xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision a0f704ffc16be42abf4be1573eab25857c2d1fcc)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/rwlock.h>
73 #include <sys/stat.h>
74 #include <sys/sysctl.h>
75 #include <sys/syslog.h>
76 #include <sys/vnode.h>
77 #include <sys/conf.h>
78 
79 #include <ufs/ufs/dir.h>
80 #include <ufs/ufs/extattr.h>
81 #include <ufs/ufs/quota.h>
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ffs/fs.h>
85 #include <ufs/ffs/softdep.h>
86 #include <ufs/ffs/ffs_extern.h>
87 #include <ufs/ufs/ufs_extern.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_object.h>
92 
93 #include <geom/geom.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98 
99 #ifndef SOFTUPDATES
100 
101 int
102 softdep_flushfiles(oldmnt, flags, td)
103 	struct mount *oldmnt;
104 	int flags;
105 	struct thread *td;
106 {
107 
108 	panic("softdep_flushfiles called");
109 }
110 
111 int
112 softdep_mount(devvp, mp, fs, cred)
113 	struct vnode *devvp;
114 	struct mount *mp;
115 	struct fs *fs;
116 	struct ucred *cred;
117 {
118 
119 	return (0);
120 }
121 
122 void
123 softdep_initialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_uninitialize()
131 {
132 
133 	return;
134 }
135 
136 void
137 softdep_unmount(mp)
138 	struct mount *mp;
139 {
140 
141 	panic("softdep_unmount called");
142 }
143 
144 void
145 softdep_setup_sbupdate(ump, fs, bp)
146 	struct ufsmount *ump;
147 	struct fs *fs;
148 	struct buf *bp;
149 {
150 
151 	panic("softdep_setup_sbupdate called");
152 }
153 
154 void
155 softdep_setup_inomapdep(bp, ip, newinum, mode)
156 	struct buf *bp;
157 	struct inode *ip;
158 	ino_t newinum;
159 	int mode;
160 {
161 
162 	panic("softdep_setup_inomapdep called");
163 }
164 
165 void
166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167 	struct buf *bp;
168 	struct mount *mp;
169 	ufs2_daddr_t newblkno;
170 	int frags;
171 	int oldfrags;
172 {
173 
174 	panic("softdep_setup_blkmapdep called");
175 }
176 
177 void
178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179 	struct inode *ip;
180 	ufs_lbn_t lbn;
181 	ufs2_daddr_t newblkno;
182 	ufs2_daddr_t oldblkno;
183 	long newsize;
184 	long oldsize;
185 	struct buf *bp;
186 {
187 
188 	panic("softdep_setup_allocdirect called");
189 }
190 
191 void
192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193 	struct inode *ip;
194 	ufs_lbn_t lbn;
195 	ufs2_daddr_t newblkno;
196 	ufs2_daddr_t oldblkno;
197 	long newsize;
198 	long oldsize;
199 	struct buf *bp;
200 {
201 
202 	panic("softdep_setup_allocext called");
203 }
204 
205 void
206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207 	struct inode *ip;
208 	ufs_lbn_t lbn;
209 	struct buf *bp;
210 	int ptrno;
211 	ufs2_daddr_t newblkno;
212 	ufs2_daddr_t oldblkno;
213 	struct buf *nbp;
214 {
215 
216 	panic("softdep_setup_allocindir_page called");
217 }
218 
219 void
220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221 	struct buf *nbp;
222 	struct inode *ip;
223 	struct buf *bp;
224 	int ptrno;
225 	ufs2_daddr_t newblkno;
226 {
227 
228 	panic("softdep_setup_allocindir_meta called");
229 }
230 
231 void
232 softdep_journal_freeblocks(ip, cred, length, flags)
233 	struct inode *ip;
234 	struct ucred *cred;
235 	off_t length;
236 	int flags;
237 {
238 
239 	panic("softdep_journal_freeblocks called");
240 }
241 
242 void
243 softdep_journal_fsync(ip)
244 	struct inode *ip;
245 {
246 
247 	panic("softdep_journal_fsync called");
248 }
249 
250 void
251 softdep_setup_freeblocks(ip, length, flags)
252 	struct inode *ip;
253 	off_t length;
254 	int flags;
255 {
256 
257 	panic("softdep_setup_freeblocks called");
258 }
259 
260 void
261 softdep_freefile(pvp, ino, mode)
262 		struct vnode *pvp;
263 		ino_t ino;
264 		int mode;
265 {
266 
267 	panic("softdep_freefile called");
268 }
269 
270 int
271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272 	struct buf *bp;
273 	struct inode *dp;
274 	off_t diroffset;
275 	ino_t newinum;
276 	struct buf *newdirbp;
277 	int isnewblk;
278 {
279 
280 	panic("softdep_setup_directory_add called");
281 }
282 
283 void
284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285 	struct buf *bp;
286 	struct inode *dp;
287 	caddr_t base;
288 	caddr_t oldloc;
289 	caddr_t newloc;
290 	int entrysize;
291 {
292 
293 	panic("softdep_change_directoryentry_offset called");
294 }
295 
296 void
297 softdep_setup_remove(bp, dp, ip, isrmdir)
298 	struct buf *bp;
299 	struct inode *dp;
300 	struct inode *ip;
301 	int isrmdir;
302 {
303 
304 	panic("softdep_setup_remove called");
305 }
306 
307 void
308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309 	struct buf *bp;
310 	struct inode *dp;
311 	struct inode *ip;
312 	ino_t newinum;
313 	int isrmdir;
314 {
315 
316 	panic("softdep_setup_directory_change called");
317 }
318 
319 void
320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321 	struct mount *mp;
322 	struct buf *bp;
323 	ufs2_daddr_t blkno;
324 	int frags;
325 	struct workhead *wkhd;
326 {
327 
328 	panic("%s called", __FUNCTION__);
329 }
330 
331 void
332 softdep_setup_inofree(mp, bp, ino, wkhd)
333 	struct mount *mp;
334 	struct buf *bp;
335 	ino_t ino;
336 	struct workhead *wkhd;
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_unlink(dp, ip)
344 	struct inode *dp;
345 	struct inode *ip;
346 {
347 
348 	panic("%s called", __FUNCTION__);
349 }
350 
351 void
352 softdep_setup_link(dp, ip)
353 	struct inode *dp;
354 	struct inode *ip;
355 {
356 
357 	panic("%s called", __FUNCTION__);
358 }
359 
360 void
361 softdep_revert_link(dp, ip)
362 	struct inode *dp;
363 	struct inode *ip;
364 {
365 
366 	panic("%s called", __FUNCTION__);
367 }
368 
369 void
370 softdep_setup_rmdir(dp, ip)
371 	struct inode *dp;
372 	struct inode *ip;
373 {
374 
375 	panic("%s called", __FUNCTION__);
376 }
377 
378 void
379 softdep_revert_rmdir(dp, ip)
380 	struct inode *dp;
381 	struct inode *ip;
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 void
388 softdep_setup_create(dp, ip)
389 	struct inode *dp;
390 	struct inode *ip;
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 void
397 softdep_revert_create(dp, ip)
398 	struct inode *dp;
399 	struct inode *ip;
400 {
401 
402 	panic("%s called", __FUNCTION__);
403 }
404 
405 void
406 softdep_setup_mkdir(dp, ip)
407 	struct inode *dp;
408 	struct inode *ip;
409 {
410 
411 	panic("%s called", __FUNCTION__);
412 }
413 
414 void
415 softdep_revert_mkdir(dp, ip)
416 	struct inode *dp;
417 	struct inode *ip;
418 {
419 
420 	panic("%s called", __FUNCTION__);
421 }
422 
423 void
424 softdep_setup_dotdot_link(dp, ip)
425 	struct inode *dp;
426 	struct inode *ip;
427 {
428 
429 	panic("%s called", __FUNCTION__);
430 }
431 
432 int
433 softdep_prealloc(vp, waitok)
434 	struct vnode *vp;
435 	int waitok;
436 {
437 
438 	panic("%s called", __FUNCTION__);
439 }
440 
441 int
442 softdep_journal_lookup(mp, vpp)
443 	struct mount *mp;
444 	struct vnode **vpp;
445 {
446 
447 	return (ENOENT);
448 }
449 
450 void
451 softdep_change_linkcnt(ip)
452 	struct inode *ip;
453 {
454 
455 	panic("softdep_change_linkcnt called");
456 }
457 
458 void
459 softdep_load_inodeblock(ip)
460 	struct inode *ip;
461 {
462 
463 	panic("softdep_load_inodeblock called");
464 }
465 
466 void
467 softdep_update_inodeblock(ip, bp, waitfor)
468 	struct inode *ip;
469 	struct buf *bp;
470 	int waitfor;
471 {
472 
473 	panic("softdep_update_inodeblock called");
474 }
475 
476 int
477 softdep_fsync(vp)
478 	struct vnode *vp;	/* the "in_core" copy of the inode */
479 {
480 
481 	return (0);
482 }
483 
484 void
485 softdep_fsync_mountdev(vp)
486 	struct vnode *vp;
487 {
488 
489 	return;
490 }
491 
492 int
493 softdep_flushworklist(oldmnt, countp, td)
494 	struct mount *oldmnt;
495 	int *countp;
496 	struct thread *td;
497 {
498 
499 	*countp = 0;
500 	return (0);
501 }
502 
503 int
504 softdep_sync_metadata(struct vnode *vp)
505 {
506 
507 	panic("softdep_sync_metadata called");
508 }
509 
510 int
511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512 {
513 
514 	panic("softdep_sync_buf called");
515 }
516 
517 int
518 softdep_slowdown(vp)
519 	struct vnode *vp;
520 {
521 
522 	panic("softdep_slowdown called");
523 }
524 
525 int
526 softdep_request_cleanup(fs, vp, cred, resource)
527 	struct fs *fs;
528 	struct vnode *vp;
529 	struct ucred *cred;
530 	int resource;
531 {
532 
533 	return (0);
534 }
535 
536 int
537 softdep_check_suspend(struct mount *mp,
538 		      struct vnode *devvp,
539 		      int softdep_depcnt,
540 		      int softdep_accdepcnt,
541 		      int secondary_writes,
542 		      int secondary_accwrites)
543 {
544 	struct bufobj *bo;
545 	int error;
546 
547 	(void) softdep_depcnt,
548 	(void) softdep_accdepcnt;
549 
550 	bo = &devvp->v_bufobj;
551 	ASSERT_BO_WLOCKED(bo);
552 
553 	MNT_ILOCK(mp);
554 	while (mp->mnt_secondary_writes != 0) {
555 		BO_UNLOCK(bo);
556 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557 		    (PUSER - 1) | PDROP, "secwr", 0);
558 		BO_LOCK(bo);
559 		MNT_ILOCK(mp);
560 	}
561 
562 	/*
563 	 * Reasons for needing more work before suspend:
564 	 * - Dirty buffers on devvp.
565 	 * - Secondary writes occurred after start of vnode sync loop
566 	 */
567 	error = 0;
568 	if (bo->bo_numoutput > 0 ||
569 	    bo->bo_dirty.bv_cnt > 0 ||
570 	    secondary_writes != 0 ||
571 	    mp->mnt_secondary_writes != 0 ||
572 	    secondary_accwrites != mp->mnt_secondary_accwrites)
573 		error = EAGAIN;
574 	BO_UNLOCK(bo);
575 	return (error);
576 }
577 
578 void
579 softdep_get_depcounts(struct mount *mp,
580 		      int *softdepactivep,
581 		      int *softdepactiveaccp)
582 {
583 	(void) mp;
584 	*softdepactivep = 0;
585 	*softdepactiveaccp = 0;
586 }
587 
588 void
589 softdep_buf_append(bp, wkhd)
590 	struct buf *bp;
591 	struct workhead *wkhd;
592 {
593 
594 	panic("softdep_buf_appendwork called");
595 }
596 
597 void
598 softdep_inode_append(ip, cred, wkhd)
599 	struct inode *ip;
600 	struct ucred *cred;
601 	struct workhead *wkhd;
602 {
603 
604 	panic("softdep_inode_appendwork called");
605 }
606 
607 void
608 softdep_freework(wkhd)
609 	struct workhead *wkhd;
610 {
611 
612 	panic("softdep_freework called");
613 }
614 
615 #else
616 
617 FEATURE(softupdates, "FFS soft-updates support");
618 
619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620     "soft updates stats");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622     "total dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624     "high use dependencies allocated");
625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626     "current dependencies allocated");
627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628     "current dependencies written");
629 
630 unsigned long dep_current[D_LAST + 1];
631 unsigned long dep_highuse[D_LAST + 1];
632 unsigned long dep_total[D_LAST + 1];
633 unsigned long dep_write[D_LAST + 1];
634 
635 #define	SOFTDEP_TYPE(type, str, long)					\
636     static MALLOC_DEFINE(M_ ## type, #str, long);			\
637     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638 	&dep_total[D_ ## type], 0, "");					\
639     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_current[D_ ## type], 0, "");				\
641     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642 	&dep_highuse[D_ ## type], 0, "");				\
643     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644 	&dep_write[D_ ## type], 0, "");
645 
646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649     "Block or frag allocated from cyl group map");
650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674 
675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676 
677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680 
681 #define M_SOFTDEP_FLAGS	(M_WAITOK)
682 
683 /*
684  * translate from workitem type to memory type
685  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686  */
687 static struct malloc_type *memtype[] = {
688 	M_PAGEDEP,
689 	M_INODEDEP,
690 	M_BMSAFEMAP,
691 	M_NEWBLK,
692 	M_ALLOCDIRECT,
693 	M_INDIRDEP,
694 	M_ALLOCINDIR,
695 	M_FREEFRAG,
696 	M_FREEBLKS,
697 	M_FREEFILE,
698 	M_DIRADD,
699 	M_MKDIR,
700 	M_DIRREM,
701 	M_NEWDIRBLK,
702 	M_FREEWORK,
703 	M_FREEDEP,
704 	M_JADDREF,
705 	M_JREMREF,
706 	M_JMVREF,
707 	M_JNEWBLK,
708 	M_JFREEBLK,
709 	M_JFREEFRAG,
710 	M_JSEG,
711 	M_JSEGDEP,
712 	M_SBDEP,
713 	M_JTRUNC,
714 	M_JFSYNC,
715 	M_SENTINEL
716 };
717 
718 #define DtoM(type) (memtype[type])
719 
720 /*
721  * Names of malloc types.
722  */
723 #define TYPENAME(type)  \
724 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725 /*
726  * End system adaptation definitions.
727  */
728 
729 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731 
732 /*
733  * Internal function prototypes.
734  */
735 static	void check_clear_deps(struct mount *);
736 static	void softdep_error(char *, int);
737 static	int softdep_process_worklist(struct mount *, int);
738 static	int softdep_waitidle(struct mount *, int);
739 static	void drain_output(struct vnode *);
740 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741 static	void clear_remove(struct mount *);
742 static	void clear_inodedeps(struct mount *);
743 static	void unlinked_inodedep(struct mount *, struct inodedep *);
744 static	void clear_unlinked_inodedep(struct inodedep *);
745 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
746 static	int flush_pagedep_deps(struct vnode *, struct mount *,
747 	    struct diraddhd *);
748 static	int free_pagedep(struct pagedep *);
749 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
750 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
751 static	int flush_deplist(struct allocdirectlst *, int, int *);
752 static	int sync_cgs(struct mount *, int);
753 static	int handle_written_filepage(struct pagedep *, struct buf *);
754 static	int handle_written_sbdep(struct sbdep *, struct buf *);
755 static	void initiate_write_sbdep(struct sbdep *);
756 static	void diradd_inode_written(struct diradd *, struct inodedep *);
757 static	int handle_written_indirdep(struct indirdep *, struct buf *,
758 	    struct buf**);
759 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
760 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
761 	    uint8_t *);
762 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
763 static	void handle_written_jaddref(struct jaddref *);
764 static	void handle_written_jremref(struct jremref *);
765 static	void handle_written_jseg(struct jseg *, struct buf *);
766 static	void handle_written_jnewblk(struct jnewblk *);
767 static	void handle_written_jblkdep(struct jblkdep *);
768 static	void handle_written_jfreefrag(struct jfreefrag *);
769 static	void complete_jseg(struct jseg *);
770 static	void complete_jsegs(struct jseg *);
771 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
772 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
773 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
774 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
775 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
776 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
777 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
778 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
779 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
780 static	inline void inoref_write(struct inoref *, struct jseg *,
781 	    struct jrefrec *);
782 static	void handle_allocdirect_partdone(struct allocdirect *,
783 	    struct workhead *);
784 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
785 	    struct workhead *);
786 static	void indirdep_complete(struct indirdep *);
787 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
788 static	void indirblk_insert(struct freework *);
789 static	void indirblk_remove(struct freework *);
790 static	void handle_allocindir_partdone(struct allocindir *);
791 static	void initiate_write_filepage(struct pagedep *, struct buf *);
792 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
793 static	void handle_written_mkdir(struct mkdir *, int);
794 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
795 	    uint8_t *);
796 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
797 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
798 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
799 static	void handle_workitem_freefile(struct freefile *);
800 static	int handle_workitem_remove(struct dirrem *, int);
801 static	struct dirrem *newdirrem(struct buf *, struct inode *,
802 	    struct inode *, int, struct dirrem **);
803 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
804 	    struct buf *);
805 static	void cancel_indirdep(struct indirdep *, struct buf *,
806 	    struct freeblks *);
807 static	void free_indirdep(struct indirdep *);
808 static	void free_diradd(struct diradd *, struct workhead *);
809 static	void merge_diradd(struct inodedep *, struct diradd *);
810 static	void complete_diradd(struct diradd *);
811 static	struct diradd *diradd_lookup(struct pagedep *, int);
812 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
813 	    struct jremref *);
814 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
817 	    struct jremref *, struct jremref *);
818 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
819 	    struct jremref *);
820 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
821 	    struct freeblks *, int);
822 static	int setup_trunc_indir(struct freeblks *, struct inode *,
823 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
824 static	void complete_trunc_indir(struct freework *);
825 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
826 	    int);
827 static	void complete_mkdir(struct mkdir *);
828 static	void free_newdirblk(struct newdirblk *);
829 static	void free_jremref(struct jremref *);
830 static	void free_jaddref(struct jaddref *);
831 static	void free_jsegdep(struct jsegdep *);
832 static	void free_jsegs(struct jblocks *);
833 static	void rele_jseg(struct jseg *);
834 static	void free_jseg(struct jseg *, struct jblocks *);
835 static	void free_jnewblk(struct jnewblk *);
836 static	void free_jblkdep(struct jblkdep *);
837 static	void free_jfreefrag(struct jfreefrag *);
838 static	void free_freedep(struct freedep *);
839 static	void journal_jremref(struct dirrem *, struct jremref *,
840 	    struct inodedep *);
841 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
842 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
843 	    struct workhead *);
844 static	void cancel_jfreefrag(struct jfreefrag *);
845 static	inline void setup_freedirect(struct freeblks *, struct inode *,
846 	    int, int);
847 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
848 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
849 	    ufs_lbn_t, int);
850 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
851 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
852 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
853 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
854 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
855 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
856 	    int, int);
857 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
858 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
859 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
860 static	void newblk_freefrag(struct newblk*);
861 static	void free_newblk(struct newblk *);
862 static	void cancel_allocdirect(struct allocdirectlst *,
863 	    struct allocdirect *, struct freeblks *);
864 static	int check_inode_unwritten(struct inodedep *);
865 static	int free_inodedep(struct inodedep *);
866 static	void freework_freeblock(struct freework *);
867 static	void freework_enqueue(struct freework *);
868 static	int handle_workitem_freeblocks(struct freeblks *, int);
869 static	int handle_complete_freeblocks(struct freeblks *, int);
870 static	void handle_workitem_indirblk(struct freework *);
871 static	void handle_written_freework(struct freework *);
872 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
873 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
874 	    struct workhead *);
875 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
876 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
877 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
878 	    ufs2_daddr_t, ufs_lbn_t);
879 static	void handle_workitem_freefrag(struct freefrag *);
880 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
881 	    ufs_lbn_t);
882 static	void allocdirect_merge(struct allocdirectlst *,
883 	    struct allocdirect *, struct allocdirect *);
884 static	struct freefrag *allocindir_merge(struct allocindir *,
885 	    struct allocindir *);
886 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
887 	    struct bmsafemap **);
888 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
889 	    int cg, struct bmsafemap *);
890 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
891 	    struct newblk **);
892 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
893 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
894 	    struct inodedep **);
895 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
896 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
897 	    int, struct pagedep **);
898 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
899 	    struct pagedep **);
900 static	void pause_timer(void *);
901 static	int request_cleanup(struct mount *, int);
902 static	int process_worklist_item(struct mount *, int, int);
903 static	void process_removes(struct vnode *);
904 static	void process_truncates(struct vnode *);
905 static	void jwork_move(struct workhead *, struct workhead *);
906 static	void jwork_insert(struct workhead *, struct jsegdep *);
907 static	void add_to_worklist(struct worklist *, int);
908 static	void wake_worklist(struct worklist *);
909 static	void wait_worklist(struct worklist *, char *);
910 static	void remove_from_worklist(struct worklist *);
911 static	void softdep_flush(void *);
912 static	void softdep_flushjournal(struct mount *);
913 static	int softdep_speedup(struct ufsmount *);
914 static	void worklist_speedup(struct mount *);
915 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
916 static	void journal_unmount(struct ufsmount *);
917 static	int journal_space(struct ufsmount *, int);
918 static	void journal_suspend(struct ufsmount *);
919 static	int journal_unsuspend(struct ufsmount *ump);
920 static	void softdep_prelink(struct vnode *, struct vnode *);
921 static	void add_to_journal(struct worklist *);
922 static	void remove_from_journal(struct worklist *);
923 static	void softdep_process_journal(struct mount *, struct worklist *, int);
924 static	struct jremref *newjremref(struct dirrem *, struct inode *,
925 	    struct inode *ip, off_t, nlink_t);
926 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
927 	    uint16_t);
928 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
929 	    uint16_t);
930 static	inline struct jsegdep *inoref_jseg(struct inoref *);
931 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
932 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
933 	    ufs2_daddr_t, int);
934 static	void adjust_newfreework(struct freeblks *, int);
935 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
936 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
937 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
938 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
939 	    ufs2_daddr_t, long, ufs_lbn_t);
940 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
941 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
942 static	int jwait(struct worklist *, int);
943 static	struct inodedep *inodedep_lookup_ip(struct inode *);
944 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
945 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
946 static	void handle_jwork(struct workhead *);
947 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
948 	    struct mkdir **);
949 static	struct jblocks *jblocks_create(void);
950 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
951 static	void jblocks_free(struct jblocks *, struct mount *, int);
952 static	void jblocks_destroy(struct jblocks *);
953 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
954 
955 /*
956  * Exported softdep operations.
957  */
958 static	void softdep_disk_io_initiation(struct buf *);
959 static	void softdep_disk_write_complete(struct buf *);
960 static	void softdep_deallocate_dependencies(struct buf *);
961 static	int softdep_count_dependencies(struct buf *bp, int);
962 
963 /*
964  * Global lock over all of soft updates.
965  */
966 static struct mtx lk;
967 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
968 
969 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
970 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
971 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
972 
973 /*
974  * Per-filesystem soft-updates locking.
975  */
976 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
977 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
978 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
979 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
980 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
981 				    RA_WLOCKED)
982 
983 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
984 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
985 
986 /*
987  * Worklist queue management.
988  * These routines require that the lock be held.
989  */
990 #ifndef /* NOT */ DEBUG
991 #define WORKLIST_INSERT(head, item) do {	\
992 	(item)->wk_state |= ONWORKLIST;		\
993 	LIST_INSERT_HEAD(head, item, wk_list);	\
994 } while (0)
995 #define WORKLIST_REMOVE(item) do {		\
996 	(item)->wk_state &= ~ONWORKLIST;	\
997 	LIST_REMOVE(item, wk_list);		\
998 } while (0)
999 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1000 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1001 
1002 #else /* DEBUG */
1003 static	void worklist_insert(struct workhead *, struct worklist *, int);
1004 static	void worklist_remove(struct worklist *, int);
1005 
1006 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1007 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1008 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1009 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1010 
1011 static void
1012 worklist_insert(head, item, locked)
1013 	struct workhead *head;
1014 	struct worklist *item;
1015 	int locked;
1016 {
1017 
1018 	if (locked)
1019 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1020 	if (item->wk_state & ONWORKLIST)
1021 		panic("worklist_insert: %p %s(0x%X) already on list",
1022 		    item, TYPENAME(item->wk_type), item->wk_state);
1023 	item->wk_state |= ONWORKLIST;
1024 	LIST_INSERT_HEAD(head, item, wk_list);
1025 }
1026 
1027 static void
1028 worklist_remove(item, locked)
1029 	struct worklist *item;
1030 	int locked;
1031 {
1032 
1033 	if (locked)
1034 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1035 	if ((item->wk_state & ONWORKLIST) == 0)
1036 		panic("worklist_remove: %p %s(0x%X) not on list",
1037 		    item, TYPENAME(item->wk_type), item->wk_state);
1038 	item->wk_state &= ~ONWORKLIST;
1039 	LIST_REMOVE(item, wk_list);
1040 }
1041 #endif /* DEBUG */
1042 
1043 /*
1044  * Merge two jsegdeps keeping only the oldest one as newer references
1045  * can't be discarded until after older references.
1046  */
1047 static inline struct jsegdep *
1048 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1049 {
1050 	struct jsegdep *swp;
1051 
1052 	if (two == NULL)
1053 		return (one);
1054 
1055 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1056 		swp = one;
1057 		one = two;
1058 		two = swp;
1059 	}
1060 	WORKLIST_REMOVE(&two->jd_list);
1061 	free_jsegdep(two);
1062 
1063 	return (one);
1064 }
1065 
1066 /*
1067  * If two freedeps are compatible free one to reduce list size.
1068  */
1069 static inline struct freedep *
1070 freedep_merge(struct freedep *one, struct freedep *two)
1071 {
1072 	if (two == NULL)
1073 		return (one);
1074 
1075 	if (one->fd_freework == two->fd_freework) {
1076 		WORKLIST_REMOVE(&two->fd_list);
1077 		free_freedep(two);
1078 	}
1079 	return (one);
1080 }
1081 
1082 /*
1083  * Move journal work from one list to another.  Duplicate freedeps and
1084  * jsegdeps are coalesced to keep the lists as small as possible.
1085  */
1086 static void
1087 jwork_move(dst, src)
1088 	struct workhead *dst;
1089 	struct workhead *src;
1090 {
1091 	struct freedep *freedep;
1092 	struct jsegdep *jsegdep;
1093 	struct worklist *wkn;
1094 	struct worklist *wk;
1095 
1096 	KASSERT(dst != src,
1097 	    ("jwork_move: dst == src"));
1098 	freedep = NULL;
1099 	jsegdep = NULL;
1100 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1101 		if (wk->wk_type == D_JSEGDEP)
1102 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1103 		else if (wk->wk_type == D_FREEDEP)
1104 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1105 	}
1106 
1107 	while ((wk = LIST_FIRST(src)) != NULL) {
1108 		WORKLIST_REMOVE(wk);
1109 		WORKLIST_INSERT(dst, wk);
1110 		if (wk->wk_type == D_JSEGDEP) {
1111 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1112 			continue;
1113 		}
1114 		if (wk->wk_type == D_FREEDEP)
1115 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1116 	}
1117 }
1118 
1119 static void
1120 jwork_insert(dst, jsegdep)
1121 	struct workhead *dst;
1122 	struct jsegdep *jsegdep;
1123 {
1124 	struct jsegdep *jsegdepn;
1125 	struct worklist *wk;
1126 
1127 	LIST_FOREACH(wk, dst, wk_list)
1128 		if (wk->wk_type == D_JSEGDEP)
1129 			break;
1130 	if (wk == NULL) {
1131 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1132 		return;
1133 	}
1134 	jsegdepn = WK_JSEGDEP(wk);
1135 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1136 		WORKLIST_REMOVE(wk);
1137 		free_jsegdep(jsegdepn);
1138 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1139 	} else
1140 		free_jsegdep(jsegdep);
1141 }
1142 
1143 /*
1144  * Routines for tracking and managing workitems.
1145  */
1146 static	void workitem_free(struct worklist *, int);
1147 static	void workitem_alloc(struct worklist *, int, struct mount *);
1148 static	void workitem_reassign(struct worklist *, int);
1149 
1150 #define	WORKITEM_FREE(item, type) \
1151 	workitem_free((struct worklist *)(item), (type))
1152 #define	WORKITEM_REASSIGN(item, type) \
1153 	workitem_reassign((struct worklist *)(item), (type))
1154 
1155 static void
1156 workitem_free(item, type)
1157 	struct worklist *item;
1158 	int type;
1159 {
1160 	struct ufsmount *ump;
1161 
1162 #ifdef DEBUG
1163 	if (item->wk_state & ONWORKLIST)
1164 		panic("workitem_free: %s(0x%X) still on list",
1165 		    TYPENAME(item->wk_type), item->wk_state);
1166 	if (item->wk_type != type && type != D_NEWBLK)
1167 		panic("workitem_free: type mismatch %s != %s",
1168 		    TYPENAME(item->wk_type), TYPENAME(type));
1169 #endif
1170 	if (item->wk_state & IOWAITING)
1171 		wakeup(item);
1172 	ump = VFSTOUFS(item->wk_mp);
1173 	LOCK_OWNED(ump);
1174 	KASSERT(ump->softdep_deps > 0,
1175 	    ("workitem_free: %s: softdep_deps going negative",
1176 	    ump->um_fs->fs_fsmnt));
1177 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1178 		wakeup(&ump->softdep_deps);
1179 	KASSERT(dep_current[item->wk_type] > 0,
1180 	    ("workitem_free: %s: dep_current[%s] going negative",
1181 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1182 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1183 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1184 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1185 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1186 	ump->softdep_curdeps[item->wk_type] -= 1;
1187 	free(item, DtoM(type));
1188 }
1189 
1190 static void
1191 workitem_alloc(item, type, mp)
1192 	struct worklist *item;
1193 	int type;
1194 	struct mount *mp;
1195 {
1196 	struct ufsmount *ump;
1197 
1198 	item->wk_type = type;
1199 	item->wk_mp = mp;
1200 	item->wk_state = 0;
1201 
1202 	ump = VFSTOUFS(mp);
1203 	ACQUIRE_GBLLOCK(&lk);
1204 	dep_current[type]++;
1205 	if (dep_current[type] > dep_highuse[type])
1206 		dep_highuse[type] = dep_current[type];
1207 	dep_total[type]++;
1208 	FREE_GBLLOCK(&lk);
1209 	ACQUIRE_LOCK(ump);
1210 	ump->softdep_curdeps[type] += 1;
1211 	ump->softdep_deps++;
1212 	ump->softdep_accdeps++;
1213 	FREE_LOCK(ump);
1214 }
1215 
1216 static void
1217 workitem_reassign(item, newtype)
1218 	struct worklist *item;
1219 	int newtype;
1220 {
1221 	struct ufsmount *ump;
1222 
1223 	ump = VFSTOUFS(item->wk_mp);
1224 	LOCK_OWNED(ump);
1225 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1226 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1227 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1228 	ump->softdep_curdeps[item->wk_type] -= 1;
1229 	ump->softdep_curdeps[newtype] += 1;
1230 	KASSERT(dep_current[item->wk_type] > 0,
1231 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1232 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1233 	ACQUIRE_GBLLOCK(&lk);
1234 	dep_current[newtype]++;
1235 	dep_current[item->wk_type]--;
1236 	if (dep_current[newtype] > dep_highuse[newtype])
1237 		dep_highuse[newtype] = dep_current[newtype];
1238 	dep_total[newtype]++;
1239 	FREE_GBLLOCK(&lk);
1240 	item->wk_type = newtype;
1241 }
1242 
1243 /*
1244  * Workitem queue management
1245  */
1246 static int max_softdeps;	/* maximum number of structs before slowdown */
1247 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1248 static int proc_waiting;	/* tracks whether we have a timeout posted */
1249 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1250 static struct callout softdep_callout;
1251 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1252 static int req_clear_remove;	/* syncer process flush some freeblks */
1253 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1254 
1255 /*
1256  * runtime statistics
1257  */
1258 static int stat_flush_threads;	/* number of softdep flushing threads */
1259 static int stat_worklist_push;	/* number of worklist cleanups */
1260 static int stat_blk_limit_push;	/* number of times block limit neared */
1261 static int stat_ino_limit_push;	/* number of times inode limit neared */
1262 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1263 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1264 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1265 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1266 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1267 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1268 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1269 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1270 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1271 static int stat_journal_min;	/* Times hit journal min threshold */
1272 static int stat_journal_low;	/* Times hit journal low threshold */
1273 static int stat_journal_wait;	/* Times blocked in jwait(). */
1274 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1275 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1276 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1277 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1278 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1279 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1280 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1281 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1282 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1283 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1284 
1285 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1286     &max_softdeps, 0, "");
1287 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1288     &tickdelay, 0, "");
1289 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1290     &stat_flush_threads, 0, "");
1291 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1292     &stat_worklist_push, 0,"");
1293 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1294     &stat_blk_limit_push, 0,"");
1295 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1296     &stat_ino_limit_push, 0,"");
1297 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1298     &stat_blk_limit_hit, 0, "");
1299 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1300     &stat_ino_limit_hit, 0, "");
1301 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1302     &stat_sync_limit_hit, 0, "");
1303 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1304     &stat_indir_blk_ptrs, 0, "");
1305 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1306     &stat_inode_bitmap, 0, "");
1307 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1308     &stat_direct_blk_ptrs, 0, "");
1309 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1310     &stat_dir_entry, 0, "");
1311 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1312     &stat_jaddref, 0, "");
1313 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1314     &stat_jnewblk, 0, "");
1315 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1316     &stat_journal_low, 0, "");
1317 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1318     &stat_journal_min, 0, "");
1319 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1320     &stat_journal_wait, 0, "");
1321 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1322     &stat_jwait_filepage, 0, "");
1323 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1324     &stat_jwait_freeblks, 0, "");
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1326     &stat_jwait_inode, 0, "");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1328     &stat_jwait_newblk, 0, "");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1330     &stat_cleanup_blkrequests, 0, "");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1332     &stat_cleanup_inorequests, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1334     &stat_cleanup_high_delay, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1336     &stat_cleanup_retries, 0, "");
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1338     &stat_cleanup_failures, 0, "");
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1340     &softdep_flushcache, 0, "");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1342     &stat_emptyjblocks, 0, "");
1343 
1344 SYSCTL_DECL(_vfs_ffs);
1345 
1346 /* Whether to recompute the summary at mount time */
1347 static int compute_summary_at_mount = 0;
1348 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1349 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1350 static int print_threads = 0;
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1352     &print_threads, 0, "Notify flusher thread start/stop");
1353 
1354 /* List of all filesystems mounted with soft updates */
1355 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1356 
1357 /*
1358  * This function cleans the worklist for a filesystem.
1359  * Each filesystem running with soft dependencies gets its own
1360  * thread to run in this function. The thread is started up in
1361  * softdep_mount and shutdown in softdep_unmount. They show up
1362  * as part of the kernel "bufdaemon" process whose process
1363  * entry is available in bufdaemonproc.
1364  */
1365 static int searchfailed;
1366 extern struct proc *bufdaemonproc;
1367 static void
1368 softdep_flush(addr)
1369 	void *addr;
1370 {
1371 	struct mount *mp;
1372 	struct thread *td;
1373 	struct ufsmount *ump;
1374 
1375 	td = curthread;
1376 	td->td_pflags |= TDP_NORUNNINGBUF;
1377 	mp = (struct mount *)addr;
1378 	ump = VFSTOUFS(mp);
1379 	atomic_add_int(&stat_flush_threads, 1);
1380 	if (print_threads) {
1381 		if (stat_flush_threads == 1)
1382 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1383 			    bufdaemonproc->p_pid);
1384 		printf("Start thread %s\n", td->td_name);
1385 	}
1386 	for (;;) {
1387 		while (softdep_process_worklist(mp, 0) > 0 ||
1388 		    (MOUNTEDSUJ(mp) &&
1389 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1390 			kthread_suspend_check();
1391 		ACQUIRE_LOCK(ump);
1392 		if ((ump->softdep_flags & FLUSH_CLEANUP) == 0)
1393 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1394 			    "sdflush", hz / 2);
1395 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1396 		/*
1397 		 * Check to see if we are done and need to exit.
1398 		 */
1399 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1400 			FREE_LOCK(ump);
1401 			continue;
1402 		}
1403 		ump->softdep_flags &= ~FLUSH_EXIT;
1404 		FREE_LOCK(ump);
1405 		wakeup(&ump->softdep_flags);
1406 		if (print_threads)
1407 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1408 		atomic_subtract_int(&stat_flush_threads, 1);
1409 		kthread_exit();
1410 		panic("kthread_exit failed\n");
1411 	}
1412 }
1413 
1414 static void
1415 worklist_speedup(mp)
1416 	struct mount *mp;
1417 {
1418 	struct ufsmount *ump;
1419 
1420 	ump = VFSTOUFS(mp);
1421 	LOCK_OWNED(ump);
1422 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) {
1423 		ump->softdep_flags |= FLUSH_CLEANUP;
1424 		if (ump->softdep_flushtd->td_wchan == &ump->softdep_flushtd)
1425 			wakeup(&ump->softdep_flushtd);
1426 	}
1427 }
1428 
1429 static int
1430 softdep_speedup(ump)
1431 	struct ufsmount *ump;
1432 {
1433 	struct ufsmount *altump;
1434 	struct mount_softdeps *sdp;
1435 
1436 	LOCK_OWNED(ump);
1437 	worklist_speedup(ump->um_mountp);
1438 	bd_speedup();
1439 	/*
1440 	 * If we have global shortages, then we need other
1441 	 * filesystems to help with the cleanup. Here we wakeup a
1442 	 * flusher thread for a filesystem that is over its fair
1443 	 * share of resources.
1444 	 */
1445 	if (req_clear_inodedeps || req_clear_remove) {
1446 		ACQUIRE_GBLLOCK(&lk);
1447 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1448 			if ((altump = sdp->sd_ump) == ump)
1449 				continue;
1450 			if (((req_clear_inodedeps &&
1451 			    altump->softdep_curdeps[D_INODEDEP] >
1452 			    max_softdeps / stat_flush_threads) ||
1453 			    (req_clear_remove &&
1454 			    altump->softdep_curdeps[D_DIRREM] >
1455 			    (max_softdeps / 2) / stat_flush_threads)) &&
1456 			    TRY_ACQUIRE_LOCK(altump))
1457 				break;
1458 		}
1459 		if (sdp == NULL) {
1460 			searchfailed++;
1461 			FREE_GBLLOCK(&lk);
1462 		} else {
1463 			/*
1464 			 * Move to the end of the list so we pick a
1465 			 * different one on out next try.
1466 			 */
1467 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1468 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1469 			FREE_GBLLOCK(&lk);
1470 			if ((altump->softdep_flags &
1471 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) {
1472 				altump->softdep_flags |= FLUSH_CLEANUP;
1473 				altump->um_softdep->sd_cleanups++;
1474 				if (altump->softdep_flushtd->td_wchan ==
1475 				    &altump->softdep_flushtd) {
1476 					wakeup(&altump->softdep_flushtd);
1477 				}
1478 			}
1479 			FREE_LOCK(altump);
1480 		}
1481 	}
1482 	return (speedup_syncer());
1483 }
1484 
1485 /*
1486  * Add an item to the end of the work queue.
1487  * This routine requires that the lock be held.
1488  * This is the only routine that adds items to the list.
1489  * The following routine is the only one that removes items
1490  * and does so in order from first to last.
1491  */
1492 
1493 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1494 #define	WK_NODELAY	0x0002	/* Process immediately. */
1495 
1496 static void
1497 add_to_worklist(wk, flags)
1498 	struct worklist *wk;
1499 	int flags;
1500 {
1501 	struct ufsmount *ump;
1502 
1503 	ump = VFSTOUFS(wk->wk_mp);
1504 	LOCK_OWNED(ump);
1505 	if (wk->wk_state & ONWORKLIST)
1506 		panic("add_to_worklist: %s(0x%X) already on list",
1507 		    TYPENAME(wk->wk_type), wk->wk_state);
1508 	wk->wk_state |= ONWORKLIST;
1509 	if (ump->softdep_on_worklist == 0) {
1510 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1511 		ump->softdep_worklist_tail = wk;
1512 	} else if (flags & WK_HEAD) {
1513 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1514 	} else {
1515 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1516 		ump->softdep_worklist_tail = wk;
1517 	}
1518 	ump->softdep_on_worklist += 1;
1519 	if (flags & WK_NODELAY)
1520 		worklist_speedup(wk->wk_mp);
1521 }
1522 
1523 /*
1524  * Remove the item to be processed. If we are removing the last
1525  * item on the list, we need to recalculate the tail pointer.
1526  */
1527 static void
1528 remove_from_worklist(wk)
1529 	struct worklist *wk;
1530 {
1531 	struct ufsmount *ump;
1532 
1533 	ump = VFSTOUFS(wk->wk_mp);
1534 	WORKLIST_REMOVE(wk);
1535 	if (ump->softdep_worklist_tail == wk)
1536 		ump->softdep_worklist_tail =
1537 		    (struct worklist *)wk->wk_list.le_prev;
1538 	ump->softdep_on_worklist -= 1;
1539 }
1540 
1541 static void
1542 wake_worklist(wk)
1543 	struct worklist *wk;
1544 {
1545 	if (wk->wk_state & IOWAITING) {
1546 		wk->wk_state &= ~IOWAITING;
1547 		wakeup(wk);
1548 	}
1549 }
1550 
1551 static void
1552 wait_worklist(wk, wmesg)
1553 	struct worklist *wk;
1554 	char *wmesg;
1555 {
1556 	struct ufsmount *ump;
1557 
1558 	ump = VFSTOUFS(wk->wk_mp);
1559 	wk->wk_state |= IOWAITING;
1560 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1561 }
1562 
1563 /*
1564  * Process that runs once per second to handle items in the background queue.
1565  *
1566  * Note that we ensure that everything is done in the order in which they
1567  * appear in the queue. The code below depends on this property to ensure
1568  * that blocks of a file are freed before the inode itself is freed. This
1569  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1570  * until all the old ones have been purged from the dependency lists.
1571  */
1572 static int
1573 softdep_process_worklist(mp, full)
1574 	struct mount *mp;
1575 	int full;
1576 {
1577 	int cnt, matchcnt;
1578 	struct ufsmount *ump;
1579 	long starttime;
1580 
1581 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1582 	if (MOUNTEDSOFTDEP(mp) == 0)
1583 		return (0);
1584 	matchcnt = 0;
1585 	ump = VFSTOUFS(mp);
1586 	ACQUIRE_LOCK(ump);
1587 	starttime = time_second;
1588 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1589 	check_clear_deps(mp);
1590 	while (ump->softdep_on_worklist > 0) {
1591 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1592 			break;
1593 		else
1594 			matchcnt += cnt;
1595 		check_clear_deps(mp);
1596 		/*
1597 		 * We do not generally want to stop for buffer space, but if
1598 		 * we are really being a buffer hog, we will stop and wait.
1599 		 */
1600 		if (should_yield()) {
1601 			FREE_LOCK(ump);
1602 			kern_yield(PRI_USER);
1603 			bwillwrite();
1604 			ACQUIRE_LOCK(ump);
1605 		}
1606 		/*
1607 		 * Never allow processing to run for more than one
1608 		 * second. This gives the syncer thread the opportunity
1609 		 * to pause if appropriate.
1610 		 */
1611 		if (!full && starttime != time_second)
1612 			break;
1613 	}
1614 	if (full == 0)
1615 		journal_unsuspend(ump);
1616 	FREE_LOCK(ump);
1617 	return (matchcnt);
1618 }
1619 
1620 /*
1621  * Process all removes associated with a vnode if we are running out of
1622  * journal space.  Any other process which attempts to flush these will
1623  * be unable as we have the vnodes locked.
1624  */
1625 static void
1626 process_removes(vp)
1627 	struct vnode *vp;
1628 {
1629 	struct inodedep *inodedep;
1630 	struct dirrem *dirrem;
1631 	struct ufsmount *ump;
1632 	struct mount *mp;
1633 	ino_t inum;
1634 
1635 	mp = vp->v_mount;
1636 	ump = VFSTOUFS(mp);
1637 	LOCK_OWNED(ump);
1638 	inum = VTOI(vp)->i_number;
1639 	for (;;) {
1640 top:
1641 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1642 			return;
1643 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1644 			/*
1645 			 * If another thread is trying to lock this vnode
1646 			 * it will fail but we must wait for it to do so
1647 			 * before we can proceed.
1648 			 */
1649 			if (dirrem->dm_state & INPROGRESS) {
1650 				wait_worklist(&dirrem->dm_list, "pwrwait");
1651 				goto top;
1652 			}
1653 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1654 			    (COMPLETE | ONWORKLIST))
1655 				break;
1656 		}
1657 		if (dirrem == NULL)
1658 			return;
1659 		remove_from_worklist(&dirrem->dm_list);
1660 		FREE_LOCK(ump);
1661 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1662 			panic("process_removes: suspended filesystem");
1663 		handle_workitem_remove(dirrem, 0);
1664 		vn_finished_secondary_write(mp);
1665 		ACQUIRE_LOCK(ump);
1666 	}
1667 }
1668 
1669 /*
1670  * Process all truncations associated with a vnode if we are running out
1671  * of journal space.  This is called when the vnode lock is already held
1672  * and no other process can clear the truncation.  This function returns
1673  * a value greater than zero if it did any work.
1674  */
1675 static void
1676 process_truncates(vp)
1677 	struct vnode *vp;
1678 {
1679 	struct inodedep *inodedep;
1680 	struct freeblks *freeblks;
1681 	struct ufsmount *ump;
1682 	struct mount *mp;
1683 	ino_t inum;
1684 	int cgwait;
1685 
1686 	mp = vp->v_mount;
1687 	ump = VFSTOUFS(mp);
1688 	LOCK_OWNED(ump);
1689 	inum = VTOI(vp)->i_number;
1690 	for (;;) {
1691 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1692 			return;
1693 		cgwait = 0;
1694 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1695 			/* Journal entries not yet written.  */
1696 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1697 				jwait(&LIST_FIRST(
1698 				    &freeblks->fb_jblkdephd)->jb_list,
1699 				    MNT_WAIT);
1700 				break;
1701 			}
1702 			/* Another thread is executing this item. */
1703 			if (freeblks->fb_state & INPROGRESS) {
1704 				wait_worklist(&freeblks->fb_list, "ptrwait");
1705 				break;
1706 			}
1707 			/* Freeblks is waiting on a inode write. */
1708 			if ((freeblks->fb_state & COMPLETE) == 0) {
1709 				FREE_LOCK(ump);
1710 				ffs_update(vp, 1);
1711 				ACQUIRE_LOCK(ump);
1712 				break;
1713 			}
1714 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1715 			    (ALLCOMPLETE | ONWORKLIST)) {
1716 				remove_from_worklist(&freeblks->fb_list);
1717 				freeblks->fb_state |= INPROGRESS;
1718 				FREE_LOCK(ump);
1719 				if (vn_start_secondary_write(NULL, &mp,
1720 				    V_NOWAIT))
1721 					panic("process_truncates: "
1722 					    "suspended filesystem");
1723 				handle_workitem_freeblocks(freeblks, 0);
1724 				vn_finished_secondary_write(mp);
1725 				ACQUIRE_LOCK(ump);
1726 				break;
1727 			}
1728 			if (freeblks->fb_cgwait)
1729 				cgwait++;
1730 		}
1731 		if (cgwait) {
1732 			FREE_LOCK(ump);
1733 			sync_cgs(mp, MNT_WAIT);
1734 			ffs_sync_snap(mp, MNT_WAIT);
1735 			ACQUIRE_LOCK(ump);
1736 			continue;
1737 		}
1738 		if (freeblks == NULL)
1739 			break;
1740 	}
1741 	return;
1742 }
1743 
1744 /*
1745  * Process one item on the worklist.
1746  */
1747 static int
1748 process_worklist_item(mp, target, flags)
1749 	struct mount *mp;
1750 	int target;
1751 	int flags;
1752 {
1753 	struct worklist sentinel;
1754 	struct worklist *wk;
1755 	struct ufsmount *ump;
1756 	int matchcnt;
1757 	int error;
1758 
1759 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1760 	/*
1761 	 * If we are being called because of a process doing a
1762 	 * copy-on-write, then it is not safe to write as we may
1763 	 * recurse into the copy-on-write routine.
1764 	 */
1765 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1766 		return (-1);
1767 	PHOLD(curproc);	/* Don't let the stack go away. */
1768 	ump = VFSTOUFS(mp);
1769 	LOCK_OWNED(ump);
1770 	matchcnt = 0;
1771 	sentinel.wk_mp = NULL;
1772 	sentinel.wk_type = D_SENTINEL;
1773 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1774 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1775 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1776 		if (wk->wk_type == D_SENTINEL) {
1777 			LIST_REMOVE(&sentinel, wk_list);
1778 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1779 			continue;
1780 		}
1781 		if (wk->wk_state & INPROGRESS)
1782 			panic("process_worklist_item: %p already in progress.",
1783 			    wk);
1784 		wk->wk_state |= INPROGRESS;
1785 		remove_from_worklist(wk);
1786 		FREE_LOCK(ump);
1787 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1788 			panic("process_worklist_item: suspended filesystem");
1789 		switch (wk->wk_type) {
1790 		case D_DIRREM:
1791 			/* removal of a directory entry */
1792 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1793 			break;
1794 
1795 		case D_FREEBLKS:
1796 			/* releasing blocks and/or fragments from a file */
1797 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1798 			    flags);
1799 			break;
1800 
1801 		case D_FREEFRAG:
1802 			/* releasing a fragment when replaced as a file grows */
1803 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1804 			error = 0;
1805 			break;
1806 
1807 		case D_FREEFILE:
1808 			/* releasing an inode when its link count drops to 0 */
1809 			handle_workitem_freefile(WK_FREEFILE(wk));
1810 			error = 0;
1811 			break;
1812 
1813 		default:
1814 			panic("%s_process_worklist: Unknown type %s",
1815 			    "softdep", TYPENAME(wk->wk_type));
1816 			/* NOTREACHED */
1817 		}
1818 		vn_finished_secondary_write(mp);
1819 		ACQUIRE_LOCK(ump);
1820 		if (error == 0) {
1821 			if (++matchcnt == target)
1822 				break;
1823 			continue;
1824 		}
1825 		/*
1826 		 * We have to retry the worklist item later.  Wake up any
1827 		 * waiters who may be able to complete it immediately and
1828 		 * add the item back to the head so we don't try to execute
1829 		 * it again.
1830 		 */
1831 		wk->wk_state &= ~INPROGRESS;
1832 		wake_worklist(wk);
1833 		add_to_worklist(wk, WK_HEAD);
1834 	}
1835 	LIST_REMOVE(&sentinel, wk_list);
1836 	/* Sentinal could've become the tail from remove_from_worklist. */
1837 	if (ump->softdep_worklist_tail == &sentinel)
1838 		ump->softdep_worklist_tail =
1839 		    (struct worklist *)sentinel.wk_list.le_prev;
1840 	PRELE(curproc);
1841 	return (matchcnt);
1842 }
1843 
1844 /*
1845  * Move dependencies from one buffer to another.
1846  */
1847 int
1848 softdep_move_dependencies(oldbp, newbp)
1849 	struct buf *oldbp;
1850 	struct buf *newbp;
1851 {
1852 	struct worklist *wk, *wktail;
1853 	struct ufsmount *ump;
1854 	int dirty;
1855 
1856 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1857 		return (0);
1858 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1859 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1860 	dirty = 0;
1861 	wktail = NULL;
1862 	ump = VFSTOUFS(wk->wk_mp);
1863 	ACQUIRE_LOCK(ump);
1864 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1865 		LIST_REMOVE(wk, wk_list);
1866 		if (wk->wk_type == D_BMSAFEMAP &&
1867 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1868 			dirty = 1;
1869 		if (wktail == 0)
1870 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1871 		else
1872 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1873 		wktail = wk;
1874 	}
1875 	FREE_LOCK(ump);
1876 
1877 	return (dirty);
1878 }
1879 
1880 /*
1881  * Purge the work list of all items associated with a particular mount point.
1882  */
1883 int
1884 softdep_flushworklist(oldmnt, countp, td)
1885 	struct mount *oldmnt;
1886 	int *countp;
1887 	struct thread *td;
1888 {
1889 	struct vnode *devvp;
1890 	int count, error = 0;
1891 	struct ufsmount *ump;
1892 
1893 	/*
1894 	 * Alternately flush the block device associated with the mount
1895 	 * point and process any dependencies that the flushing
1896 	 * creates. We continue until no more worklist dependencies
1897 	 * are found.
1898 	 */
1899 	*countp = 0;
1900 	ump = VFSTOUFS(oldmnt);
1901 	devvp = ump->um_devvp;
1902 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1903 		*countp += count;
1904 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1905 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1906 		VOP_UNLOCK(devvp, 0);
1907 		if (error)
1908 			break;
1909 	}
1910 	return (error);
1911 }
1912 
1913 static int
1914 softdep_waitidle(struct mount *mp, int flags __unused)
1915 {
1916 	struct ufsmount *ump;
1917 	int error;
1918 	int i;
1919 
1920 	ump = VFSTOUFS(mp);
1921 	ACQUIRE_LOCK(ump);
1922 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1923 		ump->softdep_req = 1;
1924 		KASSERT((flags & FORCECLOSE) == 0 ||
1925 		    ump->softdep_on_worklist == 0,
1926 		    ("softdep_waitidle: work added after flush"));
1927 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1);
1928 	}
1929 	ump->softdep_req = 0;
1930 	FREE_LOCK(ump);
1931 	error = 0;
1932 	if (i == 10) {
1933 		error = EBUSY;
1934 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1935 		    mp);
1936 	}
1937 
1938 	return (error);
1939 }
1940 
1941 /*
1942  * Flush all vnodes and worklist items associated with a specified mount point.
1943  */
1944 int
1945 softdep_flushfiles(oldmnt, flags, td)
1946 	struct mount *oldmnt;
1947 	int flags;
1948 	struct thread *td;
1949 {
1950 #ifdef QUOTA
1951 	struct ufsmount *ump;
1952 	int i;
1953 #endif
1954 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1955 	int morework;
1956 
1957 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1958 	    ("softdep_flushfiles called on non-softdep filesystem"));
1959 	loopcnt = 10;
1960 	retry_flush_count = 3;
1961 retry_flush:
1962 	error = 0;
1963 
1964 	/*
1965 	 * Alternately flush the vnodes associated with the mount
1966 	 * point and process any dependencies that the flushing
1967 	 * creates. In theory, this loop can happen at most twice,
1968 	 * but we give it a few extra just to be sure.
1969 	 */
1970 	for (; loopcnt > 0; loopcnt--) {
1971 		/*
1972 		 * Do another flush in case any vnodes were brought in
1973 		 * as part of the cleanup operations.
1974 		 */
1975 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1976 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1977 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1978 			break;
1979 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1980 		    depcount == 0)
1981 			break;
1982 	}
1983 	/*
1984 	 * If we are unmounting then it is an error to fail. If we
1985 	 * are simply trying to downgrade to read-only, then filesystem
1986 	 * activity can keep us busy forever, so we just fail with EBUSY.
1987 	 */
1988 	if (loopcnt == 0) {
1989 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1990 			panic("softdep_flushfiles: looping");
1991 		error = EBUSY;
1992 	}
1993 	if (!error)
1994 		error = softdep_waitidle(oldmnt, flags);
1995 	if (!error) {
1996 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1997 			retry = 0;
1998 			MNT_ILOCK(oldmnt);
1999 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2000 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2001 			morework = oldmnt->mnt_nvnodelistsize > 0;
2002 #ifdef QUOTA
2003 			ump = VFSTOUFS(oldmnt);
2004 			UFS_LOCK(ump);
2005 			for (i = 0; i < MAXQUOTAS; i++) {
2006 				if (ump->um_quotas[i] != NULLVP)
2007 					morework = 1;
2008 			}
2009 			UFS_UNLOCK(ump);
2010 #endif
2011 			if (morework) {
2012 				if (--retry_flush_count > 0) {
2013 					retry = 1;
2014 					loopcnt = 3;
2015 				} else
2016 					error = EBUSY;
2017 			}
2018 			MNT_IUNLOCK(oldmnt);
2019 			if (retry)
2020 				goto retry_flush;
2021 		}
2022 	}
2023 	return (error);
2024 }
2025 
2026 /*
2027  * Structure hashing.
2028  *
2029  * There are four types of structures that can be looked up:
2030  *	1) pagedep structures identified by mount point, inode number,
2031  *	   and logical block.
2032  *	2) inodedep structures identified by mount point and inode number.
2033  *	3) newblk structures identified by mount point and
2034  *	   physical block number.
2035  *	4) bmsafemap structures identified by mount point and
2036  *	   cylinder group number.
2037  *
2038  * The "pagedep" and "inodedep" dependency structures are hashed
2039  * separately from the file blocks and inodes to which they correspond.
2040  * This separation helps when the in-memory copy of an inode or
2041  * file block must be replaced. It also obviates the need to access
2042  * an inode or file page when simply updating (or de-allocating)
2043  * dependency structures. Lookup of newblk structures is needed to
2044  * find newly allocated blocks when trying to associate them with
2045  * their allocdirect or allocindir structure.
2046  *
2047  * The lookup routines optionally create and hash a new instance when
2048  * an existing entry is not found. The bmsafemap lookup routine always
2049  * allocates a new structure if an existing one is not found.
2050  */
2051 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2052 #define NODELAY		0x0002	/* cannot do background work */
2053 
2054 /*
2055  * Structures and routines associated with pagedep caching.
2056  */
2057 #define	PAGEDEP_HASH(ump, inum, lbn) \
2058 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2059 
2060 static int
2061 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2062 	struct pagedep_hashhead *pagedephd;
2063 	ino_t ino;
2064 	ufs_lbn_t lbn;
2065 	struct pagedep **pagedeppp;
2066 {
2067 	struct pagedep *pagedep;
2068 
2069 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2070 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2071 			*pagedeppp = pagedep;
2072 			return (1);
2073 		}
2074 	}
2075 	*pagedeppp = NULL;
2076 	return (0);
2077 }
2078 /*
2079  * Look up a pagedep. Return 1 if found, 0 otherwise.
2080  * If not found, allocate if DEPALLOC flag is passed.
2081  * Found or allocated entry is returned in pagedeppp.
2082  * This routine must be called with splbio interrupts blocked.
