1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/kdb.h> 60 #include <sys/kthread.h> 61 #include <sys/lock.h> 62 #include <sys/malloc.h> 63 #include <sys/mount.h> 64 #include <sys/mutex.h> 65 #include <sys/proc.h> 66 #include <sys/stat.h> 67 #include <sys/sysctl.h> 68 #include <sys/syslog.h> 69 #include <sys/vnode.h> 70 #include <sys/conf.h> 71 #include <ufs/ufs/dir.h> 72 #include <ufs/ufs/extattr.h> 73 #include <ufs/ufs/quota.h> 74 #include <ufs/ufs/inode.h> 75 #include <ufs/ufs/ufsmount.h> 76 #include <ufs/ffs/fs.h> 77 #include <ufs/ffs/softdep.h> 78 #include <ufs/ffs/ffs_extern.h> 79 #include <ufs/ufs/ufs_extern.h> 80 81 #include <vm/vm.h> 82 83 #include "opt_ffs.h" 84 #include "opt_quota.h" 85 86 #ifndef SOFTUPDATES 87 88 int 89 softdep_flushfiles(oldmnt, flags, td) 90 struct mount *oldmnt; 91 int flags; 92 struct thread *td; 93 { 94 95 panic("softdep_flushfiles called"); 96 } 97 98 int 99 softdep_mount(devvp, mp, fs, cred) 100 struct vnode *devvp; 101 struct mount *mp; 102 struct fs *fs; 103 struct ucred *cred; 104 { 105 106 return (0); 107 } 108 109 void 110 softdep_initialize() 111 { 112 113 return; 114 } 115 116 void 117 softdep_uninitialize() 118 { 119 120 return; 121 } 122 123 void 124 softdep_setup_inomapdep(bp, ip, newinum) 125 struct buf *bp; 126 struct inode *ip; 127 ino_t newinum; 128 { 129 130 panic("softdep_setup_inomapdep called"); 131 } 132 133 void 134 softdep_setup_blkmapdep(bp, mp, newblkno) 135 struct buf *bp; 136 struct mount *mp; 137 ufs2_daddr_t newblkno; 138 { 139 140 panic("softdep_setup_blkmapdep called"); 141 } 142 143 void 144 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 145 struct inode *ip; 146 ufs_lbn_t lbn; 147 ufs2_daddr_t newblkno; 148 ufs2_daddr_t oldblkno; 149 long newsize; 150 long oldsize; 151 struct buf *bp; 152 { 153 154 panic("softdep_setup_allocdirect called"); 155 } 156 157 void 158 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 159 struct inode *ip; 160 ufs_lbn_t lbn; 161 ufs2_daddr_t newblkno; 162 ufs2_daddr_t oldblkno; 163 long newsize; 164 long oldsize; 165 struct buf *bp; 166 { 167 168 panic("softdep_setup_allocext called"); 169 } 170 171 void 172 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 173 struct inode *ip; 174 ufs_lbn_t lbn; 175 struct buf *bp; 176 int ptrno; 177 ufs2_daddr_t newblkno; 178 ufs2_daddr_t oldblkno; 179 struct buf *nbp; 180 { 181 182 panic("softdep_setup_allocindir_page called"); 183 } 184 185 void 186 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 187 struct buf *nbp; 188 struct inode *ip; 189 struct buf *bp; 190 int ptrno; 191 ufs2_daddr_t newblkno; 192 { 193 194 panic("softdep_setup_allocindir_meta called"); 195 } 196 197 void 198 softdep_setup_freeblocks(ip, length, flags) 199 struct inode *ip; 200 off_t length; 201 int flags; 202 { 203 204 panic("softdep_setup_freeblocks called"); 205 } 206 207 void 208 softdep_freefile(pvp, ino, mode) 209 struct vnode *pvp; 210 ino_t ino; 211 int mode; 212 { 213 214 panic("softdep_freefile called"); 215 } 216 217 int 218 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 219 struct buf *bp; 220 struct inode *dp; 221 off_t diroffset; 222 ino_t newinum; 223 struct buf *newdirbp; 224 int isnewblk; 225 { 226 227 panic("softdep_setup_directory_add called"); 228 } 229 230 void 231 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 232 struct inode *dp; 233 caddr_t base; 234 caddr_t oldloc; 235 caddr_t newloc; 236 int entrysize; 237 { 238 239 panic("softdep_change_directoryentry_offset called"); 240 } 241 242 void 243 softdep_setup_remove(bp, dp, ip, isrmdir) 244 struct buf *bp; 245 struct inode *dp; 246 struct inode *ip; 247 int isrmdir; 248 { 249 250 panic("softdep_setup_remove called"); 251 } 252 253 void 254 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 255 struct buf *bp; 256 struct inode *dp; 257 struct inode *ip; 258 ino_t newinum; 259 int isrmdir; 260 { 261 262 panic("softdep_setup_directory_change called"); 263 } 264 265 void 266 softdep_change_linkcnt(ip) 267 struct inode *ip; 268 { 269 270 panic("softdep_change_linkcnt called"); 271 } 272 273 void 274 softdep_load_inodeblock(ip) 275 struct inode *ip; 276 { 277 278 panic("softdep_load_inodeblock called"); 279 } 280 281 void 282 softdep_update_inodeblock(ip, bp, waitfor) 283 struct inode *ip; 284 struct buf *bp; 285 int waitfor; 286 { 287 288 panic("softdep_update_inodeblock called"); 289 } 290 291 int 292 softdep_fsync(vp) 293 struct vnode *vp; /* the "in_core" copy of the inode */ 294 { 295 296 return (0); 297 } 298 299 void 300 softdep_fsync_mountdev(vp) 301 struct vnode *vp; 302 { 303 304 return; 305 } 306 307 int 308 softdep_flushworklist(oldmnt, countp, td) 309 struct mount *oldmnt; 310 int *countp; 311 struct thread *td; 312 { 313 314 *countp = 0; 315 return (0); 316 } 317 318 int 319 softdep_sync_metadata(struct vnode *vp) 320 { 321 322 return (0); 323 } 324 325 int 326 softdep_slowdown(vp) 327 struct vnode *vp; 328 { 329 330 panic("softdep_slowdown called"); 331 } 332 333 void 334 softdep_releasefile(ip) 335 struct inode *ip; /* inode with the zero effective link count */ 336 { 337 338 panic("softdep_releasefile called"); 339 } 340 341 int 342 softdep_request_cleanup(fs, vp) 343 struct fs *fs; 344 struct vnode *vp; 345 { 346 347 return (0); 348 } 349 350 int 351 softdep_check_suspend(struct mount *mp, 352 struct vnode *devvp, 353 int softdep_deps, 354 int softdep_accdeps, 355 int secondary_writes, 356 int secondary_accwrites) 357 { 358 struct bufobj *bo; 359 int error; 360 361 (void) softdep_deps, 362 (void) softdep_accdeps; 363 364 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 365 bo = &devvp->v_bufobj; 366 367 for (;;) { 368 if (!MNT_ITRYLOCK(mp)) { 369 VI_UNLOCK(devvp); 370 MNT_ILOCK(mp); 371 MNT_IUNLOCK(mp); 372 VI_LOCK(devvp); 373 continue; 374 } 375 if (mp->mnt_secondary_writes != 0) { 376 VI_UNLOCK(devvp); 377 msleep(&mp->mnt_secondary_writes, 378 MNT_MTX(mp), 379 (PUSER - 1) | PDROP, "secwr", 0); 380 VI_LOCK(devvp); 381 continue; 382 } 383 break; 384 } 385 386 /* 387 * Reasons for needing more work before suspend: 388 * - Dirty buffers on devvp. 389 * - Secondary writes occurred after start of vnode sync loop 390 */ 391 error = 0; 392 if (bo->bo_numoutput > 0 || 393 bo->bo_dirty.bv_cnt > 0 || 394 secondary_writes != 0 || 395 mp->mnt_secondary_writes != 0 || 396 secondary_accwrites != mp->mnt_secondary_accwrites) 397 error = EAGAIN; 398 VI_UNLOCK(devvp); 399 return (error); 400 } 401 402 void 403 softdep_get_depcounts(struct mount *mp, 404 int *softdepactivep, 405 int *softdepactiveaccp) 406 { 407 (void) mp; 408 *softdepactivep = 0; 409 *softdepactiveaccp = 0; 410 } 411 412 #else 413 /* 414 * These definitions need to be adapted to the system to which 415 * this file is being ported. 416 */ 417 /* 418 * malloc types defined for the softdep system. 419 */ 420 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 421 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 422 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 423 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 424 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 425 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 426 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 427 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 428 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 429 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 430 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 431 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 432 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 433 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 434 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes"); 435 436 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 437 438 #define D_PAGEDEP 0 439 #define D_INODEDEP 1 440 #define D_NEWBLK 2 441 #define D_BMSAFEMAP 3 442 #define D_ALLOCDIRECT 4 443 #define D_INDIRDEP 5 444 #define D_ALLOCINDIR 6 445 #define D_FREEFRAG 7 446 #define D_FREEBLKS 8 447 #define D_FREEFILE 9 448 #define D_DIRADD 10 449 #define D_MKDIR 11 450 #define D_DIRREM 12 451 #define D_NEWDIRBLK 13 452 #define D_LAST D_NEWDIRBLK 453 454 /* 455 * translate from workitem type to memory type 456 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 457 */ 458 static struct malloc_type *memtype[] = { 459 M_PAGEDEP, 460 M_INODEDEP, 461 M_NEWBLK, 462 M_BMSAFEMAP, 463 M_ALLOCDIRECT, 464 M_INDIRDEP, 465 M_ALLOCINDIR, 466 M_FREEFRAG, 467 M_FREEBLKS, 468 M_FREEFILE, 469 M_DIRADD, 470 M_MKDIR, 471 M_DIRREM, 472 M_NEWDIRBLK 473 }; 474 475 #define DtoM(type) (memtype[type]) 476 477 /* 478 * Names of malloc types. 479 */ 480 #define TYPENAME(type) \ 481 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 482 /* 483 * End system adaptation definitions. 484 */ 485 486 /* 487 * Forward declarations. 488 */ 489 struct inodedep_hashhead; 490 struct newblk_hashhead; 491 struct pagedep_hashhead; 492 493 /* 494 * Internal function prototypes. 495 */ 496 static void softdep_error(char *, int); 497 static void drain_output(struct vnode *); 498 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 499 static void clear_remove(struct thread *); 500 static void clear_inodedeps(struct thread *); 501 static int flush_pagedep_deps(struct vnode *, struct mount *, 502 struct diraddhd *); 503 static int flush_inodedep_deps(struct mount *, ino_t); 504 static int flush_deplist(struct allocdirectlst *, int, int *); 505 static int handle_written_filepage(struct pagedep *, struct buf *); 506 static void diradd_inode_written(struct diradd *, struct inodedep *); 507 static int handle_written_inodeblock(struct inodedep *, struct buf *); 508 static void handle_allocdirect_partdone(struct allocdirect *); 509 static void handle_allocindir_partdone(struct allocindir *); 510 static void initiate_write_filepage(struct pagedep *, struct buf *); 511 static void handle_written_mkdir(struct mkdir *, int); 512 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 513 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 514 static void handle_workitem_freefile(struct freefile *); 515 static void handle_workitem_remove(struct dirrem *, struct vnode *); 516 static struct dirrem *newdirrem(struct buf *, struct inode *, 517 struct inode *, int, struct dirrem **); 518 static void free_diradd(struct diradd *); 519 static void free_allocindir(struct allocindir *, struct inodedep *); 520 static void free_newdirblk(struct newdirblk *); 521 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 522 ufs2_daddr_t *); 523 static void deallocate_dependencies(struct buf *, struct inodedep *); 524 static void free_allocdirect(struct allocdirectlst *, 525 struct allocdirect *, int); 526 static int check_inode_unwritten(struct inodedep *); 527 static int free_inodedep(struct inodedep *); 528 static void handle_workitem_freeblocks(struct freeblks *, int); 529 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 530 static void setup_allocindir_phase2(struct buf *, struct inode *, 531 struct allocindir *); 532 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 533 ufs2_daddr_t); 534 static void handle_workitem_freefrag(struct freefrag *); 535 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 536 static void allocdirect_merge(struct allocdirectlst *, 537 struct allocdirect *, struct allocdirect *); 538 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *); 539 static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t, 540 struct newblk **); 541 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 542 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 543 struct inodedep **); 544 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 545 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 546 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 547 struct mount *mp, int, struct pagedep **); 548 static void pause_timer(void *); 549 static int request_cleanup(struct mount *, int); 550 static int process_worklist_item(struct mount *, int); 551 static void add_to_worklist(struct worklist *); 552 static void softdep_flush(void); 553 static int softdep_speedup(void); 554 555 /* 556 * Exported softdep operations. 557 */ 558 static void softdep_disk_io_initiation(struct buf *); 559 static void softdep_disk_write_complete(struct buf *); 560 static void softdep_deallocate_dependencies(struct buf *); 561 static int softdep_count_dependencies(struct buf *bp, int); 562 563 static struct mtx lk; 564 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 565 566 #define TRY_ACQUIRE_LOCK(lk) mtx_trylock(lk) 567 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 568 #define FREE_LOCK(lk) mtx_unlock(lk) 569 570 /* 571 * Worklist queue management. 572 * These routines require that the lock be held. 573 */ 574 #ifndef /* NOT */ DEBUG 575 #define WORKLIST_INSERT(head, item) do { \ 576 (item)->wk_state |= ONWORKLIST; \ 577 LIST_INSERT_HEAD(head, item, wk_list); \ 578 } while (0) 579 #define WORKLIST_REMOVE(item) do { \ 580 (item)->wk_state &= ~ONWORKLIST; \ 581 LIST_REMOVE(item, wk_list); \ 582 } while (0) 583 #else /* DEBUG */ 584 static void worklist_insert(struct workhead *, struct worklist *); 585 static void worklist_remove(struct worklist *); 586 587 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 588 #define WORKLIST_REMOVE(item) worklist_remove(item) 589 590 static void 591 worklist_insert(head, item) 592 struct workhead *head; 593 struct worklist *item; 594 { 595 596 mtx_assert(&lk, MA_OWNED); 597 if (item->wk_state & ONWORKLIST) 598 panic("worklist_insert: already on list"); 599 item->wk_state |= ONWORKLIST; 600 LIST_INSERT_HEAD(head, item, wk_list); 601 } 602 603 static void 604 worklist_remove(item) 605 struct worklist *item; 606 { 607 608 mtx_assert(&lk, MA_OWNED); 609 if ((item->wk_state & ONWORKLIST) == 0) 610 panic("worklist_remove: not on list"); 611 item->wk_state &= ~ONWORKLIST; 612 LIST_REMOVE(item, wk_list); 613 } 614 #endif /* DEBUG */ 615 616 /* 617 * Routines for tracking and managing workitems. 618 */ 619 static void workitem_free(struct worklist *, int); 620 static void workitem_alloc(struct worklist *, int, struct mount *); 621 622 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type)) 623 624 static void 625 workitem_free(item, type) 626 struct worklist *item; 627 int type; 628 { 629 struct ufsmount *ump; 630 mtx_assert(&lk, MA_OWNED); 631 632 #ifdef DEBUG 633 if (item->wk_state & ONWORKLIST) 634 panic("workitem_free: still on list"); 635 if (item->wk_type != type) 636 panic("workitem_free: type mismatch"); 637 #endif 638 ump = VFSTOUFS(item->wk_mp); 639 if (--ump->softdep_deps == 0 && ump->softdep_req) 640 wakeup(&ump->softdep_deps); 641 FREE(item, DtoM(type)); 642 } 643 644 static void 645 workitem_alloc(item, type, mp) 646 struct worklist *item; 647 int type; 648 struct mount *mp; 649 { 650 item->wk_type = type; 651 item->wk_mp = mp; 652 item->wk_state = 0; 653 ACQUIRE_LOCK(&lk); 654 VFSTOUFS(mp)->softdep_deps++; 655 VFSTOUFS(mp)->softdep_accdeps++; 656 FREE_LOCK(&lk); 657 } 658 659 /* 660 * Workitem queue management 661 */ 662 static int max_softdeps; /* maximum number of structs before slowdown */ 663 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 664 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 665 static int proc_waiting; /* tracks whether we have a timeout posted */ 666 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 667 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 668 static int req_pending; 669 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 670 #define FLUSH_INODES 1 671 static int req_clear_remove; /* syncer process flush some freeblks */ 672 #define FLUSH_REMOVE 2 673 #define FLUSH_REMOVE_WAIT 3 674 /* 675 * runtime statistics 676 */ 677 static int stat_worklist_push; /* number of worklist cleanups */ 678 static int stat_blk_limit_push; /* number of times block limit neared */ 679 static int stat_ino_limit_push; /* number of times inode limit neared */ 680 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 681 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 682 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 683 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 684 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 685 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 686 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 687 688 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 689 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 690 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 691 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 692 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 693 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 694 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 695 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 696 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 697 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 698 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 699 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 700 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 701 /* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */ 702 703 SYSCTL_DECL(_vfs_ffs); 704 705 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 706 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 707 &compute_summary_at_mount, 0, "Recompute summary at mount"); 708 709 static struct proc *softdepproc; 710 static struct kproc_desc softdep_kp = { 711 "softdepflush", 712 softdep_flush, 713 &softdepproc 714 }; 715 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &softdep_kp) 716 717 static void 718 softdep_flush(void) 719 { 720 struct mount *nmp; 721 struct mount *mp; 722 struct ufsmount *ump; 723 struct thread *td; 724 int remaining; 725 int vfslocked; 726 727 td = curthread; 728 td->td_pflags |= TDP_NORUNNINGBUF; 729 730 for (;;) { 731 kthread_suspend_check(softdepproc); 732 vfslocked = VFS_LOCK_GIANT((struct mount *)NULL); 733 ACQUIRE_LOCK(&lk); 734 /* 735 * If requested, try removing inode or removal dependencies. 736 */ 737 if (req_clear_inodedeps) { 738 clear_inodedeps(td); 739 req_clear_inodedeps -= 1; 740 wakeup_one(&proc_waiting); 741 } 742 if (req_clear_remove) { 743 clear_remove(td); 744 req_clear_remove -= 1; 745 wakeup_one(&proc_waiting); 746 } 747 FREE_LOCK(&lk); 748 VFS_UNLOCK_GIANT(vfslocked); 749 remaining = 0; 750 mtx_lock(&mountlist_mtx); 751 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 752 nmp = TAILQ_NEXT(mp, mnt_list); 753 if ((mp->mnt_flag & MNT_SOFTDEP) == 0) 754 continue; 755 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) 756 continue; 757 vfslocked = VFS_LOCK_GIANT(mp); 758 softdep_process_worklist(mp, 0); 759 ump = VFSTOUFS(mp); 760 remaining += ump->softdep_on_worklist - 761 ump->softdep_on_worklist_inprogress; 762 VFS_UNLOCK_GIANT(vfslocked); 763 mtx_lock(&mountlist_mtx); 764 nmp = TAILQ_NEXT(mp, mnt_list); 765 vfs_unbusy(mp, td); 766 } 767 mtx_unlock(&mountlist_mtx); 768 if (remaining) 769 continue; 770 ACQUIRE_LOCK(&lk); 771 if (!req_pending) 772 msleep(&req_pending, &lk, PVM, "sdflush", hz); 773 req_pending = 0; 774 FREE_LOCK(&lk); 775 } 776 } 777 778 static int 779 softdep_speedup(void) 780 { 781 782 mtx_assert(&lk, MA_OWNED); 783 if (req_pending == 0) { 784 req_pending = 1; 785 wakeup(&req_pending); 786 } 787 788 return speedup_syncer(); 789 } 790 791 /* 792 * Add an item to the end of the work queue. 793 * This routine requires that the lock be held. 794 * This is the only routine that adds items to the list. 795 * The following routine is the only one that removes items 796 * and does so in order from first to last. 797 */ 798 static void 799 add_to_worklist(wk) 800 struct worklist *wk; 801 { 802 struct ufsmount *ump; 803 804 mtx_assert(&lk, MA_OWNED); 805 ump = VFSTOUFS(wk->wk_mp); 806 if (wk->wk_state & ONWORKLIST) 807 panic("add_to_worklist: already on list"); 808 wk->wk_state |= ONWORKLIST; 809 if (LIST_EMPTY(&ump->softdep_workitem_pending)) 810 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 811 else 812 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 813 ump->softdep_worklist_tail = wk; 814 ump->softdep_on_worklist += 1; 815 } 816 817 /* 818 * Process that runs once per second to handle items in the background queue. 819 * 820 * Note that we ensure that everything is done in the order in which they 821 * appear in the queue. The code below depends on this property to ensure 822 * that blocks of a file are freed before the inode itself is freed. This 823 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 824 * until all the old ones have been purged from the dependency lists. 825 */ 826 int 827 softdep_process_worklist(mp, full) 828 struct mount *mp; 829 int full; 830 { 831 struct thread *td = curthread; 832 int cnt, matchcnt, loopcount; 833 struct ufsmount *ump; 834 long starttime; 835 836 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 837 /* 838 * Record the process identifier of our caller so that we can give 839 * this process preferential treatment in request_cleanup below. 840 */ 841 matchcnt = 0; 842 ump = VFSTOUFS(mp); 843 ACQUIRE_LOCK(&lk); 844 loopcount = 1; 845 starttime = time_second; 846 while (ump->softdep_on_worklist > 0) { 847 if ((cnt = process_worklist_item(mp, 0)) == -1) 848 break; 849 else 850 matchcnt += cnt; 851 /* 852 * If requested, try removing inode or removal dependencies. 853 */ 854 if (req_clear_inodedeps) { 855 clear_inodedeps(td); 856 req_clear_inodedeps -= 1; 857 wakeup_one(&proc_waiting); 858 } 859 if (req_clear_remove) { 860 clear_remove(td); 861 req_clear_remove -= 1; 862 wakeup_one(&proc_waiting); 863 } 864 /* 865 * We do not generally want to stop for buffer space, but if 866 * we are really being a buffer hog, we will stop and wait. 867 */ 868 if (loopcount++ % 128 == 0) { 869 FREE_LOCK(&lk); 870 bwillwrite(); 871 ACQUIRE_LOCK(&lk); 872 } 873 /* 874 * Never allow processing to run for more than one 875 * second. Otherwise the other mountpoints may get 876 * excessively backlogged. 877 */ 878 if (!full && starttime != time_second) { 879 matchcnt = -1; 880 break; 881 } 882 } 883 FREE_LOCK(&lk); 884 return (matchcnt); 885 } 886 887 /* 888 * Process one item on the worklist. 889 */ 890 static int 891 process_worklist_item(mp, flags) 892 struct mount *mp; 893 int flags; 894 { 895 struct worklist *wk, *wkend; 896 struct ufsmount *ump; 897 struct vnode *vp; 898 int matchcnt = 0; 899 900 mtx_assert(&lk, MA_OWNED); 901 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 902 /* 903 * If we are being called because of a process doing a 904 * copy-on-write, then it is not safe to write as we may 905 * recurse into the copy-on-write routine. 906 */ 907 if (curthread->td_pflags & TDP_COWINPROGRESS) 908 return (-1); 909 /* 910 * Normally we just process each item on the worklist in order. 911 * However, if we are in a situation where we cannot lock any 912 * inodes, we have to skip over any dirrem requests whose 913 * vnodes are resident and locked. 914 */ 915 ump = VFSTOUFS(mp); 916 vp = NULL; 917 LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) { 918 if (wk->wk_state & INPROGRESS) 919 continue; 920 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 921 break; 922 wk->wk_state |= INPROGRESS; 923 ump->softdep_on_worklist_inprogress++; 924 FREE_LOCK(&lk); 925 ffs_vget(mp, WK_DIRREM(wk)->dm_oldinum, 926 LK_NOWAIT | LK_EXCLUSIVE, &vp); 927 ACQUIRE_LOCK(&lk); 928 wk->wk_state &= ~INPROGRESS; 929 ump->softdep_on_worklist_inprogress--; 930 if (vp != NULL) 931 break; 932 } 933 if (wk == 0) 934 return (-1); 935 /* 936 * Remove the item to be processed. If we are removing the last 937 * item on the list, we need to recalculate the tail pointer. 938 * As this happens rarely and usually when the list is short, 939 * we just run down the list to find it rather than tracking it 940 * in the above loop. 941 */ 942 WORKLIST_REMOVE(wk); 943 if (wk == ump->softdep_worklist_tail) { 944 LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list) 945 if (LIST_NEXT(wkend, wk_list) == NULL) 946 break; 947 ump->softdep_worklist_tail = wkend; 948 } 949 ump->softdep_on_worklist -= 1; 950 FREE_LOCK(&lk); 951 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 952 panic("process_worklist_item: suspended filesystem"); 953 matchcnt++; 954 switch (wk->wk_type) { 955 956 case D_DIRREM: 957 /* removal of a directory entry */ 958 handle_workitem_remove(WK_DIRREM(wk), vp); 959 break; 960 961 case D_FREEBLKS: 962 /* releasing blocks and/or fragments from a file */ 963 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 964 break; 965 966 case D_FREEFRAG: 967 /* releasing a fragment when replaced as a file grows */ 968 handle_workitem_freefrag(WK_FREEFRAG(wk)); 969 break; 970 971 case D_FREEFILE: 972 /* releasing an inode when its link count drops to 0 */ 973 handle_workitem_freefile(WK_FREEFILE(wk)); 974 break; 975 976 default: 977 panic("%s_process_worklist: Unknown type %s", 978 "softdep", TYPENAME(wk->wk_type)); 979 /* NOTREACHED */ 980 } 981 vn_finished_secondary_write(mp); 982 ACQUIRE_LOCK(&lk); 983 return (matchcnt); 984 } 985 986 /* 987 * Move dependencies from one buffer to another. 