xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 95ee2897e98f5d444f26ed2334cc7c439f9c16c6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(struct mount *oldmnt,
100 	int flags,
101 	struct thread *td)
102 {
103 
104 	panic("softdep_flushfiles called");
105 }
106 
107 int
108 softdep_mount(struct vnode *devvp,
109 	struct mount *mp,
110 	struct fs *fs,
111 	struct ucred *cred)
112 {
113 
114 	return (0);
115 }
116 
117 void
118 softdep_initialize(void)
119 {
120 
121 	return;
122 }
123 
124 void
125 softdep_uninitialize(void)
126 {
127 
128 	return;
129 }
130 
131 void
132 softdep_unmount(struct mount *mp)
133 {
134 
135 	panic("softdep_unmount called");
136 }
137 
138 void
139 softdep_setup_sbupdate(struct ufsmount *ump,
140 	struct fs *fs,
141 	struct buf *bp)
142 {
143 
144 	panic("softdep_setup_sbupdate called");
145 }
146 
147 void
148 softdep_setup_inomapdep(struct buf *bp,
149 	struct inode *ip,
150 	ino_t newinum,
151 	int mode)
152 {
153 
154 	panic("softdep_setup_inomapdep called");
155 }
156 
157 void
158 softdep_setup_blkmapdep(struct buf *bp,
159 	struct mount *mp,
160 	ufs2_daddr_t newblkno,
161 	int frags,
162 	int oldfrags)
163 {
164 
165 	panic("softdep_setup_blkmapdep called");
166 }
167 
168 void
169 softdep_setup_allocdirect(struct inode *ip,
170 	ufs_lbn_t lbn,
171 	ufs2_daddr_t newblkno,
172 	ufs2_daddr_t oldblkno,
173 	long newsize,
174 	long oldsize,
175 	struct buf *bp)
176 {
177 
178 	panic("softdep_setup_allocdirect called");
179 }
180 
181 void
182 softdep_setup_allocext(struct inode *ip,
183 	ufs_lbn_t lbn,
184 	ufs2_daddr_t newblkno,
185 	ufs2_daddr_t oldblkno,
186 	long newsize,
187 	long oldsize,
188 	struct buf *bp)
189 {
190 
191 	panic("softdep_setup_allocext called");
192 }
193 
194 void
195 softdep_setup_allocindir_page(struct inode *ip,
196 	ufs_lbn_t lbn,
197 	struct buf *bp,
198 	int ptrno,
199 	ufs2_daddr_t newblkno,
200 	ufs2_daddr_t oldblkno,
201 	struct buf *nbp)
202 {
203 
204 	panic("softdep_setup_allocindir_page called");
205 }
206 
207 void
208 softdep_setup_allocindir_meta(struct buf *nbp,
209 	struct inode *ip,
210 	struct buf *bp,
211 	int ptrno,
212 	ufs2_daddr_t newblkno)
213 {
214 
215 	panic("softdep_setup_allocindir_meta called");
216 }
217 
218 void
219 softdep_journal_freeblocks(struct inode *ip,
220 	struct ucred *cred,
221 	off_t length,
222 	int flags)
223 {
224 
225 	panic("softdep_journal_freeblocks called");
226 }
227 
228 void
229 softdep_journal_fsync(struct inode *ip)
230 {
231 
232 	panic("softdep_journal_fsync called");
233 }
234 
235 void
236 softdep_setup_freeblocks(struct inode *ip,
237 	off_t length,
238 	int flags)
239 {
240 
241 	panic("softdep_setup_freeblocks called");
242 }
243 
244 void
245 softdep_freefile(struct vnode *pvp,
246 		ino_t ino,
247 		int mode)
248 {
249 
250 	panic("softdep_freefile called");
251 }
252 
253 int
254 softdep_setup_directory_add(struct buf *bp,
255 	struct inode *dp,
256 	off_t diroffset,
257 	ino_t newinum,
258 	struct buf *newdirbp,
259 	int isnewblk)
260 {
261 
262 	panic("softdep_setup_directory_add called");
263 }
264 
265 void
266 softdep_change_directoryentry_offset(struct buf *bp,
267 	struct inode *dp,
268 	caddr_t base,
269 	caddr_t oldloc,
270 	caddr_t newloc,
271 	int entrysize)
272 {
273 
274 	panic("softdep_change_directoryentry_offset called");
275 }
276 
277 void
278 softdep_setup_remove(struct buf *bp,
279 	struct inode *dp,
280 	struct inode *ip,
281 	int isrmdir)
282 {
283 
284 	panic("softdep_setup_remove called");
285 }
286 
287 void
288 softdep_setup_directory_change(struct buf *bp,
289 	struct inode *dp,
290 	struct inode *ip,
291 	ino_t newinum,
292 	int isrmdir)
293 {
294 
295 	panic("softdep_setup_directory_change called");
296 }
297 
298 void
299 softdep_setup_blkfree(struct mount *mp,
300 	struct buf *bp,
301 	ufs2_daddr_t blkno,
302 	int frags,
303 	struct workhead *wkhd,
304 	bool doingrecovery)
305 {
306 
307 	panic("%s called", __FUNCTION__);
308 }
309 
310 void
311 softdep_setup_inofree(struct mount *mp,
312 	struct buf *bp,
313 	ino_t ino,
314 	struct workhead *wkhd,
315 	bool doingrecovery)
316 {
317 
318 	panic("%s called", __FUNCTION__);
319 }
320 
321 void
322 softdep_setup_unlink(struct inode *dp, struct inode *ip)
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_link(struct inode *dp, struct inode *ip)
330 {
331 
332 	panic("%s called", __FUNCTION__);
333 }
334 
335 void
336 softdep_revert_link(struct inode *dp, struct inode *ip)
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
344 {
345 
346 	panic("%s called", __FUNCTION__);
347 }
348 
349 void
350 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
351 {
352 
353 	panic("%s called", __FUNCTION__);
354 }
355 
356 void
357 softdep_setup_create(struct inode *dp, struct inode *ip)
358 {
359 
360 	panic("%s called", __FUNCTION__);
361 }
362 
363 void
364 softdep_revert_create(struct inode *dp, struct inode *ip)
365 {
366 
367 	panic("%s called", __FUNCTION__);
368 }
369 
370 void
371 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
372 {
373 
374 	panic("%s called", __FUNCTION__);
375 }
376 
377 void
378 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
386 {
387 
388 	panic("%s called", __FUNCTION__);
389 }
390 
391 int
392 softdep_prealloc(struct vnode *vp, int waitok)
393 {
394 
395 	panic("%s called", __FUNCTION__);
396 }
397 
398 int
399 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
400 {
401 
402 	return (ENOENT);
403 }
404 
405 void
406 softdep_change_linkcnt(struct inode *ip)
407 {
408 
409 	panic("softdep_change_linkcnt called");
410 }
411 
412 void
413 softdep_load_inodeblock(struct inode *ip)
414 {
415 
416 	panic("softdep_load_inodeblock called");
417 }
418 
419 void
420 softdep_update_inodeblock(struct inode *ip,
421 	struct buf *bp,
422 	int waitfor)
423 {
424 
425 	panic("softdep_update_inodeblock called");
426 }
427 
428 int
429 softdep_fsync(struct vnode *vp)	/* the "in_core" copy of the inode */
430 {
431 
432 	return (0);
433 }
434 
435 void
436 softdep_fsync_mountdev(struct vnode *vp)
437 {
438 
439 	return;
440 }
441 
442 int
443 softdep_flushworklist(struct mount *oldmnt,
444 	int *countp,
445 	struct thread *td)
446 {
447 
448 	*countp = 0;
449 	return (0);
450 }
451 
452 int
453 softdep_sync_metadata(struct vnode *vp)
454 {
455 
456 	panic("softdep_sync_metadata called");
457 }
458 
459 int
460 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
461 {
462 
463 	panic("softdep_sync_buf called");
464 }
465 
466 int
467 softdep_slowdown(struct vnode *vp)
468 {
469 
470 	panic("softdep_slowdown called");
471 }
472 
473 int
474 softdep_request_cleanup(struct fs *fs,
475 	struct vnode *vp,
476 	struct ucred *cred,
477 	int resource)
478 {
479 
480 	return (0);
481 }
482 
483 int
484 softdep_check_suspend(struct mount *mp,
485 		      struct vnode *devvp,
486 		      int softdep_depcnt,
487 		      int softdep_accdepcnt,
488 		      int secondary_writes,
489 		      int secondary_accwrites)
490 {
491 	struct bufobj *bo;
492 	int error;
493 
494 	(void) softdep_depcnt,
495 	(void) softdep_accdepcnt;
496 
497 	bo = &devvp->v_bufobj;
498 	ASSERT_BO_WLOCKED(bo);
499 
500 	MNT_ILOCK(mp);
501 	while (mp->mnt_secondary_writes != 0) {
502 		BO_UNLOCK(bo);
503 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
504 		    (PUSER - 1) | PDROP, "secwr", 0);
505 		BO_LOCK(bo);
506 		MNT_ILOCK(mp);
507 	}
508 
509 	/*
510 	 * Reasons for needing more work before suspend:
511 	 * - Dirty buffers on devvp.
512 	 * - Secondary writes occurred after start of vnode sync loop
513 	 */
514 	error = 0;
515 	if (bo->bo_numoutput > 0 ||
516 	    bo->bo_dirty.bv_cnt > 0 ||
517 	    secondary_writes != 0 ||
518 	    mp->mnt_secondary_writes != 0 ||
519 	    secondary_accwrites != mp->mnt_secondary_accwrites)
520 		error = EAGAIN;
521 	BO_UNLOCK(bo);
522 	return (error);
523 }
524 
525 void
526 softdep_get_depcounts(struct mount *mp,
527 		      int *softdepactivep,
528 		      int *softdepactiveaccp)
529 {
530 	(void) mp;
531 	*softdepactivep = 0;
532 	*softdepactiveaccp = 0;
533 }
534 
535 void
536 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
537 {
538 
539 	panic("softdep_buf_appendwork called");
540 }
541 
542 void
543 softdep_inode_append(struct inode *ip,
544 	struct ucred *cred,
545 	struct workhead *wkhd)
546 {
547 
548 	panic("softdep_inode_appendwork called");
549 }
550 
551 void
552 softdep_freework(struct workhead *wkhd)
553 {
554 
555 	panic("softdep_freework called");
556 }
557 
558 int
559 softdep_prerename(struct vnode *fdvp,
560 	struct vnode *fvp,
561 	struct vnode *tdvp,
562 	struct vnode *tvp)
563 {
564 
565 	panic("softdep_prerename called");
566 }
567 
568 int
569 softdep_prelink(struct vnode *dvp,
570 	struct vnode *vp,
571 	struct componentname *cnp)
572 {
573 
574 	panic("softdep_prelink called");
575 }
576 
577 #else
578 
579 FEATURE(softupdates, "FFS soft-updates support");
580 
581 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
582     "soft updates stats");
583 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
584     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
585     "total dependencies allocated");
586 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
587     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
588     "high use dependencies allocated");
589 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
590     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
591     "current dependencies allocated");
592 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
593     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
594     "current dependencies written");
595 
596 unsigned long dep_current[D_LAST + 1];
597 unsigned long dep_highuse[D_LAST + 1];
598 unsigned long dep_total[D_LAST + 1];
599 unsigned long dep_write[D_LAST + 1];
600 
601 #define	SOFTDEP_TYPE(type, str, long)					\
602     static MALLOC_DEFINE(M_ ## type, #str, long);			\
603     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
604 	&dep_total[D_ ## type], 0, "");					\
605     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
606 	&dep_current[D_ ## type], 0, "");				\
607     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
608 	&dep_highuse[D_ ## type], 0, "");				\
609     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
610 	&dep_write[D_ ## type], 0, "");
611 
612 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
613 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
614 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
615     "Block or frag allocated from cyl group map");
616 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
617 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
618 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
619 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
620 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
621 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
622 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
623 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
624 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
625 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
626 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
627 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
628 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
629 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
630 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
631 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
632 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
633 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
634 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
635 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
636 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
637 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
638 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
639 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
640 
641 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
642 
643 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
644 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
645 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
646 
647 #define M_SOFTDEP_FLAGS	(M_WAITOK)
648 
649 /*
650  * translate from workitem type to memory type
651  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
652  */
653 static struct malloc_type *memtype[] = {
654 	NULL,
655 	M_PAGEDEP,
656 	M_INODEDEP,
657 	M_BMSAFEMAP,
658 	M_NEWBLK,
659 	M_ALLOCDIRECT,
660 	M_INDIRDEP,
661 	M_ALLOCINDIR,
662 	M_FREEFRAG,
663 	M_FREEBLKS,
664 	M_FREEFILE,
665 	M_DIRADD,
666 	M_MKDIR,
667 	M_DIRREM,
668 	M_NEWDIRBLK,
669 	M_FREEWORK,
670 	M_FREEDEP,
671 	M_JADDREF,
672 	M_JREMREF,
673 	M_JMVREF,
674 	M_JNEWBLK,
675 	M_JFREEBLK,
676 	M_JFREEFRAG,
677 	M_JSEG,
678 	M_JSEGDEP,
679 	M_SBDEP,
680 	M_JTRUNC,
681 	M_JFSYNC,
682 	M_SENTINEL
683 };
684 
685 #define DtoM(type) (memtype[type])
686 
687 /*
688  * Names of malloc types.
689  */
690 #define TYPENAME(type)  \
691 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
692 	memtype[type]->ks_shortdesc : "???")
693 /*
694  * End system adaptation definitions.
695  */
696 
697 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
698 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
699 
700 /*
701  * Internal function prototypes.
702  */
703 static	void check_clear_deps(struct mount *);
704 static	void softdep_error(char *, int);
705 static	int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
706 static	int softdep_process_worklist(struct mount *, int);
707 static	int softdep_waitidle(struct mount *, int);
708 static	void drain_output(struct vnode *);
709 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
710 static	int check_inodedep_free(struct inodedep *);
711 static	void clear_remove(struct mount *);
712 static	void clear_inodedeps(struct mount *);
713 static	void unlinked_inodedep(struct mount *, struct inodedep *);
714 static	void clear_unlinked_inodedep(struct inodedep *);
715 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
716 static	int flush_pagedep_deps(struct vnode *, struct mount *,
717 	    struct diraddhd *, struct buf *);
718 static	int free_pagedep(struct pagedep *);
719 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
720 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
721 static	int flush_deplist(struct allocdirectlst *, int, int *);
722 static	int sync_cgs(struct mount *, int);
723 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
724 static	int handle_written_sbdep(struct sbdep *, struct buf *);
725 static	void initiate_write_sbdep(struct sbdep *);
726 static	void diradd_inode_written(struct diradd *, struct inodedep *);
727 static	int handle_written_indirdep(struct indirdep *, struct buf *,
728 	    struct buf**, int);
729 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
730 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
731 	    uint8_t *);
732 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
733 static	void handle_written_jaddref(struct jaddref *);
734 static	void handle_written_jremref(struct jremref *);
735 static	void handle_written_jseg(struct jseg *, struct buf *);
736 static	void handle_written_jnewblk(struct jnewblk *);
737 static	void handle_written_jblkdep(struct jblkdep *);
738 static	void handle_written_jfreefrag(struct jfreefrag *);
739 static	void complete_jseg(struct jseg *);
740 static	void complete_jsegs(struct jseg *);
741 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
742 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
743 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
744 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
745 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
746 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
747 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
748 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
749 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
750 static	inline void inoref_write(struct inoref *, struct jseg *,
751 	    struct jrefrec *);
752 static	void handle_allocdirect_partdone(struct allocdirect *,
753 	    struct workhead *);
754 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
755 	    struct workhead *);
756 static	void indirdep_complete(struct indirdep *);
757 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
758 static	void indirblk_insert(struct freework *);
759 static	void indirblk_remove(struct freework *);
760 static	void handle_allocindir_partdone(struct allocindir *);
761 static	void initiate_write_filepage(struct pagedep *, struct buf *);
762 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
763 static	void handle_written_mkdir(struct mkdir *, int);
764 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
765 	    uint8_t *);
766 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
767 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
768 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
769 static	void handle_workitem_freefile(struct freefile *);
770 static	int handle_workitem_remove(struct dirrem *, int);
771 static	struct dirrem *newdirrem(struct buf *, struct inode *,
772 	    struct inode *, int, struct dirrem **);
773 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
774 	    struct buf *);
775 static	void cancel_indirdep(struct indirdep *, struct buf *,
776 	    struct freeblks *);
777 static	void free_indirdep(struct indirdep *);
778 static	void free_diradd(struct diradd *, struct workhead *);
779 static	void merge_diradd(struct inodedep *, struct diradd *);
780 static	void complete_diradd(struct diradd *);
781 static	struct diradd *diradd_lookup(struct pagedep *, int);
782 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
783 	    struct jremref *);
784 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
785 	    struct jremref *);
786 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
787 	    struct jremref *, struct jremref *);
788 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
789 	    struct jremref *);
790 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
791 	    struct freeblks *, int);
792 static	int setup_trunc_indir(struct freeblks *, struct inode *,
793 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
794 static	void complete_trunc_indir(struct freework *);
795 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
796 	    int);
797 static	void complete_mkdir(struct mkdir *);
798 static	void free_newdirblk(struct newdirblk *);
799 static	void free_jremref(struct jremref *);
800 static	void free_jaddref(struct jaddref *);
801 static	void free_jsegdep(struct jsegdep *);
802 static	void free_jsegs(struct jblocks *);
803 static	void rele_jseg(struct jseg *);
804 static	void free_jseg(struct jseg *, struct jblocks *);
805 static	void free_jnewblk(struct jnewblk *);
806 static	void free_jblkdep(struct jblkdep *);
807 static	void free_jfreefrag(struct jfreefrag *);
808 static	void free_freedep(struct freedep *);
809 static	void journal_jremref(struct dirrem *, struct jremref *,
810 	    struct inodedep *);
811 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
812 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
813 	    struct workhead *);
814 static	void cancel_jfreefrag(struct jfreefrag *);
815 static	inline void setup_freedirect(struct freeblks *, struct inode *,
816 	    int, int);
817 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
818 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
819 	    ufs_lbn_t, int);
820 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
821 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
822 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
823 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
824 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
825 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
826 	    int, int);
827 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
828 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
829 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
830 static	void newblk_freefrag(struct newblk*);
831 static	void free_newblk(struct newblk *);
832 static	void cancel_allocdirect(struct allocdirectlst *,
833 	    struct allocdirect *, struct freeblks *);
834 static	int check_inode_unwritten(struct inodedep *);
835 static	int free_inodedep(struct inodedep *);
836 static	void freework_freeblock(struct freework *, uint64_t);
837 static	void freework_enqueue(struct freework *);
838 static	int handle_workitem_freeblocks(struct freeblks *, int);
839 static	int handle_complete_freeblocks(struct freeblks *, int);
840 static	void handle_workitem_indirblk(struct freework *);
841 static	void handle_written_freework(struct freework *);
842 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
843 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
844 	    struct workhead *);
845 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
846 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
847 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
848 	    ufs2_daddr_t, ufs_lbn_t);
849 static	void handle_workitem_freefrag(struct freefrag *);
850 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
851 	    ufs_lbn_t, uint64_t);
852 static	void allocdirect_merge(struct allocdirectlst *,
853 	    struct allocdirect *, struct allocdirect *);
854 static	struct freefrag *allocindir_merge(struct allocindir *,
855 	    struct allocindir *);
856 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
857 	    struct bmsafemap **);
858 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
859 	    int cg, struct bmsafemap *);
860 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
861 	    struct newblk **);
862 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
863 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
864 	    struct inodedep **);
865 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
866 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
867 	    int, struct pagedep **);
868 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
869 	    struct pagedep **);
870 static	void pause_timer(void *);
871 static	int request_cleanup(struct mount *, int);
872 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
873 static	void schedule_cleanup(struct mount *);
874 static void softdep_ast_cleanup_proc(struct thread *, int);
875 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
876 static	int process_worklist_item(struct mount *, int, int);
877 static	void process_removes(struct vnode *);
878 static	void process_truncates(struct vnode *);
879 static	void jwork_move(struct workhead *, struct workhead *);
880 static	void jwork_insert(struct workhead *, struct jsegdep *);
881 static	void add_to_worklist(struct worklist *, int);
882 static	void wake_worklist(struct worklist *);
883 static	void wait_worklist(struct worklist *, char *);
884 static	void remove_from_worklist(struct worklist *);
885 static	void softdep_flush(void *);
886 static	void softdep_flushjournal(struct mount *);
887 static	int softdep_speedup(struct ufsmount *);
888 static	void worklist_speedup(struct mount *);
889 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
890 static	void journal_unmount(struct ufsmount *);
891 static	int journal_space(struct ufsmount *, int);
892 static	void journal_suspend(struct ufsmount *);
893 static	int journal_unsuspend(struct ufsmount *ump);
894 static	void add_to_journal(struct worklist *);
895 static	void remove_from_journal(struct worklist *);
896 static	bool softdep_excess_items(struct ufsmount *, int);
897 static	void softdep_process_journal(struct mount *, struct worklist *, int);
898 static	struct jremref *newjremref(struct dirrem *, struct inode *,
899 	    struct inode *ip, off_t, nlink_t);
900 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
901 	    uint16_t);
902 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
903 	    uint16_t);
904 static	inline struct jsegdep *inoref_jseg(struct inoref *);
905 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
906 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
907 	    ufs2_daddr_t, int);
908 static	void adjust_newfreework(struct freeblks *, int);
909 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
910 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
911 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
912 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
913 	    ufs2_daddr_t, long, ufs_lbn_t);
914 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
915 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
916 static	int jwait(struct worklist *, int);
917 static	struct inodedep *inodedep_lookup_ip(struct inode *);
918 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
919 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
920 static	void handle_jwork(struct workhead *);
921 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
922 	    struct mkdir **);
923 static	struct jblocks *jblocks_create(void);
924 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
925 static	void jblocks_free(struct jblocks *, struct mount *, int);
926 static	void jblocks_destroy(struct jblocks *);
927 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
928 
929 /*
930  * Exported softdep operations.
931  */
932 static	void softdep_disk_io_initiation(struct buf *);
933 static	void softdep_disk_write_complete(struct buf *);
934 static	void softdep_deallocate_dependencies(struct buf *);
935 static	int softdep_count_dependencies(struct buf *bp, int);
936 
937 /*
938  * Global lock over all of soft updates.
939  */
940 static struct mtx lk;
941 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
942 
943 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
944 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
945 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
946 
947 /*
948  * Per-filesystem soft-updates locking.
949  */
950 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
951 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
952 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
953 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
954 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
955 				    RA_WLOCKED)
956 
957 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
958 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
959 
960 /*
961  * Worklist queue management.
962  * These routines require that the lock be held.
963  */
964 #ifndef /* NOT */ INVARIANTS
965 #define WORKLIST_INSERT(head, item) do {	\
966 	(item)->wk_state |= ONWORKLIST;		\
967 	LIST_INSERT_HEAD(head, item, wk_list);	\
968 } while (0)
969 #define WORKLIST_REMOVE(item) do {		\
970 	(item)->wk_state &= ~ONWORKLIST;	\
971 	LIST_REMOVE(item, wk_list);		\
972 } while (0)
973 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
974 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
975 
976 #else /* INVARIANTS */
977 static	void worklist_insert(struct workhead *, struct worklist *, int,
978 	const char *, int);
979 static	void worklist_remove(struct worklist *, int, const char *, int);
980 
981 #define WORKLIST_INSERT(head, item) \
982 	worklist_insert(head, item, 1, __func__, __LINE__)
983 #define WORKLIST_INSERT_UNLOCKED(head, item)\
984 	worklist_insert(head, item, 0, __func__, __LINE__)
985 #define WORKLIST_REMOVE(item)\
986 	worklist_remove(item, 1, __func__, __LINE__)
987 #define WORKLIST_REMOVE_UNLOCKED(item)\
988 	worklist_remove(item, 0, __func__, __LINE__)
989 
990 static void
991 worklist_insert(struct workhead *head,
992 	struct worklist *item,
993 	int locked,
994 	const char *func,
995 	int line)
996 {
997 
998 	if (locked)
999 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1000 	if (item->wk_state & ONWORKLIST)
1001 		panic("worklist_insert: %p %s(0x%X) already on list, "
1002 		    "added in function %s at line %d",
1003 		    item, TYPENAME(item->wk_type), item->wk_state,
1004 		    item->wk_func, item->wk_line);
1005 	item->wk_state |= ONWORKLIST;
1006 	item->wk_func = func;
1007 	item->wk_line = line;
1008 	LIST_INSERT_HEAD(head, item, wk_list);
1009 }
1010 
1011 static void
1012 worklist_remove(struct worklist *item,
1013 	int locked,
1014 	const char *func,
1015 	int line)
1016 {
1017 
1018 	if (locked)
1019 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1020 	if ((item->wk_state & ONWORKLIST) == 0)
1021 		panic("worklist_remove: %p %s(0x%X) not on list, "
1022 		    "removed in function %s at line %d",
1023 		    item, TYPENAME(item->wk_type), item->wk_state,
1024 		    item->wk_func, item->wk_line);
1025 	item->wk_state &= ~ONWORKLIST;
1026 	item->wk_func = func;
1027 	item->wk_line = line;
1028 	LIST_REMOVE(item, wk_list);
1029 }
1030 #endif /* INVARIANTS */
1031 
1032 /*
1033  * Merge two jsegdeps keeping only the oldest one as newer references
1034  * can't be discarded until after older references.
1035  */
1036 static inline struct jsegdep *
1037 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1038 {
1039 	struct jsegdep *swp;
1040 
1041 	if (two == NULL)
1042 		return (one);
1043 
1044 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1045 		swp = one;
1046 		one = two;
1047 		two = swp;
1048 	}
1049 	WORKLIST_REMOVE(&two->jd_list);
1050 	free_jsegdep(two);
1051 
1052 	return (one);
1053 }
1054 
1055 /*
1056  * If two freedeps are compatible free one to reduce list size.
1057  */
1058 static inline struct freedep *
1059 freedep_merge(struct freedep *one, struct freedep *two)
1060 {
1061 	if (two == NULL)
1062 		return (one);
1063 
1064 	if (one->fd_freework == two->fd_freework) {
1065 		WORKLIST_REMOVE(&two->fd_list);
1066 		free_freedep(two);
1067 	}
1068 	return (one);
1069 }
1070 
1071 /*
1072  * Move journal work from one list to another.  Duplicate freedeps and
1073  * jsegdeps are coalesced to keep the lists as small as possible.
1074  */
1075 static void
1076 jwork_move(struct workhead *dst, struct workhead *src)
1077 {
1078 	struct freedep *freedep;
1079 	struct jsegdep *jsegdep;
1080 	struct worklist *wkn;
1081 	struct worklist *wk;
1082 
1083 	KASSERT(dst != src,
1084 	    ("jwork_move: dst == src"));
1085 	freedep = NULL;
1086 	jsegdep = NULL;
1087 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1088 		if (wk->wk_type == D_JSEGDEP)
1089 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1090 		else if (wk->wk_type == D_FREEDEP)
1091 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1092 	}
1093 
1094 	while ((wk = LIST_FIRST(src)) != NULL) {
1095 		WORKLIST_REMOVE(wk);
1096 		WORKLIST_INSERT(dst, wk);
1097 		if (wk->wk_type == D_JSEGDEP) {
1098 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1099 			continue;
1100 		}
1101 		if (wk->wk_type == D_FREEDEP)
1102 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1103 	}
1104 }
1105 
1106 static void
1107 jwork_insert(struct workhead *dst, struct jsegdep *jsegdep)
1108 {
1109 	struct jsegdep *jsegdepn;
1110 	struct worklist *wk;
1111 
1112 	LIST_FOREACH(wk, dst, wk_list)
1113 		if (wk->wk_type == D_JSEGDEP)
1114 			break;
1115 	if (wk == NULL) {
1116 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1117 		return;
1118 	}
1119 	jsegdepn = WK_JSEGDEP(wk);
1120 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1121 		WORKLIST_REMOVE(wk);
1122 		free_jsegdep(jsegdepn);
1123 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1124 	} else
1125 		free_jsegdep(jsegdep);
1126 }
1127 
1128 /*
1129  * Routines for tracking and managing workitems.
1130  */
1131 static	void workitem_free(struct worklist *, int);
1132 static	void workitem_alloc(struct worklist *, int, struct mount *);
1133 static	void workitem_reassign(struct worklist *, int);
1134 
1135 #define	WORKITEM_FREE(item, type) \
1136 	workitem_free((struct worklist *)(item), (type))
1137 #define	WORKITEM_REASSIGN(item, type) \
1138 	workitem_reassign((struct worklist *)(item), (type))
1139 
1140 static void
1141 workitem_free(struct worklist *item, int type)
1142 {
1143 	struct ufsmount *ump;
1144 
1145 #ifdef INVARIANTS
1146 	if (item->wk_state & ONWORKLIST)
1147 		panic("workitem_free: %s(0x%X) still on list, "
1148 		    "added in function %s at line %d",
1149 		    TYPENAME(item->wk_type), item->wk_state,
1150 		    item->wk_func, item->wk_line);
1151 	if (item->wk_type != type && type != D_NEWBLK)
1152 		panic("workitem_free: type mismatch %s != %s",
1153 		    TYPENAME(item->wk_type), TYPENAME(type));
1154 #endif
1155 	if (item->wk_state & IOWAITING)
1156 		wakeup(item);
1157 	ump = VFSTOUFS(item->wk_mp);
1158 	LOCK_OWNED(ump);
1159 	KASSERT(ump->softdep_deps > 0,
1160 	    ("workitem_free: %s: softdep_deps going negative",
1161 	    ump->um_fs->fs_fsmnt));
1162 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1163 		wakeup(&ump->softdep_deps);
1164 	KASSERT(dep_current[item->wk_type] > 0,
1165 	    ("workitem_free: %s: dep_current[%s] going negative",
1166 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1167 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1168 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1169 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1170 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1171 	ump->softdep_curdeps[item->wk_type] -= 1;
1172 	LIST_REMOVE(item, wk_all);
1173 	free(item, DtoM(type));
1174 }
1175 
1176 static void
1177 workitem_alloc(struct worklist *item,
1178 	int type,
1179 	struct mount *mp)
1180 {
1181 	struct ufsmount *ump;
1182 
1183 	item->wk_type = type;
1184 	item->wk_mp = mp;
1185 	item->wk_state = 0;
1186 
1187 	ump = VFSTOUFS(mp);
1188 	ACQUIRE_GBLLOCK(&lk);
1189 	dep_current[type]++;
1190 	if (dep_current[type] > dep_highuse[type])
1191 		dep_highuse[type] = dep_current[type];
1192 	dep_total[type]++;
1193 	FREE_GBLLOCK(&lk);
1194 	ACQUIRE_LOCK(ump);
1195 	ump->softdep_curdeps[type] += 1;
1196 	ump->softdep_deps++;
1197 	ump->softdep_accdeps++;
1198 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1199 	FREE_LOCK(ump);
1200 }
1201 
1202 static void
1203 workitem_reassign(struct worklist *item, int newtype)
1204 {
1205 	struct ufsmount *ump;
1206 
1207 	ump = VFSTOUFS(item->wk_mp);
1208 	LOCK_OWNED(ump);
1209 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1210 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1211 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1212 	ump->softdep_curdeps[item->wk_type] -= 1;
1213 	ump->softdep_curdeps[newtype] += 1;
1214 	KASSERT(dep_current[item->wk_type] > 0,
1215 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1216 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1217 	ACQUIRE_GBLLOCK(&lk);
1218 	dep_current[newtype]++;
1219 	dep_current[item->wk_type]--;
1220 	if (dep_current[newtype] > dep_highuse[newtype])
1221 		dep_highuse[newtype] = dep_current[newtype];
1222 	dep_total[newtype]++;
1223 	FREE_GBLLOCK(&lk);
1224 	item->wk_type = newtype;
1225 	LIST_REMOVE(item, wk_all);
1226 	LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all);
1227 }
1228 
1229 /*
1230  * Workitem queue management
1231  */
1232 static int max_softdeps;	/* maximum number of structs before slowdown */
1233 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1234 static int proc_waiting;	/* tracks whether we have a timeout posted */
1235 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1236 static struct callout softdep_callout;
1237 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1238 static int req_clear_remove;	/* syncer process flush some freeblks */
1239 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1240 
1241 /*
1242  * runtime statistics
1243  */
1244 static int stat_flush_threads;	/* number of softdep flushing threads */
1245 static int stat_worklist_push;	/* number of worklist cleanups */
1246 static int stat_delayed_inact;	/* number of delayed inactivation cleanups */
1247 static int stat_blk_limit_push;	/* number of times block limit neared */
1248 static int stat_ino_limit_push;	/* number of times inode limit neared */
1249 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1250 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1251 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1252 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1253 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1254 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1255 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1256 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1257 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1258 static int stat_journal_min;	/* Times hit journal min threshold */
1259 static int stat_journal_low;	/* Times hit journal low threshold */
1260 static int stat_journal_wait;	/* Times blocked in jwait(). */
1261 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1262 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1263 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1264 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1265 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1266 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1267 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1268 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1269 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1270 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1271 
1272 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1273     &max_softdeps, 0, "");
1274 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1275     &tickdelay, 0, "");
1276 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1277     &stat_flush_threads, 0, "");
1278 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1279     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1280 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1281     &stat_delayed_inact, 0, "");
1282 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1283     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1284 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1285     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1286 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1287     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1288 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1289     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1291     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1293     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1295     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1297     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1299     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1301     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1303     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1305     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1307     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1309     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1311     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1313     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1315     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1317     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1319     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1321     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1323     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1325     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1327     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1328 
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1330     &softdep_flushcache, 0, "");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1332     &stat_emptyjblocks, 0, "");
1333 
1334 SYSCTL_DECL(_vfs_ffs);
1335 
1336 /* Whether to recompute the summary at mount time */
1337 static int compute_summary_at_mount = 0;
1338 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1339 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1340 static int print_threads = 0;
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1342     &print_threads, 0, "Notify flusher thread start/stop");
1343 
1344 /* List of all filesystems mounted with soft updates */
1345 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1346 
1347 static void
1348 get_parent_vp_unlock_bp(struct mount *mp,
1349 	struct buf *bp,
1350 	struct diraddhd *diraddhdp,
1351 	struct diraddhd *unfinishedp)
1352 {
1353 	struct diradd *dap;
1354 
1355 	/*
1356 	 * Requeue unfinished dependencies before
1357 	 * unlocking buffer, which could make
1358 	 * diraddhdp invalid.
1359 	 */
1360 	ACQUIRE_LOCK(VFSTOUFS(mp));
1361 	while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1362 		LIST_REMOVE(dap, da_pdlist);
1363 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1364 	}
1365 	FREE_LOCK(VFSTOUFS(mp));
1366 
1367 	bp->b_vflags &= ~BV_SCANNED;
1368 	BUF_NOREC(bp);
1369 	BUF_UNLOCK(bp);
1370 }
1371 
1372 /*
1373  * This function fetches inode inum on mount point mp.  We already
1374  * hold a locked vnode vp, and might have a locked buffer bp belonging
1375  * to vp.
1376 
1377  * We must not block on acquiring the new inode lock as we will get
1378  * into a lock-order reversal with the buffer lock and possibly get a
1379  * deadlock.  Thus if we cannot instantiate the requested vnode
1380  * without sleeping on its lock, we must unlock the vnode and the
1381  * buffer before doing a blocking on the vnode lock.  We return
1382  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
1383  * that the caller can reassess its state.
1384  *
1385  * Top-level VFS code (for syscalls and other consumers, e.g. callers
1386  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1387  * point.
1388  *
1389  * Since callers expect to operate on fully constructed vnode, we also
1390  * recheck v_data after relock, and return ENOENT if NULL.
1391  *
1392  * If unlocking bp, we must unroll dequeueing its unfinished
1393  * dependencies, and clear scan flag, before unlocking.  If unlocking
1394  * vp while it is under deactivation, we re-queue deactivation.
1395  */
1396 static int
1397 get_parent_vp(struct vnode *vp,
1398 	struct mount *mp,
1399 	ino_t inum,
1400 	struct buf *bp,
1401 	struct diraddhd *diraddhdp,
1402 	struct diraddhd *unfinishedp,
1403 	struct vnode **rvp)
1404 {
1405 	struct vnode *pvp;
1406 	int error;
1407 	bool bplocked;
1408 
1409 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1410 	for (bplocked = true, pvp = NULL;;) {
1411 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1412 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1413 		if (error == 0) {
1414 			/*
1415 			 * Since we could have unlocked vp, the inode
1416 			 * number could no longer indicate a
1417 			 * constructed node.  In this case, we must
1418 			 * restart the syscall.
1419 			 */
1420 			if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1421 				if (bp != NULL && bplocked)
1422 					get_parent_vp_unlock_bp(mp, bp,
1423 					    diraddhdp, unfinishedp);
1424 				if (VTOI(pvp)->i_mode == 0)
1425 					vgone(pvp);
1426 				error = ERELOOKUP;
1427 				goto out2;
1428 			}
1429 			goto out1;
1430 		}
1431 		if (bp != NULL && bplocked) {
1432 			get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1433 			bplocked = false;
1434 		}
1435 
1436 		/*
1437 		 * Do not drop vnode lock while inactivating during
1438 		 * vunref.  This would result in leaks of the VI flags
1439 		 * and reclaiming of non-truncated vnode.  Instead,
1440 		 * re-schedule inactivation hoping that we would be
1441 		 * able to sync inode later.
1442 		 */
1443 		if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1444 		    (vp->v_vflag & VV_UNREF) != 0) {
1445 			VI_LOCK(vp);
1446 			vp->v_iflag |= VI_OWEINACT;
1447 			VI_UNLOCK(vp);
1448 			return (ERELOOKUP);
1449 		}
1450 
1451 		VOP_UNLOCK(vp);
1452 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1453 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1454 		if (error != 0) {
1455 			MPASS(error != ERELOOKUP);
1456 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1457 			break;
1458 		}
1459 		if (VTOI(pvp)->i_mode == 0) {
1460 			vgone(pvp);
1461 			vput(pvp);
1462 			pvp = NULL;
1463 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1464 			error = ERELOOKUP;
1465 			break;
1466 		}
1467 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1468 		if (error == 0)
1469 			break;
1470 		vput(pvp);
1471 		pvp = NULL;
1472 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1473 		if (vp->v_data == NULL) {
1474 			error = ENOENT;
1475 			break;
1476 		}
1477 	}
1478 	if (bp != NULL) {
1479 		MPASS(!bplocked);
1480 		error = ERELOOKUP;
1481 	}
1482 out2:
1483 	if (error != 0 && pvp != NULL) {
1484 		vput(pvp);
1485 		pvp = NULL;
1486 	}
1487 out1:
1488 	*rvp = pvp;
1489 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1490 	return (error);
1491 }
1492 
1493 /*
1494  * This function cleans the worklist for a filesystem.
1495  * Each filesystem running with soft dependencies gets its own
1496  * thread to run in this function. The thread is started up in
1497  * softdep_mount and shutdown in softdep_unmount. They show up
1498  * as part of the kernel "bufdaemon" process whose process
1499  * entry is available in bufdaemonproc.
1500  */
1501 static int searchfailed;
1502 extern struct proc *bufdaemonproc;
1503 static void
1504 softdep_flush(void *addr)
1505 {
1506 	struct mount *mp;
1507 	struct thread *td;
1508 	struct ufsmount *ump;
1509 	int cleanups;
1510 
1511 	td = curthread;
1512 	td->td_pflags |= TDP_NORUNNINGBUF;
1513 	mp = (struct mount *)addr;
1514 	ump = VFSTOUFS(mp);
1515 	atomic_add_int(&stat_flush_threads, 1);
1516 	ACQUIRE_LOCK(ump);
1517 	ump->softdep_flags &= ~FLUSH_STARTING;
1518 	wakeup(&ump->softdep_flushtd);
1519 	FREE_LOCK(ump);
1520 	if (print_threads) {
1521 		if (stat_flush_threads == 1)
1522 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1523 			    bufdaemonproc->p_pid);
1524 		printf("Start thread %s\n", td->td_name);
1525 	}
1526 	for (;;) {
1527 		while (softdep_process_worklist(mp, 0) > 0 ||
1528 		    (MOUNTEDSUJ(mp) &&
1529 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1530 			kthread_suspend_check();
1531 		ACQUIRE_LOCK(ump);
1532 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1533 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1534 			    "sdflush", hz / 2);
1535 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1536 		/*
1537 		 * Check to see if we are done and need to exit.
1538 		 */
1539 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1540 			FREE_LOCK(ump);
1541 			continue;
1542 		}
1543 		ump->softdep_flags &= ~FLUSH_EXIT;
1544 		cleanups = ump->um_softdep->sd_cleanups;
1545 		FREE_LOCK(ump);
1546 		wakeup(&ump->softdep_flags);
1547 		if (print_threads) {
1548 			printf("Stop thread %s: searchfailed %d, "
1549 			    "did cleanups %d\n",
1550 			    td->td_name, searchfailed, cleanups);
1551 		}
1552 		atomic_subtract_int(&stat_flush_threads, 1);
1553 		kthread_exit();
1554 		panic("kthread_exit failed\n");
1555 	}
1556 }
1557 
1558 static void
1559 worklist_speedup(struct mount *mp)
1560 {
1561 	struct ufsmount *ump;
1562 
1563 	ump = VFSTOUFS(mp);
1564 	LOCK_OWNED(ump);
1565 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1566 		ump->softdep_flags |= FLUSH_CLEANUP;
1567 	wakeup(&ump->softdep_flushtd);
1568 }
1569 
1570 static void
1571 softdep_send_speedup(struct ufsmount *ump,
1572 	off_t shortage,
1573 	uint64_t flags)
1574 {
1575 	struct buf *bp;
1576 
1577 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1578 		return;
1579 
1580 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1581 	bp->b_iocmd = BIO_SPEEDUP;
1582 	bp->b_ioflags = flags;
1583 	bp->b_bcount = omin(shortage, LONG_MAX);
1584 	g_vfs_strategy(ump->um_bo, bp);
1585 	bufwait(bp);
1586 	free(bp, M_TRIM);
1587 }
1588 
1589 static int
1590 softdep_speedup(struct ufsmount *ump)
1591 {
1592 	struct ufsmount *altump;
1593 	struct mount_softdeps *sdp;
1594 
1595 	LOCK_OWNED(ump);
1596 	worklist_speedup(ump->um_mountp);
1597 	bd_speedup();
1598 	/*
1599 	 * If we have global shortages, then we need other
1600 	 * filesystems to help with the cleanup. Here we wakeup a
1601 	 * flusher thread for a filesystem that is over its fair
1602 	 * share of resources.
1603 	 */
1604 	if (req_clear_inodedeps || req_clear_remove) {
1605 		ACQUIRE_GBLLOCK(&lk);
1606 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1607 			if ((altump = sdp->sd_ump) == ump)
1608 				continue;
1609 			if (((req_clear_inodedeps &&
1610 			    altump->softdep_curdeps[D_INODEDEP] >
1611 			    max_softdeps / stat_flush_threads) ||
1612 			    (req_clear_remove &&
1613 			    altump->softdep_curdeps[D_DIRREM] >
1614 			    (max_softdeps / 2) / stat_flush_threads)) &&
1615 			    TRY_ACQUIRE_LOCK(altump))
1616 				break;
1617 		}
1618 		if (sdp == NULL) {
1619 			searchfailed++;
1620 			FREE_GBLLOCK(&lk);
1621 		} else {
1622 			/*
1623 			 * Move to the end of the list so we pick a
1624 			 * different one on out next try.
1625 			 */
1626 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1627 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1628 			FREE_GBLLOCK(&lk);
1629 			if ((altump->softdep_flags &
1630 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1631 				altump->softdep_flags |= FLUSH_CLEANUP;
1632 			altump->um_softdep->sd_cleanups++;
1633 			wakeup(&altump->softdep_flushtd);
1634 			FREE_LOCK(altump);
1635 		}
1636 	}
1637 	return (speedup_syncer());
1638 }
1639 
1640 /*
1641  * Add an item to the end of the work queue.
1642  * This routine requires that the lock be held.
1643  * This is the only routine that adds items to the list.
1644  * The following routine is the only one that removes items
1645  * and does so in order from first to last.
1646  */
1647 
1648 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1649 #define	WK_NODELAY	0x0002	/* Process immediately. */
1650 
1651 static void
1652 add_to_worklist(struct worklist *wk, int flags)
1653 {
1654 	struct ufsmount *ump;
1655 
1656 	ump = VFSTOUFS(wk->wk_mp);
1657 	LOCK_OWNED(ump);
1658 	if (wk->wk_state & ONWORKLIST)
1659 		panic("add_to_worklist: %s(0x%X) already on list",
1660 		    TYPENAME(wk->wk_type), wk->wk_state);
1661 	wk->wk_state |= ONWORKLIST;
1662 	if (ump->softdep_on_worklist == 0) {
1663 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1664 		ump->softdep_worklist_tail = wk;
1665 	} else if (flags & WK_HEAD) {
1666 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1667 	} else {
1668 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1669 		ump->softdep_worklist_tail = wk;
1670 	}
1671 	ump->softdep_on_worklist += 1;
1672 	if (flags & WK_NODELAY)
1673 		worklist_speedup(wk->wk_mp);
1674 }
1675 
1676 /*
1677  * Remove the item to be processed. If we are removing the last
1678  * item on the list, we need to recalculate the tail pointer.
1679  */
1680 static void
1681 remove_from_worklist(struct worklist *wk)
1682 {
1683 	struct ufsmount *ump;
1684 
1685 	ump = VFSTOUFS(wk->wk_mp);
1686 	if (ump->softdep_worklist_tail == wk)
1687 		ump->softdep_worklist_tail =
1688 		    (struct worklist *)wk->wk_list.le_prev;
1689 	WORKLIST_REMOVE(wk);
1690 	ump->softdep_on_worklist -= 1;
1691 }
1692 
1693 static void
1694 wake_worklist(struct worklist *wk)
1695 {
1696 	if (wk->wk_state & IOWAITING) {
1697 		wk->wk_state &= ~IOWAITING;
1698 		wakeup(wk);
1699 	}
1700 }
1701 
1702 static void
1703 wait_worklist(struct worklist *wk, char *wmesg)
1704 {
1705 	struct ufsmount *ump;
1706 
1707 	ump = VFSTOUFS(wk->wk_mp);
1708 	wk->wk_state |= IOWAITING;
1709 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1710 }
1711 
1712 /*
1713  * Process that runs once per second to handle items in the background queue.
1714  *
1715  * Note that we ensure that everything is done in the order in which they
1716  * appear in the queue. The code below depends on this property to ensure
1717  * that blocks of a file are freed before the inode itself is freed. This
1718  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1719  * until all the old ones have been purged from the dependency lists.
1720  */
1721 static int
1722 softdep_process_worklist(struct mount *mp, int full)
1723 {
1724 	int cnt, matchcnt;
1725 	struct ufsmount *ump;
1726 	long starttime;
1727 
1728 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1729 	ump = VFSTOUFS(mp);
1730 	if (ump->um_softdep == NULL)
1731 		return (0);
1732 	matchcnt = 0;
1733 	ACQUIRE_LOCK(ump);
1734 	starttime = time_second;
1735 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1736 	check_clear_deps(mp);
1737 	while (ump->softdep_on_worklist > 0) {
1738 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1739 			break;
1740 		else
1741 			matchcnt += cnt;
1742 		check_clear_deps(mp);
1743 		/*
1744 		 * We do not generally want to stop for buffer space, but if
1745 		 * we are really being a buffer hog, we will stop and wait.
1746 		 */
1747 		if (should_yield()) {
1748 			FREE_LOCK(ump);
1749 			kern_yield(PRI_USER);
1750 			bwillwrite();
1751 			ACQUIRE_LOCK(ump);
1752 		}
1753 		/*
1754 		 * Never allow processing to run for more than one
1755 		 * second. This gives the syncer thread the opportunity
1756 		 * to pause if appropriate.
1757 		 */
1758 		if (!full && starttime != time_second)
1759 			break;
1760 	}
1761 	if (full == 0)
1762 		journal_unsuspend(ump);
1763 	FREE_LOCK(ump);
1764 	return (matchcnt);
1765 }
1766 
1767 /*
1768  * Process all removes associated with a vnode if we are running out of
1769  * journal space.  Any other process which attempts to flush these will
1770  * be unable as we have the vnodes locked.
1771  */
1772 static void
1773 process_removes(struct vnode *vp)
1774 {
1775 	struct inodedep *inodedep;
1776 	struct dirrem *dirrem;
1777 	struct ufsmount *ump;
1778 	struct mount *mp;
1779 	ino_t inum;
1780 
1781 	mp = vp->v_mount;
1782 	ump = VFSTOUFS(mp);
1783 	LOCK_OWNED(ump);
1784 	inum = VTOI(vp)->i_number;
1785 	for (;;) {
1786 top:
1787 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1788 			return;
1789 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1790 			/*
1791 			 * If another thread is trying to lock this vnode
1792 			 * it will fail but we must wait for it to do so
1793 			 * before we can proceed.
1794 			 */
1795 			if (dirrem->dm_state & INPROGRESS) {
1796 				wait_worklist(&dirrem->dm_list, "pwrwait");
1797 				goto top;
1798 			}
1799 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1800 			    (COMPLETE | ONWORKLIST))
1801 				break;
1802 		}
1803 		if (dirrem == NULL)
1804 			return;
1805 		remove_from_worklist(&dirrem->dm_list);
1806 		FREE_LOCK(ump);
1807 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1808 			panic("process_removes: suspended filesystem");
1809 		handle_workitem_remove(dirrem, 0);
1810 		vn_finished_secondary_write(mp);
1811 		ACQUIRE_LOCK(ump);
1812 	}
1813 }
1814 
1815 /*
1816  * Process all truncations associated with a vnode if we are running out
1817  * of journal space.  This is called when the vnode lock is already held
1818  * and no other process can clear the truncation.  This function returns
1819  * a value greater than zero if it did any work.
1820  */
1821 static void
1822 process_truncates(struct vnode *vp)
1823 {
1824 	struct inodedep *inodedep;
1825 	struct freeblks *freeblks;
1826 	struct ufsmount *ump;
1827 	struct mount *mp;
1828 	ino_t inum;
1829 	int cgwait;
1830 
1831 	mp = vp->v_mount;
1832 	ump = VFSTOUFS(mp);
1833 	LOCK_OWNED(ump);
1834 	inum = VTOI(vp)->i_number;
1835 	for (;;) {
1836 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1837 			return;
1838 		cgwait = 0;
1839 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1840 			/* Journal entries not yet written.  */
1841 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1842 				jwait(&LIST_FIRST(
1843 				    &freeblks->fb_jblkdephd)->jb_list,
1844 				    MNT_WAIT);
1845 				break;
1846 			}
1847 			/* Another thread is executing this item. */
1848 			if (freeblks->fb_state & INPROGRESS) {
1849 				wait_worklist(&freeblks->fb_list, "ptrwait");
1850 				break;
1851 			}
1852 			/* Freeblks is waiting on a inode write. */
1853 			if ((freeblks->fb_state & COMPLETE) == 0) {
1854 				FREE_LOCK(ump);
1855 				ffs_update(vp, 1);
1856 				ACQUIRE_LOCK(ump);
1857 				break;
1858 			}
1859 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1860 			    (ALLCOMPLETE | ONWORKLIST)) {
1861 				remove_from_worklist(&freeblks->fb_list);
1862 				freeblks->fb_state |= INPROGRESS;
1863 				FREE_LOCK(ump);
1864 				if (vn_start_secondary_write(NULL, &mp,
1865 				    V_NOWAIT))
1866 					panic("process_truncates: "
1867 					    "suspended filesystem");
1868 				handle_workitem_freeblocks(freeblks, 0);
1869 				vn_finished_secondary_write(mp);
1870 				ACQUIRE_LOCK(ump);
1871 				break;
1872 			}
1873 			if (freeblks->fb_cgwait)
1874 				cgwait++;
1875 		}
1876 		if (cgwait) {
1877 			FREE_LOCK(ump);
1878 			sync_cgs(mp, MNT_WAIT);
1879 			ffs_sync_snap(mp, MNT_WAIT);
1880 			ACQUIRE_LOCK(ump);
1881 			continue;
1882 		}
1883 		if (freeblks == NULL)
1884 			break;
1885 	}
1886 	return;
1887 }
1888 
1889 /*
1890  * Process one item on the worklist.
1891  */
1892 static int
1893 process_worklist_item(struct mount *mp,
1894 	int target,
1895 	int flags)
1896 {
1897 	struct worklist sentinel;
1898 	struct worklist *wk;
1899 	struct ufsmount *ump;
1900 	int matchcnt;
1901 	int error;
1902 
1903 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1904 	/*
1905 	 * If we are being called because of a process doing a
1906 	 * copy-on-write, then it is not safe to write as we may
1907 	 * recurse into the copy-on-write routine.
1908 	 */
1909 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1910 		return (-1);
1911 	PHOLD(curproc);	/* Don't let the stack go away. */
1912 	ump = VFSTOUFS(mp);
1913 	LOCK_OWNED(ump);
1914 	matchcnt = 0;
1915 	sentinel.wk_mp = NULL;
1916 	sentinel.wk_type = D_SENTINEL;
1917 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1918 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1919 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1920 		if (wk->wk_type == D_SENTINEL) {
1921 			LIST_REMOVE(&sentinel, wk_list);
1922 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1923 			continue;
1924 		}
1925 		if (wk->wk_state & INPROGRESS)
1926 			panic("process_worklist_item: %p already in progress.",
1927 			    wk);
1928 		wk->wk_state |= INPROGRESS;
1929 		remove_from_worklist(wk);
1930 		FREE_LOCK(ump);
1931 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1932 			panic("process_worklist_item: suspended filesystem");
1933 		switch (wk->wk_type) {
1934 		case D_DIRREM:
1935 			/* removal of a directory entry */
1936 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1937 			break;
1938 
1939 		case D_FREEBLKS:
1940 			/* releasing blocks and/or fragments from a file */
1941 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1942 			    flags);
1943 			break;
1944 
1945 		case D_FREEFRAG:
1946 			/* releasing a fragment when replaced as a file grows */
1947 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1948 			error = 0;
1949 			break;
1950 
1951 		case D_FREEFILE:
1952 			/* releasing an inode when its link count drops to 0 */
1953 			handle_workitem_freefile(WK_FREEFILE(wk));
1954 			error = 0;
1955 			break;
1956 
1957 		default:
1958 			panic("%s_process_worklist: Unknown type %s",
1959 			    "softdep", TYPENAME(wk->wk_type));
1960 			/* NOTREACHED */
1961 		}
1962 		vn_finished_secondary_write(mp);
1963 		ACQUIRE_LOCK(ump);
1964 		if (error == 0) {
1965 			if (++matchcnt == target)
1966 				break;
1967 			continue;
1968 		}
1969 		/*
1970 		 * We have to retry the worklist item later.  Wake up any
1971 		 * waiters who may be able to complete it immediately and
1972 		 * add the item back to the head so we don't try to execute
1973 		 * it again.
1974 		 */
1975 		wk->wk_state &= ~INPROGRESS;
1976 		wake_worklist(wk);
1977 		add_to_worklist(wk, WK_HEAD);
1978 	}
1979 	/* Sentinal could've become the tail from remove_from_worklist. */
1980 	if (ump->softdep_worklist_tail == &sentinel)
1981 		ump->softdep_worklist_tail =
1982 		    (struct worklist *)sentinel.wk_list.le_prev;
1983 	LIST_REMOVE(&sentinel, wk_list);
1984 	PRELE(curproc);
1985 	return (matchcnt);
1986 }
1987 
1988 /*
1989  * Move dependencies from one buffer to another.
1990  */
1991 int
1992 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
1993 {
1994 	struct worklist *wk, *wktail;
1995 	struct ufsmount *ump;
1996 	int dirty;
1997 
1998 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1999 		return (0);
2000 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
2001 	    ("softdep_move_dependencies called on non-softdep filesystem"));
2002 	dirty = 0;
2003 	wktail = NULL;
2004 	ump = VFSTOUFS(wk->wk_mp);
2005 	ACQUIRE_LOCK(ump);
2006 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2007 		LIST_REMOVE(wk, wk_list);
2008 		if (wk->wk_type == D_BMSAFEMAP &&
2009 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2010 			dirty = 1;
2011 		if (wktail == NULL)
2012 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2013 		else
2014 			LIST_INSERT_AFTER(wktail, wk, wk_list);
2015 		wktail = wk;
2016 	}
2017 	FREE_LOCK(ump);
2018 
2019 	return (dirty);
2020 }
2021 
2022 /*
2023  * Purge the work list of all items associated with a particular mount point.
2024  */
2025 int
2026 softdep_flushworklist(struct mount *oldmnt,
2027 	int *countp,
2028 	struct thread *td)
2029 {
2030 	struct vnode *devvp;
2031 	struct ufsmount *ump;
2032 	int count, error;
2033 
2034 	/*
2035 	 * Alternately flush the block device associated with the mount
2036 	 * point and process any dependencies that the flushing
2037 	 * creates. We continue until no more worklist dependencies
2038 	 * are found.
2039 	 */
2040 	*countp = 0;
2041 	error = 0;
2042 	ump = VFSTOUFS(oldmnt);
2043 	devvp = ump->um_devvp;
2044 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2045 		*countp += count;
2046 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2047 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2048 		VOP_UNLOCK(devvp);
2049 		if (error != 0)
2050 			break;
2051 	}
2052 	return (error);
2053 }
2054 
2055 #define	SU_WAITIDLE_RETRIES	20
2056 static int
2057 softdep_waitidle(struct mount *mp, int flags __unused)
2058 {
2059 	struct ufsmount *ump;
2060 	struct vnode *devvp;
2061 	struct thread *td;
2062 	int error, i;
2063 
2064 	ump = VFSTOUFS(mp);
2065 	KASSERT(ump->um_softdep != NULL,
2066 	    ("softdep_waitidle called on non-softdep filesystem"));
2067 	devvp = ump->um_devvp;
2068 	td = curthread;
2069 	error = 0;
2070 	ACQUIRE_LOCK(ump);
2071 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2072 		ump->softdep_req = 1;
2073 		KASSERT((flags & FORCECLOSE) == 0 ||
2074 		    ump->softdep_on_worklist == 0,
2075 		    ("softdep_waitidle: work added after flush"));
2076 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2077 		    "softdeps", 10 * hz);
2078 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2079 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2080 		VOP_UNLOCK(devvp);
2081 		ACQUIRE_LOCK(ump);
2082 		if (error != 0)
2083 			break;
2084 	}
2085 	ump->softdep_req = 0;
2086 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2087 		error = EBUSY;
2088 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
2089 		    mp);
2090 	}
2091 	FREE_LOCK(ump);
2092 	return (error);
2093 }
2094 
2095 /*
2096  * Flush all vnodes and worklist items associated with a specified mount point.
2097  */
2098 int
2099 softdep_flushfiles(struct mount *oldmnt,
2100 	int flags,
2101 	struct thread *td)
2102 {
2103 	struct ufsmount *ump __unused;
2104 #ifdef QUOTA
2105 	int i;
2106 #endif
2107 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2108 	int morework;
2109 
2110 	ump = VFSTOUFS(oldmnt);
2111 	KASSERT(ump->um_softdep != NULL,
2112 	    ("softdep_flushfiles called on non-softdep filesystem"));
2113 	loopcnt = 10;
2114 	retry_flush_count = 3;
2115 retry_flush:
2116 	error = 0;
2117 
2118 	/*
2119 	 * Alternately flush the vnodes associated with the mount
2120 	 * point and process any dependencies that the flushing
2121 	 * creates. In theory, this loop can happen at most twice,
2122 	 * but we give it a few extra just to be sure.
2123 	 */
2124 	for (; loopcnt > 0; loopcnt--) {
2125 		/*
2126 		 * Do another flush in case any vnodes were brought in
2127 		 * as part of the cleanup operations.
2128 		 */
2129 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2130 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2131 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2132 			break;
2133 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2134 		    depcount == 0)
2135 			break;
2136 	}
2137 	/*
2138 	 * If we are unmounting then it is an error to fail. If we
2139 	 * are simply trying to downgrade to read-only, then filesystem
2140 	 * activity can keep us busy forever, so we just fail with EBUSY.
2141 	 */
2142 	if (loopcnt == 0) {
2143 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2144 			panic("softdep_flushfiles: looping");
2145 		error = EBUSY;
2146 	}
2147 	if (!error)
2148 		error = softdep_waitidle(oldmnt, flags);
2149 	if (!error) {
2150 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2151 			retry = 0;
2152 			MNT_ILOCK(oldmnt);
2153 			morework = oldmnt->mnt_nvnodelistsize > 0;
2154 #ifdef QUOTA
2155 			UFS_LOCK(ump);
2156 			for (i = 0; i < MAXQUOTAS; i++) {
2157 				if (ump->um_quotas[i] != NULLVP)
2158 					morework = 1;
2159 			}
2160 			UFS_UNLOCK(ump);
2161 #endif
2162 			if (morework) {
2163 				if (--retry_flush_count > 0) {
2164 					retry = 1;
2165 					loopcnt = 3;
2166 				} else
2167 					error = EBUSY;
2168 			}
2169 			MNT_IUNLOCK(oldmnt);
2170 			if (retry)
2171 				goto retry_flush;
2172 		}
2173 	}
2174 	return (error);
2175 }
2176 
2177 /*
2178  * Structure hashing.
2179  *
2180  * There are four types of structures that can be looked up:
2181  *	1) pagedep structures identified by mount point, inode number,
2182  *	   and logical block.
2183  *	2) inodedep structures identified by mount point and inode number.
2184  *	3) newblk structures identified by mount point and
2185  *	   physical block number.
2186  *	4) bmsafemap structures identified by mount point and
2187  *	   cylinder group number.
2188  *
2189  * The "pagedep" and "inodedep" dependency structures are hashed
2190  * separately from the file blocks and inodes to which they correspond.
2191  * This separation helps when the in-memory copy of an inode or
2192  * file block must be replaced. It also obviates the need to access
2193  * an inode or file page when simply updating (or de-allocating)
2194  * dependency structures. Lookup of newblk structures is needed to
2195  * find newly allocated blocks when trying to associate them with
2196  * their allocdirect or allocindir structure.
2197  *
2198  * The lookup routines optionally create and hash a new instance when
2199  * an existing entry is not found. The bmsafemap lookup routine always
2200  * allocates a new structure if an existing one is not found.
2201  */
2202 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2203 
2204 /*
2205  * Structures and routines associated with pagedep caching.