2083  */
2084 static int
2085 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2086 	struct mount *mp;
2087 	struct buf *bp;
2088 	ino_t ino;
2089 	ufs_lbn_t lbn;
2090 	int flags;
2091 	struct pagedep **pagedeppp;
2092 {
2093 	struct pagedep *pagedep;
2094 	struct pagedep_hashhead *pagedephd;
2095 	struct worklist *wk;
2096 	struct ufsmount *ump;
2097 	int ret;
2098 	int i;
2099 
2100 	ump = VFSTOUFS(mp);
2101 	LOCK_OWNED(ump);
2102 	if (bp) {
2103 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2104 			if (wk->wk_type == D_PAGEDEP) {
2105 				*pagedeppp = WK_PAGEDEP(wk);
2106 				return (1);
2107 			}
2108 		}
2109 	}
2110 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2111 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2112 	if (ret) {
2113 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2114 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2115 		return (1);
2116 	}
2117 	if ((flags & DEPALLOC) == 0)
2118 		return (0);
2119 	FREE_LOCK(ump);
2120 	pagedep = malloc(sizeof(struct pagedep),
2121 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2122 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2123 	ACQUIRE_LOCK(ump);
2124 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2125 	if (*pagedeppp) {
2126 		/*
2127 		 * This should never happen since we only create pagedeps
2128 		 * with the vnode lock held.  Could be an assert.
2129 		 */
2130 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2131 		return (ret);
2132 	}
2133 	pagedep->pd_ino = ino;
2134 	pagedep->pd_lbn = lbn;
2135 	LIST_INIT(&pagedep->pd_dirremhd);
2136 	LIST_INIT(&pagedep->pd_pendinghd);
2137 	for (i = 0; i < DAHASHSZ; i++)
2138 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2139 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2140 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2141 	*pagedeppp = pagedep;
2142 	return (0);
2143 }
2144 
2145 /*
2146  * Structures and routines associated with inodedep caching.
2147  */
2148 #define	INODEDEP_HASH(ump, inum) \
2149       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2150 
2151 static int
2152 inodedep_find(inodedephd, inum, inodedeppp)
2153 	struct inodedep_hashhead *inodedephd;
2154 	ino_t inum;
2155 	struct inodedep **inodedeppp;
2156 {
2157 	struct inodedep *inodedep;
2158 
2159 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2160 		if (inum == inodedep->id_ino)
2161 			break;
2162 	if (inodedep) {
2163 		*inodedeppp = inodedep;
2164 		return (1);
2165 	}
2166 	*inodedeppp = NULL;
2167 
2168 	return (0);
2169 }
2170 /*
2171  * Look up an inodedep. Return 1 if found, 0 if not found.
2172  * If not found, allocate if DEPALLOC flag is passed.
2173  * Found or allocated entry is returned in inodedeppp.
2174  * This routine must be called with splbio interrupts blocked.
2175  */
2176 static int
2177 inodedep_lookup(mp, inum, flags, inodedeppp)
2178 	struct mount *mp;
2179 	ino_t inum;
2180 	int flags;
2181 	struct inodedep **inodedeppp;
2182 {
2183 	struct inodedep *inodedep;
2184 	struct inodedep_hashhead *inodedephd;
2185 	struct ufsmount *ump;
2186 	struct fs *fs;
2187 
2188 	ump = VFSTOUFS(mp);
2189 	LOCK_OWNED(ump);
2190 	fs = ump->um_fs;
2191 	inodedephd = INODEDEP_HASH(ump, inum);
2192 
2193 	if (inodedep_find(inodedephd, inum, inodedeppp))
2194 		return (1);
2195 	if ((flags & DEPALLOC) == 0)
2196 		return (0);
2197 	/*
2198 	 * If the system is over its limit and our filesystem is
2199 	 * responsible for more than our share of that usage and
2200 	 * we are not in a rush, request some inodedep cleanup.
2201 	 */
2202 	while (dep_current[D_INODEDEP] > max_softdeps &&
2203 	    (flags & NODELAY) == 0 &&
2204 	    ump->softdep_curdeps[D_INODEDEP] >
2205 	    max_softdeps / stat_flush_threads)
2206 		request_cleanup(mp, FLUSH_INODES);
2207 	FREE_LOCK(ump);
2208 	inodedep = malloc(sizeof(struct inodedep),
2209 		M_INODEDEP, M_SOFTDEP_FLAGS);
2210 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2211 	ACQUIRE_LOCK(ump);
2212 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2213 		WORKITEM_FREE(inodedep, D_INODEDEP);
2214 		return (1);
2215 	}
2216 	inodedep->id_fs = fs;
2217 	inodedep->id_ino = inum;
2218 	inodedep->id_state = ALLCOMPLETE;
2219 	inodedep->id_nlinkdelta = 0;
2220 	inodedep->id_savedino1 = NULL;
2221 	inodedep->id_savedsize = -1;
2222 	inodedep->id_savedextsize = -1;
2223 	inodedep->id_savednlink = -1;
2224 	inodedep->id_bmsafemap = NULL;
2225 	inodedep->id_mkdiradd = NULL;
2226 	LIST_INIT(&inodedep->id_dirremhd);
2227 	LIST_INIT(&inodedep->id_pendinghd);
2228 	LIST_INIT(&inodedep->id_inowait);
2229 	LIST_INIT(&inodedep->id_bufwait);
2230 	TAILQ_INIT(&inodedep->id_inoreflst);
2231 	TAILQ_INIT(&inodedep->id_inoupdt);
2232 	TAILQ_INIT(&inodedep->id_newinoupdt);
2233 	TAILQ_INIT(&inodedep->id_extupdt);
2234 	TAILQ_INIT(&inodedep->id_newextupdt);
2235 	TAILQ_INIT(&inodedep->id_freeblklst);
2236 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2237 	*inodedeppp = inodedep;
2238 	return (0);
2239 }
2240 
2241 /*
2242  * Structures and routines associated with newblk caching.
2243  */
2244 #define	NEWBLK_HASH(ump, inum) \
2245 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2246 
2247 static int
2248 newblk_find(newblkhd, newblkno, flags, newblkpp)
2249 	struct newblk_hashhead *newblkhd;
2250 	ufs2_daddr_t newblkno;
2251 	int flags;
2252 	struct newblk **newblkpp;
2253 {
2254 	struct newblk *newblk;
2255 
2256 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2257 		if (newblkno != newblk->nb_newblkno)
2258 			continue;
2259 		/*
2260 		 * If we're creating a new dependency don't match those that
2261 		 * have already been converted to allocdirects.  This is for
2262 		 * a frag extend.
2263 		 */
2264 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2265 			continue;
2266 		break;
2267 	}
2268 	if (newblk) {
2269 		*newblkpp = newblk;
2270 		return (1);
2271 	}
2272 	*newblkpp = NULL;
2273 	return (0);
2274 }
2275 
2276 /*
2277  * Look up a newblk. Return 1 if found, 0 if not found.
2278  * If not found, allocate if DEPALLOC flag is passed.
2279  * Found or allocated entry is returned in newblkpp.
2280  */
2281 static int
2282 newblk_lookup(mp, newblkno, flags, newblkpp)
2283 	struct mount *mp;
2284 	ufs2_daddr_t newblkno;
2285 	int flags;
2286 	struct newblk **newblkpp;
2287 {
2288 	struct newblk *newblk;
2289 	struct newblk_hashhead *newblkhd;
2290 	struct ufsmount *ump;
2291 
2292 	ump = VFSTOUFS(mp);
2293 	LOCK_OWNED(ump);
2294 	newblkhd = NEWBLK_HASH(ump, newblkno);
2295 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2296 		return (1);
2297 	if ((flags & DEPALLOC) == 0)
2298 		return (0);
2299 	FREE_LOCK(ump);
2300 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2301 	    M_SOFTDEP_FLAGS | M_ZERO);
2302 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2303 	ACQUIRE_LOCK(ump);
2304 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2305 		WORKITEM_FREE(newblk, D_NEWBLK);
2306 		return (1);
2307 	}
2308 	newblk->nb_freefrag = NULL;
2309 	LIST_INIT(&newblk->nb_indirdeps);
2310 	LIST_INIT(&newblk->nb_newdirblk);
2311 	LIST_INIT(&newblk->nb_jwork);
2312 	newblk->nb_state = ATTACHED;
2313 	newblk->nb_newblkno = newblkno;
2314 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2315 	*newblkpp = newblk;
2316 	return (0);
2317 }
2318 
2319 /*
2320  * Structures and routines associated with freed indirect block caching.
2321  */
2322 #define	INDIR_HASH(ump, blkno) \
2323 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2324 
2325 /*
2326  * Lookup an indirect block in the indir hash table.  The freework is
2327  * removed and potentially freed.  The caller must do a blocking journal
2328  * write before writing to the blkno.
2329  */
2330 static int
2331 indirblk_lookup(mp, blkno)
2332 	struct mount *mp;
2333 	ufs2_daddr_t blkno;
2334 {
2335 	struct freework *freework;
2336 	struct indir_hashhead *wkhd;
2337 	struct ufsmount *ump;
2338 
2339 	ump = VFSTOUFS(mp);
2340 	wkhd = INDIR_HASH(ump, blkno);
2341 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2342 		if (freework->fw_blkno != blkno)
2343 			continue;
2344 		indirblk_remove(freework);
2345 		return (1);
2346 	}
2347 	return (0);
2348 }
2349 
2350 /*
2351  * Insert an indirect block represented by freework into the indirblk
2352  * hash table so that it may prevent the block from being re-used prior
2353  * to the journal being written.
2354  */
2355 static void
2356 indirblk_insert(freework)
2357 	struct freework *freework;
2358 {
2359 	struct jblocks *jblocks;
2360 	struct jseg *jseg;
2361 	struct ufsmount *ump;
2362 
2363 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2364 	jblocks = ump->softdep_jblocks;
2365 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2366 	if (jseg == NULL)
2367 		return;
2368 
2369 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2370 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2371 	    fw_next);
2372 	freework->fw_state &= ~DEPCOMPLETE;
2373 }
2374 
2375 static void
2376 indirblk_remove(freework)
2377 	struct freework *freework;
2378 {
2379 	struct ufsmount *ump;
2380 
2381 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2382 	LIST_REMOVE(freework, fw_segs);
2383 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2384 	freework->fw_state |= DEPCOMPLETE;
2385 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2386 		WORKITEM_FREE(freework, D_FREEWORK);
2387 }
2388 
2389 /*
2390  * Executed during filesystem system initialization before
2391  * mounting any filesystems.
2392  */
2393 void
2394 softdep_initialize()
2395 {
2396 
2397 	TAILQ_INIT(&softdepmounts);
2398 	max_softdeps = desiredvnodes * 4;
2399 
2400 	/* initialise bioops hack */
2401 	bioops.io_start = softdep_disk_io_initiation;
2402 	bioops.io_complete = softdep_disk_write_complete;
2403 	bioops.io_deallocate = softdep_deallocate_dependencies;
2404 	bioops.io_countdeps = softdep_count_dependencies;
2405 
2406 	/* Initialize the callout with an mtx. */
2407 	callout_init_mtx(&softdep_callout, &lk, 0);
2408 }
2409 
2410 /*
2411  * Executed after all filesystems have been unmounted during
2412  * filesystem module unload.
2413  */
2414 void
2415 softdep_uninitialize()
2416 {
2417 
2418 	/* clear bioops hack */
2419 	bioops.io_start = NULL;
2420 	bioops.io_complete = NULL;
2421 	bioops.io_deallocate = NULL;
2422 	bioops.io_countdeps = NULL;
2423 
2424 	callout_drain(&softdep_callout);
2425 }
2426 
2427 /*
2428  * Called at mount time to notify the dependency code that a
2429  * filesystem wishes to use it.
2430  */
2431 int
2432 softdep_mount(devvp, mp, fs, cred)
2433 	struct vnode *devvp;
2434 	struct mount *mp;
2435 	struct fs *fs;
2436 	struct ucred *cred;
2437 {
2438 	struct csum_total cstotal;
2439 	struct mount_softdeps *sdp;
2440 	struct ufsmount *ump;
2441 	struct cg *cgp;
2442 	struct buf *bp;
2443 	int i, error, cyl;
2444 
2445 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2446 	    M_WAITOK | M_ZERO);
2447 	MNT_ILOCK(mp);
2448 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2449 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2450 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2451 			MNTK_SOFTDEP | MNTK_NOASYNC;
2452 	}
2453 	ump = VFSTOUFS(mp);
2454 	ump->um_softdep = sdp;
2455 	MNT_IUNLOCK(mp);
2456 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2457 	sdp->sd_ump = ump;
2458 	LIST_INIT(&ump->softdep_workitem_pending);
2459 	LIST_INIT(&ump->softdep_journal_pending);
2460 	TAILQ_INIT(&ump->softdep_unlinked);
2461 	LIST_INIT(&ump->softdep_dirtycg);
2462 	ump->softdep_worklist_tail = NULL;
2463 	ump->softdep_on_worklist = 0;
2464 	ump->softdep_deps = 0;
2465 	LIST_INIT(&ump->softdep_mkdirlisthd);
2466 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2467 	    &ump->pagedep_hash_size);
2468 	ump->pagedep_nextclean = 0;
2469 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2470 	    &ump->inodedep_hash_size);
2471 	ump->inodedep_nextclean = 0;
2472 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2473 	    &ump->newblk_hash_size);
2474 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2475 	    &ump->bmsafemap_hash_size);
2476 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2477 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2478 	    M_FREEWORK, M_WAITOK);
2479 	ump->indir_hash_size = i - 1;
2480 	for (i = 0; i <= ump->indir_hash_size; i++)
2481 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2482 	ACQUIRE_GBLLOCK(&lk);
2483 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2484 	FREE_GBLLOCK(&lk);
2485 	if ((fs->fs_flags & FS_SUJ) &&
2486 	    (error = journal_mount(mp, fs, cred)) != 0) {
2487 		printf("Failed to start journal: %d\n", error);
2488 		softdep_unmount(mp);
2489 		return (error);
2490 	}
2491 	/*
2492 	 * Start our flushing thread in the bufdaemon process.
2493 	 */
2494 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2495 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2496 	    mp->mnt_stat.f_mntonname);
2497 	/*
2498 	 * When doing soft updates, the counters in the
2499 	 * superblock may have gotten out of sync. Recomputation
2500 	 * can take a long time and can be deferred for background
2501 	 * fsck.  However, the old behavior of scanning the cylinder
2502 	 * groups and recalculating them at mount time is available
2503 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2504 	 */
2505 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2506 		return (0);
2507 	bzero(&cstotal, sizeof cstotal);
2508 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2509 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2510 		    fs->fs_cgsize, cred, &bp)) != 0) {
2511 			brelse(bp);
2512 			softdep_unmount(mp);
2513 			return (error);
2514 		}
2515 		cgp = (struct cg *)bp->b_data;
2516 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2517 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2518 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2519 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2520 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2521 		brelse(bp);
2522 	}
2523 #ifdef DEBUG
2524 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2525 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2526 #endif
2527 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2528 	return (0);
2529 }
2530 
2531 void
2532 softdep_unmount(mp)
2533 	struct mount *mp;
2534 {
2535 	struct ufsmount *ump;
2536 #ifdef INVARIANTS
2537 	int i;
2538 #endif
2539 
2540 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2541 	    ("softdep_unmount called on non-softdep filesystem"));
2542 	ump = VFSTOUFS(mp);
2543 	MNT_ILOCK(mp);
2544 	mp->mnt_flag &= ~MNT_SOFTDEP;
2545 	if (MOUNTEDSUJ(mp) == 0) {
2546 		MNT_IUNLOCK(mp);
2547 	} else {
2548 		mp->mnt_flag &= ~MNT_SUJ;
2549 		MNT_IUNLOCK(mp);
2550 		journal_unmount(ump);
2551 	}
2552 	/*
2553 	 * Shut down our flushing thread. Check for NULL is if
2554 	 * softdep_mount errors out before the thread has been created.
2555 	 */
2556 	if (ump->softdep_flushtd != NULL) {
2557 		ACQUIRE_LOCK(ump);
2558 		ump->softdep_flags |= FLUSH_EXIT;
2559 		wakeup(&ump->softdep_flushtd);
2560 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2561 		    "sdwait", 0);
2562 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2563 		    ("Thread shutdown failed"));
2564 	}
2565 	/*
2566 	 * Free up our resources.
2567 	 */
2568 	ACQUIRE_GBLLOCK(&lk);
2569 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2570 	FREE_GBLLOCK(&lk);
2571 	rw_destroy(LOCK_PTR(ump));
2572 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2573 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2574 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2575 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2576 	    ump->bmsafemap_hash_size);
2577 	free(ump->indir_hashtbl, M_FREEWORK);
2578 #ifdef INVARIANTS
2579 	for (i = 0; i <= D_LAST; i++)
2580 		KASSERT(ump->softdep_curdeps[i] == 0,
2581 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2582 		    TYPENAME(i), ump->softdep_curdeps[i]));
2583 #endif
2584 	free(ump->um_softdep, M_MOUNTDATA);
2585 }
2586 
2587 static struct jblocks *
2588 jblocks_create(void)
2589 {
2590 	struct jblocks *jblocks;
2591 
2592 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2593 	TAILQ_INIT(&jblocks->jb_segs);
2594 	jblocks->jb_avail = 10;
2595 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2596 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2597 
2598 	return (jblocks);
2599 }
2600 
2601 static ufs2_daddr_t
2602 jblocks_alloc(jblocks, bytes, actual)
2603 	struct jblocks *jblocks;
2604 	int bytes;
2605 	int *actual;
2606 {
2607 	ufs2_daddr_t daddr;
2608 	struct jextent *jext;
2609 	int freecnt;
2610 	int blocks;
2611 
2612 	blocks = bytes / DEV_BSIZE;
2613 	jext = &jblocks->jb_extent[jblocks->jb_head];
2614 	freecnt = jext->je_blocks - jblocks->jb_off;
2615 	if (freecnt == 0) {
2616 		jblocks->jb_off = 0;
2617 		if (++jblocks->jb_head > jblocks->jb_used)
2618 			jblocks->jb_head = 0;
2619 		jext = &jblocks->jb_extent[jblocks->jb_head];
2620 		freecnt = jext->je_blocks;
2621 	}
2622 	if (freecnt > blocks)
2623 		freecnt = blocks;
2624 	*actual = freecnt * DEV_BSIZE;
2625 	daddr = jext->je_daddr + jblocks->jb_off;
2626 	jblocks->jb_off += freecnt;
2627 	jblocks->jb_free -= freecnt;
2628 
2629 	return (daddr);
2630 }
2631 
2632 static void
2633 jblocks_free(jblocks, mp, bytes)
2634 	struct jblocks *jblocks;
2635 	struct mount *mp;
2636 	int bytes;
2637 {
2638 
2639 	LOCK_OWNED(VFSTOUFS(mp));
2640 	jblocks->jb_free += bytes / DEV_BSIZE;
2641 	if (jblocks->jb_suspended)
2642 		worklist_speedup(mp);
2643 	wakeup(jblocks);
2644 }
2645 
2646 static void
2647 jblocks_destroy(jblocks)
2648 	struct jblocks *jblocks;
2649 {
2650 
2651 	if (jblocks->jb_extent)
2652 		free(jblocks->jb_extent, M_JBLOCKS);
2653 	free(jblocks, M_JBLOCKS);
2654 }
2655 
2656 static void
2657 jblocks_add(jblocks, daddr, blocks)
2658 	struct jblocks *jblocks;
2659 	ufs2_daddr_t daddr;
2660 	int blocks;
2661 {
2662 	struct jextent *jext;
2663 
2664 	jblocks->jb_blocks += blocks;
2665 	jblocks->jb_free += blocks;
2666 	jext = &jblocks->jb_extent[jblocks->jb_used];
2667 	/* Adding the first block. */
2668 	if (jext->je_daddr == 0) {
2669 		jext->je_daddr = daddr;
2670 		jext->je_blocks = blocks;
2671 		return;
2672 	}
2673 	/* Extending the last extent. */
2674 	if (jext->je_daddr + jext->je_blocks == daddr) {
2675 		jext->je_blocks += blocks;
2676 		return;
2677 	}
2678 	/* Adding a new extent. */
2679 	if (++jblocks->jb_used == jblocks->jb_avail) {
2680 		jblocks->jb_avail *= 2;
2681 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2682 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2683 		memcpy(jext, jblocks->jb_extent,
2684 		    sizeof(struct jextent) * jblocks->jb_used);
2685 		free(jblocks->jb_extent, M_JBLOCKS);
2686 		jblocks->jb_extent = jext;
2687 	}
2688 	jext = &jblocks->jb_extent[jblocks->jb_used];
2689 	jext->je_daddr = daddr;
2690 	jext->je_blocks = blocks;
2691 	return;
2692 }
2693 
2694 int
2695 softdep_journal_lookup(mp, vpp)
2696 	struct mount *mp;
2697 	struct vnode **vpp;
2698 {
2699 	struct componentname cnp;
2700 	struct vnode *dvp;
2701 	ino_t sujournal;
2702 	int error;
2703 
2704 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2705 	if (error)
2706 		return (error);
2707 	bzero(&cnp, sizeof(cnp));
2708 	cnp.cn_nameiop = LOOKUP;
2709 	cnp.cn_flags = ISLASTCN;
2710 	cnp.cn_thread = curthread;
2711 	cnp.cn_cred = curthread->td_ucred;
2712 	cnp.cn_pnbuf = SUJ_FILE;
2713 	cnp.cn_nameptr = SUJ_FILE;
2714 	cnp.cn_namelen = strlen(SUJ_FILE);
2715 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2716 	vput(dvp);
2717 	if (error != 0)
2718 		return (error);
2719 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2720 	return (error);
2721 }
2722 
2723 /*
2724  * Open and verify the journal file.
2725  */
2726 static int
2727 journal_mount(mp, fs, cred)
2728 	struct mount *mp;
2729 	struct fs *fs;
2730 	struct ucred *cred;
2731 {
2732 	struct jblocks *jblocks;
2733 	struct ufsmount *ump;
2734 	struct vnode *vp;
2735 	struct inode *ip;
2736 	ufs2_daddr_t blkno;
2737 	int bcount;
2738 	int error;
2739 	int i;
2740 
2741 	ump = VFSTOUFS(mp);
2742 	ump->softdep_journal_tail = NULL;
2743 	ump->softdep_on_journal = 0;
2744 	ump->softdep_accdeps = 0;
2745 	ump->softdep_req = 0;
2746 	ump->softdep_jblocks = NULL;
2747 	error = softdep_journal_lookup(mp, &vp);
2748 	if (error != 0) {
2749 		printf("Failed to find journal.  Use tunefs to create one\n");
2750 		return (error);
2751 	}
2752 	ip = VTOI(vp);
2753 	if (ip->i_size < SUJ_MIN) {
2754 		error = ENOSPC;
2755 		goto out;
2756 	}
2757 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2758 	jblocks = jblocks_create();
2759 	for (i = 0; i < bcount; i++) {
2760 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2761 		if (error)
2762 			break;
2763 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2764 	}
2765 	if (error) {
2766 		jblocks_destroy(jblocks);
2767 		goto out;
2768 	}
2769 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2770 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2771 	ump->softdep_jblocks = jblocks;
2772 out:
2773 	if (error == 0) {
2774 		MNT_ILOCK(mp);
2775 		mp->mnt_flag |= MNT_SUJ;
2776 		mp->mnt_flag &= ~MNT_SOFTDEP;
2777 		MNT_IUNLOCK(mp);
2778 		/*
2779 		 * Only validate the journal contents if the
2780 		 * filesystem is clean, otherwise we write the logs
2781 		 * but they'll never be used.  If the filesystem was
2782 		 * still dirty when we mounted it the journal is
2783 		 * invalid and a new journal can only be valid if it
2784 		 * starts from a clean mount.
2785 		 */
2786 		if (fs->fs_clean) {
2787 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2788 			ip->i_flags |= IN_MODIFIED;
2789 			ffs_update(vp, 1);
2790 		}
2791 	}
2792 	vput(vp);
2793 	return (error);
2794 }
2795 
2796 static void
2797 journal_unmount(ump)
2798 	struct ufsmount *ump;
2799 {
2800 
2801 	if (ump->softdep_jblocks)
2802 		jblocks_destroy(ump->softdep_jblocks);
2803 	ump->softdep_jblocks = NULL;
2804 }
2805 
2806 /*
2807  * Called when a journal record is ready to be written.  Space is allocated
2808  * and the journal entry is created when the journal is flushed to stable
2809  * store.
2810  */
2811 static void
2812 add_to_journal(wk)
2813 	struct worklist *wk;
2814 {
2815 	struct ufsmount *ump;
2816 
2817 	ump = VFSTOUFS(wk->wk_mp);
2818 	LOCK_OWNED(ump);
2819 	if (wk->wk_state & ONWORKLIST)
2820 		panic("add_to_journal: %s(0x%X) already on list",
2821 		    TYPENAME(wk->wk_type), wk->wk_state);
2822 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2823 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2824 		ump->softdep_jblocks->jb_age = ticks;
2825 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2826 	} else
2827 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2828 	ump->softdep_journal_tail = wk;
2829 	ump->softdep_on_journal += 1;
2830 }
2831 
2832 /*
2833  * Remove an arbitrary item for the journal worklist maintain the tail
2834  * pointer.  This happens when a new operation obviates the need to
2835  * journal an old operation.
2836  */
2837 static void
2838 remove_from_journal(wk)
2839 	struct worklist *wk;
2840 {
2841 	struct ufsmount *ump;
2842 
2843 	ump = VFSTOUFS(wk->wk_mp);
2844 	LOCK_OWNED(ump);
2845 #ifdef SUJ_DEBUG
2846 	{
2847 		struct worklist *wkn;
2848 
2849 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2850 			if (wkn == wk)
2851 				break;
2852 		if (wkn == NULL)
2853 			panic("remove_from_journal: %p is not in journal", wk);
2854 	}
2855 #endif
2856 	/*
2857 	 * We emulate a TAILQ to save space in most structures which do not
2858 	 * require TAILQ semantics.  Here we must update the tail position
2859 	 * when removing the tail which is not the final entry. This works
2860 	 * only if the worklist linkage are at the beginning of the structure.
2861 	 */
2862 	if (ump->softdep_journal_tail == wk)
2863 		ump->softdep_journal_tail =
2864 		    (struct worklist *)wk->wk_list.le_prev;
2865 
2866 	WORKLIST_REMOVE(wk);
2867 	ump->softdep_on_journal -= 1;
2868 }
2869 
2870 /*
2871  * Check for journal space as well as dependency limits so the prelink
2872  * code can throttle both journaled and non-journaled filesystems.
2873  * Threshold is 0 for low and 1 for min.
2874  */
2875 static int
2876 journal_space(ump, thresh)
2877 	struct ufsmount *ump;
2878 	int thresh;
2879 {
2880 	struct jblocks *jblocks;
2881 	int limit, avail;
2882 
2883 	jblocks = ump->softdep_jblocks;
2884 	if (jblocks == NULL)
2885 		return (1);
2886 	/*
2887 	 * We use a tighter restriction here to prevent request_cleanup()
2888 	 * running in threads from running into locks we currently hold.
2889 	 * We have to be over the limit and our filesystem has to be
2890 	 * responsible for more than our share of that usage.
2891 	 */
2892 	limit = (max_softdeps / 10) * 9;
2893 	if (dep_current[D_INODEDEP] > limit &&
2894 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2895 		return (0);
2896 	if (thresh)
2897 		thresh = jblocks->jb_min;
2898 	else
2899 		thresh = jblocks->jb_low;
2900 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2901 	avail = jblocks->jb_free - avail;
2902 
2903 	return (avail > thresh);
2904 }
2905 
2906 static void
2907 journal_suspend(ump)
2908 	struct ufsmount *ump;
2909 {
2910 	struct jblocks *jblocks;
2911 	struct mount *mp;
2912 
2913 	mp = UFSTOVFS(ump);
2914 	jblocks = ump->softdep_jblocks;
2915 	MNT_ILOCK(mp);
2916 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2917 		stat_journal_min++;
2918 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2919 		mp->mnt_susp_owner = ump->softdep_flushtd;
2920 	}
2921 	jblocks->jb_suspended = 1;
2922 	MNT_IUNLOCK(mp);
2923 }
2924 
2925 static int
2926 journal_unsuspend(struct ufsmount *ump)
2927 {
2928 	struct jblocks *jblocks;
2929 	struct mount *mp;
2930 
2931 	mp = UFSTOVFS(ump);
2932 	jblocks = ump->softdep_jblocks;
2933 
2934 	if (jblocks != NULL && jblocks->jb_suspended &&
2935 	    journal_space(ump, jblocks->jb_min)) {
2936 		jblocks->jb_suspended = 0;
2937 		FREE_LOCK(ump);
2938 		mp->mnt_susp_owner = curthread;
2939 		vfs_write_resume(mp, 0);
2940 		ACQUIRE_LOCK(ump);
2941 		return (1);
2942 	}
2943 	return (0);
2944 }
2945 
2946 /*
2947  * Called before any allocation function to be certain that there is
2948  * sufficient space in the journal prior to creating any new records.
2949  * Since in the case of block allocation we may have multiple locked
2950  * buffers at the time of the actual allocation we can not block
2951  * when the journal records are created.  Doing so would create a deadlock
2952  * if any of these buffers needed to be flushed to reclaim space.  Instead
2953  * we require a sufficiently large amount of available space such that
2954  * each thread in the system could have passed this allocation check and
2955  * still have sufficient free space.  With 20% of a minimum journal size
2956  * of 1MB we have 6553 records available.
2957  */
2958 int
2959 softdep_prealloc(vp, waitok)
2960 	struct vnode *vp;
2961 	int waitok;
2962 {
2963 	struct ufsmount *ump;
2964 
2965 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2966 	    ("softdep_prealloc called on non-softdep filesystem"));
2967 	/*
2968 	 * Nothing to do if we are not running journaled soft updates.
2969 	 * If we currently hold the snapshot lock, we must avoid handling
2970 	 * other resources that could cause deadlock.
2971 	 */
2972 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2973 		return (0);
2974 	ump = VFSTOUFS(vp->v_mount);
2975 	ACQUIRE_LOCK(ump);
2976 	if (journal_space(ump, 0)) {
2977 		FREE_LOCK(ump);
2978 		return (0);
2979 	}
2980 	stat_journal_low++;
2981 	FREE_LOCK(ump);
2982 	if (waitok == MNT_NOWAIT)
2983 		return (ENOSPC);
2984 	/*
2985 	 * Attempt to sync this vnode once to flush any journal
2986 	 * work attached to it.
2987 	 */
2988 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2989 		ffs_syncvnode(vp, waitok, 0);
2990 	ACQUIRE_LOCK(ump);
2991 	process_removes(vp);
2992 	process_truncates(vp);
2993 	if (journal_space(ump, 0) == 0) {
2994 		softdep_speedup(ump);
2995 		if (journal_space(ump, 1) == 0)
2996 			journal_suspend(ump);
2997 	}
2998 	FREE_LOCK(ump);
2999 
3000 	return (0);
3001 }
3002 
3003 /*
3004  * Before adjusting a link count on a vnode verify that we have sufficient
3005  * journal space.  If not, process operations that depend on the currently
3006  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3007  * and softdep flush threads can not acquire these locks to reclaim space.
3008  */
3009 static void
3010 softdep_prelink(dvp, vp)
3011 	struct vnode *dvp;
3012 	struct vnode *vp;
3013 {
3014 	struct ufsmount *ump;
3015 
3016 	ump = VFSTOUFS(dvp->v_mount);
3017 	LOCK_OWNED(ump);
3018 	/*
3019 	 * Nothing to do if we have sufficient journal space.
3020 	 * If we currently hold the snapshot lock, we must avoid
3021 	 * handling other resources that could cause deadlock.
3022 	 */
3023 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3024 		return;
3025 	stat_journal_low++;
3026 	FREE_LOCK(ump);
3027 	if (vp)
3028 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3029 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3030 	ACQUIRE_LOCK(ump);
3031 	/* Process vp before dvp as it may create .. removes. */
3032 	if (vp) {
3033 		process_removes(vp);
3034 		process_truncates(vp);
3035 	}
3036 	process_removes(dvp);
3037 	process_truncates(dvp);
3038 	softdep_speedup(ump);
3039 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3040 	if (journal_space(ump, 0) == 0) {
3041 		softdep_speedup(ump);
3042 		if (journal_space(ump, 1) == 0)
3043 			journal_suspend(ump);
3044 	}
3045 }
3046 
3047 static void
3048 jseg_write(ump, jseg, data)
3049 	struct ufsmount *ump;
3050 	struct jseg *jseg;
3051 	uint8_t *data;
3052 {
3053 	struct jsegrec *rec;
3054 
3055 	rec = (struct jsegrec *)data;
3056 	rec->jsr_seq = jseg->js_seq;
3057 	rec->jsr_oldest = jseg->js_oldseq;
3058 	rec->jsr_cnt = jseg->js_cnt;
3059 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3060 	rec->jsr_crc = 0;
3061 	rec->jsr_time = ump->um_fs->fs_mtime;
3062 }
3063 
3064 static inline void
3065 inoref_write(inoref, jseg, rec)
3066 	struct inoref *inoref;
3067 	struct jseg *jseg;
3068 	struct jrefrec *rec;
3069 {
3070 
3071 	inoref->if_jsegdep->jd_seg = jseg;
3072 	rec->jr_ino = inoref->if_ino;
3073 	rec->jr_parent = inoref->if_parent;
3074 	rec->jr_nlink = inoref->if_nlink;
3075 	rec->jr_mode = inoref->if_mode;
3076 	rec->jr_diroff = inoref->if_diroff;
3077 }
3078 
3079 static void
3080 jaddref_write(jaddref, jseg, data)
3081 	struct jaddref *jaddref;
3082 	struct jseg *jseg;
3083 	uint8_t *data;
3084 {
3085 	struct jrefrec *rec;
3086 
3087 	rec = (struct jrefrec *)data;
3088 	rec->jr_op = JOP_ADDREF;
3089 	inoref_write(&jaddref->ja_ref, jseg, rec);
3090 }
3091 
3092 static void
3093 jremref_write(jremref, jseg, data)
3094 	struct jremref *jremref;
3095 	struct jseg *jseg;
3096 	uint8_t *data;
3097 {
3098 	struct jrefrec *rec;
3099 
3100 	rec = (struct jrefrec *)data;
3101 	rec->jr_op = JOP_REMREF;
3102 	inoref_write(&jremref->jr_ref, jseg, rec);
3103 }
3104 
3105 static void
3106 jmvref_write(jmvref, jseg, data)
3107 	struct jmvref *jmvref;
3108 	struct jseg *jseg;
3109 	uint8_t *data;
3110 {
3111 	struct jmvrec *rec;
3112 
3113 	rec = (struct jmvrec *)data;
3114 	rec->jm_op = JOP_MVREF;
3115 	rec->jm_ino = jmvref->jm_ino;
3116 	rec->jm_parent = jmvref->jm_parent;
3117 	rec->jm_oldoff = jmvref->jm_oldoff;
3118 	rec->jm_newoff = jmvref->jm_newoff;
3119 }
3120 
3121 static void
3122 jnewblk_write(jnewblk, jseg, data)
3123 	struct jnewblk *jnewblk;
3124 	struct jseg *jseg;
3125 	uint8_t *data;
3126 {
3127 	struct jblkrec *rec;
3128 
3129 	jnewblk->jn_jsegdep->jd_seg = jseg;
3130 	rec = (struct jblkrec *)data;
3131 	rec->jb_op = JOP_NEWBLK;
3132 	rec->jb_ino = jnewblk->jn_ino;
3133 	rec->jb_blkno = jnewblk->jn_blkno;
3134 	rec->jb_lbn = jnewblk->jn_lbn;
3135 	rec->jb_frags = jnewblk->jn_frags;
3136 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3137 }
3138 
3139 static void
3140 jfreeblk_write(jfreeblk, jseg, data)
3141 	struct jfreeblk *jfreeblk;
3142 	struct jseg *jseg;
3143 	uint8_t *data;
3144 {
3145 	struct jblkrec *rec;
3146 
3147 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3148 	rec = (struct jblkrec *)data;
3149 	rec->jb_op = JOP_FREEBLK;
3150 	rec->jb_ino = jfreeblk->jf_ino;
3151 	rec->jb_blkno = jfreeblk->jf_blkno;
3152 	rec->jb_lbn = jfreeblk->jf_lbn;
3153 	rec->jb_frags = jfreeblk->jf_frags;
3154 	rec->jb_oldfrags = 0;
3155 }
3156 
3157 static void
3158 jfreefrag_write(jfreefrag, jseg, data)
3159 	struct jfreefrag *jfreefrag;
3160 	struct jseg *jseg;
3161 	uint8_t *data;
3162 {
3163 	struct jblkrec *rec;
3164 
3165 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3166 	rec = (struct jblkrec *)data;
3167 	rec->jb_op = JOP_FREEBLK;
3168 	rec->jb_ino = jfreefrag->fr_ino;
3169 	rec->jb_blkno = jfreefrag->fr_blkno;
3170 	rec->jb_lbn = jfreefrag->fr_lbn;
3171 	rec->jb_frags = jfreefrag->fr_frags;
3172 	rec->jb_oldfrags = 0;
3173 }
3174 
3175 static void
3176 jtrunc_write(jtrunc, jseg, data)
3177 	struct jtrunc *jtrunc;
3178 	struct jseg *jseg;
3179 	uint8_t *data;
3180 {
3181 	struct jtrncrec *rec;
3182 
3183 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3184 	rec = (struct jtrncrec *)data;
3185 	rec->jt_op = JOP_TRUNC;
3186 	rec->jt_ino = jtrunc->jt_ino;
3187 	rec->jt_size = jtrunc->jt_size;
3188 	rec->jt_extsize = jtrunc->jt_extsize;
3189 }
3190 
3191 static void
3192 jfsync_write(jfsync, jseg, data)
3193 	struct jfsync *jfsync;
3194 	struct jseg *jseg;
3195 	uint8_t *data;
3196 {
3197 	struct jtrncrec *rec;
3198 
3199 	rec = (struct jtrncrec *)data;
3200 	rec->jt_op = JOP_SYNC;
3201 	rec->jt_ino = jfsync->jfs_ino;
3202 	rec->jt_size = jfsync->jfs_size;
3203 	rec->jt_extsize = jfsync->jfs_extsize;
3204 }
3205 
3206 static void
3207 softdep_flushjournal(mp)
3208 	struct mount *mp;
3209 {
3210 	struct jblocks *jblocks;
3211 	struct ufsmount *ump;
3212 
3213 	if (MOUNTEDSUJ(mp) == 0)
3214 		return;
3215 	ump = VFSTOUFS(mp);
3216 	jblocks = ump->softdep_jblocks;
3217 	ACQUIRE_LOCK(ump);
3218 	while (ump->softdep_on_journal) {
3219 		jblocks->jb_needseg = 1;
3220 		softdep_process_journal(mp, NULL, MNT_WAIT);
3221 	}
3222 	FREE_LOCK(ump);
3223 }
3224 
3225 static void softdep_synchronize_completed(struct bio *);
3226 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3227 
3228 static void
3229 softdep_synchronize_completed(bp)
3230         struct bio *bp;
3231 {
3232 	struct jseg *oldest;
3233 	struct jseg *jseg;
3234 	struct ufsmount *ump;
3235 
3236 	/*
3237 	 * caller1 marks the last segment written before we issued the
3238 	 * synchronize cache.
3239 	 */
3240 	jseg = bp->bio_caller1;
3241 	if (jseg == NULL) {
3242 		g_destroy_bio(bp);
3243 		return;
3244 	}
3245 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3246 	ACQUIRE_LOCK(ump);
3247 	oldest = NULL;
3248 	/*
3249 	 * Mark all the journal entries waiting on the synchronize cache
3250 	 * as completed so they may continue on.
3251 	 */
3252 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3253 		jseg->js_state |= COMPLETE;
3254 		oldest = jseg;
3255 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3256 	}
3257 	/*
3258 	 * Restart deferred journal entry processing from the oldest
3259 	 * completed jseg.
3260 	 */
3261 	if (oldest)
3262 		complete_jsegs(oldest);
3263 
3264 	FREE_LOCK(ump);
3265 	g_destroy_bio(bp);
3266 }
3267 
3268 /*
3269  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3270  * barriers.  The journal must be written prior to any blocks that depend
3271  * on it and the journal can not be released until the blocks have be
3272  * written.  This code handles both barriers simultaneously.
3273  */
3274 static void
3275 softdep_synchronize(bp, ump, caller1)
3276 	struct bio *bp;
3277 	struct ufsmount *ump;
3278 	void *caller1;
3279 {
3280 
3281 	bp->bio_cmd = BIO_FLUSH;
3282 	bp->bio_flags |= BIO_ORDERED;
3283 	bp->bio_data = NULL;
3284 	bp->bio_offset = ump->um_cp->provider->mediasize;
3285 	bp->bio_length = 0;
3286 	bp->bio_done = softdep_synchronize_completed;
3287 	bp->bio_caller1 = caller1;
3288 	g_io_request(bp,
3289 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3290 }
3291 
3292 /*
3293  * Flush some journal records to disk.
3294  */
3295 static void
3296 softdep_process_journal(mp, needwk, flags)
3297 	struct mount *mp;
3298 	struct worklist *needwk;
3299 	int flags;
3300 {
3301 	struct jblocks *jblocks;
3302 	struct ufsmount *ump;
3303 	struct worklist *wk;
3304 	struct jseg *jseg;
3305 	struct buf *bp;
3306 	struct bio *bio;
3307 	uint8_t *data;
3308 	struct fs *fs;
3309 	int shouldflush;
3310 	int segwritten;
3311 	int jrecmin;	/* Minimum records per block. */
3312 	int jrecmax;	/* Maximum records per block. */
3313 	int size;
3314 	int cnt;
3315 	int off;
3316 	int devbsize;
3317 
3318 	if (MOUNTEDSUJ(mp) == 0)
3319 		return;
3320 	shouldflush = softdep_flushcache;
3321 	bio = NULL;
3322 	jseg = NULL;
3323 	ump = VFSTOUFS(mp);
3324 	LOCK_OWNED(ump);
3325 	fs = ump->um_fs;
3326 	jblocks = ump->softdep_jblocks;
3327 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3328 	/*
3329 	 * We write anywhere between a disk block and fs block.  The upper
3330 	 * bound is picked to prevent buffer cache fragmentation and limit
3331 	 * processing time per I/O.
3332 	 */
3333 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3334 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3335 	segwritten = 0;
3336 	for (;;) {
3337 		cnt = ump->softdep_on_journal;
3338 		/*
3339 		 * Criteria for writing a segment:
3340 		 * 1) We have a full block.
3341 		 * 2) We're called from jwait() and haven't found the
3342 		 *    journal item yet.
3343 		 * 3) Always write if needseg is set.
3344 		 * 4) If we are called from process_worklist and have
3345 		 *    not yet written anything we write a partial block
3346 		 *    to enforce a 1 second maximum latency on journal
3347 		 *    entries.
3348 		 */
3349 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3350 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3351 			break;
3352 		cnt++;
3353 		/*
3354 		 * Verify some free journal space.  softdep_prealloc() should
3355 		 * guarantee that we don't run out so this is indicative of
3356 		 * a problem with the flow control.  Try to recover
3357 		 * gracefully in any event.
3358 		 */
3359 		while (jblocks->jb_free == 0) {
3360 			if (flags != MNT_WAIT)
3361 				break;
3362 			printf("softdep: Out of journal space!\n");
3363 			softdep_speedup(ump);
3364 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3365 		}
3366 		FREE_LOCK(ump);
3367 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3368 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3369 		LIST_INIT(&jseg->js_entries);
3370 		LIST_INIT(&jseg->js_indirs);
3371 		jseg->js_state = ATTACHED;
3372 		if (shouldflush == 0)
3373 			jseg->js_state |= COMPLETE;
3374 		else if (bio == NULL)
3375 			bio = g_alloc_bio();
3376 		jseg->js_jblocks = jblocks;
3377 		bp = geteblk(fs->fs_bsize, 0);
3378 		ACQUIRE_LOCK(ump);
3379 		/*
3380 		 * If there was a race while we were allocating the block
3381 		 * and jseg the entry we care about was likely written.
3382 		 * We bail out in both the WAIT and NOWAIT case and assume
3383 		 * the caller will loop if the entry it cares about is
3384 		 * not written.
3385 		 */
3386 		cnt = ump->softdep_on_journal;
3387 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3388 			bp->b_flags |= B_INVAL | B_NOCACHE;
3389 			WORKITEM_FREE(jseg, D_JSEG);
3390 			FREE_LOCK(ump);
3391 			brelse(bp);
3392 			ACQUIRE_LOCK(ump);
3393 			break;
3394 		}
3395 		/*
3396 		 * Calculate the disk block size required for the available
3397 		 * records rounded to the min size.
3398 		 */
3399 		if (cnt == 0)
3400 			size = devbsize;
3401 		else if (cnt < jrecmax)
3402 			size = howmany(cnt, jrecmin) * devbsize;
3403 		else
3404 			size = fs->fs_bsize;
3405 		/*
3406 		 * Allocate a disk block for this journal data and account
3407 		 * for truncation of the requested size if enough contiguous
3408 		 * space was not available.
3409 		 */
3410 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3411 		bp->b_lblkno = bp->b_blkno;
3412 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3413 		bp->b_bcount = size;
3414 		bp->b_flags &= ~B_INVAL;
3415 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3416 		/*
3417 		 * Initialize our jseg with cnt records.  Assign the next
3418 		 * sequence number to it and link it in-order.
3419 		 */
3420 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3421 		jseg->js_buf = bp;
3422 		jseg->js_cnt = cnt;
3423 		jseg->js_refs = cnt + 1;	/* Self ref. */
3424 		jseg->js_size = size;
3425 		jseg->js_seq = jblocks->jb_nextseq++;
3426 		if (jblocks->jb_oldestseg == NULL)
3427 			jblocks->jb_oldestseg = jseg;
3428 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3429 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3430 		if (jblocks->jb_writeseg == NULL)
3431 			jblocks->jb_writeseg = jseg;
3432 		/*
3433 		 * Start filling in records from the pending list.
3434 		 */
3435 		data = bp->b_data;
3436 		off = 0;
3437 
3438 		/*
3439 		 * Always put a header on the first block.
3440 		 * XXX As with below, there might not be a chance to get
3441 		 * into the loop.  Ensure that something valid is written.
3442 		 */
3443 		jseg_write(ump, jseg, data);
3444 		off += JREC_SIZE;
3445 		data = bp->b_data + off;
3446 
3447 		/*
3448 		 * XXX Something is wrong here.  There's no work to do,
3449 		 * but we need to perform and I/O and allow it to complete
3450 		 * anyways.
3451 		 */
3452 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3453 			stat_emptyjblocks++;
3454 
3455 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3456 		    != NULL) {
3457 			if (cnt == 0)
3458 				break;
3459 			/* Place a segment header on every device block. */
3460 			if ((off % devbsize) == 0) {
3461 				jseg_write(ump, jseg, data);
3462 				off += JREC_SIZE;
3463 				data = bp->b_data + off;
3464 			}
3465 			if (wk == needwk)
3466 				needwk = NULL;
3467 			remove_from_journal(wk);
3468 			wk->wk_state |= INPROGRESS;
3469 			WORKLIST_INSERT(&jseg->js_entries, wk);
3470 			switch (wk->wk_type) {
3471 			case D_JADDREF:
3472 				jaddref_write(WK_JADDREF(wk), jseg, data);
3473 				break;
3474 			case D_JREMREF:
3475 				jremref_write(WK_JREMREF(wk), jseg, data);
3476 				break;
3477 			case D_JMVREF:
3478 				jmvref_write(WK_JMVREF(wk), jseg, data);
3479 				break;
3480 			case D_JNEWBLK:
3481 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3482 				break;
3483 			case D_JFREEBLK:
3484 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3485 				break;
3486 			case D_JFREEFRAG:
3487 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3488 				break;
3489 			case D_JTRUNC:
3490 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3491 				break;
3492 			case D_JFSYNC:
3493 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3494 				break;
3495 			default:
3496 				panic("process_journal: Unknown type %s",
3497 				    TYPENAME(wk->wk_type));
3498 				/* NOTREACHED */
3499 			}
3500 			off += JREC_SIZE;
3501 			data = bp->b_data + off;
3502 			cnt--;
3503 		}
3504 
3505 		/* Clear any remaining space so we don't leak kernel data */
3506 		if (size > off)
3507 			bzero(data, size - off);
3508 
3509 		/*
3510 		 * Write this one buffer and continue.
3511 		 */
3512 		segwritten = 1;
3513 		jblocks->jb_needseg = 0;
3514 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3515 		FREE_LOCK(ump);
3516 		pbgetvp(ump->um_devvp, bp);
3517 		/*
3518 		 * We only do the blocking wait once we find the journal
3519 		 * entry we're looking for.
3520 		 */
3521 		if (needwk == NULL && flags == MNT_WAIT)
3522 			bwrite(bp);
3523 		else
3524 			bawrite(bp);
3525 		ACQUIRE_LOCK(ump);
3526 	}
3527 	/*
3528 	 * If we wrote a segment issue a synchronize cache so the journal
3529 	 * is reflected on disk before the data is written.  Since reclaiming
3530 	 * journal space also requires writing a journal record this
3531 	 * process also enforces a barrier before reclamation.
3532 	 */
3533 	if (segwritten && shouldflush) {
3534 		softdep_synchronize(bio, ump,
3535 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3536 	} else if (bio)
3537 		g_destroy_bio(bio);
3538 	/*
3539 	 * If we've suspended the filesystem because we ran out of journal
3540 	 * space either try to sync it here to make some progress or
3541 	 * unsuspend it if we already have.
3542 	 */
3543 	if (flags == 0 && jblocks->jb_suspended) {
3544 		if (journal_unsuspend(ump))
3545 			return;
3546 		FREE_LOCK(ump);
3547 		VFS_SYNC(mp, MNT_NOWAIT);
3548 		ffs_sbupdate(ump, MNT_WAIT, 0);
3549 		ACQUIRE_LOCK(ump);
3550 	}
3551 }
3552 
3553 /*
3554  * Complete a jseg, allowing all dependencies awaiting journal writes
3555  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3556  * structures so that the journal segment can be freed to reclaim space.
3557  */
3558 static void
3559 complete_jseg(jseg)
3560 	struct jseg *jseg;
3561 {
3562 	struct worklist *wk;
3563 	struct jmvref *jmvref;
3564 	int waiting;
3565 #ifdef INVARIANTS
3566 	int i = 0;
3567 #endif
3568 
3569 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3570 		WORKLIST_REMOVE(wk);
3571 		waiting = wk->wk_state & IOWAITING;
3572 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3573 		wk->wk_state |= COMPLETE;
3574 		KASSERT(i++ < jseg->js_cnt,
3575 		    ("handle_written_jseg: overflow %d >= %d",
3576 		    i - 1, jseg->js_cnt));
3577 		switch (wk->wk_type) {
3578 		case D_JADDREF:
3579 			handle_written_jaddref(WK_JADDREF(wk));
3580 			break;
3581 		case D_JREMREF:
3582 			handle_written_jremref(WK_JREMREF(wk));
3583 			break;
3584 		case D_JMVREF:
3585 			rele_jseg(jseg);	/* No jsegdep. */
3586 			jmvref = WK_JMVREF(wk);
3587 			LIST_REMOVE(jmvref, jm_deps);
3588 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3589 				free_pagedep(jmvref->jm_pagedep);
3590 			WORKITEM_FREE(jmvref, D_JMVREF);
3591 			break;
3592 		case D_JNEWBLK:
3593 			handle_written_jnewblk(WK_JNEWBLK(wk));
3594 			break;
3595 		case D_JFREEBLK:
3596 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3597 			break;
3598 		case D_JTRUNC:
3599 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3600 			break;
3601 		case D_JFSYNC:
3602 			rele_jseg(jseg);	/* No jsegdep. */
3603 			WORKITEM_FREE(wk, D_JFSYNC);
3604 			break;
3605 		case D_JFREEFRAG:
3606 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3607 			break;
3608 		default:
3609 			panic("handle_written_jseg: Unknown type %s",
3610 			    TYPENAME(wk->wk_type));
3611 			/* NOTREACHED */
3612 		}
3613 		if (waiting)
3614 			wakeup(wk);
3615 	}
3616 	/* Release the self reference so the structure may be freed. */
3617 	rele_jseg(jseg);
3618 }
3619 
3620 /*
3621  * Determine which jsegs are ready for completion processing.  Waits for
3622  * synchronize cache to complete as well as forcing in-order completion
3623  * of journal entries.
3624  */
3625 static void
3626 complete_jsegs(jseg)
3627 	struct jseg *jseg;
3628 {
3629 	struct jblocks *jblocks;
3630 	struct jseg *jsegn;
3631 
3632 	jblocks = jseg->js_jblocks;
3633 	/*
3634 	 * Don't allow out of order completions.  If this isn't the first
3635 	 * block wait for it to write before we're done.
3636 	 */
3637 	if (jseg != jblocks->jb_writeseg)
3638 		return;
3639 	/* Iterate through available jsegs processing their entries. */
3640 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3641 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3642 		jsegn = TAILQ_NEXT(jseg, js_next);
3643 		complete_jseg(jseg);
3644 		jseg = jsegn;
3645 	}
3646 	jblocks->jb_writeseg = jseg;
3647 	/*
3648 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3649 	 */
3650 	free_jsegs(jblocks);
3651 }
3652 
3653 /*
3654  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3655  * the final completions.
3656  */
3657 static void
3658 handle_written_jseg(jseg, bp)
3659 	struct jseg *jseg;
3660 	struct buf *bp;
3661 {
3662 
3663 	if (jseg->js_refs == 0)
3664 		panic("handle_written_jseg: No self-reference on %p", jseg);
3665 	jseg->js_state |= DEPCOMPLETE;
3666 	/*
3667 	 * We'll never need this buffer again, set flags so it will be
3668 	 * discarded.
3669 	 */
3670 	bp->b_flags |= B_INVAL | B_NOCACHE;
3671 	pbrelvp(bp);
3672 	complete_jsegs(jseg);
3673 }
3674 
3675 static inline struct jsegdep *
3676 inoref_jseg(inoref)
3677 	struct inoref *inoref;
3678 {
3679 	struct jsegdep *jsegdep;
3680 
3681 	jsegdep = inoref->if_jsegdep;
3682 	inoref->if_jsegdep = NULL;
3683 
3684 	return (jsegdep);
3685 }
3686 
3687 /*
3688  * Called once a jremref has made it to stable store.  The jremref is marked
3689  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3690  * for the jremref to complete will be awoken by free_jremref.
3691  */
3692 static void
3693 handle_written_jremref(jremref)
3694 	struct jremref *jremref;
3695 {
3696 	struct inodedep *inodedep;
3697 	struct jsegdep *jsegdep;
3698 	struct dirrem *dirrem;
3699 
3700 	/* Grab the jsegdep. */
3701 	jsegdep = inoref_jseg(&jremref->jr_ref);
3702 	/*
3703 	 * Remove us from the inoref list.
3704 	 */
3705 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3706 	    0, &inodedep) == 0)
3707 		panic("handle_written_jremref: Lost inodedep");
3708 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3709 	/*
3710 	 * Complete the dirrem.
3711 	 */
3712 	dirrem = jremref->jr_dirrem;
3713 	jremref->jr_dirrem = NULL;
3714 	LIST_REMOVE(jremref, jr_deps);
3715 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3716 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3717 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3718 	    (dirrem->dm_state & COMPLETE) != 0)
3719 		add_to_worklist(&dirrem->dm_list, 0);
3720 	free_jremref(jremref);
3721 }
3722 
3723 /*
3724  * Called once a jaddref has made it to stable store.  The dependency is
3725  * marked complete and any dependent structures are added to the inode
3726  * bufwait list to be completed as soon as it is written.  If a bitmap write
3727  * depends on this entry we move the inode into the inodedephd of the
3728  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3729  */
3730 static void
3731 handle_written_jaddref(jaddref)
3732 	struct jaddref *jaddref;
3733 {
3734 	struct jsegdep *jsegdep;
3735 	struct inodedep *inodedep;
3736 	struct diradd *diradd;
3737 	struct mkdir *mkdir;
3738 
3739 	/* Grab the jsegdep. */
3740 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3741 	mkdir = NULL;
3742 	diradd = NULL;
3743 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3744 	    0, &inodedep) == 0)
3745 		panic("handle_written_jaddref: Lost inodedep.");
3746 	if (jaddref->ja_diradd == NULL)
3747 		panic("handle_written_jaddref: No dependency");
3748 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3749 		diradd = jaddref->ja_diradd;
3750 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3751 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3752 		mkdir = jaddref->ja_mkdir;
3753 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3754 	} else if (jaddref->ja_state & MKDIR_BODY)
3755 		mkdir = jaddref->ja_mkdir;
3756 	else
3757 		panic("handle_written_jaddref: Unknown dependency %p",
3758 		    jaddref->ja_diradd);
3759 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3760 	/*
3761 	 * Remove us from the inode list.
3762 	 */
3763 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3764 	/*
3765 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3766 	 */
3767 	if (mkdir) {
3768 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3769 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3770 		    TYPENAME(mkdir->md_list.wk_type)));
3771 		mkdir->md_jaddref = NULL;
3772 		diradd = mkdir->md_diradd;
3773 		mkdir->md_state |= DEPCOMPLETE;
3774 		complete_mkdir(mkdir);
3775 	}
3776 	jwork_insert(&diradd->da_jwork, jsegdep);
3777 	if (jaddref->ja_state & NEWBLOCK) {
3778 		inodedep->id_state |= ONDEPLIST;
3779 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3780 		    inodedep, id_deps);
3781 	}
3782 	free_jaddref(jaddref);
3783 }
3784 
3785 /*
3786  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3787  * is placed in the bmsafemap to await notification of a written bitmap.  If
3788  * the operation was canceled we add the segdep to the appropriate
3789  * dependency to free the journal space once the canceling operation
3790  * completes.
3791  */
3792 static void
3793 handle_written_jnewblk(jnewblk)
3794 	struct jnewblk *jnewblk;
3795 {
3796 	struct bmsafemap *bmsafemap;
3797 	struct freefrag *freefrag;
3798 	struct freework *freework;
3799 	struct jsegdep *jsegdep;
3800 	struct newblk *newblk;
3801 
3802 	/* Grab the jsegdep. */
3803 	jsegdep = jnewblk->jn_jsegdep;
3804 	jnewblk->jn_jsegdep = NULL;
3805 	if (jnewblk->jn_dep == NULL)
3806 		panic("handle_written_jnewblk: No dependency for the segdep.");
3807 	switch (jnewblk->jn_dep->wk_type) {
3808 	case D_NEWBLK:
3809 	case D_ALLOCDIRECT:
3810 	case D_ALLOCINDIR:
3811 		/*
3812 		 * Add the written block to the bmsafemap so it can
3813 		 * be notified when the bitmap is on disk.
