xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_ddb.h"
47 
48 /*
49  * For now we want the safety net that the DEBUG flag provides.
50  */
51 #ifndef DEBUG
52 #define DEBUG
53 #endif
54 
55 #include <sys/param.h>
56 #include <sys/kernel.h>
57 #include <sys/systm.h>
58 #include <sys/bio.h>
59 #include <sys/buf.h>
60 #include <sys/kdb.h>
61 #include <sys/kthread.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/mutex.h>
67 #include <sys/namei.h>
68 #include <sys/priv.h>
69 #include <sys/proc.h>
70 #include <sys/stat.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/vnode.h>
74 #include <sys/conf.h>
75 
76 #include <ufs/ufs/dir.h>
77 #include <ufs/ufs/extattr.h>
78 #include <ufs/ufs/quota.h>
79 #include <ufs/ufs/inode.h>
80 #include <ufs/ufs/ufsmount.h>
81 #include <ufs/ffs/fs.h>
82 #include <ufs/ffs/softdep.h>
83 #include <ufs/ffs/ffs_extern.h>
84 #include <ufs/ufs/ufs_extern.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/vm_object.h>
89 
90 #include <ddb/ddb.h>
91 
92 #ifndef SOFTUPDATES
93 
94 int
95 softdep_flushfiles(oldmnt, flags, td)
96 	struct mount *oldmnt;
97 	int flags;
98 	struct thread *td;
99 {
100 
101 	panic("softdep_flushfiles called");
102 }
103 
104 int
105 softdep_mount(devvp, mp, fs, cred)
106 	struct vnode *devvp;
107 	struct mount *mp;
108 	struct fs *fs;
109 	struct ucred *cred;
110 {
111 
112 	return (0);
113 }
114 
115 void
116 softdep_initialize()
117 {
118 
119 	return;
120 }
121 
122 void
123 softdep_uninitialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_unmount(mp)
131 	struct mount *mp;
132 {
133 
134 }
135 
136 void
137 softdep_setup_sbupdate(ump, fs, bp)
138 	struct ufsmount *ump;
139 	struct fs *fs;
140 	struct buf *bp;
141 {
142 }
143 
144 void
145 softdep_setup_inomapdep(bp, ip, newinum, mode)
146 	struct buf *bp;
147 	struct inode *ip;
148 	ino_t newinum;
149 	int mode;
150 {
151 
152 	panic("softdep_setup_inomapdep called");
153 }
154 
155 void
156 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
157 	struct buf *bp;
158 	struct mount *mp;
159 	ufs2_daddr_t newblkno;
160 	int frags;
161 	int oldfrags;
162 {
163 
164 	panic("softdep_setup_blkmapdep called");
165 }
166 
167 void
168 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
169 	struct inode *ip;
170 	ufs_lbn_t lbn;
171 	ufs2_daddr_t newblkno;
172 	ufs2_daddr_t oldblkno;
173 	long newsize;
174 	long oldsize;
175 	struct buf *bp;
176 {
177 
178 	panic("softdep_setup_allocdirect called");
179 }
180 
181 void
182 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
183 	struct inode *ip;
184 	ufs_lbn_t lbn;
185 	ufs2_daddr_t newblkno;
186 	ufs2_daddr_t oldblkno;
187 	long newsize;
188 	long oldsize;
189 	struct buf *bp;
190 {
191 
192 	panic("softdep_setup_allocext called");
193 }
194 
195 void
196 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
197 	struct inode *ip;
198 	ufs_lbn_t lbn;
199 	struct buf *bp;
200 	int ptrno;
201 	ufs2_daddr_t newblkno;
202 	ufs2_daddr_t oldblkno;
203 	struct buf *nbp;
204 {
205 
206 	panic("softdep_setup_allocindir_page called");
207 }
208 
209 void
210 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
211 	struct buf *nbp;
212 	struct inode *ip;
213 	struct buf *bp;
214 	int ptrno;
215 	ufs2_daddr_t newblkno;
216 {
217 
218 	panic("softdep_setup_allocindir_meta called");
219 }
220 
221 void
222 softdep_journal_freeblocks(ip, cred, length, flags)
223 	struct inode *ip;
224 	struct ucred *cred;
225 	off_t length;
226 	int flags;
227 {
228 
229 	panic("softdep_journal_freeblocks called");
230 }
231 
232 void
233 softdep_journal_fsync(ip)
234 	struct inode *ip;
235 {
236 
237 	panic("softdep_journal_fsync called");
238 }
239 
240 void
241 softdep_setup_freeblocks(ip, length, flags)
242 	struct inode *ip;
243 	off_t length;
244 	int flags;
245 {
246 
247 	panic("softdep_setup_freeblocks called");
248 }
249 
250 void
251 softdep_freefile(pvp, ino, mode)
252 		struct vnode *pvp;
253 		ino_t ino;
254 		int mode;
255 {
256 
257 	panic("softdep_freefile called");
258 }
259 
260 int
261 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
262 	struct buf *bp;
263 	struct inode *dp;
264 	off_t diroffset;
265 	ino_t newinum;
266 	struct buf *newdirbp;
267 	int isnewblk;
268 {
269 
270 	panic("softdep_setup_directory_add called");
271 }
272 
273 void
274 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
275 	struct buf *bp;
276 	struct inode *dp;
277 	caddr_t base;
278 	caddr_t oldloc;
279 	caddr_t newloc;
280 	int entrysize;
281 {
282 
283 	panic("softdep_change_directoryentry_offset called");
284 }
285 
286 void
287 softdep_setup_remove(bp, dp, ip, isrmdir)
288 	struct buf *bp;
289 	struct inode *dp;
290 	struct inode *ip;
291 	int isrmdir;
292 {
293 
294 	panic("softdep_setup_remove called");
295 }
296 
297 void
298 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
299 	struct buf *bp;
300 	struct inode *dp;
301 	struct inode *ip;
302 	ino_t newinum;
303 	int isrmdir;
304 {
305 
306 	panic("softdep_setup_directory_change called");
307 }
308 
309 void
310 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
311 	struct mount *mp;
312 	struct buf *bp;
313 	ufs2_daddr_t blkno;
314 	int frags;
315 	struct workhead *wkhd;
316 {
317 
318 	panic("%s called", __FUNCTION__);
319 }
320 
321 void
322 softdep_setup_inofree(mp, bp, ino, wkhd)
323 	struct mount *mp;
324 	struct buf *bp;
325 	ino_t ino;
326 	struct workhead *wkhd;
327 {
328 
329 	panic("%s called", __FUNCTION__);
330 }
331 
332 void
333 softdep_setup_unlink(dp, ip)
334 	struct inode *dp;
335 	struct inode *ip;
336 {
337 
338 	panic("%s called", __FUNCTION__);
339 }
340 
341 void
342 softdep_setup_link(dp, ip)
343 	struct inode *dp;
344 	struct inode *ip;
345 {
346 
347 	panic("%s called", __FUNCTION__);
348 }
349 
350 void
351 softdep_revert_link(dp, ip)
352 	struct inode *dp;
353 	struct inode *ip;
354 {
355 
356 	panic("%s called", __FUNCTION__);
357 }
358 
359 void
360 softdep_setup_rmdir(dp, ip)
361 	struct inode *dp;
362 	struct inode *ip;
363 {
364 
365 	panic("%s called", __FUNCTION__);
366 }
367 
368 void
369 softdep_revert_rmdir(dp, ip)
370 	struct inode *dp;
371 	struct inode *ip;
372 {
373 
374 	panic("%s called", __FUNCTION__);
375 }
376 
377 void
378 softdep_setup_create(dp, ip)
379 	struct inode *dp;
380 	struct inode *ip;
381 {
382 
383 	panic("%s called", __FUNCTION__);
384 }
385 
386 void
387 softdep_revert_create(dp, ip)
388 	struct inode *dp;
389 	struct inode *ip;
390 {
391 
392 	panic("%s called", __FUNCTION__);
393 }
394 
395 void
396 softdep_setup_mkdir(dp, ip)
397 	struct inode *dp;
398 	struct inode *ip;
399 {
400 
401 	panic("%s called", __FUNCTION__);
402 }
403 
404 void
405 softdep_revert_mkdir(dp, ip)
406 	struct inode *dp;
407 	struct inode *ip;
408 {
409 
410 	panic("%s called", __FUNCTION__);
411 }
412 
413 void
414 softdep_setup_dotdot_link(dp, ip)
415 	struct inode *dp;
416 	struct inode *ip;
417 {
418 
419 	panic("%s called", __FUNCTION__);
420 }
421 
422 int
423 softdep_prealloc(vp, waitok)
424 	struct vnode *vp;
425 	int waitok;
426 {
427 
428 	panic("%s called", __FUNCTION__);
429 
430 	return (0);
431 }
432 
433 int
434 softdep_journal_lookup(mp, vpp)
435 	struct mount *mp;
436 	struct vnode **vpp;
437 {
438 
439 	return (ENOENT);
440 }
441 
442 void
443 softdep_change_linkcnt(ip)
444 	struct inode *ip;
445 {
446 
447 	panic("softdep_change_linkcnt called");
448 }
449 
450 void
451 softdep_load_inodeblock(ip)
452 	struct inode *ip;
453 {
454 
455 	panic("softdep_load_inodeblock called");
456 }
457 
458 void
459 softdep_update_inodeblock(ip, bp, waitfor)
460 	struct inode *ip;
461 	struct buf *bp;
462 	int waitfor;
463 {
464 
465 	panic("softdep_update_inodeblock called");
466 }
467 
468 int
469 softdep_fsync(vp)
470 	struct vnode *vp;	/* the "in_core" copy of the inode */
471 {
472 
473 	return (0);
474 }
475 
476 void
477 softdep_fsync_mountdev(vp)
478 	struct vnode *vp;
479 {
480 
481 	return;
482 }
483 
484 int
485 softdep_flushworklist(oldmnt, countp, td)
486 	struct mount *oldmnt;
487 	int *countp;
488 	struct thread *td;
489 {
490 
491 	*countp = 0;
492 	return (0);
493 }
494 
495 int
496 softdep_sync_metadata(struct vnode *vp)
497 {
498 
499 	return (0);
500 }
501 
502 int
503 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
504 {
505 
506 	return (0);
507 }
508 
509 int
510 softdep_slowdown(vp)
511 	struct vnode *vp;
512 {
513 
514 	panic("softdep_slowdown called");
515 }
516 
517 void
518 softdep_releasefile(ip)
519 	struct inode *ip;	/* inode with the zero effective link count */
520 {
521 
522 	panic("softdep_releasefile called");
523 }
524 
525 int
526 softdep_request_cleanup(fs, vp, cred, resource)
527 	struct fs *fs;
528 	struct vnode *vp;
529 	struct ucred *cred;
530 	int resource;
531 {
532 
533 	return (0);
534 }
535 
536 int
537 softdep_check_suspend(struct mount *mp,
538 		      struct vnode *devvp,
539 		      int softdep_deps,
540 		      int softdep_accdeps,
541 		      int secondary_writes,
542 		      int secondary_accwrites)
543 {
544 	struct bufobj *bo;
545 	int error;
546 
547 	(void) softdep_deps,
548 	(void) softdep_accdeps;
549 
550 	bo = &devvp->v_bufobj;
551 	ASSERT_BO_LOCKED(bo);
552 
553 	MNT_ILOCK(mp);
554 	while (mp->mnt_secondary_writes != 0) {
555 		BO_UNLOCK(bo);
556 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557 		    (PUSER - 1) | PDROP, "secwr", 0);
558 		BO_LOCK(bo);
559 		MNT_ILOCK(mp);
560 	}
561 
562 	/*
563 	 * Reasons for needing more work before suspend:
564 	 * - Dirty buffers on devvp.
565 	 * - Secondary writes occurred after start of vnode sync loop
566 	 */
567 	error = 0;
568 	if (bo->bo_numoutput > 0 ||
569 	    bo->bo_dirty.bv_cnt > 0 ||
570 	    secondary_writes != 0 ||
571 	    mp->mnt_secondary_writes != 0 ||
572 	    secondary_accwrites != mp->mnt_secondary_accwrites)
573 		error = EAGAIN;
574 	BO_UNLOCK(bo);
575 	return (error);
576 }
577 
578 void
579 softdep_get_depcounts(struct mount *mp,
580 		      int *softdepactivep,
581 		      int *softdepactiveaccp)
582 {
583 	(void) mp;
584 	*softdepactivep = 0;
585 	*softdepactiveaccp = 0;
586 }
587 
588 void
589 softdep_buf_append(bp, wkhd)
590 	struct buf *bp;
591 	struct workhead *wkhd;
592 {
593 
594 	panic("softdep_buf_appendwork called");
595 }
596 
597 void
598 softdep_inode_append(ip, cred, wkhd)
599 	struct inode *ip;
600 	struct ucred *cred;
601 	struct workhead *wkhd;
602 {
603 
604 	panic("softdep_inode_appendwork called");
605 }
606 
607 void
608 softdep_freework(wkhd)
609 	struct workhead *wkhd;
610 {
611 
612 	panic("softdep_freework called");
613 }
614 
615 #else
616 
617 FEATURE(softupdates, "FFS soft-updates support");
618 
619 /*
620  * These definitions need to be adapted to the system to which
621  * this file is being ported.
622  */
623 
624 #define M_SOFTDEP_FLAGS	(M_WAITOK)
625 
626 #define	D_PAGEDEP	0
627 #define	D_INODEDEP	1
628 #define	D_BMSAFEMAP	2
629 #define	D_NEWBLK	3
630 #define	D_ALLOCDIRECT	4
631 #define	D_INDIRDEP	5
632 #define	D_ALLOCINDIR	6
633 #define	D_FREEFRAG	7
634 #define	D_FREEBLKS	8
635 #define	D_FREEFILE	9
636 #define	D_DIRADD	10
637 #define	D_MKDIR		11
638 #define	D_DIRREM	12
639 #define	D_NEWDIRBLK	13
640 #define	D_FREEWORK	14
641 #define	D_FREEDEP	15
642 #define	D_JADDREF	16
643 #define	D_JREMREF	17
644 #define	D_JMVREF	18
645 #define	D_JNEWBLK	19
646 #define	D_JFREEBLK	20
647 #define	D_JFREEFRAG	21
648 #define	D_JSEG		22
649 #define	D_JSEGDEP	23
650 #define	D_SBDEP		24
651 #define	D_JTRUNC	25
652 #define	D_JFSYNC	26
653 #define	D_SENTINAL	27
654 #define	D_LAST		D_SENTINAL
655 
656 unsigned long dep_current[D_LAST + 1];
657 unsigned long dep_total[D_LAST + 1];
658 unsigned long dep_write[D_LAST + 1];
659 
660 
661 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
662     "soft updates stats");
663 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
664     "total dependencies allocated");
665 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
666     "current dependencies allocated");
667 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
668     "current dependencies written");
669 
670 #define	SOFTDEP_TYPE(type, str, long)					\
671     static MALLOC_DEFINE(M_ ## type, #str, long);			\
672     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
673 	&dep_total[D_ ## type], 0, "");					\
674     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
675 	&dep_current[D_ ## type], 0, "");				\
676     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
677 	&dep_write[D_ ## type], 0, "");
678 
679 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
680 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
681 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
682     "Block or frag allocated from cyl group map");
683 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
684 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
685 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
686 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
687 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
688 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
689 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
690 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
691 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
692 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
693 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
694 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
695 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
696 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
697 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
698 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
699 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
700 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
701 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
702 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
703 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
704 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
705 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
706 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
707 
708 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
709 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
710 
711 /*
712  * translate from workitem type to memory type
713  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
714  */
715 static struct malloc_type *memtype[] = {
716 	M_PAGEDEP,
717 	M_INODEDEP,
718 	M_BMSAFEMAP,
719 	M_NEWBLK,
720 	M_ALLOCDIRECT,
721 	M_INDIRDEP,
722 	M_ALLOCINDIR,
723 	M_FREEFRAG,
724 	M_FREEBLKS,
725 	M_FREEFILE,
726 	M_DIRADD,
727 	M_MKDIR,
728 	M_DIRREM,
729 	M_NEWDIRBLK,
730 	M_FREEWORK,
731 	M_FREEDEP,
732 	M_JADDREF,
733 	M_JREMREF,
734 	M_JMVREF,
735 	M_JNEWBLK,
736 	M_JFREEBLK,
737 	M_JFREEFRAG,
738 	M_JSEG,
739 	M_JSEGDEP,
740 	M_SBDEP,
741 	M_JTRUNC,
742 	M_JFSYNC
743 };
744 
745 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
746 
747 #define DtoM(type) (memtype[type])
748 
749 /*
750  * Names of malloc types.
751  */
752 #define TYPENAME(type)  \
753 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
754 /*
755  * End system adaptation definitions.
756  */
757 
758 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
759 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
760 
761 /*
762  * Forward declarations.
763  */
764 struct inodedep_hashhead;
765 struct newblk_hashhead;
766 struct pagedep_hashhead;
767 struct bmsafemap_hashhead;
768 
769 /*
770  * Internal function prototypes.
771  */
772 static	void softdep_error(char *, int);
773 static	void drain_output(struct vnode *);
774 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
775 static	void clear_remove(struct thread *);
776 static	void clear_inodedeps(struct thread *);
777 static	void unlinked_inodedep(struct mount *, struct inodedep *);
778 static	void clear_unlinked_inodedep(struct inodedep *);
779 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
780 static	int flush_pagedep_deps(struct vnode *, struct mount *,
781 	    struct diraddhd *);
782 static	int free_pagedep(struct pagedep *);
783 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
784 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
785 static	int flush_deplist(struct allocdirectlst *, int, int *);
786 static	int sync_cgs(struct mount *, int);
787 static	int handle_written_filepage(struct pagedep *, struct buf *);
788 static	int handle_written_sbdep(struct sbdep *, struct buf *);
789 static	void initiate_write_sbdep(struct sbdep *);
790 static  void diradd_inode_written(struct diradd *, struct inodedep *);
791 static	int handle_written_indirdep(struct indirdep *, struct buf *,
792 	    struct buf**);
793 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
794 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
795 	    uint8_t *);
796 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
797 static	void handle_written_jaddref(struct jaddref *);
798 static	void handle_written_jremref(struct jremref *);
799 static	void handle_written_jseg(struct jseg *, struct buf *);
800 static	void handle_written_jnewblk(struct jnewblk *);
801 static	void handle_written_jblkdep(struct jblkdep *);
802 static	void handle_written_jfreefrag(struct jfreefrag *);
803 static	void complete_jseg(struct jseg *);
804 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
805 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
806 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
807 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
808 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
809 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
810 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
811 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
812 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
813 static	inline void inoref_write(struct inoref *, struct jseg *,
814 	    struct jrefrec *);
815 static	void handle_allocdirect_partdone(struct allocdirect *,
816 	    struct workhead *);
817 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
818 	    struct workhead *);
819 static	void indirdep_complete(struct indirdep *);
820 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
821 static	void indirblk_insert(struct freework *);
822 static	void indirblk_remove(struct freework *);
823 static	void handle_allocindir_partdone(struct allocindir *);
824 static	void initiate_write_filepage(struct pagedep *, struct buf *);
825 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
826 static	void handle_written_mkdir(struct mkdir *, int);
827 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
828 	    uint8_t *);
829 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
830 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
831 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
832 static	void handle_workitem_freefile(struct freefile *);
833 static	int handle_workitem_remove(struct dirrem *, int);
834 static	struct dirrem *newdirrem(struct buf *, struct inode *,
835 	    struct inode *, int, struct dirrem **);
836 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
837 	    struct buf *);
838 static	void cancel_indirdep(struct indirdep *, struct buf *,
839 	    struct freeblks *);
840 static	void free_indirdep(struct indirdep *);
841 static	void free_diradd(struct diradd *, struct workhead *);
842 static	void merge_diradd(struct inodedep *, struct diradd *);
843 static	void complete_diradd(struct diradd *);
844 static	struct diradd *diradd_lookup(struct pagedep *, int);
845 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
846 	    struct jremref *);
847 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
848 	    struct jremref *);
849 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
850 	    struct jremref *, struct jremref *);
851 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
852 	    struct jremref *);
853 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
854 	    struct freeblks *, int);
855 static	int setup_trunc_indir(struct freeblks *, struct inode *,
856 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
857 static	void complete_trunc_indir(struct freework *);
858 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
859 	    int);
860 static	void complete_mkdir(struct mkdir *);
861 static	void free_newdirblk(struct newdirblk *);
862 static	void free_jremref(struct jremref *);
863 static	void free_jaddref(struct jaddref *);
864 static	void free_jsegdep(struct jsegdep *);
865 static	void free_jsegs(struct jblocks *);
866 static	void rele_jseg(struct jseg *);
867 static	void free_jseg(struct jseg *, struct jblocks *);
868 static	void free_jnewblk(struct jnewblk *);
869 static	void free_jblkdep(struct jblkdep *);
870 static	void free_jfreefrag(struct jfreefrag *);
871 static	void free_freedep(struct freedep *);
872 static	void journal_jremref(struct dirrem *, struct jremref *,
873 	    struct inodedep *);
874 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
875 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
876 	    struct workhead *);
877 static	void cancel_jfreefrag(struct jfreefrag *);
878 static	inline void setup_freedirect(struct freeblks *, struct inode *,
879 	    int, int);
880 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
881 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
882 	    ufs_lbn_t, int);
883 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
884 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
885 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
886 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
887 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
888 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
889 	    int, int);
890 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
891 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
892 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
893 static	void newblk_freefrag(struct newblk*);
894 static	void free_newblk(struct newblk *);
895 static	void cancel_allocdirect(struct allocdirectlst *,
896 	    struct allocdirect *, struct freeblks *);
897 static	int check_inode_unwritten(struct inodedep *);
898 static	int free_inodedep(struct inodedep *);
899 static	void freework_freeblock(struct freework *);
900 static	void freework_enqueue(struct freework *);
901 static	int handle_workitem_freeblocks(struct freeblks *, int);
902 static	int handle_complete_freeblocks(struct freeblks *, int);
903 static	void handle_workitem_indirblk(struct freework *);
904 static	void handle_written_freework(struct freework *);
905 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
906 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
907 	    struct workhead *);
908 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
909 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
910 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
911 	    ufs2_daddr_t, ufs_lbn_t);
912 static	void handle_workitem_freefrag(struct freefrag *);
913 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
914 	    ufs_lbn_t);
915 static	void allocdirect_merge(struct allocdirectlst *,
916 	    struct allocdirect *, struct allocdirect *);
917 static	struct freefrag *allocindir_merge(struct allocindir *,
918 	    struct allocindir *);
919 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
920 	    struct bmsafemap **);
921 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
922 	    int cg);
923 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
924 	    int, struct newblk **);
925 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
926 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
927 	    struct inodedep **);
928 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
929 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
930 	    int, struct pagedep **);
931 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
932 	    struct mount *mp, int, struct pagedep **);
933 static	void pause_timer(void *);
934 static	int request_cleanup(struct mount *, int);
935 static	int process_worklist_item(struct mount *, int, int);
936 static	void process_removes(struct vnode *);
937 static	void process_truncates(struct vnode *);
938 static	void jwork_move(struct workhead *, struct workhead *);
939 static	void jwork_insert(struct workhead *, struct jsegdep *);
940 static	void add_to_worklist(struct worklist *, int);
941 static	void wake_worklist(struct worklist *);
942 static	void wait_worklist(struct worklist *, char *);
943 static	void remove_from_worklist(struct worklist *);
944 static	void softdep_flush(void);
945 static	void softdep_flushjournal(struct mount *);
946 static	int softdep_speedup(void);
947 static	void worklist_speedup(void);
948 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
949 static	void journal_unmount(struct mount *);
950 static	int journal_space(struct ufsmount *, int);
951 static	void journal_suspend(struct ufsmount *);
952 static	int journal_unsuspend(struct ufsmount *ump);
953 static	void softdep_prelink(struct vnode *, struct vnode *);
954 static	void add_to_journal(struct worklist *);
955 static	void remove_from_journal(struct worklist *);
956 static	void softdep_process_journal(struct mount *, struct worklist *, int);
957 static	struct jremref *newjremref(struct dirrem *, struct inode *,
958 	    struct inode *ip, off_t, nlink_t);
959 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
960 	    uint16_t);
961 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
962 	    uint16_t);
963 static	inline struct jsegdep *inoref_jseg(struct inoref *);
964 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
965 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
966 	    ufs2_daddr_t, int);
967 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
968 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
969 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
970 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
971 	    ufs2_daddr_t, long, ufs_lbn_t);
972 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
973 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
974 static	int jwait(struct worklist *, int);
975 static	struct inodedep *inodedep_lookup_ip(struct inode *);
976 static	int bmsafemap_rollbacks(struct bmsafemap *);
977 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
978 static	void handle_jwork(struct workhead *);
979 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
980 	    struct mkdir **);
981 static	struct jblocks *jblocks_create(void);
982 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
983 static	void jblocks_free(struct jblocks *, struct mount *, int);
984 static	void jblocks_destroy(struct jblocks *);
985 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
986 
987 /*
988  * Exported softdep operations.
989  */
990 static	void softdep_disk_io_initiation(struct buf *);
991 static	void softdep_disk_write_complete(struct buf *);
992 static	void softdep_deallocate_dependencies(struct buf *);
993 static	int softdep_count_dependencies(struct buf *bp, int);
994 
995 static struct mtx lk;
996 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
997 
998 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
999 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
1000 #define FREE_LOCK(lk)			mtx_unlock(lk)
1001 
1002 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1003 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1004 
1005 /*
1006  * Worklist queue management.
1007  * These routines require that the lock be held.
1008  */
1009 #ifndef /* NOT */ DEBUG
1010 #define WORKLIST_INSERT(head, item) do {	\
1011 	(item)->wk_state |= ONWORKLIST;		\
1012 	LIST_INSERT_HEAD(head, item, wk_list);	\
1013 } while (0)
1014 #define WORKLIST_REMOVE(item) do {		\
1015 	(item)->wk_state &= ~ONWORKLIST;	\
1016 	LIST_REMOVE(item, wk_list);		\
1017 } while (0)
1018 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1019 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1020 
1021 #else /* DEBUG */
1022 static	void worklist_insert(struct workhead *, struct worklist *, int);
1023 static	void worklist_remove(struct worklist *, int);
1024 
1025 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1026 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1027 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1028 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1029 
1030 static void
1031 worklist_insert(head, item, locked)
1032 	struct workhead *head;
1033 	struct worklist *item;
1034 	int locked;
1035 {
1036 
1037 	if (locked)
1038 		mtx_assert(&lk, MA_OWNED);
1039 	if (item->wk_state & ONWORKLIST)
1040 		panic("worklist_insert: %p %s(0x%X) already on list",
1041 		    item, TYPENAME(item->wk_type), item->wk_state);
1042 	item->wk_state |= ONWORKLIST;
1043 	LIST_INSERT_HEAD(head, item, wk_list);
1044 }
1045 
1046 static void
1047 worklist_remove(item, locked)
1048 	struct worklist *item;
1049 	int locked;
1050 {
1051 
1052 	if (locked)
1053 		mtx_assert(&lk, MA_OWNED);
1054 	if ((item->wk_state & ONWORKLIST) == 0)
1055 		panic("worklist_remove: %p %s(0x%X) not on list",
1056 		    item, TYPENAME(item->wk_type), item->wk_state);
1057 	item->wk_state &= ~ONWORKLIST;
1058 	LIST_REMOVE(item, wk_list);
1059 }
1060 #endif /* DEBUG */
1061 
1062 /*
1063  * Merge two jsegdeps keeping only the oldest one as newer references
1064  * can't be discarded until after older references.
1065  */
1066 static inline struct jsegdep *
1067 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1068 {
1069 	struct jsegdep *swp;
1070 
1071 	if (two == NULL)
1072 		return (one);
1073 
1074 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1075 		swp = one;
1076 		one = two;
1077 		two = swp;
1078 	}
1079 	WORKLIST_REMOVE(&two->jd_list);
1080 	free_jsegdep(two);
1081 
1082 	return (one);
1083 }
1084 
1085 /*
1086  * If two freedeps are compatible free one to reduce list size.
1087  */
1088 static inline struct freedep *
1089 freedep_merge(struct freedep *one, struct freedep *two)
1090 {
1091 	if (two == NULL)
1092 		return (one);
1093 
1094 	if (one->fd_freework == two->fd_freework) {
1095 		WORKLIST_REMOVE(&two->fd_list);
1096 		free_freedep(two);
1097 	}
1098 	return (one);
1099 }
1100 
1101 /*
1102  * Move journal work from one list to another.  Duplicate freedeps and
1103  * jsegdeps are coalesced to keep the lists as small as possible.
1104  */
1105 static void
1106 jwork_move(dst, src)
1107 	struct workhead *dst;
1108 	struct workhead *src;
1109 {
1110 	struct freedep *freedep;
1111 	struct jsegdep *jsegdep;
1112 	struct worklist *wkn;
1113 	struct worklist *wk;
1114 
1115 	KASSERT(dst != src,
1116 	    ("jwork_move: dst == src"));
1117 	freedep = NULL;
1118 	jsegdep = NULL;
1119 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1120 		if (wk->wk_type == D_JSEGDEP)
1121 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1122 		if (wk->wk_type == D_FREEDEP)
1123 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1124 	}
1125 
1126 	mtx_assert(&lk, MA_OWNED);
1127 	while ((wk = LIST_FIRST(src)) != NULL) {
1128 		WORKLIST_REMOVE(wk);
1129 		WORKLIST_INSERT(dst, wk);
1130 		if (wk->wk_type == D_JSEGDEP) {
1131 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1132 			continue;
1133 		}
1134 		if (wk->wk_type == D_FREEDEP)
1135 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1136 	}
1137 }
1138 
1139 static void
1140 jwork_insert(dst, jsegdep)
1141 	struct workhead *dst;
1142 	struct jsegdep *jsegdep;
1143 {
1144 	struct jsegdep *jsegdepn;
1145 	struct worklist *wk;
1146 
1147 	LIST_FOREACH(wk, dst, wk_list)
1148 		if (wk->wk_type == D_JSEGDEP)
1149 			break;
1150 	if (wk == NULL) {
1151 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1152 		return;
1153 	}
1154 	jsegdepn = WK_JSEGDEP(wk);
1155 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1156 		WORKLIST_REMOVE(wk);
1157 		free_jsegdep(jsegdepn);
1158 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1159 	} else
1160 		free_jsegdep(jsegdep);
1161 }
1162 
1163 /*
1164  * Routines for tracking and managing workitems.
1165  */
1166 static	void workitem_free(struct worklist *, int);
1167 static	void workitem_alloc(struct worklist *, int, struct mount *);
1168 
1169 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1170 
1171 static void
1172 workitem_free(item, type)
1173 	struct worklist *item;
1174 	int type;
1175 {
1176 	struct ufsmount *ump;
1177 	mtx_assert(&lk, MA_OWNED);
1178 
1179 #ifdef DEBUG
1180 	if (item->wk_state & ONWORKLIST)
1181 		panic("workitem_free: %s(0x%X) still on list",
1182 		    TYPENAME(item->wk_type), item->wk_state);
1183 	if (item->wk_type != type)
1184 		panic("workitem_free: type mismatch %s != %s",
1185 		    TYPENAME(item->wk_type), TYPENAME(type));
1186 #endif
1187 	if (item->wk_state & IOWAITING)
1188 		wakeup(item);
1189 	ump = VFSTOUFS(item->wk_mp);
1190 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1191 		wakeup(&ump->softdep_deps);
1192 	dep_current[type]--;
1193 	free(item, DtoM(type));
1194 }
1195 
1196 static void
1197 workitem_alloc(item, type, mp)
1198 	struct worklist *item;
1199 	int type;
1200 	struct mount *mp;
1201 {
1202 	struct ufsmount *ump;
1203 
1204 	item->wk_type = type;
1205 	item->wk_mp = mp;
1206 	item->wk_state = 0;
1207 
1208 	ump = VFSTOUFS(mp);
1209 	ACQUIRE_LOCK(&lk);
1210 	dep_current[type]++;
1211 	dep_total[type]++;
1212 	ump->softdep_deps++;
1213 	ump->softdep_accdeps++;
1214 	FREE_LOCK(&lk);
1215 }
1216 
1217 /*
1218  * Workitem queue management
1219  */
1220 static int max_softdeps;	/* maximum number of structs before slowdown */
1221 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1222 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1223 static int proc_waiting;	/* tracks whether we have a timeout posted */
1224 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1225 static struct callout softdep_callout;
1226 static int req_pending;
1227 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1228 static int req_clear_remove;	/* syncer process flush some freeblks */
1229 
1230 /*
1231  * runtime statistics
1232  */
1233 static int stat_worklist_push;	/* number of worklist cleanups */
1234 static int stat_blk_limit_push;	/* number of times block limit neared */
1235 static int stat_ino_limit_push;	/* number of times inode limit neared */
1236 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1237 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1238 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1239 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1240 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1241 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1242 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1243 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1244 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1245 static int stat_journal_min;	/* Times hit journal min threshold */
1246 static int stat_journal_low;	/* Times hit journal low threshold */
1247 static int stat_journal_wait;	/* Times blocked in jwait(). */
1248 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1249 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1250 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1251 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1252 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1253 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1254 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1255 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1256 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1257 
1258 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1259     &max_softdeps, 0, "");
1260 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1261     &tickdelay, 0, "");
1262 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1263     &maxindirdeps, 0, "");
1264 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1265     &stat_worklist_push, 0,"");
1266 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1267     &stat_blk_limit_push, 0,"");
1268 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1269     &stat_ino_limit_push, 0,"");
1270 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1271     &stat_blk_limit_hit, 0, "");
1272 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1273     &stat_ino_limit_hit, 0, "");
1274 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1275     &stat_sync_limit_hit, 0, "");
1276 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1277     &stat_indir_blk_ptrs, 0, "");
1278 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1279     &stat_inode_bitmap, 0, "");
1280 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1281     &stat_direct_blk_ptrs, 0, "");
1282 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1283     &stat_dir_entry, 0, "");
1284 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1285     &stat_jaddref, 0, "");
1286 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1287     &stat_jnewblk, 0, "");
1288 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1289     &stat_journal_low, 0, "");
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1291     &stat_journal_min, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1293     &stat_journal_wait, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1295     &stat_jwait_filepage, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1297     &stat_jwait_freeblks, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1299     &stat_jwait_inode, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1301     &stat_jwait_newblk, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1303     &stat_cleanup_blkrequests, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1305     &stat_cleanup_inorequests, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1307     &stat_cleanup_high_delay, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1309     &stat_cleanup_retries, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1311     &stat_cleanup_failures, 0, "");
1312 
1313 SYSCTL_DECL(_vfs_ffs);
1314 
1315 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1316 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1317 
1318 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1319 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1320 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1321 
1322 static struct proc *softdepproc;
1323 static struct kproc_desc softdep_kp = {
1324 	"softdepflush",
1325 	softdep_flush,
1326 	&softdepproc
1327 };
1328 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1329     &softdep_kp);
1330 
1331 static void
1332 softdep_flush(void)
1333 {
1334 	struct mount *nmp;
1335 	struct mount *mp;
1336 	struct ufsmount *ump;
1337 	struct thread *td;
1338 	int remaining;
1339 	int progress;
1340 	int vfslocked;
1341 
1342 	td = curthread;
1343 	td->td_pflags |= TDP_NORUNNINGBUF;
1344 
1345 	for (;;) {
1346 		kproc_suspend_check(softdepproc);
1347 		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1348 		ACQUIRE_LOCK(&lk);
1349 		/*
1350 		 * If requested, try removing inode or removal dependencies.
1351 		 */
1352 		if (req_clear_inodedeps) {
1353 			clear_inodedeps(td);
1354 			req_clear_inodedeps -= 1;
1355 			wakeup_one(&proc_waiting);
1356 		}
1357 		if (req_clear_remove) {
1358 			clear_remove(td);
1359 			req_clear_remove -= 1;
1360 			wakeup_one(&proc_waiting);
1361 		}
1362 		FREE_LOCK(&lk);
1363 		VFS_UNLOCK_GIANT(vfslocked);
1364 		remaining = progress = 0;
1365 		mtx_lock(&mountlist_mtx);
1366 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1367 			nmp = TAILQ_NEXT(mp, mnt_list);
1368 			if (MOUNTEDSOFTDEP(mp) == 0)
1369 				continue;
1370 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1371 				continue;
1372 			vfslocked = VFS_LOCK_GIANT(mp);
1373 			progress += softdep_process_worklist(mp, 0);
1374 			ump = VFSTOUFS(mp);
1375 			remaining += ump->softdep_on_worklist;
1376 			VFS_UNLOCK_GIANT(vfslocked);
1377 			mtx_lock(&mountlist_mtx);
1378 			nmp = TAILQ_NEXT(mp, mnt_list);
1379 			vfs_unbusy(mp);
1380 		}
1381 		mtx_unlock(&mountlist_mtx);
1382 		if (remaining && progress)
1383 			continue;
1384 		ACQUIRE_LOCK(&lk);
1385 		if (!req_pending)
1386 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1387 		req_pending = 0;
1388 		FREE_LOCK(&lk);
1389 	}
1390 }
1391 
1392 static void
1393 worklist_speedup(void)
1394 {
1395 	mtx_assert(&lk, MA_OWNED);
1396 	if (req_pending == 0) {
1397 		req_pending = 1;
1398 		wakeup(&req_pending);
1399 	}
1400 }
1401 
1402 static int
1403 softdep_speedup(void)
1404 {
1405 
1406 	worklist_speedup();
1407 	bd_speedup();
1408 	return speedup_syncer();
1409 }
1410 
1411 /*
1412  * Add an item to the end of the work queue.
1413  * This routine requires that the lock be held.
1414  * This is the only routine that adds items to the list.
1415  * The following routine is the only one that removes items
1416  * and does so in order from first to last.
1417  */
1418 
1419 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1420 #define	WK_NODELAY	0x0002	/* Process immediately. */
1421 
1422 static void
1423 add_to_worklist(wk, flags)
1424 	struct worklist *wk;
1425 	int flags;
1426 {
1427 	struct ufsmount *ump;
1428 
1429 	mtx_assert(&lk, MA_OWNED);
1430 	ump = VFSTOUFS(wk->wk_mp);
1431 	if (wk->wk_state & ONWORKLIST)
1432 		panic("add_to_worklist: %s(0x%X) already on list",
1433 		    TYPENAME(wk->wk_type), wk->wk_state);
1434 	wk->wk_state |= ONWORKLIST;
1435 	if (ump->softdep_on_worklist == 0) {
1436 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1437 		ump->softdep_worklist_tail = wk;
1438 	} else if (flags & WK_HEAD) {
1439 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1440 	} else {
1441 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1442 		ump->softdep_worklist_tail = wk;
1443 	}
1444 	ump->softdep_on_worklist += 1;
1445 	if (flags & WK_NODELAY)
1446 		worklist_speedup();
1447 }
1448 
1449 /*
1450  * Remove the item to be processed. If we are removing the last
1451  * item on the list, we need to recalculate the tail pointer.
1452  */
1453 static void
1454 remove_from_worklist(wk)
1455 	struct worklist *wk;
1456 {
1457 	struct ufsmount *ump;
1458 
1459 	ump = VFSTOUFS(wk->wk_mp);
1460 	WORKLIST_REMOVE(wk);
1461 	if (ump->softdep_worklist_tail == wk)
1462 		ump->softdep_worklist_tail =
1463 		    (struct worklist *)wk->wk_list.le_prev;
1464 	ump->softdep_on_worklist -= 1;
1465 }
1466 
1467 static void
1468 wake_worklist(wk)
1469 	struct worklist *wk;
1470 {
1471 	if (wk->wk_state & IOWAITING) {
1472 		wk->wk_state &= ~IOWAITING;
1473 		wakeup(wk);
1474 	}
1475 }
1476 
1477 static void
1478 wait_worklist(wk, wmesg)
1479 	struct worklist *wk;
1480 	char *wmesg;
1481 {
1482 
1483 	wk->wk_state |= IOWAITING;
1484 	msleep(wk, &lk, PVM, wmesg, 0);
1485 }
1486 
1487 /*
1488  * Process that runs once per second to handle items in the background queue.
1489  *
1490  * Note that we ensure that everything is done in the order in which they
1491  * appear in the queue. The code below depends on this property to ensure
1492  * that blocks of a file are freed before the inode itself is freed. This
1493  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1494  * until all the old ones have been purged from the dependency lists.
1495  */
1496 int
1497 softdep_process_worklist(mp, full)
1498 	struct mount *mp;
1499 	int full;
1500 {
1501 	struct thread *td = curthread;
1502 	int cnt, matchcnt;
1503 	struct ufsmount *ump;
1504 	long starttime;
1505 
1506 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1507 	/*
1508 	 * Record the process identifier of our caller so that we can give
1509 	 * this process preferential treatment in request_cleanup below.
1510 	 */
1511 	matchcnt = 0;
1512 	ump = VFSTOUFS(mp);
1513 	ACQUIRE_LOCK(&lk);
1514 	starttime = time_second;
1515 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1516 	while (ump->softdep_on_worklist > 0) {
1517 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1518 			break;
1519 		else
1520 			matchcnt += cnt;
1521 		/*
1522 		 * If requested, try removing inode or removal dependencies.
1523 		 */
1524 		if (req_clear_inodedeps) {
1525 			clear_inodedeps(td);
1526 			req_clear_inodedeps -= 1;
1527 			wakeup_one(&proc_waiting);
1528 		}
1529 		if (req_clear_remove) {
1530 			clear_remove(td);
1531 			req_clear_remove -= 1;
1532 			wakeup_one(&proc_waiting);
1533 		}
1534 		/*
1535 		 * We do not generally want to stop for buffer space, but if
1536 		 * we are really being a buffer hog, we will stop and wait.
1537 		 */
1538 		if (should_yield()) {
1539 			FREE_LOCK(&lk);
1540 			kern_yield(PRI_UNCHANGED);
1541 			bwillwrite();
1542 			ACQUIRE_LOCK(&lk);
1543 		}
1544 		/*
1545 		 * Never allow processing to run for more than one
1546 		 * second. Otherwise the other mountpoints may get
1547 		 * excessively backlogged.
1548 		 */
1549 		if (!full && starttime != time_second)
1550 			break;
1551 	}
1552 	if (full == 0)
1553 		journal_unsuspend(ump);
1554 	FREE_LOCK(&lk);
1555 	return (matchcnt);
1556 }
1557 
1558 /*
1559  * Process all removes associated with a vnode if we are running out of
1560  * journal space.  Any other process which attempts to flush these will
1561  * be unable as we have the vnodes locked.
1562  */
1563 static void
1564 process_removes(vp)
1565 	struct vnode *vp;
1566 {
1567 	struct inodedep *inodedep;
1568 	struct dirrem *dirrem;
1569 	struct mount *mp;
1570 	ino_t inum;
1571 
1572 	mtx_assert(&lk, MA_OWNED);
1573 
1574 	mp = vp->v_mount;
1575 	inum = VTOI(vp)->i_number;
1576 	for (;;) {
1577 top:
1578 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1579 			return;
1580 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1581 			/*
1582 			 * If another thread is trying to lock this vnode
1583 			 * it will fail but we must wait for it to do so
1584 			 * before we can proceed.
1585 			 */
1586 			if (dirrem->dm_state & INPROGRESS) {
1587 				wait_worklist(&dirrem->dm_list, "pwrwait");
1588 				goto top;
1589 			}
1590 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1591 			    (COMPLETE | ONWORKLIST))
1592 				break;
1593 		}
1594 		if (dirrem == NULL)
1595 			return;
1596 		remove_from_worklist(&dirrem->dm_list);
1597 		FREE_LOCK(&lk);
1598 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1599 			panic("process_removes: suspended filesystem");
1600 		handle_workitem_remove(dirrem, 0);
1601 		vn_finished_secondary_write(mp);
1602 		ACQUIRE_LOCK(&lk);
1603 	}
1604 }
1605 
1606 /*
1607  * Process all truncations associated with a vnode if we are running out
1608  * of journal space.  This is called when the vnode lock is already held
1609  * and no other process can clear the truncation.  This function returns
1610  * a value greater than zero if it did any work.
1611  */
1612 static void
1613 process_truncates(vp)
1614 	struct vnode *vp;
1615 {
1616 	struct inodedep *inodedep;
1617 	struct freeblks *freeblks;
1618 	struct mount *mp;
1619 	ino_t inum;
1620 	int cgwait;
1621 
1622 	mtx_assert(&lk, MA_OWNED);
1623 
1624 	mp = vp->v_mount;
1625 	inum = VTOI(vp)->i_number;
1626 	for (;;) {
1627 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1628 			return;
1629 		cgwait = 0;
1630 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1631 			/* Journal entries not yet written.  */
1632 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1633 				jwait(&LIST_FIRST(
1634 				    &freeblks->fb_jblkdephd)->jb_list,
1635 				    MNT_WAIT);
1636 				break;
1637 			}
1638 			/* Another thread is executing this item. */
1639 			if (freeblks->fb_state & INPROGRESS) {
1640 				wait_worklist(&freeblks->fb_list, "ptrwait");
1641 				break;
1642 			}
1643 			/* Freeblks is waiting on a inode write. */
1644 			if ((freeblks->fb_state & COMPLETE) == 0) {
1645 				FREE_LOCK(&lk);
1646 				ffs_update(vp, 1);
1647 				ACQUIRE_LOCK(&lk);
1648 				break;
1649 			}
1650 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1651 			    (ALLCOMPLETE | ONWORKLIST)) {
1652 				remove_from_worklist(&freeblks->fb_list);
1653 				freeblks->fb_state |= INPROGRESS;
1654 				FREE_LOCK(&lk);
1655 				if (vn_start_secondary_write(NULL, &mp,
1656 				    V_NOWAIT))
1657 					panic("process_truncates: "
1658 					    "suspended filesystem");
1659 				handle_workitem_freeblocks(freeblks, 0);
1660 				vn_finished_secondary_write(mp);
1661 				ACQUIRE_LOCK(&lk);
1662 				break;
1663 			}
1664 			if (freeblks->fb_cgwait)
1665 				cgwait++;
1666 		}
1667 		if (cgwait) {
1668 			FREE_LOCK(&lk);
1669 			sync_cgs(mp, MNT_WAIT);
1670 			ffs_sync_snap(mp, MNT_WAIT);
1671 			ACQUIRE_LOCK(&lk);
1672 			continue;
1673 		}
1674 		if (freeblks == NULL)
1675 			break;
1676 	}
1677 	return;
1678 }
1679 
1680 /*
1681  * Process one item on the worklist.
1682  */
1683 static int
1684 process_worklist_item(mp, target, flags)
1685 	struct mount *mp;
1686 	int target;
1687 	int flags;
1688 {
1689 	struct worklist sintenel;
1690 	struct worklist *wk;
1691 	struct ufsmount *ump;
1692 	int matchcnt;
1693 	int error;
1694 
1695 	mtx_assert(&lk, MA_OWNED);
1696 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1697 	/*
1698 	 * If we are being called because of a process doing a
1699 	 * copy-on-write, then it is not safe to write as we may
1700 	 * recurse into the copy-on-write routine.
1701 	 */
1702 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1703 		return (-1);
1704 	PHOLD(curproc);	/* Don't let the stack go away. */
1705 	ump = VFSTOUFS(mp);
1706 	matchcnt = 0;
1707 	sintenel.wk_mp = NULL;
1708 	sintenel.wk_type = D_SENTINAL;
1709 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list);
1710 	for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL;
1711 	    wk = LIST_NEXT(&sintenel, wk_list)) {
1712 		if (wk->wk_type == D_SENTINAL) {
1713 			LIST_REMOVE(&sintenel, wk_list);
1714 			LIST_INSERT_AFTER(wk, &sintenel, wk_list);
1715 			continue;
1716 		}
1717 		if (wk->wk_state & INPROGRESS)
1718 			panic("process_worklist_item: %p already in progress.",
1719 			    wk);
1720 		wk->wk_state |= INPROGRESS;
1721 		remove_from_worklist(wk);
1722 		FREE_LOCK(&lk);
1723 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1724 			panic("process_worklist_item: suspended filesystem");
1725 		switch (wk->wk_type) {
1726 		case D_DIRREM:
1727 			/* removal of a directory entry */
1728 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1729 			break;
1730 
1731 		case D_FREEBLKS:
1732 			/* releasing blocks and/or fragments from a file */
1733 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1734 			    flags);
1735 			break;
1736 
1737 		case D_FREEFRAG:
1738 			/* releasing a fragment when replaced as a file grows */
1739 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1740 			error = 0;
1741 			break;
1742 
1743 		case D_FREEFILE:
1744 			/* releasing an inode when its link count drops to 0 */
1745 			handle_workitem_freefile(WK_FREEFILE(wk));
1746 			error = 0;
1747 			break;
1748 
1749 		default:
1750 			panic("%s_process_worklist: Unknown type %s",
1751 			    "softdep", TYPENAME(wk->wk_type));
1752 			/* NOTREACHED */
1753 		}
1754 		vn_finished_secondary_write(mp);
1755 		ACQUIRE_LOCK(&lk);
1756 		if (error == 0) {
1757 			if (++matchcnt == target)
1758 				break;
1759 			continue;
1760 		}
1761 		/*
1762 		 * We have to retry the worklist item later.  Wake up any
1763 		 * waiters who may be able to complete it immediately and
1764 		 * add the item back to the head so we don't try to execute
1765 		 * it again.
1766 		 */
1767 		wk->wk_state &= ~INPROGRESS;
1768 		wake_worklist(wk);
1769 		add_to_worklist(wk, WK_HEAD);
1770 	}
1771 	LIST_REMOVE(&sintenel, wk_list);
1772 	/* Sentinal could've become the tail from remove_from_worklist. */
1773 	if (ump->softdep_worklist_tail == &sintenel)
1774 		ump->softdep_worklist_tail =
1775 		    (struct worklist *)sintenel.wk_list.le_prev;
1776 	PRELE(curproc);
1777 	return (matchcnt);
1778 }
1779 
1780 /*
1781  * Move dependencies from one buffer to another.
1782  */
1783 int
1784 softdep_move_dependencies(oldbp, newbp)
1785 	struct buf *oldbp;
1786 	struct buf *newbp;
1787 {
1788 	struct worklist *wk, *wktail;
1789 	int dirty;
1790 
1791 	dirty = 0;
1792 	wktail = NULL;
1793 	ACQUIRE_LOCK(&lk);
1794 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1795 		LIST_REMOVE(wk, wk_list);
1796 		if (wk->wk_type == D_BMSAFEMAP &&
1797 		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1798 			dirty = 1;
1799 		if (wktail == 0)
1800 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1801 		else
1802 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1803 		wktail = wk;
1804 	}
1805 	FREE_LOCK(&lk);
1806 
1807 	return (dirty);
1808 }
1809 
1810 /*
1811  * Purge the work list of all items associated with a particular mount point.
1812  */
1813 int
1814 softdep_flushworklist(oldmnt, countp, td)
1815 	struct mount *oldmnt;
1816 	int *countp;
1817 	struct thread *td;
1818 {
1819 	struct vnode *devvp;
1820 	int count, error = 0;
1821 	struct ufsmount *ump;
1822 
1823 	/*
1824 	 * Alternately flush the block device associated with the mount
1825 	 * point and process any dependencies that the flushing
1826 	 * creates. We continue until no more worklist dependencies
1827 	 * are found.
1828 	 */
1829 	*countp = 0;
1830 	ump = VFSTOUFS(oldmnt);
1831 	devvp = ump->um_devvp;
1832 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1833 		*countp += count;
1834 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1835 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1836 		VOP_UNLOCK(devvp, 0);
1837 		if (error)
1838 			break;
1839 	}
1840 	return (error);
1841 }
1842 
1843 int
1844 softdep_waitidle(struct mount *mp)
1845 {
1846 	struct ufsmount *ump;
1847 	int error;
1848 	int i;
1849 
1850 	ump = VFSTOUFS(mp);
1851 	ACQUIRE_LOCK(&lk);
1852 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1853 		ump->softdep_req = 1;
1854 		if (ump->softdep_on_worklist)
1855 			panic("softdep_waitidle: work added after flush.");
1856 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1857 	}
1858 	ump->softdep_req = 0;
1859 	FREE_LOCK(&lk);
1860 	error = 0;
1861 	if (i == 10) {
1862 		error = EBUSY;
1863 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1864 		    mp);
1865 	}
1866 
1867 	return (error);
1868 }
1869 
1870 /*
1871  * Flush all vnodes and worklist items associated with a specified mount point.
1872  */
1873 int
1874 softdep_flushfiles(oldmnt, flags, td)
1875 	struct mount *oldmnt;
1876 	int flags;
1877 	struct thread *td;
1878 {
1879 	int error, depcount, loopcnt, retry_flush_count, retry;
1880 
1881 	loopcnt = 10;
1882 	retry_flush_count = 3;
1883 retry_flush:
1884 	error = 0;
1885 
1886 	/*
1887 	 * Alternately flush the vnodes associated with the mount
1888 	 * point and process any dependencies that the flushing
1889 	 * creates. In theory, this loop can happen at most twice,
1890 	 * but we give it a few extra just to be sure.
1891 	 */
1892 	for (; loopcnt > 0; loopcnt--) {
1893 		/*
1894 		 * Do another flush in case any vnodes were brought in
1895 		 * as part of the cleanup operations.
1896 		 */
1897 		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1898 			break;
1899 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1900 		    depcount == 0)
1901 			break;
1902 	}
1903 	/*
1904 	 * If we are unmounting then it is an error to fail. If we
1905 	 * are simply trying to downgrade to read-only, then filesystem
1906 	 * activity can keep us busy forever, so we just fail with EBUSY.
1907 	 */
1908 	if (loopcnt == 0) {
1909 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1910 			panic("softdep_flushfiles: looping");
1911 		error = EBUSY;
1912 	}
1913 	if (!error)
1914 		error = softdep_waitidle(oldmnt);
1915 	if (!error) {
1916 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1917 			retry = 0;
1918 			MNT_ILOCK(oldmnt);
1919 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1920 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1921 			if (oldmnt->mnt_nvnodelistsize > 0) {
1922 				if (--retry_flush_count > 0) {
1923 					retry = 1;
1924 					loopcnt = 3;
1925 				} else
1926 					error = EBUSY;
1927 			}
1928 			MNT_IUNLOCK(oldmnt);
1929 			if (retry)
1930 				goto retry_flush;
1931 		}
1932 	}
1933 	return (error);
1934 }
1935 
1936 /*
1937  * Structure hashing.
1938  *
1939  * There are three types of structures that can be looked up:
1940  *	1) pagedep structures identified by mount point, inode number,
1941  *	   and logical block.
1942  *	2) inodedep structures identified by mount point and inode number.
1943  *	3) newblk structures identified by mount point and
1944  *	   physical block number.
1945  *
1946  * The "pagedep" and "inodedep" dependency structures are hashed
1947  * separately from the file blocks and inodes to which they correspond.
1948  * This separation helps when the in-memory copy of an inode or
1949  * file block must be replaced. It also obviates the need to access
1950  * an inode or file page when simply updating (or de-allocating)
1951  * dependency structures. Lookup of newblk structures is needed to
1952  * find newly allocated blocks when trying to associate them with
1953  * their allocdirect or allocindir structure.
1954  *
1955  * The lookup routines optionally create and hash a new instance when
1956  * an existing entry is not found.
1957  */
1958 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1959 #define NODELAY		0x0002	/* cannot do background work */
1960 
1961 /*
1962  * Structures and routines associated with pagedep caching.
1963  */
1964 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1965 u_long	pagedep_hash;		/* size of hash table - 1 */
1966 #define	PAGEDEP_HASH(mp, inum, lbn) \
1967 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1968 	    pagedep_hash])
1969 
1970 static int
1971 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1972 	struct pagedep_hashhead *pagedephd;
1973 	ino_t ino;
1974 	ufs_lbn_t lbn;
1975 	struct mount *mp;
1976 	int flags;
1977 	struct pagedep **pagedeppp;
1978 {
1979 	struct pagedep *pagedep;
1980 
1981 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
1982 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
1983 		    mp == pagedep->pd_list.wk_mp) {
1984 			*pagedeppp = pagedep;
1985 			return (1);
1986 		}
1987 	}
1988 	*pagedeppp = NULL;
1989 	return (0);
1990 }
1991 /*
1992  * Look up a pagedep. Return 1 if found, 0 otherwise.
1993  * If not found, allocate if DEPALLOC flag is passed.
