xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision b4a58fbf640409a1e507d9f7b411c83a3f83a2f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(oldmnt, flags, td)
100 	struct mount *oldmnt;
101 	int flags;
102 	struct thread *td;
103 {
104 
105 	panic("softdep_flushfiles called");
106 }
107 
108 int
109 softdep_mount(devvp, mp, fs, cred)
110 	struct vnode *devvp;
111 	struct mount *mp;
112 	struct fs *fs;
113 	struct ucred *cred;
114 {
115 
116 	return (0);
117 }
118 
119 void
120 softdep_initialize()
121 {
122 
123 	return;
124 }
125 
126 void
127 softdep_uninitialize()
128 {
129 
130 	return;
131 }
132 
133 void
134 softdep_unmount(mp)
135 	struct mount *mp;
136 {
137 
138 	panic("softdep_unmount called");
139 }
140 
141 void
142 softdep_setup_sbupdate(ump, fs, bp)
143 	struct ufsmount *ump;
144 	struct fs *fs;
145 	struct buf *bp;
146 {
147 
148 	panic("softdep_setup_sbupdate called");
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 }
437 
438 int
439 softdep_journal_lookup(mp, vpp)
440 	struct mount *mp;
441 	struct vnode **vpp;
442 {
443 
444 	return (ENOENT);
445 }
446 
447 void
448 softdep_change_linkcnt(ip)
449 	struct inode *ip;
450 {
451 
452 	panic("softdep_change_linkcnt called");
453 }
454 
455 void
456 softdep_load_inodeblock(ip)
457 	struct inode *ip;
458 {
459 
460 	panic("softdep_load_inodeblock called");
461 }
462 
463 void
464 softdep_update_inodeblock(ip, bp, waitfor)
465 	struct inode *ip;
466 	struct buf *bp;
467 	int waitfor;
468 {
469 
470 	panic("softdep_update_inodeblock called");
471 }
472 
473 int
474 softdep_fsync(vp)
475 	struct vnode *vp;	/* the "in_core" copy of the inode */
476 {
477 
478 	return (0);
479 }
480 
481 void
482 softdep_fsync_mountdev(vp)
483 	struct vnode *vp;
484 {
485 
486 	return;
487 }
488 
489 int
490 softdep_flushworklist(oldmnt, countp, td)
491 	struct mount *oldmnt;
492 	int *countp;
493 	struct thread *td;
494 {
495 
496 	*countp = 0;
497 	return (0);
498 }
499 
500 int
501 softdep_sync_metadata(struct vnode *vp)
502 {
503 
504 	panic("softdep_sync_metadata called");
505 }
506 
507 int
508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
509 {
510 
511 	panic("softdep_sync_buf called");
512 }
513 
514 int
515 softdep_slowdown(vp)
516 	struct vnode *vp;
517 {
518 
519 	panic("softdep_slowdown called");
520 }
521 
522 int
523 softdep_request_cleanup(fs, vp, cred, resource)
524 	struct fs *fs;
525 	struct vnode *vp;
526 	struct ucred *cred;
527 	int resource;
528 {
529 
530 	return (0);
531 }
532 
533 int
534 softdep_check_suspend(struct mount *mp,
535 		      struct vnode *devvp,
536 		      int softdep_depcnt,
537 		      int softdep_accdepcnt,
538 		      int secondary_writes,
539 		      int secondary_accwrites)
540 {
541 	struct bufobj *bo;
542 	int error;
543 
544 	(void) softdep_depcnt,
545 	(void) softdep_accdepcnt;
546 
547 	bo = &devvp->v_bufobj;
548 	ASSERT_BO_WLOCKED(bo);
549 
550 	MNT_ILOCK(mp);
551 	while (mp->mnt_secondary_writes != 0) {
552 		BO_UNLOCK(bo);
553 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
554 		    (PUSER - 1) | PDROP, "secwr", 0);
555 		BO_LOCK(bo);
556 		MNT_ILOCK(mp);
557 	}
558 
559 	/*
560 	 * Reasons for needing more work before suspend:
561 	 * - Dirty buffers on devvp.
562 	 * - Secondary writes occurred after start of vnode sync loop
563 	 */
564 	error = 0;
565 	if (bo->bo_numoutput > 0 ||
566 	    bo->bo_dirty.bv_cnt > 0 ||
567 	    secondary_writes != 0 ||
568 	    mp->mnt_secondary_writes != 0 ||
569 	    secondary_accwrites != mp->mnt_secondary_accwrites)
570 		error = EAGAIN;
571 	BO_UNLOCK(bo);
572 	return (error);
573 }
574 
575 void
576 softdep_get_depcounts(struct mount *mp,
577 		      int *softdepactivep,
578 		      int *softdepactiveaccp)
579 {
580 	(void) mp;
581 	*softdepactivep = 0;
582 	*softdepactiveaccp = 0;
583 }
584 
585 void
586 softdep_buf_append(bp, wkhd)
587 	struct buf *bp;
588 	struct workhead *wkhd;
589 {
590 
591 	panic("softdep_buf_appendwork called");
592 }
593 
594 void
595 softdep_inode_append(ip, cred, wkhd)
596 	struct inode *ip;
597 	struct ucred *cred;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_inode_appendwork called");
602 }
603 
604 void
605 softdep_freework(wkhd)
606 	struct workhead *wkhd;
607 {
608 
609 	panic("softdep_freework called");
610 }
611 
612 int
613 softdep_prerename(fdvp, fvp, tdvp, tvp)
614 	struct vnode *fdvp;
615 	struct vnode *fvp;
616 	struct vnode *tdvp;
617 	struct vnode *tvp;
618 {
619 
620 	panic("softdep_prerename called");
621 }
622 
623 int
624 softdep_prelink(dvp, vp, cnp)
625 	struct vnode *dvp;
626 	struct vnode *vp;
627 	struct componentname *cnp;
628 {
629 
630 	panic("softdep_prelink called");
631 }
632 
633 #else
634 
635 FEATURE(softupdates, "FFS soft-updates support");
636 
637 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
638     "soft updates stats");
639 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
640     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
641     "total dependencies allocated");
642 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
643     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
644     "high use dependencies allocated");
645 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
646     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
647     "current dependencies allocated");
648 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
649     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
650     "current dependencies written");
651 
652 unsigned long dep_current[D_LAST + 1];
653 unsigned long dep_highuse[D_LAST + 1];
654 unsigned long dep_total[D_LAST + 1];
655 unsigned long dep_write[D_LAST + 1];
656 
657 #define	SOFTDEP_TYPE(type, str, long)					\
658     static MALLOC_DEFINE(M_ ## type, #str, long);			\
659     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
660 	&dep_total[D_ ## type], 0, "");					\
661     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
662 	&dep_current[D_ ## type], 0, "");				\
663     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
664 	&dep_highuse[D_ ## type], 0, "");				\
665     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
666 	&dep_write[D_ ## type], 0, "");
667 
668 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
669 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
670 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
671     "Block or frag allocated from cyl group map");
672 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
673 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
674 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
675 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
676 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
677 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
678 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
679 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
680 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
681 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
682 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
683 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
684 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
685 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
686 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
687 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
688 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
689 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
690 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
691 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
692 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
693 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
694 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
695 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
696 
697 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
698 
699 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
700 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
701 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
702 
703 #define M_SOFTDEP_FLAGS	(M_WAITOK)
704 
705 /*
706  * translate from workitem type to memory type
707  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
708  */
709 static struct malloc_type *memtype[] = {
710 	NULL,
711 	M_PAGEDEP,
712 	M_INODEDEP,
713 	M_BMSAFEMAP,
714 	M_NEWBLK,
715 	M_ALLOCDIRECT,
716 	M_INDIRDEP,
717 	M_ALLOCINDIR,
718 	M_FREEFRAG,
719 	M_FREEBLKS,
720 	M_FREEFILE,
721 	M_DIRADD,
722 	M_MKDIR,
723 	M_DIRREM,
724 	M_NEWDIRBLK,
725 	M_FREEWORK,
726 	M_FREEDEP,
727 	M_JADDREF,
728 	M_JREMREF,
729 	M_JMVREF,
730 	M_JNEWBLK,
731 	M_JFREEBLK,
732 	M_JFREEFRAG,
733 	M_JSEG,
734 	M_JSEGDEP,
735 	M_SBDEP,
736 	M_JTRUNC,
737 	M_JFSYNC,
738 	M_SENTINEL
739 };
740 
741 #define DtoM(type) (memtype[type])
742 
743 /*
744  * Names of malloc types.
745  */
746 #define TYPENAME(type)  \
747 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
748 	memtype[type]->ks_shortdesc : "???")
749 /*
750  * End system adaptation definitions.
751  */
752 
753 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
754 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
755 
756 /*
757  * Internal function prototypes.
758  */
759 static	void check_clear_deps(struct mount *);
760 static	void softdep_error(char *, int);
761 static	int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
762 static	int softdep_process_worklist(struct mount *, int);
763 static	int softdep_waitidle(struct mount *, int);
764 static	void drain_output(struct vnode *);
765 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
766 static	int check_inodedep_free(struct inodedep *);
767 static	void clear_remove(struct mount *);
768 static	void clear_inodedeps(struct mount *);
769 static	void unlinked_inodedep(struct mount *, struct inodedep *);
770 static	void clear_unlinked_inodedep(struct inodedep *);
771 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
772 static	int flush_pagedep_deps(struct vnode *, struct mount *,
773 	    struct diraddhd *, struct buf *);
774 static	int free_pagedep(struct pagedep *);
775 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
776 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
777 static	int flush_deplist(struct allocdirectlst *, int, int *);
778 static	int sync_cgs(struct mount *, int);
779 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
780 static	int handle_written_sbdep(struct sbdep *, struct buf *);
781 static	void initiate_write_sbdep(struct sbdep *);
782 static	void diradd_inode_written(struct diradd *, struct inodedep *);
783 static	int handle_written_indirdep(struct indirdep *, struct buf *,
784 	    struct buf**, int);
785 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
786 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
787 	    uint8_t *);
788 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
789 static	void handle_written_jaddref(struct jaddref *);
790 static	void handle_written_jremref(struct jremref *);
791 static	void handle_written_jseg(struct jseg *, struct buf *);
792 static	void handle_written_jnewblk(struct jnewblk *);
793 static	void handle_written_jblkdep(struct jblkdep *);
794 static	void handle_written_jfreefrag(struct jfreefrag *);
795 static	void complete_jseg(struct jseg *);
796 static	void complete_jsegs(struct jseg *);
797 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
798 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
799 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
800 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
801 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
802 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
803 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
804 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
805 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
806 static	inline void inoref_write(struct inoref *, struct jseg *,
807 	    struct jrefrec *);
808 static	void handle_allocdirect_partdone(struct allocdirect *,
809 	    struct workhead *);
810 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
811 	    struct workhead *);
812 static	void indirdep_complete(struct indirdep *);
813 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
814 static	void indirblk_insert(struct freework *);
815 static	void indirblk_remove(struct freework *);
816 static	void handle_allocindir_partdone(struct allocindir *);
817 static	void initiate_write_filepage(struct pagedep *, struct buf *);
818 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
819 static	void handle_written_mkdir(struct mkdir *, int);
820 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
821 	    uint8_t *);
822 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
823 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
824 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
825 static	void handle_workitem_freefile(struct freefile *);
826 static	int handle_workitem_remove(struct dirrem *, int);
827 static	struct dirrem *newdirrem(struct buf *, struct inode *,
828 	    struct inode *, int, struct dirrem **);
829 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
830 	    struct buf *);
831 static	void cancel_indirdep(struct indirdep *, struct buf *,
832 	    struct freeblks *);
833 static	void free_indirdep(struct indirdep *);
834 static	void free_diradd(struct diradd *, struct workhead *);
835 static	void merge_diradd(struct inodedep *, struct diradd *);
836 static	void complete_diradd(struct diradd *);
837 static	struct diradd *diradd_lookup(struct pagedep *, int);
838 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
839 	    struct jremref *);
840 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
841 	    struct jremref *);
842 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
843 	    struct jremref *, struct jremref *);
844 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
845 	    struct jremref *);
846 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
847 	    struct freeblks *, int);
848 static	int setup_trunc_indir(struct freeblks *, struct inode *,
849 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
850 static	void complete_trunc_indir(struct freework *);
851 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
852 	    int);
853 static	void complete_mkdir(struct mkdir *);
854 static	void free_newdirblk(struct newdirblk *);
855 static	void free_jremref(struct jremref *);
856 static	void free_jaddref(struct jaddref *);
857 static	void free_jsegdep(struct jsegdep *);
858 static	void free_jsegs(struct jblocks *);
859 static	void rele_jseg(struct jseg *);
860 static	void free_jseg(struct jseg *, struct jblocks *);
861 static	void free_jnewblk(struct jnewblk *);
862 static	void free_jblkdep(struct jblkdep *);
863 static	void free_jfreefrag(struct jfreefrag *);
864 static	void free_freedep(struct freedep *);
865 static	void journal_jremref(struct dirrem *, struct jremref *,
866 	    struct inodedep *);
867 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
868 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
869 	    struct workhead *);
870 static	void cancel_jfreefrag(struct jfreefrag *);
871 static	inline void setup_freedirect(struct freeblks *, struct inode *,
872 	    int, int);
873 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
874 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
875 	    ufs_lbn_t, int);
876 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
877 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
878 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
879 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
880 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
881 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
882 	    int, int);
883 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
884 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
885 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
886 static	void newblk_freefrag(struct newblk*);
887 static	void free_newblk(struct newblk *);
888 static	void cancel_allocdirect(struct allocdirectlst *,
889 	    struct allocdirect *, struct freeblks *);
890 static	int check_inode_unwritten(struct inodedep *);
891 static	int free_inodedep(struct inodedep *);
892 static	void freework_freeblock(struct freework *, u_long);
893 static	void freework_enqueue(struct freework *);
894 static	int handle_workitem_freeblocks(struct freeblks *, int);
895 static	int handle_complete_freeblocks(struct freeblks *, int);
896 static	void handle_workitem_indirblk(struct freework *);
897 static	void handle_written_freework(struct freework *);
898 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
899 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
900 	    struct workhead *);
901 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
902 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
903 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
904 	    ufs2_daddr_t, ufs_lbn_t);
905 static	void handle_workitem_freefrag(struct freefrag *);
906 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
907 	    ufs_lbn_t, u_long);
908 static	void allocdirect_merge(struct allocdirectlst *,
909 	    struct allocdirect *, struct allocdirect *);
910 static	struct freefrag *allocindir_merge(struct allocindir *,
911 	    struct allocindir *);
912 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
913 	    struct bmsafemap **);
914 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
915 	    int cg, struct bmsafemap *);
916 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
917 	    struct newblk **);
918 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
919 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
920 	    struct inodedep **);
921 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
922 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
923 	    int, struct pagedep **);
924 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
925 	    struct pagedep **);
926 static	void pause_timer(void *);
927 static	int request_cleanup(struct mount *, int);
928 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
929 static	void schedule_cleanup(struct mount *);
930 static void softdep_ast_cleanup_proc(struct thread *);
931 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
932 static	int process_worklist_item(struct mount *, int, int);
933 static	void process_removes(struct vnode *);
934 static	void process_truncates(struct vnode *);
935 static	void jwork_move(struct workhead *, struct workhead *);
936 static	void jwork_insert(struct workhead *, struct jsegdep *);
937 static	void add_to_worklist(struct worklist *, int);
938 static	void wake_worklist(struct worklist *);
939 static	void wait_worklist(struct worklist *, char *);
940 static	void remove_from_worklist(struct worklist *);
941 static	void softdep_flush(void *);
942 static	void softdep_flushjournal(struct mount *);
943 static	int softdep_speedup(struct ufsmount *);
944 static	void worklist_speedup(struct mount *);
945 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
946 static	void journal_unmount(struct ufsmount *);
947 static	int journal_space(struct ufsmount *, int);
948 static	void journal_suspend(struct ufsmount *);
949 static	int journal_unsuspend(struct ufsmount *ump);
950 static	void add_to_journal(struct worklist *);
951 static	void remove_from_journal(struct worklist *);
952 static	bool softdep_excess_items(struct ufsmount *, int);
953 static	void softdep_process_journal(struct mount *, struct worklist *, int);
954 static	struct jremref *newjremref(struct dirrem *, struct inode *,
955 	    struct inode *ip, off_t, nlink_t);
956 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
957 	    uint16_t);
958 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
959 	    uint16_t);
960 static	inline struct jsegdep *inoref_jseg(struct inoref *);
961 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
962 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
963 	    ufs2_daddr_t, int);
964 static	void adjust_newfreework(struct freeblks *, int);
965 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
966 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
967 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
968 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
969 	    ufs2_daddr_t, long, ufs_lbn_t);
970 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
971 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
972 static	int jwait(struct worklist *, int);
973 static	struct inodedep *inodedep_lookup_ip(struct inode *);
974 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
975 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
976 static	void handle_jwork(struct workhead *);
977 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
978 	    struct mkdir **);
979 static	struct jblocks *jblocks_create(void);
980 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
981 static	void jblocks_free(struct jblocks *, struct mount *, int);
982 static	void jblocks_destroy(struct jblocks *);
983 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
984 
985 /*
986  * Exported softdep operations.
987  */
988 static	void softdep_disk_io_initiation(struct buf *);
989 static	void softdep_disk_write_complete(struct buf *);
990 static	void softdep_deallocate_dependencies(struct buf *);
991 static	int softdep_count_dependencies(struct buf *bp, int);
992 
993 /*
994  * Global lock over all of soft updates.
995  */
996 static struct mtx lk;
997 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
998 
999 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
1000 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
1001 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
1002 
1003 /*
1004  * Per-filesystem soft-updates locking.
1005  */
1006 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
1007 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
1008 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
1009 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
1010 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
1011 				    RA_WLOCKED)
1012 
1013 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
1014 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
1015 
1016 /*
1017  * Worklist queue management.
1018  * These routines require that the lock be held.
1019  */
1020 #ifndef /* NOT */ INVARIANTS
1021 #define WORKLIST_INSERT(head, item) do {	\
1022 	(item)->wk_state |= ONWORKLIST;		\
1023 	LIST_INSERT_HEAD(head, item, wk_list);	\
1024 } while (0)
1025 #define WORKLIST_REMOVE(item) do {		\
1026 	(item)->wk_state &= ~ONWORKLIST;	\
1027 	LIST_REMOVE(item, wk_list);		\
1028 } while (0)
1029 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1030 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1031 
1032 #else /* INVARIANTS */
1033 static	void worklist_insert(struct workhead *, struct worklist *, int,
1034 	const char *, int);
1035 static	void worklist_remove(struct worklist *, int, const char *, int);
1036 
1037 #define WORKLIST_INSERT(head, item) \
1038 	worklist_insert(head, item, 1, __func__, __LINE__)
1039 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1040 	worklist_insert(head, item, 0, __func__, __LINE__)
1041 #define WORKLIST_REMOVE(item)\
1042 	worklist_remove(item, 1, __func__, __LINE__)
1043 #define WORKLIST_REMOVE_UNLOCKED(item)\
1044 	worklist_remove(item, 0, __func__, __LINE__)
1045 
1046 static void
1047 worklist_insert(head, item, locked, func, line)
1048 	struct workhead *head;
1049 	struct worklist *item;
1050 	int locked;
1051 	const char *func;
1052 	int line;
1053 {
1054 
1055 	if (locked)
1056 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1057 	if (item->wk_state & ONWORKLIST)
1058 		panic("worklist_insert: %p %s(0x%X) already on list, "
1059 		    "added in function %s at line %d",
1060 		    item, TYPENAME(item->wk_type), item->wk_state,
1061 		    item->wk_func, item->wk_line);
1062 	item->wk_state |= ONWORKLIST;
1063 	item->wk_func = func;
1064 	item->wk_line = line;
1065 	LIST_INSERT_HEAD(head, item, wk_list);
1066 }
1067 
1068 static void
1069 worklist_remove(item, locked, func, line)
1070 	struct worklist *item;
1071 	int locked;
1072 	const char *func;
1073 	int line;
1074 {
1075 
1076 	if (locked)
1077 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1078 	if ((item->wk_state & ONWORKLIST) == 0)
1079 		panic("worklist_remove: %p %s(0x%X) not on list, "
1080 		    "removed in function %s at line %d",
1081 		    item, TYPENAME(item->wk_type), item->wk_state,
1082 		    item->wk_func, item->wk_line);
1083 	item->wk_state &= ~ONWORKLIST;
1084 	item->wk_func = func;
1085 	item->wk_line = line;
1086 	LIST_REMOVE(item, wk_list);
1087 }
1088 #endif /* INVARIANTS */
1089 
1090 /*
1091  * Merge two jsegdeps keeping only the oldest one as newer references
1092  * can't be discarded until after older references.
1093  */
1094 static inline struct jsegdep *
1095 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1096 {
1097 	struct jsegdep *swp;
1098 
1099 	if (two == NULL)
1100 		return (one);
1101 
1102 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1103 		swp = one;
1104 		one = two;
1105 		two = swp;
1106 	}
1107 	WORKLIST_REMOVE(&two->jd_list);
1108 	free_jsegdep(two);
1109 
1110 	return (one);
1111 }
1112 
1113 /*
1114  * If two freedeps are compatible free one to reduce list size.
1115  */
1116 static inline struct freedep *
1117 freedep_merge(struct freedep *one, struct freedep *two)
1118 {
1119 	if (two == NULL)
1120 		return (one);
1121 
1122 	if (one->fd_freework == two->fd_freework) {
1123 		WORKLIST_REMOVE(&two->fd_list);
1124 		free_freedep(two);
1125 	}
1126 	return (one);
1127 }
1128 
1129 /*
1130  * Move journal work from one list to another.  Duplicate freedeps and
1131  * jsegdeps are coalesced to keep the lists as small as possible.
1132  */
1133 static void
1134 jwork_move(dst, src)
1135 	struct workhead *dst;
1136 	struct workhead *src;
1137 {
1138 	struct freedep *freedep;
1139 	struct jsegdep *jsegdep;
1140 	struct worklist *wkn;
1141 	struct worklist *wk;
1142 
1143 	KASSERT(dst != src,
1144 	    ("jwork_move: dst == src"));
1145 	freedep = NULL;
1146 	jsegdep = NULL;
1147 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1148 		if (wk->wk_type == D_JSEGDEP)
1149 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1150 		else if (wk->wk_type == D_FREEDEP)
1151 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1152 	}
1153 
1154 	while ((wk = LIST_FIRST(src)) != NULL) {
1155 		WORKLIST_REMOVE(wk);
1156 		WORKLIST_INSERT(dst, wk);
1157 		if (wk->wk_type == D_JSEGDEP) {
1158 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1159 			continue;
1160 		}
1161 		if (wk->wk_type == D_FREEDEP)
1162 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1163 	}
1164 }
1165 
1166 static void
1167 jwork_insert(dst, jsegdep)
1168 	struct workhead *dst;
1169 	struct jsegdep *jsegdep;
1170 {
1171 	struct jsegdep *jsegdepn;
1172 	struct worklist *wk;
1173 
1174 	LIST_FOREACH(wk, dst, wk_list)
1175 		if (wk->wk_type == D_JSEGDEP)
1176 			break;
1177 	if (wk == NULL) {
1178 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1179 		return;
1180 	}
1181 	jsegdepn = WK_JSEGDEP(wk);
1182 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1183 		WORKLIST_REMOVE(wk);
1184 		free_jsegdep(jsegdepn);
1185 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1186 	} else
1187 		free_jsegdep(jsegdep);
1188 }
1189 
1190 /*
1191  * Routines for tracking and managing workitems.
1192  */
1193 static	void workitem_free(struct worklist *, int);
1194 static	void workitem_alloc(struct worklist *, int, struct mount *);
1195 static	void workitem_reassign(struct worklist *, int);
1196 
1197 #define	WORKITEM_FREE(item, type) \
1198 	workitem_free((struct worklist *)(item), (type))
1199 #define	WORKITEM_REASSIGN(item, type) \
1200 	workitem_reassign((struct worklist *)(item), (type))
1201 
1202 static void
1203 workitem_free(item, type)
1204 	struct worklist *item;
1205 	int type;
1206 {
1207 	struct ufsmount *ump;
1208 
1209 #ifdef INVARIANTS
1210 	if (item->wk_state & ONWORKLIST)
1211 		panic("workitem_free: %s(0x%X) still on list, "
1212 		    "added in function %s at line %d",
1213 		    TYPENAME(item->wk_type), item->wk_state,
1214 		    item->wk_func, item->wk_line);
1215 	if (item->wk_type != type && type != D_NEWBLK)
1216 		panic("workitem_free: type mismatch %s != %s",
1217 		    TYPENAME(item->wk_type), TYPENAME(type));
1218 #endif
1219 	if (item->wk_state & IOWAITING)
1220 		wakeup(item);
1221 	ump = VFSTOUFS(item->wk_mp);
1222 	LOCK_OWNED(ump);
1223 	KASSERT(ump->softdep_deps > 0,
1224 	    ("workitem_free: %s: softdep_deps going negative",
1225 	    ump->um_fs->fs_fsmnt));
1226 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1227 		wakeup(&ump->softdep_deps);
1228 	KASSERT(dep_current[item->wk_type] > 0,
1229 	    ("workitem_free: %s: dep_current[%s] going negative",
1230 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1231 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1232 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1233 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1234 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1235 	ump->softdep_curdeps[item->wk_type] -= 1;
1236 	LIST_REMOVE(item, wk_all);
1237 	free(item, DtoM(type));
1238 }
1239 
1240 static void
1241 workitem_alloc(item, type, mp)
1242 	struct worklist *item;
1243 	int type;
1244 	struct mount *mp;
1245 {
1246 	struct ufsmount *ump;
1247 
1248 	item->wk_type = type;
1249 	item->wk_mp = mp;
1250 	item->wk_state = 0;
1251 
1252 	ump = VFSTOUFS(mp);
1253 	ACQUIRE_GBLLOCK(&lk);
1254 	dep_current[type]++;
1255 	if (dep_current[type] > dep_highuse[type])
1256 		dep_highuse[type] = dep_current[type];
1257 	dep_total[type]++;
1258 	FREE_GBLLOCK(&lk);
1259 	ACQUIRE_LOCK(ump);
1260 	ump->softdep_curdeps[type] += 1;
1261 	ump->softdep_deps++;
1262 	ump->softdep_accdeps++;
1263 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1264 	FREE_LOCK(ump);
1265 }
1266 
1267 static void
1268 workitem_reassign(item, newtype)
1269 	struct worklist *item;
1270 	int newtype;
1271 {
1272 	struct ufsmount *ump;
1273 
1274 	ump = VFSTOUFS(item->wk_mp);
1275 	LOCK_OWNED(ump);
1276 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1277 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1278 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1279 	ump->softdep_curdeps[item->wk_type] -= 1;
1280 	ump->softdep_curdeps[newtype] += 1;
1281 	KASSERT(dep_current[item->wk_type] > 0,
1282 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1283 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1284 	ACQUIRE_GBLLOCK(&lk);
1285 	dep_current[newtype]++;
1286 	dep_current[item->wk_type]--;
1287 	if (dep_current[newtype] > dep_highuse[newtype])
1288 		dep_highuse[newtype] = dep_current[newtype];
1289 	dep_total[newtype]++;
1290 	FREE_GBLLOCK(&lk);
1291 	item->wk_type = newtype;
1292 	LIST_REMOVE(item, wk_all);
1293 	LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all);
1294 }
1295 
1296 /*
1297  * Workitem queue management
1298  */
1299 static int max_softdeps;	/* maximum number of structs before slowdown */
1300 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1301 static int proc_waiting;	/* tracks whether we have a timeout posted */
1302 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1303 static struct callout softdep_callout;
1304 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1305 static int req_clear_remove;	/* syncer process flush some freeblks */
1306 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1307 
1308 /*
1309  * runtime statistics
1310  */
1311 static int stat_flush_threads;	/* number of softdep flushing threads */
1312 static int stat_worklist_push;	/* number of worklist cleanups */
1313 static int stat_delayed_inact;	/* number of delayed inactivation cleanups */
1314 static int stat_blk_limit_push;	/* number of times block limit neared */
1315 static int stat_ino_limit_push;	/* number of times inode limit neared */
1316 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1317 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1318 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1319 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1320 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1321 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1322 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1323 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1324 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1325 static int stat_journal_min;	/* Times hit journal min threshold */
1326 static int stat_journal_low;	/* Times hit journal low threshold */
1327 static int stat_journal_wait;	/* Times blocked in jwait(). */
1328 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1329 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1330 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1331 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1332 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1333 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1334 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1335 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1336 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1337 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1338 
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1340     &max_softdeps, 0, "");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1342     &tickdelay, 0, "");
1343 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1344     &stat_flush_threads, 0, "");
1345 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1346     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1347 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1348     &stat_delayed_inact, 0, "");
1349 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1350     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1352     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1353 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1354     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1355 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1356     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1357 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1358     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1359 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1360     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1361 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1362     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1363 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1364     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1365 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1366     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1367 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1368     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1369 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1370     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1371 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1372     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1373 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1374     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1375 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1376     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1377 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1378     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1379 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1380     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1381 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1382     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1383 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1384     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1385 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1386     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1387 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1388     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1389 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1390     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1391 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1392     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1393 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1394     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1395 
1396 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1397     &softdep_flushcache, 0, "");
1398 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1399     &stat_emptyjblocks, 0, "");
1400 
1401 SYSCTL_DECL(_vfs_ffs);
1402 
1403 /* Whether to recompute the summary at mount time */
1404 static int compute_summary_at_mount = 0;
1405 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1406 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1407 static int print_threads = 0;
1408 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1409     &print_threads, 0, "Notify flusher thread start/stop");
1410 
1411 /* List of all filesystems mounted with soft updates */
1412 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1413 
1414 static void
1415 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp,
1416     struct diraddhd *diraddhdp, struct diraddhd *unfinishedp)
1417 {
1418 	struct diradd *dap;
1419 
1420 	/*
1421 	 * Requeue unfinished dependencies before
1422 	 * unlocking buffer, which could make
1423 	 * diraddhdp invalid.
1424 	 */
1425 	ACQUIRE_LOCK(VFSTOUFS(mp));
1426 	while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1427 		LIST_REMOVE(dap, da_pdlist);
1428 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1429 	}
1430 	FREE_LOCK(VFSTOUFS(mp));
1431 
1432 	bp->b_vflags &= ~BV_SCANNED;
1433 	BUF_NOREC(bp);
1434 	BUF_UNLOCK(bp);
1435 }
1436 
1437 /*
1438  * This function fetches inode inum on mount point mp.  We already
1439  * hold a locked vnode vp, and might have a locked buffer bp belonging
1440  * to vp.
1441 
1442  * We must not block on acquiring the new inode lock as we will get
1443  * into a lock-order reversal with the buffer lock and possibly get a
1444  * deadlock.  Thus if we cannot instantiate the requested vnode
1445  * without sleeping on its lock, we must unlock the vnode and the
1446  * buffer before doing a blocking on the vnode lock.  We return
1447  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
1448  * that the caller can reassess its state.
1449  *
1450  * Top-level VFS code (for syscalls and other consumers, e.g. callers
1451  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1452  * point.
1453  *
1454  * Since callers expect to operate on fully constructed vnode, we also
1455  * recheck v_data after relock, and return ENOENT if NULL.
1456  *
1457  * If unlocking bp, we must unroll dequeueing its unfinished
1458  * dependencies, and clear scan flag, before unlocking.  If unlocking
1459  * vp while it is under deactivation, we re-queue deactivation.
1460  */
1461 static int
1462 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp,
1463     struct diraddhd *diraddhdp, struct diraddhd *unfinishedp,
1464     struct vnode **rvp)
1465 {
1466 	struct vnode *pvp;
1467 	int error;
1468 	bool bplocked;
1469 
1470 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1471 	for (bplocked = true, pvp = NULL;;) {
1472 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1473 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1474 		if (error == 0) {
1475 			/*
1476 			 * Since we could have unlocked vp, the inode
1477 			 * number could no longer indicate a
1478 			 * constructed node.  In this case, we must
1479 			 * restart the syscall.
1480 			 */
1481 			if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1482 				if (bp != NULL && bplocked)
1483 					get_parent_vp_unlock_bp(mp, bp,
1484 					    diraddhdp, unfinishedp);
1485 				if (VTOI(pvp)->i_mode == 0)
1486 					vgone(pvp);
1487 				error = ERELOOKUP;
1488 				goto out2;
1489 			}
1490 			goto out1;
1491 		}
1492 		if (bp != NULL && bplocked) {
1493 			get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1494 			bplocked = false;
1495 		}
1496 
1497 		/*
1498 		 * Do not drop vnode lock while inactivating during
1499 		 * vunref.  This would result in leaks of the VI flags
1500 		 * and reclaiming of non-truncated vnode.  Instead,
1501 		 * re-schedule inactivation hoping that we would be
1502 		 * able to sync inode later.
1503 		 */
1504 		if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1505 		    (vp->v_vflag & VV_UNREF) != 0) {
1506 			VI_LOCK(vp);
1507 			vp->v_iflag |= VI_OWEINACT;
1508 			VI_UNLOCK(vp);
1509 			return (ERELOOKUP);
1510 		}
1511 
1512 		VOP_UNLOCK(vp);
1513 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1514 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1515 		if (error != 0) {
1516 			MPASS(error != ERELOOKUP);
1517 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1518 			break;
1519 		}
1520 		if (VTOI(pvp)->i_mode == 0) {
1521 			vgone(pvp);
1522 			vput(pvp);
1523 			pvp = NULL;
1524 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1525 			error = ERELOOKUP;
1526 			break;
1527 		}
1528 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1529 		if (error == 0)
1530 			break;
1531 		vput(pvp);
1532 		pvp = NULL;
1533 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1534 		if (vp->v_data == NULL) {
1535 			error = ENOENT;
1536 			break;
1537 		}
1538 	}
1539 	if (bp != NULL) {
1540 		MPASS(!bplocked);
1541 		error = ERELOOKUP;
1542 	}
1543 out2:
1544 	if (error != 0 && pvp != NULL) {
1545 		vput(pvp);
1546 		pvp = NULL;
1547 	}
1548 out1:
1549 	*rvp = pvp;
1550 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1551 	return (error);
1552 }
1553 
1554 /*
1555  * This function cleans the worklist for a filesystem.
1556  * Each filesystem running with soft dependencies gets its own
1557  * thread to run in this function. The thread is started up in
1558  * softdep_mount and shutdown in softdep_unmount. They show up
1559  * as part of the kernel "bufdaemon" process whose process
1560  * entry is available in bufdaemonproc.
1561  */
1562 static int searchfailed;
1563 extern struct proc *bufdaemonproc;
1564 static void
1565 softdep_flush(addr)
1566 	void *addr;
1567 {
1568 	struct mount *mp;
1569 	struct thread *td;
1570 	struct ufsmount *ump;
1571 	int cleanups;
1572 
1573 	td = curthread;
1574 	td->td_pflags |= TDP_NORUNNINGBUF;
1575 	mp = (struct mount *)addr;
1576 	ump = VFSTOUFS(mp);
1577 	atomic_add_int(&stat_flush_threads, 1);
1578 	ACQUIRE_LOCK(ump);
1579 	ump->softdep_flags &= ~FLUSH_STARTING;
1580 	wakeup(&ump->softdep_flushtd);
1581 	FREE_LOCK(ump);
1582 	if (print_threads) {
1583 		if (stat_flush_threads == 1)
1584 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1585 			    bufdaemonproc->p_pid);
1586 		printf("Start thread %s\n", td->td_name);
1587 	}
1588 	for (;;) {
1589 		while (softdep_process_worklist(mp, 0) > 0 ||
1590 		    (MOUNTEDSUJ(mp) &&
1591 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1592 			kthread_suspend_check();
1593 		ACQUIRE_LOCK(ump);
1594 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1595 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1596 			    "sdflush", hz / 2);
1597 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1598 		/*
1599 		 * Check to see if we are done and need to exit.
1600 		 */
1601 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1602 			FREE_LOCK(ump);
1603 			continue;
1604 		}
1605 		ump->softdep_flags &= ~FLUSH_EXIT;
1606 		cleanups = ump->um_softdep->sd_cleanups;
1607 		FREE_LOCK(ump);
1608 		wakeup(&ump->softdep_flags);
1609 		if (print_threads) {
1610 			printf("Stop thread %s: searchfailed %d, "
1611 			    "did cleanups %d\n",
1612 			    td->td_name, searchfailed, cleanups);
1613 		}
1614 		atomic_subtract_int(&stat_flush_threads, 1);
1615 		kthread_exit();
1616 		panic("kthread_exit failed\n");
1617 	}
1618 }
1619 
1620 static void
1621 worklist_speedup(mp)
1622 	struct mount *mp;
1623 {
1624 	struct ufsmount *ump;
1625 
1626 	ump = VFSTOUFS(mp);
1627 	LOCK_OWNED(ump);
1628 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1629 		ump->softdep_flags |= FLUSH_CLEANUP;
1630 	wakeup(&ump->softdep_flushtd);
1631 }
1632 
1633 static void
1634 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags)
1635 {
1636 	struct buf *bp;
1637 
1638 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1639 		return;
1640 
1641 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1642 	bp->b_iocmd = BIO_SPEEDUP;
1643 	bp->b_ioflags = flags;
1644 	bp->b_bcount = omin(shortage, LONG_MAX);
1645 	g_vfs_strategy(ump->um_bo, bp);
1646 	bufwait(bp);
1647 	free(bp, M_TRIM);
1648 }
1649 
1650 static int
1651 softdep_speedup(ump)
1652 	struct ufsmount *ump;
1653 {
1654 	struct ufsmount *altump;
1655 	struct mount_softdeps *sdp;
1656 
1657 	LOCK_OWNED(ump);
1658 	worklist_speedup(ump->um_mountp);
1659 	bd_speedup();
1660 	/*
1661 	 * If we have global shortages, then we need other
1662 	 * filesystems to help with the cleanup. Here we wakeup a
1663 	 * flusher thread for a filesystem that is over its fair
1664 	 * share of resources.
1665 	 */
1666 	if (req_clear_inodedeps || req_clear_remove) {
1667 		ACQUIRE_GBLLOCK(&lk);
1668 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1669 			if ((altump = sdp->sd_ump) == ump)
1670 				continue;
1671 			if (((req_clear_inodedeps &&
1672 			    altump->softdep_curdeps[D_INODEDEP] >
1673 			    max_softdeps / stat_flush_threads) ||
1674 			    (req_clear_remove &&
1675 			    altump->softdep_curdeps[D_DIRREM] >
1676 			    (max_softdeps / 2) / stat_flush_threads)) &&
1677 			    TRY_ACQUIRE_LOCK(altump))
1678 				break;
1679 		}
1680 		if (sdp == NULL) {
1681 			searchfailed++;
1682 			FREE_GBLLOCK(&lk);
1683 		} else {
1684 			/*
1685 			 * Move to the end of the list so we pick a
1686 			 * different one on out next try.
1687 			 */
1688 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1689 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1690 			FREE_GBLLOCK(&lk);
1691 			if ((altump->softdep_flags &
1692 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1693 				altump->softdep_flags |= FLUSH_CLEANUP;
1694 			altump->um_softdep->sd_cleanups++;
1695 			wakeup(&altump->softdep_flushtd);
1696 			FREE_LOCK(altump);
1697 		}
1698 	}
1699 	return (speedup_syncer());
1700 }
1701 
1702 /*
1703  * Add an item to the end of the work queue.
1704  * This routine requires that the lock be held.
1705  * This is the only routine that adds items to the list.
1706  * The following routine is the only one that removes items
1707  * and does so in order from first to last.
1708  */
1709 
1710 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1711 #define	WK_NODELAY	0x0002	/* Process immediately. */
1712 
1713 static void
1714 add_to_worklist(wk, flags)
1715 	struct worklist *wk;
1716 	int flags;
1717 {
1718 	struct ufsmount *ump;
1719 
1720 	ump = VFSTOUFS(wk->wk_mp);
1721 	LOCK_OWNED(ump);
1722 	if (wk->wk_state & ONWORKLIST)
1723 		panic("add_to_worklist: %s(0x%X) already on list",
1724 		    TYPENAME(wk->wk_type), wk->wk_state);
1725 	wk->wk_state |= ONWORKLIST;
1726 	if (ump->softdep_on_worklist == 0) {
1727 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1728 		ump->softdep_worklist_tail = wk;
1729 	} else if (flags & WK_HEAD) {
1730 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1731 	} else {
1732 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1733 		ump->softdep_worklist_tail = wk;
1734 	}
1735 	ump->softdep_on_worklist += 1;
1736 	if (flags & WK_NODELAY)
1737 		worklist_speedup(wk->wk_mp);
1738 }
1739 
1740 /*
1741  * Remove the item to be processed. If we are removing the last
1742  * item on the list, we need to recalculate the tail pointer.
1743  */
1744 static void
1745 remove_from_worklist(wk)
1746 	struct worklist *wk;
1747 {
1748 	struct ufsmount *ump;
1749 
1750 	ump = VFSTOUFS(wk->wk_mp);
1751 	if (ump->softdep_worklist_tail == wk)
1752 		ump->softdep_worklist_tail =
1753 		    (struct worklist *)wk->wk_list.le_prev;
1754 	WORKLIST_REMOVE(wk);
1755 	ump->softdep_on_worklist -= 1;
1756 }
1757 
1758 static void
1759 wake_worklist(wk)
1760 	struct worklist *wk;
1761 {
1762 	if (wk->wk_state & IOWAITING) {
1763 		wk->wk_state &= ~IOWAITING;
1764 		wakeup(wk);
1765 	}
1766 }
1767 
1768 static void
1769 wait_worklist(wk, wmesg)
1770 	struct worklist *wk;
1771 	char *wmesg;
1772 {
1773 	struct ufsmount *ump;
1774 
1775 	ump = VFSTOUFS(wk->wk_mp);
1776 	wk->wk_state |= IOWAITING;
1777 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1778 }
1779 
1780 /*
1781  * Process that runs once per second to handle items in the background queue.
1782  *
1783  * Note that we ensure that everything is done in the order in which they
1784  * appear in the queue. The code below depends on this property to ensure
1785  * that blocks of a file are freed before the inode itself is freed. This
1786  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1787  * until all the old ones have been purged from the dependency lists.
1788  */
1789 static int
1790 softdep_process_worklist(mp, full)
1791 	struct mount *mp;
1792 	int full;
1793 {
1794 	int cnt, matchcnt;
1795 	struct ufsmount *ump;
1796 	long starttime;
1797 
1798 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1799 	ump = VFSTOUFS(mp);
1800 	if (ump->um_softdep == NULL)
1801 		return (0);
1802 	matchcnt = 0;
1803 	ACQUIRE_LOCK(ump);
1804 	starttime = time_second;
1805 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1806 	check_clear_deps(mp);
1807 	while (ump->softdep_on_worklist > 0) {
1808 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1809 			break;
1810 		else
1811 			matchcnt += cnt;
1812 		check_clear_deps(mp);
1813 		/*
1814 		 * We do not generally want to stop for buffer space, but if
1815 		 * we are really being a buffer hog, we will stop and wait.
1816 		 */
1817 		if (should_yield()) {
1818 			FREE_LOCK(ump);
1819 			kern_yield(PRI_USER);
1820 			bwillwrite();
1821 			ACQUIRE_LOCK(ump);
1822 		}
1823 		/*
1824 		 * Never allow processing to run for more than one
1825 		 * second. This gives the syncer thread the opportunity
1826 		 * to pause if appropriate.
1827 		 */
1828 		if (!full && starttime != time_second)
1829 			break;
1830 	}
1831 	if (full == 0)
1832 		journal_unsuspend(ump);
1833 	FREE_LOCK(ump);
1834 	return (matchcnt);
1835 }
1836 
1837 /*
1838  * Process all removes associated with a vnode if we are running out of
1839  * journal space.  Any other process which attempts to flush these will
1840  * be unable as we have the vnodes locked.
1841  */
1842 static void
1843 process_removes(vp)
1844 	struct vnode *vp;
1845 {
1846 	struct inodedep *inodedep;
1847 	struct dirrem *dirrem;
1848 	struct ufsmount *ump;
1849 	struct mount *mp;
1850 	ino_t inum;
1851 
1852 	mp = vp->v_mount;
1853 	ump = VFSTOUFS(mp);
1854 	LOCK_OWNED(ump);
1855 	inum = VTOI(vp)->i_number;
1856 	for (;;) {
1857 top:
1858 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1859 			return;
1860 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1861 			/*
1862 			 * If another thread is trying to lock this vnode
1863 			 * it will fail but we must wait for it to do so
1864 			 * before we can proceed.
1865 			 */
1866 			if (dirrem->dm_state & INPROGRESS) {
1867 				wait_worklist(&dirrem->dm_list, "pwrwait");
1868 				goto top;
1869 			}
1870 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1871 			    (COMPLETE | ONWORKLIST))
1872 				break;
1873 		}
1874 		if (dirrem == NULL)
1875 			return;
1876 		remove_from_worklist(&dirrem->dm_list);
1877 		FREE_LOCK(ump);
1878 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1879 			panic("process_removes: suspended filesystem");
1880 		handle_workitem_remove(dirrem, 0);
1881 		vn_finished_secondary_write(mp);
1882 		ACQUIRE_LOCK(ump);
1883 	}
1884 }
1885 
1886 /*
1887  * Process all truncations associated with a vnode if we are running out
1888  * of journal space.  This is called when the vnode lock is already held
1889  * and no other process can clear the truncation.  This function returns
1890  * a value greater than zero if it did any work.
1891  */
1892 static void
1893 process_truncates(vp)
1894 	struct vnode *vp;
1895 {
1896 	struct inodedep *inodedep;
1897 	struct freeblks *freeblks;
1898 	struct ufsmount *ump;
1899 	struct mount *mp;
1900 	ino_t inum;
1901 	int cgwait;
1902 
1903 	mp = vp->v_mount;
1904 	ump = VFSTOUFS(mp);
1905 	LOCK_OWNED(ump);
1906 	inum = VTOI(vp)->i_number;
1907 	for (;;) {
1908 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1909 			return;
1910 		cgwait = 0;
1911 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1912 			/* Journal entries not yet written.  */
1913 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1914 				jwait(&LIST_FIRST(
1915 				    &freeblks->fb_jblkdephd)->jb_list,
1916 				    MNT_WAIT);
1917 				break;
1918 			}
1919 			/* Another thread is executing this item. */
1920 			if (freeblks->fb_state & INPROGRESS) {
1921 				wait_worklist(&freeblks->fb_list, "ptrwait");
1922 				break;
1923 			}
1924 			/* Freeblks is waiting on a inode write. */
1925 			if ((freeblks->fb_state & COMPLETE) == 0) {
1926 				FREE_LOCK(ump);
1927 				ffs_update(vp, 1);
1928 				ACQUIRE_LOCK(ump);
1929 				break;
1930 			}
1931 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1932 			    (ALLCOMPLETE | ONWORKLIST)) {
1933 				remove_from_worklist(&freeblks->fb_list);
1934 				freeblks->fb_state |= INPROGRESS;
1935 				FREE_LOCK(ump);
1936 				if (vn_start_secondary_write(NULL, &mp,
1937 				    V_NOWAIT))
1938 					panic("process_truncates: "
1939 					    "suspended filesystem");
1940 				handle_workitem_freeblocks(freeblks, 0);
1941 				vn_finished_secondary_write(mp);
1942 				ACQUIRE_LOCK(ump);
1943 				break;
1944 			}
1945 			if (freeblks->fb_cgwait)
1946 				cgwait++;
1947 		}
1948 		if (cgwait) {
1949 			FREE_LOCK(ump);
1950 			sync_cgs(mp, MNT_WAIT);
1951 			ffs_sync_snap(mp, MNT_WAIT);
1952 			ACQUIRE_LOCK(ump);
1953 			continue;
1954 		}
1955 		if (freeblks == NULL)
1956 			break;
1957 	}
1958 	return;
1959 }
1960 
1961 /*
1962  * Process one item on the worklist.
1963  */
1964 static int
1965 process_worklist_item(mp, target, flags)
1966 	struct mount *mp;
1967 	int target;
1968 	int flags;
1969 {
1970 	struct worklist sentinel;
1971 	struct worklist *wk;
1972 	struct ufsmount *ump;
1973 	int matchcnt;
1974 	int error;
1975 
1976 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1977 	/*
1978 	 * If we are being called because of a process doing a
1979 	 * copy-on-write, then it is not safe to write as we may
1980 	 * recurse into the copy-on-write routine.
1981 	 */
1982 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1983 		return (-1);
1984 	PHOLD(curproc);	/* Don't let the stack go away. */
1985 	ump = VFSTOUFS(mp);
1986 	LOCK_OWNED(ump);
1987 	matchcnt = 0;
1988 	sentinel.wk_mp = NULL;
1989 	sentinel.wk_type = D_SENTINEL;
1990 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1991 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1992 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1993 		if (wk->wk_type == D_SENTINEL) {
1994 			LIST_REMOVE(&sentinel, wk_list);
1995 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1996 			continue;
1997 		}
1998 		if (wk->wk_state & INPROGRESS)
1999 			panic("process_worklist_item: %p already in progress.",
2000 			    wk);
2001 		wk->wk_state |= INPROGRESS;
2002 		remove_from_worklist(wk);
2003 		FREE_LOCK(ump);
2004 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
2005 			panic("process_worklist_item: suspended filesystem");
2006 		switch (wk->wk_type) {
2007 		case D_DIRREM:
2008 			/* removal of a directory entry */
2009 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
2010 			break;
2011 
2012 		case D_FREEBLKS:
2013 			/* releasing blocks and/or fragments from a file */
2014 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
2015 			    flags);
2016 			break;
2017 
2018 		case D_FREEFRAG:
2019 			/* releasing a fragment when replaced as a file grows */
2020 			handle_workitem_freefrag(WK_FREEFRAG(wk));
2021 			error = 0;
2022 			break;
2023 
2024 		case D_FREEFILE:
2025 			/* releasing an inode when its link count drops to 0 */
2026 			handle_workitem_freefile(WK_FREEFILE(wk));
2027 			error = 0;
2028 			break;
2029 
2030 		default:
2031 			panic("%s_process_worklist: Unknown type %s",
2032 			    "softdep", TYPENAME(wk->wk_type));
2033 			/* NOTREACHED */
2034 		}
2035 		vn_finished_secondary_write(mp);
2036 		ACQUIRE_LOCK(ump);
2037 		if (error == 0) {
2038 			if (++matchcnt == target)
2039 				break;
2040 			continue;
2041 		}
2042 		/*
2043 		 * We have to retry the worklist item later.  Wake up any
2044 		 * waiters who may be able to complete it immediately and
2045 		 * add the item back to the head so we don't try to execute
2046 		 * it again.
2047 		 */
2048 		wk->wk_state &= ~INPROGRESS;
2049 		wake_worklist(wk);
2050 		add_to_worklist(wk, WK_HEAD);
2051 	}
2052 	/* Sentinal could've become the tail from remove_from_worklist. */
2053 	if (ump->softdep_worklist_tail == &sentinel)
2054 		ump->softdep_worklist_tail =
2055 		    (struct worklist *)sentinel.wk_list.le_prev;
2056 	LIST_REMOVE(&sentinel, wk_list);
2057 	PRELE(curproc);
2058 	return (matchcnt);
2059 }
2060 
2061 /*
2062  * Move dependencies from one buffer to another.
2063  */
2064 int
2065 softdep_move_dependencies(oldbp, newbp)
2066 	struct buf *oldbp;
2067 	struct buf *newbp;
2068 {
2069 	struct worklist *wk, *wktail;
2070 	struct ufsmount *ump;
2071 	int dirty;
2072 
2073 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
2074 		return (0);
2075 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
2076 	    ("softdep_move_dependencies called on non-softdep filesystem"));
2077 	dirty = 0;
2078 	wktail = NULL;
2079 	ump = VFSTOUFS(wk->wk_mp);
2080 	ACQUIRE_LOCK(ump);
2081 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2082 		LIST_REMOVE(wk, wk_list);
2083 		if (wk->wk_type == D_BMSAFEMAP &&
2084 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2085 			dirty = 1;
2086 		if (wktail == NULL)
2087 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2088 		else
2089 			LIST_INSERT_AFTER(wktail, wk, wk_list);
2090 		wktail = wk;
2091 	}
2092 	FREE_LOCK(ump);
2093 
2094 	return (dirty);
2095 }
2096 
2097 /*
2098  * Purge the work list of all items associated with a particular mount point.
2099  */
2100 int
2101 softdep_flushworklist(oldmnt, countp, td)
2102 	struct mount *oldmnt;
2103 	int *countp;
2104 	struct thread *td;
2105 {
2106 	struct vnode *devvp;
2107 	struct ufsmount *ump;
2108 	int count, error;
2109 
2110 	/*
2111 	 * Alternately flush the block device associated with the mount
2112 	 * point and process any dependencies that the flushing
2113 	 * creates. We continue until no more worklist dependencies
2114 	 * are found.
2115 	 */
2116 	*countp = 0;
2117 	error = 0;
2118 	ump = VFSTOUFS(oldmnt);
2119 	devvp = ump->um_devvp;
2120 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2121 		*countp += count;
2122 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2123 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2124 		VOP_UNLOCK(devvp);
2125 		if (error != 0)
2126 			break;
2127 	}
2128 	return (error);
2129 }
2130 
2131 #define	SU_WAITIDLE_RETRIES	20
2132 static int
2133 softdep_waitidle(struct mount *mp, int flags __unused)
2134 {
2135 	struct ufsmount *ump;
2136 	struct vnode *devvp;
2137 	struct thread *td;
2138 	int error, i;
2139 
2140 	ump = VFSTOUFS(mp);
2141 	KASSERT(ump->um_softdep != NULL,
2142 	    ("softdep_waitidle called on non-softdep filesystem"));
2143 	devvp = ump->um_devvp;
2144 	td = curthread;
2145 	error = 0;
2146 	ACQUIRE_LOCK(ump);
2147 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2148 		ump->softdep_req = 1;
2149 		KASSERT((flags & FORCECLOSE) == 0 ||
2150 		    ump->softdep_on_worklist == 0,
2151 		    ("softdep_waitidle: work added after flush"));
2152 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2153 		    "softdeps", 10 * hz);
2154 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2155 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2156 		VOP_UNLOCK(devvp);
2157 		ACQUIRE_LOCK(ump);
2158 		if (error != 0)
2159 			break;
2160 	}
2161 	ump->softdep_req = 0;
2162 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2163 		error = EBUSY;
2164 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
2165 		    mp);
2166 	}
2167 	FREE_LOCK(ump);
2168 	return (error);
2169 }
2170 
2171 /*
2172  * Flush all vnodes and worklist items associated with a specified mount point.
2173  */
2174 int
2175 softdep_flushfiles(oldmnt, flags, td)
2176 	struct mount *oldmnt;
2177 	int flags;
2178 	struct thread *td;
2179 {
2180 	struct ufsmount *ump;
2181 #ifdef QUOTA
2182 	int i;
2183 #endif
2184 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2185 	int morework;
2186 
2187 	ump = VFSTOUFS(oldmnt);
2188 	KASSERT(ump->um_softdep != NULL,
2189 	    ("softdep_flushfiles called on non-softdep filesystem"));
2190 	loopcnt = 10;
2191 	retry_flush_count = 3;
2192 retry_flush:
2193 	error = 0;
2194 
2195 	/*
2196 	 * Alternately flush the vnodes associated with the mount
2197 	 * point and process any dependencies that the flushing
2198 	 * creates. In theory, this loop can happen at most twice,
2199 	 * but we give it a few extra just to be sure.
2200 	 */
2201 	for (; loopcnt > 0; loopcnt--) {
2202 		/*
2203 		 * Do another flush in case any vnodes were brought in
2204 		 * as part of the cleanup operations.
2205 		 */
2206 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2207 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2208 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2209 			break;
2210 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2211 		    depcount == 0)
2212 			break;
2213 	}
2214 	/*
2215 	 * If we are unmounting then it is an error to fail. If we
2216 	 * are simply trying to downgrade to read-only, then filesystem
2217 	 * activity can keep us busy forever, so we just fail with EBUSY.
2218 	 */
2219 	if (loopcnt == 0) {
2220 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2221 			panic("softdep_flushfiles: looping");
2222 		error = EBUSY;
2223 	}
2224 	if (!error)
2225 		error = softdep_waitidle(oldmnt, flags);
2226 	if (!error) {
2227 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2228 			retry = 0;
2229 			MNT_ILOCK(oldmnt);
2230 			morework = oldmnt->mnt_nvnodelistsize > 0;
2231 #ifdef QUOTA
2232 			UFS_LOCK(ump);
2233 			for (i = 0; i < MAXQUOTAS; i++) {
2234 				if (ump->um_quotas[i] != NULLVP)
2235 					morework = 1;
2236 			}
2237 			UFS_UNLOCK(ump);
2238 #endif
2239 			if (morework) {
2240 				if (--retry_flush_count > 0) {
2241 					retry = 1;
2242 					loopcnt = 3;
2243 				} else
2244 					error = EBUSY;
2245 			}
2246 			MNT_IUNLOCK(oldmnt);
2247 			if (retry)
2248 				goto retry_flush;
2249 		}
2250 	}
2251 	return (error);
2252 }
2253 
2254 /*
2255  * Structure hashing.
2256  *
2257  * There are four types of structures that can be looked up:
2258  *	1) pagedep structures identified by mount point, inode number,
2259  *	   and logical block.
2260  *	2) inodedep structures identified by mount point and inode number.
2261  *	3) newblk structures identified by mount point and
2262  *	   physical block number.
2263  *	4) bmsafemap structures identified by mount point and
2264  *	   cylinder group number.
2265  *
2266  * The "pagedep" and "inodedep" dependency structures are hashed
2267  * separately from the file blocks and inodes to which they correspond.
2268  * This separation helps when the in-memory copy of an inode or
2269  * file block must be replaced. It also obviates the need to access
2270  * an inode or file page when simply updating (or de-allocating)
2271  * dependency structures. Lookup of newblk structures is needed to
2272  * find newly allocated blocks when trying to associate them with
2273  * their allocdirect or allocindir structure.
2274  *
2275  * The lookup routines optionally create and hash a new instance when
2276  * an existing entry is not found. The bmsafemap lookup routine always
2277  * allocates a new structure if an existing one is not found.
2278  */
2279 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2280 
2281 /*
2282  * Structures and routines associated with pagedep caching.
2283  */
2284 #define	PAGEDEP_HASH(ump, inum, lbn) \
2285 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2286 
2287 static int
2288 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2289 	struct pagedep_hashhead *pagedephd;
2290 	ino_t ino;
2291 	ufs_lbn_t lbn;
2292 	struct pagedep **pagedeppp;
2293 {
2294 	struct pagedep *pagedep;
2295 
2296 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2297 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2298 			*pagedeppp = pagedep;
2299 			return (1);
2300 		}
2301 	}
2302 	*pagedeppp = NULL;
2303 	return (0);
2304 }
2305 /*
2306  * Look up a pagedep. Return 1 if found, 0 otherwise.
2307  * If not found, allocate if DEPALLOC flag is passed.
2308  * Found or allocated entry is returned in pagedeppp.
2309  */
2310 static int
2311 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2312 	struct mount *mp;
2313 	struct buf *bp;
2314 	ino_t ino;
2315 	ufs_lbn_t lbn;
2316 	int flags;
2317 	struct pagedep **pagedeppp;
2318 {
2319 	struct pagedep *pagedep;
2320 	struct pagedep_hashhead *pagedephd;
2321 	struct worklist *wk;
2322 	struct ufsmount *ump;
2323 	int ret;
2324 	int i;
2325 
2326 	ump = VFSTOUFS(mp);
2327 	LOCK_OWNED(ump);
2328 	if (bp) {
2329 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2330 			if (wk->wk_type == D_PAGEDEP) {
2331 				*pagedeppp = WK_PAGEDEP(wk);
2332 				return (1);
2333 			}
2334 		}
2335 	}
2336 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2337 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2338 	if (ret) {
2339 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2340 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2341 		return (1);
2342 	}
2343 	if ((flags & DEPALLOC) == 0)
2344 		return (0);
2345 	FREE_LOCK(ump);
2346 	pagedep = malloc(sizeof(struct pagedep),
2347 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2348 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2349 	ACQUIRE_LOCK(ump);
2350 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2351 	if (*pagedeppp) {
2352 		/*
2353 		 * This should never happen since we only create pagedeps
2354 		 * with the vnode lock held.  Could be an assert.
2355 		 */
2356 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2357 		return (ret);
2358 	}
2359 	pagedep->pd_ino = ino;
2360 	pagedep->pd_lbn = lbn;
2361 	LIST_INIT(&pagedep->pd_dirremhd);
2362 	LIST_INIT(&pagedep->pd_pendinghd);
2363 	for (i = 0; i < DAHASHSZ; i++)
2364 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2365 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2366 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2367 	*pagedeppp = pagedep;
2368 	return (0);
2369 }
2370 
2371 /*
2372  * Structures and routines associated with inodedep caching.
2373  */
2374 #define	INODEDEP_HASH(ump, inum) \
2375       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2376 
2377 static int
2378 inodedep_find(inodedephd, inum, inodedeppp)
2379 	struct inodedep_hashhead *inodedephd;
2380 	ino_t inum;
2381 	struct inodedep **inodedeppp;
2382 {
2383 	struct inodedep *inodedep;
2384 
2385 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2386 		if (inum == inodedep->id_ino)
2387 			break;
2388 	if (inodedep) {
2389 		*inodedeppp = inodedep;
2390 		return (1);
2391 	}
2392 	*inodedeppp = NULL;
2393 
2394 	return (0);
2395 }
2396 /*
2397  * Look up an inodedep. Return 1 if found, 0 if not found.
2398  * If not found, allocate if DEPALLOC flag is passed.
2399  * Found or allocated entry is returned in inodedeppp.
2400  */
2401 static int
2402 inodedep_lookup(mp, inum, flags, inodedeppp)
2403 	struct mount *mp;
2404 	ino_t inum;
2405 	int flags;
2406 	struct inodedep **inodedeppp;
2407 {
2408 	struct inodedep *inodedep;
2409 	struct inodedep_hashhead *inodedephd;
2410 	struct ufsmount *ump;
2411 	struct fs *fs;
2412 
2413 	ump = VFSTOUFS(mp);
2414 	LOCK_OWNED(ump);
2415 	fs = ump->um_fs;
2416 	inodedephd = INODEDEP_HASH(ump, inum);
2417 
2418 	if (inodedep_find(inodedephd, inum, inodedeppp))
2419 		return (1);
2420 	if ((flags & DEPALLOC) == 0)
2421 		return (0);
2422 	/*
2423 	 * If the system is over its limit and our filesystem is
2424 	 * responsible for more than our share of that usage and
2425 	 * we are not in a rush, request some inodedep cleanup.
