1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/kdb.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/proc.h> 63 #include <sys/stat.h> 64 #include <sys/syslog.h> 65 #include <sys/vnode.h> 66 #include <sys/conf.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ufs/extattr.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/inode.h> 71 #include <ufs/ufs/ufsmount.h> 72 #include <ufs/ffs/fs.h> 73 #include <ufs/ffs/softdep.h> 74 #include <ufs/ffs/ffs_extern.h> 75 #include <ufs/ufs/ufs_extern.h> 76 77 /* 78 * These definitions need to be adapted to the system to which 79 * this file is being ported. 80 */ 81 /* 82 * malloc types defined for the softdep system. 83 */ 84 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 85 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 86 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 87 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 88 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 89 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 90 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 91 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 92 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 93 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 94 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 95 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 96 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 97 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 98 99 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 100 101 #define D_PAGEDEP 0 102 #define D_INODEDEP 1 103 #define D_NEWBLK 2 104 #define D_BMSAFEMAP 3 105 #define D_ALLOCDIRECT 4 106 #define D_INDIRDEP 5 107 #define D_ALLOCINDIR 6 108 #define D_FREEFRAG 7 109 #define D_FREEBLKS 8 110 #define D_FREEFILE 9 111 #define D_DIRADD 10 112 #define D_MKDIR 11 113 #define D_DIRREM 12 114 #define D_NEWDIRBLK 13 115 #define D_LAST D_NEWDIRBLK 116 117 /* 118 * translate from workitem type to memory type 119 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 120 */ 121 static struct malloc_type *memtype[] = { 122 M_PAGEDEP, 123 M_INODEDEP, 124 M_NEWBLK, 125 M_BMSAFEMAP, 126 M_ALLOCDIRECT, 127 M_INDIRDEP, 128 M_ALLOCINDIR, 129 M_FREEFRAG, 130 M_FREEBLKS, 131 M_FREEFILE, 132 M_DIRADD, 133 M_MKDIR, 134 M_DIRREM, 135 M_NEWDIRBLK 136 }; 137 138 #define DtoM(type) (memtype[type]) 139 140 /* 141 * Names of malloc types. 142 */ 143 #define TYPENAME(type) \ 144 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 145 /* 146 * End system adaptaion definitions. 147 */ 148 149 /* 150 * Internal function prototypes. 151 */ 152 static void softdep_error(char *, int); 153 static void drain_output(struct vnode *, int); 154 static struct buf *getdirtybuf(struct buf **, struct mtx *, int); 155 static void clear_remove(struct thread *); 156 static void clear_inodedeps(struct thread *); 157 static int flush_pagedep_deps(struct vnode *, struct mount *, 158 struct diraddhd *); 159 static int flush_inodedep_deps(struct fs *, ino_t); 160 static int flush_deplist(struct allocdirectlst *, int, int *); 161 static int handle_written_filepage(struct pagedep *, struct buf *); 162 static void diradd_inode_written(struct diradd *, struct inodedep *); 163 static int handle_written_inodeblock(struct inodedep *, struct buf *); 164 static void handle_allocdirect_partdone(struct allocdirect *); 165 static void handle_allocindir_partdone(struct allocindir *); 166 static void initiate_write_filepage(struct pagedep *, struct buf *); 167 static void handle_written_mkdir(struct mkdir *, int); 168 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 169 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 170 static void handle_workitem_freefile(struct freefile *); 171 static void handle_workitem_remove(struct dirrem *, struct vnode *); 172 static struct dirrem *newdirrem(struct buf *, struct inode *, 173 struct inode *, int, struct dirrem **); 174 static void free_diradd(struct diradd *); 175 static void free_allocindir(struct allocindir *, struct inodedep *); 176 static void free_newdirblk(struct newdirblk *); 177 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 178 ufs2_daddr_t *); 179 static void deallocate_dependencies(struct buf *, struct inodedep *); 180 static void free_allocdirect(struct allocdirectlst *, 181 struct allocdirect *, int); 182 static int check_inode_unwritten(struct inodedep *); 183 static int free_inodedep(struct inodedep *); 184 static void handle_workitem_freeblocks(struct freeblks *, int); 185 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 186 static void setup_allocindir_phase2(struct buf *, struct inode *, 187 struct allocindir *); 188 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 189 ufs2_daddr_t); 190 static void handle_workitem_freefrag(struct freefrag *); 191 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 192 static void allocdirect_merge(struct allocdirectlst *, 193 struct allocdirect *, struct allocdirect *); 194 static struct bmsafemap *bmsafemap_lookup(struct buf *); 195 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 196 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 197 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 198 static void pause_timer(void *); 199 static int request_cleanup(int, int); 200 static int process_worklist_item(struct mount *, int); 201 static void add_to_worklist(struct worklist *); 202 203 /* 204 * Exported softdep operations. 205 */ 206 static int softdep_disk_prewrite(struct vnode *vp, struct buf *bp); 207 static void softdep_disk_io_initiation(struct buf *); 208 static void softdep_disk_write_complete(struct buf *); 209 static void softdep_deallocate_dependencies(struct buf *); 210 static void softdep_move_dependencies(struct buf *, struct buf *); 211 static int softdep_count_dependencies(struct buf *bp, int); 212 213 /* 214 * Locking primitives. 215 * 216 * For a uniprocessor, all we need to do is protect against disk 217 * interrupts. For a multiprocessor, this lock would have to be 218 * a mutex. A single mutex is used throughout this file, though 219 * finer grain locking could be used if contention warranted it. 220 * 221 * For a multiprocessor, the sleep call would accept a lock and 222 * release it after the sleep processing was complete. In a uniprocessor 223 * implementation there is no such interlock, so we simple mark 224 * the places where it needs to be done with the `interlocked' form 225 * of the lock calls. Since the uniprocessor sleep already interlocks 226 * the spl, there is nothing that really needs to be done. 227 */ 228 #ifndef /* NOT */ DEBUG 229 static struct lockit { 230 int lkt_spl; 231 } lk = { 0 }; 232 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 233 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 234 235 #else /* DEBUG */ 236 #define NOHOLDER ((struct thread *)-1) 237 #define SPECIAL_FLAG ((struct thread *)-2) 238 static struct lockit { 239 int lkt_spl; 240 struct thread *lkt_held; 241 } lk = { 0, NOHOLDER }; 242 243 static void acquire_lock(struct lockit *); 244 static void free_lock(struct lockit *); 245 void softdep_panic(char *); 246 247 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 248 #define FREE_LOCK(lk) free_lock(lk) 249 250 static void 251 acquire_lock(lk) 252 struct lockit *lk; 253 { 254 struct thread *holder; 255 256 if (lk->lkt_held != NOHOLDER) { 257 holder = lk->lkt_held; 258 FREE_LOCK(lk); 259 if (holder == curthread) 260 panic("softdep_lock: locking against myself"); 261 else 262 panic("softdep_lock: lock held by %p", holder); 263 } 264 lk->lkt_spl = splbio(); 265 lk->lkt_held = curthread; 266 } 267 268 static void 269 free_lock(lk) 270 struct lockit *lk; 271 { 272 273 if (lk->lkt_held == NOHOLDER) 274 panic("softdep_unlock: lock not held"); 275 lk->lkt_held = NOHOLDER; 276 splx(lk->lkt_spl); 277 } 278 279 /* 280 * Function to release soft updates lock and panic. 281 */ 282 void 283 softdep_panic(msg) 284 char *msg; 285 { 286 287 if (lk.lkt_held != NOHOLDER) 288 FREE_LOCK(&lk); 289 panic(msg); 290 } 291 #endif /* DEBUG */ 292 293 static int interlocked_sleep(struct lockit *, int, void *, struct mtx *, int, 294 const char *, int); 295 296 /* 297 * When going to sleep, we must save our SPL so that it does 298 * not get lost if some other process uses the lock while we 299 * are sleeping. We restore it after we have slept. This routine 300 * wraps the interlocking with functions that sleep. The list 301 * below enumerates the available set of operations. 302 */ 303 #define UNKNOWN 0 304 #define SLEEP 1 305 #define LOCKBUF 2 306 307 static int 308 interlocked_sleep(lk, op, ident, mtx, flags, wmesg, timo) 309 struct lockit *lk; 310 int op; 311 void *ident; 312 struct mtx *mtx; 313 int flags; 314 const char *wmesg; 315 int timo; 316 { 317 struct thread *holder; 318 int s, retval; 319 320 s = lk->lkt_spl; 321 # ifdef DEBUG 322 if (lk->lkt_held == NOHOLDER) 323 panic("interlocked_sleep: lock not held"); 324 lk->lkt_held = NOHOLDER; 325 # endif /* DEBUG */ 326 switch (op) { 327 case SLEEP: 328 retval = msleep(ident, mtx, flags, wmesg, timo); 329 break; 330 case LOCKBUF: 331 retval = BUF_LOCK((struct buf *)ident, flags, mtx); 332 break; 333 default: 334 panic("interlocked_sleep: unknown operation"); 335 } 336 # ifdef DEBUG 337 if (lk->lkt_held != NOHOLDER) { 338 holder = lk->lkt_held; 339 FREE_LOCK(lk); 340 if (holder == curthread) 341 panic("interlocked_sleep: locking against self"); 342 else 343 panic("interlocked_sleep: lock held by %p", holder); 344 } 345 lk->lkt_held = curthread; 346 # endif /* DEBUG */ 347 lk->lkt_spl = s; 348 return (retval); 349 } 350 351 /* 352 * Place holder for real semaphores. 353 */ 354 struct sema { 355 int value; 356 struct thread *holder; 357 char *name; 358 int prio; 359 int timo; 360 }; 361 static void sema_init(struct sema *, char *, int, int); 362 static int sema_get(struct sema *, struct lockit *); 363 static void sema_release(struct sema *); 364 365 static void 366 sema_init(semap, name, prio, timo) 367 struct sema *semap; 368 char *name; 369 int prio, timo; 370 { 371 372 semap->holder = NOHOLDER; 373 semap->value = 0; 374 semap->name = name; 375 semap->prio = prio; 376 semap->timo = timo; 377 } 378 379 static int 380 sema_get(semap, interlock) 381 struct sema *semap; 382 struct lockit *interlock; 383 { 384 385 if (semap->value++ > 0) { 386 if (interlock != NULL) { 387 interlocked_sleep(interlock, SLEEP, (caddr_t)semap, 388 NULL, semap->prio, semap->name, 389 semap->timo); 390 FREE_LOCK(interlock); 391 } else { 392 tsleep(semap, semap->prio, semap->name, 393 semap->timo); 394 } 395 return (0); 396 } 397 semap->holder = curthread; 398 if (interlock != NULL) 399 FREE_LOCK(interlock); 400 return (1); 401 } 402 403 static void 404 sema_release(semap) 405 struct sema *semap; 406 { 407 408 if (semap->value <= 0 || semap->holder != curthread) { 409 if (lk.lkt_held != NOHOLDER) 410 FREE_LOCK(&lk); 411 panic("sema_release: not held"); 412 } 413 if (--semap->value > 0) { 414 semap->value = 0; 415 wakeup(semap); 416 } 417 semap->holder = NOHOLDER; 418 } 419 420 /* 421 * Worklist queue management. 422 * These routines require that the lock be held. 423 */ 424 #ifndef /* NOT */ DEBUG 425 #define WORKLIST_INSERT(head, item) do { \ 426 (item)->wk_state |= ONWORKLIST; \ 427 LIST_INSERT_HEAD(head, item, wk_list); \ 428 } while (0) 429 #define WORKLIST_REMOVE(item) do { \ 430 (item)->wk_state &= ~ONWORKLIST; \ 431 LIST_REMOVE(item, wk_list); \ 432 } while (0) 433 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 434 435 #else /* DEBUG */ 436 static void worklist_insert(struct workhead *, struct worklist *); 437 static void worklist_remove(struct worklist *); 438 static void workitem_free(struct worklist *, int); 439 440 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 441 #define WORKLIST_REMOVE(item) worklist_remove(item) 442 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 443 444 static void 445 worklist_insert(head, item) 446 struct workhead *head; 447 struct worklist *item; 448 { 449 450 if (lk.lkt_held == NOHOLDER) 451 panic("worklist_insert: lock not held"); 452 if (item->wk_state & ONWORKLIST) { 453 FREE_LOCK(&lk); 454 panic("worklist_insert: already on list"); 455 } 456 item->wk_state |= ONWORKLIST; 457 LIST_INSERT_HEAD(head, item, wk_list); 458 } 459 460 static void 461 worklist_remove(item) 462 struct worklist *item; 463 { 464 465 if (lk.lkt_held == NOHOLDER) 466 panic("worklist_remove: lock not held"); 467 if ((item->wk_state & ONWORKLIST) == 0) { 468 FREE_LOCK(&lk); 469 panic("worklist_remove: not on list"); 470 } 471 item->wk_state &= ~ONWORKLIST; 472 LIST_REMOVE(item, wk_list); 473 } 474 475 static void 476 workitem_free(item, type) 477 struct worklist *item; 478 int type; 479 { 480 481 if (item->wk_state & ONWORKLIST) { 482 if (lk.lkt_held != NOHOLDER) 483 FREE_LOCK(&lk); 484 panic("workitem_free: still on list"); 485 } 486 if (item->wk_type != type) { 487 if (lk.lkt_held != NOHOLDER) 488 FREE_LOCK(&lk); 489 panic("workitem_free: type mismatch"); 490 } 491 FREE(item, DtoM(type)); 492 } 493 #endif /* DEBUG */ 494 495 /* 496 * Workitem queue management 497 */ 498 static struct workhead softdep_workitem_pending; 499 static struct worklist *worklist_tail; 500 static int num_on_worklist; /* number of worklist items to be processed */ 501 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 502 static int softdep_worklist_req; /* serialized waiters */ 503 static int max_softdeps; /* maximum number of structs before slowdown */ 504 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 505 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 506 static int proc_waiting; /* tracks whether we have a timeout posted */ 507 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 508 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 509 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 510 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 511 #define FLUSH_INODES 1 512 static int req_clear_remove; /* syncer process flush some freeblks */ 513 #define FLUSH_REMOVE 2 514 #define FLUSH_REMOVE_WAIT 3 515 /* 516 * runtime statistics 517 */ 518 static int stat_worklist_push; /* number of worklist cleanups */ 519 static int stat_blk_limit_push; /* number of times block limit neared */ 520 static int stat_ino_limit_push; /* number of times inode limit neared */ 521 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 522 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 523 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 524 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 525 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 526 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 527 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 528 #ifdef DEBUG 529 #include <vm/vm.h> 530 #include <sys/sysctl.h> 531 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 532 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 533 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 534 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 535 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 536 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 537 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 538 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 539 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 540 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 541 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 542 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 543 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 544 #endif /* DEBUG */ 545 546 /* 547 * Add an item to the end of the work queue. 548 * This routine requires that the lock be held. 549 * This is the only routine that adds items to the list. 550 * The following routine is the only one that removes items 551 * and does so in order from first to last. 552 */ 553 static void 554 add_to_worklist(wk) 555 struct worklist *wk; 556 { 557 558 if (wk->wk_state & ONWORKLIST) { 559 if (lk.lkt_held != NOHOLDER) 560 FREE_LOCK(&lk); 561 panic("add_to_worklist: already on list"); 562 } 563 wk->wk_state |= ONWORKLIST; 564 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 565 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 566 else 567 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 568 worklist_tail = wk; 569 num_on_worklist += 1; 570 } 571 572 /* 573 * Process that runs once per second to handle items in the background queue. 574 * 575 * Note that we ensure that everything is done in the order in which they 576 * appear in the queue. The code below depends on this property to ensure 577 * that blocks of a file are freed before the inode itself is freed. This 578 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 579 * until all the old ones have been purged from the dependency lists. 580 */ 581 int 582 softdep_process_worklist(matchmnt) 583 struct mount *matchmnt; 584 { 585 struct thread *td = curthread; 586 int cnt, matchcnt, loopcount; 587 long starttime; 588 589 /* 590 * Record the process identifier of our caller so that we can give 591 * this process preferential treatment in request_cleanup below. 592 */ 593 filesys_syncer = td; 594 matchcnt = 0; 595 596 /* 597 * There is no danger of having multiple processes run this 598 * code, but we have to single-thread it when softdep_flushfiles() 599 * is in operation to get an accurate count of the number of items 600 * related to its mount point that are in the list. 601 */ 602 if (matchmnt == NULL) { 603 if (softdep_worklist_busy < 0) 604 return(-1); 605 softdep_worklist_busy += 1; 606 } 607 608 /* 609 * If requested, try removing inode or removal dependencies. 610 */ 611 if (req_clear_inodedeps) { 612 clear_inodedeps(td); 613 req_clear_inodedeps -= 1; 614 wakeup_one(&proc_waiting); 615 } 616 if (req_clear_remove) { 617 clear_remove(td); 618 req_clear_remove -= 1; 619 wakeup_one(&proc_waiting); 620 } 621 loopcount = 1; 622 starttime = time_second; 623 while (num_on_worklist > 0) { 624 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 625 break; 626 else 627 matchcnt += cnt; 628 629 /* 630 * If a umount operation wants to run the worklist 631 * accurately, abort. 632 */ 633 if (softdep_worklist_req && matchmnt == NULL) { 634 matchcnt = -1; 635 break; 636 } 637 638 /* 639 * If requested, try removing inode or removal dependencies. 640 */ 641 if (req_clear_inodedeps) { 642 clear_inodedeps(td); 643 req_clear_inodedeps -= 1; 644 wakeup_one(&proc_waiting); 645 } 646 if (req_clear_remove) { 647 clear_remove(td); 648 req_clear_remove -= 1; 649 wakeup_one(&proc_waiting); 650 } 651 /* 652 * We do not generally want to stop for buffer space, but if 653 * we are really being a buffer hog, we will stop and wait. 654 */ 655 if (loopcount++ % 128 == 0) 656 bwillwrite(); 657 /* 658 * Never allow processing to run for more than one 659 * second. Otherwise the other syncer tasks may get 660 * excessively backlogged. 661 */ 662 if (starttime != time_second && matchmnt == NULL) { 663 matchcnt = -1; 664 break; 665 } 666 } 667 if (matchmnt == NULL) { 668 softdep_worklist_busy -= 1; 669 if (softdep_worklist_req && softdep_worklist_busy == 0) 670 wakeup(&softdep_worklist_req); 671 } 672 return (matchcnt); 673 } 674 675 /* 676 * Process one item on the worklist. 677 */ 678 static int 679 process_worklist_item(matchmnt, flags) 680 struct mount *matchmnt; 681 int flags; 682 { 683 struct worklist *wk, *wkend; 684 struct mount *mp; 685 struct vnode *vp; 686 int matchcnt = 0; 687 688 /* 689 * If we are being called because of a process doing a 690 * copy-on-write, then it is not safe to write as we may 691 * recurse into the copy-on-write routine. 692 */ 693 if (curthread->td_pflags & TDP_COWINPROGRESS) 694 return (-1); 695 ACQUIRE_LOCK(&lk); 696 /* 697 * Normally we just process each item on the worklist in order. 698 * However, if we are in a situation where we cannot lock any 699 * inodes, we have to skip over any dirrem requests whose 700 * vnodes are resident and locked. 701 */ 702 vp = NULL; 703 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 704 if (wk->wk_state & INPROGRESS) 705 continue; 706 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 707 break; 708 wk->wk_state |= INPROGRESS; 709 FREE_LOCK(&lk); 710 VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 711 LK_NOWAIT | LK_EXCLUSIVE, &vp); 712 ACQUIRE_LOCK(&lk); 713 wk->wk_state &= ~INPROGRESS; 714 if (vp != NULL) 715 break; 716 } 717 if (wk == 0) { 718 FREE_LOCK(&lk); 719 return (-1); 720 } 721 /* 722 * Remove the item to be processed. If we are removing the last 723 * item on the list, we need to recalculate the tail pointer. 724 * As this happens rarely and usually when the list is short, 725 * we just run down the list to find it rather than tracking it 726 * in the above loop. 727 */ 728 WORKLIST_REMOVE(wk); 729 if (wk == worklist_tail) { 730 LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list) 731 if (LIST_NEXT(wkend, wk_list) == NULL) 732 break; 733 worklist_tail = wkend; 734 } 735 num_on_worklist -= 1; 736 FREE_LOCK(&lk); 737 switch (wk->wk_type) { 738 739 case D_DIRREM: 740 /* removal of a directory entry */ 741 mp = WK_DIRREM(wk)->dm_mnt; 742 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 743 panic("%s: dirrem on suspended filesystem", 744 "process_worklist_item"); 745 if (mp == matchmnt) 746 matchcnt += 1; 747 handle_workitem_remove(WK_DIRREM(wk), vp); 748 break; 749 750 case D_FREEBLKS: 751 /* releasing blocks and/or fragments from a file */ 752 mp = WK_FREEBLKS(wk)->fb_mnt; 753 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 754 panic("%s: freeblks on suspended filesystem", 755 "process_worklist_item"); 756 if (mp == matchmnt) 757 matchcnt += 1; 758 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 759 break; 760 761 case D_FREEFRAG: 762 /* releasing a fragment when replaced as a file grows */ 763 mp = WK_FREEFRAG(wk)->ff_mnt; 764 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 765 panic("%s: freefrag on suspended filesystem", 766 "process_worklist_item"); 767 if (mp == matchmnt) 768 matchcnt += 1; 769 handle_workitem_freefrag(WK_FREEFRAG(wk)); 770 break; 771 772 case D_FREEFILE: 773 /* releasing an inode when its link count drops to 0 */ 774 mp = WK_FREEFILE(wk)->fx_mnt; 775 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 776 panic("%s: freefile on suspended filesystem", 777 "process_worklist_item"); 778 if (mp == matchmnt) 779 matchcnt += 1; 780 handle_workitem_freefile(WK_FREEFILE(wk)); 781 break; 782 783 default: 784 panic("%s_process_worklist: Unknown type %s", 785 "softdep", TYPENAME(wk->wk_type)); 786 /* NOTREACHED */ 787 } 788 return (matchcnt); 789 } 790 791 /* 792 * Move dependencies from one buffer to another. 793 */ 794 static void 795 softdep_move_dependencies(oldbp, newbp) 796 struct buf *oldbp; 797 struct buf *newbp; 798 { 799 struct worklist *wk, *wktail; 800 801 if (LIST_FIRST(&newbp->b_dep) != NULL) 802 panic("softdep_move_dependencies: need merge code"); 803 wktail = 0; 804 ACQUIRE_LOCK(&lk); 805 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 806 LIST_REMOVE(wk, wk_list); 807 if (wktail == 0) 808 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 809 else 810 LIST_INSERT_AFTER(wktail, wk, wk_list); 811 wktail = wk; 812 } 813 FREE_LOCK(&lk); 814 } 815 816 /* 817 * Purge the work list of all items associated with a particular mount point. 818 */ 819 int 820 softdep_flushworklist(oldmnt, countp, td) 821 struct mount *oldmnt; 822 int *countp; 823 struct thread *td; 824 { 825 struct vnode *devvp; 826 int count, error = 0; 827 828 /* 829 * Await our turn to clear out the queue, then serialize access. 830 */ 831 while (softdep_worklist_busy) { 832 softdep_worklist_req += 1; 833 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); 834 softdep_worklist_req -= 1; 835 } 836 softdep_worklist_busy = -1; 837 /* 838 * Alternately flush the block device associated with the mount 839 * point and process any dependencies that the flushing 840 * creates. We continue until no more worklist dependencies 841 * are found. 842 */ 843 *countp = 0; 844 devvp = VFSTOUFS(oldmnt)->um_devvp; 845 while ((count = softdep_process_worklist(oldmnt)) > 0) { 846 *countp += count; 847 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 848 error = VOP_FSYNC(devvp, td->td_ucred, MNT_WAIT, td); 849 VOP_UNLOCK(devvp, 0, td); 850 if (error) 851 break; 852 } 853 softdep_worklist_busy = 0; 854 if (softdep_worklist_req) 855 wakeup(&softdep_worklist_req); 856 return (error); 857 } 858 859 /* 860 * Flush all vnodes and worklist items associated with a specified mount point. 