xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision b622dc25cf3c9940df3e4f7ac9fc961093db6ea8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(oldmnt, flags, td)
100 	struct mount *oldmnt;
101 	int flags;
102 	struct thread *td;
103 {
104 
105 	panic("softdep_flushfiles called");
106 }
107 
108 int
109 softdep_mount(devvp, mp, fs, cred)
110 	struct vnode *devvp;
111 	struct mount *mp;
112 	struct fs *fs;
113 	struct ucred *cred;
114 {
115 
116 	return (0);
117 }
118 
119 void
120 softdep_initialize()
121 {
122 
123 	return;
124 }
125 
126 void
127 softdep_uninitialize()
128 {
129 
130 	return;
131 }
132 
133 void
134 softdep_unmount(mp)
135 	struct mount *mp;
136 {
137 
138 	panic("softdep_unmount called");
139 }
140 
141 void
142 softdep_setup_sbupdate(ump, fs, bp)
143 	struct ufsmount *ump;
144 	struct fs *fs;
145 	struct buf *bp;
146 {
147 
148 	panic("softdep_setup_sbupdate called");
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 }
437 
438 int
439 softdep_journal_lookup(mp, vpp)
440 	struct mount *mp;
441 	struct vnode **vpp;
442 {
443 
444 	return (ENOENT);
445 }
446 
447 void
448 softdep_change_linkcnt(ip)
449 	struct inode *ip;
450 {
451 
452 	panic("softdep_change_linkcnt called");
453 }
454 
455 void
456 softdep_load_inodeblock(ip)
457 	struct inode *ip;
458 {
459 
460 	panic("softdep_load_inodeblock called");
461 }
462 
463 void
464 softdep_update_inodeblock(ip, bp, waitfor)
465 	struct inode *ip;
466 	struct buf *bp;
467 	int waitfor;
468 {
469 
470 	panic("softdep_update_inodeblock called");
471 }
472 
473 int
474 softdep_fsync(vp)
475 	struct vnode *vp;	/* the "in_core" copy of the inode */
476 {
477 
478 	return (0);
479 }
480 
481 void
482 softdep_fsync_mountdev(vp)
483 	struct vnode *vp;
484 {
485 
486 	return;
487 }
488 
489 int
490 softdep_flushworklist(oldmnt, countp, td)
491 	struct mount *oldmnt;
492 	int *countp;
493 	struct thread *td;
494 {
495 
496 	*countp = 0;
497 	return (0);
498 }
499 
500 int
501 softdep_sync_metadata(struct vnode *vp)
502 {
503 
504 	panic("softdep_sync_metadata called");
505 }
506 
507 int
508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
509 {
510 
511 	panic("softdep_sync_buf called");
512 }
513 
514 int
515 softdep_slowdown(vp)
516 	struct vnode *vp;
517 {
518 
519 	panic("softdep_slowdown called");
520 }
521 
522 int
523 softdep_request_cleanup(fs, vp, cred, resource)
524 	struct fs *fs;
525 	struct vnode *vp;
526 	struct ucred *cred;
527 	int resource;
528 {
529 
530 	return (0);
531 }
532 
533 int
534 softdep_check_suspend(struct mount *mp,
535 		      struct vnode *devvp,
536 		      int softdep_depcnt,
537 		      int softdep_accdepcnt,
538 		      int secondary_writes,
539 		      int secondary_accwrites)
540 {
541 	struct bufobj *bo;
542 	int error;
543 
544 	(void) softdep_depcnt,
545 	(void) softdep_accdepcnt;
546 
547 	bo = &devvp->v_bufobj;
548 	ASSERT_BO_WLOCKED(bo);
549 
550 	MNT_ILOCK(mp);
551 	while (mp->mnt_secondary_writes != 0) {
552 		BO_UNLOCK(bo);
553 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
554 		    (PUSER - 1) | PDROP, "secwr", 0);
555 		BO_LOCK(bo);
556 		MNT_ILOCK(mp);
557 	}
558 
559 	/*
560 	 * Reasons for needing more work before suspend:
561 	 * - Dirty buffers on devvp.
562 	 * - Secondary writes occurred after start of vnode sync loop
563 	 */
564 	error = 0;
565 	if (bo->bo_numoutput > 0 ||
566 	    bo->bo_dirty.bv_cnt > 0 ||
567 	    secondary_writes != 0 ||
568 	    mp->mnt_secondary_writes != 0 ||
569 	    secondary_accwrites != mp->mnt_secondary_accwrites)
570 		error = EAGAIN;
571 	BO_UNLOCK(bo);
572 	return (error);
573 }
574 
575 void
576 softdep_get_depcounts(struct mount *mp,
577 		      int *softdepactivep,
578 		      int *softdepactiveaccp)
579 {
580 	(void) mp;
581 	*softdepactivep = 0;
582 	*softdepactiveaccp = 0;
583 }
584 
585 void
586 softdep_buf_append(bp, wkhd)
587 	struct buf *bp;
588 	struct workhead *wkhd;
589 {
590 
591 	panic("softdep_buf_appendwork called");
592 }
593 
594 void
595 softdep_inode_append(ip, cred, wkhd)
596 	struct inode *ip;
597 	struct ucred *cred;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_inode_appendwork called");
602 }
603 
604 void
605 softdep_freework(wkhd)
606 	struct workhead *wkhd;
607 {
608 
609 	panic("softdep_freework called");
610 }
611 
612 #else
613 
614 FEATURE(softupdates, "FFS soft-updates support");
615 
616 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
617     "soft updates stats");
618 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
619     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
620     "total dependencies allocated");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
622     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
623     "high use dependencies allocated");
624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
625     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
626     "current dependencies allocated");
627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
628     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
629     "current dependencies written");
630 
631 unsigned long dep_current[D_LAST + 1];
632 unsigned long dep_highuse[D_LAST + 1];
633 unsigned long dep_total[D_LAST + 1];
634 unsigned long dep_write[D_LAST + 1];
635 
636 #define	SOFTDEP_TYPE(type, str, long)					\
637     static MALLOC_DEFINE(M_ ## type, #str, long);			\
638     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
639 	&dep_total[D_ ## type], 0, "");					\
640     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
641 	&dep_current[D_ ## type], 0, "");				\
642     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
643 	&dep_highuse[D_ ## type], 0, "");				\
644     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
645 	&dep_write[D_ ## type], 0, "");
646 
647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
650     "Block or frag allocated from cyl group map");
651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
675 
676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
677 
678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
681 
682 #define M_SOFTDEP_FLAGS	(M_WAITOK)
683 
684 /*
685  * translate from workitem type to memory type
686  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
687  */
688 static struct malloc_type *memtype[] = {
689 	NULL,
690 	M_PAGEDEP,
691 	M_INODEDEP,
692 	M_BMSAFEMAP,
693 	M_NEWBLK,
694 	M_ALLOCDIRECT,
695 	M_INDIRDEP,
696 	M_ALLOCINDIR,
697 	M_FREEFRAG,
698 	M_FREEBLKS,
699 	M_FREEFILE,
700 	M_DIRADD,
701 	M_MKDIR,
702 	M_DIRREM,
703 	M_NEWDIRBLK,
704 	M_FREEWORK,
705 	M_FREEDEP,
706 	M_JADDREF,
707 	M_JREMREF,
708 	M_JMVREF,
709 	M_JNEWBLK,
710 	M_JFREEBLK,
711 	M_JFREEFRAG,
712 	M_JSEG,
713 	M_JSEGDEP,
714 	M_SBDEP,
715 	M_JTRUNC,
716 	M_JFSYNC,
717 	M_SENTINEL
718 };
719 
720 #define DtoM(type) (memtype[type])
721 
722 /*
723  * Names of malloc types.
724  */
725 #define TYPENAME(type)  \
726 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
727 	memtype[type]->ks_shortdesc : "???")
728 /*
729  * End system adaptation definitions.
730  */
731 
732 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
733 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
734 
735 /*
736  * Internal function prototypes.
737  */
738 static	void check_clear_deps(struct mount *);
739 static	void softdep_error(char *, int);
740 static	int softdep_process_worklist(struct mount *, int);
741 static	int softdep_waitidle(struct mount *, int);
742 static	void drain_output(struct vnode *);
743 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
744 static	int check_inodedep_free(struct inodedep *);
745 static	void clear_remove(struct mount *);
746 static	void clear_inodedeps(struct mount *);
747 static	void unlinked_inodedep(struct mount *, struct inodedep *);
748 static	void clear_unlinked_inodedep(struct inodedep *);
749 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
750 static	int flush_pagedep_deps(struct vnode *, struct mount *,
751 	    struct diraddhd *);
752 static	int free_pagedep(struct pagedep *);
753 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
754 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
755 static	int flush_deplist(struct allocdirectlst *, int, int *);
756 static	int sync_cgs(struct mount *, int);
757 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
758 static	int handle_written_sbdep(struct sbdep *, struct buf *);
759 static	void initiate_write_sbdep(struct sbdep *);
760 static	void diradd_inode_written(struct diradd *, struct inodedep *);
761 static	int handle_written_indirdep(struct indirdep *, struct buf *,
762 	    struct buf**, int);
763 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
764 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
765 	    uint8_t *);
766 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
767 static	void handle_written_jaddref(struct jaddref *);
768 static	void handle_written_jremref(struct jremref *);
769 static	void handle_written_jseg(struct jseg *, struct buf *);
770 static	void handle_written_jnewblk(struct jnewblk *);
771 static	void handle_written_jblkdep(struct jblkdep *);
772 static	void handle_written_jfreefrag(struct jfreefrag *);
773 static	void complete_jseg(struct jseg *);
774 static	void complete_jsegs(struct jseg *);
775 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
776 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
777 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
778 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
779 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
780 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
781 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
782 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
783 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
784 static	inline void inoref_write(struct inoref *, struct jseg *,
785 	    struct jrefrec *);
786 static	void handle_allocdirect_partdone(struct allocdirect *,
787 	    struct workhead *);
788 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
789 	    struct workhead *);
790 static	void indirdep_complete(struct indirdep *);
791 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
792 static	void indirblk_insert(struct freework *);
793 static	void indirblk_remove(struct freework *);
794 static	void handle_allocindir_partdone(struct allocindir *);
795 static	void initiate_write_filepage(struct pagedep *, struct buf *);
796 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
797 static	void handle_written_mkdir(struct mkdir *, int);
798 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
799 	    uint8_t *);
800 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
801 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
802 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
803 static	void handle_workitem_freefile(struct freefile *);
804 static	int handle_workitem_remove(struct dirrem *, int);
805 static	struct dirrem *newdirrem(struct buf *, struct inode *,
806 	    struct inode *, int, struct dirrem **);
807 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
808 	    struct buf *);
809 static	void cancel_indirdep(struct indirdep *, struct buf *,
810 	    struct freeblks *);
811 static	void free_indirdep(struct indirdep *);
812 static	void free_diradd(struct diradd *, struct workhead *);
813 static	void merge_diradd(struct inodedep *, struct diradd *);
814 static	void complete_diradd(struct diradd *);
815 static	struct diradd *diradd_lookup(struct pagedep *, int);
816 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
817 	    struct jremref *);
818 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
819 	    struct jremref *);
820 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
821 	    struct jremref *, struct jremref *);
822 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
823 	    struct jremref *);
824 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
825 	    struct freeblks *, int);
826 static	int setup_trunc_indir(struct freeblks *, struct inode *,
827 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
828 static	void complete_trunc_indir(struct freework *);
829 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
830 	    int);
831 static	void complete_mkdir(struct mkdir *);
832 static	void free_newdirblk(struct newdirblk *);
833 static	void free_jremref(struct jremref *);
834 static	void free_jaddref(struct jaddref *);
835 static	void free_jsegdep(struct jsegdep *);
836 static	void free_jsegs(struct jblocks *);
837 static	void rele_jseg(struct jseg *);
838 static	void free_jseg(struct jseg *, struct jblocks *);
839 static	void free_jnewblk(struct jnewblk *);
840 static	void free_jblkdep(struct jblkdep *);
841 static	void free_jfreefrag(struct jfreefrag *);
842 static	void free_freedep(struct freedep *);
843 static	void journal_jremref(struct dirrem *, struct jremref *,
844 	    struct inodedep *);
845 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
846 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
847 	    struct workhead *);
848 static	void cancel_jfreefrag(struct jfreefrag *);
849 static	inline void setup_freedirect(struct freeblks *, struct inode *,
850 	    int, int);
851 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
852 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
853 	    ufs_lbn_t, int);
854 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
855 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
856 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
857 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
858 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
859 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
860 	    int, int);
861 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
862 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
863 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
864 static	void newblk_freefrag(struct newblk*);
865 static	void free_newblk(struct newblk *);
866 static	void cancel_allocdirect(struct allocdirectlst *,
867 	    struct allocdirect *, struct freeblks *);
868 static	int check_inode_unwritten(struct inodedep *);
869 static	int free_inodedep(struct inodedep *);
870 static	void freework_freeblock(struct freework *, u_long);
871 static	void freework_enqueue(struct freework *);
872 static	int handle_workitem_freeblocks(struct freeblks *, int);
873 static	int handle_complete_freeblocks(struct freeblks *, int);
874 static	void handle_workitem_indirblk(struct freework *);
875 static	void handle_written_freework(struct freework *);
876 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
877 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
878 	    struct workhead *);
879 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
880 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
881 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
882 	    ufs2_daddr_t, ufs_lbn_t);
883 static	void handle_workitem_freefrag(struct freefrag *);
884 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
885 	    ufs_lbn_t, u_long);
886 static	void allocdirect_merge(struct allocdirectlst *,
887 	    struct allocdirect *, struct allocdirect *);
888 static	struct freefrag *allocindir_merge(struct allocindir *,
889 	    struct allocindir *);
890 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
891 	    struct bmsafemap **);
892 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
893 	    int cg, struct bmsafemap *);
894 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
895 	    struct newblk **);
896 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
897 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
898 	    struct inodedep **);
899 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
900 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
901 	    int, struct pagedep **);
902 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
903 	    struct pagedep **);
904 static	void pause_timer(void *);
905 static	int request_cleanup(struct mount *, int);
906 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
907 static	void schedule_cleanup(struct mount *);
908 static void softdep_ast_cleanup_proc(struct thread *);
909 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
910 static	int process_worklist_item(struct mount *, int, int);
911 static	void process_removes(struct vnode *);
912 static	void process_truncates(struct vnode *);
913 static	void jwork_move(struct workhead *, struct workhead *);
914 static	void jwork_insert(struct workhead *, struct jsegdep *);
915 static	void add_to_worklist(struct worklist *, int);
916 static	void wake_worklist(struct worklist *);
917 static	void wait_worklist(struct worklist *, char *);
918 static	void remove_from_worklist(struct worklist *);
919 static	void softdep_flush(void *);
920 static	void softdep_flushjournal(struct mount *);
921 static	int softdep_speedup(struct ufsmount *);
922 static	void worklist_speedup(struct mount *);
923 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
924 static	void journal_unmount(struct ufsmount *);
925 static	int journal_space(struct ufsmount *, int);
926 static	void journal_suspend(struct ufsmount *);
927 static	int journal_unsuspend(struct ufsmount *ump);
928 static	void softdep_prelink(struct vnode *, struct vnode *);
929 static	void add_to_journal(struct worklist *);
930 static	void remove_from_journal(struct worklist *);
931 static	bool softdep_excess_items(struct ufsmount *, int);
932 static	void softdep_process_journal(struct mount *, struct worklist *, int);
933 static	struct jremref *newjremref(struct dirrem *, struct inode *,
934 	    struct inode *ip, off_t, nlink_t);
935 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
936 	    uint16_t);
937 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
938 	    uint16_t);
939 static	inline struct jsegdep *inoref_jseg(struct inoref *);
940 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
941 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
942 	    ufs2_daddr_t, int);
943 static	void adjust_newfreework(struct freeblks *, int);
944 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
945 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
946 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
947 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
948 	    ufs2_daddr_t, long, ufs_lbn_t);
949 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
950 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
951 static	int jwait(struct worklist *, int);
952 static	struct inodedep *inodedep_lookup_ip(struct inode *);
953 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
954 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
955 static	void handle_jwork(struct workhead *);
956 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
957 	    struct mkdir **);
958 static	struct jblocks *jblocks_create(void);
959 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
960 static	void jblocks_free(struct jblocks *, struct mount *, int);
961 static	void jblocks_destroy(struct jblocks *);
962 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
963 
964 /*
965  * Exported softdep operations.
966  */
967 static	void softdep_disk_io_initiation(struct buf *);
968 static	void softdep_disk_write_complete(struct buf *);
969 static	void softdep_deallocate_dependencies(struct buf *);
970 static	int softdep_count_dependencies(struct buf *bp, int);
971 
972 /*
973  * Global lock over all of soft updates.
974  */
975 static struct mtx lk;
976 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
977 
978 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
979 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
980 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
981 
982 /*
983  * Per-filesystem soft-updates locking.
984  */
985 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
986 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
987 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
988 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
989 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
990 				    RA_WLOCKED)
991 
992 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
993 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
994 
995 /*
996  * Worklist queue management.
997  * These routines require that the lock be held.
998  */
999 #ifndef /* NOT */ INVARIANTS
1000 #define WORKLIST_INSERT(head, item) do {	\
1001 	(item)->wk_state |= ONWORKLIST;		\
1002 	LIST_INSERT_HEAD(head, item, wk_list);	\
1003 } while (0)
1004 #define WORKLIST_REMOVE(item) do {		\
1005 	(item)->wk_state &= ~ONWORKLIST;	\
1006 	LIST_REMOVE(item, wk_list);		\
1007 } while (0)
1008 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1009 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1010 
1011 #else /* INVARIANTS */
1012 static	void worklist_insert(struct workhead *, struct worklist *, int,
1013 	const char *, int);
1014 static	void worklist_remove(struct worklist *, int, const char *, int);
1015 
1016 #define WORKLIST_INSERT(head, item) \
1017 	worklist_insert(head, item, 1, __func__, __LINE__)
1018 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1019 	worklist_insert(head, item, 0, __func__, __LINE__)
1020 #define WORKLIST_REMOVE(item)\
1021 	worklist_remove(item, 1, __func__, __LINE__)
1022 #define WORKLIST_REMOVE_UNLOCKED(item)\
1023 	worklist_remove(item, 0, __func__, __LINE__)
1024 
1025 static void
1026 worklist_insert(head, item, locked, func, line)
1027 	struct workhead *head;
1028 	struct worklist *item;
1029 	int locked;
1030 	const char *func;
1031 	int line;
1032 {
1033 
1034 	if (locked)
1035 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1036 	if (item->wk_state & ONWORKLIST)
1037 		panic("worklist_insert: %p %s(0x%X) already on list, "
1038 		    "added in function %s at line %d",
1039 		    item, TYPENAME(item->wk_type), item->wk_state,
1040 		    item->wk_func, item->wk_line);
1041 	item->wk_state |= ONWORKLIST;
1042 	item->wk_func = func;
1043 	item->wk_line = line;
1044 	LIST_INSERT_HEAD(head, item, wk_list);
1045 }
1046 
1047 static void
1048 worklist_remove(item, locked, func, line)
1049 	struct worklist *item;
1050 	int locked;
1051 	const char *func;
1052 	int line;
1053 {
1054 
1055 	if (locked)
1056 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1057 	if ((item->wk_state & ONWORKLIST) == 0)
1058 		panic("worklist_remove: %p %s(0x%X) not on list, "
1059 		    "removed in function %s at line %d",
1060 		    item, TYPENAME(item->wk_type), item->wk_state,
1061 		    item->wk_func, item->wk_line);
1062 	item->wk_state &= ~ONWORKLIST;
1063 	item->wk_func = func;
1064 	item->wk_line = line;
1065 	LIST_REMOVE(item, wk_list);
1066 }
1067 #endif /* INVARIANTS */
1068 
1069 /*
1070  * Merge two jsegdeps keeping only the oldest one as newer references
1071  * can't be discarded until after older references.
1072  */
1073 static inline struct jsegdep *
1074 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1075 {
1076 	struct jsegdep *swp;
1077 
1078 	if (two == NULL)
1079 		return (one);
1080 
1081 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1082 		swp = one;
1083 		one = two;
1084 		two = swp;
1085 	}
1086 	WORKLIST_REMOVE(&two->jd_list);
1087 	free_jsegdep(two);
1088 
1089 	return (one);
1090 }
1091 
1092 /*
1093  * If two freedeps are compatible free one to reduce list size.
1094  */
1095 static inline struct freedep *
1096 freedep_merge(struct freedep *one, struct freedep *two)
1097 {
1098 	if (two == NULL)
1099 		return (one);
1100 
1101 	if (one->fd_freework == two->fd_freework) {
1102 		WORKLIST_REMOVE(&two->fd_list);
1103 		free_freedep(two);
1104 	}
1105 	return (one);
1106 }
1107 
1108 /*
1109  * Move journal work from one list to another.  Duplicate freedeps and
1110  * jsegdeps are coalesced to keep the lists as small as possible.
1111  */
1112 static void
1113 jwork_move(dst, src)
1114 	struct workhead *dst;
1115 	struct workhead *src;
1116 {
1117 	struct freedep *freedep;
1118 	struct jsegdep *jsegdep;
1119 	struct worklist *wkn;
1120 	struct worklist *wk;
1121 
1122 	KASSERT(dst != src,
1123 	    ("jwork_move: dst == src"));
1124 	freedep = NULL;
1125 	jsegdep = NULL;
1126 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1127 		if (wk->wk_type == D_JSEGDEP)
1128 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1129 		else if (wk->wk_type == D_FREEDEP)
1130 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1131 	}
1132 
1133 	while ((wk = LIST_FIRST(src)) != NULL) {
1134 		WORKLIST_REMOVE(wk);
1135 		WORKLIST_INSERT(dst, wk);
1136 		if (wk->wk_type == D_JSEGDEP) {
1137 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1138 			continue;
1139 		}
1140 		if (wk->wk_type == D_FREEDEP)
1141 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1142 	}
1143 }
1144 
1145 static void
1146 jwork_insert(dst, jsegdep)
1147 	struct workhead *dst;
1148 	struct jsegdep *jsegdep;
1149 {
1150 	struct jsegdep *jsegdepn;
1151 	struct worklist *wk;
1152 
1153 	LIST_FOREACH(wk, dst, wk_list)
1154 		if (wk->wk_type == D_JSEGDEP)
1155 			break;
1156 	if (wk == NULL) {
1157 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1158 		return;
1159 	}
1160 	jsegdepn = WK_JSEGDEP(wk);
1161 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1162 		WORKLIST_REMOVE(wk);
1163 		free_jsegdep(jsegdepn);
1164 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1165 	} else
1166 		free_jsegdep(jsegdep);
1167 }
1168 
1169 /*
1170  * Routines for tracking and managing workitems.
1171  */
1172 static	void workitem_free(struct worklist *, int);
1173 static	void workitem_alloc(struct worklist *, int, struct mount *);
1174 static	void workitem_reassign(struct worklist *, int);
1175 
1176 #define	WORKITEM_FREE(item, type) \
1177 	workitem_free((struct worklist *)(item), (type))
1178 #define	WORKITEM_REASSIGN(item, type) \
1179 	workitem_reassign((struct worklist *)(item), (type))
1180 
1181 static void
1182 workitem_free(item, type)
1183 	struct worklist *item;
1184 	int type;
1185 {
1186 	struct ufsmount *ump;
1187 
1188 #ifdef INVARIANTS
1189 	if (item->wk_state & ONWORKLIST)
1190 		panic("workitem_free: %s(0x%X) still on list, "
1191 		    "added in function %s at line %d",
1192 		    TYPENAME(item->wk_type), item->wk_state,
1193 		    item->wk_func, item->wk_line);
1194 	if (item->wk_type != type && type != D_NEWBLK)
1195 		panic("workitem_free: type mismatch %s != %s",
1196 		    TYPENAME(item->wk_type), TYPENAME(type));
1197 #endif
1198 	if (item->wk_state & IOWAITING)
1199 		wakeup(item);
1200 	ump = VFSTOUFS(item->wk_mp);
1201 	LOCK_OWNED(ump);
1202 	KASSERT(ump->softdep_deps > 0,
1203 	    ("workitem_free: %s: softdep_deps going negative",
1204 	    ump->um_fs->fs_fsmnt));
1205 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1206 		wakeup(&ump->softdep_deps);
1207 	KASSERT(dep_current[item->wk_type] > 0,
1208 	    ("workitem_free: %s: dep_current[%s] going negative",
1209 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1210 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1211 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1212 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1213 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1214 	ump->softdep_curdeps[item->wk_type] -= 1;
1215 #ifdef INVARIANTS
1216 	LIST_REMOVE(item, wk_all);
1217 #endif
1218 	free(item, DtoM(type));
1219 }
1220 
1221 static void
1222 workitem_alloc(item, type, mp)
1223 	struct worklist *item;
1224 	int type;
1225 	struct mount *mp;
1226 {
1227 	struct ufsmount *ump;
1228 
1229 	item->wk_type = type;
1230 	item->wk_mp = mp;
1231 	item->wk_state = 0;
1232 
1233 	ump = VFSTOUFS(mp);
1234 	ACQUIRE_GBLLOCK(&lk);
1235 	dep_current[type]++;
1236 	if (dep_current[type] > dep_highuse[type])
1237 		dep_highuse[type] = dep_current[type];
1238 	dep_total[type]++;
1239 	FREE_GBLLOCK(&lk);
1240 	ACQUIRE_LOCK(ump);
1241 	ump->softdep_curdeps[type] += 1;
1242 	ump->softdep_deps++;
1243 	ump->softdep_accdeps++;
1244 #ifdef INVARIANTS
1245 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1246 #endif
1247 	FREE_LOCK(ump);
1248 }
1249 
1250 static void
1251 workitem_reassign(item, newtype)
1252 	struct worklist *item;
1253 	int newtype;
1254 {
1255 	struct ufsmount *ump;
1256 
1257 	ump = VFSTOUFS(item->wk_mp);
1258 	LOCK_OWNED(ump);
1259 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1260 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1261 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1262 	ump->softdep_curdeps[item->wk_type] -= 1;
1263 	ump->softdep_curdeps[newtype] += 1;
1264 	KASSERT(dep_current[item->wk_type] > 0,
1265 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1266 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1267 	ACQUIRE_GBLLOCK(&lk);
1268 	dep_current[newtype]++;
1269 	dep_current[item->wk_type]--;
1270 	if (dep_current[newtype] > dep_highuse[newtype])
1271 		dep_highuse[newtype] = dep_current[newtype];
1272 	dep_total[newtype]++;
1273 	FREE_GBLLOCK(&lk);
1274 	item->wk_type = newtype;
1275 }
1276 
1277 /*
1278  * Workitem queue management
1279  */
1280 static int max_softdeps;	/* maximum number of structs before slowdown */
1281 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1282 static int proc_waiting;	/* tracks whether we have a timeout posted */
1283 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1284 static struct callout softdep_callout;
1285 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1286 static int req_clear_remove;	/* syncer process flush some freeblks */
1287 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1288 
1289 /*
1290  * runtime statistics
1291  */
1292 static int stat_flush_threads;	/* number of softdep flushing threads */
1293 static int stat_worklist_push;	/* number of worklist cleanups */
1294 static int stat_blk_limit_push;	/* number of times block limit neared */
1295 static int stat_ino_limit_push;	/* number of times inode limit neared */
1296 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1297 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1298 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1299 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1300 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1301 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1302 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1303 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1304 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1305 static int stat_journal_min;	/* Times hit journal min threshold */
1306 static int stat_journal_low;	/* Times hit journal low threshold */
1307 static int stat_journal_wait;	/* Times blocked in jwait(). */
1308 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1309 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1310 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1311 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1312 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1313 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1314 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1315 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1316 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1317 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1318 
1319 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1320     &max_softdeps, 0, "");
1321 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1322     &tickdelay, 0, "");
1323 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1324     &stat_flush_threads, 0, "");
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1326     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1328     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1330     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1332     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1334     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1336     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1338     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1340     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1342     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1343 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1344     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1345 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1346     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1347 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1348     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1349 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1350     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1352     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1353 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1354     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1355 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1356     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1357 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1358     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1359 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1360     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1361 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1362     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1363 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1364     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1365 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1366     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1367 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1368     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1369 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1370     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1371 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1372     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1373 
1374 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1375     &softdep_flushcache, 0, "");
1376 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1377     &stat_emptyjblocks, 0, "");
1378 
1379 SYSCTL_DECL(_vfs_ffs);
1380 
1381 /* Whether to recompute the summary at mount time */
1382 static int compute_summary_at_mount = 0;
1383 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1384 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1385 static int print_threads = 0;
1386 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1387     &print_threads, 0, "Notify flusher thread start/stop");
1388 
1389 /* List of all filesystems mounted with soft updates */
1390 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1391 
1392 /*
1393  * This function cleans the worklist for a filesystem.
1394  * Each filesystem running with soft dependencies gets its own
1395  * thread to run in this function. The thread is started up in
1396  * softdep_mount and shutdown in softdep_unmount. They show up
1397  * as part of the kernel "bufdaemon" process whose process
1398  * entry is available in bufdaemonproc.
1399  */
1400 static int searchfailed;
1401 extern struct proc *bufdaemonproc;
1402 static void
1403 softdep_flush(addr)
1404 	void *addr;
1405 {
1406 	struct mount *mp;
1407 	struct thread *td;
1408 	struct ufsmount *ump;
1409 
1410 	td = curthread;
1411 	td->td_pflags |= TDP_NORUNNINGBUF;
1412 	mp = (struct mount *)addr;
1413 	ump = VFSTOUFS(mp);
1414 	atomic_add_int(&stat_flush_threads, 1);
1415 	ACQUIRE_LOCK(ump);
1416 	ump->softdep_flags &= ~FLUSH_STARTING;
1417 	wakeup(&ump->softdep_flushtd);
1418 	FREE_LOCK(ump);
1419 	if (print_threads) {
1420 		if (stat_flush_threads == 1)
1421 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1422 			    bufdaemonproc->p_pid);
1423 		printf("Start thread %s\n", td->td_name);
1424 	}
1425 	for (;;) {
1426 		while (softdep_process_worklist(mp, 0) > 0 ||
1427 		    (MOUNTEDSUJ(mp) &&
1428 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1429 			kthread_suspend_check();
1430 		ACQUIRE_LOCK(ump);
1431 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1432 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1433 			    "sdflush", hz / 2);
1434 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1435 		/*
1436 		 * Check to see if we are done and need to exit.
1437 		 */
1438 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1439 			FREE_LOCK(ump);
1440 			continue;
1441 		}
1442 		ump->softdep_flags &= ~FLUSH_EXIT;
1443 		FREE_LOCK(ump);
1444 		wakeup(&ump->softdep_flags);
1445 		if (print_threads)
1446 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1447 		atomic_subtract_int(&stat_flush_threads, 1);
1448 		kthread_exit();
1449 		panic("kthread_exit failed\n");
1450 	}
1451 }
1452 
1453 static void
1454 worklist_speedup(mp)
1455 	struct mount *mp;
1456 {
1457 	struct ufsmount *ump;
1458 
1459 	ump = VFSTOUFS(mp);
1460 	LOCK_OWNED(ump);
1461 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1462 		ump->softdep_flags |= FLUSH_CLEANUP;
1463 	wakeup(&ump->softdep_flushtd);
1464 }
1465 
1466 static void
1467 softdep_send_speedup(struct ufsmount *ump, size_t shortage, u_int flags)
1468 {
1469 	struct buf *bp;
1470 
1471 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1472 		return;
1473 
1474 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1475 	bp->b_iocmd = BIO_SPEEDUP;
1476 	bp->b_ioflags = flags;
1477 	bp->b_bcount = shortage;
1478 	g_vfs_strategy(ump->um_bo, bp);
1479 	bufwait(bp);
1480 	free(bp, M_TRIM);
1481 }
1482 
1483 static int
1484 softdep_speedup(ump)
1485 	struct ufsmount *ump;
1486 {
1487 	struct ufsmount *altump;
1488 	struct mount_softdeps *sdp;
1489 
1490 	LOCK_OWNED(ump);
1491 	worklist_speedup(ump->um_mountp);
1492 	bd_speedup();
1493 	/*
1494 	 * If we have global shortages, then we need other
1495 	 * filesystems to help with the cleanup. Here we wakeup a
1496 	 * flusher thread for a filesystem that is over its fair
1497 	 * share of resources.
1498 	 */
1499 	if (req_clear_inodedeps || req_clear_remove) {
1500 		ACQUIRE_GBLLOCK(&lk);
1501 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1502 			if ((altump = sdp->sd_ump) == ump)
1503 				continue;
1504 			if (((req_clear_inodedeps &&
1505 			    altump->softdep_curdeps[D_INODEDEP] >
1506 			    max_softdeps / stat_flush_threads) ||
1507 			    (req_clear_remove &&
1508 			    altump->softdep_curdeps[D_DIRREM] >
1509 			    (max_softdeps / 2) / stat_flush_threads)) &&
1510 			    TRY_ACQUIRE_LOCK(altump))
1511 				break;
1512 		}
1513 		if (sdp == NULL) {
1514 			searchfailed++;
1515 			FREE_GBLLOCK(&lk);
1516 		} else {
1517 			/*
1518 			 * Move to the end of the list so we pick a
1519 			 * different one on out next try.
1520 			 */
1521 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1522 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1523 			FREE_GBLLOCK(&lk);
1524 			if ((altump->softdep_flags &
1525 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1526 				altump->softdep_flags |= FLUSH_CLEANUP;
1527 			altump->um_softdep->sd_cleanups++;
1528 			wakeup(&altump->softdep_flushtd);
1529 			FREE_LOCK(altump);
1530 		}
1531 	}
1532 	return (speedup_syncer());
1533 }
1534 
1535 /*
1536  * Add an item to the end of the work queue.
1537  * This routine requires that the lock be held.
1538  * This is the only routine that adds items to the list.
1539  * The following routine is the only one that removes items
1540  * and does so in order from first to last.
1541  */
1542 
1543 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1544 #define	WK_NODELAY	0x0002	/* Process immediately. */
1545 
1546 static void
1547 add_to_worklist(wk, flags)
1548 	struct worklist *wk;
1549 	int flags;
1550 {
1551 	struct ufsmount *ump;
1552 
1553 	ump = VFSTOUFS(wk->wk_mp);
1554 	LOCK_OWNED(ump);
1555 	if (wk->wk_state & ONWORKLIST)
1556 		panic("add_to_worklist: %s(0x%X) already on list",
1557 		    TYPENAME(wk->wk_type), wk->wk_state);
1558 	wk->wk_state |= ONWORKLIST;
1559 	if (ump->softdep_on_worklist == 0) {
1560 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1561 		ump->softdep_worklist_tail = wk;
1562 	} else if (flags & WK_HEAD) {
1563 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1564 	} else {
1565 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1566 		ump->softdep_worklist_tail = wk;
1567 	}
1568 	ump->softdep_on_worklist += 1;
1569 	if (flags & WK_NODELAY)
1570 		worklist_speedup(wk->wk_mp);
1571 }
1572 
1573 /*
1574  * Remove the item to be processed. If we are removing the last
1575  * item on the list, we need to recalculate the tail pointer.
1576  */
1577 static void
1578 remove_from_worklist(wk)
1579 	struct worklist *wk;
1580 {
1581 	struct ufsmount *ump;
1582 
1583 	ump = VFSTOUFS(wk->wk_mp);
1584 	if (ump->softdep_worklist_tail == wk)
1585 		ump->softdep_worklist_tail =
1586 		    (struct worklist *)wk->wk_list.le_prev;
1587 	WORKLIST_REMOVE(wk);
1588 	ump->softdep_on_worklist -= 1;
1589 }
1590 
1591 static void
1592 wake_worklist(wk)
1593 	struct worklist *wk;
1594 {
1595 	if (wk->wk_state & IOWAITING) {
1596 		wk->wk_state &= ~IOWAITING;
1597 		wakeup(wk);
1598 	}
1599 }
1600 
1601 static void
1602 wait_worklist(wk, wmesg)
1603 	struct worklist *wk;
1604 	char *wmesg;
1605 {
1606 	struct ufsmount *ump;
1607 
1608 	ump = VFSTOUFS(wk->wk_mp);
1609 	wk->wk_state |= IOWAITING;
1610 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1611 }
1612 
1613 /*
1614  * Process that runs once per second to handle items in the background queue.
1615  *
1616  * Note that we ensure that everything is done in the order in which they
1617  * appear in the queue. The code below depends on this property to ensure
1618  * that blocks of a file are freed before the inode itself is freed. This
1619  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1620  * until all the old ones have been purged from the dependency lists.
1621  */
1622 static int
1623 softdep_process_worklist(mp, full)
1624 	struct mount *mp;
1625 	int full;
1626 {
1627 	int cnt, matchcnt;
1628 	struct ufsmount *ump;
1629 	long starttime;
1630 
1631 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1632 	if (MOUNTEDSOFTDEP(mp) == 0)
1633 		return (0);
1634 	matchcnt = 0;
1635 	ump = VFSTOUFS(mp);
1636 	ACQUIRE_LOCK(ump);
1637 	starttime = time_second;
1638 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1639 	check_clear_deps(mp);
1640 	while (ump->softdep_on_worklist > 0) {
1641 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1642 			break;
1643 		else
1644 			matchcnt += cnt;
1645 		check_clear_deps(mp);
1646 		/*
1647 		 * We do not generally want to stop for buffer space, but if
1648 		 * we are really being a buffer hog, we will stop and wait.
1649 		 */
1650 		if (should_yield()) {
1651 			FREE_LOCK(ump);
1652 			kern_yield(PRI_USER);
1653 			bwillwrite();
1654 			ACQUIRE_LOCK(ump);
1655 		}
1656 		/*
1657 		 * Never allow processing to run for more than one
1658 		 * second. This gives the syncer thread the opportunity
1659 		 * to pause if appropriate.
1660 		 */
1661 		if (!full && starttime != time_second)
1662 			break;
1663 	}
1664 	if (full == 0)
1665 		journal_unsuspend(ump);
1666 	FREE_LOCK(ump);
1667 	return (matchcnt);
1668 }
1669 
1670 /*
1671  * Process all removes associated with a vnode if we are running out of
1672  * journal space.  Any other process which attempts to flush these will
1673  * be unable as we have the vnodes locked.
1674  */
1675 static void
1676 process_removes(vp)
1677 	struct vnode *vp;
1678 {
1679 	struct inodedep *inodedep;
1680 	struct dirrem *dirrem;
1681 	struct ufsmount *ump;
1682 	struct mount *mp;
1683 	ino_t inum;
1684 
1685 	mp = vp->v_mount;
1686 	ump = VFSTOUFS(mp);
1687 	LOCK_OWNED(ump);
1688 	inum = VTOI(vp)->i_number;
1689 	for (;;) {
1690 top:
1691 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1692 			return;
1693 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1694 			/*
1695 			 * If another thread is trying to lock this vnode
1696 			 * it will fail but we must wait for it to do so
1697 			 * before we can proceed.
1698 			 */
1699 			if (dirrem->dm_state & INPROGRESS) {
1700 				wait_worklist(&dirrem->dm_list, "pwrwait");
1701 				goto top;
1702 			}
1703 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1704 			    (COMPLETE | ONWORKLIST))
1705 				break;
1706 		}
1707 		if (dirrem == NULL)
1708 			return;
1709 		remove_from_worklist(&dirrem->dm_list);
1710 		FREE_LOCK(ump);
1711 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1712 			panic("process_removes: suspended filesystem");
1713 		handle_workitem_remove(dirrem, 0);
1714 		vn_finished_secondary_write(mp);
1715 		ACQUIRE_LOCK(ump);
1716 	}
1717 }
1718 
1719 /*
1720  * Process all truncations associated with a vnode if we are running out
1721  * of journal space.  This is called when the vnode lock is already held
1722  * and no other process can clear the truncation.  This function returns
1723  * a value greater than zero if it did any work.
1724  */
1725 static void
1726 process_truncates(vp)
1727 	struct vnode *vp;
1728 {
1729 	struct inodedep *inodedep;
1730 	struct freeblks *freeblks;
1731 	struct ufsmount *ump;
1732 	struct mount *mp;
1733 	ino_t inum;
1734 	int cgwait;
1735 
1736 	mp = vp->v_mount;
1737 	ump = VFSTOUFS(mp);
1738 	LOCK_OWNED(ump);
1739 	inum = VTOI(vp)->i_number;
1740 	for (;;) {
1741 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1742 			return;
1743 		cgwait = 0;
1744 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1745 			/* Journal entries not yet written.  */
1746 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1747 				jwait(&LIST_FIRST(
1748 				    &freeblks->fb_jblkdephd)->jb_list,
1749 				    MNT_WAIT);
1750 				break;
1751 			}
1752 			/* Another thread is executing this item. */
1753 			if (freeblks->fb_state & INPROGRESS) {
1754 				wait_worklist(&freeblks->fb_list, "ptrwait");
1755 				break;
1756 			}
1757 			/* Freeblks is waiting on a inode write. */
1758 			if ((freeblks->fb_state & COMPLETE) == 0) {
1759 				FREE_LOCK(ump);
1760 				ffs_update(vp, 1);
1761 				ACQUIRE_LOCK(ump);
1762 				break;
1763 			}
1764 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1765 			    (ALLCOMPLETE | ONWORKLIST)) {
1766 				remove_from_worklist(&freeblks->fb_list);
1767 				freeblks->fb_state |= INPROGRESS;
1768 				FREE_LOCK(ump);
1769 				if (vn_start_secondary_write(NULL, &mp,
1770 				    V_NOWAIT))
1771 					panic("process_truncates: "
1772 					    "suspended filesystem");
1773 				handle_workitem_freeblocks(freeblks, 0);
1774 				vn_finished_secondary_write(mp);
1775 				ACQUIRE_LOCK(ump);
1776 				break;
1777 			}
1778 			if (freeblks->fb_cgwait)
1779 				cgwait++;
1780 		}
1781 		if (cgwait) {
1782 			FREE_LOCK(ump);
1783 			sync_cgs(mp, MNT_WAIT);
1784 			ffs_sync_snap(mp, MNT_WAIT);
1785 			ACQUIRE_LOCK(ump);
1786 			continue;
1787 		}
1788 		if (freeblks == NULL)
1789 			break;
1790 	}
1791 	return;
1792 }
1793 
1794 /*
1795  * Process one item on the worklist.
1796  */
1797 static int
1798 process_worklist_item(mp, target, flags)
1799 	struct mount *mp;
1800 	int target;
1801 	int flags;
1802 {
1803 	struct worklist sentinel;
1804 	struct worklist *wk;
1805 	struct ufsmount *ump;
1806 	int matchcnt;
1807 	int error;
1808 
1809 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1810 	/*
1811 	 * If we are being called because of a process doing a
1812 	 * copy-on-write, then it is not safe to write as we may
1813 	 * recurse into the copy-on-write routine.
1814 	 */
1815 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1816 		return (-1);
1817 	PHOLD(curproc);	/* Don't let the stack go away. */
1818 	ump = VFSTOUFS(mp);
1819 	LOCK_OWNED(ump);
1820 	matchcnt = 0;
1821 	sentinel.wk_mp = NULL;
1822 	sentinel.wk_type = D_SENTINEL;
1823 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1824 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1825 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1826 		if (wk->wk_type == D_SENTINEL) {
1827 			LIST_REMOVE(&sentinel, wk_list);
1828 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1829 			continue;
1830 		}
1831 		if (wk->wk_state & INPROGRESS)
1832 			panic("process_worklist_item: %p already in progress.",
1833 			    wk);
1834 		wk->wk_state |= INPROGRESS;
1835 		remove_from_worklist(wk);
1836 		FREE_LOCK(ump);
1837 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1838 			panic("process_worklist_item: suspended filesystem");
1839 		switch (wk->wk_type) {
1840 		case D_DIRREM:
1841 			/* removal of a directory entry */
1842 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1843 			break;
1844 
1845 		case D_FREEBLKS:
1846 			/* releasing blocks and/or fragments from a file */
1847 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1848 			    flags);
1849 			break;
1850 
1851 		case D_FREEFRAG:
1852 			/* releasing a fragment when replaced as a file grows */
1853 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1854 			error = 0;
1855 			break;
1856 
1857 		case D_FREEFILE:
1858 			/* releasing an inode when its link count drops to 0 */
1859 			handle_workitem_freefile(WK_FREEFILE(wk));
1860 			error = 0;
1861 			break;
1862 
1863 		default:
1864 			panic("%s_process_worklist: Unknown type %s",
1865 			    "softdep", TYPENAME(wk->wk_type));
1866 			/* NOTREACHED */
1867 		}
1868 		vn_finished_secondary_write(mp);
1869 		ACQUIRE_LOCK(ump);
1870 		if (error == 0) {
1871 			if (++matchcnt == target)
1872 				break;
1873 			continue;
1874 		}
1875 		/*
1876 		 * We have to retry the worklist item later.  Wake up any
1877 		 * waiters who may be able to complete it immediately and
1878 		 * add the item back to the head so we don't try to execute
1879 		 * it again.
1880 		 */
1881 		wk->wk_state &= ~INPROGRESS;
1882 		wake_worklist(wk);
1883 		add_to_worklist(wk, WK_HEAD);
1884 	}
1885 	/* Sentinal could've become the tail from remove_from_worklist. */
1886 	if (ump->softdep_worklist_tail == &sentinel)
1887 		ump->softdep_worklist_tail =
1888 		    (struct worklist *)sentinel.wk_list.le_prev;
1889 	LIST_REMOVE(&sentinel, wk_list);
1890 	PRELE(curproc);
1891 	return (matchcnt);
1892 }
1893 
1894 /*
1895  * Move dependencies from one buffer to another.
1896  */
1897 int
1898 softdep_move_dependencies(oldbp, newbp)
1899 	struct buf *oldbp;
1900 	struct buf *newbp;
1901 {
1902 	struct worklist *wk, *wktail;
1903 	struct ufsmount *ump;
1904 	int dirty;
1905 
1906 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1907 		return (0);
1908 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1909 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1910 	dirty = 0;
1911 	wktail = NULL;
1912 	ump = VFSTOUFS(wk->wk_mp);
1913 	ACQUIRE_LOCK(ump);
1914 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1915 		LIST_REMOVE(wk, wk_list);
1916 		if (wk->wk_type == D_BMSAFEMAP &&
1917 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1918 			dirty = 1;
1919 		if (wktail == NULL)
1920 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1921 		else
1922 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1923 		wktail = wk;
1924 	}
1925 	FREE_LOCK(ump);
1926 
1927 	return (dirty);
1928 }
1929 
1930 /*
1931  * Purge the work list of all items associated with a particular mount point.
1932  */
1933 int
1934 softdep_flushworklist(oldmnt, countp, td)
1935 	struct mount *oldmnt;
1936 	int *countp;
1937 	struct thread *td;
1938 {
1939 	struct vnode *devvp;
1940 	struct ufsmount *ump;
1941 	int count, error;
1942 
1943 	/*
1944 	 * Alternately flush the block device associated with the mount
1945 	 * point and process any dependencies that the flushing
1946 	 * creates. We continue until no more worklist dependencies
1947 	 * are found.
1948 	 */
1949 	*countp = 0;
1950 	error = 0;
1951 	ump = VFSTOUFS(oldmnt);
1952 	devvp = ump->um_devvp;
1953 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1954 		*countp += count;
1955 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1956 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1957 		VOP_UNLOCK(devvp);
1958 		if (error != 0)
1959 			break;
1960 	}
1961 	return (error);
1962 }
1963 
1964 #define	SU_WAITIDLE_RETRIES	20
1965 static int
1966 softdep_waitidle(struct mount *mp, int flags __unused)
1967 {
1968 	struct ufsmount *ump;
1969 	struct vnode *devvp;
1970 	struct thread *td;
1971 	int error, i;
1972 
1973 	ump = VFSTOUFS(mp);
1974 	devvp = ump->um_devvp;
1975 	td = curthread;
1976 	error = 0;
1977 	ACQUIRE_LOCK(ump);
1978 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1979 		ump->softdep_req = 1;
1980 		KASSERT((flags & FORCECLOSE) == 0 ||
1981 		    ump->softdep_on_worklist == 0,
1982 		    ("softdep_waitidle: work added after flush"));
1983 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1984 		    "softdeps", 10 * hz);
1985 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1986 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1987 		VOP_UNLOCK(devvp);
1988 		ACQUIRE_LOCK(ump);
1989 		if (error != 0)
1990 			break;
1991 	}
1992 	ump->softdep_req = 0;
1993 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1994 		error = EBUSY;
1995 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1996 		    mp);
1997 	}
1998 	FREE_LOCK(ump);
1999 	return (error);
2000 }
2001 
2002 /*
2003  * Flush all vnodes and worklist items associated with a specified mount point.
2004  */
2005 int
2006 softdep_flushfiles(oldmnt, flags, td)
2007 	struct mount *oldmnt;
2008 	int flags;
2009 	struct thread *td;
2010 {
2011 #ifdef QUOTA
2012 	struct ufsmount *ump;
2013 	int i;
2014 #endif
2015 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2016 	int morework;
2017 
2018 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
2019 	    ("softdep_flushfiles called on non-softdep filesystem"));
2020 	loopcnt = 10;
2021 	retry_flush_count = 3;
2022 retry_flush:
2023 	error = 0;
2024 
2025 	/*
2026 	 * Alternately flush the vnodes associated with the mount
2027 	 * point and process any dependencies that the flushing
2028 	 * creates. In theory, this loop can happen at most twice,
2029 	 * but we give it a few extra just to be sure.
2030 	 */
2031 	for (; loopcnt > 0; loopcnt--) {
2032 		/*
2033 		 * Do another flush in case any vnodes were brought in
2034 		 * as part of the cleanup operations.
2035 		 */
2036 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2037 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2038 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2039 			break;
2040 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2041 		    depcount == 0)
2042 			break;
2043 	}
2044 	/*
2045 	 * If we are unmounting then it is an error to fail. If we
2046 	 * are simply trying to downgrade to read-only, then filesystem
2047 	 * activity can keep us busy forever, so we just fail with EBUSY.
2048 	 */
2049 	if (loopcnt == 0) {
2050 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2051 			panic("softdep_flushfiles: looping");
2052 		error = EBUSY;
2053 	}
2054 	if (!error)
2055 		error = softdep_waitidle(oldmnt, flags);
2056 	if (!error) {
2057 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2058 			retry = 0;
2059 			MNT_ILOCK(oldmnt);
2060 			morework = oldmnt->mnt_nvnodelistsize > 0;
2061 #ifdef QUOTA
2062 			ump = VFSTOUFS(oldmnt);
2063 			UFS_LOCK(ump);
2064 			for (i = 0; i < MAXQUOTAS; i++) {
2065 				if (ump->um_quotas[i] != NULLVP)
2066 					morework = 1;
2067 			}
2068 			UFS_UNLOCK(ump);
2069 #endif
2070 			if (morework) {
2071 				if (--retry_flush_count > 0) {
2072 					retry = 1;
2073 					loopcnt = 3;
2074 				} else
2075 					error = EBUSY;
2076 			}
2077 			MNT_IUNLOCK(oldmnt);
2078 			if (retry)
2079 				goto retry_flush;
2080 		}
2081 	}
2082 	return (error);
2083 }
2084 
2085 /*
2086  * Structure hashing.
2087  *
2088  * There are four types of structures that can be looked up:
2089  *	1) pagedep structures identified by mount point, inode number,
2090  *	   and logical block.
2091  *	2) inodedep structures identified by mount point and inode number.
2092  *	3) newblk structures identified by mount point and
2093  *	   physical block number.
2094  *	4) bmsafemap structures identified by mount point and
2095  *	   cylinder group number.
2096  *
2097  * The "pagedep" and "inodedep" dependency structures are hashed
2098  * separately from the file blocks and inodes to which they correspond.
2099  * This separation helps when the in-memory copy of an inode or
2100  * file block must be replaced. It also obviates the need to access
2101  * an inode or file page when simply updating (or de-allocating)
2102  * dependency structures. Lookup of newblk structures is needed to
2103  * find newly allocated blocks when trying to associate them with
2104  * their allocdirect or allocindir structure.
2105  *
2106  * The lookup routines optionally create and hash a new instance when
2107  * an existing entry is not found. The bmsafemap lookup routine always
2108  * allocates a new structure if an existing one is not found.
2109  */
2110 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2111 
2112 /*
2113  * Structures and routines associated with pagedep caching.
2114  */
2115 #define	PAGEDEP_HASH(ump, inum, lbn) \
2116 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2117 
2118 static int
2119 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2120 	struct pagedep_hashhead *pagedephd;
2121 	ino_t ino;
2122 	ufs_lbn_t lbn;
2123 	struct pagedep **pagedeppp;
2124 {
2125 	struct pagedep *pagedep;
2126 
2127 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2128 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2129 			*pagedeppp = pagedep;
2130 			return (1);
2131 		}
2132 	}
2133 	*pagedeppp = NULL;
2134 	return (0);
2135 }
2136 /*
2137  * Look up a pagedep. Return 1 if found, 0 otherwise.
2138  * If not found, allocate if DEPALLOC flag is passed.
2139  * Found or allocated entry is returned in pagedeppp.
2140  */
2141 static int
2142 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2143 	struct mount *mp;
2144 	struct buf *bp;
2145 	ino_t ino;
2146 	ufs_lbn_t lbn;
2147 	int flags;
2148 	struct pagedep **pagedeppp;
2149 {
2150 	struct pagedep *pagedep;
2151 	struct pagedep_hashhead *pagedephd;
2152 	struct worklist *wk;
2153 	struct ufsmount *ump;
2154 	int ret;
2155 	int i;
2156 
2157 	ump = VFSTOUFS(mp);
2158 	LOCK_OWNED(ump);
2159 	if (bp) {
2160 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2161 			if (wk->wk_type == D_PAGEDEP) {
2162 				*pagedeppp = WK_PAGEDEP(wk);
2163 				return (1);
2164 			}
2165 		}
2166 	}
2167 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2168 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2169 	if (ret) {
2170 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2171 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2172 		return (1);
2173 	}
2174 	if ((flags & DEPALLOC) == 0)
2175 		return (0);
2176 	FREE_LOCK(ump);
2177 	pagedep = malloc(sizeof(struct pagedep),
2178 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2179 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2180 	ACQUIRE_LOCK(ump);
2181 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2182 	if (*pagedeppp) {
2183 		/*
2184 		 * This should never happen since we only create pagedeps
2185 		 * with the vnode lock held.  Could be an assert.
2186 		 */
2187 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2188 		return (ret);
2189 	}
2190 	pagedep->pd_ino = ino;
2191 	pagedep->pd_lbn = lbn;
2192 	LIST_INIT(&pagedep->pd_dirremhd);
2193 	LIST_INIT(&pagedep->pd_pendinghd);
2194 	for (i = 0; i < DAHASHSZ; i++)
2195 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2196 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2197 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2198 	*pagedeppp = pagedep;
2199 	return (0);
2200 }
2201 
2202 /*
2203  * Structures and routines associated with inodedep caching.
2204  */
2205 #define	INODEDEP_HASH(ump, inum) \
2206       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2207 
2208 static int
2209 inodedep_find(inodedephd, inum, inodedeppp)
2210 	struct inodedep_hashhead *inodedephd;
2211 	ino_t inum;
2212 	struct inodedep **inodedeppp;
2213 {
2214 	struct inodedep *inodedep;
2215 
2216 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2217 		if (inum == inodedep->id_ino)
2218 			break;
2219 	if (inodedep) {
2220 		*inodedeppp = inodedep;
2221 		return (1);
2222 	}
2223 	*inodedeppp = NULL;
2224 
2225 	return (0);
2226 }
2227 /*
2228  * Look up an inodedep. Return 1 if found, 0 if not found.
2229  * If not found, allocate if DEPALLOC flag is passed.
2230  * Found or allocated entry is returned in inodedeppp.
2231  */
2232 static int
2233 inodedep_lookup(mp, inum, flags, inodedeppp)
2234 	struct mount *mp;
2235 	ino_t inum;
2236 	int flags;
2237 	struct inodedep **inodedeppp;
2238 {
2239 	struct inodedep *inodedep;
2240 	struct inodedep_hashhead *inodedephd;
2241 	struct ufsmount *ump;
2242 	struct fs *fs;
2243 
2244 	ump = VFSTOUFS(mp);
2245 	LOCK_OWNED(ump);
2246 	fs = ump->um_fs;
2247 	inodedephd = INODEDEP_HASH(ump, inum);
2248 
2249 	if (inodedep_find(inodedephd, inum, inodedeppp))
2250 		return (1);
2251 	if ((flags & DEPALLOC) == 0)
2252 		return (0);
2253 	/*
2254 	 * If the system is over its limit and our filesystem is
2255 	 * responsible for more than our share of that usage and
2256 	 * we are not in a rush, request some inodedep cleanup.
2257 	 */
2258 	if (softdep_excess_items(ump, D_INODEDEP))
2259 		schedule_cleanup(mp);
2260 	else
2261 		FREE_LOCK(ump);
2262 	inodedep = malloc(sizeof(struct inodedep),
2263 		M_INODEDEP, M_SOFTDEP_FLAGS);
2264 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2265 	ACQUIRE_LOCK(ump);
2266 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2267 		WORKITEM_FREE(inodedep, D_INODEDEP);
2268 		return (1);
2269 	}
2270 	inodedep->id_fs = fs;
2271 	inodedep->id_ino = inum;
2272 	inodedep->id_state = ALLCOMPLETE;
2273 	inodedep->id_nlinkdelta = 0;
2274 	inodedep->id_nlinkwrote = -1;
2275 	inodedep->id_savedino1 = NULL;
2276 	inodedep->id_savedsize = -1;
2277 	inodedep->id_savedextsize = -1;
2278 	inodedep->id_savednlink = -1;
2279 	inodedep->id_bmsafemap = NULL;
2280 	inodedep->id_mkdiradd = NULL;
2281 	LIST_INIT(&inodedep->id_dirremhd);
2282 	LIST_INIT(&inodedep->id_pendinghd);
2283 	LIST_INIT(&inodedep->id_inowait);
2284 	LIST_INIT(&inodedep->id_bufwait);
2285 	TAILQ_INIT(&inodedep->id_inoreflst);
2286 	TAILQ_INIT(&inodedep->id_inoupdt);
2287 	TAILQ_INIT(&inodedep->id_newinoupdt);
2288 	TAILQ_INIT(&inodedep->id_extupdt);
2289 	TAILQ_INIT(&inodedep->id_newextupdt);
2290 	TAILQ_INIT(&inodedep->id_freeblklst);
2291 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2292 	*inodedeppp = inodedep;
2293 	return (0);
2294 }
2295 
2296 /*
2297  * Structures and routines associated with newblk caching.
2298  */
2299 #define	NEWBLK_HASH(ump, inum) \
2300 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2301 
2302 static int
2303 newblk_find(newblkhd, newblkno, flags, newblkpp)
2304 	struct newblk_hashhead *newblkhd;
2305 	ufs2_daddr_t newblkno;
2306 	int flags;
2307 	struct newblk **newblkpp;
2308 {
2309 	struct newblk *newblk;
2310 
2311 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2312 		if (newblkno != newblk->nb_newblkno)
2313 			continue;
2314 		/*
2315 		 * If we're creating a new dependency don't match those that
2316 		 * have already been converted to allocdirects.  This is for
2317 		 * a frag extend.
2318 		 */
2319 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2320 			continue;
2321 		break;
2322 	}
2323 	if (newblk) {
2324 		*newblkpp = newblk;
2325 		return (1);
2326 	}
2327 	*newblkpp = NULL;
2328 	return (0);
2329 }
2330 
2331 /*
2332  * Look up a newblk. Return 1 if found, 0 if not found.
2333  * If not found, allocate if DEPALLOC flag is passed.
2334  * Found or allocated entry is returned in newblkpp.
