xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 90ec6a30353aa7caaf995ea50e2e23aa5a099600)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(oldmnt, flags, td)
100 	struct mount *oldmnt;
101 	int flags;
102 	struct thread *td;
103 {
104 
105 	panic("softdep_flushfiles called");
106 }
107 
108 int
109 softdep_mount(devvp, mp, fs, cred)
110 	struct vnode *devvp;
111 	struct mount *mp;
112 	struct fs *fs;
113 	struct ucred *cred;
114 {
115 
116 	return (0);
117 }
118 
119 void
120 softdep_initialize()
121 {
122 
123 	return;
124 }
125 
126 void
127 softdep_uninitialize()
128 {
129 
130 	return;
131 }
132 
133 void
134 softdep_unmount(mp)
135 	struct mount *mp;
136 {
137 
138 	panic("softdep_unmount called");
139 }
140 
141 void
142 softdep_setup_sbupdate(ump, fs, bp)
143 	struct ufsmount *ump;
144 	struct fs *fs;
145 	struct buf *bp;
146 {
147 
148 	panic("softdep_setup_sbupdate called");
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 }
437 
438 int
439 softdep_journal_lookup(mp, vpp)
440 	struct mount *mp;
441 	struct vnode **vpp;
442 {
443 
444 	return (ENOENT);
445 }
446 
447 void
448 softdep_change_linkcnt(ip)
449 	struct inode *ip;
450 {
451 
452 	panic("softdep_change_linkcnt called");
453 }
454 
455 void
456 softdep_load_inodeblock(ip)
457 	struct inode *ip;
458 {
459 
460 	panic("softdep_load_inodeblock called");
461 }
462 
463 void
464 softdep_update_inodeblock(ip, bp, waitfor)
465 	struct inode *ip;
466 	struct buf *bp;
467 	int waitfor;
468 {
469 
470 	panic("softdep_update_inodeblock called");
471 }
472 
473 int
474 softdep_fsync(vp)
475 	struct vnode *vp;	/* the "in_core" copy of the inode */
476 {
477 
478 	return (0);
479 }
480 
481 void
482 softdep_fsync_mountdev(vp)
483 	struct vnode *vp;
484 {
485 
486 	return;
487 }
488 
489 int
490 softdep_flushworklist(oldmnt, countp, td)
491 	struct mount *oldmnt;
492 	int *countp;
493 	struct thread *td;
494 {
495 
496 	*countp = 0;
497 	return (0);
498 }
499 
500 int
501 softdep_sync_metadata(struct vnode *vp)
502 {
503 
504 	panic("softdep_sync_metadata called");
505 }
506 
507 int
508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
509 {
510 
511 	panic("softdep_sync_buf called");
512 }
513 
514 int
515 softdep_slowdown(vp)
516 	struct vnode *vp;
517 {
518 
519 	panic("softdep_slowdown called");
520 }
521 
522 int
523 softdep_request_cleanup(fs, vp, cred, resource)
524 	struct fs *fs;
525 	struct vnode *vp;
526 	struct ucred *cred;
527 	int resource;
528 {
529 
530 	return (0);
531 }
532 
533 int
534 softdep_check_suspend(struct mount *mp,
535 		      struct vnode *devvp,
536 		      int softdep_depcnt,
537 		      int softdep_accdepcnt,
538 		      int secondary_writes,
539 		      int secondary_accwrites)
540 {
541 	struct bufobj *bo;
542 	int error;
543 
544 	(void) softdep_depcnt,
545 	(void) softdep_accdepcnt;
546 
547 	bo = &devvp->v_bufobj;
548 	ASSERT_BO_WLOCKED(bo);
549 
550 	MNT_ILOCK(mp);
551 	while (mp->mnt_secondary_writes != 0) {
552 		BO_UNLOCK(bo);
553 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
554 		    (PUSER - 1) | PDROP, "secwr", 0);
555 		BO_LOCK(bo);
556 		MNT_ILOCK(mp);
557 	}
558 
559 	/*
560 	 * Reasons for needing more work before suspend:
561 	 * - Dirty buffers on devvp.
562 	 * - Secondary writes occurred after start of vnode sync loop
563 	 */
564 	error = 0;
565 	if (bo->bo_numoutput > 0 ||
566 	    bo->bo_dirty.bv_cnt > 0 ||
567 	    secondary_writes != 0 ||
568 	    mp->mnt_secondary_writes != 0 ||
569 	    secondary_accwrites != mp->mnt_secondary_accwrites)
570 		error = EAGAIN;
571 	BO_UNLOCK(bo);
572 	return (error);
573 }
574 
575 void
576 softdep_get_depcounts(struct mount *mp,
577 		      int *softdepactivep,
578 		      int *softdepactiveaccp)
579 {
580 	(void) mp;
581 	*softdepactivep = 0;
582 	*softdepactiveaccp = 0;
583 }
584 
585 void
586 softdep_buf_append(bp, wkhd)
587 	struct buf *bp;
588 	struct workhead *wkhd;
589 {
590 
591 	panic("softdep_buf_appendwork called");
592 }
593 
594 void
595 softdep_inode_append(ip, cred, wkhd)
596 	struct inode *ip;
597 	struct ucred *cred;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_inode_appendwork called");
602 }
603 
604 void
605 softdep_freework(wkhd)
606 	struct workhead *wkhd;
607 {
608 
609 	panic("softdep_freework called");
610 }
611 
612 #else
613 
614 FEATURE(softupdates, "FFS soft-updates support");
615 
616 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
617     "soft updates stats");
618 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
619     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
620     "total dependencies allocated");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
622     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
623     "high use dependencies allocated");
624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
625     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
626     "current dependencies allocated");
627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
628     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
629     "current dependencies written");
630 
631 unsigned long dep_current[D_LAST + 1];
632 unsigned long dep_highuse[D_LAST + 1];
633 unsigned long dep_total[D_LAST + 1];
634 unsigned long dep_write[D_LAST + 1];
635 
636 #define	SOFTDEP_TYPE(type, str, long)					\
637     static MALLOC_DEFINE(M_ ## type, #str, long);			\
638     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
639 	&dep_total[D_ ## type], 0, "");					\
640     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
641 	&dep_current[D_ ## type], 0, "");				\
642     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
643 	&dep_highuse[D_ ## type], 0, "");				\
644     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
645 	&dep_write[D_ ## type], 0, "");
646 
647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
650     "Block or frag allocated from cyl group map");
651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
675 
676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
677 
678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
681 
682 #define M_SOFTDEP_FLAGS	(M_WAITOK)
683 
684 /*
685  * translate from workitem type to memory type
686  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
687  */
688 static struct malloc_type *memtype[] = {
689 	NULL,
690 	M_PAGEDEP,
691 	M_INODEDEP,
692 	M_BMSAFEMAP,
693 	M_NEWBLK,
694 	M_ALLOCDIRECT,
695 	M_INDIRDEP,
696 	M_ALLOCINDIR,
697 	M_FREEFRAG,
698 	M_FREEBLKS,
699 	M_FREEFILE,
700 	M_DIRADD,
701 	M_MKDIR,
702 	M_DIRREM,
703 	M_NEWDIRBLK,
704 	M_FREEWORK,
705 	M_FREEDEP,
706 	M_JADDREF,
707 	M_JREMREF,
708 	M_JMVREF,
709 	M_JNEWBLK,
710 	M_JFREEBLK,
711 	M_JFREEFRAG,
712 	M_JSEG,
713 	M_JSEGDEP,
714 	M_SBDEP,
715 	M_JTRUNC,
716 	M_JFSYNC,
717 	M_SENTINEL
718 };
719 
720 #define DtoM(type) (memtype[type])
721 
722 /*
723  * Names of malloc types.
724  */
725 #define TYPENAME(type)  \
726 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
727 	memtype[type]->ks_shortdesc : "???")
728 /*
729  * End system adaptation definitions.
730  */
731 
732 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
733 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
734 
735 /*
736  * Internal function prototypes.
737  */
738 static	void check_clear_deps(struct mount *);
739 static	void softdep_error(char *, int);
740 static	int softdep_process_worklist(struct mount *, int);
741 static	int softdep_waitidle(struct mount *, int);
742 static	void drain_output(struct vnode *);
743 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
744 static	int check_inodedep_free(struct inodedep *);
745 static	void clear_remove(struct mount *);
746 static	void clear_inodedeps(struct mount *);
747 static	void unlinked_inodedep(struct mount *, struct inodedep *);
748 static	void clear_unlinked_inodedep(struct inodedep *);
749 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
750 static	int flush_pagedep_deps(struct vnode *, struct mount *,
751 	    struct diraddhd *);
752 static	int free_pagedep(struct pagedep *);
753 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
754 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
755 static	int flush_deplist(struct allocdirectlst *, int, int *);
756 static	int sync_cgs(struct mount *, int);
757 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
758 static	int handle_written_sbdep(struct sbdep *, struct buf *);
759 static	void initiate_write_sbdep(struct sbdep *);
760 static	void diradd_inode_written(struct diradd *, struct inodedep *);
761 static	int handle_written_indirdep(struct indirdep *, struct buf *,
762 	    struct buf**, int);
763 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
764 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
765 	    uint8_t *);
766 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
767 static	void handle_written_jaddref(struct jaddref *);
768 static	void handle_written_jremref(struct jremref *);
769 static	void handle_written_jseg(struct jseg *, struct buf *);
770 static	void handle_written_jnewblk(struct jnewblk *);
771 static	void handle_written_jblkdep(struct jblkdep *);
772 static	void handle_written_jfreefrag(struct jfreefrag *);
773 static	void complete_jseg(struct jseg *);
774 static	void complete_jsegs(struct jseg *);
775 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
776 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
777 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
778 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
779 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
780 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
781 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
782 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
783 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
784 static	inline void inoref_write(struct inoref *, struct jseg *,
785 	    struct jrefrec *);
786 static	void handle_allocdirect_partdone(struct allocdirect *,
787 	    struct workhead *);
788 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
789 	    struct workhead *);
790 static	void indirdep_complete(struct indirdep *);
791 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
792 static	void indirblk_insert(struct freework *);
793 static	void indirblk_remove(struct freework *);
794 static	void handle_allocindir_partdone(struct allocindir *);
795 static	void initiate_write_filepage(struct pagedep *, struct buf *);
796 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
797 static	void handle_written_mkdir(struct mkdir *, int);
798 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
799 	    uint8_t *);
800 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
801 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
802 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
803 static	void handle_workitem_freefile(struct freefile *);
804 static	int handle_workitem_remove(struct dirrem *, int);
805 static	struct dirrem *newdirrem(struct buf *, struct inode *,
806 	    struct inode *, int, struct dirrem **);
807 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
808 	    struct buf *);
809 static	void cancel_indirdep(struct indirdep *, struct buf *,
810 	    struct freeblks *);
811 static	void free_indirdep(struct indirdep *);
812 static	void free_diradd(struct diradd *, struct workhead *);
813 static	void merge_diradd(struct inodedep *, struct diradd *);
814 static	void complete_diradd(struct diradd *);
815 static	struct diradd *diradd_lookup(struct pagedep *, int);
816 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
817 	    struct jremref *);
818 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
819 	    struct jremref *);
820 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
821 	    struct jremref *, struct jremref *);
822 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
823 	    struct jremref *);
824 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
825 	    struct freeblks *, int);
826 static	int setup_trunc_indir(struct freeblks *, struct inode *,
827 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
828 static	void complete_trunc_indir(struct freework *);
829 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
830 	    int);
831 static	void complete_mkdir(struct mkdir *);
832 static	void free_newdirblk(struct newdirblk *);
833 static	void free_jremref(struct jremref *);
834 static	void free_jaddref(struct jaddref *);
835 static	void free_jsegdep(struct jsegdep *);
836 static	void free_jsegs(struct jblocks *);
837 static	void rele_jseg(struct jseg *);
838 static	void free_jseg(struct jseg *, struct jblocks *);
839 static	void free_jnewblk(struct jnewblk *);
840 static	void free_jblkdep(struct jblkdep *);
841 static	void free_jfreefrag(struct jfreefrag *);
842 static	void free_freedep(struct freedep *);
843 static	void journal_jremref(struct dirrem *, struct jremref *,
844 	    struct inodedep *);
845 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
846 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
847 	    struct workhead *);
848 static	void cancel_jfreefrag(struct jfreefrag *);
849 static	inline void setup_freedirect(struct freeblks *, struct inode *,
850 	    int, int);
851 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
852 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
853 	    ufs_lbn_t, int);
854 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
855 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
856 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
857 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
858 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
859 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
860 	    int, int);
861 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
862 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
863 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
864 static	void newblk_freefrag(struct newblk*);
865 static	void free_newblk(struct newblk *);
866 static	void cancel_allocdirect(struct allocdirectlst *,
867 	    struct allocdirect *, struct freeblks *);
868 static	int check_inode_unwritten(struct inodedep *);
869 static	int free_inodedep(struct inodedep *);
870 static	void freework_freeblock(struct freework *, u_long);
871 static	void freework_enqueue(struct freework *);
872 static	int handle_workitem_freeblocks(struct freeblks *, int);
873 static	int handle_complete_freeblocks(struct freeblks *, int);
874 static	void handle_workitem_indirblk(struct freework *);
875 static	void handle_written_freework(struct freework *);
876 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
877 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
878 	    struct workhead *);
879 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
880 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
881 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
882 	    ufs2_daddr_t, ufs_lbn_t);
883 static	void handle_workitem_freefrag(struct freefrag *);
884 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
885 	    ufs_lbn_t, u_long);
886 static	void allocdirect_merge(struct allocdirectlst *,
887 	    struct allocdirect *, struct allocdirect *);
888 static	struct freefrag *allocindir_merge(struct allocindir *,
889 	    struct allocindir *);
890 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
891 	    struct bmsafemap **);
892 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
893 	    int cg, struct bmsafemap *);
894 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
895 	    struct newblk **);
896 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
897 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
898 	    struct inodedep **);
899 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
900 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
901 	    int, struct pagedep **);
902 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
903 	    struct pagedep **);
904 static	void pause_timer(void *);
905 static	int request_cleanup(struct mount *, int);
906 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
907 static	void schedule_cleanup(struct mount *);
908 static void softdep_ast_cleanup_proc(struct thread *);
909 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
910 static	int process_worklist_item(struct mount *, int, int);
911 static	void process_removes(struct vnode *);
912 static	void process_truncates(struct vnode *);
913 static	void jwork_move(struct workhead *, struct workhead *);
914 static	void jwork_insert(struct workhead *, struct jsegdep *);
915 static	void add_to_worklist(struct worklist *, int);
916 static	void wake_worklist(struct worklist *);
917 static	void wait_worklist(struct worklist *, char *);
918 static	void remove_from_worklist(struct worklist *);
919 static	void softdep_flush(void *);
920 static	void softdep_flushjournal(struct mount *);
921 static	int softdep_speedup(struct ufsmount *);
922 static	void worklist_speedup(struct mount *);
923 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
924 static	void journal_unmount(struct ufsmount *);
925 static	int journal_space(struct ufsmount *, int);
926 static	void journal_suspend(struct ufsmount *);
927 static	int journal_unsuspend(struct ufsmount *ump);
928 static	void softdep_prelink(struct vnode *, struct vnode *);
929 static	void add_to_journal(struct worklist *);
930 static	void remove_from_journal(struct worklist *);
931 static	bool softdep_excess_items(struct ufsmount *, int);
932 static	void softdep_process_journal(struct mount *, struct worklist *, int);
933 static	struct jremref *newjremref(struct dirrem *, struct inode *,
934 	    struct inode *ip, off_t, nlink_t);
935 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
936 	    uint16_t);
937 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
938 	    uint16_t);
939 static	inline struct jsegdep *inoref_jseg(struct inoref *);
940 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
941 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
942 	    ufs2_daddr_t, int);
943 static	void adjust_newfreework(struct freeblks *, int);
944 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
945 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
946 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
947 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
948 	    ufs2_daddr_t, long, ufs_lbn_t);
949 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
950 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
951 static	int jwait(struct worklist *, int);
952 static	struct inodedep *inodedep_lookup_ip(struct inode *);
953 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
954 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
955 static	void handle_jwork(struct workhead *);
956 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
957 	    struct mkdir **);
958 static	struct jblocks *jblocks_create(void);
959 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
960 static	void jblocks_free(struct jblocks *, struct mount *, int);
961 static	void jblocks_destroy(struct jblocks *);
962 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
963 
964 /*
965  * Exported softdep operations.
966  */
967 static	void softdep_disk_io_initiation(struct buf *);
968 static	void softdep_disk_write_complete(struct buf *);
969 static	void softdep_deallocate_dependencies(struct buf *);
970 static	int softdep_count_dependencies(struct buf *bp, int);
971 
972 /*
973  * Global lock over all of soft updates.
974  */
975 static struct mtx lk;
976 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
977 
978 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
979 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
980 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
981 
982 /*
983  * Per-filesystem soft-updates locking.
984  */
985 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
986 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
987 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
988 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
989 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
990 				    RA_WLOCKED)
991 
992 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
993 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
994 
995 /*
996  * Worklist queue management.
997  * These routines require that the lock be held.
998  */
999 #ifndef /* NOT */ INVARIANTS
1000 #define WORKLIST_INSERT(head, item) do {	\
1001 	(item)->wk_state |= ONWORKLIST;		\
1002 	LIST_INSERT_HEAD(head, item, wk_list);	\
1003 } while (0)
1004 #define WORKLIST_REMOVE(item) do {		\
1005 	(item)->wk_state &= ~ONWORKLIST;	\
1006 	LIST_REMOVE(item, wk_list);		\
1007 } while (0)
1008 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1009 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1010 
1011 #else /* INVARIANTS */
1012 static	void worklist_insert(struct workhead *, struct worklist *, int,
1013 	const char *, int);
1014 static	void worklist_remove(struct worklist *, int, const char *, int);
1015 
1016 #define WORKLIST_INSERT(head, item) \
1017 	worklist_insert(head, item, 1, __func__, __LINE__)
1018 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1019 	worklist_insert(head, item, 0, __func__, __LINE__)
1020 #define WORKLIST_REMOVE(item)\
1021 	worklist_remove(item, 1, __func__, __LINE__)
1022 #define WORKLIST_REMOVE_UNLOCKED(item)\
1023 	worklist_remove(item, 0, __func__, __LINE__)
1024 
1025 static void
1026 worklist_insert(head, item, locked, func, line)
1027 	struct workhead *head;
1028 	struct worklist *item;
1029 	int locked;
1030 	const char *func;
1031 	int line;
1032 {
1033 
1034 	if (locked)
1035 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1036 	if (item->wk_state & ONWORKLIST)
1037 		panic("worklist_insert: %p %s(0x%X) already on list, "
1038 		    "added in function %s at line %d",
1039 		    item, TYPENAME(item->wk_type), item->wk_state,
1040 		    item->wk_func, item->wk_line);
1041 	item->wk_state |= ONWORKLIST;
1042 	item->wk_func = func;
1043 	item->wk_line = line;
1044 	LIST_INSERT_HEAD(head, item, wk_list);
1045 }
1046 
1047 static void
1048 worklist_remove(item, locked, func, line)
1049 	struct worklist *item;
1050 	int locked;
1051 	const char *func;
1052 	int line;
1053 {
1054 
1055 	if (locked)
1056 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1057 	if ((item->wk_state & ONWORKLIST) == 0)
1058 		panic("worklist_remove: %p %s(0x%X) not on list, "
1059 		    "removed in function %s at line %d",
1060 		    item, TYPENAME(item->wk_type), item->wk_state,
1061 		    item->wk_func, item->wk_line);
1062 	item->wk_state &= ~ONWORKLIST;
1063 	item->wk_func = func;
1064 	item->wk_line = line;
1065 	LIST_REMOVE(item, wk_list);
1066 }
1067 #endif /* INVARIANTS */
1068 
1069 /*
1070  * Merge two jsegdeps keeping only the oldest one as newer references
1071  * can't be discarded until after older references.
1072  */
1073 static inline struct jsegdep *
1074 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1075 {
1076 	struct jsegdep *swp;
1077 
1078 	if (two == NULL)
1079 		return (one);
1080 
1081 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1082 		swp = one;
1083 		one = two;
1084 		two = swp;
1085 	}
1086 	WORKLIST_REMOVE(&two->jd_list);
1087 	free_jsegdep(two);
1088 
1089 	return (one);
1090 }
1091 
1092 /*
1093  * If two freedeps are compatible free one to reduce list size.
1094  */
1095 static inline struct freedep *
1096 freedep_merge(struct freedep *one, struct freedep *two)
1097 {
1098 	if (two == NULL)
1099 		return (one);
1100 
1101 	if (one->fd_freework == two->fd_freework) {
1102 		WORKLIST_REMOVE(&two->fd_list);
1103 		free_freedep(two);
1104 	}
1105 	return (one);
1106 }
1107 
1108 /*
1109  * Move journal work from one list to another.  Duplicate freedeps and
1110  * jsegdeps are coalesced to keep the lists as small as possible.
1111  */
1112 static void
1113 jwork_move(dst, src)
1114 	struct workhead *dst;
1115 	struct workhead *src;
1116 {
1117 	struct freedep *freedep;
1118 	struct jsegdep *jsegdep;
1119 	struct worklist *wkn;
1120 	struct worklist *wk;
1121 
1122 	KASSERT(dst != src,
1123 	    ("jwork_move: dst == src"));
1124 	freedep = NULL;
1125 	jsegdep = NULL;
1126 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1127 		if (wk->wk_type == D_JSEGDEP)
1128 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1129 		else if (wk->wk_type == D_FREEDEP)
1130 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1131 	}
1132 
1133 	while ((wk = LIST_FIRST(src)) != NULL) {
1134 		WORKLIST_REMOVE(wk);
1135 		WORKLIST_INSERT(dst, wk);
1136 		if (wk->wk_type == D_JSEGDEP) {
1137 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1138 			continue;
1139 		}
1140 		if (wk->wk_type == D_FREEDEP)
1141 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1142 	}
1143 }
1144 
1145 static void
1146 jwork_insert(dst, jsegdep)
1147 	struct workhead *dst;
1148 	struct jsegdep *jsegdep;
1149 {
1150 	struct jsegdep *jsegdepn;
1151 	struct worklist *wk;
1152 
1153 	LIST_FOREACH(wk, dst, wk_list)
1154 		if (wk->wk_type == D_JSEGDEP)
1155 			break;
1156 	if (wk == NULL) {
1157 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1158 		return;
1159 	}
1160 	jsegdepn = WK_JSEGDEP(wk);
1161 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1162 		WORKLIST_REMOVE(wk);
1163 		free_jsegdep(jsegdepn);
1164 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1165 	} else
1166 		free_jsegdep(jsegdep);
1167 }
1168 
1169 /*
1170  * Routines for tracking and managing workitems.