861 */ 862 int 863 softdep_flushfiles(oldmnt, flags, td) 864 struct mount *oldmnt; 865 int flags; 866 struct thread *td; 867 { 868 int error, count, loopcnt; 869 870 error = 0; 871 872 /* 873 * Alternately flush the vnodes associated with the mount 874 * point and process any dependencies that the flushing 875 * creates. In theory, this loop can happen at most twice, 876 * but we give it a few extra just to be sure. 877 */ 878 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 879 /* 880 * Do another flush in case any vnodes were brought in 881 * as part of the cleanup operations. 882 */ 883 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 884 break; 885 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 886 count == 0) 887 break; 888 } 889 /* 890 * If we are unmounting then it is an error to fail. If we 891 * are simply trying to downgrade to read-only, then filesystem 892 * activity can keep us busy forever, so we just fail with EBUSY. 893 */ 894 if (loopcnt == 0) { 895 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 896 panic("softdep_flushfiles: looping"); 897 error = EBUSY; 898 } 899 return (error); 900 } 901 902 /* 903 * Structure hashing. 904 * 905 * There are three types of structures that can be looked up: 906 * 1) pagedep structures identified by mount point, inode number, 907 * and logical block. 908 * 2) inodedep structures identified by mount point and inode number. 909 * 3) newblk structures identified by mount point and 910 * physical block number. 911 * 912 * The "pagedep" and "inodedep" dependency structures are hashed 913 * separately from the file blocks and inodes to which they correspond. 914 * This separation helps when the in-memory copy of an inode or 915 * file block must be replaced. It also obviates the need to access 916 * an inode or file page when simply updating (or de-allocating) 917 * dependency structures. Lookup of newblk structures is needed to 918 * find newly allocated blocks when trying to associate them with 919 * their allocdirect or allocindir structure. 920 * 921 * The lookup routines optionally create and hash a new instance when 922 * an existing entry is not found. 923 */ 924 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 925 #define NODELAY 0x0002 /* cannot do background work */ 926 927 /* 928 * Structures and routines associated with pagedep caching. 929 */ 930 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 931 u_long pagedep_hash; /* size of hash table - 1 */ 932 #define PAGEDEP_HASH(mp, inum, lbn) \ 933 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 934 pagedep_hash]) 935 static struct sema pagedep_in_progress; 936 937 /* 938 * Look up a pagedep. Return 1 if found, 0 if not found or found 939 * when asked to allocate but not associated with any buffer. 940 * If not found, allocate if DEPALLOC flag is passed. 941 * Found or allocated entry is returned in pagedeppp. 942 * This routine must be called with splbio interrupts blocked. 943 */ 944 static int 945 pagedep_lookup(ip, lbn, flags, pagedeppp) 946 struct inode *ip; 947 ufs_lbn_t lbn; 948 int flags; 949 struct pagedep **pagedeppp; 950 { 951 struct pagedep *pagedep; 952 struct pagedep_hashhead *pagedephd; 953 struct mount *mp; 954 int i; 955 956 #ifdef DEBUG 957 if (lk.lkt_held == NOHOLDER) 958 panic("pagedep_lookup: lock not held"); 959 #endif 960 mp = ITOV(ip)->v_mount; 961 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 962 top: 963 LIST_FOREACH(pagedep, pagedephd, pd_hash) 964 if (ip->i_number == pagedep->pd_ino && 965 lbn == pagedep->pd_lbn && 966 mp == pagedep->pd_mnt) 967 break; 968 if (pagedep) { 969 *pagedeppp = pagedep; 970 if ((flags & DEPALLOC) != 0 && 971 (pagedep->pd_state & ONWORKLIST) == 0) 972 return (0); 973 return (1); 974 } 975 if ((flags & DEPALLOC) == 0) { 976 *pagedeppp = NULL; 977 return (0); 978 } 979 if (sema_get(&pagedep_in_progress, &lk) == 0) { 980 ACQUIRE_LOCK(&lk); 981 goto top; 982 } 983 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 984 M_SOFTDEP_FLAGS|M_ZERO); 985 pagedep->pd_list.wk_type = D_PAGEDEP; 986 pagedep->pd_mnt = mp; 987 pagedep->pd_ino = ip->i_number; 988 pagedep->pd_lbn = lbn; 989 LIST_INIT(&pagedep->pd_dirremhd); 990 LIST_INIT(&pagedep->pd_pendinghd); 991 for (i = 0; i < DAHASHSZ; i++) 992 LIST_INIT(&pagedep->pd_diraddhd[i]); 993 ACQUIRE_LOCK(&lk); 994 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 995 sema_release(&pagedep_in_progress); 996 *pagedeppp = pagedep; 997 return (0); 998 } 999 1000 /* 1001 * Structures and routines associated with inodedep caching. 1002 */ 1003 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1004 static u_long inodedep_hash; /* size of hash table - 1 */ 1005 static long num_inodedep; /* number of inodedep allocated */ 1006 #define INODEDEP_HASH(fs, inum) \ 1007 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1008 static struct sema inodedep_in_progress; 1009 1010 /* 1011 * Look up an inodedep. Return 1 if found, 0 if not found. 1012 * If not found, allocate if DEPALLOC flag is passed. 1013 * Found or allocated entry is returned in inodedeppp. 1014 * This routine must be called with splbio interrupts blocked. 1015 */ 1016 static int 1017 inodedep_lookup(fs, inum, flags, inodedeppp) 1018 struct fs *fs; 1019 ino_t inum; 1020 int flags; 1021 struct inodedep **inodedeppp; 1022 { 1023 struct inodedep *inodedep; 1024 struct inodedep_hashhead *inodedephd; 1025 int firsttry; 1026 1027 #ifdef DEBUG 1028 if (lk.lkt_held == NOHOLDER) 1029 panic("inodedep_lookup: lock not held"); 1030 #endif 1031 firsttry = 1; 1032 inodedephd = INODEDEP_HASH(fs, inum); 1033 top: 1034 LIST_FOREACH(inodedep, inodedephd, id_hash) 1035 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1036 break; 1037 if (inodedep) { 1038 *inodedeppp = inodedep; 1039 return (1); 1040 } 1041 if ((flags & DEPALLOC) == 0) { 1042 *inodedeppp = NULL; 1043 return (0); 1044 } 1045 /* 1046 * If we are over our limit, try to improve the situation. 1047 */ 1048 if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && 1049 request_cleanup(FLUSH_INODES, 1)) { 1050 firsttry = 0; 1051 goto top; 1052 } 1053 if (sema_get(&inodedep_in_progress, &lk) == 0) { 1054 ACQUIRE_LOCK(&lk); 1055 goto top; 1056 } 1057 num_inodedep += 1; 1058 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1059 M_INODEDEP, M_SOFTDEP_FLAGS); 1060 inodedep->id_list.wk_type = D_INODEDEP; 1061 inodedep->id_fs = fs; 1062 inodedep->id_ino = inum; 1063 inodedep->id_state = ALLCOMPLETE; 1064 inodedep->id_nlinkdelta = 0; 1065 inodedep->id_savedino1 = NULL; 1066 inodedep->id_savedsize = -1; 1067 inodedep->id_savedextsize = -1; 1068 inodedep->id_buf = NULL; 1069 LIST_INIT(&inodedep->id_pendinghd); 1070 LIST_INIT(&inodedep->id_inowait); 1071 LIST_INIT(&inodedep->id_bufwait); 1072 TAILQ_INIT(&inodedep->id_inoupdt); 1073 TAILQ_INIT(&inodedep->id_newinoupdt); 1074 TAILQ_INIT(&inodedep->id_extupdt); 1075 TAILQ_INIT(&inodedep->id_newextupdt); 1076 ACQUIRE_LOCK(&lk); 1077 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1078 sema_release(&inodedep_in_progress); 1079 *inodedeppp = inodedep; 1080 return (0); 1081 } 1082 1083 /* 1084 * Structures and routines associated with newblk caching. 1085 */ 1086 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1087 u_long newblk_hash; /* size of hash table - 1 */ 1088 #define NEWBLK_HASH(fs, inum) \ 1089 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1090 static struct sema newblk_in_progress; 1091 1092 /* 1093 * Look up a newblk. Return 1 if found, 0 if not found. 1094 * If not found, allocate if DEPALLOC flag is passed. 1095 * Found or allocated entry is returned in newblkpp. 1096 */ 1097 static int 1098 newblk_lookup(fs, newblkno, flags, newblkpp) 1099 struct fs *fs; 1100 ufs2_daddr_t newblkno; 1101 int flags; 1102 struct newblk **newblkpp; 1103 { 1104 struct newblk *newblk; 1105 struct newblk_hashhead *newblkhd; 1106 1107 newblkhd = NEWBLK_HASH(fs, newblkno); 1108 top: 1109 LIST_FOREACH(newblk, newblkhd, nb_hash) 1110 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1111 break; 1112 if (newblk) { 1113 *newblkpp = newblk; 1114 return (1); 1115 } 1116 if ((flags & DEPALLOC) == 0) { 1117 *newblkpp = NULL; 1118 return (0); 1119 } 1120 if (sema_get(&newblk_in_progress, 0) == 0) 1121 goto top; 1122 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1123 M_NEWBLK, M_SOFTDEP_FLAGS); 1124 newblk->nb_state = 0; 1125 newblk->nb_fs = fs; 1126 newblk->nb_newblkno = newblkno; 1127 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1128 sema_release(&newblk_in_progress); 1129 *newblkpp = newblk; 1130 return (0); 1131 } 1132 1133 /* 1134 * Executed during filesystem system initialization before 1135 * mounting any filesystems. 1136 */ 1137 void 1138 softdep_initialize() 1139 { 1140 1141 LIST_INIT(&mkdirlisthd); 1142 LIST_INIT(&softdep_workitem_pending); 1143 max_softdeps = desiredvnodes * 4; 1144 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1145 &pagedep_hash); 1146 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 1147 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1148 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 1149 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1150 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 1151 1152 /* hooks through which the main kernel code calls us */ 1153 softdep_process_worklist_hook = softdep_process_worklist; 1154 softdep_fsync_hook = softdep_fsync; 1155 1156 /* initialise bioops hack */ 1157 bioops.io_prewrite = softdep_disk_prewrite; 1158 bioops.io_start = softdep_disk_io_initiation; 1159 bioops.io_complete = softdep_disk_write_complete; 1160 bioops.io_deallocate = softdep_deallocate_dependencies; 1161 bioops.io_movedeps = softdep_move_dependencies; 1162 bioops.io_countdeps = softdep_count_dependencies; 1163 } 1164 1165 /* 1166 * Executed after all filesystems have been unmounted during 1167 * filesystem module unload. 1168 */ 1169 void 1170 softdep_uninitialize() 1171 { 1172 1173 softdep_process_worklist_hook = NULL; 1174 softdep_fsync_hook = NULL; 1175 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1176 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1177 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1178 } 1179 1180 /* 1181 * Called at mount time to notify the dependency code that a 1182 * filesystem wishes to use it. 1183 */ 1184 int 1185 softdep_mount(devvp, mp, fs, cred) 1186 struct vnode *devvp; 1187 struct mount *mp; 1188 struct fs *fs; 1189 struct ucred *cred; 1190 { 1191 struct csum_total cstotal; 1192 struct cg *cgp; 1193 struct buf *bp; 1194 int error, cyl; 1195 1196 mp->mnt_flag &= ~MNT_ASYNC; 1197 mp->mnt_flag |= MNT_SOFTDEP; 1198 /* 1199 * When doing soft updates, the counters in the 1200 * superblock may have gotten out of sync, so we have 1201 * to scan the cylinder groups and recalculate them. 1202 */ 1203 if (fs->fs_clean != 0) 1204 return (0); 1205 bzero(&cstotal, sizeof cstotal); 1206 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1207 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1208 fs->fs_cgsize, cred, &bp)) != 0) { 1209 brelse(bp); 1210 return (error); 1211 } 1212 cgp = (struct cg *)bp->b_data; 1213 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1214 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1215 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1216 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1217 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1218 brelse(bp); 1219 } 1220 #ifdef DEBUG 1221 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1222 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1223 #endif 1224 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1225 return (0); 1226 } 1227 1228 /* 1229 * Protecting the freemaps (or bitmaps). 1230 * 1231 * To eliminate the need to execute fsck before mounting a filesystem 1232 * after a power failure, one must (conservatively) guarantee that the 1233 * on-disk copy of the bitmaps never indicate that a live inode or block is 1234 * free. So, when a block or inode is allocated, the bitmap should be 1235 * updated (on disk) before any new pointers. When a block or inode is 1236 * freed, the bitmap should not be updated until all pointers have been 1237 * reset. The latter dependency is handled by the delayed de-allocation 1238 * approach described below for block and inode de-allocation. The former 1239 * dependency is handled by calling the following procedure when a block or 1240 * inode is allocated. When an inode is allocated an "inodedep" is created 1241 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1242 * Each "inodedep" is also inserted into the hash indexing structure so 1243 * that any additional link additions can be made dependent on the inode 1244 * allocation. 1245 * 1246 * The ufs filesystem maintains a number of free block counts (e.g., per 1247 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1248 * in addition to the bitmaps. These counts are used to improve efficiency 1249 * during allocation and therefore must be consistent with the bitmaps. 1250 * There is no convenient way to guarantee post-crash consistency of these 1251 * counts with simple update ordering, for two main reasons: (1) The counts 1252 * and bitmaps for a single cylinder group block are not in the same disk 1253 * sector. If a disk write is interrupted (e.g., by power failure), one may 1254 * be written and the other not. (2) Some of the counts are located in the 1255 * superblock rather than the cylinder group block. So, we focus our soft 1256 * updates implementation on protecting the bitmaps. When mounting a 1257 * filesystem, we recompute the auxiliary counts from the bitmaps. 1258 */ 1259 1260 /* 1261 * Called just after updating the cylinder group block to allocate an inode. 1262 */ 1263 void 1264 softdep_setup_inomapdep(bp, ip, newinum) 1265 struct buf *bp; /* buffer for cylgroup block with inode map */ 1266 struct inode *ip; /* inode related to allocation */ 1267 ino_t newinum; /* new inode number being allocated */ 1268 { 1269 struct inodedep *inodedep; 1270 struct bmsafemap *bmsafemap; 1271 1272 /* 1273 * Create a dependency for the newly allocated inode. 1274 * Panic if it already exists as something is seriously wrong. 1275 * Otherwise add it to the dependency list for the buffer holding 1276 * the cylinder group map from which it was allocated. 1277 */ 1278 ACQUIRE_LOCK(&lk); 1279 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) { 1280 FREE_LOCK(&lk); 1281 panic("softdep_setup_inomapdep: found inode"); 1282 } 1283 inodedep->id_buf = bp; 1284 inodedep->id_state &= ~DEPCOMPLETE; 1285 bmsafemap = bmsafemap_lookup(bp); 1286 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1287 FREE_LOCK(&lk); 1288 } 1289 1290 /* 1291 * Called just after updating the cylinder group block to 1292 * allocate block or fragment. 1293 */ 1294 void 1295 softdep_setup_blkmapdep(bp, fs, newblkno) 1296 struct buf *bp; /* buffer for cylgroup block with block map */ 1297 struct fs *fs; /* filesystem doing allocation */ 1298 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1299 { 1300 struct newblk *newblk; 1301 struct bmsafemap *bmsafemap; 1302 1303 /* 1304 * Create a dependency for the newly allocated block. 1305 * Add it to the dependency list for the buffer holding 1306 * the cylinder group map from which it was allocated. 1307 */ 1308 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1309 panic("softdep_setup_blkmapdep: found block"); 1310 ACQUIRE_LOCK(&lk); 1311 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1312 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1313 FREE_LOCK(&lk); 1314 } 1315 1316 /* 1317 * Find the bmsafemap associated with a cylinder group buffer. 1318 * If none exists, create one. The buffer must be locked when 1319 * this routine is called and this routine must be called with 1320 * splbio interrupts blocked. 1321 */ 1322 static struct bmsafemap * 1323 bmsafemap_lookup(bp) 1324 struct buf *bp; 1325 { 1326 struct bmsafemap *bmsafemap; 1327 struct worklist *wk; 1328 1329 #ifdef DEBUG 1330 if (lk.lkt_held == NOHOLDER) 1331 panic("bmsafemap_lookup: lock not held"); 1332 #endif 1333 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1334 if (wk->wk_type == D_BMSAFEMAP) 1335 return (WK_BMSAFEMAP(wk)); 1336 FREE_LOCK(&lk); 1337 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1338 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1339 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1340 bmsafemap->sm_list.wk_state = 0; 1341 bmsafemap->sm_buf = bp; 1342 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1343 LIST_INIT(&bmsafemap->sm_allocindirhd); 1344 LIST_INIT(&bmsafemap->sm_inodedephd); 1345 LIST_INIT(&bmsafemap->sm_newblkhd); 1346 ACQUIRE_LOCK(&lk); 1347 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1348 return (bmsafemap); 1349 } 1350 1351 /* 1352 * Direct block allocation dependencies. 1353 * 1354 * When a new block is allocated, the corresponding disk locations must be 1355 * initialized (with zeros or new data) before the on-disk inode points to 1356 * them. Also, the freemap from which the block was allocated must be 1357 * updated (on disk) before the inode's pointer. These two dependencies are 1358 * independent of each other and are needed for all file blocks and indirect 1359 * blocks that are pointed to directly by the inode. Just before the 1360 * "in-core" version of the inode is updated with a newly allocated block 1361 * number, a procedure (below) is called to setup allocation dependency 1362 * structures. These structures are removed when the corresponding 1363 * dependencies are satisfied or when the block allocation becomes obsolete 1364 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1365 * fragment that gets upgraded). All of these cases are handled in 1366 * procedures described later. 1367 * 1368 * When a file extension causes a fragment to be upgraded, either to a larger 1369 * fragment or to a full block, the on-disk location may change (if the 1370 * previous fragment could not simply be extended). In this case, the old 1371 * fragment must be de-allocated, but not until after the inode's pointer has 1372 * been updated. In most cases, this is handled by later procedures, which 1373 * will construct a "freefrag" structure to be added to the workitem queue 1374 * when the inode update is complete (or obsolete). The main exception to 1375 * this is when an allocation occurs while a pending allocation dependency 1376 * (for the same block pointer) remains. This case is handled in the main 1377 * allocation dependency setup procedure by immediately freeing the 1378 * unreferenced fragments. 1379 */ 1380 void 1381 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1382 struct inode *ip; /* inode to which block is being added */ 1383 ufs_lbn_t lbn; /* block pointer within inode */ 1384 ufs2_daddr_t newblkno; /* disk block number being added */ 1385 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1386 long newsize; /* size of new block */ 1387 long oldsize; /* size of new block */ 1388 struct buf *bp; /* bp for allocated block */ 1389 { 1390 struct allocdirect *adp, *oldadp; 1391 struct allocdirectlst *adphead; 1392 struct bmsafemap *bmsafemap; 1393 struct inodedep *inodedep; 1394 struct pagedep *pagedep; 1395 struct newblk *newblk; 1396 1397 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1398 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1399 adp->ad_list.wk_type = D_ALLOCDIRECT; 1400 adp->ad_lbn = lbn; 1401 adp->ad_newblkno = newblkno; 1402 adp->ad_oldblkno = oldblkno; 1403 adp->ad_newsize = newsize; 1404 adp->ad_oldsize = oldsize; 1405 adp->ad_state = ATTACHED; 1406 LIST_INIT(&adp->ad_newdirblk); 1407 if (newblkno == oldblkno) 1408 adp->ad_freefrag = NULL; 1409 else 1410 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1411 1412 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1413 panic("softdep_setup_allocdirect: lost block"); 1414 1415 ACQUIRE_LOCK(&lk); 1416 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1417 adp->ad_inodedep = inodedep; 1418 1419 if (newblk->nb_state == DEPCOMPLETE) { 1420 adp->ad_state |= DEPCOMPLETE; 1421 adp->ad_buf = NULL; 1422 } else { 1423 bmsafemap = newblk->nb_bmsafemap; 1424 adp->ad_buf = bmsafemap->sm_buf; 1425 LIST_REMOVE(newblk, nb_deps); 1426 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1427 } 1428 LIST_REMOVE(newblk, nb_hash); 1429 FREE(newblk, M_NEWBLK); 1430 1431 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1432 if (lbn >= NDADDR) { 1433 /* allocating an indirect block */ 1434 if (oldblkno != 0) { 1435 FREE_LOCK(&lk); 1436 panic("softdep_setup_allocdirect: non-zero indir"); 1437 } 1438 } else { 1439 /* 1440 * Allocating a direct block. 1441 * 1442 * If we are allocating a directory block, then we must 1443 * allocate an associated pagedep to track additions and 1444 * deletions. 1445 */ 1446 if ((ip->i_mode & IFMT) == IFDIR && 1447 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1448 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1449 } 1450 /* 1451 * The list of allocdirects must be kept in sorted and ascending 1452 * order so that the rollback routines can quickly determine the 1453 * first uncommitted block (the size of the file stored on disk 1454 * ends at the end of the lowest committed fragment, or if there 1455 * are no fragments, at the end of the highest committed block). 1456 * Since files generally grow, the typical case is that the new 1457 * block is to be added at the end of the list. We speed this 1458 * special case by checking against the last allocdirect in the 1459 * list before laboriously traversing the list looking for the 1460 * insertion point. 1461 */ 1462 adphead = &inodedep->id_newinoupdt; 1463 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1464 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1465 /* insert at end of list */ 1466 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1467 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1468 allocdirect_merge(adphead, adp, oldadp); 1469 FREE_LOCK(&lk); 1470 return; 1471 } 1472 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1473 if (oldadp->ad_lbn >= lbn) 1474 break; 1475 } 1476 if (oldadp == NULL) { 1477 FREE_LOCK(&lk); 1478 panic("softdep_setup_allocdirect: lost entry"); 1479 } 1480 /* insert in middle of list */ 1481 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1482 if (oldadp->ad_lbn == lbn) 1483 allocdirect_merge(adphead, adp, oldadp); 1484 FREE_LOCK(&lk); 1485 } 1486 1487 /* 1488 * Replace an old allocdirect dependency with a newer one. 1489 * This routine must be called with splbio interrupts blocked. 1490 */ 1491 static void 1492 allocdirect_merge(adphead, newadp, oldadp) 1493 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1494 struct allocdirect *newadp; /* allocdirect being added */ 1495 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1496 { 1497 struct worklist *wk; 1498 struct freefrag *freefrag; 1499 struct newdirblk *newdirblk; 1500 1501 #ifdef DEBUG 1502 if (lk.lkt_held == NOHOLDER) 1503 panic("allocdirect_merge: lock not held"); 1504 #endif 1505 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1506 newadp->ad_oldsize != oldadp->ad_newsize || 1507 newadp->ad_lbn >= NDADDR) { 1508 FREE_LOCK(&lk); 1509 panic("%s %jd != new %jd || old size %ld != new %ld", 1510 "allocdirect_merge: old blkno", 1511 (intmax_t)newadp->ad_oldblkno, 1512 (intmax_t)oldadp->ad_newblkno, 1513 newadp->ad_oldsize, oldadp->ad_newsize); 1514 } 1515 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1516 newadp->ad_oldsize = oldadp->ad_oldsize; 1517 /* 1518 * If the old dependency had a fragment to free or had never 1519 * previously had a block allocated, then the new dependency 1520 * can immediately post its freefrag and adopt the old freefrag. 1521 * This action is done by swapping the freefrag dependencies. 1522 * The new dependency gains the old one's freefrag, and the 1523 * old one gets the new one and then immediately puts it on 1524 * the worklist when it is freed by free_allocdirect. It is 1525 * not possible to do this swap when the old dependency had a 1526 * non-zero size but no previous fragment to free. This condition 1527 * arises when the new block is an extension of the old block. 