1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 * $FreeBSD$ 40 */ 41 42 /* 43 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 44 */ 45 #ifndef DIAGNOSTIC 46 #define DIAGNOSTIC 47 #endif 48 #ifndef DEBUG 49 #define DEBUG 50 #endif 51 52 #include <sys/param.h> 53 #include <sys/kernel.h> 54 #include <sys/systm.h> 55 #include <sys/bio.h> 56 #include <sys/buf.h> 57 #include <sys/malloc.h> 58 #include <sys/mount.h> 59 #include <sys/proc.h> 60 #include <sys/syslog.h> 61 #include <sys/vnode.h> 62 #include <sys/conf.h> 63 #include <ufs/ufs/dir.h> 64 #include <ufs/ufs/extattr.h> 65 #include <ufs/ufs/quota.h> 66 #include <ufs/ufs/inode.h> 67 #include <ufs/ufs/ufsmount.h> 68 #include <ufs/ffs/fs.h> 69 #include <ufs/ffs/softdep.h> 70 #include <ufs/ffs/ffs_extern.h> 71 #include <ufs/ufs/ufs_extern.h> 72 73 /* 74 * These definitions need to be adapted to the system to which 75 * this file is being ported. 76 */ 77 /* 78 * malloc types defined for the softdep system. 79 */ 80 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 81 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 82 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 83 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 84 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 85 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 86 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 87 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 88 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 89 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 90 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 91 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 92 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 93 94 #define D_PAGEDEP 0 95 #define D_INODEDEP 1 96 #define D_NEWBLK 2 97 #define D_BMSAFEMAP 3 98 #define D_ALLOCDIRECT 4 99 #define D_INDIRDEP 5 100 #define D_ALLOCINDIR 6 101 #define D_FREEFRAG 7 102 #define D_FREEBLKS 8 103 #define D_FREEFILE 9 104 #define D_DIRADD 10 105 #define D_MKDIR 11 106 #define D_DIRREM 12 107 #define D_LAST D_DIRREM 108 109 /* 110 * translate from workitem type to memory type 111 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 112 */ 113 static struct malloc_type *memtype[] = { 114 M_PAGEDEP, 115 M_INODEDEP, 116 M_NEWBLK, 117 M_BMSAFEMAP, 118 M_ALLOCDIRECT, 119 M_INDIRDEP, 120 M_ALLOCINDIR, 121 M_FREEFRAG, 122 M_FREEBLKS, 123 M_FREEFILE, 124 M_DIRADD, 125 M_MKDIR, 126 M_DIRREM 127 }; 128 129 #define DtoM(type) (memtype[type]) 130 131 /* 132 * Names of malloc types. 133 */ 134 #define TYPENAME(type) \ 135 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 136 #define CURPROC curproc 137 /* 138 * End system adaptaion definitions. 139 */ 140 141 /* 142 * Internal function prototypes. 143 */ 144 static void softdep_error __P((char *, int)); 145 static void drain_output __P((struct vnode *, int)); 146 static int getdirtybuf __P((struct buf **, int)); 147 static void clear_remove __P((struct proc *)); 148 static void clear_inodedeps __P((struct proc *)); 149 static int flush_pagedep_deps __P((struct vnode *, struct mount *, 150 struct diraddhd *)); 151 static int flush_inodedep_deps __P((struct fs *, ino_t)); 152 static int handle_written_filepage __P((struct pagedep *, struct buf *)); 153 static void diradd_inode_written __P((struct diradd *, struct inodedep *)); 154 static int handle_written_inodeblock __P((struct inodedep *, struct buf *)); 155 static void handle_allocdirect_partdone __P((struct allocdirect *)); 156 static void handle_allocindir_partdone __P((struct allocindir *)); 157 static void initiate_write_filepage __P((struct pagedep *, struct buf *)); 158 static void handle_written_mkdir __P((struct mkdir *, int)); 159 static void initiate_write_inodeblock __P((struct inodedep *, struct buf *)); 160 static void handle_workitem_freefile __P((struct freefile *)); 161 static void handle_workitem_remove __P((struct dirrem *)); 162 static struct dirrem *newdirrem __P((struct buf *, struct inode *, 163 struct inode *, int, struct dirrem **)); 164 static void free_diradd __P((struct diradd *)); 165 static void free_allocindir __P((struct allocindir *, struct inodedep *)); 166 static int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t, 167 long *)); 168 static void deallocate_dependencies __P((struct buf *, struct inodedep *)); 169 static void free_allocdirect __P((struct allocdirectlst *, 170 struct allocdirect *, int)); 171 static int check_inode_unwritten __P((struct inodedep *)); 172 static int free_inodedep __P((struct inodedep *)); 173 static void handle_workitem_freeblocks __P((struct freeblks *)); 174 static void merge_inode_lists __P((struct inodedep *)); 175 static void setup_allocindir_phase2 __P((struct buf *, struct inode *, 176 struct allocindir *)); 177 static struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t, 178 ufs_daddr_t)); 179 static void handle_workitem_freefrag __P((struct freefrag *)); 180 static struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long)); 181 static void allocdirect_merge __P((struct allocdirectlst *, 182 struct allocdirect *, struct allocdirect *)); 183 static struct bmsafemap *bmsafemap_lookup __P((struct buf *)); 184 static int newblk_lookup __P((struct fs *, ufs_daddr_t, int, 185 struct newblk **)); 186 static int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **)); 187 static int pagedep_lookup __P((struct inode *, ufs_lbn_t, int, 188 struct pagedep **)); 189 static void pause_timer __P((void *)); 190 static int request_cleanup __P((int, int)); 191 static void add_to_worklist __P((struct worklist *)); 192 193 /* 194 * Exported softdep operations. 195 */ 196 static void softdep_disk_io_initiation __P((struct buf *)); 197 static void softdep_disk_write_complete __P((struct buf *)); 198 static void softdep_deallocate_dependencies __P((struct buf *)); 199 static void softdep_move_dependencies __P((struct buf *, struct buf *)); 200 static int softdep_count_dependencies __P((struct buf *bp, int)); 201 202 struct bio_ops bioops = { 203 softdep_disk_io_initiation, /* io_start */ 204 softdep_disk_write_complete, /* io_complete */ 205 softdep_deallocate_dependencies, /* io_deallocate */ 206 softdep_move_dependencies, /* io_movedeps */ 207 softdep_count_dependencies, /* io_countdeps */ 208 }; 209 210 /* 211 * Locking primitives. 212 * 213 * For a uniprocessor, all we need to do is protect against disk 214 * interrupts. For a multiprocessor, this lock would have to be 215 * a mutex. A single mutex is used throughout this file, though 216 * finer grain locking could be used if contention warranted it. 217 * 218 * For a multiprocessor, the sleep call would accept a lock and 219 * release it after the sleep processing was complete. In a uniprocessor 220 * implementation there is no such interlock, so we simple mark 221 * the places where it needs to be done with the `interlocked' form 222 * of the lock calls. Since the uniprocessor sleep already interlocks 223 * the spl, there is nothing that really needs to be done. 224 */ 225 #ifndef /* NOT */ DEBUG 226 static struct lockit { 227 int lkt_spl; 228 } lk = { 0 }; 229 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 230 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 231 #define ACQUIRE_LOCK_INTERLOCKED(lk) 232 #define FREE_LOCK_INTERLOCKED(lk) 233 234 #else /* DEBUG */ 235 static struct lockit { 236 int lkt_spl; 237 pid_t lkt_held; 238 } lk = { 0, -1 }; 239 static int lockcnt; 240 241 static void acquire_lock __P((struct lockit *)); 242 static void free_lock __P((struct lockit *)); 243 static void acquire_lock_interlocked __P((struct lockit *)); 244 static void free_lock_interlocked __P((struct lockit *)); 245 246 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 247 #define FREE_LOCK(lk) free_lock(lk) 248 #define ACQUIRE_LOCK_INTERLOCKED(lk) acquire_lock_interlocked(lk) 249 #define FREE_LOCK_INTERLOCKED(lk) free_lock_interlocked(lk) 250 251 static void 252 acquire_lock(lk) 253 struct lockit *lk; 254 { 255 256 if (lk->lkt_held != -1) { 257 if (lk->lkt_held == CURPROC->p_pid) 258 panic("softdep_lock: locking against myself"); 259 else 260 panic("softdep_lock: lock held by %d", lk->lkt_held); 261 } 262 lk->lkt_spl = splbio(); 263 lk->lkt_held = CURPROC->p_pid; 264 lockcnt++; 265 } 266 267 static void 268 free_lock(lk) 269 struct lockit *lk; 270 { 271 272 if (lk->lkt_held == -1) 273 panic("softdep_unlock: lock not held"); 274 lk->lkt_held = -1; 275 splx(lk->lkt_spl); 276 } 277 278 static void 279 acquire_lock_interlocked(lk) 280 struct lockit *lk; 281 { 282 283 if (lk->lkt_held != -1) { 284 if (lk->lkt_held == CURPROC->p_pid) 285 panic("softdep_lock_interlocked: locking against self"); 286 else 287 panic("softdep_lock_interlocked: lock held by %d", 288 lk->lkt_held); 289 } 290 lk->lkt_held = CURPROC->p_pid; 291 lockcnt++; 292 } 293 294 static void 295 free_lock_interlocked(lk) 296 struct lockit *lk; 297 { 298 299 if (lk->lkt_held == -1) 300 panic("softdep_unlock_interlocked: lock not held"); 301 lk->lkt_held = -1; 302 } 303 #endif /* DEBUG */ 304 305 /* 306 * Place holder for real semaphores. 307 */ 308 struct sema { 309 int value; 310 pid_t holder; 311 char *name; 312 int prio; 313 int timo; 314 }; 315 static void sema_init __P((struct sema *, char *, int, int)); 316 static int sema_get __P((struct sema *, struct lockit *)); 317 static void sema_release __P((struct sema *)); 318 319 static void 320 sema_init(semap, name, prio, timo) 321 struct sema *semap; 322 char *name; 323 int prio, timo; 324 { 325 326 semap->holder = -1; 327 semap->value = 0; 328 semap->name = name; 329 semap->prio = prio; 330 semap->timo = timo; 331 } 332 333 static int 334 sema_get(semap, interlock) 335 struct sema *semap; 336 struct lockit *interlock; 337 { 338 339 if (semap->value++ > 0) { 340 if (interlock != NULL) 341 FREE_LOCK_INTERLOCKED(interlock); 342 tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo); 343 if (interlock != NULL) { 344 ACQUIRE_LOCK_INTERLOCKED(interlock); 345 FREE_LOCK(interlock); 346 } 347 return (0); 348 } 349 semap->holder = CURPROC->p_pid; 350 if (interlock != NULL) 351 FREE_LOCK(interlock); 352 return (1); 353 } 354 355 static void 356 sema_release(semap) 357 struct sema *semap; 358 { 359 360 if (semap->value <= 0 || semap->holder != CURPROC->p_pid) 361 panic("sema_release: not held"); 362 if (--semap->value > 0) { 363 semap->value = 0; 364 wakeup(semap); 365 } 366 semap->holder = -1; 367 } 368 369 /* 370 * Worklist queue management. 371 * These routines require that the lock be held. 372 */ 373 #ifndef /* NOT */ DEBUG 374 #define WORKLIST_INSERT(head, item) do { \ 375 (item)->wk_state |= ONWORKLIST; \ 376 LIST_INSERT_HEAD(head, item, wk_list); \ 377 } while (0) 378 #define WORKLIST_REMOVE(item) do { \ 379 (item)->wk_state &= ~ONWORKLIST; \ 380 LIST_REMOVE(item, wk_list); \ 381 } while (0) 382 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 383 384 #else /* DEBUG */ 385 static void worklist_insert __P((struct workhead *, struct worklist *)); 386 static void worklist_remove __P((struct worklist *)); 387 static void workitem_free __P((struct worklist *, int)); 388 389 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 390 #define WORKLIST_REMOVE(item) worklist_remove(item) 391 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 392 393 static void 394 worklist_insert(head, item) 395 struct workhead *head; 396 struct worklist *item; 397 { 398 399 if (lk.lkt_held == -1) 400 panic("worklist_insert: lock not held"); 401 if (item->wk_state & ONWORKLIST) 402 panic("worklist_insert: already on list"); 403 item->wk_state |= ONWORKLIST; 404 LIST_INSERT_HEAD(head, item, wk_list); 405 } 406 407 static void 408 worklist_remove(item) 409 struct worklist *item; 410 { 411 412 if (lk.lkt_held == -1) 413 panic("worklist_remove: lock not held"); 414 if ((item->wk_state & ONWORKLIST) == 0) 415 panic("worklist_remove: not on list"); 416 item->wk_state &= ~ONWORKLIST; 417 LIST_REMOVE(item, wk_list); 418 } 419 420 static void 421 workitem_free(item, type) 422 struct worklist *item; 423 int type; 424 { 425 426 if (item->wk_state & ONWORKLIST) 427 panic("workitem_free: still on list"); 428 if (item->wk_type != type) 429 panic("workitem_free: type mismatch"); 430 FREE(item, DtoM(type)); 431 } 432 #endif /* DEBUG */ 433 434 /* 435 * Workitem queue management 436 */ 437 static struct workhead softdep_workitem_pending; 438 static int softdep_worklist_busy; 439 static int max_softdeps; /* maximum number of structs before slowdown */ 440 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 441 static int proc_waiting; /* tracks whether we have a timeout posted */ 442 static struct proc *filesys_syncer; /* proc of filesystem syncer process */ 443 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 444 #define FLUSH_INODES 1 445 static int req_clear_remove; /* syncer process flush some freeblks */ 446 #define FLUSH_REMOVE 2 447 /* 448 * runtime statistics 449 */ 450 static int stat_blk_limit_push; /* number of times block limit neared */ 451 static int stat_ino_limit_push; /* number of times inode limit neared */ 452 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 453 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 454 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 455 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 456 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 457 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 458 #ifdef DEBUG 459 #include <vm/vm.h> 460 #include <sys/sysctl.h> 461 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 462 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 463 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 464 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 465 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 466 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 467 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 468 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 469 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 470 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 471 #endif /* DEBUG */ 472 473 /* 474 * Add an item to the end of the work queue. 475 * This routine requires that the lock be held. 476 * This is the only routine that adds items to the list. 477 * The following routine is the only one that removes items 478 * and does so in order from first to last. 479 */ 480 static void 481 add_to_worklist(wk) 482 struct worklist *wk; 483 { 484 static struct worklist *worklist_tail; 485 486 if (wk->wk_state & ONWORKLIST) 487 panic("add_to_worklist: already on list"); 488 wk->wk_state |= ONWORKLIST; 489 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 490 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 491 else 492 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 493 worklist_tail = wk; 494 } 495 496 /* 497 * Process that runs once per second to handle items in the background queue. 498 * 499 * Note that we ensure that everything is done in the order in which they 500 * appear in the queue. The code below depends on this property to ensure 501 * that blocks of a file are freed before the inode itself is freed. This 502 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 503 * until all the old ones have been purged from the dependency lists. 504 */ 505 int 506 softdep_process_worklist(matchmnt) 507 struct mount *matchmnt; 508 { 509 struct proc *p = CURPROC; 510 struct worklist *wk; 511 struct mount *mp; 512 int matchcnt, loopcount; 513 514 /* 515 * Record the process identifier of our caller so that we can give 516 * this process preferential treatment in request_cleanup below. 517 */ 518 filesys_syncer = p; 519 matchcnt = 0; 520 /* 521 * There is no danger of having multiple processes run this 522 * code. It is single threaded solely so that softdep_flushfiles 523 * (below) can get an accurate count of the number of items 524 * related to its mount point that are in the list. 525 */ 526 if (softdep_worklist_busy && matchmnt == NULL) 527 return (-1); 528 /* 529 * If requested, try removing inode or removal dependencies. 530 */ 531 if (req_clear_inodedeps) { 532 clear_inodedeps(p); 533 req_clear_inodedeps = 0; 534 wakeup(&proc_waiting); 535 } 536 if (req_clear_remove) { 537 clear_remove(p); 538 req_clear_remove = 0; 539 wakeup(&proc_waiting); 540 } 541 ACQUIRE_LOCK(&lk); 542 loopcount = 1; 543 while ((wk = LIST_FIRST(&softdep_workitem_pending)) != 0) { 544 WORKLIST_REMOVE(wk); 545 FREE_LOCK(&lk); 546 switch (wk->wk_type) { 547 548 case D_DIRREM: 549 /* removal of a directory entry */ 550 mp = WK_DIRREM(wk)->dm_mnt; 551 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 552 panic("%s: dirrem on suspended filesystem", 553 "softdep_process_worklist"); 554 if (mp == matchmnt) 555 matchcnt += 1; 556 handle_workitem_remove(WK_DIRREM(wk)); 557 break; 558 559 case D_FREEBLKS: 560 /* releasing blocks and/or fragments from a file */ 561 mp = WK_FREEBLKS(wk)->fb_mnt; 562 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 563 panic("%s: freeblks on suspended filesystem", 564 "softdep_process_worklist"); 565 if (mp == matchmnt) 566 matchcnt += 1; 567 handle_workitem_freeblocks(WK_FREEBLKS(wk)); 568 break; 569 570 case D_FREEFRAG: 571 /* releasing a fragment when replaced as a file grows */ 572 mp = WK_FREEFRAG(wk)->ff_mnt; 573 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 574 panic("%s: freefrag on suspended filesystem", 575 "softdep_process_worklist"); 576 if (mp == matchmnt) 577 matchcnt += 1; 578 handle_workitem_freefrag(WK_FREEFRAG(wk)); 579 break; 580 581 case D_FREEFILE: 582 /* releasing an inode when its link count drops to 0 */ 583 mp = WK_FREEFILE(wk)->fx_mnt; 584 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 585 panic("%s: freefile on suspended filesystem", 586 "softdep_process_worklist"); 587 if (mp == matchmnt) 588 matchcnt += 1; 589 handle_workitem_freefile(WK_FREEFILE(wk)); 590 break; 591 592 default: 593 panic("%s_process_worklist: Unknown type %s", 594 "softdep", TYPENAME(wk->wk_type)); 595 /* NOTREACHED */ 596 } 597 if (softdep_worklist_busy && matchmnt == NULL) 598 return (-1); 599 /* 600 * If requested, try removing inode or removal dependencies. 601 */ 602 if (req_clear_inodedeps) { 603 clear_inodedeps(p); 604 req_clear_inodedeps = 0; 605 wakeup(&proc_waiting); 606 } 607 if (req_clear_remove) { 608 clear_remove(p); 609 req_clear_remove = 0; 610 wakeup(&proc_waiting); 611 } 612 /* 613 * We do not generally want to stop for buffer space, but if 614 * we are really being a buffer hog, we will stop and wait. 615 */ 616 if (loopcount++ % 128 == 0) 617 bwillwrite(); 618 ACQUIRE_LOCK(&lk); 619 } 620 FREE_LOCK(&lk); 621 return (matchcnt); 622 } 623 624 /* 625 * Move dependencies from one buffer to another. 626 */ 627 static void 628 softdep_move_dependencies(oldbp, newbp) 629 struct buf *oldbp; 630 struct buf *newbp; 631 { 632 struct worklist *wk, *wktail; 633 634 if (LIST_FIRST(&newbp->b_dep) != NULL) 635 panic("softdep_move_dependencies: need merge code"); 636 wktail = 0; 637 ACQUIRE_LOCK(&lk); 638 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 639 LIST_REMOVE(wk, wk_list); 640 if (wktail == 0) 641 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 642 else 643 LIST_INSERT_AFTER(wktail, wk, wk_list); 644 wktail = wk; 645 } 646 FREE_LOCK(&lk); 647 } 648 649 /* 650 * Purge the work list of all items associated with a particular mount point. 651 */ 652 int 653 softdep_flushworklist(oldmnt, countp, p) 654 struct mount *oldmnt; 655 int *countp; 656 struct proc *p; 657 { 658 struct vnode *devvp; 659 int count, error = 0; 660 661 /* 662 * Await our turn to clear out the queue. 