2206  */
2207 #define	PAGEDEP_HASH(ump, inum, lbn) \
2208 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2209 
2210 static int
2211 pagedep_find(struct pagedep_hashhead *pagedephd,
2212 	ino_t ino,
2213 	ufs_lbn_t lbn,
2214 	struct pagedep **pagedeppp)
2215 {
2216 	struct pagedep *pagedep;
2217 
2218 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2219 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2220 			*pagedeppp = pagedep;
2221 			return (1);
2222 		}
2223 	}
2224 	*pagedeppp = NULL;
2225 	return (0);
2226 }
2227 /*
2228  * Look up a pagedep. Return 1 if found, 0 otherwise.
2229  * If not found, allocate if DEPALLOC flag is passed.
2230  * Found or allocated entry is returned in pagedeppp.
2231  */
2232 static int
2233 pagedep_lookup(struct mount *mp,
2234 	struct buf *bp,
2235 	ino_t ino,
2236 	ufs_lbn_t lbn,
2237 	int flags,
2238 	struct pagedep **pagedeppp)
2239 {
2240 	struct pagedep *pagedep;
2241 	struct pagedep_hashhead *pagedephd;
2242 	struct worklist *wk;
2243 	struct ufsmount *ump;
2244 	int ret;
2245 	int i;
2246 
2247 	ump = VFSTOUFS(mp);
2248 	LOCK_OWNED(ump);
2249 	if (bp) {
2250 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2251 			if (wk->wk_type == D_PAGEDEP) {
2252 				*pagedeppp = WK_PAGEDEP(wk);
2253 				return (1);
2254 			}
2255 		}
2256 	}
2257 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2258 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2259 	if (ret) {
2260 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2261 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2262 		return (1);
2263 	}
2264 	if ((flags & DEPALLOC) == 0)
2265 		return (0);
2266 	FREE_LOCK(ump);
2267 	pagedep = malloc(sizeof(struct pagedep),
2268 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2269 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2270 	ACQUIRE_LOCK(ump);
2271 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2272 	if (*pagedeppp) {
2273 		/*
2274 		 * This should never happen since we only create pagedeps
2275 		 * with the vnode lock held.  Could be an assert.
2276 		 */
2277 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2278 		return (ret);
2279 	}
2280 	pagedep->pd_ino = ino;
2281 	pagedep->pd_lbn = lbn;
2282 	LIST_INIT(&pagedep->pd_dirremhd);
2283 	LIST_INIT(&pagedep->pd_pendinghd);
2284 	for (i = 0; i < DAHASHSZ; i++)
2285 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2286 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2287 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2288 	*pagedeppp = pagedep;
2289 	return (0);
2290 }
2291 
2292 /*
2293  * Structures and routines associated with inodedep caching.
2294  */
2295 #define	INODEDEP_HASH(ump, inum) \
2296       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2297 
2298 static int
2299 inodedep_find(struct inodedep_hashhead *inodedephd,
2300 	ino_t inum,
2301 	struct inodedep **inodedeppp)
2302 {
2303 	struct inodedep *inodedep;
2304 
2305 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2306 		if (inum == inodedep->id_ino)
2307 			break;
2308 	if (inodedep) {
2309 		*inodedeppp = inodedep;
2310 		return (1);
2311 	}
2312 	*inodedeppp = NULL;
2313 
2314 	return (0);
2315 }
2316 /*
2317  * Look up an inodedep. Return 1 if found, 0 if not found.
2318  * If not found, allocate if DEPALLOC flag is passed.
2319  * Found or allocated entry is returned in inodedeppp.
2320  */
2321 static int
2322 inodedep_lookup(struct mount *mp,
2323 	ino_t inum,
2324 	int flags,
2325 	struct inodedep **inodedeppp)
2326 {
2327 	struct inodedep *inodedep;
2328 	struct inodedep_hashhead *inodedephd;
2329 	struct ufsmount *ump;
2330 	struct fs *fs;
2331 
2332 	ump = VFSTOUFS(mp);
2333 	LOCK_OWNED(ump);
2334 	fs = ump->um_fs;
2335 	inodedephd = INODEDEP_HASH(ump, inum);
2336 
2337 	if (inodedep_find(inodedephd, inum, inodedeppp))
2338 		return (1);
2339 	if ((flags & DEPALLOC) == 0)
2340 		return (0);
2341 	/*
2342 	 * If the system is over its limit and our filesystem is
2343 	 * responsible for more than our share of that usage and
2344 	 * we are not in a rush, request some inodedep cleanup.
2345 	 */
2346 	if (softdep_excess_items(ump, D_INODEDEP))
2347 		schedule_cleanup(mp);
2348 	else
2349 		FREE_LOCK(ump);
2350 	inodedep = malloc(sizeof(struct inodedep),
2351 		M_INODEDEP, M_SOFTDEP_FLAGS);
2352 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2353 	ACQUIRE_LOCK(ump);
2354 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2355 		WORKITEM_FREE(inodedep, D_INODEDEP);
2356 		return (1);
2357 	}
2358 	inodedep->id_fs = fs;
2359 	inodedep->id_ino = inum;
2360 	inodedep->id_state = ALLCOMPLETE;
2361 	inodedep->id_nlinkdelta = 0;
2362 	inodedep->id_nlinkwrote = -1;
2363 	inodedep->id_savedino1 = NULL;
2364 	inodedep->id_savedsize = -1;
2365 	inodedep->id_savedextsize = -1;
2366 	inodedep->id_savednlink = -1;
2367 	inodedep->id_bmsafemap = NULL;
2368 	inodedep->id_mkdiradd = NULL;
2369 	LIST_INIT(&inodedep->id_dirremhd);
2370 	LIST_INIT(&inodedep->id_pendinghd);
2371 	LIST_INIT(&inodedep->id_inowait);
2372 	LIST_INIT(&inodedep->id_bufwait);
2373 	TAILQ_INIT(&inodedep->id_inoreflst);
2374 	TAILQ_INIT(&inodedep->id_inoupdt);
2375 	TAILQ_INIT(&inodedep->id_newinoupdt);
2376 	TAILQ_INIT(&inodedep->id_extupdt);
2377 	TAILQ_INIT(&inodedep->id_newextupdt);
2378 	TAILQ_INIT(&inodedep->id_freeblklst);
2379 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2380 	*inodedeppp = inodedep;
2381 	return (0);
2382 }
2383 
2384 /*
2385  * Structures and routines associated with newblk caching.
2386  */
2387 #define	NEWBLK_HASH(ump, inum) \
2388 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2389 
2390 static int
2391 newblk_find(struct newblk_hashhead *newblkhd,
2392 	ufs2_daddr_t newblkno,
2393 	int flags,
2394 	struct newblk **newblkpp)
2395 {
2396 	struct newblk *newblk;
2397 
2398 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2399 		if (newblkno != newblk->nb_newblkno)
2400 			continue;
2401 		/*
2402 		 * If we're creating a new dependency don't match those that
2403 		 * have already been converted to allocdirects.  This is for
2404 		 * a frag extend.
2405 		 */
2406 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2407 			continue;
2408 		break;
2409 	}
2410 	if (newblk) {
2411 		*newblkpp = newblk;
2412 		return (1);
2413 	}
2414 	*newblkpp = NULL;
2415 	return (0);
2416 }
2417 
2418 /*
2419  * Look up a newblk. Return 1 if found, 0 if not found.
2420  * If not found, allocate if DEPALLOC flag is passed.
2421  * Found or allocated entry is returned in newblkpp.
2422  */
2423 static int
2424 newblk_lookup(struct mount *mp,
2425 	ufs2_daddr_t newblkno,
2426 	int flags,
2427 	struct newblk **newblkpp)
2428 {
2429 	struct newblk *newblk;
2430 	struct newblk_hashhead *newblkhd;
2431 	struct ufsmount *ump;
2432 
2433 	ump = VFSTOUFS(mp);
2434 	LOCK_OWNED(ump);
2435 	newblkhd = NEWBLK_HASH(ump, newblkno);
2436 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2437 		return (1);
2438 	if ((flags & DEPALLOC) == 0)
2439 		return (0);
2440 	if (softdep_excess_items(ump, D_NEWBLK) ||
2441 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2442 	    softdep_excess_items(ump, D_ALLOCINDIR))
2443 		schedule_cleanup(mp);
2444 	else
2445 		FREE_LOCK(ump);
2446 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2447 	    M_SOFTDEP_FLAGS | M_ZERO);
2448 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2449 	ACQUIRE_LOCK(ump);
2450 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2451 		WORKITEM_FREE(newblk, D_NEWBLK);
2452 		return (1);
2453 	}
2454 	newblk->nb_freefrag = NULL;
2455 	LIST_INIT(&newblk->nb_indirdeps);
2456 	LIST_INIT(&newblk->nb_newdirblk);
2457 	LIST_INIT(&newblk->nb_jwork);
2458 	newblk->nb_state = ATTACHED;
2459 	newblk->nb_newblkno = newblkno;
2460 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2461 	*newblkpp = newblk;
2462 	return (0);
2463 }
2464 
2465 /*
2466  * Structures and routines associated with freed indirect block caching.
2467  */
2468 #define	INDIR_HASH(ump, blkno) \
2469 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2470 
2471 /*
2472  * Lookup an indirect block in the indir hash table.  The freework is
2473  * removed and potentially freed.  The caller must do a blocking journal
2474  * write before writing to the blkno.
2475  */
2476 static int
2477 indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno)
2478 {
2479 	struct freework *freework;
2480 	struct indir_hashhead *wkhd;
2481 	struct ufsmount *ump;
2482 
2483 	ump = VFSTOUFS(mp);
2484 	wkhd = INDIR_HASH(ump, blkno);
2485 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2486 		if (freework->fw_blkno != blkno)
2487 			continue;
2488 		indirblk_remove(freework);
2489 		return (1);
2490 	}
2491 	return (0);
2492 }
2493 
2494 /*
2495  * Insert an indirect block represented by freework into the indirblk
2496  * hash table so that it may prevent the block from being re-used prior
2497  * to the journal being written.
2498  */
2499 static void
2500 indirblk_insert(struct freework *freework)
2501 {
2502 	struct jblocks *jblocks;
2503 	struct jseg *jseg;
2504 	struct ufsmount *ump;
2505 
2506 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2507 	jblocks = ump->softdep_jblocks;
2508 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2509 	if (jseg == NULL)
2510 		return;
2511 
2512 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2513 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2514 	    fw_next);
2515 	freework->fw_state &= ~DEPCOMPLETE;
2516 }
2517 
2518 static void
2519 indirblk_remove(struct freework *freework)
2520 {
2521 	struct ufsmount *ump;
2522 
2523 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2524 	LIST_REMOVE(freework, fw_segs);
2525 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2526 	freework->fw_state |= DEPCOMPLETE;
2527 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2528 		WORKITEM_FREE(freework, D_FREEWORK);
2529 }
2530 
2531 /*
2532  * Executed during filesystem system initialization before
2533  * mounting any filesystems.
2534  */
2535 void
2536 softdep_initialize(void)
2537 {
2538 
2539 	TAILQ_INIT(&softdepmounts);
2540 #ifdef __LP64__
2541 	max_softdeps = desiredvnodes * 4;
2542 #else
2543 	max_softdeps = desiredvnodes * 2;
2544 #endif
2545 
2546 	/* initialise bioops hack */
2547 	bioops.io_start = softdep_disk_io_initiation;
2548 	bioops.io_complete = softdep_disk_write_complete;
2549 	bioops.io_deallocate = softdep_deallocate_dependencies;
2550 	bioops.io_countdeps = softdep_count_dependencies;
2551 	ast_register(TDA_UFS, ASTR_KCLEAR | ASTR_ASTF_REQUIRED, 0,
2552 	    softdep_ast_cleanup_proc);
2553 
2554 	/* Initialize the callout with an mtx. */
2555 	callout_init_mtx(&softdep_callout, &lk, 0);
2556 }
2557 
2558 /*
2559  * Executed after all filesystems have been unmounted during
2560  * filesystem module unload.
2561  */
2562 void
2563 softdep_uninitialize(void)
2564 {
2565 
2566 	/* clear bioops hack */
2567 	bioops.io_start = NULL;
2568 	bioops.io_complete = NULL;
2569 	bioops.io_deallocate = NULL;
2570 	bioops.io_countdeps = NULL;
2571 	ast_deregister(TDA_UFS);
2572 
2573 	callout_drain(&softdep_callout);
2574 }
2575 
2576 /*
2577  * Called at mount time to notify the dependency code that a
2578  * filesystem wishes to use it.
2579  */
2580 int
2581 softdep_mount(struct vnode *devvp,
2582 	struct mount *mp,
2583 	struct fs *fs,
2584 	struct ucred *cred)
2585 {
2586 	struct csum_total cstotal;
2587 	struct mount_softdeps *sdp;
2588 	struct ufsmount *ump;
2589 	struct cg *cgp;
2590 	struct buf *bp;
2591 	uint64_t cyl, i;
2592 	int error;
2593 
2594 	ump = VFSTOUFS(mp);
2595 
2596 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2597 	    M_WAITOK | M_ZERO);
2598 	rw_init(&sdp->sd_fslock, "SUrw");
2599 	sdp->sd_ump = ump;
2600 	LIST_INIT(&sdp->sd_workitem_pending);
2601 	LIST_INIT(&sdp->sd_journal_pending);
2602 	TAILQ_INIT(&sdp->sd_unlinked);
2603 	LIST_INIT(&sdp->sd_dirtycg);
2604 	sdp->sd_worklist_tail = NULL;
2605 	sdp->sd_on_worklist = 0;
2606 	sdp->sd_deps = 0;
2607 	LIST_INIT(&sdp->sd_mkdirlisthd);
2608 	sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2609 	    &sdp->sd_pdhashsize);
2610 	sdp->sd_pdnextclean = 0;
2611 	sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2612 	    &sdp->sd_idhashsize);
2613 	sdp->sd_idnextclean = 0;
2614 	sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
2615 	    &sdp->sd_newblkhashsize);
2616 	sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2617 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2618 	sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2619 	    M_FREEWORK, M_WAITOK);
2620 	sdp->sd_indirhashsize = i - 1;
2621 	for (i = 0; i <= sdp->sd_indirhashsize; i++)
2622 		TAILQ_INIT(&sdp->sd_indirhash[i]);
2623 	for (i = 0; i <= D_LAST; i++)
2624 		LIST_INIT(&sdp->sd_alldeps[i]);
2625 	ACQUIRE_GBLLOCK(&lk);
2626 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2627 	FREE_GBLLOCK(&lk);
2628 
2629 	ump->um_softdep = sdp;
2630 	MNT_ILOCK(mp);
2631 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2632 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2633 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2634 		    MNTK_SOFTDEP | MNTK_NOASYNC;
2635 	}
2636 	MNT_IUNLOCK(mp);
2637 
2638 	if ((fs->fs_flags & FS_SUJ) &&
2639 	    (error = journal_mount(mp, fs, cred)) != 0) {
2640 		printf("Failed to start journal: %d\n", error);
2641 		softdep_unmount(mp);
2642 		return (error);
2643 	}
2644 	/*
2645 	 * Start our flushing thread in the bufdaemon process.
2646 	 */
2647 	ACQUIRE_LOCK(ump);
2648 	ump->softdep_flags |= FLUSH_STARTING;
2649 	FREE_LOCK(ump);
2650 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2651 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2652 	    mp->mnt_stat.f_mntonname);
2653 	ACQUIRE_LOCK(ump);
2654 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2655 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2656 		    hz / 2);
2657 	}
2658 	FREE_LOCK(ump);
2659 	/*
2660 	 * When doing soft updates, the counters in the
2661 	 * superblock may have gotten out of sync. Recomputation
2662 	 * can take a long time and can be deferred for background
2663 	 * fsck.  However, the old behavior of scanning the cylinder
2664 	 * groups and recalculating them at mount time is available
2665 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2666 	 */
2667 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2668 		return (0);
2669 	bzero(&cstotal, sizeof cstotal);
2670 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2671 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2672 		    fs->fs_cgsize, cred, &bp)) != 0) {
2673 			brelse(bp);
2674 			softdep_unmount(mp);
2675 			return (error);
2676 		}
2677 		cgp = (struct cg *)bp->b_data;
2678 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2679 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2680 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2681 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2682 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2683 		brelse(bp);
2684 	}
2685 #ifdef INVARIANTS
2686 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2687 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2688 #endif
2689 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2690 	return (0);
2691 }
2692 
2693 void
2694 softdep_unmount(struct mount *mp)
2695 {
2696 	struct ufsmount *ump;
2697 	struct mount_softdeps *ums;
2698 
2699 	ump = VFSTOUFS(mp);
2700 	KASSERT(ump->um_softdep != NULL,
2701 	    ("softdep_unmount called on non-softdep filesystem"));
2702 	MNT_ILOCK(mp);
2703 	mp->mnt_flag &= ~MNT_SOFTDEP;
2704 	if ((mp->mnt_flag & MNT_SUJ) == 0) {
2705 		MNT_IUNLOCK(mp);
2706 	} else {
2707 		mp->mnt_flag &= ~MNT_SUJ;
2708 		MNT_IUNLOCK(mp);
2709 		journal_unmount(ump);
2710 	}
2711 	/*
2712 	 * Shut down our flushing thread. Check for NULL is if
2713 	 * softdep_mount errors out before the thread has been created.
2714 	 */
2715 	if (ump->softdep_flushtd != NULL) {
2716 		ACQUIRE_LOCK(ump);
2717 		ump->softdep_flags |= FLUSH_EXIT;
2718 		wakeup(&ump->softdep_flushtd);
2719 		while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2720 			msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2721 			    "sdwait", 0);
2722 		}
2723 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2724 		    ("Thread shutdown failed"));
2725 		FREE_LOCK(ump);
2726 	}
2727 
2728 	/*
2729 	 * We are no longer have softdep structure attached to ump.
2730 	 */
2731 	ums = ump->um_softdep;
2732 	ACQUIRE_GBLLOCK(&lk);
2733 	TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2734 	FREE_GBLLOCK(&lk);
2735 	ump->um_softdep = NULL;
2736 
2737 	KASSERT(ums->sd_on_journal == 0,
2738 	    ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2739 	KASSERT(ums->sd_on_worklist == 0,
2740 	    ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2741 	KASSERT(ums->sd_deps == 0,
2742 	    ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2743 
2744 	/*
2745 	 * Free up our resources.
2746 	 */
2747 	rw_destroy(&ums->sd_fslock);
2748 	hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2749 	hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2750 	hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2751 	hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2752 	free(ums->sd_indirhash, M_FREEWORK);
2753 #ifdef INVARIANTS
2754 	for (int i = 0; i <= D_LAST; i++) {
2755 		KASSERT(ums->sd_curdeps[i] == 0,
2756 		    ("Unmount %s: Dep type %s != 0 (%jd)", ump->um_fs->fs_fsmnt,
2757 		    TYPENAME(i), (intmax_t)ums->sd_curdeps[i]));
2758 		KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2759 		    ("Unmount %s: Dep type %s not empty (%p)",
2760 		    ump->um_fs->fs_fsmnt,
2761 		    TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2762 	}
2763 #endif
2764 	free(ums, M_MOUNTDATA);
2765 }
2766 
2767 static struct jblocks *
2768 jblocks_create(void)
2769 {
2770 	struct jblocks *jblocks;
2771 
2772 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2773 	TAILQ_INIT(&jblocks->jb_segs);
2774 	jblocks->jb_avail = 10;
2775 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2776 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2777 
2778 	return (jblocks);
2779 }
2780 
2781 static ufs2_daddr_t
2782 jblocks_alloc(struct jblocks *jblocks,
2783 	int bytes,
2784 	int *actual)
2785 {
2786 	ufs2_daddr_t daddr;
2787 	struct jextent *jext;
2788 	int freecnt;
2789 	int blocks;
2790 
2791 	blocks = bytes / DEV_BSIZE;
2792 	jext = &jblocks->jb_extent[jblocks->jb_head];
2793 	freecnt = jext->je_blocks - jblocks->jb_off;
2794 	if (freecnt == 0) {
2795 		jblocks->jb_off = 0;
2796 		if (++jblocks->jb_head > jblocks->jb_used)
2797 			jblocks->jb_head = 0;
2798 		jext = &jblocks->jb_extent[jblocks->jb_head];
2799 		freecnt = jext->je_blocks;
2800 	}
2801 	if (freecnt > blocks)
2802 		freecnt = blocks;
2803 	*actual = freecnt * DEV_BSIZE;
2804 	daddr = jext->je_daddr + jblocks->jb_off;
2805 	jblocks->jb_off += freecnt;
2806 	jblocks->jb_free -= freecnt;
2807 
2808 	return (daddr);
2809 }
2810 
2811 static void
2812 jblocks_free(struct jblocks *jblocks,
2813 	struct mount *mp,
2814 	int bytes)
2815 {
2816 
2817 	LOCK_OWNED(VFSTOUFS(mp));
2818 	jblocks->jb_free += bytes / DEV_BSIZE;
2819 	if (jblocks->jb_suspended)
2820 		worklist_speedup(mp);
2821 	wakeup(jblocks);
2822 }
2823 
2824 static void
2825 jblocks_destroy(struct jblocks *jblocks)
2826 {
2827 
2828 	if (jblocks->jb_extent)
2829 		free(jblocks->jb_extent, M_JBLOCKS);
2830 	free(jblocks, M_JBLOCKS);
2831 }
2832 
2833 static void
2834 jblocks_add(struct jblocks *jblocks,
2835 	ufs2_daddr_t daddr,
2836 	int blocks)
2837 {
2838 	struct jextent *jext;
2839 
2840 	jblocks->jb_blocks += blocks;
2841 	jblocks->jb_free += blocks;
2842 	jext = &jblocks->jb_extent[jblocks->jb_used];
2843 	/* Adding the first block. */
2844 	if (jext->je_daddr == 0) {
2845 		jext->je_daddr = daddr;
2846 		jext->je_blocks = blocks;
2847 		return;
2848 	}
2849 	/* Extending the last extent. */
2850 	if (jext->je_daddr + jext->je_blocks == daddr) {
2851 		jext->je_blocks += blocks;
2852 		return;
2853 	}
2854 	/* Adding a new extent. */
2855 	if (++jblocks->jb_used == jblocks->jb_avail) {
2856 		jblocks->jb_avail *= 2;
2857 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2858 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2859 		memcpy(jext, jblocks->jb_extent,
2860 		    sizeof(struct jextent) * jblocks->jb_used);
2861 		free(jblocks->jb_extent, M_JBLOCKS);
2862 		jblocks->jb_extent = jext;
2863 	}
2864 	jext = &jblocks->jb_extent[jblocks->jb_used];
2865 	jext->je_daddr = daddr;
2866 	jext->je_blocks = blocks;
2867 	return;
2868 }
2869 
2870 int
2871 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
2872 {
2873 	struct componentname cnp;
2874 	struct vnode *dvp;
2875 	ino_t sujournal;
2876 	int error;
2877 
2878 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2879 	if (error)
2880 		return (error);
2881 	bzero(&cnp, sizeof(cnp));
2882 	cnp.cn_nameiop = LOOKUP;
2883 	cnp.cn_flags = ISLASTCN;
2884 	cnp.cn_cred = curthread->td_ucred;
2885 	cnp.cn_pnbuf = SUJ_FILE;
2886 	cnp.cn_nameptr = SUJ_FILE;
2887 	cnp.cn_namelen = strlen(SUJ_FILE);
2888 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2889 	vput(dvp);
2890 	if (error != 0)
2891 		return (error);
2892 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2893 	return (error);
2894 }
2895 
2896 /*
2897  * Open and verify the journal file.
2898  */
2899 static int
2900 journal_mount(struct mount *mp,
2901 	struct fs *fs,
2902 	struct ucred *cred)
2903 {
2904 	struct jblocks *jblocks;
2905 	struct ufsmount *ump;
2906 	struct vnode *vp;
2907 	struct inode *ip;
2908 	ufs2_daddr_t blkno;
2909 	int bcount;
2910 	int error;
2911 	int i;
2912 
2913 	ump = VFSTOUFS(mp);
2914 	ump->softdep_journal_tail = NULL;
2915 	ump->softdep_on_journal = 0;
2916 	ump->softdep_accdeps = 0;
2917 	ump->softdep_req = 0;
2918 	ump->softdep_jblocks = NULL;
2919 	error = softdep_journal_lookup(mp, &vp);
2920 	if (error != 0) {
2921 		printf("Failed to find journal.  Use tunefs to create one\n");
2922 		return (error);
2923 	}
2924 	ip = VTOI(vp);
2925 	if (ip->i_size < SUJ_MIN) {
2926 		error = ENOSPC;
2927 		goto out;
2928 	}
2929 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2930 	jblocks = jblocks_create();
2931 	for (i = 0; i < bcount; i++) {
2932 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2933 		if (error)
2934 			break;
2935 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2936 	}
2937 	if (error) {
2938 		jblocks_destroy(jblocks);
2939 		goto out;
2940 	}
2941 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2942 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2943 	ump->softdep_jblocks = jblocks;
2944 
2945 	MNT_ILOCK(mp);
2946 	mp->mnt_flag |= MNT_SUJ;
2947 	MNT_IUNLOCK(mp);
2948 
2949 	/*
2950 	 * Only validate the journal contents if the
2951 	 * filesystem is clean, otherwise we write the logs
2952 	 * but they'll never be used.  If the filesystem was
2953 	 * still dirty when we mounted it the journal is
2954 	 * invalid and a new journal can only be valid if it
2955 	 * starts from a clean mount.
2956 	 */
2957 	if (fs->fs_clean) {
2958 		DIP_SET(ip, i_modrev, fs->fs_mtime);
2959 		ip->i_flags |= IN_MODIFIED;
2960 		ffs_update(vp, 1);
2961 	}
2962 out:
2963 	vput(vp);
2964 	return (error);
2965 }
2966 
2967 static void
2968 journal_unmount(struct ufsmount *ump)
2969 {
2970 
2971 	if (ump->softdep_jblocks)
2972 		jblocks_destroy(ump->softdep_jblocks);
2973 	ump->softdep_jblocks = NULL;
2974 }
2975 
2976 /*
2977  * Called when a journal record is ready to be written.  Space is allocated
2978  * and the journal entry is created when the journal is flushed to stable
2979  * store.
2980  */
2981 static void
2982 add_to_journal(struct worklist *wk)
2983 {
2984 	struct ufsmount *ump;
2985 
2986 	ump = VFSTOUFS(wk->wk_mp);
2987 	LOCK_OWNED(ump);
2988 	if (wk->wk_state & ONWORKLIST)
2989 		panic("add_to_journal: %s(0x%X) already on list",
2990 		    TYPENAME(wk->wk_type), wk->wk_state);
2991 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2992 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2993 		ump->softdep_jblocks->jb_age = ticks;
2994 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2995 	} else
2996 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2997 	ump->softdep_journal_tail = wk;
2998 	ump->softdep_on_journal += 1;
2999 }
3000 
3001 /*
3002  * Remove an arbitrary item for the journal worklist maintain the tail
3003  * pointer.  This happens when a new operation obviates the need to
3004  * journal an old operation.
3005  */
3006 static void
3007 remove_from_journal(struct worklist *wk)
3008 {
3009 	struct ufsmount *ump;
3010 
3011 	ump = VFSTOUFS(wk->wk_mp);
3012 	LOCK_OWNED(ump);
3013 #ifdef INVARIANTS
3014 	{
3015 		struct worklist *wkn;
3016 
3017 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3018 			if (wkn == wk)
3019 				break;
3020 		if (wkn == NULL)
3021 			panic("remove_from_journal: %p is not in journal", wk);
3022 	}
3023 #endif
3024 	/*
3025 	 * We emulate a TAILQ to save space in most structures which do not
3026 	 * require TAILQ semantics.  Here we must update the tail position
3027 	 * when removing the tail which is not the final entry. This works
3028 	 * only if the worklist linkage are at the beginning of the structure.
3029 	 */
3030 	if (ump->softdep_journal_tail == wk)
3031 		ump->softdep_journal_tail =
3032 		    (struct worklist *)wk->wk_list.le_prev;
3033 	WORKLIST_REMOVE(wk);
3034 	ump->softdep_on_journal -= 1;
3035 }
3036 
3037 /*
3038  * Check for journal space as well as dependency limits so the prelink
3039  * code can throttle both journaled and non-journaled filesystems.
3040  * Threshold is 0 for low and 1 for min.
3041  */
3042 static int
3043 journal_space(struct ufsmount *ump, int thresh)
3044 {
3045 	struct jblocks *jblocks;
3046 	int limit, avail;
3047 
3048 	jblocks = ump->softdep_jblocks;
3049 	if (jblocks == NULL)
3050 		return (1);
3051 	/*
3052 	 * We use a tighter restriction here to prevent request_cleanup()
3053 	 * running in threads from running into locks we currently hold.
3054 	 * We have to be over the limit and our filesystem has to be
3055 	 * responsible for more than our share of that usage.
3056 	 */
3057 	limit = (max_softdeps / 10) * 9;
3058 	if (dep_current[D_INODEDEP] > limit &&
3059 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3060 		return (0);
3061 	if (thresh)
3062 		thresh = jblocks->jb_min;
3063 	else
3064 		thresh = jblocks->jb_low;
3065 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3066 	avail = jblocks->jb_free - avail;
3067 
3068 	return (avail > thresh);
3069 }
3070 
3071 static void
3072 journal_suspend(struct ufsmount *ump)
3073 {
3074 	struct jblocks *jblocks;
3075 	struct mount *mp;
3076 	bool set;
3077 
3078 	mp = UFSTOVFS(ump);
3079 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3080 		return;
3081 
3082 	jblocks = ump->softdep_jblocks;
3083 	vfs_op_enter(mp);
3084 	set = false;
3085 	MNT_ILOCK(mp);
3086 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3087 		stat_journal_min++;
3088 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3089 		mp->mnt_susp_owner = ump->softdep_flushtd;
3090 		set = true;
3091 	}
3092 	jblocks->jb_suspended = 1;
3093 	MNT_IUNLOCK(mp);
3094 	if (!set)
3095 		vfs_op_exit(mp);
3096 }
3097 
3098 static int
3099 journal_unsuspend(struct ufsmount *ump)
3100 {
3101 	struct jblocks *jblocks;
3102 	struct mount *mp;
3103 
3104 	mp = UFSTOVFS(ump);
3105 	jblocks = ump->softdep_jblocks;
3106 
3107 	if (jblocks != NULL && jblocks->jb_suspended &&
3108 	    journal_space(ump, jblocks->jb_min)) {
3109 		jblocks->jb_suspended = 0;
3110 		FREE_LOCK(ump);
3111 		mp->mnt_susp_owner = curthread;
3112 		vfs_write_resume(mp, 0);
3113 		ACQUIRE_LOCK(ump);
3114 		return (1);
3115 	}
3116 	return (0);
3117 }
3118 
3119 static void
3120 journal_check_space(struct ufsmount *ump)
3121 {
3122 	struct mount *mp;
3123 
3124 	LOCK_OWNED(ump);
3125 
3126 	if (journal_space(ump, 0) == 0) {
3127 		softdep_speedup(ump);
3128 		mp = UFSTOVFS(ump);
3129 		FREE_LOCK(ump);
3130 		VFS_SYNC(mp, MNT_NOWAIT);
3131 		ffs_sbupdate(ump, MNT_WAIT, 0);
3132 		ACQUIRE_LOCK(ump);
3133 		if (journal_space(ump, 1) == 0)
3134 			journal_suspend(ump);
3135 	}
3136 }
3137 
3138 /*
3139  * Called before any allocation function to be certain that there is
3140  * sufficient space in the journal prior to creating any new records.
3141  * Since in the case of block allocation we may have multiple locked
3142  * buffers at the time of the actual allocation we can not block
3143  * when the journal records are created.  Doing so would create a deadlock
3144  * if any of these buffers needed to be flushed to reclaim space.  Instead
3145  * we require a sufficiently large amount of available space such that
3146  * each thread in the system could have passed this allocation check and
3147  * still have sufficient free space.  With 20% of a minimum journal size
3148  * of 1MB we have 6553 records available.
3149  */
3150 int
3151 softdep_prealloc(struct vnode *vp, int waitok)
3152 {
3153 	struct ufsmount *ump;
3154 
3155 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3156 	    ("softdep_prealloc called on non-softdep filesystem"));
3157 	/*
3158 	 * Nothing to do if we are not running journaled soft updates.
3159 	 * If we currently hold the snapshot lock, we must avoid
3160 	 * handling other resources that could cause deadlock.  Do not
3161 	 * touch quotas vnode since it is typically recursed with
3162 	 * other vnode locks held.
3163 	 */
3164 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3165 	    (vp->v_vflag & VV_SYSTEM) != 0)
3166 		return (0);
3167 	ump = VFSTOUFS(vp->v_mount);
3168 	ACQUIRE_LOCK(ump);
3169 	if (journal_space(ump, 0)) {
3170 		FREE_LOCK(ump);
3171 		return (0);
3172 	}
3173 	stat_journal_low++;
3174 	FREE_LOCK(ump);
3175 	if (waitok == MNT_NOWAIT)
3176 		return (ENOSPC);
3177 	/*
3178 	 * Attempt to sync this vnode once to flush any journal
3179 	 * work attached to it.
3180 	 */
3181 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3182 		ffs_syncvnode(vp, waitok, 0);
3183 	ACQUIRE_LOCK(ump);
3184 	process_removes(vp);
3185 	process_truncates(vp);
3186 	journal_check_space(ump);
3187 	FREE_LOCK(ump);
3188 
3189 	return (0);
3190 }
3191 
3192 /*
3193  * Try hard to sync all data and metadata for the vnode, and workitems
3194  * flushing which might conflict with the vnode lock.  This is a
3195  * helper for softdep_prerename().
3196  */
3197 static int
3198 softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp)
3199 {
3200 	int error;
3201 
3202 	ASSERT_VOP_ELOCKED(vp, "prehandle");
3203 	if (vp->v_data == NULL)
3204 		return (0);
3205 	error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3206 	if (error != 0)
3207 		return (error);
3208 	ACQUIRE_LOCK(ump);
3209 	process_removes(vp);
3210 	process_truncates(vp);
3211 	FREE_LOCK(ump);
3212 	return (0);
3213 }
3214 
3215 /*
3216  * Must be called from VOP_RENAME() after all vnodes are locked.
3217  * Ensures that there is enough journal space for rename.  It is
3218  * sufficiently different from softdep_prelink() by having to handle
3219  * four vnodes.
3220  */
3221 int
3222 softdep_prerename(struct vnode *fdvp,
3223 	struct vnode *fvp,
3224 	struct vnode *tdvp,
3225 	struct vnode *tvp)
3226 {
3227 	struct ufsmount *ump;
3228 	int error;
3229 
3230 	ump = VFSTOUFS(fdvp->v_mount);
3231 
3232 	if (journal_space(ump, 0))
3233 		return (0);
3234 
3235 	VOP_UNLOCK(tdvp);
3236 	VOP_UNLOCK(fvp);
3237 	if (tvp != NULL && tvp != tdvp)
3238 		VOP_UNLOCK(tvp);
3239 
3240 	error = softdep_prerename_vnode(ump, fdvp);
3241 	VOP_UNLOCK(fdvp);
3242 	if (error != 0)
3243 		return (error);
3244 
3245 	VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3246 	error = softdep_prerename_vnode(ump, fvp);
3247 	VOP_UNLOCK(fvp);
3248 	if (error != 0)
3249 		return (error);
3250 
3251 	if (tdvp != fdvp) {
3252 		VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3253 		error = softdep_prerename_vnode(ump, tdvp);
3254 		VOP_UNLOCK(tdvp);
3255 		if (error != 0)
3256 			return (error);
3257 	}
3258 
3259 	if (tvp != fvp && tvp != NULL) {
3260 		VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3261 		error = softdep_prerename_vnode(ump, tvp);
3262 		VOP_UNLOCK(tvp);
3263 		if (error != 0)
3264 			return (error);
3265 	}
3266 
3267 	ACQUIRE_LOCK(ump);
3268 	softdep_speedup(ump);
3269 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3270 	journal_check_space(ump);
3271 	FREE_LOCK(ump);
3272 	return (ERELOOKUP);
3273 }
3274 
3275 /*
3276  * Before adjusting a link count on a vnode verify that we have sufficient
3277  * journal space.  If not, process operations that depend on the currently
3278  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3279  * and softdep flush threads can not acquire these locks to reclaim space.
3280  *
3281  * Returns 0 if all owned locks are still valid and were not dropped
3282  * in the process, in other case it returns either an error from sync,
3283  * or ERELOOKUP if any of the locks were re-acquired.  In the later
3284  * case, the state of the vnodes cannot be relied upon and our VFS
3285  * syscall must be restarted at top level from the lookup.
3286  */
3287 int
3288 softdep_prelink(struct vnode *dvp,
3289 	struct vnode *vp,
3290 	struct componentname *cnp)
3291 {
3292 	struct ufsmount *ump;
3293 	struct nameidata *ndp;
3294 
3295 	ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3296 	if (vp != NULL)
3297 		ASSERT_VOP_ELOCKED(vp, "prelink vp");
3298 	ump = VFSTOUFS(dvp->v_mount);
3299 
3300 	/*
3301 	 * Nothing to do if we have sufficient journal space.  We skip
3302 	 * flushing when vp is a snapshot to avoid deadlock where
3303 	 * another thread is trying to update the inodeblock for dvp
3304 	 * and is waiting on snaplk that vp holds.
3305 	 */
3306 	if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3307 		return (0);
3308 
3309 	/*
3310 	 * Check if the journal space consumption can in theory be
3311 	 * accounted on dvp and vp.  If the vnodes metadata was not
3312 	 * changed comparing with the previous round-trip into
3313 	 * softdep_prelink(), as indicated by the seqc generation
3314 	 * recorded in the nameidata, then there is no point in
3315 	 * starting the sync.
3316 	 */
3317 	ndp = __containerof(cnp, struct nameidata, ni_cnd);
3318 	if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
3319 	    vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
3320 	    (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
3321 	    vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
3322 		return (0);
3323 
3324 	stat_journal_low++;
3325 	if (vp != NULL) {
3326 		VOP_UNLOCK(dvp);
3327 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3328 		vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true, LK_EXCLUSIVE);
3329 		if (dvp->v_data == NULL)
3330 			goto out;
3331 	}
3332 	if (vp != NULL)
3333 		VOP_UNLOCK(vp);
3334 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3335 	/* Process vp before dvp as it may create .. removes. */
3336 	if (vp != NULL) {
3337 		VOP_UNLOCK(dvp);
3338 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3339 		if (vp->v_data == NULL) {
3340 			vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true,
3341 			    LK_EXCLUSIVE);
3342 			goto out;
3343 		}
3344 		ACQUIRE_LOCK(ump);
3345 		process_removes(vp);
3346 		process_truncates(vp);
3347 		FREE_LOCK(ump);
3348 		VOP_UNLOCK(vp);
3349 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3350 		if (dvp->v_data == NULL) {
3351 			vn_lock_pair(dvp, true, LK_EXCLUSIVE, vp, false,
3352 			    LK_EXCLUSIVE);
3353 			goto out;
3354 		}
3355 	}
3356 
3357 	ACQUIRE_LOCK(ump);
3358 	process_removes(dvp);
3359 	process_truncates(dvp);
3360 	VOP_UNLOCK(dvp);
3361 	softdep_speedup(ump);
3362 
3363 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3364 	journal_check_space(ump);
3365 	FREE_LOCK(ump);
3366 
3367 	vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, false, LK_EXCLUSIVE);
3368 out:
3369 	ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
3370 	if (vp != NULL)
3371 		ndp->ni_vp_seqc = vn_seqc_read_any(vp);
3372 	return (ERELOOKUP);
3373 }
3374 
3375 static void
3376 jseg_write(struct ufsmount *ump,
3377 	struct jseg *jseg,
3378 	uint8_t *data)
3379 {
3380 	struct jsegrec *rec;
3381 
3382 	rec = (struct jsegrec *)data;
3383 	rec->jsr_seq = jseg->js_seq;
3384 	rec->jsr_oldest = jseg->js_oldseq;
3385 	rec->jsr_cnt = jseg->js_cnt;
3386 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3387 	rec->jsr_crc = 0;
3388 	rec->jsr_time = ump->um_fs->fs_mtime;
3389 }
3390 
3391 static inline void
3392 inoref_write(struct inoref *inoref,
3393 	struct jseg *jseg,
3394 	struct jrefrec *rec)
3395 {
3396 
3397 	inoref->if_jsegdep->jd_seg = jseg;
3398 	rec->jr_ino = inoref->if_ino;
3399 	rec->jr_parent = inoref->if_parent;
3400 	rec->jr_nlink = inoref->if_nlink;
3401 	rec->jr_mode = inoref->if_mode;
3402 	rec->jr_diroff = inoref->if_diroff;
3403 }
3404 
3405 static void
3406 jaddref_write(struct jaddref *jaddref,
3407 	struct jseg *jseg,
3408 	uint8_t *data)
3409 {
3410 	struct jrefrec *rec;
3411 
3412 	rec = (struct jrefrec *)data;
3413 	rec->jr_op = JOP_ADDREF;
3414 	inoref_write(&jaddref->ja_ref, jseg, rec);
3415 }
3416 
3417 static void
3418 jremref_write(struct jremref *jremref,
3419 	struct jseg *jseg,
3420 	uint8_t *data)
3421 {
3422 	struct jrefrec *rec;
3423 
3424 	rec = (struct jrefrec *)data;
3425 	rec->jr_op = JOP_REMREF;
3426 	inoref_write(&jremref->jr_ref, jseg, rec);
3427 }
3428 
3429 static void
3430 jmvref_write(struct jmvref *jmvref,
3431 	struct jseg *jseg,
3432 	uint8_t *data)
3433 {
3434 	struct jmvrec *rec;
3435 
3436 	rec = (struct jmvrec *)data;
3437 	rec->jm_op = JOP_MVREF;
3438 	rec->jm_ino = jmvref->jm_ino;
3439 	rec->jm_parent = jmvref->jm_parent;
3440 	rec->jm_oldoff = jmvref->jm_oldoff;
3441 	rec->jm_newoff = jmvref->jm_newoff;
3442 }
3443 
3444 static void
3445 jnewblk_write(struct jnewblk *jnewblk,
3446 	struct jseg *jseg,
3447 	uint8_t *data)
3448 {
3449 	struct jblkrec *rec;
3450 
3451 	jnewblk->jn_jsegdep->jd_seg = jseg;
3452 	rec = (struct jblkrec *)data;
3453 	rec->jb_op = JOP_NEWBLK;
3454 	rec->jb_ino = jnewblk->jn_ino;
3455 	rec->jb_blkno = jnewblk->jn_blkno;
3456 	rec->jb_lbn = jnewblk->jn_lbn;
3457 	rec->jb_frags = jnewblk->jn_frags;
3458 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3459 }
3460 
3461 static void
3462 jfreeblk_write(struct jfreeblk *jfreeblk,
3463 	struct jseg *jseg,
3464 	uint8_t *data)
3465 {
3466 	struct jblkrec *rec;
3467 
3468 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3469 	rec = (struct jblkrec *)data;
3470 	rec->jb_op = JOP_FREEBLK;
3471 	rec->jb_ino = jfreeblk->jf_ino;
3472 	rec->jb_blkno = jfreeblk->jf_blkno;
3473 	rec->jb_lbn = jfreeblk->jf_lbn;
3474 	rec->jb_frags = jfreeblk->jf_frags;
3475 	rec->jb_oldfrags = 0;
3476 }
3477 
3478 static void
3479 jfreefrag_write(struct jfreefrag *jfreefrag,
3480 	struct jseg *jseg,
3481 	uint8_t *data)
3482 {
3483 	struct jblkrec *rec;
3484 
3485 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3486 	rec = (struct jblkrec *)data;
3487 	rec->jb_op = JOP_FREEBLK;
3488 	rec->jb_ino = jfreefrag->fr_ino;
3489 	rec->jb_blkno = jfreefrag->fr_blkno;
3490 	rec->jb_lbn = jfreefrag->fr_lbn;
3491 	rec->jb_frags = jfreefrag->fr_frags;
3492 	rec->jb_oldfrags = 0;
3493 }
3494 
3495 static void
3496 jtrunc_write(struct jtrunc *jtrunc,
3497 	struct jseg *jseg,
3498 	uint8_t *data)
3499 {
3500 	struct jtrncrec *rec;
3501 
3502 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3503 	rec = (struct jtrncrec *)data;
3504 	rec->jt_op = JOP_TRUNC;
3505 	rec->jt_ino = jtrunc->jt_ino;
3506 	rec->jt_size = jtrunc->jt_size;
3507 	rec->jt_extsize = jtrunc->jt_extsize;
3508 }
3509 
3510 static void
3511 jfsync_write(struct jfsync *jfsync,
3512 	struct jseg *jseg,
3513 	uint8_t *data)
3514 {
3515 	struct jtrncrec *rec;
3516 
3517 	rec = (struct jtrncrec *)data;
3518 	rec->jt_op = JOP_SYNC;
3519 	rec->jt_ino = jfsync->jfs_ino;
3520 	rec->jt_size = jfsync->jfs_size;
3521 	rec->jt_extsize = jfsync->jfs_extsize;
3522 }
3523 
3524 static void
3525 softdep_flushjournal(struct mount *mp)
3526 {
3527 	struct jblocks *jblocks;
3528 	struct ufsmount *ump;
3529 
3530 	if (MOUNTEDSUJ(mp) == 0)
3531 		return;
3532 	ump = VFSTOUFS(mp);
3533 	jblocks = ump->softdep_jblocks;
3534 	ACQUIRE_LOCK(ump);
3535 	while (ump->softdep_on_journal) {
3536 		jblocks->jb_needseg = 1;
3537 		softdep_process_journal(mp, NULL, MNT_WAIT);
3538 	}
3539 	FREE_LOCK(ump);
3540 }
3541 
3542 static void softdep_synchronize_completed(struct bio *);
3543 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3544 
3545 static void
3546 softdep_synchronize_completed(struct bio *bp)
3547 {
3548 	struct jseg *oldest;
3549 	struct jseg *jseg;
3550 	struct ufsmount *ump;
3551 
3552 	/*
3553 	 * caller1 marks the last segment written before we issued the
3554 	 * synchronize cache.
3555 	 */
3556 	jseg = bp->bio_caller1;
3557 	if (jseg == NULL) {
3558 		g_destroy_bio(bp);
3559 		return;
3560 	}
3561 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3562 	ACQUIRE_LOCK(ump);
3563 	oldest = NULL;
3564 	/*
3565 	 * Mark all the journal entries waiting on the synchronize cache
3566 	 * as completed so they may continue on.
3567 	 */
3568 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3569 		jseg->js_state |= COMPLETE;
3570 		oldest = jseg;
3571 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3572 	}
3573 	/*
3574 	 * Restart deferred journal entry processing from the oldest
3575 	 * completed jseg.
3576 	 */
3577 	if (oldest)
3578 		complete_jsegs(oldest);
3579 
3580 	FREE_LOCK(ump);
3581 	g_destroy_bio(bp);
3582 }
3583 
3584 /*
3585  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3586  * barriers.  The journal must be written prior to any blocks that depend
3587  * on it and the journal can not be released until the blocks have be
3588  * written.  This code handles both barriers simultaneously.
3589  */
3590 static void
3591 softdep_synchronize(struct bio *bp,
3592 	struct ufsmount *ump,
3593 	void *caller1)
3594 {
3595 
3596 	bp->bio_cmd = BIO_FLUSH;
3597 	bp->bio_flags |= BIO_ORDERED;
3598 	bp->bio_data = NULL;
3599 	bp->bio_offset = ump->um_cp->provider->mediasize;
3600 	bp->bio_length = 0;
3601 	bp->bio_done = softdep_synchronize_completed;
3602 	bp->bio_caller1 = caller1;
3603 	g_io_request(bp, ump->um_cp);
3604 }
3605 
3606 /*
3607  * Flush some journal records to disk.
3608  */
3609 static void
3610 softdep_process_journal(struct mount *mp,
3611 	struct worklist *needwk,
3612 	int flags)
3613 {
3614 	struct jblocks *jblocks;
3615 	struct ufsmount *ump;
3616 	struct worklist *wk;
3617 	struct jseg *jseg;
3618 	struct buf *bp;
3619 	struct bio *bio;
3620 	uint8_t *data;
3621 	struct fs *fs;
3622 	int shouldflush;
3623 	int segwritten;
3624 	int jrecmin;	/* Minimum records per block. */
3625 	int jrecmax;	/* Maximum records per block. */
3626 	int size;
3627 	int cnt;
3628 	int off;
3629 	int devbsize;
3630 
3631 	ump = VFSTOUFS(mp);
3632 	if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3633 		return;
3634 	shouldflush = softdep_flushcache;
3635 	bio = NULL;
3636 	jseg = NULL;
3637 	LOCK_OWNED(ump);
3638 	fs = ump->um_fs;
3639 	jblocks = ump->softdep_jblocks;
3640 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3641 	/*
3642 	 * We write anywhere between a disk block and fs block.  The upper
3643 	 * bound is picked to prevent buffer cache fragmentation and limit
3644 	 * processing time per I/O.
3645 	 */
3646 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3647 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3648 	segwritten = 0;
3649 	for (;;) {
3650 		cnt = ump->softdep_on_journal;
3651 		/*
3652 		 * Criteria for writing a segment:
3653 		 * 1) We have a full block.
3654 		 * 2) We're called from jwait() and haven't found the
3655 		 *    journal item yet.
3656 		 * 3) Always write if needseg is set.
3657 		 * 4) If we are called from process_worklist and have
3658 		 *    not yet written anything we write a partial block
3659 		 *    to enforce a 1 second maximum latency on journal
3660 		 *    entries.
3661 		 */
3662 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3663 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3664 			break;
3665 		cnt++;
3666 		/*
3667 		 * Verify some free journal space.  softdep_prealloc() should
3668 		 * guarantee that we don't run out so this is indicative of
3669 		 * a problem with the flow control.  Try to recover
3670 		 * gracefully in any event.
3671 		 */
3672 		while (jblocks->jb_free == 0) {
3673 			if (flags != MNT_WAIT)
3674 				break;
3675 			printf("softdep: Out of journal space!\n");
3676 			softdep_speedup(ump);
3677 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3678 		}
3679 		FREE_LOCK(ump);
3680 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3681 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3682 		LIST_INIT(&jseg->js_entries);
3683 		LIST_INIT(&jseg->js_indirs);
3684 		jseg->js_state = ATTACHED;
3685 		if (shouldflush == 0)
3686 			jseg->js_state |= COMPLETE;
3687 		else if (bio == NULL)
3688 			bio = g_alloc_bio();
3689 		jseg->js_jblocks = jblocks;
3690 		bp = geteblk(fs->fs_bsize, 0);
3691 		ACQUIRE_LOCK(ump);
3692 		/*
3693 		 * If there was a race while we were allocating the block
3694 		 * and jseg the entry we care about was likely written.
3695 		 * We bail out in both the WAIT and NOWAIT case and assume
3696 		 * the caller will loop if the entry it cares about is
3697 		 * not written.
3698 		 */
3699 		cnt = ump->softdep_on_journal;
3700 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3701 			bp->b_flags |= B_INVAL | B_NOCACHE;
3702 			WORKITEM_FREE(jseg, D_JSEG);
3703 			FREE_LOCK(ump);
3704 			brelse(bp);
3705 			ACQUIRE_LOCK(ump);
3706 			break;
3707 		}
3708 		/*
3709 		 * Calculate the disk block size required for the available
3710 		 * records rounded to the min size.
3711 		 */
3712 		if (cnt == 0)
3713 			size = devbsize;
3714 		else if (cnt < jrecmax)
3715 			size = howmany(cnt, jrecmin) * devbsize;
3716 		else
3717 			size = fs->fs_bsize;
3718 		/*
3719 		 * Allocate a disk block for this journal data and account
3720 		 * for truncation of the requested size if enough contiguous
3721 		 * space was not available.
3722 		 */
3723 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3724 		bp->b_lblkno = bp->b_blkno;
3725 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3726 		bp->b_bcount = size;
3727 		bp->b_flags &= ~B_INVAL;
3728 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3729 		/*
3730 		 * Initialize our jseg with cnt records.  Assign the next
3731 		 * sequence number to it and link it in-order.
3732 		 */
3733 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3734 		jseg->js_buf = bp;
3735 		jseg->js_cnt = cnt;
3736 		jseg->js_refs = cnt + 1;	/* Self ref. */
3737 		jseg->js_size = size;
3738 		jseg->js_seq = jblocks->jb_nextseq++;
3739 		if (jblocks->jb_oldestseg == NULL)
3740 			jblocks->jb_oldestseg = jseg;
3741 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3742 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3743 		if (jblocks->jb_writeseg == NULL)
3744 			jblocks->jb_writeseg = jseg;
3745 		/*
3746 		 * Start filling in records from the pending list.
3747 		 */
3748 		data = bp->b_data;
3749 		off = 0;
3750 
3751 		/*
3752 		 * Always put a header on the first block.
3753 		 * XXX As with below, there might not be a chance to get
3754 		 * into the loop.  Ensure that something valid is written.
3755 		 */
3756 		jseg_write(ump, jseg, data);
3757 		off += JREC_SIZE;
3758 		data = bp->b_data + off;
3759 
3760 		/*
3761 		 * XXX Something is wrong here.  There's no work to do,
3762 		 * but we need to perform and I/O and allow it to complete
3763 		 * anyways.
3764 		 */
3765 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3766 			stat_emptyjblocks++;
3767 
3768 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3769 		    != NULL) {
3770 			if (cnt == 0)
3771 				break;
3772 			/* Place a segment header on every device block. */
3773 			if ((off % devbsize) == 0) {
3774 				jseg_write(ump, jseg, data);
3775 				off += JREC_SIZE;
3776 				data = bp->b_data + off;
3777 			}
3778 			if (wk == needwk)
3779 				needwk = NULL;
3780 			remove_from_journal(wk);
3781 			wk->wk_state |= INPROGRESS;
3782 			WORKLIST_INSERT(&jseg->js_entries, wk);
3783 			switch (wk->wk_type) {
3784 			case D_JADDREF:
3785 				jaddref_write(WK_JADDREF(wk), jseg, data);
3786 				break;
3787 			case D_JREMREF:
3788 				jremref_write(WK_JREMREF(wk), jseg, data);
3789 				break;
3790 			case D_JMVREF:
3791 				jmvref_write(WK_JMVREF(wk), jseg, data);
3792 				break;
3793 			case D_JNEWBLK:
3794 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3795 				break;
3796 			case D_JFREEBLK:
3797 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3798 				break;
3799 			case D_JFREEFRAG:
3800 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3801 				break;
3802 			case D_JTRUNC:
3803 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3804 				break;
3805 			case D_JFSYNC:
3806 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3807 				break;
3808 			default:
3809 				panic("process_journal: Unknown type %s",
3810 				    TYPENAME(wk->wk_type));
3811 				/* NOTREACHED */
3812 			}
3813 			off += JREC_SIZE;
3814 			data = bp->b_data + off;
3815 			cnt--;
3816 		}
3817 
3818 		/* Clear any remaining space so we don't leak kernel data */
3819 		if (size > off)
3820 			bzero(data, size - off);
3821 
3822 		/*
3823 		 * Write this one buffer and continue.
3824 		 */
3825 		segwritten = 1;
3826 		jblocks->jb_needseg = 0;
3827 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3828 		FREE_LOCK(ump);
3829 		bp->b_xflags |= BX_CVTENXIO;
3830 		pbgetvp(ump->um_devvp, bp);
3831 		/*
3832 		 * We only do the blocking wait once we find the journal
3833 		 * entry we're looking for.
3834 		 */
3835 		if (needwk == NULL && flags == MNT_WAIT)
3836 			bwrite(bp);
3837 		else
3838 			bawrite(bp);
3839 		ACQUIRE_LOCK(ump);
3840 	}
3841 	/*
3842 	 * If we wrote a segment issue a synchronize cache so the journal
3843 	 * is reflected on disk before the data is written.  Since reclaiming
3844 	 * journal space also requires writing a journal record this
3845 	 * process also enforces a barrier before reclamation.
3846 	 */
3847 	if (segwritten && shouldflush) {
3848 		softdep_synchronize(bio, ump,
3849 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3850 	} else if (bio)
3851 		g_destroy_bio(bio);
3852 	/*
3853 	 * If we've suspended the filesystem because we ran out of journal
3854 	 * space either try to sync it here to make some progress or
3855 	 * unsuspend it if we already have.
3856 	 */
3857 	if (flags == 0 && jblocks->jb_suspended) {
3858 		if (journal_unsuspend(ump))
3859 			return;
3860 		FREE_LOCK(ump);
3861 		VFS_SYNC(mp, MNT_NOWAIT);
3862 		ffs_sbupdate(ump, MNT_WAIT, 0);
3863 		ACQUIRE_LOCK(ump);
3864 	}
3865 }
3866 
3867 /*
3868  * Complete a jseg, allowing all dependencies awaiting journal writes
3869  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3870  * structures so that the journal segment can be freed to reclaim space.
3871  */
3872 static void
3873 complete_jseg(struct jseg *jseg)
3874 {
3875 	struct worklist *wk;
3876 	struct jmvref *jmvref;
3877 #ifdef INVARIANTS
3878 	int i = 0;
3879 #endif
3880 
3881 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3882 		WORKLIST_REMOVE(wk);
3883 		wk->wk_state &= ~INPROGRESS;
3884 		wk->wk_state |= COMPLETE;
3885 		KASSERT(i++ < jseg->js_cnt,
3886 		    ("handle_written_jseg: overflow %d >= %d",
3887 		    i - 1, jseg->js_cnt));
3888 		switch (wk->wk_type) {
3889 		case D_JADDREF:
3890 			handle_written_jaddref(WK_JADDREF(wk));
3891 			break;
3892 		case D_JREMREF:
3893 			handle_written_jremref(WK_JREMREF(wk));
3894 			break;
3895 		case D_JMVREF:
3896 			rele_jseg(jseg);	/* No jsegdep. */
3897 			jmvref = WK_JMVREF(wk);
3898 			LIST_REMOVE(jmvref, jm_deps);
3899 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3900 				free_pagedep(jmvref->jm_pagedep);
3901 			WORKITEM_FREE(jmvref, D_JMVREF);
3902 			break;
3903 		case D_JNEWBLK:
3904 			handle_written_jnewblk(WK_JNEWBLK(wk));
3905 			break;
3906 		case D_JFREEBLK:
3907 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3908 			break;
3909 		case D_JTRUNC:
3910 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3911 			break;
3912 		case D_JFSYNC:
3913 			rele_jseg(jseg);	/* No jsegdep. */
3914 			WORKITEM_FREE(wk, D_JFSYNC);
3915 			break;
3916 		case D_JFREEFRAG:
3917 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3918 			break;
3919 		default:
3920 			panic("handle_written_jseg: Unknown type %s",
3921 			    TYPENAME(wk->wk_type));
3922 			/* NOTREACHED */
3923 		}
3924 	}
3925 	/* Release the self reference so the structure may be freed. */
3926 	rele_jseg(jseg);
3927 }
3928 
3929 /*
3930  * Determine which jsegs are ready for completion processing.  Waits for
3931  * synchronize cache to complete as well as forcing in-order completion
3932  * of journal entries.
3933  */
3934 static void
3935 complete_jsegs(struct jseg *jseg)
3936 {
3937 	struct jblocks *jblocks;
3938 	struct jseg *jsegn;
3939 
3940 	jblocks = jseg->js_jblocks;
3941 	/*
3942 	 * Don't allow out of order completions.  If this isn't the first
3943 	 * block wait for it to write before we're done.
3944 	 */
3945 	if (jseg != jblocks->jb_writeseg)
3946 		return;
3947 	/* Iterate through available jsegs processing their entries. */
3948 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3949 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3950 		jsegn = TAILQ_NEXT(jseg, js_next);
3951 		complete_jseg(jseg);
3952 		jseg = jsegn;
3953 	}
3954 	jblocks->jb_writeseg = jseg;
3955 	/*
3956 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3957 	 */
3958 	free_jsegs(jblocks);
3959 }
3960 
3961 /*
3962  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3963  * the final completions.
3964  */
3965 static void
3966 handle_written_jseg(struct jseg *jseg, struct buf *bp)
3967 {
3968 
3969 	if (jseg->js_refs == 0)
3970 		panic("handle_written_jseg: No self-reference on %p", jseg);
3971 	jseg->js_state |= DEPCOMPLETE;
3972 	/*
3973 	 * We'll never need this buffer again, set flags so it will be
3974 	 * discarded.
3975 	 */
3976 	bp->b_flags |= B_INVAL | B_NOCACHE;
3977 	pbrelvp(bp);
3978 	complete_jsegs(jseg);
3979 }
3980 
3981 static inline struct jsegdep *
3982 inoref_jseg(struct inoref *inoref)
3983 {
3984 	struct jsegdep *jsegdep;
3985 
3986 	jsegdep = inoref->if_jsegdep;
3987 	inoref->if_jsegdep = NULL;
3988 
3989 	return (jsegdep);
3990 }
3991 
3992 /*
3993  * Called once a jremref has made it to stable store.  The jremref is marked
3994  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3995  * for the jremref to complete will be awoken by free_jremref.
3996  */
3997 static void
3998 handle_written_jremref(struct jremref *jremref)
3999 {
4000 	struct inodedep *inodedep;
4001 	struct jsegdep *jsegdep;
4002 	struct dirrem *dirrem;
4003 
4004 	/* Grab the jsegdep. */
4005 	jsegdep = inoref_jseg(&jremref->jr_ref);
4006 	/*
4007 	 * Remove us from the inoref list.
4008 	 */
4009 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4010 	    0, &inodedep) == 0)
4011 		panic("handle_written_jremref: Lost inodedep");
4012 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4013 	/*
4014 	 * Complete the dirrem.
