1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/stdint.h> 58 #include <sys/bio.h> 59 #include <sys/buf.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/proc.h> 63 #include <sys/stat.h> 64 #include <sys/syslog.h> 65 #include <sys/vnode.h> 66 #include <sys/conf.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ufs/extattr.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/inode.h> 71 #include <ufs/ufs/ufsmount.h> 72 #include <ufs/ffs/fs.h> 73 #include <ufs/ffs/softdep.h> 74 #include <ufs/ffs/ffs_extern.h> 75 #include <ufs/ufs/ufs_extern.h> 76 77 /* 78 * These definitions need to be adapted to the system to which 79 * this file is being ported. 80 */ 81 /* 82 * malloc types defined for the softdep system. 83 */ 84 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 85 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 86 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 87 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 88 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 89 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 90 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 91 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 92 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 93 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 94 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 95 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 96 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 97 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 98 99 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 100 101 #define D_PAGEDEP 0 102 #define D_INODEDEP 1 103 #define D_NEWBLK 2 104 #define D_BMSAFEMAP 3 105 #define D_ALLOCDIRECT 4 106 #define D_INDIRDEP 5 107 #define D_ALLOCINDIR 6 108 #define D_FREEFRAG 7 109 #define D_FREEBLKS 8 110 #define D_FREEFILE 9 111 #define D_DIRADD 10 112 #define D_MKDIR 11 113 #define D_DIRREM 12 114 #define D_NEWDIRBLK 13 115 #define D_LAST D_NEWDIRBLK 116 117 /* 118 * translate from workitem type to memory type 119 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 120 */ 121 static struct malloc_type *memtype[] = { 122 M_PAGEDEP, 123 M_INODEDEP, 124 M_NEWBLK, 125 M_BMSAFEMAP, 126 M_ALLOCDIRECT, 127 M_INDIRDEP, 128 M_ALLOCINDIR, 129 M_FREEFRAG, 130 M_FREEBLKS, 131 M_FREEFILE, 132 M_DIRADD, 133 M_MKDIR, 134 M_DIRREM, 135 M_NEWDIRBLK 136 }; 137 138 #define DtoM(type) (memtype[type]) 139 140 /* 141 * Names of malloc types. 142 */ 143 #define TYPENAME(type) \ 144 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 145 /* 146 * End system adaptaion definitions. 147 */ 148 149 /* 150 * Internal function prototypes. 151 */ 152 static void softdep_error(char *, int); 153 static void drain_output(struct vnode *, int); 154 static int getdirtybuf(struct buf **, int); 155 static void clear_remove(struct thread *); 156 static void clear_inodedeps(struct thread *); 157 static int flush_pagedep_deps(struct vnode *, struct mount *, 158 struct diraddhd *); 159 static int flush_inodedep_deps(struct fs *, ino_t); 160 static int flush_deplist(struct allocdirectlst *, int, int *); 161 static int handle_written_filepage(struct pagedep *, struct buf *); 162 static void diradd_inode_written(struct diradd *, struct inodedep *); 163 static int handle_written_inodeblock(struct inodedep *, struct buf *); 164 static void handle_allocdirect_partdone(struct allocdirect *); 165 static void handle_allocindir_partdone(struct allocindir *); 166 static void initiate_write_filepage(struct pagedep *, struct buf *); 167 static void handle_written_mkdir(struct mkdir *, int); 168 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 169 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 170 static void handle_workitem_freefile(struct freefile *); 171 static void handle_workitem_remove(struct dirrem *, struct vnode *); 172 static struct dirrem *newdirrem(struct buf *, struct inode *, 173 struct inode *, int, struct dirrem **); 174 static void free_diradd(struct diradd *); 175 static void free_allocindir(struct allocindir *, struct inodedep *); 176 static void free_newdirblk(struct newdirblk *); 177 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 178 ufs2_daddr_t *); 179 static void deallocate_dependencies(struct buf *, struct inodedep *); 180 static void free_allocdirect(struct allocdirectlst *, 181 struct allocdirect *, int); 182 static int check_inode_unwritten(struct inodedep *); 183 static int free_inodedep(struct inodedep *); 184 static void handle_workitem_freeblocks(struct freeblks *, int); 185 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 186 static void setup_allocindir_phase2(struct buf *, struct inode *, 187 struct allocindir *); 188 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 189 ufs2_daddr_t); 190 static void handle_workitem_freefrag(struct freefrag *); 191 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 192 static void allocdirect_merge(struct allocdirectlst *, 193 struct allocdirect *, struct allocdirect *); 194 static struct bmsafemap *bmsafemap_lookup(struct buf *); 195 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 196 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 197 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 198 static void pause_timer(void *); 199 static int request_cleanup(int, int); 200 static int process_worklist_item(struct mount *, int); 201 static void add_to_worklist(struct worklist *); 202 203 /* 204 * Exported softdep operations. 205 */ 206 static void softdep_disk_io_initiation(struct buf *); 207 static void softdep_disk_write_complete(struct buf *); 208 static void softdep_deallocate_dependencies(struct buf *); 209 static void softdep_move_dependencies(struct buf *, struct buf *); 210 static int softdep_count_dependencies(struct buf *bp, int); 211 212 /* 213 * Locking primitives. 214 * 215 * For a uniprocessor, all we need to do is protect against disk 216 * interrupts. For a multiprocessor, this lock would have to be 217 * a mutex. A single mutex is used throughout this file, though 218 * finer grain locking could be used if contention warranted it. 219 * 220 * For a multiprocessor, the sleep call would accept a lock and 221 * release it after the sleep processing was complete. In a uniprocessor 222 * implementation there is no such interlock, so we simple mark 223 * the places where it needs to be done with the `interlocked' form 224 * of the lock calls. Since the uniprocessor sleep already interlocks 225 * the spl, there is nothing that really needs to be done. 226 */ 227 #ifndef /* NOT */ DEBUG 228 static struct lockit { 229 int lkt_spl; 230 } lk = { 0 }; 231 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 232 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 233 234 #else /* DEBUG */ 235 #define NOHOLDER ((struct thread *)-1) 236 #define SPECIAL_FLAG ((struct thread *)-2) 237 static struct lockit { 238 int lkt_spl; 239 struct thread *lkt_held; 240 } lk = { 0, NOHOLDER }; 241 static int lockcnt; 242 243 static void acquire_lock(struct lockit *); 244 static void free_lock(struct lockit *); 245 void softdep_panic(char *); 246 247 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 248 #define FREE_LOCK(lk) free_lock(lk) 249 250 static void 251 acquire_lock(lk) 252 struct lockit *lk; 253 { 254 struct thread *holder; 255 256 if (lk->lkt_held != NOHOLDER) { 257 holder = lk->lkt_held; 258 FREE_LOCK(lk); 259 if (holder == curthread) 260 panic("softdep_lock: locking against myself"); 261 else 262 panic("softdep_lock: lock held by %p", holder); 263 } 264 lk->lkt_spl = splbio(); 265 lk->lkt_held = curthread; 266 lockcnt++; 267 } 268 269 static void 270 free_lock(lk) 271 struct lockit *lk; 272 { 273 274 if (lk->lkt_held == NOHOLDER) 275 panic("softdep_unlock: lock not held"); 276 lk->lkt_held = NOHOLDER; 277 splx(lk->lkt_spl); 278 } 279 280 /* 281 * Function to release soft updates lock and panic. 282 */ 283 void 284 softdep_panic(msg) 285 char *msg; 286 { 287 288 if (lk.lkt_held != NOHOLDER) 289 FREE_LOCK(&lk); 290 panic(msg); 291 } 292 #endif /* DEBUG */ 293 294 static int interlocked_sleep(struct lockit *, int, void *, int, 295 const char *, int); 296 297 /* 298 * When going to sleep, we must save our SPL so that it does 299 * not get lost if some other process uses the lock while we 300 * are sleeping. We restore it after we have slept. This routine 301 * wraps the interlocking with functions that sleep. The list 302 * below enumerates the available set of operations. 303 */ 304 #define UNKNOWN 0 305 #define SLEEP 1 306 #define LOCKBUF 2 307 308 static int 309 interlocked_sleep(lk, op, ident, flags, wmesg, timo) 310 struct lockit *lk; 311 int op; 312 void *ident; 313 int flags; 314 const char *wmesg; 315 int timo; 316 { 317 struct thread *holder; 318 int s, retval; 319 320 s = lk->lkt_spl; 321 # ifdef DEBUG 322 if (lk->lkt_held == NOHOLDER) 323 panic("interlocked_sleep: lock not held"); 324 lk->lkt_held = NOHOLDER; 325 # endif /* DEBUG */ 326 switch (op) { 327 case SLEEP: 328 retval = tsleep(ident, flags, wmesg, timo); 329 break; 330 case LOCKBUF: 331 retval = BUF_LOCK((struct buf *)ident, flags); 332 break; 333 default: 334 panic("interlocked_sleep: unknown operation"); 335 } 336 # ifdef DEBUG 337 if (lk->lkt_held != NOHOLDER) { 338 holder = lk->lkt_held; 339 FREE_LOCK(lk); 340 if (holder == curthread) 341 panic("interlocked_sleep: locking against self"); 342 else 343 panic("interlocked_sleep: lock held by %p", holder); 344 } 345 lk->lkt_held = curthread; 346 lockcnt++; 347 # endif /* DEBUG */ 348 lk->lkt_spl = s; 349 return (retval); 350 } 351 352 /* 353 * Place holder for real semaphores. 354 */ 355 struct sema { 356 int value; 357 struct thread *holder; 358 char *name; 359 int prio; 360 int timo; 361 }; 362 static void sema_init(struct sema *, char *, int, int); 363 static int sema_get(struct sema *, struct lockit *); 364 static void sema_release(struct sema *); 365 366 static void 367 sema_init(semap, name, prio, timo) 368 struct sema *semap; 369 char *name; 370 int prio, timo; 371 { 372 373 semap->holder = NOHOLDER; 374 semap->value = 0; 375 semap->name = name; 376 semap->prio = prio; 377 semap->timo = timo; 378 } 379 380 static int 381 sema_get(semap, interlock) 382 struct sema *semap; 383 struct lockit *interlock; 384 { 385 386 if (semap->value++ > 0) { 387 if (interlock != NULL) { 388 interlocked_sleep(interlock, SLEEP, (caddr_t)semap, 389 semap->prio, semap->name, semap->timo); 390 FREE_LOCK(interlock); 391 } else { 392 tsleep((caddr_t)semap, semap->prio, semap->name, 393 semap->timo); 394 } 395 return (0); 396 } 397 semap->holder = curthread; 398 if (interlock != NULL) 399 FREE_LOCK(interlock); 400 return (1); 401 } 402 403 static void 404 sema_release(semap) 405 struct sema *semap; 406 { 407 408 if (semap->value <= 0 || semap->holder != curthread) { 409 if (lk.lkt_held != NOHOLDER) 410 FREE_LOCK(&lk); 411 panic("sema_release: not held"); 412 } 413 if (--semap->value > 0) { 414 semap->value = 0; 415 wakeup(semap); 416 } 417 semap->holder = NOHOLDER; 418 } 419 420 /* 421 * Worklist queue management. 422 * These routines require that the lock be held. 423 */ 424 #ifndef /* NOT */ DEBUG 425 #define WORKLIST_INSERT(head, item) do { \ 426 (item)->wk_state |= ONWORKLIST; \ 427 LIST_INSERT_HEAD(head, item, wk_list); \ 428 } while (0) 429 #define WORKLIST_REMOVE(item) do { \ 430 (item)->wk_state &= ~ONWORKLIST; \ 431 LIST_REMOVE(item, wk_list); \ 432 } while (0) 433 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 434 435 #else /* DEBUG */ 436 static void worklist_insert(struct workhead *, struct worklist *); 437 static void worklist_remove(struct worklist *); 438 static void workitem_free(struct worklist *, int); 439 440 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 441 #define WORKLIST_REMOVE(item) worklist_remove(item) 442 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 443 444 static void 445 worklist_insert(head, item) 446 struct workhead *head; 447 struct worklist *item; 448 { 449 450 if (lk.lkt_held == NOHOLDER) 451 panic("worklist_insert: lock not held"); 452 if (item->wk_state & ONWORKLIST) { 453 FREE_LOCK(&lk); 454 panic("worklist_insert: already on list"); 455 } 456 item->wk_state |= ONWORKLIST; 457 LIST_INSERT_HEAD(head, item, wk_list); 458 } 459 460 static void 461 worklist_remove(item) 462 struct worklist *item; 463 { 464 465 if (lk.lkt_held == NOHOLDER) 466 panic("worklist_remove: lock not held"); 467 if ((item->wk_state & ONWORKLIST) == 0) { 468 FREE_LOCK(&lk); 469 panic("worklist_remove: not on list"); 470 } 471 item->wk_state &= ~ONWORKLIST; 472 LIST_REMOVE(item, wk_list); 473 } 474 475 static void 476 workitem_free(item, type) 477 struct worklist *item; 478 int type; 479 { 480 481 if (item->wk_state & ONWORKLIST) { 482 if (lk.lkt_held != NOHOLDER) 483 FREE_LOCK(&lk); 484 panic("workitem_free: still on list"); 485 } 486 if (item->wk_type != type) { 487 if (lk.lkt_held != NOHOLDER) 488 FREE_LOCK(&lk); 489 panic("workitem_free: type mismatch"); 490 } 491 FREE(item, DtoM(type)); 492 } 493 #endif /* DEBUG */ 494 495 /* 496 * Workitem queue management 497 */ 498 static struct workhead softdep_workitem_pending; 499 static int num_on_worklist; /* number of worklist items to be processed */ 500 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 501 static int softdep_worklist_req; /* serialized waiters */ 502 static int max_softdeps; /* maximum number of structs before slowdown */ 503 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 504 static int proc_waiting; /* tracks whether we have a timeout posted */ 505 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 506 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 507 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 508 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 509 #define FLUSH_INODES 1 510 static int req_clear_remove; /* syncer process flush some freeblks */ 511 #define FLUSH_REMOVE 2 512 #define FLUSH_REMOVE_WAIT 3 513 /* 514 * runtime statistics 515 */ 516 static int stat_worklist_push; /* number of worklist cleanups */ 517 static int stat_blk_limit_push; /* number of times block limit neared */ 518 static int stat_ino_limit_push; /* number of times inode limit neared */ 519 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 520 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 521 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 522 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 523 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 524 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 525 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 526 #ifdef DEBUG 527 #include <vm/vm.h> 528 #include <sys/sysctl.h> 529 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 530 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 531 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 532 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 533 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 534 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 535 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 536 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 537 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 538 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 539 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 540 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 541 #endif /* DEBUG */ 542 543 /* 544 * Add an item to the end of the work queue. 545 * This routine requires that the lock be held. 546 * This is the only routine that adds items to the list. 547 * The following routine is the only one that removes items 548 * and does so in order from first to last. 549 */ 550 static void 551 add_to_worklist(wk) 552 struct worklist *wk; 553 { 554 static struct worklist *worklist_tail; 555 556 if (wk->wk_state & ONWORKLIST) { 557 if (lk.lkt_held != NOHOLDER) 558 FREE_LOCK(&lk); 559 panic("add_to_worklist: already on list"); 560 } 561 wk->wk_state |= ONWORKLIST; 562 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 563 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 564 else 565 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 566 worklist_tail = wk; 567 num_on_worklist += 1; 568 } 569 570 /* 571 * Process that runs once per second to handle items in the background queue. 572 * 573 * Note that we ensure that everything is done in the order in which they 574 * appear in the queue. The code below depends on this property to ensure 575 * that blocks of a file are freed before the inode itself is freed. This 576 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 577 * until all the old ones have been purged from the dependency lists. 578 */ 579 int 580 softdep_process_worklist(matchmnt) 581 struct mount *matchmnt; 582 { 583 struct thread *td = curthread; 584 int cnt, matchcnt, loopcount; 585 long starttime; 586 587 /* 588 * Record the process identifier of our caller so that we can give 589 * this process preferential treatment in request_cleanup below. 590 */ 591 filesys_syncer = td; 592 matchcnt = 0; 593 594 /* 595 * There is no danger of having multiple processes run this 596 * code, but we have to single-thread it when softdep_flushfiles() 597 * is in operation to get an accurate count of the number of items 598 * related to its mount point that are in the list. 599 */ 600 if (matchmnt == NULL) { 601 if (softdep_worklist_busy < 0) 602 return(-1); 603 softdep_worklist_busy += 1; 604 } 605 606 /* 607 * If requested, try removing inode or removal dependencies. 608 */ 609 if (req_clear_inodedeps) { 610 clear_inodedeps(td); 611 req_clear_inodedeps -= 1; 612 wakeup_one(&proc_waiting); 613 } 614 if (req_clear_remove) { 615 clear_remove(td); 616 req_clear_remove -= 1; 617 wakeup_one(&proc_waiting); 618 } 619 loopcount = 1; 620 starttime = time_second; 621 while (num_on_worklist > 0) { 622 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 623 break; 624 else 625 matchcnt += cnt; 626 627 /* 628 * If a umount operation wants to run the worklist 629 * accurately, abort. 630 */ 631 if (softdep_worklist_req && matchmnt == NULL) { 632 matchcnt = -1; 633 break; 634 } 635 636 /* 637 * If requested, try removing inode or removal dependencies. 638 */ 639 if (req_clear_inodedeps) { 640 clear_inodedeps(td); 641 req_clear_inodedeps -= 1; 642 wakeup_one(&proc_waiting); 643 } 644 if (req_clear_remove) { 645 clear_remove(td); 646 req_clear_remove -= 1; 647 wakeup_one(&proc_waiting); 648 } 649 /* 650 * We do not generally want to stop for buffer space, but if 651 * we are really being a buffer hog, we will stop and wait. 652 */ 653 if (loopcount++ % 128 == 0) 654 bwillwrite(); 655 /* 656 * Never allow processing to run for more than one 657 * second. Otherwise the other syncer tasks may get 658 * excessively backlogged. 659 */ 660 if (starttime != time_second && matchmnt == NULL) { 661 matchcnt = -1; 662 break; 663 } 664 } 665 if (matchmnt == NULL) { 666 softdep_worklist_busy -= 1; 667 if (softdep_worklist_req && softdep_worklist_busy == 0) 668 wakeup(&softdep_worklist_req); 669 } 670 return (matchcnt); 671 } 672 673 /* 674 * Process one item on the worklist. 675 */ 676 static int 677 process_worklist_item(matchmnt, flags) 678 struct mount *matchmnt; 679 int flags; 680 { 681 struct worklist *wk; 682 struct mount *mp; 683 struct vnode *vp; 684 int matchcnt = 0; 685 686 ACQUIRE_LOCK(&lk); 687 /* 688 * Normally we just process each item on the worklist in order. 689 * However, if we are in a situation where we cannot lock any 690 * inodes, we have to skip over any dirrem requests whose 691 * vnodes are resident and locked. 692 */ 693 vp = NULL; 694 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 695 if (wk->wk_state & INPROGRESS) 696 continue; 697 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 698 break; 699 wk->wk_state |= INPROGRESS; 700 FREE_LOCK(&lk); 701 VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 702 LK_NOWAIT | LK_EXCLUSIVE, &vp); 703 ACQUIRE_LOCK(&lk); 704 wk->wk_state &= ~INPROGRESS; 705 if (vp != NULL) 706 break; 707 } 708 if (wk == 0) { 709 FREE_LOCK(&lk); 710 return (-1); 711 } 712 WORKLIST_REMOVE(wk); 713 num_on_worklist -= 1; 714 FREE_LOCK(&lk); 715 switch (wk->wk_type) { 716 717 case D_DIRREM: 718 /* removal of a directory entry */ 719 mp = WK_DIRREM(wk)->dm_mnt; 720 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 721 panic("%s: dirrem on suspended filesystem", 722 "process_worklist_item"); 723 if (mp == matchmnt) 724 matchcnt += 1; 725 handle_workitem_remove(WK_DIRREM(wk), vp); 726 break; 727 728 case D_FREEBLKS: 729 /* releasing blocks and/or fragments from a file */ 730 mp = WK_FREEBLKS(wk)->fb_mnt; 731 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 732 panic("%s: freeblks on suspended filesystem", 733 "process_worklist_item"); 734 if (mp == matchmnt) 735 matchcnt += 1; 736 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 737 break; 738 739 case D_FREEFRAG: 740 /* releasing a fragment when replaced as a file grows */ 741 mp = WK_FREEFRAG(wk)->ff_mnt; 742 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 743 panic("%s: freefrag on suspended filesystem", 744 "process_worklist_item"); 745 if (mp == matchmnt) 746 matchcnt += 1; 747 handle_workitem_freefrag(WK_FREEFRAG(wk)); 748 break; 749 750 case D_FREEFILE: 751 /* releasing an inode when its link count drops to 0 */ 752 mp = WK_FREEFILE(wk)->fx_mnt; 753 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 754 panic("%s: freefile on suspended filesystem", 755 "process_worklist_item"); 756 if (mp == matchmnt) 757 matchcnt += 1; 758 handle_workitem_freefile(WK_FREEFILE(wk)); 759 break; 760 761 default: 762 panic("%s_process_worklist: Unknown type %s", 763 "softdep", TYPENAME(wk->wk_type)); 764 /* NOTREACHED */ 765 } 766 return (matchcnt); 767 } 768 769 /* 770 * Move dependencies from one buffer to another. 771 */ 772 static void 773 softdep_move_dependencies(oldbp, newbp) 774 struct buf *oldbp; 775 struct buf *newbp; 776 { 777 struct worklist *wk, *wktail; 778 779 if (LIST_FIRST(&newbp->b_dep) != NULL) 780 panic("softdep_move_dependencies: need merge code"); 781 wktail = 0; 782 ACQUIRE_LOCK(&lk); 783 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 784 LIST_REMOVE(wk, wk_list); 785 if (wktail == 0) 786 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 787 else 788 LIST_INSERT_AFTER(wktail, wk, wk_list); 789 wktail = wk; 790 } 791 FREE_LOCK(&lk); 792 } 793 794 /* 795 * Purge the work list of all items associated with a particular mount point. 796 */ 797 int 798 softdep_flushworklist(oldmnt, countp, td) 799 struct mount *oldmnt; 800 int *countp; 801 struct thread *td; 802 { 803 struct vnode *devvp; 804 int count, error = 0; 805 806 /* 807 * Await our turn to clear out the queue, then serialize access. 808 */ 809 while (softdep_worklist_busy) { 810 softdep_worklist_req += 1; 811 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); 812 softdep_worklist_req -= 1; 813 } 814 softdep_worklist_busy = -1; 815 /* 816 * Alternately flush the block device associated with the mount 817 * point and process any dependencies that the flushing 818 * creates. We continue until no more worklist dependencies 819 * are found. 820 */ 821 *countp = 0; 822 devvp = VFSTOUFS(oldmnt)->um_devvp; 823 while ((count = softdep_process_worklist(oldmnt)) > 0) { 824 *countp += count; 825 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 826 error = VOP_FSYNC(devvp, td->td_ucred, MNT_WAIT, td); 827 VOP_UNLOCK(devvp, 0, td); 828 if (error) 829 break; 830 } 831 softdep_worklist_busy = 0; 832 if (softdep_worklist_req) 833 wakeup(&softdep_worklist_req); 834 return (error); 835 } 836 837 /* 838 * Flush all vnodes and worklist items associated with a specified mount point. 