1528 * Here, the first part of the fragment allocated to the new 1529 * dependency is part of the block currently claimed on disk by 1530 * the old dependency, so cannot legitimately be freed until the 1531 * conditions for the new dependency are fulfilled. 1532 */ 1533 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1534 freefrag = newadp->ad_freefrag; 1535 newadp->ad_freefrag = oldadp->ad_freefrag; 1536 oldadp->ad_freefrag = freefrag; 1537 } 1538 /* 1539 * If we are tracking a new directory-block allocation, 1540 * move it from the old allocdirect to the new allocdirect. 1541 */ 1542 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1543 newdirblk = WK_NEWDIRBLK(wk); 1544 WORKLIST_REMOVE(&newdirblk->db_list); 1545 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1546 panic("allocdirect_merge: extra newdirblk"); 1547 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1548 } 1549 free_allocdirect(adphead, oldadp, 0); 1550 } 1551 1552 /* 1553 * Allocate a new freefrag structure if needed. 1554 */ 1555 static struct freefrag * 1556 newfreefrag(ip, blkno, size) 1557 struct inode *ip; 1558 ufs2_daddr_t blkno; 1559 long size; 1560 { 1561 struct freefrag *freefrag; 1562 struct fs *fs; 1563 1564 if (blkno == 0) 1565 return (NULL); 1566 fs = ip->i_fs; 1567 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1568 panic("newfreefrag: frag size"); 1569 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1570 M_FREEFRAG, M_SOFTDEP_FLAGS); 1571 freefrag->ff_list.wk_type = D_FREEFRAG; 1572 freefrag->ff_state = 0; 1573 freefrag->ff_inum = ip->i_number; 1574 freefrag->ff_mnt = ITOV(ip)->v_mount; 1575 freefrag->ff_blkno = blkno; 1576 freefrag->ff_fragsize = size; 1577 return (freefrag); 1578 } 1579 1580 /* 1581 * This workitem de-allocates fragments that were replaced during 1582 * file block allocation. 1583 */ 1584 static void 1585 handle_workitem_freefrag(freefrag) 1586 struct freefrag *freefrag; 1587 { 1588 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1589 1590 ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1591 freefrag->ff_fragsize, freefrag->ff_inum); 1592 FREE(freefrag, M_FREEFRAG); 1593 } 1594 1595 /* 1596 * Set up a dependency structure for an external attributes data block. 1597 * This routine follows much of the structure of softdep_setup_allocdirect. 1598 * See the description of softdep_setup_allocdirect above for details. 1599 */ 1600 void 1601 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1602 struct inode *ip; 1603 ufs_lbn_t lbn; 1604 ufs2_daddr_t newblkno; 1605 ufs2_daddr_t oldblkno; 1606 long newsize; 1607 long oldsize; 1608 struct buf *bp; 1609 { 1610 struct allocdirect *adp, *oldadp; 1611 struct allocdirectlst *adphead; 1612 struct bmsafemap *bmsafemap; 1613 struct inodedep *inodedep; 1614 struct newblk *newblk; 1615 1616 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1617 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1618 adp->ad_list.wk_type = D_ALLOCDIRECT; 1619 adp->ad_lbn = lbn; 1620 adp->ad_newblkno = newblkno; 1621 adp->ad_oldblkno = oldblkno; 1622 adp->ad_newsize = newsize; 1623 adp->ad_oldsize = oldsize; 1624 adp->ad_state = ATTACHED | EXTDATA; 1625 LIST_INIT(&adp->ad_newdirblk); 1626 if (newblkno == oldblkno) 1627 adp->ad_freefrag = NULL; 1628 else 1629 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1630 1631 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1632 panic("softdep_setup_allocext: lost block"); 1633 1634 ACQUIRE_LOCK(&lk); 1635 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1636 adp->ad_inodedep = inodedep; 1637 1638 if (newblk->nb_state == DEPCOMPLETE) { 1639 adp->ad_state |= DEPCOMPLETE; 1640 adp->ad_buf = NULL; 1641 } else { 1642 bmsafemap = newblk->nb_bmsafemap; 1643 adp->ad_buf = bmsafemap->sm_buf; 1644 LIST_REMOVE(newblk, nb_deps); 1645 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1646 } 1647 LIST_REMOVE(newblk, nb_hash); 1648 FREE(newblk, M_NEWBLK); 1649 1650 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1651 if (lbn >= NXADDR) { 1652 FREE_LOCK(&lk); 1653 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1654 (long long)lbn); 1655 } 1656 /* 1657 * The list of allocdirects must be kept in sorted and ascending 1658 * order so that the rollback routines can quickly determine the 1659 * first uncommitted block (the size of the file stored on disk 1660 * ends at the end of the lowest committed fragment, or if there 1661 * are no fragments, at the end of the highest committed block). 1662 * Since files generally grow, the typical case is that the new 1663 * block is to be added at the end of the list. We speed this 1664 * special case by checking against the last allocdirect in the 1665 * list before laboriously traversing the list looking for the 1666 * insertion point. 1667 */ 1668 adphead = &inodedep->id_newextupdt; 1669 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1670 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1671 /* insert at end of list */ 1672 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1673 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1674 allocdirect_merge(adphead, adp, oldadp); 1675 FREE_LOCK(&lk); 1676 return; 1677 } 1678 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1679 if (oldadp->ad_lbn >= lbn) 1680 break; 1681 } 1682 if (oldadp == NULL) { 1683 FREE_LOCK(&lk); 1684 panic("softdep_setup_allocext: lost entry"); 1685 } 1686 /* insert in middle of list */ 1687 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1688 if (oldadp->ad_lbn == lbn) 1689 allocdirect_merge(adphead, adp, oldadp); 1690 FREE_LOCK(&lk); 1691 } 1692 1693 /* 1694 * Indirect block allocation dependencies. 1695 * 1696 * The same dependencies that exist for a direct block also exist when 1697 * a new block is allocated and pointed to by an entry in a block of 1698 * indirect pointers. The undo/redo states described above are also 1699 * used here. Because an indirect block contains many pointers that 1700 * may have dependencies, a second copy of the entire in-memory indirect 1701 * block is kept. The buffer cache copy is always completely up-to-date. 1702 * The second copy, which is used only as a source for disk writes, 1703 * contains only the safe pointers (i.e., those that have no remaining 1704 * update dependencies). The second copy is freed when all pointers 1705 * are safe. The cache is not allowed to replace indirect blocks with 1706 * pending update dependencies. If a buffer containing an indirect 1707 * block with dependencies is written, these routines will mark it 1708 * dirty again. It can only be successfully written once all the 1709 * dependencies are removed. The ffs_fsync routine in conjunction with 1710 * softdep_sync_metadata work together to get all the dependencies 1711 * removed so that a file can be successfully written to disk. Three 1712 * procedures are used when setting up indirect block pointer 1713 * dependencies. The division is necessary because of the organization 1714 * of the "balloc" routine and because of the distinction between file 1715 * pages and file metadata blocks. 1716 */ 1717 1718 /* 1719 * Allocate a new allocindir structure. 1720 */ 1721 static struct allocindir * 1722 newallocindir(ip, ptrno, newblkno, oldblkno) 1723 struct inode *ip; /* inode for file being extended */ 1724 int ptrno; /* offset of pointer in indirect block */ 1725 ufs2_daddr_t newblkno; /* disk block number being added */ 1726 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1727 { 1728 struct allocindir *aip; 1729 1730 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1731 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1732 aip->ai_list.wk_type = D_ALLOCINDIR; 1733 aip->ai_state = ATTACHED; 1734 aip->ai_offset = ptrno; 1735 aip->ai_newblkno = newblkno; 1736 aip->ai_oldblkno = oldblkno; 1737 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1738 return (aip); 1739 } 1740 1741 /* 1742 * Called just before setting an indirect block pointer 1743 * to a newly allocated file page. 1744 */ 1745 void 1746 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1747 struct inode *ip; /* inode for file being extended */ 1748 ufs_lbn_t lbn; /* allocated block number within file */ 1749 struct buf *bp; /* buffer with indirect blk referencing page */ 1750 int ptrno; /* offset of pointer in indirect block */ 1751 ufs2_daddr_t newblkno; /* disk block number being added */ 1752 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1753 struct buf *nbp; /* buffer holding allocated page */ 1754 { 1755 struct allocindir *aip; 1756 struct pagedep *pagedep; 1757 1758 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1759 ACQUIRE_LOCK(&lk); 1760 /* 1761 * If we are allocating a directory page, then we must 1762 * allocate an associated pagedep to track additions and 1763 * deletions. 1764 */ 1765 if ((ip->i_mode & IFMT) == IFDIR && 1766 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1767 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1768 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1769 FREE_LOCK(&lk); 1770 setup_allocindir_phase2(bp, ip, aip); 1771 } 1772 1773 /* 1774 * Called just before setting an indirect block pointer to a 1775 * newly allocated indirect block. 1776 */ 1777 void 1778 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1779 struct buf *nbp; /* newly allocated indirect block */ 1780 struct inode *ip; /* inode for file being extended */ 1781 struct buf *bp; /* indirect block referencing allocated block */ 1782 int ptrno; /* offset of pointer in indirect block */ 1783 ufs2_daddr_t newblkno; /* disk block number being added */ 1784 { 1785 struct allocindir *aip; 1786 1787 aip = newallocindir(ip, ptrno, newblkno, 0); 1788 ACQUIRE_LOCK(&lk); 1789 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1790 FREE_LOCK(&lk); 1791 setup_allocindir_phase2(bp, ip, aip); 1792 } 1793 1794 /* 1795 * Called to finish the allocation of the "aip" allocated 1796 * by one of the two routines above. 1797 */ 1798 static void 1799 setup_allocindir_phase2(bp, ip, aip) 1800 struct buf *bp; /* in-memory copy of the indirect block */ 1801 struct inode *ip; /* inode for file being extended */ 1802 struct allocindir *aip; /* allocindir allocated by the above routines */ 1803 { 1804 struct worklist *wk; 1805 struct indirdep *indirdep, *newindirdep; 1806 struct bmsafemap *bmsafemap; 1807 struct allocindir *oldaip; 1808 struct freefrag *freefrag; 1809 struct newblk *newblk; 1810 ufs2_daddr_t blkno; 1811 1812 if (bp->b_lblkno >= 0) 1813 panic("setup_allocindir_phase2: not indir blk"); 1814 for (indirdep = NULL, newindirdep = NULL; ; ) { 1815 ACQUIRE_LOCK(&lk); 1816 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1817 if (wk->wk_type != D_INDIRDEP) 1818 continue; 1819 indirdep = WK_INDIRDEP(wk); 1820 break; 1821 } 1822 if (indirdep == NULL && newindirdep) { 1823 indirdep = newindirdep; 1824 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1825 newindirdep = NULL; 1826 } 1827 FREE_LOCK(&lk); 1828 if (indirdep) { 1829 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1830 &newblk) == 0) 1831 panic("setup_allocindir: lost block"); 1832 ACQUIRE_LOCK(&lk); 1833 if (newblk->nb_state == DEPCOMPLETE) { 1834 aip->ai_state |= DEPCOMPLETE; 1835 aip->ai_buf = NULL; 1836 } else { 1837 bmsafemap = newblk->nb_bmsafemap; 1838 aip->ai_buf = bmsafemap->sm_buf; 1839 LIST_REMOVE(newblk, nb_deps); 1840 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1841 aip, ai_deps); 1842 } 1843 LIST_REMOVE(newblk, nb_hash); 1844 FREE(newblk, M_NEWBLK); 1845 aip->ai_indirdep = indirdep; 1846 /* 1847 * Check to see if there is an existing dependency 1848 * for this block. If there is, merge the old 1849 * dependency into the new one. 1850 */ 1851 if (aip->ai_oldblkno == 0) 1852 oldaip = NULL; 1853 else 1854 1855 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1856 if (oldaip->ai_offset == aip->ai_offset) 1857 break; 1858 freefrag = NULL; 1859 if (oldaip != NULL) { 1860 if (oldaip->ai_newblkno != aip->ai_oldblkno) { 1861 FREE_LOCK(&lk); 1862 panic("setup_allocindir_phase2: blkno"); 1863 } 1864 aip->ai_oldblkno = oldaip->ai_oldblkno; 1865 freefrag = aip->ai_freefrag; 1866 aip->ai_freefrag = oldaip->ai_freefrag; 1867 oldaip->ai_freefrag = NULL; 1868 free_allocindir(oldaip, NULL); 1869 } 1870 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1871 if (ip->i_ump->um_fstype == UFS1) 1872 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1873 [aip->ai_offset] = aip->ai_oldblkno; 1874 else 1875 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1876 [aip->ai_offset] = aip->ai_oldblkno; 1877 FREE_LOCK(&lk); 1878 if (freefrag != NULL) 1879 handle_workitem_freefrag(freefrag); 1880 } 1881 if (newindirdep) { 1882 brelse(newindirdep->ir_savebp); 1883 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1884 } 1885 if (indirdep) 1886 break; 1887 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1888 M_INDIRDEP, M_SOFTDEP_FLAGS); 1889 newindirdep->ir_list.wk_type = D_INDIRDEP; 1890 newindirdep->ir_state = ATTACHED; 1891 if (ip->i_ump->um_fstype == UFS1) 1892 newindirdep->ir_state |= UFS1FMT; 1893 LIST_INIT(&newindirdep->ir_deplisthd); 1894 LIST_INIT(&newindirdep->ir_donehd); 1895 if (bp->b_blkno == bp->b_lblkno) { 1896 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 1897 NULL, NULL); 1898 bp->b_blkno = blkno; 1899 } 1900 newindirdep->ir_savebp = 1901 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 1902 BUF_KERNPROC(newindirdep->ir_savebp); 1903 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1904 } 1905 } 1906 1907 /* 1908 * Block de-allocation dependencies. 1909 * 1910 * When blocks are de-allocated, the on-disk pointers must be nullified before 1911 * the blocks are made available for use by other files. (The true 1912 * requirement is that old pointers must be nullified before new on-disk 1913 * pointers are set. We chose this slightly more stringent requirement to 1914 * reduce complexity.) Our implementation handles this dependency by updating 1915 * the inode (or indirect block) appropriately but delaying the actual block 1916 * de-allocation (i.e., freemap and free space count manipulation) until 1917 * after the updated versions reach stable storage. After the disk is 1918 * updated, the blocks can be safely de-allocated whenever it is convenient. 1919 * This implementation handles only the common case of reducing a file's 1920 * length to zero. Other cases are handled by the conventional synchronous 1921 * write approach. 1922 * 1923 * The ffs implementation with which we worked double-checks 1924 * the state of the block pointers and file size as it reduces 1925 * a file's length. Some of this code is replicated here in our 1926 * soft updates implementation. The freeblks->fb_chkcnt field is 1927 * used to transfer a part of this information to the procedure 1928 * that eventually de-allocates the blocks. 1929 * 1930 * This routine should be called from the routine that shortens 1931 * a file's length, before the inode's size or block pointers 1932 * are modified. It will save the block pointer information for 1933 * later release and zero the inode so that the calling routine 1934 * can release it. 1935 */ 1936 void 1937 softdep_setup_freeblocks(ip, length, flags) 1938 struct inode *ip; /* The inode whose length is to be reduced */ 1939 off_t length; /* The new length for the file */ 1940 int flags; /* IO_EXT and/or IO_NORMAL */ 1941 { 1942 struct freeblks *freeblks; 1943 struct inodedep *inodedep; 1944 struct allocdirect *adp; 1945 struct vnode *vp; 1946 struct buf *bp; 1947 struct fs *fs; 1948 ufs2_daddr_t extblocks, datablocks; 1949 int i, delay, error; 1950 1951 fs = ip->i_fs; 1952 if (length != 0) 1953 panic("softdep_setup_freeblocks: non-zero length"); 1954 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1955 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1956 freeblks->fb_list.wk_type = D_FREEBLKS; 1957 freeblks->fb_uid = ip->i_uid; 1958 freeblks->fb_previousinum = ip->i_number; 1959 freeblks->fb_devvp = ip->i_devvp; 1960 freeblks->fb_mnt = ITOV(ip)->v_mount; 1961 extblocks = 0; 1962 if (fs->fs_magic == FS_UFS2_MAGIC) 1963 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 1964 datablocks = DIP(ip, i_blocks) - extblocks; 1965 if ((flags & IO_NORMAL) == 0) { 1966 freeblks->fb_oldsize = 0; 1967 freeblks->fb_chkcnt = 0; 1968 } else { 1969 freeblks->fb_oldsize = ip->i_size; 1970 ip->i_size = 0; 1971 DIP_SET(ip, i_size, 0); 1972 freeblks->fb_chkcnt = datablocks; 1973 for (i = 0; i < NDADDR; i++) { 1974 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 1975 DIP_SET(ip, i_db[i], 0); 1976 } 1977 for (i = 0; i < NIADDR; i++) { 1978 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 1979 DIP_SET(ip, i_ib[i], 0); 1980 } 1981 /* 1982 * If the file was removed, then the space being freed was 1983 * accounted for then (see softdep_filereleased()). If the 1984 * file is merely being truncated, then we account for it now. 1985 */ 1986 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 1987 fs->fs_pendingblocks += datablocks; 1988 } 1989 if ((flags & IO_EXT) == 0) { 1990 freeblks->fb_oldextsize = 0; 1991 } else { 1992 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 1993 ip->i_din2->di_extsize = 0; 1994 freeblks->fb_chkcnt += extblocks; 1995 for (i = 0; i < NXADDR; i++) { 1996 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 1997 ip->i_din2->di_extb[i] = 0; 1998 } 1999 } 2000 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 2001 /* 2002 * Push the zero'ed inode to to its disk buffer so that we are free 2003 * to delete its dependencies below. Once the dependencies are gone 2004 * the buffer can be safely released. 2005 */ 2006 if ((error = bread(ip->i_devvp, 2007 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2008 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2009 brelse(bp); 2010 softdep_error("softdep_setup_freeblocks", error); 2011 } 2012 if (ip->i_ump->um_fstype == UFS1) 2013 *((struct ufs1_dinode *)bp->b_data + 2014 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2015 else 2016 *((struct ufs2_dinode *)bp->b_data + 2017 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2018 /* 2019 * Find and eliminate any inode dependencies. 2020 */ 2021 ACQUIRE_LOCK(&lk); 2022 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 2023 if ((inodedep->id_state & IOSTARTED) != 0) { 2024 FREE_LOCK(&lk); 2025 panic("softdep_setup_freeblocks: inode busy"); 2026 } 2027 /* 2028 * Add the freeblks structure to the list of operations that 2029 * must await the zero'ed inode being written to disk. If we 2030 * still have a bitmap dependency (delay == 0), then the inode 2031 * has never been written to disk, so we can process the 2032 * freeblks below once we have deleted the dependencies. 2033 */ 2034 delay = (inodedep->id_state & DEPCOMPLETE); 2035 if (delay) 2036 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2037 /* 2038 * Because the file length has been truncated to zero, any 2039 * pending block allocation dependency structures associated 2040 * with this inode are obsolete and can simply be de-allocated. 2041 * We must first merge the two dependency lists to get rid of 2042 * any duplicate freefrag structures, then purge the merged list. 2043 * If we still have a bitmap dependency, then the inode has never 2044 * been written to disk, so we can free any fragments without delay. 2045 */ 2046 if (flags & IO_NORMAL) { 2047 merge_inode_lists(&inodedep->id_newinoupdt, 2048 &inodedep->id_inoupdt); 2049 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2050 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2051 } 2052 if (flags & IO_EXT) { 2053 merge_inode_lists(&inodedep->id_newextupdt, 2054 &inodedep->id_extupdt); 2055 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2056 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2057 } 2058 FREE_LOCK(&lk); 2059 bdwrite(bp); 2060 /* 2061 * We must wait for any I/O in progress to finish so that 2062 * all potential buffers on the dirty list will be visible. 2063 * Once they are all there, walk the list and get rid of 2064 * any dependencies. 2065 */ 2066 vp = ITOV(ip); 2067 ACQUIRE_LOCK(&lk); 2068 VI_LOCK(vp); 2069 drain_output(vp, 1); 2070 restart: 2071 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 2072 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2073 ((flags & IO_NORMAL) == 0 && 2074 (bp->b_xflags & BX_ALTDATA) == 0)) 2075 continue; 2076 if ((bp = getdirtybuf(&bp, VI_MTX(vp), MNT_WAIT)) == NULL) 2077 goto restart; 2078 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 2079 deallocate_dependencies(bp, inodedep); 2080 bp->b_flags |= B_INVAL | B_NOCACHE; 2081 FREE_LOCK(&lk); 2082 brelse(bp); 2083 ACQUIRE_LOCK(&lk); 2084 VI_LOCK(vp); 2085 goto restart; 2086 } 2087 VI_UNLOCK(vp); 2088 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 2089 (void) free_inodedep(inodedep); 2090 FREE_LOCK(&lk); 2091 /* 2092 * If the inode has never been written to disk (delay == 0), 2093 * then we can process the freeblks now that we have deleted 2094 * the dependencies. 2095 */ 2096 if (!delay) 2097 handle_workitem_freeblocks(freeblks, 0); 2098 } 2099 2100 /* 2101 * Reclaim any dependency structures from a buffer that is about to 2102 * be reallocated to a new vnode. The buffer must be locked, thus, 2103 * no I/O completion operations can occur while we are manipulating 2104 * its associated dependencies. The mutex is held so that other I/O's 2105 * associated with related dependencies do not occur. 2106 */ 2107 static void 2108 deallocate_dependencies(bp, inodedep) 2109 struct buf *bp; 2110 struct inodedep *inodedep; 2111 { 2112 struct worklist *wk; 2113 struct indirdep *indirdep; 2114 struct allocindir *aip; 2115 struct pagedep *pagedep; 2116 struct dirrem *dirrem; 2117 struct diradd *dap; 2118 int i; 2119 2120 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2121 switch (wk->wk_type) { 2122 2123 case D_INDIRDEP: 2124 indirdep = WK_INDIRDEP(wk); 2125 /* 2126 * None of the indirect pointers will ever be visible, 2127 * so they can simply be tossed. GOINGAWAY ensures 2128 * that allocated pointers will be saved in the buffer 2129 * cache until they are freed. Note that they will 2130 * only be able to be found by their physical address 2131 * since the inode mapping the logical address will 2132 * be gone. The save buffer used for the safe copy 2133 * was allocated in setup_allocindir_phase2 using 2134 * the physical address so it could be used for this 2135 * purpose. Hence we swap the safe copy with the real 2136 * copy, allowing the safe copy to be freed and holding 2137 * on to the real copy for later use in indir_trunc. 2138 */ 2139 if (indirdep->ir_state & GOINGAWAY) { 2140 FREE_LOCK(&lk); 2141 panic("deallocate_dependencies: already gone"); 2142 } 2143 indirdep->ir_state |= GOINGAWAY; 2144 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2145 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2146 free_allocindir(aip, inodedep); 2147 if (bp->b_lblkno >= 0 || 2148 bp->b_blkno != indirdep->ir_savebp->b_lblkno) { 2149 FREE_LOCK(&lk); 2150 panic("deallocate_dependencies: not indir"); 2151 } 2152 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2153 bp->b_bcount); 2154 WORKLIST_REMOVE(wk); 2155 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2156 continue; 2157 2158 case D_PAGEDEP: 2159 pagedep = WK_PAGEDEP(wk); 2160 /* 2161 * None of the directory additions will ever be 2162 * visible, so they can simply be tossed. 2163 */ 2164 for (i = 0; i < DAHASHSZ; i++) 2165 while ((dap = 2166 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2167 free_diradd(dap); 2168 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2169 free_diradd(dap); 2170 /* 2171 * Copy any directory remove dependencies to the list 2172 * to be processed after the zero'ed inode is written. 