4015 	 */
4016 	dirrem = jremref->jr_dirrem;
4017 	jremref->jr_dirrem = NULL;
4018 	LIST_REMOVE(jremref, jr_deps);
4019 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4020 	jwork_insert(&dirrem->dm_jwork, jsegdep);
4021 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4022 	    (dirrem->dm_state & COMPLETE) != 0)
4023 		add_to_worklist(&dirrem->dm_list, 0);
4024 	free_jremref(jremref);
4025 }
4026 
4027 /*
4028  * Called once a jaddref has made it to stable store.  The dependency is
4029  * marked complete and any dependent structures are added to the inode
4030  * bufwait list to be completed as soon as it is written.  If a bitmap write
4031  * depends on this entry we move the inode into the inodedephd of the
4032  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4033  */
4034 static void
4035 handle_written_jaddref(struct jaddref *jaddref)
4036 {
4037 	struct jsegdep *jsegdep;
4038 	struct inodedep *inodedep;
4039 	struct diradd *diradd;
4040 	struct mkdir *mkdir;
4041 
4042 	/* Grab the jsegdep. */
4043 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4044 	mkdir = NULL;
4045 	diradd = NULL;
4046 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4047 	    0, &inodedep) == 0)
4048 		panic("handle_written_jaddref: Lost inodedep.");
4049 	if (jaddref->ja_diradd == NULL)
4050 		panic("handle_written_jaddref: No dependency");
4051 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4052 		diradd = jaddref->ja_diradd;
4053 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4054 	} else if (jaddref->ja_state & MKDIR_PARENT) {
4055 		mkdir = jaddref->ja_mkdir;
4056 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4057 	} else if (jaddref->ja_state & MKDIR_BODY)
4058 		mkdir = jaddref->ja_mkdir;
4059 	else
4060 		panic("handle_written_jaddref: Unknown dependency %p",
4061 		    jaddref->ja_diradd);
4062 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
4063 	/*
4064 	 * Remove us from the inode list.
4065 	 */
4066 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4067 	/*
4068 	 * The mkdir may be waiting on the jaddref to clear before freeing.
4069 	 */
4070 	if (mkdir) {
4071 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4072 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
4073 		    TYPENAME(mkdir->md_list.wk_type)));
4074 		mkdir->md_jaddref = NULL;
4075 		diradd = mkdir->md_diradd;
4076 		mkdir->md_state |= DEPCOMPLETE;
4077 		complete_mkdir(mkdir);
4078 	}
4079 	jwork_insert(&diradd->da_jwork, jsegdep);
4080 	if (jaddref->ja_state & NEWBLOCK) {
4081 		inodedep->id_state |= ONDEPLIST;
4082 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4083 		    inodedep, id_deps);
4084 	}
4085 	free_jaddref(jaddref);
4086 }
4087 
4088 /*
4089  * Called once a jnewblk journal is written.  The allocdirect or allocindir
4090  * is placed in the bmsafemap to await notification of a written bitmap.  If
4091  * the operation was canceled we add the segdep to the appropriate
4092  * dependency to free the journal space once the canceling operation
4093  * completes.
4094  */
4095 static void
4096 handle_written_jnewblk(struct jnewblk *jnewblk)
4097 {
4098 	struct bmsafemap *bmsafemap;
4099 	struct freefrag *freefrag;
4100 	struct freework *freework;
4101 	struct jsegdep *jsegdep;
4102 	struct newblk *newblk;
4103 
4104 	/* Grab the jsegdep. */
4105 	jsegdep = jnewblk->jn_jsegdep;
4106 	jnewblk->jn_jsegdep = NULL;
4107 	if (jnewblk->jn_dep == NULL)
4108 		panic("handle_written_jnewblk: No dependency for the segdep.");
4109 	switch (jnewblk->jn_dep->wk_type) {
4110 	case D_NEWBLK:
4111 	case D_ALLOCDIRECT:
4112 	case D_ALLOCINDIR:
4113 		/*
4114 		 * Add the written block to the bmsafemap so it can
4115 		 * be notified when the bitmap is on disk.
4116 		 */
4117 		newblk = WK_NEWBLK(jnewblk->jn_dep);
4118 		newblk->nb_jnewblk = NULL;
4119 		if ((newblk->nb_state & GOINGAWAY) == 0) {
4120 			bmsafemap = newblk->nb_bmsafemap;
4121 			newblk->nb_state |= ONDEPLIST;
4122 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4123 			    nb_deps);
4124 		}
4125 		jwork_insert(&newblk->nb_jwork, jsegdep);
4126 		break;
4127 	case D_FREEFRAG:
4128 		/*
4129 		 * A newblock being removed by a freefrag when replaced by
4130 		 * frag extension.
4131 		 */
4132 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4133 		freefrag->ff_jdep = NULL;
4134 		jwork_insert(&freefrag->ff_jwork, jsegdep);
4135 		break;
4136 	case D_FREEWORK:
4137 		/*
4138 		 * A direct block was removed by truncate.
4139 		 */
4140 		freework = WK_FREEWORK(jnewblk->jn_dep);
4141 		freework->fw_jnewblk = NULL;
4142 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4143 		break;
4144 	default:
4145 		panic("handle_written_jnewblk: Unknown type %d.",
4146 		    jnewblk->jn_dep->wk_type);
4147 	}
4148 	jnewblk->jn_dep = NULL;
4149 	free_jnewblk(jnewblk);
4150 }
4151 
4152 /*
4153  * Cancel a jfreefrag that won't be needed, probably due to colliding with
4154  * an in-flight allocation that has not yet been committed.  Divorce us
4155  * from the freefrag and mark it DEPCOMPLETE so that it may be added
4156  * to the worklist.
4157  */
4158 static void
4159 cancel_jfreefrag(struct jfreefrag *jfreefrag)
4160 {
4161 	struct freefrag *freefrag;
4162 
4163 	if (jfreefrag->fr_jsegdep) {
4164 		free_jsegdep(jfreefrag->fr_jsegdep);
4165 		jfreefrag->fr_jsegdep = NULL;
4166 	}
4167 	freefrag = jfreefrag->fr_freefrag;
4168 	jfreefrag->fr_freefrag = NULL;
4169 	free_jfreefrag(jfreefrag);
4170 	freefrag->ff_state |= DEPCOMPLETE;
4171 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4172 }
4173 
4174 /*
4175  * Free a jfreefrag when the parent freefrag is rendered obsolete.
4176  */
4177 static void
4178 free_jfreefrag(struct jfreefrag *jfreefrag)
4179 {
4180 
4181 	if (jfreefrag->fr_state & INPROGRESS)
4182 		WORKLIST_REMOVE(&jfreefrag->fr_list);
4183 	else if (jfreefrag->fr_state & ONWORKLIST)
4184 		remove_from_journal(&jfreefrag->fr_list);
4185 	if (jfreefrag->fr_freefrag != NULL)
4186 		panic("free_jfreefrag:  Still attached to a freefrag.");
4187 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4188 }
4189 
4190 /*
4191  * Called when the journal write for a jfreefrag completes.  The parent
4192  * freefrag is added to the worklist if this completes its dependencies.
4193  */
4194 static void
4195 handle_written_jfreefrag(struct jfreefrag *jfreefrag)
4196 {
4197 	struct jsegdep *jsegdep;
4198 	struct freefrag *freefrag;
4199 
4200 	/* Grab the jsegdep. */
4201 	jsegdep = jfreefrag->fr_jsegdep;
4202 	jfreefrag->fr_jsegdep = NULL;
4203 	freefrag = jfreefrag->fr_freefrag;
4204 	if (freefrag == NULL)
4205 		panic("handle_written_jfreefrag: No freefrag.");
4206 	freefrag->ff_state |= DEPCOMPLETE;
4207 	freefrag->ff_jdep = NULL;
4208 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4209 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4210 		add_to_worklist(&freefrag->ff_list, 0);
4211 	jfreefrag->fr_freefrag = NULL;
4212 	free_jfreefrag(jfreefrag);
4213 }
4214 
4215 /*
4216  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4217  * is removed from the freeblks list of pending journal writes and the
4218  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4219  * have been reclaimed.
4220  */
4221 static void
4222 handle_written_jblkdep(struct jblkdep *jblkdep)
4223 {
4224 	struct freeblks *freeblks;
4225 	struct jsegdep *jsegdep;
4226 
4227 	/* Grab the jsegdep. */
4228 	jsegdep = jblkdep->jb_jsegdep;
4229 	jblkdep->jb_jsegdep = NULL;
4230 	freeblks = jblkdep->jb_freeblks;
4231 	LIST_REMOVE(jblkdep, jb_deps);
4232 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4233 	/*
4234 	 * If the freeblks is all journaled, we can add it to the worklist.
4235 	 */
4236 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4237 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4238 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4239 
4240 	free_jblkdep(jblkdep);
4241 }
4242 
4243 static struct jsegdep *
4244 newjsegdep(struct worklist *wk)
4245 {
4246 	struct jsegdep *jsegdep;
4247 
4248 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4249 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4250 	jsegdep->jd_seg = NULL;
4251 
4252 	return (jsegdep);
4253 }
4254 
4255 static struct jmvref *
4256 newjmvref(struct inode *dp,
4257 	ino_t ino,
4258 	off_t oldoff,
4259 	off_t newoff)
4260 {
4261 	struct jmvref *jmvref;
4262 
4263 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4264 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4265 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4266 	jmvref->jm_parent = dp->i_number;
4267 	jmvref->jm_ino = ino;
4268 	jmvref->jm_oldoff = oldoff;
4269 	jmvref->jm_newoff = newoff;
4270 
4271 	return (jmvref);
4272 }
4273 
4274 /*
4275  * Allocate a new jremref that tracks the removal of ip from dp with the
4276  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4277  * DEPCOMPLETE as we have all the information required for the journal write
4278  * and the directory has already been removed from the buffer.  The caller
4279  * is responsible for linking the jremref into the pagedep and adding it
4280  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4281  * a DOTDOT addition so handle_workitem_remove() can properly assign
4282  * the jsegdep when we're done.
4283  */
4284 static struct jremref *
4285 newjremref(struct dirrem *dirrem,
4286 	struct inode *dp,
4287 	struct inode *ip,
4288 	off_t diroff,
4289 	nlink_t nlink)
4290 {
4291 	struct jremref *jremref;
4292 
4293 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4294 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4295 	jremref->jr_state = ATTACHED;
4296 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4297 	   nlink, ip->i_mode);
4298 	jremref->jr_dirrem = dirrem;
4299 
4300 	return (jremref);
4301 }
4302 
4303 static inline void
4304 newinoref(struct inoref *inoref,
4305 	ino_t ino,
4306 	ino_t parent,
4307 	off_t diroff,
4308 	nlink_t nlink,
4309 	uint16_t mode)
4310 {
4311 
4312 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4313 	inoref->if_diroff = diroff;
4314 	inoref->if_ino = ino;
4315 	inoref->if_parent = parent;
4316 	inoref->if_nlink = nlink;
4317 	inoref->if_mode = mode;
4318 }
4319 
4320 /*
4321  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4322  * directory offset may not be known until later.  The caller is responsible
4323  * adding the entry to the journal when this information is available.  nlink
4324  * should be the link count prior to the addition and mode is only required
4325  * to have the correct FMT.
4326  */
4327 static struct jaddref *
4328 newjaddref(struct inode *dp,
4329 	ino_t ino,
4330 	off_t diroff,
4331 	int16_t nlink,
4332 	uint16_t mode)
4333 {
4334 	struct jaddref *jaddref;
4335 
4336 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4337 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4338 	jaddref->ja_state = ATTACHED;
4339 	jaddref->ja_mkdir = NULL;
4340 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4341 
4342 	return (jaddref);
4343 }
4344 
4345 /*
4346  * Create a new free dependency for a freework.  The caller is responsible
4347  * for adjusting the reference count when it has the lock held.  The freedep
4348  * will track an outstanding bitmap write that will ultimately clear the
4349  * freework to continue.
4350  */
4351 static struct freedep *
4352 newfreedep(struct freework *freework)
4353 {
4354 	struct freedep *freedep;
4355 
4356 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4357 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4358 	freedep->fd_freework = freework;
4359 
4360 	return (freedep);
4361 }
4362 
4363 /*
4364  * Free a freedep structure once the buffer it is linked to is written.  If
4365  * this is the last reference to the freework schedule it for completion.
4366  */
4367 static void
4368 free_freedep(struct freedep *freedep)
4369 {
4370 	struct freework *freework;
4371 
4372 	freework = freedep->fd_freework;
4373 	freework->fw_freeblks->fb_cgwait--;
4374 	if (--freework->fw_ref == 0)
4375 		freework_enqueue(freework);
4376 	WORKITEM_FREE(freedep, D_FREEDEP);
4377 }
4378 
4379 /*
4380  * Allocate a new freework structure that may be a level in an indirect
4381  * when parent is not NULL or a top level block when it is.  The top level
4382  * freework structures are allocated without the per-filesystem lock held
4383  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4384  */
4385 static struct freework *
4386 newfreework(struct ufsmount *ump,
4387 	struct freeblks *freeblks,
4388 	struct freework *parent,
4389 	ufs_lbn_t lbn,
4390 	ufs2_daddr_t nb,
4391 	int frags,
4392 	int off,
4393 	int journal)
4394 {
4395 	struct freework *freework;
4396 
4397 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4398 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4399 	freework->fw_state = ATTACHED;
4400 	freework->fw_jnewblk = NULL;
4401 	freework->fw_freeblks = freeblks;
4402 	freework->fw_parent = parent;
4403 	freework->fw_lbn = lbn;
4404 	freework->fw_blkno = nb;
4405 	freework->fw_frags = frags;
4406 	freework->fw_indir = NULL;
4407 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4408 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4409 	freework->fw_start = freework->fw_off = off;
4410 	if (journal)
4411 		newjfreeblk(freeblks, lbn, nb, frags);
4412 	if (parent == NULL) {
4413 		ACQUIRE_LOCK(ump);
4414 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4415 		freeblks->fb_ref++;
4416 		FREE_LOCK(ump);
4417 	}
4418 
4419 	return (freework);
4420 }
4421 
4422 /*
4423  * Eliminate a jfreeblk for a block that does not need journaling.
4424  */
4425 static void
4426 cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno)
4427 {
4428 	struct jfreeblk *jfreeblk;
4429 	struct jblkdep *jblkdep;
4430 
4431 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4432 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4433 			continue;
4434 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4435 		if (jfreeblk->jf_blkno == blkno)
4436 			break;
4437 	}
4438 	if (jblkdep == NULL)
4439 		return;
4440 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4441 	free_jsegdep(jblkdep->jb_jsegdep);
4442 	LIST_REMOVE(jblkdep, jb_deps);
4443 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4444 }
4445 
4446 /*
4447  * Allocate a new jfreeblk to journal top level block pointer when truncating
4448  * a file.  The caller must add this to the worklist when the per-filesystem
4449  * lock is held.
4450  */
4451 static struct jfreeblk *
4452 newjfreeblk(struct freeblks *freeblks,
4453 	ufs_lbn_t lbn,
4454 	ufs2_daddr_t blkno,
4455 	int frags)
4456 {
4457 	struct jfreeblk *jfreeblk;
4458 
4459 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4460 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4461 	    freeblks->fb_list.wk_mp);
4462 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4463 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4464 	jfreeblk->jf_ino = freeblks->fb_inum;
4465 	jfreeblk->jf_lbn = lbn;
4466 	jfreeblk->jf_blkno = blkno;
4467 	jfreeblk->jf_frags = frags;
4468 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4469 
4470 	return (jfreeblk);
4471 }
4472 
4473 /*
4474  * The journal is only prepared to handle full-size block numbers, so we
4475  * have to adjust the record to reflect the change to a full-size block.
4476  * For example, suppose we have a block made up of fragments 8-15 and
4477  * want to free its last two fragments. We are given a request that says:
4478  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4479  * where frags are the number of fragments to free and oldfrags are the
4480  * number of fragments to keep. To block align it, we have to change it to
4481  * have a valid full-size blkno, so it becomes:
4482  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4483  */
4484 static void
4485 adjust_newfreework(struct freeblks *freeblks, int frag_offset)
4486 {
4487 	struct jfreeblk *jfreeblk;
4488 
4489 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4490 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4491 	    ("adjust_newfreework: Missing freeblks dependency"));
4492 
4493 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4494 	jfreeblk->jf_blkno -= frag_offset;
4495 	jfreeblk->jf_frags += frag_offset;
4496 }
4497 
4498 /*
4499  * Allocate a new jtrunc to track a partial truncation.
4500  */
4501 static struct jtrunc *
4502 newjtrunc(struct freeblks *freeblks,
4503 	off_t size,
4504 	int extsize)
4505 {
4506 	struct jtrunc *jtrunc;
4507 
4508 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4509 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4510 	    freeblks->fb_list.wk_mp);
4511 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4512 	jtrunc->jt_dep.jb_freeblks = freeblks;
4513 	jtrunc->jt_ino = freeblks->fb_inum;
4514 	jtrunc->jt_size = size;
4515 	jtrunc->jt_extsize = extsize;
4516 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4517 
4518 	return (jtrunc);
4519 }
4520 
4521 /*
4522  * If we're canceling a new bitmap we have to search for another ref
4523  * to move into the bmsafemap dep.  This might be better expressed
4524  * with another structure.
4525  */
4526 static void
4527 move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep)
4528 {
4529 	struct inoref *inoref;
4530 	struct jaddref *jaddrefn;
4531 
4532 	jaddrefn = NULL;
4533 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4534 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4535 		if ((jaddref->ja_state & NEWBLOCK) &&
4536 		    inoref->if_list.wk_type == D_JADDREF) {
4537 			jaddrefn = (struct jaddref *)inoref;
4538 			break;
4539 		}
4540 	}
4541 	if (jaddrefn == NULL)
4542 		return;
4543 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4544 	jaddrefn->ja_state |= jaddref->ja_state &
4545 	    (ATTACHED | UNDONE | NEWBLOCK);
4546 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4547 	jaddref->ja_state |= ATTACHED;
4548 	LIST_REMOVE(jaddref, ja_bmdeps);
4549 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4550 	    ja_bmdeps);
4551 }
4552 
4553 /*
4554  * Cancel a jaddref either before it has been written or while it is being
4555  * written.  This happens when a link is removed before the add reaches
4556  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4557  * and inode to prevent the link count or bitmap from reaching the disk
4558  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4559  * required.
4560  *
4561  * Returns 1 if the canceled addref requires journaling of the remove and
4562  * 0 otherwise.
4563  */
4564 static int
4565 cancel_jaddref(struct jaddref *jaddref,
4566 	struct inodedep *inodedep,
4567 	struct workhead *wkhd)
4568 {
4569 	struct inoref *inoref;
4570 	struct jsegdep *jsegdep;
4571 	int needsj;
4572 
4573 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4574 	    ("cancel_jaddref: Canceling complete jaddref"));
4575 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4576 		needsj = 1;
4577 	else
4578 		needsj = 0;
4579 	if (inodedep == NULL)
4580 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4581 		    0, &inodedep) == 0)
4582 			panic("cancel_jaddref: Lost inodedep");
4583 	/*
4584 	 * We must adjust the nlink of any reference operation that follows
4585 	 * us so that it is consistent with the in-memory reference.  This
4586 	 * ensures that inode nlink rollbacks always have the correct link.
4587 	 */
4588 	if (needsj == 0) {
4589 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4590 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4591 			if (inoref->if_state & GOINGAWAY)
4592 				break;
4593 			inoref->if_nlink--;
4594 		}
4595 	}
4596 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4597 	if (jaddref->ja_state & NEWBLOCK)
4598 		move_newblock_dep(jaddref, inodedep);
4599 	wake_worklist(&jaddref->ja_list);
4600 	jaddref->ja_mkdir = NULL;
4601 	if (jaddref->ja_state & INPROGRESS) {
4602 		jaddref->ja_state &= ~INPROGRESS;
4603 		WORKLIST_REMOVE(&jaddref->ja_list);
4604 		jwork_insert(wkhd, jsegdep);
4605 	} else {
4606 		free_jsegdep(jsegdep);
4607 		if (jaddref->ja_state & DEPCOMPLETE)
4608 			remove_from_journal(&jaddref->ja_list);
4609 	}
4610 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4611 	/*
4612 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4613 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4614 	 * no longer need this addref attached to the inoreflst and it
4615 	 * will incorrectly adjust nlink if we leave it.
4616 	 */
4617 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4618 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4619 		    if_deps);
4620 		jaddref->ja_state |= COMPLETE;
4621 		free_jaddref(jaddref);
4622 		return (needsj);
4623 	}
4624 	/*
4625 	 * Leave the head of the list for jsegdeps for fast merging.
4626 	 */
4627 	if (LIST_FIRST(wkhd) != NULL) {
4628 		jaddref->ja_state |= ONWORKLIST;
4629 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4630 	} else
4631 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4632 
4633 	return (needsj);
4634 }
4635 
4636 /*
4637  * Attempt to free a jaddref structure when some work completes.  This
4638  * should only succeed once the entry is written and all dependencies have
4639  * been notified.
4640  */
4641 static void
4642 free_jaddref(struct jaddref *jaddref)
4643 {
4644 
4645 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4646 		return;
4647 	if (jaddref->ja_ref.if_jsegdep)
4648 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4649 		    jaddref, jaddref->ja_state);
4650 	if (jaddref->ja_state & NEWBLOCK)
4651 		LIST_REMOVE(jaddref, ja_bmdeps);
4652 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4653 		panic("free_jaddref: Bad state %p(0x%X)",
4654 		    jaddref, jaddref->ja_state);
4655 	if (jaddref->ja_mkdir != NULL)
4656 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4657 	WORKITEM_FREE(jaddref, D_JADDREF);
4658 }
4659 
4660 /*
4661  * Free a jremref structure once it has been written or discarded.
4662  */
4663 static void
4664 free_jremref(struct jremref *jremref)
4665 {
4666 
4667 	if (jremref->jr_ref.if_jsegdep)
4668 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4669 	if (jremref->jr_state & INPROGRESS)
4670 		panic("free_jremref: IO still pending");
4671 	WORKITEM_FREE(jremref, D_JREMREF);
4672 }
4673 
4674 /*
4675  * Free a jnewblk structure.
4676  */
4677 static void
4678 free_jnewblk(struct jnewblk *jnewblk)
4679 {
4680 
4681 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4682 		return;
4683 	LIST_REMOVE(jnewblk, jn_deps);
4684 	if (jnewblk->jn_dep != NULL)
4685 		panic("free_jnewblk: Dependency still attached.");
4686 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4687 }
4688 
4689 /*
4690  * Cancel a jnewblk which has been been made redundant by frag extension.
4691  */
4692 static void
4693 cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd)
4694 {
4695 	struct jsegdep *jsegdep;
4696 
4697 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4698 	jsegdep = jnewblk->jn_jsegdep;
4699 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4700 		panic("cancel_jnewblk: Invalid state");
4701 	jnewblk->jn_jsegdep  = NULL;
4702 	jnewblk->jn_dep = NULL;
4703 	jnewblk->jn_state |= GOINGAWAY;
4704 	if (jnewblk->jn_state & INPROGRESS) {
4705 		jnewblk->jn_state &= ~INPROGRESS;
4706 		WORKLIST_REMOVE(&jnewblk->jn_list);
4707 		jwork_insert(wkhd, jsegdep);
4708 	} else {
4709 		free_jsegdep(jsegdep);
4710 		remove_from_journal(&jnewblk->jn_list);
4711 	}
4712 	wake_worklist(&jnewblk->jn_list);
4713 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4714 }
4715 
4716 static void
4717 free_jblkdep(struct jblkdep *jblkdep)
4718 {
4719 
4720 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4721 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4722 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4723 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4724 	else
4725 		panic("free_jblkdep: Unexpected type %s",
4726 		    TYPENAME(jblkdep->jb_list.wk_type));
4727 }
4728 
4729 /*
4730  * Free a single jseg once it is no longer referenced in memory or on
4731  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4732  * to disappear.
4733  */
4734 static void
4735 free_jseg(struct jseg *jseg, struct jblocks *jblocks)
4736 {
4737 	struct freework *freework;
4738 
4739 	/*
4740 	 * Free freework structures that were lingering to indicate freed
4741 	 * indirect blocks that forced journal write ordering on reallocate.
4742 	 */
4743 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4744 		indirblk_remove(freework);
4745 	if (jblocks->jb_oldestseg == jseg)
4746 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4747 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4748 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4749 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4750 	    ("free_jseg: Freed jseg has valid entries."));
4751 	WORKITEM_FREE(jseg, D_JSEG);
4752 }
4753 
4754 /*
4755  * Free all jsegs that meet the criteria for being reclaimed and update
4756  * oldestseg.
4757  */
4758 static void
4759 free_jsegs(struct jblocks *jblocks)
4760 {
4761 	struct jseg *jseg;
4762 
4763 	/*
4764 	 * Free only those jsegs which have none allocated before them to
4765 	 * preserve the journal space ordering.
4766 	 */
4767 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4768 		/*
4769 		 * Only reclaim space when nothing depends on this journal
4770 		 * set and another set has written that it is no longer
4771 		 * valid.
4772 		 */
4773 		if (jseg->js_refs != 0) {
4774 			jblocks->jb_oldestseg = jseg;
4775 			return;
4776 		}
4777 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4778 			break;
4779 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4780 			break;
4781 		/*
4782 		 * We can free jsegs that didn't write entries when
4783 		 * oldestwrseq == js_seq.
4784 		 */
4785 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4786 		    jseg->js_cnt != 0)
4787 			break;
4788 		free_jseg(jseg, jblocks);
4789 	}
4790 	/*
4791 	 * If we exited the loop above we still must discover the
4792 	 * oldest valid segment.
4793 	 */
4794 	if (jseg)
4795 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4796 		     jseg = TAILQ_NEXT(jseg, js_next))
4797 			if (jseg->js_refs != 0)
4798 				break;
4799 	jblocks->jb_oldestseg = jseg;
4800 	/*
4801 	 * The journal has no valid records but some jsegs may still be
4802 	 * waiting on oldestwrseq to advance.  We force a small record
4803 	 * out to permit these lingering records to be reclaimed.
4804 	 */
4805 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4806 		jblocks->jb_needseg = 1;
4807 }
4808 
4809 /*
4810  * Release one reference to a jseg and free it if the count reaches 0.  This
4811  * should eventually reclaim journal space as well.
4812  */
4813 static void
4814 rele_jseg(struct jseg *jseg)
4815 {
4816 
4817 	KASSERT(jseg->js_refs > 0,
4818 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4819 	if (--jseg->js_refs != 0)
4820 		return;
4821 	free_jsegs(jseg->js_jblocks);
4822 }
4823 
4824 /*
4825  * Release a jsegdep and decrement the jseg count.
4826  */
4827 static void
4828 free_jsegdep(struct jsegdep *jsegdep)
4829 {
4830 
4831 	if (jsegdep->jd_seg)
4832 		rele_jseg(jsegdep->jd_seg);
4833 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4834 }
4835 
4836 /*
4837  * Wait for a journal item to make it to disk.  Initiate journal processing
4838  * if required.
4839  */
4840 static int
4841 jwait(struct worklist *wk, int waitfor)
4842 {
4843 
4844 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4845 	/*
4846 	 * Blocking journal waits cause slow synchronous behavior.  Record
4847 	 * stats on the frequency of these blocking operations.
4848 	 */
4849 	if (waitfor == MNT_WAIT) {
4850 		stat_journal_wait++;
4851 		switch (wk->wk_type) {
4852 		case D_JREMREF:
4853 		case D_JMVREF:
4854 			stat_jwait_filepage++;
4855 			break;
4856 		case D_JTRUNC:
4857 		case D_JFREEBLK:
4858 			stat_jwait_freeblks++;
4859 			break;
4860 		case D_JNEWBLK:
4861 			stat_jwait_newblk++;
4862 			break;
4863 		case D_JADDREF:
4864 			stat_jwait_inode++;
4865 			break;
4866 		default:
4867 			break;
4868 		}
4869 	}
4870 	/*
4871 	 * If IO has not started we process the journal.  We can't mark the
4872 	 * worklist item as IOWAITING because we drop the lock while
4873 	 * processing the journal and the worklist entry may be freed after
4874 	 * this point.  The caller may call back in and re-issue the request.
4875 	 */
4876 	if ((wk->wk_state & INPROGRESS) == 0) {
4877 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4878 		if (waitfor != MNT_WAIT)
4879 			return (EBUSY);
4880 		return (0);
4881 	}
4882 	if (waitfor != MNT_WAIT)
4883 		return (EBUSY);
4884 	wait_worklist(wk, "jwait");
4885 	return (0);
4886 }
4887 
4888 /*
4889  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4890  * appropriate.  This is a convenience function to reduce duplicate code
4891  * for the setup and revert functions below.
4892  */
4893 static struct inodedep *
4894 inodedep_lookup_ip(struct inode *ip)
4895 {
4896 	struct inodedep *inodedep;
4897 
4898 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4899 	    ("inodedep_lookup_ip: bad delta"));
4900 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4901 	    &inodedep);
4902 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4903 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4904 
4905 	return (inodedep);
4906 }
4907 
4908 /*
4909  * Called prior to creating a new inode and linking it to a directory.  The
4910  * jaddref structure must already be allocated by softdep_setup_inomapdep
4911  * and it is discovered here so we can initialize the mode and update
4912  * nlinkdelta.
4913  */
4914 void
4915 softdep_setup_create(struct inode *dp, struct inode *ip)
4916 {
4917 	struct inodedep *inodedep;
4918 	struct jaddref *jaddref __diagused;
4919 	struct vnode *dvp;
4920 
4921 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4922 	    ("softdep_setup_create called on non-softdep filesystem"));
4923 	KASSERT(ip->i_nlink == 1,
4924 	    ("softdep_setup_create: Invalid link count."));
4925 	dvp = ITOV(dp);
4926 	ACQUIRE_LOCK(ITOUMP(dp));
4927 	inodedep = inodedep_lookup_ip(ip);
4928 	if (DOINGSUJ(dvp)) {
4929 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4930 		    inoreflst);
4931 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4932 		    ("softdep_setup_create: No addref structure present."));
4933 	}
4934 	FREE_LOCK(ITOUMP(dp));
4935 }
4936 
4937 /*
4938  * Create a jaddref structure to track the addition of a DOTDOT link when
4939  * we are reparenting an inode as part of a rename.  This jaddref will be
4940  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4941  * non-journaling softdep.
4942  */
4943 void
4944 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
4945 {
4946 	struct inodedep *inodedep;
4947 	struct jaddref *jaddref;
4948 	struct vnode *dvp;
4949 
4950 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4951 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4952 	dvp = ITOV(dp);
4953 	jaddref = NULL;
4954 	/*
4955 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4956 	 * is used as a normal link would be.
4957 	 */
4958 	if (DOINGSUJ(dvp))
4959 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4960 		    dp->i_effnlink - 1, dp->i_mode);
4961 	ACQUIRE_LOCK(ITOUMP(dp));
4962 	inodedep = inodedep_lookup_ip(dp);
4963 	if (jaddref)
4964 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4965 		    if_deps);
4966 	FREE_LOCK(ITOUMP(dp));
4967 }
4968 
4969 /*
4970  * Create a jaddref structure to track a new link to an inode.  The directory
4971  * offset is not known until softdep_setup_directory_add or
4972  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4973  * softdep.
4974  */
4975 void
4976 softdep_setup_link(struct inode *dp, struct inode *ip)
4977 {
4978 	struct inodedep *inodedep;
4979 	struct jaddref *jaddref;
4980 	struct vnode *dvp;
4981 
4982 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4983 	    ("softdep_setup_link called on non-softdep filesystem"));
4984 	dvp = ITOV(dp);
4985 	jaddref = NULL;
4986 	if (DOINGSUJ(dvp))
4987 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4988 		    ip->i_mode);
4989 	ACQUIRE_LOCK(ITOUMP(dp));
4990 	inodedep = inodedep_lookup_ip(ip);
4991 	if (jaddref)
4992 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4993 		    if_deps);
4994 	FREE_LOCK(ITOUMP(dp));
4995 }
4996 
4997 /*
4998  * Called to create the jaddref structures to track . and .. references as
4999  * well as lookup and further initialize the incomplete jaddref created
5000  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
5001  * nlinkdelta for non-journaling softdep.
5002  */
5003 void
5004 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
5005 {
5006 	struct inodedep *inodedep;
5007 	struct jaddref *dotdotaddref;
5008 	struct jaddref *dotaddref;
5009 	struct jaddref *jaddref;
5010 	struct vnode *dvp;
5011 
5012 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5013 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
5014 	dvp = ITOV(dp);
5015 	dotaddref = dotdotaddref = NULL;
5016 	if (DOINGSUJ(dvp)) {
5017 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5018 		    ip->i_mode);
5019 		dotaddref->ja_state |= MKDIR_BODY;
5020 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5021 		    dp->i_effnlink - 1, dp->i_mode);
5022 		dotdotaddref->ja_state |= MKDIR_PARENT;
5023 	}
5024 	ACQUIRE_LOCK(ITOUMP(dp));
5025 	inodedep = inodedep_lookup_ip(ip);
5026 	if (DOINGSUJ(dvp)) {
5027 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5028 		    inoreflst);
5029 		KASSERT(jaddref != NULL,
5030 		    ("softdep_setup_mkdir: No addref structure present."));
5031 		KASSERT(jaddref->ja_parent == dp->i_number,
5032 		    ("softdep_setup_mkdir: bad parent %ju",
5033 		    (uintmax_t)jaddref->ja_parent));
5034 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5035 		    if_deps);
5036 	}
5037 	inodedep = inodedep_lookup_ip(dp);
5038 	if (DOINGSUJ(dvp))
5039 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5040 		    &dotdotaddref->ja_ref, if_deps);
5041 	FREE_LOCK(ITOUMP(dp));
5042 }
5043 
5044 /*
5045  * Called to track nlinkdelta of the inode and parent directories prior to
5046  * unlinking a directory.
5047  */
5048 void
5049 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
5050 {
5051 
5052 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5053 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
5054 	ACQUIRE_LOCK(ITOUMP(dp));
5055 	(void) inodedep_lookup_ip(ip);
5056 	(void) inodedep_lookup_ip(dp);
5057 	FREE_LOCK(ITOUMP(dp));
5058 }
5059 
5060 /*
5061  * Called to track nlinkdelta of the inode and parent directories prior to
5062  * unlink.
5063  */
5064 void
5065 softdep_setup_unlink(struct inode *dp, struct inode *ip)
5066 {
5067 
5068 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5069 	    ("softdep_setup_unlink called on non-softdep filesystem"));
5070 	ACQUIRE_LOCK(ITOUMP(dp));
5071 	(void) inodedep_lookup_ip(ip);
5072 	(void) inodedep_lookup_ip(dp);
5073 	FREE_LOCK(ITOUMP(dp));
5074 }
5075 
5076 /*
5077  * Called to release the journal structures created by a failed non-directory
5078  * creation.  Adjusts nlinkdelta for non-journaling softdep.
5079  */
5080 void
5081 softdep_revert_create(struct inode *dp, struct inode *ip)
5082 {
5083 	struct inodedep *inodedep;
5084 	struct jaddref *jaddref;
5085 	struct vnode *dvp;
5086 
5087 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5088 	    ("softdep_revert_create called on non-softdep filesystem"));
5089 	dvp = ITOV(dp);
5090 	ACQUIRE_LOCK(ITOUMP(dp));
5091 	inodedep = inodedep_lookup_ip(ip);
5092 	if (DOINGSUJ(dvp)) {
5093 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5094 		    inoreflst);
5095 		KASSERT(jaddref->ja_parent == dp->i_number,
5096 		    ("softdep_revert_create: addref parent mismatch"));
5097 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5098 	}
5099 	FREE_LOCK(ITOUMP(dp));
5100 }
5101 
5102 /*
5103  * Called to release the journal structures created by a failed link
5104  * addition.  Adjusts nlinkdelta for non-journaling softdep.
5105  */
5106 void
5107 softdep_revert_link(struct inode *dp, struct inode *ip)
5108 {
5109 	struct inodedep *inodedep;
5110 	struct jaddref *jaddref;
5111 	struct vnode *dvp;
5112 
5113 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5114 	    ("softdep_revert_link called on non-softdep filesystem"));
5115 	dvp = ITOV(dp);
5116 	ACQUIRE_LOCK(ITOUMP(dp));
5117 	inodedep = inodedep_lookup_ip(ip);
5118 	if (DOINGSUJ(dvp)) {
5119 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5120 		    inoreflst);
5121 		KASSERT(jaddref->ja_parent == dp->i_number,
5122 		    ("softdep_revert_link: addref parent mismatch"));
5123 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5124 	}
5125 	FREE_LOCK(ITOUMP(dp));
5126 }
5127 
5128 /*
5129  * Called to release the journal structures created by a failed mkdir
5130  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
5131  */
5132 void
5133 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
5134 {
5135 	struct inodedep *inodedep;
5136 	struct jaddref *jaddref;
5137 	struct jaddref *dotaddref;
5138 	struct vnode *dvp;
5139 
5140 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5141 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
5142 	dvp = ITOV(dp);
5143 
5144 	ACQUIRE_LOCK(ITOUMP(dp));
5145 	inodedep = inodedep_lookup_ip(dp);
5146 	if (DOINGSUJ(dvp)) {
5147 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5148 		    inoreflst);
5149 		KASSERT(jaddref->ja_parent == ip->i_number,
5150 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
5151 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5152 	}
5153 	inodedep = inodedep_lookup_ip(ip);
5154 	if (DOINGSUJ(dvp)) {
5155 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5156 		    inoreflst);
5157 		KASSERT(jaddref->ja_parent == dp->i_number,
5158 		    ("softdep_revert_mkdir: addref parent mismatch"));
5159 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5160 		    inoreflst, if_deps);
5161 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5162 		KASSERT(dotaddref->ja_parent == ip->i_number,
5163 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5164 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5165 	}
5166 	FREE_LOCK(ITOUMP(dp));
5167 }
5168 
5169 /*
5170  * Called to correct nlinkdelta after a failed rmdir.
5171  */
5172 void
5173 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
5174 {
5175 
5176 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5177 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5178 	ACQUIRE_LOCK(ITOUMP(dp));
5179 	(void) inodedep_lookup_ip(ip);
5180 	(void) inodedep_lookup_ip(dp);
5181 	FREE_LOCK(ITOUMP(dp));
5182 }
5183 
5184 /*
5185  * Protecting the freemaps (or bitmaps).
5186  *
5187  * To eliminate the need to execute fsck before mounting a filesystem
5188  * after a power failure, one must (conservatively) guarantee that the
5189  * on-disk copy of the bitmaps never indicate that a live inode or block is
5190  * free.  So, when a block or inode is allocated, the bitmap should be
5191  * updated (on disk) before any new pointers.  When a block or inode is
5192  * freed, the bitmap should not be updated until all pointers have been
5193  * reset.  The latter dependency is handled by the delayed de-allocation
5194  * approach described below for block and inode de-allocation.  The former
5195  * dependency is handled by calling the following procedure when a block or
5196  * inode is allocated. When an inode is allocated an "inodedep" is created
5197  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5198  * Each "inodedep" is also inserted into the hash indexing structure so
5199  * that any additional link additions can be made dependent on the inode
5200  * allocation.
5201  *
5202  * The ufs filesystem maintains a number of free block counts (e.g., per
5203  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5204  * in addition to the bitmaps.  These counts are used to improve efficiency
5205  * during allocation and therefore must be consistent with the bitmaps.
5206  * There is no convenient way to guarantee post-crash consistency of these
5207  * counts with simple update ordering, for two main reasons: (1) The counts
5208  * and bitmaps for a single cylinder group block are not in the same disk
5209  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5210  * be written and the other not.  (2) Some of the counts are located in the
5211  * superblock rather than the cylinder group block. So, we focus our soft
5212  * updates implementation on protecting the bitmaps. When mounting a
5213  * filesystem, we recompute the auxiliary counts from the bitmaps.
5214  */
5215 
5216 /*
5217  * Called just after updating the cylinder group block to allocate an inode.
5218  */
5219 void
5220 softdep_setup_inomapdep(
5221 	struct buf *bp,		/* buffer for cylgroup block with inode map */
5222 	struct inode *ip,	/* inode related to allocation */
5223 	ino_t newinum,		/* new inode number being allocated */
5224 	int mode)
5225 {
5226 	struct inodedep *inodedep;
5227 	struct bmsafemap *bmsafemap;
5228 	struct jaddref *jaddref;
5229 	struct mount *mp;
5230 	struct fs *fs;
5231 
5232 	mp = ITOVFS(ip);
5233 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5234 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5235 	fs = VFSTOUFS(mp)->um_fs;
5236 	jaddref = NULL;
5237 
5238 	/*
5239 	 * Allocate the journal reference add structure so that the bitmap
5240 	 * can be dependent on it.
5241 	 */
5242 	if (MOUNTEDSUJ(mp)) {
5243 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5244 		jaddref->ja_state |= NEWBLOCK;
5245 	}
5246 
5247 	/*
5248 	 * Create a dependency for the newly allocated inode.
5249 	 * Panic if it already exists as something is seriously wrong.
5250 	 * Otherwise add it to the dependency list for the buffer holding
5251 	 * the cylinder group map from which it was allocated.
5252 	 *
5253 	 * We have to preallocate a bmsafemap entry in case it is needed
5254 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5255 	 * have to finish initializing it before we can FREE_LOCK().
5256 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5257 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5258 	 * creating the inodedep as it can be freed during the time
5259 	 * that we FREE_LOCK() while allocating the inodedep. We must
5260 	 * call workitem_alloc() before entering the locked section as
5261 	 * it also acquires the lock and we must avoid trying doing so
5262 	 * recursively.
5263 	 */
5264 	bmsafemap = malloc(sizeof(struct bmsafemap),
5265 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5266 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5267 	ACQUIRE_LOCK(ITOUMP(ip));
5268 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5269 		panic("softdep_setup_inomapdep: dependency %p for new"
5270 		    "inode already exists", inodedep);
5271 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5272 	if (jaddref) {
5273 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5274 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5275 		    if_deps);
5276 	} else {
5277 		inodedep->id_state |= ONDEPLIST;
5278 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5279 	}
5280 	inodedep->id_bmsafemap = bmsafemap;
5281 	inodedep->id_state &= ~DEPCOMPLETE;
5282 	FREE_LOCK(ITOUMP(ip));
5283 }
5284 
5285 /*
5286  * Called just after updating the cylinder group block to
5287  * allocate block or fragment.
5288  */
5289 void
5290 softdep_setup_blkmapdep(
5291 	struct buf *bp,		/* buffer for cylgroup block with block map */
5292 	struct mount *mp,	/* filesystem doing allocation */
5293 	ufs2_daddr_t newblkno,	/* number of newly allocated block */
5294 	int frags,		/* Number of fragments. */
5295 	int oldfrags)		/* Previous number of fragments for extend. */
5296 {
5297 	struct newblk *newblk;
5298 	struct bmsafemap *bmsafemap;
5299 	struct jnewblk *jnewblk;
5300 	struct ufsmount *ump;
5301 	struct fs *fs;
5302 
5303 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5304 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5305 	ump = VFSTOUFS(mp);
5306 	fs = ump->um_fs;
5307 	jnewblk = NULL;
5308 	/*
5309 	 * Create a dependency for the newly allocated block.
5310 	 * Add it to the dependency list for the buffer holding
5311 	 * the cylinder group map from which it was allocated.
5312 	 */
5313 	if (MOUNTEDSUJ(mp)) {
5314 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5315 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5316 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5317 		jnewblk->jn_state = ATTACHED;
5318 		jnewblk->jn_blkno = newblkno;
5319 		jnewblk->jn_frags = frags;
5320 		jnewblk->jn_oldfrags = oldfrags;
5321 #ifdef INVARIANTS
5322 		{
5323 			struct cg *cgp;
5324 			uint8_t *blksfree;
5325 			long bno;
5326 			int i;
5327 
5328 			cgp = (struct cg *)bp->b_data;
5329 			blksfree = cg_blksfree(cgp);
5330 			bno = dtogd(fs, jnewblk->jn_blkno);
5331 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5332 			    i++) {
5333 				if (isset(blksfree, bno + i))
5334 					panic("softdep_setup_blkmapdep: "
5335 					    "free fragment %d from %d-%d "
5336 					    "state 0x%X dep %p", i,
5337 					    jnewblk->jn_oldfrags,
5338 					    jnewblk->jn_frags,
5339 					    jnewblk->jn_state,
5340 					    jnewblk->jn_dep);
5341 			}
5342 		}
5343 #endif
5344 	}
5345 
5346 	CTR3(KTR_SUJ,
5347 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5348 	    newblkno, frags, oldfrags);
5349 	ACQUIRE_LOCK(ump);
5350 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5351 		panic("softdep_setup_blkmapdep: found block");
5352 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5353 	    dtog(fs, newblkno), NULL);
5354 	if (jnewblk) {
5355 		jnewblk->jn_dep = (struct worklist *)newblk;
5356 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5357 	} else {
5358 		newblk->nb_state |= ONDEPLIST;
5359 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5360 	}
5361 	newblk->nb_bmsafemap = bmsafemap;
5362 	newblk->nb_jnewblk = jnewblk;
5363 	FREE_LOCK(ump);
5364 }
5365 
5366 #define	BMSAFEMAP_HASH(ump, cg) \
5367       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5368 
5369 static int
5370 bmsafemap_find(
5371 	struct bmsafemap_hashhead *bmsafemaphd,
5372 	int cg,
5373 	struct bmsafemap **bmsafemapp)
5374 {
5375 	struct bmsafemap *bmsafemap;
5376 
5377 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5378 		if (bmsafemap->sm_cg == cg)
5379 			break;
5380 	if (bmsafemap) {
5381 		*bmsafemapp = bmsafemap;
5382 		return (1);
5383 	}
5384 	*bmsafemapp = NULL;
5385 
5386 	return (0);
5387 }
5388 
5389 /*
5390  * Find the bmsafemap associated with a cylinder group buffer.
5391  * If none exists, create one. The buffer must be locked when
5392  * this routine is called and this routine must be called with
5393  * the softdep lock held. To avoid giving up the lock while
5394  * allocating a new bmsafemap, a preallocated bmsafemap may be
5395  * provided. If it is provided but not needed, it is freed.
5396  */
5397 static struct bmsafemap *
5398 bmsafemap_lookup(struct mount *mp,
5399 	struct buf *bp,
5400 	int cg,
5401 	struct bmsafemap *newbmsafemap)
5402 {
5403 	struct bmsafemap_hashhead *bmsafemaphd;
5404 	struct bmsafemap *bmsafemap, *collision;
5405 	struct worklist *wk;
5406 	struct ufsmount *ump;
5407 
5408 	ump = VFSTOUFS(mp);
5409 	LOCK_OWNED(ump);
5410 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5411 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5412 		if (wk->wk_type == D_BMSAFEMAP) {
5413 			if (newbmsafemap)
5414 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5415 			return (WK_BMSAFEMAP(wk));
5416 		}
5417 	}
5418 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5419 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5420 		if (newbmsafemap)
5421 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5422 		return (bmsafemap);
5423 	}
5424 	if (newbmsafemap) {
5425 		bmsafemap = newbmsafemap;
5426 	} else {
5427 		FREE_LOCK(ump);
5428 		bmsafemap = malloc(sizeof(struct bmsafemap),
5429 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5430 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5431 		ACQUIRE_LOCK(ump);
5432 	}
5433 	bmsafemap->sm_buf = bp;
5434 	LIST_INIT(&bmsafemap->sm_inodedephd);
5435 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5436 	LIST_INIT(&bmsafemap->sm_newblkhd);
5437 	LIST_INIT(&bmsafemap->sm_newblkwr);
5438 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5439 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5440 	LIST_INIT(&bmsafemap->sm_freehd);
5441 	LIST_INIT(&bmsafemap->sm_freewr);
5442 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5443 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5444 		return (collision);
5445 	}
5446 	bmsafemap->sm_cg = cg;
5447 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5448 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5449 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5450 	return (bmsafemap);
5451 }
5452 
5453 /*
5454  * Direct block allocation dependencies.
5455  *
5456  * When a new block is allocated, the corresponding disk locations must be
5457  * initialized (with zeros or new data) before the on-disk inode points to
5458  * them.  Also, the freemap from which the block was allocated must be
5459  * updated (on disk) before the inode's pointer. These two dependencies are
5460  * independent of each other and are needed for all file blocks and indirect
5461  * blocks that are pointed to directly by the inode.  Just before the
5462  * "in-core" version of the inode is updated with a newly allocated block
5463  * number, a procedure (below) is called to setup allocation dependency
5464  * structures.  These structures are removed when the corresponding
5465  * dependencies are satisfied or when the block allocation becomes obsolete
5466  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5467  * fragment that gets upgraded).  All of these cases are handled in
5468  * procedures described later.
5469  *
5470  * When a file extension causes a fragment to be upgraded, either to a larger
5471  * fragment or to a full block, the on-disk location may change (if the
5472  * previous fragment could not simply be extended). In this case, the old
5473  * fragment must be de-allocated, but not until after the inode's pointer has
5474  * been updated. In most cases, this is handled by later procedures, which
5475  * will construct a "freefrag" structure to be added to the workitem queue
5476  * when the inode update is complete (or obsolete).  The main exception to
5477  * this is when an allocation occurs while a pending allocation dependency
5478  * (for the same block pointer) remains.  This case is handled in the main
5479  * allocation dependency setup procedure by immediately freeing the
5480  * unreferenced fragments.
5481  */
5482 void
5483 softdep_setup_allocdirect(
5484 	struct inode *ip,	/* inode to which block is being added */
5485 	ufs_lbn_t off,		/* block pointer within inode */
5486 	ufs2_daddr_t newblkno,	/* disk block number being added */
5487 	ufs2_daddr_t oldblkno,	/* previous block number, 0 unless frag */
5488 	long newsize,		/* size of new block */
5489 	long oldsize,		/* size of new block */
5490 	struct buf *bp)		/* bp for allocated block */
5491 {
5492 	struct allocdirect *adp, *oldadp;
5493 	struct allocdirectlst *adphead;
5494 	struct freefrag *freefrag;
5495 	struct inodedep *inodedep;
5496 	struct pagedep *pagedep;
5497 	struct jnewblk *jnewblk;
5498 	struct newblk *newblk;
5499 	struct mount *mp;
5500 	ufs_lbn_t lbn;
5501 
5502 	lbn = bp->b_lblkno;
5503 	mp = ITOVFS(ip);
5504 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5505 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5506 	if (oldblkno && oldblkno != newblkno)
5507 		/*
5508 		 * The usual case is that a smaller fragment that
5509 		 * was just allocated has been replaced with a bigger
5510 		 * fragment or a full-size block. If it is marked as
5511 		 * B_DELWRI, the current contents have not been written
5512 		 * to disk. It is possible that the block was written
5513 		 * earlier, but very uncommon. If the block has never
5514 		 * been written, there is no need to send a BIO_DELETE
5515 		 * for it when it is freed. The gain from avoiding the
5516 		 * TRIMs for the common case of unwritten blocks far
5517 		 * exceeds the cost of the write amplification for the
5518 		 * uncommon case of failing to send a TRIM for a block
5519 		 * that had been written.
5520 		 */
5521 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5522 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5523 	else
5524 		freefrag = NULL;
5525 
5526 	CTR6(KTR_SUJ,
5527 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5528 	    "off %jd newsize %ld oldsize %d",
5529 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5530 	ACQUIRE_LOCK(ITOUMP(ip));
5531 	if (off >= UFS_NDADDR) {
5532 		if (lbn > 0)
5533 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5534 			    lbn, off);
5535 		/* allocating an indirect block */
5536 		if (oldblkno != 0)
5537 			panic("softdep_setup_allocdirect: non-zero indir");
5538 	} else {
5539 		if (off != lbn)
5540 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5541 			    lbn, off);
5542 		/*
5543 		 * Allocating a direct block.
5544 		 *
5545 		 * If we are allocating a directory block, then we must
5546 		 * allocate an associated pagedep to track additions and
5547 		 * deletions.
5548 		 */
5549 		if ((ip->i_mode & IFMT) == IFDIR)
5550 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5551 			    &pagedep);
5552 	}
5553 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5554 		panic("softdep_setup_allocdirect: lost block");
5555 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5556 	    ("softdep_setup_allocdirect: newblk already initialized"));
5557 	/*
5558 	 * Convert the newblk to an allocdirect.
5559 	 */
5560 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5561 	adp = (struct allocdirect *)newblk;
5562 	newblk->nb_freefrag = freefrag;
5563 	adp->ad_offset = off;
5564 	adp->ad_oldblkno = oldblkno;
5565 	adp->ad_newsize = newsize;
5566 	adp->ad_oldsize = oldsize;
5567 
5568 	/*
5569 	 * Finish initializing the journal.
5570 	 */
5571 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5572 		jnewblk->jn_ino = ip->i_number;
5573 		jnewblk->jn_lbn = lbn;
5574 		add_to_journal(&jnewblk->jn_list);
5575 	}
5576 	if (freefrag && freefrag->ff_jdep != NULL &&
5577 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5578 		add_to_journal(freefrag->ff_jdep);
5579 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5580 	adp->ad_inodedep = inodedep;
5581 
5582 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5583 	/*
5584 	 * The list of allocdirects must be kept in sorted and ascending
5585 	 * order so that the rollback routines can quickly determine the
5586 	 * first uncommitted block (the size of the file stored on disk
5587 	 * ends at the end of the lowest committed fragment, or if there
5588 	 * are no fragments, at the end of the highest committed block).
5589 	 * Since files generally grow, the typical case is that the new
5590 	 * block is to be added at the end of the list. We speed this
5591 	 * special case by checking against the last allocdirect in the
5592 	 * list before laboriously traversing the list looking for the
5593 	 * insertion point.
5594 	 */
5595 	adphead = &inodedep->id_newinoupdt;
5596 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5597 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5598 		/* insert at end of list */
5599 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5600 		if (oldadp != NULL && oldadp->ad_offset == off)
5601 			allocdirect_merge(adphead, adp, oldadp);
5602 		FREE_LOCK(ITOUMP(ip));
5603 		return;
5604 	}
5605 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5606 		if (oldadp->ad_offset >= off)
5607 			break;
5608 	}
5609 	if (oldadp == NULL)
5610 		panic("softdep_setup_allocdirect: lost entry");
5611 	/* insert in middle of list */
5612 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5613 	if (oldadp->ad_offset == off)
5614 		allocdirect_merge(adphead, adp, oldadp);
5615 
5616 	FREE_LOCK(ITOUMP(ip));
5617 }
5618 
5619 /*
5620  * Merge a newer and older journal record to be stored either in a
5621  * newblock or freefrag.  This handles aggregating journal records for
5622  * fragment allocation into a second record as well as replacing a
5623  * journal free with an aborted journal allocation.  A segment for the
5624  * oldest record will be placed on wkhd if it has been written.  If not
5625  * the segment for the newer record will suffice.
5626  */
5627 static struct worklist *
5628 jnewblk_merge(struct worklist *new,
5629 	struct worklist *old,
5630 	struct workhead *wkhd)
5631 {
5632 	struct jnewblk *njnewblk;
5633 	struct jnewblk *jnewblk;
5634 
5635 	/* Handle NULLs to simplify callers. */
5636 	if (new == NULL)
5637 		return (old);
5638 	if (old == NULL)
5639 		return (new);
5640 	/* Replace a jfreefrag with a jnewblk. */
5641 	if (new->wk_type == D_JFREEFRAG) {
5642 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5643 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5644 			    old, new);
5645 		cancel_jfreefrag(WK_JFREEFRAG(new));
5646 		return (old);
5647 	}
5648 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5649 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5650 		    old->wk_type, new->wk_type);
5651 	/*
5652 	 * Handle merging of two jnewblk records that describe
5653 	 * different sets of fragments in the same block.
5654 	 */
5655 	jnewblk = WK_JNEWBLK(old);
5656 	njnewblk = WK_JNEWBLK(new);
5657 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5658 		panic("jnewblk_merge: Merging disparate blocks.");
5659 	/*
5660 	 * The record may be rolled back in the cg.
5661 	 */
5662 	if (jnewblk->jn_state & UNDONE) {
5663 		jnewblk->jn_state &= ~UNDONE;
5664 		njnewblk->jn_state |= UNDONE;
5665 		njnewblk->jn_state &= ~ATTACHED;
5666 	}
5667 	/*
5668 	 * We modify the newer addref and free the older so that if neither
5669 	 * has been written the most up-to-date copy will be on disk.  If
5670 	 * both have been written but rolled back we only temporarily need
5671 	 * one of them to fix the bits when the cg write completes.
5672 	 */
5673 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5674 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5675 	cancel_jnewblk(jnewblk, wkhd);
5676 	WORKLIST_REMOVE(&jnewblk->jn_list);
5677 	free_jnewblk(jnewblk);
5678 	return (new);
5679 }
5680 
5681 /*
5682  * Replace an old allocdirect dependency with a newer one.
5683  */
5684 static void
5685 allocdirect_merge(
5686 	struct allocdirectlst *adphead,	/* head of list holding allocdirects */
5687 	struct allocdirect *newadp,	/* allocdirect being added */
5688 	struct allocdirect *oldadp)	/* existing allocdirect being checked */
5689 {
5690 	struct worklist *wk;
5691 	struct freefrag *freefrag;
5692 
5693 	freefrag = NULL;
5694 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5695 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5696 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5697 	    newadp->ad_offset >= UFS_NDADDR)
5698 		panic("%s %jd != new %jd || old size %ld != new %ld",
5699 		    "allocdirect_merge: old blkno",
5700 		    (intmax_t)newadp->ad_oldblkno,
5701 		    (intmax_t)oldadp->ad_newblkno,
5702 		    newadp->ad_oldsize, oldadp->ad_newsize);
5703 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5704 	newadp->ad_oldsize = oldadp->ad_oldsize;
5705 	/*
5706 	 * If the old dependency had a fragment to free or had never
5707 	 * previously had a block allocated, then the new dependency
5708 	 * can immediately post its freefrag and adopt the old freefrag.
5709 	 * This action is done by swapping the freefrag dependencies.
5710 	 * The new dependency gains the old one's freefrag, and the
5711 	 * old one gets the new one and then immediately puts it on
5712 	 * the worklist when it is freed by free_newblk. It is
5713 	 * not possible to do this swap when the old dependency had a
5714 	 * non-zero size but no previous fragment to free. This condition
5715 	 * arises when the new block is an extension of the old block.
5716 	 * Here, the first part of the fragment allocated to the new
5717 	 * dependency is part of the block currently claimed on disk by
5718 	 * the old dependency, so cannot legitimately be freed until the
5719 	 * conditions for the new dependency are fulfilled.
5720 	 */
5721 	freefrag = newadp->ad_freefrag;
5722 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5723 		newadp->ad_freefrag = oldadp->ad_freefrag;
5724 		oldadp->ad_freefrag = freefrag;
5725 	}
5726 	/*
5727 	 * If we are tracking a new directory-block allocation,
5728 	 * move it from the old allocdirect to the new allocdirect.
5729 	 */
5730 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5731 		WORKLIST_REMOVE(wk);
5732 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5733 			panic("allocdirect_merge: extra newdirblk");
5734 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5735 	}
5736 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5737 	/*
5738 	 * We need to move any journal dependencies over to the freefrag
5739 	 * that releases this block if it exists.  Otherwise we are
5740 	 * extending an existing block and we'll wait until that is
5741 	 * complete to release the journal space and extend the
5742 	 * new journal to cover this old space as well.
5743 	 */
5744 	if (freefrag == NULL) {
5745 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5746 			panic("allocdirect_merge: %jd != %jd",
5747 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5748 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5749 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5750 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5751 		    &newadp->ad_block.nb_jwork);
5752 		oldadp->ad_block.nb_jnewblk = NULL;
5753 		cancel_newblk(&oldadp->ad_block, NULL,
5754 		    &newadp->ad_block.nb_jwork);
5755 	} else {
5756 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5757 		    &freefrag->ff_list, &freefrag->ff_jwork);
5758 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5759 		    &freefrag->ff_jwork);
5760 	}
5761 	free_newblk(&oldadp->ad_block);
5762 }
5763 
5764 /*
5765  * Allocate a jfreefrag structure to journal a single block free.
5766  */
5767 static struct jfreefrag *
5768 newjfreefrag(struct freefrag *freefrag,
5769 	struct inode *ip,
5770 	ufs2_daddr_t blkno,
5771 	long size,
5772 	ufs_lbn_t lbn)
5773 {
5774 	struct jfreefrag *jfreefrag;
5775 	struct fs *fs;
5776 
5777 	fs = ITOFS(ip);
5778 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5779 	    M_SOFTDEP_FLAGS);
5780 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5781 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5782 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5783 	jfreefrag->fr_ino = ip->i_number;
5784 	jfreefrag->fr_lbn = lbn;
5785 	jfreefrag->fr_blkno = blkno;
5786 	jfreefrag->fr_frags = numfrags(fs, size);
5787 	jfreefrag->fr_freefrag = freefrag;
5788 
5789 	return (jfreefrag);
5790 }
5791 
5792 /*
5793  * Allocate a new freefrag structure.
5794  */
5795 static struct freefrag *
5796 newfreefrag(struct inode *ip,
5797 	ufs2_daddr_t blkno,
5798 	long size,
5799 	ufs_lbn_t lbn,
5800 	uint64_t key)
5801 {
5802 	struct freefrag *freefrag;
5803 	struct ufsmount *ump;
5804 	struct fs *fs;
5805 
5806 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5807 	    ip->i_number, blkno, size, lbn);
5808 	ump = ITOUMP(ip);
5809 	fs = ump->um_fs;
5810 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5811 		panic("newfreefrag: frag size");
5812 	freefrag = malloc(sizeof(struct freefrag),
5813 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5814 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5815 	freefrag->ff_state = ATTACHED;
5816 	LIST_INIT(&freefrag->ff_jwork);
5817 	freefrag->ff_inum = ip->i_number;
5818 	freefrag->ff_vtype = ITOV(ip)->v_type;
5819 	freefrag->ff_blkno = blkno;
5820 	freefrag->ff_fragsize = size;
5821 	freefrag->ff_key = key;
5822 
5823 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5824 		freefrag->ff_jdep = (struct worklist *)
5825 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5826 	} else {
5827 		freefrag->ff_state |= DEPCOMPLETE;
5828 		freefrag->ff_jdep = NULL;
5829 	}
5830 
5831 	return (freefrag);
5832 }
5833 
5834 /*
5835  * This workitem de-allocates fragments that were replaced during
5836  * file block allocation.
5837  */
5838 static void
5839 handle_workitem_freefrag(struct freefrag *freefrag)
5840 {
5841 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5842 	struct workhead wkhd;
5843 
5844 	CTR3(KTR_SUJ,
5845 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5846 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5847 	/*
5848 	 * It would be illegal to add new completion items to the
5849 	 * freefrag after it was schedule to be done so it must be
5850 	 * safe to modify the list head here.
5851 	 */
5852 	LIST_INIT(&wkhd);
5853 	ACQUIRE_LOCK(ump);
5854 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5855 	/*
5856 	 * If the journal has not been written we must cancel it here.
5857 	 */
5858 	if (freefrag->ff_jdep) {
5859 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5860 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5861 			    freefrag->ff_jdep->wk_type);
5862 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5863 	}
5864 	FREE_LOCK(ump);
5865 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5866 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5867 	   &wkhd, freefrag->ff_key);
5868 	ACQUIRE_LOCK(ump);
5869 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5870 	FREE_LOCK(ump);
5871 }
5872 
5873 /*
5874  * Set up a dependency structure for an external attributes data block.