839 */ 840 int 841 softdep_flushfiles(oldmnt, flags, td) 842 struct mount *oldmnt; 843 int flags; 844 struct thread *td; 845 { 846 int error, count, loopcnt; 847 848 error = 0; 849 850 /* 851 * Alternately flush the vnodes associated with the mount 852 * point and process any dependencies that the flushing 853 * creates. In theory, this loop can happen at most twice, 854 * but we give it a few extra just to be sure. 855 */ 856 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 857 /* 858 * Do another flush in case any vnodes were brought in 859 * as part of the cleanup operations. 860 */ 861 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 862 break; 863 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 864 count == 0) 865 break; 866 } 867 /* 868 * If we are unmounting then it is an error to fail. If we 869 * are simply trying to downgrade to read-only, then filesystem 870 * activity can keep us busy forever, so we just fail with EBUSY. 871 */ 872 if (loopcnt == 0) { 873 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 874 panic("softdep_flushfiles: looping"); 875 error = EBUSY; 876 } 877 return (error); 878 } 879 880 /* 881 * Structure hashing. 882 * 883 * There are three types of structures that can be looked up: 884 * 1) pagedep structures identified by mount point, inode number, 885 * and logical block. 886 * 2) inodedep structures identified by mount point and inode number. 887 * 3) newblk structures identified by mount point and 888 * physical block number. 889 * 890 * The "pagedep" and "inodedep" dependency structures are hashed 891 * separately from the file blocks and inodes to which they correspond. 892 * This separation helps when the in-memory copy of an inode or 893 * file block must be replaced. It also obviates the need to access 894 * an inode or file page when simply updating (or de-allocating) 895 * dependency structures. Lookup of newblk structures is needed to 896 * find newly allocated blocks when trying to associate them with 897 * their allocdirect or allocindir structure. 898 * 899 * The lookup routines optionally create and hash a new instance when 900 * an existing entry is not found. 901 */ 902 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 903 #define NODELAY 0x0002 /* cannot do background work */ 904 905 /* 906 * Structures and routines associated with pagedep caching. 907 */ 908 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 909 u_long pagedep_hash; /* size of hash table - 1 */ 910 #define PAGEDEP_HASH(mp, inum, lbn) \ 911 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 912 pagedep_hash]) 913 static struct sema pagedep_in_progress; 914 915 /* 916 * Look up a pagedep. Return 1 if found, 0 if not found or found 917 * when asked to allocate but not associated with any buffer. 918 * If not found, allocate if DEPALLOC flag is passed. 919 * Found or allocated entry is returned in pagedeppp. 920 * This routine must be called with splbio interrupts blocked. 921 */ 922 static int 923 pagedep_lookup(ip, lbn, flags, pagedeppp) 924 struct inode *ip; 925 ufs_lbn_t lbn; 926 int flags; 927 struct pagedep **pagedeppp; 928 { 929 struct pagedep *pagedep; 930 struct pagedep_hashhead *pagedephd; 931 struct mount *mp; 932 int i; 933 934 #ifdef DEBUG 935 if (lk.lkt_held == NOHOLDER) 936 panic("pagedep_lookup: lock not held"); 937 #endif 938 mp = ITOV(ip)->v_mount; 939 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 940 top: 941 LIST_FOREACH(pagedep, pagedephd, pd_hash) 942 if (ip->i_number == pagedep->pd_ino && 943 lbn == pagedep->pd_lbn && 944 mp == pagedep->pd_mnt) 945 break; 946 if (pagedep) { 947 *pagedeppp = pagedep; 948 if ((flags & DEPALLOC) != 0 && 949 (pagedep->pd_state & ONWORKLIST) == 0) 950 return (0); 951 return (1); 952 } 953 if ((flags & DEPALLOC) == 0) { 954 *pagedeppp = NULL; 955 return (0); 956 } 957 if (sema_get(&pagedep_in_progress, &lk) == 0) { 958 ACQUIRE_LOCK(&lk); 959 goto top; 960 } 961 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 962 M_SOFTDEP_FLAGS|M_ZERO); 963 pagedep->pd_list.wk_type = D_PAGEDEP; 964 pagedep->pd_mnt = mp; 965 pagedep->pd_ino = ip->i_number; 966 pagedep->pd_lbn = lbn; 967 LIST_INIT(&pagedep->pd_dirremhd); 968 LIST_INIT(&pagedep->pd_pendinghd); 969 for (i = 0; i < DAHASHSZ; i++) 970 LIST_INIT(&pagedep->pd_diraddhd[i]); 971 ACQUIRE_LOCK(&lk); 972 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 973 sema_release(&pagedep_in_progress); 974 *pagedeppp = pagedep; 975 return (0); 976 } 977 978 /* 979 * Structures and routines associated with inodedep caching. 980 */ 981 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 982 static u_long inodedep_hash; /* size of hash table - 1 */ 983 static long num_inodedep; /* number of inodedep allocated */ 984 #define INODEDEP_HASH(fs, inum) \ 985 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 986 static struct sema inodedep_in_progress; 987 988 /* 989 * Look up a inodedep. Return 1 if found, 0 if not found. 990 * If not found, allocate if DEPALLOC flag is passed. 991 * Found or allocated entry is returned in inodedeppp. 992 * This routine must be called with splbio interrupts blocked. 993 */ 994 static int 995 inodedep_lookup(fs, inum, flags, inodedeppp) 996 struct fs *fs; 997 ino_t inum; 998 int flags; 999 struct inodedep **inodedeppp; 1000 { 1001 struct inodedep *inodedep; 1002 struct inodedep_hashhead *inodedephd; 1003 int firsttry; 1004 1005 #ifdef DEBUG 1006 if (lk.lkt_held == NOHOLDER) 1007 panic("inodedep_lookup: lock not held"); 1008 #endif 1009 firsttry = 1; 1010 inodedephd = INODEDEP_HASH(fs, inum); 1011 top: 1012 LIST_FOREACH(inodedep, inodedephd, id_hash) 1013 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1014 break; 1015 if (inodedep) { 1016 *inodedeppp = inodedep; 1017 return (1); 1018 } 1019 if ((flags & DEPALLOC) == 0) { 1020 *inodedeppp = NULL; 1021 return (0); 1022 } 1023 /* 1024 * If we are over our limit, try to improve the situation. 1025 */ 1026 if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && 1027 request_cleanup(FLUSH_INODES, 1)) { 1028 firsttry = 0; 1029 goto top; 1030 } 1031 if (sema_get(&inodedep_in_progress, &lk) == 0) { 1032 ACQUIRE_LOCK(&lk); 1033 goto top; 1034 } 1035 num_inodedep += 1; 1036 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1037 M_INODEDEP, M_SOFTDEP_FLAGS); 1038 inodedep->id_list.wk_type = D_INODEDEP; 1039 inodedep->id_fs = fs; 1040 inodedep->id_ino = inum; 1041 inodedep->id_state = ALLCOMPLETE; 1042 inodedep->id_nlinkdelta = 0; 1043 inodedep->id_savedino1 = NULL; 1044 inodedep->id_savedsize = -1; 1045 inodedep->id_savedextsize = -1; 1046 inodedep->id_buf = NULL; 1047 LIST_INIT(&inodedep->id_pendinghd); 1048 LIST_INIT(&inodedep->id_inowait); 1049 LIST_INIT(&inodedep->id_bufwait); 1050 TAILQ_INIT(&inodedep->id_inoupdt); 1051 TAILQ_INIT(&inodedep->id_newinoupdt); 1052 TAILQ_INIT(&inodedep->id_extupdt); 1053 TAILQ_INIT(&inodedep->id_newextupdt); 1054 ACQUIRE_LOCK(&lk); 1055 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1056 sema_release(&inodedep_in_progress); 1057 *inodedeppp = inodedep; 1058 return (0); 1059 } 1060 1061 /* 1062 * Structures and routines associated with newblk caching. 1063 */ 1064 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1065 u_long newblk_hash; /* size of hash table - 1 */ 1066 #define NEWBLK_HASH(fs, inum) \ 1067 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1068 static struct sema newblk_in_progress; 1069 1070 /* 1071 * Look up a newblk. Return 1 if found, 0 if not found. 1072 * If not found, allocate if DEPALLOC flag is passed. 1073 * Found or allocated entry is returned in newblkpp. 1074 */ 1075 static int 1076 newblk_lookup(fs, newblkno, flags, newblkpp) 1077 struct fs *fs; 1078 ufs2_daddr_t newblkno; 1079 int flags; 1080 struct newblk **newblkpp; 1081 { 1082 struct newblk *newblk; 1083 struct newblk_hashhead *newblkhd; 1084 1085 newblkhd = NEWBLK_HASH(fs, newblkno); 1086 top: 1087 LIST_FOREACH(newblk, newblkhd, nb_hash) 1088 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1089 break; 1090 if (newblk) { 1091 *newblkpp = newblk; 1092 return (1); 1093 } 1094 if ((flags & DEPALLOC) == 0) { 1095 *newblkpp = NULL; 1096 return (0); 1097 } 1098 if (sema_get(&newblk_in_progress, 0) == 0) 1099 goto top; 1100 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1101 M_NEWBLK, M_SOFTDEP_FLAGS); 1102 newblk->nb_state = 0; 1103 newblk->nb_fs = fs; 1104 newblk->nb_newblkno = newblkno; 1105 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1106 sema_release(&newblk_in_progress); 1107 *newblkpp = newblk; 1108 return (0); 1109 } 1110 1111 /* 1112 * Executed during filesystem system initialization before 1113 * mounting any filesystems. 1114 */ 1115 void 1116 softdep_initialize() 1117 { 1118 1119 LIST_INIT(&mkdirlisthd); 1120 LIST_INIT(&softdep_workitem_pending); 1121 max_softdeps = desiredvnodes * 8; 1122 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1123 &pagedep_hash); 1124 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 1125 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1126 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 1127 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1128 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 1129 1130 /* hooks through which the main kernel code calls us */ 1131 softdep_process_worklist_hook = softdep_process_worklist; 1132 softdep_fsync_hook = softdep_fsync; 1133 1134 /* initialise bioops hack */ 1135 bioops.io_start = softdep_disk_io_initiation; 1136 bioops.io_complete = softdep_disk_write_complete; 1137 bioops.io_deallocate = softdep_deallocate_dependencies; 1138 bioops.io_movedeps = softdep_move_dependencies; 1139 bioops.io_countdeps = softdep_count_dependencies; 1140 } 1141 1142 /* 1143 * Executed after all filesystems have been unmounted during 1144 * filesystem module unload. 1145 */ 1146 void 1147 softdep_uninitialize() 1148 { 1149 1150 softdep_process_worklist_hook = NULL; 1151 softdep_fsync_hook = NULL; 1152 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1153 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1154 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1155 } 1156 1157 /* 1158 * Called at mount time to notify the dependency code that a 1159 * filesystem wishes to use it. 1160 */ 1161 int 1162 softdep_mount(devvp, mp, fs, cred) 1163 struct vnode *devvp; 1164 struct mount *mp; 1165 struct fs *fs; 1166 struct ucred *cred; 1167 { 1168 struct csum_total cstotal; 1169 struct cg *cgp; 1170 struct buf *bp; 1171 int error, cyl; 1172 1173 mp->mnt_flag &= ~MNT_ASYNC; 1174 mp->mnt_flag |= MNT_SOFTDEP; 1175 /* 1176 * When doing soft updates, the counters in the 1177 * superblock may have gotten out of sync, so we have 1178 * to scan the cylinder groups and recalculate them. 1179 */ 1180 if (fs->fs_clean != 0) 1181 return (0); 1182 bzero(&cstotal, sizeof cstotal); 1183 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1184 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1185 fs->fs_cgsize, cred, &bp)) != 0) { 1186 brelse(bp); 1187 return (error); 1188 } 1189 cgp = (struct cg *)bp->b_data; 1190 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1191 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1192 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1193 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1194 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1195 brelse(bp); 1196 } 1197 #ifdef DEBUG 1198 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1199 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1200 #endif 1201 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1202 return (0); 1203 } 1204 1205 /* 1206 * Protecting the freemaps (or bitmaps). 1207 * 1208 * To eliminate the need to execute fsck before mounting a filesystem 1209 * after a power failure, one must (conservatively) guarantee that the 1210 * on-disk copy of the bitmaps never indicate that a live inode or block is 1211 * free. So, when a block or inode is allocated, the bitmap should be 1212 * updated (on disk) before any new pointers. When a block or inode is 1213 * freed, the bitmap should not be updated until all pointers have been 1214 * reset. The latter dependency is handled by the delayed de-allocation 1215 * approach described below for block and inode de-allocation. The former 1216 * dependency is handled by calling the following procedure when a block or 1217 * inode is allocated. When an inode is allocated an "inodedep" is created 1218 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1219 * Each "inodedep" is also inserted into the hash indexing structure so 1220 * that any additional link additions can be made dependent on the inode 1221 * allocation. 1222 * 1223 * The ufs filesystem maintains a number of free block counts (e.g., per 1224 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1225 * in addition to the bitmaps. These counts are used to improve efficiency 1226 * during allocation and therefore must be consistent with the bitmaps. 1227 * There is no convenient way to guarantee post-crash consistency of these 1228 * counts with simple update ordering, for two main reasons: (1) The counts 1229 * and bitmaps for a single cylinder group block are not in the same disk 1230 * sector. If a disk write is interrupted (e.g., by power failure), one may 1231 * be written and the other not. (2) Some of the counts are located in the 1232 * superblock rather than the cylinder group block. So, we focus our soft 1233 * updates implementation on protecting the bitmaps. When mounting a 1234 * filesystem, we recompute the auxiliary counts from the bitmaps. 1235 */ 1236 1237 /* 1238 * Called just after updating the cylinder group block to allocate an inode. 1239 */ 1240 void 1241 softdep_setup_inomapdep(bp, ip, newinum) 1242 struct buf *bp; /* buffer for cylgroup block with inode map */ 1243 struct inode *ip; /* inode related to allocation */ 1244 ino_t newinum; /* new inode number being allocated */ 1245 { 1246 struct inodedep *inodedep; 1247 struct bmsafemap *bmsafemap; 1248 1249 /* 1250 * Create a dependency for the newly allocated inode. 1251 * Panic if it already exists as something is seriously wrong. 1252 * Otherwise add it to the dependency list for the buffer holding 1253 * the cylinder group map from which it was allocated. 1254 */ 1255 ACQUIRE_LOCK(&lk); 1256 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) { 1257 FREE_LOCK(&lk); 1258 panic("softdep_setup_inomapdep: found inode"); 1259 } 1260 inodedep->id_buf = bp; 1261 inodedep->id_state &= ~DEPCOMPLETE; 1262 bmsafemap = bmsafemap_lookup(bp); 1263 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1264 FREE_LOCK(&lk); 1265 } 1266 1267 /* 1268 * Called just after updating the cylinder group block to 1269 * allocate block or fragment. 1270 */ 1271 void 1272 softdep_setup_blkmapdep(bp, fs, newblkno) 1273 struct buf *bp; /* buffer for cylgroup block with block map */ 1274 struct fs *fs; /* filesystem doing allocation */ 1275 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1276 { 1277 struct newblk *newblk; 1278 struct bmsafemap *bmsafemap; 1279 1280 /* 1281 * Create a dependency for the newly allocated block. 1282 * Add it to the dependency list for the buffer holding 1283 * the cylinder group map from which it was allocated. 1284 */ 1285 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1286 panic("softdep_setup_blkmapdep: found block"); 1287 ACQUIRE_LOCK(&lk); 1288 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1289 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1290 FREE_LOCK(&lk); 1291 } 1292 1293 /* 1294 * Find the bmsafemap associated with a cylinder group buffer. 1295 * If none exists, create one. The buffer must be locked when 1296 * this routine is called and this routine must be called with 1297 * splbio interrupts blocked. 1298 */ 1299 static struct bmsafemap * 1300 bmsafemap_lookup(bp) 1301 struct buf *bp; 1302 { 1303 struct bmsafemap *bmsafemap; 1304 struct worklist *wk; 1305 1306 #ifdef DEBUG 1307 if (lk.lkt_held == NOHOLDER) 1308 panic("bmsafemap_lookup: lock not held"); 1309 #endif 1310 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1311 if (wk->wk_type == D_BMSAFEMAP) 1312 return (WK_BMSAFEMAP(wk)); 1313 FREE_LOCK(&lk); 1314 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1315 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1316 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1317 bmsafemap->sm_list.wk_state = 0; 1318 bmsafemap->sm_buf = bp; 1319 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1320 LIST_INIT(&bmsafemap->sm_allocindirhd); 1321 LIST_INIT(&bmsafemap->sm_inodedephd); 1322 LIST_INIT(&bmsafemap->sm_newblkhd); 1323 ACQUIRE_LOCK(&lk); 1324 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1325 return (bmsafemap); 1326 } 1327 1328 /* 1329 * Direct block allocation dependencies. 1330 * 1331 * When a new block is allocated, the corresponding disk locations must be 1332 * initialized (with zeros or new data) before the on-disk inode points to 1333 * them. Also, the freemap from which the block was allocated must be 1334 * updated (on disk) before the inode's pointer. These two dependencies are 1335 * independent of each other and are needed for all file blocks and indirect 1336 * blocks that are pointed to directly by the inode. Just before the 1337 * "in-core" version of the inode is updated with a newly allocated block 1338 * number, a procedure (below) is called to setup allocation dependency 1339 * structures. These structures are removed when the corresponding 1340 * dependencies are satisfied or when the block allocation becomes obsolete 1341 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1342 * fragment that gets upgraded). All of these cases are handled in 1343 * procedures described later. 1344 * 1345 * When a file extension causes a fragment to be upgraded, either to a larger 1346 * fragment or to a full block, the on-disk location may change (if the 1347 * previous fragment could not simply be extended). In this case, the old 1348 * fragment must be de-allocated, but not until after the inode's pointer has 1349 * been updated. In most cases, this is handled by later procedures, which 1350 * will construct a "freefrag" structure to be added to the workitem queue 1351 * when the inode update is complete (or obsolete). The main exception to 1352 * this is when an allocation occurs while a pending allocation dependency 1353 * (for the same block pointer) remains. This case is handled in the main 1354 * allocation dependency setup procedure by immediately freeing the 1355 * unreferenced fragments. 1356 */ 1357 void 1358 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1359 struct inode *ip; /* inode to which block is being added */ 1360 ufs_lbn_t lbn; /* block pointer within inode */ 1361 ufs2_daddr_t newblkno; /* disk block number being added */ 1362 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1363 long newsize; /* size of new block */ 1364 long oldsize; /* size of new block */ 1365 struct buf *bp; /* bp for allocated block */ 1366 { 1367 struct allocdirect *adp, *oldadp; 1368 struct allocdirectlst *adphead; 1369 struct bmsafemap *bmsafemap; 1370 struct inodedep *inodedep; 1371 struct pagedep *pagedep; 1372 struct newblk *newblk; 1373 1374 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1375 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1376 adp->ad_list.wk_type = D_ALLOCDIRECT; 1377 adp->ad_lbn = lbn; 1378 adp->ad_newblkno = newblkno; 1379 adp->ad_oldblkno = oldblkno; 1380 adp->ad_newsize = newsize; 1381 adp->ad_oldsize = oldsize; 1382 adp->ad_state = ATTACHED; 1383 LIST_INIT(&adp->ad_newdirblk); 1384 if (newblkno == oldblkno) 1385 adp->ad_freefrag = NULL; 1386 else 1387 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1388 1389 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1390 panic("softdep_setup_allocdirect: lost block"); 1391 1392 ACQUIRE_LOCK(&lk); 1393 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1394 adp->ad_inodedep = inodedep; 1395 1396 if (newblk->nb_state == DEPCOMPLETE) { 1397 adp->ad_state |= DEPCOMPLETE; 1398 adp->ad_buf = NULL; 1399 } else { 1400 bmsafemap = newblk->nb_bmsafemap; 1401 adp->ad_buf = bmsafemap->sm_buf; 1402 LIST_REMOVE(newblk, nb_deps); 1403 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1404 } 1405 LIST_REMOVE(newblk, nb_hash); 1406 FREE(newblk, M_NEWBLK); 1407 1408 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1409 if (lbn >= NDADDR) { 1410 /* allocating an indirect block */ 1411 if (oldblkno != 0) { 1412 FREE_LOCK(&lk); 1413 panic("softdep_setup_allocdirect: non-zero indir"); 1414 } 1415 } else { 1416 /* 1417 * Allocating a direct block. 1418 * 1419 * If we are allocating a directory block, then we must 1420 * allocate an associated pagedep to track additions and 1421 * deletions. 1422 */ 1423 if ((ip->i_mode & IFMT) == IFDIR && 1424 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1425 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1426 } 1427 /* 1428 * The list of allocdirects must be kept in sorted and ascending 1429 * order so that the rollback routines can quickly determine the 1430 * first uncommitted block (the size of the file stored on disk 1431 * ends at the end of the lowest committed fragment, or if there 1432 * are no fragments, at the end of the highest committed block). 1433 * Since files generally grow, the typical case is that the new 1434 * block is to be added at the end of the list. We speed this 1435 * special case by checking against the last allocdirect in the 1436 * list before laboriously traversing the list looking for the 1437 * insertion point. 1438 */ 1439 adphead = &inodedep->id_newinoupdt; 1440 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1441 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1442 /* insert at end of list */ 1443 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1444 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1445 allocdirect_merge(adphead, adp, oldadp); 1446 FREE_LOCK(&lk); 1447 return; 1448 } 1449 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1450 if (oldadp->ad_lbn >= lbn) 1451 break; 1452 } 1453 if (oldadp == NULL) { 1454 FREE_LOCK(&lk); 1455 panic("softdep_setup_allocdirect: lost entry"); 1456 } 1457 /* insert in middle of list */ 1458 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1459 if (oldadp->ad_lbn == lbn) 1460 allocdirect_merge(adphead, adp, oldadp); 1461 FREE_LOCK(&lk); 1462 } 1463 1464 /* 1465 * Replace an old allocdirect dependency with a newer one. 1466 * This routine must be called with splbio interrupts blocked. 1467 */ 1468 static void 1469 allocdirect_merge(adphead, newadp, oldadp) 1470 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1471 struct allocdirect *newadp; /* allocdirect being added */ 1472 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1473 { 1474 struct worklist *wk; 1475 struct freefrag *freefrag; 1476 struct newdirblk *newdirblk; 1477 1478 #ifdef DEBUG 1479 if (lk.lkt_held == NOHOLDER) 1480 panic("allocdirect_merge: lock not held"); 1481 #endif 1482 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1483 newadp->ad_oldsize != oldadp->ad_newsize || 1484 newadp->ad_lbn >= NDADDR) { 1485 FREE_LOCK(&lk); 1486 panic("%s %jd != new %jd || old size %ld != new %ld", 1487 "allocdirect_merge: old blkno", 1488 (intmax_t)newadp->ad_oldblkno, 1489 (intmax_t)oldadp->ad_newblkno, 1490 newadp->ad_oldsize, oldadp->ad_newsize); 1491 } 1492 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1493 newadp->ad_oldsize = oldadp->ad_oldsize; 1494 /* 1495 * If the old dependency had a fragment to free or had never 1496 * previously had a block allocated, then the new dependency 1497 * can immediately post its freefrag and adopt the old freefrag. 1498 * This action is done by swapping the freefrag dependencies. 1499 * The new dependency gains the old one's freefrag, and the 1500 * old one gets the new one and then immediately puts it on 1501 * the worklist when it is freed by free_allocdirect. It is 1502 * not possible to do this swap when the old dependency had a 1503 * non-zero size but no previous fragment to free. This condition 1504 * arises when the new block is an extension of the old block. 