883 struct newblk *newblk; 8884 struct pagedep *pagedep; 8885 struct inodedep *inodedep; 8886 struct newdirblk *newdirblk; 8887 struct mkdir *mkdir1, *mkdir2; 8888 struct jaddref *jaddref; 8889 struct ufsmount *ump; 8890 struct mount *mp; 8891 int isindir; 8892 8893 mp = ITOVFS(dp); 8894 ump = VFSTOUFS(mp); 8895 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8896 ("softdep_setup_directory_add called on non-softdep filesystem")); 8897 /* 8898 * Whiteouts have no dependencies. 8899 */ 8900 if (newinum == UFS_WINO) { 8901 if (newdirbp != NULL) 8902 bdwrite(newdirbp); 8903 return (0); 8904 } 8905 jaddref = NULL; 8906 mkdir1 = mkdir2 = NULL; 8907 fs = ump->um_fs; 8908 lbn = lblkno(fs, diroffset); 8909 offset = blkoff(fs, diroffset); 8910 dap = malloc(sizeof(struct diradd), M_DIRADD, 8911 M_SOFTDEP_FLAGS|M_ZERO); 8912 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8913 dap->da_offset = offset; 8914 dap->da_newinum = newinum; 8915 dap->da_state = ATTACHED; 8916 LIST_INIT(&dap->da_jwork); 8917 isindir = bp->b_lblkno >= UFS_NDADDR; 8918 newdirblk = NULL; 8919 if (isnewblk && 8920 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8921 newdirblk = malloc(sizeof(struct newdirblk), 8922 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8923 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8924 LIST_INIT(&newdirblk->db_mkdir); 8925 } 8926 /* 8927 * If we're creating a new directory setup the dependencies and set 8928 * the dap state to wait for them. Otherwise it's COMPLETE and 8929 * we can move on. 8930 */ 8931 if (newdirbp == NULL) { 8932 dap->da_state |= DEPCOMPLETE; 8933 ACQUIRE_LOCK(ump); 8934 } else { 8935 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8936 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8937 &mkdir2); 8938 } 8939 /* 8940 * Link into parent directory pagedep to await its being written. 8941 */ 8942 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8943 #ifdef INVARIANTS 8944 if (diradd_lookup(pagedep, offset) != NULL) 8945 panic("softdep_setup_directory_add: %p already at off %d\n", 8946 diradd_lookup(pagedep, offset), offset); 8947 #endif 8948 dap->da_pagedep = pagedep; 8949 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8950 da_pdlist); 8951 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8952 /* 8953 * If we're journaling, link the diradd into the jaddref so it 8954 * may be completed after the journal entry is written. Otherwise, 8955 * link the diradd into its inodedep. If the inode is not yet 8956 * written place it on the bufwait list, otherwise do the post-inode 8957 * write processing to put it on the id_pendinghd list. 8958 */ 8959 if (MOUNTEDSUJ(mp)) { 8960 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8961 inoreflst); 8962 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8963 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8964 jaddref->ja_diroff = diroffset; 8965 jaddref->ja_diradd = dap; 8966 add_to_journal(&jaddref->ja_list); 8967 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8968 diradd_inode_written(dap, inodedep); 8969 else 8970 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8971 /* 8972 * Add the journal entries for . and .. links now that the primary 8973 * link is written. 8974 */ 8975 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8976 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8977 inoreflst, if_deps); 8978 KASSERT(jaddref != NULL && 8979 jaddref->ja_ino == jaddref->ja_parent && 8980 (jaddref->ja_state & MKDIR_BODY), 8981 ("softdep_setup_directory_add: bad dot jaddref %p", 8982 jaddref)); 8983 mkdir1->md_jaddref = jaddref; 8984 jaddref->ja_mkdir = mkdir1; 8985 /* 8986 * It is important that the dotdot journal entry 8987 * is added prior to the dot entry since dot writes 8988 * both the dot and dotdot links. These both must 8989 * be added after the primary link for the journal 8990 * to remain consistent. 8991 */ 8992 add_to_journal(&mkdir2->md_jaddref->ja_list); 8993 add_to_journal(&jaddref->ja_list); 8994 } 8995 /* 8996 * If we are adding a new directory remember this diradd so that if 8997 * we rename it we can keep the dot and dotdot dependencies. If 8998 * we are adding a new name for an inode that has a mkdiradd we 8999 * must be in rename and we have to move the dot and dotdot 9000 * dependencies to this new name. The old name is being orphaned 9001 * soon. 9002 */ 9003 if (mkdir1 != NULL) { 9004 if (inodedep->id_mkdiradd != NULL) 9005 panic("softdep_setup_directory_add: Existing mkdir"); 9006 inodedep->id_mkdiradd = dap; 9007 } else if (inodedep->id_mkdiradd) 9008 merge_diradd(inodedep, dap); 9009 if (newdirblk != NULL) { 9010 /* 9011 * There is nothing to do if we are already tracking 9012 * this block. 9013 */ 9014 if ((pagedep->pd_state & NEWBLOCK) != 0) { 9015 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 9016 FREE_LOCK(ump); 9017 return (0); 9018 } 9019 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 9020 == 0) 9021 panic("softdep_setup_directory_add: lost entry"); 9022 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 9023 pagedep->pd_state |= NEWBLOCK; 9024 pagedep->pd_newdirblk = newdirblk; 9025 newdirblk->db_pagedep = pagedep; 9026 FREE_LOCK(ump); 9027 /* 9028 * If we extended into an indirect signal direnter to sync. 9029 */ 9030 if (isindir) 9031 return (1); 9032 return (0); 9033 } 9034 FREE_LOCK(ump); 9035 return (0); 9036 } 9037 9038 /* 9039 * This procedure is called to change the offset of a directory 9040 * entry when compacting a directory block which must be owned 9041 * exclusively by the caller. Note that the actual entry movement 9042 * must be done in this procedure to ensure that no I/O completions 9043 * occur while the move is in progress. 9044 */ 9045 void 9046 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 9047 struct buf *bp; /* Buffer holding directory block. */ 9048 struct inode *dp; /* inode for directory */ 9049 caddr_t base; /* address of dp->i_offset */ 9050 caddr_t oldloc; /* address of old directory location */ 9051 caddr_t newloc; /* address of new directory location */ 9052 int entrysize; /* size of directory entry */ 9053 { 9054 int offset, oldoffset, newoffset; 9055 struct pagedep *pagedep; 9056 struct jmvref *jmvref; 9057 struct diradd *dap; 9058 struct direct *de; 9059 struct mount *mp; 9060 struct ufsmount *ump; 9061 ufs_lbn_t lbn; 9062 int flags; 9063 9064 mp = ITOVFS(dp); 9065 ump = VFSTOUFS(mp); 9066 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9067 ("softdep_change_directoryentry_offset called on " 9068 "non-softdep filesystem")); 9069 de = (struct direct *)oldloc; 9070 jmvref = NULL; 9071 flags = 0; 9072 /* 9073 * Moves are always journaled as it would be too complex to 9074 * determine if any affected adds or removes are present in the 9075 * journal. 9076 */ 9077 if (MOUNTEDSUJ(mp)) { 9078 flags = DEPALLOC; 9079 jmvref = newjmvref(dp, de->d_ino, 9080 I_OFFSET(dp) + (oldloc - base), 9081 I_OFFSET(dp) + (newloc - base)); 9082 } 9083 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9084 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9085 oldoffset = offset + (oldloc - base); 9086 newoffset = offset + (newloc - base); 9087 ACQUIRE_LOCK(ump); 9088 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 9089 goto done; 9090 dap = diradd_lookup(pagedep, oldoffset); 9091 if (dap) { 9092 dap->da_offset = newoffset; 9093 newoffset = DIRADDHASH(newoffset); 9094 oldoffset = DIRADDHASH(oldoffset); 9095 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 9096 newoffset != oldoffset) { 9097 LIST_REMOVE(dap, da_pdlist); 9098 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 9099 dap, da_pdlist); 9100 } 9101 } 9102 done: 9103 if (jmvref) { 9104 jmvref->jm_pagedep = pagedep; 9105 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 9106 add_to_journal(&jmvref->jm_list); 9107 } 9108 bcopy(oldloc, newloc, entrysize); 9109 FREE_LOCK(ump); 9110 } 9111 9112 /* 9113 * Move the mkdir dependencies and journal work from one diradd to another 9114 * when renaming a directory. The new name must depend on the mkdir deps 9115 * completing as the old name did. Directories can only have one valid link 9116 * at a time so one must be canonical. 9117 */ 9118 static void 9119 merge_diradd(inodedep, newdap) 9120 struct inodedep *inodedep; 9121 struct diradd *newdap; 9122 { 9123 struct diradd *olddap; 9124 struct mkdir *mkdir, *nextmd; 9125 struct ufsmount *ump; 9126 short state; 9127 9128 olddap = inodedep->id_mkdiradd; 9129 inodedep->id_mkdiradd = newdap; 9130 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9131 newdap->da_state &= ~DEPCOMPLETE; 9132 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9133 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9134 mkdir = nextmd) { 9135 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9136 if (mkdir->md_diradd != olddap) 9137 continue; 9138 mkdir->md_diradd = newdap; 9139 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 9140 newdap->da_state |= state; 9141 olddap->da_state &= ~state; 9142 if ((olddap->da_state & 9143 (MKDIR_PARENT | MKDIR_BODY)) == 0) 9144 break; 9145 } 9146 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9147 panic("merge_diradd: unfound ref"); 9148 } 9149 /* 9150 * Any mkdir related journal items are not safe to be freed until 9151 * the new name is stable. 9152 */ 9153 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 9154 olddap->da_state |= DEPCOMPLETE; 9155 complete_diradd(olddap); 9156 } 9157 9158 /* 9159 * Move the diradd to the pending list when all diradd dependencies are 9160 * complete. 9161 */ 9162 static void 9163 complete_diradd(dap) 9164 struct diradd *dap; 9165 { 9166 struct pagedep *pagedep; 9167 9168 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 9169 if (dap->da_state & DIRCHG) 9170 pagedep = dap->da_previous->dm_pagedep; 9171 else 9172 pagedep = dap->da_pagedep; 9173 LIST_REMOVE(dap, da_pdlist); 9174 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9175 } 9176 } 9177 9178 /* 9179 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 9180 * add entries and conditonally journal the remove. 9181 */ 9182 static void 9183 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 9184 struct diradd *dap; 9185 struct dirrem *dirrem; 9186 struct jremref *jremref; 9187 struct jremref *dotremref; 9188 struct jremref *dotdotremref; 9189 { 9190 struct inodedep *inodedep; 9191 struct jaddref *jaddref; 9192 struct inoref *inoref; 9193 struct ufsmount *ump; 9194 struct mkdir *mkdir; 9195 9196 /* 9197 * If no remove references were allocated we're on a non-journaled 9198 * filesystem and can skip the cancel step. 9199 */ 9200 if (jremref == NULL) { 9201 free_diradd(dap, NULL); 9202 return; 9203 } 9204 /* 9205 * Cancel the primary name an free it if it does not require 9206 * journaling. 9207 */ 9208 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9209 0, &inodedep) != 0) { 9210 /* Abort the addref that reference this diradd. */ 9211 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9212 if (inoref->if_list.wk_type != D_JADDREF) 9213 continue; 9214 jaddref = (struct jaddref *)inoref; 9215 if (jaddref->ja_diradd != dap) 9216 continue; 9217 if (cancel_jaddref(jaddref, inodedep, 9218 &dirrem->dm_jwork) == 0) { 9219 free_jremref(jremref); 9220 jremref = NULL; 9221 } 9222 break; 9223 } 9224 } 9225 /* 9226 * Cancel subordinate names and free them if they do not require 9227 * journaling. 9228 */ 9229 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9230 ump = VFSTOUFS(dap->da_list.wk_mp); 9231 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9232 if (mkdir->md_diradd != dap) 9233 continue; 9234 if ((jaddref = mkdir->md_jaddref) == NULL) 9235 continue; 9236 mkdir->md_jaddref = NULL; 9237 if (mkdir->md_state & MKDIR_PARENT) { 9238 if (cancel_jaddref(jaddref, NULL, 9239 &dirrem->dm_jwork) == 0) { 9240 free_jremref(dotdotremref); 9241 dotdotremref = NULL; 9242 } 9243 } else { 9244 if (cancel_jaddref(jaddref, inodedep, 9245 &dirrem->dm_jwork) == 0) { 9246 free_jremref(dotremref); 9247 dotremref = NULL; 9248 } 9249 } 9250 } 9251 } 9252 9253 if (jremref) 9254 journal_jremref(dirrem, jremref, inodedep); 9255 if (dotremref) 9256 journal_jremref(dirrem, dotremref, inodedep); 9257 if (dotdotremref) 9258 journal_jremref(dirrem, dotdotremref, NULL); 9259 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9260 free_diradd(dap, &dirrem->dm_jwork); 9261 } 9262 9263 /* 9264 * Free a diradd dependency structure. 9265 */ 9266 static void 9267 free_diradd(dap, wkhd) 9268 struct diradd *dap; 9269 struct workhead *wkhd; 9270 { 9271 struct dirrem *dirrem; 9272 struct pagedep *pagedep; 9273 struct inodedep *inodedep; 9274 struct mkdir *mkdir, *nextmd; 9275 struct ufsmount *ump; 9276 9277 ump = VFSTOUFS(dap->da_list.wk_mp); 9278 LOCK_OWNED(ump); 9279 LIST_REMOVE(dap, da_pdlist); 9280 if (dap->da_state & ONWORKLIST) 9281 WORKLIST_REMOVE(&dap->da_list); 9282 if ((dap->da_state & DIRCHG) == 0) { 9283 pagedep = dap->da_pagedep; 9284 } else { 9285 dirrem = dap->da_previous; 9286 pagedep = dirrem->dm_pagedep; 9287 dirrem->dm_dirinum = pagedep->pd_ino; 9288 dirrem->dm_state |= COMPLETE; 9289 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9290 add_to_worklist(&dirrem->dm_list, 0); 9291 } 9292 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9293 0, &inodedep) != 0) 9294 if (inodedep->id_mkdiradd == dap) 9295 inodedep->id_mkdiradd = NULL; 9296 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9297 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9298 mkdir = nextmd) { 9299 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9300 if (mkdir->md_diradd != dap) 9301 continue; 9302 dap->da_state &= 9303 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9304 LIST_REMOVE(mkdir, md_mkdirs); 9305 if (mkdir->md_state & ONWORKLIST) 9306 WORKLIST_REMOVE(&mkdir->md_list); 9307 if (mkdir->md_jaddref != NULL) 9308 panic("free_diradd: Unexpected jaddref"); 9309 WORKITEM_FREE(mkdir, D_MKDIR); 9310 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9311 break; 9312 } 9313 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9314 panic("free_diradd: unfound ref"); 9315 } 9316 if (inodedep) 9317 free_inodedep(inodedep); 9318 /* 9319 * Free any journal segments waiting for the directory write. 9320 */ 9321 handle_jwork(&dap->da_jwork); 9322 WORKITEM_FREE(dap, D_DIRADD); 9323 } 9324 9325 /* 9326 * Directory entry removal dependencies. 9327 * 9328 * When removing a directory entry, the entry's inode pointer must be 9329 * zero'ed on disk before the corresponding inode's link count is decremented 9330 * (possibly freeing the inode for re-use). This dependency is handled by 9331 * updating the directory entry but delaying the inode count reduction until 9332 * after the directory block has been written to disk. After this point, the 9333 * inode count can be decremented whenever it is convenient. 9334 */ 9335 9336 /* 9337 * This routine should be called immediately after removing 9338 * a directory entry. The inode's link count should not be 9339 * decremented by the calling procedure -- the soft updates 9340 * code will do this task when it is safe. 9341 */ 9342 void 9343 softdep_setup_remove(bp, dp, ip, isrmdir) 9344 struct buf *bp; /* buffer containing directory block */ 9345 struct inode *dp; /* inode for the directory being modified */ 9346 struct inode *ip; /* inode for directory entry being removed */ 9347 int isrmdir; /* indicates if doing RMDIR */ 9348 { 9349 struct dirrem *dirrem, *prevdirrem; 9350 struct inodedep *inodedep; 9351 struct ufsmount *ump; 9352 int direct; 9353 9354 ump = ITOUMP(ip); 9355 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9356 ("softdep_setup_remove called on non-softdep filesystem")); 9357 /* 9358 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9359 * newdirrem() to setup the full directory remove which requires 9360 * isrmdir > 1. 9361 */ 9362 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9363 /* 9364 * Add the dirrem to the inodedep's pending remove list for quick 9365 * discovery later. 9366 */ 9367 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9368 panic("softdep_setup_remove: Lost inodedep."); 9369 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9370 dirrem->dm_state |= ONDEPLIST; 9371 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9372 9373 /* 9374 * If the COMPLETE flag is clear, then there were no active 9375 * entries and we want to roll back to a zeroed entry until 9376 * the new inode is committed to disk. If the COMPLETE flag is 9377 * set then we have deleted an entry that never made it to 9378 * disk. If the entry we deleted resulted from a name change, 9379 * then the old name still resides on disk. We cannot delete 9380 * its inode (returned to us in prevdirrem) until the zeroed 9381 * directory entry gets to disk. The new inode has never been 9382 * referenced on the disk, so can be deleted immediately. 9383 */ 9384 if ((dirrem->dm_state & COMPLETE) == 0) { 9385 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9386 dm_next); 9387 FREE_LOCK(ump); 9388 } else { 9389 if (prevdirrem != NULL) 9390 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9391 prevdirrem, dm_next); 9392 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9393 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9394 FREE_LOCK(ump); 9395 if (direct) 9396 handle_workitem_remove(dirrem, 0); 9397 } 9398 } 9399 9400 /* 9401 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9402 * pd_pendinghd list of a pagedep. 9403 */ 9404 static struct diradd * 9405 diradd_lookup(pagedep, offset) 9406 struct pagedep *pagedep; 9407 int offset; 9408 { 9409 struct diradd *dap; 9410 9411 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9412 if (dap->da_offset == offset) 9413 return (dap); 9414 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9415 if (dap->da_offset == offset) 9416 return (dap); 9417 return (NULL); 9418 } 9419 9420 /* 9421 * Search for a .. diradd dependency in a directory that is being removed. 9422 * If the directory was renamed to a new parent we have a diradd rather 9423 * than a mkdir for the .. entry. We need to cancel it now before 9424 * it is found in truncate(). 9425 */ 9426 static struct jremref * 9427 cancel_diradd_dotdot(ip, dirrem, jremref) 9428 struct inode *ip; 9429 struct dirrem *dirrem; 9430 struct jremref *jremref; 9431 { 9432 struct pagedep *pagedep; 9433 struct diradd *dap; 9434 struct worklist *wk; 9435 9436 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9437 return (jremref); 9438 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9439 if (dap == NULL) 9440 return (jremref); 9441 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9442 /* 9443 * Mark any journal work as belonging to the parent so it is freed 9444 * with the .. reference. 9445 */ 9446 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9447 wk->wk_state |= MKDIR_PARENT; 9448 return (NULL); 9449 } 9450 9451 /* 9452 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9453 * replace it with a dirrem/diradd pair as a result of re-parenting a 9454 * directory. This ensures that we don't simultaneously have a mkdir and 9455 * a diradd for the same .. entry. 9456 */ 9457 static struct jremref * 9458 cancel_mkdir_dotdot(ip, dirrem, jremref) 9459 struct inode *ip; 9460 struct dirrem *dirrem; 9461 struct jremref *jremref; 9462 { 9463 struct inodedep *inodedep; 9464 struct jaddref *jaddref; 9465 struct ufsmount *ump; 9466 struct mkdir *mkdir; 9467 struct diradd *dap; 9468 struct mount *mp; 9469 9470 mp = ITOVFS(ip); 9471 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9472 return (jremref); 9473 dap = inodedep->id_mkdiradd; 9474 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9475 return (jremref); 9476 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9477 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9478 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9479 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9480 break; 9481 if (mkdir == NULL) 9482 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9483 if ((jaddref = mkdir->md_jaddref) != NULL) { 9484 mkdir->md_jaddref = NULL; 9485 jaddref->ja_state &= ~MKDIR_PARENT; 9486 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9487 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9488 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9489 journal_jremref(dirrem, jremref, inodedep); 9490 jremref = NULL; 9491 } 9492 } 9493 if (mkdir->md_state & ONWORKLIST) 9494 WORKLIST_REMOVE(&mkdir->md_list); 9495 mkdir->md_state |= ALLCOMPLETE; 9496 complete_mkdir(mkdir); 9497 return (jremref); 9498 } 9499 9500 static void 9501 journal_jremref(dirrem, jremref, inodedep) 9502 struct dirrem *dirrem; 9503 struct jremref *jremref; 9504 struct inodedep *inodedep; 9505 { 9506 9507 if (inodedep == NULL) 9508 if (inodedep_lookup(jremref->jr_list.wk_mp, 9509 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9510 panic("journal_jremref: Lost inodedep"); 9511 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9512 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9513 add_to_journal(&jremref->jr_list); 9514 } 9515 9516 static void 9517 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9518 struct dirrem *dirrem; 9519 struct jremref *jremref; 9520 struct jremref *dotremref; 9521 struct jremref *dotdotremref; 9522 { 9523 struct inodedep *inodedep; 9524 9525 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9526 &inodedep) == 0) 9527 panic("dirrem_journal: Lost inodedep"); 9528 journal_jremref(dirrem, jremref, inodedep); 9529 if (dotremref) 9530 journal_jremref(dirrem, dotremref, inodedep); 9531 if (dotdotremref) 9532 journal_jremref(dirrem, dotdotremref, NULL); 9533 } 9534 9535 /* 9536 * Allocate a new dirrem if appropriate and return it along with 9537 * its associated pagedep. Called without a lock, returns with lock. 9538 */ 9539 static struct dirrem * 9540 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9541 struct buf *bp; /* buffer containing directory block */ 9542 struct inode *dp; /* inode for the directory being modified */ 9543 struct inode *ip; /* inode for directory entry being removed */ 9544 int isrmdir; /* indicates if doing RMDIR */ 9545 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9546 { 9547 int offset; 9548 ufs_lbn_t lbn; 9549 struct diradd *dap; 9550 struct dirrem *dirrem; 9551 struct pagedep *pagedep; 9552 struct jremref *jremref; 9553 struct jremref *dotremref; 9554 struct jremref *dotdotremref; 9555 struct vnode *dvp; 9556 struct ufsmount *ump; 9557 9558 /* 9559 * Whiteouts have no deletion dependencies. 9560 */ 9561 if (ip == NULL) 9562 panic("newdirrem: whiteout"); 9563 dvp = ITOV(dp); 9564 ump = ITOUMP(dp); 9565 9566 /* 9567 * If the system is over its limit and our filesystem is 9568 * responsible for more than our share of that usage and 9569 * we are not a snapshot, request some inodedep cleanup. 9570 * Limiting the number of dirrem structures will also limit 9571 * the number of freefile and freeblks structures. 9572 */ 9573 ACQUIRE_LOCK(ump); 9574 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9575 schedule_cleanup(UFSTOVFS(ump)); 9576 else 9577 FREE_LOCK(ump); 9578 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9579 M_ZERO); 9580 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9581 LIST_INIT(&dirrem->dm_jremrefhd); 9582 LIST_INIT(&dirrem->dm_jwork); 9583 dirrem->dm_state = isrmdir ? RMDIR : 0; 9584 dirrem->dm_oldinum = ip->i_number; 9585 *prevdirremp = NULL; 9586 /* 9587 * Allocate remove reference structures to track journal write 9588 * dependencies. We will always have one for the link and 9589 * when doing directories we will always have one more for dot. 9590 * When renaming a directory we skip the dotdot link change so 9591 * this is not needed. 9592 */ 9593 jremref = dotremref = dotdotremref = NULL; 9594 if (DOINGSUJ(dvp)) { 9595 if (isrmdir) { 9596 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9597 ip->i_effnlink + 2); 9598 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9599 ip->i_effnlink + 1); 9600 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9601 dp->i_effnlink + 1); 9602 dotdotremref->jr_state |= MKDIR_PARENT; 9603 } else 9604 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9605 ip->i_effnlink + 1); 9606 } 9607 ACQUIRE_LOCK(ump); 9608 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9609 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9610 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9611 &pagedep); 9612 dirrem->dm_pagedep = pagedep; 9613 dirrem->dm_offset = offset; 9614 /* 9615 * If we're renaming a .. link to a new directory, cancel any 9616 * existing MKDIR_PARENT mkdir. If it has already been canceled 9617 * the jremref is preserved for any potential diradd in this 9618 * location. This can not coincide with a rmdir. 9619 */ 9620 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9621 if (isrmdir) 9622 panic("newdirrem: .. directory change during remove?"); 9623 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9624 } 9625 /* 9626 * If we're removing a directory search for the .. dependency now and 9627 * cancel it. Any pending journal work will be added to the dirrem 9628 * to be completed when the workitem remove completes. 9629 */ 9630 if (isrmdir) 9631 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9632 /* 9633 * Check for a diradd dependency for the same directory entry. 9634 * If present, then both dependencies become obsolete and can 9635 * be de-allocated. 