1994  * Found or allocated entry is returned in pagedeppp.
1995  * This routine must be called with splbio interrupts blocked.
1996  */
1997 static int
1998 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
1999 	struct mount *mp;
2000 	struct buf *bp;
2001 	ino_t ino;
2002 	ufs_lbn_t lbn;
2003 	int flags;
2004 	struct pagedep **pagedeppp;
2005 {
2006 	struct pagedep *pagedep;
2007 	struct pagedep_hashhead *pagedephd;
2008 	struct worklist *wk;
2009 	int ret;
2010 	int i;
2011 
2012 	mtx_assert(&lk, MA_OWNED);
2013 	if (bp) {
2014 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2015 			if (wk->wk_type == D_PAGEDEP) {
2016 				*pagedeppp = WK_PAGEDEP(wk);
2017 				return (1);
2018 			}
2019 		}
2020 	}
2021 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2022 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2023 	if (ret) {
2024 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2025 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2026 		return (1);
2027 	}
2028 	if ((flags & DEPALLOC) == 0)
2029 		return (0);
2030 	FREE_LOCK(&lk);
2031 	pagedep = malloc(sizeof(struct pagedep),
2032 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2033 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2034 	ACQUIRE_LOCK(&lk);
2035 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2036 	if (*pagedeppp) {
2037 		/*
2038 		 * This should never happen since we only create pagedeps
2039 		 * with the vnode lock held.  Could be an assert.
2040 		 */
2041 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2042 		return (ret);
2043 	}
2044 	pagedep->pd_ino = ino;
2045 	pagedep->pd_lbn = lbn;
2046 	LIST_INIT(&pagedep->pd_dirremhd);
2047 	LIST_INIT(&pagedep->pd_pendinghd);
2048 	for (i = 0; i < DAHASHSZ; i++)
2049 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2050 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2051 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2052 	*pagedeppp = pagedep;
2053 	return (0);
2054 }
2055 
2056 /*
2057  * Structures and routines associated with inodedep caching.
2058  */
2059 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2060 static u_long	inodedep_hash;	/* size of hash table - 1 */
2061 #define	INODEDEP_HASH(fs, inum) \
2062       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2063 
2064 static int
2065 inodedep_find(inodedephd, fs, inum, inodedeppp)
2066 	struct inodedep_hashhead *inodedephd;
2067 	struct fs *fs;
2068 	ino_t inum;
2069 	struct inodedep **inodedeppp;
2070 {
2071 	struct inodedep *inodedep;
2072 
2073 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2074 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2075 			break;
2076 	if (inodedep) {
2077 		*inodedeppp = inodedep;
2078 		return (1);
2079 	}
2080 	*inodedeppp = NULL;
2081 
2082 	return (0);
2083 }
2084 /*
2085  * Look up an inodedep. Return 1 if found, 0 if not found.
2086  * If not found, allocate if DEPALLOC flag is passed.
2087  * Found or allocated entry is returned in inodedeppp.
2088  * This routine must be called with splbio interrupts blocked.
2089  */
2090 static int
2091 inodedep_lookup(mp, inum, flags, inodedeppp)
2092 	struct mount *mp;
2093 	ino_t inum;
2094 	int flags;
2095 	struct inodedep **inodedeppp;
2096 {
2097 	struct inodedep *inodedep;
2098 	struct inodedep_hashhead *inodedephd;
2099 	struct fs *fs;
2100 
2101 	mtx_assert(&lk, MA_OWNED);
2102 	fs = VFSTOUFS(mp)->um_fs;
2103 	inodedephd = INODEDEP_HASH(fs, inum);
2104 
2105 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2106 		return (1);
2107 	if ((flags & DEPALLOC) == 0)
2108 		return (0);
2109 	/*
2110 	 * If we are over our limit, try to improve the situation.
2111 	 */
2112 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2113 		request_cleanup(mp, FLUSH_INODES);
2114 	FREE_LOCK(&lk);
2115 	inodedep = malloc(sizeof(struct inodedep),
2116 		M_INODEDEP, M_SOFTDEP_FLAGS);
2117 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2118 	ACQUIRE_LOCK(&lk);
2119 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2120 		WORKITEM_FREE(inodedep, D_INODEDEP);
2121 		return (1);
2122 	}
2123 	inodedep->id_fs = fs;
2124 	inodedep->id_ino = inum;
2125 	inodedep->id_state = ALLCOMPLETE;
2126 	inodedep->id_nlinkdelta = 0;
2127 	inodedep->id_savedino1 = NULL;
2128 	inodedep->id_savedsize = -1;
2129 	inodedep->id_savedextsize = -1;
2130 	inodedep->id_savednlink = -1;
2131 	inodedep->id_bmsafemap = NULL;
2132 	inodedep->id_mkdiradd = NULL;
2133 	LIST_INIT(&inodedep->id_dirremhd);
2134 	LIST_INIT(&inodedep->id_pendinghd);
2135 	LIST_INIT(&inodedep->id_inowait);
2136 	LIST_INIT(&inodedep->id_bufwait);
2137 	TAILQ_INIT(&inodedep->id_inoreflst);
2138 	TAILQ_INIT(&inodedep->id_inoupdt);
2139 	TAILQ_INIT(&inodedep->id_newinoupdt);
2140 	TAILQ_INIT(&inodedep->id_extupdt);
2141 	TAILQ_INIT(&inodedep->id_newextupdt);
2142 	TAILQ_INIT(&inodedep->id_freeblklst);
2143 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2144 	*inodedeppp = inodedep;
2145 	return (0);
2146 }
2147 
2148 /*
2149  * Structures and routines associated with newblk caching.
2150  */
2151 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2152 u_long	newblk_hash;		/* size of hash table - 1 */
2153 #define	NEWBLK_HASH(fs, inum) \
2154 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2155 
2156 static int
2157 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2158 	struct newblk_hashhead *newblkhd;
2159 	struct mount *mp;
2160 	ufs2_daddr_t newblkno;
2161 	int flags;
2162 	struct newblk **newblkpp;
2163 {
2164 	struct newblk *newblk;
2165 
2166 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2167 		if (newblkno != newblk->nb_newblkno)
2168 			continue;
2169 		if (mp != newblk->nb_list.wk_mp)
2170 			continue;
2171 		/*
2172 		 * If we're creating a new dependency don't match those that
2173 		 * have already been converted to allocdirects.  This is for
2174 		 * a frag extend.
2175 		 */
2176 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2177 			continue;
2178 		break;
2179 	}
2180 	if (newblk) {
2181 		*newblkpp = newblk;
2182 		return (1);
2183 	}
2184 	*newblkpp = NULL;
2185 	return (0);
2186 }
2187 
2188 /*
2189  * Look up a newblk. Return 1 if found, 0 if not found.
2190  * If not found, allocate if DEPALLOC flag is passed.
2191  * Found or allocated entry is returned in newblkpp.
2192  */
2193 static int
2194 newblk_lookup(mp, newblkno, flags, newblkpp)
2195 	struct mount *mp;
2196 	ufs2_daddr_t newblkno;
2197 	int flags;
2198 	struct newblk **newblkpp;
2199 {
2200 	struct newblk *newblk;
2201 	struct newblk_hashhead *newblkhd;
2202 
2203 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2204 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2205 		return (1);
2206 	if ((flags & DEPALLOC) == 0)
2207 		return (0);
2208 	FREE_LOCK(&lk);
2209 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2210 	    M_SOFTDEP_FLAGS | M_ZERO);
2211 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2212 	ACQUIRE_LOCK(&lk);
2213 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2214 		WORKITEM_FREE(newblk, D_NEWBLK);
2215 		return (1);
2216 	}
2217 	newblk->nb_freefrag = NULL;
2218 	LIST_INIT(&newblk->nb_indirdeps);
2219 	LIST_INIT(&newblk->nb_newdirblk);
2220 	LIST_INIT(&newblk->nb_jwork);
2221 	newblk->nb_state = ATTACHED;
2222 	newblk->nb_newblkno = newblkno;
2223 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2224 	*newblkpp = newblk;
2225 	return (0);
2226 }
2227 
2228 /*
2229  * Structures and routines associated with freed indirect block caching.
2230  */
2231 struct freeworklst *indir_hashtbl;
2232 u_long	indir_hash;		/* size of hash table - 1 */
2233 #define	INDIR_HASH(mp, blkno) \
2234 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2235 
2236 /*
2237  * Lookup an indirect block in the indir hash table.  The freework is
2238  * removed and potentially freed.  The caller must do a blocking journal
2239  * write before writing to the blkno.
2240  */
2241 static int
2242 indirblk_lookup(mp, blkno)
2243 	struct mount *mp;
2244 	ufs2_daddr_t blkno;
2245 {
2246 	struct freework *freework;
2247 	struct freeworklst *wkhd;
2248 
2249 	wkhd = INDIR_HASH(mp, blkno);
2250 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2251 		if (freework->fw_blkno != blkno)
2252 			continue;
2253 		if (freework->fw_list.wk_mp != mp)
2254 			continue;
2255 		indirblk_remove(freework);
2256 		return (1);
2257 	}
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Insert an indirect block represented by freework into the indirblk
2263  * hash table so that it may prevent the block from being re-used prior
2264  * to the journal being written.
2265  */
2266 static void
2267 indirblk_insert(freework)
2268 	struct freework *freework;
2269 {
2270 	struct freeblks *freeblks;
2271 	struct jsegdep *jsegdep;
2272 	struct worklist *wk;
2273 
2274 	freeblks = freework->fw_freeblks;
2275 	LIST_FOREACH(wk, &freeblks->fb_jwork, wk_list)
2276 		if (wk->wk_type == D_JSEGDEP)
2277 			break;
2278 	if (wk == NULL)
2279 		return;
2280 
2281 	jsegdep = WK_JSEGDEP(wk);
2282 	LIST_INSERT_HEAD(&jsegdep->jd_seg->js_indirs, freework, fw_segs);
2283 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2284 	    freework->fw_blkno), freework, fw_next);
2285 	freework->fw_state &= ~DEPCOMPLETE;
2286 }
2287 
2288 static void
2289 indirblk_remove(freework)
2290 	struct freework *freework;
2291 {
2292 
2293 	LIST_REMOVE(freework, fw_segs);
2294 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2295 	    freework->fw_blkno), freework, fw_next);
2296 	freework->fw_state |= DEPCOMPLETE;
2297 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2298 		WORKITEM_FREE(freework, D_FREEWORK);
2299 }
2300 
2301 /*
2302  * Executed during filesystem system initialization before
2303  * mounting any filesystems.
2304  */
2305 void
2306 softdep_initialize()
2307 {
2308 	int i;
2309 
2310 	LIST_INIT(&mkdirlisthd);
2311 	max_softdeps = desiredvnodes * 4;
2312 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2313 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2314 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2315 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2316 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2317 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2318 	    M_WAITOK);
2319 	indir_hash = i - 1;
2320 	for (i = 0; i <= indir_hash; i++)
2321 		TAILQ_INIT(&indir_hashtbl[i]);
2322 
2323 	/* initialise bioops hack */
2324 	bioops.io_start = softdep_disk_io_initiation;
2325 	bioops.io_complete = softdep_disk_write_complete;
2326 	bioops.io_deallocate = softdep_deallocate_dependencies;
2327 	bioops.io_countdeps = softdep_count_dependencies;
2328 
2329 	/* Initialize the callout with an mtx. */
2330 	callout_init_mtx(&softdep_callout, &lk, 0);
2331 }
2332 
2333 /*
2334  * Executed after all filesystems have been unmounted during
2335  * filesystem module unload.
2336  */
2337 void
2338 softdep_uninitialize()
2339 {
2340 
2341 	callout_drain(&softdep_callout);
2342 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2343 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2344 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2345 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2346 	free(indir_hashtbl, M_FREEWORK);
2347 }
2348 
2349 /*
2350  * Called at mount time to notify the dependency code that a
2351  * filesystem wishes to use it.
2352  */
2353 int
2354 softdep_mount(devvp, mp, fs, cred)
2355 	struct vnode *devvp;
2356 	struct mount *mp;
2357 	struct fs *fs;
2358 	struct ucred *cred;
2359 {
2360 	struct csum_total cstotal;
2361 	struct ufsmount *ump;
2362 	struct cg *cgp;
2363 	struct buf *bp;
2364 	int error, cyl;
2365 
2366 	MNT_ILOCK(mp);
2367 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2368 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2369 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2370 			MNTK_SOFTDEP;
2371 		mp->mnt_noasync++;
2372 	}
2373 	MNT_IUNLOCK(mp);
2374 	ump = VFSTOUFS(mp);
2375 	LIST_INIT(&ump->softdep_workitem_pending);
2376 	LIST_INIT(&ump->softdep_journal_pending);
2377 	TAILQ_INIT(&ump->softdep_unlinked);
2378 	LIST_INIT(&ump->softdep_dirtycg);
2379 	ump->softdep_worklist_tail = NULL;
2380 	ump->softdep_on_worklist = 0;
2381 	ump->softdep_deps = 0;
2382 	if ((fs->fs_flags & FS_SUJ) &&
2383 	    (error = journal_mount(mp, fs, cred)) != 0) {
2384 		printf("Failed to start journal: %d\n", error);
2385 		return (error);
2386 	}
2387 	/*
2388 	 * When doing soft updates, the counters in the
2389 	 * superblock may have gotten out of sync. Recomputation
2390 	 * can take a long time and can be deferred for background
2391 	 * fsck.  However, the old behavior of scanning the cylinder
2392 	 * groups and recalculating them at mount time is available
2393 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2394 	 */
2395 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2396 		return (0);
2397 	bzero(&cstotal, sizeof cstotal);
2398 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2399 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2400 		    fs->fs_cgsize, cred, &bp)) != 0) {
2401 			brelse(bp);
2402 			return (error);
2403 		}
2404 		cgp = (struct cg *)bp->b_data;
2405 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2406 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2407 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2408 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2409 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2410 		brelse(bp);
2411 	}
2412 #ifdef DEBUG
2413 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2414 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2415 #endif
2416 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2417 	return (0);
2418 }
2419 
2420 void
2421 softdep_unmount(mp)
2422 	struct mount *mp;
2423 {
2424 
2425 	MNT_ILOCK(mp);
2426 	mp->mnt_flag &= ~MNT_SOFTDEP;
2427 	if (MOUNTEDSUJ(mp) == 0) {
2428 		MNT_IUNLOCK(mp);
2429 		return;
2430 	}
2431 	mp->mnt_flag &= ~MNT_SUJ;
2432 	MNT_IUNLOCK(mp);
2433 	journal_unmount(mp);
2434 }
2435 
2436 struct jblocks {
2437 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2438 	struct jseg	*jb_writeseg;	/* Next write to complete. */
2439 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
2440 	struct jextent	*jb_extent;	/* Extent array. */
2441 	uint64_t	jb_nextseq;	/* Next sequence number. */
2442 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
2443 	uint8_t		jb_needseg;	/* Need a forced segment. */
2444 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
2445 	int		jb_avail;	/* Available extents. */
2446 	int		jb_used;	/* Last used extent. */
2447 	int		jb_head;	/* Allocator head. */
2448 	int		jb_off;		/* Allocator extent offset. */
2449 	int		jb_blocks;	/* Total disk blocks covered. */
2450 	int		jb_free;	/* Total disk blocks free. */
2451 	int		jb_min;		/* Minimum free space. */
2452 	int		jb_low;		/* Low on space. */
2453 	int		jb_age;		/* Insertion time of oldest rec. */
2454 };
2455 
2456 struct jextent {
2457 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2458 	int		je_blocks;	/* Disk block count. */
2459 };
2460 
2461 static struct jblocks *
2462 jblocks_create(void)
2463 {
2464 	struct jblocks *jblocks;
2465 
2466 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2467 	TAILQ_INIT(&jblocks->jb_segs);
2468 	jblocks->jb_avail = 10;
2469 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2470 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2471 
2472 	return (jblocks);
2473 }
2474 
2475 static ufs2_daddr_t
2476 jblocks_alloc(jblocks, bytes, actual)
2477 	struct jblocks *jblocks;
2478 	int bytes;
2479 	int *actual;
2480 {
2481 	ufs2_daddr_t daddr;
2482 	struct jextent *jext;
2483 	int freecnt;
2484 	int blocks;
2485 
2486 	blocks = bytes / DEV_BSIZE;
2487 	jext = &jblocks->jb_extent[jblocks->jb_head];
2488 	freecnt = jext->je_blocks - jblocks->jb_off;
2489 	if (freecnt == 0) {
2490 		jblocks->jb_off = 0;
2491 		if (++jblocks->jb_head > jblocks->jb_used)
2492 			jblocks->jb_head = 0;
2493 		jext = &jblocks->jb_extent[jblocks->jb_head];
2494 		freecnt = jext->je_blocks;
2495 	}
2496 	if (freecnt > blocks)
2497 		freecnt = blocks;
2498 	*actual = freecnt * DEV_BSIZE;
2499 	daddr = jext->je_daddr + jblocks->jb_off;
2500 	jblocks->jb_off += freecnt;
2501 	jblocks->jb_free -= freecnt;
2502 
2503 	return (daddr);
2504 }
2505 
2506 static void
2507 jblocks_free(jblocks, mp, bytes)
2508 	struct jblocks *jblocks;
2509 	struct mount *mp;
2510 	int bytes;
2511 {
2512 
2513 	jblocks->jb_free += bytes / DEV_BSIZE;
2514 	if (jblocks->jb_suspended)
2515 		worklist_speedup();
2516 	wakeup(jblocks);
2517 }
2518 
2519 static void
2520 jblocks_destroy(jblocks)
2521 	struct jblocks *jblocks;
2522 {
2523 
2524 	if (jblocks->jb_extent)
2525 		free(jblocks->jb_extent, M_JBLOCKS);
2526 	free(jblocks, M_JBLOCKS);
2527 }
2528 
2529 static void
2530 jblocks_add(jblocks, daddr, blocks)
2531 	struct jblocks *jblocks;
2532 	ufs2_daddr_t daddr;
2533 	int blocks;
2534 {
2535 	struct jextent *jext;
2536 
2537 	jblocks->jb_blocks += blocks;
2538 	jblocks->jb_free += blocks;
2539 	jext = &jblocks->jb_extent[jblocks->jb_used];
2540 	/* Adding the first block. */
2541 	if (jext->je_daddr == 0) {
2542 		jext->je_daddr = daddr;
2543 		jext->je_blocks = blocks;
2544 		return;
2545 	}
2546 	/* Extending the last extent. */
2547 	if (jext->je_daddr + jext->je_blocks == daddr) {
2548 		jext->je_blocks += blocks;
2549 		return;
2550 	}
2551 	/* Adding a new extent. */
2552 	if (++jblocks->jb_used == jblocks->jb_avail) {
2553 		jblocks->jb_avail *= 2;
2554 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2555 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2556 		memcpy(jext, jblocks->jb_extent,
2557 		    sizeof(struct jextent) * jblocks->jb_used);
2558 		free(jblocks->jb_extent, M_JBLOCKS);
2559 		jblocks->jb_extent = jext;
2560 	}
2561 	jext = &jblocks->jb_extent[jblocks->jb_used];
2562 	jext->je_daddr = daddr;
2563 	jext->je_blocks = blocks;
2564 	return;
2565 }
2566 
2567 int
2568 softdep_journal_lookup(mp, vpp)
2569 	struct mount *mp;
2570 	struct vnode **vpp;
2571 {
2572 	struct componentname cnp;
2573 	struct vnode *dvp;
2574 	ino_t sujournal;
2575 	int error;
2576 
2577 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2578 	if (error)
2579 		return (error);
2580 	bzero(&cnp, sizeof(cnp));
2581 	cnp.cn_nameiop = LOOKUP;
2582 	cnp.cn_flags = ISLASTCN;
2583 	cnp.cn_thread = curthread;
2584 	cnp.cn_cred = curthread->td_ucred;
2585 	cnp.cn_pnbuf = SUJ_FILE;
2586 	cnp.cn_nameptr = SUJ_FILE;
2587 	cnp.cn_namelen = strlen(SUJ_FILE);
2588 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2589 	vput(dvp);
2590 	if (error != 0)
2591 		return (error);
2592 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2593 	return (error);
2594 }
2595 
2596 /*
2597  * Open and verify the journal file.
2598  */
2599 static int
2600 journal_mount(mp, fs, cred)
2601 	struct mount *mp;
2602 	struct fs *fs;
2603 	struct ucred *cred;
2604 {
2605 	struct jblocks *jblocks;
2606 	struct vnode *vp;
2607 	struct inode *ip;
2608 	ufs2_daddr_t blkno;
2609 	int bcount;
2610 	int error;
2611 	int i;
2612 
2613 	error = softdep_journal_lookup(mp, &vp);
2614 	if (error != 0) {
2615 		printf("Failed to find journal.  Use tunefs to create one\n");
2616 		return (error);
2617 	}
2618 	ip = VTOI(vp);
2619 	if (ip->i_size < SUJ_MIN) {
2620 		error = ENOSPC;
2621 		goto out;
2622 	}
2623 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2624 	jblocks = jblocks_create();
2625 	for (i = 0; i < bcount; i++) {
2626 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2627 		if (error)
2628 			break;
2629 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2630 	}
2631 	if (error) {
2632 		jblocks_destroy(jblocks);
2633 		goto out;
2634 	}
2635 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2636 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2637 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2638 out:
2639 	if (error == 0) {
2640 		MNT_ILOCK(mp);
2641 		mp->mnt_flag |= MNT_SUJ;
2642 		mp->mnt_flag &= ~MNT_SOFTDEP;
2643 		MNT_IUNLOCK(mp);
2644 		/*
2645 		 * Only validate the journal contents if the
2646 		 * filesystem is clean, otherwise we write the logs
2647 		 * but they'll never be used.  If the filesystem was
2648 		 * still dirty when we mounted it the journal is
2649 		 * invalid and a new journal can only be valid if it
2650 		 * starts from a clean mount.
2651 		 */
2652 		if (fs->fs_clean) {
2653 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2654 			ip->i_flags |= IN_MODIFIED;
2655 			ffs_update(vp, 1);
2656 		}
2657 	}
2658 	vput(vp);
2659 	return (error);
2660 }
2661 
2662 static void
2663 journal_unmount(mp)
2664 	struct mount *mp;
2665 {
2666 	struct ufsmount *ump;
2667 
2668 	ump = VFSTOUFS(mp);
2669 	if (ump->softdep_jblocks)
2670 		jblocks_destroy(ump->softdep_jblocks);
2671 	ump->softdep_jblocks = NULL;
2672 }
2673 
2674 /*
2675  * Called when a journal record is ready to be written.  Space is allocated
2676  * and the journal entry is created when the journal is flushed to stable
2677  * store.
2678  */
2679 static void
2680 add_to_journal(wk)
2681 	struct worklist *wk;
2682 {
2683 	struct ufsmount *ump;
2684 
2685 	mtx_assert(&lk, MA_OWNED);
2686 	ump = VFSTOUFS(wk->wk_mp);
2687 	if (wk->wk_state & ONWORKLIST)
2688 		panic("add_to_journal: %s(0x%X) already on list",
2689 		    TYPENAME(wk->wk_type), wk->wk_state);
2690 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2691 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2692 		ump->softdep_jblocks->jb_age = ticks;
2693 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2694 	} else
2695 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2696 	ump->softdep_journal_tail = wk;
2697 	ump->softdep_on_journal += 1;
2698 }
2699 
2700 /*
2701  * Remove an arbitrary item for the journal worklist maintain the tail
2702  * pointer.  This happens when a new operation obviates the need to
2703  * journal an old operation.
2704  */
2705 static void
2706 remove_from_journal(wk)
2707 	struct worklist *wk;
2708 {
2709 	struct ufsmount *ump;
2710 
2711 	mtx_assert(&lk, MA_OWNED);
2712 	ump = VFSTOUFS(wk->wk_mp);
2713 #ifdef SUJ_DEBUG
2714 	{
2715 		struct worklist *wkn;
2716 
2717 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2718 			if (wkn == wk)
2719 				break;
2720 		if (wkn == NULL)
2721 			panic("remove_from_journal: %p is not in journal", wk);
2722 	}
2723 #endif
2724 	/*
2725 	 * We emulate a TAILQ to save space in most structures which do not
2726 	 * require TAILQ semantics.  Here we must update the tail position
2727 	 * when removing the tail which is not the final entry. This works
2728 	 * only if the worklist linkage are at the beginning of the structure.
2729 	 */
2730 	if (ump->softdep_journal_tail == wk)
2731 		ump->softdep_journal_tail =
2732 		    (struct worklist *)wk->wk_list.le_prev;
2733 
2734 	WORKLIST_REMOVE(wk);
2735 	ump->softdep_on_journal -= 1;
2736 }
2737 
2738 /*
2739  * Check for journal space as well as dependency limits so the prelink
2740  * code can throttle both journaled and non-journaled filesystems.
2741  * Threshold is 0 for low and 1 for min.
2742  */
2743 static int
2744 journal_space(ump, thresh)
2745 	struct ufsmount *ump;
2746 	int thresh;
2747 {
2748 	struct jblocks *jblocks;
2749 	int avail;
2750 
2751 	jblocks = ump->softdep_jblocks;
2752 	if (jblocks == NULL)
2753 		return (1);
2754 	/*
2755 	 * We use a tighter restriction here to prevent request_cleanup()
2756 	 * running in threads from running into locks we currently hold.
2757 	 */
2758 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2759 		return (0);
2760 	if (thresh)
2761 		thresh = jblocks->jb_min;
2762 	else
2763 		thresh = jblocks->jb_low;
2764 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2765 	avail = jblocks->jb_free - avail;
2766 
2767 	return (avail > thresh);
2768 }
2769 
2770 static void
2771 journal_suspend(ump)
2772 	struct ufsmount *ump;
2773 {
2774 	struct jblocks *jblocks;
2775 	struct mount *mp;
2776 
2777 	mp = UFSTOVFS(ump);
2778 	jblocks = ump->softdep_jblocks;
2779 	MNT_ILOCK(mp);
2780 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2781 		stat_journal_min++;
2782 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2783 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2784 	}
2785 	jblocks->jb_suspended = 1;
2786 	MNT_IUNLOCK(mp);
2787 }
2788 
2789 static int
2790 journal_unsuspend(struct ufsmount *ump)
2791 {
2792 	struct jblocks *jblocks;
2793 	struct mount *mp;
2794 
2795 	mp = UFSTOVFS(ump);
2796 	jblocks = ump->softdep_jblocks;
2797 
2798 	if (jblocks != NULL && jblocks->jb_suspended &&
2799 	    journal_space(ump, jblocks->jb_min)) {
2800 		jblocks->jb_suspended = 0;
2801 		FREE_LOCK(&lk);
2802 		mp->mnt_susp_owner = curthread;
2803 		vfs_write_resume(mp);
2804 		ACQUIRE_LOCK(&lk);
2805 		return (1);
2806 	}
2807 	return (0);
2808 }
2809 
2810 /*
2811  * Called before any allocation function to be certain that there is
2812  * sufficient space in the journal prior to creating any new records.
2813  * Since in the case of block allocation we may have multiple locked
2814  * buffers at the time of the actual allocation we can not block
2815  * when the journal records are created.  Doing so would create a deadlock
2816  * if any of these buffers needed to be flushed to reclaim space.  Instead
2817  * we require a sufficiently large amount of available space such that
2818  * each thread in the system could have passed this allocation check and
2819  * still have sufficient free space.  With 20% of a minimum journal size
2820  * of 1MB we have 6553 records available.
2821  */
2822 int
2823 softdep_prealloc(vp, waitok)
2824 	struct vnode *vp;
2825 	int waitok;
2826 {
2827 	struct ufsmount *ump;
2828 
2829 	if (DOINGSUJ(vp) == 0)
2830 		return (0);
2831 	ump = VFSTOUFS(vp->v_mount);
2832 	ACQUIRE_LOCK(&lk);
2833 	if (journal_space(ump, 0)) {
2834 		FREE_LOCK(&lk);
2835 		return (0);
2836 	}
2837 	stat_journal_low++;
2838 	FREE_LOCK(&lk);
2839 	if (waitok == MNT_NOWAIT)
2840 		return (ENOSPC);
2841 	/*
2842 	 * Attempt to sync this vnode once to flush any journal
2843 	 * work attached to it.
2844 	 */
2845 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2846 		ffs_syncvnode(vp, waitok);
2847 	ACQUIRE_LOCK(&lk);
2848 	process_removes(vp);
2849 	process_truncates(vp);
2850 	if (journal_space(ump, 0) == 0) {
2851 		softdep_speedup();
2852 		if (journal_space(ump, 1) == 0)
2853 			journal_suspend(ump);
2854 	}
2855 	FREE_LOCK(&lk);
2856 
2857 	return (0);
2858 }
2859 
2860 /*
2861  * Before adjusting a link count on a vnode verify that we have sufficient
2862  * journal space.  If not, process operations that depend on the currently
2863  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2864  * and softdep flush threads can not acquire these locks to reclaim space.
2865  */
2866 static void
2867 softdep_prelink(dvp, vp)
2868 	struct vnode *dvp;
2869 	struct vnode *vp;
2870 {
2871 	struct ufsmount *ump;
2872 
2873 	ump = VFSTOUFS(dvp->v_mount);
2874 	mtx_assert(&lk, MA_OWNED);
2875 	if (journal_space(ump, 0))
2876 		return;
2877 	stat_journal_low++;
2878 	FREE_LOCK(&lk);
2879 	if (vp)
2880 		ffs_syncvnode(vp, MNT_NOWAIT);
2881 	ffs_syncvnode(dvp, MNT_WAIT);
2882 	ACQUIRE_LOCK(&lk);
2883 	/* Process vp before dvp as it may create .. removes. */
2884 	if (vp) {
2885 		process_removes(vp);
2886 		process_truncates(vp);
2887 	}
2888 	process_removes(dvp);
2889 	process_truncates(dvp);
2890 	softdep_speedup();
2891 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2892 	if (journal_space(ump, 0) == 0) {
2893 		softdep_speedup();
2894 		if (journal_space(ump, 1) == 0)
2895 			journal_suspend(ump);
2896 	}
2897 }
2898 
2899 static void
2900 jseg_write(ump, jseg, data)
2901 	struct ufsmount *ump;
2902 	struct jseg *jseg;
2903 	uint8_t *data;
2904 {
2905 	struct jsegrec *rec;
2906 
2907 	rec = (struct jsegrec *)data;
2908 	rec->jsr_seq = jseg->js_seq;
2909 	rec->jsr_oldest = jseg->js_oldseq;
2910 	rec->jsr_cnt = jseg->js_cnt;
2911 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2912 	rec->jsr_crc = 0;
2913 	rec->jsr_time = ump->um_fs->fs_mtime;
2914 }
2915 
2916 static inline void
2917 inoref_write(inoref, jseg, rec)
2918 	struct inoref *inoref;
2919 	struct jseg *jseg;
2920 	struct jrefrec *rec;
2921 {
2922 
2923 	inoref->if_jsegdep->jd_seg = jseg;
2924 	rec->jr_ino = inoref->if_ino;
2925 	rec->jr_parent = inoref->if_parent;
2926 	rec->jr_nlink = inoref->if_nlink;
2927 	rec->jr_mode = inoref->if_mode;
2928 	rec->jr_diroff = inoref->if_diroff;
2929 }
2930 
2931 static void
2932 jaddref_write(jaddref, jseg, data)
2933 	struct jaddref *jaddref;
2934 	struct jseg *jseg;
2935 	uint8_t *data;
2936 {
2937 	struct jrefrec *rec;
2938 
2939 	rec = (struct jrefrec *)data;
2940 	rec->jr_op = JOP_ADDREF;
2941 	inoref_write(&jaddref->ja_ref, jseg, rec);
2942 }
2943 
2944 static void
2945 jremref_write(jremref, jseg, data)
2946 	struct jremref *jremref;
2947 	struct jseg *jseg;
2948 	uint8_t *data;
2949 {
2950 	struct jrefrec *rec;
2951 
2952 	rec = (struct jrefrec *)data;
2953 	rec->jr_op = JOP_REMREF;
2954 	inoref_write(&jremref->jr_ref, jseg, rec);
2955 }
2956 
2957 static void
2958 jmvref_write(jmvref, jseg, data)
2959 	struct jmvref *jmvref;
2960 	struct jseg *jseg;
2961 	uint8_t *data;
2962 {
2963 	struct jmvrec *rec;
2964 
2965 	rec = (struct jmvrec *)data;
2966 	rec->jm_op = JOP_MVREF;
2967 	rec->jm_ino = jmvref->jm_ino;
2968 	rec->jm_parent = jmvref->jm_parent;
2969 	rec->jm_oldoff = jmvref->jm_oldoff;
2970 	rec->jm_newoff = jmvref->jm_newoff;
2971 }
2972 
2973 static void
2974 jnewblk_write(jnewblk, jseg, data)
2975 	struct jnewblk *jnewblk;
2976 	struct jseg *jseg;
2977 	uint8_t *data;
2978 {
2979 	struct jblkrec *rec;
2980 
2981 	jnewblk->jn_jsegdep->jd_seg = jseg;
2982 	rec = (struct jblkrec *)data;
2983 	rec->jb_op = JOP_NEWBLK;
2984 	rec->jb_ino = jnewblk->jn_ino;
2985 	rec->jb_blkno = jnewblk->jn_blkno;
2986 	rec->jb_lbn = jnewblk->jn_lbn;
2987 	rec->jb_frags = jnewblk->jn_frags;
2988 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2989 }
2990 
2991 static void
2992 jfreeblk_write(jfreeblk, jseg, data)
2993 	struct jfreeblk *jfreeblk;
2994 	struct jseg *jseg;
2995 	uint8_t *data;
2996 {
2997 	struct jblkrec *rec;
2998 
2999 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3000 	rec = (struct jblkrec *)data;
3001 	rec->jb_op = JOP_FREEBLK;
3002 	rec->jb_ino = jfreeblk->jf_ino;
3003 	rec->jb_blkno = jfreeblk->jf_blkno;
3004 	rec->jb_lbn = jfreeblk->jf_lbn;
3005 	rec->jb_frags = jfreeblk->jf_frags;
3006 	rec->jb_oldfrags = 0;
3007 }
3008 
3009 static void
3010 jfreefrag_write(jfreefrag, jseg, data)
3011 	struct jfreefrag *jfreefrag;
3012 	struct jseg *jseg;
3013 	uint8_t *data;
3014 {
3015 	struct jblkrec *rec;
3016 
3017 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3018 	rec = (struct jblkrec *)data;
3019 	rec->jb_op = JOP_FREEBLK;
3020 	rec->jb_ino = jfreefrag->fr_ino;
3021 	rec->jb_blkno = jfreefrag->fr_blkno;
3022 	rec->jb_lbn = jfreefrag->fr_lbn;
3023 	rec->jb_frags = jfreefrag->fr_frags;
3024 	rec->jb_oldfrags = 0;
3025 }
3026 
3027 static void
3028 jtrunc_write(jtrunc, jseg, data)
3029 	struct jtrunc *jtrunc;
3030 	struct jseg *jseg;
3031 	uint8_t *data;
3032 {
3033 	struct jtrncrec *rec;
3034 
3035 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3036 	rec = (struct jtrncrec *)data;
3037 	rec->jt_op = JOP_TRUNC;
3038 	rec->jt_ino = jtrunc->jt_ino;
3039 	rec->jt_size = jtrunc->jt_size;
3040 	rec->jt_extsize = jtrunc->jt_extsize;
3041 }
3042 
3043 static void
3044 jfsync_write(jfsync, jseg, data)
3045 	struct jfsync *jfsync;
3046 	struct jseg *jseg;
3047 	uint8_t *data;
3048 {
3049 	struct jtrncrec *rec;
3050 
3051 	rec = (struct jtrncrec *)data;
3052 	rec->jt_op = JOP_SYNC;
3053 	rec->jt_ino = jfsync->jfs_ino;
3054 	rec->jt_size = jfsync->jfs_size;
3055 	rec->jt_extsize = jfsync->jfs_extsize;
3056 }
3057 
3058 static void
3059 softdep_flushjournal(mp)
3060 	struct mount *mp;
3061 {
3062 	struct jblocks *jblocks;
3063 	struct ufsmount *ump;
3064 
3065 	if (MOUNTEDSUJ(mp) == 0)
3066 		return;
3067 	ump = VFSTOUFS(mp);
3068 	jblocks = ump->softdep_jblocks;
3069 	ACQUIRE_LOCK(&lk);
3070 	while (ump->softdep_on_journal) {
3071 		jblocks->jb_needseg = 1;
3072 		softdep_process_journal(mp, NULL, MNT_WAIT);
3073 	}
3074 	FREE_LOCK(&lk);
3075 }
3076 
3077 /*
3078  * Flush some journal records to disk.
3079  */
3080 static void
3081 softdep_process_journal(mp, needwk, flags)
3082 	struct mount *mp;
3083 	struct worklist *needwk;
3084 	int flags;
3085 {
3086 	struct jblocks *jblocks;
3087 	struct ufsmount *ump;
3088 	struct worklist *wk;
3089 	struct jseg *jseg;
3090 	struct buf *bp;
3091 	uint8_t *data;
3092 	struct fs *fs;
3093 	int segwritten;
3094 	int jrecmin;	/* Minimum records per block. */
3095 	int jrecmax;	/* Maximum records per block. */
3096 	int size;
3097 	int cnt;
3098 	int off;
3099 	int devbsize;
3100 
3101 	if (MOUNTEDSUJ(mp) == 0)
3102 		return;
3103 	ump = VFSTOUFS(mp);
3104 	fs = ump->um_fs;
3105 	jblocks = ump->softdep_jblocks;
3106 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3107 	/*
3108 	 * We write anywhere between a disk block and fs block.  The upper
3109 	 * bound is picked to prevent buffer cache fragmentation and limit
3110 	 * processing time per I/O.
3111 	 */
3112 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3113 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3114 	segwritten = 0;
3115 	for (;;) {
3116 		cnt = ump->softdep_on_journal;
3117 		/*
3118 		 * Criteria for writing a segment:
3119 		 * 1) We have a full block.
3120 		 * 2) We're called from jwait() and haven't found the
3121 		 *    journal item yet.
3122 		 * 3) Always write if needseg is set.
3123 		 * 4) If we are called from process_worklist and have
3124 		 *    not yet written anything we write a partial block
3125 		 *    to enforce a 1 second maximum latency on journal
3126 		 *    entries.
3127 		 */
3128 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3129 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3130 			break;
3131 		cnt++;
3132 		/*
3133 		 * Verify some free journal space.  softdep_prealloc() should
3134 	 	 * guarantee that we don't run out so this is indicative of
3135 		 * a problem with the flow control.  Try to recover
3136 		 * gracefully in any event.
3137 		 */
3138 		while (jblocks->jb_free == 0) {
3139 			if (flags != MNT_WAIT)
3140 				break;
3141 			printf("softdep: Out of journal space!\n");
3142 			softdep_speedup();
3143 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3144 		}
3145 		FREE_LOCK(&lk);
3146 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3147 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3148 		LIST_INIT(&jseg->js_entries);
3149 		LIST_INIT(&jseg->js_indirs);
3150 		jseg->js_state = ATTACHED;
3151 		jseg->js_jblocks = jblocks;
3152 		bp = geteblk(fs->fs_bsize, 0);
3153 		ACQUIRE_LOCK(&lk);
3154 		/*
3155 		 * If there was a race while we were allocating the block
3156 		 * and jseg the entry we care about was likely written.
3157 		 * We bail out in both the WAIT and NOWAIT case and assume
3158 		 * the caller will loop if the entry it cares about is
3159 		 * not written.
3160 		 */
3161 		cnt = ump->softdep_on_journal;
3162 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3163 			bp->b_flags |= B_INVAL | B_NOCACHE;
3164 			WORKITEM_FREE(jseg, D_JSEG);
3165 			FREE_LOCK(&lk);
3166 			brelse(bp);
3167 			ACQUIRE_LOCK(&lk);
3168 			break;
3169 		}
3170 		/*
3171 		 * Calculate the disk block size required for the available
3172 		 * records rounded to the min size.
3173 		 */
3174 		if (cnt == 0)
3175 			size = devbsize;
3176 		else if (cnt < jrecmax)
3177 			size = howmany(cnt, jrecmin) * devbsize;
3178 		else
3179 			size = fs->fs_bsize;
3180 		/*
3181 		 * Allocate a disk block for this journal data and account
3182 		 * for truncation of the requested size if enough contiguous
3183 		 * space was not available.
3184 		 */
3185 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3186 		bp->b_lblkno = bp->b_blkno;
3187 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3188 		bp->b_bcount = size;
3189 		bp->b_bufobj = &ump->um_devvp->v_bufobj;
3190 		bp->b_flags &= ~B_INVAL;
3191 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3192 		/*
3193 		 * Initialize our jseg with cnt records.  Assign the next
3194 		 * sequence number to it and link it in-order.
3195 		 */
3196 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3197 		jseg->js_buf = bp;
3198 		jseg->js_cnt = cnt;
3199 		jseg->js_refs = cnt + 1;	/* Self ref. */
3200 		jseg->js_size = size;
3201 		jseg->js_seq = jblocks->jb_nextseq++;
3202 		if (jblocks->jb_oldestseg == NULL)
3203 			jblocks->jb_oldestseg = jseg;
3204 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3205 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3206 		if (jblocks->jb_writeseg == NULL)
3207 			jblocks->jb_writeseg = jseg;
3208 		/*
3209 		 * Start filling in records from the pending list.
3210 		 */
3211 		data = bp->b_data;
3212 		off = 0;
3213 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3214 		    != NULL) {
3215 			if (cnt == 0)
3216 				break;
3217 			/* Place a segment header on every device block. */
3218 			if ((off % devbsize) == 0) {
3219 				jseg_write(ump, jseg, data);
3220 				off += JREC_SIZE;
3221 				data = bp->b_data + off;
3222 			}
3223 			if (wk == needwk)
3224 				needwk = NULL;
3225 			remove_from_journal(wk);
3226 			wk->wk_state |= INPROGRESS;
3227 			WORKLIST_INSERT(&jseg->js_entries, wk);
3228 			switch (wk->wk_type) {
3229 			case D_JADDREF:
3230 				jaddref_write(WK_JADDREF(wk), jseg, data);
3231 				break;
3232 			case D_JREMREF:
3233 				jremref_write(WK_JREMREF(wk), jseg, data);
3234 				break;
3235 			case D_JMVREF:
3236 				jmvref_write(WK_JMVREF(wk), jseg, data);
3237 				break;
3238 			case D_JNEWBLK:
3239 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3240 				break;
3241 			case D_JFREEBLK:
3242 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3243 				break;
3244 			case D_JFREEFRAG:
3245 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3246 				break;
3247 			case D_JTRUNC:
3248 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3249 				break;
3250 			case D_JFSYNC:
3251 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3252 				break;
3253 			default:
3254 				panic("process_journal: Unknown type %s",
3255 				    TYPENAME(wk->wk_type));
3256 				/* NOTREACHED */
3257 			}
3258 			off += JREC_SIZE;
3259 			data = bp->b_data + off;
3260 			cnt--;
3261 		}
3262 		/*
3263 		 * Write this one buffer and continue.
3264 		 */
3265 		segwritten = 1;
3266 		jblocks->jb_needseg = 0;
3267 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3268 		FREE_LOCK(&lk);
3269 		BO_LOCK(bp->b_bufobj);
3270 		bgetvp(ump->um_devvp, bp);
3271 		BO_UNLOCK(bp->b_bufobj);
3272 		/*
3273 		 * We only do the blocking wait once we find the journal
3274 		 * entry we're looking for.
3275 		 */
3276 		if (needwk == NULL && flags == MNT_WAIT)
3277 			bwrite(bp);
3278 		else
3279 			bawrite(bp);
3280 		ACQUIRE_LOCK(&lk);
3281 	}
3282 	/*
3283 	 * If we've suspended the filesystem because we ran out of journal
3284 	 * space either try to sync it here to make some progress or
3285 	 * unsuspend it if we already have.
3286 	 */
3287 	if (flags == 0 && jblocks->jb_suspended) {
3288 		if (journal_unsuspend(ump))
3289 			return;
3290 		FREE_LOCK(&lk);
3291 		VFS_SYNC(mp, MNT_NOWAIT);
3292 		ffs_sbupdate(ump, MNT_WAIT, 0);
3293 		ACQUIRE_LOCK(&lk);
3294 	}
3295 }
3296 
3297 /*
3298  * Complete a jseg, allowing all dependencies awaiting journal writes
3299  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3300  * structures so that the journal segment can be freed to reclaim space.
3301  */
3302 static void
3303 complete_jseg(jseg)
3304 	struct jseg *jseg;
3305 {
3306 	struct worklist *wk;
3307 	struct jmvref *jmvref;
3308 	int waiting;
3309 #ifdef INVARIANTS
3310 	int i = 0;
3311 #endif
3312 
3313 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3314 		WORKLIST_REMOVE(wk);
3315 		waiting = wk->wk_state & IOWAITING;
3316 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3317 		wk->wk_state |= COMPLETE;
3318 		KASSERT(i++ < jseg->js_cnt,
3319 		    ("handle_written_jseg: overflow %d >= %d",
3320 		    i - 1, jseg->js_cnt));
3321 		switch (wk->wk_type) {
3322 		case D_JADDREF:
3323 			handle_written_jaddref(WK_JADDREF(wk));
3324 			break;
3325 		case D_JREMREF:
3326 			handle_written_jremref(WK_JREMREF(wk));
3327 			break;
3328 		case D_JMVREF:
3329 			rele_jseg(jseg);	/* No jsegdep. */
3330 			jmvref = WK_JMVREF(wk);
3331 			LIST_REMOVE(jmvref, jm_deps);
3332 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3333 				free_pagedep(jmvref->jm_pagedep);
3334 			WORKITEM_FREE(jmvref, D_JMVREF);
3335 			break;
3336 		case D_JNEWBLK:
3337 			handle_written_jnewblk(WK_JNEWBLK(wk));
3338 			break;
3339 		case D_JFREEBLK:
3340 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3341 			break;
3342 		case D_JTRUNC:
3343 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3344 			break;
3345 		case D_JFSYNC:
3346 			rele_jseg(jseg);	/* No jsegdep. */
3347 			WORKITEM_FREE(wk, D_JFSYNC);
3348 			break;
3349 		case D_JFREEFRAG:
3350 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3351 			break;
3352 		default:
3353 			panic("handle_written_jseg: Unknown type %s",
3354 			    TYPENAME(wk->wk_type));
3355 			/* NOTREACHED */
3356 		}
3357 		if (waiting)
3358 			wakeup(wk);
3359 	}
3360 	/* Release the self reference so the structure may be freed. */
3361 	rele_jseg(jseg);
3362 }
3363 
3364 /*
3365  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
3366  * completions in order only.
3367  */
3368 static void
3369 handle_written_jseg(jseg, bp)
3370 	struct jseg *jseg;
3371 	struct buf *bp;
3372 {
3373 	struct jblocks *jblocks;
3374 	struct jseg *jsegn;
3375 
3376 	if (jseg->js_refs == 0)
3377 		panic("handle_written_jseg: No self-reference on %p", jseg);
3378 	jseg->js_state |= DEPCOMPLETE;
3379 	/*
3380 	 * We'll never need this buffer again, set flags so it will be
3381 	 * discarded.
3382 	 */
3383 	bp->b_flags |= B_INVAL | B_NOCACHE;
3384 	jblocks = jseg->js_jblocks;
3385 	/*
3386 	 * Don't allow out of order completions.  If this isn't the first
3387 	 * block wait for it to write before we're done.
3388 	 */
3389 	if (jseg != jblocks->jb_writeseg)
3390 		return;
3391 	/* Iterate through available jsegs processing their entries. */
3392 	do {
3393 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3394 		jsegn = TAILQ_NEXT(jseg, js_next);
3395 		complete_jseg(jseg);
3396 		jseg = jsegn;
3397 	} while (jseg && jseg->js_state & DEPCOMPLETE);
3398 	jblocks->jb_writeseg = jseg;
3399 	/*
3400 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3401 	 */
3402 	free_jsegs(jblocks);
3403 }
3404 
3405 static inline struct jsegdep *
3406 inoref_jseg(inoref)
3407 	struct inoref *inoref;
3408 {
3409 	struct jsegdep *jsegdep;
3410 
3411 	jsegdep = inoref->if_jsegdep;
3412 	inoref->if_jsegdep = NULL;
3413 
3414 	return (jsegdep);
3415 }
3416 
3417 /*
3418  * Called once a jremref has made it to stable store.  The jremref is marked
3419  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3420  * for the jremref to complete will be awoken by free_jremref.
3421  */
3422 static void
3423 handle_written_jremref(jremref)
3424 	struct jremref *jremref;
3425 {
3426 	struct inodedep *inodedep;
3427 	struct jsegdep *jsegdep;
3428 	struct dirrem *dirrem;
3429 
3430 	/* Grab the jsegdep. */
3431 	jsegdep = inoref_jseg(&jremref->jr_ref);
3432 	/*
3433 	 * Remove us from the inoref list.
3434 	 */
3435 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3436 	    0, &inodedep) == 0)
3437 		panic("handle_written_jremref: Lost inodedep");
3438 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3439 	/*
3440 	 * Complete the dirrem.
3441 	 */
3442 	dirrem = jremref->jr_dirrem;
3443 	jremref->jr_dirrem = NULL;
3444 	LIST_REMOVE(jremref, jr_deps);
3445 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3446 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3447 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3448 	    (dirrem->dm_state & COMPLETE) != 0)
3449 		add_to_worklist(&dirrem->dm_list, 0);
3450 	free_jremref(jremref);
3451 }
3452 
3453 /*
3454  * Called once a jaddref has made it to stable store.  The dependency is
3455  * marked complete and any dependent structures are added to the inode
3456  * bufwait list to be completed as soon as it is written.  If a bitmap write
3457  * depends on this entry we move the inode into the inodedephd of the
3458  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3459  */
3460 static void
3461 handle_written_jaddref(jaddref)
3462 	struct jaddref *jaddref;
3463 {
3464 	struct jsegdep *jsegdep;
3465 	struct inodedep *inodedep;
3466 	struct diradd *diradd;
3467 	struct mkdir *mkdir;
3468 
3469 	/* Grab the jsegdep. */
3470 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3471 	mkdir = NULL;
3472 	diradd = NULL;
3473 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3474 	    0, &inodedep) == 0)
3475 		panic("handle_written_jaddref: Lost inodedep.");
3476 	if (jaddref->ja_diradd == NULL)
3477 		panic("handle_written_jaddref: No dependency");
3478 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3479 		diradd = jaddref->ja_diradd;
3480 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3481 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3482 		mkdir = jaddref->ja_mkdir;
3483 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3484 	} else if (jaddref->ja_state & MKDIR_BODY)
3485 		mkdir = jaddref->ja_mkdir;
3486 	else
3487 		panic("handle_written_jaddref: Unknown dependency %p",
3488 		    jaddref->ja_diradd);
3489 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3490 	/*
3491 	 * Remove us from the inode list.
3492 	 */
3493 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3494 	/*
3495 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3496 	 */
3497 	if (mkdir) {
3498 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3499 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3500 		    TYPENAME(mkdir->md_list.wk_type)));
3501 		mkdir->md_jaddref = NULL;
3502 		diradd = mkdir->md_diradd;
3503 		mkdir->md_state |= DEPCOMPLETE;
3504 		complete_mkdir(mkdir);
3505 	}
3506 	jwork_insert(&diradd->da_jwork, jsegdep);
3507 	if (jaddref->ja_state & NEWBLOCK) {
3508 		inodedep->id_state |= ONDEPLIST;
3509 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3510 		    inodedep, id_deps);
3511 	}
3512 	free_jaddref(jaddref);
3513 }
3514 
3515 /*
3516  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3517  * is placed in the bmsafemap to await notification of a written bitmap.  If
3518  * the operation was canceled we add the segdep to the appropriate
3519  * dependency to free the journal space once the canceling operation
3520  * completes.
3521  */
3522 static void
3523 handle_written_jnewblk(jnewblk)
3524 	struct jnewblk *jnewblk;
3525 {
3526 	struct bmsafemap *bmsafemap;
3527 	struct freefrag *freefrag;
3528 	struct freework *freework;
3529 	struct jsegdep *jsegdep;
3530 	struct newblk *newblk;
3531 
3532 	/* Grab the jsegdep. */
3533 	jsegdep = jnewblk->jn_jsegdep;
3534 	jnewblk->jn_jsegdep = NULL;
3535 	if (jnewblk->jn_dep == NULL)
3536 		panic("handle_written_jnewblk: No dependency for the segdep.");
3537 	switch (jnewblk->jn_dep->wk_type) {
3538 	case D_NEWBLK:
3539 	case D_ALLOCDIRECT:
3540 	case D_ALLOCINDIR:
3541 		/*
3542 		 * Add the written block to the bmsafemap so it can
3543 		 * be notified when the bitmap is on disk.
3544 		 */
3545 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3546 		newblk->nb_jnewblk = NULL;
3547 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3548 			bmsafemap = newblk->nb_bmsafemap;
3549 			newblk->nb_state |= ONDEPLIST;
3550 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3551 			    nb_deps);
3552 		}
3553 		jwork_insert(&newblk->nb_jwork, jsegdep);
3554 		break;
3555 	case D_FREEFRAG:
3556 		/*
3557 		 * A newblock being removed by a freefrag when replaced by
3558 		 * frag extension.
3559 		 */
3560 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3561 		freefrag->ff_jdep = NULL;
3562 		WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3563 		break;
3564 	case D_FREEWORK:
3565 		/*
3566 		 * A direct block was removed by truncate.
3567 		 */
3568 		freework = WK_FREEWORK(jnewblk->jn_dep);
3569 		freework->fw_jnewblk = NULL;
3570 		WORKLIST_INSERT(&freework->fw_freeblks->fb_jwork,
3571 		    &jsegdep->jd_list);
3572 		break;
3573 	default:
3574 		panic("handle_written_jnewblk: Unknown type %d.",
3575 		    jnewblk->jn_dep->wk_type);
3576 	}
3577 	jnewblk->jn_dep = NULL;
3578 	free_jnewblk(jnewblk);
3579 }
3580 
3581 /*
3582  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3583  * an in-flight allocation that has not yet been committed.  Divorce us
3584  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3585  * to the worklist.
3586  */
3587 static void
3588 cancel_jfreefrag(jfreefrag)
3589 	struct jfreefrag *jfreefrag;
3590 {
3591 	struct freefrag *freefrag;
3592 
3593 	if (jfreefrag->fr_jsegdep) {
3594 		free_jsegdep(jfreefrag->fr_jsegdep);
3595 		jfreefrag->fr_jsegdep = NULL;
3596 	}
3597 	freefrag = jfreefrag->fr_freefrag;
3598 	jfreefrag->fr_freefrag = NULL;
3599 	free_jfreefrag(jfreefrag);
3600 	freefrag->ff_state |= DEPCOMPLETE;
3601 }
3602 
3603 /*
3604  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3605  */
3606 static void
3607 free_jfreefrag(jfreefrag)
3608 	struct jfreefrag *jfreefrag;
3609 {
3610 
3611 	if (jfreefrag->fr_state & INPROGRESS)
3612 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3613 	else if (jfreefrag->fr_state & ONWORKLIST)
3614 		remove_from_journal(&jfreefrag->fr_list);
3615 	if (jfreefrag->fr_freefrag != NULL)
3616 		panic("free_jfreefrag:  Still attached to a freefrag.");
3617 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3618 }
3619 
3620 /*
3621  * Called when the journal write for a jfreefrag completes.  The parent
3622  * freefrag is added to the worklist if this completes its dependencies.
3623  */
3624 static void
3625 handle_written_jfreefrag(jfreefrag)
3626 	struct jfreefrag *jfreefrag;
3627 {
3628 	struct jsegdep *jsegdep;
3629 	struct freefrag *freefrag;
3630 
3631 	/* Grab the jsegdep. */
3632 	jsegdep = jfreefrag->fr_jsegdep;
3633 	jfreefrag->fr_jsegdep = NULL;
3634 	freefrag = jfreefrag->fr_freefrag;
3635 	if (freefrag == NULL)
3636 		panic("handle_written_jfreefrag: No freefrag.");
3637 	freefrag->ff_state |= DEPCOMPLETE;
3638 	freefrag->ff_jdep = NULL;
3639 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3640 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3641 		add_to_worklist(&freefrag->ff_list, 0);
3642 	jfreefrag->fr_freefrag = NULL;
3643 	free_jfreefrag(jfreefrag);
3644 }
3645 
3646 /*
3647  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3648  * is removed from the freeblks list of pending journal writes and the
3649  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3650  * have been reclaimed.