2426 	 */
2427 	if (softdep_excess_items(ump, D_INODEDEP))
2428 		schedule_cleanup(mp);
2429 	else
2430 		FREE_LOCK(ump);
2431 	inodedep = malloc(sizeof(struct inodedep),
2432 		M_INODEDEP, M_SOFTDEP_FLAGS);
2433 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2434 	ACQUIRE_LOCK(ump);
2435 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2436 		WORKITEM_FREE(inodedep, D_INODEDEP);
2437 		return (1);
2438 	}
2439 	inodedep->id_fs = fs;
2440 	inodedep->id_ino = inum;
2441 	inodedep->id_state = ALLCOMPLETE;
2442 	inodedep->id_nlinkdelta = 0;
2443 	inodedep->id_nlinkwrote = -1;
2444 	inodedep->id_savedino1 = NULL;
2445 	inodedep->id_savedsize = -1;
2446 	inodedep->id_savedextsize = -1;
2447 	inodedep->id_savednlink = -1;
2448 	inodedep->id_bmsafemap = NULL;
2449 	inodedep->id_mkdiradd = NULL;
2450 	LIST_INIT(&inodedep->id_dirremhd);
2451 	LIST_INIT(&inodedep->id_pendinghd);
2452 	LIST_INIT(&inodedep->id_inowait);
2453 	LIST_INIT(&inodedep->id_bufwait);
2454 	TAILQ_INIT(&inodedep->id_inoreflst);
2455 	TAILQ_INIT(&inodedep->id_inoupdt);
2456 	TAILQ_INIT(&inodedep->id_newinoupdt);
2457 	TAILQ_INIT(&inodedep->id_extupdt);
2458 	TAILQ_INIT(&inodedep->id_newextupdt);
2459 	TAILQ_INIT(&inodedep->id_freeblklst);
2460 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2461 	*inodedeppp = inodedep;
2462 	return (0);
2463 }
2464 
2465 /*
2466  * Structures and routines associated with newblk caching.
2467  */
2468 #define	NEWBLK_HASH(ump, inum) \
2469 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2470 
2471 static int
2472 newblk_find(newblkhd, newblkno, flags, newblkpp)
2473 	struct newblk_hashhead *newblkhd;
2474 	ufs2_daddr_t newblkno;
2475 	int flags;
2476 	struct newblk **newblkpp;
2477 {
2478 	struct newblk *newblk;
2479 
2480 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2481 		if (newblkno != newblk->nb_newblkno)
2482 			continue;
2483 		/*
2484 		 * If we're creating a new dependency don't match those that
2485 		 * have already been converted to allocdirects.  This is for
2486 		 * a frag extend.
2487 		 */
2488 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2489 			continue;
2490 		break;
2491 	}
2492 	if (newblk) {
2493 		*newblkpp = newblk;
2494 		return (1);
2495 	}
2496 	*newblkpp = NULL;
2497 	return (0);
2498 }
2499 
2500 /*
2501  * Look up a newblk. Return 1 if found, 0 if not found.
2502  * If not found, allocate if DEPALLOC flag is passed.
2503  * Found or allocated entry is returned in newblkpp.
2504  */
2505 static int
2506 newblk_lookup(mp, newblkno, flags, newblkpp)
2507 	struct mount *mp;
2508 	ufs2_daddr_t newblkno;
2509 	int flags;
2510 	struct newblk **newblkpp;
2511 {
2512 	struct newblk *newblk;
2513 	struct newblk_hashhead *newblkhd;
2514 	struct ufsmount *ump;
2515 
2516 	ump = VFSTOUFS(mp);
2517 	LOCK_OWNED(ump);
2518 	newblkhd = NEWBLK_HASH(ump, newblkno);
2519 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2520 		return (1);
2521 	if ((flags & DEPALLOC) == 0)
2522 		return (0);
2523 	if (softdep_excess_items(ump, D_NEWBLK) ||
2524 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2525 	    softdep_excess_items(ump, D_ALLOCINDIR))
2526 		schedule_cleanup(mp);
2527 	else
2528 		FREE_LOCK(ump);
2529 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2530 	    M_SOFTDEP_FLAGS | M_ZERO);
2531 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2532 	ACQUIRE_LOCK(ump);
2533 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2534 		WORKITEM_FREE(newblk, D_NEWBLK);
2535 		return (1);
2536 	}
2537 	newblk->nb_freefrag = NULL;
2538 	LIST_INIT(&newblk->nb_indirdeps);
2539 	LIST_INIT(&newblk->nb_newdirblk);
2540 	LIST_INIT(&newblk->nb_jwork);
2541 	newblk->nb_state = ATTACHED;
2542 	newblk->nb_newblkno = newblkno;
2543 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2544 	*newblkpp = newblk;
2545 	return (0);
2546 }
2547 
2548 /*
2549  * Structures and routines associated with freed indirect block caching.
2550  */
2551 #define	INDIR_HASH(ump, blkno) \
2552 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2553 
2554 /*
2555  * Lookup an indirect block in the indir hash table.  The freework is
2556  * removed and potentially freed.  The caller must do a blocking journal
2557  * write before writing to the blkno.
2558  */
2559 static int
2560 indirblk_lookup(mp, blkno)
2561 	struct mount *mp;
2562 	ufs2_daddr_t blkno;
2563 {
2564 	struct freework *freework;
2565 	struct indir_hashhead *wkhd;
2566 	struct ufsmount *ump;
2567 
2568 	ump = VFSTOUFS(mp);
2569 	wkhd = INDIR_HASH(ump, blkno);
2570 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2571 		if (freework->fw_blkno != blkno)
2572 			continue;
2573 		indirblk_remove(freework);
2574 		return (1);
2575 	}
2576 	return (0);
2577 }
2578 
2579 /*
2580  * Insert an indirect block represented by freework into the indirblk
2581  * hash table so that it may prevent the block from being re-used prior
2582  * to the journal being written.
2583  */
2584 static void
2585 indirblk_insert(freework)
2586 	struct freework *freework;
2587 {
2588 	struct jblocks *jblocks;
2589 	struct jseg *jseg;
2590 	struct ufsmount *ump;
2591 
2592 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2593 	jblocks = ump->softdep_jblocks;
2594 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2595 	if (jseg == NULL)
2596 		return;
2597 
2598 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2599 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2600 	    fw_next);
2601 	freework->fw_state &= ~DEPCOMPLETE;
2602 }
2603 
2604 static void
2605 indirblk_remove(freework)
2606 	struct freework *freework;
2607 {
2608 	struct ufsmount *ump;
2609 
2610 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2611 	LIST_REMOVE(freework, fw_segs);
2612 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2613 	freework->fw_state |= DEPCOMPLETE;
2614 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2615 		WORKITEM_FREE(freework, D_FREEWORK);
2616 }
2617 
2618 /*
2619  * Executed during filesystem system initialization before
2620  * mounting any filesystems.
2621  */
2622 void
2623 softdep_initialize()
2624 {
2625 
2626 	TAILQ_INIT(&softdepmounts);
2627 #ifdef __LP64__
2628 	max_softdeps = desiredvnodes * 4;
2629 #else
2630 	max_softdeps = desiredvnodes * 2;
2631 #endif
2632 
2633 	/* initialise bioops hack */
2634 	bioops.io_start = softdep_disk_io_initiation;
2635 	bioops.io_complete = softdep_disk_write_complete;
2636 	bioops.io_deallocate = softdep_deallocate_dependencies;
2637 	bioops.io_countdeps = softdep_count_dependencies;
2638 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2639 
2640 	/* Initialize the callout with an mtx. */
2641 	callout_init_mtx(&softdep_callout, &lk, 0);
2642 }
2643 
2644 /*
2645  * Executed after all filesystems have been unmounted during
2646  * filesystem module unload.
2647  */
2648 void
2649 softdep_uninitialize()
2650 {
2651 
2652 	/* clear bioops hack */
2653 	bioops.io_start = NULL;
2654 	bioops.io_complete = NULL;
2655 	bioops.io_deallocate = NULL;
2656 	bioops.io_countdeps = NULL;
2657 	softdep_ast_cleanup = NULL;
2658 
2659 	callout_drain(&softdep_callout);
2660 }
2661 
2662 /*
2663  * Called at mount time to notify the dependency code that a
2664  * filesystem wishes to use it.
2665  */
2666 int
2667 softdep_mount(devvp, mp, fs, cred)
2668 	struct vnode *devvp;
2669 	struct mount *mp;
2670 	struct fs *fs;
2671 	struct ucred *cred;
2672 {
2673 	struct csum_total cstotal;
2674 	struct mount_softdeps *sdp;
2675 	struct ufsmount *ump;
2676 	struct cg *cgp;
2677 	struct buf *bp;
2678 	u_int cyl, i;
2679 	int error;
2680 
2681 	ump = VFSTOUFS(mp);
2682 
2683 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2684 	    M_WAITOK | M_ZERO);
2685 	rw_init(&sdp->sd_fslock, "SUrw");
2686 	sdp->sd_ump = ump;
2687 	LIST_INIT(&sdp->sd_workitem_pending);
2688 	LIST_INIT(&sdp->sd_journal_pending);
2689 	TAILQ_INIT(&sdp->sd_unlinked);
2690 	LIST_INIT(&sdp->sd_dirtycg);
2691 	sdp->sd_worklist_tail = NULL;
2692 	sdp->sd_on_worklist = 0;
2693 	sdp->sd_deps = 0;
2694 	LIST_INIT(&sdp->sd_mkdirlisthd);
2695 	sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2696 	    &sdp->sd_pdhashsize);
2697 	sdp->sd_pdnextclean = 0;
2698 	sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2699 	    &sdp->sd_idhashsize);
2700 	sdp->sd_idnextclean = 0;
2701 	sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
2702 	    &sdp->sd_newblkhashsize);
2703 	sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2704 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2705 	sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2706 	    M_FREEWORK, M_WAITOK);
2707 	sdp->sd_indirhashsize = i - 1;
2708 	for (i = 0; i <= sdp->sd_indirhashsize; i++)
2709 		TAILQ_INIT(&sdp->sd_indirhash[i]);
2710 	for (i = 0; i <= D_LAST; i++)
2711 		LIST_INIT(&sdp->sd_alldeps[i]);
2712 	ACQUIRE_GBLLOCK(&lk);
2713 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2714 	FREE_GBLLOCK(&lk);
2715 
2716 	ump->um_softdep = sdp;
2717 	MNT_ILOCK(mp);
2718 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2719 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2720 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2721 		    MNTK_SOFTDEP | MNTK_NOASYNC;
2722 	}
2723 	MNT_IUNLOCK(mp);
2724 
2725 	if ((fs->fs_flags & FS_SUJ) &&
2726 	    (error = journal_mount(mp, fs, cred)) != 0) {
2727 		printf("Failed to start journal: %d\n", error);
2728 		softdep_unmount(mp);
2729 		return (error);
2730 	}
2731 	/*
2732 	 * Start our flushing thread in the bufdaemon process.
2733 	 */
2734 	ACQUIRE_LOCK(ump);
2735 	ump->softdep_flags |= FLUSH_STARTING;
2736 	FREE_LOCK(ump);
2737 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2738 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2739 	    mp->mnt_stat.f_mntonname);
2740 	ACQUIRE_LOCK(ump);
2741 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2742 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2743 		    hz / 2);
2744 	}
2745 	FREE_LOCK(ump);
2746 	/*
2747 	 * When doing soft updates, the counters in the
2748 	 * superblock may have gotten out of sync. Recomputation
2749 	 * can take a long time and can be deferred for background
2750 	 * fsck.  However, the old behavior of scanning the cylinder
2751 	 * groups and recalculating them at mount time is available
2752 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2753 	 */
2754 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2755 		return (0);
2756 	bzero(&cstotal, sizeof cstotal);
2757 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2758 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2759 		    fs->fs_cgsize, cred, &bp)) != 0) {
2760 			brelse(bp);
2761 			softdep_unmount(mp);
2762 			return (error);
2763 		}
2764 		cgp = (struct cg *)bp->b_data;
2765 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2766 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2767 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2768 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2769 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2770 		brelse(bp);
2771 	}
2772 #ifdef INVARIANTS
2773 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2774 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2775 #endif
2776 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2777 	return (0);
2778 }
2779 
2780 void
2781 softdep_unmount(mp)
2782 	struct mount *mp;
2783 {
2784 	struct ufsmount *ump;
2785 	struct mount_softdeps *ums;
2786 
2787 	ump = VFSTOUFS(mp);
2788 	KASSERT(ump->um_softdep != NULL,
2789 	    ("softdep_unmount called on non-softdep filesystem"));
2790 	MNT_ILOCK(mp);
2791 	mp->mnt_flag &= ~MNT_SOFTDEP;
2792 	if ((mp->mnt_flag & MNT_SUJ) == 0) {
2793 		MNT_IUNLOCK(mp);
2794 	} else {
2795 		mp->mnt_flag &= ~MNT_SUJ;
2796 		MNT_IUNLOCK(mp);
2797 		journal_unmount(ump);
2798 	}
2799 	/*
2800 	 * Shut down our flushing thread. Check for NULL is if
2801 	 * softdep_mount errors out before the thread has been created.
2802 	 */
2803 	if (ump->softdep_flushtd != NULL) {
2804 		ACQUIRE_LOCK(ump);
2805 		ump->softdep_flags |= FLUSH_EXIT;
2806 		wakeup(&ump->softdep_flushtd);
2807 		while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2808 			msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2809 			    "sdwait", 0);
2810 		}
2811 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2812 		    ("Thread shutdown failed"));
2813 		FREE_LOCK(ump);
2814 	}
2815 
2816 	/*
2817 	 * We are no longer have softdep structure attached to ump.
2818 	 */
2819 	ums = ump->um_softdep;
2820 	ACQUIRE_GBLLOCK(&lk);
2821 	TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2822 	FREE_GBLLOCK(&lk);
2823 	ump->um_softdep = NULL;
2824 
2825 	KASSERT(ums->sd_on_journal == 0,
2826 	    ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2827 	KASSERT(ums->sd_on_worklist == 0,
2828 	    ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2829 	KASSERT(ums->sd_deps == 0,
2830 	    ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2831 
2832 	/*
2833 	 * Free up our resources.
2834 	 */
2835 	rw_destroy(&ums->sd_fslock);
2836 	hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2837 	hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2838 	hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2839 	hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2840 	free(ums->sd_indirhash, M_FREEWORK);
2841 #ifdef INVARIANTS
2842 	for (int i = 0; i <= D_LAST; i++) {
2843 		KASSERT(ums->sd_curdeps[i] == 0,
2844 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2845 		    TYPENAME(i), ums->sd_curdeps[i]));
2846 		KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2847 		    ("Unmount %s: Dep type %s not empty (%p)",
2848 		    ump->um_fs->fs_fsmnt,
2849 		    TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2850 	}
2851 #endif
2852 	free(ums, M_MOUNTDATA);
2853 }
2854 
2855 static struct jblocks *
2856 jblocks_create(void)
2857 {
2858 	struct jblocks *jblocks;
2859 
2860 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2861 	TAILQ_INIT(&jblocks->jb_segs);
2862 	jblocks->jb_avail = 10;
2863 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2864 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2865 
2866 	return (jblocks);
2867 }
2868 
2869 static ufs2_daddr_t
2870 jblocks_alloc(jblocks, bytes, actual)
2871 	struct jblocks *jblocks;
2872 	int bytes;
2873 	int *actual;
2874 {
2875 	ufs2_daddr_t daddr;
2876 	struct jextent *jext;
2877 	int freecnt;
2878 	int blocks;
2879 
2880 	blocks = bytes / DEV_BSIZE;
2881 	jext = &jblocks->jb_extent[jblocks->jb_head];
2882 	freecnt = jext->je_blocks - jblocks->jb_off;
2883 	if (freecnt == 0) {
2884 		jblocks->jb_off = 0;
2885 		if (++jblocks->jb_head > jblocks->jb_used)
2886 			jblocks->jb_head = 0;
2887 		jext = &jblocks->jb_extent[jblocks->jb_head];
2888 		freecnt = jext->je_blocks;
2889 	}
2890 	if (freecnt > blocks)
2891 		freecnt = blocks;
2892 	*actual = freecnt * DEV_BSIZE;
2893 	daddr = jext->je_daddr + jblocks->jb_off;
2894 	jblocks->jb_off += freecnt;
2895 	jblocks->jb_free -= freecnt;
2896 
2897 	return (daddr);
2898 }
2899 
2900 static void
2901 jblocks_free(jblocks, mp, bytes)
2902 	struct jblocks *jblocks;
2903 	struct mount *mp;
2904 	int bytes;
2905 {
2906 
2907 	LOCK_OWNED(VFSTOUFS(mp));
2908 	jblocks->jb_free += bytes / DEV_BSIZE;
2909 	if (jblocks->jb_suspended)
2910 		worklist_speedup(mp);
2911 	wakeup(jblocks);
2912 }
2913 
2914 static void
2915 jblocks_destroy(jblocks)
2916 	struct jblocks *jblocks;
2917 {
2918 
2919 	if (jblocks->jb_extent)
2920 		free(jblocks->jb_extent, M_JBLOCKS);
2921 	free(jblocks, M_JBLOCKS);
2922 }
2923 
2924 static void
2925 jblocks_add(jblocks, daddr, blocks)
2926 	struct jblocks *jblocks;
2927 	ufs2_daddr_t daddr;
2928 	int blocks;
2929 {
2930 	struct jextent *jext;
2931 
2932 	jblocks->jb_blocks += blocks;
2933 	jblocks->jb_free += blocks;
2934 	jext = &jblocks->jb_extent[jblocks->jb_used];
2935 	/* Adding the first block. */
2936 	if (jext->je_daddr == 0) {
2937 		jext->je_daddr = daddr;
2938 		jext->je_blocks = blocks;
2939 		return;
2940 	}
2941 	/* Extending the last extent. */
2942 	if (jext->je_daddr + jext->je_blocks == daddr) {
2943 		jext->je_blocks += blocks;
2944 		return;
2945 	}
2946 	/* Adding a new extent. */
2947 	if (++jblocks->jb_used == jblocks->jb_avail) {
2948 		jblocks->jb_avail *= 2;
2949 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2950 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2951 		memcpy(jext, jblocks->jb_extent,
2952 		    sizeof(struct jextent) * jblocks->jb_used);
2953 		free(jblocks->jb_extent, M_JBLOCKS);
2954 		jblocks->jb_extent = jext;
2955 	}
2956 	jext = &jblocks->jb_extent[jblocks->jb_used];
2957 	jext->je_daddr = daddr;
2958 	jext->je_blocks = blocks;
2959 	return;
2960 }
2961 
2962 int
2963 softdep_journal_lookup(mp, vpp)
2964 	struct mount *mp;
2965 	struct vnode **vpp;
2966 {
2967 	struct componentname cnp;
2968 	struct vnode *dvp;
2969 	ino_t sujournal;
2970 	int error;
2971 
2972 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2973 	if (error)
2974 		return (error);
2975 	bzero(&cnp, sizeof(cnp));
2976 	cnp.cn_nameiop = LOOKUP;
2977 	cnp.cn_flags = ISLASTCN;
2978 	cnp.cn_cred = curthread->td_ucred;
2979 	cnp.cn_pnbuf = SUJ_FILE;
2980 	cnp.cn_nameptr = SUJ_FILE;
2981 	cnp.cn_namelen = strlen(SUJ_FILE);
2982 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2983 	vput(dvp);
2984 	if (error != 0)
2985 		return (error);
2986 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2987 	return (error);
2988 }
2989 
2990 /*
2991  * Open and verify the journal file.
2992  */
2993 static int
2994 journal_mount(mp, fs, cred)
2995 	struct mount *mp;
2996 	struct fs *fs;
2997 	struct ucred *cred;
2998 {
2999 	struct jblocks *jblocks;
3000 	struct ufsmount *ump;
3001 	struct vnode *vp;
3002 	struct inode *ip;
3003 	ufs2_daddr_t blkno;
3004 	int bcount;
3005 	int error;
3006 	int i;
3007 
3008 	ump = VFSTOUFS(mp);
3009 	ump->softdep_journal_tail = NULL;
3010 	ump->softdep_on_journal = 0;
3011 	ump->softdep_accdeps = 0;
3012 	ump->softdep_req = 0;
3013 	ump->softdep_jblocks = NULL;
3014 	error = softdep_journal_lookup(mp, &vp);
3015 	if (error != 0) {
3016 		printf("Failed to find journal.  Use tunefs to create one\n");
3017 		return (error);
3018 	}
3019 	ip = VTOI(vp);
3020 	if (ip->i_size < SUJ_MIN) {
3021 		error = ENOSPC;
3022 		goto out;
3023 	}
3024 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
3025 	jblocks = jblocks_create();
3026 	for (i = 0; i < bcount; i++) {
3027 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
3028 		if (error)
3029 			break;
3030 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
3031 	}
3032 	if (error) {
3033 		jblocks_destroy(jblocks);
3034 		goto out;
3035 	}
3036 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
3037 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
3038 	ump->softdep_jblocks = jblocks;
3039 
3040 	MNT_ILOCK(mp);
3041 	mp->mnt_flag |= MNT_SUJ;
3042 	MNT_IUNLOCK(mp);
3043 
3044 	/*
3045 	 * Only validate the journal contents if the
3046 	 * filesystem is clean, otherwise we write the logs
3047 	 * but they'll never be used.  If the filesystem was
3048 	 * still dirty when we mounted it the journal is
3049 	 * invalid and a new journal can only be valid if it
3050 	 * starts from a clean mount.
3051 	 */
3052 	if (fs->fs_clean) {
3053 		DIP_SET(ip, i_modrev, fs->fs_mtime);
3054 		ip->i_flags |= IN_MODIFIED;
3055 		ffs_update(vp, 1);
3056 	}
3057 out:
3058 	vput(vp);
3059 	return (error);
3060 }
3061 
3062 static void
3063 journal_unmount(ump)
3064 	struct ufsmount *ump;
3065 {
3066 
3067 	if (ump->softdep_jblocks)
3068 		jblocks_destroy(ump->softdep_jblocks);
3069 	ump->softdep_jblocks = NULL;
3070 }
3071 
3072 /*
3073  * Called when a journal record is ready to be written.  Space is allocated
3074  * and the journal entry is created when the journal is flushed to stable
3075  * store.
3076  */
3077 static void
3078 add_to_journal(wk)
3079 	struct worklist *wk;
3080 {
3081 	struct ufsmount *ump;
3082 
3083 	ump = VFSTOUFS(wk->wk_mp);
3084 	LOCK_OWNED(ump);
3085 	if (wk->wk_state & ONWORKLIST)
3086 		panic("add_to_journal: %s(0x%X) already on list",
3087 		    TYPENAME(wk->wk_type), wk->wk_state);
3088 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
3089 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
3090 		ump->softdep_jblocks->jb_age = ticks;
3091 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
3092 	} else
3093 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
3094 	ump->softdep_journal_tail = wk;
3095 	ump->softdep_on_journal += 1;
3096 }
3097 
3098 /*
3099  * Remove an arbitrary item for the journal worklist maintain the tail
3100  * pointer.  This happens when a new operation obviates the need to
3101  * journal an old operation.
3102  */
3103 static void
3104 remove_from_journal(wk)
3105 	struct worklist *wk;
3106 {
3107 	struct ufsmount *ump;
3108 
3109 	ump = VFSTOUFS(wk->wk_mp);
3110 	LOCK_OWNED(ump);
3111 #ifdef INVARIANTS
3112 	{
3113 		struct worklist *wkn;
3114 
3115 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3116 			if (wkn == wk)
3117 				break;
3118 		if (wkn == NULL)
3119 			panic("remove_from_journal: %p is not in journal", wk);
3120 	}
3121 #endif
3122 	/*
3123 	 * We emulate a TAILQ to save space in most structures which do not
3124 	 * require TAILQ semantics.  Here we must update the tail position
3125 	 * when removing the tail which is not the final entry. This works
3126 	 * only if the worklist linkage are at the beginning of the structure.
3127 	 */
3128 	if (ump->softdep_journal_tail == wk)
3129 		ump->softdep_journal_tail =
3130 		    (struct worklist *)wk->wk_list.le_prev;
3131 	WORKLIST_REMOVE(wk);
3132 	ump->softdep_on_journal -= 1;
3133 }
3134 
3135 /*
3136  * Check for journal space as well as dependency limits so the prelink
3137  * code can throttle both journaled and non-journaled filesystems.
3138  * Threshold is 0 for low and 1 for min.
3139  */
3140 static int
3141 journal_space(ump, thresh)
3142 	struct ufsmount *ump;
3143 	int thresh;
3144 {
3145 	struct jblocks *jblocks;
3146 	int limit, avail;
3147 
3148 	jblocks = ump->softdep_jblocks;
3149 	if (jblocks == NULL)
3150 		return (1);
3151 	/*
3152 	 * We use a tighter restriction here to prevent request_cleanup()
3153 	 * running in threads from running into locks we currently hold.
3154 	 * We have to be over the limit and our filesystem has to be
3155 	 * responsible for more than our share of that usage.
3156 	 */
3157 	limit = (max_softdeps / 10) * 9;
3158 	if (dep_current[D_INODEDEP] > limit &&
3159 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3160 		return (0);
3161 	if (thresh)
3162 		thresh = jblocks->jb_min;
3163 	else
3164 		thresh = jblocks->jb_low;
3165 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3166 	avail = jblocks->jb_free - avail;
3167 
3168 	return (avail > thresh);
3169 }
3170 
3171 static void
3172 journal_suspend(ump)
3173 	struct ufsmount *ump;
3174 {
3175 	struct jblocks *jblocks;
3176 	struct mount *mp;
3177 	bool set;
3178 
3179 	mp = UFSTOVFS(ump);
3180 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3181 		return;
3182 
3183 	jblocks = ump->softdep_jblocks;
3184 	vfs_op_enter(mp);
3185 	set = false;
3186 	MNT_ILOCK(mp);
3187 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3188 		stat_journal_min++;
3189 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3190 		mp->mnt_susp_owner = ump->softdep_flushtd;
3191 		set = true;
3192 	}
3193 	jblocks->jb_suspended = 1;
3194 	MNT_IUNLOCK(mp);
3195 	if (!set)
3196 		vfs_op_exit(mp);
3197 }
3198 
3199 static int
3200 journal_unsuspend(struct ufsmount *ump)
3201 {
3202 	struct jblocks *jblocks;
3203 	struct mount *mp;
3204 
3205 	mp = UFSTOVFS(ump);
3206 	jblocks = ump->softdep_jblocks;
3207 
3208 	if (jblocks != NULL && jblocks->jb_suspended &&
3209 	    journal_space(ump, jblocks->jb_min)) {
3210 		jblocks->jb_suspended = 0;
3211 		FREE_LOCK(ump);
3212 		mp->mnt_susp_owner = curthread;
3213 		vfs_write_resume(mp, 0);
3214 		ACQUIRE_LOCK(ump);
3215 		return (1);
3216 	}
3217 	return (0);
3218 }
3219 
3220 static void
3221 journal_check_space(struct ufsmount *ump)
3222 {
3223 	struct mount *mp;
3224 
3225 	LOCK_OWNED(ump);
3226 
3227 	if (journal_space(ump, 0) == 0) {
3228 		softdep_speedup(ump);
3229 		mp = UFSTOVFS(ump);
3230 		FREE_LOCK(ump);
3231 		VFS_SYNC(mp, MNT_NOWAIT);
3232 		ffs_sbupdate(ump, MNT_WAIT, 0);
3233 		ACQUIRE_LOCK(ump);
3234 		if (journal_space(ump, 1) == 0)
3235 			journal_suspend(ump);
3236 	}
3237 }
3238 
3239 /*
3240  * Called before any allocation function to be certain that there is
3241  * sufficient space in the journal prior to creating any new records.
3242  * Since in the case of block allocation we may have multiple locked
3243  * buffers at the time of the actual allocation we can not block
3244  * when the journal records are created.  Doing so would create a deadlock
3245  * if any of these buffers needed to be flushed to reclaim space.  Instead
3246  * we require a sufficiently large amount of available space such that
3247  * each thread in the system could have passed this allocation check and
3248  * still have sufficient free space.  With 20% of a minimum journal size
3249  * of 1MB we have 6553 records available.
3250  */
3251 int
3252 softdep_prealloc(vp, waitok)
3253 	struct vnode *vp;
3254 	int waitok;
3255 {
3256 	struct ufsmount *ump;
3257 
3258 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3259 	    ("softdep_prealloc called on non-softdep filesystem"));
3260 	/*
3261 	 * Nothing to do if we are not running journaled soft updates.
3262 	 * If we currently hold the snapshot lock, we must avoid
3263 	 * handling other resources that could cause deadlock.  Do not
3264 	 * touch quotas vnode since it is typically recursed with
3265 	 * other vnode locks held.
3266 	 */
3267 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3268 	    (vp->v_vflag & VV_SYSTEM) != 0)
3269 		return (0);
3270 	ump = VFSTOUFS(vp->v_mount);
3271 	ACQUIRE_LOCK(ump);
3272 	if (journal_space(ump, 0)) {
3273 		FREE_LOCK(ump);
3274 		return (0);
3275 	}
3276 	stat_journal_low++;
3277 	FREE_LOCK(ump);
3278 	if (waitok == MNT_NOWAIT)
3279 		return (ENOSPC);
3280 	/*
3281 	 * Attempt to sync this vnode once to flush any journal
3282 	 * work attached to it.
3283 	 */
3284 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3285 		ffs_syncvnode(vp, waitok, 0);
3286 	ACQUIRE_LOCK(ump);
3287 	process_removes(vp);
3288 	process_truncates(vp);
3289 	journal_check_space(ump);
3290 	FREE_LOCK(ump);
3291 
3292 	return (0);
3293 }
3294 
3295 /*
3296  * Try hard to sync all data and metadata for the vnode, and workitems
3297  * flushing which might conflict with the vnode lock.  This is a
3298  * helper for softdep_prerename().
3299  */
3300 static int
3301 softdep_prerename_vnode(ump, vp)
3302 	struct ufsmount *ump;
3303 	struct vnode *vp;
3304 {
3305 	int error;
3306 
3307 	ASSERT_VOP_ELOCKED(vp, "prehandle");
3308 	if (vp->v_data == NULL)
3309 		return (0);
3310 	error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3311 	if (error != 0)
3312 		return (error);
3313 	ACQUIRE_LOCK(ump);
3314 	process_removes(vp);
3315 	process_truncates(vp);
3316 	FREE_LOCK(ump);
3317 	return (0);
3318 }
3319 
3320 /*
3321  * Must be called from VOP_RENAME() after all vnodes are locked.
3322  * Ensures that there is enough journal space for rename.  It is
3323  * sufficiently different from softdep_prelink() by having to handle
3324  * four vnodes.
3325  */
3326 int
3327 softdep_prerename(fdvp, fvp, tdvp, tvp)
3328 	struct vnode *fdvp;
3329 	struct vnode *fvp;
3330 	struct vnode *tdvp;
3331 	struct vnode *tvp;
3332 {
3333 	struct ufsmount *ump;
3334 	int error;
3335 
3336 	ump = VFSTOUFS(fdvp->v_mount);
3337 
3338 	if (journal_space(ump, 0))
3339 		return (0);
3340 
3341 	VOP_UNLOCK(tdvp);
3342 	VOP_UNLOCK(fvp);
3343 	if (tvp != NULL && tvp != tdvp)
3344 		VOP_UNLOCK(tvp);
3345 
3346 	error = softdep_prerename_vnode(ump, fdvp);
3347 	VOP_UNLOCK(fdvp);
3348 	if (error != 0)
3349 		return (error);
3350 
3351 	VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3352 	error = softdep_prerename_vnode(ump, fvp);
3353 	VOP_UNLOCK(fvp);
3354 	if (error != 0)
3355 		return (error);
3356 
3357 	if (tdvp != fdvp) {
3358 		VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3359 		error = softdep_prerename_vnode(ump, tdvp);
3360 		VOP_UNLOCK(tdvp);
3361 		if (error != 0)
3362 			return (error);
3363 	}
3364 
3365 	if (tvp != fvp && tvp != NULL) {
3366 		VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3367 		error = softdep_prerename_vnode(ump, tvp);
3368 		VOP_UNLOCK(tvp);
3369 		if (error != 0)
3370 			return (error);
3371 	}
3372 
3373 	ACQUIRE_LOCK(ump);
3374 	softdep_speedup(ump);
3375 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3376 	journal_check_space(ump);
3377 	FREE_LOCK(ump);
3378 	return (ERELOOKUP);
3379 }
3380 
3381 /*
3382  * Before adjusting a link count on a vnode verify that we have sufficient
3383  * journal space.  If not, process operations that depend on the currently
3384  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3385  * and softdep flush threads can not acquire these locks to reclaim space.
3386  *
3387  * Returns 0 if all owned locks are still valid and were not dropped
3388  * in the process, in other case it returns either an error from sync,
3389  * or ERELOOKUP if any of the locks were re-acquired.  In the later
3390  * case, the state of the vnodes cannot be relied upon and our VFS
3391  * syscall must be restarted at top level from the lookup.
3392  */
3393 int
3394 softdep_prelink(dvp, vp, cnp)
3395 	struct vnode *dvp;
3396 	struct vnode *vp;
3397 	struct componentname *cnp;
3398 {
3399 	struct ufsmount *ump;
3400 	struct nameidata *ndp;
3401 
3402 	ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3403 	if (vp != NULL)
3404 		ASSERT_VOP_ELOCKED(vp, "prelink vp");
3405 	ump = VFSTOUFS(dvp->v_mount);
3406 
3407 	/*
3408 	 * Nothing to do if we have sufficient journal space.  We skip
3409 	 * flushing when vp is a snapshot to avoid deadlock where
3410 	 * another thread is trying to update the inodeblock for dvp
3411 	 * and is waiting on snaplk that vp holds.
3412 	 */
3413 	if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3414 		return (0);
3415 
3416 	/*
3417 	 * Check if the journal space consumption can in theory be
3418 	 * accounted on dvp and vp.  If the vnodes metadata was not
3419 	 * changed comparing with the previous round-trip into
3420 	 * softdep_prelink(), as indicated by the seqc generation
3421 	 * recorded in the nameidata, then there is no point in
3422 	 * starting the sync.
3423 	 */
3424 	ndp = __containerof(cnp, struct nameidata, ni_cnd);
3425 	if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
3426 	    vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
3427 	    (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
3428 	    vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
3429 		return (0);
3430 
3431 	stat_journal_low++;
3432 	if (vp != NULL) {
3433 		VOP_UNLOCK(dvp);
3434 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3435 		vn_lock_pair(dvp, false, vp, true);
3436 		if (dvp->v_data == NULL)
3437 			goto out;
3438 	}
3439 	if (vp != NULL)
3440 		VOP_UNLOCK(vp);
3441 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3442 	/* Process vp before dvp as it may create .. removes. */
3443 	if (vp != NULL) {
3444 		VOP_UNLOCK(dvp);
3445 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3446 		if (vp->v_data == NULL) {
3447 			vn_lock_pair(dvp, false, vp, true);
3448 			goto out;
3449 		}
3450 		ACQUIRE_LOCK(ump);
3451 		process_removes(vp);
3452 		process_truncates(vp);
3453 		FREE_LOCK(ump);
3454 		VOP_UNLOCK(vp);
3455 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3456 		if (dvp->v_data == NULL) {
3457 			vn_lock_pair(dvp, true, vp, false);
3458 			goto out;
3459 		}
3460 	}
3461 
3462 	ACQUIRE_LOCK(ump);
3463 	process_removes(dvp);
3464 	process_truncates(dvp);
3465 	VOP_UNLOCK(dvp);
3466 	softdep_speedup(ump);
3467 
3468 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3469 	journal_check_space(ump);
3470 	FREE_LOCK(ump);
3471 
3472 	vn_lock_pair(dvp, false, vp, false);
3473 out:
3474 	ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
3475 	if (vp != NULL)
3476 		ndp->ni_vp_seqc = vn_seqc_read_any(vp);
3477 	return (ERELOOKUP);
3478 }
3479 
3480 static void
3481 jseg_write(ump, jseg, data)
3482 	struct ufsmount *ump;
3483 	struct jseg *jseg;
3484 	uint8_t *data;
3485 {
3486 	struct jsegrec *rec;
3487 
3488 	rec = (struct jsegrec *)data;
3489 	rec->jsr_seq = jseg->js_seq;
3490 	rec->jsr_oldest = jseg->js_oldseq;
3491 	rec->jsr_cnt = jseg->js_cnt;
3492 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3493 	rec->jsr_crc = 0;
3494 	rec->jsr_time = ump->um_fs->fs_mtime;
3495 }
3496 
3497 static inline void
3498 inoref_write(inoref, jseg, rec)
3499 	struct inoref *inoref;
3500 	struct jseg *jseg;
3501 	struct jrefrec *rec;
3502 {
3503 
3504 	inoref->if_jsegdep->jd_seg = jseg;
3505 	rec->jr_ino = inoref->if_ino;
3506 	rec->jr_parent = inoref->if_parent;
3507 	rec->jr_nlink = inoref->if_nlink;
3508 	rec->jr_mode = inoref->if_mode;
3509 	rec->jr_diroff = inoref->if_diroff;
3510 }
3511 
3512 static void
3513 jaddref_write(jaddref, jseg, data)
3514 	struct jaddref *jaddref;
3515 	struct jseg *jseg;
3516 	uint8_t *data;
3517 {
3518 	struct jrefrec *rec;
3519 
3520 	rec = (struct jrefrec *)data;
3521 	rec->jr_op = JOP_ADDREF;
3522 	inoref_write(&jaddref->ja_ref, jseg, rec);
3523 }
3524 
3525 static void
3526 jremref_write(jremref, jseg, data)
3527 	struct jremref *jremref;
3528 	struct jseg *jseg;
3529 	uint8_t *data;
3530 {
3531 	struct jrefrec *rec;
3532 
3533 	rec = (struct jrefrec *)data;
3534 	rec->jr_op = JOP_REMREF;
3535 	inoref_write(&jremref->jr_ref, jseg, rec);
3536 }
3537 
3538 static void
3539 jmvref_write(jmvref, jseg, data)
3540 	struct jmvref *jmvref;
3541 	struct jseg *jseg;
3542 	uint8_t *data;
3543 {
3544 	struct jmvrec *rec;
3545 
3546 	rec = (struct jmvrec *)data;
3547 	rec->jm_op = JOP_MVREF;
3548 	rec->jm_ino = jmvref->jm_ino;
3549 	rec->jm_parent = jmvref->jm_parent;
3550 	rec->jm_oldoff = jmvref->jm_oldoff;
3551 	rec->jm_newoff = jmvref->jm_newoff;
3552 }
3553 
3554 static void
3555 jnewblk_write(jnewblk, jseg, data)
3556 	struct jnewblk *jnewblk;
3557 	struct jseg *jseg;
3558 	uint8_t *data;
3559 {
3560 	struct jblkrec *rec;
3561 
3562 	jnewblk->jn_jsegdep->jd_seg = jseg;
3563 	rec = (struct jblkrec *)data;
3564 	rec->jb_op = JOP_NEWBLK;
3565 	rec->jb_ino = jnewblk->jn_ino;
3566 	rec->jb_blkno = jnewblk->jn_blkno;
3567 	rec->jb_lbn = jnewblk->jn_lbn;
3568 	rec->jb_frags = jnewblk->jn_frags;
3569 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3570 }
3571 
3572 static void
3573 jfreeblk_write(jfreeblk, jseg, data)
3574 	struct jfreeblk *jfreeblk;
3575 	struct jseg *jseg;
3576 	uint8_t *data;
3577 {
3578 	struct jblkrec *rec;
3579 
3580 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3581 	rec = (struct jblkrec *)data;
3582 	rec->jb_op = JOP_FREEBLK;
3583 	rec->jb_ino = jfreeblk->jf_ino;
3584 	rec->jb_blkno = jfreeblk->jf_blkno;
3585 	rec->jb_lbn = jfreeblk->jf_lbn;
3586 	rec->jb_frags = jfreeblk->jf_frags;
3587 	rec->jb_oldfrags = 0;
3588 }
3589 
3590 static void
3591 jfreefrag_write(jfreefrag, jseg, data)
3592 	struct jfreefrag *jfreefrag;
3593 	struct jseg *jseg;
3594 	uint8_t *data;
3595 {
3596 	struct jblkrec *rec;
3597 
3598 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3599 	rec = (struct jblkrec *)data;
3600 	rec->jb_op = JOP_FREEBLK;
3601 	rec->jb_ino = jfreefrag->fr_ino;
3602 	rec->jb_blkno = jfreefrag->fr_blkno;
3603 	rec->jb_lbn = jfreefrag->fr_lbn;
3604 	rec->jb_frags = jfreefrag->fr_frags;
3605 	rec->jb_oldfrags = 0;
3606 }
3607 
3608 static void
3609 jtrunc_write(jtrunc, jseg, data)
3610 	struct jtrunc *jtrunc;
3611 	struct jseg *jseg;
3612 	uint8_t *data;
3613 {
3614 	struct jtrncrec *rec;
3615 
3616 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3617 	rec = (struct jtrncrec *)data;
3618 	rec->jt_op = JOP_TRUNC;
3619 	rec->jt_ino = jtrunc->jt_ino;
3620 	rec->jt_size = jtrunc->jt_size;
3621 	rec->jt_extsize = jtrunc->jt_extsize;
3622 }
3623 
3624 static void
3625 jfsync_write(jfsync, jseg, data)
3626 	struct jfsync *jfsync;
3627 	struct jseg *jseg;
3628 	uint8_t *data;
3629 {
3630 	struct jtrncrec *rec;
3631 
3632 	rec = (struct jtrncrec *)data;
3633 	rec->jt_op = JOP_SYNC;
3634 	rec->jt_ino = jfsync->jfs_ino;
3635 	rec->jt_size = jfsync->jfs_size;
3636 	rec->jt_extsize = jfsync->jfs_extsize;
3637 }
3638 
3639 static void
3640 softdep_flushjournal(mp)
3641 	struct mount *mp;
3642 {
3643 	struct jblocks *jblocks;
3644 	struct ufsmount *ump;
3645 
3646 	if (MOUNTEDSUJ(mp) == 0)
3647 		return;
3648 	ump = VFSTOUFS(mp);
3649 	jblocks = ump->softdep_jblocks;
3650 	ACQUIRE_LOCK(ump);
3651 	while (ump->softdep_on_journal) {
3652 		jblocks->jb_needseg = 1;
3653 		softdep_process_journal(mp, NULL, MNT_WAIT);
3654 	}
3655 	FREE_LOCK(ump);
3656 }
3657 
3658 static void softdep_synchronize_completed(struct bio *);
3659 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3660 
3661 static void
3662 softdep_synchronize_completed(bp)
3663         struct bio *bp;
3664 {
3665 	struct jseg *oldest;
3666 	struct jseg *jseg;
3667 	struct ufsmount *ump;
3668 
3669 	/*
3670 	 * caller1 marks the last segment written before we issued the
3671 	 * synchronize cache.
3672 	 */
3673 	jseg = bp->bio_caller1;
3674 	if (jseg == NULL) {
3675 		g_destroy_bio(bp);
3676 		return;
3677 	}
3678 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3679 	ACQUIRE_LOCK(ump);
3680 	oldest = NULL;
3681 	/*
3682 	 * Mark all the journal entries waiting on the synchronize cache
3683 	 * as completed so they may continue on.
3684 	 */
3685 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3686 		jseg->js_state |= COMPLETE;
3687 		oldest = jseg;
3688 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3689 	}
3690 	/*
3691 	 * Restart deferred journal entry processing from the oldest
3692 	 * completed jseg.
3693 	 */
3694 	if (oldest)
3695 		complete_jsegs(oldest);
3696 
3697 	FREE_LOCK(ump);
3698 	g_destroy_bio(bp);
3699 }
3700 
3701 /*
3702  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3703  * barriers.  The journal must be written prior to any blocks that depend
3704  * on it and the journal can not be released until the blocks have be
3705  * written.  This code handles both barriers simultaneously.
3706  */
3707 static void
3708 softdep_synchronize(bp, ump, caller1)
3709 	struct bio *bp;
3710 	struct ufsmount *ump;
3711 	void *caller1;
3712 {
3713 
3714 	bp->bio_cmd = BIO_FLUSH;
3715 	bp->bio_flags |= BIO_ORDERED;
3716 	bp->bio_data = NULL;
3717 	bp->bio_offset = ump->um_cp->provider->mediasize;
3718 	bp->bio_length = 0;
3719 	bp->bio_done = softdep_synchronize_completed;
3720 	bp->bio_caller1 = caller1;
3721 	g_io_request(bp, ump->um_cp);
3722 }
3723 
3724 /*
3725  * Flush some journal records to disk.
3726  */
3727 static void
3728 softdep_process_journal(mp, needwk, flags)
3729 	struct mount *mp;
3730 	struct worklist *needwk;
3731 	int flags;
3732 {
3733 	struct jblocks *jblocks;
3734 	struct ufsmount *ump;
3735 	struct worklist *wk;
3736 	struct jseg *jseg;
3737 	struct buf *bp;
3738 	struct bio *bio;
3739 	uint8_t *data;
3740 	struct fs *fs;
3741 	int shouldflush;
3742 	int segwritten;
3743 	int jrecmin;	/* Minimum records per block. */
3744 	int jrecmax;	/* Maximum records per block. */
3745 	int size;
3746 	int cnt;
3747 	int off;
3748 	int devbsize;
3749 
3750 	ump = VFSTOUFS(mp);
3751 	if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3752 		return;
3753 	shouldflush = softdep_flushcache;
3754 	bio = NULL;
3755 	jseg = NULL;
3756 	LOCK_OWNED(ump);
3757 	fs = ump->um_fs;
3758 	jblocks = ump->softdep_jblocks;
3759 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3760 	/*
3761 	 * We write anywhere between a disk block and fs block.  The upper
3762 	 * bound is picked to prevent buffer cache fragmentation and limit
3763 	 * processing time per I/O.
3764 	 */
3765 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3766 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3767 	segwritten = 0;
3768 	for (;;) {
3769 		cnt = ump->softdep_on_journal;
3770 		/*
3771 		 * Criteria for writing a segment:
3772 		 * 1) We have a full block.
3773 		 * 2) We're called from jwait() and haven't found the
3774 		 *    journal item yet.
3775 		 * 3) Always write if needseg is set.
3776 		 * 4) If we are called from process_worklist and have
3777 		 *    not yet written anything we write a partial block
3778 		 *    to enforce a 1 second maximum latency on journal
3779 		 *    entries.
3780 		 */
3781 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3782 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3783 			break;
3784 		cnt++;
3785 		/*
3786 		 * Verify some free journal space.  softdep_prealloc() should
3787 		 * guarantee that we don't run out so this is indicative of
3788 		 * a problem with the flow control.  Try to recover
3789 		 * gracefully in any event.
3790 		 */
3791 		while (jblocks->jb_free == 0) {
3792 			if (flags != MNT_WAIT)
3793 				break;
3794 			printf("softdep: Out of journal space!\n");
3795 			softdep_speedup(ump);
3796 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3797 		}
3798 		FREE_LOCK(ump);
3799 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3800 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3801 		LIST_INIT(&jseg->js_entries);
3802 		LIST_INIT(&jseg->js_indirs);
3803 		jseg->js_state = ATTACHED;
3804 		if (shouldflush == 0)
3805 			jseg->js_state |= COMPLETE;
3806 		else if (bio == NULL)
3807 			bio = g_alloc_bio();
3808 		jseg->js_jblocks = jblocks;
3809 		bp = geteblk(fs->fs_bsize, 0);
3810 		ACQUIRE_LOCK(ump);
3811 		/*
3812 		 * If there was a race while we were allocating the block
3813 		 * and jseg the entry we care about was likely written.
3814 		 * We bail out in both the WAIT and NOWAIT case and assume
3815 		 * the caller will loop if the entry it cares about is
3816 		 * not written.
3817 		 */
3818 		cnt = ump->softdep_on_journal;
3819 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3820 			bp->b_flags |= B_INVAL | B_NOCACHE;
3821 			WORKITEM_FREE(jseg, D_JSEG);
3822 			FREE_LOCK(ump);
3823 			brelse(bp);
3824 			ACQUIRE_LOCK(ump);
3825 			break;
3826 		}
3827 		/*
3828 		 * Calculate the disk block size required for the available
3829 		 * records rounded to the min size.
3830 		 */
3831 		if (cnt == 0)
3832 			size = devbsize;
3833 		else if (cnt < jrecmax)
3834 			size = howmany(cnt, jrecmin) * devbsize;
3835 		else
3836 			size = fs->fs_bsize;
3837 		/*
3838 		 * Allocate a disk block for this journal data and account
3839 		 * for truncation of the requested size if enough contiguous
3840 		 * space was not available.
3841 		 */
3842 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3843 		bp->b_lblkno = bp->b_blkno;
3844 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3845 		bp->b_bcount = size;
3846 		bp->b_flags &= ~B_INVAL;
3847 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3848 		/*
3849 		 * Initialize our jseg with cnt records.  Assign the next
3850 		 * sequence number to it and link it in-order.
3851 		 */
3852 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3853 		jseg->js_buf = bp;
3854 		jseg->js_cnt = cnt;
3855 		jseg->js_refs = cnt + 1;	/* Self ref. */
3856 		jseg->js_size = size;
3857 		jseg->js_seq = jblocks->jb_nextseq++;
3858 		if (jblocks->jb_oldestseg == NULL)
3859 			jblocks->jb_oldestseg = jseg;
3860 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3861 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3862 		if (jblocks->jb_writeseg == NULL)
3863 			jblocks->jb_writeseg = jseg;
3864 		/*
3865 		 * Start filling in records from the pending list.
3866 		 */
3867 		data = bp->b_data;
3868 		off = 0;
3869 
3870 		/*
3871 		 * Always put a header on the first block.
3872 		 * XXX As with below, there might not be a chance to get
3873 		 * into the loop.  Ensure that something valid is written.
3874 		 */
3875 		jseg_write(ump, jseg, data);
3876 		off += JREC_SIZE;
3877 		data = bp->b_data + off;
3878 
3879 		/*
3880 		 * XXX Something is wrong here.  There's no work to do,
3881 		 * but we need to perform and I/O and allow it to complete
3882 		 * anyways.
3883 		 */
3884 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3885 			stat_emptyjblocks++;
3886 
3887 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3888 		    != NULL) {
3889 			if (cnt == 0)
3890 				break;
3891 			/* Place a segment header on every device block. */
3892 			if ((off % devbsize) == 0) {
3893 				jseg_write(ump, jseg, data);
3894 				off += JREC_SIZE;
3895 				data = bp->b_data + off;
3896 			}
3897 			if (wk == needwk)
3898 				needwk = NULL;
3899 			remove_from_journal(wk);
3900 			wk->wk_state |= INPROGRESS;
3901 			WORKLIST_INSERT(&jseg->js_entries, wk);
3902 			switch (wk->wk_type) {
3903 			case D_JADDREF:
3904 				jaddref_write(WK_JADDREF(wk), jseg, data);
3905 				break;
3906 			case D_JREMREF:
3907 				jremref_write(WK_JREMREF(wk), jseg, data);
3908 				break;
3909 			case D_JMVREF:
3910 				jmvref_write(WK_JMVREF(wk), jseg, data);
3911 				break;
3912 			case D_JNEWBLK:
3913 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3914 				break;
3915 			case D_JFREEBLK:
3916 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3917 				break;
3918 			case D_JFREEFRAG:
3919 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3920 				break;
3921 			case D_JTRUNC:
3922 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3923 				break;
3924 			case D_JFSYNC:
3925 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3926 				break;
3927 			default:
3928 				panic("process_journal: Unknown type %s",
3929 				    TYPENAME(wk->wk_type));
3930 				/* NOTREACHED */
3931 			}
3932 			off += JREC_SIZE;
3933 			data = bp->b_data + off;
3934 			cnt--;
3935 		}
3936 
3937 		/* Clear any remaining space so we don't leak kernel data */
3938 		if (size > off)
3939 			bzero(data, size - off);
3940 
3941 		/*
3942 		 * Write this one buffer and continue.
3943 		 */
3944 		segwritten = 1;
3945 		jblocks->jb_needseg = 0;
3946 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3947 		FREE_LOCK(ump);
3948 		bp->b_xflags |= BX_CVTENXIO;
3949 		pbgetvp(ump->um_devvp, bp);
3950 		/*
3951 		 * We only do the blocking wait once we find the journal
3952 		 * entry we're looking for.
3953 		 */
3954 		if (needwk == NULL && flags == MNT_WAIT)
3955 			bwrite(bp);
3956 		else
3957 			bawrite(bp);
3958 		ACQUIRE_LOCK(ump);
3959 	}
3960 	/*
3961 	 * If we wrote a segment issue a synchronize cache so the journal
3962 	 * is reflected on disk before the data is written.  Since reclaiming
3963 	 * journal space also requires writing a journal record this
3964 	 * process also enforces a barrier before reclamation.
3965 	 */
3966 	if (segwritten && shouldflush) {
3967 		softdep_synchronize(bio, ump,
3968 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3969 	} else if (bio)
3970 		g_destroy_bio(bio);
3971 	/*
3972 	 * If we've suspended the filesystem because we ran out of journal
3973 	 * space either try to sync it here to make some progress or
3974 	 * unsuspend it if we already have.
3975 	 */
3976 	if (flags == 0 && jblocks->jb_suspended) {
3977 		if (journal_unsuspend(ump))
3978 			return;
3979 		FREE_LOCK(ump);
3980 		VFS_SYNC(mp, MNT_NOWAIT);
3981 		ffs_sbupdate(ump, MNT_WAIT, 0);
3982 		ACQUIRE_LOCK(ump);
3983 	}
3984 }
3985 
3986 /*
3987  * Complete a jseg, allowing all dependencies awaiting journal writes
3988  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3989  * structures so that the journal segment can be freed to reclaim space.
3990  */
3991 static void
3992 complete_jseg(jseg)
3993 	struct jseg *jseg;
3994 {
3995 	struct worklist *wk;
3996 	struct jmvref *jmvref;
3997 #ifdef INVARIANTS
3998 	int i = 0;
3999 #endif
4000 
4001 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
4002 		WORKLIST_REMOVE(wk);
4003 		wk->wk_state &= ~INPROGRESS;
4004 		wk->wk_state |= COMPLETE;
4005 		KASSERT(i++ < jseg->js_cnt,
4006 		    ("handle_written_jseg: overflow %d >= %d",
4007 		    i - 1, jseg->js_cnt));
4008 		switch (wk->wk_type) {
4009 		case D_JADDREF:
4010 			handle_written_jaddref(WK_JADDREF(wk));
4011 			break;
4012 		case D_JREMREF:
4013 			handle_written_jremref(WK_JREMREF(wk));
4014 			break;
4015 		case D_JMVREF:
4016 			rele_jseg(jseg);	/* No jsegdep. */
4017 			jmvref = WK_JMVREF(wk);
4018 			LIST_REMOVE(jmvref, jm_deps);
4019 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
4020 				free_pagedep(jmvref->jm_pagedep);
4021 			WORKITEM_FREE(jmvref, D_JMVREF);
4022 			break;
4023 		case D_JNEWBLK:
4024 			handle_written_jnewblk(WK_JNEWBLK(wk));
4025 			break;
4026 		case D_JFREEBLK:
4027 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
4028 			break;
4029 		case D_JTRUNC:
4030 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
4031 			break;
4032 		case D_JFSYNC:
4033 			rele_jseg(jseg);	/* No jsegdep. */
4034 			WORKITEM_FREE(wk, D_JFSYNC);
4035 			break;
4036 		case D_JFREEFRAG:
4037 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
4038 			break;
4039 		default:
4040 			panic("handle_written_jseg: Unknown type %s",
4041 			    TYPENAME(wk->wk_type));
4042 			/* NOTREACHED */
4043 		}
4044 	}
4045 	/* Release the self reference so the structure may be freed. */
4046 	rele_jseg(jseg);
4047 }
4048 
4049 /*
4050  * Determine which jsegs are ready for completion processing.  Waits for
4051  * synchronize cache to complete as well as forcing in-order completion
4052  * of journal entries.
4053  */
4054 static void
4055 complete_jsegs(jseg)
4056 	struct jseg *jseg;
4057 {
4058 	struct jblocks *jblocks;
4059 	struct jseg *jsegn;
4060 
4061 	jblocks = jseg->js_jblocks;
4062 	/*
4063 	 * Don't allow out of order completions.  If this isn't the first
4064 	 * block wait for it to write before we're done.
4065 	 */
4066 	if (jseg != jblocks->jb_writeseg)
4067 		return;
4068 	/* Iterate through available jsegs processing their entries. */
4069 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
4070 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
4071 		jsegn = TAILQ_NEXT(jseg, js_next);
4072 		complete_jseg(jseg);
4073 		jseg = jsegn;
4074 	}
4075 	jblocks->jb_writeseg = jseg;
4076 	/*
4077 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
4078 	 */
4079 	free_jsegs(jblocks);
4080 }
4081 
4082 /*
4083  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
4084  * the final completions.
4085  */
4086 static void
4087 handle_written_jseg(jseg, bp)
4088 	struct jseg *jseg;
4089 	struct buf *bp;
4090 {
4091 
4092 	if (jseg->js_refs == 0)
4093 		panic("handle_written_jseg: No self-reference on %p", jseg);
4094 	jseg->js_state |= DEPCOMPLETE;
4095 	/*
4096 	 * We'll never need this buffer again, set flags so it will be
4097 	 * discarded.
4098 	 */
4099 	bp->b_flags |= B_INVAL | B_NOCACHE;
4100 	pbrelvp(bp);
4101 	complete_jsegs(jseg);
4102 }
4103 
4104 static inline struct jsegdep *
4105 inoref_jseg(inoref)
4106 	struct inoref *inoref;
4107 {
4108 	struct jsegdep *jsegdep;
4109 
4110 	jsegdep = inoref->if_jsegdep;
4111 	inoref->if_jsegdep = NULL;
4112 
4113 	return (jsegdep);
4114 }
4115 
4116 /*
4117  * Called once a jremref has made it to stable store.  The jremref is marked
4118  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
4119  * for the jremref to complete will be awoken by free_jremref.
4120  */
4121 static void
4122 handle_written_jremref(jremref)
4123 	struct jremref *jremref;
4124 {
4125 	struct inodedep *inodedep;
4126 	struct jsegdep *jsegdep;
4127 	struct dirrem *dirrem;
4128 
4129 	/* Grab the jsegdep. */
4130 	jsegdep = inoref_jseg(&jremref->jr_ref);
4131 	/*
4132 	 * Remove us from the inoref list.
4133 	 */
4134 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4135 	    0, &inodedep) == 0)
4136 		panic("handle_written_jremref: Lost inodedep");
4137 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4138 	/*
4139 	 * Complete the dirrem.
4140 	 */
4141 	dirrem = jremref->jr_dirrem;
4142 	jremref->jr_dirrem = NULL;
4143 	LIST_REMOVE(jremref, jr_deps);
4144 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4145 	jwork_insert(&dirrem->dm_jwork, jsegdep);
4146 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4147 	    (dirrem->dm_state & COMPLETE) != 0)
4148 		add_to_worklist(&dirrem->dm_list, 0);
4149 	free_jremref(jremref);
4150 }
4151 
4152 /*
4153  * Called once a jaddref has made it to stable store.  The dependency is
4154  * marked complete and any dependent structures are added to the inode
4155  * bufwait list to be completed as soon as it is written.  If a bitmap write
4156  * depends on this entry we move the inode into the inodedephd of the
4157  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4158  */
4159 static void
4160 handle_written_jaddref(jaddref)
4161 	struct jaddref *jaddref;
4162 {
4163 	struct jsegdep *jsegdep;
4164 	struct inodedep *inodedep;
4165 	struct diradd *diradd;
4166 	struct mkdir *mkdir;
4167 
4168 	/* Grab the jsegdep. */
4169 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4170 	mkdir = NULL;
4171 	diradd = NULL;
4172 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4173 	    0, &inodedep) == 0)
4174 		panic("handle_written_jaddref: Lost inodedep.");
4175 	if (jaddref->ja_diradd == NULL)
4176 		panic("handle_written_jaddref: No dependency");
4177 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4178 		diradd = jaddref->ja_diradd;
4179 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4180 	} else if (jaddref->ja_state & MKDIR_PARENT) {
4181 		mkdir = jaddref->ja_mkdir;
4182 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4183 	} else if (jaddref->ja_state & MKDIR_BODY)
4184 		mkdir = jaddref->ja_mkdir;
4185 	else
4186 		panic("handle_written_jaddref: Unknown dependency %p",
4187 		    jaddref->ja_diradd);
4188 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
4189 	/*
4190 	 * Remove us from the inode list.
4191 	 */
4192 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4193 	/*
4194 	 * The mkdir may be waiting on the jaddref to clear before freeing.
4195 	 */
4196 	if (mkdir) {
4197 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4198 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
4199 		    TYPENAME(mkdir->md_list.wk_type)));
4200 		mkdir->md_jaddref = NULL;
4201 		diradd = mkdir->md_diradd;
4202 		mkdir->md_state |= DEPCOMPLETE;
4203 		complete_mkdir(mkdir);
4204 	}
4205 	jwork_insert(&diradd->da_jwork, jsegdep);
4206 	if (jaddref->ja_state & NEWBLOCK) {
4207 		inodedep->id_state |= ONDEPLIST;
4208 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4209 		    inodedep, id_deps);
4210 	}
4211 	free_jaddref(jaddref);
4212 }
4213 
4214 /*
4215  * Called once a jnewblk journal is written.  The allocdirect or allocindir
4216  * is placed in the bmsafemap to await notification of a written bitmap.  If
4217  * the operation was canceled we add the segdep to the appropriate
4218  * dependency to free the journal space once the canceling operation
4219  * completes.
4220  */
4221 static void
4222 handle_written_jnewblk(jnewblk)
4223 	struct jnewblk *jnewblk;
4224 {
4225 	struct bmsafemap *bmsafemap;
4226 	struct freefrag *freefrag;
4227 	struct freework *freework;
4228 	struct jsegdep *jsegdep;
4229 	struct newblk *newblk;
4230 
4231 	/* Grab the jsegdep. */
4232 	jsegdep = jnewblk->jn_jsegdep;
4233 	jnewblk->jn_jsegdep = NULL;
4234 	if (jnewblk->jn_dep == NULL)
4235 		panic("handle_written_jnewblk: No dependency for the segdep.");
4236 	switch (jnewblk->jn_dep->wk_type) {
4237 	case D_NEWBLK:
4238 	case D_ALLOCDIRECT:
4239 	case D_ALLOCINDIR:
4240 		/*
4241 		 * Add the written block to the bmsafemap so it can
4242 		 * be notified when the bitmap is on disk.
4243 		 */
4244 		newblk = WK_NEWBLK(jnewblk->jn_dep);
4245 		newblk->nb_jnewblk = NULL;
4246 		if ((newblk->nb_state & GOINGAWAY) == 0) {
4247 			bmsafemap = newblk->nb_bmsafemap;
4248 			newblk->nb_state |= ONDEPLIST;
4249 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4250 			    nb_deps);
4251 		}
4252 		jwork_insert(&newblk->nb_jwork, jsegdep);
4253 		break;
4254 	case D_FREEFRAG:
4255 		/*
4256 		 * A newblock being removed by a freefrag when replaced by
4257 		 * frag extension.