9636 */ 9637 dap = diradd_lookup(pagedep, offset); 9638 if (dap == NULL) { 9639 /* 9640 * Link the jremref structures into the dirrem so they are 9641 * written prior to the pagedep. 9642 */ 9643 if (jremref) 9644 dirrem_journal(dirrem, jremref, dotremref, 9645 dotdotremref); 9646 return (dirrem); 9647 } 9648 /* 9649 * Must be ATTACHED at this point. 9650 */ 9651 if ((dap->da_state & ATTACHED) == 0) 9652 panic("newdirrem: not ATTACHED"); 9653 if (dap->da_newinum != ip->i_number) 9654 panic("newdirrem: inum %ju should be %ju", 9655 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9656 /* 9657 * If we are deleting a changed name that never made it to disk, 9658 * then return the dirrem describing the previous inode (which 9659 * represents the inode currently referenced from this entry on disk). 9660 */ 9661 if ((dap->da_state & DIRCHG) != 0) { 9662 *prevdirremp = dap->da_previous; 9663 dap->da_state &= ~DIRCHG; 9664 dap->da_pagedep = pagedep; 9665 } 9666 /* 9667 * We are deleting an entry that never made it to disk. 9668 * Mark it COMPLETE so we can delete its inode immediately. 9669 */ 9670 dirrem->dm_state |= COMPLETE; 9671 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9672 #ifdef INVARIANTS 9673 if (isrmdir == 0) { 9674 struct worklist *wk; 9675 9676 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9677 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9678 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9679 } 9680 #endif 9681 9682 return (dirrem); 9683 } 9684 9685 /* 9686 * Directory entry change dependencies. 9687 * 9688 * Changing an existing directory entry requires that an add operation 9689 * be completed first followed by a deletion. The semantics for the addition 9690 * are identical to the description of adding a new entry above except 9691 * that the rollback is to the old inode number rather than zero. Once 9692 * the addition dependency is completed, the removal is done as described 9693 * in the removal routine above. 9694 */ 9695 9696 /* 9697 * This routine should be called immediately after changing 9698 * a directory entry. The inode's link count should not be 9699 * decremented by the calling procedure -- the soft updates 9700 * code will perform this task when it is safe. 9701 */ 9702 void 9703 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9704 struct buf *bp; /* buffer containing directory block */ 9705 struct inode *dp; /* inode for the directory being modified */ 9706 struct inode *ip; /* inode for directory entry being removed */ 9707 ino_t newinum; /* new inode number for changed entry */ 9708 int isrmdir; /* indicates if doing RMDIR */ 9709 { 9710 int offset; 9711 struct diradd *dap = NULL; 9712 struct dirrem *dirrem, *prevdirrem; 9713 struct pagedep *pagedep; 9714 struct inodedep *inodedep; 9715 struct jaddref *jaddref; 9716 struct mount *mp; 9717 struct ufsmount *ump; 9718 9719 mp = ITOVFS(dp); 9720 ump = VFSTOUFS(mp); 9721 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9722 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9723 ("softdep_setup_directory_change called on non-softdep filesystem")); 9724 9725 /* 9726 * Whiteouts do not need diradd dependencies. 9727 */ 9728 if (newinum != UFS_WINO) { 9729 dap = malloc(sizeof(struct diradd), 9730 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9731 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9732 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9733 dap->da_offset = offset; 9734 dap->da_newinum = newinum; 9735 LIST_INIT(&dap->da_jwork); 9736 } 9737 9738 /* 9739 * Allocate a new dirrem and ACQUIRE_LOCK. 9740 */ 9741 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9742 pagedep = dirrem->dm_pagedep; 9743 /* 9744 * The possible values for isrmdir: 9745 * 0 - non-directory file rename 9746 * 1 - directory rename within same directory 9747 * inum - directory rename to new directory of given inode number 9748 * When renaming to a new directory, we are both deleting and 9749 * creating a new directory entry, so the link count on the new 9750 * directory should not change. Thus we do not need the followup 9751 * dirrem which is usually done in handle_workitem_remove. We set 9752 * the DIRCHG flag to tell handle_workitem_remove to skip the 9753 * followup dirrem. 9754 */ 9755 if (isrmdir > 1) 9756 dirrem->dm_state |= DIRCHG; 9757 9758 /* 9759 * Whiteouts have no additional dependencies, 9760 * so just put the dirrem on the correct list. 9761 */ 9762 if (newinum == UFS_WINO) { 9763 if ((dirrem->dm_state & COMPLETE) == 0) { 9764 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9765 dm_next); 9766 } else { 9767 dirrem->dm_dirinum = pagedep->pd_ino; 9768 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9769 add_to_worklist(&dirrem->dm_list, 0); 9770 } 9771 FREE_LOCK(ump); 9772 return; 9773 } 9774 /* 9775 * Add the dirrem to the inodedep's pending remove list for quick 9776 * discovery later. A valid nlinkdelta ensures that this lookup 9777 * will not fail. 9778 */ 9779 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9780 panic("softdep_setup_directory_change: Lost inodedep."); 9781 dirrem->dm_state |= ONDEPLIST; 9782 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9783 9784 /* 9785 * If the COMPLETE flag is clear, then there were no active 9786 * entries and we want to roll back to the previous inode until 9787 * the new inode is committed to disk. If the COMPLETE flag is 9788 * set, then we have deleted an entry that never made it to disk. 9789 * If the entry we deleted resulted from a name change, then the old 9790 * inode reference still resides on disk. Any rollback that we do 9791 * needs to be to that old inode (returned to us in prevdirrem). If 9792 * the entry we deleted resulted from a create, then there is 9793 * no entry on the disk, so we want to roll back to zero rather 9794 * than the uncommitted inode. In either of the COMPLETE cases we 9795 * want to immediately free the unwritten and unreferenced inode. 9796 */ 9797 if ((dirrem->dm_state & COMPLETE) == 0) { 9798 dap->da_previous = dirrem; 9799 } else { 9800 if (prevdirrem != NULL) { 9801 dap->da_previous = prevdirrem; 9802 } else { 9803 dap->da_state &= ~DIRCHG; 9804 dap->da_pagedep = pagedep; 9805 } 9806 dirrem->dm_dirinum = pagedep->pd_ino; 9807 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9808 add_to_worklist(&dirrem->dm_list, 0); 9809 } 9810 /* 9811 * Lookup the jaddref for this journal entry. We must finish 9812 * initializing it and make the diradd write dependent on it. 9813 * If we're not journaling, put it on the id_bufwait list if the 9814 * inode is not yet written. If it is written, do the post-inode 9815 * write processing to put it on the id_pendinghd list. 9816 */ 9817 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9818 if (MOUNTEDSUJ(mp)) { 9819 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9820 inoreflst); 9821 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9822 ("softdep_setup_directory_change: bad jaddref %p", 9823 jaddref)); 9824 jaddref->ja_diroff = I_OFFSET(dp); 9825 jaddref->ja_diradd = dap; 9826 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9827 dap, da_pdlist); 9828 add_to_journal(&jaddref->ja_list); 9829 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9830 dap->da_state |= COMPLETE; 9831 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9832 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9833 } else { 9834 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9835 dap, da_pdlist); 9836 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9837 } 9838 /* 9839 * If we're making a new name for a directory that has not been 9840 * committed when need to move the dot and dotdot references to 9841 * this new name. 9842 */ 9843 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9844 merge_diradd(inodedep, dap); 9845 FREE_LOCK(ump); 9846 } 9847 9848 /* 9849 * Called whenever the link count on an inode is changed. 9850 * It creates an inode dependency so that the new reference(s) 9851 * to the inode cannot be committed to disk until the updated 9852 * inode has been written. 9853 */ 9854 void 9855 softdep_change_linkcnt(ip) 9856 struct inode *ip; /* the inode with the increased link count */ 9857 { 9858 struct inodedep *inodedep; 9859 struct ufsmount *ump; 9860 9861 ump = ITOUMP(ip); 9862 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9863 ("softdep_change_linkcnt called on non-softdep filesystem")); 9864 ACQUIRE_LOCK(ump); 9865 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9866 if (ip->i_nlink < ip->i_effnlink) 9867 panic("softdep_change_linkcnt: bad delta"); 9868 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9869 FREE_LOCK(ump); 9870 } 9871 9872 /* 9873 * Attach a sbdep dependency to the superblock buf so that we can keep 9874 * track of the head of the linked list of referenced but unlinked inodes. 9875 */ 9876 void 9877 softdep_setup_sbupdate(ump, fs, bp) 9878 struct ufsmount *ump; 9879 struct fs *fs; 9880 struct buf *bp; 9881 { 9882 struct sbdep *sbdep; 9883 struct worklist *wk; 9884 9885 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9886 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9887 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9888 if (wk->wk_type == D_SBDEP) 9889 break; 9890 if (wk != NULL) 9891 return; 9892 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9893 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9894 sbdep->sb_fs = fs; 9895 sbdep->sb_ump = ump; 9896 ACQUIRE_LOCK(ump); 9897 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9898 FREE_LOCK(ump); 9899 } 9900 9901 /* 9902 * Return the first unlinked inodedep which is ready to be the head of the 9903 * list. The inodedep and all those after it must have valid next pointers. 9904 */ 9905 static struct inodedep * 9906 first_unlinked_inodedep(ump) 9907 struct ufsmount *ump; 9908 { 9909 struct inodedep *inodedep; 9910 struct inodedep *idp; 9911 9912 LOCK_OWNED(ump); 9913 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9914 inodedep; inodedep = idp) { 9915 if ((inodedep->id_state & UNLINKNEXT) == 0) 9916 return (NULL); 9917 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9918 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9919 break; 9920 if ((inodedep->id_state & UNLINKPREV) == 0) 9921 break; 9922 } 9923 return (inodedep); 9924 } 9925 9926 /* 9927 * Set the sujfree unlinked head pointer prior to writing a superblock. 9928 */ 9929 static void 9930 initiate_write_sbdep(sbdep) 9931 struct sbdep *sbdep; 9932 { 9933 struct inodedep *inodedep; 9934 struct fs *bpfs; 9935 struct fs *fs; 9936 9937 bpfs = sbdep->sb_fs; 9938 fs = sbdep->sb_ump->um_fs; 9939 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9940 if (inodedep) { 9941 fs->fs_sujfree = inodedep->id_ino; 9942 inodedep->id_state |= UNLINKPREV; 9943 } else 9944 fs->fs_sujfree = 0; 9945 bpfs->fs_sujfree = fs->fs_sujfree; 9946 /* 9947 * Because we have made changes to the superblock, we need to 9948 * recompute its check-hash. 9949 */ 9950 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9951 } 9952 9953 /* 9954 * After a superblock is written determine whether it must be written again 9955 * due to a changing unlinked list head. 9956 */ 9957 static int 9958 handle_written_sbdep(sbdep, bp) 9959 struct sbdep *sbdep; 9960 struct buf *bp; 9961 { 9962 struct inodedep *inodedep; 9963 struct fs *fs; 9964 9965 LOCK_OWNED(sbdep->sb_ump); 9966 fs = sbdep->sb_fs; 9967 /* 9968 * If the superblock doesn't match the in-memory list start over. 9969 */ 9970 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9971 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9972 (inodedep == NULL && fs->fs_sujfree != 0)) { 9973 bdirty(bp); 9974 return (1); 9975 } 9976 WORKITEM_FREE(sbdep, D_SBDEP); 9977 if (fs->fs_sujfree == 0) 9978 return (0); 9979 /* 9980 * Now that we have a record of this inode in stable store allow it 9981 * to be written to free up pending work. Inodes may see a lot of 9982 * write activity after they are unlinked which we must not hold up. 9983 */ 9984 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9985 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9986 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9987 inodedep, inodedep->id_state); 9988 if (inodedep->id_state & UNLINKONLIST) 9989 break; 9990 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9991 } 9992 9993 return (0); 9994 } 9995 9996 /* 9997 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9998 */ 9999 static void 10000 unlinked_inodedep(mp, inodedep) 10001 struct mount *mp; 10002 struct inodedep *inodedep; 10003 { 10004 struct ufsmount *ump; 10005 10006 ump = VFSTOUFS(mp); 10007 LOCK_OWNED(ump); 10008 if (MOUNTEDSUJ(mp) == 0) 10009 return; 10010 ump->um_fs->fs_fmod = 1; 10011 if (inodedep->id_state & UNLINKED) 10012 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 10013 inodedep->id_state |= UNLINKED; 10014 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 10015 } 10016 10017 /* 10018 * Remove an inodedep from the unlinked inodedep list. This may require 10019 * disk writes if the inode has made it that far. 10020 */ 10021 static void 10022 clear_unlinked_inodedep(inodedep) 10023 struct inodedep *inodedep; 10024 { 10025 struct ufs2_dinode *dip; 10026 struct ufsmount *ump; 10027 struct inodedep *idp; 10028 struct inodedep *idn; 10029 struct fs *fs, *bpfs; 10030 struct buf *bp; 10031 daddr_t dbn; 10032 ino_t ino; 10033 ino_t nino; 10034 ino_t pino; 10035 int error; 10036 10037 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10038 fs = ump->um_fs; 10039 ino = inodedep->id_ino; 10040 error = 0; 10041 for (;;) { 10042 LOCK_OWNED(ump); 10043 KASSERT((inodedep->id_state & UNLINKED) != 0, 10044 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10045 inodedep)); 10046 /* 10047 * If nothing has yet been written simply remove us from 10048 * the in memory list and return. This is the most common 10049 * case where handle_workitem_remove() loses the final 10050 * reference. 10051 */ 10052 if ((inodedep->id_state & UNLINKLINKS) == 0) 10053 break; 10054 /* 10055 * If we have a NEXT pointer and no PREV pointer we can simply 10056 * clear NEXT's PREV and remove ourselves from the list. Be 10057 * careful not to clear PREV if the superblock points at 10058 * next as well. 10059 */ 10060 idn = TAILQ_NEXT(inodedep, id_unlinked); 10061 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 10062 if (idn && fs->fs_sujfree != idn->id_ino) 10063 idn->id_state &= ~UNLINKPREV; 10064 break; 10065 } 10066 /* 10067 * Here we have an inodedep which is actually linked into 10068 * the list. We must remove it by forcing a write to the 10069 * link before us, whether it be the superblock or an inode. 10070 * Unfortunately the list may change while we're waiting 10071 * on the buf lock for either resource so we must loop until 10072 * we lock the right one. If both the superblock and an 10073 * inode point to this inode we must clear the inode first 10074 * followed by the superblock. 10075 */ 10076 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10077 pino = 0; 10078 if (idp && (idp->id_state & UNLINKNEXT)) 10079 pino = idp->id_ino; 10080 FREE_LOCK(ump); 10081 if (pino == 0) { 10082 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10083 (int)fs->fs_sbsize, 0, 0, 0); 10084 } else { 10085 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 10086 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 10087 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 10088 &bp); 10089 } 10090 ACQUIRE_LOCK(ump); 10091 if (error) 10092 break; 10093 /* If the list has changed restart the loop. */ 10094 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10095 nino = 0; 10096 if (idp && (idp->id_state & UNLINKNEXT)) 10097 nino = idp->id_ino; 10098 if (nino != pino || 10099 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 10100 FREE_LOCK(ump); 10101 brelse(bp); 10102 ACQUIRE_LOCK(ump); 10103 continue; 10104 } 10105 nino = 0; 10106 idn = TAILQ_NEXT(inodedep, id_unlinked); 10107 if (idn) 10108 nino = idn->id_ino; 10109 /* 10110 * Remove us from the in memory list. After this we cannot 10111 * access the inodedep. 10112 */ 10113 KASSERT((inodedep->id_state & UNLINKED) != 0, 10114 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10115 inodedep)); 10116 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10117 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10118 FREE_LOCK(ump); 10119 /* 10120 * The predecessor's next pointer is manually updated here 10121 * so that the NEXT flag is never cleared for an element 10122 * that is in the list. 10123 */ 10124 if (pino == 0) { 10125 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10126 bpfs = (struct fs *)bp->b_data; 10127 ffs_oldfscompat_write(bpfs, ump); 10128 softdep_setup_sbupdate(ump, bpfs, bp); 10129 /* 10130 * Because we may have made changes to the superblock, 10131 * we need to recompute its check-hash. 10132 */ 10133 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10134 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 10135 ((struct ufs1_dinode *)bp->b_data + 10136 ino_to_fsbo(fs, pino))->di_freelink = nino; 10137 } else { 10138 dip = (struct ufs2_dinode *)bp->b_data + 10139 ino_to_fsbo(fs, pino); 10140 dip->di_freelink = nino; 10141 ffs_update_dinode_ckhash(fs, dip); 10142 } 10143 /* 10144 * If the bwrite fails we have no recourse to recover. The 10145 * filesystem is corrupted already. 10146 */ 10147 bwrite(bp); 10148 ACQUIRE_LOCK(ump); 10149 /* 10150 * If the superblock pointer still needs to be cleared force 10151 * a write here. 10152 */ 10153 if (fs->fs_sujfree == ino) { 10154 FREE_LOCK(ump); 10155 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10156 (int)fs->fs_sbsize, 0, 0, 0); 10157 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10158 bpfs = (struct fs *)bp->b_data; 10159 ffs_oldfscompat_write(bpfs, ump); 10160 softdep_setup_sbupdate(ump, bpfs, bp); 10161 /* 10162 * Because we may have made changes to the superblock, 10163 * we need to recompute its check-hash. 10164 */ 10165 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10166 bwrite(bp); 10167 ACQUIRE_LOCK(ump); 10168 } 10169 10170 if (fs->fs_sujfree != ino) 10171 return; 10172 panic("clear_unlinked_inodedep: Failed to clear free head"); 10173 } 10174 if (inodedep->id_ino == fs->fs_sujfree) 10175 panic("clear_unlinked_inodedep: Freeing head of free list"); 10176 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10177 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10178 return; 10179 } 10180 10181 /* 10182 * This workitem decrements the inode's link count. 10183 * If the link count reaches zero, the file is removed. 10184 */ 10185 static int 10186 handle_workitem_remove(dirrem, flags) 10187 struct dirrem *dirrem; 10188 int flags; 10189 { 10190 struct inodedep *inodedep; 10191 struct workhead dotdotwk; 10192 struct worklist *wk; 10193 struct ufsmount *ump; 10194 struct mount *mp; 10195 struct vnode *vp; 10196 struct inode *ip; 10197 ino_t oldinum; 10198 10199 if (dirrem->dm_state & ONWORKLIST) 10200 panic("handle_workitem_remove: dirrem %p still on worklist", 10201 dirrem); 10202 oldinum = dirrem->dm_oldinum; 10203 mp = dirrem->dm_list.wk_mp; 10204 ump = VFSTOUFS(mp); 10205 flags |= LK_EXCLUSIVE; 10206 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 10207 return (EBUSY); 10208 ip = VTOI(vp); 10209 MPASS(ip->i_mode != 0); 10210 ACQUIRE_LOCK(ump); 10211 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10212 panic("handle_workitem_remove: lost inodedep"); 10213 if (dirrem->dm_state & ONDEPLIST) 10214 LIST_REMOVE(dirrem, dm_inonext); 10215 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10216 ("handle_workitem_remove: Journal entries not written.")); 10217 10218 /* 10219 * Move all dependencies waiting on the remove to complete 10220 * from the dirrem to the inode inowait list to be completed 10221 * after the inode has been updated and written to disk. 10222 * 10223 * Any marked MKDIR_PARENT are saved to be completed when the 10224 * dotdot ref is removed unless DIRCHG is specified. For 10225 * directory change operations there will be no further 10226 * directory writes and the jsegdeps need to be moved along 10227 * with the rest to be completed when the inode is free or 10228 * stable in the inode free list. 10229 */ 10230 LIST_INIT(&dotdotwk); 10231 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10232 WORKLIST_REMOVE(wk); 10233 if ((dirrem->dm_state & DIRCHG) == 0 && 10234 wk->wk_state & MKDIR_PARENT) { 10235 wk->wk_state &= ~MKDIR_PARENT; 10236 WORKLIST_INSERT(&dotdotwk, wk); 10237 continue; 10238 } 10239 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10240 } 10241 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10242 /* 10243 * Normal file deletion. 10244 */ 10245 if ((dirrem->dm_state & RMDIR) == 0) { 10246 ip->i_nlink--; 10247 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10248 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10249 ip->i_nlink)); 10250 DIP_SET(ip, i_nlink, ip->i_nlink); 10251 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10252 if (ip->i_nlink < ip->i_effnlink) 10253 panic("handle_workitem_remove: bad file delta"); 10254 if (ip->i_nlink == 0) 10255 unlinked_inodedep(mp, inodedep); 10256 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10257 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10258 ("handle_workitem_remove: worklist not empty. %s", 10259 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10260 WORKITEM_FREE(dirrem, D_DIRREM); 10261 FREE_LOCK(ump); 10262 goto out; 10263 } 10264 /* 10265 * Directory deletion. Decrement reference count for both the 10266 * just deleted parent directory entry and the reference for ".". 10267 * Arrange to have the reference count on the parent decremented 10268 * to account for the loss of "..". 10269 */ 10270 ip->i_nlink -= 2; 10271 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10272 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10273 DIP_SET(ip, i_nlink, ip->i_nlink); 10274 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10275 if (ip->i_nlink < ip->i_effnlink) 10276 panic("handle_workitem_remove: bad dir delta"); 10277 if (ip->i_nlink == 0) 10278 unlinked_inodedep(mp, inodedep); 10279 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10280 /* 10281 * Rename a directory to a new parent. Since, we are both deleting 10282 * and creating a new directory entry, the link count on the new 10283 * directory should not change. Thus we skip the followup dirrem. 10284 */ 10285 if (dirrem->dm_state & DIRCHG) { 10286 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10287 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10288 WORKITEM_FREE(dirrem, D_DIRREM); 10289 FREE_LOCK(ump); 10290 goto out; 10291 } 10292 dirrem->dm_state = ONDEPLIST; 10293 dirrem->dm_oldinum = dirrem->dm_dirinum; 10294 /* 10295 * Place the dirrem on the parent's diremhd list. 10296 */ 10297 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10298 panic("handle_workitem_remove: lost dir inodedep"); 10299 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10300 /* 10301 * If the allocated inode has never been written to disk, then 10302 * the on-disk inode is zero'ed and we can remove the file 10303 * immediately. When journaling if the inode has been marked 10304 * unlinked and not DEPCOMPLETE we know it can never be written. 10305 */ 10306 inodedep_lookup(mp, oldinum, 0, &inodedep); 10307 if (inodedep == NULL || 10308 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10309 check_inode_unwritten(inodedep)) { 10310 FREE_LOCK(ump); 10311 vput(vp); 10312 return handle_workitem_remove(dirrem, flags); 10313 } 10314 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10315 FREE_LOCK(ump); 10316 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10317 out: 10318 ffs_update(vp, 0); 10319 vput(vp); 10320 return (0); 10321 } 10322 10323 /* 10324 * Inode de-allocation dependencies. 10325 * 10326 * When an inode's link count is reduced to zero, it can be de-allocated. We 10327 * found it convenient to postpone de-allocation until after the inode is 10328 * written to disk with its new link count (zero). At this point, all of the 10329 * on-disk inode's block pointers are nullified and, with careful dependency 10330 * list ordering, all dependencies related to the inode will be satisfied and 10331 * the corresponding dependency structures de-allocated. So, if/when the 10332 * inode is reused, there will be no mixing of old dependencies with new 10333 * ones. This artificial dependency is set up by the block de-allocation 10334 * procedure above (softdep_setup_freeblocks) and completed by the 10335 * following procedure. 10336 */ 10337 static void 10338 handle_workitem_freefile(freefile) 10339 struct freefile *freefile; 10340 { 10341 struct workhead wkhd; 10342 struct fs *fs; 10343 struct ufsmount *ump; 10344 int error; 10345 #ifdef INVARIANTS 10346 struct inodedep *idp; 10347 #endif 10348 10349 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10350 fs = ump->um_fs; 10351 #ifdef INVARIANTS 10352 ACQUIRE_LOCK(ump); 10353 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10354 FREE_LOCK(ump); 10355 if (error) 10356 panic("handle_workitem_freefile: inodedep %p survived", idp); 10357 #endif 10358 UFS_LOCK(ump); 10359 fs->fs_pendinginodes -= 1; 10360 UFS_UNLOCK(ump); 10361 LIST_INIT(&wkhd); 10362 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10363 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10364 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10365 softdep_error("handle_workitem_freefile", error); 10366 ACQUIRE_LOCK(ump); 10367 WORKITEM_FREE(freefile, D_FREEFILE); 10368 FREE_LOCK(ump); 10369 } 10370 10371 /* 10372 * Helper function which unlinks marker element from work list and returns 10373 * the next element on the list. 10374 */ 10375 static __inline struct worklist * 10376 markernext(struct worklist *marker) 10377 { 10378 struct worklist *next; 10379 10380 next = LIST_NEXT(marker, wk_list); 10381 LIST_REMOVE(marker, wk_list); 10382 return next; 10383 } 10384 10385 /* 10386 * Disk writes. 