663 */ 664 while (softdep_worklist_busy) 665 tsleep(&lbolt, PRIBIO, "softflush", 0); 666 softdep_worklist_busy = 1; 667 /* 668 * Alternately flush the block device associated with the mount 669 * point and process any dependencies that the flushing 670 * creates. We continue until no more worklist dependencies 671 * are found. 672 */ 673 *countp = 0; 674 devvp = VFSTOUFS(oldmnt)->um_devvp; 675 while ((count = softdep_process_worklist(oldmnt)) > 0) { 676 *countp += count; 677 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); 678 error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p); 679 VOP_UNLOCK(devvp, 0, p); 680 if (error) 681 break; 682 } 683 softdep_worklist_busy = 0; 684 return (error); 685 } 686 687 /* 688 * Flush all vnodes and worklist items associated with a specified mount point. 689 */ 690 int 691 softdep_flushfiles(oldmnt, flags, p) 692 struct mount *oldmnt; 693 int flags; 694 struct proc *p; 695 { 696 int error, count, loopcnt; 697 698 /* 699 * Alternately flush the vnodes associated with the mount 700 * point and process any dependencies that the flushing 701 * creates. In theory, this loop can happen at most twice, 702 * but we give it a few extra just to be sure. 703 */ 704 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 705 /* 706 * Do another flush in case any vnodes were brought in 707 * as part of the cleanup operations. 708 */ 709 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) 710 break; 711 if ((error = softdep_flushworklist(oldmnt, &count, p)) != 0 || 712 count == 0) 713 break; 714 } 715 /* 716 * If we are unmounting then it is an error to fail. If we 717 * are simply trying to downgrade to read-only, then filesystem 718 * activity can keep us busy forever, so we just fail with EBUSY. 719 */ 720 if (loopcnt == 0) { 721 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 722 panic("softdep_flushfiles: looping"); 723 error = EBUSY; 724 } 725 return (error); 726 } 727 728 /* 729 * Structure hashing. 730 * 731 * There are three types of structures that can be looked up: 732 * 1) pagedep structures identified by mount point, inode number, 733 * and logical block. 734 * 2) inodedep structures identified by mount point and inode number. 735 * 3) newblk structures identified by mount point and 736 * physical block number. 737 * 738 * The "pagedep" and "inodedep" dependency structures are hashed 739 * separately from the file blocks and inodes to which they correspond. 740 * This separation helps when the in-memory copy of an inode or 741 * file block must be replaced. It also obviates the need to access 742 * an inode or file page when simply updating (or de-allocating) 743 * dependency structures. Lookup of newblk structures is needed to 744 * find newly allocated blocks when trying to associate them with 745 * their allocdirect or allocindir structure. 746 * 747 * The lookup routines optionally create and hash a new instance when 748 * an existing entry is not found. 749 */ 750 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 751 752 /* 753 * Structures and routines associated with pagedep caching. 754 */ 755 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 756 u_long pagedep_hash; /* size of hash table - 1 */ 757 #define PAGEDEP_HASH(mp, inum, lbn) \ 758 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 759 pagedep_hash]) 760 static struct sema pagedep_in_progress; 761 762 /* 763 * Look up a pagedep. Return 1 if found, 0 if not found. 764 * If not found, allocate if DEPALLOC flag is passed. 765 * Found or allocated entry is returned in pagedeppp. 766 * This routine must be called with splbio interrupts blocked. 767 */ 768 static int 769 pagedep_lookup(ip, lbn, flags, pagedeppp) 770 struct inode *ip; 771 ufs_lbn_t lbn; 772 int flags; 773 struct pagedep **pagedeppp; 774 { 775 struct pagedep *pagedep; 776 struct pagedep_hashhead *pagedephd; 777 struct mount *mp; 778 int i; 779 780 #ifdef DEBUG 781 if (lk.lkt_held == -1) 782 panic("pagedep_lookup: lock not held"); 783 #endif 784 mp = ITOV(ip)->v_mount; 785 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 786 top: 787 for (pagedep = LIST_FIRST(pagedephd); pagedep; 788 pagedep = LIST_NEXT(pagedep, pd_hash)) 789 if (ip->i_number == pagedep->pd_ino && 790 lbn == pagedep->pd_lbn && 791 mp == pagedep->pd_mnt) 792 break; 793 if (pagedep) { 794 *pagedeppp = pagedep; 795 return (1); 796 } 797 if ((flags & DEPALLOC) == 0) { 798 *pagedeppp = NULL; 799 return (0); 800 } 801 if (sema_get(&pagedep_in_progress, &lk) == 0) { 802 ACQUIRE_LOCK(&lk); 803 goto top; 804 } 805 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 806 M_WAITOK); 807 bzero(pagedep, sizeof(struct pagedep)); 808 pagedep->pd_list.wk_type = D_PAGEDEP; 809 pagedep->pd_mnt = mp; 810 pagedep->pd_ino = ip->i_number; 811 pagedep->pd_lbn = lbn; 812 LIST_INIT(&pagedep->pd_dirremhd); 813 LIST_INIT(&pagedep->pd_pendinghd); 814 for (i = 0; i < DAHASHSZ; i++) 815 LIST_INIT(&pagedep->pd_diraddhd[i]); 816 ACQUIRE_LOCK(&lk); 817 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 818 sema_release(&pagedep_in_progress); 819 *pagedeppp = pagedep; 820 return (0); 821 } 822 823 /* 824 * Structures and routines associated with inodedep caching. 825 */ 826 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 827 static u_long inodedep_hash; /* size of hash table - 1 */ 828 static long num_inodedep; /* number of inodedep allocated */ 829 #define INODEDEP_HASH(fs, inum) \ 830 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 831 static struct sema inodedep_in_progress; 832 833 /* 834 * Look up a inodedep. Return 1 if found, 0 if not found. 835 * If not found, allocate if DEPALLOC flag is passed. 836 * Found or allocated entry is returned in inodedeppp. 837 * This routine must be called with splbio interrupts blocked. 838 */ 839 static int 840 inodedep_lookup(fs, inum, flags, inodedeppp) 841 struct fs *fs; 842 ino_t inum; 843 int flags; 844 struct inodedep **inodedeppp; 845 { 846 struct inodedep *inodedep; 847 struct inodedep_hashhead *inodedephd; 848 int firsttry; 849 850 #ifdef DEBUG 851 if (lk.lkt_held == -1) 852 panic("inodedep_lookup: lock not held"); 853 #endif 854 firsttry = 1; 855 inodedephd = INODEDEP_HASH(fs, inum); 856 top: 857 for (inodedep = LIST_FIRST(inodedephd); inodedep; 858 inodedep = LIST_NEXT(inodedep, id_hash)) 859 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 860 break; 861 if (inodedep) { 862 *inodedeppp = inodedep; 863 return (1); 864 } 865 if ((flags & DEPALLOC) == 0) { 866 *inodedeppp = NULL; 867 return (0); 868 } 869 /* 870 * If we are over our limit, try to improve the situation. 871 */ 872 if (num_inodedep > max_softdeps && firsttry && speedup_syncer() == 0 && 873 request_cleanup(FLUSH_INODES, 1)) { 874 firsttry = 0; 875 goto top; 876 } 877 if (sema_get(&inodedep_in_progress, &lk) == 0) { 878 ACQUIRE_LOCK(&lk); 879 goto top; 880 } 881 num_inodedep += 1; 882 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 883 M_INODEDEP, M_WAITOK); 884 inodedep->id_list.wk_type = D_INODEDEP; 885 inodedep->id_fs = fs; 886 inodedep->id_ino = inum; 887 inodedep->id_state = ALLCOMPLETE; 888 inodedep->id_nlinkdelta = 0; 889 inodedep->id_savedino = NULL; 890 inodedep->id_savedsize = -1; 891 inodedep->id_buf = NULL; 892 LIST_INIT(&inodedep->id_pendinghd); 893 LIST_INIT(&inodedep->id_inowait); 894 LIST_INIT(&inodedep->id_bufwait); 895 TAILQ_INIT(&inodedep->id_inoupdt); 896 TAILQ_INIT(&inodedep->id_newinoupdt); 897 ACQUIRE_LOCK(&lk); 898 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 899 sema_release(&inodedep_in_progress); 900 *inodedeppp = inodedep; 901 return (0); 902 } 903 904 /* 905 * Structures and routines associated with newblk caching. 906 */ 907 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 908 u_long newblk_hash; /* size of hash table - 1 */ 909 #define NEWBLK_HASH(fs, inum) \ 910 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 911 static struct sema newblk_in_progress; 912 913 /* 914 * Look up a newblk. Return 1 if found, 0 if not found. 915 * If not found, allocate if DEPALLOC flag is passed. 916 * Found or allocated entry is returned in newblkpp. 917 */ 918 static int 919 newblk_lookup(fs, newblkno, flags, newblkpp) 920 struct fs *fs; 921 ufs_daddr_t newblkno; 922 int flags; 923 struct newblk **newblkpp; 924 { 925 struct newblk *newblk; 926 struct newblk_hashhead *newblkhd; 927 928 newblkhd = NEWBLK_HASH(fs, newblkno); 929 top: 930 for (newblk = LIST_FIRST(newblkhd); newblk; 931 newblk = LIST_NEXT(newblk, nb_hash)) 932 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 933 break; 934 if (newblk) { 935 *newblkpp = newblk; 936 return (1); 937 } 938 if ((flags & DEPALLOC) == 0) { 939 *newblkpp = NULL; 940 return (0); 941 } 942 if (sema_get(&newblk_in_progress, 0) == 0) 943 goto top; 944 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 945 M_NEWBLK, M_WAITOK); 946 newblk->nb_state = 0; 947 newblk->nb_fs = fs; 948 newblk->nb_newblkno = newblkno; 949 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 950 sema_release(&newblk_in_progress); 951 *newblkpp = newblk; 952 return (0); 953 } 954 955 /* 956 * Executed during filesystem system initialization before 957 * mounting any file systems. 958 */ 959 void 960 softdep_initialize() 961 { 962 963 LIST_INIT(&mkdirlisthd); 964 LIST_INIT(&softdep_workitem_pending); 965 max_softdeps = desiredvnodes * 8; 966 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 967 &pagedep_hash); 968 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 969 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 970 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 971 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 972 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 973 } 974 975 /* 976 * Called at mount time to notify the dependency code that a 977 * filesystem wishes to use it. 978 */ 979 int 980 softdep_mount(devvp, mp, fs, cred) 981 struct vnode *devvp; 982 struct mount *mp; 983 struct fs *fs; 984 struct ucred *cred; 985 { 986 struct csum cstotal; 987 struct cg *cgp; 988 struct buf *bp; 989 int error, cyl; 990 991 mp->mnt_flag &= ~MNT_ASYNC; 992 mp->mnt_flag |= MNT_SOFTDEP; 993 /* 994 * When doing soft updates, the counters in the 995 * superblock may have gotten out of sync, so we have 996 * to scan the cylinder groups and recalculate them. 997 */ 998 if (fs->fs_clean != 0) 999 return (0); 1000 bzero(&cstotal, sizeof cstotal); 1001 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1002 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1003 fs->fs_cgsize, cred, &bp)) != 0) { 1004 brelse(bp); 1005 return (error); 1006 } 1007 cgp = (struct cg *)bp->b_data; 1008 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1009 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1010 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1011 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1012 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1013 brelse(bp); 1014 } 1015 #ifdef DEBUG 1016 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1017 printf("ffs_mountfs: superblock updated for soft updates\n"); 1018 #endif 1019 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1020 return (0); 1021 } 1022 1023 /* 1024 * Protecting the freemaps (or bitmaps). 1025 * 1026 * To eliminate the need to execute fsck before mounting a file system 1027 * after a power failure, one must (conservatively) guarantee that the 1028 * on-disk copy of the bitmaps never indicate that a live inode or block is 1029 * free. So, when a block or inode is allocated, the bitmap should be 1030 * updated (on disk) before any new pointers. When a block or inode is 1031 * freed, the bitmap should not be updated until all pointers have been 1032 * reset. The latter dependency is handled by the delayed de-allocation 1033 * approach described below for block and inode de-allocation. The former 1034 * dependency is handled by calling the following procedure when a block or 1035 * inode is allocated. When an inode is allocated an "inodedep" is created 1036 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1037 * Each "inodedep" is also inserted into the hash indexing structure so 1038 * that any additional link additions can be made dependent on the inode 1039 * allocation. 1040 * 1041 * The ufs file system maintains a number of free block counts (e.g., per 1042 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1043 * in addition to the bitmaps. These counts are used to improve efficiency 1044 * during allocation and therefore must be consistent with the bitmaps. 1045 * There is no convenient way to guarantee post-crash consistency of these 1046 * counts with simple update ordering, for two main reasons: (1) The counts 1047 * and bitmaps for a single cylinder group block are not in the same disk 1048 * sector. If a disk write is interrupted (e.g., by power failure), one may 1049 * be written and the other not. (2) Some of the counts are located in the 1050 * superblock rather than the cylinder group block. So, we focus our soft 1051 * updates implementation on protecting the bitmaps. When mounting a 1052 * filesystem, we recompute the auxiliary counts from the bitmaps. 1053 */ 1054 1055 /* 1056 * Called just after updating the cylinder group block to allocate an inode. 1057 */ 1058 void 1059 softdep_setup_inomapdep(bp, ip, newinum) 1060 struct buf *bp; /* buffer for cylgroup block with inode map */ 1061 struct inode *ip; /* inode related to allocation */ 1062 ino_t newinum; /* new inode number being allocated */ 1063 { 1064 struct inodedep *inodedep; 1065 struct bmsafemap *bmsafemap; 1066 1067 /* 1068 * Create a dependency for the newly allocated inode. 1069 * Panic if it already exists as something is seriously wrong. 1070 * Otherwise add it to the dependency list for the buffer holding 1071 * the cylinder group map from which it was allocated. 1072 */ 1073 ACQUIRE_LOCK(&lk); 1074 if (inodedep_lookup(ip->i_fs, newinum, DEPALLOC, &inodedep) != 0) 1075 panic("softdep_setup_inomapdep: found inode"); 1076 inodedep->id_buf = bp; 1077 inodedep->id_state &= ~DEPCOMPLETE; 1078 bmsafemap = bmsafemap_lookup(bp); 1079 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1080 FREE_LOCK(&lk); 1081 } 1082 1083 /* 1084 * Called just after updating the cylinder group block to 1085 * allocate block or fragment. 1086 */ 1087 void 1088 softdep_setup_blkmapdep(bp, fs, newblkno) 1089 struct buf *bp; /* buffer for cylgroup block with block map */ 1090 struct fs *fs; /* filesystem doing allocation */ 1091 ufs_daddr_t newblkno; /* number of newly allocated block */ 1092 { 1093 struct newblk *newblk; 1094 struct bmsafemap *bmsafemap; 1095 1096 /* 1097 * Create a dependency for the newly allocated block. 1098 * Add it to the dependency list for the buffer holding 1099 * the cylinder group map from which it was allocated. 1100 */ 1101 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1102 panic("softdep_setup_blkmapdep: found block"); 1103 ACQUIRE_LOCK(&lk); 1104 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1105 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1106 FREE_LOCK(&lk); 1107 } 1108 1109 /* 1110 * Find the bmsafemap associated with a cylinder group buffer. 1111 * If none exists, create one. The buffer must be locked when 1112 * this routine is called and this routine must be called with 1113 * splbio interrupts blocked. 1114 */ 1115 static struct bmsafemap * 1116 bmsafemap_lookup(bp) 1117 struct buf *bp; 1118 { 1119 struct bmsafemap *bmsafemap; 1120 struct worklist *wk; 1121 1122 #ifdef DEBUG 1123 if (lk.lkt_held == -1) 1124 panic("bmsafemap_lookup: lock not held"); 1125 #endif 1126 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list)) 1127 if (wk->wk_type == D_BMSAFEMAP) 1128 return (WK_BMSAFEMAP(wk)); 1129 FREE_LOCK(&lk); 1130 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1131 M_BMSAFEMAP, M_WAITOK); 1132 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1133 bmsafemap->sm_list.wk_state = 0; 1134 bmsafemap->sm_buf = bp; 1135 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1136 LIST_INIT(&bmsafemap->sm_allocindirhd); 1137 LIST_INIT(&bmsafemap->sm_inodedephd); 1138 LIST_INIT(&bmsafemap->sm_newblkhd); 1139 ACQUIRE_LOCK(&lk); 1140 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1141 return (bmsafemap); 1142 } 1143 1144 /* 1145 * Direct block allocation dependencies. 1146 * 1147 * When a new block is allocated, the corresponding disk locations must be 1148 * initialized (with zeros or new data) before the on-disk inode points to 1149 * them. Also, the freemap from which the block was allocated must be 1150 * updated (on disk) before the inode's pointer. These two dependencies are 1151 * independent of each other and are needed for all file blocks and indirect 1152 * blocks that are pointed to directly by the inode. Just before the 1153 * "in-core" version of the inode is updated with a newly allocated block 1154 * number, a procedure (below) is called to setup allocation dependency 1155 * structures. These structures are removed when the corresponding 1156 * dependencies are satisfied or when the block allocation becomes obsolete 1157 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1158 * fragment that gets upgraded). All of these cases are handled in 1159 * procedures described later. 1160 * 1161 * When a file extension causes a fragment to be upgraded, either to a larger 1162 * fragment or to a full block, the on-disk location may change (if the 1163 * previous fragment could not simply be extended). In this case, the old 1164 * fragment must be de-allocated, but not until after the inode's pointer has 1165 * been updated. In most cases, this is handled by later procedures, which 1166 * will construct a "freefrag" structure to be added to the workitem queue 1167 * when the inode update is complete (or obsolete). The main exception to 1168 * this is when an allocation occurs while a pending allocation dependency 1169 * (for the same block pointer) remains. This case is handled in the main 1170 * allocation dependency setup procedure by immediately freeing the 1171 * unreferenced fragments. 1172 */ 1173 void 1174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1175 struct inode *ip; /* inode to which block is being added */ 1176 ufs_lbn_t lbn; /* block pointer within inode */ 1177 ufs_daddr_t newblkno; /* disk block number being added */ 1178 ufs_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1179 long newsize; /* size of new block */ 1180 long oldsize; /* size of new block */ 1181 struct buf *bp; /* bp for allocated block */ 1182 { 1183 struct allocdirect *adp, *oldadp; 1184 struct allocdirectlst *adphead; 1185 struct bmsafemap *bmsafemap; 1186 struct inodedep *inodedep; 1187 struct pagedep *pagedep; 1188 struct newblk *newblk; 1189 1190 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1191 M_ALLOCDIRECT, M_WAITOK); 1192 bzero(adp, sizeof(struct allocdirect)); 1193 adp->ad_list.wk_type = D_ALLOCDIRECT; 1194 adp->ad_lbn = lbn; 1195 adp->ad_newblkno = newblkno; 1196 adp->ad_oldblkno = oldblkno; 1197 adp->ad_newsize = newsize; 1198 adp->ad_oldsize = oldsize; 1199 adp->ad_state = ATTACHED; 1200 if (newblkno == oldblkno) 1201 adp->ad_freefrag = NULL; 1202 else 1203 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1204 1205 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1206 panic("softdep_setup_allocdirect: lost block"); 1207 1208 ACQUIRE_LOCK(&lk); 1209 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 1210 adp->ad_inodedep = inodedep; 1211 1212 if (newblk->nb_state == DEPCOMPLETE) { 1213 adp->ad_state |= DEPCOMPLETE; 1214 adp->ad_buf = NULL; 1215 } else { 1216 bmsafemap = newblk->nb_bmsafemap; 1217 adp->ad_buf = bmsafemap->sm_buf; 1218 LIST_REMOVE(newblk, nb_deps); 1219 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1220 } 1221 LIST_REMOVE(newblk, nb_hash); 1222 FREE(newblk, M_NEWBLK); 1223 1224 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1225 if (lbn >= NDADDR) { 1226 /* allocating an indirect block */ 1227 if (oldblkno != 0) 1228 panic("softdep_setup_allocdirect: non-zero indir"); 1229 } else { 1230 /* 1231 * Allocating a direct block. 