4258 		 */
4259 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4260 		freefrag->ff_jdep = NULL;
4261 		jwork_insert(&freefrag->ff_jwork, jsegdep);
4262 		break;
4263 	case D_FREEWORK:
4264 		/*
4265 		 * A direct block was removed by truncate.
4266 		 */
4267 		freework = WK_FREEWORK(jnewblk->jn_dep);
4268 		freework->fw_jnewblk = NULL;
4269 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4270 		break;
4271 	default:
4272 		panic("handle_written_jnewblk: Unknown type %d.",
4273 		    jnewblk->jn_dep->wk_type);
4274 	}
4275 	jnewblk->jn_dep = NULL;
4276 	free_jnewblk(jnewblk);
4277 }
4278 
4279 /*
4280  * Cancel a jfreefrag that won't be needed, probably due to colliding with
4281  * an in-flight allocation that has not yet been committed.  Divorce us
4282  * from the freefrag and mark it DEPCOMPLETE so that it may be added
4283  * to the worklist.
4284  */
4285 static void
4286 cancel_jfreefrag(jfreefrag)
4287 	struct jfreefrag *jfreefrag;
4288 {
4289 	struct freefrag *freefrag;
4290 
4291 	if (jfreefrag->fr_jsegdep) {
4292 		free_jsegdep(jfreefrag->fr_jsegdep);
4293 		jfreefrag->fr_jsegdep = NULL;
4294 	}
4295 	freefrag = jfreefrag->fr_freefrag;
4296 	jfreefrag->fr_freefrag = NULL;
4297 	free_jfreefrag(jfreefrag);
4298 	freefrag->ff_state |= DEPCOMPLETE;
4299 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4300 }
4301 
4302 /*
4303  * Free a jfreefrag when the parent freefrag is rendered obsolete.
4304  */
4305 static void
4306 free_jfreefrag(jfreefrag)
4307 	struct jfreefrag *jfreefrag;
4308 {
4309 
4310 	if (jfreefrag->fr_state & INPROGRESS)
4311 		WORKLIST_REMOVE(&jfreefrag->fr_list);
4312 	else if (jfreefrag->fr_state & ONWORKLIST)
4313 		remove_from_journal(&jfreefrag->fr_list);
4314 	if (jfreefrag->fr_freefrag != NULL)
4315 		panic("free_jfreefrag:  Still attached to a freefrag.");
4316 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4317 }
4318 
4319 /*
4320  * Called when the journal write for a jfreefrag completes.  The parent
4321  * freefrag is added to the worklist if this completes its dependencies.
4322  */
4323 static void
4324 handle_written_jfreefrag(jfreefrag)
4325 	struct jfreefrag *jfreefrag;
4326 {
4327 	struct jsegdep *jsegdep;
4328 	struct freefrag *freefrag;
4329 
4330 	/* Grab the jsegdep. */
4331 	jsegdep = jfreefrag->fr_jsegdep;
4332 	jfreefrag->fr_jsegdep = NULL;
4333 	freefrag = jfreefrag->fr_freefrag;
4334 	if (freefrag == NULL)
4335 		panic("handle_written_jfreefrag: No freefrag.");
4336 	freefrag->ff_state |= DEPCOMPLETE;
4337 	freefrag->ff_jdep = NULL;
4338 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4339 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4340 		add_to_worklist(&freefrag->ff_list, 0);
4341 	jfreefrag->fr_freefrag = NULL;
4342 	free_jfreefrag(jfreefrag);
4343 }
4344 
4345 /*
4346  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4347  * is removed from the freeblks list of pending journal writes and the
4348  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4349  * have been reclaimed.
4350  */
4351 static void
4352 handle_written_jblkdep(jblkdep)
4353 	struct jblkdep *jblkdep;
4354 {
4355 	struct freeblks *freeblks;
4356 	struct jsegdep *jsegdep;
4357 
4358 	/* Grab the jsegdep. */
4359 	jsegdep = jblkdep->jb_jsegdep;
4360 	jblkdep->jb_jsegdep = NULL;
4361 	freeblks = jblkdep->jb_freeblks;
4362 	LIST_REMOVE(jblkdep, jb_deps);
4363 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4364 	/*
4365 	 * If the freeblks is all journaled, we can add it to the worklist.
4366 	 */
4367 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4368 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4369 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4370 
4371 	free_jblkdep(jblkdep);
4372 }
4373 
4374 static struct jsegdep *
4375 newjsegdep(struct worklist *wk)
4376 {
4377 	struct jsegdep *jsegdep;
4378 
4379 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4380 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4381 	jsegdep->jd_seg = NULL;
4382 
4383 	return (jsegdep);
4384 }
4385 
4386 static struct jmvref *
4387 newjmvref(dp, ino, oldoff, newoff)
4388 	struct inode *dp;
4389 	ino_t ino;
4390 	off_t oldoff;
4391 	off_t newoff;
4392 {
4393 	struct jmvref *jmvref;
4394 
4395 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4396 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4397 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4398 	jmvref->jm_parent = dp->i_number;
4399 	jmvref->jm_ino = ino;
4400 	jmvref->jm_oldoff = oldoff;
4401 	jmvref->jm_newoff = newoff;
4402 
4403 	return (jmvref);
4404 }
4405 
4406 /*
4407  * Allocate a new jremref that tracks the removal of ip from dp with the
4408  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4409  * DEPCOMPLETE as we have all the information required for the journal write
4410  * and the directory has already been removed from the buffer.  The caller
4411  * is responsible for linking the jremref into the pagedep and adding it
4412  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4413  * a DOTDOT addition so handle_workitem_remove() can properly assign
4414  * the jsegdep when we're done.
4415  */
4416 static struct jremref *
4417 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4418     off_t diroff, nlink_t nlink)
4419 {
4420 	struct jremref *jremref;
4421 
4422 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4423 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4424 	jremref->jr_state = ATTACHED;
4425 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4426 	   nlink, ip->i_mode);
4427 	jremref->jr_dirrem = dirrem;
4428 
4429 	return (jremref);
4430 }
4431 
4432 static inline void
4433 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4434     nlink_t nlink, uint16_t mode)
4435 {
4436 
4437 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4438 	inoref->if_diroff = diroff;
4439 	inoref->if_ino = ino;
4440 	inoref->if_parent = parent;
4441 	inoref->if_nlink = nlink;
4442 	inoref->if_mode = mode;
4443 }
4444 
4445 /*
4446  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4447  * directory offset may not be known until later.  The caller is responsible
4448  * adding the entry to the journal when this information is available.  nlink
4449  * should be the link count prior to the addition and mode is only required
4450  * to have the correct FMT.
4451  */
4452 static struct jaddref *
4453 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4454     uint16_t mode)
4455 {
4456 	struct jaddref *jaddref;
4457 
4458 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4459 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4460 	jaddref->ja_state = ATTACHED;
4461 	jaddref->ja_mkdir = NULL;
4462 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4463 
4464 	return (jaddref);
4465 }
4466 
4467 /*
4468  * Create a new free dependency for a freework.  The caller is responsible
4469  * for adjusting the reference count when it has the lock held.  The freedep
4470  * will track an outstanding bitmap write that will ultimately clear the
4471  * freework to continue.
4472  */
4473 static struct freedep *
4474 newfreedep(struct freework *freework)
4475 {
4476 	struct freedep *freedep;
4477 
4478 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4479 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4480 	freedep->fd_freework = freework;
4481 
4482 	return (freedep);
4483 }
4484 
4485 /*
4486  * Free a freedep structure once the buffer it is linked to is written.  If
4487  * this is the last reference to the freework schedule it for completion.
4488  */
4489 static void
4490 free_freedep(freedep)
4491 	struct freedep *freedep;
4492 {
4493 	struct freework *freework;
4494 
4495 	freework = freedep->fd_freework;
4496 	freework->fw_freeblks->fb_cgwait--;
4497 	if (--freework->fw_ref == 0)
4498 		freework_enqueue(freework);
4499 	WORKITEM_FREE(freedep, D_FREEDEP);
4500 }
4501 
4502 /*
4503  * Allocate a new freework structure that may be a level in an indirect
4504  * when parent is not NULL or a top level block when it is.  The top level
4505  * freework structures are allocated without the per-filesystem lock held
4506  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4507  */
4508 static struct freework *
4509 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4510 	struct ufsmount *ump;
4511 	struct freeblks *freeblks;
4512 	struct freework *parent;
4513 	ufs_lbn_t lbn;
4514 	ufs2_daddr_t nb;
4515 	int frags;
4516 	int off;
4517 	int journal;
4518 {
4519 	struct freework *freework;
4520 
4521 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4522 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4523 	freework->fw_state = ATTACHED;
4524 	freework->fw_jnewblk = NULL;
4525 	freework->fw_freeblks = freeblks;
4526 	freework->fw_parent = parent;
4527 	freework->fw_lbn = lbn;
4528 	freework->fw_blkno = nb;
4529 	freework->fw_frags = frags;
4530 	freework->fw_indir = NULL;
4531 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4532 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4533 	freework->fw_start = freework->fw_off = off;
4534 	if (journal)
4535 		newjfreeblk(freeblks, lbn, nb, frags);
4536 	if (parent == NULL) {
4537 		ACQUIRE_LOCK(ump);
4538 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4539 		freeblks->fb_ref++;
4540 		FREE_LOCK(ump);
4541 	}
4542 
4543 	return (freework);
4544 }
4545 
4546 /*
4547  * Eliminate a jfreeblk for a block that does not need journaling.
4548  */
4549 static void
4550 cancel_jfreeblk(freeblks, blkno)
4551 	struct freeblks *freeblks;
4552 	ufs2_daddr_t blkno;
4553 {
4554 	struct jfreeblk *jfreeblk;
4555 	struct jblkdep *jblkdep;
4556 
4557 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4558 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4559 			continue;
4560 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4561 		if (jfreeblk->jf_blkno == blkno)
4562 			break;
4563 	}
4564 	if (jblkdep == NULL)
4565 		return;
4566 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4567 	free_jsegdep(jblkdep->jb_jsegdep);
4568 	LIST_REMOVE(jblkdep, jb_deps);
4569 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4570 }
4571 
4572 /*
4573  * Allocate a new jfreeblk to journal top level block pointer when truncating
4574  * a file.  The caller must add this to the worklist when the per-filesystem
4575  * lock is held.
4576  */
4577 static struct jfreeblk *
4578 newjfreeblk(freeblks, lbn, blkno, frags)
4579 	struct freeblks *freeblks;
4580 	ufs_lbn_t lbn;
4581 	ufs2_daddr_t blkno;
4582 	int frags;
4583 {
4584 	struct jfreeblk *jfreeblk;
4585 
4586 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4587 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4588 	    freeblks->fb_list.wk_mp);
4589 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4590 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4591 	jfreeblk->jf_ino = freeblks->fb_inum;
4592 	jfreeblk->jf_lbn = lbn;
4593 	jfreeblk->jf_blkno = blkno;
4594 	jfreeblk->jf_frags = frags;
4595 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4596 
4597 	return (jfreeblk);
4598 }
4599 
4600 /*
4601  * The journal is only prepared to handle full-size block numbers, so we
4602  * have to adjust the record to reflect the change to a full-size block.
4603  * For example, suppose we have a block made up of fragments 8-15 and
4604  * want to free its last two fragments. We are given a request that says:
4605  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4606  * where frags are the number of fragments to free and oldfrags are the
4607  * number of fragments to keep. To block align it, we have to change it to
4608  * have a valid full-size blkno, so it becomes:
4609  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4610  */
4611 static void
4612 adjust_newfreework(freeblks, frag_offset)
4613 	struct freeblks *freeblks;
4614 	int frag_offset;
4615 {
4616 	struct jfreeblk *jfreeblk;
4617 
4618 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4619 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4620 	    ("adjust_newfreework: Missing freeblks dependency"));
4621 
4622 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4623 	jfreeblk->jf_blkno -= frag_offset;
4624 	jfreeblk->jf_frags += frag_offset;
4625 }
4626 
4627 /*
4628  * Allocate a new jtrunc to track a partial truncation.
4629  */
4630 static struct jtrunc *
4631 newjtrunc(freeblks, size, extsize)
4632 	struct freeblks *freeblks;
4633 	off_t size;
4634 	int extsize;
4635 {
4636 	struct jtrunc *jtrunc;
4637 
4638 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4639 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4640 	    freeblks->fb_list.wk_mp);
4641 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4642 	jtrunc->jt_dep.jb_freeblks = freeblks;
4643 	jtrunc->jt_ino = freeblks->fb_inum;
4644 	jtrunc->jt_size = size;
4645 	jtrunc->jt_extsize = extsize;
4646 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4647 
4648 	return (jtrunc);
4649 }
4650 
4651 /*
4652  * If we're canceling a new bitmap we have to search for another ref
4653  * to move into the bmsafemap dep.  This might be better expressed
4654  * with another structure.
4655  */
4656 static void
4657 move_newblock_dep(jaddref, inodedep)
4658 	struct jaddref *jaddref;
4659 	struct inodedep *inodedep;
4660 {
4661 	struct inoref *inoref;
4662 	struct jaddref *jaddrefn;
4663 
4664 	jaddrefn = NULL;
4665 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4666 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4667 		if ((jaddref->ja_state & NEWBLOCK) &&
4668 		    inoref->if_list.wk_type == D_JADDREF) {
4669 			jaddrefn = (struct jaddref *)inoref;
4670 			break;
4671 		}
4672 	}
4673 	if (jaddrefn == NULL)
4674 		return;
4675 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4676 	jaddrefn->ja_state |= jaddref->ja_state &
4677 	    (ATTACHED | UNDONE | NEWBLOCK);
4678 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4679 	jaddref->ja_state |= ATTACHED;
4680 	LIST_REMOVE(jaddref, ja_bmdeps);
4681 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4682 	    ja_bmdeps);
4683 }
4684 
4685 /*
4686  * Cancel a jaddref either before it has been written or while it is being
4687  * written.  This happens when a link is removed before the add reaches
4688  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4689  * and inode to prevent the link count or bitmap from reaching the disk
4690  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4691  * required.
4692  *
4693  * Returns 1 if the canceled addref requires journaling of the remove and
4694  * 0 otherwise.
4695  */
4696 static int
4697 cancel_jaddref(jaddref, inodedep, wkhd)
4698 	struct jaddref *jaddref;
4699 	struct inodedep *inodedep;
4700 	struct workhead *wkhd;
4701 {
4702 	struct inoref *inoref;
4703 	struct jsegdep *jsegdep;
4704 	int needsj;
4705 
4706 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4707 	    ("cancel_jaddref: Canceling complete jaddref"));
4708 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4709 		needsj = 1;
4710 	else
4711 		needsj = 0;
4712 	if (inodedep == NULL)
4713 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4714 		    0, &inodedep) == 0)
4715 			panic("cancel_jaddref: Lost inodedep");
4716 	/*
4717 	 * We must adjust the nlink of any reference operation that follows
4718 	 * us so that it is consistent with the in-memory reference.  This
4719 	 * ensures that inode nlink rollbacks always have the correct link.
4720 	 */
4721 	if (needsj == 0) {
4722 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4723 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4724 			if (inoref->if_state & GOINGAWAY)
4725 				break;
4726 			inoref->if_nlink--;
4727 		}
4728 	}
4729 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4730 	if (jaddref->ja_state & NEWBLOCK)
4731 		move_newblock_dep(jaddref, inodedep);
4732 	wake_worklist(&jaddref->ja_list);
4733 	jaddref->ja_mkdir = NULL;
4734 	if (jaddref->ja_state & INPROGRESS) {
4735 		jaddref->ja_state &= ~INPROGRESS;
4736 		WORKLIST_REMOVE(&jaddref->ja_list);
4737 		jwork_insert(wkhd, jsegdep);
4738 	} else {
4739 		free_jsegdep(jsegdep);
4740 		if (jaddref->ja_state & DEPCOMPLETE)
4741 			remove_from_journal(&jaddref->ja_list);
4742 	}
4743 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4744 	/*
4745 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4746 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4747 	 * no longer need this addref attached to the inoreflst and it
4748 	 * will incorrectly adjust nlink if we leave it.
4749 	 */
4750 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4751 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4752 		    if_deps);
4753 		jaddref->ja_state |= COMPLETE;
4754 		free_jaddref(jaddref);
4755 		return (needsj);
4756 	}
4757 	/*
4758 	 * Leave the head of the list for jsegdeps for fast merging.
4759 	 */
4760 	if (LIST_FIRST(wkhd) != NULL) {
4761 		jaddref->ja_state |= ONWORKLIST;
4762 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4763 	} else
4764 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4765 
4766 	return (needsj);
4767 }
4768 
4769 /*
4770  * Attempt to free a jaddref structure when some work completes.  This
4771  * should only succeed once the entry is written and all dependencies have
4772  * been notified.
4773  */
4774 static void
4775 free_jaddref(jaddref)
4776 	struct jaddref *jaddref;
4777 {
4778 
4779 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4780 		return;
4781 	if (jaddref->ja_ref.if_jsegdep)
4782 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4783 		    jaddref, jaddref->ja_state);
4784 	if (jaddref->ja_state & NEWBLOCK)
4785 		LIST_REMOVE(jaddref, ja_bmdeps);
4786 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4787 		panic("free_jaddref: Bad state %p(0x%X)",
4788 		    jaddref, jaddref->ja_state);
4789 	if (jaddref->ja_mkdir != NULL)
4790 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4791 	WORKITEM_FREE(jaddref, D_JADDREF);
4792 }
4793 
4794 /*
4795  * Free a jremref structure once it has been written or discarded.
4796  */
4797 static void
4798 free_jremref(jremref)
4799 	struct jremref *jremref;
4800 {
4801 
4802 	if (jremref->jr_ref.if_jsegdep)
4803 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4804 	if (jremref->jr_state & INPROGRESS)
4805 		panic("free_jremref: IO still pending");
4806 	WORKITEM_FREE(jremref, D_JREMREF);
4807 }
4808 
4809 /*
4810  * Free a jnewblk structure.
4811  */
4812 static void
4813 free_jnewblk(jnewblk)
4814 	struct jnewblk *jnewblk;
4815 {
4816 
4817 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4818 		return;
4819 	LIST_REMOVE(jnewblk, jn_deps);
4820 	if (jnewblk->jn_dep != NULL)
4821 		panic("free_jnewblk: Dependency still attached.");
4822 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4823 }
4824 
4825 /*
4826  * Cancel a jnewblk which has been been made redundant by frag extension.
4827  */
4828 static void
4829 cancel_jnewblk(jnewblk, wkhd)
4830 	struct jnewblk *jnewblk;
4831 	struct workhead *wkhd;
4832 {
4833 	struct jsegdep *jsegdep;
4834 
4835 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4836 	jsegdep = jnewblk->jn_jsegdep;
4837 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4838 		panic("cancel_jnewblk: Invalid state");
4839 	jnewblk->jn_jsegdep  = NULL;
4840 	jnewblk->jn_dep = NULL;
4841 	jnewblk->jn_state |= GOINGAWAY;
4842 	if (jnewblk->jn_state & INPROGRESS) {
4843 		jnewblk->jn_state &= ~INPROGRESS;
4844 		WORKLIST_REMOVE(&jnewblk->jn_list);
4845 		jwork_insert(wkhd, jsegdep);
4846 	} else {
4847 		free_jsegdep(jsegdep);
4848 		remove_from_journal(&jnewblk->jn_list);
4849 	}
4850 	wake_worklist(&jnewblk->jn_list);
4851 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4852 }
4853 
4854 static void
4855 free_jblkdep(jblkdep)
4856 	struct jblkdep *jblkdep;
4857 {
4858 
4859 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4860 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4861 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4862 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4863 	else
4864 		panic("free_jblkdep: Unexpected type %s",
4865 		    TYPENAME(jblkdep->jb_list.wk_type));
4866 }
4867 
4868 /*
4869  * Free a single jseg once it is no longer referenced in memory or on
4870  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4871  * to disappear.
4872  */
4873 static void
4874 free_jseg(jseg, jblocks)
4875 	struct jseg *jseg;
4876 	struct jblocks *jblocks;
4877 {
4878 	struct freework *freework;
4879 
4880 	/*
4881 	 * Free freework structures that were lingering to indicate freed
4882 	 * indirect blocks that forced journal write ordering on reallocate.
4883 	 */
4884 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4885 		indirblk_remove(freework);
4886 	if (jblocks->jb_oldestseg == jseg)
4887 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4888 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4889 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4890 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4891 	    ("free_jseg: Freed jseg has valid entries."));
4892 	WORKITEM_FREE(jseg, D_JSEG);
4893 }
4894 
4895 /*
4896  * Free all jsegs that meet the criteria for being reclaimed and update
4897  * oldestseg.
4898  */
4899 static void
4900 free_jsegs(jblocks)
4901 	struct jblocks *jblocks;
4902 {
4903 	struct jseg *jseg;
4904 
4905 	/*
4906 	 * Free only those jsegs which have none allocated before them to
4907 	 * preserve the journal space ordering.
4908 	 */
4909 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4910 		/*
4911 		 * Only reclaim space when nothing depends on this journal
4912 		 * set and another set has written that it is no longer
4913 		 * valid.
4914 		 */
4915 		if (jseg->js_refs != 0) {
4916 			jblocks->jb_oldestseg = jseg;
4917 			return;
4918 		}
4919 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4920 			break;
4921 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4922 			break;
4923 		/*
4924 		 * We can free jsegs that didn't write entries when
4925 		 * oldestwrseq == js_seq.
4926 		 */
4927 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4928 		    jseg->js_cnt != 0)
4929 			break;
4930 		free_jseg(jseg, jblocks);
4931 	}
4932 	/*
4933 	 * If we exited the loop above we still must discover the
4934 	 * oldest valid segment.
4935 	 */
4936 	if (jseg)
4937 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4938 		     jseg = TAILQ_NEXT(jseg, js_next))
4939 			if (jseg->js_refs != 0)
4940 				break;
4941 	jblocks->jb_oldestseg = jseg;
4942 	/*
4943 	 * The journal has no valid records but some jsegs may still be
4944 	 * waiting on oldestwrseq to advance.  We force a small record
4945 	 * out to permit these lingering records to be reclaimed.
4946 	 */
4947 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4948 		jblocks->jb_needseg = 1;
4949 }
4950 
4951 /*
4952  * Release one reference to a jseg and free it if the count reaches 0.  This
4953  * should eventually reclaim journal space as well.
4954  */
4955 static void
4956 rele_jseg(jseg)
4957 	struct jseg *jseg;
4958 {
4959 
4960 	KASSERT(jseg->js_refs > 0,
4961 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4962 	if (--jseg->js_refs != 0)
4963 		return;
4964 	free_jsegs(jseg->js_jblocks);
4965 }
4966 
4967 /*
4968  * Release a jsegdep and decrement the jseg count.
4969  */
4970 static void
4971 free_jsegdep(jsegdep)
4972 	struct jsegdep *jsegdep;
4973 {
4974 
4975 	if (jsegdep->jd_seg)
4976 		rele_jseg(jsegdep->jd_seg);
4977 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4978 }
4979 
4980 /*
4981  * Wait for a journal item to make it to disk.  Initiate journal processing
4982  * if required.
4983  */
4984 static int
4985 jwait(wk, waitfor)
4986 	struct worklist *wk;
4987 	int waitfor;
4988 {
4989 
4990 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4991 	/*
4992 	 * Blocking journal waits cause slow synchronous behavior.  Record
4993 	 * stats on the frequency of these blocking operations.
4994 	 */
4995 	if (waitfor == MNT_WAIT) {
4996 		stat_journal_wait++;
4997 		switch (wk->wk_type) {
4998 		case D_JREMREF:
4999 		case D_JMVREF:
5000 			stat_jwait_filepage++;
5001 			break;
5002 		case D_JTRUNC:
5003 		case D_JFREEBLK:
5004 			stat_jwait_freeblks++;
5005 			break;
5006 		case D_JNEWBLK:
5007 			stat_jwait_newblk++;
5008 			break;
5009 		case D_JADDREF:
5010 			stat_jwait_inode++;
5011 			break;
5012 		default:
5013 			break;
5014 		}
5015 	}
5016 	/*
5017 	 * If IO has not started we process the journal.  We can't mark the
5018 	 * worklist item as IOWAITING because we drop the lock while
5019 	 * processing the journal and the worklist entry may be freed after
5020 	 * this point.  The caller may call back in and re-issue the request.
5021 	 */
5022 	if ((wk->wk_state & INPROGRESS) == 0) {
5023 		softdep_process_journal(wk->wk_mp, wk, waitfor);
5024 		if (waitfor != MNT_WAIT)
5025 			return (EBUSY);
5026 		return (0);
5027 	}
5028 	if (waitfor != MNT_WAIT)
5029 		return (EBUSY);
5030 	wait_worklist(wk, "jwait");
5031 	return (0);
5032 }
5033 
5034 /*
5035  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
5036  * appropriate.  This is a convenience function to reduce duplicate code
5037  * for the setup and revert functions below.
5038  */
5039 static struct inodedep *
5040 inodedep_lookup_ip(ip)
5041 	struct inode *ip;
5042 {
5043 	struct inodedep *inodedep;
5044 
5045 	KASSERT(ip->i_nlink >= ip->i_effnlink,
5046 	    ("inodedep_lookup_ip: bad delta"));
5047 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
5048 	    &inodedep);
5049 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
5050 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
5051 
5052 	return (inodedep);
5053 }
5054 
5055 /*
5056  * Called prior to creating a new inode and linking it to a directory.  The
5057  * jaddref structure must already be allocated by softdep_setup_inomapdep
5058  * and it is discovered here so we can initialize the mode and update
5059  * nlinkdelta.
5060  */
5061 void
5062 softdep_setup_create(dp, ip)
5063 	struct inode *dp;
5064 	struct inode *ip;
5065 {
5066 	struct inodedep *inodedep;
5067 	struct jaddref *jaddref;
5068 	struct vnode *dvp;
5069 
5070 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5071 	    ("softdep_setup_create called on non-softdep filesystem"));
5072 	KASSERT(ip->i_nlink == 1,
5073 	    ("softdep_setup_create: Invalid link count."));
5074 	dvp = ITOV(dp);
5075 	ACQUIRE_LOCK(ITOUMP(dp));
5076 	inodedep = inodedep_lookup_ip(ip);
5077 	if (DOINGSUJ(dvp)) {
5078 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5079 		    inoreflst);
5080 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
5081 		    ("softdep_setup_create: No addref structure present."));
5082 	}
5083 	FREE_LOCK(ITOUMP(dp));
5084 }
5085 
5086 /*
5087  * Create a jaddref structure to track the addition of a DOTDOT link when
5088  * we are reparenting an inode as part of a rename.  This jaddref will be
5089  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
5090  * non-journaling softdep.
5091  */
5092 void
5093 softdep_setup_dotdot_link(dp, ip)
5094 	struct inode *dp;
5095 	struct inode *ip;
5096 {
5097 	struct inodedep *inodedep;
5098 	struct jaddref *jaddref;
5099 	struct vnode *dvp;
5100 
5101 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5102 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
5103 	dvp = ITOV(dp);
5104 	jaddref = NULL;
5105 	/*
5106 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
5107 	 * is used as a normal link would be.
5108 	 */
5109 	if (DOINGSUJ(dvp))
5110 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5111 		    dp->i_effnlink - 1, dp->i_mode);
5112 	ACQUIRE_LOCK(ITOUMP(dp));
5113 	inodedep = inodedep_lookup_ip(dp);
5114 	if (jaddref)
5115 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5116 		    if_deps);
5117 	FREE_LOCK(ITOUMP(dp));
5118 }
5119 
5120 /*
5121  * Create a jaddref structure to track a new link to an inode.  The directory
5122  * offset is not known until softdep_setup_directory_add or
5123  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
5124  * softdep.
5125  */
5126 void
5127 softdep_setup_link(dp, ip)
5128 	struct inode *dp;
5129 	struct inode *ip;
5130 {
5131 	struct inodedep *inodedep;
5132 	struct jaddref *jaddref;
5133 	struct vnode *dvp;
5134 
5135 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5136 	    ("softdep_setup_link called on non-softdep filesystem"));
5137 	dvp = ITOV(dp);
5138 	jaddref = NULL;
5139 	if (DOINGSUJ(dvp))
5140 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
5141 		    ip->i_mode);
5142 	ACQUIRE_LOCK(ITOUMP(dp));
5143 	inodedep = inodedep_lookup_ip(ip);
5144 	if (jaddref)
5145 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5146 		    if_deps);
5147 	FREE_LOCK(ITOUMP(dp));
5148 }
5149 
5150 /*
5151  * Called to create the jaddref structures to track . and .. references as
5152  * well as lookup and further initialize the incomplete jaddref created
5153  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
5154  * nlinkdelta for non-journaling softdep.
5155  */
5156 void
5157 softdep_setup_mkdir(dp, ip)
5158 	struct inode *dp;
5159 	struct inode *ip;
5160 {
5161 	struct inodedep *inodedep;
5162 	struct jaddref *dotdotaddref;
5163 	struct jaddref *dotaddref;
5164 	struct jaddref *jaddref;
5165 	struct vnode *dvp;
5166 
5167 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5168 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
5169 	dvp = ITOV(dp);
5170 	dotaddref = dotdotaddref = NULL;
5171 	if (DOINGSUJ(dvp)) {
5172 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5173 		    ip->i_mode);
5174 		dotaddref->ja_state |= MKDIR_BODY;
5175 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5176 		    dp->i_effnlink - 1, dp->i_mode);
5177 		dotdotaddref->ja_state |= MKDIR_PARENT;
5178 	}
5179 	ACQUIRE_LOCK(ITOUMP(dp));
5180 	inodedep = inodedep_lookup_ip(ip);
5181 	if (DOINGSUJ(dvp)) {
5182 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5183 		    inoreflst);
5184 		KASSERT(jaddref != NULL,
5185 		    ("softdep_setup_mkdir: No addref structure present."));
5186 		KASSERT(jaddref->ja_parent == dp->i_number,
5187 		    ("softdep_setup_mkdir: bad parent %ju",
5188 		    (uintmax_t)jaddref->ja_parent));
5189 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5190 		    if_deps);
5191 	}
5192 	inodedep = inodedep_lookup_ip(dp);
5193 	if (DOINGSUJ(dvp))
5194 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5195 		    &dotdotaddref->ja_ref, if_deps);
5196 	FREE_LOCK(ITOUMP(dp));
5197 }
5198 
5199 /*
5200  * Called to track nlinkdelta of the inode and parent directories prior to
5201  * unlinking a directory.
5202  */
5203 void
5204 softdep_setup_rmdir(dp, ip)
5205 	struct inode *dp;
5206 	struct inode *ip;
5207 {
5208 	struct vnode *dvp;
5209 
5210 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5211 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
5212 	dvp = ITOV(dp);
5213 	ACQUIRE_LOCK(ITOUMP(dp));
5214 	(void) inodedep_lookup_ip(ip);
5215 	(void) inodedep_lookup_ip(dp);
5216 	FREE_LOCK(ITOUMP(dp));
5217 }
5218 
5219 /*
5220  * Called to track nlinkdelta of the inode and parent directories prior to
5221  * unlink.
5222  */
5223 void
5224 softdep_setup_unlink(dp, ip)
5225 	struct inode *dp;
5226 	struct inode *ip;
5227 {
5228 	struct vnode *dvp;
5229 
5230 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5231 	    ("softdep_setup_unlink called on non-softdep filesystem"));
5232 	dvp = ITOV(dp);
5233 	ACQUIRE_LOCK(ITOUMP(dp));
5234 	(void) inodedep_lookup_ip(ip);
5235 	(void) inodedep_lookup_ip(dp);
5236 	FREE_LOCK(ITOUMP(dp));
5237 }
5238 
5239 /*
5240  * Called to release the journal structures created by a failed non-directory
5241  * creation.  Adjusts nlinkdelta for non-journaling softdep.
5242  */
5243 void
5244 softdep_revert_create(dp, ip)
5245 	struct inode *dp;
5246 	struct inode *ip;
5247 {
5248 	struct inodedep *inodedep;
5249 	struct jaddref *jaddref;
5250 	struct vnode *dvp;
5251 
5252 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5253 	    ("softdep_revert_create called on non-softdep filesystem"));
5254 	dvp = ITOV(dp);
5255 	ACQUIRE_LOCK(ITOUMP(dp));
5256 	inodedep = inodedep_lookup_ip(ip);
5257 	if (DOINGSUJ(dvp)) {
5258 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5259 		    inoreflst);
5260 		KASSERT(jaddref->ja_parent == dp->i_number,
5261 		    ("softdep_revert_create: addref parent mismatch"));
5262 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5263 	}
5264 	FREE_LOCK(ITOUMP(dp));
5265 }
5266 
5267 /*
5268  * Called to release the journal structures created by a failed link
5269  * addition.  Adjusts nlinkdelta for non-journaling softdep.
5270  */
5271 void
5272 softdep_revert_link(dp, ip)
5273 	struct inode *dp;
5274 	struct inode *ip;
5275 {
5276 	struct inodedep *inodedep;
5277 	struct jaddref *jaddref;
5278 	struct vnode *dvp;
5279 
5280 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5281 	    ("softdep_revert_link called on non-softdep filesystem"));
5282 	dvp = ITOV(dp);
5283 	ACQUIRE_LOCK(ITOUMP(dp));
5284 	inodedep = inodedep_lookup_ip(ip);
5285 	if (DOINGSUJ(dvp)) {
5286 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5287 		    inoreflst);
5288 		KASSERT(jaddref->ja_parent == dp->i_number,
5289 		    ("softdep_revert_link: addref parent mismatch"));
5290 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5291 	}
5292 	FREE_LOCK(ITOUMP(dp));
5293 }
5294 
5295 /*
5296  * Called to release the journal structures created by a failed mkdir
5297  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
5298  */
5299 void
5300 softdep_revert_mkdir(dp, ip)
5301 	struct inode *dp;
5302 	struct inode *ip;
5303 {
5304 	struct inodedep *inodedep;
5305 	struct jaddref *jaddref;
5306 	struct jaddref *dotaddref;
5307 	struct vnode *dvp;
5308 
5309 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5310 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
5311 	dvp = ITOV(dp);
5312 
5313 	ACQUIRE_LOCK(ITOUMP(dp));
5314 	inodedep = inodedep_lookup_ip(dp);
5315 	if (DOINGSUJ(dvp)) {
5316 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5317 		    inoreflst);
5318 		KASSERT(jaddref->ja_parent == ip->i_number,
5319 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
5320 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5321 	}
5322 	inodedep = inodedep_lookup_ip(ip);
5323 	if (DOINGSUJ(dvp)) {
5324 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5325 		    inoreflst);
5326 		KASSERT(jaddref->ja_parent == dp->i_number,
5327 		    ("softdep_revert_mkdir: addref parent mismatch"));
5328 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5329 		    inoreflst, if_deps);
5330 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5331 		KASSERT(dotaddref->ja_parent == ip->i_number,
5332 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5333 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5334 	}
5335 	FREE_LOCK(ITOUMP(dp));
5336 }
5337 
5338 /*
5339  * Called to correct nlinkdelta after a failed rmdir.
5340  */
5341 void
5342 softdep_revert_rmdir(dp, ip)
5343 	struct inode *dp;
5344 	struct inode *ip;
5345 {
5346 
5347 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5348 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5349 	ACQUIRE_LOCK(ITOUMP(dp));
5350 	(void) inodedep_lookup_ip(ip);
5351 	(void) inodedep_lookup_ip(dp);
5352 	FREE_LOCK(ITOUMP(dp));
5353 }
5354 
5355 /*
5356  * Protecting the freemaps (or bitmaps).
5357  *
5358  * To eliminate the need to execute fsck before mounting a filesystem
5359  * after a power failure, one must (conservatively) guarantee that the
5360  * on-disk copy of the bitmaps never indicate that a live inode or block is
5361  * free.  So, when a block or inode is allocated, the bitmap should be
5362  * updated (on disk) before any new pointers.  When a block or inode is
5363  * freed, the bitmap should not be updated until all pointers have been
5364  * reset.  The latter dependency is handled by the delayed de-allocation
5365  * approach described below for block and inode de-allocation.  The former
5366  * dependency is handled by calling the following procedure when a block or
5367  * inode is allocated. When an inode is allocated an "inodedep" is created
5368  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5369  * Each "inodedep" is also inserted into the hash indexing structure so
5370  * that any additional link additions can be made dependent on the inode
5371  * allocation.
5372  *
5373  * The ufs filesystem maintains a number of free block counts (e.g., per
5374  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5375  * in addition to the bitmaps.  These counts are used to improve efficiency
5376  * during allocation and therefore must be consistent with the bitmaps.
5377  * There is no convenient way to guarantee post-crash consistency of these
5378  * counts with simple update ordering, for two main reasons: (1) The counts
5379  * and bitmaps for a single cylinder group block are not in the same disk
5380  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5381  * be written and the other not.  (2) Some of the counts are located in the
5382  * superblock rather than the cylinder group block. So, we focus our soft
5383  * updates implementation on protecting the bitmaps. When mounting a
5384  * filesystem, we recompute the auxiliary counts from the bitmaps.
5385  */
5386 
5387 /*
5388  * Called just after updating the cylinder group block to allocate an inode.
5389  */
5390 void
5391 softdep_setup_inomapdep(bp, ip, newinum, mode)
5392 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5393 	struct inode *ip;	/* inode related to allocation */
5394 	ino_t newinum;		/* new inode number being allocated */
5395 	int mode;
5396 {
5397 	struct inodedep *inodedep;
5398 	struct bmsafemap *bmsafemap;
5399 	struct jaddref *jaddref;
5400 	struct mount *mp;
5401 	struct fs *fs;
5402 
5403 	mp = ITOVFS(ip);
5404 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5405 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5406 	fs = VFSTOUFS(mp)->um_fs;
5407 	jaddref = NULL;
5408 
5409 	/*
5410 	 * Allocate the journal reference add structure so that the bitmap
5411 	 * can be dependent on it.
5412 	 */
5413 	if (MOUNTEDSUJ(mp)) {
5414 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5415 		jaddref->ja_state |= NEWBLOCK;
5416 	}
5417 
5418 	/*
5419 	 * Create a dependency for the newly allocated inode.
5420 	 * Panic if it already exists as something is seriously wrong.
5421 	 * Otherwise add it to the dependency list for the buffer holding
5422 	 * the cylinder group map from which it was allocated.
5423 	 *
5424 	 * We have to preallocate a bmsafemap entry in case it is needed
5425 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5426 	 * have to finish initializing it before we can FREE_LOCK().
5427 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5428 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5429 	 * creating the inodedep as it can be freed during the time
5430 	 * that we FREE_LOCK() while allocating the inodedep. We must
5431 	 * call workitem_alloc() before entering the locked section as
5432 	 * it also acquires the lock and we must avoid trying doing so
5433 	 * recursively.
5434 	 */
5435 	bmsafemap = malloc(sizeof(struct bmsafemap),
5436 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5437 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5438 	ACQUIRE_LOCK(ITOUMP(ip));
5439 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5440 		panic("softdep_setup_inomapdep: dependency %p for new"
5441 		    "inode already exists", inodedep);
5442 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5443 	if (jaddref) {
5444 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5445 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5446 		    if_deps);
5447 	} else {
5448 		inodedep->id_state |= ONDEPLIST;
5449 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5450 	}
5451 	inodedep->id_bmsafemap = bmsafemap;
5452 	inodedep->id_state &= ~DEPCOMPLETE;
5453 	FREE_LOCK(ITOUMP(ip));
5454 }
5455 
5456 /*
5457  * Called just after updating the cylinder group block to
5458  * allocate block or fragment.
5459  */
5460 void
5461 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5462 	struct buf *bp;		/* buffer for cylgroup block with block map */
5463 	struct mount *mp;	/* filesystem doing allocation */
5464 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5465 	int frags;		/* Number of fragments. */
5466 	int oldfrags;		/* Previous number of fragments for extend. */
5467 {
5468 	struct newblk *newblk;
5469 	struct bmsafemap *bmsafemap;
5470 	struct jnewblk *jnewblk;
5471 	struct ufsmount *ump;
5472 	struct fs *fs;
5473 
5474 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5475 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5476 	ump = VFSTOUFS(mp);
5477 	fs = ump->um_fs;
5478 	jnewblk = NULL;
5479 	/*
5480 	 * Create a dependency for the newly allocated block.
5481 	 * Add it to the dependency list for the buffer holding
5482 	 * the cylinder group map from which it was allocated.
5483 	 */
5484 	if (MOUNTEDSUJ(mp)) {
5485 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5486 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5487 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5488 		jnewblk->jn_state = ATTACHED;
5489 		jnewblk->jn_blkno = newblkno;
5490 		jnewblk->jn_frags = frags;
5491 		jnewblk->jn_oldfrags = oldfrags;
5492 #ifdef INVARIANTS
5493 		{
5494 			struct cg *cgp;
5495 			uint8_t *blksfree;
5496 			long bno;
5497 			int i;
5498 
5499 			cgp = (struct cg *)bp->b_data;
5500 			blksfree = cg_blksfree(cgp);
5501 			bno = dtogd(fs, jnewblk->jn_blkno);
5502 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5503 			    i++) {
5504 				if (isset(blksfree, bno + i))
5505 					panic("softdep_setup_blkmapdep: "
5506 					    "free fragment %d from %d-%d "
5507 					    "state 0x%X dep %p", i,
5508 					    jnewblk->jn_oldfrags,
5509 					    jnewblk->jn_frags,
5510 					    jnewblk->jn_state,
5511 					    jnewblk->jn_dep);
5512 			}
5513 		}
5514 #endif
5515 	}
5516 
5517 	CTR3(KTR_SUJ,
5518 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5519 	    newblkno, frags, oldfrags);
5520 	ACQUIRE_LOCK(ump);
5521 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5522 		panic("softdep_setup_blkmapdep: found block");
5523 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5524 	    dtog(fs, newblkno), NULL);
5525 	if (jnewblk) {
5526 		jnewblk->jn_dep = (struct worklist *)newblk;
5527 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5528 	} else {
5529 		newblk->nb_state |= ONDEPLIST;
5530 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5531 	}
5532 	newblk->nb_bmsafemap = bmsafemap;
5533 	newblk->nb_jnewblk = jnewblk;
5534 	FREE_LOCK(ump);
5535 }
5536 
5537 #define	BMSAFEMAP_HASH(ump, cg) \
5538       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5539 
5540 static int
5541 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5542 	struct bmsafemap_hashhead *bmsafemaphd;
5543 	int cg;
5544 	struct bmsafemap **bmsafemapp;
5545 {
5546 	struct bmsafemap *bmsafemap;
5547 
5548 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5549 		if (bmsafemap->sm_cg == cg)
5550 			break;
5551 	if (bmsafemap) {
5552 		*bmsafemapp = bmsafemap;
5553 		return (1);
5554 	}
5555 	*bmsafemapp = NULL;
5556 
5557 	return (0);
5558 }
5559 
5560 /*
5561  * Find the bmsafemap associated with a cylinder group buffer.
5562  * If none exists, create one. The buffer must be locked when
5563  * this routine is called and this routine must be called with
5564  * the softdep lock held. To avoid giving up the lock while
5565  * allocating a new bmsafemap, a preallocated bmsafemap may be
5566  * provided. If it is provided but not needed, it is freed.
5567  */
5568 static struct bmsafemap *
5569 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5570 	struct mount *mp;
5571 	struct buf *bp;
5572 	int cg;
5573 	struct bmsafemap *newbmsafemap;
5574 {
5575 	struct bmsafemap_hashhead *bmsafemaphd;
5576 	struct bmsafemap *bmsafemap, *collision;
5577 	struct worklist *wk;
5578 	struct ufsmount *ump;
5579 
5580 	ump = VFSTOUFS(mp);
5581 	LOCK_OWNED(ump);
5582 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5583 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5584 		if (wk->wk_type == D_BMSAFEMAP) {
5585 			if (newbmsafemap)
5586 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5587 			return (WK_BMSAFEMAP(wk));
5588 		}
5589 	}
5590 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5591 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5592 		if (newbmsafemap)
5593 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5594 		return (bmsafemap);
5595 	}
5596 	if (newbmsafemap) {
5597 		bmsafemap = newbmsafemap;
5598 	} else {
5599 		FREE_LOCK(ump);
5600 		bmsafemap = malloc(sizeof(struct bmsafemap),
5601 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5602 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5603 		ACQUIRE_LOCK(ump);
5604 	}
5605 	bmsafemap->sm_buf = bp;
5606 	LIST_INIT(&bmsafemap->sm_inodedephd);
5607 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5608 	LIST_INIT(&bmsafemap->sm_newblkhd);
5609 	LIST_INIT(&bmsafemap->sm_newblkwr);
5610 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5611 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5612 	LIST_INIT(&bmsafemap->sm_freehd);
5613 	LIST_INIT(&bmsafemap->sm_freewr);
5614 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5615 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5616 		return (collision);
5617 	}
5618 	bmsafemap->sm_cg = cg;
5619 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5620 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5621 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5622 	return (bmsafemap);
5623 }
5624 
5625 /*
5626  * Direct block allocation dependencies.
5627  *
5628  * When a new block is allocated, the corresponding disk locations must be
5629  * initialized (with zeros or new data) before the on-disk inode points to
5630  * them.  Also, the freemap from which the block was allocated must be
5631  * updated (on disk) before the inode's pointer. These two dependencies are
5632  * independent of each other and are needed for all file blocks and indirect
5633  * blocks that are pointed to directly by the inode.  Just before the
5634  * "in-core" version of the inode is updated with a newly allocated block
5635  * number, a procedure (below) is called to setup allocation dependency
5636  * structures.  These structures are removed when the corresponding
5637  * dependencies are satisfied or when the block allocation becomes obsolete
5638  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5639  * fragment that gets upgraded).  All of these cases are handled in
5640  * procedures described later.
5641  *
5642  * When a file extension causes a fragment to be upgraded, either to a larger
5643  * fragment or to a full block, the on-disk location may change (if the
5644  * previous fragment could not simply be extended). In this case, the old
5645  * fragment must be de-allocated, but not until after the inode's pointer has
5646  * been updated. In most cases, this is handled by later procedures, which
5647  * will construct a "freefrag" structure to be added to the workitem queue
5648  * when the inode update is complete (or obsolete).  The main exception to
5649  * this is when an allocation occurs while a pending allocation dependency
5650  * (for the same block pointer) remains.  This case is handled in the main
5651  * allocation dependency setup procedure by immediately freeing the
5652  * unreferenced fragments.
5653  */
5654 void
5655 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5656 	struct inode *ip;	/* inode to which block is being added */
5657 	ufs_lbn_t off;		/* block pointer within inode */
5658 	ufs2_daddr_t newblkno;	/* disk block number being added */
5659 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5660 	long newsize;		/* size of new block */
5661 	long oldsize;		/* size of new block */
5662 	struct buf *bp;		/* bp for allocated block */
5663 {
5664 	struct allocdirect *adp, *oldadp;
5665 	struct allocdirectlst *adphead;
5666 	struct freefrag *freefrag;
5667 	struct inodedep *inodedep;
5668 	struct pagedep *pagedep;
5669 	struct jnewblk *jnewblk;
5670 	struct newblk *newblk;
5671 	struct mount *mp;
5672 	ufs_lbn_t lbn;
5673 
5674 	lbn = bp->b_lblkno;
5675 	mp = ITOVFS(ip);
5676 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5677 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5678 	if (oldblkno && oldblkno != newblkno)
5679 		/*
5680 		 * The usual case is that a smaller fragment that
5681 		 * was just allocated has been replaced with a bigger
5682 		 * fragment or a full-size block. If it is marked as
5683 		 * B_DELWRI, the current contents have not been written
5684 		 * to disk. It is possible that the block was written
5685 		 * earlier, but very uncommon. If the block has never
5686 		 * been written, there is no need to send a BIO_DELETE
5687 		 * for it when it is freed. The gain from avoiding the
5688 		 * TRIMs for the common case of unwritten blocks far
5689 		 * exceeds the cost of the write amplification for the
5690 		 * uncommon case of failing to send a TRIM for a block
5691 		 * that had been written.
5692 		 */
5693 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5694 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5695 	else
5696 		freefrag = NULL;
5697 
5698 	CTR6(KTR_SUJ,
5699 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5700 	    "off %jd newsize %ld oldsize %d",
5701 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5702 	ACQUIRE_LOCK(ITOUMP(ip));
5703 	if (off >= UFS_NDADDR) {
5704 		if (lbn > 0)
5705 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5706 			    lbn, off);
5707 		/* allocating an indirect block */
5708 		if (oldblkno != 0)
5709 			panic("softdep_setup_allocdirect: non-zero indir");
5710 	} else {
5711 		if (off != lbn)
5712 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5713 			    lbn, off);
5714 		/*
5715 		 * Allocating a direct block.
5716 		 *
5717 		 * If we are allocating a directory block, then we must
5718 		 * allocate an associated pagedep to track additions and
5719 		 * deletions.
5720 		 */
5721 		if ((ip->i_mode & IFMT) == IFDIR)
5722 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5723 			    &pagedep);
5724 	}
5725 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5726 		panic("softdep_setup_allocdirect: lost block");
5727 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5728 	    ("softdep_setup_allocdirect: newblk already initialized"));
5729 	/*
5730 	 * Convert the newblk to an allocdirect.
5731 	 */
5732 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5733 	adp = (struct allocdirect *)newblk;
5734 	newblk->nb_freefrag = freefrag;
5735 	adp->ad_offset = off;
5736 	adp->ad_oldblkno = oldblkno;
5737 	adp->ad_newsize = newsize;
5738 	adp->ad_oldsize = oldsize;
5739 
5740 	/*
5741 	 * Finish initializing the journal.
5742 	 */
5743 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5744 		jnewblk->jn_ino = ip->i_number;
5745 		jnewblk->jn_lbn = lbn;
5746 		add_to_journal(&jnewblk->jn_list);
5747 	}
5748 	if (freefrag && freefrag->ff_jdep != NULL &&
5749 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5750 		add_to_journal(freefrag->ff_jdep);
5751 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5752 	adp->ad_inodedep = inodedep;
5753 
5754 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5755 	/*
5756 	 * The list of allocdirects must be kept in sorted and ascending
5757 	 * order so that the rollback routines can quickly determine the
5758 	 * first uncommitted block (the size of the file stored on disk
5759 	 * ends at the end of the lowest committed fragment, or if there
5760 	 * are no fragments, at the end of the highest committed block).
5761 	 * Since files generally grow, the typical case is that the new
5762 	 * block is to be added at the end of the list. We speed this
5763 	 * special case by checking against the last allocdirect in the
5764 	 * list before laboriously traversing the list looking for the
5765 	 * insertion point.
5766 	 */
5767 	adphead = &inodedep->id_newinoupdt;
5768 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5769 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5770 		/* insert at end of list */
5771 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5772 		if (oldadp != NULL && oldadp->ad_offset == off)
5773 			allocdirect_merge(adphead, adp, oldadp);
5774 		FREE_LOCK(ITOUMP(ip));
5775 		return;
5776 	}
5777 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5778 		if (oldadp->ad_offset >= off)
5779 			break;
5780 	}
5781 	if (oldadp == NULL)
5782 		panic("softdep_setup_allocdirect: lost entry");
5783 	/* insert in middle of list */
5784 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5785 	if (oldadp->ad_offset == off)
5786 		allocdirect_merge(adphead, adp, oldadp);
5787 
5788 	FREE_LOCK(ITOUMP(ip));
5789 }
5790 
5791 /*
5792  * Merge a newer and older journal record to be stored either in a
5793  * newblock or freefrag.  This handles aggregating journal records for
5794  * fragment allocation into a second record as well as replacing a
5795  * journal free with an aborted journal allocation.  A segment for the
5796  * oldest record will be placed on wkhd if it has been written.  If not
5797  * the segment for the newer record will suffice.
5798  */
5799 static struct worklist *
5800 jnewblk_merge(new, old, wkhd)
5801 	struct worklist *new;
5802 	struct worklist *old;
5803 	struct workhead *wkhd;
5804 {
5805 	struct jnewblk *njnewblk;
5806 	struct jnewblk *jnewblk;
5807 
5808 	/* Handle NULLs to simplify callers. */
5809 	if (new == NULL)
5810 		return (old);
5811 	if (old == NULL)
5812 		return (new);
5813 	/* Replace a jfreefrag with a jnewblk. */
5814 	if (new->wk_type == D_JFREEFRAG) {
5815 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5816 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5817 			    old, new);
5818 		cancel_jfreefrag(WK_JFREEFRAG(new));
5819 		return (old);
5820 	}
5821 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5822 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5823 		    old->wk_type, new->wk_type);
5824 	/*
5825 	 * Handle merging of two jnewblk records that describe
5826 	 * different sets of fragments in the same block.
5827 	 */
5828 	jnewblk = WK_JNEWBLK(old);
5829 	njnewblk = WK_JNEWBLK(new);
5830 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5831 		panic("jnewblk_merge: Merging disparate blocks.");
5832 	/*
5833 	 * The record may be rolled back in the cg.
5834 	 */
5835 	if (jnewblk->jn_state & UNDONE) {
5836 		jnewblk->jn_state &= ~UNDONE;
5837 		njnewblk->jn_state |= UNDONE;
5838 		njnewblk->jn_state &= ~ATTACHED;
5839 	}
5840 	/*
5841 	 * We modify the newer addref and free the older so that if neither
5842 	 * has been written the most up-to-date copy will be on disk.  If
5843 	 * both have been written but rolled back we only temporarily need
5844 	 * one of them to fix the bits when the cg write completes.
5845 	 */
5846 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5847 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5848 	cancel_jnewblk(jnewblk, wkhd);
5849 	WORKLIST_REMOVE(&jnewblk->jn_list);
5850 	free_jnewblk(jnewblk);
5851 	return (new);
5852 }
5853 
5854 /*
5855  * Replace an old allocdirect dependency with a newer one.
5856  */
5857 static void
5858 allocdirect_merge(adphead, newadp, oldadp)
5859 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5860 	struct allocdirect *newadp;	/* allocdirect being added */
5861 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5862 {
5863 	struct worklist *wk;
5864 	struct freefrag *freefrag;
5865 
5866 	freefrag = NULL;
5867 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5868 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5869 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5870 	    newadp->ad_offset >= UFS_NDADDR)
5871 		panic("%s %jd != new %jd || old size %ld != new %ld",
5872 		    "allocdirect_merge: old blkno",
5873 		    (intmax_t)newadp->ad_oldblkno,
5874 		    (intmax_t)oldadp->ad_newblkno,
5875 		    newadp->ad_oldsize, oldadp->ad_newsize);
5876 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5877 	newadp->ad_oldsize = oldadp->ad_oldsize;
5878 	/*
5879 	 * If the old dependency had a fragment to free or had never
5880 	 * previously had a block allocated, then the new dependency
5881 	 * can immediately post its freefrag and adopt the old freefrag.
5882 	 * This action is done by swapping the freefrag dependencies.
5883 	 * The new dependency gains the old one's freefrag, and the
5884 	 * old one gets the new one and then immediately puts it on
5885 	 * the worklist when it is freed by free_newblk. It is
5886 	 * not possible to do this swap when the old dependency had a
5887 	 * non-zero size but no previous fragment to free. This condition
5888 	 * arises when the new block is an extension of the old block.
5889 	 * Here, the first part of the fragment allocated to the new
5890 	 * dependency is part of the block currently claimed on disk by
5891 	 * the old dependency, so cannot legitimately be freed until the
5892 	 * conditions for the new dependency are fulfilled.
5893 	 */
5894 	freefrag = newadp->ad_freefrag;
5895 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5896 		newadp->ad_freefrag = oldadp->ad_freefrag;
5897 		oldadp->ad_freefrag = freefrag;
5898 	}
5899 	/*
5900 	 * If we are tracking a new directory-block allocation,
5901 	 * move it from the old allocdirect to the new allocdirect.
5902 	 */
5903 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5904 		WORKLIST_REMOVE(wk);
5905 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5906 			panic("allocdirect_merge: extra newdirblk");
5907 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5908 	}
5909 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5910 	/*
5911 	 * We need to move any journal dependencies over to the freefrag
5912 	 * that releases this block if it exists.  Otherwise we are
5913 	 * extending an existing block and we'll wait until that is
5914 	 * complete to release the journal space and extend the
5915 	 * new journal to cover this old space as well.
5916 	 */
5917 	if (freefrag == NULL) {
5918 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5919 			panic("allocdirect_merge: %jd != %jd",
5920 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5921 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5922 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5923 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5924 		    &newadp->ad_block.nb_jwork);
5925 		oldadp->ad_block.nb_jnewblk = NULL;
5926 		cancel_newblk(&oldadp->ad_block, NULL,
5927 		    &newadp->ad_block.nb_jwork);
5928 	} else {
5929 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5930 		    &freefrag->ff_list, &freefrag->ff_jwork);
5931 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5932 		    &freefrag->ff_jwork);
5933 	}
5934 	free_newblk(&oldadp->ad_block);
5935 }
5936 
5937 /*
5938  * Allocate a jfreefrag structure to journal a single block free.
5939  */
5940 static struct jfreefrag *
5941 newjfreefrag(freefrag, ip, blkno, size, lbn)
5942 	struct freefrag *freefrag;
5943 	struct inode *ip;
5944 	ufs2_daddr_t blkno;
5945 	long size;
5946 	ufs_lbn_t lbn;
5947 {
5948 	struct jfreefrag *jfreefrag;
5949 	struct fs *fs;
5950 
5951 	fs = ITOFS(ip);
5952 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5953 	    M_SOFTDEP_FLAGS);
5954 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5955 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5956 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5957 	jfreefrag->fr_ino = ip->i_number;
5958 	jfreefrag->fr_lbn = lbn;
5959 	jfreefrag->fr_blkno = blkno;
5960 	jfreefrag->fr_frags = numfrags(fs, size);
5961 	jfreefrag->fr_freefrag = freefrag;
5962 
5963 	return (jfreefrag);
5964 }
5965 
5966 /*
5967  * Allocate a new freefrag structure.
5968  */
5969 static struct freefrag *
5970 newfreefrag(ip, blkno, size, lbn, key)
5971 	struct inode *ip;
5972 	ufs2_daddr_t blkno;
5973 	long size;
5974 	ufs_lbn_t lbn;
5975 	u_long key;
5976 {
5977 	struct freefrag *freefrag;
5978 	struct ufsmount *ump;
5979 	struct fs *fs;
5980 
5981 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5982 	    ip->i_number, blkno, size, lbn);
5983 	ump = ITOUMP(ip);
5984 	fs = ump->um_fs;
5985 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5986 		panic("newfreefrag: frag size");
5987 	freefrag = malloc(sizeof(struct freefrag),
5988 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5989 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5990 	freefrag->ff_state = ATTACHED;
5991 	LIST_INIT(&freefrag->ff_jwork);
5992 	freefrag->ff_inum = ip->i_number;
5993 	freefrag->ff_vtype = ITOV(ip)->v_type;
5994 	freefrag->ff_blkno = blkno;
5995 	freefrag->ff_fragsize = size;
5996 	freefrag->ff_key = key;
5997 
5998 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5999 		freefrag->ff_jdep = (struct worklist *)
6000 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
6001 	} else {
6002 		freefrag->ff_state |= DEPCOMPLETE;
6003 		freefrag->ff_jdep = NULL;
6004 	}
6005 
6006 	return (freefrag);
6007 }
6008 
6009 /*
6010  * This workitem de-allocates fragments that were replaced during
6011  * file block allocation.
6012  */
6013 static void
6014 handle_workitem_freefrag(freefrag)
6015 	struct freefrag *freefrag;
6016 {
6017 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
6018 	struct workhead wkhd;
6019 
6020 	CTR3(KTR_SUJ,
6021 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
6022 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
6023 	/*
6024 	 * It would be illegal to add new completion items to the
6025 	 * freefrag after it was schedule to be done so it must be
6026 	 * safe to modify the list head here.
6027 	 */
6028 	LIST_INIT(&wkhd);
6029 	ACQUIRE_LOCK(ump);
6030 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
6031 	/*
6032 	 * If the journal has not been written we must cancel it here.
6033 	 */
6034 	if (freefrag->ff_jdep) {
6035 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
6036 			panic("handle_workitem_freefrag: Unexpected type %d\n",
6037 			    freefrag->ff_jdep->wk_type);
6038 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
6039 	}
6040 	FREE_LOCK(ump);
6041 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
6042 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
6043 	   &wkhd, freefrag->ff_key);
6044 	ACQUIRE_LOCK(ump);
6045 	WORKITEM_FREE(freefrag, D_FREEFRAG);
6046 	FREE_LOCK(ump);
6047 }
6048 
6049 /*
6050  * Set up a dependency structure for an external attributes data block.
6051  * This routine follows much of the structure of softdep_setup_allocdirect.
6052  * See the description of softdep_setup_allocdirect above for details.
6053  */
6054 void
6055 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
6056 	struct inode *ip;
6057 	ufs_lbn_t off;
6058 	ufs2_daddr_t newblkno;
6059 	ufs2_daddr_t oldblkno;
6060 	long newsize;
6061 	long oldsize;
6062 	struct buf *bp;
6063 {
6064 	struct allocdirect *adp, *oldadp;
6065 	struct allocdirectlst *adphead;
6066 	struct freefrag *freefrag;
6067 	struct inodedep *inodedep;
6068 	struct jnewblk *jnewblk;
6069 	struct newblk *newblk;
6070 	struct mount *mp;
6071 	struct ufsmount *ump;
6072 	ufs_lbn_t lbn;
6073 
6074 	mp = ITOVFS(ip);
6075 	ump = VFSTOUFS(mp);
6076 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6077 	    ("softdep_setup_allocext called on non-softdep filesystem"));
6078 	KASSERT(off < UFS_NXADDR,
6079 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
6080 
6081 	lbn = bp->b_lblkno;
6082 	if (oldblkno && oldblkno != newblkno)
6083 		/*
6084 		 * The usual case is that a smaller fragment that
6085 		 * was just allocated has been replaced with a bigger
6086 		 * fragment or a full-size block. If it is marked as
6087 		 * B_DELWRI, the current contents have not been written
6088 		 * to disk. It is possible that the block was written
6089 		 * earlier, but very uncommon. If the block has never
6090 		 * been written, there is no need to send a BIO_DELETE
6091 		 * for it when it is freed. The gain from avoiding the
6092 		 * TRIMs for the common case of unwritten blocks far
6093 		 * exceeds the cost of the write amplification for the
6094 		 * uncommon case of failing to send a TRIM for a block
6095 		 * that had been written.
6096 		 */
6097 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
6098 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
6099 	else
6100 		freefrag = NULL;
6101 
6102 	ACQUIRE_LOCK(ump);
6103 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
6104 		panic("softdep_setup_allocext: lost block");
6105 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6106 	    ("softdep_setup_allocext: newblk already initialized"));
6107 	/*
6108 	 * Convert the newblk to an allocdirect.