1505 * Here, the first part of the fragment allocated to the new 1506 * dependency is part of the block currently claimed on disk by 1507 * the old dependency, so cannot legitimately be freed until the 1508 * conditions for the new dependency are fulfilled. 1509 */ 1510 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1511 freefrag = newadp->ad_freefrag; 1512 newadp->ad_freefrag = oldadp->ad_freefrag; 1513 oldadp->ad_freefrag = freefrag; 1514 } 1515 /* 1516 * If we are tracking a new directory-block allocation, 1517 * move it from the old allocdirect to the new allocdirect. 1518 */ 1519 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1520 newdirblk = WK_NEWDIRBLK(wk); 1521 WORKLIST_REMOVE(&newdirblk->db_list); 1522 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1523 panic("allocdirect_merge: extra newdirblk"); 1524 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1525 } 1526 free_allocdirect(adphead, oldadp, 0); 1527 } 1528 1529 /* 1530 * Allocate a new freefrag structure if needed. 1531 */ 1532 static struct freefrag * 1533 newfreefrag(ip, blkno, size) 1534 struct inode *ip; 1535 ufs2_daddr_t blkno; 1536 long size; 1537 { 1538 struct freefrag *freefrag; 1539 struct fs *fs; 1540 1541 if (blkno == 0) 1542 return (NULL); 1543 fs = ip->i_fs; 1544 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1545 panic("newfreefrag: frag size"); 1546 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1547 M_FREEFRAG, M_SOFTDEP_FLAGS); 1548 freefrag->ff_list.wk_type = D_FREEFRAG; 1549 freefrag->ff_state = 0; 1550 freefrag->ff_inum = ip->i_number; 1551 freefrag->ff_mnt = ITOV(ip)->v_mount; 1552 freefrag->ff_blkno = blkno; 1553 freefrag->ff_fragsize = size; 1554 return (freefrag); 1555 } 1556 1557 /* 1558 * This workitem de-allocates fragments that were replaced during 1559 * file block allocation. 1560 */ 1561 static void 1562 handle_workitem_freefrag(freefrag) 1563 struct freefrag *freefrag; 1564 { 1565 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1566 1567 ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1568 freefrag->ff_fragsize, freefrag->ff_inum); 1569 FREE(freefrag, M_FREEFRAG); 1570 } 1571 1572 /* 1573 * Set up a dependency structure for an external attributes data block. 1574 * This routine follows much of the structure of softdep_setup_allocdirect. 1575 * See the description of softdep_setup_allocdirect above for details. 1576 */ 1577 void 1578 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1579 struct inode *ip; 1580 ufs_lbn_t lbn; 1581 ufs2_daddr_t newblkno; 1582 ufs2_daddr_t oldblkno; 1583 long newsize; 1584 long oldsize; 1585 struct buf *bp; 1586 { 1587 struct allocdirect *adp, *oldadp; 1588 struct allocdirectlst *adphead; 1589 struct bmsafemap *bmsafemap; 1590 struct inodedep *inodedep; 1591 struct newblk *newblk; 1592 1593 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1594 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1595 adp->ad_list.wk_type = D_ALLOCDIRECT; 1596 adp->ad_lbn = lbn; 1597 adp->ad_newblkno = newblkno; 1598 adp->ad_oldblkno = oldblkno; 1599 adp->ad_newsize = newsize; 1600 adp->ad_oldsize = oldsize; 1601 adp->ad_state = ATTACHED | EXTDATA; 1602 LIST_INIT(&adp->ad_newdirblk); 1603 if (newblkno == oldblkno) 1604 adp->ad_freefrag = NULL; 1605 else 1606 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1607 1608 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1609 panic("softdep_setup_allocext: lost block"); 1610 1611 ACQUIRE_LOCK(&lk); 1612 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1613 adp->ad_inodedep = inodedep; 1614 1615 if (newblk->nb_state == DEPCOMPLETE) { 1616 adp->ad_state |= DEPCOMPLETE; 1617 adp->ad_buf = NULL; 1618 } else { 1619 bmsafemap = newblk->nb_bmsafemap; 1620 adp->ad_buf = bmsafemap->sm_buf; 1621 LIST_REMOVE(newblk, nb_deps); 1622 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1623 } 1624 LIST_REMOVE(newblk, nb_hash); 1625 FREE(newblk, M_NEWBLK); 1626 1627 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1628 if (lbn >= NXADDR) { 1629 FREE_LOCK(&lk); 1630 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1631 (long long)lbn); 1632 } 1633 /* 1634 * The list of allocdirects must be kept in sorted and ascending 1635 * order so that the rollback routines can quickly determine the 1636 * first uncommitted block (the size of the file stored on disk 1637 * ends at the end of the lowest committed fragment, or if there 1638 * are no fragments, at the end of the highest committed block). 1639 * Since files generally grow, the typical case is that the new 1640 * block is to be added at the end of the list. We speed this 1641 * special case by checking against the last allocdirect in the 1642 * list before laboriously traversing the list looking for the 1643 * insertion point. 1644 */ 1645 adphead = &inodedep->id_newextupdt; 1646 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1647 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1648 /* insert at end of list */ 1649 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1650 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1651 allocdirect_merge(adphead, adp, oldadp); 1652 FREE_LOCK(&lk); 1653 return; 1654 } 1655 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1656 if (oldadp->ad_lbn >= lbn) 1657 break; 1658 } 1659 if (oldadp == NULL) { 1660 FREE_LOCK(&lk); 1661 panic("softdep_setup_allocext: lost entry"); 1662 } 1663 /* insert in middle of list */ 1664 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1665 if (oldadp->ad_lbn == lbn) 1666 allocdirect_merge(adphead, adp, oldadp); 1667 FREE_LOCK(&lk); 1668 } 1669 1670 /* 1671 * Indirect block allocation dependencies. 1672 * 1673 * The same dependencies that exist for a direct block also exist when 1674 * a new block is allocated and pointed to by an entry in a block of 1675 * indirect pointers. The undo/redo states described above are also 1676 * used here. Because an indirect block contains many pointers that 1677 * may have dependencies, a second copy of the entire in-memory indirect 1678 * block is kept. The buffer cache copy is always completely up-to-date. 1679 * The second copy, which is used only as a source for disk writes, 1680 * contains only the safe pointers (i.e., those that have no remaining 1681 * update dependencies). The second copy is freed when all pointers 1682 * are safe. The cache is not allowed to replace indirect blocks with 1683 * pending update dependencies. If a buffer containing an indirect 1684 * block with dependencies is written, these routines will mark it 1685 * dirty again. It can only be successfully written once all the 1686 * dependencies are removed. The ffs_fsync routine in conjunction with 1687 * softdep_sync_metadata work together to get all the dependencies 1688 * removed so that a file can be successfully written to disk. Three 1689 * procedures are used when setting up indirect block pointer 1690 * dependencies. The division is necessary because of the organization 1691 * of the "balloc" routine and because of the distinction between file 1692 * pages and file metadata blocks. 1693 */ 1694 1695 /* 1696 * Allocate a new allocindir structure. 1697 */ 1698 static struct allocindir * 1699 newallocindir(ip, ptrno, newblkno, oldblkno) 1700 struct inode *ip; /* inode for file being extended */ 1701 int ptrno; /* offset of pointer in indirect block */ 1702 ufs2_daddr_t newblkno; /* disk block number being added */ 1703 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1704 { 1705 struct allocindir *aip; 1706 1707 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1708 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1709 aip->ai_list.wk_type = D_ALLOCINDIR; 1710 aip->ai_state = ATTACHED; 1711 aip->ai_offset = ptrno; 1712 aip->ai_newblkno = newblkno; 1713 aip->ai_oldblkno = oldblkno; 1714 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1715 return (aip); 1716 } 1717 1718 /* 1719 * Called just before setting an indirect block pointer 1720 * to a newly allocated file page. 1721 */ 1722 void 1723 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1724 struct inode *ip; /* inode for file being extended */ 1725 ufs_lbn_t lbn; /* allocated block number within file */ 1726 struct buf *bp; /* buffer with indirect blk referencing page */ 1727 int ptrno; /* offset of pointer in indirect block */ 1728 ufs2_daddr_t newblkno; /* disk block number being added */ 1729 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1730 struct buf *nbp; /* buffer holding allocated page */ 1731 { 1732 struct allocindir *aip; 1733 struct pagedep *pagedep; 1734 1735 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1736 ACQUIRE_LOCK(&lk); 1737 /* 1738 * If we are allocating a directory page, then we must 1739 * allocate an associated pagedep to track additions and 1740 * deletions. 1741 */ 1742 if ((ip->i_mode & IFMT) == IFDIR && 1743 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1744 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1745 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1746 FREE_LOCK(&lk); 1747 setup_allocindir_phase2(bp, ip, aip); 1748 } 1749 1750 /* 1751 * Called just before setting an indirect block pointer to a 1752 * newly allocated indirect block. 1753 */ 1754 void 1755 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1756 struct buf *nbp; /* newly allocated indirect block */ 1757 struct inode *ip; /* inode for file being extended */ 1758 struct buf *bp; /* indirect block referencing allocated block */ 1759 int ptrno; /* offset of pointer in indirect block */ 1760 ufs2_daddr_t newblkno; /* disk block number being added */ 1761 { 1762 struct allocindir *aip; 1763 1764 aip = newallocindir(ip, ptrno, newblkno, 0); 1765 ACQUIRE_LOCK(&lk); 1766 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1767 FREE_LOCK(&lk); 1768 setup_allocindir_phase2(bp, ip, aip); 1769 } 1770 1771 /* 1772 * Called to finish the allocation of the "aip" allocated 1773 * by one of the two routines above. 1774 */ 1775 static void 1776 setup_allocindir_phase2(bp, ip, aip) 1777 struct buf *bp; /* in-memory copy of the indirect block */ 1778 struct inode *ip; /* inode for file being extended */ 1779 struct allocindir *aip; /* allocindir allocated by the above routines */ 1780 { 1781 struct worklist *wk; 1782 struct indirdep *indirdep, *newindirdep; 1783 struct bmsafemap *bmsafemap; 1784 struct allocindir *oldaip; 1785 struct freefrag *freefrag; 1786 struct newblk *newblk; 1787 ufs2_daddr_t blkno; 1788 1789 if (bp->b_lblkno >= 0) 1790 panic("setup_allocindir_phase2: not indir blk"); 1791 for (indirdep = NULL, newindirdep = NULL; ; ) { 1792 ACQUIRE_LOCK(&lk); 1793 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1794 if (wk->wk_type != D_INDIRDEP) 1795 continue; 1796 indirdep = WK_INDIRDEP(wk); 1797 break; 1798 } 1799 if (indirdep == NULL && newindirdep) { 1800 indirdep = newindirdep; 1801 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1802 newindirdep = NULL; 1803 } 1804 FREE_LOCK(&lk); 1805 if (indirdep) { 1806 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1807 &newblk) == 0) 1808 panic("setup_allocindir: lost block"); 1809 ACQUIRE_LOCK(&lk); 1810 if (newblk->nb_state == DEPCOMPLETE) { 1811 aip->ai_state |= DEPCOMPLETE; 1812 aip->ai_buf = NULL; 1813 } else { 1814 bmsafemap = newblk->nb_bmsafemap; 1815 aip->ai_buf = bmsafemap->sm_buf; 1816 LIST_REMOVE(newblk, nb_deps); 1817 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1818 aip, ai_deps); 1819 } 1820 LIST_REMOVE(newblk, nb_hash); 1821 FREE(newblk, M_NEWBLK); 1822 aip->ai_indirdep = indirdep; 1823 /* 1824 * Check to see if there is an existing dependency 1825 * for this block. If there is, merge the old 1826 * dependency into the new one. 1827 */ 1828 if (aip->ai_oldblkno == 0) 1829 oldaip = NULL; 1830 else 1831 1832 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1833 if (oldaip->ai_offset == aip->ai_offset) 1834 break; 1835 freefrag = NULL; 1836 if (oldaip != NULL) { 1837 if (oldaip->ai_newblkno != aip->ai_oldblkno) { 1838 FREE_LOCK(&lk); 1839 panic("setup_allocindir_phase2: blkno"); 1840 } 1841 aip->ai_oldblkno = oldaip->ai_oldblkno; 1842 freefrag = aip->ai_freefrag; 1843 aip->ai_freefrag = oldaip->ai_freefrag; 1844 oldaip->ai_freefrag = NULL; 1845 free_allocindir(oldaip, NULL); 1846 } 1847 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1848 if (ip->i_ump->um_fstype == UFS1) 1849 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1850 [aip->ai_offset] = aip->ai_oldblkno; 1851 else 1852 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1853 [aip->ai_offset] = aip->ai_oldblkno; 1854 FREE_LOCK(&lk); 1855 if (freefrag != NULL) 1856 handle_workitem_freefrag(freefrag); 1857 } 1858 if (newindirdep) { 1859 if (indirdep->ir_savebp != NULL) 1860 brelse(newindirdep->ir_savebp); 1861 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1862 } 1863 if (indirdep) 1864 break; 1865 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1866 M_INDIRDEP, M_SOFTDEP_FLAGS); 1867 newindirdep->ir_list.wk_type = D_INDIRDEP; 1868 newindirdep->ir_state = ATTACHED; 1869 if (ip->i_ump->um_fstype == UFS1) 1870 newindirdep->ir_state |= UFS1FMT; 1871 LIST_INIT(&newindirdep->ir_deplisthd); 1872 LIST_INIT(&newindirdep->ir_donehd); 1873 if (bp->b_blkno == bp->b_lblkno) { 1874 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 1875 NULL, NULL); 1876 bp->b_blkno = blkno; 1877 } 1878 newindirdep->ir_savebp = 1879 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1880 BUF_KERNPROC(newindirdep->ir_savebp); 1881 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1882 } 1883 } 1884 1885 /* 1886 * Block de-allocation dependencies. 1887 * 1888 * When blocks are de-allocated, the on-disk pointers must be nullified before 1889 * the blocks are made available for use by other files. (The true 1890 * requirement is that old pointers must be nullified before new on-disk 1891 * pointers are set. We chose this slightly more stringent requirement to 1892 * reduce complexity.) Our implementation handles this dependency by updating 1893 * the inode (or indirect block) appropriately but delaying the actual block 1894 * de-allocation (i.e., freemap and free space count manipulation) until 1895 * after the updated versions reach stable storage. After the disk is 1896 * updated, the blocks can be safely de-allocated whenever it is convenient. 1897 * This implementation handles only the common case of reducing a file's 1898 * length to zero. Other cases are handled by the conventional synchronous 1899 * write approach. 1900 * 1901 * The ffs implementation with which we worked double-checks 1902 * the state of the block pointers and file size as it reduces 1903 * a file's length. Some of this code is replicated here in our 1904 * soft updates implementation. The freeblks->fb_chkcnt field is 1905 * used to transfer a part of this information to the procedure 1906 * that eventually de-allocates the blocks. 1907 * 1908 * This routine should be called from the routine that shortens 1909 * a file's length, before the inode's size or block pointers 1910 * are modified. It will save the block pointer information for 1911 * later release and zero the inode so that the calling routine 1912 * can release it. 1913 */ 1914 void 1915 softdep_setup_freeblocks(ip, length, flags) 1916 struct inode *ip; /* The inode whose length is to be reduced */ 1917 off_t length; /* The new length for the file */ 1918 int flags; /* IO_EXT and/or IO_NORMAL */ 1919 { 1920 struct freeblks *freeblks; 1921 struct inodedep *inodedep; 1922 struct allocdirect *adp; 1923 struct vnode *vp; 1924 struct buf *bp; 1925 struct fs *fs; 1926 ufs2_daddr_t extblocks, datablocks; 1927 int i, delay, error; 1928 1929 fs = ip->i_fs; 1930 if (length != 0) 1931 panic("softdep_setup_freeblocks: non-zero length"); 1932 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1933 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1934 freeblks->fb_list.wk_type = D_FREEBLKS; 1935 freeblks->fb_uid = ip->i_uid; 1936 freeblks->fb_previousinum = ip->i_number; 1937 freeblks->fb_devvp = ip->i_devvp; 1938 freeblks->fb_mnt = ITOV(ip)->v_mount; 1939 extblocks = 0; 1940 if (fs->fs_magic == FS_UFS2_MAGIC) 1941 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 1942 datablocks = DIP(ip, i_blocks) - extblocks; 1943 if ((flags & IO_NORMAL) == 0) { 1944 freeblks->fb_oldsize = 0; 1945 freeblks->fb_chkcnt = 0; 1946 } else { 1947 freeblks->fb_oldsize = ip->i_size; 1948 ip->i_size = 0; 1949 DIP(ip, i_size) = 0; 1950 freeblks->fb_chkcnt = datablocks; 1951 for (i = 0; i < NDADDR; i++) { 1952 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 1953 DIP(ip, i_db[i]) = 0; 1954 } 1955 for (i = 0; i < NIADDR; i++) { 1956 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 1957 DIP(ip, i_ib[i]) = 0; 1958 } 1959 /* 1960 * If the file was removed, then the space being freed was 1961 * accounted for then (see softdep_filereleased()). If the 1962 * file is merely being truncated, then we account for it now. 1963 */ 1964 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 1965 fs->fs_pendingblocks += datablocks; 1966 } 1967 if ((flags & IO_EXT) == 0) { 1968 freeblks->fb_oldextsize = 0; 1969 } else { 1970 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 1971 ip->i_din2->di_extsize = 0; 1972 freeblks->fb_chkcnt += extblocks; 1973 for (i = 0; i < NXADDR; i++) { 1974 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 1975 ip->i_din2->di_extb[i] = 0; 1976 } 1977 } 1978 DIP(ip, i_blocks) -= freeblks->fb_chkcnt; 1979 /* 1980 * Push the zero'ed inode to to its disk buffer so that we are free 1981 * to delete its dependencies below. Once the dependencies are gone 1982 * the buffer can be safely released. 1983 */ 1984 if ((error = bread(ip->i_devvp, 1985 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1986 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 1987 brelse(bp); 1988 softdep_error("softdep_setup_freeblocks", error); 1989 } 1990 if (ip->i_ump->um_fstype == UFS1) 1991 *((struct ufs1_dinode *)bp->b_data + 1992 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 1993 else 1994 *((struct ufs2_dinode *)bp->b_data + 1995 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 1996 /* 1997 * Find and eliminate any inode dependencies. 1998 */ 1999 ACQUIRE_LOCK(&lk); 2000 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 2001 if ((inodedep->id_state & IOSTARTED) != 0) { 2002 FREE_LOCK(&lk); 2003 panic("softdep_setup_freeblocks: inode busy"); 2004 } 2005 /* 2006 * Add the freeblks structure to the list of operations that 2007 * must await the zero'ed inode being written to disk. If we 2008 * still have a bitmap dependency (delay == 0), then the inode 2009 * has never been written to disk, so we can process the 2010 * freeblks below once we have deleted the dependencies. 2011 */ 2012 delay = (inodedep->id_state & DEPCOMPLETE); 2013 if (delay) 2014 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2015 /* 2016 * Because the file length has been truncated to zero, any 2017 * pending block allocation dependency structures associated 2018 * with this inode are obsolete and can simply be de-allocated. 2019 * We must first merge the two dependency lists to get rid of 2020 * any duplicate freefrag structures, then purge the merged list. 2021 * If we still have a bitmap dependency, then the inode has never 2022 * been written to disk, so we can free any fragments without delay. 2023 */ 2024 if (flags & IO_NORMAL) { 2025 merge_inode_lists(&inodedep->id_newinoupdt, 2026 &inodedep->id_inoupdt); 2027 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2028 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2029 } 2030 if (flags & IO_EXT) { 2031 merge_inode_lists(&inodedep->id_newextupdt, 2032 &inodedep->id_extupdt); 2033 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2034 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2035 } 2036 FREE_LOCK(&lk); 2037 bdwrite(bp); 2038 /* 2039 * We must wait for any I/O in progress to finish so that 2040 * all potential buffers on the dirty list will be visible. 2041 * Once they are all there, walk the list and get rid of 2042 * any dependencies. 2043 */ 2044 vp = ITOV(ip); 2045 ACQUIRE_LOCK(&lk); 2046 drain_output(vp, 1); 2047 restart: 2048 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 2049 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2050 ((flags & IO_NORMAL) == 0 && 2051 (bp->b_xflags & BX_ALTDATA) == 0)) 2052 continue; 2053 if (getdirtybuf(&bp, MNT_WAIT) == 0) 2054 goto restart; 2055 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 2056 deallocate_dependencies(bp, inodedep); 2057 bp->b_flags |= B_INVAL | B_NOCACHE; 2058 FREE_LOCK(&lk); 2059 brelse(bp); 2060 ACQUIRE_LOCK(&lk); 2061 goto restart; 2062 } 2063 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 2064 (void) free_inodedep(inodedep); 2065 FREE_LOCK(&lk); 2066 /* 2067 * If the inode has never been written to disk (delay == 0), 2068 * then we can process the freeblks now that we have deleted 2069 * the dependencies. 2070 */ 2071 if (!delay) 2072 handle_workitem_freeblocks(freeblks, 0); 2073 } 2074 2075 /* 2076 * Reclaim any dependency structures from a buffer that is about to 2077 * be reallocated to a new vnode. The buffer must be locked, thus, 2078 * no I/O completion operations can occur while we are manipulating 2079 * its associated dependencies. The mutex is held so that other I/O's 2080 * associated with related dependencies do not occur. 2081 */ 2082 static void 2083 deallocate_dependencies(bp, inodedep) 2084 struct buf *bp; 2085 struct inodedep *inodedep; 2086 { 2087 struct worklist *wk; 2088 struct indirdep *indirdep; 2089 struct allocindir *aip; 2090 struct pagedep *pagedep; 2091 struct dirrem *dirrem; 2092 struct diradd *dap; 2093 int i; 2094 2095 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2096 switch (wk->wk_type) { 2097 2098 case D_INDIRDEP: 2099 indirdep = WK_INDIRDEP(wk); 2100 /* 2101 * None of the indirect pointers will ever be visible, 2102 * so they can simply be tossed. GOINGAWAY ensures 2103 * that allocated pointers will be saved in the buffer 2104 * cache until they are freed. Note that they will 2105 * only be able to be found by their physical address 2106 * since the inode mapping the logical address will 2107 * be gone. The save buffer used for the safe copy 2108 * was allocated in setup_allocindir_phase2 using 2109 * the physical address so it could be used for this 2110 * purpose. Hence we swap the safe copy with the real 2111 * copy, allowing the safe copy to be freed and holding 2112 * on to the real copy for later use in indir_trunc. 2113 */ 2114 if (indirdep->ir_state & GOINGAWAY) { 2115 FREE_LOCK(&lk); 2116 panic("deallocate_dependencies: already gone"); 2117 } 2118 indirdep->ir_state |= GOINGAWAY; 2119 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2120 free_allocindir(aip, inodedep); 2121 if (bp->b_lblkno >= 0 || 2122 bp->b_blkno != indirdep->ir_savebp->b_lblkno) { 2123 FREE_LOCK(&lk); 2124 panic("deallocate_dependencies: not indir"); 2125 } 2126 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2127 bp->b_bcount); 2128 WORKLIST_REMOVE(wk); 2129 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2130 continue; 2131 2132 case D_PAGEDEP: 2133 pagedep = WK_PAGEDEP(wk); 2134 /* 2135 * None of the directory additions will ever be 2136 * visible, so they can simply be tossed. 2137 */ 2138 for (i = 0; i < DAHASHSZ; i++) 2139 while ((dap = 2140 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2141 free_diradd(dap); 2142 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2143 free_diradd(dap); 2144 /* 2145 * Copy any directory remove dependencies to the list 2146 * to be processed after the zero'ed inode is written. 