1232 * 1233 * If we are allocating a directory block, then we must 1234 * allocate an associated pagedep to track additions and 1235 * deletions. 1236 */ 1237 if ((ip->i_mode & IFMT) == IFDIR && 1238 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1239 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1240 } 1241 /* 1242 * The list of allocdirects must be kept in sorted and ascending 1243 * order so that the rollback routines can quickly determine the 1244 * first uncommitted block (the size of the file stored on disk 1245 * ends at the end of the lowest committed fragment, or if there 1246 * are no fragments, at the end of the highest committed block). 1247 * Since files generally grow, the typical case is that the new 1248 * block is to be added at the end of the list. We speed this 1249 * special case by checking against the last allocdirect in the 1250 * list before laboriously traversing the list looking for the 1251 * insertion point. 1252 */ 1253 adphead = &inodedep->id_newinoupdt; 1254 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1255 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1256 /* insert at end of list */ 1257 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1258 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1259 allocdirect_merge(adphead, adp, oldadp); 1260 FREE_LOCK(&lk); 1261 return; 1262 } 1263 for (oldadp = TAILQ_FIRST(adphead); oldadp; 1264 oldadp = TAILQ_NEXT(oldadp, ad_next)) { 1265 if (oldadp->ad_lbn >= lbn) 1266 break; 1267 } 1268 if (oldadp == NULL) 1269 panic("softdep_setup_allocdirect: lost entry"); 1270 /* insert in middle of list */ 1271 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1272 if (oldadp->ad_lbn == lbn) 1273 allocdirect_merge(adphead, adp, oldadp); 1274 FREE_LOCK(&lk); 1275 } 1276 1277 /* 1278 * Replace an old allocdirect dependency with a newer one. 1279 * This routine must be called with splbio interrupts blocked. 1280 */ 1281 static void 1282 allocdirect_merge(adphead, newadp, oldadp) 1283 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1284 struct allocdirect *newadp; /* allocdirect being added */ 1285 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1286 { 1287 struct freefrag *freefrag; 1288 1289 #ifdef DEBUG 1290 if (lk.lkt_held == -1) 1291 panic("allocdirect_merge: lock not held"); 1292 #endif 1293 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1294 newadp->ad_oldsize != oldadp->ad_newsize || 1295 newadp->ad_lbn >= NDADDR) 1296 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d", 1297 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn, 1298 NDADDR); 1299 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1300 newadp->ad_oldsize = oldadp->ad_oldsize; 1301 /* 1302 * If the old dependency had a fragment to free or had never 1303 * previously had a block allocated, then the new dependency 1304 * can immediately post its freefrag and adopt the old freefrag. 1305 * This action is done by swapping the freefrag dependencies. 1306 * The new dependency gains the old one's freefrag, and the 1307 * old one gets the new one and then immediately puts it on 1308 * the worklist when it is freed by free_allocdirect. It is 1309 * not possible to do this swap when the old dependency had a 1310 * non-zero size but no previous fragment to free. This condition 1311 * arises when the new block is an extension of the old block. 1312 * Here, the first part of the fragment allocated to the new 1313 * dependency is part of the block currently claimed on disk by 1314 * the old dependency, so cannot legitimately be freed until the 1315 * conditions for the new dependency are fulfilled. 1316 */ 1317 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1318 freefrag = newadp->ad_freefrag; 1319 newadp->ad_freefrag = oldadp->ad_freefrag; 1320 oldadp->ad_freefrag = freefrag; 1321 } 1322 free_allocdirect(adphead, oldadp, 0); 1323 } 1324 1325 /* 1326 * Allocate a new freefrag structure if needed. 1327 */ 1328 static struct freefrag * 1329 newfreefrag(ip, blkno, size) 1330 struct inode *ip; 1331 ufs_daddr_t blkno; 1332 long size; 1333 { 1334 struct freefrag *freefrag; 1335 struct fs *fs; 1336 1337 if (blkno == 0) 1338 return (NULL); 1339 fs = ip->i_fs; 1340 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1341 panic("newfreefrag: frag size"); 1342 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1343 M_FREEFRAG, M_WAITOK); 1344 freefrag->ff_list.wk_type = D_FREEFRAG; 1345 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */ 1346 freefrag->ff_inum = ip->i_number; 1347 freefrag->ff_mnt = ITOV(ip)->v_mount; 1348 freefrag->ff_devvp = ip->i_devvp; 1349 freefrag->ff_blkno = blkno; 1350 freefrag->ff_fragsize = size; 1351 return (freefrag); 1352 } 1353 1354 /* 1355 * This workitem de-allocates fragments that were replaced during 1356 * file block allocation. 1357 */ 1358 static void 1359 handle_workitem_freefrag(freefrag) 1360 struct freefrag *freefrag; 1361 { 1362 struct inode tip; 1363 1364 tip.i_vnode = NULL; 1365 tip.i_fs = VFSTOUFS(freefrag->ff_mnt)->um_fs; 1366 tip.i_devvp = freefrag->ff_devvp; 1367 tip.i_dev = freefrag->ff_devvp->v_rdev; 1368 tip.i_number = freefrag->ff_inum; 1369 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */ 1370 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize); 1371 FREE(freefrag, M_FREEFRAG); 1372 } 1373 1374 /* 1375 * Indirect block allocation dependencies. 1376 * 1377 * The same dependencies that exist for a direct block also exist when 1378 * a new block is allocated and pointed to by an entry in a block of 1379 * indirect pointers. The undo/redo states described above are also 1380 * used here. Because an indirect block contains many pointers that 1381 * may have dependencies, a second copy of the entire in-memory indirect 1382 * block is kept. The buffer cache copy is always completely up-to-date. 1383 * The second copy, which is used only as a source for disk writes, 1384 * contains only the safe pointers (i.e., those that have no remaining 1385 * update dependencies). The second copy is freed when all pointers 1386 * are safe. The cache is not allowed to replace indirect blocks with 1387 * pending update dependencies. If a buffer containing an indirect 1388 * block with dependencies is written, these routines will mark it 1389 * dirty again. It can only be successfully written once all the 1390 * dependencies are removed. The ffs_fsync routine in conjunction with 1391 * softdep_sync_metadata work together to get all the dependencies 1392 * removed so that a file can be successfully written to disk. Three 1393 * procedures are used when setting up indirect block pointer 1394 * dependencies. The division is necessary because of the organization 1395 * of the "balloc" routine and because of the distinction between file 1396 * pages and file metadata blocks. 1397 */ 1398 1399 /* 1400 * Allocate a new allocindir structure. 1401 */ 1402 static struct allocindir * 1403 newallocindir(ip, ptrno, newblkno, oldblkno) 1404 struct inode *ip; /* inode for file being extended */ 1405 int ptrno; /* offset of pointer in indirect block */ 1406 ufs_daddr_t newblkno; /* disk block number being added */ 1407 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1408 { 1409 struct allocindir *aip; 1410 1411 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1412 M_ALLOCINDIR, M_WAITOK); 1413 bzero(aip, sizeof(struct allocindir)); 1414 aip->ai_list.wk_type = D_ALLOCINDIR; 1415 aip->ai_state = ATTACHED; 1416 aip->ai_offset = ptrno; 1417 aip->ai_newblkno = newblkno; 1418 aip->ai_oldblkno = oldblkno; 1419 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1420 return (aip); 1421 } 1422 1423 /* 1424 * Called just before setting an indirect block pointer 1425 * to a newly allocated file page. 1426 */ 1427 void 1428 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1429 struct inode *ip; /* inode for file being extended */ 1430 ufs_lbn_t lbn; /* allocated block number within file */ 1431 struct buf *bp; /* buffer with indirect blk referencing page */ 1432 int ptrno; /* offset of pointer in indirect block */ 1433 ufs_daddr_t newblkno; /* disk block number being added */ 1434 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1435 struct buf *nbp; /* buffer holding allocated page */ 1436 { 1437 struct allocindir *aip; 1438 struct pagedep *pagedep; 1439 1440 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1441 ACQUIRE_LOCK(&lk); 1442 /* 1443 * If we are allocating a directory page, then we must 1444 * allocate an associated pagedep to track additions and 1445 * deletions. 1446 */ 1447 if ((ip->i_mode & IFMT) == IFDIR && 1448 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1449 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1450 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1451 FREE_LOCK(&lk); 1452 setup_allocindir_phase2(bp, ip, aip); 1453 } 1454 1455 /* 1456 * Called just before setting an indirect block pointer to a 1457 * newly allocated indirect block. 1458 */ 1459 void 1460 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1461 struct buf *nbp; /* newly allocated indirect block */ 1462 struct inode *ip; /* inode for file being extended */ 1463 struct buf *bp; /* indirect block referencing allocated block */ 1464 int ptrno; /* offset of pointer in indirect block */ 1465 ufs_daddr_t newblkno; /* disk block number being added */ 1466 { 1467 struct allocindir *aip; 1468 1469 aip = newallocindir(ip, ptrno, newblkno, 0); 1470 ACQUIRE_LOCK(&lk); 1471 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1472 FREE_LOCK(&lk); 1473 setup_allocindir_phase2(bp, ip, aip); 1474 } 1475 1476 /* 1477 * Called to finish the allocation of the "aip" allocated 1478 * by one of the two routines above. 1479 */ 1480 static void 1481 setup_allocindir_phase2(bp, ip, aip) 1482 struct buf *bp; /* in-memory copy of the indirect block */ 1483 struct inode *ip; /* inode for file being extended */ 1484 struct allocindir *aip; /* allocindir allocated by the above routines */ 1485 { 1486 struct worklist *wk; 1487 struct indirdep *indirdep, *newindirdep; 1488 struct bmsafemap *bmsafemap; 1489 struct allocindir *oldaip; 1490 struct freefrag *freefrag; 1491 struct newblk *newblk; 1492 1493 if (bp->b_lblkno >= 0) 1494 panic("setup_allocindir_phase2: not indir blk"); 1495 for (indirdep = NULL, newindirdep = NULL; ; ) { 1496 ACQUIRE_LOCK(&lk); 1497 for (wk = LIST_FIRST(&bp->b_dep); wk; 1498 wk = LIST_NEXT(wk, wk_list)) { 1499 if (wk->wk_type != D_INDIRDEP) 1500 continue; 1501 indirdep = WK_INDIRDEP(wk); 1502 break; 1503 } 1504 if (indirdep == NULL && newindirdep) { 1505 indirdep = newindirdep; 1506 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1507 newindirdep = NULL; 1508 } 1509 FREE_LOCK(&lk); 1510 if (indirdep) { 1511 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1512 &newblk) == 0) 1513 panic("setup_allocindir: lost block"); 1514 ACQUIRE_LOCK(&lk); 1515 if (newblk->nb_state == DEPCOMPLETE) { 1516 aip->ai_state |= DEPCOMPLETE; 1517 aip->ai_buf = NULL; 1518 } else { 1519 bmsafemap = newblk->nb_bmsafemap; 1520 aip->ai_buf = bmsafemap->sm_buf; 1521 LIST_REMOVE(newblk, nb_deps); 1522 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1523 aip, ai_deps); 1524 } 1525 LIST_REMOVE(newblk, nb_hash); 1526 FREE(newblk, M_NEWBLK); 1527 aip->ai_indirdep = indirdep; 1528 /* 1529 * Check to see if there is an existing dependency 1530 * for this block. If there is, merge the old 1531 * dependency into the new one. 1532 */ 1533 if (aip->ai_oldblkno == 0) 1534 oldaip = NULL; 1535 else 1536 for (oldaip=LIST_FIRST(&indirdep->ir_deplisthd); 1537 oldaip; oldaip = LIST_NEXT(oldaip, ai_next)) 1538 if (oldaip->ai_offset == aip->ai_offset) 1539 break; 1540 freefrag = NULL; 1541 if (oldaip != NULL) { 1542 if (oldaip->ai_newblkno != aip->ai_oldblkno) 1543 panic("setup_allocindir_phase2: blkno"); 1544 aip->ai_oldblkno = oldaip->ai_oldblkno; 1545 freefrag = aip->ai_freefrag; 1546 aip->ai_freefrag = oldaip->ai_freefrag; 1547 oldaip->ai_freefrag = NULL; 1548 free_allocindir(oldaip, NULL); 1549 } 1550 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1551 ((ufs_daddr_t *)indirdep->ir_savebp->b_data) 1552 [aip->ai_offset] = aip->ai_oldblkno; 1553 FREE_LOCK(&lk); 1554 if (freefrag != NULL) 1555 handle_workitem_freefrag(freefrag); 1556 } 1557 if (newindirdep) { 1558 if (indirdep->ir_savebp != NULL) 1559 brelse(newindirdep->ir_savebp); 1560 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1561 } 1562 if (indirdep) 1563 break; 1564 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1565 M_INDIRDEP, M_WAITOK); 1566 newindirdep->ir_list.wk_type = D_INDIRDEP; 1567 newindirdep->ir_state = ATTACHED; 1568 LIST_INIT(&newindirdep->ir_deplisthd); 1569 LIST_INIT(&newindirdep->ir_donehd); 1570 if (bp->b_blkno == bp->b_lblkno) { 1571 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, 1572 NULL, NULL); 1573 } 1574 newindirdep->ir_savebp = 1575 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1576 BUF_KERNPROC(newindirdep->ir_savebp); 1577 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1578 } 1579 } 1580 1581 /* 1582 * Block de-allocation dependencies. 1583 * 1584 * When blocks are de-allocated, the on-disk pointers must be nullified before 1585 * the blocks are made available for use by other files. (The true 1586 * requirement is that old pointers must be nullified before new on-disk 1587 * pointers are set. We chose this slightly more stringent requirement to 1588 * reduce complexity.) Our implementation handles this dependency by updating 1589 * the inode (or indirect block) appropriately but delaying the actual block 1590 * de-allocation (i.e., freemap and free space count manipulation) until 1591 * after the updated versions reach stable storage. After the disk is 1592 * updated, the blocks can be safely de-allocated whenever it is convenient. 1593 * This implementation handles only the common case of reducing a file's 1594 * length to zero. Other cases are handled by the conventional synchronous 1595 * write approach. 1596 * 1597 * The ffs implementation with which we worked double-checks 1598 * the state of the block pointers and file size as it reduces 1599 * a file's length. Some of this code is replicated here in our 1600 * soft updates implementation. The freeblks->fb_chkcnt field is 1601 * used to transfer a part of this information to the procedure 1602 * that eventually de-allocates the blocks. 1603 * 1604 * This routine should be called from the routine that shortens 1605 * a file's length, before the inode's size or block pointers 1606 * are modified. It will save the block pointer information for 1607 * later release and zero the inode so that the calling routine 1608 * can release it. 1609 */ 1610 void 1611 softdep_setup_freeblocks(ip, length) 1612 struct inode *ip; /* The inode whose length is to be reduced */ 1613 off_t length; /* The new length for the file */ 1614 { 1615 struct freeblks *freeblks; 1616 struct inodedep *inodedep; 1617 struct allocdirect *adp; 1618 struct vnode *vp; 1619 struct buf *bp; 1620 struct fs *fs; 1621 int i, delay, error; 1622 1623 fs = ip->i_fs; 1624 if (length != 0) 1625 panic("softde_setup_freeblocks: non-zero length"); 1626 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1627 M_FREEBLKS, M_WAITOK); 1628 bzero(freeblks, sizeof(struct freeblks)); 1629 freeblks->fb_list.wk_type = D_FREEBLKS; 1630 freeblks->fb_uid = ip->i_uid; 1631 freeblks->fb_previousinum = ip->i_number; 1632 freeblks->fb_devvp = ip->i_devvp; 1633 freeblks->fb_mnt = ITOV(ip)->v_mount; 1634 freeblks->fb_oldsize = ip->i_size; 1635 freeblks->fb_newsize = length; 1636 freeblks->fb_chkcnt = ip->i_blocks; 1637 for (i = 0; i < NDADDR; i++) { 1638 freeblks->fb_dblks[i] = ip->i_db[i]; 1639 ip->i_db[i] = 0; 1640 } 1641 for (i = 0; i < NIADDR; i++) { 1642 freeblks->fb_iblks[i] = ip->i_ib[i]; 1643 ip->i_ib[i] = 0; 1644 } 1645 ip->i_blocks = 0; 1646 ip->i_size = 0; 1647 /* 1648 * Push the zero'ed inode to to its disk buffer so that we are free 1649 * to delete its dependencies below. Once the dependencies are gone 1650 * the buffer can be safely released. 1651 */ 1652 if ((error = bread(ip->i_devvp, 1653 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1654 (int)fs->fs_bsize, NOCRED, &bp)) != 0) 1655 softdep_error("softdep_setup_freeblocks", error); 1656 *((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = 1657 ip->i_din; 1658 /* 1659 * Find and eliminate any inode dependencies. 1660 */ 1661 ACQUIRE_LOCK(&lk); 1662 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 1663 if ((inodedep->id_state & IOSTARTED) != 0) 1664 panic("softdep_setup_freeblocks: inode busy"); 1665 /* 1666 * Because the file length has been truncated to zero, any 1667 * pending block allocation dependency structures associated 1668 * with this inode are obsolete and can simply be de-allocated. 1669 * We must first merge the two dependency lists to get rid of 1670 * any duplicate freefrag structures, then purge the merged list. 1671 * If we still have a bitmap dependency, then the inode has never 1672 * been written to disk, so we can free any fragments without delay. 1673 */ 1674 merge_inode_lists(inodedep); 1675 delay = (inodedep->id_state & DEPCOMPLETE); 1676 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 1677 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 1678 FREE_LOCK(&lk); 1679 bdwrite(bp); 1680 /* 1681 * We must wait for any I/O in progress to finish so that 1682 * all potential buffers on the dirty list will be visible. 1683 * Once they are all there, walk the list and get rid of 1684 * any dependencies. 1685 */ 1686 vp = ITOV(ip); 1687 ACQUIRE_LOCK(&lk); 1688 drain_output(vp, 1); 1689 while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) { 1690 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 1691 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 1692 deallocate_dependencies(bp, inodedep); 1693 bp->b_flags |= B_INVAL | B_NOCACHE; 1694 FREE_LOCK(&lk); 1695 brelse(bp); 1696 ACQUIRE_LOCK(&lk); 1697 } 1698 /* 1699 * Add the freeblks structure to the list of operations that 1700 * must await the zero'ed inode being written to disk. If we 1701 * still have a bitmap dependency, then the inode has never been 1702 * written to disk, so we can process the freeblks immediately. 1703 * If the inodedep does not exist, then the zero'ed inode has 1704 * been written and we can also proceed. 1705 */ 1706 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0 || 1707 free_inodedep(inodedep) || 1708 (inodedep->id_state & DEPCOMPLETE) == 0) { 1709 FREE_LOCK(&lk); 1710 handle_workitem_freeblocks(freeblks); 1711 } else { 1712 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 1713 FREE_LOCK(&lk); 1714 } 1715 } 1716 1717 /* 1718 * Reclaim any dependency structures from a buffer that is about to 1719 * be reallocated to a new vnode. The buffer must be locked, thus, 1720 * no I/O completion operations can occur while we are manipulating 1721 * its associated dependencies. The mutex is held so that other I/O's 1722 * associated with related dependencies do not occur. 