1171  */
1172 static	void workitem_free(struct worklist *, int);
1173 static	void workitem_alloc(struct worklist *, int, struct mount *);
1174 static	void workitem_reassign(struct worklist *, int);
1175 
1176 #define	WORKITEM_FREE(item, type) \
1177 	workitem_free((struct worklist *)(item), (type))
1178 #define	WORKITEM_REASSIGN(item, type) \
1179 	workitem_reassign((struct worklist *)(item), (type))
1180 
1181 static void
1182 workitem_free(item, type)
1183 	struct worklist *item;
1184 	int type;
1185 {
1186 	struct ufsmount *ump;
1187 
1188 #ifdef INVARIANTS
1189 	if (item->wk_state & ONWORKLIST)
1190 		panic("workitem_free: %s(0x%X) still on list, "
1191 		    "added in function %s at line %d",
1192 		    TYPENAME(item->wk_type), item->wk_state,
1193 		    item->wk_func, item->wk_line);
1194 	if (item->wk_type != type && type != D_NEWBLK)
1195 		panic("workitem_free: type mismatch %s != %s",
1196 		    TYPENAME(item->wk_type), TYPENAME(type));
1197 #endif
1198 	if (item->wk_state & IOWAITING)
1199 		wakeup(item);
1200 	ump = VFSTOUFS(item->wk_mp);
1201 	LOCK_OWNED(ump);
1202 	KASSERT(ump->softdep_deps > 0,
1203 	    ("workitem_free: %s: softdep_deps going negative",
1204 	    ump->um_fs->fs_fsmnt));
1205 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1206 		wakeup(&ump->softdep_deps);
1207 	KASSERT(dep_current[item->wk_type] > 0,
1208 	    ("workitem_free: %s: dep_current[%s] going negative",
1209 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1210 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1211 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1212 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1213 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1214 	ump->softdep_curdeps[item->wk_type] -= 1;
1215 #ifdef INVARIANTS
1216 	LIST_REMOVE(item, wk_all);
1217 #endif
1218 	free(item, DtoM(type));
1219 }
1220 
1221 static void
1222 workitem_alloc(item, type, mp)
1223 	struct worklist *item;
1224 	int type;
1225 	struct mount *mp;
1226 {
1227 	struct ufsmount *ump;
1228 
1229 	item->wk_type = type;
1230 	item->wk_mp = mp;
1231 	item->wk_state = 0;
1232 
1233 	ump = VFSTOUFS(mp);
1234 	ACQUIRE_GBLLOCK(&lk);
1235 	dep_current[type]++;
1236 	if (dep_current[type] > dep_highuse[type])
1237 		dep_highuse[type] = dep_current[type];
1238 	dep_total[type]++;
1239 	FREE_GBLLOCK(&lk);
1240 	ACQUIRE_LOCK(ump);
1241 	ump->softdep_curdeps[type] += 1;
1242 	ump->softdep_deps++;
1243 	ump->softdep_accdeps++;
1244 #ifdef INVARIANTS
1245 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1246 #endif
1247 	FREE_LOCK(ump);
1248 }
1249 
1250 static void
1251 workitem_reassign(item, newtype)
1252 	struct worklist *item;
1253 	int newtype;
1254 {
1255 	struct ufsmount *ump;
1256 
1257 	ump = VFSTOUFS(item->wk_mp);
1258 	LOCK_OWNED(ump);
1259 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1260 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1261 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1262 	ump->softdep_curdeps[item->wk_type] -= 1;
1263 	ump->softdep_curdeps[newtype] += 1;
1264 	KASSERT(dep_current[item->wk_type] > 0,
1265 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1266 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1267 	ACQUIRE_GBLLOCK(&lk);
1268 	dep_current[newtype]++;
1269 	dep_current[item->wk_type]--;
1270 	if (dep_current[newtype] > dep_highuse[newtype])
1271 		dep_highuse[newtype] = dep_current[newtype];
1272 	dep_total[newtype]++;
1273 	FREE_GBLLOCK(&lk);
1274 	item->wk_type = newtype;
1275 }
1276 
1277 /*
1278  * Workitem queue management
1279  */
1280 static int max_softdeps;	/* maximum number of structs before slowdown */
1281 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1282 static int proc_waiting;	/* tracks whether we have a timeout posted */
1283 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1284 static struct callout softdep_callout;
1285 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1286 static int req_clear_remove;	/* syncer process flush some freeblks */
1287 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1288 
1289 /*
1290  * runtime statistics
1291  */
1292 static int stat_flush_threads;	/* number of softdep flushing threads */
1293 static int stat_worklist_push;	/* number of worklist cleanups */
1294 static int stat_blk_limit_push;	/* number of times block limit neared */
1295 static int stat_ino_limit_push;	/* number of times inode limit neared */
1296 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1297 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1298 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1299 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1300 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1301 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1302 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1303 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1304 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1305 static int stat_journal_min;	/* Times hit journal min threshold */
1306 static int stat_journal_low;	/* Times hit journal low threshold */
1307 static int stat_journal_wait;	/* Times blocked in jwait(). */
1308 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1309 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1310 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1311 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1312 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1313 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1314 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1315 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1316 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1317 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1318 
1319 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1320     &max_softdeps, 0, "");
1321 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1322     &tickdelay, 0, "");
1323 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1324     &stat_flush_threads, 0, "");
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1326     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1328     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1330     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1332     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1334     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1336     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1338     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1340     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1342     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1343 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1344     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1345 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1346     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1347 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1348     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1349 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1350     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1352     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1353 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1354     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1355 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1356     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1357 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1358     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1359 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1360     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1361 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1362     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1363 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1364     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1365 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1366     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1367 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1368     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1369 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1370     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1371 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1372     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1373 
1374 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1375     &softdep_flushcache, 0, "");
1376 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1377     &stat_emptyjblocks, 0, "");
1378 
1379 SYSCTL_DECL(_vfs_ffs);
1380 
1381 /* Whether to recompute the summary at mount time */
1382 static int compute_summary_at_mount = 0;
1383 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1384 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1385 static int print_threads = 0;
1386 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1387     &print_threads, 0, "Notify flusher thread start/stop");
1388 
1389 /* List of all filesystems mounted with soft updates */
1390 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1391 
1392 /*
1393  * This function cleans the worklist for a filesystem.
1394  * Each filesystem running with soft dependencies gets its own
1395  * thread to run in this function. The thread is started up in
1396  * softdep_mount and shutdown in softdep_unmount. They show up
1397  * as part of the kernel "bufdaemon" process whose process
1398  * entry is available in bufdaemonproc.
1399  */
1400 static int searchfailed;
1401 extern struct proc *bufdaemonproc;
1402 static void
1403 softdep_flush(addr)
1404 	void *addr;
1405 {
1406 	struct mount *mp;
1407 	struct thread *td;
1408 	struct ufsmount *ump;
1409 
1410 	td = curthread;
1411 	td->td_pflags |= TDP_NORUNNINGBUF;
1412 	mp = (struct mount *)addr;
1413 	ump = VFSTOUFS(mp);
1414 	atomic_add_int(&stat_flush_threads, 1);
1415 	ACQUIRE_LOCK(ump);
1416 	ump->softdep_flags &= ~FLUSH_STARTING;
1417 	wakeup(&ump->softdep_flushtd);
1418 	FREE_LOCK(ump);
1419 	if (print_threads) {
1420 		if (stat_flush_threads == 1)
1421 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1422 			    bufdaemonproc->p_pid);
1423 		printf("Start thread %s\n", td->td_name);
1424 	}
1425 	for (;;) {
1426 		while (softdep_process_worklist(mp, 0) > 0 ||
1427 		    (MOUNTEDSUJ(mp) &&
1428 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1429 			kthread_suspend_check();
1430 		ACQUIRE_LOCK(ump);
1431 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1432 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1433 			    "sdflush", hz / 2);
1434 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1435 		/*
1436 		 * Check to see if we are done and need to exit.
1437 		 */
1438 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1439 			FREE_LOCK(ump);
1440 			continue;
1441 		}
1442 		ump->softdep_flags &= ~FLUSH_EXIT;
1443 		FREE_LOCK(ump);
1444 		wakeup(&ump->softdep_flags);
1445 		if (print_threads)
1446 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1447 		atomic_subtract_int(&stat_flush_threads, 1);
1448 		kthread_exit();
1449 		panic("kthread_exit failed\n");
1450 	}
1451 }
1452 
1453 static void
1454 worklist_speedup(mp)
1455 	struct mount *mp;
1456 {
1457 	struct ufsmount *ump;
1458 
1459 	ump = VFSTOUFS(mp);
1460 	LOCK_OWNED(ump);
1461 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1462 		ump->softdep_flags |= FLUSH_CLEANUP;
1463 	wakeup(&ump->softdep_flushtd);
1464 }
1465 
1466 static void
1467 softdep_send_speedup(struct ufsmount *ump, size_t shortage, u_int flags)
1468 {
1469 	struct buf *bp;
1470 
1471 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1472 		return;
1473 
1474 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1475 	bp->b_iocmd = BIO_SPEEDUP;
1476 	bp->b_ioflags = flags;
1477 	bp->b_bcount = shortage;
1478 	g_vfs_strategy(ump->um_bo, bp);
1479 	bufwait(bp);
1480 	free(bp, M_TRIM);
1481 }
1482 
1483 static int
1484 softdep_speedup(ump)
1485 	struct ufsmount *ump;
1486 {
1487 	struct ufsmount *altump;
1488 	struct mount_softdeps *sdp;
1489 
1490 	LOCK_OWNED(ump);
1491 	worklist_speedup(ump->um_mountp);
1492 	bd_speedup();
1493 	/*
1494 	 * If we have global shortages, then we need other
1495 	 * filesystems to help with the cleanup. Here we wakeup a
1496 	 * flusher thread for a filesystem that is over its fair
1497 	 * share of resources.
1498 	 */
1499 	if (req_clear_inodedeps || req_clear_remove) {
1500 		ACQUIRE_GBLLOCK(&lk);
1501 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1502 			if ((altump = sdp->sd_ump) == ump)
1503 				continue;
1504 			if (((req_clear_inodedeps &&
1505 			    altump->softdep_curdeps[D_INODEDEP] >
1506 			    max_softdeps / stat_flush_threads) ||
1507 			    (req_clear_remove &&
1508 			    altump->softdep_curdeps[D_DIRREM] >
1509 			    (max_softdeps / 2) / stat_flush_threads)) &&
1510 			    TRY_ACQUIRE_LOCK(altump))
1511 				break;
1512 		}
1513 		if (sdp == NULL) {
1514 			searchfailed++;
1515 			FREE_GBLLOCK(&lk);
1516 		} else {
1517 			/*
1518 			 * Move to the end of the list so we pick a
1519 			 * different one on out next try.
1520 			 */
1521 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1522 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1523 			FREE_GBLLOCK(&lk);
1524 			if ((altump->softdep_flags &
1525 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1526 				altump->softdep_flags |= FLUSH_CLEANUP;
1527 			altump->um_softdep->sd_cleanups++;
1528 			wakeup(&altump->softdep_flushtd);
1529 			FREE_LOCK(altump);
1530 		}
1531 	}
1532 	return (speedup_syncer());
1533 }
1534 
1535 /*
1536  * Add an item to the end of the work queue.
1537  * This routine requires that the lock be held.
1538  * This is the only routine that adds items to the list.
1539  * The following routine is the only one that removes items
1540  * and does so in order from first to last.
1541  */
1542 
1543 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1544 #define	WK_NODELAY	0x0002	/* Process immediately. */
1545 
1546 static void
1547 add_to_worklist(wk, flags)
1548 	struct worklist *wk;
1549 	int flags;
1550 {
1551 	struct ufsmount *ump;
1552 
1553 	ump = VFSTOUFS(wk->wk_mp);
1554 	LOCK_OWNED(ump);
1555 	if (wk->wk_state & ONWORKLIST)
1556 		panic("add_to_worklist: %s(0x%X) already on list",
1557 		    TYPENAME(wk->wk_type), wk->wk_state);
1558 	wk->wk_state |= ONWORKLIST;
1559 	if (ump->softdep_on_worklist == 0) {
1560 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1561 		ump->softdep_worklist_tail = wk;
1562 	} else if (flags & WK_HEAD) {
1563 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1564 	} else {
1565 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1566 		ump->softdep_worklist_tail = wk;
1567 	}
1568 	ump->softdep_on_worklist += 1;
1569 	if (flags & WK_NODELAY)
1570 		worklist_speedup(wk->wk_mp);
1571 }
1572 
1573 /*
1574  * Remove the item to be processed. If we are removing the last
1575  * item on the list, we need to recalculate the tail pointer.
1576  */
1577 static void
1578 remove_from_worklist(wk)
1579 	struct worklist *wk;
1580 {
1581 	struct ufsmount *ump;
1582 
1583 	ump = VFSTOUFS(wk->wk_mp);
1584 	if (ump->softdep_worklist_tail == wk)
1585 		ump->softdep_worklist_tail =
1586 		    (struct worklist *)wk->wk_list.le_prev;
1587 	WORKLIST_REMOVE(wk);
1588 	ump->softdep_on_worklist -= 1;
1589 }
1590 
1591 static void
1592 wake_worklist(wk)
1593 	struct worklist *wk;
1594 {
1595 	if (wk->wk_state & IOWAITING) {
1596 		wk->wk_state &= ~IOWAITING;
1597 		wakeup(wk);
1598 	}
1599 }
1600 
1601 static void
1602 wait_worklist(wk, wmesg)
1603 	struct worklist *wk;
1604 	char *wmesg;
1605 {
1606 	struct ufsmount *ump;
1607 
1608 	ump = VFSTOUFS(wk->wk_mp);
1609 	wk->wk_state |= IOWAITING;
1610 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1611 }
1612 
1613 /*
1614  * Process that runs once per second to handle items in the background queue.
1615  *
1616  * Note that we ensure that everything is done in the order in which they
1617  * appear in the queue. The code below depends on this property to ensure
1618  * that blocks of a file are freed before the inode itself is freed. This
1619  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1620  * until all the old ones have been purged from the dependency lists.
1621  */
1622 static int
1623 softdep_process_worklist(mp, full)
1624 	struct mount *mp;
1625 	int full;
1626 {
1627 	int cnt, matchcnt;
1628 	struct ufsmount *ump;
1629 	long starttime;
1630 
1631 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1632 	if (MOUNTEDSOFTDEP(mp) == 0)
1633 		return (0);
1634 	matchcnt = 0;
1635 	ump = VFSTOUFS(mp);
1636 	ACQUIRE_LOCK(ump);
1637 	starttime = time_second;
1638 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1639 	check_clear_deps(mp);
1640 	while (ump->softdep_on_worklist > 0) {
1641 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1642 			break;
1643 		else
1644 			matchcnt += cnt;
1645 		check_clear_deps(mp);
1646 		/*
1647 		 * We do not generally want to stop for buffer space, but if
1648 		 * we are really being a buffer hog, we will stop and wait.
1649 		 */
1650 		if (should_yield()) {
1651 			FREE_LOCK(ump);
1652 			kern_yield(PRI_USER);
1653 			bwillwrite();
1654 			ACQUIRE_LOCK(ump);
1655 		}
1656 		/*
1657 		 * Never allow processing to run for more than one
1658 		 * second. This gives the syncer thread the opportunity
1659 		 * to pause if appropriate.
1660 		 */
1661 		if (!full && starttime != time_second)
1662 			break;
1663 	}
1664 	if (full == 0)
1665 		journal_unsuspend(ump);
1666 	FREE_LOCK(ump);
1667 	return (matchcnt);
1668 }
1669 
1670 /*
1671  * Process all removes associated with a vnode if we are running out of
1672  * journal space.  Any other process which attempts to flush these will
1673  * be unable as we have the vnodes locked.
1674  */
1675 static void
1676 process_removes(vp)
1677 	struct vnode *vp;
1678 {
1679 	struct inodedep *inodedep;
1680 	struct dirrem *dirrem;
1681 	struct ufsmount *ump;
1682 	struct mount *mp;
1683 	ino_t inum;
1684 
1685 	mp = vp->v_mount;
1686 	ump = VFSTOUFS(mp);
1687 	LOCK_OWNED(ump);
1688 	inum = VTOI(vp)->i_number;
1689 	for (;;) {
1690 top:
1691 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1692 			return;
1693 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1694 			/*
1695 			 * If another thread is trying to lock this vnode
1696 			 * it will fail but we must wait for it to do so
1697 			 * before we can proceed.
1698 			 */
1699 			if (dirrem->dm_state & INPROGRESS) {
1700 				wait_worklist(&dirrem->dm_list, "pwrwait");
1701 				goto top;
1702 			}
1703 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1704 			    (COMPLETE | ONWORKLIST))
1705 				break;
1706 		}
1707 		if (dirrem == NULL)
1708 			return;
1709 		remove_from_worklist(&dirrem->dm_list);
1710 		FREE_LOCK(ump);
1711 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1712 			panic("process_removes: suspended filesystem");
1713 		handle_workitem_remove(dirrem, 0);
1714 		vn_finished_secondary_write(mp);
1715 		ACQUIRE_LOCK(ump);
1716 	}
1717 }
1718 
1719 /*
1720  * Process all truncations associated with a vnode if we are running out
1721  * of journal space.  This is called when the vnode lock is already held
1722  * and no other process can clear the truncation.  This function returns
1723  * a value greater than zero if it did any work.
1724  */
1725 static void
1726 process_truncates(vp)
1727 	struct vnode *vp;
1728 {
1729 	struct inodedep *inodedep;
1730 	struct freeblks *freeblks;
1731 	struct ufsmount *ump;
1732 	struct mount *mp;
1733 	ino_t inum;
1734 	int cgwait;
1735 
1736 	mp = vp->v_mount;
1737 	ump = VFSTOUFS(mp);
1738 	LOCK_OWNED(ump);
1739 	inum = VTOI(vp)->i_number;
1740 	for (;;) {
1741 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1742 			return;
1743 		cgwait = 0;
1744 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1745 			/* Journal entries not yet written.  */
1746 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1747 				jwait(&LIST_FIRST(
1748 				    &freeblks->fb_jblkdephd)->jb_list,
1749 				    MNT_WAIT);
1750 				break;
1751 			}
1752 			/* Another thread is executing this item. */
1753 			if (freeblks->fb_state & INPROGRESS) {
1754 				wait_worklist(&freeblks->fb_list, "ptrwait");
1755 				break;
1756 			}
1757 			/* Freeblks is waiting on a inode write. */
1758 			if ((freeblks->fb_state & COMPLETE) == 0) {
1759 				FREE_LOCK(ump);
1760 				ffs_update(vp, 1);
1761 				ACQUIRE_LOCK(ump);
1762 				break;
1763 			}
1764 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1765 			    (ALLCOMPLETE | ONWORKLIST)) {
1766 				remove_from_worklist(&freeblks->fb_list);
1767 				freeblks->fb_state |= INPROGRESS;
1768 				FREE_LOCK(ump);
1769 				if (vn_start_secondary_write(NULL, &mp,
1770 				    V_NOWAIT))
1771 					panic("process_truncates: "
1772 					    "suspended filesystem");
1773 				handle_workitem_freeblocks(freeblks, 0);
1774 				vn_finished_secondary_write(mp);
1775 				ACQUIRE_LOCK(ump);
1776 				break;
1777 			}
1778 			if (freeblks->fb_cgwait)
1779 				cgwait++;
1780 		}
1781 		if (cgwait) {
1782 			FREE_LOCK(ump);
1783 			sync_cgs(mp, MNT_WAIT);
1784 			ffs_sync_snap(mp, MNT_WAIT);
1785 			ACQUIRE_LOCK(ump);
1786 			continue;
1787 		}
1788 		if (freeblks == NULL)
1789 			break;
1790 	}
1791 	return;
1792 }
1793 
1794 /*
1795  * Process one item on the worklist.
1796  */
1797 static int
1798 process_worklist_item(mp, target, flags)
1799 	struct mount *mp;
1800 	int target;
1801 	int flags;
1802 {
1803 	struct worklist sentinel;
1804 	struct worklist *wk;
1805 	struct ufsmount *ump;
1806 	int matchcnt;
1807 	int error;
1808 
1809 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1810 	/*
1811 	 * If we are being called because of a process doing a
1812 	 * copy-on-write, then it is not safe to write as we may
1813 	 * recurse into the copy-on-write routine.
1814 	 */
1815 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1816 		return (-1);
1817 	PHOLD(curproc);	/* Don't let the stack go away. */
1818 	ump = VFSTOUFS(mp);
1819 	LOCK_OWNED(ump);
1820 	matchcnt = 0;
1821 	sentinel.wk_mp = NULL;
1822 	sentinel.wk_type = D_SENTINEL;
1823 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1824 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1825 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1826 		if (wk->wk_type == D_SENTINEL) {
1827 			LIST_REMOVE(&sentinel, wk_list);
1828 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1829 			continue;
1830 		}
1831 		if (wk->wk_state & INPROGRESS)
1832 			panic("process_worklist_item: %p already in progress.",
1833 			    wk);
1834 		wk->wk_state |= INPROGRESS;
1835 		remove_from_worklist(wk);
1836 		FREE_LOCK(ump);
1837 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1838 			panic("process_worklist_item: suspended filesystem");
1839 		switch (wk->wk_type) {
1840 		case D_DIRREM:
1841 			/* removal of a directory entry */
1842 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1843 			break;
1844 
1845 		case D_FREEBLKS:
1846 			/* releasing blocks and/or fragments from a file */
1847 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1848 			    flags);
1849 			break;
1850 
1851 		case D_FREEFRAG:
1852 			/* releasing a fragment when replaced as a file grows */
1853 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1854 			error = 0;
1855 			break;
1856 
1857 		case D_FREEFILE:
1858 			/* releasing an inode when its link count drops to 0 */
1859 			handle_workitem_freefile(WK_FREEFILE(wk));
1860 			error = 0;
1861 			break;
1862 
1863 		default:
1864 			panic("%s_process_worklist: Unknown type %s",
1865 			    "softdep", TYPENAME(wk->wk_type));
1866 			/* NOTREACHED */
1867 		}
1868 		vn_finished_secondary_write(mp);
1869 		ACQUIRE_LOCK(ump);
1870 		if (error == 0) {
1871 			if (++matchcnt == target)
1872 				break;
1873 			continue;
1874 		}
1875 		/*
1876 		 * We have to retry the worklist item later.  Wake up any
1877 		 * waiters who may be able to complete it immediately and
1878 		 * add the item back to the head so we don't try to execute
1879 		 * it again.
1880 		 */
1881 		wk->wk_state &= ~INPROGRESS;
1882 		wake_worklist(wk);
1883 		add_to_worklist(wk, WK_HEAD);
1884 	}
1885 	/* Sentinal could've become the tail from remove_from_worklist. */
1886 	if (ump->softdep_worklist_tail == &sentinel)
1887 		ump->softdep_worklist_tail =
1888 		    (struct worklist *)sentinel.wk_list.le_prev;
1889 	LIST_REMOVE(&sentinel, wk_list);
1890 	PRELE(curproc);
1891 	return (matchcnt);
1892 }
1893 
1894 /*
1895  * Move dependencies from one buffer to another.
1896  */
1897 int
1898 softdep_move_dependencies(oldbp, newbp)
1899 	struct buf *oldbp;
1900 	struct buf *newbp;
1901 {
1902 	struct worklist *wk, *wktail;
1903 	struct ufsmount *ump;
1904 	int dirty;
1905 
1906 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1907 		return (0);
1908 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1909 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1910 	dirty = 0;
1911 	wktail = NULL;
1912 	ump = VFSTOUFS(wk->wk_mp);
1913 	ACQUIRE_LOCK(ump);
1914 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1915 		LIST_REMOVE(wk, wk_list);
1916 		if (wk->wk_type == D_BMSAFEMAP &&
1917 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1918 			dirty = 1;
1919 		if (wktail == NULL)
1920 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1921 		else
1922 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1923 		wktail = wk;
1924 	}
1925 	FREE_LOCK(ump);
1926 
1927 	return (dirty);
1928 }
1929 
1930 /*
1931  * Purge the work list of all items associated with a particular mount point.
1932  */
1933 int
1934 softdep_flushworklist(oldmnt, countp, td)
1935 	struct mount *oldmnt;
1936 	int *countp;
1937 	struct thread *td;
1938 {
1939 	struct vnode *devvp;
1940 	struct ufsmount *ump;
1941 	int count, error;
1942 
1943 	/*
1944 	 * Alternately flush the block device associated with the mount
1945 	 * point and process any dependencies that the flushing
1946 	 * creates. We continue until no more worklist dependencies
1947 	 * are found.
1948 	 */
1949 	*countp = 0;
1950 	error = 0;
1951 	ump = VFSTOUFS(oldmnt);
1952 	devvp = ump->um_devvp;
1953 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1954 		*countp += count;
1955 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1956 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1957 		VOP_UNLOCK(devvp);
1958 		if (error != 0)
1959 			break;
1960 	}
1961 	return (error);
1962 }
1963 
1964 #define	SU_WAITIDLE_RETRIES	20
1965 static int
1966 softdep_waitidle(struct mount *mp, int flags __unused)
1967 {
1968 	struct ufsmount *ump;
1969 	struct vnode *devvp;
1970 	struct thread *td;
1971 	int error, i;
1972 
1973 	ump = VFSTOUFS(mp);
1974 	devvp = ump->um_devvp;
1975 	td = curthread;
1976 	error = 0;
1977 	ACQUIRE_LOCK(ump);
1978 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1979 		ump->softdep_req = 1;
1980 		KASSERT((flags & FORCECLOSE) == 0 ||
1981 		    ump->softdep_on_worklist == 0,
1982 		    ("softdep_waitidle: work added after flush"));
1983 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1984 		    "softdeps", 10 * hz);
1985 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1986 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1987 		VOP_UNLOCK(devvp);
1988 		ACQUIRE_LOCK(ump);
1989 		if (error != 0)
1990 			break;
1991 	}
1992 	ump->softdep_req = 0;
1993 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1994 		error = EBUSY;
1995 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1996 		    mp);
1997 	}
1998 	FREE_LOCK(ump);
1999 	return (error);
2000 }
2001 
2002 /*
2003  * Flush all vnodes and worklist items associated with a specified mount point.