2173 * If the inode has already been written, then they 2174 * can be dumped directly onto the work list. 2175 */ 2176 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2177 LIST_REMOVE(dirrem, dm_next); 2178 dirrem->dm_dirinum = pagedep->pd_ino; 2179 if (inodedep == NULL || 2180 (inodedep->id_state & ALLCOMPLETE) == 2181 ALLCOMPLETE) 2182 add_to_worklist(&dirrem->dm_list); 2183 else 2184 WORKLIST_INSERT(&inodedep->id_bufwait, 2185 &dirrem->dm_list); 2186 } 2187 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2188 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2189 if (wk->wk_type == D_NEWDIRBLK && 2190 WK_NEWDIRBLK(wk)->db_pagedep == 2191 pagedep) 2192 break; 2193 if (wk != NULL) { 2194 WORKLIST_REMOVE(wk); 2195 free_newdirblk(WK_NEWDIRBLK(wk)); 2196 } else { 2197 FREE_LOCK(&lk); 2198 panic("deallocate_dependencies: " 2199 "lost pagedep"); 2200 } 2201 } 2202 WORKLIST_REMOVE(&pagedep->pd_list); 2203 LIST_REMOVE(pagedep, pd_hash); 2204 WORKITEM_FREE(pagedep, D_PAGEDEP); 2205 continue; 2206 2207 case D_ALLOCINDIR: 2208 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2209 continue; 2210 2211 case D_ALLOCDIRECT: 2212 case D_INODEDEP: 2213 FREE_LOCK(&lk); 2214 panic("deallocate_dependencies: Unexpected type %s", 2215 TYPENAME(wk->wk_type)); 2216 /* NOTREACHED */ 2217 2218 default: 2219 FREE_LOCK(&lk); 2220 panic("deallocate_dependencies: Unknown type %s", 2221 TYPENAME(wk->wk_type)); 2222 /* NOTREACHED */ 2223 } 2224 } 2225 } 2226 2227 /* 2228 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2229 * This routine must be called with splbio interrupts blocked. 2230 */ 2231 static void 2232 free_allocdirect(adphead, adp, delay) 2233 struct allocdirectlst *adphead; 2234 struct allocdirect *adp; 2235 int delay; 2236 { 2237 struct newdirblk *newdirblk; 2238 struct worklist *wk; 2239 2240 #ifdef DEBUG 2241 if (lk.lkt_held == NOHOLDER) 2242 panic("free_allocdirect: lock not held"); 2243 #endif 2244 if ((adp->ad_state & DEPCOMPLETE) == 0) 2245 LIST_REMOVE(adp, ad_deps); 2246 TAILQ_REMOVE(adphead, adp, ad_next); 2247 if ((adp->ad_state & COMPLETE) == 0) 2248 WORKLIST_REMOVE(&adp->ad_list); 2249 if (adp->ad_freefrag != NULL) { 2250 if (delay) 2251 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2252 &adp->ad_freefrag->ff_list); 2253 else 2254 add_to_worklist(&adp->ad_freefrag->ff_list); 2255 } 2256 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2257 newdirblk = WK_NEWDIRBLK(wk); 2258 WORKLIST_REMOVE(&newdirblk->db_list); 2259 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2260 panic("free_allocdirect: extra newdirblk"); 2261 if (delay) 2262 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2263 &newdirblk->db_list); 2264 else 2265 free_newdirblk(newdirblk); 2266 } 2267 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2268 } 2269 2270 /* 2271 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2272 * This routine must be called with splbio interrupts blocked. 2273 */ 2274 static void 2275 free_newdirblk(newdirblk) 2276 struct newdirblk *newdirblk; 2277 { 2278 struct pagedep *pagedep; 2279 struct diradd *dap; 2280 int i; 2281 2282 #ifdef DEBUG 2283 if (lk.lkt_held == NOHOLDER) 2284 panic("free_newdirblk: lock not held"); 2285 #endif 2286 /* 2287 * If the pagedep is still linked onto the directory buffer 2288 * dependency chain, then some of the entries on the 2289 * pd_pendinghd list may not be committed to disk yet. In 2290 * this case, we will simply clear the NEWBLOCK flag and 2291 * let the pd_pendinghd list be processed when the pagedep 2292 * is next written. If the pagedep is no longer on the buffer 2293 * dependency chain, then all the entries on the pd_pending 2294 * list are committed to disk and we can free them here. 2295 */ 2296 pagedep = newdirblk->db_pagedep; 2297 pagedep->pd_state &= ~NEWBLOCK; 2298 if ((pagedep->pd_state & ONWORKLIST) == 0) 2299 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2300 free_diradd(dap); 2301 /* 2302 * If no dependencies remain, the pagedep will be freed. 2303 */ 2304 for (i = 0; i < DAHASHSZ; i++) 2305 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2306 break; 2307 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2308 LIST_REMOVE(pagedep, pd_hash); 2309 WORKITEM_FREE(pagedep, D_PAGEDEP); 2310 } 2311 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2312 } 2313 2314 /* 2315 * Prepare an inode to be freed. The actual free operation is not 2316 * done until the zero'ed inode has been written to disk. 2317 */ 2318 void 2319 softdep_freefile(pvp, ino, mode) 2320 struct vnode *pvp; 2321 ino_t ino; 2322 int mode; 2323 { 2324 struct inode *ip = VTOI(pvp); 2325 struct inodedep *inodedep; 2326 struct freefile *freefile; 2327 2328 /* 2329 * This sets up the inode de-allocation dependency. 2330 */ 2331 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2332 M_FREEFILE, M_SOFTDEP_FLAGS); 2333 freefile->fx_list.wk_type = D_FREEFILE; 2334 freefile->fx_list.wk_state = 0; 2335 freefile->fx_mode = mode; 2336 freefile->fx_oldinum = ino; 2337 freefile->fx_devvp = ip->i_devvp; 2338 freefile->fx_mnt = ITOV(ip)->v_mount; 2339 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 2340 ip->i_fs->fs_pendinginodes += 1; 2341 2342 /* 2343 * If the inodedep does not exist, then the zero'ed inode has 2344 * been written to disk. If the allocated inode has never been 2345 * written to disk, then the on-disk inode is zero'ed. In either 2346 * case we can free the file immediately. 2347 */ 2348 ACQUIRE_LOCK(&lk); 2349 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2350 check_inode_unwritten(inodedep)) { 2351 FREE_LOCK(&lk); 2352 handle_workitem_freefile(freefile); 2353 return; 2354 } 2355 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2356 FREE_LOCK(&lk); 2357 } 2358 2359 /* 2360 * Check to see if an inode has never been written to disk. If 2361 * so free the inodedep and return success, otherwise return failure. 2362 * This routine must be called with splbio interrupts blocked. 2363 * 2364 * If we still have a bitmap dependency, then the inode has never 2365 * been written to disk. Drop the dependency as it is no longer 2366 * necessary since the inode is being deallocated. We set the 2367 * ALLCOMPLETE flags since the bitmap now properly shows that the 2368 * inode is not allocated. Even if the inode is actively being 2369 * written, it has been rolled back to its zero'ed state, so we 2370 * are ensured that a zero inode is what is on the disk. For short 2371 * lived files, this change will usually result in removing all the 2372 * dependencies from the inode so that it can be freed immediately. 2373 */ 2374 static int 2375 check_inode_unwritten(inodedep) 2376 struct inodedep *inodedep; 2377 { 2378 2379 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2380 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2381 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2382 LIST_FIRST(&inodedep->id_inowait) != NULL || 2383 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2384 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2385 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2386 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2387 inodedep->id_nlinkdelta != 0) 2388 return (0); 2389 inodedep->id_state |= ALLCOMPLETE; 2390 LIST_REMOVE(inodedep, id_deps); 2391 inodedep->id_buf = NULL; 2392 if (inodedep->id_state & ONWORKLIST) 2393 WORKLIST_REMOVE(&inodedep->id_list); 2394 if (inodedep->id_savedino1 != NULL) { 2395 FREE(inodedep->id_savedino1, M_INODEDEP); 2396 inodedep->id_savedino1 = NULL; 2397 } 2398 if (free_inodedep(inodedep) == 0) { 2399 FREE_LOCK(&lk); 2400 panic("check_inode_unwritten: busy inode"); 2401 } 2402 return (1); 2403 } 2404 2405 /* 2406 * Try to free an inodedep structure. Return 1 if it could be freed. 2407 */ 2408 static int 2409 free_inodedep(inodedep) 2410 struct inodedep *inodedep; 2411 { 2412 2413 if ((inodedep->id_state & ONWORKLIST) != 0 || 2414 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2415 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2416 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2417 LIST_FIRST(&inodedep->id_inowait) != NULL || 2418 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2419 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2420 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2421 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2422 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2423 return (0); 2424 LIST_REMOVE(inodedep, id_hash); 2425 WORKITEM_FREE(inodedep, D_INODEDEP); 2426 num_inodedep -= 1; 2427 return (1); 2428 } 2429 2430 /* 2431 * This workitem routine performs the block de-allocation. 2432 * The workitem is added to the pending list after the updated 2433 * inode block has been written to disk. As mentioned above, 2434 * checks regarding the number of blocks de-allocated (compared 2435 * to the number of blocks allocated for the file) are also 2436 * performed in this function. 2437 */ 2438 static void 2439 handle_workitem_freeblocks(freeblks, flags) 2440 struct freeblks *freeblks; 2441 int flags; 2442 { 2443 struct inode *ip; 2444 struct vnode *vp; 2445 struct fs *fs; 2446 int i, nblocks, level, bsize; 2447 ufs2_daddr_t bn, blocksreleased = 0; 2448 int error, allerror = 0; 2449 ufs_lbn_t baselbns[NIADDR], tmpval; 2450 2451 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2452 tmpval = 1; 2453 baselbns[0] = NDADDR; 2454 for (i = 1; i < NIADDR; i++) { 2455 tmpval *= NINDIR(fs); 2456 baselbns[i] = baselbns[i - 1] + tmpval; 2457 } 2458 nblocks = btodb(fs->fs_bsize); 2459 blocksreleased = 0; 2460 /* 2461 * Release all extended attribute blocks or frags. 2462 */ 2463 if (freeblks->fb_oldextsize > 0) { 2464 for (i = (NXADDR - 1); i >= 0; i--) { 2465 if ((bn = freeblks->fb_eblks[i]) == 0) 2466 continue; 2467 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2468 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2469 freeblks->fb_previousinum); 2470 blocksreleased += btodb(bsize); 2471 } 2472 } 2473 /* 2474 * Release all data blocks or frags. 2475 */ 2476 if (freeblks->fb_oldsize > 0) { 2477 /* 2478 * Indirect blocks first. 2479 */ 2480 for (level = (NIADDR - 1); level >= 0; level--) { 2481 if ((bn = freeblks->fb_iblks[level]) == 0) 2482 continue; 2483 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2484 level, baselbns[level], &blocksreleased)) == 0) 2485 allerror = error; 2486 ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize, 2487 freeblks->fb_previousinum); 2488 fs->fs_pendingblocks -= nblocks; 2489 blocksreleased += nblocks; 2490 } 2491 /* 2492 * All direct blocks or frags. 2493 */ 2494 for (i = (NDADDR - 1); i >= 0; i--) { 2495 if ((bn = freeblks->fb_dblks[i]) == 0) 2496 continue; 2497 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2498 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2499 freeblks->fb_previousinum); 2500 fs->fs_pendingblocks -= btodb(bsize); 2501 blocksreleased += btodb(bsize); 2502 } 2503 } 2504 /* 2505 * If we still have not finished background cleanup, then check 2506 * to see if the block count needs to be adjusted. 2507 */ 2508 if (freeblks->fb_chkcnt != blocksreleased && 2509 (fs->fs_flags & FS_UNCLEAN) != 0 && 2510 VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, 2511 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2512 ip = VTOI(vp); 2513 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2514 freeblks->fb_chkcnt - blocksreleased); 2515 ip->i_flag |= IN_CHANGE; 2516 vput(vp); 2517 } 2518 2519 #ifdef DIAGNOSTIC 2520 if (freeblks->fb_chkcnt != blocksreleased && 2521 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2522 printf("handle_workitem_freeblocks: block count\n"); 2523 if (allerror) 2524 softdep_error("handle_workitem_freeblks", allerror); 2525 #endif /* DIAGNOSTIC */ 2526 2527 WORKITEM_FREE(freeblks, D_FREEBLKS); 2528 } 2529 2530 /* 2531 * Release blocks associated with the inode ip and stored in the indirect 2532 * block dbn. If level is greater than SINGLE, the block is an indirect block 2533 * and recursive calls to indirtrunc must be used to cleanse other indirect 2534 * blocks. 2535 */ 2536 static int 2537 indir_trunc(freeblks, dbn, level, lbn, countp) 2538 struct freeblks *freeblks; 2539 ufs2_daddr_t dbn; 2540 int level; 2541 ufs_lbn_t lbn; 2542 ufs2_daddr_t *countp; 2543 { 2544 struct buf *bp; 2545 struct fs *fs; 2546 struct worklist *wk; 2547 struct indirdep *indirdep; 2548 ufs1_daddr_t *bap1 = 0; 2549 ufs2_daddr_t nb, *bap2 = 0; 2550 ufs_lbn_t lbnadd; 2551 int i, nblocks, ufs1fmt; 2552 int error, allerror = 0; 2553 2554 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2555 lbnadd = 1; 2556 for (i = level; i > 0; i--) 2557 lbnadd *= NINDIR(fs); 2558 /* 2559 * Get buffer of block pointers to be freed. This routine is not 2560 * called until the zero'ed inode has been written, so it is safe 2561 * to free blocks as they are encountered. Because the inode has 2562 * been zero'ed, calls to bmap on these blocks will fail. So, we 2563 * have to use the on-disk address and the block device for the 2564 * filesystem to look them up. If the file was deleted before its 2565 * indirect blocks were all written to disk, the routine that set 2566 * us up (deallocate_dependencies) will have arranged to leave 2567 * a complete copy of the indirect block in memory for our use. 2568 * Otherwise we have to read the blocks in from the disk. 2569 */ 2570 #ifdef notyet 2571 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2572 GB_NOCREAT); 2573 #else 2574 bp = incore(freeblks->fb_devvp, dbn); 2575 #endif 2576 ACQUIRE_LOCK(&lk); 2577 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2578 if (wk->wk_type != D_INDIRDEP || 2579 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2580 (indirdep->ir_state & GOINGAWAY) == 0) { 2581 FREE_LOCK(&lk); 2582 panic("indir_trunc: lost indirdep"); 2583 } 2584 WORKLIST_REMOVE(wk); 2585 WORKITEM_FREE(indirdep, D_INDIRDEP); 2586 if (LIST_FIRST(&bp->b_dep) != NULL) { 2587 FREE_LOCK(&lk); 2588 panic("indir_trunc: dangling dep"); 2589 } 2590 VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1; 2591 FREE_LOCK(&lk); 2592 } else { 2593 #ifdef notyet 2594 if (bp) 2595 brelse(bp); 2596 #endif 2597 FREE_LOCK(&lk); 2598 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2599 NOCRED, &bp); 2600 if (error) { 2601 brelse(bp); 2602 return (error); 2603 } 2604 } 2605 /* 2606 * Recursively free indirect blocks. 2607 */ 2608 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2609 ufs1fmt = 1; 2610 bap1 = (ufs1_daddr_t *)bp->b_data; 2611 } else { 2612 ufs1fmt = 0; 2613 bap2 = (ufs2_daddr_t *)bp->b_data; 2614 } 2615 nblocks = btodb(fs->fs_bsize); 2616 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2617 if (ufs1fmt) 2618 nb = bap1[i]; 2619 else 2620 nb = bap2[i]; 2621 if (nb == 0) 2622 continue; 2623 if (level != 0) { 2624 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2625 level - 1, lbn + (i * lbnadd), countp)) != 0) 2626 allerror = error; 2627 } 2628 ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2629 freeblks->fb_previousinum); 2630 fs->fs_pendingblocks -= nblocks; 2631 *countp += nblocks; 2632 } 2633 bp->b_flags |= B_INVAL | B_NOCACHE; 2634 brelse(bp); 2635 return (allerror); 2636 } 2637 2638 /* 2639 * Free an allocindir. 2640 * This routine must be called with splbio interrupts blocked. 2641 */ 2642 static void 2643 free_allocindir(aip, inodedep) 2644 struct allocindir *aip; 2645 struct inodedep *inodedep; 2646 { 2647 struct freefrag *freefrag; 2648 2649 #ifdef DEBUG 2650 if (lk.lkt_held == NOHOLDER) 2651 panic("free_allocindir: lock not held"); 2652 #endif 2653 if ((aip->ai_state & DEPCOMPLETE) == 0) 2654 LIST_REMOVE(aip, ai_deps); 2655 if (aip->ai_state & ONWORKLIST) 2656 WORKLIST_REMOVE(&aip->ai_list); 2657 LIST_REMOVE(aip, ai_next); 2658 if ((freefrag = aip->ai_freefrag) != NULL) { 2659 if (inodedep == NULL) 2660 add_to_worklist(&freefrag->ff_list); 2661 else 2662 WORKLIST_INSERT(&inodedep->id_bufwait, 2663 &freefrag->ff_list); 2664 } 2665 WORKITEM_FREE(aip, D_ALLOCINDIR); 2666 } 2667 2668 /* 2669 * Directory entry addition dependencies. 2670 * 2671 * When adding a new directory entry, the inode (with its incremented link 2672 * count) must be written to disk before the directory entry's pointer to it. 2673 * Also, if the inode is newly allocated, the corresponding freemap must be 2674 * updated (on disk) before the directory entry's pointer. These requirements 2675 * are met via undo/redo on the directory entry's pointer, which consists 2676 * simply of the inode number. 2677 * 2678 * As directory entries are added and deleted, the free space within a 2679 * directory block can become fragmented. The ufs filesystem will compact 2680 * a fragmented directory block to make space for a new entry. When this 2681 * occurs, the offsets of previously added entries change. Any "diradd" 2682 * dependency structures corresponding to these entries must be updated with 2683 * the new offsets. 2684 */ 2685 2686 /* 2687 * This routine is called after the in-memory inode's link 2688 * count has been incremented, but before the directory entry's 2689 * pointer to the inode has been set. 2690 */ 2691 int 2692 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2693 struct buf *bp; /* buffer containing directory block */ 2694 struct inode *dp; /* inode for directory */ 2695 off_t diroffset; /* offset of new entry in directory */ 2696 ino_t newinum; /* inode referenced by new directory entry */ 2697 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2698 int isnewblk; /* entry is in a newly allocated block */ 2699 { 2700 int offset; /* offset of new entry within directory block */ 2701 ufs_lbn_t lbn; /* block in directory containing new entry */ 2702 struct fs *fs; 2703 struct diradd *dap; 2704 struct allocdirect *adp; 2705 struct pagedep *pagedep; 2706 struct inodedep *inodedep; 2707 struct newdirblk *newdirblk = 0; 2708 struct mkdir *mkdir1, *mkdir2; 2709 2710 /* 2711 * Whiteouts have no dependencies. 2712 */ 2713 if (newinum == WINO) { 2714 if (newdirbp != NULL) 2715 bdwrite(newdirbp); 2716 return (0); 2717 } 2718 2719 fs = dp->i_fs; 2720 lbn = lblkno(fs, diroffset); 2721 offset = blkoff(fs, diroffset); 2722 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2723 M_SOFTDEP_FLAGS|M_ZERO); 2724 dap->da_list.wk_type = D_DIRADD; 2725 dap->da_offset = offset; 2726 dap->da_newinum = newinum; 2727 dap->da_state = ATTACHED; 2728 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2729 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2730 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2731 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2732 newdirblk->db_state = 0; 2733 } 2734 if (newdirbp == NULL) { 2735 dap->da_state |= DEPCOMPLETE; 2736 ACQUIRE_LOCK(&lk); 2737 } else { 2738 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2739 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2740 M_SOFTDEP_FLAGS); 2741 mkdir1->md_list.wk_type = D_MKDIR; 2742 mkdir1->md_state = MKDIR_BODY; 2743 mkdir1->md_diradd = dap; 2744 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2745 M_SOFTDEP_FLAGS); 2746 mkdir2->md_list.wk_type = D_MKDIR; 2747 mkdir2->md_state = MKDIR_PARENT; 2748 mkdir2->md_diradd = dap; 2749 /* 2750 * Dependency on "." and ".." being written to disk. 2751 */ 2752 mkdir1->md_buf = newdirbp; 2753 ACQUIRE_LOCK(&lk); 2754 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2755 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2756 FREE_LOCK(&lk); 2757 bdwrite(newdirbp); 2758 /* 2759 * Dependency on link count increase for parent directory 2760 */ 2761 ACQUIRE_LOCK(&lk); 2762 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2763 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2764 dap->da_state &= ~MKDIR_PARENT; 2765 WORKITEM_FREE(mkdir2, D_MKDIR); 2766 } else { 2767 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2768 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2769 } 2770 } 2771 /* 2772 * Link into parent directory pagedep to await its being written. 2773 */ 2774 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2775 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2776 dap->da_pagedep = pagedep; 2777 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2778 da_pdlist); 2779 /* 2780 * Link into its inodedep. Put it on the id_bufwait list if the inode 2781 * is not yet written. If it is written, do the post-inode write 2782 * processing to put it on the id_pendinghd list. 2783 */ 2784 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2785 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2786 diradd_inode_written(dap, inodedep); 2787 else 2788 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2789 if (isnewblk) { 2790 /* 2791 * Directories growing into indirect blocks are rare 2792 * enough and the frequency of new block allocation 2793 * in those cases even more rare, that we choose not 2794 * to bother tracking them. Rather we simply force the 2795 * new directory entry to disk. 2796 */ 2797 if (lbn >= NDADDR) { 2798 FREE_LOCK(&lk); 2799 /* 2800 * We only have a new allocation when at the 2801 * beginning of a new block, not when we are 2802 * expanding into an existing block. 2803 */ 2804 if (blkoff(fs, diroffset) == 0) 2805 return (1); 2806 return (0); 2807 } 2808 /* 2809 * We only have a new allocation when at the beginning 2810 * of a new fragment, not when we are expanding into an 2811 * existing fragment. Also, there is nothing to do if we 2812 * are already tracking this block. 2813 */ 2814 if (fragoff(fs, diroffset) != 0) { 2815 FREE_LOCK(&lk); 2816 return (0); 2817 } 2818 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2819 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2820 FREE_LOCK(&lk); 2821 return (0); 2822 } 2823 /* 2824 * Find our associated allocdirect and have it track us. 2825 */ 2826 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2827 panic("softdep_setup_directory_add: lost inodedep"); 2828 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2829 if (adp == NULL || adp->ad_lbn != lbn) { 2830 FREE_LOCK(&lk); 2831 panic("softdep_setup_directory_add: lost entry"); 2832 } 2833 pagedep->pd_state |= NEWBLOCK; 2834 newdirblk->db_pagedep = pagedep; 2835 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2836 } 2837 FREE_LOCK(&lk); 2838 return (0); 2839 } 2840 2841 /* 2842 * This procedure is called to change the offset of a directory 2843 * entry when compacting a directory block which must be owned 2844 * exclusively by the caller. Note that the actual entry movement 2845 * must be done in this procedure to ensure that no I/O completions 2846 * occur while the move is in progress. 2847 */ 2848 void 2849 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2850 struct inode *dp; /* inode for directory */ 2851 caddr_t base; /* address of dp->i_offset */ 2852 caddr_t oldloc; /* address of old directory location */ 2853 caddr_t newloc; /* address of new directory location */ 2854 int entrysize; /* size of directory entry */ 2855 { 2856 int offset, oldoffset, newoffset; 2857 struct pagedep *pagedep; 2858 struct diradd *dap; 2859 ufs_lbn_t lbn; 2860 2861 ACQUIRE_LOCK(&lk); 2862 lbn = lblkno(dp->i_fs, dp->i_offset); 2863 offset = blkoff(dp->i_fs, dp->i_offset); 2864 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2865 goto done; 2866 oldoffset = offset + (oldloc - base); 2867 newoffset = offset + (newloc - base); 2868 2869 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2870 if (dap->da_offset != oldoffset) 2871 continue; 2872 dap->da_offset = newoffset; 2873 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2874 break; 2875 LIST_REMOVE(dap, da_pdlist); 2876 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2877 dap, da_pdlist); 2878 break; 2879 } 2880 if (dap == NULL) { 2881 2882 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2883 if (dap->da_offset == oldoffset) { 2884 dap->da_offset = newoffset; 2885 break; 2886 } 2887 } 2888 } 2889 done: 2890 bcopy(oldloc, newloc, entrysize); 2891 FREE_LOCK(&lk); 2892 } 2893 2894 /* 2895 * Free a diradd dependency structure. This routine must be called 2896 * with splbio interrupts blocked. 2897 */ 2898 static void 2899 free_diradd(dap) 2900 struct diradd *dap; 2901 { 2902 struct dirrem *dirrem; 2903 struct pagedep *pagedep; 2904 struct inodedep *inodedep; 2905 struct mkdir *mkdir, *nextmd; 2906 2907 #ifdef DEBUG 2908 if (lk.lkt_held == NOHOLDER) 2909 panic("free_diradd: lock not held"); 2910 #endif 2911 WORKLIST_REMOVE(&dap->da_list); 2912 LIST_REMOVE(dap, da_pdlist); 2913 if ((dap->da_state & DIRCHG) == 0) { 2914 pagedep = dap->da_pagedep; 2915 } else { 2916 dirrem = dap->da_previous; 2917 pagedep = dirrem->dm_pagedep; 2918 dirrem->dm_dirinum = pagedep->pd_ino; 2919 add_to_worklist(&dirrem->dm_list); 2920 } 2921 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2922 0, &inodedep) != 0) 2923 (void) free_inodedep(inodedep); 2924 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2925 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2926 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2927 if (mkdir->md_diradd != dap) 2928 continue; 2929 dap->da_state &= ~mkdir->md_state; 2930 WORKLIST_REMOVE(&mkdir->md_list); 2931 LIST_REMOVE(mkdir, md_mkdirs); 2932 WORKITEM_FREE(mkdir, D_MKDIR); 2933 } 2934 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2935 FREE_LOCK(&lk); 2936 panic("free_diradd: unfound ref"); 2937 } 2938 } 2939 WORKITEM_FREE(dap, D_DIRADD); 2940 } 2941 2942 /* 2943 * Directory entry removal dependencies. 