988 */ 989 void 990 softdep_move_dependencies(oldbp, newbp) 991 struct buf *oldbp; 992 struct buf *newbp; 993 { 994 struct worklist *wk, *wktail; 995 996 if (!LIST_EMPTY(&newbp->b_dep)) 997 panic("softdep_move_dependencies: need merge code"); 998 wktail = 0; 999 ACQUIRE_LOCK(&lk); 1000 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1001 LIST_REMOVE(wk, wk_list); 1002 if (wktail == 0) 1003 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1004 else 1005 LIST_INSERT_AFTER(wktail, wk, wk_list); 1006 wktail = wk; 1007 } 1008 FREE_LOCK(&lk); 1009 } 1010 1011 /* 1012 * Purge the work list of all items associated with a particular mount point. 1013 */ 1014 int 1015 softdep_flushworklist(oldmnt, countp, td) 1016 struct mount *oldmnt; 1017 int *countp; 1018 struct thread *td; 1019 { 1020 struct vnode *devvp; 1021 int count, error = 0; 1022 struct ufsmount *ump; 1023 1024 /* 1025 * Alternately flush the block device associated with the mount 1026 * point and process any dependencies that the flushing 1027 * creates. We continue until no more worklist dependencies 1028 * are found. 1029 */ 1030 *countp = 0; 1031 ump = VFSTOUFS(oldmnt); 1032 devvp = ump->um_devvp; 1033 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1034 *countp += count; 1035 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 1036 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1037 VOP_UNLOCK(devvp, 0, td); 1038 if (error) 1039 break; 1040 } 1041 return (error); 1042 } 1043 1044 int 1045 softdep_waitidle(struct mount *mp) 1046 { 1047 struct ufsmount *ump; 1048 int error; 1049 int i; 1050 1051 ump = VFSTOUFS(mp); 1052 ACQUIRE_LOCK(&lk); 1053 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1054 ump->softdep_req = 1; 1055 if (ump->softdep_on_worklist) 1056 panic("softdep_waitidle: work added after flush."); 1057 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1); 1058 } 1059 ump->softdep_req = 0; 1060 FREE_LOCK(&lk); 1061 error = 0; 1062 if (i == 10) { 1063 error = EBUSY; 1064 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1065 mp); 1066 } 1067 1068 return (error); 1069 } 1070 1071 /* 1072 * Flush all vnodes and worklist items associated with a specified mount point. 1073 */ 1074 int 1075 softdep_flushfiles(oldmnt, flags, td) 1076 struct mount *oldmnt; 1077 int flags; 1078 struct thread *td; 1079 { 1080 int error, count, loopcnt; 1081 1082 error = 0; 1083 1084 /* 1085 * Alternately flush the vnodes associated with the mount 1086 * point and process any dependencies that the flushing 1087 * creates. In theory, this loop can happen at most twice, 1088 * but we give it a few extra just to be sure. 1089 */ 1090 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 1091 /* 1092 * Do another flush in case any vnodes were brought in 1093 * as part of the cleanup operations. 1094 */ 1095 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 1096 break; 1097 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 1098 count == 0) 1099 break; 1100 } 1101 /* 1102 * If we are unmounting then it is an error to fail. If we 1103 * are simply trying to downgrade to read-only, then filesystem 1104 * activity can keep us busy forever, so we just fail with EBUSY. 1105 */ 1106 if (loopcnt == 0) { 1107 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1108 panic("softdep_flushfiles: looping"); 1109 error = EBUSY; 1110 } 1111 if (!error) 1112 error = softdep_waitidle(oldmnt); 1113 return (error); 1114 } 1115 1116 /* 1117 * Structure hashing. 1118 * 1119 * There are three types of structures that can be looked up: 1120 * 1) pagedep structures identified by mount point, inode number, 1121 * and logical block. 1122 * 2) inodedep structures identified by mount point and inode number. 1123 * 3) newblk structures identified by mount point and 1124 * physical block number. 1125 * 1126 * The "pagedep" and "inodedep" dependency structures are hashed 1127 * separately from the file blocks and inodes to which they correspond. 1128 * This separation helps when the in-memory copy of an inode or 1129 * file block must be replaced. It also obviates the need to access 1130 * an inode or file page when simply updating (or de-allocating) 1131 * dependency structures. Lookup of newblk structures is needed to 1132 * find newly allocated blocks when trying to associate them with 1133 * their allocdirect or allocindir structure. 1134 * 1135 * The lookup routines optionally create and hash a new instance when 1136 * an existing entry is not found. 1137 */ 1138 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1139 #define NODELAY 0x0002 /* cannot do background work */ 1140 1141 /* 1142 * Structures and routines associated with pagedep caching. 1143 */ 1144 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 1145 u_long pagedep_hash; /* size of hash table - 1 */ 1146 #define PAGEDEP_HASH(mp, inum, lbn) \ 1147 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 1148 pagedep_hash]) 1149 1150 static int 1151 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 1152 struct pagedep_hashhead *pagedephd; 1153 ino_t ino; 1154 ufs_lbn_t lbn; 1155 struct mount *mp; 1156 int flags; 1157 struct pagedep **pagedeppp; 1158 { 1159 struct pagedep *pagedep; 1160 1161 LIST_FOREACH(pagedep, pagedephd, pd_hash) 1162 if (ino == pagedep->pd_ino && 1163 lbn == pagedep->pd_lbn && 1164 mp == pagedep->pd_list.wk_mp) 1165 break; 1166 if (pagedep) { 1167 *pagedeppp = pagedep; 1168 if ((flags & DEPALLOC) != 0 && 1169 (pagedep->pd_state & ONWORKLIST) == 0) 1170 return (0); 1171 return (1); 1172 } 1173 *pagedeppp = NULL; 1174 return (0); 1175 } 1176 /* 1177 * Look up a pagedep. Return 1 if found, 0 if not found or found 1178 * when asked to allocate but not associated with any buffer. 1179 * If not found, allocate if DEPALLOC flag is passed. 1180 * Found or allocated entry is returned in pagedeppp. 1181 * This routine must be called with splbio interrupts blocked. 1182 */ 1183 static int 1184 pagedep_lookup(ip, lbn, flags, pagedeppp) 1185 struct inode *ip; 1186 ufs_lbn_t lbn; 1187 int flags; 1188 struct pagedep **pagedeppp; 1189 { 1190 struct pagedep *pagedep; 1191 struct pagedep_hashhead *pagedephd; 1192 struct mount *mp; 1193 int ret; 1194 int i; 1195 1196 mtx_assert(&lk, MA_OWNED); 1197 mp = ITOV(ip)->v_mount; 1198 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 1199 1200 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1201 if (*pagedeppp || (flags & DEPALLOC) == 0) 1202 return (ret); 1203 FREE_LOCK(&lk); 1204 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), 1205 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 1206 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 1207 ACQUIRE_LOCK(&lk); 1208 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1209 if (*pagedeppp) { 1210 WORKITEM_FREE(pagedep, D_PAGEDEP); 1211 return (ret); 1212 } 1213 pagedep->pd_ino = ip->i_number; 1214 pagedep->pd_lbn = lbn; 1215 LIST_INIT(&pagedep->pd_dirremhd); 1216 LIST_INIT(&pagedep->pd_pendinghd); 1217 for (i = 0; i < DAHASHSZ; i++) 1218 LIST_INIT(&pagedep->pd_diraddhd[i]); 1219 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 1220 *pagedeppp = pagedep; 1221 return (0); 1222 } 1223 1224 /* 1225 * Structures and routines associated with inodedep caching. 1226 */ 1227 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1228 static u_long inodedep_hash; /* size of hash table - 1 */ 1229 static long num_inodedep; /* number of inodedep allocated */ 1230 #define INODEDEP_HASH(fs, inum) \ 1231 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1232 1233 static int 1234 inodedep_find(inodedephd, fs, inum, inodedeppp) 1235 struct inodedep_hashhead *inodedephd; 1236 struct fs *fs; 1237 ino_t inum; 1238 struct inodedep **inodedeppp; 1239 { 1240 struct inodedep *inodedep; 1241 1242 LIST_FOREACH(inodedep, inodedephd, id_hash) 1243 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1244 break; 1245 if (inodedep) { 1246 *inodedeppp = inodedep; 1247 return (1); 1248 } 1249 *inodedeppp = NULL; 1250 1251 return (0); 1252 } 1253 /* 1254 * Look up an inodedep. Return 1 if found, 0 if not found. 1255 * If not found, allocate if DEPALLOC flag is passed. 1256 * Found or allocated entry is returned in inodedeppp. 1257 * This routine must be called with splbio interrupts blocked. 1258 */ 1259 static int 1260 inodedep_lookup(mp, inum, flags, inodedeppp) 1261 struct mount *mp; 1262 ino_t inum; 1263 int flags; 1264 struct inodedep **inodedeppp; 1265 { 1266 struct inodedep *inodedep; 1267 struct inodedep_hashhead *inodedephd; 1268 struct fs *fs; 1269 1270 mtx_assert(&lk, MA_OWNED); 1271 fs = VFSTOUFS(mp)->um_fs; 1272 inodedephd = INODEDEP_HASH(fs, inum); 1273 1274 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 1275 return (1); 1276 if ((flags & DEPALLOC) == 0) 1277 return (0); 1278 /* 1279 * If we are over our limit, try to improve the situation. 1280 */ 1281 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0) 1282 request_cleanup(mp, FLUSH_INODES); 1283 FREE_LOCK(&lk); 1284 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1285 M_INODEDEP, M_SOFTDEP_FLAGS); 1286 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 1287 ACQUIRE_LOCK(&lk); 1288 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 1289 WORKITEM_FREE(inodedep, D_INODEDEP); 1290 return (1); 1291 } 1292 num_inodedep += 1; 1293 inodedep->id_fs = fs; 1294 inodedep->id_ino = inum; 1295 inodedep->id_state = ALLCOMPLETE; 1296 inodedep->id_nlinkdelta = 0; 1297 inodedep->id_savedino1 = NULL; 1298 inodedep->id_savedsize = -1; 1299 inodedep->id_savedextsize = -1; 1300 inodedep->id_buf = NULL; 1301 LIST_INIT(&inodedep->id_pendinghd); 1302 LIST_INIT(&inodedep->id_inowait); 1303 LIST_INIT(&inodedep->id_bufwait); 1304 TAILQ_INIT(&inodedep->id_inoupdt); 1305 TAILQ_INIT(&inodedep->id_newinoupdt); 1306 TAILQ_INIT(&inodedep->id_extupdt); 1307 TAILQ_INIT(&inodedep->id_newextupdt); 1308 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1309 *inodedeppp = inodedep; 1310 return (0); 1311 } 1312 1313 /* 1314 * Structures and routines associated with newblk caching. 1315 */ 1316 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1317 u_long newblk_hash; /* size of hash table - 1 */ 1318 #define NEWBLK_HASH(fs, inum) \ 1319 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1320 1321 static int 1322 newblk_find(newblkhd, fs, newblkno, newblkpp) 1323 struct newblk_hashhead *newblkhd; 1324 struct fs *fs; 1325 ufs2_daddr_t newblkno; 1326 struct newblk **newblkpp; 1327 { 1328 struct newblk *newblk; 1329 1330 LIST_FOREACH(newblk, newblkhd, nb_hash) 1331 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1332 break; 1333 if (newblk) { 1334 *newblkpp = newblk; 1335 return (1); 1336 } 1337 *newblkpp = NULL; 1338 return (0); 1339 } 1340 1341 /* 1342 * Look up a newblk. Return 1 if found, 0 if not found. 1343 * If not found, allocate if DEPALLOC flag is passed. 1344 * Found or allocated entry is returned in newblkpp. 1345 */ 1346 static int 1347 newblk_lookup(fs, newblkno, flags, newblkpp) 1348 struct fs *fs; 1349 ufs2_daddr_t newblkno; 1350 int flags; 1351 struct newblk **newblkpp; 1352 { 1353 struct newblk *newblk; 1354 struct newblk_hashhead *newblkhd; 1355 1356 newblkhd = NEWBLK_HASH(fs, newblkno); 1357 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) 1358 return (1); 1359 if ((flags & DEPALLOC) == 0) 1360 return (0); 1361 FREE_LOCK(&lk); 1362 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1363 M_NEWBLK, M_SOFTDEP_FLAGS); 1364 ACQUIRE_LOCK(&lk); 1365 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) { 1366 FREE(newblk, M_NEWBLK); 1367 return (1); 1368 } 1369 newblk->nb_state = 0; 1370 newblk->nb_fs = fs; 1371 newblk->nb_newblkno = newblkno; 1372 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1373 *newblkpp = newblk; 1374 return (0); 1375 } 1376 1377 /* 1378 * Executed during filesystem system initialization before 1379 * mounting any filesystems. 1380 */ 1381 void 1382 softdep_initialize() 1383 { 1384 1385 LIST_INIT(&mkdirlisthd); 1386 max_softdeps = desiredvnodes * 4; 1387 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1388 &pagedep_hash); 1389 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1390 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1391 1392 /* initialise bioops hack */ 1393 bioops.io_start = softdep_disk_io_initiation; 1394 bioops.io_complete = softdep_disk_write_complete; 1395 bioops.io_deallocate = softdep_deallocate_dependencies; 1396 bioops.io_countdeps = softdep_count_dependencies; 1397 } 1398 1399 /* 1400 * Executed after all filesystems have been unmounted during 1401 * filesystem module unload. 1402 */ 1403 void 1404 softdep_uninitialize() 1405 { 1406 1407 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1408 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1409 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1410 } 1411 1412 /* 1413 * Called at mount time to notify the dependency code that a 1414 * filesystem wishes to use it. 1415 */ 1416 int 1417 softdep_mount(devvp, mp, fs, cred) 1418 struct vnode *devvp; 1419 struct mount *mp; 1420 struct fs *fs; 1421 struct ucred *cred; 1422 { 1423 struct csum_total cstotal; 1424 struct ufsmount *ump; 1425 struct cg *cgp; 1426 struct buf *bp; 1427 int error, cyl; 1428 1429 MNT_ILOCK(mp); 1430 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 1431 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 1432 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 1433 MNTK_SOFTDEP; 1434 mp->mnt_noasync++; 1435 } 1436 MNT_IUNLOCK(mp); 1437 ump = VFSTOUFS(mp); 1438 LIST_INIT(&ump->softdep_workitem_pending); 1439 ump->softdep_worklist_tail = NULL; 1440 ump->softdep_on_worklist = 0; 1441 ump->softdep_deps = 0; 1442 /* 1443 * When doing soft updates, the counters in the 1444 * superblock may have gotten out of sync. Recomputation 1445 * can take a long time and can be deferred for background 1446 * fsck. However, the old behavior of scanning the cylinder 1447 * groups and recalculating them at mount time is available 1448 * by setting vfs.ffs.compute_summary_at_mount to one. 1449 */ 1450 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 1451 return (0); 1452 bzero(&cstotal, sizeof cstotal); 1453 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1454 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1455 fs->fs_cgsize, cred, &bp)) != 0) { 1456 brelse(bp); 1457 return (error); 1458 } 1459 cgp = (struct cg *)bp->b_data; 1460 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1461 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1462 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1463 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1464 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1465 brelse(bp); 1466 } 1467 #ifdef DEBUG 1468 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1469 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1470 #endif 1471 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1472 return (0); 1473 } 1474 1475 /* 1476 * Protecting the freemaps (or bitmaps). 1477 * 1478 * To eliminate the need to execute fsck before mounting a filesystem 1479 * after a power failure, one must (conservatively) guarantee that the 1480 * on-disk copy of the bitmaps never indicate that a live inode or block is 1481 * free. So, when a block or inode is allocated, the bitmap should be 1482 * updated (on disk) before any new pointers. When a block or inode is 1483 * freed, the bitmap should not be updated until all pointers have been 1484 * reset. The latter dependency is handled by the delayed de-allocation 1485 * approach described below for block and inode de-allocation. The former 1486 * dependency is handled by calling the following procedure when a block or 1487 * inode is allocated. When an inode is allocated an "inodedep" is created 1488 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1489 * Each "inodedep" is also inserted into the hash indexing structure so 1490 * that any additional link additions can be made dependent on the inode 1491 * allocation. 1492 * 1493 * The ufs filesystem maintains a number of free block counts (e.g., per 1494 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1495 * in addition to the bitmaps. These counts are used to improve efficiency 1496 * during allocation and therefore must be consistent with the bitmaps. 1497 * There is no convenient way to guarantee post-crash consistency of these 1498 * counts with simple update ordering, for two main reasons: (1) The counts 1499 * and bitmaps for a single cylinder group block are not in the same disk 1500 * sector. If a disk write is interrupted (e.g., by power failure), one may 1501 * be written and the other not. (2) Some of the counts are located in the 1502 * superblock rather than the cylinder group block. So, we focus our soft 1503 * updates implementation on protecting the bitmaps. When mounting a 1504 * filesystem, we recompute the auxiliary counts from the bitmaps. 1505 */ 1506 1507 /* 1508 * Called just after updating the cylinder group block to allocate an inode. 1509 */ 1510 void 1511 softdep_setup_inomapdep(bp, ip, newinum) 1512 struct buf *bp; /* buffer for cylgroup block with inode map */ 1513 struct inode *ip; /* inode related to allocation */ 1514 ino_t newinum; /* new inode number being allocated */ 1515 { 1516 struct inodedep *inodedep; 1517 struct bmsafemap *bmsafemap; 1518 1519 /* 1520 * Create a dependency for the newly allocated inode. 1521 * Panic if it already exists as something is seriously wrong. 1522 * Otherwise add it to the dependency list for the buffer holding 1523 * the cylinder group map from which it was allocated. 1524 */ 1525 ACQUIRE_LOCK(&lk); 1526 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY, 1527 &inodedep))) 1528 panic("softdep_setup_inomapdep: dependency for new inode " 1529 "already exists"); 1530 inodedep->id_buf = bp; 1531 inodedep->id_state &= ~DEPCOMPLETE; 1532 bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp); 1533 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1534 FREE_LOCK(&lk); 1535 } 1536 1537 /* 1538 * Called just after updating the cylinder group block to 1539 * allocate block or fragment. 1540 */ 1541 void 1542 softdep_setup_blkmapdep(bp, mp, newblkno) 1543 struct buf *bp; /* buffer for cylgroup block with block map */ 1544 struct mount *mp; /* filesystem doing allocation */ 1545 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1546 { 1547 struct newblk *newblk; 1548 struct bmsafemap *bmsafemap; 1549 struct fs *fs; 1550 1551 fs = VFSTOUFS(mp)->um_fs; 1552 /* 1553 * Create a dependency for the newly allocated block. 1554 * Add it to the dependency list for the buffer holding 1555 * the cylinder group map from which it was allocated. 1556 */ 1557 ACQUIRE_LOCK(&lk); 1558 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1559 panic("softdep_setup_blkmapdep: found block"); 1560 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp); 1561 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1562 FREE_LOCK(&lk); 1563 } 1564 1565 /* 1566 * Find the bmsafemap associated with a cylinder group buffer. 1567 * If none exists, create one. The buffer must be locked when 1568 * this routine is called and this routine must be called with 1569 * splbio interrupts blocked. 1570 */ 1571 static struct bmsafemap * 1572 bmsafemap_lookup(mp, bp) 1573 struct mount *mp; 1574 struct buf *bp; 1575 { 1576 struct bmsafemap *bmsafemap; 1577 struct worklist *wk; 1578 1579 mtx_assert(&lk, MA_OWNED); 1580 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1581 if (wk->wk_type == D_BMSAFEMAP) 1582 return (WK_BMSAFEMAP(wk)); 1583 FREE_LOCK(&lk); 1584 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1585 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1586 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 1587 bmsafemap->sm_buf = bp; 1588 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1589 LIST_INIT(&bmsafemap->sm_allocindirhd); 1590 LIST_INIT(&bmsafemap->sm_inodedephd); 1591 LIST_INIT(&bmsafemap->sm_newblkhd); 1592 ACQUIRE_LOCK(&lk); 1593 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1594 return (bmsafemap); 1595 } 1596 1597 /* 1598 * Direct block allocation dependencies. 1599 * 1600 * When a new block is allocated, the corresponding disk locations must be 1601 * initialized (with zeros or new data) before the on-disk inode points to 1602 * them. Also, the freemap from which the block was allocated must be 1603 * updated (on disk) before the inode's pointer. These two dependencies are 1604 * independent of each other and are needed for all file blocks and indirect 1605 * blocks that are pointed to directly by the inode. Just before the 1606 * "in-core" version of the inode is updated with a newly allocated block 1607 * number, a procedure (below) is called to setup allocation dependency 1608 * structures. These structures are removed when the corresponding 1609 * dependencies are satisfied or when the block allocation becomes obsolete 1610 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1611 * fragment that gets upgraded). All of these cases are handled in 1612 * procedures described later. 1613 * 1614 * When a file extension causes a fragment to be upgraded, either to a larger 1615 * fragment or to a full block, the on-disk location may change (if the 1616 * previous fragment could not simply be extended). In this case, the old 1617 * fragment must be de-allocated, but not until after the inode's pointer has 1618 * been updated. In most cases, this is handled by later procedures, which 1619 * will construct a "freefrag" structure to be added to the workitem queue 1620 * when the inode update is complete (or obsolete). The main exception to 1621 * this is when an allocation occurs while a pending allocation dependency 1622 * (for the same block pointer) remains. This case is handled in the main 1623 * allocation dependency setup procedure by immediately freeing the 1624 * unreferenced fragments. 1625 */ 1626 void 1627 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1628 struct inode *ip; /* inode to which block is being added */ 1629 ufs_lbn_t lbn; /* block pointer within inode */ 1630 ufs2_daddr_t newblkno; /* disk block number being added */ 1631 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1632 long newsize; /* size of new block */ 1633 long oldsize; /* size of new block */ 1634 struct buf *bp; /* bp for allocated block */ 1635 { 1636 struct allocdirect *adp, *oldadp; 1637 struct allocdirectlst *adphead; 1638 struct bmsafemap *bmsafemap; 1639 struct inodedep *inodedep; 1640 struct pagedep *pagedep; 1641 struct newblk *newblk; 1642 struct mount *mp; 1643 1644 mp = UFSTOVFS(ip->i_ump); 1645 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1646 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1647 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1648 adp->ad_lbn = lbn; 1649 adp->ad_newblkno = newblkno; 1650 adp->ad_oldblkno = oldblkno; 1651 adp->ad_newsize = newsize; 1652 adp->ad_oldsize = oldsize; 1653 adp->ad_state = ATTACHED; 1654 LIST_INIT(&adp->ad_newdirblk); 1655 if (newblkno == oldblkno) 1656 adp->ad_freefrag = NULL; 1657 else 1658 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1659 1660 ACQUIRE_LOCK(&lk); 1661 if (lbn >= NDADDR) { 1662 /* allocating an indirect block */ 1663 if (oldblkno != 0) 1664 panic("softdep_setup_allocdirect: non-zero indir"); 1665 } else { 1666 /* 1667 * Allocating a direct block. 1668 * 1669 * If we are allocating a directory block, then we must 1670 * allocate an associated pagedep to track additions and 1671 * deletions. 1672 */ 1673 if ((ip->i_mode & IFMT) == IFDIR && 1674 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1675 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1676 } 1677 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1678 panic("softdep_setup_allocdirect: lost block"); 1679 if (newblk->nb_state == DEPCOMPLETE) { 1680 adp->ad_state |= DEPCOMPLETE; 1681 adp->ad_buf = NULL; 1682 } else { 1683 bmsafemap = newblk->nb_bmsafemap; 1684 adp->ad_buf = bmsafemap->sm_buf; 1685 LIST_REMOVE(newblk, nb_deps); 1686 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1687 } 1688 LIST_REMOVE(newblk, nb_hash); 1689 FREE(newblk, M_NEWBLK); 1690 1691 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1692 adp->ad_inodedep = inodedep; 1693 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1694 /* 1695 * The list of allocdirects must be kept in sorted and ascending 1696 * order so that the rollback routines can quickly determine the 1697 * first uncommitted block (the size of the file stored on disk 1698 * ends at the end of the lowest committed fragment, or if there 1699 * are no fragments, at the end of the highest committed block). 1700 * Since files generally grow, the typical case is that the new 1701 * block is to be added at the end of the list. We speed this 1702 * special case by checking against the last allocdirect in the 1703 * list before laboriously traversing the list looking for the 1704 * insertion point. 1705 */ 1706 adphead = &inodedep->id_newinoupdt; 1707 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1708 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1709 /* insert at end of list */ 1710 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1711 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1712 allocdirect_merge(adphead, adp, oldadp); 1713 FREE_LOCK(&lk); 1714 return; 1715 } 1716 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1717 if (oldadp->ad_lbn >= lbn) 1718 break; 1719 } 1720 if (oldadp == NULL) 1721 panic("softdep_setup_allocdirect: lost entry"); 1722 /* insert in middle of list */ 1723 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1724 if (oldadp->ad_lbn == lbn) 1725 allocdirect_merge(adphead, adp, oldadp); 1726 FREE_LOCK(&lk); 1727 } 1728 1729 /* 1730 * Replace an old allocdirect dependency with a newer one. 1731 * This routine must be called with splbio interrupts blocked. 