2004  */
2005 int
2006 softdep_flushfiles(oldmnt, flags, td)
2007 	struct mount *oldmnt;
2008 	int flags;
2009 	struct thread *td;
2010 {
2011 #ifdef QUOTA
2012 	struct ufsmount *ump;
2013 	int i;
2014 #endif
2015 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2016 	int morework;
2017 
2018 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
2019 	    ("softdep_flushfiles called on non-softdep filesystem"));
2020 	loopcnt = 10;
2021 	retry_flush_count = 3;
2022 retry_flush:
2023 	error = 0;
2024 
2025 	/*
2026 	 * Alternately flush the vnodes associated with the mount
2027 	 * point and process any dependencies that the flushing
2028 	 * creates. In theory, this loop can happen at most twice,
2029 	 * but we give it a few extra just to be sure.
2030 	 */
2031 	for (; loopcnt > 0; loopcnt--) {
2032 		/*
2033 		 * Do another flush in case any vnodes were brought in
2034 		 * as part of the cleanup operations.
2035 		 */
2036 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2037 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2038 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2039 			break;
2040 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2041 		    depcount == 0)
2042 			break;
2043 	}
2044 	/*
2045 	 * If we are unmounting then it is an error to fail. If we
2046 	 * are simply trying to downgrade to read-only, then filesystem
2047 	 * activity can keep us busy forever, so we just fail with EBUSY.
2048 	 */
2049 	if (loopcnt == 0) {
2050 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2051 			panic("softdep_flushfiles: looping");
2052 		error = EBUSY;
2053 	}
2054 	if (!error)
2055 		error = softdep_waitidle(oldmnt, flags);
2056 	if (!error) {
2057 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2058 			retry = 0;
2059 			MNT_ILOCK(oldmnt);
2060 			morework = oldmnt->mnt_nvnodelistsize > 0;
2061 #ifdef QUOTA
2062 			ump = VFSTOUFS(oldmnt);
2063 			UFS_LOCK(ump);
2064 			for (i = 0; i < MAXQUOTAS; i++) {
2065 				if (ump->um_quotas[i] != NULLVP)
2066 					morework = 1;
2067 			}
2068 			UFS_UNLOCK(ump);
2069 #endif
2070 			if (morework) {
2071 				if (--retry_flush_count > 0) {
2072 					retry = 1;
2073 					loopcnt = 3;
2074 				} else
2075 					error = EBUSY;
2076 			}
2077 			MNT_IUNLOCK(oldmnt);
2078 			if (retry)
2079 				goto retry_flush;
2080 		}
2081 	}
2082 	return (error);
2083 }
2084 
2085 /*
2086  * Structure hashing.
2087  *
2088  * There are four types of structures that can be looked up:
2089  *	1) pagedep structures identified by mount point, inode number,
2090  *	   and logical block.
2091  *	2) inodedep structures identified by mount point and inode number.
2092  *	3) newblk structures identified by mount point and
2093  *	   physical block number.
2094  *	4) bmsafemap structures identified by mount point and
2095  *	   cylinder group number.
2096  *
2097  * The "pagedep" and "inodedep" dependency structures are hashed
2098  * separately from the file blocks and inodes to which they correspond.
2099  * This separation helps when the in-memory copy of an inode or
2100  * file block must be replaced. It also obviates the need to access
2101  * an inode or file page when simply updating (or de-allocating)
2102  * dependency structures. Lookup of newblk structures is needed to
2103  * find newly allocated blocks when trying to associate them with
2104  * their allocdirect or allocindir structure.
2105  *
2106  * The lookup routines optionally create and hash a new instance when
2107  * an existing entry is not found. The bmsafemap lookup routine always
2108  * allocates a new structure if an existing one is not found.
2109  */
2110 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2111 
2112 /*
2113  * Structures and routines associated with pagedep caching.
2114  */
2115 #define	PAGEDEP_HASH(ump, inum, lbn) \
2116 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2117 
2118 static int
2119 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2120 	struct pagedep_hashhead *pagedephd;
2121 	ino_t ino;
2122 	ufs_lbn_t lbn;
2123 	struct pagedep **pagedeppp;
2124 {
2125 	struct pagedep *pagedep;
2126 
2127 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2128 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2129 			*pagedeppp = pagedep;
2130 			return (1);
2131 		}
2132 	}
2133 	*pagedeppp = NULL;
2134 	return (0);
2135 }
2136 /*
2137  * Look up a pagedep. Return 1 if found, 0 otherwise.
2138  * If not found, allocate if DEPALLOC flag is passed.
2139  * Found or allocated entry is returned in pagedeppp.
2140  */
2141 static int
2142 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2143 	struct mount *mp;
2144 	struct buf *bp;
2145 	ino_t ino;
2146 	ufs_lbn_t lbn;
2147 	int flags;
2148 	struct pagedep **pagedeppp;
2149 {
2150 	struct pagedep *pagedep;
2151 	struct pagedep_hashhead *pagedephd;
2152 	struct worklist *wk;
2153 	struct ufsmount *ump;
2154 	int ret;
2155 	int i;
2156 
2157 	ump = VFSTOUFS(mp);
2158 	LOCK_OWNED(ump);
2159 	if (bp) {
2160 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2161 			if (wk->wk_type == D_PAGEDEP) {
2162 				*pagedeppp = WK_PAGEDEP(wk);
2163 				return (1);
2164 			}
2165 		}
2166 	}
2167 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2168 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2169 	if (ret) {
2170 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2171 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2172 		return (1);
2173 	}
2174 	if ((flags & DEPALLOC) == 0)
2175 		return (0);
2176 	FREE_LOCK(ump);
2177 	pagedep = malloc(sizeof(struct pagedep),
2178 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2179 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2180 	ACQUIRE_LOCK(ump);
2181 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2182 	if (*pagedeppp) {
2183 		/*
2184 		 * This should never happen since we only create pagedeps
2185 		 * with the vnode lock held.  Could be an assert.
2186 		 */
2187 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2188 		return (ret);
2189 	}
2190 	pagedep->pd_ino = ino;
2191 	pagedep->pd_lbn = lbn;
2192 	LIST_INIT(&pagedep->pd_dirremhd);
2193 	LIST_INIT(&pagedep->pd_pendinghd);
2194 	for (i = 0; i < DAHASHSZ; i++)
2195 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2196 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2197 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2198 	*pagedeppp = pagedep;
2199 	return (0);
2200 }
2201 
2202 /*
2203  * Structures and routines associated with inodedep caching.
2204  */
2205 #define	INODEDEP_HASH(ump, inum) \
2206       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2207 
2208 static int
2209 inodedep_find(inodedephd, inum, inodedeppp)
2210 	struct inodedep_hashhead *inodedephd;
2211 	ino_t inum;
2212 	struct inodedep **inodedeppp;
2213 {
2214 	struct inodedep *inodedep;
2215 
2216 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2217 		if (inum == inodedep->id_ino)
2218 			break;
2219 	if (inodedep) {
2220 		*inodedeppp = inodedep;
2221 		return (1);
2222 	}
2223 	*inodedeppp = NULL;
2224 
2225 	return (0);
2226 }
2227 /*
2228  * Look up an inodedep. Return 1 if found, 0 if not found.
2229  * If not found, allocate if DEPALLOC flag is passed.
2230  * Found or allocated entry is returned in inodedeppp.
2231  */
2232 static int
2233 inodedep_lookup(mp, inum, flags, inodedeppp)
2234 	struct mount *mp;
2235 	ino_t inum;
2236 	int flags;
2237 	struct inodedep **inodedeppp;
2238 {
2239 	struct inodedep *inodedep;
2240 	struct inodedep_hashhead *inodedephd;
2241 	struct ufsmount *ump;
2242 	struct fs *fs;
2243 
2244 	ump = VFSTOUFS(mp);
2245 	LOCK_OWNED(ump);
2246 	fs = ump->um_fs;
2247 	inodedephd = INODEDEP_HASH(ump, inum);
2248 
2249 	if (inodedep_find(inodedephd, inum, inodedeppp))
2250 		return (1);
2251 	if ((flags & DEPALLOC) == 0)
2252 		return (0);
2253 	/*
2254 	 * If the system is over its limit and our filesystem is
2255 	 * responsible for more than our share of that usage and
2256 	 * we are not in a rush, request some inodedep cleanup.
2257 	 */
2258 	if (softdep_excess_items(ump, D_INODEDEP))
2259 		schedule_cleanup(mp);
2260 	else
2261 		FREE_LOCK(ump);
2262 	inodedep = malloc(sizeof(struct inodedep),
2263 		M_INODEDEP, M_SOFTDEP_FLAGS);
2264 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2265 	ACQUIRE_LOCK(ump);
2266 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2267 		WORKITEM_FREE(inodedep, D_INODEDEP);
2268 		return (1);
2269 	}
2270 	inodedep->id_fs = fs;
2271 	inodedep->id_ino = inum;
2272 	inodedep->id_state = ALLCOMPLETE;
2273 	inodedep->id_nlinkdelta = 0;
2274 	inodedep->id_nlinkwrote = -1;
2275 	inodedep->id_savedino1 = NULL;
2276 	inodedep->id_savedsize = -1;
2277 	inodedep->id_savedextsize = -1;
2278 	inodedep->id_savednlink = -1;
2279 	inodedep->id_bmsafemap = NULL;
2280 	inodedep->id_mkdiradd = NULL;
2281 	LIST_INIT(&inodedep->id_dirremhd);
2282 	LIST_INIT(&inodedep->id_pendinghd);
2283 	LIST_INIT(&inodedep->id_inowait);
2284 	LIST_INIT(&inodedep->id_bufwait);
2285 	TAILQ_INIT(&inodedep->id_inoreflst);
2286 	TAILQ_INIT(&inodedep->id_inoupdt);
2287 	TAILQ_INIT(&inodedep->id_newinoupdt);
2288 	TAILQ_INIT(&inodedep->id_extupdt);
2289 	TAILQ_INIT(&inodedep->id_newextupdt);
2290 	TAILQ_INIT(&inodedep->id_freeblklst);
2291 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2292 	*inodedeppp = inodedep;
2293 	return (0);
2294 }
2295 
2296 /*
2297  * Structures and routines associated with newblk caching.
2298  */
2299 #define	NEWBLK_HASH(ump, inum) \
2300 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2301 
2302 static int
2303 newblk_find(newblkhd, newblkno, flags, newblkpp)
2304 	struct newblk_hashhead *newblkhd;
2305 	ufs2_daddr_t newblkno;
2306 	int flags;
2307 	struct newblk **newblkpp;
2308 {
2309 	struct newblk *newblk;
2310 
2311 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2312 		if (newblkno != newblk->nb_newblkno)
2313 			continue;
2314 		/*
2315 		 * If we're creating a new dependency don't match those that
2316 		 * have already been converted to allocdirects.  This is for
2317 		 * a frag extend.
2318 		 */
2319 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2320 			continue;
2321 		break;
2322 	}
2323 	if (newblk) {
2324 		*newblkpp = newblk;
2325 		return (1);
2326 	}
2327 	*newblkpp = NULL;
2328 	return (0);
2329 }
2330 
2331 /*
2332  * Look up a newblk. Return 1 if found, 0 if not found.
2333  * If not found, allocate if DEPALLOC flag is passed.
2334  * Found or allocated entry is returned in newblkpp.
2335  */
2336 static int
2337 newblk_lookup(mp, newblkno, flags, newblkpp)
2338 	struct mount *mp;
2339 	ufs2_daddr_t newblkno;
2340 	int flags;
2341 	struct newblk **newblkpp;
2342 {
2343 	struct newblk *newblk;
2344 	struct newblk_hashhead *newblkhd;
2345 	struct ufsmount *ump;
2346 
2347 	ump = VFSTOUFS(mp);
2348 	LOCK_OWNED(ump);
2349 	newblkhd = NEWBLK_HASH(ump, newblkno);
2350 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2351 		return (1);
2352 	if ((flags & DEPALLOC) == 0)
2353 		return (0);
2354 	if (softdep_excess_items(ump, D_NEWBLK) ||
2355 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2356 	    softdep_excess_items(ump, D_ALLOCINDIR))
2357 		schedule_cleanup(mp);
2358 	else
2359 		FREE_LOCK(ump);
2360 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2361 	    M_SOFTDEP_FLAGS | M_ZERO);
2362 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2363 	ACQUIRE_LOCK(ump);
2364 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2365 		WORKITEM_FREE(newblk, D_NEWBLK);
2366 		return (1);
2367 	}
2368 	newblk->nb_freefrag = NULL;
2369 	LIST_INIT(&newblk->nb_indirdeps);
2370 	LIST_INIT(&newblk->nb_newdirblk);
2371 	LIST_INIT(&newblk->nb_jwork);
2372 	newblk->nb_state = ATTACHED;
2373 	newblk->nb_newblkno = newblkno;
2374 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2375 	*newblkpp = newblk;
2376 	return (0);
2377 }
2378 
2379 /*
2380  * Structures and routines associated with freed indirect block caching.
2381  */
2382 #define	INDIR_HASH(ump, blkno) \
2383 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2384 
2385 /*
2386  * Lookup an indirect block in the indir hash table.  The freework is
2387  * removed and potentially freed.  The caller must do a blocking journal
2388  * write before writing to the blkno.
2389  */
2390 static int
2391 indirblk_lookup(mp, blkno)
2392 	struct mount *mp;
2393 	ufs2_daddr_t blkno;
2394 {
2395 	struct freework *freework;
2396 	struct indir_hashhead *wkhd;
2397 	struct ufsmount *ump;
2398 
2399 	ump = VFSTOUFS(mp);
2400 	wkhd = INDIR_HASH(ump, blkno);
2401 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2402 		if (freework->fw_blkno != blkno)
2403 			continue;
2404 		indirblk_remove(freework);
2405 		return (1);
2406 	}
2407 	return (0);
2408 }
2409 
2410 /*
2411  * Insert an indirect block represented by freework into the indirblk
2412  * hash table so that it may prevent the block from being re-used prior
2413  * to the journal being written.
2414  */
2415 static void
2416 indirblk_insert(freework)
2417 	struct freework *freework;
2418 {
2419 	struct jblocks *jblocks;
2420 	struct jseg *jseg;
2421 	struct ufsmount *ump;
2422 
2423 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2424 	jblocks = ump->softdep_jblocks;
2425 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2426 	if (jseg == NULL)
2427 		return;
2428 
2429 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2430 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2431 	    fw_next);
2432 	freework->fw_state &= ~DEPCOMPLETE;
2433 }
2434 
2435 static void
2436 indirblk_remove(freework)
2437 	struct freework *freework;
2438 {
2439 	struct ufsmount *ump;
2440 
2441 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2442 	LIST_REMOVE(freework, fw_segs);
2443 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2444 	freework->fw_state |= DEPCOMPLETE;
2445 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2446 		WORKITEM_FREE(freework, D_FREEWORK);
2447 }
2448 
2449 /*
2450  * Executed during filesystem system initialization before
2451  * mounting any filesystems.
2452  */
2453 void
2454 softdep_initialize()
2455 {
2456 
2457 	TAILQ_INIT(&softdepmounts);
2458 #ifdef __LP64__
2459 	max_softdeps = desiredvnodes * 4;
2460 #else
2461 	max_softdeps = desiredvnodes * 2;
2462 #endif
2463 
2464 	/* initialise bioops hack */
2465 	bioops.io_start = softdep_disk_io_initiation;
2466 	bioops.io_complete = softdep_disk_write_complete;
2467 	bioops.io_deallocate = softdep_deallocate_dependencies;
2468 	bioops.io_countdeps = softdep_count_dependencies;
2469 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2470 
2471 	/* Initialize the callout with an mtx. */
2472 	callout_init_mtx(&softdep_callout, &lk, 0);
2473 }
2474 
2475 /*
2476  * Executed after all filesystems have been unmounted during
2477  * filesystem module unload.
2478  */
2479 void
2480 softdep_uninitialize()
2481 {
2482 
2483 	/* clear bioops hack */
2484 	bioops.io_start = NULL;
2485 	bioops.io_complete = NULL;
2486 	bioops.io_deallocate = NULL;
2487 	bioops.io_countdeps = NULL;
2488 	softdep_ast_cleanup = NULL;
2489 
2490 	callout_drain(&softdep_callout);
2491 }
2492 
2493 /*
2494  * Called at mount time to notify the dependency code that a
2495  * filesystem wishes to use it.
2496  */
2497 int
2498 softdep_mount(devvp, mp, fs, cred)
2499 	struct vnode *devvp;
2500 	struct mount *mp;
2501 	struct fs *fs;
2502 	struct ucred *cred;
2503 {
2504 	struct csum_total cstotal;
2505 	struct mount_softdeps *sdp;
2506 	struct ufsmount *ump;
2507 	struct cg *cgp;
2508 	struct buf *bp;
2509 	u_int cyl, i;
2510 	int error;
2511 
2512 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2513 	    M_WAITOK | M_ZERO);
2514 	MNT_ILOCK(mp);
2515 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2516 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2517 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2518 			MNTK_SOFTDEP | MNTK_NOASYNC;
2519 	}
2520 	ump = VFSTOUFS(mp);
2521 	ump->um_softdep = sdp;
2522 	MNT_IUNLOCK(mp);
2523 	rw_init(LOCK_PTR(ump), "per-fs softdep");
2524 	sdp->sd_ump = ump;
2525 	LIST_INIT(&ump->softdep_workitem_pending);
2526 	LIST_INIT(&ump->softdep_journal_pending);
2527 	TAILQ_INIT(&ump->softdep_unlinked);
2528 	LIST_INIT(&ump->softdep_dirtycg);
2529 	ump->softdep_worklist_tail = NULL;
2530 	ump->softdep_on_worklist = 0;
2531 	ump->softdep_deps = 0;
2532 	LIST_INIT(&ump->softdep_mkdirlisthd);
2533 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2534 	    &ump->pagedep_hash_size);
2535 	ump->pagedep_nextclean = 0;
2536 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2537 	    &ump->inodedep_hash_size);
2538 	ump->inodedep_nextclean = 0;
2539 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2540 	    &ump->newblk_hash_size);
2541 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2542 	    &ump->bmsafemap_hash_size);
2543 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2544 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2545 	    M_FREEWORK, M_WAITOK);
2546 	ump->indir_hash_size = i - 1;
2547 	for (i = 0; i <= ump->indir_hash_size; i++)
2548 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2549 #ifdef INVARIANTS
2550 	for (i = 0; i <= D_LAST; i++)
2551 		LIST_INIT(&ump->softdep_alldeps[i]);
2552 #endif
2553 	ACQUIRE_GBLLOCK(&lk);
2554 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2555 	FREE_GBLLOCK(&lk);
2556 	if ((fs->fs_flags & FS_SUJ) &&
2557 	    (error = journal_mount(mp, fs, cred)) != 0) {
2558 		printf("Failed to start journal: %d\n", error);
2559 		softdep_unmount(mp);
2560 		return (error);
2561 	}
2562 	/*
2563 	 * Start our flushing thread in the bufdaemon process.
2564 	 */
2565 	ACQUIRE_LOCK(ump);
2566 	ump->softdep_flags |= FLUSH_STARTING;
2567 	FREE_LOCK(ump);
2568 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2569 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2570 	    mp->mnt_stat.f_mntonname);
2571 	ACQUIRE_LOCK(ump);
2572 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2573 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2574 		    hz / 2);
2575 	}
2576 	FREE_LOCK(ump);
2577 	/*
2578 	 * When doing soft updates, the counters in the
2579 	 * superblock may have gotten out of sync. Recomputation
2580 	 * can take a long time and can be deferred for background
2581 	 * fsck.  However, the old behavior of scanning the cylinder
2582 	 * groups and recalculating them at mount time is available
2583 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2584 	 */
2585 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2586 		return (0);
2587 	bzero(&cstotal, sizeof cstotal);
2588 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2589 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2590 		    fs->fs_cgsize, cred, &bp)) != 0) {
2591 			brelse(bp);
2592 			softdep_unmount(mp);
2593 			return (error);
2594 		}
2595 		cgp = (struct cg *)bp->b_data;
2596 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2597 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2598 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2599 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2600 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2601 		brelse(bp);
2602 	}
2603 #ifdef INVARIANTS
2604 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2605 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2606 #endif
2607 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2608 	return (0);
2609 }
2610 
2611 void
2612 softdep_unmount(mp)
2613 	struct mount *mp;
2614 {
2615 	struct ufsmount *ump;
2616 #ifdef INVARIANTS
2617 	int i;
2618 #endif
2619 
2620 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2621 	    ("softdep_unmount called on non-softdep filesystem"));
2622 	ump = VFSTOUFS(mp);
2623 	MNT_ILOCK(mp);
2624 	mp->mnt_flag &= ~MNT_SOFTDEP;
2625 	if (MOUNTEDSUJ(mp) == 0) {
2626 		MNT_IUNLOCK(mp);
2627 	} else {
2628 		mp->mnt_flag &= ~MNT_SUJ;
2629 		MNT_IUNLOCK(mp);
2630 		journal_unmount(ump);
2631 	}
2632 	/*
2633 	 * Shut down our flushing thread. Check for NULL is if
2634 	 * softdep_mount errors out before the thread has been created.
2635 	 */
2636 	if (ump->softdep_flushtd != NULL) {
2637 		ACQUIRE_LOCK(ump);
2638 		ump->softdep_flags |= FLUSH_EXIT;
2639 		wakeup(&ump->softdep_flushtd);
2640 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2641 		    "sdwait", 0);
2642 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2643 		    ("Thread shutdown failed"));
2644 	}
2645 	/*
2646 	 * Free up our resources.