10387 * 10388 * The dependency structures constructed above are most actively used when file 10389 * system blocks are written to disk. No constraints are placed on when a 10390 * block can be written, but unsatisfied update dependencies are made safe by 10391 * modifying (or replacing) the source memory for the duration of the disk 10392 * write. When the disk write completes, the memory block is again brought 10393 * up-to-date. 10394 * 10395 * In-core inode structure reclamation. 10396 * 10397 * Because there are a finite number of "in-core" inode structures, they are 10398 * reused regularly. By transferring all inode-related dependencies to the 10399 * in-memory inode block and indexing them separately (via "inodedep"s), we 10400 * can allow "in-core" inode structures to be reused at any time and avoid 10401 * any increase in contention. 10402 * 10403 * Called just before entering the device driver to initiate a new disk I/O. 10404 * The buffer must be locked, thus, no I/O completion operations can occur 10405 * while we are manipulating its associated dependencies. 10406 */ 10407 static void 10408 softdep_disk_io_initiation(bp) 10409 struct buf *bp; /* structure describing disk write to occur */ 10410 { 10411 struct worklist *wk; 10412 struct worklist marker; 10413 struct inodedep *inodedep; 10414 struct freeblks *freeblks; 10415 struct jblkdep *jblkdep; 10416 struct newblk *newblk; 10417 struct ufsmount *ump; 10418 10419 /* 10420 * We only care about write operations. There should never 10421 * be dependencies for reads. 10422 */ 10423 if (bp->b_iocmd != BIO_WRITE) 10424 panic("softdep_disk_io_initiation: not write"); 10425 10426 if (bp->b_vflags & BV_BKGRDINPROG) 10427 panic("softdep_disk_io_initiation: Writing buffer with " 10428 "background write in progress: %p", bp); 10429 10430 ump = softdep_bp_to_mp(bp); 10431 if (ump == NULL) 10432 return; 10433 10434 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10435 PHOLD(curproc); /* Don't swap out kernel stack */ 10436 ACQUIRE_LOCK(ump); 10437 /* 10438 * Do any necessary pre-I/O processing. 10439 */ 10440 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10441 wk = markernext(&marker)) { 10442 LIST_INSERT_AFTER(wk, &marker, wk_list); 10443 switch (wk->wk_type) { 10444 case D_PAGEDEP: 10445 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10446 continue; 10447 10448 case D_INODEDEP: 10449 inodedep = WK_INODEDEP(wk); 10450 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10451 initiate_write_inodeblock_ufs1(inodedep, bp); 10452 else 10453 initiate_write_inodeblock_ufs2(inodedep, bp); 10454 continue; 10455 10456 case D_INDIRDEP: 10457 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10458 continue; 10459 10460 case D_BMSAFEMAP: 10461 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10462 continue; 10463 10464 case D_JSEG: 10465 WK_JSEG(wk)->js_buf = NULL; 10466 continue; 10467 10468 case D_FREEBLKS: 10469 freeblks = WK_FREEBLKS(wk); 10470 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10471 /* 10472 * We have to wait for the freeblks to be journaled 10473 * before we can write an inodeblock with updated 10474 * pointers. Be careful to arrange the marker so 10475 * we revisit the freeblks if it's not removed by 10476 * the first jwait(). 10477 */ 10478 if (jblkdep != NULL) { 10479 LIST_REMOVE(&marker, wk_list); 10480 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10481 jwait(&jblkdep->jb_list, MNT_WAIT); 10482 } 10483 continue; 10484 case D_ALLOCDIRECT: 10485 case D_ALLOCINDIR: 10486 /* 10487 * We have to wait for the jnewblk to be journaled 10488 * before we can write to a block if the contents 10489 * may be confused with an earlier file's indirect 10490 * at recovery time. Handle the marker as described 10491 * above. 10492 */ 10493 newblk = WK_NEWBLK(wk); 10494 if (newblk->nb_jnewblk != NULL && 10495 indirblk_lookup(newblk->nb_list.wk_mp, 10496 newblk->nb_newblkno)) { 10497 LIST_REMOVE(&marker, wk_list); 10498 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10499 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10500 } 10501 continue; 10502 10503 case D_SBDEP: 10504 initiate_write_sbdep(WK_SBDEP(wk)); 10505 continue; 10506 10507 case D_MKDIR: 10508 case D_FREEWORK: 10509 case D_FREEDEP: 10510 case D_JSEGDEP: 10511 continue; 10512 10513 default: 10514 panic("handle_disk_io_initiation: Unexpected type %s", 10515 TYPENAME(wk->wk_type)); 10516 /* NOTREACHED */ 10517 } 10518 } 10519 FREE_LOCK(ump); 10520 PRELE(curproc); /* Allow swapout of kernel stack */ 10521 } 10522 10523 /* 10524 * Called from within the procedure above to deal with unsatisfied 10525 * allocation dependencies in a directory. The buffer must be locked, 10526 * thus, no I/O completion operations can occur while we are 10527 * manipulating its associated dependencies. 10528 */ 10529 static void 10530 initiate_write_filepage(pagedep, bp) 10531 struct pagedep *pagedep; 10532 struct buf *bp; 10533 { 10534 struct jremref *jremref; 10535 struct jmvref *jmvref; 10536 struct dirrem *dirrem; 10537 struct diradd *dap; 10538 struct direct *ep; 10539 int i; 10540 10541 if (pagedep->pd_state & IOSTARTED) { 10542 /* 10543 * This can only happen if there is a driver that does not 10544 * understand chaining. Here biodone will reissue the call 10545 * to strategy for the incomplete buffers. 10546 */ 10547 printf("initiate_write_filepage: already started\n"); 10548 return; 10549 } 10550 pagedep->pd_state |= IOSTARTED; 10551 /* 10552 * Wait for all journal remove dependencies to hit the disk. 10553 * We can not allow any potentially conflicting directory adds 10554 * to be visible before removes and rollback is too difficult. 10555 * The per-filesystem lock may be dropped and re-acquired, however 10556 * we hold the buf locked so the dependency can not go away. 10557 */ 10558 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10559 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10560 jwait(&jremref->jr_list, MNT_WAIT); 10561 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10562 jwait(&jmvref->jm_list, MNT_WAIT); 10563 for (i = 0; i < DAHASHSZ; i++) { 10564 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10565 ep = (struct direct *) 10566 ((char *)bp->b_data + dap->da_offset); 10567 if (ep->d_ino != dap->da_newinum) 10568 panic("%s: dir inum %ju != new %ju", 10569 "initiate_write_filepage", 10570 (uintmax_t)ep->d_ino, 10571 (uintmax_t)dap->da_newinum); 10572 if (dap->da_state & DIRCHG) 10573 ep->d_ino = dap->da_previous->dm_oldinum; 10574 else 10575 ep->d_ino = 0; 10576 dap->da_state &= ~ATTACHED; 10577 dap->da_state |= UNDONE; 10578 } 10579 } 10580 } 10581 10582 /* 10583 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10584 * Note that any bug fixes made to this routine must be done in the 10585 * version found below. 10586 * 10587 * Called from within the procedure above to deal with unsatisfied 10588 * allocation dependencies in an inodeblock. The buffer must be 10589 * locked, thus, no I/O completion operations can occur while we 10590 * are manipulating its associated dependencies. 10591 */ 10592 static void 10593 initiate_write_inodeblock_ufs1(inodedep, bp) 10594 struct inodedep *inodedep; 10595 struct buf *bp; /* The inode block */ 10596 { 10597 struct allocdirect *adp, *lastadp; 10598 struct ufs1_dinode *dp; 10599 struct ufs1_dinode *sip; 10600 struct inoref *inoref; 10601 struct ufsmount *ump; 10602 struct fs *fs; 10603 ufs_lbn_t i; 10604 #ifdef INVARIANTS 10605 ufs_lbn_t prevlbn = 0; 10606 #endif 10607 int deplist; 10608 10609 if (inodedep->id_state & IOSTARTED) 10610 panic("initiate_write_inodeblock_ufs1: already started"); 10611 inodedep->id_state |= IOSTARTED; 10612 fs = inodedep->id_fs; 10613 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10614 LOCK_OWNED(ump); 10615 dp = (struct ufs1_dinode *)bp->b_data + 10616 ino_to_fsbo(fs, inodedep->id_ino); 10617 10618 /* 10619 * If we're on the unlinked list but have not yet written our 10620 * next pointer initialize it here. 10621 */ 10622 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10623 struct inodedep *inon; 10624 10625 inon = TAILQ_NEXT(inodedep, id_unlinked); 10626 dp->di_freelink = inon ? inon->id_ino : 0; 10627 } 10628 /* 10629 * If the bitmap is not yet written, then the allocated 10630 * inode cannot be written to disk. 10631 */ 10632 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10633 if (inodedep->id_savedino1 != NULL) 10634 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10635 FREE_LOCK(ump); 10636 sip = malloc(sizeof(struct ufs1_dinode), 10637 M_SAVEDINO, M_SOFTDEP_FLAGS); 10638 ACQUIRE_LOCK(ump); 10639 inodedep->id_savedino1 = sip; 10640 *inodedep->id_savedino1 = *dp; 10641 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10642 dp->di_gen = inodedep->id_savedino1->di_gen; 10643 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10644 return; 10645 } 10646 /* 10647 * If no dependencies, then there is nothing to roll back. 10648 */ 10649 inodedep->id_savedsize = dp->di_size; 10650 inodedep->id_savedextsize = 0; 10651 inodedep->id_savednlink = dp->di_nlink; 10652 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10653 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10654 return; 10655 /* 10656 * Revert the link count to that of the first unwritten journal entry. 10657 */ 10658 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10659 if (inoref) 10660 dp->di_nlink = inoref->if_nlink; 10661 /* 10662 * Set the dependencies to busy. 10663 */ 10664 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10665 adp = TAILQ_NEXT(adp, ad_next)) { 10666 #ifdef INVARIANTS 10667 if (deplist != 0 && prevlbn >= adp->ad_offset) 10668 panic("softdep_write_inodeblock: lbn order"); 10669 prevlbn = adp->ad_offset; 10670 if (adp->ad_offset < UFS_NDADDR && 10671 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10672 panic("initiate_write_inodeblock_ufs1: " 10673 "direct pointer #%jd mismatch %d != %jd", 10674 (intmax_t)adp->ad_offset, 10675 dp->di_db[adp->ad_offset], 10676 (intmax_t)adp->ad_newblkno); 10677 if (adp->ad_offset >= UFS_NDADDR && 10678 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10679 panic("initiate_write_inodeblock_ufs1: " 10680 "indirect pointer #%jd mismatch %d != %jd", 10681 (intmax_t)adp->ad_offset - UFS_NDADDR, 10682 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10683 (intmax_t)adp->ad_newblkno); 10684 deplist |= 1 << adp->ad_offset; 10685 if ((adp->ad_state & ATTACHED) == 0) 10686 panic("initiate_write_inodeblock_ufs1: " 10687 "Unknown state 0x%x", adp->ad_state); 10688 #endif /* INVARIANTS */ 10689 adp->ad_state &= ~ATTACHED; 10690 adp->ad_state |= UNDONE; 10691 } 10692 /* 10693 * The on-disk inode cannot claim to be any larger than the last 10694 * fragment that has been written. Otherwise, the on-disk inode 10695 * might have fragments that were not the last block in the file 10696 * which would corrupt the filesystem. 10697 */ 10698 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10699 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10700 if (adp->ad_offset >= UFS_NDADDR) 10701 break; 10702 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10703 /* keep going until hitting a rollback to a frag */ 10704 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10705 continue; 10706 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10707 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10708 #ifdef INVARIANTS 10709 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10710 panic("initiate_write_inodeblock_ufs1: " 10711 "lost dep1"); 10712 #endif /* INVARIANTS */ 10713 dp->di_db[i] = 0; 10714 } 10715 for (i = 0; i < UFS_NIADDR; i++) { 10716 #ifdef INVARIANTS 10717 if (dp->di_ib[i] != 0 && 10718 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10719 panic("initiate_write_inodeblock_ufs1: " 10720 "lost dep2"); 10721 #endif /* INVARIANTS */ 10722 dp->di_ib[i] = 0; 10723 } 10724 return; 10725 } 10726 /* 10727 * If we have zero'ed out the last allocated block of the file, 10728 * roll back the size to the last currently allocated block. 10729 * We know that this last allocated block is a full-sized as 10730 * we already checked for fragments in the loop above. 10731 */ 10732 if (lastadp != NULL && 10733 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10734 for (i = lastadp->ad_offset; i >= 0; i--) 10735 if (dp->di_db[i] != 0) 10736 break; 10737 dp->di_size = (i + 1) * fs->fs_bsize; 10738 } 10739 /* 10740 * The only dependencies are for indirect blocks. 10741 * 10742 * The file size for indirect block additions is not guaranteed. 10743 * Such a guarantee would be non-trivial to achieve. The conventional 10744 * synchronous write implementation also does not make this guarantee. 10745 * Fsck should catch and fix discrepancies. Arguably, the file size 10746 * can be over-estimated without destroying integrity when the file 10747 * moves into the indirect blocks (i.e., is large). If we want to 10748 * postpone fsck, we are stuck with this argument. 10749 */ 10750 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10751 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10752 } 10753 10754 /* 10755 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10756 * Note that any bug fixes made to this routine must be done in the 10757 * version found above. 10758 * 10759 * Called from within the procedure above to deal with unsatisfied 10760 * allocation dependencies in an inodeblock. The buffer must be 10761 * locked, thus, no I/O completion operations can occur while we 10762 * are manipulating its associated dependencies. 10763 */ 10764 static void 10765 initiate_write_inodeblock_ufs2(inodedep, bp) 10766 struct inodedep *inodedep; 10767 struct buf *bp; /* The inode block */ 10768 { 10769 struct allocdirect *adp, *lastadp; 10770 struct ufs2_dinode *dp; 10771 struct ufs2_dinode *sip; 10772 struct inoref *inoref; 10773 struct ufsmount *ump; 10774 struct fs *fs; 10775 ufs_lbn_t i; 10776 #ifdef INVARIANTS 10777 ufs_lbn_t prevlbn = 0; 10778 #endif 10779 int deplist; 10780 10781 if (inodedep->id_state & IOSTARTED) 10782 panic("initiate_write_inodeblock_ufs2: already started"); 10783 inodedep->id_state |= IOSTARTED; 10784 fs = inodedep->id_fs; 10785 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10786 LOCK_OWNED(ump); 10787 dp = (struct ufs2_dinode *)bp->b_data + 10788 ino_to_fsbo(fs, inodedep->id_ino); 10789 10790 /* 10791 * If we're on the unlinked list but have not yet written our 10792 * next pointer initialize it here. 10793 */ 10794 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10795 struct inodedep *inon; 10796 10797 inon = TAILQ_NEXT(inodedep, id_unlinked); 10798 dp->di_freelink = inon ? inon->id_ino : 0; 10799 ffs_update_dinode_ckhash(fs, dp); 10800 } 10801 /* 10802 * If the bitmap is not yet written, then the allocated 10803 * inode cannot be written to disk. 10804 */ 10805 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10806 if (inodedep->id_savedino2 != NULL) 10807 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10808 FREE_LOCK(ump); 10809 sip = malloc(sizeof(struct ufs2_dinode), 10810 M_SAVEDINO, M_SOFTDEP_FLAGS); 10811 ACQUIRE_LOCK(ump); 10812 inodedep->id_savedino2 = sip; 10813 *inodedep->id_savedino2 = *dp; 10814 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10815 dp->di_gen = inodedep->id_savedino2->di_gen; 10816 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10817 return; 10818 } 10819 /* 10820 * If no dependencies, then there is nothing to roll back. 10821 */ 10822 inodedep->id_savedsize = dp->di_size; 10823 inodedep->id_savedextsize = dp->di_extsize; 10824 inodedep->id_savednlink = dp->di_nlink; 10825 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10826 TAILQ_EMPTY(&inodedep->id_extupdt) && 10827 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10828 return; 10829 /* 10830 * Revert the link count to that of the first unwritten journal entry. 10831 */ 10832 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10833 if (inoref) 10834 dp->di_nlink = inoref->if_nlink; 10835 10836 /* 10837 * Set the ext data dependencies to busy. 10838 */ 10839 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10840 adp = TAILQ_NEXT(adp, ad_next)) { 10841 #ifdef INVARIANTS 10842 if (deplist != 0 && prevlbn >= adp->ad_offset) 10843 panic("initiate_write_inodeblock_ufs2: lbn order"); 10844 prevlbn = adp->ad_offset; 10845 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10846 panic("initiate_write_inodeblock_ufs2: " 10847 "ext pointer #%jd mismatch %jd != %jd", 10848 (intmax_t)adp->ad_offset, 10849 (intmax_t)dp->di_extb[adp->ad_offset], 10850 (intmax_t)adp->ad_newblkno); 10851 deplist |= 1 << adp->ad_offset; 10852 if ((adp->ad_state & ATTACHED) == 0) 10853 panic("initiate_write_inodeblock_ufs2: Unknown " 10854 "state 0x%x", adp->ad_state); 10855 #endif /* INVARIANTS */ 10856 adp->ad_state &= ~ATTACHED; 10857 adp->ad_state |= UNDONE; 10858 } 10859 /* 10860 * The on-disk inode cannot claim to be any larger than the last 10861 * fragment that has been written. Otherwise, the on-disk inode 10862 * might have fragments that were not the last block in the ext 10863 * data which would corrupt the filesystem. 10864 */ 10865 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10866 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10867 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10868 /* keep going until hitting a rollback to a frag */ 10869 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10870 continue; 10871 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10872 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10873 #ifdef INVARIANTS 10874 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10875 panic("initiate_write_inodeblock_ufs2: " 10876 "lost dep1"); 10877 #endif /* INVARIANTS */ 10878 dp->di_extb[i] = 0; 10879 } 10880 lastadp = NULL; 10881 break; 10882 } 10883 /* 10884 * If we have zero'ed out the last allocated block of the ext 10885 * data, roll back the size to the last currently allocated block. 10886 * We know that this last allocated block is a full-sized as 10887 * we already checked for fragments in the loop above. 10888 */ 10889 if (lastadp != NULL && 10890 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10891 for (i = lastadp->ad_offset; i >= 0; i--) 10892 if (dp->di_extb[i] != 0) 10893 break; 10894 dp->di_extsize = (i + 1) * fs->fs_bsize; 10895 } 10896 /* 10897 * Set the file data dependencies to busy. 10898 */ 10899 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10900 adp = TAILQ_NEXT(adp, ad_next)) { 10901 #ifdef INVARIANTS 10902 if (deplist != 0 && prevlbn >= adp->ad_offset) 10903 panic("softdep_write_inodeblock: lbn order"); 10904 if ((adp->ad_state & ATTACHED) == 0) 10905 panic("inodedep %p and adp %p not attached", inodedep, adp); 10906 prevlbn = adp->ad_offset; 10907 if (!ffs_fsfail_cleanup(ump, 0) && 10908 adp->ad_offset < UFS_NDADDR && 10909 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10910 panic("initiate_write_inodeblock_ufs2: " 10911 "direct pointer #%jd mismatch %jd != %jd", 10912 (intmax_t)adp->ad_offset, 10913 (intmax_t)dp->di_db[adp->ad_offset], 10914 (intmax_t)adp->ad_newblkno); 10915 if (!ffs_fsfail_cleanup(ump, 0) && 10916 adp->ad_offset >= UFS_NDADDR && 10917 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10918 panic("initiate_write_inodeblock_ufs2: " 10919 "indirect pointer #%jd mismatch %jd != %jd", 10920 (intmax_t)adp->ad_offset - UFS_NDADDR, 10921 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10922 (intmax_t)adp->ad_newblkno); 10923 deplist |= 1 << adp->ad_offset; 10924 if ((adp->ad_state & ATTACHED) == 0) 10925 panic("initiate_write_inodeblock_ufs2: Unknown " 10926 "state 0x%x", adp->ad_state); 10927 #endif /* INVARIANTS */ 10928 adp->ad_state &= ~ATTACHED; 10929 adp->ad_state |= UNDONE; 10930 } 10931 /* 10932 * The on-disk inode cannot claim to be any larger than the last 10933 * fragment that has been written. Otherwise, the on-disk inode 10934 * might have fragments that were not the last block in the file 10935 * which would corrupt the filesystem. 10936 */ 10937 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10938 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10939 if (adp->ad_offset >= UFS_NDADDR) 10940 break; 10941 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10942 /* keep going until hitting a rollback to a frag */ 10943 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10944 continue; 10945 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10946 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10947 #ifdef INVARIANTS 10948 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10949 panic("initiate_write_inodeblock_ufs2: " 10950 "lost dep2"); 10951 #endif /* INVARIANTS */ 10952 dp->di_db[i] = 0; 10953 } 10954 for (i = 0; i < UFS_NIADDR; i++) { 10955 #ifdef INVARIANTS 10956 if (dp->di_ib[i] != 0 && 10957 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10958 panic("initiate_write_inodeblock_ufs2: " 10959 "lost dep3"); 10960 #endif /* INVARIANTS */ 10961 dp->di_ib[i] = 0; 10962 } 10963 ffs_update_dinode_ckhash(fs, dp); 10964 return; 10965 } 10966 /* 10967 * If we have zero'ed out the last allocated block of the file, 10968 * roll back the size to the last currently allocated block. 10969 * We know that this last allocated block is a full-sized as 10970 * we already checked for fragments in the loop above. 10971 */ 10972 if (lastadp != NULL && 10973 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10974 for (i = lastadp->ad_offset; i >= 0; i--) 10975 if (dp->di_db[i] != 0) 10976 break; 10977 dp->di_size = (i + 1) * fs->fs_bsize; 10978 } 10979 /* 10980 * The only dependencies are for indirect blocks. 10981 * 10982 * The file size for indirect block additions is not guaranteed. 10983 * Such a guarantee would be non-trivial to achieve. The conventional 10984 * synchronous write implementation also does not make this guarantee. 10985 * Fsck should catch and fix discrepancies. Arguably, the file size 10986 * can be over-estimated without destroying integrity when the file 10987 * moves into the indirect blocks (i.e., is large). If we want to 10988 * postpone fsck, we are stuck with this argument. 10989 */ 10990 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10991 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10992 ffs_update_dinode_ckhash(fs, dp); 10993 } 10994 10995 /* 10996 * Cancel an indirdep as a result of truncation. Release all of the 10997 * children allocindirs and place their journal work on the appropriate 10998 * list. 10999 */ 11000 static void 11001 cancel_indirdep(indirdep, bp, freeblks) 11002 struct indirdep *indirdep; 11003 struct buf *bp; 11004 struct freeblks *freeblks; 11005 { 11006 struct allocindir *aip; 11007 11008 /* 11009 * None of the indirect pointers will ever be visible, 11010 * so they can simply be tossed. GOINGAWAY ensures 11011 * that allocated pointers will be saved in the buffer 11012 * cache until they are freed. Note that they will 11013 * only be able to be found by their physical address 11014 * since the inode mapping the logical address will 11015 * be gone. The save buffer used for the safe copy 11016 * was allocated in setup_allocindir_phase2 using 11017 * the physical address so it could be used for this 11018 * purpose. Hence we swap the safe copy with the real 11019 * copy, allowing the safe copy to be freed and holding 11020 * on to the real copy for later use in indir_trunc. 11021 */ 11022 if (indirdep->ir_state & GOINGAWAY) 11023 panic("cancel_indirdep: already gone"); 11024 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11025 indirdep->ir_state |= DEPCOMPLETE; 11026 LIST_REMOVE(indirdep, ir_next); 11027 } 11028 indirdep->ir_state |= GOINGAWAY; 11029 /* 11030 * Pass in bp for blocks still have journal writes 11031 * pending so we can cancel them on their own. 11032 */ 11033 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 11034 cancel_allocindir(aip, bp, freeblks, 0); 11035 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 11036 cancel_allocindir(aip, NULL, freeblks, 0); 11037 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 11038 cancel_allocindir(aip, NULL, freeblks, 0); 11039 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 11040 cancel_allocindir(aip, NULL, freeblks, 0); 11041 /* 11042 * If there are pending partial truncations we need to keep the 11043 * old block copy around until they complete. This is because 11044 * the current b_data is not a perfect superset of the available 11045 * blocks. 11046 */ 11047 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 11048 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 11049 else 11050 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11051 WORKLIST_REMOVE(&indirdep->ir_list); 11052 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 11053 indirdep->ir_bp = NULL; 11054 indirdep->ir_freeblks = freeblks; 11055 } 11056 11057 /* 11058 * Free an indirdep once it no longer has new pointers to track. 