3651  */
3652 static void
3653 handle_written_jblkdep(jblkdep)
3654 	struct jblkdep *jblkdep;
3655 {
3656 	struct freeblks *freeblks;
3657 	struct jsegdep *jsegdep;
3658 
3659 	/* Grab the jsegdep. */
3660 	jsegdep = jblkdep->jb_jsegdep;
3661 	jblkdep->jb_jsegdep = NULL;
3662 	freeblks = jblkdep->jb_freeblks;
3663 	LIST_REMOVE(jblkdep, jb_deps);
3664 	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3665 	/*
3666 	 * If the freeblks is all journaled, we can add it to the worklist.
3667 	 */
3668 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3669 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3670 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3671 
3672 	free_jblkdep(jblkdep);
3673 }
3674 
3675 static struct jsegdep *
3676 newjsegdep(struct worklist *wk)
3677 {
3678 	struct jsegdep *jsegdep;
3679 
3680 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3681 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3682 	jsegdep->jd_seg = NULL;
3683 
3684 	return (jsegdep);
3685 }
3686 
3687 static struct jmvref *
3688 newjmvref(dp, ino, oldoff, newoff)
3689 	struct inode *dp;
3690 	ino_t ino;
3691 	off_t oldoff;
3692 	off_t newoff;
3693 {
3694 	struct jmvref *jmvref;
3695 
3696 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3697 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3698 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3699 	jmvref->jm_parent = dp->i_number;
3700 	jmvref->jm_ino = ino;
3701 	jmvref->jm_oldoff = oldoff;
3702 	jmvref->jm_newoff = newoff;
3703 
3704 	return (jmvref);
3705 }
3706 
3707 /*
3708  * Allocate a new jremref that tracks the removal of ip from dp with the
3709  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3710  * DEPCOMPLETE as we have all the information required for the journal write
3711  * and the directory has already been removed from the buffer.  The caller
3712  * is responsible for linking the jremref into the pagedep and adding it
3713  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3714  * a DOTDOT addition so handle_workitem_remove() can properly assign
3715  * the jsegdep when we're done.
3716  */
3717 static struct jremref *
3718 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3719     off_t diroff, nlink_t nlink)
3720 {
3721 	struct jremref *jremref;
3722 
3723 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3724 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3725 	jremref->jr_state = ATTACHED;
3726 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3727 	   nlink, ip->i_mode);
3728 	jremref->jr_dirrem = dirrem;
3729 
3730 	return (jremref);
3731 }
3732 
3733 static inline void
3734 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3735     nlink_t nlink, uint16_t mode)
3736 {
3737 
3738 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3739 	inoref->if_diroff = diroff;
3740 	inoref->if_ino = ino;
3741 	inoref->if_parent = parent;
3742 	inoref->if_nlink = nlink;
3743 	inoref->if_mode = mode;
3744 }
3745 
3746 /*
3747  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3748  * directory offset may not be known until later.  The caller is responsible
3749  * adding the entry to the journal when this information is available.  nlink
3750  * should be the link count prior to the addition and mode is only required
3751  * to have the correct FMT.
3752  */
3753 static struct jaddref *
3754 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3755     uint16_t mode)
3756 {
3757 	struct jaddref *jaddref;
3758 
3759 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3760 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3761 	jaddref->ja_state = ATTACHED;
3762 	jaddref->ja_mkdir = NULL;
3763 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3764 
3765 	return (jaddref);
3766 }
3767 
3768 /*
3769  * Create a new free dependency for a freework.  The caller is responsible
3770  * for adjusting the reference count when it has the lock held.  The freedep
3771  * will track an outstanding bitmap write that will ultimately clear the
3772  * freework to continue.
3773  */
3774 static struct freedep *
3775 newfreedep(struct freework *freework)
3776 {
3777 	struct freedep *freedep;
3778 
3779 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3780 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3781 	freedep->fd_freework = freework;
3782 
3783 	return (freedep);
3784 }
3785 
3786 /*
3787  * Free a freedep structure once the buffer it is linked to is written.  If
3788  * this is the last reference to the freework schedule it for completion.
3789  */
3790 static void
3791 free_freedep(freedep)
3792 	struct freedep *freedep;
3793 {
3794 	struct freework *freework;
3795 
3796 	freework = freedep->fd_freework;
3797 	freework->fw_freeblks->fb_cgwait--;
3798 	if (--freework->fw_ref == 0)
3799 		freework_enqueue(freework);
3800 	WORKITEM_FREE(freedep, D_FREEDEP);
3801 }
3802 
3803 /*
3804  * Allocate a new freework structure that may be a level in an indirect
3805  * when parent is not NULL or a top level block when it is.  The top level
3806  * freework structures are allocated without lk held and before the freeblks
3807  * is visible outside of softdep_setup_freeblocks().
3808  */
3809 static struct freework *
3810 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3811 	struct ufsmount *ump;
3812 	struct freeblks *freeblks;
3813 	struct freework *parent;
3814 	ufs_lbn_t lbn;
3815 	ufs2_daddr_t nb;
3816 	int frags;
3817 	int off;
3818 	int journal;
3819 {
3820 	struct freework *freework;
3821 
3822 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3823 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3824 	freework->fw_state = ATTACHED;
3825 	freework->fw_jnewblk = NULL;
3826 	freework->fw_freeblks = freeblks;
3827 	freework->fw_parent = parent;
3828 	freework->fw_lbn = lbn;
3829 	freework->fw_blkno = nb;
3830 	freework->fw_frags = frags;
3831 	freework->fw_indir = NULL;
3832 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3833 		? 0 : NINDIR(ump->um_fs) + 1;
3834 	freework->fw_start = freework->fw_off = off;
3835 	if (journal)
3836 		newjfreeblk(freeblks, lbn, nb, frags);
3837 	if (parent == NULL) {
3838 		ACQUIRE_LOCK(&lk);
3839 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3840 		freeblks->fb_ref++;
3841 		FREE_LOCK(&lk);
3842 	}
3843 
3844 	return (freework);
3845 }
3846 
3847 /*
3848  * Eliminate a jfreeblk for a block that does not need journaling.
3849  */
3850 static void
3851 cancel_jfreeblk(freeblks, blkno)
3852 	struct freeblks *freeblks;
3853 	ufs2_daddr_t blkno;
3854 {
3855 	struct jfreeblk *jfreeblk;
3856 	struct jblkdep *jblkdep;
3857 
3858 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3859 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3860 			continue;
3861 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3862 		if (jfreeblk->jf_blkno == blkno)
3863 			break;
3864 	}
3865 	if (jblkdep == NULL)
3866 		return;
3867 	free_jsegdep(jblkdep->jb_jsegdep);
3868 	LIST_REMOVE(jblkdep, jb_deps);
3869 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3870 }
3871 
3872 /*
3873  * Allocate a new jfreeblk to journal top level block pointer when truncating
3874  * a file.  The caller must add this to the worklist when lk is held.
3875  */
3876 static struct jfreeblk *
3877 newjfreeblk(freeblks, lbn, blkno, frags)
3878 	struct freeblks *freeblks;
3879 	ufs_lbn_t lbn;
3880 	ufs2_daddr_t blkno;
3881 	int frags;
3882 {
3883 	struct jfreeblk *jfreeblk;
3884 
3885 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3886 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
3887 	    freeblks->fb_list.wk_mp);
3888 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
3889 	jfreeblk->jf_dep.jb_freeblks = freeblks;
3890 	jfreeblk->jf_ino = freeblks->fb_inum;
3891 	jfreeblk->jf_lbn = lbn;
3892 	jfreeblk->jf_blkno = blkno;
3893 	jfreeblk->jf_frags = frags;
3894 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
3895 
3896 	return (jfreeblk);
3897 }
3898 
3899 /*
3900  * Allocate a new jtrunc to track a partial truncation.
3901  */
3902 static struct jtrunc *
3903 newjtrunc(freeblks, size, extsize)
3904 	struct freeblks *freeblks;
3905 	off_t size;
3906 	int extsize;
3907 {
3908 	struct jtrunc *jtrunc;
3909 
3910 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3911 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
3912 	    freeblks->fb_list.wk_mp);
3913 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
3914 	jtrunc->jt_dep.jb_freeblks = freeblks;
3915 	jtrunc->jt_ino = freeblks->fb_inum;
3916 	jtrunc->jt_size = size;
3917 	jtrunc->jt_extsize = extsize;
3918 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
3919 
3920 	return (jtrunc);
3921 }
3922 
3923 /*
3924  * If we're canceling a new bitmap we have to search for another ref
3925  * to move into the bmsafemap dep.  This might be better expressed
3926  * with another structure.
3927  */
3928 static void
3929 move_newblock_dep(jaddref, inodedep)
3930 	struct jaddref *jaddref;
3931 	struct inodedep *inodedep;
3932 {
3933 	struct inoref *inoref;
3934 	struct jaddref *jaddrefn;
3935 
3936 	jaddrefn = NULL;
3937 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3938 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3939 		if ((jaddref->ja_state & NEWBLOCK) &&
3940 		    inoref->if_list.wk_type == D_JADDREF) {
3941 			jaddrefn = (struct jaddref *)inoref;
3942 			break;
3943 		}
3944 	}
3945 	if (jaddrefn == NULL)
3946 		return;
3947 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3948 	jaddrefn->ja_state |= jaddref->ja_state &
3949 	    (ATTACHED | UNDONE | NEWBLOCK);
3950 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3951 	jaddref->ja_state |= ATTACHED;
3952 	LIST_REMOVE(jaddref, ja_bmdeps);
3953 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3954 	    ja_bmdeps);
3955 }
3956 
3957 /*
3958  * Cancel a jaddref either before it has been written or while it is being
3959  * written.  This happens when a link is removed before the add reaches
3960  * the disk.  The jaddref dependency is kept linked into the bmsafemap
3961  * and inode to prevent the link count or bitmap from reaching the disk
3962  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3963  * required.
3964  *
3965  * Returns 1 if the canceled addref requires journaling of the remove and
3966  * 0 otherwise.
3967  */
3968 static int
3969 cancel_jaddref(jaddref, inodedep, wkhd)
3970 	struct jaddref *jaddref;
3971 	struct inodedep *inodedep;
3972 	struct workhead *wkhd;
3973 {
3974 	struct inoref *inoref;
3975 	struct jsegdep *jsegdep;
3976 	int needsj;
3977 
3978 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3979 	    ("cancel_jaddref: Canceling complete jaddref"));
3980 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
3981 		needsj = 1;
3982 	else
3983 		needsj = 0;
3984 	if (inodedep == NULL)
3985 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3986 		    0, &inodedep) == 0)
3987 			panic("cancel_jaddref: Lost inodedep");
3988 	/*
3989 	 * We must adjust the nlink of any reference operation that follows
3990 	 * us so that it is consistent with the in-memory reference.  This
3991 	 * ensures that inode nlink rollbacks always have the correct link.
3992 	 */
3993 	if (needsj == 0) {
3994 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3995 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
3996 			if (inoref->if_state & GOINGAWAY)
3997 				break;
3998 			inoref->if_nlink--;
3999 		}
4000 	}
4001 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4002 	if (jaddref->ja_state & NEWBLOCK)
4003 		move_newblock_dep(jaddref, inodedep);
4004 	wake_worklist(&jaddref->ja_list);
4005 	jaddref->ja_mkdir = NULL;
4006 	if (jaddref->ja_state & INPROGRESS) {
4007 		jaddref->ja_state &= ~INPROGRESS;
4008 		WORKLIST_REMOVE(&jaddref->ja_list);
4009 		jwork_insert(wkhd, jsegdep);
4010 	} else {
4011 		free_jsegdep(jsegdep);
4012 		if (jaddref->ja_state & DEPCOMPLETE)
4013 			remove_from_journal(&jaddref->ja_list);
4014 	}
4015 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4016 	/*
4017 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4018 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4019 	 * no longer need this addref attached to the inoreflst and it
4020 	 * will incorrectly adjust nlink if we leave it.
4021 	 */
4022 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4023 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4024 		    if_deps);
4025 		jaddref->ja_state |= COMPLETE;
4026 		free_jaddref(jaddref);
4027 		return (needsj);
4028 	}
4029 	/*
4030 	 * Leave the head of the list for jsegdeps for fast merging.
4031 	 */
4032 	if (LIST_FIRST(wkhd) != NULL) {
4033 		jaddref->ja_state |= ONWORKLIST;
4034 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4035 	} else
4036 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4037 
4038 	return (needsj);
4039 }
4040 
4041 /*
4042  * Attempt to free a jaddref structure when some work completes.  This
4043  * should only succeed once the entry is written and all dependencies have
4044  * been notified.
4045  */
4046 static void
4047 free_jaddref(jaddref)
4048 	struct jaddref *jaddref;
4049 {
4050 
4051 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4052 		return;
4053 	if (jaddref->ja_ref.if_jsegdep)
4054 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4055 		    jaddref, jaddref->ja_state);
4056 	if (jaddref->ja_state & NEWBLOCK)
4057 		LIST_REMOVE(jaddref, ja_bmdeps);
4058 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4059 		panic("free_jaddref: Bad state %p(0x%X)",
4060 		    jaddref, jaddref->ja_state);
4061 	if (jaddref->ja_mkdir != NULL)
4062 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4063 	WORKITEM_FREE(jaddref, D_JADDREF);
4064 }
4065 
4066 /*
4067  * Free a jremref structure once it has been written or discarded.
4068  */
4069 static void
4070 free_jremref(jremref)
4071 	struct jremref *jremref;
4072 {
4073 
4074 	if (jremref->jr_ref.if_jsegdep)
4075 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4076 	if (jremref->jr_state & INPROGRESS)
4077 		panic("free_jremref: IO still pending");
4078 	WORKITEM_FREE(jremref, D_JREMREF);
4079 }
4080 
4081 /*
4082  * Free a jnewblk structure.
4083  */
4084 static void
4085 free_jnewblk(jnewblk)
4086 	struct jnewblk *jnewblk;
4087 {
4088 
4089 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4090 		return;
4091 	LIST_REMOVE(jnewblk, jn_deps);
4092 	if (jnewblk->jn_dep != NULL)
4093 		panic("free_jnewblk: Dependency still attached.");
4094 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4095 }
4096 
4097 /*
4098  * Cancel a jnewblk which has been been made redundant by frag extension.
4099  */
4100 static void
4101 cancel_jnewblk(jnewblk, wkhd)
4102 	struct jnewblk *jnewblk;
4103 	struct workhead *wkhd;
4104 {
4105 	struct jsegdep *jsegdep;
4106 
4107 	jsegdep = jnewblk->jn_jsegdep;
4108 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4109 		panic("cancel_jnewblk: Invalid state");
4110 	jnewblk->jn_jsegdep  = NULL;
4111 	jnewblk->jn_dep = NULL;
4112 	jnewblk->jn_state |= GOINGAWAY;
4113 	if (jnewblk->jn_state & INPROGRESS) {
4114 		jnewblk->jn_state &= ~INPROGRESS;
4115 		WORKLIST_REMOVE(&jnewblk->jn_list);
4116 		jwork_insert(wkhd, jsegdep);
4117 	} else {
4118 		free_jsegdep(jsegdep);
4119 		remove_from_journal(&jnewblk->jn_list);
4120 	}
4121 	wake_worklist(&jnewblk->jn_list);
4122 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4123 }
4124 
4125 static void
4126 free_jblkdep(jblkdep)
4127 	struct jblkdep *jblkdep;
4128 {
4129 
4130 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4131 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4132 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4133 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4134 	else
4135 		panic("free_jblkdep: Unexpected type %s",
4136 		    TYPENAME(jblkdep->jb_list.wk_type));
4137 }
4138 
4139 /*
4140  * Free a single jseg once it is no longer referenced in memory or on
4141  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4142  * to disappear.
4143  */
4144 static void
4145 free_jseg(jseg, jblocks)
4146 	struct jseg *jseg;
4147 	struct jblocks *jblocks;
4148 {
4149 	struct freework *freework;
4150 
4151 	/*
4152 	 * Free freework structures that were lingering to indicate freed
4153 	 * indirect blocks that forced journal write ordering on reallocate.
4154 	 */
4155 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4156 		indirblk_remove(freework);
4157 	if (jblocks->jb_oldestseg == jseg)
4158 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4159 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4160 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4161 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4162 	    ("free_jseg: Freed jseg has valid entries."));
4163 	WORKITEM_FREE(jseg, D_JSEG);
4164 }
4165 
4166 /*
4167  * Free all jsegs that meet the criteria for being reclaimed and update
4168  * oldestseg.
4169  */
4170 static void
4171 free_jsegs(jblocks)
4172 	struct jblocks *jblocks;
4173 {
4174 	struct jseg *jseg;
4175 
4176 	/*
4177 	 * Free only those jsegs which have none allocated before them to
4178 	 * preserve the journal space ordering.
4179 	 */
4180 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4181 		/*
4182 		 * Only reclaim space when nothing depends on this journal
4183 		 * set and another set has written that it is no longer
4184 		 * valid.
4185 		 */
4186 		if (jseg->js_refs != 0) {
4187 			jblocks->jb_oldestseg = jseg;
4188 			return;
4189 		}
4190 		if (!LIST_EMPTY(&jseg->js_indirs) &&
4191 		    jseg->js_seq >= jblocks->jb_oldestwrseq)
4192 			break;
4193 		free_jseg(jseg, jblocks);
4194 	}
4195 	/*
4196 	 * If we exited the loop above we still must discover the
4197 	 * oldest valid segment.
4198 	 */
4199 	if (jseg)
4200 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4201 		     jseg = TAILQ_NEXT(jseg, js_next))
4202 			if (jseg->js_refs != 0)
4203 				break;
4204 	jblocks->jb_oldestseg = jseg;
4205 	/*
4206 	 * The journal has no valid records but some jsegs may still be
4207 	 * waiting on oldestwrseq to advance.  We force a small record
4208 	 * out to permit these lingering records to be reclaimed.
4209 	 */
4210 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4211 		jblocks->jb_needseg = 1;
4212 }
4213 
4214 /*
4215  * Release one reference to a jseg and free it if the count reaches 0.  This
4216  * should eventually reclaim journal space as well.
4217  */
4218 static void
4219 rele_jseg(jseg)
4220 	struct jseg *jseg;
4221 {
4222 
4223 	KASSERT(jseg->js_refs > 0,
4224 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4225 	if (--jseg->js_refs != 0)
4226 		return;
4227 	free_jsegs(jseg->js_jblocks);
4228 }
4229 
4230 /*
4231  * Release a jsegdep and decrement the jseg count.
4232  */
4233 static void
4234 free_jsegdep(jsegdep)
4235 	struct jsegdep *jsegdep;
4236 {
4237 
4238 	if (jsegdep->jd_seg)
4239 		rele_jseg(jsegdep->jd_seg);
4240 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4241 }
4242 
4243 /*
4244  * Wait for a journal item to make it to disk.  Initiate journal processing
4245  * if required.
4246  */
4247 static int
4248 jwait(wk, waitfor)
4249 	struct worklist *wk;
4250 	int waitfor;
4251 {
4252 
4253 	/*
4254 	 * Blocking journal waits cause slow synchronous behavior.  Record
4255 	 * stats on the frequency of these blocking operations.
4256 	 */
4257 	if (waitfor == MNT_WAIT) {
4258 		stat_journal_wait++;
4259 		switch (wk->wk_type) {
4260 		case D_JREMREF:
4261 		case D_JMVREF:
4262 			stat_jwait_filepage++;
4263 			break;
4264 		case D_JTRUNC:
4265 		case D_JFREEBLK:
4266 			stat_jwait_freeblks++;
4267 			break;
4268 		case D_JNEWBLK:
4269 			stat_jwait_newblk++;
4270 			break;
4271 		case D_JADDREF:
4272 			stat_jwait_inode++;
4273 			break;
4274 		default:
4275 			break;
4276 		}
4277 	}
4278 	/*
4279 	 * If IO has not started we process the journal.  We can't mark the
4280 	 * worklist item as IOWAITING because we drop the lock while
4281 	 * processing the journal and the worklist entry may be freed after
4282 	 * this point.  The caller may call back in and re-issue the request.
4283 	 */
4284 	if ((wk->wk_state & INPROGRESS) == 0) {
4285 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4286 		if (waitfor != MNT_WAIT)
4287 			return (EBUSY);
4288 		return (0);
4289 	}
4290 	if (waitfor != MNT_WAIT)
4291 		return (EBUSY);
4292 	wait_worklist(wk, "jwait");
4293 	return (0);
4294 }
4295 
4296 /*
4297  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4298  * appropriate.  This is a convenience function to reduce duplicate code
4299  * for the setup and revert functions below.
4300  */
4301 static struct inodedep *
4302 inodedep_lookup_ip(ip)
4303 	struct inode *ip;
4304 {
4305 	struct inodedep *inodedep;
4306 
4307 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4308 	    ("inodedep_lookup_ip: bad delta"));
4309 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
4310 	    DEPALLOC, &inodedep);
4311 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4312 
4313 	return (inodedep);
4314 }
4315 
4316 /*
4317  * Called prior to creating a new inode and linking it to a directory.  The
4318  * jaddref structure must already be allocated by softdep_setup_inomapdep
4319  * and it is discovered here so we can initialize the mode and update
4320  * nlinkdelta.
4321  */
4322 void
4323 softdep_setup_create(dp, ip)
4324 	struct inode *dp;
4325 	struct inode *ip;
4326 {
4327 	struct inodedep *inodedep;
4328 	struct jaddref *jaddref;
4329 	struct vnode *dvp;
4330 
4331 	KASSERT(ip->i_nlink == 1,
4332 	    ("softdep_setup_create: Invalid link count."));
4333 	dvp = ITOV(dp);
4334 	ACQUIRE_LOCK(&lk);
4335 	inodedep = inodedep_lookup_ip(ip);
4336 	if (DOINGSUJ(dvp)) {
4337 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4338 		    inoreflst);
4339 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4340 		    ("softdep_setup_create: No addref structure present."));
4341 	}
4342 	softdep_prelink(dvp, NULL);
4343 	FREE_LOCK(&lk);
4344 }
4345 
4346 /*
4347  * Create a jaddref structure to track the addition of a DOTDOT link when
4348  * we are reparenting an inode as part of a rename.  This jaddref will be
4349  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4350  * non-journaling softdep.
4351  */
4352 void
4353 softdep_setup_dotdot_link(dp, ip)
4354 	struct inode *dp;
4355 	struct inode *ip;
4356 {
4357 	struct inodedep *inodedep;
4358 	struct jaddref *jaddref;
4359 	struct vnode *dvp;
4360 	struct vnode *vp;
4361 
4362 	dvp = ITOV(dp);
4363 	vp = ITOV(ip);
4364 	jaddref = NULL;
4365 	/*
4366 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4367 	 * is used as a normal link would be.
4368 	 */
4369 	if (DOINGSUJ(dvp))
4370 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4371 		    dp->i_effnlink - 1, dp->i_mode);
4372 	ACQUIRE_LOCK(&lk);
4373 	inodedep = inodedep_lookup_ip(dp);
4374 	if (jaddref)
4375 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4376 		    if_deps);
4377 	softdep_prelink(dvp, ITOV(ip));
4378 	FREE_LOCK(&lk);
4379 }
4380 
4381 /*
4382  * Create a jaddref structure to track a new link to an inode.  The directory
4383  * offset is not known until softdep_setup_directory_add or
4384  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4385  * softdep.
4386  */
4387 void
4388 softdep_setup_link(dp, ip)
4389 	struct inode *dp;
4390 	struct inode *ip;
4391 {
4392 	struct inodedep *inodedep;
4393 	struct jaddref *jaddref;
4394 	struct vnode *dvp;
4395 
4396 	dvp = ITOV(dp);
4397 	jaddref = NULL;
4398 	if (DOINGSUJ(dvp))
4399 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4400 		    ip->i_mode);
4401 	ACQUIRE_LOCK(&lk);
4402 	inodedep = inodedep_lookup_ip(ip);
4403 	if (jaddref)
4404 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4405 		    if_deps);
4406 	softdep_prelink(dvp, ITOV(ip));
4407 	FREE_LOCK(&lk);
4408 }
4409 
4410 /*
4411  * Called to create the jaddref structures to track . and .. references as
4412  * well as lookup and further initialize the incomplete jaddref created
4413  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4414  * nlinkdelta for non-journaling softdep.
4415  */
4416 void
4417 softdep_setup_mkdir(dp, ip)
4418 	struct inode *dp;
4419 	struct inode *ip;
4420 {
4421 	struct inodedep *inodedep;
4422 	struct jaddref *dotdotaddref;
4423 	struct jaddref *dotaddref;
4424 	struct jaddref *jaddref;
4425 	struct vnode *dvp;
4426 
4427 	dvp = ITOV(dp);
4428 	dotaddref = dotdotaddref = NULL;
4429 	if (DOINGSUJ(dvp)) {
4430 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4431 		    ip->i_mode);
4432 		dotaddref->ja_state |= MKDIR_BODY;
4433 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4434 		    dp->i_effnlink - 1, dp->i_mode);
4435 		dotdotaddref->ja_state |= MKDIR_PARENT;
4436 	}
4437 	ACQUIRE_LOCK(&lk);
4438 	inodedep = inodedep_lookup_ip(ip);
4439 	if (DOINGSUJ(dvp)) {
4440 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4441 		    inoreflst);
4442 		KASSERT(jaddref != NULL,
4443 		    ("softdep_setup_mkdir: No addref structure present."));
4444 		KASSERT(jaddref->ja_parent == dp->i_number,
4445 		    ("softdep_setup_mkdir: bad parent %d",
4446 		    jaddref->ja_parent));
4447 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4448 		    if_deps);
4449 	}
4450 	inodedep = inodedep_lookup_ip(dp);
4451 	if (DOINGSUJ(dvp))
4452 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4453 		    &dotdotaddref->ja_ref, if_deps);
4454 	softdep_prelink(ITOV(dp), NULL);
4455 	FREE_LOCK(&lk);
4456 }
4457 
4458 /*
4459  * Called to track nlinkdelta of the inode and parent directories prior to
4460  * unlinking a directory.
4461  */
4462 void
4463 softdep_setup_rmdir(dp, ip)
4464 	struct inode *dp;
4465 	struct inode *ip;
4466 {
4467 	struct vnode *dvp;
4468 
4469 	dvp = ITOV(dp);
4470 	ACQUIRE_LOCK(&lk);
4471 	(void) inodedep_lookup_ip(ip);
4472 	(void) inodedep_lookup_ip(dp);
4473 	softdep_prelink(dvp, ITOV(ip));
4474 	FREE_LOCK(&lk);
4475 }
4476 
4477 /*
4478  * Called to track nlinkdelta of the inode and parent directories prior to
4479  * unlink.
4480  */
4481 void
4482 softdep_setup_unlink(dp, ip)
4483 	struct inode *dp;
4484 	struct inode *ip;
4485 {
4486 	struct vnode *dvp;
4487 
4488 	dvp = ITOV(dp);
4489 	ACQUIRE_LOCK(&lk);
4490 	(void) inodedep_lookup_ip(ip);
4491 	(void) inodedep_lookup_ip(dp);
4492 	softdep_prelink(dvp, ITOV(ip));
4493 	FREE_LOCK(&lk);
4494 }
4495 
4496 /*
4497  * Called to release the journal structures created by a failed non-directory
4498  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4499  */
4500 void
4501 softdep_revert_create(dp, ip)
4502 	struct inode *dp;
4503 	struct inode *ip;
4504 {
4505 	struct inodedep *inodedep;
4506 	struct jaddref *jaddref;
4507 	struct vnode *dvp;
4508 
4509 	dvp = ITOV(dp);
4510 	ACQUIRE_LOCK(&lk);
4511 	inodedep = inodedep_lookup_ip(ip);
4512 	if (DOINGSUJ(dvp)) {
4513 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4514 		    inoreflst);
4515 		KASSERT(jaddref->ja_parent == dp->i_number,
4516 		    ("softdep_revert_create: addref parent mismatch"));
4517 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4518 	}
4519 	FREE_LOCK(&lk);
4520 }
4521 
4522 /*
4523  * Called to release the journal structures created by a failed dotdot link
4524  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4525  */
4526 void
4527 softdep_revert_dotdot_link(dp, ip)
4528 	struct inode *dp;
4529 	struct inode *ip;
4530 {
4531 	struct inodedep *inodedep;
4532 	struct jaddref *jaddref;
4533 	struct vnode *dvp;
4534 
4535 	dvp = ITOV(dp);
4536 	ACQUIRE_LOCK(&lk);
4537 	inodedep = inodedep_lookup_ip(dp);
4538 	if (DOINGSUJ(dvp)) {
4539 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4540 		    inoreflst);
4541 		KASSERT(jaddref->ja_parent == ip->i_number,
4542 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4543 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4544 	}
4545 	FREE_LOCK(&lk);
4546 }
4547 
4548 /*
4549  * Called to release the journal structures created by a failed link
4550  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4551  */
4552 void
4553 softdep_revert_link(dp, ip)
4554 	struct inode *dp;
4555 	struct inode *ip;
4556 {
4557 	struct inodedep *inodedep;
4558 	struct jaddref *jaddref;
4559 	struct vnode *dvp;
4560 
4561 	dvp = ITOV(dp);
4562 	ACQUIRE_LOCK(&lk);
4563 	inodedep = inodedep_lookup_ip(ip);
4564 	if (DOINGSUJ(dvp)) {
4565 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4566 		    inoreflst);
4567 		KASSERT(jaddref->ja_parent == dp->i_number,
4568 		    ("softdep_revert_link: addref parent mismatch"));
4569 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4570 	}
4571 	FREE_LOCK(&lk);
4572 }
4573 
4574 /*
4575  * Called to release the journal structures created by a failed mkdir
4576  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4577  */
4578 void
4579 softdep_revert_mkdir(dp, ip)
4580 	struct inode *dp;
4581 	struct inode *ip;
4582 {
4583 	struct inodedep *inodedep;
4584 	struct jaddref *jaddref;
4585 	struct jaddref *dotaddref;
4586 	struct vnode *dvp;
4587 
4588 	dvp = ITOV(dp);
4589 
4590 	ACQUIRE_LOCK(&lk);
4591 	inodedep = inodedep_lookup_ip(dp);
4592 	if (DOINGSUJ(dvp)) {
4593 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4594 		    inoreflst);
4595 		KASSERT(jaddref->ja_parent == ip->i_number,
4596 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4597 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4598 	}
4599 	inodedep = inodedep_lookup_ip(ip);
4600 	if (DOINGSUJ(dvp)) {
4601 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4602 		    inoreflst);
4603 		KASSERT(jaddref->ja_parent == dp->i_number,
4604 		    ("softdep_revert_mkdir: addref parent mismatch"));
4605 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4606 		    inoreflst, if_deps);
4607 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4608 		KASSERT(dotaddref->ja_parent == ip->i_number,
4609 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4610 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4611 	}
4612 	FREE_LOCK(&lk);
4613 }
4614 
4615 /*
4616  * Called to correct nlinkdelta after a failed rmdir.
4617  */
4618 void
4619 softdep_revert_rmdir(dp, ip)
4620 	struct inode *dp;
4621 	struct inode *ip;
4622 {
4623 
4624 	ACQUIRE_LOCK(&lk);
4625 	(void) inodedep_lookup_ip(ip);
4626 	(void) inodedep_lookup_ip(dp);
4627 	FREE_LOCK(&lk);
4628 }
4629 
4630 /*
4631  * Protecting the freemaps (or bitmaps).
4632  *
4633  * To eliminate the need to execute fsck before mounting a filesystem
4634  * after a power failure, one must (conservatively) guarantee that the
4635  * on-disk copy of the bitmaps never indicate that a live inode or block is
4636  * free.  So, when a block or inode is allocated, the bitmap should be
4637  * updated (on disk) before any new pointers.  When a block or inode is
4638  * freed, the bitmap should not be updated until all pointers have been
4639  * reset.  The latter dependency is handled by the delayed de-allocation
4640  * approach described below for block and inode de-allocation.  The former
4641  * dependency is handled by calling the following procedure when a block or
4642  * inode is allocated. When an inode is allocated an "inodedep" is created
4643  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4644  * Each "inodedep" is also inserted into the hash indexing structure so
4645  * that any additional link additions can be made dependent on the inode
4646  * allocation.
4647  *
4648  * The ufs filesystem maintains a number of free block counts (e.g., per
4649  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4650  * in addition to the bitmaps.  These counts are used to improve efficiency
4651  * during allocation and therefore must be consistent with the bitmaps.
4652  * There is no convenient way to guarantee post-crash consistency of these
4653  * counts with simple update ordering, for two main reasons: (1) The counts
4654  * and bitmaps for a single cylinder group block are not in the same disk
4655  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4656  * be written and the other not.  (2) Some of the counts are located in the
4657  * superblock rather than the cylinder group block. So, we focus our soft
4658  * updates implementation on protecting the bitmaps. When mounting a
4659  * filesystem, we recompute the auxiliary counts from the bitmaps.
4660  */
4661 
4662 /*
4663  * Called just after updating the cylinder group block to allocate an inode.
4664  */
4665 void
4666 softdep_setup_inomapdep(bp, ip, newinum, mode)
4667 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4668 	struct inode *ip;	/* inode related to allocation */
4669 	ino_t newinum;		/* new inode number being allocated */
4670 	int mode;
4671 {
4672 	struct inodedep *inodedep;
4673 	struct bmsafemap *bmsafemap;
4674 	struct jaddref *jaddref;
4675 	struct mount *mp;
4676 	struct fs *fs;
4677 
4678 	mp = UFSTOVFS(ip->i_ump);
4679 	fs = ip->i_ump->um_fs;
4680 	jaddref = NULL;
4681 
4682 	/*
4683 	 * Allocate the journal reference add structure so that the bitmap
4684 	 * can be dependent on it.
4685 	 */
4686 	if (MOUNTEDSUJ(mp)) {
4687 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4688 		jaddref->ja_state |= NEWBLOCK;
4689 	}
4690 
4691 	/*
4692 	 * Create a dependency for the newly allocated inode.
4693 	 * Panic if it already exists as something is seriously wrong.
4694 	 * Otherwise add it to the dependency list for the buffer holding
4695 	 * the cylinder group map from which it was allocated.
4696 	 */
4697 	ACQUIRE_LOCK(&lk);
4698 	if ((inodedep_lookup(mp, newinum, DEPALLOC|NODELAY, &inodedep)))
4699 		panic("softdep_setup_inomapdep: dependency %p for new"
4700 		    "inode already exists", inodedep);
4701 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum));
4702 	if (jaddref) {
4703 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4704 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4705 		    if_deps);
4706 	} else {
4707 		inodedep->id_state |= ONDEPLIST;
4708 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4709 	}
4710 	inodedep->id_bmsafemap = bmsafemap;
4711 	inodedep->id_state &= ~DEPCOMPLETE;
4712 	FREE_LOCK(&lk);
4713 }
4714 
4715 /*
4716  * Called just after updating the cylinder group block to
4717  * allocate block or fragment.
4718  */
4719 void
4720 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4721 	struct buf *bp;		/* buffer for cylgroup block with block map */
4722 	struct mount *mp;	/* filesystem doing allocation */
4723 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4724 	int frags;		/* Number of fragments. */
4725 	int oldfrags;		/* Previous number of fragments for extend. */
4726 {
4727 	struct newblk *newblk;
4728 	struct bmsafemap *bmsafemap;
4729 	struct jnewblk *jnewblk;
4730 	struct fs *fs;
4731 
4732 	fs = VFSTOUFS(mp)->um_fs;
4733 	jnewblk = NULL;
4734 	/*
4735 	 * Create a dependency for the newly allocated block.
4736 	 * Add it to the dependency list for the buffer holding
4737 	 * the cylinder group map from which it was allocated.
4738 	 */
4739 	if (MOUNTEDSUJ(mp)) {
4740 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4741 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4742 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4743 		jnewblk->jn_state = ATTACHED;
4744 		jnewblk->jn_blkno = newblkno;
4745 		jnewblk->jn_frags = frags;
4746 		jnewblk->jn_oldfrags = oldfrags;
4747 #ifdef SUJ_DEBUG
4748 		{
4749 			struct cg *cgp;
4750 			uint8_t *blksfree;
4751 			long bno;
4752 			int i;
4753 
4754 			cgp = (struct cg *)bp->b_data;
4755 			blksfree = cg_blksfree(cgp);
4756 			bno = dtogd(fs, jnewblk->jn_blkno);
4757 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4758 			    i++) {
4759 				if (isset(blksfree, bno + i))
4760 					panic("softdep_setup_blkmapdep: "
4761 					    "free fragment %d from %d-%d "
4762 					    "state 0x%X dep %p", i,
4763 					    jnewblk->jn_oldfrags,
4764 					    jnewblk->jn_frags,
4765 					    jnewblk->jn_state,
4766 					    jnewblk->jn_dep);
4767 			}
4768 		}
4769 #endif
4770 	}
4771 	ACQUIRE_LOCK(&lk);
4772 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4773 		panic("softdep_setup_blkmapdep: found block");
4774 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4775 	    dtog(fs, newblkno));
4776 	if (jnewblk) {
4777 		jnewblk->jn_dep = (struct worklist *)newblk;
4778 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4779 	} else {
4780 		newblk->nb_state |= ONDEPLIST;
4781 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4782 	}
4783 	newblk->nb_bmsafemap = bmsafemap;
4784 	newblk->nb_jnewblk = jnewblk;
4785 	FREE_LOCK(&lk);
4786 }
4787 
4788 #define	BMSAFEMAP_HASH(fs, cg) \
4789       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4790 
4791 static int
4792 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4793 	struct bmsafemap_hashhead *bmsafemaphd;
4794 	struct mount *mp;
4795 	int cg;
4796 	struct bmsafemap **bmsafemapp;
4797 {
4798 	struct bmsafemap *bmsafemap;
4799 
4800 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4801 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4802 			break;
4803 	if (bmsafemap) {
4804 		*bmsafemapp = bmsafemap;
4805 		return (1);
4806 	}
4807 	*bmsafemapp = NULL;
4808 
4809 	return (0);
4810 }
4811 
4812 /*
4813  * Find the bmsafemap associated with a cylinder group buffer.
4814  * If none exists, create one. The buffer must be locked when
4815  * this routine is called and this routine must be called with
4816  * splbio interrupts blocked.
4817  */
4818 static struct bmsafemap *
4819 bmsafemap_lookup(mp, bp, cg)
4820 	struct mount *mp;
4821 	struct buf *bp;
4822 	int cg;
4823 {
4824 	struct bmsafemap_hashhead *bmsafemaphd;
4825 	struct bmsafemap *bmsafemap, *collision;
4826 	struct worklist *wk;
4827 	struct fs *fs;
4828 
4829 	mtx_assert(&lk, MA_OWNED);
4830 	if (bp)
4831 		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4832 			if (wk->wk_type == D_BMSAFEMAP)
4833 				return (WK_BMSAFEMAP(wk));
4834 	fs = VFSTOUFS(mp)->um_fs;
4835 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4836 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1)
4837 		return (bmsafemap);
4838 	FREE_LOCK(&lk);
4839 	bmsafemap = malloc(sizeof(struct bmsafemap),
4840 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4841 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4842 	bmsafemap->sm_buf = bp;
4843 	LIST_INIT(&bmsafemap->sm_inodedephd);
4844 	LIST_INIT(&bmsafemap->sm_inodedepwr);
4845 	LIST_INIT(&bmsafemap->sm_newblkhd);
4846 	LIST_INIT(&bmsafemap->sm_newblkwr);
4847 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4848 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4849 	LIST_INIT(&bmsafemap->sm_freehd);
4850 	LIST_INIT(&bmsafemap->sm_freewr);
4851 	ACQUIRE_LOCK(&lk);
4852 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4853 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4854 		return (collision);
4855 	}
4856 	bmsafemap->sm_cg = cg;
4857 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4858 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
4859 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4860 	return (bmsafemap);
4861 }
4862 
4863 /*
4864  * Direct block allocation dependencies.
4865  *
4866  * When a new block is allocated, the corresponding disk locations must be
4867  * initialized (with zeros or new data) before the on-disk inode points to
4868  * them.  Also, the freemap from which the block was allocated must be
4869  * updated (on disk) before the inode's pointer. These two dependencies are
4870  * independent of each other and are needed for all file blocks and indirect
4871  * blocks that are pointed to directly by the inode.  Just before the
4872  * "in-core" version of the inode is updated with a newly allocated block
4873  * number, a procedure (below) is called to setup allocation dependency
4874  * structures.  These structures are removed when the corresponding
4875  * dependencies are satisfied or when the block allocation becomes obsolete
4876  * (i.e., the file is deleted, the block is de-allocated, or the block is a
4877  * fragment that gets upgraded).  All of these cases are handled in
4878  * procedures described later.
4879  *
4880  * When a file extension causes a fragment to be upgraded, either to a larger
4881  * fragment or to a full block, the on-disk location may change (if the
4882  * previous fragment could not simply be extended). In this case, the old
4883  * fragment must be de-allocated, but not until after the inode's pointer has
4884  * been updated. In most cases, this is handled by later procedures, which
4885  * will construct a "freefrag" structure to be added to the workitem queue
4886  * when the inode update is complete (or obsolete).  The main exception to
4887  * this is when an allocation occurs while a pending allocation dependency
4888  * (for the same block pointer) remains.  This case is handled in the main
4889  * allocation dependency setup procedure by immediately freeing the
4890  * unreferenced fragments.
4891  */
4892 void
4893 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4894 	struct inode *ip;	/* inode to which block is being added */
4895 	ufs_lbn_t off;		/* block pointer within inode */
4896 	ufs2_daddr_t newblkno;	/* disk block number being added */
4897 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4898 	long newsize;		/* size of new block */
4899 	long oldsize;		/* size of new block */
4900 	struct buf *bp;		/* bp for allocated block */
4901 {
4902 	struct allocdirect *adp, *oldadp;
4903 	struct allocdirectlst *adphead;
4904 	struct freefrag *freefrag;
4905 	struct inodedep *inodedep;
4906 	struct pagedep *pagedep;
4907 	struct jnewblk *jnewblk;
4908 	struct newblk *newblk;
4909 	struct mount *mp;
4910 	ufs_lbn_t lbn;
4911 
4912 	lbn = bp->b_lblkno;
4913 	mp = UFSTOVFS(ip->i_ump);
4914 	if (oldblkno && oldblkno != newblkno)
4915 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4916 	else
4917 		freefrag = NULL;
4918 
4919 	ACQUIRE_LOCK(&lk);
4920 	if (off >= NDADDR) {
4921 		if (lbn > 0)
4922 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4923 			    lbn, off);
4924 		/* allocating an indirect block */
4925 		if (oldblkno != 0)
4926 			panic("softdep_setup_allocdirect: non-zero indir");
4927 	} else {
4928 		if (off != lbn)
4929 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4930 			    lbn, off);
4931 		/*
4932 		 * Allocating a direct block.
4933 		 *
4934 		 * If we are allocating a directory block, then we must
4935 		 * allocate an associated pagedep to track additions and
4936 		 * deletions.
4937 		 */
4938 		if ((ip->i_mode & IFMT) == IFDIR)
4939 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
4940 			    &pagedep);
4941 	}
4942 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4943 		panic("softdep_setup_allocdirect: lost block");
4944 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4945 	    ("softdep_setup_allocdirect: newblk already initialized"));
4946 	/*
4947 	 * Convert the newblk to an allocdirect.
4948 	 */
4949 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4950 	adp = (struct allocdirect *)newblk;
4951 	newblk->nb_freefrag = freefrag;
4952 	adp->ad_offset = off;
4953 	adp->ad_oldblkno = oldblkno;
4954 	adp->ad_newsize = newsize;
4955 	adp->ad_oldsize = oldsize;
4956 
4957 	/*
4958 	 * Finish initializing the journal.
4959 	 */
4960 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4961 		jnewblk->jn_ino = ip->i_number;
4962 		jnewblk->jn_lbn = lbn;
4963 		add_to_journal(&jnewblk->jn_list);
4964 	}
4965 	if (freefrag && freefrag->ff_jdep != NULL &&
4966 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
4967 		add_to_journal(freefrag->ff_jdep);
4968 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4969 	adp->ad_inodedep = inodedep;
4970 
4971 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4972 	/*
4973 	 * The list of allocdirects must be kept in sorted and ascending
4974 	 * order so that the rollback routines can quickly determine the
4975 	 * first uncommitted block (the size of the file stored on disk
4976 	 * ends at the end of the lowest committed fragment, or if there
4977 	 * are no fragments, at the end of the highest committed block).
4978 	 * Since files generally grow, the typical case is that the new
4979 	 * block is to be added at the end of the list. We speed this
4980 	 * special case by checking against the last allocdirect in the
4981 	 * list before laboriously traversing the list looking for the
4982 	 * insertion point.
4983 	 */
4984 	adphead = &inodedep->id_newinoupdt;
4985 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4986 	if (oldadp == NULL || oldadp->ad_offset <= off) {
4987 		/* insert at end of list */
4988 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4989 		if (oldadp != NULL && oldadp->ad_offset == off)
4990 			allocdirect_merge(adphead, adp, oldadp);
4991 		FREE_LOCK(&lk);
4992 		return;
4993 	}
4994 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4995 		if (oldadp->ad_offset >= off)
4996 			break;
4997 	}
4998 	if (oldadp == NULL)
4999 		panic("softdep_setup_allocdirect: lost entry");
5000 	/* insert in middle of list */
5001 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5002 	if (oldadp->ad_offset == off)
5003 		allocdirect_merge(adphead, adp, oldadp);
5004 
5005 	FREE_LOCK(&lk);
5006 }
5007 
5008 /*
5009  * Merge a newer and older journal record to be stored either in a
5010  * newblock or freefrag.  This handles aggregating journal records for
5011  * fragment allocation into a second record as well as replacing a
5012  * journal free with an aborted journal allocation.  A segment for the
5013  * oldest record will be placed on wkhd if it has been written.  If not
5014  * the segment for the newer record will suffice.
5015  */
5016 static struct worklist *
5017 jnewblk_merge(new, old, wkhd)
5018 	struct worklist *new;
5019 	struct worklist *old;
5020 	struct workhead *wkhd;
5021 {
5022 	struct jnewblk *njnewblk;
5023 	struct jnewblk *jnewblk;
5024 
5025 	/* Handle NULLs to simplify callers. */
5026 	if (new == NULL)
5027 		return (old);
5028 	if (old == NULL)
5029 		return (new);
5030 	/* Replace a jfreefrag with a jnewblk. */
5031 	if (new->wk_type == D_JFREEFRAG) {
5032 		cancel_jfreefrag(WK_JFREEFRAG(new));
5033 		return (old);
5034 	}
5035 	/*
5036 	 * Handle merging of two jnewblk records that describe
5037 	 * different sets of fragments in the same block.
5038 	 */
5039 	jnewblk = WK_JNEWBLK(old);
5040 	njnewblk = WK_JNEWBLK(new);
5041 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5042 		panic("jnewblk_merge: Merging disparate blocks.");
5043 	/*
5044 	 * The record may be rolled back in the cg.
5045 	 */
5046 	if (jnewblk->jn_state & UNDONE) {
5047 		jnewblk->jn_state &= ~UNDONE;
5048 		njnewblk->jn_state |= UNDONE;
5049 		njnewblk->jn_state &= ~ATTACHED;
5050 	}
5051 	/*
5052 	 * We modify the newer addref and free the older so that if neither
5053 	 * has been written the most up-to-date copy will be on disk.  If
5054 	 * both have been written but rolled back we only temporarily need
5055 	 * one of them to fix the bits when the cg write completes.
5056 	 */
5057 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5058 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5059 	cancel_jnewblk(jnewblk, wkhd);
5060 	WORKLIST_REMOVE(&jnewblk->jn_list);
5061 	free_jnewblk(jnewblk);
5062 	return (new);
5063 }
5064 
5065 /*
5066  * Replace an old allocdirect dependency with a newer one.
5067  * This routine must be called with splbio interrupts blocked.
5068  */
5069 static void
5070 allocdirect_merge(adphead, newadp, oldadp)
5071 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5072 	struct allocdirect *newadp;	/* allocdirect being added */
5073 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5074 {
5075 	struct worklist *wk;
5076 	struct freefrag *freefrag;
5077 
5078 	freefrag = NULL;
5079 	mtx_assert(&lk, MA_OWNED);
5080 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5081 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5082 	    newadp->ad_offset >= NDADDR)
5083 		panic("%s %jd != new %jd || old size %ld != new %ld",
5084 		    "allocdirect_merge: old blkno",
5085 		    (intmax_t)newadp->ad_oldblkno,
5086 		    (intmax_t)oldadp->ad_newblkno,
5087 		    newadp->ad_oldsize, oldadp->ad_newsize);
5088 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5089 	newadp->ad_oldsize = oldadp->ad_oldsize;
5090 	/*
5091 	 * If the old dependency had a fragment to free or had never
5092 	 * previously had a block allocated, then the new dependency
5093 	 * can immediately post its freefrag and adopt the old freefrag.
5094 	 * This action is done by swapping the freefrag dependencies.
5095 	 * The new dependency gains the old one's freefrag, and the
5096 	 * old one gets the new one and then immediately puts it on
5097 	 * the worklist when it is freed by free_newblk. It is
5098 	 * not possible to do this swap when the old dependency had a
5099 	 * non-zero size but no previous fragment to free. This condition
5100 	 * arises when the new block is an extension of the old block.
5101 	 * Here, the first part of the fragment allocated to the new
5102 	 * dependency is part of the block currently claimed on disk by
5103 	 * the old dependency, so cannot legitimately be freed until the
5104 	 * conditions for the new dependency are fulfilled.
5105 	 */
5106 	freefrag = newadp->ad_freefrag;
5107 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5108 		newadp->ad_freefrag = oldadp->ad_freefrag;
5109 		oldadp->ad_freefrag = freefrag;
5110 	}
5111 	/*
5112 	 * If we are tracking a new directory-block allocation,
5113 	 * move it from the old allocdirect to the new allocdirect.
5114 	 */
5115 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5116 		WORKLIST_REMOVE(wk);
5117 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5118 			panic("allocdirect_merge: extra newdirblk");
5119 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5120 	}
5121 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5122 	/*
5123 	 * We need to move any journal dependencies over to the freefrag
5124 	 * that releases this block if it exists.  Otherwise we are
5125 	 * extending an existing block and we'll wait until that is
5126 	 * complete to release the journal space and extend the
5127 	 * new journal to cover this old space as well.
5128 	 */
5129 	if (freefrag == NULL) {
5130 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5131 			panic("allocdirect_merge: %jd != %jd",
5132 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5133 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5134 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5135 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5136 		    &newadp->ad_block.nb_jwork);
5137 		oldadp->ad_block.nb_jnewblk = NULL;
5138 		cancel_newblk(&oldadp->ad_block, NULL,
5139 		    &newadp->ad_block.nb_jwork);
5140 	} else {
5141 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5142 		    &freefrag->ff_list, &freefrag->ff_jwork);
5143 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5144 		    &freefrag->ff_jwork);
5145 	}
5146 	free_newblk(&oldadp->ad_block);
5147 }
5148 
5149 /*
5150  * Allocate a jfreefrag structure to journal a single block free.
5151  */
5152 static struct jfreefrag *
5153 newjfreefrag(freefrag, ip, blkno, size, lbn)
5154 	struct freefrag *freefrag;
5155 	struct inode *ip;
5156 	ufs2_daddr_t blkno;
5157 	long size;
5158 	ufs_lbn_t lbn;
5159 {
5160 	struct jfreefrag *jfreefrag;
5161 	struct fs *fs;
5162 
5163 	fs = ip->i_fs;
5164 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5165 	    M_SOFTDEP_FLAGS);
5166 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5167 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5168 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5169 	jfreefrag->fr_ino = ip->i_number;
5170 	jfreefrag->fr_lbn = lbn;
5171 	jfreefrag->fr_blkno = blkno;
5172 	jfreefrag->fr_frags = numfrags(fs, size);
5173 	jfreefrag->fr_freefrag = freefrag;
5174 
5175 	return (jfreefrag);
5176 }
5177 
5178 /*
5179  * Allocate a new freefrag structure.
5180  */
5181 static struct freefrag *
5182 newfreefrag(ip, blkno, size, lbn)
5183 	struct inode *ip;
5184 	ufs2_daddr_t blkno;
5185 	long size;
5186 	ufs_lbn_t lbn;
5187 {
5188 	struct freefrag *freefrag;
5189 	struct fs *fs;
5190 
5191 	fs = ip->i_fs;
5192 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5193 		panic("newfreefrag: frag size");
5194 	freefrag = malloc(sizeof(struct freefrag),
5195 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5196 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5197 	freefrag->ff_state = ATTACHED;
5198 	LIST_INIT(&freefrag->ff_jwork);
5199 	freefrag->ff_inum = ip->i_number;
5200 	freefrag->ff_vtype = ITOV(ip)->v_type;
5201 	freefrag->ff_blkno = blkno;
5202 	freefrag->ff_fragsize = size;
5203 
5204 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5205 		freefrag->ff_jdep = (struct worklist *)
5206 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5207 	} else {
5208 		freefrag->ff_state |= DEPCOMPLETE;
5209 		freefrag->ff_jdep = NULL;
5210 	}
5211 
5212 	return (freefrag);
5213 }
5214 
5215 /*
5216  * This workitem de-allocates fragments that were replaced during
5217  * file block allocation.
5218  */
5219 static void
5220 handle_workitem_freefrag(freefrag)
5221 	struct freefrag *freefrag;
5222 {
5223 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5224 	struct workhead wkhd;
5225 
5226 	/*
5227 	 * It would be illegal to add new completion items to the
5228 	 * freefrag after it was schedule to be done so it must be
5229 	 * safe to modify the list head here.
5230 	 */
5231 	LIST_INIT(&wkhd);
5232 	ACQUIRE_LOCK(&lk);
5233 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5234 	/*
5235 	 * If the journal has not been written we must cancel it here.
5236 	 */
5237 	if (freefrag->ff_jdep) {
5238 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5239 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5240 			    freefrag->ff_jdep->wk_type);
5241 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5242 	}
5243 	FREE_LOCK(&lk);
5244 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5245 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5246 	ACQUIRE_LOCK(&lk);
5247 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5248 	FREE_LOCK(&lk);
5249 }
5250 
5251 /*
5252  * Set up a dependency structure for an external attributes data block.
5253  * This routine follows much of the structure of softdep_setup_allocdirect.
5254  * See the description of softdep_setup_allocdirect above for details.
5255  */
5256 void
5257 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5258 	struct inode *ip;
5259 	ufs_lbn_t off;
5260 	ufs2_daddr_t newblkno;
5261 	ufs2_daddr_t oldblkno;
5262 	long newsize;
5263 	long oldsize;
5264 	struct buf *bp;
5265 {
5266 	struct allocdirect *adp, *oldadp;
5267 	struct allocdirectlst *adphead;
5268 	struct freefrag *freefrag;
5269 	struct inodedep *inodedep;
5270 	struct jnewblk *jnewblk;
5271 	struct newblk *newblk;
5272 	struct mount *mp;
5273 	ufs_lbn_t lbn;
5274 
5275 	if (off >= NXADDR)
5276 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5277 		    (long long)off);
5278 
5279 	lbn = bp->b_lblkno;
5280 	mp = UFSTOVFS(ip->i_ump);
5281 	if (oldblkno && oldblkno != newblkno)
5282 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5283 	else
5284 		freefrag = NULL;
5285 
5286 	ACQUIRE_LOCK(&lk);
5287 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5288 		panic("softdep_setup_allocext: lost block");
5289 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5290 	    ("softdep_setup_allocext: newblk already initialized"));
5291 	/*
5292 	 * Convert the newblk to an allocdirect.
5293 	 */
5294 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5295 	adp = (struct allocdirect *)newblk;
5296 	newblk->nb_freefrag = freefrag;
5297 	adp->ad_offset = off;
5298 	adp->ad_oldblkno = oldblkno;
5299 	adp->ad_newsize = newsize;
5300 	adp->ad_oldsize = oldsize;
5301 	adp->ad_state |=  EXTDATA;
5302 
5303 	/*
5304 	 * Finish initializing the journal.