2647 	 */
2648 	ACQUIRE_GBLLOCK(&lk);
2649 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2650 	FREE_GBLLOCK(&lk);
2651 	rw_destroy(LOCK_PTR(ump));
2652 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2653 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2654 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2655 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2656 	    ump->bmsafemap_hash_size);
2657 	free(ump->indir_hashtbl, M_FREEWORK);
2658 #ifdef INVARIANTS
2659 	for (i = 0; i <= D_LAST; i++) {
2660 		KASSERT(ump->softdep_curdeps[i] == 0,
2661 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2662 		    TYPENAME(i), ump->softdep_curdeps[i]));
2663 		KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]),
2664 		    ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt,
2665 		    TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i])));
2666 	}
2667 #endif
2668 	free(ump->um_softdep, M_MOUNTDATA);
2669 }
2670 
2671 static struct jblocks *
2672 jblocks_create(void)
2673 {
2674 	struct jblocks *jblocks;
2675 
2676 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2677 	TAILQ_INIT(&jblocks->jb_segs);
2678 	jblocks->jb_avail = 10;
2679 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2680 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2681 
2682 	return (jblocks);
2683 }
2684 
2685 static ufs2_daddr_t
2686 jblocks_alloc(jblocks, bytes, actual)
2687 	struct jblocks *jblocks;
2688 	int bytes;
2689 	int *actual;
2690 {
2691 	ufs2_daddr_t daddr;
2692 	struct jextent *jext;
2693 	int freecnt;
2694 	int blocks;
2695 
2696 	blocks = bytes / DEV_BSIZE;
2697 	jext = &jblocks->jb_extent[jblocks->jb_head];
2698 	freecnt = jext->je_blocks - jblocks->jb_off;
2699 	if (freecnt == 0) {
2700 		jblocks->jb_off = 0;
2701 		if (++jblocks->jb_head > jblocks->jb_used)
2702 			jblocks->jb_head = 0;
2703 		jext = &jblocks->jb_extent[jblocks->jb_head];
2704 		freecnt = jext->je_blocks;
2705 	}
2706 	if (freecnt > blocks)
2707 		freecnt = blocks;
2708 	*actual = freecnt * DEV_BSIZE;
2709 	daddr = jext->je_daddr + jblocks->jb_off;
2710 	jblocks->jb_off += freecnt;
2711 	jblocks->jb_free -= freecnt;
2712 
2713 	return (daddr);
2714 }
2715 
2716 static void
2717 jblocks_free(jblocks, mp, bytes)
2718 	struct jblocks *jblocks;
2719 	struct mount *mp;
2720 	int bytes;
2721 {
2722 
2723 	LOCK_OWNED(VFSTOUFS(mp));
2724 	jblocks->jb_free += bytes / DEV_BSIZE;
2725 	if (jblocks->jb_suspended)
2726 		worklist_speedup(mp);
2727 	wakeup(jblocks);
2728 }
2729 
2730 static void
2731 jblocks_destroy(jblocks)
2732 	struct jblocks *jblocks;
2733 {
2734 
2735 	if (jblocks->jb_extent)
2736 		free(jblocks->jb_extent, M_JBLOCKS);
2737 	free(jblocks, M_JBLOCKS);
2738 }
2739 
2740 static void
2741 jblocks_add(jblocks, daddr, blocks)
2742 	struct jblocks *jblocks;
2743 	ufs2_daddr_t daddr;
2744 	int blocks;
2745 {
2746 	struct jextent *jext;
2747 
2748 	jblocks->jb_blocks += blocks;
2749 	jblocks->jb_free += blocks;
2750 	jext = &jblocks->jb_extent[jblocks->jb_used];
2751 	/* Adding the first block. */
2752 	if (jext->je_daddr == 0) {
2753 		jext->je_daddr = daddr;
2754 		jext->je_blocks = blocks;
2755 		return;
2756 	}
2757 	/* Extending the last extent. */
2758 	if (jext->je_daddr + jext->je_blocks == daddr) {
2759 		jext->je_blocks += blocks;
2760 		return;
2761 	}
2762 	/* Adding a new extent. */
2763 	if (++jblocks->jb_used == jblocks->jb_avail) {
2764 		jblocks->jb_avail *= 2;
2765 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2766 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2767 		memcpy(jext, jblocks->jb_extent,
2768 		    sizeof(struct jextent) * jblocks->jb_used);
2769 		free(jblocks->jb_extent, M_JBLOCKS);
2770 		jblocks->jb_extent = jext;
2771 	}
2772 	jext = &jblocks->jb_extent[jblocks->jb_used];
2773 	jext->je_daddr = daddr;
2774 	jext->je_blocks = blocks;
2775 	return;
2776 }
2777 
2778 int
2779 softdep_journal_lookup(mp, vpp)
2780 	struct mount *mp;
2781 	struct vnode **vpp;
2782 {
2783 	struct componentname cnp;
2784 	struct vnode *dvp;
2785 	ino_t sujournal;
2786 	int error;
2787 
2788 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2789 	if (error)
2790 		return (error);
2791 	bzero(&cnp, sizeof(cnp));
2792 	cnp.cn_nameiop = LOOKUP;
2793 	cnp.cn_flags = ISLASTCN;
2794 	cnp.cn_thread = curthread;
2795 	cnp.cn_cred = curthread->td_ucred;
2796 	cnp.cn_pnbuf = SUJ_FILE;
2797 	cnp.cn_nameptr = SUJ_FILE;
2798 	cnp.cn_namelen = strlen(SUJ_FILE);
2799 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2800 	vput(dvp);
2801 	if (error != 0)
2802 		return (error);
2803 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2804 	return (error);
2805 }
2806 
2807 /*
2808  * Open and verify the journal file.
2809  */
2810 static int
2811 journal_mount(mp, fs, cred)
2812 	struct mount *mp;
2813 	struct fs *fs;
2814 	struct ucred *cred;
2815 {
2816 	struct jblocks *jblocks;
2817 	struct ufsmount *ump;
2818 	struct vnode *vp;
2819 	struct inode *ip;
2820 	ufs2_daddr_t blkno;
2821 	int bcount;
2822 	int error;
2823 	int i;
2824 
2825 	ump = VFSTOUFS(mp);
2826 	ump->softdep_journal_tail = NULL;
2827 	ump->softdep_on_journal = 0;
2828 	ump->softdep_accdeps = 0;
2829 	ump->softdep_req = 0;
2830 	ump->softdep_jblocks = NULL;
2831 	error = softdep_journal_lookup(mp, &vp);
2832 	if (error != 0) {
2833 		printf("Failed to find journal.  Use tunefs to create one\n");
2834 		return (error);
2835 	}
2836 	ip = VTOI(vp);
2837 	if (ip->i_size < SUJ_MIN) {
2838 		error = ENOSPC;
2839 		goto out;
2840 	}
2841 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2842 	jblocks = jblocks_create();
2843 	for (i = 0; i < bcount; i++) {
2844 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2845 		if (error)
2846 			break;
2847 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2848 	}
2849 	if (error) {
2850 		jblocks_destroy(jblocks);
2851 		goto out;
2852 	}
2853 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2854 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2855 	ump->softdep_jblocks = jblocks;
2856 out:
2857 	if (error == 0) {
2858 		MNT_ILOCK(mp);
2859 		mp->mnt_flag |= MNT_SUJ;
2860 		mp->mnt_flag &= ~MNT_SOFTDEP;
2861 		MNT_IUNLOCK(mp);
2862 		/*
2863 		 * Only validate the journal contents if the
2864 		 * filesystem is clean, otherwise we write the logs
2865 		 * but they'll never be used.  If the filesystem was
2866 		 * still dirty when we mounted it the journal is
2867 		 * invalid and a new journal can only be valid if it
2868 		 * starts from a clean mount.
2869 		 */
2870 		if (fs->fs_clean) {
2871 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2872 			ip->i_flags |= IN_MODIFIED;
2873 			ffs_update(vp, 1);
2874 		}
2875 	}
2876 	vput(vp);
2877 	return (error);
2878 }
2879 
2880 static void
2881 journal_unmount(ump)
2882 	struct ufsmount *ump;
2883 {
2884 
2885 	if (ump->softdep_jblocks)
2886 		jblocks_destroy(ump->softdep_jblocks);
2887 	ump->softdep_jblocks = NULL;
2888 }
2889 
2890 /*
2891  * Called when a journal record is ready to be written.  Space is allocated
2892  * and the journal entry is created when the journal is flushed to stable
2893  * store.
2894  */
2895 static void
2896 add_to_journal(wk)
2897 	struct worklist *wk;
2898 {
2899 	struct ufsmount *ump;
2900 
2901 	ump = VFSTOUFS(wk->wk_mp);
2902 	LOCK_OWNED(ump);
2903 	if (wk->wk_state & ONWORKLIST)
2904 		panic("add_to_journal: %s(0x%X) already on list",
2905 		    TYPENAME(wk->wk_type), wk->wk_state);
2906 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2907 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2908 		ump->softdep_jblocks->jb_age = ticks;
2909 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2910 	} else
2911 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2912 	ump->softdep_journal_tail = wk;
2913 	ump->softdep_on_journal += 1;
2914 }
2915 
2916 /*
2917  * Remove an arbitrary item for the journal worklist maintain the tail
2918  * pointer.  This happens when a new operation obviates the need to
2919  * journal an old operation.
2920  */
2921 static void
2922 remove_from_journal(wk)
2923 	struct worklist *wk;
2924 {
2925 	struct ufsmount *ump;
2926 
2927 	ump = VFSTOUFS(wk->wk_mp);
2928 	LOCK_OWNED(ump);
2929 #ifdef INVARIANTS
2930 	{
2931 		struct worklist *wkn;
2932 
2933 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2934 			if (wkn == wk)
2935 				break;
2936 		if (wkn == NULL)
2937 			panic("remove_from_journal: %p is not in journal", wk);
2938 	}
2939 #endif
2940 	/*
2941 	 * We emulate a TAILQ to save space in most structures which do not
2942 	 * require TAILQ semantics.  Here we must update the tail position
2943 	 * when removing the tail which is not the final entry. This works
2944 	 * only if the worklist linkage are at the beginning of the structure.
2945 	 */
2946 	if (ump->softdep_journal_tail == wk)
2947 		ump->softdep_journal_tail =
2948 		    (struct worklist *)wk->wk_list.le_prev;
2949 	WORKLIST_REMOVE(wk);
2950 	ump->softdep_on_journal -= 1;
2951 }
2952 
2953 /*
2954  * Check for journal space as well as dependency limits so the prelink
2955  * code can throttle both journaled and non-journaled filesystems.
2956  * Threshold is 0 for low and 1 for min.
2957  */
2958 static int
2959 journal_space(ump, thresh)
2960 	struct ufsmount *ump;
2961 	int thresh;
2962 {
2963 	struct jblocks *jblocks;
2964 	int limit, avail;
2965 
2966 	jblocks = ump->softdep_jblocks;
2967 	if (jblocks == NULL)
2968 		return (1);
2969 	/*
2970 	 * We use a tighter restriction here to prevent request_cleanup()
2971 	 * running in threads from running into locks we currently hold.
2972 	 * We have to be over the limit and our filesystem has to be
2973 	 * responsible for more than our share of that usage.
2974 	 */
2975 	limit = (max_softdeps / 10) * 9;
2976 	if (dep_current[D_INODEDEP] > limit &&
2977 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2978 		return (0);
2979 	if (thresh)
2980 		thresh = jblocks->jb_min;
2981 	else
2982 		thresh = jblocks->jb_low;
2983 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2984 	avail = jblocks->jb_free - avail;
2985 
2986 	return (avail > thresh);
2987 }
2988 
2989 static void
2990 journal_suspend(ump)
2991 	struct ufsmount *ump;
2992 {
2993 	struct jblocks *jblocks;
2994 	struct mount *mp;
2995 	bool set;
2996 
2997 	mp = UFSTOVFS(ump);
2998 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
2999 		return;
3000 
3001 	jblocks = ump->softdep_jblocks;
3002 	vfs_op_enter(mp);
3003 	set = false;
3004 	MNT_ILOCK(mp);
3005 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3006 		stat_journal_min++;
3007 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3008 		mp->mnt_susp_owner = ump->softdep_flushtd;
3009 		set = true;
3010 	}
3011 	jblocks->jb_suspended = 1;
3012 	MNT_IUNLOCK(mp);
3013 	if (!set)
3014 		vfs_op_exit(mp);
3015 }
3016 
3017 static int
3018 journal_unsuspend(struct ufsmount *ump)
3019 {
3020 	struct jblocks *jblocks;
3021 	struct mount *mp;
3022 
3023 	mp = UFSTOVFS(ump);
3024 	jblocks = ump->softdep_jblocks;
3025 
3026 	if (jblocks != NULL && jblocks->jb_suspended &&
3027 	    journal_space(ump, jblocks->jb_min)) {
3028 		jblocks->jb_suspended = 0;
3029 		FREE_LOCK(ump);
3030 		mp->mnt_susp_owner = curthread;
3031 		vfs_write_resume(mp, 0);
3032 		ACQUIRE_LOCK(ump);
3033 		return (1);
3034 	}
3035 	return (0);
3036 }
3037 
3038 /*
3039  * Called before any allocation function to be certain that there is
3040  * sufficient space in the journal prior to creating any new records.
3041  * Since in the case of block allocation we may have multiple locked
3042  * buffers at the time of the actual allocation we can not block
3043  * when the journal records are created.  Doing so would create a deadlock
3044  * if any of these buffers needed to be flushed to reclaim space.  Instead
3045  * we require a sufficiently large amount of available space such that
3046  * each thread in the system could have passed this allocation check and
3047  * still have sufficient free space.  With 20% of a minimum journal size
3048  * of 1MB we have 6553 records available.
3049  */
3050 int
3051 softdep_prealloc(vp, waitok)
3052 	struct vnode *vp;
3053 	int waitok;
3054 {
3055 	struct ufsmount *ump;
3056 
3057 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3058 	    ("softdep_prealloc called on non-softdep filesystem"));
3059 	/*
3060 	 * Nothing to do if we are not running journaled soft updates.
3061 	 * If we currently hold the snapshot lock, we must avoid
3062 	 * handling other resources that could cause deadlock.  Do not
3063 	 * touch quotas vnode since it is typically recursed with
3064 	 * other vnode locks held.
3065 	 */
3066 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3067 	    (vp->v_vflag & VV_SYSTEM) != 0)
3068 		return (0);
3069 	ump = VFSTOUFS(vp->v_mount);
3070 	ACQUIRE_LOCK(ump);
3071 	if (journal_space(ump, 0)) {
3072 		FREE_LOCK(ump);
3073 		return (0);
3074 	}
3075 	stat_journal_low++;
3076 	FREE_LOCK(ump);
3077 	if (waitok == MNT_NOWAIT)
3078 		return (ENOSPC);
3079 	/*
3080 	 * Attempt to sync this vnode once to flush any journal
3081 	 * work attached to it.
3082 	 */
3083 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3084 		ffs_syncvnode(vp, waitok, 0);
3085 	ACQUIRE_LOCK(ump);
3086 	process_removes(vp);
3087 	process_truncates(vp);
3088 	if (journal_space(ump, 0) == 0) {
3089 		softdep_speedup(ump);
3090 		if (journal_space(ump, 1) == 0)
3091 			journal_suspend(ump);
3092 	}
3093 	FREE_LOCK(ump);
3094 
3095 	return (0);
3096 }
3097 
3098 /*
3099  * Before adjusting a link count on a vnode verify that we have sufficient
3100  * journal space.  If not, process operations that depend on the currently
3101  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3102  * and softdep flush threads can not acquire these locks to reclaim space.
3103  */
3104 static void
3105 softdep_prelink(dvp, vp)
3106 	struct vnode *dvp;
3107 	struct vnode *vp;
3108 {
3109 	struct ufsmount *ump;
3110 
3111 	ump = VFSTOUFS(dvp->v_mount);
3112 	LOCK_OWNED(ump);
3113 	/*
3114 	 * Nothing to do if we have sufficient journal space.
3115 	 * If we currently hold the snapshot lock, we must avoid
3116 	 * handling other resources that could cause deadlock.
3117 	 */
3118 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3119 		return;
3120 	stat_journal_low++;
3121 	FREE_LOCK(ump);
3122 	if (vp)
3123 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3124 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3125 	ACQUIRE_LOCK(ump);
3126 	/* Process vp before dvp as it may create .. removes. */
3127 	if (vp) {
3128 		process_removes(vp);
3129 		process_truncates(vp);
3130 	}
3131 	process_removes(dvp);
3132 	process_truncates(dvp);
3133 	softdep_speedup(ump);
3134 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3135 	if (journal_space(ump, 0) == 0) {
3136 		softdep_speedup(ump);
3137 		if (journal_space(ump, 1) == 0)
3138 			journal_suspend(ump);
3139 	}
3140 }
3141 
3142 static void
3143 jseg_write(ump, jseg, data)
3144 	struct ufsmount *ump;
3145 	struct jseg *jseg;
3146 	uint8_t *data;
3147 {
3148 	struct jsegrec *rec;
3149 
3150 	rec = (struct jsegrec *)data;
3151 	rec->jsr_seq = jseg->js_seq;
3152 	rec->jsr_oldest = jseg->js_oldseq;
3153 	rec->jsr_cnt = jseg->js_cnt;
3154 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3155 	rec->jsr_crc = 0;
3156 	rec->jsr_time = ump->um_fs->fs_mtime;
3157 }
3158 
3159 static inline void
3160 inoref_write(inoref, jseg, rec)
3161 	struct inoref *inoref;
3162 	struct jseg *jseg;
3163 	struct jrefrec *rec;
3164 {
3165 
3166 	inoref->if_jsegdep->jd_seg = jseg;
3167 	rec->jr_ino = inoref->if_ino;
3168 	rec->jr_parent = inoref->if_parent;
3169 	rec->jr_nlink = inoref->if_nlink;
3170 	rec->jr_mode = inoref->if_mode;
3171 	rec->jr_diroff = inoref->if_diroff;
3172 }
3173 
3174 static void
3175 jaddref_write(jaddref, jseg, data)
3176 	struct jaddref *jaddref;
3177 	struct jseg *jseg;
3178 	uint8_t *data;
3179 {
3180 	struct jrefrec *rec;
3181 
3182 	rec = (struct jrefrec *)data;
3183 	rec->jr_op = JOP_ADDREF;
3184 	inoref_write(&jaddref->ja_ref, jseg, rec);
3185 }
3186 
3187 static void
3188 jremref_write(jremref, jseg, data)
3189 	struct jremref *jremref;
3190 	struct jseg *jseg;
3191 	uint8_t *data;
3192 {
3193 	struct jrefrec *rec;
3194 
3195 	rec = (struct jrefrec *)data;
3196 	rec->jr_op = JOP_REMREF;
3197 	inoref_write(&jremref->jr_ref, jseg, rec);
3198 }
3199 
3200 static void
3201 jmvref_write(jmvref, jseg, data)
3202 	struct jmvref *jmvref;
3203 	struct jseg *jseg;
3204 	uint8_t *data;
3205 {
3206 	struct jmvrec *rec;
3207 
3208 	rec = (struct jmvrec *)data;
3209 	rec->jm_op = JOP_MVREF;
3210 	rec->jm_ino = jmvref->jm_ino;
3211 	rec->jm_parent = jmvref->jm_parent;
3212 	rec->jm_oldoff = jmvref->jm_oldoff;
3213 	rec->jm_newoff = jmvref->jm_newoff;
3214 }
3215 
3216 static void
3217 jnewblk_write(jnewblk, jseg, data)
3218 	struct jnewblk *jnewblk;
3219 	struct jseg *jseg;
3220 	uint8_t *data;
3221 {
3222 	struct jblkrec *rec;
3223 
3224 	jnewblk->jn_jsegdep->jd_seg = jseg;
3225 	rec = (struct jblkrec *)data;
3226 	rec->jb_op = JOP_NEWBLK;
3227 	rec->jb_ino = jnewblk->jn_ino;
3228 	rec->jb_blkno = jnewblk->jn_blkno;
3229 	rec->jb_lbn = jnewblk->jn_lbn;
3230 	rec->jb_frags = jnewblk->jn_frags;
3231 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3232 }
3233 
3234 static void
3235 jfreeblk_write(jfreeblk, jseg, data)
3236 	struct jfreeblk *jfreeblk;
3237 	struct jseg *jseg;
3238 	uint8_t *data;
3239 {
3240 	struct jblkrec *rec;
3241 
3242 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3243 	rec = (struct jblkrec *)data;
3244 	rec->jb_op = JOP_FREEBLK;
3245 	rec->jb_ino = jfreeblk->jf_ino;
3246 	rec->jb_blkno = jfreeblk->jf_blkno;
3247 	rec->jb_lbn = jfreeblk->jf_lbn;
3248 	rec->jb_frags = jfreeblk->jf_frags;
3249 	rec->jb_oldfrags = 0;
3250 }
3251 
3252 static void
3253 jfreefrag_write(jfreefrag, jseg, data)
3254 	struct jfreefrag *jfreefrag;
3255 	struct jseg *jseg;
3256 	uint8_t *data;
3257 {
3258 	struct jblkrec *rec;
3259 
3260 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3261 	rec = (struct jblkrec *)data;
3262 	rec->jb_op = JOP_FREEBLK;
3263 	rec->jb_ino = jfreefrag->fr_ino;
3264 	rec->jb_blkno = jfreefrag->fr_blkno;
3265 	rec->jb_lbn = jfreefrag->fr_lbn;
3266 	rec->jb_frags = jfreefrag->fr_frags;
3267 	rec->jb_oldfrags = 0;
3268 }
3269 
3270 static void
3271 jtrunc_write(jtrunc, jseg, data)
3272 	struct jtrunc *jtrunc;
3273 	struct jseg *jseg;
3274 	uint8_t *data;
3275 {
3276 	struct jtrncrec *rec;
3277 
3278 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3279 	rec = (struct jtrncrec *)data;
3280 	rec->jt_op = JOP_TRUNC;
3281 	rec->jt_ino = jtrunc->jt_ino;
3282 	rec->jt_size = jtrunc->jt_size;
3283 	rec->jt_extsize = jtrunc->jt_extsize;
3284 }
3285 
3286 static void
3287 jfsync_write(jfsync, jseg, data)
3288 	struct jfsync *jfsync;
3289 	struct jseg *jseg;
3290 	uint8_t *data;
3291 {
3292 	struct jtrncrec *rec;
3293 
3294 	rec = (struct jtrncrec *)data;
3295 	rec->jt_op = JOP_SYNC;
3296 	rec->jt_ino = jfsync->jfs_ino;
3297 	rec->jt_size = jfsync->jfs_size;
3298 	rec->jt_extsize = jfsync->jfs_extsize;
3299 }
3300 
3301 static void
3302 softdep_flushjournal(mp)
3303 	struct mount *mp;
3304 {
3305 	struct jblocks *jblocks;
3306 	struct ufsmount *ump;
3307 
3308 	if (MOUNTEDSUJ(mp) == 0)
3309 		return;
3310 	ump = VFSTOUFS(mp);
3311 	jblocks = ump->softdep_jblocks;
3312 	ACQUIRE_LOCK(ump);
3313 	while (ump->softdep_on_journal) {
3314 		jblocks->jb_needseg = 1;
3315 		softdep_process_journal(mp, NULL, MNT_WAIT);
3316 	}
3317 	FREE_LOCK(ump);
3318 }
3319 
3320 static void softdep_synchronize_completed(struct bio *);
3321 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3322 
3323 static void
3324 softdep_synchronize_completed(bp)
3325         struct bio *bp;
3326 {
3327 	struct jseg *oldest;
3328 	struct jseg *jseg;
3329 	struct ufsmount *ump;
3330 
3331 	/*
3332 	 * caller1 marks the last segment written before we issued the
3333 	 * synchronize cache.
3334 	 */
3335 	jseg = bp->bio_caller1;
3336 	if (jseg == NULL) {
3337 		g_destroy_bio(bp);
3338 		return;
3339 	}
3340 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3341 	ACQUIRE_LOCK(ump);
3342 	oldest = NULL;
3343 	/*
3344 	 * Mark all the journal entries waiting on the synchronize cache
3345 	 * as completed so they may continue on.
3346 	 */
3347 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3348 		jseg->js_state |= COMPLETE;
3349 		oldest = jseg;
3350 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3351 	}
3352 	/*
3353 	 * Restart deferred journal entry processing from the oldest
3354 	 * completed jseg.
3355 	 */
3356 	if (oldest)
3357 		complete_jsegs(oldest);
3358 
3359 	FREE_LOCK(ump);
3360 	g_destroy_bio(bp);
3361 }
3362 
3363 /*
3364  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3365  * barriers.  The journal must be written prior to any blocks that depend
3366  * on it and the journal can not be released until the blocks have be
3367  * written.  This code handles both barriers simultaneously.
3368  */
3369 static void
3370 softdep_synchronize(bp, ump, caller1)
3371 	struct bio *bp;
3372 	struct ufsmount *ump;
3373 	void *caller1;
3374 {
3375 
3376 	bp->bio_cmd = BIO_FLUSH;
3377 	bp->bio_flags |= BIO_ORDERED;
3378 	bp->bio_data = NULL;
3379 	bp->bio_offset = ump->um_cp->provider->mediasize;
3380 	bp->bio_length = 0;
3381 	bp->bio_done = softdep_synchronize_completed;
3382 	bp->bio_caller1 = caller1;
3383 	g_io_request(bp, ump->um_cp);
3384 }
3385 
3386 /*
3387  * Flush some journal records to disk.
3388  */
3389 static void
3390 softdep_process_journal(mp, needwk, flags)
3391 	struct mount *mp;
3392 	struct worklist *needwk;
3393 	int flags;
3394 {
3395 	struct jblocks *jblocks;
3396 	struct ufsmount *ump;
3397 	struct worklist *wk;
3398 	struct jseg *jseg;
3399 	struct buf *bp;
3400 	struct bio *bio;
3401 	uint8_t *data;
3402 	struct fs *fs;
3403 	int shouldflush;
3404 	int segwritten;
3405 	int jrecmin;	/* Minimum records per block. */
3406 	int jrecmax;	/* Maximum records per block. */
3407 	int size;
3408 	int cnt;
3409 	int off;
3410 	int devbsize;
3411 
3412 	if (MOUNTEDSUJ(mp) == 0)
3413 		return;
3414 	shouldflush = softdep_flushcache;
3415 	bio = NULL;
3416 	jseg = NULL;
3417 	ump = VFSTOUFS(mp);
3418 	LOCK_OWNED(ump);
3419 	fs = ump->um_fs;
3420 	jblocks = ump->softdep_jblocks;
3421 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3422 	/*
3423 	 * We write anywhere between a disk block and fs block.  The upper
3424 	 * bound is picked to prevent buffer cache fragmentation and limit
3425 	 * processing time per I/O.