2147 * If the inode has already been written, then they 2148 * can be dumped directly onto the work list. 2149 */ 2150 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2151 LIST_REMOVE(dirrem, dm_next); 2152 dirrem->dm_dirinum = pagedep->pd_ino; 2153 if (inodedep == NULL || 2154 (inodedep->id_state & ALLCOMPLETE) == 2155 ALLCOMPLETE) 2156 add_to_worklist(&dirrem->dm_list); 2157 else 2158 WORKLIST_INSERT(&inodedep->id_bufwait, 2159 &dirrem->dm_list); 2160 } 2161 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2162 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2163 if (wk->wk_type == D_NEWDIRBLK && 2164 WK_NEWDIRBLK(wk)->db_pagedep == 2165 pagedep) 2166 break; 2167 if (wk != NULL) { 2168 WORKLIST_REMOVE(wk); 2169 free_newdirblk(WK_NEWDIRBLK(wk)); 2170 } else { 2171 FREE_LOCK(&lk); 2172 panic("deallocate_dependencies: " 2173 "lost pagedep"); 2174 } 2175 } 2176 WORKLIST_REMOVE(&pagedep->pd_list); 2177 LIST_REMOVE(pagedep, pd_hash); 2178 WORKITEM_FREE(pagedep, D_PAGEDEP); 2179 continue; 2180 2181 case D_ALLOCINDIR: 2182 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2183 continue; 2184 2185 case D_ALLOCDIRECT: 2186 case D_INODEDEP: 2187 FREE_LOCK(&lk); 2188 panic("deallocate_dependencies: Unexpected type %s", 2189 TYPENAME(wk->wk_type)); 2190 /* NOTREACHED */ 2191 2192 default: 2193 FREE_LOCK(&lk); 2194 panic("deallocate_dependencies: Unknown type %s", 2195 TYPENAME(wk->wk_type)); 2196 /* NOTREACHED */ 2197 } 2198 } 2199 } 2200 2201 /* 2202 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2203 * This routine must be called with splbio interrupts blocked. 2204 */ 2205 static void 2206 free_allocdirect(adphead, adp, delay) 2207 struct allocdirectlst *adphead; 2208 struct allocdirect *adp; 2209 int delay; 2210 { 2211 struct newdirblk *newdirblk; 2212 struct worklist *wk; 2213 2214 #ifdef DEBUG 2215 if (lk.lkt_held == NOHOLDER) 2216 panic("free_allocdirect: lock not held"); 2217 #endif 2218 if ((adp->ad_state & DEPCOMPLETE) == 0) 2219 LIST_REMOVE(adp, ad_deps); 2220 TAILQ_REMOVE(adphead, adp, ad_next); 2221 if ((adp->ad_state & COMPLETE) == 0) 2222 WORKLIST_REMOVE(&adp->ad_list); 2223 if (adp->ad_freefrag != NULL) { 2224 if (delay) 2225 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2226 &adp->ad_freefrag->ff_list); 2227 else 2228 add_to_worklist(&adp->ad_freefrag->ff_list); 2229 } 2230 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2231 newdirblk = WK_NEWDIRBLK(wk); 2232 WORKLIST_REMOVE(&newdirblk->db_list); 2233 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2234 panic("free_allocdirect: extra newdirblk"); 2235 if (delay) 2236 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2237 &newdirblk->db_list); 2238 else 2239 free_newdirblk(newdirblk); 2240 } 2241 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2242 } 2243 2244 /* 2245 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2246 * This routine must be called with splbio interrupts blocked. 2247 */ 2248 static void 2249 free_newdirblk(newdirblk) 2250 struct newdirblk *newdirblk; 2251 { 2252 struct pagedep *pagedep; 2253 struct diradd *dap; 2254 int i; 2255 2256 #ifdef DEBUG 2257 if (lk.lkt_held == NOHOLDER) 2258 panic("free_newdirblk: lock not held"); 2259 #endif 2260 /* 2261 * If the pagedep is still linked onto the directory buffer 2262 * dependency chain, then some of the entries on the 2263 * pd_pendinghd list may not be committed to disk yet. In 2264 * this case, we will simply clear the NEWBLOCK flag and 2265 * let the pd_pendinghd list be processed when the pagedep 2266 * is next written. If the pagedep is no longer on the buffer 2267 * dependency chain, then all the entries on the pd_pending 2268 * list are committed to disk and we can free them here. 2269 */ 2270 pagedep = newdirblk->db_pagedep; 2271 pagedep->pd_state &= ~NEWBLOCK; 2272 if ((pagedep->pd_state & ONWORKLIST) == 0) 2273 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2274 free_diradd(dap); 2275 /* 2276 * If no dependencies remain, the pagedep will be freed. 2277 */ 2278 for (i = 0; i < DAHASHSZ; i++) 2279 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2280 break; 2281 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2282 LIST_REMOVE(pagedep, pd_hash); 2283 WORKITEM_FREE(pagedep, D_PAGEDEP); 2284 } 2285 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2286 } 2287 2288 /* 2289 * Prepare an inode to be freed. The actual free operation is not 2290 * done until the zero'ed inode has been written to disk. 2291 */ 2292 void 2293 softdep_freefile(pvp, ino, mode) 2294 struct vnode *pvp; 2295 ino_t ino; 2296 int mode; 2297 { 2298 struct inode *ip = VTOI(pvp); 2299 struct inodedep *inodedep; 2300 struct freefile *freefile; 2301 2302 /* 2303 * This sets up the inode de-allocation dependency. 2304 */ 2305 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2306 M_FREEFILE, M_SOFTDEP_FLAGS); 2307 freefile->fx_list.wk_type = D_FREEFILE; 2308 freefile->fx_list.wk_state = 0; 2309 freefile->fx_mode = mode; 2310 freefile->fx_oldinum = ino; 2311 freefile->fx_devvp = ip->i_devvp; 2312 freefile->fx_mnt = ITOV(ip)->v_mount; 2313 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 2314 ip->i_fs->fs_pendinginodes += 1; 2315 2316 /* 2317 * If the inodedep does not exist, then the zero'ed inode has 2318 * been written to disk. If the allocated inode has never been 2319 * written to disk, then the on-disk inode is zero'ed. In either 2320 * case we can free the file immediately. 2321 */ 2322 ACQUIRE_LOCK(&lk); 2323 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2324 check_inode_unwritten(inodedep)) { 2325 FREE_LOCK(&lk); 2326 handle_workitem_freefile(freefile); 2327 return; 2328 } 2329 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2330 FREE_LOCK(&lk); 2331 } 2332 2333 /* 2334 * Check to see if an inode has never been written to disk. If 2335 * so free the inodedep and return success, otherwise return failure. 2336 * This routine must be called with splbio interrupts blocked. 2337 * 2338 * If we still have a bitmap dependency, then the inode has never 2339 * been written to disk. Drop the dependency as it is no longer 2340 * necessary since the inode is being deallocated. We set the 2341 * ALLCOMPLETE flags since the bitmap now properly shows that the 2342 * inode is not allocated. Even if the inode is actively being 2343 * written, it has been rolled back to its zero'ed state, so we 2344 * are ensured that a zero inode is what is on the disk. For short 2345 * lived files, this change will usually result in removing all the 2346 * dependencies from the inode so that it can be freed immediately. 2347 */ 2348 static int 2349 check_inode_unwritten(inodedep) 2350 struct inodedep *inodedep; 2351 { 2352 2353 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2354 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2355 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2356 LIST_FIRST(&inodedep->id_inowait) != NULL || 2357 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2358 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2359 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2360 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2361 inodedep->id_nlinkdelta != 0) 2362 return (0); 2363 inodedep->id_state |= ALLCOMPLETE; 2364 LIST_REMOVE(inodedep, id_deps); 2365 inodedep->id_buf = NULL; 2366 if (inodedep->id_state & ONWORKLIST) 2367 WORKLIST_REMOVE(&inodedep->id_list); 2368 if (inodedep->id_savedino1 != NULL) { 2369 FREE(inodedep->id_savedino1, M_INODEDEP); 2370 inodedep->id_savedino1 = NULL; 2371 } 2372 if (free_inodedep(inodedep) == 0) { 2373 FREE_LOCK(&lk); 2374 panic("check_inode_unwritten: busy inode"); 2375 } 2376 return (1); 2377 } 2378 2379 /* 2380 * Try to free an inodedep structure. Return 1 if it could be freed. 2381 */ 2382 static int 2383 free_inodedep(inodedep) 2384 struct inodedep *inodedep; 2385 { 2386 2387 if ((inodedep->id_state & ONWORKLIST) != 0 || 2388 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2389 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2390 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2391 LIST_FIRST(&inodedep->id_inowait) != NULL || 2392 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2393 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2394 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2395 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2396 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2397 return (0); 2398 LIST_REMOVE(inodedep, id_hash); 2399 WORKITEM_FREE(inodedep, D_INODEDEP); 2400 num_inodedep -= 1; 2401 return (1); 2402 } 2403 2404 /* 2405 * This workitem routine performs the block de-allocation. 2406 * The workitem is added to the pending list after the updated 2407 * inode block has been written to disk. As mentioned above, 2408 * checks regarding the number of blocks de-allocated (compared 2409 * to the number of blocks allocated for the file) are also 2410 * performed in this function. 2411 */ 2412 static void 2413 handle_workitem_freeblocks(freeblks, flags) 2414 struct freeblks *freeblks; 2415 int flags; 2416 { 2417 struct inode *ip; 2418 struct vnode *vp; 2419 struct fs *fs; 2420 int i, nblocks, level, bsize; 2421 ufs2_daddr_t bn, blocksreleased = 0; 2422 int error, allerror = 0; 2423 ufs_lbn_t baselbns[NIADDR], tmpval; 2424 2425 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2426 tmpval = 1; 2427 baselbns[0] = NDADDR; 2428 for (i = 1; i < NIADDR; i++) { 2429 tmpval *= NINDIR(fs); 2430 baselbns[i] = baselbns[i - 1] + tmpval; 2431 } 2432 nblocks = btodb(fs->fs_bsize); 2433 blocksreleased = 0; 2434 /* 2435 * Release all extended attribute blocks or frags. 2436 */ 2437 if (freeblks->fb_oldextsize > 0) { 2438 for (i = (NXADDR - 1); i >= 0; i--) { 2439 if ((bn = freeblks->fb_eblks[i]) == 0) 2440 continue; 2441 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2442 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2443 freeblks->fb_previousinum); 2444 blocksreleased += btodb(bsize); 2445 } 2446 } 2447 /* 2448 * Release all data blocks or frags. 2449 */ 2450 if (freeblks->fb_oldsize > 0) { 2451 /* 2452 * Indirect blocks first. 2453 */ 2454 for (level = (NIADDR - 1); level >= 0; level--) { 2455 if ((bn = freeblks->fb_iblks[level]) == 0) 2456 continue; 2457 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2458 level, baselbns[level], &blocksreleased)) == 0) 2459 allerror = error; 2460 ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize, 2461 freeblks->fb_previousinum); 2462 fs->fs_pendingblocks -= nblocks; 2463 blocksreleased += nblocks; 2464 } 2465 /* 2466 * All direct blocks or frags. 2467 */ 2468 for (i = (NDADDR - 1); i >= 0; i--) { 2469 if ((bn = freeblks->fb_dblks[i]) == 0) 2470 continue; 2471 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2472 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2473 freeblks->fb_previousinum); 2474 fs->fs_pendingblocks -= btodb(bsize); 2475 blocksreleased += btodb(bsize); 2476 } 2477 } 2478 /* 2479 * If we still have not finished background cleanup, then check 2480 * to see if the block count needs to be adjusted. 2481 */ 2482 if (freeblks->fb_chkcnt != blocksreleased && 2483 (fs->fs_flags & FS_UNCLEAN) != 0 && 2484 VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, 2485 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2486 ip = VTOI(vp); 2487 DIP(ip, i_blocks) += freeblks->fb_chkcnt - blocksreleased; 2488 ip->i_flag |= IN_CHANGE; 2489 vput(vp); 2490 } 2491 2492 #ifdef DIAGNOSTIC 2493 if (freeblks->fb_chkcnt != blocksreleased && 2494 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2495 printf("handle_workitem_freeblocks: block count"); 2496 if (allerror) 2497 softdep_error("handle_workitem_freeblks", allerror); 2498 #endif /* DIAGNOSTIC */ 2499 2500 WORKITEM_FREE(freeblks, D_FREEBLKS); 2501 } 2502 2503 /* 2504 * Release blocks associated with the inode ip and stored in the indirect 2505 * block dbn. If level is greater than SINGLE, the block is an indirect block 2506 * and recursive calls to indirtrunc must be used to cleanse other indirect 2507 * blocks. 2508 */ 2509 static int 2510 indir_trunc(freeblks, dbn, level, lbn, countp) 2511 struct freeblks *freeblks; 2512 ufs2_daddr_t dbn; 2513 int level; 2514 ufs_lbn_t lbn; 2515 ufs2_daddr_t *countp; 2516 { 2517 struct buf *bp; 2518 struct fs *fs; 2519 struct worklist *wk; 2520 struct indirdep *indirdep; 2521 ufs1_daddr_t *bap1 = 0; 2522 ufs2_daddr_t nb, *bap2 = 0; 2523 ufs_lbn_t lbnadd; 2524 int i, nblocks, ufs1fmt; 2525 int error, allerror = 0; 2526 2527 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2528 lbnadd = 1; 2529 for (i = level; i > 0; i--) 2530 lbnadd *= NINDIR(fs); 2531 /* 2532 * Get buffer of block pointers to be freed. This routine is not 2533 * called until the zero'ed inode has been written, so it is safe 2534 * to free blocks as they are encountered. Because the inode has 2535 * been zero'ed, calls to bmap on these blocks will fail. So, we 2536 * have to use the on-disk address and the block device for the 2537 * filesystem to look them up. If the file was deleted before its 2538 * indirect blocks were all written to disk, the routine that set 2539 * us up (deallocate_dependencies) will have arranged to leave 2540 * a complete copy of the indirect block in memory for our use. 2541 * Otherwise we have to read the blocks in from the disk. 2542 */ 2543 ACQUIRE_LOCK(&lk); 2544 if ((bp = incore(freeblks->fb_devvp, dbn)) != NULL && 2545 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2546 if (wk->wk_type != D_INDIRDEP || 2547 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2548 (indirdep->ir_state & GOINGAWAY) == 0) { 2549 FREE_LOCK(&lk); 2550 panic("indir_trunc: lost indirdep"); 2551 } 2552 WORKLIST_REMOVE(wk); 2553 WORKITEM_FREE(indirdep, D_INDIRDEP); 2554 if (LIST_FIRST(&bp->b_dep) != NULL) { 2555 FREE_LOCK(&lk); 2556 panic("indir_trunc: dangling dep"); 2557 } 2558 FREE_LOCK(&lk); 2559 } else { 2560 FREE_LOCK(&lk); 2561 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2562 NOCRED, &bp); 2563 if (error) { 2564 brelse(bp); 2565 return (error); 2566 } 2567 } 2568 /* 2569 * Recursively free indirect blocks. 2570 */ 2571 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2572 ufs1fmt = 1; 2573 bap1 = (ufs1_daddr_t *)bp->b_data; 2574 } else { 2575 ufs1fmt = 0; 2576 bap2 = (ufs2_daddr_t *)bp->b_data; 2577 } 2578 nblocks = btodb(fs->fs_bsize); 2579 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2580 if (ufs1fmt) 2581 nb = bap1[i]; 2582 else 2583 nb = bap2[i]; 2584 if (nb == 0) 2585 continue; 2586 if (level != 0) { 2587 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2588 level - 1, lbn + (i * lbnadd), countp)) != 0) 2589 allerror = error; 2590 } 2591 ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2592 freeblks->fb_previousinum); 2593 fs->fs_pendingblocks -= nblocks; 2594 *countp += nblocks; 2595 } 2596 bp->b_flags |= B_INVAL | B_NOCACHE; 2597 brelse(bp); 2598 return (allerror); 2599 } 2600 2601 /* 2602 * Free an allocindir. 2603 * This routine must be called with splbio interrupts blocked. 2604 */ 2605 static void 2606 free_allocindir(aip, inodedep) 2607 struct allocindir *aip; 2608 struct inodedep *inodedep; 2609 { 2610 struct freefrag *freefrag; 2611 2612 #ifdef DEBUG 2613 if (lk.lkt_held == NOHOLDER) 2614 panic("free_allocindir: lock not held"); 2615 #endif 2616 if ((aip->ai_state & DEPCOMPLETE) == 0) 2617 LIST_REMOVE(aip, ai_deps); 2618 if (aip->ai_state & ONWORKLIST) 2619 WORKLIST_REMOVE(&aip->ai_list); 2620 LIST_REMOVE(aip, ai_next); 2621 if ((freefrag = aip->ai_freefrag) != NULL) { 2622 if (inodedep == NULL) 2623 add_to_worklist(&freefrag->ff_list); 2624 else 2625 WORKLIST_INSERT(&inodedep->id_bufwait, 2626 &freefrag->ff_list); 2627 } 2628 WORKITEM_FREE(aip, D_ALLOCINDIR); 2629 } 2630 2631 /* 2632 * Directory entry addition dependencies. 2633 * 2634 * When adding a new directory entry, the inode (with its incremented link 2635 * count) must be written to disk before the directory entry's pointer to it. 2636 * Also, if the inode is newly allocated, the corresponding freemap must be 2637 * updated (on disk) before the directory entry's pointer. These requirements 2638 * are met via undo/redo on the directory entry's pointer, which consists 2639 * simply of the inode number. 2640 * 2641 * As directory entries are added and deleted, the free space within a 2642 * directory block can become fragmented. The ufs filesystem will compact 2643 * a fragmented directory block to make space for a new entry. When this 2644 * occurs, the offsets of previously added entries change. Any "diradd" 2645 * dependency structures corresponding to these entries must be updated with 2646 * the new offsets. 2647 */ 2648 2649 /* 2650 * This routine is called after the in-memory inode's link 2651 * count has been incremented, but before the directory entry's 2652 * pointer to the inode has been set. 2653 */ 2654 int 2655 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2656 struct buf *bp; /* buffer containing directory block */ 2657 struct inode *dp; /* inode for directory */ 2658 off_t diroffset; /* offset of new entry in directory */ 2659 ino_t newinum; /* inode referenced by new directory entry */ 2660 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2661 int isnewblk; /* entry is in a newly allocated block */ 2662 { 2663 int offset; /* offset of new entry within directory block */ 2664 ufs_lbn_t lbn; /* block in directory containing new entry */ 2665 struct fs *fs; 2666 struct diradd *dap; 2667 struct allocdirect *adp; 2668 struct pagedep *pagedep; 2669 struct inodedep *inodedep; 2670 struct newdirblk *newdirblk = 0; 2671 struct mkdir *mkdir1, *mkdir2; 2672 2673 /* 2674 * Whiteouts have no dependencies. 2675 */ 2676 if (newinum == WINO) { 2677 if (newdirbp != NULL) 2678 bdwrite(newdirbp); 2679 return (0); 2680 } 2681 2682 fs = dp->i_fs; 2683 lbn = lblkno(fs, diroffset); 2684 offset = blkoff(fs, diroffset); 2685 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2686 M_SOFTDEP_FLAGS|M_ZERO); 2687 dap->da_list.wk_type = D_DIRADD; 2688 dap->da_offset = offset; 2689 dap->da_newinum = newinum; 2690 dap->da_state = ATTACHED; 2691 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2692 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2693 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2694 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2695 newdirblk->db_state = 0; 2696 } 2697 if (newdirbp == NULL) { 2698 dap->da_state |= DEPCOMPLETE; 2699 ACQUIRE_LOCK(&lk); 2700 } else { 2701 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2702 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2703 M_SOFTDEP_FLAGS); 2704 mkdir1->md_list.wk_type = D_MKDIR; 2705 mkdir1->md_state = MKDIR_BODY; 2706 mkdir1->md_diradd = dap; 2707 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2708 M_SOFTDEP_FLAGS); 2709 mkdir2->md_list.wk_type = D_MKDIR; 2710 mkdir2->md_state = MKDIR_PARENT; 2711 mkdir2->md_diradd = dap; 2712 /* 2713 * Dependency on "." and ".." being written to disk. 2714 */ 2715 mkdir1->md_buf = newdirbp; 2716 ACQUIRE_LOCK(&lk); 2717 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2718 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2719 FREE_LOCK(&lk); 2720 bdwrite(newdirbp); 2721 /* 2722 * Dependency on link count increase for parent directory 2723 */ 2724 ACQUIRE_LOCK(&lk); 2725 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2726 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2727 dap->da_state &= ~MKDIR_PARENT; 2728 WORKITEM_FREE(mkdir2, D_MKDIR); 2729 } else { 2730 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2731 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2732 } 2733 } 2734 /* 2735 * Link into parent directory pagedep to await its being written. 2736 */ 2737 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2738 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2739 dap->da_pagedep = pagedep; 2740 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2741 da_pdlist); 2742 /* 2743 * Link into its inodedep. Put it on the id_bufwait list if the inode 2744 * is not yet written. If it is written, do the post-inode write 2745 * processing to put it on the id_pendinghd list. 2746 */ 2747 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2748 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2749 diradd_inode_written(dap, inodedep); 2750 else 2751 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2752 if (isnewblk) { 2753 /* 2754 * Directories growing into indirect blocks are rare 2755 * enough and the frequency of new block allocation 2756 * in those cases even more rare, that we choose not 2757 * to bother tracking them. Rather we simply force the 2758 * new directory entry to disk. 2759 */ 2760 if (lbn >= NDADDR) { 2761 FREE_LOCK(&lk); 2762 /* 2763 * We only have a new allocation when at the 2764 * beginning of a new block, not when we are 2765 * expanding into an existing block. 2766 */ 2767 if (blkoff(fs, diroffset) == 0) 2768 return (1); 2769 return (0); 2770 } 2771 /* 2772 * We only have a new allocation when at the beginning 2773 * of a new fragment, not when we are expanding into an 2774 * existing fragment. Also, there is nothing to do if we 2775 * are already tracking this block. 2776 */ 2777 if (fragoff(fs, diroffset) != 0) { 2778 FREE_LOCK(&lk); 2779 return (0); 2780 } 2781 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2782 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2783 FREE_LOCK(&lk); 2784 return (0); 2785 } 2786 /* 2787 * Find our associated allocdirect and have it track us. 2788 */ 2789 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2790 panic("softdep_setup_directory_add: lost inodedep"); 2791 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2792 if (adp == NULL || adp->ad_lbn != lbn) { 2793 FREE_LOCK(&lk); 2794 panic("softdep_setup_directory_add: lost entry"); 2795 } 2796 pagedep->pd_state |= NEWBLOCK; 2797 newdirblk->db_pagedep = pagedep; 2798 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2799 } 2800 FREE_LOCK(&lk); 2801 return (0); 2802 } 2803 2804 /* 2805 * This procedure is called to change the offset of a directory 2806 * entry when compacting a directory block which must be owned 2807 * exclusively by the caller. Note that the actual entry movement 2808 * must be done in this procedure to ensure that no I/O completions 2809 * occur while the move is in progress. 2810 */ 2811 void 2812 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2813 struct inode *dp; /* inode for directory */ 2814 caddr_t base; /* address of dp->i_offset */ 2815 caddr_t oldloc; /* address of old directory location */ 2816 caddr_t newloc; /* address of new directory location */ 2817 int entrysize; /* size of directory entry */ 2818 { 2819 int offset, oldoffset, newoffset; 2820 struct pagedep *pagedep; 2821 struct diradd *dap; 2822 ufs_lbn_t lbn; 2823 2824 ACQUIRE_LOCK(&lk); 2825 lbn = lblkno(dp->i_fs, dp->i_offset); 2826 offset = blkoff(dp->i_fs, dp->i_offset); 2827 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2828 goto done; 2829 oldoffset = offset + (oldloc - base); 2830 newoffset = offset + (newloc - base); 2831 2832 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2833 if (dap->da_offset != oldoffset) 2834 continue; 2835 dap->da_offset = newoffset; 2836 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2837 break; 2838 LIST_REMOVE(dap, da_pdlist); 2839 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2840 dap, da_pdlist); 2841 break; 2842 } 2843 if (dap == NULL) { 2844 2845 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2846 if (dap->da_offset == oldoffset) { 2847 dap->da_offset = newoffset; 2848 break; 2849 } 2850 } 2851 } 2852 done: 2853 bcopy(oldloc, newloc, entrysize); 2854 FREE_LOCK(&lk); 2855 } 2856 2857 /* 2858 * Free a diradd dependency structure. This routine must be called 2859 * with splbio interrupts blocked. 