2944 * 2945 * When removing a directory entry, the entry's inode pointer must be 2946 * zero'ed on disk before the corresponding inode's link count is decremented 2947 * (possibly freeing the inode for re-use). This dependency is handled by 2948 * updating the directory entry but delaying the inode count reduction until 2949 * after the directory block has been written to disk. After this point, the 2950 * inode count can be decremented whenever it is convenient. 2951 */ 2952 2953 /* 2954 * This routine should be called immediately after removing 2955 * a directory entry. The inode's link count should not be 2956 * decremented by the calling procedure -- the soft updates 2957 * code will do this task when it is safe. 2958 */ 2959 void 2960 softdep_setup_remove(bp, dp, ip, isrmdir) 2961 struct buf *bp; /* buffer containing directory block */ 2962 struct inode *dp; /* inode for the directory being modified */ 2963 struct inode *ip; /* inode for directory entry being removed */ 2964 int isrmdir; /* indicates if doing RMDIR */ 2965 { 2966 struct dirrem *dirrem, *prevdirrem; 2967 2968 /* 2969 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2970 */ 2971 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2972 2973 /* 2974 * If the COMPLETE flag is clear, then there were no active 2975 * entries and we want to roll back to a zeroed entry until 2976 * the new inode is committed to disk. If the COMPLETE flag is 2977 * set then we have deleted an entry that never made it to 2978 * disk. If the entry we deleted resulted from a name change, 2979 * then the old name still resides on disk. We cannot delete 2980 * its inode (returned to us in prevdirrem) until the zeroed 2981 * directory entry gets to disk. The new inode has never been 2982 * referenced on the disk, so can be deleted immediately. 2983 */ 2984 if ((dirrem->dm_state & COMPLETE) == 0) { 2985 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2986 dm_next); 2987 FREE_LOCK(&lk); 2988 } else { 2989 if (prevdirrem != NULL) 2990 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2991 prevdirrem, dm_next); 2992 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2993 FREE_LOCK(&lk); 2994 handle_workitem_remove(dirrem, NULL); 2995 } 2996 } 2997 2998 /* 2999 * Allocate a new dirrem if appropriate and return it along with 3000 * its associated pagedep. Called without a lock, returns with lock. 3001 */ 3002 static long num_dirrem; /* number of dirrem allocated */ 3003 static struct dirrem * 3004 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 3005 struct buf *bp; /* buffer containing directory block */ 3006 struct inode *dp; /* inode for the directory being modified */ 3007 struct inode *ip; /* inode for directory entry being removed */ 3008 int isrmdir; /* indicates if doing RMDIR */ 3009 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 3010 { 3011 int offset; 3012 ufs_lbn_t lbn; 3013 struct diradd *dap; 3014 struct dirrem *dirrem; 3015 struct pagedep *pagedep; 3016 3017 /* 3018 * Whiteouts have no deletion dependencies. 3019 */ 3020 if (ip == NULL) 3021 panic("newdirrem: whiteout"); 3022 /* 3023 * If we are over our limit, try to improve the situation. 3024 * Limiting the number of dirrem structures will also limit 3025 * the number of freefile and freeblks structures. 3026 */ 3027 if (num_dirrem > max_softdeps / 2) 3028 (void) request_cleanup(FLUSH_REMOVE, 0); 3029 num_dirrem += 1; 3030 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3031 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3032 dirrem->dm_list.wk_type = D_DIRREM; 3033 dirrem->dm_state = isrmdir ? RMDIR : 0; 3034 dirrem->dm_mnt = ITOV(ip)->v_mount; 3035 dirrem->dm_oldinum = ip->i_number; 3036 *prevdirremp = NULL; 3037 3038 ACQUIRE_LOCK(&lk); 3039 lbn = lblkno(dp->i_fs, dp->i_offset); 3040 offset = blkoff(dp->i_fs, dp->i_offset); 3041 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3042 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3043 dirrem->dm_pagedep = pagedep; 3044 /* 3045 * Check for a diradd dependency for the same directory entry. 3046 * If present, then both dependencies become obsolete and can 3047 * be de-allocated. Check for an entry on both the pd_dirraddhd 3048 * list and the pd_pendinghd list. 3049 */ 3050 3051 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3052 if (dap->da_offset == offset) 3053 break; 3054 if (dap == NULL) { 3055 3056 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3057 if (dap->da_offset == offset) 3058 break; 3059 if (dap == NULL) 3060 return (dirrem); 3061 } 3062 /* 3063 * Must be ATTACHED at this point. 3064 */ 3065 if ((dap->da_state & ATTACHED) == 0) { 3066 FREE_LOCK(&lk); 3067 panic("newdirrem: not ATTACHED"); 3068 } 3069 if (dap->da_newinum != ip->i_number) { 3070 FREE_LOCK(&lk); 3071 panic("newdirrem: inum %d should be %d", 3072 ip->i_number, dap->da_newinum); 3073 } 3074 /* 3075 * If we are deleting a changed name that never made it to disk, 3076 * then return the dirrem describing the previous inode (which 3077 * represents the inode currently referenced from this entry on disk). 3078 */ 3079 if ((dap->da_state & DIRCHG) != 0) { 3080 *prevdirremp = dap->da_previous; 3081 dap->da_state &= ~DIRCHG; 3082 dap->da_pagedep = pagedep; 3083 } 3084 /* 3085 * We are deleting an entry that never made it to disk. 3086 * Mark it COMPLETE so we can delete its inode immediately. 3087 */ 3088 dirrem->dm_state |= COMPLETE; 3089 free_diradd(dap); 3090 return (dirrem); 3091 } 3092 3093 /* 3094 * Directory entry change dependencies. 3095 * 3096 * Changing an existing directory entry requires that an add operation 3097 * be completed first followed by a deletion. The semantics for the addition 3098 * are identical to the description of adding a new entry above except 3099 * that the rollback is to the old inode number rather than zero. Once 3100 * the addition dependency is completed, the removal is done as described 3101 * in the removal routine above. 3102 */ 3103 3104 /* 3105 * This routine should be called immediately after changing 3106 * a directory entry. The inode's link count should not be 3107 * decremented by the calling procedure -- the soft updates 3108 * code will perform this task when it is safe. 3109 */ 3110 void 3111 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3112 struct buf *bp; /* buffer containing directory block */ 3113 struct inode *dp; /* inode for the directory being modified */ 3114 struct inode *ip; /* inode for directory entry being removed */ 3115 ino_t newinum; /* new inode number for changed entry */ 3116 int isrmdir; /* indicates if doing RMDIR */ 3117 { 3118 int offset; 3119 struct diradd *dap = NULL; 3120 struct dirrem *dirrem, *prevdirrem; 3121 struct pagedep *pagedep; 3122 struct inodedep *inodedep; 3123 3124 offset = blkoff(dp->i_fs, dp->i_offset); 3125 3126 /* 3127 * Whiteouts do not need diradd dependencies. 3128 */ 3129 if (newinum != WINO) { 3130 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3131 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3132 dap->da_list.wk_type = D_DIRADD; 3133 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3134 dap->da_offset = offset; 3135 dap->da_newinum = newinum; 3136 } 3137 3138 /* 3139 * Allocate a new dirrem and ACQUIRE_LOCK. 3140 */ 3141 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3142 pagedep = dirrem->dm_pagedep; 3143 /* 3144 * The possible values for isrmdir: 3145 * 0 - non-directory file rename 3146 * 1 - directory rename within same directory 3147 * inum - directory rename to new directory of given inode number 3148 * When renaming to a new directory, we are both deleting and 3149 * creating a new directory entry, so the link count on the new 3150 * directory should not change. Thus we do not need the followup 3151 * dirrem which is usually done in handle_workitem_remove. We set 3152 * the DIRCHG flag to tell handle_workitem_remove to skip the 3153 * followup dirrem. 3154 */ 3155 if (isrmdir > 1) 3156 dirrem->dm_state |= DIRCHG; 3157 3158 /* 3159 * Whiteouts have no additional dependencies, 3160 * so just put the dirrem on the correct list. 3161 */ 3162 if (newinum == WINO) { 3163 if ((dirrem->dm_state & COMPLETE) == 0) { 3164 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3165 dm_next); 3166 } else { 3167 dirrem->dm_dirinum = pagedep->pd_ino; 3168 add_to_worklist(&dirrem->dm_list); 3169 } 3170 FREE_LOCK(&lk); 3171 return; 3172 } 3173 3174 /* 3175 * If the COMPLETE flag is clear, then there were no active 3176 * entries and we want to roll back to the previous inode until 3177 * the new inode is committed to disk. If the COMPLETE flag is 3178 * set, then we have deleted an entry that never made it to disk. 3179 * If the entry we deleted resulted from a name change, then the old 3180 * inode reference still resides on disk. Any rollback that we do 3181 * needs to be to that old inode (returned to us in prevdirrem). If 3182 * the entry we deleted resulted from a create, then there is 3183 * no entry on the disk, so we want to roll back to zero rather 3184 * than the uncommitted inode. In either of the COMPLETE cases we 3185 * want to immediately free the unwritten and unreferenced inode. 3186 */ 3187 if ((dirrem->dm_state & COMPLETE) == 0) { 3188 dap->da_previous = dirrem; 3189 } else { 3190 if (prevdirrem != NULL) { 3191 dap->da_previous = prevdirrem; 3192 } else { 3193 dap->da_state &= ~DIRCHG; 3194 dap->da_pagedep = pagedep; 3195 } 3196 dirrem->dm_dirinum = pagedep->pd_ino; 3197 add_to_worklist(&dirrem->dm_list); 3198 } 3199 /* 3200 * Link into its inodedep. Put it on the id_bufwait list if the inode 3201 * is not yet written. If it is written, do the post-inode write 3202 * processing to put it on the id_pendinghd list. 3203 */ 3204 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3205 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3206 dap->da_state |= COMPLETE; 3207 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3208 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3209 } else { 3210 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3211 dap, da_pdlist); 3212 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3213 } 3214 FREE_LOCK(&lk); 3215 } 3216 3217 /* 3218 * Called whenever the link count on an inode is changed. 3219 * It creates an inode dependency so that the new reference(s) 3220 * to the inode cannot be committed to disk until the updated 3221 * inode has been written. 3222 */ 3223 void 3224 softdep_change_linkcnt(ip) 3225 struct inode *ip; /* the inode with the increased link count */ 3226 { 3227 struct inodedep *inodedep; 3228 3229 ACQUIRE_LOCK(&lk); 3230 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3231 if (ip->i_nlink < ip->i_effnlink) { 3232 FREE_LOCK(&lk); 3233 panic("softdep_change_linkcnt: bad delta"); 3234 } 3235 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3236 FREE_LOCK(&lk); 3237 } 3238 3239 /* 3240 * Called when the effective link count and the reference count 3241 * on an inode drops to zero. At this point there are no names 3242 * referencing the file in the filesystem and no active file 3243 * references. The space associated with the file will be freed 3244 * as soon as the necessary soft dependencies are cleared. 3245 */ 3246 void 3247 softdep_releasefile(ip) 3248 struct inode *ip; /* inode with the zero effective link count */ 3249 { 3250 struct inodedep *inodedep; 3251 struct fs *fs; 3252 int extblocks; 3253 3254 if (ip->i_effnlink > 0) 3255 panic("softdep_filerelease: file still referenced"); 3256 /* 3257 * We may be called several times as the real reference count 3258 * drops to zero. We only want to account for the space once. 3259 */ 3260 if (ip->i_flag & IN_SPACECOUNTED) 3261 return; 3262 /* 3263 * We have to deactivate a snapshot otherwise copyonwrites may 3264 * add blocks and the cleanup may remove blocks after we have 3265 * tried to account for them. 3266 */ 3267 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3268 ffs_snapremove(ITOV(ip)); 3269 /* 3270 * If we are tracking an nlinkdelta, we have to also remember 3271 * whether we accounted for the freed space yet. 3272 */ 3273 ACQUIRE_LOCK(&lk); 3274 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3275 inodedep->id_state |= SPACECOUNTED; 3276 FREE_LOCK(&lk); 3277 fs = ip->i_fs; 3278 extblocks = 0; 3279 if (fs->fs_magic == FS_UFS2_MAGIC) 3280 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3281 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3282 ip->i_fs->fs_pendinginodes += 1; 3283 ip->i_flag |= IN_SPACECOUNTED; 3284 } 3285 3286 /* 3287 * This workitem decrements the inode's link count. 3288 * If the link count reaches zero, the file is removed. 3289 */ 3290 static void 3291 handle_workitem_remove(dirrem, xp) 3292 struct dirrem *dirrem; 3293 struct vnode *xp; 3294 { 3295 struct thread *td = curthread; 3296 struct inodedep *inodedep; 3297 struct vnode *vp; 3298 struct inode *ip; 3299 ino_t oldinum; 3300 int error; 3301 3302 if ((vp = xp) == NULL && 3303 (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3304 &vp)) != 0) { 3305 softdep_error("handle_workitem_remove: vget", error); 3306 return; 3307 } 3308 ip = VTOI(vp); 3309 ACQUIRE_LOCK(&lk); 3310 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){ 3311 FREE_LOCK(&lk); 3312 panic("handle_workitem_remove: lost inodedep"); 3313 } 3314 /* 3315 * Normal file deletion. 3316 */ 3317 if ((dirrem->dm_state & RMDIR) == 0) { 3318 ip->i_nlink--; 3319 DIP_SET(ip, i_nlink, ip->i_nlink); 3320 ip->i_flag |= IN_CHANGE; 3321 if (ip->i_nlink < ip->i_effnlink) { 3322 FREE_LOCK(&lk); 3323 panic("handle_workitem_remove: bad file delta"); 3324 } 3325 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3326 FREE_LOCK(&lk); 3327 vput(vp); 3328 num_dirrem -= 1; 3329 WORKITEM_FREE(dirrem, D_DIRREM); 3330 return; 3331 } 3332 /* 3333 * Directory deletion. Decrement reference count for both the 3334 * just deleted parent directory entry and the reference for ".". 3335 * Next truncate the directory to length zero. When the 3336 * truncation completes, arrange to have the reference count on 3337 * the parent decremented to account for the loss of "..". 3338 */ 3339 ip->i_nlink -= 2; 3340 DIP_SET(ip, i_nlink, ip->i_nlink); 3341 ip->i_flag |= IN_CHANGE; 3342 if (ip->i_nlink < ip->i_effnlink) { 3343 FREE_LOCK(&lk); 3344 panic("handle_workitem_remove: bad dir delta"); 3345 } 3346 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3347 FREE_LOCK(&lk); 3348 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3349 softdep_error("handle_workitem_remove: truncate", error); 3350 /* 3351 * Rename a directory to a new parent. Since, we are both deleting 3352 * and creating a new directory entry, the link count on the new 3353 * directory should not change. Thus we skip the followup dirrem. 3354 */ 3355 if (dirrem->dm_state & DIRCHG) { 3356 vput(vp); 3357 num_dirrem -= 1; 3358 WORKITEM_FREE(dirrem, D_DIRREM); 3359 return; 3360 } 3361 /* 3362 * If the inodedep does not exist, then the zero'ed inode has 3363 * been written to disk. If the allocated inode has never been 3364 * written to disk, then the on-disk inode is zero'ed. In either 3365 * case we can remove the file immediately. 3366 */ 3367 ACQUIRE_LOCK(&lk); 3368 dirrem->dm_state = 0; 3369 oldinum = dirrem->dm_oldinum; 3370 dirrem->dm_oldinum = dirrem->dm_dirinum; 3371 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3372 check_inode_unwritten(inodedep)) { 3373 FREE_LOCK(&lk); 3374 vput(vp); 3375 handle_workitem_remove(dirrem, NULL); 3376 return; 3377 } 3378 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3379 FREE_LOCK(&lk); 3380 vput(vp); 3381 } 3382 3383 /* 3384 * Inode de-allocation dependencies. 3385 * 3386 * When an inode's link count is reduced to zero, it can be de-allocated. We 3387 * found it convenient to postpone de-allocation until after the inode is 3388 * written to disk with its new link count (zero). At this point, all of the 3389 * on-disk inode's block pointers are nullified and, with careful dependency 3390 * list ordering, all dependencies related to the inode will be satisfied and 3391 * the corresponding dependency structures de-allocated. So, if/when the 3392 * inode is reused, there will be no mixing of old dependencies with new 3393 * ones. This artificial dependency is set up by the block de-allocation 3394 * procedure above (softdep_setup_freeblocks) and completed by the 3395 * following procedure. 3396 */ 3397 static void 3398 handle_workitem_freefile(freefile) 3399 struct freefile *freefile; 3400 { 3401 struct fs *fs; 3402 struct inodedep *idp; 3403 int error; 3404 3405 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 3406 #ifdef DEBUG 3407 ACQUIRE_LOCK(&lk); 3408 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3409 FREE_LOCK(&lk); 3410 if (error) 3411 panic("handle_workitem_freefile: inodedep survived"); 3412 #endif 3413 fs->fs_pendinginodes -= 1; 3414 if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum, 3415 freefile->fx_mode)) != 0) 3416 softdep_error("handle_workitem_freefile", error); 3417 WORKITEM_FREE(freefile, D_FREEFILE); 3418 } 3419 3420 static int 3421 softdep_disk_prewrite(struct vnode *vp, struct buf *bp) 3422 { 3423 int error; 3424 3425 if (bp->b_iocmd != BIO_WRITE) 3426 return (0); 3427 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 3428 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 3429 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 3430 panic("softdep_disk_prewrite: bad I/O"); 3431 bp->b_flags &= ~B_VALIDSUSPWRT; 3432 if (LIST_FIRST(&bp->b_dep) != NULL) 3433 buf_start(bp); 3434 mp_fixme("This should require the vnode lock."); 3435 if ((vp->v_vflag & VV_COPYONWRITE) && 3436 vp->v_rdev->si_copyonwrite && 3437 (error = (*vp->v_rdev->si_copyonwrite)(vp, bp)) != 0 && 3438 error != EOPNOTSUPP) { 3439 bp->b_error = error; 3440 bp->b_ioflags |= BIO_ERROR; 3441 bufdone(bp); 3442 return (1); 3443 } 3444 return (0); 3445 } 3446 3447 3448 /* 3449 * Disk writes. 3450 * 3451 * The dependency structures constructed above are most actively used when file 3452 * system blocks are written to disk. No constraints are placed on when a 3453 * block can be written, but unsatisfied update dependencies are made safe by 3454 * modifying (or replacing) the source memory for the duration of the disk 3455 * write. When the disk write completes, the memory block is again brought 3456 * up-to-date. 3457 * 3458 * In-core inode structure reclamation. 3459 * 3460 * Because there are a finite number of "in-core" inode structures, they are 3461 * reused regularly. By transferring all inode-related dependencies to the 3462 * in-memory inode block and indexing them separately (via "inodedep"s), we 3463 * can allow "in-core" inode structures to be reused at any time and avoid 3464 * any increase in contention. 3465 * 3466 * Called just before entering the device driver to initiate a new disk I/O. 3467 * The buffer must be locked, thus, no I/O completion operations can occur 3468 * while we are manipulating its associated dependencies. 3469 */ 3470 static void 3471 softdep_disk_io_initiation(bp) 3472 struct buf *bp; /* structure describing disk write to occur */ 3473 { 3474 struct worklist *wk, *nextwk; 3475 struct indirdep *indirdep; 3476 struct inodedep *inodedep; 3477 3478 /* 3479 * We only care about write operations. There should never 3480 * be dependencies for reads. 3481 */ 3482 if (bp->b_iocmd == BIO_READ) 3483 panic("softdep_disk_io_initiation: read"); 3484 /* 3485 * Do any necessary pre-I/O processing. 3486 */ 3487 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 3488 nextwk = LIST_NEXT(wk, wk_list); 3489 switch (wk->wk_type) { 3490 3491 case D_PAGEDEP: 3492 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3493 continue; 3494 3495 case D_INODEDEP: 3496 inodedep = WK_INODEDEP(wk); 3497 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3498 initiate_write_inodeblock_ufs1(inodedep, bp); 3499 else 3500 initiate_write_inodeblock_ufs2(inodedep, bp); 3501 continue; 3502 3503 case D_INDIRDEP: 3504 indirdep = WK_INDIRDEP(wk); 3505 if (indirdep->ir_state & GOINGAWAY) 3506 panic("disk_io_initiation: indirdep gone"); 3507 /* 3508 * If there are no remaining dependencies, this 3509 * will be writing the real pointers, so the 3510 * dependency can be freed. 3511 */ 3512 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3513 indirdep->ir_savebp->b_flags |= 3514 B_INVAL | B_NOCACHE; 3515 brelse(indirdep->ir_savebp); 3516 /* inline expand WORKLIST_REMOVE(wk); */ 3517 wk->wk_state &= ~ONWORKLIST; 3518 LIST_REMOVE(wk, wk_list); 3519 WORKITEM_FREE(indirdep, D_INDIRDEP); 3520 continue; 3521 } 3522 /* 3523 * Replace up-to-date version with safe version. 3524 */ 3525 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3526 M_INDIRDEP, M_SOFTDEP_FLAGS); 3527 ACQUIRE_LOCK(&lk); 3528 indirdep->ir_state &= ~ATTACHED; 3529 indirdep->ir_state |= UNDONE; 3530 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3531 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3532 bp->b_bcount); 3533 FREE_LOCK(&lk); 3534 continue; 3535 3536 case D_MKDIR: 3537 case D_BMSAFEMAP: 3538 case D_ALLOCDIRECT: 3539 case D_ALLOCINDIR: 3540 continue; 3541 3542 default: 3543 panic("handle_disk_io_initiation: Unexpected type %s", 3544 TYPENAME(wk->wk_type)); 3545 /* NOTREACHED */ 3546 } 3547 } 3548 } 3549 3550 /* 3551 * Called from within the procedure above to deal with unsatisfied 3552 * allocation dependencies in a directory. The buffer must be locked, 3553 * thus, no I/O completion operations can occur while we are 3554 * manipulating its associated dependencies. 3555 */ 3556 static void 3557 initiate_write_filepage(pagedep, bp) 3558 struct pagedep *pagedep; 3559 struct buf *bp; 3560 { 3561 struct diradd *dap; 3562 struct direct *ep; 3563 int i; 3564 3565 if (pagedep->pd_state & IOSTARTED) { 3566 /* 3567 * This can only happen if there is a driver that does not 3568 * understand chaining. Here biodone will reissue the call 3569 * to strategy for the incomplete buffers. 3570 */ 3571 printf("initiate_write_filepage: already started\n"); 3572 return; 3573 } 3574 pagedep->pd_state |= IOSTARTED; 3575 ACQUIRE_LOCK(&lk); 3576 for (i = 0; i < DAHASHSZ; i++) { 3577 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3578 ep = (struct direct *) 3579 ((char *)bp->b_data + dap->da_offset); 3580 if (ep->d_ino != dap->da_newinum) { 3581 FREE_LOCK(&lk); 3582 panic("%s: dir inum %d != new %d", 3583 "initiate_write_filepage", 3584 ep->d_ino, dap->da_newinum); 3585 } 3586 if (dap->da_state & DIRCHG) 3587 ep->d_ino = dap->da_previous->dm_oldinum; 3588 else 3589 ep->d_ino = 0; 3590 dap->da_state &= ~ATTACHED; 3591 dap->da_state |= UNDONE; 3592 } 3593 } 3594 FREE_LOCK(&lk); 3595 } 3596 3597 /* 3598 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3599 * Note that any bug fixes made to this routine must be done in the 3600 * version found below. 3601 * 3602 * Called from within the procedure above to deal with unsatisfied 3603 * allocation dependencies in an inodeblock. The buffer must be 3604 * locked, thus, no I/O completion operations can occur while we 3605 * are manipulating its associated dependencies. 