3426 	 */
3427 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3428 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3429 	segwritten = 0;
3430 	for (;;) {
3431 		cnt = ump->softdep_on_journal;
3432 		/*
3433 		 * Criteria for writing a segment:
3434 		 * 1) We have a full block.
3435 		 * 2) We're called from jwait() and haven't found the
3436 		 *    journal item yet.
3437 		 * 3) Always write if needseg is set.
3438 		 * 4) If we are called from process_worklist and have
3439 		 *    not yet written anything we write a partial block
3440 		 *    to enforce a 1 second maximum latency on journal
3441 		 *    entries.
3442 		 */
3443 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3444 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3445 			break;
3446 		cnt++;
3447 		/*
3448 		 * Verify some free journal space.  softdep_prealloc() should
3449 		 * guarantee that we don't run out so this is indicative of
3450 		 * a problem with the flow control.  Try to recover
3451 		 * gracefully in any event.
3452 		 */
3453 		while (jblocks->jb_free == 0) {
3454 			if (flags != MNT_WAIT)
3455 				break;
3456 			printf("softdep: Out of journal space!\n");
3457 			softdep_speedup(ump);
3458 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3459 		}
3460 		FREE_LOCK(ump);
3461 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3462 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3463 		LIST_INIT(&jseg->js_entries);
3464 		LIST_INIT(&jseg->js_indirs);
3465 		jseg->js_state = ATTACHED;
3466 		if (shouldflush == 0)
3467 			jseg->js_state |= COMPLETE;
3468 		else if (bio == NULL)
3469 			bio = g_alloc_bio();
3470 		jseg->js_jblocks = jblocks;
3471 		bp = geteblk(fs->fs_bsize, 0);
3472 		ACQUIRE_LOCK(ump);
3473 		/*
3474 		 * If there was a race while we were allocating the block
3475 		 * and jseg the entry we care about was likely written.
3476 		 * We bail out in both the WAIT and NOWAIT case and assume
3477 		 * the caller will loop if the entry it cares about is
3478 		 * not written.
3479 		 */
3480 		cnt = ump->softdep_on_journal;
3481 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3482 			bp->b_flags |= B_INVAL | B_NOCACHE;
3483 			WORKITEM_FREE(jseg, D_JSEG);
3484 			FREE_LOCK(ump);
3485 			brelse(bp);
3486 			ACQUIRE_LOCK(ump);
3487 			break;
3488 		}
3489 		/*
3490 		 * Calculate the disk block size required for the available
3491 		 * records rounded to the min size.
3492 		 */
3493 		if (cnt == 0)
3494 			size = devbsize;
3495 		else if (cnt < jrecmax)
3496 			size = howmany(cnt, jrecmin) * devbsize;
3497 		else
3498 			size = fs->fs_bsize;
3499 		/*
3500 		 * Allocate a disk block for this journal data and account
3501 		 * for truncation of the requested size if enough contiguous
3502 		 * space was not available.
3503 		 */
3504 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3505 		bp->b_lblkno = bp->b_blkno;
3506 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3507 		bp->b_bcount = size;
3508 		bp->b_flags &= ~B_INVAL;
3509 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3510 		/*
3511 		 * Initialize our jseg with cnt records.  Assign the next
3512 		 * sequence number to it and link it in-order.
3513 		 */
3514 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3515 		jseg->js_buf = bp;
3516 		jseg->js_cnt = cnt;
3517 		jseg->js_refs = cnt + 1;	/* Self ref. */
3518 		jseg->js_size = size;
3519 		jseg->js_seq = jblocks->jb_nextseq++;
3520 		if (jblocks->jb_oldestseg == NULL)
3521 			jblocks->jb_oldestseg = jseg;
3522 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3523 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3524 		if (jblocks->jb_writeseg == NULL)
3525 			jblocks->jb_writeseg = jseg;
3526 		/*
3527 		 * Start filling in records from the pending list.
3528 		 */
3529 		data = bp->b_data;
3530 		off = 0;
3531 
3532 		/*
3533 		 * Always put a header on the first block.
3534 		 * XXX As with below, there might not be a chance to get
3535 		 * into the loop.  Ensure that something valid is written.
3536 		 */
3537 		jseg_write(ump, jseg, data);
3538 		off += JREC_SIZE;
3539 		data = bp->b_data + off;
3540 
3541 		/*
3542 		 * XXX Something is wrong here.  There's no work to do,
3543 		 * but we need to perform and I/O and allow it to complete
3544 		 * anyways.
3545 		 */
3546 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3547 			stat_emptyjblocks++;
3548 
3549 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3550 		    != NULL) {
3551 			if (cnt == 0)
3552 				break;
3553 			/* Place a segment header on every device block. */
3554 			if ((off % devbsize) == 0) {
3555 				jseg_write(ump, jseg, data);
3556 				off += JREC_SIZE;
3557 				data = bp->b_data + off;
3558 			}
3559 			if (wk == needwk)
3560 				needwk = NULL;
3561 			remove_from_journal(wk);
3562 			wk->wk_state |= INPROGRESS;
3563 			WORKLIST_INSERT(&jseg->js_entries, wk);
3564 			switch (wk->wk_type) {
3565 			case D_JADDREF:
3566 				jaddref_write(WK_JADDREF(wk), jseg, data);
3567 				break;
3568 			case D_JREMREF:
3569 				jremref_write(WK_JREMREF(wk), jseg, data);
3570 				break;
3571 			case D_JMVREF:
3572 				jmvref_write(WK_JMVREF(wk), jseg, data);
3573 				break;
3574 			case D_JNEWBLK:
3575 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3576 				break;
3577 			case D_JFREEBLK:
3578 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3579 				break;
3580 			case D_JFREEFRAG:
3581 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3582 				break;
3583 			case D_JTRUNC:
3584 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3585 				break;
3586 			case D_JFSYNC:
3587 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3588 				break;
3589 			default:
3590 				panic("process_journal: Unknown type %s",
3591 				    TYPENAME(wk->wk_type));
3592 				/* NOTREACHED */
3593 			}
3594 			off += JREC_SIZE;
3595 			data = bp->b_data + off;
3596 			cnt--;
3597 		}
3598 
3599 		/* Clear any remaining space so we don't leak kernel data */
3600 		if (size > off)
3601 			bzero(data, size - off);
3602 
3603 		/*
3604 		 * Write this one buffer and continue.
3605 		 */
3606 		segwritten = 1;
3607 		jblocks->jb_needseg = 0;
3608 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3609 		FREE_LOCK(ump);
3610 		bp->b_xflags |= BX_CVTENXIO;
3611 		pbgetvp(ump->um_devvp, bp);
3612 		/*
3613 		 * We only do the blocking wait once we find the journal
3614 		 * entry we're looking for.
3615 		 */
3616 		if (needwk == NULL && flags == MNT_WAIT)
3617 			bwrite(bp);
3618 		else
3619 			bawrite(bp);
3620 		ACQUIRE_LOCK(ump);
3621 	}
3622 	/*
3623 	 * If we wrote a segment issue a synchronize cache so the journal
3624 	 * is reflected on disk before the data is written.  Since reclaiming
3625 	 * journal space also requires writing a journal record this
3626 	 * process also enforces a barrier before reclamation.
3627 	 */
3628 	if (segwritten && shouldflush) {
3629 		softdep_synchronize(bio, ump,
3630 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3631 	} else if (bio)
3632 		g_destroy_bio(bio);
3633 	/*
3634 	 * If we've suspended the filesystem because we ran out of journal
3635 	 * space either try to sync it here to make some progress or
3636 	 * unsuspend it if we already have.
3637 	 */
3638 	if (flags == 0 && jblocks->jb_suspended) {
3639 		if (journal_unsuspend(ump))
3640 			return;
3641 		FREE_LOCK(ump);
3642 		VFS_SYNC(mp, MNT_NOWAIT);
3643 		ffs_sbupdate(ump, MNT_WAIT, 0);
3644 		ACQUIRE_LOCK(ump);
3645 	}
3646 }
3647 
3648 /*
3649  * Complete a jseg, allowing all dependencies awaiting journal writes
3650  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3651  * structures so that the journal segment can be freed to reclaim space.
3652  */
3653 static void
3654 complete_jseg(jseg)
3655 	struct jseg *jseg;
3656 {
3657 	struct worklist *wk;
3658 	struct jmvref *jmvref;
3659 #ifdef INVARIANTS
3660 	int i = 0;
3661 #endif
3662 
3663 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3664 		WORKLIST_REMOVE(wk);
3665 		wk->wk_state &= ~INPROGRESS;
3666 		wk->wk_state |= COMPLETE;
3667 		KASSERT(i++ < jseg->js_cnt,
3668 		    ("handle_written_jseg: overflow %d >= %d",
3669 		    i - 1, jseg->js_cnt));
3670 		switch (wk->wk_type) {
3671 		case D_JADDREF:
3672 			handle_written_jaddref(WK_JADDREF(wk));
3673 			break;
3674 		case D_JREMREF:
3675 			handle_written_jremref(WK_JREMREF(wk));
3676 			break;
3677 		case D_JMVREF:
3678 			rele_jseg(jseg);	/* No jsegdep. */
3679 			jmvref = WK_JMVREF(wk);
3680 			LIST_REMOVE(jmvref, jm_deps);
3681 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3682 				free_pagedep(jmvref->jm_pagedep);
3683 			WORKITEM_FREE(jmvref, D_JMVREF);
3684 			break;
3685 		case D_JNEWBLK:
3686 			handle_written_jnewblk(WK_JNEWBLK(wk));
3687 			break;
3688 		case D_JFREEBLK:
3689 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3690 			break;
3691 		case D_JTRUNC:
3692 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3693 			break;
3694 		case D_JFSYNC:
3695 			rele_jseg(jseg);	/* No jsegdep. */
3696 			WORKITEM_FREE(wk, D_JFSYNC);
3697 			break;
3698 		case D_JFREEFRAG:
3699 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3700 			break;
3701 		default:
3702 			panic("handle_written_jseg: Unknown type %s",
3703 			    TYPENAME(wk->wk_type));
3704 			/* NOTREACHED */
3705 		}
3706 	}
3707 	/* Release the self reference so the structure may be freed. */
3708 	rele_jseg(jseg);
3709 }
3710 
3711 /*
3712  * Determine which jsegs are ready for completion processing.  Waits for
3713  * synchronize cache to complete as well as forcing in-order completion
3714  * of journal entries.
3715  */
3716 static void
3717 complete_jsegs(jseg)
3718 	struct jseg *jseg;
3719 {
3720 	struct jblocks *jblocks;
3721 	struct jseg *jsegn;
3722 
3723 	jblocks = jseg->js_jblocks;
3724 	/*
3725 	 * Don't allow out of order completions.  If this isn't the first
3726 	 * block wait for it to write before we're done.
3727 	 */
3728 	if (jseg != jblocks->jb_writeseg)
3729 		return;
3730 	/* Iterate through available jsegs processing their entries. */
3731 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3732 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3733 		jsegn = TAILQ_NEXT(jseg, js_next);
3734 		complete_jseg(jseg);
3735 		jseg = jsegn;
3736 	}
3737 	jblocks->jb_writeseg = jseg;
3738 	/*
3739 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3740 	 */
3741 	free_jsegs(jblocks);
3742 }
3743 
3744 /*
3745  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3746  * the final completions.
3747  */
3748 static void
3749 handle_written_jseg(jseg, bp)
3750 	struct jseg *jseg;
3751 	struct buf *bp;
3752 {
3753 
3754 	if (jseg->js_refs == 0)
3755 		panic("handle_written_jseg: No self-reference on %p", jseg);
3756 	jseg->js_state |= DEPCOMPLETE;
3757 	/*
3758 	 * We'll never need this buffer again, set flags so it will be
3759 	 * discarded.
3760 	 */
3761 	bp->b_flags |= B_INVAL | B_NOCACHE;
3762 	pbrelvp(bp);
3763 	complete_jsegs(jseg);
3764 }
3765 
3766 static inline struct jsegdep *
3767 inoref_jseg(inoref)
3768 	struct inoref *inoref;
3769 {
3770 	struct jsegdep *jsegdep;
3771 
3772 	jsegdep = inoref->if_jsegdep;
3773 	inoref->if_jsegdep = NULL;
3774 
3775 	return (jsegdep);
3776 }
3777 
3778 /*
3779  * Called once a jremref has made it to stable store.  The jremref is marked
3780  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3781  * for the jremref to complete will be awoken by free_jremref.
3782  */
3783 static void
3784 handle_written_jremref(jremref)
3785 	struct jremref *jremref;
3786 {
3787 	struct inodedep *inodedep;
3788 	struct jsegdep *jsegdep;
3789 	struct dirrem *dirrem;
3790 
3791 	/* Grab the jsegdep. */
3792 	jsegdep = inoref_jseg(&jremref->jr_ref);
3793 	/*
3794 	 * Remove us from the inoref list.
3795 	 */
3796 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3797 	    0, &inodedep) == 0)
3798 		panic("handle_written_jremref: Lost inodedep");
3799 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3800 	/*
3801 	 * Complete the dirrem.
3802 	 */
3803 	dirrem = jremref->jr_dirrem;
3804 	jremref->jr_dirrem = NULL;
3805 	LIST_REMOVE(jremref, jr_deps);
3806 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3807 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3808 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3809 	    (dirrem->dm_state & COMPLETE) != 0)
3810 		add_to_worklist(&dirrem->dm_list, 0);
3811 	free_jremref(jremref);
3812 }
3813 
3814 /*
3815  * Called once a jaddref has made it to stable store.  The dependency is
3816  * marked complete and any dependent structures are added to the inode
3817  * bufwait list to be completed as soon as it is written.  If a bitmap write
3818  * depends on this entry we move the inode into the inodedephd of the
3819  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3820  */
3821 static void
3822 handle_written_jaddref(jaddref)
3823 	struct jaddref *jaddref;
3824 {
3825 	struct jsegdep *jsegdep;
3826 	struct inodedep *inodedep;
3827 	struct diradd *diradd;
3828 	struct mkdir *mkdir;
3829 
3830 	/* Grab the jsegdep. */
3831 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3832 	mkdir = NULL;
3833 	diradd = NULL;
3834 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3835 	    0, &inodedep) == 0)
3836 		panic("handle_written_jaddref: Lost inodedep.");
3837 	if (jaddref->ja_diradd == NULL)
3838 		panic("handle_written_jaddref: No dependency");
3839 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3840 		diradd = jaddref->ja_diradd;
3841 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3842 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3843 		mkdir = jaddref->ja_mkdir;
3844 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3845 	} else if (jaddref->ja_state & MKDIR_BODY)
3846 		mkdir = jaddref->ja_mkdir;
3847 	else
3848 		panic("handle_written_jaddref: Unknown dependency %p",
3849 		    jaddref->ja_diradd);
3850 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3851 	/*
3852 	 * Remove us from the inode list.
3853 	 */
3854 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3855 	/*
3856 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3857 	 */
3858 	if (mkdir) {
3859 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3860 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3861 		    TYPENAME(mkdir->md_list.wk_type)));
3862 		mkdir->md_jaddref = NULL;
3863 		diradd = mkdir->md_diradd;
3864 		mkdir->md_state |= DEPCOMPLETE;
3865 		complete_mkdir(mkdir);
3866 	}
3867 	jwork_insert(&diradd->da_jwork, jsegdep);
3868 	if (jaddref->ja_state & NEWBLOCK) {
3869 		inodedep->id_state |= ONDEPLIST;
3870 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3871 		    inodedep, id_deps);
3872 	}
3873 	free_jaddref(jaddref);
3874 }
3875 
3876 /*
3877  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3878  * is placed in the bmsafemap to await notification of a written bitmap.  If
3879  * the operation was canceled we add the segdep to the appropriate
3880  * dependency to free the journal space once the canceling operation
3881  * completes.
3882  */
3883 static void
3884 handle_written_jnewblk(jnewblk)
3885 	struct jnewblk *jnewblk;
3886 {
3887 	struct bmsafemap *bmsafemap;
3888 	struct freefrag *freefrag;
3889 	struct freework *freework;
3890 	struct jsegdep *jsegdep;
3891 	struct newblk *newblk;
3892 
3893 	/* Grab the jsegdep. */
3894 	jsegdep = jnewblk->jn_jsegdep;
3895 	jnewblk->jn_jsegdep = NULL;
3896 	if (jnewblk->jn_dep == NULL)
3897 		panic("handle_written_jnewblk: No dependency for the segdep.");
3898 	switch (jnewblk->jn_dep->wk_type) {
3899 	case D_NEWBLK:
3900 	case D_ALLOCDIRECT:
3901 	case D_ALLOCINDIR:
3902 		/*
3903 		 * Add the written block to the bmsafemap so it can
3904 		 * be notified when the bitmap is on disk.
3905 		 */
3906 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3907 		newblk->nb_jnewblk = NULL;
3908 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3909 			bmsafemap = newblk->nb_bmsafemap;
3910 			newblk->nb_state |= ONDEPLIST;
3911 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3912 			    nb_deps);
3913 		}
3914 		jwork_insert(&newblk->nb_jwork, jsegdep);
3915 		break;
3916 	case D_FREEFRAG:
3917 		/*
3918 		 * A newblock being removed by a freefrag when replaced by
3919 		 * frag extension.
3920 		 */
3921 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3922 		freefrag->ff_jdep = NULL;
3923 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3924 		break;
3925 	case D_FREEWORK:
3926 		/*
3927 		 * A direct block was removed by truncate.
3928 		 */
3929 		freework = WK_FREEWORK(jnewblk->jn_dep);
3930 		freework->fw_jnewblk = NULL;
3931 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3932 		break;
3933 	default:
3934 		panic("handle_written_jnewblk: Unknown type %d.",
3935 		    jnewblk->jn_dep->wk_type);
3936 	}
3937 	jnewblk->jn_dep = NULL;
3938 	free_jnewblk(jnewblk);
3939 }
3940 
3941 /*
3942  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3943  * an in-flight allocation that has not yet been committed.  Divorce us
3944  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3945  * to the worklist.
3946  */
3947 static void
3948 cancel_jfreefrag(jfreefrag)
3949 	struct jfreefrag *jfreefrag;
3950 {
3951 	struct freefrag *freefrag;
3952 
3953 	if (jfreefrag->fr_jsegdep) {
3954 		free_jsegdep(jfreefrag->fr_jsegdep);
3955 		jfreefrag->fr_jsegdep = NULL;
3956 	}
3957 	freefrag = jfreefrag->fr_freefrag;
3958 	jfreefrag->fr_freefrag = NULL;
3959 	free_jfreefrag(jfreefrag);
3960 	freefrag->ff_state |= DEPCOMPLETE;
3961 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3962 }
3963 
3964 /*
3965  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3966  */
3967 static void
3968 free_jfreefrag(jfreefrag)
3969 	struct jfreefrag *jfreefrag;
3970 {
3971 
3972 	if (jfreefrag->fr_state & INPROGRESS)
3973 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3974 	else if (jfreefrag->fr_state & ONWORKLIST)
3975 		remove_from_journal(&jfreefrag->fr_list);
3976 	if (jfreefrag->fr_freefrag != NULL)
3977 		panic("free_jfreefrag:  Still attached to a freefrag.");
3978 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3979 }
3980 
3981 /*
3982  * Called when the journal write for a jfreefrag completes.  The parent
3983  * freefrag is added to the worklist if this completes its dependencies.
3984  */
3985 static void
3986 handle_written_jfreefrag(jfreefrag)
3987 	struct jfreefrag *jfreefrag;
3988 {
3989 	struct jsegdep *jsegdep;
3990 	struct freefrag *freefrag;
3991 
3992 	/* Grab the jsegdep. */
3993 	jsegdep = jfreefrag->fr_jsegdep;
3994 	jfreefrag->fr_jsegdep = NULL;
3995 	freefrag = jfreefrag->fr_freefrag;
3996 	if (freefrag == NULL)
3997 		panic("handle_written_jfreefrag: No freefrag.");
3998 	freefrag->ff_state |= DEPCOMPLETE;
3999 	freefrag->ff_jdep = NULL;
4000 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4001 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4002 		add_to_worklist(&freefrag->ff_list, 0);
4003 	jfreefrag->fr_freefrag = NULL;
4004 	free_jfreefrag(jfreefrag);
4005 }
4006 
4007 /*
4008  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4009  * is removed from the freeblks list of pending journal writes and the
4010  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4011  * have been reclaimed.
4012  */
4013 static void
4014 handle_written_jblkdep(jblkdep)
4015 	struct jblkdep *jblkdep;
4016 {
4017 	struct freeblks *freeblks;
4018 	struct jsegdep *jsegdep;
4019 
4020 	/* Grab the jsegdep. */
4021 	jsegdep = jblkdep->jb_jsegdep;
4022 	jblkdep->jb_jsegdep = NULL;
4023 	freeblks = jblkdep->jb_freeblks;
4024 	LIST_REMOVE(jblkdep, jb_deps);
4025 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4026 	/*
4027 	 * If the freeblks is all journaled, we can add it to the worklist.
4028 	 */
4029 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4030 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4031 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4032 
4033 	free_jblkdep(jblkdep);
4034 }
4035 
4036 static struct jsegdep *
4037 newjsegdep(struct worklist *wk)
4038 {
4039 	struct jsegdep *jsegdep;
4040 
4041 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4042 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4043 	jsegdep->jd_seg = NULL;
4044 
4045 	return (jsegdep);
4046 }
4047 
4048 static struct jmvref *
4049 newjmvref(dp, ino, oldoff, newoff)
4050 	struct inode *dp;
4051 	ino_t ino;
4052 	off_t oldoff;
4053 	off_t newoff;
4054 {
4055 	struct jmvref *jmvref;
4056 
4057 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4058 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4059 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4060 	jmvref->jm_parent = dp->i_number;
4061 	jmvref->jm_ino = ino;
4062 	jmvref->jm_oldoff = oldoff;
4063 	jmvref->jm_newoff = newoff;
4064 
4065 	return (jmvref);
4066 }
4067 
4068 /*
4069  * Allocate a new jremref that tracks the removal of ip from dp with the
4070  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4071  * DEPCOMPLETE as we have all the information required for the journal write
4072  * and the directory has already been removed from the buffer.  The caller
4073  * is responsible for linking the jremref into the pagedep and adding it
4074  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4075  * a DOTDOT addition so handle_workitem_remove() can properly assign
4076  * the jsegdep when we're done.
4077  */
4078 static struct jremref *
4079 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4080     off_t diroff, nlink_t nlink)
4081 {
4082 	struct jremref *jremref;
4083 
4084 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4085 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4086 	jremref->jr_state = ATTACHED;
4087 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4088 	   nlink, ip->i_mode);
4089 	jremref->jr_dirrem = dirrem;
4090 
4091 	return (jremref);
4092 }
4093 
4094 static inline void
4095 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4096     nlink_t nlink, uint16_t mode)
4097 {
4098 
4099 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4100 	inoref->if_diroff = diroff;
4101 	inoref->if_ino = ino;
4102 	inoref->if_parent = parent;
4103 	inoref->if_nlink = nlink;
4104 	inoref->if_mode = mode;
4105 }
4106 
4107 /*
4108  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4109  * directory offset may not be known until later.  The caller is responsible
4110  * adding the entry to the journal when this information is available.  nlink
4111  * should be the link count prior to the addition and mode is only required
4112  * to have the correct FMT.
4113  */
4114 static struct jaddref *
4115 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4116     uint16_t mode)
4117 {
4118 	struct jaddref *jaddref;
4119 
4120 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4121 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4122 	jaddref->ja_state = ATTACHED;
4123 	jaddref->ja_mkdir = NULL;
4124 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4125 
4126 	return (jaddref);
4127 }
4128 
4129 /*
4130  * Create a new free dependency for a freework.  The caller is responsible
4131  * for adjusting the reference count when it has the lock held.  The freedep
4132  * will track an outstanding bitmap write that will ultimately clear the
4133  * freework to continue.
4134  */
4135 static struct freedep *
4136 newfreedep(struct freework *freework)
4137 {
4138 	struct freedep *freedep;
4139 
4140 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4141 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4142 	freedep->fd_freework = freework;
4143 
4144 	return (freedep);
4145 }
4146 
4147 /*
4148  * Free a freedep structure once the buffer it is linked to is written.  If
4149  * this is the last reference to the freework schedule it for completion.