2860 */ 2861 static void 2862 free_diradd(dap) 2863 struct diradd *dap; 2864 { 2865 struct dirrem *dirrem; 2866 struct pagedep *pagedep; 2867 struct inodedep *inodedep; 2868 struct mkdir *mkdir, *nextmd; 2869 2870 #ifdef DEBUG 2871 if (lk.lkt_held == NOHOLDER) 2872 panic("free_diradd: lock not held"); 2873 #endif 2874 WORKLIST_REMOVE(&dap->da_list); 2875 LIST_REMOVE(dap, da_pdlist); 2876 if ((dap->da_state & DIRCHG) == 0) { 2877 pagedep = dap->da_pagedep; 2878 } else { 2879 dirrem = dap->da_previous; 2880 pagedep = dirrem->dm_pagedep; 2881 dirrem->dm_dirinum = pagedep->pd_ino; 2882 add_to_worklist(&dirrem->dm_list); 2883 } 2884 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2885 0, &inodedep) != 0) 2886 (void) free_inodedep(inodedep); 2887 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2888 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2889 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2890 if (mkdir->md_diradd != dap) 2891 continue; 2892 dap->da_state &= ~mkdir->md_state; 2893 WORKLIST_REMOVE(&mkdir->md_list); 2894 LIST_REMOVE(mkdir, md_mkdirs); 2895 WORKITEM_FREE(mkdir, D_MKDIR); 2896 } 2897 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2898 FREE_LOCK(&lk); 2899 panic("free_diradd: unfound ref"); 2900 } 2901 } 2902 WORKITEM_FREE(dap, D_DIRADD); 2903 } 2904 2905 /* 2906 * Directory entry removal dependencies. 2907 * 2908 * When removing a directory entry, the entry's inode pointer must be 2909 * zero'ed on disk before the corresponding inode's link count is decremented 2910 * (possibly freeing the inode for re-use). This dependency is handled by 2911 * updating the directory entry but delaying the inode count reduction until 2912 * after the directory block has been written to disk. After this point, the 2913 * inode count can be decremented whenever it is convenient. 2914 */ 2915 2916 /* 2917 * This routine should be called immediately after removing 2918 * a directory entry. The inode's link count should not be 2919 * decremented by the calling procedure -- the soft updates 2920 * code will do this task when it is safe. 2921 */ 2922 void 2923 softdep_setup_remove(bp, dp, ip, isrmdir) 2924 struct buf *bp; /* buffer containing directory block */ 2925 struct inode *dp; /* inode for the directory being modified */ 2926 struct inode *ip; /* inode for directory entry being removed */ 2927 int isrmdir; /* indicates if doing RMDIR */ 2928 { 2929 struct dirrem *dirrem, *prevdirrem; 2930 2931 /* 2932 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2933 */ 2934 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2935 2936 /* 2937 * If the COMPLETE flag is clear, then there were no active 2938 * entries and we want to roll back to a zeroed entry until 2939 * the new inode is committed to disk. If the COMPLETE flag is 2940 * set then we have deleted an entry that never made it to 2941 * disk. If the entry we deleted resulted from a name change, 2942 * then the old name still resides on disk. We cannot delete 2943 * its inode (returned to us in prevdirrem) until the zeroed 2944 * directory entry gets to disk. The new inode has never been 2945 * referenced on the disk, so can be deleted immediately. 2946 */ 2947 if ((dirrem->dm_state & COMPLETE) == 0) { 2948 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2949 dm_next); 2950 FREE_LOCK(&lk); 2951 } else { 2952 if (prevdirrem != NULL) 2953 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2954 prevdirrem, dm_next); 2955 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2956 FREE_LOCK(&lk); 2957 handle_workitem_remove(dirrem, NULL); 2958 } 2959 } 2960 2961 /* 2962 * Allocate a new dirrem if appropriate and return it along with 2963 * its associated pagedep. Called without a lock, returns with lock. 2964 */ 2965 static long num_dirrem; /* number of dirrem allocated */ 2966 static struct dirrem * 2967 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2968 struct buf *bp; /* buffer containing directory block */ 2969 struct inode *dp; /* inode for the directory being modified */ 2970 struct inode *ip; /* inode for directory entry being removed */ 2971 int isrmdir; /* indicates if doing RMDIR */ 2972 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2973 { 2974 int offset; 2975 ufs_lbn_t lbn; 2976 struct diradd *dap; 2977 struct dirrem *dirrem; 2978 struct pagedep *pagedep; 2979 2980 /* 2981 * Whiteouts have no deletion dependencies. 2982 */ 2983 if (ip == NULL) 2984 panic("newdirrem: whiteout"); 2985 /* 2986 * If we are over our limit, try to improve the situation. 2987 * Limiting the number of dirrem structures will also limit 2988 * the number of freefile and freeblks structures. 2989 */ 2990 if (num_dirrem > max_softdeps / 2) 2991 (void) request_cleanup(FLUSH_REMOVE, 0); 2992 num_dirrem += 1; 2993 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2994 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 2995 dirrem->dm_list.wk_type = D_DIRREM; 2996 dirrem->dm_state = isrmdir ? RMDIR : 0; 2997 dirrem->dm_mnt = ITOV(ip)->v_mount; 2998 dirrem->dm_oldinum = ip->i_number; 2999 *prevdirremp = NULL; 3000 3001 ACQUIRE_LOCK(&lk); 3002 lbn = lblkno(dp->i_fs, dp->i_offset); 3003 offset = blkoff(dp->i_fs, dp->i_offset); 3004 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3005 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3006 dirrem->dm_pagedep = pagedep; 3007 /* 3008 * Check for a diradd dependency for the same directory entry. 3009 * If present, then both dependencies become obsolete and can 3010 * be de-allocated. Check for an entry on both the pd_dirraddhd 3011 * list and the pd_pendinghd list. 3012 */ 3013 3014 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3015 if (dap->da_offset == offset) 3016 break; 3017 if (dap == NULL) { 3018 3019 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3020 if (dap->da_offset == offset) 3021 break; 3022 if (dap == NULL) 3023 return (dirrem); 3024 } 3025 /* 3026 * Must be ATTACHED at this point. 3027 */ 3028 if ((dap->da_state & ATTACHED) == 0) { 3029 FREE_LOCK(&lk); 3030 panic("newdirrem: not ATTACHED"); 3031 } 3032 if (dap->da_newinum != ip->i_number) { 3033 FREE_LOCK(&lk); 3034 panic("newdirrem: inum %d should be %d", 3035 ip->i_number, dap->da_newinum); 3036 } 3037 /* 3038 * If we are deleting a changed name that never made it to disk, 3039 * then return the dirrem describing the previous inode (which 3040 * represents the inode currently referenced from this entry on disk). 3041 */ 3042 if ((dap->da_state & DIRCHG) != 0) { 3043 *prevdirremp = dap->da_previous; 3044 dap->da_state &= ~DIRCHG; 3045 dap->da_pagedep = pagedep; 3046 } 3047 /* 3048 * We are deleting an entry that never made it to disk. 3049 * Mark it COMPLETE so we can delete its inode immediately. 3050 */ 3051 dirrem->dm_state |= COMPLETE; 3052 free_diradd(dap); 3053 return (dirrem); 3054 } 3055 3056 /* 3057 * Directory entry change dependencies. 3058 * 3059 * Changing an existing directory entry requires that an add operation 3060 * be completed first followed by a deletion. The semantics for the addition 3061 * are identical to the description of adding a new entry above except 3062 * that the rollback is to the old inode number rather than zero. Once 3063 * the addition dependency is completed, the removal is done as described 3064 * in the removal routine above. 3065 */ 3066 3067 /* 3068 * This routine should be called immediately after changing 3069 * a directory entry. The inode's link count should not be 3070 * decremented by the calling procedure -- the soft updates 3071 * code will perform this task when it is safe. 3072 */ 3073 void 3074 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3075 struct buf *bp; /* buffer containing directory block */ 3076 struct inode *dp; /* inode for the directory being modified */ 3077 struct inode *ip; /* inode for directory entry being removed */ 3078 ino_t newinum; /* new inode number for changed entry */ 3079 int isrmdir; /* indicates if doing RMDIR */ 3080 { 3081 int offset; 3082 struct diradd *dap = NULL; 3083 struct dirrem *dirrem, *prevdirrem; 3084 struct pagedep *pagedep; 3085 struct inodedep *inodedep; 3086 3087 offset = blkoff(dp->i_fs, dp->i_offset); 3088 3089 /* 3090 * Whiteouts do not need diradd dependencies. 3091 */ 3092 if (newinum != WINO) { 3093 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3094 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3095 dap->da_list.wk_type = D_DIRADD; 3096 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3097 dap->da_offset = offset; 3098 dap->da_newinum = newinum; 3099 } 3100 3101 /* 3102 * Allocate a new dirrem and ACQUIRE_LOCK. 3103 */ 3104 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3105 pagedep = dirrem->dm_pagedep; 3106 /* 3107 * The possible values for isrmdir: 3108 * 0 - non-directory file rename 3109 * 1 - directory rename within same directory 3110 * inum - directory rename to new directory of given inode number 3111 * When renaming to a new directory, we are both deleting and 3112 * creating a new directory entry, so the link count on the new 3113 * directory should not change. Thus we do not need the followup 3114 * dirrem which is usually done in handle_workitem_remove. We set 3115 * the DIRCHG flag to tell handle_workitem_remove to skip the 3116 * followup dirrem. 3117 */ 3118 if (isrmdir > 1) 3119 dirrem->dm_state |= DIRCHG; 3120 3121 /* 3122 * Whiteouts have no additional dependencies, 3123 * so just put the dirrem on the correct list. 3124 */ 3125 if (newinum == WINO) { 3126 if ((dirrem->dm_state & COMPLETE) == 0) { 3127 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3128 dm_next); 3129 } else { 3130 dirrem->dm_dirinum = pagedep->pd_ino; 3131 add_to_worklist(&dirrem->dm_list); 3132 } 3133 FREE_LOCK(&lk); 3134 return; 3135 } 3136 3137 /* 3138 * If the COMPLETE flag is clear, then there were no active 3139 * entries and we want to roll back to the previous inode until 3140 * the new inode is committed to disk. If the COMPLETE flag is 3141 * set, then we have deleted an entry that never made it to disk. 3142 * If the entry we deleted resulted from a name change, then the old 3143 * inode reference still resides on disk. Any rollback that we do 3144 * needs to be to that old inode (returned to us in prevdirrem). If 3145 * the entry we deleted resulted from a create, then there is 3146 * no entry on the disk, so we want to roll back to zero rather 3147 * than the uncommitted inode. In either of the COMPLETE cases we 3148 * want to immediately free the unwritten and unreferenced inode. 3149 */ 3150 if ((dirrem->dm_state & COMPLETE) == 0) { 3151 dap->da_previous = dirrem; 3152 } else { 3153 if (prevdirrem != NULL) { 3154 dap->da_previous = prevdirrem; 3155 } else { 3156 dap->da_state &= ~DIRCHG; 3157 dap->da_pagedep = pagedep; 3158 } 3159 dirrem->dm_dirinum = pagedep->pd_ino; 3160 add_to_worklist(&dirrem->dm_list); 3161 } 3162 /* 3163 * Link into its inodedep. Put it on the id_bufwait list if the inode 3164 * is not yet written. If it is written, do the post-inode write 3165 * processing to put it on the id_pendinghd list. 3166 */ 3167 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3168 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3169 dap->da_state |= COMPLETE; 3170 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3171 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3172 } else { 3173 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3174 dap, da_pdlist); 3175 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3176 } 3177 FREE_LOCK(&lk); 3178 } 3179 3180 /* 3181 * Called whenever the link count on an inode is changed. 3182 * It creates an inode dependency so that the new reference(s) 3183 * to the inode cannot be committed to disk until the updated 3184 * inode has been written. 3185 */ 3186 void 3187 softdep_change_linkcnt(ip) 3188 struct inode *ip; /* the inode with the increased link count */ 3189 { 3190 struct inodedep *inodedep; 3191 3192 ACQUIRE_LOCK(&lk); 3193 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3194 if (ip->i_nlink < ip->i_effnlink) { 3195 FREE_LOCK(&lk); 3196 panic("softdep_change_linkcnt: bad delta"); 3197 } 3198 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3199 FREE_LOCK(&lk); 3200 } 3201 3202 /* 3203 * Called when the effective link count and the reference count 3204 * on an inode drops to zero. At this point there are no names 3205 * referencing the file in the filesystem and no active file 3206 * references. The space associated with the file will be freed 3207 * as soon as the necessary soft dependencies are cleared. 3208 */ 3209 void 3210 softdep_releasefile(ip) 3211 struct inode *ip; /* inode with the zero effective link count */ 3212 { 3213 struct inodedep *inodedep; 3214 struct fs *fs; 3215 int extblocks; 3216 3217 if (ip->i_effnlink > 0) 3218 panic("softdep_filerelease: file still referenced"); 3219 /* 3220 * We may be called several times as the real reference count 3221 * drops to zero. We only want to account for the space once. 3222 */ 3223 if (ip->i_flag & IN_SPACECOUNTED) 3224 return; 3225 /* 3226 * We have to deactivate a snapshot otherwise copyonwrites may 3227 * add blocks and the cleanup may remove blocks after we have 3228 * tried to account for them. 3229 */ 3230 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3231 ffs_snapremove(ITOV(ip)); 3232 /* 3233 * If we are tracking an nlinkdelta, we have to also remember 3234 * whether we accounted for the freed space yet. 3235 */ 3236 ACQUIRE_LOCK(&lk); 3237 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3238 inodedep->id_state |= SPACECOUNTED; 3239 FREE_LOCK(&lk); 3240 fs = ip->i_fs; 3241 extblocks = 0; 3242 if (fs->fs_magic == FS_UFS2_MAGIC) 3243 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3244 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3245 ip->i_fs->fs_pendinginodes += 1; 3246 ip->i_flag |= IN_SPACECOUNTED; 3247 } 3248 3249 /* 3250 * This workitem decrements the inode's link count. 3251 * If the link count reaches zero, the file is removed. 3252 */ 3253 static void 3254 handle_workitem_remove(dirrem, xp) 3255 struct dirrem *dirrem; 3256 struct vnode *xp; 3257 { 3258 struct thread *td = curthread; 3259 struct inodedep *inodedep; 3260 struct vnode *vp; 3261 struct inode *ip; 3262 ino_t oldinum; 3263 int error; 3264 3265 if ((vp = xp) == NULL && 3266 (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3267 &vp)) != 0) { 3268 softdep_error("handle_workitem_remove: vget", error); 3269 return; 3270 } 3271 ip = VTOI(vp); 3272 ACQUIRE_LOCK(&lk); 3273 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){ 3274 FREE_LOCK(&lk); 3275 panic("handle_workitem_remove: lost inodedep"); 3276 } 3277 /* 3278 * Normal file deletion. 3279 */ 3280 if ((dirrem->dm_state & RMDIR) == 0) { 3281 ip->i_nlink--; 3282 DIP(ip, i_nlink) = ip->i_nlink; 3283 ip->i_flag |= IN_CHANGE; 3284 if (ip->i_nlink < ip->i_effnlink) { 3285 FREE_LOCK(&lk); 3286 panic("handle_workitem_remove: bad file delta"); 3287 } 3288 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3289 FREE_LOCK(&lk); 3290 vput(vp); 3291 num_dirrem -= 1; 3292 WORKITEM_FREE(dirrem, D_DIRREM); 3293 return; 3294 } 3295 /* 3296 * Directory deletion. Decrement reference count for both the 3297 * just deleted parent directory entry and the reference for ".". 3298 * Next truncate the directory to length zero. When the 3299 * truncation completes, arrange to have the reference count on 3300 * the parent decremented to account for the loss of "..". 3301 */ 3302 ip->i_nlink -= 2; 3303 DIP(ip, i_nlink) = ip->i_nlink; 3304 ip->i_flag |= IN_CHANGE; 3305 if (ip->i_nlink < ip->i_effnlink) { 3306 FREE_LOCK(&lk); 3307 panic("handle_workitem_remove: bad dir delta"); 3308 } 3309 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3310 FREE_LOCK(&lk); 3311 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3312 softdep_error("handle_workitem_remove: truncate", error); 3313 /* 3314 * Rename a directory to a new parent. Since, we are both deleting 3315 * and creating a new directory entry, the link count on the new 3316 * directory should not change. Thus we skip the followup dirrem. 3317 */ 3318 if (dirrem->dm_state & DIRCHG) { 3319 vput(vp); 3320 num_dirrem -= 1; 3321 WORKITEM_FREE(dirrem, D_DIRREM); 3322 return; 3323 } 3324 /* 3325 * If the inodedep does not exist, then the zero'ed inode has 3326 * been written to disk. If the allocated inode has never been 3327 * written to disk, then the on-disk inode is zero'ed. In either 3328 * case we can remove the file immediately. 3329 */ 3330 ACQUIRE_LOCK(&lk); 3331 dirrem->dm_state = 0; 3332 oldinum = dirrem->dm_oldinum; 3333 dirrem->dm_oldinum = dirrem->dm_dirinum; 3334 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3335 check_inode_unwritten(inodedep)) { 3336 FREE_LOCK(&lk); 3337 vput(vp); 3338 handle_workitem_remove(dirrem, NULL); 3339 return; 3340 } 3341 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3342 FREE_LOCK(&lk); 3343 vput(vp); 3344 } 3345 3346 /* 3347 * Inode de-allocation dependencies. 3348 * 3349 * When an inode's link count is reduced to zero, it can be de-allocated. We 3350 * found it convenient to postpone de-allocation until after the inode is 3351 * written to disk with its new link count (zero). At this point, all of the 3352 * on-disk inode's block pointers are nullified and, with careful dependency 3353 * list ordering, all dependencies related to the inode will be satisfied and 3354 * the corresponding dependency structures de-allocated. So, if/when the 3355 * inode is reused, there will be no mixing of old dependencies with new 3356 * ones. This artificial dependency is set up by the block de-allocation 3357 * procedure above (softdep_setup_freeblocks) and completed by the 3358 * following procedure. 3359 */ 3360 static void 3361 handle_workitem_freefile(freefile) 3362 struct freefile *freefile; 3363 { 3364 struct fs *fs; 3365 struct inodedep *idp; 3366 int error; 3367 3368 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 3369 #ifdef DEBUG 3370 ACQUIRE_LOCK(&lk); 3371 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3372 FREE_LOCK(&lk); 3373 if (error) 3374 panic("handle_workitem_freefile: inodedep survived"); 3375 #endif 3376 fs->fs_pendinginodes -= 1; 3377 if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum, 3378 freefile->fx_mode)) != 0) 3379 softdep_error("handle_workitem_freefile", error); 3380 WORKITEM_FREE(freefile, D_FREEFILE); 3381 } 3382 3383 /* 3384 * Disk writes. 3385 * 3386 * The dependency structures constructed above are most actively used when file 3387 * system blocks are written to disk. No constraints are placed on when a 3388 * block can be written, but unsatisfied update dependencies are made safe by 3389 * modifying (or replacing) the source memory for the duration of the disk 3390 * write. When the disk write completes, the memory block is again brought 3391 * up-to-date. 3392 * 3393 * In-core inode structure reclamation. 3394 * 3395 * Because there are a finite number of "in-core" inode structures, they are 3396 * reused regularly. By transferring all inode-related dependencies to the 3397 * in-memory inode block and indexing them separately (via "inodedep"s), we 3398 * can allow "in-core" inode structures to be reused at any time and avoid 3399 * any increase in contention. 3400 * 3401 * Called just before entering the device driver to initiate a new disk I/O. 3402 * The buffer must be locked, thus, no I/O completion operations can occur 3403 * while we are manipulating its associated dependencies. 3404 */ 3405 static void 3406 softdep_disk_io_initiation(bp) 3407 struct buf *bp; /* structure describing disk write to occur */ 3408 { 3409 struct worklist *wk, *nextwk; 3410 struct indirdep *indirdep; 3411 struct inodedep *inodedep; 3412 3413 /* 3414 * We only care about write operations. There should never 3415 * be dependencies for reads. 3416 */ 3417 if (bp->b_iocmd == BIO_READ) 3418 panic("softdep_disk_io_initiation: read"); 3419 /* 3420 * Do any necessary pre-I/O processing. 3421 */ 3422 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 3423 nextwk = LIST_NEXT(wk, wk_list); 3424 switch (wk->wk_type) { 3425 3426 case D_PAGEDEP: 3427 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3428 continue; 3429 3430 case D_INODEDEP: 3431 inodedep = WK_INODEDEP(wk); 3432 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3433 initiate_write_inodeblock_ufs1(inodedep, bp); 3434 else 3435 initiate_write_inodeblock_ufs2(inodedep, bp); 3436 continue; 3437 3438 case D_INDIRDEP: 3439 indirdep = WK_INDIRDEP(wk); 3440 if (indirdep->ir_state & GOINGAWAY) 3441 panic("disk_io_initiation: indirdep gone"); 3442 /* 3443 * If there are no remaining dependencies, this 3444 * will be writing the real pointers, so the 3445 * dependency can be freed. 3446 */ 3447 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3448 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 3449 brelse(indirdep->ir_savebp); 3450 /* inline expand WORKLIST_REMOVE(wk); */ 3451 wk->wk_state &= ~ONWORKLIST; 3452 LIST_REMOVE(wk, wk_list); 3453 WORKITEM_FREE(indirdep, D_INDIRDEP); 3454 continue; 3455 } 3456 /* 3457 * Replace up-to-date version with safe version. 3458 */ 3459 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3460 M_INDIRDEP, M_SOFTDEP_FLAGS); 3461 ACQUIRE_LOCK(&lk); 3462 indirdep->ir_state &= ~ATTACHED; 3463 indirdep->ir_state |= UNDONE; 3464 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3465 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3466 bp->b_bcount); 3467 FREE_LOCK(&lk); 3468 continue; 3469 3470 case D_MKDIR: 3471 case D_BMSAFEMAP: 3472 case D_ALLOCDIRECT: 3473 case D_ALLOCINDIR: 3474 continue; 3475 3476 default: 3477 panic("handle_disk_io_initiation: Unexpected type %s", 3478 TYPENAME(wk->wk_type)); 3479 /* NOTREACHED */ 3480 } 3481 } 3482 } 3483 3484 /* 3485 * Called from within the procedure above to deal with unsatisfied 3486 * allocation dependencies in a directory. The buffer must be locked, 3487 * thus, no I/O completion operations can occur while we are 3488 * manipulating its associated dependencies. 3489 */ 3490 static void 3491 initiate_write_filepage(pagedep, bp) 3492 struct pagedep *pagedep; 3493 struct buf *bp; 3494 { 3495 struct diradd *dap; 3496 struct direct *ep; 3497 int i; 3498 3499 if (pagedep->pd_state & IOSTARTED) { 3500 /* 3501 * This can only happen if there is a driver that does not 3502 * understand chaining. Here biodone will reissue the call 3503 * to strategy for the incomplete buffers. 3504 */ 3505 printf("initiate_write_filepage: already started\n"); 3506 return; 3507 } 3508 pagedep->pd_state |= IOSTARTED; 3509 ACQUIRE_LOCK(&lk); 3510 for (i = 0; i < DAHASHSZ; i++) { 3511 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3512 ep = (struct direct *) 3513 ((char *)bp->b_data + dap->da_offset); 3514 if (ep->d_ino != dap->da_newinum) { 3515 FREE_LOCK(&lk); 3516 panic("%s: dir inum %d != new %d", 3517 "initiate_write_filepage", 3518 ep->d_ino, dap->da_newinum); 3519 } 3520 if (dap->da_state & DIRCHG) 3521 ep->d_ino = dap->da_previous->dm_oldinum; 3522 else 3523 ep->d_ino = 0; 3524 dap->da_state &= ~ATTACHED; 3525 dap->da_state |= UNDONE; 3526 } 3527 } 3528 FREE_LOCK(&lk); 3529 } 3530 3531 /* 3532 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3533 * Note that any bug fixes made to this routine must be done in the 3534 * version found below. 3535 * 3536 * Called from within the procedure above to deal with unsatisfied 3537 * allocation dependencies in an inodeblock. The buffer must be 3538 * locked, thus, no I/O completion operations can occur while we 3539 * are manipulating its associated dependencies. 