1732 */ 1733 static void 1734 allocdirect_merge(adphead, newadp, oldadp) 1735 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1736 struct allocdirect *newadp; /* allocdirect being added */ 1737 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1738 { 1739 struct worklist *wk; 1740 struct freefrag *freefrag; 1741 struct newdirblk *newdirblk; 1742 1743 mtx_assert(&lk, MA_OWNED); 1744 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1745 newadp->ad_oldsize != oldadp->ad_newsize || 1746 newadp->ad_lbn >= NDADDR) 1747 panic("%s %jd != new %jd || old size %ld != new %ld", 1748 "allocdirect_merge: old blkno", 1749 (intmax_t)newadp->ad_oldblkno, 1750 (intmax_t)oldadp->ad_newblkno, 1751 newadp->ad_oldsize, oldadp->ad_newsize); 1752 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1753 newadp->ad_oldsize = oldadp->ad_oldsize; 1754 /* 1755 * If the old dependency had a fragment to free or had never 1756 * previously had a block allocated, then the new dependency 1757 * can immediately post its freefrag and adopt the old freefrag. 1758 * This action is done by swapping the freefrag dependencies. 1759 * The new dependency gains the old one's freefrag, and the 1760 * old one gets the new one and then immediately puts it on 1761 * the worklist when it is freed by free_allocdirect. It is 1762 * not possible to do this swap when the old dependency had a 1763 * non-zero size but no previous fragment to free. This condition 1764 * arises when the new block is an extension of the old block. 1765 * Here, the first part of the fragment allocated to the new 1766 * dependency is part of the block currently claimed on disk by 1767 * the old dependency, so cannot legitimately be freed until the 1768 * conditions for the new dependency are fulfilled. 1769 */ 1770 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1771 freefrag = newadp->ad_freefrag; 1772 newadp->ad_freefrag = oldadp->ad_freefrag; 1773 oldadp->ad_freefrag = freefrag; 1774 } 1775 /* 1776 * If we are tracking a new directory-block allocation, 1777 * move it from the old allocdirect to the new allocdirect. 1778 */ 1779 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1780 newdirblk = WK_NEWDIRBLK(wk); 1781 WORKLIST_REMOVE(&newdirblk->db_list); 1782 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 1783 panic("allocdirect_merge: extra newdirblk"); 1784 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1785 } 1786 free_allocdirect(adphead, oldadp, 0); 1787 } 1788 1789 /* 1790 * Allocate a new freefrag structure if needed. 1791 */ 1792 static struct freefrag * 1793 newfreefrag(ip, blkno, size) 1794 struct inode *ip; 1795 ufs2_daddr_t blkno; 1796 long size; 1797 { 1798 struct freefrag *freefrag; 1799 struct fs *fs; 1800 1801 if (blkno == 0) 1802 return (NULL); 1803 fs = ip->i_fs; 1804 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1805 panic("newfreefrag: frag size"); 1806 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1807 M_FREEFRAG, M_SOFTDEP_FLAGS); 1808 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 1809 freefrag->ff_inum = ip->i_number; 1810 freefrag->ff_blkno = blkno; 1811 freefrag->ff_fragsize = size; 1812 return (freefrag); 1813 } 1814 1815 /* 1816 * This workitem de-allocates fragments that were replaced during 1817 * file block allocation. 1818 */ 1819 static void 1820 handle_workitem_freefrag(freefrag) 1821 struct freefrag *freefrag; 1822 { 1823 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 1824 1825 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1826 freefrag->ff_fragsize, freefrag->ff_inum); 1827 ACQUIRE_LOCK(&lk); 1828 WORKITEM_FREE(freefrag, D_FREEFRAG); 1829 FREE_LOCK(&lk); 1830 } 1831 1832 /* 1833 * Set up a dependency structure for an external attributes data block. 1834 * This routine follows much of the structure of softdep_setup_allocdirect. 1835 * See the description of softdep_setup_allocdirect above for details. 1836 */ 1837 void 1838 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1839 struct inode *ip; 1840 ufs_lbn_t lbn; 1841 ufs2_daddr_t newblkno; 1842 ufs2_daddr_t oldblkno; 1843 long newsize; 1844 long oldsize; 1845 struct buf *bp; 1846 { 1847 struct allocdirect *adp, *oldadp; 1848 struct allocdirectlst *adphead; 1849 struct bmsafemap *bmsafemap; 1850 struct inodedep *inodedep; 1851 struct newblk *newblk; 1852 struct mount *mp; 1853 1854 mp = UFSTOVFS(ip->i_ump); 1855 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1856 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1857 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1858 adp->ad_lbn = lbn; 1859 adp->ad_newblkno = newblkno; 1860 adp->ad_oldblkno = oldblkno; 1861 adp->ad_newsize = newsize; 1862 adp->ad_oldsize = oldsize; 1863 adp->ad_state = ATTACHED | EXTDATA; 1864 LIST_INIT(&adp->ad_newdirblk); 1865 if (newblkno == oldblkno) 1866 adp->ad_freefrag = NULL; 1867 else 1868 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1869 1870 ACQUIRE_LOCK(&lk); 1871 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1872 panic("softdep_setup_allocext: lost block"); 1873 1874 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1875 adp->ad_inodedep = inodedep; 1876 1877 if (newblk->nb_state == DEPCOMPLETE) { 1878 adp->ad_state |= DEPCOMPLETE; 1879 adp->ad_buf = NULL; 1880 } else { 1881 bmsafemap = newblk->nb_bmsafemap; 1882 adp->ad_buf = bmsafemap->sm_buf; 1883 LIST_REMOVE(newblk, nb_deps); 1884 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1885 } 1886 LIST_REMOVE(newblk, nb_hash); 1887 FREE(newblk, M_NEWBLK); 1888 1889 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1890 if (lbn >= NXADDR) 1891 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1892 (long long)lbn); 1893 /* 1894 * The list of allocdirects must be kept in sorted and ascending 1895 * order so that the rollback routines can quickly determine the 1896 * first uncommitted block (the size of the file stored on disk 1897 * ends at the end of the lowest committed fragment, or if there 1898 * are no fragments, at the end of the highest committed block). 1899 * Since files generally grow, the typical case is that the new 1900 * block is to be added at the end of the list. We speed this 1901 * special case by checking against the last allocdirect in the 1902 * list before laboriously traversing the list looking for the 1903 * insertion point. 1904 */ 1905 adphead = &inodedep->id_newextupdt; 1906 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1907 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1908 /* insert at end of list */ 1909 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1910 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1911 allocdirect_merge(adphead, adp, oldadp); 1912 FREE_LOCK(&lk); 1913 return; 1914 } 1915 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1916 if (oldadp->ad_lbn >= lbn) 1917 break; 1918 } 1919 if (oldadp == NULL) 1920 panic("softdep_setup_allocext: lost entry"); 1921 /* insert in middle of list */ 1922 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1923 if (oldadp->ad_lbn == lbn) 1924 allocdirect_merge(adphead, adp, oldadp); 1925 FREE_LOCK(&lk); 1926 } 1927 1928 /* 1929 * Indirect block allocation dependencies. 1930 * 1931 * The same dependencies that exist for a direct block also exist when 1932 * a new block is allocated and pointed to by an entry in a block of 1933 * indirect pointers. The undo/redo states described above are also 1934 * used here. Because an indirect block contains many pointers that 1935 * may have dependencies, a second copy of the entire in-memory indirect 1936 * block is kept. The buffer cache copy is always completely up-to-date. 1937 * The second copy, which is used only as a source for disk writes, 1938 * contains only the safe pointers (i.e., those that have no remaining 1939 * update dependencies). The second copy is freed when all pointers 1940 * are safe. The cache is not allowed to replace indirect blocks with 1941 * pending update dependencies. If a buffer containing an indirect 1942 * block with dependencies is written, these routines will mark it 1943 * dirty again. It can only be successfully written once all the 1944 * dependencies are removed. The ffs_fsync routine in conjunction with 1945 * softdep_sync_metadata work together to get all the dependencies 1946 * removed so that a file can be successfully written to disk. Three 1947 * procedures are used when setting up indirect block pointer 1948 * dependencies. The division is necessary because of the organization 1949 * of the "balloc" routine and because of the distinction between file 1950 * pages and file metadata blocks. 1951 */ 1952 1953 /* 1954 * Allocate a new allocindir structure. 1955 */ 1956 static struct allocindir * 1957 newallocindir(ip, ptrno, newblkno, oldblkno) 1958 struct inode *ip; /* inode for file being extended */ 1959 int ptrno; /* offset of pointer in indirect block */ 1960 ufs2_daddr_t newblkno; /* disk block number being added */ 1961 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1962 { 1963 struct allocindir *aip; 1964 1965 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1966 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1967 workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump)); 1968 aip->ai_state = ATTACHED; 1969 aip->ai_offset = ptrno; 1970 aip->ai_newblkno = newblkno; 1971 aip->ai_oldblkno = oldblkno; 1972 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1973 return (aip); 1974 } 1975 1976 /* 1977 * Called just before setting an indirect block pointer 1978 * to a newly allocated file page. 1979 */ 1980 void 1981 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1982 struct inode *ip; /* inode for file being extended */ 1983 ufs_lbn_t lbn; /* allocated block number within file */ 1984 struct buf *bp; /* buffer with indirect blk referencing page */ 1985 int ptrno; /* offset of pointer in indirect block */ 1986 ufs2_daddr_t newblkno; /* disk block number being added */ 1987 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1988 struct buf *nbp; /* buffer holding allocated page */ 1989 { 1990 struct allocindir *aip; 1991 struct pagedep *pagedep; 1992 1993 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 1994 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1995 ACQUIRE_LOCK(&lk); 1996 /* 1997 * If we are allocating a directory page, then we must 1998 * allocate an associated pagedep to track additions and 1999 * deletions. 2000 */ 2001 if ((ip->i_mode & IFMT) == IFDIR && 2002 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 2003 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 2004 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 2005 setup_allocindir_phase2(bp, ip, aip); 2006 FREE_LOCK(&lk); 2007 } 2008 2009 /* 2010 * Called just before setting an indirect block pointer to a 2011 * newly allocated indirect block. 2012 */ 2013 void 2014 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 2015 struct buf *nbp; /* newly allocated indirect block */ 2016 struct inode *ip; /* inode for file being extended */ 2017 struct buf *bp; /* indirect block referencing allocated block */ 2018 int ptrno; /* offset of pointer in indirect block */ 2019 ufs2_daddr_t newblkno; /* disk block number being added */ 2020 { 2021 struct allocindir *aip; 2022 2023 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 2024 aip = newallocindir(ip, ptrno, newblkno, 0); 2025 ACQUIRE_LOCK(&lk); 2026 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 2027 setup_allocindir_phase2(bp, ip, aip); 2028 FREE_LOCK(&lk); 2029 } 2030 2031 /* 2032 * Called to finish the allocation of the "aip" allocated 2033 * by one of the two routines above. 2034 */ 2035 static void 2036 setup_allocindir_phase2(bp, ip, aip) 2037 struct buf *bp; /* in-memory copy of the indirect block */ 2038 struct inode *ip; /* inode for file being extended */ 2039 struct allocindir *aip; /* allocindir allocated by the above routines */ 2040 { 2041 struct worklist *wk; 2042 struct indirdep *indirdep, *newindirdep; 2043 struct bmsafemap *bmsafemap; 2044 struct allocindir *oldaip; 2045 struct freefrag *freefrag; 2046 struct newblk *newblk; 2047 ufs2_daddr_t blkno; 2048 2049 mtx_assert(&lk, MA_OWNED); 2050 if (bp->b_lblkno >= 0) 2051 panic("setup_allocindir_phase2: not indir blk"); 2052 for (indirdep = NULL, newindirdep = NULL; ; ) { 2053 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2054 if (wk->wk_type != D_INDIRDEP) 2055 continue; 2056 indirdep = WK_INDIRDEP(wk); 2057 break; 2058 } 2059 if (indirdep == NULL && newindirdep) { 2060 indirdep = newindirdep; 2061 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 2062 newindirdep = NULL; 2063 } 2064 if (indirdep) { 2065 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 2066 &newblk) == 0) 2067 panic("setup_allocindir: lost block"); 2068 if (newblk->nb_state == DEPCOMPLETE) { 2069 aip->ai_state |= DEPCOMPLETE; 2070 aip->ai_buf = NULL; 2071 } else { 2072 bmsafemap = newblk->nb_bmsafemap; 2073 aip->ai_buf = bmsafemap->sm_buf; 2074 LIST_REMOVE(newblk, nb_deps); 2075 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 2076 aip, ai_deps); 2077 } 2078 LIST_REMOVE(newblk, nb_hash); 2079 FREE(newblk, M_NEWBLK); 2080 aip->ai_indirdep = indirdep; 2081 /* 2082 * Check to see if there is an existing dependency 2083 * for this block. If there is, merge the old 2084 * dependency into the new one. 2085 */ 2086 if (aip->ai_oldblkno == 0) 2087 oldaip = NULL; 2088 else 2089 2090 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 2091 if (oldaip->ai_offset == aip->ai_offset) 2092 break; 2093 freefrag = NULL; 2094 if (oldaip != NULL) { 2095 if (oldaip->ai_newblkno != aip->ai_oldblkno) 2096 panic("setup_allocindir_phase2: blkno"); 2097 aip->ai_oldblkno = oldaip->ai_oldblkno; 2098 freefrag = aip->ai_freefrag; 2099 aip->ai_freefrag = oldaip->ai_freefrag; 2100 oldaip->ai_freefrag = NULL; 2101 free_allocindir(oldaip, NULL); 2102 } 2103 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 2104 if (ip->i_ump->um_fstype == UFS1) 2105 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 2106 [aip->ai_offset] = aip->ai_oldblkno; 2107 else 2108 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 2109 [aip->ai_offset] = aip->ai_oldblkno; 2110 FREE_LOCK(&lk); 2111 if (freefrag != NULL) 2112 handle_workitem_freefrag(freefrag); 2113 } else 2114 FREE_LOCK(&lk); 2115 if (newindirdep) { 2116 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 2117 brelse(newindirdep->ir_savebp); 2118 ACQUIRE_LOCK(&lk); 2119 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 2120 if (indirdep) 2121 break; 2122 FREE_LOCK(&lk); 2123 } 2124 if (indirdep) { 2125 ACQUIRE_LOCK(&lk); 2126 break; 2127 } 2128 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 2129 M_INDIRDEP, M_SOFTDEP_FLAGS); 2130 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, 2131 UFSTOVFS(ip->i_ump)); 2132 newindirdep->ir_state = ATTACHED; 2133 if (ip->i_ump->um_fstype == UFS1) 2134 newindirdep->ir_state |= UFS1FMT; 2135 LIST_INIT(&newindirdep->ir_deplisthd); 2136 LIST_INIT(&newindirdep->ir_donehd); 2137 if (bp->b_blkno == bp->b_lblkno) { 2138 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 2139 NULL, NULL); 2140 bp->b_blkno = blkno; 2141 } 2142 newindirdep->ir_savebp = 2143 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 2144 BUF_KERNPROC(newindirdep->ir_savebp); 2145 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 2146 ACQUIRE_LOCK(&lk); 2147 } 2148 } 2149 2150 /* 2151 * Block de-allocation dependencies. 2152 * 2153 * When blocks are de-allocated, the on-disk pointers must be nullified before 2154 * the blocks are made available for use by other files. (The true 2155 * requirement is that old pointers must be nullified before new on-disk 2156 * pointers are set. We chose this slightly more stringent requirement to 2157 * reduce complexity.) Our implementation handles this dependency by updating 2158 * the inode (or indirect block) appropriately but delaying the actual block 2159 * de-allocation (i.e., freemap and free space count manipulation) until 2160 * after the updated versions reach stable storage. After the disk is 2161 * updated, the blocks can be safely de-allocated whenever it is convenient. 2162 * This implementation handles only the common case of reducing a file's 2163 * length to zero. Other cases are handled by the conventional synchronous 2164 * write approach. 2165 * 2166 * The ffs implementation with which we worked double-checks 2167 * the state of the block pointers and file size as it reduces 2168 * a file's length. Some of this code is replicated here in our 2169 * soft updates implementation. The freeblks->fb_chkcnt field is 2170 * used to transfer a part of this information to the procedure 2171 * that eventually de-allocates the blocks. 2172 * 2173 * This routine should be called from the routine that shortens 2174 * a file's length, before the inode's size or block pointers 2175 * are modified. It will save the block pointer information for 2176 * later release and zero the inode so that the calling routine 2177 * can release it. 2178 */ 2179 void 2180 softdep_setup_freeblocks(ip, length, flags) 2181 struct inode *ip; /* The inode whose length is to be reduced */ 2182 off_t length; /* The new length for the file */ 2183 int flags; /* IO_EXT and/or IO_NORMAL */ 2184 { 2185 struct freeblks *freeblks; 2186 struct inodedep *inodedep; 2187 struct allocdirect *adp; 2188 struct vnode *vp; 2189 struct buf *bp; 2190 struct fs *fs; 2191 ufs2_daddr_t extblocks, datablocks; 2192 struct mount *mp; 2193 int i, delay, error; 2194 2195 fs = ip->i_fs; 2196 mp = UFSTOVFS(ip->i_ump); 2197 if (length != 0) 2198 panic("softdep_setup_freeblocks: non-zero length"); 2199 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 2200 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 2201 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 2202 freeblks->fb_state = ATTACHED; 2203 freeblks->fb_uid = ip->i_uid; 2204 freeblks->fb_previousinum = ip->i_number; 2205 freeblks->fb_devvp = ip->i_devvp; 2206 extblocks = 0; 2207 if (fs->fs_magic == FS_UFS2_MAGIC) 2208 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 2209 datablocks = DIP(ip, i_blocks) - extblocks; 2210 if ((flags & IO_NORMAL) == 0) { 2211 freeblks->fb_oldsize = 0; 2212 freeblks->fb_chkcnt = 0; 2213 } else { 2214 freeblks->fb_oldsize = ip->i_size; 2215 ip->i_size = 0; 2216 DIP_SET(ip, i_size, 0); 2217 freeblks->fb_chkcnt = datablocks; 2218 for (i = 0; i < NDADDR; i++) { 2219 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 2220 DIP_SET(ip, i_db[i], 0); 2221 } 2222 for (i = 0; i < NIADDR; i++) { 2223 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 2224 DIP_SET(ip, i_ib[i], 0); 2225 } 2226 /* 2227 * If the file was removed, then the space being freed was 2228 * accounted for then (see softdep_releasefile()). If the 2229 * file is merely being truncated, then we account for it now. 2230 */ 2231 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2232 UFS_LOCK(ip->i_ump); 2233 fs->fs_pendingblocks += datablocks; 2234 UFS_UNLOCK(ip->i_ump); 2235 } 2236 } 2237 if ((flags & IO_EXT) == 0) { 2238 freeblks->fb_oldextsize = 0; 2239 } else { 2240 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 2241 ip->i_din2->di_extsize = 0; 2242 freeblks->fb_chkcnt += extblocks; 2243 for (i = 0; i < NXADDR; i++) { 2244 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 2245 ip->i_din2->di_extb[i] = 0; 2246 } 2247 } 2248 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 2249 /* 2250 * Push the zero'ed inode to to its disk buffer so that we are free 2251 * to delete its dependencies below. Once the dependencies are gone 2252 * the buffer can be safely released. 2253 */ 2254 if ((error = bread(ip->i_devvp, 2255 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2256 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2257 brelse(bp); 2258 softdep_error("softdep_setup_freeblocks", error); 2259 } 2260 if (ip->i_ump->um_fstype == UFS1) 2261 *((struct ufs1_dinode *)bp->b_data + 2262 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2263 else 2264 *((struct ufs2_dinode *)bp->b_data + 2265 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2266 /* 2267 * Find and eliminate any inode dependencies. 2268 */ 2269 ACQUIRE_LOCK(&lk); 2270 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 2271 if ((inodedep->id_state & IOSTARTED) != 0) 2272 panic("softdep_setup_freeblocks: inode busy"); 2273 /* 2274 * Add the freeblks structure to the list of operations that 2275 * must await the zero'ed inode being written to disk. If we 2276 * still have a bitmap dependency (delay == 0), then the inode 2277 * has never been written to disk, so we can process the 2278 * freeblks below once we have deleted the dependencies. 2279 */ 2280 delay = (inodedep->id_state & DEPCOMPLETE); 2281 if (delay) 2282 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2283 /* 2284 * Because the file length has been truncated to zero, any 2285 * pending block allocation dependency structures associated 2286 * with this inode are obsolete and can simply be de-allocated. 2287 * We must first merge the two dependency lists to get rid of 2288 * any duplicate freefrag structures, then purge the merged list. 2289 * If we still have a bitmap dependency, then the inode has never 2290 * been written to disk, so we can free any fragments without delay. 2291 */ 2292 if (flags & IO_NORMAL) { 2293 merge_inode_lists(&inodedep->id_newinoupdt, 2294 &inodedep->id_inoupdt); 2295 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2296 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2297 } 2298 if (flags & IO_EXT) { 2299 merge_inode_lists(&inodedep->id_newextupdt, 2300 &inodedep->id_extupdt); 2301 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2302 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2303 } 2304 FREE_LOCK(&lk); 2305 bdwrite(bp); 2306 /* 2307 * We must wait for any I/O in progress to finish so that 2308 * all potential buffers on the dirty list will be visible. 2309 * Once they are all there, walk the list and get rid of 2310 * any dependencies. 2311 */ 2312 vp = ITOV(ip); 2313 VI_LOCK(vp); 2314 drain_output(vp); 2315 restart: 2316 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 2317 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2318 ((flags & IO_NORMAL) == 0 && 2319 (bp->b_xflags & BX_ALTDATA) == 0)) 2320 continue; 2321 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL) 2322 goto restart; 2323 VI_UNLOCK(vp); 2324 ACQUIRE_LOCK(&lk); 2325 (void) inodedep_lookup(mp, ip->i_number, 0, &inodedep); 2326 deallocate_dependencies(bp, inodedep); 2327 FREE_LOCK(&lk); 2328 bp->b_flags |= B_INVAL | B_NOCACHE; 2329 brelse(bp); 2330 VI_LOCK(vp); 2331 goto restart; 2332 } 2333 VI_UNLOCK(vp); 2334 ACQUIRE_LOCK(&lk); 2335 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 2336 (void) free_inodedep(inodedep); 2337 2338 if(delay) { 2339 freeblks->fb_state |= DEPCOMPLETE; 2340 /* 2341 * If the inode with zeroed block pointers is now on disk 2342 * we can start freeing blocks. Add freeblks to the worklist 2343 * instead of calling handle_workitem_freeblocks directly as 2344 * it is more likely that additional IO is needed to complete 2345 * the request here than in the !delay case. 2346 */ 2347 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 2348 add_to_worklist(&freeblks->fb_list); 2349 } 2350 2351 FREE_LOCK(&lk); 2352 /* 2353 * If the inode has never been written to disk (delay == 0), 2354 * then we can process the freeblks now that we have deleted 2355 * the dependencies. 2356 */ 2357 if (!delay) 2358 handle_workitem_freeblocks(freeblks, 0); 2359 } 2360 2361 /* 2362 * Reclaim any dependency structures from a buffer that is about to 2363 * be reallocated to a new vnode. The buffer must be locked, thus, 2364 * no I/O completion operations can occur while we are manipulating 2365 * its associated dependencies. The mutex is held so that other I/O's 2366 * associated with related dependencies do not occur. 2367 */ 2368 static void 2369 deallocate_dependencies(bp, inodedep) 2370 struct buf *bp; 2371 struct inodedep *inodedep; 2372 { 2373 struct worklist *wk; 2374 struct indirdep *indirdep; 2375 struct allocindir *aip; 2376 struct pagedep *pagedep; 2377 struct dirrem *dirrem; 2378 struct diradd *dap; 2379 int i; 2380 2381 mtx_assert(&lk, MA_OWNED); 2382 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2383 switch (wk->wk_type) { 2384 2385 case D_INDIRDEP: 2386 indirdep = WK_INDIRDEP(wk); 2387 /* 2388 * None of the indirect pointers will ever be visible, 2389 * so they can simply be tossed. GOINGAWAY ensures 2390 * that allocated pointers will be saved in the buffer 2391 * cache until they are freed. Note that they will 2392 * only be able to be found by their physical address 2393 * since the inode mapping the logical address will 2394 * be gone. The save buffer used for the safe copy 2395 * was allocated in setup_allocindir_phase2 using 2396 * the physical address so it could be used for this 2397 * purpose. Hence we swap the safe copy with the real 2398 * copy, allowing the safe copy to be freed and holding 2399 * on to the real copy for later use in indir_trunc. 