1723 */ 1724 static void 1725 deallocate_dependencies(bp, inodedep) 1726 struct buf *bp; 1727 struct inodedep *inodedep; 1728 { 1729 struct worklist *wk; 1730 struct indirdep *indirdep; 1731 struct allocindir *aip; 1732 struct pagedep *pagedep; 1733 struct dirrem *dirrem; 1734 struct diradd *dap; 1735 int i; 1736 1737 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 1738 switch (wk->wk_type) { 1739 1740 case D_INDIRDEP: 1741 indirdep = WK_INDIRDEP(wk); 1742 /* 1743 * None of the indirect pointers will ever be visible, 1744 * so they can simply be tossed. GOINGAWAY ensures 1745 * that allocated pointers will be saved in the buffer 1746 * cache until they are freed. Note that they will 1747 * only be able to be found by their physical address 1748 * since the inode mapping the logical address will 1749 * be gone. The save buffer used for the safe copy 1750 * was allocated in setup_allocindir_phase2 using 1751 * the physical address so it could be used for this 1752 * purpose. Hence we swap the safe copy with the real 1753 * copy, allowing the safe copy to be freed and holding 1754 * on to the real copy for later use in indir_trunc. 1755 */ 1756 if (indirdep->ir_state & GOINGAWAY) 1757 panic("deallocate_dependencies: already gone"); 1758 indirdep->ir_state |= GOINGAWAY; 1759 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 1760 free_allocindir(aip, inodedep); 1761 if (bp->b_lblkno >= 0 || 1762 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 1763 panic("deallocate_dependencies: not indir"); 1764 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 1765 bp->b_bcount); 1766 WORKLIST_REMOVE(wk); 1767 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 1768 continue; 1769 1770 case D_PAGEDEP: 1771 pagedep = WK_PAGEDEP(wk); 1772 /* 1773 * None of the directory additions will ever be 1774 * visible, so they can simply be tossed. 1775 */ 1776 for (i = 0; i < DAHASHSZ; i++) 1777 while ((dap = 1778 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 1779 free_diradd(dap); 1780 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 1781 free_diradd(dap); 1782 /* 1783 * Copy any directory remove dependencies to the list 1784 * to be processed after the zero'ed inode is written. 1785 * If the inode has already been written, then they 1786 * can be dumped directly onto the work list. 1787 */ 1788 for (dirrem = LIST_FIRST(&pagedep->pd_dirremhd); dirrem; 1789 dirrem = LIST_NEXT(dirrem, dm_next)) { 1790 LIST_REMOVE(dirrem, dm_next); 1791 dirrem->dm_dirinum = pagedep->pd_ino; 1792 if (inodedep == NULL || 1793 (inodedep->id_state & ALLCOMPLETE) == 1794 ALLCOMPLETE) 1795 add_to_worklist(&dirrem->dm_list); 1796 else 1797 WORKLIST_INSERT(&inodedep->id_bufwait, 1798 &dirrem->dm_list); 1799 } 1800 WORKLIST_REMOVE(&pagedep->pd_list); 1801 LIST_REMOVE(pagedep, pd_hash); 1802 WORKITEM_FREE(pagedep, D_PAGEDEP); 1803 continue; 1804 1805 case D_ALLOCINDIR: 1806 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 1807 continue; 1808 1809 case D_ALLOCDIRECT: 1810 case D_INODEDEP: 1811 panic("deallocate_dependencies: Unexpected type %s", 1812 TYPENAME(wk->wk_type)); 1813 /* NOTREACHED */ 1814 1815 default: 1816 panic("deallocate_dependencies: Unknown type %s", 1817 TYPENAME(wk->wk_type)); 1818 /* NOTREACHED */ 1819 } 1820 } 1821 } 1822 1823 /* 1824 * Free an allocdirect. Generate a new freefrag work request if appropriate. 1825 * This routine must be called with splbio interrupts blocked. 1826 */ 1827 static void 1828 free_allocdirect(adphead, adp, delay) 1829 struct allocdirectlst *adphead; 1830 struct allocdirect *adp; 1831 int delay; 1832 { 1833 1834 #ifdef DEBUG 1835 if (lk.lkt_held == -1) 1836 panic("free_allocdirect: lock not held"); 1837 #endif 1838 if ((adp->ad_state & DEPCOMPLETE) == 0) 1839 LIST_REMOVE(adp, ad_deps); 1840 TAILQ_REMOVE(adphead, adp, ad_next); 1841 if ((adp->ad_state & COMPLETE) == 0) 1842 WORKLIST_REMOVE(&adp->ad_list); 1843 if (adp->ad_freefrag != NULL) { 1844 if (delay) 1845 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 1846 &adp->ad_freefrag->ff_list); 1847 else 1848 add_to_worklist(&adp->ad_freefrag->ff_list); 1849 } 1850 WORKITEM_FREE(adp, D_ALLOCDIRECT); 1851 } 1852 1853 /* 1854 * Prepare an inode to be freed. The actual free operation is not 1855 * done until the zero'ed inode has been written to disk. 1856 */ 1857 void 1858 softdep_freefile(pvp, ino, mode) 1859 struct vnode *pvp; 1860 ino_t ino; 1861 int mode; 1862 { 1863 struct inode *ip = VTOI(pvp); 1864 struct inodedep *inodedep; 1865 struct freefile *freefile; 1866 1867 /* 1868 * This sets up the inode de-allocation dependency. 1869 */ 1870 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 1871 M_FREEFILE, M_WAITOK); 1872 freefile->fx_list.wk_type = D_FREEFILE; 1873 freefile->fx_list.wk_state = 0; 1874 freefile->fx_mode = mode; 1875 freefile->fx_oldinum = ino; 1876 freefile->fx_devvp = ip->i_devvp; 1877 freefile->fx_mnt = ITOV(ip)->v_mount; 1878 1879 /* 1880 * If the inodedep does not exist, then the zero'ed inode has 1881 * been written to disk. If the allocated inode has never been 1882 * written to disk, then the on-disk inode is zero'ed. In either 1883 * case we can free the file immediately. 1884 */ 1885 ACQUIRE_LOCK(&lk); 1886 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 1887 check_inode_unwritten(inodedep)) { 1888 FREE_LOCK(&lk); 1889 handle_workitem_freefile(freefile); 1890 return; 1891 } 1892 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 1893 FREE_LOCK(&lk); 1894 } 1895 1896 /* 1897 * Check to see if an inode has never been written to disk. If 1898 * so free the inodedep and return success, otherwise return failure. 1899 * This routine must be called with splbio interrupts blocked. 1900 * 1901 * If we still have a bitmap dependency, then the inode has never 1902 * been written to disk. Drop the dependency as it is no longer 1903 * necessary since the inode is being deallocated. We set the 1904 * ALLCOMPLETE flags since the bitmap now properly shows that the 1905 * inode is not allocated. Even if the inode is actively being 1906 * written, it has been rolled back to its zero'ed state, so we 1907 * are ensured that a zero inode is what is on the disk. For short 1908 * lived files, this change will usually result in removing all the 1909 * dependencies from the inode so that it can be freed immediately. 1910 */ 1911 static int 1912 check_inode_unwritten(inodedep) 1913 struct inodedep *inodedep; 1914 { 1915 1916 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 1917 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 1918 LIST_FIRST(&inodedep->id_bufwait) != NULL || 1919 LIST_FIRST(&inodedep->id_inowait) != NULL || 1920 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 1921 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 1922 inodedep->id_nlinkdelta != 0) 1923 return (0); 1924 inodedep->id_state |= ALLCOMPLETE; 1925 LIST_REMOVE(inodedep, id_deps); 1926 inodedep->id_buf = NULL; 1927 if (inodedep->id_state & ONWORKLIST) 1928 WORKLIST_REMOVE(&inodedep->id_list); 1929 if (inodedep->id_savedino != NULL) { 1930 FREE(inodedep->id_savedino, M_INODEDEP); 1931 inodedep->id_savedino = NULL; 1932 } 1933 if (free_inodedep(inodedep) == 0) 1934 panic("check_inode_unwritten: busy inode"); 1935 return (1); 1936 } 1937 1938 /* 1939 * Try to free an inodedep structure. Return 1 if it could be freed. 1940 */ 1941 static int 1942 free_inodedep(inodedep) 1943 struct inodedep *inodedep; 1944 { 1945 1946 if ((inodedep->id_state & ONWORKLIST) != 0 || 1947 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 1948 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 1949 LIST_FIRST(&inodedep->id_bufwait) != NULL || 1950 LIST_FIRST(&inodedep->id_inowait) != NULL || 1951 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 1952 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 1953 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL) 1954 return (0); 1955 LIST_REMOVE(inodedep, id_hash); 1956 WORKITEM_FREE(inodedep, D_INODEDEP); 1957 num_inodedep -= 1; 1958 return (1); 1959 } 1960 1961 /* 1962 * This workitem routine performs the block de-allocation. 1963 * The workitem is added to the pending list after the updated 1964 * inode block has been written to disk. As mentioned above, 1965 * checks regarding the number of blocks de-allocated (compared 1966 * to the number of blocks allocated for the file) are also 1967 * performed in this function. 1968 */ 1969 static void 1970 handle_workitem_freeblocks(freeblks) 1971 struct freeblks *freeblks; 1972 { 1973 struct inode tip; 1974 ufs_daddr_t bn; 1975 struct fs *fs; 1976 int i, level, bsize; 1977 long nblocks, blocksreleased = 0; 1978 int error, allerror = 0; 1979 ufs_lbn_t baselbns[NIADDR], tmpval; 1980 1981 tip.i_fs = fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 1982 tip.i_number = freeblks->fb_previousinum; 1983 tip.i_devvp = freeblks->fb_devvp; 1984 tip.i_dev = freeblks->fb_devvp->v_rdev; 1985 tip.i_size = freeblks->fb_oldsize; 1986 tip.i_uid = freeblks->fb_uid; 1987 tip.i_vnode = NULL; 1988 tmpval = 1; 1989 baselbns[0] = NDADDR; 1990 for (i = 1; i < NIADDR; i++) { 1991 tmpval *= NINDIR(fs); 1992 baselbns[i] = baselbns[i - 1] + tmpval; 1993 } 1994 nblocks = btodb(fs->fs_bsize); 1995 blocksreleased = 0; 1996 /* 1997 * Indirect blocks first. 1998 */ 1999 for (level = (NIADDR - 1); level >= 0; level--) { 2000 if ((bn = freeblks->fb_iblks[level]) == 0) 2001 continue; 2002 if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level, 2003 baselbns[level], &blocksreleased)) == 0) 2004 allerror = error; 2005 ffs_blkfree(&tip, bn, fs->fs_bsize); 2006 blocksreleased += nblocks; 2007 } 2008 /* 2009 * All direct blocks or frags. 2010 */ 2011 for (i = (NDADDR - 1); i >= 0; i--) { 2012 if ((bn = freeblks->fb_dblks[i]) == 0) 2013 continue; 2014 bsize = blksize(fs, &tip, i); 2015 ffs_blkfree(&tip, bn, bsize); 2016 blocksreleased += btodb(bsize); 2017 } 2018 2019 #ifdef DIAGNOSTIC 2020 if (freeblks->fb_chkcnt != blocksreleased) 2021 panic("handle_workitem_freeblocks: block count"); 2022 if (allerror) 2023 softdep_error("handle_workitem_freeblks", allerror); 2024 #endif /* DIAGNOSTIC */ 2025 WORKITEM_FREE(freeblks, D_FREEBLKS); 2026 } 2027 2028 /* 2029 * Release blocks associated with the inode ip and stored in the indirect 2030 * block dbn. If level is greater than SINGLE, the block is an indirect block 2031 * and recursive calls to indirtrunc must be used to cleanse other indirect 2032 * blocks. 2033 */ 2034 static int 2035 indir_trunc(ip, dbn, level, lbn, countp) 2036 struct inode *ip; 2037 ufs_daddr_t dbn; 2038 int level; 2039 ufs_lbn_t lbn; 2040 long *countp; 2041 { 2042 struct buf *bp; 2043 ufs_daddr_t *bap; 2044 ufs_daddr_t nb; 2045 struct fs *fs; 2046 struct worklist *wk; 2047 struct indirdep *indirdep; 2048 int i, lbnadd, nblocks; 2049 int error, allerror = 0; 2050 2051 fs = ip->i_fs; 2052 lbnadd = 1; 2053 for (i = level; i > 0; i--) 2054 lbnadd *= NINDIR(fs); 2055 /* 2056 * Get buffer of block pointers to be freed. This routine is not 2057 * called until the zero'ed inode has been written, so it is safe 2058 * to free blocks as they are encountered. Because the inode has 2059 * been zero'ed, calls to bmap on these blocks will fail. So, we 2060 * have to use the on-disk address and the block device for the 2061 * filesystem to look them up. If the file was deleted before its 2062 * indirect blocks were all written to disk, the routine that set 2063 * us up (deallocate_dependencies) will have arranged to leave 2064 * a complete copy of the indirect block in memory for our use. 2065 * Otherwise we have to read the blocks in from the disk. 2066 */ 2067 ACQUIRE_LOCK(&lk); 2068 if ((bp = incore(ip->i_devvp, dbn)) != NULL && 2069 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2070 if (wk->wk_type != D_INDIRDEP || 2071 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2072 (indirdep->ir_state & GOINGAWAY) == 0) 2073 panic("indir_trunc: lost indirdep"); 2074 WORKLIST_REMOVE(wk); 2075 WORKITEM_FREE(indirdep, D_INDIRDEP); 2076 if (LIST_FIRST(&bp->b_dep) != NULL) 2077 panic("indir_trunc: dangling dep"); 2078 FREE_LOCK(&lk); 2079 } else { 2080 FREE_LOCK(&lk); 2081 error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp); 2082 if (error) 2083 return (error); 2084 } 2085 /* 2086 * Recursively free indirect blocks. 2087 */ 2088 bap = (ufs_daddr_t *)bp->b_data; 2089 nblocks = btodb(fs->fs_bsize); 2090 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2091 if ((nb = bap[i]) == 0) 2092 continue; 2093 if (level != 0) { 2094 if ((error = indir_trunc(ip, fsbtodb(fs, nb), 2095 level - 1, lbn + (i * lbnadd), countp)) != 0) 2096 allerror = error; 2097 } 2098 ffs_blkfree(ip, nb, fs->fs_bsize); 2099 *countp += nblocks; 2100 } 2101 bp->b_flags |= B_INVAL | B_NOCACHE; 2102 brelse(bp); 2103 return (allerror); 2104 } 2105 2106 /* 2107 * Free an allocindir. 2108 * This routine must be called with splbio interrupts blocked. 2109 */ 2110 static void 2111 free_allocindir(aip, inodedep) 2112 struct allocindir *aip; 2113 struct inodedep *inodedep; 2114 { 2115 struct freefrag *freefrag; 2116 2117 #ifdef DEBUG 2118 if (lk.lkt_held == -1) 2119 panic("free_allocindir: lock not held"); 2120 #endif 2121 if ((aip->ai_state & DEPCOMPLETE) == 0) 2122 LIST_REMOVE(aip, ai_deps); 2123 if (aip->ai_state & ONWORKLIST) 2124 WORKLIST_REMOVE(&aip->ai_list); 2125 LIST_REMOVE(aip, ai_next); 2126 if ((freefrag = aip->ai_freefrag) != NULL) { 2127 if (inodedep == NULL) 2128 add_to_worklist(&freefrag->ff_list); 2129 else 2130 WORKLIST_INSERT(&inodedep->id_bufwait, 2131 &freefrag->ff_list); 2132 } 2133 WORKITEM_FREE(aip, D_ALLOCINDIR); 2134 } 2135 2136 /* 2137 * Directory entry addition dependencies. 2138 * 2139 * When adding a new directory entry, the inode (with its incremented link 2140 * count) must be written to disk before the directory entry's pointer to it. 2141 * Also, if the inode is newly allocated, the corresponding freemap must be 2142 * updated (on disk) before the directory entry's pointer. These requirements 2143 * are met via undo/redo on the directory entry's pointer, which consists 2144 * simply of the inode number. 2145 * 2146 * As directory entries are added and deleted, the free space within a 2147 * directory block can become fragmented. The ufs file system will compact 2148 * a fragmented directory block to make space for a new entry. When this 2149 * occurs, the offsets of previously added entries change. Any "diradd" 2150 * dependency structures corresponding to these entries must be updated with 2151 * the new offsets. 2152 */ 2153 2154 /* 2155 * This routine is called after the in-memory inode's link 2156 * count has been incremented, but before the directory entry's 2157 * pointer to the inode has been set. 2158 */ 2159 void 2160 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp) 2161 struct buf *bp; /* buffer containing directory block */ 2162 struct inode *dp; /* inode for directory */ 2163 off_t diroffset; /* offset of new entry in directory */ 2164 long newinum; /* inode referenced by new directory entry */ 2165 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2166 { 2167 int offset; /* offset of new entry within directory block */ 2168 ufs_lbn_t lbn; /* block in directory containing new entry */ 2169 struct fs *fs; 2170 struct diradd *dap; 2171 struct pagedep *pagedep; 2172 struct inodedep *inodedep; 2173 struct mkdir *mkdir1, *mkdir2; 2174 2175 /* 2176 * Whiteouts have no dependencies. 2177 */ 2178 if (newinum == WINO) { 2179 if (newdirbp != NULL) 2180 bdwrite(newdirbp); 2181 return; 2182 } 2183 2184 fs = dp->i_fs; 2185 lbn = lblkno(fs, diroffset); 2186 offset = blkoff(fs, diroffset); 2187 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, M_WAITOK); 2188 bzero(dap, sizeof(struct diradd)); 2189 dap->da_list.wk_type = D_DIRADD; 2190 dap->da_offset = offset; 2191 dap->da_newinum = newinum; 2192 dap->da_state = ATTACHED; 2193 if (newdirbp == NULL) { 2194 dap->da_state |= DEPCOMPLETE; 2195 ACQUIRE_LOCK(&lk); 2196 } else { 2197 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2198 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2199 M_WAITOK); 2200 mkdir1->md_list.wk_type = D_MKDIR; 2201 mkdir1->md_state = MKDIR_BODY; 2202 mkdir1->md_diradd = dap; 2203 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2204 M_WAITOK); 2205 mkdir2->md_list.wk_type = D_MKDIR; 2206 mkdir2->md_state = MKDIR_PARENT; 2207 mkdir2->md_diradd = dap; 2208 /* 2209 * Dependency on "." and ".." being written to disk. 2210 */ 2211 mkdir1->md_buf = newdirbp; 2212 ACQUIRE_LOCK(&lk); 2213 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2214 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2215 FREE_LOCK(&lk); 2216 bdwrite(newdirbp); 2217 /* 2218 * Dependency on link count increase for parent directory 2219 */ 2220 ACQUIRE_LOCK(&lk); 2221 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0 2222 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2223 dap->da_state &= ~MKDIR_PARENT; 2224 WORKITEM_FREE(mkdir2, D_MKDIR); 2225 } else { 2226 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2227 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2228 } 2229 } 2230 /* 2231 * Link into parent directory pagedep to await its being written. 2232 */ 2233 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2234 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2235 dap->da_pagedep = pagedep; 2236 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2237 da_pdlist); 2238 /* 2239 * Link into its inodedep. Put it on the id_bufwait list if the inode 2240 * is not yet written. If it is written, do the post-inode write 2241 * processing to put it on the id_pendinghd list. 2242 */ 2243 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2244 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2245 diradd_inode_written(dap, inodedep); 2246 else 2247 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2248 FREE_LOCK(&lk); 2249 } 2250 2251 /* 2252 * This procedure is called to change the offset of a directory 2253 * entry when compacting a directory block which must be owned 2254 * exclusively by the caller. Note that the actual entry movement 2255 * must be done in this procedure to ensure that no I/O completions 2256 * occur while the move is in progress. 2257 */ 2258 void 2259 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2260 struct inode *dp; /* inode for directory */ 2261 caddr_t base; /* address of dp->i_offset */ 2262 caddr_t oldloc; /* address of old directory location */ 2263 caddr_t newloc; /* address of new directory location */ 2264 int entrysize; /* size of directory entry */ 2265 { 2266 int offset, oldoffset, newoffset; 2267 struct pagedep *pagedep; 2268 struct diradd *dap; 2269 ufs_lbn_t lbn; 2270 2271 ACQUIRE_LOCK(&lk); 2272 lbn = lblkno(dp->i_fs, dp->i_offset); 2273 offset = blkoff(dp->i_fs, dp->i_offset); 2274 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2275 goto done; 2276 oldoffset = offset + (oldloc - base); 2277 newoffset = offset + (newloc - base); 2278 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(oldoffset)]); 2279 dap; dap = LIST_NEXT(dap, da_pdlist)) { 2280 if (dap->da_offset != oldoffset) 2281 continue; 2282 dap->da_offset = newoffset; 2283 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2284 break; 2285 LIST_REMOVE(dap, da_pdlist); 2286 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2287 dap, da_pdlist); 2288 break; 2289 } 2290 if (dap == NULL) { 2291 for (dap = LIST_FIRST(&pagedep->pd_pendinghd); 2292 dap; dap = LIST_NEXT(dap, da_pdlist)) { 2293 if (dap->da_offset == oldoffset) { 2294 dap->da_offset = newoffset; 2295 break; 2296 } 2297 } 2298 } 2299 done: 2300 bcopy(oldloc, newloc, entrysize); 2301 FREE_LOCK(&lk); 2302 } 2303 2304 /* 2305 * Free a diradd dependency structure. This routine must be called 2306 * with splbio interrupts blocked. 