4150  */
4151 static void
4152 free_freedep(freedep)
4153 	struct freedep *freedep;
4154 {
4155 	struct freework *freework;
4156 
4157 	freework = freedep->fd_freework;
4158 	freework->fw_freeblks->fb_cgwait--;
4159 	if (--freework->fw_ref == 0)
4160 		freework_enqueue(freework);
4161 	WORKITEM_FREE(freedep, D_FREEDEP);
4162 }
4163 
4164 /*
4165  * Allocate a new freework structure that may be a level in an indirect
4166  * when parent is not NULL or a top level block when it is.  The top level
4167  * freework structures are allocated without the per-filesystem lock held
4168  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4169  */
4170 static struct freework *
4171 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4172 	struct ufsmount *ump;
4173 	struct freeblks *freeblks;
4174 	struct freework *parent;
4175 	ufs_lbn_t lbn;
4176 	ufs2_daddr_t nb;
4177 	int frags;
4178 	int off;
4179 	int journal;
4180 {
4181 	struct freework *freework;
4182 
4183 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4184 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4185 	freework->fw_state = ATTACHED;
4186 	freework->fw_jnewblk = NULL;
4187 	freework->fw_freeblks = freeblks;
4188 	freework->fw_parent = parent;
4189 	freework->fw_lbn = lbn;
4190 	freework->fw_blkno = nb;
4191 	freework->fw_frags = frags;
4192 	freework->fw_indir = NULL;
4193 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4194 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4195 	freework->fw_start = freework->fw_off = off;
4196 	if (journal)
4197 		newjfreeblk(freeblks, lbn, nb, frags);
4198 	if (parent == NULL) {
4199 		ACQUIRE_LOCK(ump);
4200 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4201 		freeblks->fb_ref++;
4202 		FREE_LOCK(ump);
4203 	}
4204 
4205 	return (freework);
4206 }
4207 
4208 /*
4209  * Eliminate a jfreeblk for a block that does not need journaling.
4210  */
4211 static void
4212 cancel_jfreeblk(freeblks, blkno)
4213 	struct freeblks *freeblks;
4214 	ufs2_daddr_t blkno;
4215 {
4216 	struct jfreeblk *jfreeblk;
4217 	struct jblkdep *jblkdep;
4218 
4219 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4220 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4221 			continue;
4222 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4223 		if (jfreeblk->jf_blkno == blkno)
4224 			break;
4225 	}
4226 	if (jblkdep == NULL)
4227 		return;
4228 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4229 	free_jsegdep(jblkdep->jb_jsegdep);
4230 	LIST_REMOVE(jblkdep, jb_deps);
4231 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4232 }
4233 
4234 /*
4235  * Allocate a new jfreeblk to journal top level block pointer when truncating
4236  * a file.  The caller must add this to the worklist when the per-filesystem
4237  * lock is held.
4238  */
4239 static struct jfreeblk *
4240 newjfreeblk(freeblks, lbn, blkno, frags)
4241 	struct freeblks *freeblks;
4242 	ufs_lbn_t lbn;
4243 	ufs2_daddr_t blkno;
4244 	int frags;
4245 {
4246 	struct jfreeblk *jfreeblk;
4247 
4248 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4249 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4250 	    freeblks->fb_list.wk_mp);
4251 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4252 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4253 	jfreeblk->jf_ino = freeblks->fb_inum;
4254 	jfreeblk->jf_lbn = lbn;
4255 	jfreeblk->jf_blkno = blkno;
4256 	jfreeblk->jf_frags = frags;
4257 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4258 
4259 	return (jfreeblk);
4260 }
4261 
4262 /*
4263  * The journal is only prepared to handle full-size block numbers, so we
4264  * have to adjust the record to reflect the change to a full-size block.
4265  * For example, suppose we have a block made up of fragments 8-15 and
4266  * want to free its last two fragments. We are given a request that says:
4267  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4268  * where frags are the number of fragments to free and oldfrags are the
4269  * number of fragments to keep. To block align it, we have to change it to
4270  * have a valid full-size blkno, so it becomes:
4271  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4272  */
4273 static void
4274 adjust_newfreework(freeblks, frag_offset)
4275 	struct freeblks *freeblks;
4276 	int frag_offset;
4277 {
4278 	struct jfreeblk *jfreeblk;
4279 
4280 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4281 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4282 	    ("adjust_newfreework: Missing freeblks dependency"));
4283 
4284 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4285 	jfreeblk->jf_blkno -= frag_offset;
4286 	jfreeblk->jf_frags += frag_offset;
4287 }
4288 
4289 /*
4290  * Allocate a new jtrunc to track a partial truncation.
4291  */
4292 static struct jtrunc *
4293 newjtrunc(freeblks, size, extsize)
4294 	struct freeblks *freeblks;
4295 	off_t size;
4296 	int extsize;
4297 {
4298 	struct jtrunc *jtrunc;
4299 
4300 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4301 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4302 	    freeblks->fb_list.wk_mp);
4303 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4304 	jtrunc->jt_dep.jb_freeblks = freeblks;
4305 	jtrunc->jt_ino = freeblks->fb_inum;
4306 	jtrunc->jt_size = size;
4307 	jtrunc->jt_extsize = extsize;
4308 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4309 
4310 	return (jtrunc);
4311 }
4312 
4313 /*
4314  * If we're canceling a new bitmap we have to search for another ref
4315  * to move into the bmsafemap dep.  This might be better expressed
4316  * with another structure.
4317  */
4318 static void
4319 move_newblock_dep(jaddref, inodedep)
4320 	struct jaddref *jaddref;
4321 	struct inodedep *inodedep;
4322 {
4323 	struct inoref *inoref;
4324 	struct jaddref *jaddrefn;
4325 
4326 	jaddrefn = NULL;
4327 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4328 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4329 		if ((jaddref->ja_state & NEWBLOCK) &&
4330 		    inoref->if_list.wk_type == D_JADDREF) {
4331 			jaddrefn = (struct jaddref *)inoref;
4332 			break;
4333 		}
4334 	}
4335 	if (jaddrefn == NULL)
4336 		return;
4337 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4338 	jaddrefn->ja_state |= jaddref->ja_state &
4339 	    (ATTACHED | UNDONE | NEWBLOCK);
4340 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4341 	jaddref->ja_state |= ATTACHED;
4342 	LIST_REMOVE(jaddref, ja_bmdeps);
4343 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4344 	    ja_bmdeps);
4345 }
4346 
4347 /*
4348  * Cancel a jaddref either before it has been written or while it is being
4349  * written.  This happens when a link is removed before the add reaches
4350  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4351  * and inode to prevent the link count or bitmap from reaching the disk
4352  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4353  * required.
4354  *
4355  * Returns 1 if the canceled addref requires journaling of the remove and
4356  * 0 otherwise.
4357  */
4358 static int
4359 cancel_jaddref(jaddref, inodedep, wkhd)
4360 	struct jaddref *jaddref;
4361 	struct inodedep *inodedep;
4362 	struct workhead *wkhd;
4363 {
4364 	struct inoref *inoref;
4365 	struct jsegdep *jsegdep;
4366 	int needsj;
4367 
4368 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4369 	    ("cancel_jaddref: Canceling complete jaddref"));
4370 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4371 		needsj = 1;
4372 	else
4373 		needsj = 0;
4374 	if (inodedep == NULL)
4375 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4376 		    0, &inodedep) == 0)
4377 			panic("cancel_jaddref: Lost inodedep");
4378 	/*
4379 	 * We must adjust the nlink of any reference operation that follows
4380 	 * us so that it is consistent with the in-memory reference.  This
4381 	 * ensures that inode nlink rollbacks always have the correct link.
4382 	 */
4383 	if (needsj == 0) {
4384 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4385 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4386 			if (inoref->if_state & GOINGAWAY)
4387 				break;
4388 			inoref->if_nlink--;
4389 		}
4390 	}
4391 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4392 	if (jaddref->ja_state & NEWBLOCK)
4393 		move_newblock_dep(jaddref, inodedep);
4394 	wake_worklist(&jaddref->ja_list);
4395 	jaddref->ja_mkdir = NULL;
4396 	if (jaddref->ja_state & INPROGRESS) {
4397 		jaddref->ja_state &= ~INPROGRESS;
4398 		WORKLIST_REMOVE(&jaddref->ja_list);
4399 		jwork_insert(wkhd, jsegdep);
4400 	} else {
4401 		free_jsegdep(jsegdep);
4402 		if (jaddref->ja_state & DEPCOMPLETE)
4403 			remove_from_journal(&jaddref->ja_list);
4404 	}
4405 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4406 	/*
4407 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4408 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4409 	 * no longer need this addref attached to the inoreflst and it
4410 	 * will incorrectly adjust nlink if we leave it.
4411 	 */
4412 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4413 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4414 		    if_deps);
4415 		jaddref->ja_state |= COMPLETE;
4416 		free_jaddref(jaddref);
4417 		return (needsj);
4418 	}
4419 	/*
4420 	 * Leave the head of the list for jsegdeps for fast merging.
4421 	 */
4422 	if (LIST_FIRST(wkhd) != NULL) {
4423 		jaddref->ja_state |= ONWORKLIST;
4424 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4425 	} else
4426 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4427 
4428 	return (needsj);
4429 }
4430 
4431 /*
4432  * Attempt to free a jaddref structure when some work completes.  This
4433  * should only succeed once the entry is written and all dependencies have
4434  * been notified.
4435  */
4436 static void
4437 free_jaddref(jaddref)
4438 	struct jaddref *jaddref;
4439 {
4440 
4441 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4442 		return;
4443 	if (jaddref->ja_ref.if_jsegdep)
4444 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4445 		    jaddref, jaddref->ja_state);
4446 	if (jaddref->ja_state & NEWBLOCK)
4447 		LIST_REMOVE(jaddref, ja_bmdeps);
4448 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4449 		panic("free_jaddref: Bad state %p(0x%X)",
4450 		    jaddref, jaddref->ja_state);
4451 	if (jaddref->ja_mkdir != NULL)
4452 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4453 	WORKITEM_FREE(jaddref, D_JADDREF);
4454 }
4455 
4456 /*
4457  * Free a jremref structure once it has been written or discarded.
4458  */
4459 static void
4460 free_jremref(jremref)
4461 	struct jremref *jremref;
4462 {
4463 
4464 	if (jremref->jr_ref.if_jsegdep)
4465 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4466 	if (jremref->jr_state & INPROGRESS)
4467 		panic("free_jremref: IO still pending");
4468 	WORKITEM_FREE(jremref, D_JREMREF);
4469 }
4470 
4471 /*
4472  * Free a jnewblk structure.
4473  */
4474 static void
4475 free_jnewblk(jnewblk)
4476 	struct jnewblk *jnewblk;
4477 {
4478 
4479 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4480 		return;
4481 	LIST_REMOVE(jnewblk, jn_deps);
4482 	if (jnewblk->jn_dep != NULL)
4483 		panic("free_jnewblk: Dependency still attached.");
4484 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4485 }
4486 
4487 /*
4488  * Cancel a jnewblk which has been been made redundant by frag extension.
4489  */
4490 static void
4491 cancel_jnewblk(jnewblk, wkhd)
4492 	struct jnewblk *jnewblk;
4493 	struct workhead *wkhd;
4494 {
4495 	struct jsegdep *jsegdep;
4496 
4497 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4498 	jsegdep = jnewblk->jn_jsegdep;
4499 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4500 		panic("cancel_jnewblk: Invalid state");
4501 	jnewblk->jn_jsegdep  = NULL;
4502 	jnewblk->jn_dep = NULL;
4503 	jnewblk->jn_state |= GOINGAWAY;
4504 	if (jnewblk->jn_state & INPROGRESS) {
4505 		jnewblk->jn_state &= ~INPROGRESS;
4506 		WORKLIST_REMOVE(&jnewblk->jn_list);
4507 		jwork_insert(wkhd, jsegdep);
4508 	} else {
4509 		free_jsegdep(jsegdep);
4510 		remove_from_journal(&jnewblk->jn_list);
4511 	}
4512 	wake_worklist(&jnewblk->jn_list);
4513 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4514 }
4515 
4516 static void
4517 free_jblkdep(jblkdep)
4518 	struct jblkdep *jblkdep;
4519 {
4520 
4521 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4522 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4523 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4524 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4525 	else
4526 		panic("free_jblkdep: Unexpected type %s",
4527 		    TYPENAME(jblkdep->jb_list.wk_type));
4528 }
4529 
4530 /*
4531  * Free a single jseg once it is no longer referenced in memory or on
4532  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4533  * to disappear.
4534  */
4535 static void
4536 free_jseg(jseg, jblocks)
4537 	struct jseg *jseg;
4538 	struct jblocks *jblocks;
4539 {
4540 	struct freework *freework;
4541 
4542 	/*
4543 	 * Free freework structures that were lingering to indicate freed
4544 	 * indirect blocks that forced journal write ordering on reallocate.
4545 	 */
4546 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4547 		indirblk_remove(freework);
4548 	if (jblocks->jb_oldestseg == jseg)
4549 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4550 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4551 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4552 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4553 	    ("free_jseg: Freed jseg has valid entries."));
4554 	WORKITEM_FREE(jseg, D_JSEG);
4555 }
4556 
4557 /*
4558  * Free all jsegs that meet the criteria for being reclaimed and update
4559  * oldestseg.
4560  */
4561 static void
4562 free_jsegs(jblocks)
4563 	struct jblocks *jblocks;
4564 {
4565 	struct jseg *jseg;
4566 
4567 	/*
4568 	 * Free only those jsegs which have none allocated before them to
4569 	 * preserve the journal space ordering.
4570 	 */
4571 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4572 		/*
4573 		 * Only reclaim space when nothing depends on this journal
4574 		 * set and another set has written that it is no longer
4575 		 * valid.
4576 		 */
4577 		if (jseg->js_refs != 0) {
4578 			jblocks->jb_oldestseg = jseg;
4579 			return;
4580 		}
4581 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4582 			break;
4583 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4584 			break;
4585 		/*
4586 		 * We can free jsegs that didn't write entries when
4587 		 * oldestwrseq == js_seq.
4588 		 */
4589 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4590 		    jseg->js_cnt != 0)
4591 			break;
4592 		free_jseg(jseg, jblocks);
4593 	}
4594 	/*
4595 	 * If we exited the loop above we still must discover the
4596 	 * oldest valid segment.
4597 	 */
4598 	if (jseg)
4599 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4600 		     jseg = TAILQ_NEXT(jseg, js_next))
4601 			if (jseg->js_refs != 0)
4602 				break;
4603 	jblocks->jb_oldestseg = jseg;
4604 	/*
4605 	 * The journal has no valid records but some jsegs may still be
4606 	 * waiting on oldestwrseq to advance.  We force a small record
4607 	 * out to permit these lingering records to be reclaimed.
4608 	 */
4609 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4610 		jblocks->jb_needseg = 1;
4611 }
4612 
4613 /*
4614  * Release one reference to a jseg and free it if the count reaches 0.  This
4615  * should eventually reclaim journal space as well.
4616  */
4617 static void
4618 rele_jseg(jseg)
4619 	struct jseg *jseg;
4620 {
4621 
4622 	KASSERT(jseg->js_refs > 0,
4623 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4624 	if (--jseg->js_refs != 0)
4625 		return;
4626 	free_jsegs(jseg->js_jblocks);
4627 }
4628 
4629 /*
4630  * Release a jsegdep and decrement the jseg count.
4631  */
4632 static void
4633 free_jsegdep(jsegdep)
4634 	struct jsegdep *jsegdep;
4635 {
4636 
4637 	if (jsegdep->jd_seg)
4638 		rele_jseg(jsegdep->jd_seg);
4639 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4640 }
4641 
4642 /*
4643  * Wait for a journal item to make it to disk.  Initiate journal processing
4644  * if required.
4645  */
4646 static int
4647 jwait(wk, waitfor)
4648 	struct worklist *wk;
4649 	int waitfor;
4650 {
4651 
4652 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4653 	/*
4654 	 * Blocking journal waits cause slow synchronous behavior.  Record
4655 	 * stats on the frequency of these blocking operations.
4656 	 */
4657 	if (waitfor == MNT_WAIT) {
4658 		stat_journal_wait++;
4659 		switch (wk->wk_type) {
4660 		case D_JREMREF:
4661 		case D_JMVREF:
4662 			stat_jwait_filepage++;
4663 			break;
4664 		case D_JTRUNC:
4665 		case D_JFREEBLK:
4666 			stat_jwait_freeblks++;
4667 			break;
4668 		case D_JNEWBLK:
4669 			stat_jwait_newblk++;
4670 			break;
4671 		case D_JADDREF:
4672 			stat_jwait_inode++;
4673 			break;
4674 		default:
4675 			break;
4676 		}
4677 	}
4678 	/*
4679 	 * If IO has not started we process the journal.  We can't mark the
4680 	 * worklist item as IOWAITING because we drop the lock while
4681 	 * processing the journal and the worklist entry may be freed after
4682 	 * this point.  The caller may call back in and re-issue the request.
4683 	 */
4684 	if ((wk->wk_state & INPROGRESS) == 0) {
4685 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4686 		if (waitfor != MNT_WAIT)
4687 			return (EBUSY);
4688 		return (0);
4689 	}
4690 	if (waitfor != MNT_WAIT)
4691 		return (EBUSY);
4692 	wait_worklist(wk, "jwait");
4693 	return (0);
4694 }
4695 
4696 /*
4697  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4698  * appropriate.  This is a convenience function to reduce duplicate code
4699  * for the setup and revert functions below.
4700  */
4701 static struct inodedep *
4702 inodedep_lookup_ip(ip)
4703 	struct inode *ip;
4704 {
4705 	struct inodedep *inodedep;
4706 
4707 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4708 	    ("inodedep_lookup_ip: bad delta"));
4709 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4710 	    &inodedep);
4711 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4712 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4713 
4714 	return (inodedep);
4715 }
4716 
4717 /*
4718  * Called prior to creating a new inode and linking it to a directory.  The
4719  * jaddref structure must already be allocated by softdep_setup_inomapdep
4720  * and it is discovered here so we can initialize the mode and update
4721  * nlinkdelta.
4722  */
4723 void
4724 softdep_setup_create(dp, ip)
4725 	struct inode *dp;
4726 	struct inode *ip;
4727 {
4728 	struct inodedep *inodedep;
4729 	struct jaddref *jaddref;
4730 	struct vnode *dvp;
4731 
4732 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4733 	    ("softdep_setup_create called on non-softdep filesystem"));
4734 	KASSERT(ip->i_nlink == 1,
4735 	    ("softdep_setup_create: Invalid link count."));
4736 	dvp = ITOV(dp);
4737 	ACQUIRE_LOCK(ITOUMP(dp));
4738 	inodedep = inodedep_lookup_ip(ip);
4739 	if (DOINGSUJ(dvp)) {
4740 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4741 		    inoreflst);
4742 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4743 		    ("softdep_setup_create: No addref structure present."));
4744 	}
4745 	softdep_prelink(dvp, NULL);
4746 	FREE_LOCK(ITOUMP(dp));
4747 }
4748 
4749 /*
4750  * Create a jaddref structure to track the addition of a DOTDOT link when
4751  * we are reparenting an inode as part of a rename.  This jaddref will be
4752  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4753  * non-journaling softdep.
4754  */
4755 void
4756 softdep_setup_dotdot_link(dp, ip)
4757 	struct inode *dp;
4758 	struct inode *ip;
4759 {
4760 	struct inodedep *inodedep;
4761 	struct jaddref *jaddref;
4762 	struct vnode *dvp;
4763 
4764 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4765 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4766 	dvp = ITOV(dp);
4767 	jaddref = NULL;
4768 	/*
4769 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4770 	 * is used as a normal link would be.
4771 	 */
4772 	if (DOINGSUJ(dvp))
4773 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4774 		    dp->i_effnlink - 1, dp->i_mode);
4775 	ACQUIRE_LOCK(ITOUMP(dp));
4776 	inodedep = inodedep_lookup_ip(dp);
4777 	if (jaddref)
4778 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4779 		    if_deps);
4780 	softdep_prelink(dvp, ITOV(ip));
4781 	FREE_LOCK(ITOUMP(dp));
4782 }
4783 
4784 /*
4785  * Create a jaddref structure to track a new link to an inode.  The directory
4786  * offset is not known until softdep_setup_directory_add or
4787  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4788  * softdep.
4789  */
4790 void
4791 softdep_setup_link(dp, ip)
4792 	struct inode *dp;
4793 	struct inode *ip;
4794 {
4795 	struct inodedep *inodedep;
4796 	struct jaddref *jaddref;
4797 	struct vnode *dvp;
4798 
4799 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4800 	    ("softdep_setup_link called on non-softdep filesystem"));
4801 	dvp = ITOV(dp);
4802 	jaddref = NULL;
4803 	if (DOINGSUJ(dvp))
4804 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4805 		    ip->i_mode);
4806 	ACQUIRE_LOCK(ITOUMP(dp));
4807 	inodedep = inodedep_lookup_ip(ip);
4808 	if (jaddref)
4809 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4810 		    if_deps);
4811 	softdep_prelink(dvp, ITOV(ip));
4812 	FREE_LOCK(ITOUMP(dp));
4813 }
4814 
4815 /*
4816  * Called to create the jaddref structures to track . and .. references as
4817  * well as lookup and further initialize the incomplete jaddref created
4818  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4819  * nlinkdelta for non-journaling softdep.
4820  */
4821 void
4822 softdep_setup_mkdir(dp, ip)
4823 	struct inode *dp;
4824 	struct inode *ip;
4825 {
4826 	struct inodedep *inodedep;
4827 	struct jaddref *dotdotaddref;
4828 	struct jaddref *dotaddref;
4829 	struct jaddref *jaddref;
4830 	struct vnode *dvp;
4831 
4832 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4833 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4834 	dvp = ITOV(dp);
4835 	dotaddref = dotdotaddref = NULL;
4836 	if (DOINGSUJ(dvp)) {
4837 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4838 		    ip->i_mode);
4839 		dotaddref->ja_state |= MKDIR_BODY;
4840 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4841 		    dp->i_effnlink - 1, dp->i_mode);
4842 		dotdotaddref->ja_state |= MKDIR_PARENT;
4843 	}
4844 	ACQUIRE_LOCK(ITOUMP(dp));
4845 	inodedep = inodedep_lookup_ip(ip);
4846 	if (DOINGSUJ(dvp)) {
4847 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4848 		    inoreflst);
4849 		KASSERT(jaddref != NULL,
4850 		    ("softdep_setup_mkdir: No addref structure present."));
4851 		KASSERT(jaddref->ja_parent == dp->i_number,
4852 		    ("softdep_setup_mkdir: bad parent %ju",
4853 		    (uintmax_t)jaddref->ja_parent));
4854 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4855 		    if_deps);
4856 	}
4857 	inodedep = inodedep_lookup_ip(dp);
4858 	if (DOINGSUJ(dvp))
4859 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4860 		    &dotdotaddref->ja_ref, if_deps);
4861 	softdep_prelink(ITOV(dp), NULL);
4862 	FREE_LOCK(ITOUMP(dp));
4863 }
4864 
4865 /*
4866  * Called to track nlinkdelta of the inode and parent directories prior to
4867  * unlinking a directory.
4868  */
4869 void
4870 softdep_setup_rmdir(dp, ip)
4871 	struct inode *dp;
4872 	struct inode *ip;
4873 {
4874 	struct vnode *dvp;
4875 
4876 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4877 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4878 	dvp = ITOV(dp);
4879 	ACQUIRE_LOCK(ITOUMP(dp));
4880 	(void) inodedep_lookup_ip(ip);
4881 	(void) inodedep_lookup_ip(dp);
4882 	softdep_prelink(dvp, ITOV(ip));
4883 	FREE_LOCK(ITOUMP(dp));
4884 }
4885 
4886 /*
4887  * Called to track nlinkdelta of the inode and parent directories prior to
4888  * unlink.