6109 	 */
6110 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
6111 	adp = (struct allocdirect *)newblk;
6112 	newblk->nb_freefrag = freefrag;
6113 	adp->ad_offset = off;
6114 	adp->ad_oldblkno = oldblkno;
6115 	adp->ad_newsize = newsize;
6116 	adp->ad_oldsize = oldsize;
6117 	adp->ad_state |=  EXTDATA;
6118 
6119 	/*
6120 	 * Finish initializing the journal.
6121 	 */
6122 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6123 		jnewblk->jn_ino = ip->i_number;
6124 		jnewblk->jn_lbn = lbn;
6125 		add_to_journal(&jnewblk->jn_list);
6126 	}
6127 	if (freefrag && freefrag->ff_jdep != NULL &&
6128 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6129 		add_to_journal(freefrag->ff_jdep);
6130 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6131 	adp->ad_inodedep = inodedep;
6132 
6133 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
6134 	/*
6135 	 * The list of allocdirects must be kept in sorted and ascending
6136 	 * order so that the rollback routines can quickly determine the
6137 	 * first uncommitted block (the size of the file stored on disk
6138 	 * ends at the end of the lowest committed fragment, or if there
6139 	 * are no fragments, at the end of the highest committed block).
6140 	 * Since files generally grow, the typical case is that the new
6141 	 * block is to be added at the end of the list. We speed this
6142 	 * special case by checking against the last allocdirect in the
6143 	 * list before laboriously traversing the list looking for the
6144 	 * insertion point.
6145 	 */
6146 	adphead = &inodedep->id_newextupdt;
6147 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
6148 	if (oldadp == NULL || oldadp->ad_offset <= off) {
6149 		/* insert at end of list */
6150 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
6151 		if (oldadp != NULL && oldadp->ad_offset == off)
6152 			allocdirect_merge(adphead, adp, oldadp);
6153 		FREE_LOCK(ump);
6154 		return;
6155 	}
6156 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
6157 		if (oldadp->ad_offset >= off)
6158 			break;
6159 	}
6160 	if (oldadp == NULL)
6161 		panic("softdep_setup_allocext: lost entry");
6162 	/* insert in middle of list */
6163 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
6164 	if (oldadp->ad_offset == off)
6165 		allocdirect_merge(adphead, adp, oldadp);
6166 	FREE_LOCK(ump);
6167 }
6168 
6169 /*
6170  * Indirect block allocation dependencies.
6171  *
6172  * The same dependencies that exist for a direct block also exist when
6173  * a new block is allocated and pointed to by an entry in a block of
6174  * indirect pointers. The undo/redo states described above are also
6175  * used here. Because an indirect block contains many pointers that
6176  * may have dependencies, a second copy of the entire in-memory indirect
6177  * block is kept. The buffer cache copy is always completely up-to-date.
6178  * The second copy, which is used only as a source for disk writes,
6179  * contains only the safe pointers (i.e., those that have no remaining
6180  * update dependencies). The second copy is freed when all pointers
6181  * are safe. The cache is not allowed to replace indirect blocks with
6182  * pending update dependencies. If a buffer containing an indirect
6183  * block with dependencies is written, these routines will mark it
6184  * dirty again. It can only be successfully written once all the
6185  * dependencies are removed. The ffs_fsync routine in conjunction with
6186  * softdep_sync_metadata work together to get all the dependencies
6187  * removed so that a file can be successfully written to disk. Three
6188  * procedures are used when setting up indirect block pointer
6189  * dependencies. The division is necessary because of the organization
6190  * of the "balloc" routine and because of the distinction between file
6191  * pages and file metadata blocks.
6192  */
6193 
6194 /*
6195  * Allocate a new allocindir structure.
6196  */
6197 static struct allocindir *
6198 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
6199 	struct inode *ip;	/* inode for file being extended */
6200 	int ptrno;		/* offset of pointer in indirect block */
6201 	ufs2_daddr_t newblkno;	/* disk block number being added */
6202 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
6203 	ufs_lbn_t lbn;
6204 {
6205 	struct newblk *newblk;
6206 	struct allocindir *aip;
6207 	struct freefrag *freefrag;
6208 	struct jnewblk *jnewblk;
6209 
6210 	if (oldblkno)
6211 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6212 		    SINGLETON_KEY);
6213 	else
6214 		freefrag = NULL;
6215 	ACQUIRE_LOCK(ITOUMP(ip));
6216 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6217 		panic("new_allocindir: lost block");
6218 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6219 	    ("newallocindir: newblk already initialized"));
6220 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6221 	newblk->nb_freefrag = freefrag;
6222 	aip = (struct allocindir *)newblk;
6223 	aip->ai_offset = ptrno;
6224 	aip->ai_oldblkno = oldblkno;
6225 	aip->ai_lbn = lbn;
6226 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6227 		jnewblk->jn_ino = ip->i_number;
6228 		jnewblk->jn_lbn = lbn;
6229 		add_to_journal(&jnewblk->jn_list);
6230 	}
6231 	if (freefrag && freefrag->ff_jdep != NULL &&
6232 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6233 		add_to_journal(freefrag->ff_jdep);
6234 	return (aip);
6235 }
6236 
6237 /*
6238  * Called just before setting an indirect block pointer
6239  * to a newly allocated file page.
6240  */
6241 void
6242 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
6243 	struct inode *ip;	/* inode for file being extended */
6244 	ufs_lbn_t lbn;		/* allocated block number within file */
6245 	struct buf *bp;		/* buffer with indirect blk referencing page */
6246 	int ptrno;		/* offset of pointer in indirect block */
6247 	ufs2_daddr_t newblkno;	/* disk block number being added */
6248 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
6249 	struct buf *nbp;	/* buffer holding allocated page */
6250 {
6251 	struct inodedep *inodedep;
6252 	struct freefrag *freefrag;
6253 	struct allocindir *aip;
6254 	struct pagedep *pagedep;
6255 	struct mount *mp;
6256 	struct ufsmount *ump;
6257 
6258 	mp = ITOVFS(ip);
6259 	ump = VFSTOUFS(mp);
6260 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6261 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
6262 	KASSERT(lbn == nbp->b_lblkno,
6263 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6264 	    lbn, bp->b_lblkno));
6265 	CTR4(KTR_SUJ,
6266 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6267 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6268 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6269 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6270 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6271 	/*
6272 	 * If we are allocating a directory page, then we must
6273 	 * allocate an associated pagedep to track additions and
6274 	 * deletions.
6275 	 */
6276 	if ((ip->i_mode & IFMT) == IFDIR)
6277 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6278 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6279 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6280 	FREE_LOCK(ump);
6281 	if (freefrag)
6282 		handle_workitem_freefrag(freefrag);
6283 }
6284 
6285 /*
6286  * Called just before setting an indirect block pointer to a
6287  * newly allocated indirect block.
6288  */
6289 void
6290 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
6291 	struct buf *nbp;	/* newly allocated indirect block */
6292 	struct inode *ip;	/* inode for file being extended */
6293 	struct buf *bp;		/* indirect block referencing allocated block */
6294 	int ptrno;		/* offset of pointer in indirect block */
6295 	ufs2_daddr_t newblkno;	/* disk block number being added */
6296 {
6297 	struct inodedep *inodedep;
6298 	struct allocindir *aip;
6299 	struct ufsmount *ump;
6300 	ufs_lbn_t lbn;
6301 
6302 	ump = ITOUMP(ip);
6303 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6304 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6305 	CTR3(KTR_SUJ,
6306 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6307 	    ip->i_number, newblkno, ptrno);
6308 	lbn = nbp->b_lblkno;
6309 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6310 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6311 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6312 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6313 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6314 		panic("softdep_setup_allocindir_meta: Block already existed");
6315 	FREE_LOCK(ump);
6316 }
6317 
6318 static void
6319 indirdep_complete(indirdep)
6320 	struct indirdep *indirdep;
6321 {
6322 	struct allocindir *aip;
6323 
6324 	LIST_REMOVE(indirdep, ir_next);
6325 	indirdep->ir_state |= DEPCOMPLETE;
6326 
6327 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6328 		LIST_REMOVE(aip, ai_next);
6329 		free_newblk(&aip->ai_block);
6330 	}
6331 	/*
6332 	 * If this indirdep is not attached to a buf it was simply waiting
6333 	 * on completion to clear completehd.  free_indirdep() asserts
6334 	 * that nothing is dangling.
6335 	 */
6336 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6337 		free_indirdep(indirdep);
6338 }
6339 
6340 static struct indirdep *
6341 indirdep_lookup(mp, ip, bp)
6342 	struct mount *mp;
6343 	struct inode *ip;
6344 	struct buf *bp;
6345 {
6346 	struct indirdep *indirdep, *newindirdep;
6347 	struct newblk *newblk;
6348 	struct ufsmount *ump;
6349 	struct worklist *wk;
6350 	struct fs *fs;
6351 	ufs2_daddr_t blkno;
6352 
6353 	ump = VFSTOUFS(mp);
6354 	LOCK_OWNED(ump);
6355 	indirdep = NULL;
6356 	newindirdep = NULL;
6357 	fs = ump->um_fs;
6358 	for (;;) {
6359 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6360 			if (wk->wk_type != D_INDIRDEP)
6361 				continue;
6362 			indirdep = WK_INDIRDEP(wk);
6363 			break;
6364 		}
6365 		/* Found on the buffer worklist, no new structure to free. */
6366 		if (indirdep != NULL && newindirdep == NULL)
6367 			return (indirdep);
6368 		if (indirdep != NULL && newindirdep != NULL)
6369 			panic("indirdep_lookup: simultaneous create");
6370 		/* None found on the buffer and a new structure is ready. */
6371 		if (indirdep == NULL && newindirdep != NULL)
6372 			break;
6373 		/* None found and no new structure available. */
6374 		FREE_LOCK(ump);
6375 		newindirdep = malloc(sizeof(struct indirdep),
6376 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6377 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6378 		newindirdep->ir_state = ATTACHED;
6379 		if (I_IS_UFS1(ip))
6380 			newindirdep->ir_state |= UFS1FMT;
6381 		TAILQ_INIT(&newindirdep->ir_trunc);
6382 		newindirdep->ir_saveddata = NULL;
6383 		LIST_INIT(&newindirdep->ir_deplisthd);
6384 		LIST_INIT(&newindirdep->ir_donehd);
6385 		LIST_INIT(&newindirdep->ir_writehd);
6386 		LIST_INIT(&newindirdep->ir_completehd);
6387 		if (bp->b_blkno == bp->b_lblkno) {
6388 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6389 			    NULL, NULL);
6390 			bp->b_blkno = blkno;
6391 		}
6392 		newindirdep->ir_freeblks = NULL;
6393 		newindirdep->ir_savebp =
6394 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6395 		newindirdep->ir_bp = bp;
6396 		BUF_KERNPROC(newindirdep->ir_savebp);
6397 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6398 		ACQUIRE_LOCK(ump);
6399 	}
6400 	indirdep = newindirdep;
6401 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6402 	/*
6403 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6404 	 * that we don't free dependencies until the pointers are valid.
6405 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6406 	 * than using the hash.
6407 	 */
6408 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6409 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6410 	else
6411 		indirdep->ir_state |= DEPCOMPLETE;
6412 	return (indirdep);
6413 }
6414 
6415 /*
6416  * Called to finish the allocation of the "aip" allocated
6417  * by one of the two routines above.
6418  */
6419 static struct freefrag *
6420 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6421 	struct buf *bp;		/* in-memory copy of the indirect block */
6422 	struct inode *ip;	/* inode for file being extended */
6423 	struct inodedep *inodedep; /* Inodedep for ip */
6424 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6425 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6426 {
6427 	struct fs *fs;
6428 	struct indirdep *indirdep;
6429 	struct allocindir *oldaip;
6430 	struct freefrag *freefrag;
6431 	struct mount *mp;
6432 	struct ufsmount *ump;
6433 
6434 	mp = ITOVFS(ip);
6435 	ump = VFSTOUFS(mp);
6436 	LOCK_OWNED(ump);
6437 	fs = ump->um_fs;
6438 	if (bp->b_lblkno >= 0)
6439 		panic("setup_allocindir_phase2: not indir blk");
6440 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6441 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6442 	indirdep = indirdep_lookup(mp, ip, bp);
6443 	KASSERT(indirdep->ir_savebp != NULL,
6444 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6445 	aip->ai_indirdep = indirdep;
6446 	/*
6447 	 * Check for an unwritten dependency for this indirect offset.  If
6448 	 * there is, merge the old dependency into the new one.  This happens
6449 	 * as a result of reallocblk only.
6450 	 */
6451 	freefrag = NULL;
6452 	if (aip->ai_oldblkno != 0) {
6453 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6454 			if (oldaip->ai_offset == aip->ai_offset) {
6455 				freefrag = allocindir_merge(aip, oldaip);
6456 				goto done;
6457 			}
6458 		}
6459 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6460 			if (oldaip->ai_offset == aip->ai_offset) {
6461 				freefrag = allocindir_merge(aip, oldaip);
6462 				goto done;
6463 			}
6464 		}
6465 	}
6466 done:
6467 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6468 	return (freefrag);
6469 }
6470 
6471 /*
6472  * Merge two allocindirs which refer to the same block.  Move newblock
6473  * dependencies and setup the freefrags appropriately.
6474  */
6475 static struct freefrag *
6476 allocindir_merge(aip, oldaip)
6477 	struct allocindir *aip;
6478 	struct allocindir *oldaip;
6479 {
6480 	struct freefrag *freefrag;
6481 	struct worklist *wk;
6482 
6483 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6484 		panic("allocindir_merge: blkno");
6485 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6486 	freefrag = aip->ai_freefrag;
6487 	aip->ai_freefrag = oldaip->ai_freefrag;
6488 	oldaip->ai_freefrag = NULL;
6489 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6490 	/*
6491 	 * If we are tracking a new directory-block allocation,
6492 	 * move it from the old allocindir to the new allocindir.
6493 	 */
6494 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6495 		WORKLIST_REMOVE(wk);
6496 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6497 			panic("allocindir_merge: extra newdirblk");
6498 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6499 	}
6500 	/*
6501 	 * We can skip journaling for this freefrag and just complete
6502 	 * any pending journal work for the allocindir that is being
6503 	 * removed after the freefrag completes.
6504 	 */
6505 	if (freefrag->ff_jdep)
6506 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6507 	LIST_REMOVE(oldaip, ai_next);
6508 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6509 	    &freefrag->ff_list, &freefrag->ff_jwork);
6510 	free_newblk(&oldaip->ai_block);
6511 
6512 	return (freefrag);
6513 }
6514 
6515 static inline void
6516 setup_freedirect(freeblks, ip, i, needj)
6517 	struct freeblks *freeblks;
6518 	struct inode *ip;
6519 	int i;
6520 	int needj;
6521 {
6522 	struct ufsmount *ump;
6523 	ufs2_daddr_t blkno;
6524 	int frags;
6525 
6526 	blkno = DIP(ip, i_db[i]);
6527 	if (blkno == 0)
6528 		return;
6529 	DIP_SET(ip, i_db[i], 0);
6530 	ump = ITOUMP(ip);
6531 	frags = sblksize(ump->um_fs, ip->i_size, i);
6532 	frags = numfrags(ump->um_fs, frags);
6533 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6534 }
6535 
6536 static inline void
6537 setup_freeext(freeblks, ip, i, needj)
6538 	struct freeblks *freeblks;
6539 	struct inode *ip;
6540 	int i;
6541 	int needj;
6542 {
6543 	struct ufsmount *ump;
6544 	ufs2_daddr_t blkno;
6545 	int frags;
6546 
6547 	blkno = ip->i_din2->di_extb[i];
6548 	if (blkno == 0)
6549 		return;
6550 	ip->i_din2->di_extb[i] = 0;
6551 	ump = ITOUMP(ip);
6552 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6553 	frags = numfrags(ump->um_fs, frags);
6554 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6555 }
6556 
6557 static inline void
6558 setup_freeindir(freeblks, ip, i, lbn, needj)
6559 	struct freeblks *freeblks;
6560 	struct inode *ip;
6561 	int i;
6562 	ufs_lbn_t lbn;
6563 	int needj;
6564 {
6565 	struct ufsmount *ump;
6566 	ufs2_daddr_t blkno;
6567 
6568 	blkno = DIP(ip, i_ib[i]);
6569 	if (blkno == 0)
6570 		return;
6571 	DIP_SET(ip, i_ib[i], 0);
6572 	ump = ITOUMP(ip);
6573 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6574 	    0, needj);
6575 }
6576 
6577 static inline struct freeblks *
6578 newfreeblks(mp, ip)
6579 	struct mount *mp;
6580 	struct inode *ip;
6581 {
6582 	struct freeblks *freeblks;
6583 
6584 	freeblks = malloc(sizeof(struct freeblks),
6585 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6586 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6587 	LIST_INIT(&freeblks->fb_jblkdephd);
6588 	LIST_INIT(&freeblks->fb_jwork);
6589 	freeblks->fb_ref = 0;
6590 	freeblks->fb_cgwait = 0;
6591 	freeblks->fb_state = ATTACHED;
6592 	freeblks->fb_uid = ip->i_uid;
6593 	freeblks->fb_inum = ip->i_number;
6594 	freeblks->fb_vtype = ITOV(ip)->v_type;
6595 	freeblks->fb_modrev = DIP(ip, i_modrev);
6596 	freeblks->fb_devvp = ITODEVVP(ip);
6597 	freeblks->fb_chkcnt = 0;
6598 	freeblks->fb_len = 0;
6599 
6600 	return (freeblks);
6601 }
6602 
6603 static void
6604 trunc_indirdep(indirdep, freeblks, bp, off)
6605 	struct indirdep *indirdep;
6606 	struct freeblks *freeblks;
6607 	struct buf *bp;
6608 	int off;
6609 {
6610 	struct allocindir *aip, *aipn;
6611 
6612 	/*
6613 	 * The first set of allocindirs won't be in savedbp.
6614 	 */
6615 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6616 		if (aip->ai_offset > off)
6617 			cancel_allocindir(aip, bp, freeblks, 1);
6618 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6619 		if (aip->ai_offset > off)
6620 			cancel_allocindir(aip, bp, freeblks, 1);
6621 	/*
6622 	 * These will exist in savedbp.
6623 	 */
6624 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6625 		if (aip->ai_offset > off)
6626 			cancel_allocindir(aip, NULL, freeblks, 0);
6627 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6628 		if (aip->ai_offset > off)
6629 			cancel_allocindir(aip, NULL, freeblks, 0);
6630 }
6631 
6632 /*
6633  * Follow the chain of indirects down to lastlbn creating a freework
6634  * structure for each.  This will be used to start indir_trunc() at
6635  * the right offset and create the journal records for the parrtial
6636  * truncation.  A second step will handle the truncated dependencies.
6637  */
6638 static int
6639 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6640 	struct freeblks *freeblks;
6641 	struct inode *ip;
6642 	ufs_lbn_t lbn;
6643 	ufs_lbn_t lastlbn;
6644 	ufs2_daddr_t blkno;
6645 {
6646 	struct indirdep *indirdep;
6647 	struct indirdep *indirn;
6648 	struct freework *freework;
6649 	struct newblk *newblk;
6650 	struct mount *mp;
6651 	struct ufsmount *ump;
6652 	struct buf *bp;
6653 	uint8_t *start;
6654 	uint8_t *end;
6655 	ufs_lbn_t lbnadd;
6656 	int level;
6657 	int error;
6658 	int off;
6659 
6660 	freework = NULL;
6661 	if (blkno == 0)
6662 		return (0);
6663 	mp = freeblks->fb_list.wk_mp;
6664 	ump = VFSTOUFS(mp);
6665 	/*
6666 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6667 	 * the on-disk address, so we just pass it to bread() instead of
6668 	 * having bread() attempt to calculate it using VOP_BMAP().
6669 	 */
6670 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6671 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6672 	if (error)
6673 		return (error);
6674 	level = lbn_level(lbn);
6675 	lbnadd = lbn_offset(ump->um_fs, level);
6676 	/*
6677 	 * Compute the offset of the last block we want to keep.  Store
6678 	 * in the freework the first block we want to completely free.
6679 	 */
6680 	off = (lastlbn - -(lbn + level)) / lbnadd;
6681 	if (off + 1 == NINDIR(ump->um_fs))
6682 		goto nowork;
6683 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6684 	/*
6685 	 * Link the freework into the indirdep.  This will prevent any new
6686 	 * allocations from proceeding until we are finished with the
6687 	 * truncate and the block is written.
6688 	 */
6689 	ACQUIRE_LOCK(ump);
6690 	indirdep = indirdep_lookup(mp, ip, bp);
6691 	if (indirdep->ir_freeblks)
6692 		panic("setup_trunc_indir: indirdep already truncated.");
6693 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6694 	freework->fw_indir = indirdep;
6695 	/*
6696 	 * Cancel any allocindirs that will not make it to disk.
6697 	 * We have to do this for all copies of the indirdep that
6698 	 * live on this newblk.
6699 	 */
6700 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6701 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6702 		    &newblk) == 0)
6703 			panic("setup_trunc_indir: lost block");
6704 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6705 			trunc_indirdep(indirn, freeblks, bp, off);
6706 	} else
6707 		trunc_indirdep(indirdep, freeblks, bp, off);
6708 	FREE_LOCK(ump);
6709 	/*
6710 	 * Creation is protected by the buf lock. The saveddata is only
6711 	 * needed if a full truncation follows a partial truncation but it
6712 	 * is difficult to allocate in that case so we fetch it anyway.
6713 	 */
6714 	if (indirdep->ir_saveddata == NULL)
6715 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6716 		    M_SOFTDEP_FLAGS);
6717 nowork:
6718 	/* Fetch the blkno of the child and the zero start offset. */
6719 	if (I_IS_UFS1(ip)) {
6720 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6721 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6722 	} else {
6723 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6724 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6725 	}
6726 	if (freework) {
6727 		/* Zero the truncated pointers. */
6728 		end = bp->b_data + bp->b_bcount;
6729 		bzero(start, end - start);
6730 		bdwrite(bp);
6731 	} else
6732 		bqrelse(bp);
6733 	if (level == 0)
6734 		return (0);
6735 	lbn++; /* adjust level */
6736 	lbn -= (off * lbnadd);
6737 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6738 }
6739 
6740 /*
6741  * Complete the partial truncation of an indirect block setup by
6742  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6743  * copy and writes them to disk before the freeblks is allowed to complete.
6744  */
6745 static void
6746 complete_trunc_indir(freework)
6747 	struct freework *freework;
6748 {
6749 	struct freework *fwn;
6750 	struct indirdep *indirdep;
6751 	struct ufsmount *ump;
6752 	struct buf *bp;
6753 	uintptr_t start;
6754 	int count;
6755 
6756 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6757 	LOCK_OWNED(ump);
6758 	indirdep = freework->fw_indir;
6759 	for (;;) {
6760 		bp = indirdep->ir_bp;
6761 		/* See if the block was discarded. */
6762 		if (bp == NULL)
6763 			break;
6764 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6765 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6766 			break;
6767 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6768 		    LOCK_PTR(ump)) == 0)
6769 			BUF_UNLOCK(bp);
6770 		ACQUIRE_LOCK(ump);
6771 	}
6772 	freework->fw_state |= DEPCOMPLETE;
6773 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6774 	/*
6775 	 * Zero the pointers in the saved copy.
6776 	 */
6777 	if (indirdep->ir_state & UFS1FMT)
6778 		start = sizeof(ufs1_daddr_t);
6779 	else
6780 		start = sizeof(ufs2_daddr_t);
6781 	start *= freework->fw_start;
6782 	count = indirdep->ir_savebp->b_bcount - start;
6783 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6784 	bzero((char *)start, count);
6785 	/*
6786 	 * We need to start the next truncation in the list if it has not
6787 	 * been started yet.
6788 	 */
6789 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6790 	if (fwn != NULL) {
6791 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6792 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6793 		if ((fwn->fw_state & ONWORKLIST) == 0)
6794 			freework_enqueue(fwn);
6795 	}
6796 	/*
6797 	 * If bp is NULL the block was fully truncated, restore
6798 	 * the saved block list otherwise free it if it is no
6799 	 * longer needed.
6800 	 */
6801 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6802 		if (bp == NULL)
6803 			bcopy(indirdep->ir_saveddata,
6804 			    indirdep->ir_savebp->b_data,
6805 			    indirdep->ir_savebp->b_bcount);
6806 		free(indirdep->ir_saveddata, M_INDIRDEP);
6807 		indirdep->ir_saveddata = NULL;
6808 	}
6809 	/*
6810 	 * When bp is NULL there is a full truncation pending.  We
6811 	 * must wait for this full truncation to be journaled before
6812 	 * we can release this freework because the disk pointers will
6813 	 * never be written as zero.
6814 	 */
6815 	if (bp == NULL)  {
6816 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6817 			handle_written_freework(freework);
6818 		else
6819 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6820 			   &freework->fw_list);
6821 		if (fwn == NULL) {
6822 			freework->fw_indir = (void *)0x0000deadbeef0000;
6823 			bp = indirdep->ir_savebp;
6824 			indirdep->ir_savebp = NULL;
6825 			free_indirdep(indirdep);
6826 			FREE_LOCK(ump);
6827 			brelse(bp);
6828 			ACQUIRE_LOCK(ump);
6829 		}
6830 	} else {
6831 		/* Complete when the real copy is written. */
6832 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6833 		BUF_UNLOCK(bp);
6834 	}
6835 }
6836 
6837 /*
6838  * Calculate the number of blocks we are going to release where datablocks
6839  * is the current total and length is the new file size.
6840  */
6841 static ufs2_daddr_t
6842 blkcount(fs, datablocks, length)
6843 	struct fs *fs;
6844 	ufs2_daddr_t datablocks;
6845 	off_t length;
6846 {
6847 	off_t totblks, numblks;
6848 
6849 	totblks = 0;
6850 	numblks = howmany(length, fs->fs_bsize);
6851 	if (numblks <= UFS_NDADDR) {
6852 		totblks = howmany(length, fs->fs_fsize);
6853 		goto out;
6854 	}
6855         totblks = blkstofrags(fs, numblks);
6856 	numblks -= UFS_NDADDR;
6857 	/*
6858 	 * Count all single, then double, then triple indirects required.
6859 	 * Subtracting one indirects worth of blocks for each pass
6860 	 * acknowledges one of each pointed to by the inode.
6861 	 */
6862 	for (;;) {
6863 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6864 		numblks -= NINDIR(fs);
6865 		if (numblks <= 0)
6866 			break;
6867 		numblks = howmany(numblks, NINDIR(fs));
6868 	}
6869 out:
6870 	totblks = fsbtodb(fs, totblks);
6871 	/*
6872 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6873 	 * references.  We will correct it later in handle_complete_freeblks()
6874 	 * when we know the real count.
6875 	 */
6876 	if (totblks > datablocks)
6877 		return (0);
6878 	return (datablocks - totblks);
6879 }
6880 
6881 /*
6882  * Handle freeblocks for journaled softupdate filesystems.
6883  *
6884  * Contrary to normal softupdates, we must preserve the block pointers in
6885  * indirects until their subordinates are free.  This is to avoid journaling
6886  * every block that is freed which may consume more space than the journal
6887  * itself.  The recovery program will see the free block journals at the
6888  * base of the truncated area and traverse them to reclaim space.  The
6889  * pointers in the inode may be cleared immediately after the journal
6890  * records are written because each direct and indirect pointer in the
6891  * inode is recorded in a journal.  This permits full truncation to proceed
6892  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6893  *
6894  * The algorithm is as follows:
6895  * 1) Traverse the in-memory state and create journal entries to release
6896  *    the relevant blocks and full indirect trees.
6897  * 2) Traverse the indirect block chain adding partial truncation freework
6898  *    records to indirects in the path to lastlbn.  The freework will
6899  *    prevent new allocation dependencies from being satisfied in this
6900  *    indirect until the truncation completes.
6901  * 3) Read and lock the inode block, performing an update with the new size
6902  *    and pointers.  This prevents truncated data from becoming valid on
6903  *    disk through step 4.
6904  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6905  *    eliminate journal work for those records that do not require it.
6906  * 5) Schedule the journal records to be written followed by the inode block.
6907  * 6) Allocate any necessary frags for the end of file.
6908  * 7) Zero any partially truncated blocks.
6909  *
6910  * From this truncation proceeds asynchronously using the freework and
6911  * indir_trunc machinery.  The file will not be extended again into a
6912  * partially truncated indirect block until all work is completed but
6913  * the normal dependency mechanism ensures that it is rolled back/forward
6914  * as appropriate.  Further truncation may occur without delay and is
6915  * serialized in indir_trunc().
6916  */
6917 void
6918 softdep_journal_freeblocks(ip, cred, length, flags)
6919 	struct inode *ip;	/* The inode whose length is to be reduced */
6920 	struct ucred *cred;
6921 	off_t length;		/* The new length for the file */
6922 	int flags;		/* IO_EXT and/or IO_NORMAL */
6923 {
6924 	struct freeblks *freeblks, *fbn;
6925 	struct worklist *wk, *wkn;
6926 	struct inodedep *inodedep;
6927 	struct jblkdep *jblkdep;
6928 	struct allocdirect *adp, *adpn;
6929 	struct ufsmount *ump;
6930 	struct fs *fs;
6931 	struct buf *bp;
6932 	struct vnode *vp;
6933 	struct mount *mp;
6934 	daddr_t dbn;
6935 	ufs2_daddr_t extblocks, datablocks;
6936 	ufs_lbn_t tmpval, lbn, lastlbn;
6937 	int frags, lastoff, iboff, allocblock, needj, error, i;
6938 
6939 	ump = ITOUMP(ip);
6940 	mp = UFSTOVFS(ump);
6941 	fs = ump->um_fs;
6942 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6943 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6944 	vp = ITOV(ip);
6945 	needj = 1;
6946 	iboff = -1;
6947 	allocblock = 0;
6948 	extblocks = 0;
6949 	datablocks = 0;
6950 	frags = 0;
6951 	freeblks = newfreeblks(mp, ip);
6952 	ACQUIRE_LOCK(ump);
6953 	/*
6954 	 * If we're truncating a removed file that will never be written
6955 	 * we don't need to journal the block frees.  The canceled journals
6956 	 * for the allocations will suffice.
6957 	 */
6958 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6959 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6960 	    length == 0)
6961 		needj = 0;
6962 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6963 	    ip->i_number, length, needj);
6964 	FREE_LOCK(ump);
6965 	/*
6966 	 * Calculate the lbn that we are truncating to.  This results in -1
6967 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6968 	 * to keep, not the first lbn we want to truncate.
6969 	 */
6970 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6971 	lastoff = blkoff(fs, length);
6972 	/*
6973 	 * Compute frags we are keeping in lastlbn.  0 means all.
6974 	 */
6975 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6976 		frags = fragroundup(fs, lastoff);
6977 		/* adp offset of last valid allocdirect. */
6978 		iboff = lastlbn;
6979 	} else if (lastlbn > 0)
6980 		iboff = UFS_NDADDR;
6981 	if (fs->fs_magic == FS_UFS2_MAGIC)
6982 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6983 	/*
6984 	 * Handle normal data blocks and indirects.  This section saves
6985 	 * values used after the inode update to complete frag and indirect
6986 	 * truncation.
6987 	 */
6988 	if ((flags & IO_NORMAL) != 0) {
6989 		/*
6990 		 * Handle truncation of whole direct and indirect blocks.
6991 		 */
6992 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6993 			setup_freedirect(freeblks, ip, i, needj);
6994 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6995 		    i < UFS_NIADDR;
6996 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6997 			/* Release a whole indirect tree. */
6998 			if (lbn > lastlbn) {
6999 				setup_freeindir(freeblks, ip, i, -lbn -i,
7000 				    needj);
7001 				continue;
7002 			}
7003 			iboff = i + UFS_NDADDR;
7004 			/*
7005 			 * Traverse partially truncated indirect tree.
7006 			 */
7007 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
7008 				setup_trunc_indir(freeblks, ip, -lbn - i,
7009 				    lastlbn, DIP(ip, i_ib[i]));
7010 		}
7011 		/*
7012 		 * Handle partial truncation to a frag boundary.
7013 		 */
7014 		if (frags) {
7015 			ufs2_daddr_t blkno;
7016 			long oldfrags;
7017 
7018 			oldfrags = blksize(fs, ip, lastlbn);
7019 			blkno = DIP(ip, i_db[lastlbn]);
7020 			if (blkno && oldfrags != frags) {
7021 				oldfrags -= frags;
7022 				oldfrags = numfrags(fs, oldfrags);
7023 				blkno += numfrags(fs, frags);
7024 				newfreework(ump, freeblks, NULL, lastlbn,
7025 				    blkno, oldfrags, 0, needj);
7026 				if (needj)
7027 					adjust_newfreework(freeblks,
7028 					    numfrags(fs, frags));
7029 			} else if (blkno == 0)
7030 				allocblock = 1;
7031 		}
7032 		/*
7033 		 * Add a journal record for partial truncate if we are
7034 		 * handling indirect blocks.  Non-indirects need no extra
7035 		 * journaling.
7036 		 */
7037 		if (length != 0 && lastlbn >= UFS_NDADDR) {
7038 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
7039 			newjtrunc(freeblks, length, 0);
7040 		}
7041 		ip->i_size = length;
7042 		DIP_SET(ip, i_size, ip->i_size);
7043 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7044 		datablocks = DIP(ip, i_blocks) - extblocks;
7045 		if (length != 0)
7046 			datablocks = blkcount(fs, datablocks, length);
7047 		freeblks->fb_len = length;
7048 	}
7049 	if ((flags & IO_EXT) != 0) {
7050 		for (i = 0; i < UFS_NXADDR; i++)
7051 			setup_freeext(freeblks, ip, i, needj);
7052 		ip->i_din2->di_extsize = 0;
7053 		datablocks += extblocks;
7054 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7055 	}
7056 #ifdef QUOTA
7057 	/* Reference the quotas in case the block count is wrong in the end. */
7058 	quotaref(vp, freeblks->fb_quota);
7059 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7060 #endif
7061 	freeblks->fb_chkcnt = -datablocks;
7062 	UFS_LOCK(ump);
7063 	fs->fs_pendingblocks += datablocks;
7064 	UFS_UNLOCK(ump);
7065 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7066 	/*
7067 	 * Handle truncation of incomplete alloc direct dependencies.  We
7068 	 * hold the inode block locked to prevent incomplete dependencies
7069 	 * from reaching the disk while we are eliminating those that
7070 	 * have been truncated.  This is a partially inlined ffs_update().
7071 	 */
7072 	ufs_itimes(vp);
7073 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
7074 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
7075 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
7076 	    NULL, NULL, 0, cred, 0, NULL, &bp);
7077 	if (error) {
7078 		softdep_error("softdep_journal_freeblocks", error);
7079 		return;
7080 	}
7081 	if (bp->b_bufsize == fs->fs_bsize)
7082 		bp->b_flags |= B_CLUSTEROK;
7083 	softdep_update_inodeblock(ip, bp, 0);
7084 	if (ump->um_fstype == UFS1) {
7085 		*((struct ufs1_dinode *)bp->b_data +
7086 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
7087 	} else {
7088 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7089 		*((struct ufs2_dinode *)bp->b_data +
7090 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
7091 	}
7092 	ACQUIRE_LOCK(ump);
7093 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7094 	if ((inodedep->id_state & IOSTARTED) != 0)
7095 		panic("softdep_setup_freeblocks: inode busy");
7096 	/*
7097 	 * Add the freeblks structure to the list of operations that
7098 	 * must await the zero'ed inode being written to disk. If we
7099 	 * still have a bitmap dependency (needj), then the inode
7100 	 * has never been written to disk, so we can process the
7101 	 * freeblks below once we have deleted the dependencies.
7102 	 */
7103 	if (needj)
7104 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7105 	else
7106 		freeblks->fb_state |= COMPLETE;
7107 	if ((flags & IO_NORMAL) != 0) {
7108 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
7109 			if (adp->ad_offset > iboff)
7110 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
7111 				    freeblks);
7112 			/*
7113 			 * Truncate the allocdirect.  We could eliminate
7114 			 * or modify journal records as well.
7115 			 */
7116 			else if (adp->ad_offset == iboff && frags)
7117 				adp->ad_newsize = frags;
7118 		}
7119 	}
7120 	if ((flags & IO_EXT) != 0)
7121 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7122 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7123 			    freeblks);
7124 	/*
7125 	 * Scan the bufwait list for newblock dependencies that will never
7126 	 * make it to disk.
7127 	 */
7128 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
7129 		if (wk->wk_type != D_ALLOCDIRECT)
7130 			continue;
7131 		adp = WK_ALLOCDIRECT(wk);
7132 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
7133 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
7134 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
7135 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
7136 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7137 		}
7138 	}
7139 	/*
7140 	 * Add journal work.
7141 	 */
7142 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
7143 		add_to_journal(&jblkdep->jb_list);
7144 	FREE_LOCK(ump);
7145 	bdwrite(bp);
7146 	/*
7147 	 * Truncate dependency structures beyond length.
7148 	 */
7149 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
7150 	/*
7151 	 * This is only set when we need to allocate a fragment because
7152 	 * none existed at the end of a frag-sized file.  It handles only
7153 	 * allocating a new, zero filled block.
7154 	 */
7155 	if (allocblock) {
7156 		ip->i_size = length - lastoff;
7157 		DIP_SET(ip, i_size, ip->i_size);
7158 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
7159 		if (error != 0) {
7160 			softdep_error("softdep_journal_freeblks", error);
7161 			return;
7162 		}
7163 		ip->i_size = length;
7164 		DIP_SET(ip, i_size, length);
7165 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
7166 		allocbuf(bp, frags);
7167 		ffs_update(vp, 0);
7168 		bawrite(bp);
7169 	} else if (lastoff != 0 && vp->v_type != VDIR) {
7170 		int size;
7171 
7172 		/*
7173 		 * Zero the end of a truncated frag or block.
7174 		 */
7175 		size = sblksize(fs, length, lastlbn);
7176 		error = bread(vp, lastlbn, size, cred, &bp);
7177 		if (error == 0) {
7178 			bzero((char *)bp->b_data + lastoff, size - lastoff);
7179 			bawrite(bp);
7180 		} else if (!ffs_fsfail_cleanup(ump, error)) {
7181 			softdep_error("softdep_journal_freeblks", error);
7182 			return;
7183 		}
7184 	}
7185 	ACQUIRE_LOCK(ump);
7186 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7187 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7188 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7189 	/*
7190 	 * We zero earlier truncations so they don't erroneously
7191 	 * update i_blocks.
7192 	 */
7193 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7194 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7195 			fbn->fb_len = 0;
7196 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7197 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7198 		freeblks->fb_state |= INPROGRESS;
7199 	else
7200 		freeblks = NULL;
7201 	FREE_LOCK(ump);
7202 	if (freeblks)
7203 		handle_workitem_freeblocks(freeblks, 0);
7204 	trunc_pages(ip, length, extblocks, flags);
7205 
7206 }
7207 
7208 /*
7209  * Flush a JOP_SYNC to the journal.
7210  */
7211 void
7212 softdep_journal_fsync(ip)
7213 	struct inode *ip;
7214 {
7215 	struct jfsync *jfsync;
7216 	struct ufsmount *ump;
7217 
7218 	ump = ITOUMP(ip);
7219 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7220 	    ("softdep_journal_fsync called on non-softdep filesystem"));
7221 	if ((ip->i_flag & IN_TRUNCATED) == 0)
7222 		return;
7223 	ip->i_flag &= ~IN_TRUNCATED;
7224 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7225 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7226 	jfsync->jfs_size = ip->i_size;
7227 	jfsync->jfs_ino = ip->i_number;
7228 	ACQUIRE_LOCK(ump);
7229 	add_to_journal(&jfsync->jfs_list);
7230 	jwait(&jfsync->jfs_list, MNT_WAIT);
7231 	FREE_LOCK(ump);
7232 }
7233 
7234 /*
7235  * Block de-allocation dependencies.
7236  *
7237  * When blocks are de-allocated, the on-disk pointers must be nullified before
7238  * the blocks are made available for use by other files.  (The true
7239  * requirement is that old pointers must be nullified before new on-disk
7240  * pointers are set.  We chose this slightly more stringent requirement to
7241  * reduce complexity.) Our implementation handles this dependency by updating
7242  * the inode (or indirect block) appropriately but delaying the actual block
7243  * de-allocation (i.e., freemap and free space count manipulation) until
7244  * after the updated versions reach stable storage.  After the disk is
7245  * updated, the blocks can be safely de-allocated whenever it is convenient.
7246  * This implementation handles only the common case of reducing a file's
7247  * length to zero. Other cases are handled by the conventional synchronous
7248  * write approach.
7249  *
7250  * The ffs implementation with which we worked double-checks
7251  * the state of the block pointers and file size as it reduces
7252  * a file's length.  Some of this code is replicated here in our
7253  * soft updates implementation.  The freeblks->fb_chkcnt field is
7254  * used to transfer a part of this information to the procedure
7255  * that eventually de-allocates the blocks.
7256  *
7257  * This routine should be called from the routine that shortens
7258  * a file's length, before the inode's size or block pointers
7259  * are modified. It will save the block pointer information for
7260  * later release and zero the inode so that the calling routine
7261  * can release it.
7262  */
7263 void
7264 softdep_setup_freeblocks(ip, length, flags)
7265 	struct inode *ip;	/* The inode whose length is to be reduced */
7266 	off_t length;		/* The new length for the file */
7267 	int flags;		/* IO_EXT and/or IO_NORMAL */
7268 {
7269 	struct ufs1_dinode *dp1;
7270 	struct ufs2_dinode *dp2;
7271 	struct freeblks *freeblks;
7272 	struct inodedep *inodedep;
7273 	struct allocdirect *adp;
7274 	struct ufsmount *ump;
7275 	struct buf *bp;
7276 	struct fs *fs;
7277 	ufs2_daddr_t extblocks, datablocks;
7278 	struct mount *mp;
7279 	int i, delay, error;
7280 	ufs_lbn_t tmpval;
7281 	ufs_lbn_t lbn;
7282 
7283 	ump = ITOUMP(ip);
7284 	mp = UFSTOVFS(ump);
7285 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7286 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
7287 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7288 	    ip->i_number, length);
7289 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7290 	fs = ump->um_fs;
7291 	if ((error = bread(ump->um_devvp,
7292 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7293 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7294 		if (!ffs_fsfail_cleanup(ump, error))
7295 			softdep_error("softdep_setup_freeblocks", error);
7296 		return;
7297 	}
7298 	freeblks = newfreeblks(mp, ip);
7299 	extblocks = 0;
7300 	datablocks = 0;
7301 	if (fs->fs_magic == FS_UFS2_MAGIC)
7302 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7303 	if ((flags & IO_NORMAL) != 0) {
7304 		for (i = 0; i < UFS_NDADDR; i++)
7305 			setup_freedirect(freeblks, ip, i, 0);
7306 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7307 		    i < UFS_NIADDR;
7308 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
7309 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7310 		ip->i_size = 0;
7311 		DIP_SET(ip, i_size, 0);
7312 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7313 		datablocks = DIP(ip, i_blocks) - extblocks;
7314 	}
7315 	if ((flags & IO_EXT) != 0) {
7316 		for (i = 0; i < UFS_NXADDR; i++)
7317 			setup_freeext(freeblks, ip, i, 0);
7318 		ip->i_din2->di_extsize = 0;
7319 		datablocks += extblocks;
7320 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7321 	}
7322 #ifdef QUOTA
7323 	/* Reference the quotas in case the block count is wrong in the end. */
7324 	quotaref(ITOV(ip), freeblks->fb_quota);
7325 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7326 #endif
7327 	freeblks->fb_chkcnt = -datablocks;
7328 	UFS_LOCK(ump);
7329 	fs->fs_pendingblocks += datablocks;
7330 	UFS_UNLOCK(ump);
7331 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7332 	/*
7333 	 * Push the zero'ed inode to its disk buffer so that we are free
7334 	 * to delete its dependencies below. Once the dependencies are gone
7335 	 * the buffer can be safely released.
7336 	 */
7337 	if (ump->um_fstype == UFS1) {
7338 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7339 		    ino_to_fsbo(fs, ip->i_number));
7340 		ip->i_din1->di_freelink = dp1->di_freelink;
7341 		*dp1 = *ip->i_din1;
7342 	} else {
7343 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7344 		    ino_to_fsbo(fs, ip->i_number));
7345 		ip->i_din2->di_freelink = dp2->di_freelink;
7346 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7347 		*dp2 = *ip->i_din2;
7348 	}
7349 	/*
7350 	 * Find and eliminate any inode dependencies.
7351 	 */
7352 	ACQUIRE_LOCK(ump);
7353 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7354 	if ((inodedep->id_state & IOSTARTED) != 0)
7355 		panic("softdep_setup_freeblocks: inode busy");
7356 	/*
7357 	 * Add the freeblks structure to the list of operations that
7358 	 * must await the zero'ed inode being written to disk. If we
7359 	 * still have a bitmap dependency (delay == 0), then the inode
7360 	 * has never been written to disk, so we can process the
7361 	 * freeblks below once we have deleted the dependencies.
7362 	 */
7363 	delay = (inodedep->id_state & DEPCOMPLETE);
7364 	if (delay)
7365 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7366 	else
7367 		freeblks->fb_state |= COMPLETE;
7368 	/*
7369 	 * Because the file length has been truncated to zero, any
7370 	 * pending block allocation dependency structures associated
7371 	 * with this inode are obsolete and can simply be de-allocated.
7372 	 * We must first merge the two dependency lists to get rid of
7373 	 * any duplicate freefrag structures, then purge the merged list.
7374 	 * If we still have a bitmap dependency, then the inode has never
7375 	 * been written to disk, so we can free any fragments without delay.
7376 	 */
7377 	if (flags & IO_NORMAL) {
7378 		merge_inode_lists(&inodedep->id_newinoupdt,
7379 		    &inodedep->id_inoupdt);
7380 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7381 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7382 			    freeblks);
7383 	}
7384 	if (flags & IO_EXT) {
7385 		merge_inode_lists(&inodedep->id_newextupdt,
7386 		    &inodedep->id_extupdt);
7387 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7388 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7389 			    freeblks);
7390 	}
7391 	FREE_LOCK(ump);
7392 	bdwrite(bp);
7393 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7394 	ACQUIRE_LOCK(ump);
7395 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7396 		(void) free_inodedep(inodedep);
7397 	freeblks->fb_state |= DEPCOMPLETE;
7398 	/*
7399 	 * If the inode with zeroed block pointers is now on disk
7400 	 * we can start freeing blocks.
7401 	 */
7402 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7403 		freeblks->fb_state |= INPROGRESS;
7404 	else
7405 		freeblks = NULL;
7406 	FREE_LOCK(ump);
7407 	if (freeblks)
7408 		handle_workitem_freeblocks(freeblks, 0);
7409 	trunc_pages(ip, length, extblocks, flags);
7410 }
7411 
7412 /*
7413  * Eliminate pages from the page cache that back parts of this inode and
7414  * adjust the vnode pager's idea of our size.  This prevents stale data
7415  * from hanging around in the page cache.
7416  */
7417 static void
7418 trunc_pages(ip, length, extblocks, flags)
7419 	struct inode *ip;
7420 	off_t length;
7421 	ufs2_daddr_t extblocks;
7422 	int flags;
7423 {
7424 	struct vnode *vp;
7425 	struct fs *fs;
7426 	ufs_lbn_t lbn;
7427 	off_t end, extend;
7428 
7429 	vp = ITOV(ip);
7430 	fs = ITOFS(ip);
7431 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7432 	if ((flags & IO_EXT) != 0)
7433 		vn_pages_remove(vp, extend, 0);
7434 	if ((flags & IO_NORMAL) == 0)
7435 		return;
7436 	BO_LOCK(&vp->v_bufobj);
7437 	drain_output(vp);
7438 	BO_UNLOCK(&vp->v_bufobj);
7439 	/*
7440 	 * The vnode pager eliminates file pages we eliminate indirects
7441 	 * below.
7442 	 */
7443 	vnode_pager_setsize(vp, length);
7444 	/*
7445 	 * Calculate the end based on the last indirect we want to keep.  If
7446 	 * the block extends into indirects we can just use the negative of
7447 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7448 	 * be careful not to remove those, if they exist.  double and triple
7449 	 * indirect lbns do not overlap with others so it is not important
7450 	 * to verify how many levels are required.
7451 	 */
7452 	lbn = lblkno(fs, length);
7453 	if (lbn >= UFS_NDADDR) {
7454 		/* Calculate the virtual lbn of the triple indirect. */
7455 		lbn = -lbn - (UFS_NIADDR - 1);
7456 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7457 	} else
7458 		end = extend;
7459 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7460 }
7461 
7462 /*
7463  * See if the buf bp is in the range eliminated by truncation.
7464  */
7465 static int
7466 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7467 	struct buf *bp;
7468 	int *blkoffp;
7469 	ufs_lbn_t lastlbn;
7470 	int lastoff;
7471 	int flags;
7472 {
7473 	ufs_lbn_t lbn;
7474 
7475 	*blkoffp = 0;
7476 	/* Only match ext/normal blocks as appropriate. */
7477 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7478 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7479 		return (0);
7480 	/* ALTDATA is always a full truncation. */
7481 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7482 		return (1);
7483 	/* -1 is full truncation. */
7484 	if (lastlbn == -1)
7485 		return (1);
7486 	/*
7487 	 * If this is a partial truncate we only want those
7488 	 * blocks and indirect blocks that cover the range
7489 	 * we're after.
7490 	 */
7491 	lbn = bp->b_lblkno;
7492 	if (lbn < 0)
7493 		lbn = -(lbn + lbn_level(lbn));
7494 	if (lbn < lastlbn)
7495 		return (0);
7496 	/* Here we only truncate lblkno if it's partial. */
7497 	if (lbn == lastlbn) {
7498 		if (lastoff == 0)
7499 			return (0);
7500 		*blkoffp = lastoff;
7501 	}
7502 	return (1);
7503 }
7504 
7505 /*
7506  * Eliminate any dependencies that exist in memory beyond lblkno:off
7507  */
7508 static void
7509 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7510 	struct inode *ip;
7511 	struct freeblks *freeblks;
7512 	ufs_lbn_t lastlbn;
7513 	int lastoff;
7514 	int flags;
7515 {
7516 	struct bufobj *bo;
7517 	struct vnode *vp;
7518 	struct buf *bp;
7519 	int blkoff;
7520 
7521 	/*
7522 	 * We must wait for any I/O in progress to finish so that
7523 	 * all potential buffers on the dirty list will be visible.
7524 	 * Once they are all there, walk the list and get rid of
7525 	 * any dependencies.
7526 	 */
7527 	vp = ITOV(ip);
7528 	bo = &vp->v_bufobj;
7529 	BO_LOCK(bo);
7530 	drain_output(vp);
7531 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7532 		bp->b_vflags &= ~BV_SCANNED;
7533 restart:
7534 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7535 		if (bp->b_vflags & BV_SCANNED)
7536 			continue;
7537 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7538 			bp->b_vflags |= BV_SCANNED;
7539 			continue;
7540 		}
7541 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7542 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7543 			goto restart;
7544 		BO_UNLOCK(bo);
7545 		if (deallocate_dependencies(bp, freeblks, blkoff))
7546 			bqrelse(bp);
7547 		else
7548 			brelse(bp);
7549 		BO_LOCK(bo);
7550 		goto restart;
7551 	}
7552 	/*
7553 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7554 	 */
7555 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7556 		bp->b_vflags &= ~BV_SCANNED;
7557 cleanrestart:
7558 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7559 		if (bp->b_vflags & BV_SCANNED)
7560 			continue;
7561 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7562 			bp->b_vflags |= BV_SCANNED;
7563 			continue;
7564 		}
7565 		if (BUF_LOCK(bp,
7566 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7567 		    BO_LOCKPTR(bo)) == ENOLCK) {
7568 			BO_LOCK(bo);
7569 			goto cleanrestart;
7570 		}
7571 		BO_LOCK(bo);
7572 		bp->b_vflags |= BV_SCANNED;
7573 		BO_UNLOCK(bo);
7574 		bremfree(bp);
7575 		if (blkoff != 0) {
7576 			allocbuf(bp, blkoff);
7577 			bqrelse(bp);
7578 		} else {
7579 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7580 			brelse(bp);
7581 		}
7582 		BO_LOCK(bo);
7583 		goto cleanrestart;
7584 	}
7585 	drain_output(vp);
7586 	BO_UNLOCK(bo);
7587 }
7588 
7589 static int
7590 cancel_pagedep(pagedep, freeblks, blkoff)
7591 	struct pagedep *pagedep;
7592 	struct freeblks *freeblks;
7593 	int blkoff;
7594 {
7595 	struct jremref *jremref;
7596 	struct jmvref *jmvref;
7597 	struct dirrem *dirrem, *tmp;
7598 	int i;
7599 
7600 	/*
7601 	 * Copy any directory remove dependencies to the list
7602 	 * to be processed after the freeblks proceeds.  If
7603 	 * directory entry never made it to disk they
7604 	 * can be dumped directly onto the work list.
7605 	 */
7606 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7607 		/* Skip this directory removal if it is intended to remain. */
7608 		if (dirrem->dm_offset < blkoff)
7609 			continue;
7610 		/*
7611 		 * If there are any dirrems we wait for the journal write
7612 		 * to complete and then restart the buf scan as the lock
7613 		 * has been dropped.
7614 		 */
7615 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7616 			jwait(&jremref->jr_list, MNT_WAIT);
7617 			return (ERESTART);
7618 		}
7619 		LIST_REMOVE(dirrem, dm_next);
7620 		dirrem->dm_dirinum = pagedep->pd_ino;
7621 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7622 	}
7623 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7624 		jwait(&jmvref->jm_list, MNT_WAIT);
7625 		return (ERESTART);
7626 	}
7627 	/*
7628 	 * When we're partially truncating a pagedep we just want to flush
7629 	 * journal entries and return.  There can not be any adds in the
7630 	 * truncated portion of the directory and newblk must remain if
7631 	 * part of the block remains.
7632 	 */
7633 	if (blkoff != 0) {
7634 		struct diradd *dap;
7635 
7636 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7637 			if (dap->da_offset > blkoff)
7638 				panic("cancel_pagedep: diradd %p off %d > %d",
7639 				    dap, dap->da_offset, blkoff);
7640 		for (i = 0; i < DAHASHSZ; i++)
7641 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7642 				if (dap->da_offset > blkoff)
7643 					panic("cancel_pagedep: diradd %p off %d > %d",
7644 					    dap, dap->da_offset, blkoff);
7645 		return (0);
7646 	}
7647 	/*
7648 	 * There should be no directory add dependencies present
7649 	 * as the directory could not be truncated until all
7650 	 * children were removed.
7651 	 */
7652 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7653 	    ("deallocate_dependencies: pendinghd != NULL"));
7654 	for (i = 0; i < DAHASHSZ; i++)
7655 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7656 		    ("deallocate_dependencies: diraddhd != NULL"));
7657 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7658 		free_newdirblk(pagedep->pd_newdirblk);
7659 	if (free_pagedep(pagedep) == 0)
7660 		panic("Failed to free pagedep %p", pagedep);
7661 	return (0);
7662 }
7663 
7664 /*
7665  * Reclaim any dependency structures from a buffer that is about to
7666  * be reallocated to a new vnode. The buffer must be locked, thus,
7667  * no I/O completion operations can occur while we are manipulating
7668  * its associated dependencies. The mutex is held so that other I/O's
7669  * associated with related dependencies do not occur.
7670  */
7671 static int
7672 deallocate_dependencies(bp, freeblks, off)
7673 	struct buf *bp;
7674 	struct freeblks *freeblks;
7675 	int off;
7676 {
7677 	struct indirdep *indirdep;
7678 	struct pagedep *pagedep;
7679 	struct worklist *wk, *wkn;
7680 	struct ufsmount *ump;
7681 
7682 	ump = softdep_bp_to_mp(bp);
7683 	if (ump == NULL)
7684 		goto done;
7685 	ACQUIRE_LOCK(ump);
7686 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7687 		switch (wk->wk_type) {
7688 		case D_INDIRDEP:
7689 			indirdep = WK_INDIRDEP(wk);
7690 			if (bp->b_lblkno >= 0 ||
7691 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7692 				panic("deallocate_dependencies: not indir");
7693 			cancel_indirdep(indirdep, bp, freeblks);
7694 			continue;
7695 
7696 		case D_PAGEDEP:
7697 			pagedep = WK_PAGEDEP(wk);
7698 			if (cancel_pagedep(pagedep, freeblks, off)) {
7699 				FREE_LOCK(ump);
7700 				return (ERESTART);
7701 			}
7702 			continue;
7703 
7704 		case D_ALLOCINDIR:
7705 			/*
7706 			 * Simply remove the allocindir, we'll find it via
7707 			 * the indirdep where we can clear pointers if
7708 			 * needed.
7709 			 */
7710 			WORKLIST_REMOVE(wk);
7711 			continue;
7712 
7713 		case D_FREEWORK:
7714 			/*
7715 			 * A truncation is waiting for the zero'd pointers
7716 			 * to be written.  It can be freed when the freeblks
7717 			 * is journaled.
7718 			 */
7719 			WORKLIST_REMOVE(wk);
7720 			wk->wk_state |= ONDEPLIST;
7721 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7722 			break;
7723 
7724 		case D_ALLOCDIRECT:
7725 			if (off != 0)
7726 				continue;
7727 			/* FALLTHROUGH */
7728 		default:
7729 			panic("deallocate_dependencies: Unexpected type %s",
7730 			    TYPENAME(wk->wk_type));
7731 			/* NOTREACHED */
7732 		}
7733 	}
7734 	FREE_LOCK(ump);
7735 done:
7736 	/*
7737 	 * Don't throw away this buf, we were partially truncating and
7738 	 * some deps may always remain.
7739 	 */
7740 	if (off) {
7741 		allocbuf(bp, off);
7742 		bp->b_vflags |= BV_SCANNED;
7743 		return (EBUSY);
7744 	}
7745 	bp->b_flags |= B_INVAL | B_NOCACHE;
7746 
7747 	return (0);
7748 }
7749 
7750 /*
7751  * An allocdirect is being canceled due to a truncate.  We must make sure
7752  * the journal entry is released in concert with the blkfree that releases
7753  * the storage.  Completed journal entries must not be released until the
7754  * space is no longer pointed to by the inode or in the bitmap.
7755  */
7756 static void
7757 cancel_allocdirect(adphead, adp, freeblks)
7758 	struct allocdirectlst *adphead;
7759 	struct allocdirect *adp;
7760 	struct freeblks *freeblks;
7761 {
7762 	struct freework *freework;
7763 	struct newblk *newblk;
7764 	struct worklist *wk;
7765 
7766 	TAILQ_REMOVE(adphead, adp, ad_next);
7767 	newblk = (struct newblk *)adp;
7768 	freework = NULL;
7769 	/*
7770 	 * Find the correct freework structure.
7771 	 */
7772 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7773 		if (wk->wk_type != D_FREEWORK)
7774 			continue;
7775 		freework = WK_FREEWORK(wk);
7776 		if (freework->fw_blkno == newblk->nb_newblkno)
7777 			break;
7778 	}
7779 	if (freework == NULL)
7780 		panic("cancel_allocdirect: Freework not found");
7781 	/*
7782 	 * If a newblk exists at all we still have the journal entry that
7783 	 * initiated the allocation so we do not need to journal the free.
7784 	 */
7785 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7786 	/*
7787 	 * If the journal hasn't been written the jnewblk must be passed
7788 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7789 	 * this by linking the journal dependency into the freework to be
7790 	 * freed when freework_freeblock() is called.  If the journal has
7791 	 * been written we can simply reclaim the journal space when the
7792 	 * freeblks work is complete.
7793 	 */
7794 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7795 	    &freeblks->fb_jwork);
7796 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7797 }
7798 
7799 /*
7800  * Cancel a new block allocation.  May be an indirect or direct block.  We
7801  * remove it from various lists and return any journal record that needs to
7802  * be resolved by the caller.
7803  *
7804  * A special consideration is made for indirects which were never pointed
7805  * at on disk and will never be found once this block is released.
7806  */
7807 static struct jnewblk *
7808 cancel_newblk(newblk, wk, wkhd)
7809 	struct newblk *newblk;
7810 	struct worklist *wk;
7811 	struct workhead *wkhd;
7812 {
7813 	struct jnewblk *jnewblk;
7814 
7815 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7816 
7817 	newblk->nb_state |= GOINGAWAY;
7818 	/*
7819 	 * Previously we traversed the completedhd on each indirdep
7820 	 * attached to this newblk to cancel them and gather journal
7821 	 * work.  Since we need only the oldest journal segment and
7822 	 * the lowest point on the tree will always have the oldest
7823 	 * journal segment we are free to release the segments
7824 	 * of any subordinates and may leave the indirdep list to
7825 	 * indirdep_complete() when this newblk is freed.
7826 	 */
7827 	if (newblk->nb_state & ONDEPLIST) {
7828 		newblk->nb_state &= ~ONDEPLIST;
7829 		LIST_REMOVE(newblk, nb_deps);
7830 	}
7831 	if (newblk->nb_state & ONWORKLIST)
7832 		WORKLIST_REMOVE(&newblk->nb_list);
7833 	/*
7834 	 * If the journal entry hasn't been written we save a pointer to
7835 	 * the dependency that frees it until it is written or the
7836 	 * superseding operation completes.
7837 	 */
7838 	jnewblk = newblk->nb_jnewblk;
7839 	if (jnewblk != NULL && wk != NULL) {
7840 		newblk->nb_jnewblk = NULL;
7841 		jnewblk->jn_dep = wk;
7842 	}
7843 	if (!LIST_EMPTY(&newblk->nb_jwork))
7844 		jwork_move(wkhd, &newblk->nb_jwork);
7845 	/*
7846 	 * When truncating we must free the newdirblk early to remove
7847 	 * the pagedep from the hash before returning.
7848 	 */
7849 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7850 		free_newdirblk(WK_NEWDIRBLK(wk));
7851 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7852 		panic("cancel_newblk: extra newdirblk");
7853 
7854 	return (jnewblk);
7855 }
7856 
7857 /*
7858  * Schedule the freefrag associated with a newblk to be released once
7859  * the pointers are written and the previous block is no longer needed.
7860  */
7861 static void
7862 newblk_freefrag(newblk)
7863 	struct newblk *newblk;
7864 {
7865 	struct freefrag *freefrag;
7866 
7867 	if (newblk->nb_freefrag == NULL)
7868 		return;
7869 	freefrag = newblk->nb_freefrag;
7870 	newblk->nb_freefrag = NULL;
7871 	freefrag->ff_state |= COMPLETE;
7872 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7873 		add_to_worklist(&freefrag->ff_list, 0);
7874 }
7875 
7876 /*
7877  * Free a newblk. Generate a new freefrag work request if appropriate.
7878  * This must be called after the inode pointer and any direct block pointers
7879  * are valid or fully removed via truncate or frag extension.