2307 */ 2308 static void 2309 free_diradd(dap) 2310 struct diradd *dap; 2311 { 2312 struct dirrem *dirrem; 2313 struct pagedep *pagedep; 2314 struct inodedep *inodedep; 2315 struct mkdir *mkdir, *nextmd; 2316 2317 #ifdef DEBUG 2318 if (lk.lkt_held == -1) 2319 panic("free_diradd: lock not held"); 2320 #endif 2321 WORKLIST_REMOVE(&dap->da_list); 2322 LIST_REMOVE(dap, da_pdlist); 2323 if ((dap->da_state & DIRCHG) == 0) { 2324 pagedep = dap->da_pagedep; 2325 } else { 2326 dirrem = dap->da_previous; 2327 pagedep = dirrem->dm_pagedep; 2328 dirrem->dm_dirinum = pagedep->pd_ino; 2329 add_to_worklist(&dirrem->dm_list); 2330 } 2331 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2332 0, &inodedep) != 0) 2333 (void) free_inodedep(inodedep); 2334 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2335 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2336 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2337 if (mkdir->md_diradd != dap) 2338 continue; 2339 dap->da_state &= ~mkdir->md_state; 2340 WORKLIST_REMOVE(&mkdir->md_list); 2341 LIST_REMOVE(mkdir, md_mkdirs); 2342 WORKITEM_FREE(mkdir, D_MKDIR); 2343 } 2344 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 2345 panic("free_diradd: unfound ref"); 2346 } 2347 WORKITEM_FREE(dap, D_DIRADD); 2348 } 2349 2350 /* 2351 * Directory entry removal dependencies. 2352 * 2353 * When removing a directory entry, the entry's inode pointer must be 2354 * zero'ed on disk before the corresponding inode's link count is decremented 2355 * (possibly freeing the inode for re-use). This dependency is handled by 2356 * updating the directory entry but delaying the inode count reduction until 2357 * after the directory block has been written to disk. After this point, the 2358 * inode count can be decremented whenever it is convenient. 2359 */ 2360 2361 /* 2362 * This routine should be called immediately after removing 2363 * a directory entry. The inode's link count should not be 2364 * decremented by the calling procedure -- the soft updates 2365 * code will do this task when it is safe. 2366 */ 2367 void 2368 softdep_setup_remove(bp, dp, ip, isrmdir) 2369 struct buf *bp; /* buffer containing directory block */ 2370 struct inode *dp; /* inode for the directory being modified */ 2371 struct inode *ip; /* inode for directory entry being removed */ 2372 int isrmdir; /* indicates if doing RMDIR */ 2373 { 2374 struct dirrem *dirrem, *prevdirrem; 2375 2376 /* 2377 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2378 */ 2379 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2380 2381 /* 2382 * If the COMPLETE flag is clear, then there were no active 2383 * entries and we want to roll back to a zeroed entry until 2384 * the new inode is committed to disk. If the COMPLETE flag is 2385 * set then we have deleted an entry that never made it to 2386 * disk. If the entry we deleted resulted from a name change, 2387 * then the old name still resides on disk. We cannot delete 2388 * its inode (returned to us in prevdirrem) until the zeroed 2389 * directory entry gets to disk. The new inode has never been 2390 * referenced on the disk, so can be deleted immediately. 2391 */ 2392 if ((dirrem->dm_state & COMPLETE) == 0) { 2393 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2394 dm_next); 2395 FREE_LOCK(&lk); 2396 } else { 2397 if (prevdirrem != NULL) 2398 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2399 prevdirrem, dm_next); 2400 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2401 FREE_LOCK(&lk); 2402 handle_workitem_remove(dirrem); 2403 } 2404 } 2405 2406 /* 2407 * Allocate a new dirrem if appropriate and return it along with 2408 * its associated pagedep. Called without a lock, returns with lock. 2409 */ 2410 static long num_dirrem; /* number of dirrem allocated */ 2411 static struct dirrem * 2412 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2413 struct buf *bp; /* buffer containing directory block */ 2414 struct inode *dp; /* inode for the directory being modified */ 2415 struct inode *ip; /* inode for directory entry being removed */ 2416 int isrmdir; /* indicates if doing RMDIR */ 2417 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2418 { 2419 int offset; 2420 ufs_lbn_t lbn; 2421 struct diradd *dap; 2422 struct dirrem *dirrem; 2423 struct pagedep *pagedep; 2424 2425 /* 2426 * Whiteouts have no deletion dependencies. 2427 */ 2428 if (ip == NULL) 2429 panic("newdirrem: whiteout"); 2430 /* 2431 * If we are over our limit, try to improve the situation. 2432 * Limiting the number of dirrem structures will also limit 2433 * the number of freefile and freeblks structures. 2434 */ 2435 if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0) 2436 (void) request_cleanup(FLUSH_REMOVE, 0); 2437 num_dirrem += 1; 2438 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2439 M_DIRREM, M_WAITOK); 2440 bzero(dirrem, sizeof(struct dirrem)); 2441 dirrem->dm_list.wk_type = D_DIRREM; 2442 dirrem->dm_state = isrmdir ? RMDIR : 0; 2443 dirrem->dm_mnt = ITOV(ip)->v_mount; 2444 dirrem->dm_oldinum = ip->i_number; 2445 *prevdirremp = NULL; 2446 2447 ACQUIRE_LOCK(&lk); 2448 lbn = lblkno(dp->i_fs, dp->i_offset); 2449 offset = blkoff(dp->i_fs, dp->i_offset); 2450 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2451 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2452 dirrem->dm_pagedep = pagedep; 2453 /* 2454 * Check for a diradd dependency for the same directory entry. 2455 * If present, then both dependencies become obsolete and can 2456 * be de-allocated. Check for an entry on both the pd_dirraddhd 2457 * list and the pd_pendinghd list. 2458 */ 2459 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(offset)]); 2460 dap; dap = LIST_NEXT(dap, da_pdlist)) 2461 if (dap->da_offset == offset) 2462 break; 2463 if (dap == NULL) { 2464 for (dap = LIST_FIRST(&pagedep->pd_pendinghd); 2465 dap; dap = LIST_NEXT(dap, da_pdlist)) 2466 if (dap->da_offset == offset) 2467 break; 2468 if (dap == NULL) 2469 return (dirrem); 2470 } 2471 /* 2472 * Must be ATTACHED at this point. 2473 */ 2474 if ((dap->da_state & ATTACHED) == 0) 2475 panic("newdirrem: not ATTACHED"); 2476 if (dap->da_newinum != ip->i_number) 2477 panic("newdirrem: inum %d should be %d", 2478 ip->i_number, dap->da_newinum); 2479 /* 2480 * If we are deleting a changed name that never made it to disk, 2481 * then return the dirrem describing the previous inode (which 2482 * represents the inode currently referenced from this entry on disk). 2483 */ 2484 if ((dap->da_state & DIRCHG) != 0) { 2485 *prevdirremp = dap->da_previous; 2486 dap->da_state &= ~DIRCHG; 2487 dap->da_pagedep = pagedep; 2488 } 2489 /* 2490 * We are deleting an entry that never made it to disk. 2491 * Mark it COMPLETE so we can delete its inode immediately. 2492 */ 2493 dirrem->dm_state |= COMPLETE; 2494 free_diradd(dap); 2495 return (dirrem); 2496 } 2497 2498 /* 2499 * Directory entry change dependencies. 2500 * 2501 * Changing an existing directory entry requires that an add operation 2502 * be completed first followed by a deletion. The semantics for the addition 2503 * are identical to the description of adding a new entry above except 2504 * that the rollback is to the old inode number rather than zero. Once 2505 * the addition dependency is completed, the removal is done as described 2506 * in the removal routine above. 2507 */ 2508 2509 /* 2510 * This routine should be called immediately after changing 2511 * a directory entry. The inode's link count should not be 2512 * decremented by the calling procedure -- the soft updates 2513 * code will perform this task when it is safe. 2514 */ 2515 void 2516 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 2517 struct buf *bp; /* buffer containing directory block */ 2518 struct inode *dp; /* inode for the directory being modified */ 2519 struct inode *ip; /* inode for directory entry being removed */ 2520 long newinum; /* new inode number for changed entry */ 2521 int isrmdir; /* indicates if doing RMDIR */ 2522 { 2523 int offset; 2524 struct diradd *dap = NULL; 2525 struct dirrem *dirrem, *prevdirrem; 2526 struct pagedep *pagedep; 2527 struct inodedep *inodedep; 2528 2529 offset = blkoff(dp->i_fs, dp->i_offset); 2530 2531 /* 2532 * Whiteouts do not need diradd dependencies. 2533 */ 2534 if (newinum != WINO) { 2535 MALLOC(dap, struct diradd *, sizeof(struct diradd), 2536 M_DIRADD, M_WAITOK); 2537 bzero(dap, sizeof(struct diradd)); 2538 dap->da_list.wk_type = D_DIRADD; 2539 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 2540 dap->da_offset = offset; 2541 dap->da_newinum = newinum; 2542 } 2543 2544 /* 2545 * Allocate a new dirrem and ACQUIRE_LOCK. 2546 */ 2547 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2548 pagedep = dirrem->dm_pagedep; 2549 /* 2550 * The possible values for isrmdir: 2551 * 0 - non-directory file rename 2552 * 1 - directory rename within same directory 2553 * inum - directory rename to new directory of given inode number 2554 * When renaming to a new directory, we are both deleting and 2555 * creating a new directory entry, so the link count on the new 2556 * directory should not change. Thus we do not need the followup 2557 * dirrem which is usually done in handle_workitem_remove. We set 2558 * the DIRCHG flag to tell handle_workitem_remove to skip the 2559 * followup dirrem. 2560 */ 2561 if (isrmdir > 1) 2562 dirrem->dm_state |= DIRCHG; 2563 2564 /* 2565 * Whiteouts have no additional dependencies, 2566 * so just put the dirrem on the correct list. 2567 */ 2568 if (newinum == WINO) { 2569 if ((dirrem->dm_state & COMPLETE) == 0) { 2570 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 2571 dm_next); 2572 } else { 2573 dirrem->dm_dirinum = pagedep->pd_ino; 2574 add_to_worklist(&dirrem->dm_list); 2575 } 2576 FREE_LOCK(&lk); 2577 return; 2578 } 2579 2580 /* 2581 * If the COMPLETE flag is clear, then there were no active 2582 * entries and we want to roll back to the previous inode until 2583 * the new inode is committed to disk. If the COMPLETE flag is 2584 * set, then we have deleted an entry that never made it to disk. 2585 * If the entry we deleted resulted from a name change, then the old 2586 * inode reference still resides on disk. Any rollback that we do 2587 * needs to be to that old inode (returned to us in prevdirrem). If 2588 * the entry we deleted resulted from a create, then there is 2589 * no entry on the disk, so we want to roll back to zero rather 2590 * than the uncommitted inode. In either of the COMPLETE cases we 2591 * want to immediately free the unwritten and unreferenced inode. 2592 */ 2593 if ((dirrem->dm_state & COMPLETE) == 0) { 2594 dap->da_previous = dirrem; 2595 } else { 2596 if (prevdirrem != NULL) { 2597 dap->da_previous = prevdirrem; 2598 } else { 2599 dap->da_state &= ~DIRCHG; 2600 dap->da_pagedep = pagedep; 2601 } 2602 dirrem->dm_dirinum = pagedep->pd_ino; 2603 add_to_worklist(&dirrem->dm_list); 2604 } 2605 /* 2606 * Link into its inodedep. Put it on the id_bufwait list if the inode 2607 * is not yet written. If it is written, do the post-inode write 2608 * processing to put it on the id_pendinghd list. 2609 */ 2610 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 2611 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2612 dap->da_state |= COMPLETE; 2613 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 2614 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 2615 } else { 2616 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 2617 dap, da_pdlist); 2618 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2619 } 2620 FREE_LOCK(&lk); 2621 } 2622 2623 /* 2624 * Called whenever the link count on an inode is changed. 2625 * It creates an inode dependency so that the new reference(s) 2626 * to the inode cannot be committed to disk until the updated 2627 * inode has been written. 2628 */ 2629 void 2630 softdep_change_linkcnt(ip) 2631 struct inode *ip; /* the inode with the increased link count */ 2632 { 2633 struct inodedep *inodedep; 2634 2635 ACQUIRE_LOCK(&lk); 2636 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 2637 if (ip->i_nlink < ip->i_effnlink) 2638 panic("softdep_change_linkcnt: bad delta"); 2639 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 2640 FREE_LOCK(&lk); 2641 } 2642 2643 /* 2644 * This workitem decrements the inode's link count. 2645 * If the link count reaches zero, the file is removed. 2646 */ 2647 static void 2648 handle_workitem_remove(dirrem) 2649 struct dirrem *dirrem; 2650 { 2651 struct proc *p = CURPROC; /* XXX */ 2652 struct inodedep *inodedep; 2653 struct vnode *vp; 2654 struct inode *ip; 2655 ino_t oldinum; 2656 int error; 2657 2658 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) { 2659 softdep_error("handle_workitem_remove: vget", error); 2660 return; 2661 } 2662 ip = VTOI(vp); 2663 ACQUIRE_LOCK(&lk); 2664 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0) 2665 panic("handle_workitem_remove: lost inodedep"); 2666 /* 2667 * Normal file deletion. 2668 */ 2669 if ((dirrem->dm_state & RMDIR) == 0) { 2670 ip->i_nlink--; 2671 ip->i_flag |= IN_CHANGE; 2672 if (ip->i_nlink < ip->i_effnlink) 2673 panic("handle_workitem_remove: bad file delta"); 2674 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 2675 FREE_LOCK(&lk); 2676 vput(vp); 2677 num_dirrem -= 1; 2678 WORKITEM_FREE(dirrem, D_DIRREM); 2679 return; 2680 } 2681 /* 2682 * Directory deletion. Decrement reference count for both the 2683 * just deleted parent directory entry and the reference for ".". 2684 * Next truncate the directory to length zero. When the 2685 * truncation completes, arrange to have the reference count on 2686 * the parent decremented to account for the loss of "..". 2687 */ 2688 ip->i_nlink -= 2; 2689 ip->i_flag |= IN_CHANGE; 2690 if (ip->i_nlink < ip->i_effnlink) 2691 panic("handle_workitem_remove: bad dir delta"); 2692 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 2693 FREE_LOCK(&lk); 2694 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, p->p_ucred, p)) != 0) 2695 softdep_error("handle_workitem_remove: truncate", error); 2696 /* 2697 * Rename a directory to a new parent. Since, we are both deleting 2698 * and creating a new directory entry, the link count on the new 2699 * directory should not change. Thus we skip the followup dirrem. 2700 */ 2701 if (dirrem->dm_state & DIRCHG) { 2702 vput(vp); 2703 num_dirrem -= 1; 2704 WORKITEM_FREE(dirrem, D_DIRREM); 2705 return; 2706 } 2707 /* 2708 * If the inodedep does not exist, then the zero'ed inode has 2709 * been written to disk. If the allocated inode has never been 2710 * written to disk, then the on-disk inode is zero'ed. In either 2711 * case we can remove the file immediately. 2712 */ 2713 ACQUIRE_LOCK(&lk); 2714 dirrem->dm_state = 0; 2715 oldinum = dirrem->dm_oldinum; 2716 dirrem->dm_oldinum = dirrem->dm_dirinum; 2717 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 2718 check_inode_unwritten(inodedep)) { 2719 FREE_LOCK(&lk); 2720 vput(vp); 2721 handle_workitem_remove(dirrem); 2722 return; 2723 } 2724 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 2725 FREE_LOCK(&lk); 2726 vput(vp); 2727 } 2728 2729 /* 2730 * Inode de-allocation dependencies. 2731 * 2732 * When an inode's link count is reduced to zero, it can be de-allocated. We 2733 * found it convenient to postpone de-allocation until after the inode is 2734 * written to disk with its new link count (zero). At this point, all of the 2735 * on-disk inode's block pointers are nullified and, with careful dependency 2736 * list ordering, all dependencies related to the inode will be satisfied and 2737 * the corresponding dependency structures de-allocated. So, if/when the 2738 * inode is reused, there will be no mixing of old dependencies with new 2739 * ones. This artificial dependency is set up by the block de-allocation 2740 * procedure above (softdep_setup_freeblocks) and completed by the 2741 * following procedure. 2742 */ 2743 static void 2744 handle_workitem_freefile(freefile) 2745 struct freefile *freefile; 2746 { 2747 struct fs *fs; 2748 struct vnode vp; 2749 struct inode tip; 2750 struct inodedep *idp; 2751 int error; 2752 2753 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 2754 #ifdef DEBUG 2755 ACQUIRE_LOCK(&lk); 2756 if (inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp)) 2757 panic("handle_workitem_freefile: inodedep survived"); 2758 FREE_LOCK(&lk); 2759 #endif 2760 tip.i_devvp = freefile->fx_devvp; 2761 tip.i_dev = freefile->fx_devvp->v_rdev; 2762 tip.i_fs = fs; 2763 tip.i_vnode = &vp; 2764 vp.v_data = &tip; 2765 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0) 2766 softdep_error("handle_workitem_freefile", error); 2767 WORKITEM_FREE(freefile, D_FREEFILE); 2768 } 2769 2770 /* 2771 * Disk writes. 2772 * 2773 * The dependency structures constructed above are most actively used when file 2774 * system blocks are written to disk. No constraints are placed on when a 2775 * block can be written, but unsatisfied update dependencies are made safe by 2776 * modifying (or replacing) the source memory for the duration of the disk 2777 * write. When the disk write completes, the memory block is again brought 2778 * up-to-date. 2779 * 2780 * In-core inode structure reclamation. 2781 * 2782 * Because there are a finite number of "in-core" inode structures, they are 2783 * reused regularly. By transferring all inode-related dependencies to the 2784 * in-memory inode block and indexing them separately (via "inodedep"s), we 2785 * can allow "in-core" inode structures to be reused at any time and avoid 2786 * any increase in contention. 2787 * 2788 * Called just before entering the device driver to initiate a new disk I/O. 2789 * The buffer must be locked, thus, no I/O completion operations can occur 2790 * while we are manipulating its associated dependencies. 2791 */ 2792 static void 2793 softdep_disk_io_initiation(bp) 2794 struct buf *bp; /* structure describing disk write to occur */ 2795 { 2796 struct worklist *wk, *nextwk; 2797 struct indirdep *indirdep; 2798 2799 /* 2800 * We only care about write operations. There should never 2801 * be dependencies for reads. 2802 */ 2803 if (bp->b_iocmd == BIO_READ) 2804 panic("softdep_disk_io_initiation: read"); 2805 /* 2806 * Do any necessary pre-I/O processing. 2807 */ 2808 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 2809 nextwk = LIST_NEXT(wk, wk_list); 2810 switch (wk->wk_type) { 2811 2812 case D_PAGEDEP: 2813 initiate_write_filepage(WK_PAGEDEP(wk), bp); 2814 continue; 2815 2816 case D_INODEDEP: 2817 initiate_write_inodeblock(WK_INODEDEP(wk), bp); 2818 continue; 2819 2820 case D_INDIRDEP: 2821 indirdep = WK_INDIRDEP(wk); 2822 if (indirdep->ir_state & GOINGAWAY) 2823 panic("disk_io_initiation: indirdep gone"); 2824 /* 2825 * If there are no remaining dependencies, this 2826 * will be writing the real pointers, so the 2827 * dependency can be freed. 2828 */ 2829 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 2830 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 2831 brelse(indirdep->ir_savebp); 2832 /* inline expand WORKLIST_REMOVE(wk); */ 2833 wk->wk_state &= ~ONWORKLIST; 2834 LIST_REMOVE(wk, wk_list); 2835 WORKITEM_FREE(indirdep, D_INDIRDEP); 2836 continue; 2837 } 2838 /* 2839 * Replace up-to-date version with safe version. 