2335  */
2336 static int
2337 newblk_lookup(mp, newblkno, flags, newblkpp)
2338 	struct mount *mp;
2339 	ufs2_daddr_t newblkno;
2340 	int flags;
2341 	struct newblk **newblkpp;
2342 {
2343 	struct newblk *newblk;
2344 	struct newblk_hashhead *newblkhd;
2345 	struct ufsmount *ump;
2346 
2347 	ump = VFSTOUFS(mp);
2348 	LOCK_OWNED(ump);
2349 	newblkhd = NEWBLK_HASH(ump, newblkno);
2350 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2351 		return (1);
2352 	if ((flags & DEPALLOC) == 0)
2353 		return (0);
2354 	if (softdep_excess_items(ump, D_NEWBLK) ||
2355 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2356 	    softdep_excess_items(ump, D_ALLOCINDIR))
2357 		schedule_cleanup(mp);
2358 	else
2359 		FREE_LOCK(ump);
2360 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2361 	    M_SOFTDEP_FLAGS | M_ZERO);
2362 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2363 	ACQUIRE_LOCK(ump);
2364 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2365 		WORKITEM_FREE(newblk, D_NEWBLK);
2366 		return (1);
2367 	}
2368 	newblk->nb_freefrag = NULL;
2369 	LIST_INIT(&newblk->nb_indirdeps);
2370 	LIST_INIT(&newblk->nb_newdirblk);
2371 	LIST_INIT(&newblk->nb_jwork);
2372 	newblk->nb_state = ATTACHED;
2373 	newblk->nb_newblkno = newblkno;
2374 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2375 	*newblkpp = newblk;
2376 	return (0);
2377 }
2378 
2379 /*
2380  * Structures and routines associated with freed indirect block caching.
2381  */
2382 #define	INDIR_HASH(ump, blkno) \
2383 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2384 
2385 /*
2386  * Lookup an indirect block in the indir hash table.  The freework is
2387  * removed and potentially freed.  The caller must do a blocking journal
2388  * write before writing to the blkno.
2389  */
2390 static int
2391 indirblk_lookup(mp, blkno)
2392 	struct mount *mp;
2393 	ufs2_daddr_t blkno;
2394 {
2395 	struct freework *freework;
2396 	struct indir_hashhead *wkhd;
2397 	struct ufsmount *ump;
2398 
2399 	ump = VFSTOUFS(mp);
2400 	wkhd = INDIR_HASH(ump, blkno);
2401 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2402 		if (freework->fw_blkno != blkno)
2403 			continue;
2404 		indirblk_remove(freework);
2405 		return (1);
2406 	}
2407 	return (0);
2408 }
2409 
2410 /*
2411  * Insert an indirect block represented by freework into the indirblk
2412  * hash table so that it may prevent the block from being re-used prior
2413  * to the journal being written.
2414  */
2415 static void
2416 indirblk_insert(freework)
2417 	struct freework *freework;
2418 {
2419 	struct jblocks *jblocks;
2420 	struct jseg *jseg;
2421 	struct ufsmount *ump;
2422 
2423 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2424 	jblocks = ump->softdep_jblocks;
2425 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2426 	if (jseg == NULL)
2427 		return;
2428 
2429 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2430 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2431 	    fw_next);
2432 	freework->fw_state &= ~DEPCOMPLETE;
2433 }
2434 
2435 static void
2436 indirblk_remove(freework)
2437 	struct freework *freework;
2438 {
2439 	struct ufsmount *ump;
2440 
2441 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2442 	LIST_REMOVE(freework, fw_segs);
2443 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2444 	freework->fw_state |= DEPCOMPLETE;
2445 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2446 		WORKITEM_FREE(freework, D_FREEWORK);
2447 }
2448 
2449 /*
2450  * Executed during filesystem system initialization before
2451  * mounting any filesystems.
2452  */
2453 void
2454 softdep_initialize()
2455 {
2456 
2457 	TAILQ_INIT(&softdepmounts);
2458 #ifdef __LP64__
2459 	max_softdeps = desiredvnodes * 4;
2460 #else
2461 	max_softdeps = desiredvnodes * 2;
2462 #endif
2463 
2464 	/* initialise bioops hack */
2465 	bioops.io_start = softdep_disk_io_initiation;
2466 	bioops.io_complete = softdep_disk_write_complete;
2467 	bioops.io_deallocate = softdep_deallocate_dependencies;
2468 	bioops.io_countdeps = softdep_count_dependencies;
2469 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2470 
2471 	/* Initialize the callout with an mtx. */
2472 	callout_init_mtx(&softdep_callout, &lk, 0);
2473 }
2474 
2475 /*
2476  * Executed after all filesystems have been unmounted during
2477  * filesystem module unload.
2478  */
2479 void
2480 softdep_uninitialize()
2481 {
2482 
2483 	/* clear bioops hack */
2484 	bioops.io_start = NULL;
2485 	bioops.io_complete = NULL;
2486 	bioops.io_deallocate = NULL;
2487 	bioops.io_countdeps = NULL;
2488 	softdep_ast_cleanup = NULL;
2489 
2490 	callout_drain(&softdep_callout);
2491 }
2492 
2493 /*
2494  * Called at mount time to notify the dependency code that a
2495  * filesystem wishes to use it.
2496  */
2497 int
2498 softdep_mount(devvp, mp, fs, cred)
2499 	struct vnode *devvp;
2500 	struct mount *mp;
2501 	struct fs *fs;
2502 	struct ucred *cred;
2503 {
2504 	struct csum_total cstotal;
2505 	struct mount_softdeps *sdp;
2506 	struct ufsmount *ump;
2507 	struct cg *cgp;
2508 	struct buf *bp;
2509 	u_int cyl, i;
2510 	int error;
2511 
2512 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2513 	    M_WAITOK | M_ZERO);
2514 	MNT_ILOCK(mp);
2515 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2516 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2517 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2518 			MNTK_SOFTDEP | MNTK_NOASYNC;
2519 	}
2520 	ump = VFSTOUFS(mp);
2521 	ump->um_softdep = sdp;
2522 	MNT_IUNLOCK(mp);
2523 	rw_init(LOCK_PTR(ump), "per-fs softdep");
2524 	sdp->sd_ump = ump;
2525 	LIST_INIT(&ump->softdep_workitem_pending);
2526 	LIST_INIT(&ump->softdep_journal_pending);
2527 	TAILQ_INIT(&ump->softdep_unlinked);
2528 	LIST_INIT(&ump->softdep_dirtycg);
2529 	ump->softdep_worklist_tail = NULL;
2530 	ump->softdep_on_worklist = 0;
2531 	ump->softdep_deps = 0;
2532 	LIST_INIT(&ump->softdep_mkdirlisthd);
2533 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2534 	    &ump->pagedep_hash_size);
2535 	ump->pagedep_nextclean = 0;
2536 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2537 	    &ump->inodedep_hash_size);
2538 	ump->inodedep_nextclean = 0;
2539 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2540 	    &ump->newblk_hash_size);
2541 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2542 	    &ump->bmsafemap_hash_size);
2543 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2544 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2545 	    M_FREEWORK, M_WAITOK);
2546 	ump->indir_hash_size = i - 1;
2547 	for (i = 0; i <= ump->indir_hash_size; i++)
2548 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2549 #ifdef INVARIANTS
2550 	for (i = 0; i <= D_LAST; i++)
2551 		LIST_INIT(&ump->softdep_alldeps[i]);
2552 #endif
2553 	ACQUIRE_GBLLOCK(&lk);
2554 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2555 	FREE_GBLLOCK(&lk);
2556 	if ((fs->fs_flags & FS_SUJ) &&
2557 	    (error = journal_mount(mp, fs, cred)) != 0) {
2558 		printf("Failed to start journal: %d\n", error);
2559 		softdep_unmount(mp);
2560 		return (error);
2561 	}
2562 	/*
2563 	 * Start our flushing thread in the bufdaemon process.
2564 	 */
2565 	ACQUIRE_LOCK(ump);
2566 	ump->softdep_flags |= FLUSH_STARTING;
2567 	FREE_LOCK(ump);
2568 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2569 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2570 	    mp->mnt_stat.f_mntonname);
2571 	ACQUIRE_LOCK(ump);
2572 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2573 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2574 		    hz / 2);
2575 	}
2576 	FREE_LOCK(ump);
2577 	/*
2578 	 * When doing soft updates, the counters in the
2579 	 * superblock may have gotten out of sync. Recomputation
2580 	 * can take a long time and can be deferred for background
2581 	 * fsck.  However, the old behavior of scanning the cylinder
2582 	 * groups and recalculating them at mount time is available
2583 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2584 	 */
2585 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2586 		return (0);
2587 	bzero(&cstotal, sizeof cstotal);
2588 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2589 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2590 		    fs->fs_cgsize, cred, &bp)) != 0) {
2591 			brelse(bp);
2592 			softdep_unmount(mp);
2593 			return (error);
2594 		}
2595 		cgp = (struct cg *)bp->b_data;
2596 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2597 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2598 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2599 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2600 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2601 		brelse(bp);
2602 	}
2603 #ifdef INVARIANTS
2604 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2605 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2606 #endif
2607 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2608 	return (0);
2609 }
2610 
2611 void
2612 softdep_unmount(mp)
2613 	struct mount *mp;
2614 {
2615 	struct ufsmount *ump;
2616 #ifdef INVARIANTS
2617 	int i;
2618 #endif
2619 
2620 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2621 	    ("softdep_unmount called on non-softdep filesystem"));
2622 	ump = VFSTOUFS(mp);
2623 	MNT_ILOCK(mp);
2624 	mp->mnt_flag &= ~MNT_SOFTDEP;
2625 	if (MOUNTEDSUJ(mp) == 0) {
2626 		MNT_IUNLOCK(mp);
2627 	} else {
2628 		mp->mnt_flag &= ~MNT_SUJ;
2629 		MNT_IUNLOCK(mp);
2630 		journal_unmount(ump);
2631 	}
2632 	/*
2633 	 * Shut down our flushing thread. Check for NULL is if
2634 	 * softdep_mount errors out before the thread has been created.
2635 	 */
2636 	if (ump->softdep_flushtd != NULL) {
2637 		ACQUIRE_LOCK(ump);
2638 		ump->softdep_flags |= FLUSH_EXIT;
2639 		wakeup(&ump->softdep_flushtd);
2640 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2641 		    "sdwait", 0);
2642 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2643 		    ("Thread shutdown failed"));
2644 	}
2645 	/*
2646 	 * Free up our resources.
2647 	 */
2648 	ACQUIRE_GBLLOCK(&lk);
2649 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2650 	FREE_GBLLOCK(&lk);
2651 	rw_destroy(LOCK_PTR(ump));
2652 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2653 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2654 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2655 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2656 	    ump->bmsafemap_hash_size);
2657 	free(ump->indir_hashtbl, M_FREEWORK);
2658 #ifdef INVARIANTS
2659 	for (i = 0; i <= D_LAST; i++) {
2660 		KASSERT(ump->softdep_curdeps[i] == 0,
2661 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2662 		    TYPENAME(i), ump->softdep_curdeps[i]));
2663 		KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]),
2664 		    ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt,
2665 		    TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i])));
2666 	}
2667 #endif
2668 	free(ump->um_softdep, M_MOUNTDATA);
2669 }
2670 
2671 static struct jblocks *
2672 jblocks_create(void)
2673 {
2674 	struct jblocks *jblocks;
2675 
2676 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2677 	TAILQ_INIT(&jblocks->jb_segs);
2678 	jblocks->jb_avail = 10;
2679 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2680 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2681 
2682 	return (jblocks);
2683 }
2684 
2685 static ufs2_daddr_t
2686 jblocks_alloc(jblocks, bytes, actual)
2687 	struct jblocks *jblocks;
2688 	int bytes;
2689 	int *actual;
2690 {
2691 	ufs2_daddr_t daddr;
2692 	struct jextent *jext;
2693 	int freecnt;
2694 	int blocks;
2695 
2696 	blocks = bytes / DEV_BSIZE;
2697 	jext = &jblocks->jb_extent[jblocks->jb_head];
2698 	freecnt = jext->je_blocks - jblocks->jb_off;
2699 	if (freecnt == 0) {
2700 		jblocks->jb_off = 0;
2701 		if (++jblocks->jb_head > jblocks->jb_used)
2702 			jblocks->jb_head = 0;
2703 		jext = &jblocks->jb_extent[jblocks->jb_head];
2704 		freecnt = jext->je_blocks;
2705 	}
2706 	if (freecnt > blocks)
2707 		freecnt = blocks;
2708 	*actual = freecnt * DEV_BSIZE;
2709 	daddr = jext->je_daddr + jblocks->jb_off;
2710 	jblocks->jb_off += freecnt;
2711 	jblocks->jb_free -= freecnt;
2712 
2713 	return (daddr);
2714 }
2715 
2716 static void
2717 jblocks_free(jblocks, mp, bytes)
2718 	struct jblocks *jblocks;
2719 	struct mount *mp;
2720 	int bytes;
2721 {
2722 
2723 	LOCK_OWNED(VFSTOUFS(mp));
2724 	jblocks->jb_free += bytes / DEV_BSIZE;
2725 	if (jblocks->jb_suspended)
2726 		worklist_speedup(mp);
2727 	wakeup(jblocks);
2728 }
2729 
2730 static void
2731 jblocks_destroy(jblocks)
2732 	struct jblocks *jblocks;
2733 {
2734 
2735 	if (jblocks->jb_extent)
2736 		free(jblocks->jb_extent, M_JBLOCKS);
2737 	free(jblocks, M_JBLOCKS);
2738 }
2739 
2740 static void
2741 jblocks_add(jblocks, daddr, blocks)
2742 	struct jblocks *jblocks;
2743 	ufs2_daddr_t daddr;
2744 	int blocks;
2745 {
2746 	struct jextent *jext;
2747 
2748 	jblocks->jb_blocks += blocks;
2749 	jblocks->jb_free += blocks;
2750 	jext = &jblocks->jb_extent[jblocks->jb_used];
2751 	/* Adding the first block. */
2752 	if (jext->je_daddr == 0) {
2753 		jext->je_daddr = daddr;
2754 		jext->je_blocks = blocks;
2755 		return;
2756 	}
2757 	/* Extending the last extent. */
2758 	if (jext->je_daddr + jext->je_blocks == daddr) {
2759 		jext->je_blocks += blocks;
2760 		return;
2761 	}
2762 	/* Adding a new extent. */
2763 	if (++jblocks->jb_used == jblocks->jb_avail) {
2764 		jblocks->jb_avail *= 2;
2765 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2766 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2767 		memcpy(jext, jblocks->jb_extent,
2768 		    sizeof(struct jextent) * jblocks->jb_used);
2769 		free(jblocks->jb_extent, M_JBLOCKS);
2770 		jblocks->jb_extent = jext;
2771 	}
2772 	jext = &jblocks->jb_extent[jblocks->jb_used];
2773 	jext->je_daddr = daddr;
2774 	jext->je_blocks = blocks;
2775 	return;
2776 }
2777 
2778 int
2779 softdep_journal_lookup(mp, vpp)
2780 	struct mount *mp;
2781 	struct vnode **vpp;
2782 {
2783 	struct componentname cnp;
2784 	struct vnode *dvp;
2785 	ino_t sujournal;
2786 	int error;
2787 
2788 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2789 	if (error)
2790 		return (error);
2791 	bzero(&cnp, sizeof(cnp));
2792 	cnp.cn_nameiop = LOOKUP;
2793 	cnp.cn_flags = ISLASTCN;
2794 	cnp.cn_thread = curthread;
2795 	cnp.cn_cred = curthread->td_ucred;
2796 	cnp.cn_pnbuf = SUJ_FILE;
2797 	cnp.cn_nameptr = SUJ_FILE;
2798 	cnp.cn_namelen = strlen(SUJ_FILE);
2799 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2800 	vput(dvp);
2801 	if (error != 0)
2802 		return (error);
2803 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2804 	return (error);
2805 }
2806 
2807 /*
2808  * Open and verify the journal file.
2809  */
2810 static int
2811 journal_mount(mp, fs, cred)
2812 	struct mount *mp;
2813 	struct fs *fs;
2814 	struct ucred *cred;
2815 {
2816 	struct jblocks *jblocks;
2817 	struct ufsmount *ump;
2818 	struct vnode *vp;
2819 	struct inode *ip;
2820 	ufs2_daddr_t blkno;
2821 	int bcount;
2822 	int error;
2823 	int i;
2824 
2825 	ump = VFSTOUFS(mp);
2826 	ump->softdep_journal_tail = NULL;
2827 	ump->softdep_on_journal = 0;
2828 	ump->softdep_accdeps = 0;
2829 	ump->softdep_req = 0;
2830 	ump->softdep_jblocks = NULL;
2831 	error = softdep_journal_lookup(mp, &vp);
2832 	if (error != 0) {
2833 		printf("Failed to find journal.  Use tunefs to create one\n");
2834 		return (error);
2835 	}
2836 	ip = VTOI(vp);
2837 	if (ip->i_size < SUJ_MIN) {
2838 		error = ENOSPC;
2839 		goto out;
2840 	}
2841 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2842 	jblocks = jblocks_create();
2843 	for (i = 0; i < bcount; i++) {
2844 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2845 		if (error)
2846 			break;
2847 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2848 	}
2849 	if (error) {
2850 		jblocks_destroy(jblocks);
2851 		goto out;
2852 	}
2853 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2854 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2855 	ump->softdep_jblocks = jblocks;
2856 out:
2857 	if (error == 0) {
2858 		MNT_ILOCK(mp);
2859 		mp->mnt_flag |= MNT_SUJ;
2860 		mp->mnt_flag &= ~MNT_SOFTDEP;
2861 		MNT_IUNLOCK(mp);
2862 		/*
2863 		 * Only validate the journal contents if the
2864 		 * filesystem is clean, otherwise we write the logs
2865 		 * but they'll never be used.  If the filesystem was
2866 		 * still dirty when we mounted it the journal is
2867 		 * invalid and a new journal can only be valid if it
2868 		 * starts from a clean mount.
2869 		 */
2870 		if (fs->fs_clean) {
2871 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2872 			ip->i_flags |= IN_MODIFIED;
2873 			ffs_update(vp, 1);
2874 		}
2875 	}
2876 	vput(vp);
2877 	return (error);
2878 }
2879 
2880 static void
2881 journal_unmount(ump)
2882 	struct ufsmount *ump;
2883 {
2884 
2885 	if (ump->softdep_jblocks)
2886 		jblocks_destroy(ump->softdep_jblocks);
2887 	ump->softdep_jblocks = NULL;
2888 }
2889 
2890 /*
2891  * Called when a journal record is ready to be written.  Space is allocated
2892  * and the journal entry is created when the journal is flushed to stable
2893  * store.
2894  */
2895 static void
2896 add_to_journal(wk)
2897 	struct worklist *wk;
2898 {
2899 	struct ufsmount *ump;
2900 
2901 	ump = VFSTOUFS(wk->wk_mp);
2902 	LOCK_OWNED(ump);
2903 	if (wk->wk_state & ONWORKLIST)
2904 		panic("add_to_journal: %s(0x%X) already on list",
2905 		    TYPENAME(wk->wk_type), wk->wk_state);
2906 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2907 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2908 		ump->softdep_jblocks->jb_age = ticks;
2909 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2910 	} else
2911 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2912 	ump->softdep_journal_tail = wk;
2913 	ump->softdep_on_journal += 1;
2914 }
2915 
2916 /*
2917  * Remove an arbitrary item for the journal worklist maintain the tail
2918  * pointer.  This happens when a new operation obviates the need to
2919  * journal an old operation.
2920  */
2921 static void
2922 remove_from_journal(wk)
2923 	struct worklist *wk;
2924 {
2925 	struct ufsmount *ump;
2926 
2927 	ump = VFSTOUFS(wk->wk_mp);
2928 	LOCK_OWNED(ump);
2929 #ifdef INVARIANTS
2930 	{
2931 		struct worklist *wkn;
2932 
2933 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2934 			if (wkn == wk)
2935 				break;
2936 		if (wkn == NULL)
2937 			panic("remove_from_journal: %p is not in journal", wk);
2938 	}
2939 #endif
2940 	/*
2941 	 * We emulate a TAILQ to save space in most structures which do not
2942 	 * require TAILQ semantics.  Here we must update the tail position
2943 	 * when removing the tail which is not the final entry. This works
2944 	 * only if the worklist linkage are at the beginning of the structure.
2945 	 */
2946 	if (ump->softdep_journal_tail == wk)
2947 		ump->softdep_journal_tail =
2948 		    (struct worklist *)wk->wk_list.le_prev;
2949 	WORKLIST_REMOVE(wk);
2950 	ump->softdep_on_journal -= 1;
2951 }
2952 
2953 /*
2954  * Check for journal space as well as dependency limits so the prelink
2955  * code can throttle both journaled and non-journaled filesystems.
2956  * Threshold is 0 for low and 1 for min.
2957  */
2958 static int
2959 journal_space(ump, thresh)
2960 	struct ufsmount *ump;
2961 	int thresh;
2962 {
2963 	struct jblocks *jblocks;
2964 	int limit, avail;
2965 
2966 	jblocks = ump->softdep_jblocks;
2967 	if (jblocks == NULL)
2968 		return (1);
2969 	/*
2970 	 * We use a tighter restriction here to prevent request_cleanup()
2971 	 * running in threads from running into locks we currently hold.
2972 	 * We have to be over the limit and our filesystem has to be
2973 	 * responsible for more than our share of that usage.
2974 	 */
2975 	limit = (max_softdeps / 10) * 9;
2976 	if (dep_current[D_INODEDEP] > limit &&
2977 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2978 		return (0);
2979 	if (thresh)
2980 		thresh = jblocks->jb_min;
2981 	else
2982 		thresh = jblocks->jb_low;
2983 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2984 	avail = jblocks->jb_free - avail;
2985 
2986 	return (avail > thresh);
2987 }
2988 
2989 static void
2990 journal_suspend(ump)
2991 	struct ufsmount *ump;
2992 {
2993 	struct jblocks *jblocks;
2994 	struct mount *mp;
2995 	bool set;
2996 
2997 	mp = UFSTOVFS(ump);
2998 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
2999 		return;
3000 
3001 	jblocks = ump->softdep_jblocks;
3002 	vfs_op_enter(mp);
3003 	set = false;
3004 	MNT_ILOCK(mp);
3005 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3006 		stat_journal_min++;
3007 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3008 		mp->mnt_susp_owner = ump->softdep_flushtd;
3009 		set = true;
3010 	}
3011 	jblocks->jb_suspended = 1;
3012 	MNT_IUNLOCK(mp);
3013 	if (!set)
3014 		vfs_op_exit(mp);
3015 }
3016 
3017 static int
3018 journal_unsuspend(struct ufsmount *ump)
3019 {
3020 	struct jblocks *jblocks;
3021 	struct mount *mp;
3022 
3023 	mp = UFSTOVFS(ump);
3024 	jblocks = ump->softdep_jblocks;
3025 
3026 	if (jblocks != NULL && jblocks->jb_suspended &&
3027 	    journal_space(ump, jblocks->jb_min)) {
3028 		jblocks->jb_suspended = 0;
3029 		FREE_LOCK(ump);
3030 		mp->mnt_susp_owner = curthread;
3031 		vfs_write_resume(mp, 0);
3032 		ACQUIRE_LOCK(ump);
3033 		return (1);
3034 	}
3035 	return (0);
3036 }
3037 
3038 /*
3039  * Called before any allocation function to be certain that there is
3040  * sufficient space in the journal prior to creating any new records.
3041  * Since in the case of block allocation we may have multiple locked
3042  * buffers at the time of the actual allocation we can not block
3043  * when the journal records are created.  Doing so would create a deadlock
3044  * if any of these buffers needed to be flushed to reclaim space.  Instead
3045  * we require a sufficiently large amount of available space such that
3046  * each thread in the system could have passed this allocation check and
3047  * still have sufficient free space.  With 20% of a minimum journal size
3048  * of 1MB we have 6553 records available.
3049  */
3050 int
3051 softdep_prealloc(vp, waitok)
3052 	struct vnode *vp;
3053 	int waitok;
3054 {
3055 	struct ufsmount *ump;
3056 
3057 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3058 	    ("softdep_prealloc called on non-softdep filesystem"));
3059 	/*
3060 	 * Nothing to do if we are not running journaled soft updates.
3061 	 * If we currently hold the snapshot lock, we must avoid
3062 	 * handling other resources that could cause deadlock.  Do not
3063 	 * touch quotas vnode since it is typically recursed with
3064 	 * other vnode locks held.
3065 	 */
3066 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3067 	    (vp->v_vflag & VV_SYSTEM) != 0)
3068 		return (0);
3069 	ump = VFSTOUFS(vp->v_mount);
3070 	ACQUIRE_LOCK(ump);
3071 	if (journal_space(ump, 0)) {
3072 		FREE_LOCK(ump);
3073 		return (0);
3074 	}
3075 	stat_journal_low++;
3076 	FREE_LOCK(ump);
3077 	if (waitok == MNT_NOWAIT)
3078 		return (ENOSPC);
3079 	/*
3080 	 * Attempt to sync this vnode once to flush any journal
3081 	 * work attached to it.
3082 	 */
3083 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3084 		ffs_syncvnode(vp, waitok, 0);
3085 	ACQUIRE_LOCK(ump);
3086 	process_removes(vp);
3087 	process_truncates(vp);
3088 	if (journal_space(ump, 0) == 0) {
3089 		softdep_speedup(ump);
3090 		if (journal_space(ump, 1) == 0)
3091 			journal_suspend(ump);
3092 	}
3093 	FREE_LOCK(ump);
3094 
3095 	return (0);
3096 }
3097 
3098 /*
3099  * Before adjusting a link count on a vnode verify that we have sufficient
3100  * journal space.  If not, process operations that depend on the currently
3101  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3102  * and softdep flush threads can not acquire these locks to reclaim space.
3103  */
3104 static void
3105 softdep_prelink(dvp, vp)
3106 	struct vnode *dvp;
3107 	struct vnode *vp;
3108 {
3109 	struct ufsmount *ump;
3110 
3111 	ump = VFSTOUFS(dvp->v_mount);
3112 	LOCK_OWNED(ump);
3113 	/*
3114 	 * Nothing to do if we have sufficient journal space.
3115 	 * If we currently hold the snapshot lock, we must avoid
3116 	 * handling other resources that could cause deadlock.
3117 	 */
3118 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3119 		return;
3120 	stat_journal_low++;
3121 	FREE_LOCK(ump);
3122 	if (vp)
3123 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3124 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3125 	ACQUIRE_LOCK(ump);
3126 	/* Process vp before dvp as it may create .. removes. */
3127 	if (vp) {
3128 		process_removes(vp);
3129 		process_truncates(vp);
3130 	}
3131 	process_removes(dvp);
3132 	process_truncates(dvp);
3133 	softdep_speedup(ump);
3134 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3135 	if (journal_space(ump, 0) == 0) {
3136 		softdep_speedup(ump);
3137 		if (journal_space(ump, 1) == 0)
3138 			journal_suspend(ump);
3139 	}
3140 }
3141 
3142 static void
3143 jseg_write(ump, jseg, data)
3144 	struct ufsmount *ump;
3145 	struct jseg *jseg;
3146 	uint8_t *data;
3147 {
3148 	struct jsegrec *rec;
3149 
3150 	rec = (struct jsegrec *)data;
3151 	rec->jsr_seq = jseg->js_seq;
3152 	rec->jsr_oldest = jseg->js_oldseq;
3153 	rec->jsr_cnt = jseg->js_cnt;
3154 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3155 	rec->jsr_crc = 0;
3156 	rec->jsr_time = ump->um_fs->fs_mtime;
3157 }
3158 
3159 static inline void
3160 inoref_write(inoref, jseg, rec)
3161 	struct inoref *inoref;
3162 	struct jseg *jseg;
3163 	struct jrefrec *rec;
3164 {
3165 
3166 	inoref->if_jsegdep->jd_seg = jseg;
3167 	rec->jr_ino = inoref->if_ino;
3168 	rec->jr_parent = inoref->if_parent;
3169 	rec->jr_nlink = inoref->if_nlink;
3170 	rec->jr_mode = inoref->if_mode;
3171 	rec->jr_diroff = inoref->if_diroff;
3172 }
3173 
3174 static void
3175 jaddref_write(jaddref, jseg, data)
3176 	struct jaddref *jaddref;
3177 	struct jseg *jseg;
3178 	uint8_t *data;
3179 {
3180 	struct jrefrec *rec;
3181 
3182 	rec = (struct jrefrec *)data;
3183 	rec->jr_op = JOP_ADDREF;
3184 	inoref_write(&jaddref->ja_ref, jseg, rec);
3185 }
3186 
3187 static void
3188 jremref_write(jremref, jseg, data)
3189 	struct jremref *jremref;
3190 	struct jseg *jseg;
3191 	uint8_t *data;
3192 {
3193 	struct jrefrec *rec;
3194 
3195 	rec = (struct jrefrec *)data;
3196 	rec->jr_op = JOP_REMREF;
3197 	inoref_write(&jremref->jr_ref, jseg, rec);
3198 }
3199 
3200 static void
3201 jmvref_write(jmvref, jseg, data)
3202 	struct jmvref *jmvref;
3203 	struct jseg *jseg;
3204 	uint8_t *data;
3205 {
3206 	struct jmvrec *rec;
3207 
3208 	rec = (struct jmvrec *)data;
3209 	rec->jm_op = JOP_MVREF;
3210 	rec->jm_ino = jmvref->jm_ino;
3211 	rec->jm_parent = jmvref->jm_parent;
3212 	rec->jm_oldoff = jmvref->jm_oldoff;
3213 	rec->jm_newoff = jmvref->jm_newoff;
3214 }
3215 
3216 static void
3217 jnewblk_write(jnewblk, jseg, data)
3218 	struct jnewblk *jnewblk;
3219 	struct jseg *jseg;
3220 	uint8_t *data;
3221 {
3222 	struct jblkrec *rec;
3223 
3224 	jnewblk->jn_jsegdep->jd_seg = jseg;
3225 	rec = (struct jblkrec *)data;
3226 	rec->jb_op = JOP_NEWBLK;
3227 	rec->jb_ino = jnewblk->jn_ino;
3228 	rec->jb_blkno = jnewblk->jn_blkno;
3229 	rec->jb_lbn = jnewblk->jn_lbn;
3230 	rec->jb_frags = jnewblk->jn_frags;
3231 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3232 }
3233 
3234 static void
3235 jfreeblk_write(jfreeblk, jseg, data)
3236 	struct jfreeblk *jfreeblk;
3237 	struct jseg *jseg;
3238 	uint8_t *data;
3239 {
3240 	struct jblkrec *rec;
3241 
3242 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3243 	rec = (struct jblkrec *)data;
3244 	rec->jb_op = JOP_FREEBLK;
3245 	rec->jb_ino = jfreeblk->jf_ino;
3246 	rec->jb_blkno = jfreeblk->jf_blkno;
3247 	rec->jb_lbn = jfreeblk->jf_lbn;
3248 	rec->jb_frags = jfreeblk->jf_frags;
3249 	rec->jb_oldfrags = 0;
3250 }
3251 
3252 static void
3253 jfreefrag_write(jfreefrag, jseg, data)
3254 	struct jfreefrag *jfreefrag;
3255 	struct jseg *jseg;
3256 	uint8_t *data;
3257 {
3258 	struct jblkrec *rec;
3259 
3260 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3261 	rec = (struct jblkrec *)data;
3262 	rec->jb_op = JOP_FREEBLK;
3263 	rec->jb_ino = jfreefrag->fr_ino;
3264 	rec->jb_blkno = jfreefrag->fr_blkno;
3265 	rec->jb_lbn = jfreefrag->fr_lbn;
3266 	rec->jb_frags = jfreefrag->fr_frags;
3267 	rec->jb_oldfrags = 0;
3268 }
3269 
3270 static void
3271 jtrunc_write(jtrunc, jseg, data)
3272 	struct jtrunc *jtrunc;
3273 	struct jseg *jseg;
3274 	uint8_t *data;
3275 {
3276 	struct jtrncrec *rec;
3277 
3278 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3279 	rec = (struct jtrncrec *)data;
3280 	rec->jt_op = JOP_TRUNC;
3281 	rec->jt_ino = jtrunc->jt_ino;
3282 	rec->jt_size = jtrunc->jt_size;
3283 	rec->jt_extsize = jtrunc->jt_extsize;
3284 }
3285 
3286 static void
3287 jfsync_write(jfsync, jseg, data)
3288 	struct jfsync *jfsync;
3289 	struct jseg *jseg;
3290 	uint8_t *data;
3291 {
3292 	struct jtrncrec *rec;
3293 
3294 	rec = (struct jtrncrec *)data;
3295 	rec->jt_op = JOP_SYNC;
3296 	rec->jt_ino = jfsync->jfs_ino;
3297 	rec->jt_size = jfsync->jfs_size;
3298 	rec->jt_extsize = jfsync->jfs_extsize;
3299 }
3300 
3301 static void
3302 softdep_flushjournal(mp)
3303 	struct mount *mp;
3304 {
3305 	struct jblocks *jblocks;
3306 	struct ufsmount *ump;
3307 
3308 	if (MOUNTEDSUJ(mp) == 0)
3309 		return;
3310 	ump = VFSTOUFS(mp);
3311 	jblocks = ump->softdep_jblocks;
3312 	ACQUIRE_LOCK(ump);
3313 	while (ump->softdep_on_journal) {
3314 		jblocks->jb_needseg = 1;
3315 		softdep_process_journal(mp, NULL, MNT_WAIT);
3316 	}
3317 	FREE_LOCK(ump);
3318 }
3319 
3320 static void softdep_synchronize_completed(struct bio *);
3321 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3322 
3323 static void
3324 softdep_synchronize_completed(bp)
3325         struct bio *bp;
3326 {
3327 	struct jseg *oldest;
3328 	struct jseg *jseg;
3329 	struct ufsmount *ump;
3330 
3331 	/*
3332 	 * caller1 marks the last segment written before we issued the
3333 	 * synchronize cache.
3334 	 */
3335 	jseg = bp->bio_caller1;
3336 	if (jseg == NULL) {
3337 		g_destroy_bio(bp);
3338 		return;
3339 	}
3340 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3341 	ACQUIRE_LOCK(ump);
3342 	oldest = NULL;
3343 	/*
3344 	 * Mark all the journal entries waiting on the synchronize cache
3345 	 * as completed so they may continue on.
3346 	 */
3347 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3348 		jseg->js_state |= COMPLETE;
3349 		oldest = jseg;
3350 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3351 	}
3352 	/*
3353 	 * Restart deferred journal entry processing from the oldest
3354 	 * completed jseg.
3355 	 */
3356 	if (oldest)
3357 		complete_jsegs(oldest);
3358 
3359 	FREE_LOCK(ump);
3360 	g_destroy_bio(bp);
3361 }
3362 
3363 /*
3364  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3365  * barriers.  The journal must be written prior to any blocks that depend
3366  * on it and the journal can not be released until the blocks have be
3367  * written.  This code handles both barriers simultaneously.
3368  */
3369 static void
3370 softdep_synchronize(bp, ump, caller1)
3371 	struct bio *bp;
3372 	struct ufsmount *ump;
3373 	void *caller1;
3374 {
3375 
3376 	bp->bio_cmd = BIO_FLUSH;
3377 	bp->bio_flags |= BIO_ORDERED;
3378 	bp->bio_data = NULL;
3379 	bp->bio_offset = ump->um_cp->provider->mediasize;
3380 	bp->bio_length = 0;
3381 	bp->bio_done = softdep_synchronize_completed;
3382 	bp->bio_caller1 = caller1;
3383 	g_io_request(bp, ump->um_cp);
3384 }
3385 
3386 /*
3387  * Flush some journal records to disk.
3388  */
3389 static void
3390 softdep_process_journal(mp, needwk, flags)
3391 	struct mount *mp;
3392 	struct worklist *needwk;
3393 	int flags;
3394 {
3395 	struct jblocks *jblocks;
3396 	struct ufsmount *ump;
3397 	struct worklist *wk;
3398 	struct jseg *jseg;
3399 	struct buf *bp;
3400 	struct bio *bio;
3401 	uint8_t *data;
3402 	struct fs *fs;
3403 	int shouldflush;
3404 	int segwritten;
3405 	int jrecmin;	/* Minimum records per block. */
3406 	int jrecmax;	/* Maximum records per block. */
3407 	int size;
3408 	int cnt;
3409 	int off;
3410 	int devbsize;
3411 
3412 	if (MOUNTEDSUJ(mp) == 0)
3413 		return;
3414 	shouldflush = softdep_flushcache;
3415 	bio = NULL;
3416 	jseg = NULL;
3417 	ump = VFSTOUFS(mp);
3418 	LOCK_OWNED(ump);
3419 	fs = ump->um_fs;
3420 	jblocks = ump->softdep_jblocks;
3421 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3422 	/*
3423 	 * We write anywhere between a disk block and fs block.  The upper
3424 	 * bound is picked to prevent buffer cache fragmentation and limit
3425 	 * processing time per I/O.
3426 	 */
3427 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3428 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3429 	segwritten = 0;
3430 	for (;;) {
3431 		cnt = ump->softdep_on_journal;
3432 		/*
3433 		 * Criteria for writing a segment:
3434 		 * 1) We have a full block.
3435 		 * 2) We're called from jwait() and haven't found the
3436 		 *    journal item yet.
3437 		 * 3) Always write if needseg is set.
3438 		 * 4) If we are called from process_worklist and have
3439 		 *    not yet written anything we write a partial block
3440 		 *    to enforce a 1 second maximum latency on journal
3441 		 *    entries.
3442 		 */
3443 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3444 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3445 			break;
3446 		cnt++;
3447 		/*
3448 		 * Verify some free journal space.  softdep_prealloc() should
3449 		 * guarantee that we don't run out so this is indicative of
3450 		 * a problem with the flow control.  Try to recover
3451 		 * gracefully in any event.
3452 		 */
3453 		while (jblocks->jb_free == 0) {
3454 			if (flags != MNT_WAIT)
3455 				break;
3456 			printf("softdep: Out of journal space!\n");
3457 			softdep_speedup(ump);
3458 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3459 		}
3460 		FREE_LOCK(ump);
3461 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3462 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3463 		LIST_INIT(&jseg->js_entries);
3464 		LIST_INIT(&jseg->js_indirs);
3465 		jseg->js_state = ATTACHED;
3466 		if (shouldflush == 0)
3467 			jseg->js_state |= COMPLETE;
3468 		else if (bio == NULL)
3469 			bio = g_alloc_bio();
3470 		jseg->js_jblocks = jblocks;
3471 		bp = geteblk(fs->fs_bsize, 0);
3472 		ACQUIRE_LOCK(ump);
3473 		/*
3474 		 * If there was a race while we were allocating the block
3475 		 * and jseg the entry we care about was likely written.
3476 		 * We bail out in both the WAIT and NOWAIT case and assume
3477 		 * the caller will loop if the entry it cares about is
3478 		 * not written.
3479 		 */
3480 		cnt = ump->softdep_on_journal;
3481 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3482 			bp->b_flags |= B_INVAL | B_NOCACHE;
3483 			WORKITEM_FREE(jseg, D_JSEG);
3484 			FREE_LOCK(ump);
3485 			brelse(bp);
3486 			ACQUIRE_LOCK(ump);
3487 			break;
3488 		}
3489 		/*
3490 		 * Calculate the disk block size required for the available
3491 		 * records rounded to the min size.
3492 		 */
3493 		if (cnt == 0)
3494 			size = devbsize;
3495 		else if (cnt < jrecmax)
3496 			size = howmany(cnt, jrecmin) * devbsize;
3497 		else
3498 			size = fs->fs_bsize;
3499 		/*
3500 		 * Allocate a disk block for this journal data and account
3501 		 * for truncation of the requested size if enough contiguous
3502 		 * space was not available.
3503 		 */
3504 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3505 		bp->b_lblkno = bp->b_blkno;
3506 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3507 		bp->b_bcount = size;
3508 		bp->b_flags &= ~B_INVAL;
3509 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3510 		/*
3511 		 * Initialize our jseg with cnt records.  Assign the next
3512 		 * sequence number to it and link it in-order.
3513 		 */
3514 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3515 		jseg->js_buf = bp;
3516 		jseg->js_cnt = cnt;
3517 		jseg->js_refs = cnt + 1;	/* Self ref. */
3518 		jseg->js_size = size;
3519 		jseg->js_seq = jblocks->jb_nextseq++;
3520 		if (jblocks->jb_oldestseg == NULL)
3521 			jblocks->jb_oldestseg = jseg;
3522 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3523 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3524 		if (jblocks->jb_writeseg == NULL)
3525 			jblocks->jb_writeseg = jseg;
3526 		/*
3527 		 * Start filling in records from the pending list.
3528 		 */
3529 		data = bp->b_data;
3530 		off = 0;
3531 
3532 		/*
3533 		 * Always put a header on the first block.
3534 		 * XXX As with below, there might not be a chance to get
3535 		 * into the loop.  Ensure that something valid is written.
3536 		 */
3537 		jseg_write(ump, jseg, data);
3538 		off += JREC_SIZE;
3539 		data = bp->b_data + off;
3540 
3541 		/*
3542 		 * XXX Something is wrong here.  There's no work to do,
3543 		 * but we need to perform and I/O and allow it to complete
3544 		 * anyways.
3545 		 */
3546 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3547 			stat_emptyjblocks++;
3548 
3549 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3550 		    != NULL) {
3551 			if (cnt == 0)
3552 				break;
3553 			/* Place a segment header on every device block. */
3554 			if ((off % devbsize) == 0) {
3555 				jseg_write(ump, jseg, data);
3556 				off += JREC_SIZE;
3557 				data = bp->b_data + off;
3558 			}
3559 			if (wk == needwk)
3560 				needwk = NULL;
3561 			remove_from_journal(wk);
3562 			wk->wk_state |= INPROGRESS;
3563 			WORKLIST_INSERT(&jseg->js_entries, wk);
3564 			switch (wk->wk_type) {
3565 			case D_JADDREF:
3566 				jaddref_write(WK_JADDREF(wk), jseg, data);
3567 				break;
3568 			case D_JREMREF:
3569 				jremref_write(WK_JREMREF(wk), jseg, data);
3570 				break;
3571 			case D_JMVREF:
3572 				jmvref_write(WK_JMVREF(wk), jseg, data);
3573 				break;
3574 			case D_JNEWBLK:
3575 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3576 				break;
3577 			case D_JFREEBLK:
3578 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3579 				break;
3580 			case D_JFREEFRAG:
3581 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3582 				break;
3583 			case D_JTRUNC:
3584 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3585 				break;
3586 			case D_JFSYNC:
3587 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3588 				break;
3589 			default:
3590 				panic("process_journal: Unknown type %s",
3591 				    TYPENAME(wk->wk_type));
3592 				/* NOTREACHED */
3593 			}
3594 			off += JREC_SIZE;
3595 			data = bp->b_data + off;
3596 			cnt--;
3597 		}
3598 
3599 		/* Clear any remaining space so we don't leak kernel data */
3600 		if (size > off)
3601 			bzero(data, size - off);
3602 
3603 		/*
3604 		 * Write this one buffer and continue.
3605 		 */
3606 		segwritten = 1;
3607 		jblocks->jb_needseg = 0;
3608 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3609 		FREE_LOCK(ump);
3610 		bp->b_xflags |= BX_CVTENXIO;
3611 		pbgetvp(ump->um_devvp, bp);
3612 		/*
3613 		 * We only do the blocking wait once we find the journal
3614 		 * entry we're looking for.
3615 		 */
3616 		if (needwk == NULL && flags == MNT_WAIT)
3617 			bwrite(bp);
3618 		else
3619 			bawrite(bp);
3620 		ACQUIRE_LOCK(ump);
3621 	}
3622 	/*
3623 	 * If we wrote a segment issue a synchronize cache so the journal
3624 	 * is reflected on disk before the data is written.  Since reclaiming
3625 	 * journal space also requires writing a journal record this
3626 	 * process also enforces a barrier before reclamation.
3627 	 */
3628 	if (segwritten && shouldflush) {
3629 		softdep_synchronize(bio, ump,
3630 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3631 	} else if (bio)
3632 		g_destroy_bio(bio);
3633 	/*
3634 	 * If we've suspended the filesystem because we ran out of journal
3635 	 * space either try to sync it here to make some progress or
3636 	 * unsuspend it if we already have.
3637 	 */
3638 	if (flags == 0 && jblocks->jb_suspended) {
3639 		if (journal_unsuspend(ump))
3640 			return;
3641 		FREE_LOCK(ump);
3642 		VFS_SYNC(mp, MNT_NOWAIT);
3643 		ffs_sbupdate(ump, MNT_WAIT, 0);
3644 		ACQUIRE_LOCK(ump);
3645 	}
3646 }
3647 
3648 /*
3649  * Complete a jseg, allowing all dependencies awaiting journal writes
3650  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3651  * structures so that the journal segment can be freed to reclaim space.
3652  */
3653 static void
3654 complete_jseg(jseg)
3655 	struct jseg *jseg;
3656 {
3657 	struct worklist *wk;
3658 	struct jmvref *jmvref;
3659 #ifdef INVARIANTS
3660 	int i = 0;
3661 #endif
3662 
3663 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3664 		WORKLIST_REMOVE(wk);
3665 		wk->wk_state &= ~INPROGRESS;
3666 		wk->wk_state |= COMPLETE;
3667 		KASSERT(i++ < jseg->js_cnt,
3668 		    ("handle_written_jseg: overflow %d >= %d",
3669 		    i - 1, jseg->js_cnt));
3670 		switch (wk->wk_type) {
3671 		case D_JADDREF:
3672 			handle_written_jaddref(WK_JADDREF(wk));
3673 			break;
3674 		case D_JREMREF:
3675 			handle_written_jremref(WK_JREMREF(wk));
3676 			break;
3677 		case D_JMVREF:
3678 			rele_jseg(jseg);	/* No jsegdep. */
3679 			jmvref = WK_JMVREF(wk);
3680 			LIST_REMOVE(jmvref, jm_deps);
3681 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3682 				free_pagedep(jmvref->jm_pagedep);
3683 			WORKITEM_FREE(jmvref, D_JMVREF);
3684 			break;
3685 		case D_JNEWBLK:
3686 			handle_written_jnewblk(WK_JNEWBLK(wk));
3687 			break;
3688 		case D_JFREEBLK:
3689 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3690 			break;
3691 		case D_JTRUNC:
3692 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3693 			break;
3694 		case D_JFSYNC:
3695 			rele_jseg(jseg);	/* No jsegdep. */
3696 			WORKITEM_FREE(wk, D_JFSYNC);
3697 			break;
3698 		case D_JFREEFRAG:
3699 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3700 			break;
3701 		default:
3702 			panic("handle_written_jseg: Unknown type %s",
3703 			    TYPENAME(wk->wk_type));
3704 			/* NOTREACHED */
3705 		}
3706 	}
3707 	/* Release the self reference so the structure may be freed. */
3708 	rele_jseg(jseg);
3709 }
3710 
3711 /*
3712  * Determine which jsegs are ready for completion processing.  Waits for
3713  * synchronize cache to complete as well as forcing in-order completion
3714  * of journal entries.
3715  */
3716 static void
3717 complete_jsegs(jseg)
3718 	struct jseg *jseg;
3719 {
3720 	struct jblocks *jblocks;
3721 	struct jseg *jsegn;
3722 
3723 	jblocks = jseg->js_jblocks;
3724 	/*
3725 	 * Don't allow out of order completions.  If this isn't the first
3726 	 * block wait for it to write before we're done.
3727 	 */
3728 	if (jseg != jblocks->jb_writeseg)
3729 		return;
3730 	/* Iterate through available jsegs processing their entries. */
3731 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3732 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3733 		jsegn = TAILQ_NEXT(jseg, js_next);
3734 		complete_jseg(jseg);
3735 		jseg = jsegn;
3736 	}
3737 	jblocks->jb_writeseg = jseg;
3738 	/*
3739 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3740 	 */
3741 	free_jsegs(jblocks);
3742 }
3743 
3744 /*
3745  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3746  * the final completions.
3747  */
3748 static void
3749 handle_written_jseg(jseg, bp)
3750 	struct jseg *jseg;
3751 	struct buf *bp;
3752 {
3753 
3754 	if (jseg->js_refs == 0)
3755 		panic("handle_written_jseg: No self-reference on %p", jseg);
3756 	jseg->js_state |= DEPCOMPLETE;
3757 	/*
3758 	 * We'll never need this buffer again, set flags so it will be
3759 	 * discarded.
3760 	 */
3761 	bp->b_flags |= B_INVAL | B_NOCACHE;
3762 	pbrelvp(bp);
3763 	complete_jsegs(jseg);
3764 }
3765 
3766 static inline struct jsegdep *
3767 inoref_jseg(inoref)
3768 	struct inoref *inoref;
3769 {
3770 	struct jsegdep *jsegdep;
3771 
3772 	jsegdep = inoref->if_jsegdep;
3773 	inoref->if_jsegdep = NULL;
3774 
3775 	return (jsegdep);
3776 }
3777 
3778 /*
3779  * Called once a jremref has made it to stable store.  The jremref is marked
3780  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3781  * for the jremref to complete will be awoken by free_jremref.
3782  */
3783 static void
3784 handle_written_jremref(jremref)
3785 	struct jremref *jremref;
3786 {
3787 	struct inodedep *inodedep;
3788 	struct jsegdep *jsegdep;
3789 	struct dirrem *dirrem;
3790 
3791 	/* Grab the jsegdep. */
3792 	jsegdep = inoref_jseg(&jremref->jr_ref);
3793 	/*
3794 	 * Remove us from the inoref list.
3795 	 */
3796 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3797 	    0, &inodedep) == 0)
3798 		panic("handle_written_jremref: Lost inodedep");
3799 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3800 	/*
3801 	 * Complete the dirrem.
3802 	 */
3803 	dirrem = jremref->jr_dirrem;
3804 	jremref->jr_dirrem = NULL;
3805 	LIST_REMOVE(jremref, jr_deps);
3806 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3807 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3808 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3809 	    (dirrem->dm_state & COMPLETE) != 0)
3810 		add_to_worklist(&dirrem->dm_list, 0);
3811 	free_jremref(jremref);
3812 }
3813 
3814 /*
3815  * Called once a jaddref has made it to stable store.  The dependency is
3816  * marked complete and any dependent structures are added to the inode
3817  * bufwait list to be completed as soon as it is written.  If a bitmap write
3818  * depends on this entry we move the inode into the inodedephd of the
3819  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3820  */
3821 static void
3822 handle_written_jaddref(jaddref)
3823 	struct jaddref *jaddref;
3824 {
3825 	struct jsegdep *jsegdep;
3826 	struct inodedep *inodedep;
3827 	struct diradd *diradd;
3828 	struct mkdir *mkdir;
3829 
3830 	/* Grab the jsegdep. */
3831 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3832 	mkdir = NULL;
3833 	diradd = NULL;
3834 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3835 	    0, &inodedep) == 0)
3836 		panic("handle_written_jaddref: Lost inodedep.");
3837 	if (jaddref->ja_diradd == NULL)
3838 		panic("handle_written_jaddref: No dependency");
3839 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3840 		diradd = jaddref->ja_diradd;
3841 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3842 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3843 		mkdir = jaddref->ja_mkdir;
3844 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3845 	} else if (jaddref->ja_state & MKDIR_BODY)
3846 		mkdir = jaddref->ja_mkdir;
3847 	else
3848 		panic("handle_written_jaddref: Unknown dependency %p",
3849 		    jaddref->ja_diradd);
3850 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3851 	/*
3852 	 * Remove us from the inode list.
3853 	 */
3854 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3855 	/*
3856 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3857 	 */
3858 	if (mkdir) {
3859 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3860 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3861 		    TYPENAME(mkdir->md_list.wk_type)));
3862 		mkdir->md_jaddref = NULL;
3863 		diradd = mkdir->md_diradd;
3864 		mkdir->md_state |= DEPCOMPLETE;
3865 		complete_mkdir(mkdir);
3866 	}
3867 	jwork_insert(&diradd->da_jwork, jsegdep);
3868 	if (jaddref->ja_state & NEWBLOCK) {
3869 		inodedep->id_state |= ONDEPLIST;
3870 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3871 		    inodedep, id_deps);
3872 	}
3873 	free_jaddref(jaddref);
3874 }
3875 
3876 /*
3877  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3878  * is placed in the bmsafemap to await notification of a written bitmap.  If
3879  * the operation was canceled we add the segdep to the appropriate
3880  * dependency to free the journal space once the canceling operation
3881  * completes.
3882  */
3883 static void
3884 handle_written_jnewblk(jnewblk)
3885 	struct jnewblk *jnewblk;
3886 {
3887 	struct bmsafemap *bmsafemap;
3888 	struct freefrag *freefrag;
3889 	struct freework *freework;
3890 	struct jsegdep *jsegdep;
3891 	struct newblk *newblk;
3892 
3893 	/* Grab the jsegdep. */
3894 	jsegdep = jnewblk->jn_jsegdep;
3895 	jnewblk->jn_jsegdep = NULL;
3896 	if (jnewblk->jn_dep == NULL)
3897 		panic("handle_written_jnewblk: No dependency for the segdep.");
3898 	switch (jnewblk->jn_dep->wk_type) {
3899 	case D_NEWBLK:
3900 	case D_ALLOCDIRECT:
3901 	case D_ALLOCINDIR:
3902 		/*
3903 		 * Add the written block to the bmsafemap so it can
3904 		 * be notified when the bitmap is on disk.
3905 		 */
3906 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3907 		newblk->nb_jnewblk = NULL;
3908 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3909 			bmsafemap = newblk->nb_bmsafemap;
3910 			newblk->nb_state |= ONDEPLIST;
3911 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3912 			    nb_deps);
3913 		}
3914 		jwork_insert(&newblk->nb_jwork, jsegdep);
3915 		break;
3916 	case D_FREEFRAG:
3917 		/*
3918 		 * A newblock being removed by a freefrag when replaced by
3919 		 * frag extension.
3920 		 */
3921 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3922 		freefrag->ff_jdep = NULL;
3923 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3924 		break;
3925 	case D_FREEWORK:
3926 		/*
3927 		 * A direct block was removed by truncate.
3928 		 */
3929 		freework = WK_FREEWORK(jnewblk->jn_dep);
3930 		freework->fw_jnewblk = NULL;
3931 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3932 		break;
3933 	default:
3934 		panic("handle_written_jnewblk: Unknown type %d.",
3935 		    jnewblk->jn_dep->wk_type);
3936 	}
3937 	jnewblk->jn_dep = NULL;
3938 	free_jnewblk(jnewblk);
3939 }
3940 
3941 /*
3942  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3943  * an in-flight allocation that has not yet been committed.  Divorce us
3944  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3945  * to the worklist.
3946  */
3947 static void
3948 cancel_jfreefrag(jfreefrag)
3949 	struct jfreefrag *jfreefrag;
3950 {
3951 	struct freefrag *freefrag;
3952 
3953 	if (jfreefrag->fr_jsegdep) {
3954 		free_jsegdep(jfreefrag->fr_jsegdep);
3955 		jfreefrag->fr_jsegdep = NULL;
3956 	}
3957 	freefrag = jfreefrag->fr_freefrag;
3958 	jfreefrag->fr_freefrag = NULL;
3959 	free_jfreefrag(jfreefrag);
3960 	freefrag->ff_state |= DEPCOMPLETE;
3961 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3962 }
3963 
3964 /*
3965  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3966  */
3967 static void
3968 free_jfreefrag(jfreefrag)
3969 	struct jfreefrag *jfreefrag;
3970 {
3971 
3972 	if (jfreefrag->fr_state & INPROGRESS)
3973 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3974 	else if (jfreefrag->fr_state & ONWORKLIST)
3975 		remove_from_journal(&jfreefrag->fr_list);
3976 	if (jfreefrag->fr_freefrag != NULL)
3977 		panic("free_jfreefrag:  Still attached to a freefrag.");
3978 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3979 }
3980 
3981 /*
3982  * Called when the journal write for a jfreefrag completes.  The parent
3983  * freefrag is added to the worklist if this completes its dependencies.
3984  */
3985 static void
3986 handle_written_jfreefrag(jfreefrag)
3987 	struct jfreefrag *jfreefrag;
3988 {
3989 	struct jsegdep *jsegdep;
3990 	struct freefrag *freefrag;
3991 
3992 	/* Grab the jsegdep. */
3993 	jsegdep = jfreefrag->fr_jsegdep;
3994 	jfreefrag->fr_jsegdep = NULL;
3995 	freefrag = jfreefrag->fr_freefrag;
3996 	if (freefrag == NULL)
3997 		panic("handle_written_jfreefrag: No freefrag.");
3998 	freefrag->ff_state |= DEPCOMPLETE;
3999 	freefrag->ff_jdep = NULL;
4000 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4001 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4002 		add_to_worklist(&freefrag->ff_list, 0);
4003 	jfreefrag->fr_freefrag = NULL;
4004 	free_jfreefrag(jfreefrag);
4005 }
4006 
4007 /*
4008  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4009  * is removed from the freeblks list of pending journal writes and the
4010  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4011  * have been reclaimed.
4012  */
4013 static void
4014 handle_written_jblkdep(jblkdep)
4015 	struct jblkdep *jblkdep;
4016 {
4017 	struct freeblks *freeblks;
4018 	struct jsegdep *jsegdep;
4019 
4020 	/* Grab the jsegdep. */
4021 	jsegdep = jblkdep->jb_jsegdep;
4022 	jblkdep->jb_jsegdep = NULL;
4023 	freeblks = jblkdep->jb_freeblks;
4024 	LIST_REMOVE(jblkdep, jb_deps);
4025 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4026 	/*
4027 	 * If the freeblks is all journaled, we can add it to the worklist.
4028 	 */
4029 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4030 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4031 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4032 
4033 	free_jblkdep(jblkdep);
4034 }
4035 
4036 static struct jsegdep *
4037 newjsegdep(struct worklist *wk)
4038 {
4039 	struct jsegdep *jsegdep;
4040 
4041 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4042 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4043 	jsegdep->jd_seg = NULL;
4044 
4045 	return (jsegdep);
4046 }
4047 
4048 static struct jmvref *
4049 newjmvref(dp, ino, oldoff, newoff)
4050 	struct inode *dp;
4051 	ino_t ino;
4052 	off_t oldoff;
4053 	off_t newoff;
4054 {
4055 	struct jmvref *jmvref;
4056 
4057 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4058 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4059 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4060 	jmvref->jm_parent = dp->i_number;
4061 	jmvref->jm_ino = ino;
4062 	jmvref->jm_oldoff = oldoff;
4063 	jmvref->jm_newoff = newoff;
4064 
4065 	return (jmvref);
4066 }
4067 
4068 /*
4069  * Allocate a new jremref that tracks the removal of ip from dp with the
4070  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4071  * DEPCOMPLETE as we have all the information required for the journal write
4072  * and the directory has already been removed from the buffer.  The caller
4073  * is responsible for linking the jremref into the pagedep and adding it
4074  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4075  * a DOTDOT addition so handle_workitem_remove() can properly assign
4076  * the jsegdep when we're done.
4077  */
4078 static struct jremref *
4079 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4080     off_t diroff, nlink_t nlink)
4081 {
4082 	struct jremref *jremref;
4083 
4084 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4085 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4086 	jremref->jr_state = ATTACHED;
4087 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4088 	   nlink, ip->i_mode);
4089 	jremref->jr_dirrem = dirrem;
4090 
4091 	return (jremref);
4092 }
4093 
4094 static inline void
4095 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4096     nlink_t nlink, uint16_t mode)
4097 {
4098 
4099 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4100 	inoref->if_diroff = diroff;
4101 	inoref->if_ino = ino;
4102 	inoref->if_parent = parent;
4103 	inoref->if_nlink = nlink;
4104 	inoref->if_mode = mode;
4105 }
4106 
4107 /*
4108  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4109  * directory offset may not be known until later.  The caller is responsible
4110  * adding the entry to the journal when this information is available.  nlink
4111  * should be the link count prior to the addition and mode is only required
4112  * to have the correct FMT.
4113  */
4114 static struct jaddref *
4115 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4116     uint16_t mode)
4117 {
4118 	struct jaddref *jaddref;
4119 
4120 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4121 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4122 	jaddref->ja_state = ATTACHED;
4123 	jaddref->ja_mkdir = NULL;
4124 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4125 
4126 	return (jaddref);
4127 }
4128 
4129 /*
4130  * Create a new free dependency for a freework.  The caller is responsible
4131  * for adjusting the reference count when it has the lock held.  The freedep
4132  * will track an outstanding bitmap write that will ultimately clear the
4133  * freework to continue.
4134  */
4135 static struct freedep *
4136 newfreedep(struct freework *freework)
4137 {
4138 	struct freedep *freedep;
4139 
4140 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4141 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4142 	freedep->fd_freework = freework;
4143 
4144 	return (freedep);
4145 }
4146 
4147 /*
4148  * Free a freedep structure once the buffer it is linked to is written.  If
4149  * this is the last reference to the freework schedule it for completion.