5875  * This routine follows much of the structure of softdep_setup_allocdirect.
5876  * See the description of softdep_setup_allocdirect above for details.
5877  */
5878 void
5879 softdep_setup_allocext(
5880 	struct inode *ip,
5881 	ufs_lbn_t off,
5882 	ufs2_daddr_t newblkno,
5883 	ufs2_daddr_t oldblkno,
5884 	long newsize,
5885 	long oldsize,
5886 	struct buf *bp)
5887 {
5888 	struct allocdirect *adp, *oldadp;
5889 	struct allocdirectlst *adphead;
5890 	struct freefrag *freefrag;
5891 	struct inodedep *inodedep;
5892 	struct jnewblk *jnewblk;
5893 	struct newblk *newblk;
5894 	struct mount *mp;
5895 	struct ufsmount *ump;
5896 	ufs_lbn_t lbn;
5897 
5898 	mp = ITOVFS(ip);
5899 	ump = VFSTOUFS(mp);
5900 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5901 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5902 	KASSERT(off < UFS_NXADDR,
5903 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5904 
5905 	lbn = bp->b_lblkno;
5906 	if (oldblkno && oldblkno != newblkno)
5907 		/*
5908 		 * The usual case is that a smaller fragment that
5909 		 * was just allocated has been replaced with a bigger
5910 		 * fragment or a full-size block. If it is marked as
5911 		 * B_DELWRI, the current contents have not been written
5912 		 * to disk. It is possible that the block was written
5913 		 * earlier, but very uncommon. If the block has never
5914 		 * been written, there is no need to send a BIO_DELETE
5915 		 * for it when it is freed. The gain from avoiding the
5916 		 * TRIMs for the common case of unwritten blocks far
5917 		 * exceeds the cost of the write amplification for the
5918 		 * uncommon case of failing to send a TRIM for a block
5919 		 * that had been written.
5920 		 */
5921 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5922 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5923 	else
5924 		freefrag = NULL;
5925 
5926 	ACQUIRE_LOCK(ump);
5927 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5928 		panic("softdep_setup_allocext: lost block");
5929 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5930 	    ("softdep_setup_allocext: newblk already initialized"));
5931 	/*
5932 	 * Convert the newblk to an allocdirect.
5933 	 */
5934 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5935 	adp = (struct allocdirect *)newblk;
5936 	newblk->nb_freefrag = freefrag;
5937 	adp->ad_offset = off;
5938 	adp->ad_oldblkno = oldblkno;
5939 	adp->ad_newsize = newsize;
5940 	adp->ad_oldsize = oldsize;
5941 	adp->ad_state |=  EXTDATA;
5942 
5943 	/*
5944 	 * Finish initializing the journal.
5945 	 */
5946 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5947 		jnewblk->jn_ino = ip->i_number;
5948 		jnewblk->jn_lbn = lbn;
5949 		add_to_journal(&jnewblk->jn_list);
5950 	}
5951 	if (freefrag && freefrag->ff_jdep != NULL &&
5952 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5953 		add_to_journal(freefrag->ff_jdep);
5954 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5955 	adp->ad_inodedep = inodedep;
5956 
5957 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5958 	/*
5959 	 * The list of allocdirects must be kept in sorted and ascending
5960 	 * order so that the rollback routines can quickly determine the
5961 	 * first uncommitted block (the size of the file stored on disk
5962 	 * ends at the end of the lowest committed fragment, or if there
5963 	 * are no fragments, at the end of the highest committed block).
5964 	 * Since files generally grow, the typical case is that the new
5965 	 * block is to be added at the end of the list. We speed this
5966 	 * special case by checking against the last allocdirect in the
5967 	 * list before laboriously traversing the list looking for the
5968 	 * insertion point.
5969 	 */
5970 	adphead = &inodedep->id_newextupdt;
5971 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5972 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5973 		/* insert at end of list */
5974 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5975 		if (oldadp != NULL && oldadp->ad_offset == off)
5976 			allocdirect_merge(adphead, adp, oldadp);
5977 		FREE_LOCK(ump);
5978 		return;
5979 	}
5980 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5981 		if (oldadp->ad_offset >= off)
5982 			break;
5983 	}
5984 	if (oldadp == NULL)
5985 		panic("softdep_setup_allocext: lost entry");
5986 	/* insert in middle of list */
5987 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5988 	if (oldadp->ad_offset == off)
5989 		allocdirect_merge(adphead, adp, oldadp);
5990 	FREE_LOCK(ump);
5991 }
5992 
5993 /*
5994  * Indirect block allocation dependencies.
5995  *
5996  * The same dependencies that exist for a direct block also exist when
5997  * a new block is allocated and pointed to by an entry in a block of
5998  * indirect pointers. The undo/redo states described above are also
5999  * used here. Because an indirect block contains many pointers that
6000  * may have dependencies, a second copy of the entire in-memory indirect
6001  * block is kept. The buffer cache copy is always completely up-to-date.
6002  * The second copy, which is used only as a source for disk writes,
6003  * contains only the safe pointers (i.e., those that have no remaining
6004  * update dependencies). The second copy is freed when all pointers
6005  * are safe. The cache is not allowed to replace indirect blocks with
6006  * pending update dependencies. If a buffer containing an indirect
6007  * block with dependencies is written, these routines will mark it
6008  * dirty again. It can only be successfully written once all the
6009  * dependencies are removed. The ffs_fsync routine in conjunction with
6010  * softdep_sync_metadata work together to get all the dependencies
6011  * removed so that a file can be successfully written to disk. Three
6012  * procedures are used when setting up indirect block pointer
6013  * dependencies. The division is necessary because of the organization
6014  * of the "balloc" routine and because of the distinction between file
6015  * pages and file metadata blocks.
6016  */
6017 
6018 /*
6019  * Allocate a new allocindir structure.
6020  */
6021 static struct allocindir *
6022 newallocindir(
6023 	struct inode *ip,	/* inode for file being extended */
6024 	int ptrno,		/* offset of pointer in indirect block */
6025 	ufs2_daddr_t newblkno,	/* disk block number being added */
6026 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6027 	ufs_lbn_t lbn)
6028 {
6029 	struct newblk *newblk;
6030 	struct allocindir *aip;
6031 	struct freefrag *freefrag;
6032 	struct jnewblk *jnewblk;
6033 
6034 	if (oldblkno)
6035 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6036 		    SINGLETON_KEY);
6037 	else
6038 		freefrag = NULL;
6039 	ACQUIRE_LOCK(ITOUMP(ip));
6040 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6041 		panic("new_allocindir: lost block");
6042 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6043 	    ("newallocindir: newblk already initialized"));
6044 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6045 	newblk->nb_freefrag = freefrag;
6046 	aip = (struct allocindir *)newblk;
6047 	aip->ai_offset = ptrno;
6048 	aip->ai_oldblkno = oldblkno;
6049 	aip->ai_lbn = lbn;
6050 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6051 		jnewblk->jn_ino = ip->i_number;
6052 		jnewblk->jn_lbn = lbn;
6053 		add_to_journal(&jnewblk->jn_list);
6054 	}
6055 	if (freefrag && freefrag->ff_jdep != NULL &&
6056 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6057 		add_to_journal(freefrag->ff_jdep);
6058 	return (aip);
6059 }
6060 
6061 /*
6062  * Called just before setting an indirect block pointer
6063  * to a newly allocated file page.
6064  */
6065 void
6066 softdep_setup_allocindir_page(
6067 	struct inode *ip,	/* inode for file being extended */
6068 	ufs_lbn_t lbn,		/* allocated block number within file */
6069 	struct buf *bp,		/* buffer with indirect blk referencing page */
6070 	int ptrno,		/* offset of pointer in indirect block */
6071 	ufs2_daddr_t newblkno,	/* disk block number being added */
6072 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6073 	struct buf *nbp)	/* buffer holding allocated page */
6074 {
6075 	struct inodedep *inodedep;
6076 	struct freefrag *freefrag;
6077 	struct allocindir *aip;
6078 	struct pagedep *pagedep;
6079 	struct mount *mp;
6080 	struct ufsmount *ump;
6081 
6082 	mp = ITOVFS(ip);
6083 	ump = VFSTOUFS(mp);
6084 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6085 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
6086 	KASSERT(lbn == nbp->b_lblkno,
6087 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6088 	    lbn, bp->b_lblkno));
6089 	CTR4(KTR_SUJ,
6090 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6091 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6092 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6093 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6094 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6095 	/*
6096 	 * If we are allocating a directory page, then we must
6097 	 * allocate an associated pagedep to track additions and
6098 	 * deletions.
6099 	 */
6100 	if ((ip->i_mode & IFMT) == IFDIR)
6101 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6102 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6103 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6104 	FREE_LOCK(ump);
6105 	if (freefrag)
6106 		handle_workitem_freefrag(freefrag);
6107 }
6108 
6109 /*
6110  * Called just before setting an indirect block pointer to a
6111  * newly allocated indirect block.
6112  */
6113 void
6114 softdep_setup_allocindir_meta(
6115 	struct buf *nbp,	/* newly allocated indirect block */
6116 	struct inode *ip,	/* inode for file being extended */
6117 	struct buf *bp,		/* indirect block referencing allocated block */
6118 	int ptrno,		/* offset of pointer in indirect block */
6119 	ufs2_daddr_t newblkno)	/* disk block number being added */
6120 {
6121 	struct inodedep *inodedep;
6122 	struct allocindir *aip;
6123 	struct ufsmount *ump;
6124 	ufs_lbn_t lbn;
6125 
6126 	ump = ITOUMP(ip);
6127 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6128 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6129 	CTR3(KTR_SUJ,
6130 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6131 	    ip->i_number, newblkno, ptrno);
6132 	lbn = nbp->b_lblkno;
6133 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6134 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6135 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6136 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6137 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6138 		panic("softdep_setup_allocindir_meta: Block already existed");
6139 	FREE_LOCK(ump);
6140 }
6141 
6142 static void
6143 indirdep_complete(struct indirdep *indirdep)
6144 {
6145 	struct allocindir *aip;
6146 
6147 	LIST_REMOVE(indirdep, ir_next);
6148 	indirdep->ir_state |= DEPCOMPLETE;
6149 
6150 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6151 		LIST_REMOVE(aip, ai_next);
6152 		free_newblk(&aip->ai_block);
6153 	}
6154 	/*
6155 	 * If this indirdep is not attached to a buf it was simply waiting
6156 	 * on completion to clear completehd.  free_indirdep() asserts
6157 	 * that nothing is dangling.
6158 	 */
6159 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6160 		free_indirdep(indirdep);
6161 }
6162 
6163 static struct indirdep *
6164 indirdep_lookup(struct mount *mp,
6165 	struct inode *ip,
6166 	struct buf *bp)
6167 {
6168 	struct indirdep *indirdep, *newindirdep;
6169 	struct newblk *newblk;
6170 	struct ufsmount *ump;
6171 	struct worklist *wk;
6172 	struct fs *fs;
6173 	ufs2_daddr_t blkno;
6174 
6175 	ump = VFSTOUFS(mp);
6176 	LOCK_OWNED(ump);
6177 	indirdep = NULL;
6178 	newindirdep = NULL;
6179 	fs = ump->um_fs;
6180 	for (;;) {
6181 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6182 			if (wk->wk_type != D_INDIRDEP)
6183 				continue;
6184 			indirdep = WK_INDIRDEP(wk);
6185 			break;
6186 		}
6187 		/* Found on the buffer worklist, no new structure to free. */
6188 		if (indirdep != NULL && newindirdep == NULL)
6189 			return (indirdep);
6190 		if (indirdep != NULL && newindirdep != NULL)
6191 			panic("indirdep_lookup: simultaneous create");
6192 		/* None found on the buffer and a new structure is ready. */
6193 		if (indirdep == NULL && newindirdep != NULL)
6194 			break;
6195 		/* None found and no new structure available. */
6196 		FREE_LOCK(ump);
6197 		newindirdep = malloc(sizeof(struct indirdep),
6198 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6199 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6200 		newindirdep->ir_state = ATTACHED;
6201 		if (I_IS_UFS1(ip))
6202 			newindirdep->ir_state |= UFS1FMT;
6203 		TAILQ_INIT(&newindirdep->ir_trunc);
6204 		newindirdep->ir_saveddata = NULL;
6205 		LIST_INIT(&newindirdep->ir_deplisthd);
6206 		LIST_INIT(&newindirdep->ir_donehd);
6207 		LIST_INIT(&newindirdep->ir_writehd);
6208 		LIST_INIT(&newindirdep->ir_completehd);
6209 		if (bp->b_blkno == bp->b_lblkno) {
6210 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6211 			    NULL, NULL);
6212 			bp->b_blkno = blkno;
6213 		}
6214 		newindirdep->ir_freeblks = NULL;
6215 		newindirdep->ir_savebp =
6216 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6217 		newindirdep->ir_bp = bp;
6218 		BUF_KERNPROC(newindirdep->ir_savebp);
6219 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6220 		ACQUIRE_LOCK(ump);
6221 	}
6222 	indirdep = newindirdep;
6223 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6224 	/*
6225 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6226 	 * that we don't free dependencies until the pointers are valid.
6227 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6228 	 * than using the hash.
6229 	 */
6230 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6231 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6232 	else
6233 		indirdep->ir_state |= DEPCOMPLETE;
6234 	return (indirdep);
6235 }
6236 
6237 /*
6238  * Called to finish the allocation of the "aip" allocated
6239  * by one of the two routines above.
6240  */
6241 static struct freefrag *
6242 setup_allocindir_phase2(
6243 	struct buf *bp,		/* in-memory copy of the indirect block */
6244 	struct inode *ip,	/* inode for file being extended */
6245 	struct inodedep *inodedep, /* Inodedep for ip */
6246 	struct allocindir *aip,	/* allocindir allocated by the above routines */
6247 	ufs_lbn_t lbn)		/* Logical block number for this block. */
6248 {
6249 	struct fs *fs __diagused;
6250 	struct indirdep *indirdep;
6251 	struct allocindir *oldaip;
6252 	struct freefrag *freefrag;
6253 	struct mount *mp;
6254 	struct ufsmount *ump;
6255 
6256 	mp = ITOVFS(ip);
6257 	ump = VFSTOUFS(mp);
6258 	LOCK_OWNED(ump);
6259 	fs = ump->um_fs;
6260 	if (bp->b_lblkno >= 0)
6261 		panic("setup_allocindir_phase2: not indir blk");
6262 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6263 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6264 	indirdep = indirdep_lookup(mp, ip, bp);
6265 	KASSERT(indirdep->ir_savebp != NULL,
6266 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6267 	aip->ai_indirdep = indirdep;
6268 	/*
6269 	 * Check for an unwritten dependency for this indirect offset.  If
6270 	 * there is, merge the old dependency into the new one.  This happens
6271 	 * as a result of reallocblk only.
6272 	 */
6273 	freefrag = NULL;
6274 	if (aip->ai_oldblkno != 0) {
6275 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6276 			if (oldaip->ai_offset == aip->ai_offset) {
6277 				freefrag = allocindir_merge(aip, oldaip);
6278 				goto done;
6279 			}
6280 		}
6281 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6282 			if (oldaip->ai_offset == aip->ai_offset) {
6283 				freefrag = allocindir_merge(aip, oldaip);
6284 				goto done;
6285 			}
6286 		}
6287 	}
6288 done:
6289 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6290 	return (freefrag);
6291 }
6292 
6293 /*
6294  * Merge two allocindirs which refer to the same block.  Move newblock
6295  * dependencies and setup the freefrags appropriately.
6296  */
6297 static struct freefrag *
6298 allocindir_merge(
6299 	struct allocindir *aip,
6300 	struct allocindir *oldaip)
6301 {
6302 	struct freefrag *freefrag;
6303 	struct worklist *wk;
6304 
6305 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6306 		panic("allocindir_merge: blkno");
6307 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6308 	freefrag = aip->ai_freefrag;
6309 	aip->ai_freefrag = oldaip->ai_freefrag;
6310 	oldaip->ai_freefrag = NULL;
6311 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6312 	/*
6313 	 * If we are tracking a new directory-block allocation,
6314 	 * move it from the old allocindir to the new allocindir.
6315 	 */
6316 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6317 		WORKLIST_REMOVE(wk);
6318 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6319 			panic("allocindir_merge: extra newdirblk");
6320 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6321 	}
6322 	/*
6323 	 * We can skip journaling for this freefrag and just complete
6324 	 * any pending journal work for the allocindir that is being
6325 	 * removed after the freefrag completes.
6326 	 */
6327 	if (freefrag->ff_jdep)
6328 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6329 	LIST_REMOVE(oldaip, ai_next);
6330 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6331 	    &freefrag->ff_list, &freefrag->ff_jwork);
6332 	free_newblk(&oldaip->ai_block);
6333 
6334 	return (freefrag);
6335 }
6336 
6337 static inline void
6338 setup_freedirect(
6339 	struct freeblks *freeblks,
6340 	struct inode *ip,
6341 	int i,
6342 	int needj)
6343 {
6344 	struct ufsmount *ump;
6345 	ufs2_daddr_t blkno;
6346 	int frags;
6347 
6348 	blkno = DIP(ip, i_db[i]);
6349 	if (blkno == 0)
6350 		return;
6351 	DIP_SET(ip, i_db[i], 0);
6352 	ump = ITOUMP(ip);
6353 	frags = sblksize(ump->um_fs, ip->i_size, i);
6354 	frags = numfrags(ump->um_fs, frags);
6355 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6356 }
6357 
6358 static inline void
6359 setup_freeext(
6360 	struct freeblks *freeblks,
6361 	struct inode *ip,
6362 	int i,
6363 	int needj)
6364 {
6365 	struct ufsmount *ump;
6366 	ufs2_daddr_t blkno;
6367 	int frags;
6368 
6369 	blkno = ip->i_din2->di_extb[i];
6370 	if (blkno == 0)
6371 		return;
6372 	ip->i_din2->di_extb[i] = 0;
6373 	ump = ITOUMP(ip);
6374 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6375 	frags = numfrags(ump->um_fs, frags);
6376 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6377 }
6378 
6379 static inline void
6380 setup_freeindir(
6381 	struct freeblks *freeblks,
6382 	struct inode *ip,
6383 	int i,
6384 	ufs_lbn_t lbn,
6385 	int needj)
6386 {
6387 	struct ufsmount *ump;
6388 	ufs2_daddr_t blkno;
6389 
6390 	blkno = DIP(ip, i_ib[i]);
6391 	if (blkno == 0)
6392 		return;
6393 	DIP_SET(ip, i_ib[i], 0);
6394 	ump = ITOUMP(ip);
6395 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6396 	    0, needj);
6397 }
6398 
6399 static inline struct freeblks *
6400 newfreeblks(struct mount *mp, struct inode *ip)
6401 {
6402 	struct freeblks *freeblks;
6403 
6404 	freeblks = malloc(sizeof(struct freeblks),
6405 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6406 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6407 	LIST_INIT(&freeblks->fb_jblkdephd);
6408 	LIST_INIT(&freeblks->fb_jwork);
6409 	freeblks->fb_ref = 0;
6410 	freeblks->fb_cgwait = 0;
6411 	freeblks->fb_state = ATTACHED;
6412 	freeblks->fb_uid = ip->i_uid;
6413 	freeblks->fb_inum = ip->i_number;
6414 	freeblks->fb_vtype = ITOV(ip)->v_type;
6415 	freeblks->fb_modrev = DIP(ip, i_modrev);
6416 	freeblks->fb_devvp = ITODEVVP(ip);
6417 	freeblks->fb_chkcnt = 0;
6418 	freeblks->fb_len = 0;
6419 
6420 	return (freeblks);
6421 }
6422 
6423 static void
6424 trunc_indirdep(
6425 	struct indirdep *indirdep,
6426 	struct freeblks *freeblks,
6427 	struct buf *bp,
6428 	int off)
6429 {
6430 	struct allocindir *aip, *aipn;
6431 
6432 	/*
6433 	 * The first set of allocindirs won't be in savedbp.
6434 	 */
6435 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6436 		if (aip->ai_offset > off)
6437 			cancel_allocindir(aip, bp, freeblks, 1);
6438 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6439 		if (aip->ai_offset > off)
6440 			cancel_allocindir(aip, bp, freeblks, 1);
6441 	/*
6442 	 * These will exist in savedbp.
6443 	 */
6444 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6445 		if (aip->ai_offset > off)
6446 			cancel_allocindir(aip, NULL, freeblks, 0);
6447 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6448 		if (aip->ai_offset > off)
6449 			cancel_allocindir(aip, NULL, freeblks, 0);
6450 }
6451 
6452 /*
6453  * Follow the chain of indirects down to lastlbn creating a freework
6454  * structure for each.  This will be used to start indir_trunc() at
6455  * the right offset and create the journal records for the parrtial
6456  * truncation.  A second step will handle the truncated dependencies.
6457  */
6458 static int
6459 setup_trunc_indir(
6460 	struct freeblks *freeblks,
6461 	struct inode *ip,
6462 	ufs_lbn_t lbn,
6463 	ufs_lbn_t lastlbn,
6464 	ufs2_daddr_t blkno)
6465 {
6466 	struct indirdep *indirdep;
6467 	struct indirdep *indirn;
6468 	struct freework *freework;
6469 	struct newblk *newblk;
6470 	struct mount *mp;
6471 	struct ufsmount *ump;
6472 	struct buf *bp;
6473 	uint8_t *start;
6474 	uint8_t *end;
6475 	ufs_lbn_t lbnadd;
6476 	int level;
6477 	int error;
6478 	int off;
6479 
6480 	freework = NULL;
6481 	if (blkno == 0)
6482 		return (0);
6483 	mp = freeblks->fb_list.wk_mp;
6484 	ump = VFSTOUFS(mp);
6485 	/*
6486 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6487 	 * the on-disk address, so we just pass it to bread() instead of
6488 	 * having bread() attempt to calculate it using VOP_BMAP().
6489 	 */
6490 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6491 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6492 	if (error)
6493 		return (error);
6494 	level = lbn_level(lbn);
6495 	lbnadd = lbn_offset(ump->um_fs, level);
6496 	/*
6497 	 * Compute the offset of the last block we want to keep.  Store
6498 	 * in the freework the first block we want to completely free.
6499 	 */
6500 	off = (lastlbn - -(lbn + level)) / lbnadd;
6501 	if (off + 1 == NINDIR(ump->um_fs))
6502 		goto nowork;
6503 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6504 	/*
6505 	 * Link the freework into the indirdep.  This will prevent any new
6506 	 * allocations from proceeding until we are finished with the
6507 	 * truncate and the block is written.
6508 	 */
6509 	ACQUIRE_LOCK(ump);
6510 	indirdep = indirdep_lookup(mp, ip, bp);
6511 	if (indirdep->ir_freeblks)
6512 		panic("setup_trunc_indir: indirdep already truncated.");
6513 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6514 	freework->fw_indir = indirdep;
6515 	/*
6516 	 * Cancel any allocindirs that will not make it to disk.
6517 	 * We have to do this for all copies of the indirdep that
6518 	 * live on this newblk.
6519 	 */
6520 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6521 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6522 		    &newblk) == 0)
6523 			panic("setup_trunc_indir: lost block");
6524 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6525 			trunc_indirdep(indirn, freeblks, bp, off);
6526 	} else
6527 		trunc_indirdep(indirdep, freeblks, bp, off);
6528 	FREE_LOCK(ump);
6529 	/*
6530 	 * Creation is protected by the buf lock. The saveddata is only
6531 	 * needed if a full truncation follows a partial truncation but it
6532 	 * is difficult to allocate in that case so we fetch it anyway.
6533 	 */
6534 	if (indirdep->ir_saveddata == NULL)
6535 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6536 		    M_SOFTDEP_FLAGS);
6537 nowork:
6538 	/* Fetch the blkno of the child and the zero start offset. */
6539 	if (I_IS_UFS1(ip)) {
6540 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6541 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6542 	} else {
6543 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6544 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6545 	}
6546 	if (freework) {
6547 		/* Zero the truncated pointers. */
6548 		end = bp->b_data + bp->b_bcount;
6549 		bzero(start, end - start);
6550 		bdwrite(bp);
6551 	} else
6552 		bqrelse(bp);
6553 	if (level == 0)
6554 		return (0);
6555 	lbn++; /* adjust level */
6556 	lbn -= (off * lbnadd);
6557 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6558 }
6559 
6560 /*
6561  * Complete the partial truncation of an indirect block setup by
6562  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6563  * copy and writes them to disk before the freeblks is allowed to complete.
6564  */
6565 static void
6566 complete_trunc_indir(struct freework *freework)
6567 {
6568 	struct freework *fwn;
6569 	struct indirdep *indirdep;
6570 	struct ufsmount *ump;
6571 	struct buf *bp;
6572 	uintptr_t start;
6573 	int count;
6574 
6575 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6576 	LOCK_OWNED(ump);
6577 	indirdep = freework->fw_indir;
6578 	for (;;) {
6579 		bp = indirdep->ir_bp;
6580 		/* See if the block was discarded. */
6581 		if (bp == NULL)
6582 			break;
6583 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6584 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6585 			break;
6586 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6587 		    LOCK_PTR(ump)) == 0)
6588 			BUF_UNLOCK(bp);
6589 		ACQUIRE_LOCK(ump);
6590 	}
6591 	freework->fw_state |= DEPCOMPLETE;
6592 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6593 	/*
6594 	 * Zero the pointers in the saved copy.
6595 	 */
6596 	if (indirdep->ir_state & UFS1FMT)
6597 		start = sizeof(ufs1_daddr_t);
6598 	else
6599 		start = sizeof(ufs2_daddr_t);
6600 	start *= freework->fw_start;
6601 	count = indirdep->ir_savebp->b_bcount - start;
6602 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6603 	bzero((char *)start, count);
6604 	/*
6605 	 * We need to start the next truncation in the list if it has not
6606 	 * been started yet.
6607 	 */
6608 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6609 	if (fwn != NULL) {
6610 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6611 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6612 		if ((fwn->fw_state & ONWORKLIST) == 0)
6613 			freework_enqueue(fwn);
6614 	}
6615 	/*
6616 	 * If bp is NULL the block was fully truncated, restore
6617 	 * the saved block list otherwise free it if it is no
6618 	 * longer needed.
6619 	 */
6620 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6621 		if (bp == NULL)
6622 			bcopy(indirdep->ir_saveddata,
6623 			    indirdep->ir_savebp->b_data,
6624 			    indirdep->ir_savebp->b_bcount);
6625 		free(indirdep->ir_saveddata, M_INDIRDEP);
6626 		indirdep->ir_saveddata = NULL;
6627 	}
6628 	/*
6629 	 * When bp is NULL there is a full truncation pending.  We
6630 	 * must wait for this full truncation to be journaled before
6631 	 * we can release this freework because the disk pointers will
6632 	 * never be written as zero.
6633 	 */
6634 	if (bp == NULL)  {
6635 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6636 			handle_written_freework(freework);
6637 		else
6638 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6639 			   &freework->fw_list);
6640 		if (fwn == NULL) {
6641 			freework->fw_indir = (void *)0x0000deadbeef0000;
6642 			bp = indirdep->ir_savebp;
6643 			indirdep->ir_savebp = NULL;
6644 			free_indirdep(indirdep);
6645 			FREE_LOCK(ump);
6646 			brelse(bp);
6647 			ACQUIRE_LOCK(ump);
6648 		}
6649 	} else {
6650 		/* Complete when the real copy is written. */
6651 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6652 		BUF_UNLOCK(bp);
6653 	}
6654 }
6655 
6656 /*
6657  * Calculate the number of blocks we are going to release where datablocks
6658  * is the current total and length is the new file size.
6659  */
6660 static ufs2_daddr_t
6661 blkcount(struct fs *fs,
6662 	ufs2_daddr_t datablocks,
6663 	off_t length)
6664 {
6665 	off_t totblks, numblks;
6666 
6667 	totblks = 0;
6668 	numblks = howmany(length, fs->fs_bsize);
6669 	if (numblks <= UFS_NDADDR) {
6670 		totblks = howmany(length, fs->fs_fsize);
6671 		goto out;
6672 	}
6673         totblks = blkstofrags(fs, numblks);
6674 	numblks -= UFS_NDADDR;
6675 	/*
6676 	 * Count all single, then double, then triple indirects required.
6677 	 * Subtracting one indirects worth of blocks for each pass
6678 	 * acknowledges one of each pointed to by the inode.
6679 	 */
6680 	for (;;) {
6681 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6682 		numblks -= NINDIR(fs);
6683 		if (numblks <= 0)
6684 			break;
6685 		numblks = howmany(numblks, NINDIR(fs));
6686 	}
6687 out:
6688 	totblks = fsbtodb(fs, totblks);
6689 	/*
6690 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6691 	 * references.  We will correct it later in handle_complete_freeblks()
6692 	 * when we know the real count.
6693 	 */
6694 	if (totblks > datablocks)
6695 		return (0);
6696 	return (datablocks - totblks);
6697 }
6698 
6699 /*
6700  * Handle freeblocks for journaled softupdate filesystems.
6701  *
6702  * Contrary to normal softupdates, we must preserve the block pointers in
6703  * indirects until their subordinates are free.  This is to avoid journaling
6704  * every block that is freed which may consume more space than the journal
6705  * itself.  The recovery program will see the free block journals at the
6706  * base of the truncated area and traverse them to reclaim space.  The
6707  * pointers in the inode may be cleared immediately after the journal
6708  * records are written because each direct and indirect pointer in the
6709  * inode is recorded in a journal.  This permits full truncation to proceed
6710  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6711  *
6712  * The algorithm is as follows:
6713  * 1) Traverse the in-memory state and create journal entries to release
6714  *    the relevant blocks and full indirect trees.
6715  * 2) Traverse the indirect block chain adding partial truncation freework
6716  *    records to indirects in the path to lastlbn.  The freework will
6717  *    prevent new allocation dependencies from being satisfied in this
6718  *    indirect until the truncation completes.
6719  * 3) Read and lock the inode block, performing an update with the new size
6720  *    and pointers.  This prevents truncated data from becoming valid on
6721  *    disk through step 4.
6722  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6723  *    eliminate journal work for those records that do not require it.
6724  * 5) Schedule the journal records to be written followed by the inode block.
6725  * 6) Allocate any necessary frags for the end of file.
6726  * 7) Zero any partially truncated blocks.
6727  *
6728  * From this truncation proceeds asynchronously using the freework and
6729  * indir_trunc machinery.  The file will not be extended again into a
6730  * partially truncated indirect block until all work is completed but
6731  * the normal dependency mechanism ensures that it is rolled back/forward
6732  * as appropriate.  Further truncation may occur without delay and is
6733  * serialized in indir_trunc().
6734  */
6735 void
6736 softdep_journal_freeblocks(
6737 	struct inode *ip,	/* The inode whose length is to be reduced */
6738 	struct ucred *cred,
6739 	off_t length,		/* The new length for the file */
6740 	int flags)		/* IO_EXT and/or IO_NORMAL */
6741 {
6742 	struct freeblks *freeblks, *fbn;
6743 	struct worklist *wk, *wkn;
6744 	struct inodedep *inodedep;
6745 	struct jblkdep *jblkdep;
6746 	struct allocdirect *adp, *adpn;
6747 	struct ufsmount *ump;
6748 	struct fs *fs;
6749 	struct buf *bp;
6750 	struct vnode *vp;
6751 	struct mount *mp;
6752 	daddr_t dbn;
6753 	ufs2_daddr_t extblocks, datablocks;
6754 	ufs_lbn_t tmpval, lbn, lastlbn;
6755 	int frags, lastoff, iboff, allocblock, needj, error, i;
6756 
6757 	ump = ITOUMP(ip);
6758 	mp = UFSTOVFS(ump);
6759 	fs = ump->um_fs;
6760 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6761 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6762 	vp = ITOV(ip);
6763 	needj = 1;
6764 	iboff = -1;
6765 	allocblock = 0;
6766 	extblocks = 0;
6767 	datablocks = 0;
6768 	frags = 0;
6769 	freeblks = newfreeblks(mp, ip);
6770 	ACQUIRE_LOCK(ump);
6771 	/*
6772 	 * If we're truncating a removed file that will never be written
6773 	 * we don't need to journal the block frees.  The canceled journals
6774 	 * for the allocations will suffice.
6775 	 */
6776 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6777 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6778 	    length == 0)
6779 		needj = 0;
6780 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6781 	    ip->i_number, length, needj);
6782 	FREE_LOCK(ump);
6783 	/*
6784 	 * Calculate the lbn that we are truncating to.  This results in -1
6785 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6786 	 * to keep, not the first lbn we want to truncate.
6787 	 */
6788 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6789 	lastoff = blkoff(fs, length);
6790 	/*
6791 	 * Compute frags we are keeping in lastlbn.  0 means all.
6792 	 */
6793 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6794 		frags = fragroundup(fs, lastoff);
6795 		/* adp offset of last valid allocdirect. */
6796 		iboff = lastlbn;
6797 	} else if (lastlbn > 0)
6798 		iboff = UFS_NDADDR;
6799 	if (fs->fs_magic == FS_UFS2_MAGIC)
6800 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6801 	/*
6802 	 * Handle normal data blocks and indirects.  This section saves
6803 	 * values used after the inode update to complete frag and indirect
6804 	 * truncation.
6805 	 */
6806 	if ((flags & IO_NORMAL) != 0) {
6807 		/*
6808 		 * Handle truncation of whole direct and indirect blocks.
6809 		 */
6810 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6811 			setup_freedirect(freeblks, ip, i, needj);
6812 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6813 		    i < UFS_NIADDR;
6814 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6815 			/* Release a whole indirect tree. */
6816 			if (lbn > lastlbn) {
6817 				setup_freeindir(freeblks, ip, i, -lbn -i,
6818 				    needj);
6819 				continue;
6820 			}
6821 			iboff = i + UFS_NDADDR;
6822 			/*
6823 			 * Traverse partially truncated indirect tree.
6824 			 */
6825 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6826 				setup_trunc_indir(freeblks, ip, -lbn - i,
6827 				    lastlbn, DIP(ip, i_ib[i]));
6828 		}
6829 		/*
6830 		 * Handle partial truncation to a frag boundary.
6831 		 */
6832 		if (frags) {
6833 			ufs2_daddr_t blkno;
6834 			long oldfrags;
6835 
6836 			oldfrags = blksize(fs, ip, lastlbn);
6837 			blkno = DIP(ip, i_db[lastlbn]);
6838 			if (blkno && oldfrags != frags) {
6839 				oldfrags -= frags;
6840 				oldfrags = numfrags(fs, oldfrags);
6841 				blkno += numfrags(fs, frags);
6842 				newfreework(ump, freeblks, NULL, lastlbn,
6843 				    blkno, oldfrags, 0, needj);
6844 				if (needj)
6845 					adjust_newfreework(freeblks,
6846 					    numfrags(fs, frags));
6847 			} else if (blkno == 0)
6848 				allocblock = 1;
6849 		}
6850 		/*
6851 		 * Add a journal record for partial truncate if we are
6852 		 * handling indirect blocks.  Non-indirects need no extra
6853 		 * journaling.
6854 		 */
6855 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6856 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6857 			newjtrunc(freeblks, length, 0);
6858 		}
6859 		ip->i_size = length;
6860 		DIP_SET(ip, i_size, ip->i_size);
6861 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6862 		datablocks = DIP(ip, i_blocks) - extblocks;
6863 		if (length != 0)
6864 			datablocks = blkcount(fs, datablocks, length);
6865 		freeblks->fb_len = length;
6866 	}
6867 	if ((flags & IO_EXT) != 0) {
6868 		for (i = 0; i < UFS_NXADDR; i++)
6869 			setup_freeext(freeblks, ip, i, needj);
6870 		ip->i_din2->di_extsize = 0;
6871 		datablocks += extblocks;
6872 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6873 	}
6874 #ifdef QUOTA
6875 	/* Reference the quotas in case the block count is wrong in the end. */
6876 	quotaref(vp, freeblks->fb_quota);
6877 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6878 #endif
6879 	freeblks->fb_chkcnt = -datablocks;
6880 	UFS_LOCK(ump);
6881 	fs->fs_pendingblocks += datablocks;
6882 	UFS_UNLOCK(ump);
6883 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6884 	/*
6885 	 * Handle truncation of incomplete alloc direct dependencies.  We
6886 	 * hold the inode block locked to prevent incomplete dependencies
6887 	 * from reaching the disk while we are eliminating those that
6888 	 * have been truncated.  This is a partially inlined ffs_update().
6889 	 */
6890 	ufs_itimes(vp);
6891 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6892 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
6893 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
6894 	    NULL, NULL, 0, cred, 0, NULL, &bp);
6895 	if (error) {
6896 		softdep_error("softdep_journal_freeblocks", error);
6897 		return;
6898 	}
6899 	if (bp->b_bufsize == fs->fs_bsize)
6900 		bp->b_flags |= B_CLUSTEROK;
6901 	softdep_update_inodeblock(ip, bp, 0);
6902 	if (ump->um_fstype == UFS1) {
6903 		*((struct ufs1_dinode *)bp->b_data +
6904 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6905 	} else {
6906 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6907 		*((struct ufs2_dinode *)bp->b_data +
6908 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6909 	}
6910 	ACQUIRE_LOCK(ump);
6911 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6912 	if ((inodedep->id_state & IOSTARTED) != 0)
6913 		panic("softdep_setup_freeblocks: inode busy");
6914 	/*
6915 	 * Add the freeblks structure to the list of operations that
6916 	 * must await the zero'ed inode being written to disk. If we
6917 	 * still have a bitmap dependency (needj), then the inode
6918 	 * has never been written to disk, so we can process the
6919 	 * freeblks below once we have deleted the dependencies.
6920 	 */
6921 	if (needj)
6922 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6923 	else
6924 		freeblks->fb_state |= COMPLETE;
6925 	if ((flags & IO_NORMAL) != 0) {
6926 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6927 			if (adp->ad_offset > iboff)
6928 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6929 				    freeblks);
6930 			/*
6931 			 * Truncate the allocdirect.  We could eliminate
6932 			 * or modify journal records as well.
6933 			 */
6934 			else if (adp->ad_offset == iboff && frags)
6935 				adp->ad_newsize = frags;
6936 		}
6937 	}
6938 	if ((flags & IO_EXT) != 0)
6939 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6940 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6941 			    freeblks);
6942 	/*
6943 	 * Scan the bufwait list for newblock dependencies that will never
6944 	 * make it to disk.
6945 	 */
6946 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6947 		if (wk->wk_type != D_ALLOCDIRECT)
6948 			continue;
6949 		adp = WK_ALLOCDIRECT(wk);
6950 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6951 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6952 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6953 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6954 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6955 		}
6956 	}
6957 	/*
6958 	 * Add journal work.
6959 	 */
6960 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6961 		add_to_journal(&jblkdep->jb_list);
6962 	FREE_LOCK(ump);
6963 	bdwrite(bp);
6964 	/*
6965 	 * Truncate dependency structures beyond length.
6966 	 */
6967 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6968 	/*
6969 	 * This is only set when we need to allocate a fragment because
6970 	 * none existed at the end of a frag-sized file.  It handles only
6971 	 * allocating a new, zero filled block.
6972 	 */
6973 	if (allocblock) {
6974 		ip->i_size = length - lastoff;
6975 		DIP_SET(ip, i_size, ip->i_size);
6976 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6977 		if (error != 0) {
6978 			softdep_error("softdep_journal_freeblks", error);
6979 			return;
6980 		}
6981 		ip->i_size = length;
6982 		DIP_SET(ip, i_size, length);
6983 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
6984 		allocbuf(bp, frags);
6985 		ffs_update(vp, 0);
6986 		bawrite(bp);
6987 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6988 		int size;
6989 
6990 		/*
6991 		 * Zero the end of a truncated frag or block.
6992 		 */
6993 		size = sblksize(fs, length, lastlbn);
6994 		error = bread(vp, lastlbn, size, cred, &bp);
6995 		if (error == 0) {
6996 			bzero((char *)bp->b_data + lastoff, size - lastoff);
6997 			bawrite(bp);
6998 		} else if (!ffs_fsfail_cleanup(ump, error)) {
6999 			softdep_error("softdep_journal_freeblks", error);
7000 			return;
7001 		}
7002 	}
7003 	ACQUIRE_LOCK(ump);
7004 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7005 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7006 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7007 	/*
7008 	 * We zero earlier truncations so they don't erroneously
7009 	 * update i_blocks.
7010 	 */
7011 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7012 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7013 			fbn->fb_len = 0;
7014 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7015 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7016 		freeblks->fb_state |= INPROGRESS;
7017 	else
7018 		freeblks = NULL;
7019 	FREE_LOCK(ump);
7020 	if (freeblks)
7021 		handle_workitem_freeblocks(freeblks, 0);
7022 	trunc_pages(ip, length, extblocks, flags);
7023 
7024 }
7025 
7026 /*
7027  * Flush a JOP_SYNC to the journal.
7028  */
7029 void
7030 softdep_journal_fsync(struct inode *ip)
7031 {
7032 	struct jfsync *jfsync;
7033 	struct ufsmount *ump;
7034 
7035 	ump = ITOUMP(ip);
7036 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7037 	    ("softdep_journal_fsync called on non-softdep filesystem"));
7038 	if ((ip->i_flag & IN_TRUNCATED) == 0)
7039 		return;
7040 	ip->i_flag &= ~IN_TRUNCATED;
7041 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7042 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7043 	jfsync->jfs_size = ip->i_size;
7044 	jfsync->jfs_ino = ip->i_number;
7045 	ACQUIRE_LOCK(ump);
7046 	add_to_journal(&jfsync->jfs_list);
7047 	jwait(&jfsync->jfs_list, MNT_WAIT);
7048 	FREE_LOCK(ump);
7049 }
7050 
7051 /*
7052  * Block de-allocation dependencies.
7053  *
7054  * When blocks are de-allocated, the on-disk pointers must be nullified before
7055  * the blocks are made available for use by other files.  (The true
7056  * requirement is that old pointers must be nullified before new on-disk
7057  * pointers are set.  We chose this slightly more stringent requirement to
7058  * reduce complexity.) Our implementation handles this dependency by updating
7059  * the inode (or indirect block) appropriately but delaying the actual block
7060  * de-allocation (i.e., freemap and free space count manipulation) until
7061  * after the updated versions reach stable storage.  After the disk is
7062  * updated, the blocks can be safely de-allocated whenever it is convenient.
7063  * This implementation handles only the common case of reducing a file's
7064  * length to zero. Other cases are handled by the conventional synchronous
7065  * write approach.
7066  *
7067  * The ffs implementation with which we worked double-checks
7068  * the state of the block pointers and file size as it reduces
7069  * a file's length.  Some of this code is replicated here in our
7070  * soft updates implementation.  The freeblks->fb_chkcnt field is
7071  * used to transfer a part of this information to the procedure
7072  * that eventually de-allocates the blocks.
7073  *
7074  * This routine should be called from the routine that shortens
7075  * a file's length, before the inode's size or block pointers
7076  * are modified. It will save the block pointer information for
7077  * later release and zero the inode so that the calling routine
7078  * can release it.
7079  */
7080 void
7081 softdep_setup_freeblocks(
7082 	struct inode *ip,	/* The inode whose length is to be reduced */
7083 	off_t length,		/* The new length for the file */
7084 	int flags)		/* IO_EXT and/or IO_NORMAL */
7085 {
7086 	struct ufs1_dinode *dp1;
7087 	struct ufs2_dinode *dp2;
7088 	struct freeblks *freeblks;
7089 	struct inodedep *inodedep;
7090 	struct allocdirect *adp;
7091 	struct ufsmount *ump;
7092 	struct buf *bp;
7093 	struct fs *fs;
7094 	ufs2_daddr_t extblocks, datablocks;
7095 	struct mount *mp;
7096 	int i, delay, error;
7097 	ufs_lbn_t tmpval;
7098 	ufs_lbn_t lbn;
7099 
7100 	ump = ITOUMP(ip);
7101 	mp = UFSTOVFS(ump);
7102 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7103 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
7104 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7105 	    ip->i_number, length);
7106 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7107 	fs = ump->um_fs;
7108 	if ((error = bread(ump->um_devvp,
7109 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7110 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7111 		if (!ffs_fsfail_cleanup(ump, error))
7112 			softdep_error("softdep_setup_freeblocks", error);
7113 		return;
7114 	}
7115 	freeblks = newfreeblks(mp, ip);
7116 	extblocks = 0;
7117 	datablocks = 0;
7118 	if (fs->fs_magic == FS_UFS2_MAGIC)
7119 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7120 	if ((flags & IO_NORMAL) != 0) {
7121 		for (i = 0; i < UFS_NDADDR; i++)
7122 			setup_freedirect(freeblks, ip, i, 0);
7123 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7124 		    i < UFS_NIADDR;
7125 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
7126 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7127 		ip->i_size = 0;
7128 		DIP_SET(ip, i_size, 0);
7129 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7130 		datablocks = DIP(ip, i_blocks) - extblocks;
7131 	}
7132 	if ((flags & IO_EXT) != 0) {
7133 		for (i = 0; i < UFS_NXADDR; i++)
7134 			setup_freeext(freeblks, ip, i, 0);
7135 		ip->i_din2->di_extsize = 0;
7136 		datablocks += extblocks;
7137 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7138 	}
7139 #ifdef QUOTA
7140 	/* Reference the quotas in case the block count is wrong in the end. */
7141 	quotaref(ITOV(ip), freeblks->fb_quota);
7142 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7143 #endif
7144 	freeblks->fb_chkcnt = -datablocks;
7145 	UFS_LOCK(ump);
7146 	fs->fs_pendingblocks += datablocks;
7147 	UFS_UNLOCK(ump);
7148 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7149 	/*
7150 	 * Push the zero'ed inode to its disk buffer so that we are free
7151 	 * to delete its dependencies below. Once the dependencies are gone
7152 	 * the buffer can be safely released.
7153 	 */
7154 	if (ump->um_fstype == UFS1) {
7155 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7156 		    ino_to_fsbo(fs, ip->i_number));
7157 		ip->i_din1->di_freelink = dp1->di_freelink;
7158 		*dp1 = *ip->i_din1;
7159 	} else {
7160 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7161 		    ino_to_fsbo(fs, ip->i_number));
7162 		ip->i_din2->di_freelink = dp2->di_freelink;
7163 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7164 		*dp2 = *ip->i_din2;
7165 	}
7166 	/*
7167 	 * Find and eliminate any inode dependencies.
7168 	 */
7169 	ACQUIRE_LOCK(ump);
7170 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7171 	if ((inodedep->id_state & IOSTARTED) != 0)
7172 		panic("softdep_setup_freeblocks: inode busy");
7173 	/*
7174 	 * Add the freeblks structure to the list of operations that
7175 	 * must await the zero'ed inode being written to disk. If we
7176 	 * still have a bitmap dependency (delay == 0), then the inode
7177 	 * has never been written to disk, so we can process the
7178 	 * freeblks below once we have deleted the dependencies.
7179 	 */
7180 	delay = (inodedep->id_state & DEPCOMPLETE);
7181 	if (delay)
7182 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7183 	else
7184 		freeblks->fb_state |= COMPLETE;
7185 	/*
7186 	 * Because the file length has been truncated to zero, any
7187 	 * pending block allocation dependency structures associated
7188 	 * with this inode are obsolete and can simply be de-allocated.
7189 	 * We must first merge the two dependency lists to get rid of
7190 	 * any duplicate freefrag structures, then purge the merged list.
7191 	 * If we still have a bitmap dependency, then the inode has never
7192 	 * been written to disk, so we can free any fragments without delay.
7193 	 */
7194 	if (flags & IO_NORMAL) {
7195 		merge_inode_lists(&inodedep->id_newinoupdt,
7196 		    &inodedep->id_inoupdt);
7197 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7198 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7199 			    freeblks);
7200 	}
7201 	if (flags & IO_EXT) {
7202 		merge_inode_lists(&inodedep->id_newextupdt,
7203 		    &inodedep->id_extupdt);
7204 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7205 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7206 			    freeblks);
7207 	}
7208 	FREE_LOCK(ump);
7209 	bdwrite(bp);
7210 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7211 	ACQUIRE_LOCK(ump);
7212 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7213 		(void) free_inodedep(inodedep);
7214 	freeblks->fb_state |= DEPCOMPLETE;
7215 	/*
7216 	 * If the inode with zeroed block pointers is now on disk
7217 	 * we can start freeing blocks.
7218 	 */
7219 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7220 		freeblks->fb_state |= INPROGRESS;
7221 	else
7222 		freeblks = NULL;
7223 	FREE_LOCK(ump);
7224 	if (freeblks)
7225 		handle_workitem_freeblocks(freeblks, 0);
7226 	trunc_pages(ip, length, extblocks, flags);
7227 }
7228 
7229 /*
7230  * Eliminate pages from the page cache that back parts of this inode and
7231  * adjust the vnode pager's idea of our size.  This prevents stale data
7232  * from hanging around in the page cache.
7233  */
7234 static void
7235 trunc_pages(
7236 	struct inode *ip,
7237 	off_t length,
7238 	ufs2_daddr_t extblocks,
7239 	int flags)
7240 {
7241 	struct vnode *vp;
7242 	struct fs *fs;
7243 	ufs_lbn_t lbn;
7244 	off_t end, extend;
7245 
7246 	vp = ITOV(ip);
7247 	fs = ITOFS(ip);
7248 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7249 	if ((flags & IO_EXT) != 0)
7250 		vn_pages_remove(vp, extend, 0);
7251 	if ((flags & IO_NORMAL) == 0)
7252 		return;
7253 	BO_LOCK(&vp->v_bufobj);
7254 	drain_output(vp);
7255 	BO_UNLOCK(&vp->v_bufobj);
7256 	/*
7257 	 * The vnode pager eliminates file pages we eliminate indirects
7258 	 * below.
7259 	 */
7260 	vnode_pager_setsize(vp, length);
7261 	/*
7262 	 * Calculate the end based on the last indirect we want to keep.  If
7263 	 * the block extends into indirects we can just use the negative of
7264 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7265 	 * be careful not to remove those, if they exist.  double and triple
7266 	 * indirect lbns do not overlap with others so it is not important
7267 	 * to verify how many levels are required.
7268 	 */
7269 	lbn = lblkno(fs, length);
7270 	if (lbn >= UFS_NDADDR) {
7271 		/* Calculate the virtual lbn of the triple indirect. */
7272 		lbn = -lbn - (UFS_NIADDR - 1);
7273 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7274 	} else
7275 		end = extend;
7276 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7277 }
7278 
7279 /*
7280  * See if the buf bp is in the range eliminated by truncation.
7281  */
7282 static int
7283 trunc_check_buf(
7284 	struct buf *bp,
7285 	int *blkoffp,
7286 	ufs_lbn_t lastlbn,
7287 	int lastoff,
7288 	int flags)
7289 {
7290 	ufs_lbn_t lbn;
7291 
7292 	*blkoffp = 0;
7293 	/* Only match ext/normal blocks as appropriate. */
7294 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7295 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7296 		return (0);
7297 	/* ALTDATA is always a full truncation. */
7298 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7299 		return (1);
7300 	/* -1 is full truncation. */
7301 	if (lastlbn == -1)
7302 		return (1);
7303 	/*
7304 	 * If this is a partial truncate we only want those
7305 	 * blocks and indirect blocks that cover the range
7306 	 * we're after.
7307 	 */
7308 	lbn = bp->b_lblkno;
7309 	if (lbn < 0)
7310 		lbn = -(lbn + lbn_level(lbn));
7311 	if (lbn < lastlbn)
7312 		return (0);
7313 	/* Here we only truncate lblkno if it's partial. */
7314 	if (lbn == lastlbn) {
7315 		if (lastoff == 0)
7316 			return (0);
7317 		*blkoffp = lastoff;
7318 	}
7319 	return (1);
7320 }
7321 
7322 /*
7323  * Eliminate any dependencies that exist in memory beyond lblkno:off
7324  */
7325 static void
7326 trunc_dependencies(
7327 	struct inode *ip,
7328 	struct freeblks *freeblks,
7329 	ufs_lbn_t lastlbn,
7330 	int lastoff,
7331 	int flags)
7332 {
7333 	struct bufobj *bo;
7334 	struct vnode *vp;
7335 	struct buf *bp;
7336 	int blkoff;
7337 
7338 	/*
7339 	 * We must wait for any I/O in progress to finish so that
7340 	 * all potential buffers on the dirty list will be visible.
7341 	 * Once they are all there, walk the list and get rid of
7342 	 * any dependencies.
7343 	 */
7344 	vp = ITOV(ip);
7345 	bo = &vp->v_bufobj;
7346 	BO_LOCK(bo);
7347 	drain_output(vp);
7348 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7349 		bp->b_vflags &= ~BV_SCANNED;
7350 restart:
7351 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7352 		if (bp->b_vflags & BV_SCANNED)
7353 			continue;
7354 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7355 			bp->b_vflags |= BV_SCANNED;
7356 			continue;
7357 		}
7358 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7359 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7360 			goto restart;
7361 		BO_UNLOCK(bo);
7362 		if (deallocate_dependencies(bp, freeblks, blkoff))
7363 			bqrelse(bp);
7364 		else
7365 			brelse(bp);
7366 		BO_LOCK(bo);
7367 		goto restart;
7368 	}
7369 	/*
7370 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7371 	 */
7372 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7373 		bp->b_vflags &= ~BV_SCANNED;
7374 cleanrestart:
7375 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7376 		if (bp->b_vflags & BV_SCANNED)
7377 			continue;
7378 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7379 			bp->b_vflags |= BV_SCANNED;
7380 			continue;
7381 		}
7382 		if (BUF_LOCK(bp,
7383 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7384 		    BO_LOCKPTR(bo)) == ENOLCK) {
7385 			BO_LOCK(bo);
7386 			goto cleanrestart;
7387 		}
7388 		BO_LOCK(bo);
7389 		bp->b_vflags |= BV_SCANNED;
7390 		BO_UNLOCK(bo);
7391 		bremfree(bp);
7392 		if (blkoff != 0) {
7393 			allocbuf(bp, blkoff);
7394 			bqrelse(bp);
7395 		} else {
7396 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7397 			brelse(bp);
7398 		}
7399 		BO_LOCK(bo);
7400 		goto cleanrestart;
7401 	}
7402 	drain_output(vp);
7403 	BO_UNLOCK(bo);
7404 }
7405 
7406 static int
7407 cancel_pagedep(
7408 	struct pagedep *pagedep,
7409 	struct freeblks *freeblks,
7410 	int blkoff)
7411 {
7412 	struct jremref *jremref;
7413 	struct jmvref *jmvref;
7414 	struct dirrem *dirrem, *tmp;
7415 	int i;
7416 
7417 	/*
7418 	 * Copy any directory remove dependencies to the list
7419 	 * to be processed after the freeblks proceeds.  If
7420 	 * directory entry never made it to disk they
7421 	 * can be dumped directly onto the work list.
7422 	 */
7423 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7424 		/* Skip this directory removal if it is intended to remain. */
7425 		if (dirrem->dm_offset < blkoff)
7426 			continue;
7427 		/*
7428 		 * If there are any dirrems we wait for the journal write
7429 		 * to complete and then restart the buf scan as the lock
7430 		 * has been dropped.
7431 		 */
7432 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7433 			jwait(&jremref->jr_list, MNT_WAIT);
7434 			return (ERESTART);
7435 		}
7436 		LIST_REMOVE(dirrem, dm_next);
7437 		dirrem->dm_dirinum = pagedep->pd_ino;
7438 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7439 	}
7440 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7441 		jwait(&jmvref->jm_list, MNT_WAIT);
7442 		return (ERESTART);
7443 	}
7444 	/*
7445 	 * When we're partially truncating a pagedep we just want to flush
7446 	 * journal entries and return.  There can not be any adds in the
7447 	 * truncated portion of the directory and newblk must remain if
7448 	 * part of the block remains.
7449 	 */
7450 	if (blkoff != 0) {
7451 		struct diradd *dap;
7452 
7453 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7454 			if (dap->da_offset > blkoff)
7455 				panic("cancel_pagedep: diradd %p off %d > %d",
7456 				    dap, dap->da_offset, blkoff);
7457 		for (i = 0; i < DAHASHSZ; i++)
7458 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7459 				if (dap->da_offset > blkoff)
7460 					panic("cancel_pagedep: diradd %p off %d > %d",
7461 					    dap, dap->da_offset, blkoff);
7462 		return (0);
7463 	}
7464 	/*
7465 	 * There should be no directory add dependencies present
7466 	 * as the directory could not be truncated until all
7467 	 * children were removed.
7468 	 */
7469 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7470 	    ("deallocate_dependencies: pendinghd != NULL"));
7471 	for (i = 0; i < DAHASHSZ; i++)
7472 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7473 		    ("deallocate_dependencies: diraddhd != NULL"));
7474 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7475 		free_newdirblk(pagedep->pd_newdirblk);
7476 	if (free_pagedep(pagedep) == 0)
7477 		panic("Failed to free pagedep %p", pagedep);
7478 	return (0);
7479 }
7480 
7481 /*
7482  * Reclaim any dependency structures from a buffer that is about to
7483  * be reallocated to a new vnode. The buffer must be locked, thus,
7484  * no I/O completion operations can occur while we are manipulating
7485  * its associated dependencies. The mutex is held so that other I/O's
7486  * associated with related dependencies do not occur.
7487  */
7488 static int
7489 deallocate_dependencies(
7490 	struct buf *bp,
7491 	struct freeblks *freeblks,
7492 	int off)
7493 {
7494 	struct indirdep *indirdep;
7495 	struct pagedep *pagedep;
7496 	struct worklist *wk, *wkn;
7497 	struct ufsmount *ump;
7498 
7499 	ump = softdep_bp_to_mp(bp);
7500 	if (ump == NULL)
7501 		goto done;
7502 	ACQUIRE_LOCK(ump);
7503 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7504 		switch (wk->wk_type) {
7505 		case D_INDIRDEP:
7506 			indirdep = WK_INDIRDEP(wk);
7507 			if (bp->b_lblkno >= 0 ||
7508 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7509 				panic("deallocate_dependencies: not indir");
7510 			cancel_indirdep(indirdep, bp, freeblks);
7511 			continue;
7512 
7513 		case D_PAGEDEP:
7514 			pagedep = WK_PAGEDEP(wk);
7515 			if (cancel_pagedep(pagedep, freeblks, off)) {
7516 				FREE_LOCK(ump);
7517 				return (ERESTART);
7518 			}
7519 			continue;
7520 
7521 		case D_ALLOCINDIR:
7522 			/*
7523 			 * Simply remove the allocindir, we'll find it via
7524 			 * the indirdep where we can clear pointers if
7525 			 * needed.
7526 			 */
7527 			WORKLIST_REMOVE(wk);
7528 			continue;
7529 
7530 		case D_FREEWORK:
7531 			/*
7532 			 * A truncation is waiting for the zero'd pointers
7533 			 * to be written.  It can be freed when the freeblks
7534 			 * is journaled.
7535 			 */
7536 			WORKLIST_REMOVE(wk);
7537 			wk->wk_state |= ONDEPLIST;
7538 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7539 			break;
7540 
7541 		case D_ALLOCDIRECT:
7542 			if (off != 0)
7543 				continue;
7544 			/* FALLTHROUGH */
7545 		default:
7546 			panic("deallocate_dependencies: Unexpected type %s",
7547 			    TYPENAME(wk->wk_type));
7548 			/* NOTREACHED */
7549 		}
7550 	}
7551 	FREE_LOCK(ump);
7552 done:
7553 	/*
7554 	 * Don't throw away this buf, we were partially truncating and
7555 	 * some deps may always remain.
7556 	 */
7557 	if (off) {
7558 		allocbuf(bp, off);
7559 		bp->b_vflags |= BV_SCANNED;
7560 		return (EBUSY);
7561 	}
7562 	bp->b_flags |= B_INVAL | B_NOCACHE;
7563 
7564 	return (0);
7565 }
7566 
7567 /*
7568  * An allocdirect is being canceled due to a truncate.  We must make sure
7569  * the journal entry is released in concert with the blkfree that releases
7570  * the storage.  Completed journal entries must not be released until the
7571  * space is no longer pointed to by the inode or in the bitmap.
7572  */
7573 static void
7574 cancel_allocdirect(
7575 	struct allocdirectlst *adphead,
7576 	struct allocdirect *adp,
7577 	struct freeblks *freeblks)
7578 {
7579 	struct freework *freework;
7580 	struct newblk *newblk;
7581 	struct worklist *wk;
7582 
7583 	TAILQ_REMOVE(adphead, adp, ad_next);
7584 	newblk = (struct newblk *)adp;
7585 	freework = NULL;
7586 	/*
7587 	 * Find the correct freework structure.
7588 	 */
7589 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7590 		if (wk->wk_type != D_FREEWORK)
7591 			continue;
7592 		freework = WK_FREEWORK(wk);
7593 		if (freework->fw_blkno == newblk->nb_newblkno)
7594 			break;
7595 	}
7596 	if (freework == NULL)
7597 		panic("cancel_allocdirect: Freework not found");
7598 	/*
7599 	 * If a newblk exists at all we still have the journal entry that
7600 	 * initiated the allocation so we do not need to journal the free.
7601 	 */
7602 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7603 	/*
7604 	 * If the journal hasn't been written the jnewblk must be passed
7605 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7606 	 * this by linking the journal dependency into the freework to be
7607 	 * freed when freework_freeblock() is called.  If the journal has
7608 	 * been written we can simply reclaim the journal space when the
7609 	 * freeblks work is complete.
7610 	 */
7611 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7612 	    &freeblks->fb_jwork);
7613 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7614 }
7615 
7616 /*
7617  * Cancel a new block allocation.  May be an indirect or direct block.  We
7618  * remove it from various lists and return any journal record that needs to
7619  * be resolved by the caller.
7620  *
7621  * A special consideration is made for indirects which were never pointed
7622  * at on disk and will never be found once this block is released.
7623  */
7624 static struct jnewblk *
7625 cancel_newblk(
7626 	struct newblk *newblk,
7627 	struct worklist *wk,
7628 	struct workhead *wkhd)
7629 {
7630 	struct jnewblk *jnewblk;
7631 
7632 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7633 
7634 	newblk->nb_state |= GOINGAWAY;
7635 	/*
7636 	 * Previously we traversed the completedhd on each indirdep
7637 	 * attached to this newblk to cancel them and gather journal
7638 	 * work.  Since we need only the oldest journal segment and
7639 	 * the lowest point on the tree will always have the oldest
7640 	 * journal segment we are free to release the segments
7641 	 * of any subordinates and may leave the indirdep list to
7642 	 * indirdep_complete() when this newblk is freed.