3814 		 */
3815 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3816 		newblk->nb_jnewblk = NULL;
3817 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3818 			bmsafemap = newblk->nb_bmsafemap;
3819 			newblk->nb_state |= ONDEPLIST;
3820 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3821 			    nb_deps);
3822 		}
3823 		jwork_insert(&newblk->nb_jwork, jsegdep);
3824 		break;
3825 	case D_FREEFRAG:
3826 		/*
3827 		 * A newblock being removed by a freefrag when replaced by
3828 		 * frag extension.
3829 		 */
3830 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3831 		freefrag->ff_jdep = NULL;
3832 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3833 		break;
3834 	case D_FREEWORK:
3835 		/*
3836 		 * A direct block was removed by truncate.
3837 		 */
3838 		freework = WK_FREEWORK(jnewblk->jn_dep);
3839 		freework->fw_jnewblk = NULL;
3840 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3841 		break;
3842 	default:
3843 		panic("handle_written_jnewblk: Unknown type %d.",
3844 		    jnewblk->jn_dep->wk_type);
3845 	}
3846 	jnewblk->jn_dep = NULL;
3847 	free_jnewblk(jnewblk);
3848 }
3849 
3850 /*
3851  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3852  * an in-flight allocation that has not yet been committed.  Divorce us
3853  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3854  * to the worklist.
3855  */
3856 static void
3857 cancel_jfreefrag(jfreefrag)
3858 	struct jfreefrag *jfreefrag;
3859 {
3860 	struct freefrag *freefrag;
3861 
3862 	if (jfreefrag->fr_jsegdep) {
3863 		free_jsegdep(jfreefrag->fr_jsegdep);
3864 		jfreefrag->fr_jsegdep = NULL;
3865 	}
3866 	freefrag = jfreefrag->fr_freefrag;
3867 	jfreefrag->fr_freefrag = NULL;
3868 	free_jfreefrag(jfreefrag);
3869 	freefrag->ff_state |= DEPCOMPLETE;
3870 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3871 }
3872 
3873 /*
3874  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3875  */
3876 static void
3877 free_jfreefrag(jfreefrag)
3878 	struct jfreefrag *jfreefrag;
3879 {
3880 
3881 	if (jfreefrag->fr_state & INPROGRESS)
3882 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3883 	else if (jfreefrag->fr_state & ONWORKLIST)
3884 		remove_from_journal(&jfreefrag->fr_list);
3885 	if (jfreefrag->fr_freefrag != NULL)
3886 		panic("free_jfreefrag:  Still attached to a freefrag.");
3887 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3888 }
3889 
3890 /*
3891  * Called when the journal write for a jfreefrag completes.  The parent
3892  * freefrag is added to the worklist if this completes its dependencies.
3893  */
3894 static void
3895 handle_written_jfreefrag(jfreefrag)
3896 	struct jfreefrag *jfreefrag;
3897 {
3898 	struct jsegdep *jsegdep;
3899 	struct freefrag *freefrag;
3900 
3901 	/* Grab the jsegdep. */
3902 	jsegdep = jfreefrag->fr_jsegdep;
3903 	jfreefrag->fr_jsegdep = NULL;
3904 	freefrag = jfreefrag->fr_freefrag;
3905 	if (freefrag == NULL)
3906 		panic("handle_written_jfreefrag: No freefrag.");
3907 	freefrag->ff_state |= DEPCOMPLETE;
3908 	freefrag->ff_jdep = NULL;
3909 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3910 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3911 		add_to_worklist(&freefrag->ff_list, 0);
3912 	jfreefrag->fr_freefrag = NULL;
3913 	free_jfreefrag(jfreefrag);
3914 }
3915 
3916 /*
3917  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3918  * is removed from the freeblks list of pending journal writes and the
3919  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3920  * have been reclaimed.
3921  */
3922 static void
3923 handle_written_jblkdep(jblkdep)
3924 	struct jblkdep *jblkdep;
3925 {
3926 	struct freeblks *freeblks;
3927 	struct jsegdep *jsegdep;
3928 
3929 	/* Grab the jsegdep. */
3930 	jsegdep = jblkdep->jb_jsegdep;
3931 	jblkdep->jb_jsegdep = NULL;
3932 	freeblks = jblkdep->jb_freeblks;
3933 	LIST_REMOVE(jblkdep, jb_deps);
3934 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3935 	/*
3936 	 * If the freeblks is all journaled, we can add it to the worklist.
3937 	 */
3938 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3939 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3940 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3941 
3942 	free_jblkdep(jblkdep);
3943 }
3944 
3945 static struct jsegdep *
3946 newjsegdep(struct worklist *wk)
3947 {
3948 	struct jsegdep *jsegdep;
3949 
3950 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3951 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3952 	jsegdep->jd_seg = NULL;
3953 
3954 	return (jsegdep);
3955 }
3956 
3957 static struct jmvref *
3958 newjmvref(dp, ino, oldoff, newoff)
3959 	struct inode *dp;
3960 	ino_t ino;
3961 	off_t oldoff;
3962 	off_t newoff;
3963 {
3964 	struct jmvref *jmvref;
3965 
3966 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3967 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3968 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3969 	jmvref->jm_parent = dp->i_number;
3970 	jmvref->jm_ino = ino;
3971 	jmvref->jm_oldoff = oldoff;
3972 	jmvref->jm_newoff = newoff;
3973 
3974 	return (jmvref);
3975 }
3976 
3977 /*
3978  * Allocate a new jremref that tracks the removal of ip from dp with the
3979  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3980  * DEPCOMPLETE as we have all the information required for the journal write
3981  * and the directory has already been removed from the buffer.  The caller
3982  * is responsible for linking the jremref into the pagedep and adding it
3983  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3984  * a DOTDOT addition so handle_workitem_remove() can properly assign
3985  * the jsegdep when we're done.
3986  */
3987 static struct jremref *
3988 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3989     off_t diroff, nlink_t nlink)
3990 {
3991 	struct jremref *jremref;
3992 
3993 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3994 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3995 	jremref->jr_state = ATTACHED;
3996 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3997 	   nlink, ip->i_mode);
3998 	jremref->jr_dirrem = dirrem;
3999 
4000 	return (jremref);
4001 }
4002 
4003 static inline void
4004 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4005     nlink_t nlink, uint16_t mode)
4006 {
4007 
4008 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4009 	inoref->if_diroff = diroff;
4010 	inoref->if_ino = ino;
4011 	inoref->if_parent = parent;
4012 	inoref->if_nlink = nlink;
4013 	inoref->if_mode = mode;
4014 }
4015 
4016 /*
4017  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4018  * directory offset may not be known until later.  The caller is responsible
4019  * adding the entry to the journal when this information is available.  nlink
4020  * should be the link count prior to the addition and mode is only required
4021  * to have the correct FMT.
4022  */
4023 static struct jaddref *
4024 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4025     uint16_t mode)
4026 {
4027 	struct jaddref *jaddref;
4028 
4029 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4030 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4031 	jaddref->ja_state = ATTACHED;
4032 	jaddref->ja_mkdir = NULL;
4033 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4034 
4035 	return (jaddref);
4036 }
4037 
4038 /*
4039  * Create a new free dependency for a freework.  The caller is responsible
4040  * for adjusting the reference count when it has the lock held.  The freedep
4041  * will track an outstanding bitmap write that will ultimately clear the
4042  * freework to continue.
4043  */
4044 static struct freedep *
4045 newfreedep(struct freework *freework)
4046 {
4047 	struct freedep *freedep;
4048 
4049 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4050 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4051 	freedep->fd_freework = freework;
4052 
4053 	return (freedep);
4054 }
4055 
4056 /*
4057  * Free a freedep structure once the buffer it is linked to is written.  If
4058  * this is the last reference to the freework schedule it for completion.
4059  */
4060 static void
4061 free_freedep(freedep)
4062 	struct freedep *freedep;
4063 {
4064 	struct freework *freework;
4065 
4066 	freework = freedep->fd_freework;
4067 	freework->fw_freeblks->fb_cgwait--;
4068 	if (--freework->fw_ref == 0)
4069 		freework_enqueue(freework);
4070 	WORKITEM_FREE(freedep, D_FREEDEP);
4071 }
4072 
4073 /*
4074  * Allocate a new freework structure that may be a level in an indirect
4075  * when parent is not NULL or a top level block when it is.  The top level
4076  * freework structures are allocated without the per-filesystem lock held
4077  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4078  */
4079 static struct freework *
4080 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4081 	struct ufsmount *ump;
4082 	struct freeblks *freeblks;
4083 	struct freework *parent;
4084 	ufs_lbn_t lbn;
4085 	ufs2_daddr_t nb;
4086 	int frags;
4087 	int off;
4088 	int journal;
4089 {
4090 	struct freework *freework;
4091 
4092 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4093 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4094 	freework->fw_state = ATTACHED;
4095 	freework->fw_jnewblk = NULL;
4096 	freework->fw_freeblks = freeblks;
4097 	freework->fw_parent = parent;
4098 	freework->fw_lbn = lbn;
4099 	freework->fw_blkno = nb;
4100 	freework->fw_frags = frags;
4101 	freework->fw_indir = NULL;
4102 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4103 		? 0 : NINDIR(ump->um_fs) + 1;
4104 	freework->fw_start = freework->fw_off = off;
4105 	if (journal)
4106 		newjfreeblk(freeblks, lbn, nb, frags);
4107 	if (parent == NULL) {
4108 		ACQUIRE_LOCK(ump);
4109 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4110 		freeblks->fb_ref++;
4111 		FREE_LOCK(ump);
4112 	}
4113 
4114 	return (freework);
4115 }
4116 
4117 /*
4118  * Eliminate a jfreeblk for a block that does not need journaling.
4119  */
4120 static void
4121 cancel_jfreeblk(freeblks, blkno)
4122 	struct freeblks *freeblks;
4123 	ufs2_daddr_t blkno;
4124 {
4125 	struct jfreeblk *jfreeblk;
4126 	struct jblkdep *jblkdep;
4127 
4128 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4129 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4130 			continue;
4131 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4132 		if (jfreeblk->jf_blkno == blkno)
4133 			break;
4134 	}
4135 	if (jblkdep == NULL)
4136 		return;
4137 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4138 	free_jsegdep(jblkdep->jb_jsegdep);
4139 	LIST_REMOVE(jblkdep, jb_deps);
4140 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4141 }
4142 
4143 /*
4144  * Allocate a new jfreeblk to journal top level block pointer when truncating
4145  * a file.  The caller must add this to the worklist when the per-filesystem
4146  * lock is held.
4147  */
4148 static struct jfreeblk *
4149 newjfreeblk(freeblks, lbn, blkno, frags)
4150 	struct freeblks *freeblks;
4151 	ufs_lbn_t lbn;
4152 	ufs2_daddr_t blkno;
4153 	int frags;
4154 {
4155 	struct jfreeblk *jfreeblk;
4156 
4157 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4158 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4159 	    freeblks->fb_list.wk_mp);
4160 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4161 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4162 	jfreeblk->jf_ino = freeblks->fb_inum;
4163 	jfreeblk->jf_lbn = lbn;
4164 	jfreeblk->jf_blkno = blkno;
4165 	jfreeblk->jf_frags = frags;
4166 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4167 
4168 	return (jfreeblk);
4169 }
4170 
4171 /*
4172  * The journal is only prepared to handle full-size block numbers, so we
4173  * have to adjust the record to reflect the change to a full-size block.
4174  * For example, suppose we have a block made up of fragments 8-15 and
4175  * want to free its last two fragments. We are given a request that says:
4176  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4177  * where frags are the number of fragments to free and oldfrags are the
4178  * number of fragments to keep. To block align it, we have to change it to
4179  * have a valid full-size blkno, so it becomes:
4180  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4181  */
4182 static void
4183 adjust_newfreework(freeblks, frag_offset)
4184 	struct freeblks *freeblks;
4185 	int frag_offset;
4186 {
4187 	struct jfreeblk *jfreeblk;
4188 
4189 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4190 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4191 	    ("adjust_newfreework: Missing freeblks dependency"));
4192 
4193 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4194 	jfreeblk->jf_blkno -= frag_offset;
4195 	jfreeblk->jf_frags += frag_offset;
4196 }
4197 
4198 /*
4199  * Allocate a new jtrunc to track a partial truncation.
4200  */
4201 static struct jtrunc *
4202 newjtrunc(freeblks, size, extsize)
4203 	struct freeblks *freeblks;
4204 	off_t size;
4205 	int extsize;
4206 {
4207 	struct jtrunc *jtrunc;
4208 
4209 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4210 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4211 	    freeblks->fb_list.wk_mp);
4212 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4213 	jtrunc->jt_dep.jb_freeblks = freeblks;
4214 	jtrunc->jt_ino = freeblks->fb_inum;
4215 	jtrunc->jt_size = size;
4216 	jtrunc->jt_extsize = extsize;
4217 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4218 
4219 	return (jtrunc);
4220 }
4221 
4222 /*
4223  * If we're canceling a new bitmap we have to search for another ref
4224  * to move into the bmsafemap dep.  This might be better expressed
4225  * with another structure.
4226  */
4227 static void
4228 move_newblock_dep(jaddref, inodedep)
4229 	struct jaddref *jaddref;
4230 	struct inodedep *inodedep;
4231 {
4232 	struct inoref *inoref;
4233 	struct jaddref *jaddrefn;
4234 
4235 	jaddrefn = NULL;
4236 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4237 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4238 		if ((jaddref->ja_state & NEWBLOCK) &&
4239 		    inoref->if_list.wk_type == D_JADDREF) {
4240 			jaddrefn = (struct jaddref *)inoref;
4241 			break;
4242 		}
4243 	}
4244 	if (jaddrefn == NULL)
4245 		return;
4246 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4247 	jaddrefn->ja_state |= jaddref->ja_state &
4248 	    (ATTACHED | UNDONE | NEWBLOCK);
4249 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4250 	jaddref->ja_state |= ATTACHED;
4251 	LIST_REMOVE(jaddref, ja_bmdeps);
4252 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4253 	    ja_bmdeps);
4254 }
4255 
4256 /*
4257  * Cancel a jaddref either before it has been written or while it is being
4258  * written.  This happens when a link is removed before the add reaches
4259  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4260  * and inode to prevent the link count or bitmap from reaching the disk
4261  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4262  * required.
4263  *
4264  * Returns 1 if the canceled addref requires journaling of the remove and
4265  * 0 otherwise.
4266  */
4267 static int
4268 cancel_jaddref(jaddref, inodedep, wkhd)
4269 	struct jaddref *jaddref;
4270 	struct inodedep *inodedep;
4271 	struct workhead *wkhd;
4272 {
4273 	struct inoref *inoref;
4274 	struct jsegdep *jsegdep;
4275 	int needsj;
4276 
4277 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4278 	    ("cancel_jaddref: Canceling complete jaddref"));
4279 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4280 		needsj = 1;
4281 	else
4282 		needsj = 0;
4283 	if (inodedep == NULL)
4284 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4285 		    0, &inodedep) == 0)
4286 			panic("cancel_jaddref: Lost inodedep");
4287 	/*
4288 	 * We must adjust the nlink of any reference operation that follows
4289 	 * us so that it is consistent with the in-memory reference.  This
4290 	 * ensures that inode nlink rollbacks always have the correct link.
4291 	 */
4292 	if (needsj == 0) {
4293 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4294 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4295 			if (inoref->if_state & GOINGAWAY)
4296 				break;
4297 			inoref->if_nlink--;
4298 		}
4299 	}
4300 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4301 	if (jaddref->ja_state & NEWBLOCK)
4302 		move_newblock_dep(jaddref, inodedep);
4303 	wake_worklist(&jaddref->ja_list);
4304 	jaddref->ja_mkdir = NULL;
4305 	if (jaddref->ja_state & INPROGRESS) {
4306 		jaddref->ja_state &= ~INPROGRESS;
4307 		WORKLIST_REMOVE(&jaddref->ja_list);
4308 		jwork_insert(wkhd, jsegdep);
4309 	} else {
4310 		free_jsegdep(jsegdep);
4311 		if (jaddref->ja_state & DEPCOMPLETE)
4312 			remove_from_journal(&jaddref->ja_list);
4313 	}
4314 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4315 	/*
4316 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4317 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4318 	 * no longer need this addref attached to the inoreflst and it
4319 	 * will incorrectly adjust nlink if we leave it.
4320 	 */
4321 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4322 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4323 		    if_deps);
4324 		jaddref->ja_state |= COMPLETE;
4325 		free_jaddref(jaddref);
4326 		return (needsj);
4327 	}
4328 	/*
4329 	 * Leave the head of the list for jsegdeps for fast merging.
4330 	 */
4331 	if (LIST_FIRST(wkhd) != NULL) {
4332 		jaddref->ja_state |= ONWORKLIST;
4333 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4334 	} else
4335 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4336 
4337 	return (needsj);
4338 }
4339 
4340 /*
4341  * Attempt to free a jaddref structure when some work completes.  This
4342  * should only succeed once the entry is written and all dependencies have
4343  * been notified.
4344  */
4345 static void
4346 free_jaddref(jaddref)
4347 	struct jaddref *jaddref;
4348 {
4349 
4350 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4351 		return;
4352 	if (jaddref->ja_ref.if_jsegdep)
4353 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4354 		    jaddref, jaddref->ja_state);
4355 	if (jaddref->ja_state & NEWBLOCK)
4356 		LIST_REMOVE(jaddref, ja_bmdeps);
4357 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4358 		panic("free_jaddref: Bad state %p(0x%X)",
4359 		    jaddref, jaddref->ja_state);
4360 	if (jaddref->ja_mkdir != NULL)
4361 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4362 	WORKITEM_FREE(jaddref, D_JADDREF);
4363 }
4364 
4365 /*
4366  * Free a jremref structure once it has been written or discarded.
4367  */
4368 static void
4369 free_jremref(jremref)
4370 	struct jremref *jremref;
4371 {
4372 
4373 	if (jremref->jr_ref.if_jsegdep)
4374 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4375 	if (jremref->jr_state & INPROGRESS)
4376 		panic("free_jremref: IO still pending");
4377 	WORKITEM_FREE(jremref, D_JREMREF);
4378 }
4379 
4380 /*
4381  * Free a jnewblk structure.
4382  */
4383 static void
4384 free_jnewblk(jnewblk)
4385 	struct jnewblk *jnewblk;
4386 {
4387 
4388 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4389 		return;
4390 	LIST_REMOVE(jnewblk, jn_deps);
4391 	if (jnewblk->jn_dep != NULL)
4392 		panic("free_jnewblk: Dependency still attached.");
4393 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4394 }
4395 
4396 /*
4397  * Cancel a jnewblk which has been been made redundant by frag extension.
4398  */
4399 static void
4400 cancel_jnewblk(jnewblk, wkhd)
4401 	struct jnewblk *jnewblk;
4402 	struct workhead *wkhd;
4403 {
4404 	struct jsegdep *jsegdep;
4405 
4406 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4407 	jsegdep = jnewblk->jn_jsegdep;
4408 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4409 		panic("cancel_jnewblk: Invalid state");
4410 	jnewblk->jn_jsegdep  = NULL;
4411 	jnewblk->jn_dep = NULL;
4412 	jnewblk->jn_state |= GOINGAWAY;
4413 	if (jnewblk->jn_state & INPROGRESS) {
4414 		jnewblk->jn_state &= ~INPROGRESS;
4415 		WORKLIST_REMOVE(&jnewblk->jn_list);
4416 		jwork_insert(wkhd, jsegdep);
4417 	} else {
4418 		free_jsegdep(jsegdep);
4419 		remove_from_journal(&jnewblk->jn_list);
4420 	}
4421 	wake_worklist(&jnewblk->jn_list);
4422 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4423 }
4424 
4425 static void
4426 free_jblkdep(jblkdep)
4427 	struct jblkdep *jblkdep;
4428 {
4429 
4430 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4431 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4432 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4433 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4434 	else
4435 		panic("free_jblkdep: Unexpected type %s",
4436 		    TYPENAME(jblkdep->jb_list.wk_type));
4437 }
4438 
4439 /*
4440  * Free a single jseg once it is no longer referenced in memory or on
4441  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4442  * to disappear.
4443  */
4444 static void
4445 free_jseg(jseg, jblocks)
4446 	struct jseg *jseg;
4447 	struct jblocks *jblocks;
4448 {
4449 	struct freework *freework;
4450 
4451 	/*
4452 	 * Free freework structures that were lingering to indicate freed
4453 	 * indirect blocks that forced journal write ordering on reallocate.
4454 	 */
4455 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4456 		indirblk_remove(freework);
4457 	if (jblocks->jb_oldestseg == jseg)
4458 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4459 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4460 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4461 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4462 	    ("free_jseg: Freed jseg has valid entries."));
4463 	WORKITEM_FREE(jseg, D_JSEG);
4464 }
4465 
4466 /*
4467  * Free all jsegs that meet the criteria for being reclaimed and update
4468  * oldestseg.
4469  */
4470 static void
4471 free_jsegs(jblocks)
4472 	struct jblocks *jblocks;
4473 {
4474 	struct jseg *jseg;
4475 
4476 	/*
4477 	 * Free only those jsegs which have none allocated before them to
4478 	 * preserve the journal space ordering.
4479 	 */
4480 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4481 		/*
4482 		 * Only reclaim space when nothing depends on this journal
4483 		 * set and another set has written that it is no longer
4484 		 * valid.
4485 		 */
4486 		if (jseg->js_refs != 0) {
4487 			jblocks->jb_oldestseg = jseg;
4488 			return;
4489 		}
4490 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4491 			break;
4492 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4493 			break;
4494 		/*
4495 		 * We can free jsegs that didn't write entries when
4496 		 * oldestwrseq == js_seq.
4497 		 */
4498 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4499 		    jseg->js_cnt != 0)
4500 			break;
4501 		free_jseg(jseg, jblocks);
4502 	}
4503 	/*
4504 	 * If we exited the loop above we still must discover the
4505 	 * oldest valid segment.
4506 	 */
4507 	if (jseg)
4508 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4509 		     jseg = TAILQ_NEXT(jseg, js_next))
4510 			if (jseg->js_refs != 0)
4511 				break;
4512 	jblocks->jb_oldestseg = jseg;
4513 	/*
4514 	 * The journal has no valid records but some jsegs may still be
4515 	 * waiting on oldestwrseq to advance.  We force a small record
4516 	 * out to permit these lingering records to be reclaimed.
4517 	 */
4518 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4519 		jblocks->jb_needseg = 1;
4520 }
4521 
4522 /*
4523  * Release one reference to a jseg and free it if the count reaches 0.  This
4524  * should eventually reclaim journal space as well.
4525  */
4526 static void
4527 rele_jseg(jseg)
4528 	struct jseg *jseg;
4529 {
4530 
4531 	KASSERT(jseg->js_refs > 0,
4532 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4533 	if (--jseg->js_refs != 0)
4534 		return;
4535 	free_jsegs(jseg->js_jblocks);
4536 }
4537 
4538 /*
4539  * Release a jsegdep and decrement the jseg count.
4540  */
4541 static void
4542 free_jsegdep(jsegdep)
4543 	struct jsegdep *jsegdep;
4544 {
4545 
4546 	if (jsegdep->jd_seg)
4547 		rele_jseg(jsegdep->jd_seg);
4548 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4549 }
4550 
4551 /*
4552  * Wait for a journal item to make it to disk.  Initiate journal processing
4553  * if required.
4554  */
4555 static int
4556 jwait(wk, waitfor)
4557 	struct worklist *wk;
4558 	int waitfor;
4559 {
4560 
4561 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4562 	/*
4563 	 * Blocking journal waits cause slow synchronous behavior.  Record
4564 	 * stats on the frequency of these blocking operations.
4565 	 */
4566 	if (waitfor == MNT_WAIT) {
4567 		stat_journal_wait++;
4568 		switch (wk->wk_type) {
4569 		case D_JREMREF:
4570 		case D_JMVREF:
4571 			stat_jwait_filepage++;
4572 			break;
4573 		case D_JTRUNC:
4574 		case D_JFREEBLK:
4575 			stat_jwait_freeblks++;
4576 			break;
4577 		case D_JNEWBLK:
4578 			stat_jwait_newblk++;
4579 			break;
4580 		case D_JADDREF:
4581 			stat_jwait_inode++;
4582 			break;
4583 		default:
4584 			break;
4585 		}
4586 	}
4587 	/*
4588 	 * If IO has not started we process the journal.  We can't mark the
4589 	 * worklist item as IOWAITING because we drop the lock while
4590 	 * processing the journal and the worklist entry may be freed after
4591 	 * this point.  The caller may call back in and re-issue the request.
4592 	 */
4593 	if ((wk->wk_state & INPROGRESS) == 0) {
4594 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4595 		if (waitfor != MNT_WAIT)
4596 			return (EBUSY);
4597 		return (0);
4598 	}
4599 	if (waitfor != MNT_WAIT)
4600 		return (EBUSY);
4601 	wait_worklist(wk, "jwait");
4602 	return (0);
4603 }
4604 
4605 /*
4606  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4607  * appropriate.  This is a convenience function to reduce duplicate code
4608  * for the setup and revert functions below.
4609  */
4610 static struct inodedep *
4611 inodedep_lookup_ip(ip)
4612 	struct inode *ip;
4613 {
4614 	struct inodedep *inodedep;
4615 	int dflags;
4616 
4617 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4618 	    ("inodedep_lookup_ip: bad delta"));
4619 	dflags = DEPALLOC;
4620 	if (IS_SNAPSHOT(ip))
4621 		dflags |= NODELAY;
4622 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4623 	    &inodedep);
4624 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4625 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4626 
4627 	return (inodedep);
4628 }
4629 
4630 /*
4631  * Called prior to creating a new inode and linking it to a directory.  The
4632  * jaddref structure must already be allocated by softdep_setup_inomapdep
4633  * and it is discovered here so we can initialize the mode and update
4634  * nlinkdelta.
4635  */
4636 void
4637 softdep_setup_create(dp, ip)
4638 	struct inode *dp;
4639 	struct inode *ip;
4640 {
4641 	struct inodedep *inodedep;
4642 	struct jaddref *jaddref;
4643 	struct vnode *dvp;
4644 
4645 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4646 	    ("softdep_setup_create called on non-softdep filesystem"));
4647 	KASSERT(ip->i_nlink == 1,
4648 	    ("softdep_setup_create: Invalid link count."));
4649 	dvp = ITOV(dp);
4650 	ACQUIRE_LOCK(dp->i_ump);
4651 	inodedep = inodedep_lookup_ip(ip);
4652 	if (DOINGSUJ(dvp)) {
4653 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4654 		    inoreflst);
4655 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4656 		    ("softdep_setup_create: No addref structure present."));
4657 	}
4658 	softdep_prelink(dvp, NULL);
4659 	FREE_LOCK(dp->i_ump);
4660 }
4661 
4662 /*
4663  * Create a jaddref structure to track the addition of a DOTDOT link when
4664  * we are reparenting an inode as part of a rename.  This jaddref will be
4665  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4666  * non-journaling softdep.
4667  */
4668 void
4669 softdep_setup_dotdot_link(dp, ip)
4670 	struct inode *dp;
4671 	struct inode *ip;
4672 {
4673 	struct inodedep *inodedep;
4674 	struct jaddref *jaddref;
4675 	struct vnode *dvp;
4676 	struct vnode *vp;
4677 
4678 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4679 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4680 	dvp = ITOV(dp);
4681 	vp = ITOV(ip);
4682 	jaddref = NULL;
4683 	/*
4684 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4685 	 * is used as a normal link would be.
4686 	 */
4687 	if (DOINGSUJ(dvp))
4688 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4689 		    dp->i_effnlink - 1, dp->i_mode);
4690 	ACQUIRE_LOCK(dp->i_ump);
4691 	inodedep = inodedep_lookup_ip(dp);
4692 	if (jaddref)
4693 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4694 		    if_deps);
4695 	softdep_prelink(dvp, ITOV(ip));
4696 	FREE_LOCK(dp->i_ump);
4697 }
4698 
4699 /*
4700  * Create a jaddref structure to track a new link to an inode.  The directory
4701  * offset is not known until softdep_setup_directory_add or
4702  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4703  * softdep.
4704  */
4705 void
4706 softdep_setup_link(dp, ip)
4707 	struct inode *dp;
4708 	struct inode *ip;
4709 {
4710 	struct inodedep *inodedep;
4711 	struct jaddref *jaddref;
4712 	struct vnode *dvp;
4713 
4714 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4715 	    ("softdep_setup_link called on non-softdep filesystem"));
4716 	dvp = ITOV(dp);
4717 	jaddref = NULL;
4718 	if (DOINGSUJ(dvp))
4719 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4720 		    ip->i_mode);
4721 	ACQUIRE_LOCK(dp->i_ump);
4722 	inodedep = inodedep_lookup_ip(ip);
4723 	if (jaddref)
4724 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4725 		    if_deps);
4726 	softdep_prelink(dvp, ITOV(ip));
4727 	FREE_LOCK(dp->i_ump);
4728 }
4729 
4730 /*
4731  * Called to create the jaddref structures to track . and .. references as
4732  * well as lookup and further initialize the incomplete jaddref created
4733  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4734  * nlinkdelta for non-journaling softdep.
4735  */
4736 void
4737 softdep_setup_mkdir(dp, ip)
4738 	struct inode *dp;
4739 	struct inode *ip;
4740 {
4741 	struct inodedep *inodedep;
4742 	struct jaddref *dotdotaddref;
4743 	struct jaddref *dotaddref;
4744 	struct jaddref *jaddref;
4745 	struct vnode *dvp;
4746 
4747 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4748 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4749 	dvp = ITOV(dp);
4750 	dotaddref = dotdotaddref = NULL;
4751 	if (DOINGSUJ(dvp)) {
4752 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4753 		    ip->i_mode);
4754 		dotaddref->ja_state |= MKDIR_BODY;
4755 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4756 		    dp->i_effnlink - 1, dp->i_mode);
4757 		dotdotaddref->ja_state |= MKDIR_PARENT;
4758 	}
4759 	ACQUIRE_LOCK(dp->i_ump);
4760 	inodedep = inodedep_lookup_ip(ip);
4761 	if (DOINGSUJ(dvp)) {
4762 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4763 		    inoreflst);
4764 		KASSERT(jaddref != NULL,
4765 		    ("softdep_setup_mkdir: No addref structure present."));
4766 		KASSERT(jaddref->ja_parent == dp->i_number,
4767 		    ("softdep_setup_mkdir: bad parent %ju",
4768 		    (uintmax_t)jaddref->ja_parent));
4769 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4770 		    if_deps);
4771 	}
4772 	inodedep = inodedep_lookup_ip(dp);
4773 	if (DOINGSUJ(dvp))
4774 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4775 		    &dotdotaddref->ja_ref, if_deps);
4776 	softdep_prelink(ITOV(dp), NULL);
4777 	FREE_LOCK(dp->i_ump);
4778 }
4779 
4780 /*
4781  * Called to track nlinkdelta of the inode and parent directories prior to
4782  * unlinking a directory.
4783  */
4784 void
4785 softdep_setup_rmdir(dp, ip)
4786 	struct inode *dp;
4787 	struct inode *ip;
4788 {
4789 	struct vnode *dvp;
4790 
4791 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4792 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4793 	dvp = ITOV(dp);
4794 	ACQUIRE_LOCK(dp->i_ump);
4795 	(void) inodedep_lookup_ip(ip);
4796 	(void) inodedep_lookup_ip(dp);
4797 	softdep_prelink(dvp, ITOV(ip));
4798 	FREE_LOCK(dp->i_ump);
4799 }
4800 
4801 /*
4802  * Called to track nlinkdelta of the inode and parent directories prior to
4803  * unlink.
4804  */
4805 void
4806 softdep_setup_unlink(dp, ip)
4807 	struct inode *dp;
4808 	struct inode *ip;
4809 {
4810 	struct vnode *dvp;
4811 
4812 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4813 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4814 	dvp = ITOV(dp);
4815 	ACQUIRE_LOCK(dp->i_ump);
4816 	(void) inodedep_lookup_ip(ip);
4817 	(void) inodedep_lookup_ip(dp);
4818 	softdep_prelink(dvp, ITOV(ip));
4819 	FREE_LOCK(dp->i_ump);
4820 }
4821 
4822 /*
4823  * Called to release the journal structures created by a failed non-directory
4824  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4825  */
4826 void
4827 softdep_revert_create(dp, ip)
4828 	struct inode *dp;
4829 	struct inode *ip;
4830 {
4831 	struct inodedep *inodedep;
4832 	struct jaddref *jaddref;
4833 	struct vnode *dvp;
4834 
4835 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4836 	    ("softdep_revert_create called on non-softdep filesystem"));
4837 	dvp = ITOV(dp);
4838 	ACQUIRE_LOCK(dp->i_ump);
4839 	inodedep = inodedep_lookup_ip(ip);
4840 	if (DOINGSUJ(dvp)) {
4841 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4842 		    inoreflst);
4843 		KASSERT(jaddref->ja_parent == dp->i_number,
4844 		    ("softdep_revert_create: addref parent mismatch"));
4845 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4846 	}
4847 	FREE_LOCK(dp->i_ump);
4848 }
4849 
4850 /*
4851  * Called to release the journal structures created by a failed link
4852  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4853  */
4854 void
4855 softdep_revert_link(dp, ip)
4856 	struct inode *dp;
4857 	struct inode *ip;
4858 {
4859 	struct inodedep *inodedep;
4860 	struct jaddref *jaddref;
4861 	struct vnode *dvp;
4862 
4863 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4864 	    ("softdep_revert_link called on non-softdep filesystem"));
4865 	dvp = ITOV(dp);
4866 	ACQUIRE_LOCK(dp->i_ump);
4867 	inodedep = inodedep_lookup_ip(ip);
4868 	if (DOINGSUJ(dvp)) {
4869 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4870 		    inoreflst);
4871 		KASSERT(jaddref->ja_parent == dp->i_number,
4872 		    ("softdep_revert_link: addref parent mismatch"));
4873 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4874 	}
4875 	FREE_LOCK(dp->i_ump);
4876 }
4877 
4878 /*
4879  * Called to release the journal structures created by a failed mkdir
4880  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4881  */
4882 void
4883 softdep_revert_mkdir(dp, ip)
4884 	struct inode *dp;
4885 	struct inode *ip;
4886 {
4887 	struct inodedep *inodedep;
4888 	struct jaddref *jaddref;
4889 	struct jaddref *dotaddref;
4890 	struct vnode *dvp;
4891 
4892 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4893 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4894 	dvp = ITOV(dp);
4895 
4896 	ACQUIRE_LOCK(dp->i_ump);
4897 	inodedep = inodedep_lookup_ip(dp);
4898 	if (DOINGSUJ(dvp)) {
4899 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4900 		    inoreflst);
4901 		KASSERT(jaddref->ja_parent == ip->i_number,
4902 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4903 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4904 	}
4905 	inodedep = inodedep_lookup_ip(ip);
4906 	if (DOINGSUJ(dvp)) {
4907 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4908 		    inoreflst);
4909 		KASSERT(jaddref->ja_parent == dp->i_number,
4910 		    ("softdep_revert_mkdir: addref parent mismatch"));
4911 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4912 		    inoreflst, if_deps);
4913 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4914 		KASSERT(dotaddref->ja_parent == ip->i_number,
4915 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4916 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4917 	}
4918 	FREE_LOCK(dp->i_ump);
4919 }
4920 
4921 /*
4922  * Called to correct nlinkdelta after a failed rmdir.
4923  */
4924 void
4925 softdep_revert_rmdir(dp, ip)
4926 	struct inode *dp;
4927 	struct inode *ip;
4928 {
4929 
4930 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4931 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4932 	ACQUIRE_LOCK(dp->i_ump);
4933 	(void) inodedep_lookup_ip(ip);
4934 	(void) inodedep_lookup_ip(dp);
4935 	FREE_LOCK(dp->i_ump);
4936 }
4937 
4938 /*
4939  * Protecting the freemaps (or bitmaps).
4940  *
4941  * To eliminate the need to execute fsck before mounting a filesystem
4942  * after a power failure, one must (conservatively) guarantee that the
4943  * on-disk copy of the bitmaps never indicate that a live inode or block is
4944  * free.  So, when a block or inode is allocated, the bitmap should be
4945  * updated (on disk) before any new pointers.  When a block or inode is
4946  * freed, the bitmap should not be updated until all pointers have been
4947  * reset.  The latter dependency is handled by the delayed de-allocation
4948  * approach described below for block and inode de-allocation.  The former
4949  * dependency is handled by calling the following procedure when a block or
4950  * inode is allocated. When an inode is allocated an "inodedep" is created
4951  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4952  * Each "inodedep" is also inserted into the hash indexing structure so
4953  * that any additional link additions can be made dependent on the inode
4954  * allocation.
4955  *
4956  * The ufs filesystem maintains a number of free block counts (e.g., per
4957  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4958  * in addition to the bitmaps.  These counts are used to improve efficiency
4959  * during allocation and therefore must be consistent with the bitmaps.
4960  * There is no convenient way to guarantee post-crash consistency of these
4961  * counts with simple update ordering, for two main reasons: (1) The counts
4962  * and bitmaps for a single cylinder group block are not in the same disk
4963  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4964  * be written and the other not.  (2) Some of the counts are located in the
4965  * superblock rather than the cylinder group block. So, we focus our soft
4966  * updates implementation on protecting the bitmaps. When mounting a
4967  * filesystem, we recompute the auxiliary counts from the bitmaps.
4968  */
4969 
4970 /*
4971  * Called just after updating the cylinder group block to allocate an inode.
4972  */
4973 void
4974 softdep_setup_inomapdep(bp, ip, newinum, mode)
4975 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4976 	struct inode *ip;	/* inode related to allocation */
4977 	ino_t newinum;		/* new inode number being allocated */
4978 	int mode;
4979 {
4980 	struct inodedep *inodedep;
4981 	struct bmsafemap *bmsafemap;
4982 	struct jaddref *jaddref;
4983 	struct mount *mp;
4984 	struct fs *fs;
4985 
4986 	mp = UFSTOVFS(ip->i_ump);
4987 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4988 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
4989 	fs = ip->i_ump->um_fs;
4990 	jaddref = NULL;
4991 
4992 	/*
4993 	 * Allocate the journal reference add structure so that the bitmap
4994 	 * can be dependent on it.
4995 	 */
4996 	if (MOUNTEDSUJ(mp)) {
4997 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4998 		jaddref->ja_state |= NEWBLOCK;
4999 	}
5000 
5001 	/*
5002 	 * Create a dependency for the newly allocated inode.
5003 	 * Panic if it already exists as something is seriously wrong.
5004 	 * Otherwise add it to the dependency list for the buffer holding
5005 	 * the cylinder group map from which it was allocated.
5006 	 *
5007 	 * We have to preallocate a bmsafemap entry in case it is needed
5008 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5009 	 * have to finish initializing it before we can FREE_LOCK().
5010 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5011 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5012 	 * creating the inodedep as it can be freed during the time
5013 	 * that we FREE_LOCK() while allocating the inodedep. We must
5014 	 * call workitem_alloc() before entering the locked section as
5015 	 * it also acquires the lock and we must avoid trying doing so
5016 	 * recursively.
5017 	 */
5018 	bmsafemap = malloc(sizeof(struct bmsafemap),
5019 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5020 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5021 	ACQUIRE_LOCK(ip->i_ump);
5022 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
5023 		panic("softdep_setup_inomapdep: dependency %p for new"
5024 		    "inode already exists", inodedep);
5025 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5026 	if (jaddref) {
5027 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5028 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5029 		    if_deps);
5030 	} else {
5031 		inodedep->id_state |= ONDEPLIST;
5032 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5033 	}
5034 	inodedep->id_bmsafemap = bmsafemap;
5035 	inodedep->id_state &= ~DEPCOMPLETE;
5036 	FREE_LOCK(ip->i_ump);
5037 }
5038 
5039 /*
5040  * Called just after updating the cylinder group block to
5041  * allocate block or fragment.
5042  */
5043 void
5044 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5045 	struct buf *bp;		/* buffer for cylgroup block with block map */
5046 	struct mount *mp;	/* filesystem doing allocation */
5047 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5048 	int frags;		/* Number of fragments. */
5049 	int oldfrags;		/* Previous number of fragments for extend. */
5050 {
5051 	struct newblk *newblk;
5052 	struct bmsafemap *bmsafemap;
5053 	struct jnewblk *jnewblk;
5054 	struct ufsmount *ump;
5055 	struct fs *fs;
5056 
5057 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5058 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5059 	ump = VFSTOUFS(mp);
5060 	fs = ump->um_fs;
5061 	jnewblk = NULL;
5062 	/*
5063 	 * Create a dependency for the newly allocated block.
5064 	 * Add it to the dependency list for the buffer holding
5065 	 * the cylinder group map from which it was allocated.
5066 	 */
5067 	if (MOUNTEDSUJ(mp)) {
5068 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5069 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5070 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5071 		jnewblk->jn_state = ATTACHED;
5072 		jnewblk->jn_blkno = newblkno;
5073 		jnewblk->jn_frags = frags;
5074 		jnewblk->jn_oldfrags = oldfrags;
5075 #ifdef SUJ_DEBUG
5076 		{
5077 			struct cg *cgp;
5078 			uint8_t *blksfree;
5079 			long bno;
5080 			int i;
5081 
5082 			cgp = (struct cg *)bp->b_data;
5083 			blksfree = cg_blksfree(cgp);
5084 			bno = dtogd(fs, jnewblk->jn_blkno);
5085 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5086 			    i++) {
5087 				if (isset(blksfree, bno + i))
5088 					panic("softdep_setup_blkmapdep: "
5089 					    "free fragment %d from %d-%d "
5090 					    "state 0x%X dep %p", i,
5091 					    jnewblk->jn_oldfrags,
5092 					    jnewblk->jn_frags,
5093 					    jnewblk->jn_state,
5094 					    jnewblk->jn_dep);
5095 			}
5096 		}
5097 #endif
5098 	}
5099 
5100 	CTR3(KTR_SUJ,
5101 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5102 	    newblkno, frags, oldfrags);
5103 	ACQUIRE_LOCK(ump);
5104 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5105 		panic("softdep_setup_blkmapdep: found block");
5106 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5107 	    dtog(fs, newblkno), NULL);
5108 	if (jnewblk) {
5109 		jnewblk->jn_dep = (struct worklist *)newblk;
5110 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5111 	} else {
5112 		newblk->nb_state |= ONDEPLIST;
5113 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5114 	}
5115 	newblk->nb_bmsafemap = bmsafemap;
5116 	newblk->nb_jnewblk = jnewblk;
5117 	FREE_LOCK(ump);
5118 }
5119 
5120 #define	BMSAFEMAP_HASH(ump, cg) \
5121       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5122 
5123 static int
5124 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5125 	struct bmsafemap_hashhead *bmsafemaphd;
5126 	int cg;
5127 	struct bmsafemap **bmsafemapp;
5128 {
5129 	struct bmsafemap *bmsafemap;
5130 
5131 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5132 		if (bmsafemap->sm_cg == cg)
5133 			break;
5134 	if (bmsafemap) {
5135 		*bmsafemapp = bmsafemap;
5136 		return (1);
5137 	}
5138 	*bmsafemapp = NULL;
5139 
5140 	return (0);
5141 }
5142 
5143 /*
5144  * Find the bmsafemap associated with a cylinder group buffer.
5145  * If none exists, create one. The buffer must be locked when
5146  * this routine is called and this routine must be called with
5147  * the softdep lock held. To avoid giving up the lock while
5148  * allocating a new bmsafemap, a preallocated bmsafemap may be
5149  * provided. If it is provided but not needed, it is freed.
5150  */
5151 static struct bmsafemap *
5152 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5153 	struct mount *mp;
5154 	struct buf *bp;
5155 	int cg;
5156 	struct bmsafemap *newbmsafemap;
5157 {
5158 	struct bmsafemap_hashhead *bmsafemaphd;
5159 	struct bmsafemap *bmsafemap, *collision;
5160 	struct worklist *wk;
5161 	struct ufsmount *ump;
5162 
5163 	ump = VFSTOUFS(mp);
5164 	LOCK_OWNED(ump);
5165 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5166 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5167 		if (wk->wk_type == D_BMSAFEMAP) {
5168 			if (newbmsafemap)
5169 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5170 			return (WK_BMSAFEMAP(wk));
5171 		}
5172 	}
5173 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5174 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5175 		if (newbmsafemap)
5176 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5177 		return (bmsafemap);
5178 	}
5179 	if (newbmsafemap) {
5180 		bmsafemap = newbmsafemap;
5181 	} else {
5182 		FREE_LOCK(ump);
5183 		bmsafemap = malloc(sizeof(struct bmsafemap),
5184 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5185 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5186 		ACQUIRE_LOCK(ump);
5187 	}
5188 	bmsafemap->sm_buf = bp;
5189 	LIST_INIT(&bmsafemap->sm_inodedephd);
5190 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5191 	LIST_INIT(&bmsafemap->sm_newblkhd);
5192 	LIST_INIT(&bmsafemap->sm_newblkwr);
5193 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5194 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5195 	LIST_INIT(&bmsafemap->sm_freehd);
5196 	LIST_INIT(&bmsafemap->sm_freewr);
5197 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5198 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5199 		return (collision);
5200 	}
5201 	bmsafemap->sm_cg = cg;
5202 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5203 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5204 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5205 	return (bmsafemap);
5206 }
5207 
5208 /*
5209  * Direct block allocation dependencies.
5210  *
5211  * When a new block is allocated, the corresponding disk locations must be
5212  * initialized (with zeros or new data) before the on-disk inode points to
5213  * them.  Also, the freemap from which the block was allocated must be
5214  * updated (on disk) before the inode's pointer. These two dependencies are
5215  * independent of each other and are needed for all file blocks and indirect
5216  * blocks that are pointed to directly by the inode.  Just before the
5217  * "in-core" version of the inode is updated with a newly allocated block
5218  * number, a procedure (below) is called to setup allocation dependency
5219  * structures.  These structures are removed when the corresponding
5220  * dependencies are satisfied or when the block allocation becomes obsolete
5221  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5222  * fragment that gets upgraded).  All of these cases are handled in
5223  * procedures described later.
5224  *
5225  * When a file extension causes a fragment to be upgraded, either to a larger
5226  * fragment or to a full block, the on-disk location may change (if the
5227  * previous fragment could not simply be extended). In this case, the old
5228  * fragment must be de-allocated, but not until after the inode's pointer has
5229  * been updated. In most cases, this is handled by later procedures, which
5230  * will construct a "freefrag" structure to be added to the workitem queue
5231  * when the inode update is complete (or obsolete).  The main exception to
5232  * this is when an allocation occurs while a pending allocation dependency
5233  * (for the same block pointer) remains.  This case is handled in the main
5234  * allocation dependency setup procedure by immediately freeing the
5235  * unreferenced fragments.
5236  */
5237 void
5238 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5239 	struct inode *ip;	/* inode to which block is being added */
5240 	ufs_lbn_t off;		/* block pointer within inode */
5241 	ufs2_daddr_t newblkno;	/* disk block number being added */
5242 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5243 	long newsize;		/* size of new block */
5244 	long oldsize;		/* size of new block */
5245 	struct buf *bp;		/* bp for allocated block */
5246 {
5247 	struct allocdirect *adp, *oldadp;
5248 	struct allocdirectlst *adphead;
5249 	struct freefrag *freefrag;
5250 	struct inodedep *inodedep;
5251 	struct pagedep *pagedep;
5252 	struct jnewblk *jnewblk;
5253 	struct newblk *newblk;
5254 	struct mount *mp;
5255 	ufs_lbn_t lbn;
5256 
5257 	lbn = bp->b_lblkno;
5258 	mp = UFSTOVFS(ip->i_ump);
5259 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5260 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5261 	if (oldblkno && oldblkno != newblkno)
5262 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5263 	else
5264 		freefrag = NULL;
5265 
5266 	CTR6(KTR_SUJ,
5267 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5268 	    "off %jd newsize %ld oldsize %d",
5269 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5270 	ACQUIRE_LOCK(ip->i_ump);
5271 	if (off >= NDADDR) {
5272 		if (lbn > 0)
5273 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5274 			    lbn, off);
5275 		/* allocating an indirect block */
5276 		if (oldblkno != 0)
5277 			panic("softdep_setup_allocdirect: non-zero indir");
5278 	} else {
5279 		if (off != lbn)
5280 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5281 			    lbn, off);
5282 		/*
5283 		 * Allocating a direct block.
5284 		 *
5285 		 * If we are allocating a directory block, then we must
5286 		 * allocate an associated pagedep to track additions and
5287 		 * deletions.
5288 		 */
5289 		if ((ip->i_mode & IFMT) == IFDIR)
5290 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5291 			    &pagedep);
5292 	}
5293 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5294 		panic("softdep_setup_allocdirect: lost block");
5295 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5296 	    ("softdep_setup_allocdirect: newblk already initialized"));
5297 	/*
5298 	 * Convert the newblk to an allocdirect.
5299 	 */
5300 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5301 	adp = (struct allocdirect *)newblk;
5302 	newblk->nb_freefrag = freefrag;
5303 	adp->ad_offset = off;
5304 	adp->ad_oldblkno = oldblkno;
5305 	adp->ad_newsize = newsize;
5306 	adp->ad_oldsize = oldsize;
5307 
5308 	/*
5309 	 * Finish initializing the journal.
5310 	 */
5311 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5312 		jnewblk->jn_ino = ip->i_number;
5313 		jnewblk->jn_lbn = lbn;
5314 		add_to_journal(&jnewblk->jn_list);
5315 	}
5316 	if (freefrag && freefrag->ff_jdep != NULL &&
5317 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5318 		add_to_journal(freefrag->ff_jdep);
5319 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5320 	adp->ad_inodedep = inodedep;
5321 
5322 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5323 	/*
5324 	 * The list of allocdirects must be kept in sorted and ascending
5325 	 * order so that the rollback routines can quickly determine the
5326 	 * first uncommitted block (the size of the file stored on disk
5327 	 * ends at the end of the lowest committed fragment, or if there
5328 	 * are no fragments, at the end of the highest committed block).
5329 	 * Since files generally grow, the typical case is that the new
5330 	 * block is to be added at the end of the list. We speed this
5331 	 * special case by checking against the last allocdirect in the
5332 	 * list before laboriously traversing the list looking for the
5333 	 * insertion point.
5334 	 */
5335 	adphead = &inodedep->id_newinoupdt;
5336 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5337 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5338 		/* insert at end of list */
5339 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5340 		if (oldadp != NULL && oldadp->ad_offset == off)
5341 			allocdirect_merge(adphead, adp, oldadp);
5342 		FREE_LOCK(ip->i_ump);
5343 		return;
5344 	}
5345 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5346 		if (oldadp->ad_offset >= off)
5347 			break;
5348 	}
5349 	if (oldadp == NULL)
5350 		panic("softdep_setup_allocdirect: lost entry");
5351 	/* insert in middle of list */
5352 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5353 	if (oldadp->ad_offset == off)
5354 		allocdirect_merge(adphead, adp, oldadp);
5355 
5356 	FREE_LOCK(ip->i_ump);
5357 }
5358 
5359 /*
5360  * Merge a newer and older journal record to be stored either in a
5361  * newblock or freefrag.  This handles aggregating journal records for
5362  * fragment allocation into a second record as well as replacing a
5363  * journal free with an aborted journal allocation.  A segment for the
5364  * oldest record will be placed on wkhd if it has been written.  If not
5365  * the segment for the newer record will suffice.
5366  */
5367 static struct worklist *
5368 jnewblk_merge(new, old, wkhd)
5369 	struct worklist *new;
5370 	struct worklist *old;
5371 	struct workhead *wkhd;
5372 {
5373 	struct jnewblk *njnewblk;
5374 	struct jnewblk *jnewblk;
5375 
5376 	/* Handle NULLs to simplify callers. */
5377 	if (new == NULL)
5378 		return (old);
5379 	if (old == NULL)
5380 		return (new);
5381 	/* Replace a jfreefrag with a jnewblk. */
5382 	if (new->wk_type == D_JFREEFRAG) {
5383 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5384 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5385 			    old, new);
5386 		cancel_jfreefrag(WK_JFREEFRAG(new));
5387 		return (old);
5388 	}
5389 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5390 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5391 		    old->wk_type, new->wk_type);
5392 	/*
5393 	 * Handle merging of two jnewblk records that describe
5394 	 * different sets of fragments in the same block.
5395 	 */
5396 	jnewblk = WK_JNEWBLK(old);
5397 	njnewblk = WK_JNEWBLK(new);
5398 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5399 		panic("jnewblk_merge: Merging disparate blocks.");
5400 	/*
5401 	 * The record may be rolled back in the cg.
5402 	 */
5403 	if (jnewblk->jn_state & UNDONE) {
5404 		jnewblk->jn_state &= ~UNDONE;
5405 		njnewblk->jn_state |= UNDONE;
5406 		njnewblk->jn_state &= ~ATTACHED;
5407 	}
5408 	/*
5409 	 * We modify the newer addref and free the older so that if neither
5410 	 * has been written the most up-to-date copy will be on disk.  If
5411 	 * both have been written but rolled back we only temporarily need
5412 	 * one of them to fix the bits when the cg write completes.
5413 	 */
5414 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5415 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5416 	cancel_jnewblk(jnewblk, wkhd);
5417 	WORKLIST_REMOVE(&jnewblk->jn_list);
5418 	free_jnewblk(jnewblk);
5419 	return (new);
5420 }
5421 
5422 /*
5423  * Replace an old allocdirect dependency with a newer one.
5424  * This routine must be called with splbio interrupts blocked.
5425  */
5426 static void
5427 allocdirect_merge(adphead, newadp, oldadp)
5428 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5429 	struct allocdirect *newadp;	/* allocdirect being added */
5430 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5431 {
5432 	struct worklist *wk;
5433 	struct freefrag *freefrag;
5434 
5435 	freefrag = NULL;
5436 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5437 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5438 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5439 	    newadp->ad_offset >= NDADDR)
5440 		panic("%s %jd != new %jd || old size %ld != new %ld",
5441 		    "allocdirect_merge: old blkno",
5442 		    (intmax_t)newadp->ad_oldblkno,
5443 		    (intmax_t)oldadp->ad_newblkno,
5444 		    newadp->ad_oldsize, oldadp->ad_newsize);
5445 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5446 	newadp->ad_oldsize = oldadp->ad_oldsize;
5447 	/*
5448 	 * If the old dependency had a fragment to free or had never
5449 	 * previously had a block allocated, then the new dependency
5450 	 * can immediately post its freefrag and adopt the old freefrag.
5451 	 * This action is done by swapping the freefrag dependencies.
5452 	 * The new dependency gains the old one's freefrag, and the
5453 	 * old one gets the new one and then immediately puts it on
5454 	 * the worklist when it is freed by free_newblk. It is
5455 	 * not possible to do this swap when the old dependency had a
5456 	 * non-zero size but no previous fragment to free. This condition
5457 	 * arises when the new block is an extension of the old block.
5458 	 * Here, the first part of the fragment allocated to the new
5459 	 * dependency is part of the block currently claimed on disk by
5460 	 * the old dependency, so cannot legitimately be freed until the
5461 	 * conditions for the new dependency are fulfilled.
5462 	 */
5463 	freefrag = newadp->ad_freefrag;
5464 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5465 		newadp->ad_freefrag = oldadp->ad_freefrag;
5466 		oldadp->ad_freefrag = freefrag;
5467 	}
5468 	/*
5469 	 * If we are tracking a new directory-block allocation,
5470 	 * move it from the old allocdirect to the new allocdirect.
5471 	 */
5472 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5473 		WORKLIST_REMOVE(wk);
5474 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5475 			panic("allocdirect_merge: extra newdirblk");
5476 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5477 	}
5478 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5479 	/*
5480 	 * We need to move any journal dependencies over to the freefrag
5481 	 * that releases this block if it exists.  Otherwise we are
5482 	 * extending an existing block and we'll wait until that is
5483 	 * complete to release the journal space and extend the
5484 	 * new journal to cover this old space as well.
5485 	 */
5486 	if (freefrag == NULL) {
5487 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5488 			panic("allocdirect_merge: %jd != %jd",
5489 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5490 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5491 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5492 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5493 		    &newadp->ad_block.nb_jwork);
5494 		oldadp->ad_block.nb_jnewblk = NULL;
5495 		cancel_newblk(&oldadp->ad_block, NULL,
5496 		    &newadp->ad_block.nb_jwork);
5497 	} else {
5498 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5499 		    &freefrag->ff_list, &freefrag->ff_jwork);
5500 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5501 		    &freefrag->ff_jwork);
5502 	}
5503 	free_newblk(&oldadp->ad_block);
5504 }
5505 
5506 /*
5507  * Allocate a jfreefrag structure to journal a single block free.
5508  */
5509 static struct jfreefrag *
5510 newjfreefrag(freefrag, ip, blkno, size, lbn)
5511 	struct freefrag *freefrag;
5512 	struct inode *ip;
5513 	ufs2_daddr_t blkno;
5514 	long size;
5515 	ufs_lbn_t lbn;
5516 {
5517 	struct jfreefrag *jfreefrag;
5518 	struct fs *fs;
5519 
5520 	fs = ip->i_fs;
5521 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5522 	    M_SOFTDEP_FLAGS);
5523 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5524 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5525 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5526 	jfreefrag->fr_ino = ip->i_number;
5527 	jfreefrag->fr_lbn = lbn;
5528 	jfreefrag->fr_blkno = blkno;
5529 	jfreefrag->fr_frags = numfrags(fs, size);
5530 	jfreefrag->fr_freefrag = freefrag;
5531 
5532 	return (jfreefrag);
5533 }
5534 
5535 /*
5536  * Allocate a new freefrag structure.