4889  */
4890 void
4891 softdep_setup_unlink(dp, ip)
4892 	struct inode *dp;
4893 	struct inode *ip;
4894 {
4895 	struct vnode *dvp;
4896 
4897 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4898 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4899 	dvp = ITOV(dp);
4900 	ACQUIRE_LOCK(ITOUMP(dp));
4901 	(void) inodedep_lookup_ip(ip);
4902 	(void) inodedep_lookup_ip(dp);
4903 	softdep_prelink(dvp, ITOV(ip));
4904 	FREE_LOCK(ITOUMP(dp));
4905 }
4906 
4907 /*
4908  * Called to release the journal structures created by a failed non-directory
4909  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4910  */
4911 void
4912 softdep_revert_create(dp, ip)
4913 	struct inode *dp;
4914 	struct inode *ip;
4915 {
4916 	struct inodedep *inodedep;
4917 	struct jaddref *jaddref;
4918 	struct vnode *dvp;
4919 
4920 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4921 	    ("softdep_revert_create called on non-softdep filesystem"));
4922 	dvp = ITOV(dp);
4923 	ACQUIRE_LOCK(ITOUMP(dp));
4924 	inodedep = inodedep_lookup_ip(ip);
4925 	if (DOINGSUJ(dvp)) {
4926 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4927 		    inoreflst);
4928 		KASSERT(jaddref->ja_parent == dp->i_number,
4929 		    ("softdep_revert_create: addref parent mismatch"));
4930 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4931 	}
4932 	FREE_LOCK(ITOUMP(dp));
4933 }
4934 
4935 /*
4936  * Called to release the journal structures created by a failed link
4937  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4938  */
4939 void
4940 softdep_revert_link(dp, ip)
4941 	struct inode *dp;
4942 	struct inode *ip;
4943 {
4944 	struct inodedep *inodedep;
4945 	struct jaddref *jaddref;
4946 	struct vnode *dvp;
4947 
4948 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4949 	    ("softdep_revert_link called on non-softdep filesystem"));
4950 	dvp = ITOV(dp);
4951 	ACQUIRE_LOCK(ITOUMP(dp));
4952 	inodedep = inodedep_lookup_ip(ip);
4953 	if (DOINGSUJ(dvp)) {
4954 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4955 		    inoreflst);
4956 		KASSERT(jaddref->ja_parent == dp->i_number,
4957 		    ("softdep_revert_link: addref parent mismatch"));
4958 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4959 	}
4960 	FREE_LOCK(ITOUMP(dp));
4961 }
4962 
4963 /*
4964  * Called to release the journal structures created by a failed mkdir
4965  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4966  */
4967 void
4968 softdep_revert_mkdir(dp, ip)
4969 	struct inode *dp;
4970 	struct inode *ip;
4971 {
4972 	struct inodedep *inodedep;
4973 	struct jaddref *jaddref;
4974 	struct jaddref *dotaddref;
4975 	struct vnode *dvp;
4976 
4977 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4978 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4979 	dvp = ITOV(dp);
4980 
4981 	ACQUIRE_LOCK(ITOUMP(dp));
4982 	inodedep = inodedep_lookup_ip(dp);
4983 	if (DOINGSUJ(dvp)) {
4984 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4985 		    inoreflst);
4986 		KASSERT(jaddref->ja_parent == ip->i_number,
4987 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4988 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4989 	}
4990 	inodedep = inodedep_lookup_ip(ip);
4991 	if (DOINGSUJ(dvp)) {
4992 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4993 		    inoreflst);
4994 		KASSERT(jaddref->ja_parent == dp->i_number,
4995 		    ("softdep_revert_mkdir: addref parent mismatch"));
4996 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4997 		    inoreflst, if_deps);
4998 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4999 		KASSERT(dotaddref->ja_parent == ip->i_number,
5000 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5001 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5002 	}
5003 	FREE_LOCK(ITOUMP(dp));
5004 }
5005 
5006 /*
5007  * Called to correct nlinkdelta after a failed rmdir.
5008  */
5009 void
5010 softdep_revert_rmdir(dp, ip)
5011 	struct inode *dp;
5012 	struct inode *ip;
5013 {
5014 
5015 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5016 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5017 	ACQUIRE_LOCK(ITOUMP(dp));
5018 	(void) inodedep_lookup_ip(ip);
5019 	(void) inodedep_lookup_ip(dp);
5020 	FREE_LOCK(ITOUMP(dp));
5021 }
5022 
5023 /*
5024  * Protecting the freemaps (or bitmaps).
5025  *
5026  * To eliminate the need to execute fsck before mounting a filesystem
5027  * after a power failure, one must (conservatively) guarantee that the
5028  * on-disk copy of the bitmaps never indicate that a live inode or block is
5029  * free.  So, when a block or inode is allocated, the bitmap should be
5030  * updated (on disk) before any new pointers.  When a block or inode is
5031  * freed, the bitmap should not be updated until all pointers have been
5032  * reset.  The latter dependency is handled by the delayed de-allocation
5033  * approach described below for block and inode de-allocation.  The former
5034  * dependency is handled by calling the following procedure when a block or
5035  * inode is allocated. When an inode is allocated an "inodedep" is created
5036  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5037  * Each "inodedep" is also inserted into the hash indexing structure so
5038  * that any additional link additions can be made dependent on the inode
5039  * allocation.
5040  *
5041  * The ufs filesystem maintains a number of free block counts (e.g., per
5042  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5043  * in addition to the bitmaps.  These counts are used to improve efficiency
5044  * during allocation and therefore must be consistent with the bitmaps.
5045  * There is no convenient way to guarantee post-crash consistency of these
5046  * counts with simple update ordering, for two main reasons: (1) The counts
5047  * and bitmaps for a single cylinder group block are not in the same disk
5048  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5049  * be written and the other not.  (2) Some of the counts are located in the
5050  * superblock rather than the cylinder group block. So, we focus our soft
5051  * updates implementation on protecting the bitmaps. When mounting a
5052  * filesystem, we recompute the auxiliary counts from the bitmaps.
5053  */
5054 
5055 /*
5056  * Called just after updating the cylinder group block to allocate an inode.
5057  */
5058 void
5059 softdep_setup_inomapdep(bp, ip, newinum, mode)
5060 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5061 	struct inode *ip;	/* inode related to allocation */
5062 	ino_t newinum;		/* new inode number being allocated */
5063 	int mode;
5064 {
5065 	struct inodedep *inodedep;
5066 	struct bmsafemap *bmsafemap;
5067 	struct jaddref *jaddref;
5068 	struct mount *mp;
5069 	struct fs *fs;
5070 
5071 	mp = ITOVFS(ip);
5072 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5073 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5074 	fs = VFSTOUFS(mp)->um_fs;
5075 	jaddref = NULL;
5076 
5077 	/*
5078 	 * Allocate the journal reference add structure so that the bitmap
5079 	 * can be dependent on it.
5080 	 */
5081 	if (MOUNTEDSUJ(mp)) {
5082 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5083 		jaddref->ja_state |= NEWBLOCK;
5084 	}
5085 
5086 	/*
5087 	 * Create a dependency for the newly allocated inode.
5088 	 * Panic if it already exists as something is seriously wrong.
5089 	 * Otherwise add it to the dependency list for the buffer holding
5090 	 * the cylinder group map from which it was allocated.
5091 	 *
5092 	 * We have to preallocate a bmsafemap entry in case it is needed
5093 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5094 	 * have to finish initializing it before we can FREE_LOCK().
5095 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5096 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5097 	 * creating the inodedep as it can be freed during the time
5098 	 * that we FREE_LOCK() while allocating the inodedep. We must
5099 	 * call workitem_alloc() before entering the locked section as
5100 	 * it also acquires the lock and we must avoid trying doing so
5101 	 * recursively.
5102 	 */
5103 	bmsafemap = malloc(sizeof(struct bmsafemap),
5104 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5105 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5106 	ACQUIRE_LOCK(ITOUMP(ip));
5107 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5108 		panic("softdep_setup_inomapdep: dependency %p for new"
5109 		    "inode already exists", inodedep);
5110 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5111 	if (jaddref) {
5112 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5113 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5114 		    if_deps);
5115 	} else {
5116 		inodedep->id_state |= ONDEPLIST;
5117 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5118 	}
5119 	inodedep->id_bmsafemap = bmsafemap;
5120 	inodedep->id_state &= ~DEPCOMPLETE;
5121 	FREE_LOCK(ITOUMP(ip));
5122 }
5123 
5124 /*
5125  * Called just after updating the cylinder group block to
5126  * allocate block or fragment.
5127  */
5128 void
5129 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5130 	struct buf *bp;		/* buffer for cylgroup block with block map */
5131 	struct mount *mp;	/* filesystem doing allocation */
5132 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5133 	int frags;		/* Number of fragments. */
5134 	int oldfrags;		/* Previous number of fragments for extend. */
5135 {
5136 	struct newblk *newblk;
5137 	struct bmsafemap *bmsafemap;
5138 	struct jnewblk *jnewblk;
5139 	struct ufsmount *ump;
5140 	struct fs *fs;
5141 
5142 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5143 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5144 	ump = VFSTOUFS(mp);
5145 	fs = ump->um_fs;
5146 	jnewblk = NULL;
5147 	/*
5148 	 * Create a dependency for the newly allocated block.
5149 	 * Add it to the dependency list for the buffer holding
5150 	 * the cylinder group map from which it was allocated.
5151 	 */
5152 	if (MOUNTEDSUJ(mp)) {
5153 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5154 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5155 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5156 		jnewblk->jn_state = ATTACHED;
5157 		jnewblk->jn_blkno = newblkno;
5158 		jnewblk->jn_frags = frags;
5159 		jnewblk->jn_oldfrags = oldfrags;
5160 #ifdef INVARIANTS
5161 		{
5162 			struct cg *cgp;
5163 			uint8_t *blksfree;
5164 			long bno;
5165 			int i;
5166 
5167 			cgp = (struct cg *)bp->b_data;
5168 			blksfree = cg_blksfree(cgp);
5169 			bno = dtogd(fs, jnewblk->jn_blkno);
5170 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5171 			    i++) {
5172 				if (isset(blksfree, bno + i))
5173 					panic("softdep_setup_blkmapdep: "
5174 					    "free fragment %d from %d-%d "
5175 					    "state 0x%X dep %p", i,
5176 					    jnewblk->jn_oldfrags,
5177 					    jnewblk->jn_frags,
5178 					    jnewblk->jn_state,
5179 					    jnewblk->jn_dep);
5180 			}
5181 		}
5182 #endif
5183 	}
5184 
5185 	CTR3(KTR_SUJ,
5186 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5187 	    newblkno, frags, oldfrags);
5188 	ACQUIRE_LOCK(ump);
5189 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5190 		panic("softdep_setup_blkmapdep: found block");
5191 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5192 	    dtog(fs, newblkno), NULL);
5193 	if (jnewblk) {
5194 		jnewblk->jn_dep = (struct worklist *)newblk;
5195 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5196 	} else {
5197 		newblk->nb_state |= ONDEPLIST;
5198 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5199 	}
5200 	newblk->nb_bmsafemap = bmsafemap;
5201 	newblk->nb_jnewblk = jnewblk;
5202 	FREE_LOCK(ump);
5203 }
5204 
5205 #define	BMSAFEMAP_HASH(ump, cg) \
5206       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5207 
5208 static int
5209 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5210 	struct bmsafemap_hashhead *bmsafemaphd;
5211 	int cg;
5212 	struct bmsafemap **bmsafemapp;
5213 {
5214 	struct bmsafemap *bmsafemap;
5215 
5216 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5217 		if (bmsafemap->sm_cg == cg)
5218 			break;
5219 	if (bmsafemap) {
5220 		*bmsafemapp = bmsafemap;
5221 		return (1);
5222 	}
5223 	*bmsafemapp = NULL;
5224 
5225 	return (0);
5226 }
5227 
5228 /*
5229  * Find the bmsafemap associated with a cylinder group buffer.
5230  * If none exists, create one. The buffer must be locked when
5231  * this routine is called and this routine must be called with
5232  * the softdep lock held. To avoid giving up the lock while
5233  * allocating a new bmsafemap, a preallocated bmsafemap may be
5234  * provided. If it is provided but not needed, it is freed.
5235  */
5236 static struct bmsafemap *
5237 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5238 	struct mount *mp;
5239 	struct buf *bp;
5240 	int cg;
5241 	struct bmsafemap *newbmsafemap;
5242 {
5243 	struct bmsafemap_hashhead *bmsafemaphd;
5244 	struct bmsafemap *bmsafemap, *collision;
5245 	struct worklist *wk;
5246 	struct ufsmount *ump;
5247 
5248 	ump = VFSTOUFS(mp);
5249 	LOCK_OWNED(ump);
5250 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5251 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5252 		if (wk->wk_type == D_BMSAFEMAP) {
5253 			if (newbmsafemap)
5254 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5255 			return (WK_BMSAFEMAP(wk));
5256 		}
5257 	}
5258 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5259 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5260 		if (newbmsafemap)
5261 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5262 		return (bmsafemap);
5263 	}
5264 	if (newbmsafemap) {
5265 		bmsafemap = newbmsafemap;
5266 	} else {
5267 		FREE_LOCK(ump);
5268 		bmsafemap = malloc(sizeof(struct bmsafemap),
5269 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5270 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5271 		ACQUIRE_LOCK(ump);
5272 	}
5273 	bmsafemap->sm_buf = bp;
5274 	LIST_INIT(&bmsafemap->sm_inodedephd);
5275 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5276 	LIST_INIT(&bmsafemap->sm_newblkhd);
5277 	LIST_INIT(&bmsafemap->sm_newblkwr);
5278 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5279 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5280 	LIST_INIT(&bmsafemap->sm_freehd);
5281 	LIST_INIT(&bmsafemap->sm_freewr);
5282 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5283 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5284 		return (collision);
5285 	}
5286 	bmsafemap->sm_cg = cg;
5287 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5288 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5289 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5290 	return (bmsafemap);
5291 }
5292 
5293 /*
5294  * Direct block allocation dependencies.
5295  *
5296  * When a new block is allocated, the corresponding disk locations must be
5297  * initialized (with zeros or new data) before the on-disk inode points to
5298  * them.  Also, the freemap from which the block was allocated must be
5299  * updated (on disk) before the inode's pointer. These two dependencies are
5300  * independent of each other and are needed for all file blocks and indirect
5301  * blocks that are pointed to directly by the inode.  Just before the
5302  * "in-core" version of the inode is updated with a newly allocated block
5303  * number, a procedure (below) is called to setup allocation dependency
5304  * structures.  These structures are removed when the corresponding
5305  * dependencies are satisfied or when the block allocation becomes obsolete
5306  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5307  * fragment that gets upgraded).  All of these cases are handled in
5308  * procedures described later.
5309  *
5310  * When a file extension causes a fragment to be upgraded, either to a larger
5311  * fragment or to a full block, the on-disk location may change (if the
5312  * previous fragment could not simply be extended). In this case, the old
5313  * fragment must be de-allocated, but not until after the inode's pointer has
5314  * been updated. In most cases, this is handled by later procedures, which
5315  * will construct a "freefrag" structure to be added to the workitem queue
5316  * when the inode update is complete (or obsolete).  The main exception to
5317  * this is when an allocation occurs while a pending allocation dependency
5318  * (for the same block pointer) remains.  This case is handled in the main
5319  * allocation dependency setup procedure by immediately freeing the
5320  * unreferenced fragments.
5321  */
5322 void
5323 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5324 	struct inode *ip;	/* inode to which block is being added */
5325 	ufs_lbn_t off;		/* block pointer within inode */
5326 	ufs2_daddr_t newblkno;	/* disk block number being added */
5327 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5328 	long newsize;		/* size of new block */
5329 	long oldsize;		/* size of new block */
5330 	struct buf *bp;		/* bp for allocated block */
5331 {
5332 	struct allocdirect *adp, *oldadp;
5333 	struct allocdirectlst *adphead;
5334 	struct freefrag *freefrag;
5335 	struct inodedep *inodedep;
5336 	struct pagedep *pagedep;
5337 	struct jnewblk *jnewblk;
5338 	struct newblk *newblk;
5339 	struct mount *mp;
5340 	ufs_lbn_t lbn;
5341 
5342 	lbn = bp->b_lblkno;
5343 	mp = ITOVFS(ip);
5344 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5345 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5346 	if (oldblkno && oldblkno != newblkno)
5347 		/*
5348 		 * The usual case is that a smaller fragment that
5349 		 * was just allocated has been replaced with a bigger
5350 		 * fragment or a full-size block. If it is marked as
5351 		 * B_DELWRI, the current contents have not been written
5352 		 * to disk. It is possible that the block was written
5353 		 * earlier, but very uncommon. If the block has never
5354 		 * been written, there is no need to send a BIO_DELETE
5355 		 * for it when it is freed. The gain from avoiding the
5356 		 * TRIMs for the common case of unwritten blocks far
5357 		 * exceeds the cost of the write amplification for the
5358 		 * uncommon case of failing to send a TRIM for a block
5359 		 * that had been written.
5360 		 */
5361 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5362 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5363 	else
5364 		freefrag = NULL;
5365 
5366 	CTR6(KTR_SUJ,
5367 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5368 	    "off %jd newsize %ld oldsize %d",
5369 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5370 	ACQUIRE_LOCK(ITOUMP(ip));
5371 	if (off >= UFS_NDADDR) {
5372 		if (lbn > 0)
5373 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5374 			    lbn, off);
5375 		/* allocating an indirect block */
5376 		if (oldblkno != 0)
5377 			panic("softdep_setup_allocdirect: non-zero indir");
5378 	} else {
5379 		if (off != lbn)
5380 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5381 			    lbn, off);
5382 		/*
5383 		 * Allocating a direct block.
5384 		 *
5385 		 * If we are allocating a directory block, then we must
5386 		 * allocate an associated pagedep to track additions and
5387 		 * deletions.
5388 		 */
5389 		if ((ip->i_mode & IFMT) == IFDIR)
5390 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5391 			    &pagedep);
5392 	}
5393 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5394 		panic("softdep_setup_allocdirect: lost block");
5395 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5396 	    ("softdep_setup_allocdirect: newblk already initialized"));
5397 	/*
5398 	 * Convert the newblk to an allocdirect.
5399 	 */
5400 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5401 	adp = (struct allocdirect *)newblk;
5402 	newblk->nb_freefrag = freefrag;
5403 	adp->ad_offset = off;
5404 	adp->ad_oldblkno = oldblkno;
5405 	adp->ad_newsize = newsize;
5406 	adp->ad_oldsize = oldsize;
5407 
5408 	/*
5409 	 * Finish initializing the journal.
5410 	 */
5411 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5412 		jnewblk->jn_ino = ip->i_number;
5413 		jnewblk->jn_lbn = lbn;
5414 		add_to_journal(&jnewblk->jn_list);
5415 	}
5416 	if (freefrag && freefrag->ff_jdep != NULL &&
5417 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5418 		add_to_journal(freefrag->ff_jdep);
5419 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5420 	adp->ad_inodedep = inodedep;
5421 
5422 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5423 	/*
5424 	 * The list of allocdirects must be kept in sorted and ascending
5425 	 * order so that the rollback routines can quickly determine the
5426 	 * first uncommitted block (the size of the file stored on disk
5427 	 * ends at the end of the lowest committed fragment, or if there
5428 	 * are no fragments, at the end of the highest committed block).
5429 	 * Since files generally grow, the typical case is that the new
5430 	 * block is to be added at the end of the list. We speed this
5431 	 * special case by checking against the last allocdirect in the
5432 	 * list before laboriously traversing the list looking for the
5433 	 * insertion point.
5434 	 */
5435 	adphead = &inodedep->id_newinoupdt;
5436 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5437 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5438 		/* insert at end of list */
5439 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5440 		if (oldadp != NULL && oldadp->ad_offset == off)
5441 			allocdirect_merge(adphead, adp, oldadp);
5442 		FREE_LOCK(ITOUMP(ip));
5443 		return;
5444 	}
5445 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5446 		if (oldadp->ad_offset >= off)
5447 			break;
5448 	}
5449 	if (oldadp == NULL)
5450 		panic("softdep_setup_allocdirect: lost entry");
5451 	/* insert in middle of list */
5452 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5453 	if (oldadp->ad_offset == off)
5454 		allocdirect_merge(adphead, adp, oldadp);
5455 
5456 	FREE_LOCK(ITOUMP(ip));
5457 }
5458 
5459 /*
5460  * Merge a newer and older journal record to be stored either in a
5461  * newblock or freefrag.  This handles aggregating journal records for
5462  * fragment allocation into a second record as well as replacing a
5463  * journal free with an aborted journal allocation.  A segment for the
5464  * oldest record will be placed on wkhd if it has been written.  If not
5465  * the segment for the newer record will suffice.
5466  */
5467 static struct worklist *
5468 jnewblk_merge(new, old, wkhd)
5469 	struct worklist *new;
5470 	struct worklist *old;
5471 	struct workhead *wkhd;
5472 {
5473 	struct jnewblk *njnewblk;
5474 	struct jnewblk *jnewblk;
5475 
5476 	/* Handle NULLs to simplify callers. */
5477 	if (new == NULL)
5478 		return (old);
5479 	if (old == NULL)
5480 		return (new);
5481 	/* Replace a jfreefrag with a jnewblk. */
5482 	if (new->wk_type == D_JFREEFRAG) {
5483 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5484 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5485 			    old, new);
5486 		cancel_jfreefrag(WK_JFREEFRAG(new));
5487 		return (old);
5488 	}
5489 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5490 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5491 		    old->wk_type, new->wk_type);
5492 	/*
5493 	 * Handle merging of two jnewblk records that describe
5494 	 * different sets of fragments in the same block.
5495 	 */
5496 	jnewblk = WK_JNEWBLK(old);
5497 	njnewblk = WK_JNEWBLK(new);
5498 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5499 		panic("jnewblk_merge: Merging disparate blocks.");
5500 	/*
5501 	 * The record may be rolled back in the cg.
5502 	 */
5503 	if (jnewblk->jn_state & UNDONE) {
5504 		jnewblk->jn_state &= ~UNDONE;
5505 		njnewblk->jn_state |= UNDONE;
5506 		njnewblk->jn_state &= ~ATTACHED;
5507 	}
5508 	/*
5509 	 * We modify the newer addref and free the older so that if neither
5510 	 * has been written the most up-to-date copy will be on disk.  If
5511 	 * both have been written but rolled back we only temporarily need
5512 	 * one of them to fix the bits when the cg write completes.
5513 	 */
5514 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5515 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5516 	cancel_jnewblk(jnewblk, wkhd);
5517 	WORKLIST_REMOVE(&jnewblk->jn_list);
5518 	free_jnewblk(jnewblk);
5519 	return (new);
5520 }
5521 
5522 /*
5523  * Replace an old allocdirect dependency with a newer one.
5524  */
5525 static void
5526 allocdirect_merge(adphead, newadp, oldadp)
5527 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5528 	struct allocdirect *newadp;	/* allocdirect being added */
5529 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5530 {
5531 	struct worklist *wk;
5532 	struct freefrag *freefrag;
5533 
5534 	freefrag = NULL;
5535 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5536 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5537 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5538 	    newadp->ad_offset >= UFS_NDADDR)
5539 		panic("%s %jd != new %jd || old size %ld != new %ld",
5540 		    "allocdirect_merge: old blkno",
5541 		    (intmax_t)newadp->ad_oldblkno,
5542 		    (intmax_t)oldadp->ad_newblkno,
5543 		    newadp->ad_oldsize, oldadp->ad_newsize);
5544 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5545 	newadp->ad_oldsize = oldadp->ad_oldsize;
5546 	/*
5547 	 * If the old dependency had a fragment to free or had never
5548 	 * previously had a block allocated, then the new dependency
5549 	 * can immediately post its freefrag and adopt the old freefrag.
5550 	 * This action is done by swapping the freefrag dependencies.
5551 	 * The new dependency gains the old one's freefrag, and the
5552 	 * old one gets the new one and then immediately puts it on
5553 	 * the worklist when it is freed by free_newblk. It is
5554 	 * not possible to do this swap when the old dependency had a
5555 	 * non-zero size but no previous fragment to free. This condition
5556 	 * arises when the new block is an extension of the old block.
5557 	 * Here, the first part of the fragment allocated to the new
5558 	 * dependency is part of the block currently claimed on disk by
5559 	 * the old dependency, so cannot legitimately be freed until the
5560 	 * conditions for the new dependency are fulfilled.
5561 	 */
5562 	freefrag = newadp->ad_freefrag;
5563 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5564 		newadp->ad_freefrag = oldadp->ad_freefrag;
5565 		oldadp->ad_freefrag = freefrag;
5566 	}
5567 	/*
5568 	 * If we are tracking a new directory-block allocation,
5569 	 * move it from the old allocdirect to the new allocdirect.