7643 	 */
7644 	if (newblk->nb_state & ONDEPLIST) {
7645 		newblk->nb_state &= ~ONDEPLIST;
7646 		LIST_REMOVE(newblk, nb_deps);
7647 	}
7648 	if (newblk->nb_state & ONWORKLIST)
7649 		WORKLIST_REMOVE(&newblk->nb_list);
7650 	/*
7651 	 * If the journal entry hasn't been written we save a pointer to
7652 	 * the dependency that frees it until it is written or the
7653 	 * superseding operation completes.
7654 	 */
7655 	jnewblk = newblk->nb_jnewblk;
7656 	if (jnewblk != NULL && wk != NULL) {
7657 		newblk->nb_jnewblk = NULL;
7658 		jnewblk->jn_dep = wk;
7659 	}
7660 	if (!LIST_EMPTY(&newblk->nb_jwork))
7661 		jwork_move(wkhd, &newblk->nb_jwork);
7662 	/*
7663 	 * When truncating we must free the newdirblk early to remove
7664 	 * the pagedep from the hash before returning.
7665 	 */
7666 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7667 		free_newdirblk(WK_NEWDIRBLK(wk));
7668 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7669 		panic("cancel_newblk: extra newdirblk");
7670 
7671 	return (jnewblk);
7672 }
7673 
7674 /*
7675  * Schedule the freefrag associated with a newblk to be released once
7676  * the pointers are written and the previous block is no longer needed.
7677  */
7678 static void
7679 newblk_freefrag(struct newblk *newblk)
7680 {
7681 	struct freefrag *freefrag;
7682 
7683 	if (newblk->nb_freefrag == NULL)
7684 		return;
7685 	freefrag = newblk->nb_freefrag;
7686 	newblk->nb_freefrag = NULL;
7687 	freefrag->ff_state |= COMPLETE;
7688 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7689 		add_to_worklist(&freefrag->ff_list, 0);
7690 }
7691 
7692 /*
7693  * Free a newblk. Generate a new freefrag work request if appropriate.
7694  * This must be called after the inode pointer and any direct block pointers
7695  * are valid or fully removed via truncate or frag extension.
7696  */
7697 static void
7698 free_newblk(struct newblk *newblk)
7699 {
7700 	struct indirdep *indirdep;
7701 	struct worklist *wk;
7702 
7703 	KASSERT(newblk->nb_jnewblk == NULL,
7704 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7705 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7706 	    ("free_newblk: unclaimed newblk"));
7707 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7708 	newblk_freefrag(newblk);
7709 	if (newblk->nb_state & ONDEPLIST)
7710 		LIST_REMOVE(newblk, nb_deps);
7711 	if (newblk->nb_state & ONWORKLIST)
7712 		WORKLIST_REMOVE(&newblk->nb_list);
7713 	LIST_REMOVE(newblk, nb_hash);
7714 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7715 		free_newdirblk(WK_NEWDIRBLK(wk));
7716 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7717 		panic("free_newblk: extra newdirblk");
7718 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7719 		indirdep_complete(indirdep);
7720 	handle_jwork(&newblk->nb_jwork);
7721 	WORKITEM_FREE(newblk, D_NEWBLK);
7722 }
7723 
7724 /*
7725  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7726  */
7727 static void
7728 free_newdirblk(struct newdirblk *newdirblk)
7729 {
7730 	struct pagedep *pagedep;
7731 	struct diradd *dap;
7732 	struct worklist *wk;
7733 
7734 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7735 	WORKLIST_REMOVE(&newdirblk->db_list);
7736 	/*
7737 	 * If the pagedep is still linked onto the directory buffer
7738 	 * dependency chain, then some of the entries on the
7739 	 * pd_pendinghd list may not be committed to disk yet. In
7740 	 * this case, we will simply clear the NEWBLOCK flag and
7741 	 * let the pd_pendinghd list be processed when the pagedep
7742 	 * is next written. If the pagedep is no longer on the buffer
7743 	 * dependency chain, then all the entries on the pd_pending
7744 	 * list are committed to disk and we can free them here.
7745 	 */
7746 	pagedep = newdirblk->db_pagedep;
7747 	pagedep->pd_state &= ~NEWBLOCK;
7748 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7749 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7750 			free_diradd(dap, NULL);
7751 		/*
7752 		 * If no dependencies remain, the pagedep will be freed.
7753 		 */
7754 		free_pagedep(pagedep);
7755 	}
7756 	/* Should only ever be one item in the list. */
7757 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7758 		WORKLIST_REMOVE(wk);
7759 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7760 	}
7761 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7762 }
7763 
7764 /*
7765  * Prepare an inode to be freed. The actual free operation is not
7766  * done until the zero'ed inode has been written to disk.
7767  */
7768 void
7769 softdep_freefile(
7770 	struct vnode *pvp,
7771 	ino_t ino,
7772 	int mode)
7773 {
7774 	struct inode *ip = VTOI(pvp);
7775 	struct inodedep *inodedep;
7776 	struct freefile *freefile;
7777 	struct freeblks *freeblks;
7778 	struct ufsmount *ump;
7779 
7780 	ump = ITOUMP(ip);
7781 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7782 	    ("softdep_freefile called on non-softdep filesystem"));
7783 	/*
7784 	 * This sets up the inode de-allocation dependency.
7785 	 */
7786 	freefile = malloc(sizeof(struct freefile),
7787 		M_FREEFILE, M_SOFTDEP_FLAGS);
7788 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7789 	freefile->fx_mode = mode;
7790 	freefile->fx_oldinum = ino;
7791 	freefile->fx_devvp = ump->um_devvp;
7792 	LIST_INIT(&freefile->fx_jwork);
7793 	UFS_LOCK(ump);
7794 	ump->um_fs->fs_pendinginodes += 1;
7795 	UFS_UNLOCK(ump);
7796 
7797 	/*
7798 	 * If the inodedep does not exist, then the zero'ed inode has
7799 	 * been written to disk. If the allocated inode has never been
7800 	 * written to disk, then the on-disk inode is zero'ed. In either
7801 	 * case we can free the file immediately.  If the journal was
7802 	 * canceled before being written the inode will never make it to
7803 	 * disk and we must send the canceled journal entrys to
7804 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7805 	 * Any blocks waiting on the inode to write can be safely freed
7806 	 * here as it will never been written.
7807 	 */
7808 	ACQUIRE_LOCK(ump);
7809 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7810 	if (inodedep) {
7811 		/*
7812 		 * Clear out freeblks that no longer need to reference
7813 		 * this inode.
7814 		 */
7815 		while ((freeblks =
7816 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7817 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7818 			    fb_next);
7819 			freeblks->fb_state &= ~ONDEPLIST;
7820 		}
7821 		/*
7822 		 * Remove this inode from the unlinked list.
7823 		 */
7824 		if (inodedep->id_state & UNLINKED) {
7825 			/*
7826 			 * Save the journal work to be freed with the bitmap
7827 			 * before we clear UNLINKED.  Otherwise it can be lost
7828 			 * if the inode block is written.
7829 			 */
7830 			handle_bufwait(inodedep, &freefile->fx_jwork);
7831 			clear_unlinked_inodedep(inodedep);
7832 			/*
7833 			 * Re-acquire inodedep as we've dropped the
7834 			 * per-filesystem lock in clear_unlinked_inodedep().
7835 			 */
7836 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7837 		}
7838 	}
7839 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7840 		FREE_LOCK(ump);
7841 		handle_workitem_freefile(freefile);
7842 		return;
7843 	}
7844 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7845 		inodedep->id_state |= GOINGAWAY;
7846 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7847 	FREE_LOCK(ump);
7848 	if (ip->i_number == ino)
7849 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7850 }
7851 
7852 /*
7853  * Check to see if an inode has never been written to disk. If
7854  * so free the inodedep and return success, otherwise return failure.
7855  *
7856  * If we still have a bitmap dependency, then the inode has never
7857  * been written to disk. Drop the dependency as it is no longer
7858  * necessary since the inode is being deallocated. We set the
7859  * ALLCOMPLETE flags since the bitmap now properly shows that the
7860  * inode is not allocated. Even if the inode is actively being
7861  * written, it has been rolled back to its zero'ed state, so we
7862  * are ensured that a zero inode is what is on the disk. For short
7863  * lived files, this change will usually result in removing all the
7864  * dependencies from the inode so that it can be freed immediately.
7865  */
7866 static int
7867 check_inode_unwritten(struct inodedep *inodedep)
7868 {
7869 
7870 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7871 
7872 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7873 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7874 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7875 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7876 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7877 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7878 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7879 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7880 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7881 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7882 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7883 	    inodedep->id_mkdiradd != NULL ||
7884 	    inodedep->id_nlinkdelta != 0)
7885 		return (0);
7886 	/*
7887 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7888 	 * trying to allocate memory without holding "Softdep Lock".
7889 	 */
7890 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7891 	    inodedep->id_savedino1 == NULL)
7892 		return (0);
7893 
7894 	if (inodedep->id_state & ONDEPLIST)
7895 		LIST_REMOVE(inodedep, id_deps);
7896 	inodedep->id_state &= ~ONDEPLIST;
7897 	inodedep->id_state |= ALLCOMPLETE;
7898 	inodedep->id_bmsafemap = NULL;
7899 	if (inodedep->id_state & ONWORKLIST)
7900 		WORKLIST_REMOVE(&inodedep->id_list);
7901 	if (inodedep->id_savedino1 != NULL) {
7902 		free(inodedep->id_savedino1, M_SAVEDINO);
7903 		inodedep->id_savedino1 = NULL;
7904 	}
7905 	if (free_inodedep(inodedep) == 0)
7906 		panic("check_inode_unwritten: busy inode");
7907 	return (1);
7908 }
7909 
7910 static int
7911 check_inodedep_free(struct inodedep *inodedep)
7912 {
7913 
7914 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7915 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7916 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7917 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7918 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7919 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7920 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7921 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7922 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7923 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7924 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7925 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7926 	    inodedep->id_mkdiradd != NULL ||
7927 	    inodedep->id_nlinkdelta != 0 ||
7928 	    inodedep->id_savedino1 != NULL)
7929 		return (0);
7930 	return (1);
7931 }
7932 
7933 /*
7934  * Try to free an inodedep structure. Return 1 if it could be freed.
7935  */
7936 static int
7937 free_inodedep(struct inodedep *inodedep)
7938 {
7939 
7940 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7941 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7942 	    !check_inodedep_free(inodedep))
7943 		return (0);
7944 	if (inodedep->id_state & ONDEPLIST)
7945 		LIST_REMOVE(inodedep, id_deps);
7946 	LIST_REMOVE(inodedep, id_hash);
7947 	WORKITEM_FREE(inodedep, D_INODEDEP);
7948 	return (1);
7949 }
7950 
7951 /*
7952  * Free the block referenced by a freework structure.  The parent freeblks
7953  * structure is released and completed when the final cg bitmap reaches
7954  * the disk.  This routine may be freeing a jnewblk which never made it to
7955  * disk in which case we do not have to wait as the operation is undone
7956  * in memory immediately.
7957  */
7958 static void
7959 freework_freeblock(struct freework *freework, uint64_t key)
7960 {
7961 	struct freeblks *freeblks;
7962 	struct jnewblk *jnewblk;
7963 	struct ufsmount *ump;
7964 	struct workhead wkhd;
7965 	struct fs *fs;
7966 	int bsize;
7967 	int needj;
7968 
7969 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7970 	LOCK_OWNED(ump);
7971 	/*
7972 	 * Handle partial truncate separately.
7973 	 */
7974 	if (freework->fw_indir) {
7975 		complete_trunc_indir(freework);
7976 		return;
7977 	}
7978 	freeblks = freework->fw_freeblks;
7979 	fs = ump->um_fs;
7980 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7981 	bsize = lfragtosize(fs, freework->fw_frags);
7982 	LIST_INIT(&wkhd);
7983 	/*
7984 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7985 	 * on the indirblk hashtable and prevents premature freeing.
7986 	 */
7987 	freework->fw_state |= DEPCOMPLETE;
7988 	/*
7989 	 * SUJ needs to wait for the segment referencing freed indirect
7990 	 * blocks to expire so that we know the checker will not confuse
7991 	 * a re-allocated indirect block with its old contents.
7992 	 */
7993 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7994 		indirblk_insert(freework);
7995 	/*
7996 	 * If we are canceling an existing jnewblk pass it to the free
7997 	 * routine, otherwise pass the freeblk which will ultimately
7998 	 * release the freeblks.  If we're not journaling, we can just
7999 	 * free the freeblks immediately.
8000 	 */
8001 	jnewblk = freework->fw_jnewblk;
8002 	if (jnewblk != NULL) {
8003 		cancel_jnewblk(jnewblk, &wkhd);
8004 		needj = 0;
8005 	} else if (needj) {
8006 		freework->fw_state |= DELAYEDFREE;
8007 		freeblks->fb_cgwait++;
8008 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
8009 	}
8010 	FREE_LOCK(ump);
8011 	freeblks_free(ump, freeblks, btodb(bsize));
8012 	CTR4(KTR_SUJ,
8013 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8014 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8015 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8016 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8017 	ACQUIRE_LOCK(ump);
8018 	/*
8019 	 * The jnewblk will be discarded and the bits in the map never
8020 	 * made it to disk.  We can immediately free the freeblk.
8021 	 */
8022 	if (needj == 0)
8023 		handle_written_freework(freework);
8024 }
8025 
8026 /*
8027  * We enqueue freework items that need processing back on the freeblks and
8028  * add the freeblks to the worklist.  This makes it easier to find all work
8029  * required to flush a truncation in process_truncates().
8030  */
8031 static void
8032 freework_enqueue(struct freework *freework)
8033 {
8034 	struct freeblks *freeblks;
8035 
8036 	freeblks = freework->fw_freeblks;
8037 	if ((freework->fw_state & INPROGRESS) == 0)
8038 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8039 	if ((freeblks->fb_state &
8040 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8041 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
8042 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8043 }
8044 
8045 /*
8046  * Start, continue, or finish the process of freeing an indirect block tree.
8047  * The free operation may be paused at any point with fw_off containing the
8048  * offset to restart from.  This enables us to implement some flow control
8049  * for large truncates which may fan out and generate a huge number of
8050  * dependencies.
8051  */
8052 static void
8053 handle_workitem_indirblk(struct freework *freework)
8054 {
8055 	struct freeblks *freeblks;
8056 	struct ufsmount *ump;
8057 	struct fs *fs;
8058 
8059 	freeblks = freework->fw_freeblks;
8060 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8061 	fs = ump->um_fs;
8062 	if (freework->fw_state & DEPCOMPLETE) {
8063 		handle_written_freework(freework);
8064 		return;
8065 	}
8066 	if (freework->fw_off == NINDIR(fs)) {
8067 		freework_freeblock(freework, SINGLETON_KEY);
8068 		return;
8069 	}
8070 	freework->fw_state |= INPROGRESS;
8071 	FREE_LOCK(ump);
8072 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8073 	    freework->fw_lbn);
8074 	ACQUIRE_LOCK(ump);
8075 }
8076 
8077 /*
8078  * Called when a freework structure attached to a cg buf is written.  The
8079  * ref on either the parent or the freeblks structure is released and
8080  * the freeblks is added back to the worklist if there is more work to do.
8081  */
8082 static void
8083 handle_written_freework(struct freework *freework)
8084 {
8085 	struct freeblks *freeblks;
8086 	struct freework *parent;
8087 
8088 	freeblks = freework->fw_freeblks;
8089 	parent = freework->fw_parent;
8090 	if (freework->fw_state & DELAYEDFREE)
8091 		freeblks->fb_cgwait--;
8092 	freework->fw_state |= COMPLETE;
8093 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8094 		WORKITEM_FREE(freework, D_FREEWORK);
8095 	if (parent) {
8096 		if (--parent->fw_ref == 0)
8097 			freework_enqueue(parent);
8098 		return;
8099 	}
8100 	if (--freeblks->fb_ref != 0)
8101 		return;
8102 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8103 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8104 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8105 }
8106 
8107 /*
8108  * This workitem routine performs the block de-allocation.
8109  * The workitem is added to the pending list after the updated
8110  * inode block has been written to disk.  As mentioned above,
8111  * checks regarding the number of blocks de-allocated (compared
8112  * to the number of blocks allocated for the file) are also
8113  * performed in this function.
8114  */
8115 static int
8116 handle_workitem_freeblocks(struct freeblks *freeblks, int flags)
8117 {
8118 	struct freework *freework;
8119 	struct newblk *newblk;
8120 	struct allocindir *aip;
8121 	struct ufsmount *ump;
8122 	struct worklist *wk;
8123 	uint64_t key;
8124 
8125 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8126 	    ("handle_workitem_freeblocks: Journal entries not written."));
8127 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8128 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8129 	ACQUIRE_LOCK(ump);
8130 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8131 		WORKLIST_REMOVE(wk);
8132 		switch (wk->wk_type) {
8133 		case D_DIRREM:
8134 			wk->wk_state |= COMPLETE;
8135 			add_to_worklist(wk, 0);
8136 			continue;
8137 
8138 		case D_ALLOCDIRECT:
8139 			free_newblk(WK_NEWBLK(wk));
8140 			continue;
8141 
8142 		case D_ALLOCINDIR:
8143 			aip = WK_ALLOCINDIR(wk);
8144 			freework = NULL;
8145 			if (aip->ai_state & DELAYEDFREE) {
8146 				FREE_LOCK(ump);
8147 				freework = newfreework(ump, freeblks, NULL,
8148 				    aip->ai_lbn, aip->ai_newblkno,
8149 				    ump->um_fs->fs_frag, 0, 0);
8150 				ACQUIRE_LOCK(ump);
8151 			}
8152 			newblk = WK_NEWBLK(wk);
8153 			if (newblk->nb_jnewblk) {
8154 				freework->fw_jnewblk = newblk->nb_jnewblk;
8155 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8156 				newblk->nb_jnewblk = NULL;
8157 			}
8158 			free_newblk(newblk);
8159 			continue;
8160 
8161 		case D_FREEWORK:
8162 			freework = WK_FREEWORK(wk);
8163 			if (freework->fw_lbn <= -UFS_NDADDR)
8164 				handle_workitem_indirblk(freework);
8165 			else
8166 				freework_freeblock(freework, key);
8167 			continue;
8168 		default:
8169 			panic("handle_workitem_freeblocks: Unknown type %s",
8170 			    TYPENAME(wk->wk_type));
8171 		}
8172 	}
8173 	if (freeblks->fb_ref != 0) {
8174 		freeblks->fb_state &= ~INPROGRESS;
8175 		wake_worklist(&freeblks->fb_list);
8176 		freeblks = NULL;
8177 	}
8178 	FREE_LOCK(ump);
8179 	ffs_blkrelease_finish(ump, key);
8180 	if (freeblks)
8181 		return handle_complete_freeblocks(freeblks, flags);
8182 	return (0);
8183 }
8184 
8185 /*
8186  * Handle completion of block free via truncate.  This allows fs_pending
8187  * to track the actual free block count more closely than if we only updated
8188  * it at the end.  We must be careful to handle cases where the block count
8189  * on free was incorrect.
8190  */
8191 static void
8192 freeblks_free(struct ufsmount *ump,
8193 	struct freeblks *freeblks,
8194 	int blocks)
8195 {
8196 	struct fs *fs;
8197 	ufs2_daddr_t remain;
8198 
8199 	UFS_LOCK(ump);
8200 	remain = -freeblks->fb_chkcnt;
8201 	freeblks->fb_chkcnt += blocks;
8202 	if (remain > 0) {
8203 		if (remain < blocks)
8204 			blocks = remain;
8205 		fs = ump->um_fs;
8206 		fs->fs_pendingblocks -= blocks;
8207 	}
8208 	UFS_UNLOCK(ump);
8209 }
8210 
8211 /*
8212  * Once all of the freework workitems are complete we can retire the
8213  * freeblocks dependency and any journal work awaiting completion.  This
8214  * can not be called until all other dependencies are stable on disk.
8215  */
8216 static int
8217 handle_complete_freeblocks(struct freeblks *freeblks, int flags)
8218 {
8219 	struct inodedep *inodedep;
8220 	struct inode *ip;
8221 	struct vnode *vp;
8222 	struct fs *fs;
8223 	struct ufsmount *ump;
8224 	ufs2_daddr_t spare;
8225 
8226 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8227 	fs = ump->um_fs;
8228 	flags = LK_EXCLUSIVE | flags;
8229 	spare = freeblks->fb_chkcnt;
8230 
8231 	/*
8232 	 * If we did not release the expected number of blocks we may have
8233 	 * to adjust the inode block count here.  Only do so if it wasn't
8234 	 * a truncation to zero and the modrev still matches.
8235 	 */
8236 	if (spare && freeblks->fb_len != 0) {
8237 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8238 		    flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8239 			return (EBUSY);
8240 		ip = VTOI(vp);
8241 		if (ip->i_mode == 0) {
8242 			vgone(vp);
8243 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8244 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8245 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8246 			/*
8247 			 * We must wait so this happens before the
8248 			 * journal is reclaimed.
8249 			 */
8250 			ffs_update(vp, 1);
8251 		}
8252 		vput(vp);
8253 	}
8254 	if (spare < 0) {
8255 		UFS_LOCK(ump);
8256 		fs->fs_pendingblocks += spare;
8257 		UFS_UNLOCK(ump);
8258 	}
8259 #ifdef QUOTA
8260 	/* Handle spare. */
8261 	if (spare)
8262 		quotaadj(freeblks->fb_quota, ump, -spare);
8263 	quotarele(freeblks->fb_quota);
8264 #endif
8265 	ACQUIRE_LOCK(ump);
8266 	if (freeblks->fb_state & ONDEPLIST) {
8267 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8268 		    0, &inodedep);
8269 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8270 		freeblks->fb_state &= ~ONDEPLIST;
8271 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8272 			free_inodedep(inodedep);
8273 	}
8274 	/*
8275 	 * All of the freeblock deps must be complete prior to this call
8276 	 * so it's now safe to complete earlier outstanding journal entries.
8277 	 */
8278 	handle_jwork(&freeblks->fb_jwork);
8279 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8280 	FREE_LOCK(ump);
8281 	return (0);
8282 }
8283 
8284 /*
8285  * Release blocks associated with the freeblks and stored in the indirect
8286  * block dbn. If level is greater than SINGLE, the block is an indirect block
8287  * and recursive calls to indirtrunc must be used to cleanse other indirect
8288  * blocks.
8289  *
8290  * This handles partial and complete truncation of blocks.  Partial is noted
8291  * with goingaway == 0.  In this case the freework is completed after the
8292  * zero'd indirects are written to disk.  For full truncation the freework
8293  * is completed after the block is freed.
8294  */
8295 static void
8296 indir_trunc(struct freework *freework,
8297 	ufs2_daddr_t dbn,
8298 	ufs_lbn_t lbn)
8299 {
8300 	struct freework *nfreework;
8301 	struct workhead wkhd;
8302 	struct freeblks *freeblks;
8303 	struct buf *bp;
8304 	struct fs *fs;
8305 	struct indirdep *indirdep;
8306 	struct mount *mp;
8307 	struct ufsmount *ump;
8308 	ufs1_daddr_t *bap1;
8309 	ufs2_daddr_t nb, nnb, *bap2;
8310 	ufs_lbn_t lbnadd, nlbn;
8311 	uint64_t key;
8312 	int nblocks, ufs1fmt, freedblocks;
8313 	int goingaway, freedeps, needj, level, cnt, i, error;
8314 
8315 	freeblks = freework->fw_freeblks;
8316 	mp = freeblks->fb_list.wk_mp;
8317 	ump = VFSTOUFS(mp);
8318 	fs = ump->um_fs;
8319 	/*
8320 	 * Get buffer of block pointers to be freed.  There are three cases:
8321 	 *
8322 	 * 1) Partial truncate caches the indirdep pointer in the freework
8323 	 *    which provides us a back copy to the save bp which holds the
8324 	 *    pointers we want to clear.  When this completes the zero
8325 	 *    pointers are written to the real copy.
8326 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8327 	 *    eliminated the real copy and placed the indirdep on the saved
8328 	 *    copy.  The indirdep and buf are discarded when this completes.
8329 	 * 3) The indirect was not in memory, we read a copy off of the disk
8330 	 *    using the devvp and drop and invalidate the buffer when we're
8331 	 *    done.
8332 	 */
8333 	goingaway = 1;
8334 	indirdep = NULL;
8335 	if (freework->fw_indir != NULL) {
8336 		goingaway = 0;
8337 		indirdep = freework->fw_indir;
8338 		bp = indirdep->ir_savebp;
8339 		if (bp == NULL || bp->b_blkno != dbn)
8340 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8341 			    bp, (intmax_t)dbn);
8342 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8343 		/*
8344 		 * The lock prevents the buf dep list from changing and
8345 	 	 * indirects on devvp should only ever have one dependency.
8346 		 */
8347 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8348 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8349 			panic("indir_trunc: Bad indirdep %p from buf %p",
8350 			    indirdep, bp);
8351 	} else {
8352 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8353 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8354 		if (error)
8355 			return;
8356 	}
8357 	ACQUIRE_LOCK(ump);
8358 	/* Protects against a race with complete_trunc_indir(). */
8359 	freework->fw_state &= ~INPROGRESS;
8360 	/*
8361 	 * If we have an indirdep we need to enforce the truncation order
8362 	 * and discard it when it is complete.
8363 	 */
8364 	if (indirdep) {
8365 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8366 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8367 			/*
8368 			 * Add the complete truncate to the list on the
8369 			 * indirdep to enforce in-order processing.
8370 			 */
8371 			if (freework->fw_indir == NULL)
8372 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8373 				    freework, fw_next);
8374 			FREE_LOCK(ump);
8375 			return;
8376 		}
8377 		/*
8378 		 * If we're goingaway, free the indirdep.  Otherwise it will
8379 		 * linger until the write completes.
8380 		 */
8381 		if (goingaway) {
8382 			KASSERT(indirdep->ir_savebp == bp,
8383 			    ("indir_trunc: losing ir_savebp %p",
8384 			    indirdep->ir_savebp));
8385 			indirdep->ir_savebp = NULL;
8386 			free_indirdep(indirdep);
8387 		}
8388 	}
8389 	FREE_LOCK(ump);
8390 	/* Initialize pointers depending on block size. */
8391 	if (ump->um_fstype == UFS1) {
8392 		bap1 = (ufs1_daddr_t *)bp->b_data;
8393 		nb = bap1[freework->fw_off];
8394 		ufs1fmt = 1;
8395 		bap2 = NULL;
8396 	} else {
8397 		bap2 = (ufs2_daddr_t *)bp->b_data;
8398 		nb = bap2[freework->fw_off];
8399 		ufs1fmt = 0;
8400 		bap1 = NULL;
8401 	}
8402 	level = lbn_level(lbn);
8403 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8404 	lbnadd = lbn_offset(fs, level);
8405 	nblocks = btodb(fs->fs_bsize);
8406 	nfreework = freework;
8407 	freedeps = 0;
8408 	cnt = 0;
8409 	/*
8410 	 * Reclaim blocks.  Traverses into nested indirect levels and
8411 	 * arranges for the current level to be freed when subordinates
8412 	 * are free when journaling.
8413 	 */
8414 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8415 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8416 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8417 		    fs->fs_bsize) != 0)
8418 			nb = 0;
8419 		if (i != NINDIR(fs) - 1) {
8420 			if (ufs1fmt)
8421 				nnb = bap1[i+1];
8422 			else
8423 				nnb = bap2[i+1];
8424 		} else
8425 			nnb = 0;
8426 		if (nb == 0)
8427 			continue;
8428 		cnt++;
8429 		if (level != 0) {
8430 			nlbn = (lbn + 1) - (i * lbnadd);
8431 			if (needj != 0) {
8432 				nfreework = newfreework(ump, freeblks, freework,
8433 				    nlbn, nb, fs->fs_frag, 0, 0);
8434 				freedeps++;
8435 			}
8436 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8437 		} else {
8438 			struct freedep *freedep;
8439 
8440 			/*
8441 			 * Attempt to aggregate freedep dependencies for
8442 			 * all blocks being released to the same CG.
8443 			 */
8444 			LIST_INIT(&wkhd);
8445 			if (needj != 0 &&
8446 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8447 				freedep = newfreedep(freework);
8448 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8449 				    &freedep->fd_list);
8450 				freedeps++;
8451 			}
8452 			CTR3(KTR_SUJ,
8453 			    "indir_trunc: ino %jd blkno %jd size %d",
8454 			    freeblks->fb_inum, nb, fs->fs_bsize);
8455 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8456 			    fs->fs_bsize, freeblks->fb_inum,
8457 			    freeblks->fb_vtype, &wkhd, key);
8458 		}
8459 	}
8460 	ffs_blkrelease_finish(ump, key);
8461 	if (goingaway) {
8462 		bp->b_flags |= B_INVAL | B_NOCACHE;
8463 		brelse(bp);
8464 	}
8465 	freedblocks = 0;
8466 	if (level == 0)
8467 		freedblocks = (nblocks * cnt);
8468 	if (needj == 0)
8469 		freedblocks += nblocks;
8470 	freeblks_free(ump, freeblks, freedblocks);
8471 	/*
8472 	 * If we are journaling set up the ref counts and offset so this
8473 	 * indirect can be completed when its children are free.
8474 	 */
8475 	if (needj) {
8476 		ACQUIRE_LOCK(ump);
8477 		freework->fw_off = i;
8478 		freework->fw_ref += freedeps;
8479 		freework->fw_ref -= NINDIR(fs) + 1;
8480 		if (level == 0)
8481 			freeblks->fb_cgwait += freedeps;
8482 		if (freework->fw_ref == 0)
8483 			freework_freeblock(freework, SINGLETON_KEY);
8484 		FREE_LOCK(ump);
8485 		return;
8486 	}
8487 	/*
8488 	 * If we're not journaling we can free the indirect now.
8489 	 */
8490 	dbn = dbtofsb(fs, dbn);
8491 	CTR3(KTR_SUJ,
8492 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8493 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8494 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8495 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8496 	/* Non SUJ softdep does single-threaded truncations. */
8497 	if (freework->fw_blkno == dbn) {
8498 		freework->fw_state |= ALLCOMPLETE;
8499 		ACQUIRE_LOCK(ump);
8500 		handle_written_freework(freework);
8501 		FREE_LOCK(ump);
8502 	}
8503 	return;
8504 }
8505 
8506 /*
8507  * Cancel an allocindir when it is removed via truncation.  When bp is not
8508  * NULL the indirect never appeared on disk and is scheduled to be freed
8509  * independently of the indir so we can more easily track journal work.
8510  */
8511 static void
8512 cancel_allocindir(
8513 	struct allocindir *aip,
8514 	struct buf *bp,
8515 	struct freeblks *freeblks,
8516 	int trunc)
8517 {
8518 	struct indirdep *indirdep;
8519 	struct freefrag *freefrag;
8520 	struct newblk *newblk;
8521 
8522 	newblk = (struct newblk *)aip;
8523 	LIST_REMOVE(aip, ai_next);
8524 	/*
8525 	 * We must eliminate the pointer in bp if it must be freed on its
8526 	 * own due to partial truncate or pending journal work.
8527 	 */
8528 	if (bp && (trunc || newblk->nb_jnewblk)) {
8529 		/*
8530 		 * Clear the pointer and mark the aip to be freed
8531 		 * directly if it never existed on disk.
8532 		 */
8533 		aip->ai_state |= DELAYEDFREE;
8534 		indirdep = aip->ai_indirdep;
8535 		if (indirdep->ir_state & UFS1FMT)
8536 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8537 		else
8538 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8539 	}
8540 	/*
8541 	 * When truncating the previous pointer will be freed via
8542 	 * savedbp.  Eliminate the freefrag which would dup free.
8543 	 */
8544 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8545 		newblk->nb_freefrag = NULL;
8546 		if (freefrag->ff_jdep)
8547 			cancel_jfreefrag(
8548 			    WK_JFREEFRAG(freefrag->ff_jdep));
8549 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8550 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8551 	}
8552 	/*
8553 	 * If the journal hasn't been written the jnewblk must be passed
8554 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8555 	 * this by leaving the journal dependency on the newblk to be freed
8556 	 * when a freework is created in handle_workitem_freeblocks().
8557 	 */
8558 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8559 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8560 }
8561 
8562 /*
8563  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8564  * in to a newdirblk so any subsequent additions are tracked properly.  The
8565  * caller is responsible for adding the mkdir1 dependency to the journal
8566  * and updating id_mkdiradd.  This function returns with the per-filesystem
8567  * lock held.
8568  */
8569 static struct mkdir *
8570 setup_newdir(
8571 	struct diradd *dap,
8572 	ino_t newinum,
8573 	ino_t dinum,
8574 	struct buf *newdirbp,
8575 	struct mkdir **mkdirp)
8576 {
8577 	struct newblk *newblk;
8578 	struct pagedep *pagedep;
8579 	struct inodedep *inodedep;
8580 	struct newdirblk *newdirblk;
8581 	struct mkdir *mkdir1, *mkdir2;
8582 	struct worklist *wk;
8583 	struct jaddref *jaddref;
8584 	struct ufsmount *ump;
8585 	struct mount *mp;
8586 
8587 	mp = dap->da_list.wk_mp;
8588 	ump = VFSTOUFS(mp);
8589 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8590 	    M_SOFTDEP_FLAGS);
8591 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8592 	LIST_INIT(&newdirblk->db_mkdir);
8593 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8594 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8595 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8596 	mkdir1->md_diradd = dap;
8597 	mkdir1->md_jaddref = NULL;
8598 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8599 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8600 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8601 	mkdir2->md_diradd = dap;
8602 	mkdir2->md_jaddref = NULL;
8603 	if (MOUNTEDSUJ(mp) == 0) {
8604 		mkdir1->md_state |= DEPCOMPLETE;
8605 		mkdir2->md_state |= DEPCOMPLETE;
8606 	}
8607 	/*
8608 	 * Dependency on "." and ".." being written to disk.
8609 	 */
8610 	mkdir1->md_buf = newdirbp;
8611 	ACQUIRE_LOCK(VFSTOUFS(mp));
8612 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8613 	/*
8614 	 * We must link the pagedep, allocdirect, and newdirblk for
8615 	 * the initial file page so the pointer to the new directory
8616 	 * is not written until the directory contents are live and
8617 	 * any subsequent additions are not marked live until the
8618 	 * block is reachable via the inode.
8619 	 */
8620 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8621 		panic("setup_newdir: lost pagedep");
8622 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8623 		if (wk->wk_type == D_ALLOCDIRECT)
8624 			break;
8625 	if (wk == NULL)
8626 		panic("setup_newdir: lost allocdirect");
8627 	if (pagedep->pd_state & NEWBLOCK)
8628 		panic("setup_newdir: NEWBLOCK already set");
8629 	newblk = WK_NEWBLK(wk);
8630 	pagedep->pd_state |= NEWBLOCK;
8631 	pagedep->pd_newdirblk = newdirblk;
8632 	newdirblk->db_pagedep = pagedep;
8633 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8634 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8635 	/*
8636 	 * Look up the inodedep for the parent directory so that we
8637 	 * can link mkdir2 into the pending dotdot jaddref or
8638 	 * the inode write if there is none.  If the inode is
8639 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8640 	 * been satisfied and mkdir2 can be freed.
8641 	 */
8642 	inodedep_lookup(mp, dinum, 0, &inodedep);
8643 	if (MOUNTEDSUJ(mp)) {
8644 		if (inodedep == NULL)
8645 			panic("setup_newdir: Lost parent.");
8646 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8647 		    inoreflst);
8648 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8649 		    (jaddref->ja_state & MKDIR_PARENT),
8650 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8651 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8652 		mkdir2->md_jaddref = jaddref;
8653 		jaddref->ja_mkdir = mkdir2;
8654 	} else if (inodedep == NULL ||
8655 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8656 		dap->da_state &= ~MKDIR_PARENT;
8657 		WORKITEM_FREE(mkdir2, D_MKDIR);
8658 		mkdir2 = NULL;
8659 	} else {
8660 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8661 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8662 	}
8663 	*mkdirp = mkdir2;
8664 
8665 	return (mkdir1);
8666 }
8667 
8668 /*
8669  * Directory entry addition dependencies.
8670  *
8671  * When adding a new directory entry, the inode (with its incremented link
8672  * count) must be written to disk before the directory entry's pointer to it.
8673  * Also, if the inode is newly allocated, the corresponding freemap must be
8674  * updated (on disk) before the directory entry's pointer. These requirements
8675  * are met via undo/redo on the directory entry's pointer, which consists
8676  * simply of the inode number.
8677  *
8678  * As directory entries are added and deleted, the free space within a
8679  * directory block can become fragmented.  The ufs filesystem will compact
8680  * a fragmented directory block to make space for a new entry. When this
8681  * occurs, the offsets of previously added entries change. Any "diradd"
8682  * dependency structures corresponding to these entries must be updated with
8683  * the new offsets.
8684  */
8685 
8686 /*
8687  * This routine is called after the in-memory inode's link
8688  * count has been incremented, but before the directory entry's
8689  * pointer to the inode has been set.
8690  */
8691 int
8692 softdep_setup_directory_add(
8693 	struct buf *bp,		/* buffer containing directory block */
8694 	struct inode *dp,	/* inode for directory */
8695 	off_t diroffset,	/* offset of new entry in directory */
8696 	ino_t newinum,		/* inode referenced by new directory entry */
8697 	struct buf *newdirbp,	/* non-NULL => contents of new mkdir */
8698 	int isnewblk)		/* entry is in a newly allocated block */
8699 {
8700 	int offset;		/* offset of new entry within directory block */
8701 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8702 	struct fs *fs;
8703 	struct diradd *dap;
8704 	struct newblk *newblk;
8705 	struct pagedep *pagedep;
8706 	struct inodedep *inodedep;
8707 	struct newdirblk *newdirblk;
8708 	struct mkdir *mkdir1, *mkdir2;
8709 	struct jaddref *jaddref;
8710 	struct ufsmount *ump;
8711 	struct mount *mp;
8712 	int isindir;
8713 
8714 	mp = ITOVFS(dp);
8715 	ump = VFSTOUFS(mp);
8716 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8717 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8718 	/*
8719 	 * Whiteouts have no dependencies.
8720 	 */
8721 	if (newinum == UFS_WINO) {
8722 		if (newdirbp != NULL)
8723 			bdwrite(newdirbp);
8724 		return (0);
8725 	}
8726 	jaddref = NULL;
8727 	mkdir1 = mkdir2 = NULL;
8728 	fs = ump->um_fs;
8729 	lbn = lblkno(fs, diroffset);
8730 	offset = blkoff(fs, diroffset);
8731 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8732 		M_SOFTDEP_FLAGS|M_ZERO);
8733 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8734 	dap->da_offset = offset;
8735 	dap->da_newinum = newinum;
8736 	dap->da_state = ATTACHED;
8737 	LIST_INIT(&dap->da_jwork);
8738 	isindir = bp->b_lblkno >= UFS_NDADDR;
8739 	newdirblk = NULL;
8740 	if (isnewblk &&
8741 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8742 		newdirblk = malloc(sizeof(struct newdirblk),
8743 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8744 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8745 		LIST_INIT(&newdirblk->db_mkdir);
8746 	}
8747 	/*
8748 	 * If we're creating a new directory setup the dependencies and set
8749 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8750 	 * we can move on.
8751 	 */
8752 	if (newdirbp == NULL) {
8753 		dap->da_state |= DEPCOMPLETE;
8754 		ACQUIRE_LOCK(ump);
8755 	} else {
8756 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8757 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8758 		    &mkdir2);
8759 	}
8760 	/*
8761 	 * Link into parent directory pagedep to await its being written.
8762 	 */
8763 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8764 #ifdef INVARIANTS
8765 	if (diradd_lookup(pagedep, offset) != NULL)
8766 		panic("softdep_setup_directory_add: %p already at off %d\n",
8767 		    diradd_lookup(pagedep, offset), offset);
8768 #endif
8769 	dap->da_pagedep = pagedep;
8770 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8771 	    da_pdlist);
8772 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8773 	/*
8774 	 * If we're journaling, link the diradd into the jaddref so it
8775 	 * may be completed after the journal entry is written.  Otherwise,
8776 	 * link the diradd into its inodedep.  If the inode is not yet
8777 	 * written place it on the bufwait list, otherwise do the post-inode
8778 	 * write processing to put it on the id_pendinghd list.
8779 	 */
8780 	if (MOUNTEDSUJ(mp)) {
8781 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8782 		    inoreflst);
8783 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8784 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8785 		jaddref->ja_diroff = diroffset;
8786 		jaddref->ja_diradd = dap;
8787 		add_to_journal(&jaddref->ja_list);
8788 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8789 		diradd_inode_written(dap, inodedep);
8790 	else
8791 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8792 	/*
8793 	 * Add the journal entries for . and .. links now that the primary
8794 	 * link is written.
8795 	 */
8796 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8797 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8798 		    inoreflst, if_deps);
8799 		KASSERT(jaddref != NULL &&
8800 		    jaddref->ja_ino == jaddref->ja_parent &&
8801 		    (jaddref->ja_state & MKDIR_BODY),
8802 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8803 		    jaddref));
8804 		mkdir1->md_jaddref = jaddref;
8805 		jaddref->ja_mkdir = mkdir1;
8806 		/*
8807 		 * It is important that the dotdot journal entry
8808 		 * is added prior to the dot entry since dot writes
8809 		 * both the dot and dotdot links.  These both must
8810 		 * be added after the primary link for the journal
8811 		 * to remain consistent.
8812 		 */
8813 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8814 		add_to_journal(&jaddref->ja_list);
8815 	}
8816 	/*
8817 	 * If we are adding a new directory remember this diradd so that if
8818 	 * we rename it we can keep the dot and dotdot dependencies.  If
8819 	 * we are adding a new name for an inode that has a mkdiradd we
8820 	 * must be in rename and we have to move the dot and dotdot
8821 	 * dependencies to this new name.  The old name is being orphaned
8822 	 * soon.
8823 	 */
8824 	if (mkdir1 != NULL) {
8825 		if (inodedep->id_mkdiradd != NULL)
8826 			panic("softdep_setup_directory_add: Existing mkdir");
8827 		inodedep->id_mkdiradd = dap;
8828 	} else if (inodedep->id_mkdiradd)
8829 		merge_diradd(inodedep, dap);
8830 	if (newdirblk != NULL) {
8831 		/*
8832 		 * There is nothing to do if we are already tracking
8833 		 * this block.
8834 		 */
8835 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8836 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8837 			FREE_LOCK(ump);
8838 			return (0);
8839 		}
8840 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8841 		    == 0)
8842 			panic("softdep_setup_directory_add: lost entry");
8843 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8844 		pagedep->pd_state |= NEWBLOCK;
8845 		pagedep->pd_newdirblk = newdirblk;
8846 		newdirblk->db_pagedep = pagedep;
8847 		FREE_LOCK(ump);
8848 		/*
8849 		 * If we extended into an indirect signal direnter to sync.
8850 		 */
8851 		if (isindir)
8852 			return (1);
8853 		return (0);
8854 	}
8855 	FREE_LOCK(ump);
8856 	return (0);
8857 }
8858 
8859 /*
8860  * This procedure is called to change the offset of a directory
8861  * entry when compacting a directory block which must be owned
8862  * exclusively by the caller. Note that the actual entry movement
8863  * must be done in this procedure to ensure that no I/O completions
8864  * occur while the move is in progress.
8865  */
8866 void
8867 softdep_change_directoryentry_offset(
8868 	struct buf *bp,		/* Buffer holding directory block. */
8869 	struct inode *dp,	/* inode for directory */
8870 	caddr_t base,		/* address of dp->i_offset */
8871 	caddr_t oldloc,		/* address of old directory location */
8872 	caddr_t newloc,		/* address of new directory location */
8873 	int entrysize)		/* size of directory entry */
8874 {
8875 	int offset, oldoffset, newoffset;
8876 	struct pagedep *pagedep;
8877 	struct jmvref *jmvref;
8878 	struct diradd *dap;
8879 	struct direct *de;
8880 	struct mount *mp;
8881 	struct ufsmount *ump;
8882 	ufs_lbn_t lbn;
8883 	int flags;
8884 
8885 	mp = ITOVFS(dp);
8886 	ump = VFSTOUFS(mp);
8887 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8888 	    ("softdep_change_directoryentry_offset called on "
8889 	     "non-softdep filesystem"));
8890 	de = (struct direct *)oldloc;
8891 	jmvref = NULL;
8892 	flags = 0;
8893 	/*
8894 	 * Moves are always journaled as it would be too complex to
8895 	 * determine if any affected adds or removes are present in the
8896 	 * journal.
8897 	 */
8898 	if (MOUNTEDSUJ(mp)) {
8899 		flags = DEPALLOC;
8900 		jmvref = newjmvref(dp, de->d_ino,
8901 		    I_OFFSET(dp) + (oldloc - base),
8902 		    I_OFFSET(dp) + (newloc - base));
8903 	}
8904 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
8905 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
8906 	oldoffset = offset + (oldloc - base);
8907 	newoffset = offset + (newloc - base);
8908 	ACQUIRE_LOCK(ump);
8909 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8910 		goto done;
8911 	dap = diradd_lookup(pagedep, oldoffset);
8912 	if (dap) {
8913 		dap->da_offset = newoffset;
8914 		newoffset = DIRADDHASH(newoffset);
8915 		oldoffset = DIRADDHASH(oldoffset);
8916 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8917 		    newoffset != oldoffset) {
8918 			LIST_REMOVE(dap, da_pdlist);
8919 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8920 			    dap, da_pdlist);
8921 		}
8922 	}
8923 done:
8924 	if (jmvref) {
8925 		jmvref->jm_pagedep = pagedep;
8926 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8927 		add_to_journal(&jmvref->jm_list);
8928 	}
8929 	bcopy(oldloc, newloc, entrysize);
8930 	FREE_LOCK(ump);
8931 }
8932 
8933 /*
8934  * Move the mkdir dependencies and journal work from one diradd to another
8935  * when renaming a directory.  The new name must depend on the mkdir deps
8936  * completing as the old name did.  Directories can only have one valid link
8937  * at a time so one must be canonical.
8938  */
8939 static void
8940 merge_diradd(struct inodedep *inodedep, struct diradd *newdap)
8941 {
8942 	struct diradd *olddap;
8943 	struct mkdir *mkdir, *nextmd;
8944 	struct ufsmount *ump;
8945 	short state;
8946 
8947 	olddap = inodedep->id_mkdiradd;
8948 	inodedep->id_mkdiradd = newdap;
8949 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8950 		newdap->da_state &= ~DEPCOMPLETE;
8951 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8952 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8953 		     mkdir = nextmd) {
8954 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8955 			if (mkdir->md_diradd != olddap)
8956 				continue;
8957 			mkdir->md_diradd = newdap;
8958 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8959 			newdap->da_state |= state;
8960 			olddap->da_state &= ~state;
8961 			if ((olddap->da_state &
8962 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8963 				break;
8964 		}
8965 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8966 			panic("merge_diradd: unfound ref");
8967 	}
8968 	/*
8969 	 * Any mkdir related journal items are not safe to be freed until
8970 	 * the new name is stable.
8971 	 */
8972 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8973 	olddap->da_state |= DEPCOMPLETE;
8974 	complete_diradd(olddap);
8975 }
8976 
8977 /*
8978  * Move the diradd to the pending list when all diradd dependencies are
8979  * complete.
8980  */
8981 static void
8982 complete_diradd(struct diradd *dap)
8983 {
8984 	struct pagedep *pagedep;
8985 
8986 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8987 		if (dap->da_state & DIRCHG)
8988 			pagedep = dap->da_previous->dm_pagedep;
8989 		else
8990 			pagedep = dap->da_pagedep;
8991 		LIST_REMOVE(dap, da_pdlist);
8992 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8993 	}
8994 }
8995 
8996 /*
8997  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8998  * add entries and conditionally journal the remove.
8999  */
9000 static void
9001 cancel_diradd(
9002 	struct diradd *dap,
9003 	struct dirrem *dirrem,
9004 	struct jremref *jremref,
9005 	struct jremref *dotremref,
9006 	struct jremref *dotdotremref)
9007 {
9008 	struct inodedep *inodedep;
9009 	struct jaddref *jaddref;
9010 	struct inoref *inoref;
9011 	struct ufsmount *ump;
9012 	struct mkdir *mkdir;
9013 
9014 	/*
9015 	 * If no remove references were allocated we're on a non-journaled
9016 	 * filesystem and can skip the cancel step.
9017 	 */
9018 	if (jremref == NULL) {
9019 		free_diradd(dap, NULL);
9020 		return;
9021 	}
9022 	/*
9023 	 * Cancel the primary name an free it if it does not require
9024 	 * journaling.
9025 	 */
9026 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9027 	    0, &inodedep) != 0) {
9028 		/* Abort the addref that reference this diradd.  */
9029 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9030 			if (inoref->if_list.wk_type != D_JADDREF)
9031 				continue;
9032 			jaddref = (struct jaddref *)inoref;
9033 			if (jaddref->ja_diradd != dap)
9034 				continue;
9035 			if (cancel_jaddref(jaddref, inodedep,
9036 			    &dirrem->dm_jwork) == 0) {
9037 				free_jremref(jremref);
9038 				jremref = NULL;
9039 			}
9040 			break;
9041 		}
9042 	}
9043 	/*
9044 	 * Cancel subordinate names and free them if they do not require
9045 	 * journaling.
9046 	 */
9047 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9048 		ump = VFSTOUFS(dap->da_list.wk_mp);
9049 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9050 			if (mkdir->md_diradd != dap)
9051 				continue;
9052 			if ((jaddref = mkdir->md_jaddref) == NULL)
9053 				continue;
9054 			mkdir->md_jaddref = NULL;
9055 			if (mkdir->md_state & MKDIR_PARENT) {
9056 				if (cancel_jaddref(jaddref, NULL,
9057 				    &dirrem->dm_jwork) == 0) {
9058 					free_jremref(dotdotremref);
9059 					dotdotremref = NULL;
9060 				}
9061 			} else {
9062 				if (cancel_jaddref(jaddref, inodedep,
9063 				    &dirrem->dm_jwork) == 0) {
9064 					free_jremref(dotremref);
9065 					dotremref = NULL;
9066 				}
9067 			}
9068 		}
9069 	}
9070 
9071 	if (jremref)
9072 		journal_jremref(dirrem, jremref, inodedep);
9073 	if (dotremref)
9074 		journal_jremref(dirrem, dotremref, inodedep);
9075 	if (dotdotremref)
9076 		journal_jremref(dirrem, dotdotremref, NULL);
9077 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9078 	free_diradd(dap, &dirrem->dm_jwork);
9079 }
9080 
9081 /*
9082  * Free a diradd dependency structure.
9083  */
9084 static void
9085 free_diradd(struct diradd *dap, struct workhead *wkhd)
9086 {
9087 	struct dirrem *dirrem;
9088 	struct pagedep *pagedep;
9089 	struct inodedep *inodedep;
9090 	struct mkdir *mkdir, *nextmd;
9091 	struct ufsmount *ump;
9092 
9093 	ump = VFSTOUFS(dap->da_list.wk_mp);
9094 	LOCK_OWNED(ump);
9095 	LIST_REMOVE(dap, da_pdlist);
9096 	if (dap->da_state & ONWORKLIST)
9097 		WORKLIST_REMOVE(&dap->da_list);
9098 	if ((dap->da_state & DIRCHG) == 0) {
9099 		pagedep = dap->da_pagedep;
9100 	} else {
9101 		dirrem = dap->da_previous;
9102 		pagedep = dirrem->dm_pagedep;
9103 		dirrem->dm_dirinum = pagedep->pd_ino;
9104 		dirrem->dm_state |= COMPLETE;
9105 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9106 			add_to_worklist(&dirrem->dm_list, 0);
9107 	}
9108 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9109 	    0, &inodedep) != 0)
9110 		if (inodedep->id_mkdiradd == dap)
9111 			inodedep->id_mkdiradd = NULL;
9112 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9113 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9114 		     mkdir = nextmd) {
9115 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9116 			if (mkdir->md_diradd != dap)
9117 				continue;
9118 			dap->da_state &=
9119 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9120 			LIST_REMOVE(mkdir, md_mkdirs);
9121 			if (mkdir->md_state & ONWORKLIST)
9122 				WORKLIST_REMOVE(&mkdir->md_list);
9123 			if (mkdir->md_jaddref != NULL)
9124 				panic("free_diradd: Unexpected jaddref");
9125 			WORKITEM_FREE(mkdir, D_MKDIR);
9126 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9127 				break;
9128 		}
9129 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9130 			panic("free_diradd: unfound ref");
9131 	}
9132 	if (inodedep)
9133 		free_inodedep(inodedep);
9134 	/*
9135 	 * Free any journal segments waiting for the directory write.
9136 	 */
9137 	handle_jwork(&dap->da_jwork);
9138 	WORKITEM_FREE(dap, D_DIRADD);
9139 }
9140 
9141 /*
9142  * Directory entry removal dependencies.
9143  *
9144  * When removing a directory entry, the entry's inode pointer must be
9145  * zero'ed on disk before the corresponding inode's link count is decremented
9146  * (possibly freeing the inode for re-use). This dependency is handled by
9147  * updating the directory entry but delaying the inode count reduction until
9148  * after the directory block has been written to disk. After this point, the
9149  * inode count can be decremented whenever it is convenient.
9150  */
9151 
9152 /*
9153  * This routine should be called immediately after removing
9154  * a directory entry.  The inode's link count should not be
9155  * decremented by the calling procedure -- the soft updates
9156  * code will do this task when it is safe.
9157  */
9158 void
9159 softdep_setup_remove(
9160 	struct buf *bp,		/* buffer containing directory block */
9161 	struct inode *dp,	/* inode for the directory being modified */
9162 	struct inode *ip,	/* inode for directory entry being removed */
9163 	int isrmdir)		/* indicates if doing RMDIR */
9164 {
9165 	struct dirrem *dirrem, *prevdirrem;
9166 	struct inodedep *inodedep;
9167 	struct ufsmount *ump;
9168 	int direct;
9169 
9170 	ump = ITOUMP(ip);
9171 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9172 	    ("softdep_setup_remove called on non-softdep filesystem"));
9173 	/*
9174 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9175 	 * newdirrem() to setup the full directory remove which requires
9176 	 * isrmdir > 1.
9177 	 */
9178 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9179 	/*
9180 	 * Add the dirrem to the inodedep's pending remove list for quick
9181 	 * discovery later.
9182 	 */
9183 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9184 		panic("softdep_setup_remove: Lost inodedep.");
9185 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9186 	dirrem->dm_state |= ONDEPLIST;
9187 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9188 
9189 	/*
9190 	 * If the COMPLETE flag is clear, then there were no active
9191 	 * entries and we want to roll back to a zeroed entry until
9192 	 * the new inode is committed to disk. If the COMPLETE flag is
9193 	 * set then we have deleted an entry that never made it to
9194 	 * disk. If the entry we deleted resulted from a name change,
9195 	 * then the old name still resides on disk. We cannot delete
9196 	 * its inode (returned to us in prevdirrem) until the zeroed
9197 	 * directory entry gets to disk. The new inode has never been
9198 	 * referenced on the disk, so can be deleted immediately.
9199 	 */
9200 	if ((dirrem->dm_state & COMPLETE) == 0) {
9201 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9202 		    dm_next);
9203 		FREE_LOCK(ump);
9204 	} else {
9205 		if (prevdirrem != NULL)
9206 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9207 			    prevdirrem, dm_next);
9208 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9209 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9210 		FREE_LOCK(ump);
9211 		if (direct)
9212 			handle_workitem_remove(dirrem, 0);
9213 	}
9214 }
9215 
9216 /*
9217  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9218  * pd_pendinghd list of a pagedep.
9219  */
9220 static struct diradd *
9221 diradd_lookup(struct pagedep *pagedep, int offset)
9222 {
9223 	struct diradd *dap;
9224 
9225 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9226 		if (dap->da_offset == offset)
9227 			return (dap);
9228 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9229 		if (dap->da_offset == offset)
9230 			return (dap);
9231 	return (NULL);
9232 }
9233 
9234 /*
9235  * Search for a .. diradd dependency in a directory that is being removed.
9236  * If the directory was renamed to a new parent we have a diradd rather
9237  * than a mkdir for the .. entry.  We need to cancel it now before
9238  * it is found in truncate().
9239  */
9240 static struct jremref *
9241 cancel_diradd_dotdot(struct inode *ip,
9242 	struct dirrem *dirrem,
9243 	struct jremref *jremref)
9244 {
9245 	struct pagedep *pagedep;
9246 	struct diradd *dap;
9247 	struct worklist *wk;
9248 
9249 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9250 		return (jremref);
9251 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9252 	if (dap == NULL)
9253 		return (jremref);
9254 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9255 	/*
9256 	 * Mark any journal work as belonging to the parent so it is freed
9257 	 * with the .. reference.
9258 	 */
9259 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9260 		wk->wk_state |= MKDIR_PARENT;
9261 	return (NULL);
9262 }
9263 
9264 /*
9265  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9266  * replace it with a dirrem/diradd pair as a result of re-parenting a
9267  * directory.  This ensures that we don't simultaneously have a mkdir and
9268  * a diradd for the same .. entry.
9269  */
9270 static struct jremref *
9271 cancel_mkdir_dotdot(struct inode *ip,
9272 	struct dirrem *dirrem,
9273 	struct jremref *jremref)
9274 {
9275 	struct inodedep *inodedep;
9276 	struct jaddref *jaddref;
9277 	struct ufsmount *ump;
9278 	struct mkdir *mkdir;
9279 	struct diradd *dap;
9280 	struct mount *mp;
9281 
9282 	mp = ITOVFS(ip);
9283 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9284 		return (jremref);
9285 	dap = inodedep->id_mkdiradd;
9286 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9287 		return (jremref);
9288 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9289 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9290 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9291 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9292 			break;
9293 	if (mkdir == NULL)
9294 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9295 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9296 		mkdir->md_jaddref = NULL;
9297 		jaddref->ja_state &= ~MKDIR_PARENT;
9298 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9299 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9300 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9301 			journal_jremref(dirrem, jremref, inodedep);
9302 			jremref = NULL;
9303 		}
9304 	}
9305 	if (mkdir->md_state & ONWORKLIST)
9306 		WORKLIST_REMOVE(&mkdir->md_list);
9307 	mkdir->md_state |= ALLCOMPLETE;
9308 	complete_mkdir(mkdir);
9309 	return (jremref);
9310 }
9311 
9312 static void
9313 journal_jremref(struct dirrem *dirrem,
9314 	struct jremref *jremref,
9315 	struct inodedep *inodedep)
9316 {
9317 
9318 	if (inodedep == NULL)
9319 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9320 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9321 			panic("journal_jremref: Lost inodedep");
9322 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9323 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9324 	add_to_journal(&jremref->jr_list);
9325 }
9326 
9327 static void
9328 dirrem_journal(
9329 	struct dirrem *dirrem,
9330 	struct jremref *jremref,
9331 	struct jremref *dotremref,
9332 	struct jremref *dotdotremref)
9333 {
9334 	struct inodedep *inodedep;
9335 
9336 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9337 	    &inodedep) == 0)
9338 		panic("dirrem_journal: Lost inodedep");
9339 	journal_jremref(dirrem, jremref, inodedep);
9340 	if (dotremref)
9341 		journal_jremref(dirrem, dotremref, inodedep);
9342 	if (dotdotremref)
9343 		journal_jremref(dirrem, dotdotremref, NULL);
9344 }
9345 
9346 /*
9347  * Allocate a new dirrem if appropriate and return it along with
9348  * its associated pagedep. Called without a lock, returns with lock.
9349  */
9350 static struct dirrem *
9351 newdirrem(
9352 	struct buf *bp,		/* buffer containing directory block */
9353 	struct inode *dp,	/* inode for the directory being modified */
9354 	struct inode *ip,	/* inode for directory entry being removed */
9355 	int isrmdir,		/* indicates if doing RMDIR */
9356 	struct dirrem **prevdirremp) /* previously referenced inode, if any */
9357 {
9358 	int offset;
9359 	ufs_lbn_t lbn;
9360 	struct diradd *dap;
9361 	struct dirrem *dirrem;
9362 	struct pagedep *pagedep;
9363 	struct jremref *jremref;
9364 	struct jremref *dotremref;
9365 	struct jremref *dotdotremref;
9366 	struct vnode *dvp;
9367 	struct ufsmount *ump;
9368 
9369 	/*
9370 	 * Whiteouts have no deletion dependencies.
9371 	 */
9372 	if (ip == NULL)
9373 		panic("newdirrem: whiteout");
9374 	dvp = ITOV(dp);
9375 	ump = ITOUMP(dp);
9376 
9377 	/*
9378 	 * If the system is over its limit and our filesystem is
9379 	 * responsible for more than our share of that usage and
9380 	 * we are not a snapshot, request some inodedep cleanup.
9381 	 * Limiting the number of dirrem structures will also limit
9382 	 * the number of freefile and freeblks structures.
9383 	 */
9384 	ACQUIRE_LOCK(ump);
9385 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9386 		schedule_cleanup(UFSTOVFS(ump));
9387 	else
9388 		FREE_LOCK(ump);
9389 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9390 	    M_ZERO);
9391 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9392 	LIST_INIT(&dirrem->dm_jremrefhd);
9393 	LIST_INIT(&dirrem->dm_jwork);
9394 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9395 	dirrem->dm_oldinum = ip->i_number;
9396 	*prevdirremp = NULL;
9397 	/*
9398 	 * Allocate remove reference structures to track journal write
9399 	 * dependencies.  We will always have one for the link and
9400 	 * when doing directories we will always have one more for dot.
9401 	 * When renaming a directory we skip the dotdot link change so
9402 	 * this is not needed.
9403 	 */
9404 	jremref = dotremref = dotdotremref = NULL;
9405 	if (DOINGSUJ(dvp)) {
9406 		if (isrmdir) {
9407 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9408 			    ip->i_effnlink + 2);
9409 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9410 			    ip->i_effnlink + 1);
9411 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9412 			    dp->i_effnlink + 1);
9413 			dotdotremref->jr_state |= MKDIR_PARENT;
9414 		} else
9415 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9416 			    ip->i_effnlink + 1);
9417 	}
9418 	ACQUIRE_LOCK(ump);
9419 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9420 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9421 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9422 	    &pagedep);
9423 	dirrem->dm_pagedep = pagedep;
9424 	dirrem->dm_offset = offset;
9425 	/*
9426 	 * If we're renaming a .. link to a new directory, cancel any
9427 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9428 	 * the jremref is preserved for any potential diradd in this
9429 	 * location.  This can not coincide with a rmdir.