5305 	 */
5306 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5307 		jnewblk->jn_ino = ip->i_number;
5308 		jnewblk->jn_lbn = lbn;
5309 		add_to_journal(&jnewblk->jn_list);
5310 	}
5311 	if (freefrag && freefrag->ff_jdep != NULL &&
5312 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5313 		add_to_journal(freefrag->ff_jdep);
5314 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5315 	adp->ad_inodedep = inodedep;
5316 
5317 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5318 	/*
5319 	 * The list of allocdirects must be kept in sorted and ascending
5320 	 * order so that the rollback routines can quickly determine the
5321 	 * first uncommitted block (the size of the file stored on disk
5322 	 * ends at the end of the lowest committed fragment, or if there
5323 	 * are no fragments, at the end of the highest committed block).
5324 	 * Since files generally grow, the typical case is that the new
5325 	 * block is to be added at the end of the list. We speed this
5326 	 * special case by checking against the last allocdirect in the
5327 	 * list before laboriously traversing the list looking for the
5328 	 * insertion point.
5329 	 */
5330 	adphead = &inodedep->id_newextupdt;
5331 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5332 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5333 		/* insert at end of list */
5334 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5335 		if (oldadp != NULL && oldadp->ad_offset == off)
5336 			allocdirect_merge(adphead, adp, oldadp);
5337 		FREE_LOCK(&lk);
5338 		return;
5339 	}
5340 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5341 		if (oldadp->ad_offset >= off)
5342 			break;
5343 	}
5344 	if (oldadp == NULL)
5345 		panic("softdep_setup_allocext: lost entry");
5346 	/* insert in middle of list */
5347 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5348 	if (oldadp->ad_offset == off)
5349 		allocdirect_merge(adphead, adp, oldadp);
5350 	FREE_LOCK(&lk);
5351 }
5352 
5353 /*
5354  * Indirect block allocation dependencies.
5355  *
5356  * The same dependencies that exist for a direct block also exist when
5357  * a new block is allocated and pointed to by an entry in a block of
5358  * indirect pointers. The undo/redo states described above are also
5359  * used here. Because an indirect block contains many pointers that
5360  * may have dependencies, a second copy of the entire in-memory indirect
5361  * block is kept. The buffer cache copy is always completely up-to-date.
5362  * The second copy, which is used only as a source for disk writes,
5363  * contains only the safe pointers (i.e., those that have no remaining
5364  * update dependencies). The second copy is freed when all pointers
5365  * are safe. The cache is not allowed to replace indirect blocks with
5366  * pending update dependencies. If a buffer containing an indirect
5367  * block with dependencies is written, these routines will mark it
5368  * dirty again. It can only be successfully written once all the
5369  * dependencies are removed. The ffs_fsync routine in conjunction with
5370  * softdep_sync_metadata work together to get all the dependencies
5371  * removed so that a file can be successfully written to disk. Three
5372  * procedures are used when setting up indirect block pointer
5373  * dependencies. The division is necessary because of the organization
5374  * of the "balloc" routine and because of the distinction between file
5375  * pages and file metadata blocks.
5376  */
5377 
5378 /*
5379  * Allocate a new allocindir structure.
5380  */
5381 static struct allocindir *
5382 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5383 	struct inode *ip;	/* inode for file being extended */
5384 	int ptrno;		/* offset of pointer in indirect block */
5385 	ufs2_daddr_t newblkno;	/* disk block number being added */
5386 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5387 	ufs_lbn_t lbn;
5388 {
5389 	struct newblk *newblk;
5390 	struct allocindir *aip;
5391 	struct freefrag *freefrag;
5392 	struct jnewblk *jnewblk;
5393 
5394 	if (oldblkno)
5395 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5396 	else
5397 		freefrag = NULL;
5398 	ACQUIRE_LOCK(&lk);
5399 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5400 		panic("new_allocindir: lost block");
5401 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5402 	    ("newallocindir: newblk already initialized"));
5403 	newblk->nb_list.wk_type = D_ALLOCINDIR;
5404 	newblk->nb_freefrag = freefrag;
5405 	aip = (struct allocindir *)newblk;
5406 	aip->ai_offset = ptrno;
5407 	aip->ai_oldblkno = oldblkno;
5408 	aip->ai_lbn = lbn;
5409 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5410 		jnewblk->jn_ino = ip->i_number;
5411 		jnewblk->jn_lbn = lbn;
5412 		add_to_journal(&jnewblk->jn_list);
5413 	}
5414 	if (freefrag && freefrag->ff_jdep != NULL &&
5415 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5416 		add_to_journal(freefrag->ff_jdep);
5417 	return (aip);
5418 }
5419 
5420 /*
5421  * Called just before setting an indirect block pointer
5422  * to a newly allocated file page.
5423  */
5424 void
5425 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5426 	struct inode *ip;	/* inode for file being extended */
5427 	ufs_lbn_t lbn;		/* allocated block number within file */
5428 	struct buf *bp;		/* buffer with indirect blk referencing page */
5429 	int ptrno;		/* offset of pointer in indirect block */
5430 	ufs2_daddr_t newblkno;	/* disk block number being added */
5431 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5432 	struct buf *nbp;	/* buffer holding allocated page */
5433 {
5434 	struct inodedep *inodedep;
5435 	struct freefrag *freefrag;
5436 	struct allocindir *aip;
5437 	struct pagedep *pagedep;
5438 	struct mount *mp;
5439 
5440 	if (lbn != nbp->b_lblkno)
5441 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5442 		    lbn, bp->b_lblkno);
5443 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5444 	mp = UFSTOVFS(ip->i_ump);
5445 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5446 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5447 	/*
5448 	 * If we are allocating a directory page, then we must
5449 	 * allocate an associated pagedep to track additions and
5450 	 * deletions.
5451 	 */
5452 	if ((ip->i_mode & IFMT) == IFDIR)
5453 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5454 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5455 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5456 	FREE_LOCK(&lk);
5457 	if (freefrag)
5458 		handle_workitem_freefrag(freefrag);
5459 }
5460 
5461 /*
5462  * Called just before setting an indirect block pointer to a
5463  * newly allocated indirect block.
5464  */
5465 void
5466 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5467 	struct buf *nbp;	/* newly allocated indirect block */
5468 	struct inode *ip;	/* inode for file being extended */
5469 	struct buf *bp;		/* indirect block referencing allocated block */
5470 	int ptrno;		/* offset of pointer in indirect block */
5471 	ufs2_daddr_t newblkno;	/* disk block number being added */
5472 {
5473 	struct inodedep *inodedep;
5474 	struct allocindir *aip;
5475 	ufs_lbn_t lbn;
5476 
5477 	lbn = nbp->b_lblkno;
5478 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5479 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5480 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
5481 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5482 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5483 		panic("softdep_setup_allocindir_meta: Block already existed");
5484 	FREE_LOCK(&lk);
5485 }
5486 
5487 static void
5488 indirdep_complete(indirdep)
5489 	struct indirdep *indirdep;
5490 {
5491 	struct allocindir *aip;
5492 
5493 	LIST_REMOVE(indirdep, ir_next);
5494 	indirdep->ir_state |= DEPCOMPLETE;
5495 
5496 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5497 		LIST_REMOVE(aip, ai_next);
5498 		free_newblk(&aip->ai_block);
5499 	}
5500 	/*
5501 	 * If this indirdep is not attached to a buf it was simply waiting
5502 	 * on completion to clear completehd.  free_indirdep() asserts
5503 	 * that nothing is dangling.
5504 	 */
5505 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5506 		free_indirdep(indirdep);
5507 }
5508 
5509 static struct indirdep *
5510 indirdep_lookup(mp, ip, bp)
5511 	struct mount *mp;
5512 	struct inode *ip;
5513 	struct buf *bp;
5514 {
5515 	struct indirdep *indirdep, *newindirdep;
5516 	struct newblk *newblk;
5517 	struct worklist *wk;
5518 	struct fs *fs;
5519 	ufs2_daddr_t blkno;
5520 
5521 	mtx_assert(&lk, MA_OWNED);
5522 	indirdep = NULL;
5523 	newindirdep = NULL;
5524 	fs = ip->i_fs;
5525 	for (;;) {
5526 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5527 			if (wk->wk_type != D_INDIRDEP)
5528 				continue;
5529 			indirdep = WK_INDIRDEP(wk);
5530 			break;
5531 		}
5532 		/* Found on the buffer worklist, no new structure to free. */
5533 		if (indirdep != NULL && newindirdep == NULL)
5534 			return (indirdep);
5535 		if (indirdep != NULL && newindirdep != NULL)
5536 			panic("indirdep_lookup: simultaneous create");
5537 		/* None found on the buffer and a new structure is ready. */
5538 		if (indirdep == NULL && newindirdep != NULL)
5539 			break;
5540 		/* None found and no new structure available. */
5541 		FREE_LOCK(&lk);
5542 		newindirdep = malloc(sizeof(struct indirdep),
5543 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5544 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5545 		newindirdep->ir_state = ATTACHED;
5546 		if (ip->i_ump->um_fstype == UFS1)
5547 			newindirdep->ir_state |= UFS1FMT;
5548 		TAILQ_INIT(&newindirdep->ir_trunc);
5549 		newindirdep->ir_saveddata = NULL;
5550 		LIST_INIT(&newindirdep->ir_deplisthd);
5551 		LIST_INIT(&newindirdep->ir_donehd);
5552 		LIST_INIT(&newindirdep->ir_writehd);
5553 		LIST_INIT(&newindirdep->ir_completehd);
5554 		if (bp->b_blkno == bp->b_lblkno) {
5555 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5556 			    NULL, NULL);
5557 			bp->b_blkno = blkno;
5558 		}
5559 		newindirdep->ir_freeblks = NULL;
5560 		newindirdep->ir_savebp =
5561 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5562 		newindirdep->ir_bp = bp;
5563 		BUF_KERNPROC(newindirdep->ir_savebp);
5564 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5565 		ACQUIRE_LOCK(&lk);
5566 	}
5567 	indirdep = newindirdep;
5568 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5569 	/*
5570 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5571 	 * that we don't free dependencies until the pointers are valid.
5572 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5573 	 * than using the hash.
5574 	 */
5575 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5576 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5577 	else
5578 		indirdep->ir_state |= DEPCOMPLETE;
5579 	return (indirdep);
5580 }
5581 
5582 /*
5583  * Called to finish the allocation of the "aip" allocated
5584  * by one of the two routines above.
5585  */
5586 static struct freefrag *
5587 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5588 	struct buf *bp;		/* in-memory copy of the indirect block */
5589 	struct inode *ip;	/* inode for file being extended */
5590 	struct inodedep *inodedep; /* Inodedep for ip */
5591 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5592 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5593 {
5594 	struct fs *fs;
5595 	struct indirdep *indirdep;
5596 	struct allocindir *oldaip;
5597 	struct freefrag *freefrag;
5598 	struct mount *mp;
5599 
5600 	mtx_assert(&lk, MA_OWNED);
5601 	mp = UFSTOVFS(ip->i_ump);
5602 	fs = ip->i_fs;
5603 	if (bp->b_lblkno >= 0)
5604 		panic("setup_allocindir_phase2: not indir blk");
5605 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5606 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5607 	indirdep = indirdep_lookup(mp, ip, bp);
5608 	KASSERT(indirdep->ir_savebp != NULL,
5609 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5610 	aip->ai_indirdep = indirdep;
5611 	/*
5612 	 * Check for an unwritten dependency for this indirect offset.  If
5613 	 * there is, merge the old dependency into the new one.  This happens
5614 	 * as a result of reallocblk only.
5615 	 */
5616 	freefrag = NULL;
5617 	if (aip->ai_oldblkno != 0) {
5618 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5619 			if (oldaip->ai_offset == aip->ai_offset) {
5620 				freefrag = allocindir_merge(aip, oldaip);
5621 				goto done;
5622 			}
5623 		}
5624 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5625 			if (oldaip->ai_offset == aip->ai_offset) {
5626 				freefrag = allocindir_merge(aip, oldaip);
5627 				goto done;
5628 			}
5629 		}
5630 	}
5631 done:
5632 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5633 	return (freefrag);
5634 }
5635 
5636 /*
5637  * Merge two allocindirs which refer to the same block.  Move newblock
5638  * dependencies and setup the freefrags appropriately.
5639  */
5640 static struct freefrag *
5641 allocindir_merge(aip, oldaip)
5642 	struct allocindir *aip;
5643 	struct allocindir *oldaip;
5644 {
5645 	struct freefrag *freefrag;
5646 	struct worklist *wk;
5647 
5648 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5649 		panic("allocindir_merge: blkno");
5650 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5651 	freefrag = aip->ai_freefrag;
5652 	aip->ai_freefrag = oldaip->ai_freefrag;
5653 	oldaip->ai_freefrag = NULL;
5654 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5655 	/*
5656 	 * If we are tracking a new directory-block allocation,
5657 	 * move it from the old allocindir to the new allocindir.
5658 	 */
5659 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5660 		WORKLIST_REMOVE(wk);
5661 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5662 			panic("allocindir_merge: extra newdirblk");
5663 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5664 	}
5665 	/*
5666 	 * We can skip journaling for this freefrag and just complete
5667 	 * any pending journal work for the allocindir that is being
5668 	 * removed after the freefrag completes.
5669 	 */
5670 	if (freefrag->ff_jdep)
5671 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5672 	LIST_REMOVE(oldaip, ai_next);
5673 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5674 	    &freefrag->ff_list, &freefrag->ff_jwork);
5675 	free_newblk(&oldaip->ai_block);
5676 
5677 	return (freefrag);
5678 }
5679 
5680 static inline void
5681 setup_freedirect(freeblks, ip, i, needj)
5682 	struct freeblks *freeblks;
5683 	struct inode *ip;
5684 	int i;
5685 	int needj;
5686 {
5687 	ufs2_daddr_t blkno;
5688 	int frags;
5689 
5690 	blkno = DIP(ip, i_db[i]);
5691 	if (blkno == 0)
5692 		return;
5693 	DIP_SET(ip, i_db[i], 0);
5694 	frags = sblksize(ip->i_fs, ip->i_size, i);
5695 	frags = numfrags(ip->i_fs, frags);
5696 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5697 }
5698 
5699 static inline void
5700 setup_freeext(freeblks, ip, i, needj)
5701 	struct freeblks *freeblks;
5702 	struct inode *ip;
5703 	int i;
5704 	int needj;
5705 {
5706 	ufs2_daddr_t blkno;
5707 	int frags;
5708 
5709 	blkno = ip->i_din2->di_extb[i];
5710 	if (blkno == 0)
5711 		return;
5712 	ip->i_din2->di_extb[i] = 0;
5713 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5714 	frags = numfrags(ip->i_fs, frags);
5715 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5716 }
5717 
5718 static inline void
5719 setup_freeindir(freeblks, ip, i, lbn, needj)
5720 	struct freeblks *freeblks;
5721 	struct inode *ip;
5722 	int i;
5723 	ufs_lbn_t lbn;
5724 	int needj;
5725 {
5726 	ufs2_daddr_t blkno;
5727 
5728 	blkno = DIP(ip, i_ib[i]);
5729 	if (blkno == 0)
5730 		return;
5731 	DIP_SET(ip, i_ib[i], 0);
5732 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5733 	    0, needj);
5734 }
5735 
5736 static inline struct freeblks *
5737 newfreeblks(mp, ip)
5738 	struct mount *mp;
5739 	struct inode *ip;
5740 {
5741 	struct freeblks *freeblks;
5742 
5743 	freeblks = malloc(sizeof(struct freeblks),
5744 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5745 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5746 	LIST_INIT(&freeblks->fb_jblkdephd);
5747 	LIST_INIT(&freeblks->fb_jwork);
5748 	freeblks->fb_ref = 0;
5749 	freeblks->fb_cgwait = 0;
5750 	freeblks->fb_state = ATTACHED;
5751 	freeblks->fb_uid = ip->i_uid;
5752 	freeblks->fb_inum = ip->i_number;
5753 	freeblks->fb_vtype = ITOV(ip)->v_type;
5754 	freeblks->fb_modrev = DIP(ip, i_modrev);
5755 	freeblks->fb_devvp = ip->i_devvp;
5756 	freeblks->fb_chkcnt = 0;
5757 	freeblks->fb_len = 0;
5758 
5759 	return (freeblks);
5760 }
5761 
5762 static void
5763 trunc_indirdep(indirdep, freeblks, bp, off)
5764 	struct indirdep *indirdep;
5765 	struct freeblks *freeblks;
5766 	struct buf *bp;
5767 	int off;
5768 {
5769 	struct allocindir *aip, *aipn;
5770 
5771 	/*
5772 	 * The first set of allocindirs won't be in savedbp.
5773 	 */
5774 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5775 		if (aip->ai_offset > off)
5776 			cancel_allocindir(aip, bp, freeblks, 1);
5777 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5778 		if (aip->ai_offset > off)
5779 			cancel_allocindir(aip, bp, freeblks, 1);
5780 	/*
5781 	 * These will exist in savedbp.
5782 	 */
5783 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5784 		if (aip->ai_offset > off)
5785 			cancel_allocindir(aip, NULL, freeblks, 0);
5786 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5787 		if (aip->ai_offset > off)
5788 			cancel_allocindir(aip, NULL, freeblks, 0);
5789 }
5790 
5791 /*
5792  * Follow the chain of indirects down to lastlbn creating a freework
5793  * structure for each.  This will be used to start indir_trunc() at
5794  * the right offset and create the journal records for the parrtial
5795  * truncation.  A second step will handle the truncated dependencies.
5796  */
5797 static int
5798 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
5799 	struct freeblks *freeblks;
5800 	struct inode *ip;
5801 	ufs_lbn_t lbn;
5802 	ufs_lbn_t lastlbn;
5803 	ufs2_daddr_t blkno;
5804 {
5805 	struct indirdep *indirdep;
5806 	struct indirdep *indirn;
5807 	struct freework *freework;
5808 	struct newblk *newblk;
5809 	struct mount *mp;
5810 	struct buf *bp;
5811 	uint8_t *start;
5812 	uint8_t *end;
5813 	ufs_lbn_t lbnadd;
5814 	int level;
5815 	int error;
5816 	int off;
5817 
5818 
5819 	freework = NULL;
5820 	if (blkno == 0)
5821 		return (0);
5822 	mp = freeblks->fb_list.wk_mp;
5823 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
5824 	if ((bp->b_flags & B_CACHE) == 0) {
5825 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
5826 		bp->b_iocmd = BIO_READ;
5827 		bp->b_flags &= ~B_INVAL;
5828 		bp->b_ioflags &= ~BIO_ERROR;
5829 		vfs_busy_pages(bp, 0);
5830 		bp->b_iooffset = dbtob(bp->b_blkno);
5831 		bstrategy(bp);
5832 		curthread->td_ru.ru_inblock++;
5833 		error = bufwait(bp);
5834 		if (error) {
5835 			brelse(bp);
5836 			return (error);
5837 		}
5838 	}
5839 	level = lbn_level(lbn);
5840 	lbnadd = lbn_offset(ip->i_fs, level);
5841 	/*
5842 	 * Compute the offset of the last block we want to keep.  Store
5843 	 * in the freework the first block we want to completely free.
5844 	 */
5845 	off = (lastlbn - -(lbn + level)) / lbnadd;
5846 	if (off + 1 == NINDIR(ip->i_fs))
5847 		goto nowork;
5848 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
5849 	    0);
5850 	/*
5851 	 * Link the freework into the indirdep.  This will prevent any new
5852 	 * allocations from proceeding until we are finished with the
5853 	 * truncate and the block is written.
5854 	 */
5855 	ACQUIRE_LOCK(&lk);
5856 	indirdep = indirdep_lookup(mp, ip, bp);
5857 	if (indirdep->ir_freeblks)
5858 		panic("setup_trunc_indir: indirdep already truncated.");
5859 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
5860 	freework->fw_indir = indirdep;
5861 	/*
5862 	 * Cancel any allocindirs that will not make it to disk.
5863 	 * We have to do this for all copies of the indirdep that
5864 	 * live on this newblk.
5865 	 */
5866 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
5867 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
5868 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
5869 			trunc_indirdep(indirn, freeblks, bp, off);
5870 	} else
5871 		trunc_indirdep(indirdep, freeblks, bp, off);
5872 	FREE_LOCK(&lk);
5873 	/*
5874 	 * Creation is protected by the buf lock. The saveddata is only
5875 	 * needed if a full truncation follows a partial truncation but it
5876 	 * is difficult to allocate in that case so we fetch it anyway.
5877 	 */
5878 	if (indirdep->ir_saveddata == NULL)
5879 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
5880 		    M_SOFTDEP_FLAGS);
5881 nowork:
5882 	/* Fetch the blkno of the child and the zero start offset. */
5883 	if (ip->i_ump->um_fstype == UFS1) {
5884 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
5885 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
5886 	} else {
5887 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
5888 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
5889 	}
5890 	if (freework) {
5891 		/* Zero the truncated pointers. */
5892 		end = bp->b_data + bp->b_bcount;
5893 		bzero(start, end - start);
5894 		bdwrite(bp);
5895 	} else
5896 		bqrelse(bp);
5897 	if (level == 0)
5898 		return (0);
5899 	lbn++; /* adjust level */
5900 	lbn -= (off * lbnadd);
5901 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
5902 }
5903 
5904 /*
5905  * Complete the partial truncation of an indirect block setup by
5906  * setup_trunc_indir().  This zeros the truncated pointers in the saved
5907  * copy and writes them to disk before the freeblks is allowed to complete.
5908  */
5909 static void
5910 complete_trunc_indir(freework)
5911 	struct freework *freework;
5912 {
5913 	struct freework *fwn;
5914 	struct indirdep *indirdep;
5915 	struct buf *bp;
5916 	uintptr_t start;
5917 	int count;
5918 
5919 	indirdep = freework->fw_indir;
5920 	for (;;) {
5921 		bp = indirdep->ir_bp;
5922 		/* See if the block was discarded. */
5923 		if (bp == NULL)
5924 			break;
5925 		/* Inline part of getdirtybuf().  We dont want bremfree. */
5926 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
5927 			break;
5928 		if (BUF_LOCK(bp,
5929 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
5930 			BUF_UNLOCK(bp);
5931 		ACQUIRE_LOCK(&lk);
5932 	}
5933 	mtx_assert(&lk, MA_OWNED);
5934 	freework->fw_state |= DEPCOMPLETE;
5935 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
5936 	/*
5937 	 * Zero the pointers in the saved copy.
5938 	 */
5939 	if (indirdep->ir_state & UFS1FMT)
5940 		start = sizeof(ufs1_daddr_t);
5941 	else
5942 		start = sizeof(ufs2_daddr_t);
5943 	start *= freework->fw_start;
5944 	count = indirdep->ir_savebp->b_bcount - start;
5945 	start += (uintptr_t)indirdep->ir_savebp->b_data;
5946 	bzero((char *)start, count);
5947 	/*
5948 	 * We need to start the next truncation in the list if it has not
5949 	 * been started yet.
5950 	 */
5951 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
5952 	if (fwn != NULL) {
5953 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
5954 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
5955 		if ((fwn->fw_state & ONWORKLIST) == 0)
5956 			freework_enqueue(fwn);
5957 	}
5958 	/*
5959 	 * If bp is NULL the block was fully truncated, restore
5960 	 * the saved block list otherwise free it if it is no
5961 	 * longer needed.
5962 	 */
5963 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
5964 		if (bp == NULL)
5965 			bcopy(indirdep->ir_saveddata,
5966 			    indirdep->ir_savebp->b_data,
5967 			    indirdep->ir_savebp->b_bcount);
5968 		free(indirdep->ir_saveddata, M_INDIRDEP);
5969 		indirdep->ir_saveddata = NULL;
5970 	}
5971 	/*
5972 	 * When bp is NULL there is a full truncation pending.  We
5973 	 * must wait for this full truncation to be journaled before
5974 	 * we can release this freework because the disk pointers will
5975 	 * never be written as zero.
5976 	 */
5977 	if (bp == NULL)  {
5978 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
5979 			handle_written_freework(freework);
5980 		else
5981 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
5982 			   &freework->fw_list);
5983 	} else {
5984 		/* Complete when the real copy is written. */
5985 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
5986 		BUF_UNLOCK(bp);
5987 	}
5988 }
5989 
5990 /*
5991  * Calculate the number of blocks we are going to release where datablocks
5992  * is the current total and length is the new file size.
5993  */
5994 ufs2_daddr_t
5995 blkcount(fs, datablocks, length)
5996 	struct fs *fs;
5997 	ufs2_daddr_t datablocks;
5998 	off_t length;
5999 {
6000 	off_t totblks, numblks;
6001 
6002 	totblks = 0;
6003 	numblks = howmany(length, fs->fs_bsize);
6004 	if (numblks <= NDADDR) {
6005 		totblks = howmany(length, fs->fs_fsize);
6006 		goto out;
6007 	}
6008         totblks = blkstofrags(fs, numblks);
6009 	numblks -= NDADDR;
6010 	/*
6011 	 * Count all single, then double, then triple indirects required.
6012 	 * Subtracting one indirects worth of blocks for each pass
6013 	 * acknowledges one of each pointed to by the inode.
6014 	 */
6015 	for (;;) {
6016 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6017 		numblks -= NINDIR(fs);
6018 		if (numblks <= 0)
6019 			break;
6020 		numblks = howmany(numblks, NINDIR(fs));
6021 	}
6022 out:
6023 	totblks = fsbtodb(fs, totblks);
6024 	/*
6025 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6026 	 * references.  We will correct it later in handle_complete_freeblks()
6027 	 * when we know the real count.
6028 	 */
6029 	if (totblks > datablocks)
6030 		return (0);
6031 	return (datablocks - totblks);
6032 }
6033 
6034 /*
6035  * Handle freeblocks for journaled softupdate filesystems.
6036  *
6037  * Contrary to normal softupdates, we must preserve the block pointers in
6038  * indirects until their subordinates are free.  This is to avoid journaling
6039  * every block that is freed which may consume more space than the journal
6040  * itself.  The recovery program will see the free block journals at the
6041  * base of the truncated area and traverse them to reclaim space.  The
6042  * pointers in the inode may be cleared immediately after the journal
6043  * records are written because each direct and indirect pointer in the
6044  * inode is recorded in a journal.  This permits full truncation to proceed
6045  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6046  *
6047  * The algorithm is as follows:
6048  * 1) Traverse the in-memory state and create journal entries to release
6049  *    the relevant blocks and full indirect trees.
6050  * 2) Traverse the indirect block chain adding partial truncation freework
6051  *    records to indirects in the path to lastlbn.  The freework will
6052  *    prevent new allocation dependencies from being satisfied in this
6053  *    indirect until the truncation completes.
6054  * 3) Read and lock the inode block, performing an update with the new size
6055  *    and pointers.  This prevents truncated data from becoming valid on
6056  *    disk through step 4.
6057  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6058  *    eliminate journal work for those records that do not require it.
6059  * 5) Schedule the journal records to be written followed by the inode block.
6060  * 6) Allocate any necessary frags for the end of file.
6061  * 7) Zero any partially truncated blocks.
6062  *
6063  * From this truncation proceeds asynchronously using the freework and
6064  * indir_trunc machinery.  The file will not be extended again into a
6065  * partially truncated indirect block until all work is completed but
6066  * the normal dependency mechanism ensures that it is rolled back/forward
6067  * as appropriate.  Further truncation may occur without delay and is
6068  * serialized in indir_trunc().
6069  */
6070 void
6071 softdep_journal_freeblocks(ip, cred, length, flags)
6072 	struct inode *ip;	/* The inode whose length is to be reduced */
6073 	struct ucred *cred;
6074 	off_t length;		/* The new length for the file */
6075 	int flags;		/* IO_EXT and/or IO_NORMAL */
6076 {
6077 	struct freeblks *freeblks, *fbn;
6078 	struct inodedep *inodedep;
6079 	struct jblkdep *jblkdep;
6080 	struct allocdirect *adp, *adpn;
6081 	struct fs *fs;
6082 	struct buf *bp;
6083 	struct vnode *vp;
6084 	struct mount *mp;
6085 	ufs2_daddr_t extblocks, datablocks;
6086 	ufs_lbn_t tmpval, lbn, lastlbn;
6087 	int frags;
6088 	int lastoff, iboff;
6089 	int allocblock;
6090 	int error, i;
6091 	int needj;
6092 
6093 	fs = ip->i_fs;
6094 	mp = UFSTOVFS(ip->i_ump);
6095 	vp = ITOV(ip);
6096 	needj = 1;
6097 	iboff = -1;
6098 	allocblock = 0;
6099 	extblocks = 0;
6100 	datablocks = 0;
6101 	frags = 0;
6102 	freeblks = newfreeblks(mp, ip);
6103 	ACQUIRE_LOCK(&lk);
6104 	/*
6105 	 * If we're truncating a removed file that will never be written
6106 	 * we don't need to journal the block frees.  The canceled journals
6107 	 * for the allocations will suffice.
6108 	 */
6109 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6110 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6111 	    length == 0)
6112 		needj = 0;
6113 	FREE_LOCK(&lk);
6114 	/*
6115 	 * Calculate the lbn that we are truncating to.  This results in -1
6116 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6117 	 * to keep, not the first lbn we want to truncate.
6118 	 */
6119 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6120 	lastoff = blkoff(fs, length);
6121 	/*
6122 	 * Compute frags we are keeping in lastlbn.  0 means all.
6123 	 */
6124 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6125 		frags = fragroundup(fs, lastoff);
6126 		/* adp offset of last valid allocdirect. */
6127 		iboff = lastlbn;
6128 	} else if (lastlbn > 0)
6129 		iboff = NDADDR;
6130 	if (fs->fs_magic == FS_UFS2_MAGIC)
6131 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6132 	/*
6133 	 * Handle normal data blocks and indirects.  This section saves
6134 	 * values used after the inode update to complete frag and indirect
6135 	 * truncation.
6136 	 */
6137 	if ((flags & IO_NORMAL) != 0) {
6138 		/*
6139 		 * Handle truncation of whole direct and indirect blocks.
6140 		 */
6141 		for (i = iboff + 1; i < NDADDR; i++)
6142 			setup_freedirect(freeblks, ip, i, needj);
6143 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6144 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6145 			/* Release a whole indirect tree. */
6146 			if (lbn > lastlbn) {
6147 				setup_freeindir(freeblks, ip, i, -lbn -i,
6148 				    needj);
6149 				continue;
6150 			}
6151 			iboff = i + NDADDR;
6152 			/*
6153 			 * Traverse partially truncated indirect tree.
6154 			 */
6155 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6156 				setup_trunc_indir(freeblks, ip, -lbn - i,
6157 				    lastlbn, DIP(ip, i_ib[i]));
6158 		}
6159 		/*
6160 		 * Handle partial truncation to a frag boundary.
6161 		 */
6162 		if (frags) {
6163 			ufs2_daddr_t blkno;
6164 			long oldfrags;
6165 
6166 			oldfrags = blksize(fs, ip, lastlbn);
6167 			blkno = DIP(ip, i_db[lastlbn]);
6168 			if (blkno && oldfrags != frags) {
6169 				oldfrags -= frags;
6170 				oldfrags = numfrags(ip->i_fs, oldfrags);
6171 				blkno += numfrags(ip->i_fs, frags);
6172 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6173 				    blkno, oldfrags, 0, needj);
6174 			} else if (blkno == 0)
6175 				allocblock = 1;
6176 		}
6177 		/*
6178 		 * Add a journal record for partial truncate if we are
6179 		 * handling indirect blocks.  Non-indirects need no extra
6180 		 * journaling.
6181 		 */
6182 		if (length != 0 && lastlbn >= NDADDR) {
6183 			ip->i_flag |= IN_TRUNCATED;
6184 			newjtrunc(freeblks, length, 0);
6185 		}
6186 		ip->i_size = length;
6187 		DIP_SET(ip, i_size, ip->i_size);
6188 		datablocks = DIP(ip, i_blocks) - extblocks;
6189 		if (length != 0)
6190 			datablocks = blkcount(ip->i_fs, datablocks, length);
6191 		freeblks->fb_len = length;
6192 	}
6193 	if ((flags & IO_EXT) != 0) {
6194 		for (i = 0; i < NXADDR; i++)
6195 			setup_freeext(freeblks, ip, i, needj);
6196 		ip->i_din2->di_extsize = 0;
6197 		datablocks += extblocks;
6198 	}
6199 #ifdef QUOTA
6200 	/* Reference the quotas in case the block count is wrong in the end. */
6201 	quotaref(vp, freeblks->fb_quota);
6202 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6203 #endif
6204 	freeblks->fb_chkcnt = -datablocks;
6205 	UFS_LOCK(ip->i_ump);
6206 	fs->fs_pendingblocks += datablocks;
6207 	UFS_UNLOCK(ip->i_ump);
6208 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6209 	/*
6210 	 * Handle truncation of incomplete alloc direct dependencies.  We
6211 	 * hold the inode block locked to prevent incomplete dependencies
6212 	 * from reaching the disk while we are eliminating those that
6213 	 * have been truncated.  This is a partially inlined ffs_update().
6214 	 */
6215 	ufs_itimes(vp);
6216 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6217 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6218 	    (int)fs->fs_bsize, cred, &bp);
6219 	if (error) {
6220 		brelse(bp);
6221 		softdep_error("softdep_journal_freeblocks", error);
6222 		return;
6223 	}
6224 	if (bp->b_bufsize == fs->fs_bsize)
6225 		bp->b_flags |= B_CLUSTEROK;
6226 	softdep_update_inodeblock(ip, bp, 0);
6227 	if (ip->i_ump->um_fstype == UFS1)
6228 		*((struct ufs1_dinode *)bp->b_data +
6229 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6230 	else
6231 		*((struct ufs2_dinode *)bp->b_data +
6232 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6233 	ACQUIRE_LOCK(&lk);
6234 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6235 	if ((inodedep->id_state & IOSTARTED) != 0)
6236 		panic("softdep_setup_freeblocks: inode busy");
6237 	/*
6238 	 * Add the freeblks structure to the list of operations that
6239 	 * must await the zero'ed inode being written to disk. If we
6240 	 * still have a bitmap dependency (needj), then the inode
6241 	 * has never been written to disk, so we can process the
6242 	 * freeblks below once we have deleted the dependencies.
6243 	 */
6244 	if (needj)
6245 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6246 	else
6247 		freeblks->fb_state |= COMPLETE;
6248 	if ((flags & IO_NORMAL) != 0) {
6249 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6250 			if (adp->ad_offset > iboff)
6251 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6252 				    freeblks);
6253 			/*
6254 			 * Truncate the allocdirect.  We could eliminate
6255 			 * or modify journal records as well.
6256 			 */
6257 			else if (adp->ad_offset == iboff && frags)
6258 				adp->ad_newsize = frags;
6259 		}
6260 	}
6261 	if ((flags & IO_EXT) != 0)
6262 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6263 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6264 			    freeblks);
6265 	/*
6266 	 * Add journal work.
6267 	 */
6268 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6269 		add_to_journal(&jblkdep->jb_list);
6270 	FREE_LOCK(&lk);
6271 	bdwrite(bp);
6272 	/*
6273 	 * Truncate dependency structures beyond length.
6274 	 */
6275 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6276 	/*
6277 	 * This is only set when we need to allocate a fragment because
6278 	 * none existed at the end of a frag-sized file.  It handles only
6279 	 * allocating a new, zero filled block.
6280 	 */
6281 	if (allocblock) {
6282 		ip->i_size = length - lastoff;
6283 		DIP_SET(ip, i_size, ip->i_size);
6284 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6285 		if (error != 0) {
6286 			softdep_error("softdep_journal_freeblks", error);
6287 			return;
6288 		}
6289 		ip->i_size = length;
6290 		DIP_SET(ip, i_size, length);
6291 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6292 		allocbuf(bp, frags);
6293 		ffs_update(vp, MNT_NOWAIT);
6294 		bawrite(bp);
6295 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6296 		int size;
6297 
6298 		/*
6299 		 * Zero the end of a truncated frag or block.
6300 		 */
6301 		size = sblksize(fs, length, lastlbn);
6302 		error = bread(vp, lastlbn, size, cred, &bp);
6303 		if (error) {
6304 			softdep_error("softdep_journal_freeblks", error);
6305 			return;
6306 		}
6307 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6308 		bawrite(bp);
6309 
6310 	}
6311 	ACQUIRE_LOCK(&lk);
6312 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6313 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6314 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6315 	/*
6316 	 * We zero earlier truncations so they don't erroneously
6317 	 * update i_blocks.
6318 	 */
6319 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6320 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6321 			fbn->fb_len = 0;
6322 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6323 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6324 		freeblks->fb_state |= INPROGRESS;
6325 	else
6326 		freeblks = NULL;
6327 	FREE_LOCK(&lk);
6328 	if (freeblks)
6329 		handle_workitem_freeblocks(freeblks, 0);
6330 	trunc_pages(ip, length, extblocks, flags);
6331 
6332 }
6333 
6334 /*
6335  * Flush a JOP_SYNC to the journal.
6336  */
6337 void
6338 softdep_journal_fsync(ip)
6339 	struct inode *ip;
6340 {
6341 	struct jfsync *jfsync;
6342 
6343 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6344 		return;
6345 	ip->i_flag &= ~IN_TRUNCATED;
6346 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6347 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6348 	jfsync->jfs_size = ip->i_size;
6349 	jfsync->jfs_ino = ip->i_number;
6350 	ACQUIRE_LOCK(&lk);
6351 	add_to_journal(&jfsync->jfs_list);
6352 	jwait(&jfsync->jfs_list, MNT_WAIT);
6353 	FREE_LOCK(&lk);
6354 }
6355 
6356 /*
6357  * Block de-allocation dependencies.
6358  *
6359  * When blocks are de-allocated, the on-disk pointers must be nullified before
6360  * the blocks are made available for use by other files.  (The true
6361  * requirement is that old pointers must be nullified before new on-disk
6362  * pointers are set.  We chose this slightly more stringent requirement to
6363  * reduce complexity.) Our implementation handles this dependency by updating
6364  * the inode (or indirect block) appropriately but delaying the actual block
6365  * de-allocation (i.e., freemap and free space count manipulation) until
6366  * after the updated versions reach stable storage.  After the disk is
6367  * updated, the blocks can be safely de-allocated whenever it is convenient.
6368  * This implementation handles only the common case of reducing a file's
6369  * length to zero. Other cases are handled by the conventional synchronous
6370  * write approach.
6371  *
6372  * The ffs implementation with which we worked double-checks
6373  * the state of the block pointers and file size as it reduces
6374  * a file's length.  Some of this code is replicated here in our
6375  * soft updates implementation.  The freeblks->fb_chkcnt field is
6376  * used to transfer a part of this information to the procedure
6377  * that eventually de-allocates the blocks.
6378  *
6379  * This routine should be called from the routine that shortens
6380  * a file's length, before the inode's size or block pointers
6381  * are modified. It will save the block pointer information for
6382  * later release and zero the inode so that the calling routine
6383  * can release it.
6384  */
6385 void
6386 softdep_setup_freeblocks(ip, length, flags)
6387 	struct inode *ip;	/* The inode whose length is to be reduced */
6388 	off_t length;		/* The new length for the file */
6389 	int flags;		/* IO_EXT and/or IO_NORMAL */
6390 {
6391 	struct ufs1_dinode *dp1;
6392 	struct ufs2_dinode *dp2;
6393 	struct freeblks *freeblks;
6394 	struct inodedep *inodedep;
6395 	struct allocdirect *adp;
6396 	struct buf *bp;
6397 	struct fs *fs;
6398 	ufs2_daddr_t extblocks, datablocks;
6399 	struct mount *mp;
6400 	int i, delay, error;
6401 	ufs_lbn_t tmpval;
6402 	ufs_lbn_t lbn;
6403 
6404 	fs = ip->i_fs;
6405 	mp = UFSTOVFS(ip->i_ump);
6406 	if (length != 0)
6407 		panic("softdep_setup_freeblocks: non-zero length");
6408 	freeblks = newfreeblks(mp, ip);
6409 	extblocks = 0;
6410 	datablocks = 0;
6411 	if (fs->fs_magic == FS_UFS2_MAGIC)
6412 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6413 	if ((flags & IO_NORMAL) != 0) {
6414 		for (i = 0; i < NDADDR; i++)
6415 			setup_freedirect(freeblks, ip, i, 0);
6416 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6417 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6418 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6419 		ip->i_size = 0;
6420 		DIP_SET(ip, i_size, 0);
6421 		datablocks = DIP(ip, i_blocks) - extblocks;
6422 	}
6423 	if ((flags & IO_EXT) != 0) {
6424 		for (i = 0; i < NXADDR; i++)
6425 			setup_freeext(freeblks, ip, i, 0);
6426 		ip->i_din2->di_extsize = 0;
6427 		datablocks += extblocks;
6428 	}
6429 #ifdef QUOTA
6430 	/* Reference the quotas in case the block count is wrong in the end. */
6431 	quotaref(vp, freeblks->fb_quota);
6432 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6433 #endif
6434 	freeblks->fb_chkcnt = -datablocks;
6435 	UFS_LOCK(ip->i_ump);
6436 	fs->fs_pendingblocks += datablocks;
6437 	UFS_UNLOCK(ip->i_ump);
6438 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6439 	/*
6440 	 * Push the zero'ed inode to to its disk buffer so that we are free
6441 	 * to delete its dependencies below. Once the dependencies are gone
6442 	 * the buffer can be safely released.
6443 	 */
6444 	if ((error = bread(ip->i_devvp,
6445 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6446 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6447 		brelse(bp);
6448 		softdep_error("softdep_setup_freeblocks", error);
6449 	}
6450 	if (ip->i_ump->um_fstype == UFS1) {
6451 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6452 		    ino_to_fsbo(fs, ip->i_number));
6453 		ip->i_din1->di_freelink = dp1->di_freelink;
6454 		*dp1 = *ip->i_din1;
6455 	} else {
6456 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6457 		    ino_to_fsbo(fs, ip->i_number));
6458 		ip->i_din2->di_freelink = dp2->di_freelink;
6459 		*dp2 = *ip->i_din2;
6460 	}
6461 	/*
6462 	 * Find and eliminate any inode dependencies.
6463 	 */
6464 	ACQUIRE_LOCK(&lk);
6465 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6466 	if ((inodedep->id_state & IOSTARTED) != 0)
6467 		panic("softdep_setup_freeblocks: inode busy");
6468 	/*
6469 	 * Add the freeblks structure to the list of operations that
6470 	 * must await the zero'ed inode being written to disk. If we
6471 	 * still have a bitmap dependency (delay == 0), then the inode
6472 	 * has never been written to disk, so we can process the
6473 	 * freeblks below once we have deleted the dependencies.
6474 	 */
6475 	delay = (inodedep->id_state & DEPCOMPLETE);
6476 	if (delay)
6477 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6478 	else
6479 		freeblks->fb_state |= COMPLETE;
6480 	/*
6481 	 * Because the file length has been truncated to zero, any
6482 	 * pending block allocation dependency structures associated
6483 	 * with this inode are obsolete and can simply be de-allocated.
6484 	 * We must first merge the two dependency lists to get rid of
6485 	 * any duplicate freefrag structures, then purge the merged list.
6486 	 * If we still have a bitmap dependency, then the inode has never
6487 	 * been written to disk, so we can free any fragments without delay.
6488 	 */
6489 	if (flags & IO_NORMAL) {
6490 		merge_inode_lists(&inodedep->id_newinoupdt,
6491 		    &inodedep->id_inoupdt);
6492 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6493 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6494 			    freeblks);
6495 	}
6496 	if (flags & IO_EXT) {
6497 		merge_inode_lists(&inodedep->id_newextupdt,
6498 		    &inodedep->id_extupdt);
6499 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6500 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6501 			    freeblks);
6502 	}
6503 	FREE_LOCK(&lk);
6504 	bdwrite(bp);
6505 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6506 	ACQUIRE_LOCK(&lk);
6507 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6508 		(void) free_inodedep(inodedep);
6509 	freeblks->fb_state |= DEPCOMPLETE;
6510 	/*
6511 	 * If the inode with zeroed block pointers is now on disk
6512 	 * we can start freeing blocks.
6513 	 */
6514 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6515 		freeblks->fb_state |= INPROGRESS;
6516 	else
6517 		freeblks = NULL;
6518 	FREE_LOCK(&lk);
6519 	if (freeblks)
6520 		handle_workitem_freeblocks(freeblks, 0);
6521 	trunc_pages(ip, length, extblocks, flags);
6522 }
6523 
6524 /*
6525  * Eliminate pages from the page cache that back parts of this inode and
6526  * adjust the vnode pager's idea of our size.  This prevents stale data
6527  * from hanging around in the page cache.
6528  */
6529 static void
6530 trunc_pages(ip, length, extblocks, flags)
6531 	struct inode *ip;
6532 	off_t length;
6533 	ufs2_daddr_t extblocks;
6534 	int flags;
6535 {
6536 	struct vnode *vp;
6537 	struct fs *fs;
6538 	ufs_lbn_t lbn;
6539 	off_t end, extend;
6540 
6541 	vp = ITOV(ip);
6542 	fs = ip->i_fs;
6543 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6544 	if ((flags & IO_EXT) != 0)
6545 		vn_pages_remove(vp, extend, 0);
6546 	if ((flags & IO_NORMAL) == 0)
6547 		return;
6548 	BO_LOCK(&vp->v_bufobj);
6549 	drain_output(vp);
6550 	BO_UNLOCK(&vp->v_bufobj);
6551 	/*
6552 	 * The vnode pager eliminates file pages we eliminate indirects
6553 	 * below.
6554 	 */
6555 	vnode_pager_setsize(vp, length);
6556 	/*
6557 	 * Calculate the end based on the last indirect we want to keep.  If
6558 	 * the block extends into indirects we can just use the negative of
6559 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6560 	 * be careful not to remove those, if they exist.  double and triple
6561 	 * indirect lbns do not overlap with others so it is not important
6562 	 * to verify how many levels are required.
6563 	 */
6564 	lbn = lblkno(fs, length);
6565 	if (lbn >= NDADDR) {
6566 		/* Calculate the virtual lbn of the triple indirect. */
6567 		lbn = -lbn - (NIADDR - 1);
6568 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6569 	} else
6570 		end = extend;
6571 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6572 }
6573 
6574 /*
6575  * See if the buf bp is in the range eliminated by truncation.
6576  */
6577 static int
6578 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6579 	struct buf *bp;
6580 	int *blkoffp;
6581 	ufs_lbn_t lastlbn;
6582 	int lastoff;
6583 	int flags;
6584 {
6585 	ufs_lbn_t lbn;
6586 
6587 	*blkoffp = 0;
6588 	/* Only match ext/normal blocks as appropriate. */
6589 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6590 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6591 		return (0);
6592 	/* ALTDATA is always a full truncation. */
6593 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6594 		return (1);
6595 	/* -1 is full truncation. */
6596 	if (lastlbn == -1)
6597 		return (1);
6598 	/*
6599 	 * If this is a partial truncate we only want those
6600 	 * blocks and indirect blocks that cover the range
6601 	 * we're after.
6602 	 */
6603 	lbn = bp->b_lblkno;
6604 	if (lbn < 0)
6605 		lbn = -(lbn + lbn_level(lbn));
6606 	if (lbn < lastlbn)
6607 		return (0);
6608 	/* Here we only truncate lblkno if it's partial. */
6609 	if (lbn == lastlbn) {
6610 		if (lastoff == 0)
6611 			return (0);
6612 		*blkoffp = lastoff;
6613 	}
6614 	return (1);
6615 }
6616 
6617 /*
6618  * Eliminate any dependencies that exist in memory beyond lblkno:off
6619  */
6620 static void
6621 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6622 	struct inode *ip;
6623 	struct freeblks *freeblks;
6624 	ufs_lbn_t lastlbn;
6625 	int lastoff;
6626 	int flags;
6627 {
6628 	struct bufobj *bo;
6629 	struct vnode *vp;
6630 	struct buf *bp;
6631 	struct fs *fs;
6632 	int blkoff;
6633 
6634 	/*
6635 	 * We must wait for any I/O in progress to finish so that
6636 	 * all potential buffers on the dirty list will be visible.
6637 	 * Once they are all there, walk the list and get rid of
6638 	 * any dependencies.
6639 	 */
6640 	fs = ip->i_fs;
6641 	vp = ITOV(ip);
6642 	bo = &vp->v_bufobj;
6643 	BO_LOCK(bo);
6644 	drain_output(vp);
6645 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6646 		bp->b_vflags &= ~BV_SCANNED;
6647 restart:
6648 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6649 		if (bp->b_vflags & BV_SCANNED)
6650 			continue;
6651 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6652 			bp->b_vflags |= BV_SCANNED;
6653 			continue;
6654 		}
6655 		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
6656 			goto restart;
6657 		BO_UNLOCK(bo);
6658 		if (deallocate_dependencies(bp, freeblks, blkoff))
6659 			bqrelse(bp);
6660 		else
6661 			brelse(bp);
6662 		BO_LOCK(bo);
6663 		goto restart;
6664 	}
6665 	/*
6666 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6667 	 */
6668 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6669 		bp->b_vflags &= ~BV_SCANNED;
6670 cleanrestart:
6671 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6672 		if (bp->b_vflags & BV_SCANNED)
6673 			continue;
6674 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6675 			bp->b_vflags |= BV_SCANNED;
6676 			continue;
6677 		}
6678 		if (BUF_LOCK(bp,
6679 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6680 		    BO_MTX(bo)) == ENOLCK) {
6681 			BO_LOCK(bo);
6682 			goto cleanrestart;
6683 		}
6684 		bp->b_vflags |= BV_SCANNED;
6685 		BO_LOCK(bo);
6686 		bremfree(bp);
6687 		BO_UNLOCK(bo);
6688 		if (blkoff != 0) {
6689 			allocbuf(bp, blkoff);
6690 			bqrelse(bp);
6691 		} else {
6692 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6693 			brelse(bp);
6694 		}
6695 		BO_LOCK(bo);
6696 		goto cleanrestart;
6697 	}
6698 	drain_output(vp);
6699 	BO_UNLOCK(bo);
6700 }
6701 
6702 static int
6703 cancel_pagedep(pagedep, freeblks, blkoff)
6704 	struct pagedep *pagedep;
6705 	struct freeblks *freeblks;
6706 	int blkoff;
6707 {
6708 	struct jremref *jremref;
6709 	struct jmvref *jmvref;
6710 	struct dirrem *dirrem, *tmp;
6711 	int i;
6712 
6713 	/*
6714 	 * Copy any directory remove dependencies to the list
6715 	 * to be processed after the freeblks proceeds.  If
6716 	 * directory entry never made it to disk they
6717 	 * can be dumped directly onto the work list.
6718 	 */
6719 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6720 		/* Skip this directory removal if it is intended to remain. */
6721 		if (dirrem->dm_offset < blkoff)
6722 			continue;
6723 		/*
6724 		 * If there are any dirrems we wait for the journal write
6725 		 * to complete and then restart the buf scan as the lock
6726 		 * has been dropped.
6727 		 */
6728 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6729 			jwait(&jremref->jr_list, MNT_WAIT);
6730 			return (ERESTART);
6731 		}
6732 		LIST_REMOVE(dirrem, dm_next);
6733 		dirrem->dm_dirinum = pagedep->pd_ino;
6734 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6735 	}
6736 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6737 		jwait(&jmvref->jm_list, MNT_WAIT);
6738 		return (ERESTART);
6739 	}
6740 	/*
6741 	 * When we're partially truncating a pagedep we just want to flush
6742 	 * journal entries and return.  There can not be any adds in the
6743 	 * truncated portion of the directory and newblk must remain if
6744 	 * part of the block remains.
6745 	 */
6746 	if (blkoff != 0) {
6747 		struct diradd *dap;
6748 
6749 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6750 			if (dap->da_offset > blkoff)
6751 				panic("cancel_pagedep: diradd %p off %d > %d",
6752 				    dap, dap->da_offset, blkoff);
6753 		for (i = 0; i < DAHASHSZ; i++)
6754 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6755 				if (dap->da_offset > blkoff)
6756 					panic("cancel_pagedep: diradd %p off %d > %d",
6757 					    dap, dap->da_offset, blkoff);
6758 		return (0);
6759 	}
6760 	/*
6761 	 * There should be no directory add dependencies present
6762 	 * as the directory could not be truncated until all
6763 	 * children were removed.
6764 	 */
6765 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6766 	    ("deallocate_dependencies: pendinghd != NULL"));
6767 	for (i = 0; i < DAHASHSZ; i++)
6768 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6769 		    ("deallocate_dependencies: diraddhd != NULL"));
6770 	if ((pagedep->pd_state & NEWBLOCK) != 0)
6771 		free_newdirblk(pagedep->pd_newdirblk);
6772 	if (free_pagedep(pagedep) == 0)
6773 		panic("Failed to free pagedep %p", pagedep);
6774 	return (0);
6775 }
6776 
6777 /*
6778  * Reclaim any dependency structures from a buffer that is about to
6779  * be reallocated to a new vnode. The buffer must be locked, thus,
6780  * no I/O completion operations can occur while we are manipulating
6781  * its associated dependencies. The mutex is held so that other I/O's
6782  * associated with related dependencies do not occur.
6783  */
6784 static int
6785 deallocate_dependencies(bp, freeblks, off)
6786 	struct buf *bp;
6787 	struct freeblks *freeblks;
6788 	int off;
6789 {
6790 	struct indirdep *indirdep;
6791 	struct pagedep *pagedep;
6792 	struct allocdirect *adp;
6793 	struct worklist *wk, *wkn;
6794 
6795 	ACQUIRE_LOCK(&lk);
6796 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
6797 		switch (wk->wk_type) {
6798 		case D_INDIRDEP:
6799 			indirdep = WK_INDIRDEP(wk);
6800 			if (bp->b_lblkno >= 0 ||
6801 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
6802 				panic("deallocate_dependencies: not indir");
6803 			cancel_indirdep(indirdep, bp, freeblks);
6804 			continue;
6805 
6806 		case D_PAGEDEP:
6807 			pagedep = WK_PAGEDEP(wk);
6808 			if (cancel_pagedep(pagedep, freeblks, off)) {
6809 				FREE_LOCK(&lk);
6810 				return (ERESTART);
6811 			}
6812 			continue;
6813 
6814 		case D_ALLOCINDIR:
6815 			/*
6816 			 * Simply remove the allocindir, we'll find it via
6817 			 * the indirdep where we can clear pointers if
6818 			 * needed.
6819 			 */
6820 			WORKLIST_REMOVE(wk);
6821 			continue;
6822 
6823 		case D_FREEWORK:
6824 			/*
6825 			 * A truncation is waiting for the zero'd pointers
6826 			 * to be written.  It can be freed when the freeblks
6827 			 * is journaled.
6828 			 */
6829 			WORKLIST_REMOVE(wk);
6830 			wk->wk_state |= ONDEPLIST;
6831 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6832 			break;
6833 
6834 		case D_ALLOCDIRECT:
6835 			adp = WK_ALLOCDIRECT(wk);
6836 			if (off != 0)
6837 				continue;
6838 			/* FALLTHROUGH */
6839 		default:
6840 			panic("deallocate_dependencies: Unexpected type %s",
6841 			    TYPENAME(wk->wk_type));
6842 			/* NOTREACHED */
6843 		}
6844 	}
6845 	FREE_LOCK(&lk);
6846 	/*
6847 	 * Don't throw away this buf, we were partially truncating and
6848 	 * some deps may always remain.
6849 	 */
6850 	if (off) {
6851 		allocbuf(bp, off);
6852 		bp->b_vflags |= BV_SCANNED;
6853 		return (EBUSY);
6854 	}
6855 	bp->b_flags |= B_INVAL | B_NOCACHE;
6856 
6857 	return (0);
6858 }
6859 
6860 /*
6861  * An allocdirect is being canceled due to a truncate.  We must make sure
6862  * the journal entry is released in concert with the blkfree that releases
6863  * the storage.  Completed journal entries must not be released until the
6864  * space is no longer pointed to by the inode or in the bitmap.
6865  */
6866 static void
6867 cancel_allocdirect(adphead, adp, freeblks)
6868 	struct allocdirectlst *adphead;
6869 	struct allocdirect *adp;
6870 	struct freeblks *freeblks;
6871 {
6872 	struct freework *freework;
6873 	struct newblk *newblk;
6874 	struct worklist *wk;
6875 
6876 	TAILQ_REMOVE(adphead, adp, ad_next);
6877 	newblk = (struct newblk *)adp;
6878 	freework = NULL;
6879 	/*
6880 	 * Find the correct freework structure.