4150  */
4151 static void
4152 free_freedep(freedep)
4153 	struct freedep *freedep;
4154 {
4155 	struct freework *freework;
4156 
4157 	freework = freedep->fd_freework;
4158 	freework->fw_freeblks->fb_cgwait--;
4159 	if (--freework->fw_ref == 0)
4160 		freework_enqueue(freework);
4161 	WORKITEM_FREE(freedep, D_FREEDEP);
4162 }
4163 
4164 /*
4165  * Allocate a new freework structure that may be a level in an indirect
4166  * when parent is not NULL or a top level block when it is.  The top level
4167  * freework structures are allocated without the per-filesystem lock held
4168  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4169  */
4170 static struct freework *
4171 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4172 	struct ufsmount *ump;
4173 	struct freeblks *freeblks;
4174 	struct freework *parent;
4175 	ufs_lbn_t lbn;
4176 	ufs2_daddr_t nb;
4177 	int frags;
4178 	int off;
4179 	int journal;
4180 {
4181 	struct freework *freework;
4182 
4183 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4184 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4185 	freework->fw_state = ATTACHED;
4186 	freework->fw_jnewblk = NULL;
4187 	freework->fw_freeblks = freeblks;
4188 	freework->fw_parent = parent;
4189 	freework->fw_lbn = lbn;
4190 	freework->fw_blkno = nb;
4191 	freework->fw_frags = frags;
4192 	freework->fw_indir = NULL;
4193 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4194 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4195 	freework->fw_start = freework->fw_off = off;
4196 	if (journal)
4197 		newjfreeblk(freeblks, lbn, nb, frags);
4198 	if (parent == NULL) {
4199 		ACQUIRE_LOCK(ump);
4200 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4201 		freeblks->fb_ref++;
4202 		FREE_LOCK(ump);
4203 	}
4204 
4205 	return (freework);
4206 }
4207 
4208 /*
4209  * Eliminate a jfreeblk for a block that does not need journaling.
4210  */
4211 static void
4212 cancel_jfreeblk(freeblks, blkno)
4213 	struct freeblks *freeblks;
4214 	ufs2_daddr_t blkno;
4215 {
4216 	struct jfreeblk *jfreeblk;
4217 	struct jblkdep *jblkdep;
4218 
4219 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4220 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4221 			continue;
4222 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4223 		if (jfreeblk->jf_blkno == blkno)
4224 			break;
4225 	}
4226 	if (jblkdep == NULL)
4227 		return;
4228 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4229 	free_jsegdep(jblkdep->jb_jsegdep);
4230 	LIST_REMOVE(jblkdep, jb_deps);
4231 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4232 }
4233 
4234 /*
4235  * Allocate a new jfreeblk to journal top level block pointer when truncating
4236  * a file.  The caller must add this to the worklist when the per-filesystem
4237  * lock is held.
4238  */
4239 static struct jfreeblk *
4240 newjfreeblk(freeblks, lbn, blkno, frags)
4241 	struct freeblks *freeblks;
4242 	ufs_lbn_t lbn;
4243 	ufs2_daddr_t blkno;
4244 	int frags;
4245 {
4246 	struct jfreeblk *jfreeblk;
4247 
4248 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4249 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4250 	    freeblks->fb_list.wk_mp);
4251 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4252 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4253 	jfreeblk->jf_ino = freeblks->fb_inum;
4254 	jfreeblk->jf_lbn = lbn;
4255 	jfreeblk->jf_blkno = blkno;
4256 	jfreeblk->jf_frags = frags;
4257 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4258 
4259 	return (jfreeblk);
4260 }
4261 
4262 /*
4263  * The journal is only prepared to handle full-size block numbers, so we
4264  * have to adjust the record to reflect the change to a full-size block.
4265  * For example, suppose we have a block made up of fragments 8-15 and
4266  * want to free its last two fragments. We are given a request that says:
4267  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4268  * where frags are the number of fragments to free and oldfrags are the
4269  * number of fragments to keep. To block align it, we have to change it to
4270  * have a valid full-size blkno, so it becomes:
4271  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4272  */
4273 static void
4274 adjust_newfreework(freeblks, frag_offset)
4275 	struct freeblks *freeblks;
4276 	int frag_offset;
4277 {
4278 	struct jfreeblk *jfreeblk;
4279 
4280 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4281 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4282 	    ("adjust_newfreework: Missing freeblks dependency"));
4283 
4284 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4285 	jfreeblk->jf_blkno -= frag_offset;
4286 	jfreeblk->jf_frags += frag_offset;
4287 }
4288 
4289 /*
4290  * Allocate a new jtrunc to track a partial truncation.
4291  */
4292 static struct jtrunc *
4293 newjtrunc(freeblks, size, extsize)
4294 	struct freeblks *freeblks;
4295 	off_t size;
4296 	int extsize;
4297 {
4298 	struct jtrunc *jtrunc;
4299 
4300 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4301 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4302 	    freeblks->fb_list.wk_mp);
4303 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4304 	jtrunc->jt_dep.jb_freeblks = freeblks;
4305 	jtrunc->jt_ino = freeblks->fb_inum;
4306 	jtrunc->jt_size = size;
4307 	jtrunc->jt_extsize = extsize;
4308 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4309 
4310 	return (jtrunc);
4311 }
4312 
4313 /*
4314  * If we're canceling a new bitmap we have to search for another ref
4315  * to move into the bmsafemap dep.  This might be better expressed
4316  * with another structure.
4317  */
4318 static void
4319 move_newblock_dep(jaddref, inodedep)
4320 	struct jaddref *jaddref;
4321 	struct inodedep *inodedep;
4322 {
4323 	struct inoref *inoref;
4324 	struct jaddref *jaddrefn;
4325 
4326 	jaddrefn = NULL;
4327 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4328 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4329 		if ((jaddref->ja_state & NEWBLOCK) &&
4330 		    inoref->if_list.wk_type == D_JADDREF) {
4331 			jaddrefn = (struct jaddref *)inoref;
4332 			break;
4333 		}
4334 	}
4335 	if (jaddrefn == NULL)
4336 		return;
4337 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4338 	jaddrefn->ja_state |= jaddref->ja_state &
4339 	    (ATTACHED | UNDONE | NEWBLOCK);
4340 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4341 	jaddref->ja_state |= ATTACHED;
4342 	LIST_REMOVE(jaddref, ja_bmdeps);
4343 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4344 	    ja_bmdeps);
4345 }
4346 
4347 /*
4348  * Cancel a jaddref either before it has been written or while it is being
4349  * written.  This happens when a link is removed before the add reaches
4350  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4351  * and inode to prevent the link count or bitmap from reaching the disk
4352  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4353  * required.
4354  *
4355  * Returns 1 if the canceled addref requires journaling of the remove and
4356  * 0 otherwise.
4357  */
4358 static int
4359 cancel_jaddref(jaddref, inodedep, wkhd)
4360 	struct jaddref *jaddref;
4361 	struct inodedep *inodedep;
4362 	struct workhead *wkhd;
4363 {
4364 	struct inoref *inoref;
4365 	struct jsegdep *jsegdep;
4366 	int needsj;
4367 
4368 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4369 	    ("cancel_jaddref: Canceling complete jaddref"));
4370 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4371 		needsj = 1;
4372 	else
4373 		needsj = 0;
4374 	if (inodedep == NULL)
4375 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4376 		    0, &inodedep) == 0)
4377 			panic("cancel_jaddref: Lost inodedep");
4378 	/*
4379 	 * We must adjust the nlink of any reference operation that follows
4380 	 * us so that it is consistent with the in-memory reference.  This
4381 	 * ensures that inode nlink rollbacks always have the correct link.
4382 	 */
4383 	if (needsj == 0) {
4384 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4385 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4386 			if (inoref->if_state & GOINGAWAY)
4387 				break;
4388 			inoref->if_nlink--;
4389 		}
4390 	}
4391 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4392 	if (jaddref->ja_state & NEWBLOCK)
4393 		move_newblock_dep(jaddref, inodedep);
4394 	wake_worklist(&jaddref->ja_list);
4395 	jaddref->ja_mkdir = NULL;
4396 	if (jaddref->ja_state & INPROGRESS) {
4397 		jaddref->ja_state &= ~INPROGRESS;
4398 		WORKLIST_REMOVE(&jaddref->ja_list);
4399 		jwork_insert(wkhd, jsegdep);
4400 	} else {
4401 		free_jsegdep(jsegdep);
4402 		if (jaddref->ja_state & DEPCOMPLETE)
4403 			remove_from_journal(&jaddref->ja_list);
4404 	}
4405 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4406 	/*
4407 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4408 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4409 	 * no longer need this addref attached to the inoreflst and it
4410 	 * will incorrectly adjust nlink if we leave it.
4411 	 */
4412 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4413 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4414 		    if_deps);
4415 		jaddref->ja_state |= COMPLETE;
4416 		free_jaddref(jaddref);
4417 		return (needsj);
4418 	}
4419 	/*
4420 	 * Leave the head of the list for jsegdeps for fast merging.
4421 	 */
4422 	if (LIST_FIRST(wkhd) != NULL) {
4423 		jaddref->ja_state |= ONWORKLIST;
4424 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4425 	} else
4426 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4427 
4428 	return (needsj);
4429 }
4430 
4431 /*
4432  * Attempt to free a jaddref structure when some work completes.  This
4433  * should only succeed once the entry is written and all dependencies have
4434  * been notified.
4435  */
4436 static void
4437 free_jaddref(jaddref)
4438 	struct jaddref *jaddref;
4439 {
4440 
4441 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4442 		return;
4443 	if (jaddref->ja_ref.if_jsegdep)
4444 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4445 		    jaddref, jaddref->ja_state);
4446 	if (jaddref->ja_state & NEWBLOCK)
4447 		LIST_REMOVE(jaddref, ja_bmdeps);
4448 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4449 		panic("free_jaddref: Bad state %p(0x%X)",
4450 		    jaddref, jaddref->ja_state);
4451 	if (jaddref->ja_mkdir != NULL)
4452 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4453 	WORKITEM_FREE(jaddref, D_JADDREF);
4454 }
4455 
4456 /*
4457  * Free a jremref structure once it has been written or discarded.
4458  */
4459 static void
4460 free_jremref(jremref)
4461 	struct jremref *jremref;
4462 {
4463 
4464 	if (jremref->jr_ref.if_jsegdep)
4465 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4466 	if (jremref->jr_state & INPROGRESS)
4467 		panic("free_jremref: IO still pending");
4468 	WORKITEM_FREE(jremref, D_JREMREF);
4469 }
4470 
4471 /*
4472  * Free a jnewblk structure.
4473  */
4474 static void
4475 free_jnewblk(jnewblk)
4476 	struct jnewblk *jnewblk;
4477 {
4478 
4479 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4480 		return;
4481 	LIST_REMOVE(jnewblk, jn_deps);
4482 	if (jnewblk->jn_dep != NULL)
4483 		panic("free_jnewblk: Dependency still attached.");
4484 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4485 }
4486 
4487 /*
4488  * Cancel a jnewblk which has been been made redundant by frag extension.
4489  */
4490 static void
4491 cancel_jnewblk(jnewblk, wkhd)
4492 	struct jnewblk *jnewblk;
4493 	struct workhead *wkhd;
4494 {
4495 	struct jsegdep *jsegdep;
4496 
4497 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4498 	jsegdep = jnewblk->jn_jsegdep;
4499 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4500 		panic("cancel_jnewblk: Invalid state");
4501 	jnewblk->jn_jsegdep  = NULL;
4502 	jnewblk->jn_dep = NULL;
4503 	jnewblk->jn_state |= GOINGAWAY;
4504 	if (jnewblk->jn_state & INPROGRESS) {
4505 		jnewblk->jn_state &= ~INPROGRESS;
4506 		WORKLIST_REMOVE(&jnewblk->jn_list);
4507 		jwork_insert(wkhd, jsegdep);
4508 	} else {
4509 		free_jsegdep(jsegdep);
4510 		remove_from_journal(&jnewblk->jn_list);
4511 	}
4512 	wake_worklist(&jnewblk->jn_list);
4513 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4514 }
4515 
4516 static void
4517 free_jblkdep(jblkdep)
4518 	struct jblkdep *jblkdep;
4519 {
4520 
4521 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4522 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4523 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4524 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4525 	else
4526 		panic("free_jblkdep: Unexpected type %s",
4527 		    TYPENAME(jblkdep->jb_list.wk_type));
4528 }
4529 
4530 /*
4531  * Free a single jseg once it is no longer referenced in memory or on
4532  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4533  * to disappear.
4534  */
4535 static void
4536 free_jseg(jseg, jblocks)
4537 	struct jseg *jseg;
4538 	struct jblocks *jblocks;
4539 {
4540 	struct freework *freework;
4541 
4542 	/*
4543 	 * Free freework structures that were lingering to indicate freed
4544 	 * indirect blocks that forced journal write ordering on reallocate.
4545 	 */
4546 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4547 		indirblk_remove(freework);
4548 	if (jblocks->jb_oldestseg == jseg)
4549 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4550 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4551 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4552 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4553 	    ("free_jseg: Freed jseg has valid entries."));
4554 	WORKITEM_FREE(jseg, D_JSEG);
4555 }
4556 
4557 /*
4558  * Free all jsegs that meet the criteria for being reclaimed and update
4559  * oldestseg.
4560  */
4561 static void
4562 free_jsegs(jblocks)
4563 	struct jblocks *jblocks;
4564 {
4565 	struct jseg *jseg;
4566 
4567 	/*
4568 	 * Free only those jsegs which have none allocated before them to
4569 	 * preserve the journal space ordering.
4570 	 */
4571 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4572 		/*
4573 		 * Only reclaim space when nothing depends on this journal
4574 		 * set and another set has written that it is no longer
4575 		 * valid.
4576 		 */
4577 		if (jseg->js_refs != 0) {
4578 			jblocks->jb_oldestseg = jseg;
4579 			return;
4580 		}
4581 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4582 			break;
4583 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4584 			break;
4585 		/*
4586 		 * We can free jsegs that didn't write entries when
4587 		 * oldestwrseq == js_seq.
4588 		 */
4589 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4590 		    jseg->js_cnt != 0)
4591 			break;
4592 		free_jseg(jseg, jblocks);
4593 	}
4594 	/*
4595 	 * If we exited the loop above we still must discover the
4596 	 * oldest valid segment.
4597 	 */
4598 	if (jseg)
4599 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4600 		     jseg = TAILQ_NEXT(jseg, js_next))
4601 			if (jseg->js_refs != 0)
4602 				break;
4603 	jblocks->jb_oldestseg = jseg;
4604 	/*
4605 	 * The journal has no valid records but some jsegs may still be
4606 	 * waiting on oldestwrseq to advance.  We force a small record
4607 	 * out to permit these lingering records to be reclaimed.
4608 	 */
4609 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4610 		jblocks->jb_needseg = 1;
4611 }
4612 
4613 /*
4614  * Release one reference to a jseg and free it if the count reaches 0.  This
4615  * should eventually reclaim journal space as well.
4616  */
4617 static void
4618 rele_jseg(jseg)
4619 	struct jseg *jseg;
4620 {
4621 
4622 	KASSERT(jseg->js_refs > 0,
4623 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4624 	if (--jseg->js_refs != 0)
4625 		return;
4626 	free_jsegs(jseg->js_jblocks);
4627 }
4628 
4629 /*
4630  * Release a jsegdep and decrement the jseg count.
4631  */
4632 static void
4633 free_jsegdep(jsegdep)
4634 	struct jsegdep *jsegdep;
4635 {
4636 
4637 	if (jsegdep->jd_seg)
4638 		rele_jseg(jsegdep->jd_seg);
4639 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4640 }
4641 
4642 /*
4643  * Wait for a journal item to make it to disk.  Initiate journal processing
4644  * if required.
4645  */
4646 static int
4647 jwait(wk, waitfor)
4648 	struct worklist *wk;
4649 	int waitfor;
4650 {
4651 
4652 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4653 	/*
4654 	 * Blocking journal waits cause slow synchronous behavior.  Record
4655 	 * stats on the frequency of these blocking operations.
4656 	 */
4657 	if (waitfor == MNT_WAIT) {
4658 		stat_journal_wait++;
4659 		switch (wk->wk_type) {
4660 		case D_JREMREF:
4661 		case D_JMVREF:
4662 			stat_jwait_filepage++;
4663 			break;
4664 		case D_JTRUNC:
4665 		case D_JFREEBLK:
4666 			stat_jwait_freeblks++;
4667 			break;
4668 		case D_JNEWBLK:
4669 			stat_jwait_newblk++;
4670 			break;
4671 		case D_JADDREF:
4672 			stat_jwait_inode++;
4673 			break;
4674 		default:
4675 			break;
4676 		}
4677 	}
4678 	/*
4679 	 * If IO has not started we process the journal.  We can't mark the
4680 	 * worklist item as IOWAITING because we drop the lock while
4681 	 * processing the journal and the worklist entry may be freed after
4682 	 * this point.  The caller may call back in and re-issue the request.
4683 	 */
4684 	if ((wk->wk_state & INPROGRESS) == 0) {
4685 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4686 		if (waitfor != MNT_WAIT)
4687 			return (EBUSY);
4688 		return (0);
4689 	}
4690 	if (waitfor != MNT_WAIT)
4691 		return (EBUSY);
4692 	wait_worklist(wk, "jwait");
4693 	return (0);
4694 }
4695 
4696 /*
4697  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4698  * appropriate.  This is a convenience function to reduce duplicate code
4699  * for the setup and revert functions below.
4700  */
4701 static struct inodedep *
4702 inodedep_lookup_ip(ip)
4703 	struct inode *ip;
4704 {
4705 	struct inodedep *inodedep;
4706 
4707 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4708 	    ("inodedep_lookup_ip: bad delta"));
4709 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4710 	    &inodedep);
4711 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4712 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4713 
4714 	return (inodedep);
4715 }
4716 
4717 /*
4718  * Called prior to creating a new inode and linking it to a directory.  The
4719  * jaddref structure must already be allocated by softdep_setup_inomapdep
4720  * and it is discovered here so we can initialize the mode and update
4721  * nlinkdelta.
4722  */
4723 void
4724 softdep_setup_create(dp, ip)
4725 	struct inode *dp;
4726 	struct inode *ip;
4727 {
4728 	struct inodedep *inodedep;
4729 	struct jaddref *jaddref;
4730 	struct vnode *dvp;
4731 
4732 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4733 	    ("softdep_setup_create called on non-softdep filesystem"));
4734 	KASSERT(ip->i_nlink == 1,
4735 	    ("softdep_setup_create: Invalid link count."));
4736 	dvp = ITOV(dp);
4737 	ACQUIRE_LOCK(ITOUMP(dp));
4738 	inodedep = inodedep_lookup_ip(ip);
4739 	if (DOINGSUJ(dvp)) {
4740 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4741 		    inoreflst);
4742 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4743 		    ("softdep_setup_create: No addref structure present."));
4744 	}
4745 	softdep_prelink(dvp, NULL);
4746 	FREE_LOCK(ITOUMP(dp));
4747 }
4748 
4749 /*
4750  * Create a jaddref structure to track the addition of a DOTDOT link when
4751  * we are reparenting an inode as part of a rename.  This jaddref will be
4752  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4753  * non-journaling softdep.
4754  */
4755 void
4756 softdep_setup_dotdot_link(dp, ip)
4757 	struct inode *dp;
4758 	struct inode *ip;
4759 {
4760 	struct inodedep *inodedep;
4761 	struct jaddref *jaddref;
4762 	struct vnode *dvp;
4763 
4764 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4765 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4766 	dvp = ITOV(dp);
4767 	jaddref = NULL;
4768 	/*
4769 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4770 	 * is used as a normal link would be.
4771 	 */
4772 	if (DOINGSUJ(dvp))
4773 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4774 		    dp->i_effnlink - 1, dp->i_mode);
4775 	ACQUIRE_LOCK(ITOUMP(dp));
4776 	inodedep = inodedep_lookup_ip(dp);
4777 	if (jaddref)
4778 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4779 		    if_deps);
4780 	softdep_prelink(dvp, ITOV(ip));
4781 	FREE_LOCK(ITOUMP(dp));
4782 }
4783 
4784 /*
4785  * Create a jaddref structure to track a new link to an inode.  The directory
4786  * offset is not known until softdep_setup_directory_add or
4787  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4788  * softdep.
4789  */
4790 void
4791 softdep_setup_link(dp, ip)
4792 	struct inode *dp;
4793 	struct inode *ip;
4794 {
4795 	struct inodedep *inodedep;
4796 	struct jaddref *jaddref;
4797 	struct vnode *dvp;
4798 
4799 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4800 	    ("softdep_setup_link called on non-softdep filesystem"));
4801 	dvp = ITOV(dp);
4802 	jaddref = NULL;
4803 	if (DOINGSUJ(dvp))
4804 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4805 		    ip->i_mode);
4806 	ACQUIRE_LOCK(ITOUMP(dp));
4807 	inodedep = inodedep_lookup_ip(ip);
4808 	if (jaddref)
4809 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4810 		    if_deps);
4811 	softdep_prelink(dvp, ITOV(ip));
4812 	FREE_LOCK(ITOUMP(dp));
4813 }
4814 
4815 /*
4816  * Called to create the jaddref structures to track . and .. references as
4817  * well as lookup and further initialize the incomplete jaddref created
4818  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4819  * nlinkdelta for non-journaling softdep.
4820  */
4821 void
4822 softdep_setup_mkdir(dp, ip)
4823 	struct inode *dp;
4824 	struct inode *ip;
4825 {
4826 	struct inodedep *inodedep;
4827 	struct jaddref *dotdotaddref;
4828 	struct jaddref *dotaddref;
4829 	struct jaddref *jaddref;
4830 	struct vnode *dvp;
4831 
4832 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4833 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4834 	dvp = ITOV(dp);
4835 	dotaddref = dotdotaddref = NULL;
4836 	if (DOINGSUJ(dvp)) {
4837 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4838 		    ip->i_mode);
4839 		dotaddref->ja_state |= MKDIR_BODY;
4840 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4841 		    dp->i_effnlink - 1, dp->i_mode);
4842 		dotdotaddref->ja_state |= MKDIR_PARENT;
4843 	}
4844 	ACQUIRE_LOCK(ITOUMP(dp));
4845 	inodedep = inodedep_lookup_ip(ip);
4846 	if (DOINGSUJ(dvp)) {
4847 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4848 		    inoreflst);
4849 		KASSERT(jaddref != NULL,
4850 		    ("softdep_setup_mkdir: No addref structure present."));
4851 		KASSERT(jaddref->ja_parent == dp->i_number,
4852 		    ("softdep_setup_mkdir: bad parent %ju",
4853 		    (uintmax_t)jaddref->ja_parent));
4854 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4855 		    if_deps);
4856 	}
4857 	inodedep = inodedep_lookup_ip(dp);
4858 	if (DOINGSUJ(dvp))
4859 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4860 		    &dotdotaddref->ja_ref, if_deps);
4861 	softdep_prelink(ITOV(dp), NULL);
4862 	FREE_LOCK(ITOUMP(dp));
4863 }
4864 
4865 /*
4866  * Called to track nlinkdelta of the inode and parent directories prior to
4867  * unlinking a directory.
4868  */
4869 void
4870 softdep_setup_rmdir(dp, ip)
4871 	struct inode *dp;
4872 	struct inode *ip;
4873 {
4874 	struct vnode *dvp;
4875 
4876 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4877 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4878 	dvp = ITOV(dp);
4879 	ACQUIRE_LOCK(ITOUMP(dp));
4880 	(void) inodedep_lookup_ip(ip);
4881 	(void) inodedep_lookup_ip(dp);
4882 	softdep_prelink(dvp, ITOV(ip));
4883 	FREE_LOCK(ITOUMP(dp));
4884 }
4885 
4886 /*
4887  * Called to track nlinkdelta of the inode and parent directories prior to
4888  * unlink.
4889  */
4890 void
4891 softdep_setup_unlink(dp, ip)
4892 	struct inode *dp;
4893 	struct inode *ip;
4894 {
4895 	struct vnode *dvp;
4896 
4897 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4898 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4899 	dvp = ITOV(dp);
4900 	ACQUIRE_LOCK(ITOUMP(dp));
4901 	(void) inodedep_lookup_ip(ip);
4902 	(void) inodedep_lookup_ip(dp);
4903 	softdep_prelink(dvp, ITOV(ip));
4904 	FREE_LOCK(ITOUMP(dp));
4905 }
4906 
4907 /*
4908  * Called to release the journal structures created by a failed non-directory
4909  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4910  */
4911 void
4912 softdep_revert_create(dp, ip)
4913 	struct inode *dp;
4914 	struct inode *ip;
4915 {
4916 	struct inodedep *inodedep;
4917 	struct jaddref *jaddref;
4918 	struct vnode *dvp;
4919 
4920 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4921 	    ("softdep_revert_create called on non-softdep filesystem"));
4922 	dvp = ITOV(dp);
4923 	ACQUIRE_LOCK(ITOUMP(dp));
4924 	inodedep = inodedep_lookup_ip(ip);
4925 	if (DOINGSUJ(dvp)) {
4926 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4927 		    inoreflst);
4928 		KASSERT(jaddref->ja_parent == dp->i_number,
4929 		    ("softdep_revert_create: addref parent mismatch"));
4930 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4931 	}
4932 	FREE_LOCK(ITOUMP(dp));
4933 }
4934 
4935 /*
4936  * Called to release the journal structures created by a failed link
4937  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4938  */
4939 void
4940 softdep_revert_link(dp, ip)
4941 	struct inode *dp;
4942 	struct inode *ip;
4943 {
4944 	struct inodedep *inodedep;
4945 	struct jaddref *jaddref;
4946 	struct vnode *dvp;
4947 
4948 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4949 	    ("softdep_revert_link called on non-softdep filesystem"));
4950 	dvp = ITOV(dp);
4951 	ACQUIRE_LOCK(ITOUMP(dp));
4952 	inodedep = inodedep_lookup_ip(ip);
4953 	if (DOINGSUJ(dvp)) {
4954 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4955 		    inoreflst);
4956 		KASSERT(jaddref->ja_parent == dp->i_number,
4957 		    ("softdep_revert_link: addref parent mismatch"));
4958 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4959 	}
4960 	FREE_LOCK(ITOUMP(dp));
4961 }
4962 
4963 /*
4964  * Called to release the journal structures created by a failed mkdir
4965  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4966  */
4967 void
4968 softdep_revert_mkdir(dp, ip)
4969 	struct inode *dp;
4970 	struct inode *ip;
4971 {
4972 	struct inodedep *inodedep;
4973 	struct jaddref *jaddref;
4974 	struct jaddref *dotaddref;
4975 	struct vnode *dvp;
4976 
4977 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4978 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4979 	dvp = ITOV(dp);
4980 
4981 	ACQUIRE_LOCK(ITOUMP(dp));
4982 	inodedep = inodedep_lookup_ip(dp);
4983 	if (DOINGSUJ(dvp)) {
4984 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4985 		    inoreflst);
4986 		KASSERT(jaddref->ja_parent == ip->i_number,
4987 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4988 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4989 	}
4990 	inodedep = inodedep_lookup_ip(ip);
4991 	if (DOINGSUJ(dvp)) {
4992 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4993 		    inoreflst);
4994 		KASSERT(jaddref->ja_parent == dp->i_number,
4995 		    ("softdep_revert_mkdir: addref parent mismatch"));
4996 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4997 		    inoreflst, if_deps);
4998 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4999 		KASSERT(dotaddref->ja_parent == ip->i_number,
5000 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5001 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5002 	}
5003 	FREE_LOCK(ITOUMP(dp));
5004 }
5005 
5006 /*
5007  * Called to correct nlinkdelta after a failed rmdir.
5008  */
5009 void
5010 softdep_revert_rmdir(dp, ip)
5011 	struct inode *dp;
5012 	struct inode *ip;
5013 {
5014 
5015 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5016 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5017 	ACQUIRE_LOCK(ITOUMP(dp));
5018 	(void) inodedep_lookup_ip(ip);
5019 	(void) inodedep_lookup_ip(dp);
5020 	FREE_LOCK(ITOUMP(dp));
5021 }
5022 
5023 /*
5024  * Protecting the freemaps (or bitmaps).
5025  *
5026  * To eliminate the need to execute fsck before mounting a filesystem
5027  * after a power failure, one must (conservatively) guarantee that the
5028  * on-disk copy of the bitmaps never indicate that a live inode or block is
5029  * free.  So, when a block or inode is allocated, the bitmap should be
5030  * updated (on disk) before any new pointers.  When a block or inode is
5031  * freed, the bitmap should not be updated until all pointers have been
5032  * reset.  The latter dependency is handled by the delayed de-allocation
5033  * approach described below for block and inode de-allocation.  The former
5034  * dependency is handled by calling the following procedure when a block or
5035  * inode is allocated. When an inode is allocated an "inodedep" is created
5036  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5037  * Each "inodedep" is also inserted into the hash indexing structure so
5038  * that any additional link additions can be made dependent on the inode
5039  * allocation.
5040  *
5041  * The ufs filesystem maintains a number of free block counts (e.g., per
5042  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5043  * in addition to the bitmaps.  These counts are used to improve efficiency
5044  * during allocation and therefore must be consistent with the bitmaps.
5045  * There is no convenient way to guarantee post-crash consistency of these
5046  * counts with simple update ordering, for two main reasons: (1) The counts
5047  * and bitmaps for a single cylinder group block are not in the same disk
5048  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5049  * be written and the other not.  (2) Some of the counts are located in the
5050  * superblock rather than the cylinder group block. So, we focus our soft
5051  * updates implementation on protecting the bitmaps. When mounting a
5052  * filesystem, we recompute the auxiliary counts from the bitmaps.
5053  */
5054 
5055 /*
5056  * Called just after updating the cylinder group block to allocate an inode.
5057  */
5058 void
5059 softdep_setup_inomapdep(bp, ip, newinum, mode)
5060 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5061 	struct inode *ip;	/* inode related to allocation */
5062 	ino_t newinum;		/* new inode number being allocated */
5063 	int mode;
5064 {
5065 	struct inodedep *inodedep;
5066 	struct bmsafemap *bmsafemap;
5067 	struct jaddref *jaddref;
5068 	struct mount *mp;
5069 	struct fs *fs;
5070 
5071 	mp = ITOVFS(ip);
5072 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5073 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5074 	fs = VFSTOUFS(mp)->um_fs;
5075 	jaddref = NULL;
5076 
5077 	/*
5078 	 * Allocate the journal reference add structure so that the bitmap
5079 	 * can be dependent on it.
5080 	 */
5081 	if (MOUNTEDSUJ(mp)) {
5082 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5083 		jaddref->ja_state |= NEWBLOCK;
5084 	}
5085 
5086 	/*
5087 	 * Create a dependency for the newly allocated inode.
5088 	 * Panic if it already exists as something is seriously wrong.
5089 	 * Otherwise add it to the dependency list for the buffer holding
5090 	 * the cylinder group map from which it was allocated.
5091 	 *
5092 	 * We have to preallocate a bmsafemap entry in case it is needed
5093 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5094 	 * have to finish initializing it before we can FREE_LOCK().
5095 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5096 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5097 	 * creating the inodedep as it can be freed during the time
5098 	 * that we FREE_LOCK() while allocating the inodedep. We must
5099 	 * call workitem_alloc() before entering the locked section as
5100 	 * it also acquires the lock and we must avoid trying doing so
5101 	 * recursively.
5102 	 */
5103 	bmsafemap = malloc(sizeof(struct bmsafemap),
5104 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5105 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5106 	ACQUIRE_LOCK(ITOUMP(ip));
5107 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5108 		panic("softdep_setup_inomapdep: dependency %p for new"
5109 		    "inode already exists", inodedep);
5110 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5111 	if (jaddref) {
5112 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5113 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5114 		    if_deps);
5115 	} else {
5116 		inodedep->id_state |= ONDEPLIST;
5117 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5118 	}
5119 	inodedep->id_bmsafemap = bmsafemap;
5120 	inodedep->id_state &= ~DEPCOMPLETE;
5121 	FREE_LOCK(ITOUMP(ip));
5122 }
5123 
5124 /*
5125  * Called just after updating the cylinder group block to
5126  * allocate block or fragment.
5127  */
5128 void
5129 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5130 	struct buf *bp;		/* buffer for cylgroup block with block map */
5131 	struct mount *mp;	/* filesystem doing allocation */
5132 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5133 	int frags;		/* Number of fragments. */
5134 	int oldfrags;		/* Previous number of fragments for extend. */
5135 {
5136 	struct newblk *newblk;
5137 	struct bmsafemap *bmsafemap;
5138 	struct jnewblk *jnewblk;
5139 	struct ufsmount *ump;
5140 	struct fs *fs;
5141 
5142 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5143 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5144 	ump = VFSTOUFS(mp);
5145 	fs = ump->um_fs;
5146 	jnewblk = NULL;
5147 	/*
5148 	 * Create a dependency for the newly allocated block.
5149 	 * Add it to the dependency list for the buffer holding
5150 	 * the cylinder group map from which it was allocated.
5151 	 */
5152 	if (MOUNTEDSUJ(mp)) {
5153 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5154 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5155 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5156 		jnewblk->jn_state = ATTACHED;
5157 		jnewblk->jn_blkno = newblkno;
5158 		jnewblk->jn_frags = frags;
5159 		jnewblk->jn_oldfrags = oldfrags;
5160 #ifdef INVARIANTS
5161 		{
5162 			struct cg *cgp;
5163 			uint8_t *blksfree;
5164 			long bno;
5165 			int i;
5166 
5167 			cgp = (struct cg *)bp->b_data;
5168 			blksfree = cg_blksfree(cgp);
5169 			bno = dtogd(fs, jnewblk->jn_blkno);
5170 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5171 			    i++) {
5172 				if (isset(blksfree, bno + i))
5173 					panic("softdep_setup_blkmapdep: "
5174 					    "free fragment %d from %d-%d "
5175 					    "state 0x%X dep %p", i,
5176 					    jnewblk->jn_oldfrags,
5177 					    jnewblk->jn_frags,
5178 					    jnewblk->jn_state,
5179 					    jnewblk->jn_dep);
5180 			}
5181 		}
5182 #endif
5183 	}
5184 
5185 	CTR3(KTR_SUJ,
5186 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5187 	    newblkno, frags, oldfrags);
5188 	ACQUIRE_LOCK(ump);
5189 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5190 		panic("softdep_setup_blkmapdep: found block");
5191 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5192 	    dtog(fs, newblkno), NULL);
5193 	if (jnewblk) {
5194 		jnewblk->jn_dep = (struct worklist *)newblk;
5195 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5196 	} else {
5197 		newblk->nb_state |= ONDEPLIST;
5198 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5199 	}
5200 	newblk->nb_bmsafemap = bmsafemap;
5201 	newblk->nb_jnewblk = jnewblk;
5202 	FREE_LOCK(ump);
5203 }
5204 
5205 #define	BMSAFEMAP_HASH(ump, cg) \
5206       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5207 
5208 static int
5209 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5210 	struct bmsafemap_hashhead *bmsafemaphd;
5211 	int cg;
5212 	struct bmsafemap **bmsafemapp;
5213 {
5214 	struct bmsafemap *bmsafemap;
5215 
5216 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5217 		if (bmsafemap->sm_cg == cg)
5218 			break;
5219 	if (bmsafemap) {
5220 		*bmsafemapp = bmsafemap;
5221 		return (1);
5222 	}
5223 	*bmsafemapp = NULL;
5224 
5225 	return (0);
5226 }
5227 
5228 /*
5229  * Find the bmsafemap associated with a cylinder group buffer.
5230  * If none exists, create one. The buffer must be locked when
5231  * this routine is called and this routine must be called with
5232  * the softdep lock held. To avoid giving up the lock while
5233  * allocating a new bmsafemap, a preallocated bmsafemap may be
5234  * provided. If it is provided but not needed, it is freed.
5235  */
5236 static struct bmsafemap *
5237 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5238 	struct mount *mp;
5239 	struct buf *bp;
5240 	int cg;
5241 	struct bmsafemap *newbmsafemap;
5242 {
5243 	struct bmsafemap_hashhead *bmsafemaphd;
5244 	struct bmsafemap *bmsafemap, *collision;
5245 	struct worklist *wk;
5246 	struct ufsmount *ump;
5247 
5248 	ump = VFSTOUFS(mp);
5249 	LOCK_OWNED(ump);
5250 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5251 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5252 		if (wk->wk_type == D_BMSAFEMAP) {
5253 			if (newbmsafemap)
5254 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5255 			return (WK_BMSAFEMAP(wk));
5256 		}
5257 	}
5258 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5259 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5260 		if (newbmsafemap)
5261 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5262 		return (bmsafemap);
5263 	}
5264 	if (newbmsafemap) {
5265 		bmsafemap = newbmsafemap;
5266 	} else {
5267 		FREE_LOCK(ump);
5268 		bmsafemap = malloc(sizeof(struct bmsafemap),
5269 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5270 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5271 		ACQUIRE_LOCK(ump);
5272 	}
5273 	bmsafemap->sm_buf = bp;
5274 	LIST_INIT(&bmsafemap->sm_inodedephd);
5275 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5276 	LIST_INIT(&bmsafemap->sm_newblkhd);
5277 	LIST_INIT(&bmsafemap->sm_newblkwr);
5278 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5279 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5280 	LIST_INIT(&bmsafemap->sm_freehd);
5281 	LIST_INIT(&bmsafemap->sm_freewr);
5282 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5283 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5284 		return (collision);
5285 	}
5286 	bmsafemap->sm_cg = cg;
5287 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5288 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5289 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5290 	return (bmsafemap);
5291 }
5292 
5293 /*
5294  * Direct block allocation dependencies.
5295  *
5296  * When a new block is allocated, the corresponding disk locations must be
5297  * initialized (with zeros or new data) before the on-disk inode points to
5298  * them.  Also, the freemap from which the block was allocated must be
5299  * updated (on disk) before the inode's pointer. These two dependencies are
5300  * independent of each other and are needed for all file blocks and indirect
5301  * blocks that are pointed to directly by the inode.  Just before the
5302  * "in-core" version of the inode is updated with a newly allocated block
5303  * number, a procedure (below) is called to setup allocation dependency
5304  * structures.  These structures are removed when the corresponding
5305  * dependencies are satisfied or when the block allocation becomes obsolete
5306  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5307  * fragment that gets upgraded).  All of these cases are handled in
5308  * procedures described later.
5309  *
5310  * When a file extension causes a fragment to be upgraded, either to a larger
5311  * fragment or to a full block, the on-disk location may change (if the
5312  * previous fragment could not simply be extended). In this case, the old
5313  * fragment must be de-allocated, but not until after the inode's pointer has
5314  * been updated. In most cases, this is handled by later procedures, which
5315  * will construct a "freefrag" structure to be added to the workitem queue
5316  * when the inode update is complete (or obsolete).  The main exception to
5317  * this is when an allocation occurs while a pending allocation dependency
5318  * (for the same block pointer) remains.  This case is handled in the main
5319  * allocation dependency setup procedure by immediately freeing the
5320  * unreferenced fragments.
5321  */
5322 void
5323 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5324 	struct inode *ip;	/* inode to which block is being added */
5325 	ufs_lbn_t off;		/* block pointer within inode */
5326 	ufs2_daddr_t newblkno;	/* disk block number being added */
5327 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5328 	long newsize;		/* size of new block */
5329 	long oldsize;		/* size of new block */
5330 	struct buf *bp;		/* bp for allocated block */
5331 {
5332 	struct allocdirect *adp, *oldadp;
5333 	struct allocdirectlst *adphead;
5334 	struct freefrag *freefrag;
5335 	struct inodedep *inodedep;
5336 	struct pagedep *pagedep;
5337 	struct jnewblk *jnewblk;
5338 	struct newblk *newblk;
5339 	struct mount *mp;
5340 	ufs_lbn_t lbn;
5341 
5342 	lbn = bp->b_lblkno;
5343 	mp = ITOVFS(ip);
5344 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5345 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5346 	if (oldblkno && oldblkno != newblkno)
5347 		/*
5348 		 * The usual case is that a smaller fragment that
5349 		 * was just allocated has been replaced with a bigger
5350 		 * fragment or a full-size block. If it is marked as
5351 		 * B_DELWRI, the current contents have not been written
5352 		 * to disk. It is possible that the block was written
5353 		 * earlier, but very uncommon. If the block has never
5354 		 * been written, there is no need to send a BIO_DELETE
5355 		 * for it when it is freed. The gain from avoiding the
5356 		 * TRIMs for the common case of unwritten blocks far
5357 		 * exceeds the cost of the write amplification for the
5358 		 * uncommon case of failing to send a TRIM for a block
5359 		 * that had been written.
5360 		 */
5361 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5362 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5363 	else
5364 		freefrag = NULL;
5365 
5366 	CTR6(KTR_SUJ,
5367 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5368 	    "off %jd newsize %ld oldsize %d",
5369 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5370 	ACQUIRE_LOCK(ITOUMP(ip));
5371 	if (off >= UFS_NDADDR) {
5372 		if (lbn > 0)
5373 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5374 			    lbn, off);
5375 		/* allocating an indirect block */
5376 		if (oldblkno != 0)
5377 			panic("softdep_setup_allocdirect: non-zero indir");
5378 	} else {
5379 		if (off != lbn)
5380 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5381 			    lbn, off);
5382 		/*
5383 		 * Allocating a direct block.
5384 		 *
5385 		 * If we are allocating a directory block, then we must
5386 		 * allocate an associated pagedep to track additions and
5387 		 * deletions.
5388 		 */
5389 		if ((ip->i_mode & IFMT) == IFDIR)
5390 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5391 			    &pagedep);
5392 	}
5393 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5394 		panic("softdep_setup_allocdirect: lost block");
5395 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5396 	    ("softdep_setup_allocdirect: newblk already initialized"));
5397 	/*
5398 	 * Convert the newblk to an allocdirect.
5399 	 */
5400 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5401 	adp = (struct allocdirect *)newblk;
5402 	newblk->nb_freefrag = freefrag;
5403 	adp->ad_offset = off;
5404 	adp->ad_oldblkno = oldblkno;
5405 	adp->ad_newsize = newsize;
5406 	adp->ad_oldsize = oldsize;
5407 
5408 	/*
5409 	 * Finish initializing the journal.
5410 	 */
5411 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5412 		jnewblk->jn_ino = ip->i_number;
5413 		jnewblk->jn_lbn = lbn;
5414 		add_to_journal(&jnewblk->jn_list);
5415 	}
5416 	if (freefrag && freefrag->ff_jdep != NULL &&
5417 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5418 		add_to_journal(freefrag->ff_jdep);
5419 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5420 	adp->ad_inodedep = inodedep;
5421 
5422 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5423 	/*
5424 	 * The list of allocdirects must be kept in sorted and ascending
5425 	 * order so that the rollback routines can quickly determine the
5426 	 * first uncommitted block (the size of the file stored on disk
5427 	 * ends at the end of the lowest committed fragment, or if there
5428 	 * are no fragments, at the end of the highest committed block).
5429 	 * Since files generally grow, the typical case is that the new
5430 	 * block is to be added at the end of the list. We speed this
5431 	 * special case by checking against the last allocdirect in the
5432 	 * list before laboriously traversing the list looking for the
5433 	 * insertion point.
5434 	 */
5435 	adphead = &inodedep->id_newinoupdt;
5436 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5437 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5438 		/* insert at end of list */
5439 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5440 		if (oldadp != NULL && oldadp->ad_offset == off)
5441 			allocdirect_merge(adphead, adp, oldadp);
5442 		FREE_LOCK(ITOUMP(ip));
5443 		return;
5444 	}
5445 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5446 		if (oldadp->ad_offset >= off)
5447 			break;
5448 	}
5449 	if (oldadp == NULL)
5450 		panic("softdep_setup_allocdirect: lost entry");
5451 	/* insert in middle of list */
5452 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5453 	if (oldadp->ad_offset == off)
5454 		allocdirect_merge(adphead, adp, oldadp);
5455 
5456 	FREE_LOCK(ITOUMP(ip));
5457 }
5458 
5459 /*
5460  * Merge a newer and older journal record to be stored either in a
5461  * newblock or freefrag.  This handles aggregating journal records for
5462  * fragment allocation into a second record as well as replacing a
5463  * journal free with an aborted journal allocation.  A segment for the
5464  * oldest record will be placed on wkhd if it has been written.  If not
5465  * the segment for the newer record will suffice.
5466  */
5467 static struct worklist *
5468 jnewblk_merge(new, old, wkhd)
5469 	struct worklist *new;
5470 	struct worklist *old;
5471 	struct workhead *wkhd;
5472 {
5473 	struct jnewblk *njnewblk;
5474 	struct jnewblk *jnewblk;
5475 
5476 	/* Handle NULLs to simplify callers. */
5477 	if (new == NULL)
5478 		return (old);
5479 	if (old == NULL)
5480 		return (new);
5481 	/* Replace a jfreefrag with a jnewblk. */
5482 	if (new->wk_type == D_JFREEFRAG) {
5483 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5484 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5485 			    old, new);
5486 		cancel_jfreefrag(WK_JFREEFRAG(new));
5487 		return (old);
5488 	}
5489 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5490 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5491 		    old->wk_type, new->wk_type);
5492 	/*
5493 	 * Handle merging of two jnewblk records that describe
5494 	 * different sets of fragments in the same block.
5495 	 */
5496 	jnewblk = WK_JNEWBLK(old);
5497 	njnewblk = WK_JNEWBLK(new);
5498 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5499 		panic("jnewblk_merge: Merging disparate blocks.");
5500 	/*
5501 	 * The record may be rolled back in the cg.
5502 	 */
5503 	if (jnewblk->jn_state & UNDONE) {
5504 		jnewblk->jn_state &= ~UNDONE;
5505 		njnewblk->jn_state |= UNDONE;
5506 		njnewblk->jn_state &= ~ATTACHED;
5507 	}
5508 	/*
5509 	 * We modify the newer addref and free the older so that if neither
5510 	 * has been written the most up-to-date copy will be on disk.  If
5511 	 * both have been written but rolled back we only temporarily need
5512 	 * one of them to fix the bits when the cg write completes.
5513 	 */
5514 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5515 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5516 	cancel_jnewblk(jnewblk, wkhd);
5517 	WORKLIST_REMOVE(&jnewblk->jn_list);
5518 	free_jnewblk(jnewblk);
5519 	return (new);
5520 }
5521 
5522 /*
5523  * Replace an old allocdirect dependency with a newer one.
5524  */
5525 static void
5526 allocdirect_merge(adphead, newadp, oldadp)
5527 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5528 	struct allocdirect *newadp;	/* allocdirect being added */
5529 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5530 {
5531 	struct worklist *wk;
5532 	struct freefrag *freefrag;
5533 
5534 	freefrag = NULL;
5535 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5536 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5537 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5538 	    newadp->ad_offset >= UFS_NDADDR)
5539 		panic("%s %jd != new %jd || old size %ld != new %ld",
5540 		    "allocdirect_merge: old blkno",
5541 		    (intmax_t)newadp->ad_oldblkno,
5542 		    (intmax_t)oldadp->ad_newblkno,
5543 		    newadp->ad_oldsize, oldadp->ad_newsize);
5544 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5545 	newadp->ad_oldsize = oldadp->ad_oldsize;
5546 	/*
5547 	 * If the old dependency had a fragment to free or had never
5548 	 * previously had a block allocated, then the new dependency
5549 	 * can immediately post its freefrag and adopt the old freefrag.
5550 	 * This action is done by swapping the freefrag dependencies.
5551 	 * The new dependency gains the old one's freefrag, and the
5552 	 * old one gets the new one and then immediately puts it on
5553 	 * the worklist when it is freed by free_newblk. It is
5554 	 * not possible to do this swap when the old dependency had a
5555 	 * non-zero size but no previous fragment to free. This condition
5556 	 * arises when the new block is an extension of the old block.
5557 	 * Here, the first part of the fragment allocated to the new
5558 	 * dependency is part of the block currently claimed on disk by
5559 	 * the old dependency, so cannot legitimately be freed until the
5560 	 * conditions for the new dependency are fulfilled.
5561 	 */
5562 	freefrag = newadp->ad_freefrag;
5563 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5564 		newadp->ad_freefrag = oldadp->ad_freefrag;
5565 		oldadp->ad_freefrag = freefrag;
5566 	}
5567 	/*
5568 	 * If we are tracking a new directory-block allocation,
5569 	 * move it from the old allocdirect to the new allocdirect.
5570 	 */
5571 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5572 		WORKLIST_REMOVE(wk);
5573 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5574 			panic("allocdirect_merge: extra newdirblk");
5575 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5576 	}
5577 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5578 	/*
5579 	 * We need to move any journal dependencies over to the freefrag
5580 	 * that releases this block if it exists.  Otherwise we are
5581 	 * extending an existing block and we'll wait until that is
5582 	 * complete to release the journal space and extend the
5583 	 * new journal to cover this old space as well.
5584 	 */
5585 	if (freefrag == NULL) {
5586 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5587 			panic("allocdirect_merge: %jd != %jd",
5588 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5589 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5590 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5591 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5592 		    &newadp->ad_block.nb_jwork);
5593 		oldadp->ad_block.nb_jnewblk = NULL;
5594 		cancel_newblk(&oldadp->ad_block, NULL,
5595 		    &newadp->ad_block.nb_jwork);
5596 	} else {
5597 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5598 		    &freefrag->ff_list, &freefrag->ff_jwork);
5599 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5600 		    &freefrag->ff_jwork);
5601 	}
5602 	free_newblk(&oldadp->ad_block);
5603 }
5604 
5605 /*
5606  * Allocate a jfreefrag structure to journal a single block free.
5607  */
5608 static struct jfreefrag *
5609 newjfreefrag(freefrag, ip, blkno, size, lbn)
5610 	struct freefrag *freefrag;
5611 	struct inode *ip;
5612 	ufs2_daddr_t blkno;
5613 	long size;
5614 	ufs_lbn_t lbn;
5615 {
5616 	struct jfreefrag *jfreefrag;
5617 	struct fs *fs;
5618 
5619 	fs = ITOFS(ip);
5620 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5621 	    M_SOFTDEP_FLAGS);
5622 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5623 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5624 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5625 	jfreefrag->fr_ino = ip->i_number;
5626 	jfreefrag->fr_lbn = lbn;
5627 	jfreefrag->fr_blkno = blkno;
5628 	jfreefrag->fr_frags = numfrags(fs, size);
5629 	jfreefrag->fr_freefrag = freefrag;
5630 
5631 	return (jfreefrag);
5632 }
5633 
5634 /*
5635  * Allocate a new freefrag structure.
5636  */
5637 static struct freefrag *
5638 newfreefrag(ip, blkno, size, lbn, key)
5639 	struct inode *ip;
5640 	ufs2_daddr_t blkno;
5641 	long size;
5642 	ufs_lbn_t lbn;
5643 	u_long key;
5644 {
5645 	struct freefrag *freefrag;
5646 	struct ufsmount *ump;
5647 	struct fs *fs;
5648 
5649 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5650 	    ip->i_number, blkno, size, lbn);
5651 	ump = ITOUMP(ip);
5652 	fs = ump->um_fs;
5653 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5654 		panic("newfreefrag: frag size");
5655 	freefrag = malloc(sizeof(struct freefrag),
5656 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5657 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5658 	freefrag->ff_state = ATTACHED;
5659 	LIST_INIT(&freefrag->ff_jwork);
5660 	freefrag->ff_inum = ip->i_number;
5661 	freefrag->ff_vtype = ITOV(ip)->v_type;
5662 	freefrag->ff_blkno = blkno;
5663 	freefrag->ff_fragsize = size;
5664 	freefrag->ff_key = key;
5665 
5666 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5667 		freefrag->ff_jdep = (struct worklist *)
5668 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5669 	} else {
5670 		freefrag->ff_state |= DEPCOMPLETE;
5671 		freefrag->ff_jdep = NULL;
5672 	}
5673 
5674 	return (freefrag);
5675 }
5676 
5677 /*
5678  * This workitem de-allocates fragments that were replaced during
5679  * file block allocation.
5680  */
5681 static void
5682 handle_workitem_freefrag(freefrag)
5683 	struct freefrag *freefrag;
5684 {
5685 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5686 	struct workhead wkhd;
5687 
5688 	CTR3(KTR_SUJ,
5689 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5690 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5691 	/*
5692 	 * It would be illegal to add new completion items to the
5693 	 * freefrag after it was schedule to be done so it must be
5694 	 * safe to modify the list head here.
5695 	 */
5696 	LIST_INIT(&wkhd);
5697 	ACQUIRE_LOCK(ump);
5698 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5699 	/*
5700 	 * If the journal has not been written we must cancel it here.
5701 	 */
5702 	if (freefrag->ff_jdep) {
5703 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5704 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5705 			    freefrag->ff_jdep->wk_type);
5706 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5707 	}
5708 	FREE_LOCK(ump);
5709 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5710 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5711 	   &wkhd, freefrag->ff_key);
5712 	ACQUIRE_LOCK(ump);
5713 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5714 	FREE_LOCK(ump);
5715 }
5716 
5717 /*
5718  * Set up a dependency structure for an external attributes data block.
5719  * This routine follows much of the structure of softdep_setup_allocdirect.
5720  * See the description of softdep_setup_allocdirect above for details.
5721  */
5722 void
5723 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5724 	struct inode *ip;
5725 	ufs_lbn_t off;
5726 	ufs2_daddr_t newblkno;
5727 	ufs2_daddr_t oldblkno;
5728 	long newsize;
5729 	long oldsize;
5730 	struct buf *bp;
5731 {
5732 	struct allocdirect *adp, *oldadp;
5733 	struct allocdirectlst *adphead;
5734 	struct freefrag *freefrag;
5735 	struct inodedep *inodedep;
5736 	struct jnewblk *jnewblk;
5737 	struct newblk *newblk;
5738 	struct mount *mp;
5739 	struct ufsmount *ump;
5740 	ufs_lbn_t lbn;
5741 
5742 	mp = ITOVFS(ip);
5743 	ump = VFSTOUFS(mp);
5744 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5745 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5746 	KASSERT(off < UFS_NXADDR,
5747 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5748 
5749 	lbn = bp->b_lblkno;
5750 	if (oldblkno && oldblkno != newblkno)
5751 		/*
5752 		 * The usual case is that a smaller fragment that
5753 		 * was just allocated has been replaced with a bigger
5754 		 * fragment or a full-size block. If it is marked as
5755 		 * B_DELWRI, the current contents have not been written
5756 		 * to disk. It is possible that the block was written
5757 		 * earlier, but very uncommon. If the block has never
5758 		 * been written, there is no need to send a BIO_DELETE
5759 		 * for it when it is freed. The gain from avoiding the
5760 		 * TRIMs for the common case of unwritten blocks far
5761 		 * exceeds the cost of the write amplification for the
5762 		 * uncommon case of failing to send a TRIM for a block
5763 		 * that had been written.
5764 		 */
5765 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5766 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5767 	else
5768 		freefrag = NULL;
5769 
5770 	ACQUIRE_LOCK(ump);
5771 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5772 		panic("softdep_setup_allocext: lost block");
5773 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5774 	    ("softdep_setup_allocext: newblk already initialized"));
5775 	/*
5776 	 * Convert the newblk to an allocdirect.
5777 	 */
5778 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5779 	adp = (struct allocdirect *)newblk;
5780 	newblk->nb_freefrag = freefrag;
5781 	adp->ad_offset = off;
5782 	adp->ad_oldblkno = oldblkno;
5783 	adp->ad_newsize = newsize;
5784 	adp->ad_oldsize = oldsize;
5785 	adp->ad_state |=  EXTDATA;
5786 
5787 	/*
5788 	 * Finish initializing the journal.
5789 	 */
5790 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5791 		jnewblk->jn_ino = ip->i_number;
5792 		jnewblk->jn_lbn = lbn;
5793 		add_to_journal(&jnewblk->jn_list);
5794 	}
5795 	if (freefrag && freefrag->ff_jdep != NULL &&
5796 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5797 		add_to_journal(freefrag->ff_jdep);
5798 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5799 	adp->ad_inodedep = inodedep;
5800 
5801 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5802 	/*
5803 	 * The list of allocdirects must be kept in sorted and ascending
5804 	 * order so that the rollback routines can quickly determine the
5805 	 * first uncommitted block (the size of the file stored on disk
5806 	 * ends at the end of the lowest committed fragment, or if there
5807 	 * are no fragments, at the end of the highest committed block).
5808 	 * Since files generally grow, the typical case is that the new
5809 	 * block is to be added at the end of the list. We speed this
5810 	 * special case by checking against the last allocdirect in the
5811 	 * list before laboriously traversing the list looking for the
5812 	 * insertion point.
5813 	 */
5814 	adphead = &inodedep->id_newextupdt;
5815 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5816 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5817 		/* insert at end of list */
5818 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5819 		if (oldadp != NULL && oldadp->ad_offset == off)
5820 			allocdirect_merge(adphead, adp, oldadp);
5821 		FREE_LOCK(ump);
5822 		return;
5823 	}
5824 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5825 		if (oldadp->ad_offset >= off)
5826 			break;
5827 	}
5828 	if (oldadp == NULL)
5829 		panic("softdep_setup_allocext: lost entry");
5830 	/* insert in middle of list */
5831 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5832 	if (oldadp->ad_offset == off)
5833 		allocdirect_merge(adphead, adp, oldadp);
5834 	FREE_LOCK(ump);
5835 }
5836 
5837 /*
5838  * Indirect block allocation dependencies.
5839  *
5840  * The same dependencies that exist for a direct block also exist when
5841  * a new block is allocated and pointed to by an entry in a block of
5842  * indirect pointers. The undo/redo states described above are also
5843  * used here. Because an indirect block contains many pointers that
5844  * may have dependencies, a second copy of the entire in-memory indirect
5845  * block is kept. The buffer cache copy is always completely up-to-date.
5846  * The second copy, which is used only as a source for disk writes,
5847  * contains only the safe pointers (i.e., those that have no remaining
5848  * update dependencies). The second copy is freed when all pointers
5849  * are safe. The cache is not allowed to replace indirect blocks with
5850  * pending update dependencies. If a buffer containing an indirect
5851  * block with dependencies is written, these routines will mark it
5852  * dirty again. It can only be successfully written once all the
5853  * dependencies are removed. The ffs_fsync routine in conjunction with
5854  * softdep_sync_metadata work together to get all the dependencies
5855  * removed so that a file can be successfully written to disk. Three
5856  * procedures are used when setting up indirect block pointer
5857  * dependencies. The division is necessary because of the organization
5858  * of the "balloc" routine and because of the distinction between file
5859  * pages and file metadata blocks.
5860  */
5861 
5862 /*
5863  * Allocate a new allocindir structure.
5864  */
5865 static struct allocindir *
5866 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5867 	struct inode *ip;	/* inode for file being extended */
5868 	int ptrno;		/* offset of pointer in indirect block */
5869 	ufs2_daddr_t newblkno;	/* disk block number being added */
5870 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5871 	ufs_lbn_t lbn;
5872 {
5873 	struct newblk *newblk;
5874 	struct allocindir *aip;
5875 	struct freefrag *freefrag;
5876 	struct jnewblk *jnewblk;
5877 
5878 	if (oldblkno)
5879 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
5880 		    SINGLETON_KEY);
5881 	else
5882 		freefrag = NULL;
5883 	ACQUIRE_LOCK(ITOUMP(ip));
5884 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5885 		panic("new_allocindir: lost block");
5886 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5887 	    ("newallocindir: newblk already initialized"));
5888 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5889 	newblk->nb_freefrag = freefrag;
5890 	aip = (struct allocindir *)newblk;
5891 	aip->ai_offset = ptrno;
5892 	aip->ai_oldblkno = oldblkno;
5893 	aip->ai_lbn = lbn;
5894 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5895 		jnewblk->jn_ino = ip->i_number;
5896 		jnewblk->jn_lbn = lbn;
5897 		add_to_journal(&jnewblk->jn_list);
5898 	}
5899 	if (freefrag && freefrag->ff_jdep != NULL &&
5900 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5901 		add_to_journal(freefrag->ff_jdep);
5902 	return (aip);
5903 }
5904 
5905 /*
5906  * Called just before setting an indirect block pointer
5907  * to a newly allocated file page.