7880  */
7881 static void
7882 free_newblk(newblk)
7883 	struct newblk *newblk;
7884 {
7885 	struct indirdep *indirdep;
7886 	struct worklist *wk;
7887 
7888 	KASSERT(newblk->nb_jnewblk == NULL,
7889 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7890 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7891 	    ("free_newblk: unclaimed newblk"));
7892 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7893 	newblk_freefrag(newblk);
7894 	if (newblk->nb_state & ONDEPLIST)
7895 		LIST_REMOVE(newblk, nb_deps);
7896 	if (newblk->nb_state & ONWORKLIST)
7897 		WORKLIST_REMOVE(&newblk->nb_list);
7898 	LIST_REMOVE(newblk, nb_hash);
7899 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7900 		free_newdirblk(WK_NEWDIRBLK(wk));
7901 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7902 		panic("free_newblk: extra newdirblk");
7903 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7904 		indirdep_complete(indirdep);
7905 	handle_jwork(&newblk->nb_jwork);
7906 	WORKITEM_FREE(newblk, D_NEWBLK);
7907 }
7908 
7909 /*
7910  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7911  */
7912 static void
7913 free_newdirblk(newdirblk)
7914 	struct newdirblk *newdirblk;
7915 {
7916 	struct pagedep *pagedep;
7917 	struct diradd *dap;
7918 	struct worklist *wk;
7919 
7920 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7921 	WORKLIST_REMOVE(&newdirblk->db_list);
7922 	/*
7923 	 * If the pagedep is still linked onto the directory buffer
7924 	 * dependency chain, then some of the entries on the
7925 	 * pd_pendinghd list may not be committed to disk yet. In
7926 	 * this case, we will simply clear the NEWBLOCK flag and
7927 	 * let the pd_pendinghd list be processed when the pagedep
7928 	 * is next written. If the pagedep is no longer on the buffer
7929 	 * dependency chain, then all the entries on the pd_pending
7930 	 * list are committed to disk and we can free them here.
7931 	 */
7932 	pagedep = newdirblk->db_pagedep;
7933 	pagedep->pd_state &= ~NEWBLOCK;
7934 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7935 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7936 			free_diradd(dap, NULL);
7937 		/*
7938 		 * If no dependencies remain, the pagedep will be freed.
7939 		 */
7940 		free_pagedep(pagedep);
7941 	}
7942 	/* Should only ever be one item in the list. */
7943 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7944 		WORKLIST_REMOVE(wk);
7945 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7946 	}
7947 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7948 }
7949 
7950 /*
7951  * Prepare an inode to be freed. The actual free operation is not
7952  * done until the zero'ed inode has been written to disk.
7953  */
7954 void
7955 softdep_freefile(pvp, ino, mode)
7956 	struct vnode *pvp;
7957 	ino_t ino;
7958 	int mode;
7959 {
7960 	struct inode *ip = VTOI(pvp);
7961 	struct inodedep *inodedep;
7962 	struct freefile *freefile;
7963 	struct freeblks *freeblks;
7964 	struct ufsmount *ump;
7965 
7966 	ump = ITOUMP(ip);
7967 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7968 	    ("softdep_freefile called on non-softdep filesystem"));
7969 	/*
7970 	 * This sets up the inode de-allocation dependency.
7971 	 */
7972 	freefile = malloc(sizeof(struct freefile),
7973 		M_FREEFILE, M_SOFTDEP_FLAGS);
7974 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7975 	freefile->fx_mode = mode;
7976 	freefile->fx_oldinum = ino;
7977 	freefile->fx_devvp = ump->um_devvp;
7978 	LIST_INIT(&freefile->fx_jwork);
7979 	UFS_LOCK(ump);
7980 	ump->um_fs->fs_pendinginodes += 1;
7981 	UFS_UNLOCK(ump);
7982 
7983 	/*
7984 	 * If the inodedep does not exist, then the zero'ed inode has
7985 	 * been written to disk. If the allocated inode has never been
7986 	 * written to disk, then the on-disk inode is zero'ed. In either
7987 	 * case we can free the file immediately.  If the journal was
7988 	 * canceled before being written the inode will never make it to
7989 	 * disk and we must send the canceled journal entrys to
7990 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7991 	 * Any blocks waiting on the inode to write can be safely freed
7992 	 * here as it will never been written.
7993 	 */
7994 	ACQUIRE_LOCK(ump);
7995 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7996 	if (inodedep) {
7997 		/*
7998 		 * Clear out freeblks that no longer need to reference
7999 		 * this inode.
8000 		 */
8001 		while ((freeblks =
8002 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
8003 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
8004 			    fb_next);
8005 			freeblks->fb_state &= ~ONDEPLIST;
8006 		}
8007 		/*
8008 		 * Remove this inode from the unlinked list.
8009 		 */
8010 		if (inodedep->id_state & UNLINKED) {
8011 			/*
8012 			 * Save the journal work to be freed with the bitmap
8013 			 * before we clear UNLINKED.  Otherwise it can be lost
8014 			 * if the inode block is written.
8015 			 */
8016 			handle_bufwait(inodedep, &freefile->fx_jwork);
8017 			clear_unlinked_inodedep(inodedep);
8018 			/*
8019 			 * Re-acquire inodedep as we've dropped the
8020 			 * per-filesystem lock in clear_unlinked_inodedep().
8021 			 */
8022 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
8023 		}
8024 	}
8025 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
8026 		FREE_LOCK(ump);
8027 		handle_workitem_freefile(freefile);
8028 		return;
8029 	}
8030 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
8031 		inodedep->id_state |= GOINGAWAY;
8032 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
8033 	FREE_LOCK(ump);
8034 	if (ip->i_number == ino)
8035 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
8036 }
8037 
8038 /*
8039  * Check to see if an inode has never been written to disk. If
8040  * so free the inodedep and return success, otherwise return failure.
8041  *
8042  * If we still have a bitmap dependency, then the inode has never
8043  * been written to disk. Drop the dependency as it is no longer
8044  * necessary since the inode is being deallocated. We set the
8045  * ALLCOMPLETE flags since the bitmap now properly shows that the
8046  * inode is not allocated. Even if the inode is actively being
8047  * written, it has been rolled back to its zero'ed state, so we
8048  * are ensured that a zero inode is what is on the disk. For short
8049  * lived files, this change will usually result in removing all the
8050  * dependencies from the inode so that it can be freed immediately.
8051  */
8052 static int
8053 check_inode_unwritten(inodedep)
8054 	struct inodedep *inodedep;
8055 {
8056 
8057 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8058 
8059 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
8060 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
8061 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
8062 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
8063 	    !LIST_EMPTY(&inodedep->id_inowait) ||
8064 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
8065 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
8066 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
8067 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
8068 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
8069 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
8070 	    inodedep->id_mkdiradd != NULL ||
8071 	    inodedep->id_nlinkdelta != 0)
8072 		return (0);
8073 	/*
8074 	 * Another process might be in initiate_write_inodeblock_ufs[12]
8075 	 * trying to allocate memory without holding "Softdep Lock".
8076 	 */
8077 	if ((inodedep->id_state & IOSTARTED) != 0 &&
8078 	    inodedep->id_savedino1 == NULL)
8079 		return (0);
8080 
8081 	if (inodedep->id_state & ONDEPLIST)
8082 		LIST_REMOVE(inodedep, id_deps);
8083 	inodedep->id_state &= ~ONDEPLIST;
8084 	inodedep->id_state |= ALLCOMPLETE;
8085 	inodedep->id_bmsafemap = NULL;
8086 	if (inodedep->id_state & ONWORKLIST)
8087 		WORKLIST_REMOVE(&inodedep->id_list);
8088 	if (inodedep->id_savedino1 != NULL) {
8089 		free(inodedep->id_savedino1, M_SAVEDINO);
8090 		inodedep->id_savedino1 = NULL;
8091 	}
8092 	if (free_inodedep(inodedep) == 0)
8093 		panic("check_inode_unwritten: busy inode");
8094 	return (1);
8095 }
8096 
8097 static int
8098 check_inodedep_free(inodedep)
8099 	struct inodedep *inodedep;
8100 {
8101 
8102 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8103 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
8104 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
8105 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
8106 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
8107 	    !LIST_EMPTY(&inodedep->id_inowait) ||
8108 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
8109 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
8110 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
8111 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
8112 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
8113 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
8114 	    inodedep->id_mkdiradd != NULL ||
8115 	    inodedep->id_nlinkdelta != 0 ||
8116 	    inodedep->id_savedino1 != NULL)
8117 		return (0);
8118 	return (1);
8119 }
8120 
8121 /*
8122  * Try to free an inodedep structure. Return 1 if it could be freed.
8123  */
8124 static int
8125 free_inodedep(inodedep)
8126 	struct inodedep *inodedep;
8127 {
8128 
8129 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8130 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
8131 	    !check_inodedep_free(inodedep))
8132 		return (0);
8133 	if (inodedep->id_state & ONDEPLIST)
8134 		LIST_REMOVE(inodedep, id_deps);
8135 	LIST_REMOVE(inodedep, id_hash);
8136 	WORKITEM_FREE(inodedep, D_INODEDEP);
8137 	return (1);
8138 }
8139 
8140 /*
8141  * Free the block referenced by a freework structure.  The parent freeblks
8142  * structure is released and completed when the final cg bitmap reaches
8143  * the disk.  This routine may be freeing a jnewblk which never made it to
8144  * disk in which case we do not have to wait as the operation is undone
8145  * in memory immediately.
8146  */
8147 static void
8148 freework_freeblock(freework, key)
8149 	struct freework *freework;
8150 	u_long key;
8151 {
8152 	struct freeblks *freeblks;
8153 	struct jnewblk *jnewblk;
8154 	struct ufsmount *ump;
8155 	struct workhead wkhd;
8156 	struct fs *fs;
8157 	int bsize;
8158 	int needj;
8159 
8160 	ump = VFSTOUFS(freework->fw_list.wk_mp);
8161 	LOCK_OWNED(ump);
8162 	/*
8163 	 * Handle partial truncate separately.
8164 	 */
8165 	if (freework->fw_indir) {
8166 		complete_trunc_indir(freework);
8167 		return;
8168 	}
8169 	freeblks = freework->fw_freeblks;
8170 	fs = ump->um_fs;
8171 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
8172 	bsize = lfragtosize(fs, freework->fw_frags);
8173 	LIST_INIT(&wkhd);
8174 	/*
8175 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
8176 	 * on the indirblk hashtable and prevents premature freeing.
8177 	 */
8178 	freework->fw_state |= DEPCOMPLETE;
8179 	/*
8180 	 * SUJ needs to wait for the segment referencing freed indirect
8181 	 * blocks to expire so that we know the checker will not confuse
8182 	 * a re-allocated indirect block with its old contents.
8183 	 */
8184 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
8185 		indirblk_insert(freework);
8186 	/*
8187 	 * If we are canceling an existing jnewblk pass it to the free
8188 	 * routine, otherwise pass the freeblk which will ultimately
8189 	 * release the freeblks.  If we're not journaling, we can just
8190 	 * free the freeblks immediately.
8191 	 */
8192 	jnewblk = freework->fw_jnewblk;
8193 	if (jnewblk != NULL) {
8194 		cancel_jnewblk(jnewblk, &wkhd);
8195 		needj = 0;
8196 	} else if (needj) {
8197 		freework->fw_state |= DELAYEDFREE;
8198 		freeblks->fb_cgwait++;
8199 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
8200 	}
8201 	FREE_LOCK(ump);
8202 	freeblks_free(ump, freeblks, btodb(bsize));
8203 	CTR4(KTR_SUJ,
8204 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8205 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8206 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8207 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8208 	ACQUIRE_LOCK(ump);
8209 	/*
8210 	 * The jnewblk will be discarded and the bits in the map never
8211 	 * made it to disk.  We can immediately free the freeblk.
8212 	 */
8213 	if (needj == 0)
8214 		handle_written_freework(freework);
8215 }
8216 
8217 /*
8218  * We enqueue freework items that need processing back on the freeblks and
8219  * add the freeblks to the worklist.  This makes it easier to find all work
8220  * required to flush a truncation in process_truncates().
8221  */
8222 static void
8223 freework_enqueue(freework)
8224 	struct freework *freework;
8225 {
8226 	struct freeblks *freeblks;
8227 
8228 	freeblks = freework->fw_freeblks;
8229 	if ((freework->fw_state & INPROGRESS) == 0)
8230 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8231 	if ((freeblks->fb_state &
8232 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8233 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
8234 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8235 }
8236 
8237 /*
8238  * Start, continue, or finish the process of freeing an indirect block tree.
8239  * The free operation may be paused at any point with fw_off containing the
8240  * offset to restart from.  This enables us to implement some flow control
8241  * for large truncates which may fan out and generate a huge number of
8242  * dependencies.
8243  */
8244 static void
8245 handle_workitem_indirblk(freework)
8246 	struct freework *freework;
8247 {
8248 	struct freeblks *freeblks;
8249 	struct ufsmount *ump;
8250 	struct fs *fs;
8251 
8252 	freeblks = freework->fw_freeblks;
8253 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8254 	fs = ump->um_fs;
8255 	if (freework->fw_state & DEPCOMPLETE) {
8256 		handle_written_freework(freework);
8257 		return;
8258 	}
8259 	if (freework->fw_off == NINDIR(fs)) {
8260 		freework_freeblock(freework, SINGLETON_KEY);
8261 		return;
8262 	}
8263 	freework->fw_state |= INPROGRESS;
8264 	FREE_LOCK(ump);
8265 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8266 	    freework->fw_lbn);
8267 	ACQUIRE_LOCK(ump);
8268 }
8269 
8270 /*
8271  * Called when a freework structure attached to a cg buf is written.  The
8272  * ref on either the parent or the freeblks structure is released and
8273  * the freeblks is added back to the worklist if there is more work to do.
8274  */
8275 static void
8276 handle_written_freework(freework)
8277 	struct freework *freework;
8278 {
8279 	struct freeblks *freeblks;
8280 	struct freework *parent;
8281 
8282 	freeblks = freework->fw_freeblks;
8283 	parent = freework->fw_parent;
8284 	if (freework->fw_state & DELAYEDFREE)
8285 		freeblks->fb_cgwait--;
8286 	freework->fw_state |= COMPLETE;
8287 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8288 		WORKITEM_FREE(freework, D_FREEWORK);
8289 	if (parent) {
8290 		if (--parent->fw_ref == 0)
8291 			freework_enqueue(parent);
8292 		return;
8293 	}
8294 	if (--freeblks->fb_ref != 0)
8295 		return;
8296 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8297 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8298 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8299 }
8300 
8301 /*
8302  * This workitem routine performs the block de-allocation.
8303  * The workitem is added to the pending list after the updated
8304  * inode block has been written to disk.  As mentioned above,
8305  * checks regarding the number of blocks de-allocated (compared
8306  * to the number of blocks allocated for the file) are also
8307  * performed in this function.
8308  */
8309 static int
8310 handle_workitem_freeblocks(freeblks, flags)
8311 	struct freeblks *freeblks;
8312 	int flags;
8313 {
8314 	struct freework *freework;
8315 	struct newblk *newblk;
8316 	struct allocindir *aip;
8317 	struct ufsmount *ump;
8318 	struct worklist *wk;
8319 	u_long key;
8320 
8321 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8322 	    ("handle_workitem_freeblocks: Journal entries not written."));
8323 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8324 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8325 	ACQUIRE_LOCK(ump);
8326 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8327 		WORKLIST_REMOVE(wk);
8328 		switch (wk->wk_type) {
8329 		case D_DIRREM:
8330 			wk->wk_state |= COMPLETE;
8331 			add_to_worklist(wk, 0);
8332 			continue;
8333 
8334 		case D_ALLOCDIRECT:
8335 			free_newblk(WK_NEWBLK(wk));
8336 			continue;
8337 
8338 		case D_ALLOCINDIR:
8339 			aip = WK_ALLOCINDIR(wk);
8340 			freework = NULL;
8341 			if (aip->ai_state & DELAYEDFREE) {
8342 				FREE_LOCK(ump);
8343 				freework = newfreework(ump, freeblks, NULL,
8344 				    aip->ai_lbn, aip->ai_newblkno,
8345 				    ump->um_fs->fs_frag, 0, 0);
8346 				ACQUIRE_LOCK(ump);
8347 			}
8348 			newblk = WK_NEWBLK(wk);
8349 			if (newblk->nb_jnewblk) {
8350 				freework->fw_jnewblk = newblk->nb_jnewblk;
8351 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8352 				newblk->nb_jnewblk = NULL;
8353 			}
8354 			free_newblk(newblk);
8355 			continue;
8356 
8357 		case D_FREEWORK:
8358 			freework = WK_FREEWORK(wk);
8359 			if (freework->fw_lbn <= -UFS_NDADDR)
8360 				handle_workitem_indirblk(freework);
8361 			else
8362 				freework_freeblock(freework, key);
8363 			continue;
8364 		default:
8365 			panic("handle_workitem_freeblocks: Unknown type %s",
8366 			    TYPENAME(wk->wk_type));
8367 		}
8368 	}
8369 	if (freeblks->fb_ref != 0) {
8370 		freeblks->fb_state &= ~INPROGRESS;
8371 		wake_worklist(&freeblks->fb_list);
8372 		freeblks = NULL;
8373 	}
8374 	FREE_LOCK(ump);
8375 	ffs_blkrelease_finish(ump, key);
8376 	if (freeblks)
8377 		return handle_complete_freeblocks(freeblks, flags);
8378 	return (0);
8379 }
8380 
8381 /*
8382  * Handle completion of block free via truncate.  This allows fs_pending
8383  * to track the actual free block count more closely than if we only updated
8384  * it at the end.  We must be careful to handle cases where the block count
8385  * on free was incorrect.
8386  */
8387 static void
8388 freeblks_free(ump, freeblks, blocks)
8389 	struct ufsmount *ump;
8390 	struct freeblks *freeblks;
8391 	int blocks;
8392 {
8393 	struct fs *fs;
8394 	ufs2_daddr_t remain;
8395 
8396 	UFS_LOCK(ump);
8397 	remain = -freeblks->fb_chkcnt;
8398 	freeblks->fb_chkcnt += blocks;
8399 	if (remain > 0) {
8400 		if (remain < blocks)
8401 			blocks = remain;
8402 		fs = ump->um_fs;
8403 		fs->fs_pendingblocks -= blocks;
8404 	}
8405 	UFS_UNLOCK(ump);
8406 }
8407 
8408 /*
8409  * Once all of the freework workitems are complete we can retire the
8410  * freeblocks dependency and any journal work awaiting completion.  This
8411  * can not be called until all other dependencies are stable on disk.
8412  */
8413 static int
8414 handle_complete_freeblocks(freeblks, flags)
8415 	struct freeblks *freeblks;
8416 	int flags;
8417 {
8418 	struct inodedep *inodedep;
8419 	struct inode *ip;
8420 	struct vnode *vp;
8421 	struct fs *fs;
8422 	struct ufsmount *ump;
8423 	ufs2_daddr_t spare;
8424 
8425 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8426 	fs = ump->um_fs;
8427 	flags = LK_EXCLUSIVE | flags;
8428 	spare = freeblks->fb_chkcnt;
8429 
8430 	/*
8431 	 * If we did not release the expected number of blocks we may have
8432 	 * to adjust the inode block count here.  Only do so if it wasn't
8433 	 * a truncation to zero and the modrev still matches.
8434 	 */
8435 	if (spare && freeblks->fb_len != 0) {
8436 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8437 		    flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8438 			return (EBUSY);
8439 		ip = VTOI(vp);
8440 		if (ip->i_mode == 0) {
8441 			vgone(vp);
8442 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8443 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8444 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8445 			/*
8446 			 * We must wait so this happens before the
8447 			 * journal is reclaimed.
8448 			 */
8449 			ffs_update(vp, 1);
8450 		}
8451 		vput(vp);
8452 	}
8453 	if (spare < 0) {
8454 		UFS_LOCK(ump);
8455 		fs->fs_pendingblocks += spare;
8456 		UFS_UNLOCK(ump);
8457 	}
8458 #ifdef QUOTA
8459 	/* Handle spare. */
8460 	if (spare)
8461 		quotaadj(freeblks->fb_quota, ump, -spare);
8462 	quotarele(freeblks->fb_quota);
8463 #endif
8464 	ACQUIRE_LOCK(ump);
8465 	if (freeblks->fb_state & ONDEPLIST) {
8466 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8467 		    0, &inodedep);
8468 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8469 		freeblks->fb_state &= ~ONDEPLIST;
8470 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8471 			free_inodedep(inodedep);
8472 	}
8473 	/*
8474 	 * All of the freeblock deps must be complete prior to this call
8475 	 * so it's now safe to complete earlier outstanding journal entries.
8476 	 */
8477 	handle_jwork(&freeblks->fb_jwork);
8478 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8479 	FREE_LOCK(ump);
8480 	return (0);
8481 }
8482 
8483 /*
8484  * Release blocks associated with the freeblks and stored in the indirect
8485  * block dbn. If level is greater than SINGLE, the block is an indirect block
8486  * and recursive calls to indirtrunc must be used to cleanse other indirect
8487  * blocks.
8488  *
8489  * This handles partial and complete truncation of blocks.  Partial is noted
8490  * with goingaway == 0.  In this case the freework is completed after the
8491  * zero'd indirects are written to disk.  For full truncation the freework
8492  * is completed after the block is freed.
8493  */
8494 static void
8495 indir_trunc(freework, dbn, lbn)
8496 	struct freework *freework;
8497 	ufs2_daddr_t dbn;
8498 	ufs_lbn_t lbn;
8499 {
8500 	struct freework *nfreework;
8501 	struct workhead wkhd;
8502 	struct freeblks *freeblks;
8503 	struct buf *bp;
8504 	struct fs *fs;
8505 	struct indirdep *indirdep;
8506 	struct mount *mp;
8507 	struct ufsmount *ump;
8508 	ufs1_daddr_t *bap1;
8509 	ufs2_daddr_t nb, nnb, *bap2;
8510 	ufs_lbn_t lbnadd, nlbn;
8511 	u_long key;
8512 	int nblocks, ufs1fmt, freedblocks;
8513 	int goingaway, freedeps, needj, level, cnt, i, error;
8514 
8515 	freeblks = freework->fw_freeblks;
8516 	mp = freeblks->fb_list.wk_mp;
8517 	ump = VFSTOUFS(mp);
8518 	fs = ump->um_fs;
8519 	/*
8520 	 * Get buffer of block pointers to be freed.  There are three cases:
8521 	 *
8522 	 * 1) Partial truncate caches the indirdep pointer in the freework
8523 	 *    which provides us a back copy to the save bp which holds the
8524 	 *    pointers we want to clear.  When this completes the zero
8525 	 *    pointers are written to the real copy.
8526 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8527 	 *    eliminated the real copy and placed the indirdep on the saved
8528 	 *    copy.  The indirdep and buf are discarded when this completes.
8529 	 * 3) The indirect was not in memory, we read a copy off of the disk
8530 	 *    using the devvp and drop and invalidate the buffer when we're
8531 	 *    done.
8532 	 */
8533 	goingaway = 1;
8534 	indirdep = NULL;
8535 	if (freework->fw_indir != NULL) {
8536 		goingaway = 0;
8537 		indirdep = freework->fw_indir;
8538 		bp = indirdep->ir_savebp;
8539 		if (bp == NULL || bp->b_blkno != dbn)
8540 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8541 			    bp, (intmax_t)dbn);
8542 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8543 		/*
8544 		 * The lock prevents the buf dep list from changing and
8545 	 	 * indirects on devvp should only ever have one dependency.
8546 		 */
8547 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8548 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8549 			panic("indir_trunc: Bad indirdep %p from buf %p",
8550 			    indirdep, bp);
8551 	} else {
8552 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8553 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8554 		if (error)
8555 			return;
8556 	}
8557 	ACQUIRE_LOCK(ump);
8558 	/* Protects against a race with complete_trunc_indir(). */
8559 	freework->fw_state &= ~INPROGRESS;
8560 	/*
8561 	 * If we have an indirdep we need to enforce the truncation order
8562 	 * and discard it when it is complete.
8563 	 */
8564 	if (indirdep) {
8565 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8566 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8567 			/*
8568 			 * Add the complete truncate to the list on the
8569 			 * indirdep to enforce in-order processing.
8570 			 */
8571 			if (freework->fw_indir == NULL)
8572 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8573 				    freework, fw_next);
8574 			FREE_LOCK(ump);
8575 			return;
8576 		}
8577 		/*
8578 		 * If we're goingaway, free the indirdep.  Otherwise it will
8579 		 * linger until the write completes.
8580 		 */
8581 		if (goingaway) {
8582 			KASSERT(indirdep->ir_savebp == bp,
8583 			    ("indir_trunc: losing ir_savebp %p",
8584 			    indirdep->ir_savebp));
8585 			indirdep->ir_savebp = NULL;
8586 			free_indirdep(indirdep);
8587 		}
8588 	}
8589 	FREE_LOCK(ump);
8590 	/* Initialize pointers depending on block size. */
8591 	if (ump->um_fstype == UFS1) {
8592 		bap1 = (ufs1_daddr_t *)bp->b_data;
8593 		nb = bap1[freework->fw_off];
8594 		ufs1fmt = 1;
8595 		bap2 = NULL;
8596 	} else {
8597 		bap2 = (ufs2_daddr_t *)bp->b_data;
8598 		nb = bap2[freework->fw_off];
8599 		ufs1fmt = 0;
8600 		bap1 = NULL;
8601 	}
8602 	level = lbn_level(lbn);
8603 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8604 	lbnadd = lbn_offset(fs, level);
8605 	nblocks = btodb(fs->fs_bsize);
8606 	nfreework = freework;
8607 	freedeps = 0;
8608 	cnt = 0;
8609 	/*
8610 	 * Reclaim blocks.  Traverses into nested indirect levels and
8611 	 * arranges for the current level to be freed when subordinates
8612 	 * are free when journaling.
8613 	 */
8614 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8615 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8616 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8617 		    fs->fs_bsize) != 0)
8618 			nb = 0;
8619 		if (i != NINDIR(fs) - 1) {
8620 			if (ufs1fmt)
8621 				nnb = bap1[i+1];
8622 			else
8623 				nnb = bap2[i+1];
8624 		} else
8625 			nnb = 0;
8626 		if (nb == 0)
8627 			continue;
8628 		cnt++;
8629 		if (level != 0) {
8630 			nlbn = (lbn + 1) - (i * lbnadd);
8631 			if (needj != 0) {
8632 				nfreework = newfreework(ump, freeblks, freework,
8633 				    nlbn, nb, fs->fs_frag, 0, 0);
8634 				freedeps++;
8635 			}
8636 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8637 		} else {
8638 			struct freedep *freedep;
8639 
8640 			/*
8641 			 * Attempt to aggregate freedep dependencies for
8642 			 * all blocks being released to the same CG.
8643 			 */
8644 			LIST_INIT(&wkhd);
8645 			if (needj != 0 &&
8646 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8647 				freedep = newfreedep(freework);
8648 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8649 				    &freedep->fd_list);
8650 				freedeps++;
8651 			}
8652 			CTR3(KTR_SUJ,
8653 			    "indir_trunc: ino %jd blkno %jd size %d",
8654 			    freeblks->fb_inum, nb, fs->fs_bsize);
8655 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8656 			    fs->fs_bsize, freeblks->fb_inum,
8657 			    freeblks->fb_vtype, &wkhd, key);
8658 		}
8659 	}
8660 	ffs_blkrelease_finish(ump, key);
8661 	if (goingaway) {
8662 		bp->b_flags |= B_INVAL | B_NOCACHE;
8663 		brelse(bp);
8664 	}
8665 	freedblocks = 0;
8666 	if (level == 0)
8667 		freedblocks = (nblocks * cnt);
8668 	if (needj == 0)
8669 		freedblocks += nblocks;
8670 	freeblks_free(ump, freeblks, freedblocks);
8671 	/*
8672 	 * If we are journaling set up the ref counts and offset so this
8673 	 * indirect can be completed when its children are free.
8674 	 */
8675 	if (needj) {
8676 		ACQUIRE_LOCK(ump);
8677 		freework->fw_off = i;
8678 		freework->fw_ref += freedeps;
8679 		freework->fw_ref -= NINDIR(fs) + 1;
8680 		if (level == 0)
8681 			freeblks->fb_cgwait += freedeps;
8682 		if (freework->fw_ref == 0)
8683 			freework_freeblock(freework, SINGLETON_KEY);
8684 		FREE_LOCK(ump);
8685 		return;
8686 	}
8687 	/*
8688 	 * If we're not journaling we can free the indirect now.
8689 	 */
8690 	dbn = dbtofsb(fs, dbn);
8691 	CTR3(KTR_SUJ,
8692 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8693 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8694 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8695 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8696 	/* Non SUJ softdep does single-threaded truncations. */
8697 	if (freework->fw_blkno == dbn) {
8698 		freework->fw_state |= ALLCOMPLETE;
8699 		ACQUIRE_LOCK(ump);
8700 		handle_written_freework(freework);
8701 		FREE_LOCK(ump);
8702 	}
8703 	return;
8704 }
8705 
8706 /*
8707  * Cancel an allocindir when it is removed via truncation.  When bp is not
8708  * NULL the indirect never appeared on disk and is scheduled to be freed
8709  * independently of the indir so we can more easily track journal work.
8710  */
8711 static void
8712 cancel_allocindir(aip, bp, freeblks, trunc)
8713 	struct allocindir *aip;
8714 	struct buf *bp;
8715 	struct freeblks *freeblks;
8716 	int trunc;
8717 {
8718 	struct indirdep *indirdep;
8719 	struct freefrag *freefrag;
8720 	struct newblk *newblk;
8721 
8722 	newblk = (struct newblk *)aip;
8723 	LIST_REMOVE(aip, ai_next);
8724 	/*
8725 	 * We must eliminate the pointer in bp if it must be freed on its
8726 	 * own due to partial truncate or pending journal work.
8727 	 */
8728 	if (bp && (trunc || newblk->nb_jnewblk)) {
8729 		/*
8730 		 * Clear the pointer and mark the aip to be freed
8731 		 * directly if it never existed on disk.
8732 		 */
8733 		aip->ai_state |= DELAYEDFREE;
8734 		indirdep = aip->ai_indirdep;
8735 		if (indirdep->ir_state & UFS1FMT)
8736 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8737 		else
8738 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8739 	}
8740 	/*
8741 	 * When truncating the previous pointer will be freed via
8742 	 * savedbp.  Eliminate the freefrag which would dup free.
8743 	 */
8744 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8745 		newblk->nb_freefrag = NULL;
8746 		if (freefrag->ff_jdep)
8747 			cancel_jfreefrag(
8748 			    WK_JFREEFRAG(freefrag->ff_jdep));
8749 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8750 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8751 	}
8752 	/*
8753 	 * If the journal hasn't been written the jnewblk must be passed
8754 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8755 	 * this by leaving the journal dependency on the newblk to be freed
8756 	 * when a freework is created in handle_workitem_freeblocks().
8757 	 */
8758 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8759 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8760 }
8761 
8762 /*
8763  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8764  * in to a newdirblk so any subsequent additions are tracked properly.  The
8765  * caller is responsible for adding the mkdir1 dependency to the journal
8766  * and updating id_mkdiradd.  This function returns with the per-filesystem
8767  * lock held.
8768  */
8769 static struct mkdir *
8770 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8771 	struct diradd *dap;
8772 	ino_t newinum;
8773 	ino_t dinum;
8774 	struct buf *newdirbp;
8775 	struct mkdir **mkdirp;
8776 {
8777 	struct newblk *newblk;
8778 	struct pagedep *pagedep;
8779 	struct inodedep *inodedep;
8780 	struct newdirblk *newdirblk;
8781 	struct mkdir *mkdir1, *mkdir2;
8782 	struct worklist *wk;
8783 	struct jaddref *jaddref;
8784 	struct ufsmount *ump;
8785 	struct mount *mp;
8786 
8787 	mp = dap->da_list.wk_mp;
8788 	ump = VFSTOUFS(mp);
8789 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8790 	    M_SOFTDEP_FLAGS);
8791 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8792 	LIST_INIT(&newdirblk->db_mkdir);
8793 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8794 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8795 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8796 	mkdir1->md_diradd = dap;
8797 	mkdir1->md_jaddref = NULL;
8798 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8799 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8800 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8801 	mkdir2->md_diradd = dap;
8802 	mkdir2->md_jaddref = NULL;
8803 	if (MOUNTEDSUJ(mp) == 0) {
8804 		mkdir1->md_state |= DEPCOMPLETE;
8805 		mkdir2->md_state |= DEPCOMPLETE;
8806 	}
8807 	/*
8808 	 * Dependency on "." and ".." being written to disk.
8809 	 */
8810 	mkdir1->md_buf = newdirbp;
8811 	ACQUIRE_LOCK(VFSTOUFS(mp));
8812 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8813 	/*
8814 	 * We must link the pagedep, allocdirect, and newdirblk for
8815 	 * the initial file page so the pointer to the new directory
8816 	 * is not written until the directory contents are live and
8817 	 * any subsequent additions are not marked live until the
8818 	 * block is reachable via the inode.
8819 	 */
8820 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8821 		panic("setup_newdir: lost pagedep");
8822 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8823 		if (wk->wk_type == D_ALLOCDIRECT)
8824 			break;
8825 	if (wk == NULL)
8826 		panic("setup_newdir: lost allocdirect");
8827 	if (pagedep->pd_state & NEWBLOCK)
8828 		panic("setup_newdir: NEWBLOCK already set");
8829 	newblk = WK_NEWBLK(wk);
8830 	pagedep->pd_state |= NEWBLOCK;
8831 	pagedep->pd_newdirblk = newdirblk;
8832 	newdirblk->db_pagedep = pagedep;
8833 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8834 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8835 	/*
8836 	 * Look up the inodedep for the parent directory so that we
8837 	 * can link mkdir2 into the pending dotdot jaddref or
8838 	 * the inode write if there is none.  If the inode is
8839 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8840 	 * been satisfied and mkdir2 can be freed.
8841 	 */
8842 	inodedep_lookup(mp, dinum, 0, &inodedep);
8843 	if (MOUNTEDSUJ(mp)) {
8844 		if (inodedep == NULL)
8845 			panic("setup_newdir: Lost parent.");
8846 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8847 		    inoreflst);
8848 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8849 		    (jaddref->ja_state & MKDIR_PARENT),
8850 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8851 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8852 		mkdir2->md_jaddref = jaddref;
8853 		jaddref->ja_mkdir = mkdir2;
8854 	} else if (inodedep == NULL ||
8855 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8856 		dap->da_state &= ~MKDIR_PARENT;
8857 		WORKITEM_FREE(mkdir2, D_MKDIR);
8858 		mkdir2 = NULL;
8859 	} else {
8860 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8861 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8862 	}
8863 	*mkdirp = mkdir2;
8864 
8865 	return (mkdir1);
8866 }
8867 
8868 /*
8869  * Directory entry addition dependencies.
8870  *
8871  * When adding a new directory entry, the inode (with its incremented link
8872  * count) must be written to disk before the directory entry's pointer to it.
8873  * Also, if the inode is newly allocated, the corresponding freemap must be
8874  * updated (on disk) before the directory entry's pointer. These requirements
8875  * are met via undo/redo on the directory entry's pointer, which consists
8876  * simply of the inode number.
8877  *
8878  * As directory entries are added and deleted, the free space within a
8879  * directory block can become fragmented.  The ufs filesystem will compact
8880  * a fragmented directory block to make space for a new entry. When this
8881  * occurs, the offsets of previously added entries change. Any "diradd"
8882  * dependency structures corresponding to these entries must be updated with
8883  * the new offsets.
8884  */
8885 
8886 /*
8887  * This routine is called after the in-memory inode's link
8888  * count has been incremented, but before the directory entry's
8889  * pointer to the inode has been set.
8890  */
8891 int
8892 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8893 	struct buf *bp;		/* buffer containing directory block */
8894 	struct inode *dp;	/* inode for directory */
8895 	off_t diroffset;	/* offset of new entry in directory */
8896 	ino_t newinum;		/* inode referenced by new directory entry */
8897 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8898 	int isnewblk;		/* entry is in a newly allocated block */
8899 {
8900 	int offset;		/* offset of new entry within directory block */
8901 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8902 	struct fs *fs;
8903 	struct diradd *dap;
8904 	struct newblk *newblk;
8905 	struct pagedep *pagedep;
8906 	struct inodedep *inodedep;
8907 	struct newdirblk *newdirblk;
8908 	struct mkdir *mkdir1, *mkdir2;
8909 	struct jaddref *jaddref;
8910 	struct ufsmount *ump;
8911 	struct mount *mp;
8912 	int isindir;
8913 
8914 	mp = ITOVFS(dp);
8915 	ump = VFSTOUFS(mp);
8916 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8917 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8918 	/*
8919 	 * Whiteouts have no dependencies.
8920 	 */
8921 	if (newinum == UFS_WINO) {
8922 		if (newdirbp != NULL)
8923 			bdwrite(newdirbp);
8924 		return (0);
8925 	}
8926 	jaddref = NULL;
8927 	mkdir1 = mkdir2 = NULL;
8928 	fs = ump->um_fs;
8929 	lbn = lblkno(fs, diroffset);
8930 	offset = blkoff(fs, diroffset);
8931 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8932 		M_SOFTDEP_FLAGS|M_ZERO);
8933 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8934 	dap->da_offset = offset;
8935 	dap->da_newinum = newinum;
8936 	dap->da_state = ATTACHED;
8937 	LIST_INIT(&dap->da_jwork);
8938 	isindir = bp->b_lblkno >= UFS_NDADDR;
8939 	newdirblk = NULL;
8940 	if (isnewblk &&
8941 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8942 		newdirblk = malloc(sizeof(struct newdirblk),
8943 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8944 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8945 		LIST_INIT(&newdirblk->db_mkdir);
8946 	}
8947 	/*
8948 	 * If we're creating a new directory setup the dependencies and set
8949 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8950 	 * we can move on.
8951 	 */
8952 	if (newdirbp == NULL) {
8953 		dap->da_state |= DEPCOMPLETE;
8954 		ACQUIRE_LOCK(ump);
8955 	} else {
8956 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8957 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8958 		    &mkdir2);
8959 	}
8960 	/*
8961 	 * Link into parent directory pagedep to await its being written.
8962 	 */
8963 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8964 #ifdef INVARIANTS
8965 	if (diradd_lookup(pagedep, offset) != NULL)
8966 		panic("softdep_setup_directory_add: %p already at off %d\n",
8967 		    diradd_lookup(pagedep, offset), offset);
8968 #endif
8969 	dap->da_pagedep = pagedep;
8970 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8971 	    da_pdlist);
8972 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8973 	/*
8974 	 * If we're journaling, link the diradd into the jaddref so it
8975 	 * may be completed after the journal entry is written.  Otherwise,
8976 	 * link the diradd into its inodedep.  If the inode is not yet
8977 	 * written place it on the bufwait list, otherwise do the post-inode
8978 	 * write processing to put it on the id_pendinghd list.
8979 	 */
8980 	if (MOUNTEDSUJ(mp)) {
8981 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8982 		    inoreflst);
8983 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8984 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8985 		jaddref->ja_diroff = diroffset;
8986 		jaddref->ja_diradd = dap;
8987 		add_to_journal(&jaddref->ja_list);
8988 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8989 		diradd_inode_written(dap, inodedep);
8990 	else
8991 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8992 	/*
8993 	 * Add the journal entries for . and .. links now that the primary
8994 	 * link is written.
8995 	 */
8996 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8997 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8998 		    inoreflst, if_deps);
8999 		KASSERT(jaddref != NULL &&
9000 		    jaddref->ja_ino == jaddref->ja_parent &&
9001 		    (jaddref->ja_state & MKDIR_BODY),
9002 		    ("softdep_setup_directory_add: bad dot jaddref %p",
9003 		    jaddref));
9004 		mkdir1->md_jaddref = jaddref;
9005 		jaddref->ja_mkdir = mkdir1;
9006 		/*
9007 		 * It is important that the dotdot journal entry
9008 		 * is added prior to the dot entry since dot writes
9009 		 * both the dot and dotdot links.  These both must
9010 		 * be added after the primary link for the journal
9011 		 * to remain consistent.
9012 		 */
9013 		add_to_journal(&mkdir2->md_jaddref->ja_list);
9014 		add_to_journal(&jaddref->ja_list);
9015 	}
9016 	/*
9017 	 * If we are adding a new directory remember this diradd so that if
9018 	 * we rename it we can keep the dot and dotdot dependencies.  If
9019 	 * we are adding a new name for an inode that has a mkdiradd we
9020 	 * must be in rename and we have to move the dot and dotdot
9021 	 * dependencies to this new name.  The old name is being orphaned
9022 	 * soon.
9023 	 */
9024 	if (mkdir1 != NULL) {
9025 		if (inodedep->id_mkdiradd != NULL)
9026 			panic("softdep_setup_directory_add: Existing mkdir");
9027 		inodedep->id_mkdiradd = dap;
9028 	} else if (inodedep->id_mkdiradd)
9029 		merge_diradd(inodedep, dap);
9030 	if (newdirblk != NULL) {
9031 		/*
9032 		 * There is nothing to do if we are already tracking
9033 		 * this block.
9034 		 */
9035 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
9036 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
9037 			FREE_LOCK(ump);
9038 			return (0);
9039 		}
9040 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
9041 		    == 0)
9042 			panic("softdep_setup_directory_add: lost entry");
9043 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
9044 		pagedep->pd_state |= NEWBLOCK;
9045 		pagedep->pd_newdirblk = newdirblk;
9046 		newdirblk->db_pagedep = pagedep;
9047 		FREE_LOCK(ump);
9048 		/*
9049 		 * If we extended into an indirect signal direnter to sync.
9050 		 */
9051 		if (isindir)
9052 			return (1);
9053 		return (0);
9054 	}
9055 	FREE_LOCK(ump);
9056 	return (0);
9057 }
9058 
9059 /*
9060  * This procedure is called to change the offset of a directory
9061  * entry when compacting a directory block which must be owned
9062  * exclusively by the caller. Note that the actual entry movement
9063  * must be done in this procedure to ensure that no I/O completions
9064  * occur while the move is in progress.
9065  */
9066 void
9067 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
9068 	struct buf *bp;		/* Buffer holding directory block. */
9069 	struct inode *dp;	/* inode for directory */
9070 	caddr_t base;		/* address of dp->i_offset */
9071 	caddr_t oldloc;		/* address of old directory location */
9072 	caddr_t newloc;		/* address of new directory location */
9073 	int entrysize;		/* size of directory entry */
9074 {
9075 	int offset, oldoffset, newoffset;
9076 	struct pagedep *pagedep;
9077 	struct jmvref *jmvref;
9078 	struct diradd *dap;
9079 	struct direct *de;
9080 	struct mount *mp;
9081 	struct ufsmount *ump;
9082 	ufs_lbn_t lbn;
9083 	int flags;
9084 
9085 	mp = ITOVFS(dp);
9086 	ump = VFSTOUFS(mp);
9087 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9088 	    ("softdep_change_directoryentry_offset called on "
9089 	     "non-softdep filesystem"));
9090 	de = (struct direct *)oldloc;
9091 	jmvref = NULL;
9092 	flags = 0;
9093 	/*
9094 	 * Moves are always journaled as it would be too complex to
9095 	 * determine if any affected adds or removes are present in the
9096 	 * journal.
9097 	 */
9098 	if (MOUNTEDSUJ(mp)) {
9099 		flags = DEPALLOC;
9100 		jmvref = newjmvref(dp, de->d_ino,
9101 		    I_OFFSET(dp) + (oldloc - base),
9102 		    I_OFFSET(dp) + (newloc - base));
9103 	}
9104 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9105 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9106 	oldoffset = offset + (oldloc - base);
9107 	newoffset = offset + (newloc - base);
9108 	ACQUIRE_LOCK(ump);
9109 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
9110 		goto done;
9111 	dap = diradd_lookup(pagedep, oldoffset);
9112 	if (dap) {
9113 		dap->da_offset = newoffset;
9114 		newoffset = DIRADDHASH(newoffset);
9115 		oldoffset = DIRADDHASH(oldoffset);
9116 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
9117 		    newoffset != oldoffset) {
9118 			LIST_REMOVE(dap, da_pdlist);
9119 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
9120 			    dap, da_pdlist);
9121 		}
9122 	}
9123 done:
9124 	if (jmvref) {
9125 		jmvref->jm_pagedep = pagedep;
9126 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
9127 		add_to_journal(&jmvref->jm_list);
9128 	}
9129 	bcopy(oldloc, newloc, entrysize);
9130 	FREE_LOCK(ump);
9131 }
9132 
9133 /*
9134  * Move the mkdir dependencies and journal work from one diradd to another
9135  * when renaming a directory.  The new name must depend on the mkdir deps
9136  * completing as the old name did.  Directories can only have one valid link
9137  * at a time so one must be canonical.
9138  */
9139 static void
9140 merge_diradd(inodedep, newdap)
9141 	struct inodedep *inodedep;
9142 	struct diradd *newdap;
9143 {
9144 	struct diradd *olddap;
9145 	struct mkdir *mkdir, *nextmd;
9146 	struct ufsmount *ump;
9147 	short state;
9148 
9149 	olddap = inodedep->id_mkdiradd;
9150 	inodedep->id_mkdiradd = newdap;
9151 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9152 		newdap->da_state &= ~DEPCOMPLETE;
9153 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
9154 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9155 		     mkdir = nextmd) {
9156 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9157 			if (mkdir->md_diradd != olddap)
9158 				continue;
9159 			mkdir->md_diradd = newdap;
9160 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
9161 			newdap->da_state |= state;
9162 			olddap->da_state &= ~state;
9163 			if ((olddap->da_state &
9164 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
9165 				break;
9166 		}
9167 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9168 			panic("merge_diradd: unfound ref");
9169 	}
9170 	/*
9171 	 * Any mkdir related journal items are not safe to be freed until
9172 	 * the new name is stable.
9173 	 */
9174 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
9175 	olddap->da_state |= DEPCOMPLETE;
9176 	complete_diradd(olddap);
9177 }
9178 
9179 /*
9180  * Move the diradd to the pending list when all diradd dependencies are
9181  * complete.
9182  */
9183 static void
9184 complete_diradd(dap)
9185 	struct diradd *dap;
9186 {
9187 	struct pagedep *pagedep;
9188 
9189 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
9190 		if (dap->da_state & DIRCHG)
9191 			pagedep = dap->da_previous->dm_pagedep;
9192 		else
9193 			pagedep = dap->da_pagedep;
9194 		LIST_REMOVE(dap, da_pdlist);
9195 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9196 	}
9197 }
9198 
9199 /*
9200  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
9201  * add entries and conditonally journal the remove.
9202  */
9203 static void
9204 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
9205 	struct diradd *dap;
9206 	struct dirrem *dirrem;
9207 	struct jremref *jremref;
9208 	struct jremref *dotremref;
9209 	struct jremref *dotdotremref;
9210 {
9211 	struct inodedep *inodedep;
9212 	struct jaddref *jaddref;
9213 	struct inoref *inoref;
9214 	struct ufsmount *ump;
9215 	struct mkdir *mkdir;
9216 
9217 	/*
9218 	 * If no remove references were allocated we're on a non-journaled
9219 	 * filesystem and can skip the cancel step.
9220 	 */
9221 	if (jremref == NULL) {
9222 		free_diradd(dap, NULL);
9223 		return;
9224 	}
9225 	/*
9226 	 * Cancel the primary name an free it if it does not require
9227 	 * journaling.
9228 	 */
9229 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9230 	    0, &inodedep) != 0) {
9231 		/* Abort the addref that reference this diradd.  */
9232 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9233 			if (inoref->if_list.wk_type != D_JADDREF)
9234 				continue;
9235 			jaddref = (struct jaddref *)inoref;
9236 			if (jaddref->ja_diradd != dap)
9237 				continue;
9238 			if (cancel_jaddref(jaddref, inodedep,
9239 			    &dirrem->dm_jwork) == 0) {
9240 				free_jremref(jremref);
9241 				jremref = NULL;
9242 			}
9243 			break;
9244 		}
9245 	}
9246 	/*
9247 	 * Cancel subordinate names and free them if they do not require
9248 	 * journaling.
9249 	 */
9250 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9251 		ump = VFSTOUFS(dap->da_list.wk_mp);
9252 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9253 			if (mkdir->md_diradd != dap)
9254 				continue;
9255 			if ((jaddref = mkdir->md_jaddref) == NULL)
9256 				continue;
9257 			mkdir->md_jaddref = NULL;
9258 			if (mkdir->md_state & MKDIR_PARENT) {
9259 				if (cancel_jaddref(jaddref, NULL,
9260 				    &dirrem->dm_jwork) == 0) {
9261 					free_jremref(dotdotremref);
9262 					dotdotremref = NULL;
9263 				}
9264 			} else {
9265 				if (cancel_jaddref(jaddref, inodedep,
9266 				    &dirrem->dm_jwork) == 0) {
9267 					free_jremref(dotremref);
9268 					dotremref = NULL;
9269 				}
9270 			}
9271 		}
9272 	}
9273 
9274 	if (jremref)
9275 		journal_jremref(dirrem, jremref, inodedep);
9276 	if (dotremref)
9277 		journal_jremref(dirrem, dotremref, inodedep);
9278 	if (dotdotremref)
9279 		journal_jremref(dirrem, dotdotremref, NULL);
9280 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9281 	free_diradd(dap, &dirrem->dm_jwork);
9282 }
9283 
9284 /*
9285  * Free a diradd dependency structure.
9286  */
9287 static void
9288 free_diradd(dap, wkhd)
9289 	struct diradd *dap;
9290 	struct workhead *wkhd;
9291 {
9292 	struct dirrem *dirrem;
9293 	struct pagedep *pagedep;
9294 	struct inodedep *inodedep;
9295 	struct mkdir *mkdir, *nextmd;
9296 	struct ufsmount *ump;
9297 
9298 	ump = VFSTOUFS(dap->da_list.wk_mp);
9299 	LOCK_OWNED(ump);
9300 	LIST_REMOVE(dap, da_pdlist);
9301 	if (dap->da_state & ONWORKLIST)
9302 		WORKLIST_REMOVE(&dap->da_list);
9303 	if ((dap->da_state & DIRCHG) == 0) {
9304 		pagedep = dap->da_pagedep;
9305 	} else {
9306 		dirrem = dap->da_previous;
9307 		pagedep = dirrem->dm_pagedep;
9308 		dirrem->dm_dirinum = pagedep->pd_ino;
9309 		dirrem->dm_state |= COMPLETE;
9310 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9311 			add_to_worklist(&dirrem->dm_list, 0);
9312 	}
9313 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9314 	    0, &inodedep) != 0)
9315 		if (inodedep->id_mkdiradd == dap)
9316 			inodedep->id_mkdiradd = NULL;
9317 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9318 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9319 		     mkdir = nextmd) {
9320 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9321 			if (mkdir->md_diradd != dap)
9322 				continue;
9323 			dap->da_state &=
9324 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9325 			LIST_REMOVE(mkdir, md_mkdirs);
9326 			if (mkdir->md_state & ONWORKLIST)
9327 				WORKLIST_REMOVE(&mkdir->md_list);
9328 			if (mkdir->md_jaddref != NULL)
9329 				panic("free_diradd: Unexpected jaddref");
9330 			WORKITEM_FREE(mkdir, D_MKDIR);
9331 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9332 				break;
9333 		}
9334 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9335 			panic("free_diradd: unfound ref");
9336 	}
9337 	if (inodedep)
9338 		free_inodedep(inodedep);
9339 	/*
9340 	 * Free any journal segments waiting for the directory write.
9341 	 */
9342 	handle_jwork(&dap->da_jwork);
9343 	WORKITEM_FREE(dap, D_DIRADD);
9344 }
9345 
9346 /*
9347  * Directory entry removal dependencies.
9348  *
9349  * When removing a directory entry, the entry's inode pointer must be
9350  * zero'ed on disk before the corresponding inode's link count is decremented
9351  * (possibly freeing the inode for re-use). This dependency is handled by
9352  * updating the directory entry but delaying the inode count reduction until
9353  * after the directory block has been written to disk. After this point, the
9354  * inode count can be decremented whenever it is convenient.
9355  */
9356 
9357 /*
9358  * This routine should be called immediately after removing
9359  * a directory entry.  The inode's link count should not be
9360  * decremented by the calling procedure -- the soft updates
9361  * code will do this task when it is safe.
9362  */
9363 void
9364 softdep_setup_remove(bp, dp, ip, isrmdir)
9365 	struct buf *bp;		/* buffer containing directory block */
9366 	struct inode *dp;	/* inode for the directory being modified */
9367 	struct inode *ip;	/* inode for directory entry being removed */
9368 	int isrmdir;		/* indicates if doing RMDIR */
9369 {
9370 	struct dirrem *dirrem, *prevdirrem;
9371 	struct inodedep *inodedep;
9372 	struct ufsmount *ump;
9373 	int direct;
9374 
9375 	ump = ITOUMP(ip);
9376 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9377 	    ("softdep_setup_remove called on non-softdep filesystem"));
9378 	/*
9379 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9380 	 * newdirrem() to setup the full directory remove which requires
9381 	 * isrmdir > 1.
9382 	 */
9383 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9384 	/*
9385 	 * Add the dirrem to the inodedep's pending remove list for quick
9386 	 * discovery later.
9387 	 */
9388 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9389 		panic("softdep_setup_remove: Lost inodedep.");
9390 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9391 	dirrem->dm_state |= ONDEPLIST;
9392 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9393 
9394 	/*
9395 	 * If the COMPLETE flag is clear, then there were no active
9396 	 * entries and we want to roll back to a zeroed entry until
9397 	 * the new inode is committed to disk. If the COMPLETE flag is
9398 	 * set then we have deleted an entry that never made it to
9399 	 * disk. If the entry we deleted resulted from a name change,
9400 	 * then the old name still resides on disk. We cannot delete
9401 	 * its inode (returned to us in prevdirrem) until the zeroed
9402 	 * directory entry gets to disk. The new inode has never been
9403 	 * referenced on the disk, so can be deleted immediately.
9404 	 */
9405 	if ((dirrem->dm_state & COMPLETE) == 0) {
9406 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9407 		    dm_next);
9408 		FREE_LOCK(ump);
9409 	} else {
9410 		if (prevdirrem != NULL)
9411 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9412 			    prevdirrem, dm_next);
9413 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9414 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9415 		FREE_LOCK(ump);
9416 		if (direct)
9417 			handle_workitem_remove(dirrem, 0);
9418 	}
9419 }
9420 
9421 /*
9422  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9423  * pd_pendinghd list of a pagedep.
9424  */
9425 static struct diradd *
9426 diradd_lookup(pagedep, offset)
9427 	struct pagedep *pagedep;
9428 	int offset;
9429 {
9430 	struct diradd *dap;
9431 
9432 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9433 		if (dap->da_offset == offset)
9434 			return (dap);
9435 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9436 		if (dap->da_offset == offset)
9437 			return (dap);
9438 	return (NULL);
9439 }
9440 
9441 /*
9442  * Search for a .. diradd dependency in a directory that is being removed.
9443  * If the directory was renamed to a new parent we have a diradd rather
9444  * than a mkdir for the .. entry.  We need to cancel it now before
9445  * it is found in truncate().
9446  */
9447 static struct jremref *
9448 cancel_diradd_dotdot(ip, dirrem, jremref)
9449 	struct inode *ip;
9450 	struct dirrem *dirrem;
9451 	struct jremref *jremref;
9452 {
9453 	struct pagedep *pagedep;
9454 	struct diradd *dap;
9455 	struct worklist *wk;
9456 
9457 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9458 		return (jremref);
9459 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9460 	if (dap == NULL)
9461 		return (jremref);
9462 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9463 	/*
9464 	 * Mark any journal work as belonging to the parent so it is freed
9465 	 * with the .. reference.
9466 	 */
9467 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9468 		wk->wk_state |= MKDIR_PARENT;
9469 	return (NULL);
9470 }
9471 
9472 /*
9473  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9474  * replace it with a dirrem/diradd pair as a result of re-parenting a
9475  * directory.  This ensures that we don't simultaneously have a mkdir and
9476  * a diradd for the same .. entry.
9477  */
9478 static struct jremref *
9479 cancel_mkdir_dotdot(ip, dirrem, jremref)
9480 	struct inode *ip;
9481 	struct dirrem *dirrem;
9482 	struct jremref *jremref;
9483 {
9484 	struct inodedep *inodedep;
9485 	struct jaddref *jaddref;
9486 	struct ufsmount *ump;
9487 	struct mkdir *mkdir;
9488 	struct diradd *dap;
9489 	struct mount *mp;
9490 
9491 	mp = ITOVFS(ip);
9492 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9493 		return (jremref);
9494 	dap = inodedep->id_mkdiradd;
9495 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9496 		return (jremref);
9497 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9498 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9499 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9500 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9501 			break;
9502 	if (mkdir == NULL)
9503 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9504 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9505 		mkdir->md_jaddref = NULL;
9506 		jaddref->ja_state &= ~MKDIR_PARENT;
9507 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9508 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9509 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9510 			journal_jremref(dirrem, jremref, inodedep);
9511 			jremref = NULL;
9512 		}
9513 	}
9514 	if (mkdir->md_state & ONWORKLIST)
9515 		WORKLIST_REMOVE(&mkdir->md_list);
9516 	mkdir->md_state |= ALLCOMPLETE;
9517 	complete_mkdir(mkdir);
9518 	return (jremref);
9519 }
9520 
9521 static void
9522 journal_jremref(dirrem, jremref, inodedep)
9523 	struct dirrem *dirrem;
9524 	struct jremref *jremref;
9525 	struct inodedep *inodedep;
9526 {
9527 
9528 	if (inodedep == NULL)
9529 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9530 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9531 			panic("journal_jremref: Lost inodedep");
9532 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9533 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9534 	add_to_journal(&jremref->jr_list);
9535 }
9536 
9537 static void
9538 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9539 	struct dirrem *dirrem;
9540 	struct jremref *jremref;
9541 	struct jremref *dotremref;
9542 	struct jremref *dotdotremref;
9543 {
9544 	struct inodedep *inodedep;
9545 
9546 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9547 	    &inodedep) == 0)
9548 		panic("dirrem_journal: Lost inodedep");
9549 	journal_jremref(dirrem, jremref, inodedep);
9550 	if (dotremref)
9551 		journal_jremref(dirrem, dotremref, inodedep);
9552 	if (dotdotremref)
9553 		journal_jremref(dirrem, dotdotremref, NULL);
9554 }
9555 
9556 /*
9557  * Allocate a new dirrem if appropriate and return it along with
9558  * its associated pagedep. Called without a lock, returns with lock.
9559  */
9560 static struct dirrem *
9561 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9562 	struct buf *bp;		/* buffer containing directory block */
9563 	struct inode *dp;	/* inode for the directory being modified */
9564 	struct inode *ip;	/* inode for directory entry being removed */
9565 	int isrmdir;		/* indicates if doing RMDIR */
9566 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9567 {
9568 	int offset;
9569 	ufs_lbn_t lbn;
9570 	struct diradd *dap;
9571 	struct dirrem *dirrem;
9572 	struct pagedep *pagedep;
9573 	struct jremref *jremref;
9574 	struct jremref *dotremref;
9575 	struct jremref *dotdotremref;
9576 	struct vnode *dvp;
9577 	struct ufsmount *ump;
9578 
9579 	/*
9580 	 * Whiteouts have no deletion dependencies.
9581 	 */
9582 	if (ip == NULL)
9583 		panic("newdirrem: whiteout");
9584 	dvp = ITOV(dp);
9585 	ump = ITOUMP(dp);
9586 
9587 	/*
9588 	 * If the system is over its limit and our filesystem is
9589 	 * responsible for more than our share of that usage and
9590 	 * we are not a snapshot, request some inodedep cleanup.
9591 	 * Limiting the number of dirrem structures will also limit
9592 	 * the number of freefile and freeblks structures.
9593 	 */
9594 	ACQUIRE_LOCK(ump);
9595 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9596 		schedule_cleanup(UFSTOVFS(ump));
9597 	else
9598 		FREE_LOCK(ump);
9599 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9600 	    M_ZERO);
9601 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9602 	LIST_INIT(&dirrem->dm_jremrefhd);
9603 	LIST_INIT(&dirrem->dm_jwork);
9604 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9605 	dirrem->dm_oldinum = ip->i_number;
9606 	*prevdirremp = NULL;
9607 	/*
9608 	 * Allocate remove reference structures to track journal write
9609 	 * dependencies.  We will always have one for the link and
9610 	 * when doing directories we will always have one more for dot.
9611 	 * When renaming a directory we skip the dotdot link change so
9612 	 * this is not needed.
9613 	 */
9614 	jremref = dotremref = dotdotremref = NULL;
9615 	if (DOINGSUJ(dvp)) {
9616 		if (isrmdir) {
9617 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9618 			    ip->i_effnlink + 2);
9619 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9620 			    ip->i_effnlink + 1);
9621 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9622 			    dp->i_effnlink + 1);
9623 			dotdotremref->jr_state |= MKDIR_PARENT;
9624 		} else
9625 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9626 			    ip->i_effnlink + 1);
9627 	}
9628 	ACQUIRE_LOCK(ump);
9629 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9630 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9631 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9632 	    &pagedep);
9633 	dirrem->dm_pagedep = pagedep;
9634 	dirrem->dm_offset = offset;
9635 	/*
9636 	 * If we're renaming a .. link to a new directory, cancel any
9637 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9638 	 * the jremref is preserved for any potential diradd in this
9639 	 * location.  This can not coincide with a rmdir.
9640 	 */
9641 	if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9642 		if (isrmdir)
9643 			panic("newdirrem: .. directory change during remove?");
9644 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9645 	}
9646 	/*
9647 	 * If we're removing a directory search for the .. dependency now and
9648 	 * cancel it.  Any pending journal work will be added to the dirrem
9649 	 * to be completed when the workitem remove completes.
9650 	 */
9651 	if (isrmdir)
9652 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9653 	/*
9654 	 * Check for a diradd dependency for the same directory entry.
9655 	 * If present, then both dependencies become obsolete and can
9656 	 * be de-allocated.
9657 	 */
9658 	dap = diradd_lookup(pagedep, offset);
9659 	if (dap == NULL) {
9660 		/*
9661 		 * Link the jremref structures into the dirrem so they are
9662 		 * written prior to the pagedep.
9663 		 */
9664 		if (jremref)
9665 			dirrem_journal(dirrem, jremref, dotremref,
9666 			    dotdotremref);
9667 		return (dirrem);
9668 	}
9669 	/*
9670 	 * Must be ATTACHED at this point.
9671 	 */
9672 	if ((dap->da_state & ATTACHED) == 0)
9673 		panic("newdirrem: not ATTACHED");
9674 	if (dap->da_newinum != ip->i_number)
9675 		panic("newdirrem: inum %ju should be %ju",
9676 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9677 	/*
9678 	 * If we are deleting a changed name that never made it to disk,
9679 	 * then return the dirrem describing the previous inode (which
9680 	 * represents the inode currently referenced from this entry on disk).