6881 	 */
6882 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
6883 		if (wk->wk_type != D_FREEWORK)
6884 			continue;
6885 		freework = WK_FREEWORK(wk);
6886 		if (freework->fw_blkno == newblk->nb_newblkno)
6887 			break;
6888 	}
6889 	if (freework == NULL)
6890 		panic("cancel_allocdirect: Freework not found");
6891 	/*
6892 	 * If a newblk exists at all we still have the journal entry that
6893 	 * initiated the allocation so we do not need to journal the free.
6894 	 */
6895 	cancel_jfreeblk(freeblks, freework->fw_blkno);
6896 	/*
6897 	 * If the journal hasn't been written the jnewblk must be passed
6898 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
6899 	 * this by linking the journal dependency into the freework to be
6900 	 * freed when freework_freeblock() is called.  If the journal has
6901 	 * been written we can simply reclaim the journal space when the
6902 	 * freeblks work is complete.
6903 	 */
6904 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
6905 	    &freeblks->fb_jwork);
6906 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
6907 }
6908 
6909 
6910 /*
6911  * Cancel a new block allocation.  May be an indirect or direct block.  We
6912  * remove it from various lists and return any journal record that needs to
6913  * be resolved by the caller.
6914  *
6915  * A special consideration is made for indirects which were never pointed
6916  * at on disk and will never be found once this block is released.
6917  */
6918 static struct jnewblk *
6919 cancel_newblk(newblk, wk, wkhd)
6920 	struct newblk *newblk;
6921 	struct worklist *wk;
6922 	struct workhead *wkhd;
6923 {
6924 	struct jnewblk *jnewblk;
6925 
6926 	newblk->nb_state |= GOINGAWAY;
6927 	/*
6928 	 * Previously we traversed the completedhd on each indirdep
6929 	 * attached to this newblk to cancel them and gather journal
6930 	 * work.  Since we need only the oldest journal segment and
6931 	 * the lowest point on the tree will always have the oldest
6932 	 * journal segment we are free to release the segments
6933 	 * of any subordinates and may leave the indirdep list to
6934 	 * indirdep_complete() when this newblk is freed.
6935 	 */
6936 	if (newblk->nb_state & ONDEPLIST) {
6937 		newblk->nb_state &= ~ONDEPLIST;
6938 		LIST_REMOVE(newblk, nb_deps);
6939 	}
6940 	if (newblk->nb_state & ONWORKLIST)
6941 		WORKLIST_REMOVE(&newblk->nb_list);
6942 	/*
6943 	 * If the journal entry hasn't been written we save a pointer to
6944 	 * the dependency that frees it until it is written or the
6945 	 * superseding operation completes.
6946 	 */
6947 	jnewblk = newblk->nb_jnewblk;
6948 	if (jnewblk != NULL && wk != NULL) {
6949 		newblk->nb_jnewblk = NULL;
6950 		jnewblk->jn_dep = wk;
6951 	}
6952 	if (!LIST_EMPTY(&newblk->nb_jwork))
6953 		jwork_move(wkhd, &newblk->nb_jwork);
6954 	/*
6955 	 * When truncating we must free the newdirblk early to remove
6956 	 * the pagedep from the hash before returning.
6957 	 */
6958 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
6959 		free_newdirblk(WK_NEWDIRBLK(wk));
6960 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
6961 		panic("cancel_newblk: extra newdirblk");
6962 
6963 	return (jnewblk);
6964 }
6965 
6966 /*
6967  * Schedule the freefrag associated with a newblk to be released once
6968  * the pointers are written and the previous block is no longer needed.
6969  */
6970 static void
6971 newblk_freefrag(newblk)
6972 	struct newblk *newblk;
6973 {
6974 	struct freefrag *freefrag;
6975 
6976 	if (newblk->nb_freefrag == NULL)
6977 		return;
6978 	freefrag = newblk->nb_freefrag;
6979 	newblk->nb_freefrag = NULL;
6980 	freefrag->ff_state |= COMPLETE;
6981 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
6982 		add_to_worklist(&freefrag->ff_list, 0);
6983 }
6984 
6985 /*
6986  * Free a newblk. Generate a new freefrag work request if appropriate.
6987  * This must be called after the inode pointer and any direct block pointers
6988  * are valid or fully removed via truncate or frag extension.
6989  */
6990 static void
6991 free_newblk(newblk)
6992 	struct newblk *newblk;
6993 {
6994 	struct indirdep *indirdep;
6995 	struct worklist *wk;
6996 
6997 	KASSERT(newblk->nb_jnewblk == NULL,
6998 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
6999 	mtx_assert(&lk, MA_OWNED);
7000 	newblk_freefrag(newblk);
7001 	if (newblk->nb_state & ONDEPLIST)
7002 		LIST_REMOVE(newblk, nb_deps);
7003 	if (newblk->nb_state & ONWORKLIST)
7004 		WORKLIST_REMOVE(&newblk->nb_list);
7005 	LIST_REMOVE(newblk, nb_hash);
7006 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7007 		free_newdirblk(WK_NEWDIRBLK(wk));
7008 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7009 		panic("free_newblk: extra newdirblk");
7010 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7011 		indirdep_complete(indirdep);
7012 	handle_jwork(&newblk->nb_jwork);
7013 	newblk->nb_list.wk_type = D_NEWBLK;
7014 	WORKITEM_FREE(newblk, D_NEWBLK);
7015 }
7016 
7017 /*
7018  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7019  * This routine must be called with splbio interrupts blocked.
7020  */
7021 static void
7022 free_newdirblk(newdirblk)
7023 	struct newdirblk *newdirblk;
7024 {
7025 	struct pagedep *pagedep;
7026 	struct diradd *dap;
7027 	struct worklist *wk;
7028 
7029 	mtx_assert(&lk, MA_OWNED);
7030 	WORKLIST_REMOVE(&newdirblk->db_list);
7031 	/*
7032 	 * If the pagedep is still linked onto the directory buffer
7033 	 * dependency chain, then some of the entries on the
7034 	 * pd_pendinghd list may not be committed to disk yet. In
7035 	 * this case, we will simply clear the NEWBLOCK flag and
7036 	 * let the pd_pendinghd list be processed when the pagedep
7037 	 * is next written. If the pagedep is no longer on the buffer
7038 	 * dependency chain, then all the entries on the pd_pending
7039 	 * list are committed to disk and we can free them here.
7040 	 */
7041 	pagedep = newdirblk->db_pagedep;
7042 	pagedep->pd_state &= ~NEWBLOCK;
7043 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7044 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7045 			free_diradd(dap, NULL);
7046 		/*
7047 		 * If no dependencies remain, the pagedep will be freed.
7048 		 */
7049 		free_pagedep(pagedep);
7050 	}
7051 	/* Should only ever be one item in the list. */
7052 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7053 		WORKLIST_REMOVE(wk);
7054 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7055 	}
7056 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7057 }
7058 
7059 /*
7060  * Prepare an inode to be freed. The actual free operation is not
7061  * done until the zero'ed inode has been written to disk.
7062  */
7063 void
7064 softdep_freefile(pvp, ino, mode)
7065 	struct vnode *pvp;
7066 	ino_t ino;
7067 	int mode;
7068 {
7069 	struct inode *ip = VTOI(pvp);
7070 	struct inodedep *inodedep;
7071 	struct freefile *freefile;
7072 	struct freeblks *freeblks;
7073 
7074 	/*
7075 	 * This sets up the inode de-allocation dependency.
7076 	 */
7077 	freefile = malloc(sizeof(struct freefile),
7078 		M_FREEFILE, M_SOFTDEP_FLAGS);
7079 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7080 	freefile->fx_mode = mode;
7081 	freefile->fx_oldinum = ino;
7082 	freefile->fx_devvp = ip->i_devvp;
7083 	LIST_INIT(&freefile->fx_jwork);
7084 	UFS_LOCK(ip->i_ump);
7085 	ip->i_fs->fs_pendinginodes += 1;
7086 	UFS_UNLOCK(ip->i_ump);
7087 
7088 	/*
7089 	 * If the inodedep does not exist, then the zero'ed inode has
7090 	 * been written to disk. If the allocated inode has never been
7091 	 * written to disk, then the on-disk inode is zero'ed. In either
7092 	 * case we can free the file immediately.  If the journal was
7093 	 * canceled before being written the inode will never make it to
7094 	 * disk and we must send the canceled journal entrys to
7095 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7096 	 * Any blocks waiting on the inode to write can be safely freed
7097 	 * here as it will never been written.
7098 	 */
7099 	ACQUIRE_LOCK(&lk);
7100 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7101 	if (inodedep) {
7102 		/*
7103 		 * Clear out freeblks that no longer need to reference
7104 		 * this inode.
7105 		 */
7106 		while ((freeblks =
7107 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7108 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7109 			    fb_next);
7110 			freeblks->fb_state &= ~ONDEPLIST;
7111 		}
7112 		/*
7113 		 * Remove this inode from the unlinked list.
7114 		 */
7115 		if (inodedep->id_state & UNLINKED) {
7116 			/*
7117 			 * Save the journal work to be freed with the bitmap
7118 			 * before we clear UNLINKED.  Otherwise it can be lost
7119 			 * if the inode block is written.
7120 			 */
7121 			handle_bufwait(inodedep, &freefile->fx_jwork);
7122 			clear_unlinked_inodedep(inodedep);
7123 			/* Re-acquire inodedep as we've dropped lk. */
7124 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7125 		}
7126 	}
7127 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7128 		FREE_LOCK(&lk);
7129 		handle_workitem_freefile(freefile);
7130 		return;
7131 	}
7132 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7133 		inodedep->id_state |= GOINGAWAY;
7134 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7135 	FREE_LOCK(&lk);
7136 	if (ip->i_number == ino)
7137 		ip->i_flag |= IN_MODIFIED;
7138 }
7139 
7140 /*
7141  * Check to see if an inode has never been written to disk. If
7142  * so free the inodedep and return success, otherwise return failure.
7143  * This routine must be called with splbio interrupts blocked.
7144  *
7145  * If we still have a bitmap dependency, then the inode has never
7146  * been written to disk. Drop the dependency as it is no longer
7147  * necessary since the inode is being deallocated. We set the
7148  * ALLCOMPLETE flags since the bitmap now properly shows that the
7149  * inode is not allocated. Even if the inode is actively being
7150  * written, it has been rolled back to its zero'ed state, so we
7151  * are ensured that a zero inode is what is on the disk. For short
7152  * lived files, this change will usually result in removing all the
7153  * dependencies from the inode so that it can be freed immediately.
7154  */
7155 static int
7156 check_inode_unwritten(inodedep)
7157 	struct inodedep *inodedep;
7158 {
7159 
7160 	mtx_assert(&lk, MA_OWNED);
7161 
7162 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7163 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7164 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7165 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7166 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7167 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7168 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7169 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7170 	    inodedep->id_mkdiradd != NULL ||
7171 	    inodedep->id_nlinkdelta != 0)
7172 		return (0);
7173 	/*
7174 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7175 	 * trying to allocate memory without holding "Softdep Lock".
7176 	 */
7177 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7178 	    inodedep->id_savedino1 == NULL)
7179 		return (0);
7180 
7181 	if (inodedep->id_state & ONDEPLIST)
7182 		LIST_REMOVE(inodedep, id_deps);
7183 	inodedep->id_state &= ~ONDEPLIST;
7184 	inodedep->id_state |= ALLCOMPLETE;
7185 	inodedep->id_bmsafemap = NULL;
7186 	if (inodedep->id_state & ONWORKLIST)
7187 		WORKLIST_REMOVE(&inodedep->id_list);
7188 	if (inodedep->id_savedino1 != NULL) {
7189 		free(inodedep->id_savedino1, M_SAVEDINO);
7190 		inodedep->id_savedino1 = NULL;
7191 	}
7192 	if (free_inodedep(inodedep) == 0)
7193 		panic("check_inode_unwritten: busy inode");
7194 	return (1);
7195 }
7196 
7197 /*
7198  * Try to free an inodedep structure. Return 1 if it could be freed.
7199  */
7200 static int
7201 free_inodedep(inodedep)
7202 	struct inodedep *inodedep;
7203 {
7204 
7205 	mtx_assert(&lk, MA_OWNED);
7206 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7207 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7208 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7209 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7210 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7211 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7212 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7213 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7214 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7215 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7216 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7217 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7218 	    inodedep->id_mkdiradd != NULL ||
7219 	    inodedep->id_nlinkdelta != 0 ||
7220 	    inodedep->id_savedino1 != NULL)
7221 		return (0);
7222 	if (inodedep->id_state & ONDEPLIST)
7223 		LIST_REMOVE(inodedep, id_deps);
7224 	LIST_REMOVE(inodedep, id_hash);
7225 	WORKITEM_FREE(inodedep, D_INODEDEP);
7226 	return (1);
7227 }
7228 
7229 /*
7230  * Free the block referenced by a freework structure.  The parent freeblks
7231  * structure is released and completed when the final cg bitmap reaches
7232  * the disk.  This routine may be freeing a jnewblk which never made it to
7233  * disk in which case we do not have to wait as the operation is undone
7234  * in memory immediately.
7235  */
7236 static void
7237 freework_freeblock(freework)
7238 	struct freework *freework;
7239 {
7240 	struct freeblks *freeblks;
7241 	struct jnewblk *jnewblk;
7242 	struct ufsmount *ump;
7243 	struct workhead wkhd;
7244 	struct fs *fs;
7245 	int bsize;
7246 	int needj;
7247 
7248 	mtx_assert(&lk, MA_OWNED);
7249 	/*
7250 	 * Handle partial truncate separately.
7251 	 */
7252 	if (freework->fw_indir) {
7253 		complete_trunc_indir(freework);
7254 		return;
7255 	}
7256 	freeblks = freework->fw_freeblks;
7257 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7258 	fs = ump->um_fs;
7259 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7260 	bsize = lfragtosize(fs, freework->fw_frags);
7261 	LIST_INIT(&wkhd);
7262 	/*
7263 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7264 	 * on the indirblk hashtable and prevents premature freeing.
7265 	 */
7266 	freework->fw_state |= DEPCOMPLETE;
7267 	/*
7268 	 * SUJ needs to wait for the segment referencing freed indirect
7269 	 * blocks to expire so that we know the checker will not confuse
7270 	 * a re-allocated indirect block with its old contents.
7271 	 */
7272 	if (needj && freework->fw_lbn <= -NDADDR)
7273 		indirblk_insert(freework);
7274 	/*
7275 	 * If we are canceling an existing jnewblk pass it to the free
7276 	 * routine, otherwise pass the freeblk which will ultimately
7277 	 * release the freeblks.  If we're not journaling, we can just
7278 	 * free the freeblks immediately.
7279 	 */
7280 	jnewblk = freework->fw_jnewblk;
7281 	if (jnewblk != NULL) {
7282 		cancel_jnewblk(jnewblk, &wkhd);
7283 		needj = 0;
7284 	} else if (needj) {
7285 		freework->fw_state |= DELAYEDFREE;
7286 		freeblks->fb_cgwait++;
7287 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7288 	}
7289 	FREE_LOCK(&lk);
7290 	freeblks_free(ump, freeblks, btodb(bsize));
7291 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7292 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7293 	ACQUIRE_LOCK(&lk);
7294 	/*
7295 	 * The jnewblk will be discarded and the bits in the map never
7296 	 * made it to disk.  We can immediately free the freeblk.
7297 	 */
7298 	if (needj == 0)
7299 		handle_written_freework(freework);
7300 }
7301 
7302 /*
7303  * We enqueue freework items that need processing back on the freeblks and
7304  * add the freeblks to the worklist.  This makes it easier to find all work
7305  * required to flush a truncation in process_truncates().
7306  */
7307 static void
7308 freework_enqueue(freework)
7309 	struct freework *freework;
7310 {
7311 	struct freeblks *freeblks;
7312 
7313 	freeblks = freework->fw_freeblks;
7314 	if ((freework->fw_state & INPROGRESS) == 0)
7315 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7316 	if ((freeblks->fb_state &
7317 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7318 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7319 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7320 }
7321 
7322 /*
7323  * Start, continue, or finish the process of freeing an indirect block tree.
7324  * The free operation may be paused at any point with fw_off containing the
7325  * offset to restart from.  This enables us to implement some flow control
7326  * for large truncates which may fan out and generate a huge number of
7327  * dependencies.
7328  */
7329 static void
7330 handle_workitem_indirblk(freework)
7331 	struct freework *freework;
7332 {
7333 	struct freeblks *freeblks;
7334 	struct ufsmount *ump;
7335 	struct fs *fs;
7336 
7337 	freeblks = freework->fw_freeblks;
7338 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7339 	fs = ump->um_fs;
7340 	if (freework->fw_state & DEPCOMPLETE) {
7341 		handle_written_freework(freework);
7342 		return;
7343 	}
7344 	if (freework->fw_off == NINDIR(fs)) {
7345 		freework_freeblock(freework);
7346 		return;
7347 	}
7348 	freework->fw_state |= INPROGRESS;
7349 	FREE_LOCK(&lk);
7350 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7351 	    freework->fw_lbn);
7352 	ACQUIRE_LOCK(&lk);
7353 }
7354 
7355 /*
7356  * Called when a freework structure attached to a cg buf is written.  The
7357  * ref on either the parent or the freeblks structure is released and
7358  * the freeblks is added back to the worklist if there is more work to do.
7359  */
7360 static void
7361 handle_written_freework(freework)
7362 	struct freework *freework;
7363 {
7364 	struct freeblks *freeblks;
7365 	struct freework *parent;
7366 
7367 	freeblks = freework->fw_freeblks;
7368 	parent = freework->fw_parent;
7369 	if (freework->fw_state & DELAYEDFREE)
7370 		freeblks->fb_cgwait--;
7371 	freework->fw_state |= COMPLETE;
7372 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7373 		WORKITEM_FREE(freework, D_FREEWORK);
7374 	if (parent) {
7375 		if (--parent->fw_ref == 0)
7376 			freework_enqueue(parent);
7377 		return;
7378 	}
7379 	if (--freeblks->fb_ref != 0)
7380 		return;
7381 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7382 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7383 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7384 }
7385 
7386 /*
7387  * This workitem routine performs the block de-allocation.
7388  * The workitem is added to the pending list after the updated
7389  * inode block has been written to disk.  As mentioned above,
7390  * checks regarding the number of blocks de-allocated (compared
7391  * to the number of blocks allocated for the file) are also
7392  * performed in this function.
7393  */
7394 static int
7395 handle_workitem_freeblocks(freeblks, flags)
7396 	struct freeblks *freeblks;
7397 	int flags;
7398 {
7399 	struct freework *freework;
7400 	struct newblk *newblk;
7401 	struct allocindir *aip;
7402 	struct ufsmount *ump;
7403 	struct worklist *wk;
7404 
7405 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7406 	    ("handle_workitem_freeblocks: Journal entries not written."));
7407 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7408 	ACQUIRE_LOCK(&lk);
7409 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7410 		WORKLIST_REMOVE(wk);
7411 		switch (wk->wk_type) {
7412 		case D_DIRREM:
7413 			wk->wk_state |= COMPLETE;
7414 			add_to_worklist(wk, 0);
7415 			continue;
7416 
7417 		case D_ALLOCDIRECT:
7418 			free_newblk(WK_NEWBLK(wk));
7419 			continue;
7420 
7421 		case D_ALLOCINDIR:
7422 			aip = WK_ALLOCINDIR(wk);
7423 			freework = NULL;
7424 			if (aip->ai_state & DELAYEDFREE) {
7425 				FREE_LOCK(&lk);
7426 				freework = newfreework(ump, freeblks, NULL,
7427 				    aip->ai_lbn, aip->ai_newblkno,
7428 				    ump->um_fs->fs_frag, 0, 0);
7429 				ACQUIRE_LOCK(&lk);
7430 			}
7431 			newblk = WK_NEWBLK(wk);
7432 			if (newblk->nb_jnewblk) {
7433 				freework->fw_jnewblk = newblk->nb_jnewblk;
7434 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7435 				newblk->nb_jnewblk = NULL;
7436 			}
7437 			free_newblk(newblk);
7438 			continue;
7439 
7440 		case D_FREEWORK:
7441 			freework = WK_FREEWORK(wk);
7442 			if (freework->fw_lbn <= -NDADDR)
7443 				handle_workitem_indirblk(freework);
7444 			else
7445 				freework_freeblock(freework);
7446 			continue;
7447 		default:
7448 			panic("handle_workitem_freeblocks: Unknown type %s",
7449 			    TYPENAME(wk->wk_type));
7450 		}
7451 	}
7452 	if (freeblks->fb_ref != 0) {
7453 		freeblks->fb_state &= ~INPROGRESS;
7454 		wake_worklist(&freeblks->fb_list);
7455 		freeblks = NULL;
7456 	}
7457 	FREE_LOCK(&lk);
7458 	if (freeblks)
7459 		return handle_complete_freeblocks(freeblks, flags);
7460 	return (0);
7461 }
7462 
7463 /*
7464  * Handle completion of block free via truncate.  This allows fs_pending
7465  * to track the actual free block count more closely than if we only updated
7466  * it at the end.  We must be careful to handle cases where the block count
7467  * on free was incorrect.
7468  */
7469 static void
7470 freeblks_free(ump, freeblks, blocks)
7471 	struct ufsmount *ump;
7472 	struct freeblks *freeblks;
7473 	int blocks;
7474 {
7475 	struct fs *fs;
7476 	ufs2_daddr_t remain;
7477 
7478 	UFS_LOCK(ump);
7479 	remain = -freeblks->fb_chkcnt;
7480 	freeblks->fb_chkcnt += blocks;
7481 	if (remain > 0) {
7482 		if (remain < blocks)
7483 			blocks = remain;
7484 		fs = ump->um_fs;
7485 		fs->fs_pendingblocks -= blocks;
7486 	}
7487 	UFS_UNLOCK(ump);
7488 }
7489 
7490 /*
7491  * Once all of the freework workitems are complete we can retire the
7492  * freeblocks dependency and any journal work awaiting completion.  This
7493  * can not be called until all other dependencies are stable on disk.
7494  */
7495 static int
7496 handle_complete_freeblocks(freeblks, flags)
7497 	struct freeblks *freeblks;
7498 	int flags;
7499 {
7500 	struct inodedep *inodedep;
7501 	struct inode *ip;
7502 	struct vnode *vp;
7503 	struct fs *fs;
7504 	struct ufsmount *ump;
7505 	ufs2_daddr_t spare;
7506 
7507 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7508 	fs = ump->um_fs;
7509 	flags = LK_EXCLUSIVE | flags;
7510 	spare = freeblks->fb_chkcnt;
7511 
7512 	/*
7513 	 * If we did not release the expected number of blocks we may have
7514 	 * to adjust the inode block count here.  Only do so if it wasn't
7515 	 * a truncation to zero and the modrev still matches.
7516 	 */
7517 	if (spare && freeblks->fb_len != 0) {
7518 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7519 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7520 			return (EBUSY);
7521 		ip = VTOI(vp);
7522 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7523 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7524 			ip->i_flag |= IN_CHANGE;
7525 			/*
7526 			 * We must wait so this happens before the
7527 			 * journal is reclaimed.
7528 			 */
7529 			ffs_update(vp, 1);
7530 		}
7531 		vput(vp);
7532 	}
7533 	if (spare < 0) {
7534 		UFS_LOCK(ump);
7535 		fs->fs_pendingblocks += spare;
7536 		UFS_UNLOCK(ump);
7537 	}
7538 #ifdef QUOTA
7539 	/* Handle spare. */
7540 	if (spare)
7541 		quotaadj(freeblks->fb_quota, ump, -spare);
7542 	quotarele(freeblks->fb_quota);
7543 #endif
7544 	ACQUIRE_LOCK(&lk);
7545 	if (freeblks->fb_state & ONDEPLIST) {
7546 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7547 		    0, &inodedep);
7548 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7549 		freeblks->fb_state &= ~ONDEPLIST;
7550 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7551 			free_inodedep(inodedep);
7552 	}
7553 	/*
7554 	 * All of the freeblock deps must be complete prior to this call
7555 	 * so it's now safe to complete earlier outstanding journal entries.
7556 	 */
7557 	handle_jwork(&freeblks->fb_jwork);
7558 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7559 	FREE_LOCK(&lk);
7560 	return (0);
7561 }
7562 
7563 /*
7564  * Release blocks associated with the freeblks and stored in the indirect
7565  * block dbn. If level is greater than SINGLE, the block is an indirect block
7566  * and recursive calls to indirtrunc must be used to cleanse other indirect
7567  * blocks.
7568  *
7569  * This handles partial and complete truncation of blocks.  Partial is noted
7570  * with goingaway == 0.  In this case the freework is completed after the
7571  * zero'd indirects are written to disk.  For full truncation the freework
7572  * is completed after the block is freed.
7573  */
7574 static void
7575 indir_trunc(freework, dbn, lbn)
7576 	struct freework *freework;
7577 	ufs2_daddr_t dbn;
7578 	ufs_lbn_t lbn;
7579 {
7580 	struct freework *nfreework;
7581 	struct workhead wkhd;
7582 	struct freeblks *freeblks;
7583 	struct buf *bp;
7584 	struct fs *fs;
7585 	struct indirdep *indirdep;
7586 	struct ufsmount *ump;
7587 	ufs1_daddr_t *bap1 = 0;
7588 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7589 	ufs_lbn_t lbnadd, nlbn;
7590 	int i, nblocks, ufs1fmt;
7591 	int freedblocks;
7592 	int goingaway;
7593 	int freedeps;
7594 	int needj;
7595 	int level;
7596 	int cnt;
7597 
7598 	freeblks = freework->fw_freeblks;
7599 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7600 	fs = ump->um_fs;
7601 	/*
7602 	 * Get buffer of block pointers to be freed.  There are three cases:
7603 	 *
7604 	 * 1) Partial truncate caches the indirdep pointer in the freework
7605 	 *    which provides us a back copy to the save bp which holds the
7606 	 *    pointers we want to clear.  When this completes the zero
7607 	 *    pointers are written to the real copy.
7608 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7609 	 *    eliminated the real copy and placed the indirdep on the saved
7610 	 *    copy.  The indirdep and buf are discarded when this completes.
7611 	 * 3) The indirect was not in memory, we read a copy off of the disk
7612 	 *    using the devvp and drop and invalidate the buffer when we're
7613 	 *    done.
7614 	 */
7615 	goingaway = 1;
7616 	indirdep = NULL;
7617 	if (freework->fw_indir != NULL) {
7618 		goingaway = 0;
7619 		indirdep = freework->fw_indir;
7620 		bp = indirdep->ir_savebp;
7621 		if (bp == NULL || bp->b_blkno != dbn)
7622 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7623 			    bp, (intmax_t)dbn);
7624 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7625 		/*
7626 		 * The lock prevents the buf dep list from changing and
7627 	 	 * indirects on devvp should only ever have one dependency.
7628 		 */
7629 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7630 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7631 			panic("indir_trunc: Bad indirdep %p from buf %p",
7632 			    indirdep, bp);
7633 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7634 	    NOCRED, &bp) != 0) {
7635 		brelse(bp);
7636 		return;
7637 	}
7638 	ACQUIRE_LOCK(&lk);
7639 	/* Protects against a race with complete_trunc_indir(). */
7640 	freework->fw_state &= ~INPROGRESS;
7641 	/*
7642 	 * If we have an indirdep we need to enforce the truncation order
7643 	 * and discard it when it is complete.
7644 	 */
7645 	if (indirdep) {
7646 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7647 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7648 			/*
7649 			 * Add the complete truncate to the list on the
7650 			 * indirdep to enforce in-order processing.
7651 			 */
7652 			if (freework->fw_indir == NULL)
7653 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7654 				    freework, fw_next);
7655 			FREE_LOCK(&lk);
7656 			return;
7657 		}
7658 		/*
7659 		 * If we're goingaway, free the indirdep.  Otherwise it will
7660 		 * linger until the write completes.
7661 		 */
7662 		if (goingaway) {
7663 			free_indirdep(indirdep);
7664 			ump->um_numindirdeps -= 1;
7665 		}
7666 	}
7667 	FREE_LOCK(&lk);
7668 	/* Initialize pointers depending on block size. */
7669 	if (ump->um_fstype == UFS1) {
7670 		bap1 = (ufs1_daddr_t *)bp->b_data;
7671 		nb = bap1[freework->fw_off];
7672 		ufs1fmt = 1;
7673 	} else {
7674 		bap2 = (ufs2_daddr_t *)bp->b_data;
7675 		nb = bap2[freework->fw_off];
7676 		ufs1fmt = 0;
7677 	}
7678 	level = lbn_level(lbn);
7679 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7680 	lbnadd = lbn_offset(fs, level);
7681 	nblocks = btodb(fs->fs_bsize);
7682 	nfreework = freework;
7683 	freedeps = 0;
7684 	cnt = 0;
7685 	/*
7686 	 * Reclaim blocks.  Traverses into nested indirect levels and
7687 	 * arranges for the current level to be freed when subordinates
7688 	 * are free when journaling.
7689 	 */
7690 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7691 		if (i != NINDIR(fs) - 1) {
7692 			if (ufs1fmt)
7693 				nnb = bap1[i+1];
7694 			else
7695 				nnb = bap2[i+1];
7696 		} else
7697 			nnb = 0;
7698 		if (nb == 0)
7699 			continue;
7700 		cnt++;
7701 		if (level != 0) {
7702 			nlbn = (lbn + 1) - (i * lbnadd);
7703 			if (needj != 0) {
7704 				nfreework = newfreework(ump, freeblks, freework,
7705 				    nlbn, nb, fs->fs_frag, 0, 0);
7706 				freedeps++;
7707 			}
7708 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7709 		} else {
7710 			struct freedep *freedep;
7711 
7712 			/*
7713 			 * Attempt to aggregate freedep dependencies for
7714 			 * all blocks being released to the same CG.
7715 			 */
7716 			LIST_INIT(&wkhd);
7717 			if (needj != 0 &&
7718 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7719 				freedep = newfreedep(freework);
7720 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7721 				    &freedep->fd_list);
7722 				freedeps++;
7723 			}
7724 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7725 			    fs->fs_bsize, freeblks->fb_inum,
7726 			    freeblks->fb_vtype, &wkhd);
7727 		}
7728 	}
7729 	if (goingaway) {
7730 		bp->b_flags |= B_INVAL | B_NOCACHE;
7731 		brelse(bp);
7732 	}
7733 	freedblocks = 0;
7734 	if (level == 0)
7735 		freedblocks = (nblocks * cnt);
7736 	if (needj == 0)
7737 		freedblocks += nblocks;
7738 	freeblks_free(ump, freeblks, freedblocks);
7739 	/*
7740 	 * If we are journaling set up the ref counts and offset so this
7741 	 * indirect can be completed when its children are free.
7742 	 */
7743 	if (needj) {
7744 		ACQUIRE_LOCK(&lk);
7745 		freework->fw_off = i;
7746 		freework->fw_ref += freedeps;
7747 		freework->fw_ref -= NINDIR(fs) + 1;
7748 		if (level == 0)
7749 			freeblks->fb_cgwait += freedeps;
7750 		if (freework->fw_ref == 0)
7751 			freework_freeblock(freework);
7752 		FREE_LOCK(&lk);
7753 		return;
7754 	}
7755 	/*
7756 	 * If we're not journaling we can free the indirect now.
7757 	 */
7758 	dbn = dbtofsb(fs, dbn);
7759 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7760 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7761 	/* Non SUJ softdep does single-threaded truncations. */
7762 	if (freework->fw_blkno == dbn) {
7763 		freework->fw_state |= ALLCOMPLETE;
7764 		ACQUIRE_LOCK(&lk);
7765 		handle_written_freework(freework);
7766 		FREE_LOCK(&lk);
7767 	}
7768 	return;
7769 }
7770 
7771 /*
7772  * Cancel an allocindir when it is removed via truncation.  When bp is not
7773  * NULL the indirect never appeared on disk and is scheduled to be freed
7774  * independently of the indir so we can more easily track journal work.
7775  */
7776 static void
7777 cancel_allocindir(aip, bp, freeblks, trunc)
7778 	struct allocindir *aip;
7779 	struct buf *bp;
7780 	struct freeblks *freeblks;
7781 	int trunc;
7782 {
7783 	struct indirdep *indirdep;
7784 	struct freefrag *freefrag;
7785 	struct newblk *newblk;
7786 
7787 	newblk = (struct newblk *)aip;
7788 	LIST_REMOVE(aip, ai_next);
7789 	/*
7790 	 * We must eliminate the pointer in bp if it must be freed on its
7791 	 * own due to partial truncate or pending journal work.
7792 	 */
7793 	if (bp && (trunc || newblk->nb_jnewblk)) {
7794 		/*
7795 		 * Clear the pointer and mark the aip to be freed
7796 		 * directly if it never existed on disk.
7797 		 */
7798 		aip->ai_state |= DELAYEDFREE;
7799 		indirdep = aip->ai_indirdep;
7800 		if (indirdep->ir_state & UFS1FMT)
7801 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7802 		else
7803 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7804 	}
7805 	/*
7806 	 * When truncating the previous pointer will be freed via
7807 	 * savedbp.  Eliminate the freefrag which would dup free.
7808 	 */
7809 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
7810 		newblk->nb_freefrag = NULL;
7811 		if (freefrag->ff_jdep)
7812 			cancel_jfreefrag(
7813 			    WK_JFREEFRAG(freefrag->ff_jdep));
7814 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
7815 		WORKITEM_FREE(freefrag, D_FREEFRAG);
7816 	}
7817 	/*
7818 	 * If the journal hasn't been written the jnewblk must be passed
7819 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7820 	 * this by leaving the journal dependency on the newblk to be freed
7821 	 * when a freework is created in handle_workitem_freeblocks().
7822 	 */
7823 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
7824 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7825 }
7826 
7827 /*
7828  * Create the mkdir dependencies for . and .. in a new directory.  Link them
7829  * in to a newdirblk so any subsequent additions are tracked properly.  The
7830  * caller is responsible for adding the mkdir1 dependency to the journal
7831  * and updating id_mkdiradd.  This function returns with lk held.
7832  */
7833 static struct mkdir *
7834 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
7835 	struct diradd *dap;
7836 	ino_t newinum;
7837 	ino_t dinum;
7838 	struct buf *newdirbp;
7839 	struct mkdir **mkdirp;
7840 {
7841 	struct newblk *newblk;
7842 	struct pagedep *pagedep;
7843 	struct inodedep *inodedep;
7844 	struct newdirblk *newdirblk = 0;
7845 	struct mkdir *mkdir1, *mkdir2;
7846 	struct worklist *wk;
7847 	struct jaddref *jaddref;
7848 	struct mount *mp;
7849 
7850 	mp = dap->da_list.wk_mp;
7851 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
7852 	    M_SOFTDEP_FLAGS);
7853 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
7854 	LIST_INIT(&newdirblk->db_mkdir);
7855 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7856 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
7857 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
7858 	mkdir1->md_diradd = dap;
7859 	mkdir1->md_jaddref = NULL;
7860 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7861 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
7862 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
7863 	mkdir2->md_diradd = dap;
7864 	mkdir2->md_jaddref = NULL;
7865 	if (MOUNTEDSUJ(mp) == 0) {
7866 		mkdir1->md_state |= DEPCOMPLETE;
7867 		mkdir2->md_state |= DEPCOMPLETE;
7868 	}
7869 	/*
7870 	 * Dependency on "." and ".." being written to disk.
7871 	 */
7872 	mkdir1->md_buf = newdirbp;
7873 	ACQUIRE_LOCK(&lk);
7874 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
7875 	/*
7876 	 * We must link the pagedep, allocdirect, and newdirblk for
7877 	 * the initial file page so the pointer to the new directory
7878 	 * is not written until the directory contents are live and
7879 	 * any subsequent additions are not marked live until the
7880 	 * block is reachable via the inode.
7881 	 */
7882 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
7883 		panic("setup_newdir: lost pagedep");
7884 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
7885 		if (wk->wk_type == D_ALLOCDIRECT)
7886 			break;
7887 	if (wk == NULL)
7888 		panic("setup_newdir: lost allocdirect");
7889 	if (pagedep->pd_state & NEWBLOCK)
7890 		panic("setup_newdir: NEWBLOCK already set");
7891 	newblk = WK_NEWBLK(wk);
7892 	pagedep->pd_state |= NEWBLOCK;
7893 	pagedep->pd_newdirblk = newdirblk;
7894 	newdirblk->db_pagedep = pagedep;
7895 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
7896 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
7897 	/*
7898 	 * Look up the inodedep for the parent directory so that we
7899 	 * can link mkdir2 into the pending dotdot jaddref or
7900 	 * the inode write if there is none.  If the inode is
7901 	 * ALLCOMPLETE and no jaddref is present all dependencies have
7902 	 * been satisfied and mkdir2 can be freed.
7903 	 */
7904 	inodedep_lookup(mp, dinum, 0, &inodedep);
7905 	if (MOUNTEDSUJ(mp)) {
7906 		if (inodedep == NULL)
7907 			panic("setup_newdir: Lost parent.");
7908 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7909 		    inoreflst);
7910 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
7911 		    (jaddref->ja_state & MKDIR_PARENT),
7912 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
7913 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7914 		mkdir2->md_jaddref = jaddref;
7915 		jaddref->ja_mkdir = mkdir2;
7916 	} else if (inodedep == NULL ||
7917 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7918 		dap->da_state &= ~MKDIR_PARENT;
7919 		WORKITEM_FREE(mkdir2, D_MKDIR);
7920 	} else {
7921 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7922 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
7923 	}
7924 	*mkdirp = mkdir2;
7925 
7926 	return (mkdir1);
7927 }
7928 
7929 /*
7930  * Directory entry addition dependencies.
7931  *
7932  * When adding a new directory entry, the inode (with its incremented link
7933  * count) must be written to disk before the directory entry's pointer to it.
7934  * Also, if the inode is newly allocated, the corresponding freemap must be
7935  * updated (on disk) before the directory entry's pointer. These requirements
7936  * are met via undo/redo on the directory entry's pointer, which consists
7937  * simply of the inode number.
7938  *
7939  * As directory entries are added and deleted, the free space within a
7940  * directory block can become fragmented.  The ufs filesystem will compact
7941  * a fragmented directory block to make space for a new entry. When this
7942  * occurs, the offsets of previously added entries change. Any "diradd"
7943  * dependency structures corresponding to these entries must be updated with
7944  * the new offsets.
7945  */
7946 
7947 /*
7948  * This routine is called after the in-memory inode's link
7949  * count has been incremented, but before the directory entry's
7950  * pointer to the inode has been set.
7951  */
7952 int
7953 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
7954 	struct buf *bp;		/* buffer containing directory block */
7955 	struct inode *dp;	/* inode for directory */
7956 	off_t diroffset;	/* offset of new entry in directory */
7957 	ino_t newinum;		/* inode referenced by new directory entry */
7958 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
7959 	int isnewblk;		/* entry is in a newly allocated block */
7960 {
7961 	int offset;		/* offset of new entry within directory block */
7962 	ufs_lbn_t lbn;		/* block in directory containing new entry */
7963 	struct fs *fs;
7964 	struct diradd *dap;
7965 	struct newblk *newblk;
7966 	struct pagedep *pagedep;
7967 	struct inodedep *inodedep;
7968 	struct newdirblk *newdirblk = 0;
7969 	struct mkdir *mkdir1, *mkdir2;
7970 	struct jaddref *jaddref;
7971 	struct mount *mp;
7972 	int isindir;
7973 
7974 	/*
7975 	 * Whiteouts have no dependencies.
7976 	 */
7977 	if (newinum == WINO) {
7978 		if (newdirbp != NULL)
7979 			bdwrite(newdirbp);
7980 		return (0);
7981 	}
7982 	jaddref = NULL;
7983 	mkdir1 = mkdir2 = NULL;
7984 	mp = UFSTOVFS(dp->i_ump);
7985 	fs = dp->i_fs;
7986 	lbn = lblkno(fs, diroffset);
7987 	offset = blkoff(fs, diroffset);
7988 	dap = malloc(sizeof(struct diradd), M_DIRADD,
7989 		M_SOFTDEP_FLAGS|M_ZERO);
7990 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
7991 	dap->da_offset = offset;
7992 	dap->da_newinum = newinum;
7993 	dap->da_state = ATTACHED;
7994 	LIST_INIT(&dap->da_jwork);
7995 	isindir = bp->b_lblkno >= NDADDR;
7996 	if (isnewblk &&
7997 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
7998 		newdirblk = malloc(sizeof(struct newdirblk),
7999 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8000 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8001 		LIST_INIT(&newdirblk->db_mkdir);
8002 	}
8003 	/*
8004 	 * If we're creating a new directory setup the dependencies and set
8005 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8006 	 * we can move on.
8007 	 */
8008 	if (newdirbp == NULL) {
8009 		dap->da_state |= DEPCOMPLETE;
8010 		ACQUIRE_LOCK(&lk);
8011 	} else {
8012 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8013 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8014 		    &mkdir2);
8015 	}
8016 	/*
8017 	 * Link into parent directory pagedep to await its being written.
8018 	 */
8019 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8020 #ifdef DEBUG
8021 	if (diradd_lookup(pagedep, offset) != NULL)
8022 		panic("softdep_setup_directory_add: %p already at off %d\n",
8023 		    diradd_lookup(pagedep, offset), offset);
8024 #endif
8025 	dap->da_pagedep = pagedep;
8026 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8027 	    da_pdlist);
8028 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8029 	/*
8030 	 * If we're journaling, link the diradd into the jaddref so it
8031 	 * may be completed after the journal entry is written.  Otherwise,
8032 	 * link the diradd into its inodedep.  If the inode is not yet
8033 	 * written place it on the bufwait list, otherwise do the post-inode
8034 	 * write processing to put it on the id_pendinghd list.
8035 	 */
8036 	if (MOUNTEDSUJ(mp)) {
8037 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8038 		    inoreflst);
8039 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8040 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8041 		jaddref->ja_diroff = diroffset;
8042 		jaddref->ja_diradd = dap;
8043 		add_to_journal(&jaddref->ja_list);
8044 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8045 		diradd_inode_written(dap, inodedep);
8046 	else
8047 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8048 	/*
8049 	 * Add the journal entries for . and .. links now that the primary
8050 	 * link is written.
8051 	 */
8052 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8053 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8054 		    inoreflst, if_deps);
8055 		KASSERT(jaddref != NULL &&
8056 		    jaddref->ja_ino == jaddref->ja_parent &&
8057 		    (jaddref->ja_state & MKDIR_BODY),
8058 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8059 		    jaddref));
8060 		mkdir1->md_jaddref = jaddref;
8061 		jaddref->ja_mkdir = mkdir1;
8062 		/*
8063 		 * It is important that the dotdot journal entry
8064 		 * is added prior to the dot entry since dot writes
8065 		 * both the dot and dotdot links.  These both must
8066 		 * be added after the primary link for the journal
8067 		 * to remain consistent.
8068 		 */
8069 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8070 		add_to_journal(&jaddref->ja_list);
8071 	}
8072 	/*
8073 	 * If we are adding a new directory remember this diradd so that if
8074 	 * we rename it we can keep the dot and dotdot dependencies.  If
8075 	 * we are adding a new name for an inode that has a mkdiradd we
8076 	 * must be in rename and we have to move the dot and dotdot
8077 	 * dependencies to this new name.  The old name is being orphaned
8078 	 * soon.
8079 	 */
8080 	if (mkdir1 != NULL) {
8081 		if (inodedep->id_mkdiradd != NULL)
8082 			panic("softdep_setup_directory_add: Existing mkdir");
8083 		inodedep->id_mkdiradd = dap;
8084 	} else if (inodedep->id_mkdiradd)
8085 		merge_diradd(inodedep, dap);
8086 	if (newdirblk) {
8087 		/*
8088 		 * There is nothing to do if we are already tracking
8089 		 * this block.
8090 		 */
8091 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8092 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8093 			FREE_LOCK(&lk);
8094 			return (0);
8095 		}
8096 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8097 		    == 0)
8098 			panic("softdep_setup_directory_add: lost entry");
8099 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8100 		pagedep->pd_state |= NEWBLOCK;
8101 		pagedep->pd_newdirblk = newdirblk;
8102 		newdirblk->db_pagedep = pagedep;
8103 		FREE_LOCK(&lk);
8104 		/*
8105 		 * If we extended into an indirect signal direnter to sync.
8106 		 */
8107 		if (isindir)
8108 			return (1);
8109 		return (0);
8110 	}
8111 	FREE_LOCK(&lk);
8112 	return (0);
8113 }
8114 
8115 /*
8116  * This procedure is called to change the offset of a directory
8117  * entry when compacting a directory block which must be owned
8118  * exclusively by the caller. Note that the actual entry movement
8119  * must be done in this procedure to ensure that no I/O completions
8120  * occur while the move is in progress.
8121  */
8122 void
8123 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8124 	struct buf *bp;		/* Buffer holding directory block. */
8125 	struct inode *dp;	/* inode for directory */
8126 	caddr_t base;		/* address of dp->i_offset */
8127 	caddr_t oldloc;		/* address of old directory location */
8128 	caddr_t newloc;		/* address of new directory location */
8129 	int entrysize;		/* size of directory entry */
8130 {
8131 	int offset, oldoffset, newoffset;
8132 	struct pagedep *pagedep;
8133 	struct jmvref *jmvref;
8134 	struct diradd *dap;
8135 	struct direct *de;
8136 	struct mount *mp;
8137 	ufs_lbn_t lbn;
8138 	int flags;
8139 
8140 	mp = UFSTOVFS(dp->i_ump);
8141 	de = (struct direct *)oldloc;
8142 	jmvref = NULL;
8143 	flags = 0;
8144 	/*
8145 	 * Moves are always journaled as it would be too complex to
8146 	 * determine if any affected adds or removes are present in the
8147 	 * journal.
8148 	 */
8149 	if (MOUNTEDSUJ(mp)) {
8150 		flags = DEPALLOC;
8151 		jmvref = newjmvref(dp, de->d_ino,
8152 		    dp->i_offset + (oldloc - base),
8153 		    dp->i_offset + (newloc - base));
8154 	}
8155 	lbn = lblkno(dp->i_fs, dp->i_offset);
8156 	offset = blkoff(dp->i_fs, dp->i_offset);
8157 	oldoffset = offset + (oldloc - base);
8158 	newoffset = offset + (newloc - base);
8159 	ACQUIRE_LOCK(&lk);
8160 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8161 		goto done;
8162 	dap = diradd_lookup(pagedep, oldoffset);
8163 	if (dap) {
8164 		dap->da_offset = newoffset;
8165 		newoffset = DIRADDHASH(newoffset);
8166 		oldoffset = DIRADDHASH(oldoffset);
8167 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8168 		    newoffset != oldoffset) {
8169 			LIST_REMOVE(dap, da_pdlist);
8170 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8171 			    dap, da_pdlist);
8172 		}
8173 	}
8174 done:
8175 	if (jmvref) {
8176 		jmvref->jm_pagedep = pagedep;
8177 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8178 		add_to_journal(&jmvref->jm_list);
8179 	}
8180 	bcopy(oldloc, newloc, entrysize);
8181 	FREE_LOCK(&lk);
8182 }
8183 
8184 /*
8185  * Move the mkdir dependencies and journal work from one diradd to another
8186  * when renaming a directory.  The new name must depend on the mkdir deps
8187  * completing as the old name did.  Directories can only have one valid link
8188  * at a time so one must be canonical.
8189  */
8190 static void
8191 merge_diradd(inodedep, newdap)
8192 	struct inodedep *inodedep;
8193 	struct diradd *newdap;
8194 {
8195 	struct diradd *olddap;
8196 	struct mkdir *mkdir, *nextmd;
8197 	short state;
8198 
8199 	olddap = inodedep->id_mkdiradd;
8200 	inodedep->id_mkdiradd = newdap;
8201 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8202 		newdap->da_state &= ~DEPCOMPLETE;
8203 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8204 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8205 			if (mkdir->md_diradd != olddap)
8206 				continue;
8207 			mkdir->md_diradd = newdap;
8208 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8209 			newdap->da_state |= state;
8210 			olddap->da_state &= ~state;
8211 			if ((olddap->da_state &
8212 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8213 				break;
8214 		}
8215 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8216 			panic("merge_diradd: unfound ref");
8217 	}
8218 	/*
8219 	 * Any mkdir related journal items are not safe to be freed until
8220 	 * the new name is stable.
8221 	 */
8222 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8223 	olddap->da_state |= DEPCOMPLETE;
8224 	complete_diradd(olddap);
8225 }
8226 
8227 /*
8228  * Move the diradd to the pending list when all diradd dependencies are
8229  * complete.
8230  */
8231 static void
8232 complete_diradd(dap)
8233 	struct diradd *dap;
8234 {
8235 	struct pagedep *pagedep;
8236 
8237 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8238 		if (dap->da_state & DIRCHG)
8239 			pagedep = dap->da_previous->dm_pagedep;
8240 		else
8241 			pagedep = dap->da_pagedep;
8242 		LIST_REMOVE(dap, da_pdlist);
8243 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8244 	}
8245 }
8246 
8247 /*
8248  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8249  * add entries and conditonally journal the remove.
8250  */
8251 static void
8252 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8253 	struct diradd *dap;
8254 	struct dirrem *dirrem;
8255 	struct jremref *jremref;
8256 	struct jremref *dotremref;
8257 	struct jremref *dotdotremref;
8258 {
8259 	struct inodedep *inodedep;
8260 	struct jaddref *jaddref;
8261 	struct inoref *inoref;
8262 	struct mkdir *mkdir;
8263 
8264 	/*
8265 	 * If no remove references were allocated we're on a non-journaled
8266 	 * filesystem and can skip the cancel step.
8267 	 */
8268 	if (jremref == NULL) {
8269 		free_diradd(dap, NULL);
8270 		return;
8271 	}
8272 	/*
8273 	 * Cancel the primary name an free it if it does not require
8274 	 * journaling.
8275 	 */
8276 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8277 	    0, &inodedep) != 0) {
8278 		/* Abort the addref that reference this diradd.  */
8279 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8280 			if (inoref->if_list.wk_type != D_JADDREF)
8281 				continue;
8282 			jaddref = (struct jaddref *)inoref;
8283 			if (jaddref->ja_diradd != dap)
8284 				continue;
8285 			if (cancel_jaddref(jaddref, inodedep,
8286 			    &dirrem->dm_jwork) == 0) {
8287 				free_jremref(jremref);
8288 				jremref = NULL;
8289 			}
8290 			break;
8291 		}
8292 	}
8293 	/*
8294 	 * Cancel subordinate names and free them if they do not require
8295 	 * journaling.
8296 	 */
8297 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8298 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8299 			if (mkdir->md_diradd != dap)
8300 				continue;
8301 			if ((jaddref = mkdir->md_jaddref) == NULL)
8302 				continue;
8303 			mkdir->md_jaddref = NULL;
8304 			if (mkdir->md_state & MKDIR_PARENT) {
8305 				if (cancel_jaddref(jaddref, NULL,
8306 				    &dirrem->dm_jwork) == 0) {
8307 					free_jremref(dotdotremref);
8308 					dotdotremref = NULL;
8309 				}
8310 			} else {
8311 				if (cancel_jaddref(jaddref, inodedep,
8312 				    &dirrem->dm_jwork) == 0) {
8313 					free_jremref(dotremref);
8314 					dotremref = NULL;
8315 				}
8316 			}
8317 		}
8318 	}
8319 
8320 	if (jremref)
8321 		journal_jremref(dirrem, jremref, inodedep);
8322 	if (dotremref)
8323 		journal_jremref(dirrem, dotremref, inodedep);
8324 	if (dotdotremref)
8325 		journal_jremref(dirrem, dotdotremref, NULL);
8326 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8327 	free_diradd(dap, &dirrem->dm_jwork);
8328 }
8329 
8330 /*
8331  * Free a diradd dependency structure. This routine must be called
8332  * with splbio interrupts blocked.
8333  */
8334 static void
8335 free_diradd(dap, wkhd)
8336 	struct diradd *dap;
8337 	struct workhead *wkhd;
8338 {
8339 	struct dirrem *dirrem;
8340 	struct pagedep *pagedep;
8341 	struct inodedep *inodedep;
8342 	struct mkdir *mkdir, *nextmd;
8343 
8344 	mtx_assert(&lk, MA_OWNED);
8345 	LIST_REMOVE(dap, da_pdlist);
8346 	if (dap->da_state & ONWORKLIST)
8347 		WORKLIST_REMOVE(&dap->da_list);
8348 	if ((dap->da_state & DIRCHG) == 0) {
8349 		pagedep = dap->da_pagedep;
8350 	} else {
8351 		dirrem = dap->da_previous;
8352 		pagedep = dirrem->dm_pagedep;
8353 		dirrem->dm_dirinum = pagedep->pd_ino;
8354 		dirrem->dm_state |= COMPLETE;
8355 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8356 			add_to_worklist(&dirrem->dm_list, 0);
8357 	}
8358 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8359 	    0, &inodedep) != 0)
8360 		if (inodedep->id_mkdiradd == dap)
8361 			inodedep->id_mkdiradd = NULL;
8362 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8363 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8364 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8365 			if (mkdir->md_diradd != dap)
8366 				continue;
8367 			dap->da_state &=
8368 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8369 			LIST_REMOVE(mkdir, md_mkdirs);
8370 			if (mkdir->md_state & ONWORKLIST)
8371 				WORKLIST_REMOVE(&mkdir->md_list);
8372 			if (mkdir->md_jaddref != NULL)
8373 				panic("free_diradd: Unexpected jaddref");
8374 			WORKITEM_FREE(mkdir, D_MKDIR);
8375 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8376 				break;
8377 		}
8378 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8379 			panic("free_diradd: unfound ref");
8380 	}
8381 	if (inodedep)
8382 		free_inodedep(inodedep);
8383 	/*
8384 	 * Free any journal segments waiting for the directory write.
8385 	 */
8386 	handle_jwork(&dap->da_jwork);
8387 	WORKITEM_FREE(dap, D_DIRADD);
8388 }
8389 
8390 /*
8391  * Directory entry removal dependencies.
8392  *
8393  * When removing a directory entry, the entry's inode pointer must be
8394  * zero'ed on disk before the corresponding inode's link count is decremented
8395  * (possibly freeing the inode for re-use). This dependency is handled by
8396  * updating the directory entry but delaying the inode count reduction until
8397  * after the directory block has been written to disk. After this point, the
8398  * inode count can be decremented whenever it is convenient.
8399  */
8400 
8401 /*
8402  * This routine should be called immediately after removing
8403  * a directory entry.  The inode's link count should not be
8404  * decremented by the calling procedure -- the soft updates
8405  * code will do this task when it is safe.
8406  */
8407 void
8408 softdep_setup_remove(bp, dp, ip, isrmdir)
8409 	struct buf *bp;		/* buffer containing directory block */
8410 	struct inode *dp;	/* inode for the directory being modified */
8411 	struct inode *ip;	/* inode for directory entry being removed */
8412 	int isrmdir;		/* indicates if doing RMDIR */
8413 {
8414 	struct dirrem *dirrem, *prevdirrem;
8415 	struct inodedep *inodedep;
8416 	int direct;
8417 
8418 	/*
8419 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8420 	 * newdirrem() to setup the full directory remove which requires
8421 	 * isrmdir > 1.
8422 	 */
8423 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8424 	/*
8425 	 * Add the dirrem to the inodedep's pending remove list for quick
8426 	 * discovery later.
8427 	 */
8428 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8429 	    &inodedep) == 0)
8430 		panic("softdep_setup_remove: Lost inodedep.");
8431 	dirrem->dm_state |= ONDEPLIST;
8432 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8433 
8434 	/*
8435 	 * If the COMPLETE flag is clear, then there were no active
8436 	 * entries and we want to roll back to a zeroed entry until
8437 	 * the new inode is committed to disk. If the COMPLETE flag is
8438 	 * set then we have deleted an entry that never made it to
8439 	 * disk. If the entry we deleted resulted from a name change,
8440 	 * then the old name still resides on disk. We cannot delete
8441 	 * its inode (returned to us in prevdirrem) until the zeroed
8442 	 * directory entry gets to disk. The new inode has never been
8443 	 * referenced on the disk, so can be deleted immediately.