5908  */
5909 void
5910 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5911 	struct inode *ip;	/* inode for file being extended */
5912 	ufs_lbn_t lbn;		/* allocated block number within file */
5913 	struct buf *bp;		/* buffer with indirect blk referencing page */
5914 	int ptrno;		/* offset of pointer in indirect block */
5915 	ufs2_daddr_t newblkno;	/* disk block number being added */
5916 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5917 	struct buf *nbp;	/* buffer holding allocated page */
5918 {
5919 	struct inodedep *inodedep;
5920 	struct freefrag *freefrag;
5921 	struct allocindir *aip;
5922 	struct pagedep *pagedep;
5923 	struct mount *mp;
5924 	struct ufsmount *ump;
5925 
5926 	mp = ITOVFS(ip);
5927 	ump = VFSTOUFS(mp);
5928 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5929 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5930 	KASSERT(lbn == nbp->b_lblkno,
5931 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5932 	    lbn, bp->b_lblkno));
5933 	CTR4(KTR_SUJ,
5934 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5935 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5936 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5937 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5938 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5939 	/*
5940 	 * If we are allocating a directory page, then we must
5941 	 * allocate an associated pagedep to track additions and
5942 	 * deletions.
5943 	 */
5944 	if ((ip->i_mode & IFMT) == IFDIR)
5945 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5946 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5947 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5948 	FREE_LOCK(ump);
5949 	if (freefrag)
5950 		handle_workitem_freefrag(freefrag);
5951 }
5952 
5953 /*
5954  * Called just before setting an indirect block pointer to a
5955  * newly allocated indirect block.
5956  */
5957 void
5958 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5959 	struct buf *nbp;	/* newly allocated indirect block */
5960 	struct inode *ip;	/* inode for file being extended */
5961 	struct buf *bp;		/* indirect block referencing allocated block */
5962 	int ptrno;		/* offset of pointer in indirect block */
5963 	ufs2_daddr_t newblkno;	/* disk block number being added */
5964 {
5965 	struct inodedep *inodedep;
5966 	struct allocindir *aip;
5967 	struct ufsmount *ump;
5968 	ufs_lbn_t lbn;
5969 
5970 	ump = ITOUMP(ip);
5971 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5972 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5973 	CTR3(KTR_SUJ,
5974 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5975 	    ip->i_number, newblkno, ptrno);
5976 	lbn = nbp->b_lblkno;
5977 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5978 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5979 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5980 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5981 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5982 		panic("softdep_setup_allocindir_meta: Block already existed");
5983 	FREE_LOCK(ump);
5984 }
5985 
5986 static void
5987 indirdep_complete(indirdep)
5988 	struct indirdep *indirdep;
5989 {
5990 	struct allocindir *aip;
5991 
5992 	LIST_REMOVE(indirdep, ir_next);
5993 	indirdep->ir_state |= DEPCOMPLETE;
5994 
5995 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5996 		LIST_REMOVE(aip, ai_next);
5997 		free_newblk(&aip->ai_block);
5998 	}
5999 	/*
6000 	 * If this indirdep is not attached to a buf it was simply waiting
6001 	 * on completion to clear completehd.  free_indirdep() asserts
6002 	 * that nothing is dangling.
6003 	 */
6004 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6005 		free_indirdep(indirdep);
6006 }
6007 
6008 static struct indirdep *
6009 indirdep_lookup(mp, ip, bp)
6010 	struct mount *mp;
6011 	struct inode *ip;
6012 	struct buf *bp;
6013 {
6014 	struct indirdep *indirdep, *newindirdep;
6015 	struct newblk *newblk;
6016 	struct ufsmount *ump;
6017 	struct worklist *wk;
6018 	struct fs *fs;
6019 	ufs2_daddr_t blkno;
6020 
6021 	ump = VFSTOUFS(mp);
6022 	LOCK_OWNED(ump);
6023 	indirdep = NULL;
6024 	newindirdep = NULL;
6025 	fs = ump->um_fs;
6026 	for (;;) {
6027 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6028 			if (wk->wk_type != D_INDIRDEP)
6029 				continue;
6030 			indirdep = WK_INDIRDEP(wk);
6031 			break;
6032 		}
6033 		/* Found on the buffer worklist, no new structure to free. */
6034 		if (indirdep != NULL && newindirdep == NULL)
6035 			return (indirdep);
6036 		if (indirdep != NULL && newindirdep != NULL)
6037 			panic("indirdep_lookup: simultaneous create");
6038 		/* None found on the buffer and a new structure is ready. */
6039 		if (indirdep == NULL && newindirdep != NULL)
6040 			break;
6041 		/* None found and no new structure available. */
6042 		FREE_LOCK(ump);
6043 		newindirdep = malloc(sizeof(struct indirdep),
6044 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6045 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6046 		newindirdep->ir_state = ATTACHED;
6047 		if (I_IS_UFS1(ip))
6048 			newindirdep->ir_state |= UFS1FMT;
6049 		TAILQ_INIT(&newindirdep->ir_trunc);
6050 		newindirdep->ir_saveddata = NULL;
6051 		LIST_INIT(&newindirdep->ir_deplisthd);
6052 		LIST_INIT(&newindirdep->ir_donehd);
6053 		LIST_INIT(&newindirdep->ir_writehd);
6054 		LIST_INIT(&newindirdep->ir_completehd);
6055 		if (bp->b_blkno == bp->b_lblkno) {
6056 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6057 			    NULL, NULL);
6058 			bp->b_blkno = blkno;
6059 		}
6060 		newindirdep->ir_freeblks = NULL;
6061 		newindirdep->ir_savebp =
6062 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6063 		newindirdep->ir_bp = bp;
6064 		BUF_KERNPROC(newindirdep->ir_savebp);
6065 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6066 		ACQUIRE_LOCK(ump);
6067 	}
6068 	indirdep = newindirdep;
6069 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6070 	/*
6071 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6072 	 * that we don't free dependencies until the pointers are valid.
6073 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6074 	 * than using the hash.
6075 	 */
6076 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6077 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6078 	else
6079 		indirdep->ir_state |= DEPCOMPLETE;
6080 	return (indirdep);
6081 }
6082 
6083 /*
6084  * Called to finish the allocation of the "aip" allocated
6085  * by one of the two routines above.
6086  */
6087 static struct freefrag *
6088 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6089 	struct buf *bp;		/* in-memory copy of the indirect block */
6090 	struct inode *ip;	/* inode for file being extended */
6091 	struct inodedep *inodedep; /* Inodedep for ip */
6092 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6093 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6094 {
6095 	struct fs *fs;
6096 	struct indirdep *indirdep;
6097 	struct allocindir *oldaip;
6098 	struct freefrag *freefrag;
6099 	struct mount *mp;
6100 	struct ufsmount *ump;
6101 
6102 	mp = ITOVFS(ip);
6103 	ump = VFSTOUFS(mp);
6104 	LOCK_OWNED(ump);
6105 	fs = ump->um_fs;
6106 	if (bp->b_lblkno >= 0)
6107 		panic("setup_allocindir_phase2: not indir blk");
6108 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6109 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6110 	indirdep = indirdep_lookup(mp, ip, bp);
6111 	KASSERT(indirdep->ir_savebp != NULL,
6112 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6113 	aip->ai_indirdep = indirdep;
6114 	/*
6115 	 * Check for an unwritten dependency for this indirect offset.  If
6116 	 * there is, merge the old dependency into the new one.  This happens
6117 	 * as a result of reallocblk only.
6118 	 */
6119 	freefrag = NULL;
6120 	if (aip->ai_oldblkno != 0) {
6121 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6122 			if (oldaip->ai_offset == aip->ai_offset) {
6123 				freefrag = allocindir_merge(aip, oldaip);
6124 				goto done;
6125 			}
6126 		}
6127 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6128 			if (oldaip->ai_offset == aip->ai_offset) {
6129 				freefrag = allocindir_merge(aip, oldaip);
6130 				goto done;
6131 			}
6132 		}
6133 	}
6134 done:
6135 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6136 	return (freefrag);
6137 }
6138 
6139 /*
6140  * Merge two allocindirs which refer to the same block.  Move newblock
6141  * dependencies and setup the freefrags appropriately.
6142  */
6143 static struct freefrag *
6144 allocindir_merge(aip, oldaip)
6145 	struct allocindir *aip;
6146 	struct allocindir *oldaip;
6147 {
6148 	struct freefrag *freefrag;
6149 	struct worklist *wk;
6150 
6151 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6152 		panic("allocindir_merge: blkno");
6153 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6154 	freefrag = aip->ai_freefrag;
6155 	aip->ai_freefrag = oldaip->ai_freefrag;
6156 	oldaip->ai_freefrag = NULL;
6157 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6158 	/*
6159 	 * If we are tracking a new directory-block allocation,
6160 	 * move it from the old allocindir to the new allocindir.
6161 	 */
6162 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6163 		WORKLIST_REMOVE(wk);
6164 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6165 			panic("allocindir_merge: extra newdirblk");
6166 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6167 	}
6168 	/*
6169 	 * We can skip journaling for this freefrag and just complete
6170 	 * any pending journal work for the allocindir that is being
6171 	 * removed after the freefrag completes.
6172 	 */
6173 	if (freefrag->ff_jdep)
6174 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6175 	LIST_REMOVE(oldaip, ai_next);
6176 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6177 	    &freefrag->ff_list, &freefrag->ff_jwork);
6178 	free_newblk(&oldaip->ai_block);
6179 
6180 	return (freefrag);
6181 }
6182 
6183 static inline void
6184 setup_freedirect(freeblks, ip, i, needj)
6185 	struct freeblks *freeblks;
6186 	struct inode *ip;
6187 	int i;
6188 	int needj;
6189 {
6190 	struct ufsmount *ump;
6191 	ufs2_daddr_t blkno;
6192 	int frags;
6193 
6194 	blkno = DIP(ip, i_db[i]);
6195 	if (blkno == 0)
6196 		return;
6197 	DIP_SET(ip, i_db[i], 0);
6198 	ump = ITOUMP(ip);
6199 	frags = sblksize(ump->um_fs, ip->i_size, i);
6200 	frags = numfrags(ump->um_fs, frags);
6201 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6202 }
6203 
6204 static inline void
6205 setup_freeext(freeblks, ip, i, needj)
6206 	struct freeblks *freeblks;
6207 	struct inode *ip;
6208 	int i;
6209 	int needj;
6210 {
6211 	struct ufsmount *ump;
6212 	ufs2_daddr_t blkno;
6213 	int frags;
6214 
6215 	blkno = ip->i_din2->di_extb[i];
6216 	if (blkno == 0)
6217 		return;
6218 	ip->i_din2->di_extb[i] = 0;
6219 	ump = ITOUMP(ip);
6220 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6221 	frags = numfrags(ump->um_fs, frags);
6222 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6223 }
6224 
6225 static inline void
6226 setup_freeindir(freeblks, ip, i, lbn, needj)
6227 	struct freeblks *freeblks;
6228 	struct inode *ip;
6229 	int i;
6230 	ufs_lbn_t lbn;
6231 	int needj;
6232 {
6233 	struct ufsmount *ump;
6234 	ufs2_daddr_t blkno;
6235 
6236 	blkno = DIP(ip, i_ib[i]);
6237 	if (blkno == 0)
6238 		return;
6239 	DIP_SET(ip, i_ib[i], 0);
6240 	ump = ITOUMP(ip);
6241 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6242 	    0, needj);
6243 }
6244 
6245 static inline struct freeblks *
6246 newfreeblks(mp, ip)
6247 	struct mount *mp;
6248 	struct inode *ip;
6249 {
6250 	struct freeblks *freeblks;
6251 
6252 	freeblks = malloc(sizeof(struct freeblks),
6253 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6254 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6255 	LIST_INIT(&freeblks->fb_jblkdephd);
6256 	LIST_INIT(&freeblks->fb_jwork);
6257 	freeblks->fb_ref = 0;
6258 	freeblks->fb_cgwait = 0;
6259 	freeblks->fb_state = ATTACHED;
6260 	freeblks->fb_uid = ip->i_uid;
6261 	freeblks->fb_inum = ip->i_number;
6262 	freeblks->fb_vtype = ITOV(ip)->v_type;
6263 	freeblks->fb_modrev = DIP(ip, i_modrev);
6264 	freeblks->fb_devvp = ITODEVVP(ip);
6265 	freeblks->fb_chkcnt = 0;
6266 	freeblks->fb_len = 0;
6267 
6268 	return (freeblks);
6269 }
6270 
6271 static void
6272 trunc_indirdep(indirdep, freeblks, bp, off)
6273 	struct indirdep *indirdep;
6274 	struct freeblks *freeblks;
6275 	struct buf *bp;
6276 	int off;
6277 {
6278 	struct allocindir *aip, *aipn;
6279 
6280 	/*
6281 	 * The first set of allocindirs won't be in savedbp.
6282 	 */
6283 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6284 		if (aip->ai_offset > off)
6285 			cancel_allocindir(aip, bp, freeblks, 1);
6286 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6287 		if (aip->ai_offset > off)
6288 			cancel_allocindir(aip, bp, freeblks, 1);
6289 	/*
6290 	 * These will exist in savedbp.
6291 	 */
6292 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6293 		if (aip->ai_offset > off)
6294 			cancel_allocindir(aip, NULL, freeblks, 0);
6295 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6296 		if (aip->ai_offset > off)
6297 			cancel_allocindir(aip, NULL, freeblks, 0);
6298 }
6299 
6300 /*
6301  * Follow the chain of indirects down to lastlbn creating a freework
6302  * structure for each.  This will be used to start indir_trunc() at
6303  * the right offset and create the journal records for the parrtial
6304  * truncation.  A second step will handle the truncated dependencies.
6305  */
6306 static int
6307 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6308 	struct freeblks *freeblks;
6309 	struct inode *ip;
6310 	ufs_lbn_t lbn;
6311 	ufs_lbn_t lastlbn;
6312 	ufs2_daddr_t blkno;
6313 {
6314 	struct indirdep *indirdep;
6315 	struct indirdep *indirn;
6316 	struct freework *freework;
6317 	struct newblk *newblk;
6318 	struct mount *mp;
6319 	struct ufsmount *ump;
6320 	struct buf *bp;
6321 	uint8_t *start;
6322 	uint8_t *end;
6323 	ufs_lbn_t lbnadd;
6324 	int level;
6325 	int error;
6326 	int off;
6327 
6328 
6329 	freework = NULL;
6330 	if (blkno == 0)
6331 		return (0);
6332 	mp = freeblks->fb_list.wk_mp;
6333 	ump = VFSTOUFS(mp);
6334 	/*
6335 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6336 	 * the on-disk address, so we just pass it to bread() instead of
6337 	 * having bread() attempt to calculate it using VOP_BMAP().
6338 	 */
6339 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6340 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6341 	if (error)
6342 		return (error);
6343 	level = lbn_level(lbn);
6344 	lbnadd = lbn_offset(ump->um_fs, level);
6345 	/*
6346 	 * Compute the offset of the last block we want to keep.  Store
6347 	 * in the freework the first block we want to completely free.
6348 	 */
6349 	off = (lastlbn - -(lbn + level)) / lbnadd;
6350 	if (off + 1 == NINDIR(ump->um_fs))
6351 		goto nowork;
6352 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6353 	/*
6354 	 * Link the freework into the indirdep.  This will prevent any new
6355 	 * allocations from proceeding until we are finished with the
6356 	 * truncate and the block is written.
6357 	 */
6358 	ACQUIRE_LOCK(ump);
6359 	indirdep = indirdep_lookup(mp, ip, bp);
6360 	if (indirdep->ir_freeblks)
6361 		panic("setup_trunc_indir: indirdep already truncated.");
6362 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6363 	freework->fw_indir = indirdep;
6364 	/*
6365 	 * Cancel any allocindirs that will not make it to disk.
6366 	 * We have to do this for all copies of the indirdep that
6367 	 * live on this newblk.
6368 	 */
6369 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6370 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6371 		    &newblk) == 0)
6372 			panic("setup_trunc_indir: lost block");
6373 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6374 			trunc_indirdep(indirn, freeblks, bp, off);
6375 	} else
6376 		trunc_indirdep(indirdep, freeblks, bp, off);
6377 	FREE_LOCK(ump);
6378 	/*
6379 	 * Creation is protected by the buf lock. The saveddata is only
6380 	 * needed if a full truncation follows a partial truncation but it
6381 	 * is difficult to allocate in that case so we fetch it anyway.
6382 	 */
6383 	if (indirdep->ir_saveddata == NULL)
6384 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6385 		    M_SOFTDEP_FLAGS);
6386 nowork:
6387 	/* Fetch the blkno of the child and the zero start offset. */
6388 	if (I_IS_UFS1(ip)) {
6389 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6390 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6391 	} else {
6392 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6393 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6394 	}
6395 	if (freework) {
6396 		/* Zero the truncated pointers. */
6397 		end = bp->b_data + bp->b_bcount;
6398 		bzero(start, end - start);
6399 		bdwrite(bp);
6400 	} else
6401 		bqrelse(bp);
6402 	if (level == 0)
6403 		return (0);
6404 	lbn++; /* adjust level */
6405 	lbn -= (off * lbnadd);
6406 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6407 }
6408 
6409 /*
6410  * Complete the partial truncation of an indirect block setup by
6411  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6412  * copy and writes them to disk before the freeblks is allowed to complete.
6413  */
6414 static void
6415 complete_trunc_indir(freework)
6416 	struct freework *freework;
6417 {
6418 	struct freework *fwn;
6419 	struct indirdep *indirdep;
6420 	struct ufsmount *ump;
6421 	struct buf *bp;
6422 	uintptr_t start;
6423 	int count;
6424 
6425 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6426 	LOCK_OWNED(ump);
6427 	indirdep = freework->fw_indir;
6428 	for (;;) {
6429 		bp = indirdep->ir_bp;
6430 		/* See if the block was discarded. */
6431 		if (bp == NULL)
6432 			break;
6433 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6434 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6435 			break;
6436 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6437 		    LOCK_PTR(ump)) == 0)
6438 			BUF_UNLOCK(bp);
6439 		ACQUIRE_LOCK(ump);
6440 	}
6441 	freework->fw_state |= DEPCOMPLETE;
6442 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6443 	/*
6444 	 * Zero the pointers in the saved copy.
6445 	 */
6446 	if (indirdep->ir_state & UFS1FMT)
6447 		start = sizeof(ufs1_daddr_t);
6448 	else
6449 		start = sizeof(ufs2_daddr_t);
6450 	start *= freework->fw_start;
6451 	count = indirdep->ir_savebp->b_bcount - start;
6452 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6453 	bzero((char *)start, count);
6454 	/*
6455 	 * We need to start the next truncation in the list if it has not
6456 	 * been started yet.
6457 	 */
6458 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6459 	if (fwn != NULL) {
6460 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6461 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6462 		if ((fwn->fw_state & ONWORKLIST) == 0)
6463 			freework_enqueue(fwn);
6464 	}
6465 	/*
6466 	 * If bp is NULL the block was fully truncated, restore
6467 	 * the saved block list otherwise free it if it is no
6468 	 * longer needed.
6469 	 */
6470 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6471 		if (bp == NULL)
6472 			bcopy(indirdep->ir_saveddata,
6473 			    indirdep->ir_savebp->b_data,
6474 			    indirdep->ir_savebp->b_bcount);
6475 		free(indirdep->ir_saveddata, M_INDIRDEP);
6476 		indirdep->ir_saveddata = NULL;
6477 	}
6478 	/*
6479 	 * When bp is NULL there is a full truncation pending.  We
6480 	 * must wait for this full truncation to be journaled before
6481 	 * we can release this freework because the disk pointers will
6482 	 * never be written as zero.
6483 	 */
6484 	if (bp == NULL)  {
6485 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6486 			handle_written_freework(freework);
6487 		else
6488 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6489 			   &freework->fw_list);
6490 		if (fwn == NULL) {
6491 			freework->fw_indir = (void *)0x0000deadbeef0000;
6492 			bp = indirdep->ir_savebp;
6493 			indirdep->ir_savebp = NULL;
6494 			free_indirdep(indirdep);
6495 			FREE_LOCK(ump);
6496 			brelse(bp);
6497 			ACQUIRE_LOCK(ump);
6498 		}
6499 	} else {
6500 		/* Complete when the real copy is written. */
6501 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6502 		BUF_UNLOCK(bp);
6503 	}
6504 }
6505 
6506 /*
6507  * Calculate the number of blocks we are going to release where datablocks
6508  * is the current total and length is the new file size.
6509  */
6510 static ufs2_daddr_t
6511 blkcount(fs, datablocks, length)
6512 	struct fs *fs;
6513 	ufs2_daddr_t datablocks;
6514 	off_t length;
6515 {
6516 	off_t totblks, numblks;
6517 
6518 	totblks = 0;
6519 	numblks = howmany(length, fs->fs_bsize);
6520 	if (numblks <= UFS_NDADDR) {
6521 		totblks = howmany(length, fs->fs_fsize);
6522 		goto out;
6523 	}
6524         totblks = blkstofrags(fs, numblks);
6525 	numblks -= UFS_NDADDR;
6526 	/*
6527 	 * Count all single, then double, then triple indirects required.
6528 	 * Subtracting one indirects worth of blocks for each pass
6529 	 * acknowledges one of each pointed to by the inode.
6530 	 */
6531 	for (;;) {
6532 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6533 		numblks -= NINDIR(fs);
6534 		if (numblks <= 0)
6535 			break;
6536 		numblks = howmany(numblks, NINDIR(fs));
6537 	}
6538 out:
6539 	totblks = fsbtodb(fs, totblks);
6540 	/*
6541 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6542 	 * references.  We will correct it later in handle_complete_freeblks()
6543 	 * when we know the real count.
6544 	 */
6545 	if (totblks > datablocks)
6546 		return (0);
6547 	return (datablocks - totblks);
6548 }
6549 
6550 /*
6551  * Handle freeblocks for journaled softupdate filesystems.
6552  *
6553  * Contrary to normal softupdates, we must preserve the block pointers in
6554  * indirects until their subordinates are free.  This is to avoid journaling
6555  * every block that is freed which may consume more space than the journal
6556  * itself.  The recovery program will see the free block journals at the
6557  * base of the truncated area and traverse them to reclaim space.  The
6558  * pointers in the inode may be cleared immediately after the journal
6559  * records are written because each direct and indirect pointer in the
6560  * inode is recorded in a journal.  This permits full truncation to proceed
6561  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6562  *
6563  * The algorithm is as follows:
6564  * 1) Traverse the in-memory state and create journal entries to release
6565  *    the relevant blocks and full indirect trees.
6566  * 2) Traverse the indirect block chain adding partial truncation freework
6567  *    records to indirects in the path to lastlbn.  The freework will
6568  *    prevent new allocation dependencies from being satisfied in this
6569  *    indirect until the truncation completes.
6570  * 3) Read and lock the inode block, performing an update with the new size
6571  *    and pointers.  This prevents truncated data from becoming valid on
6572  *    disk through step 4.
6573  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6574  *    eliminate journal work for those records that do not require it.
6575  * 5) Schedule the journal records to be written followed by the inode block.
6576  * 6) Allocate any necessary frags for the end of file.
6577  * 7) Zero any partially truncated blocks.
6578  *
6579  * From this truncation proceeds asynchronously using the freework and
6580  * indir_trunc machinery.  The file will not be extended again into a
6581  * partially truncated indirect block until all work is completed but
6582  * the normal dependency mechanism ensures that it is rolled back/forward
6583  * as appropriate.  Further truncation may occur without delay and is
6584  * serialized in indir_trunc().
6585  */
6586 void
6587 softdep_journal_freeblocks(ip, cred, length, flags)
6588 	struct inode *ip;	/* The inode whose length is to be reduced */
6589 	struct ucred *cred;
6590 	off_t length;		/* The new length for the file */
6591 	int flags;		/* IO_EXT and/or IO_NORMAL */
6592 {
6593 	struct freeblks *freeblks, *fbn;
6594 	struct worklist *wk, *wkn;
6595 	struct inodedep *inodedep;
6596 	struct jblkdep *jblkdep;
6597 	struct allocdirect *adp, *adpn;
6598 	struct ufsmount *ump;
6599 	struct fs *fs;
6600 	struct buf *bp;
6601 	struct vnode *vp;
6602 	struct mount *mp;
6603 	daddr_t dbn;
6604 	ufs2_daddr_t extblocks, datablocks;
6605 	ufs_lbn_t tmpval, lbn, lastlbn;
6606 	int frags, lastoff, iboff, allocblock, needj, error, i;
6607 
6608 	ump = ITOUMP(ip);
6609 	mp = UFSTOVFS(ump);
6610 	fs = ump->um_fs;
6611 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6612 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6613 	vp = ITOV(ip);
6614 	needj = 1;
6615 	iboff = -1;
6616 	allocblock = 0;
6617 	extblocks = 0;
6618 	datablocks = 0;
6619 	frags = 0;
6620 	freeblks = newfreeblks(mp, ip);
6621 	ACQUIRE_LOCK(ump);
6622 	/*
6623 	 * If we're truncating a removed file that will never be written
6624 	 * we don't need to journal the block frees.  The canceled journals
6625 	 * for the allocations will suffice.
6626 	 */
6627 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6628 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6629 	    length == 0)
6630 		needj = 0;
6631 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6632 	    ip->i_number, length, needj);
6633 	FREE_LOCK(ump);
6634 	/*
6635 	 * Calculate the lbn that we are truncating to.  This results in -1
6636 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6637 	 * to keep, not the first lbn we want to truncate.
6638 	 */
6639 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6640 	lastoff = blkoff(fs, length);
6641 	/*
6642 	 * Compute frags we are keeping in lastlbn.  0 means all.
6643 	 */
6644 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6645 		frags = fragroundup(fs, lastoff);
6646 		/* adp offset of last valid allocdirect. */
6647 		iboff = lastlbn;
6648 	} else if (lastlbn > 0)
6649 		iboff = UFS_NDADDR;
6650 	if (fs->fs_magic == FS_UFS2_MAGIC)
6651 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6652 	/*
6653 	 * Handle normal data blocks and indirects.  This section saves
6654 	 * values used after the inode update to complete frag and indirect
6655 	 * truncation.
6656 	 */
6657 	if ((flags & IO_NORMAL) != 0) {
6658 		/*
6659 		 * Handle truncation of whole direct and indirect blocks.
6660 		 */
6661 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6662 			setup_freedirect(freeblks, ip, i, needj);
6663 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6664 		    i < UFS_NIADDR;
6665 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6666 			/* Release a whole indirect tree. */
6667 			if (lbn > lastlbn) {
6668 				setup_freeindir(freeblks, ip, i, -lbn -i,
6669 				    needj);
6670 				continue;
6671 			}
6672 			iboff = i + UFS_NDADDR;
6673 			/*
6674 			 * Traverse partially truncated indirect tree.
6675 			 */
6676 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6677 				setup_trunc_indir(freeblks, ip, -lbn - i,
6678 				    lastlbn, DIP(ip, i_ib[i]));
6679 		}
6680 		/*
6681 		 * Handle partial truncation to a frag boundary.
6682 		 */
6683 		if (frags) {
6684 			ufs2_daddr_t blkno;
6685 			long oldfrags;
6686 
6687 			oldfrags = blksize(fs, ip, lastlbn);
6688 			blkno = DIP(ip, i_db[lastlbn]);
6689 			if (blkno && oldfrags != frags) {
6690 				oldfrags -= frags;
6691 				oldfrags = numfrags(fs, oldfrags);
6692 				blkno += numfrags(fs, frags);
6693 				newfreework(ump, freeblks, NULL, lastlbn,
6694 				    blkno, oldfrags, 0, needj);
6695 				if (needj)
6696 					adjust_newfreework(freeblks,
6697 					    numfrags(fs, frags));
6698 			} else if (blkno == 0)
6699 				allocblock = 1;
6700 		}
6701 		/*
6702 		 * Add a journal record for partial truncate if we are
6703 		 * handling indirect blocks.  Non-indirects need no extra
6704 		 * journaling.
6705 		 */
6706 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6707 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6708 			newjtrunc(freeblks, length, 0);
6709 		}
6710 		ip->i_size = length;
6711 		DIP_SET(ip, i_size, ip->i_size);
6712 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6713 		datablocks = DIP(ip, i_blocks) - extblocks;
6714 		if (length != 0)
6715 			datablocks = blkcount(fs, datablocks, length);
6716 		freeblks->fb_len = length;
6717 	}
6718 	if ((flags & IO_EXT) != 0) {
6719 		for (i = 0; i < UFS_NXADDR; i++)
6720 			setup_freeext(freeblks, ip, i, needj);
6721 		ip->i_din2->di_extsize = 0;
6722 		datablocks += extblocks;
6723 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6724 	}
6725 #ifdef QUOTA
6726 	/* Reference the quotas in case the block count is wrong in the end. */
6727 	quotaref(vp, freeblks->fb_quota);
6728 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6729 #endif
6730 	freeblks->fb_chkcnt = -datablocks;
6731 	UFS_LOCK(ump);
6732 	fs->fs_pendingblocks += datablocks;
6733 	UFS_UNLOCK(ump);
6734 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6735 	/*
6736 	 * Handle truncation of incomplete alloc direct dependencies.  We
6737 	 * hold the inode block locked to prevent incomplete dependencies
6738 	 * from reaching the disk while we are eliminating those that
6739 	 * have been truncated.  This is a partially inlined ffs_update().
6740 	 */
6741 	ufs_itimes(vp);
6742 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6743 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
6744 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
6745 	    NULL, NULL, 0, cred, 0, NULL, &bp);
6746 	if (error) {
6747 		softdep_error("softdep_journal_freeblocks", error);
6748 		return;
6749 	}
6750 	if (bp->b_bufsize == fs->fs_bsize)
6751 		bp->b_flags |= B_CLUSTEROK;
6752 	softdep_update_inodeblock(ip, bp, 0);
6753 	if (ump->um_fstype == UFS1) {
6754 		*((struct ufs1_dinode *)bp->b_data +
6755 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6756 	} else {
6757 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6758 		*((struct ufs2_dinode *)bp->b_data +
6759 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6760 	}
6761 	ACQUIRE_LOCK(ump);
6762 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6763 	if ((inodedep->id_state & IOSTARTED) != 0)
6764 		panic("softdep_setup_freeblocks: inode busy");
6765 	/*
6766 	 * Add the freeblks structure to the list of operations that
6767 	 * must await the zero'ed inode being written to disk. If we
6768 	 * still have a bitmap dependency (needj), then the inode
6769 	 * has never been written to disk, so we can process the
6770 	 * freeblks below once we have deleted the dependencies.
6771 	 */
6772 	if (needj)
6773 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6774 	else
6775 		freeblks->fb_state |= COMPLETE;
6776 	if ((flags & IO_NORMAL) != 0) {
6777 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6778 			if (adp->ad_offset > iboff)
6779 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6780 				    freeblks);
6781 			/*
6782 			 * Truncate the allocdirect.  We could eliminate
6783 			 * or modify journal records as well.
6784 			 */
6785 			else if (adp->ad_offset == iboff && frags)
6786 				adp->ad_newsize = frags;
6787 		}
6788 	}
6789 	if ((flags & IO_EXT) != 0)
6790 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6791 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6792 			    freeblks);
6793 	/*
6794 	 * Scan the bufwait list for newblock dependencies that will never
6795 	 * make it to disk.
6796 	 */
6797 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6798 		if (wk->wk_type != D_ALLOCDIRECT)
6799 			continue;
6800 		adp = WK_ALLOCDIRECT(wk);
6801 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6802 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6803 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6804 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6805 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6806 		}
6807 	}
6808 	/*
6809 	 * Add journal work.
6810 	 */
6811 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6812 		add_to_journal(&jblkdep->jb_list);
6813 	FREE_LOCK(ump);
6814 	bdwrite(bp);
6815 	/*
6816 	 * Truncate dependency structures beyond length.
6817 	 */
6818 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6819 	/*
6820 	 * This is only set when we need to allocate a fragment because
6821 	 * none existed at the end of a frag-sized file.  It handles only
6822 	 * allocating a new, zero filled block.
6823 	 */
6824 	if (allocblock) {
6825 		ip->i_size = length - lastoff;
6826 		DIP_SET(ip, i_size, ip->i_size);
6827 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6828 		if (error != 0) {
6829 			softdep_error("softdep_journal_freeblks", error);
6830 			return;
6831 		}
6832 		ip->i_size = length;
6833 		DIP_SET(ip, i_size, length);
6834 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
6835 		allocbuf(bp, frags);
6836 		ffs_update(vp, 0);
6837 		bawrite(bp);
6838 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6839 		int size;
6840 
6841 		/*
6842 		 * Zero the end of a truncated frag or block.
6843 		 */
6844 		size = sblksize(fs, length, lastlbn);
6845 		error = bread(vp, lastlbn, size, cred, &bp);
6846 		if (error == 0) {
6847 			bzero((char *)bp->b_data + lastoff, size - lastoff);
6848 			bawrite(bp);
6849 		} else if (!ffs_fsfail_cleanup(ump, error)) {
6850 			softdep_error("softdep_journal_freeblks", error);
6851 			return;
6852 		}
6853 	}
6854 	ACQUIRE_LOCK(ump);
6855 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6856 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6857 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6858 	/*
6859 	 * We zero earlier truncations so they don't erroneously
6860 	 * update i_blocks.
6861 	 */
6862 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6863 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6864 			fbn->fb_len = 0;
6865 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6866 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6867 		freeblks->fb_state |= INPROGRESS;
6868 	else
6869 		freeblks = NULL;
6870 	FREE_LOCK(ump);
6871 	if (freeblks)
6872 		handle_workitem_freeblocks(freeblks, 0);
6873 	trunc_pages(ip, length, extblocks, flags);
6874 
6875 }
6876 
6877 /*
6878  * Flush a JOP_SYNC to the journal.
6879  */
6880 void
6881 softdep_journal_fsync(ip)
6882 	struct inode *ip;
6883 {
6884 	struct jfsync *jfsync;
6885 	struct ufsmount *ump;
6886 
6887 	ump = ITOUMP(ip);
6888 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6889 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6890 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6891 		return;
6892 	ip->i_flag &= ~IN_TRUNCATED;
6893 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6894 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6895 	jfsync->jfs_size = ip->i_size;
6896 	jfsync->jfs_ino = ip->i_number;
6897 	ACQUIRE_LOCK(ump);
6898 	add_to_journal(&jfsync->jfs_list);
6899 	jwait(&jfsync->jfs_list, MNT_WAIT);
6900 	FREE_LOCK(ump);
6901 }
6902 
6903 /*
6904  * Block de-allocation dependencies.
6905  *
6906  * When blocks are de-allocated, the on-disk pointers must be nullified before
6907  * the blocks are made available for use by other files.  (The true
6908  * requirement is that old pointers must be nullified before new on-disk
6909  * pointers are set.  We chose this slightly more stringent requirement to
6910  * reduce complexity.) Our implementation handles this dependency by updating
6911  * the inode (or indirect block) appropriately but delaying the actual block
6912  * de-allocation (i.e., freemap and free space count manipulation) until
6913  * after the updated versions reach stable storage.  After the disk is
6914  * updated, the blocks can be safely de-allocated whenever it is convenient.
6915  * This implementation handles only the common case of reducing a file's
6916  * length to zero. Other cases are handled by the conventional synchronous
6917  * write approach.
6918  *
6919  * The ffs implementation with which we worked double-checks
6920  * the state of the block pointers and file size as it reduces
6921  * a file's length.  Some of this code is replicated here in our
6922  * soft updates implementation.  The freeblks->fb_chkcnt field is
6923  * used to transfer a part of this information to the procedure
6924  * that eventually de-allocates the blocks.
6925  *
6926  * This routine should be called from the routine that shortens
6927  * a file's length, before the inode's size or block pointers
6928  * are modified. It will save the block pointer information for
6929  * later release and zero the inode so that the calling routine
6930  * can release it.
6931  */
6932 void
6933 softdep_setup_freeblocks(ip, length, flags)
6934 	struct inode *ip;	/* The inode whose length is to be reduced */
6935 	off_t length;		/* The new length for the file */
6936 	int flags;		/* IO_EXT and/or IO_NORMAL */
6937 {
6938 	struct ufs1_dinode *dp1;
6939 	struct ufs2_dinode *dp2;
6940 	struct freeblks *freeblks;
6941 	struct inodedep *inodedep;
6942 	struct allocdirect *adp;
6943 	struct ufsmount *ump;
6944 	struct buf *bp;
6945 	struct fs *fs;
6946 	ufs2_daddr_t extblocks, datablocks;
6947 	struct mount *mp;
6948 	int i, delay, error;
6949 	ufs_lbn_t tmpval;
6950 	ufs_lbn_t lbn;
6951 
6952 	ump = ITOUMP(ip);
6953 	mp = UFSTOVFS(ump);
6954 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6955 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6956 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6957 	    ip->i_number, length);
6958 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6959 	fs = ump->um_fs;
6960 	if ((error = bread(ump->um_devvp,
6961 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6962 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6963 		if (!ffs_fsfail_cleanup(ump, error))
6964 			softdep_error("softdep_setup_freeblocks", error);
6965 		return;
6966 	}
6967 	freeblks = newfreeblks(mp, ip);
6968 	extblocks = 0;
6969 	datablocks = 0;
6970 	if (fs->fs_magic == FS_UFS2_MAGIC)
6971 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6972 	if ((flags & IO_NORMAL) != 0) {
6973 		for (i = 0; i < UFS_NDADDR; i++)
6974 			setup_freedirect(freeblks, ip, i, 0);
6975 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6976 		    i < UFS_NIADDR;
6977 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6978 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6979 		ip->i_size = 0;
6980 		DIP_SET(ip, i_size, 0);
6981 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6982 		datablocks = DIP(ip, i_blocks) - extblocks;
6983 	}
6984 	if ((flags & IO_EXT) != 0) {
6985 		for (i = 0; i < UFS_NXADDR; i++)
6986 			setup_freeext(freeblks, ip, i, 0);
6987 		ip->i_din2->di_extsize = 0;
6988 		datablocks += extblocks;
6989 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6990 	}
6991 #ifdef QUOTA
6992 	/* Reference the quotas in case the block count is wrong in the end. */
6993 	quotaref(ITOV(ip), freeblks->fb_quota);
6994 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6995 #endif
6996 	freeblks->fb_chkcnt = -datablocks;
6997 	UFS_LOCK(ump);
6998 	fs->fs_pendingblocks += datablocks;
6999 	UFS_UNLOCK(ump);
7000 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7001 	/*
7002 	 * Push the zero'ed inode to its disk buffer so that we are free
7003 	 * to delete its dependencies below. Once the dependencies are gone
7004 	 * the buffer can be safely released.
7005 	 */
7006 	if (ump->um_fstype == UFS1) {
7007 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7008 		    ino_to_fsbo(fs, ip->i_number));
7009 		ip->i_din1->di_freelink = dp1->di_freelink;
7010 		*dp1 = *ip->i_din1;
7011 	} else {
7012 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7013 		    ino_to_fsbo(fs, ip->i_number));
7014 		ip->i_din2->di_freelink = dp2->di_freelink;
7015 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7016 		*dp2 = *ip->i_din2;
7017 	}
7018 	/*
7019 	 * Find and eliminate any inode dependencies.
7020 	 */
7021 	ACQUIRE_LOCK(ump);
7022 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7023 	if ((inodedep->id_state & IOSTARTED) != 0)
7024 		panic("softdep_setup_freeblocks: inode busy");
7025 	/*
7026 	 * Add the freeblks structure to the list of operations that
7027 	 * must await the zero'ed inode being written to disk. If we
7028 	 * still have a bitmap dependency (delay == 0), then the inode
7029 	 * has never been written to disk, so we can process the
7030 	 * freeblks below once we have deleted the dependencies.
7031 	 */
7032 	delay = (inodedep->id_state & DEPCOMPLETE);
7033 	if (delay)
7034 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7035 	else
7036 		freeblks->fb_state |= COMPLETE;
7037 	/*
7038 	 * Because the file length has been truncated to zero, any
7039 	 * pending block allocation dependency structures associated
7040 	 * with this inode are obsolete and can simply be de-allocated.
7041 	 * We must first merge the two dependency lists to get rid of
7042 	 * any duplicate freefrag structures, then purge the merged list.
7043 	 * If we still have a bitmap dependency, then the inode has never
7044 	 * been written to disk, so we can free any fragments without delay.
7045 	 */
7046 	if (flags & IO_NORMAL) {
7047 		merge_inode_lists(&inodedep->id_newinoupdt,
7048 		    &inodedep->id_inoupdt);
7049 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7050 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7051 			    freeblks);
7052 	}
7053 	if (flags & IO_EXT) {
7054 		merge_inode_lists(&inodedep->id_newextupdt,
7055 		    &inodedep->id_extupdt);
7056 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7057 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7058 			    freeblks);
7059 	}
7060 	FREE_LOCK(ump);
7061 	bdwrite(bp);
7062 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7063 	ACQUIRE_LOCK(ump);
7064 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7065 		(void) free_inodedep(inodedep);
7066 	freeblks->fb_state |= DEPCOMPLETE;
7067 	/*
7068 	 * If the inode with zeroed block pointers is now on disk
7069 	 * we can start freeing blocks.
7070 	 */
7071 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7072 		freeblks->fb_state |= INPROGRESS;
7073 	else
7074 		freeblks = NULL;
7075 	FREE_LOCK(ump);
7076 	if (freeblks)
7077 		handle_workitem_freeblocks(freeblks, 0);
7078 	trunc_pages(ip, length, extblocks, flags);
7079 }
7080 
7081 /*
7082  * Eliminate pages from the page cache that back parts of this inode and
7083  * adjust the vnode pager's idea of our size.  This prevents stale data
7084  * from hanging around in the page cache.
7085  */
7086 static void
7087 trunc_pages(ip, length, extblocks, flags)
7088 	struct inode *ip;
7089 	off_t length;
7090 	ufs2_daddr_t extblocks;
7091 	int flags;
7092 {
7093 	struct vnode *vp;
7094 	struct fs *fs;
7095 	ufs_lbn_t lbn;
7096 	off_t end, extend;
7097 
7098 	vp = ITOV(ip);
7099 	fs = ITOFS(ip);
7100 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7101 	if ((flags & IO_EXT) != 0)
7102 		vn_pages_remove(vp, extend, 0);
7103 	if ((flags & IO_NORMAL) == 0)
7104 		return;
7105 	BO_LOCK(&vp->v_bufobj);
7106 	drain_output(vp);
7107 	BO_UNLOCK(&vp->v_bufobj);
7108 	/*
7109 	 * The vnode pager eliminates file pages we eliminate indirects
7110 	 * below.
7111 	 */
7112 	vnode_pager_setsize(vp, length);
7113 	/*
7114 	 * Calculate the end based on the last indirect we want to keep.  If
7115 	 * the block extends into indirects we can just use the negative of
7116 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7117 	 * be careful not to remove those, if they exist.  double and triple
7118 	 * indirect lbns do not overlap with others so it is not important
7119 	 * to verify how many levels are required.
7120 	 */
7121 	lbn = lblkno(fs, length);
7122 	if (lbn >= UFS_NDADDR) {
7123 		/* Calculate the virtual lbn of the triple indirect. */
7124 		lbn = -lbn - (UFS_NIADDR - 1);
7125 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7126 	} else
7127 		end = extend;
7128 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7129 }
7130 
7131 /*
7132  * See if the buf bp is in the range eliminated by truncation.
7133  */
7134 static int
7135 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7136 	struct buf *bp;
7137 	int *blkoffp;
7138 	ufs_lbn_t lastlbn;
7139 	int lastoff;
7140 	int flags;
7141 {
7142 	ufs_lbn_t lbn;
7143 
7144 	*blkoffp = 0;
7145 	/* Only match ext/normal blocks as appropriate. */
7146 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7147 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7148 		return (0);
7149 	/* ALTDATA is always a full truncation. */
7150 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7151 		return (1);
7152 	/* -1 is full truncation. */
7153 	if (lastlbn == -1)
7154 		return (1);
7155 	/*
7156 	 * If this is a partial truncate we only want those
7157 	 * blocks and indirect blocks that cover the range
7158 	 * we're after.
7159 	 */
7160 	lbn = bp->b_lblkno;
7161 	if (lbn < 0)
7162 		lbn = -(lbn + lbn_level(lbn));
7163 	if (lbn < lastlbn)
7164 		return (0);
7165 	/* Here we only truncate lblkno if it's partial. */
7166 	if (lbn == lastlbn) {
7167 		if (lastoff == 0)
7168 			return (0);
7169 		*blkoffp = lastoff;
7170 	}
7171 	return (1);
7172 }
7173 
7174 /*
7175  * Eliminate any dependencies that exist in memory beyond lblkno:off
7176  */
7177 static void
7178 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7179 	struct inode *ip;
7180 	struct freeblks *freeblks;
7181 	ufs_lbn_t lastlbn;
7182 	int lastoff;
7183 	int flags;
7184 {
7185 	struct bufobj *bo;
7186 	struct vnode *vp;
7187 	struct buf *bp;
7188 	int blkoff;
7189 
7190 	/*
7191 	 * We must wait for any I/O in progress to finish so that
7192 	 * all potential buffers on the dirty list will be visible.
7193 	 * Once they are all there, walk the list and get rid of
7194 	 * any dependencies.
7195 	 */
7196 	vp = ITOV(ip);
7197 	bo = &vp->v_bufobj;
7198 	BO_LOCK(bo);
7199 	drain_output(vp);
7200 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7201 		bp->b_vflags &= ~BV_SCANNED;
7202 restart:
7203 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7204 		if (bp->b_vflags & BV_SCANNED)
7205 			continue;
7206 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7207 			bp->b_vflags |= BV_SCANNED;
7208 			continue;
7209 		}
7210 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7211 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7212 			goto restart;
7213 		BO_UNLOCK(bo);
7214 		if (deallocate_dependencies(bp, freeblks, blkoff))
7215 			bqrelse(bp);
7216 		else
7217 			brelse(bp);
7218 		BO_LOCK(bo);
7219 		goto restart;
7220 	}
7221 	/*
7222 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7223 	 */
7224 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7225 		bp->b_vflags &= ~BV_SCANNED;
7226 cleanrestart:
7227 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7228 		if (bp->b_vflags & BV_SCANNED)
7229 			continue;
7230 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7231 			bp->b_vflags |= BV_SCANNED;
7232 			continue;
7233 		}
7234 		if (BUF_LOCK(bp,
7235 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7236 		    BO_LOCKPTR(bo)) == ENOLCK) {
7237 			BO_LOCK(bo);
7238 			goto cleanrestart;
7239 		}
7240 		bp->b_vflags |= BV_SCANNED;
7241 		bremfree(bp);
7242 		if (blkoff != 0) {
7243 			allocbuf(bp, blkoff);
7244 			bqrelse(bp);
7245 		} else {
7246 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7247 			brelse(bp);
7248 		}
7249 		BO_LOCK(bo);
7250 		goto cleanrestart;
7251 	}
7252 	drain_output(vp);
7253 	BO_UNLOCK(bo);
7254 }
7255 
7256 static int
7257 cancel_pagedep(pagedep, freeblks, blkoff)
7258 	struct pagedep *pagedep;
7259 	struct freeblks *freeblks;
7260 	int blkoff;
7261 {
7262 	struct jremref *jremref;
7263 	struct jmvref *jmvref;
7264 	struct dirrem *dirrem, *tmp;
7265 	int i;
7266 
7267 	/*
7268 	 * Copy any directory remove dependencies to the list
7269 	 * to be processed after the freeblks proceeds.  If
7270 	 * directory entry never made it to disk they
7271 	 * can be dumped directly onto the work list.
7272 	 */
7273 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7274 		/* Skip this directory removal if it is intended to remain. */
7275 		if (dirrem->dm_offset < blkoff)
7276 			continue;
7277 		/*
7278 		 * If there are any dirrems we wait for the journal write
7279 		 * to complete and then restart the buf scan as the lock
7280 		 * has been dropped.
7281 		 */
7282 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7283 			jwait(&jremref->jr_list, MNT_WAIT);
7284 			return (ERESTART);
7285 		}
7286 		LIST_REMOVE(dirrem, dm_next);
7287 		dirrem->dm_dirinum = pagedep->pd_ino;
7288 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7289 	}
7290 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7291 		jwait(&jmvref->jm_list, MNT_WAIT);
7292 		return (ERESTART);
7293 	}
7294 	/*
7295 	 * When we're partially truncating a pagedep we just want to flush
7296 	 * journal entries and return.  There can not be any adds in the
7297 	 * truncated portion of the directory and newblk must remain if
7298 	 * part of the block remains.
7299 	 */
7300 	if (blkoff != 0) {
7301 		struct diradd *dap;
7302 
7303 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7304 			if (dap->da_offset > blkoff)
7305 				panic("cancel_pagedep: diradd %p off %d > %d",
7306 				    dap, dap->da_offset, blkoff);
7307 		for (i = 0; i < DAHASHSZ; i++)
7308 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7309 				if (dap->da_offset > blkoff)
7310 					panic("cancel_pagedep: diradd %p off %d > %d",
7311 					    dap, dap->da_offset, blkoff);
7312 		return (0);
7313 	}
7314 	/*
7315 	 * There should be no directory add dependencies present
7316 	 * as the directory could not be truncated until all
7317 	 * children were removed.
7318 	 */
7319 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7320 	    ("deallocate_dependencies: pendinghd != NULL"));
7321 	for (i = 0; i < DAHASHSZ; i++)
7322 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7323 		    ("deallocate_dependencies: diraddhd != NULL"));
7324 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7325 		free_newdirblk(pagedep->pd_newdirblk);
7326 	if (free_pagedep(pagedep) == 0)
7327 		panic("Failed to free pagedep %p", pagedep);
7328 	return (0);
7329 }
7330 
7331 /*
7332  * Reclaim any dependency structures from a buffer that is about to
7333  * be reallocated to a new vnode. The buffer must be locked, thus,
7334  * no I/O completion operations can occur while we are manipulating
7335  * its associated dependencies. The mutex is held so that other I/O's
7336  * associated with related dependencies do not occur.
7337  */
7338 static int
7339 deallocate_dependencies(bp, freeblks, off)
7340 	struct buf *bp;
7341 	struct freeblks *freeblks;
7342 	int off;
7343 {
7344 	struct indirdep *indirdep;
7345 	struct pagedep *pagedep;
7346 	struct worklist *wk, *wkn;
7347 	struct ufsmount *ump;
7348 
7349 	ump = softdep_bp_to_mp(bp);
7350 	if (ump == NULL)
7351 		goto done;
7352 	ACQUIRE_LOCK(ump);
7353 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7354 		switch (wk->wk_type) {
7355 		case D_INDIRDEP:
7356 			indirdep = WK_INDIRDEP(wk);
7357 			if (bp->b_lblkno >= 0 ||
7358 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7359 				panic("deallocate_dependencies: not indir");
7360 			cancel_indirdep(indirdep, bp, freeblks);
7361 			continue;
7362 
7363 		case D_PAGEDEP:
7364 			pagedep = WK_PAGEDEP(wk);
7365 			if (cancel_pagedep(pagedep, freeblks, off)) {
7366 				FREE_LOCK(ump);
7367 				return (ERESTART);
7368 			}
7369 			continue;
7370 
7371 		case D_ALLOCINDIR:
7372 			/*
7373 			 * Simply remove the allocindir, we'll find it via
7374 			 * the indirdep where we can clear pointers if
7375 			 * needed.
7376 			 */
7377 			WORKLIST_REMOVE(wk);
7378 			continue;
7379 
7380 		case D_FREEWORK:
7381 			/*
7382 			 * A truncation is waiting for the zero'd pointers
7383 			 * to be written.  It can be freed when the freeblks
7384 			 * is journaled.
7385 			 */
7386 			WORKLIST_REMOVE(wk);
7387 			wk->wk_state |= ONDEPLIST;
7388 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7389 			break;
7390 
7391 		case D_ALLOCDIRECT:
7392 			if (off != 0)
7393 				continue;
7394 			/* FALLTHROUGH */
7395 		default:
7396 			panic("deallocate_dependencies: Unexpected type %s",
7397 			    TYPENAME(wk->wk_type));
7398 			/* NOTREACHED */
7399 		}
7400 	}
7401 	FREE_LOCK(ump);
7402 done:
7403 	/*
7404 	 * Don't throw away this buf, we were partially truncating and
7405 	 * some deps may always remain.
7406 	 */
7407 	if (off) {
7408 		allocbuf(bp, off);
7409 		bp->b_vflags |= BV_SCANNED;
7410 		return (EBUSY);
7411 	}
7412 	bp->b_flags |= B_INVAL | B_NOCACHE;
7413 
7414 	return (0);
7415 }
7416 
7417 /*
7418  * An allocdirect is being canceled due to a truncate.  We must make sure
7419  * the journal entry is released in concert with the blkfree that releases
7420  * the storage.  Completed journal entries must not be released until the
7421  * space is no longer pointed to by the inode or in the bitmap.
7422  */
7423 static void
7424 cancel_allocdirect(adphead, adp, freeblks)
7425 	struct allocdirectlst *adphead;
7426 	struct allocdirect *adp;
7427 	struct freeblks *freeblks;
7428 {
7429 	struct freework *freework;
7430 	struct newblk *newblk;
7431 	struct worklist *wk;
7432 
7433 	TAILQ_REMOVE(adphead, adp, ad_next);
7434 	newblk = (struct newblk *)adp;
7435 	freework = NULL;
7436 	/*
7437 	 * Find the correct freework structure.
7438 	 */
7439 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7440 		if (wk->wk_type != D_FREEWORK)
7441 			continue;
7442 		freework = WK_FREEWORK(wk);
7443 		if (freework->fw_blkno == newblk->nb_newblkno)
7444 			break;
7445 	}
7446 	if (freework == NULL)
7447 		panic("cancel_allocdirect: Freework not found");
7448 	/*
7449 	 * If a newblk exists at all we still have the journal entry that
7450 	 * initiated the allocation so we do not need to journal the free.
7451 	 */
7452 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7453 	/*
7454 	 * If the journal hasn't been written the jnewblk must be passed
7455 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7456 	 * this by linking the journal dependency into the freework to be
7457 	 * freed when freework_freeblock() is called.  If the journal has
7458 	 * been written we can simply reclaim the journal space when the
7459 	 * freeblks work is complete.
7460 	 */
7461 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7462 	    &freeblks->fb_jwork);
7463 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7464 }
7465 
7466 
7467 /*
7468  * Cancel a new block allocation.  May be an indirect or direct block.  We
7469  * remove it from various lists and return any journal record that needs to
7470  * be resolved by the caller.
7471  *
7472  * A special consideration is made for indirects which were never pointed
7473  * at on disk and will never be found once this block is released.
7474  */
7475 static struct jnewblk *
7476 cancel_newblk(newblk, wk, wkhd)
7477 	struct newblk *newblk;
7478 	struct worklist *wk;
7479 	struct workhead *wkhd;
7480 {
7481 	struct jnewblk *jnewblk;
7482 
7483 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7484 
7485 	newblk->nb_state |= GOINGAWAY;
7486 	/*
7487 	 * Previously we traversed the completedhd on each indirdep
7488 	 * attached to this newblk to cancel them and gather journal
7489 	 * work.  Since we need only the oldest journal segment and
7490 	 * the lowest point on the tree will always have the oldest
7491 	 * journal segment we are free to release the segments
7492 	 * of any subordinates and may leave the indirdep list to
7493 	 * indirdep_complete() when this newblk is freed.
7494 	 */
7495 	if (newblk->nb_state & ONDEPLIST) {
7496 		newblk->nb_state &= ~ONDEPLIST;
7497 		LIST_REMOVE(newblk, nb_deps);
7498 	}
7499 	if (newblk->nb_state & ONWORKLIST)
7500 		WORKLIST_REMOVE(&newblk->nb_list);
7501 	/*
7502 	 * If the journal entry hasn't been written we save a pointer to
7503 	 * the dependency that frees it until it is written or the
7504 	 * superseding operation completes.
7505 	 */
7506 	jnewblk = newblk->nb_jnewblk;
7507 	if (jnewblk != NULL && wk != NULL) {
7508 		newblk->nb_jnewblk = NULL;
7509 		jnewblk->jn_dep = wk;
7510 	}
7511 	if (!LIST_EMPTY(&newblk->nb_jwork))
7512 		jwork_move(wkhd, &newblk->nb_jwork);
7513 	/*
7514 	 * When truncating we must free the newdirblk early to remove
7515 	 * the pagedep from the hash before returning.
7516 	 */
7517 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7518 		free_newdirblk(WK_NEWDIRBLK(wk));
7519 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7520 		panic("cancel_newblk: extra newdirblk");
7521 
7522 	return (jnewblk);
7523 }
7524 
7525 /*
7526  * Schedule the freefrag associated with a newblk to be released once
7527  * the pointers are written and the previous block is no longer needed.
7528  */
7529 static void
7530 newblk_freefrag(newblk)
7531 	struct newblk *newblk;
7532 {
7533 	struct freefrag *freefrag;
7534 
7535 	if (newblk->nb_freefrag == NULL)
7536 		return;
7537 	freefrag = newblk->nb_freefrag;
7538 	newblk->nb_freefrag = NULL;
7539 	freefrag->ff_state |= COMPLETE;
7540 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7541 		add_to_worklist(&freefrag->ff_list, 0);
7542 }
7543 
7544 /*
7545  * Free a newblk. Generate a new freefrag work request if appropriate.
7546  * This must be called after the inode pointer and any direct block pointers
7547  * are valid or fully removed via truncate or frag extension.
7548  */
7549 static void
7550 free_newblk(newblk)
7551 	struct newblk *newblk;
7552 {
7553 	struct indirdep *indirdep;
7554 	struct worklist *wk;
7555 
7556 	KASSERT(newblk->nb_jnewblk == NULL,
7557 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7558 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7559 	    ("free_newblk: unclaimed newblk"));
7560 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7561 	newblk_freefrag(newblk);
7562 	if (newblk->nb_state & ONDEPLIST)
7563 		LIST_REMOVE(newblk, nb_deps);
7564 	if (newblk->nb_state & ONWORKLIST)
7565 		WORKLIST_REMOVE(&newblk->nb_list);
7566 	LIST_REMOVE(newblk, nb_hash);
7567 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7568 		free_newdirblk(WK_NEWDIRBLK(wk));
7569 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7570 		panic("free_newblk: extra newdirblk");
7571 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7572 		indirdep_complete(indirdep);
7573 	handle_jwork(&newblk->nb_jwork);
7574 	WORKITEM_FREE(newblk, D_NEWBLK);
7575 }
7576 
7577 /*
7578  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7579  */
7580 static void
7581 free_newdirblk(newdirblk)
7582 	struct newdirblk *newdirblk;
7583 {
7584 	struct pagedep *pagedep;
7585 	struct diradd *dap;
7586 	struct worklist *wk;
7587 
7588 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7589 	WORKLIST_REMOVE(&newdirblk->db_list);
7590 	/*
7591 	 * If the pagedep is still linked onto the directory buffer
7592 	 * dependency chain, then some of the entries on the
7593 	 * pd_pendinghd list may not be committed to disk yet. In
7594 	 * this case, we will simply clear the NEWBLOCK flag and
7595 	 * let the pd_pendinghd list be processed when the pagedep
7596 	 * is next written. If the pagedep is no longer on the buffer
7597 	 * dependency chain, then all the entries on the pd_pending
7598 	 * list are committed to disk and we can free them here.
7599 	 */
7600 	pagedep = newdirblk->db_pagedep;
7601 	pagedep->pd_state &= ~NEWBLOCK;
7602 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7603 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7604 			free_diradd(dap, NULL);
7605 		/*
7606 		 * If no dependencies remain, the pagedep will be freed.
7607 		 */
7608 		free_pagedep(pagedep);
7609 	}
7610 	/* Should only ever be one item in the list. */
7611 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7612 		WORKLIST_REMOVE(wk);
7613 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7614 	}
7615 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7616 }
7617 
7618 /*
7619  * Prepare an inode to be freed. The actual free operation is not
7620  * done until the zero'ed inode has been written to disk.
7621  */
7622 void
7623 softdep_freefile(pvp, ino, mode)
7624 	struct vnode *pvp;
7625 	ino_t ino;
7626 	int mode;
7627 {
7628 	struct inode *ip = VTOI(pvp);
7629 	struct inodedep *inodedep;
7630 	struct freefile *freefile;
7631 	struct freeblks *freeblks;
7632 	struct ufsmount *ump;
7633 
7634 	ump = ITOUMP(ip);
7635 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7636 	    ("softdep_freefile called on non-softdep filesystem"));
7637 	/*
7638 	 * This sets up the inode de-allocation dependency.