5537  */
5538 static struct freefrag *
5539 newfreefrag(ip, blkno, size, lbn)
5540 	struct inode *ip;
5541 	ufs2_daddr_t blkno;
5542 	long size;
5543 	ufs_lbn_t lbn;
5544 {
5545 	struct freefrag *freefrag;
5546 	struct fs *fs;
5547 
5548 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5549 	    ip->i_number, blkno, size, lbn);
5550 	fs = ip->i_fs;
5551 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5552 		panic("newfreefrag: frag size");
5553 	freefrag = malloc(sizeof(struct freefrag),
5554 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5555 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5556 	freefrag->ff_state = ATTACHED;
5557 	LIST_INIT(&freefrag->ff_jwork);
5558 	freefrag->ff_inum = ip->i_number;
5559 	freefrag->ff_vtype = ITOV(ip)->v_type;
5560 	freefrag->ff_blkno = blkno;
5561 	freefrag->ff_fragsize = size;
5562 
5563 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5564 		freefrag->ff_jdep = (struct worklist *)
5565 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5566 	} else {
5567 		freefrag->ff_state |= DEPCOMPLETE;
5568 		freefrag->ff_jdep = NULL;
5569 	}
5570 
5571 	return (freefrag);
5572 }
5573 
5574 /*
5575  * This workitem de-allocates fragments that were replaced during
5576  * file block allocation.
5577  */
5578 static void
5579 handle_workitem_freefrag(freefrag)
5580 	struct freefrag *freefrag;
5581 {
5582 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5583 	struct workhead wkhd;
5584 
5585 	CTR3(KTR_SUJ,
5586 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5587 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5588 	/*
5589 	 * It would be illegal to add new completion items to the
5590 	 * freefrag after it was schedule to be done so it must be
5591 	 * safe to modify the list head here.
5592 	 */
5593 	LIST_INIT(&wkhd);
5594 	ACQUIRE_LOCK(ump);
5595 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5596 	/*
5597 	 * If the journal has not been written we must cancel it here.
5598 	 */
5599 	if (freefrag->ff_jdep) {
5600 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5601 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5602 			    freefrag->ff_jdep->wk_type);
5603 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5604 	}
5605 	FREE_LOCK(ump);
5606 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5607 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5608 	ACQUIRE_LOCK(ump);
5609 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5610 	FREE_LOCK(ump);
5611 }
5612 
5613 /*
5614  * Set up a dependency structure for an external attributes data block.
5615  * This routine follows much of the structure of softdep_setup_allocdirect.
5616  * See the description of softdep_setup_allocdirect above for details.
5617  */
5618 void
5619 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5620 	struct inode *ip;
5621 	ufs_lbn_t off;
5622 	ufs2_daddr_t newblkno;
5623 	ufs2_daddr_t oldblkno;
5624 	long newsize;
5625 	long oldsize;
5626 	struct buf *bp;
5627 {
5628 	struct allocdirect *adp, *oldadp;
5629 	struct allocdirectlst *adphead;
5630 	struct freefrag *freefrag;
5631 	struct inodedep *inodedep;
5632 	struct jnewblk *jnewblk;
5633 	struct newblk *newblk;
5634 	struct mount *mp;
5635 	ufs_lbn_t lbn;
5636 
5637 	mp = UFSTOVFS(ip->i_ump);
5638 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5639 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5640 	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5641 		    (long long)off));
5642 
5643 	lbn = bp->b_lblkno;
5644 	if (oldblkno && oldblkno != newblkno)
5645 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5646 	else
5647 		freefrag = NULL;
5648 
5649 	ACQUIRE_LOCK(ip->i_ump);
5650 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5651 		panic("softdep_setup_allocext: lost block");
5652 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5653 	    ("softdep_setup_allocext: newblk already initialized"));
5654 	/*
5655 	 * Convert the newblk to an allocdirect.
5656 	 */
5657 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5658 	adp = (struct allocdirect *)newblk;
5659 	newblk->nb_freefrag = freefrag;
5660 	adp->ad_offset = off;
5661 	adp->ad_oldblkno = oldblkno;
5662 	adp->ad_newsize = newsize;
5663 	adp->ad_oldsize = oldsize;
5664 	adp->ad_state |=  EXTDATA;
5665 
5666 	/*
5667 	 * Finish initializing the journal.
5668 	 */
5669 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5670 		jnewblk->jn_ino = ip->i_number;
5671 		jnewblk->jn_lbn = lbn;
5672 		add_to_journal(&jnewblk->jn_list);
5673 	}
5674 	if (freefrag && freefrag->ff_jdep != NULL &&
5675 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5676 		add_to_journal(freefrag->ff_jdep);
5677 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5678 	adp->ad_inodedep = inodedep;
5679 
5680 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5681 	/*
5682 	 * The list of allocdirects must be kept in sorted and ascending
5683 	 * order so that the rollback routines can quickly determine the
5684 	 * first uncommitted block (the size of the file stored on disk
5685 	 * ends at the end of the lowest committed fragment, or if there
5686 	 * are no fragments, at the end of the highest committed block).
5687 	 * Since files generally grow, the typical case is that the new
5688 	 * block is to be added at the end of the list. We speed this
5689 	 * special case by checking against the last allocdirect in the
5690 	 * list before laboriously traversing the list looking for the
5691 	 * insertion point.
5692 	 */
5693 	adphead = &inodedep->id_newextupdt;
5694 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5695 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5696 		/* insert at end of list */
5697 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5698 		if (oldadp != NULL && oldadp->ad_offset == off)
5699 			allocdirect_merge(adphead, adp, oldadp);
5700 		FREE_LOCK(ip->i_ump);
5701 		return;
5702 	}
5703 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5704 		if (oldadp->ad_offset >= off)
5705 			break;
5706 	}
5707 	if (oldadp == NULL)
5708 		panic("softdep_setup_allocext: lost entry");
5709 	/* insert in middle of list */
5710 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5711 	if (oldadp->ad_offset == off)
5712 		allocdirect_merge(adphead, adp, oldadp);
5713 	FREE_LOCK(ip->i_ump);
5714 }
5715 
5716 /*
5717  * Indirect block allocation dependencies.
5718  *
5719  * The same dependencies that exist for a direct block also exist when
5720  * a new block is allocated and pointed to by an entry in a block of
5721  * indirect pointers. The undo/redo states described above are also
5722  * used here. Because an indirect block contains many pointers that
5723  * may have dependencies, a second copy of the entire in-memory indirect
5724  * block is kept. The buffer cache copy is always completely up-to-date.
5725  * The second copy, which is used only as a source for disk writes,
5726  * contains only the safe pointers (i.e., those that have no remaining
5727  * update dependencies). The second copy is freed when all pointers
5728  * are safe. The cache is not allowed to replace indirect blocks with
5729  * pending update dependencies. If a buffer containing an indirect
5730  * block with dependencies is written, these routines will mark it
5731  * dirty again. It can only be successfully written once all the
5732  * dependencies are removed. The ffs_fsync routine in conjunction with
5733  * softdep_sync_metadata work together to get all the dependencies
5734  * removed so that a file can be successfully written to disk. Three
5735  * procedures are used when setting up indirect block pointer
5736  * dependencies. The division is necessary because of the organization
5737  * of the "balloc" routine and because of the distinction between file
5738  * pages and file metadata blocks.
5739  */
5740 
5741 /*
5742  * Allocate a new allocindir structure.
5743  */
5744 static struct allocindir *
5745 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5746 	struct inode *ip;	/* inode for file being extended */
5747 	int ptrno;		/* offset of pointer in indirect block */
5748 	ufs2_daddr_t newblkno;	/* disk block number being added */
5749 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5750 	ufs_lbn_t lbn;
5751 {
5752 	struct newblk *newblk;
5753 	struct allocindir *aip;
5754 	struct freefrag *freefrag;
5755 	struct jnewblk *jnewblk;
5756 
5757 	if (oldblkno)
5758 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5759 	else
5760 		freefrag = NULL;
5761 	ACQUIRE_LOCK(ip->i_ump);
5762 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5763 		panic("new_allocindir: lost block");
5764 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5765 	    ("newallocindir: newblk already initialized"));
5766 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5767 	newblk->nb_freefrag = freefrag;
5768 	aip = (struct allocindir *)newblk;
5769 	aip->ai_offset = ptrno;
5770 	aip->ai_oldblkno = oldblkno;
5771 	aip->ai_lbn = lbn;
5772 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5773 		jnewblk->jn_ino = ip->i_number;
5774 		jnewblk->jn_lbn = lbn;
5775 		add_to_journal(&jnewblk->jn_list);
5776 	}
5777 	if (freefrag && freefrag->ff_jdep != NULL &&
5778 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5779 		add_to_journal(freefrag->ff_jdep);
5780 	return (aip);
5781 }
5782 
5783 /*
5784  * Called just before setting an indirect block pointer
5785  * to a newly allocated file page.
5786  */
5787 void
5788 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5789 	struct inode *ip;	/* inode for file being extended */
5790 	ufs_lbn_t lbn;		/* allocated block number within file */
5791 	struct buf *bp;		/* buffer with indirect blk referencing page */
5792 	int ptrno;		/* offset of pointer in indirect block */
5793 	ufs2_daddr_t newblkno;	/* disk block number being added */
5794 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5795 	struct buf *nbp;	/* buffer holding allocated page */
5796 {
5797 	struct inodedep *inodedep;
5798 	struct freefrag *freefrag;
5799 	struct allocindir *aip;
5800 	struct pagedep *pagedep;
5801 	struct mount *mp;
5802 	int dflags;
5803 
5804 	mp = UFSTOVFS(ip->i_ump);
5805 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5806 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5807 	KASSERT(lbn == nbp->b_lblkno,
5808 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5809 	    lbn, bp->b_lblkno));
5810 	CTR4(KTR_SUJ,
5811 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5812 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5813 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5814 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5815 	dflags = DEPALLOC;
5816 	if (IS_SNAPSHOT(ip))
5817 		dflags |= NODELAY;
5818 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5819 	/*
5820 	 * If we are allocating a directory page, then we must
5821 	 * allocate an associated pagedep to track additions and
5822 	 * deletions.
5823 	 */
5824 	if ((ip->i_mode & IFMT) == IFDIR)
5825 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5826 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5827 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5828 	FREE_LOCK(ip->i_ump);
5829 	if (freefrag)
5830 		handle_workitem_freefrag(freefrag);
5831 }
5832 
5833 /*
5834  * Called just before setting an indirect block pointer to a
5835  * newly allocated indirect block.
5836  */
5837 void
5838 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5839 	struct buf *nbp;	/* newly allocated indirect block */
5840 	struct inode *ip;	/* inode for file being extended */
5841 	struct buf *bp;		/* indirect block referencing allocated block */
5842 	int ptrno;		/* offset of pointer in indirect block */
5843 	ufs2_daddr_t newblkno;	/* disk block number being added */
5844 {
5845 	struct inodedep *inodedep;
5846 	struct allocindir *aip;
5847 	ufs_lbn_t lbn;
5848 	int dflags;
5849 
5850 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5851 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5852 	CTR3(KTR_SUJ,
5853 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5854 	    ip->i_number, newblkno, ptrno);
5855 	lbn = nbp->b_lblkno;
5856 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5857 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5858 	dflags = DEPALLOC;
5859 	if (IS_SNAPSHOT(ip))
5860 		dflags |= NODELAY;
5861 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5862 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5863 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5864 		panic("softdep_setup_allocindir_meta: Block already existed");
5865 	FREE_LOCK(ip->i_ump);
5866 }
5867 
5868 static void
5869 indirdep_complete(indirdep)
5870 	struct indirdep *indirdep;
5871 {
5872 	struct allocindir *aip;
5873 
5874 	LIST_REMOVE(indirdep, ir_next);
5875 	indirdep->ir_state |= DEPCOMPLETE;
5876 
5877 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5878 		LIST_REMOVE(aip, ai_next);
5879 		free_newblk(&aip->ai_block);
5880 	}
5881 	/*
5882 	 * If this indirdep is not attached to a buf it was simply waiting
5883 	 * on completion to clear completehd.  free_indirdep() asserts
5884 	 * that nothing is dangling.
5885 	 */
5886 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5887 		free_indirdep(indirdep);
5888 }
5889 
5890 static struct indirdep *
5891 indirdep_lookup(mp, ip, bp)
5892 	struct mount *mp;
5893 	struct inode *ip;
5894 	struct buf *bp;
5895 {
5896 	struct indirdep *indirdep, *newindirdep;
5897 	struct newblk *newblk;
5898 	struct ufsmount *ump;
5899 	struct worklist *wk;
5900 	struct fs *fs;
5901 	ufs2_daddr_t blkno;
5902 
5903 	ump = VFSTOUFS(mp);
5904 	LOCK_OWNED(ump);
5905 	indirdep = NULL;
5906 	newindirdep = NULL;
5907 	fs = ip->i_fs;
5908 	for (;;) {
5909 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5910 			if (wk->wk_type != D_INDIRDEP)
5911 				continue;
5912 			indirdep = WK_INDIRDEP(wk);
5913 			break;
5914 		}
5915 		/* Found on the buffer worklist, no new structure to free. */
5916 		if (indirdep != NULL && newindirdep == NULL)
5917 			return (indirdep);
5918 		if (indirdep != NULL && newindirdep != NULL)
5919 			panic("indirdep_lookup: simultaneous create");
5920 		/* None found on the buffer and a new structure is ready. */
5921 		if (indirdep == NULL && newindirdep != NULL)
5922 			break;
5923 		/* None found and no new structure available. */
5924 		FREE_LOCK(ump);
5925 		newindirdep = malloc(sizeof(struct indirdep),
5926 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5927 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5928 		newindirdep->ir_state = ATTACHED;
5929 		if (ip->i_ump->um_fstype == UFS1)
5930 			newindirdep->ir_state |= UFS1FMT;
5931 		TAILQ_INIT(&newindirdep->ir_trunc);
5932 		newindirdep->ir_saveddata = NULL;
5933 		LIST_INIT(&newindirdep->ir_deplisthd);
5934 		LIST_INIT(&newindirdep->ir_donehd);
5935 		LIST_INIT(&newindirdep->ir_writehd);
5936 		LIST_INIT(&newindirdep->ir_completehd);
5937 		if (bp->b_blkno == bp->b_lblkno) {
5938 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5939 			    NULL, NULL);
5940 			bp->b_blkno = blkno;
5941 		}
5942 		newindirdep->ir_freeblks = NULL;
5943 		newindirdep->ir_savebp =
5944 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5945 		newindirdep->ir_bp = bp;
5946 		BUF_KERNPROC(newindirdep->ir_savebp);
5947 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5948 		ACQUIRE_LOCK(ump);
5949 	}
5950 	indirdep = newindirdep;
5951 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5952 	/*
5953 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5954 	 * that we don't free dependencies until the pointers are valid.
5955 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5956 	 * than using the hash.
5957 	 */
5958 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5959 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5960 	else
5961 		indirdep->ir_state |= DEPCOMPLETE;
5962 	return (indirdep);
5963 }
5964 
5965 /*
5966  * Called to finish the allocation of the "aip" allocated
5967  * by one of the two routines above.
5968  */
5969 static struct freefrag *
5970 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5971 	struct buf *bp;		/* in-memory copy of the indirect block */
5972 	struct inode *ip;	/* inode for file being extended */
5973 	struct inodedep *inodedep; /* Inodedep for ip */
5974 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5975 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5976 {
5977 	struct fs *fs;
5978 	struct indirdep *indirdep;
5979 	struct allocindir *oldaip;
5980 	struct freefrag *freefrag;
5981 	struct mount *mp;
5982 
5983 	LOCK_OWNED(ip->i_ump);
5984 	mp = UFSTOVFS(ip->i_ump);
5985 	fs = ip->i_fs;
5986 	if (bp->b_lblkno >= 0)
5987 		panic("setup_allocindir_phase2: not indir blk");
5988 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5989 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5990 	indirdep = indirdep_lookup(mp, ip, bp);
5991 	KASSERT(indirdep->ir_savebp != NULL,
5992 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5993 	aip->ai_indirdep = indirdep;
5994 	/*
5995 	 * Check for an unwritten dependency for this indirect offset.  If
5996 	 * there is, merge the old dependency into the new one.  This happens
5997 	 * as a result of reallocblk only.
5998 	 */
5999 	freefrag = NULL;
6000 	if (aip->ai_oldblkno != 0) {
6001 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6002 			if (oldaip->ai_offset == aip->ai_offset) {
6003 				freefrag = allocindir_merge(aip, oldaip);
6004 				goto done;
6005 			}
6006 		}
6007 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6008 			if (oldaip->ai_offset == aip->ai_offset) {
6009 				freefrag = allocindir_merge(aip, oldaip);
6010 				goto done;
6011 			}
6012 		}
6013 	}
6014 done:
6015 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6016 	return (freefrag);
6017 }
6018 
6019 /*
6020  * Merge two allocindirs which refer to the same block.  Move newblock
6021  * dependencies and setup the freefrags appropriately.
6022  */
6023 static struct freefrag *
6024 allocindir_merge(aip, oldaip)
6025 	struct allocindir *aip;
6026 	struct allocindir *oldaip;
6027 {
6028 	struct freefrag *freefrag;
6029 	struct worklist *wk;
6030 
6031 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6032 		panic("allocindir_merge: blkno");
6033 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6034 	freefrag = aip->ai_freefrag;
6035 	aip->ai_freefrag = oldaip->ai_freefrag;
6036 	oldaip->ai_freefrag = NULL;
6037 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6038 	/*
6039 	 * If we are tracking a new directory-block allocation,
6040 	 * move it from the old allocindir to the new allocindir.
6041 	 */
6042 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6043 		WORKLIST_REMOVE(wk);
6044 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6045 			panic("allocindir_merge: extra newdirblk");
6046 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6047 	}
6048 	/*
6049 	 * We can skip journaling for this freefrag and just complete
6050 	 * any pending journal work for the allocindir that is being
6051 	 * removed after the freefrag completes.
6052 	 */
6053 	if (freefrag->ff_jdep)
6054 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6055 	LIST_REMOVE(oldaip, ai_next);
6056 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6057 	    &freefrag->ff_list, &freefrag->ff_jwork);
6058 	free_newblk(&oldaip->ai_block);
6059 
6060 	return (freefrag);
6061 }
6062 
6063 static inline void
6064 setup_freedirect(freeblks, ip, i, needj)
6065 	struct freeblks *freeblks;
6066 	struct inode *ip;
6067 	int i;
6068 	int needj;
6069 {
6070 	ufs2_daddr_t blkno;
6071 	int frags;
6072 
6073 	blkno = DIP(ip, i_db[i]);
6074 	if (blkno == 0)
6075 		return;
6076 	DIP_SET(ip, i_db[i], 0);
6077 	frags = sblksize(ip->i_fs, ip->i_size, i);
6078 	frags = numfrags(ip->i_fs, frags);
6079 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6080 }
6081 
6082 static inline void
6083 setup_freeext(freeblks, ip, i, needj)
6084 	struct freeblks *freeblks;
6085 	struct inode *ip;
6086 	int i;
6087 	int needj;
6088 {
6089 	ufs2_daddr_t blkno;
6090 	int frags;
6091 
6092 	blkno = ip->i_din2->di_extb[i];
6093 	if (blkno == 0)
6094 		return;
6095 	ip->i_din2->di_extb[i] = 0;
6096 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6097 	frags = numfrags(ip->i_fs, frags);
6098 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6099 }
6100 
6101 static inline void
6102 setup_freeindir(freeblks, ip, i, lbn, needj)
6103 	struct freeblks *freeblks;
6104 	struct inode *ip;
6105 	int i;
6106 	ufs_lbn_t lbn;
6107 	int needj;
6108 {
6109 	ufs2_daddr_t blkno;
6110 
6111 	blkno = DIP(ip, i_ib[i]);
6112 	if (blkno == 0)
6113 		return;
6114 	DIP_SET(ip, i_ib[i], 0);
6115 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6116 	    0, needj);
6117 }
6118 
6119 static inline struct freeblks *
6120 newfreeblks(mp, ip)
6121 	struct mount *mp;
6122 	struct inode *ip;
6123 {
6124 	struct freeblks *freeblks;
6125 
6126 	freeblks = malloc(sizeof(struct freeblks),
6127 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6128 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6129 	LIST_INIT(&freeblks->fb_jblkdephd);
6130 	LIST_INIT(&freeblks->fb_jwork);
6131 	freeblks->fb_ref = 0;
6132 	freeblks->fb_cgwait = 0;
6133 	freeblks->fb_state = ATTACHED;
6134 	freeblks->fb_uid = ip->i_uid;
6135 	freeblks->fb_inum = ip->i_number;
6136 	freeblks->fb_vtype = ITOV(ip)->v_type;
6137 	freeblks->fb_modrev = DIP(ip, i_modrev);
6138 	freeblks->fb_devvp = ip->i_devvp;
6139 	freeblks->fb_chkcnt = 0;
6140 	freeblks->fb_len = 0;
6141 
6142 	return (freeblks);
6143 }
6144 
6145 static void
6146 trunc_indirdep(indirdep, freeblks, bp, off)
6147 	struct indirdep *indirdep;
6148 	struct freeblks *freeblks;
6149 	struct buf *bp;
6150 	int off;
6151 {
6152 	struct allocindir *aip, *aipn;
6153 
6154 	/*
6155 	 * The first set of allocindirs won't be in savedbp.
6156 	 */
6157 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6158 		if (aip->ai_offset > off)
6159 			cancel_allocindir(aip, bp, freeblks, 1);
6160 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6161 		if (aip->ai_offset > off)
6162 			cancel_allocindir(aip, bp, freeblks, 1);
6163 	/*
6164 	 * These will exist in savedbp.
6165 	 */
6166 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6167 		if (aip->ai_offset > off)
6168 			cancel_allocindir(aip, NULL, freeblks, 0);
6169 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6170 		if (aip->ai_offset > off)
6171 			cancel_allocindir(aip, NULL, freeblks, 0);
6172 }
6173 
6174 /*
6175  * Follow the chain of indirects down to lastlbn creating a freework
6176  * structure for each.  This will be used to start indir_trunc() at
6177  * the right offset and create the journal records for the parrtial
6178  * truncation.  A second step will handle the truncated dependencies.
6179  */
6180 static int
6181 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6182 	struct freeblks *freeblks;
6183 	struct inode *ip;
6184 	ufs_lbn_t lbn;
6185 	ufs_lbn_t lastlbn;
6186 	ufs2_daddr_t blkno;
6187 {
6188 	struct indirdep *indirdep;
6189 	struct indirdep *indirn;
6190 	struct freework *freework;
6191 	struct newblk *newblk;
6192 	struct mount *mp;
6193 	struct buf *bp;
6194 	uint8_t *start;
6195 	uint8_t *end;
6196 	ufs_lbn_t lbnadd;
6197 	int level;
6198 	int error;
6199 	int off;
6200 
6201 
6202 	freework = NULL;
6203 	if (blkno == 0)
6204 		return (0);
6205 	mp = freeblks->fb_list.wk_mp;
6206 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6207 	if ((bp->b_flags & B_CACHE) == 0) {
6208 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6209 		bp->b_iocmd = BIO_READ;
6210 		bp->b_flags &= ~B_INVAL;
6211 		bp->b_ioflags &= ~BIO_ERROR;
6212 		vfs_busy_pages(bp, 0);
6213 		bp->b_iooffset = dbtob(bp->b_blkno);
6214 		bstrategy(bp);
6215 		curthread->td_ru.ru_inblock++;
6216 		error = bufwait(bp);
6217 		if (error) {
6218 			brelse(bp);
6219 			return (error);
6220 		}
6221 	}
6222 	level = lbn_level(lbn);
6223 	lbnadd = lbn_offset(ip->i_fs, level);
6224 	/*
6225 	 * Compute the offset of the last block we want to keep.  Store
6226 	 * in the freework the first block we want to completely free.
6227 	 */
6228 	off = (lastlbn - -(lbn + level)) / lbnadd;
6229 	if (off + 1 == NINDIR(ip->i_fs))
6230 		goto nowork;
6231 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6232 	    0);
6233 	/*
6234 	 * Link the freework into the indirdep.  This will prevent any new
6235 	 * allocations from proceeding until we are finished with the
6236 	 * truncate and the block is written.
6237 	 */
6238 	ACQUIRE_LOCK(ip->i_ump);
6239 	indirdep = indirdep_lookup(mp, ip, bp);
6240 	if (indirdep->ir_freeblks)
6241 		panic("setup_trunc_indir: indirdep already truncated.");
6242 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6243 	freework->fw_indir = indirdep;
6244 	/*
6245 	 * Cancel any allocindirs that will not make it to disk.
6246 	 * We have to do this for all copies of the indirdep that
6247 	 * live on this newblk.
6248 	 */
6249 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6250 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6251 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6252 			trunc_indirdep(indirn, freeblks, bp, off);
6253 	} else
6254 		trunc_indirdep(indirdep, freeblks, bp, off);
6255 	FREE_LOCK(ip->i_ump);
6256 	/*
6257 	 * Creation is protected by the buf lock. The saveddata is only
6258 	 * needed if a full truncation follows a partial truncation but it
6259 	 * is difficult to allocate in that case so we fetch it anyway.
6260 	 */
6261 	if (indirdep->ir_saveddata == NULL)
6262 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6263 		    M_SOFTDEP_FLAGS);
6264 nowork:
6265 	/* Fetch the blkno of the child and the zero start offset. */
6266 	if (ip->i_ump->um_fstype == UFS1) {
6267 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6268 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6269 	} else {
6270 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6271 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6272 	}
6273 	if (freework) {
6274 		/* Zero the truncated pointers. */
6275 		end = bp->b_data + bp->b_bcount;
6276 		bzero(start, end - start);
6277 		bdwrite(bp);
6278 	} else
6279 		bqrelse(bp);
6280 	if (level == 0)
6281 		return (0);
6282 	lbn++; /* adjust level */
6283 	lbn -= (off * lbnadd);
6284 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6285 }
6286 
6287 /*
6288  * Complete the partial truncation of an indirect block setup by
6289  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6290  * copy and writes them to disk before the freeblks is allowed to complete.
6291  */
6292 static void
6293 complete_trunc_indir(freework)
6294 	struct freework *freework;
6295 {
6296 	struct freework *fwn;
6297 	struct indirdep *indirdep;
6298 	struct ufsmount *ump;
6299 	struct buf *bp;
6300 	uintptr_t start;
6301 	int count;
6302 
6303 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6304 	LOCK_OWNED(ump);
6305 	indirdep = freework->fw_indir;
6306 	for (;;) {
6307 		bp = indirdep->ir_bp;
6308 		/* See if the block was discarded. */
6309 		if (bp == NULL)
6310 			break;
6311 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6312 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6313 			break;
6314 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6315 		    LOCK_PTR(ump)) == 0)
6316 			BUF_UNLOCK(bp);
6317 		ACQUIRE_LOCK(ump);
6318 	}
6319 	freework->fw_state |= DEPCOMPLETE;
6320 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6321 	/*
6322 	 * Zero the pointers in the saved copy.
6323 	 */
6324 	if (indirdep->ir_state & UFS1FMT)
6325 		start = sizeof(ufs1_daddr_t);
6326 	else
6327 		start = sizeof(ufs2_daddr_t);
6328 	start *= freework->fw_start;
6329 	count = indirdep->ir_savebp->b_bcount - start;
6330 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6331 	bzero((char *)start, count);
6332 	/*
6333 	 * We need to start the next truncation in the list if it has not
6334 	 * been started yet.
6335 	 */
6336 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6337 	if (fwn != NULL) {
6338 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6339 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6340 		if ((fwn->fw_state & ONWORKLIST) == 0)
6341 			freework_enqueue(fwn);
6342 	}
6343 	/*
6344 	 * If bp is NULL the block was fully truncated, restore
6345 	 * the saved block list otherwise free it if it is no
6346 	 * longer needed.
6347 	 */
6348 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6349 		if (bp == NULL)
6350 			bcopy(indirdep->ir_saveddata,
6351 			    indirdep->ir_savebp->b_data,
6352 			    indirdep->ir_savebp->b_bcount);
6353 		free(indirdep->ir_saveddata, M_INDIRDEP);
6354 		indirdep->ir_saveddata = NULL;
6355 	}
6356 	/*
6357 	 * When bp is NULL there is a full truncation pending.  We
6358 	 * must wait for this full truncation to be journaled before
6359 	 * we can release this freework because the disk pointers will
6360 	 * never be written as zero.
6361 	 */
6362 	if (bp == NULL)  {
6363 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6364 			handle_written_freework(freework);
6365 		else
6366 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6367 			   &freework->fw_list);
6368 	} else {
6369 		/* Complete when the real copy is written. */
6370 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6371 		BUF_UNLOCK(bp);
6372 	}
6373 }
6374 
6375 /*
6376  * Calculate the number of blocks we are going to release where datablocks
6377  * is the current total and length is the new file size.
6378  */
6379 static ufs2_daddr_t
6380 blkcount(fs, datablocks, length)
6381 	struct fs *fs;
6382 	ufs2_daddr_t datablocks;
6383 	off_t length;
6384 {
6385 	off_t totblks, numblks;
6386 
6387 	totblks = 0;
6388 	numblks = howmany(length, fs->fs_bsize);
6389 	if (numblks <= NDADDR) {
6390 		totblks = howmany(length, fs->fs_fsize);
6391 		goto out;
6392 	}
6393         totblks = blkstofrags(fs, numblks);
6394 	numblks -= NDADDR;
6395 	/*
6396 	 * Count all single, then double, then triple indirects required.
6397 	 * Subtracting one indirects worth of blocks for each pass
6398 	 * acknowledges one of each pointed to by the inode.
6399 	 */
6400 	for (;;) {
6401 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6402 		numblks -= NINDIR(fs);
6403 		if (numblks <= 0)
6404 			break;
6405 		numblks = howmany(numblks, NINDIR(fs));
6406 	}
6407 out:
6408 	totblks = fsbtodb(fs, totblks);
6409 	/*
6410 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6411 	 * references.  We will correct it later in handle_complete_freeblks()
6412 	 * when we know the real count.
6413 	 */
6414 	if (totblks > datablocks)
6415 		return (0);
6416 	return (datablocks - totblks);
6417 }
6418 
6419 /*
6420  * Handle freeblocks for journaled softupdate filesystems.
6421  *
6422  * Contrary to normal softupdates, we must preserve the block pointers in
6423  * indirects until their subordinates are free.  This is to avoid journaling
6424  * every block that is freed which may consume more space than the journal
6425  * itself.  The recovery program will see the free block journals at the
6426  * base of the truncated area and traverse them to reclaim space.  The
6427  * pointers in the inode may be cleared immediately after the journal
6428  * records are written because each direct and indirect pointer in the
6429  * inode is recorded in a journal.  This permits full truncation to proceed
6430  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6431  *
6432  * The algorithm is as follows:
6433  * 1) Traverse the in-memory state and create journal entries to release
6434  *    the relevant blocks and full indirect trees.
6435  * 2) Traverse the indirect block chain adding partial truncation freework
6436  *    records to indirects in the path to lastlbn.  The freework will
6437  *    prevent new allocation dependencies from being satisfied in this
6438  *    indirect until the truncation completes.
6439  * 3) Read and lock the inode block, performing an update with the new size
6440  *    and pointers.  This prevents truncated data from becoming valid on
6441  *    disk through step 4.
6442  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6443  *    eliminate journal work for those records that do not require it.
6444  * 5) Schedule the journal records to be written followed by the inode block.
6445  * 6) Allocate any necessary frags for the end of file.
6446  * 7) Zero any partially truncated blocks.
6447  *
6448  * From this truncation proceeds asynchronously using the freework and
6449  * indir_trunc machinery.  The file will not be extended again into a
6450  * partially truncated indirect block until all work is completed but
6451  * the normal dependency mechanism ensures that it is rolled back/forward
6452  * as appropriate.  Further truncation may occur without delay and is
6453  * serialized in indir_trunc().
6454  */
6455 void
6456 softdep_journal_freeblocks(ip, cred, length, flags)
6457 	struct inode *ip;	/* The inode whose length is to be reduced */
6458 	struct ucred *cred;
6459 	off_t length;		/* The new length for the file */
6460 	int flags;		/* IO_EXT and/or IO_NORMAL */
6461 {
6462 	struct freeblks *freeblks, *fbn;
6463 	struct worklist *wk, *wkn;
6464 	struct inodedep *inodedep;
6465 	struct jblkdep *jblkdep;
6466 	struct allocdirect *adp, *adpn;
6467 	struct ufsmount *ump;
6468 	struct fs *fs;
6469 	struct buf *bp;
6470 	struct vnode *vp;
6471 	struct mount *mp;
6472 	ufs2_daddr_t extblocks, datablocks;
6473 	ufs_lbn_t tmpval, lbn, lastlbn;
6474 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6475 
6476 	fs = ip->i_fs;
6477 	ump = ip->i_ump;
6478 	mp = UFSTOVFS(ump);
6479 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6480 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6481 	vp = ITOV(ip);
6482 	needj = 1;
6483 	iboff = -1;
6484 	allocblock = 0;
6485 	extblocks = 0;
6486 	datablocks = 0;
6487 	frags = 0;
6488 	freeblks = newfreeblks(mp, ip);
6489 	ACQUIRE_LOCK(ump);
6490 	/*
6491 	 * If we're truncating a removed file that will never be written
6492 	 * we don't need to journal the block frees.  The canceled journals
6493 	 * for the allocations will suffice.
6494 	 */
6495 	dflags = DEPALLOC;
6496 	if (IS_SNAPSHOT(ip))
6497 		dflags |= NODELAY;
6498 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6499 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6500 	    length == 0)
6501 		needj = 0;
6502 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6503 	    ip->i_number, length, needj);
6504 	FREE_LOCK(ump);
6505 	/*
6506 	 * Calculate the lbn that we are truncating to.  This results in -1
6507 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6508 	 * to keep, not the first lbn we want to truncate.
6509 	 */
6510 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6511 	lastoff = blkoff(fs, length);
6512 	/*
6513 	 * Compute frags we are keeping in lastlbn.  0 means all.
6514 	 */
6515 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6516 		frags = fragroundup(fs, lastoff);
6517 		/* adp offset of last valid allocdirect. */
6518 		iboff = lastlbn;
6519 	} else if (lastlbn > 0)
6520 		iboff = NDADDR;
6521 	if (fs->fs_magic == FS_UFS2_MAGIC)
6522 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6523 	/*
6524 	 * Handle normal data blocks and indirects.  This section saves
6525 	 * values used after the inode update to complete frag and indirect
6526 	 * truncation.
6527 	 */
6528 	if ((flags & IO_NORMAL) != 0) {
6529 		/*
6530 		 * Handle truncation of whole direct and indirect blocks.
6531 		 */
6532 		for (i = iboff + 1; i < NDADDR; i++)
6533 			setup_freedirect(freeblks, ip, i, needj);
6534 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6535 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6536 			/* Release a whole indirect tree. */
6537 			if (lbn > lastlbn) {
6538 				setup_freeindir(freeblks, ip, i, -lbn -i,
6539 				    needj);
6540 				continue;
6541 			}
6542 			iboff = i + NDADDR;
6543 			/*
6544 			 * Traverse partially truncated indirect tree.
6545 			 */
6546 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6547 				setup_trunc_indir(freeblks, ip, -lbn - i,
6548 				    lastlbn, DIP(ip, i_ib[i]));
6549 		}
6550 		/*
6551 		 * Handle partial truncation to a frag boundary.
6552 		 */
6553 		if (frags) {
6554 			ufs2_daddr_t blkno;
6555 			long oldfrags;
6556 
6557 			oldfrags = blksize(fs, ip, lastlbn);
6558 			blkno = DIP(ip, i_db[lastlbn]);
6559 			if (blkno && oldfrags != frags) {
6560 				oldfrags -= frags;
6561 				oldfrags = numfrags(ip->i_fs, oldfrags);
6562 				blkno += numfrags(ip->i_fs, frags);
6563 				newfreework(ump, freeblks, NULL, lastlbn,
6564 				    blkno, oldfrags, 0, needj);
6565 				if (needj)
6566 					adjust_newfreework(freeblks,
6567 					    numfrags(ip->i_fs, frags));
6568 			} else if (blkno == 0)
6569 				allocblock = 1;
6570 		}
6571 		/*
6572 		 * Add a journal record for partial truncate if we are
6573 		 * handling indirect blocks.  Non-indirects need no extra
6574 		 * journaling.
6575 		 */
6576 		if (length != 0 && lastlbn >= NDADDR) {
6577 			ip->i_flag |= IN_TRUNCATED;
6578 			newjtrunc(freeblks, length, 0);
6579 		}
6580 		ip->i_size = length;
6581 		DIP_SET(ip, i_size, ip->i_size);
6582 		datablocks = DIP(ip, i_blocks) - extblocks;
6583 		if (length != 0)
6584 			datablocks = blkcount(ip->i_fs, datablocks, length);
6585 		freeblks->fb_len = length;
6586 	}
6587 	if ((flags & IO_EXT) != 0) {
6588 		for (i = 0; i < NXADDR; i++)
6589 			setup_freeext(freeblks, ip, i, needj);
6590 		ip->i_din2->di_extsize = 0;
6591 		datablocks += extblocks;
6592 	}
6593 #ifdef QUOTA
6594 	/* Reference the quotas in case the block count is wrong in the end. */
6595 	quotaref(vp, freeblks->fb_quota);
6596 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6597 #endif
6598 	freeblks->fb_chkcnt = -datablocks;
6599 	UFS_LOCK(ump);
6600 	fs->fs_pendingblocks += datablocks;
6601 	UFS_UNLOCK(ump);
6602 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6603 	/*
6604 	 * Handle truncation of incomplete alloc direct dependencies.  We
6605 	 * hold the inode block locked to prevent incomplete dependencies
6606 	 * from reaching the disk while we are eliminating those that
6607 	 * have been truncated.  This is a partially inlined ffs_update().
6608 	 */
6609 	ufs_itimes(vp);
6610 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6611 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6612 	    (int)fs->fs_bsize, cred, &bp);
6613 	if (error) {
6614 		brelse(bp);
6615 		softdep_error("softdep_journal_freeblocks", error);
6616 		return;
6617 	}
6618 	if (bp->b_bufsize == fs->fs_bsize)
6619 		bp->b_flags |= B_CLUSTEROK;
6620 	softdep_update_inodeblock(ip, bp, 0);
6621 	if (ump->um_fstype == UFS1)
6622 		*((struct ufs1_dinode *)bp->b_data +
6623 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6624 	else
6625 		*((struct ufs2_dinode *)bp->b_data +
6626 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6627 	ACQUIRE_LOCK(ump);
6628 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6629 	if ((inodedep->id_state & IOSTARTED) != 0)
6630 		panic("softdep_setup_freeblocks: inode busy");
6631 	/*
6632 	 * Add the freeblks structure to the list of operations that
6633 	 * must await the zero'ed inode being written to disk. If we
6634 	 * still have a bitmap dependency (needj), then the inode
6635 	 * has never been written to disk, so we can process the
6636 	 * freeblks below once we have deleted the dependencies.
6637 	 */
6638 	if (needj)
6639 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6640 	else
6641 		freeblks->fb_state |= COMPLETE;
6642 	if ((flags & IO_NORMAL) != 0) {
6643 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6644 			if (adp->ad_offset > iboff)
6645 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6646 				    freeblks);
6647 			/*
6648 			 * Truncate the allocdirect.  We could eliminate
6649 			 * or modify journal records as well.
6650 			 */
6651 			else if (adp->ad_offset == iboff && frags)
6652 				adp->ad_newsize = frags;
6653 		}
6654 	}
6655 	if ((flags & IO_EXT) != 0)
6656 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6657 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6658 			    freeblks);
6659 	/*
6660 	 * Scan the bufwait list for newblock dependencies that will never
6661 	 * make it to disk.
6662 	 */
6663 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6664 		if (wk->wk_type != D_ALLOCDIRECT)
6665 			continue;
6666 		adp = WK_ALLOCDIRECT(wk);
6667 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6668 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6669 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6670 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6671 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6672 		}
6673 	}
6674 	/*
6675 	 * Add journal work.
6676 	 */
6677 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6678 		add_to_journal(&jblkdep->jb_list);
6679 	FREE_LOCK(ump);
6680 	bdwrite(bp);
6681 	/*
6682 	 * Truncate dependency structures beyond length.
6683 	 */
6684 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6685 	/*
6686 	 * This is only set when we need to allocate a fragment because
6687 	 * none existed at the end of a frag-sized file.  It handles only
6688 	 * allocating a new, zero filled block.
6689 	 */
6690 	if (allocblock) {
6691 		ip->i_size = length - lastoff;
6692 		DIP_SET(ip, i_size, ip->i_size);
6693 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6694 		if (error != 0) {
6695 			softdep_error("softdep_journal_freeblks", error);
6696 			return;
6697 		}
6698 		ip->i_size = length;
6699 		DIP_SET(ip, i_size, length);
6700 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6701 		allocbuf(bp, frags);
6702 		ffs_update(vp, 0);
6703 		bawrite(bp);
6704 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6705 		int size;
6706 
6707 		/*
6708 		 * Zero the end of a truncated frag or block.
6709 		 */
6710 		size = sblksize(fs, length, lastlbn);
6711 		error = bread(vp, lastlbn, size, cred, &bp);
6712 		if (error) {
6713 			softdep_error("softdep_journal_freeblks", error);
6714 			return;
6715 		}
6716 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6717 		bawrite(bp);
6718 
6719 	}
6720 	ACQUIRE_LOCK(ump);
6721 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6722 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6723 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6724 	/*
6725 	 * We zero earlier truncations so they don't erroneously
6726 	 * update i_blocks.
6727 	 */
6728 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6729 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6730 			fbn->fb_len = 0;
6731 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6732 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6733 		freeblks->fb_state |= INPROGRESS;
6734 	else
6735 		freeblks = NULL;
6736 	FREE_LOCK(ump);
6737 	if (freeblks)
6738 		handle_workitem_freeblocks(freeblks, 0);
6739 	trunc_pages(ip, length, extblocks, flags);
6740 
6741 }
6742 
6743 /*
6744  * Flush a JOP_SYNC to the journal.
6745  */
6746 void
6747 softdep_journal_fsync(ip)
6748 	struct inode *ip;
6749 {
6750 	struct jfsync *jfsync;
6751 
6752 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6753 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6754 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6755 		return;
6756 	ip->i_flag &= ~IN_TRUNCATED;
6757 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6758 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6759 	jfsync->jfs_size = ip->i_size;
6760 	jfsync->jfs_ino = ip->i_number;
6761 	ACQUIRE_LOCK(ip->i_ump);
6762 	add_to_journal(&jfsync->jfs_list);
6763 	jwait(&jfsync->jfs_list, MNT_WAIT);
6764 	FREE_LOCK(ip->i_ump);
6765 }
6766 
6767 /*
6768  * Block de-allocation dependencies.
6769  *
6770  * When blocks are de-allocated, the on-disk pointers must be nullified before
6771  * the blocks are made available for use by other files.  (The true
6772  * requirement is that old pointers must be nullified before new on-disk
6773  * pointers are set.  We chose this slightly more stringent requirement to
6774  * reduce complexity.) Our implementation handles this dependency by updating
6775  * the inode (or indirect block) appropriately but delaying the actual block
6776  * de-allocation (i.e., freemap and free space count manipulation) until
6777  * after the updated versions reach stable storage.  After the disk is
6778  * updated, the blocks can be safely de-allocated whenever it is convenient.
6779  * This implementation handles only the common case of reducing a file's
6780  * length to zero. Other cases are handled by the conventional synchronous
6781  * write approach.
6782  *
6783  * The ffs implementation with which we worked double-checks
6784  * the state of the block pointers and file size as it reduces
6785  * a file's length.  Some of this code is replicated here in our
6786  * soft updates implementation.  The freeblks->fb_chkcnt field is
6787  * used to transfer a part of this information to the procedure
6788  * that eventually de-allocates the blocks.
6789  *
6790  * This routine should be called from the routine that shortens
6791  * a file's length, before the inode's size or block pointers
6792  * are modified. It will save the block pointer information for
6793  * later release and zero the inode so that the calling routine
6794  * can release it.
6795  */
6796 void
6797 softdep_setup_freeblocks(ip, length, flags)
6798 	struct inode *ip;	/* The inode whose length is to be reduced */
6799 	off_t length;		/* The new length for the file */
6800 	int flags;		/* IO_EXT and/or IO_NORMAL */
6801 {
6802 	struct ufs1_dinode *dp1;
6803 	struct ufs2_dinode *dp2;
6804 	struct freeblks *freeblks;
6805 	struct inodedep *inodedep;
6806 	struct allocdirect *adp;
6807 	struct ufsmount *ump;
6808 	struct buf *bp;
6809 	struct fs *fs;
6810 	ufs2_daddr_t extblocks, datablocks;
6811 	struct mount *mp;
6812 	int i, delay, error, dflags;
6813 	ufs_lbn_t tmpval;
6814 	ufs_lbn_t lbn;
6815 
6816 	ump = ip->i_ump;
6817 	mp = UFSTOVFS(ump);
6818 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6819 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6820 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6821 	    ip->i_number, length);
6822 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6823 	fs = ip->i_fs;
6824 	freeblks = newfreeblks(mp, ip);
6825 	extblocks = 0;
6826 	datablocks = 0;
6827 	if (fs->fs_magic == FS_UFS2_MAGIC)
6828 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6829 	if ((flags & IO_NORMAL) != 0) {
6830 		for (i = 0; i < NDADDR; i++)
6831 			setup_freedirect(freeblks, ip, i, 0);
6832 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6833 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6834 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6835 		ip->i_size = 0;
6836 		DIP_SET(ip, i_size, 0);
6837 		datablocks = DIP(ip, i_blocks) - extblocks;
6838 	}
6839 	if ((flags & IO_EXT) != 0) {
6840 		for (i = 0; i < NXADDR; i++)
6841 			setup_freeext(freeblks, ip, i, 0);
6842 		ip->i_din2->di_extsize = 0;
6843 		datablocks += extblocks;
6844 	}
6845 #ifdef QUOTA
6846 	/* Reference the quotas in case the block count is wrong in the end. */
6847 	quotaref(ITOV(ip), freeblks->fb_quota);
6848 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6849 #endif
6850 	freeblks->fb_chkcnt = -datablocks;
6851 	UFS_LOCK(ump);
6852 	fs->fs_pendingblocks += datablocks;
6853 	UFS_UNLOCK(ump);
6854 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6855 	/*
6856 	 * Push the zero'ed inode to to its disk buffer so that we are free
6857 	 * to delete its dependencies below. Once the dependencies are gone
6858 	 * the buffer can be safely released.
6859 	 */
6860 	if ((error = bread(ip->i_devvp,
6861 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6862 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6863 		brelse(bp);
6864 		softdep_error("softdep_setup_freeblocks", error);
6865 	}
6866 	if (ump->um_fstype == UFS1) {
6867 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6868 		    ino_to_fsbo(fs, ip->i_number));
6869 		ip->i_din1->di_freelink = dp1->di_freelink;
6870 		*dp1 = *ip->i_din1;
6871 	} else {
6872 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6873 		    ino_to_fsbo(fs, ip->i_number));
6874 		ip->i_din2->di_freelink = dp2->di_freelink;
6875 		*dp2 = *ip->i_din2;
6876 	}
6877 	/*
6878 	 * Find and eliminate any inode dependencies.
6879 	 */
6880 	ACQUIRE_LOCK(ump);
6881 	dflags = DEPALLOC;
6882 	if (IS_SNAPSHOT(ip))
6883 		dflags |= NODELAY;
6884 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6885 	if ((inodedep->id_state & IOSTARTED) != 0)
6886 		panic("softdep_setup_freeblocks: inode busy");
6887 	/*
6888 	 * Add the freeblks structure to the list of operations that
6889 	 * must await the zero'ed inode being written to disk. If we
6890 	 * still have a bitmap dependency (delay == 0), then the inode
6891 	 * has never been written to disk, so we can process the
6892 	 * freeblks below once we have deleted the dependencies.
6893 	 */
6894 	delay = (inodedep->id_state & DEPCOMPLETE);
6895 	if (delay)
6896 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6897 	else
6898 		freeblks->fb_state |= COMPLETE;
6899 	/*
6900 	 * Because the file length has been truncated to zero, any
6901 	 * pending block allocation dependency structures associated
6902 	 * with this inode are obsolete and can simply be de-allocated.
6903 	 * We must first merge the two dependency lists to get rid of
6904 	 * any duplicate freefrag structures, then purge the merged list.
6905 	 * If we still have a bitmap dependency, then the inode has never
6906 	 * been written to disk, so we can free any fragments without delay.
6907 	 */
6908 	if (flags & IO_NORMAL) {
6909 		merge_inode_lists(&inodedep->id_newinoupdt,
6910 		    &inodedep->id_inoupdt);
6911 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6912 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6913 			    freeblks);
6914 	}
6915 	if (flags & IO_EXT) {
6916 		merge_inode_lists(&inodedep->id_newextupdt,
6917 		    &inodedep->id_extupdt);
6918 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6919 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6920 			    freeblks);
6921 	}
6922 	FREE_LOCK(ump);
6923 	bdwrite(bp);
6924 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6925 	ACQUIRE_LOCK(ump);
6926 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6927 		(void) free_inodedep(inodedep);
6928 	freeblks->fb_state |= DEPCOMPLETE;
6929 	/*
6930 	 * If the inode with zeroed block pointers is now on disk
6931 	 * we can start freeing blocks.
6932 	 */
6933 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6934 		freeblks->fb_state |= INPROGRESS;
6935 	else
6936 		freeblks = NULL;
6937 	FREE_LOCK(ump);
6938 	if (freeblks)
6939 		handle_workitem_freeblocks(freeblks, 0);
6940 	trunc_pages(ip, length, extblocks, flags);
6941 }
6942 
6943 /*
6944  * Eliminate pages from the page cache that back parts of this inode and
6945  * adjust the vnode pager's idea of our size.  This prevents stale data
6946  * from hanging around in the page cache.
6947  */
6948 static void
6949 trunc_pages(ip, length, extblocks, flags)
6950 	struct inode *ip;
6951 	off_t length;
6952 	ufs2_daddr_t extblocks;
6953 	int flags;
6954 {
6955 	struct vnode *vp;
6956 	struct fs *fs;
6957 	ufs_lbn_t lbn;
6958 	off_t end, extend;
6959 
6960 	vp = ITOV(ip);
6961 	fs = ip->i_fs;
6962 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6963 	if ((flags & IO_EXT) != 0)
6964 		vn_pages_remove(vp, extend, 0);
6965 	if ((flags & IO_NORMAL) == 0)
6966 		return;
6967 	BO_LOCK(&vp->v_bufobj);
6968 	drain_output(vp);
6969 	BO_UNLOCK(&vp->v_bufobj);
6970 	/*
6971 	 * The vnode pager eliminates file pages we eliminate indirects
6972 	 * below.
6973 	 */
6974 	vnode_pager_setsize(vp, length);
6975 	/*
6976 	 * Calculate the end based on the last indirect we want to keep.  If
6977 	 * the block extends into indirects we can just use the negative of
6978 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6979 	 * be careful not to remove those, if they exist.  double and triple
6980 	 * indirect lbns do not overlap with others so it is not important
6981 	 * to verify how many levels are required.
6982 	 */
6983 	lbn = lblkno(fs, length);
6984 	if (lbn >= NDADDR) {
6985 		/* Calculate the virtual lbn of the triple indirect. */
6986 		lbn = -lbn - (NIADDR - 1);
6987 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6988 	} else
6989 		end = extend;
6990 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6991 }
6992 
6993 /*
6994  * See if the buf bp is in the range eliminated by truncation.
6995  */
6996 static int
6997 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6998 	struct buf *bp;
6999 	int *blkoffp;
7000 	ufs_lbn_t lastlbn;
7001 	int lastoff;
7002 	int flags;
7003 {
7004 	ufs_lbn_t lbn;
7005 
7006 	*blkoffp = 0;
7007 	/* Only match ext/normal blocks as appropriate. */
7008 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7009 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7010 		return (0);
7011 	/* ALTDATA is always a full truncation. */
7012 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7013 		return (1);
7014 	/* -1 is full truncation. */
7015 	if (lastlbn == -1)
7016 		return (1);
7017 	/*
7018 	 * If this is a partial truncate we only want those
7019 	 * blocks and indirect blocks that cover the range
7020 	 * we're after.
7021 	 */
7022 	lbn = bp->b_lblkno;
7023 	if (lbn < 0)
7024 		lbn = -(lbn + lbn_level(lbn));
7025 	if (lbn < lastlbn)
7026 		return (0);
7027 	/* Here we only truncate lblkno if it's partial. */
7028 	if (lbn == lastlbn) {
7029 		if (lastoff == 0)
7030 			return (0);
7031 		*blkoffp = lastoff;
7032 	}
7033 	return (1);
7034 }
7035 
7036 /*
7037  * Eliminate any dependencies that exist in memory beyond lblkno:off
7038  */
7039 static void
7040 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7041 	struct inode *ip;
7042 	struct freeblks *freeblks;
7043 	ufs_lbn_t lastlbn;
7044 	int lastoff;
7045 	int flags;
7046 {
7047 	struct bufobj *bo;
7048 	struct vnode *vp;
7049 	struct buf *bp;
7050 	struct fs *fs;
7051 	int blkoff;
7052 
7053 	/*
7054 	 * We must wait for any I/O in progress to finish so that
7055 	 * all potential buffers on the dirty list will be visible.
7056 	 * Once they are all there, walk the list and get rid of
7057 	 * any dependencies.
7058 	 */
7059 	fs = ip->i_fs;
7060 	vp = ITOV(ip);
7061 	bo = &vp->v_bufobj;
7062 	BO_LOCK(bo);
7063 	drain_output(vp);
7064 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7065 		bp->b_vflags &= ~BV_SCANNED;
7066 restart:
7067 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7068 		if (bp->b_vflags & BV_SCANNED)
7069 			continue;
7070 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7071 			bp->b_vflags |= BV_SCANNED;
7072 			continue;
7073 		}
7074 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7075 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7076 			goto restart;
7077 		BO_UNLOCK(bo);
7078 		if (deallocate_dependencies(bp, freeblks, blkoff))
7079 			bqrelse(bp);
7080 		else
7081 			brelse(bp);
7082 		BO_LOCK(bo);
7083 		goto restart;
7084 	}
7085 	/*
7086 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7087 	 */
7088 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7089 		bp->b_vflags &= ~BV_SCANNED;
7090 cleanrestart:
7091 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7092 		if (bp->b_vflags & BV_SCANNED)
7093 			continue;
7094 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7095 			bp->b_vflags |= BV_SCANNED;
7096 			continue;
7097 		}
7098 		if (BUF_LOCK(bp,
7099 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7100 		    BO_LOCKPTR(bo)) == ENOLCK) {
7101 			BO_LOCK(bo);
7102 			goto cleanrestart;
7103 		}
7104 		bp->b_vflags |= BV_SCANNED;
7105 		bremfree(bp);
7106 		if (blkoff != 0) {
7107 			allocbuf(bp, blkoff);
7108 			bqrelse(bp);
7109 		} else {
7110 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7111 			brelse(bp);
7112 		}
7113 		BO_LOCK(bo);
7114 		goto cleanrestart;
7115 	}
7116 	drain_output(vp);
7117 	BO_UNLOCK(bo);
7118 }
7119 
7120 static int
7121 cancel_pagedep(pagedep, freeblks, blkoff)
7122 	struct pagedep *pagedep;
7123 	struct freeblks *freeblks;
7124 	int blkoff;
7125 {
7126 	struct jremref *jremref;
7127 	struct jmvref *jmvref;
7128 	struct dirrem *dirrem, *tmp;
7129 	int i;
7130 
7131 	/*
7132 	 * Copy any directory remove dependencies to the list
7133 	 * to be processed after the freeblks proceeds.  If
7134 	 * directory entry never made it to disk they
7135 	 * can be dumped directly onto the work list.
7136 	 */
7137 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7138 		/* Skip this directory removal if it is intended to remain. */
7139 		if (dirrem->dm_offset < blkoff)
7140 			continue;
7141 		/*
7142 		 * If there are any dirrems we wait for the journal write
7143 		 * to complete and then restart the buf scan as the lock
7144 		 * has been dropped.
7145 		 */
7146 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7147 			jwait(&jremref->jr_list, MNT_WAIT);
7148 			return (ERESTART);
7149 		}
7150 		LIST_REMOVE(dirrem, dm_next);
7151 		dirrem->dm_dirinum = pagedep->pd_ino;
7152 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7153 	}
7154 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7155 		jwait(&jmvref->jm_list, MNT_WAIT);
7156 		return (ERESTART);
7157 	}
7158 	/*
7159 	 * When we're partially truncating a pagedep we just want to flush
7160 	 * journal entries and return.  There can not be any adds in the
7161 	 * truncated portion of the directory and newblk must remain if
7162 	 * part of the block remains.
7163 	 */
7164 	if (blkoff != 0) {
7165 		struct diradd *dap;
7166 
7167 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7168 			if (dap->da_offset > blkoff)
7169 				panic("cancel_pagedep: diradd %p off %d > %d",
7170 				    dap, dap->da_offset, blkoff);
7171 		for (i = 0; i < DAHASHSZ; i++)
7172 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7173 				if (dap->da_offset > blkoff)
7174 					panic("cancel_pagedep: diradd %p off %d > %d",
7175 					    dap, dap->da_offset, blkoff);
7176 		return (0);
7177 	}
7178 	/*
7179 	 * There should be no directory add dependencies present
7180 	 * as the directory could not be truncated until all
7181 	 * children were removed.
7182 	 */
7183 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7184 	    ("deallocate_dependencies: pendinghd != NULL"));
7185 	for (i = 0; i < DAHASHSZ; i++)
7186 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7187 		    ("deallocate_dependencies: diraddhd != NULL"));
7188 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7189 		free_newdirblk(pagedep->pd_newdirblk);
7190 	if (free_pagedep(pagedep) == 0)
7191 		panic("Failed to free pagedep %p", pagedep);
7192 	return (0);
7193 }
7194 
7195 /*
7196  * Reclaim any dependency structures from a buffer that is about to
7197  * be reallocated to a new vnode. The buffer must be locked, thus,
7198  * no I/O completion operations can occur while we are manipulating
7199  * its associated dependencies. The mutex is held so that other I/O's
7200  * associated with related dependencies do not occur.
7201  */
7202 static int
7203 deallocate_dependencies(bp, freeblks, off)
7204 	struct buf *bp;
7205 	struct freeblks *freeblks;
7206 	int off;
7207 {
7208 	struct indirdep *indirdep;
7209 	struct pagedep *pagedep;
7210 	struct allocdirect *adp;
7211 	struct worklist *wk, *wkn;
7212 	struct ufsmount *ump;
7213 
7214 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7215 		goto done;
7216 	ump = VFSTOUFS(wk->wk_mp);
7217 	ACQUIRE_LOCK(ump);
7218 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7219 		switch (wk->wk_type) {
7220 		case D_INDIRDEP:
7221 			indirdep = WK_INDIRDEP(wk);
7222 			if (bp->b_lblkno >= 0 ||
7223 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7224 				panic("deallocate_dependencies: not indir");
7225 			cancel_indirdep(indirdep, bp, freeblks);
7226 			continue;
7227 
7228 		case D_PAGEDEP:
7229 			pagedep = WK_PAGEDEP(wk);
7230 			if (cancel_pagedep(pagedep, freeblks, off)) {
7231 				FREE_LOCK(ump);
7232 				return (ERESTART);
7233 			}
7234 			continue;
7235 
7236 		case D_ALLOCINDIR:
7237 			/*
7238 			 * Simply remove the allocindir, we'll find it via
7239 			 * the indirdep where we can clear pointers if
7240 			 * needed.