2400 */ 2401 if (indirdep->ir_state & GOINGAWAY) 2402 panic("deallocate_dependencies: already gone"); 2403 indirdep->ir_state |= GOINGAWAY; 2404 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2405 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2406 free_allocindir(aip, inodedep); 2407 if (bp->b_lblkno >= 0 || 2408 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 2409 panic("deallocate_dependencies: not indir"); 2410 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2411 bp->b_bcount); 2412 WORKLIST_REMOVE(wk); 2413 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2414 continue; 2415 2416 case D_PAGEDEP: 2417 pagedep = WK_PAGEDEP(wk); 2418 /* 2419 * None of the directory additions will ever be 2420 * visible, so they can simply be tossed. 2421 */ 2422 for (i = 0; i < DAHASHSZ; i++) 2423 while ((dap = 2424 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2425 free_diradd(dap); 2426 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2427 free_diradd(dap); 2428 /* 2429 * Copy any directory remove dependencies to the list 2430 * to be processed after the zero'ed inode is written. 2431 * If the inode has already been written, then they 2432 * can be dumped directly onto the work list. 2433 */ 2434 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2435 LIST_REMOVE(dirrem, dm_next); 2436 dirrem->dm_dirinum = pagedep->pd_ino; 2437 if (inodedep == NULL || 2438 (inodedep->id_state & ALLCOMPLETE) == 2439 ALLCOMPLETE) 2440 add_to_worklist(&dirrem->dm_list); 2441 else 2442 WORKLIST_INSERT(&inodedep->id_bufwait, 2443 &dirrem->dm_list); 2444 } 2445 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2446 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2447 if (wk->wk_type == D_NEWDIRBLK && 2448 WK_NEWDIRBLK(wk)->db_pagedep == 2449 pagedep) 2450 break; 2451 if (wk != NULL) { 2452 WORKLIST_REMOVE(wk); 2453 free_newdirblk(WK_NEWDIRBLK(wk)); 2454 } else 2455 panic("deallocate_dependencies: " 2456 "lost pagedep"); 2457 } 2458 WORKLIST_REMOVE(&pagedep->pd_list); 2459 LIST_REMOVE(pagedep, pd_hash); 2460 WORKITEM_FREE(pagedep, D_PAGEDEP); 2461 continue; 2462 2463 case D_ALLOCINDIR: 2464 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2465 continue; 2466 2467 case D_ALLOCDIRECT: 2468 case D_INODEDEP: 2469 panic("deallocate_dependencies: Unexpected type %s", 2470 TYPENAME(wk->wk_type)); 2471 /* NOTREACHED */ 2472 2473 default: 2474 panic("deallocate_dependencies: Unknown type %s", 2475 TYPENAME(wk->wk_type)); 2476 /* NOTREACHED */ 2477 } 2478 } 2479 } 2480 2481 /* 2482 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2483 * This routine must be called with splbio interrupts blocked. 2484 */ 2485 static void 2486 free_allocdirect(adphead, adp, delay) 2487 struct allocdirectlst *adphead; 2488 struct allocdirect *adp; 2489 int delay; 2490 { 2491 struct newdirblk *newdirblk; 2492 struct worklist *wk; 2493 2494 mtx_assert(&lk, MA_OWNED); 2495 if ((adp->ad_state & DEPCOMPLETE) == 0) 2496 LIST_REMOVE(adp, ad_deps); 2497 TAILQ_REMOVE(adphead, adp, ad_next); 2498 if ((adp->ad_state & COMPLETE) == 0) 2499 WORKLIST_REMOVE(&adp->ad_list); 2500 if (adp->ad_freefrag != NULL) { 2501 if (delay) 2502 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2503 &adp->ad_freefrag->ff_list); 2504 else 2505 add_to_worklist(&adp->ad_freefrag->ff_list); 2506 } 2507 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2508 newdirblk = WK_NEWDIRBLK(wk); 2509 WORKLIST_REMOVE(&newdirblk->db_list); 2510 if (!LIST_EMPTY(&adp->ad_newdirblk)) 2511 panic("free_allocdirect: extra newdirblk"); 2512 if (delay) 2513 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2514 &newdirblk->db_list); 2515 else 2516 free_newdirblk(newdirblk); 2517 } 2518 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2519 } 2520 2521 /* 2522 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2523 * This routine must be called with splbio interrupts blocked. 2524 */ 2525 static void 2526 free_newdirblk(newdirblk) 2527 struct newdirblk *newdirblk; 2528 { 2529 struct pagedep *pagedep; 2530 struct diradd *dap; 2531 int i; 2532 2533 mtx_assert(&lk, MA_OWNED); 2534 /* 2535 * If the pagedep is still linked onto the directory buffer 2536 * dependency chain, then some of the entries on the 2537 * pd_pendinghd list may not be committed to disk yet. In 2538 * this case, we will simply clear the NEWBLOCK flag and 2539 * let the pd_pendinghd list be processed when the pagedep 2540 * is next written. If the pagedep is no longer on the buffer 2541 * dependency chain, then all the entries on the pd_pending 2542 * list are committed to disk and we can free them here. 2543 */ 2544 pagedep = newdirblk->db_pagedep; 2545 pagedep->pd_state &= ~NEWBLOCK; 2546 if ((pagedep->pd_state & ONWORKLIST) == 0) 2547 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2548 free_diradd(dap); 2549 /* 2550 * If no dependencies remain, the pagedep will be freed. 2551 */ 2552 for (i = 0; i < DAHASHSZ; i++) 2553 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 2554 break; 2555 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2556 LIST_REMOVE(pagedep, pd_hash); 2557 WORKITEM_FREE(pagedep, D_PAGEDEP); 2558 } 2559 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2560 } 2561 2562 /* 2563 * Prepare an inode to be freed. The actual free operation is not 2564 * done until the zero'ed inode has been written to disk. 2565 */ 2566 void 2567 softdep_freefile(pvp, ino, mode) 2568 struct vnode *pvp; 2569 ino_t ino; 2570 int mode; 2571 { 2572 struct inode *ip = VTOI(pvp); 2573 struct inodedep *inodedep; 2574 struct freefile *freefile; 2575 2576 /* 2577 * This sets up the inode de-allocation dependency. 2578 */ 2579 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2580 M_FREEFILE, M_SOFTDEP_FLAGS); 2581 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 2582 freefile->fx_mode = mode; 2583 freefile->fx_oldinum = ino; 2584 freefile->fx_devvp = ip->i_devvp; 2585 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2586 UFS_LOCK(ip->i_ump); 2587 ip->i_fs->fs_pendinginodes += 1; 2588 UFS_UNLOCK(ip->i_ump); 2589 } 2590 2591 /* 2592 * If the inodedep does not exist, then the zero'ed inode has 2593 * been written to disk. If the allocated inode has never been 2594 * written to disk, then the on-disk inode is zero'ed. In either 2595 * case we can free the file immediately. 2596 */ 2597 ACQUIRE_LOCK(&lk); 2598 if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 || 2599 check_inode_unwritten(inodedep)) { 2600 FREE_LOCK(&lk); 2601 handle_workitem_freefile(freefile); 2602 return; 2603 } 2604 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2605 FREE_LOCK(&lk); 2606 } 2607 2608 /* 2609 * Check to see if an inode has never been written to disk. If 2610 * so free the inodedep and return success, otherwise return failure. 2611 * This routine must be called with splbio interrupts blocked. 2612 * 2613 * If we still have a bitmap dependency, then the inode has never 2614 * been written to disk. Drop the dependency as it is no longer 2615 * necessary since the inode is being deallocated. We set the 2616 * ALLCOMPLETE flags since the bitmap now properly shows that the 2617 * inode is not allocated. Even if the inode is actively being 2618 * written, it has been rolled back to its zero'ed state, so we 2619 * are ensured that a zero inode is what is on the disk. For short 2620 * lived files, this change will usually result in removing all the 2621 * dependencies from the inode so that it can be freed immediately. 2622 */ 2623 static int 2624 check_inode_unwritten(inodedep) 2625 struct inodedep *inodedep; 2626 { 2627 2628 mtx_assert(&lk, MA_OWNED); 2629 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2630 !LIST_EMPTY(&inodedep->id_pendinghd) || 2631 !LIST_EMPTY(&inodedep->id_bufwait) || 2632 !LIST_EMPTY(&inodedep->id_inowait) || 2633 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 2634 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 2635 !TAILQ_EMPTY(&inodedep->id_extupdt) || 2636 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 2637 inodedep->id_nlinkdelta != 0) 2638 return (0); 2639 2640 /* 2641 * Another process might be in initiate_write_inodeblock_ufs[12] 2642 * trying to allocate memory without holding "Softdep Lock". 2643 */ 2644 if ((inodedep->id_state & IOSTARTED) != 0 && 2645 inodedep->id_savedino1 == NULL) 2646 return (0); 2647 2648 inodedep->id_state |= ALLCOMPLETE; 2649 LIST_REMOVE(inodedep, id_deps); 2650 inodedep->id_buf = NULL; 2651 if (inodedep->id_state & ONWORKLIST) 2652 WORKLIST_REMOVE(&inodedep->id_list); 2653 if (inodedep->id_savedino1 != NULL) { 2654 FREE(inodedep->id_savedino1, M_SAVEDINO); 2655 inodedep->id_savedino1 = NULL; 2656 } 2657 if (free_inodedep(inodedep) == 0) 2658 panic("check_inode_unwritten: busy inode"); 2659 return (1); 2660 } 2661 2662 /* 2663 * Try to free an inodedep structure. Return 1 if it could be freed. 2664 */ 2665 static int 2666 free_inodedep(inodedep) 2667 struct inodedep *inodedep; 2668 { 2669 2670 mtx_assert(&lk, MA_OWNED); 2671 if ((inodedep->id_state & ONWORKLIST) != 0 || 2672 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2673 !LIST_EMPTY(&inodedep->id_pendinghd) || 2674 !LIST_EMPTY(&inodedep->id_bufwait) || 2675 !LIST_EMPTY(&inodedep->id_inowait) || 2676 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 2677 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 2678 !TAILQ_EMPTY(&inodedep->id_extupdt) || 2679 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 2680 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2681 return (0); 2682 LIST_REMOVE(inodedep, id_hash); 2683 WORKITEM_FREE(inodedep, D_INODEDEP); 2684 num_inodedep -= 1; 2685 return (1); 2686 } 2687 2688 /* 2689 * This workitem routine performs the block de-allocation. 2690 * The workitem is added to the pending list after the updated 2691 * inode block has been written to disk. As mentioned above, 2692 * checks regarding the number of blocks de-allocated (compared 2693 * to the number of blocks allocated for the file) are also 2694 * performed in this function. 2695 */ 2696 static void 2697 handle_workitem_freeblocks(freeblks, flags) 2698 struct freeblks *freeblks; 2699 int flags; 2700 { 2701 struct inode *ip; 2702 struct vnode *vp; 2703 struct fs *fs; 2704 struct ufsmount *ump; 2705 int i, nblocks, level, bsize; 2706 ufs2_daddr_t bn, blocksreleased = 0; 2707 int error, allerror = 0; 2708 ufs_lbn_t baselbns[NIADDR], tmpval; 2709 int fs_pendingblocks; 2710 2711 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2712 fs = ump->um_fs; 2713 fs_pendingblocks = 0; 2714 tmpval = 1; 2715 baselbns[0] = NDADDR; 2716 for (i = 1; i < NIADDR; i++) { 2717 tmpval *= NINDIR(fs); 2718 baselbns[i] = baselbns[i - 1] + tmpval; 2719 } 2720 nblocks = btodb(fs->fs_bsize); 2721 blocksreleased = 0; 2722 /* 2723 * Release all extended attribute blocks or frags. 2724 */ 2725 if (freeblks->fb_oldextsize > 0) { 2726 for (i = (NXADDR - 1); i >= 0; i--) { 2727 if ((bn = freeblks->fb_eblks[i]) == 0) 2728 continue; 2729 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2730 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2731 freeblks->fb_previousinum); 2732 blocksreleased += btodb(bsize); 2733 } 2734 } 2735 /* 2736 * Release all data blocks or frags. 2737 */ 2738 if (freeblks->fb_oldsize > 0) { 2739 /* 2740 * Indirect blocks first. 2741 */ 2742 for (level = (NIADDR - 1); level >= 0; level--) { 2743 if ((bn = freeblks->fb_iblks[level]) == 0) 2744 continue; 2745 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2746 level, baselbns[level], &blocksreleased)) != 0) 2747 allerror = error; 2748 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, 2749 fs->fs_bsize, freeblks->fb_previousinum); 2750 fs_pendingblocks += nblocks; 2751 blocksreleased += nblocks; 2752 } 2753 /* 2754 * All direct blocks or frags. 2755 */ 2756 for (i = (NDADDR - 1); i >= 0; i--) { 2757 if ((bn = freeblks->fb_dblks[i]) == 0) 2758 continue; 2759 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2760 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2761 freeblks->fb_previousinum); 2762 fs_pendingblocks += btodb(bsize); 2763 blocksreleased += btodb(bsize); 2764 } 2765 } 2766 UFS_LOCK(ump); 2767 fs->fs_pendingblocks -= fs_pendingblocks; 2768 UFS_UNLOCK(ump); 2769 /* 2770 * If we still have not finished background cleanup, then check 2771 * to see if the block count needs to be adjusted. 2772 */ 2773 if (freeblks->fb_chkcnt != blocksreleased && 2774 (fs->fs_flags & FS_UNCLEAN) != 0 && 2775 ffs_vget(freeblks->fb_list.wk_mp, freeblks->fb_previousinum, 2776 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2777 ip = VTOI(vp); 2778 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2779 freeblks->fb_chkcnt - blocksreleased); 2780 ip->i_flag |= IN_CHANGE; 2781 vput(vp); 2782 } 2783 2784 #ifdef DIAGNOSTIC 2785 if (freeblks->fb_chkcnt != blocksreleased && 2786 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2787 printf("handle_workitem_freeblocks: block count\n"); 2788 if (allerror) 2789 softdep_error("handle_workitem_freeblks", allerror); 2790 #endif /* DIAGNOSTIC */ 2791 2792 ACQUIRE_LOCK(&lk); 2793 WORKITEM_FREE(freeblks, D_FREEBLKS); 2794 FREE_LOCK(&lk); 2795 } 2796 2797 /* 2798 * Release blocks associated with the inode ip and stored in the indirect 2799 * block dbn. If level is greater than SINGLE, the block is an indirect block 2800 * and recursive calls to indirtrunc must be used to cleanse other indirect 2801 * blocks. 2802 */ 2803 static int 2804 indir_trunc(freeblks, dbn, level, lbn, countp) 2805 struct freeblks *freeblks; 2806 ufs2_daddr_t dbn; 2807 int level; 2808 ufs_lbn_t lbn; 2809 ufs2_daddr_t *countp; 2810 { 2811 struct buf *bp; 2812 struct fs *fs; 2813 struct worklist *wk; 2814 struct indirdep *indirdep; 2815 struct ufsmount *ump; 2816 ufs1_daddr_t *bap1 = 0; 2817 ufs2_daddr_t nb, *bap2 = 0; 2818 ufs_lbn_t lbnadd; 2819 int i, nblocks, ufs1fmt; 2820 int error, allerror = 0; 2821 int fs_pendingblocks; 2822 2823 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2824 fs = ump->um_fs; 2825 fs_pendingblocks = 0; 2826 lbnadd = 1; 2827 for (i = level; i > 0; i--) 2828 lbnadd *= NINDIR(fs); 2829 /* 2830 * Get buffer of block pointers to be freed. This routine is not 2831 * called until the zero'ed inode has been written, so it is safe 2832 * to free blocks as they are encountered. Because the inode has 2833 * been zero'ed, calls to bmap on these blocks will fail. So, we 2834 * have to use the on-disk address and the block device for the 2835 * filesystem to look them up. If the file was deleted before its 2836 * indirect blocks were all written to disk, the routine that set 2837 * us up (deallocate_dependencies) will have arranged to leave 2838 * a complete copy of the indirect block in memory for our use. 2839 * Otherwise we have to read the blocks in from the disk. 2840 */ 2841 #ifdef notyet 2842 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2843 GB_NOCREAT); 2844 #else 2845 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn); 2846 #endif 2847 ACQUIRE_LOCK(&lk); 2848 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2849 if (wk->wk_type != D_INDIRDEP || 2850 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2851 (indirdep->ir_state & GOINGAWAY) == 0) 2852 panic("indir_trunc: lost indirdep"); 2853 WORKLIST_REMOVE(wk); 2854 WORKITEM_FREE(indirdep, D_INDIRDEP); 2855 if (!LIST_EMPTY(&bp->b_dep)) 2856 panic("indir_trunc: dangling dep"); 2857 ump->um_numindirdeps -= 1; 2858 FREE_LOCK(&lk); 2859 } else { 2860 #ifdef notyet 2861 if (bp) 2862 brelse(bp); 2863 #endif 2864 FREE_LOCK(&lk); 2865 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2866 NOCRED, &bp); 2867 if (error) { 2868 brelse(bp); 2869 return (error); 2870 } 2871 } 2872 /* 2873 * Recursively free indirect blocks. 2874 */ 2875 if (ump->um_fstype == UFS1) { 2876 ufs1fmt = 1; 2877 bap1 = (ufs1_daddr_t *)bp->b_data; 2878 } else { 2879 ufs1fmt = 0; 2880 bap2 = (ufs2_daddr_t *)bp->b_data; 2881 } 2882 nblocks = btodb(fs->fs_bsize); 2883 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2884 if (ufs1fmt) 2885 nb = bap1[i]; 2886 else 2887 nb = bap2[i]; 2888 if (nb == 0) 2889 continue; 2890 if (level != 0) { 2891 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2892 level - 1, lbn + (i * lbnadd), countp)) != 0) 2893 allerror = error; 2894 } 2895 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2896 freeblks->fb_previousinum); 2897 fs_pendingblocks += nblocks; 2898 *countp += nblocks; 2899 } 2900 UFS_LOCK(ump); 2901 fs->fs_pendingblocks -= fs_pendingblocks; 2902 UFS_UNLOCK(ump); 2903 bp->b_flags |= B_INVAL | B_NOCACHE; 2904 brelse(bp); 2905 return (allerror); 2906 } 2907 2908 /* 2909 * Free an allocindir. 2910 * This routine must be called with splbio interrupts blocked. 2911 */ 2912 static void 2913 free_allocindir(aip, inodedep) 2914 struct allocindir *aip; 2915 struct inodedep *inodedep; 2916 { 2917 struct freefrag *freefrag; 2918 2919 mtx_assert(&lk, MA_OWNED); 2920 if ((aip->ai_state & DEPCOMPLETE) == 0) 2921 LIST_REMOVE(aip, ai_deps); 2922 if (aip->ai_state & ONWORKLIST) 2923 WORKLIST_REMOVE(&aip->ai_list); 2924 LIST_REMOVE(aip, ai_next); 2925 if ((freefrag = aip->ai_freefrag) != NULL) { 2926 if (inodedep == NULL) 2927 add_to_worklist(&freefrag->ff_list); 2928 else 2929 WORKLIST_INSERT(&inodedep->id_bufwait, 2930 &freefrag->ff_list); 2931 } 2932 WORKITEM_FREE(aip, D_ALLOCINDIR); 2933 } 2934 2935 /* 2936 * Directory entry addition dependencies. 2937 * 2938 * When adding a new directory entry, the inode (with its incremented link 2939 * count) must be written to disk before the directory entry's pointer to it. 2940 * Also, if the inode is newly allocated, the corresponding freemap must be 2941 * updated (on disk) before the directory entry's pointer. These requirements 2942 * are met via undo/redo on the directory entry's pointer, which consists 2943 * simply of the inode number. 2944 * 2945 * As directory entries are added and deleted, the free space within a 2946 * directory block can become fragmented. The ufs filesystem will compact 2947 * a fragmented directory block to make space for a new entry. When this 2948 * occurs, the offsets of previously added entries change. Any "diradd" 2949 * dependency structures corresponding to these entries must be updated with 2950 * the new offsets. 2951 */ 2952 2953 /* 2954 * This routine is called after the in-memory inode's link 2955 * count has been incremented, but before the directory entry's 2956 * pointer to the inode has been set. 2957 */ 2958 int 2959 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2960 struct buf *bp; /* buffer containing directory block */ 2961 struct inode *dp; /* inode for directory */ 2962 off_t diroffset; /* offset of new entry in directory */ 2963 ino_t newinum; /* inode referenced by new directory entry */ 2964 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2965 int isnewblk; /* entry is in a newly allocated block */ 2966 { 2967 int offset; /* offset of new entry within directory block */ 2968 ufs_lbn_t lbn; /* block in directory containing new entry */ 2969 struct fs *fs; 2970 struct diradd *dap; 2971 struct allocdirect *adp; 2972 struct pagedep *pagedep; 2973 struct inodedep *inodedep; 2974 struct newdirblk *newdirblk = 0; 2975 struct mkdir *mkdir1, *mkdir2; 2976 struct mount *mp; 2977 2978 /* 2979 * Whiteouts have no dependencies. 2980 */ 2981 if (newinum == WINO) { 2982 if (newdirbp != NULL) 2983 bdwrite(newdirbp); 2984 return (0); 2985 } 2986 mp = UFSTOVFS(dp->i_ump); 2987 fs = dp->i_fs; 2988 lbn = lblkno(fs, diroffset); 2989 offset = blkoff(fs, diroffset); 2990 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2991 M_SOFTDEP_FLAGS|M_ZERO); 2992 workitem_alloc(&dap->da_list, D_DIRADD, mp); 2993 dap->da_offset = offset; 2994 dap->da_newinum = newinum; 2995 dap->da_state = ATTACHED; 2996 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2997 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2998 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2999 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 3000 } 3001 if (newdirbp == NULL) { 3002 dap->da_state |= DEPCOMPLETE; 3003 ACQUIRE_LOCK(&lk); 3004 } else { 3005 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 3006 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 3007 M_SOFTDEP_FLAGS); 3008 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 3009 mkdir1->md_state = MKDIR_BODY; 3010 mkdir1->md_diradd = dap; 3011 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 3012 M_SOFTDEP_FLAGS); 3013 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 3014 mkdir2->md_state = MKDIR_PARENT; 3015 mkdir2->md_diradd = dap; 3016 /* 3017 * Dependency on "." and ".." being written to disk. 3018 */ 3019 mkdir1->md_buf = newdirbp; 3020 ACQUIRE_LOCK(&lk); 3021 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 3022 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 3023 FREE_LOCK(&lk); 3024 bdwrite(newdirbp); 3025 /* 3026 * Dependency on link count increase for parent directory 3027 */ 3028 ACQUIRE_LOCK(&lk); 3029 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0 3030 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3031 dap->da_state &= ~MKDIR_PARENT; 3032 WORKITEM_FREE(mkdir2, D_MKDIR); 3033 } else { 3034 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 3035 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 3036 } 3037 } 3038 /* 3039 * Link into parent directory pagedep to await its being written. 3040 */ 3041 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3042 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3043 dap->da_pagedep = pagedep; 3044 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 3045 da_pdlist); 3046 /* 3047 * Link into its inodedep. Put it on the id_bufwait list if the inode 3048 * is not yet written. If it is written, do the post-inode write 3049 * processing to put it on the id_pendinghd list. 3050 */ 3051 (void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 3052 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 3053 diradd_inode_written(dap, inodedep); 3054 else 3055 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3056 if (isnewblk) { 3057 /* 3058 * Directories growing into indirect blocks are rare 3059 * enough and the frequency of new block allocation 3060 * in those cases even more rare, that we choose not 3061 * to bother tracking them. Rather we simply force the 3062 * new directory entry to disk. 3063 */ 3064 if (lbn >= NDADDR) { 3065 FREE_LOCK(&lk); 3066 /* 3067 * We only have a new allocation when at the 3068 * beginning of a new block, not when we are 3069 * expanding into an existing block. 3070 */ 3071 if (blkoff(fs, diroffset) == 0) 3072 return (1); 3073 return (0); 3074 } 3075 /* 3076 * We only have a new allocation when at the beginning 3077 * of a new fragment, not when we are expanding into an 3078 * existing fragment. Also, there is nothing to do if we 3079 * are already tracking this block. 3080 */ 3081 if (fragoff(fs, diroffset) != 0) { 3082 FREE_LOCK(&lk); 3083 return (0); 3084 } 3085 if ((pagedep->pd_state & NEWBLOCK) != 0) { 3086 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 3087 FREE_LOCK(&lk); 3088 return (0); 3089 } 3090 /* 3091 * Find our associated allocdirect and have it track us. 3092 */ 3093 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0) 3094 panic("softdep_setup_directory_add: lost inodedep"); 3095 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 3096 if (adp == NULL || adp->ad_lbn != lbn) 3097 panic("softdep_setup_directory_add: lost entry"); 3098 pagedep->pd_state |= NEWBLOCK; 3099 newdirblk->db_pagedep = pagedep; 3100 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 3101 } 3102 FREE_LOCK(&lk); 3103 return (0); 3104 } 3105 3106 /* 3107 * This procedure is called to change the offset of a directory 3108 * entry when compacting a directory block which must be owned 3109 * exclusively by the caller. Note that the actual entry movement 3110 * must be done in this procedure to ensure that no I/O completions 3111 * occur while the move is in progress. 3112 */ 3113 void 3114 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 3115 struct inode *dp; /* inode for directory */ 3116 caddr_t base; /* address of dp->i_offset */ 3117 caddr_t oldloc; /* address of old directory location */ 3118 caddr_t newloc; /* address of new directory location */ 3119 int entrysize; /* size of directory entry */ 3120 { 3121 int offset, oldoffset, newoffset; 3122 struct pagedep *pagedep; 3123 struct diradd *dap; 3124 ufs_lbn_t lbn; 3125 3126 ACQUIRE_LOCK(&lk); 3127 lbn = lblkno(dp->i_fs, dp->i_offset); 3128 offset = blkoff(dp->i_fs, dp->i_offset); 3129 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 3130 goto done; 3131 oldoffset = offset + (oldloc - base); 3132 newoffset = offset + (newloc - base); 3133 3134 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 3135 if (dap->da_offset != oldoffset) 3136 continue; 3137 dap->da_offset = newoffset; 3138 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 3139 break; 3140 LIST_REMOVE(dap, da_pdlist); 3141 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 3142 dap, da_pdlist); 3143 break; 3144 } 3145 if (dap == NULL) { 3146 3147 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 3148 if (dap->da_offset == oldoffset) { 3149 dap->da_offset = newoffset; 3150 break; 3151 } 3152 } 3153 } 3154 done: 3155 bcopy(oldloc, newloc, entrysize); 3156 FREE_LOCK(&lk); 3157 } 3158 3159 /* 3160 * Free a diradd dependency structure. This routine must be called 3161 * with splbio interrupts blocked. 