11059 */ 11060 static void 11061 free_indirdep(indirdep) 11062 struct indirdep *indirdep; 11063 { 11064 11065 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 11066 ("free_indirdep: Indir trunc list not empty.")); 11067 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 11068 ("free_indirdep: Complete head not empty.")); 11069 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 11070 ("free_indirdep: write head not empty.")); 11071 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 11072 ("free_indirdep: done head not empty.")); 11073 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 11074 ("free_indirdep: deplist head not empty.")); 11075 KASSERT((indirdep->ir_state & DEPCOMPLETE), 11076 ("free_indirdep: %p still on newblk list.", indirdep)); 11077 KASSERT(indirdep->ir_saveddata == NULL, 11078 ("free_indirdep: %p still has saved data.", indirdep)); 11079 KASSERT(indirdep->ir_savebp == NULL, 11080 ("free_indirdep: %p still has savebp buffer.", indirdep)); 11081 if (indirdep->ir_state & ONWORKLIST) 11082 WORKLIST_REMOVE(&indirdep->ir_list); 11083 WORKITEM_FREE(indirdep, D_INDIRDEP); 11084 } 11085 11086 /* 11087 * Called before a write to an indirdep. This routine is responsible for 11088 * rolling back pointers to a safe state which includes only those 11089 * allocindirs which have been completed. 11090 */ 11091 static void 11092 initiate_write_indirdep(indirdep, bp) 11093 struct indirdep *indirdep; 11094 struct buf *bp; 11095 { 11096 struct ufsmount *ump; 11097 11098 indirdep->ir_state |= IOSTARTED; 11099 if (indirdep->ir_state & GOINGAWAY) 11100 panic("disk_io_initiation: indirdep gone"); 11101 /* 11102 * If there are no remaining dependencies, this will be writing 11103 * the real pointers. 11104 */ 11105 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 11106 TAILQ_EMPTY(&indirdep->ir_trunc)) 11107 return; 11108 /* 11109 * Replace up-to-date version with safe version. 11110 */ 11111 if (indirdep->ir_saveddata == NULL) { 11112 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 11113 LOCK_OWNED(ump); 11114 FREE_LOCK(ump); 11115 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 11116 M_SOFTDEP_FLAGS); 11117 ACQUIRE_LOCK(ump); 11118 } 11119 indirdep->ir_state &= ~ATTACHED; 11120 indirdep->ir_state |= UNDONE; 11121 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11122 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 11123 bp->b_bcount); 11124 } 11125 11126 /* 11127 * Called when an inode has been cleared in a cg bitmap. This finally 11128 * eliminates any canceled jaddrefs 11129 */ 11130 void 11131 softdep_setup_inofree(mp, bp, ino, wkhd) 11132 struct mount *mp; 11133 struct buf *bp; 11134 ino_t ino; 11135 struct workhead *wkhd; 11136 { 11137 struct worklist *wk, *wkn; 11138 struct inodedep *inodedep; 11139 struct ufsmount *ump; 11140 uint8_t *inosused; 11141 struct cg *cgp; 11142 struct fs *fs; 11143 11144 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11145 ("softdep_setup_inofree called on non-softdep filesystem")); 11146 ump = VFSTOUFS(mp); 11147 ACQUIRE_LOCK(ump); 11148 if (!ffs_fsfail_cleanup(ump, 0)) { 11149 fs = ump->um_fs; 11150 cgp = (struct cg *)bp->b_data; 11151 inosused = cg_inosused(cgp); 11152 if (isset(inosused, ino % fs->fs_ipg)) 11153 panic("softdep_setup_inofree: inode %ju not freed.", 11154 (uintmax_t)ino); 11155 } 11156 if (inodedep_lookup(mp, ino, 0, &inodedep)) 11157 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 11158 (uintmax_t)ino, inodedep); 11159 if (wkhd) { 11160 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 11161 if (wk->wk_type != D_JADDREF) 11162 continue; 11163 WORKLIST_REMOVE(wk); 11164 /* 11165 * We can free immediately even if the jaddref 11166 * isn't attached in a background write as now 11167 * the bitmaps are reconciled. 11168 */ 11169 wk->wk_state |= COMPLETE | ATTACHED; 11170 free_jaddref(WK_JADDREF(wk)); 11171 } 11172 jwork_move(&bp->b_dep, wkhd); 11173 } 11174 FREE_LOCK(ump); 11175 } 11176 11177 /* 11178 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 11179 * map. Any dependencies waiting for the write to clear are added to the 11180 * buf's list and any jnewblks that are being canceled are discarded 11181 * immediately. 11182 */ 11183 void 11184 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 11185 struct mount *mp; 11186 struct buf *bp; 11187 ufs2_daddr_t blkno; 11188 int frags; 11189 struct workhead *wkhd; 11190 { 11191 struct bmsafemap *bmsafemap; 11192 struct jnewblk *jnewblk; 11193 struct ufsmount *ump; 11194 struct worklist *wk; 11195 struct fs *fs; 11196 #ifdef INVARIANTS 11197 uint8_t *blksfree; 11198 struct cg *cgp; 11199 ufs2_daddr_t jstart; 11200 ufs2_daddr_t jend; 11201 ufs2_daddr_t end; 11202 long bno; 11203 int i; 11204 #endif 11205 11206 CTR3(KTR_SUJ, 11207 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 11208 blkno, frags, wkhd); 11209 11210 ump = VFSTOUFS(mp); 11211 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11212 ("softdep_setup_blkfree called on non-softdep filesystem")); 11213 ACQUIRE_LOCK(ump); 11214 /* Lookup the bmsafemap so we track when it is dirty. */ 11215 fs = ump->um_fs; 11216 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11217 /* 11218 * Detach any jnewblks which have been canceled. They must linger 11219 * until the bitmap is cleared again by ffs_blkfree() to prevent 11220 * an unjournaled allocation from hitting the disk. 11221 */ 11222 if (wkhd) { 11223 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11224 CTR2(KTR_SUJ, 11225 "softdep_setup_blkfree: blkno %jd wk type %d", 11226 blkno, wk->wk_type); 11227 WORKLIST_REMOVE(wk); 11228 if (wk->wk_type != D_JNEWBLK) { 11229 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11230 continue; 11231 } 11232 jnewblk = WK_JNEWBLK(wk); 11233 KASSERT(jnewblk->jn_state & GOINGAWAY, 11234 ("softdep_setup_blkfree: jnewblk not canceled.")); 11235 #ifdef INVARIANTS 11236 /* 11237 * Assert that this block is free in the bitmap 11238 * before we discard the jnewblk. 11239 */ 11240 cgp = (struct cg *)bp->b_data; 11241 blksfree = cg_blksfree(cgp); 11242 bno = dtogd(fs, jnewblk->jn_blkno); 11243 for (i = jnewblk->jn_oldfrags; 11244 i < jnewblk->jn_frags; i++) { 11245 if (isset(blksfree, bno + i)) 11246 continue; 11247 panic("softdep_setup_blkfree: not free"); 11248 } 11249 #endif 11250 /* 11251 * Even if it's not attached we can free immediately 11252 * as the new bitmap is correct. 11253 */ 11254 wk->wk_state |= COMPLETE | ATTACHED; 11255 free_jnewblk(jnewblk); 11256 } 11257 } 11258 11259 #ifdef INVARIANTS 11260 /* 11261 * Assert that we are not freeing a block which has an outstanding 11262 * allocation dependency. 11263 */ 11264 fs = VFSTOUFS(mp)->um_fs; 11265 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11266 end = blkno + frags; 11267 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11268 /* 11269 * Don't match against blocks that will be freed when the 11270 * background write is done. 11271 */ 11272 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11273 (COMPLETE | DEPCOMPLETE)) 11274 continue; 11275 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11276 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11277 if ((blkno >= jstart && blkno < jend) || 11278 (end > jstart && end <= jend)) { 11279 printf("state 0x%X %jd - %d %d dep %p\n", 11280 jnewblk->jn_state, jnewblk->jn_blkno, 11281 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11282 jnewblk->jn_dep); 11283 panic("softdep_setup_blkfree: " 11284 "%jd-%jd(%d) overlaps with %jd-%jd", 11285 blkno, end, frags, jstart, jend); 11286 } 11287 } 11288 #endif 11289 FREE_LOCK(ump); 11290 } 11291 11292 /* 11293 * Revert a block allocation when the journal record that describes it 11294 * is not yet written. 11295 */ 11296 static int 11297 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 11298 struct jnewblk *jnewblk; 11299 struct fs *fs; 11300 struct cg *cgp; 11301 uint8_t *blksfree; 11302 { 11303 ufs1_daddr_t fragno; 11304 long cgbno, bbase; 11305 int frags, blk; 11306 int i; 11307 11308 frags = 0; 11309 cgbno = dtogd(fs, jnewblk->jn_blkno); 11310 /* 11311 * We have to test which frags need to be rolled back. We may 11312 * be operating on a stale copy when doing background writes. 11313 */ 11314 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11315 if (isclr(blksfree, cgbno + i)) 11316 frags++; 11317 if (frags == 0) 11318 return (0); 11319 /* 11320 * This is mostly ffs_blkfree() sans some validation and 11321 * superblock updates. 11322 */ 11323 if (frags == fs->fs_frag) { 11324 fragno = fragstoblks(fs, cgbno); 11325 ffs_setblock(fs, blksfree, fragno); 11326 ffs_clusteracct(fs, cgp, fragno, 1); 11327 cgp->cg_cs.cs_nbfree++; 11328 } else { 11329 cgbno += jnewblk->jn_oldfrags; 11330 bbase = cgbno - fragnum(fs, cgbno); 11331 /* Decrement the old frags. */ 11332 blk = blkmap(fs, blksfree, bbase); 11333 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11334 /* Deallocate the fragment */ 11335 for (i = 0; i < frags; i++) 11336 setbit(blksfree, cgbno + i); 11337 cgp->cg_cs.cs_nffree += frags; 11338 /* Add back in counts associated with the new frags */ 11339 blk = blkmap(fs, blksfree, bbase); 11340 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11341 /* If a complete block has been reassembled, account for it. */ 11342 fragno = fragstoblks(fs, bbase); 11343 if (ffs_isblock(fs, blksfree, fragno)) { 11344 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11345 ffs_clusteracct(fs, cgp, fragno, 1); 11346 cgp->cg_cs.cs_nbfree++; 11347 } 11348 } 11349 stat_jnewblk++; 11350 jnewblk->jn_state &= ~ATTACHED; 11351 jnewblk->jn_state |= UNDONE; 11352 11353 return (frags); 11354 } 11355 11356 static void 11357 initiate_write_bmsafemap(bmsafemap, bp) 11358 struct bmsafemap *bmsafemap; 11359 struct buf *bp; /* The cg block. */ 11360 { 11361 struct jaddref *jaddref; 11362 struct jnewblk *jnewblk; 11363 uint8_t *inosused; 11364 uint8_t *blksfree; 11365 struct cg *cgp; 11366 struct fs *fs; 11367 ino_t ino; 11368 11369 /* 11370 * If this is a background write, we did this at the time that 11371 * the copy was made, so do not need to do it again. 11372 */ 11373 if (bmsafemap->sm_state & IOSTARTED) 11374 return; 11375 bmsafemap->sm_state |= IOSTARTED; 11376 /* 11377 * Clear any inode allocations which are pending journal writes. 11378 */ 11379 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11380 cgp = (struct cg *)bp->b_data; 11381 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11382 inosused = cg_inosused(cgp); 11383 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11384 ino = jaddref->ja_ino % fs->fs_ipg; 11385 if (isset(inosused, ino)) { 11386 if ((jaddref->ja_mode & IFMT) == IFDIR) 11387 cgp->cg_cs.cs_ndir--; 11388 cgp->cg_cs.cs_nifree++; 11389 clrbit(inosused, ino); 11390 jaddref->ja_state &= ~ATTACHED; 11391 jaddref->ja_state |= UNDONE; 11392 stat_jaddref++; 11393 } else 11394 panic("initiate_write_bmsafemap: inode %ju " 11395 "marked free", (uintmax_t)jaddref->ja_ino); 11396 } 11397 } 11398 /* 11399 * Clear any block allocations which are pending journal writes. 11400 */ 11401 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11402 cgp = (struct cg *)bp->b_data; 11403 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11404 blksfree = cg_blksfree(cgp); 11405 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11406 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11407 continue; 11408 panic("initiate_write_bmsafemap: block %jd " 11409 "marked free", jnewblk->jn_blkno); 11410 } 11411 } 11412 /* 11413 * Move allocation lists to the written lists so they can be 11414 * cleared once the block write is complete. 11415 */ 11416 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11417 inodedep, id_deps); 11418 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11419 newblk, nb_deps); 11420 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11421 wk_list); 11422 } 11423 11424 void 11425 softdep_handle_error(struct buf *bp) 11426 { 11427 struct ufsmount *ump; 11428 11429 ump = softdep_bp_to_mp(bp); 11430 if (ump == NULL) 11431 return; 11432 11433 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11434 /* 11435 * No future writes will succeed, so the on-disk image is safe. 11436 * Pretend that this write succeeded so that the softdep state 11437 * will be cleaned up naturally. 11438 */ 11439 bp->b_ioflags &= ~BIO_ERROR; 11440 bp->b_error = 0; 11441 } 11442 } 11443 11444 /* 11445 * This routine is called during the completion interrupt 11446 * service routine for a disk write (from the procedure called 11447 * by the device driver to inform the filesystem caches of 11448 * a request completion). It should be called early in this 11449 * procedure, before the block is made available to other 11450 * processes or other routines are called. 11451 * 11452 */ 11453 static void 11454 softdep_disk_write_complete(bp) 11455 struct buf *bp; /* describes the completed disk write */ 11456 { 11457 struct worklist *wk; 11458 struct worklist *owk; 11459 struct ufsmount *ump; 11460 struct workhead reattach; 11461 struct freeblks *freeblks; 11462 struct buf *sbp; 11463 11464 ump = softdep_bp_to_mp(bp); 11465 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11466 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11467 "with outstanding dependencies for buffer %p", bp)); 11468 if (ump == NULL) 11469 return; 11470 if ((bp->b_ioflags & BIO_ERROR) != 0) 11471 softdep_handle_error(bp); 11472 /* 11473 * If an error occurred while doing the write, then the data 11474 * has not hit the disk and the dependencies cannot be processed. 11475 * But we do have to go through and roll forward any dependencies 11476 * that were rolled back before the disk write. 11477 */ 11478 sbp = NULL; 11479 ACQUIRE_LOCK(ump); 11480 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11481 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11482 switch (wk->wk_type) { 11483 case D_PAGEDEP: 11484 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11485 continue; 11486 11487 case D_INODEDEP: 11488 handle_written_inodeblock(WK_INODEDEP(wk), 11489 bp, 0); 11490 continue; 11491 11492 case D_BMSAFEMAP: 11493 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11494 bp, 0); 11495 continue; 11496 11497 case D_INDIRDEP: 11498 handle_written_indirdep(WK_INDIRDEP(wk), 11499 bp, &sbp, 0); 11500 continue; 11501 default: 11502 /* nothing to roll forward */ 11503 continue; 11504 } 11505 } 11506 FREE_LOCK(ump); 11507 if (sbp) 11508 brelse(sbp); 11509 return; 11510 } 11511 LIST_INIT(&reattach); 11512 11513 /* 11514 * Ump SU lock must not be released anywhere in this code segment. 11515 */ 11516 owk = NULL; 11517 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11518 WORKLIST_REMOVE(wk); 11519 atomic_add_long(&dep_write[wk->wk_type], 1); 11520 if (wk == owk) 11521 panic("duplicate worklist: %p\n", wk); 11522 owk = wk; 11523 switch (wk->wk_type) { 11524 case D_PAGEDEP: 11525 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11526 WRITESUCCEEDED)) 11527 WORKLIST_INSERT(&reattach, wk); 11528 continue; 11529 11530 case D_INODEDEP: 11531 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11532 WRITESUCCEEDED)) 11533 WORKLIST_INSERT(&reattach, wk); 11534 continue; 11535 11536 case D_BMSAFEMAP: 11537 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11538 WRITESUCCEEDED)) 11539 WORKLIST_INSERT(&reattach, wk); 11540 continue; 11541 11542 case D_MKDIR: 11543 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11544 continue; 11545 11546 case D_ALLOCDIRECT: 11547 wk->wk_state |= COMPLETE; 11548 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11549 continue; 11550 11551 case D_ALLOCINDIR: 11552 wk->wk_state |= COMPLETE; 11553 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11554 continue; 11555 11556 case D_INDIRDEP: 11557 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11558 WRITESUCCEEDED)) 11559 WORKLIST_INSERT(&reattach, wk); 11560 continue; 11561 11562 case D_FREEBLKS: 11563 wk->wk_state |= COMPLETE; 11564 freeblks = WK_FREEBLKS(wk); 11565 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11566 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11567 add_to_worklist(wk, WK_NODELAY); 11568 continue; 11569 11570 case D_FREEWORK: 11571 handle_written_freework(WK_FREEWORK(wk)); 11572 break; 11573 11574 case D_JSEGDEP: 11575 free_jsegdep(WK_JSEGDEP(wk)); 11576 continue; 11577 11578 case D_JSEG: 11579 handle_written_jseg(WK_JSEG(wk), bp); 11580 continue; 11581 11582 case D_SBDEP: 11583 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11584 WORKLIST_INSERT(&reattach, wk); 11585 continue; 11586 11587 case D_FREEDEP: 11588 free_freedep(WK_FREEDEP(wk)); 11589 continue; 11590 11591 default: 11592 panic("handle_disk_write_complete: Unknown type %s", 11593 TYPENAME(wk->wk_type)); 11594 /* NOTREACHED */ 11595 } 11596 } 11597 /* 11598 * Reattach any requests that must be redone. 11599 */ 11600 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11601 WORKLIST_REMOVE(wk); 11602 WORKLIST_INSERT(&bp->b_dep, wk); 11603 } 11604 FREE_LOCK(ump); 11605 if (sbp) 11606 brelse(sbp); 11607 } 11608 11609 /* 11610 * Called from within softdep_disk_write_complete above. 11611 */ 11612 static void 11613 handle_allocdirect_partdone(adp, wkhd) 11614 struct allocdirect *adp; /* the completed allocdirect */ 11615 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11616 { 11617 struct allocdirectlst *listhead; 11618 struct allocdirect *listadp; 11619 struct inodedep *inodedep; 11620 long bsize; 11621 11622 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11623 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11624 return; 11625 /* 11626 * The on-disk inode cannot claim to be any larger than the last 11627 * fragment that has been written. Otherwise, the on-disk inode 11628 * might have fragments that were not the last block in the file 11629 * which would corrupt the filesystem. Thus, we cannot free any 11630 * allocdirects after one whose ad_oldblkno claims a fragment as 11631 * these blocks must be rolled back to zero before writing the inode. 11632 * We check the currently active set of allocdirects in id_inoupdt 11633 * or id_extupdt as appropriate. 11634 */ 11635 inodedep = adp->ad_inodedep; 11636 bsize = inodedep->id_fs->fs_bsize; 11637 if (adp->ad_state & EXTDATA) 11638 listhead = &inodedep->id_extupdt; 11639 else 11640 listhead = &inodedep->id_inoupdt; 11641 TAILQ_FOREACH(listadp, listhead, ad_next) { 11642 /* found our block */ 11643 if (listadp == adp) 11644 break; 11645 /* continue if ad_oldlbn is not a fragment */ 11646 if (listadp->ad_oldsize == 0 || 11647 listadp->ad_oldsize == bsize) 11648 continue; 11649 /* hit a fragment */ 11650 return; 11651 } 11652 /* 11653 * If we have reached the end of the current list without 11654 * finding the just finished dependency, then it must be 11655 * on the future dependency list. Future dependencies cannot 11656 * be freed until they are moved to the current list. 11657 */ 11658 if (listadp == NULL) { 11659 #ifdef INVARIANTS 11660 if (adp->ad_state & EXTDATA) 11661 listhead = &inodedep->id_newextupdt; 11662 else 11663 listhead = &inodedep->id_newinoupdt; 11664 TAILQ_FOREACH(listadp, listhead, ad_next) 11665 /* found our block */ 11666 if (listadp == adp) 11667 break; 11668 if (listadp == NULL) 11669 panic("handle_allocdirect_partdone: lost dep"); 11670 #endif /* INVARIANTS */ 11671 return; 11672 } 11673 /* 11674 * If we have found the just finished dependency, then queue 11675 * it along with anything that follows it that is complete. 11676 * Since the pointer has not yet been written in the inode 11677 * as the dependency prevents it, place the allocdirect on the 11678 * bufwait list where it will be freed once the pointer is 11679 * valid. 11680 */ 11681 if (wkhd == NULL) 11682 wkhd = &inodedep->id_bufwait; 11683 for (; adp; adp = listadp) { 11684 listadp = TAILQ_NEXT(adp, ad_next); 11685 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11686 return; 11687 TAILQ_REMOVE(listhead, adp, ad_next); 11688 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11689 } 11690 } 11691 11692 /* 11693 * Called from within softdep_disk_write_complete above. This routine 11694 * completes successfully written allocindirs. 11695 */ 11696 static void 11697 handle_allocindir_partdone(aip) 11698 struct allocindir *aip; /* the completed allocindir */ 11699 { 11700 struct indirdep *indirdep; 11701 11702 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11703 return; 11704 indirdep = aip->ai_indirdep; 11705 LIST_REMOVE(aip, ai_next); 11706 /* 11707 * Don't set a pointer while the buffer is undergoing IO or while 11708 * we have active truncations. 11709 */ 11710 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11711 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11712 return; 11713 } 11714 if (indirdep->ir_state & UFS1FMT) 11715 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11716 aip->ai_newblkno; 11717 else 11718 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11719 aip->ai_newblkno; 11720 /* 11721 * Await the pointer write before freeing the allocindir. 11722 */ 11723 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11724 } 11725 11726 /* 11727 * Release segments held on a jwork list. 11728 */ 11729 static void 11730 handle_jwork(wkhd) 11731 struct workhead *wkhd; 11732 { 11733 struct worklist *wk; 11734 11735 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11736 WORKLIST_REMOVE(wk); 11737 switch (wk->wk_type) { 11738 case D_JSEGDEP: 11739 free_jsegdep(WK_JSEGDEP(wk)); 11740 continue; 11741 case D_FREEDEP: 11742 free_freedep(WK_FREEDEP(wk)); 11743 continue; 11744 case D_FREEFRAG: 11745 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11746 WORKITEM_FREE(wk, D_FREEFRAG); 11747 continue; 11748 case D_FREEWORK: 11749 handle_written_freework(WK_FREEWORK(wk)); 11750 continue; 11751 default: 11752 panic("handle_jwork: Unknown type %s\n", 11753 TYPENAME(wk->wk_type)); 11754 } 11755 } 11756 } 11757 11758 /* 11759 * Handle the bufwait list on an inode when it is safe to release items 11760 * held there. This normally happens after an inode block is written but 11761 * may be delayed and handled later if there are pending journal items that 11762 * are not yet safe to be released. 11763 */ 11764 static struct freefile * 11765 handle_bufwait(inodedep, refhd) 11766 struct inodedep *inodedep; 11767 struct workhead *refhd; 11768 { 11769 struct jaddref *jaddref; 11770 struct freefile *freefile; 11771 struct worklist *wk; 11772 11773 freefile = NULL; 11774 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11775 WORKLIST_REMOVE(wk); 11776 switch (wk->wk_type) { 11777 case D_FREEFILE: 11778 /* 11779 * We defer adding freefile to the worklist 11780 * until all other additions have been made to 11781 * ensure that it will be done after all the 11782 * old blocks have been freed. 11783 */ 11784 if (freefile != NULL) 11785 panic("handle_bufwait: freefile"); 11786 freefile = WK_FREEFILE(wk); 11787 continue; 11788 11789 case D_MKDIR: 11790 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11791 continue; 11792 11793 case D_DIRADD: 11794 diradd_inode_written(WK_DIRADD(wk), inodedep); 11795 continue; 11796 11797 case D_FREEFRAG: 11798 wk->wk_state |= COMPLETE; 11799 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11800 add_to_worklist(wk, 0); 11801 continue; 11802 11803 case D_DIRREM: 11804 wk->wk_state |= COMPLETE; 11805 add_to_worklist(wk, 0); 11806 continue; 11807 11808 case D_ALLOCDIRECT: 11809 case D_ALLOCINDIR: 11810 free_newblk(WK_NEWBLK(wk)); 11811 continue; 11812 11813 case D_JNEWBLK: 11814 wk->wk_state |= COMPLETE; 11815 free_jnewblk(WK_JNEWBLK(wk)); 11816 continue; 11817 11818 /* 11819 * Save freed journal segments and add references on 11820 * the supplied list which will delay their release 11821 * until the cg bitmap is cleared on disk. 11822 */ 11823 case D_JSEGDEP: 11824 if (refhd == NULL) 11825 free_jsegdep(WK_JSEGDEP(wk)); 11826 else 11827 WORKLIST_INSERT(refhd, wk); 11828 continue; 11829 11830 case D_JADDREF: 11831 jaddref = WK_JADDREF(wk); 11832 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11833 if_deps); 11834 /* 11835 * Transfer any jaddrefs to the list to be freed with 11836 * the bitmap if we're handling a removed file. 11837 */ 11838 if (refhd == NULL) { 11839 wk->wk_state |= COMPLETE; 11840 free_jaddref(jaddref); 11841 } else 11842 WORKLIST_INSERT(refhd, wk); 11843 continue; 11844 11845 default: 11846 panic("handle_bufwait: Unknown type %p(%s)", 11847 wk, TYPENAME(wk->wk_type)); 11848 /* NOTREACHED */ 11849 } 11850 } 11851 return (freefile); 11852 } 11853 /* 11854 * Called from within softdep_disk_write_complete above to restore 11855 * in-memory inode block contents to their most up-to-date state. Note 11856 * that this routine is always called from interrupt level with further 11857 * interrupts from this device blocked. 11858 * 11859 * If the write did not succeed, we will do all the roll-forward 11860 * operations, but we will not take the actions that will allow its 11861 * dependencies to be processed. 