7241 			 */
7242 			WORKLIST_REMOVE(wk);
7243 			continue;
7244 
7245 		case D_FREEWORK:
7246 			/*
7247 			 * A truncation is waiting for the zero'd pointers
7248 			 * to be written.  It can be freed when the freeblks
7249 			 * is journaled.
7250 			 */
7251 			WORKLIST_REMOVE(wk);
7252 			wk->wk_state |= ONDEPLIST;
7253 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7254 			break;
7255 
7256 		case D_ALLOCDIRECT:
7257 			adp = WK_ALLOCDIRECT(wk);
7258 			if (off != 0)
7259 				continue;
7260 			/* FALLTHROUGH */
7261 		default:
7262 			panic("deallocate_dependencies: Unexpected type %s",
7263 			    TYPENAME(wk->wk_type));
7264 			/* NOTREACHED */
7265 		}
7266 	}
7267 	FREE_LOCK(ump);
7268 done:
7269 	/*
7270 	 * Don't throw away this buf, we were partially truncating and
7271 	 * some deps may always remain.
7272 	 */
7273 	if (off) {
7274 		allocbuf(bp, off);
7275 		bp->b_vflags |= BV_SCANNED;
7276 		return (EBUSY);
7277 	}
7278 	bp->b_flags |= B_INVAL | B_NOCACHE;
7279 
7280 	return (0);
7281 }
7282 
7283 /*
7284  * An allocdirect is being canceled due to a truncate.  We must make sure
7285  * the journal entry is released in concert with the blkfree that releases
7286  * the storage.  Completed journal entries must not be released until the
7287  * space is no longer pointed to by the inode or in the bitmap.
7288  */
7289 static void
7290 cancel_allocdirect(adphead, adp, freeblks)
7291 	struct allocdirectlst *adphead;
7292 	struct allocdirect *adp;
7293 	struct freeblks *freeblks;
7294 {
7295 	struct freework *freework;
7296 	struct newblk *newblk;
7297 	struct worklist *wk;
7298 
7299 	TAILQ_REMOVE(adphead, adp, ad_next);
7300 	newblk = (struct newblk *)adp;
7301 	freework = NULL;
7302 	/*
7303 	 * Find the correct freework structure.
7304 	 */
7305 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7306 		if (wk->wk_type != D_FREEWORK)
7307 			continue;
7308 		freework = WK_FREEWORK(wk);
7309 		if (freework->fw_blkno == newblk->nb_newblkno)
7310 			break;
7311 	}
7312 	if (freework == NULL)
7313 		panic("cancel_allocdirect: Freework not found");
7314 	/*
7315 	 * If a newblk exists at all we still have the journal entry that
7316 	 * initiated the allocation so we do not need to journal the free.
7317 	 */
7318 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7319 	/*
7320 	 * If the journal hasn't been written the jnewblk must be passed
7321 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7322 	 * this by linking the journal dependency into the freework to be
7323 	 * freed when freework_freeblock() is called.  If the journal has
7324 	 * been written we can simply reclaim the journal space when the
7325 	 * freeblks work is complete.
7326 	 */
7327 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7328 	    &freeblks->fb_jwork);
7329 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7330 }
7331 
7332 
7333 /*
7334  * Cancel a new block allocation.  May be an indirect or direct block.  We
7335  * remove it from various lists and return any journal record that needs to
7336  * be resolved by the caller.
7337  *
7338  * A special consideration is made for indirects which were never pointed
7339  * at on disk and will never be found once this block is released.
7340  */
7341 static struct jnewblk *
7342 cancel_newblk(newblk, wk, wkhd)
7343 	struct newblk *newblk;
7344 	struct worklist *wk;
7345 	struct workhead *wkhd;
7346 {
7347 	struct jnewblk *jnewblk;
7348 
7349 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7350 
7351 	newblk->nb_state |= GOINGAWAY;
7352 	/*
7353 	 * Previously we traversed the completedhd on each indirdep
7354 	 * attached to this newblk to cancel them and gather journal
7355 	 * work.  Since we need only the oldest journal segment and
7356 	 * the lowest point on the tree will always have the oldest
7357 	 * journal segment we are free to release the segments
7358 	 * of any subordinates and may leave the indirdep list to
7359 	 * indirdep_complete() when this newblk is freed.
7360 	 */
7361 	if (newblk->nb_state & ONDEPLIST) {
7362 		newblk->nb_state &= ~ONDEPLIST;
7363 		LIST_REMOVE(newblk, nb_deps);
7364 	}
7365 	if (newblk->nb_state & ONWORKLIST)
7366 		WORKLIST_REMOVE(&newblk->nb_list);
7367 	/*
7368 	 * If the journal entry hasn't been written we save a pointer to
7369 	 * the dependency that frees it until it is written or the
7370 	 * superseding operation completes.
7371 	 */
7372 	jnewblk = newblk->nb_jnewblk;
7373 	if (jnewblk != NULL && wk != NULL) {
7374 		newblk->nb_jnewblk = NULL;
7375 		jnewblk->jn_dep = wk;
7376 	}
7377 	if (!LIST_EMPTY(&newblk->nb_jwork))
7378 		jwork_move(wkhd, &newblk->nb_jwork);
7379 	/*
7380 	 * When truncating we must free the newdirblk early to remove
7381 	 * the pagedep from the hash before returning.
7382 	 */
7383 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7384 		free_newdirblk(WK_NEWDIRBLK(wk));
7385 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7386 		panic("cancel_newblk: extra newdirblk");
7387 
7388 	return (jnewblk);
7389 }
7390 
7391 /*
7392  * Schedule the freefrag associated with a newblk to be released once
7393  * the pointers are written and the previous block is no longer needed.
7394  */
7395 static void
7396 newblk_freefrag(newblk)
7397 	struct newblk *newblk;
7398 {
7399 	struct freefrag *freefrag;
7400 
7401 	if (newblk->nb_freefrag == NULL)
7402 		return;
7403 	freefrag = newblk->nb_freefrag;
7404 	newblk->nb_freefrag = NULL;
7405 	freefrag->ff_state |= COMPLETE;
7406 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7407 		add_to_worklist(&freefrag->ff_list, 0);
7408 }
7409 
7410 /*
7411  * Free a newblk. Generate a new freefrag work request if appropriate.
7412  * This must be called after the inode pointer and any direct block pointers
7413  * are valid or fully removed via truncate or frag extension.
7414  */
7415 static void
7416 free_newblk(newblk)
7417 	struct newblk *newblk;
7418 {
7419 	struct indirdep *indirdep;
7420 	struct worklist *wk;
7421 
7422 	KASSERT(newblk->nb_jnewblk == NULL,
7423 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7424 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7425 	    ("free_newblk: unclaimed newblk"));
7426 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7427 	newblk_freefrag(newblk);
7428 	if (newblk->nb_state & ONDEPLIST)
7429 		LIST_REMOVE(newblk, nb_deps);
7430 	if (newblk->nb_state & ONWORKLIST)
7431 		WORKLIST_REMOVE(&newblk->nb_list);
7432 	LIST_REMOVE(newblk, nb_hash);
7433 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7434 		free_newdirblk(WK_NEWDIRBLK(wk));
7435 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7436 		panic("free_newblk: extra newdirblk");
7437 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7438 		indirdep_complete(indirdep);
7439 	handle_jwork(&newblk->nb_jwork);
7440 	WORKITEM_FREE(newblk, D_NEWBLK);
7441 }
7442 
7443 /*
7444  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7445  * This routine must be called with splbio interrupts blocked.
7446  */
7447 static void
7448 free_newdirblk(newdirblk)
7449 	struct newdirblk *newdirblk;
7450 {
7451 	struct pagedep *pagedep;
7452 	struct diradd *dap;
7453 	struct worklist *wk;
7454 
7455 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7456 	WORKLIST_REMOVE(&newdirblk->db_list);
7457 	/*
7458 	 * If the pagedep is still linked onto the directory buffer
7459 	 * dependency chain, then some of the entries on the
7460 	 * pd_pendinghd list may not be committed to disk yet. In
7461 	 * this case, we will simply clear the NEWBLOCK flag and
7462 	 * let the pd_pendinghd list be processed when the pagedep
7463 	 * is next written. If the pagedep is no longer on the buffer
7464 	 * dependency chain, then all the entries on the pd_pending
7465 	 * list are committed to disk and we can free them here.
7466 	 */
7467 	pagedep = newdirblk->db_pagedep;
7468 	pagedep->pd_state &= ~NEWBLOCK;
7469 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7470 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7471 			free_diradd(dap, NULL);
7472 		/*
7473 		 * If no dependencies remain, the pagedep will be freed.
7474 		 */
7475 		free_pagedep(pagedep);
7476 	}
7477 	/* Should only ever be one item in the list. */
7478 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7479 		WORKLIST_REMOVE(wk);
7480 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7481 	}
7482 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7483 }
7484 
7485 /*
7486  * Prepare an inode to be freed. The actual free operation is not
7487  * done until the zero'ed inode has been written to disk.
7488  */
7489 void
7490 softdep_freefile(pvp, ino, mode)
7491 	struct vnode *pvp;
7492 	ino_t ino;
7493 	int mode;
7494 {
7495 	struct inode *ip = VTOI(pvp);
7496 	struct inodedep *inodedep;
7497 	struct freefile *freefile;
7498 	struct freeblks *freeblks;
7499 	struct ufsmount *ump;
7500 
7501 	ump = ip->i_ump;
7502 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7503 	    ("softdep_freefile called on non-softdep filesystem"));
7504 	/*
7505 	 * This sets up the inode de-allocation dependency.
7506 	 */
7507 	freefile = malloc(sizeof(struct freefile),
7508 		M_FREEFILE, M_SOFTDEP_FLAGS);
7509 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7510 	freefile->fx_mode = mode;
7511 	freefile->fx_oldinum = ino;
7512 	freefile->fx_devvp = ip->i_devvp;
7513 	LIST_INIT(&freefile->fx_jwork);
7514 	UFS_LOCK(ump);
7515 	ip->i_fs->fs_pendinginodes += 1;
7516 	UFS_UNLOCK(ump);
7517 
7518 	/*
7519 	 * If the inodedep does not exist, then the zero'ed inode has
7520 	 * been written to disk. If the allocated inode has never been
7521 	 * written to disk, then the on-disk inode is zero'ed. In either
7522 	 * case we can free the file immediately.  If the journal was
7523 	 * canceled before being written the inode will never make it to
7524 	 * disk and we must send the canceled journal entrys to
7525 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7526 	 * Any blocks waiting on the inode to write can be safely freed
7527 	 * here as it will never been written.
7528 	 */
7529 	ACQUIRE_LOCK(ump);
7530 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7531 	if (inodedep) {
7532 		/*
7533 		 * Clear out freeblks that no longer need to reference
7534 		 * this inode.
7535 		 */
7536 		while ((freeblks =
7537 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7538 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7539 			    fb_next);
7540 			freeblks->fb_state &= ~ONDEPLIST;
7541 		}
7542 		/*
7543 		 * Remove this inode from the unlinked list.
7544 		 */
7545 		if (inodedep->id_state & UNLINKED) {
7546 			/*
7547 			 * Save the journal work to be freed with the bitmap
7548 			 * before we clear UNLINKED.  Otherwise it can be lost
7549 			 * if the inode block is written.
7550 			 */
7551 			handle_bufwait(inodedep, &freefile->fx_jwork);
7552 			clear_unlinked_inodedep(inodedep);
7553 			/*
7554 			 * Re-acquire inodedep as we've dropped the
7555 			 * per-filesystem lock in clear_unlinked_inodedep().
7556 			 */
7557 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7558 		}
7559 	}
7560 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7561 		FREE_LOCK(ump);
7562 		handle_workitem_freefile(freefile);
7563 		return;
7564 	}
7565 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7566 		inodedep->id_state |= GOINGAWAY;
7567 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7568 	FREE_LOCK(ump);
7569 	if (ip->i_number == ino)
7570 		ip->i_flag |= IN_MODIFIED;
7571 }
7572 
7573 /*
7574  * Check to see if an inode has never been written to disk. If
7575  * so free the inodedep and return success, otherwise return failure.
7576  * This routine must be called with splbio interrupts blocked.
7577  *
7578  * If we still have a bitmap dependency, then the inode has never
7579  * been written to disk. Drop the dependency as it is no longer
7580  * necessary since the inode is being deallocated. We set the
7581  * ALLCOMPLETE flags since the bitmap now properly shows that the
7582  * inode is not allocated. Even if the inode is actively being
7583  * written, it has been rolled back to its zero'ed state, so we
7584  * are ensured that a zero inode is what is on the disk. For short
7585  * lived files, this change will usually result in removing all the
7586  * dependencies from the inode so that it can be freed immediately.
7587  */
7588 static int
7589 check_inode_unwritten(inodedep)
7590 	struct inodedep *inodedep;
7591 {
7592 
7593 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7594 
7595 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7596 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7597 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7598 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7599 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7600 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7601 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7602 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7603 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7604 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7605 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7606 	    inodedep->id_mkdiradd != NULL ||
7607 	    inodedep->id_nlinkdelta != 0)
7608 		return (0);
7609 	/*
7610 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7611 	 * trying to allocate memory without holding "Softdep Lock".
7612 	 */
7613 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7614 	    inodedep->id_savedino1 == NULL)
7615 		return (0);
7616 
7617 	if (inodedep->id_state & ONDEPLIST)
7618 		LIST_REMOVE(inodedep, id_deps);
7619 	inodedep->id_state &= ~ONDEPLIST;
7620 	inodedep->id_state |= ALLCOMPLETE;
7621 	inodedep->id_bmsafemap = NULL;
7622 	if (inodedep->id_state & ONWORKLIST)
7623 		WORKLIST_REMOVE(&inodedep->id_list);
7624 	if (inodedep->id_savedino1 != NULL) {
7625 		free(inodedep->id_savedino1, M_SAVEDINO);
7626 		inodedep->id_savedino1 = NULL;
7627 	}
7628 	if (free_inodedep(inodedep) == 0)
7629 		panic("check_inode_unwritten: busy inode");
7630 	return (1);
7631 }
7632 
7633 /*
7634  * Try to free an inodedep structure. Return 1 if it could be freed.
7635  */
7636 static int
7637 free_inodedep(inodedep)
7638 	struct inodedep *inodedep;
7639 {
7640 
7641 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7642 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7643 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7644 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7645 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7646 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7647 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7648 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7649 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7650 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7651 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7652 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7653 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7654 	    inodedep->id_mkdiradd != NULL ||
7655 	    inodedep->id_nlinkdelta != 0 ||
7656 	    inodedep->id_savedino1 != NULL)
7657 		return (0);
7658 	if (inodedep->id_state & ONDEPLIST)
7659 		LIST_REMOVE(inodedep, id_deps);
7660 	LIST_REMOVE(inodedep, id_hash);
7661 	WORKITEM_FREE(inodedep, D_INODEDEP);
7662 	return (1);
7663 }
7664 
7665 /*
7666  * Free the block referenced by a freework structure.  The parent freeblks
7667  * structure is released and completed when the final cg bitmap reaches
7668  * the disk.  This routine may be freeing a jnewblk which never made it to
7669  * disk in which case we do not have to wait as the operation is undone
7670  * in memory immediately.
7671  */
7672 static void
7673 freework_freeblock(freework)
7674 	struct freework *freework;
7675 {
7676 	struct freeblks *freeblks;
7677 	struct jnewblk *jnewblk;
7678 	struct ufsmount *ump;
7679 	struct workhead wkhd;
7680 	struct fs *fs;
7681 	int bsize;
7682 	int needj;
7683 
7684 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7685 	LOCK_OWNED(ump);
7686 	/*
7687 	 * Handle partial truncate separately.
7688 	 */
7689 	if (freework->fw_indir) {
7690 		complete_trunc_indir(freework);
7691 		return;
7692 	}
7693 	freeblks = freework->fw_freeblks;
7694 	fs = ump->um_fs;
7695 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7696 	bsize = lfragtosize(fs, freework->fw_frags);
7697 	LIST_INIT(&wkhd);
7698 	/*
7699 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7700 	 * on the indirblk hashtable and prevents premature freeing.
7701 	 */
7702 	freework->fw_state |= DEPCOMPLETE;
7703 	/*
7704 	 * SUJ needs to wait for the segment referencing freed indirect
7705 	 * blocks to expire so that we know the checker will not confuse
7706 	 * a re-allocated indirect block with its old contents.
7707 	 */
7708 	if (needj && freework->fw_lbn <= -NDADDR)
7709 		indirblk_insert(freework);
7710 	/*
7711 	 * If we are canceling an existing jnewblk pass it to the free
7712 	 * routine, otherwise pass the freeblk which will ultimately
7713 	 * release the freeblks.  If we're not journaling, we can just
7714 	 * free the freeblks immediately.
7715 	 */
7716 	jnewblk = freework->fw_jnewblk;
7717 	if (jnewblk != NULL) {
7718 		cancel_jnewblk(jnewblk, &wkhd);
7719 		needj = 0;
7720 	} else if (needj) {
7721 		freework->fw_state |= DELAYEDFREE;
7722 		freeblks->fb_cgwait++;
7723 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7724 	}
7725 	FREE_LOCK(ump);
7726 	freeblks_free(ump, freeblks, btodb(bsize));
7727 	CTR4(KTR_SUJ,
7728 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7729 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7730 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7731 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7732 	ACQUIRE_LOCK(ump);
7733 	/*
7734 	 * The jnewblk will be discarded and the bits in the map never
7735 	 * made it to disk.  We can immediately free the freeblk.
7736 	 */
7737 	if (needj == 0)
7738 		handle_written_freework(freework);
7739 }
7740 
7741 /*
7742  * We enqueue freework items that need processing back on the freeblks and
7743  * add the freeblks to the worklist.  This makes it easier to find all work
7744  * required to flush a truncation in process_truncates().
7745  */
7746 static void
7747 freework_enqueue(freework)
7748 	struct freework *freework;
7749 {
7750 	struct freeblks *freeblks;
7751 
7752 	freeblks = freework->fw_freeblks;
7753 	if ((freework->fw_state & INPROGRESS) == 0)
7754 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7755 	if ((freeblks->fb_state &
7756 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7757 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7758 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7759 }
7760 
7761 /*
7762  * Start, continue, or finish the process of freeing an indirect block tree.
7763  * The free operation may be paused at any point with fw_off containing the
7764  * offset to restart from.  This enables us to implement some flow control
7765  * for large truncates which may fan out and generate a huge number of
7766  * dependencies.
7767  */
7768 static void
7769 handle_workitem_indirblk(freework)
7770 	struct freework *freework;
7771 {
7772 	struct freeblks *freeblks;
7773 	struct ufsmount *ump;
7774 	struct fs *fs;
7775 
7776 	freeblks = freework->fw_freeblks;
7777 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7778 	fs = ump->um_fs;
7779 	if (freework->fw_state & DEPCOMPLETE) {
7780 		handle_written_freework(freework);
7781 		return;
7782 	}
7783 	if (freework->fw_off == NINDIR(fs)) {
7784 		freework_freeblock(freework);
7785 		return;
7786 	}
7787 	freework->fw_state |= INPROGRESS;
7788 	FREE_LOCK(ump);
7789 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7790 	    freework->fw_lbn);
7791 	ACQUIRE_LOCK(ump);
7792 }
7793 
7794 /*
7795  * Called when a freework structure attached to a cg buf is written.  The
7796  * ref on either the parent or the freeblks structure is released and
7797  * the freeblks is added back to the worklist if there is more work to do.
7798  */
7799 static void
7800 handle_written_freework(freework)
7801 	struct freework *freework;
7802 {
7803 	struct freeblks *freeblks;
7804 	struct freework *parent;
7805 
7806 	freeblks = freework->fw_freeblks;
7807 	parent = freework->fw_parent;
7808 	if (freework->fw_state & DELAYEDFREE)
7809 		freeblks->fb_cgwait--;
7810 	freework->fw_state |= COMPLETE;
7811 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7812 		WORKITEM_FREE(freework, D_FREEWORK);
7813 	if (parent) {
7814 		if (--parent->fw_ref == 0)
7815 			freework_enqueue(parent);
7816 		return;
7817 	}
7818 	if (--freeblks->fb_ref != 0)
7819 		return;
7820 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7821 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7822 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7823 }
7824 
7825 /*
7826  * This workitem routine performs the block de-allocation.
7827  * The workitem is added to the pending list after the updated
7828  * inode block has been written to disk.  As mentioned above,
7829  * checks regarding the number of blocks de-allocated (compared
7830  * to the number of blocks allocated for the file) are also
7831  * performed in this function.
7832  */
7833 static int
7834 handle_workitem_freeblocks(freeblks, flags)
7835 	struct freeblks *freeblks;
7836 	int flags;
7837 {
7838 	struct freework *freework;
7839 	struct newblk *newblk;
7840 	struct allocindir *aip;
7841 	struct ufsmount *ump;
7842 	struct worklist *wk;
7843 
7844 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7845 	    ("handle_workitem_freeblocks: Journal entries not written."));
7846 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7847 	ACQUIRE_LOCK(ump);
7848 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7849 		WORKLIST_REMOVE(wk);
7850 		switch (wk->wk_type) {
7851 		case D_DIRREM:
7852 			wk->wk_state |= COMPLETE;
7853 			add_to_worklist(wk, 0);
7854 			continue;
7855 
7856 		case D_ALLOCDIRECT:
7857 			free_newblk(WK_NEWBLK(wk));
7858 			continue;
7859 
7860 		case D_ALLOCINDIR:
7861 			aip = WK_ALLOCINDIR(wk);
7862 			freework = NULL;
7863 			if (aip->ai_state & DELAYEDFREE) {
7864 				FREE_LOCK(ump);
7865 				freework = newfreework(ump, freeblks, NULL,
7866 				    aip->ai_lbn, aip->ai_newblkno,
7867 				    ump->um_fs->fs_frag, 0, 0);
7868 				ACQUIRE_LOCK(ump);
7869 			}
7870 			newblk = WK_NEWBLK(wk);
7871 			if (newblk->nb_jnewblk) {
7872 				freework->fw_jnewblk = newblk->nb_jnewblk;
7873 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7874 				newblk->nb_jnewblk = NULL;
7875 			}
7876 			free_newblk(newblk);
7877 			continue;
7878 
7879 		case D_FREEWORK:
7880 			freework = WK_FREEWORK(wk);
7881 			if (freework->fw_lbn <= -NDADDR)
7882 				handle_workitem_indirblk(freework);
7883 			else
7884 				freework_freeblock(freework);
7885 			continue;
7886 		default:
7887 			panic("handle_workitem_freeblocks: Unknown type %s",
7888 			    TYPENAME(wk->wk_type));
7889 		}
7890 	}
7891 	if (freeblks->fb_ref != 0) {
7892 		freeblks->fb_state &= ~INPROGRESS;
7893 		wake_worklist(&freeblks->fb_list);
7894 		freeblks = NULL;
7895 	}
7896 	FREE_LOCK(ump);
7897 	if (freeblks)
7898 		return handle_complete_freeblocks(freeblks, flags);
7899 	return (0);
7900 }
7901 
7902 /*
7903  * Handle completion of block free via truncate.  This allows fs_pending
7904  * to track the actual free block count more closely than if we only updated
7905  * it at the end.  We must be careful to handle cases where the block count
7906  * on free was incorrect.
7907  */
7908 static void
7909 freeblks_free(ump, freeblks, blocks)
7910 	struct ufsmount *ump;
7911 	struct freeblks *freeblks;
7912 	int blocks;
7913 {
7914 	struct fs *fs;
7915 	ufs2_daddr_t remain;
7916 
7917 	UFS_LOCK(ump);
7918 	remain = -freeblks->fb_chkcnt;
7919 	freeblks->fb_chkcnt += blocks;
7920 	if (remain > 0) {
7921 		if (remain < blocks)
7922 			blocks = remain;
7923 		fs = ump->um_fs;
7924 		fs->fs_pendingblocks -= blocks;
7925 	}
7926 	UFS_UNLOCK(ump);
7927 }
7928 
7929 /*
7930  * Once all of the freework workitems are complete we can retire the
7931  * freeblocks dependency and any journal work awaiting completion.  This
7932  * can not be called until all other dependencies are stable on disk.
7933  */
7934 static int
7935 handle_complete_freeblocks(freeblks, flags)
7936 	struct freeblks *freeblks;
7937 	int flags;
7938 {
7939 	struct inodedep *inodedep;
7940 	struct inode *ip;
7941 	struct vnode *vp;
7942 	struct fs *fs;
7943 	struct ufsmount *ump;
7944 	ufs2_daddr_t spare;
7945 
7946 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7947 	fs = ump->um_fs;
7948 	flags = LK_EXCLUSIVE | flags;
7949 	spare = freeblks->fb_chkcnt;
7950 
7951 	/*
7952 	 * If we did not release the expected number of blocks we may have
7953 	 * to adjust the inode block count here.  Only do so if it wasn't
7954 	 * a truncation to zero and the modrev still matches.
7955 	 */
7956 	if (spare && freeblks->fb_len != 0) {
7957 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7958 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7959 			return (EBUSY);
7960 		ip = VTOI(vp);
7961 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7962 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7963 			ip->i_flag |= IN_CHANGE;
7964 			/*
7965 			 * We must wait so this happens before the
7966 			 * journal is reclaimed.
7967 			 */
7968 			ffs_update(vp, 1);
7969 		}
7970 		vput(vp);
7971 	}
7972 	if (spare < 0) {
7973 		UFS_LOCK(ump);
7974 		fs->fs_pendingblocks += spare;
7975 		UFS_UNLOCK(ump);
7976 	}
7977 #ifdef QUOTA
7978 	/* Handle spare. */
7979 	if (spare)
7980 		quotaadj(freeblks->fb_quota, ump, -spare);
7981 	quotarele(freeblks->fb_quota);
7982 #endif
7983 	ACQUIRE_LOCK(ump);
7984 	if (freeblks->fb_state & ONDEPLIST) {
7985 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7986 		    0, &inodedep);
7987 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7988 		freeblks->fb_state &= ~ONDEPLIST;
7989 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7990 			free_inodedep(inodedep);
7991 	}
7992 	/*
7993 	 * All of the freeblock deps must be complete prior to this call
7994 	 * so it's now safe to complete earlier outstanding journal entries.
7995 	 */
7996 	handle_jwork(&freeblks->fb_jwork);
7997 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7998 	FREE_LOCK(ump);
7999 	return (0);
8000 }
8001 
8002 /*
8003  * Release blocks associated with the freeblks and stored in the indirect
8004  * block dbn. If level is greater than SINGLE, the block is an indirect block
8005  * and recursive calls to indirtrunc must be used to cleanse other indirect
8006  * blocks.
8007  *
8008  * This handles partial and complete truncation of blocks.  Partial is noted
8009  * with goingaway == 0.  In this case the freework is completed after the
8010  * zero'd indirects are written to disk.  For full truncation the freework
8011  * is completed after the block is freed.
8012  */
8013 static void
8014 indir_trunc(freework, dbn, lbn)
8015 	struct freework *freework;
8016 	ufs2_daddr_t dbn;
8017 	ufs_lbn_t lbn;
8018 {
8019 	struct freework *nfreework;
8020 	struct workhead wkhd;
8021 	struct freeblks *freeblks;
8022 	struct buf *bp;
8023 	struct fs *fs;
8024 	struct indirdep *indirdep;
8025 	struct ufsmount *ump;
8026 	ufs1_daddr_t *bap1 = 0;
8027 	ufs2_daddr_t nb, nnb, *bap2 = 0;
8028 	ufs_lbn_t lbnadd, nlbn;
8029 	int i, nblocks, ufs1fmt;
8030 	int freedblocks;
8031 	int goingaway;
8032 	int freedeps;
8033 	int needj;
8034 	int level;
8035 	int cnt;
8036 
8037 	freeblks = freework->fw_freeblks;
8038 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8039 	fs = ump->um_fs;
8040 	/*
8041 	 * Get buffer of block pointers to be freed.  There are three cases:
8042 	 *
8043 	 * 1) Partial truncate caches the indirdep pointer in the freework
8044 	 *    which provides us a back copy to the save bp which holds the
8045 	 *    pointers we want to clear.  When this completes the zero
8046 	 *    pointers are written to the real copy.
8047 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8048 	 *    eliminated the real copy and placed the indirdep on the saved
8049 	 *    copy.  The indirdep and buf are discarded when this completes.
8050 	 * 3) The indirect was not in memory, we read a copy off of the disk
8051 	 *    using the devvp and drop and invalidate the buffer when we're
8052 	 *    done.
8053 	 */
8054 	goingaway = 1;
8055 	indirdep = NULL;
8056 	if (freework->fw_indir != NULL) {
8057 		goingaway = 0;
8058 		indirdep = freework->fw_indir;
8059 		bp = indirdep->ir_savebp;
8060 		if (bp == NULL || bp->b_blkno != dbn)
8061 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8062 			    bp, (intmax_t)dbn);
8063 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8064 		/*
8065 		 * The lock prevents the buf dep list from changing and
8066 	 	 * indirects on devvp should only ever have one dependency.
8067 		 */
8068 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8069 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8070 			panic("indir_trunc: Bad indirdep %p from buf %p",
8071 			    indirdep, bp);
8072 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8073 	    NOCRED, &bp) != 0) {
8074 		brelse(bp);
8075 		return;
8076 	}
8077 	ACQUIRE_LOCK(ump);
8078 	/* Protects against a race with complete_trunc_indir(). */
8079 	freework->fw_state &= ~INPROGRESS;
8080 	/*
8081 	 * If we have an indirdep we need to enforce the truncation order
8082 	 * and discard it when it is complete.
8083 	 */
8084 	if (indirdep) {
8085 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8086 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8087 			/*
8088 			 * Add the complete truncate to the list on the
8089 			 * indirdep to enforce in-order processing.
8090 			 */
8091 			if (freework->fw_indir == NULL)
8092 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8093 				    freework, fw_next);
8094 			FREE_LOCK(ump);
8095 			return;
8096 		}
8097 		/*
8098 		 * If we're goingaway, free the indirdep.  Otherwise it will
8099 		 * linger until the write completes.
8100 		 */
8101 		if (goingaway)
8102 			free_indirdep(indirdep);
8103 	}
8104 	FREE_LOCK(ump);
8105 	/* Initialize pointers depending on block size. */
8106 	if (ump->um_fstype == UFS1) {
8107 		bap1 = (ufs1_daddr_t *)bp->b_data;
8108 		nb = bap1[freework->fw_off];
8109 		ufs1fmt = 1;
8110 	} else {
8111 		bap2 = (ufs2_daddr_t *)bp->b_data;
8112 		nb = bap2[freework->fw_off];
8113 		ufs1fmt = 0;
8114 	}
8115 	level = lbn_level(lbn);
8116 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8117 	lbnadd = lbn_offset(fs, level);
8118 	nblocks = btodb(fs->fs_bsize);
8119 	nfreework = freework;
8120 	freedeps = 0;
8121 	cnt = 0;
8122 	/*
8123 	 * Reclaim blocks.  Traverses into nested indirect levels and
8124 	 * arranges for the current level to be freed when subordinates
8125 	 * are free when journaling.
8126 	 */
8127 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8128 		if (i != NINDIR(fs) - 1) {
8129 			if (ufs1fmt)
8130 				nnb = bap1[i+1];
8131 			else
8132 				nnb = bap2[i+1];
8133 		} else
8134 			nnb = 0;
8135 		if (nb == 0)
8136 			continue;
8137 		cnt++;
8138 		if (level != 0) {
8139 			nlbn = (lbn + 1) - (i * lbnadd);
8140 			if (needj != 0) {
8141 				nfreework = newfreework(ump, freeblks, freework,
8142 				    nlbn, nb, fs->fs_frag, 0, 0);
8143 				freedeps++;
8144 			}
8145 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8146 		} else {
8147 			struct freedep *freedep;
8148 
8149 			/*
8150 			 * Attempt to aggregate freedep dependencies for
8151 			 * all blocks being released to the same CG.
8152 			 */
8153 			LIST_INIT(&wkhd);
8154 			if (needj != 0 &&
8155 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8156 				freedep = newfreedep(freework);
8157 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8158 				    &freedep->fd_list);
8159 				freedeps++;
8160 			}
8161 			CTR3(KTR_SUJ,
8162 			    "indir_trunc: ino %d blkno %jd size %ld",
8163 			    freeblks->fb_inum, nb, fs->fs_bsize);
8164 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8165 			    fs->fs_bsize, freeblks->fb_inum,
8166 			    freeblks->fb_vtype, &wkhd);
8167 		}
8168 	}
8169 	if (goingaway) {
8170 		bp->b_flags |= B_INVAL | B_NOCACHE;
8171 		brelse(bp);
8172 	}
8173 	freedblocks = 0;
8174 	if (level == 0)
8175 		freedblocks = (nblocks * cnt);
8176 	if (needj == 0)
8177 		freedblocks += nblocks;
8178 	freeblks_free(ump, freeblks, freedblocks);
8179 	/*
8180 	 * If we are journaling set up the ref counts and offset so this
8181 	 * indirect can be completed when its children are free.
8182 	 */
8183 	if (needj) {
8184 		ACQUIRE_LOCK(ump);
8185 		freework->fw_off = i;
8186 		freework->fw_ref += freedeps;
8187 		freework->fw_ref -= NINDIR(fs) + 1;
8188 		if (level == 0)
8189 			freeblks->fb_cgwait += freedeps;
8190 		if (freework->fw_ref == 0)
8191 			freework_freeblock(freework);
8192 		FREE_LOCK(ump);
8193 		return;
8194 	}
8195 	/*
8196 	 * If we're not journaling we can free the indirect now.
8197 	 */
8198 	dbn = dbtofsb(fs, dbn);
8199 	CTR3(KTR_SUJ,
8200 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8201 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8202 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8203 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8204 	/* Non SUJ softdep does single-threaded truncations. */
8205 	if (freework->fw_blkno == dbn) {
8206 		freework->fw_state |= ALLCOMPLETE;
8207 		ACQUIRE_LOCK(ump);
8208 		handle_written_freework(freework);
8209 		FREE_LOCK(ump);
8210 	}
8211 	return;
8212 }
8213 
8214 /*
8215  * Cancel an allocindir when it is removed via truncation.  When bp is not
8216  * NULL the indirect never appeared on disk and is scheduled to be freed
8217  * independently of the indir so we can more easily track journal work.
8218  */
8219 static void
8220 cancel_allocindir(aip, bp, freeblks, trunc)
8221 	struct allocindir *aip;
8222 	struct buf *bp;
8223 	struct freeblks *freeblks;
8224 	int trunc;
8225 {
8226 	struct indirdep *indirdep;
8227 	struct freefrag *freefrag;
8228 	struct newblk *newblk;
8229 
8230 	newblk = (struct newblk *)aip;
8231 	LIST_REMOVE(aip, ai_next);
8232 	/*
8233 	 * We must eliminate the pointer in bp if it must be freed on its
8234 	 * own due to partial truncate or pending journal work.
8235 	 */
8236 	if (bp && (trunc || newblk->nb_jnewblk)) {
8237 		/*
8238 		 * Clear the pointer and mark the aip to be freed
8239 		 * directly if it never existed on disk.
8240 		 */
8241 		aip->ai_state |= DELAYEDFREE;
8242 		indirdep = aip->ai_indirdep;
8243 		if (indirdep->ir_state & UFS1FMT)
8244 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8245 		else
8246 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8247 	}
8248 	/*
8249 	 * When truncating the previous pointer will be freed via
8250 	 * savedbp.  Eliminate the freefrag which would dup free.
8251 	 */
8252 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8253 		newblk->nb_freefrag = NULL;
8254 		if (freefrag->ff_jdep)
8255 			cancel_jfreefrag(
8256 			    WK_JFREEFRAG(freefrag->ff_jdep));
8257 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8258 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8259 	}
8260 	/*
8261 	 * If the journal hasn't been written the jnewblk must be passed
8262 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8263 	 * this by leaving the journal dependency on the newblk to be freed
8264 	 * when a freework is created in handle_workitem_freeblocks().
8265 	 */
8266 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8267 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8268 }
8269 
8270 /*
8271  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8272  * in to a newdirblk so any subsequent additions are tracked properly.  The
8273  * caller is responsible for adding the mkdir1 dependency to the journal
8274  * and updating id_mkdiradd.  This function returns with the per-filesystem
8275  * lock held.
8276  */
8277 static struct mkdir *
8278 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8279 	struct diradd *dap;
8280 	ino_t newinum;
8281 	ino_t dinum;
8282 	struct buf *newdirbp;
8283 	struct mkdir **mkdirp;
8284 {
8285 	struct newblk *newblk;
8286 	struct pagedep *pagedep;
8287 	struct inodedep *inodedep;
8288 	struct newdirblk *newdirblk = 0;
8289 	struct mkdir *mkdir1, *mkdir2;
8290 	struct worklist *wk;
8291 	struct jaddref *jaddref;
8292 	struct ufsmount *ump;
8293 	struct mount *mp;
8294 
8295 	mp = dap->da_list.wk_mp;
8296 	ump = VFSTOUFS(mp);
8297 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8298 	    M_SOFTDEP_FLAGS);
8299 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8300 	LIST_INIT(&newdirblk->db_mkdir);
8301 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8302 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8303 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8304 	mkdir1->md_diradd = dap;
8305 	mkdir1->md_jaddref = NULL;
8306 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8307 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8308 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8309 	mkdir2->md_diradd = dap;
8310 	mkdir2->md_jaddref = NULL;
8311 	if (MOUNTEDSUJ(mp) == 0) {
8312 		mkdir1->md_state |= DEPCOMPLETE;
8313 		mkdir2->md_state |= DEPCOMPLETE;
8314 	}
8315 	/*
8316 	 * Dependency on "." and ".." being written to disk.
8317 	 */
8318 	mkdir1->md_buf = newdirbp;
8319 	ACQUIRE_LOCK(VFSTOUFS(mp));
8320 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8321 	/*
8322 	 * We must link the pagedep, allocdirect, and newdirblk for
8323 	 * the initial file page so the pointer to the new directory
8324 	 * is not written until the directory contents are live and
8325 	 * any subsequent additions are not marked live until the
8326 	 * block is reachable via the inode.
8327 	 */
8328 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8329 		panic("setup_newdir: lost pagedep");
8330 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8331 		if (wk->wk_type == D_ALLOCDIRECT)
8332 			break;
8333 	if (wk == NULL)
8334 		panic("setup_newdir: lost allocdirect");
8335 	if (pagedep->pd_state & NEWBLOCK)
8336 		panic("setup_newdir: NEWBLOCK already set");
8337 	newblk = WK_NEWBLK(wk);
8338 	pagedep->pd_state |= NEWBLOCK;
8339 	pagedep->pd_newdirblk = newdirblk;
8340 	newdirblk->db_pagedep = pagedep;
8341 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8342 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8343 	/*
8344 	 * Look up the inodedep for the parent directory so that we
8345 	 * can link mkdir2 into the pending dotdot jaddref or
8346 	 * the inode write if there is none.  If the inode is
8347 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8348 	 * been satisfied and mkdir2 can be freed.
8349 	 */
8350 	inodedep_lookup(mp, dinum, 0, &inodedep);
8351 	if (MOUNTEDSUJ(mp)) {
8352 		if (inodedep == NULL)
8353 			panic("setup_newdir: Lost parent.");
8354 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8355 		    inoreflst);
8356 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8357 		    (jaddref->ja_state & MKDIR_PARENT),
8358 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8359 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8360 		mkdir2->md_jaddref = jaddref;
8361 		jaddref->ja_mkdir = mkdir2;
8362 	} else if (inodedep == NULL ||
8363 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8364 		dap->da_state &= ~MKDIR_PARENT;
8365 		WORKITEM_FREE(mkdir2, D_MKDIR);
8366 		mkdir2 = NULL;
8367 	} else {
8368 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8369 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8370 	}
8371 	*mkdirp = mkdir2;
8372 
8373 	return (mkdir1);
8374 }
8375 
8376 /*
8377  * Directory entry addition dependencies.
8378  *
8379  * When adding a new directory entry, the inode (with its incremented link
8380  * count) must be written to disk before the directory entry's pointer to it.
8381  * Also, if the inode is newly allocated, the corresponding freemap must be
8382  * updated (on disk) before the directory entry's pointer. These requirements
8383  * are met via undo/redo on the directory entry's pointer, which consists
8384  * simply of the inode number.
8385  *
8386  * As directory entries are added and deleted, the free space within a
8387  * directory block can become fragmented.  The ufs filesystem will compact
8388  * a fragmented directory block to make space for a new entry. When this
8389  * occurs, the offsets of previously added entries change. Any "diradd"
8390  * dependency structures corresponding to these entries must be updated with
8391  * the new offsets.
8392  */
8393 
8394 /*
8395  * This routine is called after the in-memory inode's link
8396  * count has been incremented, but before the directory entry's
8397  * pointer to the inode has been set.
8398  */
8399 int
8400 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8401 	struct buf *bp;		/* buffer containing directory block */
8402 	struct inode *dp;	/* inode for directory */
8403 	off_t diroffset;	/* offset of new entry in directory */
8404 	ino_t newinum;		/* inode referenced by new directory entry */
8405 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8406 	int isnewblk;		/* entry is in a newly allocated block */
8407 {
8408 	int offset;		/* offset of new entry within directory block */
8409 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8410 	struct fs *fs;
8411 	struct diradd *dap;
8412 	struct newblk *newblk;
8413 	struct pagedep *pagedep;
8414 	struct inodedep *inodedep;
8415 	struct newdirblk *newdirblk = 0;
8416 	struct mkdir *mkdir1, *mkdir2;
8417 	struct jaddref *jaddref;
8418 	struct ufsmount *ump;
8419 	struct mount *mp;
8420 	int isindir;
8421 
8422 	ump = dp->i_ump;
8423 	mp = UFSTOVFS(ump);
8424 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8425 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8426 	/*
8427 	 * Whiteouts have no dependencies.
8428 	 */
8429 	if (newinum == WINO) {
8430 		if (newdirbp != NULL)
8431 			bdwrite(newdirbp);
8432 		return (0);
8433 	}
8434 	jaddref = NULL;
8435 	mkdir1 = mkdir2 = NULL;
8436 	fs = dp->i_fs;
8437 	lbn = lblkno(fs, diroffset);
8438 	offset = blkoff(fs, diroffset);
8439 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8440 		M_SOFTDEP_FLAGS|M_ZERO);
8441 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8442 	dap->da_offset = offset;
8443 	dap->da_newinum = newinum;
8444 	dap->da_state = ATTACHED;
8445 	LIST_INIT(&dap->da_jwork);
8446 	isindir = bp->b_lblkno >= NDADDR;
8447 	if (isnewblk &&
8448 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8449 		newdirblk = malloc(sizeof(struct newdirblk),
8450 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8451 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8452 		LIST_INIT(&newdirblk->db_mkdir);
8453 	}
8454 	/*
8455 	 * If we're creating a new directory setup the dependencies and set
8456 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8457 	 * we can move on.
8458 	 */
8459 	if (newdirbp == NULL) {
8460 		dap->da_state |= DEPCOMPLETE;
8461 		ACQUIRE_LOCK(ump);
8462 	} else {
8463 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8464 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8465 		    &mkdir2);
8466 	}
8467 	/*
8468 	 * Link into parent directory pagedep to await its being written.
8469 	 */
8470 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8471 #ifdef DEBUG
8472 	if (diradd_lookup(pagedep, offset) != NULL)
8473 		panic("softdep_setup_directory_add: %p already at off %d\n",
8474 		    diradd_lookup(pagedep, offset), offset);
8475 #endif
8476 	dap->da_pagedep = pagedep;
8477 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8478 	    da_pdlist);
8479 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8480 	/*
8481 	 * If we're journaling, link the diradd into the jaddref so it
8482 	 * may be completed after the journal entry is written.  Otherwise,
8483 	 * link the diradd into its inodedep.  If the inode is not yet
8484 	 * written place it on the bufwait list, otherwise do the post-inode
8485 	 * write processing to put it on the id_pendinghd list.
8486 	 */
8487 	if (MOUNTEDSUJ(mp)) {
8488 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8489 		    inoreflst);
8490 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8491 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8492 		jaddref->ja_diroff = diroffset;
8493 		jaddref->ja_diradd = dap;
8494 		add_to_journal(&jaddref->ja_list);
8495 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8496 		diradd_inode_written(dap, inodedep);
8497 	else
8498 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8499 	/*
8500 	 * Add the journal entries for . and .. links now that the primary
8501 	 * link is written.
8502 	 */
8503 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8504 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8505 		    inoreflst, if_deps);
8506 		KASSERT(jaddref != NULL &&
8507 		    jaddref->ja_ino == jaddref->ja_parent &&
8508 		    (jaddref->ja_state & MKDIR_BODY),
8509 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8510 		    jaddref));
8511 		mkdir1->md_jaddref = jaddref;
8512 		jaddref->ja_mkdir = mkdir1;
8513 		/*
8514 		 * It is important that the dotdot journal entry
8515 		 * is added prior to the dot entry since dot writes
8516 		 * both the dot and dotdot links.  These both must
8517 		 * be added after the primary link for the journal
8518 		 * to remain consistent.
8519 		 */
8520 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8521 		add_to_journal(&jaddref->ja_list);
8522 	}
8523 	/*
8524 	 * If we are adding a new directory remember this diradd so that if
8525 	 * we rename it we can keep the dot and dotdot dependencies.  If
8526 	 * we are adding a new name for an inode that has a mkdiradd we
8527 	 * must be in rename and we have to move the dot and dotdot
8528 	 * dependencies to this new name.  The old name is being orphaned
8529 	 * soon.
8530 	 */
8531 	if (mkdir1 != NULL) {
8532 		if (inodedep->id_mkdiradd != NULL)
8533 			panic("softdep_setup_directory_add: Existing mkdir");
8534 		inodedep->id_mkdiradd = dap;
8535 	} else if (inodedep->id_mkdiradd)
8536 		merge_diradd(inodedep, dap);
8537 	if (newdirblk) {
8538 		/*
8539 		 * There is nothing to do if we are already tracking
8540 		 * this block.
8541 		 */
8542 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8543 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8544 			FREE_LOCK(ump);
8545 			return (0);
8546 		}
8547 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8548 		    == 0)
8549 			panic("softdep_setup_directory_add: lost entry");
8550 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8551 		pagedep->pd_state |= NEWBLOCK;
8552 		pagedep->pd_newdirblk = newdirblk;
8553 		newdirblk->db_pagedep = pagedep;
8554 		FREE_LOCK(ump);
8555 		/*
8556 		 * If we extended into an indirect signal direnter to sync.
8557 		 */
8558 		if (isindir)
8559 			return (1);
8560 		return (0);
8561 	}
8562 	FREE_LOCK(ump);
8563 	return (0);
8564 }
8565 
8566 /*
8567  * This procedure is called to change the offset of a directory
8568  * entry when compacting a directory block which must be owned
8569  * exclusively by the caller. Note that the actual entry movement
8570  * must be done in this procedure to ensure that no I/O completions
8571  * occur while the move is in progress.
8572  */
8573 void
8574 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8575 	struct buf *bp;		/* Buffer holding directory block. */
8576 	struct inode *dp;	/* inode for directory */
8577 	caddr_t base;		/* address of dp->i_offset */
8578 	caddr_t oldloc;		/* address of old directory location */
8579 	caddr_t newloc;		/* address of new directory location */
8580 	int entrysize;		/* size of directory entry */
8581 {
8582 	int offset, oldoffset, newoffset;
8583 	struct pagedep *pagedep;
8584 	struct jmvref *jmvref;
8585 	struct diradd *dap;
8586 	struct direct *de;
8587 	struct mount *mp;
8588 	ufs_lbn_t lbn;
8589 	int flags;
8590 
8591 	mp = UFSTOVFS(dp->i_ump);
8592 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8593 	    ("softdep_change_directoryentry_offset called on "
8594 	     "non-softdep filesystem"));
8595 	de = (struct direct *)oldloc;
8596 	jmvref = NULL;
8597 	flags = 0;
8598 	/*
8599 	 * Moves are always journaled as it would be too complex to
8600 	 * determine if any affected adds or removes are present in the
8601 	 * journal.
8602 	 */
8603 	if (MOUNTEDSUJ(mp)) {
8604 		flags = DEPALLOC;
8605 		jmvref = newjmvref(dp, de->d_ino,
8606 		    dp->i_offset + (oldloc - base),
8607 		    dp->i_offset + (newloc - base));
8608 	}
8609 	lbn = lblkno(dp->i_fs, dp->i_offset);
8610 	offset = blkoff(dp->i_fs, dp->i_offset);
8611 	oldoffset = offset + (oldloc - base);
8612 	newoffset = offset + (newloc - base);
8613 	ACQUIRE_LOCK(dp->i_ump);
8614 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8615 		goto done;
8616 	dap = diradd_lookup(pagedep, oldoffset);
8617 	if (dap) {
8618 		dap->da_offset = newoffset;
8619 		newoffset = DIRADDHASH(newoffset);
8620 		oldoffset = DIRADDHASH(oldoffset);
8621 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8622 		    newoffset != oldoffset) {
8623 			LIST_REMOVE(dap, da_pdlist);
8624 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8625 			    dap, da_pdlist);
8626 		}
8627 	}
8628 done:
8629 	if (jmvref) {
8630 		jmvref->jm_pagedep = pagedep;
8631 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8632 		add_to_journal(&jmvref->jm_list);
8633 	}
8634 	bcopy(oldloc, newloc, entrysize);
8635 	FREE_LOCK(dp->i_ump);
8636 }
8637 
8638 /*
8639  * Move the mkdir dependencies and journal work from one diradd to another
8640  * when renaming a directory.  The new name must depend on the mkdir deps
8641  * completing as the old name did.  Directories can only have one valid link
8642  * at a time so one must be canonical.
8643  */
8644 static void
8645 merge_diradd(inodedep, newdap)
8646 	struct inodedep *inodedep;
8647 	struct diradd *newdap;
8648 {
8649 	struct diradd *olddap;
8650 	struct mkdir *mkdir, *nextmd;
8651 	struct ufsmount *ump;
8652 	short state;
8653 
8654 	olddap = inodedep->id_mkdiradd;
8655 	inodedep->id_mkdiradd = newdap;
8656 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8657 		newdap->da_state &= ~DEPCOMPLETE;
8658 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8659 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8660 		     mkdir = nextmd) {
8661 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8662 			if (mkdir->md_diradd != olddap)
8663 				continue;
8664 			mkdir->md_diradd = newdap;
8665 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8666 			newdap->da_state |= state;
8667 			olddap->da_state &= ~state;
8668 			if ((olddap->da_state &
8669 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8670 				break;
8671 		}
8672 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8673 			panic("merge_diradd: unfound ref");
8674 	}
8675 	/*
8676 	 * Any mkdir related journal items are not safe to be freed until
8677 	 * the new name is stable.
8678 	 */
8679 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8680 	olddap->da_state |= DEPCOMPLETE;
8681 	complete_diradd(olddap);
8682 }
8683 
8684 /*
8685  * Move the diradd to the pending list when all diradd dependencies are
8686  * complete.
8687  */
8688 static void
8689 complete_diradd(dap)
8690 	struct diradd *dap;
8691 {
8692 	struct pagedep *pagedep;
8693 
8694 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8695 		if (dap->da_state & DIRCHG)
8696 			pagedep = dap->da_previous->dm_pagedep;
8697 		else
8698 			pagedep = dap->da_pagedep;
8699 		LIST_REMOVE(dap, da_pdlist);
8700 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8701 	}
8702 }
8703 
8704 /*
8705  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8706  * add entries and conditonally journal the remove.
8707  */
8708 static void
8709 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8710 	struct diradd *dap;
8711 	struct dirrem *dirrem;
8712 	struct jremref *jremref;
8713 	struct jremref *dotremref;
8714 	struct jremref *dotdotremref;
8715 {
8716 	struct inodedep *inodedep;
8717 	struct jaddref *jaddref;
8718 	struct inoref *inoref;
8719 	struct ufsmount *ump;
8720 	struct mkdir *mkdir;
8721 
8722 	/*
8723 	 * If no remove references were allocated we're on a non-journaled
8724 	 * filesystem and can skip the cancel step.
8725 	 */
8726 	if (jremref == NULL) {
8727 		free_diradd(dap, NULL);
8728 		return;
8729 	}
8730 	/*
8731 	 * Cancel the primary name an free it if it does not require
8732 	 * journaling.
8733 	 */
8734 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8735 	    0, &inodedep) != 0) {
8736 		/* Abort the addref that reference this diradd.  */
8737 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8738 			if (inoref->if_list.wk_type != D_JADDREF)
8739 				continue;
8740 			jaddref = (struct jaddref *)inoref;
8741 			if (jaddref->ja_diradd != dap)
8742 				continue;
8743 			if (cancel_jaddref(jaddref, inodedep,
8744 			    &dirrem->dm_jwork) == 0) {
8745 				free_jremref(jremref);
8746 				jremref = NULL;
8747 			}
8748 			break;
8749 		}
8750 	}
8751 	/*
8752 	 * Cancel subordinate names and free them if they do not require
8753 	 * journaling.
8754 	 */
8755 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8756 		ump = VFSTOUFS(dap->da_list.wk_mp);
8757 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8758 			if (mkdir->md_diradd != dap)
8759 				continue;
8760 			if ((jaddref = mkdir->md_jaddref) == NULL)
8761 				continue;
8762 			mkdir->md_jaddref = NULL;
8763 			if (mkdir->md_state & MKDIR_PARENT) {
8764 				if (cancel_jaddref(jaddref, NULL,
8765 				    &dirrem->dm_jwork) == 0) {
8766 					free_jremref(dotdotremref);
8767 					dotdotremref = NULL;
8768 				}
8769 			} else {
8770 				if (cancel_jaddref(jaddref, inodedep,
8771 				    &dirrem->dm_jwork) == 0) {
8772 					free_jremref(dotremref);
8773 					dotremref = NULL;
8774 				}
8775 			}
8776 		}
8777 	}
8778 
8779 	if (jremref)
8780 		journal_jremref(dirrem, jremref, inodedep);
8781 	if (dotremref)
8782 		journal_jremref(dirrem, dotremref, inodedep);
8783 	if (dotdotremref)
8784 		journal_jremref(dirrem, dotdotremref, NULL);
8785 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8786 	free_diradd(dap, &dirrem->dm_jwork);
8787 }
8788 
8789 /*
8790  * Free a diradd dependency structure. This routine must be called
8791  * with splbio interrupts blocked.
8792  */
8793 static void
8794 free_diradd(dap, wkhd)
8795 	struct diradd *dap;
8796 	struct workhead *wkhd;
8797 {
8798 	struct dirrem *dirrem;
8799 	struct pagedep *pagedep;
8800 	struct inodedep *inodedep;
8801 	struct mkdir *mkdir, *nextmd;
8802 	struct ufsmount *ump;
8803 
8804 	ump = VFSTOUFS(dap->da_list.wk_mp);
8805 	LOCK_OWNED(ump);
8806 	LIST_REMOVE(dap, da_pdlist);
8807 	if (dap->da_state & ONWORKLIST)
8808 		WORKLIST_REMOVE(&dap->da_list);
8809 	if ((dap->da_state & DIRCHG) == 0) {
8810 		pagedep = dap->da_pagedep;
8811 	} else {
8812 		dirrem = dap->da_previous;
8813 		pagedep = dirrem->dm_pagedep;
8814 		dirrem->dm_dirinum = pagedep->pd_ino;
8815 		dirrem->dm_state |= COMPLETE;
8816 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8817 			add_to_worklist(&dirrem->dm_list, 0);
8818 	}
8819 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8820 	    0, &inodedep) != 0)
8821 		if (inodedep->id_mkdiradd == dap)
8822 			inodedep->id_mkdiradd = NULL;
8823 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8824 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8825 		     mkdir = nextmd) {
8826 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8827 			if (mkdir->md_diradd != dap)
8828 				continue;
8829 			dap->da_state &=
8830 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8831 			LIST_REMOVE(mkdir, md_mkdirs);
8832 			if (mkdir->md_state & ONWORKLIST)
8833 				WORKLIST_REMOVE(&mkdir->md_list);
8834 			if (mkdir->md_jaddref != NULL)
8835 				panic("free_diradd: Unexpected jaddref");
8836 			WORKITEM_FREE(mkdir, D_MKDIR);
8837 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8838 				break;
8839 		}
8840 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8841 			panic("free_diradd: unfound ref");
8842 	}
8843 	if (inodedep)
8844 		free_inodedep(inodedep);
8845 	/*
8846 	 * Free any journal segments waiting for the directory write.
8847 	 */
8848 	handle_jwork(&dap->da_jwork);
8849 	WORKITEM_FREE(dap, D_DIRADD);
8850 }
8851 
8852 /*
8853  * Directory entry removal dependencies.
8854  *
8855  * When removing a directory entry, the entry's inode pointer must be
8856  * zero'ed on disk before the corresponding inode's link count is decremented
8857  * (possibly freeing the inode for re-use). This dependency is handled by
8858  * updating the directory entry but delaying the inode count reduction until
8859  * after the directory block has been written to disk. After this point, the
8860  * inode count can be decremented whenever it is convenient.
8861  */
8862 
8863 /*
8864  * This routine should be called immediately after removing
8865  * a directory entry.  The inode's link count should not be
8866  * decremented by the calling procedure -- the soft updates
8867  * code will do this task when it is safe.
8868  */
8869 void
8870 softdep_setup_remove(bp, dp, ip, isrmdir)
8871 	struct buf *bp;		/* buffer containing directory block */
8872 	struct inode *dp;	/* inode for the directory being modified */
8873 	struct inode *ip;	/* inode for directory entry being removed */
8874 	int isrmdir;		/* indicates if doing RMDIR */
8875 {
8876 	struct dirrem *dirrem, *prevdirrem;
8877 	struct inodedep *inodedep;
8878 	int direct;
8879 
8880 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8881 	    ("softdep_setup_remove called on non-softdep filesystem"));
8882 	/*
8883 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8884 	 * newdirrem() to setup the full directory remove which requires
8885 	 * isrmdir > 1.