9681 	 */
9682 	if ((dap->da_state & DIRCHG) != 0) {
9683 		*prevdirremp = dap->da_previous;
9684 		dap->da_state &= ~DIRCHG;
9685 		dap->da_pagedep = pagedep;
9686 	}
9687 	/*
9688 	 * We are deleting an entry that never made it to disk.
9689 	 * Mark it COMPLETE so we can delete its inode immediately.
9690 	 */
9691 	dirrem->dm_state |= COMPLETE;
9692 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9693 #ifdef INVARIANTS
9694 	if (isrmdir == 0) {
9695 		struct worklist *wk;
9696 
9697 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9698 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9699 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9700 	}
9701 #endif
9702 
9703 	return (dirrem);
9704 }
9705 
9706 /*
9707  * Directory entry change dependencies.
9708  *
9709  * Changing an existing directory entry requires that an add operation
9710  * be completed first followed by a deletion. The semantics for the addition
9711  * are identical to the description of adding a new entry above except
9712  * that the rollback is to the old inode number rather than zero. Once
9713  * the addition dependency is completed, the removal is done as described
9714  * in the removal routine above.
9715  */
9716 
9717 /*
9718  * This routine should be called immediately after changing
9719  * a directory entry.  The inode's link count should not be
9720  * decremented by the calling procedure -- the soft updates
9721  * code will perform this task when it is safe.
9722  */
9723 void
9724 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9725 	struct buf *bp;		/* buffer containing directory block */
9726 	struct inode *dp;	/* inode for the directory being modified */
9727 	struct inode *ip;	/* inode for directory entry being removed */
9728 	ino_t newinum;		/* new inode number for changed entry */
9729 	int isrmdir;		/* indicates if doing RMDIR */
9730 {
9731 	int offset;
9732 	struct diradd *dap = NULL;
9733 	struct dirrem *dirrem, *prevdirrem;
9734 	struct pagedep *pagedep;
9735 	struct inodedep *inodedep;
9736 	struct jaddref *jaddref;
9737 	struct mount *mp;
9738 	struct ufsmount *ump;
9739 
9740 	mp = ITOVFS(dp);
9741 	ump = VFSTOUFS(mp);
9742 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9743 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9744 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9745 
9746 	/*
9747 	 * Whiteouts do not need diradd dependencies.
9748 	 */
9749 	if (newinum != UFS_WINO) {
9750 		dap = malloc(sizeof(struct diradd),
9751 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9752 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9753 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9754 		dap->da_offset = offset;
9755 		dap->da_newinum = newinum;
9756 		LIST_INIT(&dap->da_jwork);
9757 	}
9758 
9759 	/*
9760 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9761 	 */
9762 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9763 	pagedep = dirrem->dm_pagedep;
9764 	/*
9765 	 * The possible values for isrmdir:
9766 	 *	0 - non-directory file rename
9767 	 *	1 - directory rename within same directory
9768 	 *   inum - directory rename to new directory of given inode number
9769 	 * When renaming to a new directory, we are both deleting and
9770 	 * creating a new directory entry, so the link count on the new
9771 	 * directory should not change. Thus we do not need the followup
9772 	 * dirrem which is usually done in handle_workitem_remove. We set
9773 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9774 	 * followup dirrem.
9775 	 */
9776 	if (isrmdir > 1)
9777 		dirrem->dm_state |= DIRCHG;
9778 
9779 	/*
9780 	 * Whiteouts have no additional dependencies,
9781 	 * so just put the dirrem on the correct list.
9782 	 */
9783 	if (newinum == UFS_WINO) {
9784 		if ((dirrem->dm_state & COMPLETE) == 0) {
9785 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9786 			    dm_next);
9787 		} else {
9788 			dirrem->dm_dirinum = pagedep->pd_ino;
9789 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9790 				add_to_worklist(&dirrem->dm_list, 0);
9791 		}
9792 		FREE_LOCK(ump);
9793 		return;
9794 	}
9795 	/*
9796 	 * Add the dirrem to the inodedep's pending remove list for quick
9797 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9798 	 * will not fail.
9799 	 */
9800 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9801 		panic("softdep_setup_directory_change: Lost inodedep.");
9802 	dirrem->dm_state |= ONDEPLIST;
9803 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9804 
9805 	/*
9806 	 * If the COMPLETE flag is clear, then there were no active
9807 	 * entries and we want to roll back to the previous inode until
9808 	 * the new inode is committed to disk. If the COMPLETE flag is
9809 	 * set, then we have deleted an entry that never made it to disk.
9810 	 * If the entry we deleted resulted from a name change, then the old
9811 	 * inode reference still resides on disk. Any rollback that we do
9812 	 * needs to be to that old inode (returned to us in prevdirrem). If
9813 	 * the entry we deleted resulted from a create, then there is
9814 	 * no entry on the disk, so we want to roll back to zero rather
9815 	 * than the uncommitted inode. In either of the COMPLETE cases we
9816 	 * want to immediately free the unwritten and unreferenced inode.
9817 	 */
9818 	if ((dirrem->dm_state & COMPLETE) == 0) {
9819 		dap->da_previous = dirrem;
9820 	} else {
9821 		if (prevdirrem != NULL) {
9822 			dap->da_previous = prevdirrem;
9823 		} else {
9824 			dap->da_state &= ~DIRCHG;
9825 			dap->da_pagedep = pagedep;
9826 		}
9827 		dirrem->dm_dirinum = pagedep->pd_ino;
9828 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9829 			add_to_worklist(&dirrem->dm_list, 0);
9830 	}
9831 	/*
9832 	 * Lookup the jaddref for this journal entry.  We must finish
9833 	 * initializing it and make the diradd write dependent on it.
9834 	 * If we're not journaling, put it on the id_bufwait list if the
9835 	 * inode is not yet written. If it is written, do the post-inode
9836 	 * write processing to put it on the id_pendinghd list.
9837 	 */
9838 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9839 	if (MOUNTEDSUJ(mp)) {
9840 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9841 		    inoreflst);
9842 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9843 		    ("softdep_setup_directory_change: bad jaddref %p",
9844 		    jaddref));
9845 		jaddref->ja_diroff = I_OFFSET(dp);
9846 		jaddref->ja_diradd = dap;
9847 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9848 		    dap, da_pdlist);
9849 		add_to_journal(&jaddref->ja_list);
9850 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9851 		dap->da_state |= COMPLETE;
9852 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9853 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9854 	} else {
9855 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9856 		    dap, da_pdlist);
9857 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9858 	}
9859 	/*
9860 	 * If we're making a new name for a directory that has not been
9861 	 * committed when need to move the dot and dotdot references to
9862 	 * this new name.
9863 	 */
9864 	if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9865 		merge_diradd(inodedep, dap);
9866 	FREE_LOCK(ump);
9867 }
9868 
9869 /*
9870  * Called whenever the link count on an inode is changed.
9871  * It creates an inode dependency so that the new reference(s)
9872  * to the inode cannot be committed to disk until the updated
9873  * inode has been written.
9874  */
9875 void
9876 softdep_change_linkcnt(ip)
9877 	struct inode *ip;	/* the inode with the increased link count */
9878 {
9879 	struct inodedep *inodedep;
9880 	struct ufsmount *ump;
9881 
9882 	ump = ITOUMP(ip);
9883 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9884 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9885 	ACQUIRE_LOCK(ump);
9886 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9887 	if (ip->i_nlink < ip->i_effnlink)
9888 		panic("softdep_change_linkcnt: bad delta");
9889 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9890 	FREE_LOCK(ump);
9891 }
9892 
9893 /*
9894  * Attach a sbdep dependency to the superblock buf so that we can keep
9895  * track of the head of the linked list of referenced but unlinked inodes.
9896  */
9897 void
9898 softdep_setup_sbupdate(ump, fs, bp)
9899 	struct ufsmount *ump;
9900 	struct fs *fs;
9901 	struct buf *bp;
9902 {
9903 	struct sbdep *sbdep;
9904 	struct worklist *wk;
9905 
9906 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9907 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9908 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9909 		if (wk->wk_type == D_SBDEP)
9910 			break;
9911 	if (wk != NULL)
9912 		return;
9913 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9914 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9915 	sbdep->sb_fs = fs;
9916 	sbdep->sb_ump = ump;
9917 	ACQUIRE_LOCK(ump);
9918 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9919 	FREE_LOCK(ump);
9920 }
9921 
9922 /*
9923  * Return the first unlinked inodedep which is ready to be the head of the
9924  * list.  The inodedep and all those after it must have valid next pointers.
9925  */
9926 static struct inodedep *
9927 first_unlinked_inodedep(ump)
9928 	struct ufsmount *ump;
9929 {
9930 	struct inodedep *inodedep;
9931 	struct inodedep *idp;
9932 
9933 	LOCK_OWNED(ump);
9934 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9935 	    inodedep; inodedep = idp) {
9936 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9937 			return (NULL);
9938 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9939 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9940 			break;
9941 		if ((inodedep->id_state & UNLINKPREV) == 0)
9942 			break;
9943 	}
9944 	return (inodedep);
9945 }
9946 
9947 /*
9948  * Set the sujfree unlinked head pointer prior to writing a superblock.
9949  */
9950 static void
9951 initiate_write_sbdep(sbdep)
9952 	struct sbdep *sbdep;
9953 {
9954 	struct inodedep *inodedep;
9955 	struct fs *bpfs;
9956 	struct fs *fs;
9957 
9958 	bpfs = sbdep->sb_fs;
9959 	fs = sbdep->sb_ump->um_fs;
9960 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9961 	if (inodedep) {
9962 		fs->fs_sujfree = inodedep->id_ino;
9963 		inodedep->id_state |= UNLINKPREV;
9964 	} else
9965 		fs->fs_sujfree = 0;
9966 	bpfs->fs_sujfree = fs->fs_sujfree;
9967 	/*
9968 	 * Because we have made changes to the superblock, we need to
9969 	 * recompute its check-hash.
9970 	 */
9971 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9972 }
9973 
9974 /*
9975  * After a superblock is written determine whether it must be written again
9976  * due to a changing unlinked list head.
9977  */
9978 static int
9979 handle_written_sbdep(sbdep, bp)
9980 	struct sbdep *sbdep;
9981 	struct buf *bp;
9982 {
9983 	struct inodedep *inodedep;
9984 	struct fs *fs;
9985 
9986 	LOCK_OWNED(sbdep->sb_ump);
9987 	fs = sbdep->sb_fs;
9988 	/*
9989 	 * If the superblock doesn't match the in-memory list start over.
9990 	 */
9991 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9992 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9993 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9994 		bdirty(bp);
9995 		return (1);
9996 	}
9997 	WORKITEM_FREE(sbdep, D_SBDEP);
9998 	if (fs->fs_sujfree == 0)
9999 		return (0);
10000 	/*
10001 	 * Now that we have a record of this inode in stable store allow it
10002 	 * to be written to free up pending work.  Inodes may see a lot of
10003 	 * write activity after they are unlinked which we must not hold up.
10004 	 */
10005 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
10006 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
10007 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
10008 			    inodedep, inodedep->id_state);
10009 		if (inodedep->id_state & UNLINKONLIST)
10010 			break;
10011 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
10012 	}
10013 
10014 	return (0);
10015 }
10016 
10017 /*
10018  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
10019  */
10020 static void
10021 unlinked_inodedep(mp, inodedep)
10022 	struct mount *mp;
10023 	struct inodedep *inodedep;
10024 {
10025 	struct ufsmount *ump;
10026 
10027 	ump = VFSTOUFS(mp);
10028 	LOCK_OWNED(ump);
10029 	if (MOUNTEDSUJ(mp) == 0)
10030 		return;
10031 	ump->um_fs->fs_fmod = 1;
10032 	if (inodedep->id_state & UNLINKED)
10033 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
10034 	inodedep->id_state |= UNLINKED;
10035 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
10036 }
10037 
10038 /*
10039  * Remove an inodedep from the unlinked inodedep list.  This may require
10040  * disk writes if the inode has made it that far.
10041  */
10042 static void
10043 clear_unlinked_inodedep(inodedep)
10044 	struct inodedep *inodedep;
10045 {
10046 	struct ufs2_dinode *dip;
10047 	struct ufsmount *ump;
10048 	struct inodedep *idp;
10049 	struct inodedep *idn;
10050 	struct fs *fs, *bpfs;
10051 	struct buf *bp;
10052 	daddr_t dbn;
10053 	ino_t ino;
10054 	ino_t nino;
10055 	ino_t pino;
10056 	int error;
10057 
10058 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10059 	fs = ump->um_fs;
10060 	ino = inodedep->id_ino;
10061 	error = 0;
10062 	for (;;) {
10063 		LOCK_OWNED(ump);
10064 		KASSERT((inodedep->id_state & UNLINKED) != 0,
10065 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
10066 		    inodedep));
10067 		/*
10068 		 * If nothing has yet been written simply remove us from
10069 		 * the in memory list and return.  This is the most common
10070 		 * case where handle_workitem_remove() loses the final
10071 		 * reference.
10072 		 */
10073 		if ((inodedep->id_state & UNLINKLINKS) == 0)
10074 			break;
10075 		/*
10076 		 * If we have a NEXT pointer and no PREV pointer we can simply
10077 		 * clear NEXT's PREV and remove ourselves from the list.  Be
10078 		 * careful not to clear PREV if the superblock points at
10079 		 * next as well.
10080 		 */
10081 		idn = TAILQ_NEXT(inodedep, id_unlinked);
10082 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
10083 			if (idn && fs->fs_sujfree != idn->id_ino)
10084 				idn->id_state &= ~UNLINKPREV;
10085 			break;
10086 		}
10087 		/*
10088 		 * Here we have an inodedep which is actually linked into
10089 		 * the list.  We must remove it by forcing a write to the
10090 		 * link before us, whether it be the superblock or an inode.
10091 		 * Unfortunately the list may change while we're waiting
10092 		 * on the buf lock for either resource so we must loop until
10093 		 * we lock the right one.  If both the superblock and an
10094 		 * inode point to this inode we must clear the inode first
10095 		 * followed by the superblock.
10096 		 */
10097 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
10098 		pino = 0;
10099 		if (idp && (idp->id_state & UNLINKNEXT))
10100 			pino = idp->id_ino;
10101 		FREE_LOCK(ump);
10102 		if (pino == 0) {
10103 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
10104 			    (int)fs->fs_sbsize, 0, 0, 0);
10105 		} else {
10106 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
10107 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
10108 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
10109 			    &bp);
10110 		}
10111 		ACQUIRE_LOCK(ump);
10112 		if (error)
10113 			break;
10114 		/* If the list has changed restart the loop. */
10115 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
10116 		nino = 0;
10117 		if (idp && (idp->id_state & UNLINKNEXT))
10118 			nino = idp->id_ino;
10119 		if (nino != pino ||
10120 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
10121 			FREE_LOCK(ump);
10122 			brelse(bp);
10123 			ACQUIRE_LOCK(ump);
10124 			continue;
10125 		}
10126 		nino = 0;
10127 		idn = TAILQ_NEXT(inodedep, id_unlinked);
10128 		if (idn)
10129 			nino = idn->id_ino;
10130 		/*
10131 		 * Remove us from the in memory list.  After this we cannot
10132 		 * access the inodedep.
10133 		 */
10134 		KASSERT((inodedep->id_state & UNLINKED) != 0,
10135 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
10136 		    inodedep));
10137 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
10138 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
10139 		FREE_LOCK(ump);
10140 		/*
10141 		 * The predecessor's next pointer is manually updated here
10142 		 * so that the NEXT flag is never cleared for an element
10143 		 * that is in the list.
10144 		 */
10145 		if (pino == 0) {
10146 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
10147 			bpfs = (struct fs *)bp->b_data;
10148 			ffs_oldfscompat_write(bpfs, ump);
10149 			softdep_setup_sbupdate(ump, bpfs, bp);
10150 			/*
10151 			 * Because we may have made changes to the superblock,
10152 			 * we need to recompute its check-hash.
10153 			 */
10154 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
10155 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
10156 			((struct ufs1_dinode *)bp->b_data +
10157 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
10158 		} else {
10159 			dip = (struct ufs2_dinode *)bp->b_data +
10160 			    ino_to_fsbo(fs, pino);
10161 			dip->di_freelink = nino;
10162 			ffs_update_dinode_ckhash(fs, dip);
10163 		}
10164 		/*
10165 		 * If the bwrite fails we have no recourse to recover.  The
10166 		 * filesystem is corrupted already.
10167 		 */
10168 		bwrite(bp);
10169 		ACQUIRE_LOCK(ump);
10170 		/*
10171 		 * If the superblock pointer still needs to be cleared force
10172 		 * a write here.
10173 		 */
10174 		if (fs->fs_sujfree == ino) {
10175 			FREE_LOCK(ump);
10176 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
10177 			    (int)fs->fs_sbsize, 0, 0, 0);
10178 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
10179 			bpfs = (struct fs *)bp->b_data;
10180 			ffs_oldfscompat_write(bpfs, ump);
10181 			softdep_setup_sbupdate(ump, bpfs, bp);
10182 			/*
10183 			 * Because we may have made changes to the superblock,
10184 			 * we need to recompute its check-hash.
10185 			 */
10186 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
10187 			bwrite(bp);
10188 			ACQUIRE_LOCK(ump);
10189 		}
10190 
10191 		if (fs->fs_sujfree != ino)
10192 			return;
10193 		panic("clear_unlinked_inodedep: Failed to clear free head");
10194 	}
10195 	if (inodedep->id_ino == fs->fs_sujfree)
10196 		panic("clear_unlinked_inodedep: Freeing head of free list");
10197 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
10198 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
10199 	return;
10200 }
10201 
10202 /*
10203  * This workitem decrements the inode's link count.
10204  * If the link count reaches zero, the file is removed.
10205  */
10206 static int
10207 handle_workitem_remove(dirrem, flags)
10208 	struct dirrem *dirrem;
10209 	int flags;
10210 {
10211 	struct inodedep *inodedep;
10212 	struct workhead dotdotwk;
10213 	struct worklist *wk;
10214 	struct ufsmount *ump;
10215 	struct mount *mp;
10216 	struct vnode *vp;
10217 	struct inode *ip;
10218 	ino_t oldinum;
10219 
10220 	if (dirrem->dm_state & ONWORKLIST)
10221 		panic("handle_workitem_remove: dirrem %p still on worklist",
10222 		    dirrem);
10223 	oldinum = dirrem->dm_oldinum;
10224 	mp = dirrem->dm_list.wk_mp;
10225 	ump = VFSTOUFS(mp);
10226 	flags |= LK_EXCLUSIVE;
10227 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10228 	    FFSV_FORCEINODEDEP) != 0)
10229 		return (EBUSY);
10230 	ip = VTOI(vp);
10231 	MPASS(ip->i_mode != 0);
10232 	ACQUIRE_LOCK(ump);
10233 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10234 		panic("handle_workitem_remove: lost inodedep");
10235 	if (dirrem->dm_state & ONDEPLIST)
10236 		LIST_REMOVE(dirrem, dm_inonext);
10237 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10238 	    ("handle_workitem_remove:  Journal entries not written."));
10239 
10240 	/*
10241 	 * Move all dependencies waiting on the remove to complete
10242 	 * from the dirrem to the inode inowait list to be completed
10243 	 * after the inode has been updated and written to disk.
10244 	 *
10245 	 * Any marked MKDIR_PARENT are saved to be completed when the
10246 	 * dotdot ref is removed unless DIRCHG is specified.  For
10247 	 * directory change operations there will be no further
10248 	 * directory writes and the jsegdeps need to be moved along
10249 	 * with the rest to be completed when the inode is free or
10250 	 * stable in the inode free list.
10251 	 */
10252 	LIST_INIT(&dotdotwk);
10253 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10254 		WORKLIST_REMOVE(wk);
10255 		if ((dirrem->dm_state & DIRCHG) == 0 &&
10256 		    wk->wk_state & MKDIR_PARENT) {
10257 			wk->wk_state &= ~MKDIR_PARENT;
10258 			WORKLIST_INSERT(&dotdotwk, wk);
10259 			continue;
10260 		}
10261 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
10262 	}
10263 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10264 	/*
10265 	 * Normal file deletion.
10266 	 */
10267 	if ((dirrem->dm_state & RMDIR) == 0) {
10268 		ip->i_nlink--;
10269 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10270 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10271 		    ip->i_nlink));
10272 		DIP_SET(ip, i_nlink, ip->i_nlink);
10273 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10274 		if (ip->i_nlink < ip->i_effnlink)
10275 			panic("handle_workitem_remove: bad file delta");
10276 		if (ip->i_nlink == 0)
10277 			unlinked_inodedep(mp, inodedep);
10278 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10279 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10280 		    ("handle_workitem_remove: worklist not empty. %s",
10281 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10282 		WORKITEM_FREE(dirrem, D_DIRREM);
10283 		FREE_LOCK(ump);
10284 		goto out;
10285 	}
10286 	/*
10287 	 * Directory deletion. Decrement reference count for both the
10288 	 * just deleted parent directory entry and the reference for ".".
10289 	 * Arrange to have the reference count on the parent decremented
10290 	 * to account for the loss of "..".
10291 	 */
10292 	ip->i_nlink -= 2;
10293 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10294 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10295 	DIP_SET(ip, i_nlink, ip->i_nlink);
10296 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10297 	if (ip->i_nlink < ip->i_effnlink)
10298 		panic("handle_workitem_remove: bad dir delta");
10299 	if (ip->i_nlink == 0)
10300 		unlinked_inodedep(mp, inodedep);
10301 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10302 	/*
10303 	 * Rename a directory to a new parent. Since, we are both deleting
10304 	 * and creating a new directory entry, the link count on the new
10305 	 * directory should not change. Thus we skip the followup dirrem.
10306 	 */
10307 	if (dirrem->dm_state & DIRCHG) {
10308 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10309 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
10310 		WORKITEM_FREE(dirrem, D_DIRREM);
10311 		FREE_LOCK(ump);
10312 		goto out;
10313 	}
10314 	dirrem->dm_state = ONDEPLIST;
10315 	dirrem->dm_oldinum = dirrem->dm_dirinum;
10316 	/*
10317 	 * Place the dirrem on the parent's diremhd list.
10318 	 */
10319 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10320 		panic("handle_workitem_remove: lost dir inodedep");
10321 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10322 	/*
10323 	 * If the allocated inode has never been written to disk, then
10324 	 * the on-disk inode is zero'ed and we can remove the file
10325 	 * immediately.  When journaling if the inode has been marked
10326 	 * unlinked and not DEPCOMPLETE we know it can never be written.
10327 	 */
10328 	inodedep_lookup(mp, oldinum, 0, &inodedep);
10329 	if (inodedep == NULL ||
10330 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10331 	    check_inode_unwritten(inodedep)) {
10332 		FREE_LOCK(ump);
10333 		vput(vp);
10334 		return handle_workitem_remove(dirrem, flags);
10335 	}
10336 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10337 	FREE_LOCK(ump);
10338 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10339 out:
10340 	ffs_update(vp, 0);
10341 	vput(vp);
10342 	return (0);
10343 }
10344 
10345 /*
10346  * Inode de-allocation dependencies.
10347  *
10348  * When an inode's link count is reduced to zero, it can be de-allocated. We
10349  * found it convenient to postpone de-allocation until after the inode is
10350  * written to disk with its new link count (zero).  At this point, all of the
10351  * on-disk inode's block pointers are nullified and, with careful dependency
10352  * list ordering, all dependencies related to the inode will be satisfied and
10353  * the corresponding dependency structures de-allocated.  So, if/when the
10354  * inode is reused, there will be no mixing of old dependencies with new
10355  * ones.  This artificial dependency is set up by the block de-allocation
10356  * procedure above (softdep_setup_freeblocks) and completed by the
10357  * following procedure.
10358  */
10359 static void
10360 handle_workitem_freefile(freefile)
10361 	struct freefile *freefile;
10362 {
10363 	struct workhead wkhd;
10364 	struct fs *fs;
10365 	struct ufsmount *ump;
10366 	int error;
10367 #ifdef INVARIANTS
10368 	struct inodedep *idp;
10369 #endif
10370 
10371 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10372 	fs = ump->um_fs;
10373 #ifdef INVARIANTS
10374 	ACQUIRE_LOCK(ump);
10375 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10376 	FREE_LOCK(ump);
10377 	if (error)
10378 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10379 #endif
10380 	UFS_LOCK(ump);
10381 	fs->fs_pendinginodes -= 1;
10382 	UFS_UNLOCK(ump);
10383 	LIST_INIT(&wkhd);
10384 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10385 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10386 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10387 		softdep_error("handle_workitem_freefile", error);
10388 	ACQUIRE_LOCK(ump);
10389 	WORKITEM_FREE(freefile, D_FREEFILE);
10390 	FREE_LOCK(ump);
10391 }
10392 
10393 /*
10394  * Helper function which unlinks marker element from work list and returns
10395  * the next element on the list.
10396  */
10397 static __inline struct worklist *
10398 markernext(struct worklist *marker)
10399 {
10400 	struct worklist *next;
10401 
10402 	next = LIST_NEXT(marker, wk_list);
10403 	LIST_REMOVE(marker, wk_list);
10404 	return next;
10405 }
10406 
10407 /*
10408  * Disk writes.
10409  *
10410  * The dependency structures constructed above are most actively used when file
10411  * system blocks are written to disk.  No constraints are placed on when a
10412  * block can be written, but unsatisfied update dependencies are made safe by
10413  * modifying (or replacing) the source memory for the duration of the disk
10414  * write.  When the disk write completes, the memory block is again brought
10415  * up-to-date.
10416  *
10417  * In-core inode structure reclamation.
10418  *
10419  * Because there are a finite number of "in-core" inode structures, they are
10420  * reused regularly.  By transferring all inode-related dependencies to the
10421  * in-memory inode block and indexing them separately (via "inodedep"s), we
10422  * can allow "in-core" inode structures to be reused at any time and avoid
10423  * any increase in contention.
10424  *
10425  * Called just before entering the device driver to initiate a new disk I/O.
10426  * The buffer must be locked, thus, no I/O completion operations can occur
10427  * while we are manipulating its associated dependencies.
10428  */
10429 static void
10430 softdep_disk_io_initiation(bp)
10431 	struct buf *bp;		/* structure describing disk write to occur */
10432 {
10433 	struct worklist *wk;
10434 	struct worklist marker;
10435 	struct inodedep *inodedep;
10436 	struct freeblks *freeblks;
10437 	struct jblkdep *jblkdep;
10438 	struct newblk *newblk;
10439 	struct ufsmount *ump;
10440 
10441 	/*
10442 	 * We only care about write operations. There should never
10443 	 * be dependencies for reads.
10444 	 */
10445 	if (bp->b_iocmd != BIO_WRITE)
10446 		panic("softdep_disk_io_initiation: not write");
10447 
10448 	if (bp->b_vflags & BV_BKGRDINPROG)
10449 		panic("softdep_disk_io_initiation: Writing buffer with "
10450 		    "background write in progress: %p", bp);
10451 
10452 	ump = softdep_bp_to_mp(bp);
10453 	if (ump == NULL)
10454 		return;
10455 
10456 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10457 	PHOLD(curproc);			/* Don't swap out kernel stack */
10458 	ACQUIRE_LOCK(ump);
10459 	/*
10460 	 * Do any necessary pre-I/O processing.
10461 	 */
10462 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10463 	     wk = markernext(&marker)) {
10464 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10465 		switch (wk->wk_type) {
10466 		case D_PAGEDEP:
10467 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10468 			continue;
10469 
10470 		case D_INODEDEP:
10471 			inodedep = WK_INODEDEP(wk);
10472 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10473 				initiate_write_inodeblock_ufs1(inodedep, bp);
10474 			else
10475 				initiate_write_inodeblock_ufs2(inodedep, bp);
10476 			continue;
10477 
10478 		case D_INDIRDEP:
10479 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10480 			continue;
10481 
10482 		case D_BMSAFEMAP:
10483 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10484 			continue;
10485 
10486 		case D_JSEG:
10487 			WK_JSEG(wk)->js_buf = NULL;
10488 			continue;
10489 
10490 		case D_FREEBLKS:
10491 			freeblks = WK_FREEBLKS(wk);
10492 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10493 			/*
10494 			 * We have to wait for the freeblks to be journaled
10495 			 * before we can write an inodeblock with updated
10496 			 * pointers.  Be careful to arrange the marker so
10497 			 * we revisit the freeblks if it's not removed by
10498 			 * the first jwait().
10499 			 */
10500 			if (jblkdep != NULL) {
10501 				LIST_REMOVE(&marker, wk_list);
10502 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10503 				jwait(&jblkdep->jb_list, MNT_WAIT);
10504 			}
10505 			continue;
10506 		case D_ALLOCDIRECT:
10507 		case D_ALLOCINDIR:
10508 			/*
10509 			 * We have to wait for the jnewblk to be journaled
10510 			 * before we can write to a block if the contents
10511 			 * may be confused with an earlier file's indirect
10512 			 * at recovery time.  Handle the marker as described
10513 			 * above.
10514 			 */
10515 			newblk = WK_NEWBLK(wk);
10516 			if (newblk->nb_jnewblk != NULL &&
10517 			    indirblk_lookup(newblk->nb_list.wk_mp,
10518 			    newblk->nb_newblkno)) {
10519 				LIST_REMOVE(&marker, wk_list);
10520 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10521 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10522 			}
10523 			continue;
10524 
10525 		case D_SBDEP:
10526 			initiate_write_sbdep(WK_SBDEP(wk));
10527 			continue;
10528 
10529 		case D_MKDIR:
10530 		case D_FREEWORK:
10531 		case D_FREEDEP:
10532 		case D_JSEGDEP:
10533 			continue;
10534 
10535 		default:
10536 			panic("handle_disk_io_initiation: Unexpected type %s",
10537 			    TYPENAME(wk->wk_type));
10538 			/* NOTREACHED */
10539 		}
10540 	}
10541 	FREE_LOCK(ump);
10542 	PRELE(curproc);			/* Allow swapout of kernel stack */
10543 }
10544 
10545 /*
10546  * Called from within the procedure above to deal with unsatisfied
10547  * allocation dependencies in a directory. The buffer must be locked,
10548  * thus, no I/O completion operations can occur while we are
10549  * manipulating its associated dependencies.
10550  */
10551 static void
10552 initiate_write_filepage(pagedep, bp)
10553 	struct pagedep *pagedep;
10554 	struct buf *bp;
10555 {
10556 	struct jremref *jremref;
10557 	struct jmvref *jmvref;
10558 	struct dirrem *dirrem;
10559 	struct diradd *dap;
10560 	struct direct *ep;
10561 	int i;
10562 
10563 	if (pagedep->pd_state & IOSTARTED) {
10564 		/*
10565 		 * This can only happen if there is a driver that does not
10566 		 * understand chaining. Here biodone will reissue the call
10567 		 * to strategy for the incomplete buffers.
10568 		 */
10569 		printf("initiate_write_filepage: already started\n");
10570 		return;
10571 	}
10572 	pagedep->pd_state |= IOSTARTED;
10573 	/*
10574 	 * Wait for all journal remove dependencies to hit the disk.
10575 	 * We can not allow any potentially conflicting directory adds
10576 	 * to be visible before removes and rollback is too difficult.
10577 	 * The per-filesystem lock may be dropped and re-acquired, however
10578 	 * we hold the buf locked so the dependency can not go away.
10579 	 */
10580 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10581 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10582 			jwait(&jremref->jr_list, MNT_WAIT);
10583 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10584 		jwait(&jmvref->jm_list, MNT_WAIT);
10585 	for (i = 0; i < DAHASHSZ; i++) {
10586 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10587 			ep = (struct direct *)
10588 			    ((char *)bp->b_data + dap->da_offset);
10589 			if (ep->d_ino != dap->da_newinum)
10590 				panic("%s: dir inum %ju != new %ju",
10591 				    "initiate_write_filepage",
10592 				    (uintmax_t)ep->d_ino,
10593 				    (uintmax_t)dap->da_newinum);
10594 			if (dap->da_state & DIRCHG)
10595 				ep->d_ino = dap->da_previous->dm_oldinum;
10596 			else
10597 				ep->d_ino = 0;
10598 			dap->da_state &= ~ATTACHED;
10599 			dap->da_state |= UNDONE;
10600 		}
10601 	}
10602 }
10603 
10604 /*
10605  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10606  * Note that any bug fixes made to this routine must be done in the
10607  * version found below.
10608  *
10609  * Called from within the procedure above to deal with unsatisfied
10610  * allocation dependencies in an inodeblock. The buffer must be
10611  * locked, thus, no I/O completion operations can occur while we
10612  * are manipulating its associated dependencies.
10613  */
10614 static void
10615 initiate_write_inodeblock_ufs1(inodedep, bp)
10616 	struct inodedep *inodedep;
10617 	struct buf *bp;			/* The inode block */
10618 {
10619 	struct allocdirect *adp, *lastadp;
10620 	struct ufs1_dinode *dp;
10621 	struct ufs1_dinode *sip;
10622 	struct inoref *inoref;
10623 	struct ufsmount *ump;
10624 	struct fs *fs;
10625 	ufs_lbn_t i;
10626 #ifdef INVARIANTS
10627 	ufs_lbn_t prevlbn = 0;
10628 #endif
10629 	int deplist;
10630 
10631 	if (inodedep->id_state & IOSTARTED)
10632 		panic("initiate_write_inodeblock_ufs1: already started");
10633 	inodedep->id_state |= IOSTARTED;
10634 	fs = inodedep->id_fs;
10635 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10636 	LOCK_OWNED(ump);
10637 	dp = (struct ufs1_dinode *)bp->b_data +
10638 	    ino_to_fsbo(fs, inodedep->id_ino);
10639 
10640 	/*
10641 	 * If we're on the unlinked list but have not yet written our
10642 	 * next pointer initialize it here.
10643 	 */
10644 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10645 		struct inodedep *inon;
10646 
10647 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10648 		dp->di_freelink = inon ? inon->id_ino : 0;
10649 	}
10650 	/*
10651 	 * If the bitmap is not yet written, then the allocated
10652 	 * inode cannot be written to disk.
10653 	 */
10654 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10655 		if (inodedep->id_savedino1 != NULL)
10656 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10657 		FREE_LOCK(ump);
10658 		sip = malloc(sizeof(struct ufs1_dinode),
10659 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10660 		ACQUIRE_LOCK(ump);
10661 		inodedep->id_savedino1 = sip;
10662 		*inodedep->id_savedino1 = *dp;
10663 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10664 		dp->di_gen = inodedep->id_savedino1->di_gen;
10665 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10666 		return;
10667 	}
10668 	/*
10669 	 * If no dependencies, then there is nothing to roll back.
10670 	 */
10671 	inodedep->id_savedsize = dp->di_size;
10672 	inodedep->id_savedextsize = 0;
10673 	inodedep->id_savednlink = dp->di_nlink;
10674 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10675 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10676 		return;
10677 	/*
10678 	 * Revert the link count to that of the first unwritten journal entry.
10679 	 */
10680 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10681 	if (inoref)
10682 		dp->di_nlink = inoref->if_nlink;
10683 	/*
10684 	 * Set the dependencies to busy.
10685 	 */
10686 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10687 	     adp = TAILQ_NEXT(adp, ad_next)) {
10688 #ifdef INVARIANTS
10689 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10690 			panic("softdep_write_inodeblock: lbn order");
10691 		prevlbn = adp->ad_offset;
10692 		if (adp->ad_offset < UFS_NDADDR &&
10693 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10694 			panic("initiate_write_inodeblock_ufs1: "
10695 			    "direct pointer #%jd mismatch %d != %jd",
10696 			    (intmax_t)adp->ad_offset,
10697 			    dp->di_db[adp->ad_offset],
10698 			    (intmax_t)adp->ad_newblkno);
10699 		if (adp->ad_offset >= UFS_NDADDR &&
10700 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10701 			panic("initiate_write_inodeblock_ufs1: "
10702 			    "indirect pointer #%jd mismatch %d != %jd",
10703 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10704 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10705 			    (intmax_t)adp->ad_newblkno);
10706 		deplist |= 1 << adp->ad_offset;
10707 		if ((adp->ad_state & ATTACHED) == 0)
10708 			panic("initiate_write_inodeblock_ufs1: "
10709 			    "Unknown state 0x%x", adp->ad_state);
10710 #endif /* INVARIANTS */
10711 		adp->ad_state &= ~ATTACHED;
10712 		adp->ad_state |= UNDONE;
10713 	}
10714 	/*
10715 	 * The on-disk inode cannot claim to be any larger than the last
10716 	 * fragment that has been written. Otherwise, the on-disk inode
10717 	 * might have fragments that were not the last block in the file
10718 	 * which would corrupt the filesystem.
10719 	 */
10720 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10721 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10722 		if (adp->ad_offset >= UFS_NDADDR)
10723 			break;
10724 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10725 		/* keep going until hitting a rollback to a frag */
10726 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10727 			continue;
10728 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10729 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10730 #ifdef INVARIANTS
10731 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10732 				panic("initiate_write_inodeblock_ufs1: "
10733 				    "lost dep1");
10734 #endif /* INVARIANTS */
10735 			dp->di_db[i] = 0;
10736 		}
10737 		for (i = 0; i < UFS_NIADDR; i++) {
10738 #ifdef INVARIANTS
10739 			if (dp->di_ib[i] != 0 &&
10740 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10741 				panic("initiate_write_inodeblock_ufs1: "
10742 				    "lost dep2");
10743 #endif /* INVARIANTS */
10744 			dp->di_ib[i] = 0;
10745 		}
10746 		return;
10747 	}
10748 	/*
10749 	 * If we have zero'ed out the last allocated block of the file,
10750 	 * roll back the size to the last currently allocated block.
10751 	 * We know that this last allocated block is a full-sized as
10752 	 * we already checked for fragments in the loop above.
10753 	 */
10754 	if (lastadp != NULL &&
10755 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10756 		for (i = lastadp->ad_offset; i >= 0; i--)
10757 			if (dp->di_db[i] != 0)
10758 				break;
10759 		dp->di_size = (i + 1) * fs->fs_bsize;
10760 	}
10761 	/*
10762 	 * The only dependencies are for indirect blocks.
10763 	 *
10764 	 * The file size for indirect block additions is not guaranteed.
10765 	 * Such a guarantee would be non-trivial to achieve. The conventional
10766 	 * synchronous write implementation also does not make this guarantee.
10767 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10768 	 * can be over-estimated without destroying integrity when the file
10769 	 * moves into the indirect blocks (i.e., is large). If we want to
10770 	 * postpone fsck, we are stuck with this argument.
10771 	 */
10772 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10773 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10774 }
10775 
10776 /*
10777  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10778  * Note that any bug fixes made to this routine must be done in the
10779  * version found above.
10780  *
10781  * Called from within the procedure above to deal with unsatisfied
10782  * allocation dependencies in an inodeblock. The buffer must be
10783  * locked, thus, no I/O completion operations can occur while we
10784  * are manipulating its associated dependencies.
10785  */
10786 static void
10787 initiate_write_inodeblock_ufs2(inodedep, bp)
10788 	struct inodedep *inodedep;
10789 	struct buf *bp;			/* The inode block */
10790 {
10791 	struct allocdirect *adp, *lastadp;
10792 	struct ufs2_dinode *dp;
10793 	struct ufs2_dinode *sip;
10794 	struct inoref *inoref;
10795 	struct ufsmount *ump;
10796 	struct fs *fs;
10797 	ufs_lbn_t i;
10798 #ifdef INVARIANTS
10799 	ufs_lbn_t prevlbn = 0;
10800 #endif
10801 	int deplist;
10802 
10803 	if (inodedep->id_state & IOSTARTED)
10804 		panic("initiate_write_inodeblock_ufs2: already started");
10805 	inodedep->id_state |= IOSTARTED;
10806 	fs = inodedep->id_fs;
10807 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10808 	LOCK_OWNED(ump);
10809 	dp = (struct ufs2_dinode *)bp->b_data +
10810 	    ino_to_fsbo(fs, inodedep->id_ino);
10811 
10812 	/*
10813 	 * If we're on the unlinked list but have not yet written our
10814 	 * next pointer initialize it here.
10815 	 */
10816 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10817 		struct inodedep *inon;
10818 
10819 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10820 		dp->di_freelink = inon ? inon->id_ino : 0;
10821 		ffs_update_dinode_ckhash(fs, dp);
10822 	}
10823 	/*
10824 	 * If the bitmap is not yet written, then the allocated
10825 	 * inode cannot be written to disk.
10826 	 */
10827 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10828 		if (inodedep->id_savedino2 != NULL)
10829 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10830 		FREE_LOCK(ump);
10831 		sip = malloc(sizeof(struct ufs2_dinode),
10832 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10833 		ACQUIRE_LOCK(ump);
10834 		inodedep->id_savedino2 = sip;
10835 		*inodedep->id_savedino2 = *dp;
10836 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10837 		dp->di_gen = inodedep->id_savedino2->di_gen;
10838 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10839 		return;
10840 	}
10841 	/*
10842 	 * If no dependencies, then there is nothing to roll back.
10843 	 */
10844 	inodedep->id_savedsize = dp->di_size;
10845 	inodedep->id_savedextsize = dp->di_extsize;
10846 	inodedep->id_savednlink = dp->di_nlink;
10847 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10848 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10849 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10850 		return;
10851 	/*
10852 	 * Revert the link count to that of the first unwritten journal entry.
10853 	 */
10854 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10855 	if (inoref)
10856 		dp->di_nlink = inoref->if_nlink;
10857 
10858 	/*
10859 	 * Set the ext data dependencies to busy.
10860 	 */
10861 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10862 	     adp = TAILQ_NEXT(adp, ad_next)) {
10863 #ifdef INVARIANTS
10864 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10865 			panic("initiate_write_inodeblock_ufs2: lbn order");
10866 		prevlbn = adp->ad_offset;
10867 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10868 			panic("initiate_write_inodeblock_ufs2: "
10869 			    "ext pointer #%jd mismatch %jd != %jd",
10870 			    (intmax_t)adp->ad_offset,
10871 			    (intmax_t)dp->di_extb[adp->ad_offset],
10872 			    (intmax_t)adp->ad_newblkno);
10873 		deplist |= 1 << adp->ad_offset;
10874 		if ((adp->ad_state & ATTACHED) == 0)
10875 			panic("initiate_write_inodeblock_ufs2: Unknown "
10876 			    "state 0x%x", adp->ad_state);
10877 #endif /* INVARIANTS */
10878 		adp->ad_state &= ~ATTACHED;
10879 		adp->ad_state |= UNDONE;
10880 	}
10881 	/*
10882 	 * The on-disk inode cannot claim to be any larger than the last
10883 	 * fragment that has been written. Otherwise, the on-disk inode
10884 	 * might have fragments that were not the last block in the ext
10885 	 * data which would corrupt the filesystem.
10886 	 */
10887 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10888 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10889 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10890 		/* keep going until hitting a rollback to a frag */
10891 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10892 			continue;
10893 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10894 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10895 #ifdef INVARIANTS
10896 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10897 				panic("initiate_write_inodeblock_ufs2: "
10898 				    "lost dep1");
10899 #endif /* INVARIANTS */
10900 			dp->di_extb[i] = 0;
10901 		}
10902 		lastadp = NULL;
10903 		break;
10904 	}
10905 	/*
10906 	 * If we have zero'ed out the last allocated block of the ext
10907 	 * data, roll back the size to the last currently allocated block.
10908 	 * We know that this last allocated block is a full-sized as
10909 	 * we already checked for fragments in the loop above.
10910 	 */
10911 	if (lastadp != NULL &&
10912 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10913 		for (i = lastadp->ad_offset; i >= 0; i--)
10914 			if (dp->di_extb[i] != 0)
10915 				break;
10916 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10917 	}
10918 	/*
10919 	 * Set the file data dependencies to busy.
10920 	 */
10921 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10922 	     adp = TAILQ_NEXT(adp, ad_next)) {
10923 #ifdef INVARIANTS
10924 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10925 			panic("softdep_write_inodeblock: lbn order");
10926 		if ((adp->ad_state & ATTACHED) == 0)
10927 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10928 		prevlbn = adp->ad_offset;
10929 		if (!ffs_fsfail_cleanup(ump, 0) &&
10930 		    adp->ad_offset < UFS_NDADDR &&
10931 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10932 			panic("initiate_write_inodeblock_ufs2: "
10933 			    "direct pointer #%jd mismatch %jd != %jd",
10934 			    (intmax_t)adp->ad_offset,
10935 			    (intmax_t)dp->di_db[adp->ad_offset],
10936 			    (intmax_t)adp->ad_newblkno);
10937 		if (!ffs_fsfail_cleanup(ump, 0) &&
10938 		    adp->ad_offset >= UFS_NDADDR &&
10939 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10940 			panic("initiate_write_inodeblock_ufs2: "
10941 			    "indirect pointer #%jd mismatch %jd != %jd",
10942 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10943 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10944 			    (intmax_t)adp->ad_newblkno);
10945 		deplist |= 1 << adp->ad_offset;
10946 		if ((adp->ad_state & ATTACHED) == 0)
10947 			panic("initiate_write_inodeblock_ufs2: Unknown "
10948 			     "state 0x%x", adp->ad_state);
10949 #endif /* INVARIANTS */
10950 		adp->ad_state &= ~ATTACHED;
10951 		adp->ad_state |= UNDONE;
10952 	}
10953 	/*
10954 	 * The on-disk inode cannot claim to be any larger than the last
10955 	 * fragment that has been written. Otherwise, the on-disk inode
10956 	 * might have fragments that were not the last block in the file
10957 	 * which would corrupt the filesystem.
10958 	 */
10959 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10960 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10961 		if (adp->ad_offset >= UFS_NDADDR)
10962 			break;
10963 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10964 		/* keep going until hitting a rollback to a frag */
10965 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10966 			continue;
10967 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10968 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10969 #ifdef INVARIANTS
10970 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10971 				panic("initiate_write_inodeblock_ufs2: "
10972 				    "lost dep2");
10973 #endif /* INVARIANTS */
10974 			dp->di_db[i] = 0;
10975 		}
10976 		for (i = 0; i < UFS_NIADDR; i++) {
10977 #ifdef INVARIANTS
10978 			if (dp->di_ib[i] != 0 &&
10979 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10980 				panic("initiate_write_inodeblock_ufs2: "
10981 				    "lost dep3");
10982 #endif /* INVARIANTS */
10983 			dp->di_ib[i] = 0;
10984 		}
10985 		ffs_update_dinode_ckhash(fs, dp);
10986 		return;
10987 	}
10988 	/*
10989 	 * If we have zero'ed out the last allocated block of the file,
10990 	 * roll back the size to the last currently allocated block.
10991 	 * We know that this last allocated block is a full-sized as
10992 	 * we already checked for fragments in the loop above.
10993 	 */
10994 	if (lastadp != NULL &&
10995 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10996 		for (i = lastadp->ad_offset; i >= 0; i--)
10997 			if (dp->di_db[i] != 0)
10998 				break;
10999 		dp->di_size = (i + 1) * fs->fs_bsize;
11000 	}
11001 	/*
11002 	 * The only dependencies are for indirect blocks.
11003 	 *
11004 	 * The file size for indirect block additions is not guaranteed.
11005 	 * Such a guarantee would be non-trivial to achieve. The conventional
11006 	 * synchronous write implementation also does not make this guarantee.
11007 	 * Fsck should catch and fix discrepancies. Arguably, the file size
11008 	 * can be over-estimated without destroying integrity when the file
11009 	 * moves into the indirect blocks (i.e., is large). If we want to
11010 	 * postpone fsck, we are stuck with this argument.
11011 	 */
11012 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
11013 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
11014 	ffs_update_dinode_ckhash(fs, dp);
11015 }
11016 
11017 /*
11018  * Cancel an indirdep as a result of truncation.  Release all of the
11019  * children allocindirs and place their journal work on the appropriate
11020  * list.
11021  */
11022 static void
11023 cancel_indirdep(indirdep, bp, freeblks)
11024 	struct indirdep *indirdep;
11025 	struct buf *bp;
11026 	struct freeblks *freeblks;
11027 {
11028 	struct allocindir *aip;
11029 
11030 	/*
11031 	 * None of the indirect pointers will ever be visible,
11032 	 * so they can simply be tossed. GOINGAWAY ensures
11033 	 * that allocated pointers will be saved in the buffer
11034 	 * cache until they are freed. Note that they will
11035 	 * only be able to be found by their physical address
11036 	 * since the inode mapping the logical address will
11037 	 * be gone. The save buffer used for the safe copy
11038 	 * was allocated in setup_allocindir_phase2 using
11039 	 * the physical address so it could be used for this
11040 	 * purpose. Hence we swap the safe copy with the real
11041 	 * copy, allowing the safe copy to be freed and holding
11042 	 * on to the real copy for later use in indir_trunc.
11043 	 */
11044 	if (indirdep->ir_state & GOINGAWAY)
11045 		panic("cancel_indirdep: already gone");
11046 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11047 		indirdep->ir_state |= DEPCOMPLETE;
11048 		LIST_REMOVE(indirdep, ir_next);
11049 	}
11050 	indirdep->ir_state |= GOINGAWAY;
11051 	/*
11052 	 * Pass in bp for blocks still have journal writes
11053 	 * pending so we can cancel them on their own.
11054 	 */
11055 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
11056 		cancel_allocindir(aip, bp, freeblks, 0);
11057 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
11058 		cancel_allocindir(aip, NULL, freeblks, 0);
11059 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
11060 		cancel_allocindir(aip, NULL, freeblks, 0);
11061 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
11062 		cancel_allocindir(aip, NULL, freeblks, 0);
11063 	/*
11064 	 * If there are pending partial truncations we need to keep the
11065 	 * old block copy around until they complete.  This is because
11066 	 * the current b_data is not a perfect superset of the available
11067 	 * blocks.
11068 	 */
11069 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
11070 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
11071 	else
11072 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
11073 	WORKLIST_REMOVE(&indirdep->ir_list);
11074 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
11075 	indirdep->ir_bp = NULL;
11076 	indirdep->ir_freeblks = freeblks;
11077 }
11078 
11079 /*
11080  * Free an indirdep once it no longer has new pointers to track.
11081  */
11082 static void
11083 free_indirdep(indirdep)
11084 	struct indirdep *indirdep;
11085 {
11086 
11087 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
11088 	    ("free_indirdep: Indir trunc list not empty."));
11089 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
11090 	    ("free_indirdep: Complete head not empty."));
11091 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
11092 	    ("free_indirdep: write head not empty."));
11093 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
11094 	    ("free_indirdep: done head not empty."));
11095 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
11096 	    ("free_indirdep: deplist head not empty."));
11097 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
11098 	    ("free_indirdep: %p still on newblk list.", indirdep));
11099 	KASSERT(indirdep->ir_saveddata == NULL,
11100 	    ("free_indirdep: %p still has saved data.", indirdep));
11101 	KASSERT(indirdep->ir_savebp == NULL,
11102 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
11103 	if (indirdep->ir_state & ONWORKLIST)
11104 		WORKLIST_REMOVE(&indirdep->ir_list);
11105 	WORKITEM_FREE(indirdep, D_INDIRDEP);
11106 }
11107 
11108 /*
11109  * Called before a write to an indirdep.  This routine is responsible for
11110  * rolling back pointers to a safe state which includes only those
11111  * allocindirs which have been completed.
11112  */
11113 static void
11114 initiate_write_indirdep(indirdep, bp)
11115 	struct indirdep *indirdep;
11116 	struct buf *bp;
11117 {
11118 	struct ufsmount *ump;
11119 
11120 	indirdep->ir_state |= IOSTARTED;
11121 	if (indirdep->ir_state & GOINGAWAY)
11122 		panic("disk_io_initiation: indirdep gone");
11123 	/*
11124 	 * If there are no remaining dependencies, this will be writing
11125 	 * the real pointers.
11126 	 */
11127 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
11128 	    TAILQ_EMPTY(&indirdep->ir_trunc))
11129 		return;
11130 	/*
11131 	 * Replace up-to-date version with safe version.
11132 	 */
11133 	if (indirdep->ir_saveddata == NULL) {
11134 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
11135 		LOCK_OWNED(ump);
11136 		FREE_LOCK(ump);
11137 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
11138 		    M_SOFTDEP_FLAGS);
11139 		ACQUIRE_LOCK(ump);
11140 	}
11141 	indirdep->ir_state &= ~ATTACHED;
11142 	indirdep->ir_state |= UNDONE;
11143 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
11144 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
11145 	    bp->b_bcount);
11146 }
11147 
11148 /*
11149  * Called when an inode has been cleared in a cg bitmap.  This finally
11150  * eliminates any canceled jaddrefs
11151  */
11152 void
11153 softdep_setup_inofree(mp, bp, ino, wkhd)
11154 	struct mount *mp;
11155 	struct buf *bp;
11156 	ino_t ino;
11157 	struct workhead *wkhd;
11158 {
11159 	struct worklist *wk, *wkn;
11160 	struct inodedep *inodedep;
11161 	struct ufsmount *ump;
11162 	uint8_t *inosused;
11163 	struct cg *cgp;
11164 	struct fs *fs;
11165 
11166 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
11167 	    ("softdep_setup_inofree called on non-softdep filesystem"));
11168 	ump = VFSTOUFS(mp);
11169 	ACQUIRE_LOCK(ump);
11170 	if (!ffs_fsfail_cleanup(ump, 0)) {
11171 		fs = ump->um_fs;
11172 		cgp = (struct cg *)bp->b_data;
11173 		inosused = cg_inosused(cgp);
11174 		if (isset(inosused, ino % fs->fs_ipg))
11175 			panic("softdep_setup_inofree: inode %ju not freed.",
11176 			    (uintmax_t)ino);
11177 	}
11178 	if (inodedep_lookup(mp, ino, 0, &inodedep))
11179 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
11180 		    (uintmax_t)ino, inodedep);
11181 	if (wkhd) {
11182 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
11183 			if (wk->wk_type != D_JADDREF)
11184 				continue;
11185 			WORKLIST_REMOVE(wk);
11186 			/*
11187 			 * We can free immediately even if the jaddref
11188 			 * isn't attached in a background write as now
11189 			 * the bitmaps are reconciled.
11190 			 */
11191 			wk->wk_state |= COMPLETE | ATTACHED;
11192 			free_jaddref(WK_JADDREF(wk));
11193 		}
11194 		jwork_move(&bp->b_dep, wkhd);
11195 	}
11196 	FREE_LOCK(ump);
11197 }
11198 
11199 /*
11200  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
11201  * map.  Any dependencies waiting for the write to clear are added to the
11202  * buf's list and any jnewblks that are being canceled are discarded
11203  * immediately.
11204  */
11205 void
11206 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
11207 	struct mount *mp;
11208 	struct buf *bp;
11209 	ufs2_daddr_t blkno;
11210 	int frags;
11211 	struct workhead *wkhd;
11212 {
11213 	struct bmsafemap *bmsafemap;
11214 	struct jnewblk *jnewblk;
11215 	struct ufsmount *ump;
11216 	struct worklist *wk;
11217 	struct fs *fs;
11218 #ifdef INVARIANTS
11219 	uint8_t *blksfree;
11220 	struct cg *cgp;
11221 	ufs2_daddr_t jstart;
11222 	ufs2_daddr_t jend;
11223 	ufs2_daddr_t end;
11224 	long bno;
11225 	int i;
11226 #endif
11227 
11228 	CTR3(KTR_SUJ,
11229 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11230 	    blkno, frags, wkhd);
11231 
11232 	ump = VFSTOUFS(mp);
11233 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11234 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
11235 	ACQUIRE_LOCK(ump);
11236 	/* Lookup the bmsafemap so we track when it is dirty. */
11237 	fs = ump->um_fs;
11238 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11239 	/*
11240 	 * Detach any jnewblks which have been canceled.  They must linger
11241 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
11242 	 * an unjournaled allocation from hitting the disk.
11243 	 */
11244 	if (wkhd) {
11245 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
11246 			CTR2(KTR_SUJ,
11247 			    "softdep_setup_blkfree: blkno %jd wk type %d",
11248 			    blkno, wk->wk_type);
11249 			WORKLIST_REMOVE(wk);
11250 			if (wk->wk_type != D_JNEWBLK) {
11251 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11252 				continue;
11253 			}
11254 			jnewblk = WK_JNEWBLK(wk);
11255 			KASSERT(jnewblk->jn_state & GOINGAWAY,
11256 			    ("softdep_setup_blkfree: jnewblk not canceled."));
11257 #ifdef INVARIANTS
11258 			/*
11259 			 * Assert that this block is free in the bitmap
11260 			 * before we discard the jnewblk.
11261 			 */
11262 			cgp = (struct cg *)bp->b_data;
11263 			blksfree = cg_blksfree(cgp);
11264 			bno = dtogd(fs, jnewblk->jn_blkno);
11265 			for (i = jnewblk->jn_oldfrags;
11266 			    i < jnewblk->jn_frags; i++) {
11267 				if (isset(blksfree, bno + i))
11268 					continue;
11269 				panic("softdep_setup_blkfree: not free");
11270 			}
11271 #endif
11272 			/*
11273 			 * Even if it's not attached we can free immediately
11274 			 * as the new bitmap is correct.
11275 			 */
11276 			wk->wk_state |= COMPLETE | ATTACHED;
11277 			free_jnewblk(jnewblk);
11278 		}
11279 	}
11280 
11281 #ifdef INVARIANTS
11282 	/*
11283 	 * Assert that we are not freeing a block which has an outstanding
11284 	 * allocation dependency.
11285 	 */
11286 	fs = VFSTOUFS(mp)->um_fs;
11287 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11288 	end = blkno + frags;
11289 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11290 		/*
11291 		 * Don't match against blocks that will be freed when the
11292 		 * background write is done.
11293 		 */
11294 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11295 		    (COMPLETE | DEPCOMPLETE))
11296 			continue;
11297 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11298 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11299 		if ((blkno >= jstart && blkno < jend) ||
11300 		    (end > jstart && end <= jend)) {
11301 			printf("state 0x%X %jd - %d %d dep %p\n",
11302 			    jnewblk->jn_state, jnewblk->jn_blkno,
11303 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
11304 			    jnewblk->jn_dep);
11305 			panic("softdep_setup_blkfree: "
11306 			    "%jd-%jd(%d) overlaps with %jd-%jd",
11307 			    blkno, end, frags, jstart, jend);
11308 		}
11309 	}
11310 #endif
11311 	FREE_LOCK(ump);
11312 }
11313 
11314 /*
11315  * Revert a block allocation when the journal record that describes it
11316  * is not yet written.
11317  */
11318 static int
11319 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
11320 	struct jnewblk *jnewblk;
11321 	struct fs *fs;
11322 	struct cg *cgp;
11323 	uint8_t *blksfree;
11324 {
11325 	ufs1_daddr_t fragno;
11326 	long cgbno, bbase;
11327 	int frags, blk;
11328 	int i;
11329 
11330 	frags = 0;
11331 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11332 	/*
11333 	 * We have to test which frags need to be rolled back.  We may
11334 	 * be operating on a stale copy when doing background writes.
11335 	 */
11336 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11337 		if (isclr(blksfree, cgbno + i))
11338 			frags++;
11339 	if (frags == 0)
11340 		return (0);
11341 	/*
11342 	 * This is mostly ffs_blkfree() sans some validation and
11343 	 * superblock updates.
11344 	 */
11345 	if (frags == fs->fs_frag) {
11346 		fragno = fragstoblks(fs, cgbno);
11347 		ffs_setblock(fs, blksfree, fragno);
11348 		ffs_clusteracct(fs, cgp, fragno, 1);
11349 		cgp->cg_cs.cs_nbfree++;
11350 	} else {
11351 		cgbno += jnewblk->jn_oldfrags;
11352 		bbase = cgbno - fragnum(fs, cgbno);
11353 		/* Decrement the old frags.  */
11354 		blk = blkmap(fs, blksfree, bbase);
11355 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11356 		/* Deallocate the fragment */
11357 		for (i = 0; i < frags; i++)
11358 			setbit(blksfree, cgbno + i);
11359 		cgp->cg_cs.cs_nffree += frags;
11360 		/* Add back in counts associated with the new frags */
11361 		blk = blkmap(fs, blksfree, bbase);
11362 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11363 		/* If a complete block has been reassembled, account for it. */
11364 		fragno = fragstoblks(fs, bbase);
11365 		if (ffs_isblock(fs, blksfree, fragno)) {
11366 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11367 			ffs_clusteracct(fs, cgp, fragno, 1);
11368 			cgp->cg_cs.cs_nbfree++;
11369 		}
11370 	}
11371 	stat_jnewblk++;
11372 	jnewblk->jn_state &= ~ATTACHED;
11373 	jnewblk->jn_state |= UNDONE;
11374 
11375 	return (frags);
11376 }
11377 
11378 static void
11379 initiate_write_bmsafemap(bmsafemap, bp)
11380 	struct bmsafemap *bmsafemap;
11381 	struct buf *bp;			/* The cg block. */
11382 {
11383 	struct jaddref *jaddref;
11384 	struct jnewblk *jnewblk;
11385 	uint8_t *inosused;
11386 	uint8_t *blksfree;
11387 	struct cg *cgp;
11388 	struct fs *fs;
11389 	ino_t ino;
11390 
11391 	/*
11392 	 * If this is a background write, we did this at the time that
11393 	 * the copy was made, so do not need to do it again.
11394 	 */
11395 	if (bmsafemap->sm_state & IOSTARTED)
11396 		return;
11397 	bmsafemap->sm_state |= IOSTARTED;
11398 	/*
11399 	 * Clear any inode allocations which are pending journal writes.
11400 	 */
11401 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11402 		cgp = (struct cg *)bp->b_data;
11403 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11404 		inosused = cg_inosused(cgp);
11405 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11406 			ino = jaddref->ja_ino % fs->fs_ipg;
11407 			if (isset(inosused, ino)) {
11408 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11409 					cgp->cg_cs.cs_ndir--;
11410 				cgp->cg_cs.cs_nifree++;
11411 				clrbit(inosused, ino);
11412 				jaddref->ja_state &= ~ATTACHED;
11413 				jaddref->ja_state |= UNDONE;
11414 				stat_jaddref++;
11415 			} else
11416 				panic("initiate_write_bmsafemap: inode %ju "
11417 				    "marked free", (uintmax_t)jaddref->ja_ino);
11418 		}
11419 	}
11420 	/*
11421 	 * Clear any block allocations which are pending journal writes.
11422 	 */
11423 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11424 		cgp = (struct cg *)bp->b_data;
11425 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11426 		blksfree = cg_blksfree(cgp);
11427 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11428 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11429 				continue;
11430 			panic("initiate_write_bmsafemap: block %jd "
11431 			    "marked free", jnewblk->jn_blkno);
11432 		}
11433 	}
11434 	/*
11435 	 * Move allocation lists to the written lists so they can be
11436 	 * cleared once the block write is complete.
11437 	 */
11438 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11439 	    inodedep, id_deps);
11440 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11441 	    newblk, nb_deps);
11442 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11443 	    wk_list);
11444 }
11445 
11446 void
11447 softdep_handle_error(struct buf *bp)
11448 {
11449 	struct ufsmount *ump;
11450 
11451 	ump = softdep_bp_to_mp(bp);
11452 	if (ump == NULL)
11453 		return;
11454 
11455 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11456 		/*
11457 		 * No future writes will succeed, so the on-disk image is safe.