2840 */ 2841 ACQUIRE_LOCK(&lk); 2842 indirdep->ir_state &= ~ATTACHED; 2843 indirdep->ir_state |= UNDONE; 2844 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 2845 M_INDIRDEP, M_WAITOK); 2846 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 2847 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 2848 bp->b_bcount); 2849 FREE_LOCK(&lk); 2850 continue; 2851 2852 case D_MKDIR: 2853 case D_BMSAFEMAP: 2854 case D_ALLOCDIRECT: 2855 case D_ALLOCINDIR: 2856 continue; 2857 2858 default: 2859 panic("handle_disk_io_initiation: Unexpected type %s", 2860 TYPENAME(wk->wk_type)); 2861 /* NOTREACHED */ 2862 } 2863 } 2864 } 2865 2866 /* 2867 * Called from within the procedure above to deal with unsatisfied 2868 * allocation dependencies in a directory. The buffer must be locked, 2869 * thus, no I/O completion operations can occur while we are 2870 * manipulating its associated dependencies. 2871 */ 2872 static void 2873 initiate_write_filepage(pagedep, bp) 2874 struct pagedep *pagedep; 2875 struct buf *bp; 2876 { 2877 struct diradd *dap; 2878 struct direct *ep; 2879 int i; 2880 2881 if (pagedep->pd_state & IOSTARTED) { 2882 /* 2883 * This can only happen if there is a driver that does not 2884 * understand chaining. Here biodone will reissue the call 2885 * to strategy for the incomplete buffers. 2886 */ 2887 printf("initiate_write_filepage: already started\n"); 2888 return; 2889 } 2890 pagedep->pd_state |= IOSTARTED; 2891 ACQUIRE_LOCK(&lk); 2892 for (i = 0; i < DAHASHSZ; i++) { 2893 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 2894 dap = LIST_NEXT(dap, da_pdlist)) { 2895 ep = (struct direct *) 2896 ((char *)bp->b_data + dap->da_offset); 2897 if (ep->d_ino != dap->da_newinum) 2898 panic("%s: dir inum %d != new %d", 2899 "initiate_write_filepage", 2900 ep->d_ino, dap->da_newinum); 2901 if (dap->da_state & DIRCHG) 2902 ep->d_ino = dap->da_previous->dm_oldinum; 2903 else 2904 ep->d_ino = 0; 2905 dap->da_state &= ~ATTACHED; 2906 dap->da_state |= UNDONE; 2907 } 2908 } 2909 FREE_LOCK(&lk); 2910 } 2911 2912 /* 2913 * Called from within the procedure above to deal with unsatisfied 2914 * allocation dependencies in an inodeblock. The buffer must be 2915 * locked, thus, no I/O completion operations can occur while we 2916 * are manipulating its associated dependencies. 2917 */ 2918 static void 2919 initiate_write_inodeblock(inodedep, bp) 2920 struct inodedep *inodedep; 2921 struct buf *bp; /* The inode block */ 2922 { 2923 struct allocdirect *adp, *lastadp; 2924 struct dinode *dp; 2925 struct fs *fs; 2926 ufs_lbn_t prevlbn = 0; 2927 int i, deplist; 2928 2929 if (inodedep->id_state & IOSTARTED) 2930 panic("initiate_write_inodeblock: already started"); 2931 inodedep->id_state |= IOSTARTED; 2932 fs = inodedep->id_fs; 2933 dp = (struct dinode *)bp->b_data + 2934 ino_to_fsbo(fs, inodedep->id_ino); 2935 /* 2936 * If the bitmap is not yet written, then the allocated 2937 * inode cannot be written to disk. 2938 */ 2939 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 2940 if (inodedep->id_savedino != NULL) 2941 panic("initiate_write_inodeblock: already doing I/O"); 2942 MALLOC(inodedep->id_savedino, struct dinode *, 2943 sizeof(struct dinode), M_INODEDEP, M_WAITOK); 2944 *inodedep->id_savedino = *dp; 2945 bzero((caddr_t)dp, sizeof(struct dinode)); 2946 return; 2947 } 2948 /* 2949 * If no dependencies, then there is nothing to roll back. 2950 */ 2951 inodedep->id_savedsize = dp->di_size; 2952 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 2953 return; 2954 /* 2955 * Set the dependencies to busy. 2956 */ 2957 ACQUIRE_LOCK(&lk); 2958 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 2959 adp = TAILQ_NEXT(adp, ad_next)) { 2960 #ifdef DIAGNOSTIC 2961 if (deplist != 0 && prevlbn >= adp->ad_lbn) 2962 panic("softdep_write_inodeblock: lbn order"); 2963 prevlbn = adp->ad_lbn; 2964 if (adp->ad_lbn < NDADDR && 2965 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 2966 panic("%s: direct pointer #%ld mismatch %d != %d", 2967 "softdep_write_inodeblock", adp->ad_lbn, 2968 dp->di_db[adp->ad_lbn], adp->ad_newblkno); 2969 if (adp->ad_lbn >= NDADDR && 2970 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 2971 panic("%s: indirect pointer #%ld mismatch %d != %d", 2972 "softdep_write_inodeblock", adp->ad_lbn - NDADDR, 2973 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno); 2974 deplist |= 1 << adp->ad_lbn; 2975 if ((adp->ad_state & ATTACHED) == 0) 2976 panic("softdep_write_inodeblock: Unknown state 0x%x", 2977 adp->ad_state); 2978 #endif /* DIAGNOSTIC */ 2979 adp->ad_state &= ~ATTACHED; 2980 adp->ad_state |= UNDONE; 2981 } 2982 /* 2983 * The on-disk inode cannot claim to be any larger than the last 2984 * fragment that has been written. Otherwise, the on-disk inode 2985 * might have fragments that were not the last block in the file 2986 * which would corrupt the filesystem. 2987 */ 2988 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 2989 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 2990 if (adp->ad_lbn >= NDADDR) 2991 break; 2992 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 2993 /* keep going until hitting a rollback to a frag */ 2994 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 2995 continue; 2996 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 2997 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 2998 #ifdef DIAGNOSTIC 2999 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3000 panic("softdep_write_inodeblock: lost dep1"); 3001 #endif /* DIAGNOSTIC */ 3002 dp->di_db[i] = 0; 3003 } 3004 for (i = 0; i < NIADDR; i++) { 3005 #ifdef DIAGNOSTIC 3006 if (dp->di_ib[i] != 0 && 3007 (deplist & ((1 << NDADDR) << i)) == 0) 3008 panic("softdep_write_inodeblock: lost dep2"); 3009 #endif /* DIAGNOSTIC */ 3010 dp->di_ib[i] = 0; 3011 } 3012 FREE_LOCK(&lk); 3013 return; 3014 } 3015 /* 3016 * If we have zero'ed out the last allocated block of the file, 3017 * roll back the size to the last currently allocated block. 3018 * We know that this last allocated block is a full-sized as 3019 * we already checked for fragments in the loop above. 3020 */ 3021 if (lastadp != NULL && 3022 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3023 for (i = lastadp->ad_lbn; i >= 0; i--) 3024 if (dp->di_db[i] != 0) 3025 break; 3026 dp->di_size = (i + 1) * fs->fs_bsize; 3027 } 3028 /* 3029 * The only dependencies are for indirect blocks. 3030 * 3031 * The file size for indirect block additions is not guaranteed. 3032 * Such a guarantee would be non-trivial to achieve. The conventional 3033 * synchronous write implementation also does not make this guarantee. 3034 * Fsck should catch and fix discrepancies. Arguably, the file size 3035 * can be over-estimated without destroying integrity when the file 3036 * moves into the indirect blocks (i.e., is large). If we want to 3037 * postpone fsck, we are stuck with this argument. 3038 */ 3039 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3040 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3041 FREE_LOCK(&lk); 3042 } 3043 3044 /* 3045 * This routine is called during the completion interrupt 3046 * service routine for a disk write (from the procedure called 3047 * by the device driver to inform the file system caches of 3048 * a request completion). It should be called early in this 3049 * procedure, before the block is made available to other 3050 * processes or other routines are called. 3051 */ 3052 static void 3053 softdep_disk_write_complete(bp) 3054 struct buf *bp; /* describes the completed disk write */ 3055 { 3056 struct worklist *wk; 3057 struct workhead reattach; 3058 struct newblk *newblk; 3059 struct allocindir *aip; 3060 struct allocdirect *adp; 3061 struct indirdep *indirdep; 3062 struct inodedep *inodedep; 3063 struct bmsafemap *bmsafemap; 3064 3065 #ifdef DEBUG 3066 if (lk.lkt_held != -1) 3067 panic("softdep_disk_write_complete: lock is held"); 3068 lk.lkt_held = -2; 3069 #endif 3070 LIST_INIT(&reattach); 3071 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3072 WORKLIST_REMOVE(wk); 3073 switch (wk->wk_type) { 3074 3075 case D_PAGEDEP: 3076 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3077 WORKLIST_INSERT(&reattach, wk); 3078 continue; 3079 3080 case D_INODEDEP: 3081 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3082 WORKLIST_INSERT(&reattach, wk); 3083 continue; 3084 3085 case D_BMSAFEMAP: 3086 bmsafemap = WK_BMSAFEMAP(wk); 3087 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3088 newblk->nb_state |= DEPCOMPLETE; 3089 newblk->nb_bmsafemap = NULL; 3090 LIST_REMOVE(newblk, nb_deps); 3091 } 3092 while ((adp = 3093 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3094 adp->ad_state |= DEPCOMPLETE; 3095 adp->ad_buf = NULL; 3096 LIST_REMOVE(adp, ad_deps); 3097 handle_allocdirect_partdone(adp); 3098 } 3099 while ((aip = 3100 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3101 aip->ai_state |= DEPCOMPLETE; 3102 aip->ai_buf = NULL; 3103 LIST_REMOVE(aip, ai_deps); 3104 handle_allocindir_partdone(aip); 3105 } 3106 while ((inodedep = 3107 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 3108 inodedep->id_state |= DEPCOMPLETE; 3109 LIST_REMOVE(inodedep, id_deps); 3110 inodedep->id_buf = NULL; 3111 } 3112 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 3113 continue; 3114 3115 case D_MKDIR: 3116 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 3117 continue; 3118 3119 case D_ALLOCDIRECT: 3120 adp = WK_ALLOCDIRECT(wk); 3121 adp->ad_state |= COMPLETE; 3122 handle_allocdirect_partdone(adp); 3123 continue; 3124 3125 case D_ALLOCINDIR: 3126 aip = WK_ALLOCINDIR(wk); 3127 aip->ai_state |= COMPLETE; 3128 handle_allocindir_partdone(aip); 3129 continue; 3130 3131 case D_INDIRDEP: 3132 indirdep = WK_INDIRDEP(wk); 3133 if (indirdep->ir_state & GOINGAWAY) 3134 panic("disk_write_complete: indirdep gone"); 3135 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 3136 FREE(indirdep->ir_saveddata, M_INDIRDEP); 3137 indirdep->ir_saveddata = 0; 3138 indirdep->ir_state &= ~UNDONE; 3139 indirdep->ir_state |= ATTACHED; 3140 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 3141 handle_allocindir_partdone(aip); 3142 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 3143 panic("disk_write_complete: not gone"); 3144 } 3145 WORKLIST_INSERT(&reattach, wk); 3146 if ((bp->b_flags & B_DELWRI) == 0) 3147 stat_indir_blk_ptrs++; 3148 bdirty(bp); 3149 continue; 3150 3151 default: 3152 panic("handle_disk_write_complete: Unknown type %s", 3153 TYPENAME(wk->wk_type)); 3154 /* NOTREACHED */ 3155 } 3156 } 3157 /* 3158 * Reattach any requests that must be redone. 3159 */ 3160 while ((wk = LIST_FIRST(&reattach)) != NULL) { 3161 WORKLIST_REMOVE(wk); 3162 WORKLIST_INSERT(&bp->b_dep, wk); 3163 } 3164 #ifdef DEBUG 3165 if (lk.lkt_held != -2) 3166 panic("softdep_disk_write_complete: lock lost"); 3167 lk.lkt_held = -1; 3168 #endif 3169 } 3170 3171 /* 3172 * Called from within softdep_disk_write_complete above. Note that 3173 * this routine is always called from interrupt level with further 3174 * splbio interrupts blocked. 3175 */ 3176 static void 3177 handle_allocdirect_partdone(adp) 3178 struct allocdirect *adp; /* the completed allocdirect */ 3179 { 3180 struct allocdirect *listadp; 3181 struct inodedep *inodedep; 3182 long bsize, delay; 3183 3184 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3185 return; 3186 if (adp->ad_buf != NULL) 3187 panic("handle_allocdirect_partdone: dangling dep"); 3188 /* 3189 * The on-disk inode cannot claim to be any larger than the last 3190 * fragment that has been written. Otherwise, the on-disk inode 3191 * might have fragments that were not the last block in the file 3192 * which would corrupt the filesystem. Thus, we cannot free any 3193 * allocdirects after one whose ad_oldblkno claims a fragment as 3194 * these blocks must be rolled back to zero before writing the inode. 3195 * We check the currently active set of allocdirects in id_inoupdt. 3196 */ 3197 inodedep = adp->ad_inodedep; 3198 bsize = inodedep->id_fs->fs_bsize; 3199 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp; 3200 listadp = TAILQ_NEXT(listadp, ad_next)) { 3201 /* found our block */ 3202 if (listadp == adp) 3203 break; 3204 /* continue if ad_oldlbn is not a fragment */ 3205 if (listadp->ad_oldsize == 0 || 3206 listadp->ad_oldsize == bsize) 3207 continue; 3208 /* hit a fragment */ 3209 return; 3210 } 3211 /* 3212 * If we have reached the end of the current list without 3213 * finding the just finished dependency, then it must be 3214 * on the future dependency list. Future dependencies cannot 3215 * be freed until they are moved to the current list. 3216 */ 3217 if (listadp == NULL) { 3218 #ifdef DEBUG 3219 for (listadp = TAILQ_FIRST(&inodedep->id_newinoupdt); listadp; 3220 listadp = TAILQ_NEXT(listadp, ad_next)) 3221 /* found our block */ 3222 if (listadp == adp) 3223 break; 3224 if (listadp == NULL) 3225 panic("handle_allocdirect_partdone: lost dep"); 3226 #endif /* DEBUG */ 3227 return; 3228 } 3229 /* 3230 * If we have found the just finished dependency, then free 3231 * it along with anything that follows it that is complete. 3232 * If the inode still has a bitmap dependency, then it has 3233 * never been written to disk, hence the on-disk inode cannot 3234 * reference the old fragment so we can free it without delay. 3235 */ 3236 delay = (inodedep->id_state & DEPCOMPLETE); 3237 for (; adp; adp = listadp) { 3238 listadp = TAILQ_NEXT(adp, ad_next); 3239 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3240 return; 3241 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 3242 } 3243 } 3244 3245 /* 3246 * Called from within softdep_disk_write_complete above. Note that 3247 * this routine is always called from interrupt level with further 3248 * splbio interrupts blocked. 3249 */ 3250 static void 3251 handle_allocindir_partdone(aip) 3252 struct allocindir *aip; /* the completed allocindir */ 3253 { 3254 struct indirdep *indirdep; 3255 3256 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 3257 return; 3258 if (aip->ai_buf != NULL) 3259 panic("handle_allocindir_partdone: dangling dependency"); 3260 indirdep = aip->ai_indirdep; 3261 if (indirdep->ir_state & UNDONE) { 3262 LIST_REMOVE(aip, ai_next); 3263 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 3264 return; 3265 } 3266 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3267 aip->ai_newblkno; 3268 LIST_REMOVE(aip, ai_next); 3269 if (aip->ai_freefrag != NULL) 3270 add_to_worklist(&aip->ai_freefrag->ff_list); 3271 WORKITEM_FREE(aip, D_ALLOCINDIR); 3272 } 3273 3274 /* 3275 * Called from within softdep_disk_write_complete above to restore 3276 * in-memory inode block contents to their most up-to-date state. Note 3277 * that this routine is always called from interrupt level with further 3278 * splbio interrupts blocked. 3279 */ 3280 static int 3281 handle_written_inodeblock(inodedep, bp) 3282 struct inodedep *inodedep; 3283 struct buf *bp; /* buffer containing the inode block */ 3284 { 3285 struct worklist *wk, *filefree; 3286 struct allocdirect *adp, *nextadp; 3287 struct dinode *dp; 3288 int hadchanges; 3289 3290 if ((inodedep->id_state & IOSTARTED) == 0) 3291 panic("handle_written_inodeblock: not started"); 3292 inodedep->id_state &= ~IOSTARTED; 3293 inodedep->id_state |= COMPLETE; 3294 dp = (struct dinode *)bp->b_data + 3295 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3296 /* 3297 * If we had to rollback the inode allocation because of 3298 * bitmaps being incomplete, then simply restore it. 3299 * Keep the block dirty so that it will not be reclaimed until 3300 * all associated dependencies have been cleared and the 3301 * corresponding updates written to disk. 3302 */ 3303 if (inodedep->id_savedino != NULL) { 3304 *dp = *inodedep->id_savedino; 3305 FREE(inodedep->id_savedino, M_INODEDEP); 3306 inodedep->id_savedino = NULL; 3307 if ((bp->b_flags & B_DELWRI) == 0) 3308 stat_inode_bitmap++; 3309 bdirty(bp); 3310 return (1); 3311 } 3312 /* 3313 * Roll forward anything that had to be rolled back before 3314 * the inode could be updated. 3315 */ 3316 hadchanges = 0; 3317 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 3318 nextadp = TAILQ_NEXT(adp, ad_next); 3319 if (adp->ad_state & ATTACHED) 3320 panic("handle_written_inodeblock: new entry"); 3321 if (adp->ad_lbn < NDADDR) { 3322 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) 3323 panic("%s: %s #%ld mismatch %d != %d", 3324 "handle_written_inodeblock", 3325 "direct pointer", adp->ad_lbn, 3326 dp->di_db[adp->ad_lbn], adp->ad_oldblkno); 3327 dp->di_db[adp->ad_lbn] = adp->ad_newblkno; 3328 } else { 3329 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) 3330 panic("%s: %s #%ld allocated as %d", 3331 "handle_written_inodeblock", 3332 "indirect pointer", adp->ad_lbn - NDADDR, 3333 dp->di_ib[adp->ad_lbn - NDADDR]); 3334 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno; 3335 } 3336 adp->ad_state &= ~UNDONE; 3337 adp->ad_state |= ATTACHED; 3338 hadchanges = 1; 3339 } 3340 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 3341 stat_direct_blk_ptrs++; 3342 /* 3343 * Reset the file size to its most up-to-date value. 3344 */ 3345 if (inodedep->id_savedsize == -1) 3346 panic("handle_written_inodeblock: bad size"); 3347 if (dp->di_size != inodedep->id_savedsize) { 3348 dp->di_size = inodedep->id_savedsize; 3349 hadchanges = 1; 3350 } 3351 inodedep->id_savedsize = -1; 3352 /* 3353 * If there were any rollbacks in the inode block, then it must be 3354 * marked dirty so that its will eventually get written back in 3355 * its correct form. 3356 */ 3357 if (hadchanges) 3358 bdirty(bp); 3359 /* 3360 * Process any allocdirects that completed during the update. 3361 */ 3362 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 3363 handle_allocdirect_partdone(adp); 3364 /* 3365 * Process deallocations that were held pending until the 3366 * inode had been written to disk. Freeing of the inode 3367 * is delayed until after all blocks have been freed to 3368 * avoid creation of new <vfsid, inum, lbn> triples 3369 * before the old ones have been deleted. 3370 */ 3371 filefree = NULL; 3372 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 3373 WORKLIST_REMOVE(wk); 3374 switch (wk->wk_type) { 3375 3376 case D_FREEFILE: 3377 /* 3378 * We defer adding filefree to the worklist until 3379 * all other additions have been made to ensure 3380 * that it will be done after all the old blocks 3381 * have been freed. 3382 */ 3383 if (filefree != NULL) 3384 panic("handle_written_inodeblock: filefree"); 3385 filefree = wk; 3386 continue; 3387 3388 case D_MKDIR: 3389 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 3390 continue; 3391 3392 case D_DIRADD: 3393 diradd_inode_written(WK_DIRADD(wk), inodedep); 3394 continue; 3395 3396 case D_FREEBLKS: 3397 case D_FREEFRAG: 3398 case D_DIRREM: 3399 add_to_worklist(wk); 3400 continue; 3401 3402 default: 3403 panic("handle_written_inodeblock: Unknown type %s", 3404 TYPENAME(wk->wk_type)); 3405 /* NOTREACHED */ 3406 } 3407 } 3408 if (filefree != NULL) { 3409 if (free_inodedep(inodedep) == 0) 3410 panic("handle_written_inodeblock: live inodedep"); 3411 add_to_worklist(filefree); 3412 return (0); 3413 } 3414 3415 /* 3416 * If no outstanding dependencies, free it. 3417 */ 3418 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0) 3419 return (0); 3420 return (hadchanges); 3421 } 3422 3423 /* 3424 * Process a diradd entry after its dependent inode has been written. 3425 * This routine must be called with splbio interrupts blocked. 