8886 	 */
8887 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8888 	/*
8889 	 * Add the dirrem to the inodedep's pending remove list for quick
8890 	 * discovery later.
8891 	 */
8892 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8893 	    &inodedep) == 0)
8894 		panic("softdep_setup_remove: Lost inodedep.");
8895 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8896 	dirrem->dm_state |= ONDEPLIST;
8897 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8898 
8899 	/*
8900 	 * If the COMPLETE flag is clear, then there were no active
8901 	 * entries and we want to roll back to a zeroed entry until
8902 	 * the new inode is committed to disk. If the COMPLETE flag is
8903 	 * set then we have deleted an entry that never made it to
8904 	 * disk. If the entry we deleted resulted from a name change,
8905 	 * then the old name still resides on disk. We cannot delete
8906 	 * its inode (returned to us in prevdirrem) until the zeroed
8907 	 * directory entry gets to disk. The new inode has never been
8908 	 * referenced on the disk, so can be deleted immediately.
8909 	 */
8910 	if ((dirrem->dm_state & COMPLETE) == 0) {
8911 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8912 		    dm_next);
8913 		FREE_LOCK(ip->i_ump);
8914 	} else {
8915 		if (prevdirrem != NULL)
8916 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8917 			    prevdirrem, dm_next);
8918 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8919 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8920 		FREE_LOCK(ip->i_ump);
8921 		if (direct)
8922 			handle_workitem_remove(dirrem, 0);
8923 	}
8924 }
8925 
8926 /*
8927  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8928  * pd_pendinghd list of a pagedep.
8929  */
8930 static struct diradd *
8931 diradd_lookup(pagedep, offset)
8932 	struct pagedep *pagedep;
8933 	int offset;
8934 {
8935 	struct diradd *dap;
8936 
8937 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8938 		if (dap->da_offset == offset)
8939 			return (dap);
8940 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8941 		if (dap->da_offset == offset)
8942 			return (dap);
8943 	return (NULL);
8944 }
8945 
8946 /*
8947  * Search for a .. diradd dependency in a directory that is being removed.
8948  * If the directory was renamed to a new parent we have a diradd rather
8949  * than a mkdir for the .. entry.  We need to cancel it now before
8950  * it is found in truncate().
8951  */
8952 static struct jremref *
8953 cancel_diradd_dotdot(ip, dirrem, jremref)
8954 	struct inode *ip;
8955 	struct dirrem *dirrem;
8956 	struct jremref *jremref;
8957 {
8958 	struct pagedep *pagedep;
8959 	struct diradd *dap;
8960 	struct worklist *wk;
8961 
8962 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8963 	    &pagedep) == 0)
8964 		return (jremref);
8965 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8966 	if (dap == NULL)
8967 		return (jremref);
8968 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8969 	/*
8970 	 * Mark any journal work as belonging to the parent so it is freed
8971 	 * with the .. reference.
8972 	 */
8973 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8974 		wk->wk_state |= MKDIR_PARENT;
8975 	return (NULL);
8976 }
8977 
8978 /*
8979  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8980  * replace it with a dirrem/diradd pair as a result of re-parenting a
8981  * directory.  This ensures that we don't simultaneously have a mkdir and
8982  * a diradd for the same .. entry.
8983  */
8984 static struct jremref *
8985 cancel_mkdir_dotdot(ip, dirrem, jremref)
8986 	struct inode *ip;
8987 	struct dirrem *dirrem;
8988 	struct jremref *jremref;
8989 {
8990 	struct inodedep *inodedep;
8991 	struct jaddref *jaddref;
8992 	struct ufsmount *ump;
8993 	struct mkdir *mkdir;
8994 	struct diradd *dap;
8995 
8996 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8997 	    &inodedep) == 0)
8998 		return (jremref);
8999 	dap = inodedep->id_mkdiradd;
9000 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9001 		return (jremref);
9002 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9003 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9004 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9005 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9006 			break;
9007 	if (mkdir == NULL)
9008 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9009 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9010 		mkdir->md_jaddref = NULL;
9011 		jaddref->ja_state &= ~MKDIR_PARENT;
9012 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9013 		    &inodedep) == 0)
9014 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9015 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9016 			journal_jremref(dirrem, jremref, inodedep);
9017 			jremref = NULL;
9018 		}
9019 	}
9020 	if (mkdir->md_state & ONWORKLIST)
9021 		WORKLIST_REMOVE(&mkdir->md_list);
9022 	mkdir->md_state |= ALLCOMPLETE;
9023 	complete_mkdir(mkdir);
9024 	return (jremref);
9025 }
9026 
9027 static void
9028 journal_jremref(dirrem, jremref, inodedep)
9029 	struct dirrem *dirrem;
9030 	struct jremref *jremref;
9031 	struct inodedep *inodedep;
9032 {
9033 
9034 	if (inodedep == NULL)
9035 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9036 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9037 			panic("journal_jremref: Lost inodedep");
9038 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9039 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9040 	add_to_journal(&jremref->jr_list);
9041 }
9042 
9043 static void
9044 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9045 	struct dirrem *dirrem;
9046 	struct jremref *jremref;
9047 	struct jremref *dotremref;
9048 	struct jremref *dotdotremref;
9049 {
9050 	struct inodedep *inodedep;
9051 
9052 
9053 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9054 	    &inodedep) == 0)
9055 		panic("dirrem_journal: Lost inodedep");
9056 	journal_jremref(dirrem, jremref, inodedep);
9057 	if (dotremref)
9058 		journal_jremref(dirrem, dotremref, inodedep);
9059 	if (dotdotremref)
9060 		journal_jremref(dirrem, dotdotremref, NULL);
9061 }
9062 
9063 /*
9064  * Allocate a new dirrem if appropriate and return it along with
9065  * its associated pagedep. Called without a lock, returns with lock.
9066  */
9067 static struct dirrem *
9068 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9069 	struct buf *bp;		/* buffer containing directory block */
9070 	struct inode *dp;	/* inode for the directory being modified */
9071 	struct inode *ip;	/* inode for directory entry being removed */
9072 	int isrmdir;		/* indicates if doing RMDIR */
9073 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9074 {
9075 	int offset;
9076 	ufs_lbn_t lbn;
9077 	struct diradd *dap;
9078 	struct dirrem *dirrem;
9079 	struct pagedep *pagedep;
9080 	struct jremref *jremref;
9081 	struct jremref *dotremref;
9082 	struct jremref *dotdotremref;
9083 	struct vnode *dvp;
9084 
9085 	/*
9086 	 * Whiteouts have no deletion dependencies.
9087 	 */
9088 	if (ip == NULL)
9089 		panic("newdirrem: whiteout");
9090 	dvp = ITOV(dp);
9091 	/*
9092 	 * If the system is over its limit and our filesystem is
9093 	 * responsible for more than our share of that usage and
9094 	 * we are not a snapshot, request some inodedep cleanup.
9095 	 * Limiting the number of dirrem structures will also limit
9096 	 * the number of freefile and freeblks structures.
9097 	 */
9098 	ACQUIRE_LOCK(ip->i_ump);
9099 	while (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2 &&
9100 	    ip->i_ump->softdep_curdeps[D_DIRREM] >
9101 	    (max_softdeps / 2) / stat_flush_threads)
9102 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
9103 	FREE_LOCK(ip->i_ump);
9104 	dirrem = malloc(sizeof(struct dirrem),
9105 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
9106 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9107 	LIST_INIT(&dirrem->dm_jremrefhd);
9108 	LIST_INIT(&dirrem->dm_jwork);
9109 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9110 	dirrem->dm_oldinum = ip->i_number;
9111 	*prevdirremp = NULL;
9112 	/*
9113 	 * Allocate remove reference structures to track journal write
9114 	 * dependencies.  We will always have one for the link and
9115 	 * when doing directories we will always have one more for dot.
9116 	 * When renaming a directory we skip the dotdot link change so
9117 	 * this is not needed.
9118 	 */
9119 	jremref = dotremref = dotdotremref = NULL;
9120 	if (DOINGSUJ(dvp)) {
9121 		if (isrmdir) {
9122 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9123 			    ip->i_effnlink + 2);
9124 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9125 			    ip->i_effnlink + 1);
9126 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9127 			    dp->i_effnlink + 1);
9128 			dotdotremref->jr_state |= MKDIR_PARENT;
9129 		} else
9130 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9131 			    ip->i_effnlink + 1);
9132 	}
9133 	ACQUIRE_LOCK(ip->i_ump);
9134 	lbn = lblkno(dp->i_fs, dp->i_offset);
9135 	offset = blkoff(dp->i_fs, dp->i_offset);
9136 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9137 	    &pagedep);
9138 	dirrem->dm_pagedep = pagedep;
9139 	dirrem->dm_offset = offset;
9140 	/*
9141 	 * If we're renaming a .. link to a new directory, cancel any
9142 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9143 	 * the jremref is preserved for any potential diradd in this
9144 	 * location.  This can not coincide with a rmdir.
9145 	 */
9146 	if (dp->i_offset == DOTDOT_OFFSET) {
9147 		if (isrmdir)
9148 			panic("newdirrem: .. directory change during remove?");
9149 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9150 	}
9151 	/*
9152 	 * If we're removing a directory search for the .. dependency now and
9153 	 * cancel it.  Any pending journal work will be added to the dirrem
9154 	 * to be completed when the workitem remove completes.
9155 	 */
9156 	if (isrmdir)
9157 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9158 	/*
9159 	 * Check for a diradd dependency for the same directory entry.
9160 	 * If present, then both dependencies become obsolete and can
9161 	 * be de-allocated.
9162 	 */
9163 	dap = diradd_lookup(pagedep, offset);
9164 	if (dap == NULL) {
9165 		/*
9166 		 * Link the jremref structures into the dirrem so they are
9167 		 * written prior to the pagedep.
9168 		 */
9169 		if (jremref)
9170 			dirrem_journal(dirrem, jremref, dotremref,
9171 			    dotdotremref);
9172 		return (dirrem);
9173 	}
9174 	/*
9175 	 * Must be ATTACHED at this point.
9176 	 */
9177 	if ((dap->da_state & ATTACHED) == 0)
9178 		panic("newdirrem: not ATTACHED");
9179 	if (dap->da_newinum != ip->i_number)
9180 		panic("newdirrem: inum %ju should be %ju",
9181 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9182 	/*
9183 	 * If we are deleting a changed name that never made it to disk,
9184 	 * then return the dirrem describing the previous inode (which
9185 	 * represents the inode currently referenced from this entry on disk).
9186 	 */
9187 	if ((dap->da_state & DIRCHG) != 0) {
9188 		*prevdirremp = dap->da_previous;
9189 		dap->da_state &= ~DIRCHG;
9190 		dap->da_pagedep = pagedep;
9191 	}
9192 	/*
9193 	 * We are deleting an entry that never made it to disk.
9194 	 * Mark it COMPLETE so we can delete its inode immediately.
9195 	 */
9196 	dirrem->dm_state |= COMPLETE;
9197 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9198 #ifdef SUJ_DEBUG
9199 	if (isrmdir == 0) {
9200 		struct worklist *wk;
9201 
9202 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9203 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9204 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9205 	}
9206 #endif
9207 
9208 	return (dirrem);
9209 }
9210 
9211 /*
9212  * Directory entry change dependencies.
9213  *
9214  * Changing an existing directory entry requires that an add operation
9215  * be completed first followed by a deletion. The semantics for the addition
9216  * are identical to the description of adding a new entry above except
9217  * that the rollback is to the old inode number rather than zero. Once
9218  * the addition dependency is completed, the removal is done as described
9219  * in the removal routine above.
9220  */
9221 
9222 /*
9223  * This routine should be called immediately after changing
9224  * a directory entry.  The inode's link count should not be
9225  * decremented by the calling procedure -- the soft updates
9226  * code will perform this task when it is safe.
9227  */
9228 void
9229 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9230 	struct buf *bp;		/* buffer containing directory block */
9231 	struct inode *dp;	/* inode for the directory being modified */
9232 	struct inode *ip;	/* inode for directory entry being removed */
9233 	ino_t newinum;		/* new inode number for changed entry */
9234 	int isrmdir;		/* indicates if doing RMDIR */
9235 {
9236 	int offset;
9237 	struct diradd *dap = NULL;
9238 	struct dirrem *dirrem, *prevdirrem;
9239 	struct pagedep *pagedep;
9240 	struct inodedep *inodedep;
9241 	struct jaddref *jaddref;
9242 	struct mount *mp;
9243 
9244 	offset = blkoff(dp->i_fs, dp->i_offset);
9245 	mp = UFSTOVFS(dp->i_ump);
9246 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9247 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9248 
9249 	/*
9250 	 * Whiteouts do not need diradd dependencies.
9251 	 */
9252 	if (newinum != WINO) {
9253 		dap = malloc(sizeof(struct diradd),
9254 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9255 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9256 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9257 		dap->da_offset = offset;
9258 		dap->da_newinum = newinum;
9259 		LIST_INIT(&dap->da_jwork);
9260 	}
9261 
9262 	/*
9263 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9264 	 */
9265 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9266 	pagedep = dirrem->dm_pagedep;
9267 	/*
9268 	 * The possible values for isrmdir:
9269 	 *	0 - non-directory file rename
9270 	 *	1 - directory rename within same directory
9271 	 *   inum - directory rename to new directory of given inode number
9272 	 * When renaming to a new directory, we are both deleting and
9273 	 * creating a new directory entry, so the link count on the new
9274 	 * directory should not change. Thus we do not need the followup
9275 	 * dirrem which is usually done in handle_workitem_remove. We set
9276 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9277 	 * followup dirrem.
9278 	 */
9279 	if (isrmdir > 1)
9280 		dirrem->dm_state |= DIRCHG;
9281 
9282 	/*
9283 	 * Whiteouts have no additional dependencies,
9284 	 * so just put the dirrem on the correct list.
9285 	 */
9286 	if (newinum == WINO) {
9287 		if ((dirrem->dm_state & COMPLETE) == 0) {
9288 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9289 			    dm_next);
9290 		} else {
9291 			dirrem->dm_dirinum = pagedep->pd_ino;
9292 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9293 				add_to_worklist(&dirrem->dm_list, 0);
9294 		}
9295 		FREE_LOCK(dp->i_ump);
9296 		return;
9297 	}
9298 	/*
9299 	 * Add the dirrem to the inodedep's pending remove list for quick
9300 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9301 	 * will not fail.
9302 	 */
9303 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9304 		panic("softdep_setup_directory_change: Lost inodedep.");
9305 	dirrem->dm_state |= ONDEPLIST;
9306 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9307 
9308 	/*
9309 	 * If the COMPLETE flag is clear, then there were no active
9310 	 * entries and we want to roll back to the previous inode until
9311 	 * the new inode is committed to disk. If the COMPLETE flag is
9312 	 * set, then we have deleted an entry that never made it to disk.
9313 	 * If the entry we deleted resulted from a name change, then the old
9314 	 * inode reference still resides on disk. Any rollback that we do
9315 	 * needs to be to that old inode (returned to us in prevdirrem). If
9316 	 * the entry we deleted resulted from a create, then there is
9317 	 * no entry on the disk, so we want to roll back to zero rather
9318 	 * than the uncommitted inode. In either of the COMPLETE cases we
9319 	 * want to immediately free the unwritten and unreferenced inode.
9320 	 */
9321 	if ((dirrem->dm_state & COMPLETE) == 0) {
9322 		dap->da_previous = dirrem;
9323 	} else {
9324 		if (prevdirrem != NULL) {
9325 			dap->da_previous = prevdirrem;
9326 		} else {
9327 			dap->da_state &= ~DIRCHG;
9328 			dap->da_pagedep = pagedep;
9329 		}
9330 		dirrem->dm_dirinum = pagedep->pd_ino;
9331 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9332 			add_to_worklist(&dirrem->dm_list, 0);
9333 	}
9334 	/*
9335 	 * Lookup the jaddref for this journal entry.  We must finish
9336 	 * initializing it and make the diradd write dependent on it.
9337 	 * If we're not journaling, put it on the id_bufwait list if the
9338 	 * inode is not yet written. If it is written, do the post-inode
9339 	 * write processing to put it on the id_pendinghd list.
9340 	 */
9341 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9342 	if (MOUNTEDSUJ(mp)) {
9343 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9344 		    inoreflst);
9345 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9346 		    ("softdep_setup_directory_change: bad jaddref %p",
9347 		    jaddref));
9348 		jaddref->ja_diroff = dp->i_offset;
9349 		jaddref->ja_diradd = dap;
9350 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9351 		    dap, da_pdlist);
9352 		add_to_journal(&jaddref->ja_list);
9353 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9354 		dap->da_state |= COMPLETE;
9355 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9356 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9357 	} else {
9358 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9359 		    dap, da_pdlist);
9360 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9361 	}
9362 	/*
9363 	 * If we're making a new name for a directory that has not been
9364 	 * committed when need to move the dot and dotdot references to
9365 	 * this new name.
9366 	 */
9367 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9368 		merge_diradd(inodedep, dap);
9369 	FREE_LOCK(dp->i_ump);
9370 }
9371 
9372 /*
9373  * Called whenever the link count on an inode is changed.
9374  * It creates an inode dependency so that the new reference(s)
9375  * to the inode cannot be committed to disk until the updated
9376  * inode has been written.
9377  */
9378 void
9379 softdep_change_linkcnt(ip)
9380 	struct inode *ip;	/* the inode with the increased link count */
9381 {
9382 	struct inodedep *inodedep;
9383 	int dflags;
9384 
9385 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9386 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9387 	ACQUIRE_LOCK(ip->i_ump);
9388 	dflags = DEPALLOC;
9389 	if (IS_SNAPSHOT(ip))
9390 		dflags |= NODELAY;
9391 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9392 	if (ip->i_nlink < ip->i_effnlink)
9393 		panic("softdep_change_linkcnt: bad delta");
9394 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9395 	FREE_LOCK(ip->i_ump);
9396 }
9397 
9398 /*
9399  * Attach a sbdep dependency to the superblock buf so that we can keep
9400  * track of the head of the linked list of referenced but unlinked inodes.
9401  */
9402 void
9403 softdep_setup_sbupdate(ump, fs, bp)
9404 	struct ufsmount *ump;
9405 	struct fs *fs;
9406 	struct buf *bp;
9407 {
9408 	struct sbdep *sbdep;
9409 	struct worklist *wk;
9410 
9411 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9412 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9413 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9414 		if (wk->wk_type == D_SBDEP)
9415 			break;
9416 	if (wk != NULL)
9417 		return;
9418 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9419 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9420 	sbdep->sb_fs = fs;
9421 	sbdep->sb_ump = ump;
9422 	ACQUIRE_LOCK(ump);
9423 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9424 	FREE_LOCK(ump);
9425 }
9426 
9427 /*
9428  * Return the first unlinked inodedep which is ready to be the head of the
9429  * list.  The inodedep and all those after it must have valid next pointers.
9430  */
9431 static struct inodedep *
9432 first_unlinked_inodedep(ump)
9433 	struct ufsmount *ump;
9434 {
9435 	struct inodedep *inodedep;
9436 	struct inodedep *idp;
9437 
9438 	LOCK_OWNED(ump);
9439 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9440 	    inodedep; inodedep = idp) {
9441 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9442 			return (NULL);
9443 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9444 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9445 			break;
9446 		if ((inodedep->id_state & UNLINKPREV) == 0)
9447 			break;
9448 	}
9449 	return (inodedep);
9450 }
9451 
9452 /*
9453  * Set the sujfree unlinked head pointer prior to writing a superblock.
9454  */
9455 static void
9456 initiate_write_sbdep(sbdep)
9457 	struct sbdep *sbdep;
9458 {
9459 	struct inodedep *inodedep;
9460 	struct fs *bpfs;
9461 	struct fs *fs;
9462 
9463 	bpfs = sbdep->sb_fs;
9464 	fs = sbdep->sb_ump->um_fs;
9465 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9466 	if (inodedep) {
9467 		fs->fs_sujfree = inodedep->id_ino;
9468 		inodedep->id_state |= UNLINKPREV;
9469 	} else
9470 		fs->fs_sujfree = 0;
9471 	bpfs->fs_sujfree = fs->fs_sujfree;
9472 }
9473 
9474 /*
9475  * After a superblock is written determine whether it must be written again
9476  * due to a changing unlinked list head.
9477  */
9478 static int
9479 handle_written_sbdep(sbdep, bp)
9480 	struct sbdep *sbdep;
9481 	struct buf *bp;
9482 {
9483 	struct inodedep *inodedep;
9484 	struct mount *mp;
9485 	struct fs *fs;
9486 
9487 	LOCK_OWNED(sbdep->sb_ump);
9488 	fs = sbdep->sb_fs;
9489 	mp = UFSTOVFS(sbdep->sb_ump);
9490 	/*
9491 	 * If the superblock doesn't match the in-memory list start over.
9492 	 */
9493 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9494 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9495 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9496 		bdirty(bp);
9497 		return (1);
9498 	}
9499 	WORKITEM_FREE(sbdep, D_SBDEP);
9500 	if (fs->fs_sujfree == 0)
9501 		return (0);
9502 	/*
9503 	 * Now that we have a record of this inode in stable store allow it
9504 	 * to be written to free up pending work.  Inodes may see a lot of
9505 	 * write activity after they are unlinked which we must not hold up.
9506 	 */
9507 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9508 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9509 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9510 			    inodedep, inodedep->id_state);
9511 		if (inodedep->id_state & UNLINKONLIST)
9512 			break;
9513 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9514 	}
9515 
9516 	return (0);
9517 }
9518 
9519 /*
9520  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9521  */
9522 static void
9523 unlinked_inodedep(mp, inodedep)
9524 	struct mount *mp;
9525 	struct inodedep *inodedep;
9526 {
9527 	struct ufsmount *ump;
9528 
9529 	ump = VFSTOUFS(mp);
9530 	LOCK_OWNED(ump);
9531 	if (MOUNTEDSUJ(mp) == 0)
9532 		return;
9533 	ump->um_fs->fs_fmod = 1;
9534 	if (inodedep->id_state & UNLINKED)
9535 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9536 	inodedep->id_state |= UNLINKED;
9537 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9538 }
9539 
9540 /*
9541  * Remove an inodedep from the unlinked inodedep list.  This may require
9542  * disk writes if the inode has made it that far.
9543  */
9544 static void
9545 clear_unlinked_inodedep(inodedep)
9546 	struct inodedep *inodedep;
9547 {
9548 	struct ufsmount *ump;
9549 	struct inodedep *idp;
9550 	struct inodedep *idn;
9551 	struct fs *fs;
9552 	struct buf *bp;
9553 	ino_t ino;
9554 	ino_t nino;
9555 	ino_t pino;
9556 	int error;
9557 
9558 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9559 	fs = ump->um_fs;
9560 	ino = inodedep->id_ino;
9561 	error = 0;
9562 	for (;;) {
9563 		LOCK_OWNED(ump);
9564 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9565 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9566 		    inodedep));
9567 		/*
9568 		 * If nothing has yet been written simply remove us from
9569 		 * the in memory list and return.  This is the most common
9570 		 * case where handle_workitem_remove() loses the final
9571 		 * reference.
9572 		 */
9573 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9574 			break;
9575 		/*
9576 		 * If we have a NEXT pointer and no PREV pointer we can simply
9577 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9578 		 * careful not to clear PREV if the superblock points at
9579 		 * next as well.
9580 		 */
9581 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9582 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9583 			if (idn && fs->fs_sujfree != idn->id_ino)
9584 				idn->id_state &= ~UNLINKPREV;
9585 			break;
9586 		}
9587 		/*
9588 		 * Here we have an inodedep which is actually linked into
9589 		 * the list.  We must remove it by forcing a write to the
9590 		 * link before us, whether it be the superblock or an inode.
9591 		 * Unfortunately the list may change while we're waiting
9592 		 * on the buf lock for either resource so we must loop until
9593 		 * we lock the right one.  If both the superblock and an
9594 		 * inode point to this inode we must clear the inode first
9595 		 * followed by the superblock.
9596 		 */
9597 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9598 		pino = 0;
9599 		if (idp && (idp->id_state & UNLINKNEXT))
9600 			pino = idp->id_ino;
9601 		FREE_LOCK(ump);
9602 		if (pino == 0) {
9603 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9604 			    (int)fs->fs_sbsize, 0, 0, 0);
9605 		} else {
9606 			error = bread(ump->um_devvp,
9607 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9608 			    (int)fs->fs_bsize, NOCRED, &bp);
9609 			if (error)
9610 				brelse(bp);
9611 		}
9612 		ACQUIRE_LOCK(ump);
9613 		if (error)
9614 			break;
9615 		/* If the list has changed restart the loop. */
9616 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9617 		nino = 0;
9618 		if (idp && (idp->id_state & UNLINKNEXT))
9619 			nino = idp->id_ino;
9620 		if (nino != pino ||
9621 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9622 			FREE_LOCK(ump);
9623 			brelse(bp);
9624 			ACQUIRE_LOCK(ump);
9625 			continue;
9626 		}
9627 		nino = 0;
9628 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9629 		if (idn)
9630 			nino = idn->id_ino;
9631 		/*
9632 		 * Remove us from the in memory list.  After this we cannot
9633 		 * access the inodedep.
9634 		 */
9635 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9636 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9637 		    inodedep));
9638 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9639 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9640 		FREE_LOCK(ump);
9641 		/*
9642 		 * The predecessor's next pointer is manually updated here
9643 		 * so that the NEXT flag is never cleared for an element
9644 		 * that is in the list.
9645 		 */
9646 		if (pino == 0) {
9647 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9648 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9649 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9650 			    bp);
9651 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9652 			((struct ufs1_dinode *)bp->b_data +
9653 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9654 		else
9655 			((struct ufs2_dinode *)bp->b_data +
9656 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9657 		/*
9658 		 * If the bwrite fails we have no recourse to recover.  The
9659 		 * filesystem is corrupted already.
9660 		 */
9661 		bwrite(bp);
9662 		ACQUIRE_LOCK(ump);
9663 		/*
9664 		 * If the superblock pointer still needs to be cleared force
9665 		 * a write here.
9666 		 */
9667 		if (fs->fs_sujfree == ino) {
9668 			FREE_LOCK(ump);
9669 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9670 			    (int)fs->fs_sbsize, 0, 0, 0);
9671 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9672 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9673 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9674 			    bp);
9675 			bwrite(bp);
9676 			ACQUIRE_LOCK(ump);
9677 		}
9678 
9679 		if (fs->fs_sujfree != ino)
9680 			return;
9681 		panic("clear_unlinked_inodedep: Failed to clear free head");
9682 	}
9683 	if (inodedep->id_ino == fs->fs_sujfree)
9684 		panic("clear_unlinked_inodedep: Freeing head of free list");
9685 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9686 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9687 	return;
9688 }
9689 
9690 /*
9691  * This workitem decrements the inode's link count.
9692  * If the link count reaches zero, the file is removed.
9693  */
9694 static int
9695 handle_workitem_remove(dirrem, flags)
9696 	struct dirrem *dirrem;
9697 	int flags;
9698 {
9699 	struct inodedep *inodedep;
9700 	struct workhead dotdotwk;
9701 	struct worklist *wk;
9702 	struct ufsmount *ump;
9703 	struct mount *mp;
9704 	struct vnode *vp;
9705 	struct inode *ip;
9706 	ino_t oldinum;
9707 
9708 	if (dirrem->dm_state & ONWORKLIST)
9709 		panic("handle_workitem_remove: dirrem %p still on worklist",
9710 		    dirrem);
9711 	oldinum = dirrem->dm_oldinum;
9712 	mp = dirrem->dm_list.wk_mp;
9713 	ump = VFSTOUFS(mp);
9714 	flags |= LK_EXCLUSIVE;
9715 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9716 		return (EBUSY);
9717 	ip = VTOI(vp);
9718 	ACQUIRE_LOCK(ump);
9719 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9720 		panic("handle_workitem_remove: lost inodedep");
9721 	if (dirrem->dm_state & ONDEPLIST)
9722 		LIST_REMOVE(dirrem, dm_inonext);
9723 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9724 	    ("handle_workitem_remove:  Journal entries not written."));
9725 
9726 	/*
9727 	 * Move all dependencies waiting on the remove to complete
9728 	 * from the dirrem to the inode inowait list to be completed
9729 	 * after the inode has been updated and written to disk.  Any
9730 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9731 	 * is removed.
9732 	 */
9733 	LIST_INIT(&dotdotwk);
9734 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9735 		WORKLIST_REMOVE(wk);
9736 		if (wk->wk_state & MKDIR_PARENT) {
9737 			wk->wk_state &= ~MKDIR_PARENT;
9738 			WORKLIST_INSERT(&dotdotwk, wk);
9739 			continue;
9740 		}
9741 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9742 	}
9743 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9744 	/*
9745 	 * Normal file deletion.
9746 	 */
9747 	if ((dirrem->dm_state & RMDIR) == 0) {
9748 		ip->i_nlink--;
9749 		DIP_SET(ip, i_nlink, ip->i_nlink);
9750 		ip->i_flag |= IN_CHANGE;
9751 		if (ip->i_nlink < ip->i_effnlink)
9752 			panic("handle_workitem_remove: bad file delta");
9753 		if (ip->i_nlink == 0)
9754 			unlinked_inodedep(mp, inodedep);
9755 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9756 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9757 		    ("handle_workitem_remove: worklist not empty. %s",
9758 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9759 		WORKITEM_FREE(dirrem, D_DIRREM);
9760 		FREE_LOCK(ump);
9761 		goto out;
9762 	}
9763 	/*
9764 	 * Directory deletion. Decrement reference count for both the
9765 	 * just deleted parent directory entry and the reference for ".".
9766 	 * Arrange to have the reference count on the parent decremented
9767 	 * to account for the loss of "..".
9768 	 */
9769 	ip->i_nlink -= 2;
9770 	DIP_SET(ip, i_nlink, ip->i_nlink);
9771 	ip->i_flag |= IN_CHANGE;
9772 	if (ip->i_nlink < ip->i_effnlink)
9773 		panic("handle_workitem_remove: bad dir delta");
9774 	if (ip->i_nlink == 0)
9775 		unlinked_inodedep(mp, inodedep);
9776 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9777 	/*
9778 	 * Rename a directory to a new parent. Since, we are both deleting
9779 	 * and creating a new directory entry, the link count on the new
9780 	 * directory should not change. Thus we skip the followup dirrem.
9781 	 */
9782 	if (dirrem->dm_state & DIRCHG) {
9783 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9784 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9785 		WORKITEM_FREE(dirrem, D_DIRREM);
9786 		FREE_LOCK(ump);
9787 		goto out;
9788 	}
9789 	dirrem->dm_state = ONDEPLIST;
9790 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9791 	/*
9792 	 * Place the dirrem on the parent's diremhd list.
9793 	 */
9794 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9795 		panic("handle_workitem_remove: lost dir inodedep");
9796 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9797 	/*
9798 	 * If the allocated inode has never been written to disk, then
9799 	 * the on-disk inode is zero'ed and we can remove the file
9800 	 * immediately.  When journaling if the inode has been marked
9801 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9802 	 */
9803 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9804 	if (inodedep == NULL ||
9805 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9806 	    check_inode_unwritten(inodedep)) {
9807 		FREE_LOCK(ump);
9808 		vput(vp);
9809 		return handle_workitem_remove(dirrem, flags);
9810 	}
9811 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9812 	FREE_LOCK(ump);
9813 	ip->i_flag |= IN_CHANGE;
9814 out:
9815 	ffs_update(vp, 0);
9816 	vput(vp);
9817 	return (0);
9818 }
9819 
9820 /*
9821  * Inode de-allocation dependencies.
9822  *
9823  * When an inode's link count is reduced to zero, it can be de-allocated. We
9824  * found it convenient to postpone de-allocation until after the inode is
9825  * written to disk with its new link count (zero).  At this point, all of the
9826  * on-disk inode's block pointers are nullified and, with careful dependency
9827  * list ordering, all dependencies related to the inode will be satisfied and
9828  * the corresponding dependency structures de-allocated.  So, if/when the
9829  * inode is reused, there will be no mixing of old dependencies with new
9830  * ones.  This artificial dependency is set up by the block de-allocation
9831  * procedure above (softdep_setup_freeblocks) and completed by the
9832  * following procedure.
9833  */
9834 static void
9835 handle_workitem_freefile(freefile)
9836 	struct freefile *freefile;
9837 {
9838 	struct workhead wkhd;
9839 	struct fs *fs;
9840 	struct inodedep *idp;
9841 	struct ufsmount *ump;
9842 	int error;
9843 
9844 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9845 	fs = ump->um_fs;
9846 #ifdef DEBUG
9847 	ACQUIRE_LOCK(ump);
9848 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9849 	FREE_LOCK(ump);
9850 	if (error)
9851 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9852 #endif
9853 	UFS_LOCK(ump);
9854 	fs->fs_pendinginodes -= 1;
9855 	UFS_UNLOCK(ump);
9856 	LIST_INIT(&wkhd);
9857 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9858 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9859 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9860 		softdep_error("handle_workitem_freefile", error);
9861 	ACQUIRE_LOCK(ump);
9862 	WORKITEM_FREE(freefile, D_FREEFILE);
9863 	FREE_LOCK(ump);
9864 }
9865 
9866 
9867 /*
9868  * Helper function which unlinks marker element from work list and returns
9869  * the next element on the list.
9870  */
9871 static __inline struct worklist *
9872 markernext(struct worklist *marker)
9873 {
9874 	struct worklist *next;
9875 
9876 	next = LIST_NEXT(marker, wk_list);
9877 	LIST_REMOVE(marker, wk_list);
9878 	return next;
9879 }
9880 
9881 /*
9882  * Disk writes.
9883  *
9884  * The dependency structures constructed above are most actively used when file
9885  * system blocks are written to disk.  No constraints are placed on when a
9886  * block can be written, but unsatisfied update dependencies are made safe by
9887  * modifying (or replacing) the source memory for the duration of the disk
9888  * write.  When the disk write completes, the memory block is again brought
9889  * up-to-date.
9890  *
9891  * In-core inode structure reclamation.
9892  *
9893  * Because there are a finite number of "in-core" inode structures, they are
9894  * reused regularly.  By transferring all inode-related dependencies to the
9895  * in-memory inode block and indexing them separately (via "inodedep"s), we
9896  * can allow "in-core" inode structures to be reused at any time and avoid
9897  * any increase in contention.
9898  *
9899  * Called just before entering the device driver to initiate a new disk I/O.
9900  * The buffer must be locked, thus, no I/O completion operations can occur
9901  * while we are manipulating its associated dependencies.
9902  */
9903 static void
9904 softdep_disk_io_initiation(bp)
9905 	struct buf *bp;		/* structure describing disk write to occur */
9906 {
9907 	struct worklist *wk;
9908 	struct worklist marker;
9909 	struct inodedep *inodedep;
9910 	struct freeblks *freeblks;
9911 	struct jblkdep *jblkdep;
9912 	struct newblk *newblk;
9913 	struct ufsmount *ump;
9914 
9915 	/*
9916 	 * We only care about write operations. There should never
9917 	 * be dependencies for reads.
9918 	 */
9919 	if (bp->b_iocmd != BIO_WRITE)
9920 		panic("softdep_disk_io_initiation: not write");
9921 
9922 	if (bp->b_vflags & BV_BKGRDINPROG)
9923 		panic("softdep_disk_io_initiation: Writing buffer with "
9924 		    "background write in progress: %p", bp);
9925 
9926 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9927 		return;
9928 	ump = VFSTOUFS(wk->wk_mp);
9929 
9930 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9931 	PHOLD(curproc);			/* Don't swap out kernel stack */
9932 	ACQUIRE_LOCK(ump);
9933 	/*
9934 	 * Do any necessary pre-I/O processing.
9935 	 */
9936 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9937 	     wk = markernext(&marker)) {
9938 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9939 		switch (wk->wk_type) {
9940 
9941 		case D_PAGEDEP:
9942 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9943 			continue;
9944 
9945 		case D_INODEDEP:
9946 			inodedep = WK_INODEDEP(wk);
9947 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9948 				initiate_write_inodeblock_ufs1(inodedep, bp);
9949 			else
9950 				initiate_write_inodeblock_ufs2(inodedep, bp);
9951 			continue;
9952 
9953 		case D_INDIRDEP:
9954 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9955 			continue;
9956 
9957 		case D_BMSAFEMAP:
9958 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9959 			continue;
9960 
9961 		case D_JSEG:
9962 			WK_JSEG(wk)->js_buf = NULL;
9963 			continue;
9964 
9965 		case D_FREEBLKS:
9966 			freeblks = WK_FREEBLKS(wk);
9967 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9968 			/*
9969 			 * We have to wait for the freeblks to be journaled
9970 			 * before we can write an inodeblock with updated
9971 			 * pointers.  Be careful to arrange the marker so
9972 			 * we revisit the freeblks if it's not removed by
9973 			 * the first jwait().
9974 			 */
9975 			if (jblkdep != NULL) {
9976 				LIST_REMOVE(&marker, wk_list);
9977 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9978 				jwait(&jblkdep->jb_list, MNT_WAIT);
9979 			}
9980 			continue;
9981 		case D_ALLOCDIRECT:
9982 		case D_ALLOCINDIR:
9983 			/*
9984 			 * We have to wait for the jnewblk to be journaled
9985 			 * before we can write to a block if the contents
9986 			 * may be confused with an earlier file's indirect
9987 			 * at recovery time.  Handle the marker as described
9988 			 * above.
9989 			 */
9990 			newblk = WK_NEWBLK(wk);
9991 			if (newblk->nb_jnewblk != NULL &&
9992 			    indirblk_lookup(newblk->nb_list.wk_mp,
9993 			    newblk->nb_newblkno)) {
9994 				LIST_REMOVE(&marker, wk_list);
9995 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9996 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9997 			}
9998 			continue;
9999 
10000 		case D_SBDEP:
10001 			initiate_write_sbdep(WK_SBDEP(wk));
10002 			continue;
10003 
10004 		case D_MKDIR:
10005 		case D_FREEWORK:
10006 		case D_FREEDEP:
10007 		case D_JSEGDEP:
10008 			continue;
10009 
10010 		default:
10011 			panic("handle_disk_io_initiation: Unexpected type %s",
10012 			    TYPENAME(wk->wk_type));
10013 			/* NOTREACHED */
10014 		}
10015 	}
10016 	FREE_LOCK(ump);
10017 	PRELE(curproc);			/* Allow swapout of kernel stack */
10018 }
10019 
10020 /*
10021  * Called from within the procedure above to deal with unsatisfied
10022  * allocation dependencies in a directory. The buffer must be locked,
10023  * thus, no I/O completion operations can occur while we are
10024  * manipulating its associated dependencies.
10025  */
10026 static void
10027 initiate_write_filepage(pagedep, bp)
10028 	struct pagedep *pagedep;
10029 	struct buf *bp;
10030 {
10031 	struct jremref *jremref;
10032 	struct jmvref *jmvref;
10033 	struct dirrem *dirrem;
10034 	struct diradd *dap;
10035 	struct direct *ep;
10036 	int i;
10037 
10038 	if (pagedep->pd_state & IOSTARTED) {
10039 		/*
10040 		 * This can only happen if there is a driver that does not
10041 		 * understand chaining. Here biodone will reissue the call
10042 		 * to strategy for the incomplete buffers.
10043 		 */
10044 		printf("initiate_write_filepage: already started\n");
10045 		return;
10046 	}
10047 	pagedep->pd_state |= IOSTARTED;
10048 	/*
10049 	 * Wait for all journal remove dependencies to hit the disk.
10050 	 * We can not allow any potentially conflicting directory adds
10051 	 * to be visible before removes and rollback is too difficult.
10052 	 * The per-filesystem lock may be dropped and re-acquired, however
10053 	 * we hold the buf locked so the dependency can not go away.
10054 	 */
10055 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10056 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10057 			jwait(&jremref->jr_list, MNT_WAIT);
10058 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10059 		jwait(&jmvref->jm_list, MNT_WAIT);
10060 	for (i = 0; i < DAHASHSZ; i++) {
10061 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10062 			ep = (struct direct *)
10063 			    ((char *)bp->b_data + dap->da_offset);
10064 			if (ep->d_ino != dap->da_newinum)
10065 				panic("%s: dir inum %ju != new %ju",
10066 				    "initiate_write_filepage",
10067 				    (uintmax_t)ep->d_ino,
10068 				    (uintmax_t)dap->da_newinum);
10069 			if (dap->da_state & DIRCHG)
10070 				ep->d_ino = dap->da_previous->dm_oldinum;
10071 			else
10072 				ep->d_ino = 0;
10073 			dap->da_state &= ~ATTACHED;
10074 			dap->da_state |= UNDONE;
10075 		}
10076 	}
10077 }
10078 
10079 /*
10080  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10081  * Note that any bug fixes made to this routine must be done in the
10082  * version found below.
10083  *
10084  * Called from within the procedure above to deal with unsatisfied
10085  * allocation dependencies in an inodeblock. The buffer must be
10086  * locked, thus, no I/O completion operations can occur while we
10087  * are manipulating its associated dependencies.
10088  */
10089 static void
10090 initiate_write_inodeblock_ufs1(inodedep, bp)
10091 	struct inodedep *inodedep;
10092 	struct buf *bp;			/* The inode block */
10093 {
10094 	struct allocdirect *adp, *lastadp;
10095 	struct ufs1_dinode *dp;
10096 	struct ufs1_dinode *sip;
10097 	struct inoref *inoref;
10098 	struct ufsmount *ump;
10099 	struct fs *fs;
10100 	ufs_lbn_t i;
10101 #ifdef INVARIANTS
10102 	ufs_lbn_t prevlbn = 0;
10103 #endif
10104 	int deplist;
10105 
10106 	if (inodedep->id_state & IOSTARTED)
10107 		panic("initiate_write_inodeblock_ufs1: already started");
10108 	inodedep->id_state |= IOSTARTED;
10109 	fs = inodedep->id_fs;
10110 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10111 	LOCK_OWNED(ump);
10112 	dp = (struct ufs1_dinode *)bp->b_data +
10113 	    ino_to_fsbo(fs, inodedep->id_ino);
10114 
10115 	/*
10116 	 * If we're on the unlinked list but have not yet written our
10117 	 * next pointer initialize it here.
10118 	 */
10119 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10120 		struct inodedep *inon;
10121 
10122 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10123 		dp->di_freelink = inon ? inon->id_ino : 0;
10124 	}
10125 	/*
10126 	 * If the bitmap is not yet written, then the allocated
10127 	 * inode cannot be written to disk.
10128 	 */
10129 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10130 		if (inodedep->id_savedino1 != NULL)
10131 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10132 		FREE_LOCK(ump);
10133 		sip = malloc(sizeof(struct ufs1_dinode),
10134 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10135 		ACQUIRE_LOCK(ump);
10136 		inodedep->id_savedino1 = sip;
10137 		*inodedep->id_savedino1 = *dp;
10138 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10139 		dp->di_gen = inodedep->id_savedino1->di_gen;
10140 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10141 		return;
10142 	}
10143 	/*
10144 	 * If no dependencies, then there is nothing to roll back.
10145 	 */
10146 	inodedep->id_savedsize = dp->di_size;
10147 	inodedep->id_savedextsize = 0;
10148 	inodedep->id_savednlink = dp->di_nlink;
10149 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10150 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10151 		return;
10152 	/*
10153 	 * Revert the link count to that of the first unwritten journal entry.
10154 	 */
10155 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10156 	if (inoref)
10157 		dp->di_nlink = inoref->if_nlink;
10158 	/*
10159 	 * Set the dependencies to busy.
10160 	 */
10161 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10162 	     adp = TAILQ_NEXT(adp, ad_next)) {
10163 #ifdef INVARIANTS
10164 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10165 			panic("softdep_write_inodeblock: lbn order");
10166 		prevlbn = adp->ad_offset;
10167 		if (adp->ad_offset < NDADDR &&
10168 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10169 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10170 			    "softdep_write_inodeblock",
10171 			    (intmax_t)adp->ad_offset,
10172 			    dp->di_db[adp->ad_offset],
10173 			    (intmax_t)adp->ad_newblkno);
10174 		if (adp->ad_offset >= NDADDR &&
10175 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10176 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10177 			    "softdep_write_inodeblock",
10178 			    (intmax_t)adp->ad_offset - NDADDR,
10179 			    dp->di_ib[adp->ad_offset - NDADDR],
10180 			    (intmax_t)adp->ad_newblkno);
10181 		deplist |= 1 << adp->ad_offset;
10182 		if ((adp->ad_state & ATTACHED) == 0)
10183 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10184 			    adp->ad_state);
10185 #endif /* INVARIANTS */
10186 		adp->ad_state &= ~ATTACHED;
10187 		adp->ad_state |= UNDONE;
10188 	}
10189 	/*
10190 	 * The on-disk inode cannot claim to be any larger than the last
10191 	 * fragment that has been written. Otherwise, the on-disk inode
10192 	 * might have fragments that were not the last block in the file
10193 	 * which would corrupt the filesystem.
10194 	 */
10195 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10196 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10197 		if (adp->ad_offset >= NDADDR)
10198 			break;
10199 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10200 		/* keep going until hitting a rollback to a frag */
10201 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10202 			continue;
10203 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10204 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10205 #ifdef INVARIANTS
10206 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10207 				panic("softdep_write_inodeblock: lost dep1");
10208 #endif /* INVARIANTS */
10209 			dp->di_db[i] = 0;
10210 		}
10211 		for (i = 0; i < NIADDR; i++) {
10212 #ifdef INVARIANTS
10213 			if (dp->di_ib[i] != 0 &&
10214 			    (deplist & ((1 << NDADDR) << i)) == 0)
10215 				panic("softdep_write_inodeblock: lost dep2");
10216 #endif /* INVARIANTS */
10217 			dp->di_ib[i] = 0;
10218 		}
10219 		return;
10220 	}
10221 	/*
10222 	 * If we have zero'ed out the last allocated block of the file,
10223 	 * roll back the size to the last currently allocated block.
10224 	 * We know that this last allocated block is a full-sized as
10225 	 * we already checked for fragments in the loop above.
10226 	 */
10227 	if (lastadp != NULL &&
10228 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10229 		for (i = lastadp->ad_offset; i >= 0; i--)
10230 			if (dp->di_db[i] != 0)
10231 				break;
10232 		dp->di_size = (i + 1) * fs->fs_bsize;
10233 	}
10234 	/*
10235 	 * The only dependencies are for indirect blocks.
10236 	 *
10237 	 * The file size for indirect block additions is not guaranteed.
10238 	 * Such a guarantee would be non-trivial to achieve. The conventional
10239 	 * synchronous write implementation also does not make this guarantee.
10240 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10241 	 * can be over-estimated without destroying integrity when the file
10242 	 * moves into the indirect blocks (i.e., is large). If we want to
10243 	 * postpone fsck, we are stuck with this argument.
10244 	 */
10245 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10246 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10247 }
10248 
10249 /*
10250  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10251  * Note that any bug fixes made to this routine must be done in the
10252  * version found above.
10253  *
10254  * Called from within the procedure above to deal with unsatisfied
10255  * allocation dependencies in an inodeblock. The buffer must be
10256  * locked, thus, no I/O completion operations can occur while we
10257  * are manipulating its associated dependencies.
10258  */
10259 static void
10260 initiate_write_inodeblock_ufs2(inodedep, bp)
10261 	struct inodedep *inodedep;
10262 	struct buf *bp;			/* The inode block */
10263 {
10264 	struct allocdirect *adp, *lastadp;
10265 	struct ufs2_dinode *dp;
10266 	struct ufs2_dinode *sip;
10267 	struct inoref *inoref;
10268 	struct ufsmount *ump;
10269 	struct fs *fs;
10270 	ufs_lbn_t i;
10271 #ifdef INVARIANTS
10272 	ufs_lbn_t prevlbn = 0;
10273 #endif
10274 	int deplist;
10275 
10276 	if (inodedep->id_state & IOSTARTED)
10277 		panic("initiate_write_inodeblock_ufs2: already started");
10278 	inodedep->id_state |= IOSTARTED;
10279 	fs = inodedep->id_fs;
10280 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10281 	LOCK_OWNED(ump);
10282 	dp = (struct ufs2_dinode *)bp->b_data +
10283 	    ino_to_fsbo(fs, inodedep->id_ino);
10284 
10285 	/*
10286 	 * If we're on the unlinked list but have not yet written our
10287 	 * next pointer initialize it here.
10288 	 */
10289 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10290 		struct inodedep *inon;
10291 
10292 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10293 		dp->di_freelink = inon ? inon->id_ino : 0;
10294 	}
10295 	/*
10296 	 * If the bitmap is not yet written, then the allocated
10297 	 * inode cannot be written to disk.
10298 	 */
10299 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10300 		if (inodedep->id_savedino2 != NULL)
10301 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10302 		FREE_LOCK(ump);
10303 		sip = malloc(sizeof(struct ufs2_dinode),
10304 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10305 		ACQUIRE_LOCK(ump);
10306 		inodedep->id_savedino2 = sip;
10307 		*inodedep->id_savedino2 = *dp;
10308 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10309 		dp->di_gen = inodedep->id_savedino2->di_gen;
10310 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10311 		return;
10312 	}
10313 	/*
10314 	 * If no dependencies, then there is nothing to roll back.
10315 	 */
10316 	inodedep->id_savedsize = dp->di_size;
10317 	inodedep->id_savedextsize = dp->di_extsize;
10318 	inodedep->id_savednlink = dp->di_nlink;
10319 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10320 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10321 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10322 		return;
10323 	/*
10324 	 * Revert the link count to that of the first unwritten journal entry.
10325 	 */
10326 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10327 	if (inoref)
10328 		dp->di_nlink = inoref->if_nlink;
10329 
10330 	/*
10331 	 * Set the ext data dependencies to busy.
10332 	 */
10333 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10334 	     adp = TAILQ_NEXT(adp, ad_next)) {
10335 #ifdef INVARIANTS
10336 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10337 			panic("softdep_write_inodeblock: lbn order");
10338 		prevlbn = adp->ad_offset;
10339 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10340 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10341 			    "softdep_write_inodeblock",
10342 			    (intmax_t)adp->ad_offset,
10343 			    (intmax_t)dp->di_extb[adp->ad_offset],
10344 			    (intmax_t)adp->ad_newblkno);
10345 		deplist |= 1 << adp->ad_offset;
10346 		if ((adp->ad_state & ATTACHED) == 0)
10347 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10348 			    adp->ad_state);
10349 #endif /* INVARIANTS */
10350 		adp->ad_state &= ~ATTACHED;
10351 		adp->ad_state |= UNDONE;
10352 	}
10353 	/*
10354 	 * The on-disk inode cannot claim to be any larger than the last
10355 	 * fragment that has been written. Otherwise, the on-disk inode
10356 	 * might have fragments that were not the last block in the ext
10357 	 * data which would corrupt the filesystem.
10358 	 */
10359 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10360 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10361 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10362 		/* keep going until hitting a rollback to a frag */
10363 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10364 			continue;
10365 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10366 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10367 #ifdef INVARIANTS
10368 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10369 				panic("softdep_write_inodeblock: lost dep1");
10370 #endif /* INVARIANTS */
10371 			dp->di_extb[i] = 0;
10372 		}
10373 		lastadp = NULL;
10374 		break;
10375 	}
10376 	/*
10377 	 * If we have zero'ed out the last allocated block of the ext
10378 	 * data, roll back the size to the last currently allocated block.
10379 	 * We know that this last allocated block is a full-sized as
10380 	 * we already checked for fragments in the loop above.
10381 	 */
10382 	if (lastadp != NULL &&
10383 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10384 		for (i = lastadp->ad_offset; i >= 0; i--)
10385 			if (dp->di_extb[i] != 0)
10386 				break;
10387 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10388 	}
10389 	/*
10390 	 * Set the file data dependencies to busy.
10391 	 */
10392 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10393 	     adp = TAILQ_NEXT(adp, ad_next)) {
10394 #ifdef INVARIANTS
10395 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10396 			panic("softdep_write_inodeblock: lbn order");
10397 		if ((adp->ad_state & ATTACHED) == 0)
10398 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10399 		prevlbn = adp->ad_offset;
10400 		if (adp->ad_offset < NDADDR &&
10401 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10402 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10403 			    "softdep_write_inodeblock",
10404 			    (intmax_t)adp->ad_offset,
10405 			    (intmax_t)dp->di_db[adp->ad_offset],
10406 			    (intmax_t)adp->ad_newblkno);
10407 		if (adp->ad_offset >= NDADDR &&
10408 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10409 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10410 			    "softdep_write_inodeblock:",
10411 			    (intmax_t)adp->ad_offset - NDADDR,
10412 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10413 			    (intmax_t)adp->ad_newblkno);
10414 		deplist |= 1 << adp->ad_offset;
10415 		if ((adp->ad_state & ATTACHED) == 0)
10416 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10417 			    adp->ad_state);
10418 #endif /* INVARIANTS */
10419 		adp->ad_state &= ~ATTACHED;
10420 		adp->ad_state |= UNDONE;
10421 	}
10422 	/*
10423 	 * The on-disk inode cannot claim to be any larger than the last
10424 	 * fragment that has been written. Otherwise, the on-disk inode
10425 	 * might have fragments that were not the last block in the file
10426 	 * which would corrupt the filesystem.
10427 	 */
10428 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10429 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10430 		if (adp->ad_offset >= NDADDR)
10431 			break;
10432 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10433 		/* keep going until hitting a rollback to a frag */
10434 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10435 			continue;
10436 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10437 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10438 #ifdef INVARIANTS
10439 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10440 				panic("softdep_write_inodeblock: lost dep2");
10441 #endif /* INVARIANTS */
10442 			dp->di_db[i] = 0;
10443 		}
10444 		for (i = 0; i < NIADDR; i++) {
10445 #ifdef INVARIANTS
10446 			if (dp->di_ib[i] != 0 &&
10447 			    (deplist & ((1 << NDADDR) << i)) == 0)
10448 				panic("softdep_write_inodeblock: lost dep3");
10449 #endif /* INVARIANTS */
10450 			dp->di_ib[i] = 0;
10451 		}
10452 		return;
10453 	}
10454 	/*
10455 	 * If we have zero'ed out the last allocated block of the file,
10456 	 * roll back the size to the last currently allocated block.
10457 	 * We know that this last allocated block is a full-sized as
10458 	 * we already checked for fragments in the loop above.
10459 	 */
10460 	if (lastadp != NULL &&
10461 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10462 		for (i = lastadp->ad_offset; i >= 0; i--)
10463 			if (dp->di_db[i] != 0)
10464 				break;
10465 		dp->di_size = (i + 1) * fs->fs_bsize;
10466 	}
10467 	/*
10468 	 * The only dependencies are for indirect blocks.
10469 	 *
10470 	 * The file size for indirect block additions is not guaranteed.
10471 	 * Such a guarantee would be non-trivial to achieve. The conventional
10472 	 * synchronous write implementation also does not make this guarantee.
10473 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10474 	 * can be over-estimated without destroying integrity when the file
10475 	 * moves into the indirect blocks (i.e., is large). If we want to
10476 	 * postpone fsck, we are stuck with this argument.
10477 	 */
10478 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10479 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10480 }
10481 
10482 /*
10483  * Cancel an indirdep as a result of truncation.  Release all of the
10484  * children allocindirs and place their journal work on the appropriate
10485  * list.
10486  */
10487 static void
10488 cancel_indirdep(indirdep, bp, freeblks)
10489 	struct indirdep *indirdep;
10490 	struct buf *bp;
10491 	struct freeblks *freeblks;
10492 {
10493 	struct allocindir *aip;
10494 
10495 	/*
10496 	 * None of the indirect pointers will ever be visible,
10497 	 * so they can simply be tossed. GOINGAWAY ensures
10498 	 * that allocated pointers will be saved in the buffer
10499 	 * cache until they are freed. Note that they will
10500 	 * only be able to be found by their physical address
10501 	 * since the inode mapping the logical address will
10502 	 * be gone. The save buffer used for the safe copy
10503 	 * was allocated in setup_allocindir_phase2 using
10504 	 * the physical address so it could be used for this
10505 	 * purpose. Hence we swap the safe copy with the real
10506 	 * copy, allowing the safe copy to be freed and holding
10507 	 * on to the real copy for later use in indir_trunc.
10508 	 */
10509 	if (indirdep->ir_state & GOINGAWAY)
10510 		panic("cancel_indirdep: already gone");
10511 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10512 		indirdep->ir_state |= DEPCOMPLETE;
10513 		LIST_REMOVE(indirdep, ir_next);
10514 	}
10515 	indirdep->ir_state |= GOINGAWAY;
10516 	/*
10517 	 * Pass in bp for blocks still have journal writes
10518 	 * pending so we can cancel them on their own.
10519 	 */
10520 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10521 		cancel_allocindir(aip, bp, freeblks, 0);
10522 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10523 		cancel_allocindir(aip, NULL, freeblks, 0);
10524 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10525 		cancel_allocindir(aip, NULL, freeblks, 0);
10526 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10527 		cancel_allocindir(aip, NULL, freeblks, 0);
10528 	/*
10529 	 * If there are pending partial truncations we need to keep the
10530 	 * old block copy around until they complete.  This is because
10531 	 * the current b_data is not a perfect superset of the available
10532 	 * blocks.
10533 	 */
10534 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10535 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10536 	else
10537 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10538 	WORKLIST_REMOVE(&indirdep->ir_list);
10539 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10540 	indirdep->ir_bp = NULL;
10541 	indirdep->ir_freeblks = freeblks;
10542 }
10543 
10544 /*
10545  * Free an indirdep once it no longer has new pointers to track.
10546  */
10547 static void
10548 free_indirdep(indirdep)
10549 	struct indirdep *indirdep;
10550 {
10551 
10552 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10553 	    ("free_indirdep: Indir trunc list not empty."));
10554 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10555 	    ("free_indirdep: Complete head not empty."));
10556 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10557 	    ("free_indirdep: write head not empty."));
10558 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10559 	    ("free_indirdep: done head not empty."));
10560 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10561 	    ("free_indirdep: deplist head not empty."));
10562 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10563 	    ("free_indirdep: %p still on newblk list.", indirdep));
10564 	KASSERT(indirdep->ir_saveddata == NULL,
10565 	    ("free_indirdep: %p still has saved data.", indirdep));
10566 	if (indirdep->ir_state & ONWORKLIST)
10567 		WORKLIST_REMOVE(&indirdep->ir_list);
10568 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10569 }
10570 
10571 /*
10572  * Called before a write to an indirdep.  This routine is responsible for
10573  * rolling back pointers to a safe state which includes only those
10574  * allocindirs which have been completed.