3162 */ 3163 static void 3164 free_diradd(dap) 3165 struct diradd *dap; 3166 { 3167 struct dirrem *dirrem; 3168 struct pagedep *pagedep; 3169 struct inodedep *inodedep; 3170 struct mkdir *mkdir, *nextmd; 3171 3172 mtx_assert(&lk, MA_OWNED); 3173 WORKLIST_REMOVE(&dap->da_list); 3174 LIST_REMOVE(dap, da_pdlist); 3175 if ((dap->da_state & DIRCHG) == 0) { 3176 pagedep = dap->da_pagedep; 3177 } else { 3178 dirrem = dap->da_previous; 3179 pagedep = dirrem->dm_pagedep; 3180 dirrem->dm_dirinum = pagedep->pd_ino; 3181 add_to_worklist(&dirrem->dm_list); 3182 } 3183 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 3184 0, &inodedep) != 0) 3185 (void) free_inodedep(inodedep); 3186 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 3187 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 3188 nextmd = LIST_NEXT(mkdir, md_mkdirs); 3189 if (mkdir->md_diradd != dap) 3190 continue; 3191 dap->da_state &= ~mkdir->md_state; 3192 WORKLIST_REMOVE(&mkdir->md_list); 3193 LIST_REMOVE(mkdir, md_mkdirs); 3194 WORKITEM_FREE(mkdir, D_MKDIR); 3195 } 3196 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 3197 panic("free_diradd: unfound ref"); 3198 } 3199 WORKITEM_FREE(dap, D_DIRADD); 3200 } 3201 3202 /* 3203 * Directory entry removal dependencies. 3204 * 3205 * When removing a directory entry, the entry's inode pointer must be 3206 * zero'ed on disk before the corresponding inode's link count is decremented 3207 * (possibly freeing the inode for re-use). This dependency is handled by 3208 * updating the directory entry but delaying the inode count reduction until 3209 * after the directory block has been written to disk. After this point, the 3210 * inode count can be decremented whenever it is convenient. 3211 */ 3212 3213 /* 3214 * This routine should be called immediately after removing 3215 * a directory entry. The inode's link count should not be 3216 * decremented by the calling procedure -- the soft updates 3217 * code will do this task when it is safe. 3218 */ 3219 void 3220 softdep_setup_remove(bp, dp, ip, isrmdir) 3221 struct buf *bp; /* buffer containing directory block */ 3222 struct inode *dp; /* inode for the directory being modified */ 3223 struct inode *ip; /* inode for directory entry being removed */ 3224 int isrmdir; /* indicates if doing RMDIR */ 3225 { 3226 struct dirrem *dirrem, *prevdirrem; 3227 3228 /* 3229 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 3230 */ 3231 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3232 3233 /* 3234 * If the COMPLETE flag is clear, then there were no active 3235 * entries and we want to roll back to a zeroed entry until 3236 * the new inode is committed to disk. If the COMPLETE flag is 3237 * set then we have deleted an entry that never made it to 3238 * disk. If the entry we deleted resulted from a name change, 3239 * then the old name still resides on disk. We cannot delete 3240 * its inode (returned to us in prevdirrem) until the zeroed 3241 * directory entry gets to disk. The new inode has never been 3242 * referenced on the disk, so can be deleted immediately. 3243 */ 3244 if ((dirrem->dm_state & COMPLETE) == 0) { 3245 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 3246 dm_next); 3247 FREE_LOCK(&lk); 3248 } else { 3249 if (prevdirrem != NULL) 3250 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 3251 prevdirrem, dm_next); 3252 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 3253 FREE_LOCK(&lk); 3254 handle_workitem_remove(dirrem, NULL); 3255 } 3256 } 3257 3258 /* 3259 * Allocate a new dirrem if appropriate and return it along with 3260 * its associated pagedep. Called without a lock, returns with lock. 3261 */ 3262 static long num_dirrem; /* number of dirrem allocated */ 3263 static struct dirrem * 3264 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 3265 struct buf *bp; /* buffer containing directory block */ 3266 struct inode *dp; /* inode for the directory being modified */ 3267 struct inode *ip; /* inode for directory entry being removed */ 3268 int isrmdir; /* indicates if doing RMDIR */ 3269 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 3270 { 3271 int offset; 3272 ufs_lbn_t lbn; 3273 struct diradd *dap; 3274 struct dirrem *dirrem; 3275 struct pagedep *pagedep; 3276 3277 /* 3278 * Whiteouts have no deletion dependencies. 3279 */ 3280 if (ip == NULL) 3281 panic("newdirrem: whiteout"); 3282 /* 3283 * If we are over our limit, try to improve the situation. 3284 * Limiting the number of dirrem structures will also limit 3285 * the number of freefile and freeblks structures. 3286 */ 3287 ACQUIRE_LOCK(&lk); 3288 if (num_dirrem > max_softdeps / 2) 3289 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE); 3290 num_dirrem += 1; 3291 FREE_LOCK(&lk); 3292 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3293 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3294 workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount); 3295 dirrem->dm_state = isrmdir ? RMDIR : 0; 3296 dirrem->dm_oldinum = ip->i_number; 3297 *prevdirremp = NULL; 3298 3299 ACQUIRE_LOCK(&lk); 3300 lbn = lblkno(dp->i_fs, dp->i_offset); 3301 offset = blkoff(dp->i_fs, dp->i_offset); 3302 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3303 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3304 dirrem->dm_pagedep = pagedep; 3305 /* 3306 * Check for a diradd dependency for the same directory entry. 3307 * If present, then both dependencies become obsolete and can 3308 * be de-allocated. Check for an entry on both the pd_dirraddhd 3309 * list and the pd_pendinghd list. 3310 */ 3311 3312 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3313 if (dap->da_offset == offset) 3314 break; 3315 if (dap == NULL) { 3316 3317 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3318 if (dap->da_offset == offset) 3319 break; 3320 if (dap == NULL) 3321 return (dirrem); 3322 } 3323 /* 3324 * Must be ATTACHED at this point. 3325 */ 3326 if ((dap->da_state & ATTACHED) == 0) 3327 panic("newdirrem: not ATTACHED"); 3328 if (dap->da_newinum != ip->i_number) 3329 panic("newdirrem: inum %d should be %d", 3330 ip->i_number, dap->da_newinum); 3331 /* 3332 * If we are deleting a changed name that never made it to disk, 3333 * then return the dirrem describing the previous inode (which 3334 * represents the inode currently referenced from this entry on disk). 3335 */ 3336 if ((dap->da_state & DIRCHG) != 0) { 3337 *prevdirremp = dap->da_previous; 3338 dap->da_state &= ~DIRCHG; 3339 dap->da_pagedep = pagedep; 3340 } 3341 /* 3342 * We are deleting an entry that never made it to disk. 3343 * Mark it COMPLETE so we can delete its inode immediately. 3344 */ 3345 dirrem->dm_state |= COMPLETE; 3346 free_diradd(dap); 3347 return (dirrem); 3348 } 3349 3350 /* 3351 * Directory entry change dependencies. 3352 * 3353 * Changing an existing directory entry requires that an add operation 3354 * be completed first followed by a deletion. The semantics for the addition 3355 * are identical to the description of adding a new entry above except 3356 * that the rollback is to the old inode number rather than zero. Once 3357 * the addition dependency is completed, the removal is done as described 3358 * in the removal routine above. 3359 */ 3360 3361 /* 3362 * This routine should be called immediately after changing 3363 * a directory entry. The inode's link count should not be 3364 * decremented by the calling procedure -- the soft updates 3365 * code will perform this task when it is safe. 3366 */ 3367 void 3368 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3369 struct buf *bp; /* buffer containing directory block */ 3370 struct inode *dp; /* inode for the directory being modified */ 3371 struct inode *ip; /* inode for directory entry being removed */ 3372 ino_t newinum; /* new inode number for changed entry */ 3373 int isrmdir; /* indicates if doing RMDIR */ 3374 { 3375 int offset; 3376 struct diradd *dap = NULL; 3377 struct dirrem *dirrem, *prevdirrem; 3378 struct pagedep *pagedep; 3379 struct inodedep *inodedep; 3380 struct mount *mp; 3381 3382 offset = blkoff(dp->i_fs, dp->i_offset); 3383 mp = UFSTOVFS(dp->i_ump); 3384 3385 /* 3386 * Whiteouts do not need diradd dependencies. 3387 */ 3388 if (newinum != WINO) { 3389 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3390 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3391 workitem_alloc(&dap->da_list, D_DIRADD, mp); 3392 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3393 dap->da_offset = offset; 3394 dap->da_newinum = newinum; 3395 } 3396 3397 /* 3398 * Allocate a new dirrem and ACQUIRE_LOCK. 3399 */ 3400 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3401 pagedep = dirrem->dm_pagedep; 3402 /* 3403 * The possible values for isrmdir: 3404 * 0 - non-directory file rename 3405 * 1 - directory rename within same directory 3406 * inum - directory rename to new directory of given inode number 3407 * When renaming to a new directory, we are both deleting and 3408 * creating a new directory entry, so the link count on the new 3409 * directory should not change. Thus we do not need the followup 3410 * dirrem which is usually done in handle_workitem_remove. We set 3411 * the DIRCHG flag to tell handle_workitem_remove to skip the 3412 * followup dirrem. 3413 */ 3414 if (isrmdir > 1) 3415 dirrem->dm_state |= DIRCHG; 3416 3417 /* 3418 * Whiteouts have no additional dependencies, 3419 * so just put the dirrem on the correct list. 3420 */ 3421 if (newinum == WINO) { 3422 if ((dirrem->dm_state & COMPLETE) == 0) { 3423 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3424 dm_next); 3425 } else { 3426 dirrem->dm_dirinum = pagedep->pd_ino; 3427 add_to_worklist(&dirrem->dm_list); 3428 } 3429 FREE_LOCK(&lk); 3430 return; 3431 } 3432 3433 /* 3434 * If the COMPLETE flag is clear, then there were no active 3435 * entries and we want to roll back to the previous inode until 3436 * the new inode is committed to disk. If the COMPLETE flag is 3437 * set, then we have deleted an entry that never made it to disk. 3438 * If the entry we deleted resulted from a name change, then the old 3439 * inode reference still resides on disk. Any rollback that we do 3440 * needs to be to that old inode (returned to us in prevdirrem). If 3441 * the entry we deleted resulted from a create, then there is 3442 * no entry on the disk, so we want to roll back to zero rather 3443 * than the uncommitted inode. In either of the COMPLETE cases we 3444 * want to immediately free the unwritten and unreferenced inode. 3445 */ 3446 if ((dirrem->dm_state & COMPLETE) == 0) { 3447 dap->da_previous = dirrem; 3448 } else { 3449 if (prevdirrem != NULL) { 3450 dap->da_previous = prevdirrem; 3451 } else { 3452 dap->da_state &= ~DIRCHG; 3453 dap->da_pagedep = pagedep; 3454 } 3455 dirrem->dm_dirinum = pagedep->pd_ino; 3456 add_to_worklist(&dirrem->dm_list); 3457 } 3458 /* 3459 * Link into its inodedep. Put it on the id_bufwait list if the inode 3460 * is not yet written. If it is written, do the post-inode write 3461 * processing to put it on the id_pendinghd list. 3462 */ 3463 if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 || 3464 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3465 dap->da_state |= COMPLETE; 3466 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3467 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3468 } else { 3469 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3470 dap, da_pdlist); 3471 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3472 } 3473 FREE_LOCK(&lk); 3474 } 3475 3476 /* 3477 * Called whenever the link count on an inode is changed. 3478 * It creates an inode dependency so that the new reference(s) 3479 * to the inode cannot be committed to disk until the updated 3480 * inode has been written. 3481 */ 3482 void 3483 softdep_change_linkcnt(ip) 3484 struct inode *ip; /* the inode with the increased link count */ 3485 { 3486 struct inodedep *inodedep; 3487 3488 ACQUIRE_LOCK(&lk); 3489 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 3490 DEPALLOC, &inodedep); 3491 if (ip->i_nlink < ip->i_effnlink) 3492 panic("softdep_change_linkcnt: bad delta"); 3493 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3494 FREE_LOCK(&lk); 3495 } 3496 3497 /* 3498 * Called when the effective link count and the reference count 3499 * on an inode drops to zero. At this point there are no names 3500 * referencing the file in the filesystem and no active file 3501 * references. The space associated with the file will be freed 3502 * as soon as the necessary soft dependencies are cleared. 3503 */ 3504 void 3505 softdep_releasefile(ip) 3506 struct inode *ip; /* inode with the zero effective link count */ 3507 { 3508 struct inodedep *inodedep; 3509 struct fs *fs; 3510 int extblocks; 3511 3512 if (ip->i_effnlink > 0) 3513 panic("softdep_releasefile: file still referenced"); 3514 /* 3515 * We may be called several times as the on-disk link count 3516 * drops to zero. We only want to account for the space once. 3517 */ 3518 if (ip->i_flag & IN_SPACECOUNTED) 3519 return; 3520 /* 3521 * We have to deactivate a snapshot otherwise copyonwrites may 3522 * add blocks and the cleanup may remove blocks after we have 3523 * tried to account for them. 3524 */ 3525 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3526 ffs_snapremove(ITOV(ip)); 3527 /* 3528 * If we are tracking an nlinkdelta, we have to also remember 3529 * whether we accounted for the freed space yet. 3530 */ 3531 ACQUIRE_LOCK(&lk); 3532 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep))) 3533 inodedep->id_state |= SPACECOUNTED; 3534 FREE_LOCK(&lk); 3535 fs = ip->i_fs; 3536 extblocks = 0; 3537 if (fs->fs_magic == FS_UFS2_MAGIC) 3538 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3539 UFS_LOCK(ip->i_ump); 3540 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3541 ip->i_fs->fs_pendinginodes += 1; 3542 UFS_UNLOCK(ip->i_ump); 3543 ip->i_flag |= IN_SPACECOUNTED; 3544 } 3545 3546 /* 3547 * This workitem decrements the inode's link count. 3548 * If the link count reaches zero, the file is removed. 3549 */ 3550 static void 3551 handle_workitem_remove(dirrem, xp) 3552 struct dirrem *dirrem; 3553 struct vnode *xp; 3554 { 3555 struct thread *td = curthread; 3556 struct inodedep *inodedep; 3557 struct vnode *vp; 3558 struct inode *ip; 3559 ino_t oldinum; 3560 int error; 3561 3562 if ((vp = xp) == NULL && 3563 (error = ffs_vget(dirrem->dm_list.wk_mp, 3564 dirrem->dm_oldinum, LK_EXCLUSIVE, &vp)) != 0) { 3565 softdep_error("handle_workitem_remove: vget", error); 3566 return; 3567 } 3568 ip = VTOI(vp); 3569 ACQUIRE_LOCK(&lk); 3570 if ((inodedep_lookup(dirrem->dm_list.wk_mp, 3571 dirrem->dm_oldinum, 0, &inodedep)) == 0) 3572 panic("handle_workitem_remove: lost inodedep"); 3573 /* 3574 * Normal file deletion. 3575 */ 3576 if ((dirrem->dm_state & RMDIR) == 0) { 3577 ip->i_nlink--; 3578 DIP_SET(ip, i_nlink, ip->i_nlink); 3579 ip->i_flag |= IN_CHANGE; 3580 if (ip->i_nlink < ip->i_effnlink) 3581 panic("handle_workitem_remove: bad file delta"); 3582 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3583 num_dirrem -= 1; 3584 WORKITEM_FREE(dirrem, D_DIRREM); 3585 FREE_LOCK(&lk); 3586 vput(vp); 3587 return; 3588 } 3589 /* 3590 * Directory deletion. Decrement reference count for both the 3591 * just deleted parent directory entry and the reference for ".". 3592 * Next truncate the directory to length zero. When the 3593 * truncation completes, arrange to have the reference count on 3594 * the parent decremented to account for the loss of "..". 3595 */ 3596 ip->i_nlink -= 2; 3597 DIP_SET(ip, i_nlink, ip->i_nlink); 3598 ip->i_flag |= IN_CHANGE; 3599 if (ip->i_nlink < ip->i_effnlink) 3600 panic("handle_workitem_remove: bad dir delta"); 3601 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3602 FREE_LOCK(&lk); 3603 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3604 softdep_error("handle_workitem_remove: truncate", error); 3605 ACQUIRE_LOCK(&lk); 3606 /* 3607 * Rename a directory to a new parent. Since, we are both deleting 3608 * and creating a new directory entry, the link count on the new 3609 * directory should not change. Thus we skip the followup dirrem. 3610 */ 3611 if (dirrem->dm_state & DIRCHG) { 3612 num_dirrem -= 1; 3613 WORKITEM_FREE(dirrem, D_DIRREM); 3614 FREE_LOCK(&lk); 3615 vput(vp); 3616 return; 3617 } 3618 /* 3619 * If the inodedep does not exist, then the zero'ed inode has 3620 * been written to disk. If the allocated inode has never been 3621 * written to disk, then the on-disk inode is zero'ed. In either 3622 * case we can remove the file immediately. 3623 */ 3624 dirrem->dm_state = 0; 3625 oldinum = dirrem->dm_oldinum; 3626 dirrem->dm_oldinum = dirrem->dm_dirinum; 3627 if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum, 3628 0, &inodedep) == 0 || check_inode_unwritten(inodedep)) { 3629 if (xp != NULL) 3630 add_to_worklist(&dirrem->dm_list); 3631 FREE_LOCK(&lk); 3632 vput(vp); 3633 if (xp == NULL) 3634 handle_workitem_remove(dirrem, NULL); 3635 return; 3636 } 3637 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3638 FREE_LOCK(&lk); 3639 ip->i_flag |= IN_CHANGE; 3640 ffs_update(vp, 0); 3641 vput(vp); 3642 } 3643 3644 /* 3645 * Inode de-allocation dependencies. 3646 * 3647 * When an inode's link count is reduced to zero, it can be de-allocated. We 3648 * found it convenient to postpone de-allocation until after the inode is 3649 * written to disk with its new link count (zero). At this point, all of the 3650 * on-disk inode's block pointers are nullified and, with careful dependency 3651 * list ordering, all dependencies related to the inode will be satisfied and 3652 * the corresponding dependency structures de-allocated. So, if/when the 3653 * inode is reused, there will be no mixing of old dependencies with new 3654 * ones. This artificial dependency is set up by the block de-allocation 3655 * procedure above (softdep_setup_freeblocks) and completed by the 3656 * following procedure. 3657 */ 3658 static void 3659 handle_workitem_freefile(freefile) 3660 struct freefile *freefile; 3661 { 3662 struct fs *fs; 3663 struct inodedep *idp; 3664 struct ufsmount *ump; 3665 int error; 3666 3667 ump = VFSTOUFS(freefile->fx_list.wk_mp); 3668 fs = ump->um_fs; 3669 #ifdef DEBUG 3670 ACQUIRE_LOCK(&lk); 3671 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 3672 FREE_LOCK(&lk); 3673 if (error) 3674 panic("handle_workitem_freefile: inodedep survived"); 3675 #endif 3676 UFS_LOCK(ump); 3677 fs->fs_pendinginodes -= 1; 3678 UFS_UNLOCK(ump); 3679 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 3680 freefile->fx_oldinum, freefile->fx_mode)) != 0) 3681 softdep_error("handle_workitem_freefile", error); 3682 ACQUIRE_LOCK(&lk); 3683 WORKITEM_FREE(freefile, D_FREEFILE); 3684 FREE_LOCK(&lk); 3685 } 3686 3687 3688 /* 3689 * Helper function which unlinks marker element from work list and returns 3690 * the next element on the list. 3691 */ 3692 static __inline struct worklist * 3693 markernext(struct worklist *marker) 3694 { 3695 struct worklist *next; 3696 3697 next = LIST_NEXT(marker, wk_list); 3698 LIST_REMOVE(marker, wk_list); 3699 return next; 3700 } 3701 3702 /* 3703 * Disk writes. 3704 * 3705 * The dependency structures constructed above are most actively used when file 3706 * system blocks are written to disk. No constraints are placed on when a 3707 * block can be written, but unsatisfied update dependencies are made safe by 3708 * modifying (or replacing) the source memory for the duration of the disk 3709 * write. When the disk write completes, the memory block is again brought 3710 * up-to-date. 3711 * 3712 * In-core inode structure reclamation. 3713 * 3714 * Because there are a finite number of "in-core" inode structures, they are 3715 * reused regularly. By transferring all inode-related dependencies to the 3716 * in-memory inode block and indexing them separately (via "inodedep"s), we 3717 * can allow "in-core" inode structures to be reused at any time and avoid 3718 * any increase in contention. 3719 * 3720 * Called just before entering the device driver to initiate a new disk I/O. 3721 * The buffer must be locked, thus, no I/O completion operations can occur 3722 * while we are manipulating its associated dependencies. 3723 */ 3724 static void 3725 softdep_disk_io_initiation(bp) 3726 struct buf *bp; /* structure describing disk write to occur */ 3727 { 3728 struct worklist *wk; 3729 struct worklist marker; 3730 struct indirdep *indirdep; 3731 struct inodedep *inodedep; 3732 3733 /* 3734 * We only care about write operations. There should never 3735 * be dependencies for reads. 3736 */ 3737 if (bp->b_iocmd != BIO_WRITE) 3738 panic("softdep_disk_io_initiation: not write"); 3739 3740 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 3741 PHOLD(curproc); /* Don't swap out kernel stack */ 3742 3743 ACQUIRE_LOCK(&lk); 3744 /* 3745 * Do any necessary pre-I/O processing. 3746 */ 3747 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 3748 wk = markernext(&marker)) { 3749 LIST_INSERT_AFTER(wk, &marker, wk_list); 3750 switch (wk->wk_type) { 3751 3752 case D_PAGEDEP: 3753 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3754 continue; 3755 3756 case D_INODEDEP: 3757 inodedep = WK_INODEDEP(wk); 3758 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3759 initiate_write_inodeblock_ufs1(inodedep, bp); 3760 else 3761 initiate_write_inodeblock_ufs2(inodedep, bp); 3762 continue; 3763 3764 case D_INDIRDEP: 3765 indirdep = WK_INDIRDEP(wk); 3766 if (indirdep->ir_state & GOINGAWAY) 3767 panic("disk_io_initiation: indirdep gone"); 3768 /* 3769 * If there are no remaining dependencies, this 3770 * will be writing the real pointers, so the 3771 * dependency can be freed. 3772 */ 3773 if (LIST_EMPTY(&indirdep->ir_deplisthd)) { 3774 struct buf *bp; 3775 3776 bp = indirdep->ir_savebp; 3777 bp->b_flags |= B_INVAL | B_NOCACHE; 3778 /* inline expand WORKLIST_REMOVE(wk); */ 3779 wk->wk_state &= ~ONWORKLIST; 3780 LIST_REMOVE(wk, wk_list); 3781 WORKITEM_FREE(indirdep, D_INDIRDEP); 3782 FREE_LOCK(&lk); 3783 brelse(bp); 3784 ACQUIRE_LOCK(&lk); 3785 continue; 3786 } 3787 /* 3788 * Replace up-to-date version with safe version. 3789 */ 3790 FREE_LOCK(&lk); 3791 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3792 M_INDIRDEP, M_SOFTDEP_FLAGS); 3793 ACQUIRE_LOCK(&lk); 3794 indirdep->ir_state &= ~ATTACHED; 3795 indirdep->ir_state |= UNDONE; 3796 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3797 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3798 bp->b_bcount); 3799 continue; 3800 3801 case D_MKDIR: 3802 case D_BMSAFEMAP: 3803 case D_ALLOCDIRECT: 3804 case D_ALLOCINDIR: 3805 continue; 3806 3807 default: 3808 panic("handle_disk_io_initiation: Unexpected type %s", 3809 TYPENAME(wk->wk_type)); 3810 /* NOTREACHED */ 3811 } 3812 } 3813 FREE_LOCK(&lk); 3814 PRELE(curproc); /* Allow swapout of kernel stack */ 3815 } 3816 3817 /* 3818 * Called from within the procedure above to deal with unsatisfied 3819 * allocation dependencies in a directory. The buffer must be locked, 3820 * thus, no I/O completion operations can occur while we are 3821 * manipulating its associated dependencies. 3822 */ 3823 static void 3824 initiate_write_filepage(pagedep, bp) 3825 struct pagedep *pagedep; 3826 struct buf *bp; 3827 { 3828 struct diradd *dap; 3829 struct direct *ep; 3830 int i; 3831 3832 if (pagedep->pd_state & IOSTARTED) { 3833 /* 3834 * This can only happen if there is a driver that does not 3835 * understand chaining. Here biodone will reissue the call 3836 * to strategy for the incomplete buffers. 3837 */ 3838 printf("initiate_write_filepage: already started\n"); 3839 return; 3840 } 3841 pagedep->pd_state |= IOSTARTED; 3842 for (i = 0; i < DAHASHSZ; i++) { 3843 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3844 ep = (struct direct *) 3845 ((char *)bp->b_data + dap->da_offset); 3846 if (ep->d_ino != dap->da_newinum) 3847 panic("%s: dir inum %d != new %d", 3848 "initiate_write_filepage", 3849 ep->d_ino, dap->da_newinum); 3850 if (dap->da_state & DIRCHG) 3851 ep->d_ino = dap->da_previous->dm_oldinum; 3852 else 3853 ep->d_ino = 0; 3854 dap->da_state &= ~ATTACHED; 3855 dap->da_state |= UNDONE; 3856 } 3857 } 3858 } 3859 3860 /* 3861 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3862 * Note that any bug fixes made to this routine must be done in the 3863 * version found below. 3864 * 3865 * Called from within the procedure above to deal with unsatisfied 3866 * allocation dependencies in an inodeblock. The buffer must be 3867 * locked, thus, no I/O completion operations can occur while we 3868 * are manipulating its associated dependencies. 