3426 */ 3427 static void 3428 diradd_inode_written(dap, inodedep) 3429 struct diradd *dap; 3430 struct inodedep *inodedep; 3431 { 3432 struct pagedep *pagedep; 3433 3434 dap->da_state |= COMPLETE; 3435 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3436 if (dap->da_state & DIRCHG) 3437 pagedep = dap->da_previous->dm_pagedep; 3438 else 3439 pagedep = dap->da_pagedep; 3440 LIST_REMOVE(dap, da_pdlist); 3441 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3442 } 3443 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3444 } 3445 3446 /* 3447 * Handle the completion of a mkdir dependency. 3448 */ 3449 static void 3450 handle_written_mkdir(mkdir, type) 3451 struct mkdir *mkdir; 3452 int type; 3453 { 3454 struct diradd *dap; 3455 struct pagedep *pagedep; 3456 3457 if (mkdir->md_state != type) 3458 panic("handle_written_mkdir: bad type"); 3459 dap = mkdir->md_diradd; 3460 dap->da_state &= ~type; 3461 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 3462 dap->da_state |= DEPCOMPLETE; 3463 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3464 if (dap->da_state & DIRCHG) 3465 pagedep = dap->da_previous->dm_pagedep; 3466 else 3467 pagedep = dap->da_pagedep; 3468 LIST_REMOVE(dap, da_pdlist); 3469 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3470 } 3471 LIST_REMOVE(mkdir, md_mkdirs); 3472 WORKITEM_FREE(mkdir, D_MKDIR); 3473 } 3474 3475 /* 3476 * Called from within softdep_disk_write_complete above. 3477 * A write operation was just completed. Removed inodes can 3478 * now be freed and associated block pointers may be committed. 3479 * Note that this routine is always called from interrupt level 3480 * with further splbio interrupts blocked. 3481 */ 3482 static int 3483 handle_written_filepage(pagedep, bp) 3484 struct pagedep *pagedep; 3485 struct buf *bp; /* buffer containing the written page */ 3486 { 3487 struct dirrem *dirrem; 3488 struct diradd *dap, *nextdap; 3489 struct direct *ep; 3490 int i, chgs; 3491 3492 if ((pagedep->pd_state & IOSTARTED) == 0) 3493 panic("handle_written_filepage: not started"); 3494 pagedep->pd_state &= ~IOSTARTED; 3495 /* 3496 * Process any directory removals that have been committed. 3497 */ 3498 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 3499 LIST_REMOVE(dirrem, dm_next); 3500 dirrem->dm_dirinum = pagedep->pd_ino; 3501 add_to_worklist(&dirrem->dm_list); 3502 } 3503 /* 3504 * Free any directory additions that have been committed. 3505 */ 3506 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 3507 free_diradd(dap); 3508 /* 3509 * Uncommitted directory entries must be restored. 3510 */ 3511 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 3512 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 3513 dap = nextdap) { 3514 nextdap = LIST_NEXT(dap, da_pdlist); 3515 if (dap->da_state & ATTACHED) 3516 panic("handle_written_filepage: attached"); 3517 ep = (struct direct *) 3518 ((char *)bp->b_data + dap->da_offset); 3519 ep->d_ino = dap->da_newinum; 3520 dap->da_state &= ~UNDONE; 3521 dap->da_state |= ATTACHED; 3522 chgs = 1; 3523 /* 3524 * If the inode referenced by the directory has 3525 * been written out, then the dependency can be 3526 * moved to the pending list. 3527 */ 3528 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3529 LIST_REMOVE(dap, da_pdlist); 3530 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 3531 da_pdlist); 3532 } 3533 } 3534 } 3535 /* 3536 * If there were any rollbacks in the directory, then it must be 3537 * marked dirty so that its will eventually get written back in 3538 * its correct form. 3539 */ 3540 if (chgs) { 3541 if ((bp->b_flags & B_DELWRI) == 0) 3542 stat_dir_entry++; 3543 bdirty(bp); 3544 } 3545 /* 3546 * If no dependencies remain, the pagedep will be freed. 3547 * Otherwise it will remain to update the page before it 3548 * is written back to disk. 3549 */ 3550 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) { 3551 for (i = 0; i < DAHASHSZ; i++) 3552 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 3553 break; 3554 if (i == DAHASHSZ) { 3555 LIST_REMOVE(pagedep, pd_hash); 3556 WORKITEM_FREE(pagedep, D_PAGEDEP); 3557 return (0); 3558 } 3559 } 3560 return (1); 3561 } 3562 3563 /* 3564 * Writing back in-core inode structures. 3565 * 3566 * The file system only accesses an inode's contents when it occupies an 3567 * "in-core" inode structure. These "in-core" structures are separate from 3568 * the page frames used to cache inode blocks. Only the latter are 3569 * transferred to/from the disk. So, when the updated contents of the 3570 * "in-core" inode structure are copied to the corresponding in-memory inode 3571 * block, the dependencies are also transferred. The following procedure is 3572 * called when copying a dirty "in-core" inode to a cached inode block. 3573 */ 3574 3575 /* 3576 * Called when an inode is loaded from disk. If the effective link count 3577 * differed from the actual link count when it was last flushed, then we 3578 * need to ensure that the correct effective link count is put back. 3579 */ 3580 void 3581 softdep_load_inodeblock(ip) 3582 struct inode *ip; /* the "in_core" copy of the inode */ 3583 { 3584 struct inodedep *inodedep; 3585 3586 /* 3587 * Check for alternate nlink count. 3588 */ 3589 ip->i_effnlink = ip->i_nlink; 3590 ACQUIRE_LOCK(&lk); 3591 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 3592 FREE_LOCK(&lk); 3593 return; 3594 } 3595 ip->i_effnlink -= inodedep->id_nlinkdelta; 3596 FREE_LOCK(&lk); 3597 } 3598 3599 /* 3600 * This routine is called just before the "in-core" inode 3601 * information is to be copied to the in-memory inode block. 3602 * Recall that an inode block contains several inodes. If 3603 * the force flag is set, then the dependencies will be 3604 * cleared so that the update can always be made. Note that 3605 * the buffer is locked when this routine is called, so we 3606 * will never be in the middle of writing the inode block 3607 * to disk. 3608 */ 3609 void 3610 softdep_update_inodeblock(ip, bp, waitfor) 3611 struct inode *ip; /* the "in_core" copy of the inode */ 3612 struct buf *bp; /* the buffer containing the inode block */ 3613 int waitfor; /* nonzero => update must be allowed */ 3614 { 3615 struct inodedep *inodedep; 3616 struct worklist *wk; 3617 int error, gotit; 3618 3619 /* 3620 * If the effective link count is not equal to the actual link 3621 * count, then we must track the difference in an inodedep while 3622 * the inode is (potentially) tossed out of the cache. Otherwise, 3623 * if there is no existing inodedep, then there are no dependencies 3624 * to track. 3625 */ 3626 ACQUIRE_LOCK(&lk); 3627 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 3628 if (ip->i_effnlink != ip->i_nlink) 3629 panic("softdep_update_inodeblock: bad link count"); 3630 FREE_LOCK(&lk); 3631 return; 3632 } 3633 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 3634 panic("softdep_update_inodeblock: bad delta"); 3635 /* 3636 * Changes have been initiated. Anything depending on these 3637 * changes cannot occur until this inode has been written. 3638 */ 3639 inodedep->id_state &= ~COMPLETE; 3640 if ((inodedep->id_state & ONWORKLIST) == 0) 3641 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 3642 /* 3643 * Any new dependencies associated with the incore inode must 3644 * now be moved to the list associated with the buffer holding 3645 * the in-memory copy of the inode. Once merged process any 3646 * allocdirects that are completed by the merger. 3647 */ 3648 merge_inode_lists(inodedep); 3649 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 3650 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 3651 /* 3652 * Now that the inode has been pushed into the buffer, the 3653 * operations dependent on the inode being written to disk 3654 * can be moved to the id_bufwait so that they will be 3655 * processed when the buffer I/O completes. 3656 */ 3657 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 3658 WORKLIST_REMOVE(wk); 3659 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 3660 } 3661 /* 3662 * Newly allocated inodes cannot be written until the bitmap 3663 * that allocates them have been written (indicated by 3664 * DEPCOMPLETE being set in id_state). If we are doing a 3665 * forced sync (e.g., an fsync on a file), we force the bitmap 3666 * to be written so that the update can be done. 3667 */ 3668 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 3669 FREE_LOCK(&lk); 3670 return; 3671 } 3672 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 3673 FREE_LOCK(&lk); 3674 if (gotit && 3675 (error = BUF_WRITE(inodedep->id_buf)) != 0) 3676 softdep_error("softdep_update_inodeblock: bwrite", error); 3677 if ((inodedep->id_state & DEPCOMPLETE) == 0) 3678 panic("softdep_update_inodeblock: update failed"); 3679 } 3680 3681 /* 3682 * Merge the new inode dependency list (id_newinoupdt) into the old 3683 * inode dependency list (id_inoupdt). This routine must be called 3684 * with splbio interrupts blocked. 3685 */ 3686 static void 3687 merge_inode_lists(inodedep) 3688 struct inodedep *inodedep; 3689 { 3690 struct allocdirect *listadp, *newadp; 3691 3692 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 3693 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) { 3694 if (listadp->ad_lbn < newadp->ad_lbn) { 3695 listadp = TAILQ_NEXT(listadp, ad_next); 3696 continue; 3697 } 3698 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 3699 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 3700 if (listadp->ad_lbn == newadp->ad_lbn) { 3701 allocdirect_merge(&inodedep->id_inoupdt, newadp, 3702 listadp); 3703 listadp = newadp; 3704 } 3705 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 3706 } 3707 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) { 3708 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 3709 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next); 3710 } 3711 } 3712 3713 /* 3714 * If we are doing an fsync, then we must ensure that any directory 3715 * entries for the inode have been written after the inode gets to disk. 3716 */ 3717 int 3718 softdep_fsync(vp) 3719 struct vnode *vp; /* the "in_core" copy of the inode */ 3720 { 3721 struct inodedep *inodedep; 3722 struct pagedep *pagedep; 3723 struct worklist *wk; 3724 struct diradd *dap; 3725 struct mount *mnt; 3726 struct vnode *pvp; 3727 struct inode *ip; 3728 struct buf *bp; 3729 struct fs *fs; 3730 struct proc *p = CURPROC; /* XXX */ 3731 int error, flushparent; 3732 ino_t parentino; 3733 ufs_lbn_t lbn; 3734 3735 ip = VTOI(vp); 3736 fs = ip->i_fs; 3737 ACQUIRE_LOCK(&lk); 3738 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 3739 FREE_LOCK(&lk); 3740 return (0); 3741 } 3742 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 3743 LIST_FIRST(&inodedep->id_bufwait) != NULL || 3744 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 3745 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 3746 panic("softdep_fsync: pending ops"); 3747 for (error = 0, flushparent = 0; ; ) { 3748 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 3749 break; 3750 if (wk->wk_type != D_DIRADD) 3751 panic("softdep_fsync: Unexpected type %s", 3752 TYPENAME(wk->wk_type)); 3753 dap = WK_DIRADD(wk); 3754 /* 3755 * Flush our parent if this directory entry 3756 * has a MKDIR_PARENT dependency. 3757 */ 3758 if (dap->da_state & DIRCHG) 3759 pagedep = dap->da_previous->dm_pagedep; 3760 else 3761 pagedep = dap->da_pagedep; 3762 mnt = pagedep->pd_mnt; 3763 parentino = pagedep->pd_ino; 3764 lbn = pagedep->pd_lbn; 3765 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 3766 panic("softdep_fsync: dirty"); 3767 flushparent = dap->da_state & MKDIR_PARENT; 3768 /* 3769 * If we are being fsync'ed as part of vgone'ing this vnode, 3770 * then we will not be able to release and recover the 3771 * vnode below, so we just have to give up on writing its 3772 * directory entry out. It will eventually be written, just 3773 * not now, but then the user was not asking to have it 3774 * written, so we are not breaking any promises. 3775 */ 3776 if (vp->v_flag & VXLOCK) 3777 break; 3778 /* 3779 * We prevent deadlock by always fetching inodes from the 3780 * root, moving down the directory tree. Thus, when fetching 3781 * our parent directory, we must unlock ourselves before 3782 * requesting the lock on our parent. See the comment in 3783 * ufs_lookup for details on possible races. 3784 */ 3785 FREE_LOCK(&lk); 3786 VOP_UNLOCK(vp, 0, p); 3787 error = VFS_VGET(mnt, parentino, &pvp); 3788 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); 3789 if (error != 0) 3790 return (error); 3791 if (flushparent) { 3792 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 3793 vput(pvp); 3794 return (error); 3795 } 3796 } 3797 /* 3798 * Flush directory page containing the inode's name. 3799 */ 3800 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), p->p_ucred, 3801 &bp); 3802 if (error == 0) 3803 error = BUF_WRITE(bp); 3804 vput(pvp); 3805 if (error != 0) 3806 return (error); 3807 ACQUIRE_LOCK(&lk); 3808 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 3809 break; 3810 } 3811 FREE_LOCK(&lk); 3812 return (0); 3813 } 3814 3815 /* 3816 * Flush all the dirty bitmaps associated with the block device 3817 * before flushing the rest of the dirty blocks so as to reduce 3818 * the number of dependencies that will have to be rolled back. 3819 */ 3820 void 3821 softdep_fsync_mountdev(vp) 3822 struct vnode *vp; 3823 { 3824 struct buf *bp, *nbp; 3825 struct worklist *wk; 3826 3827 if (!vn_isdisk(vp, NULL)) 3828 panic("softdep_fsync_mountdev: vnode not a disk"); 3829 ACQUIRE_LOCK(&lk); 3830 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 3831 nbp = TAILQ_NEXT(bp, b_vnbufs); 3832 /* 3833 * If it is already scheduled, skip to the next buffer. 3834 */ 3835 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 3836 continue; 3837 if ((bp->b_flags & B_DELWRI) == 0) 3838 panic("softdep_fsync_mountdev: not dirty"); 3839 /* 3840 * We are only interested in bitmaps with outstanding 3841 * dependencies. 3842 */ 3843 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 3844 wk->wk_type != D_BMSAFEMAP || 3845 (bp->b_xflags & BX_BKGRDINPROG)) { 3846 BUF_UNLOCK(bp); 3847 continue; 3848 } 3849 bremfree(bp); 3850 FREE_LOCK(&lk); 3851 (void) bawrite(bp); 3852 ACQUIRE_LOCK(&lk); 3853 /* 3854 * Since we may have slept during the I/O, we need 3855 * to start from a known point. 3856 */ 3857 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 3858 } 3859 drain_output(vp, 1); 3860 FREE_LOCK(&lk); 3861 } 3862 3863 /* 3864 * This routine is called when we are trying to synchronously flush a 3865 * file. This routine must eliminate any filesystem metadata dependencies 3866 * so that the syncing routine can succeed by pushing the dirty blocks 3867 * associated with the file. If any I/O errors occur, they are returned. 3868 */ 3869 int 3870 softdep_sync_metadata(ap) 3871 struct vop_fsync_args /* { 3872 struct vnode *a_vp; 3873 struct ucred *a_cred; 3874 int a_waitfor; 3875 struct proc *a_p; 3876 } */ *ap; 3877 { 3878 struct vnode *vp = ap->a_vp; 3879 struct pagedep *pagedep; 3880 struct allocdirect *adp; 3881 struct allocindir *aip; 3882 struct buf *bp, *nbp; 3883 struct worklist *wk; 3884 int i, error, waitfor; 3885 3886 /* 3887 * Check whether this vnode is involved in a filesystem 3888 * that is doing soft dependency processing. 3889 */ 3890 if (!vn_isdisk(vp, NULL)) { 3891 if (!DOINGSOFTDEP(vp)) 3892 return (0); 3893 } else 3894 if (vp->v_specmountpoint == NULL || 3895 (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0) 3896 return (0); 3897 /* 3898 * Ensure that any direct block dependencies have been cleared. 3899 */ 3900 ACQUIRE_LOCK(&lk); 3901 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 3902 FREE_LOCK(&lk); 3903 return (error); 3904 } 3905 /* 3906 * For most files, the only metadata dependencies are the 3907 * cylinder group maps that allocate their inode or blocks. 3908 * The block allocation dependencies can be found by traversing 3909 * the dependency lists for any buffers that remain on their 3910 * dirty buffer list. The inode allocation dependency will 3911 * be resolved when the inode is updated with MNT_WAIT. 3912 * This work is done in two passes. The first pass grabs most 3913 * of the buffers and begins asynchronously writing them. The 3914 * only way to wait for these asynchronous writes is to sleep 3915 * on the filesystem vnode which may stay busy for a long time 3916 * if the filesystem is active. So, instead, we make a second 3917 * pass over the dependencies blocking on each write. In the 3918 * usual case we will be blocking against a write that we 3919 * initiated, so when it is done the dependency will have been 3920 * resolved. Thus the second pass is expected to end quickly. 3921 */ 3922 waitfor = MNT_NOWAIT; 3923 top: 3924 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 3925 FREE_LOCK(&lk); 3926 return (0); 3927 } 3928 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 3929 loop: 3930 /* 3931 * As we hold the buffer locked, none of its dependencies 3932 * will disappear. 3933 */ 3934 for (wk = LIST_FIRST(&bp->b_dep); wk; 3935 wk = LIST_NEXT(wk, wk_list)) { 3936 switch (wk->wk_type) { 3937 3938 case D_ALLOCDIRECT: 3939 adp = WK_ALLOCDIRECT(wk); 3940 if (adp->ad_state & DEPCOMPLETE) 3941 break; 3942 nbp = adp->ad_buf; 3943 if (getdirtybuf(&nbp, waitfor) == 0) 3944 break; 3945 FREE_LOCK(&lk); 3946 if (waitfor == MNT_NOWAIT) { 3947 bawrite(nbp); 3948 } else if ((error = BUF_WRITE(nbp)) != 0) { 3949 bawrite(bp); 3950 return (error); 3951 } 3952 ACQUIRE_LOCK(&lk); 3953 break; 3954 3955 case D_ALLOCINDIR: 3956 aip = WK_ALLOCINDIR(wk); 3957 if (aip->ai_state & DEPCOMPLETE) 3958 break; 3959 nbp = aip->ai_buf; 3960 if (getdirtybuf(&nbp, waitfor) == 0) 3961 break; 3962 FREE_LOCK(&lk); 3963 if (waitfor == MNT_NOWAIT) { 3964 bawrite(nbp); 3965 } else if ((error = BUF_WRITE(nbp)) != 0) { 3966 bawrite(bp); 3967 return (error); 3968 } 3969 ACQUIRE_LOCK(&lk); 3970 break; 3971 3972 case D_INDIRDEP: 3973 restart: 3974 for (aip = LIST_FIRST(&WK_INDIRDEP(wk)->ir_deplisthd); 3975 aip; aip = LIST_NEXT(aip, ai_next)) { 3976 if (aip->ai_state & DEPCOMPLETE) 3977 continue; 3978 nbp = aip->ai_buf; 3979 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 3980 goto restart; 3981 FREE_LOCK(&lk); 3982 if ((error = BUF_WRITE(nbp)) != 0) { 3983 bawrite(bp); 3984 return (error); 3985 } 3986 ACQUIRE_LOCK(&lk); 3987 goto restart; 3988 } 3989 break; 3990 3991 case D_INODEDEP: 3992 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 3993 WK_INODEDEP(wk)->id_ino)) != 0) { 3994 FREE_LOCK(&lk); 3995 bawrite(bp); 3996 return (error); 3997 } 3998 break; 3999 4000 case D_PAGEDEP: 4001 /* 4002 * We are trying to sync a directory that may 4003 * have dependencies on both its own metadata 4004 * and/or dependencies on the inodes of any 4005 * recently allocated files. We walk its diradd 4006 * lists pushing out the associated inode. 