10575  */
10576 static void
10577 initiate_write_indirdep(indirdep, bp)
10578 	struct indirdep *indirdep;
10579 	struct buf *bp;
10580 {
10581 	struct ufsmount *ump;
10582 
10583 	indirdep->ir_state |= IOSTARTED;
10584 	if (indirdep->ir_state & GOINGAWAY)
10585 		panic("disk_io_initiation: indirdep gone");
10586 	/*
10587 	 * If there are no remaining dependencies, this will be writing
10588 	 * the real pointers.
10589 	 */
10590 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10591 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10592 		return;
10593 	/*
10594 	 * Replace up-to-date version with safe version.
10595 	 */
10596 	if (indirdep->ir_saveddata == NULL) {
10597 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10598 		LOCK_OWNED(ump);
10599 		FREE_LOCK(ump);
10600 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10601 		    M_SOFTDEP_FLAGS);
10602 		ACQUIRE_LOCK(ump);
10603 	}
10604 	indirdep->ir_state &= ~ATTACHED;
10605 	indirdep->ir_state |= UNDONE;
10606 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10607 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10608 	    bp->b_bcount);
10609 }
10610 
10611 /*
10612  * Called when an inode has been cleared in a cg bitmap.  This finally
10613  * eliminates any canceled jaddrefs
10614  */
10615 void
10616 softdep_setup_inofree(mp, bp, ino, wkhd)
10617 	struct mount *mp;
10618 	struct buf *bp;
10619 	ino_t ino;
10620 	struct workhead *wkhd;
10621 {
10622 	struct worklist *wk, *wkn;
10623 	struct inodedep *inodedep;
10624 	struct ufsmount *ump;
10625 	uint8_t *inosused;
10626 	struct cg *cgp;
10627 	struct fs *fs;
10628 
10629 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10630 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10631 	ump = VFSTOUFS(mp);
10632 	ACQUIRE_LOCK(ump);
10633 	fs = ump->um_fs;
10634 	cgp = (struct cg *)bp->b_data;
10635 	inosused = cg_inosused(cgp);
10636 	if (isset(inosused, ino % fs->fs_ipg))
10637 		panic("softdep_setup_inofree: inode %ju not freed.",
10638 		    (uintmax_t)ino);
10639 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10640 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10641 		    (uintmax_t)ino, inodedep);
10642 	if (wkhd) {
10643 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10644 			if (wk->wk_type != D_JADDREF)
10645 				continue;
10646 			WORKLIST_REMOVE(wk);
10647 			/*
10648 			 * We can free immediately even if the jaddref
10649 			 * isn't attached in a background write as now
10650 			 * the bitmaps are reconciled.
10651 			 */
10652 			wk->wk_state |= COMPLETE | ATTACHED;
10653 			free_jaddref(WK_JADDREF(wk));
10654 		}
10655 		jwork_move(&bp->b_dep, wkhd);
10656 	}
10657 	FREE_LOCK(ump);
10658 }
10659 
10660 
10661 /*
10662  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10663  * map.  Any dependencies waiting for the write to clear are added to the
10664  * buf's list and any jnewblks that are being canceled are discarded
10665  * immediately.
10666  */
10667 void
10668 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10669 	struct mount *mp;
10670 	struct buf *bp;
10671 	ufs2_daddr_t blkno;
10672 	int frags;
10673 	struct workhead *wkhd;
10674 {
10675 	struct bmsafemap *bmsafemap;
10676 	struct jnewblk *jnewblk;
10677 	struct ufsmount *ump;
10678 	struct worklist *wk;
10679 	struct fs *fs;
10680 #ifdef SUJ_DEBUG
10681 	uint8_t *blksfree;
10682 	struct cg *cgp;
10683 	ufs2_daddr_t jstart;
10684 	ufs2_daddr_t jend;
10685 	ufs2_daddr_t end;
10686 	long bno;
10687 	int i;
10688 #endif
10689 
10690 	CTR3(KTR_SUJ,
10691 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10692 	    blkno, frags, wkhd);
10693 
10694 	ump = VFSTOUFS(mp);
10695 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10696 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10697 	ACQUIRE_LOCK(ump);
10698 	/* Lookup the bmsafemap so we track when it is dirty. */
10699 	fs = ump->um_fs;
10700 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10701 	/*
10702 	 * Detach any jnewblks which have been canceled.  They must linger
10703 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10704 	 * an unjournaled allocation from hitting the disk.
10705 	 */
10706 	if (wkhd) {
10707 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10708 			CTR2(KTR_SUJ,
10709 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10710 			    blkno, wk->wk_type);
10711 			WORKLIST_REMOVE(wk);
10712 			if (wk->wk_type != D_JNEWBLK) {
10713 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10714 				continue;
10715 			}
10716 			jnewblk = WK_JNEWBLK(wk);
10717 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10718 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10719 #ifdef SUJ_DEBUG
10720 			/*
10721 			 * Assert that this block is free in the bitmap
10722 			 * before we discard the jnewblk.
10723 			 */
10724 			cgp = (struct cg *)bp->b_data;
10725 			blksfree = cg_blksfree(cgp);
10726 			bno = dtogd(fs, jnewblk->jn_blkno);
10727 			for (i = jnewblk->jn_oldfrags;
10728 			    i < jnewblk->jn_frags; i++) {
10729 				if (isset(blksfree, bno + i))
10730 					continue;
10731 				panic("softdep_setup_blkfree: not free");
10732 			}
10733 #endif
10734 			/*
10735 			 * Even if it's not attached we can free immediately
10736 			 * as the new bitmap is correct.
10737 			 */
10738 			wk->wk_state |= COMPLETE | ATTACHED;
10739 			free_jnewblk(jnewblk);
10740 		}
10741 	}
10742 
10743 #ifdef SUJ_DEBUG
10744 	/*
10745 	 * Assert that we are not freeing a block which has an outstanding
10746 	 * allocation dependency.
10747 	 */
10748 	fs = VFSTOUFS(mp)->um_fs;
10749 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10750 	end = blkno + frags;
10751 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10752 		/*
10753 		 * Don't match against blocks that will be freed when the
10754 		 * background write is done.
10755 		 */
10756 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10757 		    (COMPLETE | DEPCOMPLETE))
10758 			continue;
10759 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10760 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10761 		if ((blkno >= jstart && blkno < jend) ||
10762 		    (end > jstart && end <= jend)) {
10763 			printf("state 0x%X %jd - %d %d dep %p\n",
10764 			    jnewblk->jn_state, jnewblk->jn_blkno,
10765 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10766 			    jnewblk->jn_dep);
10767 			panic("softdep_setup_blkfree: "
10768 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10769 			    blkno, end, frags, jstart, jend);
10770 		}
10771 	}
10772 #endif
10773 	FREE_LOCK(ump);
10774 }
10775 
10776 /*
10777  * Revert a block allocation when the journal record that describes it
10778  * is not yet written.
10779  */
10780 static int
10781 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10782 	struct jnewblk *jnewblk;
10783 	struct fs *fs;
10784 	struct cg *cgp;
10785 	uint8_t *blksfree;
10786 {
10787 	ufs1_daddr_t fragno;
10788 	long cgbno, bbase;
10789 	int frags, blk;
10790 	int i;
10791 
10792 	frags = 0;
10793 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10794 	/*
10795 	 * We have to test which frags need to be rolled back.  We may
10796 	 * be operating on a stale copy when doing background writes.
10797 	 */
10798 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10799 		if (isclr(blksfree, cgbno + i))
10800 			frags++;
10801 	if (frags == 0)
10802 		return (0);
10803 	/*
10804 	 * This is mostly ffs_blkfree() sans some validation and
10805 	 * superblock updates.
10806 	 */
10807 	if (frags == fs->fs_frag) {
10808 		fragno = fragstoblks(fs, cgbno);
10809 		ffs_setblock(fs, blksfree, fragno);
10810 		ffs_clusteracct(fs, cgp, fragno, 1);
10811 		cgp->cg_cs.cs_nbfree++;
10812 	} else {
10813 		cgbno += jnewblk->jn_oldfrags;
10814 		bbase = cgbno - fragnum(fs, cgbno);
10815 		/* Decrement the old frags.  */
10816 		blk = blkmap(fs, blksfree, bbase);
10817 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10818 		/* Deallocate the fragment */
10819 		for (i = 0; i < frags; i++)
10820 			setbit(blksfree, cgbno + i);
10821 		cgp->cg_cs.cs_nffree += frags;
10822 		/* Add back in counts associated with the new frags */
10823 		blk = blkmap(fs, blksfree, bbase);
10824 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10825 		/* If a complete block has been reassembled, account for it. */
10826 		fragno = fragstoblks(fs, bbase);
10827 		if (ffs_isblock(fs, blksfree, fragno)) {
10828 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10829 			ffs_clusteracct(fs, cgp, fragno, 1);
10830 			cgp->cg_cs.cs_nbfree++;
10831 		}
10832 	}
10833 	stat_jnewblk++;
10834 	jnewblk->jn_state &= ~ATTACHED;
10835 	jnewblk->jn_state |= UNDONE;
10836 
10837 	return (frags);
10838 }
10839 
10840 static void
10841 initiate_write_bmsafemap(bmsafemap, bp)
10842 	struct bmsafemap *bmsafemap;
10843 	struct buf *bp;			/* The cg block. */
10844 {
10845 	struct jaddref *jaddref;
10846 	struct jnewblk *jnewblk;
10847 	uint8_t *inosused;
10848 	uint8_t *blksfree;
10849 	struct cg *cgp;
10850 	struct fs *fs;
10851 	ino_t ino;
10852 
10853 	if (bmsafemap->sm_state & IOSTARTED)
10854 		return;
10855 	bmsafemap->sm_state |= IOSTARTED;
10856 	/*
10857 	 * Clear any inode allocations which are pending journal writes.
10858 	 */
10859 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10860 		cgp = (struct cg *)bp->b_data;
10861 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10862 		inosused = cg_inosused(cgp);
10863 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10864 			ino = jaddref->ja_ino % fs->fs_ipg;
10865 			if (isset(inosused, ino)) {
10866 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10867 					cgp->cg_cs.cs_ndir--;
10868 				cgp->cg_cs.cs_nifree++;
10869 				clrbit(inosused, ino);
10870 				jaddref->ja_state &= ~ATTACHED;
10871 				jaddref->ja_state |= UNDONE;
10872 				stat_jaddref++;
10873 			} else
10874 				panic("initiate_write_bmsafemap: inode %ju "
10875 				    "marked free", (uintmax_t)jaddref->ja_ino);
10876 		}
10877 	}
10878 	/*
10879 	 * Clear any block allocations which are pending journal writes.
10880 	 */
10881 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10882 		cgp = (struct cg *)bp->b_data;
10883 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10884 		blksfree = cg_blksfree(cgp);
10885 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10886 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10887 				continue;
10888 			panic("initiate_write_bmsafemap: block %jd "
10889 			    "marked free", jnewblk->jn_blkno);
10890 		}
10891 	}
10892 	/*
10893 	 * Move allocation lists to the written lists so they can be
10894 	 * cleared once the block write is complete.
10895 	 */
10896 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10897 	    inodedep, id_deps);
10898 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10899 	    newblk, nb_deps);
10900 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10901 	    wk_list);
10902 }
10903 
10904 /*
10905  * This routine is called during the completion interrupt
10906  * service routine for a disk write (from the procedure called
10907  * by the device driver to inform the filesystem caches of
10908  * a request completion).  It should be called early in this
10909  * procedure, before the block is made available to other
10910  * processes or other routines are called.
10911  *
10912  */
10913 static void
10914 softdep_disk_write_complete(bp)
10915 	struct buf *bp;		/* describes the completed disk write */
10916 {
10917 	struct worklist *wk;
10918 	struct worklist *owk;
10919 	struct ufsmount *ump;
10920 	struct workhead reattach;
10921 	struct freeblks *freeblks;
10922 	struct buf *sbp;
10923 
10924 	/*
10925 	 * If an error occurred while doing the write, then the data
10926 	 * has not hit the disk and the dependencies cannot be unrolled.
10927 	 */
10928 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10929 		return;
10930 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10931 		return;
10932 	ump = VFSTOUFS(wk->wk_mp);
10933 	LIST_INIT(&reattach);
10934 	/*
10935 	 * This lock must not be released anywhere in this code segment.
10936 	 */
10937 	sbp = NULL;
10938 	owk = NULL;
10939 	ACQUIRE_LOCK(ump);
10940 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10941 		WORKLIST_REMOVE(wk);
10942 		atomic_add_long(&dep_write[wk->wk_type], 1);
10943 		if (wk == owk)
10944 			panic("duplicate worklist: %p\n", wk);
10945 		owk = wk;
10946 		switch (wk->wk_type) {
10947 
10948 		case D_PAGEDEP:
10949 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10950 				WORKLIST_INSERT(&reattach, wk);
10951 			continue;
10952 
10953 		case D_INODEDEP:
10954 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10955 				WORKLIST_INSERT(&reattach, wk);
10956 			continue;
10957 
10958 		case D_BMSAFEMAP:
10959 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10960 				WORKLIST_INSERT(&reattach, wk);
10961 			continue;
10962 
10963 		case D_MKDIR:
10964 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10965 			continue;
10966 
10967 		case D_ALLOCDIRECT:
10968 			wk->wk_state |= COMPLETE;
10969 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10970 			continue;
10971 
10972 		case D_ALLOCINDIR:
10973 			wk->wk_state |= COMPLETE;
10974 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10975 			continue;
10976 
10977 		case D_INDIRDEP:
10978 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10979 				WORKLIST_INSERT(&reattach, wk);
10980 			continue;
10981 
10982 		case D_FREEBLKS:
10983 			wk->wk_state |= COMPLETE;
10984 			freeblks = WK_FREEBLKS(wk);
10985 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10986 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10987 				add_to_worklist(wk, WK_NODELAY);
10988 			continue;
10989 
10990 		case D_FREEWORK:
10991 			handle_written_freework(WK_FREEWORK(wk));
10992 			break;
10993 
10994 		case D_JSEGDEP:
10995 			free_jsegdep(WK_JSEGDEP(wk));
10996 			continue;
10997 
10998 		case D_JSEG:
10999 			handle_written_jseg(WK_JSEG(wk), bp);
11000 			continue;
11001 
11002 		case D_SBDEP:
11003 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11004 				WORKLIST_INSERT(&reattach, wk);
11005 			continue;
11006 
11007 		case D_FREEDEP:
11008 			free_freedep(WK_FREEDEP(wk));
11009 			continue;
11010 
11011 		default:
11012 			panic("handle_disk_write_complete: Unknown type %s",
11013 			    TYPENAME(wk->wk_type));
11014 			/* NOTREACHED */
11015 		}
11016 	}
11017 	/*
11018 	 * Reattach any requests that must be redone.
11019 	 */
11020 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11021 		WORKLIST_REMOVE(wk);
11022 		WORKLIST_INSERT(&bp->b_dep, wk);
11023 	}
11024 	FREE_LOCK(ump);
11025 	if (sbp)
11026 		brelse(sbp);
11027 }
11028 
11029 /*
11030  * Called from within softdep_disk_write_complete above. Note that
11031  * this routine is always called from interrupt level with further
11032  * splbio interrupts blocked.
11033  */
11034 static void
11035 handle_allocdirect_partdone(adp, wkhd)
11036 	struct allocdirect *adp;	/* the completed allocdirect */
11037 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11038 {
11039 	struct allocdirectlst *listhead;
11040 	struct allocdirect *listadp;
11041 	struct inodedep *inodedep;
11042 	long bsize;
11043 
11044 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11045 		return;
11046 	/*
11047 	 * The on-disk inode cannot claim to be any larger than the last
11048 	 * fragment that has been written. Otherwise, the on-disk inode
11049 	 * might have fragments that were not the last block in the file
11050 	 * which would corrupt the filesystem. Thus, we cannot free any
11051 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11052 	 * these blocks must be rolled back to zero before writing the inode.
11053 	 * We check the currently active set of allocdirects in id_inoupdt
11054 	 * or id_extupdt as appropriate.
11055 	 */
11056 	inodedep = adp->ad_inodedep;
11057 	bsize = inodedep->id_fs->fs_bsize;
11058 	if (adp->ad_state & EXTDATA)
11059 		listhead = &inodedep->id_extupdt;
11060 	else
11061 		listhead = &inodedep->id_inoupdt;
11062 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11063 		/* found our block */
11064 		if (listadp == adp)
11065 			break;
11066 		/* continue if ad_oldlbn is not a fragment */
11067 		if (listadp->ad_oldsize == 0 ||
11068 		    listadp->ad_oldsize == bsize)
11069 			continue;
11070 		/* hit a fragment */
11071 		return;
11072 	}
11073 	/*
11074 	 * If we have reached the end of the current list without
11075 	 * finding the just finished dependency, then it must be
11076 	 * on the future dependency list. Future dependencies cannot
11077 	 * be freed until they are moved to the current list.
11078 	 */
11079 	if (listadp == NULL) {
11080 #ifdef DEBUG
11081 		if (adp->ad_state & EXTDATA)
11082 			listhead = &inodedep->id_newextupdt;
11083 		else
11084 			listhead = &inodedep->id_newinoupdt;
11085 		TAILQ_FOREACH(listadp, listhead, ad_next)
11086 			/* found our block */
11087 			if (listadp == adp)
11088 				break;
11089 		if (listadp == NULL)
11090 			panic("handle_allocdirect_partdone: lost dep");
11091 #endif /* DEBUG */
11092 		return;
11093 	}
11094 	/*
11095 	 * If we have found the just finished dependency, then queue
11096 	 * it along with anything that follows it that is complete.
11097 	 * Since the pointer has not yet been written in the inode
11098 	 * as the dependency prevents it, place the allocdirect on the
11099 	 * bufwait list where it will be freed once the pointer is
11100 	 * valid.
11101 	 */
11102 	if (wkhd == NULL)
11103 		wkhd = &inodedep->id_bufwait;
11104 	for (; adp; adp = listadp) {
11105 		listadp = TAILQ_NEXT(adp, ad_next);
11106 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11107 			return;
11108 		TAILQ_REMOVE(listhead, adp, ad_next);
11109 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11110 	}
11111 }
11112 
11113 /*
11114  * Called from within softdep_disk_write_complete above.  This routine
11115  * completes successfully written allocindirs.
11116  */
11117 static void
11118 handle_allocindir_partdone(aip)
11119 	struct allocindir *aip;		/* the completed allocindir */
11120 {
11121 	struct indirdep *indirdep;
11122 
11123 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11124 		return;
11125 	indirdep = aip->ai_indirdep;
11126 	LIST_REMOVE(aip, ai_next);
11127 	/*
11128 	 * Don't set a pointer while the buffer is undergoing IO or while
11129 	 * we have active truncations.
11130 	 */
11131 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11132 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11133 		return;
11134 	}
11135 	if (indirdep->ir_state & UFS1FMT)
11136 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11137 		    aip->ai_newblkno;
11138 	else
11139 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11140 		    aip->ai_newblkno;
11141 	/*
11142 	 * Await the pointer write before freeing the allocindir.
11143 	 */
11144 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11145 }
11146 
11147 /*
11148  * Release segments held on a jwork list.
11149  */
11150 static void
11151 handle_jwork(wkhd)
11152 	struct workhead *wkhd;
11153 {
11154 	struct worklist *wk;
11155 
11156 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11157 		WORKLIST_REMOVE(wk);
11158 		switch (wk->wk_type) {
11159 		case D_JSEGDEP:
11160 			free_jsegdep(WK_JSEGDEP(wk));
11161 			continue;
11162 		case D_FREEDEP:
11163 			free_freedep(WK_FREEDEP(wk));
11164 			continue;
11165 		case D_FREEFRAG:
11166 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11167 			WORKITEM_FREE(wk, D_FREEFRAG);
11168 			continue;
11169 		case D_FREEWORK:
11170 			handle_written_freework(WK_FREEWORK(wk));
11171 			continue;
11172 		default:
11173 			panic("handle_jwork: Unknown type %s\n",
11174 			    TYPENAME(wk->wk_type));
11175 		}
11176 	}
11177 }
11178 
11179 /*
11180  * Handle the bufwait list on an inode when it is safe to release items
11181  * held there.  This normally happens after an inode block is written but
11182  * may be delayed and handled later if there are pending journal items that
11183  * are not yet safe to be released.
11184  */
11185 static struct freefile *
11186 handle_bufwait(inodedep, refhd)
11187 	struct inodedep *inodedep;
11188 	struct workhead *refhd;
11189 {
11190 	struct jaddref *jaddref;
11191 	struct freefile *freefile;
11192 	struct worklist *wk;
11193 
11194 	freefile = NULL;
11195 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11196 		WORKLIST_REMOVE(wk);
11197 		switch (wk->wk_type) {
11198 		case D_FREEFILE:
11199 			/*
11200 			 * We defer adding freefile to the worklist
11201 			 * until all other additions have been made to
11202 			 * ensure that it will be done after all the
11203 			 * old blocks have been freed.
11204 			 */
11205 			if (freefile != NULL)
11206 				panic("handle_bufwait: freefile");
11207 			freefile = WK_FREEFILE(wk);
11208 			continue;
11209 
11210 		case D_MKDIR:
11211 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11212 			continue;
11213 
11214 		case D_DIRADD:
11215 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11216 			continue;
11217 
11218 		case D_FREEFRAG:
11219 			wk->wk_state |= COMPLETE;
11220 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11221 				add_to_worklist(wk, 0);
11222 			continue;
11223 
11224 		case D_DIRREM:
11225 			wk->wk_state |= COMPLETE;
11226 			add_to_worklist(wk, 0);
11227 			continue;
11228 
11229 		case D_ALLOCDIRECT:
11230 		case D_ALLOCINDIR:
11231 			free_newblk(WK_NEWBLK(wk));
11232 			continue;
11233 
11234 		case D_JNEWBLK:
11235 			wk->wk_state |= COMPLETE;
11236 			free_jnewblk(WK_JNEWBLK(wk));
11237 			continue;
11238 
11239 		/*
11240 		 * Save freed journal segments and add references on
11241 		 * the supplied list which will delay their release
11242 		 * until the cg bitmap is cleared on disk.
11243 		 */
11244 		case D_JSEGDEP:
11245 			if (refhd == NULL)
11246 				free_jsegdep(WK_JSEGDEP(wk));
11247 			else
11248 				WORKLIST_INSERT(refhd, wk);
11249 			continue;
11250 
11251 		case D_JADDREF:
11252 			jaddref = WK_JADDREF(wk);
11253 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11254 			    if_deps);
11255 			/*
11256 			 * Transfer any jaddrefs to the list to be freed with
11257 			 * the bitmap if we're handling a removed file.
11258 			 */
11259 			if (refhd == NULL) {
11260 				wk->wk_state |= COMPLETE;
11261 				free_jaddref(jaddref);
11262 			} else
11263 				WORKLIST_INSERT(refhd, wk);
11264 			continue;
11265 
11266 		default:
11267 			panic("handle_bufwait: Unknown type %p(%s)",
11268 			    wk, TYPENAME(wk->wk_type));
11269 			/* NOTREACHED */
11270 		}
11271 	}
11272 	return (freefile);
11273 }
11274 /*
11275  * Called from within softdep_disk_write_complete above to restore
11276  * in-memory inode block contents to their most up-to-date state. Note
11277  * that this routine is always called from interrupt level with further
11278  * splbio interrupts blocked.
11279  */
11280 static int
11281 handle_written_inodeblock(inodedep, bp)
11282 	struct inodedep *inodedep;
11283 	struct buf *bp;		/* buffer containing the inode block */
11284 {
11285 	struct freefile *freefile;
11286 	struct allocdirect *adp, *nextadp;
11287 	struct ufs1_dinode *dp1 = NULL;
11288 	struct ufs2_dinode *dp2 = NULL;
11289 	struct workhead wkhd;
11290 	int hadchanges, fstype;
11291 	ino_t freelink;
11292 
11293 	LIST_INIT(&wkhd);
11294 	hadchanges = 0;
11295 	freefile = NULL;
11296 	if ((inodedep->id_state & IOSTARTED) == 0)
11297 		panic("handle_written_inodeblock: not started");
11298 	inodedep->id_state &= ~IOSTARTED;
11299 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11300 		fstype = UFS1;
11301 		dp1 = (struct ufs1_dinode *)bp->b_data +
11302 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11303 		freelink = dp1->di_freelink;
11304 	} else {
11305 		fstype = UFS2;
11306 		dp2 = (struct ufs2_dinode *)bp->b_data +
11307 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11308 		freelink = dp2->di_freelink;
11309 	}
11310 	/*
11311 	 * Leave this inodeblock dirty until it's in the list.
11312 	 */
11313 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11314 		struct inodedep *inon;
11315 
11316 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11317 		if ((inon == NULL && freelink == 0) ||
11318 		    (inon && inon->id_ino == freelink)) {
11319 			if (inon)
11320 				inon->id_state |= UNLINKPREV;
11321 			inodedep->id_state |= UNLINKNEXT;
11322 		}
11323 		hadchanges = 1;
11324 	}
11325 	/*
11326 	 * If we had to rollback the inode allocation because of
11327 	 * bitmaps being incomplete, then simply restore it.
11328 	 * Keep the block dirty so that it will not be reclaimed until
11329 	 * all associated dependencies have been cleared and the
11330 	 * corresponding updates written to disk.
11331 	 */
11332 	if (inodedep->id_savedino1 != NULL) {
11333 		hadchanges = 1;
11334 		if (fstype == UFS1)
11335 			*dp1 = *inodedep->id_savedino1;
11336 		else
11337 			*dp2 = *inodedep->id_savedino2;
11338 		free(inodedep->id_savedino1, M_SAVEDINO);
11339 		inodedep->id_savedino1 = NULL;
11340 		if ((bp->b_flags & B_DELWRI) == 0)
11341 			stat_inode_bitmap++;
11342 		bdirty(bp);
11343 		/*
11344 		 * If the inode is clear here and GOINGAWAY it will never
11345 		 * be written.  Process the bufwait and clear any pending
11346 		 * work which may include the freefile.
11347 		 */
11348 		if (inodedep->id_state & GOINGAWAY)
11349 			goto bufwait;
11350 		return (1);
11351 	}
11352 	inodedep->id_state |= COMPLETE;
11353 	/*
11354 	 * Roll forward anything that had to be rolled back before
11355 	 * the inode could be updated.
11356 	 */
11357 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11358 		nextadp = TAILQ_NEXT(adp, ad_next);
11359 		if (adp->ad_state & ATTACHED)
11360 			panic("handle_written_inodeblock: new entry");
11361 		if (fstype == UFS1) {
11362 			if (adp->ad_offset < NDADDR) {
11363 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11364 					panic("%s %s #%jd mismatch %d != %jd",
11365 					    "handle_written_inodeblock:",
11366 					    "direct pointer",
11367 					    (intmax_t)adp->ad_offset,
11368 					    dp1->di_db[adp->ad_offset],
11369 					    (intmax_t)adp->ad_oldblkno);
11370 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11371 			} else {
11372 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11373 					panic("%s: %s #%jd allocated as %d",
11374 					    "handle_written_inodeblock",
11375 					    "indirect pointer",
11376 					    (intmax_t)adp->ad_offset - NDADDR,
11377 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11378 				dp1->di_ib[adp->ad_offset - NDADDR] =
11379 				    adp->ad_newblkno;
11380 			}
11381 		} else {
11382 			if (adp->ad_offset < NDADDR) {
11383 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11384 					panic("%s: %s #%jd %s %jd != %jd",
11385 					    "handle_written_inodeblock",
11386 					    "direct pointer",
11387 					    (intmax_t)adp->ad_offset, "mismatch",
11388 					    (intmax_t)dp2->di_db[adp->ad_offset],
11389 					    (intmax_t)adp->ad_oldblkno);
11390 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11391 			} else {
11392 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11393 					panic("%s: %s #%jd allocated as %jd",
11394 					    "handle_written_inodeblock",
11395 					    "indirect pointer",
11396 					    (intmax_t)adp->ad_offset - NDADDR,
11397 					    (intmax_t)
11398 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11399 				dp2->di_ib[adp->ad_offset - NDADDR] =
11400 				    adp->ad_newblkno;
11401 			}
11402 		}
11403 		adp->ad_state &= ~UNDONE;
11404 		adp->ad_state |= ATTACHED;
11405 		hadchanges = 1;
11406 	}
11407 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11408 		nextadp = TAILQ_NEXT(adp, ad_next);
11409 		if (adp->ad_state & ATTACHED)
11410 			panic("handle_written_inodeblock: new entry");
11411 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11412 			panic("%s: direct pointers #%jd %s %jd != %jd",
11413 			    "handle_written_inodeblock",
11414 			    (intmax_t)adp->ad_offset, "mismatch",
11415 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11416 			    (intmax_t)adp->ad_oldblkno);
11417 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11418 		adp->ad_state &= ~UNDONE;
11419 		adp->ad_state |= ATTACHED;
11420 		hadchanges = 1;
11421 	}
11422 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11423 		stat_direct_blk_ptrs++;
11424 	/*
11425 	 * Reset the file size to its most up-to-date value.
11426 	 */
11427 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11428 		panic("handle_written_inodeblock: bad size");
11429 	if (inodedep->id_savednlink > LINK_MAX)
11430 		panic("handle_written_inodeblock: Invalid link count "
11431 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11432 	if (fstype == UFS1) {
11433 		if (dp1->di_nlink != inodedep->id_savednlink) {
11434 			dp1->di_nlink = inodedep->id_savednlink;
11435 			hadchanges = 1;
11436 		}
11437 		if (dp1->di_size != inodedep->id_savedsize) {
11438 			dp1->di_size = inodedep->id_savedsize;
11439 			hadchanges = 1;
11440 		}
11441 	} else {
11442 		if (dp2->di_nlink != inodedep->id_savednlink) {
11443 			dp2->di_nlink = inodedep->id_savednlink;
11444 			hadchanges = 1;
11445 		}
11446 		if (dp2->di_size != inodedep->id_savedsize) {
11447 			dp2->di_size = inodedep->id_savedsize;
11448 			hadchanges = 1;
11449 		}
11450 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11451 			dp2->di_extsize = inodedep->id_savedextsize;
11452 			hadchanges = 1;
11453 		}
11454 	}
11455 	inodedep->id_savedsize = -1;
11456 	inodedep->id_savedextsize = -1;
11457 	inodedep->id_savednlink = -1;
11458 	/*
11459 	 * If there were any rollbacks in the inode block, then it must be
11460 	 * marked dirty so that its will eventually get written back in
11461 	 * its correct form.
11462 	 */
11463 	if (hadchanges)
11464 		bdirty(bp);
11465 bufwait:
11466 	/*
11467 	 * Process any allocdirects that completed during the update.
11468 	 */
11469 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11470 		handle_allocdirect_partdone(adp, &wkhd);
11471 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11472 		handle_allocdirect_partdone(adp, &wkhd);
11473 	/*
11474 	 * Process deallocations that were held pending until the
11475 	 * inode had been written to disk. Freeing of the inode
11476 	 * is delayed until after all blocks have been freed to
11477 	 * avoid creation of new <vfsid, inum, lbn> triples
11478 	 * before the old ones have been deleted.  Completely
11479 	 * unlinked inodes are not processed until the unlinked
11480 	 * inode list is written or the last reference is removed.
11481 	 */
11482 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11483 		freefile = handle_bufwait(inodedep, NULL);
11484 		if (freefile && !LIST_EMPTY(&wkhd)) {
11485 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11486 			freefile = NULL;
11487 		}
11488 	}
11489 	/*
11490 	 * Move rolled forward dependency completions to the bufwait list
11491 	 * now that those that were already written have been processed.
11492 	 */
11493 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11494 		panic("handle_written_inodeblock: bufwait but no changes");
11495 	jwork_move(&inodedep->id_bufwait, &wkhd);
11496 
11497 	if (freefile != NULL) {
11498 		/*
11499 		 * If the inode is goingaway it was never written.  Fake up
11500 		 * the state here so free_inodedep() can succeed.
11501 		 */
11502 		if (inodedep->id_state & GOINGAWAY)
11503 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11504 		if (free_inodedep(inodedep) == 0)
11505 			panic("handle_written_inodeblock: live inodedep %p",
11506 			    inodedep);
11507 		add_to_worklist(&freefile->fx_list, 0);
11508 		return (0);
11509 	}
11510 
11511 	/*
11512 	 * If no outstanding dependencies, free it.
11513 	 */
11514 	if (free_inodedep(inodedep) ||
11515 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11516 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11517 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11518 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11519 		return (0);
11520 	return (hadchanges);
11521 }
11522 
11523 static int
11524 handle_written_indirdep(indirdep, bp, bpp)
11525 	struct indirdep *indirdep;
11526 	struct buf *bp;
11527 	struct buf **bpp;
11528 {
11529 	struct allocindir *aip;
11530 	struct buf *sbp;
11531 	int chgs;
11532 
11533 	if (indirdep->ir_state & GOINGAWAY)
11534 		panic("handle_written_indirdep: indirdep gone");
11535 	if ((indirdep->ir_state & IOSTARTED) == 0)
11536 		panic("handle_written_indirdep: IO not started");
11537 	chgs = 0;
11538 	/*
11539 	 * If there were rollbacks revert them here.
11540 	 */
11541 	if (indirdep->ir_saveddata) {
11542 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11543 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11544 			free(indirdep->ir_saveddata, M_INDIRDEP);
11545 			indirdep->ir_saveddata = NULL;
11546 		}
11547 		chgs = 1;
11548 	}
11549 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11550 	indirdep->ir_state |= ATTACHED;
11551 	/*
11552 	 * Move allocindirs with written pointers to the completehd if
11553 	 * the indirdep's pointer is not yet written.  Otherwise
11554 	 * free them here.
11555 	 */
11556 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11557 		LIST_REMOVE(aip, ai_next);
11558 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11559 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11560 			    ai_next);
11561 			newblk_freefrag(&aip->ai_block);
11562 			continue;
11563 		}
11564 		free_newblk(&aip->ai_block);
11565 	}
11566 	/*
11567 	 * Move allocindirs that have finished dependency processing from
11568 	 * the done list to the write list after updating the pointers.
11569 	 */
11570 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11571 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11572 			handle_allocindir_partdone(aip);
11573 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11574 				panic("disk_write_complete: not gone");
11575 			chgs = 1;
11576 		}
11577 	}
11578 	/*
11579 	 * Preserve the indirdep if there were any changes or if it is not
11580 	 * yet valid on disk.
11581 	 */
11582 	if (chgs) {
11583 		stat_indir_blk_ptrs++;
11584 		bdirty(bp);
11585 		return (1);
11586 	}
11587 	/*
11588 	 * If there were no changes we can discard the savedbp and detach
11589 	 * ourselves from the buf.  We are only carrying completed pointers
11590 	 * in this case.
11591 	 */
11592 	sbp = indirdep->ir_savebp;
11593 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11594 	indirdep->ir_savebp = NULL;
11595 	indirdep->ir_bp = NULL;
11596 	if (*bpp != NULL)
11597 		panic("handle_written_indirdep: bp already exists.");
11598 	*bpp = sbp;
11599 	/*
11600 	 * The indirdep may not be freed until its parent points at it.
11601 	 */
11602 	if (indirdep->ir_state & DEPCOMPLETE)
11603 		free_indirdep(indirdep);
11604 
11605 	return (0);
11606 }
11607 
11608 /*
11609  * Process a diradd entry after its dependent inode has been written.
11610  * This routine must be called with splbio interrupts blocked.
11611  */
11612 static void
11613 diradd_inode_written(dap, inodedep)
11614 	struct diradd *dap;
11615 	struct inodedep *inodedep;
11616 {
11617 
11618 	dap->da_state |= COMPLETE;
11619 	complete_diradd(dap);
11620 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11621 }
11622 
11623 /*
11624  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11625  * be called with the per-filesystem lock and the buf lock on the cg held.
11626  */
11627 static int
11628 bmsafemap_backgroundwrite(bmsafemap, bp)
11629 	struct bmsafemap *bmsafemap;
11630 	struct buf *bp;
11631 {
11632 	int dirty;
11633 
11634 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11635 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11636 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11637 	/*
11638 	 * If we're initiating a background write we need to process the
11639 	 * rollbacks as they exist now, not as they exist when IO starts.
11640 	 * No other consumers will look at the contents of the shadowed
11641 	 * buf so this is safe to do here.
11642 	 */
11643 	if (bp->b_xflags & BX_BKGRDMARKER)
11644 		initiate_write_bmsafemap(bmsafemap, bp);
11645 
11646 	return (dirty);
11647 }
11648 
11649 /*
11650  * Re-apply an allocation when a cg write is complete.
11651  */
11652 static int
11653 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11654 	struct jnewblk *jnewblk;
11655 	struct fs *fs;
11656 	struct cg *cgp;
11657 	uint8_t *blksfree;
11658 {
11659 	ufs1_daddr_t fragno;
11660 	ufs2_daddr_t blkno;
11661 	long cgbno, bbase;
11662 	int frags, blk;
11663 	int i;
11664 
11665 	frags = 0;
11666 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11667 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11668 		if (isclr(blksfree, cgbno + i))
11669 			panic("jnewblk_rollforward: re-allocated fragment");
11670 		frags++;
11671 	}
11672 	if (frags == fs->fs_frag) {
11673 		blkno = fragstoblks(fs, cgbno);
11674 		ffs_clrblock(fs, blksfree, (long)blkno);
11675 		ffs_clusteracct(fs, cgp, blkno, -1);
11676 		cgp->cg_cs.cs_nbfree--;
11677 	} else {
11678 		bbase = cgbno - fragnum(fs, cgbno);
11679 		cgbno += jnewblk->jn_oldfrags;
11680                 /* If a complete block had been reassembled, account for it. */
11681 		fragno = fragstoblks(fs, bbase);
11682 		if (ffs_isblock(fs, blksfree, fragno)) {
11683 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11684 			ffs_clusteracct(fs, cgp, fragno, -1);
11685 			cgp->cg_cs.cs_nbfree--;
11686 		}
11687 		/* Decrement the old frags.  */
11688 		blk = blkmap(fs, blksfree, bbase);
11689 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11690 		/* Allocate the fragment */
11691 		for (i = 0; i < frags; i++)
11692 			clrbit(blksfree, cgbno + i);
11693 		cgp->cg_cs.cs_nffree -= frags;
11694 		/* Add back in counts associated with the new frags */
11695 		blk = blkmap(fs, blksfree, bbase);
11696 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11697 	}
11698 	return (frags);
11699 }
11700 
11701 /*
11702  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11703  * changes if it's not a background write.  Set all written dependencies
11704  * to DEPCOMPLETE and free the structure if possible.
11705  */
11706 static int
11707 handle_written_bmsafemap(bmsafemap, bp)
11708 	struct bmsafemap *bmsafemap;
11709 	struct buf *bp;
11710 {
11711 	struct newblk *newblk;
11712 	struct inodedep *inodedep;
11713 	struct jaddref *jaddref, *jatmp;
11714 	struct jnewblk *jnewblk, *jntmp;
11715 	struct ufsmount *ump;
11716 	uint8_t *inosused;
11717 	uint8_t *blksfree;
11718 	struct cg *cgp;
11719 	struct fs *fs;
11720 	ino_t ino;
11721 	int foreground;
11722 	int chgs;
11723 
11724 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11725 		panic("initiate_write_bmsafemap: Not started\n");
11726 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11727 	chgs = 0;
11728 	bmsafemap->sm_state &= ~IOSTARTED;
11729 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11730 	/*
11731 	 * Release journal work that was waiting on the write.
11732 	 */
11733 	handle_jwork(&bmsafemap->sm_freewr);
11734 
11735 	/*
11736 	 * Restore unwritten inode allocation pending jaddref writes.
11737 	 */
11738 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11739 		cgp = (struct cg *)bp->b_data;
11740 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11741 		inosused = cg_inosused(cgp);
11742 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11743 		    ja_bmdeps, jatmp) {
11744 			if ((jaddref->ja_state & UNDONE) == 0)
11745 				continue;
11746 			ino = jaddref->ja_ino % fs->fs_ipg;
11747 			if (isset(inosused, ino))
11748 				panic("handle_written_bmsafemap: "
11749 				    "re-allocated inode");
11750 			/* Do the roll-forward only if it's a real copy. */
11751 			if (foreground) {
11752 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11753 					cgp->cg_cs.cs_ndir++;
11754 				cgp->cg_cs.cs_nifree--;
11755 				setbit(inosused, ino);
11756 				chgs = 1;
11757 			}
11758 			jaddref->ja_state &= ~UNDONE;
11759 			jaddref->ja_state |= ATTACHED;
11760 			free_jaddref(jaddref);
11761 		}
11762 	}
11763 	/*
11764 	 * Restore any block allocations which are pending journal writes.
11765 	 */
11766 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11767 		cgp = (struct cg *)bp->b_data;
11768 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11769 		blksfree = cg_blksfree(cgp);
11770 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11771 		    jntmp) {
11772 			if ((jnewblk->jn_state & UNDONE) == 0)
11773 				continue;
11774 			/* Do the roll-forward only if it's a real copy. */
11775 			if (foreground &&
11776 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11777 				chgs = 1;
11778 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11779 			jnewblk->jn_state |= ATTACHED;
11780 			free_jnewblk(jnewblk);
11781 		}
11782 	}
11783 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11784 		newblk->nb_state |= DEPCOMPLETE;
11785 		newblk->nb_state &= ~ONDEPLIST;
11786 		newblk->nb_bmsafemap = NULL;
11787 		LIST_REMOVE(newblk, nb_deps);
11788 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11789 			handle_allocdirect_partdone(
11790 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11791 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11792 			handle_allocindir_partdone(
11793 			    WK_ALLOCINDIR(&newblk->nb_list));
11794 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11795 			panic("handle_written_bmsafemap: Unexpected type: %s",
11796 			    TYPENAME(newblk->nb_list.wk_type));
11797 	}
11798 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11799 		inodedep->id_state |= DEPCOMPLETE;
11800 		inodedep->id_state &= ~ONDEPLIST;
11801 		LIST_REMOVE(inodedep, id_deps);
11802 		inodedep->id_bmsafemap = NULL;
11803 	}
11804 	LIST_REMOVE(bmsafemap, sm_next);
11805 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11806 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11807 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11808 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11809 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11810 		LIST_REMOVE(bmsafemap, sm_hash);
11811 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11812 		return (0);
11813 	}
11814 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11815 	if (foreground)
11816 		bdirty(bp);
11817 	return (1);
11818 }
11819 
11820 /*
11821  * Try to free a mkdir dependency.
11822  */
11823 static void
11824 complete_mkdir(mkdir)
11825 	struct mkdir *mkdir;
11826 {
11827 	struct diradd *dap;
11828 
11829 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11830 		return;
11831 	LIST_REMOVE(mkdir, md_mkdirs);
11832 	dap = mkdir->md_diradd;
11833 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11834 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11835 		dap->da_state |= DEPCOMPLETE;
11836 		complete_diradd(dap);
11837 	}
11838 	WORKITEM_FREE(mkdir, D_MKDIR);
11839 }
11840 
11841 /*
11842  * Handle the completion of a mkdir dependency.
11843  */
11844 static void
11845 handle_written_mkdir(mkdir, type)
11846 	struct mkdir *mkdir;
11847 	int type;
11848 {
11849 
11850 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11851 		panic("handle_written_mkdir: bad type");
11852 	mkdir->md_state |= COMPLETE;
11853 	complete_mkdir(mkdir);
11854 }
11855 
11856 static int
11857 free_pagedep(pagedep)
11858 	struct pagedep *pagedep;
11859 {
11860 	int i;
11861 
11862 	if (pagedep->pd_state & NEWBLOCK)
11863 		return (0);
11864 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11865 		return (0);
11866 	for (i = 0; i < DAHASHSZ; i++)
11867 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11868 			return (0);
11869 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11870 		return (0);
11871 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11872 		return (0);
11873 	if (pagedep->pd_state & ONWORKLIST)
11874 		WORKLIST_REMOVE(&pagedep->pd_list);
11875 	LIST_REMOVE(pagedep, pd_hash);
11876 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11877 
11878 	return (1);
11879 }
11880 
11881 /*
11882  * Called from within softdep_disk_write_complete above.
11883  * A write operation was just completed. Removed inodes can
11884  * now be freed and associated block pointers may be committed.
11885  * Note that this routine is always called from interrupt level
11886  * with further splbio interrupts blocked.
11887  */
11888 static int
11889 handle_written_filepage(pagedep, bp)
11890 	struct pagedep *pagedep;
11891 	struct buf *bp;		/* buffer containing the written page */
11892 {
11893 	struct dirrem *dirrem;
11894 	struct diradd *dap, *nextdap;
11895 	struct direct *ep;
11896 	int i, chgs;
11897 
11898 	if ((pagedep->pd_state & IOSTARTED) == 0)
11899 		panic("handle_written_filepage: not started");
11900 	pagedep->pd_state &= ~IOSTARTED;
11901 	/*
11902 	 * Process any directory removals that have been committed.
11903 	 */
11904 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11905 		LIST_REMOVE(dirrem, dm_next);
11906 		dirrem->dm_state |= COMPLETE;
11907 		dirrem->dm_dirinum = pagedep->pd_ino;
11908 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11909 		    ("handle_written_filepage: Journal entries not written."));
11910 		add_to_worklist(&dirrem->dm_list, 0);
11911 	}
11912 	/*
11913 	 * Free any directory additions that have been committed.
11914 	 * If it is a newly allocated block, we have to wait until
11915 	 * the on-disk directory inode claims the new block.
11916 	 */
11917 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11918 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11919 			free_diradd(dap, NULL);
11920 	/*
11921 	 * Uncommitted directory entries must be restored.
11922 	 */
11923 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11924 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11925 		     dap = nextdap) {
11926 			nextdap = LIST_NEXT(dap, da_pdlist);
11927 			if (dap->da_state & ATTACHED)
11928 				panic("handle_written_filepage: attached");
11929 			ep = (struct direct *)
11930 			    ((char *)bp->b_data + dap->da_offset);
11931 			ep->d_ino = dap->da_newinum;
11932 			dap->da_state &= ~UNDONE;
11933 			dap->da_state |= ATTACHED;
11934 			chgs = 1;
11935 			/*
11936 			 * If the inode referenced by the directory has
11937 			 * been written out, then the dependency can be
11938 			 * moved to the pending list.
11939 			 */
11940 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11941 				LIST_REMOVE(dap, da_pdlist);
11942 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11943 				    da_pdlist);
11944 			}
11945 		}
11946 	}
11947 	/*
11948 	 * If there were any rollbacks in the directory, then it must be
11949 	 * marked dirty so that its will eventually get written back in
11950 	 * its correct form.
11951 	 */
11952 	if (chgs) {
11953 		if ((bp->b_flags & B_DELWRI) == 0)
11954 			stat_dir_entry++;
11955 		bdirty(bp);
11956 		return (1);
11957 	}
11958 	/*
11959 	 * If we are not waiting for a new directory block to be
11960 	 * claimed by its inode, then the pagedep will be freed.
11961 	 * Otherwise it will remain to track any new entries on
11962 	 * the page in case they are fsync'ed.
11963 	 */
11964 	free_pagedep(pagedep);
11965 	return (0);
11966 }
11967 
11968 /*
11969  * Writing back in-core inode structures.
11970  *
11971  * The filesystem only accesses an inode's contents when it occupies an
11972  * "in-core" inode structure.  These "in-core" structures are separate from
11973  * the page frames used to cache inode blocks.  Only the latter are
11974  * transferred to/from the disk.  So, when the updated contents of the
11975  * "in-core" inode structure are copied to the corresponding in-memory inode
11976  * block, the dependencies are also transferred.  The following procedure is
11977  * called when copying a dirty "in-core" inode to a cached inode block.
11978  */
11979 
11980 /*
11981  * Called when an inode is loaded from disk. If the effective link count
11982  * differed from the actual link count when it was last flushed, then we
11983  * need to ensure that the correct effective link count is put back.
11984  */
11985 void
11986 softdep_load_inodeblock(ip)
11987 	struct inode *ip;	/* the "in_core" copy of the inode */
11988 {
11989 	struct inodedep *inodedep;
11990 
11991 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
11992 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
11993 	/*
11994 	 * Check for alternate nlink count.
11995 	 */
11996 	ip->i_effnlink = ip->i_nlink;
11997 	ACQUIRE_LOCK(ip->i_ump);
11998 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11999 	    &inodedep) == 0) {
12000 		FREE_LOCK(ip->i_ump);
12001 		return;
12002 	}
12003 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12004 	FREE_LOCK(ip->i_ump);
12005 }
12006 
12007 /*
12008  * This routine is called just before the "in-core" inode
12009  * information is to be copied to the in-memory inode block.
12010  * Recall that an inode block contains several inodes. If
12011  * the force flag is set, then the dependencies will be
12012  * cleared so that the update can always be made. Note that
12013  * the buffer is locked when this routine is called, so we
12014  * will never be in the middle of writing the inode block
12015  * to disk.
12016  */
12017 void
12018 softdep_update_inodeblock(ip, bp, waitfor)
12019 	struct inode *ip;	/* the "in_core" copy of the inode */
12020 	struct buf *bp;		/* the buffer containing the inode block */
12021 	int waitfor;		/* nonzero => update must be allowed */
12022 {
12023 	struct inodedep *inodedep;
12024 	struct inoref *inoref;
12025 	struct ufsmount *ump;
12026 	struct worklist *wk;
12027 	struct mount *mp;
12028 	struct buf *ibp;
12029 	struct fs *fs;
12030 	int error;
12031 
12032 	ump = ip->i_ump;
12033 	mp = UFSTOVFS(ump);
12034 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12035 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12036 	fs = ip->i_fs;
12037 	/*
12038 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12039 	 * does not have access to the in-core ip so must write directly into
12040 	 * the inode block buffer when setting freelink.
12041 	 */
12042 	if (fs->fs_magic == FS_UFS1_MAGIC)
12043 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12044 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12045 	else
12046 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12047 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12048 	/*
12049 	 * If the effective link count is not equal to the actual link
12050 	 * count, then we must track the difference in an inodedep while
12051 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12052 	 * if there is no existing inodedep, then there are no dependencies
12053 	 * to track.
12054 	 */
12055 	ACQUIRE_LOCK(ump);
12056 again:
12057 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12058 		FREE_LOCK(ump);
12059 		if (ip->i_effnlink != ip->i_nlink)
12060 			panic("softdep_update_inodeblock: bad link count");
12061 		return;
12062 	}
12063 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12064 		panic("softdep_update_inodeblock: bad delta");
12065 	/*
12066 	 * If we're flushing all dependencies we must also move any waiting
12067 	 * for journal writes onto the bufwait list prior to I/O.
12068 	 */
12069 	if (waitfor) {
12070 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12071 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12072 			    == DEPCOMPLETE) {
12073 				jwait(&inoref->if_list, MNT_WAIT);
12074 				goto again;
12075 			}
12076 		}
12077 	}
12078 	/*
12079 	 * Changes have been initiated. Anything depending on these
12080 	 * changes cannot occur until this inode has been written.
12081 	 */
12082 	inodedep->id_state &= ~COMPLETE;
12083 	if ((inodedep->id_state & ONWORKLIST) == 0)
12084 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12085 	/*
12086 	 * Any new dependencies associated with the incore inode must
12087 	 * now be moved to the list associated with the buffer holding
12088 	 * the in-memory copy of the inode. Once merged process any
12089 	 * allocdirects that are completed by the merger.
12090 	 */
12091 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12092 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12093 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12094 		    NULL);
12095 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12096 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12097 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12098 		    NULL);
12099 	/*
12100 	 * Now that the inode has been pushed into the buffer, the
12101 	 * operations dependent on the inode being written to disk
12102 	 * can be moved to the id_bufwait so that they will be
12103 	 * processed when the buffer I/O completes.
12104 	 */
12105 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12106 		WORKLIST_REMOVE(wk);
12107 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12108 	}
12109 	/*
12110 	 * Newly allocated inodes cannot be written until the bitmap
12111 	 * that allocates them have been written (indicated by
12112 	 * DEPCOMPLETE being set in id_state). If we are doing a
12113 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12114 	 * to be written so that the update can be done.
12115 	 */
12116 	if (waitfor == 0) {
12117 		FREE_LOCK(ump);
12118 		return;
12119 	}
12120 retry:
12121 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12122 		FREE_LOCK(ump);
12123 		return;
12124 	}
12125 	ibp = inodedep->id_bmsafemap->sm_buf;
12126 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12127 	if (ibp == NULL) {
12128 		/*
12129 		 * If ibp came back as NULL, the dependency could have been
12130 		 * freed while we slept.  Look it up again, and check to see
12131 		 * that it has completed.
12132 		 */
12133 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12134 			goto retry;
12135 		FREE_LOCK(ump);
12136 		return;
12137 	}
12138 	FREE_LOCK(ump);
12139 	if ((error = bwrite(ibp)) != 0)
12140 		softdep_error("softdep_update_inodeblock: bwrite", error);
12141 }
12142 
12143 /*
12144  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12145  * old inode dependency list (such as id_inoupdt). This routine must be
12146  * called with splbio interrupts blocked.
12147  */
12148 static void
12149 merge_inode_lists(newlisthead, oldlisthead)
12150 	struct allocdirectlst *newlisthead;
12151 	struct allocdirectlst *oldlisthead;
12152 {
12153 	struct allocdirect *listadp, *newadp;
12154 
12155 	newadp = TAILQ_FIRST(newlisthead);
12156 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12157 		if (listadp->ad_offset < newadp->ad_offset) {
12158 			listadp = TAILQ_NEXT(listadp, ad_next);
12159 			continue;
12160 		}
12161 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12162 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12163 		if (listadp->ad_offset == newadp->ad_offset) {
12164 			allocdirect_merge(oldlisthead, newadp,
12165 			    listadp);
12166 			listadp = newadp;
12167 		}
12168 		newadp = TAILQ_FIRST(newlisthead);
12169 	}
12170 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12171 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12172 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12173 	}
12174 }
12175 
12176 /*
12177  * If we are doing an fsync, then we must ensure that any directory
12178  * entries for the inode have been written after the inode gets to disk.
12179  */
12180 int
12181 softdep_fsync(vp)
12182 	struct vnode *vp;	/* the "in_core" copy of the inode */
12183 {
12184 	struct inodedep *inodedep;
12185 	struct pagedep *pagedep;
12186 	struct inoref *inoref;
12187 	struct ufsmount *ump;
12188 	struct worklist *wk;
12189 	struct diradd *dap;
12190 	struct mount *mp;
12191 	struct vnode *pvp;
12192 	struct inode *ip;
12193 	struct buf *bp;
12194 	struct fs *fs;
12195 	struct thread *td = curthread;
12196 	int error, flushparent, pagedep_new_block;
12197 	ino_t parentino;
12198 	ufs_lbn_t lbn;
12199 
12200 	ip = VTOI(vp);
12201 	fs = ip->i_fs;
12202 	ump = ip->i_ump;
12203 	mp = vp->v_mount;
12204 	if (MOUNTEDSOFTDEP(mp) == 0)
12205 		return (0);
12206 	ACQUIRE_LOCK(ump);
12207 restart:
12208 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12209 		FREE_LOCK(ump);
12210 		return (0);
12211 	}
12212 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12213 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12214 		    == DEPCOMPLETE) {
12215 			jwait(&inoref->if_list, MNT_WAIT);
12216 			goto restart;
12217 		}
12218 	}
12219 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12220 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12221 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12222 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12223 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12224 		panic("softdep_fsync: pending ops %p", inodedep);
12225 	for (error = 0, flushparent = 0; ; ) {
12226 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12227 			break;
12228 		if (wk->wk_type != D_DIRADD)
12229 			panic("softdep_fsync: Unexpected type %s",
12230 			    TYPENAME(wk->wk_type));
12231 		dap = WK_DIRADD(wk);
12232 		/*
12233 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12234 		 * dependency or is contained in a newly allocated block.
12235 		 */
12236 		if (dap->da_state & DIRCHG)
12237 			pagedep = dap->da_previous->dm_pagedep;
12238 		else
12239 			pagedep = dap->da_pagedep;
12240 		parentino = pagedep->pd_ino;
12241 		lbn = pagedep->pd_lbn;
12242 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12243 			panic("softdep_fsync: dirty");
12244 		if ((dap->da_state & MKDIR_PARENT) ||
12245 		    (pagedep->pd_state & NEWBLOCK))
12246 			flushparent = 1;
12247 		else
12248 			flushparent = 0;
12249 		/*
12250 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12251 		 * then we will not be able to release and recover the
12252 		 * vnode below, so we just have to give up on writing its
12253 		 * directory entry out. It will eventually be written, just
12254 		 * not now, but then the user was not asking to have it
12255 		 * written, so we are not breaking any promises.
12256 		 */
12257 		if (vp->v_iflag & VI_DOOMED)
12258 			break;
12259 		/*
12260 		 * We prevent deadlock by always fetching inodes from the
12261 		 * root, moving down the directory tree. Thus, when fetching
12262 		 * our parent directory, we first try to get the lock. If
12263 		 * that fails, we must unlock ourselves before requesting
12264 		 * the lock on our parent. See the comment in ufs_lookup
12265 		 * for details on possible races.
12266 		 */
12267 		FREE_LOCK(ump);
12268 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12269 		    FFSV_FORCEINSMQ)) {
12270 			error = vfs_busy(mp, MBF_NOWAIT);
12271 			if (error != 0) {
12272 				vfs_ref(mp);
12273 				VOP_UNLOCK(vp, 0);
12274 				error = vfs_busy(mp, 0);
12275 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12276 				vfs_rel(mp);
12277 				if (error != 0)
12278 					return (ENOENT);
12279 				if (vp->v_iflag & VI_DOOMED) {
12280 					vfs_unbusy(mp);
12281 					return (ENOENT);
12282 				}
12283 			}
12284 			VOP_UNLOCK(vp, 0);
12285 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12286 			    &pvp, FFSV_FORCEINSMQ);
12287 			vfs_unbusy(mp);
12288 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12289 			if (vp->v_iflag & VI_DOOMED) {
12290 				if (error == 0)
12291 					vput(pvp);
12292 				error = ENOENT;
12293 			}
12294 			if (error != 0)
12295 				return (error);
12296 		}
12297 		/*
12298 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12299 		 * that are contained in direct blocks will be resolved by
12300 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12301 		 * may require a complete sync'ing of the directory. So, we
12302 		 * try the cheap and fast ffs_update first, and if that fails,
12303 		 * then we do the slower ffs_syncvnode of the directory.