3540 */ 3541 static void 3542 initiate_write_inodeblock_ufs1(inodedep, bp) 3543 struct inodedep *inodedep; 3544 struct buf *bp; /* The inode block */ 3545 { 3546 struct allocdirect *adp, *lastadp; 3547 struct ufs1_dinode *dp; 3548 struct fs *fs; 3549 ufs_lbn_t i, prevlbn = 0; 3550 int deplist; 3551 3552 if (inodedep->id_state & IOSTARTED) 3553 panic("initiate_write_inodeblock_ufs1: already started"); 3554 inodedep->id_state |= IOSTARTED; 3555 fs = inodedep->id_fs; 3556 dp = (struct ufs1_dinode *)bp->b_data + 3557 ino_to_fsbo(fs, inodedep->id_ino); 3558 /* 3559 * If the bitmap is not yet written, then the allocated 3560 * inode cannot be written to disk. 3561 */ 3562 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3563 if (inodedep->id_savedino1 != NULL) 3564 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3565 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3566 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3567 *inodedep->id_savedino1 = *dp; 3568 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3569 return; 3570 } 3571 /* 3572 * If no dependencies, then there is nothing to roll back. 3573 */ 3574 inodedep->id_savedsize = dp->di_size; 3575 inodedep->id_savedextsize = 0; 3576 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3577 return; 3578 /* 3579 * Set the dependencies to busy. 3580 */ 3581 ACQUIRE_LOCK(&lk); 3582 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3583 adp = TAILQ_NEXT(adp, ad_next)) { 3584 #ifdef DIAGNOSTIC 3585 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3586 FREE_LOCK(&lk); 3587 panic("softdep_write_inodeblock: lbn order"); 3588 } 3589 prevlbn = adp->ad_lbn; 3590 if (adp->ad_lbn < NDADDR && 3591 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3592 FREE_LOCK(&lk); 3593 panic("%s: direct pointer #%jd mismatch %d != %jd", 3594 "softdep_write_inodeblock", 3595 (intmax_t)adp->ad_lbn, 3596 dp->di_db[adp->ad_lbn], 3597 (intmax_t)adp->ad_newblkno); 3598 } 3599 if (adp->ad_lbn >= NDADDR && 3600 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3601 FREE_LOCK(&lk); 3602 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3603 "softdep_write_inodeblock", 3604 (intmax_t)adp->ad_lbn - NDADDR, 3605 dp->di_ib[adp->ad_lbn - NDADDR], 3606 (intmax_t)adp->ad_newblkno); 3607 } 3608 deplist |= 1 << adp->ad_lbn; 3609 if ((adp->ad_state & ATTACHED) == 0) { 3610 FREE_LOCK(&lk); 3611 panic("softdep_write_inodeblock: Unknown state 0x%x", 3612 adp->ad_state); 3613 } 3614 #endif /* DIAGNOSTIC */ 3615 adp->ad_state &= ~ATTACHED; 3616 adp->ad_state |= UNDONE; 3617 } 3618 /* 3619 * The on-disk inode cannot claim to be any larger than the last 3620 * fragment that has been written. Otherwise, the on-disk inode 3621 * might have fragments that were not the last block in the file 3622 * which would corrupt the filesystem. 3623 */ 3624 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3625 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3626 if (adp->ad_lbn >= NDADDR) 3627 break; 3628 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3629 /* keep going until hitting a rollback to a frag */ 3630 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3631 continue; 3632 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3633 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3634 #ifdef DIAGNOSTIC 3635 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3636 FREE_LOCK(&lk); 3637 panic("softdep_write_inodeblock: lost dep1"); 3638 } 3639 #endif /* DIAGNOSTIC */ 3640 dp->di_db[i] = 0; 3641 } 3642 for (i = 0; i < NIADDR; i++) { 3643 #ifdef DIAGNOSTIC 3644 if (dp->di_ib[i] != 0 && 3645 (deplist & ((1 << NDADDR) << i)) == 0) { 3646 FREE_LOCK(&lk); 3647 panic("softdep_write_inodeblock: lost dep2"); 3648 } 3649 #endif /* DIAGNOSTIC */ 3650 dp->di_ib[i] = 0; 3651 } 3652 FREE_LOCK(&lk); 3653 return; 3654 } 3655 /* 3656 * If we have zero'ed out the last allocated block of the file, 3657 * roll back the size to the last currently allocated block. 3658 * We know that this last allocated block is a full-sized as 3659 * we already checked for fragments in the loop above. 3660 */ 3661 if (lastadp != NULL && 3662 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3663 for (i = lastadp->ad_lbn; i >= 0; i--) 3664 if (dp->di_db[i] != 0) 3665 break; 3666 dp->di_size = (i + 1) * fs->fs_bsize; 3667 } 3668 /* 3669 * The only dependencies are for indirect blocks. 3670 * 3671 * The file size for indirect block additions is not guaranteed. 3672 * Such a guarantee would be non-trivial to achieve. The conventional 3673 * synchronous write implementation also does not make this guarantee. 3674 * Fsck should catch and fix discrepancies. Arguably, the file size 3675 * can be over-estimated without destroying integrity when the file 3676 * moves into the indirect blocks (i.e., is large). If we want to 3677 * postpone fsck, we are stuck with this argument. 3678 */ 3679 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3680 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3681 FREE_LOCK(&lk); 3682 } 3683 3684 /* 3685 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3686 * Note that any bug fixes made to this routine must be done in the 3687 * version found above. 3688 * 3689 * Called from within the procedure above to deal with unsatisfied 3690 * allocation dependencies in an inodeblock. The buffer must be 3691 * locked, thus, no I/O completion operations can occur while we 3692 * are manipulating its associated dependencies. 3693 */ 3694 static void 3695 initiate_write_inodeblock_ufs2(inodedep, bp) 3696 struct inodedep *inodedep; 3697 struct buf *bp; /* The inode block */ 3698 { 3699 struct allocdirect *adp, *lastadp; 3700 struct ufs2_dinode *dp; 3701 struct fs *fs; 3702 ufs_lbn_t i, prevlbn = 0; 3703 int deplist; 3704 3705 if (inodedep->id_state & IOSTARTED) 3706 panic("initiate_write_inodeblock_ufs2: already started"); 3707 inodedep->id_state |= IOSTARTED; 3708 fs = inodedep->id_fs; 3709 dp = (struct ufs2_dinode *)bp->b_data + 3710 ino_to_fsbo(fs, inodedep->id_ino); 3711 /* 3712 * If the bitmap is not yet written, then the allocated 3713 * inode cannot be written to disk. 3714 */ 3715 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3716 if (inodedep->id_savedino2 != NULL) 3717 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3718 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3719 sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3720 *inodedep->id_savedino2 = *dp; 3721 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3722 return; 3723 } 3724 /* 3725 * If no dependencies, then there is nothing to roll back. 3726 */ 3727 inodedep->id_savedsize = dp->di_size; 3728 inodedep->id_savedextsize = dp->di_extsize; 3729 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 3730 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 3731 return; 3732 /* 3733 * Set the ext data dependencies to busy. 3734 */ 3735 ACQUIRE_LOCK(&lk); 3736 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3737 adp = TAILQ_NEXT(adp, ad_next)) { 3738 #ifdef DIAGNOSTIC 3739 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3740 FREE_LOCK(&lk); 3741 panic("softdep_write_inodeblock: lbn order"); 3742 } 3743 prevlbn = adp->ad_lbn; 3744 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) { 3745 FREE_LOCK(&lk); 3746 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3747 "softdep_write_inodeblock", 3748 (intmax_t)adp->ad_lbn, 3749 (intmax_t)dp->di_extb[adp->ad_lbn], 3750 (intmax_t)adp->ad_newblkno); 3751 } 3752 deplist |= 1 << adp->ad_lbn; 3753 if ((adp->ad_state & ATTACHED) == 0) { 3754 FREE_LOCK(&lk); 3755 panic("softdep_write_inodeblock: Unknown state 0x%x", 3756 adp->ad_state); 3757 } 3758 #endif /* DIAGNOSTIC */ 3759 adp->ad_state &= ~ATTACHED; 3760 adp->ad_state |= UNDONE; 3761 } 3762 /* 3763 * The on-disk inode cannot claim to be any larger than the last 3764 * fragment that has been written. Otherwise, the on-disk inode 3765 * might have fragments that were not the last block in the ext 3766 * data which would corrupt the filesystem. 3767 */ 3768 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3769 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3770 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 3771 /* keep going until hitting a rollback to a frag */ 3772 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3773 continue; 3774 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3775 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 3776 #ifdef DIAGNOSTIC 3777 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) { 3778 FREE_LOCK(&lk); 3779 panic("softdep_write_inodeblock: lost dep1"); 3780 } 3781 #endif /* DIAGNOSTIC */ 3782 dp->di_extb[i] = 0; 3783 } 3784 lastadp = NULL; 3785 break; 3786 } 3787 /* 3788 * If we have zero'ed out the last allocated block of the ext 3789 * data, roll back the size to the last currently allocated block. 3790 * We know that this last allocated block is a full-sized as 3791 * we already checked for fragments in the loop above. 3792 */ 3793 if (lastadp != NULL && 3794 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3795 for (i = lastadp->ad_lbn; i >= 0; i--) 3796 if (dp->di_extb[i] != 0) 3797 break; 3798 dp->di_extsize = (i + 1) * fs->fs_bsize; 3799 } 3800 /* 3801 * Set the file data dependencies to busy. 3802 */ 3803 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3804 adp = TAILQ_NEXT(adp, ad_next)) { 3805 #ifdef DIAGNOSTIC 3806 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3807 FREE_LOCK(&lk); 3808 panic("softdep_write_inodeblock: lbn order"); 3809 } 3810 prevlbn = adp->ad_lbn; 3811 if (adp->ad_lbn < NDADDR && 3812 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3813 FREE_LOCK(&lk); 3814 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3815 "softdep_write_inodeblock", 3816 (intmax_t)adp->ad_lbn, 3817 (intmax_t)dp->di_db[adp->ad_lbn], 3818 (intmax_t)adp->ad_newblkno); 3819 } 3820 if (adp->ad_lbn >= NDADDR && 3821 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3822 FREE_LOCK(&lk); 3823 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3824 "softdep_write_inodeblock:", 3825 (intmax_t)adp->ad_lbn - NDADDR, 3826 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3827 (intmax_t)adp->ad_newblkno); 3828 } 3829 deplist |= 1 << adp->ad_lbn; 3830 if ((adp->ad_state & ATTACHED) == 0) { 3831 FREE_LOCK(&lk); 3832 panic("softdep_write_inodeblock: Unknown state 0x%x", 3833 adp->ad_state); 3834 } 3835 #endif /* DIAGNOSTIC */ 3836 adp->ad_state &= ~ATTACHED; 3837 adp->ad_state |= UNDONE; 3838 } 3839 /* 3840 * The on-disk inode cannot claim to be any larger than the last 3841 * fragment that has been written. Otherwise, the on-disk inode 3842 * might have fragments that were not the last block in the file 3843 * which would corrupt the filesystem. 3844 */ 3845 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3846 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3847 if (adp->ad_lbn >= NDADDR) 3848 break; 3849 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3850 /* keep going until hitting a rollback to a frag */ 3851 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3852 continue; 3853 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3854 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3855 #ifdef DIAGNOSTIC 3856 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3857 FREE_LOCK(&lk); 3858 panic("softdep_write_inodeblock: lost dep2"); 3859 } 3860 #endif /* DIAGNOSTIC */ 3861 dp->di_db[i] = 0; 3862 } 3863 for (i = 0; i < NIADDR; i++) { 3864 #ifdef DIAGNOSTIC 3865 if (dp->di_ib[i] != 0 && 3866 (deplist & ((1 << NDADDR) << i)) == 0) { 3867 FREE_LOCK(&lk); 3868 panic("softdep_write_inodeblock: lost dep3"); 3869 } 3870 #endif /* DIAGNOSTIC */ 3871 dp->di_ib[i] = 0; 3872 } 3873 FREE_LOCK(&lk); 3874 return; 3875 } 3876 /* 3877 * If we have zero'ed out the last allocated block of the file, 3878 * roll back the size to the last currently allocated block. 3879 * We know that this last allocated block is a full-sized as 3880 * we already checked for fragments in the loop above. 3881 */ 3882 if (lastadp != NULL && 3883 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3884 for (i = lastadp->ad_lbn; i >= 0; i--) 3885 if (dp->di_db[i] != 0) 3886 break; 3887 dp->di_size = (i + 1) * fs->fs_bsize; 3888 } 3889 /* 3890 * The only dependencies are for indirect blocks. 3891 * 3892 * The file size for indirect block additions is not guaranteed. 3893 * Such a guarantee would be non-trivial to achieve. The conventional 3894 * synchronous write implementation also does not make this guarantee. 3895 * Fsck should catch and fix discrepancies. Arguably, the file size 3896 * can be over-estimated without destroying integrity when the file 3897 * moves into the indirect blocks (i.e., is large). If we want to 3898 * postpone fsck, we are stuck with this argument. 3899 */ 3900 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3901 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3902 FREE_LOCK(&lk); 3903 } 3904 3905 /* 3906 * This routine is called during the completion interrupt 3907 * service routine for a disk write (from the procedure called 3908 * by the device driver to inform the filesystem caches of 3909 * a request completion). It should be called early in this 3910 * procedure, before the block is made available to other 3911 * processes or other routines are called. 3912 */ 3913 static void 3914 softdep_disk_write_complete(bp) 3915 struct buf *bp; /* describes the completed disk write */ 3916 { 3917 struct worklist *wk; 3918 struct workhead reattach; 3919 struct newblk *newblk; 3920 struct allocindir *aip; 3921 struct allocdirect *adp; 3922 struct indirdep *indirdep; 3923 struct inodedep *inodedep; 3924 struct bmsafemap *bmsafemap; 3925 3926 #ifdef DEBUG 3927 if (lk.lkt_held != NOHOLDER) 3928 panic("softdep_disk_write_complete: lock is held"); 3929 lk.lkt_held = SPECIAL_FLAG; 3930 #endif 3931 LIST_INIT(&reattach); 3932 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3933 WORKLIST_REMOVE(wk); 3934 switch (wk->wk_type) { 3935 3936 case D_PAGEDEP: 3937 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3938 WORKLIST_INSERT(&reattach, wk); 3939 continue; 3940 3941 case D_INODEDEP: 3942 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3943 WORKLIST_INSERT(&reattach, wk); 3944 continue; 3945 3946 case D_BMSAFEMAP: 3947 bmsafemap = WK_BMSAFEMAP(wk); 3948 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3949 newblk->nb_state |= DEPCOMPLETE; 3950 newblk->nb_bmsafemap = NULL; 3951 LIST_REMOVE(newblk, nb_deps); 3952 } 3953 while ((adp = 3954 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3955 adp->ad_state |= DEPCOMPLETE; 3956 adp->ad_buf = NULL; 3957 LIST_REMOVE(adp, ad_deps); 3958 handle_allocdirect_partdone(adp); 3959 } 3960 while ((aip = 3961 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3962 aip->ai_state |= DEPCOMPLETE; 3963 aip->ai_buf = NULL; 3964 LIST_REMOVE(aip, ai_deps); 3965 handle_allocindir_partdone(aip); 3966 } 3967 while ((inodedep = 3968 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 3969 inodedep->id_state |= DEPCOMPLETE; 3970 LIST_REMOVE(inodedep, id_deps); 3971 inodedep->id_buf = NULL; 3972 } 3973 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 3974 continue; 3975 3976 case D_MKDIR: 3977 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 3978 continue; 3979 3980 case D_ALLOCDIRECT: 3981 adp = WK_ALLOCDIRECT(wk); 3982 adp->ad_state |= COMPLETE; 3983 handle_allocdirect_partdone(adp); 3984 continue; 3985 3986 case D_ALLOCINDIR: 3987 aip = WK_ALLOCINDIR(wk); 3988 aip->ai_state |= COMPLETE; 3989 handle_allocindir_partdone(aip); 3990 continue; 3991 3992 case D_INDIRDEP: 3993 indirdep = WK_INDIRDEP(wk); 3994 if (indirdep->ir_state & GOINGAWAY) { 3995 lk.lkt_held = NOHOLDER; 3996 panic("disk_write_complete: indirdep gone"); 3997 } 3998 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 3999 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4000 indirdep->ir_saveddata = 0; 4001 indirdep->ir_state &= ~UNDONE; 4002 indirdep->ir_state |= ATTACHED; 4003 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4004 handle_allocindir_partdone(aip); 4005 if (aip == LIST_FIRST(&indirdep->ir_donehd)) { 4006 lk.lkt_held = NOHOLDER; 4007 panic("disk_write_complete: not gone"); 4008 } 4009 } 4010 WORKLIST_INSERT(&reattach, wk); 4011 if ((bp->b_flags & B_DELWRI) == 0) 4012 stat_indir_blk_ptrs++; 4013 bdirty(bp); 4014 continue; 4015 4016 default: 4017 lk.lkt_held = NOHOLDER; 4018 panic("handle_disk_write_complete: Unknown type %s", 4019 TYPENAME(wk->wk_type)); 4020 /* NOTREACHED */ 4021 } 4022 } 4023 /* 4024 * Reattach any requests that must be redone. 4025 */ 4026 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4027 WORKLIST_REMOVE(wk); 4028 WORKLIST_INSERT(&bp->b_dep, wk); 4029 } 4030 #ifdef DEBUG 4031 if (lk.lkt_held != SPECIAL_FLAG) 4032 panic("softdep_disk_write_complete: lock lost"); 4033 lk.lkt_held = NOHOLDER; 4034 #endif 4035 } 4036 4037 /* 4038 * Called from within softdep_disk_write_complete above. Note that 4039 * this routine is always called from interrupt level with further 4040 * splbio interrupts blocked. 4041 */ 4042 static void 4043 handle_allocdirect_partdone(adp) 4044 struct allocdirect *adp; /* the completed allocdirect */ 4045 { 4046 struct allocdirectlst *listhead; 4047 struct allocdirect *listadp; 4048 struct inodedep *inodedep; 4049 long bsize, delay; 4050 4051 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4052 return; 4053 if (adp->ad_buf != NULL) { 4054 lk.lkt_held = NOHOLDER; 4055 panic("handle_allocdirect_partdone: dangling dep"); 4056 } 4057 /* 4058 * The on-disk inode cannot claim to be any larger than the last 4059 * fragment that has been written. Otherwise, the on-disk inode 4060 * might have fragments that were not the last block in the file 4061 * which would corrupt the filesystem. Thus, we cannot free any 4062 * allocdirects after one whose ad_oldblkno claims a fragment as 4063 * these blocks must be rolled back to zero before writing the inode. 4064 * We check the currently active set of allocdirects in id_inoupdt 4065 * or id_extupdt as appropriate. 4066 */ 4067 inodedep = adp->ad_inodedep; 4068 bsize = inodedep->id_fs->fs_bsize; 4069 if (adp->ad_state & EXTDATA) 4070 listhead = &inodedep->id_extupdt; 4071 else 4072 listhead = &inodedep->id_inoupdt; 4073 TAILQ_FOREACH(listadp, listhead, ad_next) { 4074 /* found our block */ 4075 if (listadp == adp) 4076 break; 4077 /* continue if ad_oldlbn is not a fragment */ 4078 if (listadp->ad_oldsize == 0 || 4079 listadp->ad_oldsize == bsize) 4080 continue; 4081 /* hit a fragment */ 4082 return; 4083 } 4084 /* 4085 * If we have reached the end of the current list without 4086 * finding the just finished dependency, then it must be 4087 * on the future dependency list. Future dependencies cannot 4088 * be freed until they are moved to the current list. 4089 */ 4090 if (listadp == NULL) { 4091 #ifdef DEBUG 4092 if (adp->ad_state & EXTDATA) 4093 listhead = &inodedep->id_newextupdt; 4094 else 4095 listhead = &inodedep->id_newinoupdt; 4096 TAILQ_FOREACH(listadp, listhead, ad_next) 4097 /* found our block */ 4098 if (listadp == adp) 4099 break; 4100 if (listadp == NULL) { 4101 lk.lkt_held = NOHOLDER; 4102 panic("handle_allocdirect_partdone: lost dep"); 4103 } 4104 #endif /* DEBUG */ 4105 return; 4106 } 4107 /* 4108 * If we have found the just finished dependency, then free 4109 * it along with anything that follows it that is complete. 4110 * If the inode still has a bitmap dependency, then it has 4111 * never been written to disk, hence the on-disk inode cannot 4112 * reference the old fragment so we can free it without delay. 4113 */ 4114 delay = (inodedep->id_state & DEPCOMPLETE); 4115 for (; adp; adp = listadp) { 4116 listadp = TAILQ_NEXT(adp, ad_next); 4117 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4118 return; 4119 free_allocdirect(listhead, adp, delay); 4120 } 4121 } 4122 4123 /* 4124 * Called from within softdep_disk_write_complete above. Note that 4125 * this routine is always called from interrupt level with further 4126 * splbio interrupts blocked. 4127 */ 4128 static void 4129 handle_allocindir_partdone(aip) 4130 struct allocindir *aip; /* the completed allocindir */ 4131 { 4132 struct indirdep *indirdep; 4133 4134 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4135 return; 4136 if (aip->ai_buf != NULL) { 4137 lk.lkt_held = NOHOLDER; 4138 panic("handle_allocindir_partdone: dangling dependency"); 4139 } 4140 indirdep = aip->ai_indirdep; 4141 if (indirdep->ir_state & UNDONE) { 4142 LIST_REMOVE(aip, ai_next); 4143 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4144 return; 4145 } 4146 if (indirdep->ir_state & UFS1FMT) 4147 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4148 aip->ai_newblkno; 4149 else 4150 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4151 aip->ai_newblkno; 4152 LIST_REMOVE(aip, ai_next); 4153 if (aip->ai_freefrag != NULL) 4154 add_to_worklist(&aip->ai_freefrag->ff_list); 4155 WORKITEM_FREE(aip, D_ALLOCINDIR); 4156 } 4157 4158 /* 4159 * Called from within softdep_disk_write_complete above to restore 4160 * in-memory inode block contents to their most up-to-date state. Note 4161 * that this routine is always called from interrupt level with further 4162 * splbio interrupts blocked. 4163 */ 4164 static int 4165 handle_written_inodeblock(inodedep, bp) 4166 struct inodedep *inodedep; 4167 struct buf *bp; /* buffer containing the inode block */ 4168 { 4169 struct worklist *wk, *filefree; 4170 struct allocdirect *adp, *nextadp; 4171 struct ufs1_dinode *dp1 = NULL; 4172 struct ufs2_dinode *dp2 = NULL; 4173 int hadchanges, fstype; 4174 4175 if ((inodedep->id_state & IOSTARTED) == 0) { 4176 lk.lkt_held = NOHOLDER; 4177 panic("handle_written_inodeblock: not started"); 4178 } 4179 inodedep->id_state &= ~IOSTARTED; 4180 inodedep->id_state |= COMPLETE; 4181 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4182 fstype = UFS1; 4183 dp1 = (struct ufs1_dinode *)bp->b_data + 4184 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4185 } else { 4186 fstype = UFS2; 4187 dp2 = (struct ufs2_dinode *)bp->b_data + 4188 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4189 } 4190 /* 4191 * If we had to rollback the inode allocation because of 4192 * bitmaps being incomplete, then simply restore it. 4193 * Keep the block dirty so that it will not be reclaimed until 4194 * all associated dependencies have been cleared and the 4195 * corresponding updates written to disk. 4196 */ 4197 if (inodedep->id_savedino1 != NULL) { 4198 if (fstype == UFS1) 4199 *dp1 = *inodedep->id_savedino1; 4200 else 4201 *dp2 = *inodedep->id_savedino2; 4202 FREE(inodedep->id_savedino1, M_INODEDEP); 4203 inodedep->id_savedino1 = NULL; 4204 if ((bp->b_flags & B_DELWRI) == 0) 4205 stat_inode_bitmap++; 4206 bdirty(bp); 4207 return (1); 4208 } 4209 /* 4210 * Roll forward anything that had to be rolled back before 4211 * the inode could be updated. 4212 */ 4213 hadchanges = 0; 4214 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4215 nextadp = TAILQ_NEXT(adp, ad_next); 4216 if (adp->ad_state & ATTACHED) { 4217 lk.lkt_held = NOHOLDER; 4218 panic("handle_written_inodeblock: new entry"); 4219 } 4220 if (fstype == UFS1) { 4221 if (adp->ad_lbn < NDADDR) { 4222 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4223 lk.lkt_held = NOHOLDER; 4224 panic("%s %s #%jd mismatch %d != %jd", 4225 "handle_written_inodeblock:", 4226 "direct pointer", 4227 (intmax_t)adp->ad_lbn, 4228 dp1->di_db[adp->ad_lbn], 4229 (intmax_t)adp->ad_oldblkno); 4230 } 4231 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4232 } else { 4233 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) { 4234 lk.lkt_held = NOHOLDER; 4235 panic("%s: %s #%jd allocated as %d", 4236 "handle_written_inodeblock", 4237 "indirect pointer", 4238 (intmax_t)adp->ad_lbn - NDADDR, 4239 dp1->di_ib[adp->ad_lbn - NDADDR]); 4240 } 4241 dp1->di_ib[adp->ad_lbn - NDADDR] = 4242 adp->ad_newblkno; 4243 } 4244 } else { 4245 if (adp->ad_lbn < NDADDR) { 4246 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4247 lk.lkt_held = NOHOLDER; 4248 panic("%s: %s #%jd %s %jd != %jd", 4249 "handle_written_inodeblock", 4250 "direct pointer", 4251 (intmax_t)adp->ad_lbn, "mismatch", 4252 (intmax_t)dp2->di_db[adp->ad_lbn], 4253 (intmax_t)adp->ad_oldblkno); 4254 } 4255 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4256 } else { 4257 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) { 4258 lk.lkt_held = NOHOLDER; 4259 panic("%s: %s #%jd allocated as %jd", 4260 "handle_written_inodeblock", 4261 "indirect pointer", 4262 (intmax_t)adp->ad_lbn - NDADDR, 4263 (intmax_t) 4264 dp2->di_ib[adp->ad_lbn - NDADDR]); 4265 } 4266 dp2->di_ib[adp->ad_lbn - NDADDR] = 4267 adp->ad_newblkno; 4268 } 4269 } 4270 adp->ad_state &= ~UNDONE; 4271 adp->ad_state |= ATTACHED; 4272 hadchanges = 1; 4273 } 4274 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4275 nextadp = TAILQ_NEXT(adp, ad_next); 4276 if (adp->ad_state & ATTACHED) { 4277 lk.lkt_held = NOHOLDER; 4278 panic("handle_written_inodeblock: new entry"); 4279 } 4280 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) { 4281 lk.lkt_held = NOHOLDER; 4282 panic("%s: direct pointers #%jd %s %jd != %jd", 4283 "handle_written_inodeblock", 4284 (intmax_t)adp->ad_lbn, "mismatch", 4285 (intmax_t)dp2->di_extb[adp->ad_lbn], 4286 (intmax_t)adp->ad_oldblkno); 4287 } 4288 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4289 adp->ad_state &= ~UNDONE; 4290 adp->ad_state |= ATTACHED; 4291 hadchanges = 1; 4292 } 4293 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4294 stat_direct_blk_ptrs++; 4295 /* 4296 * Reset the file size to its most up-to-date value. 