8444 	 */
8445 	if ((dirrem->dm_state & COMPLETE) == 0) {
8446 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8447 		    dm_next);
8448 		FREE_LOCK(&lk);
8449 	} else {
8450 		if (prevdirrem != NULL)
8451 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8452 			    prevdirrem, dm_next);
8453 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8454 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8455 		FREE_LOCK(&lk);
8456 		if (direct)
8457 			handle_workitem_remove(dirrem, 0);
8458 	}
8459 }
8460 
8461 /*
8462  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8463  * pd_pendinghd list of a pagedep.
8464  */
8465 static struct diradd *
8466 diradd_lookup(pagedep, offset)
8467 	struct pagedep *pagedep;
8468 	int offset;
8469 {
8470 	struct diradd *dap;
8471 
8472 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8473 		if (dap->da_offset == offset)
8474 			return (dap);
8475 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8476 		if (dap->da_offset == offset)
8477 			return (dap);
8478 	return (NULL);
8479 }
8480 
8481 /*
8482  * Search for a .. diradd dependency in a directory that is being removed.
8483  * If the directory was renamed to a new parent we have a diradd rather
8484  * than a mkdir for the .. entry.  We need to cancel it now before
8485  * it is found in truncate().
8486  */
8487 static struct jremref *
8488 cancel_diradd_dotdot(ip, dirrem, jremref)
8489 	struct inode *ip;
8490 	struct dirrem *dirrem;
8491 	struct jremref *jremref;
8492 {
8493 	struct pagedep *pagedep;
8494 	struct diradd *dap;
8495 	struct worklist *wk;
8496 
8497 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8498 	    &pagedep) == 0)
8499 		return (jremref);
8500 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8501 	if (dap == NULL)
8502 		return (jremref);
8503 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8504 	/*
8505 	 * Mark any journal work as belonging to the parent so it is freed
8506 	 * with the .. reference.
8507 	 */
8508 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8509 		wk->wk_state |= MKDIR_PARENT;
8510 	return (NULL);
8511 }
8512 
8513 /*
8514  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8515  * replace it with a dirrem/diradd pair as a result of re-parenting a
8516  * directory.  This ensures that we don't simultaneously have a mkdir and
8517  * a diradd for the same .. entry.
8518  */
8519 static struct jremref *
8520 cancel_mkdir_dotdot(ip, dirrem, jremref)
8521 	struct inode *ip;
8522 	struct dirrem *dirrem;
8523 	struct jremref *jremref;
8524 {
8525 	struct inodedep *inodedep;
8526 	struct jaddref *jaddref;
8527 	struct mkdir *mkdir;
8528 	struct diradd *dap;
8529 
8530 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8531 	    &inodedep) == 0)
8532 		panic("cancel_mkdir_dotdot: Lost inodedep");
8533 	dap = inodedep->id_mkdiradd;
8534 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8535 		return (jremref);
8536 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8537 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8538 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8539 			break;
8540 	if (mkdir == NULL)
8541 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8542 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8543 		mkdir->md_jaddref = NULL;
8544 		jaddref->ja_state &= ~MKDIR_PARENT;
8545 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8546 		    &inodedep) == 0)
8547 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8548 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8549 			journal_jremref(dirrem, jremref, inodedep);
8550 			jremref = NULL;
8551 		}
8552 	}
8553 	if (mkdir->md_state & ONWORKLIST)
8554 		WORKLIST_REMOVE(&mkdir->md_list);
8555 	mkdir->md_state |= ALLCOMPLETE;
8556 	complete_mkdir(mkdir);
8557 	return (jremref);
8558 }
8559 
8560 static void
8561 journal_jremref(dirrem, jremref, inodedep)
8562 	struct dirrem *dirrem;
8563 	struct jremref *jremref;
8564 	struct inodedep *inodedep;
8565 {
8566 
8567 	if (inodedep == NULL)
8568 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8569 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8570 			panic("journal_jremref: Lost inodedep");
8571 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8572 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8573 	add_to_journal(&jremref->jr_list);
8574 }
8575 
8576 static void
8577 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8578 	struct dirrem *dirrem;
8579 	struct jremref *jremref;
8580 	struct jremref *dotremref;
8581 	struct jremref *dotdotremref;
8582 {
8583 	struct inodedep *inodedep;
8584 
8585 
8586 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8587 	    &inodedep) == 0)
8588 		panic("dirrem_journal: Lost inodedep");
8589 	journal_jremref(dirrem, jremref, inodedep);
8590 	if (dotremref)
8591 		journal_jremref(dirrem, dotremref, inodedep);
8592 	if (dotdotremref)
8593 		journal_jremref(dirrem, dotdotremref, NULL);
8594 }
8595 
8596 /*
8597  * Allocate a new dirrem if appropriate and return it along with
8598  * its associated pagedep. Called without a lock, returns with lock.
8599  */
8600 static struct dirrem *
8601 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8602 	struct buf *bp;		/* buffer containing directory block */
8603 	struct inode *dp;	/* inode for the directory being modified */
8604 	struct inode *ip;	/* inode for directory entry being removed */
8605 	int isrmdir;		/* indicates if doing RMDIR */
8606 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8607 {
8608 	int offset;
8609 	ufs_lbn_t lbn;
8610 	struct diradd *dap;
8611 	struct dirrem *dirrem;
8612 	struct pagedep *pagedep;
8613 	struct jremref *jremref;
8614 	struct jremref *dotremref;
8615 	struct jremref *dotdotremref;
8616 	struct vnode *dvp;
8617 
8618 	/*
8619 	 * Whiteouts have no deletion dependencies.
8620 	 */
8621 	if (ip == NULL)
8622 		panic("newdirrem: whiteout");
8623 	dvp = ITOV(dp);
8624 	/*
8625 	 * If we are over our limit, try to improve the situation.
8626 	 * Limiting the number of dirrem structures will also limit
8627 	 * the number of freefile and freeblks structures.
8628 	 */
8629 	ACQUIRE_LOCK(&lk);
8630 	if (!(ip->i_flags & SF_SNAPSHOT) &&
8631 	    dep_current[D_DIRREM] > max_softdeps / 2)
8632 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8633 	FREE_LOCK(&lk);
8634 	dirrem = malloc(sizeof(struct dirrem),
8635 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8636 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8637 	LIST_INIT(&dirrem->dm_jremrefhd);
8638 	LIST_INIT(&dirrem->dm_jwork);
8639 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8640 	dirrem->dm_oldinum = ip->i_number;
8641 	*prevdirremp = NULL;
8642 	/*
8643 	 * Allocate remove reference structures to track journal write
8644 	 * dependencies.  We will always have one for the link and
8645 	 * when doing directories we will always have one more for dot.
8646 	 * When renaming a directory we skip the dotdot link change so
8647 	 * this is not needed.
8648 	 */
8649 	jremref = dotremref = dotdotremref = NULL;
8650 	if (DOINGSUJ(dvp)) {
8651 		if (isrmdir) {
8652 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8653 			    ip->i_effnlink + 2);
8654 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8655 			    ip->i_effnlink + 1);
8656 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8657 			    dp->i_effnlink + 1);
8658 			dotdotremref->jr_state |= MKDIR_PARENT;
8659 		} else
8660 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8661 			    ip->i_effnlink + 1);
8662 	}
8663 	ACQUIRE_LOCK(&lk);
8664 	lbn = lblkno(dp->i_fs, dp->i_offset);
8665 	offset = blkoff(dp->i_fs, dp->i_offset);
8666 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8667 	    &pagedep);
8668 	dirrem->dm_pagedep = pagedep;
8669 	dirrem->dm_offset = offset;
8670 	/*
8671 	 * If we're renaming a .. link to a new directory, cancel any
8672 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8673 	 * the jremref is preserved for any potential diradd in this
8674 	 * location.  This can not coincide with a rmdir.
8675 	 */
8676 	if (dp->i_offset == DOTDOT_OFFSET) {
8677 		if (isrmdir)
8678 			panic("newdirrem: .. directory change during remove?");
8679 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8680 	}
8681 	/*
8682 	 * If we're removing a directory search for the .. dependency now and
8683 	 * cancel it.  Any pending journal work will be added to the dirrem
8684 	 * to be completed when the workitem remove completes.
8685 	 */
8686 	if (isrmdir)
8687 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8688 	/*
8689 	 * Check for a diradd dependency for the same directory entry.
8690 	 * If present, then both dependencies become obsolete and can
8691 	 * be de-allocated.
8692 	 */
8693 	dap = diradd_lookup(pagedep, offset);
8694 	if (dap == NULL) {
8695 		/*
8696 		 * Link the jremref structures into the dirrem so they are
8697 		 * written prior to the pagedep.
8698 		 */
8699 		if (jremref)
8700 			dirrem_journal(dirrem, jremref, dotremref,
8701 			    dotdotremref);
8702 		return (dirrem);
8703 	}
8704 	/*
8705 	 * Must be ATTACHED at this point.
8706 	 */
8707 	if ((dap->da_state & ATTACHED) == 0)
8708 		panic("newdirrem: not ATTACHED");
8709 	if (dap->da_newinum != ip->i_number)
8710 		panic("newdirrem: inum %d should be %d",
8711 		    ip->i_number, dap->da_newinum);
8712 	/*
8713 	 * If we are deleting a changed name that never made it to disk,
8714 	 * then return the dirrem describing the previous inode (which
8715 	 * represents the inode currently referenced from this entry on disk).
8716 	 */
8717 	if ((dap->da_state & DIRCHG) != 0) {
8718 		*prevdirremp = dap->da_previous;
8719 		dap->da_state &= ~DIRCHG;
8720 		dap->da_pagedep = pagedep;
8721 	}
8722 	/*
8723 	 * We are deleting an entry that never made it to disk.
8724 	 * Mark it COMPLETE so we can delete its inode immediately.
8725 	 */
8726 	dirrem->dm_state |= COMPLETE;
8727 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8728 #ifdef SUJ_DEBUG
8729 	if (isrmdir == 0) {
8730 		struct worklist *wk;
8731 
8732 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8733 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8734 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8735 	}
8736 #endif
8737 
8738 	return (dirrem);
8739 }
8740 
8741 /*
8742  * Directory entry change dependencies.
8743  *
8744  * Changing an existing directory entry requires that an add operation
8745  * be completed first followed by a deletion. The semantics for the addition
8746  * are identical to the description of adding a new entry above except
8747  * that the rollback is to the old inode number rather than zero. Once
8748  * the addition dependency is completed, the removal is done as described
8749  * in the removal routine above.
8750  */
8751 
8752 /*
8753  * This routine should be called immediately after changing
8754  * a directory entry.  The inode's link count should not be
8755  * decremented by the calling procedure -- the soft updates
8756  * code will perform this task when it is safe.
8757  */
8758 void
8759 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8760 	struct buf *bp;		/* buffer containing directory block */
8761 	struct inode *dp;	/* inode for the directory being modified */
8762 	struct inode *ip;	/* inode for directory entry being removed */
8763 	ino_t newinum;		/* new inode number for changed entry */
8764 	int isrmdir;		/* indicates if doing RMDIR */
8765 {
8766 	int offset;
8767 	struct diradd *dap = NULL;
8768 	struct dirrem *dirrem, *prevdirrem;
8769 	struct pagedep *pagedep;
8770 	struct inodedep *inodedep;
8771 	struct jaddref *jaddref;
8772 	struct mount *mp;
8773 
8774 	offset = blkoff(dp->i_fs, dp->i_offset);
8775 	mp = UFSTOVFS(dp->i_ump);
8776 
8777 	/*
8778 	 * Whiteouts do not need diradd dependencies.
8779 	 */
8780 	if (newinum != WINO) {
8781 		dap = malloc(sizeof(struct diradd),
8782 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
8783 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
8784 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
8785 		dap->da_offset = offset;
8786 		dap->da_newinum = newinum;
8787 		LIST_INIT(&dap->da_jwork);
8788 	}
8789 
8790 	/*
8791 	 * Allocate a new dirrem and ACQUIRE_LOCK.
8792 	 */
8793 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8794 	pagedep = dirrem->dm_pagedep;
8795 	/*
8796 	 * The possible values for isrmdir:
8797 	 *	0 - non-directory file rename
8798 	 *	1 - directory rename within same directory
8799 	 *   inum - directory rename to new directory of given inode number
8800 	 * When renaming to a new directory, we are both deleting and
8801 	 * creating a new directory entry, so the link count on the new
8802 	 * directory should not change. Thus we do not need the followup
8803 	 * dirrem which is usually done in handle_workitem_remove. We set
8804 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
8805 	 * followup dirrem.
8806 	 */
8807 	if (isrmdir > 1)
8808 		dirrem->dm_state |= DIRCHG;
8809 
8810 	/*
8811 	 * Whiteouts have no additional dependencies,
8812 	 * so just put the dirrem on the correct list.
8813 	 */
8814 	if (newinum == WINO) {
8815 		if ((dirrem->dm_state & COMPLETE) == 0) {
8816 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
8817 			    dm_next);
8818 		} else {
8819 			dirrem->dm_dirinum = pagedep->pd_ino;
8820 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8821 				add_to_worklist(&dirrem->dm_list, 0);
8822 		}
8823 		FREE_LOCK(&lk);
8824 		return;
8825 	}
8826 	/*
8827 	 * Add the dirrem to the inodedep's pending remove list for quick
8828 	 * discovery later.  A valid nlinkdelta ensures that this lookup
8829 	 * will not fail.
8830 	 */
8831 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
8832 		panic("softdep_setup_directory_change: Lost inodedep.");
8833 	dirrem->dm_state |= ONDEPLIST;
8834 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8835 
8836 	/*
8837 	 * If the COMPLETE flag is clear, then there were no active
8838 	 * entries and we want to roll back to the previous inode until
8839 	 * the new inode is committed to disk. If the COMPLETE flag is
8840 	 * set, then we have deleted an entry that never made it to disk.
8841 	 * If the entry we deleted resulted from a name change, then the old
8842 	 * inode reference still resides on disk. Any rollback that we do
8843 	 * needs to be to that old inode (returned to us in prevdirrem). If
8844 	 * the entry we deleted resulted from a create, then there is
8845 	 * no entry on the disk, so we want to roll back to zero rather
8846 	 * than the uncommitted inode. In either of the COMPLETE cases we
8847 	 * want to immediately free the unwritten and unreferenced inode.
8848 	 */
8849 	if ((dirrem->dm_state & COMPLETE) == 0) {
8850 		dap->da_previous = dirrem;
8851 	} else {
8852 		if (prevdirrem != NULL) {
8853 			dap->da_previous = prevdirrem;
8854 		} else {
8855 			dap->da_state &= ~DIRCHG;
8856 			dap->da_pagedep = pagedep;
8857 		}
8858 		dirrem->dm_dirinum = pagedep->pd_ino;
8859 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8860 			add_to_worklist(&dirrem->dm_list, 0);
8861 	}
8862 	/*
8863 	 * Lookup the jaddref for this journal entry.  We must finish
8864 	 * initializing it and make the diradd write dependent on it.
8865 	 * If we're not journaling Put it on the id_bufwait list if the inode
8866 	 * is not yet written. If it is written, do the post-inode write
8867 	 * processing to put it on the id_pendinghd list.
8868 	 */
8869 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8870 	if (MOUNTEDSUJ(mp)) {
8871 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8872 		    inoreflst);
8873 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8874 		    ("softdep_setup_directory_change: bad jaddref %p",
8875 		    jaddref));
8876 		jaddref->ja_diroff = dp->i_offset;
8877 		jaddref->ja_diradd = dap;
8878 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8879 		    dap, da_pdlist);
8880 		add_to_journal(&jaddref->ja_list);
8881 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8882 		dap->da_state |= COMPLETE;
8883 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8884 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
8885 	} else {
8886 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8887 		    dap, da_pdlist);
8888 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8889 	}
8890 	/*
8891 	 * If we're making a new name for a directory that has not been
8892 	 * committed when need to move the dot and dotdot references to
8893 	 * this new name.
8894 	 */
8895 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
8896 		merge_diradd(inodedep, dap);
8897 	FREE_LOCK(&lk);
8898 }
8899 
8900 /*
8901  * Called whenever the link count on an inode is changed.
8902  * It creates an inode dependency so that the new reference(s)
8903  * to the inode cannot be committed to disk until the updated
8904  * inode has been written.
8905  */
8906 void
8907 softdep_change_linkcnt(ip)
8908 	struct inode *ip;	/* the inode with the increased link count */
8909 {
8910 	struct inodedep *inodedep;
8911 
8912 	ACQUIRE_LOCK(&lk);
8913 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
8914 	if (ip->i_nlink < ip->i_effnlink)
8915 		panic("softdep_change_linkcnt: bad delta");
8916 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
8917 	FREE_LOCK(&lk);
8918 }
8919 
8920 /*
8921  * Attach a sbdep dependency to the superblock buf so that we can keep
8922  * track of the head of the linked list of referenced but unlinked inodes.
8923  */
8924 void
8925 softdep_setup_sbupdate(ump, fs, bp)
8926 	struct ufsmount *ump;
8927 	struct fs *fs;
8928 	struct buf *bp;
8929 {
8930 	struct sbdep *sbdep;
8931 	struct worklist *wk;
8932 
8933 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
8934 		return;
8935 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
8936 		if (wk->wk_type == D_SBDEP)
8937 			break;
8938 	if (wk != NULL)
8939 		return;
8940 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
8941 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
8942 	sbdep->sb_fs = fs;
8943 	sbdep->sb_ump = ump;
8944 	ACQUIRE_LOCK(&lk);
8945 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
8946 	FREE_LOCK(&lk);
8947 }
8948 
8949 /*
8950  * Return the first unlinked inodedep which is ready to be the head of the
8951  * list.  The inodedep and all those after it must have valid next pointers.
8952  */
8953 static struct inodedep *
8954 first_unlinked_inodedep(ump)
8955 	struct ufsmount *ump;
8956 {
8957 	struct inodedep *inodedep;
8958 	struct inodedep *idp;
8959 
8960 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
8961 	    inodedep; inodedep = idp) {
8962 		if ((inodedep->id_state & UNLINKNEXT) == 0)
8963 			return (NULL);
8964 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
8965 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
8966 			break;
8967 		if ((inodedep->id_state & UNLINKPREV) == 0)
8968 			panic("first_unlinked_inodedep: prev != next");
8969 	}
8970 	if (inodedep == NULL)
8971 		return (NULL);
8972 
8973 	return (inodedep);
8974 }
8975 
8976 /*
8977  * Set the sujfree unlinked head pointer prior to writing a superblock.
8978  */
8979 static void
8980 initiate_write_sbdep(sbdep)
8981 	struct sbdep *sbdep;
8982 {
8983 	struct inodedep *inodedep;
8984 	struct fs *bpfs;
8985 	struct fs *fs;
8986 
8987 	bpfs = sbdep->sb_fs;
8988 	fs = sbdep->sb_ump->um_fs;
8989 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
8990 	if (inodedep) {
8991 		fs->fs_sujfree = inodedep->id_ino;
8992 		inodedep->id_state |= UNLINKPREV;
8993 	} else
8994 		fs->fs_sujfree = 0;
8995 	bpfs->fs_sujfree = fs->fs_sujfree;
8996 }
8997 
8998 /*
8999  * After a superblock is written determine whether it must be written again
9000  * due to a changing unlinked list head.
9001  */
9002 static int
9003 handle_written_sbdep(sbdep, bp)
9004 	struct sbdep *sbdep;
9005 	struct buf *bp;
9006 {
9007 	struct inodedep *inodedep;
9008 	struct mount *mp;
9009 	struct fs *fs;
9010 
9011 	fs = sbdep->sb_fs;
9012 	mp = UFSTOVFS(sbdep->sb_ump);
9013 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9014 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9015 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9016 		bdirty(bp);
9017 		return (1);
9018 	}
9019 	WORKITEM_FREE(sbdep, D_SBDEP);
9020 	if (fs->fs_sujfree == 0)
9021 		return (0);
9022 	if (inodedep_lookup(mp, fs->fs_sujfree, 0, &inodedep) == 0)
9023 		panic("handle_written_sbdep: lost inodedep");
9024 	/*
9025 	 * Now that we have a record of this inode in stable store allow it
9026 	 * to be written to free up pending work.  Inodes may see a lot of
9027 	 * write activity after they are unlinked which we must not hold up.
9028 	 */
9029 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9030 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9031 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9032 			    inodedep, inodedep->id_state);
9033 		if (inodedep->id_state & UNLINKONLIST)
9034 			break;
9035 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9036 	}
9037 
9038 	return (0);
9039 }
9040 
9041 /*
9042  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9043  */
9044 static void
9045 unlinked_inodedep(mp, inodedep)
9046 	struct mount *mp;
9047 	struct inodedep *inodedep;
9048 {
9049 	struct ufsmount *ump;
9050 
9051 	if (MOUNTEDSUJ(mp) == 0)
9052 		return;
9053 	ump = VFSTOUFS(mp);
9054 	ump->um_fs->fs_fmod = 1;
9055 	inodedep->id_state |= UNLINKED;
9056 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9057 }
9058 
9059 /*
9060  * Remove an inodedep from the unlinked inodedep list.  This may require
9061  * disk writes if the inode has made it that far.
9062  */
9063 static void
9064 clear_unlinked_inodedep(inodedep)
9065 	struct inodedep *inodedep;
9066 {
9067 	struct ufsmount *ump;
9068 	struct inodedep *idp;
9069 	struct inodedep *idn;
9070 	struct fs *fs;
9071 	struct buf *bp;
9072 	ino_t ino;
9073 	ino_t nino;
9074 	ino_t pino;
9075 	int error;
9076 
9077 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9078 	fs = ump->um_fs;
9079 	ino = inodedep->id_ino;
9080 	error = 0;
9081 	for (;;) {
9082 		/*
9083 		 * If nothing has yet been written simply remove us from
9084 		 * the in memory list and return.  This is the most common
9085 		 * case where handle_workitem_remove() loses the final
9086 		 * reference.
9087 		 */
9088 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9089 			break;
9090 		/*
9091 		 * If we have a NEXT pointer and no PREV pointer we can simply
9092 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9093 		 * careful not to clear PREV if the superblock points at
9094 		 * next as well.
9095 		 */
9096 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9097 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9098 			if (idn && fs->fs_sujfree != idn->id_ino)
9099 				idn->id_state &= ~UNLINKPREV;
9100 			break;
9101 		}
9102 		/*
9103 		 * Here we have an inodedep which is actually linked into
9104 		 * the list.  We must remove it by forcing a write to the
9105 		 * link before us, whether it be the superblock or an inode.
9106 		 * Unfortunately the list may change while we're waiting
9107 		 * on the buf lock for either resource so we must loop until
9108 		 * we lock the right one.  If both the superblock and an
9109 		 * inode point to this inode we must clear the inode first
9110 		 * followed by the superblock.
9111 		 */
9112 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9113 		pino = 0;
9114 		if (idp && (idp->id_state & UNLINKNEXT))
9115 			pino = idp->id_ino;
9116 		FREE_LOCK(&lk);
9117 		if (pino == 0)
9118 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9119 			    (int)fs->fs_sbsize, 0, 0, 0);
9120 		else
9121 			error = bread(ump->um_devvp,
9122 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9123 			    (int)fs->fs_bsize, NOCRED, &bp);
9124 		ACQUIRE_LOCK(&lk);
9125 		if (error)
9126 			break;
9127 		/* If the list has changed restart the loop. */
9128 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9129 		nino = 0;
9130 		if (idp && (idp->id_state & UNLINKNEXT))
9131 			nino = idp->id_ino;
9132 		if (nino != pino ||
9133 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9134 			FREE_LOCK(&lk);
9135 			brelse(bp);
9136 			ACQUIRE_LOCK(&lk);
9137 			continue;
9138 		}
9139 		/*
9140 		 * Remove us from the in memory list.  After this we cannot
9141 		 * access the inodedep.
9142 		 */
9143 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9144 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
9145 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9146 		/*
9147 		 * Determine the next inode number.
9148 		 */
9149 		nino = 0;
9150 		if (idn) {
9151 			/*
9152 			 * If next isn't on the list we can just clear prev's
9153 			 * state and schedule it to be fixed later.  No need
9154 			 * to synchronously write if we're not in the real
9155 			 * list.
9156 			 */
9157 			if ((idn->id_state & UNLINKPREV) == 0 && pino != 0) {
9158 				idp->id_state &= ~UNLINKNEXT;
9159 				if ((idp->id_state & ONWORKLIST) == 0)
9160 					WORKLIST_INSERT(&bp->b_dep,
9161 					    &idp->id_list);
9162 				FREE_LOCK(&lk);
9163 				bawrite(bp);
9164 				ACQUIRE_LOCK(&lk);
9165 				return;
9166 			}
9167 			nino = idn->id_ino;
9168 		}
9169 		FREE_LOCK(&lk);
9170 		/*
9171 		 * The predecessor's next pointer is manually updated here
9172 		 * so that the NEXT flag is never cleared for an element
9173 		 * that is in the list.
9174 		 */
9175 		if (pino == 0) {
9176 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9177 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9178 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9179 			    bp);
9180 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9181 			((struct ufs1_dinode *)bp->b_data +
9182 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9183 		else
9184 			((struct ufs2_dinode *)bp->b_data +
9185 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9186 		/*
9187 		 * If the bwrite fails we have no recourse to recover.  The
9188 		 * filesystem is corrupted already.
9189 		 */
9190 		bwrite(bp);
9191 		ACQUIRE_LOCK(&lk);
9192 		/*
9193 		 * If the superblock pointer still needs to be cleared force
9194 		 * a write here.
9195 		 */
9196 		if (fs->fs_sujfree == ino) {
9197 			FREE_LOCK(&lk);
9198 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9199 			    (int)fs->fs_sbsize, 0, 0, 0);
9200 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9201 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9202 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9203 			    bp);
9204 			bwrite(bp);
9205 			ACQUIRE_LOCK(&lk);
9206 		}
9207 		if (fs->fs_sujfree != ino)
9208 			return;
9209 		panic("clear_unlinked_inodedep: Failed to clear free head");
9210 	}
9211 	if (inodedep->id_ino == fs->fs_sujfree)
9212 		panic("clear_unlinked_inodedep: Freeing head of free list");
9213 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
9214 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9215 	return;
9216 }
9217 
9218 /*
9219  * This workitem decrements the inode's link count.
9220  * If the link count reaches zero, the file is removed.
9221  */
9222 static int
9223 handle_workitem_remove(dirrem, flags)
9224 	struct dirrem *dirrem;
9225 	int flags;
9226 {
9227 	struct inodedep *inodedep;
9228 	struct workhead dotdotwk;
9229 	struct worklist *wk;
9230 	struct ufsmount *ump;
9231 	struct mount *mp;
9232 	struct vnode *vp;
9233 	struct inode *ip;
9234 	ino_t oldinum;
9235 
9236 	if (dirrem->dm_state & ONWORKLIST)
9237 		panic("handle_workitem_remove: dirrem %p still on worklist",
9238 		    dirrem);
9239 	oldinum = dirrem->dm_oldinum;
9240 	mp = dirrem->dm_list.wk_mp;
9241 	ump = VFSTOUFS(mp);
9242 	flags |= LK_EXCLUSIVE;
9243 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9244 		return (EBUSY);
9245 	ip = VTOI(vp);
9246 	ACQUIRE_LOCK(&lk);
9247 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9248 		panic("handle_workitem_remove: lost inodedep");
9249 	if (dirrem->dm_state & ONDEPLIST)
9250 		LIST_REMOVE(dirrem, dm_inonext);
9251 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9252 	    ("handle_workitem_remove:  Journal entries not written."));
9253 
9254 	/*
9255 	 * Move all dependencies waiting on the remove to complete
9256 	 * from the dirrem to the inode inowait list to be completed
9257 	 * after the inode has been updated and written to disk.  Any
9258 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9259 	 * is removed.
9260 	 */
9261 	LIST_INIT(&dotdotwk);
9262 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9263 		WORKLIST_REMOVE(wk);
9264 		if (wk->wk_state & MKDIR_PARENT) {
9265 			wk->wk_state &= ~MKDIR_PARENT;
9266 			WORKLIST_INSERT(&dotdotwk, wk);
9267 			continue;
9268 		}
9269 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9270 	}
9271 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9272 	/*
9273 	 * Normal file deletion.
9274 	 */
9275 	if ((dirrem->dm_state & RMDIR) == 0) {
9276 		ip->i_nlink--;
9277 		DIP_SET(ip, i_nlink, ip->i_nlink);
9278 		ip->i_flag |= IN_CHANGE;
9279 		if (ip->i_nlink < ip->i_effnlink)
9280 			panic("handle_workitem_remove: bad file delta");
9281 		if (ip->i_nlink == 0)
9282 			unlinked_inodedep(mp, inodedep);
9283 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9284 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9285 		    ("handle_workitem_remove: worklist not empty. %s",
9286 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9287 		WORKITEM_FREE(dirrem, D_DIRREM);
9288 		FREE_LOCK(&lk);
9289 		goto out;
9290 	}
9291 	/*
9292 	 * Directory deletion. Decrement reference count for both the
9293 	 * just deleted parent directory entry and the reference for ".".
9294 	 * Arrange to have the reference count on the parent decremented
9295 	 * to account for the loss of "..".
9296 	 */
9297 	ip->i_nlink -= 2;
9298 	DIP_SET(ip, i_nlink, ip->i_nlink);
9299 	ip->i_flag |= IN_CHANGE;
9300 	if (ip->i_nlink < ip->i_effnlink)
9301 		panic("handle_workitem_remove: bad dir delta");
9302 	if (ip->i_nlink == 0)
9303 		unlinked_inodedep(mp, inodedep);
9304 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9305 	/*
9306 	 * Rename a directory to a new parent. Since, we are both deleting
9307 	 * and creating a new directory entry, the link count on the new
9308 	 * directory should not change. Thus we skip the followup dirrem.
9309 	 */
9310 	if (dirrem->dm_state & DIRCHG) {
9311 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9312 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9313 		WORKITEM_FREE(dirrem, D_DIRREM);
9314 		FREE_LOCK(&lk);
9315 		goto out;
9316 	}
9317 	dirrem->dm_state = ONDEPLIST;
9318 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9319 	/*
9320 	 * Place the dirrem on the parent's diremhd list.
9321 	 */
9322 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9323 		panic("handle_workitem_remove: lost dir inodedep");
9324 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9325 	/*
9326 	 * If the allocated inode has never been written to disk, then
9327 	 * the on-disk inode is zero'ed and we can remove the file
9328 	 * immediately.  When journaling if the inode has been marked
9329 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9330 	 */
9331 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9332 	if (inodedep == NULL ||
9333 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9334 	    check_inode_unwritten(inodedep)) {
9335 		FREE_LOCK(&lk);
9336 		vput(vp);
9337 		return handle_workitem_remove(dirrem, flags);
9338 	}
9339 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9340 	FREE_LOCK(&lk);
9341 	ip->i_flag |= IN_CHANGE;
9342 out:
9343 	ffs_update(vp, 0);
9344 	vput(vp);
9345 	return (0);
9346 }
9347 
9348 /*
9349  * Inode de-allocation dependencies.
9350  *
9351  * When an inode's link count is reduced to zero, it can be de-allocated. We
9352  * found it convenient to postpone de-allocation until after the inode is
9353  * written to disk with its new link count (zero).  At this point, all of the
9354  * on-disk inode's block pointers are nullified and, with careful dependency
9355  * list ordering, all dependencies related to the inode will be satisfied and
9356  * the corresponding dependency structures de-allocated.  So, if/when the
9357  * inode is reused, there will be no mixing of old dependencies with new
9358  * ones.  This artificial dependency is set up by the block de-allocation
9359  * procedure above (softdep_setup_freeblocks) and completed by the
9360  * following procedure.
9361  */
9362 static void
9363 handle_workitem_freefile(freefile)
9364 	struct freefile *freefile;
9365 {
9366 	struct workhead wkhd;
9367 	struct fs *fs;
9368 	struct inodedep *idp;
9369 	struct ufsmount *ump;
9370 	int error;
9371 
9372 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9373 	fs = ump->um_fs;
9374 #ifdef DEBUG
9375 	ACQUIRE_LOCK(&lk);
9376 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9377 	FREE_LOCK(&lk);
9378 	if (error)
9379 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9380 #endif
9381 	UFS_LOCK(ump);
9382 	fs->fs_pendinginodes -= 1;
9383 	UFS_UNLOCK(ump);
9384 	LIST_INIT(&wkhd);
9385 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9386 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9387 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9388 		softdep_error("handle_workitem_freefile", error);
9389 	ACQUIRE_LOCK(&lk);
9390 	WORKITEM_FREE(freefile, D_FREEFILE);
9391 	FREE_LOCK(&lk);
9392 }
9393 
9394 
9395 /*
9396  * Helper function which unlinks marker element from work list and returns
9397  * the next element on the list.
9398  */
9399 static __inline struct worklist *
9400 markernext(struct worklist *marker)
9401 {
9402 	struct worklist *next;
9403 
9404 	next = LIST_NEXT(marker, wk_list);
9405 	LIST_REMOVE(marker, wk_list);
9406 	return next;
9407 }
9408 
9409 /*
9410  * Disk writes.
9411  *
9412  * The dependency structures constructed above are most actively used when file
9413  * system blocks are written to disk.  No constraints are placed on when a
9414  * block can be written, but unsatisfied update dependencies are made safe by
9415  * modifying (or replacing) the source memory for the duration of the disk
9416  * write.  When the disk write completes, the memory block is again brought
9417  * up-to-date.
9418  *
9419  * In-core inode structure reclamation.
9420  *
9421  * Because there are a finite number of "in-core" inode structures, they are
9422  * reused regularly.  By transferring all inode-related dependencies to the
9423  * in-memory inode block and indexing them separately (via "inodedep"s), we
9424  * can allow "in-core" inode structures to be reused at any time and avoid
9425  * any increase in contention.
9426  *
9427  * Called just before entering the device driver to initiate a new disk I/O.
9428  * The buffer must be locked, thus, no I/O completion operations can occur
9429  * while we are manipulating its associated dependencies.
9430  */
9431 static void
9432 softdep_disk_io_initiation(bp)
9433 	struct buf *bp;		/* structure describing disk write to occur */
9434 {
9435 	struct worklist *wk;
9436 	struct worklist marker;
9437 	struct inodedep *inodedep;
9438 	struct freeblks *freeblks;
9439 	struct jblkdep *jblkdep;
9440 	struct newblk *newblk;
9441 
9442 	/*
9443 	 * We only care about write operations. There should never
9444 	 * be dependencies for reads.
9445 	 */
9446 	if (bp->b_iocmd != BIO_WRITE)
9447 		panic("softdep_disk_io_initiation: not write");
9448 
9449 	if (bp->b_vflags & BV_BKGRDINPROG)
9450 		panic("softdep_disk_io_initiation: Writing buffer with "
9451 		    "background write in progress: %p", bp);
9452 
9453 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9454 	PHOLD(curproc);			/* Don't swap out kernel stack */
9455 
9456 	ACQUIRE_LOCK(&lk);
9457 	/*
9458 	 * Do any necessary pre-I/O processing.
9459 	 */
9460 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9461 	     wk = markernext(&marker)) {
9462 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9463 		switch (wk->wk_type) {
9464 
9465 		case D_PAGEDEP:
9466 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9467 			continue;
9468 
9469 		case D_INODEDEP:
9470 			inodedep = WK_INODEDEP(wk);
9471 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9472 				initiate_write_inodeblock_ufs1(inodedep, bp);
9473 			else
9474 				initiate_write_inodeblock_ufs2(inodedep, bp);
9475 			continue;
9476 
9477 		case D_INDIRDEP:
9478 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9479 			continue;
9480 
9481 		case D_BMSAFEMAP:
9482 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9483 			continue;
9484 
9485 		case D_JSEG:
9486 			WK_JSEG(wk)->js_buf = NULL;
9487 			continue;
9488 
9489 		case D_FREEBLKS:
9490 			freeblks = WK_FREEBLKS(wk);
9491 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9492 			/*
9493 			 * We have to wait for the freeblks to be journaled
9494 			 * before we can write an inodeblock with updated
9495 			 * pointers.  Be careful to arrange the marker so
9496 			 * we revisit the freeblks if it's not removed by
9497 			 * the first jwait().
9498 			 */
9499 			if (jblkdep != NULL) {
9500 				LIST_REMOVE(&marker, wk_list);
9501 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9502 				jwait(&jblkdep->jb_list, MNT_WAIT);
9503 			}
9504 			continue;
9505 		case D_ALLOCDIRECT:
9506 		case D_ALLOCINDIR:
9507 			/*
9508 			 * We have to wait for the jnewblk to be journaled
9509 			 * before we can write to a block if the contents
9510 			 * may be confused with an earlier file's indirect
9511 			 * at recovery time.  Handle the marker as described
9512 			 * above.
9513 			 */
9514 			newblk = WK_NEWBLK(wk);
9515 			if (newblk->nb_jnewblk != NULL &&
9516 			    indirblk_lookup(newblk->nb_list.wk_mp,
9517 			    newblk->nb_newblkno)) {
9518 				LIST_REMOVE(&marker, wk_list);
9519 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9520 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9521 			}
9522 			continue;
9523 
9524 		case D_SBDEP:
9525 			initiate_write_sbdep(WK_SBDEP(wk));
9526 			continue;
9527 
9528 		case D_MKDIR:
9529 		case D_FREEWORK:
9530 		case D_FREEDEP:
9531 		case D_JSEGDEP:
9532 			continue;
9533 
9534 		default:
9535 			panic("handle_disk_io_initiation: Unexpected type %s",
9536 			    TYPENAME(wk->wk_type));
9537 			/* NOTREACHED */
9538 		}
9539 	}
9540 	FREE_LOCK(&lk);
9541 	PRELE(curproc);			/* Allow swapout of kernel stack */
9542 }
9543 
9544 /*
9545  * Called from within the procedure above to deal with unsatisfied
9546  * allocation dependencies in a directory. The buffer must be locked,
9547  * thus, no I/O completion operations can occur while we are
9548  * manipulating its associated dependencies.
9549  */
9550 static void
9551 initiate_write_filepage(pagedep, bp)
9552 	struct pagedep *pagedep;
9553 	struct buf *bp;
9554 {
9555 	struct jremref *jremref;
9556 	struct jmvref *jmvref;
9557 	struct dirrem *dirrem;
9558 	struct diradd *dap;
9559 	struct direct *ep;
9560 	int i;
9561 
9562 	if (pagedep->pd_state & IOSTARTED) {
9563 		/*
9564 		 * This can only happen if there is a driver that does not
9565 		 * understand chaining. Here biodone will reissue the call
9566 		 * to strategy for the incomplete buffers.
9567 		 */
9568 		printf("initiate_write_filepage: already started\n");
9569 		return;
9570 	}
9571 	pagedep->pd_state |= IOSTARTED;
9572 	/*
9573 	 * Wait for all journal remove dependencies to hit the disk.
9574 	 * We can not allow any potentially conflicting directory adds
9575 	 * to be visible before removes and rollback is too difficult.
9576 	 * lk may be dropped and re-acquired, however we hold the buf
9577 	 * locked so the dependency can not go away.
9578 	 */
9579 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9580 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9581 			jwait(&jremref->jr_list, MNT_WAIT);
9582 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9583 		jwait(&jmvref->jm_list, MNT_WAIT);
9584 	for (i = 0; i < DAHASHSZ; i++) {
9585 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9586 			ep = (struct direct *)
9587 			    ((char *)bp->b_data + dap->da_offset);
9588 			if (ep->d_ino != dap->da_newinum)
9589 				panic("%s: dir inum %d != new %d",
9590 				    "initiate_write_filepage",
9591 				    ep->d_ino, dap->da_newinum);
9592 			if (dap->da_state & DIRCHG)
9593 				ep->d_ino = dap->da_previous->dm_oldinum;
9594 			else
9595 				ep->d_ino = 0;
9596 			dap->da_state &= ~ATTACHED;
9597 			dap->da_state |= UNDONE;
9598 		}
9599 	}
9600 }
9601 
9602 /*
9603  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9604  * Note that any bug fixes made to this routine must be done in the
9605  * version found below.
9606  *
9607  * Called from within the procedure above to deal with unsatisfied
9608  * allocation dependencies in an inodeblock. The buffer must be
9609  * locked, thus, no I/O completion operations can occur while we
9610  * are manipulating its associated dependencies.
9611  */
9612 static void
9613 initiate_write_inodeblock_ufs1(inodedep, bp)
9614 	struct inodedep *inodedep;
9615 	struct buf *bp;			/* The inode block */
9616 {
9617 	struct allocdirect *adp, *lastadp;
9618 	struct ufs1_dinode *dp;
9619 	struct ufs1_dinode *sip;
9620 	struct inoref *inoref;
9621 	struct fs *fs;
9622 	ufs_lbn_t i;
9623 #ifdef INVARIANTS
9624 	ufs_lbn_t prevlbn = 0;
9625 #endif
9626 	int deplist;
9627 
9628 	if (inodedep->id_state & IOSTARTED)
9629 		panic("initiate_write_inodeblock_ufs1: already started");
9630 	inodedep->id_state |= IOSTARTED;
9631 	fs = inodedep->id_fs;
9632 	dp = (struct ufs1_dinode *)bp->b_data +
9633 	    ino_to_fsbo(fs, inodedep->id_ino);
9634 
9635 	/*
9636 	 * If we're on the unlinked list but have not yet written our
9637 	 * next pointer initialize it here.
9638 	 */
9639 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9640 		struct inodedep *inon;
9641 
9642 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9643 		dp->di_freelink = inon ? inon->id_ino : 0;
9644 	}
9645 	/*
9646 	 * If the bitmap is not yet written, then the allocated
9647 	 * inode cannot be written to disk.
9648 	 */
9649 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9650 		if (inodedep->id_savedino1 != NULL)
9651 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9652 		FREE_LOCK(&lk);
9653 		sip = malloc(sizeof(struct ufs1_dinode),
9654 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9655 		ACQUIRE_LOCK(&lk);
9656 		inodedep->id_savedino1 = sip;
9657 		*inodedep->id_savedino1 = *dp;
9658 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9659 		dp->di_gen = inodedep->id_savedino1->di_gen;
9660 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9661 		return;
9662 	}
9663 	/*
9664 	 * If no dependencies, then there is nothing to roll back.
9665 	 */
9666 	inodedep->id_savedsize = dp->di_size;
9667 	inodedep->id_savedextsize = 0;
9668 	inodedep->id_savednlink = dp->di_nlink;
9669 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9670 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9671 		return;
9672 	/*
9673 	 * Revert the link count to that of the first unwritten journal entry.
9674 	 */
9675 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9676 	if (inoref)
9677 		dp->di_nlink = inoref->if_nlink;
9678 	/*
9679 	 * Set the dependencies to busy.
9680 	 */
9681 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9682 	     adp = TAILQ_NEXT(adp, ad_next)) {
9683 #ifdef INVARIANTS
9684 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9685 			panic("softdep_write_inodeblock: lbn order");
9686 		prevlbn = adp->ad_offset;
9687 		if (adp->ad_offset < NDADDR &&
9688 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9689 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9690 			    "softdep_write_inodeblock",
9691 			    (intmax_t)adp->ad_offset,
9692 			    dp->di_db[adp->ad_offset],
9693 			    (intmax_t)adp->ad_newblkno);
9694 		if (adp->ad_offset >= NDADDR &&
9695 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9696 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9697 			    "softdep_write_inodeblock",
9698 			    (intmax_t)adp->ad_offset - NDADDR,
9699 			    dp->di_ib[adp->ad_offset - NDADDR],
9700 			    (intmax_t)adp->ad_newblkno);
9701 		deplist |= 1 << adp->ad_offset;
9702 		if ((adp->ad_state & ATTACHED) == 0)
9703 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9704 			    adp->ad_state);
9705 #endif /* INVARIANTS */
9706 		adp->ad_state &= ~ATTACHED;
9707 		adp->ad_state |= UNDONE;
9708 	}
9709 	/*
9710 	 * The on-disk inode cannot claim to be any larger than the last
9711 	 * fragment that has been written. Otherwise, the on-disk inode
9712 	 * might have fragments that were not the last block in the file
9713 	 * which would corrupt the filesystem.
9714 	 */
9715 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9716 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9717 		if (adp->ad_offset >= NDADDR)
9718 			break;
9719 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9720 		/* keep going until hitting a rollback to a frag */
9721 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9722 			continue;
9723 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9724 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9725 #ifdef INVARIANTS
9726 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9727 				panic("softdep_write_inodeblock: lost dep1");
9728 #endif /* INVARIANTS */
9729 			dp->di_db[i] = 0;
9730 		}
9731 		for (i = 0; i < NIADDR; i++) {
9732 #ifdef INVARIANTS
9733 			if (dp->di_ib[i] != 0 &&
9734 			    (deplist & ((1 << NDADDR) << i)) == 0)
9735 				panic("softdep_write_inodeblock: lost dep2");
9736 #endif /* INVARIANTS */
9737 			dp->di_ib[i] = 0;
9738 		}
9739 		return;
9740 	}
9741 	/*
9742 	 * If we have zero'ed out the last allocated block of the file,
9743 	 * roll back the size to the last currently allocated block.
9744 	 * We know that this last allocated block is a full-sized as
9745 	 * we already checked for fragments in the loop above.
9746 	 */
9747 	if (lastadp != NULL &&
9748 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9749 		for (i = lastadp->ad_offset; i >= 0; i--)
9750 			if (dp->di_db[i] != 0)
9751 				break;
9752 		dp->di_size = (i + 1) * fs->fs_bsize;
9753 	}
9754 	/*
9755 	 * The only dependencies are for indirect blocks.
9756 	 *
9757 	 * The file size for indirect block additions is not guaranteed.
9758 	 * Such a guarantee would be non-trivial to achieve. The conventional
9759 	 * synchronous write implementation also does not make this guarantee.
9760 	 * Fsck should catch and fix discrepancies. Arguably, the file size
9761 	 * can be over-estimated without destroying integrity when the file
9762 	 * moves into the indirect blocks (i.e., is large). If we want to
9763 	 * postpone fsck, we are stuck with this argument.
9764 	 */
9765 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
9766 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
9767 }
9768 
9769 /*
9770  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
9771  * Note that any bug fixes made to this routine must be done in the
9772  * version found above.
9773  *
9774  * Called from within the procedure above to deal with unsatisfied
9775  * allocation dependencies in an inodeblock. The buffer must be
9776  * locked, thus, no I/O completion operations can occur while we
9777  * are manipulating its associated dependencies.
9778  */
9779 static void
9780 initiate_write_inodeblock_ufs2(inodedep, bp)
9781 	struct inodedep *inodedep;
9782 	struct buf *bp;			/* The inode block */
9783 {
9784 	struct allocdirect *adp, *lastadp;
9785 	struct ufs2_dinode *dp;
9786 	struct ufs2_dinode *sip;
9787 	struct inoref *inoref;
9788 	struct fs *fs;
9789 	ufs_lbn_t i;
9790 #ifdef INVARIANTS
9791 	ufs_lbn_t prevlbn = 0;
9792 #endif
9793 	int deplist;
9794 
9795 	if (inodedep->id_state & IOSTARTED)
9796 		panic("initiate_write_inodeblock_ufs2: already started");
9797 	inodedep->id_state |= IOSTARTED;
9798 	fs = inodedep->id_fs;
9799 	dp = (struct ufs2_dinode *)bp->b_data +
9800 	    ino_to_fsbo(fs, inodedep->id_ino);
9801 
9802 	/*
9803 	 * If we're on the unlinked list but have not yet written our
9804 	 * next pointer initialize it here.
9805 	 */
9806 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9807 		struct inodedep *inon;
9808 
9809 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9810 		dp->di_freelink = inon ? inon->id_ino : 0;
9811 	}
9812 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) ==
9813 	    (UNLINKED | UNLINKNEXT)) {
9814 		struct inodedep *inon;
9815 		ino_t freelink;
9816 
9817 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9818 		freelink = inon ? inon->id_ino : 0;
9819 		if (freelink != dp->di_freelink)
9820 			panic("ino %p(0x%X) %d, %d != %d",
9821 			    inodedep, inodedep->id_state, inodedep->id_ino,
9822 			    freelink, dp->di_freelink);
9823 	}
9824 	/*
9825 	 * If the bitmap is not yet written, then the allocated
9826 	 * inode cannot be written to disk.
9827 	 */
9828 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9829 		if (inodedep->id_savedino2 != NULL)
9830 			panic("initiate_write_inodeblock_ufs2: I/O underway");
9831 		FREE_LOCK(&lk);
9832 		sip = malloc(sizeof(struct ufs2_dinode),
9833 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9834 		ACQUIRE_LOCK(&lk);
9835 		inodedep->id_savedino2 = sip;
9836 		*inodedep->id_savedino2 = *dp;
9837 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
9838 		dp->di_gen = inodedep->id_savedino2->di_gen;
9839 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
9840 		return;
9841 	}
9842 	/*
9843 	 * If no dependencies, then there is nothing to roll back.
9844 	 */
9845 	inodedep->id_savedsize = dp->di_size;
9846 	inodedep->id_savedextsize = dp->di_extsize;
9847 	inodedep->id_savednlink = dp->di_nlink;
9848 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9849 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
9850 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9851 		return;
9852 	/*
9853 	 * Revert the link count to that of the first unwritten journal entry.
9854 	 */
9855 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9856 	if (inoref)
9857 		dp->di_nlink = inoref->if_nlink;
9858 
9859 	/*
9860 	 * Set the ext data dependencies to busy.
9861 	 */
9862 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9863 	     adp = TAILQ_NEXT(adp, ad_next)) {
9864 #ifdef INVARIANTS
9865 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9866 			panic("softdep_write_inodeblock: lbn order");
9867 		prevlbn = adp->ad_offset;
9868 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
9869 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9870 			    "softdep_write_inodeblock",
9871 			    (intmax_t)adp->ad_offset,
9872 			    (intmax_t)dp->di_extb[adp->ad_offset],
9873 			    (intmax_t)adp->ad_newblkno);
9874 		deplist |= 1 << adp->ad_offset;
9875 		if ((adp->ad_state & ATTACHED) == 0)
9876 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9877 			    adp->ad_state);
9878 #endif /* INVARIANTS */
9879 		adp->ad_state &= ~ATTACHED;
9880 		adp->ad_state |= UNDONE;
9881 	}
9882 	/*
9883 	 * The on-disk inode cannot claim to be any larger than the last
9884 	 * fragment that has been written. Otherwise, the on-disk inode
9885 	 * might have fragments that were not the last block in the ext
9886 	 * data which would corrupt the filesystem.
9887 	 */
9888 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9889 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9890 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
9891 		/* keep going until hitting a rollback to a frag */
9892 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9893 			continue;
9894 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9895 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
9896 #ifdef INVARIANTS
9897 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
9898 				panic("softdep_write_inodeblock: lost dep1");
9899 #endif /* INVARIANTS */
9900 			dp->di_extb[i] = 0;
9901 		}
9902 		lastadp = NULL;
9903 		break;
9904 	}
9905 	/*
9906 	 * If we have zero'ed out the last allocated block of the ext
9907 	 * data, roll back the size to the last currently allocated block.
9908 	 * We know that this last allocated block is a full-sized as
9909 	 * we already checked for fragments in the loop above.
9910 	 */
9911 	if (lastadp != NULL &&
9912 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9913 		for (i = lastadp->ad_offset; i >= 0; i--)
9914 			if (dp->di_extb[i] != 0)
9915 				break;
9916 		dp->di_extsize = (i + 1) * fs->fs_bsize;
9917 	}
9918 	/*
9919 	 * Set the file data dependencies to busy.
9920 	 */
9921 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9922 	     adp = TAILQ_NEXT(adp, ad_next)) {
9923 #ifdef INVARIANTS
9924 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9925 			panic("softdep_write_inodeblock: lbn order");
9926 		if ((adp->ad_state & ATTACHED) == 0)
9927 			panic("inodedep %p and adp %p not attached", inodedep, adp);
9928 		prevlbn = adp->ad_offset;
9929 		if (adp->ad_offset < NDADDR &&
9930 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9931 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9932 			    "softdep_write_inodeblock",
9933 			    (intmax_t)adp->ad_offset,
9934 			    (intmax_t)dp->di_db[adp->ad_offset],
9935 			    (intmax_t)adp->ad_newblkno);
9936 		if (adp->ad_offset >= NDADDR &&
9937 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9938 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
9939 			    "softdep_write_inodeblock:",
9940 			    (intmax_t)adp->ad_offset - NDADDR,
9941 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
9942 			    (intmax_t)adp->ad_newblkno);
9943 		deplist |= 1 << adp->ad_offset;
9944 		if ((adp->ad_state & ATTACHED) == 0)
9945 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9946 			    adp->ad_state);
9947 #endif /* INVARIANTS */
9948 		adp->ad_state &= ~ATTACHED;
9949 		adp->ad_state |= UNDONE;
9950 	}
9951 	/*
9952 	 * The on-disk inode cannot claim to be any larger than the last
9953 	 * fragment that has been written. Otherwise, the on-disk inode
9954 	 * might have fragments that were not the last block in the file
9955 	 * which would corrupt the filesystem.
9956 	 */
9957 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9958 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9959 		if (adp->ad_offset >= NDADDR)
9960 			break;
9961 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9962 		/* keep going until hitting a rollback to a frag */
9963 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9964 			continue;
9965 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9966 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9967 #ifdef INVARIANTS
9968 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9969 				panic("softdep_write_inodeblock: lost dep2");
9970 #endif /* INVARIANTS */
9971 			dp->di_db[i] = 0;
9972 		}
9973 		for (i = 0; i < NIADDR; i++) {
9974 #ifdef INVARIANTS
9975 			if (dp->di_ib[i] != 0 &&
9976 			    (deplist & ((1 << NDADDR) << i)) == 0)
9977 				panic("softdep_write_inodeblock: lost dep3");
9978 #endif /* INVARIANTS */
9979 			dp->di_ib[i] = 0;
9980 		}
9981 		return;
9982 	}
9983 	/*
9984 	 * If we have zero'ed out the last allocated block of the file,
9985 	 * roll back the size to the last currently allocated block.
9986 	 * We know that this last allocated block is a full-sized as
9987 	 * we already checked for fragments in the loop above.
9988 	 */
9989 	if (lastadp != NULL &&
9990 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9991 		for (i = lastadp->ad_offset; i >= 0; i--)
9992 			if (dp->di_db[i] != 0)
9993 				break;
9994 		dp->di_size = (i + 1) * fs->fs_bsize;
9995 	}
9996 	/*
9997 	 * The only dependencies are for indirect blocks.
9998 	 *
9999 	 * The file size for indirect block additions is not guaranteed.
10000 	 * Such a guarantee would be non-trivial to achieve. The conventional
10001 	 * synchronous write implementation also does not make this guarantee.
10002 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10003 	 * can be over-estimated without destroying integrity when the file
10004 	 * moves into the indirect blocks (i.e., is large). If we want to
10005 	 * postpone fsck, we are stuck with this argument.
10006 	 */
10007 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10008 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10009 }
10010 
10011 /*
10012  * Cancel an indirdep as a result of truncation.  Release all of the
10013  * children allocindirs and place their journal work on the appropriate
10014  * list.
10015  */
10016 static void
10017 cancel_indirdep(indirdep, bp, freeblks)
10018 	struct indirdep *indirdep;
10019 	struct buf *bp;
10020 	struct freeblks *freeblks;
10021 {
10022 	struct allocindir *aip;
10023 
10024 	/*
10025 	 * None of the indirect pointers will ever be visible,
10026 	 * so they can simply be tossed. GOINGAWAY ensures
10027 	 * that allocated pointers will be saved in the buffer
10028 	 * cache until they are freed. Note that they will
10029 	 * only be able to be found by their physical address
10030 	 * since the inode mapping the logical address will
10031 	 * be gone. The save buffer used for the safe copy
10032 	 * was allocated in setup_allocindir_phase2 using
10033 	 * the physical address so it could be used for this
10034 	 * purpose. Hence we swap the safe copy with the real
10035 	 * copy, allowing the safe copy to be freed and holding
10036 	 * on to the real copy for later use in indir_trunc.
10037 	 */
10038 	if (indirdep->ir_state & GOINGAWAY)
10039 		panic("cancel_indirdep: already gone");
10040 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10041 		indirdep->ir_state |= DEPCOMPLETE;
10042 		LIST_REMOVE(indirdep, ir_next);
10043 	}
10044 	indirdep->ir_state |= GOINGAWAY;
10045 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10046 	/*
10047 	 * Pass in bp for blocks still have journal writes
10048 	 * pending so we can cancel them on their own.