7639 	 */
7640 	freefile = malloc(sizeof(struct freefile),
7641 		M_FREEFILE, M_SOFTDEP_FLAGS);
7642 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7643 	freefile->fx_mode = mode;
7644 	freefile->fx_oldinum = ino;
7645 	freefile->fx_devvp = ump->um_devvp;
7646 	LIST_INIT(&freefile->fx_jwork);
7647 	UFS_LOCK(ump);
7648 	ump->um_fs->fs_pendinginodes += 1;
7649 	UFS_UNLOCK(ump);
7650 
7651 	/*
7652 	 * If the inodedep does not exist, then the zero'ed inode has
7653 	 * been written to disk. If the allocated inode has never been
7654 	 * written to disk, then the on-disk inode is zero'ed. In either
7655 	 * case we can free the file immediately.  If the journal was
7656 	 * canceled before being written the inode will never make it to
7657 	 * disk and we must send the canceled journal entrys to
7658 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7659 	 * Any blocks waiting on the inode to write can be safely freed
7660 	 * here as it will never been written.
7661 	 */
7662 	ACQUIRE_LOCK(ump);
7663 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7664 	if (inodedep) {
7665 		/*
7666 		 * Clear out freeblks that no longer need to reference
7667 		 * this inode.
7668 		 */
7669 		while ((freeblks =
7670 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7671 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7672 			    fb_next);
7673 			freeblks->fb_state &= ~ONDEPLIST;
7674 		}
7675 		/*
7676 		 * Remove this inode from the unlinked list.
7677 		 */
7678 		if (inodedep->id_state & UNLINKED) {
7679 			/*
7680 			 * Save the journal work to be freed with the bitmap
7681 			 * before we clear UNLINKED.  Otherwise it can be lost
7682 			 * if the inode block is written.
7683 			 */
7684 			handle_bufwait(inodedep, &freefile->fx_jwork);
7685 			clear_unlinked_inodedep(inodedep);
7686 			/*
7687 			 * Re-acquire inodedep as we've dropped the
7688 			 * per-filesystem lock in clear_unlinked_inodedep().
7689 			 */
7690 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7691 		}
7692 	}
7693 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7694 		FREE_LOCK(ump);
7695 		handle_workitem_freefile(freefile);
7696 		return;
7697 	}
7698 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7699 		inodedep->id_state |= GOINGAWAY;
7700 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7701 	FREE_LOCK(ump);
7702 	if (ip->i_number == ino)
7703 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7704 }
7705 
7706 /*
7707  * Check to see if an inode has never been written to disk. If
7708  * so free the inodedep and return success, otherwise return failure.
7709  *
7710  * If we still have a bitmap dependency, then the inode has never
7711  * been written to disk. Drop the dependency as it is no longer
7712  * necessary since the inode is being deallocated. We set the
7713  * ALLCOMPLETE flags since the bitmap now properly shows that the
7714  * inode is not allocated. Even if the inode is actively being
7715  * written, it has been rolled back to its zero'ed state, so we
7716  * are ensured that a zero inode is what is on the disk. For short
7717  * lived files, this change will usually result in removing all the
7718  * dependencies from the inode so that it can be freed immediately.
7719  */
7720 static int
7721 check_inode_unwritten(inodedep)
7722 	struct inodedep *inodedep;
7723 {
7724 
7725 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7726 
7727 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7728 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7729 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7730 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7731 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7732 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7733 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7734 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7735 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7736 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7737 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7738 	    inodedep->id_mkdiradd != NULL ||
7739 	    inodedep->id_nlinkdelta != 0)
7740 		return (0);
7741 	/*
7742 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7743 	 * trying to allocate memory without holding "Softdep Lock".
7744 	 */
7745 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7746 	    inodedep->id_savedino1 == NULL)
7747 		return (0);
7748 
7749 	if (inodedep->id_state & ONDEPLIST)
7750 		LIST_REMOVE(inodedep, id_deps);
7751 	inodedep->id_state &= ~ONDEPLIST;
7752 	inodedep->id_state |= ALLCOMPLETE;
7753 	inodedep->id_bmsafemap = NULL;
7754 	if (inodedep->id_state & ONWORKLIST)
7755 		WORKLIST_REMOVE(&inodedep->id_list);
7756 	if (inodedep->id_savedino1 != NULL) {
7757 		free(inodedep->id_savedino1, M_SAVEDINO);
7758 		inodedep->id_savedino1 = NULL;
7759 	}
7760 	if (free_inodedep(inodedep) == 0)
7761 		panic("check_inode_unwritten: busy inode");
7762 	return (1);
7763 }
7764 
7765 static int
7766 check_inodedep_free(inodedep)
7767 	struct inodedep *inodedep;
7768 {
7769 
7770 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7771 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7772 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7773 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7774 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7775 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7776 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7777 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7778 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7779 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7780 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7781 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7782 	    inodedep->id_mkdiradd != NULL ||
7783 	    inodedep->id_nlinkdelta != 0 ||
7784 	    inodedep->id_savedino1 != NULL)
7785 		return (0);
7786 	return (1);
7787 }
7788 
7789 /*
7790  * Try to free an inodedep structure. Return 1 if it could be freed.
7791  */
7792 static int
7793 free_inodedep(inodedep)
7794 	struct inodedep *inodedep;
7795 {
7796 
7797 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7798 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7799 	    !check_inodedep_free(inodedep))
7800 		return (0);
7801 	if (inodedep->id_state & ONDEPLIST)
7802 		LIST_REMOVE(inodedep, id_deps);
7803 	LIST_REMOVE(inodedep, id_hash);
7804 	WORKITEM_FREE(inodedep, D_INODEDEP);
7805 	return (1);
7806 }
7807 
7808 /*
7809  * Free the block referenced by a freework structure.  The parent freeblks
7810  * structure is released and completed when the final cg bitmap reaches
7811  * the disk.  This routine may be freeing a jnewblk which never made it to
7812  * disk in which case we do not have to wait as the operation is undone
7813  * in memory immediately.
7814  */
7815 static void
7816 freework_freeblock(freework, key)
7817 	struct freework *freework;
7818 	u_long key;
7819 {
7820 	struct freeblks *freeblks;
7821 	struct jnewblk *jnewblk;
7822 	struct ufsmount *ump;
7823 	struct workhead wkhd;
7824 	struct fs *fs;
7825 	int bsize;
7826 	int needj;
7827 
7828 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7829 	LOCK_OWNED(ump);
7830 	/*
7831 	 * Handle partial truncate separately.
7832 	 */
7833 	if (freework->fw_indir) {
7834 		complete_trunc_indir(freework);
7835 		return;
7836 	}
7837 	freeblks = freework->fw_freeblks;
7838 	fs = ump->um_fs;
7839 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7840 	bsize = lfragtosize(fs, freework->fw_frags);
7841 	LIST_INIT(&wkhd);
7842 	/*
7843 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7844 	 * on the indirblk hashtable and prevents premature freeing.
7845 	 */
7846 	freework->fw_state |= DEPCOMPLETE;
7847 	/*
7848 	 * SUJ needs to wait for the segment referencing freed indirect
7849 	 * blocks to expire so that we know the checker will not confuse
7850 	 * a re-allocated indirect block with its old contents.
7851 	 */
7852 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7853 		indirblk_insert(freework);
7854 	/*
7855 	 * If we are canceling an existing jnewblk pass it to the free
7856 	 * routine, otherwise pass the freeblk which will ultimately
7857 	 * release the freeblks.  If we're not journaling, we can just
7858 	 * free the freeblks immediately.
7859 	 */
7860 	jnewblk = freework->fw_jnewblk;
7861 	if (jnewblk != NULL) {
7862 		cancel_jnewblk(jnewblk, &wkhd);
7863 		needj = 0;
7864 	} else if (needj) {
7865 		freework->fw_state |= DELAYEDFREE;
7866 		freeblks->fb_cgwait++;
7867 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7868 	}
7869 	FREE_LOCK(ump);
7870 	freeblks_free(ump, freeblks, btodb(bsize));
7871 	CTR4(KTR_SUJ,
7872 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
7873 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7874 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7875 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
7876 	ACQUIRE_LOCK(ump);
7877 	/*
7878 	 * The jnewblk will be discarded and the bits in the map never
7879 	 * made it to disk.  We can immediately free the freeblk.
7880 	 */
7881 	if (needj == 0)
7882 		handle_written_freework(freework);
7883 }
7884 
7885 /*
7886  * We enqueue freework items that need processing back on the freeblks and
7887  * add the freeblks to the worklist.  This makes it easier to find all work
7888  * required to flush a truncation in process_truncates().
7889  */
7890 static void
7891 freework_enqueue(freework)
7892 	struct freework *freework;
7893 {
7894 	struct freeblks *freeblks;
7895 
7896 	freeblks = freework->fw_freeblks;
7897 	if ((freework->fw_state & INPROGRESS) == 0)
7898 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7899 	if ((freeblks->fb_state &
7900 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7901 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7902 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7903 }
7904 
7905 /*
7906  * Start, continue, or finish the process of freeing an indirect block tree.
7907  * The free operation may be paused at any point with fw_off containing the
7908  * offset to restart from.  This enables us to implement some flow control
7909  * for large truncates which may fan out and generate a huge number of
7910  * dependencies.
7911  */
7912 static void
7913 handle_workitem_indirblk(freework)
7914 	struct freework *freework;
7915 {
7916 	struct freeblks *freeblks;
7917 	struct ufsmount *ump;
7918 	struct fs *fs;
7919 
7920 	freeblks = freework->fw_freeblks;
7921 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7922 	fs = ump->um_fs;
7923 	if (freework->fw_state & DEPCOMPLETE) {
7924 		handle_written_freework(freework);
7925 		return;
7926 	}
7927 	if (freework->fw_off == NINDIR(fs)) {
7928 		freework_freeblock(freework, SINGLETON_KEY);
7929 		return;
7930 	}
7931 	freework->fw_state |= INPROGRESS;
7932 	FREE_LOCK(ump);
7933 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7934 	    freework->fw_lbn);
7935 	ACQUIRE_LOCK(ump);
7936 }
7937 
7938 /*
7939  * Called when a freework structure attached to a cg buf is written.  The
7940  * ref on either the parent or the freeblks structure is released and
7941  * the freeblks is added back to the worklist if there is more work to do.
7942  */
7943 static void
7944 handle_written_freework(freework)
7945 	struct freework *freework;
7946 {
7947 	struct freeblks *freeblks;
7948 	struct freework *parent;
7949 
7950 	freeblks = freework->fw_freeblks;
7951 	parent = freework->fw_parent;
7952 	if (freework->fw_state & DELAYEDFREE)
7953 		freeblks->fb_cgwait--;
7954 	freework->fw_state |= COMPLETE;
7955 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7956 		WORKITEM_FREE(freework, D_FREEWORK);
7957 	if (parent) {
7958 		if (--parent->fw_ref == 0)
7959 			freework_enqueue(parent);
7960 		return;
7961 	}
7962 	if (--freeblks->fb_ref != 0)
7963 		return;
7964 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7965 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7966 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7967 }
7968 
7969 /*
7970  * This workitem routine performs the block de-allocation.
7971  * The workitem is added to the pending list after the updated
7972  * inode block has been written to disk.  As mentioned above,
7973  * checks regarding the number of blocks de-allocated (compared
7974  * to the number of blocks allocated for the file) are also
7975  * performed in this function.
7976  */
7977 static int
7978 handle_workitem_freeblocks(freeblks, flags)
7979 	struct freeblks *freeblks;
7980 	int flags;
7981 {
7982 	struct freework *freework;
7983 	struct newblk *newblk;
7984 	struct allocindir *aip;
7985 	struct ufsmount *ump;
7986 	struct worklist *wk;
7987 	u_long key;
7988 
7989 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7990 	    ("handle_workitem_freeblocks: Journal entries not written."));
7991 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7992 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
7993 	ACQUIRE_LOCK(ump);
7994 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7995 		WORKLIST_REMOVE(wk);
7996 		switch (wk->wk_type) {
7997 		case D_DIRREM:
7998 			wk->wk_state |= COMPLETE;
7999 			add_to_worklist(wk, 0);
8000 			continue;
8001 
8002 		case D_ALLOCDIRECT:
8003 			free_newblk(WK_NEWBLK(wk));
8004 			continue;
8005 
8006 		case D_ALLOCINDIR:
8007 			aip = WK_ALLOCINDIR(wk);
8008 			freework = NULL;
8009 			if (aip->ai_state & DELAYEDFREE) {
8010 				FREE_LOCK(ump);
8011 				freework = newfreework(ump, freeblks, NULL,
8012 				    aip->ai_lbn, aip->ai_newblkno,
8013 				    ump->um_fs->fs_frag, 0, 0);
8014 				ACQUIRE_LOCK(ump);
8015 			}
8016 			newblk = WK_NEWBLK(wk);
8017 			if (newblk->nb_jnewblk) {
8018 				freework->fw_jnewblk = newblk->nb_jnewblk;
8019 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8020 				newblk->nb_jnewblk = NULL;
8021 			}
8022 			free_newblk(newblk);
8023 			continue;
8024 
8025 		case D_FREEWORK:
8026 			freework = WK_FREEWORK(wk);
8027 			if (freework->fw_lbn <= -UFS_NDADDR)
8028 				handle_workitem_indirblk(freework);
8029 			else
8030 				freework_freeblock(freework, key);
8031 			continue;
8032 		default:
8033 			panic("handle_workitem_freeblocks: Unknown type %s",
8034 			    TYPENAME(wk->wk_type));
8035 		}
8036 	}
8037 	if (freeblks->fb_ref != 0) {
8038 		freeblks->fb_state &= ~INPROGRESS;
8039 		wake_worklist(&freeblks->fb_list);
8040 		freeblks = NULL;
8041 	}
8042 	FREE_LOCK(ump);
8043 	ffs_blkrelease_finish(ump, key);
8044 	if (freeblks)
8045 		return handle_complete_freeblocks(freeblks, flags);
8046 	return (0);
8047 }
8048 
8049 /*
8050  * Handle completion of block free via truncate.  This allows fs_pending
8051  * to track the actual free block count more closely than if we only updated
8052  * it at the end.  We must be careful to handle cases where the block count
8053  * on free was incorrect.
8054  */
8055 static void
8056 freeblks_free(ump, freeblks, blocks)
8057 	struct ufsmount *ump;
8058 	struct freeblks *freeblks;
8059 	int blocks;
8060 {
8061 	struct fs *fs;
8062 	ufs2_daddr_t remain;
8063 
8064 	UFS_LOCK(ump);
8065 	remain = -freeblks->fb_chkcnt;
8066 	freeblks->fb_chkcnt += blocks;
8067 	if (remain > 0) {
8068 		if (remain < blocks)
8069 			blocks = remain;
8070 		fs = ump->um_fs;
8071 		fs->fs_pendingblocks -= blocks;
8072 	}
8073 	UFS_UNLOCK(ump);
8074 }
8075 
8076 /*
8077  * Once all of the freework workitems are complete we can retire the
8078  * freeblocks dependency and any journal work awaiting completion.  This
8079  * can not be called until all other dependencies are stable on disk.
8080  */
8081 static int
8082 handle_complete_freeblocks(freeblks, flags)
8083 	struct freeblks *freeblks;
8084 	int flags;
8085 {
8086 	struct inodedep *inodedep;
8087 	struct inode *ip;
8088 	struct vnode *vp;
8089 	struct fs *fs;
8090 	struct ufsmount *ump;
8091 	ufs2_daddr_t spare;
8092 
8093 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8094 	fs = ump->um_fs;
8095 	flags = LK_EXCLUSIVE | flags;
8096 	spare = freeblks->fb_chkcnt;
8097 
8098 	/*
8099 	 * If we did not release the expected number of blocks we may have
8100 	 * to adjust the inode block count here.  Only do so if it wasn't
8101 	 * a truncation to zero and the modrev still matches.
8102 	 */
8103 	if (spare && freeblks->fb_len != 0) {
8104 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8105 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8106 			return (EBUSY);
8107 		ip = VTOI(vp);
8108 		if (ip->i_mode == 0) {
8109 			vgone(vp);
8110 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8111 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8112 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8113 			/*
8114 			 * We must wait so this happens before the
8115 			 * journal is reclaimed.
8116 			 */
8117 			ffs_update(vp, 1);
8118 		}
8119 		vput(vp);
8120 	}
8121 	if (spare < 0) {
8122 		UFS_LOCK(ump);
8123 		fs->fs_pendingblocks += spare;
8124 		UFS_UNLOCK(ump);
8125 	}
8126 #ifdef QUOTA
8127 	/* Handle spare. */
8128 	if (spare)
8129 		quotaadj(freeblks->fb_quota, ump, -spare);
8130 	quotarele(freeblks->fb_quota);
8131 #endif
8132 	ACQUIRE_LOCK(ump);
8133 	if (freeblks->fb_state & ONDEPLIST) {
8134 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8135 		    0, &inodedep);
8136 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8137 		freeblks->fb_state &= ~ONDEPLIST;
8138 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8139 			free_inodedep(inodedep);
8140 	}
8141 	/*
8142 	 * All of the freeblock deps must be complete prior to this call
8143 	 * so it's now safe to complete earlier outstanding journal entries.
8144 	 */
8145 	handle_jwork(&freeblks->fb_jwork);
8146 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8147 	FREE_LOCK(ump);
8148 	return (0);
8149 }
8150 
8151 /*
8152  * Release blocks associated with the freeblks and stored in the indirect
8153  * block dbn. If level is greater than SINGLE, the block is an indirect block
8154  * and recursive calls to indirtrunc must be used to cleanse other indirect
8155  * blocks.
8156  *
8157  * This handles partial and complete truncation of blocks.  Partial is noted
8158  * with goingaway == 0.  In this case the freework is completed after the
8159  * zero'd indirects are written to disk.  For full truncation the freework
8160  * is completed after the block is freed.
8161  */
8162 static void
8163 indir_trunc(freework, dbn, lbn)
8164 	struct freework *freework;
8165 	ufs2_daddr_t dbn;
8166 	ufs_lbn_t lbn;
8167 {
8168 	struct freework *nfreework;
8169 	struct workhead wkhd;
8170 	struct freeblks *freeblks;
8171 	struct buf *bp;
8172 	struct fs *fs;
8173 	struct indirdep *indirdep;
8174 	struct mount *mp;
8175 	struct ufsmount *ump;
8176 	ufs1_daddr_t *bap1;
8177 	ufs2_daddr_t nb, nnb, *bap2;
8178 	ufs_lbn_t lbnadd, nlbn;
8179 	u_long key;
8180 	int nblocks, ufs1fmt, freedblocks;
8181 	int goingaway, freedeps, needj, level, cnt, i, error;
8182 
8183 	freeblks = freework->fw_freeblks;
8184 	mp = freeblks->fb_list.wk_mp;
8185 	ump = VFSTOUFS(mp);
8186 	fs = ump->um_fs;
8187 	/*
8188 	 * Get buffer of block pointers to be freed.  There are three cases:
8189 	 *
8190 	 * 1) Partial truncate caches the indirdep pointer in the freework
8191 	 *    which provides us a back copy to the save bp which holds the
8192 	 *    pointers we want to clear.  When this completes the zero
8193 	 *    pointers are written to the real copy.
8194 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8195 	 *    eliminated the real copy and placed the indirdep on the saved
8196 	 *    copy.  The indirdep and buf are discarded when this completes.
8197 	 * 3) The indirect was not in memory, we read a copy off of the disk
8198 	 *    using the devvp and drop and invalidate the buffer when we're
8199 	 *    done.
8200 	 */
8201 	goingaway = 1;
8202 	indirdep = NULL;
8203 	if (freework->fw_indir != NULL) {
8204 		goingaway = 0;
8205 		indirdep = freework->fw_indir;
8206 		bp = indirdep->ir_savebp;
8207 		if (bp == NULL || bp->b_blkno != dbn)
8208 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8209 			    bp, (intmax_t)dbn);
8210 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8211 		/*
8212 		 * The lock prevents the buf dep list from changing and
8213 	 	 * indirects on devvp should only ever have one dependency.
8214 		 */
8215 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8216 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8217 			panic("indir_trunc: Bad indirdep %p from buf %p",
8218 			    indirdep, bp);
8219 	} else {
8220 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8221 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8222 		if (error)
8223 			return;
8224 	}
8225 	ACQUIRE_LOCK(ump);
8226 	/* Protects against a race with complete_trunc_indir(). */
8227 	freework->fw_state &= ~INPROGRESS;
8228 	/*
8229 	 * If we have an indirdep we need to enforce the truncation order
8230 	 * and discard it when it is complete.
8231 	 */
8232 	if (indirdep) {
8233 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8234 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8235 			/*
8236 			 * Add the complete truncate to the list on the
8237 			 * indirdep to enforce in-order processing.
8238 			 */
8239 			if (freework->fw_indir == NULL)
8240 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8241 				    freework, fw_next);
8242 			FREE_LOCK(ump);
8243 			return;
8244 		}
8245 		/*
8246 		 * If we're goingaway, free the indirdep.  Otherwise it will
8247 		 * linger until the write completes.
8248 		 */
8249 		if (goingaway) {
8250 			KASSERT(indirdep->ir_savebp == bp,
8251 			    ("indir_trunc: losing ir_savebp %p",
8252 			    indirdep->ir_savebp));
8253 			indirdep->ir_savebp = NULL;
8254 			free_indirdep(indirdep);
8255 		}
8256 	}
8257 	FREE_LOCK(ump);
8258 	/* Initialize pointers depending on block size. */
8259 	if (ump->um_fstype == UFS1) {
8260 		bap1 = (ufs1_daddr_t *)bp->b_data;
8261 		nb = bap1[freework->fw_off];
8262 		ufs1fmt = 1;
8263 		bap2 = NULL;
8264 	} else {
8265 		bap2 = (ufs2_daddr_t *)bp->b_data;
8266 		nb = bap2[freework->fw_off];
8267 		ufs1fmt = 0;
8268 		bap1 = NULL;
8269 	}
8270 	level = lbn_level(lbn);
8271 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8272 	lbnadd = lbn_offset(fs, level);
8273 	nblocks = btodb(fs->fs_bsize);
8274 	nfreework = freework;
8275 	freedeps = 0;
8276 	cnt = 0;
8277 	/*
8278 	 * Reclaim blocks.  Traverses into nested indirect levels and
8279 	 * arranges for the current level to be freed when subordinates
8280 	 * are free when journaling.
8281 	 */
8282 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8283 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8284 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8285 		    fs->fs_bsize) != 0)
8286 			nb = 0;
8287 		if (i != NINDIR(fs) - 1) {
8288 			if (ufs1fmt)
8289 				nnb = bap1[i+1];
8290 			else
8291 				nnb = bap2[i+1];
8292 		} else
8293 			nnb = 0;
8294 		if (nb == 0)
8295 			continue;
8296 		cnt++;
8297 		if (level != 0) {
8298 			nlbn = (lbn + 1) - (i * lbnadd);
8299 			if (needj != 0) {
8300 				nfreework = newfreework(ump, freeblks, freework,
8301 				    nlbn, nb, fs->fs_frag, 0, 0);
8302 				freedeps++;
8303 			}
8304 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8305 		} else {
8306 			struct freedep *freedep;
8307 
8308 			/*
8309 			 * Attempt to aggregate freedep dependencies for
8310 			 * all blocks being released to the same CG.
8311 			 */
8312 			LIST_INIT(&wkhd);
8313 			if (needj != 0 &&
8314 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8315 				freedep = newfreedep(freework);
8316 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8317 				    &freedep->fd_list);
8318 				freedeps++;
8319 			}
8320 			CTR3(KTR_SUJ,
8321 			    "indir_trunc: ino %jd blkno %jd size %d",
8322 			    freeblks->fb_inum, nb, fs->fs_bsize);
8323 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8324 			    fs->fs_bsize, freeblks->fb_inum,
8325 			    freeblks->fb_vtype, &wkhd, key);
8326 		}
8327 	}
8328 	ffs_blkrelease_finish(ump, key);
8329 	if (goingaway) {
8330 		bp->b_flags |= B_INVAL | B_NOCACHE;
8331 		brelse(bp);
8332 	}
8333 	freedblocks = 0;
8334 	if (level == 0)
8335 		freedblocks = (nblocks * cnt);
8336 	if (needj == 0)
8337 		freedblocks += nblocks;
8338 	freeblks_free(ump, freeblks, freedblocks);
8339 	/*
8340 	 * If we are journaling set up the ref counts and offset so this
8341 	 * indirect can be completed when its children are free.
8342 	 */
8343 	if (needj) {
8344 		ACQUIRE_LOCK(ump);
8345 		freework->fw_off = i;
8346 		freework->fw_ref += freedeps;
8347 		freework->fw_ref -= NINDIR(fs) + 1;
8348 		if (level == 0)
8349 			freeblks->fb_cgwait += freedeps;
8350 		if (freework->fw_ref == 0)
8351 			freework_freeblock(freework, SINGLETON_KEY);
8352 		FREE_LOCK(ump);
8353 		return;
8354 	}
8355 	/*
8356 	 * If we're not journaling we can free the indirect now.
8357 	 */
8358 	dbn = dbtofsb(fs, dbn);
8359 	CTR3(KTR_SUJ,
8360 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8361 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8362 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8363 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8364 	/* Non SUJ softdep does single-threaded truncations. */
8365 	if (freework->fw_blkno == dbn) {
8366 		freework->fw_state |= ALLCOMPLETE;
8367 		ACQUIRE_LOCK(ump);
8368 		handle_written_freework(freework);
8369 		FREE_LOCK(ump);
8370 	}
8371 	return;
8372 }
8373 
8374 /*
8375  * Cancel an allocindir when it is removed via truncation.  When bp is not
8376  * NULL the indirect never appeared on disk and is scheduled to be freed
8377  * independently of the indir so we can more easily track journal work.
8378  */
8379 static void
8380 cancel_allocindir(aip, bp, freeblks, trunc)
8381 	struct allocindir *aip;
8382 	struct buf *bp;
8383 	struct freeblks *freeblks;
8384 	int trunc;
8385 {
8386 	struct indirdep *indirdep;
8387 	struct freefrag *freefrag;
8388 	struct newblk *newblk;
8389 
8390 	newblk = (struct newblk *)aip;
8391 	LIST_REMOVE(aip, ai_next);
8392 	/*
8393 	 * We must eliminate the pointer in bp if it must be freed on its
8394 	 * own due to partial truncate or pending journal work.
8395 	 */
8396 	if (bp && (trunc || newblk->nb_jnewblk)) {
8397 		/*
8398 		 * Clear the pointer and mark the aip to be freed
8399 		 * directly if it never existed on disk.
8400 		 */
8401 		aip->ai_state |= DELAYEDFREE;
8402 		indirdep = aip->ai_indirdep;
8403 		if (indirdep->ir_state & UFS1FMT)
8404 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8405 		else
8406 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8407 	}
8408 	/*
8409 	 * When truncating the previous pointer will be freed via
8410 	 * savedbp.  Eliminate the freefrag which would dup free.
8411 	 */
8412 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8413 		newblk->nb_freefrag = NULL;
8414 		if (freefrag->ff_jdep)
8415 			cancel_jfreefrag(
8416 			    WK_JFREEFRAG(freefrag->ff_jdep));
8417 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8418 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8419 	}
8420 	/*
8421 	 * If the journal hasn't been written the jnewblk must be passed
8422 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8423 	 * this by leaving the journal dependency on the newblk to be freed
8424 	 * when a freework is created in handle_workitem_freeblocks().
8425 	 */
8426 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8427 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8428 }
8429 
8430 /*
8431  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8432  * in to a newdirblk so any subsequent additions are tracked properly.  The
8433  * caller is responsible for adding the mkdir1 dependency to the journal
8434  * and updating id_mkdiradd.  This function returns with the per-filesystem
8435  * lock held.
8436  */
8437 static struct mkdir *
8438 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8439 	struct diradd *dap;
8440 	ino_t newinum;
8441 	ino_t dinum;
8442 	struct buf *newdirbp;
8443 	struct mkdir **mkdirp;
8444 {
8445 	struct newblk *newblk;
8446 	struct pagedep *pagedep;
8447 	struct inodedep *inodedep;
8448 	struct newdirblk *newdirblk;
8449 	struct mkdir *mkdir1, *mkdir2;
8450 	struct worklist *wk;
8451 	struct jaddref *jaddref;
8452 	struct ufsmount *ump;
8453 	struct mount *mp;
8454 
8455 	mp = dap->da_list.wk_mp;
8456 	ump = VFSTOUFS(mp);
8457 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8458 	    M_SOFTDEP_FLAGS);
8459 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8460 	LIST_INIT(&newdirblk->db_mkdir);
8461 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8462 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8463 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8464 	mkdir1->md_diradd = dap;
8465 	mkdir1->md_jaddref = NULL;
8466 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8467 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8468 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8469 	mkdir2->md_diradd = dap;
8470 	mkdir2->md_jaddref = NULL;
8471 	if (MOUNTEDSUJ(mp) == 0) {
8472 		mkdir1->md_state |= DEPCOMPLETE;
8473 		mkdir2->md_state |= DEPCOMPLETE;
8474 	}
8475 	/*
8476 	 * Dependency on "." and ".." being written to disk.
8477 	 */
8478 	mkdir1->md_buf = newdirbp;
8479 	ACQUIRE_LOCK(VFSTOUFS(mp));
8480 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8481 	/*
8482 	 * We must link the pagedep, allocdirect, and newdirblk for
8483 	 * the initial file page so the pointer to the new directory
8484 	 * is not written until the directory contents are live and
8485 	 * any subsequent additions are not marked live until the
8486 	 * block is reachable via the inode.
8487 	 */
8488 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8489 		panic("setup_newdir: lost pagedep");
8490 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8491 		if (wk->wk_type == D_ALLOCDIRECT)
8492 			break;
8493 	if (wk == NULL)
8494 		panic("setup_newdir: lost allocdirect");
8495 	if (pagedep->pd_state & NEWBLOCK)
8496 		panic("setup_newdir: NEWBLOCK already set");
8497 	newblk = WK_NEWBLK(wk);
8498 	pagedep->pd_state |= NEWBLOCK;
8499 	pagedep->pd_newdirblk = newdirblk;
8500 	newdirblk->db_pagedep = pagedep;
8501 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8502 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8503 	/*
8504 	 * Look up the inodedep for the parent directory so that we
8505 	 * can link mkdir2 into the pending dotdot jaddref or
8506 	 * the inode write if there is none.  If the inode is
8507 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8508 	 * been satisfied and mkdir2 can be freed.
8509 	 */
8510 	inodedep_lookup(mp, dinum, 0, &inodedep);
8511 	if (MOUNTEDSUJ(mp)) {
8512 		if (inodedep == NULL)
8513 			panic("setup_newdir: Lost parent.");
8514 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8515 		    inoreflst);
8516 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8517 		    (jaddref->ja_state & MKDIR_PARENT),
8518 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8519 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8520 		mkdir2->md_jaddref = jaddref;
8521 		jaddref->ja_mkdir = mkdir2;
8522 	} else if (inodedep == NULL ||
8523 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8524 		dap->da_state &= ~MKDIR_PARENT;
8525 		WORKITEM_FREE(mkdir2, D_MKDIR);
8526 		mkdir2 = NULL;
8527 	} else {
8528 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8529 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8530 	}
8531 	*mkdirp = mkdir2;
8532 
8533 	return (mkdir1);
8534 }
8535 
8536 /*
8537  * Directory entry addition dependencies.
8538  *
8539  * When adding a new directory entry, the inode (with its incremented link
8540  * count) must be written to disk before the directory entry's pointer to it.
8541  * Also, if the inode is newly allocated, the corresponding freemap must be
8542  * updated (on disk) before the directory entry's pointer. These requirements
8543  * are met via undo/redo on the directory entry's pointer, which consists
8544  * simply of the inode number.
8545  *
8546  * As directory entries are added and deleted, the free space within a
8547  * directory block can become fragmented.  The ufs filesystem will compact
8548  * a fragmented directory block to make space for a new entry. When this
8549  * occurs, the offsets of previously added entries change. Any "diradd"
8550  * dependency structures corresponding to these entries must be updated with
8551  * the new offsets.
8552  */
8553 
8554 /*
8555  * This routine is called after the in-memory inode's link
8556  * count has been incremented, but before the directory entry's
8557  * pointer to the inode has been set.
8558  */
8559 int
8560 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8561 	struct buf *bp;		/* buffer containing directory block */
8562 	struct inode *dp;	/* inode for directory */
8563 	off_t diroffset;	/* offset of new entry in directory */
8564 	ino_t newinum;		/* inode referenced by new directory entry */
8565 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8566 	int isnewblk;		/* entry is in a newly allocated block */
8567 {
8568 	int offset;		/* offset of new entry within directory block */
8569 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8570 	struct fs *fs;
8571 	struct diradd *dap;
8572 	struct newblk *newblk;
8573 	struct pagedep *pagedep;
8574 	struct inodedep *inodedep;
8575 	struct newdirblk *newdirblk;
8576 	struct mkdir *mkdir1, *mkdir2;
8577 	struct jaddref *jaddref;
8578 	struct ufsmount *ump;
8579 	struct mount *mp;
8580 	int isindir;
8581 
8582 	mp = ITOVFS(dp);
8583 	ump = VFSTOUFS(mp);
8584 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8585 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8586 	/*
8587 	 * Whiteouts have no dependencies.
8588 	 */
8589 	if (newinum == UFS_WINO) {
8590 		if (newdirbp != NULL)
8591 			bdwrite(newdirbp);
8592 		return (0);
8593 	}
8594 	jaddref = NULL;
8595 	mkdir1 = mkdir2 = NULL;
8596 	fs = ump->um_fs;
8597 	lbn = lblkno(fs, diroffset);
8598 	offset = blkoff(fs, diroffset);
8599 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8600 		M_SOFTDEP_FLAGS|M_ZERO);
8601 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8602 	dap->da_offset = offset;
8603 	dap->da_newinum = newinum;
8604 	dap->da_state = ATTACHED;
8605 	LIST_INIT(&dap->da_jwork);
8606 	isindir = bp->b_lblkno >= UFS_NDADDR;
8607 	newdirblk = NULL;
8608 	if (isnewblk &&
8609 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8610 		newdirblk = malloc(sizeof(struct newdirblk),
8611 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8612 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8613 		LIST_INIT(&newdirblk->db_mkdir);
8614 	}
8615 	/*
8616 	 * If we're creating a new directory setup the dependencies and set
8617 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8618 	 * we can move on.
8619 	 */
8620 	if (newdirbp == NULL) {
8621 		dap->da_state |= DEPCOMPLETE;
8622 		ACQUIRE_LOCK(ump);
8623 	} else {
8624 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8625 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8626 		    &mkdir2);
8627 	}
8628 	/*
8629 	 * Link into parent directory pagedep to await its being written.
8630 	 */
8631 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8632 #ifdef INVARIANTS
8633 	if (diradd_lookup(pagedep, offset) != NULL)
8634 		panic("softdep_setup_directory_add: %p already at off %d\n",
8635 		    diradd_lookup(pagedep, offset), offset);
8636 #endif
8637 	dap->da_pagedep = pagedep;
8638 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8639 	    da_pdlist);
8640 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8641 	/*
8642 	 * If we're journaling, link the diradd into the jaddref so it
8643 	 * may be completed after the journal entry is written.  Otherwise,
8644 	 * link the diradd into its inodedep.  If the inode is not yet
8645 	 * written place it on the bufwait list, otherwise do the post-inode
8646 	 * write processing to put it on the id_pendinghd list.
8647 	 */
8648 	if (MOUNTEDSUJ(mp)) {
8649 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8650 		    inoreflst);
8651 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8652 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8653 		jaddref->ja_diroff = diroffset;
8654 		jaddref->ja_diradd = dap;
8655 		add_to_journal(&jaddref->ja_list);
8656 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8657 		diradd_inode_written(dap, inodedep);
8658 	else
8659 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8660 	/*
8661 	 * Add the journal entries for . and .. links now that the primary
8662 	 * link is written.
8663 	 */
8664 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8665 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8666 		    inoreflst, if_deps);
8667 		KASSERT(jaddref != NULL &&
8668 		    jaddref->ja_ino == jaddref->ja_parent &&
8669 		    (jaddref->ja_state & MKDIR_BODY),
8670 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8671 		    jaddref));
8672 		mkdir1->md_jaddref = jaddref;
8673 		jaddref->ja_mkdir = mkdir1;
8674 		/*
8675 		 * It is important that the dotdot journal entry
8676 		 * is added prior to the dot entry since dot writes
8677 		 * both the dot and dotdot links.  These both must
8678 		 * be added after the primary link for the journal
8679 		 * to remain consistent.
8680 		 */
8681 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8682 		add_to_journal(&jaddref->ja_list);
8683 	}
8684 	/*
8685 	 * If we are adding a new directory remember this diradd so that if
8686 	 * we rename it we can keep the dot and dotdot dependencies.  If
8687 	 * we are adding a new name for an inode that has a mkdiradd we
8688 	 * must be in rename and we have to move the dot and dotdot
8689 	 * dependencies to this new name.  The old name is being orphaned
8690 	 * soon.
8691 	 */
8692 	if (mkdir1 != NULL) {
8693 		if (inodedep->id_mkdiradd != NULL)
8694 			panic("softdep_setup_directory_add: Existing mkdir");
8695 		inodedep->id_mkdiradd = dap;
8696 	} else if (inodedep->id_mkdiradd)
8697 		merge_diradd(inodedep, dap);
8698 	if (newdirblk != NULL) {
8699 		/*
8700 		 * There is nothing to do if we are already tracking
8701 		 * this block.
8702 		 */
8703 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8704 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8705 			FREE_LOCK(ump);
8706 			return (0);
8707 		}
8708 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8709 		    == 0)
8710 			panic("softdep_setup_directory_add: lost entry");
8711 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8712 		pagedep->pd_state |= NEWBLOCK;
8713 		pagedep->pd_newdirblk = newdirblk;
8714 		newdirblk->db_pagedep = pagedep;
8715 		FREE_LOCK(ump);
8716 		/*
8717 		 * If we extended into an indirect signal direnter to sync.
8718 		 */
8719 		if (isindir)
8720 			return (1);
8721 		return (0);
8722 	}
8723 	FREE_LOCK(ump);
8724 	return (0);
8725 }
8726 
8727 /*
8728  * This procedure is called to change the offset of a directory
8729  * entry when compacting a directory block which must be owned
8730  * exclusively by the caller. Note that the actual entry movement
8731  * must be done in this procedure to ensure that no I/O completions
8732  * occur while the move is in progress.
8733  */
8734 void
8735 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8736 	struct buf *bp;		/* Buffer holding directory block. */
8737 	struct inode *dp;	/* inode for directory */
8738 	caddr_t base;		/* address of dp->i_offset */
8739 	caddr_t oldloc;		/* address of old directory location */
8740 	caddr_t newloc;		/* address of new directory location */
8741 	int entrysize;		/* size of directory entry */
8742 {
8743 	int offset, oldoffset, newoffset;
8744 	struct pagedep *pagedep;
8745 	struct jmvref *jmvref;
8746 	struct diradd *dap;
8747 	struct direct *de;
8748 	struct mount *mp;
8749 	struct ufsmount *ump;
8750 	ufs_lbn_t lbn;
8751 	int flags;
8752 
8753 	mp = ITOVFS(dp);
8754 	ump = VFSTOUFS(mp);
8755 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8756 	    ("softdep_change_directoryentry_offset called on "
8757 	     "non-softdep filesystem"));
8758 	de = (struct direct *)oldloc;
8759 	jmvref = NULL;
8760 	flags = 0;
8761 	/*
8762 	 * Moves are always journaled as it would be too complex to
8763 	 * determine if any affected adds or removes are present in the
8764 	 * journal.
8765 	 */
8766 	if (MOUNTEDSUJ(mp)) {
8767 		flags = DEPALLOC;
8768 		jmvref = newjmvref(dp, de->d_ino,
8769 		    dp->i_offset + (oldloc - base),
8770 		    dp->i_offset + (newloc - base));
8771 	}
8772 	lbn = lblkno(ump->um_fs, dp->i_offset);
8773 	offset = blkoff(ump->um_fs, dp->i_offset);
8774 	oldoffset = offset + (oldloc - base);
8775 	newoffset = offset + (newloc - base);
8776 	ACQUIRE_LOCK(ump);
8777 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8778 		goto done;
8779 	dap = diradd_lookup(pagedep, oldoffset);
8780 	if (dap) {
8781 		dap->da_offset = newoffset;
8782 		newoffset = DIRADDHASH(newoffset);
8783 		oldoffset = DIRADDHASH(oldoffset);
8784 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8785 		    newoffset != oldoffset) {
8786 			LIST_REMOVE(dap, da_pdlist);
8787 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8788 			    dap, da_pdlist);
8789 		}
8790 	}
8791 done:
8792 	if (jmvref) {
8793 		jmvref->jm_pagedep = pagedep;
8794 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8795 		add_to_journal(&jmvref->jm_list);
8796 	}
8797 	bcopy(oldloc, newloc, entrysize);
8798 	FREE_LOCK(ump);
8799 }
8800 
8801 /*
8802  * Move the mkdir dependencies and journal work from one diradd to another
8803  * when renaming a directory.  The new name must depend on the mkdir deps
8804  * completing as the old name did.  Directories can only have one valid link
8805  * at a time so one must be canonical.
8806  */
8807 static void
8808 merge_diradd(inodedep, newdap)
8809 	struct inodedep *inodedep;
8810 	struct diradd *newdap;
8811 {
8812 	struct diradd *olddap;
8813 	struct mkdir *mkdir, *nextmd;
8814 	struct ufsmount *ump;
8815 	short state;
8816 
8817 	olddap = inodedep->id_mkdiradd;
8818 	inodedep->id_mkdiradd = newdap;
8819 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8820 		newdap->da_state &= ~DEPCOMPLETE;
8821 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8822 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8823 		     mkdir = nextmd) {
8824 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8825 			if (mkdir->md_diradd != olddap)
8826 				continue;
8827 			mkdir->md_diradd = newdap;
8828 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8829 			newdap->da_state |= state;
8830 			olddap->da_state &= ~state;
8831 			if ((olddap->da_state &
8832 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8833 				break;
8834 		}
8835 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8836 			panic("merge_diradd: unfound ref");
8837 	}
8838 	/*
8839 	 * Any mkdir related journal items are not safe to be freed until
8840 	 * the new name is stable.
8841 	 */
8842 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8843 	olddap->da_state |= DEPCOMPLETE;
8844 	complete_diradd(olddap);
8845 }
8846 
8847 /*
8848  * Move the diradd to the pending list when all diradd dependencies are
8849  * complete.
8850  */
8851 static void
8852 complete_diradd(dap)
8853 	struct diradd *dap;
8854 {
8855 	struct pagedep *pagedep;
8856 
8857 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8858 		if (dap->da_state & DIRCHG)
8859 			pagedep = dap->da_previous->dm_pagedep;
8860 		else
8861 			pagedep = dap->da_pagedep;
8862 		LIST_REMOVE(dap, da_pdlist);
8863 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8864 	}
8865 }
8866 
8867 /*
8868  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8869  * add entries and conditonally journal the remove.
8870  */
8871 static void
8872 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8873 	struct diradd *dap;
8874 	struct dirrem *dirrem;
8875 	struct jremref *jremref;
8876 	struct jremref *dotremref;
8877 	struct jremref *dotdotremref;
8878 {
8879 	struct inodedep *inodedep;
8880 	struct jaddref *jaddref;
8881 	struct inoref *inoref;
8882 	struct ufsmount *ump;
8883 	struct mkdir *mkdir;
8884 
8885 	/*
8886 	 * If no remove references were allocated we're on a non-journaled
8887 	 * filesystem and can skip the cancel step.
8888 	 */
8889 	if (jremref == NULL) {
8890 		free_diradd(dap, NULL);
8891 		return;
8892 	}
8893 	/*
8894 	 * Cancel the primary name an free it if it does not require
8895 	 * journaling.
8896 	 */
8897 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8898 	    0, &inodedep) != 0) {
8899 		/* Abort the addref that reference this diradd.  */
8900 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8901 			if (inoref->if_list.wk_type != D_JADDREF)
8902 				continue;
8903 			jaddref = (struct jaddref *)inoref;
8904 			if (jaddref->ja_diradd != dap)
8905 				continue;
8906 			if (cancel_jaddref(jaddref, inodedep,
8907 			    &dirrem->dm_jwork) == 0) {
8908 				free_jremref(jremref);
8909 				jremref = NULL;
8910 			}
8911 			break;
8912 		}
8913 	}
8914 	/*
8915 	 * Cancel subordinate names and free them if they do not require
8916 	 * journaling.
8917 	 */
8918 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8919 		ump = VFSTOUFS(dap->da_list.wk_mp);
8920 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8921 			if (mkdir->md_diradd != dap)
8922 				continue;
8923 			if ((jaddref = mkdir->md_jaddref) == NULL)
8924 				continue;
8925 			mkdir->md_jaddref = NULL;
8926 			if (mkdir->md_state & MKDIR_PARENT) {
8927 				if (cancel_jaddref(jaddref, NULL,
8928 				    &dirrem->dm_jwork) == 0) {
8929 					free_jremref(dotdotremref);
8930 					dotdotremref = NULL;
8931 				}
8932 			} else {
8933 				if (cancel_jaddref(jaddref, inodedep,
8934 				    &dirrem->dm_jwork) == 0) {
8935 					free_jremref(dotremref);
8936 					dotremref = NULL;
8937 				}
8938 			}
8939 		}
8940 	}
8941 
8942 	if (jremref)
8943 		journal_jremref(dirrem, jremref, inodedep);
8944 	if (dotremref)
8945 		journal_jremref(dirrem, dotremref, inodedep);
8946 	if (dotdotremref)
8947 		journal_jremref(dirrem, dotdotremref, NULL);
8948 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8949 	free_diradd(dap, &dirrem->dm_jwork);
8950 }
8951 
8952 /*
8953  * Free a diradd dependency structure.
8954  */
8955 static void
8956 free_diradd(dap, wkhd)
8957 	struct diradd *dap;
8958 	struct workhead *wkhd;
8959 {
8960 	struct dirrem *dirrem;
8961 	struct pagedep *pagedep;
8962 	struct inodedep *inodedep;
8963 	struct mkdir *mkdir, *nextmd;
8964 	struct ufsmount *ump;
8965 
8966 	ump = VFSTOUFS(dap->da_list.wk_mp);
8967 	LOCK_OWNED(ump);
8968 	LIST_REMOVE(dap, da_pdlist);
8969 	if (dap->da_state & ONWORKLIST)
8970 		WORKLIST_REMOVE(&dap->da_list);
8971 	if ((dap->da_state & DIRCHG) == 0) {
8972 		pagedep = dap->da_pagedep;
8973 	} else {
8974 		dirrem = dap->da_previous;
8975 		pagedep = dirrem->dm_pagedep;
8976 		dirrem->dm_dirinum = pagedep->pd_ino;
8977 		dirrem->dm_state |= COMPLETE;
8978 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8979 			add_to_worklist(&dirrem->dm_list, 0);
8980 	}
8981 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8982 	    0, &inodedep) != 0)
8983 		if (inodedep->id_mkdiradd == dap)
8984 			inodedep->id_mkdiradd = NULL;
8985 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8986 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8987 		     mkdir = nextmd) {
8988 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8989 			if (mkdir->md_diradd != dap)
8990 				continue;
8991 			dap->da_state &=
8992 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8993 			LIST_REMOVE(mkdir, md_mkdirs);
8994 			if (mkdir->md_state & ONWORKLIST)
8995 				WORKLIST_REMOVE(&mkdir->md_list);
8996 			if (mkdir->md_jaddref != NULL)
8997 				panic("free_diradd: Unexpected jaddref");
8998 			WORKITEM_FREE(mkdir, D_MKDIR);
8999 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9000 				break;
9001 		}
9002 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9003 			panic("free_diradd: unfound ref");
9004 	}
9005 	if (inodedep)
9006 		free_inodedep(inodedep);
9007 	/*
9008 	 * Free any journal segments waiting for the directory write.
9009 	 */
9010 	handle_jwork(&dap->da_jwork);
9011 	WORKITEM_FREE(dap, D_DIRADD);
9012 }
9013 
9014 /*
9015  * Directory entry removal dependencies.
9016  *
9017  * When removing a directory entry, the entry's inode pointer must be
9018  * zero'ed on disk before the corresponding inode's link count is decremented
9019  * (possibly freeing the inode for re-use). This dependency is handled by
9020  * updating the directory entry but delaying the inode count reduction until
9021  * after the directory block has been written to disk. After this point, the
9022  * inode count can be decremented whenever it is convenient.
9023  */
9024 
9025 /*
9026  * This routine should be called immediately after removing
9027  * a directory entry.  The inode's link count should not be
9028  * decremented by the calling procedure -- the soft updates
9029  * code will do this task when it is safe.
9030  */
9031 void
9032 softdep_setup_remove(bp, dp, ip, isrmdir)
9033 	struct buf *bp;		/* buffer containing directory block */
9034 	struct inode *dp;	/* inode for the directory being modified */
9035 	struct inode *ip;	/* inode for directory entry being removed */
9036 	int isrmdir;		/* indicates if doing RMDIR */
9037 {
9038 	struct dirrem *dirrem, *prevdirrem;
9039 	struct inodedep *inodedep;
9040 	struct ufsmount *ump;
9041 	int direct;
9042 
9043 	ump = ITOUMP(ip);
9044 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9045 	    ("softdep_setup_remove called on non-softdep filesystem"));
9046 	/*
9047 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9048 	 * newdirrem() to setup the full directory remove which requires
9049 	 * isrmdir > 1.
9050 	 */
9051 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9052 	/*
9053 	 * Add the dirrem to the inodedep's pending remove list for quick
9054 	 * discovery later.
9055 	 */
9056 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9057 		panic("softdep_setup_remove: Lost inodedep.");
9058 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9059 	dirrem->dm_state |= ONDEPLIST;
9060 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9061 
9062 	/*
9063 	 * If the COMPLETE flag is clear, then there were no active
9064 	 * entries and we want to roll back to a zeroed entry until
9065 	 * the new inode is committed to disk. If the COMPLETE flag is
9066 	 * set then we have deleted an entry that never made it to
9067 	 * disk. If the entry we deleted resulted from a name change,
9068 	 * then the old name still resides on disk. We cannot delete
9069 	 * its inode (returned to us in prevdirrem) until the zeroed
9070 	 * directory entry gets to disk. The new inode has never been
9071 	 * referenced on the disk, so can be deleted immediately.
9072 	 */
9073 	if ((dirrem->dm_state & COMPLETE) == 0) {
9074 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9075 		    dm_next);
9076 		FREE_LOCK(ump);
9077 	} else {
9078 		if (prevdirrem != NULL)
9079 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9080 			    prevdirrem, dm_next);
9081 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9082 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9083 		FREE_LOCK(ump);
9084 		if (direct)
9085 			handle_workitem_remove(dirrem, 0);
9086 	}
9087 }
9088 
9089 /*
9090  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9091  * pd_pendinghd list of a pagedep.
9092  */
9093 static struct diradd *
9094 diradd_lookup(pagedep, offset)
9095 	struct pagedep *pagedep;
9096 	int offset;
9097 {
9098 	struct diradd *dap;
9099 
9100 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9101 		if (dap->da_offset == offset)
9102 			return (dap);
9103 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9104 		if (dap->da_offset == offset)
9105 			return (dap);
9106 	return (NULL);
9107 }
9108 
9109 /*
9110  * Search for a .. diradd dependency in a directory that is being removed.
9111  * If the directory was renamed to a new parent we have a diradd rather
9112  * than a mkdir for the .. entry.  We need to cancel it now before
9113  * it is found in truncate().
9114  */
9115 static struct jremref *
9116 cancel_diradd_dotdot(ip, dirrem, jremref)
9117 	struct inode *ip;
9118 	struct dirrem *dirrem;
9119 	struct jremref *jremref;
9120 {
9121 	struct pagedep *pagedep;
9122 	struct diradd *dap;
9123 	struct worklist *wk;
9124 
9125 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9126 		return (jremref);
9127 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9128 	if (dap == NULL)
9129 		return (jremref);
9130 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9131 	/*
9132 	 * Mark any journal work as belonging to the parent so it is freed
9133 	 * with the .. reference.
9134 	 */
9135 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9136 		wk->wk_state |= MKDIR_PARENT;
9137 	return (NULL);
9138 }
9139 
9140 /*
9141  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9142  * replace it with a dirrem/diradd pair as a result of re-parenting a
9143  * directory.  This ensures that we don't simultaneously have a mkdir and
9144  * a diradd for the same .. entry.
9145  */
9146 static struct jremref *
9147 cancel_mkdir_dotdot(ip, dirrem, jremref)
9148 	struct inode *ip;
9149 	struct dirrem *dirrem;
9150 	struct jremref *jremref;
9151 {
9152 	struct inodedep *inodedep;
9153 	struct jaddref *jaddref;
9154 	struct ufsmount *ump;
9155 	struct mkdir *mkdir;
9156 	struct diradd *dap;
9157 	struct mount *mp;
9158 
9159 	mp = ITOVFS(ip);
9160 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9161 		return (jremref);
9162 	dap = inodedep->id_mkdiradd;
9163 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9164 		return (jremref);
9165 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9166 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9167 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9168 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9169 			break;
9170 	if (mkdir == NULL)
9171 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9172 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9173 		mkdir->md_jaddref = NULL;
9174 		jaddref->ja_state &= ~MKDIR_PARENT;
9175 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9176 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9177 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9178 			journal_jremref(dirrem, jremref, inodedep);
9179 			jremref = NULL;
9180 		}
9181 	}
9182 	if (mkdir->md_state & ONWORKLIST)
9183 		WORKLIST_REMOVE(&mkdir->md_list);
9184 	mkdir->md_state |= ALLCOMPLETE;
9185 	complete_mkdir(mkdir);
9186 	return (jremref);
9187 }
9188 
9189 static void
9190 journal_jremref(dirrem, jremref, inodedep)
9191 	struct dirrem *dirrem;
9192 	struct jremref *jremref;
9193 	struct inodedep *inodedep;
9194 {
9195 
9196 	if (inodedep == NULL)
9197 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9198 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9199 			panic("journal_jremref: Lost inodedep");
9200 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9201 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9202 	add_to_journal(&jremref->jr_list);
9203 }
9204 
9205 static void
9206 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9207 	struct dirrem *dirrem;
9208 	struct jremref *jremref;
9209 	struct jremref *dotremref;
9210 	struct jremref *dotdotremref;
9211 {
9212 	struct inodedep *inodedep;
9213 
9214 
9215 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9216 	    &inodedep) == 0)
9217 		panic("dirrem_journal: Lost inodedep");
9218 	journal_jremref(dirrem, jremref, inodedep);
9219 	if (dotremref)
9220 		journal_jremref(dirrem, dotremref, inodedep);
9221 	if (dotdotremref)
9222 		journal_jremref(dirrem, dotdotremref, NULL);
9223 }
9224 
9225 /*
9226  * Allocate a new dirrem if appropriate and return it along with
9227  * its associated pagedep. Called without a lock, returns with lock.
9228  */
9229 static struct dirrem *
9230 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9231 	struct buf *bp;		/* buffer containing directory block */
9232 	struct inode *dp;	/* inode for the directory being modified */
9233 	struct inode *ip;	/* inode for directory entry being removed */
9234 	int isrmdir;		/* indicates if doing RMDIR */
9235 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9236 {
9237 	int offset;
9238 	ufs_lbn_t lbn;
9239 	struct diradd *dap;
9240 	struct dirrem *dirrem;
9241 	struct pagedep *pagedep;
9242 	struct jremref *jremref;
9243 	struct jremref *dotremref;
9244 	struct jremref *dotdotremref;
9245 	struct vnode *dvp;
9246 	struct ufsmount *ump;
9247 
9248 	/*
9249 	 * Whiteouts have no deletion dependencies.
9250 	 */
9251 	if (ip == NULL)
9252 		panic("newdirrem: whiteout");
9253 	dvp = ITOV(dp);
9254 	ump = ITOUMP(dp);
9255 
9256 	/*
9257 	 * If the system is over its limit and our filesystem is
9258 	 * responsible for more than our share of that usage and
9259 	 * we are not a snapshot, request some inodedep cleanup.
9260 	 * Limiting the number of dirrem structures will also limit
9261 	 * the number of freefile and freeblks structures.
9262 	 */
9263 	ACQUIRE_LOCK(ump);
9264 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9265 		schedule_cleanup(UFSTOVFS(ump));
9266 	else
9267 		FREE_LOCK(ump);
9268 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9269 	    M_ZERO);
9270 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9271 	LIST_INIT(&dirrem->dm_jremrefhd);
9272 	LIST_INIT(&dirrem->dm_jwork);
9273 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9274 	dirrem->dm_oldinum = ip->i_number;
9275 	*prevdirremp = NULL;
9276 	/*
9277 	 * Allocate remove reference structures to track journal write
9278 	 * dependencies.  We will always have one for the link and
9279 	 * when doing directories we will always have one more for dot.
9280 	 * When renaming a directory we skip the dotdot link change so
9281 	 * this is not needed.
9282 	 */
9283 	jremref = dotremref = dotdotremref = NULL;
9284 	if (DOINGSUJ(dvp)) {
9285 		if (isrmdir) {
9286 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9287 			    ip->i_effnlink + 2);
9288 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9289 			    ip->i_effnlink + 1);
9290 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9291 			    dp->i_effnlink + 1);
9292 			dotdotremref->jr_state |= MKDIR_PARENT;
9293 		} else
9294 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9295 			    ip->i_effnlink + 1);
9296 	}
9297 	ACQUIRE_LOCK(ump);
9298 	lbn = lblkno(ump->um_fs, dp->i_offset);
9299 	offset = blkoff(ump->um_fs, dp->i_offset);
9300 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9301 	    &pagedep);
9302 	dirrem->dm_pagedep = pagedep;
9303 	dirrem->dm_offset = offset;
9304 	/*
9305 	 * If we're renaming a .. link to a new directory, cancel any
9306 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9307 	 * the jremref is preserved for any potential diradd in this
9308 	 * location.  This can not coincide with a rmdir.
9309 	 */
9310 	if (dp->i_offset == DOTDOT_OFFSET) {
9311 		if (isrmdir)
9312 			panic("newdirrem: .. directory change during remove?");
9313 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9314 	}
9315 	/*
9316 	 * If we're removing a directory search for the .. dependency now and
9317 	 * cancel it.  Any pending journal work will be added to the dirrem
9318 	 * to be completed when the workitem remove completes.
9319 	 */
9320 	if (isrmdir)
9321 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9322 	/*
9323 	 * Check for a diradd dependency for the same directory entry.
9324 	 * If present, then both dependencies become obsolete and can
9325 	 * be de-allocated.
9326 	 */
9327 	dap = diradd_lookup(pagedep, offset);
9328 	if (dap == NULL) {
9329 		/*
9330 		 * Link the jremref structures into the dirrem so they are
9331 		 * written prior to the pagedep.
9332 		 */
9333 		if (jremref)
9334 			dirrem_journal(dirrem, jremref, dotremref,
9335 			    dotdotremref);
9336 		return (dirrem);
9337 	}
9338 	/*
9339 	 * Must be ATTACHED at this point.
9340 	 */
9341 	if ((dap->da_state & ATTACHED) == 0)
9342 		panic("newdirrem: not ATTACHED");
9343 	if (dap->da_newinum != ip->i_number)
9344 		panic("newdirrem: inum %ju should be %ju",
9345 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9346 	/*
9347 	 * If we are deleting a changed name that never made it to disk,
9348 	 * then return the dirrem describing the previous inode (which
9349 	 * represents the inode currently referenced from this entry on disk).
9350 	 */
9351 	if ((dap->da_state & DIRCHG) != 0) {
9352 		*prevdirremp = dap->da_previous;
9353 		dap->da_state &= ~DIRCHG;
9354 		dap->da_pagedep = pagedep;
9355 	}
9356 	/*
9357 	 * We are deleting an entry that never made it to disk.
9358 	 * Mark it COMPLETE so we can delete its inode immediately.
9359 	 */
9360 	dirrem->dm_state |= COMPLETE;
9361 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9362 #ifdef INVARIANTS
9363 	if (isrmdir == 0) {
9364 		struct worklist *wk;
9365 
9366 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9367 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9368 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9369 	}
9370 #endif
9371 
9372 	return (dirrem);
9373 }
9374 
9375 /*
9376  * Directory entry change dependencies.
9377  *
9378  * Changing an existing directory entry requires that an add operation
9379  * be completed first followed by a deletion. The semantics for the addition
9380  * are identical to the description of adding a new entry above except
9381  * that the rollback is to the old inode number rather than zero. Once
9382  * the addition dependency is completed, the removal is done as described
9383  * in the removal routine above.