4297 */ 4298 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) { 4299 lk.lkt_held = NOHOLDER; 4300 panic("handle_written_inodeblock: bad size"); 4301 } 4302 if (fstype == UFS1) { 4303 if (dp1->di_size != inodedep->id_savedsize) { 4304 dp1->di_size = inodedep->id_savedsize; 4305 hadchanges = 1; 4306 } 4307 } else { 4308 if (dp2->di_size != inodedep->id_savedsize) { 4309 dp2->di_size = inodedep->id_savedsize; 4310 hadchanges = 1; 4311 } 4312 if (dp2->di_extsize != inodedep->id_savedextsize) { 4313 dp2->di_extsize = inodedep->id_savedextsize; 4314 hadchanges = 1; 4315 } 4316 } 4317 inodedep->id_savedsize = -1; 4318 inodedep->id_savedextsize = -1; 4319 /* 4320 * If there were any rollbacks in the inode block, then it must be 4321 * marked dirty so that its will eventually get written back in 4322 * its correct form. 4323 */ 4324 if (hadchanges) 4325 bdirty(bp); 4326 /* 4327 * Process any allocdirects that completed during the update. 4328 */ 4329 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4330 handle_allocdirect_partdone(adp); 4331 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4332 handle_allocdirect_partdone(adp); 4333 /* 4334 * Process deallocations that were held pending until the 4335 * inode had been written to disk. Freeing of the inode 4336 * is delayed until after all blocks have been freed to 4337 * avoid creation of new <vfsid, inum, lbn> triples 4338 * before the old ones have been deleted. 4339 */ 4340 filefree = NULL; 4341 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4342 WORKLIST_REMOVE(wk); 4343 switch (wk->wk_type) { 4344 4345 case D_FREEFILE: 4346 /* 4347 * We defer adding filefree to the worklist until 4348 * all other additions have been made to ensure 4349 * that it will be done after all the old blocks 4350 * have been freed. 4351 */ 4352 if (filefree != NULL) { 4353 lk.lkt_held = NOHOLDER; 4354 panic("handle_written_inodeblock: filefree"); 4355 } 4356 filefree = wk; 4357 continue; 4358 4359 case D_MKDIR: 4360 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4361 continue; 4362 4363 case D_DIRADD: 4364 diradd_inode_written(WK_DIRADD(wk), inodedep); 4365 continue; 4366 4367 case D_FREEBLKS: 4368 case D_FREEFRAG: 4369 case D_DIRREM: 4370 add_to_worklist(wk); 4371 continue; 4372 4373 case D_NEWDIRBLK: 4374 free_newdirblk(WK_NEWDIRBLK(wk)); 4375 continue; 4376 4377 default: 4378 lk.lkt_held = NOHOLDER; 4379 panic("handle_written_inodeblock: Unknown type %s", 4380 TYPENAME(wk->wk_type)); 4381 /* NOTREACHED */ 4382 } 4383 } 4384 if (filefree != NULL) { 4385 if (free_inodedep(inodedep) == 0) { 4386 lk.lkt_held = NOHOLDER; 4387 panic("handle_written_inodeblock: live inodedep"); 4388 } 4389 add_to_worklist(filefree); 4390 return (0); 4391 } 4392 4393 /* 4394 * If no outstanding dependencies, free it. 4395 */ 4396 if (free_inodedep(inodedep) || 4397 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4398 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4399 return (0); 4400 return (hadchanges); 4401 } 4402 4403 /* 4404 * Process a diradd entry after its dependent inode has been written. 4405 * This routine must be called with splbio interrupts blocked. 4406 */ 4407 static void 4408 diradd_inode_written(dap, inodedep) 4409 struct diradd *dap; 4410 struct inodedep *inodedep; 4411 { 4412 struct pagedep *pagedep; 4413 4414 dap->da_state |= COMPLETE; 4415 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4416 if (dap->da_state & DIRCHG) 4417 pagedep = dap->da_previous->dm_pagedep; 4418 else 4419 pagedep = dap->da_pagedep; 4420 LIST_REMOVE(dap, da_pdlist); 4421 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4422 } 4423 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4424 } 4425 4426 /* 4427 * Handle the completion of a mkdir dependency. 4428 */ 4429 static void 4430 handle_written_mkdir(mkdir, type) 4431 struct mkdir *mkdir; 4432 int type; 4433 { 4434 struct diradd *dap; 4435 struct pagedep *pagedep; 4436 4437 if (mkdir->md_state != type) { 4438 lk.lkt_held = NOHOLDER; 4439 panic("handle_written_mkdir: bad type"); 4440 } 4441 dap = mkdir->md_diradd; 4442 dap->da_state &= ~type; 4443 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4444 dap->da_state |= DEPCOMPLETE; 4445 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4446 if (dap->da_state & DIRCHG) 4447 pagedep = dap->da_previous->dm_pagedep; 4448 else 4449 pagedep = dap->da_pagedep; 4450 LIST_REMOVE(dap, da_pdlist); 4451 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4452 } 4453 LIST_REMOVE(mkdir, md_mkdirs); 4454 WORKITEM_FREE(mkdir, D_MKDIR); 4455 } 4456 4457 /* 4458 * Called from within softdep_disk_write_complete above. 4459 * A write operation was just completed. Removed inodes can 4460 * now be freed and associated block pointers may be committed. 4461 * Note that this routine is always called from interrupt level 4462 * with further splbio interrupts blocked. 4463 */ 4464 static int 4465 handle_written_filepage(pagedep, bp) 4466 struct pagedep *pagedep; 4467 struct buf *bp; /* buffer containing the written page */ 4468 { 4469 struct dirrem *dirrem; 4470 struct diradd *dap, *nextdap; 4471 struct direct *ep; 4472 int i, chgs; 4473 4474 if ((pagedep->pd_state & IOSTARTED) == 0) { 4475 lk.lkt_held = NOHOLDER; 4476 panic("handle_written_filepage: not started"); 4477 } 4478 pagedep->pd_state &= ~IOSTARTED; 4479 /* 4480 * Process any directory removals that have been committed. 4481 */ 4482 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4483 LIST_REMOVE(dirrem, dm_next); 4484 dirrem->dm_dirinum = pagedep->pd_ino; 4485 add_to_worklist(&dirrem->dm_list); 4486 } 4487 /* 4488 * Free any directory additions that have been committed. 4489 * If it is a newly allocated block, we have to wait until 4490 * the on-disk directory inode claims the new block. 4491 */ 4492 if ((pagedep->pd_state & NEWBLOCK) == 0) 4493 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4494 free_diradd(dap); 4495 /* 4496 * Uncommitted directory entries must be restored. 4497 */ 4498 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4499 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4500 dap = nextdap) { 4501 nextdap = LIST_NEXT(dap, da_pdlist); 4502 if (dap->da_state & ATTACHED) { 4503 lk.lkt_held = NOHOLDER; 4504 panic("handle_written_filepage: attached"); 4505 } 4506 ep = (struct direct *) 4507 ((char *)bp->b_data + dap->da_offset); 4508 ep->d_ino = dap->da_newinum; 4509 dap->da_state &= ~UNDONE; 4510 dap->da_state |= ATTACHED; 4511 chgs = 1; 4512 /* 4513 * If the inode referenced by the directory has 4514 * been written out, then the dependency can be 4515 * moved to the pending list. 4516 */ 4517 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4518 LIST_REMOVE(dap, da_pdlist); 4519 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4520 da_pdlist); 4521 } 4522 } 4523 } 4524 /* 4525 * If there were any rollbacks in the directory, then it must be 4526 * marked dirty so that its will eventually get written back in 4527 * its correct form. 4528 */ 4529 if (chgs) { 4530 if ((bp->b_flags & B_DELWRI) == 0) 4531 stat_dir_entry++; 4532 bdirty(bp); 4533 return (1); 4534 } 4535 /* 4536 * If we are not waiting for a new directory block to be 4537 * claimed by its inode, then the pagedep will be freed. 4538 * Otherwise it will remain to track any new entries on 4539 * the page in case they are fsync'ed. 4540 */ 4541 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4542 LIST_REMOVE(pagedep, pd_hash); 4543 WORKITEM_FREE(pagedep, D_PAGEDEP); 4544 } 4545 return (0); 4546 } 4547 4548 /* 4549 * Writing back in-core inode structures. 4550 * 4551 * The filesystem only accesses an inode's contents when it occupies an 4552 * "in-core" inode structure. These "in-core" structures are separate from 4553 * the page frames used to cache inode blocks. Only the latter are 4554 * transferred to/from the disk. So, when the updated contents of the 4555 * "in-core" inode structure are copied to the corresponding in-memory inode 4556 * block, the dependencies are also transferred. The following procedure is 4557 * called when copying a dirty "in-core" inode to a cached inode block. 4558 */ 4559 4560 /* 4561 * Called when an inode is loaded from disk. If the effective link count 4562 * differed from the actual link count when it was last flushed, then we 4563 * need to ensure that the correct effective link count is put back. 4564 */ 4565 void 4566 softdep_load_inodeblock(ip) 4567 struct inode *ip; /* the "in_core" copy of the inode */ 4568 { 4569 struct inodedep *inodedep; 4570 4571 /* 4572 * Check for alternate nlink count. 4573 */ 4574 ip->i_effnlink = ip->i_nlink; 4575 ACQUIRE_LOCK(&lk); 4576 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4577 FREE_LOCK(&lk); 4578 return; 4579 } 4580 ip->i_effnlink -= inodedep->id_nlinkdelta; 4581 if (inodedep->id_state & SPACECOUNTED) 4582 ip->i_flag |= IN_SPACECOUNTED; 4583 FREE_LOCK(&lk); 4584 } 4585 4586 /* 4587 * This routine is called just before the "in-core" inode 4588 * information is to be copied to the in-memory inode block. 4589 * Recall that an inode block contains several inodes. If 4590 * the force flag is set, then the dependencies will be 4591 * cleared so that the update can always be made. Note that 4592 * the buffer is locked when this routine is called, so we 4593 * will never be in the middle of writing the inode block 4594 * to disk. 4595 */ 4596 void 4597 softdep_update_inodeblock(ip, bp, waitfor) 4598 struct inode *ip; /* the "in_core" copy of the inode */ 4599 struct buf *bp; /* the buffer containing the inode block */ 4600 int waitfor; /* nonzero => update must be allowed */ 4601 { 4602 struct inodedep *inodedep; 4603 struct worklist *wk; 4604 int error, gotit; 4605 4606 /* 4607 * If the effective link count is not equal to the actual link 4608 * count, then we must track the difference in an inodedep while 4609 * the inode is (potentially) tossed out of the cache. Otherwise, 4610 * if there is no existing inodedep, then there are no dependencies 4611 * to track. 4612 */ 4613 ACQUIRE_LOCK(&lk); 4614 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4615 FREE_LOCK(&lk); 4616 if (ip->i_effnlink != ip->i_nlink) 4617 panic("softdep_update_inodeblock: bad link count"); 4618 return; 4619 } 4620 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) { 4621 FREE_LOCK(&lk); 4622 panic("softdep_update_inodeblock: bad delta"); 4623 } 4624 /* 4625 * Changes have been initiated. Anything depending on these 4626 * changes cannot occur until this inode has been written. 4627 */ 4628 inodedep->id_state &= ~COMPLETE; 4629 if ((inodedep->id_state & ONWORKLIST) == 0) 4630 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4631 /* 4632 * Any new dependencies associated with the incore inode must 4633 * now be moved to the list associated with the buffer holding 4634 * the in-memory copy of the inode. Once merged process any 4635 * allocdirects that are completed by the merger. 4636 */ 4637 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4638 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4639 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4640 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4641 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4642 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4643 /* 4644 * Now that the inode has been pushed into the buffer, the 4645 * operations dependent on the inode being written to disk 4646 * can be moved to the id_bufwait so that they will be 4647 * processed when the buffer I/O completes. 4648 */ 4649 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4650 WORKLIST_REMOVE(wk); 4651 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4652 } 4653 /* 4654 * Newly allocated inodes cannot be written until the bitmap 4655 * that allocates them have been written (indicated by 4656 * DEPCOMPLETE being set in id_state). If we are doing a 4657 * forced sync (e.g., an fsync on a file), we force the bitmap 4658 * to be written so that the update can be done. 4659 */ 4660 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 4661 FREE_LOCK(&lk); 4662 return; 4663 } 4664 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4665 FREE_LOCK(&lk); 4666 if (gotit && 4667 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4668 softdep_error("softdep_update_inodeblock: bwrite", error); 4669 if ((inodedep->id_state & DEPCOMPLETE) == 0) 4670 panic("softdep_update_inodeblock: update failed"); 4671 } 4672 4673 /* 4674 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4675 * old inode dependency list (such as id_inoupdt). This routine must be 4676 * called with splbio interrupts blocked. 4677 */ 4678 static void 4679 merge_inode_lists(newlisthead, oldlisthead) 4680 struct allocdirectlst *newlisthead; 4681 struct allocdirectlst *oldlisthead; 4682 { 4683 struct allocdirect *listadp, *newadp; 4684 4685 newadp = TAILQ_FIRST(newlisthead); 4686 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4687 if (listadp->ad_lbn < newadp->ad_lbn) { 4688 listadp = TAILQ_NEXT(listadp, ad_next); 4689 continue; 4690 } 4691 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4692 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4693 if (listadp->ad_lbn == newadp->ad_lbn) { 4694 allocdirect_merge(oldlisthead, newadp, 4695 listadp); 4696 listadp = newadp; 4697 } 4698 newadp = TAILQ_FIRST(newlisthead); 4699 } 4700 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4701 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4702 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4703 } 4704 } 4705 4706 /* 4707 * If we are doing an fsync, then we must ensure that any directory 4708 * entries for the inode have been written after the inode gets to disk. 4709 */ 4710 int 4711 softdep_fsync(vp) 4712 struct vnode *vp; /* the "in_core" copy of the inode */ 4713 { 4714 struct inodedep *inodedep; 4715 struct pagedep *pagedep; 4716 struct worklist *wk; 4717 struct diradd *dap; 4718 struct mount *mnt; 4719 struct vnode *pvp; 4720 struct inode *ip; 4721 struct buf *bp; 4722 struct fs *fs; 4723 struct thread *td = curthread; 4724 int error, flushparent; 4725 ino_t parentino; 4726 ufs_lbn_t lbn; 4727 4728 ip = VTOI(vp); 4729 fs = ip->i_fs; 4730 ACQUIRE_LOCK(&lk); 4731 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4732 FREE_LOCK(&lk); 4733 return (0); 4734 } 4735 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4736 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4737 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 4738 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 4739 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4740 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { 4741 FREE_LOCK(&lk); 4742 panic("softdep_fsync: pending ops"); 4743 } 4744 for (error = 0, flushparent = 0; ; ) { 4745 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4746 break; 4747 if (wk->wk_type != D_DIRADD) { 4748 FREE_LOCK(&lk); 4749 panic("softdep_fsync: Unexpected type %s", 4750 TYPENAME(wk->wk_type)); 4751 } 4752 dap = WK_DIRADD(wk); 4753 /* 4754 * Flush our parent if this directory entry has a MKDIR_PARENT 4755 * dependency or is contained in a newly allocated block. 4756 */ 4757 if (dap->da_state & DIRCHG) 4758 pagedep = dap->da_previous->dm_pagedep; 4759 else 4760 pagedep = dap->da_pagedep; 4761 mnt = pagedep->pd_mnt; 4762 parentino = pagedep->pd_ino; 4763 lbn = pagedep->pd_lbn; 4764 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { 4765 FREE_LOCK(&lk); 4766 panic("softdep_fsync: dirty"); 4767 } 4768 if ((dap->da_state & MKDIR_PARENT) || 4769 (pagedep->pd_state & NEWBLOCK)) 4770 flushparent = 1; 4771 else 4772 flushparent = 0; 4773 /* 4774 * If we are being fsync'ed as part of vgone'ing this vnode, 4775 * then we will not be able to release and recover the 4776 * vnode below, so we just have to give up on writing its 4777 * directory entry out. It will eventually be written, just 4778 * not now, but then the user was not asking to have it 4779 * written, so we are not breaking any promises. 4780 */ 4781 if (vp->v_flag & VXLOCK) 4782 break; 4783 /* 4784 * We prevent deadlock by always fetching inodes from the 4785 * root, moving down the directory tree. Thus, when fetching 4786 * our parent directory, we first try to get the lock. If 4787 * that fails, we must unlock ourselves before requesting 4788 * the lock on our parent. See the comment in ufs_lookup 4789 * for details on possible races. 4790 */ 4791 FREE_LOCK(&lk); 4792 if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4793 VOP_UNLOCK(vp, 0, td); 4794 error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp); 4795 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4796 if (error != 0) 4797 return (error); 4798 } 4799 /* 4800 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4801 * that are contained in direct blocks will be resolved by 4802 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks 4803 * may require a complete sync'ing of the directory. So, we 4804 * try the cheap and fast UFS_UPDATE first, and if that fails, 4805 * then we do the slower VOP_FSYNC of the directory. 4806 */ 4807 if (flushparent) { 4808 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 4809 vput(pvp); 4810 return (error); 4811 } 4812 if ((pagedep->pd_state & NEWBLOCK) && 4813 (error = VOP_FSYNC(pvp, td->td_ucred, MNT_WAIT, td))) { 4814 vput(pvp); 4815 return (error); 4816 } 4817 } 4818 /* 4819 * Flush directory page containing the inode's name. 4820 */ 4821 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4822 &bp); 4823 if (error == 0) 4824 error = BUF_WRITE(bp); 4825 else 4826 brelse(bp); 4827 vput(pvp); 4828 if (error != 0) 4829 return (error); 4830 ACQUIRE_LOCK(&lk); 4831 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4832 break; 4833 } 4834 FREE_LOCK(&lk); 4835 return (0); 4836 } 4837 4838 /* 4839 * Flush all the dirty bitmaps associated with the block device 4840 * before flushing the rest of the dirty blocks so as to reduce 4841 * the number of dependencies that will have to be rolled back. 4842 */ 4843 void 4844 softdep_fsync_mountdev(vp) 4845 struct vnode *vp; 4846 { 4847 struct buf *bp, *nbp; 4848 struct worklist *wk; 4849 4850 if (!vn_isdisk(vp, NULL)) 4851 panic("softdep_fsync_mountdev: vnode not a disk"); 4852 ACQUIRE_LOCK(&lk); 4853 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 4854 nbp = TAILQ_NEXT(bp, b_vnbufs); 4855 /* 4856 * If it is already scheduled, skip to the next buffer. 4857 */ 4858 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 4859 continue; 4860 if ((bp->b_flags & B_DELWRI) == 0) { 4861 FREE_LOCK(&lk); 4862 panic("softdep_fsync_mountdev: not dirty"); 4863 } 4864 /* 4865 * We are only interested in bitmaps with outstanding 4866 * dependencies. 4867 */ 4868 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4869 wk->wk_type != D_BMSAFEMAP || 4870 (bp->b_xflags & BX_BKGRDINPROG)) { 4871 BUF_UNLOCK(bp); 4872 continue; 4873 } 4874 bremfree(bp); 4875 FREE_LOCK(&lk); 4876 (void) bawrite(bp); 4877 ACQUIRE_LOCK(&lk); 4878 /* 4879 * Since we may have slept during the I/O, we need 4880 * to start from a known point. 4881 */ 4882 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4883 } 4884 drain_output(vp, 1); 4885 FREE_LOCK(&lk); 4886 } 4887 4888 /* 4889 * This routine is called when we are trying to synchronously flush a 4890 * file. This routine must eliminate any filesystem metadata dependencies 4891 * so that the syncing routine can succeed by pushing the dirty blocks 4892 * associated with the file. If any I/O errors occur, they are returned. 4893 */ 4894 int 4895 softdep_sync_metadata(ap) 4896 struct vop_fsync_args /* { 4897 struct vnode *a_vp; 4898 struct ucred *a_cred; 4899 int a_waitfor; 4900 struct thread *a_td; 4901 } */ *ap; 4902 { 4903 struct vnode *vp = ap->a_vp; 4904 struct pagedep *pagedep; 4905 struct allocdirect *adp; 4906 struct allocindir *aip; 4907 struct buf *bp, *nbp; 4908 struct worklist *wk; 4909 int i, error, waitfor; 4910 4911 /* 4912 * Check whether this vnode is involved in a filesystem 4913 * that is doing soft dependency processing. 4914 */ 4915 if (!vn_isdisk(vp, NULL)) { 4916 if (!DOINGSOFTDEP(vp)) 4917 return (0); 4918 } else 4919 if (vp->v_rdev->si_mountpoint == NULL || 4920 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0) 4921 return (0); 4922 /* 4923 * Ensure that any direct block dependencies have been cleared. 4924 */ 4925 ACQUIRE_LOCK(&lk); 4926 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4927 FREE_LOCK(&lk); 4928 return (error); 4929 } 4930 /* 4931 * For most files, the only metadata dependencies are the 4932 * cylinder group maps that allocate their inode or blocks. 4933 * The block allocation dependencies can be found by traversing 4934 * the dependency lists for any buffers that remain on their 4935 * dirty buffer list. The inode allocation dependency will 4936 * be resolved when the inode is updated with MNT_WAIT. 4937 * This work is done in two passes. The first pass grabs most 4938 * of the buffers and begins asynchronously writing them. The 4939 * only way to wait for these asynchronous writes is to sleep 4940 * on the filesystem vnode which may stay busy for a long time 4941 * if the filesystem is active. So, instead, we make a second 4942 * pass over the dependencies blocking on each write. In the 4943 * usual case we will be blocking against a write that we 4944 * initiated, so when it is done the dependency will have been 4945 * resolved. Thus the second pass is expected to end quickly. 4946 */ 4947 waitfor = MNT_NOWAIT; 4948 top: 4949 /* 4950 * We must wait for any I/O in progress to finish so that 4951 * all potential buffers on the dirty list will be visible. 4952 */ 4953 drain_output(vp, 1); 4954 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 4955 FREE_LOCK(&lk); 4956 return (0); 4957 } 4958 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4959 /* While syncing snapshots, we must allow recursive lookups */ 4960 bp->b_lock.lk_flags |= LK_CANRECURSE; 4961 loop: 4962 /* 4963 * As we hold the buffer locked, none of its dependencies 4964 * will disappear. 4965 */ 4966 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 4967 switch (wk->wk_type) { 4968 4969 case D_ALLOCDIRECT: 4970 adp = WK_ALLOCDIRECT(wk); 4971 if (adp->ad_state & DEPCOMPLETE) 4972 continue; 4973 nbp = adp->ad_buf; 4974 if (getdirtybuf(&nbp, waitfor) == 0) 4975 continue; 4976 FREE_LOCK(&lk); 4977 if (waitfor == MNT_NOWAIT) { 4978 bawrite(nbp); 4979 } else if ((error = BUF_WRITE(nbp)) != 0) { 4980 break; 4981 } 4982 ACQUIRE_LOCK(&lk); 4983 continue; 4984 4985 case D_ALLOCINDIR: 4986 aip = WK_ALLOCINDIR(wk); 4987 if (aip->ai_state & DEPCOMPLETE) 4988 continue; 4989 nbp = aip->ai_buf; 4990 if (getdirtybuf(&nbp, waitfor) == 0) 4991 continue; 4992 FREE_LOCK(&lk); 4993 if (waitfor == MNT_NOWAIT) { 4994 bawrite(nbp); 4995 } else if ((error = BUF_WRITE(nbp)) != 0) { 4996 break; 4997 } 4998 ACQUIRE_LOCK(&lk); 4999 continue; 5000 5001 case D_INDIRDEP: 5002 restart: 5003 5004 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5005 if (aip->ai_state & DEPCOMPLETE) 5006 continue; 5007 nbp = aip->ai_buf; 5008 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 5009 goto restart; 5010 FREE_LOCK(&lk); 5011 if ((error = BUF_WRITE(nbp)) != 0) { 5012 break; 5013 } 5014 ACQUIRE_LOCK(&lk); 5015 goto restart; 5016 } 5017 continue; 5018 5019 case D_INODEDEP: 5020 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 5021 WK_INODEDEP(wk)->id_ino)) != 0) { 5022 FREE_LOCK(&lk); 5023 break; 5024 } 5025 continue; 5026 5027 case D_PAGEDEP: 5028 /* 5029 * We are trying to sync a directory that may 5030 * have dependencies on both its own metadata 5031 * and/or dependencies on the inodes of any 5032 * recently allocated files. We walk its diradd 5033 * lists pushing out the associated inode. 