3869 */ 3870 static void 3871 initiate_write_inodeblock_ufs1(inodedep, bp) 3872 struct inodedep *inodedep; 3873 struct buf *bp; /* The inode block */ 3874 { 3875 struct allocdirect *adp, *lastadp; 3876 struct ufs1_dinode *dp; 3877 struct ufs1_dinode *sip; 3878 struct fs *fs; 3879 ufs_lbn_t i, prevlbn = 0; 3880 int deplist; 3881 3882 if (inodedep->id_state & IOSTARTED) 3883 panic("initiate_write_inodeblock_ufs1: already started"); 3884 inodedep->id_state |= IOSTARTED; 3885 fs = inodedep->id_fs; 3886 dp = (struct ufs1_dinode *)bp->b_data + 3887 ino_to_fsbo(fs, inodedep->id_ino); 3888 /* 3889 * If the bitmap is not yet written, then the allocated 3890 * inode cannot be written to disk. 3891 */ 3892 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3893 if (inodedep->id_savedino1 != NULL) 3894 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3895 FREE_LOCK(&lk); 3896 MALLOC(sip, struct ufs1_dinode *, 3897 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3898 ACQUIRE_LOCK(&lk); 3899 inodedep->id_savedino1 = sip; 3900 *inodedep->id_savedino1 = *dp; 3901 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3902 dp->di_gen = inodedep->id_savedino1->di_gen; 3903 return; 3904 } 3905 /* 3906 * If no dependencies, then there is nothing to roll back. 3907 */ 3908 inodedep->id_savedsize = dp->di_size; 3909 inodedep->id_savedextsize = 0; 3910 if (TAILQ_EMPTY(&inodedep->id_inoupdt)) 3911 return; 3912 /* 3913 * Set the dependencies to busy. 3914 */ 3915 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3916 adp = TAILQ_NEXT(adp, ad_next)) { 3917 #ifdef DIAGNOSTIC 3918 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3919 panic("softdep_write_inodeblock: lbn order"); 3920 prevlbn = adp->ad_lbn; 3921 if (adp->ad_lbn < NDADDR && 3922 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3923 panic("%s: direct pointer #%jd mismatch %d != %jd", 3924 "softdep_write_inodeblock", 3925 (intmax_t)adp->ad_lbn, 3926 dp->di_db[adp->ad_lbn], 3927 (intmax_t)adp->ad_newblkno); 3928 if (adp->ad_lbn >= NDADDR && 3929 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3930 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3931 "softdep_write_inodeblock", 3932 (intmax_t)adp->ad_lbn - NDADDR, 3933 dp->di_ib[adp->ad_lbn - NDADDR], 3934 (intmax_t)adp->ad_newblkno); 3935 deplist |= 1 << adp->ad_lbn; 3936 if ((adp->ad_state & ATTACHED) == 0) 3937 panic("softdep_write_inodeblock: Unknown state 0x%x", 3938 adp->ad_state); 3939 #endif /* DIAGNOSTIC */ 3940 adp->ad_state &= ~ATTACHED; 3941 adp->ad_state |= UNDONE; 3942 } 3943 /* 3944 * The on-disk inode cannot claim to be any larger than the last 3945 * fragment that has been written. Otherwise, the on-disk inode 3946 * might have fragments that were not the last block in the file 3947 * which would corrupt the filesystem. 3948 */ 3949 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3950 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3951 if (adp->ad_lbn >= NDADDR) 3952 break; 3953 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3954 /* keep going until hitting a rollback to a frag */ 3955 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3956 continue; 3957 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3958 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3959 #ifdef DIAGNOSTIC 3960 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3961 panic("softdep_write_inodeblock: lost dep1"); 3962 #endif /* DIAGNOSTIC */ 3963 dp->di_db[i] = 0; 3964 } 3965 for (i = 0; i < NIADDR; i++) { 3966 #ifdef DIAGNOSTIC 3967 if (dp->di_ib[i] != 0 && 3968 (deplist & ((1 << NDADDR) << i)) == 0) 3969 panic("softdep_write_inodeblock: lost dep2"); 3970 #endif /* DIAGNOSTIC */ 3971 dp->di_ib[i] = 0; 3972 } 3973 return; 3974 } 3975 /* 3976 * If we have zero'ed out the last allocated block of the file, 3977 * roll back the size to the last currently allocated block. 3978 * We know that this last allocated block is a full-sized as 3979 * we already checked for fragments in the loop above. 3980 */ 3981 if (lastadp != NULL && 3982 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3983 for (i = lastadp->ad_lbn; i >= 0; i--) 3984 if (dp->di_db[i] != 0) 3985 break; 3986 dp->di_size = (i + 1) * fs->fs_bsize; 3987 } 3988 /* 3989 * The only dependencies are for indirect blocks. 3990 * 3991 * The file size for indirect block additions is not guaranteed. 3992 * Such a guarantee would be non-trivial to achieve. The conventional 3993 * synchronous write implementation also does not make this guarantee. 3994 * Fsck should catch and fix discrepancies. Arguably, the file size 3995 * can be over-estimated without destroying integrity when the file 3996 * moves into the indirect blocks (i.e., is large). If we want to 3997 * postpone fsck, we are stuck with this argument. 3998 */ 3999 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4000 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4001 } 4002 4003 /* 4004 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 4005 * Note that any bug fixes made to this routine must be done in the 4006 * version found above. 4007 * 4008 * Called from within the procedure above to deal with unsatisfied 4009 * allocation dependencies in an inodeblock. The buffer must be 4010 * locked, thus, no I/O completion operations can occur while we 4011 * are manipulating its associated dependencies. 4012 */ 4013 static void 4014 initiate_write_inodeblock_ufs2(inodedep, bp) 4015 struct inodedep *inodedep; 4016 struct buf *bp; /* The inode block */ 4017 { 4018 struct allocdirect *adp, *lastadp; 4019 struct ufs2_dinode *dp; 4020 struct ufs2_dinode *sip; 4021 struct fs *fs; 4022 ufs_lbn_t i, prevlbn = 0; 4023 int deplist; 4024 4025 if (inodedep->id_state & IOSTARTED) 4026 panic("initiate_write_inodeblock_ufs2: already started"); 4027 inodedep->id_state |= IOSTARTED; 4028 fs = inodedep->id_fs; 4029 dp = (struct ufs2_dinode *)bp->b_data + 4030 ino_to_fsbo(fs, inodedep->id_ino); 4031 /* 4032 * If the bitmap is not yet written, then the allocated 4033 * inode cannot be written to disk. 4034 */ 4035 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4036 if (inodedep->id_savedino2 != NULL) 4037 panic("initiate_write_inodeblock_ufs2: I/O underway"); 4038 FREE_LOCK(&lk); 4039 MALLOC(sip, struct ufs2_dinode *, 4040 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 4041 ACQUIRE_LOCK(&lk); 4042 inodedep->id_savedino2 = sip; 4043 *inodedep->id_savedino2 = *dp; 4044 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 4045 dp->di_gen = inodedep->id_savedino2->di_gen; 4046 return; 4047 } 4048 /* 4049 * If no dependencies, then there is nothing to roll back. 4050 */ 4051 inodedep->id_savedsize = dp->di_size; 4052 inodedep->id_savedextsize = dp->di_extsize; 4053 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 4054 TAILQ_EMPTY(&inodedep->id_extupdt)) 4055 return; 4056 /* 4057 * Set the ext data dependencies to busy. 4058 */ 4059 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4060 adp = TAILQ_NEXT(adp, ad_next)) { 4061 #ifdef DIAGNOSTIC 4062 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4063 panic("softdep_write_inodeblock: lbn order"); 4064 prevlbn = adp->ad_lbn; 4065 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) 4066 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4067 "softdep_write_inodeblock", 4068 (intmax_t)adp->ad_lbn, 4069 (intmax_t)dp->di_extb[adp->ad_lbn], 4070 (intmax_t)adp->ad_newblkno); 4071 deplist |= 1 << adp->ad_lbn; 4072 if ((adp->ad_state & ATTACHED) == 0) 4073 panic("softdep_write_inodeblock: Unknown state 0x%x", 4074 adp->ad_state); 4075 #endif /* DIAGNOSTIC */ 4076 adp->ad_state &= ~ATTACHED; 4077 adp->ad_state |= UNDONE; 4078 } 4079 /* 4080 * The on-disk inode cannot claim to be any larger than the last 4081 * fragment that has been written. Otherwise, the on-disk inode 4082 * might have fragments that were not the last block in the ext 4083 * data which would corrupt the filesystem. 4084 */ 4085 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4086 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4087 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 4088 /* keep going until hitting a rollback to a frag */ 4089 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4090 continue; 4091 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4092 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 4093 #ifdef DIAGNOSTIC 4094 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 4095 panic("softdep_write_inodeblock: lost dep1"); 4096 #endif /* DIAGNOSTIC */ 4097 dp->di_extb[i] = 0; 4098 } 4099 lastadp = NULL; 4100 break; 4101 } 4102 /* 4103 * If we have zero'ed out the last allocated block of the ext 4104 * data, roll back the size to the last currently allocated block. 4105 * We know that this last allocated block is a full-sized as 4106 * we already checked for fragments in the loop above. 4107 */ 4108 if (lastadp != NULL && 4109 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4110 for (i = lastadp->ad_lbn; i >= 0; i--) 4111 if (dp->di_extb[i] != 0) 4112 break; 4113 dp->di_extsize = (i + 1) * fs->fs_bsize; 4114 } 4115 /* 4116 * Set the file data dependencies to busy. 4117 */ 4118 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4119 adp = TAILQ_NEXT(adp, ad_next)) { 4120 #ifdef DIAGNOSTIC 4121 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4122 panic("softdep_write_inodeblock: lbn order"); 4123 prevlbn = adp->ad_lbn; 4124 if (adp->ad_lbn < NDADDR && 4125 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 4126 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4127 "softdep_write_inodeblock", 4128 (intmax_t)adp->ad_lbn, 4129 (intmax_t)dp->di_db[adp->ad_lbn], 4130 (intmax_t)adp->ad_newblkno); 4131 if (adp->ad_lbn >= NDADDR && 4132 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 4133 panic("%s indirect pointer #%jd mismatch %jd != %jd", 4134 "softdep_write_inodeblock:", 4135 (intmax_t)adp->ad_lbn - NDADDR, 4136 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 4137 (intmax_t)adp->ad_newblkno); 4138 deplist |= 1 << adp->ad_lbn; 4139 if ((adp->ad_state & ATTACHED) == 0) 4140 panic("softdep_write_inodeblock: Unknown state 0x%x", 4141 adp->ad_state); 4142 #endif /* DIAGNOSTIC */ 4143 adp->ad_state &= ~ATTACHED; 4144 adp->ad_state |= UNDONE; 4145 } 4146 /* 4147 * The on-disk inode cannot claim to be any larger than the last 4148 * fragment that has been written. Otherwise, the on-disk inode 4149 * might have fragments that were not the last block in the file 4150 * which would corrupt the filesystem. 4151 */ 4152 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4153 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4154 if (adp->ad_lbn >= NDADDR) 4155 break; 4156 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 4157 /* keep going until hitting a rollback to a frag */ 4158 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4159 continue; 4160 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4161 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 4162 #ifdef DIAGNOSTIC 4163 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 4164 panic("softdep_write_inodeblock: lost dep2"); 4165 #endif /* DIAGNOSTIC */ 4166 dp->di_db[i] = 0; 4167 } 4168 for (i = 0; i < NIADDR; i++) { 4169 #ifdef DIAGNOSTIC 4170 if (dp->di_ib[i] != 0 && 4171 (deplist & ((1 << NDADDR) << i)) == 0) 4172 panic("softdep_write_inodeblock: lost dep3"); 4173 #endif /* DIAGNOSTIC */ 4174 dp->di_ib[i] = 0; 4175 } 4176 return; 4177 } 4178 /* 4179 * If we have zero'ed out the last allocated block of the file, 4180 * roll back the size to the last currently allocated block. 4181 * We know that this last allocated block is a full-sized as 4182 * we already checked for fragments in the loop above. 4183 */ 4184 if (lastadp != NULL && 4185 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4186 for (i = lastadp->ad_lbn; i >= 0; i--) 4187 if (dp->di_db[i] != 0) 4188 break; 4189 dp->di_size = (i + 1) * fs->fs_bsize; 4190 } 4191 /* 4192 * The only dependencies are for indirect blocks. 4193 * 4194 * The file size for indirect block additions is not guaranteed. 4195 * Such a guarantee would be non-trivial to achieve. The conventional 4196 * synchronous write implementation also does not make this guarantee. 4197 * Fsck should catch and fix discrepancies. Arguably, the file size 4198 * can be over-estimated without destroying integrity when the file 4199 * moves into the indirect blocks (i.e., is large). If we want to 4200 * postpone fsck, we are stuck with this argument. 4201 */ 4202 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4203 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4204 } 4205 4206 /* 4207 * This routine is called during the completion interrupt 4208 * service routine for a disk write (from the procedure called 4209 * by the device driver to inform the filesystem caches of 4210 * a request completion). It should be called early in this 4211 * procedure, before the block is made available to other 4212 * processes or other routines are called. 4213 */ 4214 static void 4215 softdep_disk_write_complete(bp) 4216 struct buf *bp; /* describes the completed disk write */ 4217 { 4218 struct worklist *wk; 4219 struct worklist *owk; 4220 struct workhead reattach; 4221 struct newblk *newblk; 4222 struct allocindir *aip; 4223 struct allocdirect *adp; 4224 struct indirdep *indirdep; 4225 struct inodedep *inodedep; 4226 struct bmsafemap *bmsafemap; 4227 4228 /* 4229 * If an error occurred while doing the write, then the data 4230 * has not hit the disk and the dependencies cannot be unrolled. 4231 */ 4232 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 4233 return; 4234 LIST_INIT(&reattach); 4235 /* 4236 * This lock must not be released anywhere in this code segment. 4237 */ 4238 ACQUIRE_LOCK(&lk); 4239 owk = NULL; 4240 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4241 WORKLIST_REMOVE(wk); 4242 if (wk == owk) 4243 panic("duplicate worklist: %p\n", wk); 4244 owk = wk; 4245 switch (wk->wk_type) { 4246 4247 case D_PAGEDEP: 4248 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 4249 WORKLIST_INSERT(&reattach, wk); 4250 continue; 4251 4252 case D_INODEDEP: 4253 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 4254 WORKLIST_INSERT(&reattach, wk); 4255 continue; 4256 4257 case D_BMSAFEMAP: 4258 bmsafemap = WK_BMSAFEMAP(wk); 4259 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 4260 newblk->nb_state |= DEPCOMPLETE; 4261 newblk->nb_bmsafemap = NULL; 4262 LIST_REMOVE(newblk, nb_deps); 4263 } 4264 while ((adp = 4265 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 4266 adp->ad_state |= DEPCOMPLETE; 4267 adp->ad_buf = NULL; 4268 LIST_REMOVE(adp, ad_deps); 4269 handle_allocdirect_partdone(adp); 4270 } 4271 while ((aip = 4272 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 4273 aip->ai_state |= DEPCOMPLETE; 4274 aip->ai_buf = NULL; 4275 LIST_REMOVE(aip, ai_deps); 4276 handle_allocindir_partdone(aip); 4277 } 4278 while ((inodedep = 4279 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4280 inodedep->id_state |= DEPCOMPLETE; 4281 LIST_REMOVE(inodedep, id_deps); 4282 inodedep->id_buf = NULL; 4283 } 4284 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4285 continue; 4286 4287 case D_MKDIR: 4288 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4289 continue; 4290 4291 case D_ALLOCDIRECT: 4292 adp = WK_ALLOCDIRECT(wk); 4293 adp->ad_state |= COMPLETE; 4294 handle_allocdirect_partdone(adp); 4295 continue; 4296 4297 case D_ALLOCINDIR: 4298 aip = WK_ALLOCINDIR(wk); 4299 aip->ai_state |= COMPLETE; 4300 handle_allocindir_partdone(aip); 4301 continue; 4302 4303 case D_INDIRDEP: 4304 indirdep = WK_INDIRDEP(wk); 4305 if (indirdep->ir_state & GOINGAWAY) 4306 panic("disk_write_complete: indirdep gone"); 4307 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4308 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4309 indirdep->ir_saveddata = 0; 4310 indirdep->ir_state &= ~UNDONE; 4311 indirdep->ir_state |= ATTACHED; 4312 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4313 handle_allocindir_partdone(aip); 4314 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 4315 panic("disk_write_complete: not gone"); 4316 } 4317 WORKLIST_INSERT(&reattach, wk); 4318 if ((bp->b_flags & B_DELWRI) == 0) 4319 stat_indir_blk_ptrs++; 4320 bdirty(bp); 4321 continue; 4322 4323 default: 4324 panic("handle_disk_write_complete: Unknown type %s", 4325 TYPENAME(wk->wk_type)); 4326 /* NOTREACHED */ 4327 } 4328 } 4329 /* 4330 * Reattach any requests that must be redone. 4331 */ 4332 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4333 WORKLIST_REMOVE(wk); 4334 WORKLIST_INSERT(&bp->b_dep, wk); 4335 } 4336 FREE_LOCK(&lk); 4337 } 4338 4339 /* 4340 * Called from within softdep_disk_write_complete above. Note that 4341 * this routine is always called from interrupt level with further 4342 * splbio interrupts blocked. 4343 */ 4344 static void 4345 handle_allocdirect_partdone(adp) 4346 struct allocdirect *adp; /* the completed allocdirect */ 4347 { 4348 struct allocdirectlst *listhead; 4349 struct allocdirect *listadp; 4350 struct inodedep *inodedep; 4351 long bsize, delay; 4352 4353 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4354 return; 4355 if (adp->ad_buf != NULL) 4356 panic("handle_allocdirect_partdone: dangling dep"); 4357 /* 4358 * The on-disk inode cannot claim to be any larger than the last 4359 * fragment that has been written. Otherwise, the on-disk inode 4360 * might have fragments that were not the last block in the file 4361 * which would corrupt the filesystem. Thus, we cannot free any 4362 * allocdirects after one whose ad_oldblkno claims a fragment as 4363 * these blocks must be rolled back to zero before writing the inode. 4364 * We check the currently active set of allocdirects in id_inoupdt 4365 * or id_extupdt as appropriate. 4366 */ 4367 inodedep = adp->ad_inodedep; 4368 bsize = inodedep->id_fs->fs_bsize; 4369 if (adp->ad_state & EXTDATA) 4370 listhead = &inodedep->id_extupdt; 4371 else 4372 listhead = &inodedep->id_inoupdt; 4373 TAILQ_FOREACH(listadp, listhead, ad_next) { 4374 /* found our block */ 4375 if (listadp == adp) 4376 break; 4377 /* continue if ad_oldlbn is not a fragment */ 4378 if (listadp->ad_oldsize == 0 || 4379 listadp->ad_oldsize == bsize) 4380 continue; 4381 /* hit a fragment */ 4382 return; 4383 } 4384 /* 4385 * If we have reached the end of the current list without 4386 * finding the just finished dependency, then it must be 4387 * on the future dependency list. Future dependencies cannot 4388 * be freed until they are moved to the current list. 4389 */ 4390 if (listadp == NULL) { 4391 #ifdef DEBUG 4392 if (adp->ad_state & EXTDATA) 4393 listhead = &inodedep->id_newextupdt; 4394 else 4395 listhead = &inodedep->id_newinoupdt; 4396 TAILQ_FOREACH(listadp, listhead, ad_next) 4397 /* found our block */ 4398 if (listadp == adp) 4399 break; 4400 if (listadp == NULL) 4401 panic("handle_allocdirect_partdone: lost dep"); 4402 #endif /* DEBUG */ 4403 return; 4404 } 4405 /* 4406 * If we have found the just finished dependency, then free 4407 * it along with anything that follows it that is complete. 4408 * If the inode still has a bitmap dependency, then it has 4409 * never been written to disk, hence the on-disk inode cannot 4410 * reference the old fragment so we can free it without delay. 4411 */ 4412 delay = (inodedep->id_state & DEPCOMPLETE); 4413 for (; adp; adp = listadp) { 4414 listadp = TAILQ_NEXT(adp, ad_next); 4415 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4416 return; 4417 free_allocdirect(listhead, adp, delay); 4418 } 4419 } 4420 4421 /* 4422 * Called from within softdep_disk_write_complete above. Note that 4423 * this routine is always called from interrupt level with further 4424 * splbio interrupts blocked. 4425 */ 4426 static void 4427 handle_allocindir_partdone(aip) 4428 struct allocindir *aip; /* the completed allocindir */ 4429 { 4430 struct indirdep *indirdep; 4431 4432 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4433 return; 4434 if (aip->ai_buf != NULL) 4435 panic("handle_allocindir_partdone: dangling dependency"); 4436 indirdep = aip->ai_indirdep; 4437 if (indirdep->ir_state & UNDONE) { 4438 LIST_REMOVE(aip, ai_next); 4439 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4440 return; 4441 } 4442 if (indirdep->ir_state & UFS1FMT) 4443 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4444 aip->ai_newblkno; 4445 else 4446 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4447 aip->ai_newblkno; 4448 LIST_REMOVE(aip, ai_next); 4449 if (aip->ai_freefrag != NULL) 4450 add_to_worklist(&aip->ai_freefrag->ff_list); 4451 WORKITEM_FREE(aip, D_ALLOCINDIR); 4452 } 4453 4454 /* 4455 * Called from within softdep_disk_write_complete above to restore 4456 * in-memory inode block contents to their most up-to-date state. Note 4457 * that this routine is always called from interrupt level with further 4458 * splbio interrupts blocked. 4459 */ 4460 static int 4461 handle_written_inodeblock(inodedep, bp) 4462 struct inodedep *inodedep; 4463 struct buf *bp; /* buffer containing the inode block */ 4464 { 4465 struct worklist *wk, *filefree; 4466 struct allocdirect *adp, *nextadp; 4467 struct ufs1_dinode *dp1 = NULL; 4468 struct ufs2_dinode *dp2 = NULL; 4469 int hadchanges, fstype; 4470 4471 if ((inodedep->id_state & IOSTARTED) == 0) 4472 panic("handle_written_inodeblock: not started"); 4473 inodedep->id_state &= ~IOSTARTED; 4474 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4475 fstype = UFS1; 4476 dp1 = (struct ufs1_dinode *)bp->b_data + 4477 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4478 } else { 4479 fstype = UFS2; 4480 dp2 = (struct ufs2_dinode *)bp->b_data + 4481 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4482 } 4483 /* 4484 * If we had to rollback the inode allocation because of 4485 * bitmaps being incomplete, then simply restore it. 4486 * Keep the block dirty so that it will not be reclaimed until 4487 * all associated dependencies have been cleared and the 4488 * corresponding updates written to disk. 4489 */ 4490 if (inodedep->id_savedino1 != NULL) { 4491 if (fstype == UFS1) 4492 *dp1 = *inodedep->id_savedino1; 4493 else 4494 *dp2 = *inodedep->id_savedino2; 4495 FREE(inodedep->id_savedino1, M_SAVEDINO); 4496 inodedep->id_savedino1 = NULL; 4497 if ((bp->b_flags & B_DELWRI) == 0) 4498 stat_inode_bitmap++; 4499 bdirty(bp); 4500 return (1); 4501 } 4502 inodedep->id_state |= COMPLETE; 4503 /* 4504 * Roll forward anything that had to be rolled back before 4505 * the inode could be updated. 4506 */ 4507 hadchanges = 0; 4508 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4509 nextadp = TAILQ_NEXT(adp, ad_next); 4510 if (adp->ad_state & ATTACHED) 4511 panic("handle_written_inodeblock: new entry"); 4512 if (fstype == UFS1) { 4513 if (adp->ad_lbn < NDADDR) { 4514 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4515 panic("%s %s #%jd mismatch %d != %jd", 4516 "handle_written_inodeblock:", 4517 "direct pointer", 4518 (intmax_t)adp->ad_lbn, 4519 dp1->di_db[adp->ad_lbn], 4520 (intmax_t)adp->ad_oldblkno); 4521 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4522 } else { 4523 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) 4524 panic("%s: %s #%jd allocated as %d", 4525 "handle_written_inodeblock", 4526 "indirect pointer", 4527 (intmax_t)adp->ad_lbn - NDADDR, 4528 dp1->di_ib[adp->ad_lbn - NDADDR]); 4529 dp1->di_ib[adp->ad_lbn - NDADDR] = 4530 adp->ad_newblkno; 4531 } 4532 } else { 4533 if (adp->ad_lbn < NDADDR) { 4534 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4535 panic("%s: %s #%jd %s %jd != %jd", 4536 "handle_written_inodeblock", 4537 "direct pointer", 4538 (intmax_t)adp->ad_lbn, "mismatch", 4539 (intmax_t)dp2->di_db[adp->ad_lbn], 4540 (intmax_t)adp->ad_oldblkno); 4541 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4542 } else { 4543 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) 4544 panic("%s: %s #%jd allocated as %jd", 4545 "handle_written_inodeblock", 4546 "indirect pointer", 4547 (intmax_t)adp->ad_lbn - NDADDR, 4548 (intmax_t) 4549 dp2->di_ib[adp->ad_lbn - NDADDR]); 4550 dp2->di_ib[adp->ad_lbn - NDADDR] = 4551 adp->ad_newblkno; 4552 } 4553 } 4554 adp->ad_state &= ~UNDONE; 4555 adp->ad_state |= ATTACHED; 4556 hadchanges = 1; 4557 } 4558 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4559 nextadp = TAILQ_NEXT(adp, ad_next); 4560 if (adp->ad_state & ATTACHED) 4561 panic("handle_written_inodeblock: new entry"); 4562 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) 4563 panic("%s: direct pointers #%jd %s %jd != %jd", 4564 "handle_written_inodeblock", 4565 (intmax_t)adp->ad_lbn, "mismatch", 4566 (intmax_t)dp2->di_extb[adp->ad_lbn], 4567 (intmax_t)adp->ad_oldblkno); 4568 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4569 adp->ad_state &= ~UNDONE; 4570 adp->ad_state |= ATTACHED; 4571 hadchanges = 1; 4572 } 4573 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4574 stat_direct_blk_ptrs++; 4575 /* 4576 * Reset the file size to its most up-to-date value. 4577 */ 4578 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 4579 panic("handle_written_inodeblock: bad size"); 4580 if (fstype == UFS1) { 4581 if (dp1->di_size != inodedep->id_savedsize) { 4582 dp1->di_size = inodedep->id_savedsize; 4583 hadchanges = 1; 4584 } 4585 } else { 4586 if (dp2->di_size != inodedep->id_savedsize) { 4587 dp2->di_size = inodedep->id_savedsize; 4588 hadchanges = 1; 4589 } 4590 if (dp2->di_extsize != inodedep->id_savedextsize) { 4591 dp2->di_extsize = inodedep->id_savedextsize; 4592 hadchanges = 1; 4593 } 4594 } 4595 inodedep->id_savedsize = -1; 4596 inodedep->id_savedextsize = -1; 4597 /* 4598 * If there were any rollbacks in the inode block, then it must be 4599 * marked dirty so that its will eventually get written back in 4600 * its correct form. 4601 */ 4602 if (hadchanges) 4603 bdirty(bp); 4604 /* 4605 * Process any allocdirects that completed during the update. 