9384  */
9385 
9386 /*
9387  * This routine should be called immediately after changing
9388  * a directory entry.  The inode's link count should not be
9389  * decremented by the calling procedure -- the soft updates
9390  * code will perform this task when it is safe.
9391  */
9392 void
9393 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9394 	struct buf *bp;		/* buffer containing directory block */
9395 	struct inode *dp;	/* inode for the directory being modified */
9396 	struct inode *ip;	/* inode for directory entry being removed */
9397 	ino_t newinum;		/* new inode number for changed entry */
9398 	int isrmdir;		/* indicates if doing RMDIR */
9399 {
9400 	int offset;
9401 	struct diradd *dap = NULL;
9402 	struct dirrem *dirrem, *prevdirrem;
9403 	struct pagedep *pagedep;
9404 	struct inodedep *inodedep;
9405 	struct jaddref *jaddref;
9406 	struct mount *mp;
9407 	struct ufsmount *ump;
9408 
9409 	mp = ITOVFS(dp);
9410 	ump = VFSTOUFS(mp);
9411 	offset = blkoff(ump->um_fs, dp->i_offset);
9412 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9413 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9414 
9415 	/*
9416 	 * Whiteouts do not need diradd dependencies.
9417 	 */
9418 	if (newinum != UFS_WINO) {
9419 		dap = malloc(sizeof(struct diradd),
9420 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9421 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9422 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9423 		dap->da_offset = offset;
9424 		dap->da_newinum = newinum;
9425 		LIST_INIT(&dap->da_jwork);
9426 	}
9427 
9428 	/*
9429 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9430 	 */
9431 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9432 	pagedep = dirrem->dm_pagedep;
9433 	/*
9434 	 * The possible values for isrmdir:
9435 	 *	0 - non-directory file rename
9436 	 *	1 - directory rename within same directory
9437 	 *   inum - directory rename to new directory of given inode number
9438 	 * When renaming to a new directory, we are both deleting and
9439 	 * creating a new directory entry, so the link count on the new
9440 	 * directory should not change. Thus we do not need the followup
9441 	 * dirrem which is usually done in handle_workitem_remove. We set
9442 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9443 	 * followup dirrem.
9444 	 */
9445 	if (isrmdir > 1)
9446 		dirrem->dm_state |= DIRCHG;
9447 
9448 	/*
9449 	 * Whiteouts have no additional dependencies,
9450 	 * so just put the dirrem on the correct list.
9451 	 */
9452 	if (newinum == UFS_WINO) {
9453 		if ((dirrem->dm_state & COMPLETE) == 0) {
9454 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9455 			    dm_next);
9456 		} else {
9457 			dirrem->dm_dirinum = pagedep->pd_ino;
9458 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9459 				add_to_worklist(&dirrem->dm_list, 0);
9460 		}
9461 		FREE_LOCK(ump);
9462 		return;
9463 	}
9464 	/*
9465 	 * Add the dirrem to the inodedep's pending remove list for quick
9466 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9467 	 * will not fail.
9468 	 */
9469 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9470 		panic("softdep_setup_directory_change: Lost inodedep.");
9471 	dirrem->dm_state |= ONDEPLIST;
9472 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9473 
9474 	/*
9475 	 * If the COMPLETE flag is clear, then there were no active
9476 	 * entries and we want to roll back to the previous inode until
9477 	 * the new inode is committed to disk. If the COMPLETE flag is
9478 	 * set, then we have deleted an entry that never made it to disk.
9479 	 * If the entry we deleted resulted from a name change, then the old
9480 	 * inode reference still resides on disk. Any rollback that we do
9481 	 * needs to be to that old inode (returned to us in prevdirrem). If
9482 	 * the entry we deleted resulted from a create, then there is
9483 	 * no entry on the disk, so we want to roll back to zero rather
9484 	 * than the uncommitted inode. In either of the COMPLETE cases we
9485 	 * want to immediately free the unwritten and unreferenced inode.
9486 	 */
9487 	if ((dirrem->dm_state & COMPLETE) == 0) {
9488 		dap->da_previous = dirrem;
9489 	} else {
9490 		if (prevdirrem != NULL) {
9491 			dap->da_previous = prevdirrem;
9492 		} else {
9493 			dap->da_state &= ~DIRCHG;
9494 			dap->da_pagedep = pagedep;
9495 		}
9496 		dirrem->dm_dirinum = pagedep->pd_ino;
9497 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9498 			add_to_worklist(&dirrem->dm_list, 0);
9499 	}
9500 	/*
9501 	 * Lookup the jaddref for this journal entry.  We must finish
9502 	 * initializing it and make the diradd write dependent on it.
9503 	 * If we're not journaling, put it on the id_bufwait list if the
9504 	 * inode is not yet written. If it is written, do the post-inode
9505 	 * write processing to put it on the id_pendinghd list.
9506 	 */
9507 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9508 	if (MOUNTEDSUJ(mp)) {
9509 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9510 		    inoreflst);
9511 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9512 		    ("softdep_setup_directory_change: bad jaddref %p",
9513 		    jaddref));
9514 		jaddref->ja_diroff = dp->i_offset;
9515 		jaddref->ja_diradd = dap;
9516 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9517 		    dap, da_pdlist);
9518 		add_to_journal(&jaddref->ja_list);
9519 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9520 		dap->da_state |= COMPLETE;
9521 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9522 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9523 	} else {
9524 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9525 		    dap, da_pdlist);
9526 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9527 	}
9528 	/*
9529 	 * If we're making a new name for a directory that has not been
9530 	 * committed when need to move the dot and dotdot references to
9531 	 * this new name.
9532 	 */
9533 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9534 		merge_diradd(inodedep, dap);
9535 	FREE_LOCK(ump);
9536 }
9537 
9538 /*
9539  * Called whenever the link count on an inode is changed.
9540  * It creates an inode dependency so that the new reference(s)
9541  * to the inode cannot be committed to disk until the updated
9542  * inode has been written.
9543  */
9544 void
9545 softdep_change_linkcnt(ip)
9546 	struct inode *ip;	/* the inode with the increased link count */
9547 {
9548 	struct inodedep *inodedep;
9549 	struct ufsmount *ump;
9550 
9551 	ump = ITOUMP(ip);
9552 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9553 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9554 	ACQUIRE_LOCK(ump);
9555 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9556 	if (ip->i_nlink < ip->i_effnlink)
9557 		panic("softdep_change_linkcnt: bad delta");
9558 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9559 	FREE_LOCK(ump);
9560 }
9561 
9562 /*
9563  * Attach a sbdep dependency to the superblock buf so that we can keep
9564  * track of the head of the linked list of referenced but unlinked inodes.
9565  */
9566 void
9567 softdep_setup_sbupdate(ump, fs, bp)
9568 	struct ufsmount *ump;
9569 	struct fs *fs;
9570 	struct buf *bp;
9571 {
9572 	struct sbdep *sbdep;
9573 	struct worklist *wk;
9574 
9575 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9576 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9577 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9578 		if (wk->wk_type == D_SBDEP)
9579 			break;
9580 	if (wk != NULL)
9581 		return;
9582 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9583 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9584 	sbdep->sb_fs = fs;
9585 	sbdep->sb_ump = ump;
9586 	ACQUIRE_LOCK(ump);
9587 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9588 	FREE_LOCK(ump);
9589 }
9590 
9591 /*
9592  * Return the first unlinked inodedep which is ready to be the head of the
9593  * list.  The inodedep and all those after it must have valid next pointers.
9594  */
9595 static struct inodedep *
9596 first_unlinked_inodedep(ump)
9597 	struct ufsmount *ump;
9598 {
9599 	struct inodedep *inodedep;
9600 	struct inodedep *idp;
9601 
9602 	LOCK_OWNED(ump);
9603 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9604 	    inodedep; inodedep = idp) {
9605 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9606 			return (NULL);
9607 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9608 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9609 			break;
9610 		if ((inodedep->id_state & UNLINKPREV) == 0)
9611 			break;
9612 	}
9613 	return (inodedep);
9614 }
9615 
9616 /*
9617  * Set the sujfree unlinked head pointer prior to writing a superblock.
9618  */
9619 static void
9620 initiate_write_sbdep(sbdep)
9621 	struct sbdep *sbdep;
9622 {
9623 	struct inodedep *inodedep;
9624 	struct fs *bpfs;
9625 	struct fs *fs;
9626 
9627 	bpfs = sbdep->sb_fs;
9628 	fs = sbdep->sb_ump->um_fs;
9629 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9630 	if (inodedep) {
9631 		fs->fs_sujfree = inodedep->id_ino;
9632 		inodedep->id_state |= UNLINKPREV;
9633 	} else
9634 		fs->fs_sujfree = 0;
9635 	bpfs->fs_sujfree = fs->fs_sujfree;
9636 	/*
9637 	 * Because we have made changes to the superblock, we need to
9638 	 * recompute its check-hash.
9639 	 */
9640 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9641 }
9642 
9643 /*
9644  * After a superblock is written determine whether it must be written again
9645  * due to a changing unlinked list head.
9646  */
9647 static int
9648 handle_written_sbdep(sbdep, bp)
9649 	struct sbdep *sbdep;
9650 	struct buf *bp;
9651 {
9652 	struct inodedep *inodedep;
9653 	struct fs *fs;
9654 
9655 	LOCK_OWNED(sbdep->sb_ump);
9656 	fs = sbdep->sb_fs;
9657 	/*
9658 	 * If the superblock doesn't match the in-memory list start over.
9659 	 */
9660 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9661 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9662 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9663 		bdirty(bp);
9664 		return (1);
9665 	}
9666 	WORKITEM_FREE(sbdep, D_SBDEP);
9667 	if (fs->fs_sujfree == 0)
9668 		return (0);
9669 	/*
9670 	 * Now that we have a record of this inode in stable store allow it
9671 	 * to be written to free up pending work.  Inodes may see a lot of
9672 	 * write activity after they are unlinked which we must not hold up.
9673 	 */
9674 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9675 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9676 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9677 			    inodedep, inodedep->id_state);
9678 		if (inodedep->id_state & UNLINKONLIST)
9679 			break;
9680 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9681 	}
9682 
9683 	return (0);
9684 }
9685 
9686 /*
9687  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9688  */
9689 static void
9690 unlinked_inodedep(mp, inodedep)
9691 	struct mount *mp;
9692 	struct inodedep *inodedep;
9693 {
9694 	struct ufsmount *ump;
9695 
9696 	ump = VFSTOUFS(mp);
9697 	LOCK_OWNED(ump);
9698 	if (MOUNTEDSUJ(mp) == 0)
9699 		return;
9700 	ump->um_fs->fs_fmod = 1;
9701 	if (inodedep->id_state & UNLINKED)
9702 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9703 	inodedep->id_state |= UNLINKED;
9704 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9705 }
9706 
9707 /*
9708  * Remove an inodedep from the unlinked inodedep list.  This may require
9709  * disk writes if the inode has made it that far.
9710  */
9711 static void
9712 clear_unlinked_inodedep(inodedep)
9713 	struct inodedep *inodedep;
9714 {
9715 	struct ufs2_dinode *dip;
9716 	struct ufsmount *ump;
9717 	struct inodedep *idp;
9718 	struct inodedep *idn;
9719 	struct fs *fs, *bpfs;
9720 	struct buf *bp;
9721 	daddr_t dbn;
9722 	ino_t ino;
9723 	ino_t nino;
9724 	ino_t pino;
9725 	int error;
9726 
9727 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9728 	fs = ump->um_fs;
9729 	ino = inodedep->id_ino;
9730 	error = 0;
9731 	for (;;) {
9732 		LOCK_OWNED(ump);
9733 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9734 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9735 		    inodedep));
9736 		/*
9737 		 * If nothing has yet been written simply remove us from
9738 		 * the in memory list and return.  This is the most common
9739 		 * case where handle_workitem_remove() loses the final
9740 		 * reference.
9741 		 */
9742 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9743 			break;
9744 		/*
9745 		 * If we have a NEXT pointer and no PREV pointer we can simply
9746 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9747 		 * careful not to clear PREV if the superblock points at
9748 		 * next as well.
9749 		 */
9750 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9751 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9752 			if (idn && fs->fs_sujfree != idn->id_ino)
9753 				idn->id_state &= ~UNLINKPREV;
9754 			break;
9755 		}
9756 		/*
9757 		 * Here we have an inodedep which is actually linked into
9758 		 * the list.  We must remove it by forcing a write to the
9759 		 * link before us, whether it be the superblock or an inode.
9760 		 * Unfortunately the list may change while we're waiting
9761 		 * on the buf lock for either resource so we must loop until
9762 		 * we lock the right one.  If both the superblock and an
9763 		 * inode point to this inode we must clear the inode first
9764 		 * followed by the superblock.
9765 		 */
9766 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9767 		pino = 0;
9768 		if (idp && (idp->id_state & UNLINKNEXT))
9769 			pino = idp->id_ino;
9770 		FREE_LOCK(ump);
9771 		if (pino == 0) {
9772 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9773 			    (int)fs->fs_sbsize, 0, 0, 0);
9774 		} else {
9775 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
9776 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
9777 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
9778 			    &bp);
9779 		}
9780 		ACQUIRE_LOCK(ump);
9781 		if (error)
9782 			break;
9783 		/* If the list has changed restart the loop. */
9784 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9785 		nino = 0;
9786 		if (idp && (idp->id_state & UNLINKNEXT))
9787 			nino = idp->id_ino;
9788 		if (nino != pino ||
9789 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9790 			FREE_LOCK(ump);
9791 			brelse(bp);
9792 			ACQUIRE_LOCK(ump);
9793 			continue;
9794 		}
9795 		nino = 0;
9796 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9797 		if (idn)
9798 			nino = idn->id_ino;
9799 		/*
9800 		 * Remove us from the in memory list.  After this we cannot
9801 		 * access the inodedep.
9802 		 */
9803 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9804 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9805 		    inodedep));
9806 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9807 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9808 		FREE_LOCK(ump);
9809 		/*
9810 		 * The predecessor's next pointer is manually updated here
9811 		 * so that the NEXT flag is never cleared for an element
9812 		 * that is in the list.
9813 		 */
9814 		if (pino == 0) {
9815 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9816 			bpfs = (struct fs *)bp->b_data;
9817 			ffs_oldfscompat_write(bpfs, ump);
9818 			softdep_setup_sbupdate(ump, bpfs, bp);
9819 			/*
9820 			 * Because we may have made changes to the superblock,
9821 			 * we need to recompute its check-hash.
9822 			 */
9823 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9824 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9825 			((struct ufs1_dinode *)bp->b_data +
9826 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9827 		} else {
9828 			dip = (struct ufs2_dinode *)bp->b_data +
9829 			    ino_to_fsbo(fs, pino);
9830 			dip->di_freelink = nino;
9831 			ffs_update_dinode_ckhash(fs, dip);
9832 		}
9833 		/*
9834 		 * If the bwrite fails we have no recourse to recover.  The
9835 		 * filesystem is corrupted already.
9836 		 */
9837 		bwrite(bp);
9838 		ACQUIRE_LOCK(ump);
9839 		/*
9840 		 * If the superblock pointer still needs to be cleared force
9841 		 * a write here.
9842 		 */
9843 		if (fs->fs_sujfree == ino) {
9844 			FREE_LOCK(ump);
9845 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9846 			    (int)fs->fs_sbsize, 0, 0, 0);
9847 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9848 			bpfs = (struct fs *)bp->b_data;
9849 			ffs_oldfscompat_write(bpfs, ump);
9850 			softdep_setup_sbupdate(ump, bpfs, bp);
9851 			/*
9852 			 * Because we may have made changes to the superblock,
9853 			 * we need to recompute its check-hash.
9854 			 */
9855 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9856 			bwrite(bp);
9857 			ACQUIRE_LOCK(ump);
9858 		}
9859 
9860 		if (fs->fs_sujfree != ino)
9861 			return;
9862 		panic("clear_unlinked_inodedep: Failed to clear free head");
9863 	}
9864 	if (inodedep->id_ino == fs->fs_sujfree)
9865 		panic("clear_unlinked_inodedep: Freeing head of free list");
9866 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9867 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9868 	return;
9869 }
9870 
9871 /*
9872  * This workitem decrements the inode's link count.
9873  * If the link count reaches zero, the file is removed.
9874  */
9875 static int
9876 handle_workitem_remove(dirrem, flags)
9877 	struct dirrem *dirrem;
9878 	int flags;
9879 {
9880 	struct inodedep *inodedep;
9881 	struct workhead dotdotwk;
9882 	struct worklist *wk;
9883 	struct ufsmount *ump;
9884 	struct mount *mp;
9885 	struct vnode *vp;
9886 	struct inode *ip;
9887 	ino_t oldinum;
9888 
9889 	if (dirrem->dm_state & ONWORKLIST)
9890 		panic("handle_workitem_remove: dirrem %p still on worklist",
9891 		    dirrem);
9892 	oldinum = dirrem->dm_oldinum;
9893 	mp = dirrem->dm_list.wk_mp;
9894 	ump = VFSTOUFS(mp);
9895 	flags |= LK_EXCLUSIVE;
9896 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9897 		return (EBUSY);
9898 	ip = VTOI(vp);
9899 	MPASS(ip->i_mode != 0);
9900 	ACQUIRE_LOCK(ump);
9901 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9902 		panic("handle_workitem_remove: lost inodedep");
9903 	if (dirrem->dm_state & ONDEPLIST)
9904 		LIST_REMOVE(dirrem, dm_inonext);
9905 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9906 	    ("handle_workitem_remove:  Journal entries not written."));
9907 
9908 	/*
9909 	 * Move all dependencies waiting on the remove to complete
9910 	 * from the dirrem to the inode inowait list to be completed
9911 	 * after the inode has been updated and written to disk.
9912 	 *
9913 	 * Any marked MKDIR_PARENT are saved to be completed when the
9914 	 * dotdot ref is removed unless DIRCHG is specified.  For
9915 	 * directory change operations there will be no further
9916 	 * directory writes and the jsegdeps need to be moved along
9917 	 * with the rest to be completed when the inode is free or
9918 	 * stable in the inode free list.
9919 	 */
9920 	LIST_INIT(&dotdotwk);
9921 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9922 		WORKLIST_REMOVE(wk);
9923 		if ((dirrem->dm_state & DIRCHG) == 0 &&
9924 		    wk->wk_state & MKDIR_PARENT) {
9925 			wk->wk_state &= ~MKDIR_PARENT;
9926 			WORKLIST_INSERT(&dotdotwk, wk);
9927 			continue;
9928 		}
9929 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9930 	}
9931 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9932 	/*
9933 	 * Normal file deletion.
9934 	 */
9935 	if ((dirrem->dm_state & RMDIR) == 0) {
9936 		ip->i_nlink--;
9937 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
9938 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
9939 		    ip->i_nlink));
9940 		DIP_SET(ip, i_nlink, ip->i_nlink);
9941 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
9942 		if (ip->i_nlink < ip->i_effnlink)
9943 			panic("handle_workitem_remove: bad file delta");
9944 		if (ip->i_nlink == 0)
9945 			unlinked_inodedep(mp, inodedep);
9946 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9947 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9948 		    ("handle_workitem_remove: worklist not empty. %s",
9949 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9950 		WORKITEM_FREE(dirrem, D_DIRREM);
9951 		FREE_LOCK(ump);
9952 		goto out;
9953 	}
9954 	/*
9955 	 * Directory deletion. Decrement reference count for both the
9956 	 * just deleted parent directory entry and the reference for ".".
9957 	 * Arrange to have the reference count on the parent decremented
9958 	 * to account for the loss of "..".
9959 	 */
9960 	ip->i_nlink -= 2;
9961 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
9962 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
9963 	DIP_SET(ip, i_nlink, ip->i_nlink);
9964 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
9965 	if (ip->i_nlink < ip->i_effnlink)
9966 		panic("handle_workitem_remove: bad dir delta");
9967 	if (ip->i_nlink == 0)
9968 		unlinked_inodedep(mp, inodedep);
9969 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9970 	/*
9971 	 * Rename a directory to a new parent. Since, we are both deleting
9972 	 * and creating a new directory entry, the link count on the new
9973 	 * directory should not change. Thus we skip the followup dirrem.
9974 	 */
9975 	if (dirrem->dm_state & DIRCHG) {
9976 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9977 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9978 		WORKITEM_FREE(dirrem, D_DIRREM);
9979 		FREE_LOCK(ump);
9980 		goto out;
9981 	}
9982 	dirrem->dm_state = ONDEPLIST;
9983 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9984 	/*
9985 	 * Place the dirrem on the parent's diremhd list.
9986 	 */
9987 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9988 		panic("handle_workitem_remove: lost dir inodedep");
9989 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9990 	/*
9991 	 * If the allocated inode has never been written to disk, then
9992 	 * the on-disk inode is zero'ed and we can remove the file
9993 	 * immediately.  When journaling if the inode has been marked
9994 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9995 	 */
9996 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9997 	if (inodedep == NULL ||
9998 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9999 	    check_inode_unwritten(inodedep)) {
10000 		FREE_LOCK(ump);
10001 		vput(vp);
10002 		return handle_workitem_remove(dirrem, flags);
10003 	}
10004 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10005 	FREE_LOCK(ump);
10006 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10007 out:
10008 	ffs_update(vp, 0);
10009 	vput(vp);
10010 	return (0);
10011 }
10012 
10013 /*
10014  * Inode de-allocation dependencies.
10015  *
10016  * When an inode's link count is reduced to zero, it can be de-allocated. We
10017  * found it convenient to postpone de-allocation until after the inode is
10018  * written to disk with its new link count (zero).  At this point, all of the
10019  * on-disk inode's block pointers are nullified and, with careful dependency
10020  * list ordering, all dependencies related to the inode will be satisfied and
10021  * the corresponding dependency structures de-allocated.  So, if/when the
10022  * inode is reused, there will be no mixing of old dependencies with new
10023  * ones.  This artificial dependency is set up by the block de-allocation
10024  * procedure above (softdep_setup_freeblocks) and completed by the
10025  * following procedure.
10026  */
10027 static void
10028 handle_workitem_freefile(freefile)
10029 	struct freefile *freefile;
10030 {
10031 	struct workhead wkhd;
10032 	struct fs *fs;
10033 	struct ufsmount *ump;
10034 	int error;
10035 #ifdef INVARIANTS
10036 	struct inodedep *idp;
10037 #endif
10038 
10039 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10040 	fs = ump->um_fs;
10041 #ifdef INVARIANTS
10042 	ACQUIRE_LOCK(ump);
10043 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10044 	FREE_LOCK(ump);
10045 	if (error)
10046 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10047 #endif
10048 	UFS_LOCK(ump);
10049 	fs->fs_pendinginodes -= 1;
10050 	UFS_UNLOCK(ump);
10051 	LIST_INIT(&wkhd);
10052 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10053 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10054 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10055 		softdep_error("handle_workitem_freefile", error);
10056 	ACQUIRE_LOCK(ump);
10057 	WORKITEM_FREE(freefile, D_FREEFILE);
10058 	FREE_LOCK(ump);
10059 }
10060 
10061 
10062 /*
10063  * Helper function which unlinks marker element from work list and returns
10064  * the next element on the list.
10065  */
10066 static __inline struct worklist *
10067 markernext(struct worklist *marker)
10068 {
10069 	struct worklist *next;
10070 
10071 	next = LIST_NEXT(marker, wk_list);
10072 	LIST_REMOVE(marker, wk_list);
10073 	return next;
10074 }
10075 
10076 /*
10077  * Disk writes.
10078  *
10079  * The dependency structures constructed above are most actively used when file
10080  * system blocks are written to disk.  No constraints are placed on when a
10081  * block can be written, but unsatisfied update dependencies are made safe by
10082  * modifying (or replacing) the source memory for the duration of the disk
10083  * write.  When the disk write completes, the memory block is again brought
10084  * up-to-date.
10085  *
10086  * In-core inode structure reclamation.
10087  *
10088  * Because there are a finite number of "in-core" inode structures, they are
10089  * reused regularly.  By transferring all inode-related dependencies to the
10090  * in-memory inode block and indexing them separately (via "inodedep"s), we
10091  * can allow "in-core" inode structures to be reused at any time and avoid
10092  * any increase in contention.
10093  *
10094  * Called just before entering the device driver to initiate a new disk I/O.
10095  * The buffer must be locked, thus, no I/O completion operations can occur
10096  * while we are manipulating its associated dependencies.
10097  */
10098 static void
10099 softdep_disk_io_initiation(bp)
10100 	struct buf *bp;		/* structure describing disk write to occur */
10101 {
10102 	struct worklist *wk;
10103 	struct worklist marker;
10104 	struct inodedep *inodedep;
10105 	struct freeblks *freeblks;
10106 	struct jblkdep *jblkdep;
10107 	struct newblk *newblk;
10108 	struct ufsmount *ump;
10109 
10110 	/*
10111 	 * We only care about write operations. There should never
10112 	 * be dependencies for reads.
10113 	 */
10114 	if (bp->b_iocmd != BIO_WRITE)
10115 		panic("softdep_disk_io_initiation: not write");
10116 
10117 	if (bp->b_vflags & BV_BKGRDINPROG)
10118 		panic("softdep_disk_io_initiation: Writing buffer with "
10119 		    "background write in progress: %p", bp);
10120 
10121 	ump = softdep_bp_to_mp(bp);
10122 	if (ump == NULL)
10123 		return;
10124 
10125 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10126 	PHOLD(curproc);			/* Don't swap out kernel stack */
10127 	ACQUIRE_LOCK(ump);
10128 	/*
10129 	 * Do any necessary pre-I/O processing.
10130 	 */
10131 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10132 	     wk = markernext(&marker)) {
10133 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10134 		switch (wk->wk_type) {
10135 
10136 		case D_PAGEDEP:
10137 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10138 			continue;
10139 
10140 		case D_INODEDEP:
10141 			inodedep = WK_INODEDEP(wk);
10142 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10143 				initiate_write_inodeblock_ufs1(inodedep, bp);
10144 			else
10145 				initiate_write_inodeblock_ufs2(inodedep, bp);
10146 			continue;
10147 
10148 		case D_INDIRDEP:
10149 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10150 			continue;
10151 
10152 		case D_BMSAFEMAP:
10153 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10154 			continue;
10155 
10156 		case D_JSEG:
10157 			WK_JSEG(wk)->js_buf = NULL;
10158 			continue;
10159 
10160 		case D_FREEBLKS:
10161 			freeblks = WK_FREEBLKS(wk);
10162 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10163 			/*
10164 			 * We have to wait for the freeblks to be journaled
10165 			 * before we can write an inodeblock with updated
10166 			 * pointers.  Be careful to arrange the marker so
10167 			 * we revisit the freeblks if it's not removed by
10168 			 * the first jwait().
10169 			 */
10170 			if (jblkdep != NULL) {
10171 				LIST_REMOVE(&marker, wk_list);
10172 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10173 				jwait(&jblkdep->jb_list, MNT_WAIT);
10174 			}
10175 			continue;
10176 		case D_ALLOCDIRECT:
10177 		case D_ALLOCINDIR:
10178 			/*
10179 			 * We have to wait for the jnewblk to be journaled
10180 			 * before we can write to a block if the contents
10181 			 * may be confused with an earlier file's indirect
10182 			 * at recovery time.  Handle the marker as described
10183 			 * above.
10184 			 */
10185 			newblk = WK_NEWBLK(wk);
10186 			if (newblk->nb_jnewblk != NULL &&
10187 			    indirblk_lookup(newblk->nb_list.wk_mp,
10188 			    newblk->nb_newblkno)) {
10189 				LIST_REMOVE(&marker, wk_list);
10190 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10191 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10192 			}
10193 			continue;
10194 
10195 		case D_SBDEP:
10196 			initiate_write_sbdep(WK_SBDEP(wk));
10197 			continue;
10198 
10199 		case D_MKDIR:
10200 		case D_FREEWORK:
10201 		case D_FREEDEP:
10202 		case D_JSEGDEP:
10203 			continue;
10204 
10205 		default:
10206 			panic("handle_disk_io_initiation: Unexpected type %s",
10207 			    TYPENAME(wk->wk_type));
10208 			/* NOTREACHED */
10209 		}
10210 	}
10211 	FREE_LOCK(ump);
10212 	PRELE(curproc);			/* Allow swapout of kernel stack */
10213 }
10214 
10215 /*
10216  * Called from within the procedure above to deal with unsatisfied
10217  * allocation dependencies in a directory. The buffer must be locked,
10218  * thus, no I/O completion operations can occur while we are
10219  * manipulating its associated dependencies.
10220  */
10221 static void
10222 initiate_write_filepage(pagedep, bp)
10223 	struct pagedep *pagedep;
10224 	struct buf *bp;
10225 {
10226 	struct jremref *jremref;
10227 	struct jmvref *jmvref;
10228 	struct dirrem *dirrem;
10229 	struct diradd *dap;
10230 	struct direct *ep;
10231 	int i;
10232 
10233 	if (pagedep->pd_state & IOSTARTED) {
10234 		/*
10235 		 * This can only happen if there is a driver that does not
10236 		 * understand chaining. Here biodone will reissue the call
10237 		 * to strategy for the incomplete buffers.
10238 		 */
10239 		printf("initiate_write_filepage: already started\n");
10240 		return;
10241 	}
10242 	pagedep->pd_state |= IOSTARTED;
10243 	/*
10244 	 * Wait for all journal remove dependencies to hit the disk.
10245 	 * We can not allow any potentially conflicting directory adds
10246 	 * to be visible before removes and rollback is too difficult.
10247 	 * The per-filesystem lock may be dropped and re-acquired, however
10248 	 * we hold the buf locked so the dependency can not go away.
10249 	 */
10250 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10251 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10252 			jwait(&jremref->jr_list, MNT_WAIT);
10253 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10254 		jwait(&jmvref->jm_list, MNT_WAIT);
10255 	for (i = 0; i < DAHASHSZ; i++) {
10256 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10257 			ep = (struct direct *)
10258 			    ((char *)bp->b_data + dap->da_offset);
10259 			if (ep->d_ino != dap->da_newinum)
10260 				panic("%s: dir inum %ju != new %ju",
10261 				    "initiate_write_filepage",
10262 				    (uintmax_t)ep->d_ino,
10263 				    (uintmax_t)dap->da_newinum);
10264 			if (dap->da_state & DIRCHG)
10265 				ep->d_ino = dap->da_previous->dm_oldinum;
10266 			else
10267 				ep->d_ino = 0;
10268 			dap->da_state &= ~ATTACHED;
10269 			dap->da_state |= UNDONE;
10270 		}
10271 	}
10272 }
10273 
10274 /*
10275  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10276  * Note that any bug fixes made to this routine must be done in the
10277  * version found below.
10278  *
10279  * Called from within the procedure above to deal with unsatisfied
10280  * allocation dependencies in an inodeblock. The buffer must be
10281  * locked, thus, no I/O completion operations can occur while we
10282  * are manipulating its associated dependencies.
10283  */
10284 static void
10285 initiate_write_inodeblock_ufs1(inodedep, bp)
10286 	struct inodedep *inodedep;
10287 	struct buf *bp;			/* The inode block */
10288 {
10289 	struct allocdirect *adp, *lastadp;
10290 	struct ufs1_dinode *dp;
10291 	struct ufs1_dinode *sip;
10292 	struct inoref *inoref;
10293 	struct ufsmount *ump;
10294 	struct fs *fs;
10295 	ufs_lbn_t i;
10296 #ifdef INVARIANTS
10297 	ufs_lbn_t prevlbn = 0;
10298 #endif
10299 	int deplist;
10300 
10301 	if (inodedep->id_state & IOSTARTED)
10302 		panic("initiate_write_inodeblock_ufs1: already started");
10303 	inodedep->id_state |= IOSTARTED;
10304 	fs = inodedep->id_fs;
10305 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10306 	LOCK_OWNED(ump);
10307 	dp = (struct ufs1_dinode *)bp->b_data +
10308 	    ino_to_fsbo(fs, inodedep->id_ino);
10309 
10310 	/*
10311 	 * If we're on the unlinked list but have not yet written our
10312 	 * next pointer initialize it here.
10313 	 */
10314 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10315 		struct inodedep *inon;
10316 
10317 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10318 		dp->di_freelink = inon ? inon->id_ino : 0;
10319 	}
10320 	/*
10321 	 * If the bitmap is not yet written, then the allocated
10322 	 * inode cannot be written to disk.
10323 	 */
10324 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10325 		if (inodedep->id_savedino1 != NULL)
10326 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10327 		FREE_LOCK(ump);
10328 		sip = malloc(sizeof(struct ufs1_dinode),
10329 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10330 		ACQUIRE_LOCK(ump);
10331 		inodedep->id_savedino1 = sip;
10332 		*inodedep->id_savedino1 = *dp;
10333 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10334 		dp->di_gen = inodedep->id_savedino1->di_gen;
10335 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10336 		return;
10337 	}
10338 	/*
10339 	 * If no dependencies, then there is nothing to roll back.
10340 	 */
10341 	inodedep->id_savedsize = dp->di_size;
10342 	inodedep->id_savedextsize = 0;
10343 	inodedep->id_savednlink = dp->di_nlink;
10344 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10345 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10346 		return;
10347 	/*
10348 	 * Revert the link count to that of the first unwritten journal entry.
10349 	 */
10350 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10351 	if (inoref)
10352 		dp->di_nlink = inoref->if_nlink;
10353 	/*
10354 	 * Set the dependencies to busy.
10355 	 */
10356 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10357 	     adp = TAILQ_NEXT(adp, ad_next)) {
10358 #ifdef INVARIANTS
10359 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10360 			panic("softdep_write_inodeblock: lbn order");
10361 		prevlbn = adp->ad_offset;
10362 		if (adp->ad_offset < UFS_NDADDR &&
10363 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10364 			panic("initiate_write_inodeblock_ufs1: "
10365 			    "direct pointer #%jd mismatch %d != %jd",
10366 			    (intmax_t)adp->ad_offset,
10367 			    dp->di_db[adp->ad_offset],
10368 			    (intmax_t)adp->ad_newblkno);
10369 		if (adp->ad_offset >= UFS_NDADDR &&
10370 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10371 			panic("initiate_write_inodeblock_ufs1: "
10372 			    "indirect pointer #%jd mismatch %d != %jd",
10373 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10374 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10375 			    (intmax_t)adp->ad_newblkno);
10376 		deplist |= 1 << adp->ad_offset;
10377 		if ((adp->ad_state & ATTACHED) == 0)
10378 			panic("initiate_write_inodeblock_ufs1: "
10379 			    "Unknown state 0x%x", adp->ad_state);
10380 #endif /* INVARIANTS */
10381 		adp->ad_state &= ~ATTACHED;
10382 		adp->ad_state |= UNDONE;
10383 	}
10384 	/*
10385 	 * The on-disk inode cannot claim to be any larger than the last
10386 	 * fragment that has been written. Otherwise, the on-disk inode
10387 	 * might have fragments that were not the last block in the file
10388 	 * which would corrupt the filesystem.
10389 	 */
10390 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10391 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10392 		if (adp->ad_offset >= UFS_NDADDR)
10393 			break;
10394 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10395 		/* keep going until hitting a rollback to a frag */
10396 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10397 			continue;
10398 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10399 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10400 #ifdef INVARIANTS
10401 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10402 				panic("initiate_write_inodeblock_ufs1: "
10403 				    "lost dep1");
10404 #endif /* INVARIANTS */
10405 			dp->di_db[i] = 0;
10406 		}
10407 		for (i = 0; i < UFS_NIADDR; i++) {
10408 #ifdef INVARIANTS
10409 			if (dp->di_ib[i] != 0 &&
10410 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10411 				panic("initiate_write_inodeblock_ufs1: "
10412 				    "lost dep2");
10413 #endif /* INVARIANTS */
10414 			dp->di_ib[i] = 0;
10415 		}
10416 		return;
10417 	}
10418 	/*
10419 	 * If we have zero'ed out the last allocated block of the file,
10420 	 * roll back the size to the last currently allocated block.
10421 	 * We know that this last allocated block is a full-sized as
10422 	 * we already checked for fragments in the loop above.
10423 	 */
10424 	if (lastadp != NULL &&
10425 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10426 		for (i = lastadp->ad_offset; i >= 0; i--)
10427 			if (dp->di_db[i] != 0)
10428 				break;
10429 		dp->di_size = (i + 1) * fs->fs_bsize;
10430 	}
10431 	/*
10432 	 * The only dependencies are for indirect blocks.
10433 	 *
10434 	 * The file size for indirect block additions is not guaranteed.
10435 	 * Such a guarantee would be non-trivial to achieve. The conventional
10436 	 * synchronous write implementation also does not make this guarantee.
10437 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10438 	 * can be over-estimated without destroying integrity when the file
10439 	 * moves into the indirect blocks (i.e., is large). If we want to
10440 	 * postpone fsck, we are stuck with this argument.
10441 	 */
10442 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10443 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10444 }
10445 
10446 /*
10447  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10448  * Note that any bug fixes made to this routine must be done in the
10449  * version found above.
10450  *
10451  * Called from within the procedure above to deal with unsatisfied
10452  * allocation dependencies in an inodeblock. The buffer must be
10453  * locked, thus, no I/O completion operations can occur while we
10454  * are manipulating its associated dependencies.
10455  */
10456 static void
10457 initiate_write_inodeblock_ufs2(inodedep, bp)
10458 	struct inodedep *inodedep;
10459 	struct buf *bp;			/* The inode block */
10460 {
10461 	struct allocdirect *adp, *lastadp;
10462 	struct ufs2_dinode *dp;
10463 	struct ufs2_dinode *sip;
10464 	struct inoref *inoref;
10465 	struct ufsmount *ump;
10466 	struct fs *fs;
10467 	ufs_lbn_t i;
10468 #ifdef INVARIANTS
10469 	ufs_lbn_t prevlbn = 0;
10470 #endif
10471 	int deplist;
10472 
10473 	if (inodedep->id_state & IOSTARTED)
10474 		panic("initiate_write_inodeblock_ufs2: already started");
10475 	inodedep->id_state |= IOSTARTED;
10476 	fs = inodedep->id_fs;
10477 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10478 	LOCK_OWNED(ump);
10479 	dp = (struct ufs2_dinode *)bp->b_data +
10480 	    ino_to_fsbo(fs, inodedep->id_ino);
10481 
10482 	/*
10483 	 * If we're on the unlinked list but have not yet written our
10484 	 * next pointer initialize it here.
10485 	 */
10486 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10487 		struct inodedep *inon;
10488 
10489 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10490 		dp->di_freelink = inon ? inon->id_ino : 0;
10491 		ffs_update_dinode_ckhash(fs, dp);
10492 	}
10493 	/*
10494 	 * If the bitmap is not yet written, then the allocated
10495 	 * inode cannot be written to disk.
10496 	 */
10497 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10498 		if (inodedep->id_savedino2 != NULL)
10499 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10500 		FREE_LOCK(ump);
10501 		sip = malloc(sizeof(struct ufs2_dinode),
10502 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10503 		ACQUIRE_LOCK(ump);
10504 		inodedep->id_savedino2 = sip;
10505 		*inodedep->id_savedino2 = *dp;
10506 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10507 		dp->di_gen = inodedep->id_savedino2->di_gen;
10508 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10509 		return;
10510 	}
10511 	/*
10512 	 * If no dependencies, then there is nothing to roll back.
10513 	 */
10514 	inodedep->id_savedsize = dp->di_size;
10515 	inodedep->id_savedextsize = dp->di_extsize;
10516 	inodedep->id_savednlink = dp->di_nlink;
10517 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10518 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10519 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10520 		return;
10521 	/*
10522 	 * Revert the link count to that of the first unwritten journal entry.
10523 	 */
10524 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10525 	if (inoref)
10526 		dp->di_nlink = inoref->if_nlink;
10527 
10528 	/*
10529 	 * Set the ext data dependencies to busy.
10530 	 */
10531 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10532 	     adp = TAILQ_NEXT(adp, ad_next)) {
10533 #ifdef INVARIANTS
10534 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10535 			panic("initiate_write_inodeblock_ufs2: lbn order");
10536 		prevlbn = adp->ad_offset;
10537 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10538 			panic("initiate_write_inodeblock_ufs2: "
10539 			    "ext pointer #%jd mismatch %jd != %jd",
10540 			    (intmax_t)adp->ad_offset,
10541 			    (intmax_t)dp->di_extb[adp->ad_offset],
10542 			    (intmax_t)adp->ad_newblkno);
10543 		deplist |= 1 << adp->ad_offset;
10544 		if ((adp->ad_state & ATTACHED) == 0)
10545 			panic("initiate_write_inodeblock_ufs2: Unknown "
10546 			    "state 0x%x", adp->ad_state);
10547 #endif /* INVARIANTS */
10548 		adp->ad_state &= ~ATTACHED;
10549 		adp->ad_state |= UNDONE;
10550 	}
10551 	/*
10552 	 * The on-disk inode cannot claim to be any larger than the last
10553 	 * fragment that has been written. Otherwise, the on-disk inode
10554 	 * might have fragments that were not the last block in the ext
10555 	 * data which would corrupt the filesystem.
10556 	 */
10557 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10558 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10559 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10560 		/* keep going until hitting a rollback to a frag */
10561 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10562 			continue;
10563 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10564 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10565 #ifdef INVARIANTS
10566 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10567 				panic("initiate_write_inodeblock_ufs2: "
10568 				    "lost dep1");
10569 #endif /* INVARIANTS */
10570 			dp->di_extb[i] = 0;
10571 		}
10572 		lastadp = NULL;
10573 		break;
10574 	}
10575 	/*
10576 	 * If we have zero'ed out the last allocated block of the ext
10577 	 * data, roll back the size to the last currently allocated block.
10578 	 * We know that this last allocated block is a full-sized as
10579 	 * we already checked for fragments in the loop above.
10580 	 */
10581 	if (lastadp != NULL &&
10582 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10583 		for (i = lastadp->ad_offset; i >= 0; i--)
10584 			if (dp->di_extb[i] != 0)
10585 				break;
10586 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10587 	}
10588 	/*
10589 	 * Set the file data dependencies to busy.
10590 	 */
10591 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10592 	     adp = TAILQ_NEXT(adp, ad_next)) {
10593 #ifdef INVARIANTS
10594 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10595 			panic("softdep_write_inodeblock: lbn order");
10596 		if ((adp->ad_state & ATTACHED) == 0)
10597 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10598 		prevlbn = adp->ad_offset;
10599 		if (!ffs_fsfail_cleanup(ump, 0) &&
10600 		    adp->ad_offset < UFS_NDADDR &&
10601 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10602 			panic("initiate_write_inodeblock_ufs2: "
10603 			    "direct pointer #%jd mismatch %jd != %jd",
10604 			    (intmax_t)adp->ad_offset,
10605 			    (intmax_t)dp->di_db[adp->ad_offset],
10606 			    (intmax_t)adp->ad_newblkno);
10607 		if (!ffs_fsfail_cleanup(ump, 0) &&
10608 		    adp->ad_offset >= UFS_NDADDR &&
10609 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10610 			panic("initiate_write_inodeblock_ufs2: "
10611 			    "indirect pointer #%jd mismatch %jd != %jd",
10612 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10613 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10614 			    (intmax_t)adp->ad_newblkno);
10615 		deplist |= 1 << adp->ad_offset;
10616 		if ((adp->ad_state & ATTACHED) == 0)
10617 			panic("initiate_write_inodeblock_ufs2: Unknown "
10618 			     "state 0x%x", adp->ad_state);
10619 #endif /* INVARIANTS */
10620 		adp->ad_state &= ~ATTACHED;
10621 		adp->ad_state |= UNDONE;
10622 	}
10623 	/*
10624 	 * The on-disk inode cannot claim to be any larger than the last
10625 	 * fragment that has been written. Otherwise, the on-disk inode
10626 	 * might have fragments that were not the last block in the file
10627 	 * which would corrupt the filesystem.
10628 	 */
10629 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10630 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10631 		if (adp->ad_offset >= UFS_NDADDR)
10632 			break;
10633 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10634 		/* keep going until hitting a rollback to a frag */
10635 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10636 			continue;
10637 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10638 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10639 #ifdef INVARIANTS
10640 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10641 				panic("initiate_write_inodeblock_ufs2: "
10642 				    "lost dep2");
10643 #endif /* INVARIANTS */
10644 			dp->di_db[i] = 0;
10645 		}
10646 		for (i = 0; i < UFS_NIADDR; i++) {
10647 #ifdef INVARIANTS
10648 			if (dp->di_ib[i] != 0 &&
10649 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10650 				panic("initiate_write_inodeblock_ufs2: "
10651 				    "lost dep3");
10652 #endif /* INVARIANTS */
10653 			dp->di_ib[i] = 0;
10654 		}
10655 		ffs_update_dinode_ckhash(fs, dp);
10656 		return;
10657 	}
10658 	/*
10659 	 * If we have zero'ed out the last allocated block of the file,
10660 	 * roll back the size to the last currently allocated block.
10661 	 * We know that this last allocated block is a full-sized as
10662 	 * we already checked for fragments in the loop above.
10663 	 */
10664 	if (lastadp != NULL &&
10665 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10666 		for (i = lastadp->ad_offset; i >= 0; i--)
10667 			if (dp->di_db[i] != 0)
10668 				break;
10669 		dp->di_size = (i + 1) * fs->fs_bsize;
10670 	}
10671 	/*
10672 	 * The only dependencies are for indirect blocks.
10673 	 *
10674 	 * The file size for indirect block additions is not guaranteed.
10675 	 * Such a guarantee would be non-trivial to achieve. The conventional
10676 	 * synchronous write implementation also does not make this guarantee.
10677 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10678 	 * can be over-estimated without destroying integrity when the file
10679 	 * moves into the indirect blocks (i.e., is large). If we want to
10680 	 * postpone fsck, we are stuck with this argument.
10681 	 */
10682 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10683 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10684 	ffs_update_dinode_ckhash(fs, dp);
10685 }
10686 
10687 /*
10688  * Cancel an indirdep as a result of truncation.  Release all of the
10689  * children allocindirs and place their journal work on the appropriate
10690  * list.
10691  */
10692 static void
10693 cancel_indirdep(indirdep, bp, freeblks)
10694 	struct indirdep *indirdep;
10695 	struct buf *bp;
10696 	struct freeblks *freeblks;
10697 {
10698 	struct allocindir *aip;
10699 
10700 	/*
10701 	 * None of the indirect pointers will ever be visible,
10702 	 * so they can simply be tossed. GOINGAWAY ensures
10703 	 * that allocated pointers will be saved in the buffer
10704 	 * cache until they are freed. Note that they will
10705 	 * only be able to be found by their physical address
10706 	 * since the inode mapping the logical address will
10707 	 * be gone. The save buffer used for the safe copy
10708 	 * was allocated in setup_allocindir_phase2 using
10709 	 * the physical address so it could be used for this
10710 	 * purpose. Hence we swap the safe copy with the real
10711 	 * copy, allowing the safe copy to be freed and holding
10712 	 * on to the real copy for later use in indir_trunc.
10713 	 */
10714 	if (indirdep->ir_state & GOINGAWAY)
10715 		panic("cancel_indirdep: already gone");
10716 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10717 		indirdep->ir_state |= DEPCOMPLETE;
10718 		LIST_REMOVE(indirdep, ir_next);
10719 	}
10720 	indirdep->ir_state |= GOINGAWAY;
10721 	/*
10722 	 * Pass in bp for blocks still have journal writes
10723 	 * pending so we can cancel them on their own.
10724 	 */
10725 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10726 		cancel_allocindir(aip, bp, freeblks, 0);
10727 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10728 		cancel_allocindir(aip, NULL, freeblks, 0);
10729 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10730 		cancel_allocindir(aip, NULL, freeblks, 0);
10731 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10732 		cancel_allocindir(aip, NULL, freeblks, 0);
10733 	/*
10734 	 * If there are pending partial truncations we need to keep the
10735 	 * old block copy around until they complete.  This is because
10736 	 * the current b_data is not a perfect superset of the available
10737 	 * blocks.
10738 	 */
10739 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10740 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10741 	else
10742 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10743 	WORKLIST_REMOVE(&indirdep->ir_list);
10744 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10745 	indirdep->ir_bp = NULL;
10746 	indirdep->ir_freeblks = freeblks;
10747 }
10748 
10749 /*
10750  * Free an indirdep once it no longer has new pointers to track.
10751  */
10752 static void
10753 free_indirdep(indirdep)
10754 	struct indirdep *indirdep;
10755 {
10756 
10757 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10758 	    ("free_indirdep: Indir trunc list not empty."));
10759 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10760 	    ("free_indirdep: Complete head not empty."));
10761 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10762 	    ("free_indirdep: write head not empty."));
10763 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10764 	    ("free_indirdep: done head not empty."));
10765 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10766 	    ("free_indirdep: deplist head not empty."));
10767 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10768 	    ("free_indirdep: %p still on newblk list.", indirdep));
10769 	KASSERT(indirdep->ir_saveddata == NULL,
10770 	    ("free_indirdep: %p still has saved data.", indirdep));
10771 	KASSERT(indirdep->ir_savebp == NULL,
10772 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
10773 	if (indirdep->ir_state & ONWORKLIST)
10774 		WORKLIST_REMOVE(&indirdep->ir_list);
10775 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10776 }
10777 
10778 /*
10779  * Called before a write to an indirdep.  This routine is responsible for
10780  * rolling back pointers to a safe state which includes only those
10781  * allocindirs which have been completed.
10782  */
10783 static void
10784 initiate_write_indirdep(indirdep, bp)
10785 	struct indirdep *indirdep;
10786 	struct buf *bp;
10787 {
10788 	struct ufsmount *ump;
10789 
10790 	indirdep->ir_state |= IOSTARTED;
10791 	if (indirdep->ir_state & GOINGAWAY)
10792 		panic("disk_io_initiation: indirdep gone");
10793 	/*
10794 	 * If there are no remaining dependencies, this will be writing
10795 	 * the real pointers.
10796 	 */
10797 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10798 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10799 		return;
10800 	/*
10801 	 * Replace up-to-date version with safe version.
10802 	 */
10803 	if (indirdep->ir_saveddata == NULL) {
10804 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10805 		LOCK_OWNED(ump);
10806 		FREE_LOCK(ump);
10807 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10808 		    M_SOFTDEP_FLAGS);
10809 		ACQUIRE_LOCK(ump);
10810 	}
10811 	indirdep->ir_state &= ~ATTACHED;
10812 	indirdep->ir_state |= UNDONE;
10813 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10814 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10815 	    bp->b_bcount);
10816 }
10817 
10818 /*
10819  * Called when an inode has been cleared in a cg bitmap.  This finally
10820  * eliminates any canceled jaddrefs
10821  */
10822 void
10823 softdep_setup_inofree(mp, bp, ino, wkhd)
10824 	struct mount *mp;
10825 	struct buf *bp;
10826 	ino_t ino;
10827 	struct workhead *wkhd;
10828 {
10829 	struct worklist *wk, *wkn;
10830 	struct inodedep *inodedep;
10831 	struct ufsmount *ump;
10832 	uint8_t *inosused;
10833 	struct cg *cgp;
10834 	struct fs *fs;
10835 
10836 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10837 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10838 	ump = VFSTOUFS(mp);
10839 	ACQUIRE_LOCK(ump);
10840 	if (!ffs_fsfail_cleanup(ump, 0)) {
10841 		fs = ump->um_fs;
10842 		cgp = (struct cg *)bp->b_data;
10843 		inosused = cg_inosused(cgp);
10844 		if (isset(inosused, ino % fs->fs_ipg))
10845 			panic("softdep_setup_inofree: inode %ju not freed.",
10846 			    (uintmax_t)ino);
10847 	}
10848 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10849 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10850 		    (uintmax_t)ino, inodedep);
10851 	if (wkhd) {
10852 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10853 			if (wk->wk_type != D_JADDREF)
10854 				continue;
10855 			WORKLIST_REMOVE(wk);
10856 			/*
10857 			 * We can free immediately even if the jaddref
10858 			 * isn't attached in a background write as now
10859 			 * the bitmaps are reconciled.
10860 			 */
10861 			wk->wk_state |= COMPLETE | ATTACHED;
10862 			free_jaddref(WK_JADDREF(wk));
10863 		}
10864 		jwork_move(&bp->b_dep, wkhd);
10865 	}
10866 	FREE_LOCK(ump);
10867 }
10868 
10869 /*
10870  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10871  * map.  Any dependencies waiting for the write to clear are added to the
10872  * buf's list and any jnewblks that are being canceled are discarded
10873  * immediately.
10874  */
10875 void
10876 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10877 	struct mount *mp;
10878 	struct buf *bp;
10879 	ufs2_daddr_t blkno;
10880 	int frags;
10881 	struct workhead *wkhd;
10882 {
10883 	struct bmsafemap *bmsafemap;
10884 	struct jnewblk *jnewblk;
10885 	struct ufsmount *ump;
10886 	struct worklist *wk;
10887 	struct fs *fs;
10888 #ifdef INVARIANTS
10889 	uint8_t *blksfree;
10890 	struct cg *cgp;
10891 	ufs2_daddr_t jstart;
10892 	ufs2_daddr_t jend;
10893 	ufs2_daddr_t end;
10894 	long bno;
10895 	int i;
10896 #endif
10897 
10898 	CTR3(KTR_SUJ,
10899 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10900 	    blkno, frags, wkhd);
10901 
10902 	ump = VFSTOUFS(mp);
10903 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10904 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10905 	ACQUIRE_LOCK(ump);
10906 	/* Lookup the bmsafemap so we track when it is dirty. */
10907 	fs = ump->um_fs;
10908 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10909 	/*
10910 	 * Detach any jnewblks which have been canceled.  They must linger
10911 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10912 	 * an unjournaled allocation from hitting the disk.
10913 	 */
10914 	if (wkhd) {
10915 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10916 			CTR2(KTR_SUJ,
10917 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10918 			    blkno, wk->wk_type);
10919 			WORKLIST_REMOVE(wk);
10920 			if (wk->wk_type != D_JNEWBLK) {
10921 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10922 				continue;
10923 			}
10924 			jnewblk = WK_JNEWBLK(wk);
10925 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10926 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10927 #ifdef INVARIANTS
10928 			/*
10929 			 * Assert that this block is free in the bitmap
10930 			 * before we discard the jnewblk.
10931 			 */
10932 			cgp = (struct cg *)bp->b_data;
10933 			blksfree = cg_blksfree(cgp);
10934 			bno = dtogd(fs, jnewblk->jn_blkno);
10935 			for (i = jnewblk->jn_oldfrags;
10936 			    i < jnewblk->jn_frags; i++) {
10937 				if (isset(blksfree, bno + i))
10938 					continue;
10939 				panic("softdep_setup_blkfree: not free");
10940 			}
10941 #endif
10942 			/*
10943 			 * Even if it's not attached we can free immediately
10944 			 * as the new bitmap is correct.
10945 			 */
10946 			wk->wk_state |= COMPLETE | ATTACHED;
10947 			free_jnewblk(jnewblk);
10948 		}
10949 	}
10950 
10951 #ifdef INVARIANTS
10952 	/*
10953 	 * Assert that we are not freeing a block which has an outstanding
10954 	 * allocation dependency.
10955 	 */
10956 	fs = VFSTOUFS(mp)->um_fs;
10957 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10958 	end = blkno + frags;
10959 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10960 		/*
10961 		 * Don't match against blocks that will be freed when the
10962 		 * background write is done.
10963 		 */
10964 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10965 		    (COMPLETE | DEPCOMPLETE))
10966 			continue;
10967 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10968 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10969 		if ((blkno >= jstart && blkno < jend) ||
10970 		    (end > jstart && end <= jend)) {
10971 			printf("state 0x%X %jd - %d %d dep %p\n",
10972 			    jnewblk->jn_state, jnewblk->jn_blkno,
10973 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10974 			    jnewblk->jn_dep);
10975 			panic("softdep_setup_blkfree: "
10976 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10977 			    blkno, end, frags, jstart, jend);
10978 		}
10979 	}
10980 #endif
10981 	FREE_LOCK(ump);
10982 }
10983 
10984 /*
10985  * Revert a block allocation when the journal record that describes it
10986  * is not yet written.
10987  */
10988 static int
10989 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10990 	struct jnewblk *jnewblk;
10991 	struct fs *fs;
10992 	struct cg *cgp;
10993 	uint8_t *blksfree;
10994 {
10995 	ufs1_daddr_t fragno;
10996 	long cgbno, bbase;
10997 	int frags, blk;
10998 	int i;
10999 
11000 	frags = 0;
11001 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11002 	/*
11003 	 * We have to test which frags need to be rolled back.  We may
11004 	 * be operating on a stale copy when doing background writes.
11005 	 */
11006 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11007 		if (isclr(blksfree, cgbno + i))
11008 			frags++;
11009 	if (frags == 0)
11010 		return (0);
11011 	/*
11012 	 * This is mostly ffs_blkfree() sans some validation and
11013 	 * superblock updates.
11014 	 */
11015 	if (frags == fs->fs_frag) {
11016 		fragno = fragstoblks(fs, cgbno);
11017 		ffs_setblock(fs, blksfree, fragno);
11018 		ffs_clusteracct(fs, cgp, fragno, 1);
11019 		cgp->cg_cs.cs_nbfree++;
11020 	} else {
11021 		cgbno += jnewblk->jn_oldfrags;
11022 		bbase = cgbno - fragnum(fs, cgbno);
11023 		/* Decrement the old frags.  */
11024 		blk = blkmap(fs, blksfree, bbase);
11025 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11026 		/* Deallocate the fragment */
11027 		for (i = 0; i < frags; i++)
11028 			setbit(blksfree, cgbno + i);
11029 		cgp->cg_cs.cs_nffree += frags;
11030 		/* Add back in counts associated with the new frags */
11031 		blk = blkmap(fs, blksfree, bbase);
11032 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11033 		/* If a complete block has been reassembled, account for it. */
11034 		fragno = fragstoblks(fs, bbase);
11035 		if (ffs_isblock(fs, blksfree, fragno)) {
11036 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11037 			ffs_clusteracct(fs, cgp, fragno, 1);
11038 			cgp->cg_cs.cs_nbfree++;
11039 		}
11040 	}
11041 	stat_jnewblk++;
11042 	jnewblk->jn_state &= ~ATTACHED;
11043 	jnewblk->jn_state |= UNDONE;
11044 
11045 	return (frags);
11046 }
11047 
11048 static void
11049 initiate_write_bmsafemap(bmsafemap, bp)
11050 	struct bmsafemap *bmsafemap;
11051 	struct buf *bp;			/* The cg block. */
11052 {
11053 	struct jaddref *jaddref;
11054 	struct jnewblk *jnewblk;
11055 	uint8_t *inosused;
11056 	uint8_t *blksfree;
11057 	struct cg *cgp;
11058 	struct fs *fs;
11059 	ino_t ino;
11060 
11061 	/*
11062 	 * If this is a background write, we did this at the time that
11063 	 * the copy was made, so do not need to do it again.
11064 	 */
11065 	if (bmsafemap->sm_state & IOSTARTED)
11066 		return;
11067 	bmsafemap->sm_state |= IOSTARTED;
11068 	/*
11069 	 * Clear any inode allocations which are pending journal writes.
11070 	 */
11071 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11072 		cgp = (struct cg *)bp->b_data;
11073 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11074 		inosused = cg_inosused(cgp);
11075 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11076 			ino = jaddref->ja_ino % fs->fs_ipg;
11077 			if (isset(inosused, ino)) {
11078 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11079 					cgp->cg_cs.cs_ndir--;
11080 				cgp->cg_cs.cs_nifree++;
11081 				clrbit(inosused, ino);
11082 				jaddref->ja_state &= ~ATTACHED;
11083 				jaddref->ja_state |= UNDONE;
11084 				stat_jaddref++;
11085 			} else
11086 				panic("initiate_write_bmsafemap: inode %ju "
11087 				    "marked free", (uintmax_t)jaddref->ja_ino);
11088 		}
11089 	}
11090 	/*
11091 	 * Clear any block allocations which are pending journal writes.
11092 	 */
11093 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11094 		cgp = (struct cg *)bp->b_data;
11095 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11096 		blksfree = cg_blksfree(cgp);
11097 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11098 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11099 				continue;
11100 			panic("initiate_write_bmsafemap: block %jd "
11101 			    "marked free", jnewblk->jn_blkno);
11102 		}
11103 	}
11104 	/*
11105 	 * Move allocation lists to the written lists so they can be
11106 	 * cleared once the block write is complete.