4007 */ 4008 pagedep = WK_PAGEDEP(wk); 4009 for (i = 0; i < DAHASHSZ; i++) { 4010 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 4011 continue; 4012 if ((error = 4013 flush_pagedep_deps(vp, pagedep->pd_mnt, 4014 &pagedep->pd_diraddhd[i]))) { 4015 FREE_LOCK(&lk); 4016 bawrite(bp); 4017 return (error); 4018 } 4019 } 4020 break; 4021 4022 case D_MKDIR: 4023 /* 4024 * This case should never happen if the vnode has 4025 * been properly sync'ed. However, if this function 4026 * is used at a place where the vnode has not yet 4027 * been sync'ed, this dependency can show up. So, 4028 * rather than panic, just flush it. 4029 */ 4030 nbp = WK_MKDIR(wk)->md_buf; 4031 if (getdirtybuf(&nbp, waitfor) == 0) 4032 break; 4033 FREE_LOCK(&lk); 4034 if (waitfor == MNT_NOWAIT) { 4035 bawrite(nbp); 4036 } else if ((error = BUF_WRITE(nbp)) != 0) { 4037 bawrite(bp); 4038 return (error); 4039 } 4040 ACQUIRE_LOCK(&lk); 4041 break; 4042 4043 case D_BMSAFEMAP: 4044 /* 4045 * This case should never happen if the vnode has 4046 * been properly sync'ed. However, if this function 4047 * is used at a place where the vnode has not yet 4048 * been sync'ed, this dependency can show up. So, 4049 * rather than panic, just flush it. 4050 */ 4051 nbp = WK_BMSAFEMAP(wk)->sm_buf; 4052 if (getdirtybuf(&nbp, waitfor) == 0) 4053 break; 4054 FREE_LOCK(&lk); 4055 if (waitfor == MNT_NOWAIT) { 4056 bawrite(nbp); 4057 } else if ((error = BUF_WRITE(nbp)) != 0) { 4058 bawrite(bp); 4059 return (error); 4060 } 4061 ACQUIRE_LOCK(&lk); 4062 break; 4063 4064 default: 4065 panic("softdep_sync_metadata: Unknown type %s", 4066 TYPENAME(wk->wk_type)); 4067 /* NOTREACHED */ 4068 } 4069 } 4070 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 4071 nbp = TAILQ_NEXT(bp, b_vnbufs); 4072 FREE_LOCK(&lk); 4073 bawrite(bp); 4074 ACQUIRE_LOCK(&lk); 4075 if (nbp != NULL) { 4076 bp = nbp; 4077 goto loop; 4078 } 4079 /* 4080 * We must wait for any I/O in progress to finish so that 4081 * all potential buffers on the dirty list will be visible. 4082 * Once they are all there, proceed with the second pass 4083 * which will wait for the I/O as per above. 4084 */ 4085 drain_output(vp, 1); 4086 /* 4087 * The brief unlock is to allow any pent up dependency 4088 * processing to be done. 4089 */ 4090 if (waitfor == MNT_NOWAIT) { 4091 waitfor = MNT_WAIT; 4092 FREE_LOCK(&lk); 4093 ACQUIRE_LOCK(&lk); 4094 goto top; 4095 } 4096 4097 /* 4098 * If we have managed to get rid of all the dirty buffers, 4099 * then we are done. For certain directories and block 4100 * devices, we may need to do further work. 4101 */ 4102 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 4103 FREE_LOCK(&lk); 4104 return (0); 4105 } 4106 4107 FREE_LOCK(&lk); 4108 /* 4109 * If we are trying to sync a block device, some of its buffers may 4110 * contain metadata that cannot be written until the contents of some 4111 * partially written files have been written to disk. The only easy 4112 * way to accomplish this is to sync the entire filesystem (luckily 4113 * this happens rarely). 4114 */ 4115 if (vn_isdisk(vp, NULL) && 4116 vp->v_specmountpoint && !VOP_ISLOCKED(vp, NULL) && 4117 (error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT, ap->a_cred, 4118 ap->a_p)) != 0) 4119 return (error); 4120 return (0); 4121 } 4122 4123 /* 4124 * Flush the dependencies associated with an inodedep. 4125 * Called with splbio blocked. 4126 */ 4127 static int 4128 flush_inodedep_deps(fs, ino) 4129 struct fs *fs; 4130 ino_t ino; 4131 { 4132 struct inodedep *inodedep; 4133 struct allocdirect *adp; 4134 int error, waitfor; 4135 struct buf *bp; 4136 4137 /* 4138 * This work is done in two passes. The first pass grabs most 4139 * of the buffers and begins asynchronously writing them. The 4140 * only way to wait for these asynchronous writes is to sleep 4141 * on the filesystem vnode which may stay busy for a long time 4142 * if the filesystem is active. So, instead, we make a second 4143 * pass over the dependencies blocking on each write. In the 4144 * usual case we will be blocking against a write that we 4145 * initiated, so when it is done the dependency will have been 4146 * resolved. Thus the second pass is expected to end quickly. 4147 * We give a brief window at the top of the loop to allow 4148 * any pending I/O to complete. 4149 */ 4150 for (waitfor = MNT_NOWAIT; ; ) { 4151 FREE_LOCK(&lk); 4152 ACQUIRE_LOCK(&lk); 4153 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4154 return (0); 4155 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4156 adp = TAILQ_NEXT(adp, ad_next)) { 4157 if (adp->ad_state & DEPCOMPLETE) 4158 continue; 4159 bp = adp->ad_buf; 4160 if (getdirtybuf(&bp, waitfor) == 0) { 4161 if (waitfor == MNT_NOWAIT) 4162 continue; 4163 break; 4164 } 4165 FREE_LOCK(&lk); 4166 if (waitfor == MNT_NOWAIT) { 4167 bawrite(bp); 4168 } else if ((error = BUF_WRITE(bp)) != 0) { 4169 ACQUIRE_LOCK(&lk); 4170 return (error); 4171 } 4172 ACQUIRE_LOCK(&lk); 4173 break; 4174 } 4175 if (adp != NULL) 4176 continue; 4177 for (adp = TAILQ_FIRST(&inodedep->id_newinoupdt); adp; 4178 adp = TAILQ_NEXT(adp, ad_next)) { 4179 if (adp->ad_state & DEPCOMPLETE) 4180 continue; 4181 bp = adp->ad_buf; 4182 if (getdirtybuf(&bp, waitfor) == 0) { 4183 if (waitfor == MNT_NOWAIT) 4184 continue; 4185 break; 4186 } 4187 FREE_LOCK(&lk); 4188 if (waitfor == MNT_NOWAIT) { 4189 bawrite(bp); 4190 } else if ((error = BUF_WRITE(bp)) != 0) { 4191 ACQUIRE_LOCK(&lk); 4192 return (error); 4193 } 4194 ACQUIRE_LOCK(&lk); 4195 break; 4196 } 4197 if (adp != NULL) 4198 continue; 4199 /* 4200 * If pass2, we are done, otherwise do pass 2. 4201 */ 4202 if (waitfor == MNT_WAIT) 4203 break; 4204 waitfor = MNT_WAIT; 4205 } 4206 /* 4207 * Try freeing inodedep in case all dependencies have been removed. 4208 */ 4209 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 4210 (void) free_inodedep(inodedep); 4211 return (0); 4212 } 4213 4214 /* 4215 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 4216 * Called with splbio blocked. 4217 */ 4218 static int 4219 flush_pagedep_deps(pvp, mp, diraddhdp) 4220 struct vnode *pvp; 4221 struct mount *mp; 4222 struct diraddhd *diraddhdp; 4223 { 4224 struct proc *p = CURPROC; /* XXX */ 4225 struct inodedep *inodedep; 4226 struct ufsmount *ump; 4227 struct diradd *dap; 4228 struct vnode *vp; 4229 int gotit, error = 0; 4230 struct buf *bp; 4231 ino_t inum; 4232 4233 ump = VFSTOUFS(mp); 4234 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 4235 /* 4236 * Flush ourselves if this directory entry 4237 * has a MKDIR_PARENT dependency. 4238 */ 4239 if (dap->da_state & MKDIR_PARENT) { 4240 FREE_LOCK(&lk); 4241 if ((error = UFS_UPDATE(pvp, 1)) != 0) 4242 break; 4243 ACQUIRE_LOCK(&lk); 4244 /* 4245 * If that cleared dependencies, go on to next. 4246 */ 4247 if (dap != LIST_FIRST(diraddhdp)) 4248 continue; 4249 if (dap->da_state & MKDIR_PARENT) 4250 panic("flush_pagedep_deps: MKDIR_PARENT"); 4251 } 4252 /* 4253 * A newly allocated directory must have its "." and 4254 * ".." entries written out before its name can be 4255 * committed in its parent. We do not want or need 4256 * the full semantics of a synchronous VOP_FSYNC as 4257 * that may end up here again, once for each directory 4258 * level in the filesystem. Instead, we push the blocks 4259 * and wait for them to clear. We have to fsync twice 4260 * because the first call may choose to defer blocks 4261 * that still have dependencies, but deferral will 4262 * happen at most once. 4263 */ 4264 inum = dap->da_newinum; 4265 if (dap->da_state & MKDIR_BODY) { 4266 FREE_LOCK(&lk); 4267 if ((error = VFS_VGET(mp, inum, &vp)) != 0) 4268 break; 4269 if ((error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)) || 4270 (error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) { 4271 vput(vp); 4272 break; 4273 } 4274 drain_output(vp, 0); 4275 vput(vp); 4276 ACQUIRE_LOCK(&lk); 4277 /* 4278 * If that cleared dependencies, go on to next. 4279 */ 4280 if (dap != LIST_FIRST(diraddhdp)) 4281 continue; 4282 if (dap->da_state & MKDIR_BODY) 4283 panic("flush_pagedep_deps: MKDIR_BODY"); 4284 } 4285 /* 4286 * Flush the inode on which the directory entry depends. 4287 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 4288 * the only remaining dependency is that the updated inode 4289 * count must get pushed to disk. The inode has already 4290 * been pushed into its inode buffer (via VOP_UPDATE) at 4291 * the time of the reference count change. So we need only 4292 * locate that buffer, ensure that there will be no rollback 4293 * caused by a bitmap dependency, then write the inode buffer. 4294 */ 4295 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) 4296 panic("flush_pagedep_deps: lost inode"); 4297 /* 4298 * If the inode still has bitmap dependencies, 4299 * push them to disk. 4300 */ 4301 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4302 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4303 FREE_LOCK(&lk); 4304 if (gotit && 4305 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4306 break; 4307 ACQUIRE_LOCK(&lk); 4308 if (dap != LIST_FIRST(diraddhdp)) 4309 continue; 4310 } 4311 /* 4312 * If the inode is still sitting in a buffer waiting 4313 * to be written, push it to disk. 4314 */ 4315 FREE_LOCK(&lk); 4316 if ((error = bread(ump->um_devvp, 4317 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 4318 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) 4319 break; 4320 if ((error = BUF_WRITE(bp)) != 0) 4321 break; 4322 ACQUIRE_LOCK(&lk); 4323 /* 4324 * If we have failed to get rid of all the dependencies 4325 * then something is seriously wrong. 4326 */ 4327 if (dap == LIST_FIRST(diraddhdp)) 4328 panic("flush_pagedep_deps: flush failed"); 4329 } 4330 if (error) 4331 ACQUIRE_LOCK(&lk); 4332 return (error); 4333 } 4334 4335 /* 4336 * A large burst of file addition or deletion activity can drive the 4337 * memory load excessively high. Therefore we deliberately slow things 4338 * down and speed up the I/O processing if we find ourselves with too 4339 * many dependencies in progress. 4340 */ 4341 static int 4342 request_cleanup(resource, islocked) 4343 int resource; 4344 int islocked; 4345 { 4346 struct callout_handle handle; 4347 struct proc *p = CURPROC; 4348 4349 /* 4350 * We never hold up the filesystem syncer process. 4351 */ 4352 if (p == filesys_syncer) 4353 return (0); 4354 /* 4355 * If we are resource constrained on inode dependencies, try 4356 * flushing some dirty inodes. Otherwise, we are constrained 4357 * by file deletions, so try accelerating flushes of directories 4358 * with removal dependencies. We would like to do the cleanup 4359 * here, but we probably hold an inode locked at this point and 4360 * that might deadlock against one that we try to clean. So, 4361 * the best that we can do is request the syncer daemon to do 4362 * the cleanup for us. 4363 */ 4364 switch (resource) { 4365 4366 case FLUSH_INODES: 4367 stat_ino_limit_push += 1; 4368 req_clear_inodedeps = 1; 4369 break; 4370 4371 case FLUSH_REMOVE: 4372 stat_blk_limit_push += 1; 4373 req_clear_remove = 1; 4374 break; 4375 4376 default: 4377 panic("request_cleanup: unknown type"); 4378 } 4379 /* 4380 * Hopefully the syncer daemon will catch up and awaken us. 4381 * We wait at most tickdelay before proceeding in any case. 4382 */ 4383 if (islocked == 0) 4384 ACQUIRE_LOCK(&lk); 4385 if (proc_waiting == 0) { 4386 proc_waiting = 1; 4387 handle = timeout(pause_timer, NULL, 4388 tickdelay > 2 ? tickdelay : 2); 4389 } 4390 FREE_LOCK_INTERLOCKED(&lk); 4391 (void) tsleep((caddr_t)&proc_waiting, PPAUSE, "softupdate", 0); 4392 ACQUIRE_LOCK_INTERLOCKED(&lk); 4393 if (proc_waiting) { 4394 untimeout(pause_timer, NULL, handle); 4395 proc_waiting = 0; 4396 } else { 4397 switch (resource) { 4398 4399 case FLUSH_INODES: 4400 stat_ino_limit_hit += 1; 4401 break; 4402 4403 case FLUSH_REMOVE: 4404 stat_blk_limit_hit += 1; 4405 break; 4406 } 4407 } 4408 if (islocked == 0) 4409 FREE_LOCK(&lk); 4410 return (1); 4411 } 4412 4413 /* 4414 * Awaken processes pausing in request_cleanup and clear proc_waiting 4415 * to indicate that there is no longer a timer running. 4416 */ 4417 void 4418 pause_timer(arg) 4419 void *arg; 4420 { 4421 4422 proc_waiting = 0; 4423 wakeup(&proc_waiting); 4424 } 4425 4426 /* 4427 * Flush out a directory with at least one removal dependency in an effort to 4428 * reduce the number of dirrem, freefile, and freeblks dependency structures. 4429 */ 4430 static void 4431 clear_remove(p) 4432 struct proc *p; 4433 { 4434 struct pagedep_hashhead *pagedephd; 4435 struct pagedep *pagedep; 4436 static int next = 0; 4437 struct mount *mp; 4438 struct vnode *vp; 4439 int error, cnt; 4440 ino_t ino; 4441 4442 ACQUIRE_LOCK(&lk); 4443 for (cnt = 0; cnt < pagedep_hash; cnt++) { 4444 pagedephd = &pagedep_hashtbl[next++]; 4445 if (next >= pagedep_hash) 4446 next = 0; 4447 for (pagedep = LIST_FIRST(pagedephd); pagedep; 4448 pagedep = LIST_NEXT(pagedep, pd_hash)) { 4449 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 4450 continue; 4451 mp = pagedep->pd_mnt; 4452 ino = pagedep->pd_ino; 4453 FREE_LOCK(&lk); 4454 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 4455 continue; 4456 if ((error = VFS_VGET(mp, ino, &vp)) != 0) { 4457 softdep_error("clear_remove: vget", error); 4458 vn_finished_write(mp); 4459 return; 4460 } 4461 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) 4462 softdep_error("clear_remove: fsync", error); 4463 drain_output(vp, 0); 4464 vput(vp); 4465 vn_finished_write(mp); 4466 return; 4467 } 4468 } 4469 FREE_LOCK(&lk); 4470 } 4471 4472 /* 4473 * Clear out a block of dirty inodes in an effort to reduce 4474 * the number of inodedep dependency structures. 4475 */ 4476 static void 4477 clear_inodedeps(p) 4478 struct proc *p; 4479 { 4480 struct inodedep_hashhead *inodedephd; 4481 struct inodedep *inodedep; 4482 static int next = 0; 4483 struct mount *mp; 4484 struct vnode *vp; 4485 struct fs *fs; 4486 int error, cnt; 4487 ino_t firstino, lastino, ino; 4488 4489 ACQUIRE_LOCK(&lk); 4490 /* 4491 * Pick a random inode dependency to be cleared. 4492 * We will then gather up all the inodes in its block 4493 * that have dependencies and flush them out. 4494 */ 4495 for (cnt = 0; cnt < inodedep_hash; cnt++) { 4496 inodedephd = &inodedep_hashtbl[next++]; 4497 if (next >= inodedep_hash) 4498 next = 0; 4499 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 4500 break; 4501 } 4502 /* 4503 * Ugly code to find mount point given pointer to superblock. 4504 */ 4505 fs = inodedep->id_fs; 4506 TAILQ_FOREACH(mp, &mountlist, mnt_list) 4507 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 4508 break; 4509 /* 4510 * Find the last inode in the block with dependencies. 4511 */ 4512 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 4513 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 4514 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 4515 break; 4516 /* 4517 * Asynchronously push all but the last inode with dependencies. 4518 * Synchronously push the last inode with dependencies to ensure 4519 * that the inode block gets written to free up the inodedeps. 4520 */ 4521 for (ino = firstino; ino <= lastino; ino++) { 4522 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4523 continue; 4524 FREE_LOCK(&lk); 4525 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 4526 continue; 4527 if ((error = VFS_VGET(mp, ino, &vp)) != 0) { 4528 softdep_error("clear_inodedeps: vget", error); 4529 vn_finished_write(mp); 4530 return; 4531 } 4532 if (ino == lastino) { 4533 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p))) 4534 softdep_error("clear_inodedeps: fsync1", error); 4535 } else { 4536 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) 4537 softdep_error("clear_inodedeps: fsync2", error); 4538 drain_output(vp, 0); 4539 } 4540 vput(vp); 4541 vn_finished_write(mp); 4542 ACQUIRE_LOCK(&lk); 4543 } 4544 FREE_LOCK(&lk); 4545 } 4546 4547 /* 4548 * Function to determine if the buffer has outstanding dependencies 4549 * that will cause a roll-back if the buffer is written. If wantcount 4550 * is set, return number of dependencies, otherwise just yes or no. 4551 */ 4552 static int 4553 softdep_count_dependencies(bp, wantcount) 4554 struct buf *bp; 4555 int wantcount; 4556 { 4557 struct worklist *wk; 4558 struct inodedep *inodedep; 4559 struct indirdep *indirdep; 4560 struct allocindir *aip; 4561 struct pagedep *pagedep; 4562 struct diradd *dap; 4563 int i, retval; 4564 4565 retval = 0; 4566 ACQUIRE_LOCK(&lk); 4567 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list)) { 4568 switch (wk->wk_type) { 4569 4570 case D_INODEDEP: 4571 inodedep = WK_INODEDEP(wk); 4572 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4573 /* bitmap allocation dependency */ 4574 retval += 1; 4575 if (!wantcount) 4576 goto out; 4577 } 4578 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 4579 /* direct block pointer dependency */ 4580 retval += 1; 4581 if (!wantcount) 4582 goto out; 4583 } 4584 continue; 4585 4586 case D_INDIRDEP: 4587 indirdep = WK_INDIRDEP(wk); 4588 for (aip = LIST_FIRST(&indirdep->ir_deplisthd); 4589 aip; aip = LIST_NEXT(aip, ai_next)) { 4590 /* indirect block pointer dependency */ 4591 retval += 1; 4592 if (!wantcount) 4593 goto out; 4594 } 4595 continue; 4596 4597 case D_PAGEDEP: 4598 pagedep = WK_PAGEDEP(wk); 4599 for (i = 0; i < DAHASHSZ; i++) { 4600 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); 4601 dap; dap = LIST_NEXT(dap, da_pdlist)) { 4602 /* directory entry dependency */ 4603 retval += 1; 4604 if (!wantcount) 4605 goto out; 4606 } 4607 } 4608 continue; 4609 4610 case D_BMSAFEMAP: 4611 case D_ALLOCDIRECT: 4612 case D_ALLOCINDIR: 4613 case D_MKDIR: 4614 /* never a dependency on these blocks */ 4615 continue; 4616 4617 default: 4618 panic("softdep_check_for_rollback: Unexpected type %s", 4619 TYPENAME(wk->wk_type)); 4620 /* NOTREACHED */ 4621 } 4622 } 4623 out: 4624 FREE_LOCK(&lk); 4625 return retval; 4626 } 4627 4628 /* 4629 * Acquire exclusive access to a buffer. 4630 * Must be called with splbio blocked. 4631 * Return 1 if buffer was acquired. 4632 */ 4633 static int 4634 getdirtybuf(bpp, waitfor) 4635 struct buf **bpp; 4636 int waitfor; 4637 { 4638 struct buf *bp; 4639 4640 for (;;) { 4641 if ((bp = *bpp) == NULL) 4642 return (0); 4643 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 4644 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 4645 break; 4646 BUF_UNLOCK(bp); 4647 if (waitfor != MNT_WAIT) 4648 return (0); 4649 bp->b_xflags |= BX_BKGRDWAIT; 4650 FREE_LOCK_INTERLOCKED(&lk); 4651 tsleep(&bp->b_xflags, PRIBIO, "getbuf", 0); 4652 ACQUIRE_LOCK_INTERLOCKED(&lk); 4653 continue; 4654 } 4655 if (waitfor != MNT_WAIT) 4656 return (0); 4657 FREE_LOCK_INTERLOCKED(&lk); 4658 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL) != ENOLCK) 4659 panic("getdirtybuf: inconsistent lock"); 4660 ACQUIRE_LOCK_INTERLOCKED(&lk); 4661 } 4662 if ((bp->b_flags & B_DELWRI) == 0) { 4663 BUF_UNLOCK(bp); 4664 return (0); 4665 } 4666 bremfree(bp); 4667 return (1); 4668 } 4669 4670 /* 4671 * Wait for pending output on a vnode to complete. 4672 * Must be called with vnode locked. 4673 */ 4674 static void 4675 drain_output(vp, islocked) 4676 struct vnode *vp; 4677 int islocked; 4678 { 4679 4680 if (!islocked) 4681 ACQUIRE_LOCK(&lk); 4682 while (vp->v_numoutput) { 4683 vp->v_flag |= VBWAIT; 4684 FREE_LOCK_INTERLOCKED(&lk); 4685 tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "drainvp", 0); 4686 ACQUIRE_LOCK_INTERLOCKED(&lk); 4687 } 4688 if (!islocked) 4689 FREE_LOCK(&lk); 4690 } 4691 4692 /* 4693 * Called whenever a buffer that is being invalidated or reallocated 4694 * contains dependencies. This should only happen if an I/O error has 4695 * occurred. The routine is called with the buffer locked. 4696 */ 4697 static void 4698 softdep_deallocate_dependencies(bp) 4699 struct buf *bp; 4700 { 4701 4702 if ((bp->b_ioflags & BIO_ERROR) == 0) 4703 panic("softdep_deallocate_dependencies: dangling deps"); 4704 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 4705 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 4706 } 4707 4708 /* 4709 * Function to handle asynchronous write errors in the filesystem. 4710 */ 4711 void 4712 softdep_error(func, error) 4713 char *func; 4714 int error; 4715 { 4716 4717 /* XXX should do something better! */ 4718 printf("%s: got error %d while accessing filesystem\n", func, error); 4719 } 4720