4606 */ 4607 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4608 handle_allocdirect_partdone(adp); 4609 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4610 handle_allocdirect_partdone(adp); 4611 /* 4612 * Process deallocations that were held pending until the 4613 * inode had been written to disk. Freeing of the inode 4614 * is delayed until after all blocks have been freed to 4615 * avoid creation of new <vfsid, inum, lbn> triples 4616 * before the old ones have been deleted. 4617 */ 4618 filefree = NULL; 4619 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4620 WORKLIST_REMOVE(wk); 4621 switch (wk->wk_type) { 4622 4623 case D_FREEFILE: 4624 /* 4625 * We defer adding filefree to the worklist until 4626 * all other additions have been made to ensure 4627 * that it will be done after all the old blocks 4628 * have been freed. 4629 */ 4630 if (filefree != NULL) 4631 panic("handle_written_inodeblock: filefree"); 4632 filefree = wk; 4633 continue; 4634 4635 case D_MKDIR: 4636 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4637 continue; 4638 4639 case D_DIRADD: 4640 diradd_inode_written(WK_DIRADD(wk), inodedep); 4641 continue; 4642 4643 case D_FREEBLKS: 4644 wk->wk_state |= COMPLETE; 4645 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE) 4646 continue; 4647 /* -- fall through -- */ 4648 case D_FREEFRAG: 4649 case D_DIRREM: 4650 add_to_worklist(wk); 4651 continue; 4652 4653 case D_NEWDIRBLK: 4654 free_newdirblk(WK_NEWDIRBLK(wk)); 4655 continue; 4656 4657 default: 4658 panic("handle_written_inodeblock: Unknown type %s", 4659 TYPENAME(wk->wk_type)); 4660 /* NOTREACHED */ 4661 } 4662 } 4663 if (filefree != NULL) { 4664 if (free_inodedep(inodedep) == 0) 4665 panic("handle_written_inodeblock: live inodedep"); 4666 add_to_worklist(filefree); 4667 return (0); 4668 } 4669 4670 /* 4671 * If no outstanding dependencies, free it. 4672 */ 4673 if (free_inodedep(inodedep) || 4674 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4675 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4676 return (0); 4677 return (hadchanges); 4678 } 4679 4680 /* 4681 * Process a diradd entry after its dependent inode has been written. 4682 * This routine must be called with splbio interrupts blocked. 4683 */ 4684 static void 4685 diradd_inode_written(dap, inodedep) 4686 struct diradd *dap; 4687 struct inodedep *inodedep; 4688 { 4689 struct pagedep *pagedep; 4690 4691 dap->da_state |= COMPLETE; 4692 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4693 if (dap->da_state & DIRCHG) 4694 pagedep = dap->da_previous->dm_pagedep; 4695 else 4696 pagedep = dap->da_pagedep; 4697 LIST_REMOVE(dap, da_pdlist); 4698 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4699 } 4700 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4701 } 4702 4703 /* 4704 * Handle the completion of a mkdir dependency. 4705 */ 4706 static void 4707 handle_written_mkdir(mkdir, type) 4708 struct mkdir *mkdir; 4709 int type; 4710 { 4711 struct diradd *dap; 4712 struct pagedep *pagedep; 4713 4714 if (mkdir->md_state != type) 4715 panic("handle_written_mkdir: bad type"); 4716 dap = mkdir->md_diradd; 4717 dap->da_state &= ~type; 4718 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4719 dap->da_state |= DEPCOMPLETE; 4720 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4721 if (dap->da_state & DIRCHG) 4722 pagedep = dap->da_previous->dm_pagedep; 4723 else 4724 pagedep = dap->da_pagedep; 4725 LIST_REMOVE(dap, da_pdlist); 4726 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4727 } 4728 LIST_REMOVE(mkdir, md_mkdirs); 4729 WORKITEM_FREE(mkdir, D_MKDIR); 4730 } 4731 4732 /* 4733 * Called from within softdep_disk_write_complete above. 4734 * A write operation was just completed. Removed inodes can 4735 * now be freed and associated block pointers may be committed. 4736 * Note that this routine is always called from interrupt level 4737 * with further splbio interrupts blocked. 4738 */ 4739 static int 4740 handle_written_filepage(pagedep, bp) 4741 struct pagedep *pagedep; 4742 struct buf *bp; /* buffer containing the written page */ 4743 { 4744 struct dirrem *dirrem; 4745 struct diradd *dap, *nextdap; 4746 struct direct *ep; 4747 int i, chgs; 4748 4749 if ((pagedep->pd_state & IOSTARTED) == 0) 4750 panic("handle_written_filepage: not started"); 4751 pagedep->pd_state &= ~IOSTARTED; 4752 /* 4753 * Process any directory removals that have been committed. 4754 */ 4755 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4756 LIST_REMOVE(dirrem, dm_next); 4757 dirrem->dm_dirinum = pagedep->pd_ino; 4758 add_to_worklist(&dirrem->dm_list); 4759 } 4760 /* 4761 * Free any directory additions that have been committed. 4762 * If it is a newly allocated block, we have to wait until 4763 * the on-disk directory inode claims the new block. 4764 */ 4765 if ((pagedep->pd_state & NEWBLOCK) == 0) 4766 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4767 free_diradd(dap); 4768 /* 4769 * Uncommitted directory entries must be restored. 4770 */ 4771 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4772 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4773 dap = nextdap) { 4774 nextdap = LIST_NEXT(dap, da_pdlist); 4775 if (dap->da_state & ATTACHED) 4776 panic("handle_written_filepage: attached"); 4777 ep = (struct direct *) 4778 ((char *)bp->b_data + dap->da_offset); 4779 ep->d_ino = dap->da_newinum; 4780 dap->da_state &= ~UNDONE; 4781 dap->da_state |= ATTACHED; 4782 chgs = 1; 4783 /* 4784 * If the inode referenced by the directory has 4785 * been written out, then the dependency can be 4786 * moved to the pending list. 4787 */ 4788 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4789 LIST_REMOVE(dap, da_pdlist); 4790 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4791 da_pdlist); 4792 } 4793 } 4794 } 4795 /* 4796 * If there were any rollbacks in the directory, then it must be 4797 * marked dirty so that its will eventually get written back in 4798 * its correct form. 4799 */ 4800 if (chgs) { 4801 if ((bp->b_flags & B_DELWRI) == 0) 4802 stat_dir_entry++; 4803 bdirty(bp); 4804 return (1); 4805 } 4806 /* 4807 * If we are not waiting for a new directory block to be 4808 * claimed by its inode, then the pagedep will be freed. 4809 * Otherwise it will remain to track any new entries on 4810 * the page in case they are fsync'ed. 4811 */ 4812 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4813 LIST_REMOVE(pagedep, pd_hash); 4814 WORKITEM_FREE(pagedep, D_PAGEDEP); 4815 } 4816 return (0); 4817 } 4818 4819 /* 4820 * Writing back in-core inode structures. 4821 * 4822 * The filesystem only accesses an inode's contents when it occupies an 4823 * "in-core" inode structure. These "in-core" structures are separate from 4824 * the page frames used to cache inode blocks. Only the latter are 4825 * transferred to/from the disk. So, when the updated contents of the 4826 * "in-core" inode structure are copied to the corresponding in-memory inode 4827 * block, the dependencies are also transferred. The following procedure is 4828 * called when copying a dirty "in-core" inode to a cached inode block. 4829 */ 4830 4831 /* 4832 * Called when an inode is loaded from disk. If the effective link count 4833 * differed from the actual link count when it was last flushed, then we 4834 * need to ensure that the correct effective link count is put back. 4835 */ 4836 void 4837 softdep_load_inodeblock(ip) 4838 struct inode *ip; /* the "in_core" copy of the inode */ 4839 { 4840 struct inodedep *inodedep; 4841 4842 /* 4843 * Check for alternate nlink count. 4844 */ 4845 ip->i_effnlink = ip->i_nlink; 4846 ACQUIRE_LOCK(&lk); 4847 if (inodedep_lookup(UFSTOVFS(ip->i_ump), 4848 ip->i_number, 0, &inodedep) == 0) { 4849 FREE_LOCK(&lk); 4850 return; 4851 } 4852 ip->i_effnlink -= inodedep->id_nlinkdelta; 4853 if (inodedep->id_state & SPACECOUNTED) 4854 ip->i_flag |= IN_SPACECOUNTED; 4855 FREE_LOCK(&lk); 4856 } 4857 4858 /* 4859 * This routine is called just before the "in-core" inode 4860 * information is to be copied to the in-memory inode block. 4861 * Recall that an inode block contains several inodes. If 4862 * the force flag is set, then the dependencies will be 4863 * cleared so that the update can always be made. Note that 4864 * the buffer is locked when this routine is called, so we 4865 * will never be in the middle of writing the inode block 4866 * to disk. 4867 */ 4868 void 4869 softdep_update_inodeblock(ip, bp, waitfor) 4870 struct inode *ip; /* the "in_core" copy of the inode */ 4871 struct buf *bp; /* the buffer containing the inode block */ 4872 int waitfor; /* nonzero => update must be allowed */ 4873 { 4874 struct inodedep *inodedep; 4875 struct worklist *wk; 4876 struct mount *mp; 4877 struct buf *ibp; 4878 int error; 4879 4880 /* 4881 * If the effective link count is not equal to the actual link 4882 * count, then we must track the difference in an inodedep while 4883 * the inode is (potentially) tossed out of the cache. Otherwise, 4884 * if there is no existing inodedep, then there are no dependencies 4885 * to track. 4886 */ 4887 mp = UFSTOVFS(ip->i_ump); 4888 ACQUIRE_LOCK(&lk); 4889 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 4890 FREE_LOCK(&lk); 4891 if (ip->i_effnlink != ip->i_nlink) 4892 panic("softdep_update_inodeblock: bad link count"); 4893 return; 4894 } 4895 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 4896 panic("softdep_update_inodeblock: bad delta"); 4897 /* 4898 * Changes have been initiated. Anything depending on these 4899 * changes cannot occur until this inode has been written. 4900 */ 4901 inodedep->id_state &= ~COMPLETE; 4902 if ((inodedep->id_state & ONWORKLIST) == 0) 4903 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4904 /* 4905 * Any new dependencies associated with the incore inode must 4906 * now be moved to the list associated with the buffer holding 4907 * the in-memory copy of the inode. Once merged process any 4908 * allocdirects that are completed by the merger. 4909 */ 4910 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4911 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 4912 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4913 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4914 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 4915 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4916 /* 4917 * Now that the inode has been pushed into the buffer, the 4918 * operations dependent on the inode being written to disk 4919 * can be moved to the id_bufwait so that they will be 4920 * processed when the buffer I/O completes. 4921 */ 4922 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4923 WORKLIST_REMOVE(wk); 4924 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4925 } 4926 /* 4927 * Newly allocated inodes cannot be written until the bitmap 4928 * that allocates them have been written (indicated by 4929 * DEPCOMPLETE being set in id_state). If we are doing a 4930 * forced sync (e.g., an fsync on a file), we force the bitmap 4931 * to be written so that the update can be done. 4932 */ 4933 if (waitfor == 0) { 4934 FREE_LOCK(&lk); 4935 return; 4936 } 4937 retry: 4938 if ((inodedep->id_state & DEPCOMPLETE) != 0) { 4939 FREE_LOCK(&lk); 4940 return; 4941 } 4942 ibp = inodedep->id_buf; 4943 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 4944 if (ibp == NULL) { 4945 /* 4946 * If ibp came back as NULL, the dependency could have been 4947 * freed while we slept. Look it up again, and check to see 4948 * that it has completed. 4949 */ 4950 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 4951 goto retry; 4952 FREE_LOCK(&lk); 4953 return; 4954 } 4955 FREE_LOCK(&lk); 4956 if ((error = bwrite(ibp)) != 0) 4957 softdep_error("softdep_update_inodeblock: bwrite", error); 4958 } 4959 4960 /* 4961 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4962 * old inode dependency list (such as id_inoupdt). This routine must be 4963 * called with splbio interrupts blocked. 4964 */ 4965 static void 4966 merge_inode_lists(newlisthead, oldlisthead) 4967 struct allocdirectlst *newlisthead; 4968 struct allocdirectlst *oldlisthead; 4969 { 4970 struct allocdirect *listadp, *newadp; 4971 4972 newadp = TAILQ_FIRST(newlisthead); 4973 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4974 if (listadp->ad_lbn < newadp->ad_lbn) { 4975 listadp = TAILQ_NEXT(listadp, ad_next); 4976 continue; 4977 } 4978 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4979 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4980 if (listadp->ad_lbn == newadp->ad_lbn) { 4981 allocdirect_merge(oldlisthead, newadp, 4982 listadp); 4983 listadp = newadp; 4984 } 4985 newadp = TAILQ_FIRST(newlisthead); 4986 } 4987 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4988 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4989 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4990 } 4991 } 4992 4993 /* 4994 * If we are doing an fsync, then we must ensure that any directory 4995 * entries for the inode have been written after the inode gets to disk. 4996 */ 4997 int 4998 softdep_fsync(vp) 4999 struct vnode *vp; /* the "in_core" copy of the inode */ 5000 { 5001 struct inodedep *inodedep; 5002 struct pagedep *pagedep; 5003 struct worklist *wk; 5004 struct diradd *dap; 5005 struct mount *mp; 5006 struct vnode *pvp; 5007 struct inode *ip; 5008 struct buf *bp; 5009 struct fs *fs; 5010 struct thread *td = curthread; 5011 int error, flushparent, pagedep_new_block; 5012 ino_t parentino; 5013 ufs_lbn_t lbn; 5014 5015 ip = VTOI(vp); 5016 fs = ip->i_fs; 5017 mp = vp->v_mount; 5018 ACQUIRE_LOCK(&lk); 5019 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 5020 FREE_LOCK(&lk); 5021 return (0); 5022 } 5023 if (!LIST_EMPTY(&inodedep->id_inowait) || 5024 !LIST_EMPTY(&inodedep->id_bufwait) || 5025 !TAILQ_EMPTY(&inodedep->id_extupdt) || 5026 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 5027 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 5028 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 5029 panic("softdep_fsync: pending ops"); 5030 for (error = 0, flushparent = 0; ; ) { 5031 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 5032 break; 5033 if (wk->wk_type != D_DIRADD) 5034 panic("softdep_fsync: Unexpected type %s", 5035 TYPENAME(wk->wk_type)); 5036 dap = WK_DIRADD(wk); 5037 /* 5038 * Flush our parent if this directory entry has a MKDIR_PARENT 5039 * dependency or is contained in a newly allocated block. 5040 */ 5041 if (dap->da_state & DIRCHG) 5042 pagedep = dap->da_previous->dm_pagedep; 5043 else 5044 pagedep = dap->da_pagedep; 5045 parentino = pagedep->pd_ino; 5046 lbn = pagedep->pd_lbn; 5047 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 5048 panic("softdep_fsync: dirty"); 5049 if ((dap->da_state & MKDIR_PARENT) || 5050 (pagedep->pd_state & NEWBLOCK)) 5051 flushparent = 1; 5052 else 5053 flushparent = 0; 5054 /* 5055 * If we are being fsync'ed as part of vgone'ing this vnode, 5056 * then we will not be able to release and recover the 5057 * vnode below, so we just have to give up on writing its 5058 * directory entry out. It will eventually be written, just 5059 * not now, but then the user was not asking to have it 5060 * written, so we are not breaking any promises. 5061 */ 5062 if (vp->v_iflag & VI_DOOMED) 5063 break; 5064 /* 5065 * We prevent deadlock by always fetching inodes from the 5066 * root, moving down the directory tree. Thus, when fetching 5067 * our parent directory, we first try to get the lock. If 5068 * that fails, we must unlock ourselves before requesting 5069 * the lock on our parent. See the comment in ufs_lookup 5070 * for details on possible races. 5071 */ 5072 FREE_LOCK(&lk); 5073 if (ffs_vget(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 5074 VOP_UNLOCK(vp, 0, td); 5075 error = ffs_vget(mp, parentino, LK_EXCLUSIVE, &pvp); 5076 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 5077 if (error != 0) 5078 return (error); 5079 } 5080 /* 5081 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 5082 * that are contained in direct blocks will be resolved by 5083 * doing a ffs_update. Pagedeps contained in indirect blocks 5084 * may require a complete sync'ing of the directory. So, we 5085 * try the cheap and fast ffs_update first, and if that fails, 5086 * then we do the slower ffs_syncvnode of the directory. 5087 */ 5088 if (flushparent) { 5089 int locked; 5090 5091 if ((error = ffs_update(pvp, 1)) != 0) { 5092 vput(pvp); 5093 return (error); 5094 } 5095 ACQUIRE_LOCK(&lk); 5096 locked = 1; 5097 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 5098 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 5099 if (wk->wk_type != D_DIRADD) 5100 panic("softdep_fsync: Unexpected type %s", 5101 TYPENAME(wk->wk_type)); 5102 dap = WK_DIRADD(wk); 5103 if (dap->da_state & DIRCHG) 5104 pagedep = dap->da_previous->dm_pagedep; 5105 else 5106 pagedep = dap->da_pagedep; 5107 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 5108 FREE_LOCK(&lk); 5109 locked = 0; 5110 if (pagedep_new_block && 5111 (error = ffs_syncvnode(pvp, MNT_WAIT))) { 5112 vput(pvp); 5113 return (error); 5114 } 5115 } 5116 } 5117 if (locked) 5118 FREE_LOCK(&lk); 5119 } 5120 /* 5121 * Flush directory page containing the inode's name. 5122 */ 5123 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 5124 &bp); 5125 if (error == 0) 5126 error = bwrite(bp); 5127 else 5128 brelse(bp); 5129 vput(pvp); 5130 if (error != 0) 5131 return (error); 5132 ACQUIRE_LOCK(&lk); 5133 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 5134 break; 5135 } 5136 FREE_LOCK(&lk); 5137 return (0); 5138 } 5139 5140 /* 5141 * Flush all the dirty bitmaps associated with the block device 5142 * before flushing the rest of the dirty blocks so as to reduce 5143 * the number of dependencies that will have to be rolled back. 5144 */ 5145 void 5146 softdep_fsync_mountdev(vp) 5147 struct vnode *vp; 5148 { 5149 struct buf *bp, *nbp; 5150 struct worklist *wk; 5151 5152 if (!vn_isdisk(vp, NULL)) 5153 panic("softdep_fsync_mountdev: vnode not a disk"); 5154 restart: 5155 ACQUIRE_LOCK(&lk); 5156 VI_LOCK(vp); 5157 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 5158 /* 5159 * If it is already scheduled, skip to the next buffer. 5160 */ 5161 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 5162 continue; 5163 5164 if ((bp->b_flags & B_DELWRI) == 0) 5165 panic("softdep_fsync_mountdev: not dirty"); 5166 /* 5167 * We are only interested in bitmaps with outstanding 5168 * dependencies. 5169 */ 5170 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 5171 wk->wk_type != D_BMSAFEMAP || 5172 (bp->b_vflags & BV_BKGRDINPROG)) { 5173 BUF_UNLOCK(bp); 5174 continue; 5175 } 5176 VI_UNLOCK(vp); 5177 FREE_LOCK(&lk); 5178 bremfree(bp); 5179 (void) bawrite(bp); 5180 goto restart; 5181 } 5182 FREE_LOCK(&lk); 5183 drain_output(vp); 5184 VI_UNLOCK(vp); 5185 } 5186 5187 /* 5188 * This routine is called when we are trying to synchronously flush a 5189 * file. This routine must eliminate any filesystem metadata dependencies 5190 * so that the syncing routine can succeed by pushing the dirty blocks 5191 * associated with the file. If any I/O errors occur, they are returned. 5192 */ 5193 int 5194 softdep_sync_metadata(struct vnode *vp) 5195 { 5196 struct pagedep *pagedep; 5197 struct allocdirect *adp; 5198 struct allocindir *aip; 5199 struct buf *bp, *nbp; 5200 struct worklist *wk; 5201 int i, error, waitfor; 5202 5203 if (!DOINGSOFTDEP(vp)) 5204 return (0); 5205 /* 5206 * Ensure that any direct block dependencies have been cleared. 5207 */ 5208 ACQUIRE_LOCK(&lk); 5209 if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) { 5210 FREE_LOCK(&lk); 5211 return (error); 5212 } 5213 FREE_LOCK(&lk); 5214 /* 5215 * For most files, the only metadata dependencies are the 5216 * cylinder group maps that allocate their inode or blocks. 5217 * The block allocation dependencies can be found by traversing 5218 * the dependency lists for any buffers that remain on their 5219 * dirty buffer list. The inode allocation dependency will 5220 * be resolved when the inode is updated with MNT_WAIT. 5221 * This work is done in two passes. The first pass grabs most 5222 * of the buffers and begins asynchronously writing them. The 5223 * only way to wait for these asynchronous writes is to sleep 5224 * on the filesystem vnode which may stay busy for a long time 5225 * if the filesystem is active. So, instead, we make a second 5226 * pass over the dependencies blocking on each write. In the 5227 * usual case we will be blocking against a write that we 5228 * initiated, so when it is done the dependency will have been 5229 * resolved. Thus the second pass is expected to end quickly. 5230 */ 5231 waitfor = MNT_NOWAIT; 5232 5233 top: 5234 /* 5235 * We must wait for any I/O in progress to finish so that 5236 * all potential buffers on the dirty list will be visible. 5237 */ 5238 VI_LOCK(vp); 5239 drain_output(vp); 5240 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) { 5241 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT); 5242 if (bp) 5243 break; 5244 } 5245 VI_UNLOCK(vp); 5246 if (bp == NULL) 5247 return (0); 5248 loop: 5249 /* While syncing snapshots, we must allow recursive lookups */ 5250 bp->b_lock.lk_flags |= LK_CANRECURSE; 5251 ACQUIRE_LOCK(&lk); 5252 /* 5253 * As we hold the buffer locked, none of its dependencies 5254 * will disappear. 5255 */ 5256 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5257 switch (wk->wk_type) { 5258 5259 case D_ALLOCDIRECT: 5260 adp = WK_ALLOCDIRECT(wk); 5261 if (adp->ad_state & DEPCOMPLETE) 5262 continue; 5263 nbp = adp->ad_buf; 5264 nbp = getdirtybuf(nbp, &lk, waitfor); 5265 if (nbp == NULL) 5266 continue; 5267 FREE_LOCK(&lk); 5268 if (waitfor == MNT_NOWAIT) { 5269 bawrite(nbp); 5270 } else if ((error = bwrite(nbp)) != 0) { 5271 break; 5272 } 5273 ACQUIRE_LOCK(&lk); 5274 continue; 5275 5276 case D_ALLOCINDIR: 5277 aip = WK_ALLOCINDIR(wk); 5278 if (aip->ai_state & DEPCOMPLETE) 5279 continue; 5280 nbp = aip->ai_buf; 5281 nbp = getdirtybuf(nbp, &lk, waitfor); 5282 if (nbp == NULL) 5283 continue; 5284 FREE_LOCK(&lk); 5285 if (waitfor == MNT_NOWAIT) { 5286 bawrite(nbp); 5287 } else if ((error = bwrite(nbp)) != 0) { 5288 break; 5289 } 5290 ACQUIRE_LOCK(&lk); 5291 continue; 5292 5293 case D_INDIRDEP: 5294 restart: 5295 5296 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5297 if (aip->ai_state & DEPCOMPLETE) 5298 continue; 5299 nbp = aip->ai_buf; 5300 nbp = getdirtybuf(nbp, &lk, MNT_WAIT); 5301 if (nbp == NULL) 5302 goto restart; 5303 FREE_LOCK(&lk); 5304 if ((error = bwrite(nbp)) != 0) { 5305 goto loop_end; 5306 } 5307 ACQUIRE_LOCK(&lk); 5308 goto restart; 5309 } 5310 continue; 5311 5312 case D_INODEDEP: 5313 if ((error = flush_inodedep_deps(wk->wk_mp, 5314 WK_INODEDEP(wk)->id_ino)) != 0) { 5315 FREE_LOCK(&lk); 5316 break; 5317 } 5318 continue; 5319 5320 case D_PAGEDEP: 5321 /* 5322 * We are trying to sync a directory that may 5323 * have dependencies on both its own metadata 5324 * and/or dependencies on the inodes of any 5325 * recently allocated files. We walk its diradd 5326 * lists pushing out the associated inode. 5327 */ 5328 pagedep = WK_PAGEDEP(wk); 5329 for (i = 0; i < DAHASHSZ; i++) { 5330 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5331 continue; 5332 if ((error = 5333 flush_pagedep_deps(vp, wk->wk_mp, 5334 &pagedep->pd_diraddhd[i]))) { 5335 FREE_LOCK(&lk); 5336 goto loop_end; 5337 } 5338 } 5339 continue; 5340 5341 case D_MKDIR: 5342 /* 5343 * This case should never happen if the vnode has 5344 * been properly sync'ed. However, if this function 5345 * is used at a place where the vnode has not yet 5346 * been sync'ed, this dependency can show up. So, 5347 * rather than panic, just flush it. 5348 */ 5349 nbp = WK_MKDIR(wk)->md_buf; 5350 nbp = getdirtybuf(nbp, &lk, waitfor); 5351 if (nbp == NULL) 5352 continue; 5353 FREE_LOCK(&lk); 5354 if (waitfor == MNT_NOWAIT) { 5355 bawrite(nbp); 5356 } else if ((error = bwrite(nbp)) != 0) { 5357 break; 5358 } 5359 ACQUIRE_LOCK(&lk); 5360 continue; 5361 5362 case D_BMSAFEMAP: 5363 /* 5364 * This case should never happen if the vnode has 5365 * been properly sync'ed. However, if this function 5366 * is used at a place where the vnode has not yet 5367 * been sync'ed, this dependency can show up. So, 5368 * rather than panic, just flush it. 5369 */ 5370 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5371 nbp = getdirtybuf(nbp, &lk, waitfor); 5372 if (nbp == NULL) 5373 continue; 5374 FREE_LOCK(&lk); 5375 if (waitfor == MNT_NOWAIT) { 5376 bawrite(nbp); 5377 } else if ((error = bwrite(nbp)) != 0) { 5378 break; 5379 } 5380 ACQUIRE_LOCK(&lk); 5381 continue; 5382 5383 default: 5384 panic("softdep_sync_metadata: Unknown type %s", 5385 TYPENAME(wk->wk_type)); 5386 /* NOTREACHED */ 5387 } 5388 loop_end: 5389 /* We reach here only in error and unlocked */ 5390 if (error == 0) 5391 panic("softdep_sync_metadata: zero error"); 5392 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5393 bawrite(bp); 5394 return (error); 5395 } 5396 FREE_LOCK(&lk); 5397 VI_LOCK(vp); 5398 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) { 5399 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT); 5400 if (nbp) 5401 break; 5402 } 5403 VI_UNLOCK(vp); 5404 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5405 bawrite(bp); 5406 if (nbp != NULL) { 5407 bp = nbp; 5408 goto loop; 5409 } 5410 /* 5411 * The brief unlock is to allow any pent up dependency 5412 * processing to be done. Then proceed with the second pass. 5413 */ 5414 if (waitfor == MNT_NOWAIT) { 5415 waitfor = MNT_WAIT; 5416 goto top; 5417 } 5418 5419 /* 5420 * If we have managed to get rid of all the dirty buffers, 5421 * then we are done. For certain directories and block 5422 * devices, we may need to do further work. 5423 * 5424 * We must wait for any I/O in progress to finish so that 5425 * all potential buffers on the dirty list will be visible. 