11107 	 */
11108 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11109 	    inodedep, id_deps);
11110 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11111 	    newblk, nb_deps);
11112 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11113 	    wk_list);
11114 }
11115 
11116 void
11117 softdep_handle_error(struct buf *bp)
11118 {
11119 	struct ufsmount *ump;
11120 
11121 	ump = softdep_bp_to_mp(bp);
11122 	if (ump == NULL)
11123 		return;
11124 
11125 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11126 		/*
11127 		 * No future writes will succeed, so the on-disk image is safe.
11128 		 * Pretend that this write succeeded so that the softdep state
11129 		 * will be cleaned up naturally.
11130 		 */
11131 		bp->b_ioflags &= ~BIO_ERROR;
11132 		bp->b_error = 0;
11133 	}
11134 }
11135 
11136 /*
11137  * This routine is called during the completion interrupt
11138  * service routine for a disk write (from the procedure called
11139  * by the device driver to inform the filesystem caches of
11140  * a request completion).  It should be called early in this
11141  * procedure, before the block is made available to other
11142  * processes or other routines are called.
11143  *
11144  */
11145 static void
11146 softdep_disk_write_complete(bp)
11147 	struct buf *bp;		/* describes the completed disk write */
11148 {
11149 	struct worklist *wk;
11150 	struct worklist *owk;
11151 	struct ufsmount *ump;
11152 	struct workhead reattach;
11153 	struct freeblks *freeblks;
11154 	struct buf *sbp;
11155 
11156 	ump = softdep_bp_to_mp(bp);
11157 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11158 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11159 	     "with outstanding dependencies for buffer %p", bp));
11160 	if (ump == NULL)
11161 		return;
11162 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11163 		softdep_handle_error(bp);
11164 	/*
11165 	 * If an error occurred while doing the write, then the data
11166 	 * has not hit the disk and the dependencies cannot be processed.
11167 	 * But we do have to go through and roll forward any dependencies
11168 	 * that were rolled back before the disk write.
11169 	 */
11170 	sbp = NULL;
11171 	ACQUIRE_LOCK(ump);
11172 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11173 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11174 			switch (wk->wk_type) {
11175 
11176 			case D_PAGEDEP:
11177 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11178 				continue;
11179 
11180 			case D_INODEDEP:
11181 				handle_written_inodeblock(WK_INODEDEP(wk),
11182 				    bp, 0);
11183 				continue;
11184 
11185 			case D_BMSAFEMAP:
11186 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11187 				    bp, 0);
11188 				continue;
11189 
11190 			case D_INDIRDEP:
11191 				handle_written_indirdep(WK_INDIRDEP(wk),
11192 				    bp, &sbp, 0);
11193 				continue;
11194 			default:
11195 				/* nothing to roll forward */
11196 				continue;
11197 			}
11198 		}
11199 		FREE_LOCK(ump);
11200 		if (sbp)
11201 			brelse(sbp);
11202 		return;
11203 	}
11204 	LIST_INIT(&reattach);
11205 
11206 	/*
11207 	 * Ump SU lock must not be released anywhere in this code segment.
11208 	 */
11209 	owk = NULL;
11210 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11211 		WORKLIST_REMOVE(wk);
11212 		atomic_add_long(&dep_write[wk->wk_type], 1);
11213 		if (wk == owk)
11214 			panic("duplicate worklist: %p\n", wk);
11215 		owk = wk;
11216 		switch (wk->wk_type) {
11217 
11218 		case D_PAGEDEP:
11219 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11220 			    WRITESUCCEEDED))
11221 				WORKLIST_INSERT(&reattach, wk);
11222 			continue;
11223 
11224 		case D_INODEDEP:
11225 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11226 			    WRITESUCCEEDED))
11227 				WORKLIST_INSERT(&reattach, wk);
11228 			continue;
11229 
11230 		case D_BMSAFEMAP:
11231 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11232 			    WRITESUCCEEDED))
11233 				WORKLIST_INSERT(&reattach, wk);
11234 			continue;
11235 
11236 		case D_MKDIR:
11237 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11238 			continue;
11239 
11240 		case D_ALLOCDIRECT:
11241 			wk->wk_state |= COMPLETE;
11242 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11243 			continue;
11244 
11245 		case D_ALLOCINDIR:
11246 			wk->wk_state |= COMPLETE;
11247 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11248 			continue;
11249 
11250 		case D_INDIRDEP:
11251 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11252 			    WRITESUCCEEDED))
11253 				WORKLIST_INSERT(&reattach, wk);
11254 			continue;
11255 
11256 		case D_FREEBLKS:
11257 			wk->wk_state |= COMPLETE;
11258 			freeblks = WK_FREEBLKS(wk);
11259 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11260 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11261 				add_to_worklist(wk, WK_NODELAY);
11262 			continue;
11263 
11264 		case D_FREEWORK:
11265 			handle_written_freework(WK_FREEWORK(wk));
11266 			break;
11267 
11268 		case D_JSEGDEP:
11269 			free_jsegdep(WK_JSEGDEP(wk));
11270 			continue;
11271 
11272 		case D_JSEG:
11273 			handle_written_jseg(WK_JSEG(wk), bp);
11274 			continue;
11275 
11276 		case D_SBDEP:
11277 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11278 				WORKLIST_INSERT(&reattach, wk);
11279 			continue;
11280 
11281 		case D_FREEDEP:
11282 			free_freedep(WK_FREEDEP(wk));
11283 			continue;
11284 
11285 		default:
11286 			panic("handle_disk_write_complete: Unknown type %s",
11287 			    TYPENAME(wk->wk_type));
11288 			/* NOTREACHED */
11289 		}
11290 	}
11291 	/*
11292 	 * Reattach any requests that must be redone.
11293 	 */
11294 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11295 		WORKLIST_REMOVE(wk);
11296 		WORKLIST_INSERT(&bp->b_dep, wk);
11297 	}
11298 	FREE_LOCK(ump);
11299 	if (sbp)
11300 		brelse(sbp);
11301 }
11302 
11303 /*
11304  * Called from within softdep_disk_write_complete above.
11305  */
11306 static void
11307 handle_allocdirect_partdone(adp, wkhd)
11308 	struct allocdirect *adp;	/* the completed allocdirect */
11309 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11310 {
11311 	struct allocdirectlst *listhead;
11312 	struct allocdirect *listadp;
11313 	struct inodedep *inodedep;
11314 	long bsize;
11315 
11316 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11317 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11318 		return;
11319 	/*
11320 	 * The on-disk inode cannot claim to be any larger than the last
11321 	 * fragment that has been written. Otherwise, the on-disk inode
11322 	 * might have fragments that were not the last block in the file
11323 	 * which would corrupt the filesystem. Thus, we cannot free any
11324 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11325 	 * these blocks must be rolled back to zero before writing the inode.
11326 	 * We check the currently active set of allocdirects in id_inoupdt
11327 	 * or id_extupdt as appropriate.
11328 	 */
11329 	inodedep = adp->ad_inodedep;
11330 	bsize = inodedep->id_fs->fs_bsize;
11331 	if (adp->ad_state & EXTDATA)
11332 		listhead = &inodedep->id_extupdt;
11333 	else
11334 		listhead = &inodedep->id_inoupdt;
11335 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11336 		/* found our block */
11337 		if (listadp == adp)
11338 			break;
11339 		/* continue if ad_oldlbn is not a fragment */
11340 		if (listadp->ad_oldsize == 0 ||
11341 		    listadp->ad_oldsize == bsize)
11342 			continue;
11343 		/* hit a fragment */
11344 		return;
11345 	}
11346 	/*
11347 	 * If we have reached the end of the current list without
11348 	 * finding the just finished dependency, then it must be
11349 	 * on the future dependency list. Future dependencies cannot
11350 	 * be freed until they are moved to the current list.
11351 	 */
11352 	if (listadp == NULL) {
11353 #ifdef INVARIANTS
11354 		if (adp->ad_state & EXTDATA)
11355 			listhead = &inodedep->id_newextupdt;
11356 		else
11357 			listhead = &inodedep->id_newinoupdt;
11358 		TAILQ_FOREACH(listadp, listhead, ad_next)
11359 			/* found our block */
11360 			if (listadp == adp)
11361 				break;
11362 		if (listadp == NULL)
11363 			panic("handle_allocdirect_partdone: lost dep");
11364 #endif /* INVARIANTS */
11365 		return;
11366 	}
11367 	/*
11368 	 * If we have found the just finished dependency, then queue
11369 	 * it along with anything that follows it that is complete.
11370 	 * Since the pointer has not yet been written in the inode
11371 	 * as the dependency prevents it, place the allocdirect on the
11372 	 * bufwait list where it will be freed once the pointer is
11373 	 * valid.
11374 	 */
11375 	if (wkhd == NULL)
11376 		wkhd = &inodedep->id_bufwait;
11377 	for (; adp; adp = listadp) {
11378 		listadp = TAILQ_NEXT(adp, ad_next);
11379 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11380 			return;
11381 		TAILQ_REMOVE(listhead, adp, ad_next);
11382 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11383 	}
11384 }
11385 
11386 /*
11387  * Called from within softdep_disk_write_complete above.  This routine
11388  * completes successfully written allocindirs.
11389  */
11390 static void
11391 handle_allocindir_partdone(aip)
11392 	struct allocindir *aip;		/* the completed allocindir */
11393 {
11394 	struct indirdep *indirdep;
11395 
11396 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11397 		return;
11398 	indirdep = aip->ai_indirdep;
11399 	LIST_REMOVE(aip, ai_next);
11400 	/*
11401 	 * Don't set a pointer while the buffer is undergoing IO or while
11402 	 * we have active truncations.
11403 	 */
11404 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11405 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11406 		return;
11407 	}
11408 	if (indirdep->ir_state & UFS1FMT)
11409 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11410 		    aip->ai_newblkno;
11411 	else
11412 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11413 		    aip->ai_newblkno;
11414 	/*
11415 	 * Await the pointer write before freeing the allocindir.
11416 	 */
11417 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11418 }
11419 
11420 /*
11421  * Release segments held on a jwork list.
11422  */
11423 static void
11424 handle_jwork(wkhd)
11425 	struct workhead *wkhd;
11426 {
11427 	struct worklist *wk;
11428 
11429 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11430 		WORKLIST_REMOVE(wk);
11431 		switch (wk->wk_type) {
11432 		case D_JSEGDEP:
11433 			free_jsegdep(WK_JSEGDEP(wk));
11434 			continue;
11435 		case D_FREEDEP:
11436 			free_freedep(WK_FREEDEP(wk));
11437 			continue;
11438 		case D_FREEFRAG:
11439 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11440 			WORKITEM_FREE(wk, D_FREEFRAG);
11441 			continue;
11442 		case D_FREEWORK:
11443 			handle_written_freework(WK_FREEWORK(wk));
11444 			continue;
11445 		default:
11446 			panic("handle_jwork: Unknown type %s\n",
11447 			    TYPENAME(wk->wk_type));
11448 		}
11449 	}
11450 }
11451 
11452 /*
11453  * Handle the bufwait list on an inode when it is safe to release items
11454  * held there.  This normally happens after an inode block is written but
11455  * may be delayed and handled later if there are pending journal items that
11456  * are not yet safe to be released.
11457  */
11458 static struct freefile *
11459 handle_bufwait(inodedep, refhd)
11460 	struct inodedep *inodedep;
11461 	struct workhead *refhd;
11462 {
11463 	struct jaddref *jaddref;
11464 	struct freefile *freefile;
11465 	struct worklist *wk;
11466 
11467 	freefile = NULL;
11468 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11469 		WORKLIST_REMOVE(wk);
11470 		switch (wk->wk_type) {
11471 		case D_FREEFILE:
11472 			/*
11473 			 * We defer adding freefile to the worklist
11474 			 * until all other additions have been made to
11475 			 * ensure that it will be done after all the
11476 			 * old blocks have been freed.
11477 			 */
11478 			if (freefile != NULL)
11479 				panic("handle_bufwait: freefile");
11480 			freefile = WK_FREEFILE(wk);
11481 			continue;
11482 
11483 		case D_MKDIR:
11484 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11485 			continue;
11486 
11487 		case D_DIRADD:
11488 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11489 			continue;
11490 
11491 		case D_FREEFRAG:
11492 			wk->wk_state |= COMPLETE;
11493 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11494 				add_to_worklist(wk, 0);
11495 			continue;
11496 
11497 		case D_DIRREM:
11498 			wk->wk_state |= COMPLETE;
11499 			add_to_worklist(wk, 0);
11500 			continue;
11501 
11502 		case D_ALLOCDIRECT:
11503 		case D_ALLOCINDIR:
11504 			free_newblk(WK_NEWBLK(wk));
11505 			continue;
11506 
11507 		case D_JNEWBLK:
11508 			wk->wk_state |= COMPLETE;
11509 			free_jnewblk(WK_JNEWBLK(wk));
11510 			continue;
11511 
11512 		/*
11513 		 * Save freed journal segments and add references on
11514 		 * the supplied list which will delay their release
11515 		 * until the cg bitmap is cleared on disk.
11516 		 */
11517 		case D_JSEGDEP:
11518 			if (refhd == NULL)
11519 				free_jsegdep(WK_JSEGDEP(wk));
11520 			else
11521 				WORKLIST_INSERT(refhd, wk);
11522 			continue;
11523 
11524 		case D_JADDREF:
11525 			jaddref = WK_JADDREF(wk);
11526 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11527 			    if_deps);
11528 			/*
11529 			 * Transfer any jaddrefs to the list to be freed with
11530 			 * the bitmap if we're handling a removed file.
11531 			 */
11532 			if (refhd == NULL) {
11533 				wk->wk_state |= COMPLETE;
11534 				free_jaddref(jaddref);
11535 			} else
11536 				WORKLIST_INSERT(refhd, wk);
11537 			continue;
11538 
11539 		default:
11540 			panic("handle_bufwait: Unknown type %p(%s)",
11541 			    wk, TYPENAME(wk->wk_type));
11542 			/* NOTREACHED */
11543 		}
11544 	}
11545 	return (freefile);
11546 }
11547 /*
11548  * Called from within softdep_disk_write_complete above to restore
11549  * in-memory inode block contents to their most up-to-date state. Note
11550  * that this routine is always called from interrupt level with further
11551  * interrupts from this device blocked.
11552  *
11553  * If the write did not succeed, we will do all the roll-forward
11554  * operations, but we will not take the actions that will allow its
11555  * dependencies to be processed.
11556  */
11557 static int
11558 handle_written_inodeblock(inodedep, bp, flags)
11559 	struct inodedep *inodedep;
11560 	struct buf *bp;		/* buffer containing the inode block */
11561 	int flags;
11562 {
11563 	struct freefile *freefile;
11564 	struct allocdirect *adp, *nextadp;
11565 	struct ufs1_dinode *dp1 = NULL;
11566 	struct ufs2_dinode *dp2 = NULL;
11567 	struct workhead wkhd;
11568 	int hadchanges, fstype;
11569 	ino_t freelink;
11570 
11571 	LIST_INIT(&wkhd);
11572 	hadchanges = 0;
11573 	freefile = NULL;
11574 	if ((inodedep->id_state & IOSTARTED) == 0)
11575 		panic("handle_written_inodeblock: not started");
11576 	inodedep->id_state &= ~IOSTARTED;
11577 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11578 		fstype = UFS1;
11579 		dp1 = (struct ufs1_dinode *)bp->b_data +
11580 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11581 		freelink = dp1->di_freelink;
11582 	} else {
11583 		fstype = UFS2;
11584 		dp2 = (struct ufs2_dinode *)bp->b_data +
11585 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11586 		freelink = dp2->di_freelink;
11587 	}
11588 	/*
11589 	 * Leave this inodeblock dirty until it's in the list.
11590 	 */
11591 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11592 	    (flags & WRITESUCCEEDED)) {
11593 		struct inodedep *inon;
11594 
11595 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11596 		if ((inon == NULL && freelink == 0) ||
11597 		    (inon && inon->id_ino == freelink)) {
11598 			if (inon)
11599 				inon->id_state |= UNLINKPREV;
11600 			inodedep->id_state |= UNLINKNEXT;
11601 		}
11602 		hadchanges = 1;
11603 	}
11604 	/*
11605 	 * If we had to rollback the inode allocation because of
11606 	 * bitmaps being incomplete, then simply restore it.
11607 	 * Keep the block dirty so that it will not be reclaimed until
11608 	 * all associated dependencies have been cleared and the
11609 	 * corresponding updates written to disk.
11610 	 */
11611 	if (inodedep->id_savedino1 != NULL) {
11612 		hadchanges = 1;
11613 		if (fstype == UFS1)
11614 			*dp1 = *inodedep->id_savedino1;
11615 		else
11616 			*dp2 = *inodedep->id_savedino2;
11617 		free(inodedep->id_savedino1, M_SAVEDINO);
11618 		inodedep->id_savedino1 = NULL;
11619 		if ((bp->b_flags & B_DELWRI) == 0)
11620 			stat_inode_bitmap++;
11621 		bdirty(bp);
11622 		/*
11623 		 * If the inode is clear here and GOINGAWAY it will never
11624 		 * be written.  Process the bufwait and clear any pending
11625 		 * work which may include the freefile.
11626 		 */
11627 		if (inodedep->id_state & GOINGAWAY)
11628 			goto bufwait;
11629 		return (1);
11630 	}
11631 	if (flags & WRITESUCCEEDED)
11632 		inodedep->id_state |= COMPLETE;
11633 	/*
11634 	 * Roll forward anything that had to be rolled back before
11635 	 * the inode could be updated.
11636 	 */
11637 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11638 		nextadp = TAILQ_NEXT(adp, ad_next);
11639 		if (adp->ad_state & ATTACHED)
11640 			panic("handle_written_inodeblock: new entry");
11641 		if (fstype == UFS1) {
11642 			if (adp->ad_offset < UFS_NDADDR) {
11643 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11644 					panic("%s %s #%jd mismatch %d != %jd",
11645 					    "handle_written_inodeblock:",
11646 					    "direct pointer",
11647 					    (intmax_t)adp->ad_offset,
11648 					    dp1->di_db[adp->ad_offset],
11649 					    (intmax_t)adp->ad_oldblkno);
11650 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11651 			} else {
11652 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11653 				    0)
11654 					panic("%s: %s #%jd allocated as %d",
11655 					    "handle_written_inodeblock",
11656 					    "indirect pointer",
11657 					    (intmax_t)adp->ad_offset -
11658 					    UFS_NDADDR,
11659 					    dp1->di_ib[adp->ad_offset -
11660 					    UFS_NDADDR]);
11661 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11662 				    adp->ad_newblkno;
11663 			}
11664 		} else {
11665 			if (adp->ad_offset < UFS_NDADDR) {
11666 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11667 					panic("%s: %s #%jd %s %jd != %jd",
11668 					    "handle_written_inodeblock",
11669 					    "direct pointer",
11670 					    (intmax_t)adp->ad_offset, "mismatch",
11671 					    (intmax_t)dp2->di_db[adp->ad_offset],
11672 					    (intmax_t)adp->ad_oldblkno);
11673 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11674 			} else {
11675 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11676 				    0)
11677 					panic("%s: %s #%jd allocated as %jd",
11678 					    "handle_written_inodeblock",
11679 					    "indirect pointer",
11680 					    (intmax_t)adp->ad_offset -
11681 					    UFS_NDADDR,
11682 					    (intmax_t)
11683 					    dp2->di_ib[adp->ad_offset -
11684 					    UFS_NDADDR]);
11685 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11686 				    adp->ad_newblkno;
11687 			}
11688 		}
11689 		adp->ad_state &= ~UNDONE;
11690 		adp->ad_state |= ATTACHED;
11691 		hadchanges = 1;
11692 	}
11693 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11694 		nextadp = TAILQ_NEXT(adp, ad_next);
11695 		if (adp->ad_state & ATTACHED)
11696 			panic("handle_written_inodeblock: new entry");
11697 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11698 			panic("%s: direct pointers #%jd %s %jd != %jd",
11699 			    "handle_written_inodeblock",
11700 			    (intmax_t)adp->ad_offset, "mismatch",
11701 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11702 			    (intmax_t)adp->ad_oldblkno);
11703 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11704 		adp->ad_state &= ~UNDONE;
11705 		adp->ad_state |= ATTACHED;
11706 		hadchanges = 1;
11707 	}
11708 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11709 		stat_direct_blk_ptrs++;
11710 	/*
11711 	 * Reset the file size to its most up-to-date value.
11712 	 */
11713 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11714 		panic("handle_written_inodeblock: bad size");
11715 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11716 		panic("handle_written_inodeblock: Invalid link count "
11717 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11718 		    inodedep);
11719 	if (fstype == UFS1) {
11720 		if (dp1->di_nlink != inodedep->id_savednlink) {
11721 			dp1->di_nlink = inodedep->id_savednlink;
11722 			hadchanges = 1;
11723 		}
11724 		if (dp1->di_size != inodedep->id_savedsize) {
11725 			dp1->di_size = inodedep->id_savedsize;
11726 			hadchanges = 1;
11727 		}
11728 	} else {
11729 		if (dp2->di_nlink != inodedep->id_savednlink) {
11730 			dp2->di_nlink = inodedep->id_savednlink;
11731 			hadchanges = 1;
11732 		}
11733 		if (dp2->di_size != inodedep->id_savedsize) {
11734 			dp2->di_size = inodedep->id_savedsize;
11735 			hadchanges = 1;
11736 		}
11737 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11738 			dp2->di_extsize = inodedep->id_savedextsize;
11739 			hadchanges = 1;
11740 		}
11741 	}
11742 	inodedep->id_savedsize = -1;
11743 	inodedep->id_savedextsize = -1;
11744 	inodedep->id_savednlink = -1;
11745 	/*
11746 	 * If there were any rollbacks in the inode block, then it must be
11747 	 * marked dirty so that its will eventually get written back in
11748 	 * its correct form.
11749 	 */
11750 	if (hadchanges) {
11751 		if (fstype == UFS2)
11752 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11753 		bdirty(bp);
11754 	}
11755 bufwait:
11756 	/*
11757 	 * If the write did not succeed, we have done all the roll-forward
11758 	 * operations, but we cannot take the actions that will allow its
11759 	 * dependencies to be processed.
11760 	 */
11761 	if ((flags & WRITESUCCEEDED) == 0)
11762 		return (hadchanges);
11763 	/*
11764 	 * Process any allocdirects that completed during the update.
11765 	 */
11766 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11767 		handle_allocdirect_partdone(adp, &wkhd);
11768 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11769 		handle_allocdirect_partdone(adp, &wkhd);
11770 	/*
11771 	 * Process deallocations that were held pending until the
11772 	 * inode had been written to disk. Freeing of the inode
11773 	 * is delayed until after all blocks have been freed to
11774 	 * avoid creation of new <vfsid, inum, lbn> triples
11775 	 * before the old ones have been deleted.  Completely
11776 	 * unlinked inodes are not processed until the unlinked
11777 	 * inode list is written or the last reference is removed.
11778 	 */
11779 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11780 		freefile = handle_bufwait(inodedep, NULL);
11781 		if (freefile && !LIST_EMPTY(&wkhd)) {
11782 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11783 			freefile = NULL;
11784 		}
11785 	}
11786 	/*
11787 	 * Move rolled forward dependency completions to the bufwait list
11788 	 * now that those that were already written have been processed.
11789 	 */
11790 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11791 		panic("handle_written_inodeblock: bufwait but no changes");
11792 	jwork_move(&inodedep->id_bufwait, &wkhd);
11793 
11794 	if (freefile != NULL) {
11795 		/*
11796 		 * If the inode is goingaway it was never written.  Fake up
11797 		 * the state here so free_inodedep() can succeed.
11798 		 */
11799 		if (inodedep->id_state & GOINGAWAY)
11800 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11801 		if (free_inodedep(inodedep) == 0)
11802 			panic("handle_written_inodeblock: live inodedep %p",
11803 			    inodedep);
11804 		add_to_worklist(&freefile->fx_list, 0);
11805 		return (0);
11806 	}
11807 
11808 	/*
11809 	 * If no outstanding dependencies, free it.
11810 	 */
11811 	if (free_inodedep(inodedep) ||
11812 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11813 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11814 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11815 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11816 		return (0);
11817 	return (hadchanges);
11818 }
11819 
11820 /*
11821  * Perform needed roll-forwards and kick off any dependencies that
11822  * can now be processed.
11823  *
11824  * If the write did not succeed, we will do all the roll-forward
11825  * operations, but we will not take the actions that will allow its
11826  * dependencies to be processed.
11827  */
11828 static int
11829 handle_written_indirdep(indirdep, bp, bpp, flags)
11830 	struct indirdep *indirdep;
11831 	struct buf *bp;
11832 	struct buf **bpp;
11833 	int flags;
11834 {
11835 	struct allocindir *aip;
11836 	struct buf *sbp;
11837 	int chgs;
11838 
11839 	if (indirdep->ir_state & GOINGAWAY)
11840 		panic("handle_written_indirdep: indirdep gone");
11841 	if ((indirdep->ir_state & IOSTARTED) == 0)
11842 		panic("handle_written_indirdep: IO not started");
11843 	chgs = 0;
11844 	/*
11845 	 * If there were rollbacks revert them here.
11846 	 */
11847 	if (indirdep->ir_saveddata) {
11848 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11849 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11850 			free(indirdep->ir_saveddata, M_INDIRDEP);
11851 			indirdep->ir_saveddata = NULL;
11852 		}
11853 		chgs = 1;
11854 	}
11855 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11856 	indirdep->ir_state |= ATTACHED;
11857 	/*
11858 	 * If the write did not succeed, we have done all the roll-forward
11859 	 * operations, but we cannot take the actions that will allow its
11860 	 * dependencies to be processed.
11861 	 */
11862 	if ((flags & WRITESUCCEEDED) == 0) {
11863 		stat_indir_blk_ptrs++;
11864 		bdirty(bp);
11865 		return (1);
11866 	}
11867 	/*
11868 	 * Move allocindirs with written pointers to the completehd if
11869 	 * the indirdep's pointer is not yet written.  Otherwise
11870 	 * free them here.
11871 	 */
11872 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11873 		LIST_REMOVE(aip, ai_next);
11874 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11875 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11876 			    ai_next);
11877 			newblk_freefrag(&aip->ai_block);
11878 			continue;
11879 		}
11880 		free_newblk(&aip->ai_block);
11881 	}
11882 	/*
11883 	 * Move allocindirs that have finished dependency processing from
11884 	 * the done list to the write list after updating the pointers.
11885 	 */
11886 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11887 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11888 			handle_allocindir_partdone(aip);
11889 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11890 				panic("disk_write_complete: not gone");
11891 			chgs = 1;
11892 		}
11893 	}
11894 	/*
11895 	 * Preserve the indirdep if there were any changes or if it is not
11896 	 * yet valid on disk.
11897 	 */
11898 	if (chgs) {
11899 		stat_indir_blk_ptrs++;
11900 		bdirty(bp);
11901 		return (1);
11902 	}
11903 	/*
11904 	 * If there were no changes we can discard the savedbp and detach
11905 	 * ourselves from the buf.  We are only carrying completed pointers
11906 	 * in this case.
11907 	 */
11908 	sbp = indirdep->ir_savebp;
11909 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11910 	indirdep->ir_savebp = NULL;
11911 	indirdep->ir_bp = NULL;
11912 	if (*bpp != NULL)
11913 		panic("handle_written_indirdep: bp already exists.");
11914 	*bpp = sbp;
11915 	/*
11916 	 * The indirdep may not be freed until its parent points at it.
11917 	 */
11918 	if (indirdep->ir_state & DEPCOMPLETE)
11919 		free_indirdep(indirdep);
11920 
11921 	return (0);
11922 }
11923 
11924 /*
11925  * Process a diradd entry after its dependent inode has been written.
11926  */
11927 static void
11928 diradd_inode_written(dap, inodedep)
11929 	struct diradd *dap;
11930 	struct inodedep *inodedep;
11931 {
11932 
11933 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
11934 	dap->da_state |= COMPLETE;
11935 	complete_diradd(dap);
11936 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11937 }
11938 
11939 /*
11940  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11941  * be called with the per-filesystem lock and the buf lock on the cg held.
11942  */
11943 static int
11944 bmsafemap_backgroundwrite(bmsafemap, bp)
11945 	struct bmsafemap *bmsafemap;
11946 	struct buf *bp;
11947 {
11948 	int dirty;
11949 
11950 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11951 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11952 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11953 	/*
11954 	 * If we're initiating a background write we need to process the
11955 	 * rollbacks as they exist now, not as they exist when IO starts.
11956 	 * No other consumers will look at the contents of the shadowed
11957 	 * buf so this is safe to do here.
11958 	 */
11959 	if (bp->b_xflags & BX_BKGRDMARKER)
11960 		initiate_write_bmsafemap(bmsafemap, bp);
11961 
11962 	return (dirty);
11963 }
11964 
11965 /*
11966  * Re-apply an allocation when a cg write is complete.
11967  */
11968 static int
11969 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11970 	struct jnewblk *jnewblk;
11971 	struct fs *fs;
11972 	struct cg *cgp;
11973 	uint8_t *blksfree;
11974 {
11975 	ufs1_daddr_t fragno;
11976 	ufs2_daddr_t blkno;
11977 	long cgbno, bbase;
11978 	int frags, blk;
11979 	int i;
11980 
11981 	frags = 0;
11982 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11983 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11984 		if (isclr(blksfree, cgbno + i))
11985 			panic("jnewblk_rollforward: re-allocated fragment");
11986 		frags++;
11987 	}
11988 	if (frags == fs->fs_frag) {
11989 		blkno = fragstoblks(fs, cgbno);
11990 		ffs_clrblock(fs, blksfree, (long)blkno);
11991 		ffs_clusteracct(fs, cgp, blkno, -1);
11992 		cgp->cg_cs.cs_nbfree--;
11993 	} else {
11994 		bbase = cgbno - fragnum(fs, cgbno);
11995 		cgbno += jnewblk->jn_oldfrags;
11996                 /* If a complete block had been reassembled, account for it. */
11997 		fragno = fragstoblks(fs, bbase);
11998 		if (ffs_isblock(fs, blksfree, fragno)) {
11999 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12000 			ffs_clusteracct(fs, cgp, fragno, -1);
12001 			cgp->cg_cs.cs_nbfree--;
12002 		}
12003 		/* Decrement the old frags.  */
12004 		blk = blkmap(fs, blksfree, bbase);
12005 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12006 		/* Allocate the fragment */
12007 		for (i = 0; i < frags; i++)
12008 			clrbit(blksfree, cgbno + i);
12009 		cgp->cg_cs.cs_nffree -= frags;
12010 		/* Add back in counts associated with the new frags */
12011 		blk = blkmap(fs, blksfree, bbase);
12012 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12013 	}
12014 	return (frags);
12015 }
12016 
12017 /*
12018  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12019  * changes if it's not a background write.  Set all written dependencies
12020  * to DEPCOMPLETE and free the structure if possible.
12021  *
12022  * If the write did not succeed, we will do all the roll-forward
12023  * operations, but we will not take the actions that will allow its
12024  * dependencies to be processed.
12025  */
12026 static int
12027 handle_written_bmsafemap(bmsafemap, bp, flags)
12028 	struct bmsafemap *bmsafemap;
12029 	struct buf *bp;
12030 	int flags;
12031 {
12032 	struct newblk *newblk;
12033 	struct inodedep *inodedep;
12034 	struct jaddref *jaddref, *jatmp;
12035 	struct jnewblk *jnewblk, *jntmp;
12036 	struct ufsmount *ump;
12037 	uint8_t *inosused;
12038 	uint8_t *blksfree;
12039 	struct cg *cgp;
12040 	struct fs *fs;
12041 	ino_t ino;
12042 	int foreground;
12043 	int chgs;
12044 
12045 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12046 		panic("handle_written_bmsafemap: Not started\n");
12047 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12048 	chgs = 0;
12049 	bmsafemap->sm_state &= ~IOSTARTED;
12050 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12051 	/*
12052 	 * If write was successful, release journal work that was waiting
12053 	 * on the write. Otherwise move the work back.
12054 	 */
12055 	if (flags & WRITESUCCEEDED)
12056 		handle_jwork(&bmsafemap->sm_freewr);
12057 	else
12058 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12059 		    worklist, wk_list);
12060 
12061 	/*
12062 	 * Restore unwritten inode allocation pending jaddref writes.
12063 	 */
12064 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12065 		cgp = (struct cg *)bp->b_data;
12066 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12067 		inosused = cg_inosused(cgp);
12068 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12069 		    ja_bmdeps, jatmp) {
12070 			if ((jaddref->ja_state & UNDONE) == 0)
12071 				continue;
12072 			ino = jaddref->ja_ino % fs->fs_ipg;
12073 			if (isset(inosused, ino))
12074 				panic("handle_written_bmsafemap: "
12075 				    "re-allocated inode");
12076 			/* Do the roll-forward only if it's a real copy. */
12077 			if (foreground) {
12078 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12079 					cgp->cg_cs.cs_ndir++;
12080 				cgp->cg_cs.cs_nifree--;
12081 				setbit(inosused, ino);
12082 				chgs = 1;
12083 			}
12084 			jaddref->ja_state &= ~UNDONE;
12085 			jaddref->ja_state |= ATTACHED;
12086 			free_jaddref(jaddref);
12087 		}
12088 	}
12089 	/*
12090 	 * Restore any block allocations which are pending journal writes.
12091 	 */
12092 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12093 		cgp = (struct cg *)bp->b_data;
12094 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12095 		blksfree = cg_blksfree(cgp);
12096 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12097 		    jntmp) {
12098 			if ((jnewblk->jn_state & UNDONE) == 0)
12099 				continue;
12100 			/* Do the roll-forward only if it's a real copy. */
12101 			if (foreground &&
12102 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12103 				chgs = 1;
12104 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12105 			jnewblk->jn_state |= ATTACHED;
12106 			free_jnewblk(jnewblk);
12107 		}
12108 	}
12109 	/*
12110 	 * If the write did not succeed, we have done all the roll-forward
12111 	 * operations, but we cannot take the actions that will allow its
12112 	 * dependencies to be processed.
12113 	 */
12114 	if ((flags & WRITESUCCEEDED) == 0) {
12115 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12116 		    newblk, nb_deps);
12117 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12118 		    worklist, wk_list);
12119 		if (foreground)
12120 			bdirty(bp);
12121 		return (1);
12122 	}
12123 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12124 		newblk->nb_state |= DEPCOMPLETE;
12125 		newblk->nb_state &= ~ONDEPLIST;
12126 		newblk->nb_bmsafemap = NULL;
12127 		LIST_REMOVE(newblk, nb_deps);
12128 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12129 			handle_allocdirect_partdone(
12130 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12131 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12132 			handle_allocindir_partdone(
12133 			    WK_ALLOCINDIR(&newblk->nb_list));
12134 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12135 			panic("handle_written_bmsafemap: Unexpected type: %s",
12136 			    TYPENAME(newblk->nb_list.wk_type));
12137 	}
12138 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12139 		inodedep->id_state |= DEPCOMPLETE;
12140 		inodedep->id_state &= ~ONDEPLIST;
12141 		LIST_REMOVE(inodedep, id_deps);
12142 		inodedep->id_bmsafemap = NULL;
12143 	}
12144 	LIST_REMOVE(bmsafemap, sm_next);
12145 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12146 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12147 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12148 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12149 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12150 		LIST_REMOVE(bmsafemap, sm_hash);
12151 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12152 		return (0);
12153 	}
12154 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12155 	if (foreground)
12156 		bdirty(bp);
12157 	return (1);
12158 }
12159 
12160 /*
12161  * Try to free a mkdir dependency.
12162  */
12163 static void
12164 complete_mkdir(mkdir)
12165 	struct mkdir *mkdir;
12166 {
12167 	struct diradd *dap;
12168 
12169 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12170 		return;
12171 	LIST_REMOVE(mkdir, md_mkdirs);
12172 	dap = mkdir->md_diradd;
12173 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12174 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12175 		dap->da_state |= DEPCOMPLETE;
12176 		complete_diradd(dap);
12177 	}
12178 	WORKITEM_FREE(mkdir, D_MKDIR);
12179 }
12180 
12181 /*
12182  * Handle the completion of a mkdir dependency.
12183  */
12184 static void
12185 handle_written_mkdir(mkdir, type)
12186 	struct mkdir *mkdir;
12187 	int type;
12188 {
12189 
12190 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12191 		panic("handle_written_mkdir: bad type");
12192 	mkdir->md_state |= COMPLETE;
12193 	complete_mkdir(mkdir);
12194 }
12195 
12196 static int
12197 free_pagedep(pagedep)
12198 	struct pagedep *pagedep;
12199 {
12200 	int i;
12201 
12202 	if (pagedep->pd_state & NEWBLOCK)
12203 		return (0);
12204 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12205 		return (0);
12206 	for (i = 0; i < DAHASHSZ; i++)
12207 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12208 			return (0);
12209 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12210 		return (0);
12211 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12212 		return (0);
12213 	if (pagedep->pd_state & ONWORKLIST)
12214 		WORKLIST_REMOVE(&pagedep->pd_list);
12215 	LIST_REMOVE(pagedep, pd_hash);
12216 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12217 
12218 	return (1);
12219 }
12220 
12221 /*
12222  * Called from within softdep_disk_write_complete above.
12223  * A write operation was just completed. Removed inodes can
12224  * now be freed and associated block pointers may be committed.
12225  * Note that this routine is always called from interrupt level
12226  * with further interrupts from this device blocked.
12227  *
12228  * If the write did not succeed, we will do all the roll-forward
12229  * operations, but we will not take the actions that will allow its
12230  * dependencies to be processed.
12231  */
12232 static int
12233 handle_written_filepage(pagedep, bp, flags)
12234 	struct pagedep *pagedep;
12235 	struct buf *bp;		/* buffer containing the written page */
12236 	int flags;
12237 {
12238 	struct dirrem *dirrem;
12239 	struct diradd *dap, *nextdap;
12240 	struct direct *ep;
12241 	int i, chgs;
12242 
12243 	if ((pagedep->pd_state & IOSTARTED) == 0)
12244 		panic("handle_written_filepage: not started");
12245 	pagedep->pd_state &= ~IOSTARTED;
12246 	if ((flags & WRITESUCCEEDED) == 0)
12247 		goto rollforward;
12248 	/*
12249 	 * Process any directory removals that have been committed.
12250 	 */
12251 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12252 		LIST_REMOVE(dirrem, dm_next);
12253 		dirrem->dm_state |= COMPLETE;
12254 		dirrem->dm_dirinum = pagedep->pd_ino;
12255 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12256 		    ("handle_written_filepage: Journal entries not written."));
12257 		add_to_worklist(&dirrem->dm_list, 0);
12258 	}
12259 	/*
12260 	 * Free any directory additions that have been committed.
12261 	 * If it is a newly allocated block, we have to wait until
12262 	 * the on-disk directory inode claims the new block.
12263 	 */
12264 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12265 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12266 			free_diradd(dap, NULL);
12267 rollforward:
12268 	/*
12269 	 * Uncommitted directory entries must be restored.
12270 	 */
12271 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12272 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12273 		     dap = nextdap) {
12274 			nextdap = LIST_NEXT(dap, da_pdlist);
12275 			if (dap->da_state & ATTACHED)
12276 				panic("handle_written_filepage: attached");
12277 			ep = (struct direct *)
12278 			    ((char *)bp->b_data + dap->da_offset);
12279 			ep->d_ino = dap->da_newinum;
12280 			dap->da_state &= ~UNDONE;
12281 			dap->da_state |= ATTACHED;
12282 			chgs = 1;
12283 			/*
12284 			 * If the inode referenced by the directory has
12285 			 * been written out, then the dependency can be
12286 			 * moved to the pending list.
12287 			 */
12288 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12289 				LIST_REMOVE(dap, da_pdlist);
12290 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12291 				    da_pdlist);
12292 			}
12293 		}
12294 	}
12295 	/*
12296 	 * If there were any rollbacks in the directory, then it must be
12297 	 * marked dirty so that its will eventually get written back in
12298 	 * its correct form.
12299 	 */
12300 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12301 		if ((bp->b_flags & B_DELWRI) == 0)
12302 			stat_dir_entry++;
12303 		bdirty(bp);
12304 		return (1);
12305 	}
12306 	/*
12307 	 * If we are not waiting for a new directory block to be
12308 	 * claimed by its inode, then the pagedep will be freed.
12309 	 * Otherwise it will remain to track any new entries on
12310 	 * the page in case they are fsync'ed.
12311 	 */
12312 	free_pagedep(pagedep);
12313 	return (0);
12314 }
12315 
12316 /*
12317  * Writing back in-core inode structures.
12318  *
12319  * The filesystem only accesses an inode's contents when it occupies an
12320  * "in-core" inode structure.  These "in-core" structures are separate from
12321  * the page frames used to cache inode blocks.  Only the latter are
12322  * transferred to/from the disk.  So, when the updated contents of the
12323  * "in-core" inode structure are copied to the corresponding in-memory inode
12324  * block, the dependencies are also transferred.  The following procedure is
12325  * called when copying a dirty "in-core" inode to a cached inode block.
12326  */
12327 
12328 /*
12329  * Called when an inode is loaded from disk. If the effective link count
12330  * differed from the actual link count when it was last flushed, then we
12331  * need to ensure that the correct effective link count is put back.
12332  */
12333 void
12334 softdep_load_inodeblock(ip)
12335 	struct inode *ip;	/* the "in_core" copy of the inode */
12336 {
12337 	struct inodedep *inodedep;
12338 	struct ufsmount *ump;
12339 
12340 	ump = ITOUMP(ip);
12341 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12342 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12343 	/*
12344 	 * Check for alternate nlink count.
12345 	 */
12346 	ip->i_effnlink = ip->i_nlink;
12347 	ACQUIRE_LOCK(ump);
12348 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12349 		FREE_LOCK(ump);
12350 		return;
12351 	}
12352 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12353 	    inodedep->id_nlinkwrote != -1) {
12354 		KASSERT(ip->i_nlink == 0 &&
12355 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12356 		    ("read bad i_nlink value"));
12357 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12358 	}
12359 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12360 	KASSERT(ip->i_effnlink >= 0,
12361 	    ("softdep_load_inodeblock: negative i_effnlink"));
12362 	FREE_LOCK(ump);
12363 }
12364 
12365 /*
12366  * This routine is called just before the "in-core" inode
12367  * information is to be copied to the in-memory inode block.
12368  * Recall that an inode block contains several inodes. If
12369  * the force flag is set, then the dependencies will be
12370  * cleared so that the update can always be made. Note that
12371  * the buffer is locked when this routine is called, so we
12372  * will never be in the middle of writing the inode block
12373  * to disk.
12374  */
12375 void
12376 softdep_update_inodeblock(ip, bp, waitfor)
12377 	struct inode *ip;	/* the "in_core" copy of the inode */
12378 	struct buf *bp;		/* the buffer containing the inode block */
12379 	int waitfor;		/* nonzero => update must be allowed */
12380 {
12381 	struct inodedep *inodedep;
12382 	struct inoref *inoref;
12383 	struct ufsmount *ump;
12384 	struct worklist *wk;
12385 	struct mount *mp;
12386 	struct buf *ibp;
12387 	struct fs *fs;
12388 	int error;
12389 
12390 	ump = ITOUMP(ip);
12391 	mp = UFSTOVFS(ump);
12392 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12393 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12394 	fs = ump->um_fs;
12395 	/*
12396 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12397 	 * does not have access to the in-core ip so must write directly into
12398 	 * the inode block buffer when setting freelink.
12399 	 */
12400 	if (fs->fs_magic == FS_UFS1_MAGIC)
12401 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12402 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12403 	else
12404 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12405 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12406 	/*
12407 	 * If the effective link count is not equal to the actual link
12408 	 * count, then we must track the difference in an inodedep while
12409 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12410 	 * if there is no existing inodedep, then there are no dependencies
12411 	 * to track.
12412 	 */
12413 	ACQUIRE_LOCK(ump);
12414 again:
12415 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12416 		FREE_LOCK(ump);
12417 		if (ip->i_effnlink != ip->i_nlink)
12418 			panic("softdep_update_inodeblock: bad link count");
12419 		return;
12420 	}
12421 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12422 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12423 	    "inodedep %p id_nlinkdelta %jd",
12424 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12425 	inodedep->id_nlinkwrote = ip->i_nlink;
12426 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12427 		panic("softdep_update_inodeblock: bad delta");
12428 	/*
12429 	 * If we're flushing all dependencies we must also move any waiting
12430 	 * for journal writes onto the bufwait list prior to I/O.
12431 	 */
12432 	if (waitfor) {
12433 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12434 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12435 			    == DEPCOMPLETE) {
12436 				jwait(&inoref->if_list, MNT_WAIT);
12437 				goto again;
12438 			}
12439 		}
12440 	}
12441 	/*
12442 	 * Changes have been initiated. Anything depending on these
12443 	 * changes cannot occur until this inode has been written.
12444 	 */
12445 	inodedep->id_state &= ~COMPLETE;
12446 	if ((inodedep->id_state & ONWORKLIST) == 0)
12447 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12448 	/*
12449 	 * Any new dependencies associated with the incore inode must
12450 	 * now be moved to the list associated with the buffer holding
12451 	 * the in-memory copy of the inode. Once merged process any
12452 	 * allocdirects that are completed by the merger.
12453 	 */
12454 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12455 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12456 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12457 		    NULL);
12458 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12459 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12460 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12461 		    NULL);
12462 	/*
12463 	 * Now that the inode has been pushed into the buffer, the
12464 	 * operations dependent on the inode being written to disk
12465 	 * can be moved to the id_bufwait so that they will be
12466 	 * processed when the buffer I/O completes.
12467 	 */
12468 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12469 		WORKLIST_REMOVE(wk);
12470 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12471 	}
12472 	/*
12473 	 * Newly allocated inodes cannot be written until the bitmap
12474 	 * that allocates them have been written (indicated by
12475 	 * DEPCOMPLETE being set in id_state). If we are doing a
12476 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12477 	 * to be written so that the update can be done.
12478 	 */
12479 	if (waitfor == 0) {
12480 		FREE_LOCK(ump);
12481 		return;
12482 	}
12483 retry:
12484 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12485 		FREE_LOCK(ump);
12486 		return;
12487 	}
12488 	ibp = inodedep->id_bmsafemap->sm_buf;
12489 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12490 	if (ibp == NULL) {
12491 		/*
12492 		 * If ibp came back as NULL, the dependency could have been
12493 		 * freed while we slept.  Look it up again, and check to see
12494 		 * that it has completed.
12495 		 */
12496 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12497 			goto retry;
12498 		FREE_LOCK(ump);
12499 		return;
12500 	}
12501 	FREE_LOCK(ump);
12502 	if ((error = bwrite(ibp)) != 0)
12503 		softdep_error("softdep_update_inodeblock: bwrite", error);
12504 }
12505 
12506 /*
12507  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12508  * old inode dependency list (such as id_inoupdt).
12509  */
12510 static void
12511 merge_inode_lists(newlisthead, oldlisthead)
12512 	struct allocdirectlst *newlisthead;
12513 	struct allocdirectlst *oldlisthead;
12514 {
12515 	struct allocdirect *listadp, *newadp;
12516 
12517 	newadp = TAILQ_FIRST(newlisthead);
12518 	if (newadp != NULL)
12519 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12520 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12521 		if (listadp->ad_offset < newadp->ad_offset) {
12522 			listadp = TAILQ_NEXT(listadp, ad_next);
12523 			continue;
12524 		}
12525 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12526 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12527 		if (listadp->ad_offset == newadp->ad_offset) {
12528 			allocdirect_merge(oldlisthead, newadp,
12529 			    listadp);
12530 			listadp = newadp;
12531 		}
12532 		newadp = TAILQ_FIRST(newlisthead);
12533 	}
12534 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12535 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12536 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12537 	}
12538 }
12539 
12540 /*
12541  * If we are doing an fsync, then we must ensure that any directory
12542  * entries for the inode have been written after the inode gets to disk.
12543  */
12544 int
12545 softdep_fsync(vp)
12546 	struct vnode *vp;	/* the "in_core" copy of the inode */
12547 {
12548 	struct inodedep *inodedep;
12549 	struct pagedep *pagedep;
12550 	struct inoref *inoref;
12551 	struct ufsmount *ump;
12552 	struct worklist *wk;
12553 	struct diradd *dap;
12554 	struct mount *mp;
12555 	struct vnode *pvp;
12556 	struct inode *ip;
12557 	struct buf *bp;
12558 	struct fs *fs;
12559 	struct thread *td = curthread;
12560 	int error, flushparent, pagedep_new_block;
12561 	ino_t parentino;
12562 	ufs_lbn_t lbn;
12563 
12564 	ip = VTOI(vp);
12565 	mp = vp->v_mount;
12566 	ump = VFSTOUFS(mp);
12567 	fs = ump->um_fs;
12568 	if (MOUNTEDSOFTDEP(mp) == 0)
12569 		return (0);
12570 	ACQUIRE_LOCK(ump);
12571 restart:
12572 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12573 		FREE_LOCK(ump);
12574 		return (0);
12575 	}
12576 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12577 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12578 		    == DEPCOMPLETE) {
12579 			jwait(&inoref->if_list, MNT_WAIT);
12580 			goto restart;
12581 		}
12582 	}
12583 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12584 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12585 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12586 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12587 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12588 		panic("softdep_fsync: pending ops %p", inodedep);
12589 	for (error = 0, flushparent = 0; ; ) {
12590 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12591 			break;
12592 		if (wk->wk_type != D_DIRADD)
12593 			panic("softdep_fsync: Unexpected type %s",
12594 			    TYPENAME(wk->wk_type));
12595 		dap = WK_DIRADD(wk);
12596 		/*
12597 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12598 		 * dependency or is contained in a newly allocated block.
12599 		 */
12600 		if (dap->da_state & DIRCHG)
12601 			pagedep = dap->da_previous->dm_pagedep;
12602 		else
12603 			pagedep = dap->da_pagedep;
12604 		parentino = pagedep->pd_ino;
12605 		lbn = pagedep->pd_lbn;
12606 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12607 			panic("softdep_fsync: dirty");
12608 		if ((dap->da_state & MKDIR_PARENT) ||
12609 		    (pagedep->pd_state & NEWBLOCK))
12610 			flushparent = 1;
12611 		else
12612 			flushparent = 0;
12613 		/*
12614 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12615 		 * then we will not be able to release and recover the
12616 		 * vnode below, so we just have to give up on writing its
12617 		 * directory entry out. It will eventually be written, just
12618 		 * not now, but then the user was not asking to have it
12619 		 * written, so we are not breaking any promises.
12620 		 */
12621 		if (VN_IS_DOOMED(vp))
12622 			break;
12623 		/*
12624 		 * We prevent deadlock by always fetching inodes from the
12625 		 * root, moving down the directory tree. Thus, when fetching
12626 		 * our parent directory, we first try to get the lock. If
12627 		 * that fails, we must unlock ourselves before requesting
12628 		 * the lock on our parent. See the comment in ufs_lookup
12629 		 * for details on possible races.
12630 		 */
12631 		FREE_LOCK(ump);
12632 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12633 		    FFSV_FORCEINSMQ)) {
12634 			/*
12635 			 * Unmount cannot proceed after unlock because
12636 			 * caller must have called vn_start_write().
12637 			 */
12638 			VOP_UNLOCK(vp);
12639 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12640 			    &pvp, FFSV_FORCEINSMQ);
12641 			MPASS(VTOI(pvp)->i_mode != 0);
12642 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12643 			if (VN_IS_DOOMED(vp)) {
12644 				if (error == 0)
12645 					vput(pvp);
12646 				error = ENOENT;
12647 			}
12648 			if (error != 0)
12649 				return (error);
12650 		}
12651 		/*
12652 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12653 		 * that are contained in direct blocks will be resolved by
12654 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12655 		 * may require a complete sync'ing of the directory. So, we
12656 		 * try the cheap and fast ffs_update first, and if that fails,
12657 		 * then we do the slower ffs_syncvnode of the directory.
12658 		 */
12659 		if (flushparent) {
12660 			int locked;
12661 
12662 			if ((error = ffs_update(pvp, 1)) != 0) {
12663 				vput(pvp);
12664 				return (error);
12665 			}
12666 			ACQUIRE_LOCK(ump);
12667 			locked = 1;
12668 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12669 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12670 					if (wk->wk_type != D_DIRADD)
12671 						panic("softdep_fsync: Unexpected type %s",
12672 						      TYPENAME(wk->wk_type));
12673 					dap = WK_DIRADD(wk);
12674 					if (dap->da_state & DIRCHG)
12675 						pagedep = dap->da_previous->dm_pagedep;
12676 					else
12677 						pagedep = dap->da_pagedep;
12678 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12679 					FREE_LOCK(ump);
12680 					locked = 0;
12681 					if (pagedep_new_block && (error =
12682 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12683 						vput(pvp);
12684 						return (error);
12685 					}
12686 				}
12687 			}
12688 			if (locked)
12689 				FREE_LOCK(ump);
12690 		}
12691 		/*
12692 		 * Flush directory page containing the inode's name.
12693 		 */
12694 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12695 		    &bp);
12696 		if (error == 0)
12697 			error = bwrite(bp);
12698 		else
12699 			brelse(bp);
12700 		vput(pvp);
12701 		if (!ffs_fsfail_cleanup(ump, error))
12702 			return (error);
12703 		ACQUIRE_LOCK(ump);
12704 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12705 			break;
12706 	}
12707 	FREE_LOCK(ump);
12708 	return (0);
12709 }
12710 
12711 /*
12712  * Flush all the dirty bitmaps associated with the block device
12713  * before flushing the rest of the dirty blocks so as to reduce
12714  * the number of dependencies that will have to be rolled back.
12715  *
12716  * XXX Unused?
12717  */
12718 void
12719 softdep_fsync_mountdev(vp)
12720 	struct vnode *vp;
12721 {
12722 	struct buf *bp, *nbp;
12723 	struct worklist *wk;
12724 	struct bufobj *bo;
12725 
12726 	if (!vn_isdisk(vp, NULL))
12727 		panic("softdep_fsync_mountdev: vnode not a disk");
12728 	bo = &vp->v_bufobj;
12729 restart:
12730 	BO_LOCK(bo);
12731 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12732 		/*
12733 		 * If it is already scheduled, skip to the next buffer.
12734 		 */
12735 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12736 			continue;
12737 
12738 		if ((bp->b_flags & B_DELWRI) == 0)
12739 			panic("softdep_fsync_mountdev: not dirty");
12740 		/*
12741 		 * We are only interested in bitmaps with outstanding
12742 		 * dependencies.
12743 		 */
12744 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12745 		    wk->wk_type != D_BMSAFEMAP ||
12746 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12747 			BUF_UNLOCK(bp);
12748 			continue;
12749 		}
12750 		BO_UNLOCK(bo);
12751 		bremfree(bp);
12752 		(void) bawrite(bp);
12753 		goto restart;
12754 	}
12755 	drain_output(vp);
12756 	BO_UNLOCK(bo);
12757 }
12758 
12759 /*
12760  * Sync all cylinder groups that were dirty at the time this function is
12761  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12762  * is used to flush freedep activity that may be holding up writes to a
12763  * indirect block.
12764  */
12765 static int
12766 sync_cgs(mp, waitfor)
12767 	struct mount *mp;
12768 	int waitfor;
12769 {
12770 	struct bmsafemap *bmsafemap;
12771 	struct bmsafemap *sentinel;
12772 	struct ufsmount *ump;
12773 	struct buf *bp;
12774 	int error;
12775 
12776 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12777 	sentinel->sm_cg = -1;
12778 	ump = VFSTOUFS(mp);
12779 	error = 0;
12780 	ACQUIRE_LOCK(ump);
12781 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12782 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12783 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12784 		/* Skip sentinels and cgs with no work to release. */
12785 		if (bmsafemap->sm_cg == -1 ||
12786 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12787 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12788 			LIST_REMOVE(sentinel, sm_next);
12789 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12790 			continue;
12791 		}
12792 		/*
12793 		 * If we don't get the lock and we're waiting try again, if
12794 		 * not move on to the next buf and try to sync it.
12795 		 */
12796 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12797 		if (bp == NULL && waitfor == MNT_WAIT)
12798 			continue;
12799 		LIST_REMOVE(sentinel, sm_next);
12800 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12801 		if (bp == NULL)
12802 			continue;
12803 		FREE_LOCK(ump);
12804 		if (waitfor == MNT_NOWAIT)
12805 			bawrite(bp);
12806 		else
12807 			error = bwrite(bp);
12808 		ACQUIRE_LOCK(ump);
12809 		if (error)
12810 			break;
12811 	}
12812 	LIST_REMOVE(sentinel, sm_next);
12813 	FREE_LOCK(ump);
12814 	free(sentinel, M_BMSAFEMAP);
12815 	return (error);
12816 }
12817 
12818 /*
12819  * This routine is called when we are trying to synchronously flush a
12820  * file. This routine must eliminate any filesystem metadata dependencies
12821  * so that the syncing routine can succeed.
12822  */
12823 int
12824 softdep_sync_metadata(struct vnode *vp)
12825 {
12826 	struct inode *ip;
12827 	int error;
12828 
12829 	ip = VTOI(vp);
12830 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12831 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12832 	/*
12833 	 * Ensure that any direct block dependencies have been cleared,
12834 	 * truncations are started, and inode references are journaled.
12835 	 */
12836 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12837 	/*
12838 	 * Write all journal records to prevent rollbacks on devvp.
12839 	 */
12840 	if (vp->v_type == VCHR)
12841 		softdep_flushjournal(vp->v_mount);
12842 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12843 	/*
12844 	 * Ensure that all truncates are written so we won't find deps on
12845 	 * indirect blocks.
12846 	 */
12847 	process_truncates(vp);
12848 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12849 
12850 	return (error);
12851 }
12852 
12853 /*
12854  * This routine is called when we are attempting to sync a buf with
12855  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12856  * other IO it can but returns EBUSY if the buffer is not yet able to
12857  * be written.  Dependencies which will not cause rollbacks will always
12858  * return 0.
12859  */
12860 int
12861 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12862 {
12863 	struct indirdep *indirdep;
12864 	struct pagedep *pagedep;
12865 	struct allocindir *aip;
12866 	struct newblk *newblk;
12867 	struct ufsmount *ump;
12868 	struct buf *nbp;
12869 	struct worklist *wk;
12870 	int i, error;
12871 
12872 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12873 	    ("softdep_sync_buf called on non-softdep filesystem"));
12874 	/*
12875 	 * For VCHR we just don't want to force flush any dependencies that
12876 	 * will cause rollbacks.
12877 	 */
12878 	if (vp->v_type == VCHR) {
12879 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12880 			return (EBUSY);
12881 		return (0);
12882 	}
12883 	ump = VFSTOUFS(vp->v_mount);
12884 	ACQUIRE_LOCK(ump);
12885 	/*
12886 	 * As we hold the buffer locked, none of its dependencies
12887 	 * will disappear.
12888 	 */
12889 	error = 0;
12890 top:
12891 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12892 		switch (wk->wk_type) {
12893 
12894 		case D_ALLOCDIRECT:
12895 		case D_ALLOCINDIR:
12896 			newblk = WK_NEWBLK(wk);
12897 			if (newblk->nb_jnewblk != NULL) {
12898 				if (waitfor == MNT_NOWAIT) {
12899 					error = EBUSY;
12900 					goto out_unlock;
12901 				}
12902 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12903 				goto top;
12904 			}
12905 			if (newblk->nb_state & DEPCOMPLETE ||
12906 			    waitfor == MNT_NOWAIT)
12907 				continue;
12908 			nbp = newblk->nb_bmsafemap->sm_buf;
12909 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12910 			if (nbp == NULL)
12911 				goto top;
12912 			FREE_LOCK(ump);
12913 			if ((error = bwrite(nbp)) != 0)
12914 				goto out;
12915 			ACQUIRE_LOCK(ump);
12916 			continue;
12917 
12918 		case D_INDIRDEP:
12919 			indirdep = WK_INDIRDEP(wk);
12920 			if (waitfor == MNT_NOWAIT) {
12921 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12922 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12923 					error = EBUSY;
12924 					goto out_unlock;
12925 				}
12926 			}
12927 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12928 				panic("softdep_sync_buf: truncation pending.");
12929 		restart:
12930 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12931 				newblk = (struct newblk *)aip;
12932 				if (newblk->nb_jnewblk != NULL) {
12933 					jwait(&newblk->nb_jnewblk->jn_list,
12934 					    waitfor);
12935 					goto restart;
12936 				}
12937 				if (newblk->nb_state & DEPCOMPLETE)
12938 					continue;
12939 				nbp = newblk->nb_bmsafemap->sm_buf;
12940 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12941 				if (nbp == NULL)
12942 					goto restart;
12943 				FREE_LOCK(ump);
12944 				if ((error = bwrite(nbp)) != 0)
12945 					goto out;
12946 				ACQUIRE_LOCK(ump);
12947 				goto restart;
12948 			}
12949 			continue;
12950 
12951 		case D_PAGEDEP:
12952 			/*
12953 			 * Only flush directory entries in synchronous passes.