11862 */ 11863 static int 11864 handle_written_inodeblock(inodedep, bp, flags) 11865 struct inodedep *inodedep; 11866 struct buf *bp; /* buffer containing the inode block */ 11867 int flags; 11868 { 11869 struct freefile *freefile; 11870 struct allocdirect *adp, *nextadp; 11871 struct ufs1_dinode *dp1 = NULL; 11872 struct ufs2_dinode *dp2 = NULL; 11873 struct workhead wkhd; 11874 int hadchanges, fstype; 11875 ino_t freelink; 11876 11877 LIST_INIT(&wkhd); 11878 hadchanges = 0; 11879 freefile = NULL; 11880 if ((inodedep->id_state & IOSTARTED) == 0) 11881 panic("handle_written_inodeblock: not started"); 11882 inodedep->id_state &= ~IOSTARTED; 11883 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11884 fstype = UFS1; 11885 dp1 = (struct ufs1_dinode *)bp->b_data + 11886 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11887 freelink = dp1->di_freelink; 11888 } else { 11889 fstype = UFS2; 11890 dp2 = (struct ufs2_dinode *)bp->b_data + 11891 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11892 freelink = dp2->di_freelink; 11893 } 11894 /* 11895 * Leave this inodeblock dirty until it's in the list. 11896 */ 11897 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11898 (flags & WRITESUCCEEDED)) { 11899 struct inodedep *inon; 11900 11901 inon = TAILQ_NEXT(inodedep, id_unlinked); 11902 if ((inon == NULL && freelink == 0) || 11903 (inon && inon->id_ino == freelink)) { 11904 if (inon) 11905 inon->id_state |= UNLINKPREV; 11906 inodedep->id_state |= UNLINKNEXT; 11907 } 11908 hadchanges = 1; 11909 } 11910 /* 11911 * If we had to rollback the inode allocation because of 11912 * bitmaps being incomplete, then simply restore it. 11913 * Keep the block dirty so that it will not be reclaimed until 11914 * all associated dependencies have been cleared and the 11915 * corresponding updates written to disk. 11916 */ 11917 if (inodedep->id_savedino1 != NULL) { 11918 hadchanges = 1; 11919 if (fstype == UFS1) 11920 *dp1 = *inodedep->id_savedino1; 11921 else 11922 *dp2 = *inodedep->id_savedino2; 11923 free(inodedep->id_savedino1, M_SAVEDINO); 11924 inodedep->id_savedino1 = NULL; 11925 if ((bp->b_flags & B_DELWRI) == 0) 11926 stat_inode_bitmap++; 11927 bdirty(bp); 11928 /* 11929 * If the inode is clear here and GOINGAWAY it will never 11930 * be written. Process the bufwait and clear any pending 11931 * work which may include the freefile. 11932 */ 11933 if (inodedep->id_state & GOINGAWAY) 11934 goto bufwait; 11935 return (1); 11936 } 11937 if (flags & WRITESUCCEEDED) 11938 inodedep->id_state |= COMPLETE; 11939 /* 11940 * Roll forward anything that had to be rolled back before 11941 * the inode could be updated. 11942 */ 11943 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11944 nextadp = TAILQ_NEXT(adp, ad_next); 11945 if (adp->ad_state & ATTACHED) 11946 panic("handle_written_inodeblock: new entry"); 11947 if (fstype == UFS1) { 11948 if (adp->ad_offset < UFS_NDADDR) { 11949 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11950 panic("%s %s #%jd mismatch %d != %jd", 11951 "handle_written_inodeblock:", 11952 "direct pointer", 11953 (intmax_t)adp->ad_offset, 11954 dp1->di_db[adp->ad_offset], 11955 (intmax_t)adp->ad_oldblkno); 11956 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11957 } else { 11958 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11959 0) 11960 panic("%s: %s #%jd allocated as %d", 11961 "handle_written_inodeblock", 11962 "indirect pointer", 11963 (intmax_t)adp->ad_offset - 11964 UFS_NDADDR, 11965 dp1->di_ib[adp->ad_offset - 11966 UFS_NDADDR]); 11967 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11968 adp->ad_newblkno; 11969 } 11970 } else { 11971 if (adp->ad_offset < UFS_NDADDR) { 11972 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11973 panic("%s: %s #%jd %s %jd != %jd", 11974 "handle_written_inodeblock", 11975 "direct pointer", 11976 (intmax_t)adp->ad_offset, "mismatch", 11977 (intmax_t)dp2->di_db[adp->ad_offset], 11978 (intmax_t)adp->ad_oldblkno); 11979 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11980 } else { 11981 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11982 0) 11983 panic("%s: %s #%jd allocated as %jd", 11984 "handle_written_inodeblock", 11985 "indirect pointer", 11986 (intmax_t)adp->ad_offset - 11987 UFS_NDADDR, 11988 (intmax_t) 11989 dp2->di_ib[adp->ad_offset - 11990 UFS_NDADDR]); 11991 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11992 adp->ad_newblkno; 11993 } 11994 } 11995 adp->ad_state &= ~UNDONE; 11996 adp->ad_state |= ATTACHED; 11997 hadchanges = 1; 11998 } 11999 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 12000 nextadp = TAILQ_NEXT(adp, ad_next); 12001 if (adp->ad_state & ATTACHED) 12002 panic("handle_written_inodeblock: new entry"); 12003 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 12004 panic("%s: direct pointers #%jd %s %jd != %jd", 12005 "handle_written_inodeblock", 12006 (intmax_t)adp->ad_offset, "mismatch", 12007 (intmax_t)dp2->di_extb[adp->ad_offset], 12008 (intmax_t)adp->ad_oldblkno); 12009 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 12010 adp->ad_state &= ~UNDONE; 12011 adp->ad_state |= ATTACHED; 12012 hadchanges = 1; 12013 } 12014 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 12015 stat_direct_blk_ptrs++; 12016 /* 12017 * Reset the file size to its most up-to-date value. 12018 */ 12019 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 12020 panic("handle_written_inodeblock: bad size"); 12021 if (inodedep->id_savednlink > UFS_LINK_MAX) 12022 panic("handle_written_inodeblock: Invalid link count " 12023 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 12024 inodedep); 12025 if (fstype == UFS1) { 12026 if (dp1->di_nlink != inodedep->id_savednlink) { 12027 dp1->di_nlink = inodedep->id_savednlink; 12028 hadchanges = 1; 12029 } 12030 if (dp1->di_size != inodedep->id_savedsize) { 12031 dp1->di_size = inodedep->id_savedsize; 12032 hadchanges = 1; 12033 } 12034 } else { 12035 if (dp2->di_nlink != inodedep->id_savednlink) { 12036 dp2->di_nlink = inodedep->id_savednlink; 12037 hadchanges = 1; 12038 } 12039 if (dp2->di_size != inodedep->id_savedsize) { 12040 dp2->di_size = inodedep->id_savedsize; 12041 hadchanges = 1; 12042 } 12043 if (dp2->di_extsize != inodedep->id_savedextsize) { 12044 dp2->di_extsize = inodedep->id_savedextsize; 12045 hadchanges = 1; 12046 } 12047 } 12048 inodedep->id_savedsize = -1; 12049 inodedep->id_savedextsize = -1; 12050 inodedep->id_savednlink = -1; 12051 /* 12052 * If there were any rollbacks in the inode block, then it must be 12053 * marked dirty so that its will eventually get written back in 12054 * its correct form. 12055 */ 12056 if (hadchanges) { 12057 if (fstype == UFS2) 12058 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 12059 bdirty(bp); 12060 } 12061 bufwait: 12062 /* 12063 * If the write did not succeed, we have done all the roll-forward 12064 * operations, but we cannot take the actions that will allow its 12065 * dependencies to be processed. 12066 */ 12067 if ((flags & WRITESUCCEEDED) == 0) 12068 return (hadchanges); 12069 /* 12070 * Process any allocdirects that completed during the update. 12071 */ 12072 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 12073 handle_allocdirect_partdone(adp, &wkhd); 12074 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 12075 handle_allocdirect_partdone(adp, &wkhd); 12076 /* 12077 * Process deallocations that were held pending until the 12078 * inode had been written to disk. Freeing of the inode 12079 * is delayed until after all blocks have been freed to 12080 * avoid creation of new <vfsid, inum, lbn> triples 12081 * before the old ones have been deleted. Completely 12082 * unlinked inodes are not processed until the unlinked 12083 * inode list is written or the last reference is removed. 12084 */ 12085 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 12086 freefile = handle_bufwait(inodedep, NULL); 12087 if (freefile && !LIST_EMPTY(&wkhd)) { 12088 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 12089 freefile = NULL; 12090 } 12091 } 12092 /* 12093 * Move rolled forward dependency completions to the bufwait list 12094 * now that those that were already written have been processed. 12095 */ 12096 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 12097 panic("handle_written_inodeblock: bufwait but no changes"); 12098 jwork_move(&inodedep->id_bufwait, &wkhd); 12099 12100 if (freefile != NULL) { 12101 /* 12102 * If the inode is goingaway it was never written. Fake up 12103 * the state here so free_inodedep() can succeed. 12104 */ 12105 if (inodedep->id_state & GOINGAWAY) 12106 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 12107 if (free_inodedep(inodedep) == 0) 12108 panic("handle_written_inodeblock: live inodedep %p", 12109 inodedep); 12110 add_to_worklist(&freefile->fx_list, 0); 12111 return (0); 12112 } 12113 12114 /* 12115 * If no outstanding dependencies, free it. 12116 */ 12117 if (free_inodedep(inodedep) || 12118 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 12119 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 12120 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 12121 LIST_FIRST(&inodedep->id_bufwait) == 0)) 12122 return (0); 12123 return (hadchanges); 12124 } 12125 12126 /* 12127 * Perform needed roll-forwards and kick off any dependencies that 12128 * can now be processed. 12129 * 12130 * If the write did not succeed, we will do all the roll-forward 12131 * operations, but we will not take the actions that will allow its 12132 * dependencies to be processed. 12133 */ 12134 static int 12135 handle_written_indirdep(indirdep, bp, bpp, flags) 12136 struct indirdep *indirdep; 12137 struct buf *bp; 12138 struct buf **bpp; 12139 int flags; 12140 { 12141 struct allocindir *aip; 12142 struct buf *sbp; 12143 int chgs; 12144 12145 if (indirdep->ir_state & GOINGAWAY) 12146 panic("handle_written_indirdep: indirdep gone"); 12147 if ((indirdep->ir_state & IOSTARTED) == 0) 12148 panic("handle_written_indirdep: IO not started"); 12149 chgs = 0; 12150 /* 12151 * If there were rollbacks revert them here. 12152 */ 12153 if (indirdep->ir_saveddata) { 12154 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 12155 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12156 free(indirdep->ir_saveddata, M_INDIRDEP); 12157 indirdep->ir_saveddata = NULL; 12158 } 12159 chgs = 1; 12160 } 12161 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 12162 indirdep->ir_state |= ATTACHED; 12163 /* 12164 * If the write did not succeed, we have done all the roll-forward 12165 * operations, but we cannot take the actions that will allow its 12166 * dependencies to be processed. 12167 */ 12168 if ((flags & WRITESUCCEEDED) == 0) { 12169 stat_indir_blk_ptrs++; 12170 bdirty(bp); 12171 return (1); 12172 } 12173 /* 12174 * Move allocindirs with written pointers to the completehd if 12175 * the indirdep's pointer is not yet written. Otherwise 12176 * free them here. 12177 */ 12178 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 12179 LIST_REMOVE(aip, ai_next); 12180 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 12181 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 12182 ai_next); 12183 newblk_freefrag(&aip->ai_block); 12184 continue; 12185 } 12186 free_newblk(&aip->ai_block); 12187 } 12188 /* 12189 * Move allocindirs that have finished dependency processing from 12190 * the done list to the write list after updating the pointers. 12191 */ 12192 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12193 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 12194 handle_allocindir_partdone(aip); 12195 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 12196 panic("disk_write_complete: not gone"); 12197 chgs = 1; 12198 } 12199 } 12200 /* 12201 * Preserve the indirdep if there were any changes or if it is not 12202 * yet valid on disk. 12203 */ 12204 if (chgs) { 12205 stat_indir_blk_ptrs++; 12206 bdirty(bp); 12207 return (1); 12208 } 12209 /* 12210 * If there were no changes we can discard the savedbp and detach 12211 * ourselves from the buf. We are only carrying completed pointers 12212 * in this case. 12213 */ 12214 sbp = indirdep->ir_savebp; 12215 sbp->b_flags |= B_INVAL | B_NOCACHE; 12216 indirdep->ir_savebp = NULL; 12217 indirdep->ir_bp = NULL; 12218 if (*bpp != NULL) 12219 panic("handle_written_indirdep: bp already exists."); 12220 *bpp = sbp; 12221 /* 12222 * The indirdep may not be freed until its parent points at it. 12223 */ 12224 if (indirdep->ir_state & DEPCOMPLETE) 12225 free_indirdep(indirdep); 12226 12227 return (0); 12228 } 12229 12230 /* 12231 * Process a diradd entry after its dependent inode has been written. 12232 */ 12233 static void 12234 diradd_inode_written(dap, inodedep) 12235 struct diradd *dap; 12236 struct inodedep *inodedep; 12237 { 12238 12239 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12240 dap->da_state |= COMPLETE; 12241 complete_diradd(dap); 12242 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12243 } 12244 12245 /* 12246 * Returns true if the bmsafemap will have rollbacks when written. Must only 12247 * be called with the per-filesystem lock and the buf lock on the cg held. 12248 */ 12249 static int 12250 bmsafemap_backgroundwrite(bmsafemap, bp) 12251 struct bmsafemap *bmsafemap; 12252 struct buf *bp; 12253 { 12254 int dirty; 12255 12256 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12257 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12258 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12259 /* 12260 * If we're initiating a background write we need to process the 12261 * rollbacks as they exist now, not as they exist when IO starts. 12262 * No other consumers will look at the contents of the shadowed 12263 * buf so this is safe to do here. 12264 */ 12265 if (bp->b_xflags & BX_BKGRDMARKER) 12266 initiate_write_bmsafemap(bmsafemap, bp); 12267 12268 return (dirty); 12269 } 12270 12271 /* 12272 * Re-apply an allocation when a cg write is complete. 12273 */ 12274 static int 12275 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 12276 struct jnewblk *jnewblk; 12277 struct fs *fs; 12278 struct cg *cgp; 12279 uint8_t *blksfree; 12280 { 12281 ufs1_daddr_t fragno; 12282 ufs2_daddr_t blkno; 12283 long cgbno, bbase; 12284 int frags, blk; 12285 int i; 12286 12287 frags = 0; 12288 cgbno = dtogd(fs, jnewblk->jn_blkno); 12289 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12290 if (isclr(blksfree, cgbno + i)) 12291 panic("jnewblk_rollforward: re-allocated fragment"); 12292 frags++; 12293 } 12294 if (frags == fs->fs_frag) { 12295 blkno = fragstoblks(fs, cgbno); 12296 ffs_clrblock(fs, blksfree, (long)blkno); 12297 ffs_clusteracct(fs, cgp, blkno, -1); 12298 cgp->cg_cs.cs_nbfree--; 12299 } else { 12300 bbase = cgbno - fragnum(fs, cgbno); 12301 cgbno += jnewblk->jn_oldfrags; 12302 /* If a complete block had been reassembled, account for it. */ 12303 fragno = fragstoblks(fs, bbase); 12304 if (ffs_isblock(fs, blksfree, fragno)) { 12305 cgp->cg_cs.cs_nffree += fs->fs_frag; 12306 ffs_clusteracct(fs, cgp, fragno, -1); 12307 cgp->cg_cs.cs_nbfree--; 12308 } 12309 /* Decrement the old frags. */ 12310 blk = blkmap(fs, blksfree, bbase); 12311 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12312 /* Allocate the fragment */ 12313 for (i = 0; i < frags; i++) 12314 clrbit(blksfree, cgbno + i); 12315 cgp->cg_cs.cs_nffree -= frags; 12316 /* Add back in counts associated with the new frags */ 12317 blk = blkmap(fs, blksfree, bbase); 12318 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12319 } 12320 return (frags); 12321 } 12322 12323 /* 12324 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12325 * changes if it's not a background write. Set all written dependencies 12326 * to DEPCOMPLETE and free the structure if possible. 12327 * 12328 * If the write did not succeed, we will do all the roll-forward 12329 * operations, but we will not take the actions that will allow its 12330 * dependencies to be processed. 12331 */ 12332 static int 12333 handle_written_bmsafemap(bmsafemap, bp, flags) 12334 struct bmsafemap *bmsafemap; 12335 struct buf *bp; 12336 int flags; 12337 { 12338 struct newblk *newblk; 12339 struct inodedep *inodedep; 12340 struct jaddref *jaddref, *jatmp; 12341 struct jnewblk *jnewblk, *jntmp; 12342 struct ufsmount *ump; 12343 uint8_t *inosused; 12344 uint8_t *blksfree; 12345 struct cg *cgp; 12346 struct fs *fs; 12347 ino_t ino; 12348 int foreground; 12349 int chgs; 12350 12351 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12352 panic("handle_written_bmsafemap: Not started\n"); 12353 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12354 chgs = 0; 12355 bmsafemap->sm_state &= ~IOSTARTED; 12356 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12357 /* 12358 * If write was successful, release journal work that was waiting 12359 * on the write. Otherwise move the work back. 12360 */ 12361 if (flags & WRITESUCCEEDED) 12362 handle_jwork(&bmsafemap->sm_freewr); 12363 else 12364 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12365 worklist, wk_list); 12366 12367 /* 12368 * Restore unwritten inode allocation pending jaddref writes. 12369 */ 12370 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12371 cgp = (struct cg *)bp->b_data; 12372 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12373 inosused = cg_inosused(cgp); 12374 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12375 ja_bmdeps, jatmp) { 12376 if ((jaddref->ja_state & UNDONE) == 0) 12377 continue; 12378 ino = jaddref->ja_ino % fs->fs_ipg; 12379 if (isset(inosused, ino)) 12380 panic("handle_written_bmsafemap: " 12381 "re-allocated inode"); 12382 /* Do the roll-forward only if it's a real copy. */ 12383 if (foreground) { 12384 if ((jaddref->ja_mode & IFMT) == IFDIR) 12385 cgp->cg_cs.cs_ndir++; 12386 cgp->cg_cs.cs_nifree--; 12387 setbit(inosused, ino); 12388 chgs = 1; 12389 } 12390 jaddref->ja_state &= ~UNDONE; 12391 jaddref->ja_state |= ATTACHED; 12392 free_jaddref(jaddref); 12393 } 12394 } 12395 /* 12396 * Restore any block allocations which are pending journal writes. 12397 */ 12398 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12399 cgp = (struct cg *)bp->b_data; 12400 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12401 blksfree = cg_blksfree(cgp); 12402 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12403 jntmp) { 12404 if ((jnewblk->jn_state & UNDONE) == 0) 12405 continue; 12406 /* Do the roll-forward only if it's a real copy. */ 12407 if (foreground && 12408 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12409 chgs = 1; 12410 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12411 jnewblk->jn_state |= ATTACHED; 12412 free_jnewblk(jnewblk); 12413 } 12414 } 12415 /* 12416 * If the write did not succeed, we have done all the roll-forward 12417 * operations, but we cannot take the actions that will allow its 12418 * dependencies to be processed. 12419 */ 12420 if ((flags & WRITESUCCEEDED) == 0) { 12421 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12422 newblk, nb_deps); 12423 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12424 worklist, wk_list); 12425 if (foreground) 12426 bdirty(bp); 12427 return (1); 12428 } 12429 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12430 newblk->nb_state |= DEPCOMPLETE; 12431 newblk->nb_state &= ~ONDEPLIST; 12432 newblk->nb_bmsafemap = NULL; 12433 LIST_REMOVE(newblk, nb_deps); 12434 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12435 handle_allocdirect_partdone( 12436 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12437 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12438 handle_allocindir_partdone( 12439 WK_ALLOCINDIR(&newblk->nb_list)); 12440 else if (newblk->nb_list.wk_type != D_NEWBLK) 12441 panic("handle_written_bmsafemap: Unexpected type: %s", 12442 TYPENAME(newblk->nb_list.wk_type)); 12443 } 12444 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12445 inodedep->id_state |= DEPCOMPLETE; 12446 inodedep->id_state &= ~ONDEPLIST; 12447 LIST_REMOVE(inodedep, id_deps); 12448 inodedep->id_bmsafemap = NULL; 12449 } 12450 LIST_REMOVE(bmsafemap, sm_next); 12451 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12452 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12453 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12454 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12455 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12456 LIST_REMOVE(bmsafemap, sm_hash); 12457 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12458 return (0); 12459 } 12460 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12461 if (foreground) 12462 bdirty(bp); 12463 return (1); 12464 } 12465 12466 /* 12467 * Try to free a mkdir dependency. 12468 */ 12469 static void 12470 complete_mkdir(mkdir) 12471 struct mkdir *mkdir; 12472 { 12473 struct diradd *dap; 12474 12475 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12476 return; 12477 LIST_REMOVE(mkdir, md_mkdirs); 12478 dap = mkdir->md_diradd; 12479 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12480 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12481 dap->da_state |= DEPCOMPLETE; 12482 complete_diradd(dap); 12483 } 12484 WORKITEM_FREE(mkdir, D_MKDIR); 12485 } 12486 12487 /* 12488 * Handle the completion of a mkdir dependency. 12489 */ 12490 static void 12491 handle_written_mkdir(mkdir, type) 12492 struct mkdir *mkdir; 12493 int type; 12494 { 12495 12496 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12497 panic("handle_written_mkdir: bad type"); 12498 mkdir->md_state |= COMPLETE; 12499 complete_mkdir(mkdir); 12500 } 12501 12502 static int 12503 free_pagedep(pagedep) 12504 struct pagedep *pagedep; 12505 { 12506 int i; 12507 12508 if (pagedep->pd_state & NEWBLOCK) 12509 return (0); 12510 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12511 return (0); 12512 for (i = 0; i < DAHASHSZ; i++) 12513 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12514 return (0); 12515 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12516 return (0); 12517 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12518 return (0); 12519 if (pagedep->pd_state & ONWORKLIST) 12520 WORKLIST_REMOVE(&pagedep->pd_list); 12521 LIST_REMOVE(pagedep, pd_hash); 12522 WORKITEM_FREE(pagedep, D_PAGEDEP); 12523 12524 return (1); 12525 } 12526 12527 /* 12528 * Called from within softdep_disk_write_complete above. 12529 * A write operation was just completed. Removed inodes can 12530 * now be freed and associated block pointers may be committed. 12531 * Note that this routine is always called from interrupt level 12532 * with further interrupts from this device blocked. 12533 * 12534 * If the write did not succeed, we will do all the roll-forward 12535 * operations, but we will not take the actions that will allow its 12536 * dependencies to be processed. 12537 */ 12538 static int 12539 handle_written_filepage(pagedep, bp, flags) 12540 struct pagedep *pagedep; 12541 struct buf *bp; /* buffer containing the written page */ 12542 int flags; 12543 { 12544 struct dirrem *dirrem; 12545 struct diradd *dap, *nextdap; 12546 struct direct *ep; 12547 int i, chgs; 12548 12549 if ((pagedep->pd_state & IOSTARTED) == 0) 12550 panic("handle_written_filepage: not started"); 12551 pagedep->pd_state &= ~IOSTARTED; 12552 if ((flags & WRITESUCCEEDED) == 0) 12553 goto rollforward; 12554 /* 12555 * Process any directory removals that have been committed. 12556 */ 12557 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12558 LIST_REMOVE(dirrem, dm_next); 12559 dirrem->dm_state |= COMPLETE; 12560 dirrem->dm_dirinum = pagedep->pd_ino; 12561 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12562 ("handle_written_filepage: Journal entries not written.")); 12563 add_to_worklist(&dirrem->dm_list, 0); 12564 } 12565 /* 12566 * Free any directory additions that have been committed. 12567 * If it is a newly allocated block, we have to wait until 12568 * the on-disk directory inode claims the new block. 12569 */ 12570 if ((pagedep->pd_state & NEWBLOCK) == 0) 12571 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12572 free_diradd(dap, NULL); 12573 rollforward: 12574 /* 12575 * Uncommitted directory entries must be restored. 12576 */ 12577 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12578 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12579 dap = nextdap) { 12580 nextdap = LIST_NEXT(dap, da_pdlist); 12581 if (dap->da_state & ATTACHED) 12582 panic("handle_written_filepage: attached"); 12583 ep = (struct direct *) 12584 ((char *)bp->b_data + dap->da_offset); 12585 ep->d_ino = dap->da_newinum; 12586 dap->da_state &= ~UNDONE; 12587 dap->da_state |= ATTACHED; 12588 chgs = 1; 12589 /* 12590 * If the inode referenced by the directory has 12591 * been written out, then the dependency can be 12592 * moved to the pending list. 12593 */ 12594 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12595 LIST_REMOVE(dap, da_pdlist); 12596 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12597 da_pdlist); 12598 } 12599 } 12600 } 12601 /* 12602 * If there were any rollbacks in the directory, then it must be 12603 * marked dirty so that its will eventually get written back in 12604 * its correct form. 12605 */ 12606 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12607 if ((bp->b_flags & B_DELWRI) == 0) 12608 stat_dir_entry++; 12609 bdirty(bp); 12610 return (1); 12611 } 12612 /* 12613 * If we are not waiting for a new directory block to be 12614 * claimed by its inode, then the pagedep will be freed. 12615 * Otherwise it will remain to track any new entries on 12616 * the page in case they are fsync'ed. 12617 */ 12618 free_pagedep(pagedep); 12619 return (0); 12620 } 12621 12622 /* 12623 * Writing back in-core inode structures. 