10049 	 */
10050 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10051 		cancel_allocindir(aip, bp, freeblks, 0);
10052 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10053 		cancel_allocindir(aip, NULL, freeblks, 0);
10054 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10055 		cancel_allocindir(aip, NULL, freeblks, 0);
10056 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10057 		cancel_allocindir(aip, NULL, freeblks, 0);
10058 	/*
10059 	 * If there are pending partial truncations we need to keep the
10060 	 * old block copy around until they complete.  This is because
10061 	 * the current b_data is not a perfect superset of the available
10062 	 * blocks.
10063 	 */
10064 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10065 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10066 	else
10067 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10068 	WORKLIST_REMOVE(&indirdep->ir_list);
10069 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10070 	indirdep->ir_bp = NULL;
10071 	indirdep->ir_freeblks = freeblks;
10072 }
10073 
10074 /*
10075  * Free an indirdep once it no longer has new pointers to track.
10076  */
10077 static void
10078 free_indirdep(indirdep)
10079 	struct indirdep *indirdep;
10080 {
10081 
10082 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10083 	    ("free_indirdep: Indir trunc list not empty."));
10084 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10085 	    ("free_indirdep: Complete head not empty."));
10086 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10087 	    ("free_indirdep: write head not empty."));
10088 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10089 	    ("free_indirdep: done head not empty."));
10090 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10091 	    ("free_indirdep: deplist head not empty."));
10092 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10093 	    ("free_indirdep: %p still on newblk list.", indirdep));
10094 	KASSERT(indirdep->ir_saveddata == NULL,
10095 	    ("free_indirdep: %p still has saved data.", indirdep));
10096 	if (indirdep->ir_state & ONWORKLIST)
10097 		WORKLIST_REMOVE(&indirdep->ir_list);
10098 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10099 }
10100 
10101 /*
10102  * Called before a write to an indirdep.  This routine is responsible for
10103  * rolling back pointers to a safe state which includes only those
10104  * allocindirs which have been completed.
10105  */
10106 static void
10107 initiate_write_indirdep(indirdep, bp)
10108 	struct indirdep *indirdep;
10109 	struct buf *bp;
10110 {
10111 
10112 	indirdep->ir_state |= IOSTARTED;
10113 	if (indirdep->ir_state & GOINGAWAY)
10114 		panic("disk_io_initiation: indirdep gone");
10115 	/*
10116 	 * If there are no remaining dependencies, this will be writing
10117 	 * the real pointers.
10118 	 */
10119 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10120 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10121 		return;
10122 	/*
10123 	 * Replace up-to-date version with safe version.
10124 	 */
10125 	if (indirdep->ir_saveddata == NULL) {
10126 		FREE_LOCK(&lk);
10127 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10128 		    M_SOFTDEP_FLAGS);
10129 		ACQUIRE_LOCK(&lk);
10130 	}
10131 	indirdep->ir_state &= ~ATTACHED;
10132 	indirdep->ir_state |= UNDONE;
10133 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10134 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10135 	    bp->b_bcount);
10136 }
10137 
10138 /*
10139  * Called when an inode has been cleared in a cg bitmap.  This finally
10140  * eliminates any canceled jaddrefs
10141  */
10142 void
10143 softdep_setup_inofree(mp, bp, ino, wkhd)
10144 	struct mount *mp;
10145 	struct buf *bp;
10146 	ino_t ino;
10147 	struct workhead *wkhd;
10148 {
10149 	struct worklist *wk, *wkn;
10150 	struct inodedep *inodedep;
10151 	uint8_t *inosused;
10152 	struct cg *cgp;
10153 	struct fs *fs;
10154 
10155 	ACQUIRE_LOCK(&lk);
10156 	fs = VFSTOUFS(mp)->um_fs;
10157 	cgp = (struct cg *)bp->b_data;
10158 	inosused = cg_inosused(cgp);
10159 	if (isset(inosused, ino % fs->fs_ipg))
10160 		panic("softdep_setup_inofree: inode %d not freed.", ino);
10161 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10162 		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
10163 		    ino, inodedep);
10164 	if (wkhd) {
10165 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10166 			if (wk->wk_type != D_JADDREF)
10167 				continue;
10168 			WORKLIST_REMOVE(wk);
10169 			/*
10170 			 * We can free immediately even if the jaddref
10171 			 * isn't attached in a background write as now
10172 			 * the bitmaps are reconciled.
10173 		 	 */
10174 			wk->wk_state |= COMPLETE | ATTACHED;
10175 			free_jaddref(WK_JADDREF(wk));
10176 		}
10177 		jwork_move(&bp->b_dep, wkhd);
10178 	}
10179 	FREE_LOCK(&lk);
10180 }
10181 
10182 
10183 /*
10184  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10185  * map.  Any dependencies waiting for the write to clear are added to the
10186  * buf's list and any jnewblks that are being canceled are discarded
10187  * immediately.
10188  */
10189 void
10190 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10191 	struct mount *mp;
10192 	struct buf *bp;
10193 	ufs2_daddr_t blkno;
10194 	int frags;
10195 	struct workhead *wkhd;
10196 {
10197 	struct bmsafemap *bmsafemap;
10198 	struct jnewblk *jnewblk;
10199 	struct worklist *wk;
10200 	struct fs *fs;
10201 #ifdef SUJ_DEBUG
10202 	uint8_t *blksfree;
10203 	struct cg *cgp;
10204 	ufs2_daddr_t jstart;
10205 	ufs2_daddr_t jend;
10206 	ufs2_daddr_t end;
10207 	long bno;
10208 	int i;
10209 #endif
10210 
10211 	ACQUIRE_LOCK(&lk);
10212 	/* Lookup the bmsafemap so we track when it is dirty. */
10213 	fs = VFSTOUFS(mp)->um_fs;
10214 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
10215 	/*
10216 	 * Detach any jnewblks which have been canceled.  They must linger
10217 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10218 	 * an unjournaled allocation from hitting the disk.
10219 	 */
10220 	if (wkhd) {
10221 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10222 			WORKLIST_REMOVE(wk);
10223 			if (wk->wk_type != D_JNEWBLK) {
10224 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10225 				continue;
10226 			}
10227 			jnewblk = WK_JNEWBLK(wk);
10228 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10229 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10230 #ifdef SUJ_DEBUG
10231 			/*
10232 			 * Assert that this block is free in the bitmap
10233 			 * before we discard the jnewblk.
10234 			 */
10235 			cgp = (struct cg *)bp->b_data;
10236 			blksfree = cg_blksfree(cgp);
10237 			bno = dtogd(fs, jnewblk->jn_blkno);
10238 			for (i = jnewblk->jn_oldfrags;
10239 			    i < jnewblk->jn_frags; i++) {
10240 				if (isset(blksfree, bno + i))
10241 					continue;
10242 				panic("softdep_setup_blkfree: not free");
10243 			}
10244 #endif
10245 			/*
10246 			 * Even if it's not attached we can free immediately
10247 			 * as the new bitmap is correct.
10248 			 */
10249 			wk->wk_state |= COMPLETE | ATTACHED;
10250 			free_jnewblk(jnewblk);
10251 		}
10252 	}
10253 
10254 #ifdef SUJ_DEBUG
10255 	/*
10256 	 * Assert that we are not freeing a block which has an outstanding
10257 	 * allocation dependency.
10258 	 */
10259 	fs = VFSTOUFS(mp)->um_fs;
10260 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
10261 	end = blkno + frags;
10262 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10263 		/*
10264 		 * Don't match against blocks that will be freed when the
10265 		 * background write is done.
10266 		 */
10267 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10268 		    (COMPLETE | DEPCOMPLETE))
10269 			continue;
10270 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10271 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10272 		if ((blkno >= jstart && blkno < jend) ||
10273 		    (end > jstart && end <= jend)) {
10274 			printf("state 0x%X %jd - %d %d dep %p\n",
10275 			    jnewblk->jn_state, jnewblk->jn_blkno,
10276 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10277 			    jnewblk->jn_dep);
10278 			panic("softdep_setup_blkfree: "
10279 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10280 			    blkno, end, frags, jstart, jend);
10281 		}
10282 	}
10283 #endif
10284 	FREE_LOCK(&lk);
10285 }
10286 
10287 /*
10288  * Revert a block allocation when the journal record that describes it
10289  * is not yet written.
10290  */
10291 int
10292 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10293 	struct jnewblk *jnewblk;
10294 	struct fs *fs;
10295 	struct cg *cgp;
10296 	uint8_t *blksfree;
10297 {
10298 	ufs1_daddr_t fragno;
10299 	long cgbno, bbase;
10300 	int frags, blk;
10301 	int i;
10302 
10303 	frags = 0;
10304 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10305 	/*
10306 	 * We have to test which frags need to be rolled back.  We may
10307 	 * be operating on a stale copy when doing background writes.
10308 	 */
10309 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10310 		if (isclr(blksfree, cgbno + i))
10311 			frags++;
10312 	if (frags == 0)
10313 		return (0);
10314 	/*
10315 	 * This is mostly ffs_blkfree() sans some validation and
10316 	 * superblock updates.
10317 	 */
10318 	if (frags == fs->fs_frag) {
10319 		fragno = fragstoblks(fs, cgbno);
10320 		ffs_setblock(fs, blksfree, fragno);
10321 		ffs_clusteracct(fs, cgp, fragno, 1);
10322 		cgp->cg_cs.cs_nbfree++;
10323 	} else {
10324 		cgbno += jnewblk->jn_oldfrags;
10325 		bbase = cgbno - fragnum(fs, cgbno);
10326 		/* Decrement the old frags.  */
10327 		blk = blkmap(fs, blksfree, bbase);
10328 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10329 		/* Deallocate the fragment */
10330 		for (i = 0; i < frags; i++)
10331 			setbit(blksfree, cgbno + i);
10332 		cgp->cg_cs.cs_nffree += frags;
10333 		/* Add back in counts associated with the new frags */
10334 		blk = blkmap(fs, blksfree, bbase);
10335 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10336                 /* If a complete block has been reassembled, account for it. */
10337 		fragno = fragstoblks(fs, bbase);
10338 		if (ffs_isblock(fs, blksfree, fragno)) {
10339 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10340 			ffs_clusteracct(fs, cgp, fragno, 1);
10341 			cgp->cg_cs.cs_nbfree++;
10342 		}
10343 	}
10344 	stat_jnewblk++;
10345 	jnewblk->jn_state &= ~ATTACHED;
10346 	jnewblk->jn_state |= UNDONE;
10347 
10348 	return (frags);
10349 }
10350 
10351 static void
10352 initiate_write_bmsafemap(bmsafemap, bp)
10353 	struct bmsafemap *bmsafemap;
10354 	struct buf *bp;			/* The cg block. */
10355 {
10356 	struct jaddref *jaddref;
10357 	struct jnewblk *jnewblk;
10358 	uint8_t *inosused;
10359 	uint8_t *blksfree;
10360 	struct cg *cgp;
10361 	struct fs *fs;
10362 	ino_t ino;
10363 
10364 	if (bmsafemap->sm_state & IOSTARTED)
10365 		panic("initiate_write_bmsafemap: Already started\n");
10366 	bmsafemap->sm_state |= IOSTARTED;
10367 	/*
10368 	 * Clear any inode allocations which are pending journal writes.
10369 	 */
10370 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10371 		cgp = (struct cg *)bp->b_data;
10372 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10373 		inosused = cg_inosused(cgp);
10374 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10375 			ino = jaddref->ja_ino % fs->fs_ipg;
10376 			/*
10377 			 * If this is a background copy the inode may not
10378 			 * be marked used yet.
10379 			 */
10380 			if (isset(inosused, ino)) {
10381 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10382 					cgp->cg_cs.cs_ndir--;
10383 				cgp->cg_cs.cs_nifree++;
10384 				clrbit(inosused, ino);
10385 				jaddref->ja_state &= ~ATTACHED;
10386 				jaddref->ja_state |= UNDONE;
10387 				stat_jaddref++;
10388 			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10389 				panic("initiate_write_bmsafemap: inode %d "
10390 				    "marked free", jaddref->ja_ino);
10391 		}
10392 	}
10393 	/*
10394 	 * Clear any block allocations which are pending journal writes.
10395 	 */
10396 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10397 		cgp = (struct cg *)bp->b_data;
10398 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10399 		blksfree = cg_blksfree(cgp);
10400 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10401 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10402 				continue;
10403 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10404 				panic("initiate_write_bmsafemap: block %jd "
10405 				    "marked free", jnewblk->jn_blkno);
10406 		}
10407 	}
10408 	/*
10409 	 * Move allocation lists to the written lists so they can be
10410 	 * cleared once the block write is complete.
10411 	 */
10412 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10413 	    inodedep, id_deps);
10414 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10415 	    newblk, nb_deps);
10416 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10417 	    wk_list);
10418 }
10419 
10420 /*
10421  * This routine is called during the completion interrupt
10422  * service routine for a disk write (from the procedure called
10423  * by the device driver to inform the filesystem caches of
10424  * a request completion).  It should be called early in this
10425  * procedure, before the block is made available to other
10426  * processes or other routines are called.
10427  *
10428  */
10429 static void
10430 softdep_disk_write_complete(bp)
10431 	struct buf *bp;		/* describes the completed disk write */
10432 {
10433 	struct worklist *wk;
10434 	struct worklist *owk;
10435 	struct workhead reattach;
10436 	struct freeblks *freeblks;
10437 	struct buf *sbp;
10438 
10439 	/*
10440 	 * If an error occurred while doing the write, then the data
10441 	 * has not hit the disk and the dependencies cannot be unrolled.
10442 	 */
10443 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10444 		return;
10445 	LIST_INIT(&reattach);
10446 	/*
10447 	 * This lock must not be released anywhere in this code segment.
10448 	 */
10449 	sbp = NULL;
10450 	owk = NULL;
10451 	ACQUIRE_LOCK(&lk);
10452 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10453 		WORKLIST_REMOVE(wk);
10454 		dep_write[wk->wk_type]++;
10455 		if (wk == owk)
10456 			panic("duplicate worklist: %p\n", wk);
10457 		owk = wk;
10458 		switch (wk->wk_type) {
10459 
10460 		case D_PAGEDEP:
10461 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10462 				WORKLIST_INSERT(&reattach, wk);
10463 			continue;
10464 
10465 		case D_INODEDEP:
10466 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10467 				WORKLIST_INSERT(&reattach, wk);
10468 			continue;
10469 
10470 		case D_BMSAFEMAP:
10471 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10472 				WORKLIST_INSERT(&reattach, wk);
10473 			continue;
10474 
10475 		case D_MKDIR:
10476 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10477 			continue;
10478 
10479 		case D_ALLOCDIRECT:
10480 			wk->wk_state |= COMPLETE;
10481 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10482 			continue;
10483 
10484 		case D_ALLOCINDIR:
10485 			wk->wk_state |= COMPLETE;
10486 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10487 			continue;
10488 
10489 		case D_INDIRDEP:
10490 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10491 				WORKLIST_INSERT(&reattach, wk);
10492 			continue;
10493 
10494 		case D_FREEBLKS:
10495 			wk->wk_state |= COMPLETE;
10496 			freeblks = WK_FREEBLKS(wk);
10497 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10498 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10499 				add_to_worklist(wk, WK_NODELAY);
10500 			continue;
10501 
10502 		case D_FREEWORK:
10503 			handle_written_freework(WK_FREEWORK(wk));
10504 			break;
10505 
10506 		case D_JSEGDEP:
10507 			free_jsegdep(WK_JSEGDEP(wk));
10508 			continue;
10509 
10510 		case D_JSEG:
10511 			handle_written_jseg(WK_JSEG(wk), bp);
10512 			continue;
10513 
10514 		case D_SBDEP:
10515 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10516 				WORKLIST_INSERT(&reattach, wk);
10517 			continue;
10518 
10519 		case D_FREEDEP:
10520 			free_freedep(WK_FREEDEP(wk));
10521 			continue;
10522 
10523 		default:
10524 			panic("handle_disk_write_complete: Unknown type %s",
10525 			    TYPENAME(wk->wk_type));
10526 			/* NOTREACHED */
10527 		}
10528 	}
10529 	/*
10530 	 * Reattach any requests that must be redone.
10531 	 */
10532 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10533 		WORKLIST_REMOVE(wk);
10534 		WORKLIST_INSERT(&bp->b_dep, wk);
10535 	}
10536 	FREE_LOCK(&lk);
10537 	if (sbp)
10538 		brelse(sbp);
10539 }
10540 
10541 /*
10542  * Called from within softdep_disk_write_complete above. Note that
10543  * this routine is always called from interrupt level with further
10544  * splbio interrupts blocked.
10545  */
10546 static void
10547 handle_allocdirect_partdone(adp, wkhd)
10548 	struct allocdirect *adp;	/* the completed allocdirect */
10549 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10550 {
10551 	struct allocdirectlst *listhead;
10552 	struct allocdirect *listadp;
10553 	struct inodedep *inodedep;
10554 	long bsize;
10555 
10556 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10557 		return;
10558 	/*
10559 	 * The on-disk inode cannot claim to be any larger than the last
10560 	 * fragment that has been written. Otherwise, the on-disk inode
10561 	 * might have fragments that were not the last block in the file
10562 	 * which would corrupt the filesystem. Thus, we cannot free any
10563 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10564 	 * these blocks must be rolled back to zero before writing the inode.
10565 	 * We check the currently active set of allocdirects in id_inoupdt
10566 	 * or id_extupdt as appropriate.
10567 	 */
10568 	inodedep = adp->ad_inodedep;
10569 	bsize = inodedep->id_fs->fs_bsize;
10570 	if (adp->ad_state & EXTDATA)
10571 		listhead = &inodedep->id_extupdt;
10572 	else
10573 		listhead = &inodedep->id_inoupdt;
10574 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10575 		/* found our block */
10576 		if (listadp == adp)
10577 			break;
10578 		/* continue if ad_oldlbn is not a fragment */
10579 		if (listadp->ad_oldsize == 0 ||
10580 		    listadp->ad_oldsize == bsize)
10581 			continue;
10582 		/* hit a fragment */
10583 		return;
10584 	}
10585 	/*
10586 	 * If we have reached the end of the current list without
10587 	 * finding the just finished dependency, then it must be
10588 	 * on the future dependency list. Future dependencies cannot
10589 	 * be freed until they are moved to the current list.
10590 	 */
10591 	if (listadp == NULL) {
10592 #ifdef DEBUG
10593 		if (adp->ad_state & EXTDATA)
10594 			listhead = &inodedep->id_newextupdt;
10595 		else
10596 			listhead = &inodedep->id_newinoupdt;
10597 		TAILQ_FOREACH(listadp, listhead, ad_next)
10598 			/* found our block */
10599 			if (listadp == adp)
10600 				break;
10601 		if (listadp == NULL)
10602 			panic("handle_allocdirect_partdone: lost dep");
10603 #endif /* DEBUG */
10604 		return;
10605 	}
10606 	/*
10607 	 * If we have found the just finished dependency, then queue
10608 	 * it along with anything that follows it that is complete.
10609 	 * Since the pointer has not yet been written in the inode
10610 	 * as the dependency prevents it, place the allocdirect on the
10611 	 * bufwait list where it will be freed once the pointer is
10612 	 * valid.
10613 	 */
10614 	if (wkhd == NULL)
10615 		wkhd = &inodedep->id_bufwait;
10616 	for (; adp; adp = listadp) {
10617 		listadp = TAILQ_NEXT(adp, ad_next);
10618 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10619 			return;
10620 		TAILQ_REMOVE(listhead, adp, ad_next);
10621 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10622 	}
10623 }
10624 
10625 /*
10626  * Called from within softdep_disk_write_complete above.  This routine
10627  * completes successfully written allocindirs.
10628  */
10629 static void
10630 handle_allocindir_partdone(aip)
10631 	struct allocindir *aip;		/* the completed allocindir */
10632 {
10633 	struct indirdep *indirdep;
10634 
10635 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10636 		return;
10637 	indirdep = aip->ai_indirdep;
10638 	LIST_REMOVE(aip, ai_next);
10639 	/*
10640 	 * Don't set a pointer while the buffer is undergoing IO or while
10641 	 * we have active truncations.
10642 	 */
10643 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10644 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10645 		return;
10646 	}
10647 	if (indirdep->ir_state & UFS1FMT)
10648 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10649 		    aip->ai_newblkno;
10650 	else
10651 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10652 		    aip->ai_newblkno;
10653 	/*
10654 	 * Await the pointer write before freeing the allocindir.
10655 	 */
10656 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10657 }
10658 
10659 /*
10660  * Release segments held on a jwork list.
10661  */
10662 static void
10663 handle_jwork(wkhd)
10664 	struct workhead *wkhd;
10665 {
10666 	struct worklist *wk;
10667 
10668 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10669 		WORKLIST_REMOVE(wk);
10670 		switch (wk->wk_type) {
10671 		case D_JSEGDEP:
10672 			free_jsegdep(WK_JSEGDEP(wk));
10673 			continue;
10674 		case D_FREEDEP:
10675 			free_freedep(WK_FREEDEP(wk));
10676 			continue;
10677 		case D_FREEFRAG:
10678 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10679 			WORKITEM_FREE(wk, D_FREEFRAG);
10680 		case D_FREEWORK:
10681 			handle_written_freework(WK_FREEWORK(wk));
10682 			continue;
10683 		default:
10684 			panic("handle_jwork: Unknown type %s\n",
10685 			    TYPENAME(wk->wk_type));
10686 		}
10687 	}
10688 }
10689 
10690 /*
10691  * Handle the bufwait list on an inode when it is safe to release items
10692  * held there.  This normally happens after an inode block is written but
10693  * may be delayed and handled later if there are pending journal items that
10694  * are not yet safe to be released.
10695  */
10696 static struct freefile *
10697 handle_bufwait(inodedep, refhd)
10698 	struct inodedep *inodedep;
10699 	struct workhead *refhd;
10700 {
10701 	struct jaddref *jaddref;
10702 	struct freefile *freefile;
10703 	struct worklist *wk;
10704 
10705 	freefile = NULL;
10706 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10707 		WORKLIST_REMOVE(wk);
10708 		switch (wk->wk_type) {
10709 		case D_FREEFILE:
10710 			/*
10711 			 * We defer adding freefile to the worklist
10712 			 * until all other additions have been made to
10713 			 * ensure that it will be done after all the
10714 			 * old blocks have been freed.
10715 			 */
10716 			if (freefile != NULL)
10717 				panic("handle_bufwait: freefile");
10718 			freefile = WK_FREEFILE(wk);
10719 			continue;
10720 
10721 		case D_MKDIR:
10722 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10723 			continue;
10724 
10725 		case D_DIRADD:
10726 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10727 			continue;
10728 
10729 		case D_FREEFRAG:
10730 			wk->wk_state |= COMPLETE;
10731 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10732 				add_to_worklist(wk, 0);
10733 			continue;
10734 
10735 		case D_DIRREM:
10736 			wk->wk_state |= COMPLETE;
10737 			add_to_worklist(wk, 0);
10738 			continue;
10739 
10740 		case D_ALLOCDIRECT:
10741 		case D_ALLOCINDIR:
10742 			free_newblk(WK_NEWBLK(wk));
10743 			continue;
10744 
10745 		case D_JNEWBLK:
10746 			wk->wk_state |= COMPLETE;
10747 			free_jnewblk(WK_JNEWBLK(wk));
10748 			continue;
10749 
10750 		/*
10751 		 * Save freed journal segments and add references on
10752 		 * the supplied list which will delay their release
10753 		 * until the cg bitmap is cleared on disk.
10754 		 */
10755 		case D_JSEGDEP:
10756 			if (refhd == NULL)
10757 				free_jsegdep(WK_JSEGDEP(wk));
10758 			else
10759 				WORKLIST_INSERT(refhd, wk);
10760 			continue;
10761 
10762 		case D_JADDREF:
10763 			jaddref = WK_JADDREF(wk);
10764 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10765 			    if_deps);
10766 			/*
10767 			 * Transfer any jaddrefs to the list to be freed with
10768 			 * the bitmap if we're handling a removed file.
10769 			 */
10770 			if (refhd == NULL) {
10771 				wk->wk_state |= COMPLETE;
10772 				free_jaddref(jaddref);
10773 			} else
10774 				WORKLIST_INSERT(refhd, wk);
10775 			continue;
10776 
10777 		default:
10778 			panic("handle_bufwait: Unknown type %p(%s)",
10779 			    wk, TYPENAME(wk->wk_type));
10780 			/* NOTREACHED */
10781 		}
10782 	}
10783 	return (freefile);
10784 }
10785 /*
10786  * Called from within softdep_disk_write_complete above to restore
10787  * in-memory inode block contents to their most up-to-date state. Note
10788  * that this routine is always called from interrupt level with further
10789  * splbio interrupts blocked.
10790  */
10791 static int
10792 handle_written_inodeblock(inodedep, bp)
10793 	struct inodedep *inodedep;
10794 	struct buf *bp;		/* buffer containing the inode block */
10795 {
10796 	struct freefile *freefile;
10797 	struct allocdirect *adp, *nextadp;
10798 	struct ufs1_dinode *dp1 = NULL;
10799 	struct ufs2_dinode *dp2 = NULL;
10800 	struct workhead wkhd;
10801 	int hadchanges, fstype;
10802 	ino_t freelink;
10803 
10804 	LIST_INIT(&wkhd);
10805 	hadchanges = 0;
10806 	freefile = NULL;
10807 	if ((inodedep->id_state & IOSTARTED) == 0)
10808 		panic("handle_written_inodeblock: not started");
10809 	inodedep->id_state &= ~IOSTARTED;
10810 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
10811 		fstype = UFS1;
10812 		dp1 = (struct ufs1_dinode *)bp->b_data +
10813 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10814 		freelink = dp1->di_freelink;
10815 	} else {
10816 		fstype = UFS2;
10817 		dp2 = (struct ufs2_dinode *)bp->b_data +
10818 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10819 		freelink = dp2->di_freelink;
10820 	}
10821 	/*
10822 	 * If we wrote a valid freelink pointer during the last write
10823 	 * record it here.
10824 	 */
10825 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10826 		struct inodedep *inon;
10827 
10828 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10829 		if ((inon == NULL && freelink == 0) ||
10830 		    (inon && inon->id_ino == freelink)) {
10831 			if (inon)
10832 				inon->id_state |= UNLINKPREV;
10833 			inodedep->id_state |= UNLINKNEXT;
10834 		} else
10835 			hadchanges = 1;
10836 	}
10837 	/* Leave this inodeblock dirty until it's in the list. */
10838 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED)
10839 		hadchanges = 1;
10840 	/*
10841 	 * If we had to rollback the inode allocation because of
10842 	 * bitmaps being incomplete, then simply restore it.
10843 	 * Keep the block dirty so that it will not be reclaimed until
10844 	 * all associated dependencies have been cleared and the
10845 	 * corresponding updates written to disk.
10846 	 */
10847 	if (inodedep->id_savedino1 != NULL) {
10848 		hadchanges = 1;
10849 		if (fstype == UFS1)
10850 			*dp1 = *inodedep->id_savedino1;
10851 		else
10852 			*dp2 = *inodedep->id_savedino2;
10853 		free(inodedep->id_savedino1, M_SAVEDINO);
10854 		inodedep->id_savedino1 = NULL;
10855 		if ((bp->b_flags & B_DELWRI) == 0)
10856 			stat_inode_bitmap++;
10857 		bdirty(bp);
10858 		/*
10859 		 * If the inode is clear here and GOINGAWAY it will never
10860 		 * be written.  Process the bufwait and clear any pending
10861 		 * work which may include the freefile.
10862 		 */
10863 		if (inodedep->id_state & GOINGAWAY)
10864 			goto bufwait;
10865 		return (1);
10866 	}
10867 	inodedep->id_state |= COMPLETE;
10868 	/*
10869 	 * Roll forward anything that had to be rolled back before
10870 	 * the inode could be updated.
10871 	 */
10872 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
10873 		nextadp = TAILQ_NEXT(adp, ad_next);
10874 		if (adp->ad_state & ATTACHED)
10875 			panic("handle_written_inodeblock: new entry");
10876 		if (fstype == UFS1) {
10877 			if (adp->ad_offset < NDADDR) {
10878 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10879 					panic("%s %s #%jd mismatch %d != %jd",
10880 					    "handle_written_inodeblock:",
10881 					    "direct pointer",
10882 					    (intmax_t)adp->ad_offset,
10883 					    dp1->di_db[adp->ad_offset],
10884 					    (intmax_t)adp->ad_oldblkno);
10885 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
10886 			} else {
10887 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
10888 					panic("%s: %s #%jd allocated as %d",
10889 					    "handle_written_inodeblock",
10890 					    "indirect pointer",
10891 					    (intmax_t)adp->ad_offset - NDADDR,
10892 					    dp1->di_ib[adp->ad_offset - NDADDR]);
10893 				dp1->di_ib[adp->ad_offset - NDADDR] =
10894 				    adp->ad_newblkno;
10895 			}
10896 		} else {
10897 			if (adp->ad_offset < NDADDR) {
10898 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10899 					panic("%s: %s #%jd %s %jd != %jd",
10900 					    "handle_written_inodeblock",
10901 					    "direct pointer",
10902 					    (intmax_t)adp->ad_offset, "mismatch",
10903 					    (intmax_t)dp2->di_db[adp->ad_offset],
10904 					    (intmax_t)adp->ad_oldblkno);
10905 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
10906 			} else {
10907 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
10908 					panic("%s: %s #%jd allocated as %jd",
10909 					    "handle_written_inodeblock",
10910 					    "indirect pointer",
10911 					    (intmax_t)adp->ad_offset - NDADDR,
10912 					    (intmax_t)
10913 					    dp2->di_ib[adp->ad_offset - NDADDR]);
10914 				dp2->di_ib[adp->ad_offset - NDADDR] =
10915 				    adp->ad_newblkno;
10916 			}
10917 		}
10918 		adp->ad_state &= ~UNDONE;
10919 		adp->ad_state |= ATTACHED;
10920 		hadchanges = 1;
10921 	}
10922 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
10923 		nextadp = TAILQ_NEXT(adp, ad_next);
10924 		if (adp->ad_state & ATTACHED)
10925 			panic("handle_written_inodeblock: new entry");
10926 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
10927 			panic("%s: direct pointers #%jd %s %jd != %jd",
10928 			    "handle_written_inodeblock",
10929 			    (intmax_t)adp->ad_offset, "mismatch",
10930 			    (intmax_t)dp2->di_extb[adp->ad_offset],
10931 			    (intmax_t)adp->ad_oldblkno);
10932 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
10933 		adp->ad_state &= ~UNDONE;
10934 		adp->ad_state |= ATTACHED;
10935 		hadchanges = 1;
10936 	}
10937 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
10938 		stat_direct_blk_ptrs++;
10939 	/*
10940 	 * Reset the file size to its most up-to-date value.
10941 	 */
10942 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
10943 		panic("handle_written_inodeblock: bad size");
10944 	if (inodedep->id_savednlink > LINK_MAX)
10945 		panic("handle_written_inodeblock: Invalid link count "
10946 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
10947 	if (fstype == UFS1) {
10948 		if (dp1->di_nlink != inodedep->id_savednlink) {
10949 			dp1->di_nlink = inodedep->id_savednlink;
10950 			hadchanges = 1;
10951 		}
10952 		if (dp1->di_size != inodedep->id_savedsize) {
10953 			dp1->di_size = inodedep->id_savedsize;
10954 			hadchanges = 1;
10955 		}
10956 	} else {
10957 		if (dp2->di_nlink != inodedep->id_savednlink) {
10958 			dp2->di_nlink = inodedep->id_savednlink;
10959 			hadchanges = 1;
10960 		}
10961 		if (dp2->di_size != inodedep->id_savedsize) {
10962 			dp2->di_size = inodedep->id_savedsize;
10963 			hadchanges = 1;
10964 		}
10965 		if (dp2->di_extsize != inodedep->id_savedextsize) {
10966 			dp2->di_extsize = inodedep->id_savedextsize;
10967 			hadchanges = 1;
10968 		}
10969 	}
10970 	inodedep->id_savedsize = -1;
10971 	inodedep->id_savedextsize = -1;
10972 	inodedep->id_savednlink = -1;
10973 	/*
10974 	 * If there were any rollbacks in the inode block, then it must be
10975 	 * marked dirty so that its will eventually get written back in
10976 	 * its correct form.
10977 	 */
10978 	if (hadchanges)
10979 		bdirty(bp);
10980 bufwait:
10981 	/*
10982 	 * Process any allocdirects that completed during the update.
10983 	 */
10984 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
10985 		handle_allocdirect_partdone(adp, &wkhd);
10986 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
10987 		handle_allocdirect_partdone(adp, &wkhd);
10988 	/*
10989 	 * Process deallocations that were held pending until the
10990 	 * inode had been written to disk. Freeing of the inode
10991 	 * is delayed until after all blocks have been freed to
10992 	 * avoid creation of new <vfsid, inum, lbn> triples
10993 	 * before the old ones have been deleted.  Completely
10994 	 * unlinked inodes are not processed until the unlinked
10995 	 * inode list is written or the last reference is removed.
10996 	 */
10997 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
10998 		freefile = handle_bufwait(inodedep, NULL);
10999 		if (freefile && !LIST_EMPTY(&wkhd)) {
11000 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11001 			freefile = NULL;
11002 		}
11003 	}
11004 	/*
11005 	 * Move rolled forward dependency completions to the bufwait list
11006 	 * now that those that were already written have been processed.
11007 	 */
11008 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11009 		panic("handle_written_inodeblock: bufwait but no changes");
11010 	jwork_move(&inodedep->id_bufwait, &wkhd);
11011 
11012 	if (freefile != NULL) {
11013 		/*
11014 		 * If the inode is goingaway it was never written.  Fake up
11015 		 * the state here so free_inodedep() can succeed.
11016 		 */
11017 		if (inodedep->id_state & GOINGAWAY)
11018 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11019 		if (free_inodedep(inodedep) == 0)
11020 			panic("handle_written_inodeblock: live inodedep %p",
11021 			    inodedep);
11022 		add_to_worklist(&freefile->fx_list, 0);
11023 		return (0);
11024 	}
11025 
11026 	/*
11027 	 * If no outstanding dependencies, free it.
11028 	 */
11029 	if (free_inodedep(inodedep) ||
11030 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11031 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11032 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11033 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11034 		return (0);
11035 	return (hadchanges);
11036 }
11037 
11038 static int
11039 handle_written_indirdep(indirdep, bp, bpp)
11040 	struct indirdep *indirdep;
11041 	struct buf *bp;
11042 	struct buf **bpp;
11043 {
11044 	struct allocindir *aip;
11045 	struct buf *sbp;
11046 	int chgs;
11047 
11048 	if (indirdep->ir_state & GOINGAWAY)
11049 		panic("handle_written_indirdep: indirdep gone");
11050 	if ((indirdep->ir_state & IOSTARTED) == 0)
11051 		panic("handle_written_indirdep: IO not started");
11052 	chgs = 0;
11053 	/*
11054 	 * If there were rollbacks revert them here.
11055 	 */
11056 	if (indirdep->ir_saveddata) {
11057 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11058 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11059 			free(indirdep->ir_saveddata, M_INDIRDEP);
11060 			indirdep->ir_saveddata = NULL;
11061 		}
11062 		chgs = 1;
11063 	}
11064 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11065 	indirdep->ir_state |= ATTACHED;
11066 	/*
11067 	 * Move allocindirs with written pointers to the completehd if
11068 	 * the indirdep's pointer is not yet written.  Otherwise
11069 	 * free them here.
11070 	 */
11071 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11072 		LIST_REMOVE(aip, ai_next);
11073 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11074 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11075 			    ai_next);
11076 			newblk_freefrag(&aip->ai_block);
11077 			continue;
11078 		}
11079 		free_newblk(&aip->ai_block);
11080 	}
11081 	/*
11082 	 * Move allocindirs that have finished dependency processing from
11083 	 * the done list to the write list after updating the pointers.
11084 	 */
11085 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11086 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11087 			handle_allocindir_partdone(aip);
11088 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11089 				panic("disk_write_complete: not gone");
11090 			chgs = 1;
11091 		}
11092 	}
11093 	/*
11094 	 * Preserve the indirdep if there were any changes or if it is not
11095 	 * yet valid on disk.
11096 	 */
11097 	if (chgs) {
11098 		stat_indir_blk_ptrs++;
11099 		bdirty(bp);
11100 		return (1);
11101 	}
11102 	/*
11103 	 * If there were no changes we can discard the savedbp and detach
11104 	 * ourselves from the buf.  We are only carrying completed pointers
11105 	 * in this case.
11106 	 */
11107 	sbp = indirdep->ir_savebp;
11108 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11109 	indirdep->ir_savebp = NULL;
11110 	indirdep->ir_bp = NULL;
11111 	if (*bpp != NULL)
11112 		panic("handle_written_indirdep: bp already exists.");
11113 	*bpp = sbp;
11114 	/*
11115 	 * The indirdep may not be freed until its parent points at it.
11116 	 */
11117 	if (indirdep->ir_state & DEPCOMPLETE)
11118 		free_indirdep(indirdep);
11119 
11120 	return (0);
11121 }
11122 
11123 /*
11124  * Process a diradd entry after its dependent inode has been written.
11125  * This routine must be called with splbio interrupts blocked.
11126  */
11127 static void
11128 diradd_inode_written(dap, inodedep)
11129 	struct diradd *dap;
11130 	struct inodedep *inodedep;
11131 {
11132 
11133 	dap->da_state |= COMPLETE;
11134 	complete_diradd(dap);
11135 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11136 }
11137 
11138 /*
11139  * Returns true if the bmsafemap will have rollbacks when written.  Must
11140  * only be called with lk and the buf lock on the cg held.
11141  */
11142 static int
11143 bmsafemap_rollbacks(bmsafemap)
11144 	struct bmsafemap *bmsafemap;
11145 {
11146 
11147 	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11148 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
11149 }
11150 
11151 /*
11152  * Re-apply an allocation when a cg write is complete.
11153  */
11154 static int
11155 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11156 	struct jnewblk *jnewblk;
11157 	struct fs *fs;
11158 	struct cg *cgp;
11159 	uint8_t *blksfree;
11160 {
11161 	ufs1_daddr_t fragno;
11162 	ufs2_daddr_t blkno;
11163 	long cgbno, bbase;
11164 	int frags, blk;
11165 	int i;
11166 
11167 	frags = 0;
11168 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11169 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11170 		if (isclr(blksfree, cgbno + i))
11171 			panic("jnewblk_rollforward: re-allocated fragment");
11172 		frags++;
11173 	}
11174 	if (frags == fs->fs_frag) {
11175 		blkno = fragstoblks(fs, cgbno);
11176 		ffs_clrblock(fs, blksfree, (long)blkno);
11177 		ffs_clusteracct(fs, cgp, blkno, -1);
11178 		cgp->cg_cs.cs_nbfree--;
11179 	} else {
11180 		bbase = cgbno - fragnum(fs, cgbno);
11181 		cgbno += jnewblk->jn_oldfrags;
11182                 /* If a complete block had been reassembled, account for it. */
11183 		fragno = fragstoblks(fs, bbase);
11184 		if (ffs_isblock(fs, blksfree, fragno)) {
11185 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11186 			ffs_clusteracct(fs, cgp, fragno, -1);
11187 			cgp->cg_cs.cs_nbfree--;
11188 		}
11189 		/* Decrement the old frags.  */
11190 		blk = blkmap(fs, blksfree, bbase);
11191 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11192 		/* Allocate the fragment */
11193 		for (i = 0; i < frags; i++)
11194 			clrbit(blksfree, cgbno + i);
11195 		cgp->cg_cs.cs_nffree -= frags;
11196 		/* Add back in counts associated with the new frags */
11197 		blk = blkmap(fs, blksfree, bbase);
11198 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11199 	}
11200 	return (frags);
11201 }
11202 
11203 /*
11204  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11205  * changes if it's not a background write.  Set all written dependencies
11206  * to DEPCOMPLETE and free the structure if possible.
11207  */
11208 static int
11209 handle_written_bmsafemap(bmsafemap, bp)
11210 	struct bmsafemap *bmsafemap;
11211 	struct buf *bp;
11212 {
11213 	struct newblk *newblk;
11214 	struct inodedep *inodedep;
11215 	struct jaddref *jaddref, *jatmp;
11216 	struct jnewblk *jnewblk, *jntmp;
11217 	struct ufsmount *ump;
11218 	uint8_t *inosused;
11219 	uint8_t *blksfree;
11220 	struct cg *cgp;
11221 	struct fs *fs;
11222 	ino_t ino;
11223 	int chgs;
11224 
11225 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11226 		panic("initiate_write_bmsafemap: Not started\n");
11227 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11228 	chgs = 0;
11229 	bmsafemap->sm_state &= ~IOSTARTED;
11230 	/*
11231 	 * Release journal work that was waiting on the write.
11232 	 */
11233 	handle_jwork(&bmsafemap->sm_freewr);
11234 
11235 	/*
11236 	 * Restore unwritten inode allocation pending jaddref writes.
11237 	 */
11238 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11239 		cgp = (struct cg *)bp->b_data;
11240 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11241 		inosused = cg_inosused(cgp);
11242 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11243 		    ja_bmdeps, jatmp) {
11244 			if ((jaddref->ja_state & UNDONE) == 0)
11245 				continue;
11246 			ino = jaddref->ja_ino % fs->fs_ipg;
11247 			if (isset(inosused, ino))
11248 				panic("handle_written_bmsafemap: "
11249 				    "re-allocated inode");
11250 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
11251 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11252 					cgp->cg_cs.cs_ndir++;
11253 				cgp->cg_cs.cs_nifree--;
11254 				setbit(inosused, ino);
11255 				chgs = 1;
11256 			}
11257 			jaddref->ja_state &= ~UNDONE;
11258 			jaddref->ja_state |= ATTACHED;
11259 			free_jaddref(jaddref);
11260 		}
11261 	}
11262 	/*
11263 	 * Restore any block allocations which are pending journal writes.
11264 	 */
11265 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11266 		cgp = (struct cg *)bp->b_data;
11267 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11268 		blksfree = cg_blksfree(cgp);
11269 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11270 		    jntmp) {
11271 			if ((jnewblk->jn_state & UNDONE) == 0)
11272 				continue;
11273 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0 &&
11274 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11275 				chgs = 1;
11276 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11277 			jnewblk->jn_state |= ATTACHED;
11278 			free_jnewblk(jnewblk);
11279 		}
11280 	}
11281 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11282 		newblk->nb_state |= DEPCOMPLETE;
11283 		newblk->nb_state &= ~ONDEPLIST;
11284 		newblk->nb_bmsafemap = NULL;
11285 		LIST_REMOVE(newblk, nb_deps);
11286 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11287 			handle_allocdirect_partdone(
11288 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11289 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11290 			handle_allocindir_partdone(
11291 			    WK_ALLOCINDIR(&newblk->nb_list));
11292 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11293 			panic("handle_written_bmsafemap: Unexpected type: %s",
11294 			    TYPENAME(newblk->nb_list.wk_type));
11295 	}
11296 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11297 		inodedep->id_state |= DEPCOMPLETE;
11298 		inodedep->id_state &= ~ONDEPLIST;
11299 		LIST_REMOVE(inodedep, id_deps);
11300 		inodedep->id_bmsafemap = NULL;
11301 	}
11302 	LIST_REMOVE(bmsafemap, sm_next);
11303 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11304 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11305 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11306 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11307 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11308 		LIST_REMOVE(bmsafemap, sm_hash);
11309 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11310 		return (0);
11311 	}
11312 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11313 	bdirty(bp);
11314 	return (1);
11315 }
11316 
11317 /*
11318  * Try to free a mkdir dependency.
11319  */
11320 static void
11321 complete_mkdir(mkdir)
11322 	struct mkdir *mkdir;
11323 {
11324 	struct diradd *dap;
11325 
11326 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11327 		return;
11328 	LIST_REMOVE(mkdir, md_mkdirs);
11329 	dap = mkdir->md_diradd;
11330 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11331 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11332 		dap->da_state |= DEPCOMPLETE;
11333 		complete_diradd(dap);
11334 	}
11335 	WORKITEM_FREE(mkdir, D_MKDIR);
11336 }
11337 
11338 /*
11339  * Handle the completion of a mkdir dependency.
11340  */
11341 static void
11342 handle_written_mkdir(mkdir, type)
11343 	struct mkdir *mkdir;
11344 	int type;
11345 {
11346 
11347 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11348 		panic("handle_written_mkdir: bad type");
11349 	mkdir->md_state |= COMPLETE;
11350 	complete_mkdir(mkdir);
11351 }
11352 
11353 static int
11354 free_pagedep(pagedep)
11355 	struct pagedep *pagedep;
11356 {
11357 	int i;
11358 
11359 	if (pagedep->pd_state & NEWBLOCK)
11360 		return (0);
11361 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11362 		return (0);
11363 	for (i = 0; i < DAHASHSZ; i++)
11364 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11365 			return (0);
11366 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11367 		return (0);
11368 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11369 		return (0);
11370 	if (pagedep->pd_state & ONWORKLIST)
11371 		WORKLIST_REMOVE(&pagedep->pd_list);
11372 	LIST_REMOVE(pagedep, pd_hash);
11373 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11374 
11375 	return (1);
11376 }
11377 
11378 /*
11379  * Called from within softdep_disk_write_complete above.
11380  * A write operation was just completed. Removed inodes can
11381  * now be freed and associated block pointers may be committed.
11382  * Note that this routine is always called from interrupt level
11383  * with further splbio interrupts blocked.
11384  */
11385 static int
11386 handle_written_filepage(pagedep, bp)
11387 	struct pagedep *pagedep;
11388 	struct buf *bp;		/* buffer containing the written page */
11389 {
11390 	struct dirrem *dirrem;
11391 	struct diradd *dap, *nextdap;
11392 	struct direct *ep;
11393 	int i, chgs;
11394 
11395 	if ((pagedep->pd_state & IOSTARTED) == 0)
11396 		panic("handle_written_filepage: not started");
11397 	pagedep->pd_state &= ~IOSTARTED;
11398 	/*
11399 	 * Process any directory removals that have been committed.
11400 	 */
11401 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11402 		LIST_REMOVE(dirrem, dm_next);
11403 		dirrem->dm_state |= COMPLETE;
11404 		dirrem->dm_dirinum = pagedep->pd_ino;
11405 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11406 		    ("handle_written_filepage: Journal entries not written."));
11407 		add_to_worklist(&dirrem->dm_list, 0);
11408 	}
11409 	/*
11410 	 * Free any directory additions that have been committed.
11411 	 * If it is a newly allocated block, we have to wait until
11412 	 * the on-disk directory inode claims the new block.
11413 	 */
11414 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11415 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11416 			free_diradd(dap, NULL);
11417 	/*
11418 	 * Uncommitted directory entries must be restored.
11419 	 */
11420 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11421 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11422 		     dap = nextdap) {
11423 			nextdap = LIST_NEXT(dap, da_pdlist);
11424 			if (dap->da_state & ATTACHED)
11425 				panic("handle_written_filepage: attached");
11426 			ep = (struct direct *)
11427 			    ((char *)bp->b_data + dap->da_offset);
11428 			ep->d_ino = dap->da_newinum;
11429 			dap->da_state &= ~UNDONE;
11430 			dap->da_state |= ATTACHED;
11431 			chgs = 1;
11432 			/*
11433 			 * If the inode referenced by the directory has
11434 			 * been written out, then the dependency can be
11435 			 * moved to the pending list.
11436 			 */
11437 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11438 				LIST_REMOVE(dap, da_pdlist);
11439 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11440 				    da_pdlist);
11441 			}
11442 		}
11443 	}
11444 	/*
11445 	 * If there were any rollbacks in the directory, then it must be
11446 	 * marked dirty so that its will eventually get written back in
11447 	 * its correct form.
11448 	 */
11449 	if (chgs) {
11450 		if ((bp->b_flags & B_DELWRI) == 0)
11451 			stat_dir_entry++;
11452 		bdirty(bp);
11453 		return (1);
11454 	}
11455 	/*
11456 	 * If we are not waiting for a new directory block to be
11457 	 * claimed by its inode, then the pagedep will be freed.
11458 	 * Otherwise it will remain to track any new entries on
11459 	 * the page in case they are fsync'ed.
11460 	 */
11461 	free_pagedep(pagedep);
11462 	return (0);
11463 }
11464 
11465 /*
11466  * Writing back in-core inode structures.
11467  *
11468  * The filesystem only accesses an inode's contents when it occupies an
11469  * "in-core" inode structure.  These "in-core" structures are separate from
11470  * the page frames used to cache inode blocks.  Only the latter are
11471  * transferred to/from the disk.  So, when the updated contents of the
11472  * "in-core" inode structure are copied to the corresponding in-memory inode
11473  * block, the dependencies are also transferred.  The following procedure is
11474  * called when copying a dirty "in-core" inode to a cached inode block.
11475  */
11476 
11477 /*
11478  * Called when an inode is loaded from disk. If the effective link count
11479  * differed from the actual link count when it was last flushed, then we
11480  * need to ensure that the correct effective link count is put back.
11481  */
11482 void
11483 softdep_load_inodeblock(ip)
11484 	struct inode *ip;	/* the "in_core" copy of the inode */
11485 {
11486 	struct inodedep *inodedep;
11487 
11488 	/*
11489 	 * Check for alternate nlink count.
11490 	 */
11491 	ip->i_effnlink = ip->i_nlink;
11492 	ACQUIRE_LOCK(&lk);
11493 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11494 	    &inodedep) == 0) {
11495 		FREE_LOCK(&lk);
11496 		return;
11497 	}
11498 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11499 	FREE_LOCK(&lk);
11500 }
11501 
11502 /*
11503  * This routine is called just before the "in-core" inode
11504  * information is to be copied to the in-memory inode block.
11505  * Recall that an inode block contains several inodes. If
11506  * the force flag is set, then the dependencies will be
11507  * cleared so that the update can always be made. Note that
11508  * the buffer is locked when this routine is called, so we
11509  * will never be in the middle of writing the inode block
11510  * to disk.
11511  */
11512 void
11513 softdep_update_inodeblock(ip, bp, waitfor)
11514 	struct inode *ip;	/* the "in_core" copy of the inode */
11515 	struct buf *bp;		/* the buffer containing the inode block */
11516 	int waitfor;		/* nonzero => update must be allowed */
11517 {
11518 	struct inodedep *inodedep;
11519 	struct inoref *inoref;
11520 	struct worklist *wk;
11521 	struct mount *mp;
11522 	struct buf *ibp;
11523 	struct fs *fs;
11524 	int error;
11525 
11526 	mp = UFSTOVFS(ip->i_ump);
11527 	fs = ip->i_fs;
11528 	/*
11529 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11530 	 * does not have access to the in-core ip so must write directly into
11531 	 * the inode block buffer when setting freelink.
11532 	 */
11533 	if (fs->fs_magic == FS_UFS1_MAGIC)
11534 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11535 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11536 	else
11537 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11538 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11539 	/*
11540 	 * If the effective link count is not equal to the actual link
11541 	 * count, then we must track the difference in an inodedep while
11542 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11543 	 * if there is no existing inodedep, then there are no dependencies
11544 	 * to track.
11545 	 */
11546 	ACQUIRE_LOCK(&lk);
11547 again:
11548 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11549 		FREE_LOCK(&lk);
11550 		if (ip->i_effnlink != ip->i_nlink)
11551 			panic("softdep_update_inodeblock: bad link count");
11552 		return;
11553 	}
11554 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11555 		panic("softdep_update_inodeblock: bad delta");
11556 	/*
11557 	 * If we're flushing all dependencies we must also move any waiting
11558 	 * for journal writes onto the bufwait list prior to I/O.
11559 	 */
11560 	if (waitfor) {
11561 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11562 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11563 			    == DEPCOMPLETE) {
11564 				jwait(&inoref->if_list, MNT_WAIT);
11565 				goto again;
11566 			}
11567 		}
11568 	}
11569 	/*
11570 	 * Changes have been initiated. Anything depending on these
11571 	 * changes cannot occur until this inode has been written.
11572 	 */
11573 	inodedep->id_state &= ~COMPLETE;
11574 	if ((inodedep->id_state & ONWORKLIST) == 0)
11575 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11576 	/*
11577 	 * Any new dependencies associated with the incore inode must
11578 	 * now be moved to the list associated with the buffer holding
11579 	 * the in-memory copy of the inode. Once merged process any
11580 	 * allocdirects that are completed by the merger.
11581 	 */
11582 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11583 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11584 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11585 		    NULL);
11586 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11587 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11588 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11589 		    NULL);
11590 	/*
11591 	 * Now that the inode has been pushed into the buffer, the
11592 	 * operations dependent on the inode being written to disk
11593 	 * can be moved to the id_bufwait so that they will be
11594 	 * processed when the buffer I/O completes.
11595 	 */
11596 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11597 		WORKLIST_REMOVE(wk);
11598 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11599 	}
11600 	/*
11601 	 * Newly allocated inodes cannot be written until the bitmap
11602 	 * that allocates them have been written (indicated by
11603 	 * DEPCOMPLETE being set in id_state). If we are doing a
11604 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11605 	 * to be written so that the update can be done.
11606 	 */
11607 	if (waitfor == 0) {
11608 		FREE_LOCK(&lk);
11609 		return;
11610 	}
11611 retry:
11612 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11613 		FREE_LOCK(&lk);
11614 		return;
11615 	}
11616 	ibp = inodedep->id_bmsafemap->sm_buf;
11617 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11618 	if (ibp == NULL) {
11619 		/*
11620 		 * If ibp came back as NULL, the dependency could have been
11621 		 * freed while we slept.  Look it up again, and check to see
11622 		 * that it has completed.
11623 		 */
11624 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11625 			goto retry;
11626 		FREE_LOCK(&lk);
11627 		return;
11628 	}
11629 	FREE_LOCK(&lk);
11630 	if ((error = bwrite(ibp)) != 0)
11631 		softdep_error("softdep_update_inodeblock: bwrite", error);
11632 }
11633 
11634 /*
11635  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11636  * old inode dependency list (such as id_inoupdt). This routine must be
11637  * called with splbio interrupts blocked.
11638  */
11639 static void
11640 merge_inode_lists(newlisthead, oldlisthead)
11641 	struct allocdirectlst *newlisthead;
11642 	struct allocdirectlst *oldlisthead;
11643 {
11644 	struct allocdirect *listadp, *newadp;
11645 
11646 	newadp = TAILQ_FIRST(newlisthead);
11647 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11648 		if (listadp->ad_offset < newadp->ad_offset) {
11649 			listadp = TAILQ_NEXT(listadp, ad_next);
11650 			continue;
11651 		}
11652 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11653 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11654 		if (listadp->ad_offset == newadp->ad_offset) {
11655 			allocdirect_merge(oldlisthead, newadp,
11656 			    listadp);
11657 			listadp = newadp;
11658 		}
11659 		newadp = TAILQ_FIRST(newlisthead);
11660 	}
11661 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11662 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11663 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11664 	}
11665 }
11666 
11667 /*
11668  * If we are doing an fsync, then we must ensure that any directory
11669  * entries for the inode have been written after the inode gets to disk.
11670  */
11671 int
11672 softdep_fsync(vp)
11673 	struct vnode *vp;	/* the "in_core" copy of the inode */
11674 {
11675 	struct inodedep *inodedep;
11676 	struct pagedep *pagedep;
11677 	struct inoref *inoref;
11678 	struct worklist *wk;
11679 	struct diradd *dap;
11680 	struct mount *mp;
11681 	struct vnode *pvp;
11682 	struct inode *ip;
11683 	struct buf *bp;
11684 	struct fs *fs;
11685 	struct thread *td = curthread;
11686 	int error, flushparent, pagedep_new_block;
11687 	ino_t parentino;
11688 	ufs_lbn_t lbn;
11689 
11690 	ip = VTOI(vp);
11691 	fs = ip->i_fs;
11692 	mp = vp->v_mount;
11693 	ACQUIRE_LOCK(&lk);
11694 restart:
11695 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11696 		FREE_LOCK(&lk);
11697 		return (0);
11698 	}
11699 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11700 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11701 		    == DEPCOMPLETE) {
11702 			jwait(&inoref->if_list, MNT_WAIT);
11703 			goto restart;
11704 		}
11705 	}
11706 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11707 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11708 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11709 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11710 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11711 		panic("softdep_fsync: pending ops %p", inodedep);
11712 	for (error = 0, flushparent = 0; ; ) {
11713 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11714 			break;
11715 		if (wk->wk_type != D_DIRADD)
11716 			panic("softdep_fsync: Unexpected type %s",
11717 			    TYPENAME(wk->wk_type));
11718 		dap = WK_DIRADD(wk);
11719 		/*
11720 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11721 		 * dependency or is contained in a newly allocated block.