5426 */ 5427 VI_LOCK(vp); 5428 drain_output(vp); 5429 VI_UNLOCK(vp); 5430 return (0); 5431 } 5432 5433 /* 5434 * Flush the dependencies associated with an inodedep. 5435 * Called with splbio blocked. 5436 */ 5437 static int 5438 flush_inodedep_deps(mp, ino) 5439 struct mount *mp; 5440 ino_t ino; 5441 { 5442 struct inodedep *inodedep; 5443 int error, waitfor; 5444 5445 /* 5446 * This work is done in two passes. The first pass grabs most 5447 * of the buffers and begins asynchronously writing them. The 5448 * only way to wait for these asynchronous writes is to sleep 5449 * on the filesystem vnode which may stay busy for a long time 5450 * if the filesystem is active. So, instead, we make a second 5451 * pass over the dependencies blocking on each write. In the 5452 * usual case we will be blocking against a write that we 5453 * initiated, so when it is done the dependency will have been 5454 * resolved. Thus the second pass is expected to end quickly. 5455 * We give a brief window at the top of the loop to allow 5456 * any pending I/O to complete. 5457 */ 5458 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5459 if (error) 5460 return (error); 5461 FREE_LOCK(&lk); 5462 ACQUIRE_LOCK(&lk); 5463 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5464 return (0); 5465 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5466 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5467 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5468 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5469 continue; 5470 /* 5471 * If pass2, we are done, otherwise do pass 2. 5472 */ 5473 if (waitfor == MNT_WAIT) 5474 break; 5475 waitfor = MNT_WAIT; 5476 } 5477 /* 5478 * Try freeing inodedep in case all dependencies have been removed. 5479 */ 5480 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 5481 (void) free_inodedep(inodedep); 5482 return (0); 5483 } 5484 5485 /* 5486 * Flush an inode dependency list. 5487 * Called with splbio blocked. 5488 */ 5489 static int 5490 flush_deplist(listhead, waitfor, errorp) 5491 struct allocdirectlst *listhead; 5492 int waitfor; 5493 int *errorp; 5494 { 5495 struct allocdirect *adp; 5496 struct buf *bp; 5497 5498 mtx_assert(&lk, MA_OWNED); 5499 TAILQ_FOREACH(adp, listhead, ad_next) { 5500 if (adp->ad_state & DEPCOMPLETE) 5501 continue; 5502 bp = adp->ad_buf; 5503 bp = getdirtybuf(bp, &lk, waitfor); 5504 if (bp == NULL) { 5505 if (waitfor == MNT_NOWAIT) 5506 continue; 5507 return (1); 5508 } 5509 FREE_LOCK(&lk); 5510 if (waitfor == MNT_NOWAIT) { 5511 bawrite(bp); 5512 } else if ((*errorp = bwrite(bp)) != 0) { 5513 ACQUIRE_LOCK(&lk); 5514 return (1); 5515 } 5516 ACQUIRE_LOCK(&lk); 5517 return (1); 5518 } 5519 return (0); 5520 } 5521 5522 /* 5523 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5524 * Called with splbio blocked. 5525 */ 5526 static int 5527 flush_pagedep_deps(pvp, mp, diraddhdp) 5528 struct vnode *pvp; 5529 struct mount *mp; 5530 struct diraddhd *diraddhdp; 5531 { 5532 struct inodedep *inodedep; 5533 struct ufsmount *ump; 5534 struct diradd *dap; 5535 struct vnode *vp; 5536 int error = 0; 5537 struct buf *bp; 5538 ino_t inum; 5539 struct worklist *wk; 5540 5541 ump = VFSTOUFS(mp); 5542 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5543 /* 5544 * Flush ourselves if this directory entry 5545 * has a MKDIR_PARENT dependency. 5546 */ 5547 if (dap->da_state & MKDIR_PARENT) { 5548 FREE_LOCK(&lk); 5549 if ((error = ffs_update(pvp, 1)) != 0) 5550 break; 5551 ACQUIRE_LOCK(&lk); 5552 /* 5553 * If that cleared dependencies, go on to next. 5554 */ 5555 if (dap != LIST_FIRST(diraddhdp)) 5556 continue; 5557 if (dap->da_state & MKDIR_PARENT) 5558 panic("flush_pagedep_deps: MKDIR_PARENT"); 5559 } 5560 /* 5561 * A newly allocated directory must have its "." and 5562 * ".." entries written out before its name can be 5563 * committed in its parent. We do not want or need 5564 * the full semantics of a synchronous ffs_syncvnode as 5565 * that may end up here again, once for each directory 5566 * level in the filesystem. Instead, we push the blocks 5567 * and wait for them to clear. We have to fsync twice 5568 * because the first call may choose to defer blocks 5569 * that still have dependencies, but deferral will 5570 * happen at most once. 5571 */ 5572 inum = dap->da_newinum; 5573 if (dap->da_state & MKDIR_BODY) { 5574 FREE_LOCK(&lk); 5575 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp))) 5576 break; 5577 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) || 5578 (error=ffs_syncvnode(vp, MNT_NOWAIT))) { 5579 vput(vp); 5580 break; 5581 } 5582 VI_LOCK(vp); 5583 drain_output(vp); 5584 /* 5585 * If first block is still dirty with a D_MKDIR 5586 * dependency then it needs to be written now. 5587 */ 5588 for (;;) { 5589 error = 0; 5590 bp = gbincore(&vp->v_bufobj, 0); 5591 if (bp == NULL) 5592 break; /* First block not present */ 5593 error = BUF_LOCK(bp, 5594 LK_EXCLUSIVE | 5595 LK_SLEEPFAIL | 5596 LK_INTERLOCK, 5597 VI_MTX(vp)); 5598 VI_LOCK(vp); 5599 if (error == ENOLCK) 5600 continue; /* Slept, retry */ 5601 if (error != 0) 5602 break; /* Failed */ 5603 if ((bp->b_flags & B_DELWRI) == 0) { 5604 BUF_UNLOCK(bp); 5605 break; /* Buffer not dirty */ 5606 } 5607 for (wk = LIST_FIRST(&bp->b_dep); 5608 wk != NULL; 5609 wk = LIST_NEXT(wk, wk_list)) 5610 if (wk->wk_type == D_MKDIR) 5611 break; 5612 if (wk == NULL) 5613 BUF_UNLOCK(bp); /* Dependency gone */ 5614 else { 5615 /* 5616 * D_MKDIR dependency remains, 5617 * must write buffer to stable 5618 * storage. 5619 */ 5620 VI_UNLOCK(vp); 5621 bremfree(bp); 5622 error = bwrite(bp); 5623 VI_LOCK(vp); 5624 } 5625 break; 5626 } 5627 VI_UNLOCK(vp); 5628 vput(vp); 5629 if (error != 0) 5630 break; /* Flushing of first block failed */ 5631 ACQUIRE_LOCK(&lk); 5632 /* 5633 * If that cleared dependencies, go on to next. 5634 */ 5635 if (dap != LIST_FIRST(diraddhdp)) 5636 continue; 5637 if (dap->da_state & MKDIR_BODY) 5638 panic("flush_pagedep_deps: MKDIR_BODY"); 5639 } 5640 /* 5641 * Flush the inode on which the directory entry depends. 5642 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5643 * the only remaining dependency is that the updated inode 5644 * count must get pushed to disk. The inode has already 5645 * been pushed into its inode buffer (via VOP_UPDATE) at 5646 * the time of the reference count change. So we need only 5647 * locate that buffer, ensure that there will be no rollback 5648 * caused by a bitmap dependency, then write the inode buffer. 5649 */ 5650 retry: 5651 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 5652 panic("flush_pagedep_deps: lost inode"); 5653 /* 5654 * If the inode still has bitmap dependencies, 5655 * push them to disk. 5656 */ 5657 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5658 bp = inodedep->id_buf; 5659 bp = getdirtybuf(bp, &lk, MNT_WAIT); 5660 if (bp == NULL) 5661 goto retry; 5662 FREE_LOCK(&lk); 5663 if ((error = bwrite(bp)) != 0) 5664 break; 5665 ACQUIRE_LOCK(&lk); 5666 if (dap != LIST_FIRST(diraddhdp)) 5667 continue; 5668 } 5669 /* 5670 * If the inode is still sitting in a buffer waiting 5671 * to be written, push it to disk. 5672 */ 5673 FREE_LOCK(&lk); 5674 if ((error = bread(ump->um_devvp, 5675 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5676 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5677 brelse(bp); 5678 break; 5679 } 5680 if ((error = bwrite(bp)) != 0) 5681 break; 5682 ACQUIRE_LOCK(&lk); 5683 /* 5684 * If we have failed to get rid of all the dependencies 5685 * then something is seriously wrong. 5686 */ 5687 if (dap == LIST_FIRST(diraddhdp)) 5688 panic("flush_pagedep_deps: flush failed"); 5689 } 5690 if (error) 5691 ACQUIRE_LOCK(&lk); 5692 return (error); 5693 } 5694 5695 /* 5696 * A large burst of file addition or deletion activity can drive the 5697 * memory load excessively high. First attempt to slow things down 5698 * using the techniques below. If that fails, this routine requests 5699 * the offending operations to fall back to running synchronously 5700 * until the memory load returns to a reasonable level. 5701 */ 5702 int 5703 softdep_slowdown(vp) 5704 struct vnode *vp; 5705 { 5706 int max_softdeps_hard; 5707 5708 ACQUIRE_LOCK(&lk); 5709 max_softdeps_hard = max_softdeps * 11 / 10; 5710 if (num_dirrem < max_softdeps_hard / 2 && 5711 num_inodedep < max_softdeps_hard && 5712 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) { 5713 FREE_LOCK(&lk); 5714 return (0); 5715 } 5716 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5717 softdep_speedup(); 5718 stat_sync_limit_hit += 1; 5719 FREE_LOCK(&lk); 5720 return (1); 5721 } 5722 5723 /* 5724 * Called by the allocation routines when they are about to fail 5725 * in the hope that we can free up some disk space. 5726 * 5727 * First check to see if the work list has anything on it. If it has, 5728 * clean up entries until we successfully free some space. Because this 5729 * process holds inodes locked, we cannot handle any remove requests 5730 * that might block on a locked inode as that could lead to deadlock. 5731 * If the worklist yields no free space, encourage the syncer daemon 5732 * to help us. In no event will we try for longer than tickdelay seconds. 5733 */ 5734 int 5735 softdep_request_cleanup(fs, vp) 5736 struct fs *fs; 5737 struct vnode *vp; 5738 { 5739 struct ufsmount *ump; 5740 long starttime; 5741 ufs2_daddr_t needed; 5742 int error; 5743 5744 ump = VTOI(vp)->i_ump; 5745 mtx_assert(UFS_MTX(ump), MA_OWNED); 5746 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5747 starttime = time_second + tickdelay; 5748 /* 5749 * If we are being called because of a process doing a 5750 * copy-on-write, then it is not safe to update the vnode 5751 * as we may recurse into the copy-on-write routine. 5752 */ 5753 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) { 5754 UFS_UNLOCK(ump); 5755 error = ffs_update(vp, 1); 5756 UFS_LOCK(ump); 5757 if (error != 0) 5758 return (0); 5759 } 5760 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5761 if (time_second > starttime) 5762 return (0); 5763 UFS_UNLOCK(ump); 5764 ACQUIRE_LOCK(&lk); 5765 if (ump->softdep_on_worklist > 0 && 5766 process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) { 5767 stat_worklist_push += 1; 5768 FREE_LOCK(&lk); 5769 UFS_LOCK(ump); 5770 continue; 5771 } 5772 request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT); 5773 FREE_LOCK(&lk); 5774 UFS_LOCK(ump); 5775 } 5776 return (1); 5777 } 5778 5779 /* 5780 * If memory utilization has gotten too high, deliberately slow things 5781 * down and speed up the I/O processing. 5782 */ 5783 extern struct thread *syncertd; 5784 static int 5785 request_cleanup(mp, resource) 5786 struct mount *mp; 5787 int resource; 5788 { 5789 struct thread *td = curthread; 5790 struct ufsmount *ump; 5791 5792 mtx_assert(&lk, MA_OWNED); 5793 /* 5794 * We never hold up the filesystem syncer or buf daemon. 5795 */ 5796 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 5797 return (0); 5798 ump = VFSTOUFS(mp); 5799 /* 5800 * First check to see if the work list has gotten backlogged. 5801 * If it has, co-opt this process to help clean up two entries. 5802 * Because this process may hold inodes locked, we cannot 5803 * handle any remove requests that might block on a locked 5804 * inode as that could lead to deadlock. We set TDP_SOFTDEP 5805 * to avoid recursively processing the worklist. 5806 */ 5807 if (ump->softdep_on_worklist > max_softdeps / 10) { 5808 td->td_pflags |= TDP_SOFTDEP; 5809 process_worklist_item(mp, LK_NOWAIT); 5810 process_worklist_item(mp, LK_NOWAIT); 5811 td->td_pflags &= ~TDP_SOFTDEP; 5812 stat_worklist_push += 2; 5813 return(1); 5814 } 5815 /* 5816 * Next, we attempt to speed up the syncer process. If that 5817 * is successful, then we allow the process to continue. 5818 */ 5819 if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT) 5820 return(0); 5821 /* 5822 * If we are resource constrained on inode dependencies, try 5823 * flushing some dirty inodes. Otherwise, we are constrained 5824 * by file deletions, so try accelerating flushes of directories 5825 * with removal dependencies. We would like to do the cleanup 5826 * here, but we probably hold an inode locked at this point and 5827 * that might deadlock against one that we try to clean. So, 5828 * the best that we can do is request the syncer daemon to do 5829 * the cleanup for us. 5830 */ 5831 switch (resource) { 5832 5833 case FLUSH_INODES: 5834 stat_ino_limit_push += 1; 5835 req_clear_inodedeps += 1; 5836 stat_countp = &stat_ino_limit_hit; 5837 break; 5838 5839 case FLUSH_REMOVE: 5840 case FLUSH_REMOVE_WAIT: 5841 stat_blk_limit_push += 1; 5842 req_clear_remove += 1; 5843 stat_countp = &stat_blk_limit_hit; 5844 break; 5845 5846 default: 5847 panic("request_cleanup: unknown type"); 5848 } 5849 /* 5850 * Hopefully the syncer daemon will catch up and awaken us. 5851 * We wait at most tickdelay before proceeding in any case. 5852 */ 5853 proc_waiting += 1; 5854 if (handle.callout == NULL) 5855 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5856 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 5857 proc_waiting -= 1; 5858 return (1); 5859 } 5860 5861 /* 5862 * Awaken processes pausing in request_cleanup and clear proc_waiting 5863 * to indicate that there is no longer a timer running. 5864 */ 5865 static void 5866 pause_timer(arg) 5867 void *arg; 5868 { 5869 5870 ACQUIRE_LOCK(&lk); 5871 *stat_countp += 1; 5872 wakeup_one(&proc_waiting); 5873 if (proc_waiting > 0) 5874 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5875 else 5876 handle.callout = NULL; 5877 FREE_LOCK(&lk); 5878 } 5879 5880 /* 5881 * Flush out a directory with at least one removal dependency in an effort to 5882 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5883 */ 5884 static void 5885 clear_remove(td) 5886 struct thread *td; 5887 { 5888 struct pagedep_hashhead *pagedephd; 5889 struct pagedep *pagedep; 5890 static int next = 0; 5891 struct mount *mp; 5892 struct vnode *vp; 5893 int error, cnt; 5894 ino_t ino; 5895 5896 mtx_assert(&lk, MA_OWNED); 5897 5898 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5899 pagedephd = &pagedep_hashtbl[next++]; 5900 if (next >= pagedep_hash) 5901 next = 0; 5902 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5903 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 5904 continue; 5905 mp = pagedep->pd_list.wk_mp; 5906 ino = pagedep->pd_ino; 5907 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5908 continue; 5909 FREE_LOCK(&lk); 5910 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) { 5911 softdep_error("clear_remove: vget", error); 5912 vn_finished_write(mp); 5913 ACQUIRE_LOCK(&lk); 5914 return; 5915 } 5916 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5917 softdep_error("clear_remove: fsync", error); 5918 VI_LOCK(vp); 5919 drain_output(vp); 5920 VI_UNLOCK(vp); 5921 vput(vp); 5922 vn_finished_write(mp); 5923 ACQUIRE_LOCK(&lk); 5924 return; 5925 } 5926 } 5927 } 5928 5929 /* 5930 * Clear out a block of dirty inodes in an effort to reduce 5931 * the number of inodedep dependency structures. 5932 */ 5933 static void 5934 clear_inodedeps(td) 5935 struct thread *td; 5936 { 5937 struct inodedep_hashhead *inodedephd; 5938 struct inodedep *inodedep; 5939 static int next = 0; 5940 struct mount *mp; 5941 struct vnode *vp; 5942 struct fs *fs; 5943 int error, cnt; 5944 ino_t firstino, lastino, ino; 5945 5946 mtx_assert(&lk, MA_OWNED); 5947 /* 5948 * Pick a random inode dependency to be cleared. 5949 * We will then gather up all the inodes in its block 5950 * that have dependencies and flush them out. 5951 */ 5952 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5953 inodedephd = &inodedep_hashtbl[next++]; 5954 if (next >= inodedep_hash) 5955 next = 0; 5956 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5957 break; 5958 } 5959 if (inodedep == NULL) 5960 return; 5961 fs = inodedep->id_fs; 5962 mp = inodedep->id_list.wk_mp; 5963 /* 5964 * Find the last inode in the block with dependencies. 5965 */ 5966 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5967 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5968 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 5969 break; 5970 /* 5971 * Asynchronously push all but the last inode with dependencies. 5972 * Synchronously push the last inode with dependencies to ensure 5973 * that the inode block gets written to free up the inodedeps. 5974 */ 5975 for (ino = firstino; ino <= lastino; ino++) { 5976 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5977 continue; 5978 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5979 continue; 5980 FREE_LOCK(&lk); 5981 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5982 softdep_error("clear_inodedeps: vget", error); 5983 vn_finished_write(mp); 5984 ACQUIRE_LOCK(&lk); 5985 return; 5986 } 5987 if (ino == lastino) { 5988 if ((error = ffs_syncvnode(vp, MNT_WAIT))) 5989 softdep_error("clear_inodedeps: fsync1", error); 5990 } else { 5991 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5992 softdep_error("clear_inodedeps: fsync2", error); 5993 VI_LOCK(vp); 5994 drain_output(vp); 5995 VI_UNLOCK(vp); 5996 } 5997 vput(vp); 5998 vn_finished_write(mp); 5999 ACQUIRE_LOCK(&lk); 6000 } 6001 } 6002 6003 /* 6004 * Function to determine if the buffer has outstanding dependencies 6005 * that will cause a roll-back if the buffer is written. If wantcount 6006 * is set, return number of dependencies, otherwise just yes or no. 6007 */ 6008 static int 6009 softdep_count_dependencies(bp, wantcount) 6010 struct buf *bp; 6011 int wantcount; 6012 { 6013 struct worklist *wk; 6014 struct inodedep *inodedep; 6015 struct indirdep *indirdep; 6016 struct allocindir *aip; 6017 struct pagedep *pagedep; 6018 struct diradd *dap; 6019 int i, retval; 6020 6021 retval = 0; 6022 ACQUIRE_LOCK(&lk); 6023 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6024 switch (wk->wk_type) { 6025 6026 case D_INODEDEP: 6027 inodedep = WK_INODEDEP(wk); 6028 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 6029 /* bitmap allocation dependency */ 6030 retval += 1; 6031 if (!wantcount) 6032 goto out; 6033 } 6034 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 6035 /* direct block pointer dependency */ 6036 retval += 1; 6037 if (!wantcount) 6038 goto out; 6039 } 6040 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 6041 /* direct block pointer dependency */ 6042 retval += 1; 6043 if (!wantcount) 6044 goto out; 6045 } 6046 continue; 6047 6048 case D_INDIRDEP: 6049 indirdep = WK_INDIRDEP(wk); 6050 6051 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 6052 /* indirect block pointer dependency */ 6053 retval += 1; 6054 if (!wantcount) 6055 goto out; 6056 } 6057 continue; 6058 6059 case D_PAGEDEP: 6060 pagedep = WK_PAGEDEP(wk); 6061 for (i = 0; i < DAHASHSZ; i++) { 6062 6063 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 6064 /* directory entry dependency */ 6065 retval += 1; 6066 if (!wantcount) 6067 goto out; 6068 } 6069 } 6070 continue; 6071 6072 case D_BMSAFEMAP: 6073 case D_ALLOCDIRECT: 6074 case D_ALLOCINDIR: 6075 case D_MKDIR: 6076 /* never a dependency on these blocks */ 6077 continue; 6078 6079 default: 6080 panic("softdep_check_for_rollback: Unexpected type %s", 6081 TYPENAME(wk->wk_type)); 6082 /* NOTREACHED */ 6083 } 6084 } 6085 out: 6086 FREE_LOCK(&lk); 6087 return retval; 6088 } 6089 6090 /* 6091 * Acquire exclusive access to a buffer. 6092 * Must be called with a locked mtx parameter. 6093 * Return acquired buffer or NULL on failure. 6094 */ 6095 static struct buf * 6096 getdirtybuf(bp, mtx, waitfor) 6097 struct buf *bp; 6098 struct mtx *mtx; 6099 int waitfor; 6100 { 6101 int error; 6102 6103 mtx_assert(mtx, MA_OWNED); 6104 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 6105 if (waitfor != MNT_WAIT) 6106 return (NULL); 6107 error = BUF_LOCK(bp, 6108 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 6109 /* 6110 * Even if we sucessfully acquire bp here, we have dropped 6111 * mtx, which may violates our guarantee. 6112 */ 6113 if (error == 0) 6114 BUF_UNLOCK(bp); 6115 else if (error != ENOLCK) 6116 panic("getdirtybuf: inconsistent lock: %d", error); 6117 mtx_lock(mtx); 6118 return (NULL); 6119 } 6120 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6121 if (mtx == &lk && waitfor == MNT_WAIT) { 6122 mtx_unlock(mtx); 6123 BO_LOCK(bp->b_bufobj); 6124 BUF_UNLOCK(bp); 6125 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6126 bp->b_vflags |= BV_BKGRDWAIT; 6127 msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), 6128 PRIBIO | PDROP, "getbuf", 0); 6129 } else 6130 BO_UNLOCK(bp->b_bufobj); 6131 mtx_lock(mtx); 6132 return (NULL); 6133 } 6134 BUF_UNLOCK(bp); 6135 if (waitfor != MNT_WAIT) 6136 return (NULL); 6137 /* 6138 * The mtx argument must be bp->b_vp's mutex in 6139 * this case. 6140 */ 6141 #ifdef DEBUG_VFS_LOCKS 6142 if (bp->b_vp->v_type != VCHR) 6143 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 6144 #endif 6145 bp->b_vflags |= BV_BKGRDWAIT; 6146 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 6147 return (NULL); 6148 } 6149 if ((bp->b_flags & B_DELWRI) == 0) { 6150 BUF_UNLOCK(bp); 6151 return (NULL); 6152 } 6153 bremfree(bp); 6154 return (bp); 6155 } 6156 6157 6158 /* 6159 * Check if it is safe to suspend the file system now. On entry, 6160 * the vnode interlock for devvp should be held. Return 0 with 6161 * the mount interlock held if the file system can be suspended now, 6162 * otherwise return EAGAIN with the mount interlock held. 6163 */ 6164 int 6165 softdep_check_suspend(struct mount *mp, 6166 struct vnode *devvp, 6167 int softdep_deps, 6168 int softdep_accdeps, 6169 int secondary_writes, 6170 int secondary_accwrites) 6171 { 6172 struct bufobj *bo; 6173 struct ufsmount *ump; 6174 int error; 6175 6176 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 6177 ump = VFSTOUFS(mp); 6178 bo = &devvp->v_bufobj; 6179 6180 for (;;) { 6181 if (!TRY_ACQUIRE_LOCK(&lk)) { 6182 VI_UNLOCK(devvp); 6183 ACQUIRE_LOCK(&lk); 6184 FREE_LOCK(&lk); 6185 VI_LOCK(devvp); 6186 continue; 6187 } 6188 if (!MNT_ITRYLOCK(mp)) { 6189 FREE_LOCK(&lk); 6190 VI_UNLOCK(devvp); 6191 MNT_ILOCK(mp); 6192 MNT_IUNLOCK(mp); 6193 VI_LOCK(devvp); 6194 continue; 6195 } 6196 if (mp->mnt_secondary_writes != 0) { 6197 FREE_LOCK(&lk); 6198 VI_UNLOCK(devvp); 6199 msleep(&mp->mnt_secondary_writes, 6200 MNT_MTX(mp), 6201 (PUSER - 1) | PDROP, "secwr", 0); 6202 VI_LOCK(devvp); 6203 continue; 6204 } 6205 break; 6206 } 6207 6208 /* 6209 * Reasons for needing more work before suspend: 6210 * - Dirty buffers on devvp. 6211 * - Softdep activity occurred after start of vnode sync loop 6212 * - Secondary writes occurred after start of vnode sync loop 6213 */ 6214 error = 0; 6215 if (bo->bo_numoutput > 0 || 6216 bo->bo_dirty.bv_cnt > 0 || 6217 softdep_deps != 0 || 6218 ump->softdep_deps != 0 || 6219 softdep_accdeps != ump->softdep_accdeps || 6220 secondary_writes != 0 || 6221 mp->mnt_secondary_writes != 0 || 6222 secondary_accwrites != mp->mnt_secondary_accwrites) 6223 error = EAGAIN; 6224 FREE_LOCK(&lk); 6225 VI_UNLOCK(devvp); 6226 return (error); 6227 } 6228 6229 6230 /* 6231 * Get the number of dependency structures for the file system, both 6232 * the current number and the total number allocated. These will 6233 * later be used to detect that softdep processing has occurred. 6234 */ 6235 void 6236 softdep_get_depcounts(struct mount *mp, 6237 int *softdep_depsp, 6238 int *softdep_accdepsp) 6239 { 6240 struct ufsmount *ump; 6241 6242 ump = VFSTOUFS(mp); 6243 ACQUIRE_LOCK(&lk); 6244 *softdep_depsp = ump->softdep_deps; 6245 *softdep_accdepsp = ump->softdep_accdeps; 6246 FREE_LOCK(&lk); 6247 } 6248 6249 /* 6250 * Wait for pending output on a vnode to complete. 6251 * Must be called with vnode lock and interlock locked. 6252 * 6253 * XXX: Should just be a call to bufobj_wwait(). 6254 */ 6255 static void 6256 drain_output(vp) 6257 struct vnode *vp; 6258 { 6259 ASSERT_VOP_LOCKED(vp, "drain_output"); 6260 ASSERT_VI_LOCKED(vp, "drain_output"); 6261 6262 while (vp->v_bufobj.bo_numoutput) { 6263 vp->v_bufobj.bo_flag |= BO_WWAIT; 6264 msleep((caddr_t)&vp->v_bufobj.bo_numoutput, 6265 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 6266 } 6267 } 6268 6269 /* 6270 * Called whenever a buffer that is being invalidated or reallocated 6271 * contains dependencies. This should only happen if an I/O error has 6272 * occurred. The routine is called with the buffer locked. 6273 */ 6274 static void 6275 softdep_deallocate_dependencies(bp) 6276 struct buf *bp; 6277 { 6278 6279 if ((bp->b_ioflags & BIO_ERROR) == 0) 6280 panic("softdep_deallocate_dependencies: dangling deps"); 6281 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 6282 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 6283 } 6284 6285 /* 6286 * Function to handle asynchronous write errors in the filesystem. 6287 */ 6288 static void 6289 softdep_error(func, error) 6290 char *func; 6291 int error; 6292 { 6293 6294 /* XXX should do something better! */ 6295 printf("%s: got error %d while accessing filesystem\n", func, error); 6296 } 6297 6298 #endif /* SOFTUPDATES */ 6299