12624 * 12625 * The filesystem only accesses an inode's contents when it occupies an 12626 * "in-core" inode structure. These "in-core" structures are separate from 12627 * the page frames used to cache inode blocks. Only the latter are 12628 * transferred to/from the disk. So, when the updated contents of the 12629 * "in-core" inode structure are copied to the corresponding in-memory inode 12630 * block, the dependencies are also transferred. The following procedure is 12631 * called when copying a dirty "in-core" inode to a cached inode block. 12632 */ 12633 12634 /* 12635 * Called when an inode is loaded from disk. If the effective link count 12636 * differed from the actual link count when it was last flushed, then we 12637 * need to ensure that the correct effective link count is put back. 12638 */ 12639 void 12640 softdep_load_inodeblock(ip) 12641 struct inode *ip; /* the "in_core" copy of the inode */ 12642 { 12643 struct inodedep *inodedep; 12644 struct ufsmount *ump; 12645 12646 ump = ITOUMP(ip); 12647 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12648 ("softdep_load_inodeblock called on non-softdep filesystem")); 12649 /* 12650 * Check for alternate nlink count. 12651 */ 12652 ip->i_effnlink = ip->i_nlink; 12653 ACQUIRE_LOCK(ump); 12654 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12655 FREE_LOCK(ump); 12656 return; 12657 } 12658 if (ip->i_nlink != inodedep->id_nlinkwrote && 12659 inodedep->id_nlinkwrote != -1) { 12660 KASSERT(ip->i_nlink == 0 && 12661 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12662 ("read bad i_nlink value")); 12663 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12664 } 12665 ip->i_effnlink -= inodedep->id_nlinkdelta; 12666 KASSERT(ip->i_effnlink >= 0, 12667 ("softdep_load_inodeblock: negative i_effnlink")); 12668 FREE_LOCK(ump); 12669 } 12670 12671 /* 12672 * This routine is called just before the "in-core" inode 12673 * information is to be copied to the in-memory inode block. 12674 * Recall that an inode block contains several inodes. If 12675 * the force flag is set, then the dependencies will be 12676 * cleared so that the update can always be made. Note that 12677 * the buffer is locked when this routine is called, so we 12678 * will never be in the middle of writing the inode block 12679 * to disk. 12680 */ 12681 void 12682 softdep_update_inodeblock(ip, bp, waitfor) 12683 struct inode *ip; /* the "in_core" copy of the inode */ 12684 struct buf *bp; /* the buffer containing the inode block */ 12685 int waitfor; /* nonzero => update must be allowed */ 12686 { 12687 struct inodedep *inodedep; 12688 struct inoref *inoref; 12689 struct ufsmount *ump; 12690 struct worklist *wk; 12691 struct mount *mp; 12692 struct buf *ibp; 12693 struct fs *fs; 12694 int error; 12695 12696 ump = ITOUMP(ip); 12697 mp = UFSTOVFS(ump); 12698 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12699 ("softdep_update_inodeblock called on non-softdep filesystem")); 12700 fs = ump->um_fs; 12701 /* 12702 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12703 * does not have access to the in-core ip so must write directly into 12704 * the inode block buffer when setting freelink. 12705 */ 12706 if (fs->fs_magic == FS_UFS1_MAGIC) 12707 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12708 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12709 else 12710 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12711 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12712 /* 12713 * If the effective link count is not equal to the actual link 12714 * count, then we must track the difference in an inodedep while 12715 * the inode is (potentially) tossed out of the cache. Otherwise, 12716 * if there is no existing inodedep, then there are no dependencies 12717 * to track. 12718 */ 12719 ACQUIRE_LOCK(ump); 12720 again: 12721 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12722 FREE_LOCK(ump); 12723 if (ip->i_effnlink != ip->i_nlink) 12724 panic("softdep_update_inodeblock: bad link count"); 12725 return; 12726 } 12727 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12728 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12729 "inodedep %p id_nlinkdelta %jd", 12730 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12731 inodedep->id_nlinkwrote = ip->i_nlink; 12732 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12733 panic("softdep_update_inodeblock: bad delta"); 12734 /* 12735 * If we're flushing all dependencies we must also move any waiting 12736 * for journal writes onto the bufwait list prior to I/O. 12737 */ 12738 if (waitfor) { 12739 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12740 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12741 == DEPCOMPLETE) { 12742 jwait(&inoref->if_list, MNT_WAIT); 12743 goto again; 12744 } 12745 } 12746 } 12747 /* 12748 * Changes have been initiated. Anything depending on these 12749 * changes cannot occur until this inode has been written. 12750 */ 12751 inodedep->id_state &= ~COMPLETE; 12752 if ((inodedep->id_state & ONWORKLIST) == 0) 12753 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12754 /* 12755 * Any new dependencies associated with the incore inode must 12756 * now be moved to the list associated with the buffer holding 12757 * the in-memory copy of the inode. Once merged process any 12758 * allocdirects that are completed by the merger. 12759 */ 12760 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12761 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12762 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12763 NULL); 12764 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12765 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12766 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12767 NULL); 12768 /* 12769 * Now that the inode has been pushed into the buffer, the 12770 * operations dependent on the inode being written to disk 12771 * can be moved to the id_bufwait so that they will be 12772 * processed when the buffer I/O completes. 12773 */ 12774 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12775 WORKLIST_REMOVE(wk); 12776 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12777 } 12778 /* 12779 * Newly allocated inodes cannot be written until the bitmap 12780 * that allocates them have been written (indicated by 12781 * DEPCOMPLETE being set in id_state). If we are doing a 12782 * forced sync (e.g., an fsync on a file), we force the bitmap 12783 * to be written so that the update can be done. 12784 */ 12785 if (waitfor == 0) { 12786 FREE_LOCK(ump); 12787 return; 12788 } 12789 retry: 12790 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12791 FREE_LOCK(ump); 12792 return; 12793 } 12794 ibp = inodedep->id_bmsafemap->sm_buf; 12795 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12796 if (ibp == NULL) { 12797 /* 12798 * If ibp came back as NULL, the dependency could have been 12799 * freed while we slept. Look it up again, and check to see 12800 * that it has completed. 12801 */ 12802 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12803 goto retry; 12804 FREE_LOCK(ump); 12805 return; 12806 } 12807 FREE_LOCK(ump); 12808 if ((error = bwrite(ibp)) != 0) 12809 softdep_error("softdep_update_inodeblock: bwrite", error); 12810 } 12811 12812 /* 12813 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12814 * old inode dependency list (such as id_inoupdt). 12815 */ 12816 static void 12817 merge_inode_lists(newlisthead, oldlisthead) 12818 struct allocdirectlst *newlisthead; 12819 struct allocdirectlst *oldlisthead; 12820 { 12821 struct allocdirect *listadp, *newadp; 12822 12823 newadp = TAILQ_FIRST(newlisthead); 12824 if (newadp != NULL) 12825 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12826 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12827 if (listadp->ad_offset < newadp->ad_offset) { 12828 listadp = TAILQ_NEXT(listadp, ad_next); 12829 continue; 12830 } 12831 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12832 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12833 if (listadp->ad_offset == newadp->ad_offset) { 12834 allocdirect_merge(oldlisthead, newadp, 12835 listadp); 12836 listadp = newadp; 12837 } 12838 newadp = TAILQ_FIRST(newlisthead); 12839 } 12840 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12841 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12842 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12843 } 12844 } 12845 12846 /* 12847 * If we are doing an fsync, then we must ensure that any directory 12848 * entries for the inode have been written after the inode gets to disk. 12849 */ 12850 int 12851 softdep_fsync(vp) 12852 struct vnode *vp; /* the "in_core" copy of the inode */ 12853 { 12854 struct inodedep *inodedep; 12855 struct pagedep *pagedep; 12856 struct inoref *inoref; 12857 struct ufsmount *ump; 12858 struct worklist *wk; 12859 struct diradd *dap; 12860 struct mount *mp; 12861 struct vnode *pvp; 12862 struct inode *ip; 12863 struct buf *bp; 12864 struct fs *fs; 12865 struct thread *td = curthread; 12866 int error, flushparent, pagedep_new_block; 12867 ino_t parentino; 12868 ufs_lbn_t lbn; 12869 12870 ip = VTOI(vp); 12871 mp = vp->v_mount; 12872 ump = VFSTOUFS(mp); 12873 fs = ump->um_fs; 12874 if (MOUNTEDSOFTDEP(mp) == 0) 12875 return (0); 12876 ACQUIRE_LOCK(ump); 12877 restart: 12878 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12879 FREE_LOCK(ump); 12880 return (0); 12881 } 12882 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12883 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12884 == DEPCOMPLETE) { 12885 jwait(&inoref->if_list, MNT_WAIT); 12886 goto restart; 12887 } 12888 } 12889 if (!LIST_EMPTY(&inodedep->id_inowait) || 12890 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12891 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12892 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12893 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12894 panic("softdep_fsync: pending ops %p", inodedep); 12895 for (error = 0, flushparent = 0; ; ) { 12896 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12897 break; 12898 if (wk->wk_type != D_DIRADD) 12899 panic("softdep_fsync: Unexpected type %s", 12900 TYPENAME(wk->wk_type)); 12901 dap = WK_DIRADD(wk); 12902 /* 12903 * Flush our parent if this directory entry has a MKDIR_PARENT 12904 * dependency or is contained in a newly allocated block. 12905 */ 12906 if (dap->da_state & DIRCHG) 12907 pagedep = dap->da_previous->dm_pagedep; 12908 else 12909 pagedep = dap->da_pagedep; 12910 parentino = pagedep->pd_ino; 12911 lbn = pagedep->pd_lbn; 12912 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12913 panic("softdep_fsync: dirty"); 12914 if ((dap->da_state & MKDIR_PARENT) || 12915 (pagedep->pd_state & NEWBLOCK)) 12916 flushparent = 1; 12917 else 12918 flushparent = 0; 12919 /* 12920 * If we are being fsync'ed as part of vgone'ing this vnode, 12921 * then we will not be able to release and recover the 12922 * vnode below, so we just have to give up on writing its 12923 * directory entry out. It will eventually be written, just 12924 * not now, but then the user was not asking to have it 12925 * written, so we are not breaking any promises. 12926 */ 12927 if (VN_IS_DOOMED(vp)) 12928 break; 12929 /* 12930 * We prevent deadlock by always fetching inodes from the 12931 * root, moving down the directory tree. Thus, when fetching 12932 * our parent directory, we first try to get the lock. If 12933 * that fails, we must unlock ourselves before requesting 12934 * the lock on our parent. See the comment in ufs_lookup 12935 * for details on possible races. 12936 */ 12937 FREE_LOCK(ump); 12938 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12939 &pvp); 12940 if (error == ERELOOKUP) 12941 error = 0; 12942 if (error != 0) 12943 return (error); 12944 /* 12945 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12946 * that are contained in direct blocks will be resolved by 12947 * doing a ffs_update. Pagedeps contained in indirect blocks 12948 * may require a complete sync'ing of the directory. So, we 12949 * try the cheap and fast ffs_update first, and if that fails, 12950 * then we do the slower ffs_syncvnode of the directory. 12951 */ 12952 if (flushparent) { 12953 int locked; 12954 12955 if ((error = ffs_update(pvp, 1)) != 0) { 12956 vput(pvp); 12957 return (error); 12958 } 12959 ACQUIRE_LOCK(ump); 12960 locked = 1; 12961 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12962 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12963 if (wk->wk_type != D_DIRADD) 12964 panic("softdep_fsync: Unexpected type %s", 12965 TYPENAME(wk->wk_type)); 12966 dap = WK_DIRADD(wk); 12967 if (dap->da_state & DIRCHG) 12968 pagedep = dap->da_previous->dm_pagedep; 12969 else 12970 pagedep = dap->da_pagedep; 12971 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12972 FREE_LOCK(ump); 12973 locked = 0; 12974 if (pagedep_new_block && (error = 12975 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12976 vput(pvp); 12977 return (error); 12978 } 12979 } 12980 } 12981 if (locked) 12982 FREE_LOCK(ump); 12983 } 12984 /* 12985 * Flush directory page containing the inode's name. 12986 */ 12987 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12988 &bp); 12989 if (error == 0) 12990 error = bwrite(bp); 12991 else 12992 brelse(bp); 12993 vput(pvp); 12994 if (!ffs_fsfail_cleanup(ump, error)) 12995 return (error); 12996 ACQUIRE_LOCK(ump); 12997 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12998 break; 12999 } 13000 FREE_LOCK(ump); 13001 return (0); 13002 } 13003 13004 /* 13005 * Flush all the dirty bitmaps associated with the block device 13006 * before flushing the rest of the dirty blocks so as to reduce 13007 * the number of dependencies that will have to be rolled back. 13008 * 13009 * XXX Unused? 13010 */ 13011 void 13012 softdep_fsync_mountdev(vp) 13013 struct vnode *vp; 13014 { 13015 struct buf *bp, *nbp; 13016 struct worklist *wk; 13017 struct bufobj *bo; 13018 13019 if (!vn_isdisk(vp)) 13020 panic("softdep_fsync_mountdev: vnode not a disk"); 13021 bo = &vp->v_bufobj; 13022 restart: 13023 BO_LOCK(bo); 13024 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 13025 /* 13026 * If it is already scheduled, skip to the next buffer. 13027 */ 13028 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 13029 continue; 13030 13031 if ((bp->b_flags & B_DELWRI) == 0) 13032 panic("softdep_fsync_mountdev: not dirty"); 13033 /* 13034 * We are only interested in bitmaps with outstanding 13035 * dependencies. 13036 */ 13037 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 13038 wk->wk_type != D_BMSAFEMAP || 13039 (bp->b_vflags & BV_BKGRDINPROG)) { 13040 BUF_UNLOCK(bp); 13041 continue; 13042 } 13043 BO_UNLOCK(bo); 13044 bremfree(bp); 13045 (void) bawrite(bp); 13046 goto restart; 13047 } 13048 drain_output(vp); 13049 BO_UNLOCK(bo); 13050 } 13051 13052 /* 13053 * Sync all cylinder groups that were dirty at the time this function is 13054 * called. Newly dirtied cgs will be inserted before the sentinel. This 13055 * is used to flush freedep activity that may be holding up writes to a 13056 * indirect block. 13057 */ 13058 static int 13059 sync_cgs(mp, waitfor) 13060 struct mount *mp; 13061 int waitfor; 13062 { 13063 struct bmsafemap *bmsafemap; 13064 struct bmsafemap *sentinel; 13065 struct ufsmount *ump; 13066 struct buf *bp; 13067 int error; 13068 13069 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 13070 sentinel->sm_cg = -1; 13071 ump = VFSTOUFS(mp); 13072 error = 0; 13073 ACQUIRE_LOCK(ump); 13074 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 13075 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 13076 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 13077 /* Skip sentinels and cgs with no work to release. */ 13078 if (bmsafemap->sm_cg == -1 || 13079 (LIST_EMPTY(&bmsafemap->sm_freehd) && 13080 LIST_EMPTY(&bmsafemap->sm_freewr))) { 13081 LIST_REMOVE(sentinel, sm_next); 13082 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13083 continue; 13084 } 13085 /* 13086 * If we don't get the lock and we're waiting try again, if 13087 * not move on to the next buf and try to sync it. 13088 */ 13089 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 13090 if (bp == NULL && waitfor == MNT_WAIT) 13091 continue; 13092 LIST_REMOVE(sentinel, sm_next); 13093 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13094 if (bp == NULL) 13095 continue; 13096 FREE_LOCK(ump); 13097 if (waitfor == MNT_NOWAIT) 13098 bawrite(bp); 13099 else 13100 error = bwrite(bp); 13101 ACQUIRE_LOCK(ump); 13102 if (error) 13103 break; 13104 } 13105 LIST_REMOVE(sentinel, sm_next); 13106 FREE_LOCK(ump); 13107 free(sentinel, M_BMSAFEMAP); 13108 return (error); 13109 } 13110 13111 /* 13112 * This routine is called when we are trying to synchronously flush a 13113 * file. This routine must eliminate any filesystem metadata dependencies 13114 * so that the syncing routine can succeed. 13115 */ 13116 int 13117 softdep_sync_metadata(struct vnode *vp) 13118 { 13119 struct inode *ip; 13120 int error; 13121 13122 ip = VTOI(vp); 13123 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13124 ("softdep_sync_metadata called on non-softdep filesystem")); 13125 /* 13126 * Ensure that any direct block dependencies have been cleared, 13127 * truncations are started, and inode references are journaled. 13128 */ 13129 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 13130 /* 13131 * Write all journal records to prevent rollbacks on devvp. 13132 */ 13133 if (vp->v_type == VCHR) 13134 softdep_flushjournal(vp->v_mount); 13135 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 13136 /* 13137 * Ensure that all truncates are written so we won't find deps on 13138 * indirect blocks. 13139 */ 13140 process_truncates(vp); 13141 FREE_LOCK(VFSTOUFS(vp->v_mount)); 13142 13143 return (error); 13144 } 13145 13146 /* 13147 * This routine is called when we are attempting to sync a buf with 13148 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 13149 * other IO it can but returns EBUSY if the buffer is not yet able to 13150 * be written. Dependencies which will not cause rollbacks will always 13151 * return 0. 13152 */ 13153 int 13154 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 13155 { 13156 struct indirdep *indirdep; 13157 struct pagedep *pagedep; 13158 struct allocindir *aip; 13159 struct newblk *newblk; 13160 struct ufsmount *ump; 13161 struct buf *nbp; 13162 struct worklist *wk; 13163 int i, error; 13164 13165 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13166 ("softdep_sync_buf called on non-softdep filesystem")); 13167 /* 13168 * For VCHR we just don't want to force flush any dependencies that 13169 * will cause rollbacks. 13170 */ 13171 if (vp->v_type == VCHR) { 13172 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 13173 return (EBUSY); 13174 return (0); 13175 } 13176 ump = VFSTOUFS(vp->v_mount); 13177 ACQUIRE_LOCK(ump); 13178 /* 13179 * As we hold the buffer locked, none of its dependencies 13180 * will disappear. 13181 */ 13182 error = 0; 13183 top: 13184 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13185 switch (wk->wk_type) { 13186 case D_ALLOCDIRECT: 13187 case D_ALLOCINDIR: 13188 newblk = WK_NEWBLK(wk); 13189 if (newblk->nb_jnewblk != NULL) { 13190 if (waitfor == MNT_NOWAIT) { 13191 error = EBUSY; 13192 goto out_unlock; 13193 } 13194 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 13195 goto top; 13196 } 13197 if (newblk->nb_state & DEPCOMPLETE || 13198 waitfor == MNT_NOWAIT) 13199 continue; 13200 nbp = newblk->nb_bmsafemap->sm_buf; 13201 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13202 if (nbp == NULL) 13203 goto top; 13204 FREE_LOCK(ump); 13205 if ((error = bwrite(nbp)) != 0) 13206 goto out; 13207 ACQUIRE_LOCK(ump); 13208 continue; 13209 13210 case D_INDIRDEP: 13211 indirdep = WK_INDIRDEP(wk); 13212 if (waitfor == MNT_NOWAIT) { 13213 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 13214 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13215 error = EBUSY; 13216 goto out_unlock; 13217 } 13218 } 13219 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13220 panic("softdep_sync_buf: truncation pending."); 13221 restart: 13222 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13223 newblk = (struct newblk *)aip; 13224 if (newblk->nb_jnewblk != NULL) { 13225 jwait(&newblk->nb_jnewblk->jn_list, 13226 waitfor); 13227 goto restart; 13228 } 13229 if (newblk->nb_state & DEPCOMPLETE) 13230 continue; 13231 nbp = newblk->nb_bmsafemap->sm_buf; 13232 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13233 if (nbp == NULL) 13234 goto restart; 13235 FREE_LOCK(ump); 13236 if ((error = bwrite(nbp)) != 0) 13237 goto out; 13238 ACQUIRE_LOCK(ump); 13239 goto restart; 13240 } 13241 continue; 13242 13243 case D_PAGEDEP: 13244 /* 13245 * Only flush directory entries in synchronous passes. 13246 */ 13247 if (waitfor != MNT_WAIT) { 13248 error = EBUSY; 13249 goto out_unlock; 13250 } 13251 /* 13252 * While syncing snapshots, we must allow recursive 13253 * lookups. 13254 */ 13255 BUF_AREC(bp); 13256 /* 13257 * We are trying to sync a directory that may 13258 * have dependencies on both its own metadata 13259 * and/or dependencies on the inodes of any 13260 * recently allocated files. We walk its diradd 13261 * lists pushing out the associated inode. 13262 */ 13263 pagedep = WK_PAGEDEP(wk); 13264 for (i = 0; i < DAHASHSZ; i++) { 13265 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13266 continue; 13267 error = flush_pagedep_deps(vp, wk->wk_mp, 13268 &pagedep->pd_diraddhd[i], bp); 13269 if (error != 0) { 13270 if (error != ERELOOKUP) 13271 BUF_NOREC(bp); 13272 goto out_unlock; 13273 } 13274 } 13275 BUF_NOREC(bp); 13276 continue; 13277 13278 case D_FREEWORK: 13279 case D_FREEDEP: 13280 case D_JSEGDEP: 13281 case D_JNEWBLK: 13282 continue; 13283 13284 default: 13285 panic("softdep_sync_buf: Unknown type %s", 13286 TYPENAME(wk->wk_type)); 13287 /* NOTREACHED */ 13288 } 13289 } 13290 out_unlock: 13291 FREE_LOCK(ump); 13292 out: 13293 return (error); 13294 } 13295 13296 /* 13297 * Flush the dependencies associated with an inodedep. 13298 */ 13299 static int 13300 flush_inodedep_deps(vp, mp, ino) 13301 struct vnode *vp; 13302 struct mount *mp; 13303 ino_t ino; 13304 { 13305 struct inodedep *inodedep; 13306 struct inoref *inoref; 13307 struct ufsmount *ump; 13308 int error, waitfor; 13309 13310 /* 13311 * This work is done in two passes. The first pass grabs most 13312 * of the buffers and begins asynchronously writing them. The 13313 * only way to wait for these asynchronous writes is to sleep 13314 * on the filesystem vnode which may stay busy for a long time 13315 * if the filesystem is active. So, instead, we make a second 13316 * pass over the dependencies blocking on each write. In the 13317 * usual case we will be blocking against a write that we 13318 * initiated, so when it is done the dependency will have been 13319 * resolved. Thus the second pass is expected to end quickly. 13320 * We give a brief window at the top of the loop to allow 13321 * any pending I/O to complete. 13322 */ 13323 ump = VFSTOUFS(mp); 13324 LOCK_OWNED(ump); 13325 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13326 if (error) 13327 return (error); 13328 FREE_LOCK(ump); 13329 ACQUIRE_LOCK(ump); 13330 restart: 13331 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13332 return (0); 13333 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13334 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13335 == DEPCOMPLETE) { 13336 jwait(&inoref->if_list, MNT_WAIT); 13337 goto restart; 13338 } 13339 } 13340 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13341 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13342 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13343 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13344 continue; 13345 /* 13346 * If pass2, we are done, otherwise do pass 2. 13347 */ 13348 if (waitfor == MNT_WAIT) 13349 break; 13350 waitfor = MNT_WAIT; 13351 } 13352 /* 13353 * Try freeing inodedep in case all dependencies have been removed. 13354 */ 13355 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13356 (void) free_inodedep(inodedep); 13357 return (0); 13358 } 13359 13360 /* 13361 * Flush an inode dependency list. 13362 */ 13363 static int 13364 flush_deplist(listhead, waitfor, errorp) 13365 struct allocdirectlst *listhead; 13366 int waitfor; 13367 int *errorp; 13368 { 13369 struct allocdirect *adp; 13370 struct newblk *newblk; 13371 struct ufsmount *ump; 13372 struct buf *bp; 13373 13374 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13375 return (0); 13376 ump = VFSTOUFS(adp->ad_list.wk_mp); 13377 LOCK_OWNED(ump); 13378 TAILQ_FOREACH(adp, listhead, ad_next) { 13379 newblk = (struct newblk *)adp; 13380 if (newblk->nb_jnewblk != NULL) { 13381 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13382 return (1); 13383 } 13384 if (newblk->nb_state & DEPCOMPLETE) 13385 continue; 13386 bp = newblk->nb_bmsafemap->sm_buf; 13387 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13388 if (bp == NULL) { 13389 if (waitfor == MNT_NOWAIT) 13390 continue; 13391 return (1); 13392 } 13393 FREE_LOCK(ump); 13394 if (waitfor == MNT_NOWAIT) 13395 bawrite(bp); 13396 else 13397 *errorp = bwrite(bp); 13398 ACQUIRE_LOCK(ump); 13399 return (1); 13400 } 13401 return (0); 13402 } 13403 13404 /* 13405 * Flush dependencies associated with an allocdirect block. 