11722 		 */
11723 		if (dap->da_state & DIRCHG)
11724 			pagedep = dap->da_previous->dm_pagedep;
11725 		else
11726 			pagedep = dap->da_pagedep;
11727 		parentino = pagedep->pd_ino;
11728 		lbn = pagedep->pd_lbn;
11729 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11730 			panic("softdep_fsync: dirty");
11731 		if ((dap->da_state & MKDIR_PARENT) ||
11732 		    (pagedep->pd_state & NEWBLOCK))
11733 			flushparent = 1;
11734 		else
11735 			flushparent = 0;
11736 		/*
11737 		 * If we are being fsync'ed as part of vgone'ing this vnode,
11738 		 * then we will not be able to release and recover the
11739 		 * vnode below, so we just have to give up on writing its
11740 		 * directory entry out. It will eventually be written, just
11741 		 * not now, but then the user was not asking to have it
11742 		 * written, so we are not breaking any promises.
11743 		 */
11744 		if (vp->v_iflag & VI_DOOMED)
11745 			break;
11746 		/*
11747 		 * We prevent deadlock by always fetching inodes from the
11748 		 * root, moving down the directory tree. Thus, when fetching
11749 		 * our parent directory, we first try to get the lock. If
11750 		 * that fails, we must unlock ourselves before requesting
11751 		 * the lock on our parent. See the comment in ufs_lookup
11752 		 * for details on possible races.
11753 		 */
11754 		FREE_LOCK(&lk);
11755 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11756 		    FFSV_FORCEINSMQ)) {
11757 			error = vfs_busy(mp, MBF_NOWAIT);
11758 			if (error != 0) {
11759 				vfs_ref(mp);
11760 				VOP_UNLOCK(vp, 0);
11761 				error = vfs_busy(mp, 0);
11762 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11763 				vfs_rel(mp);
11764 				if (error != 0)
11765 					return (ENOENT);
11766 				if (vp->v_iflag & VI_DOOMED) {
11767 					vfs_unbusy(mp);
11768 					return (ENOENT);
11769 				}
11770 			}
11771 			VOP_UNLOCK(vp, 0);
11772 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
11773 			    &pvp, FFSV_FORCEINSMQ);
11774 			vfs_unbusy(mp);
11775 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11776 			if (vp->v_iflag & VI_DOOMED) {
11777 				if (error == 0)
11778 					vput(pvp);
11779 				error = ENOENT;
11780 			}
11781 			if (error != 0)
11782 				return (error);
11783 		}
11784 		/*
11785 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
11786 		 * that are contained in direct blocks will be resolved by
11787 		 * doing a ffs_update. Pagedeps contained in indirect blocks
11788 		 * may require a complete sync'ing of the directory. So, we
11789 		 * try the cheap and fast ffs_update first, and if that fails,
11790 		 * then we do the slower ffs_syncvnode of the directory.
11791 		 */
11792 		if (flushparent) {
11793 			int locked;
11794 
11795 			if ((error = ffs_update(pvp, 1)) != 0) {
11796 				vput(pvp);
11797 				return (error);
11798 			}
11799 			ACQUIRE_LOCK(&lk);
11800 			locked = 1;
11801 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
11802 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
11803 					if (wk->wk_type != D_DIRADD)
11804 						panic("softdep_fsync: Unexpected type %s",
11805 						      TYPENAME(wk->wk_type));
11806 					dap = WK_DIRADD(wk);
11807 					if (dap->da_state & DIRCHG)
11808 						pagedep = dap->da_previous->dm_pagedep;
11809 					else
11810 						pagedep = dap->da_pagedep;
11811 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
11812 					FREE_LOCK(&lk);
11813 					locked = 0;
11814 					if (pagedep_new_block &&
11815 					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
11816 						vput(pvp);
11817 						return (error);
11818 					}
11819 				}
11820 			}
11821 			if (locked)
11822 				FREE_LOCK(&lk);
11823 		}
11824 		/*
11825 		 * Flush directory page containing the inode's name.
11826 		 */
11827 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
11828 		    &bp);
11829 		if (error == 0)
11830 			error = bwrite(bp);
11831 		else
11832 			brelse(bp);
11833 		vput(pvp);
11834 		if (error != 0)
11835 			return (error);
11836 		ACQUIRE_LOCK(&lk);
11837 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
11838 			break;
11839 	}
11840 	FREE_LOCK(&lk);
11841 	return (0);
11842 }
11843 
11844 /*
11845  * Flush all the dirty bitmaps associated with the block device
11846  * before flushing the rest of the dirty blocks so as to reduce
11847  * the number of dependencies that will have to be rolled back.
11848  *
11849  * XXX Unused?
11850  */
11851 void
11852 softdep_fsync_mountdev(vp)
11853 	struct vnode *vp;
11854 {
11855 	struct buf *bp, *nbp;
11856 	struct worklist *wk;
11857 	struct bufobj *bo;
11858 
11859 	if (!vn_isdisk(vp, NULL))
11860 		panic("softdep_fsync_mountdev: vnode not a disk");
11861 	bo = &vp->v_bufobj;
11862 restart:
11863 	BO_LOCK(bo);
11864 	ACQUIRE_LOCK(&lk);
11865 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
11866 		/*
11867 		 * If it is already scheduled, skip to the next buffer.
11868 		 */
11869 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
11870 			continue;
11871 
11872 		if ((bp->b_flags & B_DELWRI) == 0)
11873 			panic("softdep_fsync_mountdev: not dirty");
11874 		/*
11875 		 * We are only interested in bitmaps with outstanding
11876 		 * dependencies.
11877 		 */
11878 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
11879 		    wk->wk_type != D_BMSAFEMAP ||
11880 		    (bp->b_vflags & BV_BKGRDINPROG)) {
11881 			BUF_UNLOCK(bp);
11882 			continue;
11883 		}
11884 		FREE_LOCK(&lk);
11885 		BO_UNLOCK(bo);
11886 		bremfree(bp);
11887 		(void) bawrite(bp);
11888 		goto restart;
11889 	}
11890 	FREE_LOCK(&lk);
11891 	drain_output(vp);
11892 	BO_UNLOCK(bo);
11893 }
11894 
11895 /*
11896  * Sync all cylinder groups that were dirty at the time this function is
11897  * called.  Newly dirtied cgs will be inserted before the sintenel.  This
11898  * is used to flush freedep activity that may be holding up writes to a
11899  * indirect block.
11900  */
11901 static int
11902 sync_cgs(mp, waitfor)
11903 	struct mount *mp;
11904 	int waitfor;
11905 {
11906 	struct bmsafemap *bmsafemap;
11907 	struct bmsafemap *sintenel;
11908 	struct ufsmount *ump;
11909 	struct buf *bp;
11910 	int error;
11911 
11912 	sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
11913 	sintenel->sm_cg = -1;
11914 	ump = VFSTOUFS(mp);
11915 	error = 0;
11916 	ACQUIRE_LOCK(&lk);
11917 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next);
11918 	for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL;
11919 	    bmsafemap = LIST_NEXT(sintenel, sm_next)) {
11920 		/* Skip sintenels and cgs with no work to release. */
11921 		if (bmsafemap->sm_cg == -1 ||
11922 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
11923 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
11924 			LIST_REMOVE(sintenel, sm_next);
11925 			LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11926 			continue;
11927 		}
11928 		/*
11929 		 * If we don't get the lock and we're waiting try again, if
11930 		 * not move on to the next buf and try to sync it.
11931 		 */
11932 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
11933 		if (bp == NULL && waitfor == MNT_WAIT)
11934 			continue;
11935 		LIST_REMOVE(sintenel, sm_next);
11936 		LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11937 		if (bp == NULL)
11938 			continue;
11939 		FREE_LOCK(&lk);
11940 		if (waitfor == MNT_NOWAIT)
11941 			bawrite(bp);
11942 		else
11943 			error = bwrite(bp);
11944 		ACQUIRE_LOCK(&lk);
11945 		if (error)
11946 			break;
11947 	}
11948 	LIST_REMOVE(sintenel, sm_next);
11949 	FREE_LOCK(&lk);
11950 	free(sintenel, M_BMSAFEMAP);
11951 	return (error);
11952 }
11953 
11954 /*
11955  * This routine is called when we are trying to synchronously flush a
11956  * file. This routine must eliminate any filesystem metadata dependencies
11957  * so that the syncing routine can succeed.
11958  */
11959 int
11960 softdep_sync_metadata(struct vnode *vp)
11961 {
11962 	int error;
11963 
11964 	/*
11965 	 * Ensure that any direct block dependencies have been cleared,
11966 	 * truncations are started, and inode references are journaled.
11967 	 */
11968 	ACQUIRE_LOCK(&lk);
11969 	/*
11970 	 * Write all journal records to prevent rollbacks on devvp.
11971 	 */
11972 	if (vp->v_type == VCHR)
11973 		softdep_flushjournal(vp->v_mount);
11974 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
11975 	/*
11976 	 * Ensure that all truncates are written so we won't find deps on
11977 	 * indirect blocks.
11978 	 */
11979 	process_truncates(vp);
11980 	FREE_LOCK(&lk);
11981 
11982 	return (error);
11983 }
11984 
11985 /*
11986  * This routine is called when we are attempting to sync a buf with
11987  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
11988  * other IO it can but returns EBUSY if the buffer is not yet able to
11989  * be written.  Dependencies which will not cause rollbacks will always
11990  * return 0.
11991  */
11992 int
11993 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
11994 {
11995 	struct indirdep *indirdep;
11996 	struct pagedep *pagedep;
11997 	struct allocindir *aip;
11998 	struct newblk *newblk;
11999 	struct buf *nbp;
12000 	struct worklist *wk;
12001 	int i, error;
12002 
12003 	/*
12004 	 * For VCHR we just don't want to force flush any dependencies that
12005 	 * will cause rollbacks.
12006 	 */
12007 	if (vp->v_type == VCHR) {
12008 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12009 			return (EBUSY);
12010 		return (0);
12011 	}
12012 	ACQUIRE_LOCK(&lk);
12013 	/*
12014 	 * As we hold the buffer locked, none of its dependencies
12015 	 * will disappear.
12016 	 */
12017 	error = 0;
12018 top:
12019 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12020 		switch (wk->wk_type) {
12021 
12022 		case D_ALLOCDIRECT:
12023 		case D_ALLOCINDIR:
12024 			newblk = WK_NEWBLK(wk);
12025 			if (newblk->nb_jnewblk != NULL) {
12026 				if (waitfor == MNT_NOWAIT) {
12027 					error = EBUSY;
12028 					goto out_unlock;
12029 				}
12030 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12031 				goto top;
12032 			}
12033 			if (newblk->nb_state & DEPCOMPLETE ||
12034 			    waitfor == MNT_NOWAIT)
12035 				continue;
12036 			nbp = newblk->nb_bmsafemap->sm_buf;
12037 			nbp = getdirtybuf(nbp, &lk, waitfor);
12038 			if (nbp == NULL)
12039 				goto top;
12040 			FREE_LOCK(&lk);
12041 			if ((error = bwrite(nbp)) != 0)
12042 				goto out;
12043 			ACQUIRE_LOCK(&lk);
12044 			continue;
12045 
12046 		case D_INDIRDEP:
12047 			indirdep = WK_INDIRDEP(wk);
12048 			if (waitfor == MNT_NOWAIT) {
12049 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12050 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12051 					error = EBUSY;
12052 					goto out_unlock;
12053 				}
12054 			}
12055 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12056 				panic("softdep_sync_buf: truncation pending.");
12057 		restart:
12058 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12059 				newblk = (struct newblk *)aip;
12060 				if (newblk->nb_jnewblk != NULL) {
12061 					jwait(&newblk->nb_jnewblk->jn_list,
12062 					    waitfor);
12063 					goto restart;
12064 				}
12065 				if (newblk->nb_state & DEPCOMPLETE)
12066 					continue;
12067 				nbp = newblk->nb_bmsafemap->sm_buf;
12068 				nbp = getdirtybuf(nbp, &lk, waitfor);
12069 				if (nbp == NULL)
12070 					goto restart;
12071 				FREE_LOCK(&lk);
12072 				if ((error = bwrite(nbp)) != 0)
12073 					goto out;
12074 				ACQUIRE_LOCK(&lk);
12075 				goto restart;
12076 			}
12077 			continue;
12078 
12079 		case D_PAGEDEP:
12080 			/*
12081 			 * Only flush directory entries in synchronous passes.
12082 			 */
12083 			if (waitfor != MNT_WAIT) {
12084 				error = EBUSY;
12085 				goto out_unlock;
12086 			}
12087 			/*
12088 			 * While syncing snapshots, we must allow recursive
12089 			 * lookups.
12090 			 */
12091 			BUF_AREC(bp);
12092 			/*
12093 			 * We are trying to sync a directory that may
12094 			 * have dependencies on both its own metadata
12095 			 * and/or dependencies on the inodes of any
12096 			 * recently allocated files. We walk its diradd
12097 			 * lists pushing out the associated inode.
12098 			 */
12099 			pagedep = WK_PAGEDEP(wk);
12100 			for (i = 0; i < DAHASHSZ; i++) {
12101 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12102 					continue;
12103 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12104 				    &pagedep->pd_diraddhd[i]))) {
12105 					BUF_NOREC(bp);
12106 					goto out_unlock;
12107 				}
12108 			}
12109 			BUF_NOREC(bp);
12110 			continue;
12111 
12112 		case D_FREEWORK:
12113 		case D_FREEDEP:
12114 		case D_JSEGDEP:
12115 			continue;
12116 
12117 		default:
12118 			panic("softdep_sync_buf: Unknown type %s",
12119 			    TYPENAME(wk->wk_type));
12120 			/* NOTREACHED */
12121 		}
12122 	}
12123 out_unlock:
12124 	FREE_LOCK(&lk);
12125 out:
12126 	return (error);
12127 }
12128 
12129 /*
12130  * Flush the dependencies associated with an inodedep.
12131  * Called with splbio blocked.
12132  */
12133 static int
12134 flush_inodedep_deps(vp, mp, ino)
12135 	struct vnode *vp;
12136 	struct mount *mp;
12137 	ino_t ino;
12138 {
12139 	struct inodedep *inodedep;
12140 	struct inoref *inoref;
12141 	int error, waitfor;
12142 
12143 	/*
12144 	 * This work is done in two passes. The first pass grabs most
12145 	 * of the buffers and begins asynchronously writing them. The
12146 	 * only way to wait for these asynchronous writes is to sleep
12147 	 * on the filesystem vnode which may stay busy for a long time
12148 	 * if the filesystem is active. So, instead, we make a second
12149 	 * pass over the dependencies blocking on each write. In the
12150 	 * usual case we will be blocking against a write that we
12151 	 * initiated, so when it is done the dependency will have been
12152 	 * resolved. Thus the second pass is expected to end quickly.
12153 	 * We give a brief window at the top of the loop to allow
12154 	 * any pending I/O to complete.
12155 	 */
12156 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12157 		if (error)
12158 			return (error);
12159 		FREE_LOCK(&lk);
12160 		ACQUIRE_LOCK(&lk);
12161 restart:
12162 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12163 			return (0);
12164 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12165 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12166 			    == DEPCOMPLETE) {
12167 				jwait(&inoref->if_list, MNT_WAIT);
12168 				goto restart;
12169 			}
12170 		}
12171 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12172 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12173 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12174 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12175 			continue;
12176 		/*
12177 		 * If pass2, we are done, otherwise do pass 2.
12178 		 */
12179 		if (waitfor == MNT_WAIT)
12180 			break;
12181 		waitfor = MNT_WAIT;
12182 	}
12183 	/*
12184 	 * Try freeing inodedep in case all dependencies have been removed.
12185 	 */
12186 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12187 		(void) free_inodedep(inodedep);
12188 	return (0);
12189 }
12190 
12191 /*
12192  * Flush an inode dependency list.
12193  * Called with splbio blocked.
12194  */
12195 static int
12196 flush_deplist(listhead, waitfor, errorp)
12197 	struct allocdirectlst *listhead;
12198 	int waitfor;
12199 	int *errorp;
12200 {
12201 	struct allocdirect *adp;
12202 	struct newblk *newblk;
12203 	struct buf *bp;
12204 
12205 	mtx_assert(&lk, MA_OWNED);
12206 	TAILQ_FOREACH(adp, listhead, ad_next) {
12207 		newblk = (struct newblk *)adp;
12208 		if (newblk->nb_jnewblk != NULL) {
12209 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12210 			return (1);
12211 		}
12212 		if (newblk->nb_state & DEPCOMPLETE)
12213 			continue;
12214 		bp = newblk->nb_bmsafemap->sm_buf;
12215 		bp = getdirtybuf(bp, &lk, waitfor);
12216 		if (bp == NULL) {
12217 			if (waitfor == MNT_NOWAIT)
12218 				continue;
12219 			return (1);
12220 		}
12221 		FREE_LOCK(&lk);
12222 		if (waitfor == MNT_NOWAIT)
12223 			bawrite(bp);
12224 		else
12225 			*errorp = bwrite(bp);
12226 		ACQUIRE_LOCK(&lk);
12227 		return (1);
12228 	}
12229 	return (0);
12230 }
12231 
12232 /*
12233  * Flush dependencies associated with an allocdirect block.
12234  */
12235 static int
12236 flush_newblk_dep(vp, mp, lbn)
12237 	struct vnode *vp;
12238 	struct mount *mp;
12239 	ufs_lbn_t lbn;
12240 {
12241 	struct newblk *newblk;
12242 	struct bufobj *bo;
12243 	struct inode *ip;
12244 	struct buf *bp;
12245 	ufs2_daddr_t blkno;
12246 	int error;
12247 
12248 	error = 0;
12249 	bo = &vp->v_bufobj;
12250 	ip = VTOI(vp);
12251 	blkno = DIP(ip, i_db[lbn]);
12252 	if (blkno == 0)
12253 		panic("flush_newblk_dep: Missing block");
12254 	ACQUIRE_LOCK(&lk);
12255 	/*
12256 	 * Loop until all dependencies related to this block are satisfied.
12257 	 * We must be careful to restart after each sleep in case a write
12258 	 * completes some part of this process for us.
12259 	 */
12260 	for (;;) {
12261 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12262 			FREE_LOCK(&lk);
12263 			break;
12264 		}
12265 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12266 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12267 		/*
12268 		 * Flush the journal.
12269 		 */
12270 		if (newblk->nb_jnewblk != NULL) {
12271 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12272 			continue;
12273 		}
12274 		/*
12275 		 * Write the bitmap dependency.
12276 		 */
12277 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12278 			bp = newblk->nb_bmsafemap->sm_buf;
12279 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12280 			if (bp == NULL)
12281 				continue;
12282 			FREE_LOCK(&lk);
12283 			error = bwrite(bp);
12284 			if (error)
12285 				break;
12286 			ACQUIRE_LOCK(&lk);
12287 			continue;
12288 		}
12289 		/*
12290 		 * Write the buffer.
12291 		 */
12292 		FREE_LOCK(&lk);
12293 		BO_LOCK(bo);
12294 		bp = gbincore(bo, lbn);
12295 		if (bp != NULL) {
12296 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12297 			    LK_INTERLOCK, BO_MTX(bo));
12298 			if (error == ENOLCK) {
12299 				ACQUIRE_LOCK(&lk);
12300 				continue; /* Slept, retry */
12301 			}
12302 			if (error != 0)
12303 				break;	/* Failed */
12304 			if (bp->b_flags & B_DELWRI) {
12305 				bremfree(bp);
12306 				error = bwrite(bp);
12307 				if (error)
12308 					break;
12309 			} else
12310 				BUF_UNLOCK(bp);
12311 		} else
12312 			BO_UNLOCK(bo);
12313 		/*
12314 		 * We have to wait for the direct pointers to
12315 		 * point at the newdirblk before the dependency
12316 		 * will go away.
12317 		 */
12318 		error = ffs_update(vp, MNT_WAIT);
12319 		if (error)
12320 			break;
12321 		ACQUIRE_LOCK(&lk);
12322 	}
12323 	return (error);
12324 }
12325 
12326 /*
12327  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12328  * Called with splbio blocked.
12329  */
12330 static int
12331 flush_pagedep_deps(pvp, mp, diraddhdp)
12332 	struct vnode *pvp;
12333 	struct mount *mp;
12334 	struct diraddhd *diraddhdp;
12335 {
12336 	struct inodedep *inodedep;
12337 	struct inoref *inoref;
12338 	struct ufsmount *ump;
12339 	struct diradd *dap;
12340 	struct vnode *vp;
12341 	int error = 0;
12342 	struct buf *bp;
12343 	ino_t inum;
12344 
12345 	ump = VFSTOUFS(mp);
12346 restart:
12347 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12348 		/*
12349 		 * Flush ourselves if this directory entry
12350 		 * has a MKDIR_PARENT dependency.
12351 		 */
12352 		if (dap->da_state & MKDIR_PARENT) {
12353 			FREE_LOCK(&lk);
12354 			if ((error = ffs_update(pvp, MNT_WAIT)) != 0)
12355 				break;
12356 			ACQUIRE_LOCK(&lk);
12357 			/*
12358 			 * If that cleared dependencies, go on to next.
12359 			 */
12360 			if (dap != LIST_FIRST(diraddhdp))
12361 				continue;
12362 			if (dap->da_state & MKDIR_PARENT)
12363 				panic("flush_pagedep_deps: MKDIR_PARENT");
12364 		}
12365 		/*
12366 		 * A newly allocated directory must have its "." and
12367 		 * ".." entries written out before its name can be
12368 		 * committed in its parent.
12369 		 */
12370 		inum = dap->da_newinum;
12371 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12372 			panic("flush_pagedep_deps: lost inode1");
12373 		/*
12374 		 * Wait for any pending journal adds to complete so we don't
12375 		 * cause rollbacks while syncing.
12376 		 */
12377 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12378 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12379 			    == DEPCOMPLETE) {
12380 				jwait(&inoref->if_list, MNT_WAIT);
12381 				goto restart;
12382 			}
12383 		}
12384 		if (dap->da_state & MKDIR_BODY) {
12385 			FREE_LOCK(&lk);
12386 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12387 			    FFSV_FORCEINSMQ)))
12388 				break;
12389 			error = flush_newblk_dep(vp, mp, 0);
12390 			/*
12391 			 * If we still have the dependency we might need to
12392 			 * update the vnode to sync the new link count to
12393 			 * disk.
12394 			 */
12395 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12396 				error = ffs_update(vp, MNT_WAIT);
12397 			vput(vp);
12398 			if (error != 0)
12399 				break;
12400 			ACQUIRE_LOCK(&lk);
12401 			/*
12402 			 * If that cleared dependencies, go on to next.
12403 			 */
12404 			if (dap != LIST_FIRST(diraddhdp))
12405 				continue;
12406 			if (dap->da_state & MKDIR_BODY) {
12407 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12408 				    &inodedep);
12409 				panic("flush_pagedep_deps: MKDIR_BODY "
12410 				    "inodedep %p dap %p vp %p",
12411 				    inodedep, dap, vp);
12412 			}
12413 		}
12414 		/*
12415 		 * Flush the inode on which the directory entry depends.
12416 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12417 		 * the only remaining dependency is that the updated inode
12418 		 * count must get pushed to disk. The inode has already
12419 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12420 		 * the time of the reference count change. So we need only
12421 		 * locate that buffer, ensure that there will be no rollback
12422 		 * caused by a bitmap dependency, then write the inode buffer.
12423 		 */
12424 retry:
12425 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12426 			panic("flush_pagedep_deps: lost inode");
12427 		/*
12428 		 * If the inode still has bitmap dependencies,
12429 		 * push them to disk.
12430 		 */
12431 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12432 			bp = inodedep->id_bmsafemap->sm_buf;
12433 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12434 			if (bp == NULL)
12435 				goto retry;
12436 			FREE_LOCK(&lk);
12437 			if ((error = bwrite(bp)) != 0)
12438 				break;
12439 			ACQUIRE_LOCK(&lk);
12440 			if (dap != LIST_FIRST(diraddhdp))
12441 				continue;
12442 		}
12443 		/*
12444 		 * If the inode is still sitting in a buffer waiting
12445 		 * to be written or waiting for the link count to be
12446 		 * adjusted update it here to flush it to disk.
12447 		 */
12448 		if (dap == LIST_FIRST(diraddhdp)) {
12449 			FREE_LOCK(&lk);
12450 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12451 			    FFSV_FORCEINSMQ)))
12452 				break;
12453 			error = ffs_update(vp, MNT_WAIT);
12454 			vput(vp);
12455 			if (error)
12456 				break;
12457 			ACQUIRE_LOCK(&lk);
12458 		}
12459 		/*
12460 		 * If we have failed to get rid of all the dependencies
12461 		 * then something is seriously wrong.
12462 		 */
12463 		if (dap == LIST_FIRST(diraddhdp)) {
12464 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12465 			panic("flush_pagedep_deps: failed to flush "
12466 			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
12467 		}
12468 	}
12469 	if (error)
12470 		ACQUIRE_LOCK(&lk);
12471 	return (error);
12472 }
12473 
12474 /*
12475  * A large burst of file addition or deletion activity can drive the
12476  * memory load excessively high. First attempt to slow things down
12477  * using the techniques below. If that fails, this routine requests
12478  * the offending operations to fall back to running synchronously
12479  * until the memory load returns to a reasonable level.
12480  */
12481 int
12482 softdep_slowdown(vp)
12483 	struct vnode *vp;
12484 {
12485 	struct ufsmount *ump;
12486 	int jlow;
12487 	int max_softdeps_hard;
12488 
12489 	ACQUIRE_LOCK(&lk);
12490 	jlow = 0;
12491 	/*
12492 	 * Check for journal space if needed.
12493 	 */
12494 	if (DOINGSUJ(vp)) {
12495 		ump = VFSTOUFS(vp->v_mount);
12496 		if (journal_space(ump, 0) == 0)
12497 			jlow = 1;
12498 	}
12499 	max_softdeps_hard = max_softdeps * 11 / 10;
12500 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12501 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12502 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12503 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12504 		FREE_LOCK(&lk);
12505   		return (0);
12506 	}
12507 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12508 		softdep_speedup();
12509 	stat_sync_limit_hit += 1;
12510 	FREE_LOCK(&lk);
12511 	if (DOINGSUJ(vp))
12512 		return (0);
12513 	return (1);
12514 }
12515 
12516 /*
12517  * Called by the allocation routines when they are about to fail
12518  * in the hope that we can free up the requested resource (inodes
12519  * or disk space).
12520  *
12521  * First check to see if the work list has anything on it. If it has,
12522  * clean up entries until we successfully free the requested resource.
12523  * Because this process holds inodes locked, we cannot handle any remove
12524  * requests that might block on a locked inode as that could lead to
12525  * deadlock. If the worklist yields none of the requested resource,
12526  * start syncing out vnodes to free up the needed space.
12527  */
12528 int
12529 softdep_request_cleanup(fs, vp, cred, resource)
12530 	struct fs *fs;
12531 	struct vnode *vp;
12532 	struct ucred *cred;
12533 	int resource;
12534 {
12535 	struct ufsmount *ump;
12536 	struct mount *mp;
12537 	struct vnode *lvp, *mvp;
12538 	long starttime;
12539 	ufs2_daddr_t needed;
12540 	int error;
12541 
12542 	mp = vp->v_mount;
12543 	ump = VFSTOUFS(mp);
12544 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12545 	if (resource == FLUSH_BLOCKS_WAIT)
12546 		stat_cleanup_blkrequests += 1;
12547 	else
12548 		stat_cleanup_inorequests += 1;
12549 
12550 	/*
12551 	 * If we are being called because of a process doing a
12552 	 * copy-on-write, then it is not safe to process any
12553 	 * worklist items as we will recurse into the copyonwrite
12554 	 * routine.  This will result in an incoherent snapshot.
12555 	 */
12556 	if (curthread->td_pflags & TDP_COWINPROGRESS)
12557 		return (0);
12558 	UFS_UNLOCK(ump);
12559 	error = ffs_update(vp, 1);
12560 	if (error != 0) {
12561 		UFS_LOCK(ump);
12562 		return (0);
12563 	}
12564 	/*
12565 	 * If we are in need of resources, consider pausing for
12566 	 * tickdelay to give ourselves some breathing room.
12567 	 */
12568 	ACQUIRE_LOCK(&lk);
12569 	process_removes(vp);
12570 	process_truncates(vp);
12571 	request_cleanup(UFSTOVFS(ump), resource);
12572 	FREE_LOCK(&lk);
12573 	/*
12574 	 * Now clean up at least as many resources as we will need.
12575 	 *
12576 	 * When requested to clean up inodes, the number that are needed
12577 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12578 	 * plus a bit of slop (2) in case some more writers show up while
12579 	 * we are cleaning.
12580 	 *
12581 	 * When requested to free up space, the amount of space that
12582 	 * we need is enough blocks to allocate a full-sized segment
12583 	 * (fs_contigsumsize). The number of such segments that will
12584 	 * be needed is set by the number of simultaneous writers
12585 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12586 	 * writers show up while we are cleaning.
12587 	 *
12588 	 * Additionally, if we are unpriviledged and allocating space,
12589 	 * we need to ensure that we clean up enough blocks to get the
12590 	 * needed number of blocks over the threshhold of the minimum
12591 	 * number of blocks required to be kept free by the filesystem
12592 	 * (fs_minfree).
12593 	 */
12594 	if (resource == FLUSH_INODES_WAIT) {
12595 		needed = vp->v_mount->mnt_writeopcount + 2;
12596 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12597 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12598 		    fs->fs_contigsumsize;
12599 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12600 			needed += fragstoblks(fs,
12601 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12602 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12603 	} else {
12604 		UFS_LOCK(ump);
12605 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12606 		    resource);
12607 		return (0);
12608 	}
12609 	starttime = time_second;
12610 retry:
12611 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12612 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12613 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12614 	    fs->fs_cstotal.cs_nifree <= needed)) {
12615 		ACQUIRE_LOCK(&lk);
12616 		if (ump->softdep_on_worklist > 0 &&
12617 		    process_worklist_item(UFSTOVFS(ump),
12618 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12619 			stat_worklist_push += 1;
12620 		FREE_LOCK(&lk);
12621 	}
12622 	/*
12623 	 * If we still need resources and there are no more worklist
12624 	 * entries to process to obtain them, we have to start flushing
12625 	 * the dirty vnodes to force the release of additional requests
12626 	 * to the worklist that we can then process to reap addition
12627 	 * resources. We walk the vnodes associated with the mount point
12628 	 * until we get the needed worklist requests that we can reap.
12629 	 */
12630 	if ((resource == FLUSH_BLOCKS_WAIT &&
12631 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12632 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12633 	     fs->fs_cstotal.cs_nifree <= needed)) {
12634 		MNT_ILOCK(mp);
12635 		MNT_VNODE_FOREACH(lvp, mp, mvp) {
12636 			VI_LOCK(lvp);
12637 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12638 				VI_UNLOCK(lvp);
12639 				continue;
12640 			}
12641 			MNT_IUNLOCK(mp);
12642 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12643 			    curthread)) {
12644 				MNT_ILOCK(mp);
12645 				continue;
12646 			}
12647 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12648 				vput(lvp);
12649 				MNT_ILOCK(mp);
12650 				continue;
12651 			}
12652 			(void) ffs_syncvnode(lvp, MNT_NOWAIT);
12653 			vput(lvp);
12654 			MNT_ILOCK(mp);
12655 		}
12656 		MNT_IUNLOCK(mp);
12657 		lvp = ump->um_devvp;
12658 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12659 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12660 			VOP_UNLOCK(lvp, 0);
12661 		}
12662 		if (ump->softdep_on_worklist > 0) {
12663 			stat_cleanup_retries += 1;
12664 			goto retry;
12665 		}
12666 		stat_cleanup_failures += 1;
12667 	}
12668 	if (time_second - starttime > stat_cleanup_high_delay)
12669 		stat_cleanup_high_delay = time_second - starttime;
12670 	UFS_LOCK(ump);
12671 	return (1);
12672 }
12673 
12674 /*
12675  * If memory utilization has gotten too high, deliberately slow things
12676  * down and speed up the I/O processing.
12677  */
12678 extern struct thread *syncertd;
12679 static int
12680 request_cleanup(mp, resource)
12681 	struct mount *mp;
12682 	int resource;
12683 {
12684 	struct thread *td = curthread;
12685 	struct ufsmount *ump;
12686 
12687 	mtx_assert(&lk, MA_OWNED);
12688 	/*
12689 	 * We never hold up the filesystem syncer or buf daemon.
12690 	 */
12691 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12692 		return (0);
12693 	ump = VFSTOUFS(mp);
12694 	/*
12695 	 * First check to see if the work list has gotten backlogged.
12696 	 * If it has, co-opt this process to help clean up two entries.
12697 	 * Because this process may hold inodes locked, we cannot
12698 	 * handle any remove requests that might block on a locked
12699 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12700 	 * to avoid recursively processing the worklist.
12701 	 */
12702 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12703 		td->td_pflags |= TDP_SOFTDEP;
12704 		process_worklist_item(mp, 2, LK_NOWAIT);
12705 		td->td_pflags &= ~TDP_SOFTDEP;
12706 		stat_worklist_push += 2;
12707 		return(1);
12708 	}
12709 	/*
12710 	 * Next, we attempt to speed up the syncer process. If that
12711 	 * is successful, then we allow the process to continue.
12712 	 */
12713 	if (softdep_speedup() &&
12714 	    resource != FLUSH_BLOCKS_WAIT &&
12715 	    resource != FLUSH_INODES_WAIT)
12716 		return(0);
12717 	/*
12718 	 * If we are resource constrained on inode dependencies, try
12719 	 * flushing some dirty inodes. Otherwise, we are constrained
12720 	 * by file deletions, so try accelerating flushes of directories
12721 	 * with removal dependencies. We would like to do the cleanup
12722 	 * here, but we probably hold an inode locked at this point and
12723 	 * that might deadlock against one that we try to clean. So,
12724 	 * the best that we can do is request the syncer daemon to do
12725 	 * the cleanup for us.
12726 	 */
12727 	switch (resource) {
12728 
12729 	case FLUSH_INODES:
12730 	case FLUSH_INODES_WAIT:
12731 		stat_ino_limit_push += 1;
12732 		req_clear_inodedeps += 1;
12733 		stat_countp = &stat_ino_limit_hit;
12734 		break;
12735 
12736 	case FLUSH_BLOCKS:
12737 	case FLUSH_BLOCKS_WAIT:
12738 		stat_blk_limit_push += 1;
12739 		req_clear_remove += 1;
12740 		stat_countp = &stat_blk_limit_hit;
12741 		break;
12742 
12743 	default:
12744 		panic("request_cleanup: unknown type");
12745 	}
12746 	/*
12747 	 * Hopefully the syncer daemon will catch up and awaken us.
12748 	 * We wait at most tickdelay before proceeding in any case.
12749 	 */
12750 	proc_waiting += 1;
12751 	if (callout_pending(&softdep_callout) == FALSE)
12752 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12753 		    pause_timer, 0);
12754 
12755 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12756 	proc_waiting -= 1;
12757 	return (1);
12758 }
12759 
12760 /*
12761  * Awaken processes pausing in request_cleanup and clear proc_waiting
12762  * to indicate that there is no longer a timer running.
12763  */
12764 static void
12765 pause_timer(arg)
12766 	void *arg;
12767 {
12768 
12769 	/*
12770 	 * The callout_ API has acquired mtx and will hold it around this
12771 	 * function call.
12772 	 */
12773 	*stat_countp += 1;
12774 	wakeup_one(&proc_waiting);
12775 	if (proc_waiting > 0)
12776 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12777 		    pause_timer, 0);
12778 }
12779 
12780 /*
12781  * Flush out a directory with at least one removal dependency in an effort to
12782  * reduce the number of dirrem, freefile, and freeblks dependency structures.
12783  */
12784 static void
12785 clear_remove(td)
12786 	struct thread *td;
12787 {
12788 	struct pagedep_hashhead *pagedephd;
12789 	struct pagedep *pagedep;
12790 	static int next = 0;
12791 	struct mount *mp;
12792 	struct vnode *vp;
12793 	struct bufobj *bo;
12794 	int error, cnt;
12795 	ino_t ino;
12796 
12797 	mtx_assert(&lk, MA_OWNED);
12798 
12799 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
12800 		pagedephd = &pagedep_hashtbl[next++];
12801 		if (next >= pagedep_hash)
12802 			next = 0;
12803 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
12804 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
12805 				continue;
12806 			mp = pagedep->pd_list.wk_mp;
12807 			ino = pagedep->pd_ino;
12808 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12809 				continue;
12810 			FREE_LOCK(&lk);
12811 
12812 			/*
12813 			 * Let unmount clear deps
12814 			 */
12815 			error = vfs_busy(mp, MBF_NOWAIT);
12816 			if (error != 0)
12817 				goto finish_write;
12818 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12819 			     FFSV_FORCEINSMQ);
12820 			vfs_unbusy(mp);
12821 			if (error != 0) {
12822 				softdep_error("clear_remove: vget", error);
12823 				goto finish_write;
12824 			}
12825 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
12826 				softdep_error("clear_remove: fsync", error);
12827 			bo = &vp->v_bufobj;
12828 			BO_LOCK(bo);
12829 			drain_output(vp);
12830 			BO_UNLOCK(bo);
12831 			vput(vp);
12832 		finish_write:
12833 			vn_finished_write(mp);
12834 			ACQUIRE_LOCK(&lk);
12835 			return;
12836 		}
12837 	}
12838 }
12839 
12840 /*
12841  * Clear out a block of dirty inodes in an effort to reduce
12842  * the number of inodedep dependency structures.
12843  */
12844 static void
12845 clear_inodedeps(td)
12846 	struct thread *td;
12847 {
12848 	struct inodedep_hashhead *inodedephd;
12849 	struct inodedep *inodedep;
12850 	static int next = 0;
12851 	struct mount *mp;
12852 	struct vnode *vp;
12853 	struct fs *fs;
12854 	int error, cnt;
12855 	ino_t firstino, lastino, ino;
12856 
12857 	mtx_assert(&lk, MA_OWNED);
12858 	/*
12859 	 * Pick a random inode dependency to be cleared.
12860 	 * We will then gather up all the inodes in its block
12861 	 * that have dependencies and flush them out.
12862 	 */
12863 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
12864 		inodedephd = &inodedep_hashtbl[next++];
12865 		if (next >= inodedep_hash)
12866 			next = 0;
12867 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
12868 			break;
12869 	}
12870 	if (inodedep == NULL)
12871 		return;
12872 	fs = inodedep->id_fs;
12873 	mp = inodedep->id_list.wk_mp;
12874 	/*
12875 	 * Find the last inode in the block with dependencies.
12876 	 */
12877 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
12878 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
12879 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
12880 			break;
12881 	/*
12882 	 * Asynchronously push all but the last inode with dependencies.
12883 	 * Synchronously push the last inode with dependencies to ensure
12884 	 * that the inode block gets written to free up the inodedeps.
12885 	 */
12886 	for (ino = firstino; ino <= lastino; ino++) {
12887 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12888 			continue;
12889 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12890 			continue;
12891 		FREE_LOCK(&lk);
12892 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
12893 		if (error != 0) {
12894 			vn_finished_write(mp);
12895 			ACQUIRE_LOCK(&lk);
12896 			return;
12897 		}
12898 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12899 		    FFSV_FORCEINSMQ)) != 0) {
12900 			softdep_error("clear_inodedeps: vget", error);
12901 			vfs_unbusy(mp);
12902 			vn_finished_write(mp);
12903 			ACQUIRE_LOCK(&lk);
12904 			return;
12905 		}
12906 		vfs_unbusy(mp);
12907 		if (ino == lastino) {
12908 			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
12909 				softdep_error("clear_inodedeps: fsync1", error);
12910 		} else {
12911 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
12912 				softdep_error("clear_inodedeps: fsync2", error);
12913 			BO_LOCK(&vp->v_bufobj);
12914 			drain_output(vp);
12915 			BO_UNLOCK(&vp->v_bufobj);
12916 		}
12917 		vput(vp);
12918 		vn_finished_write(mp);
12919 		ACQUIRE_LOCK(&lk);
12920 	}
12921 }
12922 
12923 void
12924 softdep_buf_append(bp, wkhd)
12925 	struct buf *bp;
12926 	struct workhead *wkhd;
12927 {
12928 	struct worklist *wk;
12929 
12930 	ACQUIRE_LOCK(&lk);
12931 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
12932 		WORKLIST_REMOVE(wk);
12933 		WORKLIST_INSERT(&bp->b_dep, wk);
12934 	}
12935 	FREE_LOCK(&lk);
12936 
12937 }
12938 
12939 void
12940 softdep_inode_append(ip, cred, wkhd)
12941 	struct inode *ip;
12942 	struct ucred *cred;
12943 	struct workhead *wkhd;
12944 {
12945 	struct buf *bp;
12946 	struct fs *fs;
12947 	int error;
12948 
12949 	fs = ip->i_fs;
12950 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
12951 	    (int)fs->fs_bsize, cred, &bp);
12952 	if (error) {
12953 		softdep_freework(wkhd);
12954 		return;
12955 	}
12956 	softdep_buf_append(bp, wkhd);
12957 	bqrelse(bp);
12958 }
12959 
12960 void
12961 softdep_freework(wkhd)
12962 	struct workhead *wkhd;
12963 {
12964 
12965 	ACQUIRE_LOCK(&lk);
12966 	handle_jwork(wkhd);
12967 	FREE_LOCK(&lk);
12968 }
12969 
12970 /*
12971  * Function to determine if the buffer has outstanding dependencies
12972  * that will cause a roll-back if the buffer is written. If wantcount
12973  * is set, return number of dependencies, otherwise just yes or no.
12974  */
12975 static int
12976 softdep_count_dependencies(bp, wantcount)
12977 	struct buf *bp;
12978 	int wantcount;
12979 {
12980 	struct worklist *wk;
12981 	struct bmsafemap *bmsafemap;
12982 	struct freework *freework;
12983 	struct inodedep *inodedep;
12984 	struct indirdep *indirdep;
12985 	struct freeblks *freeblks;
12986 	struct allocindir *aip;
12987 	struct pagedep *pagedep;
12988 	struct dirrem *dirrem;
12989 	struct newblk *newblk;
12990 	struct mkdir *mkdir;
12991 	struct diradd *dap;
12992 	int i, retval;
12993 
12994 	retval = 0;
12995 	ACQUIRE_LOCK(&lk);
12996 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12997 		switch (wk->wk_type) {
12998 
12999 		case D_INODEDEP:
13000 			inodedep = WK_INODEDEP(wk);
13001 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13002 				/* bitmap allocation dependency */
13003 				retval += 1;
13004 				if (!wantcount)
13005 					goto out;
13006 			}
13007 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13008 				/* direct block pointer dependency */
13009 				retval += 1;
13010 				if (!wantcount)
13011 					goto out;
13012 			}
13013 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13014 				/* direct block pointer dependency */
13015 				retval += 1;
13016 				if (!wantcount)
13017 					goto out;
13018 			}
13019 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13020 				/* Add reference dependency. */
13021 				retval += 1;
13022 				if (!wantcount)
13023 					goto out;
13024 			}
13025 			continue;
13026 
13027 		case D_INDIRDEP:
13028 			indirdep = WK_INDIRDEP(wk);
13029 
13030 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13031 				/* indirect truncation dependency */
13032 				retval += 1;
13033 				if (!wantcount)
13034 					goto out;
13035 			}
13036 
13037 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13038 				/* indirect block pointer dependency */
13039 				retval += 1;
13040 				if (!wantcount)
13041 					goto out;
13042 			}
13043 			continue;
13044 
13045 		case D_PAGEDEP:
13046 			pagedep = WK_PAGEDEP(wk);
13047 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13048 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13049 					/* Journal remove ref dependency. */
13050 					retval += 1;
13051 					if (!wantcount)
13052 						goto out;
13053 				}
13054 			}
13055 			for (i = 0; i < DAHASHSZ; i++) {
13056 
13057 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13058 					/* directory entry dependency */
13059 					retval += 1;
13060 					if (!wantcount)
13061 						goto out;
13062 				}
13063 			}
13064 			continue;
13065 
13066 		case D_BMSAFEMAP:
13067 			bmsafemap = WK_BMSAFEMAP(wk);
13068 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13069 				/* Add reference dependency. */
13070 				retval += 1;
13071 				if (!wantcount)
13072 					goto out;
13073 			}
13074 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13075 				/* Allocate block dependency. */
13076 				retval += 1;
13077 				if (!wantcount)
13078 					goto out;
13079 			}
13080 			continue;
13081 
13082 		case D_FREEBLKS:
13083 			freeblks = WK_FREEBLKS(wk);
13084 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13085 				/* Freeblk journal dependency. */
13086 				retval += 1;
13087 				if (!wantcount)
13088 					goto out;
13089 			}
13090 			continue;
13091 
13092 		case D_ALLOCDIRECT:
13093 		case D_ALLOCINDIR:
13094 			newblk = WK_NEWBLK(wk);
13095 			if (newblk->nb_jnewblk) {
13096 				/* Journal allocate dependency. */
13097 				retval += 1;
13098 				if (!wantcount)
13099 					goto out;
13100 			}
13101 			continue;
13102 
13103 		case D_MKDIR:
13104 			mkdir = WK_MKDIR(wk);
13105 			if (mkdir->md_jaddref) {
13106 				/* Journal reference dependency. */
13107 				retval += 1;
13108 				if (!wantcount)
13109 					goto out;
13110 			}
13111 			continue;
13112 
13113 		case D_FREEWORK:
13114 		case D_FREEDEP:
13115 		case D_JSEGDEP:
13116 		case D_JSEG:
13117 		case D_SBDEP:
13118 			/* never a dependency on these blocks */
13119 			continue;
13120 
13121 		default:
13122 			panic("softdep_count_dependencies: Unexpected type %s",
13123 			    TYPENAME(wk->wk_type));
13124 			/* NOTREACHED */
13125 		}
13126 	}
13127 out:
13128 	FREE_LOCK(&lk);
13129 	return retval;
13130 }
13131 
13132 /*
13133  * Acquire exclusive access to a buffer.
13134  * Must be called with a locked mtx parameter.
13135  * Return acquired buffer or NULL on failure.
13136  */
13137 static struct buf *
13138 getdirtybuf(bp, mtx, waitfor)
13139 	struct buf *bp;
13140 	struct mtx *mtx;
13141 	int waitfor;
13142 {
13143 	int error;
13144 
13145 	mtx_assert(mtx, MA_OWNED);
13146 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13147 		if (waitfor != MNT_WAIT)
13148 			return (NULL);
13149 		error = BUF_LOCK(bp,
13150 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
13151 		/*
13152 		 * Even if we sucessfully acquire bp here, we have dropped
13153 		 * mtx, which may violates our guarantee.
13154 		 */
13155 		if (error == 0)
13156 			BUF_UNLOCK(bp);
13157 		else if (error != ENOLCK)
13158 			panic("getdirtybuf: inconsistent lock: %d", error);
13159 		mtx_lock(mtx);
13160 		return (NULL);
13161 	}
13162 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13163 		if (mtx == &lk && waitfor == MNT_WAIT) {
13164 			mtx_unlock(mtx);
13165 			BO_LOCK(bp->b_bufobj);
13166 			BUF_UNLOCK(bp);
13167 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13168 				bp->b_vflags |= BV_BKGRDWAIT;
13169 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
13170 				       PRIBIO | PDROP, "getbuf", 0);
13171 			} else
13172 				BO_UNLOCK(bp->b_bufobj);
13173 			mtx_lock(mtx);
13174 			return (NULL);
13175 		}
13176 		BUF_UNLOCK(bp);
13177 		if (waitfor != MNT_WAIT)
13178 			return (NULL);
13179 		/*
13180 		 * The mtx argument must be bp->b_vp's mutex in
13181 		 * this case.
13182 		 */
13183 #ifdef	DEBUG_VFS_LOCKS
13184 		if (bp->b_vp->v_type != VCHR)
13185 			ASSERT_BO_LOCKED(bp->b_bufobj);
13186 #endif
13187 		bp->b_vflags |= BV_BKGRDWAIT;
13188 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
13189 		return (NULL);
13190 	}
13191 	if ((bp->b_flags & B_DELWRI) == 0) {
13192 		BUF_UNLOCK(bp);
13193 		return (NULL);
13194 	}
13195 	bremfree(bp);
13196 	return (bp);
13197 }
13198 
13199 
13200 /*
13201  * Check if it is safe to suspend the file system now.  On entry,
13202  * the vnode interlock for devvp should be held.  Return 0 with
13203  * the mount interlock held if the file system can be suspended now,
13204  * otherwise return EAGAIN with the mount interlock held.
13205  */
13206 int
13207 softdep_check_suspend(struct mount *mp,
13208 		      struct vnode *devvp,
13209 		      int softdep_deps,
13210 		      int softdep_accdeps,
13211 		      int secondary_writes,
13212 		      int secondary_accwrites)
13213 {
13214 	struct bufobj *bo;
13215 	struct ufsmount *ump;
13216 	int error;
13217 
13218 	ump = VFSTOUFS(mp);
13219 	bo = &devvp->v_bufobj;
13220 	ASSERT_BO_LOCKED(bo);
13221 
13222 	for (;;) {
13223 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13224 			BO_UNLOCK(bo);
13225 			ACQUIRE_LOCK(&lk);
13226 			FREE_LOCK(&lk);
13227 			BO_LOCK(bo);
13228 			continue;
13229 		}
13230 		MNT_ILOCK(mp);
13231 		if (mp->mnt_secondary_writes != 0) {
13232 			FREE_LOCK(&lk);
13233 			BO_UNLOCK(bo);
13234 			msleep(&mp->mnt_secondary_writes,
13235 			       MNT_MTX(mp),
13236 			       (PUSER - 1) | PDROP, "secwr", 0);
13237 			BO_LOCK(bo);
13238 			continue;
13239 		}
13240 		break;
13241 	}
13242 
13243 	/*
13244 	 * Reasons for needing more work before suspend:
13245 	 * - Dirty buffers on devvp.
13246 	 * - Softdep activity occurred after start of vnode sync loop
13247 	 * - Secondary writes occurred after start of vnode sync loop
13248 	 */
13249 	error = 0;
13250 	if (bo->bo_numoutput > 0 ||
13251 	    bo->bo_dirty.bv_cnt > 0 ||
13252 	    softdep_deps != 0 ||
13253 	    ump->softdep_deps != 0 ||
13254 	    softdep_accdeps != ump->softdep_accdeps ||
13255 	    secondary_writes != 0 ||
13256 	    mp->mnt_secondary_writes != 0 ||
13257 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13258 		error = EAGAIN;
13259 	FREE_LOCK(&lk);
13260 	BO_UNLOCK(bo);
13261 	return (error);
13262 }
13263 
13264 
13265 /*
13266  * Get the number of dependency structures for the file system, both
13267  * the current number and the total number allocated.  These will
13268  * later be used to detect that softdep processing has occurred.
13269  */
13270 void
13271 softdep_get_depcounts(struct mount *mp,
13272 		      int *softdep_depsp,
13273 		      int *softdep_accdepsp)
13274 {
13275 	struct ufsmount *ump;
13276 
13277 	ump = VFSTOUFS(mp);
13278 	ACQUIRE_LOCK(&lk);
13279 	*softdep_depsp = ump->softdep_deps;
13280 	*softdep_accdepsp = ump->softdep_accdeps;
13281 	FREE_LOCK(&lk);
13282 }
13283 
13284 /*
13285  * Wait for pending output on a vnode to complete.
13286  * Must be called with vnode lock and interlock locked.
13287  *
13288  * XXX: Should just be a call to bufobj_wwait().
13289  */
13290 static void
13291 drain_output(vp)
13292 	struct vnode *vp;
13293 {
13294 	struct bufobj *bo;
13295 
13296 	bo = &vp->v_bufobj;
13297 	ASSERT_VOP_LOCKED(vp, "drain_output");
13298 	ASSERT_BO_LOCKED(bo);
13299 
13300 	while (bo->bo_numoutput) {
13301 		bo->bo_flag |= BO_WWAIT;
13302 		msleep((caddr_t)&bo->bo_numoutput,
13303 		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
13304 	}
13305 }
13306 
13307 /*
13308  * Called whenever a buffer that is being invalidated or reallocated
13309  * contains dependencies. This should only happen if an I/O error has
13310  * occurred. The routine is called with the buffer locked.
13311  */
13312 static void
13313 softdep_deallocate_dependencies(bp)
13314 	struct buf *bp;
13315 {
13316 
13317 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13318 		panic("softdep_deallocate_dependencies: dangling deps");
13319 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13320 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
13321 }
13322 
13323 /*
13324  * Function to handle asynchronous write errors in the filesystem.
13325  */
13326 static void
13327 softdep_error(func, error)
13328 	char *func;
13329 	int error;
13330 {
13331 
13332 	/* XXX should do something better! */
13333 	printf("%s: got error %d while accessing filesystem\n", func, error);
13334 }
13335 
13336 #ifdef DDB
13337 
13338 static void
13339 inodedep_print(struct inodedep *inodedep, int verbose)
13340 {
13341 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13342 	    " saveino %p\n",
13343 	    inodedep, inodedep->id_fs, inodedep->id_state,
13344 	    (intmax_t)inodedep->id_ino,
13345 	    (intmax_t)fsbtodb(inodedep->id_fs,
13346 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13347 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13348 	    inodedep->id_savedino1);
13349 
13350 	if (verbose == 0)
13351 		return;
13352 
13353 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13354 	    "mkdiradd %p\n",
13355 	    LIST_FIRST(&inodedep->id_pendinghd),
13356 	    LIST_FIRST(&inodedep->id_bufwait),
13357 	    LIST_FIRST(&inodedep->id_inowait),
13358 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13359 	    inodedep->id_mkdiradd);
13360 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13361 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13362 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13363 	    TAILQ_FIRST(&inodedep->id_extupdt),
13364 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13365 }
13366 
13367 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13368 {
13369 
13370 	if (have_addr == 0) {
13371 		db_printf("Address required\n");
13372 		return;
13373 	}
13374 	inodedep_print((struct inodedep*)addr, 1);
13375 }
13376 
13377 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13378 {
13379 	struct inodedep_hashhead *inodedephd;
13380 	struct inodedep *inodedep;
13381 	struct fs *fs;
13382 	int cnt;
13383 
13384 	fs = have_addr ? (struct fs *)addr : NULL;
13385 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13386 		inodedephd = &inodedep_hashtbl[cnt];
13387 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13388 			if (fs != NULL && fs != inodedep->id_fs)
13389 				continue;
13390 			inodedep_print(inodedep, 0);
13391 		}
13392 	}
13393 }
13394 
13395 DB_SHOW_COMMAND(worklist, db_show_worklist)
13396 {
13397 	struct worklist *wk;
13398 
13399 	if (have_addr == 0) {
13400 		db_printf("Address required\n");
13401 		return;
13402 	}
13403 	wk = (struct worklist *)addr;
13404 	printf("worklist: %p type %s state 0x%X\n",
13405 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13406 }
13407 
13408 DB_SHOW_COMMAND(workhead, db_show_workhead)
13409 {
13410 	struct workhead *wkhd;
13411 	struct worklist *wk;
13412 	int i;
13413 
13414 	if (have_addr == 0) {
13415 		db_printf("Address required\n");
13416 		return;
13417 	}
13418 	wkhd = (struct workhead *)addr;
13419 	wk = LIST_FIRST(wkhd);
13420 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13421 		db_printf("worklist: %p type %s state 0x%X",
13422 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13423 	if (i == 100)
13424 		db_printf("workhead overflow");
13425 	printf("\n");
13426 }
13427 
13428 
13429 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13430 {
13431 	struct jaddref *jaddref;
13432 	struct diradd *diradd;
13433 	struct mkdir *mkdir;
13434 
13435 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13436 		diradd = mkdir->md_diradd;
13437 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13438 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13439 		if ((jaddref = mkdir->md_jaddref) != NULL)
13440 			db_printf(" jaddref %p jaddref state 0x%X",
13441 			    jaddref, jaddref->ja_state);
13442 		db_printf("\n");
13443 	}
13444 }
13445 
13446 #endif /* DDB */
13447 
13448 #endif /* SOFTUPDATES */
13449