3606 */ 3607 static void 3608 initiate_write_inodeblock_ufs1(inodedep, bp) 3609 struct inodedep *inodedep; 3610 struct buf *bp; /* The inode block */ 3611 { 3612 struct allocdirect *adp, *lastadp; 3613 struct ufs1_dinode *dp; 3614 struct fs *fs; 3615 ufs_lbn_t i, prevlbn = 0; 3616 int deplist; 3617 3618 if (inodedep->id_state & IOSTARTED) 3619 panic("initiate_write_inodeblock_ufs1: already started"); 3620 inodedep->id_state |= IOSTARTED; 3621 fs = inodedep->id_fs; 3622 dp = (struct ufs1_dinode *)bp->b_data + 3623 ino_to_fsbo(fs, inodedep->id_ino); 3624 /* 3625 * If the bitmap is not yet written, then the allocated 3626 * inode cannot be written to disk. 3627 */ 3628 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3629 if (inodedep->id_savedino1 != NULL) 3630 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3631 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3632 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3633 *inodedep->id_savedino1 = *dp; 3634 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3635 return; 3636 } 3637 /* 3638 * If no dependencies, then there is nothing to roll back. 3639 */ 3640 inodedep->id_savedsize = dp->di_size; 3641 inodedep->id_savedextsize = 0; 3642 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3643 return; 3644 /* 3645 * Set the dependencies to busy. 3646 */ 3647 ACQUIRE_LOCK(&lk); 3648 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3649 adp = TAILQ_NEXT(adp, ad_next)) { 3650 #ifdef DIAGNOSTIC 3651 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3652 FREE_LOCK(&lk); 3653 panic("softdep_write_inodeblock: lbn order"); 3654 } 3655 prevlbn = adp->ad_lbn; 3656 if (adp->ad_lbn < NDADDR && 3657 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3658 FREE_LOCK(&lk); 3659 panic("%s: direct pointer #%jd mismatch %d != %jd", 3660 "softdep_write_inodeblock", 3661 (intmax_t)adp->ad_lbn, 3662 dp->di_db[adp->ad_lbn], 3663 (intmax_t)adp->ad_newblkno); 3664 } 3665 if (adp->ad_lbn >= NDADDR && 3666 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3667 FREE_LOCK(&lk); 3668 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3669 "softdep_write_inodeblock", 3670 (intmax_t)adp->ad_lbn - NDADDR, 3671 dp->di_ib[adp->ad_lbn - NDADDR], 3672 (intmax_t)adp->ad_newblkno); 3673 } 3674 deplist |= 1 << adp->ad_lbn; 3675 if ((adp->ad_state & ATTACHED) == 0) { 3676 FREE_LOCK(&lk); 3677 panic("softdep_write_inodeblock: Unknown state 0x%x", 3678 adp->ad_state); 3679 } 3680 #endif /* DIAGNOSTIC */ 3681 adp->ad_state &= ~ATTACHED; 3682 adp->ad_state |= UNDONE; 3683 } 3684 /* 3685 * The on-disk inode cannot claim to be any larger than the last 3686 * fragment that has been written. Otherwise, the on-disk inode 3687 * might have fragments that were not the last block in the file 3688 * which would corrupt the filesystem. 3689 */ 3690 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3691 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3692 if (adp->ad_lbn >= NDADDR) 3693 break; 3694 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3695 /* keep going until hitting a rollback to a frag */ 3696 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3697 continue; 3698 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3699 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3700 #ifdef DIAGNOSTIC 3701 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3702 FREE_LOCK(&lk); 3703 panic("softdep_write_inodeblock: lost dep1"); 3704 } 3705 #endif /* DIAGNOSTIC */ 3706 dp->di_db[i] = 0; 3707 } 3708 for (i = 0; i < NIADDR; i++) { 3709 #ifdef DIAGNOSTIC 3710 if (dp->di_ib[i] != 0 && 3711 (deplist & ((1 << NDADDR) << i)) == 0) { 3712 FREE_LOCK(&lk); 3713 panic("softdep_write_inodeblock: lost dep2"); 3714 } 3715 #endif /* DIAGNOSTIC */ 3716 dp->di_ib[i] = 0; 3717 } 3718 FREE_LOCK(&lk); 3719 return; 3720 } 3721 /* 3722 * If we have zero'ed out the last allocated block of the file, 3723 * roll back the size to the last currently allocated block. 3724 * We know that this last allocated block is a full-sized as 3725 * we already checked for fragments in the loop above. 3726 */ 3727 if (lastadp != NULL && 3728 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3729 for (i = lastadp->ad_lbn; i >= 0; i--) 3730 if (dp->di_db[i] != 0) 3731 break; 3732 dp->di_size = (i + 1) * fs->fs_bsize; 3733 } 3734 /* 3735 * The only dependencies are for indirect blocks. 3736 * 3737 * The file size for indirect block additions is not guaranteed. 3738 * Such a guarantee would be non-trivial to achieve. The conventional 3739 * synchronous write implementation also does not make this guarantee. 3740 * Fsck should catch and fix discrepancies. Arguably, the file size 3741 * can be over-estimated without destroying integrity when the file 3742 * moves into the indirect blocks (i.e., is large). If we want to 3743 * postpone fsck, we are stuck with this argument. 3744 */ 3745 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3746 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3747 FREE_LOCK(&lk); 3748 } 3749 3750 /* 3751 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3752 * Note that any bug fixes made to this routine must be done in the 3753 * version found above. 3754 * 3755 * Called from within the procedure above to deal with unsatisfied 3756 * allocation dependencies in an inodeblock. The buffer must be 3757 * locked, thus, no I/O completion operations can occur while we 3758 * are manipulating its associated dependencies. 3759 */ 3760 static void 3761 initiate_write_inodeblock_ufs2(inodedep, bp) 3762 struct inodedep *inodedep; 3763 struct buf *bp; /* The inode block */ 3764 { 3765 struct allocdirect *adp, *lastadp; 3766 struct ufs2_dinode *dp; 3767 struct fs *fs; 3768 ufs_lbn_t i, prevlbn = 0; 3769 int deplist; 3770 3771 if (inodedep->id_state & IOSTARTED) 3772 panic("initiate_write_inodeblock_ufs2: already started"); 3773 inodedep->id_state |= IOSTARTED; 3774 fs = inodedep->id_fs; 3775 dp = (struct ufs2_dinode *)bp->b_data + 3776 ino_to_fsbo(fs, inodedep->id_ino); 3777 /* 3778 * If the bitmap is not yet written, then the allocated 3779 * inode cannot be written to disk. 3780 */ 3781 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3782 if (inodedep->id_savedino2 != NULL) 3783 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3784 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3785 sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3786 *inodedep->id_savedino2 = *dp; 3787 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3788 return; 3789 } 3790 /* 3791 * If no dependencies, then there is nothing to roll back. 3792 */ 3793 inodedep->id_savedsize = dp->di_size; 3794 inodedep->id_savedextsize = dp->di_extsize; 3795 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 3796 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 3797 return; 3798 /* 3799 * Set the ext data dependencies to busy. 3800 */ 3801 ACQUIRE_LOCK(&lk); 3802 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3803 adp = TAILQ_NEXT(adp, ad_next)) { 3804 #ifdef DIAGNOSTIC 3805 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3806 FREE_LOCK(&lk); 3807 panic("softdep_write_inodeblock: lbn order"); 3808 } 3809 prevlbn = adp->ad_lbn; 3810 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) { 3811 FREE_LOCK(&lk); 3812 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3813 "softdep_write_inodeblock", 3814 (intmax_t)adp->ad_lbn, 3815 (intmax_t)dp->di_extb[adp->ad_lbn], 3816 (intmax_t)adp->ad_newblkno); 3817 } 3818 deplist |= 1 << adp->ad_lbn; 3819 if ((adp->ad_state & ATTACHED) == 0) { 3820 FREE_LOCK(&lk); 3821 panic("softdep_write_inodeblock: Unknown state 0x%x", 3822 adp->ad_state); 3823 } 3824 #endif /* DIAGNOSTIC */ 3825 adp->ad_state &= ~ATTACHED; 3826 adp->ad_state |= UNDONE; 3827 } 3828 /* 3829 * The on-disk inode cannot claim to be any larger than the last 3830 * fragment that has been written. Otherwise, the on-disk inode 3831 * might have fragments that were not the last block in the ext 3832 * data which would corrupt the filesystem. 3833 */ 3834 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3835 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3836 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 3837 /* keep going until hitting a rollback to a frag */ 3838 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3839 continue; 3840 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3841 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 3842 #ifdef DIAGNOSTIC 3843 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) { 3844 FREE_LOCK(&lk); 3845 panic("softdep_write_inodeblock: lost dep1"); 3846 } 3847 #endif /* DIAGNOSTIC */ 3848 dp->di_extb[i] = 0; 3849 } 3850 lastadp = NULL; 3851 break; 3852 } 3853 /* 3854 * If we have zero'ed out the last allocated block of the ext 3855 * data, roll back the size to the last currently allocated block. 3856 * We know that this last allocated block is a full-sized as 3857 * we already checked for fragments in the loop above. 3858 */ 3859 if (lastadp != NULL && 3860 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3861 for (i = lastadp->ad_lbn; i >= 0; i--) 3862 if (dp->di_extb[i] != 0) 3863 break; 3864 dp->di_extsize = (i + 1) * fs->fs_bsize; 3865 } 3866 /* 3867 * Set the file data dependencies to busy. 3868 */ 3869 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3870 adp = TAILQ_NEXT(adp, ad_next)) { 3871 #ifdef DIAGNOSTIC 3872 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3873 FREE_LOCK(&lk); 3874 panic("softdep_write_inodeblock: lbn order"); 3875 } 3876 prevlbn = adp->ad_lbn; 3877 if (adp->ad_lbn < NDADDR && 3878 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3879 FREE_LOCK(&lk); 3880 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3881 "softdep_write_inodeblock", 3882 (intmax_t)adp->ad_lbn, 3883 (intmax_t)dp->di_db[adp->ad_lbn], 3884 (intmax_t)adp->ad_newblkno); 3885 } 3886 if (adp->ad_lbn >= NDADDR && 3887 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3888 FREE_LOCK(&lk); 3889 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3890 "softdep_write_inodeblock:", 3891 (intmax_t)adp->ad_lbn - NDADDR, 3892 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3893 (intmax_t)adp->ad_newblkno); 3894 } 3895 deplist |= 1 << adp->ad_lbn; 3896 if ((adp->ad_state & ATTACHED) == 0) { 3897 FREE_LOCK(&lk); 3898 panic("softdep_write_inodeblock: Unknown state 0x%x", 3899 adp->ad_state); 3900 } 3901 #endif /* DIAGNOSTIC */ 3902 adp->ad_state &= ~ATTACHED; 3903 adp->ad_state |= UNDONE; 3904 } 3905 /* 3906 * The on-disk inode cannot claim to be any larger than the last 3907 * fragment that has been written. Otherwise, the on-disk inode 3908 * might have fragments that were not the last block in the file 3909 * which would corrupt the filesystem. 3910 */ 3911 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3912 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3913 if (adp->ad_lbn >= NDADDR) 3914 break; 3915 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3916 /* keep going until hitting a rollback to a frag */ 3917 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3918 continue; 3919 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3920 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3921 #ifdef DIAGNOSTIC 3922 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3923 FREE_LOCK(&lk); 3924 panic("softdep_write_inodeblock: lost dep2"); 3925 } 3926 #endif /* DIAGNOSTIC */ 3927 dp->di_db[i] = 0; 3928 } 3929 for (i = 0; i < NIADDR; i++) { 3930 #ifdef DIAGNOSTIC 3931 if (dp->di_ib[i] != 0 && 3932 (deplist & ((1 << NDADDR) << i)) == 0) { 3933 FREE_LOCK(&lk); 3934 panic("softdep_write_inodeblock: lost dep3"); 3935 } 3936 #endif /* DIAGNOSTIC */ 3937 dp->di_ib[i] = 0; 3938 } 3939 FREE_LOCK(&lk); 3940 return; 3941 } 3942 /* 3943 * If we have zero'ed out the last allocated block of the file, 3944 * roll back the size to the last currently allocated block. 3945 * We know that this last allocated block is a full-sized as 3946 * we already checked for fragments in the loop above. 3947 */ 3948 if (lastadp != NULL && 3949 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3950 for (i = lastadp->ad_lbn; i >= 0; i--) 3951 if (dp->di_db[i] != 0) 3952 break; 3953 dp->di_size = (i + 1) * fs->fs_bsize; 3954 } 3955 /* 3956 * The only dependencies are for indirect blocks. 3957 * 3958 * The file size for indirect block additions is not guaranteed. 3959 * Such a guarantee would be non-trivial to achieve. The conventional 3960 * synchronous write implementation also does not make this guarantee. 3961 * Fsck should catch and fix discrepancies. Arguably, the file size 3962 * can be over-estimated without destroying integrity when the file 3963 * moves into the indirect blocks (i.e., is large). If we want to 3964 * postpone fsck, we are stuck with this argument. 3965 */ 3966 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3967 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3968 FREE_LOCK(&lk); 3969 } 3970 3971 /* 3972 * This routine is called during the completion interrupt 3973 * service routine for a disk write (from the procedure called 3974 * by the device driver to inform the filesystem caches of 3975 * a request completion). It should be called early in this 3976 * procedure, before the block is made available to other 3977 * processes or other routines are called. 3978 */ 3979 static void 3980 softdep_disk_write_complete(bp) 3981 struct buf *bp; /* describes the completed disk write */ 3982 { 3983 struct worklist *wk; 3984 struct workhead reattach; 3985 struct newblk *newblk; 3986 struct allocindir *aip; 3987 struct allocdirect *adp; 3988 struct indirdep *indirdep; 3989 struct inodedep *inodedep; 3990 struct bmsafemap *bmsafemap; 3991 3992 /* 3993 * If an error occurred while doing the write, then the data 3994 * has not hit the disk and the dependencies cannot be unrolled. 3995 */ 3996 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 3997 return; 3998 #ifdef DEBUG 3999 if (lk.lkt_held != NOHOLDER) 4000 panic("softdep_disk_write_complete: lock is held"); 4001 lk.lkt_held = SPECIAL_FLAG; 4002 #endif 4003 LIST_INIT(&reattach); 4004 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4005 WORKLIST_REMOVE(wk); 4006 switch (wk->wk_type) { 4007 4008 case D_PAGEDEP: 4009 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 4010 WORKLIST_INSERT(&reattach, wk); 4011 continue; 4012 4013 case D_INODEDEP: 4014 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 4015 WORKLIST_INSERT(&reattach, wk); 4016 continue; 4017 4018 case D_BMSAFEMAP: 4019 bmsafemap = WK_BMSAFEMAP(wk); 4020 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 4021 newblk->nb_state |= DEPCOMPLETE; 4022 newblk->nb_bmsafemap = NULL; 4023 LIST_REMOVE(newblk, nb_deps); 4024 } 4025 while ((adp = 4026 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 4027 adp->ad_state |= DEPCOMPLETE; 4028 adp->ad_buf = NULL; 4029 LIST_REMOVE(adp, ad_deps); 4030 handle_allocdirect_partdone(adp); 4031 } 4032 while ((aip = 4033 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 4034 aip->ai_state |= DEPCOMPLETE; 4035 aip->ai_buf = NULL; 4036 LIST_REMOVE(aip, ai_deps); 4037 handle_allocindir_partdone(aip); 4038 } 4039 while ((inodedep = 4040 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4041 inodedep->id_state |= DEPCOMPLETE; 4042 LIST_REMOVE(inodedep, id_deps); 4043 inodedep->id_buf = NULL; 4044 } 4045 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4046 continue; 4047 4048 case D_MKDIR: 4049 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4050 continue; 4051 4052 case D_ALLOCDIRECT: 4053 adp = WK_ALLOCDIRECT(wk); 4054 adp->ad_state |= COMPLETE; 4055 handle_allocdirect_partdone(adp); 4056 continue; 4057 4058 case D_ALLOCINDIR: 4059 aip = WK_ALLOCINDIR(wk); 4060 aip->ai_state |= COMPLETE; 4061 handle_allocindir_partdone(aip); 4062 continue; 4063 4064 case D_INDIRDEP: 4065 indirdep = WK_INDIRDEP(wk); 4066 if (indirdep->ir_state & GOINGAWAY) { 4067 lk.lkt_held = NOHOLDER; 4068 panic("disk_write_complete: indirdep gone"); 4069 } 4070 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4071 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4072 indirdep->ir_saveddata = 0; 4073 indirdep->ir_state &= ~UNDONE; 4074 indirdep->ir_state |= ATTACHED; 4075 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4076 handle_allocindir_partdone(aip); 4077 if (aip == LIST_FIRST(&indirdep->ir_donehd)) { 4078 lk.lkt_held = NOHOLDER; 4079 panic("disk_write_complete: not gone"); 4080 } 4081 } 4082 WORKLIST_INSERT(&reattach, wk); 4083 if ((bp->b_flags & B_DELWRI) == 0) 4084 stat_indir_blk_ptrs++; 4085 bdirty(bp); 4086 continue; 4087 4088 default: 4089 lk.lkt_held = NOHOLDER; 4090 panic("handle_disk_write_complete: Unknown type %s", 4091 TYPENAME(wk->wk_type)); 4092 /* NOTREACHED */ 4093 } 4094 } 4095 /* 4096 * Reattach any requests that must be redone. 4097 */ 4098 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4099 WORKLIST_REMOVE(wk); 4100 WORKLIST_INSERT(&bp->b_dep, wk); 4101 } 4102 #ifdef DEBUG 4103 if (lk.lkt_held != SPECIAL_FLAG) 4104 panic("softdep_disk_write_complete: lock lost"); 4105 lk.lkt_held = NOHOLDER; 4106 #endif 4107 } 4108 4109 /* 4110 * Called from within softdep_disk_write_complete above. Note that 4111 * this routine is always called from interrupt level with further 4112 * splbio interrupts blocked. 4113 */ 4114 static void 4115 handle_allocdirect_partdone(adp) 4116 struct allocdirect *adp; /* the completed allocdirect */ 4117 { 4118 struct allocdirectlst *listhead; 4119 struct allocdirect *listadp; 4120 struct inodedep *inodedep; 4121 long bsize, delay; 4122 4123 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4124 return; 4125 if (adp->ad_buf != NULL) { 4126 lk.lkt_held = NOHOLDER; 4127 panic("handle_allocdirect_partdone: dangling dep"); 4128 } 4129 /* 4130 * The on-disk inode cannot claim to be any larger than the last 4131 * fragment that has been written. Otherwise, the on-disk inode 4132 * might have fragments that were not the last block in the file 4133 * which would corrupt the filesystem. Thus, we cannot free any 4134 * allocdirects after one whose ad_oldblkno claims a fragment as 4135 * these blocks must be rolled back to zero before writing the inode. 4136 * We check the currently active set of allocdirects in id_inoupdt 4137 * or id_extupdt as appropriate. 4138 */ 4139 inodedep = adp->ad_inodedep; 4140 bsize = inodedep->id_fs->fs_bsize; 4141 if (adp->ad_state & EXTDATA) 4142 listhead = &inodedep->id_extupdt; 4143 else 4144 listhead = &inodedep->id_inoupdt; 4145 TAILQ_FOREACH(listadp, listhead, ad_next) { 4146 /* found our block */ 4147 if (listadp == adp) 4148 break; 4149 /* continue if ad_oldlbn is not a fragment */ 4150 if (listadp->ad_oldsize == 0 || 4151 listadp->ad_oldsize == bsize) 4152 continue; 4153 /* hit a fragment */ 4154 return; 4155 } 4156 /* 4157 * If we have reached the end of the current list without 4158 * finding the just finished dependency, then it must be 4159 * on the future dependency list. Future dependencies cannot 4160 * be freed until they are moved to the current list. 4161 */ 4162 if (listadp == NULL) { 4163 #ifdef DEBUG 4164 if (adp->ad_state & EXTDATA) 4165 listhead = &inodedep->id_newextupdt; 4166 else 4167 listhead = &inodedep->id_newinoupdt; 4168 TAILQ_FOREACH(listadp, listhead, ad_next) 4169 /* found our block */ 4170 if (listadp == adp) 4171 break; 4172 if (listadp == NULL) { 4173 lk.lkt_held = NOHOLDER; 4174 panic("handle_allocdirect_partdone: lost dep"); 4175 } 4176 #endif /* DEBUG */ 4177 return; 4178 } 4179 /* 4180 * If we have found the just finished dependency, then free 4181 * it along with anything that follows it that is complete. 4182 * If the inode still has a bitmap dependency, then it has 4183 * never been written to disk, hence the on-disk inode cannot 4184 * reference the old fragment so we can free it without delay. 4185 */ 4186 delay = (inodedep->id_state & DEPCOMPLETE); 4187 for (; adp; adp = listadp) { 4188 listadp = TAILQ_NEXT(adp, ad_next); 4189 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4190 return; 4191 free_allocdirect(listhead, adp, delay); 4192 } 4193 } 4194 4195 /* 4196 * Called from within softdep_disk_write_complete above. Note that 4197 * this routine is always called from interrupt level with further 4198 * splbio interrupts blocked. 4199 */ 4200 static void 4201 handle_allocindir_partdone(aip) 4202 struct allocindir *aip; /* the completed allocindir */ 4203 { 4204 struct indirdep *indirdep; 4205 4206 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4207 return; 4208 if (aip->ai_buf != NULL) { 4209 lk.lkt_held = NOHOLDER; 4210 panic("handle_allocindir_partdone: dangling dependency"); 4211 } 4212 indirdep = aip->ai_indirdep; 4213 if (indirdep->ir_state & UNDONE) { 4214 LIST_REMOVE(aip, ai_next); 4215 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4216 return; 4217 } 4218 if (indirdep->ir_state & UFS1FMT) 4219 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4220 aip->ai_newblkno; 4221 else 4222 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4223 aip->ai_newblkno; 4224 LIST_REMOVE(aip, ai_next); 4225 if (aip->ai_freefrag != NULL) 4226 add_to_worklist(&aip->ai_freefrag->ff_list); 4227 WORKITEM_FREE(aip, D_ALLOCINDIR); 4228 } 4229 4230 /* 4231 * Called from within softdep_disk_write_complete above to restore 4232 * in-memory inode block contents to their most up-to-date state. Note 4233 * that this routine is always called from interrupt level with further 4234 * splbio interrupts blocked. 4235 */ 4236 static int 4237 handle_written_inodeblock(inodedep, bp) 4238 struct inodedep *inodedep; 4239 struct buf *bp; /* buffer containing the inode block */ 4240 { 4241 struct worklist *wk, *filefree; 4242 struct allocdirect *adp, *nextadp; 4243 struct ufs1_dinode *dp1 = NULL; 4244 struct ufs2_dinode *dp2 = NULL; 4245 int hadchanges, fstype; 4246 4247 if ((inodedep->id_state & IOSTARTED) == 0) { 4248 lk.lkt_held = NOHOLDER; 4249 panic("handle_written_inodeblock: not started"); 4250 } 4251 inodedep->id_state &= ~IOSTARTED; 4252 inodedep->id_state |= COMPLETE; 4253 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4254 fstype = UFS1; 4255 dp1 = (struct ufs1_dinode *)bp->b_data + 4256 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4257 } else { 4258 fstype = UFS2; 4259 dp2 = (struct ufs2_dinode *)bp->b_data + 4260 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4261 } 4262 /* 4263 * If we had to rollback the inode allocation because of 4264 * bitmaps being incomplete, then simply restore it. 4265 * Keep the block dirty so that it will not be reclaimed until 4266 * all associated dependencies have been cleared and the 4267 * corresponding updates written to disk. 4268 */ 4269 if (inodedep->id_savedino1 != NULL) { 4270 if (fstype == UFS1) 4271 *dp1 = *inodedep->id_savedino1; 4272 else 4273 *dp2 = *inodedep->id_savedino2; 4274 FREE(inodedep->id_savedino1, M_INODEDEP); 4275 inodedep->id_savedino1 = NULL; 4276 if ((bp->b_flags & B_DELWRI) == 0) 4277 stat_inode_bitmap++; 4278 bdirty(bp); 4279 return (1); 4280 } 4281 /* 4282 * Roll forward anything that had to be rolled back before 4283 * the inode could be updated. 4284 */ 4285 hadchanges = 0; 4286 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4287 nextadp = TAILQ_NEXT(adp, ad_next); 4288 if (adp->ad_state & ATTACHED) { 4289 lk.lkt_held = NOHOLDER; 4290 panic("handle_written_inodeblock: new entry"); 4291 } 4292 if (fstype == UFS1) { 4293 if (adp->ad_lbn < NDADDR) { 4294 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4295 lk.lkt_held = NOHOLDER; 4296 panic("%s %s #%jd mismatch %d != %jd", 4297 "handle_written_inodeblock:", 4298 "direct pointer", 4299 (intmax_t)adp->ad_lbn, 4300 dp1->di_db[adp->ad_lbn], 4301 (intmax_t)adp->ad_oldblkno); 4302 } 4303 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4304 } else { 4305 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) { 4306 lk.lkt_held = NOHOLDER; 4307 panic("%s: %s #%jd allocated as %d", 4308 "handle_written_inodeblock", 4309 "indirect pointer", 4310 (intmax_t)adp->ad_lbn - NDADDR, 4311 dp1->di_ib[adp->ad_lbn - NDADDR]); 4312 } 4313 dp1->di_ib[adp->ad_lbn - NDADDR] = 4314 adp->ad_newblkno; 4315 } 4316 } else { 4317 if (adp->ad_lbn < NDADDR) { 4318 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4319 lk.lkt_held = NOHOLDER; 4320 panic("%s: %s #%jd %s %jd != %jd", 4321 "handle_written_inodeblock", 4322 "direct pointer", 4323 (intmax_t)adp->ad_lbn, "mismatch", 4324 (intmax_t)dp2->di_db[adp->ad_lbn], 4325 (intmax_t)adp->ad_oldblkno); 4326 } 4327 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4328 } else { 4329 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) { 4330 lk.lkt_held = NOHOLDER; 4331 panic("%s: %s #%jd allocated as %jd", 4332 "handle_written_inodeblock", 4333 "indirect pointer", 4334 (intmax_t)adp->ad_lbn - NDADDR, 4335 (intmax_t) 4336 dp2->di_ib[adp->ad_lbn - NDADDR]); 4337 } 4338 dp2->di_ib[adp->ad_lbn - NDADDR] = 4339 adp->ad_newblkno; 4340 } 4341 } 4342 adp->ad_state &= ~UNDONE; 4343 adp->ad_state |= ATTACHED; 4344 hadchanges = 1; 4345 } 4346 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4347 nextadp = TAILQ_NEXT(adp, ad_next); 4348 if (adp->ad_state & ATTACHED) { 4349 lk.lkt_held = NOHOLDER; 4350 panic("handle_written_inodeblock: new entry"); 4351 } 4352 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) { 4353 lk.lkt_held = NOHOLDER; 4354 panic("%s: direct pointers #%jd %s %jd != %jd", 4355 "handle_written_inodeblock", 4356 (intmax_t)adp->ad_lbn, "mismatch", 4357 (intmax_t)dp2->di_extb[adp->ad_lbn], 4358 (intmax_t)adp->ad_oldblkno); 4359 } 4360 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4361 adp->ad_state &= ~UNDONE; 4362 adp->ad_state |= ATTACHED; 4363 hadchanges = 1; 4364 } 4365 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4366 stat_direct_blk_ptrs++; 4367 /* 4368 * Reset the file size to its most up-to-date value. 