13406 */ 13407 static int 13408 flush_newblk_dep(vp, mp, lbn) 13409 struct vnode *vp; 13410 struct mount *mp; 13411 ufs_lbn_t lbn; 13412 { 13413 struct newblk *newblk; 13414 struct ufsmount *ump; 13415 struct bufobj *bo; 13416 struct inode *ip; 13417 struct buf *bp; 13418 ufs2_daddr_t blkno; 13419 int error; 13420 13421 error = 0; 13422 bo = &vp->v_bufobj; 13423 ip = VTOI(vp); 13424 blkno = DIP(ip, i_db[lbn]); 13425 if (blkno == 0) 13426 panic("flush_newblk_dep: Missing block"); 13427 ump = VFSTOUFS(mp); 13428 ACQUIRE_LOCK(ump); 13429 /* 13430 * Loop until all dependencies related to this block are satisfied. 13431 * We must be careful to restart after each sleep in case a write 13432 * completes some part of this process for us. 13433 */ 13434 for (;;) { 13435 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13436 FREE_LOCK(ump); 13437 break; 13438 } 13439 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13440 panic("flush_newblk_dep: Bad newblk %p", newblk); 13441 /* 13442 * Flush the journal. 13443 */ 13444 if (newblk->nb_jnewblk != NULL) { 13445 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13446 continue; 13447 } 13448 /* 13449 * Write the bitmap dependency. 13450 */ 13451 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13452 bp = newblk->nb_bmsafemap->sm_buf; 13453 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13454 if (bp == NULL) 13455 continue; 13456 FREE_LOCK(ump); 13457 error = bwrite(bp); 13458 if (error) 13459 break; 13460 ACQUIRE_LOCK(ump); 13461 continue; 13462 } 13463 /* 13464 * Write the buffer. 13465 */ 13466 FREE_LOCK(ump); 13467 BO_LOCK(bo); 13468 bp = gbincore(bo, lbn); 13469 if (bp != NULL) { 13470 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13471 LK_INTERLOCK, BO_LOCKPTR(bo)); 13472 if (error == ENOLCK) { 13473 ACQUIRE_LOCK(ump); 13474 error = 0; 13475 continue; /* Slept, retry */ 13476 } 13477 if (error != 0) 13478 break; /* Failed */ 13479 if (bp->b_flags & B_DELWRI) { 13480 bremfree(bp); 13481 error = bwrite(bp); 13482 if (error) 13483 break; 13484 } else 13485 BUF_UNLOCK(bp); 13486 } else 13487 BO_UNLOCK(bo); 13488 /* 13489 * We have to wait for the direct pointers to 13490 * point at the newdirblk before the dependency 13491 * will go away. 13492 */ 13493 error = ffs_update(vp, 1); 13494 if (error) 13495 break; 13496 ACQUIRE_LOCK(ump); 13497 } 13498 return (error); 13499 } 13500 13501 /* 13502 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13503 */ 13504 static int 13505 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp) 13506 struct vnode *pvp; 13507 struct mount *mp; 13508 struct diraddhd *diraddhdp; 13509 struct buf *locked_bp; 13510 { 13511 struct inodedep *inodedep; 13512 struct inoref *inoref; 13513 struct ufsmount *ump; 13514 struct diradd *dap; 13515 struct vnode *vp; 13516 int error = 0; 13517 struct buf *bp; 13518 ino_t inum; 13519 struct diraddhd unfinished; 13520 13521 LIST_INIT(&unfinished); 13522 ump = VFSTOUFS(mp); 13523 LOCK_OWNED(ump); 13524 restart: 13525 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13526 /* 13527 * Flush ourselves if this directory entry 13528 * has a MKDIR_PARENT dependency. 13529 */ 13530 if (dap->da_state & MKDIR_PARENT) { 13531 FREE_LOCK(ump); 13532 if ((error = ffs_update(pvp, 1)) != 0) 13533 break; 13534 ACQUIRE_LOCK(ump); 13535 /* 13536 * If that cleared dependencies, go on to next. 13537 */ 13538 if (dap != LIST_FIRST(diraddhdp)) 13539 continue; 13540 /* 13541 * All MKDIR_PARENT dependencies and all the 13542 * NEWBLOCK pagedeps that are contained in direct 13543 * blocks were resolved by doing above ffs_update. 13544 * Pagedeps contained in indirect blocks may 13545 * require a complete sync'ing of the directory. 13546 * We are in the midst of doing a complete sync, 13547 * so if they are not resolved in this pass we 13548 * defer them for now as they will be sync'ed by 13549 * our caller shortly. 13550 */ 13551 LIST_REMOVE(dap, da_pdlist); 13552 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13553 continue; 13554 } 13555 /* 13556 * A newly allocated directory must have its "." and 13557 * ".." entries written out before its name can be 13558 * committed in its parent. 13559 */ 13560 inum = dap->da_newinum; 13561 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13562 panic("flush_pagedep_deps: lost inode1"); 13563 /* 13564 * Wait for any pending journal adds to complete so we don't 13565 * cause rollbacks while syncing. 13566 */ 13567 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13568 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13569 == DEPCOMPLETE) { 13570 jwait(&inoref->if_list, MNT_WAIT); 13571 goto restart; 13572 } 13573 } 13574 if (dap->da_state & MKDIR_BODY) { 13575 FREE_LOCK(ump); 13576 error = get_parent_vp(pvp, mp, inum, locked_bp, 13577 diraddhdp, &unfinished, &vp); 13578 if (error != 0) 13579 break; 13580 error = flush_newblk_dep(vp, mp, 0); 13581 /* 13582 * If we still have the dependency we might need to 13583 * update the vnode to sync the new link count to 13584 * disk. 13585 */ 13586 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13587 error = ffs_update(vp, 1); 13588 vput(vp); 13589 if (error != 0) 13590 break; 13591 ACQUIRE_LOCK(ump); 13592 /* 13593 * If that cleared dependencies, go on to next. 13594 */ 13595 if (dap != LIST_FIRST(diraddhdp)) 13596 continue; 13597 if (dap->da_state & MKDIR_BODY) { 13598 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13599 &inodedep); 13600 panic("flush_pagedep_deps: MKDIR_BODY " 13601 "inodedep %p dap %p vp %p", 13602 inodedep, dap, vp); 13603 } 13604 } 13605 /* 13606 * Flush the inode on which the directory entry depends. 13607 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13608 * the only remaining dependency is that the updated inode 13609 * count must get pushed to disk. The inode has already 13610 * been pushed into its inode buffer (via VOP_UPDATE) at 13611 * the time of the reference count change. So we need only 13612 * locate that buffer, ensure that there will be no rollback 13613 * caused by a bitmap dependency, then write the inode buffer. 13614 */ 13615 retry: 13616 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13617 panic("flush_pagedep_deps: lost inode"); 13618 /* 13619 * If the inode still has bitmap dependencies, 13620 * push them to disk. 13621 */ 13622 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13623 bp = inodedep->id_bmsafemap->sm_buf; 13624 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13625 if (bp == NULL) 13626 goto retry; 13627 FREE_LOCK(ump); 13628 if ((error = bwrite(bp)) != 0) 13629 break; 13630 ACQUIRE_LOCK(ump); 13631 if (dap != LIST_FIRST(diraddhdp)) 13632 continue; 13633 } 13634 /* 13635 * If the inode is still sitting in a buffer waiting 13636 * to be written or waiting for the link count to be 13637 * adjusted update it here to flush it to disk. 13638 */ 13639 if (dap == LIST_FIRST(diraddhdp)) { 13640 FREE_LOCK(ump); 13641 error = get_parent_vp(pvp, mp, inum, locked_bp, 13642 diraddhdp, &unfinished, &vp); 13643 if (error != 0) 13644 break; 13645 error = ffs_update(vp, 1); 13646 vput(vp); 13647 if (error) 13648 break; 13649 ACQUIRE_LOCK(ump); 13650 } 13651 /* 13652 * If we have failed to get rid of all the dependencies 13653 * then something is seriously wrong. 13654 */ 13655 if (dap == LIST_FIRST(diraddhdp)) { 13656 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13657 panic("flush_pagedep_deps: failed to flush " 13658 "inodedep %p ino %ju dap %p", 13659 inodedep, (uintmax_t)inum, dap); 13660 } 13661 } 13662 if (error) 13663 ACQUIRE_LOCK(ump); 13664 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13665 LIST_REMOVE(dap, da_pdlist); 13666 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13667 } 13668 return (error); 13669 } 13670 13671 /* 13672 * A large burst of file addition or deletion activity can drive the 13673 * memory load excessively high. First attempt to slow things down 13674 * using the techniques below. If that fails, this routine requests 13675 * the offending operations to fall back to running synchronously 13676 * until the memory load returns to a reasonable level. 13677 */ 13678 int 13679 softdep_slowdown(vp) 13680 struct vnode *vp; 13681 { 13682 struct ufsmount *ump; 13683 int jlow; 13684 int max_softdeps_hard; 13685 13686 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13687 ("softdep_slowdown called on non-softdep filesystem")); 13688 ump = VFSTOUFS(vp->v_mount); 13689 ACQUIRE_LOCK(ump); 13690 jlow = 0; 13691 /* 13692 * Check for journal space if needed. 13693 */ 13694 if (DOINGSUJ(vp)) { 13695 if (journal_space(ump, 0) == 0) 13696 jlow = 1; 13697 } 13698 /* 13699 * If the system is under its limits and our filesystem is 13700 * not responsible for more than our share of the usage and 13701 * we are not low on journal space, then no need to slow down. 13702 */ 13703 max_softdeps_hard = max_softdeps * 11 / 10; 13704 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13705 dep_current[D_INODEDEP] < max_softdeps_hard && 13706 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13707 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13708 ump->softdep_curdeps[D_DIRREM] < 13709 (max_softdeps_hard / 2) / stat_flush_threads && 13710 ump->softdep_curdeps[D_INODEDEP] < 13711 max_softdeps_hard / stat_flush_threads && 13712 ump->softdep_curdeps[D_INDIRDEP] < 13713 (max_softdeps_hard / 1000) / stat_flush_threads && 13714 ump->softdep_curdeps[D_FREEBLKS] < 13715 max_softdeps_hard / stat_flush_threads) { 13716 FREE_LOCK(ump); 13717 return (0); 13718 } 13719 /* 13720 * If the journal is low or our filesystem is over its limit 13721 * then speedup the cleanup. 13722 */ 13723 if (ump->softdep_curdeps[D_INDIRDEP] < 13724 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13725 softdep_speedup(ump); 13726 stat_sync_limit_hit += 1; 13727 FREE_LOCK(ump); 13728 /* 13729 * We only slow down the rate at which new dependencies are 13730 * generated if we are not using journaling. With journaling, 13731 * the cleanup should always be sufficient to keep things 13732 * under control. 13733 */ 13734 if (DOINGSUJ(vp)) 13735 return (0); 13736 return (1); 13737 } 13738 13739 /* 13740 * Called by the allocation routines when they are about to fail 13741 * in the hope that we can free up the requested resource (inodes 13742 * or disk space). 13743 * 13744 * First check to see if the work list has anything on it. If it has, 13745 * clean up entries until we successfully free the requested resource. 13746 * Because this process holds inodes locked, we cannot handle any remove 13747 * requests that might block on a locked inode as that could lead to 13748 * deadlock. If the worklist yields none of the requested resource, 13749 * start syncing out vnodes to free up the needed space. 13750 */ 13751 int 13752 softdep_request_cleanup(fs, vp, cred, resource) 13753 struct fs *fs; 13754 struct vnode *vp; 13755 struct ucred *cred; 13756 int resource; 13757 { 13758 struct ufsmount *ump; 13759 struct mount *mp; 13760 long starttime; 13761 ufs2_daddr_t needed; 13762 int error, failed_vnode; 13763 13764 /* 13765 * If we are being called because of a process doing a 13766 * copy-on-write, then it is not safe to process any 13767 * worklist items as we will recurse into the copyonwrite 13768 * routine. This will result in an incoherent snapshot. 13769 * If the vnode that we hold is a snapshot, we must avoid 13770 * handling other resources that could cause deadlock. 13771 */ 13772 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13773 return (0); 13774 13775 if (resource == FLUSH_BLOCKS_WAIT) 13776 stat_cleanup_blkrequests += 1; 13777 else 13778 stat_cleanup_inorequests += 1; 13779 13780 mp = vp->v_mount; 13781 ump = VFSTOUFS(mp); 13782 mtx_assert(UFS_MTX(ump), MA_OWNED); 13783 UFS_UNLOCK(ump); 13784 error = ffs_update(vp, 1); 13785 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13786 UFS_LOCK(ump); 13787 return (0); 13788 } 13789 /* 13790 * If we are in need of resources, start by cleaning up 13791 * any block removals associated with our inode. 13792 */ 13793 ACQUIRE_LOCK(ump); 13794 process_removes(vp); 13795 process_truncates(vp); 13796 FREE_LOCK(ump); 13797 /* 13798 * Now clean up at least as many resources as we will need. 13799 * 13800 * When requested to clean up inodes, the number that are needed 13801 * is set by the number of simultaneous writers (mnt_writeopcount) 13802 * plus a bit of slop (2) in case some more writers show up while 13803 * we are cleaning. 13804 * 13805 * When requested to free up space, the amount of space that 13806 * we need is enough blocks to allocate a full-sized segment 13807 * (fs_contigsumsize). The number of such segments that will 13808 * be needed is set by the number of simultaneous writers 13809 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13810 * writers show up while we are cleaning. 13811 * 13812 * Additionally, if we are unpriviledged and allocating space, 13813 * we need to ensure that we clean up enough blocks to get the 13814 * needed number of blocks over the threshold of the minimum 13815 * number of blocks required to be kept free by the filesystem 13816 * (fs_minfree). 13817 */ 13818 if (resource == FLUSH_INODES_WAIT) { 13819 needed = vfs_mount_fetch_counter(vp->v_mount, 13820 MNT_COUNT_WRITEOPCOUNT) + 2; 13821 } else if (resource == FLUSH_BLOCKS_WAIT) { 13822 needed = (vfs_mount_fetch_counter(vp->v_mount, 13823 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13824 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13825 needed += fragstoblks(fs, 13826 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13827 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13828 } else { 13829 printf("softdep_request_cleanup: Unknown resource type %d\n", 13830 resource); 13831 UFS_LOCK(ump); 13832 return (0); 13833 } 13834 starttime = time_second; 13835 retry: 13836 if (resource == FLUSH_BLOCKS_WAIT && 13837 fs->fs_cstotal.cs_nbfree <= needed) 13838 softdep_send_speedup(ump, needed * fs->fs_bsize, 13839 BIO_SPEEDUP_TRIM); 13840 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13841 fs->fs_cstotal.cs_nbfree <= needed) || 13842 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13843 fs->fs_cstotal.cs_nifree <= needed)) { 13844 ACQUIRE_LOCK(ump); 13845 if (ump->softdep_on_worklist > 0 && 13846 process_worklist_item(UFSTOVFS(ump), 13847 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13848 stat_worklist_push += 1; 13849 FREE_LOCK(ump); 13850 } 13851 /* 13852 * If we still need resources and there are no more worklist 13853 * entries to process to obtain them, we have to start flushing 13854 * the dirty vnodes to force the release of additional requests 13855 * to the worklist that we can then process to reap addition 13856 * resources. We walk the vnodes associated with the mount point 13857 * until we get the needed worklist requests that we can reap. 13858 * 13859 * If there are several threads all needing to clean the same 13860 * mount point, only one is allowed to walk the mount list. 13861 * When several threads all try to walk the same mount list, 13862 * they end up competing with each other and often end up in 13863 * livelock. This approach ensures that forward progress is 13864 * made at the cost of occational ENOSPC errors being returned 13865 * that might otherwise have been avoided. 13866 */ 13867 error = 1; 13868 if ((resource == FLUSH_BLOCKS_WAIT && 13869 fs->fs_cstotal.cs_nbfree <= needed) || 13870 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13871 fs->fs_cstotal.cs_nifree <= needed)) { 13872 ACQUIRE_LOCK(ump); 13873 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13874 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13875 FREE_LOCK(ump); 13876 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13877 ACQUIRE_LOCK(ump); 13878 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13879 FREE_LOCK(ump); 13880 if (ump->softdep_on_worklist > 0) { 13881 stat_cleanup_retries += 1; 13882 if (!failed_vnode) 13883 goto retry; 13884 } 13885 } else { 13886 FREE_LOCK(ump); 13887 error = 0; 13888 } 13889 stat_cleanup_failures += 1; 13890 } 13891 if (time_second - starttime > stat_cleanup_high_delay) 13892 stat_cleanup_high_delay = time_second - starttime; 13893 UFS_LOCK(ump); 13894 return (error); 13895 } 13896 13897 /* 13898 * Scan the vnodes for the specified mount point flushing out any 13899 * vnodes that can be locked without waiting. Finally, try to flush 13900 * the device associated with the mount point if it can be locked 13901 * without waiting. 13902 * 13903 * We return 0 if we were able to lock every vnode in our scan. 13904 * If we had to skip one or more vnodes, we return 1. 13905 */ 13906 static int 13907 softdep_request_cleanup_flush(mp, ump) 13908 struct mount *mp; 13909 struct ufsmount *ump; 13910 { 13911 struct thread *td; 13912 struct vnode *lvp, *mvp; 13913 int failed_vnode; 13914 13915 failed_vnode = 0; 13916 td = curthread; 13917 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13918 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13919 VI_UNLOCK(lvp); 13920 continue; 13921 } 13922 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 13923 failed_vnode = 1; 13924 continue; 13925 } 13926 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13927 vput(lvp); 13928 continue; 13929 } 13930 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13931 vput(lvp); 13932 } 13933 lvp = ump->um_devvp; 13934 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13935 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13936 VOP_UNLOCK(lvp); 13937 } 13938 return (failed_vnode); 13939 } 13940 13941 static bool 13942 softdep_excess_items(struct ufsmount *ump, int item) 13943 { 13944 13945 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13946 return (dep_current[item] > max_softdeps && 13947 ump->softdep_curdeps[item] > max_softdeps / 13948 stat_flush_threads); 13949 } 13950 13951 static void 13952 schedule_cleanup(struct mount *mp) 13953 { 13954 struct ufsmount *ump; 13955 struct thread *td; 13956 13957 ump = VFSTOUFS(mp); 13958 LOCK_OWNED(ump); 13959 FREE_LOCK(ump); 13960 td = curthread; 13961 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13962 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13963 /* 13964 * No ast is delivered to kernel threads, so nobody 13965 * would deref the mp. Some kernel threads 13966 * explicitely check for AST, e.g. NFS daemon does 13967 * this in the serving loop. 13968 */ 13969 return; 13970 } 13971 if (td->td_su != NULL) 13972 vfs_rel(td->td_su); 13973 vfs_ref(mp); 13974 td->td_su = mp; 13975 thread_lock(td); 13976 td->td_flags |= TDF_ASTPENDING; 13977 thread_unlock(td); 13978 } 13979 13980 static void 13981 softdep_ast_cleanup_proc(struct thread *td) 13982 { 13983 struct mount *mp; 13984 struct ufsmount *ump; 13985 int error; 13986 bool req; 13987 13988 while ((mp = td->td_su) != NULL) { 13989 td->td_su = NULL; 13990 error = vfs_busy(mp, MBF_NOWAIT); 13991 vfs_rel(mp); 13992 if (error != 0) 13993 return; 13994 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13995 ump = VFSTOUFS(mp); 13996 for (;;) { 13997 req = false; 13998 ACQUIRE_LOCK(ump); 13999 if (softdep_excess_items(ump, D_INODEDEP)) { 14000 req = true; 14001 request_cleanup(mp, FLUSH_INODES); 14002 } 14003 if (softdep_excess_items(ump, D_DIRREM)) { 14004 req = true; 14005 request_cleanup(mp, FLUSH_BLOCKS); 14006 } 14007 FREE_LOCK(ump); 14008 if (softdep_excess_items(ump, D_NEWBLK) || 14009 softdep_excess_items(ump, D_ALLOCDIRECT) || 14010 softdep_excess_items(ump, D_ALLOCINDIR)) { 14011 error = vn_start_write(NULL, &mp, 14012 V_WAIT); 14013 if (error == 0) { 14014 req = true; 14015 VFS_SYNC(mp, MNT_WAIT); 14016 vn_finished_write(mp); 14017 } 14018 } 14019 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 14020 break; 14021 } 14022 } 14023 vfs_unbusy(mp); 14024 } 14025 if ((mp = td->td_su) != NULL) { 14026 td->td_su = NULL; 14027 vfs_rel(mp); 14028 } 14029 } 14030 14031 /* 14032 * If memory utilization has gotten too high, deliberately slow things 14033 * down and speed up the I/O processing. 14034 */ 14035 static int 14036 request_cleanup(mp, resource) 14037 struct mount *mp; 14038 int resource; 14039 { 14040 struct thread *td = curthread; 14041 struct ufsmount *ump; 14042 14043 ump = VFSTOUFS(mp); 14044 LOCK_OWNED(ump); 14045 /* 14046 * We never hold up the filesystem syncer or buf daemon. 14047 */ 14048 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 14049 return (0); 14050 /* 14051 * First check to see if the work list has gotten backlogged. 14052 * If it has, co-opt this process to help clean up two entries. 14053 * Because this process may hold inodes locked, we cannot 14054 * handle any remove requests that might block on a locked 14055 * inode as that could lead to deadlock. We set TDP_SOFTDEP 14056 * to avoid recursively processing the worklist. 14057 */ 14058 if (ump->softdep_on_worklist > max_softdeps / 10) { 14059 td->td_pflags |= TDP_SOFTDEP; 14060 process_worklist_item(mp, 2, LK_NOWAIT); 14061 td->td_pflags &= ~TDP_SOFTDEP; 14062 stat_worklist_push += 2; 14063 return(1); 14064 } 14065 /* 14066 * Next, we attempt to speed up the syncer process. If that 14067 * is successful, then we allow the process to continue. 14068 */ 14069 if (softdep_speedup(ump) && 14070 resource != FLUSH_BLOCKS_WAIT && 14071 resource != FLUSH_INODES_WAIT) 14072 return(0); 14073 /* 14074 * If we are resource constrained on inode dependencies, try 14075 * flushing some dirty inodes. Otherwise, we are constrained 14076 * by file deletions, so try accelerating flushes of directories 14077 * with removal dependencies. We would like to do the cleanup 14078 * here, but we probably hold an inode locked at this point and 14079 * that might deadlock against one that we try to clean. So, 14080 * the best that we can do is request the syncer daemon to do 14081 * the cleanup for us. 14082 */ 14083 switch (resource) { 14084 case FLUSH_INODES: 14085 case FLUSH_INODES_WAIT: 14086 ACQUIRE_GBLLOCK(&lk); 14087 stat_ino_limit_push += 1; 14088 req_clear_inodedeps += 1; 14089 FREE_GBLLOCK(&lk); 14090 stat_countp = &stat_ino_limit_hit; 14091 break; 14092 14093 case FLUSH_BLOCKS: 14094 case FLUSH_BLOCKS_WAIT: 14095 ACQUIRE_GBLLOCK(&lk); 14096 stat_blk_limit_push += 1; 14097 req_clear_remove += 1; 14098 FREE_GBLLOCK(&lk); 14099 stat_countp = &stat_blk_limit_hit; 14100 break; 14101 14102 default: 14103 panic("request_cleanup: unknown type"); 14104 } 14105 /* 14106 * Hopefully the syncer daemon will catch up and awaken us. 14107 * We wait at most tickdelay before proceeding in any case. 14108 */ 14109 ACQUIRE_GBLLOCK(&lk); 14110 FREE_LOCK(ump); 14111 proc_waiting += 1; 14112 if (callout_pending(&softdep_callout) == FALSE) 14113 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 14114 pause_timer, 0); 14115 14116 if ((td->td_pflags & TDP_KTHREAD) == 0) 14117 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 14118 proc_waiting -= 1; 14119 FREE_GBLLOCK(&lk); 14120 ACQUIRE_LOCK(ump); 14121 return (1); 14122 } 14123 14124 /* 14125 * Awaken processes pausing in request_cleanup and clear proc_waiting 14126 * to indicate that there is no longer a timer running. Pause_timer 14127 * will be called with the global softdep mutex (&lk) locked. 14128 */ 14129 static void 14130 pause_timer(arg) 14131 void *arg; 14132 { 14133 14134 GBLLOCK_OWNED(&lk); 14135 /* 14136 * The callout_ API has acquired mtx and will hold it around this 14137 * function call. 14138 */ 14139 *stat_countp += proc_waiting; 14140 wakeup(&proc_waiting); 14141 } 14142 14143 /* 14144 * If requested, try removing inode or removal dependencies. 14145 */ 14146 static void 14147 check_clear_deps(mp) 14148 struct mount *mp; 14149 { 14150 struct ufsmount *ump; 14151 bool suj_susp; 14152 14153 /* 14154 * Tell the lower layers that any TRIM or WRITE transactions that have 14155 * been delayed for performance reasons should proceed to help alleviate 14156 * the shortage faster. The race between checking req_* and the softdep 14157 * mutex (lk) is fine since this is an advisory operation that at most 14158 * causes deferred work to be done sooner. 14159 */ 14160 ump = VFSTOUFS(mp); 14161 suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended; 14162 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14163 FREE_LOCK(ump); 14164 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14165 ACQUIRE_LOCK(ump); 14166 } 14167 14168 /* 14169 * If we are suspended, it may be because of our using 14170 * too many inodedeps, so help clear them out. 14171 */ 14172 if (suj_susp) 14173 clear_inodedeps(mp); 14174 14175 /* 14176 * General requests for cleanup of backed up dependencies 14177 */ 14178 ACQUIRE_GBLLOCK(&lk); 14179 if (req_clear_inodedeps) { 14180 req_clear_inodedeps -= 1; 14181 FREE_GBLLOCK(&lk); 14182 clear_inodedeps(mp); 14183 ACQUIRE_GBLLOCK(&lk); 14184 wakeup(&proc_waiting); 14185 } 14186 if (req_clear_remove) { 14187 req_clear_remove -= 1; 14188 FREE_GBLLOCK(&lk); 14189 clear_remove(mp); 14190 ACQUIRE_GBLLOCK(&lk); 14191 wakeup(&proc_waiting); 14192 } 14193 FREE_GBLLOCK(&lk); 14194 } 14195 14196 /* 14197 * Flush out a directory with at least one removal dependency in an effort to 14198 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14199 */ 14200 static void 14201 clear_remove(mp) 14202 struct mount *mp; 14203 { 14204 struct pagedep_hashhead *pagedephd; 14205 struct pagedep *pagedep; 14206 struct ufsmount *ump; 14207 struct vnode *vp; 14208 struct bufobj *bo; 14209 int error, cnt; 14210 ino_t ino; 14211 14212 ump = VFSTOUFS(mp); 14213 LOCK_OWNED(ump); 14214 14215 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14216 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14217 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14218 ump->pagedep_nextclean = 0; 14219 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14220 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14221 continue; 14222 ino = pagedep->pd_ino; 14223 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14224 continue; 14225 FREE_LOCK(ump); 14226 14227 /* 14228 * Let unmount clear deps 14229 */ 14230 error = vfs_busy(mp, MBF_NOWAIT); 14231 if (error != 0) 14232 goto finish_write; 14233 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14234 FFSV_FORCEINSMQ); 14235 vfs_unbusy(mp); 14236 if (error != 0) { 14237 softdep_error("clear_remove: vget", error); 14238 goto finish_write; 14239 } 14240 MPASS(VTOI(vp)->i_mode != 0); 14241 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14242 softdep_error("clear_remove: fsync", error); 14243 bo = &vp->v_bufobj; 14244 BO_LOCK(bo); 14245 drain_output(vp); 14246 BO_UNLOCK(bo); 14247 vput(vp); 14248 finish_write: 14249 vn_finished_write(mp); 14250 ACQUIRE_LOCK(ump); 14251 return; 14252 } 14253 } 14254 } 14255 14256 /* 14257 * Clear out a block of dirty inodes in an effort to reduce 14258 * the number of inodedep dependency structures. 