9430 	 */
9431 	if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9432 		if (isrmdir)
9433 			panic("newdirrem: .. directory change during remove?");
9434 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9435 	}
9436 	/*
9437 	 * If we're removing a directory search for the .. dependency now and
9438 	 * cancel it.  Any pending journal work will be added to the dirrem
9439 	 * to be completed when the workitem remove completes.
9440 	 */
9441 	if (isrmdir)
9442 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9443 	/*
9444 	 * Check for a diradd dependency for the same directory entry.
9445 	 * If present, then both dependencies become obsolete and can
9446 	 * be de-allocated.
9447 	 */
9448 	dap = diradd_lookup(pagedep, offset);
9449 	if (dap == NULL) {
9450 		/*
9451 		 * Link the jremref structures into the dirrem so they are
9452 		 * written prior to the pagedep.
9453 		 */
9454 		if (jremref)
9455 			dirrem_journal(dirrem, jremref, dotremref,
9456 			    dotdotremref);
9457 		return (dirrem);
9458 	}
9459 	/*
9460 	 * Must be ATTACHED at this point.
9461 	 */
9462 	if ((dap->da_state & ATTACHED) == 0)
9463 		panic("newdirrem: not ATTACHED");
9464 	if (dap->da_newinum != ip->i_number)
9465 		panic("newdirrem: inum %ju should be %ju",
9466 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9467 	/*
9468 	 * If we are deleting a changed name that never made it to disk,
9469 	 * then return the dirrem describing the previous inode (which
9470 	 * represents the inode currently referenced from this entry on disk).
9471 	 */
9472 	if ((dap->da_state & DIRCHG) != 0) {
9473 		*prevdirremp = dap->da_previous;
9474 		dap->da_state &= ~DIRCHG;
9475 		dap->da_pagedep = pagedep;
9476 	}
9477 	/*
9478 	 * We are deleting an entry that never made it to disk.
9479 	 * Mark it COMPLETE so we can delete its inode immediately.
9480 	 */
9481 	dirrem->dm_state |= COMPLETE;
9482 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9483 #ifdef INVARIANTS
9484 	if (isrmdir == 0) {
9485 		struct worklist *wk;
9486 
9487 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9488 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9489 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9490 	}
9491 #endif
9492 
9493 	return (dirrem);
9494 }
9495 
9496 /*
9497  * Directory entry change dependencies.
9498  *
9499  * Changing an existing directory entry requires that an add operation
9500  * be completed first followed by a deletion. The semantics for the addition
9501  * are identical to the description of adding a new entry above except
9502  * that the rollback is to the old inode number rather than zero. Once
9503  * the addition dependency is completed, the removal is done as described
9504  * in the removal routine above.
9505  */
9506 
9507 /*
9508  * This routine should be called immediately after changing
9509  * a directory entry.  The inode's link count should not be
9510  * decremented by the calling procedure -- the soft updates
9511  * code will perform this task when it is safe.
9512  */
9513 void
9514 softdep_setup_directory_change(
9515 	struct buf *bp,		/* buffer containing directory block */
9516 	struct inode *dp,	/* inode for the directory being modified */
9517 	struct inode *ip,	/* inode for directory entry being removed */
9518 	ino_t newinum,		/* new inode number for changed entry */
9519 	int isrmdir)		/* indicates if doing RMDIR */
9520 {
9521 	int offset;
9522 	struct diradd *dap = NULL;
9523 	struct dirrem *dirrem, *prevdirrem;
9524 	struct pagedep *pagedep;
9525 	struct inodedep *inodedep;
9526 	struct jaddref *jaddref;
9527 	struct mount *mp;
9528 	struct ufsmount *ump;
9529 
9530 	mp = ITOVFS(dp);
9531 	ump = VFSTOUFS(mp);
9532 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9533 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9534 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9535 
9536 	/*
9537 	 * Whiteouts do not need diradd dependencies.
9538 	 */
9539 	if (newinum != UFS_WINO) {
9540 		dap = malloc(sizeof(struct diradd),
9541 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9542 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9543 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9544 		dap->da_offset = offset;
9545 		dap->da_newinum = newinum;
9546 		LIST_INIT(&dap->da_jwork);
9547 	}
9548 
9549 	/*
9550 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9551 	 */
9552 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9553 	pagedep = dirrem->dm_pagedep;
9554 	/*
9555 	 * The possible values for isrmdir:
9556 	 *	0 - non-directory file rename
9557 	 *	1 - directory rename within same directory
9558 	 *   inum - directory rename to new directory of given inode number
9559 	 * When renaming to a new directory, we are both deleting and
9560 	 * creating a new directory entry, so the link count on the new
9561 	 * directory should not change. Thus we do not need the followup
9562 	 * dirrem which is usually done in handle_workitem_remove. We set
9563 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9564 	 * followup dirrem.
9565 	 */
9566 	if (isrmdir > 1)
9567 		dirrem->dm_state |= DIRCHG;
9568 
9569 	/*
9570 	 * Whiteouts have no additional dependencies,
9571 	 * so just put the dirrem on the correct list.
9572 	 */
9573 	if (newinum == UFS_WINO) {
9574 		if ((dirrem->dm_state & COMPLETE) == 0) {
9575 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9576 			    dm_next);
9577 		} else {
9578 			dirrem->dm_dirinum = pagedep->pd_ino;
9579 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9580 				add_to_worklist(&dirrem->dm_list, 0);
9581 		}
9582 		FREE_LOCK(ump);
9583 		return;
9584 	}
9585 	/*
9586 	 * Add the dirrem to the inodedep's pending remove list for quick
9587 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9588 	 * will not fail.
9589 	 */
9590 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9591 		panic("softdep_setup_directory_change: Lost inodedep.");
9592 	dirrem->dm_state |= ONDEPLIST;
9593 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9594 
9595 	/*
9596 	 * If the COMPLETE flag is clear, then there were no active
9597 	 * entries and we want to roll back to the previous inode until
9598 	 * the new inode is committed to disk. If the COMPLETE flag is
9599 	 * set, then we have deleted an entry that never made it to disk.
9600 	 * If the entry we deleted resulted from a name change, then the old
9601 	 * inode reference still resides on disk. Any rollback that we do
9602 	 * needs to be to that old inode (returned to us in prevdirrem). If
9603 	 * the entry we deleted resulted from a create, then there is
9604 	 * no entry on the disk, so we want to roll back to zero rather
9605 	 * than the uncommitted inode. In either of the COMPLETE cases we
9606 	 * want to immediately free the unwritten and unreferenced inode.
9607 	 */
9608 	if ((dirrem->dm_state & COMPLETE) == 0) {
9609 		dap->da_previous = dirrem;
9610 	} else {
9611 		if (prevdirrem != NULL) {
9612 			dap->da_previous = prevdirrem;
9613 		} else {
9614 			dap->da_state &= ~DIRCHG;
9615 			dap->da_pagedep = pagedep;
9616 		}
9617 		dirrem->dm_dirinum = pagedep->pd_ino;
9618 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9619 			add_to_worklist(&dirrem->dm_list, 0);
9620 	}
9621 	/*
9622 	 * Lookup the jaddref for this journal entry.  We must finish
9623 	 * initializing it and make the diradd write dependent on it.
9624 	 * If we're not journaling, put it on the id_bufwait list if the
9625 	 * inode is not yet written. If it is written, do the post-inode
9626 	 * write processing to put it on the id_pendinghd list.
9627 	 */
9628 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9629 	if (MOUNTEDSUJ(mp)) {
9630 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9631 		    inoreflst);
9632 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9633 		    ("softdep_setup_directory_change: bad jaddref %p",
9634 		    jaddref));
9635 		jaddref->ja_diroff = I_OFFSET(dp);
9636 		jaddref->ja_diradd = dap;
9637 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9638 		    dap, da_pdlist);
9639 		add_to_journal(&jaddref->ja_list);
9640 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9641 		dap->da_state |= COMPLETE;
9642 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9643 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9644 	} else {
9645 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9646 		    dap, da_pdlist);
9647 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9648 	}
9649 	/*
9650 	 * If we're making a new name for a directory that has not been
9651 	 * committed when need to move the dot and dotdot references to
9652 	 * this new name.
9653 	 */
9654 	if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9655 		merge_diradd(inodedep, dap);
9656 	FREE_LOCK(ump);
9657 }
9658 
9659 /*
9660  * Called whenever the link count on an inode is changed.
9661  * It creates an inode dependency so that the new reference(s)
9662  * to the inode cannot be committed to disk until the updated
9663  * inode has been written.
9664  */
9665 void
9666 softdep_change_linkcnt(
9667 	struct inode *ip)	/* the inode with the increased link count */
9668 {
9669 	struct inodedep *inodedep;
9670 	struct ufsmount *ump;
9671 
9672 	ump = ITOUMP(ip);
9673 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9674 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9675 	ACQUIRE_LOCK(ump);
9676 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9677 	if (ip->i_nlink < ip->i_effnlink)
9678 		panic("softdep_change_linkcnt: bad delta");
9679 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9680 	FREE_LOCK(ump);
9681 }
9682 
9683 /*
9684  * Attach a sbdep dependency to the superblock buf so that we can keep
9685  * track of the head of the linked list of referenced but unlinked inodes.
9686  */
9687 void
9688 softdep_setup_sbupdate(
9689 	struct ufsmount *ump,
9690 	struct fs *fs,
9691 	struct buf *bp)
9692 {
9693 	struct sbdep *sbdep;
9694 	struct worklist *wk;
9695 
9696 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9697 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9698 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9699 		if (wk->wk_type == D_SBDEP)
9700 			break;
9701 	if (wk != NULL)
9702 		return;
9703 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9704 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9705 	sbdep->sb_fs = fs;
9706 	sbdep->sb_ump = ump;
9707 	ACQUIRE_LOCK(ump);
9708 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9709 	FREE_LOCK(ump);
9710 }
9711 
9712 /*
9713  * Return the first unlinked inodedep which is ready to be the head of the
9714  * list.  The inodedep and all those after it must have valid next pointers.
9715  */
9716 static struct inodedep *
9717 first_unlinked_inodedep(struct ufsmount *ump)
9718 {
9719 	struct inodedep *inodedep;
9720 	struct inodedep *idp;
9721 
9722 	LOCK_OWNED(ump);
9723 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9724 	    inodedep; inodedep = idp) {
9725 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9726 			return (NULL);
9727 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9728 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9729 			break;
9730 		if ((inodedep->id_state & UNLINKPREV) == 0)
9731 			break;
9732 	}
9733 	return (inodedep);
9734 }
9735 
9736 /*
9737  * Set the sujfree unlinked head pointer prior to writing a superblock.
9738  */
9739 static void
9740 initiate_write_sbdep(struct sbdep *sbdep)
9741 {
9742 	struct inodedep *inodedep;
9743 	struct fs *bpfs;
9744 	struct fs *fs;
9745 
9746 	bpfs = sbdep->sb_fs;
9747 	fs = sbdep->sb_ump->um_fs;
9748 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9749 	if (inodedep) {
9750 		fs->fs_sujfree = inodedep->id_ino;
9751 		inodedep->id_state |= UNLINKPREV;
9752 	} else
9753 		fs->fs_sujfree = 0;
9754 	bpfs->fs_sujfree = fs->fs_sujfree;
9755 	/*
9756 	 * Because we have made changes to the superblock, we need to
9757 	 * recompute its check-hash.
9758 	 */
9759 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9760 }
9761 
9762 /*
9763  * After a superblock is written determine whether it must be written again
9764  * due to a changing unlinked list head.
9765  */
9766 static int
9767 handle_written_sbdep(struct sbdep *sbdep, struct buf *bp)
9768 {
9769 	struct inodedep *inodedep;
9770 	struct fs *fs;
9771 
9772 	LOCK_OWNED(sbdep->sb_ump);
9773 	fs = sbdep->sb_fs;
9774 	/*
9775 	 * If the superblock doesn't match the in-memory list start over.
9776 	 */
9777 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9778 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9779 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9780 		bdirty(bp);
9781 		return (1);
9782 	}
9783 	WORKITEM_FREE(sbdep, D_SBDEP);
9784 	if (fs->fs_sujfree == 0)
9785 		return (0);
9786 	/*
9787 	 * Now that we have a record of this inode in stable store allow it
9788 	 * to be written to free up pending work.  Inodes may see a lot of
9789 	 * write activity after they are unlinked which we must not hold up.
9790 	 */
9791 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9792 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9793 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9794 			    inodedep, inodedep->id_state);
9795 		if (inodedep->id_state & UNLINKONLIST)
9796 			break;
9797 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9798 	}
9799 
9800 	return (0);
9801 }
9802 
9803 /*
9804  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9805  */
9806 static void
9807 unlinked_inodedep( struct mount *mp, struct inodedep *inodedep)
9808 {
9809 	struct ufsmount *ump;
9810 
9811 	ump = VFSTOUFS(mp);
9812 	LOCK_OWNED(ump);
9813 	if (MOUNTEDSUJ(mp) == 0)
9814 		return;
9815 	ump->um_fs->fs_fmod = 1;
9816 	if (inodedep->id_state & UNLINKED)
9817 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9818 	inodedep->id_state |= UNLINKED;
9819 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9820 }
9821 
9822 /*
9823  * Remove an inodedep from the unlinked inodedep list.  This may require
9824  * disk writes if the inode has made it that far.
9825  */
9826 static void
9827 clear_unlinked_inodedep( struct inodedep *inodedep)
9828 {
9829 	struct ufs2_dinode *dip;
9830 	struct ufsmount *ump;
9831 	struct inodedep *idp;
9832 	struct inodedep *idn;
9833 	struct fs *fs, *bpfs;
9834 	struct buf *bp;
9835 	daddr_t dbn;
9836 	ino_t ino;
9837 	ino_t nino;
9838 	ino_t pino;
9839 	int error;
9840 
9841 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9842 	fs = ump->um_fs;
9843 	ino = inodedep->id_ino;
9844 	error = 0;
9845 	for (;;) {
9846 		LOCK_OWNED(ump);
9847 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9848 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9849 		    inodedep));
9850 		/*
9851 		 * If nothing has yet been written simply remove us from
9852 		 * the in memory list and return.  This is the most common
9853 		 * case where handle_workitem_remove() loses the final
9854 		 * reference.
9855 		 */
9856 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9857 			break;
9858 		/*
9859 		 * If we have a NEXT pointer and no PREV pointer we can simply
9860 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9861 		 * careful not to clear PREV if the superblock points at
9862 		 * next as well.
9863 		 */
9864 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9865 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9866 			if (idn && fs->fs_sujfree != idn->id_ino)
9867 				idn->id_state &= ~UNLINKPREV;
9868 			break;
9869 		}
9870 		/*
9871 		 * Here we have an inodedep which is actually linked into
9872 		 * the list.  We must remove it by forcing a write to the
9873 		 * link before us, whether it be the superblock or an inode.
9874 		 * Unfortunately the list may change while we're waiting
9875 		 * on the buf lock for either resource so we must loop until
9876 		 * we lock the right one.  If both the superblock and an
9877 		 * inode point to this inode we must clear the inode first
9878 		 * followed by the superblock.
9879 		 */
9880 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9881 		pino = 0;
9882 		if (idp && (idp->id_state & UNLINKNEXT))
9883 			pino = idp->id_ino;
9884 		FREE_LOCK(ump);
9885 		if (pino == 0) {
9886 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9887 			    (int)fs->fs_sbsize, 0, 0, 0);
9888 		} else {
9889 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
9890 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
9891 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
9892 			    &bp);
9893 		}
9894 		ACQUIRE_LOCK(ump);
9895 		if (error)
9896 			break;
9897 		/* If the list has changed restart the loop. */
9898 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9899 		nino = 0;
9900 		if (idp && (idp->id_state & UNLINKNEXT))
9901 			nino = idp->id_ino;
9902 		if (nino != pino ||
9903 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9904 			FREE_LOCK(ump);
9905 			brelse(bp);
9906 			ACQUIRE_LOCK(ump);
9907 			continue;
9908 		}
9909 		nino = 0;
9910 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9911 		if (idn)
9912 			nino = idn->id_ino;
9913 		/*
9914 		 * Remove us from the in memory list.  After this we cannot
9915 		 * access the inodedep.
9916 		 */
9917 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9918 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9919 		    inodedep));
9920 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9921 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9922 		FREE_LOCK(ump);
9923 		/*
9924 		 * The predecessor's next pointer is manually updated here
9925 		 * so that the NEXT flag is never cleared for an element
9926 		 * that is in the list.
9927 		 */
9928 		if (pino == 0) {
9929 			bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
9930 			bpfs = (struct fs *)bp->b_data;
9931 			ffs_oldfscompat_write(bpfs, ump);
9932 			softdep_setup_sbupdate(ump, bpfs, bp);
9933 			/*
9934 			 * Because we may have made changes to the superblock,
9935 			 * we need to recompute its check-hash.
9936 			 */
9937 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9938 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9939 			((struct ufs1_dinode *)bp->b_data +
9940 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9941 		} else {
9942 			dip = (struct ufs2_dinode *)bp->b_data +
9943 			    ino_to_fsbo(fs, pino);
9944 			dip->di_freelink = nino;
9945 			ffs_update_dinode_ckhash(fs, dip);
9946 		}
9947 		/*
9948 		 * If the bwrite fails we have no recourse to recover.  The
9949 		 * filesystem is corrupted already.
9950 		 */
9951 		bwrite(bp);
9952 		ACQUIRE_LOCK(ump);
9953 		/*
9954 		 * If the superblock pointer still needs to be cleared force
9955 		 * a write here.
9956 		 */
9957 		if (fs->fs_sujfree == ino) {
9958 			FREE_LOCK(ump);
9959 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9960 			    (int)fs->fs_sbsize, 0, 0, 0);
9961 			bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
9962 			bpfs = (struct fs *)bp->b_data;
9963 			ffs_oldfscompat_write(bpfs, ump);
9964 			softdep_setup_sbupdate(ump, bpfs, bp);
9965 			/*
9966 			 * Because we may have made changes to the superblock,
9967 			 * we need to recompute its check-hash.
9968 			 */
9969 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9970 			bwrite(bp);
9971 			ACQUIRE_LOCK(ump);
9972 		}
9973 
9974 		if (fs->fs_sujfree != ino)
9975 			return;
9976 		panic("clear_unlinked_inodedep: Failed to clear free head");
9977 	}
9978 	if (inodedep->id_ino == fs->fs_sujfree)
9979 		panic("clear_unlinked_inodedep: Freeing head of free list");
9980 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9981 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9982 	return;
9983 }
9984 
9985 /*
9986  * This workitem decrements the inode's link count.
9987  * If the link count reaches zero, the file is removed.
9988  */
9989 static int
9990 handle_workitem_remove(struct dirrem *dirrem, int flags)
9991 {
9992 	struct inodedep *inodedep;
9993 	struct workhead dotdotwk;
9994 	struct worklist *wk;
9995 	struct ufsmount *ump;
9996 	struct mount *mp;
9997 	struct vnode *vp;
9998 	struct inode *ip;
9999 	ino_t oldinum;
10000 
10001 	if (dirrem->dm_state & ONWORKLIST)
10002 		panic("handle_workitem_remove: dirrem %p still on worklist",
10003 		    dirrem);
10004 	oldinum = dirrem->dm_oldinum;
10005 	mp = dirrem->dm_list.wk_mp;
10006 	ump = VFSTOUFS(mp);
10007 	flags |= LK_EXCLUSIVE;
10008 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10009 	    FFSV_FORCEINODEDEP) != 0)
10010 		return (EBUSY);
10011 	ip = VTOI(vp);
10012 	MPASS(ip->i_mode != 0);
10013 	ACQUIRE_LOCK(ump);
10014 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10015 		panic("handle_workitem_remove: lost inodedep");
10016 	if (dirrem->dm_state & ONDEPLIST)
10017 		LIST_REMOVE(dirrem, dm_inonext);
10018 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10019 	    ("handle_workitem_remove:  Journal entries not written."));
10020 
10021 	/*
10022 	 * Move all dependencies waiting on the remove to complete
10023 	 * from the dirrem to the inode inowait list to be completed
10024 	 * after the inode has been updated and written to disk.
10025 	 *
10026 	 * Any marked MKDIR_PARENT are saved to be completed when the
10027 	 * dotdot ref is removed unless DIRCHG is specified.  For
10028 	 * directory change operations there will be no further
10029 	 * directory writes and the jsegdeps need to be moved along
10030 	 * with the rest to be completed when the inode is free or
10031 	 * stable in the inode free list.
10032 	 */
10033 	LIST_INIT(&dotdotwk);
10034 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10035 		WORKLIST_REMOVE(wk);
10036 		if ((dirrem->dm_state & DIRCHG) == 0 &&
10037 		    wk->wk_state & MKDIR_PARENT) {
10038 			wk->wk_state &= ~MKDIR_PARENT;
10039 			WORKLIST_INSERT(&dotdotwk, wk);
10040 			continue;
10041 		}
10042 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
10043 	}
10044 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10045 	/*
10046 	 * Normal file deletion.
10047 	 */
10048 	if ((dirrem->dm_state & RMDIR) == 0) {
10049 		ip->i_nlink--;
10050 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10051 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10052 		    ip->i_nlink));
10053 		DIP_SET(ip, i_nlink, ip->i_nlink);
10054 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10055 		if (ip->i_nlink < ip->i_effnlink)
10056 			panic("handle_workitem_remove: bad file delta");
10057 		if (ip->i_nlink == 0)
10058 			unlinked_inodedep(mp, inodedep);
10059 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10060 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10061 		    ("handle_workitem_remove: worklist not empty. %s",
10062 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10063 		WORKITEM_FREE(dirrem, D_DIRREM);
10064 		FREE_LOCK(ump);
10065 		goto out;
10066 	}
10067 	/*
10068 	 * Directory deletion. Decrement reference count for both the
10069 	 * just deleted parent directory entry and the reference for ".".
10070 	 * Arrange to have the reference count on the parent decremented
10071 	 * to account for the loss of "..".
10072 	 */
10073 	ip->i_nlink -= 2;
10074 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10075 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10076 	DIP_SET(ip, i_nlink, ip->i_nlink);
10077 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10078 	if (ip->i_nlink < ip->i_effnlink)
10079 		panic("handle_workitem_remove: bad dir delta");
10080 	if (ip->i_nlink == 0)
10081 		unlinked_inodedep(mp, inodedep);
10082 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10083 	/*
10084 	 * Rename a directory to a new parent. Since, we are both deleting
10085 	 * and creating a new directory entry, the link count on the new
10086 	 * directory should not change. Thus we skip the followup dirrem.
10087 	 */
10088 	if (dirrem->dm_state & DIRCHG) {
10089 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10090 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
10091 		WORKITEM_FREE(dirrem, D_DIRREM);
10092 		FREE_LOCK(ump);
10093 		goto out;
10094 	}
10095 	dirrem->dm_state = ONDEPLIST;
10096 	dirrem->dm_oldinum = dirrem->dm_dirinum;
10097 	/*
10098 	 * Place the dirrem on the parent's diremhd list.
10099 	 */
10100 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10101 		panic("handle_workitem_remove: lost dir inodedep");
10102 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10103 	/*
10104 	 * If the allocated inode has never been written to disk, then
10105 	 * the on-disk inode is zero'ed and we can remove the file
10106 	 * immediately.  When journaling if the inode has been marked
10107 	 * unlinked and not DEPCOMPLETE we know it can never be written.
10108 	 */
10109 	inodedep_lookup(mp, oldinum, 0, &inodedep);
10110 	if (inodedep == NULL ||
10111 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10112 	    check_inode_unwritten(inodedep)) {
10113 		FREE_LOCK(ump);
10114 		vput(vp);
10115 		return handle_workitem_remove(dirrem, flags);
10116 	}
10117 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10118 	FREE_LOCK(ump);
10119 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10120 out:
10121 	ffs_update(vp, 0);
10122 	vput(vp);
10123 	return (0);
10124 }
10125 
10126 /*
10127  * Inode de-allocation dependencies.
10128  *
10129  * When an inode's link count is reduced to zero, it can be de-allocated. We
10130  * found it convenient to postpone de-allocation until after the inode is
10131  * written to disk with its new link count (zero).  At this point, all of the
10132  * on-disk inode's block pointers are nullified and, with careful dependency
10133  * list ordering, all dependencies related to the inode will be satisfied and
10134  * the corresponding dependency structures de-allocated.  So, if/when the
10135  * inode is reused, there will be no mixing of old dependencies with new
10136  * ones.  This artificial dependency is set up by the block de-allocation
10137  * procedure above (softdep_setup_freeblocks) and completed by the
10138  * following procedure.
10139  */
10140 static void
10141 handle_workitem_freefile(struct freefile *freefile)
10142 {
10143 	struct workhead wkhd;
10144 	struct fs *fs;
10145 	struct ufsmount *ump;
10146 	int error;
10147 #ifdef INVARIANTS
10148 	struct inodedep *idp;
10149 #endif
10150 
10151 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10152 	fs = ump->um_fs;
10153 #ifdef INVARIANTS
10154 	ACQUIRE_LOCK(ump);
10155 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10156 	FREE_LOCK(ump);
10157 	if (error)
10158 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10159 #endif
10160 	UFS_LOCK(ump);
10161 	fs->fs_pendinginodes -= 1;
10162 	UFS_UNLOCK(ump);
10163 	LIST_INIT(&wkhd);
10164 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10165 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10166 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10167 		softdep_error("handle_workitem_freefile", error);
10168 	ACQUIRE_LOCK(ump);
10169 	WORKITEM_FREE(freefile, D_FREEFILE);
10170 	FREE_LOCK(ump);
10171 }
10172 
10173 /*
10174  * Helper function which unlinks marker element from work list and returns
10175  * the next element on the list.
10176  */
10177 static __inline struct worklist *
10178 markernext(struct worklist *marker)
10179 {
10180 	struct worklist *next;
10181 
10182 	next = LIST_NEXT(marker, wk_list);
10183 	LIST_REMOVE(marker, wk_list);
10184 	return next;
10185 }
10186 
10187 /*
10188  * Disk writes.
10189  *
10190  * The dependency structures constructed above are most actively used when file
10191  * system blocks are written to disk.  No constraints are placed on when a
10192  * block can be written, but unsatisfied update dependencies are made safe by
10193  * modifying (or replacing) the source memory for the duration of the disk
10194  * write.  When the disk write completes, the memory block is again brought
10195  * up-to-date.
10196  *
10197  * In-core inode structure reclamation.
10198  *
10199  * Because there are a finite number of "in-core" inode structures, they are
10200  * reused regularly.  By transferring all inode-related dependencies to the
10201  * in-memory inode block and indexing them separately (via "inodedep"s), we
10202  * can allow "in-core" inode structures to be reused at any time and avoid
10203  * any increase in contention.
10204  *
10205  * Called just before entering the device driver to initiate a new disk I/O.
10206  * The buffer must be locked, thus, no I/O completion operations can occur
10207  * while we are manipulating its associated dependencies.
10208  */
10209 static void
10210 softdep_disk_io_initiation(
10211 	struct buf *bp)		/* structure describing disk write to occur */
10212 {
10213 	struct worklist *wk;
10214 	struct worklist marker;
10215 	struct inodedep *inodedep;
10216 	struct freeblks *freeblks;
10217 	struct jblkdep *jblkdep;
10218 	struct newblk *newblk;
10219 	struct ufsmount *ump;
10220 
10221 	/*
10222 	 * We only care about write operations. There should never
10223 	 * be dependencies for reads.
10224 	 */
10225 	if (bp->b_iocmd != BIO_WRITE)
10226 		panic("softdep_disk_io_initiation: not write");
10227 
10228 	if (bp->b_vflags & BV_BKGRDINPROG)
10229 		panic("softdep_disk_io_initiation: Writing buffer with "
10230 		    "background write in progress: %p", bp);
10231 
10232 	ump = softdep_bp_to_mp(bp);
10233 	if (ump == NULL)
10234 		return;
10235 
10236 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10237 	PHOLD(curproc);			/* Don't swap out kernel stack */
10238 	ACQUIRE_LOCK(ump);
10239 	/*
10240 	 * Do any necessary pre-I/O processing.
10241 	 */
10242 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10243 	     wk = markernext(&marker)) {
10244 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10245 		switch (wk->wk_type) {
10246 		case D_PAGEDEP:
10247 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10248 			continue;
10249 
10250 		case D_INODEDEP:
10251 			inodedep = WK_INODEDEP(wk);
10252 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10253 				initiate_write_inodeblock_ufs1(inodedep, bp);
10254 			else
10255 				initiate_write_inodeblock_ufs2(inodedep, bp);
10256 			continue;
10257 
10258 		case D_INDIRDEP:
10259 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10260 			continue;
10261 
10262 		case D_BMSAFEMAP:
10263 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10264 			continue;
10265 
10266 		case D_JSEG:
10267 			WK_JSEG(wk)->js_buf = NULL;
10268 			continue;
10269 
10270 		case D_FREEBLKS:
10271 			freeblks = WK_FREEBLKS(wk);
10272 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10273 			/*
10274 			 * We have to wait for the freeblks to be journaled
10275 			 * before we can write an inodeblock with updated
10276 			 * pointers.  Be careful to arrange the marker so
10277 			 * we revisit the freeblks if it's not removed by
10278 			 * the first jwait().
10279 			 */
10280 			if (jblkdep != NULL) {
10281 				LIST_REMOVE(&marker, wk_list);
10282 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10283 				jwait(&jblkdep->jb_list, MNT_WAIT);
10284 			}
10285 			continue;
10286 		case D_ALLOCDIRECT:
10287 		case D_ALLOCINDIR:
10288 			/*
10289 			 * We have to wait for the jnewblk to be journaled
10290 			 * before we can write to a block if the contents
10291 			 * may be confused with an earlier file's indirect
10292 			 * at recovery time.  Handle the marker as described
10293 			 * above.
10294 			 */
10295 			newblk = WK_NEWBLK(wk);
10296 			if (newblk->nb_jnewblk != NULL &&
10297 			    indirblk_lookup(newblk->nb_list.wk_mp,
10298 			    newblk->nb_newblkno)) {
10299 				LIST_REMOVE(&marker, wk_list);
10300 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10301 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10302 			}
10303 			continue;
10304 
10305 		case D_SBDEP:
10306 			initiate_write_sbdep(WK_SBDEP(wk));
10307 			continue;
10308 
10309 		case D_MKDIR:
10310 		case D_FREEWORK:
10311 		case D_FREEDEP:
10312 		case D_JSEGDEP:
10313 			continue;
10314 
10315 		default:
10316 			panic("handle_disk_io_initiation: Unexpected type %s",
10317 			    TYPENAME(wk->wk_type));
10318 			/* NOTREACHED */
10319 		}
10320 	}
10321 	FREE_LOCK(ump);
10322 	PRELE(curproc);			/* Allow swapout of kernel stack */
10323 }
10324 
10325 /*
10326  * Called from within the procedure above to deal with unsatisfied
10327  * allocation dependencies in a directory. The buffer must be locked,
10328  * thus, no I/O completion operations can occur while we are
10329  * manipulating its associated dependencies.
10330  */
10331 static void
10332 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
10333 {
10334 	struct jremref *jremref;
10335 	struct jmvref *jmvref;
10336 	struct dirrem *dirrem;
10337 	struct diradd *dap;
10338 	struct direct *ep;
10339 	int i;
10340 
10341 	if (pagedep->pd_state & IOSTARTED) {
10342 		/*
10343 		 * This can only happen if there is a driver that does not
10344 		 * understand chaining. Here biodone will reissue the call
10345 		 * to strategy for the incomplete buffers.
10346 		 */
10347 		printf("initiate_write_filepage: already started\n");
10348 		return;
10349 	}
10350 	pagedep->pd_state |= IOSTARTED;
10351 	/*
10352 	 * Wait for all journal remove dependencies to hit the disk.
10353 	 * We can not allow any potentially conflicting directory adds
10354 	 * to be visible before removes and rollback is too difficult.
10355 	 * The per-filesystem lock may be dropped and re-acquired, however
10356 	 * we hold the buf locked so the dependency can not go away.
10357 	 */
10358 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10359 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10360 			jwait(&jremref->jr_list, MNT_WAIT);
10361 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10362 		jwait(&jmvref->jm_list, MNT_WAIT);
10363 	for (i = 0; i < DAHASHSZ; i++) {
10364 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10365 			ep = (struct direct *)
10366 			    ((char *)bp->b_data + dap->da_offset);
10367 			if (ep->d_ino != dap->da_newinum)
10368 				panic("%s: dir inum %ju != new %ju",
10369 				    "initiate_write_filepage",
10370 				    (uintmax_t)ep->d_ino,
10371 				    (uintmax_t)dap->da_newinum);
10372 			if (dap->da_state & DIRCHG)
10373 				ep->d_ino = dap->da_previous->dm_oldinum;
10374 			else
10375 				ep->d_ino = 0;
10376 			dap->da_state &= ~ATTACHED;
10377 			dap->da_state |= UNDONE;
10378 		}
10379 	}
10380 }
10381 
10382 /*
10383  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10384  * Note that any bug fixes made to this routine must be done in the
10385  * version found below.
10386  *
10387  * Called from within the procedure above to deal with unsatisfied
10388  * allocation dependencies in an inodeblock. The buffer must be
10389  * locked, thus, no I/O completion operations can occur while we
10390  * are manipulating its associated dependencies.
10391  */
10392 static void
10393 initiate_write_inodeblock_ufs1(
10394 	struct inodedep *inodedep,
10395 	struct buf *bp)			/* The inode block */
10396 {
10397 	struct allocdirect *adp, *lastadp;
10398 	struct ufs1_dinode *dp;
10399 	struct ufs1_dinode *sip;
10400 	struct inoref *inoref;
10401 	struct ufsmount *ump;
10402 	struct fs *fs;
10403 	ufs_lbn_t i;
10404 #ifdef INVARIANTS
10405 	ufs_lbn_t prevlbn = 0;
10406 #endif
10407 	int deplist __diagused;
10408 
10409 	if (inodedep->id_state & IOSTARTED)
10410 		panic("initiate_write_inodeblock_ufs1: already started");
10411 	inodedep->id_state |= IOSTARTED;
10412 	fs = inodedep->id_fs;
10413 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10414 	LOCK_OWNED(ump);
10415 	dp = (struct ufs1_dinode *)bp->b_data +
10416 	    ino_to_fsbo(fs, inodedep->id_ino);
10417 
10418 	/*
10419 	 * If we're on the unlinked list but have not yet written our
10420 	 * next pointer initialize it here.
10421 	 */
10422 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10423 		struct inodedep *inon;
10424 
10425 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10426 		dp->di_freelink = inon ? inon->id_ino : 0;
10427 	}
10428 	/*
10429 	 * If the bitmap is not yet written, then the allocated
10430 	 * inode cannot be written to disk.
10431 	 */
10432 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10433 		if (inodedep->id_savedino1 != NULL)
10434 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10435 		FREE_LOCK(ump);
10436 		sip = malloc(sizeof(struct ufs1_dinode),
10437 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10438 		ACQUIRE_LOCK(ump);
10439 		inodedep->id_savedino1 = sip;
10440 		*inodedep->id_savedino1 = *dp;
10441 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10442 		dp->di_gen = inodedep->id_savedino1->di_gen;
10443 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10444 		return;
10445 	}
10446 	/*
10447 	 * If no dependencies, then there is nothing to roll back.
10448 	 */
10449 	inodedep->id_savedsize = dp->di_size;
10450 	inodedep->id_savedextsize = 0;
10451 	inodedep->id_savednlink = dp->di_nlink;
10452 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10453 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10454 		return;
10455 	/*
10456 	 * Revert the link count to that of the first unwritten journal entry.
10457 	 */
10458 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10459 	if (inoref)
10460 		dp->di_nlink = inoref->if_nlink;
10461 	/*
10462 	 * Set the dependencies to busy.
10463 	 */
10464 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10465 	     adp = TAILQ_NEXT(adp, ad_next)) {
10466 #ifdef INVARIANTS
10467 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10468 			panic("softdep_write_inodeblock: lbn order");
10469 		prevlbn = adp->ad_offset;
10470 		if (adp->ad_offset < UFS_NDADDR &&
10471 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10472 			panic("initiate_write_inodeblock_ufs1: "
10473 			    "direct pointer #%jd mismatch %d != %jd",
10474 			    (intmax_t)adp->ad_offset,
10475 			    dp->di_db[adp->ad_offset],
10476 			    (intmax_t)adp->ad_newblkno);
10477 		if (adp->ad_offset >= UFS_NDADDR &&
10478 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10479 			panic("initiate_write_inodeblock_ufs1: "
10480 			    "indirect pointer #%jd mismatch %d != %jd",
10481 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10482 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10483 			    (intmax_t)adp->ad_newblkno);
10484 		deplist |= 1 << adp->ad_offset;
10485 		if ((adp->ad_state & ATTACHED) == 0)
10486 			panic("initiate_write_inodeblock_ufs1: "
10487 			    "Unknown state 0x%x", adp->ad_state);
10488 #endif /* INVARIANTS */
10489 		adp->ad_state &= ~ATTACHED;
10490 		adp->ad_state |= UNDONE;
10491 	}
10492 	/*
10493 	 * The on-disk inode cannot claim to be any larger than the last
10494 	 * fragment that has been written. Otherwise, the on-disk inode
10495 	 * might have fragments that were not the last block in the file
10496 	 * which would corrupt the filesystem.
10497 	 */
10498 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10499 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10500 		if (adp->ad_offset >= UFS_NDADDR)
10501 			break;
10502 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10503 		/* keep going until hitting a rollback to a frag */
10504 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10505 			continue;
10506 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10507 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10508 #ifdef INVARIANTS
10509 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10510 				panic("initiate_write_inodeblock_ufs1: "
10511 				    "lost dep1");
10512 #endif /* INVARIANTS */
10513 			dp->di_db[i] = 0;
10514 		}
10515 		for (i = 0; i < UFS_NIADDR; i++) {
10516 #ifdef INVARIANTS
10517 			if (dp->di_ib[i] != 0 &&
10518 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10519 				panic("initiate_write_inodeblock_ufs1: "
10520 				    "lost dep2");
10521 #endif /* INVARIANTS */
10522 			dp->di_ib[i] = 0;
10523 		}
10524 		return;
10525 	}
10526 	/*
10527 	 * If we have zero'ed out the last allocated block of the file,
10528 	 * roll back the size to the last currently allocated block.
10529 	 * We know that this last allocated block is a full-sized as
10530 	 * we already checked for fragments in the loop above.
10531 	 */
10532 	if (lastadp != NULL &&
10533 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10534 		for (i = lastadp->ad_offset; i >= 0; i--)
10535 			if (dp->di_db[i] != 0)
10536 				break;
10537 		dp->di_size = (i + 1) * fs->fs_bsize;
10538 	}
10539 	/*
10540 	 * The only dependencies are for indirect blocks.
10541 	 *
10542 	 * The file size for indirect block additions is not guaranteed.
10543 	 * Such a guarantee would be non-trivial to achieve. The conventional
10544 	 * synchronous write implementation also does not make this guarantee.
10545 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10546 	 * can be over-estimated without destroying integrity when the file
10547 	 * moves into the indirect blocks (i.e., is large). If we want to
10548 	 * postpone fsck, we are stuck with this argument.
10549 	 */
10550 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10551 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10552 }
10553 
10554 /*
10555  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10556  * Note that any bug fixes made to this routine must be done in the
10557  * version found above.
10558  *
10559  * Called from within the procedure above to deal with unsatisfied
10560  * allocation dependencies in an inodeblock. The buffer must be
10561  * locked, thus, no I/O completion operations can occur while we
10562  * are manipulating its associated dependencies.
10563  */
10564 static void
10565 initiate_write_inodeblock_ufs2(
10566 	struct inodedep *inodedep,
10567 	struct buf *bp)			/* The inode block */
10568 {
10569 	struct allocdirect *adp, *lastadp;
10570 	struct ufs2_dinode *dp;
10571 	struct ufs2_dinode *sip;
10572 	struct inoref *inoref;
10573 	struct ufsmount *ump;
10574 	struct fs *fs;
10575 	ufs_lbn_t i;
10576 #ifdef INVARIANTS
10577 	ufs_lbn_t prevlbn = 0;
10578 #endif
10579 	int deplist __diagused;
10580 
10581 	if (inodedep->id_state & IOSTARTED)
10582 		panic("initiate_write_inodeblock_ufs2: already started");
10583 	inodedep->id_state |= IOSTARTED;
10584 	fs = inodedep->id_fs;
10585 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10586 	LOCK_OWNED(ump);
10587 	dp = (struct ufs2_dinode *)bp->b_data +
10588 	    ino_to_fsbo(fs, inodedep->id_ino);
10589 
10590 	/*
10591 	 * If we're on the unlinked list but have not yet written our
10592 	 * next pointer initialize it here.
10593 	 */
10594 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10595 		struct inodedep *inon;
10596 
10597 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10598 		dp->di_freelink = inon ? inon->id_ino : 0;
10599 		ffs_update_dinode_ckhash(fs, dp);
10600 	}
10601 	/*
10602 	 * If the bitmap is not yet written, then the allocated
10603 	 * inode cannot be written to disk.
10604 	 */
10605 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10606 		if (inodedep->id_savedino2 != NULL)
10607 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10608 		FREE_LOCK(ump);
10609 		sip = malloc(sizeof(struct ufs2_dinode),
10610 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10611 		ACQUIRE_LOCK(ump);
10612 		inodedep->id_savedino2 = sip;
10613 		*inodedep->id_savedino2 = *dp;
10614 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10615 		dp->di_gen = inodedep->id_savedino2->di_gen;
10616 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10617 		return;
10618 	}
10619 	/*
10620 	 * If no dependencies, then there is nothing to roll back.
10621 	 */
10622 	inodedep->id_savedsize = dp->di_size;
10623 	inodedep->id_savedextsize = dp->di_extsize;
10624 	inodedep->id_savednlink = dp->di_nlink;
10625 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10626 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10627 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10628 		return;
10629 	/*
10630 	 * Revert the link count to that of the first unwritten journal entry.
10631 	 */
10632 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10633 	if (inoref)
10634 		dp->di_nlink = inoref->if_nlink;
10635 
10636 	/*
10637 	 * Set the ext data dependencies to busy.
10638 	 */
10639 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10640 	     adp = TAILQ_NEXT(adp, ad_next)) {
10641 #ifdef INVARIANTS
10642 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10643 			panic("initiate_write_inodeblock_ufs2: lbn order");
10644 		prevlbn = adp->ad_offset;
10645 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10646 			panic("initiate_write_inodeblock_ufs2: "
10647 			    "ext pointer #%jd mismatch %jd != %jd",
10648 			    (intmax_t)adp->ad_offset,
10649 			    (intmax_t)dp->di_extb[adp->ad_offset],
10650 			    (intmax_t)adp->ad_newblkno);
10651 		deplist |= 1 << adp->ad_offset;
10652 		if ((adp->ad_state & ATTACHED) == 0)
10653 			panic("initiate_write_inodeblock_ufs2: Unknown "
10654 			    "state 0x%x", adp->ad_state);
10655 #endif /* INVARIANTS */
10656 		adp->ad_state &= ~ATTACHED;
10657 		adp->ad_state |= UNDONE;
10658 	}
10659 	/*
10660 	 * The on-disk inode cannot claim to be any larger than the last
10661 	 * fragment that has been written. Otherwise, the on-disk inode
10662 	 * might have fragments that were not the last block in the ext
10663 	 * data which would corrupt the filesystem.
10664 	 */
10665 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10666 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10667 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10668 		/* keep going until hitting a rollback to a frag */
10669 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10670 			continue;
10671 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10672 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10673 #ifdef INVARIANTS
10674 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10675 				panic("initiate_write_inodeblock_ufs2: "
10676 				    "lost dep1");
10677 #endif /* INVARIANTS */
10678 			dp->di_extb[i] = 0;
10679 		}
10680 		lastadp = NULL;
10681 		break;
10682 	}
10683 	/*
10684 	 * If we have zero'ed out the last allocated block of the ext
10685 	 * data, roll back the size to the last currently allocated block.
10686 	 * We know that this last allocated block is a full-sized as
10687 	 * we already checked for fragments in the loop above.
10688 	 */
10689 	if (lastadp != NULL &&
10690 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10691 		for (i = lastadp->ad_offset; i >= 0; i--)
10692 			if (dp->di_extb[i] != 0)
10693 				break;
10694 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10695 	}
10696 	/*
10697 	 * Set the file data dependencies to busy.
10698 	 */
10699 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10700 	     adp = TAILQ_NEXT(adp, ad_next)) {
10701 #ifdef INVARIANTS
10702 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10703 			panic("softdep_write_inodeblock: lbn order");
10704 		if ((adp->ad_state & ATTACHED) == 0)
10705 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10706 		prevlbn = adp->ad_offset;
10707 		if (!ffs_fsfail_cleanup(ump, 0) &&
10708 		    adp->ad_offset < UFS_NDADDR &&
10709 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10710 			panic("initiate_write_inodeblock_ufs2: "
10711 			    "direct pointer #%jd mismatch %jd != %jd",
10712 			    (intmax_t)adp->ad_offset,
10713 			    (intmax_t)dp->di_db[adp->ad_offset],
10714 			    (intmax_t)adp->ad_newblkno);
10715 		if (!ffs_fsfail_cleanup(ump, 0) &&
10716 		    adp->ad_offset >= UFS_NDADDR &&
10717 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10718 			panic("initiate_write_inodeblock_ufs2: "
10719 			    "indirect pointer #%jd mismatch %jd != %jd",
10720 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10721 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10722 			    (intmax_t)adp->ad_newblkno);
10723 		deplist |= 1 << adp->ad_offset;
10724 		if ((adp->ad_state & ATTACHED) == 0)
10725 			panic("initiate_write_inodeblock_ufs2: Unknown "
10726 			     "state 0x%x", adp->ad_state);
10727 #endif /* INVARIANTS */
10728 		adp->ad_state &= ~ATTACHED;
10729 		adp->ad_state |= UNDONE;
10730 	}
10731 	/*
10732 	 * The on-disk inode cannot claim to be any larger than the last
10733 	 * fragment that has been written. Otherwise, the on-disk inode
10734 	 * might have fragments that were not the last block in the file
10735 	 * which would corrupt the filesystem.
10736 	 */
10737 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10738 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10739 		if (adp->ad_offset >= UFS_NDADDR)
10740 			break;
10741 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10742 		/* keep going until hitting a rollback to a frag */
10743 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10744 			continue;
10745 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10746 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10747 #ifdef INVARIANTS
10748 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10749 				panic("initiate_write_inodeblock_ufs2: "
10750 				    "lost dep2");
10751 #endif /* INVARIANTS */
10752 			dp->di_db[i] = 0;
10753 		}
10754 		for (i = 0; i < UFS_NIADDR; i++) {
10755 #ifdef INVARIANTS
10756 			if (dp->di_ib[i] != 0 &&
10757 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10758 				panic("initiate_write_inodeblock_ufs2: "
10759 				    "lost dep3");
10760 #endif /* INVARIANTS */
10761 			dp->di_ib[i] = 0;
10762 		}
10763 		ffs_update_dinode_ckhash(fs, dp);
10764 		return;
10765 	}
10766 	/*
10767 	 * If we have zero'ed out the last allocated block of the file,
10768 	 * roll back the size to the last currently allocated block.
10769 	 * We know that this last allocated block is a full-sized as
10770 	 * we already checked for fragments in the loop above.
10771 	 */
10772 	if (lastadp != NULL &&
10773 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10774 		for (i = lastadp->ad_offset; i >= 0; i--)
10775 			if (dp->di_db[i] != 0)
10776 				break;
10777 		dp->di_size = (i + 1) * fs->fs_bsize;
10778 	}
10779 	/*
10780 	 * The only dependencies are for indirect blocks.
10781 	 *
10782 	 * The file size for indirect block additions is not guaranteed.
10783 	 * Such a guarantee would be non-trivial to achieve. The conventional
10784 	 * synchronous write implementation also does not make this guarantee.
10785 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10786 	 * can be over-estimated without destroying integrity when the file
10787 	 * moves into the indirect blocks (i.e., is large). If we want to
10788 	 * postpone fsck, we are stuck with this argument.
10789 	 */
10790 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10791 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10792 	ffs_update_dinode_ckhash(fs, dp);
10793 }
10794 
10795 /*
10796  * Cancel an indirdep as a result of truncation.  Release all of the
10797  * children allocindirs and place their journal work on the appropriate
10798  * list.
10799  */
10800 static void
10801 cancel_indirdep(
10802 	struct indirdep *indirdep,
10803 	struct buf *bp,
10804 	struct freeblks *freeblks)
10805 {
10806 	struct allocindir *aip;
10807 
10808 	/*
10809 	 * None of the indirect pointers will ever be visible,
10810 	 * so they can simply be tossed. GOINGAWAY ensures
10811 	 * that allocated pointers will be saved in the buffer
10812 	 * cache until they are freed. Note that they will
10813 	 * only be able to be found by their physical address
10814 	 * since the inode mapping the logical address will
10815 	 * be gone. The save buffer used for the safe copy
10816 	 * was allocated in setup_allocindir_phase2 using
10817 	 * the physical address so it could be used for this
10818 	 * purpose. Hence we swap the safe copy with the real
10819 	 * copy, allowing the safe copy to be freed and holding
10820 	 * on to the real copy for later use in indir_trunc.
10821 	 */
10822 	if (indirdep->ir_state & GOINGAWAY)
10823 		panic("cancel_indirdep: already gone");
10824 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10825 		indirdep->ir_state |= DEPCOMPLETE;
10826 		LIST_REMOVE(indirdep, ir_next);
10827 	}
10828 	indirdep->ir_state |= GOINGAWAY;
10829 	/*
10830 	 * Pass in bp for blocks still have journal writes
10831 	 * pending so we can cancel them on their own.
10832 	 */
10833 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10834 		cancel_allocindir(aip, bp, freeblks, 0);
10835 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10836 		cancel_allocindir(aip, NULL, freeblks, 0);
10837 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10838 		cancel_allocindir(aip, NULL, freeblks, 0);
10839 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10840 		cancel_allocindir(aip, NULL, freeblks, 0);
10841 	/*
10842 	 * If there are pending partial truncations we need to keep the
10843 	 * old block copy around until they complete.  This is because
10844 	 * the current b_data is not a perfect superset of the available
10845 	 * blocks.
10846 	 */
10847 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10848 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10849 	else
10850 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10851 	WORKLIST_REMOVE(&indirdep->ir_list);
10852 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10853 	indirdep->ir_bp = NULL;
10854 	indirdep->ir_freeblks = freeblks;
10855 }
10856 
10857 /*
10858  * Free an indirdep once it no longer has new pointers to track.
10859  */
10860 static void
10861 free_indirdep(struct indirdep *indirdep)
10862 {
10863 
10864 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10865 	    ("free_indirdep: Indir trunc list not empty."));
10866 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10867 	    ("free_indirdep: Complete head not empty."));
10868 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10869 	    ("free_indirdep: write head not empty."));
10870 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10871 	    ("free_indirdep: done head not empty."));
10872 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10873 	    ("free_indirdep: deplist head not empty."));
10874 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10875 	    ("free_indirdep: %p still on newblk list.", indirdep));
10876 	KASSERT(indirdep->ir_saveddata == NULL,
10877 	    ("free_indirdep: %p still has saved data.", indirdep));
10878 	KASSERT(indirdep->ir_savebp == NULL,
10879 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
10880 	if (indirdep->ir_state & ONWORKLIST)
10881 		WORKLIST_REMOVE(&indirdep->ir_list);
10882 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10883 }
10884 
10885 /*
10886  * Called before a write to an indirdep.  This routine is responsible for
10887  * rolling back pointers to a safe state which includes only those
10888  * allocindirs which have been completed.
10889  */
10890 static void
10891 initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp)
10892 {
10893 	struct ufsmount *ump;
10894 
10895 	indirdep->ir_state |= IOSTARTED;
10896 	if (indirdep->ir_state & GOINGAWAY)
10897 		panic("disk_io_initiation: indirdep gone");
10898 	/*
10899 	 * If there are no remaining dependencies, this will be writing
10900 	 * the real pointers.
10901 	 */
10902 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10903 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10904 		return;
10905 	/*
10906 	 * Replace up-to-date version with safe version.
10907 	 */
10908 	if (indirdep->ir_saveddata == NULL) {
10909 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10910 		LOCK_OWNED(ump);
10911 		FREE_LOCK(ump);
10912 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10913 		    M_SOFTDEP_FLAGS);
10914 		ACQUIRE_LOCK(ump);
10915 	}
10916 	indirdep->ir_state &= ~ATTACHED;
10917 	indirdep->ir_state |= UNDONE;
10918 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10919 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10920 	    bp->b_bcount);
10921 }
10922 
10923 /*
10924  * Called when an inode has been cleared in a cg bitmap.  This finally
10925  * eliminates any canceled jaddrefs
10926  */
10927 void
10928 softdep_setup_inofree(struct mount *mp,
10929 	struct buf *bp,
10930 	ino_t ino,
10931 	struct workhead *wkhd,
10932 	bool doingrecovery)
10933 {
10934 	struct worklist *wk, *wkn;
10935 	struct ufsmount *ump;
10936 #ifdef INVARIANTS
10937 	struct inodedep *inodedep;
10938 #endif
10939 
10940 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10941 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10942 	ump = VFSTOUFS(mp);
10943 	ACQUIRE_LOCK(ump);
10944 	KASSERT(doingrecovery || ffs_fsfail_cleanup(ump, 0) ||
10945 	    isclr(cg_inosused((struct cg *)bp->b_data),
10946 	    ino % ump->um_fs->fs_ipg),
10947 	    ("softdep_setup_inofree: inode %ju not freed.", (uintmax_t)ino));
10948 	KASSERT(inodedep_lookup(mp, ino, 0, &inodedep) == 0,
10949 	    ("softdep_setup_inofree: ino %ju has existing inodedep %p",
10950 	    (uintmax_t)ino, inodedep));
10951 	if (wkhd) {
10952 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10953 			if (wk->wk_type != D_JADDREF)
10954 				continue;
10955 			WORKLIST_REMOVE(wk);
10956 			/*
10957 			 * We can free immediately even if the jaddref
10958 			 * isn't attached in a background write as now
10959 			 * the bitmaps are reconciled.
10960 			 */
10961 			wk->wk_state |= COMPLETE | ATTACHED;
10962 			free_jaddref(WK_JADDREF(wk));
10963 		}
10964 		jwork_move(&bp->b_dep, wkhd);
10965 	}
10966 	FREE_LOCK(ump);
10967 }
10968 
10969 /*
10970  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10971  * map.  Any dependencies waiting for the write to clear are added to the
10972  * buf's list and any jnewblks that are being canceled are discarded
10973  * immediately.
10974  */
10975 void
10976 softdep_setup_blkfree(
10977 	struct mount *mp,
10978 	struct buf *bp,
10979 	ufs2_daddr_t blkno,
10980 	int frags,
10981 	struct workhead *wkhd,
10982 	bool doingrecovery)
10983 {
10984 	struct bmsafemap *bmsafemap;
10985 	struct jnewblk *jnewblk;
10986 	struct ufsmount *ump;
10987 	struct worklist *wk;
10988 	struct fs *fs;
10989 #ifdef INVARIANTS
10990 	uint8_t *blksfree;
10991 	struct cg *cgp;
10992 	ufs2_daddr_t jstart;
10993 	ufs2_daddr_t jend;
10994 	ufs2_daddr_t end;
10995 	long bno;
10996 	int i;
10997 #endif
10998 
10999 	CTR3(KTR_SUJ,
11000 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11001 	    blkno, frags, wkhd);
11002 
11003 	ump = VFSTOUFS(mp);
11004 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11005 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
11006 	ACQUIRE_LOCK(ump);
11007 	/* Lookup the bmsafemap so we track when it is dirty. */
11008 	fs = ump->um_fs;
11009 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11010 	/*
11011 	 * Detach any jnewblks which have been canceled.  They must linger
11012 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
11013 	 * an unjournaled allocation from hitting the disk.
11014 	 */
11015 	if (wkhd) {
11016 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
11017 			CTR2(KTR_SUJ,
11018 			    "softdep_setup_blkfree: blkno %jd wk type %d",
11019 			    blkno, wk->wk_type);
11020 			WORKLIST_REMOVE(wk);
11021 			if (wk->wk_type != D_JNEWBLK) {
11022 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11023 				continue;
11024 			}
11025 			jnewblk = WK_JNEWBLK(wk);
11026 			KASSERT(jnewblk->jn_state & GOINGAWAY,
11027 			    ("softdep_setup_blkfree: jnewblk not canceled."));
11028 #ifdef INVARIANTS
11029 			if (!doingrecovery && !ffs_fsfail_cleanup(ump, 0)) {
11030 				/*
11031 				 * Assert that this block is free in the
11032 				 * bitmap before we discard the jnewblk.
11033 				 */
11034 				cgp = (struct cg *)bp->b_data;
11035 				blksfree = cg_blksfree(cgp);
11036 				bno = dtogd(fs, jnewblk->jn_blkno);
11037 				for (i = jnewblk->jn_oldfrags;
11038 				    i < jnewblk->jn_frags; i++) {
11039 					if (isset(blksfree, bno + i))
11040 						continue;
11041 					panic("softdep_setup_blkfree: block "
11042 					    "%ju not freed.",
11043 					    (uintmax_t)jnewblk->jn_blkno);
11044 				}
11045 			}
11046 #endif
11047 			/*
11048 			 * Even if it's not attached we can free immediately
11049 			 * as the new bitmap is correct.
11050 			 */
11051 			wk->wk_state |= COMPLETE | ATTACHED;
11052 			free_jnewblk(jnewblk);
11053 		}
11054 	}
11055 
11056 #ifdef INVARIANTS
11057 	/*
11058 	 * Assert that we are not freeing a block which has an outstanding
11059 	 * allocation dependency.
11060 	 */
11061 	fs = VFSTOUFS(mp)->um_fs;
11062 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11063 	end = blkno + frags;
11064 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11065 		/*
11066 		 * Don't match against blocks that will be freed when the
11067 		 * background write is done.
11068 		 */
11069 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11070 		    (COMPLETE | DEPCOMPLETE))
11071 			continue;
11072 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11073 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11074 		if ((blkno >= jstart && blkno < jend) ||
11075 		    (end > jstart && end <= jend)) {
11076 			printf("state 0x%X %jd - %d %d dep %p\n",
11077 			    jnewblk->jn_state, jnewblk->jn_blkno,
11078 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
11079 			    jnewblk->jn_dep);
11080 			panic("softdep_setup_blkfree: "
11081 			    "%jd-%jd(%d) overlaps with %jd-%jd",
11082 			    blkno, end, frags, jstart, jend);
11083 		}
11084 	}
11085 #endif
11086 	FREE_LOCK(ump);
11087 }
11088 
11089 /*
11090  * Revert a block allocation when the journal record that describes it
11091  * is not yet written.
11092  */
11093 static int
11094 jnewblk_rollback(
11095 	struct jnewblk *jnewblk,
11096 	struct fs *fs,
11097 	struct cg *cgp,
11098 	uint8_t *blksfree)
11099 {
11100 	ufs1_daddr_t fragno;
11101 	long cgbno, bbase;
11102 	int frags, blk;
11103 	int i;
11104 
11105 	frags = 0;
11106 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11107 	/*
11108 	 * We have to test which frags need to be rolled back.  We may
11109 	 * be operating on a stale copy when doing background writes.
11110 	 */
11111 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11112 		if (isclr(blksfree, cgbno + i))
11113 			frags++;
11114 	if (frags == 0)
11115 		return (0);
11116 	/*
11117 	 * This is mostly ffs_blkfree() sans some validation and
11118 	 * superblock updates.
11119 	 */
11120 	if (frags == fs->fs_frag) {
11121 		fragno = fragstoblks(fs, cgbno);
11122 		ffs_setblock(fs, blksfree, fragno);
11123 		ffs_clusteracct(fs, cgp, fragno, 1);
11124 		cgp->cg_cs.cs_nbfree++;
11125 	} else {
11126 		cgbno += jnewblk->jn_oldfrags;
11127 		bbase = cgbno - fragnum(fs, cgbno);
11128 		/* Decrement the old frags.  */
11129 		blk = blkmap(fs, blksfree, bbase);
11130 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11131 		/* Deallocate the fragment */
11132 		for (i = 0; i < frags; i++)
11133 			setbit(blksfree, cgbno + i);
11134 		cgp->cg_cs.cs_nffree += frags;
11135 		/* Add back in counts associated with the new frags */
11136 		blk = blkmap(fs, blksfree, bbase);
11137 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11138 		/* If a complete block has been reassembled, account for it. */
11139 		fragno = fragstoblks(fs, bbase);
11140 		if (ffs_isblock(fs, blksfree, fragno)) {
11141 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11142 			ffs_clusteracct(fs, cgp, fragno, 1);
11143 			cgp->cg_cs.cs_nbfree++;
11144 		}
11145 	}
11146 	stat_jnewblk++;
11147 	jnewblk->jn_state &= ~ATTACHED;
11148 	jnewblk->jn_state |= UNDONE;
11149 
11150 	return (frags);
11151 }
11152 
11153 static void
11154 initiate_write_bmsafemap(
11155 	struct bmsafemap *bmsafemap,
11156 	struct buf *bp)			/* The cg block. */
11157 {
11158 	struct jaddref *jaddref;
11159 	struct jnewblk *jnewblk;
11160 	uint8_t *inosused;
11161 	uint8_t *blksfree;
11162 	struct cg *cgp;
11163 	struct fs *fs;
11164 	ino_t ino;
11165 
11166 	/*
11167 	 * If this is a background write, we did this at the time that
11168 	 * the copy was made, so do not need to do it again.
11169 	 */
11170 	if (bmsafemap->sm_state & IOSTARTED)
11171 		return;
11172 	bmsafemap->sm_state |= IOSTARTED;
11173 	/*
11174 	 * Clear any inode allocations which are pending journal writes.
11175 	 */
11176 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11177 		cgp = (struct cg *)bp->b_data;
11178 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11179 		inosused = cg_inosused(cgp);
11180 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11181 			ino = jaddref->ja_ino % fs->fs_ipg;
11182 			if (isset(inosused, ino)) {
11183 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11184 					cgp->cg_cs.cs_ndir--;
11185 				cgp->cg_cs.cs_nifree++;
11186 				clrbit(inosused, ino);
11187 				jaddref->ja_state &= ~ATTACHED;
11188 				jaddref->ja_state |= UNDONE;
11189 				stat_jaddref++;
11190 			} else
11191 				panic("initiate_write_bmsafemap: inode %ju "
11192 				    "marked free", (uintmax_t)jaddref->ja_ino);
11193 		}
11194 	}
11195 	/*
11196 	 * Clear any block allocations which are pending journal writes.