11458 		 * Pretend that this write succeeded so that the softdep state
11459 		 * will be cleaned up naturally.
11460 		 */
11461 		bp->b_ioflags &= ~BIO_ERROR;
11462 		bp->b_error = 0;
11463 	}
11464 }
11465 
11466 /*
11467  * This routine is called during the completion interrupt
11468  * service routine for a disk write (from the procedure called
11469  * by the device driver to inform the filesystem caches of
11470  * a request completion).  It should be called early in this
11471  * procedure, before the block is made available to other
11472  * processes or other routines are called.
11473  *
11474  */
11475 static void
11476 softdep_disk_write_complete(bp)
11477 	struct buf *bp;		/* describes the completed disk write */
11478 {
11479 	struct worklist *wk;
11480 	struct worklist *owk;
11481 	struct ufsmount *ump;
11482 	struct workhead reattach;
11483 	struct freeblks *freeblks;
11484 	struct buf *sbp;
11485 
11486 	ump = softdep_bp_to_mp(bp);
11487 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11488 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11489 	     "with outstanding dependencies for buffer %p", bp));
11490 	if (ump == NULL)
11491 		return;
11492 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11493 		softdep_handle_error(bp);
11494 	/*
11495 	 * If an error occurred while doing the write, then the data
11496 	 * has not hit the disk and the dependencies cannot be processed.
11497 	 * But we do have to go through and roll forward any dependencies
11498 	 * that were rolled back before the disk write.
11499 	 */
11500 	sbp = NULL;
11501 	ACQUIRE_LOCK(ump);
11502 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11503 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11504 			switch (wk->wk_type) {
11505 			case D_PAGEDEP:
11506 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11507 				continue;
11508 
11509 			case D_INODEDEP:
11510 				handle_written_inodeblock(WK_INODEDEP(wk),
11511 				    bp, 0);
11512 				continue;
11513 
11514 			case D_BMSAFEMAP:
11515 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11516 				    bp, 0);
11517 				continue;
11518 
11519 			case D_INDIRDEP:
11520 				handle_written_indirdep(WK_INDIRDEP(wk),
11521 				    bp, &sbp, 0);
11522 				continue;
11523 			default:
11524 				/* nothing to roll forward */
11525 				continue;
11526 			}
11527 		}
11528 		FREE_LOCK(ump);
11529 		if (sbp)
11530 			brelse(sbp);
11531 		return;
11532 	}
11533 	LIST_INIT(&reattach);
11534 
11535 	/*
11536 	 * Ump SU lock must not be released anywhere in this code segment.
11537 	 */
11538 	owk = NULL;
11539 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11540 		WORKLIST_REMOVE(wk);
11541 		atomic_add_long(&dep_write[wk->wk_type], 1);
11542 		if (wk == owk)
11543 			panic("duplicate worklist: %p\n", wk);
11544 		owk = wk;
11545 		switch (wk->wk_type) {
11546 		case D_PAGEDEP:
11547 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11548 			    WRITESUCCEEDED))
11549 				WORKLIST_INSERT(&reattach, wk);
11550 			continue;
11551 
11552 		case D_INODEDEP:
11553 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11554 			    WRITESUCCEEDED))
11555 				WORKLIST_INSERT(&reattach, wk);
11556 			continue;
11557 
11558 		case D_BMSAFEMAP:
11559 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11560 			    WRITESUCCEEDED))
11561 				WORKLIST_INSERT(&reattach, wk);
11562 			continue;
11563 
11564 		case D_MKDIR:
11565 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11566 			continue;
11567 
11568 		case D_ALLOCDIRECT:
11569 			wk->wk_state |= COMPLETE;
11570 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11571 			continue;
11572 
11573 		case D_ALLOCINDIR:
11574 			wk->wk_state |= COMPLETE;
11575 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11576 			continue;
11577 
11578 		case D_INDIRDEP:
11579 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11580 			    WRITESUCCEEDED))
11581 				WORKLIST_INSERT(&reattach, wk);
11582 			continue;
11583 
11584 		case D_FREEBLKS:
11585 			wk->wk_state |= COMPLETE;
11586 			freeblks = WK_FREEBLKS(wk);
11587 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11588 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11589 				add_to_worklist(wk, WK_NODELAY);
11590 			continue;
11591 
11592 		case D_FREEWORK:
11593 			handle_written_freework(WK_FREEWORK(wk));
11594 			break;
11595 
11596 		case D_JSEGDEP:
11597 			free_jsegdep(WK_JSEGDEP(wk));
11598 			continue;
11599 
11600 		case D_JSEG:
11601 			handle_written_jseg(WK_JSEG(wk), bp);
11602 			continue;
11603 
11604 		case D_SBDEP:
11605 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11606 				WORKLIST_INSERT(&reattach, wk);
11607 			continue;
11608 
11609 		case D_FREEDEP:
11610 			free_freedep(WK_FREEDEP(wk));
11611 			continue;
11612 
11613 		default:
11614 			panic("handle_disk_write_complete: Unknown type %s",
11615 			    TYPENAME(wk->wk_type));
11616 			/* NOTREACHED */
11617 		}
11618 	}
11619 	/*
11620 	 * Reattach any requests that must be redone.
11621 	 */
11622 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11623 		WORKLIST_REMOVE(wk);
11624 		WORKLIST_INSERT(&bp->b_dep, wk);
11625 	}
11626 	FREE_LOCK(ump);
11627 	if (sbp)
11628 		brelse(sbp);
11629 }
11630 
11631 /*
11632  * Called from within softdep_disk_write_complete above.
11633  */
11634 static void
11635 handle_allocdirect_partdone(adp, wkhd)
11636 	struct allocdirect *adp;	/* the completed allocdirect */
11637 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11638 {
11639 	struct allocdirectlst *listhead;
11640 	struct allocdirect *listadp;
11641 	struct inodedep *inodedep;
11642 	long bsize;
11643 
11644 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11645 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11646 		return;
11647 	/*
11648 	 * The on-disk inode cannot claim to be any larger than the last
11649 	 * fragment that has been written. Otherwise, the on-disk inode
11650 	 * might have fragments that were not the last block in the file
11651 	 * which would corrupt the filesystem. Thus, we cannot free any
11652 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11653 	 * these blocks must be rolled back to zero before writing the inode.
11654 	 * We check the currently active set of allocdirects in id_inoupdt
11655 	 * or id_extupdt as appropriate.
11656 	 */
11657 	inodedep = adp->ad_inodedep;
11658 	bsize = inodedep->id_fs->fs_bsize;
11659 	if (adp->ad_state & EXTDATA)
11660 		listhead = &inodedep->id_extupdt;
11661 	else
11662 		listhead = &inodedep->id_inoupdt;
11663 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11664 		/* found our block */
11665 		if (listadp == adp)
11666 			break;
11667 		/* continue if ad_oldlbn is not a fragment */
11668 		if (listadp->ad_oldsize == 0 ||
11669 		    listadp->ad_oldsize == bsize)
11670 			continue;
11671 		/* hit a fragment */
11672 		return;
11673 	}
11674 	/*
11675 	 * If we have reached the end of the current list without
11676 	 * finding the just finished dependency, then it must be
11677 	 * on the future dependency list. Future dependencies cannot
11678 	 * be freed until they are moved to the current list.
11679 	 */
11680 	if (listadp == NULL) {
11681 #ifdef INVARIANTS
11682 		if (adp->ad_state & EXTDATA)
11683 			listhead = &inodedep->id_newextupdt;
11684 		else
11685 			listhead = &inodedep->id_newinoupdt;
11686 		TAILQ_FOREACH(listadp, listhead, ad_next)
11687 			/* found our block */
11688 			if (listadp == adp)
11689 				break;
11690 		if (listadp == NULL)
11691 			panic("handle_allocdirect_partdone: lost dep");
11692 #endif /* INVARIANTS */
11693 		return;
11694 	}
11695 	/*
11696 	 * If we have found the just finished dependency, then queue
11697 	 * it along with anything that follows it that is complete.
11698 	 * Since the pointer has not yet been written in the inode
11699 	 * as the dependency prevents it, place the allocdirect on the
11700 	 * bufwait list where it will be freed once the pointer is
11701 	 * valid.
11702 	 */
11703 	if (wkhd == NULL)
11704 		wkhd = &inodedep->id_bufwait;
11705 	for (; adp; adp = listadp) {
11706 		listadp = TAILQ_NEXT(adp, ad_next);
11707 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11708 			return;
11709 		TAILQ_REMOVE(listhead, adp, ad_next);
11710 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11711 	}
11712 }
11713 
11714 /*
11715  * Called from within softdep_disk_write_complete above.  This routine
11716  * completes successfully written allocindirs.
11717  */
11718 static void
11719 handle_allocindir_partdone(aip)
11720 	struct allocindir *aip;		/* the completed allocindir */
11721 {
11722 	struct indirdep *indirdep;
11723 
11724 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11725 		return;
11726 	indirdep = aip->ai_indirdep;
11727 	LIST_REMOVE(aip, ai_next);
11728 	/*
11729 	 * Don't set a pointer while the buffer is undergoing IO or while
11730 	 * we have active truncations.
11731 	 */
11732 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11733 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11734 		return;
11735 	}
11736 	if (indirdep->ir_state & UFS1FMT)
11737 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11738 		    aip->ai_newblkno;
11739 	else
11740 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11741 		    aip->ai_newblkno;
11742 	/*
11743 	 * Await the pointer write before freeing the allocindir.
11744 	 */
11745 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11746 }
11747 
11748 /*
11749  * Release segments held on a jwork list.
11750  */
11751 static void
11752 handle_jwork(wkhd)
11753 	struct workhead *wkhd;
11754 {
11755 	struct worklist *wk;
11756 
11757 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11758 		WORKLIST_REMOVE(wk);
11759 		switch (wk->wk_type) {
11760 		case D_JSEGDEP:
11761 			free_jsegdep(WK_JSEGDEP(wk));
11762 			continue;
11763 		case D_FREEDEP:
11764 			free_freedep(WK_FREEDEP(wk));
11765 			continue;
11766 		case D_FREEFRAG:
11767 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11768 			WORKITEM_FREE(wk, D_FREEFRAG);
11769 			continue;
11770 		case D_FREEWORK:
11771 			handle_written_freework(WK_FREEWORK(wk));
11772 			continue;
11773 		default:
11774 			panic("handle_jwork: Unknown type %s\n",
11775 			    TYPENAME(wk->wk_type));
11776 		}
11777 	}
11778 }
11779 
11780 /*
11781  * Handle the bufwait list on an inode when it is safe to release items
11782  * held there.  This normally happens after an inode block is written but
11783  * may be delayed and handled later if there are pending journal items that
11784  * are not yet safe to be released.
11785  */
11786 static struct freefile *
11787 handle_bufwait(inodedep, refhd)
11788 	struct inodedep *inodedep;
11789 	struct workhead *refhd;
11790 {
11791 	struct jaddref *jaddref;
11792 	struct freefile *freefile;
11793 	struct worklist *wk;
11794 
11795 	freefile = NULL;
11796 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11797 		WORKLIST_REMOVE(wk);
11798 		switch (wk->wk_type) {
11799 		case D_FREEFILE:
11800 			/*
11801 			 * We defer adding freefile to the worklist
11802 			 * until all other additions have been made to
11803 			 * ensure that it will be done after all the
11804 			 * old blocks have been freed.
11805 			 */
11806 			if (freefile != NULL)
11807 				panic("handle_bufwait: freefile");
11808 			freefile = WK_FREEFILE(wk);
11809 			continue;
11810 
11811 		case D_MKDIR:
11812 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11813 			continue;
11814 
11815 		case D_DIRADD:
11816 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11817 			continue;
11818 
11819 		case D_FREEFRAG:
11820 			wk->wk_state |= COMPLETE;
11821 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11822 				add_to_worklist(wk, 0);
11823 			continue;
11824 
11825 		case D_DIRREM:
11826 			wk->wk_state |= COMPLETE;
11827 			add_to_worklist(wk, 0);
11828 			continue;
11829 
11830 		case D_ALLOCDIRECT:
11831 		case D_ALLOCINDIR:
11832 			free_newblk(WK_NEWBLK(wk));
11833 			continue;
11834 
11835 		case D_JNEWBLK:
11836 			wk->wk_state |= COMPLETE;
11837 			free_jnewblk(WK_JNEWBLK(wk));
11838 			continue;
11839 
11840 		/*
11841 		 * Save freed journal segments and add references on
11842 		 * the supplied list which will delay their release
11843 		 * until the cg bitmap is cleared on disk.
11844 		 */
11845 		case D_JSEGDEP:
11846 			if (refhd == NULL)
11847 				free_jsegdep(WK_JSEGDEP(wk));
11848 			else
11849 				WORKLIST_INSERT(refhd, wk);
11850 			continue;
11851 
11852 		case D_JADDREF:
11853 			jaddref = WK_JADDREF(wk);
11854 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11855 			    if_deps);
11856 			/*
11857 			 * Transfer any jaddrefs to the list to be freed with
11858 			 * the bitmap if we're handling a removed file.
11859 			 */
11860 			if (refhd == NULL) {
11861 				wk->wk_state |= COMPLETE;
11862 				free_jaddref(jaddref);
11863 			} else
11864 				WORKLIST_INSERT(refhd, wk);
11865 			continue;
11866 
11867 		default:
11868 			panic("handle_bufwait: Unknown type %p(%s)",
11869 			    wk, TYPENAME(wk->wk_type));
11870 			/* NOTREACHED */
11871 		}
11872 	}
11873 	return (freefile);
11874 }
11875 /*
11876  * Called from within softdep_disk_write_complete above to restore
11877  * in-memory inode block contents to their most up-to-date state. Note
11878  * that this routine is always called from interrupt level with further
11879  * interrupts from this device blocked.
11880  *
11881  * If the write did not succeed, we will do all the roll-forward
11882  * operations, but we will not take the actions that will allow its
11883  * dependencies to be processed.
11884  */
11885 static int
11886 handle_written_inodeblock(inodedep, bp, flags)
11887 	struct inodedep *inodedep;
11888 	struct buf *bp;		/* buffer containing the inode block */
11889 	int flags;
11890 {
11891 	struct freefile *freefile;
11892 	struct allocdirect *adp, *nextadp;
11893 	struct ufs1_dinode *dp1 = NULL;
11894 	struct ufs2_dinode *dp2 = NULL;
11895 	struct workhead wkhd;
11896 	int hadchanges, fstype;
11897 	ino_t freelink;
11898 
11899 	LIST_INIT(&wkhd);
11900 	hadchanges = 0;
11901 	freefile = NULL;
11902 	if ((inodedep->id_state & IOSTARTED) == 0)
11903 		panic("handle_written_inodeblock: not started");
11904 	inodedep->id_state &= ~IOSTARTED;
11905 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11906 		fstype = UFS1;
11907 		dp1 = (struct ufs1_dinode *)bp->b_data +
11908 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11909 		freelink = dp1->di_freelink;
11910 	} else {
11911 		fstype = UFS2;
11912 		dp2 = (struct ufs2_dinode *)bp->b_data +
11913 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11914 		freelink = dp2->di_freelink;
11915 	}
11916 	/*
11917 	 * Leave this inodeblock dirty until it's in the list.
11918 	 */
11919 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11920 	    (flags & WRITESUCCEEDED)) {
11921 		struct inodedep *inon;
11922 
11923 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11924 		if ((inon == NULL && freelink == 0) ||
11925 		    (inon && inon->id_ino == freelink)) {
11926 			if (inon)
11927 				inon->id_state |= UNLINKPREV;
11928 			inodedep->id_state |= UNLINKNEXT;
11929 		}
11930 		hadchanges = 1;
11931 	}
11932 	/*
11933 	 * If we had to rollback the inode allocation because of
11934 	 * bitmaps being incomplete, then simply restore it.
11935 	 * Keep the block dirty so that it will not be reclaimed until
11936 	 * all associated dependencies have been cleared and the
11937 	 * corresponding updates written to disk.
11938 	 */
11939 	if (inodedep->id_savedino1 != NULL) {
11940 		hadchanges = 1;
11941 		if (fstype == UFS1)
11942 			*dp1 = *inodedep->id_savedino1;
11943 		else
11944 			*dp2 = *inodedep->id_savedino2;
11945 		free(inodedep->id_savedino1, M_SAVEDINO);
11946 		inodedep->id_savedino1 = NULL;
11947 		if ((bp->b_flags & B_DELWRI) == 0)
11948 			stat_inode_bitmap++;
11949 		bdirty(bp);
11950 		/*
11951 		 * If the inode is clear here and GOINGAWAY it will never
11952 		 * be written.  Process the bufwait and clear any pending
11953 		 * work which may include the freefile.
11954 		 */
11955 		if (inodedep->id_state & GOINGAWAY)
11956 			goto bufwait;
11957 		return (1);
11958 	}
11959 	if (flags & WRITESUCCEEDED)
11960 		inodedep->id_state |= COMPLETE;
11961 	/*
11962 	 * Roll forward anything that had to be rolled back before
11963 	 * the inode could be updated.
11964 	 */
11965 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11966 		nextadp = TAILQ_NEXT(adp, ad_next);
11967 		if (adp->ad_state & ATTACHED)
11968 			panic("handle_written_inodeblock: new entry");
11969 		if (fstype == UFS1) {
11970 			if (adp->ad_offset < UFS_NDADDR) {
11971 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11972 					panic("%s %s #%jd mismatch %d != %jd",
11973 					    "handle_written_inodeblock:",
11974 					    "direct pointer",
11975 					    (intmax_t)adp->ad_offset,
11976 					    dp1->di_db[adp->ad_offset],
11977 					    (intmax_t)adp->ad_oldblkno);
11978 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11979 			} else {
11980 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11981 				    0)
11982 					panic("%s: %s #%jd allocated as %d",
11983 					    "handle_written_inodeblock",
11984 					    "indirect pointer",
11985 					    (intmax_t)adp->ad_offset -
11986 					    UFS_NDADDR,
11987 					    dp1->di_ib[adp->ad_offset -
11988 					    UFS_NDADDR]);
11989 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11990 				    adp->ad_newblkno;
11991 			}
11992 		} else {
11993 			if (adp->ad_offset < UFS_NDADDR) {
11994 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11995 					panic("%s: %s #%jd %s %jd != %jd",
11996 					    "handle_written_inodeblock",
11997 					    "direct pointer",
11998 					    (intmax_t)adp->ad_offset, "mismatch",
11999 					    (intmax_t)dp2->di_db[adp->ad_offset],
12000 					    (intmax_t)adp->ad_oldblkno);
12001 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
12002 			} else {
12003 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
12004 				    0)
12005 					panic("%s: %s #%jd allocated as %jd",
12006 					    "handle_written_inodeblock",
12007 					    "indirect pointer",
12008 					    (intmax_t)adp->ad_offset -
12009 					    UFS_NDADDR,
12010 					    (intmax_t)
12011 					    dp2->di_ib[adp->ad_offset -
12012 					    UFS_NDADDR]);
12013 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
12014 				    adp->ad_newblkno;
12015 			}
12016 		}
12017 		adp->ad_state &= ~UNDONE;
12018 		adp->ad_state |= ATTACHED;
12019 		hadchanges = 1;
12020 	}
12021 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
12022 		nextadp = TAILQ_NEXT(adp, ad_next);
12023 		if (adp->ad_state & ATTACHED)
12024 			panic("handle_written_inodeblock: new entry");
12025 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
12026 			panic("%s: direct pointers #%jd %s %jd != %jd",
12027 			    "handle_written_inodeblock",
12028 			    (intmax_t)adp->ad_offset, "mismatch",
12029 			    (intmax_t)dp2->di_extb[adp->ad_offset],
12030 			    (intmax_t)adp->ad_oldblkno);
12031 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
12032 		adp->ad_state &= ~UNDONE;
12033 		adp->ad_state |= ATTACHED;
12034 		hadchanges = 1;
12035 	}
12036 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
12037 		stat_direct_blk_ptrs++;
12038 	/*
12039 	 * Reset the file size to its most up-to-date value.
12040 	 */
12041 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
12042 		panic("handle_written_inodeblock: bad size");
12043 	if (inodedep->id_savednlink > UFS_LINK_MAX)
12044 		panic("handle_written_inodeblock: Invalid link count "
12045 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
12046 		    inodedep);
12047 	if (fstype == UFS1) {
12048 		if (dp1->di_nlink != inodedep->id_savednlink) {
12049 			dp1->di_nlink = inodedep->id_savednlink;
12050 			hadchanges = 1;
12051 		}
12052 		if (dp1->di_size != inodedep->id_savedsize) {
12053 			dp1->di_size = inodedep->id_savedsize;
12054 			hadchanges = 1;
12055 		}
12056 	} else {
12057 		if (dp2->di_nlink != inodedep->id_savednlink) {
12058 			dp2->di_nlink = inodedep->id_savednlink;
12059 			hadchanges = 1;
12060 		}
12061 		if (dp2->di_size != inodedep->id_savedsize) {
12062 			dp2->di_size = inodedep->id_savedsize;
12063 			hadchanges = 1;
12064 		}
12065 		if (dp2->di_extsize != inodedep->id_savedextsize) {
12066 			dp2->di_extsize = inodedep->id_savedextsize;
12067 			hadchanges = 1;
12068 		}
12069 	}
12070 	inodedep->id_savedsize = -1;
12071 	inodedep->id_savedextsize = -1;
12072 	inodedep->id_savednlink = -1;
12073 	/*
12074 	 * If there were any rollbacks in the inode block, then it must be
12075 	 * marked dirty so that its will eventually get written back in
12076 	 * its correct form.
12077 	 */
12078 	if (hadchanges) {
12079 		if (fstype == UFS2)
12080 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
12081 		bdirty(bp);
12082 	}
12083 bufwait:
12084 	/*
12085 	 * If the write did not succeed, we have done all the roll-forward
12086 	 * operations, but we cannot take the actions that will allow its
12087 	 * dependencies to be processed.
12088 	 */
12089 	if ((flags & WRITESUCCEEDED) == 0)
12090 		return (hadchanges);
12091 	/*
12092 	 * Process any allocdirects that completed during the update.
12093 	 */
12094 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
12095 		handle_allocdirect_partdone(adp, &wkhd);
12096 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
12097 		handle_allocdirect_partdone(adp, &wkhd);
12098 	/*
12099 	 * Process deallocations that were held pending until the
12100 	 * inode had been written to disk. Freeing of the inode
12101 	 * is delayed until after all blocks have been freed to
12102 	 * avoid creation of new <vfsid, inum, lbn> triples
12103 	 * before the old ones have been deleted.  Completely
12104 	 * unlinked inodes are not processed until the unlinked
12105 	 * inode list is written or the last reference is removed.
12106 	 */
12107 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
12108 		freefile = handle_bufwait(inodedep, NULL);
12109 		if (freefile && !LIST_EMPTY(&wkhd)) {
12110 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
12111 			freefile = NULL;
12112 		}
12113 	}
12114 	/*
12115 	 * Move rolled forward dependency completions to the bufwait list
12116 	 * now that those that were already written have been processed.
12117 	 */
12118 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
12119 		panic("handle_written_inodeblock: bufwait but no changes");
12120 	jwork_move(&inodedep->id_bufwait, &wkhd);
12121 
12122 	if (freefile != NULL) {
12123 		/*
12124 		 * If the inode is goingaway it was never written.  Fake up
12125 		 * the state here so free_inodedep() can succeed.
12126 		 */
12127 		if (inodedep->id_state & GOINGAWAY)
12128 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
12129 		if (free_inodedep(inodedep) == 0)
12130 			panic("handle_written_inodeblock: live inodedep %p",
12131 			    inodedep);
12132 		add_to_worklist(&freefile->fx_list, 0);
12133 		return (0);
12134 	}
12135 
12136 	/*
12137 	 * If no outstanding dependencies, free it.
12138 	 */
12139 	if (free_inodedep(inodedep) ||
12140 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
12141 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
12142 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
12143 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
12144 		return (0);
12145 	return (hadchanges);
12146 }
12147 
12148 /*
12149  * Perform needed roll-forwards and kick off any dependencies that
12150  * can now be processed.
12151  *
12152  * If the write did not succeed, we will do all the roll-forward
12153  * operations, but we will not take the actions that will allow its
12154  * dependencies to be processed.
12155  */
12156 static int
12157 handle_written_indirdep(indirdep, bp, bpp, flags)
12158 	struct indirdep *indirdep;
12159 	struct buf *bp;
12160 	struct buf **bpp;
12161 	int flags;
12162 {
12163 	struct allocindir *aip;
12164 	struct buf *sbp;
12165 	int chgs;
12166 
12167 	if (indirdep->ir_state & GOINGAWAY)
12168 		panic("handle_written_indirdep: indirdep gone");
12169 	if ((indirdep->ir_state & IOSTARTED) == 0)
12170 		panic("handle_written_indirdep: IO not started");
12171 	chgs = 0;
12172 	/*
12173 	 * If there were rollbacks revert them here.
12174 	 */
12175 	if (indirdep->ir_saveddata) {
12176 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
12177 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
12178 			free(indirdep->ir_saveddata, M_INDIRDEP);
12179 			indirdep->ir_saveddata = NULL;
12180 		}
12181 		chgs = 1;
12182 	}
12183 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
12184 	indirdep->ir_state |= ATTACHED;
12185 	/*
12186 	 * If the write did not succeed, we have done all the roll-forward
12187 	 * operations, but we cannot take the actions that will allow its
12188 	 * dependencies to be processed.
12189 	 */
12190 	if ((flags & WRITESUCCEEDED) == 0) {
12191 		stat_indir_blk_ptrs++;
12192 		bdirty(bp);
12193 		return (1);
12194 	}
12195 	/*
12196 	 * Move allocindirs with written pointers to the completehd if
12197 	 * the indirdep's pointer is not yet written.  Otherwise
12198 	 * free them here.
12199 	 */
12200 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
12201 		LIST_REMOVE(aip, ai_next);
12202 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
12203 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
12204 			    ai_next);
12205 			newblk_freefrag(&aip->ai_block);
12206 			continue;
12207 		}
12208 		free_newblk(&aip->ai_block);
12209 	}
12210 	/*
12211 	 * Move allocindirs that have finished dependency processing from
12212 	 * the done list to the write list after updating the pointers.
12213 	 */
12214 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
12215 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
12216 			handle_allocindir_partdone(aip);
12217 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
12218 				panic("disk_write_complete: not gone");
12219 			chgs = 1;
12220 		}
12221 	}
12222 	/*
12223 	 * Preserve the indirdep if there were any changes or if it is not
12224 	 * yet valid on disk.
12225 	 */
12226 	if (chgs) {
12227 		stat_indir_blk_ptrs++;
12228 		bdirty(bp);
12229 		return (1);
12230 	}
12231 	/*
12232 	 * If there were no changes we can discard the savedbp and detach
12233 	 * ourselves from the buf.  We are only carrying completed pointers
12234 	 * in this case.
12235 	 */
12236 	sbp = indirdep->ir_savebp;
12237 	sbp->b_flags |= B_INVAL | B_NOCACHE;
12238 	indirdep->ir_savebp = NULL;
12239 	indirdep->ir_bp = NULL;
12240 	if (*bpp != NULL)
12241 		panic("handle_written_indirdep: bp already exists.");
12242 	*bpp = sbp;
12243 	/*
12244 	 * The indirdep may not be freed until its parent points at it.
12245 	 */
12246 	if (indirdep->ir_state & DEPCOMPLETE)
12247 		free_indirdep(indirdep);
12248 
12249 	return (0);
12250 }
12251 
12252 /*
12253  * Process a diradd entry after its dependent inode has been written.
12254  */
12255 static void
12256 diradd_inode_written(dap, inodedep)
12257 	struct diradd *dap;
12258 	struct inodedep *inodedep;
12259 {
12260 
12261 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12262 	dap->da_state |= COMPLETE;
12263 	complete_diradd(dap);
12264 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12265 }
12266 
12267 /*
12268  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12269  * be called with the per-filesystem lock and the buf lock on the cg held.
12270  */
12271 static int
12272 bmsafemap_backgroundwrite(bmsafemap, bp)
12273 	struct bmsafemap *bmsafemap;
12274 	struct buf *bp;
12275 {
12276 	int dirty;
12277 
12278 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12279 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12280 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12281 	/*
12282 	 * If we're initiating a background write we need to process the
12283 	 * rollbacks as they exist now, not as they exist when IO starts.
12284 	 * No other consumers will look at the contents of the shadowed
12285 	 * buf so this is safe to do here.
12286 	 */
12287 	if (bp->b_xflags & BX_BKGRDMARKER)
12288 		initiate_write_bmsafemap(bmsafemap, bp);
12289 
12290 	return (dirty);
12291 }
12292 
12293 /*
12294  * Re-apply an allocation when a cg write is complete.
12295  */
12296 static int
12297 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
12298 	struct jnewblk *jnewblk;
12299 	struct fs *fs;
12300 	struct cg *cgp;
12301 	uint8_t *blksfree;
12302 {
12303 	ufs1_daddr_t fragno;
12304 	ufs2_daddr_t blkno;
12305 	long cgbno, bbase;
12306 	int frags, blk;
12307 	int i;
12308 
12309 	frags = 0;
12310 	cgbno = dtogd(fs, jnewblk->jn_blkno);
12311 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12312 		if (isclr(blksfree, cgbno + i))
12313 			panic("jnewblk_rollforward: re-allocated fragment");
12314 		frags++;
12315 	}
12316 	if (frags == fs->fs_frag) {
12317 		blkno = fragstoblks(fs, cgbno);
12318 		ffs_clrblock(fs, blksfree, (long)blkno);
12319 		ffs_clusteracct(fs, cgp, blkno, -1);
12320 		cgp->cg_cs.cs_nbfree--;
12321 	} else {
12322 		bbase = cgbno - fragnum(fs, cgbno);
12323 		cgbno += jnewblk->jn_oldfrags;
12324                 /* If a complete block had been reassembled, account for it. */
12325 		fragno = fragstoblks(fs, bbase);
12326 		if (ffs_isblock(fs, blksfree, fragno)) {
12327 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12328 			ffs_clusteracct(fs, cgp, fragno, -1);
12329 			cgp->cg_cs.cs_nbfree--;
12330 		}
12331 		/* Decrement the old frags.  */
12332 		blk = blkmap(fs, blksfree, bbase);
12333 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12334 		/* Allocate the fragment */
12335 		for (i = 0; i < frags; i++)
12336 			clrbit(blksfree, cgbno + i);
12337 		cgp->cg_cs.cs_nffree -= frags;
12338 		/* Add back in counts associated with the new frags */
12339 		blk = blkmap(fs, blksfree, bbase);
12340 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12341 	}
12342 	return (frags);
12343 }
12344 
12345 /*
12346  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12347  * changes if it's not a background write.  Set all written dependencies
12348  * to DEPCOMPLETE and free the structure if possible.
12349  *
12350  * If the write did not succeed, we will do all the roll-forward
12351  * operations, but we will not take the actions that will allow its
12352  * dependencies to be processed.
12353  */
12354 static int
12355 handle_written_bmsafemap(bmsafemap, bp, flags)
12356 	struct bmsafemap *bmsafemap;
12357 	struct buf *bp;
12358 	int flags;
12359 {
12360 	struct newblk *newblk;
12361 	struct inodedep *inodedep;
12362 	struct jaddref *jaddref, *jatmp;
12363 	struct jnewblk *jnewblk, *jntmp;
12364 	struct ufsmount *ump;
12365 	uint8_t *inosused;
12366 	uint8_t *blksfree;
12367 	struct cg *cgp;
12368 	struct fs *fs;
12369 	ino_t ino;
12370 	int foreground;
12371 	int chgs;
12372 
12373 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12374 		panic("handle_written_bmsafemap: Not started\n");
12375 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12376 	chgs = 0;
12377 	bmsafemap->sm_state &= ~IOSTARTED;
12378 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12379 	/*
12380 	 * If write was successful, release journal work that was waiting
12381 	 * on the write. Otherwise move the work back.
12382 	 */
12383 	if (flags & WRITESUCCEEDED)
12384 		handle_jwork(&bmsafemap->sm_freewr);
12385 	else
12386 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12387 		    worklist, wk_list);
12388 
12389 	/*
12390 	 * Restore unwritten inode allocation pending jaddref writes.
12391 	 */
12392 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12393 		cgp = (struct cg *)bp->b_data;
12394 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12395 		inosused = cg_inosused(cgp);
12396 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12397 		    ja_bmdeps, jatmp) {
12398 			if ((jaddref->ja_state & UNDONE) == 0)
12399 				continue;
12400 			ino = jaddref->ja_ino % fs->fs_ipg;
12401 			if (isset(inosused, ino))
12402 				panic("handle_written_bmsafemap: "
12403 				    "re-allocated inode");
12404 			/* Do the roll-forward only if it's a real copy. */
12405 			if (foreground) {
12406 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12407 					cgp->cg_cs.cs_ndir++;
12408 				cgp->cg_cs.cs_nifree--;
12409 				setbit(inosused, ino);
12410 				chgs = 1;
12411 			}
12412 			jaddref->ja_state &= ~UNDONE;
12413 			jaddref->ja_state |= ATTACHED;
12414 			free_jaddref(jaddref);
12415 		}
12416 	}
12417 	/*
12418 	 * Restore any block allocations which are pending journal writes.
12419 	 */
12420 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12421 		cgp = (struct cg *)bp->b_data;
12422 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12423 		blksfree = cg_blksfree(cgp);
12424 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12425 		    jntmp) {
12426 			if ((jnewblk->jn_state & UNDONE) == 0)
12427 				continue;
12428 			/* Do the roll-forward only if it's a real copy. */
12429 			if (foreground &&
12430 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12431 				chgs = 1;
12432 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12433 			jnewblk->jn_state |= ATTACHED;
12434 			free_jnewblk(jnewblk);
12435 		}
12436 	}
12437 	/*
12438 	 * If the write did not succeed, we have done all the roll-forward
12439 	 * operations, but we cannot take the actions that will allow its
12440 	 * dependencies to be processed.
12441 	 */
12442 	if ((flags & WRITESUCCEEDED) == 0) {
12443 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12444 		    newblk, nb_deps);
12445 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12446 		    worklist, wk_list);
12447 		if (foreground)
12448 			bdirty(bp);
12449 		return (1);
12450 	}
12451 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12452 		newblk->nb_state |= DEPCOMPLETE;
12453 		newblk->nb_state &= ~ONDEPLIST;
12454 		newblk->nb_bmsafemap = NULL;
12455 		LIST_REMOVE(newblk, nb_deps);
12456 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12457 			handle_allocdirect_partdone(
12458 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12459 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12460 			handle_allocindir_partdone(
12461 			    WK_ALLOCINDIR(&newblk->nb_list));
12462 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12463 			panic("handle_written_bmsafemap: Unexpected type: %s",
12464 			    TYPENAME(newblk->nb_list.wk_type));
12465 	}
12466 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12467 		inodedep->id_state |= DEPCOMPLETE;
12468 		inodedep->id_state &= ~ONDEPLIST;
12469 		LIST_REMOVE(inodedep, id_deps);
12470 		inodedep->id_bmsafemap = NULL;
12471 	}
12472 	LIST_REMOVE(bmsafemap, sm_next);
12473 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12474 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12475 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12476 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12477 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12478 		LIST_REMOVE(bmsafemap, sm_hash);
12479 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12480 		return (0);
12481 	}
12482 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12483 	if (foreground)
12484 		bdirty(bp);
12485 	return (1);
12486 }
12487 
12488 /*
12489  * Try to free a mkdir dependency.
12490  */
12491 static void
12492 complete_mkdir(mkdir)
12493 	struct mkdir *mkdir;
12494 {
12495 	struct diradd *dap;
12496 
12497 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12498 		return;
12499 	LIST_REMOVE(mkdir, md_mkdirs);
12500 	dap = mkdir->md_diradd;
12501 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12502 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12503 		dap->da_state |= DEPCOMPLETE;
12504 		complete_diradd(dap);
12505 	}
12506 	WORKITEM_FREE(mkdir, D_MKDIR);
12507 }
12508 
12509 /*
12510  * Handle the completion of a mkdir dependency.
12511  */
12512 static void
12513 handle_written_mkdir(mkdir, type)
12514 	struct mkdir *mkdir;
12515 	int type;
12516 {
12517 
12518 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12519 		panic("handle_written_mkdir: bad type");
12520 	mkdir->md_state |= COMPLETE;
12521 	complete_mkdir(mkdir);
12522 }
12523 
12524 static int
12525 free_pagedep(pagedep)
12526 	struct pagedep *pagedep;
12527 {
12528 	int i;
12529 
12530 	if (pagedep->pd_state & NEWBLOCK)
12531 		return (0);
12532 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12533 		return (0);
12534 	for (i = 0; i < DAHASHSZ; i++)
12535 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12536 			return (0);
12537 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12538 		return (0);
12539 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12540 		return (0);
12541 	if (pagedep->pd_state & ONWORKLIST)
12542 		WORKLIST_REMOVE(&pagedep->pd_list);
12543 	LIST_REMOVE(pagedep, pd_hash);
12544 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12545 
12546 	return (1);
12547 }
12548 
12549 /*
12550  * Called from within softdep_disk_write_complete above.
12551  * A write operation was just completed. Removed inodes can
12552  * now be freed and associated block pointers may be committed.
12553  * Note that this routine is always called from interrupt level
12554  * with further interrupts from this device blocked.
12555  *
12556  * If the write did not succeed, we will do all the roll-forward
12557  * operations, but we will not take the actions that will allow its
12558  * dependencies to be processed.
12559  */
12560 static int
12561 handle_written_filepage(pagedep, bp, flags)
12562 	struct pagedep *pagedep;
12563 	struct buf *bp;		/* buffer containing the written page */
12564 	int flags;
12565 {
12566 	struct dirrem *dirrem;
12567 	struct diradd *dap, *nextdap;
12568 	struct direct *ep;
12569 	int i, chgs;
12570 
12571 	if ((pagedep->pd_state & IOSTARTED) == 0)
12572 		panic("handle_written_filepage: not started");
12573 	pagedep->pd_state &= ~IOSTARTED;
12574 	if ((flags & WRITESUCCEEDED) == 0)
12575 		goto rollforward;
12576 	/*
12577 	 * Process any directory removals that have been committed.
12578 	 */
12579 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12580 		LIST_REMOVE(dirrem, dm_next);
12581 		dirrem->dm_state |= COMPLETE;
12582 		dirrem->dm_dirinum = pagedep->pd_ino;
12583 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12584 		    ("handle_written_filepage: Journal entries not written."));
12585 		add_to_worklist(&dirrem->dm_list, 0);
12586 	}
12587 	/*
12588 	 * Free any directory additions that have been committed.
12589 	 * If it is a newly allocated block, we have to wait until
12590 	 * the on-disk directory inode claims the new block.
12591 	 */
12592 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12593 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12594 			free_diradd(dap, NULL);
12595 rollforward:
12596 	/*
12597 	 * Uncommitted directory entries must be restored.
12598 	 */
12599 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12600 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12601 		     dap = nextdap) {
12602 			nextdap = LIST_NEXT(dap, da_pdlist);
12603 			if (dap->da_state & ATTACHED)
12604 				panic("handle_written_filepage: attached");
12605 			ep = (struct direct *)
12606 			    ((char *)bp->b_data + dap->da_offset);
12607 			ep->d_ino = dap->da_newinum;
12608 			dap->da_state &= ~UNDONE;
12609 			dap->da_state |= ATTACHED;
12610 			chgs = 1;
12611 			/*
12612 			 * If the inode referenced by the directory has
12613 			 * been written out, then the dependency can be
12614 			 * moved to the pending list.
12615 			 */
12616 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12617 				LIST_REMOVE(dap, da_pdlist);
12618 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12619 				    da_pdlist);
12620 			}
12621 		}
12622 	}
12623 	/*
12624 	 * If there were any rollbacks in the directory, then it must be
12625 	 * marked dirty so that its will eventually get written back in
12626 	 * its correct form.
12627 	 */
12628 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12629 		if ((bp->b_flags & B_DELWRI) == 0)
12630 			stat_dir_entry++;
12631 		bdirty(bp);
12632 		return (1);
12633 	}
12634 	/*
12635 	 * If we are not waiting for a new directory block to be
12636 	 * claimed by its inode, then the pagedep will be freed.
12637 	 * Otherwise it will remain to track any new entries on
12638 	 * the page in case they are fsync'ed.
12639 	 */
12640 	free_pagedep(pagedep);
12641 	return (0);
12642 }
12643 
12644 /*
12645  * Writing back in-core inode structures.
12646  *
12647  * The filesystem only accesses an inode's contents when it occupies an
12648  * "in-core" inode structure.  These "in-core" structures are separate from
12649  * the page frames used to cache inode blocks.  Only the latter are
12650  * transferred to/from the disk.  So, when the updated contents of the
12651  * "in-core" inode structure are copied to the corresponding in-memory inode
12652  * block, the dependencies are also transferred.  The following procedure is
12653  * called when copying a dirty "in-core" inode to a cached inode block.
12654  */
12655 
12656 /*
12657  * Called when an inode is loaded from disk. If the effective link count
12658  * differed from the actual link count when it was last flushed, then we
12659  * need to ensure that the correct effective link count is put back.
12660  */
12661 void
12662 softdep_load_inodeblock(ip)
12663 	struct inode *ip;	/* the "in_core" copy of the inode */
12664 {
12665 	struct inodedep *inodedep;
12666 	struct ufsmount *ump;
12667 
12668 	ump = ITOUMP(ip);
12669 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12670 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12671 	/*
12672 	 * Check for alternate nlink count.
12673 	 */
12674 	ip->i_effnlink = ip->i_nlink;
12675 	ACQUIRE_LOCK(ump);
12676 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12677 		FREE_LOCK(ump);
12678 		return;
12679 	}
12680 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12681 	    inodedep->id_nlinkwrote != -1) {
12682 		KASSERT(ip->i_nlink == 0 &&
12683 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12684 		    ("read bad i_nlink value"));
12685 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12686 	}
12687 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12688 	KASSERT(ip->i_effnlink >= 0,
12689 	    ("softdep_load_inodeblock: negative i_effnlink"));
12690 	FREE_LOCK(ump);
12691 }
12692 
12693 /*
12694  * This routine is called just before the "in-core" inode
12695  * information is to be copied to the in-memory inode block.
12696  * Recall that an inode block contains several inodes. If
12697  * the force flag is set, then the dependencies will be
12698  * cleared so that the update can always be made. Note that
12699  * the buffer is locked when this routine is called, so we
12700  * will never be in the middle of writing the inode block
12701  * to disk.
12702  */
12703 void
12704 softdep_update_inodeblock(ip, bp, waitfor)
12705 	struct inode *ip;	/* the "in_core" copy of the inode */
12706 	struct buf *bp;		/* the buffer containing the inode block */
12707 	int waitfor;		/* nonzero => update must be allowed */
12708 {
12709 	struct inodedep *inodedep;
12710 	struct inoref *inoref;
12711 	struct ufsmount *ump;
12712 	struct worklist *wk;
12713 	struct mount *mp;
12714 	struct buf *ibp;
12715 	struct fs *fs;
12716 	int error;
12717 
12718 	ump = ITOUMP(ip);
12719 	mp = UFSTOVFS(ump);
12720 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12721 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12722 	fs = ump->um_fs;
12723 	/*
12724 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12725 	 * does not have access to the in-core ip so must write directly into
12726 	 * the inode block buffer when setting freelink.
12727 	 */
12728 	if (fs->fs_magic == FS_UFS1_MAGIC)
12729 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12730 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12731 	else
12732 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12733 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12734 	/*
12735 	 * If the effective link count is not equal to the actual link
12736 	 * count, then we must track the difference in an inodedep while
12737 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12738 	 * if there is no existing inodedep, then there are no dependencies
12739 	 * to track.
12740 	 */
12741 	ACQUIRE_LOCK(ump);
12742 again:
12743 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12744 		FREE_LOCK(ump);
12745 		if (ip->i_effnlink != ip->i_nlink)
12746 			panic("softdep_update_inodeblock: bad link count");
12747 		return;
12748 	}
12749 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12750 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12751 	    "inodedep %p id_nlinkdelta %jd",
12752 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12753 	inodedep->id_nlinkwrote = ip->i_nlink;
12754 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12755 		panic("softdep_update_inodeblock: bad delta");
12756 	/*
12757 	 * If we're flushing all dependencies we must also move any waiting
12758 	 * for journal writes onto the bufwait list prior to I/O.
12759 	 */
12760 	if (waitfor) {
12761 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12762 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12763 			    == DEPCOMPLETE) {
12764 				jwait(&inoref->if_list, MNT_WAIT);
12765 				goto again;
12766 			}
12767 		}
12768 	}
12769 	/*
12770 	 * Changes have been initiated. Anything depending on these
12771 	 * changes cannot occur until this inode has been written.
12772 	 */
12773 	inodedep->id_state &= ~COMPLETE;
12774 	if ((inodedep->id_state & ONWORKLIST) == 0)
12775 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12776 	/*
12777 	 * Any new dependencies associated with the incore inode must
12778 	 * now be moved to the list associated with the buffer holding
12779 	 * the in-memory copy of the inode. Once merged process any
12780 	 * allocdirects that are completed by the merger.
12781 	 */
12782 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12783 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12784 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12785 		    NULL);
12786 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12787 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12788 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12789 		    NULL);
12790 	/*
12791 	 * Now that the inode has been pushed into the buffer, the
12792 	 * operations dependent on the inode being written to disk
12793 	 * can be moved to the id_bufwait so that they will be
12794 	 * processed when the buffer I/O completes.
12795 	 */
12796 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12797 		WORKLIST_REMOVE(wk);
12798 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12799 	}
12800 	/*
12801 	 * Newly allocated inodes cannot be written until the bitmap
12802 	 * that allocates them have been written (indicated by
12803 	 * DEPCOMPLETE being set in id_state). If we are doing a
12804 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12805 	 * to be written so that the update can be done.
12806 	 */
12807 	if (waitfor == 0) {
12808 		FREE_LOCK(ump);
12809 		return;
12810 	}
12811 retry:
12812 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12813 		FREE_LOCK(ump);
12814 		return;
12815 	}
12816 	ibp = inodedep->id_bmsafemap->sm_buf;
12817 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12818 	if (ibp == NULL) {
12819 		/*
12820 		 * If ibp came back as NULL, the dependency could have been
12821 		 * freed while we slept.  Look it up again, and check to see
12822 		 * that it has completed.
12823 		 */
12824 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12825 			goto retry;
12826 		FREE_LOCK(ump);
12827 		return;
12828 	}
12829 	FREE_LOCK(ump);
12830 	if ((error = bwrite(ibp)) != 0)
12831 		softdep_error("softdep_update_inodeblock: bwrite", error);
12832 }
12833 
12834 /*
12835  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12836  * old inode dependency list (such as id_inoupdt).
12837  */
12838 static void
12839 merge_inode_lists(newlisthead, oldlisthead)
12840 	struct allocdirectlst *newlisthead;
12841 	struct allocdirectlst *oldlisthead;
12842 {
12843 	struct allocdirect *listadp, *newadp;
12844 
12845 	newadp = TAILQ_FIRST(newlisthead);
12846 	if (newadp != NULL)
12847 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12848 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12849 		if (listadp->ad_offset < newadp->ad_offset) {
12850 			listadp = TAILQ_NEXT(listadp, ad_next);
12851 			continue;
12852 		}
12853 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12854 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12855 		if (listadp->ad_offset == newadp->ad_offset) {
12856 			allocdirect_merge(oldlisthead, newadp,
12857 			    listadp);
12858 			listadp = newadp;
12859 		}
12860 		newadp = TAILQ_FIRST(newlisthead);
12861 	}
12862 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12863 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12864 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12865 	}
12866 }
12867 
12868 /*
12869  * If we are doing an fsync, then we must ensure that any directory
12870  * entries for the inode have been written after the inode gets to disk.
12871  */
12872 int
12873 softdep_fsync(vp)
12874 	struct vnode *vp;	/* the "in_core" copy of the inode */
12875 {
12876 	struct inodedep *inodedep;
12877 	struct pagedep *pagedep;
12878 	struct inoref *inoref;
12879 	struct ufsmount *ump;
12880 	struct worklist *wk;
12881 	struct diradd *dap;
12882 	struct mount *mp;
12883 	struct vnode *pvp;
12884 	struct inode *ip;
12885 	struct buf *bp;
12886 	struct fs *fs;
12887 	struct thread *td = curthread;
12888 	int error, flushparent, pagedep_new_block;
12889 	ino_t parentino;
12890 	ufs_lbn_t lbn;
12891 
12892 	ip = VTOI(vp);
12893 	mp = vp->v_mount;
12894 	ump = VFSTOUFS(mp);
12895 	fs = ump->um_fs;
12896 	if (MOUNTEDSOFTDEP(mp) == 0)
12897 		return (0);
12898 	ACQUIRE_LOCK(ump);
12899 restart:
12900 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12901 		FREE_LOCK(ump);
12902 		return (0);
12903 	}
12904 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12905 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12906 		    == DEPCOMPLETE) {
12907 			jwait(&inoref->if_list, MNT_WAIT);
12908 			goto restart;
12909 		}
12910 	}
12911 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12912 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12913 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12914 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12915 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12916 		panic("softdep_fsync: pending ops %p", inodedep);
12917 	for (error = 0, flushparent = 0; ; ) {
12918 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12919 			break;
12920 		if (wk->wk_type != D_DIRADD)
12921 			panic("softdep_fsync: Unexpected type %s",
12922 			    TYPENAME(wk->wk_type));
12923 		dap = WK_DIRADD(wk);
12924 		/*
12925 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12926 		 * dependency or is contained in a newly allocated block.
12927 		 */
12928 		if (dap->da_state & DIRCHG)
12929 			pagedep = dap->da_previous->dm_pagedep;
12930 		else
12931 			pagedep = dap->da_pagedep;
12932 		parentino = pagedep->pd_ino;
12933 		lbn = pagedep->pd_lbn;
12934 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12935 			panic("softdep_fsync: dirty");
12936 		if ((dap->da_state & MKDIR_PARENT) ||
12937 		    (pagedep->pd_state & NEWBLOCK))
12938 			flushparent = 1;
12939 		else
12940 			flushparent = 0;
12941 		/*
12942 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12943 		 * then we will not be able to release and recover the
12944 		 * vnode below, so we just have to give up on writing its
12945 		 * directory entry out. It will eventually be written, just
12946 		 * not now, but then the user was not asking to have it
12947 		 * written, so we are not breaking any promises.
12948 		 */
12949 		if (VN_IS_DOOMED(vp))
12950 			break;
12951 		/*
12952 		 * We prevent deadlock by always fetching inodes from the
12953 		 * root, moving down the directory tree. Thus, when fetching
12954 		 * our parent directory, we first try to get the lock. If
12955 		 * that fails, we must unlock ourselves before requesting
12956 		 * the lock on our parent. See the comment in ufs_lookup
12957 		 * for details on possible races.
12958 		 */
12959 		FREE_LOCK(ump);
12960 		error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12961 		    &pvp);
12962 		if (error == ERELOOKUP)
12963 			error = 0;
12964 		if (error != 0)
12965 			return (error);
12966 		/*
12967 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12968 		 * that are contained in direct blocks will be resolved by
12969 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12970 		 * may require a complete sync'ing of the directory. So, we
12971 		 * try the cheap and fast ffs_update first, and if that fails,
12972 		 * then we do the slower ffs_syncvnode of the directory.
12973 		 */
12974 		if (flushparent) {
12975 			int locked;
12976 
12977 			if ((error = ffs_update(pvp, 1)) != 0) {
12978 				vput(pvp);
12979 				return (error);
12980 			}
12981 			ACQUIRE_LOCK(ump);
12982 			locked = 1;
12983 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12984 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12985 					if (wk->wk_type != D_DIRADD)
12986 						panic("softdep_fsync: Unexpected type %s",
12987 						      TYPENAME(wk->wk_type));
12988 					dap = WK_DIRADD(wk);
12989 					if (dap->da_state & DIRCHG)
12990 						pagedep = dap->da_previous->dm_pagedep;
12991 					else
12992 						pagedep = dap->da_pagedep;
12993 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12994 					FREE_LOCK(ump);
12995 					locked = 0;
12996 					if (pagedep_new_block && (error =
12997 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12998 						vput(pvp);
12999 						return (error);
13000 					}
13001 				}
13002 			}
13003 			if (locked)
13004 				FREE_LOCK(ump);
13005 		}
13006 		/*
13007 		 * Flush directory page containing the inode's name.
13008 		 */
13009 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
13010 		    &bp);
13011 		if (error == 0)
13012 			error = bwrite(bp);
13013 		else
13014 			brelse(bp);
13015 		vput(pvp);
13016 		if (!ffs_fsfail_cleanup(ump, error))
13017 			return (error);
13018 		ACQUIRE_LOCK(ump);
13019 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
13020 			break;
13021 	}
13022 	FREE_LOCK(ump);
13023 	return (0);
13024 }
13025 
13026 /*
13027  * Flush all the dirty bitmaps associated with the block device
13028  * before flushing the rest of the dirty blocks so as to reduce
13029  * the number of dependencies that will have to be rolled back.
13030  *
13031  * XXX Unused?
13032  */
13033 void
13034 softdep_fsync_mountdev(vp)
13035 	struct vnode *vp;
13036 {
13037 	struct buf *bp, *nbp;
13038 	struct worklist *wk;
13039 	struct bufobj *bo;
13040 
13041 	if (!vn_isdisk(vp))
13042 		panic("softdep_fsync_mountdev: vnode not a disk");
13043 	bo = &vp->v_bufobj;
13044 restart:
13045 	BO_LOCK(bo);
13046 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
13047 		/*
13048 		 * If it is already scheduled, skip to the next buffer.
13049 		 */
13050 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
13051 			continue;
13052 
13053 		if ((bp->b_flags & B_DELWRI) == 0)
13054 			panic("softdep_fsync_mountdev: not dirty");
13055 		/*
13056 		 * We are only interested in bitmaps with outstanding
13057 		 * dependencies.
13058 		 */
13059 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
13060 		    wk->wk_type != D_BMSAFEMAP ||
13061 		    (bp->b_vflags & BV_BKGRDINPROG)) {
13062 			BUF_UNLOCK(bp);
13063 			continue;
13064 		}
13065 		BO_UNLOCK(bo);
13066 		bremfree(bp);
13067 		(void) bawrite(bp);
13068 		goto restart;
13069 	}
13070 	drain_output(vp);
13071 	BO_UNLOCK(bo);
13072 }
13073 
13074 /*
13075  * Sync all cylinder groups that were dirty at the time this function is
13076  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
13077  * is used to flush freedep activity that may be holding up writes to a
13078  * indirect block.
13079  */
13080 static int
13081 sync_cgs(mp, waitfor)
13082 	struct mount *mp;
13083 	int waitfor;
13084 {
13085 	struct bmsafemap *bmsafemap;
13086 	struct bmsafemap *sentinel;
13087 	struct ufsmount *ump;
13088 	struct buf *bp;
13089 	int error;
13090 
13091 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
13092 	sentinel->sm_cg = -1;
13093 	ump = VFSTOUFS(mp);
13094 	error = 0;
13095 	ACQUIRE_LOCK(ump);
13096 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
13097 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
13098 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
13099 		/* Skip sentinels and cgs with no work to release. */
13100 		if (bmsafemap->sm_cg == -1 ||
13101 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
13102 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
13103 			LIST_REMOVE(sentinel, sm_next);
13104 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
13105 			continue;
13106 		}
13107 		/*
13108 		 * If we don't get the lock and we're waiting try again, if
13109 		 * not move on to the next buf and try to sync it.
13110 		 */
13111 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
13112 		if (bp == NULL && waitfor == MNT_WAIT)
13113 			continue;
13114 		LIST_REMOVE(sentinel, sm_next);
13115 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
13116 		if (bp == NULL)
13117 			continue;
13118 		FREE_LOCK(ump);
13119 		if (waitfor == MNT_NOWAIT)
13120 			bawrite(bp);
13121 		else
13122 			error = bwrite(bp);
13123 		ACQUIRE_LOCK(ump);
13124 		if (error)
13125 			break;
13126 	}
13127 	LIST_REMOVE(sentinel, sm_next);
13128 	FREE_LOCK(ump);
13129 	free(sentinel, M_BMSAFEMAP);
13130 	return (error);
13131 }
13132 
13133 /*
13134  * This routine is called when we are trying to synchronously flush a
13135  * file. This routine must eliminate any filesystem metadata dependencies
13136  * so that the syncing routine can succeed.
13137  */
13138 int
13139 softdep_sync_metadata(struct vnode *vp)
13140 {
13141 	struct inode *ip;
13142 	int error;
13143 
13144 	ip = VTOI(vp);
13145 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13146 	    ("softdep_sync_metadata called on non-softdep filesystem"));
13147 	/*
13148 	 * Ensure that any direct block dependencies have been cleared,
13149 	 * truncations are started, and inode references are journaled.
13150 	 */
13151 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
13152 	/*
13153 	 * Write all journal records to prevent rollbacks on devvp.
13154 	 */
13155 	if (vp->v_type == VCHR)
13156 		softdep_flushjournal(vp->v_mount);
13157 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
13158 	/*
13159 	 * Ensure that all truncates are written so we won't find deps on
13160 	 * indirect blocks.
13161 	 */
13162 	process_truncates(vp);
13163 	FREE_LOCK(VFSTOUFS(vp->v_mount));
13164 
13165 	return (error);
13166 }
13167 
13168 /*
13169  * This routine is called when we are attempting to sync a buf with
13170  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
13171  * other IO it can but returns EBUSY if the buffer is not yet able to
13172  * be written.  Dependencies which will not cause rollbacks will always
13173  * return 0.
13174  */
13175 int
13176 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
13177 {
13178 	struct indirdep *indirdep;
13179 	struct pagedep *pagedep;
13180 	struct allocindir *aip;
13181 	struct newblk *newblk;
13182 	struct ufsmount *ump;
13183 	struct buf *nbp;
13184 	struct worklist *wk;
13185 	int i, error;
13186 
13187 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13188 	    ("softdep_sync_buf called on non-softdep filesystem"));
13189 	/*
13190 	 * For VCHR we just don't want to force flush any dependencies that
13191 	 * will cause rollbacks.
13192 	 */
13193 	if (vp->v_type == VCHR) {
13194 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
13195 			return (EBUSY);
13196 		return (0);
13197 	}
13198 	ump = VFSTOUFS(vp->v_mount);
13199 	ACQUIRE_LOCK(ump);
13200 	/*
13201 	 * As we hold the buffer locked, none of its dependencies
13202 	 * will disappear.
13203 	 */
13204 	error = 0;
13205 top:
13206 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13207 		switch (wk->wk_type) {
13208 		case D_ALLOCDIRECT:
13209 		case D_ALLOCINDIR:
13210 			newblk = WK_NEWBLK(wk);
13211 			if (newblk->nb_jnewblk != NULL) {
13212 				if (waitfor == MNT_NOWAIT) {
13213 					error = EBUSY;
13214 					goto out_unlock;
13215 				}
13216 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
13217 				goto top;
13218 			}
13219 			if (newblk->nb_state & DEPCOMPLETE ||
13220 			    waitfor == MNT_NOWAIT)
13221 				continue;
13222 			nbp = newblk->nb_bmsafemap->sm_buf;
13223 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13224 			if (nbp == NULL)
13225 				goto top;
13226 			FREE_LOCK(ump);
13227 			if ((error = bwrite(nbp)) != 0)
13228 				goto out;
13229 			ACQUIRE_LOCK(ump);
13230 			continue;
13231 
13232 		case D_INDIRDEP:
13233 			indirdep = WK_INDIRDEP(wk);
13234 			if (waitfor == MNT_NOWAIT) {
13235 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13236 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13237 					error = EBUSY;
13238 					goto out_unlock;
13239 				}
13240 			}
13241 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13242 				panic("softdep_sync_buf: truncation pending.");
13243 		restart:
13244 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13245 				newblk = (struct newblk *)aip;
13246 				if (newblk->nb_jnewblk != NULL) {
13247 					jwait(&newblk->nb_jnewblk->jn_list,
13248 					    waitfor);
13249 					goto restart;
13250 				}
13251 				if (newblk->nb_state & DEPCOMPLETE)
13252 					continue;
13253 				nbp = newblk->nb_bmsafemap->sm_buf;
13254 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13255 				if (nbp == NULL)
13256 					goto restart;
13257 				FREE_LOCK(ump);
13258 				if ((error = bwrite(nbp)) != 0)
13259 					goto out;
13260 				ACQUIRE_LOCK(ump);
13261 				goto restart;
13262 			}
13263 			continue;
13264 
13265 		case D_PAGEDEP:
13266 			/*
13267 			 * Only flush directory entries in synchronous passes.
13268 			 */
13269 			if (waitfor != MNT_WAIT) {
13270 				error = EBUSY;
13271 				goto out_unlock;
13272 			}
13273 			/*
13274 			 * While syncing snapshots, we must allow recursive
13275 			 * lookups.
13276 			 */
13277 			BUF_AREC(bp);
13278 			/*
13279 			 * We are trying to sync a directory that may
13280 			 * have dependencies on both its own metadata
13281 			 * and/or dependencies on the inodes of any
13282 			 * recently allocated files. We walk its diradd
13283 			 * lists pushing out the associated inode.
13284 			 */
13285 			pagedep = WK_PAGEDEP(wk);
13286 			for (i = 0; i < DAHASHSZ; i++) {
13287 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13288 					continue;
13289 				error = flush_pagedep_deps(vp, wk->wk_mp,
13290 				    &pagedep->pd_diraddhd[i], bp);
13291 				if (error != 0) {
13292 					if (error != ERELOOKUP)
13293 						BUF_NOREC(bp);
13294 					goto out_unlock;
13295 				}
13296 			}
13297 			BUF_NOREC(bp);
13298 			continue;
13299 
13300 		case D_FREEWORK:
13301 		case D_FREEDEP:
13302 		case D_JSEGDEP:
13303 		case D_JNEWBLK:
13304 			continue;
13305 
13306 		default:
13307 			panic("softdep_sync_buf: Unknown type %s",
13308 			    TYPENAME(wk->wk_type));
13309 			/* NOTREACHED */
13310 		}
13311 	}
13312 out_unlock:
13313 	FREE_LOCK(ump);
13314 out:
13315 	return (error);
13316 }
13317 
13318 /*
13319  * Flush the dependencies associated with an inodedep.
13320  */
13321 static int
13322 flush_inodedep_deps(vp, mp, ino)
13323 	struct vnode *vp;
13324 	struct mount *mp;
13325 	ino_t ino;
13326 {
13327 	struct inodedep *inodedep;
13328 	struct inoref *inoref;
13329 	struct ufsmount *ump;
13330 	int error, waitfor;
13331 
13332 	/*
13333 	 * This work is done in two passes. The first pass grabs most
13334 	 * of the buffers and begins asynchronously writing them. The
13335 	 * only way to wait for these asynchronous writes is to sleep
13336 	 * on the filesystem vnode which may stay busy for a long time
13337 	 * if the filesystem is active. So, instead, we make a second
13338 	 * pass over the dependencies blocking on each write. In the
13339 	 * usual case we will be blocking against a write that we
13340 	 * initiated, so when it is done the dependency will have been
13341 	 * resolved. Thus the second pass is expected to end quickly.