12304 		 */
12305 		if (flushparent) {
12306 			int locked;
12307 
12308 			if ((error = ffs_update(pvp, 1)) != 0) {
12309 				vput(pvp);
12310 				return (error);
12311 			}
12312 			ACQUIRE_LOCK(ump);
12313 			locked = 1;
12314 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12315 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12316 					if (wk->wk_type != D_DIRADD)
12317 						panic("softdep_fsync: Unexpected type %s",
12318 						      TYPENAME(wk->wk_type));
12319 					dap = WK_DIRADD(wk);
12320 					if (dap->da_state & DIRCHG)
12321 						pagedep = dap->da_previous->dm_pagedep;
12322 					else
12323 						pagedep = dap->da_pagedep;
12324 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12325 					FREE_LOCK(ump);
12326 					locked = 0;
12327 					if (pagedep_new_block && (error =
12328 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12329 						vput(pvp);
12330 						return (error);
12331 					}
12332 				}
12333 			}
12334 			if (locked)
12335 				FREE_LOCK(ump);
12336 		}
12337 		/*
12338 		 * Flush directory page containing the inode's name.
12339 		 */
12340 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12341 		    &bp);
12342 		if (error == 0)
12343 			error = bwrite(bp);
12344 		else
12345 			brelse(bp);
12346 		vput(pvp);
12347 		if (error != 0)
12348 			return (error);
12349 		ACQUIRE_LOCK(ump);
12350 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12351 			break;
12352 	}
12353 	FREE_LOCK(ump);
12354 	return (0);
12355 }
12356 
12357 /*
12358  * Flush all the dirty bitmaps associated with the block device
12359  * before flushing the rest of the dirty blocks so as to reduce
12360  * the number of dependencies that will have to be rolled back.
12361  *
12362  * XXX Unused?
12363  */
12364 void
12365 softdep_fsync_mountdev(vp)
12366 	struct vnode *vp;
12367 {
12368 	struct buf *bp, *nbp;
12369 	struct worklist *wk;
12370 	struct bufobj *bo;
12371 
12372 	if (!vn_isdisk(vp, NULL))
12373 		panic("softdep_fsync_mountdev: vnode not a disk");
12374 	bo = &vp->v_bufobj;
12375 restart:
12376 	BO_LOCK(bo);
12377 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12378 		/*
12379 		 * If it is already scheduled, skip to the next buffer.
12380 		 */
12381 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12382 			continue;
12383 
12384 		if ((bp->b_flags & B_DELWRI) == 0)
12385 			panic("softdep_fsync_mountdev: not dirty");
12386 		/*
12387 		 * We are only interested in bitmaps with outstanding
12388 		 * dependencies.
12389 		 */
12390 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12391 		    wk->wk_type != D_BMSAFEMAP ||
12392 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12393 			BUF_UNLOCK(bp);
12394 			continue;
12395 		}
12396 		BO_UNLOCK(bo);
12397 		bremfree(bp);
12398 		(void) bawrite(bp);
12399 		goto restart;
12400 	}
12401 	drain_output(vp);
12402 	BO_UNLOCK(bo);
12403 }
12404 
12405 /*
12406  * Sync all cylinder groups that were dirty at the time this function is
12407  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12408  * is used to flush freedep activity that may be holding up writes to a
12409  * indirect block.
12410  */
12411 static int
12412 sync_cgs(mp, waitfor)
12413 	struct mount *mp;
12414 	int waitfor;
12415 {
12416 	struct bmsafemap *bmsafemap;
12417 	struct bmsafemap *sentinel;
12418 	struct ufsmount *ump;
12419 	struct buf *bp;
12420 	int error;
12421 
12422 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12423 	sentinel->sm_cg = -1;
12424 	ump = VFSTOUFS(mp);
12425 	error = 0;
12426 	ACQUIRE_LOCK(ump);
12427 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12428 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12429 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12430 		/* Skip sentinels and cgs with no work to release. */
12431 		if (bmsafemap->sm_cg == -1 ||
12432 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12433 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12434 			LIST_REMOVE(sentinel, sm_next);
12435 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12436 			continue;
12437 		}
12438 		/*
12439 		 * If we don't get the lock and we're waiting try again, if
12440 		 * not move on to the next buf and try to sync it.
12441 		 */
12442 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12443 		if (bp == NULL && waitfor == MNT_WAIT)
12444 			continue;
12445 		LIST_REMOVE(sentinel, sm_next);
12446 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12447 		if (bp == NULL)
12448 			continue;
12449 		FREE_LOCK(ump);
12450 		if (waitfor == MNT_NOWAIT)
12451 			bawrite(bp);
12452 		else
12453 			error = bwrite(bp);
12454 		ACQUIRE_LOCK(ump);
12455 		if (error)
12456 			break;
12457 	}
12458 	LIST_REMOVE(sentinel, sm_next);
12459 	FREE_LOCK(ump);
12460 	free(sentinel, M_BMSAFEMAP);
12461 	return (error);
12462 }
12463 
12464 /*
12465  * This routine is called when we are trying to synchronously flush a
12466  * file. This routine must eliminate any filesystem metadata dependencies
12467  * so that the syncing routine can succeed.
12468  */
12469 int
12470 softdep_sync_metadata(struct vnode *vp)
12471 {
12472 	struct inode *ip;
12473 	int error;
12474 
12475 	ip = VTOI(vp);
12476 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12477 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12478 	/*
12479 	 * Ensure that any direct block dependencies have been cleared,
12480 	 * truncations are started, and inode references are journaled.
12481 	 */
12482 	ACQUIRE_LOCK(ip->i_ump);
12483 	/*
12484 	 * Write all journal records to prevent rollbacks on devvp.
12485 	 */
12486 	if (vp->v_type == VCHR)
12487 		softdep_flushjournal(vp->v_mount);
12488 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12489 	/*
12490 	 * Ensure that all truncates are written so we won't find deps on
12491 	 * indirect blocks.
12492 	 */
12493 	process_truncates(vp);
12494 	FREE_LOCK(ip->i_ump);
12495 
12496 	return (error);
12497 }
12498 
12499 /*
12500  * This routine is called when we are attempting to sync a buf with
12501  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12502  * other IO it can but returns EBUSY if the buffer is not yet able to
12503  * be written.  Dependencies which will not cause rollbacks will always
12504  * return 0.
12505  */
12506 int
12507 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12508 {
12509 	struct indirdep *indirdep;
12510 	struct pagedep *pagedep;
12511 	struct allocindir *aip;
12512 	struct newblk *newblk;
12513 	struct ufsmount *ump;
12514 	struct buf *nbp;
12515 	struct worklist *wk;
12516 	int i, error;
12517 
12518 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12519 	    ("softdep_sync_buf called on non-softdep filesystem"));
12520 	/*
12521 	 * For VCHR we just don't want to force flush any dependencies that
12522 	 * will cause rollbacks.
12523 	 */
12524 	if (vp->v_type == VCHR) {
12525 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12526 			return (EBUSY);
12527 		return (0);
12528 	}
12529 	ump = VTOI(vp)->i_ump;
12530 	ACQUIRE_LOCK(ump);
12531 	/*
12532 	 * As we hold the buffer locked, none of its dependencies
12533 	 * will disappear.
12534 	 */
12535 	error = 0;
12536 top:
12537 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12538 		switch (wk->wk_type) {
12539 
12540 		case D_ALLOCDIRECT:
12541 		case D_ALLOCINDIR:
12542 			newblk = WK_NEWBLK(wk);
12543 			if (newblk->nb_jnewblk != NULL) {
12544 				if (waitfor == MNT_NOWAIT) {
12545 					error = EBUSY;
12546 					goto out_unlock;
12547 				}
12548 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12549 				goto top;
12550 			}
12551 			if (newblk->nb_state & DEPCOMPLETE ||
12552 			    waitfor == MNT_NOWAIT)
12553 				continue;
12554 			nbp = newblk->nb_bmsafemap->sm_buf;
12555 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12556 			if (nbp == NULL)
12557 				goto top;
12558 			FREE_LOCK(ump);
12559 			if ((error = bwrite(nbp)) != 0)
12560 				goto out;
12561 			ACQUIRE_LOCK(ump);
12562 			continue;
12563 
12564 		case D_INDIRDEP:
12565 			indirdep = WK_INDIRDEP(wk);
12566 			if (waitfor == MNT_NOWAIT) {
12567 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12568 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12569 					error = EBUSY;
12570 					goto out_unlock;
12571 				}
12572 			}
12573 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12574 				panic("softdep_sync_buf: truncation pending.");
12575 		restart:
12576 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12577 				newblk = (struct newblk *)aip;
12578 				if (newblk->nb_jnewblk != NULL) {
12579 					jwait(&newblk->nb_jnewblk->jn_list,
12580 					    waitfor);
12581 					goto restart;
12582 				}
12583 				if (newblk->nb_state & DEPCOMPLETE)
12584 					continue;
12585 				nbp = newblk->nb_bmsafemap->sm_buf;
12586 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12587 				if (nbp == NULL)
12588 					goto restart;
12589 				FREE_LOCK(ump);
12590 				if ((error = bwrite(nbp)) != 0)
12591 					goto out;
12592 				ACQUIRE_LOCK(ump);
12593 				goto restart;
12594 			}
12595 			continue;
12596 
12597 		case D_PAGEDEP:
12598 			/*
12599 			 * Only flush directory entries in synchronous passes.
12600 			 */
12601 			if (waitfor != MNT_WAIT) {
12602 				error = EBUSY;
12603 				goto out_unlock;
12604 			}
12605 			/*
12606 			 * While syncing snapshots, we must allow recursive
12607 			 * lookups.
12608 			 */
12609 			BUF_AREC(bp);
12610 			/*
12611 			 * We are trying to sync a directory that may
12612 			 * have dependencies on both its own metadata
12613 			 * and/or dependencies on the inodes of any
12614 			 * recently allocated files. We walk its diradd
12615 			 * lists pushing out the associated inode.
12616 			 */
12617 			pagedep = WK_PAGEDEP(wk);
12618 			for (i = 0; i < DAHASHSZ; i++) {
12619 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12620 					continue;
12621 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12622 				    &pagedep->pd_diraddhd[i]))) {
12623 					BUF_NOREC(bp);
12624 					goto out_unlock;
12625 				}
12626 			}
12627 			BUF_NOREC(bp);
12628 			continue;
12629 
12630 		case D_FREEWORK:
12631 		case D_FREEDEP:
12632 		case D_JSEGDEP:
12633 		case D_JNEWBLK:
12634 			continue;
12635 
12636 		default:
12637 			panic("softdep_sync_buf: Unknown type %s",
12638 			    TYPENAME(wk->wk_type));
12639 			/* NOTREACHED */
12640 		}
12641 	}
12642 out_unlock:
12643 	FREE_LOCK(ump);
12644 out:
12645 	return (error);
12646 }
12647 
12648 /*
12649  * Flush the dependencies associated with an inodedep.
12650  * Called with splbio blocked.
12651  */
12652 static int
12653 flush_inodedep_deps(vp, mp, ino)
12654 	struct vnode *vp;
12655 	struct mount *mp;
12656 	ino_t ino;
12657 {
12658 	struct inodedep *inodedep;
12659 	struct inoref *inoref;
12660 	struct ufsmount *ump;
12661 	int error, waitfor;
12662 
12663 	/*
12664 	 * This work is done in two passes. The first pass grabs most
12665 	 * of the buffers and begins asynchronously writing them. The
12666 	 * only way to wait for these asynchronous writes is to sleep
12667 	 * on the filesystem vnode which may stay busy for a long time
12668 	 * if the filesystem is active. So, instead, we make a second
12669 	 * pass over the dependencies blocking on each write. In the
12670 	 * usual case we will be blocking against a write that we
12671 	 * initiated, so when it is done the dependency will have been
12672 	 * resolved. Thus the second pass is expected to end quickly.
12673 	 * We give a brief window at the top of the loop to allow
12674 	 * any pending I/O to complete.
12675 	 */
12676 	ump = VFSTOUFS(mp);
12677 	LOCK_OWNED(ump);
12678 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12679 		if (error)
12680 			return (error);
12681 		FREE_LOCK(ump);
12682 		ACQUIRE_LOCK(ump);
12683 restart:
12684 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12685 			return (0);
12686 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12687 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12688 			    == DEPCOMPLETE) {
12689 				jwait(&inoref->if_list, MNT_WAIT);
12690 				goto restart;
12691 			}
12692 		}
12693 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12694 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12695 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12696 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12697 			continue;
12698 		/*
12699 		 * If pass2, we are done, otherwise do pass 2.
12700 		 */
12701 		if (waitfor == MNT_WAIT)
12702 			break;
12703 		waitfor = MNT_WAIT;
12704 	}
12705 	/*
12706 	 * Try freeing inodedep in case all dependencies have been removed.
12707 	 */
12708 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12709 		(void) free_inodedep(inodedep);
12710 	return (0);
12711 }
12712 
12713 /*
12714  * Flush an inode dependency list.
12715  * Called with splbio blocked.
12716  */
12717 static int
12718 flush_deplist(listhead, waitfor, errorp)
12719 	struct allocdirectlst *listhead;
12720 	int waitfor;
12721 	int *errorp;
12722 {
12723 	struct allocdirect *adp;
12724 	struct newblk *newblk;
12725 	struct ufsmount *ump;
12726 	struct buf *bp;
12727 
12728 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12729 		return (0);
12730 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12731 	LOCK_OWNED(ump);
12732 	TAILQ_FOREACH(adp, listhead, ad_next) {
12733 		newblk = (struct newblk *)adp;
12734 		if (newblk->nb_jnewblk != NULL) {
12735 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12736 			return (1);
12737 		}
12738 		if (newblk->nb_state & DEPCOMPLETE)
12739 			continue;
12740 		bp = newblk->nb_bmsafemap->sm_buf;
12741 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12742 		if (bp == NULL) {
12743 			if (waitfor == MNT_NOWAIT)
12744 				continue;
12745 			return (1);
12746 		}
12747 		FREE_LOCK(ump);
12748 		if (waitfor == MNT_NOWAIT)
12749 			bawrite(bp);
12750 		else
12751 			*errorp = bwrite(bp);
12752 		ACQUIRE_LOCK(ump);
12753 		return (1);
12754 	}
12755 	return (0);
12756 }
12757 
12758 /*
12759  * Flush dependencies associated with an allocdirect block.
12760  */
12761 static int
12762 flush_newblk_dep(vp, mp, lbn)
12763 	struct vnode *vp;
12764 	struct mount *mp;
12765 	ufs_lbn_t lbn;
12766 {
12767 	struct newblk *newblk;
12768 	struct ufsmount *ump;
12769 	struct bufobj *bo;
12770 	struct inode *ip;
12771 	struct buf *bp;
12772 	ufs2_daddr_t blkno;
12773 	int error;
12774 
12775 	error = 0;
12776 	bo = &vp->v_bufobj;
12777 	ip = VTOI(vp);
12778 	blkno = DIP(ip, i_db[lbn]);
12779 	if (blkno == 0)
12780 		panic("flush_newblk_dep: Missing block");
12781 	ump = VFSTOUFS(mp);
12782 	ACQUIRE_LOCK(ump);
12783 	/*
12784 	 * Loop until all dependencies related to this block are satisfied.
12785 	 * We must be careful to restart after each sleep in case a write
12786 	 * completes some part of this process for us.
12787 	 */
12788 	for (;;) {
12789 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12790 			FREE_LOCK(ump);
12791 			break;
12792 		}
12793 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12794 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12795 		/*
12796 		 * Flush the journal.
12797 		 */
12798 		if (newblk->nb_jnewblk != NULL) {
12799 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12800 			continue;
12801 		}
12802 		/*
12803 		 * Write the bitmap dependency.
12804 		 */
12805 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12806 			bp = newblk->nb_bmsafemap->sm_buf;
12807 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12808 			if (bp == NULL)
12809 				continue;
12810 			FREE_LOCK(ump);
12811 			error = bwrite(bp);
12812 			if (error)
12813 				break;
12814 			ACQUIRE_LOCK(ump);
12815 			continue;
12816 		}
12817 		/*
12818 		 * Write the buffer.
12819 		 */
12820 		FREE_LOCK(ump);
12821 		BO_LOCK(bo);
12822 		bp = gbincore(bo, lbn);
12823 		if (bp != NULL) {
12824 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12825 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12826 			if (error == ENOLCK) {
12827 				ACQUIRE_LOCK(ump);
12828 				continue; /* Slept, retry */
12829 			}
12830 			if (error != 0)
12831 				break;	/* Failed */
12832 			if (bp->b_flags & B_DELWRI) {
12833 				bremfree(bp);
12834 				error = bwrite(bp);
12835 				if (error)
12836 					break;
12837 			} else
12838 				BUF_UNLOCK(bp);
12839 		} else
12840 			BO_UNLOCK(bo);
12841 		/*
12842 		 * We have to wait for the direct pointers to
12843 		 * point at the newdirblk before the dependency
12844 		 * will go away.
12845 		 */
12846 		error = ffs_update(vp, 1);
12847 		if (error)
12848 			break;
12849 		ACQUIRE_LOCK(ump);
12850 	}
12851 	return (error);
12852 }
12853 
12854 /*
12855  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12856  * Called with splbio blocked.
12857  */
12858 static int
12859 flush_pagedep_deps(pvp, mp, diraddhdp)
12860 	struct vnode *pvp;
12861 	struct mount *mp;
12862 	struct diraddhd *diraddhdp;
12863 {
12864 	struct inodedep *inodedep;
12865 	struct inoref *inoref;
12866 	struct ufsmount *ump;
12867 	struct diradd *dap;
12868 	struct vnode *vp;
12869 	int error = 0;
12870 	struct buf *bp;
12871 	ino_t inum;
12872 	struct diraddhd unfinished;
12873 
12874 	LIST_INIT(&unfinished);
12875 	ump = VFSTOUFS(mp);
12876 	LOCK_OWNED(ump);
12877 restart:
12878 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12879 		/*
12880 		 * Flush ourselves if this directory entry
12881 		 * has a MKDIR_PARENT dependency.
12882 		 */
12883 		if (dap->da_state & MKDIR_PARENT) {
12884 			FREE_LOCK(ump);
12885 			if ((error = ffs_update(pvp, 1)) != 0)
12886 				break;
12887 			ACQUIRE_LOCK(ump);
12888 			/*
12889 			 * If that cleared dependencies, go on to next.
12890 			 */
12891 			if (dap != LIST_FIRST(diraddhdp))
12892 				continue;
12893 			/*
12894 			 * All MKDIR_PARENT dependencies and all the
12895 			 * NEWBLOCK pagedeps that are contained in direct
12896 			 * blocks were resolved by doing above ffs_update.
12897 			 * Pagedeps contained in indirect blocks may
12898 			 * require a complete sync'ing of the directory.
12899 			 * We are in the midst of doing a complete sync,
12900 			 * so if they are not resolved in this pass we
12901 			 * defer them for now as they will be sync'ed by
12902 			 * our caller shortly.
12903 			 */
12904 			LIST_REMOVE(dap, da_pdlist);
12905 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12906 			continue;
12907 		}
12908 		/*
12909 		 * A newly allocated directory must have its "." and
12910 		 * ".." entries written out before its name can be
12911 		 * committed in its parent.
12912 		 */
12913 		inum = dap->da_newinum;
12914 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12915 			panic("flush_pagedep_deps: lost inode1");
12916 		/*
12917 		 * Wait for any pending journal adds to complete so we don't
12918 		 * cause rollbacks while syncing.
12919 		 */
12920 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12921 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12922 			    == DEPCOMPLETE) {
12923 				jwait(&inoref->if_list, MNT_WAIT);
12924 				goto restart;
12925 			}
12926 		}
12927 		if (dap->da_state & MKDIR_BODY) {
12928 			FREE_LOCK(ump);
12929 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12930 			    FFSV_FORCEINSMQ)))
12931 				break;
12932 			error = flush_newblk_dep(vp, mp, 0);
12933 			/*
12934 			 * If we still have the dependency we might need to
12935 			 * update the vnode to sync the new link count to
12936 			 * disk.
12937 			 */
12938 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12939 				error = ffs_update(vp, 1);
12940 			vput(vp);
12941 			if (error != 0)
12942 				break;
12943 			ACQUIRE_LOCK(ump);
12944 			/*
12945 			 * If that cleared dependencies, go on to next.
12946 			 */
12947 			if (dap != LIST_FIRST(diraddhdp))
12948 				continue;
12949 			if (dap->da_state & MKDIR_BODY) {
12950 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12951 				    &inodedep);
12952 				panic("flush_pagedep_deps: MKDIR_BODY "
12953 				    "inodedep %p dap %p vp %p",
12954 				    inodedep, dap, vp);
12955 			}
12956 		}
12957 		/*
12958 		 * Flush the inode on which the directory entry depends.
12959 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12960 		 * the only remaining dependency is that the updated inode
12961 		 * count must get pushed to disk. The inode has already
12962 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12963 		 * the time of the reference count change. So we need only
12964 		 * locate that buffer, ensure that there will be no rollback
12965 		 * caused by a bitmap dependency, then write the inode buffer.
12966 		 */
12967 retry:
12968 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12969 			panic("flush_pagedep_deps: lost inode");
12970 		/*
12971 		 * If the inode still has bitmap dependencies,
12972 		 * push them to disk.
12973 		 */
12974 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12975 			bp = inodedep->id_bmsafemap->sm_buf;
12976 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12977 			if (bp == NULL)
12978 				goto retry;
12979 			FREE_LOCK(ump);
12980 			if ((error = bwrite(bp)) != 0)
12981 				break;
12982 			ACQUIRE_LOCK(ump);
12983 			if (dap != LIST_FIRST(diraddhdp))
12984 				continue;
12985 		}
12986 		/*
12987 		 * If the inode is still sitting in a buffer waiting
12988 		 * to be written or waiting for the link count to be
12989 		 * adjusted update it here to flush it to disk.
12990 		 */
12991 		if (dap == LIST_FIRST(diraddhdp)) {
12992 			FREE_LOCK(ump);
12993 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12994 			    FFSV_FORCEINSMQ)))
12995 				break;
12996 			error = ffs_update(vp, 1);
12997 			vput(vp);
12998 			if (error)
12999 				break;
13000 			ACQUIRE_LOCK(ump);
13001 		}
13002 		/*
13003 		 * If we have failed to get rid of all the dependencies
13004 		 * then something is seriously wrong.
13005 		 */
13006 		if (dap == LIST_FIRST(diraddhdp)) {
13007 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13008 			panic("flush_pagedep_deps: failed to flush "
13009 			    "inodedep %p ino %ju dap %p",
13010 			    inodedep, (uintmax_t)inum, dap);
13011 		}
13012 	}
13013 	if (error)
13014 		ACQUIRE_LOCK(ump);
13015 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13016 		LIST_REMOVE(dap, da_pdlist);
13017 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13018 	}
13019 	return (error);
13020 }
13021 
13022 /*
13023  * A large burst of file addition or deletion activity can drive the
13024  * memory load excessively high. First attempt to slow things down
13025  * using the techniques below. If that fails, this routine requests
13026  * the offending operations to fall back to running synchronously
13027  * until the memory load returns to a reasonable level.
13028  */
13029 int
13030 softdep_slowdown(vp)
13031 	struct vnode *vp;
13032 {
13033 	struct ufsmount *ump;
13034 	int jlow;
13035 	int max_softdeps_hard;
13036 
13037 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13038 	    ("softdep_slowdown called on non-softdep filesystem"));
13039 	ump = VFSTOUFS(vp->v_mount);
13040 	ACQUIRE_LOCK(ump);
13041 	jlow = 0;
13042 	/*
13043 	 * Check for journal space if needed.
13044 	 */
13045 	if (DOINGSUJ(vp)) {
13046 		if (journal_space(ump, 0) == 0)
13047 			jlow = 1;
13048 	}
13049 	/*
13050 	 * If the system is under its limits and our filesystem is
13051 	 * not responsible for more than our share of the usage and
13052 	 * we are not low on journal space, then no need to slow down.
13053 	 */
13054 	max_softdeps_hard = max_softdeps * 11 / 10;
13055 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13056 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13057 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13058 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13059 	    ump->softdep_curdeps[D_DIRREM] <
13060 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13061 	    ump->softdep_curdeps[D_INODEDEP] <
13062 	    max_softdeps_hard / stat_flush_threads &&
13063 	    ump->softdep_curdeps[D_INDIRDEP] <
13064 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13065 	    ump->softdep_curdeps[D_FREEBLKS] <
13066 	    max_softdeps_hard / stat_flush_threads) {
13067 		FREE_LOCK(ump);
13068   		return (0);
13069 	}
13070 	/*
13071 	 * If the journal is low or our filesystem is over its limit
13072 	 * then speedup the cleanup.
13073 	 */
13074 	if (ump->softdep_curdeps[D_INDIRDEP] <
13075 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13076 		softdep_speedup(ump);
13077 	stat_sync_limit_hit += 1;
13078 	FREE_LOCK(ump);
13079 	/*
13080 	 * We only slow down the rate at which new dependencies are
13081 	 * generated if we are not using journaling. With journaling,
13082 	 * the cleanup should always be sufficient to keep things
13083 	 * under control.
13084 	 */
13085 	if (DOINGSUJ(vp))
13086 		return (0);
13087 	return (1);
13088 }
13089 
13090 /*
13091  * Called by the allocation routines when they are about to fail
13092  * in the hope that we can free up the requested resource (inodes
13093  * or disk space).
13094  *
13095  * First check to see if the work list has anything on it. If it has,
13096  * clean up entries until we successfully free the requested resource.
13097  * Because this process holds inodes locked, we cannot handle any remove
13098  * requests that might block on a locked inode as that could lead to
13099  * deadlock. If the worklist yields none of the requested resource,
13100  * start syncing out vnodes to free up the needed space.
13101  */
13102 int
13103 softdep_request_cleanup(fs, vp, cred, resource)
13104 	struct fs *fs;
13105 	struct vnode *vp;
13106 	struct ucred *cred;
13107 	int resource;
13108 {
13109 	struct ufsmount *ump;
13110 	struct mount *mp;
13111 	struct vnode *lvp, *mvp;
13112 	long starttime;
13113 	ufs2_daddr_t needed;
13114 	int error;
13115 
13116 	/*
13117 	 * If we are being called because of a process doing a
13118 	 * copy-on-write, then it is not safe to process any
13119 	 * worklist items as we will recurse into the copyonwrite
13120 	 * routine.  This will result in an incoherent snapshot.
13121 	 * If the vnode that we hold is a snapshot, we must avoid
13122 	 * handling other resources that could cause deadlock.
13123 	 */
13124 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13125 		return (0);
13126 
13127 	if (resource == FLUSH_BLOCKS_WAIT)
13128 		stat_cleanup_blkrequests += 1;
13129 	else
13130 		stat_cleanup_inorequests += 1;
13131 
13132 	mp = vp->v_mount;
13133 	ump = VFSTOUFS(mp);
13134 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13135 	UFS_UNLOCK(ump);
13136 	error = ffs_update(vp, 1);
13137 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13138 		UFS_LOCK(ump);
13139 		return (0);
13140 	}
13141 	/*
13142 	 * If we are in need of resources, start by cleaning up
13143 	 * any block removals associated with our inode.
13144 	 */
13145 	ACQUIRE_LOCK(ump);
13146 	process_removes(vp);
13147 	process_truncates(vp);
13148 	FREE_LOCK(ump);
13149 	/*
13150 	 * Now clean up at least as many resources as we will need.
13151 	 *
13152 	 * When requested to clean up inodes, the number that are needed
13153 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13154 	 * plus a bit of slop (2) in case some more writers show up while
13155 	 * we are cleaning.
13156 	 *
13157 	 * When requested to free up space, the amount of space that
13158 	 * we need is enough blocks to allocate a full-sized segment
13159 	 * (fs_contigsumsize). The number of such segments that will
13160 	 * be needed is set by the number of simultaneous writers
13161 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13162 	 * writers show up while we are cleaning.
13163 	 *
13164 	 * Additionally, if we are unpriviledged and allocating space,
13165 	 * we need to ensure that we clean up enough blocks to get the
13166 	 * needed number of blocks over the threshhold of the minimum
13167 	 * number of blocks required to be kept free by the filesystem
13168 	 * (fs_minfree).
13169 	 */
13170 	if (resource == FLUSH_INODES_WAIT) {
13171 		needed = vp->v_mount->mnt_writeopcount + 2;
13172 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13173 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13174 		    fs->fs_contigsumsize;
13175 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13176 			needed += fragstoblks(fs,
13177 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13178 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13179 	} else {
13180 		UFS_LOCK(ump);
13181 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13182 		    resource);
13183 		return (0);
13184 	}
13185 	starttime = time_second;
13186 retry:
13187 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13188 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13189 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13190 	    fs->fs_cstotal.cs_nifree <= needed)) {
13191 		ACQUIRE_LOCK(ump);
13192 		if (ump->softdep_on_worklist > 0 &&
13193 		    process_worklist_item(UFSTOVFS(ump),
13194 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13195 			stat_worklist_push += 1;
13196 		FREE_LOCK(ump);
13197 	}
13198 	/*
13199 	 * If we still need resources and there are no more worklist
13200 	 * entries to process to obtain them, we have to start flushing
13201 	 * the dirty vnodes to force the release of additional requests
13202 	 * to the worklist that we can then process to reap addition
13203 	 * resources. We walk the vnodes associated with the mount point
13204 	 * until we get the needed worklist requests that we can reap.
13205 	 */
13206 	if ((resource == FLUSH_BLOCKS_WAIT &&
13207 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13208 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13209 	     fs->fs_cstotal.cs_nifree <= needed)) {
13210 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13211 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13212 				VI_UNLOCK(lvp);
13213 				continue;
13214 			}
13215 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13216 			    curthread))
13217 				continue;
13218 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13219 				vput(lvp);
13220 				continue;
13221 			}
13222 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13223 			vput(lvp);
13224 		}
13225 		lvp = ump->um_devvp;
13226 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13227 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13228 			VOP_UNLOCK(lvp, 0);
13229 		}
13230 		if (ump->softdep_on_worklist > 0) {
13231 			stat_cleanup_retries += 1;
13232 			goto retry;
13233 		}
13234 		stat_cleanup_failures += 1;
13235 	}
13236 	if (time_second - starttime > stat_cleanup_high_delay)
13237 		stat_cleanup_high_delay = time_second - starttime;
13238 	UFS_LOCK(ump);
13239 	return (1);
13240 }
13241 
13242 /*
13243  * If memory utilization has gotten too high, deliberately slow things
13244  * down and speed up the I/O processing.
13245  */
13246 static int
13247 request_cleanup(mp, resource)
13248 	struct mount *mp;
13249 	int resource;
13250 {
13251 	struct thread *td = curthread;
13252 	struct ufsmount *ump;
13253 
13254 	ump = VFSTOUFS(mp);
13255 	LOCK_OWNED(ump);
13256 	/*
13257 	 * We never hold up the filesystem syncer or buf daemon.
13258 	 */
13259 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13260 		return (0);
13261 	/*
13262 	 * First check to see if the work list has gotten backlogged.
13263 	 * If it has, co-opt this process to help clean up two entries.
13264 	 * Because this process may hold inodes locked, we cannot
13265 	 * handle any remove requests that might block on a locked
13266 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13267 	 * to avoid recursively processing the worklist.
13268 	 */
13269 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13270 		td->td_pflags |= TDP_SOFTDEP;
13271 		process_worklist_item(mp, 2, LK_NOWAIT);
13272 		td->td_pflags &= ~TDP_SOFTDEP;
13273 		stat_worklist_push += 2;
13274 		return(1);
13275 	}
13276 	/*
13277 	 * Next, we attempt to speed up the syncer process. If that
13278 	 * is successful, then we allow the process to continue.
13279 	 */
13280 	if (softdep_speedup(ump) &&
13281 	    resource != FLUSH_BLOCKS_WAIT &&
13282 	    resource != FLUSH_INODES_WAIT)
13283 		return(0);
13284 	/*
13285 	 * If we are resource constrained on inode dependencies, try
13286 	 * flushing some dirty inodes. Otherwise, we are constrained
13287 	 * by file deletions, so try accelerating flushes of directories
13288 	 * with removal dependencies. We would like to do the cleanup
13289 	 * here, but we probably hold an inode locked at this point and
13290 	 * that might deadlock against one that we try to clean. So,
13291 	 * the best that we can do is request the syncer daemon to do
13292 	 * the cleanup for us.
13293 	 */
13294 	switch (resource) {
13295 
13296 	case FLUSH_INODES:
13297 	case FLUSH_INODES_WAIT:
13298 		ACQUIRE_GBLLOCK(&lk);
13299 		stat_ino_limit_push += 1;
13300 		req_clear_inodedeps += 1;
13301 		FREE_GBLLOCK(&lk);
13302 		stat_countp = &stat_ino_limit_hit;
13303 		break;
13304 
13305 	case FLUSH_BLOCKS:
13306 	case FLUSH_BLOCKS_WAIT:
13307 		ACQUIRE_GBLLOCK(&lk);
13308 		stat_blk_limit_push += 1;
13309 		req_clear_remove += 1;
13310 		FREE_GBLLOCK(&lk);
13311 		stat_countp = &stat_blk_limit_hit;
13312 		break;
13313 
13314 	default:
13315 		panic("request_cleanup: unknown type");
13316 	}
13317 	/*
13318 	 * Hopefully the syncer daemon will catch up and awaken us.
13319 	 * We wait at most tickdelay before proceeding in any case.
13320 	 */
13321 	ACQUIRE_GBLLOCK(&lk);
13322 	FREE_LOCK(ump);
13323 	proc_waiting += 1;
13324 	if (callout_pending(&softdep_callout) == FALSE)
13325 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13326 		    pause_timer, 0);
13327 
13328 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13329 	proc_waiting -= 1;
13330 	FREE_GBLLOCK(&lk);
13331 	ACQUIRE_LOCK(ump);
13332 	return (1);
13333 }
13334 
13335 /*
13336  * Awaken processes pausing in request_cleanup and clear proc_waiting
13337  * to indicate that there is no longer a timer running. Pause_timer
13338  * will be called with the global softdep mutex (&lk) locked.
13339  */
13340 static void
13341 pause_timer(arg)
13342 	void *arg;
13343 {
13344 
13345 	GBLLOCK_OWNED(&lk);
13346 	/*
13347 	 * The callout_ API has acquired mtx and will hold it around this
13348 	 * function call.
13349 	 */
13350 	*stat_countp += proc_waiting;
13351 	wakeup(&proc_waiting);
13352 }
13353 
13354 /*
13355  * If requested, try removing inode or removal dependencies.
13356  */
13357 static void
13358 check_clear_deps(mp)
13359 	struct mount *mp;
13360 {
13361 
13362 	/*
13363 	 * If we are suspended, it may be because of our using
13364 	 * too many inodedeps, so help clear them out.
13365 	 */
13366 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13367 		clear_inodedeps(mp);
13368 	/*
13369 	 * General requests for cleanup of backed up dependencies
13370 	 */
13371 	ACQUIRE_GBLLOCK(&lk);
13372 	if (req_clear_inodedeps) {
13373 		req_clear_inodedeps -= 1;
13374 		FREE_GBLLOCK(&lk);
13375 		clear_inodedeps(mp);
13376 		ACQUIRE_GBLLOCK(&lk);
13377 		wakeup(&proc_waiting);
13378 	}
13379 	if (req_clear_remove) {
13380 		req_clear_remove -= 1;
13381 		FREE_GBLLOCK(&lk);
13382 		clear_remove(mp);
13383 		ACQUIRE_GBLLOCK(&lk);
13384 		wakeup(&proc_waiting);
13385 	}
13386 	FREE_GBLLOCK(&lk);
13387 }
13388 
13389 /*
13390  * Flush out a directory with at least one removal dependency in an effort to
13391  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13392  */
13393 static void
13394 clear_remove(mp)
13395 	struct mount *mp;
13396 {
13397 	struct pagedep_hashhead *pagedephd;
13398 	struct pagedep *pagedep;
13399 	struct ufsmount *ump;
13400 	struct vnode *vp;
13401 	struct bufobj *bo;
13402 	int error, cnt;
13403 	ino_t ino;
13404 
13405 	ump = VFSTOUFS(mp);
13406 	LOCK_OWNED(ump);
13407 
13408 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13409 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13410 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13411 			ump->pagedep_nextclean = 0;
13412 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13413 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13414 				continue;
13415 			ino = pagedep->pd_ino;
13416 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13417 				continue;
13418 			FREE_LOCK(ump);
13419 
13420 			/*
13421 			 * Let unmount clear deps
13422 			 */
13423 			error = vfs_busy(mp, MBF_NOWAIT);
13424 			if (error != 0)
13425 				goto finish_write;
13426 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13427 			     FFSV_FORCEINSMQ);
13428 			vfs_unbusy(mp);
13429 			if (error != 0) {
13430 				softdep_error("clear_remove: vget", error);
13431 				goto finish_write;
13432 			}
13433 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13434 				softdep_error("clear_remove: fsync", error);
13435 			bo = &vp->v_bufobj;
13436 			BO_LOCK(bo);
13437 			drain_output(vp);
13438 			BO_UNLOCK(bo);
13439 			vput(vp);
13440 		finish_write:
13441 			vn_finished_write(mp);
13442 			ACQUIRE_LOCK(ump);
13443 			return;
13444 		}
13445 	}
13446 }
13447 
13448 /*
13449  * Clear out a block of dirty inodes in an effort to reduce
13450  * the number of inodedep dependency structures.
13451  */
13452 static void
13453 clear_inodedeps(mp)
13454 	struct mount *mp;
13455 {
13456 	struct inodedep_hashhead *inodedephd;
13457 	struct inodedep *inodedep;
13458 	struct ufsmount *ump;
13459 	struct vnode *vp;
13460 	struct fs *fs;
13461 	int error, cnt;
13462 	ino_t firstino, lastino, ino;
13463 
13464 	ump = VFSTOUFS(mp);
13465 	fs = ump->um_fs;
13466 	LOCK_OWNED(ump);
13467 	/*
13468 	 * Pick a random inode dependency to be cleared.
13469 	 * We will then gather up all the inodes in its block
13470 	 * that have dependencies and flush them out.
13471 	 */
13472 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13473 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13474 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13475 			ump->inodedep_nextclean = 0;
13476 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13477 			break;
13478 	}
13479 	if (inodedep == NULL)
13480 		return;
13481 	/*
13482 	 * Find the last inode in the block with dependencies.
13483 	 */
13484 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13485 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13486 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13487 			break;
13488 	/*
13489 	 * Asynchronously push all but the last inode with dependencies.
13490 	 * Synchronously push the last inode with dependencies to ensure
13491 	 * that the inode block gets written to free up the inodedeps.
13492 	 */
13493 	for (ino = firstino; ino <= lastino; ino++) {
13494 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13495 			continue;
13496 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13497 			continue;
13498 		FREE_LOCK(ump);
13499 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13500 		if (error != 0) {
13501 			vn_finished_write(mp);
13502 			ACQUIRE_LOCK(ump);
13503 			return;
13504 		}
13505 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13506 		    FFSV_FORCEINSMQ)) != 0) {
13507 			softdep_error("clear_inodedeps: vget", error);
13508 			vfs_unbusy(mp);
13509 			vn_finished_write(mp);
13510 			ACQUIRE_LOCK(ump);
13511 			return;
13512 		}
13513 		vfs_unbusy(mp);
13514 		if (ino == lastino) {
13515 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13516 				softdep_error("clear_inodedeps: fsync1", error);
13517 		} else {
13518 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13519 				softdep_error("clear_inodedeps: fsync2", error);
13520 			BO_LOCK(&vp->v_bufobj);
13521 			drain_output(vp);
13522 			BO_UNLOCK(&vp->v_bufobj);
13523 		}
13524 		vput(vp);
13525 		vn_finished_write(mp);
13526 		ACQUIRE_LOCK(ump);
13527 	}
13528 }
13529 
13530 void
13531 softdep_buf_append(bp, wkhd)
13532 	struct buf *bp;
13533 	struct workhead *wkhd;
13534 {
13535 	struct worklist *wk;
13536 	struct ufsmount *ump;
13537 
13538 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13539 		return;
13540 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13541 	    ("softdep_buf_append called on non-softdep filesystem"));
13542 	ump = VFSTOUFS(wk->wk_mp);
13543 	ACQUIRE_LOCK(ump);
13544 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13545 		WORKLIST_REMOVE(wk);
13546 		WORKLIST_INSERT(&bp->b_dep, wk);
13547 	}
13548 	FREE_LOCK(ump);
13549 
13550 }
13551 
13552 void
13553 softdep_inode_append(ip, cred, wkhd)
13554 	struct inode *ip;
13555 	struct ucred *cred;
13556 	struct workhead *wkhd;
13557 {
13558 	struct buf *bp;
13559 	struct fs *fs;
13560 	int error;
13561 
13562 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13563 	    ("softdep_inode_append called on non-softdep filesystem"));
13564 	fs = ip->i_fs;
13565 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13566 	    (int)fs->fs_bsize, cred, &bp);
13567 	if (error) {
13568 		bqrelse(bp);
13569 		softdep_freework(wkhd);
13570 		return;
13571 	}
13572 	softdep_buf_append(bp, wkhd);
13573 	bqrelse(bp);
13574 }
13575 
13576 void
13577 softdep_freework(wkhd)
13578 	struct workhead *wkhd;
13579 {
13580 	struct worklist *wk;
13581 	struct ufsmount *ump;
13582 
13583 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13584 		return;
13585 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13586 	    ("softdep_freework called on non-softdep filesystem"));
13587 	ump = VFSTOUFS(wk->wk_mp);
13588 	ACQUIRE_LOCK(ump);
13589 	handle_jwork(wkhd);
13590 	FREE_LOCK(ump);
13591 }
13592 
13593 /*
13594  * Function to determine if the buffer has outstanding dependencies
13595  * that will cause a roll-back if the buffer is written. If wantcount
13596  * is set, return number of dependencies, otherwise just yes or no.
13597  */
13598 static int
13599 softdep_count_dependencies(bp, wantcount)
13600 	struct buf *bp;
13601 	int wantcount;
13602 {
13603 	struct worklist *wk;
13604 	struct ufsmount *ump;
13605 	struct bmsafemap *bmsafemap;
13606 	struct freework *freework;
13607 	struct inodedep *inodedep;
13608 	struct indirdep *indirdep;
13609 	struct freeblks *freeblks;
13610 	struct allocindir *aip;
13611 	struct pagedep *pagedep;
13612 	struct dirrem *dirrem;
13613 	struct newblk *newblk;
13614 	struct mkdir *mkdir;
13615 	struct diradd *dap;
13616 	int i, retval;
13617 
13618 	retval = 0;
13619 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13620 		return (0);
13621 	ump = VFSTOUFS(wk->wk_mp);
13622 	ACQUIRE_LOCK(ump);
13623 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13624 		switch (wk->wk_type) {
13625 
13626 		case D_INODEDEP:
13627 			inodedep = WK_INODEDEP(wk);
13628 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13629 				/* bitmap allocation dependency */
13630 				retval += 1;
13631 				if (!wantcount)
13632 					goto out;
13633 			}
13634 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13635 				/* direct block pointer dependency */
13636 				retval += 1;
13637 				if (!wantcount)
13638 					goto out;
13639 			}
13640 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13641 				/* direct block pointer dependency */
13642 				retval += 1;
13643 				if (!wantcount)
13644 					goto out;
13645 			}
13646 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13647 				/* Add reference dependency. */
13648 				retval += 1;
13649 				if (!wantcount)
13650 					goto out;
13651 			}
13652 			continue;
13653 
13654 		case D_INDIRDEP:
13655 			indirdep = WK_INDIRDEP(wk);
13656 
13657 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13658 				/* indirect truncation dependency */
13659 				retval += 1;
13660 				if (!wantcount)
13661 					goto out;
13662 			}
13663 
13664 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13665 				/* indirect block pointer dependency */
13666 				retval += 1;
13667 				if (!wantcount)
13668 					goto out;
13669 			}
13670 			continue;
13671 
13672 		case D_PAGEDEP:
13673 			pagedep = WK_PAGEDEP(wk);
13674 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13675 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13676 					/* Journal remove ref dependency. */
13677 					retval += 1;
13678 					if (!wantcount)
13679 						goto out;
13680 				}
13681 			}
13682 			for (i = 0; i < DAHASHSZ; i++) {
13683 
13684 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13685 					/* directory entry dependency */
13686 					retval += 1;
13687 					if (!wantcount)
13688 						goto out;
13689 				}
13690 			}
13691 			continue;
13692 
13693 		case D_BMSAFEMAP:
13694 			bmsafemap = WK_BMSAFEMAP(wk);
13695 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13696 				/* Add reference dependency. */
13697 				retval += 1;
13698 				if (!wantcount)
13699 					goto out;
13700 			}
13701 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13702 				/* Allocate block dependency. */
13703 				retval += 1;
13704 				if (!wantcount)
13705 					goto out;
13706 			}
13707 			continue;
13708 
13709 		case D_FREEBLKS:
13710 			freeblks = WK_FREEBLKS(wk);
13711 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13712 				/* Freeblk journal dependency. */
13713 				retval += 1;
13714 				if (!wantcount)
13715 					goto out;
13716 			}
13717 			continue;
13718 
13719 		case D_ALLOCDIRECT:
13720 		case D_ALLOCINDIR:
13721 			newblk = WK_NEWBLK(wk);
13722 			if (newblk->nb_jnewblk) {
13723 				/* Journal allocate dependency. */
13724 				retval += 1;
13725 				if (!wantcount)
13726 					goto out;
13727 			}
13728 			continue;
13729 
13730 		case D_MKDIR:
13731 			mkdir = WK_MKDIR(wk);
13732 			if (mkdir->md_jaddref) {
13733 				/* Journal reference dependency. */
13734 				retval += 1;
13735 				if (!wantcount)
13736 					goto out;
13737 			}
13738 			continue;
13739 
13740 		case D_FREEWORK:
13741 		case D_FREEDEP:
13742 		case D_JSEGDEP:
13743 		case D_JSEG:
13744 		case D_SBDEP:
13745 			/* never a dependency on these blocks */
13746 			continue;
13747 
13748 		default:
13749 			panic("softdep_count_dependencies: Unexpected type %s",
13750 			    TYPENAME(wk->wk_type));
13751 			/* NOTREACHED */
13752 		}
13753 	}
13754 out:
13755 	FREE_LOCK(ump);
13756 	return retval;
13757 }
13758 
13759 /*
13760  * Acquire exclusive access to a buffer.
13761  * Must be called with a locked mtx parameter.
13762  * Return acquired buffer or NULL on failure.
13763  */
13764 static struct buf *
13765 getdirtybuf(bp, lock, waitfor)
13766 	struct buf *bp;
13767 	struct rwlock *lock;
13768 	int waitfor;
13769 {
13770 	int error;
13771 
13772 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13773 		if (waitfor != MNT_WAIT)
13774 			return (NULL);
13775 		error = BUF_LOCK(bp,
13776 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13777 		/*
13778 		 * Even if we sucessfully acquire bp here, we have dropped
13779 		 * lock, which may violates our guarantee.
13780 		 */
13781 		if (error == 0)
13782 			BUF_UNLOCK(bp);
13783 		else if (error != ENOLCK)
13784 			panic("getdirtybuf: inconsistent lock: %d", error);
13785 		rw_wlock(lock);
13786 		return (NULL);
13787 	}
13788 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13789 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13790 			rw_wunlock(lock);
13791 			BO_LOCK(bp->b_bufobj);
13792 			BUF_UNLOCK(bp);
13793 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13794 				bp->b_vflags |= BV_BKGRDWAIT;
13795 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13796 				       PRIBIO | PDROP, "getbuf", 0);
13797 			} else
13798 				BO_UNLOCK(bp->b_bufobj);
13799 			rw_wlock(lock);
13800 			return (NULL);
13801 		}
13802 		BUF_UNLOCK(bp);
13803 		if (waitfor != MNT_WAIT)
13804 			return (NULL);
13805 		/*
13806 		 * The lock argument must be bp->b_vp's mutex in
13807 		 * this case.
13808 		 */
13809 #ifdef	DEBUG_VFS_LOCKS
13810 		if (bp->b_vp->v_type != VCHR)
13811 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13812 #endif
13813 		bp->b_vflags |= BV_BKGRDWAIT;
13814 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13815 		return (NULL);
13816 	}
13817 	if ((bp->b_flags & B_DELWRI) == 0) {
13818 		BUF_UNLOCK(bp);
13819 		return (NULL);
13820 	}
13821 	bremfree(bp);
13822 	return (bp);
13823 }
13824 
13825 
13826 /*
13827  * Check if it is safe to suspend the file system now.  On entry,
13828  * the vnode interlock for devvp should be held.  Return 0 with
13829  * the mount interlock held if the file system can be suspended now,
13830  * otherwise return EAGAIN with the mount interlock held.
13831  */
13832 int
13833 softdep_check_suspend(struct mount *mp,
13834 		      struct vnode *devvp,
13835 		      int softdep_depcnt,
13836 		      int softdep_accdepcnt,
13837 		      int secondary_writes,
13838 		      int secondary_accwrites)
13839 {
13840 	struct bufobj *bo;
13841 	struct ufsmount *ump;
13842 	int error;
13843 
13844 	bo = &devvp->v_bufobj;
13845 	ASSERT_BO_WLOCKED(bo);
13846 
13847 	/*
13848 	 * If we are not running with soft updates, then we need only
13849 	 * deal with secondary writes as we try to suspend.
13850 	 */
13851 	if (MOUNTEDSOFTDEP(mp) == 0) {
13852 		MNT_ILOCK(mp);
13853 		while (mp->mnt_secondary_writes != 0) {
13854 			BO_UNLOCK(bo);
13855 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13856 			    (PUSER - 1) | PDROP, "secwr", 0);
13857 			BO_LOCK(bo);
13858 			MNT_ILOCK(mp);
13859 		}
13860 
13861 		/*
13862 		 * Reasons for needing more work before suspend:
13863 		 * - Dirty buffers on devvp.
13864 		 * - Secondary writes occurred after start of vnode sync loop
13865 		 */
13866 		error = 0;
13867 		if (bo->bo_numoutput > 0 ||
13868 		    bo->bo_dirty.bv_cnt > 0 ||
13869 		    secondary_writes != 0 ||
13870 		    mp->mnt_secondary_writes != 0 ||
13871 		    secondary_accwrites != mp->mnt_secondary_accwrites)
13872 			error = EAGAIN;
13873 		BO_UNLOCK(bo);
13874 		return (error);
13875 	}
13876 
13877 	/*
13878 	 * If we are running with soft updates, then we need to coordinate
13879 	 * with them as we try to suspend.
13880 	 */
13881 	ump = VFSTOUFS(mp);
13882 	for (;;) {
13883 		if (!TRY_ACQUIRE_LOCK(ump)) {
13884 			BO_UNLOCK(bo);
13885 			ACQUIRE_LOCK(ump);
13886 			FREE_LOCK(ump);
13887 			BO_LOCK(bo);
13888 			continue;
13889 		}
13890 		MNT_ILOCK(mp);
13891 		if (mp->mnt_secondary_writes != 0) {
13892 			FREE_LOCK(ump);
13893 			BO_UNLOCK(bo);
13894 			msleep(&mp->mnt_secondary_writes,
13895 			       MNT_MTX(mp),
13896 			       (PUSER - 1) | PDROP, "secwr", 0);
13897 			BO_LOCK(bo);
13898 			continue;
13899 		}
13900 		break;
13901 	}
13902 
13903 	/*
13904 	 * Reasons for needing more work before suspend:
13905 	 * - Dirty buffers on devvp.
13906 	 * - Softdep activity occurred after start of vnode sync loop
13907 	 * - Secondary writes occurred after start of vnode sync loop
13908 	 */
13909 	error = 0;
13910 	if (bo->bo_numoutput > 0 ||
13911 	    bo->bo_dirty.bv_cnt > 0 ||
13912 	    softdep_depcnt != 0 ||
13913 	    ump->softdep_deps != 0 ||
13914 	    softdep_accdepcnt != ump->softdep_accdeps ||
13915 	    secondary_writes != 0 ||
13916 	    mp->mnt_secondary_writes != 0 ||
13917 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13918 		error = EAGAIN;
13919 	FREE_LOCK(ump);
13920 	BO_UNLOCK(bo);
13921 	return (error);
13922 }
13923 
13924 
13925 /*
13926  * Get the number of dependency structures for the file system, both
13927  * the current number and the total number allocated.  These will
13928  * later be used to detect that softdep processing has occurred.
13929  */
13930 void
13931 softdep_get_depcounts(struct mount *mp,
13932 		      int *softdep_depsp,
13933 		      int *softdep_accdepsp)
13934 {
13935 	struct ufsmount *ump;
13936 
13937 	if (MOUNTEDSOFTDEP(mp) == 0) {
13938 		*softdep_depsp = 0;
13939 		*softdep_accdepsp = 0;
13940 		return;
13941 	}
13942 	ump = VFSTOUFS(mp);
13943 	ACQUIRE_LOCK(ump);
13944 	*softdep_depsp = ump->softdep_deps;
13945 	*softdep_accdepsp = ump->softdep_accdeps;
13946 	FREE_LOCK(ump);
13947 }
13948 
13949 /*
13950  * Wait for pending output on a vnode to complete.
13951  * Must be called with vnode lock and interlock locked.
13952  *
13953  * XXX: Should just be a call to bufobj_wwait().
13954  */
13955 static void
13956 drain_output(vp)
13957 	struct vnode *vp;
13958 {
13959 	struct bufobj *bo;
13960 
13961 	bo = &vp->v_bufobj;
13962 	ASSERT_VOP_LOCKED(vp, "drain_output");
13963 	ASSERT_BO_WLOCKED(bo);
13964 
13965 	while (bo->bo_numoutput) {
13966 		bo->bo_flag |= BO_WWAIT;
13967 		msleep((caddr_t)&bo->bo_numoutput,
13968 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13969 	}
13970 }
13971 
13972 /*
13973  * Called whenever a buffer that is being invalidated or reallocated
13974  * contains dependencies. This should only happen if an I/O error has
13975  * occurred. The routine is called with the buffer locked.
13976  */
13977 static void
13978 softdep_deallocate_dependencies(bp)
13979 	struct buf *bp;
13980 {
13981 
13982 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13983 		panic("softdep_deallocate_dependencies: dangling deps");
13984 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13985 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13986 	else
13987 		printf("softdep_deallocate_dependencies: "
13988 		    "got error %d while accessing filesystem\n", bp->b_error);
13989 	if (bp->b_error != ENXIO)
13990 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13991 }
13992 
13993 /*
13994  * Function to handle asynchronous write errors in the filesystem.
13995  */
13996 static void
13997 softdep_error(func, error)
13998 	char *func;
13999 	int error;
14000 {
14001 
14002 	/* XXX should do something better! */
14003 	printf("%s: got error %d while accessing filesystem\n", func, error);
14004 }
14005 
14006 #ifdef DDB
14007 
14008 static void
14009 inodedep_print(struct inodedep *inodedep, int verbose)
14010 {
14011 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14012 	    " saveino %p\n",
14013 	    inodedep, inodedep->id_fs, inodedep->id_state,
14014 	    (intmax_t)inodedep->id_ino,
14015 	    (intmax_t)fsbtodb(inodedep->id_fs,
14016 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14017 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14018 	    inodedep->id_savedino1);
14019 
14020 	if (verbose == 0)
14021 		return;
14022 
14023 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14024 	    "mkdiradd %p\n",
14025 	    LIST_FIRST(&inodedep->id_pendinghd),
14026 	    LIST_FIRST(&inodedep->id_bufwait),
14027 	    LIST_FIRST(&inodedep->id_inowait),
14028 	    TAILQ_FIRST(&inodedep->id_inoreflst),
14029 	    inodedep->id_mkdiradd);
14030 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14031 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14032 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14033 	    TAILQ_FIRST(&inodedep->id_extupdt),
14034 	    TAILQ_FIRST(&inodedep->id_newextupdt));
14035 }
14036 
14037 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14038 {
14039 
14040 	if (have_addr == 0) {
14041 		db_printf("Address required\n");
14042 		return;
14043 	}
14044 	inodedep_print((struct inodedep*)addr, 1);
14045 }
14046 
14047 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14048 {
14049 	struct inodedep_hashhead *inodedephd;
14050 	struct inodedep *inodedep;
14051 	struct ufsmount *ump;
14052 	int cnt;
14053 
14054 	if (have_addr == 0) {
14055 		db_printf("Address required\n");
14056 		return;
14057 	}
14058 	ump = (struct ufsmount *)addr;
14059 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14060 		inodedephd = &ump->inodedep_hashtbl[cnt];
14061 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14062 			inodedep_print(inodedep, 0);
14063 		}
14064 	}
14065 }
14066 
14067 DB_SHOW_COMMAND(worklist, db_show_worklist)
14068 {
14069 	struct worklist *wk;
14070 
14071 	if (have_addr == 0) {
14072 		db_printf("Address required\n");
14073 		return;
14074 	}
14075 	wk = (struct worklist *)addr;
14076 	printf("worklist: %p type %s state 0x%X\n",
14077 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14078 }
14079 
14080 DB_SHOW_COMMAND(workhead, db_show_workhead)
14081 {
14082 	struct workhead *wkhd;
14083 	struct worklist *wk;
14084 	int i;
14085 
14086 	if (have_addr == 0) {
14087 		db_printf("Address required\n");
14088 		return;
14089 	}
14090 	wkhd = (struct workhead *)addr;
14091 	wk = LIST_FIRST(wkhd);
14092 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14093 		db_printf("worklist: %p type %s state 0x%X",
14094 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14095 	if (i == 100)
14096 		db_printf("workhead overflow");
14097 	printf("\n");
14098 }
14099 
14100 
14101 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14102 {
14103 	struct mkdirlist *mkdirlisthd;
14104 	struct jaddref *jaddref;
14105 	struct diradd *diradd;
14106 	struct mkdir *mkdir;
14107 
14108 	if (have_addr == 0) {
14109 		db_printf("Address required\n");
14110 		return;
14111 	}
14112 	mkdirlisthd = (struct mkdirlist *)addr;
14113 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14114 		diradd = mkdir->md_diradd;
14115 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14116 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14117 		if ((jaddref = mkdir->md_jaddref) != NULL)
14118 			db_printf(" jaddref %p jaddref state 0x%X",
14119 			    jaddref, jaddref->ja_state);
14120 		db_printf("\n");
14121 	}
14122 }
14123 
14124 /* exported to ffs_vfsops.c */
14125 extern void db_print_ffs(struct ufsmount *ump);
14126 void
14127 db_print_ffs(struct ufsmount *ump)
14128 {
14129 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14130 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14131 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14132 	    ump->softdep_deps, ump->softdep_req);
14133 }
14134 
14135 #endif /* DDB */
14136 
14137 #endif /* SOFTUPDATES */
14138