11197 	 */
11198 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11199 		cgp = (struct cg *)bp->b_data;
11200 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11201 		blksfree = cg_blksfree(cgp);
11202 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11203 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11204 				continue;
11205 			panic("initiate_write_bmsafemap: block %jd "
11206 			    "marked free", jnewblk->jn_blkno);
11207 		}
11208 	}
11209 	/*
11210 	 * Move allocation lists to the written lists so they can be
11211 	 * cleared once the block write is complete.
11212 	 */
11213 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11214 	    inodedep, id_deps);
11215 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11216 	    newblk, nb_deps);
11217 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11218 	    wk_list);
11219 }
11220 
11221 void
11222 softdep_handle_error(struct buf *bp)
11223 {
11224 	struct ufsmount *ump;
11225 
11226 	ump = softdep_bp_to_mp(bp);
11227 	if (ump == NULL)
11228 		return;
11229 
11230 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11231 		/*
11232 		 * No future writes will succeed, so the on-disk image is safe.
11233 		 * Pretend that this write succeeded so that the softdep state
11234 		 * will be cleaned up naturally.
11235 		 */
11236 		bp->b_ioflags &= ~BIO_ERROR;
11237 		bp->b_error = 0;
11238 	}
11239 }
11240 
11241 /*
11242  * This routine is called during the completion interrupt
11243  * service routine for a disk write (from the procedure called
11244  * by the device driver to inform the filesystem caches of
11245  * a request completion).  It should be called early in this
11246  * procedure, before the block is made available to other
11247  * processes or other routines are called.
11248  *
11249  */
11250 static void
11251 softdep_disk_write_complete(
11252 	struct buf *bp)		/* describes the completed disk write */
11253 {
11254 	struct worklist *wk;
11255 	struct worklist *owk;
11256 	struct ufsmount *ump;
11257 	struct workhead reattach;
11258 	struct freeblks *freeblks;
11259 	struct buf *sbp;
11260 
11261 	ump = softdep_bp_to_mp(bp);
11262 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11263 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11264 	     "with outstanding dependencies for buffer %p", bp));
11265 	if (ump == NULL)
11266 		return;
11267 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11268 		softdep_handle_error(bp);
11269 	/*
11270 	 * If an error occurred while doing the write, then the data
11271 	 * has not hit the disk and the dependencies cannot be processed.
11272 	 * But we do have to go through and roll forward any dependencies
11273 	 * that were rolled back before the disk write.
11274 	 */
11275 	sbp = NULL;
11276 	ACQUIRE_LOCK(ump);
11277 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11278 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11279 			switch (wk->wk_type) {
11280 			case D_PAGEDEP:
11281 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11282 				continue;
11283 
11284 			case D_INODEDEP:
11285 				handle_written_inodeblock(WK_INODEDEP(wk),
11286 				    bp, 0);
11287 				continue;
11288 
11289 			case D_BMSAFEMAP:
11290 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11291 				    bp, 0);
11292 				continue;
11293 
11294 			case D_INDIRDEP:
11295 				handle_written_indirdep(WK_INDIRDEP(wk),
11296 				    bp, &sbp, 0);
11297 				continue;
11298 			default:
11299 				/* nothing to roll forward */
11300 				continue;
11301 			}
11302 		}
11303 		FREE_LOCK(ump);
11304 		if (sbp)
11305 			brelse(sbp);
11306 		return;
11307 	}
11308 	LIST_INIT(&reattach);
11309 
11310 	/*
11311 	 * Ump SU lock must not be released anywhere in this code segment.
11312 	 */
11313 	owk = NULL;
11314 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11315 		WORKLIST_REMOVE(wk);
11316 		atomic_add_long(&dep_write[wk->wk_type], 1);
11317 		if (wk == owk)
11318 			panic("duplicate worklist: %p\n", wk);
11319 		owk = wk;
11320 		switch (wk->wk_type) {
11321 		case D_PAGEDEP:
11322 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11323 			    WRITESUCCEEDED))
11324 				WORKLIST_INSERT(&reattach, wk);
11325 			continue;
11326 
11327 		case D_INODEDEP:
11328 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11329 			    WRITESUCCEEDED))
11330 				WORKLIST_INSERT(&reattach, wk);
11331 			continue;
11332 
11333 		case D_BMSAFEMAP:
11334 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11335 			    WRITESUCCEEDED))
11336 				WORKLIST_INSERT(&reattach, wk);
11337 			continue;
11338 
11339 		case D_MKDIR:
11340 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11341 			continue;
11342 
11343 		case D_ALLOCDIRECT:
11344 			wk->wk_state |= COMPLETE;
11345 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11346 			continue;
11347 
11348 		case D_ALLOCINDIR:
11349 			wk->wk_state |= COMPLETE;
11350 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11351 			continue;
11352 
11353 		case D_INDIRDEP:
11354 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11355 			    WRITESUCCEEDED))
11356 				WORKLIST_INSERT(&reattach, wk);
11357 			continue;
11358 
11359 		case D_FREEBLKS:
11360 			wk->wk_state |= COMPLETE;
11361 			freeblks = WK_FREEBLKS(wk);
11362 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11363 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11364 				add_to_worklist(wk, WK_NODELAY);
11365 			continue;
11366 
11367 		case D_FREEWORK:
11368 			handle_written_freework(WK_FREEWORK(wk));
11369 			break;
11370 
11371 		case D_JSEGDEP:
11372 			free_jsegdep(WK_JSEGDEP(wk));
11373 			continue;
11374 
11375 		case D_JSEG:
11376 			handle_written_jseg(WK_JSEG(wk), bp);
11377 			continue;
11378 
11379 		case D_SBDEP:
11380 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11381 				WORKLIST_INSERT(&reattach, wk);
11382 			continue;
11383 
11384 		case D_FREEDEP:
11385 			free_freedep(WK_FREEDEP(wk));
11386 			continue;
11387 
11388 		default:
11389 			panic("handle_disk_write_complete: Unknown type %s",
11390 			    TYPENAME(wk->wk_type));
11391 			/* NOTREACHED */
11392 		}
11393 	}
11394 	/*
11395 	 * Reattach any requests that must be redone.
11396 	 */
11397 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11398 		WORKLIST_REMOVE(wk);
11399 		WORKLIST_INSERT(&bp->b_dep, wk);
11400 	}
11401 	FREE_LOCK(ump);
11402 	if (sbp)
11403 		brelse(sbp);
11404 }
11405 
11406 /*
11407  * Called from within softdep_disk_write_complete above.
11408  */
11409 static void
11410 handle_allocdirect_partdone(
11411 	struct allocdirect *adp,	/* the completed allocdirect */
11412 	struct workhead *wkhd)		/* Work to do when inode is writtne. */
11413 {
11414 	struct allocdirectlst *listhead;
11415 	struct allocdirect *listadp;
11416 	struct inodedep *inodedep;
11417 	long bsize;
11418 
11419 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11420 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11421 		return;
11422 	/*
11423 	 * The on-disk inode cannot claim to be any larger than the last
11424 	 * fragment that has been written. Otherwise, the on-disk inode
11425 	 * might have fragments that were not the last block in the file
11426 	 * which would corrupt the filesystem. Thus, we cannot free any
11427 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11428 	 * these blocks must be rolled back to zero before writing the inode.
11429 	 * We check the currently active set of allocdirects in id_inoupdt
11430 	 * or id_extupdt as appropriate.
11431 	 */
11432 	inodedep = adp->ad_inodedep;
11433 	bsize = inodedep->id_fs->fs_bsize;
11434 	if (adp->ad_state & EXTDATA)
11435 		listhead = &inodedep->id_extupdt;
11436 	else
11437 		listhead = &inodedep->id_inoupdt;
11438 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11439 		/* found our block */
11440 		if (listadp == adp)
11441 			break;
11442 		/* continue if ad_oldlbn is not a fragment */
11443 		if (listadp->ad_oldsize == 0 ||
11444 		    listadp->ad_oldsize == bsize)
11445 			continue;
11446 		/* hit a fragment */
11447 		return;
11448 	}
11449 	/*
11450 	 * If we have reached the end of the current list without
11451 	 * finding the just finished dependency, then it must be
11452 	 * on the future dependency list. Future dependencies cannot
11453 	 * be freed until they are moved to the current list.
11454 	 */
11455 	if (listadp == NULL) {
11456 #ifdef INVARIANTS
11457 		if (adp->ad_state & EXTDATA)
11458 			listhead = &inodedep->id_newextupdt;
11459 		else
11460 			listhead = &inodedep->id_newinoupdt;
11461 		TAILQ_FOREACH(listadp, listhead, ad_next)
11462 			/* found our block */
11463 			if (listadp == adp)
11464 				break;
11465 		if (listadp == NULL)
11466 			panic("handle_allocdirect_partdone: lost dep");
11467 #endif /* INVARIANTS */
11468 		return;
11469 	}
11470 	/*
11471 	 * If we have found the just finished dependency, then queue
11472 	 * it along with anything that follows it that is complete.
11473 	 * Since the pointer has not yet been written in the inode
11474 	 * as the dependency prevents it, place the allocdirect on the
11475 	 * bufwait list where it will be freed once the pointer is
11476 	 * valid.
11477 	 */
11478 	if (wkhd == NULL)
11479 		wkhd = &inodedep->id_bufwait;
11480 	for (; adp; adp = listadp) {
11481 		listadp = TAILQ_NEXT(adp, ad_next);
11482 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11483 			return;
11484 		TAILQ_REMOVE(listhead, adp, ad_next);
11485 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11486 	}
11487 }
11488 
11489 /*
11490  * Called from within softdep_disk_write_complete above.  This routine
11491  * completes successfully written allocindirs.
11492  */
11493 static void
11494 handle_allocindir_partdone(
11495 	struct allocindir *aip)		/* the completed allocindir */
11496 {
11497 	struct indirdep *indirdep;
11498 
11499 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11500 		return;
11501 	indirdep = aip->ai_indirdep;
11502 	LIST_REMOVE(aip, ai_next);
11503 	/*
11504 	 * Don't set a pointer while the buffer is undergoing IO or while
11505 	 * we have active truncations.
11506 	 */
11507 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11508 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11509 		return;
11510 	}
11511 	if (indirdep->ir_state & UFS1FMT)
11512 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11513 		    aip->ai_newblkno;
11514 	else
11515 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11516 		    aip->ai_newblkno;
11517 	/*
11518 	 * Await the pointer write before freeing the allocindir.
11519 	 */
11520 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11521 }
11522 
11523 /*
11524  * Release segments held on a jwork list.
11525  */
11526 static void
11527 handle_jwork(struct workhead *wkhd)
11528 {
11529 	struct worklist *wk;
11530 
11531 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11532 		WORKLIST_REMOVE(wk);
11533 		switch (wk->wk_type) {
11534 		case D_JSEGDEP:
11535 			free_jsegdep(WK_JSEGDEP(wk));
11536 			continue;
11537 		case D_FREEDEP:
11538 			free_freedep(WK_FREEDEP(wk));
11539 			continue;
11540 		case D_FREEFRAG:
11541 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11542 			WORKITEM_FREE(wk, D_FREEFRAG);
11543 			continue;
11544 		case D_FREEWORK:
11545 			handle_written_freework(WK_FREEWORK(wk));
11546 			continue;
11547 		default:
11548 			panic("handle_jwork: Unknown type %s\n",
11549 			    TYPENAME(wk->wk_type));
11550 		}
11551 	}
11552 }
11553 
11554 /*
11555  * Handle the bufwait list on an inode when it is safe to release items
11556  * held there.  This normally happens after an inode block is written but
11557  * may be delayed and handled later if there are pending journal items that
11558  * are not yet safe to be released.
11559  */
11560 static struct freefile *
11561 handle_bufwait(
11562 	struct inodedep *inodedep,
11563 	struct workhead *refhd)
11564 {
11565 	struct jaddref *jaddref;
11566 	struct freefile *freefile;
11567 	struct worklist *wk;
11568 
11569 	freefile = NULL;
11570 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11571 		WORKLIST_REMOVE(wk);
11572 		switch (wk->wk_type) {
11573 		case D_FREEFILE:
11574 			/*
11575 			 * We defer adding freefile to the worklist
11576 			 * until all other additions have been made to
11577 			 * ensure that it will be done after all the
11578 			 * old blocks have been freed.
11579 			 */
11580 			if (freefile != NULL)
11581 				panic("handle_bufwait: freefile");
11582 			freefile = WK_FREEFILE(wk);
11583 			continue;
11584 
11585 		case D_MKDIR:
11586 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11587 			continue;
11588 
11589 		case D_DIRADD:
11590 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11591 			continue;
11592 
11593 		case D_FREEFRAG:
11594 			wk->wk_state |= COMPLETE;
11595 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11596 				add_to_worklist(wk, 0);
11597 			continue;
11598 
11599 		case D_DIRREM:
11600 			wk->wk_state |= COMPLETE;
11601 			add_to_worklist(wk, 0);
11602 			continue;
11603 
11604 		case D_ALLOCDIRECT:
11605 		case D_ALLOCINDIR:
11606 			free_newblk(WK_NEWBLK(wk));
11607 			continue;
11608 
11609 		case D_JNEWBLK:
11610 			wk->wk_state |= COMPLETE;
11611 			free_jnewblk(WK_JNEWBLK(wk));
11612 			continue;
11613 
11614 		/*
11615 		 * Save freed journal segments and add references on
11616 		 * the supplied list which will delay their release
11617 		 * until the cg bitmap is cleared on disk.
11618 		 */
11619 		case D_JSEGDEP:
11620 			if (refhd == NULL)
11621 				free_jsegdep(WK_JSEGDEP(wk));
11622 			else
11623 				WORKLIST_INSERT(refhd, wk);
11624 			continue;
11625 
11626 		case D_JADDREF:
11627 			jaddref = WK_JADDREF(wk);
11628 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11629 			    if_deps);
11630 			/*
11631 			 * Transfer any jaddrefs to the list to be freed with
11632 			 * the bitmap if we're handling a removed file.
11633 			 */
11634 			if (refhd == NULL) {
11635 				wk->wk_state |= COMPLETE;
11636 				free_jaddref(jaddref);
11637 			} else
11638 				WORKLIST_INSERT(refhd, wk);
11639 			continue;
11640 
11641 		default:
11642 			panic("handle_bufwait: Unknown type %p(%s)",
11643 			    wk, TYPENAME(wk->wk_type));
11644 			/* NOTREACHED */
11645 		}
11646 	}
11647 	return (freefile);
11648 }
11649 /*
11650  * Called from within softdep_disk_write_complete above to restore
11651  * in-memory inode block contents to their most up-to-date state. Note
11652  * that this routine is always called from interrupt level with further
11653  * interrupts from this device blocked.
11654  *
11655  * If the write did not succeed, we will do all the roll-forward
11656  * operations, but we will not take the actions that will allow its
11657  * dependencies to be processed.
11658  */
11659 static int
11660 handle_written_inodeblock(
11661 	struct inodedep *inodedep,
11662 	struct buf *bp,		/* buffer containing the inode block */
11663 	int flags)
11664 {
11665 	struct freefile *freefile;
11666 	struct allocdirect *adp, *nextadp;
11667 	struct ufs1_dinode *dp1 = NULL;
11668 	struct ufs2_dinode *dp2 = NULL;
11669 	struct workhead wkhd;
11670 	int hadchanges, fstype;
11671 	ino_t freelink;
11672 
11673 	LIST_INIT(&wkhd);
11674 	hadchanges = 0;
11675 	freefile = NULL;
11676 	if ((inodedep->id_state & IOSTARTED) == 0)
11677 		panic("handle_written_inodeblock: not started");
11678 	inodedep->id_state &= ~IOSTARTED;
11679 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11680 		fstype = UFS1;
11681 		dp1 = (struct ufs1_dinode *)bp->b_data +
11682 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11683 		freelink = dp1->di_freelink;
11684 	} else {
11685 		fstype = UFS2;
11686 		dp2 = (struct ufs2_dinode *)bp->b_data +
11687 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11688 		freelink = dp2->di_freelink;
11689 	}
11690 	/*
11691 	 * Leave this inodeblock dirty until it's in the list.
11692 	 */
11693 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11694 	    (flags & WRITESUCCEEDED)) {
11695 		struct inodedep *inon;
11696 
11697 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11698 		if ((inon == NULL && freelink == 0) ||
11699 		    (inon && inon->id_ino == freelink)) {
11700 			if (inon)
11701 				inon->id_state |= UNLINKPREV;
11702 			inodedep->id_state |= UNLINKNEXT;
11703 		}
11704 		hadchanges = 1;
11705 	}
11706 	/*
11707 	 * If we had to rollback the inode allocation because of
11708 	 * bitmaps being incomplete, then simply restore it.
11709 	 * Keep the block dirty so that it will not be reclaimed until
11710 	 * all associated dependencies have been cleared and the
11711 	 * corresponding updates written to disk.
11712 	 */
11713 	if (inodedep->id_savedino1 != NULL) {
11714 		hadchanges = 1;
11715 		if (fstype == UFS1)
11716 			*dp1 = *inodedep->id_savedino1;
11717 		else
11718 			*dp2 = *inodedep->id_savedino2;
11719 		free(inodedep->id_savedino1, M_SAVEDINO);
11720 		inodedep->id_savedino1 = NULL;
11721 		if ((bp->b_flags & B_DELWRI) == 0)
11722 			stat_inode_bitmap++;
11723 		bdirty(bp);
11724 		/*
11725 		 * If the inode is clear here and GOINGAWAY it will never
11726 		 * be written.  Process the bufwait and clear any pending
11727 		 * work which may include the freefile.
11728 		 */
11729 		if (inodedep->id_state & GOINGAWAY)
11730 			goto bufwait;
11731 		return (1);
11732 	}
11733 	if (flags & WRITESUCCEEDED)
11734 		inodedep->id_state |= COMPLETE;
11735 	/*
11736 	 * Roll forward anything that had to be rolled back before
11737 	 * the inode could be updated.
11738 	 */
11739 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11740 		nextadp = TAILQ_NEXT(adp, ad_next);
11741 		if (adp->ad_state & ATTACHED)
11742 			panic("handle_written_inodeblock: new entry");
11743 		if (fstype == UFS1) {
11744 			if (adp->ad_offset < UFS_NDADDR) {
11745 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11746 					panic("%s %s #%jd mismatch %d != %jd",
11747 					    "handle_written_inodeblock:",
11748 					    "direct pointer",
11749 					    (intmax_t)adp->ad_offset,
11750 					    dp1->di_db[adp->ad_offset],
11751 					    (intmax_t)adp->ad_oldblkno);
11752 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11753 			} else {
11754 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11755 				    0)
11756 					panic("%s: %s #%jd allocated as %d",
11757 					    "handle_written_inodeblock",
11758 					    "indirect pointer",
11759 					    (intmax_t)adp->ad_offset -
11760 					    UFS_NDADDR,
11761 					    dp1->di_ib[adp->ad_offset -
11762 					    UFS_NDADDR]);
11763 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11764 				    adp->ad_newblkno;
11765 			}
11766 		} else {
11767 			if (adp->ad_offset < UFS_NDADDR) {
11768 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11769 					panic("%s: %s #%jd %s %jd != %jd",
11770 					    "handle_written_inodeblock",
11771 					    "direct pointer",
11772 					    (intmax_t)adp->ad_offset, "mismatch",
11773 					    (intmax_t)dp2->di_db[adp->ad_offset],
11774 					    (intmax_t)adp->ad_oldblkno);
11775 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11776 			} else {
11777 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11778 				    0)
11779 					panic("%s: %s #%jd allocated as %jd",
11780 					    "handle_written_inodeblock",
11781 					    "indirect pointer",
11782 					    (intmax_t)adp->ad_offset -
11783 					    UFS_NDADDR,
11784 					    (intmax_t)
11785 					    dp2->di_ib[adp->ad_offset -
11786 					    UFS_NDADDR]);
11787 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11788 				    adp->ad_newblkno;
11789 			}
11790 		}
11791 		adp->ad_state &= ~UNDONE;
11792 		adp->ad_state |= ATTACHED;
11793 		hadchanges = 1;
11794 	}
11795 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11796 		nextadp = TAILQ_NEXT(adp, ad_next);
11797 		if (adp->ad_state & ATTACHED)
11798 			panic("handle_written_inodeblock: new entry");
11799 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11800 			panic("%s: direct pointers #%jd %s %jd != %jd",
11801 			    "handle_written_inodeblock",
11802 			    (intmax_t)adp->ad_offset, "mismatch",
11803 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11804 			    (intmax_t)adp->ad_oldblkno);
11805 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11806 		adp->ad_state &= ~UNDONE;
11807 		adp->ad_state |= ATTACHED;
11808 		hadchanges = 1;
11809 	}
11810 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11811 		stat_direct_blk_ptrs++;
11812 	/*
11813 	 * Reset the file size to its most up-to-date value.
11814 	 */
11815 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11816 		panic("handle_written_inodeblock: bad size");
11817 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11818 		panic("handle_written_inodeblock: Invalid link count "
11819 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11820 		    inodedep);
11821 	if (fstype == UFS1) {
11822 		if (dp1->di_nlink != inodedep->id_savednlink) {
11823 			dp1->di_nlink = inodedep->id_savednlink;
11824 			hadchanges = 1;
11825 		}
11826 		if (dp1->di_size != inodedep->id_savedsize) {
11827 			dp1->di_size = inodedep->id_savedsize;
11828 			hadchanges = 1;
11829 		}
11830 	} else {
11831 		if (dp2->di_nlink != inodedep->id_savednlink) {
11832 			dp2->di_nlink = inodedep->id_savednlink;
11833 			hadchanges = 1;
11834 		}
11835 		if (dp2->di_size != inodedep->id_savedsize) {
11836 			dp2->di_size = inodedep->id_savedsize;
11837 			hadchanges = 1;
11838 		}
11839 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11840 			dp2->di_extsize = inodedep->id_savedextsize;
11841 			hadchanges = 1;
11842 		}
11843 	}
11844 	inodedep->id_savedsize = -1;
11845 	inodedep->id_savedextsize = -1;
11846 	inodedep->id_savednlink = -1;
11847 	/*
11848 	 * If there were any rollbacks in the inode block, then it must be
11849 	 * marked dirty so that its will eventually get written back in
11850 	 * its correct form.
11851 	 */
11852 	if (hadchanges) {
11853 		if (fstype == UFS2)
11854 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11855 		bdirty(bp);
11856 	}
11857 bufwait:
11858 	/*
11859 	 * If the write did not succeed, we have done all the roll-forward
11860 	 * operations, but we cannot take the actions that will allow its
11861 	 * dependencies to be processed.
11862 	 */
11863 	if ((flags & WRITESUCCEEDED) == 0)
11864 		return (hadchanges);
11865 	/*
11866 	 * Process any allocdirects that completed during the update.
11867 	 */
11868 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11869 		handle_allocdirect_partdone(adp, &wkhd);
11870 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11871 		handle_allocdirect_partdone(adp, &wkhd);
11872 	/*
11873 	 * Process deallocations that were held pending until the
11874 	 * inode had been written to disk. Freeing of the inode
11875 	 * is delayed until after all blocks have been freed to
11876 	 * avoid creation of new <vfsid, inum, lbn> triples
11877 	 * before the old ones have been deleted.  Completely
11878 	 * unlinked inodes are not processed until the unlinked
11879 	 * inode list is written or the last reference is removed.
11880 	 */
11881 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11882 		freefile = handle_bufwait(inodedep, NULL);
11883 		if (freefile && !LIST_EMPTY(&wkhd)) {
11884 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11885 			freefile = NULL;
11886 		}
11887 	}
11888 	/*
11889 	 * Move rolled forward dependency completions to the bufwait list
11890 	 * now that those that were already written have been processed.
11891 	 */
11892 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11893 		panic("handle_written_inodeblock: bufwait but no changes");
11894 	jwork_move(&inodedep->id_bufwait, &wkhd);
11895 
11896 	if (freefile != NULL) {
11897 		/*
11898 		 * If the inode is goingaway it was never written.  Fake up
11899 		 * the state here so free_inodedep() can succeed.
11900 		 */
11901 		if (inodedep->id_state & GOINGAWAY)
11902 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11903 		if (free_inodedep(inodedep) == 0)
11904 			panic("handle_written_inodeblock: live inodedep %p",
11905 			    inodedep);
11906 		add_to_worklist(&freefile->fx_list, 0);
11907 		return (0);
11908 	}
11909 
11910 	/*
11911 	 * If no outstanding dependencies, free it.
11912 	 */
11913 	if (free_inodedep(inodedep) ||
11914 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11915 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11916 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11917 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11918 		return (0);
11919 	return (hadchanges);
11920 }
11921 
11922 /*
11923  * Perform needed roll-forwards and kick off any dependencies that
11924  * can now be processed.
11925  *
11926  * If the write did not succeed, we will do all the roll-forward
11927  * operations, but we will not take the actions that will allow its
11928  * dependencies to be processed.
11929  */
11930 static int
11931 handle_written_indirdep(
11932 	struct indirdep *indirdep,
11933 	struct buf *bp,
11934 	struct buf **bpp,
11935 	int flags)
11936 {
11937 	struct allocindir *aip;
11938 	struct buf *sbp;
11939 	int chgs;
11940 
11941 	if (indirdep->ir_state & GOINGAWAY)
11942 		panic("handle_written_indirdep: indirdep gone");
11943 	if ((indirdep->ir_state & IOSTARTED) == 0)
11944 		panic("handle_written_indirdep: IO not started");
11945 	chgs = 0;
11946 	/*
11947 	 * If there were rollbacks revert them here.
11948 	 */
11949 	if (indirdep->ir_saveddata) {
11950 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11951 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11952 			free(indirdep->ir_saveddata, M_INDIRDEP);
11953 			indirdep->ir_saveddata = NULL;
11954 		}
11955 		chgs = 1;
11956 	}
11957 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11958 	indirdep->ir_state |= ATTACHED;
11959 	/*
11960 	 * If the write did not succeed, we have done all the roll-forward
11961 	 * operations, but we cannot take the actions that will allow its
11962 	 * dependencies to be processed.
11963 	 */
11964 	if ((flags & WRITESUCCEEDED) == 0) {
11965 		stat_indir_blk_ptrs++;
11966 		bdirty(bp);
11967 		return (1);
11968 	}
11969 	/*
11970 	 * Move allocindirs with written pointers to the completehd if
11971 	 * the indirdep's pointer is not yet written.  Otherwise
11972 	 * free them here.
11973 	 */
11974 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11975 		LIST_REMOVE(aip, ai_next);
11976 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11977 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11978 			    ai_next);
11979 			newblk_freefrag(&aip->ai_block);
11980 			continue;
11981 		}
11982 		free_newblk(&aip->ai_block);
11983 	}
11984 	/*
11985 	 * Move allocindirs that have finished dependency processing from
11986 	 * the done list to the write list after updating the pointers.
11987 	 */
11988 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11989 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11990 			handle_allocindir_partdone(aip);
11991 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11992 				panic("disk_write_complete: not gone");
11993 			chgs = 1;
11994 		}
11995 	}
11996 	/*
11997 	 * Preserve the indirdep if there were any changes or if it is not
11998 	 * yet valid on disk.
11999 	 */
12000 	if (chgs) {
12001 		stat_indir_blk_ptrs++;
12002 		bdirty(bp);
12003 		return (1);
12004 	}
12005 	/*
12006 	 * If there were no changes we can discard the savedbp and detach
12007 	 * ourselves from the buf.  We are only carrying completed pointers
12008 	 * in this case.
12009 	 */
12010 	sbp = indirdep->ir_savebp;
12011 	sbp->b_flags |= B_INVAL | B_NOCACHE;
12012 	indirdep->ir_savebp = NULL;
12013 	indirdep->ir_bp = NULL;
12014 	if (*bpp != NULL)
12015 		panic("handle_written_indirdep: bp already exists.");
12016 	*bpp = sbp;
12017 	/*
12018 	 * The indirdep may not be freed until its parent points at it.
12019 	 */
12020 	if (indirdep->ir_state & DEPCOMPLETE)
12021 		free_indirdep(indirdep);
12022 
12023 	return (0);
12024 }
12025 
12026 /*
12027  * Process a diradd entry after its dependent inode has been written.
12028  */
12029 static void
12030 diradd_inode_written(
12031 	struct diradd *dap,
12032 	struct inodedep *inodedep)
12033 {
12034 
12035 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12036 	dap->da_state |= COMPLETE;
12037 	complete_diradd(dap);
12038 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12039 }
12040 
12041 /*
12042  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12043  * be called with the per-filesystem lock and the buf lock on the cg held.
12044  */
12045 static int
12046 bmsafemap_backgroundwrite(
12047 	struct bmsafemap *bmsafemap,
12048 	struct buf *bp)
12049 {
12050 	int dirty;
12051 
12052 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12053 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12054 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12055 	/*
12056 	 * If we're initiating a background write we need to process the
12057 	 * rollbacks as they exist now, not as they exist when IO starts.
12058 	 * No other consumers will look at the contents of the shadowed
12059 	 * buf so this is safe to do here.
12060 	 */
12061 	if (bp->b_xflags & BX_BKGRDMARKER)
12062 		initiate_write_bmsafemap(bmsafemap, bp);
12063 
12064 	return (dirty);
12065 }
12066 
12067 /*
12068  * Re-apply an allocation when a cg write is complete.
12069  */
12070 static int
12071 jnewblk_rollforward(
12072 	struct jnewblk *jnewblk,
12073 	struct fs *fs,
12074 	struct cg *cgp,
12075 	uint8_t *blksfree)
12076 {
12077 	ufs1_daddr_t fragno;
12078 	ufs2_daddr_t blkno;
12079 	long cgbno, bbase;
12080 	int frags, blk;
12081 	int i;
12082 
12083 	frags = 0;
12084 	cgbno = dtogd(fs, jnewblk->jn_blkno);
12085 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12086 		if (isclr(blksfree, cgbno + i))
12087 			panic("jnewblk_rollforward: re-allocated fragment");
12088 		frags++;
12089 	}
12090 	if (frags == fs->fs_frag) {
12091 		blkno = fragstoblks(fs, cgbno);
12092 		ffs_clrblock(fs, blksfree, (long)blkno);
12093 		ffs_clusteracct(fs, cgp, blkno, -1);
12094 		cgp->cg_cs.cs_nbfree--;
12095 	} else {
12096 		bbase = cgbno - fragnum(fs, cgbno);
12097 		cgbno += jnewblk->jn_oldfrags;
12098                 /* If a complete block had been reassembled, account for it. */
12099 		fragno = fragstoblks(fs, bbase);
12100 		if (ffs_isblock(fs, blksfree, fragno)) {
12101 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12102 			ffs_clusteracct(fs, cgp, fragno, -1);
12103 			cgp->cg_cs.cs_nbfree--;
12104 		}
12105 		/* Decrement the old frags.  */
12106 		blk = blkmap(fs, blksfree, bbase);
12107 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12108 		/* Allocate the fragment */
12109 		for (i = 0; i < frags; i++)
12110 			clrbit(blksfree, cgbno + i);
12111 		cgp->cg_cs.cs_nffree -= frags;
12112 		/* Add back in counts associated with the new frags */
12113 		blk = blkmap(fs, blksfree, bbase);
12114 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12115 	}
12116 	return (frags);
12117 }
12118 
12119 /*
12120  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12121  * changes if it's not a background write.  Set all written dependencies
12122  * to DEPCOMPLETE and free the structure if possible.
12123  *
12124  * If the write did not succeed, we will do all the roll-forward
12125  * operations, but we will not take the actions that will allow its
12126  * dependencies to be processed.
12127  */
12128 static int
12129 handle_written_bmsafemap(
12130 	struct bmsafemap *bmsafemap,
12131 	struct buf *bp,
12132 	int flags)
12133 {
12134 	struct newblk *newblk;
12135 	struct inodedep *inodedep;
12136 	struct jaddref *jaddref, *jatmp;
12137 	struct jnewblk *jnewblk, *jntmp;
12138 	struct ufsmount *ump;
12139 	uint8_t *inosused;
12140 	uint8_t *blksfree;
12141 	struct cg *cgp;
12142 	struct fs *fs;
12143 	ino_t ino;
12144 	int foreground;
12145 	int chgs;
12146 
12147 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12148 		panic("handle_written_bmsafemap: Not started\n");
12149 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12150 	chgs = 0;
12151 	bmsafemap->sm_state &= ~IOSTARTED;
12152 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12153 	/*
12154 	 * If write was successful, release journal work that was waiting
12155 	 * on the write. Otherwise move the work back.
12156 	 */
12157 	if (flags & WRITESUCCEEDED)
12158 		handle_jwork(&bmsafemap->sm_freewr);
12159 	else
12160 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12161 		    worklist, wk_list);
12162 
12163 	/*
12164 	 * Restore unwritten inode allocation pending jaddref writes.
12165 	 */
12166 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12167 		cgp = (struct cg *)bp->b_data;
12168 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12169 		inosused = cg_inosused(cgp);
12170 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12171 		    ja_bmdeps, jatmp) {
12172 			if ((jaddref->ja_state & UNDONE) == 0)
12173 				continue;
12174 			ino = jaddref->ja_ino % fs->fs_ipg;
12175 			if (isset(inosused, ino))
12176 				panic("handle_written_bmsafemap: "
12177 				    "re-allocated inode");
12178 			/* Do the roll-forward only if it's a real copy. */
12179 			if (foreground) {
12180 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12181 					cgp->cg_cs.cs_ndir++;
12182 				cgp->cg_cs.cs_nifree--;
12183 				setbit(inosused, ino);
12184 				chgs = 1;
12185 			}
12186 			jaddref->ja_state &= ~UNDONE;
12187 			jaddref->ja_state |= ATTACHED;
12188 			free_jaddref(jaddref);
12189 		}
12190 	}
12191 	/*
12192 	 * Restore any block allocations which are pending journal writes.
12193 	 */
12194 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12195 		cgp = (struct cg *)bp->b_data;
12196 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12197 		blksfree = cg_blksfree(cgp);
12198 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12199 		    jntmp) {
12200 			if ((jnewblk->jn_state & UNDONE) == 0)
12201 				continue;
12202 			/* Do the roll-forward only if it's a real copy. */
12203 			if (foreground &&
12204 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12205 				chgs = 1;
12206 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12207 			jnewblk->jn_state |= ATTACHED;
12208 			free_jnewblk(jnewblk);
12209 		}
12210 	}
12211 	/*
12212 	 * If the write did not succeed, we have done all the roll-forward
12213 	 * operations, but we cannot take the actions that will allow its
12214 	 * dependencies to be processed.
12215 	 */
12216 	if ((flags & WRITESUCCEEDED) == 0) {
12217 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12218 		    newblk, nb_deps);
12219 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12220 		    worklist, wk_list);
12221 		if (foreground)
12222 			bdirty(bp);
12223 		return (1);
12224 	}
12225 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12226 		newblk->nb_state |= DEPCOMPLETE;
12227 		newblk->nb_state &= ~ONDEPLIST;
12228 		newblk->nb_bmsafemap = NULL;
12229 		LIST_REMOVE(newblk, nb_deps);
12230 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12231 			handle_allocdirect_partdone(
12232 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12233 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12234 			handle_allocindir_partdone(
12235 			    WK_ALLOCINDIR(&newblk->nb_list));
12236 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12237 			panic("handle_written_bmsafemap: Unexpected type: %s",
12238 			    TYPENAME(newblk->nb_list.wk_type));
12239 	}
12240 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12241 		inodedep->id_state |= DEPCOMPLETE;
12242 		inodedep->id_state &= ~ONDEPLIST;
12243 		LIST_REMOVE(inodedep, id_deps);
12244 		inodedep->id_bmsafemap = NULL;
12245 	}
12246 	LIST_REMOVE(bmsafemap, sm_next);
12247 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12248 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12249 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12250 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12251 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12252 		LIST_REMOVE(bmsafemap, sm_hash);
12253 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12254 		return (0);
12255 	}
12256 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12257 	if (foreground)
12258 		bdirty(bp);
12259 	return (1);
12260 }
12261 
12262 /*
12263  * Try to free a mkdir dependency.
12264  */
12265 static void
12266 complete_mkdir(struct mkdir *mkdir)
12267 {
12268 	struct diradd *dap;
12269 
12270 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12271 		return;
12272 	LIST_REMOVE(mkdir, md_mkdirs);
12273 	dap = mkdir->md_diradd;
12274 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12275 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12276 		dap->da_state |= DEPCOMPLETE;
12277 		complete_diradd(dap);
12278 	}
12279 	WORKITEM_FREE(mkdir, D_MKDIR);
12280 }
12281 
12282 /*
12283  * Handle the completion of a mkdir dependency.
12284  */
12285 static void
12286 handle_written_mkdir(struct mkdir *mkdir, int type)
12287 {
12288 
12289 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12290 		panic("handle_written_mkdir: bad type");
12291 	mkdir->md_state |= COMPLETE;
12292 	complete_mkdir(mkdir);
12293 }
12294 
12295 static int
12296 free_pagedep(struct pagedep *pagedep)
12297 {
12298 	int i;
12299 
12300 	if (pagedep->pd_state & NEWBLOCK)
12301 		return (0);
12302 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12303 		return (0);
12304 	for (i = 0; i < DAHASHSZ; i++)
12305 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12306 			return (0);
12307 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12308 		return (0);
12309 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12310 		return (0);
12311 	if (pagedep->pd_state & ONWORKLIST)
12312 		WORKLIST_REMOVE(&pagedep->pd_list);
12313 	LIST_REMOVE(pagedep, pd_hash);
12314 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12315 
12316 	return (1);
12317 }
12318 
12319 /*
12320  * Called from within softdep_disk_write_complete above.
12321  * A write operation was just completed. Removed inodes can
12322  * now be freed and associated block pointers may be committed.
12323  * Note that this routine is always called from interrupt level
12324  * with further interrupts from this device blocked.
12325  *
12326  * If the write did not succeed, we will do all the roll-forward
12327  * operations, but we will not take the actions that will allow its
12328  * dependencies to be processed.
12329  */
12330 static int
12331 handle_written_filepage(
12332 	struct pagedep *pagedep,
12333 	struct buf *bp,		/* buffer containing the written page */
12334 	int flags)
12335 {
12336 	struct dirrem *dirrem;
12337 	struct diradd *dap, *nextdap;
12338 	struct direct *ep;
12339 	int i, chgs;
12340 
12341 	if ((pagedep->pd_state & IOSTARTED) == 0)
12342 		panic("handle_written_filepage: not started");
12343 	pagedep->pd_state &= ~IOSTARTED;
12344 	if ((flags & WRITESUCCEEDED) == 0)
12345 		goto rollforward;
12346 	/*
12347 	 * Process any directory removals that have been committed.
12348 	 */
12349 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12350 		LIST_REMOVE(dirrem, dm_next);
12351 		dirrem->dm_state |= COMPLETE;
12352 		dirrem->dm_dirinum = pagedep->pd_ino;
12353 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12354 		    ("handle_written_filepage: Journal entries not written."));
12355 		add_to_worklist(&dirrem->dm_list, 0);
12356 	}
12357 	/*
12358 	 * Free any directory additions that have been committed.
12359 	 * If it is a newly allocated block, we have to wait until
12360 	 * the on-disk directory inode claims the new block.
12361 	 */
12362 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12363 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12364 			free_diradd(dap, NULL);
12365 rollforward:
12366 	/*
12367 	 * Uncommitted directory entries must be restored.
12368 	 */
12369 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12370 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12371 		     dap = nextdap) {
12372 			nextdap = LIST_NEXT(dap, da_pdlist);
12373 			if (dap->da_state & ATTACHED)
12374 				panic("handle_written_filepage: attached");
12375 			ep = (struct direct *)
12376 			    ((char *)bp->b_data + dap->da_offset);
12377 			ep->d_ino = dap->da_newinum;
12378 			dap->da_state &= ~UNDONE;
12379 			dap->da_state |= ATTACHED;
12380 			chgs = 1;
12381 			/*
12382 			 * If the inode referenced by the directory has
12383 			 * been written out, then the dependency can be
12384 			 * moved to the pending list.
12385 			 */
12386 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12387 				LIST_REMOVE(dap, da_pdlist);
12388 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12389 				    da_pdlist);
12390 			}
12391 		}
12392 	}
12393 	/*
12394 	 * If there were any rollbacks in the directory, then it must be
12395 	 * marked dirty so that its will eventually get written back in
12396 	 * its correct form.
12397 	 */
12398 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12399 		if ((bp->b_flags & B_DELWRI) == 0)
12400 			stat_dir_entry++;
12401 		bdirty(bp);
12402 		return (1);
12403 	}
12404 	/*
12405 	 * If we are not waiting for a new directory block to be
12406 	 * claimed by its inode, then the pagedep will be freed.
12407 	 * Otherwise it will remain to track any new entries on
12408 	 * the page in case they are fsync'ed.
12409 	 */
12410 	free_pagedep(pagedep);
12411 	return (0);
12412 }
12413 
12414 /*
12415  * Writing back in-core inode structures.
12416  *
12417  * The filesystem only accesses an inode's contents when it occupies an
12418  * "in-core" inode structure.  These "in-core" structures are separate from
12419  * the page frames used to cache inode blocks.  Only the latter are
12420  * transferred to/from the disk.  So, when the updated contents of the
12421  * "in-core" inode structure are copied to the corresponding in-memory inode
12422  * block, the dependencies are also transferred.  The following procedure is
12423  * called when copying a dirty "in-core" inode to a cached inode block.
12424  */
12425 
12426 /*
12427  * Called when an inode is loaded from disk. If the effective link count
12428  * differed from the actual link count when it was last flushed, then we
12429  * need to ensure that the correct effective link count is put back.
12430  */
12431 void
12432 softdep_load_inodeblock(
12433 	struct inode *ip)	/* the "in_core" copy of the inode */
12434 {
12435 	struct inodedep *inodedep;
12436 	struct ufsmount *ump;
12437 
12438 	ump = ITOUMP(ip);
12439 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12440 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12441 	/*
12442 	 * Check for alternate nlink count.
12443 	 */
12444 	ip->i_effnlink = ip->i_nlink;
12445 	ACQUIRE_LOCK(ump);
12446 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12447 		FREE_LOCK(ump);
12448 		return;
12449 	}
12450 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12451 	    inodedep->id_nlinkwrote != -1) {
12452 		KASSERT(ip->i_nlink == 0 &&
12453 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12454 		    ("read bad i_nlink value"));
12455 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12456 	}
12457 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12458 	KASSERT(ip->i_effnlink >= 0,
12459 	    ("softdep_load_inodeblock: negative i_effnlink"));
12460 	FREE_LOCK(ump);
12461 }
12462 
12463 /*
12464  * This routine is called just before the "in-core" inode
12465  * information is to be copied to the in-memory inode block.
12466  * Recall that an inode block contains several inodes. If
12467  * the force flag is set, then the dependencies will be
12468  * cleared so that the update can always be made. Note that
12469  * the buffer is locked when this routine is called, so we
12470  * will never be in the middle of writing the inode block
12471  * to disk.
12472  */
12473 void
12474 softdep_update_inodeblock(
12475 	struct inode *ip,	/* the "in_core" copy of the inode */
12476 	struct buf *bp,		/* the buffer containing the inode block */
12477 	int waitfor)		/* nonzero => update must be allowed */
12478 {
12479 	struct inodedep *inodedep;
12480 	struct inoref *inoref;
12481 	struct ufsmount *ump;
12482 	struct worklist *wk;
12483 	struct mount *mp;
12484 	struct buf *ibp;
12485 	struct fs *fs;
12486 	int error;
12487 
12488 	ump = ITOUMP(ip);
12489 	mp = UFSTOVFS(ump);
12490 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12491 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12492 	fs = ump->um_fs;
12493 	/*
12494 	 * If the effective link count is not equal to the actual link
12495 	 * count, then we must track the difference in an inodedep while
12496 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12497 	 * if there is no existing inodedep, then there are no dependencies
12498 	 * to track.
12499 	 */
12500 	ACQUIRE_LOCK(ump);
12501 again:
12502 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12503 		FREE_LOCK(ump);
12504 		if (ip->i_effnlink != ip->i_nlink)
12505 			panic("softdep_update_inodeblock: bad link count");
12506 		return;
12507 	}
12508 	/*
12509 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12510 	 * does not have access to the in-core ip so must write directly into
12511 	 * the inode block buffer when setting freelink.
12512 	 */
12513 	if ((inodedep->id_state & UNLINKED) != 0) {
12514 		if (fs->fs_magic == FS_UFS1_MAGIC)
12515 			DIP_SET(ip, i_freelink,
12516 			    ((struct ufs1_dinode *)bp->b_data +
12517 			    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12518 		else
12519 			DIP_SET(ip, i_freelink,
12520 			    ((struct ufs2_dinode *)bp->b_data +
12521 			    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12522 	}
12523 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12524 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12525 	    "inodedep %p id_nlinkdelta %jd",
12526 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12527 	inodedep->id_nlinkwrote = ip->i_nlink;
12528 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12529 		panic("softdep_update_inodeblock: bad delta");
12530 	/*
12531 	 * If we're flushing all dependencies we must also move any waiting
12532 	 * for journal writes onto the bufwait list prior to I/O.
12533 	 */
12534 	if (waitfor) {
12535 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12536 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12537 			    == DEPCOMPLETE) {
12538 				jwait(&inoref->if_list, MNT_WAIT);
12539 				goto again;
12540 			}
12541 		}
12542 	}
12543 	/*
12544 	 * Changes have been initiated. Anything depending on these
12545 	 * changes cannot occur until this inode has been written.
12546 	 */
12547 	inodedep->id_state &= ~COMPLETE;
12548 	if ((inodedep->id_state & ONWORKLIST) == 0)
12549 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12550 	/*
12551 	 * Any new dependencies associated with the incore inode must
12552 	 * now be moved to the list associated with the buffer holding
12553 	 * the in-memory copy of the inode. Once merged process any
12554 	 * allocdirects that are completed by the merger.
12555 	 */
12556 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12557 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12558 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12559 		    NULL);
12560 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12561 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12562 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12563 		    NULL);
12564 	/*
12565 	 * Now that the inode has been pushed into the buffer, the
12566 	 * operations dependent on the inode being written to disk
12567 	 * can be moved to the id_bufwait so that they will be
12568 	 * processed when the buffer I/O completes.
12569 	 */
12570 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12571 		WORKLIST_REMOVE(wk);
12572 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12573 	}
12574 	/*
12575 	 * Newly allocated inodes cannot be written until the bitmap
12576 	 * that allocates them have been written (indicated by
12577 	 * DEPCOMPLETE being set in id_state). If we are doing a
12578 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12579 	 * to be written so that the update can be done.
12580 	 */
12581 	if (waitfor == 0) {
12582 		FREE_LOCK(ump);
12583 		return;
12584 	}
12585 retry:
12586 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12587 		FREE_LOCK(ump);
12588 		return;
12589 	}
12590 	ibp = inodedep->id_bmsafemap->sm_buf;
12591 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12592 	if (ibp == NULL) {
12593 		/*
12594 		 * If ibp came back as NULL, the dependency could have been
12595 		 * freed while we slept.  Look it up again, and check to see
12596 		 * that it has completed.
12597 		 */
12598 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12599 			goto retry;
12600 		FREE_LOCK(ump);
12601 		return;
12602 	}
12603 	FREE_LOCK(ump);
12604 	if ((error = bwrite(ibp)) != 0)
12605 		softdep_error("softdep_update_inodeblock: bwrite", error);
12606 }
12607 
12608 /*
12609  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12610  * old inode dependency list (such as id_inoupdt).
12611  */
12612 static void
12613 merge_inode_lists(
12614 	struct allocdirectlst *newlisthead,
12615 	struct allocdirectlst *oldlisthead)
12616 {
12617 	struct allocdirect *listadp, *newadp;
12618 
12619 	newadp = TAILQ_FIRST(newlisthead);
12620 	if (newadp != NULL)
12621 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12622 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12623 		if (listadp->ad_offset < newadp->ad_offset) {
12624 			listadp = TAILQ_NEXT(listadp, ad_next);
12625 			continue;
12626 		}
12627 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12628 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12629 		if (listadp->ad_offset == newadp->ad_offset) {
12630 			allocdirect_merge(oldlisthead, newadp,
12631 			    listadp);
12632 			listadp = newadp;
12633 		}
12634 		newadp = TAILQ_FIRST(newlisthead);
12635 	}
12636 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12637 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12638 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12639 	}
12640 }
12641 
12642 /*
12643  * If we are doing an fsync, then we must ensure that any directory
12644  * entries for the inode have been written after the inode gets to disk.
12645  */
12646 int
12647 softdep_fsync(
12648 	struct vnode *vp)	/* the "in_core" copy of the inode */
12649 {
12650 	struct inodedep *inodedep;
12651 	struct pagedep *pagedep;
12652 	struct inoref *inoref;
12653 	struct ufsmount *ump;
12654 	struct worklist *wk;
12655 	struct diradd *dap;
12656 	struct mount *mp;
12657 	struct vnode *pvp;
12658 	struct inode *ip;
12659 	struct buf *bp;
12660 	struct fs *fs;
12661 	struct thread *td = curthread;
12662 	int error, flushparent, pagedep_new_block;
12663 	ino_t parentino;
12664 	ufs_lbn_t lbn;
12665 
12666 	ip = VTOI(vp);
12667 	mp = vp->v_mount;
12668 	ump = VFSTOUFS(mp);
12669 	fs = ump->um_fs;
12670 	if (MOUNTEDSOFTDEP(mp) == 0)
12671 		return (0);
12672 	ACQUIRE_LOCK(ump);
12673 restart:
12674 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12675 		FREE_LOCK(ump);
12676 		return (0);
12677 	}
12678 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12679 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12680 		    == DEPCOMPLETE) {
12681 			jwait(&inoref->if_list, MNT_WAIT);
12682 			goto restart;
12683 		}
12684 	}
12685 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12686 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12687 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12688 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12689 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12690 		panic("softdep_fsync: pending ops %p", inodedep);
12691 	for (error = 0, flushparent = 0; ; ) {
12692 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12693 			break;
12694 		if (wk->wk_type != D_DIRADD)
12695 			panic("softdep_fsync: Unexpected type %s",
12696 			    TYPENAME(wk->wk_type));
12697 		dap = WK_DIRADD(wk);
12698 		/*
12699 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12700 		 * dependency or is contained in a newly allocated block.
12701 		 */
12702 		if (dap->da_state & DIRCHG)
12703 			pagedep = dap->da_previous->dm_pagedep;
12704 		else
12705 			pagedep = dap->da_pagedep;
12706 		parentino = pagedep->pd_ino;
12707 		lbn = pagedep->pd_lbn;
12708 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12709 			panic("softdep_fsync: dirty");
12710 		if ((dap->da_state & MKDIR_PARENT) ||
12711 		    (pagedep->pd_state & NEWBLOCK))
12712 			flushparent = 1;
12713 		else
12714 			flushparent = 0;
12715 		/*
12716 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12717 		 * then we will not be able to release and recover the
12718 		 * vnode below, so we just have to give up on writing its
12719 		 * directory entry out. It will eventually be written, just
12720 		 * not now, but then the user was not asking to have it
12721 		 * written, so we are not breaking any promises.
12722 		 */
12723 		if (VN_IS_DOOMED(vp))
12724 			break;
12725 		/*
12726 		 * We prevent deadlock by always fetching inodes from the
12727 		 * root, moving down the directory tree. Thus, when fetching
12728 		 * our parent directory, we first try to get the lock. If
12729 		 * that fails, we must unlock ourselves before requesting
12730 		 * the lock on our parent. See the comment in ufs_lookup
12731 		 * for details on possible races.
12732 		 */
12733 		FREE_LOCK(ump);
12734 		error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12735 		    &pvp);
12736 		if (error == ERELOOKUP)
12737 			error = 0;
12738 		if (error != 0)
12739 			return (error);
12740 		/*
12741 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12742 		 * that are contained in direct blocks will be resolved by
12743 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12744 		 * may require a complete sync'ing of the directory. So, we
12745 		 * try the cheap and fast ffs_update first, and if that fails,
12746 		 * then we do the slower ffs_syncvnode of the directory.
12747 		 */
12748 		if (flushparent) {
12749 			int locked;
12750 
12751 			if ((error = ffs_update(pvp, 1)) != 0) {
12752 				vput(pvp);
12753 				return (error);
12754 			}
12755 			ACQUIRE_LOCK(ump);
12756 			locked = 1;
12757 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12758 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12759 					if (wk->wk_type != D_DIRADD)
12760 						panic("softdep_fsync: Unexpected type %s",
12761 						      TYPENAME(wk->wk_type));
12762 					dap = WK_DIRADD(wk);
12763 					if (dap->da_state & DIRCHG)
12764 						pagedep = dap->da_previous->dm_pagedep;
12765 					else
12766 						pagedep = dap->da_pagedep;
12767 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12768 					FREE_LOCK(ump);
12769 					locked = 0;
12770 					if (pagedep_new_block) {
12771 						VOP_UNLOCK(vp);
12772 						error = ffs_syncvnode(pvp,
12773 						    MNT_WAIT, 0);
12774 						if (error == 0)
12775 							error = ERELOOKUP;
12776 						vput(pvp);
12777 						vn_lock(vp, LK_EXCLUSIVE |
12778 						    LK_RETRY);
12779 						return (error);
12780 					}
12781 				}
12782 			}
12783 			if (locked)
12784 				FREE_LOCK(ump);
12785 		}
12786 		/*
12787 		 * Flush directory page containing the inode's name.
12788 		 */
12789 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12790 		    &bp);
12791 		if (error == 0)
12792 			error = bwrite(bp);
12793 		else
12794 			brelse(bp);
12795 		vput(pvp);
12796 		if (!ffs_fsfail_cleanup(ump, error))
12797 			return (error);
12798 		ACQUIRE_LOCK(ump);
12799 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12800 			break;
12801 	}
12802 	FREE_LOCK(ump);
12803 	return (0);
12804 }
12805 
12806 /*
12807  * Flush all the dirty bitmaps associated with the block device
12808  * before flushing the rest of the dirty blocks so as to reduce
12809  * the number of dependencies that will have to be rolled back.
12810  *
12811  * XXX Unused?
12812  */
12813 void
12814 softdep_fsync_mountdev(struct vnode *vp)
12815 {
12816 	struct buf *bp, *nbp;
12817 	struct worklist *wk;
12818 	struct bufobj *bo;
12819 
12820 	if (!vn_isdisk(vp))
12821 		panic("softdep_fsync_mountdev: vnode not a disk");
12822 	bo = &vp->v_bufobj;
12823 restart:
12824 	BO_LOCK(bo);
12825 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12826 		/*
12827 		 * If it is already scheduled, skip to the next buffer.
12828 		 */
12829 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12830 			continue;
12831 
12832 		if ((bp->b_flags & B_DELWRI) == 0)
12833 			panic("softdep_fsync_mountdev: not dirty");
12834 		/*
12835 		 * We are only interested in bitmaps with outstanding
12836 		 * dependencies.
12837 		 */
12838 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12839 		    wk->wk_type != D_BMSAFEMAP ||
12840 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12841 			BUF_UNLOCK(bp);
12842 			continue;
12843 		}
12844 		BO_UNLOCK(bo);
12845 		bremfree(bp);
12846 		(void) bawrite(bp);
12847 		goto restart;
12848 	}
12849 	drain_output(vp);
12850 	BO_UNLOCK(bo);
12851 }
12852 
12853 /*
12854  * Sync all cylinder groups that were dirty at the time this function is
12855  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12856  * is used to flush freedep activity that may be holding up writes to a
12857  * indirect block.
12858  */
12859 static int
12860 sync_cgs(struct mount *mp, int waitfor)
12861 {
12862 	struct bmsafemap *bmsafemap;
12863 	struct bmsafemap *sentinel;
12864 	struct ufsmount *ump;
12865 	struct buf *bp;
12866 	int error;
12867 
12868 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12869 	sentinel->sm_cg = -1;
12870 	ump = VFSTOUFS(mp);
12871 	error = 0;
12872 	ACQUIRE_LOCK(ump);
12873 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12874 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12875 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12876 		/* Skip sentinels and cgs with no work to release. */
12877 		if (bmsafemap->sm_cg == -1 ||
12878 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12879 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12880 			LIST_REMOVE(sentinel, sm_next);
12881 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12882 			continue;
12883 		}
12884 		/*
12885 		 * If we don't get the lock and we're waiting try again, if
12886 		 * not move on to the next buf and try to sync it.
12887 		 */
12888 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12889 		if (bp == NULL && waitfor == MNT_WAIT)
12890 			continue;
12891 		LIST_REMOVE(sentinel, sm_next);
12892 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12893 		if (bp == NULL)
12894 			continue;
12895 		FREE_LOCK(ump);
12896 		if (waitfor == MNT_NOWAIT)
12897 			bawrite(bp);
12898 		else
12899 			error = bwrite(bp);
12900 		ACQUIRE_LOCK(ump);
12901 		if (error)
12902 			break;
12903 	}
12904 	LIST_REMOVE(sentinel, sm_next);
12905 	FREE_LOCK(ump);
12906 	free(sentinel, M_BMSAFEMAP);
12907 	return (error);
12908 }
12909 
12910 /*
12911  * This routine is called when we are trying to synchronously flush a
12912  * file. This routine must eliminate any filesystem metadata dependencies
12913  * so that the syncing routine can succeed.
12914  */
12915 int
12916 softdep_sync_metadata(struct vnode *vp)
12917 {
12918 	struct inode *ip;
12919 	int error;
12920 
12921 	ip = VTOI(vp);
12922 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12923 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12924 	/*
12925 	 * Ensure that any direct block dependencies have been cleared,
12926 	 * truncations are started, and inode references are journaled.
12927 	 */
12928 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12929 	/*
12930 	 * Write all journal records to prevent rollbacks on devvp.
12931 	 */
12932 	if (vp->v_type == VCHR)
12933 		softdep_flushjournal(vp->v_mount);
12934 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12935 	/*
12936 	 * Ensure that all truncates are written so we won't find deps on
12937 	 * indirect blocks.
12938 	 */
12939 	process_truncates(vp);
12940 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12941 
12942 	return (error);
12943 }
12944 
12945 /*
12946  * This routine is called when we are attempting to sync a buf with
12947  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12948  * other IO it can but returns EBUSY if the buffer is not yet able to
12949  * be written.  Dependencies which will not cause rollbacks will always
12950  * return 0.
12951  */
12952 int
12953 softdep_sync_buf(struct vnode *vp,
12954 	struct buf *bp,
12955 	int waitfor)
12956 {
12957 	struct indirdep *indirdep;
12958 	struct pagedep *pagedep;
12959 	struct allocindir *aip;
12960 	struct newblk *newblk;
12961 	struct ufsmount *ump;
12962 	struct buf *nbp;
12963 	struct worklist *wk;
12964 	int i, error;
12965 
12966 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12967 	    ("softdep_sync_buf called on non-softdep filesystem"));
12968 	/*
12969 	 * For VCHR we just don't want to force flush any dependencies that
12970 	 * will cause rollbacks.
12971 	 */
12972 	if (vp->v_type == VCHR) {
12973 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12974 			return (EBUSY);
12975 		return (0);
12976 	}
12977 	ump = VFSTOUFS(vp->v_mount);
12978 	ACQUIRE_LOCK(ump);
12979 	/*
12980 	 * As we hold the buffer locked, none of its dependencies
12981 	 * will disappear.
12982 	 */
12983 	error = 0;
12984 top:
12985 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12986 		switch (wk->wk_type) {
12987 		case D_ALLOCDIRECT:
12988 		case D_ALLOCINDIR:
12989 			newblk = WK_NEWBLK(wk);
12990 			if (newblk->nb_jnewblk != NULL) {
12991 				if (waitfor == MNT_NOWAIT) {
12992 					error = EBUSY;
12993 					goto out_unlock;
12994 				}
12995 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12996 				goto top;
12997 			}
12998 			if (newblk->nb_state & DEPCOMPLETE ||
12999 			    waitfor == MNT_NOWAIT)
13000 				continue;
13001 			nbp = newblk->nb_bmsafemap->sm_buf;
13002 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13003 			if (nbp == NULL)
13004 				goto top;
13005 			FREE_LOCK(ump);
13006 			if ((error = bwrite(nbp)) != 0)
13007 				goto out;
13008 			ACQUIRE_LOCK(ump);
13009 			continue;
13010 
13011 		case D_INDIRDEP:
13012 			indirdep = WK_INDIRDEP(wk);
13013 			if (waitfor == MNT_NOWAIT) {
13014 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13015 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13016 					error = EBUSY;
13017 					goto out_unlock;
13018 				}
13019 			}
13020 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13021 				panic("softdep_sync_buf: truncation pending.");
13022 		restart:
13023 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13024 				newblk = (struct newblk *)aip;
13025 				if (newblk->nb_jnewblk != NULL) {
13026 					jwait(&newblk->nb_jnewblk->jn_list,
13027 					    waitfor);
13028 					goto restart;
13029 				}
13030 				if (newblk->nb_state & DEPCOMPLETE)
13031 					continue;
13032 				nbp = newblk->nb_bmsafemap->sm_buf;
13033 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13034 				if (nbp == NULL)
13035 					goto restart;
13036 				FREE_LOCK(ump);
13037 				if ((error = bwrite(nbp)) != 0)
13038 					goto out;
13039 				ACQUIRE_LOCK(ump);
13040 				goto restart;
13041 			}
13042 			continue;
13043 
13044 		case D_PAGEDEP:
13045 			/*
13046 			 * Only flush directory entries in synchronous passes.
13047 			 */
13048 			if (waitfor != MNT_WAIT) {
13049 				error = EBUSY;
13050 				goto out_unlock;
13051 			}
13052 			/*
13053 			 * While syncing snapshots, we must allow recursive
13054 			 * lookups.
13055 			 */
13056 			BUF_AREC(bp);
13057 			/*
13058 			 * We are trying to sync a directory that may
13059 			 * have dependencies on both its own metadata
13060 			 * and/or dependencies on the inodes of any
13061 			 * recently allocated files. We walk its diradd
13062 			 * lists pushing out the associated inode.
13063 			 */
13064 			pagedep = WK_PAGEDEP(wk);
13065 			for (i = 0; i < DAHASHSZ; i++) {
13066 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13067 					continue;
13068 				error = flush_pagedep_deps(vp, wk->wk_mp,
13069 				    &pagedep->pd_diraddhd[i], bp);
13070 				if (error != 0) {
13071 					if (error != ERELOOKUP)
13072 						BUF_NOREC(bp);
13073 					goto out_unlock;
13074 				}
13075 			}
13076 			BUF_NOREC(bp);
13077 			continue;
13078 
13079 		case D_FREEWORK:
13080 		case D_FREEDEP:
13081 		case D_JSEGDEP:
13082 		case D_JNEWBLK:
13083 			continue;
13084 
13085 		default:
13086 			panic("softdep_sync_buf: Unknown type %s",
13087 			    TYPENAME(wk->wk_type));
13088 			/* NOTREACHED */
13089 		}
13090 	}
13091 out_unlock:
13092 	FREE_LOCK(ump);
13093 out:
13094 	return (error);
13095 }
13096 
13097 /*
13098  * Flush the dependencies associated with an inodedep.