13342 	 * We give a brief window at the top of the loop to allow
13343 	 * any pending I/O to complete.
13344 	 */
13345 	ump = VFSTOUFS(mp);
13346 	LOCK_OWNED(ump);
13347 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13348 		if (error)
13349 			return (error);
13350 		FREE_LOCK(ump);
13351 		ACQUIRE_LOCK(ump);
13352 restart:
13353 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13354 			return (0);
13355 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13356 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13357 			    == DEPCOMPLETE) {
13358 				jwait(&inoref->if_list, MNT_WAIT);
13359 				goto restart;
13360 			}
13361 		}
13362 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13363 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13364 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13365 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13366 			continue;
13367 		/*
13368 		 * If pass2, we are done, otherwise do pass 2.
13369 		 */
13370 		if (waitfor == MNT_WAIT)
13371 			break;
13372 		waitfor = MNT_WAIT;
13373 	}
13374 	/*
13375 	 * Try freeing inodedep in case all dependencies have been removed.
13376 	 */
13377 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13378 		(void) free_inodedep(inodedep);
13379 	return (0);
13380 }
13381 
13382 /*
13383  * Flush an inode dependency list.
13384  */
13385 static int
13386 flush_deplist(listhead, waitfor, errorp)
13387 	struct allocdirectlst *listhead;
13388 	int waitfor;
13389 	int *errorp;
13390 {
13391 	struct allocdirect *adp;
13392 	struct newblk *newblk;
13393 	struct ufsmount *ump;
13394 	struct buf *bp;
13395 
13396 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13397 		return (0);
13398 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13399 	LOCK_OWNED(ump);
13400 	TAILQ_FOREACH(adp, listhead, ad_next) {
13401 		newblk = (struct newblk *)adp;
13402 		if (newblk->nb_jnewblk != NULL) {
13403 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13404 			return (1);
13405 		}
13406 		if (newblk->nb_state & DEPCOMPLETE)
13407 			continue;
13408 		bp = newblk->nb_bmsafemap->sm_buf;
13409 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13410 		if (bp == NULL) {
13411 			if (waitfor == MNT_NOWAIT)
13412 				continue;
13413 			return (1);
13414 		}
13415 		FREE_LOCK(ump);
13416 		if (waitfor == MNT_NOWAIT)
13417 			bawrite(bp);
13418 		else
13419 			*errorp = bwrite(bp);
13420 		ACQUIRE_LOCK(ump);
13421 		return (1);
13422 	}
13423 	return (0);
13424 }
13425 
13426 /*
13427  * Flush dependencies associated with an allocdirect block.
13428  */
13429 static int
13430 flush_newblk_dep(vp, mp, lbn)
13431 	struct vnode *vp;
13432 	struct mount *mp;
13433 	ufs_lbn_t lbn;
13434 {
13435 	struct newblk *newblk;
13436 	struct ufsmount *ump;
13437 	struct bufobj *bo;
13438 	struct inode *ip;
13439 	struct buf *bp;
13440 	ufs2_daddr_t blkno;
13441 	int error;
13442 
13443 	error = 0;
13444 	bo = &vp->v_bufobj;
13445 	ip = VTOI(vp);
13446 	blkno = DIP(ip, i_db[lbn]);
13447 	if (blkno == 0)
13448 		panic("flush_newblk_dep: Missing block");
13449 	ump = VFSTOUFS(mp);
13450 	ACQUIRE_LOCK(ump);
13451 	/*
13452 	 * Loop until all dependencies related to this block are satisfied.
13453 	 * We must be careful to restart after each sleep in case a write
13454 	 * completes some part of this process for us.
13455 	 */
13456 	for (;;) {
13457 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13458 			FREE_LOCK(ump);
13459 			break;
13460 		}
13461 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13462 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13463 		/*
13464 		 * Flush the journal.
13465 		 */
13466 		if (newblk->nb_jnewblk != NULL) {
13467 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13468 			continue;
13469 		}
13470 		/*
13471 		 * Write the bitmap dependency.
13472 		 */
13473 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13474 			bp = newblk->nb_bmsafemap->sm_buf;
13475 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13476 			if (bp == NULL)
13477 				continue;
13478 			FREE_LOCK(ump);
13479 			error = bwrite(bp);
13480 			if (error)
13481 				break;
13482 			ACQUIRE_LOCK(ump);
13483 			continue;
13484 		}
13485 		/*
13486 		 * Write the buffer.
13487 		 */
13488 		FREE_LOCK(ump);
13489 		BO_LOCK(bo);
13490 		bp = gbincore(bo, lbn);
13491 		if (bp != NULL) {
13492 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13493 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13494 			if (error == ENOLCK) {
13495 				ACQUIRE_LOCK(ump);
13496 				error = 0;
13497 				continue; /* Slept, retry */
13498 			}
13499 			if (error != 0)
13500 				break;	/* Failed */
13501 			if (bp->b_flags & B_DELWRI) {
13502 				bremfree(bp);
13503 				error = bwrite(bp);
13504 				if (error)
13505 					break;
13506 			} else
13507 				BUF_UNLOCK(bp);
13508 		} else
13509 			BO_UNLOCK(bo);
13510 		/*
13511 		 * We have to wait for the direct pointers to
13512 		 * point at the newdirblk before the dependency
13513 		 * will go away.
13514 		 */
13515 		error = ffs_update(vp, 1);
13516 		if (error)
13517 			break;
13518 		ACQUIRE_LOCK(ump);
13519 	}
13520 	return (error);
13521 }
13522 
13523 /*
13524  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13525  */
13526 static int
13527 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp)
13528 	struct vnode *pvp;
13529 	struct mount *mp;
13530 	struct diraddhd *diraddhdp;
13531 	struct buf *locked_bp;
13532 {
13533 	struct inodedep *inodedep;
13534 	struct inoref *inoref;
13535 	struct ufsmount *ump;
13536 	struct diradd *dap;
13537 	struct vnode *vp;
13538 	int error = 0;
13539 	struct buf *bp;
13540 	ino_t inum;
13541 	struct diraddhd unfinished;
13542 
13543 	LIST_INIT(&unfinished);
13544 	ump = VFSTOUFS(mp);
13545 	LOCK_OWNED(ump);
13546 restart:
13547 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13548 		/*
13549 		 * Flush ourselves if this directory entry
13550 		 * has a MKDIR_PARENT dependency.
13551 		 */
13552 		if (dap->da_state & MKDIR_PARENT) {
13553 			FREE_LOCK(ump);
13554 			if ((error = ffs_update(pvp, 1)) != 0)
13555 				break;
13556 			ACQUIRE_LOCK(ump);
13557 			/*
13558 			 * If that cleared dependencies, go on to next.
13559 			 */
13560 			if (dap != LIST_FIRST(diraddhdp))
13561 				continue;
13562 			/*
13563 			 * All MKDIR_PARENT dependencies and all the
13564 			 * NEWBLOCK pagedeps that are contained in direct
13565 			 * blocks were resolved by doing above ffs_update.
13566 			 * Pagedeps contained in indirect blocks may
13567 			 * require a complete sync'ing of the directory.
13568 			 * We are in the midst of doing a complete sync,
13569 			 * so if they are not resolved in this pass we
13570 			 * defer them for now as they will be sync'ed by
13571 			 * our caller shortly.
13572 			 */
13573 			LIST_REMOVE(dap, da_pdlist);
13574 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13575 			continue;
13576 		}
13577 		/*
13578 		 * A newly allocated directory must have its "." and
13579 		 * ".." entries written out before its name can be
13580 		 * committed in its parent.
13581 		 */
13582 		inum = dap->da_newinum;
13583 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13584 			panic("flush_pagedep_deps: lost inode1");
13585 		/*
13586 		 * Wait for any pending journal adds to complete so we don't
13587 		 * cause rollbacks while syncing.
13588 		 */
13589 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13590 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13591 			    == DEPCOMPLETE) {
13592 				jwait(&inoref->if_list, MNT_WAIT);
13593 				goto restart;
13594 			}
13595 		}
13596 		if (dap->da_state & MKDIR_BODY) {
13597 			FREE_LOCK(ump);
13598 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13599 			    diraddhdp, &unfinished, &vp);
13600 			if (error != 0)
13601 				break;
13602 			error = flush_newblk_dep(vp, mp, 0);
13603 			/*
13604 			 * If we still have the dependency we might need to
13605 			 * update the vnode to sync the new link count to
13606 			 * disk.
13607 			 */
13608 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13609 				error = ffs_update(vp, 1);
13610 			vput(vp);
13611 			if (error != 0)
13612 				break;
13613 			ACQUIRE_LOCK(ump);
13614 			/*
13615 			 * If that cleared dependencies, go on to next.
13616 			 */
13617 			if (dap != LIST_FIRST(diraddhdp))
13618 				continue;
13619 			if (dap->da_state & MKDIR_BODY) {
13620 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13621 				    &inodedep);
13622 				panic("flush_pagedep_deps: MKDIR_BODY "
13623 				    "inodedep %p dap %p vp %p",
13624 				    inodedep, dap, vp);
13625 			}
13626 		}
13627 		/*
13628 		 * Flush the inode on which the directory entry depends.
13629 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13630 		 * the only remaining dependency is that the updated inode
13631 		 * count must get pushed to disk. The inode has already
13632 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13633 		 * the time of the reference count change. So we need only
13634 		 * locate that buffer, ensure that there will be no rollback
13635 		 * caused by a bitmap dependency, then write the inode buffer.
13636 		 */
13637 retry:
13638 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13639 			panic("flush_pagedep_deps: lost inode");
13640 		/*
13641 		 * If the inode still has bitmap dependencies,
13642 		 * push them to disk.
13643 		 */
13644 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13645 			bp = inodedep->id_bmsafemap->sm_buf;
13646 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13647 			if (bp == NULL)
13648 				goto retry;
13649 			FREE_LOCK(ump);
13650 			if ((error = bwrite(bp)) != 0)
13651 				break;
13652 			ACQUIRE_LOCK(ump);
13653 			if (dap != LIST_FIRST(diraddhdp))
13654 				continue;
13655 		}
13656 		/*
13657 		 * If the inode is still sitting in a buffer waiting
13658 		 * to be written or waiting for the link count to be
13659 		 * adjusted update it here to flush it to disk.
13660 		 */
13661 		if (dap == LIST_FIRST(diraddhdp)) {
13662 			FREE_LOCK(ump);
13663 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13664 			    diraddhdp, &unfinished, &vp);
13665 			if (error != 0)
13666 				break;
13667 			error = ffs_update(vp, 1);
13668 			vput(vp);
13669 			if (error)
13670 				break;
13671 			ACQUIRE_LOCK(ump);
13672 		}
13673 		/*
13674 		 * If we have failed to get rid of all the dependencies
13675 		 * then something is seriously wrong.
13676 		 */
13677 		if (dap == LIST_FIRST(diraddhdp)) {
13678 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13679 			panic("flush_pagedep_deps: failed to flush "
13680 			    "inodedep %p ino %ju dap %p",
13681 			    inodedep, (uintmax_t)inum, dap);
13682 		}
13683 	}
13684 	if (error)
13685 		ACQUIRE_LOCK(ump);
13686 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13687 		LIST_REMOVE(dap, da_pdlist);
13688 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13689 	}
13690 	return (error);
13691 }
13692 
13693 /*
13694  * A large burst of file addition or deletion activity can drive the
13695  * memory load excessively high. First attempt to slow things down
13696  * using the techniques below. If that fails, this routine requests
13697  * the offending operations to fall back to running synchronously
13698  * until the memory load returns to a reasonable level.
13699  */
13700 int
13701 softdep_slowdown(vp)
13702 	struct vnode *vp;
13703 {
13704 	struct ufsmount *ump;
13705 	int jlow;
13706 	int max_softdeps_hard;
13707 
13708 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13709 	    ("softdep_slowdown called on non-softdep filesystem"));
13710 	ump = VFSTOUFS(vp->v_mount);
13711 	ACQUIRE_LOCK(ump);
13712 	jlow = 0;
13713 	/*
13714 	 * Check for journal space if needed.
13715 	 */
13716 	if (DOINGSUJ(vp)) {
13717 		if (journal_space(ump, 0) == 0)
13718 			jlow = 1;
13719 	}
13720 	/*
13721 	 * If the system is under its limits and our filesystem is
13722 	 * not responsible for more than our share of the usage and
13723 	 * we are not low on journal space, then no need to slow down.
13724 	 */
13725 	max_softdeps_hard = max_softdeps * 11 / 10;
13726 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13727 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13728 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13729 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13730 	    ump->softdep_curdeps[D_DIRREM] <
13731 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13732 	    ump->softdep_curdeps[D_INODEDEP] <
13733 	    max_softdeps_hard / stat_flush_threads &&
13734 	    ump->softdep_curdeps[D_INDIRDEP] <
13735 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13736 	    ump->softdep_curdeps[D_FREEBLKS] <
13737 	    max_softdeps_hard / stat_flush_threads) {
13738 		FREE_LOCK(ump);
13739   		return (0);
13740 	}
13741 	/*
13742 	 * If the journal is low or our filesystem is over its limit
13743 	 * then speedup the cleanup.
13744 	 */
13745 	if (ump->softdep_curdeps[D_INDIRDEP] <
13746 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13747 		softdep_speedup(ump);
13748 	stat_sync_limit_hit += 1;
13749 	FREE_LOCK(ump);
13750 	/*
13751 	 * We only slow down the rate at which new dependencies are
13752 	 * generated if we are not using journaling. With journaling,
13753 	 * the cleanup should always be sufficient to keep things
13754 	 * under control.
13755 	 */
13756 	if (DOINGSUJ(vp))
13757 		return (0);
13758 	return (1);
13759 }
13760 
13761 static int
13762 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13763 {
13764 	return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13765 	    ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13766 }
13767 
13768 static void
13769 softdep_request_cleanup_inactivate(struct mount *mp)
13770 {
13771 	struct vnode *vp, *mvp;
13772 	int error;
13773 
13774 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13775 	    NULL) {
13776 		vholdl(vp);
13777 		vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13778 		VI_LOCK(vp);
13779 		if (vp->v_data != NULL && vp->v_usecount == 0) {
13780 			while ((vp->v_iflag & VI_OWEINACT) != 0) {
13781 				error = vinactive(vp);
13782 				if (error != 0 && error != ERELOOKUP)
13783 					break;
13784 			}
13785 			atomic_add_int(&stat_delayed_inact, 1);
13786 		}
13787 		VOP_UNLOCK(vp);
13788 		vdropl(vp);
13789 	}
13790 }
13791 
13792 /*
13793  * Called by the allocation routines when they are about to fail
13794  * in the hope that we can free up the requested resource (inodes
13795  * or disk space).
13796  *
13797  * First check to see if the work list has anything on it. If it has,
13798  * clean up entries until we successfully free the requested resource.
13799  * Because this process holds inodes locked, we cannot handle any remove
13800  * requests that might block on a locked inode as that could lead to
13801  * deadlock. If the worklist yields none of the requested resource,
13802  * start syncing out vnodes to free up the needed space.
13803  */
13804 int
13805 softdep_request_cleanup(fs, vp, cred, resource)
13806 	struct fs *fs;
13807 	struct vnode *vp;
13808 	struct ucred *cred;
13809 	int resource;
13810 {
13811 	struct ufsmount *ump;
13812 	struct mount *mp;
13813 	long starttime;
13814 	ufs2_daddr_t needed;
13815 	int error, failed_vnode;
13816 
13817 	/*
13818 	 * If we are being called because of a process doing a
13819 	 * copy-on-write, then it is not safe to process any
13820 	 * worklist items as we will recurse into the copyonwrite
13821 	 * routine.  This will result in an incoherent snapshot.
13822 	 * If the vnode that we hold is a snapshot, we must avoid
13823 	 * handling other resources that could cause deadlock.
13824 	 */
13825 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13826 		return (0);
13827 
13828 	if (resource == FLUSH_BLOCKS_WAIT)
13829 		stat_cleanup_blkrequests += 1;
13830 	else
13831 		stat_cleanup_inorequests += 1;
13832 
13833 	mp = vp->v_mount;
13834 	ump = VFSTOUFS(mp);
13835 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13836 	UFS_UNLOCK(ump);
13837 	error = ffs_update(vp, 1);
13838 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13839 		UFS_LOCK(ump);
13840 		return (0);
13841 	}
13842 	/*
13843 	 * If we are in need of resources, start by cleaning up
13844 	 * any block removals associated with our inode.
13845 	 */
13846 	ACQUIRE_LOCK(ump);
13847 	process_removes(vp);
13848 	process_truncates(vp);
13849 	FREE_LOCK(ump);
13850 	/*
13851 	 * Now clean up at least as many resources as we will need.
13852 	 *
13853 	 * When requested to clean up inodes, the number that are needed
13854 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13855 	 * plus a bit of slop (2) in case some more writers show up while
13856 	 * we are cleaning.
13857 	 *
13858 	 * When requested to free up space, the amount of space that
13859 	 * we need is enough blocks to allocate a full-sized segment
13860 	 * (fs_contigsumsize). The number of such segments that will
13861 	 * be needed is set by the number of simultaneous writers
13862 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13863 	 * writers show up while we are cleaning.
13864 	 *
13865 	 * Additionally, if we are unpriviledged and allocating space,
13866 	 * we need to ensure that we clean up enough blocks to get the
13867 	 * needed number of blocks over the threshold of the minimum
13868 	 * number of blocks required to be kept free by the filesystem
13869 	 * (fs_minfree).
13870 	 */
13871 	if (resource == FLUSH_INODES_WAIT) {
13872 		needed = vfs_mount_fetch_counter(vp->v_mount,
13873 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13874 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13875 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13876 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13877 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13878 			needed += fragstoblks(fs,
13879 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13880 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13881 	} else {
13882 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13883 		    resource);
13884 		UFS_LOCK(ump);
13885 		return (0);
13886 	}
13887 	starttime = time_second;
13888 retry:
13889 	if (resource == FLUSH_BLOCKS_WAIT &&
13890 	    fs->fs_cstotal.cs_nbfree <= needed)
13891 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13892 		    BIO_SPEEDUP_TRIM);
13893 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13894 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13895 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13896 	    fs->fs_cstotal.cs_nifree <= needed)) {
13897 		ACQUIRE_LOCK(ump);
13898 		if (ump->softdep_on_worklist > 0 &&
13899 		    process_worklist_item(UFSTOVFS(ump),
13900 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13901 			stat_worklist_push += 1;
13902 		FREE_LOCK(ump);
13903 	}
13904 
13905 	/*
13906 	 * Check that there are vnodes pending inactivation.  As they
13907 	 * have been unlinked, inactivating them will free up their
13908 	 * inodes.
13909 	 */
13910 	ACQUIRE_LOCK(ump);
13911 	if (resource == FLUSH_INODES_WAIT &&
13912 	    fs->fs_cstotal.cs_nifree <= needed &&
13913 	    fs->fs_pendinginodes <= needed) {
13914 		if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13915 			ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13916 			FREE_LOCK(ump);
13917 			softdep_request_cleanup_inactivate(mp);
13918 			ACQUIRE_LOCK(ump);
13919 			ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13920 			wakeup(&ump->um_softdep->sd_flags);
13921 		} else {
13922 			while ((ump->um_softdep->sd_flags &
13923 			    FLUSH_DI_ACTIVE) != 0) {
13924 				msleep(&ump->um_softdep->sd_flags,
13925 				    LOCK_PTR(ump), PVM, "ffsvina", hz);
13926 			}
13927 		}
13928 	}
13929 	FREE_LOCK(ump);
13930 
13931 	/*
13932 	 * If we still need resources and there are no more worklist
13933 	 * entries to process to obtain them, we have to start flushing
13934 	 * the dirty vnodes to force the release of additional requests
13935 	 * to the worklist that we can then process to reap addition
13936 	 * resources. We walk the vnodes associated with the mount point
13937 	 * until we get the needed worklist requests that we can reap.
13938 	 *
13939 	 * If there are several threads all needing to clean the same
13940 	 * mount point, only one is allowed to walk the mount list.
13941 	 * When several threads all try to walk the same mount list,
13942 	 * they end up competing with each other and often end up in
13943 	 * livelock. This approach ensures that forward progress is
13944 	 * made at the cost of occational ENOSPC errors being returned
13945 	 * that might otherwise have been avoided.
13946 	 */
13947 	error = 1;
13948 	if ((resource == FLUSH_BLOCKS_WAIT &&
13949 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13950 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13951 	     fs->fs_cstotal.cs_nifree <= needed)) {
13952 		ACQUIRE_LOCK(ump);
13953 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13954 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13955 			FREE_LOCK(ump);
13956 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13957 			ACQUIRE_LOCK(ump);
13958 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13959 			wakeup(&ump->um_softdep->sd_flags);
13960 			FREE_LOCK(ump);
13961 			if (ump->softdep_on_worklist > 0) {
13962 				stat_cleanup_retries += 1;
13963 				if (!failed_vnode)
13964 					goto retry;
13965 			}
13966 		} else {
13967 			while ((ump->um_softdep->sd_flags &
13968 			    FLUSH_RC_ACTIVE) != 0) {
13969 				msleep(&ump->um_softdep->sd_flags,
13970 				    LOCK_PTR(ump), PVM, "ffsrca", hz);
13971 			}
13972 			FREE_LOCK(ump);
13973 			error = 0;
13974 		}
13975 		stat_cleanup_failures += 1;
13976 	}
13977 	if (time_second - starttime > stat_cleanup_high_delay)
13978 		stat_cleanup_high_delay = time_second - starttime;
13979 	UFS_LOCK(ump);
13980 	return (error);
13981 }
13982 
13983 /*
13984  * Scan the vnodes for the specified mount point flushing out any
13985  * vnodes that can be locked without waiting. Finally, try to flush
13986  * the device associated with the mount point if it can be locked
13987  * without waiting.
13988  *
13989  * We return 0 if we were able to lock every vnode in our scan.
13990  * If we had to skip one or more vnodes, we return 1.
13991  */
13992 static int
13993 softdep_request_cleanup_flush(mp, ump)
13994 	struct mount *mp;
13995 	struct ufsmount *ump;
13996 {
13997 	struct thread *td;
13998 	struct vnode *lvp, *mvp;
13999 	int failed_vnode;
14000 
14001 	failed_vnode = 0;
14002 	td = curthread;
14003 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
14004 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
14005 			VI_UNLOCK(lvp);
14006 			continue;
14007 		}
14008 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
14009 			failed_vnode = 1;
14010 			continue;
14011 		}
14012 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
14013 			vput(lvp);
14014 			continue;
14015 		}
14016 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
14017 		vput(lvp);
14018 	}
14019 	lvp = ump->um_devvp;
14020 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
14021 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
14022 		VOP_UNLOCK(lvp);
14023 	}
14024 	return (failed_vnode);
14025 }
14026 
14027 static bool
14028 softdep_excess_items(struct ufsmount *ump, int item)
14029 {
14030 
14031 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
14032 	return (dep_current[item] > max_softdeps &&
14033 	    ump->softdep_curdeps[item] > max_softdeps /
14034 	    stat_flush_threads);
14035 }
14036 
14037 static void
14038 schedule_cleanup(struct mount *mp)
14039 {
14040 	struct ufsmount *ump;
14041 	struct thread *td;
14042 
14043 	ump = VFSTOUFS(mp);
14044 	LOCK_OWNED(ump);
14045 	FREE_LOCK(ump);
14046 	td = curthread;
14047 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
14048 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
14049 		/*
14050 		 * No ast is delivered to kernel threads, so nobody
14051 		 * would deref the mp.  Some kernel threads
14052 		 * explicitely check for AST, e.g. NFS daemon does
14053 		 * this in the serving loop.
14054 		 */
14055 		return;
14056 	}
14057 	if (td->td_su != NULL)
14058 		vfs_rel(td->td_su);
14059 	vfs_ref(mp);
14060 	td->td_su = mp;
14061 	thread_lock(td);
14062 	td->td_flags |= TDF_ASTPENDING;
14063 	thread_unlock(td);
14064 }
14065 
14066 static void
14067 softdep_ast_cleanup_proc(struct thread *td)
14068 {
14069 	struct mount *mp;
14070 	struct ufsmount *ump;
14071 	int error;
14072 	bool req;
14073 
14074 	while ((mp = td->td_su) != NULL) {
14075 		td->td_su = NULL;
14076 		error = vfs_busy(mp, MBF_NOWAIT);
14077 		vfs_rel(mp);
14078 		if (error != 0)
14079 			return;
14080 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
14081 			ump = VFSTOUFS(mp);
14082 			for (;;) {
14083 				req = false;
14084 				ACQUIRE_LOCK(ump);
14085 				if (softdep_excess_items(ump, D_INODEDEP)) {
14086 					req = true;
14087 					request_cleanup(mp, FLUSH_INODES);
14088 				}
14089 				if (softdep_excess_items(ump, D_DIRREM)) {
14090 					req = true;
14091 					request_cleanup(mp, FLUSH_BLOCKS);
14092 				}
14093 				FREE_LOCK(ump);
14094 				if (softdep_excess_items(ump, D_NEWBLK) ||
14095 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
14096 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
14097 					error = vn_start_write(NULL, &mp,
14098 					    V_WAIT);
14099 					if (error == 0) {
14100 						req = true;
14101 						VFS_SYNC(mp, MNT_WAIT);
14102 						vn_finished_write(mp);
14103 					}
14104 				}
14105 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
14106 					break;
14107 			}
14108 		}
14109 		vfs_unbusy(mp);
14110 	}
14111 	if ((mp = td->td_su) != NULL) {
14112 		td->td_su = NULL;
14113 		vfs_rel(mp);
14114 	}
14115 }
14116 
14117 /*
14118  * If memory utilization has gotten too high, deliberately slow things
14119  * down and speed up the I/O processing.
14120  */
14121 static int
14122 request_cleanup(mp, resource)
14123 	struct mount *mp;
14124 	int resource;
14125 {
14126 	struct thread *td = curthread;
14127 	struct ufsmount *ump;
14128 
14129 	ump = VFSTOUFS(mp);
14130 	LOCK_OWNED(ump);
14131 	/*
14132 	 * We never hold up the filesystem syncer or buf daemon.
14133 	 */
14134 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
14135 		return (0);
14136 	/*
14137 	 * First check to see if the work list has gotten backlogged.
14138 	 * If it has, co-opt this process to help clean up two entries.
14139 	 * Because this process may hold inodes locked, we cannot
14140 	 * handle any remove requests that might block on a locked
14141 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
14142 	 * to avoid recursively processing the worklist.
14143 	 */
14144 	if (ump->softdep_on_worklist > max_softdeps / 10) {
14145 		td->td_pflags |= TDP_SOFTDEP;
14146 		process_worklist_item(mp, 2, LK_NOWAIT);
14147 		td->td_pflags &= ~TDP_SOFTDEP;
14148 		stat_worklist_push += 2;
14149 		return(1);
14150 	}
14151 	/*
14152 	 * Next, we attempt to speed up the syncer process. If that
14153 	 * is successful, then we allow the process to continue.
14154 	 */
14155 	if (softdep_speedup(ump) &&
14156 	    resource != FLUSH_BLOCKS_WAIT &&
14157 	    resource != FLUSH_INODES_WAIT)
14158 		return(0);
14159 	/*
14160 	 * If we are resource constrained on inode dependencies, try
14161 	 * flushing some dirty inodes. Otherwise, we are constrained
14162 	 * by file deletions, so try accelerating flushes of directories
14163 	 * with removal dependencies. We would like to do the cleanup
14164 	 * here, but we probably hold an inode locked at this point and
14165 	 * that might deadlock against one that we try to clean. So,
14166 	 * the best that we can do is request the syncer daemon to do
14167 	 * the cleanup for us.
14168 	 */
14169 	switch (resource) {
14170 	case FLUSH_INODES:
14171 	case FLUSH_INODES_WAIT:
14172 		ACQUIRE_GBLLOCK(&lk);
14173 		stat_ino_limit_push += 1;
14174 		req_clear_inodedeps += 1;
14175 		FREE_GBLLOCK(&lk);
14176 		stat_countp = &stat_ino_limit_hit;
14177 		break;
14178 
14179 	case FLUSH_BLOCKS:
14180 	case FLUSH_BLOCKS_WAIT:
14181 		ACQUIRE_GBLLOCK(&lk);
14182 		stat_blk_limit_push += 1;
14183 		req_clear_remove += 1;
14184 		FREE_GBLLOCK(&lk);
14185 		stat_countp = &stat_blk_limit_hit;
14186 		break;
14187 
14188 	default:
14189 		panic("request_cleanup: unknown type");
14190 	}
14191 	/*
14192 	 * Hopefully the syncer daemon will catch up and awaken us.
14193 	 * We wait at most tickdelay before proceeding in any case.
14194 	 */
14195 	ACQUIRE_GBLLOCK(&lk);
14196 	FREE_LOCK(ump);
14197 	proc_waiting += 1;
14198 	if (callout_pending(&softdep_callout) == FALSE)
14199 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
14200 		    pause_timer, 0);
14201 
14202 	if ((td->td_pflags & TDP_KTHREAD) == 0)
14203 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
14204 	proc_waiting -= 1;
14205 	FREE_GBLLOCK(&lk);
14206 	ACQUIRE_LOCK(ump);
14207 	return (1);
14208 }
14209 
14210 /*
14211  * Awaken processes pausing in request_cleanup and clear proc_waiting
14212  * to indicate that there is no longer a timer running. Pause_timer
14213  * will be called with the global softdep mutex (&lk) locked.
14214  */
14215 static void
14216 pause_timer(arg)
14217 	void *arg;
14218 {
14219 
14220 	GBLLOCK_OWNED(&lk);
14221 	/*
14222 	 * The callout_ API has acquired mtx and will hold it around this
14223 	 * function call.
14224 	 */
14225 	*stat_countp += proc_waiting;
14226 	wakeup(&proc_waiting);
14227 }
14228 
14229 /*
14230  * If requested, try removing inode or removal dependencies.
14231  */
14232 static void
14233 check_clear_deps(mp)
14234 	struct mount *mp;
14235 {
14236 	struct ufsmount *ump;
14237 	bool suj_susp;
14238 
14239 	/*
14240 	 * Tell the lower layers that any TRIM or WRITE transactions that have
14241 	 * been delayed for performance reasons should proceed to help alleviate
14242 	 * the shortage faster. The race between checking req_* and the softdep
14243 	 * mutex (lk) is fine since this is an advisory operation that at most
14244 	 * causes deferred work to be done sooner.
14245 	 */
14246 	ump = VFSTOUFS(mp);
14247 	suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14248 	    ump->softdep_jblocks->jb_suspended;
14249 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14250 		FREE_LOCK(ump);
14251 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14252 		ACQUIRE_LOCK(ump);
14253 	}
14254 
14255 	/*
14256 	 * If we are suspended, it may be because of our using
14257 	 * too many inodedeps, so help clear them out.
14258 	 */
14259 	if (suj_susp)
14260 		clear_inodedeps(mp);
14261 
14262 	/*
14263 	 * General requests for cleanup of backed up dependencies
14264 	 */
14265 	ACQUIRE_GBLLOCK(&lk);
14266 	if (req_clear_inodedeps) {
14267 		req_clear_inodedeps -= 1;
14268 		FREE_GBLLOCK(&lk);
14269 		clear_inodedeps(mp);
14270 		ACQUIRE_GBLLOCK(&lk);
14271 		wakeup(&proc_waiting);
14272 	}
14273 	if (req_clear_remove) {
14274 		req_clear_remove -= 1;
14275 		FREE_GBLLOCK(&lk);
14276 		clear_remove(mp);
14277 		ACQUIRE_GBLLOCK(&lk);
14278 		wakeup(&proc_waiting);
14279 	}
14280 	FREE_GBLLOCK(&lk);
14281 }
14282 
14283 /*
14284  * Flush out a directory with at least one removal dependency in an effort to
14285  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14286  */
14287 static void
14288 clear_remove(mp)
14289 	struct mount *mp;
14290 {
14291 	struct pagedep_hashhead *pagedephd;
14292 	struct pagedep *pagedep;
14293 	struct ufsmount *ump;
14294 	struct vnode *vp;
14295 	struct bufobj *bo;
14296 	int error, cnt;
14297 	ino_t ino;
14298 
14299 	ump = VFSTOUFS(mp);
14300 	LOCK_OWNED(ump);
14301 
14302 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14303 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14304 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14305 			ump->pagedep_nextclean = 0;
14306 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14307 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
14308 				continue;
14309 			ino = pagedep->pd_ino;
14310 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14311 				continue;
14312 			FREE_LOCK(ump);
14313 
14314 			/*
14315 			 * Let unmount clear deps
14316 			 */
14317 			error = vfs_busy(mp, MBF_NOWAIT);
14318 			if (error != 0)
14319 				goto finish_write;
14320 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14321 			     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14322 			vfs_unbusy(mp);
14323 			if (error != 0) {
14324 				softdep_error("clear_remove: vget", error);
14325 				goto finish_write;
14326 			}
14327 			MPASS(VTOI(vp)->i_mode != 0);
14328 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14329 				softdep_error("clear_remove: fsync", error);
14330 			bo = &vp->v_bufobj;
14331 			BO_LOCK(bo);
14332 			drain_output(vp);
14333 			BO_UNLOCK(bo);
14334 			vput(vp);
14335 		finish_write:
14336 			vn_finished_write(mp);
14337 			ACQUIRE_LOCK(ump);
14338 			return;
14339 		}
14340 	}
14341 }
14342 
14343 /*
14344  * Clear out a block of dirty inodes in an effort to reduce
14345  * the number of inodedep dependency structures.
14346  */
14347 static void
14348 clear_inodedeps(mp)
14349 	struct mount *mp;
14350 {
14351 	struct inodedep_hashhead *inodedephd;
14352 	struct inodedep *inodedep;
14353 	struct ufsmount *ump;
14354 	struct vnode *vp;
14355 	struct fs *fs;
14356 	int error, cnt;
14357 	ino_t firstino, lastino, ino;
14358 
14359 	ump = VFSTOUFS(mp);
14360 	fs = ump->um_fs;
14361 	LOCK_OWNED(ump);
14362 	/*
14363 	 * Pick a random inode dependency to be cleared.
14364 	 * We will then gather up all the inodes in its block
14365 	 * that have dependencies and flush them out.
14366 	 */
14367 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14368 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14369 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14370 			ump->inodedep_nextclean = 0;
14371 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14372 			break;
14373 	}
14374 	if (inodedep == NULL)
14375 		return;
14376 	/*
14377 	 * Find the last inode in the block with dependencies.
14378 	 */
14379 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14380 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14381 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14382 			break;
14383 	/*
14384 	 * Asynchronously push all but the last inode with dependencies.
14385 	 * Synchronously push the last inode with dependencies to ensure
14386 	 * that the inode block gets written to free up the inodedeps.
14387 	 */
14388 	for (ino = firstino; ino <= lastino; ino++) {
14389 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14390 			continue;
14391 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14392 			continue;
14393 		FREE_LOCK(ump);
14394 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14395 		if (error != 0) {
14396 			vn_finished_write(mp);
14397 			ACQUIRE_LOCK(ump);
14398 			return;
14399 		}
14400 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14401 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14402 			softdep_error("clear_inodedeps: vget", error);
14403 			vfs_unbusy(mp);
14404 			vn_finished_write(mp);
14405 			ACQUIRE_LOCK(ump);
14406 			return;
14407 		}
14408 		vfs_unbusy(mp);
14409 		if (VTOI(vp)->i_mode == 0) {
14410 			vgone(vp);
14411 		} else if (ino == lastino) {
14412 			do {
14413 				error = ffs_syncvnode(vp, MNT_WAIT, 0);
14414 			} while (error == ERELOOKUP);
14415 			if (error != 0)
14416 				softdep_error("clear_inodedeps: fsync1", error);
14417 		} else {
14418 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14419 				softdep_error("clear_inodedeps: fsync2", error);
14420 			BO_LOCK(&vp->v_bufobj);
14421 			drain_output(vp);
14422 			BO_UNLOCK(&vp->v_bufobj);
14423 		}
14424 		vput(vp);
14425 		vn_finished_write(mp);
14426 		ACQUIRE_LOCK(ump);
14427 	}
14428 }
14429 
14430 void
14431 softdep_buf_append(bp, wkhd)
14432 	struct buf *bp;
14433 	struct workhead *wkhd;
14434 {
14435 	struct worklist *wk;
14436 	struct ufsmount *ump;
14437 
14438 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14439 		return;
14440 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14441 	    ("softdep_buf_append called on non-softdep filesystem"));
14442 	ump = VFSTOUFS(wk->wk_mp);
14443 	ACQUIRE_LOCK(ump);
14444 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14445 		WORKLIST_REMOVE(wk);
14446 		WORKLIST_INSERT(&bp->b_dep, wk);
14447 	}
14448 	FREE_LOCK(ump);
14449 
14450 }
14451 
14452 void
14453 softdep_inode_append(ip, cred, wkhd)
14454 	struct inode *ip;
14455 	struct ucred *cred;
14456 	struct workhead *wkhd;
14457 {
14458 	struct buf *bp;
14459 	struct fs *fs;
14460 	struct ufsmount *ump;
14461 	int error;
14462 
14463 	ump = ITOUMP(ip);
14464 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14465 	    ("softdep_inode_append called on non-softdep filesystem"));
14466 	fs = ump->um_fs;
14467 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14468 	    (int)fs->fs_bsize, cred, &bp);
14469 	if (error) {
14470 		bqrelse(bp);
14471 		softdep_freework(wkhd);
14472 		return;
14473 	}
14474 	softdep_buf_append(bp, wkhd);
14475 	bqrelse(bp);
14476 }
14477 
14478 void
14479 softdep_freework(wkhd)
14480 	struct workhead *wkhd;
14481 {
14482 	struct worklist *wk;
14483 	struct ufsmount *ump;
14484 
14485 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14486 		return;
14487 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14488 	    ("softdep_freework called on non-softdep filesystem"));
14489 	ump = VFSTOUFS(wk->wk_mp);
14490 	ACQUIRE_LOCK(ump);
14491 	handle_jwork(wkhd);
14492 	FREE_LOCK(ump);
14493 }
14494 
14495 static struct ufsmount *
14496 softdep_bp_to_mp(bp)
14497 	struct buf *bp;
14498 {
14499 	struct mount *mp;
14500 	struct vnode *vp;
14501 
14502 	if (LIST_EMPTY(&bp->b_dep))
14503 		return (NULL);
14504 	vp = bp->b_vp;
14505 	KASSERT(vp != NULL,
14506 	    ("%s, buffer with dependencies lacks vnode", __func__));
14507 
14508 	/*
14509 	 * The ump mount point is stable after we get a correct
14510 	 * pointer, since bp is locked and this prevents unmount from
14511 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14512 	 * head wk_mp, because we do not yet own SU ump lock and
14513 	 * workitem might be freed while dereferenced.
14514 	 */
14515 retry:
14516 	switch (vp->v_type) {
14517 	case VCHR:
14518 		VI_LOCK(vp);
14519 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14520 		VI_UNLOCK(vp);
14521 		if (mp == NULL)
14522 			goto retry;
14523 		break;
14524 	case VREG:
14525 	case VDIR:
14526 	case VLNK:
14527 	case VFIFO:
14528 	case VSOCK:
14529 		mp = vp->v_mount;
14530 		break;
14531 	case VBLK:
14532 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14533 		/* FALLTHROUGH */
14534 	case VNON:
14535 	case VBAD:
14536 	case VMARKER:
14537 		mp = NULL;
14538 		break;
14539 	default:
14540 		vn_printf(vp, "unknown vnode type");
14541 		mp = NULL;
14542 		break;
14543 	}
14544 	return (VFSTOUFS(mp));
14545 }
14546 
14547 /*
14548  * Function to determine if the buffer has outstanding dependencies
14549  * that will cause a roll-back if the buffer is written. If wantcount
14550  * is set, return number of dependencies, otherwise just yes or no.
14551  */
14552 static int
14553 softdep_count_dependencies(bp, wantcount)
14554 	struct buf *bp;
14555 	int wantcount;
14556 {
14557 	struct worklist *wk;
14558 	struct ufsmount *ump;
14559 	struct bmsafemap *bmsafemap;
14560 	struct freework *freework;
14561 	struct inodedep *inodedep;
14562 	struct indirdep *indirdep;
14563 	struct freeblks *freeblks;
14564 	struct allocindir *aip;
14565 	struct pagedep *pagedep;
14566 	struct dirrem *dirrem;
14567 	struct newblk *newblk;
14568 	struct mkdir *mkdir;
14569 	struct diradd *dap;
14570 	int i, retval;
14571 
14572 	ump = softdep_bp_to_mp(bp);
14573 	if (ump == NULL)
14574 		return (0);
14575 	retval = 0;
14576 	ACQUIRE_LOCK(ump);
14577 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14578 		switch (wk->wk_type) {
14579 		case D_INODEDEP:
14580 			inodedep = WK_INODEDEP(wk);
14581 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14582 				/* bitmap allocation dependency */
14583 				retval += 1;
14584 				if (!wantcount)
14585 					goto out;
14586 			}
14587 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14588 				/* direct block pointer dependency */
14589 				retval += 1;
14590 				if (!wantcount)
14591 					goto out;
14592 			}
14593 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14594 				/* direct block pointer dependency */
14595 				retval += 1;
14596 				if (!wantcount)
14597 					goto out;
14598 			}
14599 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14600 				/* Add reference dependency. */
14601 				retval += 1;
14602 				if (!wantcount)
14603 					goto out;
14604 			}
14605 			continue;
14606 
14607 		case D_INDIRDEP:
14608 			indirdep = WK_INDIRDEP(wk);
14609 
14610 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14611 				/* indirect truncation dependency */
14612 				retval += 1;
14613 				if (!wantcount)
14614 					goto out;
14615 			}
14616 
14617 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14618 				/* indirect block pointer dependency */
14619 				retval += 1;
14620 				if (!wantcount)
14621 					goto out;
14622 			}
14623 			continue;
14624 
14625 		case D_PAGEDEP:
14626 			pagedep = WK_PAGEDEP(wk);
14627 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14628 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14629 					/* Journal remove ref dependency. */
14630 					retval += 1;
14631 					if (!wantcount)
14632 						goto out;
14633 				}
14634 			}
14635 			for (i = 0; i < DAHASHSZ; i++) {
14636 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14637 					/* directory entry dependency */
14638 					retval += 1;
14639 					if (!wantcount)
14640 						goto out;
14641 				}
14642 			}
14643 			continue;
14644 
14645 		case D_BMSAFEMAP:
14646 			bmsafemap = WK_BMSAFEMAP(wk);
14647 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14648 				/* Add reference dependency. */
14649 				retval += 1;
14650 				if (!wantcount)
14651 					goto out;
14652 			}
14653 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14654 				/* Allocate block dependency. */
14655 				retval += 1;
14656 				if (!wantcount)
14657 					goto out;
14658 			}
14659 			continue;
14660 
14661 		case D_FREEBLKS:
14662 			freeblks = WK_FREEBLKS(wk);
14663 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14664 				/* Freeblk journal dependency. */
14665 				retval += 1;
14666 				if (!wantcount)
14667 					goto out;
14668 			}
14669 			continue;
14670 
14671 		case D_ALLOCDIRECT:
14672 		case D_ALLOCINDIR:
14673 			newblk = WK_NEWBLK(wk);
14674 			if (newblk->nb_jnewblk) {
14675 				/* Journal allocate dependency. */
14676 				retval += 1;
14677 				if (!wantcount)
14678 					goto out;
14679 			}
14680 			continue;
14681 
14682 		case D_MKDIR:
14683 			mkdir = WK_MKDIR(wk);
14684 			if (mkdir->md_jaddref) {
14685 				/* Journal reference dependency. */
14686 				retval += 1;
14687 				if (!wantcount)
14688 					goto out;
14689 			}
14690 			continue;
14691 
14692 		case D_FREEWORK:
14693 		case D_FREEDEP:
14694 		case D_JSEGDEP:
14695 		case D_JSEG:
14696 		case D_SBDEP:
14697 			/* never a dependency on these blocks */
14698 			continue;
14699 
14700 		default:
14701 			panic("softdep_count_dependencies: Unexpected type %s",
14702 			    TYPENAME(wk->wk_type));
14703 			/* NOTREACHED */
14704 		}
14705 	}
14706 out:
14707 	FREE_LOCK(ump);
14708 	return (retval);
14709 }
14710 
14711 /*
14712  * Acquire exclusive access to a buffer.
14713  * Must be called with a locked mtx parameter.
14714  * Return acquired buffer or NULL on failure.
14715  */
14716 static struct buf *
14717 getdirtybuf(bp, lock, waitfor)
14718 	struct buf *bp;
14719 	struct rwlock *lock;
14720 	int waitfor;
14721 {
14722 	int error;
14723 
14724 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14725 		if (waitfor != MNT_WAIT)
14726 			return (NULL);
14727 		error = BUF_LOCK(bp,
14728 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14729 		/*
14730 		 * Even if we successfully acquire bp here, we have dropped
14731 		 * lock, which may violates our guarantee.
14732 		 */
14733 		if (error == 0)
14734 			BUF_UNLOCK(bp);
14735 		else if (error != ENOLCK)
14736 			panic("getdirtybuf: inconsistent lock: %d", error);
14737 		rw_wlock(lock);
14738 		return (NULL);
14739 	}
14740 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14741 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14742 			rw_wunlock(lock);
14743 			BO_LOCK(bp->b_bufobj);
14744 			BUF_UNLOCK(bp);
14745 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14746 				bp->b_vflags |= BV_BKGRDWAIT;
14747 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14748 				       PRIBIO | PDROP, "getbuf", 0);
14749 			} else
14750 				BO_UNLOCK(bp->b_bufobj);
14751 			rw_wlock(lock);
14752 			return (NULL);
14753 		}
14754 		BUF_UNLOCK(bp);
14755 		if (waitfor != MNT_WAIT)
14756 			return (NULL);
14757 #ifdef DEBUG_VFS_LOCKS
14758 		if (bp->b_vp->v_type != VCHR)
14759 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14760 #endif
14761 		bp->b_vflags |= BV_BKGRDWAIT;
14762 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14763 		return (NULL);
14764 	}
14765 	if ((bp->b_flags & B_DELWRI) == 0) {
14766 		BUF_UNLOCK(bp);
14767 		return (NULL);
14768 	}
14769 	bremfree(bp);
14770 	return (bp);
14771 }
14772 
14773 /*
14774  * Check if it is safe to suspend the file system now.  On entry,
14775  * the vnode interlock for devvp should be held.  Return 0 with
14776  * the mount interlock held if the file system can be suspended now,
14777  * otherwise return EAGAIN with the mount interlock held.
14778  */
14779 int
14780 softdep_check_suspend(struct mount *mp,
14781 		      struct vnode *devvp,
14782 		      int softdep_depcnt,
14783 		      int softdep_accdepcnt,
14784 		      int secondary_writes,
14785 		      int secondary_accwrites)
14786 {
14787 	struct buf *bp;
14788 	struct bufobj *bo;
14789 	struct ufsmount *ump;
14790 	struct inodedep *inodedep;
14791 	struct indirdep *indirdep;
14792 	struct worklist *wk, *nextwk;
14793 	int error, unlinked;
14794 
14795 	bo = &devvp->v_bufobj;
14796 	ASSERT_BO_WLOCKED(bo);
14797 
14798 	/*
14799 	 * If we are not running with soft updates, then we need only
14800 	 * deal with secondary writes as we try to suspend.
14801 	 */
14802 	if (MOUNTEDSOFTDEP(mp) == 0) {
14803 		MNT_ILOCK(mp);
14804 		while (mp->mnt_secondary_writes != 0) {
14805 			BO_UNLOCK(bo);
14806 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14807 			    (PUSER - 1) | PDROP, "secwr", 0);
14808 			BO_LOCK(bo);
14809 			MNT_ILOCK(mp);
14810 		}
14811 
14812 		/*
14813 		 * Reasons for needing more work before suspend:
14814 		 * - Dirty buffers on devvp.
14815 		 * - Secondary writes occurred after start of vnode sync loop
14816 		 */
14817 		error = 0;
14818 		if (bo->bo_numoutput > 0 ||
14819 		    bo->bo_dirty.bv_cnt > 0 ||
14820 		    secondary_writes != 0 ||
14821 		    mp->mnt_secondary_writes != 0 ||
14822 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14823 			error = EAGAIN;
14824 		BO_UNLOCK(bo);
14825 		return (error);
14826 	}
14827 
14828 	/*
14829 	 * If we are running with soft updates, then we need to coordinate
14830 	 * with them as we try to suspend.
14831 	 */
14832 	ump = VFSTOUFS(mp);
14833 	for (;;) {
14834 		if (!TRY_ACQUIRE_LOCK(ump)) {
14835 			BO_UNLOCK(bo);
14836 			ACQUIRE_LOCK(ump);
14837 			FREE_LOCK(ump);
14838 			BO_LOCK(bo);
14839 			continue;
14840 		}
14841 		MNT_ILOCK(mp);
14842 		if (mp->mnt_secondary_writes != 0) {
14843 			FREE_LOCK(ump);
14844 			BO_UNLOCK(bo);
14845 			msleep(&mp->mnt_secondary_writes,
14846 			       MNT_MTX(mp),
14847 			       (PUSER - 1) | PDROP, "secwr", 0);
14848 			BO_LOCK(bo);
14849 			continue;
14850 		}
14851 		break;
14852 	}
14853 
14854 	unlinked = 0;
14855 	if (MOUNTEDSUJ(mp)) {
14856 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14857 		    inodedep != NULL;
14858 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14859 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14860 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14861 			    UNLINKONLIST) ||
14862 			    !check_inodedep_free(inodedep))
14863 				continue;
14864 			unlinked++;
14865 		}
14866 	}
14867 
14868 	/*
14869 	 * XXX Check for orphaned indirdep dependency structures.
14870 	 *
14871 	 * During forcible unmount after a disk failure there is a
14872 	 * bug that causes one or more indirdep dependency structures
14873 	 * to fail to be deallocated. We check for them here and clean
14874 	 * them up so that the unmount can succeed.
14875 	 */
14876 	if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 &&
14877 	    ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) {
14878 		LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP],
14879 		    wk_all, nextwk) {
14880 			indirdep = WK_INDIRDEP(wk);
14881 			if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) !=
14882 			    (GOINGAWAY | DEPCOMPLETE) ||
14883 			    !TAILQ_EMPTY(&indirdep->ir_trunc) ||
14884 			    !LIST_EMPTY(&indirdep->ir_completehd) ||
14885 			    !LIST_EMPTY(&indirdep->ir_writehd) ||
14886 			    !LIST_EMPTY(&indirdep->ir_donehd) ||
14887 			    !LIST_EMPTY(&indirdep->ir_deplisthd) ||
14888 			    indirdep->ir_saveddata != NULL ||
14889 			    indirdep->ir_savebp == NULL) {
14890 				printf("%s: skipping orphaned indirdep %p\n",
14891 				    __FUNCTION__, indirdep);
14892 				continue;
14893 			}
14894 			printf("%s: freeing orphaned indirdep %p\n",
14895 			    __FUNCTION__, indirdep);
14896 			bp = indirdep->ir_savebp;
14897 			indirdep->ir_savebp = NULL;
14898 			free_indirdep(indirdep);
14899 			FREE_LOCK(ump);
14900 			brelse(bp);
14901 			while (!TRY_ACQUIRE_LOCK(ump)) {
14902 				BO_UNLOCK(bo);
14903 				ACQUIRE_LOCK(ump);
14904 				FREE_LOCK(ump);
14905 				BO_LOCK(bo);
14906 			}
14907 		}
14908 	}
14909 
14910 	/*
14911 	 * Reasons for needing more work before suspend:
14912 	 * - Dirty buffers on devvp.
14913 	 * - Dependency structures still exist
14914 	 * - Softdep activity occurred after start of vnode sync loop
14915 	 * - Secondary writes occurred after start of vnode sync loop
14916 	 */
14917 	error = 0;
14918 	if (bo->bo_numoutput > 0 ||
14919 	    bo->bo_dirty.bv_cnt > 0 ||
14920 	    softdep_depcnt != unlinked ||
14921 	    ump->softdep_deps != unlinked ||
14922 	    softdep_accdepcnt != ump->softdep_accdeps ||
14923 	    secondary_writes != 0 ||
14924 	    mp->mnt_secondary_writes != 0 ||
14925 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14926 		error = EAGAIN;
14927 	FREE_LOCK(ump);
14928 	BO_UNLOCK(bo);
14929 	return (error);
14930 }
14931 
14932 /*
14933  * Get the number of dependency structures for the file system, both
14934  * the current number and the total number allocated.  These will
14935  * later be used to detect that softdep processing has occurred.
14936  */
14937 void
14938 softdep_get_depcounts(struct mount *mp,
14939 		      int *softdep_depsp,
14940 		      int *softdep_accdepsp)
14941 {
14942 	struct ufsmount *ump;
14943 
14944 	if (MOUNTEDSOFTDEP(mp) == 0) {
14945 		*softdep_depsp = 0;
14946 		*softdep_accdepsp = 0;
14947 		return;
14948 	}
14949 	ump = VFSTOUFS(mp);
14950 	ACQUIRE_LOCK(ump);
14951 	*softdep_depsp = ump->softdep_deps;
14952 	*softdep_accdepsp = ump->softdep_accdeps;
14953 	FREE_LOCK(ump);
14954 }
14955 
14956 /*
14957  * Wait for pending output on a vnode to complete.
14958  */
14959 static void
14960 drain_output(vp)
14961 	struct vnode *vp;
14962 {
14963 
14964 	ASSERT_VOP_LOCKED(vp, "drain_output");
14965 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14966 }
14967 
14968 /*
14969  * Called whenever a buffer that is being invalidated or reallocated
14970  * contains dependencies. This should only happen if an I/O error has
14971  * occurred. The routine is called with the buffer locked.
14972  */
14973 static void
14974 softdep_deallocate_dependencies(bp)
14975 	struct buf *bp;
14976 {
14977 
14978 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14979 		panic("softdep_deallocate_dependencies: dangling deps");
14980 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14981 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14982 	else
14983 		printf("softdep_deallocate_dependencies: "
14984 		    "got error %d while accessing filesystem\n", bp->b_error);
14985 	if (bp->b_error != ENXIO)
14986 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14987 }
14988 
14989 /*
14990  * Function to handle asynchronous write errors in the filesystem.
14991  */
14992 static void
14993 softdep_error(func, error)
14994 	char *func;
14995 	int error;
14996 {
14997 
14998 	/* XXX should do something better! */
14999 	printf("%s: got error %d while accessing filesystem\n", func, error);
15000 }
15001 
15002 #ifdef DDB
15003 
15004 /* exported to ffs_vfsops.c */
15005 extern void db_print_ffs(struct ufsmount *ump);
15006 void
15007 db_print_ffs(struct ufsmount *ump)
15008 {
15009 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
15010 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
15011 	db_printf("    fs %p ", ump->um_fs);
15012 
15013 	if (ump->um_softdep != NULL) {
15014 		db_printf("su_wl %d su_deps %d su_req %d\n",
15015 		    ump->softdep_on_worklist, ump->softdep_deps,
15016 		    ump->softdep_req);
15017 	} else {
15018 		db_printf("su disabled\n");
15019 	}
15020 }
15021 
15022 static void
15023 worklist_print(struct worklist *wk, int verbose)
15024 {
15025 
15026 	if (!verbose) {
15027 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
15028 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
15029 		return;
15030 	}
15031 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
15032 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
15033 	    LIST_NEXT(wk, wk_list));
15034 	db_print_ffs(VFSTOUFS(wk->wk_mp));
15035 }
15036 
15037 static void
15038 inodedep_print(struct inodedep *inodedep, int verbose)
15039 {
15040 
15041 	worklist_print(&inodedep->id_list, 0);
15042 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
15043 	    inodedep->id_fs,
15044 	    (intmax_t)inodedep->id_ino,
15045 	    (intmax_t)fsbtodb(inodedep->id_fs,
15046 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
15047 	    (intmax_t)inodedep->id_nlinkdelta,
15048 	    (intmax_t)inodedep->id_savednlink);
15049 
15050 	if (verbose == 0)
15051 		return;
15052 
15053 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
15054 	    inodedep->id_bmsafemap,
15055 	    inodedep->id_mkdiradd,
15056 	    TAILQ_FIRST(&inodedep->id_inoreflst));
15057 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
15058 	    LIST_FIRST(&inodedep->id_dirremhd),
15059 	    LIST_FIRST(&inodedep->id_pendinghd),
15060 	    LIST_FIRST(&inodedep->id_bufwait));
15061 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
15062 	    LIST_FIRST(&inodedep->id_inowait),
15063 	    TAILQ_FIRST(&inodedep->id_inoupdt),
15064 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
15065 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
15066 	    TAILQ_FIRST(&inodedep->id_extupdt),
15067 	    TAILQ_FIRST(&inodedep->id_newextupdt),
15068 	    TAILQ_FIRST(&inodedep->id_freeblklst));
15069 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
15070 	    inodedep->id_savedino1,
15071 	    (intmax_t)inodedep->id_savedsize,
15072 	    (intmax_t)inodedep->id_savedextsize);
15073 }
15074 
15075 static void
15076 newblk_print(struct newblk *nbp)
15077 {
15078 
15079 	worklist_print(&nbp->nb_list, 0);
15080 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
15081 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
15082 	    &nbp->nb_jnewblk,
15083 	    &nbp->nb_bmsafemap,
15084 	    &nbp->nb_freefrag);
15085 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
15086 	    LIST_FIRST(&nbp->nb_indirdeps),
15087 	    LIST_FIRST(&nbp->nb_newdirblk),
15088 	    LIST_FIRST(&nbp->nb_jwork));
15089 }
15090 
15091 static void
15092 allocdirect_print(struct allocdirect *adp)
15093 {
15094 
15095 	newblk_print(&adp->ad_block);
15096 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
15097 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
15098 	db_printf("    offset %d, inodedep %p\n",
15099 	    adp->ad_offset, adp->ad_inodedep);
15100 }
15101 
15102 static void
15103 allocindir_print(struct allocindir *aip)
15104 {
15105 
15106 	newblk_print(&aip->ai_block);
15107 	db_printf("    oldblkno %jd, lbn %jd\n",
15108 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
15109 	db_printf("    offset %d, indirdep %p\n",
15110 	    aip->ai_offset, aip->ai_indirdep);
15111 }
15112 
15113 static void
15114 mkdir_print(struct mkdir *mkdir)
15115 {
15116 
15117 	worklist_print(&mkdir->md_list, 0);
15118 	db_printf("    diradd %p, jaddref %p, buf %p\n",
15119 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
15120 }
15121 
15122 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
15123 {
15124 
15125 	if (have_addr == 0) {
15126 		db_printf("inodedep address required\n");
15127 		return;
15128 	}
15129 	inodedep_print((struct inodedep*)addr, 1);
15130 }
15131 
15132 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
15133 {
15134 	struct inodedep_hashhead *inodedephd;
15135 	struct inodedep *inodedep;
15136 	struct ufsmount *ump;
15137 	int cnt;
15138 
15139 	if (have_addr == 0) {
15140 		db_printf("ufsmount address required\n");
15141 		return;
15142 	}
15143 	ump = (struct ufsmount *)addr;
15144 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
15145 		inodedephd = &ump->inodedep_hashtbl[cnt];
15146 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
15147 			inodedep_print(inodedep, 0);
15148 		}
15149 	}
15150 }
15151 
15152 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
15153 {
15154 
15155 	if (have_addr == 0) {
15156 		db_printf("worklist address required\n");
15157 		return;
15158 	}
15159 	worklist_print((struct worklist *)addr, 1);
15160 }
15161 
15162 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
15163 {
15164 	struct worklist *wk;
15165 	struct workhead *wkhd;
15166 
15167 	if (have_addr == 0) {
15168 		db_printf("worklist address required "
15169 		    "(for example value in bp->b_dep)\n");
15170 		return;
15171 	}
15172 	/*
15173 	 * We often do not have the address of the worklist head but
15174 	 * instead a pointer to its first entry (e.g., we have the
15175 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
15176 	 * pointer of bp->b_dep will point at the head of the list, so
15177 	 * we cheat and use that instead. If we are in the middle of
15178 	 * a list we will still get the same result, so nothing
15179 	 * unexpected will result.
15180 	 */
15181 	wk = (struct worklist *)addr;
15182 	if (wk == NULL)
15183 		return;
15184 	wkhd = (struct workhead *)wk->wk_list.le_prev;
15185 	LIST_FOREACH(wk, wkhd, wk_list) {
15186 		switch(wk->wk_type) {
15187 		case D_INODEDEP:
15188 			inodedep_print(WK_INODEDEP(wk), 0);
15189 			continue;
15190 		case D_ALLOCDIRECT:
15191 			allocdirect_print(WK_ALLOCDIRECT(wk));
15192 			continue;
15193 		case D_ALLOCINDIR:
15194 			allocindir_print(WK_ALLOCINDIR(wk));
15195 			continue;
15196 		case D_MKDIR:
15197 			mkdir_print(WK_MKDIR(wk));
15198 			continue;
15199 		default:
15200 			worklist_print(wk, 0);
15201 			continue;
15202 		}
15203 	}
15204 }
15205 
15206 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
15207 {
15208 	if (have_addr == 0) {
15209 		db_printf("mkdir address required\n");
15210 		return;
15211 	}
15212 	mkdir_print((struct mkdir *)addr);
15213 }
15214 
15215 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
15216 {
15217 	struct mkdirlist *mkdirlisthd;
15218 	struct mkdir *mkdir;
15219 
15220 	if (have_addr == 0) {
15221 		db_printf("mkdir listhead address required\n");
15222 		return;
15223 	}
15224 	mkdirlisthd = (struct mkdirlist *)addr;
15225 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
15226 		mkdir_print(mkdir);
15227 		if (mkdir->md_diradd != NULL) {
15228 			db_printf("    ");
15229 			worklist_print(&mkdir->md_diradd->da_list, 0);
15230 		}
15231 		if (mkdir->md_jaddref != NULL) {
15232 			db_printf("    ");
15233 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
15234 		}
15235 	}
15236 }
15237 
15238 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
15239 {
15240 	if (have_addr == 0) {
15241 		db_printf("allocdirect address required\n");
15242 		return;
15243 	}
15244 	allocdirect_print((struct allocdirect *)addr);
15245 }
15246 
15247 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
15248 {
15249 	if (have_addr == 0) {
15250 		db_printf("allocindir address required\n");
15251 		return;
15252 	}
15253 	allocindir_print((struct allocindir *)addr);
15254 }
15255 
15256 #endif /* DDB */
15257 
15258 #endif /* SOFTUPDATES */
15259