4369 */ 4370 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) { 4371 lk.lkt_held = NOHOLDER; 4372 panic("handle_written_inodeblock: bad size"); 4373 } 4374 if (fstype == UFS1) { 4375 if (dp1->di_size != inodedep->id_savedsize) { 4376 dp1->di_size = inodedep->id_savedsize; 4377 hadchanges = 1; 4378 } 4379 } else { 4380 if (dp2->di_size != inodedep->id_savedsize) { 4381 dp2->di_size = inodedep->id_savedsize; 4382 hadchanges = 1; 4383 } 4384 if (dp2->di_extsize != inodedep->id_savedextsize) { 4385 dp2->di_extsize = inodedep->id_savedextsize; 4386 hadchanges = 1; 4387 } 4388 } 4389 inodedep->id_savedsize = -1; 4390 inodedep->id_savedextsize = -1; 4391 /* 4392 * If there were any rollbacks in the inode block, then it must be 4393 * marked dirty so that its will eventually get written back in 4394 * its correct form. 4395 */ 4396 if (hadchanges) 4397 bdirty(bp); 4398 /* 4399 * Process any allocdirects that completed during the update. 4400 */ 4401 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4402 handle_allocdirect_partdone(adp); 4403 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4404 handle_allocdirect_partdone(adp); 4405 /* 4406 * Process deallocations that were held pending until the 4407 * inode had been written to disk. Freeing of the inode 4408 * is delayed until after all blocks have been freed to 4409 * avoid creation of new <vfsid, inum, lbn> triples 4410 * before the old ones have been deleted. 4411 */ 4412 filefree = NULL; 4413 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4414 WORKLIST_REMOVE(wk); 4415 switch (wk->wk_type) { 4416 4417 case D_FREEFILE: 4418 /* 4419 * We defer adding filefree to the worklist until 4420 * all other additions have been made to ensure 4421 * that it will be done after all the old blocks 4422 * have been freed. 4423 */ 4424 if (filefree != NULL) { 4425 lk.lkt_held = NOHOLDER; 4426 panic("handle_written_inodeblock: filefree"); 4427 } 4428 filefree = wk; 4429 continue; 4430 4431 case D_MKDIR: 4432 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4433 continue; 4434 4435 case D_DIRADD: 4436 diradd_inode_written(WK_DIRADD(wk), inodedep); 4437 continue; 4438 4439 case D_FREEBLKS: 4440 case D_FREEFRAG: 4441 case D_DIRREM: 4442 add_to_worklist(wk); 4443 continue; 4444 4445 case D_NEWDIRBLK: 4446 free_newdirblk(WK_NEWDIRBLK(wk)); 4447 continue; 4448 4449 default: 4450 lk.lkt_held = NOHOLDER; 4451 panic("handle_written_inodeblock: Unknown type %s", 4452 TYPENAME(wk->wk_type)); 4453 /* NOTREACHED */ 4454 } 4455 } 4456 if (filefree != NULL) { 4457 if (free_inodedep(inodedep) == 0) { 4458 lk.lkt_held = NOHOLDER; 4459 panic("handle_written_inodeblock: live inodedep"); 4460 } 4461 add_to_worklist(filefree); 4462 return (0); 4463 } 4464 4465 /* 4466 * If no outstanding dependencies, free it. 4467 */ 4468 if (free_inodedep(inodedep) || 4469 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4470 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4471 return (0); 4472 return (hadchanges); 4473 } 4474 4475 /* 4476 * Process a diradd entry after its dependent inode has been written. 4477 * This routine must be called with splbio interrupts blocked. 4478 */ 4479 static void 4480 diradd_inode_written(dap, inodedep) 4481 struct diradd *dap; 4482 struct inodedep *inodedep; 4483 { 4484 struct pagedep *pagedep; 4485 4486 dap->da_state |= COMPLETE; 4487 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4488 if (dap->da_state & DIRCHG) 4489 pagedep = dap->da_previous->dm_pagedep; 4490 else 4491 pagedep = dap->da_pagedep; 4492 LIST_REMOVE(dap, da_pdlist); 4493 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4494 } 4495 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4496 } 4497 4498 /* 4499 * Handle the completion of a mkdir dependency. 4500 */ 4501 static void 4502 handle_written_mkdir(mkdir, type) 4503 struct mkdir *mkdir; 4504 int type; 4505 { 4506 struct diradd *dap; 4507 struct pagedep *pagedep; 4508 4509 if (mkdir->md_state != type) { 4510 lk.lkt_held = NOHOLDER; 4511 panic("handle_written_mkdir: bad type"); 4512 } 4513 dap = mkdir->md_diradd; 4514 dap->da_state &= ~type; 4515 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4516 dap->da_state |= DEPCOMPLETE; 4517 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4518 if (dap->da_state & DIRCHG) 4519 pagedep = dap->da_previous->dm_pagedep; 4520 else 4521 pagedep = dap->da_pagedep; 4522 LIST_REMOVE(dap, da_pdlist); 4523 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4524 } 4525 LIST_REMOVE(mkdir, md_mkdirs); 4526 WORKITEM_FREE(mkdir, D_MKDIR); 4527 } 4528 4529 /* 4530 * Called from within softdep_disk_write_complete above. 4531 * A write operation was just completed. Removed inodes can 4532 * now be freed and associated block pointers may be committed. 4533 * Note that this routine is always called from interrupt level 4534 * with further splbio interrupts blocked. 4535 */ 4536 static int 4537 handle_written_filepage(pagedep, bp) 4538 struct pagedep *pagedep; 4539 struct buf *bp; /* buffer containing the written page */ 4540 { 4541 struct dirrem *dirrem; 4542 struct diradd *dap, *nextdap; 4543 struct direct *ep; 4544 int i, chgs; 4545 4546 if ((pagedep->pd_state & IOSTARTED) == 0) { 4547 lk.lkt_held = NOHOLDER; 4548 panic("handle_written_filepage: not started"); 4549 } 4550 pagedep->pd_state &= ~IOSTARTED; 4551 /* 4552 * Process any directory removals that have been committed. 4553 */ 4554 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4555 LIST_REMOVE(dirrem, dm_next); 4556 dirrem->dm_dirinum = pagedep->pd_ino; 4557 add_to_worklist(&dirrem->dm_list); 4558 } 4559 /* 4560 * Free any directory additions that have been committed. 4561 * If it is a newly allocated block, we have to wait until 4562 * the on-disk directory inode claims the new block. 4563 */ 4564 if ((pagedep->pd_state & NEWBLOCK) == 0) 4565 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4566 free_diradd(dap); 4567 /* 4568 * Uncommitted directory entries must be restored. 4569 */ 4570 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4571 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4572 dap = nextdap) { 4573 nextdap = LIST_NEXT(dap, da_pdlist); 4574 if (dap->da_state & ATTACHED) { 4575 lk.lkt_held = NOHOLDER; 4576 panic("handle_written_filepage: attached"); 4577 } 4578 ep = (struct direct *) 4579 ((char *)bp->b_data + dap->da_offset); 4580 ep->d_ino = dap->da_newinum; 4581 dap->da_state &= ~UNDONE; 4582 dap->da_state |= ATTACHED; 4583 chgs = 1; 4584 /* 4585 * If the inode referenced by the directory has 4586 * been written out, then the dependency can be 4587 * moved to the pending list. 4588 */ 4589 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4590 LIST_REMOVE(dap, da_pdlist); 4591 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4592 da_pdlist); 4593 } 4594 } 4595 } 4596 /* 4597 * If there were any rollbacks in the directory, then it must be 4598 * marked dirty so that its will eventually get written back in 4599 * its correct form. 4600 */ 4601 if (chgs) { 4602 if ((bp->b_flags & B_DELWRI) == 0) 4603 stat_dir_entry++; 4604 bdirty(bp); 4605 return (1); 4606 } 4607 /* 4608 * If we are not waiting for a new directory block to be 4609 * claimed by its inode, then the pagedep will be freed. 4610 * Otherwise it will remain to track any new entries on 4611 * the page in case they are fsync'ed. 4612 */ 4613 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4614 LIST_REMOVE(pagedep, pd_hash); 4615 WORKITEM_FREE(pagedep, D_PAGEDEP); 4616 } 4617 return (0); 4618 } 4619 4620 /* 4621 * Writing back in-core inode structures. 4622 * 4623 * The filesystem only accesses an inode's contents when it occupies an 4624 * "in-core" inode structure. These "in-core" structures are separate from 4625 * the page frames used to cache inode blocks. Only the latter are 4626 * transferred to/from the disk. So, when the updated contents of the 4627 * "in-core" inode structure are copied to the corresponding in-memory inode 4628 * block, the dependencies are also transferred. The following procedure is 4629 * called when copying a dirty "in-core" inode to a cached inode block. 4630 */ 4631 4632 /* 4633 * Called when an inode is loaded from disk. If the effective link count 4634 * differed from the actual link count when it was last flushed, then we 4635 * need to ensure that the correct effective link count is put back. 4636 */ 4637 void 4638 softdep_load_inodeblock(ip) 4639 struct inode *ip; /* the "in_core" copy of the inode */ 4640 { 4641 struct inodedep *inodedep; 4642 4643 /* 4644 * Check for alternate nlink count. 4645 */ 4646 ip->i_effnlink = ip->i_nlink; 4647 ACQUIRE_LOCK(&lk); 4648 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4649 FREE_LOCK(&lk); 4650 return; 4651 } 4652 ip->i_effnlink -= inodedep->id_nlinkdelta; 4653 if (inodedep->id_state & SPACECOUNTED) 4654 ip->i_flag |= IN_SPACECOUNTED; 4655 FREE_LOCK(&lk); 4656 } 4657 4658 /* 4659 * This routine is called just before the "in-core" inode 4660 * information is to be copied to the in-memory inode block. 4661 * Recall that an inode block contains several inodes. If 4662 * the force flag is set, then the dependencies will be 4663 * cleared so that the update can always be made. Note that 4664 * the buffer is locked when this routine is called, so we 4665 * will never be in the middle of writing the inode block 4666 * to disk. 4667 */ 4668 void 4669 softdep_update_inodeblock(ip, bp, waitfor) 4670 struct inode *ip; /* the "in_core" copy of the inode */ 4671 struct buf *bp; /* the buffer containing the inode block */ 4672 int waitfor; /* nonzero => update must be allowed */ 4673 { 4674 struct inodedep *inodedep; 4675 struct worklist *wk; 4676 struct buf *ibp; 4677 int error; 4678 4679 /* 4680 * If the effective link count is not equal to the actual link 4681 * count, then we must track the difference in an inodedep while 4682 * the inode is (potentially) tossed out of the cache. Otherwise, 4683 * if there is no existing inodedep, then there are no dependencies 4684 * to track. 4685 */ 4686 ACQUIRE_LOCK(&lk); 4687 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4688 FREE_LOCK(&lk); 4689 if (ip->i_effnlink != ip->i_nlink) 4690 panic("softdep_update_inodeblock: bad link count"); 4691 return; 4692 } 4693 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) { 4694 FREE_LOCK(&lk); 4695 panic("softdep_update_inodeblock: bad delta"); 4696 } 4697 /* 4698 * Changes have been initiated. Anything depending on these 4699 * changes cannot occur until this inode has been written. 4700 */ 4701 inodedep->id_state &= ~COMPLETE; 4702 if ((inodedep->id_state & ONWORKLIST) == 0) 4703 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4704 /* 4705 * Any new dependencies associated with the incore inode must 4706 * now be moved to the list associated with the buffer holding 4707 * the in-memory copy of the inode. Once merged process any 4708 * allocdirects that are completed by the merger. 4709 */ 4710 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4711 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4712 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4713 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4714 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4715 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4716 /* 4717 * Now that the inode has been pushed into the buffer, the 4718 * operations dependent on the inode being written to disk 4719 * can be moved to the id_bufwait so that they will be 4720 * processed when the buffer I/O completes. 4721 */ 4722 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4723 WORKLIST_REMOVE(wk); 4724 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4725 } 4726 /* 4727 * Newly allocated inodes cannot be written until the bitmap 4728 * that allocates them have been written (indicated by 4729 * DEPCOMPLETE being set in id_state). If we are doing a 4730 * forced sync (e.g., an fsync on a file), we force the bitmap 4731 * to be written so that the update can be done. 4732 */ 4733 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 4734 FREE_LOCK(&lk); 4735 return; 4736 } 4737 ibp = inodedep->id_buf; 4738 ibp = getdirtybuf(&ibp, NULL, MNT_WAIT); 4739 FREE_LOCK(&lk); 4740 if (ibp && (error = bwrite(ibp)) != 0) 4741 softdep_error("softdep_update_inodeblock: bwrite", error); 4742 if ((inodedep->id_state & DEPCOMPLETE) == 0) 4743 panic("softdep_update_inodeblock: update failed"); 4744 } 4745 4746 /* 4747 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4748 * old inode dependency list (such as id_inoupdt). This routine must be 4749 * called with splbio interrupts blocked. 4750 */ 4751 static void 4752 merge_inode_lists(newlisthead, oldlisthead) 4753 struct allocdirectlst *newlisthead; 4754 struct allocdirectlst *oldlisthead; 4755 { 4756 struct allocdirect *listadp, *newadp; 4757 4758 newadp = TAILQ_FIRST(newlisthead); 4759 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4760 if (listadp->ad_lbn < newadp->ad_lbn) { 4761 listadp = TAILQ_NEXT(listadp, ad_next); 4762 continue; 4763 } 4764 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4765 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4766 if (listadp->ad_lbn == newadp->ad_lbn) { 4767 allocdirect_merge(oldlisthead, newadp, 4768 listadp); 4769 listadp = newadp; 4770 } 4771 newadp = TAILQ_FIRST(newlisthead); 4772 } 4773 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4774 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4775 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4776 } 4777 } 4778 4779 /* 4780 * If we are doing an fsync, then we must ensure that any directory 4781 * entries for the inode have been written after the inode gets to disk. 4782 */ 4783 int 4784 softdep_fsync(vp) 4785 struct vnode *vp; /* the "in_core" copy of the inode */ 4786 { 4787 struct inodedep *inodedep; 4788 struct pagedep *pagedep; 4789 struct worklist *wk; 4790 struct diradd *dap; 4791 struct mount *mnt; 4792 struct vnode *pvp; 4793 struct inode *ip; 4794 struct buf *bp; 4795 struct fs *fs; 4796 struct thread *td = curthread; 4797 int error, flushparent; 4798 ino_t parentino; 4799 ufs_lbn_t lbn; 4800 4801 ip = VTOI(vp); 4802 fs = ip->i_fs; 4803 ACQUIRE_LOCK(&lk); 4804 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4805 FREE_LOCK(&lk); 4806 return (0); 4807 } 4808 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4809 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4810 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 4811 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 4812 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4813 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { 4814 FREE_LOCK(&lk); 4815 panic("softdep_fsync: pending ops"); 4816 } 4817 for (error = 0, flushparent = 0; ; ) { 4818 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4819 break; 4820 if (wk->wk_type != D_DIRADD) { 4821 FREE_LOCK(&lk); 4822 panic("softdep_fsync: Unexpected type %s", 4823 TYPENAME(wk->wk_type)); 4824 } 4825 dap = WK_DIRADD(wk); 4826 /* 4827 * Flush our parent if this directory entry has a MKDIR_PARENT 4828 * dependency or is contained in a newly allocated block. 4829 */ 4830 if (dap->da_state & DIRCHG) 4831 pagedep = dap->da_previous->dm_pagedep; 4832 else 4833 pagedep = dap->da_pagedep; 4834 mnt = pagedep->pd_mnt; 4835 parentino = pagedep->pd_ino; 4836 lbn = pagedep->pd_lbn; 4837 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { 4838 FREE_LOCK(&lk); 4839 panic("softdep_fsync: dirty"); 4840 } 4841 if ((dap->da_state & MKDIR_PARENT) || 4842 (pagedep->pd_state & NEWBLOCK)) 4843 flushparent = 1; 4844 else 4845 flushparent = 0; 4846 /* 4847 * If we are being fsync'ed as part of vgone'ing this vnode, 4848 * then we will not be able to release and recover the 4849 * vnode below, so we just have to give up on writing its 4850 * directory entry out. It will eventually be written, just 4851 * not now, but then the user was not asking to have it 4852 * written, so we are not breaking any promises. 4853 */ 4854 if (vp->v_iflag & VI_XLOCK) 4855 break; 4856 /* 4857 * We prevent deadlock by always fetching inodes from the 4858 * root, moving down the directory tree. Thus, when fetching 4859 * our parent directory, we first try to get the lock. If 4860 * that fails, we must unlock ourselves before requesting 4861 * the lock on our parent. See the comment in ufs_lookup 4862 * for details on possible races. 4863 */ 4864 FREE_LOCK(&lk); 4865 if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4866 VOP_UNLOCK(vp, 0, td); 4867 error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp); 4868 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4869 if (error != 0) 4870 return (error); 4871 } 4872 /* 4873 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4874 * that are contained in direct blocks will be resolved by 4875 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks 4876 * may require a complete sync'ing of the directory. So, we 4877 * try the cheap and fast UFS_UPDATE first, and if that fails, 4878 * then we do the slower VOP_FSYNC of the directory. 4879 */ 4880 if (flushparent) { 4881 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 4882 vput(pvp); 4883 return (error); 4884 } 4885 if ((pagedep->pd_state & NEWBLOCK) && 4886 (error = VOP_FSYNC(pvp, td->td_ucred, MNT_WAIT, td))) { 4887 vput(pvp); 4888 return (error); 4889 } 4890 } 4891 /* 4892 * Flush directory page containing the inode's name. 4893 */ 4894 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4895 &bp); 4896 if (error == 0) 4897 error = bwrite(bp); 4898 else 4899 brelse(bp); 4900 vput(pvp); 4901 if (error != 0) 4902 return (error); 4903 ACQUIRE_LOCK(&lk); 4904 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4905 break; 4906 } 4907 FREE_LOCK(&lk); 4908 return (0); 4909 } 4910 4911 /* 4912 * Flush all the dirty bitmaps associated with the block device 4913 * before flushing the rest of the dirty blocks so as to reduce 4914 * the number of dependencies that will have to be rolled back. 4915 */ 4916 void 4917 softdep_fsync_mountdev(vp) 4918 struct vnode *vp; 4919 { 4920 struct buf *bp, *nbp; 4921 struct worklist *wk; 4922 4923 if (!vn_isdisk(vp, NULL)) 4924 panic("softdep_fsync_mountdev: vnode not a disk"); 4925 ACQUIRE_LOCK(&lk); 4926 VI_LOCK(vp); 4927 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 4928 nbp = TAILQ_NEXT(bp, b_vnbufs); 4929 /* 4930 * If it is already scheduled, skip to the next buffer. 4931 */ 4932 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 4933 continue; 4934 4935 if ((bp->b_flags & B_DELWRI) == 0) { 4936 FREE_LOCK(&lk); 4937 panic("softdep_fsync_mountdev: not dirty"); 4938 } 4939 /* 4940 * We are only interested in bitmaps with outstanding 4941 * dependencies. 4942 */ 4943 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4944 wk->wk_type != D_BMSAFEMAP || 4945 (bp->b_vflags & BV_BKGRDINPROG)) { 4946 BUF_UNLOCK(bp); 4947 continue; 4948 } 4949 VI_UNLOCK(vp); 4950 bremfree(bp); 4951 FREE_LOCK(&lk); 4952 (void) bawrite(bp); 4953 ACQUIRE_LOCK(&lk); 4954 /* 4955 * Since we may have slept during the I/O, we need 4956 * to start from a known point. 4957 */ 4958 VI_LOCK(vp); 4959 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4960 } 4961 drain_output(vp, 1); 4962 VI_UNLOCK(vp); 4963 FREE_LOCK(&lk); 4964 } 4965 4966 /* 4967 * This routine is called when we are trying to synchronously flush a 4968 * file. This routine must eliminate any filesystem metadata dependencies 4969 * so that the syncing routine can succeed by pushing the dirty blocks 4970 * associated with the file. If any I/O errors occur, they are returned. 4971 */ 4972 int 4973 softdep_sync_metadata(ap) 4974 struct vop_fsync_args /* { 4975 struct vnode *a_vp; 4976 struct ucred *a_cred; 4977 int a_waitfor; 4978 struct thread *a_td; 4979 } */ *ap; 4980 { 4981 struct vnode *vp = ap->a_vp; 4982 struct pagedep *pagedep; 4983 struct allocdirect *adp; 4984 struct allocindir *aip; 4985 struct buf *bp, *nbp; 4986 struct worklist *wk; 4987 int i, error, waitfor; 4988 4989 /* 4990 * Check whether this vnode is involved in a filesystem 4991 * that is doing soft dependency processing. 4992 */ 4993 if (!vn_isdisk(vp, NULL)) { 4994 if (!DOINGSOFTDEP(vp)) 4995 return (0); 4996 } else 4997 if (vp->v_rdev->si_mountpoint == NULL || 4998 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0) 4999 return (0); 5000 /* 5001 * Ensure that any direct block dependencies have been cleared. 5002 */ 5003 ACQUIRE_LOCK(&lk); 5004 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 5005 FREE_LOCK(&lk); 5006 return (error); 5007 } 5008 /* 5009 * For most files, the only metadata dependencies are the 5010 * cylinder group maps that allocate their inode or blocks. 5011 * The block allocation dependencies can be found by traversing 5012 * the dependency lists for any buffers that remain on their 5013 * dirty buffer list. The inode allocation dependency will 5014 * be resolved when the inode is updated with MNT_WAIT. 5015 * This work is done in two passes. The first pass grabs most 5016 * of the buffers and begins asynchronously writing them. The 5017 * only way to wait for these asynchronous writes is to sleep 5018 * on the filesystem vnode which may stay busy for a long time 5019 * if the filesystem is active. So, instead, we make a second 5020 * pass over the dependencies blocking on each write. In the 5021 * usual case we will be blocking against a write that we 5022 * initiated, so when it is done the dependency will have been 5023 * resolved. Thus the second pass is expected to end quickly. 5024 */ 5025 waitfor = MNT_NOWAIT; 5026 top: 5027 /* 5028 * We must wait for any I/O in progress to finish so that 5029 * all potential buffers on the dirty list will be visible. 5030 */ 5031 VI_LOCK(vp); 5032 drain_output(vp, 1); 5033 bp = getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), 5034 VI_MTX(vp), MNT_WAIT); 5035 if (bp == NULL) { 5036 VI_UNLOCK(vp); 5037 FREE_LOCK(&lk); 5038 return (0); 5039 } 5040 /* While syncing snapshots, we must allow recursive lookups */ 5041 bp->b_lock.lk_flags |= LK_CANRECURSE; 5042 loop: 5043 /* 5044 * As we hold the buffer locked, none of its dependencies 5045 * will disappear. 5046 */ 5047 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5048 switch (wk->wk_type) { 5049 5050 case D_ALLOCDIRECT: 5051 adp = WK_ALLOCDIRECT(wk); 5052 if (adp->ad_state & DEPCOMPLETE) 5053 continue; 5054 nbp = adp->ad_buf; 5055 nbp = getdirtybuf(&nbp, NULL, waitfor); 5056 if (nbp == NULL) 5057 continue; 5058 FREE_LOCK(&lk); 5059 if (waitfor == MNT_NOWAIT) { 5060 bawrite(nbp); 5061 } else if ((error = bwrite(nbp)) != 0) { 5062 break; 5063 } 5064 ACQUIRE_LOCK(&lk); 5065 continue; 5066 5067 case D_ALLOCINDIR: 5068 aip = WK_ALLOCINDIR(wk); 5069 if (aip->ai_state & DEPCOMPLETE) 5070 continue; 5071 nbp = aip->ai_buf; 5072 nbp = getdirtybuf(&nbp, NULL, waitfor); 5073 if (nbp == NULL) 5074 continue; 5075 FREE_LOCK(&lk); 5076 if (waitfor == MNT_NOWAIT) { 5077 bawrite(nbp); 5078 } else if ((error = bwrite(nbp)) != 0) { 5079 break; 5080 } 5081 ACQUIRE_LOCK(&lk); 5082 continue; 5083 5084 case D_INDIRDEP: 5085 restart: 5086 5087 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5088 if (aip->ai_state & DEPCOMPLETE) 5089 continue; 5090 nbp = aip->ai_buf; 5091 nbp = getdirtybuf(&nbp, NULL, MNT_WAIT); 5092 if (nbp == NULL) 5093 goto restart; 5094 FREE_LOCK(&lk); 5095 if ((error = bwrite(nbp)) != 0) { 5096 break; 5097 } 5098 ACQUIRE_LOCK(&lk); 5099 goto restart; 5100 } 5101 continue; 5102 5103 case D_INODEDEP: 5104 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 5105 WK_INODEDEP(wk)->id_ino)) != 0) { 5106 FREE_LOCK(&lk); 5107 break; 5108 } 5109 continue; 5110 5111 case D_PAGEDEP: 5112 /* 5113 * We are trying to sync a directory that may 5114 * have dependencies on both its own metadata 5115 * and/or dependencies on the inodes of any 5116 * recently allocated files. We walk its diradd 5117 * lists pushing out the associated inode. 