13099  */
13100 static int
13101 flush_inodedep_deps(
13102 	struct vnode *vp,
13103 	struct mount *mp,
13104 	ino_t ino)
13105 {
13106 	struct inodedep *inodedep;
13107 	struct inoref *inoref;
13108 	struct ufsmount *ump;
13109 	int error, waitfor;
13110 
13111 	/*
13112 	 * This work is done in two passes. The first pass grabs most
13113 	 * of the buffers and begins asynchronously writing them. The
13114 	 * only way to wait for these asynchronous writes is to sleep
13115 	 * on the filesystem vnode which may stay busy for a long time
13116 	 * if the filesystem is active. So, instead, we make a second
13117 	 * pass over the dependencies blocking on each write. In the
13118 	 * usual case we will be blocking against a write that we
13119 	 * initiated, so when it is done the dependency will have been
13120 	 * resolved. Thus the second pass is expected to end quickly.
13121 	 * We give a brief window at the top of the loop to allow
13122 	 * any pending I/O to complete.
13123 	 */
13124 	ump = VFSTOUFS(mp);
13125 	LOCK_OWNED(ump);
13126 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13127 		if (error)
13128 			return (error);
13129 		FREE_LOCK(ump);
13130 		ACQUIRE_LOCK(ump);
13131 restart:
13132 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13133 			return (0);
13134 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13135 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13136 			    == DEPCOMPLETE) {
13137 				jwait(&inoref->if_list, MNT_WAIT);
13138 				goto restart;
13139 			}
13140 		}
13141 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13142 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13143 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13144 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13145 			continue;
13146 		/*
13147 		 * If pass2, we are done, otherwise do pass 2.
13148 		 */
13149 		if (waitfor == MNT_WAIT)
13150 			break;
13151 		waitfor = MNT_WAIT;
13152 	}
13153 	/*
13154 	 * Try freeing inodedep in case all dependencies have been removed.
13155 	 */
13156 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13157 		(void) free_inodedep(inodedep);
13158 	return (0);
13159 }
13160 
13161 /*
13162  * Flush an inode dependency list.
13163  */
13164 static int
13165 flush_deplist(
13166 	struct allocdirectlst *listhead,
13167 	int waitfor,
13168 	int *errorp)
13169 {
13170 	struct allocdirect *adp;
13171 	struct newblk *newblk;
13172 	struct ufsmount *ump;
13173 	struct buf *bp;
13174 
13175 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13176 		return (0);
13177 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13178 	LOCK_OWNED(ump);
13179 	TAILQ_FOREACH(adp, listhead, ad_next) {
13180 		newblk = (struct newblk *)adp;
13181 		if (newblk->nb_jnewblk != NULL) {
13182 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13183 			return (1);
13184 		}
13185 		if (newblk->nb_state & DEPCOMPLETE)
13186 			continue;
13187 		bp = newblk->nb_bmsafemap->sm_buf;
13188 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13189 		if (bp == NULL) {
13190 			if (waitfor == MNT_NOWAIT)
13191 				continue;
13192 			return (1);
13193 		}
13194 		FREE_LOCK(ump);
13195 		if (waitfor == MNT_NOWAIT)
13196 			bawrite(bp);
13197 		else
13198 			*errorp = bwrite(bp);
13199 		ACQUIRE_LOCK(ump);
13200 		return (1);
13201 	}
13202 	return (0);
13203 }
13204 
13205 /*
13206  * Flush dependencies associated with an allocdirect block.
13207  */
13208 static int
13209 flush_newblk_dep(
13210 	struct vnode *vp,
13211 	struct mount *mp,
13212 	ufs_lbn_t lbn)
13213 {
13214 	struct newblk *newblk;
13215 	struct ufsmount *ump;
13216 	struct bufobj *bo;
13217 	struct inode *ip;
13218 	struct buf *bp;
13219 	ufs2_daddr_t blkno;
13220 	int error;
13221 
13222 	error = 0;
13223 	bo = &vp->v_bufobj;
13224 	ip = VTOI(vp);
13225 	blkno = DIP(ip, i_db[lbn]);
13226 	if (blkno == 0)
13227 		panic("flush_newblk_dep: Missing block");
13228 	ump = VFSTOUFS(mp);
13229 	ACQUIRE_LOCK(ump);
13230 	/*
13231 	 * Loop until all dependencies related to this block are satisfied.
13232 	 * We must be careful to restart after each sleep in case a write
13233 	 * completes some part of this process for us.
13234 	 */
13235 	for (;;) {
13236 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13237 			FREE_LOCK(ump);
13238 			break;
13239 		}
13240 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13241 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13242 		/*
13243 		 * Flush the journal.
13244 		 */
13245 		if (newblk->nb_jnewblk != NULL) {
13246 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13247 			continue;
13248 		}
13249 		/*
13250 		 * Write the bitmap dependency.
13251 		 */
13252 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13253 			bp = newblk->nb_bmsafemap->sm_buf;
13254 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13255 			if (bp == NULL)
13256 				continue;
13257 			FREE_LOCK(ump);
13258 			error = bwrite(bp);
13259 			if (error)
13260 				break;
13261 			ACQUIRE_LOCK(ump);
13262 			continue;
13263 		}
13264 		/*
13265 		 * Write the buffer.
13266 		 */
13267 		FREE_LOCK(ump);
13268 		BO_LOCK(bo);
13269 		bp = gbincore(bo, lbn);
13270 		if (bp != NULL) {
13271 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13272 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13273 			if (error == ENOLCK) {
13274 				ACQUIRE_LOCK(ump);
13275 				error = 0;
13276 				continue; /* Slept, retry */
13277 			}
13278 			if (error != 0)
13279 				break;	/* Failed */
13280 			if (bp->b_flags & B_DELWRI) {
13281 				bremfree(bp);
13282 				error = bwrite(bp);
13283 				if (error)
13284 					break;
13285 			} else
13286 				BUF_UNLOCK(bp);
13287 		} else
13288 			BO_UNLOCK(bo);
13289 		/*
13290 		 * We have to wait for the direct pointers to
13291 		 * point at the newdirblk before the dependency
13292 		 * will go away.
13293 		 */
13294 		error = ffs_update(vp, 1);
13295 		if (error)
13296 			break;
13297 		ACQUIRE_LOCK(ump);
13298 	}
13299 	return (error);
13300 }
13301 
13302 /*
13303  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13304  */
13305 static int
13306 flush_pagedep_deps(
13307 	struct vnode *pvp,
13308 	struct mount *mp,
13309 	struct diraddhd *diraddhdp,
13310 	struct buf *locked_bp)
13311 {
13312 	struct inodedep *inodedep;
13313 	struct inoref *inoref;
13314 	struct ufsmount *ump;
13315 	struct diradd *dap;
13316 	struct vnode *vp;
13317 	int error = 0;
13318 	struct buf *bp;
13319 	ino_t inum;
13320 	struct diraddhd unfinished;
13321 
13322 	LIST_INIT(&unfinished);
13323 	ump = VFSTOUFS(mp);
13324 	LOCK_OWNED(ump);
13325 restart:
13326 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13327 		/*
13328 		 * Flush ourselves if this directory entry
13329 		 * has a MKDIR_PARENT dependency.
13330 		 */
13331 		if (dap->da_state & MKDIR_PARENT) {
13332 			FREE_LOCK(ump);
13333 			if ((error = ffs_update(pvp, 1)) != 0)
13334 				break;
13335 			ACQUIRE_LOCK(ump);
13336 			/*
13337 			 * If that cleared dependencies, go on to next.
13338 			 */
13339 			if (dap != LIST_FIRST(diraddhdp))
13340 				continue;
13341 			/*
13342 			 * All MKDIR_PARENT dependencies and all the
13343 			 * NEWBLOCK pagedeps that are contained in direct
13344 			 * blocks were resolved by doing above ffs_update.
13345 			 * Pagedeps contained in indirect blocks may
13346 			 * require a complete sync'ing of the directory.
13347 			 * We are in the midst of doing a complete sync,
13348 			 * so if they are not resolved in this pass we
13349 			 * defer them for now as they will be sync'ed by
13350 			 * our caller shortly.
13351 			 */
13352 			LIST_REMOVE(dap, da_pdlist);
13353 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13354 			continue;
13355 		}
13356 		/*
13357 		 * A newly allocated directory must have its "." and
13358 		 * ".." entries written out before its name can be
13359 		 * committed in its parent.
13360 		 */
13361 		inum = dap->da_newinum;
13362 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13363 			panic("flush_pagedep_deps: lost inode1");
13364 		/*
13365 		 * Wait for any pending journal adds to complete so we don't
13366 		 * cause rollbacks while syncing.
13367 		 */
13368 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13369 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13370 			    == DEPCOMPLETE) {
13371 				jwait(&inoref->if_list, MNT_WAIT);
13372 				goto restart;
13373 			}
13374 		}
13375 		if (dap->da_state & MKDIR_BODY) {
13376 			FREE_LOCK(ump);
13377 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13378 			    diraddhdp, &unfinished, &vp);
13379 			if (error != 0)
13380 				break;
13381 			error = flush_newblk_dep(vp, mp, 0);
13382 			/*
13383 			 * If we still have the dependency we might need to
13384 			 * update the vnode to sync the new link count to
13385 			 * disk.
13386 			 */
13387 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13388 				error = ffs_update(vp, 1);
13389 			vput(vp);
13390 			if (error != 0)
13391 				break;
13392 			ACQUIRE_LOCK(ump);
13393 			/*
13394 			 * If that cleared dependencies, go on to next.
13395 			 */
13396 			if (dap != LIST_FIRST(diraddhdp))
13397 				continue;
13398 			if (dap->da_state & MKDIR_BODY) {
13399 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13400 				    &inodedep);
13401 				panic("flush_pagedep_deps: MKDIR_BODY "
13402 				    "inodedep %p dap %p vp %p",
13403 				    inodedep, dap, vp);
13404 			}
13405 		}
13406 		/*
13407 		 * Flush the inode on which the directory entry depends.
13408 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13409 		 * the only remaining dependency is that the updated inode
13410 		 * count must get pushed to disk. The inode has already
13411 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13412 		 * the time of the reference count change. So we need only
13413 		 * locate that buffer, ensure that there will be no rollback
13414 		 * caused by a bitmap dependency, then write the inode buffer.
13415 		 */
13416 retry:
13417 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13418 			panic("flush_pagedep_deps: lost inode");
13419 		/*
13420 		 * If the inode still has bitmap dependencies,
13421 		 * push them to disk.
13422 		 */
13423 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13424 			bp = inodedep->id_bmsafemap->sm_buf;
13425 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13426 			if (bp == NULL)
13427 				goto retry;
13428 			FREE_LOCK(ump);
13429 			if ((error = bwrite(bp)) != 0)
13430 				break;
13431 			ACQUIRE_LOCK(ump);
13432 			if (dap != LIST_FIRST(diraddhdp))
13433 				continue;
13434 		}
13435 		/*
13436 		 * If the inode is still sitting in a buffer waiting
13437 		 * to be written or waiting for the link count to be
13438 		 * adjusted update it here to flush it to disk.
13439 		 */
13440 		if (dap == LIST_FIRST(diraddhdp)) {
13441 			FREE_LOCK(ump);
13442 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13443 			    diraddhdp, &unfinished, &vp);
13444 			if (error != 0)
13445 				break;
13446 			error = ffs_update(vp, 1);
13447 			vput(vp);
13448 			if (error)
13449 				break;
13450 			ACQUIRE_LOCK(ump);
13451 		}
13452 		/*
13453 		 * If we have failed to get rid of all the dependencies
13454 		 * then something is seriously wrong.
13455 		 */
13456 		if (dap == LIST_FIRST(diraddhdp)) {
13457 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13458 			panic("flush_pagedep_deps: failed to flush "
13459 			    "inodedep %p ino %ju dap %p",
13460 			    inodedep, (uintmax_t)inum, dap);
13461 		}
13462 	}
13463 	if (error)
13464 		ACQUIRE_LOCK(ump);
13465 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13466 		LIST_REMOVE(dap, da_pdlist);
13467 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13468 	}
13469 	return (error);
13470 }
13471 
13472 /*
13473  * A large burst of file addition or deletion activity can drive the
13474  * memory load excessively high. First attempt to slow things down
13475  * using the techniques below. If that fails, this routine requests
13476  * the offending operations to fall back to running synchronously
13477  * until the memory load returns to a reasonable level.
13478  */
13479 int
13480 softdep_slowdown(struct vnode *vp)
13481 {
13482 	struct ufsmount *ump;
13483 	int jlow;
13484 	int max_softdeps_hard;
13485 
13486 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13487 	    ("softdep_slowdown called on non-softdep filesystem"));
13488 	ump = VFSTOUFS(vp->v_mount);
13489 	ACQUIRE_LOCK(ump);
13490 	jlow = 0;
13491 	/*
13492 	 * Check for journal space if needed.
13493 	 */
13494 	if (DOINGSUJ(vp)) {
13495 		if (journal_space(ump, 0) == 0)
13496 			jlow = 1;
13497 	}
13498 	/*
13499 	 * If the system is under its limits and our filesystem is
13500 	 * not responsible for more than our share of the usage and
13501 	 * we are not low on journal space, then no need to slow down.
13502 	 */
13503 	max_softdeps_hard = max_softdeps * 11 / 10;
13504 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13505 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13506 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13507 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13508 	    ump->softdep_curdeps[D_DIRREM] <
13509 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13510 	    ump->softdep_curdeps[D_INODEDEP] <
13511 	    max_softdeps_hard / stat_flush_threads &&
13512 	    ump->softdep_curdeps[D_INDIRDEP] <
13513 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13514 	    ump->softdep_curdeps[D_FREEBLKS] <
13515 	    max_softdeps_hard / stat_flush_threads) {
13516 		FREE_LOCK(ump);
13517   		return (0);
13518 	}
13519 	/*
13520 	 * If the journal is low or our filesystem is over its limit
13521 	 * then speedup the cleanup.
13522 	 */
13523 	if (ump->softdep_curdeps[D_INDIRDEP] <
13524 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13525 		softdep_speedup(ump);
13526 	stat_sync_limit_hit += 1;
13527 	FREE_LOCK(ump);
13528 	/*
13529 	 * We only slow down the rate at which new dependencies are
13530 	 * generated if we are not using journaling. With journaling,
13531 	 * the cleanup should always be sufficient to keep things
13532 	 * under control.
13533 	 */
13534 	if (DOINGSUJ(vp))
13535 		return (0);
13536 	return (1);
13537 }
13538 
13539 static int
13540 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13541 {
13542 	return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13543 	    ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13544 }
13545 
13546 static void
13547 softdep_request_cleanup_inactivate(struct mount *mp)
13548 {
13549 	struct vnode *vp, *mvp;
13550 	int error;
13551 
13552 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13553 	    NULL) {
13554 		vholdl(vp);
13555 		vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13556 		VI_LOCK(vp);
13557 		if (IS_UFS(vp) && vp->v_usecount == 0) {
13558 			while ((vp->v_iflag & VI_OWEINACT) != 0) {
13559 				error = vinactive(vp);
13560 				if (error != 0 && error != ERELOOKUP)
13561 					break;
13562 			}
13563 			atomic_add_int(&stat_delayed_inact, 1);
13564 		}
13565 		VOP_UNLOCK(vp);
13566 		vdropl(vp);
13567 	}
13568 }
13569 
13570 /*
13571  * Called by the allocation routines when they are about to fail
13572  * in the hope that we can free up the requested resource (inodes
13573  * or disk space).
13574  *
13575  * First check to see if the work list has anything on it. If it has,
13576  * clean up entries until we successfully free the requested resource.
13577  * Because this process holds inodes locked, we cannot handle any remove
13578  * requests that might block on a locked inode as that could lead to
13579  * deadlock. If the worklist yields none of the requested resource,
13580  * start syncing out vnodes to free up the needed space.
13581  */
13582 int
13583 softdep_request_cleanup(
13584 	struct fs *fs,
13585 	struct vnode *vp,
13586 	struct ucred *cred,
13587 	int resource)
13588 {
13589 	struct ufsmount *ump;
13590 	struct mount *mp;
13591 	long starttime;
13592 	ufs2_daddr_t needed;
13593 	int error, failed_vnode;
13594 
13595 	/*
13596 	 * If we are being called because of a process doing a
13597 	 * copy-on-write, then it is not safe to process any
13598 	 * worklist items as we will recurse into the copyonwrite
13599 	 * routine.  This will result in an incoherent snapshot.
13600 	 * If the vnode that we hold is a snapshot, we must avoid
13601 	 * handling other resources that could cause deadlock.
13602 	 */
13603 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13604 		return (0);
13605 
13606 	if (resource == FLUSH_BLOCKS_WAIT)
13607 		stat_cleanup_blkrequests += 1;
13608 	else
13609 		stat_cleanup_inorequests += 1;
13610 
13611 	mp = vp->v_mount;
13612 	ump = VFSTOUFS(mp);
13613 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13614 	UFS_UNLOCK(ump);
13615 	error = ffs_update(vp, 1);
13616 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13617 		UFS_LOCK(ump);
13618 		return (0);
13619 	}
13620 	/*
13621 	 * If we are in need of resources, start by cleaning up
13622 	 * any block removals associated with our inode.
13623 	 */
13624 	ACQUIRE_LOCK(ump);
13625 	process_removes(vp);
13626 	process_truncates(vp);
13627 	FREE_LOCK(ump);
13628 	/*
13629 	 * Now clean up at least as many resources as we will need.
13630 	 *
13631 	 * When requested to clean up inodes, the number that are needed
13632 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13633 	 * plus a bit of slop (2) in case some more writers show up while
13634 	 * we are cleaning.
13635 	 *
13636 	 * When requested to free up space, the amount of space that
13637 	 * we need is enough blocks to allocate a full-sized segment
13638 	 * (fs_contigsumsize). The number of such segments that will
13639 	 * be needed is set by the number of simultaneous writers
13640 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13641 	 * writers show up while we are cleaning.
13642 	 *
13643 	 * Additionally, if we are unpriviledged and allocating space,
13644 	 * we need to ensure that we clean up enough blocks to get the
13645 	 * needed number of blocks over the threshold of the minimum
13646 	 * number of blocks required to be kept free by the filesystem
13647 	 * (fs_minfree).
13648 	 */
13649 	if (resource == FLUSH_INODES_WAIT) {
13650 		needed = vfs_mount_fetch_counter(vp->v_mount,
13651 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13652 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13653 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13654 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13655 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13656 			needed += fragstoblks(fs,
13657 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13658 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13659 	} else {
13660 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13661 		    resource);
13662 		UFS_LOCK(ump);
13663 		return (0);
13664 	}
13665 	starttime = time_second;
13666 retry:
13667 	if (resource == FLUSH_BLOCKS_WAIT &&
13668 	    fs->fs_cstotal.cs_nbfree <= needed)
13669 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13670 		    BIO_SPEEDUP_TRIM);
13671 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13672 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13673 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13674 	    fs->fs_cstotal.cs_nifree <= needed)) {
13675 		ACQUIRE_LOCK(ump);
13676 		if (ump->softdep_on_worklist > 0 &&
13677 		    process_worklist_item(UFSTOVFS(ump),
13678 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13679 			stat_worklist_push += 1;
13680 		FREE_LOCK(ump);
13681 	}
13682 
13683 	/*
13684 	 * Check that there are vnodes pending inactivation.  As they
13685 	 * have been unlinked, inactivating them will free up their
13686 	 * inodes.
13687 	 */
13688 	ACQUIRE_LOCK(ump);
13689 	if (resource == FLUSH_INODES_WAIT &&
13690 	    fs->fs_cstotal.cs_nifree <= needed &&
13691 	    fs->fs_pendinginodes <= needed) {
13692 		if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13693 			ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13694 			FREE_LOCK(ump);
13695 			softdep_request_cleanup_inactivate(mp);
13696 			ACQUIRE_LOCK(ump);
13697 			ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13698 			wakeup(&ump->um_softdep->sd_flags);
13699 		} else {
13700 			while ((ump->um_softdep->sd_flags &
13701 			    FLUSH_DI_ACTIVE) != 0) {
13702 				msleep(&ump->um_softdep->sd_flags,
13703 				    LOCK_PTR(ump), PVM, "ffsvina", hz);
13704 			}
13705 		}
13706 	}
13707 	FREE_LOCK(ump);
13708 
13709 	/*
13710 	 * If we still need resources and there are no more worklist
13711 	 * entries to process to obtain them, we have to start flushing
13712 	 * the dirty vnodes to force the release of additional requests
13713 	 * to the worklist that we can then process to reap addition
13714 	 * resources. We walk the vnodes associated with the mount point
13715 	 * until we get the needed worklist requests that we can reap.
13716 	 *
13717 	 * If there are several threads all needing to clean the same
13718 	 * mount point, only one is allowed to walk the mount list.
13719 	 * When several threads all try to walk the same mount list,
13720 	 * they end up competing with each other and often end up in
13721 	 * livelock. This approach ensures that forward progress is
13722 	 * made at the cost of occational ENOSPC errors being returned
13723 	 * that might otherwise have been avoided.
13724 	 */
13725 	error = 1;
13726 	if ((resource == FLUSH_BLOCKS_WAIT &&
13727 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13728 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13729 	     fs->fs_cstotal.cs_nifree <= needed)) {
13730 		ACQUIRE_LOCK(ump);
13731 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13732 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13733 			FREE_LOCK(ump);
13734 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13735 			ACQUIRE_LOCK(ump);
13736 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13737 			wakeup(&ump->um_softdep->sd_flags);
13738 			FREE_LOCK(ump);
13739 			if (ump->softdep_on_worklist > 0) {
13740 				stat_cleanup_retries += 1;
13741 				if (!failed_vnode)
13742 					goto retry;
13743 			}
13744 		} else {
13745 			while ((ump->um_softdep->sd_flags &
13746 			    FLUSH_RC_ACTIVE) != 0) {
13747 				msleep(&ump->um_softdep->sd_flags,
13748 				    LOCK_PTR(ump), PVM, "ffsrca", hz);
13749 			}
13750 			FREE_LOCK(ump);
13751 			error = 0;
13752 		}
13753 		stat_cleanup_failures += 1;
13754 	}
13755 	if (time_second - starttime > stat_cleanup_high_delay)
13756 		stat_cleanup_high_delay = time_second - starttime;
13757 	UFS_LOCK(ump);
13758 	return (error);
13759 }
13760 
13761 /*
13762  * Scan the vnodes for the specified mount point flushing out any
13763  * vnodes that can be locked without waiting. Finally, try to flush
13764  * the device associated with the mount point if it can be locked
13765  * without waiting.
13766  *
13767  * We return 0 if we were able to lock every vnode in our scan.
13768  * If we had to skip one or more vnodes, we return 1.
13769  */
13770 static int
13771 softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump)
13772 {
13773 	struct thread *td;
13774 	struct vnode *lvp, *mvp;
13775 	int failed_vnode;
13776 
13777 	failed_vnode = 0;
13778 	td = curthread;
13779 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13780 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13781 			VI_UNLOCK(lvp);
13782 			continue;
13783 		}
13784 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13785 			failed_vnode = 1;
13786 			continue;
13787 		}
13788 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13789 			vput(lvp);
13790 			continue;
13791 		}
13792 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13793 		vput(lvp);
13794 	}
13795 	lvp = ump->um_devvp;
13796 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13797 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13798 		VOP_UNLOCK(lvp);
13799 	}
13800 	return (failed_vnode);
13801 }
13802 
13803 static bool
13804 softdep_excess_items(struct ufsmount *ump, int item)
13805 {
13806 
13807 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13808 	return (dep_current[item] > max_softdeps &&
13809 	    ump->softdep_curdeps[item] > max_softdeps /
13810 	    stat_flush_threads);
13811 }
13812 
13813 static void
13814 schedule_cleanup(struct mount *mp)
13815 {
13816 	struct ufsmount *ump;
13817 	struct thread *td;
13818 
13819 	ump = VFSTOUFS(mp);
13820 	LOCK_OWNED(ump);
13821 	FREE_LOCK(ump);
13822 	td = curthread;
13823 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13824 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13825 		/*
13826 		 * No ast is delivered to kernel threads, so nobody
13827 		 * would deref the mp.  Some kernel threads
13828 		 * explicitly check for AST, e.g. NFS daemon does
13829 		 * this in the serving loop.
13830 		 */
13831 		return;
13832 	}
13833 	if (td->td_su != NULL)
13834 		vfs_rel(td->td_su);
13835 	vfs_ref(mp);
13836 	td->td_su = mp;
13837 	ast_sched(td, TDA_UFS);
13838 }
13839 
13840 static void
13841 softdep_ast_cleanup_proc(struct thread *td, int ast __unused)
13842 {
13843 	struct mount *mp;
13844 	struct ufsmount *ump;
13845 	int error;
13846 	bool req;
13847 
13848 	while ((mp = td->td_su) != NULL) {
13849 		td->td_su = NULL;
13850 		error = vfs_busy(mp, MBF_NOWAIT);
13851 		vfs_rel(mp);
13852 		if (error != 0)
13853 			return;
13854 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13855 			ump = VFSTOUFS(mp);
13856 			for (;;) {
13857 				req = false;
13858 				ACQUIRE_LOCK(ump);
13859 				if (softdep_excess_items(ump, D_INODEDEP)) {
13860 					req = true;
13861 					request_cleanup(mp, FLUSH_INODES);
13862 				}
13863 				if (softdep_excess_items(ump, D_DIRREM)) {
13864 					req = true;
13865 					request_cleanup(mp, FLUSH_BLOCKS);
13866 				}
13867 				FREE_LOCK(ump);
13868 				if (softdep_excess_items(ump, D_NEWBLK) ||
13869 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13870 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13871 					error = vn_start_write(NULL, &mp,
13872 					    V_WAIT);
13873 					if (error == 0) {
13874 						req = true;
13875 						VFS_SYNC(mp, MNT_WAIT);
13876 						vn_finished_write(mp);
13877 					}
13878 				}
13879 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13880 					break;
13881 			}
13882 		}
13883 		vfs_unbusy(mp);
13884 	}
13885 	if ((mp = td->td_su) != NULL) {
13886 		td->td_su = NULL;
13887 		vfs_rel(mp);
13888 	}
13889 }
13890 
13891 /*
13892  * If memory utilization has gotten too high, deliberately slow things
13893  * down and speed up the I/O processing.
13894  */
13895 static int
13896 request_cleanup(struct mount *mp, int resource)
13897 {
13898 	struct thread *td = curthread;
13899 	struct ufsmount *ump;
13900 
13901 	ump = VFSTOUFS(mp);
13902 	LOCK_OWNED(ump);
13903 	/*
13904 	 * We never hold up the filesystem syncer or buf daemon.
13905 	 */
13906 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13907 		return (0);
13908 	/*
13909 	 * First check to see if the work list has gotten backlogged.
13910 	 * If it has, co-opt this process to help clean up two entries.
13911 	 * Because this process may hold inodes locked, we cannot
13912 	 * handle any remove requests that might block on a locked
13913 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13914 	 * to avoid recursively processing the worklist.
13915 	 */
13916 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13917 		td->td_pflags |= TDP_SOFTDEP;
13918 		process_worklist_item(mp, 2, LK_NOWAIT);
13919 		td->td_pflags &= ~TDP_SOFTDEP;
13920 		stat_worklist_push += 2;
13921 		return(1);
13922 	}
13923 	/*
13924 	 * Next, we attempt to speed up the syncer process. If that
13925 	 * is successful, then we allow the process to continue.
13926 	 */
13927 	if (softdep_speedup(ump) &&
13928 	    resource != FLUSH_BLOCKS_WAIT &&
13929 	    resource != FLUSH_INODES_WAIT)
13930 		return(0);
13931 	/*
13932 	 * If we are resource constrained on inode dependencies, try
13933 	 * flushing some dirty inodes. Otherwise, we are constrained
13934 	 * by file deletions, so try accelerating flushes of directories
13935 	 * with removal dependencies. We would like to do the cleanup
13936 	 * here, but we probably hold an inode locked at this point and
13937 	 * that might deadlock against one that we try to clean. So,
13938 	 * the best that we can do is request the syncer daemon to do
13939 	 * the cleanup for us.
13940 	 */
13941 	switch (resource) {
13942 	case FLUSH_INODES:
13943 	case FLUSH_INODES_WAIT:
13944 		ACQUIRE_GBLLOCK(&lk);
13945 		stat_ino_limit_push += 1;
13946 		req_clear_inodedeps += 1;
13947 		FREE_GBLLOCK(&lk);
13948 		stat_countp = &stat_ino_limit_hit;
13949 		break;
13950 
13951 	case FLUSH_BLOCKS:
13952 	case FLUSH_BLOCKS_WAIT:
13953 		ACQUIRE_GBLLOCK(&lk);
13954 		stat_blk_limit_push += 1;
13955 		req_clear_remove += 1;
13956 		FREE_GBLLOCK(&lk);
13957 		stat_countp = &stat_blk_limit_hit;
13958 		break;
13959 
13960 	default:
13961 		panic("request_cleanup: unknown type");
13962 	}
13963 	/*
13964 	 * Hopefully the syncer daemon will catch up and awaken us.
13965 	 * We wait at most tickdelay before proceeding in any case.
13966 	 */
13967 	ACQUIRE_GBLLOCK(&lk);
13968 	FREE_LOCK(ump);
13969 	proc_waiting += 1;
13970 	if (callout_pending(&softdep_callout) == FALSE)
13971 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13972 		    pause_timer, 0);
13973 
13974 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13975 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13976 	proc_waiting -= 1;
13977 	FREE_GBLLOCK(&lk);
13978 	ACQUIRE_LOCK(ump);
13979 	return (1);
13980 }
13981 
13982 /*
13983  * Awaken processes pausing in request_cleanup and clear proc_waiting
13984  * to indicate that there is no longer a timer running. Pause_timer
13985  * will be called with the global softdep mutex (&lk) locked.
13986  */
13987 static void
13988 pause_timer(void *arg)
13989 {
13990 
13991 	GBLLOCK_OWNED(&lk);
13992 	/*
13993 	 * The callout_ API has acquired mtx and will hold it around this
13994 	 * function call.
13995 	 */
13996 	*stat_countp += proc_waiting;
13997 	wakeup(&proc_waiting);
13998 }
13999 
14000 /*
14001  * If requested, try removing inode or removal dependencies.
14002  */
14003 static void
14004 check_clear_deps(struct mount *mp)
14005 {
14006 	struct ufsmount *ump;
14007 	bool suj_susp;
14008 
14009 	/*
14010 	 * Tell the lower layers that any TRIM or WRITE transactions that have
14011 	 * been delayed for performance reasons should proceed to help alleviate
14012 	 * the shortage faster. The race between checking req_* and the softdep
14013 	 * mutex (lk) is fine since this is an advisory operation that at most
14014 	 * causes deferred work to be done sooner.
14015 	 */
14016 	ump = VFSTOUFS(mp);
14017 	suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14018 	    ump->softdep_jblocks->jb_suspended;
14019 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14020 		FREE_LOCK(ump);
14021 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14022 		ACQUIRE_LOCK(ump);
14023 	}
14024 
14025 	/*
14026 	 * If we are suspended, it may be because of our using
14027 	 * too many inodedeps, so help clear them out.
14028 	 */
14029 	if (suj_susp)
14030 		clear_inodedeps(mp);
14031 
14032 	/*
14033 	 * General requests for cleanup of backed up dependencies
14034 	 */
14035 	ACQUIRE_GBLLOCK(&lk);
14036 	if (req_clear_inodedeps) {
14037 		req_clear_inodedeps -= 1;
14038 		FREE_GBLLOCK(&lk);
14039 		clear_inodedeps(mp);
14040 		ACQUIRE_GBLLOCK(&lk);
14041 		wakeup(&proc_waiting);
14042 	}
14043 	if (req_clear_remove) {
14044 		req_clear_remove -= 1;
14045 		FREE_GBLLOCK(&lk);
14046 		clear_remove(mp);
14047 		ACQUIRE_GBLLOCK(&lk);
14048 		wakeup(&proc_waiting);
14049 	}
14050 	FREE_GBLLOCK(&lk);
14051 }
14052 
14053 /*
14054  * Flush out a directory with at least one removal dependency in an effort to
14055  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14056  */
14057 static void
14058 clear_remove(struct mount *mp)
14059 {
14060 	struct pagedep_hashhead *pagedephd;
14061 	struct pagedep *pagedep;
14062 	struct ufsmount *ump;
14063 	struct vnode *vp;
14064 	struct bufobj *bo;
14065 	int error, cnt;
14066 	ino_t ino;
14067 
14068 	ump = VFSTOUFS(mp);
14069 	LOCK_OWNED(ump);
14070 
14071 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14072 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14073 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14074 			ump->pagedep_nextclean = 0;
14075 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14076 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
14077 				continue;
14078 			ino = pagedep->pd_ino;
14079 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14080 				continue;
14081 			FREE_LOCK(ump);
14082 
14083 			/*
14084 			 * Let unmount clear deps
14085 			 */
14086 			error = vfs_busy(mp, MBF_NOWAIT);
14087 			if (error != 0)
14088 				goto finish_write;
14089 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14090 			     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14091 			vfs_unbusy(mp);
14092 			if (error != 0) {
14093 				softdep_error("clear_remove: vget", error);
14094 				goto finish_write;
14095 			}
14096 			MPASS(VTOI(vp)->i_mode != 0);
14097 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14098 				softdep_error("clear_remove: fsync", error);
14099 			bo = &vp->v_bufobj;
14100 			BO_LOCK(bo);
14101 			drain_output(vp);
14102 			BO_UNLOCK(bo);
14103 			vput(vp);
14104 		finish_write:
14105 			vn_finished_write(mp);
14106 			ACQUIRE_LOCK(ump);
14107 			return;
14108 		}
14109 	}
14110 }
14111 
14112 /*
14113  * Clear out a block of dirty inodes in an effort to reduce
14114  * the number of inodedep dependency structures.
14115  */
14116 static void
14117 clear_inodedeps(struct mount *mp)
14118 {
14119 	struct inodedep_hashhead *inodedephd;
14120 	struct inodedep *inodedep;
14121 	struct ufsmount *ump;
14122 	struct vnode *vp;
14123 	struct fs *fs;
14124 	int error, cnt;
14125 	ino_t firstino, lastino, ino;
14126 
14127 	ump = VFSTOUFS(mp);
14128 	fs = ump->um_fs;
14129 	LOCK_OWNED(ump);
14130 	/*
14131 	 * Pick a random inode dependency to be cleared.
14132 	 * We will then gather up all the inodes in its block
14133 	 * that have dependencies and flush them out.
14134 	 */
14135 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14136 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14137 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14138 			ump->inodedep_nextclean = 0;
14139 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14140 			break;
14141 	}
14142 	if (inodedep == NULL)
14143 		return;
14144 	/*
14145 	 * Find the last inode in the block with dependencies.
14146 	 */
14147 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14148 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14149 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14150 			break;
14151 	/*
14152 	 * Asynchronously push all but the last inode with dependencies.
14153 	 * Synchronously push the last inode with dependencies to ensure
14154 	 * that the inode block gets written to free up the inodedeps.
14155 	 */
14156 	for (ino = firstino; ino <= lastino; ino++) {
14157 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14158 			continue;
14159 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14160 			continue;
14161 		FREE_LOCK(ump);
14162 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14163 		if (error != 0) {
14164 			vn_finished_write(mp);
14165 			ACQUIRE_LOCK(ump);
14166 			return;
14167 		}
14168 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14169 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14170 			softdep_error("clear_inodedeps: vget", error);
14171 			vfs_unbusy(mp);
14172 			vn_finished_write(mp);
14173 			ACQUIRE_LOCK(ump);
14174 			return;
14175 		}
14176 		vfs_unbusy(mp);
14177 		if (VTOI(vp)->i_mode == 0) {
14178 			vgone(vp);
14179 		} else if (ino == lastino) {
14180 			do {
14181 				error = ffs_syncvnode(vp, MNT_WAIT, 0);
14182 			} while (error == ERELOOKUP);
14183 			if (error != 0)
14184 				softdep_error("clear_inodedeps: fsync1", error);
14185 		} else {
14186 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14187 				softdep_error("clear_inodedeps: fsync2", error);
14188 			BO_LOCK(&vp->v_bufobj);
14189 			drain_output(vp);
14190 			BO_UNLOCK(&vp->v_bufobj);
14191 		}
14192 		vput(vp);
14193 		vn_finished_write(mp);
14194 		ACQUIRE_LOCK(ump);
14195 	}
14196 }
14197 
14198 void
14199 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
14200 {
14201 	struct worklist *wk;
14202 	struct ufsmount *ump;
14203 
14204 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14205 		return;
14206 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14207 	    ("softdep_buf_append called on non-softdep filesystem"));
14208 	ump = VFSTOUFS(wk->wk_mp);
14209 	ACQUIRE_LOCK(ump);
14210 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14211 		WORKLIST_REMOVE(wk);
14212 		WORKLIST_INSERT(&bp->b_dep, wk);
14213 	}
14214 	FREE_LOCK(ump);
14215 
14216 }
14217 
14218 void
14219 softdep_inode_append(
14220 	struct inode *ip,
14221 	struct ucred *cred,
14222 	struct workhead *wkhd)
14223 {
14224 	struct buf *bp;
14225 	struct fs *fs;
14226 	struct ufsmount *ump;
14227 	int error;
14228 
14229 	ump = ITOUMP(ip);
14230 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14231 	    ("softdep_inode_append called on non-softdep filesystem"));
14232 	fs = ump->um_fs;
14233 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14234 	    (int)fs->fs_bsize, cred, &bp);
14235 	if (error) {
14236 		bqrelse(bp);
14237 		softdep_freework(wkhd);
14238 		return;
14239 	}
14240 	softdep_buf_append(bp, wkhd);
14241 	bqrelse(bp);
14242 }
14243 
14244 void
14245 softdep_freework(struct workhead *wkhd)
14246 {
14247 	struct worklist *wk;
14248 	struct ufsmount *ump;
14249 
14250 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14251 		return;
14252 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14253 	    ("softdep_freework called on non-softdep filesystem"));
14254 	ump = VFSTOUFS(wk->wk_mp);
14255 	ACQUIRE_LOCK(ump);
14256 	handle_jwork(wkhd);
14257 	FREE_LOCK(ump);
14258 }
14259 
14260 static struct ufsmount *
14261 softdep_bp_to_mp(struct buf *bp)
14262 {
14263 	struct mount *mp;
14264 	struct vnode *vp;
14265 
14266 	if (LIST_EMPTY(&bp->b_dep))
14267 		return (NULL);
14268 	vp = bp->b_vp;
14269 	KASSERT(vp != NULL,
14270 	    ("%s, buffer with dependencies lacks vnode", __func__));
14271 
14272 	/*
14273 	 * The ump mount point is stable after we get a correct
14274 	 * pointer, since bp is locked and this prevents unmount from
14275 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14276 	 * head wk_mp, because we do not yet own SU ump lock and
14277 	 * workitem might be freed while dereferenced.
14278 	 */
14279 retry:
14280 	switch (vp->v_type) {
14281 	case VCHR:
14282 		VI_LOCK(vp);
14283 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14284 		VI_UNLOCK(vp);
14285 		if (mp == NULL)
14286 			goto retry;
14287 		break;
14288 	case VREG:
14289 	case VDIR:
14290 	case VLNK:
14291 	case VFIFO:
14292 	case VSOCK:
14293 		mp = vp->v_mount;
14294 		break;
14295 	case VBLK:
14296 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14297 		/* FALLTHROUGH */
14298 	case VNON:
14299 	case VBAD:
14300 	case VMARKER:
14301 		mp = NULL;
14302 		break;
14303 	default:
14304 		vn_printf(vp, "unknown vnode type");
14305 		mp = NULL;
14306 		break;
14307 	}
14308 	return (VFSTOUFS(mp));
14309 }
14310 
14311 /*
14312  * Function to determine if the buffer has outstanding dependencies
14313  * that will cause a roll-back if the buffer is written. If wantcount
14314  * is set, return number of dependencies, otherwise just yes or no.
14315  */
14316 static int
14317 softdep_count_dependencies(struct buf *bp, int wantcount)
14318 {
14319 	struct worklist *wk;
14320 	struct ufsmount *ump;
14321 	struct bmsafemap *bmsafemap;
14322 	struct freework *freework;
14323 	struct inodedep *inodedep;
14324 	struct indirdep *indirdep;
14325 	struct freeblks *freeblks;
14326 	struct allocindir *aip;
14327 	struct pagedep *pagedep;
14328 	struct dirrem *dirrem;
14329 	struct newblk *newblk;
14330 	struct mkdir *mkdir;
14331 	struct diradd *dap;
14332 	int i, retval;
14333 
14334 	ump = softdep_bp_to_mp(bp);
14335 	if (ump == NULL)
14336 		return (0);
14337 	retval = 0;
14338 	ACQUIRE_LOCK(ump);
14339 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14340 		switch (wk->wk_type) {
14341 		case D_INODEDEP:
14342 			inodedep = WK_INODEDEP(wk);
14343 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14344 				/* bitmap allocation dependency */
14345 				retval += 1;
14346 				if (!wantcount)
14347 					goto out;
14348 			}
14349 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14350 				/* direct block pointer dependency */
14351 				retval += 1;
14352 				if (!wantcount)
14353 					goto out;
14354 			}
14355 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14356 				/* direct block pointer dependency */
14357 				retval += 1;
14358 				if (!wantcount)
14359 					goto out;
14360 			}
14361 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14362 				/* Add reference dependency. */
14363 				retval += 1;
14364 				if (!wantcount)
14365 					goto out;
14366 			}
14367 			continue;
14368 
14369 		case D_INDIRDEP:
14370 			indirdep = WK_INDIRDEP(wk);
14371 
14372 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14373 				/* indirect truncation dependency */
14374 				retval += 1;
14375 				if (!wantcount)
14376 					goto out;
14377 			}
14378 
14379 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14380 				/* indirect block pointer dependency */
14381 				retval += 1;
14382 				if (!wantcount)
14383 					goto out;
14384 			}
14385 			continue;
14386 
14387 		case D_PAGEDEP:
14388 			pagedep = WK_PAGEDEP(wk);
14389 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14390 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14391 					/* Journal remove ref dependency. */
14392 					retval += 1;
14393 					if (!wantcount)
14394 						goto out;
14395 				}
14396 			}
14397 			for (i = 0; i < DAHASHSZ; i++) {
14398 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14399 					/* directory entry dependency */
14400 					retval += 1;
14401 					if (!wantcount)
14402 						goto out;
14403 				}
14404 			}
14405 			continue;
14406 
14407 		case D_BMSAFEMAP:
14408 			bmsafemap = WK_BMSAFEMAP(wk);
14409 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14410 				/* Add reference dependency. */
14411 				retval += 1;
14412 				if (!wantcount)
14413 					goto out;
14414 			}
14415 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14416 				/* Allocate block dependency. */
14417 				retval += 1;
14418 				if (!wantcount)
14419 					goto out;
14420 			}
14421 			continue;
14422 
14423 		case D_FREEBLKS:
14424 			freeblks = WK_FREEBLKS(wk);
14425 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14426 				/* Freeblk journal dependency. */
14427 				retval += 1;
14428 				if (!wantcount)
14429 					goto out;
14430 			}
14431 			continue;
14432 
14433 		case D_ALLOCDIRECT:
14434 		case D_ALLOCINDIR:
14435 			newblk = WK_NEWBLK(wk);
14436 			if (newblk->nb_jnewblk) {
14437 				/* Journal allocate dependency. */
14438 				retval += 1;
14439 				if (!wantcount)
14440 					goto out;
14441 			}
14442 			continue;
14443 
14444 		case D_MKDIR:
14445 			mkdir = WK_MKDIR(wk);
14446 			if (mkdir->md_jaddref) {
14447 				/* Journal reference dependency. */
14448 				retval += 1;
14449 				if (!wantcount)
14450 					goto out;
14451 			}
14452 			continue;
14453 
14454 		case D_FREEWORK:
14455 		case D_FREEDEP:
14456 		case D_JSEGDEP:
14457 		case D_JSEG:
14458 		case D_SBDEP:
14459 			/* never a dependency on these blocks */
14460 			continue;
14461 
14462 		default:
14463 			panic("softdep_count_dependencies: Unexpected type %s",
14464 			    TYPENAME(wk->wk_type));
14465 			/* NOTREACHED */
14466 		}
14467 	}
14468 out:
14469 	FREE_LOCK(ump);
14470 	return (retval);
14471 }
14472 
14473 /*
14474  * Acquire exclusive access to a buffer.
14475  * Must be called with a locked mtx parameter.
14476  * Return acquired buffer or NULL on failure.
14477  */
14478 static struct buf *
14479 getdirtybuf(struct buf *bp,
14480 	struct rwlock *lock,
14481 	int waitfor)
14482 {
14483 	int error;
14484 
14485 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14486 		if (waitfor != MNT_WAIT)
14487 			return (NULL);
14488 		error = BUF_LOCK(bp,
14489 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14490 		/*
14491 		 * Even if we successfully acquire bp here, we have dropped
14492 		 * lock, which may violates our guarantee.
14493 		 */
14494 		if (error == 0)
14495 			BUF_UNLOCK(bp);
14496 		else if (error != ENOLCK)
14497 			panic("getdirtybuf: inconsistent lock: %d", error);
14498 		rw_wlock(lock);
14499 		return (NULL);
14500 	}
14501 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14502 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14503 			rw_wunlock(lock);
14504 			BO_LOCK(bp->b_bufobj);
14505 			BUF_UNLOCK(bp);
14506 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14507 				bp->b_vflags |= BV_BKGRDWAIT;
14508 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14509 				       PRIBIO | PDROP, "getbuf", 0);
14510 			} else
14511 				BO_UNLOCK(bp->b_bufobj);
14512 			rw_wlock(lock);
14513 			return (NULL);
14514 		}
14515 		BUF_UNLOCK(bp);
14516 		if (waitfor != MNT_WAIT)
14517 			return (NULL);
14518 #ifdef DEBUG_VFS_LOCKS
14519 		if (bp->b_vp->v_type != VCHR)
14520 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14521 #endif
14522 		bp->b_vflags |= BV_BKGRDWAIT;
14523 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14524 		return (NULL);
14525 	}
14526 	if ((bp->b_flags & B_DELWRI) == 0) {
14527 		BUF_UNLOCK(bp);
14528 		return (NULL);
14529 	}
14530 	bremfree(bp);
14531 	return (bp);
14532 }
14533 
14534 /*
14535  * Check if it is safe to suspend the file system now.  On entry,
14536  * the vnode interlock for devvp should be held.  Return 0 with
14537  * the mount interlock held if the file system can be suspended now,
14538  * otherwise return EAGAIN with the mount interlock held.
14539  */
14540 int
14541 softdep_check_suspend(struct mount *mp,
14542 		      struct vnode *devvp,
14543 		      int softdep_depcnt,
14544 		      int softdep_accdepcnt,
14545 		      int secondary_writes,
14546 		      int secondary_accwrites)
14547 {
14548 	struct buf *bp;
14549 	struct bufobj *bo;
14550 	struct ufsmount *ump;
14551 	struct inodedep *inodedep;
14552 	struct indirdep *indirdep;
14553 	struct worklist *wk, *nextwk;
14554 	int error, unlinked;
14555 
14556 	bo = &devvp->v_bufobj;
14557 	ASSERT_BO_WLOCKED(bo);
14558 
14559 	/*
14560 	 * If we are not running with soft updates, then we need only
14561 	 * deal with secondary writes as we try to suspend.
14562 	 */
14563 	if (MOUNTEDSOFTDEP(mp) == 0) {
14564 		MNT_ILOCK(mp);
14565 		while (mp->mnt_secondary_writes != 0) {
14566 			BO_UNLOCK(bo);
14567 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14568 			    (PUSER - 1) | PDROP, "secwr", 0);
14569 			BO_LOCK(bo);
14570 			MNT_ILOCK(mp);
14571 		}
14572 
14573 		/*
14574 		 * Reasons for needing more work before suspend:
14575 		 * - Dirty buffers on devvp.
14576 		 * - Secondary writes occurred after start of vnode sync loop
14577 		 */
14578 		error = 0;
14579 		if (bo->bo_numoutput > 0 ||
14580 		    bo->bo_dirty.bv_cnt > 0 ||
14581 		    secondary_writes != 0 ||
14582 		    mp->mnt_secondary_writes != 0 ||
14583 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14584 			error = EAGAIN;
14585 		BO_UNLOCK(bo);
14586 		return (error);
14587 	}
14588 
14589 	/*
14590 	 * If we are running with soft updates, then we need to coordinate
14591 	 * with them as we try to suspend.
14592 	 */
14593 	ump = VFSTOUFS(mp);
14594 	for (;;) {
14595 		if (!TRY_ACQUIRE_LOCK(ump)) {
14596 			BO_UNLOCK(bo);
14597 			ACQUIRE_LOCK(ump);
14598 			FREE_LOCK(ump);
14599 			BO_LOCK(bo);
14600 			continue;
14601 		}
14602 		MNT_ILOCK(mp);
14603 		if (mp->mnt_secondary_writes != 0) {
14604 			FREE_LOCK(ump);
14605 			BO_UNLOCK(bo);
14606 			msleep(&mp->mnt_secondary_writes,
14607 			       MNT_MTX(mp),
14608 			       (PUSER - 1) | PDROP, "secwr", 0);
14609 			BO_LOCK(bo);
14610 			continue;
14611 		}
14612 		break;
14613 	}
14614 
14615 	unlinked = 0;
14616 	if (MOUNTEDSUJ(mp)) {
14617 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14618 		    inodedep != NULL;
14619 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14620 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14621 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14622 			    UNLINKONLIST) ||
14623 			    !check_inodedep_free(inodedep))
14624 				continue;
14625 			unlinked++;
14626 		}
14627 	}
14628 
14629 	/*
14630 	 * XXX Check for orphaned indirdep dependency structures.
14631 	 *
14632 	 * During forcible unmount after a disk failure there is a
14633 	 * bug that causes one or more indirdep dependency structures
14634 	 * to fail to be deallocated. We check for them here and clean
14635 	 * them up so that the unmount can succeed.
14636 	 */
14637 	if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 &&
14638 	    ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) {
14639 		LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP],
14640 		    wk_all, nextwk) {
14641 			indirdep = WK_INDIRDEP(wk);
14642 			if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) !=
14643 			    (GOINGAWAY | DEPCOMPLETE) ||
14644 			    !TAILQ_EMPTY(&indirdep->ir_trunc) ||
14645 			    !LIST_EMPTY(&indirdep->ir_completehd) ||
14646 			    !LIST_EMPTY(&indirdep->ir_writehd) ||
14647 			    !LIST_EMPTY(&indirdep->ir_donehd) ||
14648 			    !LIST_EMPTY(&indirdep->ir_deplisthd) ||
14649 			    indirdep->ir_saveddata != NULL ||
14650 			    indirdep->ir_savebp == NULL) {
14651 				printf("%s: skipping orphaned indirdep %p\n",
14652 				    __FUNCTION__, indirdep);
14653 				continue;
14654 			}
14655 			printf("%s: freeing orphaned indirdep %p\n",
14656 			    __FUNCTION__, indirdep);
14657 			bp = indirdep->ir_savebp;
14658 			indirdep->ir_savebp = NULL;
14659 			free_indirdep(indirdep);
14660 			FREE_LOCK(ump);
14661 			brelse(bp);
14662 			while (!TRY_ACQUIRE_LOCK(ump)) {
14663 				BO_UNLOCK(bo);
14664 				ACQUIRE_LOCK(ump);
14665 				FREE_LOCK(ump);
14666 				BO_LOCK(bo);
14667 			}
14668 		}
14669 	}
14670 
14671 	/*
14672 	 * Reasons for needing more work before suspend:
14673 	 * - Dirty buffers on devvp.
14674 	 * - Dependency structures still exist
14675 	 * - Softdep activity occurred after start of vnode sync loop
14676 	 * - Secondary writes occurred after start of vnode sync loop
14677 	 */
14678 	error = 0;
14679 	if (bo->bo_numoutput > 0 ||
14680 	    bo->bo_dirty.bv_cnt > 0 ||
14681 	    softdep_depcnt != unlinked ||
14682 	    ump->softdep_deps != unlinked ||
14683 	    softdep_accdepcnt != ump->softdep_accdeps ||
14684 	    secondary_writes != 0 ||
14685 	    mp->mnt_secondary_writes != 0 ||
14686 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14687 		error = EAGAIN;
14688 	FREE_LOCK(ump);
14689 	BO_UNLOCK(bo);
14690 	return (error);
14691 }
14692 
14693 /*
14694  * Get the number of dependency structures for the file system, both
14695  * the current number and the total number allocated.  These will
14696  * later be used to detect that softdep processing has occurred.
14697  */
14698 void
14699 softdep_get_depcounts(struct mount *mp,
14700 		      int *softdep_depsp,
14701 		      int *softdep_accdepsp)
14702 {
14703 	struct ufsmount *ump;
14704 
14705 	if (MOUNTEDSOFTDEP(mp) == 0) {
14706 		*softdep_depsp = 0;
14707 		*softdep_accdepsp = 0;
14708 		return;
14709 	}
14710 	ump = VFSTOUFS(mp);
14711 	ACQUIRE_LOCK(ump);
14712 	*softdep_depsp = ump->softdep_deps;
14713 	*softdep_accdepsp = ump->softdep_accdeps;
14714 	FREE_LOCK(ump);
14715 }
14716 
14717 /*
14718  * Wait for pending output on a vnode to complete.
14719  */
14720 static void
14721 drain_output(struct vnode *vp)
14722 {
14723 
14724 	ASSERT_VOP_LOCKED(vp, "drain_output");
14725 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14726 }
14727 
14728 /*
14729  * Called whenever a buffer that is being invalidated or reallocated
14730  * contains dependencies. This should only happen if an I/O error has
14731  * occurred. The routine is called with the buffer locked.
14732  */
14733 static void
14734 softdep_deallocate_dependencies(struct buf *bp)
14735 {
14736 
14737 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14738 		panic("softdep_deallocate_dependencies: dangling deps");
14739 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14740 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14741 	else
14742 		printf("softdep_deallocate_dependencies: "
14743 		    "got error %d while accessing filesystem\n", bp->b_error);
14744 	if (bp->b_error != ENXIO)
14745 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14746 }
14747 
14748 /*
14749  * Function to handle asynchronous write errors in the filesystem.
14750  */
14751 static void
14752 softdep_error(char *func, int error)
14753 {
14754 
14755 	/* XXX should do something better! */
14756 	printf("%s: got error %d while accessing filesystem\n", func, error);
14757 }
14758 
14759 #ifdef DDB
14760 
14761 /* exported to ffs_vfsops.c */
14762 extern void db_print_ffs(struct ufsmount *ump);
14763 void
14764 db_print_ffs(struct ufsmount *ump)
14765 {
14766 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14767 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14768 	db_printf("    fs %p ", ump->um_fs);
14769 
14770 	if (ump->um_softdep != NULL) {
14771 		db_printf("su_wl %d su_deps %d su_req %d\n",
14772 		    ump->softdep_on_worklist, ump->softdep_deps,
14773 		    ump->softdep_req);
14774 	} else {
14775 		db_printf("su disabled\n");
14776 	}
14777 }
14778 
14779 static void
14780 worklist_print(struct worklist *wk, int verbose)
14781 {
14782 
14783 	if (!verbose) {
14784 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14785 		    wk->wk_state, PRINT_SOFTDEP_FLAGS);
14786 		return;
14787 	}
14788 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14789 	    TYPENAME(wk->wk_type), wk->wk_state, PRINT_SOFTDEP_FLAGS,
14790 	    LIST_NEXT(wk, wk_list));
14791 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14792 }
14793 
14794 static void
14795 inodedep_print(struct inodedep *inodedep, int verbose)
14796 {
14797 
14798 	worklist_print(&inodedep->id_list, 0);
14799 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14800 	    inodedep->id_fs,
14801 	    (intmax_t)inodedep->id_ino,
14802 	    (intmax_t)fsbtodb(inodedep->id_fs,
14803 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14804 	    (intmax_t)inodedep->id_nlinkdelta,
14805 	    (intmax_t)inodedep->id_savednlink);
14806 
14807 	if (verbose == 0)
14808 		return;
14809 
14810 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14811 	    inodedep->id_bmsafemap,
14812 	    inodedep->id_mkdiradd,
14813 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14814 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14815 	    LIST_FIRST(&inodedep->id_dirremhd),
14816 	    LIST_FIRST(&inodedep->id_pendinghd),
14817 	    LIST_FIRST(&inodedep->id_bufwait));
14818 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14819 	    LIST_FIRST(&inodedep->id_inowait),
14820 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14821 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14822 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14823 	    TAILQ_FIRST(&inodedep->id_extupdt),
14824 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14825 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14826 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14827 	    inodedep->id_savedino1,
14828 	    (intmax_t)inodedep->id_savedsize,
14829 	    (intmax_t)inodedep->id_savedextsize);
14830 }
14831 
14832 static void
14833 newblk_print(struct newblk *nbp)
14834 {
14835 
14836 	worklist_print(&nbp->nb_list, 0);
14837 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14838 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14839 	    &nbp->nb_jnewblk,
14840 	    &nbp->nb_bmsafemap,
14841 	    &nbp->nb_freefrag);
14842 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14843 	    LIST_FIRST(&nbp->nb_indirdeps),
14844 	    LIST_FIRST(&nbp->nb_newdirblk),
14845 	    LIST_FIRST(&nbp->nb_jwork));
14846 }
14847 
14848 static void
14849 allocdirect_print(struct allocdirect *adp)
14850 {
14851 
14852 	newblk_print(&adp->ad_block);
14853 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14854 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14855 	db_printf("    offset %d, inodedep %p\n",
14856 	    adp->ad_offset, adp->ad_inodedep);
14857 }
14858 
14859 static void
14860 allocindir_print(struct allocindir *aip)
14861 {
14862 
14863 	newblk_print(&aip->ai_block);
14864 	db_printf("    oldblkno %jd, lbn %jd\n",
14865 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14866 	db_printf("    offset %d, indirdep %p\n",
14867 	    aip->ai_offset, aip->ai_indirdep);
14868 }
14869 
14870 static void
14871 mkdir_print(struct mkdir *mkdir)
14872 {
14873 
14874 	worklist_print(&mkdir->md_list, 0);
14875 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14876 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14877 }
14878 
14879 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14880 {
14881 
14882 	if (have_addr == 0) {
14883 		db_printf("inodedep address required\n");
14884 		return;
14885 	}
14886 	inodedep_print((struct inodedep*)addr, 1);
14887 }
14888 
14889 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14890 {
14891 	struct inodedep_hashhead *inodedephd;
14892 	struct inodedep *inodedep;
14893 	struct ufsmount *ump;
14894 	int cnt;
14895 
14896 	if (have_addr == 0) {
14897 		db_printf("ufsmount address required\n");
14898 		return;
14899 	}
14900 	ump = (struct ufsmount *)addr;
14901 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14902 		inodedephd = &ump->inodedep_hashtbl[cnt];
14903 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14904 			inodedep_print(inodedep, 0);
14905 		}
14906 	}
14907 }
14908 
14909 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14910 {
14911 
14912 	if (have_addr == 0) {
14913 		db_printf("worklist address required\n");
14914 		return;
14915 	}
14916 	worklist_print((struct worklist *)addr, 1);
14917 }
14918 
14919 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14920 {
14921 	struct worklist *wk;
14922 	struct workhead *wkhd;
14923 
14924 	if (have_addr == 0) {
14925 		db_printf("worklist address required "
14926 		    "(for example value in bp->b_dep)\n");
14927 		return;
14928 	}
14929 	/*
14930 	 * We often do not have the address of the worklist head but
14931 	 * instead a pointer to its first entry (e.g., we have the
14932 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14933 	 * pointer of bp->b_dep will point at the head of the list, so
14934 	 * we cheat and use that instead. If we are in the middle of
14935 	 * a list we will still get the same result, so nothing
14936 	 * unexpected will result.
14937 	 */
14938 	wk = (struct worklist *)addr;
14939 	if (wk == NULL)
14940 		return;
14941 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14942 	LIST_FOREACH(wk, wkhd, wk_list) {
14943 		switch(wk->wk_type) {
14944 		case D_INODEDEP:
14945 			inodedep_print(WK_INODEDEP(wk), 0);
14946 			continue;
14947 		case D_ALLOCDIRECT:
14948 			allocdirect_print(WK_ALLOCDIRECT(wk));
14949 			continue;
14950 		case D_ALLOCINDIR:
14951 			allocindir_print(WK_ALLOCINDIR(wk));
14952 			continue;
14953 		case D_MKDIR:
14954 			mkdir_print(WK_MKDIR(wk));
14955 			continue;
14956 		default:
14957 			worklist_print(wk, 0);
14958 			continue;
14959 		}
14960 	}
14961 }
14962 
14963 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14964 {
14965 	if (have_addr == 0) {
14966 		db_printf("mkdir address required\n");
14967 		return;
14968 	}
14969 	mkdir_print((struct mkdir *)addr);
14970 }
14971 
14972 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14973 {
14974 	struct mkdirlist *mkdirlisthd;
14975 	struct mkdir *mkdir;
14976 
14977 	if (have_addr == 0) {
14978 		db_printf("mkdir listhead address required\n");
14979 		return;
14980 	}
14981 	mkdirlisthd = (struct mkdirlist *)addr;
14982 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14983 		mkdir_print(mkdir);
14984 		if (mkdir->md_diradd != NULL) {
14985 			db_printf("    ");
14986 			worklist_print(&mkdir->md_diradd->da_list, 0);
14987 		}
14988 		if (mkdir->md_jaddref != NULL) {
14989 			db_printf("    ");
14990 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14991 		}
14992 	}
14993 }
14994 
14995 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14996 {
14997 	if (have_addr == 0) {
14998 		db_printf("allocdirect address required\n");
14999 		return;
15000 	}
15001 	allocdirect_print((struct allocdirect *)addr);
15002 }
15003 
15004 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
15005 {
15006 	if (have_addr == 0) {
15007 		db_printf("allocindir address required\n");
15008 		return;
15009 	}
15010 	allocindir_print((struct allocindir *)addr);
15011 }
15012 
15013 #endif /* DDB */
15014 
15015 #endif /* SOFTUPDATES */
15016