5034 */ 5035 pagedep = WK_PAGEDEP(wk); 5036 for (i = 0; i < DAHASHSZ; i++) { 5037 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5038 continue; 5039 if ((error = 5040 flush_pagedep_deps(vp, pagedep->pd_mnt, 5041 &pagedep->pd_diraddhd[i]))) { 5042 FREE_LOCK(&lk); 5043 break; 5044 } 5045 } 5046 continue; 5047 5048 case D_MKDIR: 5049 /* 5050 * This case should never happen if the vnode has 5051 * been properly sync'ed. However, if this function 5052 * is used at a place where the vnode has not yet 5053 * been sync'ed, this dependency can show up. So, 5054 * rather than panic, just flush it. 5055 */ 5056 nbp = WK_MKDIR(wk)->md_buf; 5057 if (getdirtybuf(&nbp, waitfor) == 0) 5058 continue; 5059 FREE_LOCK(&lk); 5060 if (waitfor == MNT_NOWAIT) { 5061 bawrite(nbp); 5062 } else if ((error = BUF_WRITE(nbp)) != 0) { 5063 break; 5064 } 5065 ACQUIRE_LOCK(&lk); 5066 continue; 5067 5068 case D_BMSAFEMAP: 5069 /* 5070 * This case should never happen if the vnode has 5071 * been properly sync'ed. However, if this function 5072 * is used at a place where the vnode has not yet 5073 * been sync'ed, this dependency can show up. So, 5074 * rather than panic, just flush it. 5075 */ 5076 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5077 if (getdirtybuf(&nbp, waitfor) == 0) 5078 continue; 5079 FREE_LOCK(&lk); 5080 if (waitfor == MNT_NOWAIT) { 5081 bawrite(nbp); 5082 } else if ((error = BUF_WRITE(nbp)) != 0) { 5083 break; 5084 } 5085 ACQUIRE_LOCK(&lk); 5086 continue; 5087 5088 default: 5089 FREE_LOCK(&lk); 5090 panic("softdep_sync_metadata: Unknown type %s", 5091 TYPENAME(wk->wk_type)); 5092 /* NOTREACHED */ 5093 } 5094 /* We reach here only in error and unlocked */ 5095 if (error == 0) 5096 panic("softdep_sync_metadata: zero error"); 5097 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5098 bawrite(bp); 5099 return (error); 5100 } 5101 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 5102 nbp = TAILQ_NEXT(bp, b_vnbufs); 5103 FREE_LOCK(&lk); 5104 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5105 bawrite(bp); 5106 ACQUIRE_LOCK(&lk); 5107 if (nbp != NULL) { 5108 bp = nbp; 5109 goto loop; 5110 } 5111 /* 5112 * The brief unlock is to allow any pent up dependency 5113 * processing to be done. Then proceed with the second pass. 5114 */ 5115 if (waitfor == MNT_NOWAIT) { 5116 waitfor = MNT_WAIT; 5117 FREE_LOCK(&lk); 5118 ACQUIRE_LOCK(&lk); 5119 goto top; 5120 } 5121 5122 /* 5123 * If we have managed to get rid of all the dirty buffers, 5124 * then we are done. For certain directories and block 5125 * devices, we may need to do further work. 5126 * 5127 * We must wait for any I/O in progress to finish so that 5128 * all potential buffers on the dirty list will be visible. 5129 */ 5130 drain_output(vp, 1); 5131 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 5132 FREE_LOCK(&lk); 5133 return (0); 5134 } 5135 5136 FREE_LOCK(&lk); 5137 /* 5138 * If we are trying to sync a block device, some of its buffers may 5139 * contain metadata that cannot be written until the contents of some 5140 * partially written files have been written to disk. The only easy 5141 * way to accomplish this is to sync the entire filesystem (luckily 5142 * this happens rarely). 5143 */ 5144 if (vn_isdisk(vp, NULL) && 5145 vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) && 5146 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred, 5147 ap->a_td)) != 0) 5148 return (error); 5149 return (0); 5150 } 5151 5152 /* 5153 * Flush the dependencies associated with an inodedep. 5154 * Called with splbio blocked. 5155 */ 5156 static int 5157 flush_inodedep_deps(fs, ino) 5158 struct fs *fs; 5159 ino_t ino; 5160 { 5161 struct inodedep *inodedep; 5162 int error, waitfor; 5163 5164 /* 5165 * This work is done in two passes. The first pass grabs most 5166 * of the buffers and begins asynchronously writing them. The 5167 * only way to wait for these asynchronous writes is to sleep 5168 * on the filesystem vnode which may stay busy for a long time 5169 * if the filesystem is active. So, instead, we make a second 5170 * pass over the dependencies blocking on each write. In the 5171 * usual case we will be blocking against a write that we 5172 * initiated, so when it is done the dependency will have been 5173 * resolved. Thus the second pass is expected to end quickly. 5174 * We give a brief window at the top of the loop to allow 5175 * any pending I/O to complete. 5176 */ 5177 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5178 if (error) 5179 return (error); 5180 FREE_LOCK(&lk); 5181 ACQUIRE_LOCK(&lk); 5182 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5183 return (0); 5184 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5185 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5186 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5187 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5188 continue; 5189 /* 5190 * If pass2, we are done, otherwise do pass 2. 5191 */ 5192 if (waitfor == MNT_WAIT) 5193 break; 5194 waitfor = MNT_WAIT; 5195 } 5196 /* 5197 * Try freeing inodedep in case all dependencies have been removed. 5198 */ 5199 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 5200 (void) free_inodedep(inodedep); 5201 return (0); 5202 } 5203 5204 /* 5205 * Flush an inode dependency list. 5206 * Called with splbio blocked. 5207 */ 5208 static int 5209 flush_deplist(listhead, waitfor, errorp) 5210 struct allocdirectlst *listhead; 5211 int waitfor; 5212 int *errorp; 5213 { 5214 struct allocdirect *adp; 5215 struct buf *bp; 5216 5217 TAILQ_FOREACH(adp, listhead, ad_next) { 5218 if (adp->ad_state & DEPCOMPLETE) 5219 continue; 5220 bp = adp->ad_buf; 5221 if (getdirtybuf(&bp, waitfor) == 0) { 5222 if (waitfor == MNT_NOWAIT) 5223 continue; 5224 return (1); 5225 } 5226 FREE_LOCK(&lk); 5227 if (waitfor == MNT_NOWAIT) { 5228 bawrite(bp); 5229 } else if ((*errorp = BUF_WRITE(bp)) != 0) { 5230 ACQUIRE_LOCK(&lk); 5231 return (1); 5232 } 5233 ACQUIRE_LOCK(&lk); 5234 return (1); 5235 } 5236 return (0); 5237 } 5238 5239 /* 5240 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5241 * Called with splbio blocked. 5242 */ 5243 static int 5244 flush_pagedep_deps(pvp, mp, diraddhdp) 5245 struct vnode *pvp; 5246 struct mount *mp; 5247 struct diraddhd *diraddhdp; 5248 { 5249 struct thread *td = curthread; 5250 struct inodedep *inodedep; 5251 struct ufsmount *ump; 5252 struct diradd *dap; 5253 struct vnode *vp; 5254 int gotit, error = 0; 5255 struct buf *bp; 5256 ino_t inum; 5257 5258 ump = VFSTOUFS(mp); 5259 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5260 /* 5261 * Flush ourselves if this directory entry 5262 * has a MKDIR_PARENT dependency. 5263 */ 5264 if (dap->da_state & MKDIR_PARENT) { 5265 FREE_LOCK(&lk); 5266 if ((error = UFS_UPDATE(pvp, 1)) != 0) 5267 break; 5268 ACQUIRE_LOCK(&lk); 5269 /* 5270 * If that cleared dependencies, go on to next. 5271 */ 5272 if (dap != LIST_FIRST(diraddhdp)) 5273 continue; 5274 if (dap->da_state & MKDIR_PARENT) { 5275 FREE_LOCK(&lk); 5276 panic("flush_pagedep_deps: MKDIR_PARENT"); 5277 } 5278 } 5279 /* 5280 * A newly allocated directory must have its "." and 5281 * ".." entries written out before its name can be 5282 * committed in its parent. We do not want or need 5283 * the full semantics of a synchronous VOP_FSYNC as 5284 * that may end up here again, once for each directory 5285 * level in the filesystem. Instead, we push the blocks 5286 * and wait for them to clear. We have to fsync twice 5287 * because the first call may choose to defer blocks 5288 * that still have dependencies, but deferral will 5289 * happen at most once. 5290 */ 5291 inum = dap->da_newinum; 5292 if (dap->da_state & MKDIR_BODY) { 5293 FREE_LOCK(&lk); 5294 if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp))) 5295 break; 5296 if ((error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)) || 5297 (error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) { 5298 vput(vp); 5299 break; 5300 } 5301 drain_output(vp, 0); 5302 vput(vp); 5303 ACQUIRE_LOCK(&lk); 5304 /* 5305 * If that cleared dependencies, go on to next. 5306 */ 5307 if (dap != LIST_FIRST(diraddhdp)) 5308 continue; 5309 if (dap->da_state & MKDIR_BODY) { 5310 FREE_LOCK(&lk); 5311 panic("flush_pagedep_deps: MKDIR_BODY"); 5312 } 5313 } 5314 /* 5315 * Flush the inode on which the directory entry depends. 5316 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5317 * the only remaining dependency is that the updated inode 5318 * count must get pushed to disk. The inode has already 5319 * been pushed into its inode buffer (via VOP_UPDATE) at 5320 * the time of the reference count change. So we need only 5321 * locate that buffer, ensure that there will be no rollback 5322 * caused by a bitmap dependency, then write the inode buffer. 5323 */ 5324 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { 5325 FREE_LOCK(&lk); 5326 panic("flush_pagedep_deps: lost inode"); 5327 } 5328 /* 5329 * If the inode still has bitmap dependencies, 5330 * push them to disk. 5331 */ 5332 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5333 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 5334 FREE_LOCK(&lk); 5335 if (gotit && 5336 (error = BUF_WRITE(inodedep->id_buf)) != 0) 5337 break; 5338 ACQUIRE_LOCK(&lk); 5339 if (dap != LIST_FIRST(diraddhdp)) 5340 continue; 5341 } 5342 /* 5343 * If the inode is still sitting in a buffer waiting 5344 * to be written, push it to disk. 5345 */ 5346 FREE_LOCK(&lk); 5347 if ((error = bread(ump->um_devvp, 5348 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5349 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5350 brelse(bp); 5351 break; 5352 } 5353 if ((error = BUF_WRITE(bp)) != 0) 5354 break; 5355 ACQUIRE_LOCK(&lk); 5356 /* 5357 * If we have failed to get rid of all the dependencies 5358 * then something is seriously wrong. 5359 */ 5360 if (dap == LIST_FIRST(diraddhdp)) { 5361 FREE_LOCK(&lk); 5362 panic("flush_pagedep_deps: flush failed"); 5363 } 5364 } 5365 if (error) 5366 ACQUIRE_LOCK(&lk); 5367 return (error); 5368 } 5369 5370 /* 5371 * A large burst of file addition or deletion activity can drive the 5372 * memory load excessively high. First attempt to slow things down 5373 * using the techniques below. If that fails, this routine requests 5374 * the offending operations to fall back to running synchronously 5375 * until the memory load returns to a reasonable level. 5376 */ 5377 int 5378 softdep_slowdown(vp) 5379 struct vnode *vp; 5380 { 5381 int max_softdeps_hard; 5382 5383 max_softdeps_hard = max_softdeps * 11 / 10; 5384 if (num_dirrem < max_softdeps_hard / 2 && 5385 num_inodedep < max_softdeps_hard) 5386 return (0); 5387 stat_sync_limit_hit += 1; 5388 return (1); 5389 } 5390 5391 /* 5392 * Called by the allocation routines when they are about to fail 5393 * in the hope that we can free up some disk space. 5394 * 5395 * First check to see if the work list has anything on it. If it has, 5396 * clean up entries until we successfully free some space. Because this 5397 * process holds inodes locked, we cannot handle any remove requests 5398 * that might block on a locked inode as that could lead to deadlock. 5399 * If the worklist yields no free space, encourage the syncer daemon 5400 * to help us. In no event will we try for longer than tickdelay seconds. 5401 */ 5402 int 5403 softdep_request_cleanup(fs, vp) 5404 struct fs *fs; 5405 struct vnode *vp; 5406 { 5407 long starttime; 5408 ufs2_daddr_t needed; 5409 5410 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5411 starttime = time_second + tickdelay; 5412 if (UFS_UPDATE(vp, 1) != 0) 5413 return (0); 5414 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5415 if (time_second > starttime) 5416 return (0); 5417 if (num_on_worklist > 0 && 5418 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5419 stat_worklist_push += 1; 5420 continue; 5421 } 5422 request_cleanup(FLUSH_REMOVE_WAIT, 0); 5423 } 5424 return (1); 5425 } 5426 5427 /* 5428 * If memory utilization has gotten too high, deliberately slow things 5429 * down and speed up the I/O processing. 5430 */ 5431 static int 5432 request_cleanup(resource, islocked) 5433 int resource; 5434 int islocked; 5435 { 5436 struct thread *td = curthread; 5437 5438 /* 5439 * We never hold up the filesystem syncer process. 5440 */ 5441 if (td == filesys_syncer) 5442 return (0); 5443 /* 5444 * First check to see if the work list has gotten backlogged. 5445 * If it has, co-opt this process to help clean up two entries. 5446 * Because this process may hold inodes locked, we cannot 5447 * handle any remove requests that might block on a locked 5448 * inode as that could lead to deadlock. 5449 */ 5450 if (num_on_worklist > max_softdeps / 10) { 5451 if (islocked) 5452 FREE_LOCK(&lk); 5453 process_worklist_item(NULL, LK_NOWAIT); 5454 process_worklist_item(NULL, LK_NOWAIT); 5455 stat_worklist_push += 2; 5456 if (islocked) 5457 ACQUIRE_LOCK(&lk); 5458 return(1); 5459 } 5460 /* 5461 * Next, we attempt to speed up the syncer process. If that 5462 * is successful, then we allow the process to continue. 5463 */ 5464 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5465 return(0); 5466 /* 5467 * If we are resource constrained on inode dependencies, try 5468 * flushing some dirty inodes. Otherwise, we are constrained 5469 * by file deletions, so try accelerating flushes of directories 5470 * with removal dependencies. We would like to do the cleanup 5471 * here, but we probably hold an inode locked at this point and 5472 * that might deadlock against one that we try to clean. So, 5473 * the best that we can do is request the syncer daemon to do 5474 * the cleanup for us. 5475 */ 5476 switch (resource) { 5477 5478 case FLUSH_INODES: 5479 stat_ino_limit_push += 1; 5480 req_clear_inodedeps += 1; 5481 stat_countp = &stat_ino_limit_hit; 5482 break; 5483 5484 case FLUSH_REMOVE: 5485 case FLUSH_REMOVE_WAIT: 5486 stat_blk_limit_push += 1; 5487 req_clear_remove += 1; 5488 stat_countp = &stat_blk_limit_hit; 5489 break; 5490 5491 default: 5492 if (islocked) 5493 FREE_LOCK(&lk); 5494 panic("request_cleanup: unknown type"); 5495 } 5496 /* 5497 * Hopefully the syncer daemon will catch up and awaken us. 5498 * We wait at most tickdelay before proceeding in any case. 5499 */ 5500 if (islocked == 0) 5501 ACQUIRE_LOCK(&lk); 5502 proc_waiting += 1; 5503 if (handle.callout == NULL) 5504 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5505 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, PPAUSE, 5506 "softupdate", 0); 5507 proc_waiting -= 1; 5508 if (islocked == 0) 5509 FREE_LOCK(&lk); 5510 return (1); 5511 } 5512 5513 /* 5514 * Awaken processes pausing in request_cleanup and clear proc_waiting 5515 * to indicate that there is no longer a timer running. 5516 */ 5517 void 5518 pause_timer(arg) 5519 void *arg; 5520 { 5521 5522 *stat_countp += 1; 5523 wakeup_one(&proc_waiting); 5524 if (proc_waiting > 0) 5525 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5526 else 5527 handle.callout = NULL; 5528 } 5529 5530 /* 5531 * Flush out a directory with at least one removal dependency in an effort to 5532 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5533 */ 5534 static void 5535 clear_remove(td) 5536 struct thread *td; 5537 { 5538 struct pagedep_hashhead *pagedephd; 5539 struct pagedep *pagedep; 5540 static int next = 0; 5541 struct mount *mp; 5542 struct vnode *vp; 5543 int error, cnt; 5544 ino_t ino; 5545 5546 ACQUIRE_LOCK(&lk); 5547 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5548 pagedephd = &pagedep_hashtbl[next++]; 5549 if (next >= pagedep_hash) 5550 next = 0; 5551 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5552 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5553 continue; 5554 mp = pagedep->pd_mnt; 5555 ino = pagedep->pd_ino; 5556 FREE_LOCK(&lk); 5557 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5558 continue; 5559 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) { 5560 softdep_error("clear_remove: vget", error); 5561 vn_finished_write(mp); 5562 return; 5563 } 5564 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5565 softdep_error("clear_remove: fsync", error); 5566 drain_output(vp, 0); 5567 vput(vp); 5568 vn_finished_write(mp); 5569 return; 5570 } 5571 } 5572 FREE_LOCK(&lk); 5573 } 5574 5575 /* 5576 * Clear out a block of dirty inodes in an effort to reduce 5577 * the number of inodedep dependency structures. 5578 */ 5579 static void 5580 clear_inodedeps(td) 5581 struct thread *td; 5582 { 5583 struct inodedep_hashhead *inodedephd; 5584 struct inodedep *inodedep; 5585 static int next = 0; 5586 struct mount *mp; 5587 struct vnode *vp; 5588 struct fs *fs; 5589 int error, cnt; 5590 ino_t firstino, lastino, ino; 5591 5592 ACQUIRE_LOCK(&lk); 5593 /* 5594 * Pick a random inode dependency to be cleared. 5595 * We will then gather up all the inodes in its block 5596 * that have dependencies and flush them out. 5597 */ 5598 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5599 inodedephd = &inodedep_hashtbl[next++]; 5600 if (next >= inodedep_hash) 5601 next = 0; 5602 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5603 break; 5604 } 5605 if (inodedep == NULL) 5606 return; 5607 /* 5608 * Ugly code to find mount point given pointer to superblock. 5609 */ 5610 fs = inodedep->id_fs; 5611 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5612 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5613 break; 5614 /* 5615 * Find the last inode in the block with dependencies. 5616 */ 5617 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5618 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5619 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5620 break; 5621 /* 5622 * Asynchronously push all but the last inode with dependencies. 5623 * Synchronously push the last inode with dependencies to ensure 5624 * that the inode block gets written to free up the inodedeps. 5625 */ 5626 for (ino = firstino; ino <= lastino; ino++) { 5627 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5628 continue; 5629 FREE_LOCK(&lk); 5630 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5631 continue; 5632 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5633 softdep_error("clear_inodedeps: vget", error); 5634 vn_finished_write(mp); 5635 return; 5636 } 5637 if (ino == lastino) { 5638 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_WAIT, td))) 5639 softdep_error("clear_inodedeps: fsync1", error); 5640 } else { 5641 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5642 softdep_error("clear_inodedeps: fsync2", error); 5643 drain_output(vp, 0); 5644 } 5645 vput(vp); 5646 vn_finished_write(mp); 5647 ACQUIRE_LOCK(&lk); 5648 } 5649 FREE_LOCK(&lk); 5650 } 5651 5652 /* 5653 * Function to determine if the buffer has outstanding dependencies 5654 * that will cause a roll-back if the buffer is written. If wantcount 5655 * is set, return number of dependencies, otherwise just yes or no. 5656 */ 5657 static int 5658 softdep_count_dependencies(bp, wantcount) 5659 struct buf *bp; 5660 int wantcount; 5661 { 5662 struct worklist *wk; 5663 struct inodedep *inodedep; 5664 struct indirdep *indirdep; 5665 struct allocindir *aip; 5666 struct pagedep *pagedep; 5667 struct diradd *dap; 5668 int i, retval; 5669 5670 retval = 0; 5671 ACQUIRE_LOCK(&lk); 5672 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5673 switch (wk->wk_type) { 5674 5675 case D_INODEDEP: 5676 inodedep = WK_INODEDEP(wk); 5677 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5678 /* bitmap allocation dependency */ 5679 retval += 1; 5680 if (!wantcount) 5681 goto out; 5682 } 5683 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5684 /* direct block pointer dependency */ 5685 retval += 1; 5686 if (!wantcount) 5687 goto out; 5688 } 5689 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5690 /* direct block pointer dependency */ 5691 retval += 1; 5692 if (!wantcount) 5693 goto out; 5694 } 5695 continue; 5696 5697 case D_INDIRDEP: 5698 indirdep = WK_INDIRDEP(wk); 5699 5700 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5701 /* indirect block pointer dependency */ 5702 retval += 1; 5703 if (!wantcount) 5704 goto out; 5705 } 5706 continue; 5707 5708 case D_PAGEDEP: 5709 pagedep = WK_PAGEDEP(wk); 5710 for (i = 0; i < DAHASHSZ; i++) { 5711 5712 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5713 /* directory entry dependency */ 5714 retval += 1; 5715 if (!wantcount) 5716 goto out; 5717 } 5718 } 5719 continue; 5720 5721 case D_BMSAFEMAP: 5722 case D_ALLOCDIRECT: 5723 case D_ALLOCINDIR: 5724 case D_MKDIR: 5725 /* never a dependency on these blocks */ 5726 continue; 5727 5728 default: 5729 FREE_LOCK(&lk); 5730 panic("softdep_check_for_rollback: Unexpected type %s", 5731 TYPENAME(wk->wk_type)); 5732 /* NOTREACHED */ 5733 } 5734 } 5735 out: 5736 FREE_LOCK(&lk); 5737 return retval; 5738 } 5739 5740 /* 5741 * Acquire exclusive access to a buffer. 5742 * Must be called with splbio blocked. 5743 * Return 1 if buffer was acquired. 5744 */ 5745 static int 5746 getdirtybuf(bpp, waitfor) 5747 struct buf **bpp; 5748 int waitfor; 5749 { 5750 struct buf *bp; 5751 int error; 5752 5753 for (;;) { 5754 if ((bp = *bpp) == NULL) 5755 return (0); 5756 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 5757 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 5758 break; 5759 BUF_UNLOCK(bp); 5760 if (waitfor != MNT_WAIT) 5761 return (0); 5762 bp->b_xflags |= BX_BKGRDWAIT; 5763 interlocked_sleep(&lk, SLEEP, &bp->b_xflags, PRIBIO, 5764 "getbuf", 0); 5765 continue; 5766 } 5767 if (waitfor != MNT_WAIT) 5768 return (0); 5769 error = interlocked_sleep(&lk, LOCKBUF, bp, 5770 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0); 5771 if (error != ENOLCK) { 5772 FREE_LOCK(&lk); 5773 panic("getdirtybuf: inconsistent lock"); 5774 } 5775 } 5776 if ((bp->b_flags & B_DELWRI) == 0) { 5777 BUF_UNLOCK(bp); 5778 return (0); 5779 } 5780 bremfree(bp); 5781 return (1); 5782 } 5783 5784 /* 5785 * Wait for pending output on a vnode to complete. 5786 * Must be called with vnode locked. 5787 */ 5788 static void 5789 drain_output(vp, islocked) 5790 struct vnode *vp; 5791 int islocked; 5792 { 5793 5794 if (!islocked) 5795 ACQUIRE_LOCK(&lk); 5796 while (vp->v_numoutput) { 5797 vp->v_flag |= VBWAIT; 5798 interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput, 5799 PRIBIO + 1, "drainvp", 0); 5800 } 5801 if (!islocked) 5802 FREE_LOCK(&lk); 5803 } 5804 5805 /* 5806 * Called whenever a buffer that is being invalidated or reallocated 5807 * contains dependencies. This should only happen if an I/O error has 5808 * occurred. The routine is called with the buffer locked. 5809 */ 5810 static void 5811 softdep_deallocate_dependencies(bp) 5812 struct buf *bp; 5813 { 5814 5815 if ((bp->b_ioflags & BIO_ERROR) == 0) 5816 panic("softdep_deallocate_dependencies: dangling deps"); 5817 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5818 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5819 } 5820 5821 /* 5822 * Function to handle asynchronous write errors in the filesystem. 5823 */ 5824 void 5825 softdep_error(func, error) 5826 char *func; 5827 int error; 5828 { 5829 5830 /* XXX should do something better! */ 5831 printf("%s: got error %d while accessing filesystem\n", func, error); 5832 } 5833