5118 */ 5119 pagedep = WK_PAGEDEP(wk); 5120 for (i = 0; i < DAHASHSZ; i++) { 5121 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5122 continue; 5123 if ((error = 5124 flush_pagedep_deps(vp, pagedep->pd_mnt, 5125 &pagedep->pd_diraddhd[i]))) { 5126 FREE_LOCK(&lk); 5127 break; 5128 } 5129 } 5130 continue; 5131 5132 case D_MKDIR: 5133 /* 5134 * This case should never happen if the vnode has 5135 * been properly sync'ed. However, if this function 5136 * is used at a place where the vnode has not yet 5137 * been sync'ed, this dependency can show up. So, 5138 * rather than panic, just flush it. 5139 */ 5140 nbp = WK_MKDIR(wk)->md_buf; 5141 nbp = getdirtybuf(&nbp, NULL, waitfor); 5142 if (nbp == NULL) 5143 continue; 5144 FREE_LOCK(&lk); 5145 if (waitfor == MNT_NOWAIT) { 5146 bawrite(nbp); 5147 } else if ((error = bwrite(nbp)) != 0) { 5148 break; 5149 } 5150 ACQUIRE_LOCK(&lk); 5151 continue; 5152 5153 case D_BMSAFEMAP: 5154 /* 5155 * This case should never happen if the vnode has 5156 * been properly sync'ed. However, if this function 5157 * is used at a place where the vnode has not yet 5158 * been sync'ed, this dependency can show up. So, 5159 * rather than panic, just flush it. 5160 */ 5161 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5162 nbp = getdirtybuf(&nbp, NULL, waitfor); 5163 if (nbp == NULL) 5164 continue; 5165 FREE_LOCK(&lk); 5166 if (waitfor == MNT_NOWAIT) { 5167 bawrite(nbp); 5168 } else if ((error = bwrite(nbp)) != 0) { 5169 break; 5170 } 5171 ACQUIRE_LOCK(&lk); 5172 continue; 5173 5174 default: 5175 FREE_LOCK(&lk); 5176 panic("softdep_sync_metadata: Unknown type %s", 5177 TYPENAME(wk->wk_type)); 5178 /* NOTREACHED */ 5179 } 5180 /* We reach here only in error and unlocked */ 5181 if (error == 0) 5182 panic("softdep_sync_metadata: zero error"); 5183 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5184 bawrite(bp); 5185 return (error); 5186 } 5187 VI_LOCK(vp); 5188 nbp = getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), VI_MTX(vp), MNT_WAIT); 5189 if (nbp == NULL) 5190 VI_UNLOCK(vp); 5191 FREE_LOCK(&lk); 5192 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5193 bawrite(bp); 5194 ACQUIRE_LOCK(&lk); 5195 if (nbp != NULL) { 5196 bp = nbp; 5197 goto loop; 5198 } 5199 /* 5200 * The brief unlock is to allow any pent up dependency 5201 * processing to be done. Then proceed with the second pass. 5202 */ 5203 if (waitfor == MNT_NOWAIT) { 5204 waitfor = MNT_WAIT; 5205 FREE_LOCK(&lk); 5206 ACQUIRE_LOCK(&lk); 5207 goto top; 5208 } 5209 5210 /* 5211 * If we have managed to get rid of all the dirty buffers, 5212 * then we are done. For certain directories and block 5213 * devices, we may need to do further work. 5214 * 5215 * We must wait for any I/O in progress to finish so that 5216 * all potential buffers on the dirty list will be visible. 5217 */ 5218 VI_LOCK(vp); 5219 drain_output(vp, 1); 5220 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 5221 VI_UNLOCK(vp); 5222 FREE_LOCK(&lk); 5223 return (0); 5224 } 5225 VI_UNLOCK(vp); 5226 5227 FREE_LOCK(&lk); 5228 /* 5229 * If we are trying to sync a block device, some of its buffers may 5230 * contain metadata that cannot be written until the contents of some 5231 * partially written files have been written to disk. The only easy 5232 * way to accomplish this is to sync the entire filesystem (luckily 5233 * this happens rarely). 5234 */ 5235 if (vn_isdisk(vp, NULL) && 5236 vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) && 5237 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred, 5238 ap->a_td)) != 0) 5239 return (error); 5240 return (0); 5241 } 5242 5243 /* 5244 * Flush the dependencies associated with an inodedep. 5245 * Called with splbio blocked. 5246 */ 5247 static int 5248 flush_inodedep_deps(fs, ino) 5249 struct fs *fs; 5250 ino_t ino; 5251 { 5252 struct inodedep *inodedep; 5253 int error, waitfor; 5254 5255 /* 5256 * This work is done in two passes. The first pass grabs most 5257 * of the buffers and begins asynchronously writing them. The 5258 * only way to wait for these asynchronous writes is to sleep 5259 * on the filesystem vnode which may stay busy for a long time 5260 * if the filesystem is active. So, instead, we make a second 5261 * pass over the dependencies blocking on each write. In the 5262 * usual case we will be blocking against a write that we 5263 * initiated, so when it is done the dependency will have been 5264 * resolved. Thus the second pass is expected to end quickly. 5265 * We give a brief window at the top of the loop to allow 5266 * any pending I/O to complete. 5267 */ 5268 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5269 if (error) 5270 return (error); 5271 FREE_LOCK(&lk); 5272 ACQUIRE_LOCK(&lk); 5273 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5274 return (0); 5275 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5276 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5277 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5278 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5279 continue; 5280 /* 5281 * If pass2, we are done, otherwise do pass 2. 5282 */ 5283 if (waitfor == MNT_WAIT) 5284 break; 5285 waitfor = MNT_WAIT; 5286 } 5287 /* 5288 * Try freeing inodedep in case all dependencies have been removed. 5289 */ 5290 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 5291 (void) free_inodedep(inodedep); 5292 return (0); 5293 } 5294 5295 /* 5296 * Flush an inode dependency list. 5297 * Called with splbio blocked. 5298 */ 5299 static int 5300 flush_deplist(listhead, waitfor, errorp) 5301 struct allocdirectlst *listhead; 5302 int waitfor; 5303 int *errorp; 5304 { 5305 struct allocdirect *adp; 5306 struct buf *bp; 5307 5308 TAILQ_FOREACH(adp, listhead, ad_next) { 5309 if (adp->ad_state & DEPCOMPLETE) 5310 continue; 5311 bp = adp->ad_buf; 5312 bp = getdirtybuf(&bp, NULL, waitfor); 5313 if (bp == NULL) { 5314 if (waitfor == MNT_NOWAIT) 5315 continue; 5316 return (1); 5317 } 5318 FREE_LOCK(&lk); 5319 if (waitfor == MNT_NOWAIT) { 5320 bawrite(bp); 5321 } else if ((*errorp = bwrite(bp)) != 0) { 5322 ACQUIRE_LOCK(&lk); 5323 return (1); 5324 } 5325 ACQUIRE_LOCK(&lk); 5326 return (1); 5327 } 5328 return (0); 5329 } 5330 5331 /* 5332 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5333 * Called with splbio blocked. 5334 */ 5335 static int 5336 flush_pagedep_deps(pvp, mp, diraddhdp) 5337 struct vnode *pvp; 5338 struct mount *mp; 5339 struct diraddhd *diraddhdp; 5340 { 5341 struct thread *td = curthread; 5342 struct inodedep *inodedep; 5343 struct ufsmount *ump; 5344 struct diradd *dap; 5345 struct vnode *vp; 5346 int error = 0; 5347 struct buf *bp; 5348 ino_t inum; 5349 5350 ump = VFSTOUFS(mp); 5351 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5352 /* 5353 * Flush ourselves if this directory entry 5354 * has a MKDIR_PARENT dependency. 5355 */ 5356 if (dap->da_state & MKDIR_PARENT) { 5357 FREE_LOCK(&lk); 5358 if ((error = UFS_UPDATE(pvp, 1)) != 0) 5359 break; 5360 ACQUIRE_LOCK(&lk); 5361 /* 5362 * If that cleared dependencies, go on to next. 5363 */ 5364 if (dap != LIST_FIRST(diraddhdp)) 5365 continue; 5366 if (dap->da_state & MKDIR_PARENT) { 5367 FREE_LOCK(&lk); 5368 panic("flush_pagedep_deps: MKDIR_PARENT"); 5369 } 5370 } 5371 /* 5372 * A newly allocated directory must have its "." and 5373 * ".." entries written out before its name can be 5374 * committed in its parent. We do not want or need 5375 * the full semantics of a synchronous VOP_FSYNC as 5376 * that may end up here again, once for each directory 5377 * level in the filesystem. Instead, we push the blocks 5378 * and wait for them to clear. We have to fsync twice 5379 * because the first call may choose to defer blocks 5380 * that still have dependencies, but deferral will 5381 * happen at most once. 5382 */ 5383 inum = dap->da_newinum; 5384 if (dap->da_state & MKDIR_BODY) { 5385 FREE_LOCK(&lk); 5386 if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp))) 5387 break; 5388 if ((error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)) || 5389 (error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) { 5390 vput(vp); 5391 break; 5392 } 5393 VI_LOCK(vp); 5394 drain_output(vp, 0); 5395 VI_UNLOCK(vp); 5396 vput(vp); 5397 ACQUIRE_LOCK(&lk); 5398 /* 5399 * If that cleared dependencies, go on to next. 5400 */ 5401 if (dap != LIST_FIRST(diraddhdp)) 5402 continue; 5403 if (dap->da_state & MKDIR_BODY) { 5404 FREE_LOCK(&lk); 5405 panic("flush_pagedep_deps: MKDIR_BODY"); 5406 } 5407 } 5408 /* 5409 * Flush the inode on which the directory entry depends. 5410 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5411 * the only remaining dependency is that the updated inode 5412 * count must get pushed to disk. The inode has already 5413 * been pushed into its inode buffer (via VOP_UPDATE) at 5414 * the time of the reference count change. So we need only 5415 * locate that buffer, ensure that there will be no rollback 5416 * caused by a bitmap dependency, then write the inode buffer. 5417 */ 5418 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { 5419 FREE_LOCK(&lk); 5420 panic("flush_pagedep_deps: lost inode"); 5421 } 5422 /* 5423 * If the inode still has bitmap dependencies, 5424 * push them to disk. 5425 */ 5426 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5427 bp = inodedep->id_buf; 5428 bp = getdirtybuf(&bp, NULL, MNT_WAIT); 5429 FREE_LOCK(&lk); 5430 if (bp && (error = bwrite(bp)) != 0) 5431 break; 5432 ACQUIRE_LOCK(&lk); 5433 if (dap != LIST_FIRST(diraddhdp)) 5434 continue; 5435 } 5436 /* 5437 * If the inode is still sitting in a buffer waiting 5438 * to be written, push it to disk. 5439 */ 5440 FREE_LOCK(&lk); 5441 if ((error = bread(ump->um_devvp, 5442 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5443 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5444 brelse(bp); 5445 break; 5446 } 5447 if ((error = bwrite(bp)) != 0) 5448 break; 5449 ACQUIRE_LOCK(&lk); 5450 /* 5451 * If we have failed to get rid of all the dependencies 5452 * then something is seriously wrong. 5453 */ 5454 if (dap == LIST_FIRST(diraddhdp)) { 5455 FREE_LOCK(&lk); 5456 panic("flush_pagedep_deps: flush failed"); 5457 } 5458 } 5459 if (error) 5460 ACQUIRE_LOCK(&lk); 5461 return (error); 5462 } 5463 5464 /* 5465 * A large burst of file addition or deletion activity can drive the 5466 * memory load excessively high. First attempt to slow things down 5467 * using the techniques below. If that fails, this routine requests 5468 * the offending operations to fall back to running synchronously 5469 * until the memory load returns to a reasonable level. 5470 */ 5471 int 5472 softdep_slowdown(vp) 5473 struct vnode *vp; 5474 { 5475 int max_softdeps_hard; 5476 5477 max_softdeps_hard = max_softdeps * 11 / 10; 5478 if (num_dirrem < max_softdeps_hard / 2 && 5479 num_inodedep < max_softdeps_hard && 5480 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) 5481 return (0); 5482 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5483 speedup_syncer(); 5484 stat_sync_limit_hit += 1; 5485 return (1); 5486 } 5487 5488 /* 5489 * Called by the allocation routines when they are about to fail 5490 * in the hope that we can free up some disk space. 5491 * 5492 * First check to see if the work list has anything on it. If it has, 5493 * clean up entries until we successfully free some space. Because this 5494 * process holds inodes locked, we cannot handle any remove requests 5495 * that might block on a locked inode as that could lead to deadlock. 5496 * If the worklist yields no free space, encourage the syncer daemon 5497 * to help us. In no event will we try for longer than tickdelay seconds. 5498 */ 5499 int 5500 softdep_request_cleanup(fs, vp) 5501 struct fs *fs; 5502 struct vnode *vp; 5503 { 5504 long starttime; 5505 ufs2_daddr_t needed; 5506 5507 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5508 starttime = time_second + tickdelay; 5509 /* 5510 * If we are being called because of a process doing a 5511 * copy-on-write, then it is not safe to update the vnode 5512 * as we may recurse into the copy-on-write routine. 5513 */ 5514 if (!(curthread->td_pflags & TDP_COWINPROGRESS) && 5515 UFS_UPDATE(vp, 1) != 0) 5516 return (0); 5517 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5518 if (time_second > starttime) 5519 return (0); 5520 if (num_on_worklist > 0 && 5521 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5522 stat_worklist_push += 1; 5523 continue; 5524 } 5525 request_cleanup(FLUSH_REMOVE_WAIT, 0); 5526 } 5527 return (1); 5528 } 5529 5530 /* 5531 * If memory utilization has gotten too high, deliberately slow things 5532 * down and speed up the I/O processing. 5533 */ 5534 static int 5535 request_cleanup(resource, islocked) 5536 int resource; 5537 int islocked; 5538 { 5539 struct thread *td = curthread; 5540 5541 /* 5542 * We never hold up the filesystem syncer process. 5543 */ 5544 if (td == filesys_syncer) 5545 return (0); 5546 /* 5547 * First check to see if the work list has gotten backlogged. 5548 * If it has, co-opt this process to help clean up two entries. 5549 * Because this process may hold inodes locked, we cannot 5550 * handle any remove requests that might block on a locked 5551 * inode as that could lead to deadlock. 5552 */ 5553 if (num_on_worklist > max_softdeps / 10) { 5554 if (islocked) 5555 FREE_LOCK(&lk); 5556 process_worklist_item(NULL, LK_NOWAIT); 5557 process_worklist_item(NULL, LK_NOWAIT); 5558 stat_worklist_push += 2; 5559 if (islocked) 5560 ACQUIRE_LOCK(&lk); 5561 return(1); 5562 } 5563 /* 5564 * Next, we attempt to speed up the syncer process. If that 5565 * is successful, then we allow the process to continue. 5566 */ 5567 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5568 return(0); 5569 /* 5570 * If we are resource constrained on inode dependencies, try 5571 * flushing some dirty inodes. Otherwise, we are constrained 5572 * by file deletions, so try accelerating flushes of directories 5573 * with removal dependencies. We would like to do the cleanup 5574 * here, but we probably hold an inode locked at this point and 5575 * that might deadlock against one that we try to clean. So, 5576 * the best that we can do is request the syncer daemon to do 5577 * the cleanup for us. 5578 */ 5579 switch (resource) { 5580 5581 case FLUSH_INODES: 5582 stat_ino_limit_push += 1; 5583 req_clear_inodedeps += 1; 5584 stat_countp = &stat_ino_limit_hit; 5585 break; 5586 5587 case FLUSH_REMOVE: 5588 case FLUSH_REMOVE_WAIT: 5589 stat_blk_limit_push += 1; 5590 req_clear_remove += 1; 5591 stat_countp = &stat_blk_limit_hit; 5592 break; 5593 5594 default: 5595 if (islocked) 5596 FREE_LOCK(&lk); 5597 panic("request_cleanup: unknown type"); 5598 } 5599 /* 5600 * Hopefully the syncer daemon will catch up and awaken us. 5601 * We wait at most tickdelay before proceeding in any case. 5602 */ 5603 if (islocked == 0) 5604 ACQUIRE_LOCK(&lk); 5605 proc_waiting += 1; 5606 if (handle.callout == NULL) 5607 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5608 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, NULL, PPAUSE, 5609 "softupdate", 0); 5610 proc_waiting -= 1; 5611 if (islocked == 0) 5612 FREE_LOCK(&lk); 5613 return (1); 5614 } 5615 5616 /* 5617 * Awaken processes pausing in request_cleanup and clear proc_waiting 5618 * to indicate that there is no longer a timer running. 5619 */ 5620 static void 5621 pause_timer(arg) 5622 void *arg; 5623 { 5624 5625 *stat_countp += 1; 5626 wakeup_one(&proc_waiting); 5627 if (proc_waiting > 0) 5628 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5629 else 5630 handle.callout = NULL; 5631 } 5632 5633 /* 5634 * Flush out a directory with at least one removal dependency in an effort to 5635 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5636 */ 5637 static void 5638 clear_remove(td) 5639 struct thread *td; 5640 { 5641 struct pagedep_hashhead *pagedephd; 5642 struct pagedep *pagedep; 5643 static int next = 0; 5644 struct mount *mp; 5645 struct vnode *vp; 5646 int error, cnt; 5647 ino_t ino; 5648 5649 ACQUIRE_LOCK(&lk); 5650 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5651 pagedephd = &pagedep_hashtbl[next++]; 5652 if (next >= pagedep_hash) 5653 next = 0; 5654 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5655 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5656 continue; 5657 mp = pagedep->pd_mnt; 5658 ino = pagedep->pd_ino; 5659 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5660 continue; 5661 FREE_LOCK(&lk); 5662 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) { 5663 softdep_error("clear_remove: vget", error); 5664 vn_finished_write(mp); 5665 return; 5666 } 5667 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5668 softdep_error("clear_remove: fsync", error); 5669 VI_LOCK(vp); 5670 drain_output(vp, 0); 5671 VI_UNLOCK(vp); 5672 vput(vp); 5673 vn_finished_write(mp); 5674 return; 5675 } 5676 } 5677 FREE_LOCK(&lk); 5678 } 5679 5680 /* 5681 * Clear out a block of dirty inodes in an effort to reduce 5682 * the number of inodedep dependency structures. 5683 */ 5684 static void 5685 clear_inodedeps(td) 5686 struct thread *td; 5687 { 5688 struct inodedep_hashhead *inodedephd; 5689 struct inodedep *inodedep; 5690 static int next = 0; 5691 struct mount *mp; 5692 struct vnode *vp; 5693 struct fs *fs; 5694 int error, cnt; 5695 ino_t firstino, lastino, ino; 5696 5697 ACQUIRE_LOCK(&lk); 5698 /* 5699 * Pick a random inode dependency to be cleared. 5700 * We will then gather up all the inodes in its block 5701 * that have dependencies and flush them out. 5702 */ 5703 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5704 inodedephd = &inodedep_hashtbl[next++]; 5705 if (next >= inodedep_hash) 5706 next = 0; 5707 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5708 break; 5709 } 5710 if (inodedep == NULL) 5711 return; 5712 /* 5713 * Ugly code to find mount point given pointer to superblock. 5714 */ 5715 fs = inodedep->id_fs; 5716 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5717 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5718 break; 5719 /* 5720 * Find the last inode in the block with dependencies. 5721 */ 5722 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5723 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5724 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5725 break; 5726 /* 5727 * Asynchronously push all but the last inode with dependencies. 5728 * Synchronously push the last inode with dependencies to ensure 5729 * that the inode block gets written to free up the inodedeps. 5730 */ 5731 for (ino = firstino; ino <= lastino; ino++) { 5732 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5733 continue; 5734 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5735 continue; 5736 FREE_LOCK(&lk); 5737 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5738 softdep_error("clear_inodedeps: vget", error); 5739 vn_finished_write(mp); 5740 return; 5741 } 5742 if (ino == lastino) { 5743 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_WAIT, td))) 5744 softdep_error("clear_inodedeps: fsync1", error); 5745 } else { 5746 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5747 softdep_error("clear_inodedeps: fsync2", error); 5748 VI_LOCK(vp); 5749 drain_output(vp, 0); 5750 VI_UNLOCK(vp); 5751 } 5752 vput(vp); 5753 vn_finished_write(mp); 5754 ACQUIRE_LOCK(&lk); 5755 } 5756 FREE_LOCK(&lk); 5757 } 5758 5759 /* 5760 * Function to determine if the buffer has outstanding dependencies 5761 * that will cause a roll-back if the buffer is written. If wantcount 5762 * is set, return number of dependencies, otherwise just yes or no. 5763 */ 5764 static int 5765 softdep_count_dependencies(bp, wantcount) 5766 struct buf *bp; 5767 int wantcount; 5768 { 5769 struct worklist *wk; 5770 struct inodedep *inodedep; 5771 struct indirdep *indirdep; 5772 struct allocindir *aip; 5773 struct pagedep *pagedep; 5774 struct diradd *dap; 5775 int i, retval; 5776 5777 retval = 0; 5778 ACQUIRE_LOCK(&lk); 5779 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5780 switch (wk->wk_type) { 5781 5782 case D_INODEDEP: 5783 inodedep = WK_INODEDEP(wk); 5784 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5785 /* bitmap allocation dependency */ 5786 retval += 1; 5787 if (!wantcount) 5788 goto out; 5789 } 5790 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5791 /* direct block pointer dependency */ 5792 retval += 1; 5793 if (!wantcount) 5794 goto out; 5795 } 5796 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5797 /* direct block pointer dependency */ 5798 retval += 1; 5799 if (!wantcount) 5800 goto out; 5801 } 5802 continue; 5803 5804 case D_INDIRDEP: 5805 indirdep = WK_INDIRDEP(wk); 5806 5807 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5808 /* indirect block pointer dependency */ 5809 retval += 1; 5810 if (!wantcount) 5811 goto out; 5812 } 5813 continue; 5814 5815 case D_PAGEDEP: 5816 pagedep = WK_PAGEDEP(wk); 5817 for (i = 0; i < DAHASHSZ; i++) { 5818 5819 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5820 /* directory entry dependency */ 5821 retval += 1; 5822 if (!wantcount) 5823 goto out; 5824 } 5825 } 5826 continue; 5827 5828 case D_BMSAFEMAP: 5829 case D_ALLOCDIRECT: 5830 case D_ALLOCINDIR: 5831 case D_MKDIR: 5832 /* never a dependency on these blocks */ 5833 continue; 5834 5835 default: 5836 FREE_LOCK(&lk); 5837 panic("softdep_check_for_rollback: Unexpected type %s", 5838 TYPENAME(wk->wk_type)); 5839 /* NOTREACHED */ 5840 } 5841 } 5842 out: 5843 FREE_LOCK(&lk); 5844 return retval; 5845 } 5846 5847 /* 5848 * Acquire exclusive access to a buffer. 5849 * Must be called with splbio blocked. 5850 * Return acquired buffer or NULL on failure. mtx, if provided, will be 5851 * released on success but held on failure. 5852 */ 5853 static struct buf * 5854 getdirtybuf(bpp, mtx, waitfor) 5855 struct buf **bpp; 5856 struct mtx *mtx; 5857 int waitfor; 5858 { 5859 struct buf *bp; 5860 int error; 5861 5862 /* 5863 * XXX This code and the code that calls it need to be reviewed to 5864 * verify its use of the vnode interlock. 5865 */ 5866 5867 for (;;) { 5868 if ((bp = *bpp) == NULL) 5869 return (0); 5870 if (bp->b_vp == NULL) 5871 kdb_backtrace(); 5872 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 5873 if ((bp->b_vflags & BV_BKGRDINPROG) == 0) 5874 break; 5875 BUF_UNLOCK(bp); 5876 if (waitfor != MNT_WAIT) 5877 return (NULL); 5878 /* 5879 * The mtx argument must be bp->b_vp's mutex in 5880 * this case. 5881 */ 5882 #ifdef DEBUG_VFS_LOCKS 5883 if (bp->b_vp->v_type != VCHR) 5884 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 5885 #endif 5886 bp->b_vflags |= BV_BKGRDWAIT; 5887 interlocked_sleep(&lk, SLEEP, &bp->b_xflags, mtx, 5888 PRIBIO, "getbuf", 0); 5889 continue; 5890 } 5891 if (waitfor != MNT_WAIT) 5892 return (NULL); 5893 if (mtx) { 5894 error = interlocked_sleep(&lk, LOCKBUF, bp, mtx, 5895 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 0, 0); 5896 mtx_lock(mtx); 5897 } else 5898 error = interlocked_sleep(&lk, LOCKBUF, bp, NULL, 5899 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0); 5900 if (error != ENOLCK) { 5901 FREE_LOCK(&lk); 5902 panic("getdirtybuf: inconsistent lock"); 5903 } 5904 } 5905 if ((bp->b_flags & B_DELWRI) == 0) { 5906 BUF_UNLOCK(bp); 5907 return (NULL); 5908 } 5909 if (mtx) 5910 mtx_unlock(mtx); 5911 bremfree(bp); 5912 return (bp); 5913 } 5914 5915 /* 5916 * Wait for pending output on a vnode to complete. 5917 * Must be called with vnode lock and interlock locked. 5918 */ 5919 static void 5920 drain_output(vp, islocked) 5921 struct vnode *vp; 5922 int islocked; 5923 { 5924 ASSERT_VOP_LOCKED(vp, "drain_output"); 5925 ASSERT_VI_LOCKED(vp, "drain_output"); 5926 5927 if (!islocked) 5928 ACQUIRE_LOCK(&lk); 5929 while (vp->v_numoutput) { 5930 vp->v_iflag |= VI_BWAIT; 5931 interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput, 5932 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 5933 } 5934 if (!islocked) 5935 FREE_LOCK(&lk); 5936 } 5937 5938 /* 5939 * Called whenever a buffer that is being invalidated or reallocated 5940 * contains dependencies. This should only happen if an I/O error has 5941 * occurred. The routine is called with the buffer locked. 5942 */ 5943 static void 5944 softdep_deallocate_dependencies(bp) 5945 struct buf *bp; 5946 { 5947 5948 if ((bp->b_ioflags & BIO_ERROR) == 0) 5949 panic("softdep_deallocate_dependencies: dangling deps"); 5950 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5951 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5952 } 5953 5954 /* 5955 * Function to handle asynchronous write errors in the filesystem. 5956 */ 5957 static void 5958 softdep_error(func, error) 5959 char *func; 5960 int error; 5961 { 5962 5963 /* XXX should do something better! */ 5964 printf("%s: got error %d while accessing filesystem\n", func, error); 5965 } 5966