12954 			 */
12955 			if (waitfor != MNT_WAIT) {
12956 				error = EBUSY;
12957 				goto out_unlock;
12958 			}
12959 			/*
12960 			 * While syncing snapshots, we must allow recursive
12961 			 * lookups.
12962 			 */
12963 			BUF_AREC(bp);
12964 			/*
12965 			 * We are trying to sync a directory that may
12966 			 * have dependencies on both its own metadata
12967 			 * and/or dependencies on the inodes of any
12968 			 * recently allocated files. We walk its diradd
12969 			 * lists pushing out the associated inode.
12970 			 */
12971 			pagedep = WK_PAGEDEP(wk);
12972 			for (i = 0; i < DAHASHSZ; i++) {
12973 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12974 					continue;
12975 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12976 				    &pagedep->pd_diraddhd[i]))) {
12977 					BUF_NOREC(bp);
12978 					goto out_unlock;
12979 				}
12980 			}
12981 			BUF_NOREC(bp);
12982 			continue;
12983 
12984 		case D_FREEWORK:
12985 		case D_FREEDEP:
12986 		case D_JSEGDEP:
12987 		case D_JNEWBLK:
12988 			continue;
12989 
12990 		default:
12991 			panic("softdep_sync_buf: Unknown type %s",
12992 			    TYPENAME(wk->wk_type));
12993 			/* NOTREACHED */
12994 		}
12995 	}
12996 out_unlock:
12997 	FREE_LOCK(ump);
12998 out:
12999 	return (error);
13000 }
13001 
13002 /*
13003  * Flush the dependencies associated with an inodedep.
13004  */
13005 static int
13006 flush_inodedep_deps(vp, mp, ino)
13007 	struct vnode *vp;
13008 	struct mount *mp;
13009 	ino_t ino;
13010 {
13011 	struct inodedep *inodedep;
13012 	struct inoref *inoref;
13013 	struct ufsmount *ump;
13014 	int error, waitfor;
13015 
13016 	/*
13017 	 * This work is done in two passes. The first pass grabs most
13018 	 * of the buffers and begins asynchronously writing them. The
13019 	 * only way to wait for these asynchronous writes is to sleep
13020 	 * on the filesystem vnode which may stay busy for a long time
13021 	 * if the filesystem is active. So, instead, we make a second
13022 	 * pass over the dependencies blocking on each write. In the
13023 	 * usual case we will be blocking against a write that we
13024 	 * initiated, so when it is done the dependency will have been
13025 	 * resolved. Thus the second pass is expected to end quickly.
13026 	 * We give a brief window at the top of the loop to allow
13027 	 * any pending I/O to complete.
13028 	 */
13029 	ump = VFSTOUFS(mp);
13030 	LOCK_OWNED(ump);
13031 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13032 		if (error)
13033 			return (error);
13034 		FREE_LOCK(ump);
13035 		ACQUIRE_LOCK(ump);
13036 restart:
13037 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13038 			return (0);
13039 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13040 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13041 			    == DEPCOMPLETE) {
13042 				jwait(&inoref->if_list, MNT_WAIT);
13043 				goto restart;
13044 			}
13045 		}
13046 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13047 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13048 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13049 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13050 			continue;
13051 		/*
13052 		 * If pass2, we are done, otherwise do pass 2.
13053 		 */
13054 		if (waitfor == MNT_WAIT)
13055 			break;
13056 		waitfor = MNT_WAIT;
13057 	}
13058 	/*
13059 	 * Try freeing inodedep in case all dependencies have been removed.
13060 	 */
13061 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13062 		(void) free_inodedep(inodedep);
13063 	return (0);
13064 }
13065 
13066 /*
13067  * Flush an inode dependency list.
13068  */
13069 static int
13070 flush_deplist(listhead, waitfor, errorp)
13071 	struct allocdirectlst *listhead;
13072 	int waitfor;
13073 	int *errorp;
13074 {
13075 	struct allocdirect *adp;
13076 	struct newblk *newblk;
13077 	struct ufsmount *ump;
13078 	struct buf *bp;
13079 
13080 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13081 		return (0);
13082 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13083 	LOCK_OWNED(ump);
13084 	TAILQ_FOREACH(adp, listhead, ad_next) {
13085 		newblk = (struct newblk *)adp;
13086 		if (newblk->nb_jnewblk != NULL) {
13087 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13088 			return (1);
13089 		}
13090 		if (newblk->nb_state & DEPCOMPLETE)
13091 			continue;
13092 		bp = newblk->nb_bmsafemap->sm_buf;
13093 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13094 		if (bp == NULL) {
13095 			if (waitfor == MNT_NOWAIT)
13096 				continue;
13097 			return (1);
13098 		}
13099 		FREE_LOCK(ump);
13100 		if (waitfor == MNT_NOWAIT)
13101 			bawrite(bp);
13102 		else
13103 			*errorp = bwrite(bp);
13104 		ACQUIRE_LOCK(ump);
13105 		return (1);
13106 	}
13107 	return (0);
13108 }
13109 
13110 /*
13111  * Flush dependencies associated with an allocdirect block.
13112  */
13113 static int
13114 flush_newblk_dep(vp, mp, lbn)
13115 	struct vnode *vp;
13116 	struct mount *mp;
13117 	ufs_lbn_t lbn;
13118 {
13119 	struct newblk *newblk;
13120 	struct ufsmount *ump;
13121 	struct bufobj *bo;
13122 	struct inode *ip;
13123 	struct buf *bp;
13124 	ufs2_daddr_t blkno;
13125 	int error;
13126 
13127 	error = 0;
13128 	bo = &vp->v_bufobj;
13129 	ip = VTOI(vp);
13130 	blkno = DIP(ip, i_db[lbn]);
13131 	if (blkno == 0)
13132 		panic("flush_newblk_dep: Missing block");
13133 	ump = VFSTOUFS(mp);
13134 	ACQUIRE_LOCK(ump);
13135 	/*
13136 	 * Loop until all dependencies related to this block are satisfied.
13137 	 * We must be careful to restart after each sleep in case a write
13138 	 * completes some part of this process for us.
13139 	 */
13140 	for (;;) {
13141 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13142 			FREE_LOCK(ump);
13143 			break;
13144 		}
13145 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13146 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13147 		/*
13148 		 * Flush the journal.
13149 		 */
13150 		if (newblk->nb_jnewblk != NULL) {
13151 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13152 			continue;
13153 		}
13154 		/*
13155 		 * Write the bitmap dependency.
13156 		 */
13157 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13158 			bp = newblk->nb_bmsafemap->sm_buf;
13159 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13160 			if (bp == NULL)
13161 				continue;
13162 			FREE_LOCK(ump);
13163 			error = bwrite(bp);
13164 			if (error)
13165 				break;
13166 			ACQUIRE_LOCK(ump);
13167 			continue;
13168 		}
13169 		/*
13170 		 * Write the buffer.
13171 		 */
13172 		FREE_LOCK(ump);
13173 		BO_LOCK(bo);
13174 		bp = gbincore(bo, lbn);
13175 		if (bp != NULL) {
13176 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13177 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13178 			if (error == ENOLCK) {
13179 				ACQUIRE_LOCK(ump);
13180 				error = 0;
13181 				continue; /* Slept, retry */
13182 			}
13183 			if (error != 0)
13184 				break;	/* Failed */
13185 			if (bp->b_flags & B_DELWRI) {
13186 				bremfree(bp);
13187 				error = bwrite(bp);
13188 				if (error)
13189 					break;
13190 			} else
13191 				BUF_UNLOCK(bp);
13192 		} else
13193 			BO_UNLOCK(bo);
13194 		/*
13195 		 * We have to wait for the direct pointers to
13196 		 * point at the newdirblk before the dependency
13197 		 * will go away.
13198 		 */
13199 		error = ffs_update(vp, 1);
13200 		if (error)
13201 			break;
13202 		ACQUIRE_LOCK(ump);
13203 	}
13204 	return (error);
13205 }
13206 
13207 /*
13208  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13209  */
13210 static int
13211 flush_pagedep_deps(pvp, mp, diraddhdp)
13212 	struct vnode *pvp;
13213 	struct mount *mp;
13214 	struct diraddhd *diraddhdp;
13215 {
13216 	struct inodedep *inodedep;
13217 	struct inoref *inoref;
13218 	struct ufsmount *ump;
13219 	struct diradd *dap;
13220 	struct vnode *vp;
13221 	int error = 0;
13222 	struct buf *bp;
13223 	ino_t inum;
13224 	struct diraddhd unfinished;
13225 
13226 	LIST_INIT(&unfinished);
13227 	ump = VFSTOUFS(mp);
13228 	LOCK_OWNED(ump);
13229 restart:
13230 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13231 		/*
13232 		 * Flush ourselves if this directory entry
13233 		 * has a MKDIR_PARENT dependency.
13234 		 */
13235 		if (dap->da_state & MKDIR_PARENT) {
13236 			FREE_LOCK(ump);
13237 			if ((error = ffs_update(pvp, 1)) != 0)
13238 				break;
13239 			ACQUIRE_LOCK(ump);
13240 			/*
13241 			 * If that cleared dependencies, go on to next.
13242 			 */
13243 			if (dap != LIST_FIRST(diraddhdp))
13244 				continue;
13245 			/*
13246 			 * All MKDIR_PARENT dependencies and all the
13247 			 * NEWBLOCK pagedeps that are contained in direct
13248 			 * blocks were resolved by doing above ffs_update.
13249 			 * Pagedeps contained in indirect blocks may
13250 			 * require a complete sync'ing of the directory.
13251 			 * We are in the midst of doing a complete sync,
13252 			 * so if they are not resolved in this pass we
13253 			 * defer them for now as they will be sync'ed by
13254 			 * our caller shortly.
13255 			 */
13256 			LIST_REMOVE(dap, da_pdlist);
13257 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13258 			continue;
13259 		}
13260 		/*
13261 		 * A newly allocated directory must have its "." and
13262 		 * ".." entries written out before its name can be
13263 		 * committed in its parent.
13264 		 */
13265 		inum = dap->da_newinum;
13266 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13267 			panic("flush_pagedep_deps: lost inode1");
13268 		/*
13269 		 * Wait for any pending journal adds to complete so we don't
13270 		 * cause rollbacks while syncing.
13271 		 */
13272 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13273 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13274 			    == DEPCOMPLETE) {
13275 				jwait(&inoref->if_list, MNT_WAIT);
13276 				goto restart;
13277 			}
13278 		}
13279 		if (dap->da_state & MKDIR_BODY) {
13280 			FREE_LOCK(ump);
13281 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13282 			    FFSV_FORCEINSMQ)))
13283 				break;
13284 			MPASS(VTOI(vp)->i_mode != 0);
13285 			error = flush_newblk_dep(vp, mp, 0);
13286 			/*
13287 			 * If we still have the dependency we might need to
13288 			 * update the vnode to sync the new link count to
13289 			 * disk.
13290 			 */
13291 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13292 				error = ffs_update(vp, 1);
13293 			vput(vp);
13294 			if (error != 0)
13295 				break;
13296 			ACQUIRE_LOCK(ump);
13297 			/*
13298 			 * If that cleared dependencies, go on to next.
13299 			 */
13300 			if (dap != LIST_FIRST(diraddhdp))
13301 				continue;
13302 			if (dap->da_state & MKDIR_BODY) {
13303 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13304 				    &inodedep);
13305 				panic("flush_pagedep_deps: MKDIR_BODY "
13306 				    "inodedep %p dap %p vp %p",
13307 				    inodedep, dap, vp);
13308 			}
13309 		}
13310 		/*
13311 		 * Flush the inode on which the directory entry depends.
13312 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13313 		 * the only remaining dependency is that the updated inode
13314 		 * count must get pushed to disk. The inode has already
13315 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13316 		 * the time of the reference count change. So we need only
13317 		 * locate that buffer, ensure that there will be no rollback
13318 		 * caused by a bitmap dependency, then write the inode buffer.
13319 		 */
13320 retry:
13321 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13322 			panic("flush_pagedep_deps: lost inode");
13323 		/*
13324 		 * If the inode still has bitmap dependencies,
13325 		 * push them to disk.
13326 		 */
13327 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13328 			bp = inodedep->id_bmsafemap->sm_buf;
13329 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13330 			if (bp == NULL)
13331 				goto retry;
13332 			FREE_LOCK(ump);
13333 			if ((error = bwrite(bp)) != 0)
13334 				break;
13335 			ACQUIRE_LOCK(ump);
13336 			if (dap != LIST_FIRST(diraddhdp))
13337 				continue;
13338 		}
13339 		/*
13340 		 * If the inode is still sitting in a buffer waiting
13341 		 * to be written or waiting for the link count to be
13342 		 * adjusted update it here to flush it to disk.
13343 		 */
13344 		if (dap == LIST_FIRST(diraddhdp)) {
13345 			FREE_LOCK(ump);
13346 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13347 			    FFSV_FORCEINSMQ)))
13348 				break;
13349 			MPASS(VTOI(vp)->i_mode != 0);
13350 			error = ffs_update(vp, 1);
13351 			vput(vp);
13352 			if (error)
13353 				break;
13354 			ACQUIRE_LOCK(ump);
13355 		}
13356 		/*
13357 		 * If we have failed to get rid of all the dependencies
13358 		 * then something is seriously wrong.
13359 		 */
13360 		if (dap == LIST_FIRST(diraddhdp)) {
13361 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13362 			panic("flush_pagedep_deps: failed to flush "
13363 			    "inodedep %p ino %ju dap %p",
13364 			    inodedep, (uintmax_t)inum, dap);
13365 		}
13366 	}
13367 	if (error)
13368 		ACQUIRE_LOCK(ump);
13369 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13370 		LIST_REMOVE(dap, da_pdlist);
13371 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13372 	}
13373 	return (error);
13374 }
13375 
13376 /*
13377  * A large burst of file addition or deletion activity can drive the
13378  * memory load excessively high. First attempt to slow things down
13379  * using the techniques below. If that fails, this routine requests
13380  * the offending operations to fall back to running synchronously
13381  * until the memory load returns to a reasonable level.
13382  */
13383 int
13384 softdep_slowdown(vp)
13385 	struct vnode *vp;
13386 {
13387 	struct ufsmount *ump;
13388 	int jlow;
13389 	int max_softdeps_hard;
13390 
13391 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13392 	    ("softdep_slowdown called on non-softdep filesystem"));
13393 	ump = VFSTOUFS(vp->v_mount);
13394 	ACQUIRE_LOCK(ump);
13395 	jlow = 0;
13396 	/*
13397 	 * Check for journal space if needed.
13398 	 */
13399 	if (DOINGSUJ(vp)) {
13400 		if (journal_space(ump, 0) == 0)
13401 			jlow = 1;
13402 	}
13403 	/*
13404 	 * If the system is under its limits and our filesystem is
13405 	 * not responsible for more than our share of the usage and
13406 	 * we are not low on journal space, then no need to slow down.
13407 	 */
13408 	max_softdeps_hard = max_softdeps * 11 / 10;
13409 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13410 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13411 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13412 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13413 	    ump->softdep_curdeps[D_DIRREM] <
13414 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13415 	    ump->softdep_curdeps[D_INODEDEP] <
13416 	    max_softdeps_hard / stat_flush_threads &&
13417 	    ump->softdep_curdeps[D_INDIRDEP] <
13418 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13419 	    ump->softdep_curdeps[D_FREEBLKS] <
13420 	    max_softdeps_hard / stat_flush_threads) {
13421 		FREE_LOCK(ump);
13422   		return (0);
13423 	}
13424 	/*
13425 	 * If the journal is low or our filesystem is over its limit
13426 	 * then speedup the cleanup.
13427 	 */
13428 	if (ump->softdep_curdeps[D_INDIRDEP] <
13429 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13430 		softdep_speedup(ump);
13431 	stat_sync_limit_hit += 1;
13432 	FREE_LOCK(ump);
13433 	/*
13434 	 * We only slow down the rate at which new dependencies are
13435 	 * generated if we are not using journaling. With journaling,
13436 	 * the cleanup should always be sufficient to keep things
13437 	 * under control.
13438 	 */
13439 	if (DOINGSUJ(vp))
13440 		return (0);
13441 	return (1);
13442 }
13443 
13444 /*
13445  * Called by the allocation routines when they are about to fail
13446  * in the hope that we can free up the requested resource (inodes
13447  * or disk space).
13448  *
13449  * First check to see if the work list has anything on it. If it has,
13450  * clean up entries until we successfully free the requested resource.
13451  * Because this process holds inodes locked, we cannot handle any remove
13452  * requests that might block on a locked inode as that could lead to
13453  * deadlock. If the worklist yields none of the requested resource,
13454  * start syncing out vnodes to free up the needed space.
13455  */
13456 int
13457 softdep_request_cleanup(fs, vp, cred, resource)
13458 	struct fs *fs;
13459 	struct vnode *vp;
13460 	struct ucred *cred;
13461 	int resource;
13462 {
13463 	struct ufsmount *ump;
13464 	struct mount *mp;
13465 	long starttime;
13466 	ufs2_daddr_t needed;
13467 	int error, failed_vnode;
13468 
13469 	/*
13470 	 * If we are being called because of a process doing a
13471 	 * copy-on-write, then it is not safe to process any
13472 	 * worklist items as we will recurse into the copyonwrite
13473 	 * routine.  This will result in an incoherent snapshot.
13474 	 * If the vnode that we hold is a snapshot, we must avoid
13475 	 * handling other resources that could cause deadlock.
13476 	 */
13477 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13478 		return (0);
13479 
13480 	if (resource == FLUSH_BLOCKS_WAIT)
13481 		stat_cleanup_blkrequests += 1;
13482 	else
13483 		stat_cleanup_inorequests += 1;
13484 
13485 	mp = vp->v_mount;
13486 	ump = VFSTOUFS(mp);
13487 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13488 	UFS_UNLOCK(ump);
13489 	error = ffs_update(vp, 1);
13490 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13491 		UFS_LOCK(ump);
13492 		return (0);
13493 	}
13494 	/*
13495 	 * If we are in need of resources, start by cleaning up
13496 	 * any block removals associated with our inode.
13497 	 */
13498 	ACQUIRE_LOCK(ump);
13499 	process_removes(vp);
13500 	process_truncates(vp);
13501 	FREE_LOCK(ump);
13502 	/*
13503 	 * Now clean up at least as many resources as we will need.
13504 	 *
13505 	 * When requested to clean up inodes, the number that are needed
13506 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13507 	 * plus a bit of slop (2) in case some more writers show up while
13508 	 * we are cleaning.
13509 	 *
13510 	 * When requested to free up space, the amount of space that
13511 	 * we need is enough blocks to allocate a full-sized segment
13512 	 * (fs_contigsumsize). The number of such segments that will
13513 	 * be needed is set by the number of simultaneous writers
13514 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13515 	 * writers show up while we are cleaning.
13516 	 *
13517 	 * Additionally, if we are unpriviledged and allocating space,
13518 	 * we need to ensure that we clean up enough blocks to get the
13519 	 * needed number of blocks over the threshold of the minimum
13520 	 * number of blocks required to be kept free by the filesystem
13521 	 * (fs_minfree).
13522 	 */
13523 	if (resource == FLUSH_INODES_WAIT) {
13524 		needed = vfs_mount_fetch_counter(vp->v_mount,
13525 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13526 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13527 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13528 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13529 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13530 			needed += fragstoblks(fs,
13531 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13532 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13533 	} else {
13534 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13535 		    resource);
13536 		UFS_LOCK(ump);
13537 		return (0);
13538 	}
13539 	starttime = time_second;
13540 retry:
13541 	if (resource == FLUSH_BLOCKS_WAIT &&
13542 	    fs->fs_cstotal.cs_nbfree <= needed)
13543 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13544 		    BIO_SPEEDUP_TRIM);
13545 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13546 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13547 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13548 	    fs->fs_cstotal.cs_nifree <= needed)) {
13549 		ACQUIRE_LOCK(ump);
13550 		if (ump->softdep_on_worklist > 0 &&
13551 		    process_worklist_item(UFSTOVFS(ump),
13552 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13553 			stat_worklist_push += 1;
13554 		FREE_LOCK(ump);
13555 	}
13556 	/*
13557 	 * If we still need resources and there are no more worklist
13558 	 * entries to process to obtain them, we have to start flushing
13559 	 * the dirty vnodes to force the release of additional requests
13560 	 * to the worklist that we can then process to reap addition
13561 	 * resources. We walk the vnodes associated with the mount point
13562 	 * until we get the needed worklist requests that we can reap.
13563 	 *
13564 	 * If there are several threads all needing to clean the same
13565 	 * mount point, only one is allowed to walk the mount list.
13566 	 * When several threads all try to walk the same mount list,
13567 	 * they end up competing with each other and often end up in
13568 	 * livelock. This approach ensures that forward progress is
13569 	 * made at the cost of occational ENOSPC errors being returned
13570 	 * that might otherwise have been avoided.
13571 	 */
13572 	error = 1;
13573 	if ((resource == FLUSH_BLOCKS_WAIT &&
13574 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13575 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13576 	     fs->fs_cstotal.cs_nifree <= needed)) {
13577 		ACQUIRE_LOCK(ump);
13578 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13579 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13580 			FREE_LOCK(ump);
13581 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13582 			ACQUIRE_LOCK(ump);
13583 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13584 			FREE_LOCK(ump);
13585 			if (ump->softdep_on_worklist > 0) {
13586 				stat_cleanup_retries += 1;
13587 				if (!failed_vnode)
13588 					goto retry;
13589 			}
13590 		} else {
13591 			FREE_LOCK(ump);
13592 			error = 0;
13593 		}
13594 		stat_cleanup_failures += 1;
13595 	}
13596 	if (time_second - starttime > stat_cleanup_high_delay)
13597 		stat_cleanup_high_delay = time_second - starttime;
13598 	UFS_LOCK(ump);
13599 	return (error);
13600 }
13601 
13602 /*
13603  * Scan the vnodes for the specified mount point flushing out any
13604  * vnodes that can be locked without waiting. Finally, try to flush
13605  * the device associated with the mount point if it can be locked
13606  * without waiting.
13607  *
13608  * We return 0 if we were able to lock every vnode in our scan.
13609  * If we had to skip one or more vnodes, we return 1.
13610  */
13611 static int
13612 softdep_request_cleanup_flush(mp, ump)
13613 	struct mount *mp;
13614 	struct ufsmount *ump;
13615 {
13616 	struct thread *td;
13617 	struct vnode *lvp, *mvp;
13618 	int failed_vnode;
13619 
13620 	failed_vnode = 0;
13621 	td = curthread;
13622 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13623 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13624 			VI_UNLOCK(lvp);
13625 			continue;
13626 		}
13627 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13628 		    td) != 0) {
13629 			failed_vnode = 1;
13630 			continue;
13631 		}
13632 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13633 			vput(lvp);
13634 			continue;
13635 		}
13636 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13637 		vput(lvp);
13638 	}
13639 	lvp = ump->um_devvp;
13640 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13641 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13642 		VOP_UNLOCK(lvp);
13643 	}
13644 	return (failed_vnode);
13645 }
13646 
13647 static bool
13648 softdep_excess_items(struct ufsmount *ump, int item)
13649 {
13650 
13651 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13652 	return (dep_current[item] > max_softdeps &&
13653 	    ump->softdep_curdeps[item] > max_softdeps /
13654 	    stat_flush_threads);
13655 }
13656 
13657 static void
13658 schedule_cleanup(struct mount *mp)
13659 {
13660 	struct ufsmount *ump;
13661 	struct thread *td;
13662 
13663 	ump = VFSTOUFS(mp);
13664 	LOCK_OWNED(ump);
13665 	FREE_LOCK(ump);
13666 	td = curthread;
13667 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13668 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13669 		/*
13670 		 * No ast is delivered to kernel threads, so nobody
13671 		 * would deref the mp.  Some kernel threads
13672 		 * explicitely check for AST, e.g. NFS daemon does
13673 		 * this in the serving loop.
13674 		 */
13675 		return;
13676 	}
13677 	if (td->td_su != NULL)
13678 		vfs_rel(td->td_su);
13679 	vfs_ref(mp);
13680 	td->td_su = mp;
13681 	thread_lock(td);
13682 	td->td_flags |= TDF_ASTPENDING;
13683 	thread_unlock(td);
13684 }
13685 
13686 static void
13687 softdep_ast_cleanup_proc(struct thread *td)
13688 {
13689 	struct mount *mp;
13690 	struct ufsmount *ump;
13691 	int error;
13692 	bool req;
13693 
13694 	while ((mp = td->td_su) != NULL) {
13695 		td->td_su = NULL;
13696 		error = vfs_busy(mp, MBF_NOWAIT);
13697 		vfs_rel(mp);
13698 		if (error != 0)
13699 			return;
13700 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13701 			ump = VFSTOUFS(mp);
13702 			for (;;) {
13703 				req = false;
13704 				ACQUIRE_LOCK(ump);
13705 				if (softdep_excess_items(ump, D_INODEDEP)) {
13706 					req = true;
13707 					request_cleanup(mp, FLUSH_INODES);
13708 				}
13709 				if (softdep_excess_items(ump, D_DIRREM)) {
13710 					req = true;
13711 					request_cleanup(mp, FLUSH_BLOCKS);
13712 				}
13713 				FREE_LOCK(ump);
13714 				if (softdep_excess_items(ump, D_NEWBLK) ||
13715 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13716 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13717 					error = vn_start_write(NULL, &mp,
13718 					    V_WAIT);
13719 					if (error == 0) {
13720 						req = true;
13721 						VFS_SYNC(mp, MNT_WAIT);
13722 						vn_finished_write(mp);
13723 					}
13724 				}
13725 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13726 					break;
13727 			}
13728 		}
13729 		vfs_unbusy(mp);
13730 	}
13731 	if ((mp = td->td_su) != NULL) {
13732 		td->td_su = NULL;
13733 		vfs_rel(mp);
13734 	}
13735 }
13736 
13737 /*
13738  * If memory utilization has gotten too high, deliberately slow things
13739  * down and speed up the I/O processing.
13740  */
13741 static int
13742 request_cleanup(mp, resource)
13743 	struct mount *mp;
13744 	int resource;
13745 {
13746 	struct thread *td = curthread;
13747 	struct ufsmount *ump;
13748 
13749 	ump = VFSTOUFS(mp);
13750 	LOCK_OWNED(ump);
13751 	/*
13752 	 * We never hold up the filesystem syncer or buf daemon.
13753 	 */
13754 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13755 		return (0);
13756 	/*
13757 	 * First check to see if the work list has gotten backlogged.
13758 	 * If it has, co-opt this process to help clean up two entries.
13759 	 * Because this process may hold inodes locked, we cannot
13760 	 * handle any remove requests that might block on a locked
13761 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13762 	 * to avoid recursively processing the worklist.
13763 	 */
13764 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13765 		td->td_pflags |= TDP_SOFTDEP;
13766 		process_worklist_item(mp, 2, LK_NOWAIT);
13767 		td->td_pflags &= ~TDP_SOFTDEP;
13768 		stat_worklist_push += 2;
13769 		return(1);
13770 	}
13771 	/*
13772 	 * Next, we attempt to speed up the syncer process. If that
13773 	 * is successful, then we allow the process to continue.
13774 	 */
13775 	if (softdep_speedup(ump) &&
13776 	    resource != FLUSH_BLOCKS_WAIT &&
13777 	    resource != FLUSH_INODES_WAIT)
13778 		return(0);
13779 	/*
13780 	 * If we are resource constrained on inode dependencies, try
13781 	 * flushing some dirty inodes. Otherwise, we are constrained
13782 	 * by file deletions, so try accelerating flushes of directories
13783 	 * with removal dependencies. We would like to do the cleanup
13784 	 * here, but we probably hold an inode locked at this point and
13785 	 * that might deadlock against one that we try to clean. So,
13786 	 * the best that we can do is request the syncer daemon to do
13787 	 * the cleanup for us.
13788 	 */
13789 	switch (resource) {
13790 
13791 	case FLUSH_INODES:
13792 	case FLUSH_INODES_WAIT:
13793 		ACQUIRE_GBLLOCK(&lk);
13794 		stat_ino_limit_push += 1;
13795 		req_clear_inodedeps += 1;
13796 		FREE_GBLLOCK(&lk);
13797 		stat_countp = &stat_ino_limit_hit;
13798 		break;
13799 
13800 	case FLUSH_BLOCKS:
13801 	case FLUSH_BLOCKS_WAIT:
13802 		ACQUIRE_GBLLOCK(&lk);
13803 		stat_blk_limit_push += 1;
13804 		req_clear_remove += 1;
13805 		FREE_GBLLOCK(&lk);
13806 		stat_countp = &stat_blk_limit_hit;
13807 		break;
13808 
13809 	default:
13810 		panic("request_cleanup: unknown type");
13811 	}
13812 	/*
13813 	 * Hopefully the syncer daemon will catch up and awaken us.
13814 	 * We wait at most tickdelay before proceeding in any case.
13815 	 */
13816 	ACQUIRE_GBLLOCK(&lk);
13817 	FREE_LOCK(ump);
13818 	proc_waiting += 1;
13819 	if (callout_pending(&softdep_callout) == FALSE)
13820 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13821 		    pause_timer, 0);
13822 
13823 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13824 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13825 	proc_waiting -= 1;
13826 	FREE_GBLLOCK(&lk);
13827 	ACQUIRE_LOCK(ump);
13828 	return (1);
13829 }
13830 
13831 /*
13832  * Awaken processes pausing in request_cleanup and clear proc_waiting
13833  * to indicate that there is no longer a timer running. Pause_timer
13834  * will be called with the global softdep mutex (&lk) locked.
13835  */
13836 static void
13837 pause_timer(arg)
13838 	void *arg;
13839 {
13840 
13841 	GBLLOCK_OWNED(&lk);
13842 	/*
13843 	 * The callout_ API has acquired mtx and will hold it around this
13844 	 * function call.
13845 	 */
13846 	*stat_countp += proc_waiting;
13847 	wakeup(&proc_waiting);
13848 }
13849 
13850 /*
13851  * If requested, try removing inode or removal dependencies.
13852  */
13853 static void
13854 check_clear_deps(mp)
13855 	struct mount *mp;
13856 {
13857 	struct ufsmount *ump;
13858 	bool suj_susp;
13859 
13860 	/*
13861 	 * Tell the lower layers that any TRIM or WRITE transactions that have
13862 	 * been delayed for performance reasons should proceed to help alleviate
13863 	 * the shortage faster. The race between checking req_* and the softdep
13864 	 * mutex (lk) is fine since this is an advisory operation that at most
13865 	 * causes deferred work to be done sooner.
13866 	 */
13867 	ump = VFSTOUFS(mp);
13868 	suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended;
13869 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
13870 		FREE_LOCK(ump);
13871 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
13872 		ACQUIRE_LOCK(ump);
13873 	}
13874 
13875 	/*
13876 	 * If we are suspended, it may be because of our using
13877 	 * too many inodedeps, so help clear them out.
13878 	 */
13879 	if (suj_susp)
13880 		clear_inodedeps(mp);
13881 
13882 	/*
13883 	 * General requests for cleanup of backed up dependencies
13884 	 */
13885 	ACQUIRE_GBLLOCK(&lk);
13886 	if (req_clear_inodedeps) {
13887 		req_clear_inodedeps -= 1;
13888 		FREE_GBLLOCK(&lk);
13889 		clear_inodedeps(mp);
13890 		ACQUIRE_GBLLOCK(&lk);
13891 		wakeup(&proc_waiting);
13892 	}
13893 	if (req_clear_remove) {
13894 		req_clear_remove -= 1;
13895 		FREE_GBLLOCK(&lk);
13896 		clear_remove(mp);
13897 		ACQUIRE_GBLLOCK(&lk);
13898 		wakeup(&proc_waiting);
13899 	}
13900 	FREE_GBLLOCK(&lk);
13901 }
13902 
13903 /*
13904  * Flush out a directory with at least one removal dependency in an effort to
13905  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13906  */
13907 static void
13908 clear_remove(mp)
13909 	struct mount *mp;
13910 {
13911 	struct pagedep_hashhead *pagedephd;
13912 	struct pagedep *pagedep;
13913 	struct ufsmount *ump;
13914 	struct vnode *vp;
13915 	struct bufobj *bo;
13916 	int error, cnt;
13917 	ino_t ino;
13918 
13919 	ump = VFSTOUFS(mp);
13920 	LOCK_OWNED(ump);
13921 
13922 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13923 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13924 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13925 			ump->pagedep_nextclean = 0;
13926 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13927 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13928 				continue;
13929 			ino = pagedep->pd_ino;
13930 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13931 				continue;
13932 			FREE_LOCK(ump);
13933 
13934 			/*
13935 			 * Let unmount clear deps
13936 			 */
13937 			error = vfs_busy(mp, MBF_NOWAIT);
13938 			if (error != 0)
13939 				goto finish_write;
13940 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13941 			     FFSV_FORCEINSMQ);
13942 			vfs_unbusy(mp);
13943 			if (error != 0) {
13944 				softdep_error("clear_remove: vget", error);
13945 				goto finish_write;
13946 			}
13947 			MPASS(VTOI(vp)->i_mode != 0);
13948 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13949 				softdep_error("clear_remove: fsync", error);
13950 			bo = &vp->v_bufobj;
13951 			BO_LOCK(bo);
13952 			drain_output(vp);
13953 			BO_UNLOCK(bo);
13954 			vput(vp);
13955 		finish_write:
13956 			vn_finished_write(mp);
13957 			ACQUIRE_LOCK(ump);
13958 			return;
13959 		}
13960 	}
13961 }
13962 
13963 /*
13964  * Clear out a block of dirty inodes in an effort to reduce
13965  * the number of inodedep dependency structures.
13966  */
13967 static void
13968 clear_inodedeps(mp)
13969 	struct mount *mp;
13970 {
13971 	struct inodedep_hashhead *inodedephd;
13972 	struct inodedep *inodedep;
13973 	struct ufsmount *ump;
13974 	struct vnode *vp;
13975 	struct fs *fs;
13976 	int error, cnt;
13977 	ino_t firstino, lastino, ino;
13978 
13979 	ump = VFSTOUFS(mp);
13980 	fs = ump->um_fs;
13981 	LOCK_OWNED(ump);
13982 	/*
13983 	 * Pick a random inode dependency to be cleared.
13984 	 * We will then gather up all the inodes in its block
13985 	 * that have dependencies and flush them out.
13986 	 */
13987 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13988 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13989 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13990 			ump->inodedep_nextclean = 0;
13991 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13992 			break;
13993 	}
13994 	if (inodedep == NULL)
13995 		return;
13996 	/*
13997 	 * Find the last inode in the block with dependencies.
13998 	 */
13999 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14000 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14001 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14002 			break;
14003 	/*
14004 	 * Asynchronously push all but the last inode with dependencies.
14005 	 * Synchronously push the last inode with dependencies to ensure
14006 	 * that the inode block gets written to free up the inodedeps.
14007 	 */
14008 	for (ino = firstino; ino <= lastino; ino++) {
14009 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14010 			continue;
14011 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14012 			continue;
14013 		FREE_LOCK(ump);
14014 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14015 		if (error != 0) {
14016 			vn_finished_write(mp);
14017 			ACQUIRE_LOCK(ump);
14018 			return;
14019 		}
14020 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14021 		    FFSV_FORCEINSMQ)) != 0) {
14022 			softdep_error("clear_inodedeps: vget", error);
14023 			vfs_unbusy(mp);
14024 			vn_finished_write(mp);
14025 			ACQUIRE_LOCK(ump);
14026 			return;
14027 		}
14028 		vfs_unbusy(mp);
14029 		if (VTOI(vp)->i_mode == 0) {
14030 			vgone(vp);
14031 		} else if (ino == lastino) {
14032 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
14033 				softdep_error("clear_inodedeps: fsync1", error);
14034 		} else {
14035 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14036 				softdep_error("clear_inodedeps: fsync2", error);
14037 			BO_LOCK(&vp->v_bufobj);
14038 			drain_output(vp);
14039 			BO_UNLOCK(&vp->v_bufobj);
14040 		}
14041 		vput(vp);
14042 		vn_finished_write(mp);
14043 		ACQUIRE_LOCK(ump);
14044 	}
14045 }
14046 
14047 void
14048 softdep_buf_append(bp, wkhd)
14049 	struct buf *bp;
14050 	struct workhead *wkhd;
14051 {
14052 	struct worklist *wk;
14053 	struct ufsmount *ump;
14054 
14055 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14056 		return;
14057 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14058 	    ("softdep_buf_append called on non-softdep filesystem"));
14059 	ump = VFSTOUFS(wk->wk_mp);
14060 	ACQUIRE_LOCK(ump);
14061 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14062 		WORKLIST_REMOVE(wk);
14063 		WORKLIST_INSERT(&bp->b_dep, wk);
14064 	}
14065 	FREE_LOCK(ump);
14066 
14067 }
14068 
14069 void
14070 softdep_inode_append(ip, cred, wkhd)
14071 	struct inode *ip;
14072 	struct ucred *cred;
14073 	struct workhead *wkhd;
14074 {
14075 	struct buf *bp;
14076 	struct fs *fs;
14077 	struct ufsmount *ump;
14078 	int error;
14079 
14080 	ump = ITOUMP(ip);
14081 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14082 	    ("softdep_inode_append called on non-softdep filesystem"));
14083 	fs = ump->um_fs;
14084 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14085 	    (int)fs->fs_bsize, cred, &bp);
14086 	if (error) {
14087 		bqrelse(bp);
14088 		softdep_freework(wkhd);
14089 		return;
14090 	}
14091 	softdep_buf_append(bp, wkhd);
14092 	bqrelse(bp);
14093 }
14094 
14095 void
14096 softdep_freework(wkhd)
14097 	struct workhead *wkhd;
14098 {
14099 	struct worklist *wk;
14100 	struct ufsmount *ump;
14101 
14102 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14103 		return;
14104 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14105 	    ("softdep_freework called on non-softdep filesystem"));
14106 	ump = VFSTOUFS(wk->wk_mp);
14107 	ACQUIRE_LOCK(ump);
14108 	handle_jwork(wkhd);
14109 	FREE_LOCK(ump);
14110 }
14111 
14112 static struct ufsmount *
14113 softdep_bp_to_mp(bp)
14114 	struct buf *bp;
14115 {
14116 	struct mount *mp;
14117 	struct vnode *vp;
14118 
14119 	if (LIST_EMPTY(&bp->b_dep))
14120 		return (NULL);
14121 	vp = bp->b_vp;
14122 	KASSERT(vp != NULL,
14123 	    ("%s, buffer with dependencies lacks vnode", __func__));
14124 
14125 	/*
14126 	 * The ump mount point is stable after we get a correct
14127 	 * pointer, since bp is locked and this prevents unmount from
14128 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14129 	 * head wk_mp, because we do not yet own SU ump lock and
14130 	 * workitem might be freed while dereferenced.
14131 	 */
14132 retry:
14133 	switch (vp->v_type) {
14134 	case VCHR:
14135 		VI_LOCK(vp);
14136 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14137 		VI_UNLOCK(vp);
14138 		if (mp == NULL)
14139 			goto retry;
14140 		break;
14141 	case VREG:
14142 	case VDIR:
14143 	case VLNK:
14144 	case VFIFO:
14145 	case VSOCK:
14146 		mp = vp->v_mount;
14147 		break;
14148 	case VBLK:
14149 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14150 		/* FALLTHROUGH */
14151 	case VNON:
14152 	case VBAD:
14153 	case VMARKER:
14154 		mp = NULL;
14155 		break;
14156 	default:
14157 		vn_printf(vp, "unknown vnode type");
14158 		mp = NULL;
14159 		break;
14160 	}
14161 	return (VFSTOUFS(mp));
14162 }
14163 
14164 /*
14165  * Function to determine if the buffer has outstanding dependencies
14166  * that will cause a roll-back if the buffer is written. If wantcount
14167  * is set, return number of dependencies, otherwise just yes or no.
14168  */
14169 static int
14170 softdep_count_dependencies(bp, wantcount)
14171 	struct buf *bp;
14172 	int wantcount;
14173 {
14174 	struct worklist *wk;
14175 	struct ufsmount *ump;
14176 	struct bmsafemap *bmsafemap;
14177 	struct freework *freework;
14178 	struct inodedep *inodedep;
14179 	struct indirdep *indirdep;
14180 	struct freeblks *freeblks;
14181 	struct allocindir *aip;
14182 	struct pagedep *pagedep;
14183 	struct dirrem *dirrem;
14184 	struct newblk *newblk;
14185 	struct mkdir *mkdir;
14186 	struct diradd *dap;
14187 	int i, retval;
14188 
14189 	ump = softdep_bp_to_mp(bp);
14190 	if (ump == NULL)
14191 		return (0);
14192 	retval = 0;
14193 	ACQUIRE_LOCK(ump);
14194 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14195 		switch (wk->wk_type) {
14196 
14197 		case D_INODEDEP:
14198 			inodedep = WK_INODEDEP(wk);
14199 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14200 				/* bitmap allocation dependency */
14201 				retval += 1;
14202 				if (!wantcount)
14203 					goto out;
14204 			}
14205 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14206 				/* direct block pointer dependency */
14207 				retval += 1;
14208 				if (!wantcount)
14209 					goto out;
14210 			}
14211 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14212 				/* direct block pointer dependency */
14213 				retval += 1;
14214 				if (!wantcount)
14215 					goto out;
14216 			}
14217 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14218 				/* Add reference dependency. */
14219 				retval += 1;
14220 				if (!wantcount)
14221 					goto out;
14222 			}
14223 			continue;
14224 
14225 		case D_INDIRDEP:
14226 			indirdep = WK_INDIRDEP(wk);
14227 
14228 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14229 				/* indirect truncation dependency */
14230 				retval += 1;
14231 				if (!wantcount)
14232 					goto out;
14233 			}
14234 
14235 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14236 				/* indirect block pointer dependency */
14237 				retval += 1;
14238 				if (!wantcount)
14239 					goto out;
14240 			}
14241 			continue;
14242 
14243 		case D_PAGEDEP:
14244 			pagedep = WK_PAGEDEP(wk);
14245 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14246 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14247 					/* Journal remove ref dependency. */
14248 					retval += 1;
14249 					if (!wantcount)
14250 						goto out;
14251 				}
14252 			}
14253 			for (i = 0; i < DAHASHSZ; i++) {
14254 
14255 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14256 					/* directory entry dependency */
14257 					retval += 1;
14258 					if (!wantcount)
14259 						goto out;
14260 				}
14261 			}
14262 			continue;
14263 
14264 		case D_BMSAFEMAP:
14265 			bmsafemap = WK_BMSAFEMAP(wk);
14266 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14267 				/* Add reference dependency. */
14268 				retval += 1;
14269 				if (!wantcount)
14270 					goto out;
14271 			}
14272 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14273 				/* Allocate block dependency. */
14274 				retval += 1;
14275 				if (!wantcount)
14276 					goto out;
14277 			}
14278 			continue;
14279 
14280 		case D_FREEBLKS:
14281 			freeblks = WK_FREEBLKS(wk);
14282 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14283 				/* Freeblk journal dependency. */
14284 				retval += 1;
14285 				if (!wantcount)
14286 					goto out;
14287 			}
14288 			continue;
14289 
14290 		case D_ALLOCDIRECT:
14291 		case D_ALLOCINDIR:
14292 			newblk = WK_NEWBLK(wk);
14293 			if (newblk->nb_jnewblk) {
14294 				/* Journal allocate dependency. */
14295 				retval += 1;
14296 				if (!wantcount)
14297 					goto out;
14298 			}
14299 			continue;
14300 
14301 		case D_MKDIR:
14302 			mkdir = WK_MKDIR(wk);
14303 			if (mkdir->md_jaddref) {
14304 				/* Journal reference dependency. */
14305 				retval += 1;
14306 				if (!wantcount)
14307 					goto out;
14308 			}
14309 			continue;
14310 
14311 		case D_FREEWORK:
14312 		case D_FREEDEP:
14313 		case D_JSEGDEP:
14314 		case D_JSEG:
14315 		case D_SBDEP:
14316 			/* never a dependency on these blocks */
14317 			continue;
14318 
14319 		default:
14320 			panic("softdep_count_dependencies: Unexpected type %s",
14321 			    TYPENAME(wk->wk_type));
14322 			/* NOTREACHED */
14323 		}
14324 	}
14325 out:
14326 	FREE_LOCK(ump);
14327 	return (retval);
14328 }
14329 
14330 /*
14331  * Acquire exclusive access to a buffer.
14332  * Must be called with a locked mtx parameter.
14333  * Return acquired buffer or NULL on failure.
14334  */
14335 static struct buf *
14336 getdirtybuf(bp, lock, waitfor)
14337 	struct buf *bp;
14338 	struct rwlock *lock;
14339 	int waitfor;
14340 {
14341 	int error;
14342 
14343 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14344 		if (waitfor != MNT_WAIT)
14345 			return (NULL);
14346 		error = BUF_LOCK(bp,
14347 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14348 		/*
14349 		 * Even if we successfully acquire bp here, we have dropped
14350 		 * lock, which may violates our guarantee.
14351 		 */
14352 		if (error == 0)
14353 			BUF_UNLOCK(bp);
14354 		else if (error != ENOLCK)
14355 			panic("getdirtybuf: inconsistent lock: %d", error);
14356 		rw_wlock(lock);
14357 		return (NULL);
14358 	}
14359 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14360 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14361 			rw_wunlock(lock);
14362 			BO_LOCK(bp->b_bufobj);
14363 			BUF_UNLOCK(bp);
14364 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14365 				bp->b_vflags |= BV_BKGRDWAIT;
14366 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14367 				       PRIBIO | PDROP, "getbuf", 0);
14368 			} else
14369 				BO_UNLOCK(bp->b_bufobj);
14370 			rw_wlock(lock);
14371 			return (NULL);
14372 		}
14373 		BUF_UNLOCK(bp);
14374 		if (waitfor != MNT_WAIT)
14375 			return (NULL);
14376 #ifdef DEBUG_VFS_LOCKS
14377 		if (bp->b_vp->v_type != VCHR)
14378 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14379 #endif
14380 		bp->b_vflags |= BV_BKGRDWAIT;
14381 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14382 		return (NULL);
14383 	}
14384 	if ((bp->b_flags & B_DELWRI) == 0) {
14385 		BUF_UNLOCK(bp);
14386 		return (NULL);
14387 	}
14388 	bremfree(bp);
14389 	return (bp);
14390 }
14391 
14392 
14393 /*
14394  * Check if it is safe to suspend the file system now.  On entry,
14395  * the vnode interlock for devvp should be held.  Return 0 with
14396  * the mount interlock held if the file system can be suspended now,
14397  * otherwise return EAGAIN with the mount interlock held.
14398  */
14399 int
14400 softdep_check_suspend(struct mount *mp,
14401 		      struct vnode *devvp,
14402 		      int softdep_depcnt,
14403 		      int softdep_accdepcnt,
14404 		      int secondary_writes,
14405 		      int secondary_accwrites)
14406 {
14407 	struct bufobj *bo;
14408 	struct ufsmount *ump;
14409 	struct inodedep *inodedep;
14410 	int error, unlinked;
14411 
14412 	bo = &devvp->v_bufobj;
14413 	ASSERT_BO_WLOCKED(bo);
14414 
14415 	/*
14416 	 * If we are not running with soft updates, then we need only
14417 	 * deal with secondary writes as we try to suspend.
14418 	 */
14419 	if (MOUNTEDSOFTDEP(mp) == 0) {
14420 		MNT_ILOCK(mp);
14421 		while (mp->mnt_secondary_writes != 0) {
14422 			BO_UNLOCK(bo);
14423 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14424 			    (PUSER - 1) | PDROP, "secwr", 0);
14425 			BO_LOCK(bo);
14426 			MNT_ILOCK(mp);
14427 		}
14428 
14429 		/*
14430 		 * Reasons for needing more work before suspend:
14431 		 * - Dirty buffers on devvp.
14432 		 * - Secondary writes occurred after start of vnode sync loop
14433 		 */
14434 		error = 0;
14435 		if (bo->bo_numoutput > 0 ||
14436 		    bo->bo_dirty.bv_cnt > 0 ||
14437 		    secondary_writes != 0 ||
14438 		    mp->mnt_secondary_writes != 0 ||
14439 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14440 			error = EAGAIN;
14441 		BO_UNLOCK(bo);
14442 		return (error);
14443 	}
14444 
14445 	/*
14446 	 * If we are running with soft updates, then we need to coordinate
14447 	 * with them as we try to suspend.
14448 	 */
14449 	ump = VFSTOUFS(mp);
14450 	for (;;) {
14451 		if (!TRY_ACQUIRE_LOCK(ump)) {
14452 			BO_UNLOCK(bo);
14453 			ACQUIRE_LOCK(ump);
14454 			FREE_LOCK(ump);
14455 			BO_LOCK(bo);
14456 			continue;
14457 		}
14458 		MNT_ILOCK(mp);
14459 		if (mp->mnt_secondary_writes != 0) {
14460 			FREE_LOCK(ump);
14461 			BO_UNLOCK(bo);
14462 			msleep(&mp->mnt_secondary_writes,
14463 			       MNT_MTX(mp),
14464 			       (PUSER - 1) | PDROP, "secwr", 0);
14465 			BO_LOCK(bo);
14466 			continue;
14467 		}
14468 		break;
14469 	}
14470 
14471 	unlinked = 0;
14472 	if (MOUNTEDSUJ(mp)) {
14473 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14474 		    inodedep != NULL;
14475 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14476 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14477 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14478 			    UNLINKONLIST) ||
14479 			    !check_inodedep_free(inodedep))
14480 				continue;
14481 			unlinked++;
14482 		}
14483 	}
14484 
14485 	/*
14486 	 * Reasons for needing more work before suspend:
14487 	 * - Dirty buffers on devvp.
14488 	 * - Softdep activity occurred after start of vnode sync loop
14489 	 * - Secondary writes occurred after start of vnode sync loop
14490 	 */
14491 	error = 0;
14492 	if (bo->bo_numoutput > 0 ||
14493 	    bo->bo_dirty.bv_cnt > 0 ||
14494 	    softdep_depcnt != unlinked ||
14495 	    ump->softdep_deps != unlinked ||
14496 	    softdep_accdepcnt != ump->softdep_accdeps ||
14497 	    secondary_writes != 0 ||
14498 	    mp->mnt_secondary_writes != 0 ||
14499 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14500 		error = EAGAIN;
14501 	FREE_LOCK(ump);
14502 	BO_UNLOCK(bo);
14503 	return (error);
14504 }
14505 
14506 
14507 /*
14508  * Get the number of dependency structures for the file system, both
14509  * the current number and the total number allocated.  These will
14510  * later be used to detect that softdep processing has occurred.
14511  */
14512 void
14513 softdep_get_depcounts(struct mount *mp,
14514 		      int *softdep_depsp,
14515 		      int *softdep_accdepsp)
14516 {
14517 	struct ufsmount *ump;
14518 
14519 	if (MOUNTEDSOFTDEP(mp) == 0) {
14520 		*softdep_depsp = 0;
14521 		*softdep_accdepsp = 0;
14522 		return;
14523 	}
14524 	ump = VFSTOUFS(mp);
14525 	ACQUIRE_LOCK(ump);
14526 	*softdep_depsp = ump->softdep_deps;
14527 	*softdep_accdepsp = ump->softdep_accdeps;
14528 	FREE_LOCK(ump);
14529 }
14530 
14531 /*
14532  * Wait for pending output on a vnode to complete.
14533  */
14534 static void
14535 drain_output(vp)
14536 	struct vnode *vp;
14537 {
14538 
14539 	ASSERT_VOP_LOCKED(vp, "drain_output");
14540 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14541 }
14542 
14543 /*
14544  * Called whenever a buffer that is being invalidated or reallocated
14545  * contains dependencies. This should only happen if an I/O error has
14546  * occurred. The routine is called with the buffer locked.
14547  */
14548 static void
14549 softdep_deallocate_dependencies(bp)
14550 	struct buf *bp;
14551 {
14552 
14553 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14554 		panic("softdep_deallocate_dependencies: dangling deps");
14555 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14556 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14557 	else
14558 		printf("softdep_deallocate_dependencies: "
14559 		    "got error %d while accessing filesystem\n", bp->b_error);
14560 	if (bp->b_error != ENXIO)
14561 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14562 }
14563 
14564 /*
14565  * Function to handle asynchronous write errors in the filesystem.
14566  */
14567 static void
14568 softdep_error(func, error)
14569 	char *func;
14570 	int error;
14571 {
14572 
14573 	/* XXX should do something better! */
14574 	printf("%s: got error %d while accessing filesystem\n", func, error);
14575 }
14576 
14577 #ifdef DDB
14578 
14579 /* exported to ffs_vfsops.c */
14580 extern void db_print_ffs(struct ufsmount *ump);
14581 void
14582 db_print_ffs(struct ufsmount *ump)
14583 {
14584 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14585 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14586 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14587 	    ump->um_fs, ump->softdep_on_worklist,
14588 	    ump->softdep_deps, ump->softdep_req);
14589 }
14590 
14591 static void
14592 worklist_print(struct worklist *wk, int verbose)
14593 {
14594 
14595 	if (!verbose) {
14596 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14597 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14598 		return;
14599 	}
14600 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14601 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14602 	    LIST_NEXT(wk, wk_list));
14603 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14604 }
14605 
14606 static void
14607 inodedep_print(struct inodedep *inodedep, int verbose)
14608 {
14609 
14610 	worklist_print(&inodedep->id_list, 0);
14611 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14612 	    inodedep->id_fs,
14613 	    (intmax_t)inodedep->id_ino,
14614 	    (intmax_t)fsbtodb(inodedep->id_fs,
14615 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14616 	    (intmax_t)inodedep->id_nlinkdelta,
14617 	    (intmax_t)inodedep->id_savednlink);
14618 
14619 	if (verbose == 0)
14620 		return;
14621 
14622 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14623 	    inodedep->id_bmsafemap,
14624 	    inodedep->id_mkdiradd,
14625 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14626 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14627 	    LIST_FIRST(&inodedep->id_dirremhd),
14628 	    LIST_FIRST(&inodedep->id_pendinghd),
14629 	    LIST_FIRST(&inodedep->id_bufwait));
14630 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14631 	    LIST_FIRST(&inodedep->id_inowait),
14632 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14633 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14634 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14635 	    TAILQ_FIRST(&inodedep->id_extupdt),
14636 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14637 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14638 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14639 	    inodedep->id_savedino1,
14640 	    (intmax_t)inodedep->id_savedsize,
14641 	    (intmax_t)inodedep->id_savedextsize);
14642 }
14643 
14644 static void
14645 newblk_print(struct newblk *nbp)
14646 {
14647 
14648 	worklist_print(&nbp->nb_list, 0);
14649 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14650 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14651 	    &nbp->nb_jnewblk,
14652 	    &nbp->nb_bmsafemap,
14653 	    &nbp->nb_freefrag);
14654 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14655 	    LIST_FIRST(&nbp->nb_indirdeps),
14656 	    LIST_FIRST(&nbp->nb_newdirblk),
14657 	    LIST_FIRST(&nbp->nb_jwork));
14658 }
14659 
14660 static void
14661 allocdirect_print(struct allocdirect *adp)
14662 {
14663 
14664 	newblk_print(&adp->ad_block);
14665 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14666 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14667 	db_printf("    offset %d, inodedep %p\n",
14668 	    adp->ad_offset, adp->ad_inodedep);
14669 }
14670 
14671 static void
14672 allocindir_print(struct allocindir *aip)
14673 {
14674 
14675 	newblk_print(&aip->ai_block);
14676 	db_printf("    oldblkno %jd, lbn %jd\n",
14677 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14678 	db_printf("    offset %d, indirdep %p\n",
14679 	    aip->ai_offset, aip->ai_indirdep);
14680 }
14681 
14682 static void
14683 mkdir_print(struct mkdir *mkdir)
14684 {
14685 
14686 	worklist_print(&mkdir->md_list, 0);
14687 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14688 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14689 }
14690 
14691 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14692 {
14693 
14694 	if (have_addr == 0) {
14695 		db_printf("inodedep address required\n");
14696 		return;
14697 	}
14698 	inodedep_print((struct inodedep*)addr, 1);
14699 }
14700 
14701 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14702 {
14703 	struct inodedep_hashhead *inodedephd;
14704 	struct inodedep *inodedep;
14705 	struct ufsmount *ump;
14706 	int cnt;
14707 
14708 	if (have_addr == 0) {
14709 		db_printf("ufsmount address required\n");
14710 		return;
14711 	}
14712 	ump = (struct ufsmount *)addr;
14713 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14714 		inodedephd = &ump->inodedep_hashtbl[cnt];
14715 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14716 			inodedep_print(inodedep, 0);
14717 		}
14718 	}
14719 }
14720 
14721 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14722 {
14723 
14724 	if (have_addr == 0) {
14725 		db_printf("worklist address required\n");
14726 		return;
14727 	}
14728 	worklist_print((struct worklist *)addr, 1);
14729 }
14730 
14731 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14732 {
14733 	struct worklist *wk;
14734 	struct workhead *wkhd;
14735 
14736 	if (have_addr == 0) {
14737 		db_printf("worklist address required "
14738 		    "(for example value in bp->b_dep)\n");
14739 		return;
14740 	}
14741 	/*
14742 	 * We often do not have the address of the worklist head but
14743 	 * instead a pointer to its first entry (e.g., we have the
14744 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14745 	 * pointer of bp->b_dep will point at the head of the list, so
14746 	 * we cheat and use that instead. If we are in the middle of
14747 	 * a list we will still get the same result, so nothing
14748 	 * unexpected will result.
14749 	 */
14750 	wk = (struct worklist *)addr;
14751 	if (wk == NULL)
14752 		return;
14753 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14754 	LIST_FOREACH(wk, wkhd, wk_list) {
14755 		switch(wk->wk_type) {
14756 		case D_INODEDEP:
14757 			inodedep_print(WK_INODEDEP(wk), 0);
14758 			continue;
14759 		case D_ALLOCDIRECT:
14760 			allocdirect_print(WK_ALLOCDIRECT(wk));
14761 			continue;
14762 		case D_ALLOCINDIR:
14763 			allocindir_print(WK_ALLOCINDIR(wk));
14764 			continue;
14765 		case D_MKDIR:
14766 			mkdir_print(WK_MKDIR(wk));
14767 			continue;
14768 		default:
14769 			worklist_print(wk, 0);
14770 			continue;
14771 		}
14772 	}
14773 }
14774 
14775 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14776 {
14777 	if (have_addr == 0) {
14778 		db_printf("mkdir address required\n");
14779 		return;
14780 	}
14781 	mkdir_print((struct mkdir *)addr);
14782 }
14783 
14784 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14785 {
14786 	struct mkdirlist *mkdirlisthd;
14787 	struct mkdir *mkdir;
14788 
14789 	if (have_addr == 0) {
14790 		db_printf("mkdir listhead address required\n");
14791 		return;
14792 	}
14793 	mkdirlisthd = (struct mkdirlist *)addr;
14794 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14795 		mkdir_print(mkdir);
14796 		if (mkdir->md_diradd != NULL) {
14797 			db_printf("    ");
14798 			worklist_print(&mkdir->md_diradd->da_list, 0);
14799 		}
14800 		if (mkdir->md_jaddref != NULL) {
14801 			db_printf("    ");
14802 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14803 		}
14804 	}
14805 }
14806 
14807 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14808 {
14809 	if (have_addr == 0) {
14810 		db_printf("allocdirect address required\n");
14811 		return;
14812 	}
14813 	allocdirect_print((struct allocdirect *)addr);
14814 }
14815 
14816 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14817 {
14818 	if (have_addr == 0) {
14819 		db_printf("allocindir address required\n");
14820 		return;
14821 	}
14822 	allocindir_print((struct allocindir *)addr);
14823 }
14824 
14825 #endif /* DDB */
14826 
14827 #endif /* SOFTUPDATES */
14828