14259 */ 14260 static void 14261 clear_inodedeps(mp) 14262 struct mount *mp; 14263 { 14264 struct inodedep_hashhead *inodedephd; 14265 struct inodedep *inodedep; 14266 struct ufsmount *ump; 14267 struct vnode *vp; 14268 struct fs *fs; 14269 int error, cnt; 14270 ino_t firstino, lastino, ino; 14271 14272 ump = VFSTOUFS(mp); 14273 fs = ump->um_fs; 14274 LOCK_OWNED(ump); 14275 /* 14276 * Pick a random inode dependency to be cleared. 14277 * We will then gather up all the inodes in its block 14278 * that have dependencies and flush them out. 14279 */ 14280 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14281 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14282 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14283 ump->inodedep_nextclean = 0; 14284 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14285 break; 14286 } 14287 if (inodedep == NULL) 14288 return; 14289 /* 14290 * Find the last inode in the block with dependencies. 14291 */ 14292 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14293 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14294 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14295 break; 14296 /* 14297 * Asynchronously push all but the last inode with dependencies. 14298 * Synchronously push the last inode with dependencies to ensure 14299 * that the inode block gets written to free up the inodedeps. 14300 */ 14301 for (ino = firstino; ino <= lastino; ino++) { 14302 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14303 continue; 14304 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14305 continue; 14306 FREE_LOCK(ump); 14307 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14308 if (error != 0) { 14309 vn_finished_write(mp); 14310 ACQUIRE_LOCK(ump); 14311 return; 14312 } 14313 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14314 FFSV_FORCEINSMQ)) != 0) { 14315 softdep_error("clear_inodedeps: vget", error); 14316 vfs_unbusy(mp); 14317 vn_finished_write(mp); 14318 ACQUIRE_LOCK(ump); 14319 return; 14320 } 14321 vfs_unbusy(mp); 14322 if (VTOI(vp)->i_mode == 0) { 14323 vgone(vp); 14324 } else if (ino == lastino) { 14325 do { 14326 error = ffs_syncvnode(vp, MNT_WAIT, 0); 14327 } while (error == ERELOOKUP); 14328 if (error != 0) 14329 softdep_error("clear_inodedeps: fsync1", error); 14330 } else { 14331 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14332 softdep_error("clear_inodedeps: fsync2", error); 14333 BO_LOCK(&vp->v_bufobj); 14334 drain_output(vp); 14335 BO_UNLOCK(&vp->v_bufobj); 14336 } 14337 vput(vp); 14338 vn_finished_write(mp); 14339 ACQUIRE_LOCK(ump); 14340 } 14341 } 14342 14343 void 14344 softdep_buf_append(bp, wkhd) 14345 struct buf *bp; 14346 struct workhead *wkhd; 14347 { 14348 struct worklist *wk; 14349 struct ufsmount *ump; 14350 14351 if ((wk = LIST_FIRST(wkhd)) == NULL) 14352 return; 14353 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14354 ("softdep_buf_append called on non-softdep filesystem")); 14355 ump = VFSTOUFS(wk->wk_mp); 14356 ACQUIRE_LOCK(ump); 14357 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14358 WORKLIST_REMOVE(wk); 14359 WORKLIST_INSERT(&bp->b_dep, wk); 14360 } 14361 FREE_LOCK(ump); 14362 14363 } 14364 14365 void 14366 softdep_inode_append(ip, cred, wkhd) 14367 struct inode *ip; 14368 struct ucred *cred; 14369 struct workhead *wkhd; 14370 { 14371 struct buf *bp; 14372 struct fs *fs; 14373 struct ufsmount *ump; 14374 int error; 14375 14376 ump = ITOUMP(ip); 14377 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14378 ("softdep_inode_append called on non-softdep filesystem")); 14379 fs = ump->um_fs; 14380 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14381 (int)fs->fs_bsize, cred, &bp); 14382 if (error) { 14383 bqrelse(bp); 14384 softdep_freework(wkhd); 14385 return; 14386 } 14387 softdep_buf_append(bp, wkhd); 14388 bqrelse(bp); 14389 } 14390 14391 void 14392 softdep_freework(wkhd) 14393 struct workhead *wkhd; 14394 { 14395 struct worklist *wk; 14396 struct ufsmount *ump; 14397 14398 if ((wk = LIST_FIRST(wkhd)) == NULL) 14399 return; 14400 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14401 ("softdep_freework called on non-softdep filesystem")); 14402 ump = VFSTOUFS(wk->wk_mp); 14403 ACQUIRE_LOCK(ump); 14404 handle_jwork(wkhd); 14405 FREE_LOCK(ump); 14406 } 14407 14408 static struct ufsmount * 14409 softdep_bp_to_mp(bp) 14410 struct buf *bp; 14411 { 14412 struct mount *mp; 14413 struct vnode *vp; 14414 14415 if (LIST_EMPTY(&bp->b_dep)) 14416 return (NULL); 14417 vp = bp->b_vp; 14418 KASSERT(vp != NULL, 14419 ("%s, buffer with dependencies lacks vnode", __func__)); 14420 14421 /* 14422 * The ump mount point is stable after we get a correct 14423 * pointer, since bp is locked and this prevents unmount from 14424 * proceeding. But to get to it, we cannot dereference bp->b_dep 14425 * head wk_mp, because we do not yet own SU ump lock and 14426 * workitem might be freed while dereferenced. 14427 */ 14428 retry: 14429 switch (vp->v_type) { 14430 case VCHR: 14431 VI_LOCK(vp); 14432 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14433 VI_UNLOCK(vp); 14434 if (mp == NULL) 14435 goto retry; 14436 break; 14437 case VREG: 14438 case VDIR: 14439 case VLNK: 14440 case VFIFO: 14441 case VSOCK: 14442 mp = vp->v_mount; 14443 break; 14444 case VBLK: 14445 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14446 /* FALLTHROUGH */ 14447 case VNON: 14448 case VBAD: 14449 case VMARKER: 14450 mp = NULL; 14451 break; 14452 default: 14453 vn_printf(vp, "unknown vnode type"); 14454 mp = NULL; 14455 break; 14456 } 14457 return (VFSTOUFS(mp)); 14458 } 14459 14460 /* 14461 * Function to determine if the buffer has outstanding dependencies 14462 * that will cause a roll-back if the buffer is written. If wantcount 14463 * is set, return number of dependencies, otherwise just yes or no. 14464 */ 14465 static int 14466 softdep_count_dependencies(bp, wantcount) 14467 struct buf *bp; 14468 int wantcount; 14469 { 14470 struct worklist *wk; 14471 struct ufsmount *ump; 14472 struct bmsafemap *bmsafemap; 14473 struct freework *freework; 14474 struct inodedep *inodedep; 14475 struct indirdep *indirdep; 14476 struct freeblks *freeblks; 14477 struct allocindir *aip; 14478 struct pagedep *pagedep; 14479 struct dirrem *dirrem; 14480 struct newblk *newblk; 14481 struct mkdir *mkdir; 14482 struct diradd *dap; 14483 int i, retval; 14484 14485 ump = softdep_bp_to_mp(bp); 14486 if (ump == NULL) 14487 return (0); 14488 retval = 0; 14489 ACQUIRE_LOCK(ump); 14490 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14491 switch (wk->wk_type) { 14492 case D_INODEDEP: 14493 inodedep = WK_INODEDEP(wk); 14494 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14495 /* bitmap allocation dependency */ 14496 retval += 1; 14497 if (!wantcount) 14498 goto out; 14499 } 14500 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14501 /* direct block pointer dependency */ 14502 retval += 1; 14503 if (!wantcount) 14504 goto out; 14505 } 14506 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14507 /* direct block pointer dependency */ 14508 retval += 1; 14509 if (!wantcount) 14510 goto out; 14511 } 14512 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14513 /* Add reference dependency. */ 14514 retval += 1; 14515 if (!wantcount) 14516 goto out; 14517 } 14518 continue; 14519 14520 case D_INDIRDEP: 14521 indirdep = WK_INDIRDEP(wk); 14522 14523 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14524 /* indirect truncation dependency */ 14525 retval += 1; 14526 if (!wantcount) 14527 goto out; 14528 } 14529 14530 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14531 /* indirect block pointer dependency */ 14532 retval += 1; 14533 if (!wantcount) 14534 goto out; 14535 } 14536 continue; 14537 14538 case D_PAGEDEP: 14539 pagedep = WK_PAGEDEP(wk); 14540 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14541 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14542 /* Journal remove ref dependency. */ 14543 retval += 1; 14544 if (!wantcount) 14545 goto out; 14546 } 14547 } 14548 for (i = 0; i < DAHASHSZ; i++) { 14549 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14550 /* directory entry dependency */ 14551 retval += 1; 14552 if (!wantcount) 14553 goto out; 14554 } 14555 } 14556 continue; 14557 14558 case D_BMSAFEMAP: 14559 bmsafemap = WK_BMSAFEMAP(wk); 14560 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14561 /* Add reference dependency. */ 14562 retval += 1; 14563 if (!wantcount) 14564 goto out; 14565 } 14566 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14567 /* Allocate block dependency. */ 14568 retval += 1; 14569 if (!wantcount) 14570 goto out; 14571 } 14572 continue; 14573 14574 case D_FREEBLKS: 14575 freeblks = WK_FREEBLKS(wk); 14576 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14577 /* Freeblk journal dependency. */ 14578 retval += 1; 14579 if (!wantcount) 14580 goto out; 14581 } 14582 continue; 14583 14584 case D_ALLOCDIRECT: 14585 case D_ALLOCINDIR: 14586 newblk = WK_NEWBLK(wk); 14587 if (newblk->nb_jnewblk) { 14588 /* Journal allocate dependency. */ 14589 retval += 1; 14590 if (!wantcount) 14591 goto out; 14592 } 14593 continue; 14594 14595 case D_MKDIR: 14596 mkdir = WK_MKDIR(wk); 14597 if (mkdir->md_jaddref) { 14598 /* Journal reference dependency. */ 14599 retval += 1; 14600 if (!wantcount) 14601 goto out; 14602 } 14603 continue; 14604 14605 case D_FREEWORK: 14606 case D_FREEDEP: 14607 case D_JSEGDEP: 14608 case D_JSEG: 14609 case D_SBDEP: 14610 /* never a dependency on these blocks */ 14611 continue; 14612 14613 default: 14614 panic("softdep_count_dependencies: Unexpected type %s", 14615 TYPENAME(wk->wk_type)); 14616 /* NOTREACHED */ 14617 } 14618 } 14619 out: 14620 FREE_LOCK(ump); 14621 return (retval); 14622 } 14623 14624 /* 14625 * Acquire exclusive access to a buffer. 14626 * Must be called with a locked mtx parameter. 14627 * Return acquired buffer or NULL on failure. 14628 */ 14629 static struct buf * 14630 getdirtybuf(bp, lock, waitfor) 14631 struct buf *bp; 14632 struct rwlock *lock; 14633 int waitfor; 14634 { 14635 int error; 14636 14637 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14638 if (waitfor != MNT_WAIT) 14639 return (NULL); 14640 error = BUF_LOCK(bp, 14641 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14642 /* 14643 * Even if we successfully acquire bp here, we have dropped 14644 * lock, which may violates our guarantee. 14645 */ 14646 if (error == 0) 14647 BUF_UNLOCK(bp); 14648 else if (error != ENOLCK) 14649 panic("getdirtybuf: inconsistent lock: %d", error); 14650 rw_wlock(lock); 14651 return (NULL); 14652 } 14653 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14654 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14655 rw_wunlock(lock); 14656 BO_LOCK(bp->b_bufobj); 14657 BUF_UNLOCK(bp); 14658 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14659 bp->b_vflags |= BV_BKGRDWAIT; 14660 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14661 PRIBIO | PDROP, "getbuf", 0); 14662 } else 14663 BO_UNLOCK(bp->b_bufobj); 14664 rw_wlock(lock); 14665 return (NULL); 14666 } 14667 BUF_UNLOCK(bp); 14668 if (waitfor != MNT_WAIT) 14669 return (NULL); 14670 #ifdef DEBUG_VFS_LOCKS 14671 if (bp->b_vp->v_type != VCHR) 14672 ASSERT_BO_WLOCKED(bp->b_bufobj); 14673 #endif 14674 bp->b_vflags |= BV_BKGRDWAIT; 14675 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14676 return (NULL); 14677 } 14678 if ((bp->b_flags & B_DELWRI) == 0) { 14679 BUF_UNLOCK(bp); 14680 return (NULL); 14681 } 14682 bremfree(bp); 14683 return (bp); 14684 } 14685 14686 /* 14687 * Check if it is safe to suspend the file system now. On entry, 14688 * the vnode interlock for devvp should be held. Return 0 with 14689 * the mount interlock held if the file system can be suspended now, 14690 * otherwise return EAGAIN with the mount interlock held. 14691 */ 14692 int 14693 softdep_check_suspend(struct mount *mp, 14694 struct vnode *devvp, 14695 int softdep_depcnt, 14696 int softdep_accdepcnt, 14697 int secondary_writes, 14698 int secondary_accwrites) 14699 { 14700 struct bufobj *bo; 14701 struct ufsmount *ump; 14702 struct inodedep *inodedep; 14703 int error, unlinked; 14704 14705 bo = &devvp->v_bufobj; 14706 ASSERT_BO_WLOCKED(bo); 14707 14708 /* 14709 * If we are not running with soft updates, then we need only 14710 * deal with secondary writes as we try to suspend. 14711 */ 14712 if (MOUNTEDSOFTDEP(mp) == 0) { 14713 MNT_ILOCK(mp); 14714 while (mp->mnt_secondary_writes != 0) { 14715 BO_UNLOCK(bo); 14716 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14717 (PUSER - 1) | PDROP, "secwr", 0); 14718 BO_LOCK(bo); 14719 MNT_ILOCK(mp); 14720 } 14721 14722 /* 14723 * Reasons for needing more work before suspend: 14724 * - Dirty buffers on devvp. 14725 * - Secondary writes occurred after start of vnode sync loop 14726 */ 14727 error = 0; 14728 if (bo->bo_numoutput > 0 || 14729 bo->bo_dirty.bv_cnt > 0 || 14730 secondary_writes != 0 || 14731 mp->mnt_secondary_writes != 0 || 14732 secondary_accwrites != mp->mnt_secondary_accwrites) 14733 error = EAGAIN; 14734 BO_UNLOCK(bo); 14735 return (error); 14736 } 14737 14738 /* 14739 * If we are running with soft updates, then we need to coordinate 14740 * with them as we try to suspend. 14741 */ 14742 ump = VFSTOUFS(mp); 14743 for (;;) { 14744 if (!TRY_ACQUIRE_LOCK(ump)) { 14745 BO_UNLOCK(bo); 14746 ACQUIRE_LOCK(ump); 14747 FREE_LOCK(ump); 14748 BO_LOCK(bo); 14749 continue; 14750 } 14751 MNT_ILOCK(mp); 14752 if (mp->mnt_secondary_writes != 0) { 14753 FREE_LOCK(ump); 14754 BO_UNLOCK(bo); 14755 msleep(&mp->mnt_secondary_writes, 14756 MNT_MTX(mp), 14757 (PUSER - 1) | PDROP, "secwr", 0); 14758 BO_LOCK(bo); 14759 continue; 14760 } 14761 break; 14762 } 14763 14764 unlinked = 0; 14765 if (MOUNTEDSUJ(mp)) { 14766 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14767 inodedep != NULL; 14768 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14769 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14770 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14771 UNLINKONLIST) || 14772 !check_inodedep_free(inodedep)) 14773 continue; 14774 unlinked++; 14775 } 14776 } 14777 14778 /* 14779 * Reasons for needing more work before suspend: 14780 * - Dirty buffers on devvp. 14781 * - Softdep activity occurred after start of vnode sync loop 14782 * - Secondary writes occurred after start of vnode sync loop 14783 */ 14784 error = 0; 14785 if (bo->bo_numoutput > 0 || 14786 bo->bo_dirty.bv_cnt > 0 || 14787 softdep_depcnt != unlinked || 14788 ump->softdep_deps != unlinked || 14789 softdep_accdepcnt != ump->softdep_accdeps || 14790 secondary_writes != 0 || 14791 mp->mnt_secondary_writes != 0 || 14792 secondary_accwrites != mp->mnt_secondary_accwrites) 14793 error = EAGAIN; 14794 FREE_LOCK(ump); 14795 BO_UNLOCK(bo); 14796 return (error); 14797 } 14798 14799 /* 14800 * Get the number of dependency structures for the file system, both 14801 * the current number and the total number allocated. These will 14802 * later be used to detect that softdep processing has occurred. 14803 */ 14804 void 14805 softdep_get_depcounts(struct mount *mp, 14806 int *softdep_depsp, 14807 int *softdep_accdepsp) 14808 { 14809 struct ufsmount *ump; 14810 14811 if (MOUNTEDSOFTDEP(mp) == 0) { 14812 *softdep_depsp = 0; 14813 *softdep_accdepsp = 0; 14814 return; 14815 } 14816 ump = VFSTOUFS(mp); 14817 ACQUIRE_LOCK(ump); 14818 *softdep_depsp = ump->softdep_deps; 14819 *softdep_accdepsp = ump->softdep_accdeps; 14820 FREE_LOCK(ump); 14821 } 14822 14823 /* 14824 * Wait for pending output on a vnode to complete. 14825 */ 14826 static void 14827 drain_output(vp) 14828 struct vnode *vp; 14829 { 14830 14831 ASSERT_VOP_LOCKED(vp, "drain_output"); 14832 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14833 } 14834 14835 /* 14836 * Called whenever a buffer that is being invalidated or reallocated 14837 * contains dependencies. This should only happen if an I/O error has 14838 * occurred. The routine is called with the buffer locked. 14839 */ 14840 static void 14841 softdep_deallocate_dependencies(bp) 14842 struct buf *bp; 14843 { 14844 14845 if ((bp->b_ioflags & BIO_ERROR) == 0) 14846 panic("softdep_deallocate_dependencies: dangling deps"); 14847 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14848 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14849 else 14850 printf("softdep_deallocate_dependencies: " 14851 "got error %d while accessing filesystem\n", bp->b_error); 14852 if (bp->b_error != ENXIO) 14853 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14854 } 14855 14856 /* 14857 * Function to handle asynchronous write errors in the filesystem. 14858 */ 14859 static void 14860 softdep_error(func, error) 14861 char *func; 14862 int error; 14863 { 14864 14865 /* XXX should do something better! */ 14866 printf("%s: got error %d while accessing filesystem\n", func, error); 14867 } 14868 14869 #ifdef DDB 14870 14871 /* exported to ffs_vfsops.c */ 14872 extern void db_print_ffs(struct ufsmount *ump); 14873 void 14874 db_print_ffs(struct ufsmount *ump) 14875 { 14876 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14877 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14878 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14879 ump->um_fs, ump->softdep_on_worklist, 14880 ump->softdep_deps, ump->softdep_req); 14881 } 14882 14883 static void 14884 worklist_print(struct worklist *wk, int verbose) 14885 { 14886 14887 if (!verbose) { 14888 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14889 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14890 return; 14891 } 14892 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14893 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14894 LIST_NEXT(wk, wk_list)); 14895 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14896 } 14897 14898 static void 14899 inodedep_print(struct inodedep *inodedep, int verbose) 14900 { 14901 14902 worklist_print(&inodedep->id_list, 0); 14903 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14904 inodedep->id_fs, 14905 (intmax_t)inodedep->id_ino, 14906 (intmax_t)fsbtodb(inodedep->id_fs, 14907 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14908 (intmax_t)inodedep->id_nlinkdelta, 14909 (intmax_t)inodedep->id_savednlink); 14910 14911 if (verbose == 0) 14912 return; 14913 14914 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14915 inodedep->id_bmsafemap, 14916 inodedep->id_mkdiradd, 14917 TAILQ_FIRST(&inodedep->id_inoreflst)); 14918 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14919 LIST_FIRST(&inodedep->id_dirremhd), 14920 LIST_FIRST(&inodedep->id_pendinghd), 14921 LIST_FIRST(&inodedep->id_bufwait)); 14922 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14923 LIST_FIRST(&inodedep->id_inowait), 14924 TAILQ_FIRST(&inodedep->id_inoupdt), 14925 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14926 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14927 TAILQ_FIRST(&inodedep->id_extupdt), 14928 TAILQ_FIRST(&inodedep->id_newextupdt), 14929 TAILQ_FIRST(&inodedep->id_freeblklst)); 14930 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14931 inodedep->id_savedino1, 14932 (intmax_t)inodedep->id_savedsize, 14933 (intmax_t)inodedep->id_savedextsize); 14934 } 14935 14936 static void 14937 newblk_print(struct newblk *nbp) 14938 { 14939 14940 worklist_print(&nbp->nb_list, 0); 14941 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14942 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14943 &nbp->nb_jnewblk, 14944 &nbp->nb_bmsafemap, 14945 &nbp->nb_freefrag); 14946 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14947 LIST_FIRST(&nbp->nb_indirdeps), 14948 LIST_FIRST(&nbp->nb_newdirblk), 14949 LIST_FIRST(&nbp->nb_jwork)); 14950 } 14951 14952 static void 14953 allocdirect_print(struct allocdirect *adp) 14954 { 14955 14956 newblk_print(&adp->ad_block); 14957 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14958 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14959 db_printf(" offset %d, inodedep %p\n", 14960 adp->ad_offset, adp->ad_inodedep); 14961 } 14962 14963 static void 14964 allocindir_print(struct allocindir *aip) 14965 { 14966 14967 newblk_print(&aip->ai_block); 14968 db_printf(" oldblkno %jd, lbn %jd\n", 14969 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14970 db_printf(" offset %d, indirdep %p\n", 14971 aip->ai_offset, aip->ai_indirdep); 14972 } 14973 14974 static void 14975 mkdir_print(struct mkdir *mkdir) 14976 { 14977 14978 worklist_print(&mkdir->md_list, 0); 14979 db_printf(" diradd %p, jaddref %p, buf %p\n", 14980 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14981 } 14982 14983 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14984 { 14985 14986 if (have_addr == 0) { 14987 db_printf("inodedep address required\n"); 14988 return; 14989 } 14990 inodedep_print((struct inodedep*)addr, 1); 14991 } 14992 14993 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14994 { 14995 struct inodedep_hashhead *inodedephd; 14996 struct inodedep *inodedep; 14997 struct ufsmount *ump; 14998 int cnt; 14999 15000 if (have_addr == 0) { 15001 db_printf("ufsmount address required\n"); 15002 return; 15003 } 15004 ump = (struct ufsmount *)addr; 15005 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 15006 inodedephd = &ump->inodedep_hashtbl[cnt]; 15007 LIST_FOREACH(inodedep, inodedephd, id_hash) { 15008 inodedep_print(inodedep, 0); 15009 } 15010 } 15011 } 15012 15013 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 15014 { 15015 15016 if (have_addr == 0) { 15017 db_printf("worklist address required\n"); 15018 return; 15019 } 15020 worklist_print((struct worklist *)addr, 1); 15021 } 15022 15023 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 15024 { 15025 struct worklist *wk; 15026 struct workhead *wkhd; 15027 15028 if (have_addr == 0) { 15029 db_printf("worklist address required " 15030 "(for example value in bp->b_dep)\n"); 15031 return; 15032 } 15033 /* 15034 * We often do not have the address of the worklist head but 15035 * instead a pointer to its first entry (e.g., we have the 15036 * contents of bp->b_dep rather than &bp->b_dep). But the back 15037 * pointer of bp->b_dep will point at the head of the list, so 15038 * we cheat and use that instead. If we are in the middle of 15039 * a list we will still get the same result, so nothing 15040 * unexpected will result. 15041 */ 15042 wk = (struct worklist *)addr; 15043 if (wk == NULL) 15044 return; 15045 wkhd = (struct workhead *)wk->wk_list.le_prev; 15046 LIST_FOREACH(wk, wkhd, wk_list) { 15047 switch(wk->wk_type) { 15048 case D_INODEDEP: 15049 inodedep_print(WK_INODEDEP(wk), 0); 15050 continue; 15051 case D_ALLOCDIRECT: 15052 allocdirect_print(WK_ALLOCDIRECT(wk)); 15053 continue; 15054 case D_ALLOCINDIR: 15055 allocindir_print(WK_ALLOCINDIR(wk)); 15056 continue; 15057 case D_MKDIR: 15058 mkdir_print(WK_MKDIR(wk)); 15059 continue; 15060 default: 15061 worklist_print(wk, 0); 15062 continue; 15063 } 15064 } 15065 } 15066 15067 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 15068 { 15069 if (have_addr == 0) { 15070 db_printf("mkdir address required\n"); 15071 return; 15072 } 15073 mkdir_print((struct mkdir *)addr); 15074 } 15075 15076 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 15077 { 15078 struct mkdirlist *mkdirlisthd; 15079 struct mkdir *mkdir; 15080 15081 if (have_addr == 0) { 15082 db_printf("mkdir listhead address required\n"); 15083 return; 15084 } 15085 mkdirlisthd = (struct mkdirlist *)addr; 15086 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 15087 mkdir_print(mkdir); 15088 if (mkdir->md_diradd != NULL) { 15089 db_printf(" "); 15090 worklist_print(&mkdir->md_diradd->da_list, 0); 15091 } 15092 if (mkdir->md_jaddref != NULL) { 15093 db_printf(" "); 15094 worklist_print(&mkdir->md_jaddref->ja_list, 0); 15095 } 15096 } 15097 } 15098 15099 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 15100 { 15101 if (have_addr == 0) { 15102 db_printf("allocdirect address required\n"); 15103 return; 15104 } 15105 allocdirect_print((struct allocdirect *)addr); 15106 } 15107 15108 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 15109 { 15110 if (have_addr == 0) { 15111 db_printf("allocindir address required\n"); 15112 return; 15113 } 15114 allocindir_print((struct allocindir *)addr); 15115 } 15116 15117 #endif /* DDB */ 15118 15119 #endif /* SOFTUPDATES */ 15120