5570 	 */
5571 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5572 		WORKLIST_REMOVE(wk);
5573 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5574 			panic("allocdirect_merge: extra newdirblk");
5575 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5576 	}
5577 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5578 	/*
5579 	 * We need to move any journal dependencies over to the freefrag
5580 	 * that releases this block if it exists.  Otherwise we are
5581 	 * extending an existing block and we'll wait until that is
5582 	 * complete to release the journal space and extend the
5583 	 * new journal to cover this old space as well.
5584 	 */
5585 	if (freefrag == NULL) {
5586 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5587 			panic("allocdirect_merge: %jd != %jd",
5588 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5589 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5590 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5591 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5592 		    &newadp->ad_block.nb_jwork);
5593 		oldadp->ad_block.nb_jnewblk = NULL;
5594 		cancel_newblk(&oldadp->ad_block, NULL,
5595 		    &newadp->ad_block.nb_jwork);
5596 	} else {
5597 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5598 		    &freefrag->ff_list, &freefrag->ff_jwork);
5599 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5600 		    &freefrag->ff_jwork);
5601 	}
5602 	free_newblk(&oldadp->ad_block);
5603 }
5604 
5605 /*
5606  * Allocate a jfreefrag structure to journal a single block free.
5607  */
5608 static struct jfreefrag *
5609 newjfreefrag(freefrag, ip, blkno, size, lbn)
5610 	struct freefrag *freefrag;
5611 	struct inode *ip;
5612 	ufs2_daddr_t blkno;
5613 	long size;
5614 	ufs_lbn_t lbn;
5615 {
5616 	struct jfreefrag *jfreefrag;
5617 	struct fs *fs;
5618 
5619 	fs = ITOFS(ip);
5620 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5621 	    M_SOFTDEP_FLAGS);
5622 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5623 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5624 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5625 	jfreefrag->fr_ino = ip->i_number;
5626 	jfreefrag->fr_lbn = lbn;
5627 	jfreefrag->fr_blkno = blkno;
5628 	jfreefrag->fr_frags = numfrags(fs, size);
5629 	jfreefrag->fr_freefrag = freefrag;
5630 
5631 	return (jfreefrag);
5632 }
5633 
5634 /*
5635  * Allocate a new freefrag structure.
5636  */
5637 static struct freefrag *
5638 newfreefrag(ip, blkno, size, lbn, key)
5639 	struct inode *ip;
5640 	ufs2_daddr_t blkno;
5641 	long size;
5642 	ufs_lbn_t lbn;
5643 	u_long key;
5644 {
5645 	struct freefrag *freefrag;
5646 	struct ufsmount *ump;
5647 	struct fs *fs;
5648 
5649 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5650 	    ip->i_number, blkno, size, lbn);
5651 	ump = ITOUMP(ip);
5652 	fs = ump->um_fs;
5653 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5654 		panic("newfreefrag: frag size");
5655 	freefrag = malloc(sizeof(struct freefrag),
5656 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5657 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5658 	freefrag->ff_state = ATTACHED;
5659 	LIST_INIT(&freefrag->ff_jwork);
5660 	freefrag->ff_inum = ip->i_number;
5661 	freefrag->ff_vtype = ITOV(ip)->v_type;
5662 	freefrag->ff_blkno = blkno;
5663 	freefrag->ff_fragsize = size;
5664 	freefrag->ff_key = key;
5665 
5666 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5667 		freefrag->ff_jdep = (struct worklist *)
5668 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5669 	} else {
5670 		freefrag->ff_state |= DEPCOMPLETE;
5671 		freefrag->ff_jdep = NULL;
5672 	}
5673 
5674 	return (freefrag);
5675 }
5676 
5677 /*
5678  * This workitem de-allocates fragments that were replaced during
5679  * file block allocation.
5680  */
5681 static void
5682 handle_workitem_freefrag(freefrag)
5683 	struct freefrag *freefrag;
5684 {
5685 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5686 	struct workhead wkhd;
5687 
5688 	CTR3(KTR_SUJ,
5689 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5690 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5691 	/*
5692 	 * It would be illegal to add new completion items to the
5693 	 * freefrag after it was schedule to be done so it must be
5694 	 * safe to modify the list head here.
5695 	 */
5696 	LIST_INIT(&wkhd);
5697 	ACQUIRE_LOCK(ump);
5698 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5699 	/*
5700 	 * If the journal has not been written we must cancel it here.
5701 	 */
5702 	if (freefrag->ff_jdep) {
5703 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5704 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5705 			    freefrag->ff_jdep->wk_type);
5706 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5707 	}
5708 	FREE_LOCK(ump);
5709 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5710 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5711 	   &wkhd, freefrag->ff_key);
5712 	ACQUIRE_LOCK(ump);
5713 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5714 	FREE_LOCK(ump);
5715 }
5716 
5717 /*
5718  * Set up a dependency structure for an external attributes data block.
5719  * This routine follows much of the structure of softdep_setup_allocdirect.
5720  * See the description of softdep_setup_allocdirect above for details.
5721  */
5722 void
5723 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5724 	struct inode *ip;
5725 	ufs_lbn_t off;
5726 	ufs2_daddr_t newblkno;
5727 	ufs2_daddr_t oldblkno;
5728 	long newsize;
5729 	long oldsize;
5730 	struct buf *bp;
5731 {
5732 	struct allocdirect *adp, *oldadp;
5733 	struct allocdirectlst *adphead;
5734 	struct freefrag *freefrag;
5735 	struct inodedep *inodedep;
5736 	struct jnewblk *jnewblk;
5737 	struct newblk *newblk;
5738 	struct mount *mp;
5739 	struct ufsmount *ump;
5740 	ufs_lbn_t lbn;
5741 
5742 	mp = ITOVFS(ip);
5743 	ump = VFSTOUFS(mp);
5744 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5745 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5746 	KASSERT(off < UFS_NXADDR,
5747 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5748 
5749 	lbn = bp->b_lblkno;
5750 	if (oldblkno && oldblkno != newblkno)
5751 		/*
5752 		 * The usual case is that a smaller fragment that
5753 		 * was just allocated has been replaced with a bigger
5754 		 * fragment or a full-size block. If it is marked as
5755 		 * B_DELWRI, the current contents have not been written
5756 		 * to disk. It is possible that the block was written
5757 		 * earlier, but very uncommon. If the block has never
5758 		 * been written, there is no need to send a BIO_DELETE
5759 		 * for it when it is freed. The gain from avoiding the
5760 		 * TRIMs for the common case of unwritten blocks far
5761 		 * exceeds the cost of the write amplification for the
5762 		 * uncommon case of failing to send a TRIM for a block
5763 		 * that had been written.
5764 		 */
5765 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5766 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5767 	else
5768 		freefrag = NULL;
5769 
5770 	ACQUIRE_LOCK(ump);
5771 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5772 		panic("softdep_setup_allocext: lost block");
5773 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5774 	    ("softdep_setup_allocext: newblk already initialized"));
5775 	/*
5776 	 * Convert the newblk to an allocdirect.
5777 	 */
5778 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5779 	adp = (struct allocdirect *)newblk;
5780 	newblk->nb_freefrag = freefrag;
5781 	adp->ad_offset = off;
5782 	adp->ad_oldblkno = oldblkno;
5783 	adp->ad_newsize = newsize;
5784 	adp->ad_oldsize = oldsize;
5785 	adp->ad_state |=  EXTDATA;
5786 
5787 	/*
5788 	 * Finish initializing the journal.
5789 	 */
5790 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5791 		jnewblk->jn_ino = ip->i_number;
5792 		jnewblk->jn_lbn = lbn;
5793 		add_to_journal(&jnewblk->jn_list);
5794 	}
5795 	if (freefrag && freefrag->ff_jdep != NULL &&
5796 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5797 		add_to_journal(freefrag->ff_jdep);
5798 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5799 	adp->ad_inodedep = inodedep;
5800 
5801 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5802 	/*
5803 	 * The list of allocdirects must be kept in sorted and ascending
5804 	 * order so that the rollback routines can quickly determine the
5805 	 * first uncommitted block (the size of the file stored on disk
5806 	 * ends at the end of the lowest committed fragment, or if there
5807 	 * are no fragments, at the end of the highest committed block).
5808 	 * Since files generally grow, the typical case is that the new
5809 	 * block is to be added at the end of the list. We speed this
5810 	 * special case by checking against the last allocdirect in the
5811 	 * list before laboriously traversing the list looking for the
5812 	 * insertion point.
5813 	 */
5814 	adphead = &inodedep->id_newextupdt;
5815 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5816 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5817 		/* insert at end of list */
5818 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5819 		if (oldadp != NULL && oldadp->ad_offset == off)
5820 			allocdirect_merge(adphead, adp, oldadp);
5821 		FREE_LOCK(ump);
5822 		return;
5823 	}
5824 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5825 		if (oldadp->ad_offset >= off)
5826 			break;
5827 	}
5828 	if (oldadp == NULL)
5829 		panic("softdep_setup_allocext: lost entry");
5830 	/* insert in middle of list */
5831 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5832 	if (oldadp->ad_offset == off)
5833 		allocdirect_merge(adphead, adp, oldadp);
5834 	FREE_LOCK(ump);
5835 }
5836 
5837 /*
5838  * Indirect block allocation dependencies.
5839  *
5840  * The same dependencies that exist for a direct block also exist when
5841  * a new block is allocated and pointed to by an entry in a block of
5842  * indirect pointers. The undo/redo states described above are also
5843  * used here. Because an indirect block contains many pointers that
5844  * may have dependencies, a second copy of the entire in-memory indirect
5845  * block is kept. The buffer cache copy is always completely up-to-date.
5846  * The second copy, which is used only as a source for disk writes,
5847  * contains only the safe pointers (i.e., those that have no remaining
5848  * update dependencies). The second copy is freed when all pointers
5849  * are safe. The cache is not allowed to replace indirect blocks with
5850  * pending update dependencies. If a buffer containing an indirect
5851  * block with dependencies is written, these routines will mark it
5852  * dirty again. It can only be successfully written once all the
5853  * dependencies are removed. The ffs_fsync routine in conjunction with
5854  * softdep_sync_metadata work together to get all the dependencies
5855  * removed so that a file can be successfully written to disk. Three
5856  * procedures are used when setting up indirect block pointer
5857  * dependencies. The division is necessary because of the organization
5858  * of the "balloc" routine and because of the distinction between file
5859  * pages and file metadata blocks.
5860  */
5861 
5862 /*
5863  * Allocate a new allocindir structure.
5864  */
5865 static struct allocindir *
5866 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5867 	struct inode *ip;	/* inode for file being extended */
5868 	int ptrno;		/* offset of pointer in indirect block */
5869 	ufs2_daddr_t newblkno;	/* disk block number being added */
5870 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5871 	ufs_lbn_t lbn;
5872 {
5873 	struct newblk *newblk;
5874 	struct allocindir *aip;
5875 	struct freefrag *freefrag;
5876 	struct jnewblk *jnewblk;
5877 
5878 	if (oldblkno)
5879 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
5880 		    SINGLETON_KEY);
5881 	else
5882 		freefrag = NULL;
5883 	ACQUIRE_LOCK(ITOUMP(ip));
5884 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5885 		panic("new_allocindir: lost block");
5886 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5887 	    ("newallocindir: newblk already initialized"));
5888 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5889 	newblk->nb_freefrag = freefrag;
5890 	aip = (struct allocindir *)newblk;
5891 	aip->ai_offset = ptrno;
5892 	aip->ai_oldblkno = oldblkno;
5893 	aip->ai_lbn = lbn;
5894 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5895 		jnewblk->jn_ino = ip->i_number;
5896 		jnewblk->jn_lbn = lbn;
5897 		add_to_journal(&jnewblk->jn_list);
5898 	}
5899 	if (freefrag && freefrag->ff_jdep != NULL &&
5900 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5901 		add_to_journal(freefrag->ff_jdep);
5902 	return (aip);
5903 }
5904 
5905 /*
5906  * Called just before setting an indirect block pointer
5907  * to a newly allocated file page.
5908  */
5909 void
5910 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5911 	struct inode *ip;	/* inode for file being extended */
5912 	ufs_lbn_t lbn;		/* allocated block number within file */
5913 	struct buf *bp;		/* buffer with indirect blk referencing page */
5914 	int ptrno;		/* offset of pointer in indirect block */
5915 	ufs2_daddr_t newblkno;	/* disk block number being added */
5916 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5917 	struct buf *nbp;	/* buffer holding allocated page */
5918 {
5919 	struct inodedep *inodedep;
5920 	struct freefrag *freefrag;
5921 	struct allocindir *aip;
5922 	struct pagedep *pagedep;
5923 	struct mount *mp;
5924 	struct ufsmount *ump;
5925 
5926 	mp = ITOVFS(ip);
5927 	ump = VFSTOUFS(mp);
5928 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5929 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5930 	KASSERT(lbn == nbp->b_lblkno,
5931 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5932 	    lbn, bp->b_lblkno));
5933 	CTR4(KTR_SUJ,
5934 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5935 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5936 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5937 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5938 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5939 	/*
5940 	 * If we are allocating a directory page, then we must
5941 	 * allocate an associated pagedep to track additions and
5942 	 * deletions.
5943 	 */
5944 	if ((ip->i_mode & IFMT) == IFDIR)
5945 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5946 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5947 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5948 	FREE_LOCK(ump);
5949 	if (freefrag)
5950 		handle_workitem_freefrag(freefrag);
5951 }
5952 
5953 /*
5954  * Called just before setting an indirect block pointer to a
5955  * newly allocated indirect block.
5956  */
5957 void
5958 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5959 	struct buf *nbp;	/* newly allocated indirect block */
5960 	struct inode *ip;	/* inode for file being extended */
5961 	struct buf *bp;		/* indirect block referencing allocated block */
5962 	int ptrno;		/* offset of pointer in indirect block */
5963 	ufs2_daddr_t newblkno;	/* disk block number being added */
5964 {
5965 	struct inodedep *inodedep;
5966 	struct allocindir *aip;
5967 	struct ufsmount *ump;
5968 	ufs_lbn_t lbn;
5969 
5970 	ump = ITOUMP(ip);
5971 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5972 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5973 	CTR3(KTR_SUJ,
5974 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5975 	    ip->i_number, newblkno, ptrno);
5976 	lbn = nbp->b_lblkno;
5977 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5978 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5979 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5980 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5981 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5982 		panic("softdep_setup_allocindir_meta: Block already existed");
5983 	FREE_LOCK(ump);
5984 }
5985 
5986 static void
5987 indirdep_complete(indirdep)
5988 	struct indirdep *indirdep;
5989 {
5990 	struct allocindir *aip;
5991 
5992 	LIST_REMOVE(indirdep, ir_next);
5993 	indirdep->ir_state |= DEPCOMPLETE;
5994 
5995 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5996 		LIST_REMOVE(aip, ai_next);
5997 		free_newblk(&aip->ai_block);
5998 	}
5999 	/*
6000 	 * If this indirdep is not attached to a buf it was simply waiting
6001 	 * on completion to clear completehd.  free_indirdep() asserts
6002 	 * that nothing is dangling.
6003 	 */
6004 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6005 		free_indirdep(indirdep);
6006 }
6007 
6008 static struct indirdep *
6009 indirdep_lookup(mp, ip, bp)
6010 	struct mount *mp;
6011 	struct inode *ip;
6012 	struct buf *bp;
6013 {
6014 	struct indirdep *indirdep, *newindirdep;
6015 	struct newblk *newblk;
6016 	struct ufsmount *ump;
6017 	struct worklist *wk;
6018 	struct fs *fs;
6019 	ufs2_daddr_t blkno;
6020 
6021 	ump = VFSTOUFS(mp);
6022 	LOCK_OWNED(ump);
6023 	indirdep = NULL;
6024 	newindirdep = NULL;
6025 	fs = ump->um_fs;
6026 	for (;;) {
6027 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6028 			if (wk->wk_type != D_INDIRDEP)
6029 				continue;
6030 			indirdep = WK_INDIRDEP(wk);
6031 			break;
6032 		}
6033 		/* Found on the buffer worklist, no new structure to free. */
6034 		if (indirdep != NULL && newindirdep == NULL)
6035 			return (indirdep);
6036 		if (indirdep != NULL && newindirdep != NULL)
6037 			panic("indirdep_lookup: simultaneous create");
6038 		/* None found on the buffer and a new structure is ready. */
6039 		if (indirdep == NULL && newindirdep != NULL)
6040 			break;
6041 		/* None found and no new structure available. */
6042 		FREE_LOCK(ump);
6043 		newindirdep = malloc(sizeof(struct indirdep),
6044 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6045 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6046 		newindirdep->ir_state = ATTACHED;
6047 		if (I_IS_UFS1(ip))
6048 			newindirdep->ir_state |= UFS1FMT;
6049 		TAILQ_INIT(&newindirdep->ir_trunc);
6050 		newindirdep->ir_saveddata = NULL;
6051 		LIST_INIT(&newindirdep->ir_deplisthd);
6052 		LIST_INIT(&newindirdep->ir_donehd);
6053 		LIST_INIT(&newindirdep->ir_writehd);
6054 		LIST_INIT(&newindirdep->ir_completehd);
6055 		if (bp->b_blkno == bp->b_lblkno) {
6056 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6057 			    NULL, NULL);
6058 			bp->b_blkno = blkno;
6059 		}
6060 		newindirdep->ir_freeblks = NULL;
6061 		newindirdep->ir_savebp =
6062 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6063 		newindirdep->ir_bp = bp;
6064 		BUF_KERNPROC(newindirdep->ir_savebp);
6065 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6066 		ACQUIRE_LOCK(ump);
6067 	}
6068 	indirdep = newindirdep;
6069 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6070 	/*
6071 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6072 	 * that we don't free dependencies until the pointers are valid.
6073 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6074 	 * than using the hash.
6075 	 */
6076 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6077 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6078 	else
6079 		indirdep->ir_state |= DEPCOMPLETE;
6080 	return (indirdep);
6081 }
6082 
6083 /*
6084  * Called to finish the allocation of the "aip" allocated
6085  * by one of the two routines above.
6086  */
6087 static struct freefrag *
6088 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6089 	struct buf *bp;		/* in-memory copy of the indirect block */
6090 	struct inode *ip;	/* inode for file being extended */
6091 	struct inodedep *inodedep; /* Inodedep for ip */
6092 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6093 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6094 {
6095 	struct fs *fs;
6096 	struct indirdep *indirdep;
6097 	struct allocindir *oldaip;
6098 	struct freefrag *freefrag;
6099 	struct mount *mp;
6100 	struct ufsmount *ump;
6101 
6102 	mp = ITOVFS(ip);
6103 	ump = VFSTOUFS(mp);
6104 	LOCK_OWNED(ump);
6105 	fs = ump->um_fs;
6106 	if (bp->b_lblkno >= 0)
6107 		panic("setup_allocindir_phase2: not indir blk");
6108 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6109 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6110 	indirdep = indirdep_lookup(mp, ip, bp);
6111 	KASSERT(indirdep->ir_savebp != NULL,
6112 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6113 	aip->ai_indirdep = indirdep;
6114 	/*
6115 	 * Check for an unwritten dependency for this indirect offset.  If
6116 	 * there is, merge the old dependency into the new one.  This happens
6117 	 * as a result of reallocblk only.
6118 	 */
6119 	freefrag = NULL;
6120 	if (aip->ai_oldblkno != 0) {
6121 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6122 			if (oldaip->ai_offset == aip->ai_offset) {
6123 				freefrag = allocindir_merge(aip, oldaip);
6124 				goto done;
6125 			}
6126 		}
6127 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6128 			if (oldaip->ai_offset == aip->ai_offset) {
6129 				freefrag = allocindir_merge(aip, oldaip);
6130 				goto done;
6131 			}
6132 		}
6133 	}
6134 done:
6135 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6136 	return (freefrag);
6137 }
6138 
6139 /*
6140  * Merge two allocindirs which refer to the same block.  Move newblock
6141  * dependencies and setup the freefrags appropriately.
6142  */
6143 static struct freefrag *
6144 allocindir_merge(aip, oldaip)
6145 	struct allocindir *aip;
6146 	struct allocindir *oldaip;
6147 {
6148 	struct freefrag *freefrag;
6149 	struct worklist *wk;
6150 
6151 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6152 		panic("allocindir_merge: blkno");
6153 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6154 	freefrag = aip->ai_freefrag;
6155 	aip->ai_freefrag = oldaip->ai_freefrag;
6156 	oldaip->ai_freefrag = NULL;
6157 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6158 	/*
6159 	 * If we are tracking a new directory-block allocation,
6160 	 * move it from the old allocindir to the new allocindir.
6161 	 */
6162 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6163 		WORKLIST_REMOVE(wk);
6164 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6165 			panic("allocindir_merge: extra newdirblk");
6166 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6167 	}
6168 	/*
6169 	 * We can skip journaling for this freefrag and just complete
6170 	 * any pending journal work for the allocindir that is being
6171 	 * removed after the freefrag completes.
6172 	 */
6173 	if (freefrag->ff_jdep)
6174 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6175 	LIST_REMOVE(oldaip, ai_next);
6176 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6177 	    &freefrag->ff_list, &freefrag->ff_jwork);
6178 	free_newblk(&oldaip->ai_block);
6179 
6180 	return (freefrag);
6181 }
6182 
6183 static inline void
6184 setup_freedirect(freeblks, ip, i, needj)
6185 	struct freeblks *freeblks;
6186 	struct inode *ip;
6187 	int i;
6188 	int needj;
6189 {
6190 	struct ufsmount *ump;
6191 	ufs2_daddr_t blkno;
6192 	int frags;
6193 
6194 	blkno = DIP(ip, i_db[i]);
6195 	if (blkno == 0)
6196 		return;
6197 	DIP_SET(ip, i_db[i], 0);
6198 	ump = ITOUMP(ip);
6199 	frags = sblksize(ump->um_fs, ip->i_size, i);
6200 	frags = numfrags(ump->um_fs, frags);
6201 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6202 }
6203 
6204 static inline void
6205 setup_freeext(freeblks, ip, i, needj)
6206 	struct freeblks *freeblks;
6207 	struct inode *ip;
6208 	int i;
6209 	int needj;
6210 {
6211 	struct ufsmount *ump;
6212 	ufs2_daddr_t blkno;
6213 	int frags;
6214 
6215 	blkno = ip->i_din2->di_extb[i];
6216 	if (blkno == 0)
6217 		return;
6218 	ip->i_din2->di_extb[i] = 0;
6219 	ump = ITOUMP(ip);
6220 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6221 	frags = numfrags(ump->um_fs, frags);
6222 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6223 }
6224 
6225 static inline void
6226 setup_freeindir(freeblks, ip, i, lbn, needj)
6227 	struct freeblks *freeblks;
6228 	struct inode *ip;
6229 	int i;
6230 	ufs_lbn_t lbn;
6231 	int needj;
6232 {
6233 	struct ufsmount *ump;
6234 	ufs2_daddr_t blkno;
6235 
6236 	blkno = DIP(ip, i_ib[i]);
6237 	if (blkno == 0)
6238 		return;
6239 	DIP_SET(ip, i_ib[i], 0);
6240 	ump = ITOUMP(ip);
6241 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6242 	    0, needj);
6243 }
6244 
6245 static inline struct freeblks *
6246 newfreeblks(mp, ip)
6247 	struct mount *mp;
6248 	struct inode *ip;
6249 {
6250 	struct freeblks *freeblks;
6251 
6252 	freeblks = malloc(sizeof(struct freeblks),
6253 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6254 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6255 	LIST_INIT(&freeblks->fb_jblkdephd);
6256 	LIST_INIT(&freeblks->fb_jwork);
6257 	freeblks->fb_ref = 0;
6258 	freeblks->fb_cgwait = 0;
6259 	freeblks->fb_state = ATTACHED;
6260 	freeblks->fb_uid = ip->i_uid;
6261 	freeblks->fb_inum = ip->i_number;
6262 	freeblks->fb_vtype = ITOV(ip)->v_type;
6263 	freeblks->fb_modrev = DIP(ip, i_modrev);
6264 	freeblks->fb_devvp = ITODEVVP(ip);
6265 	freeblks->fb_chkcnt = 0;
6266 	freeblks->fb_len = 0;
6267 
6268 	return (freeblks);
6269 }
6270 
6271 static void
6272 trunc_indirdep(indirdep, freeblks, bp, off)
6273 	struct indirdep *indirdep;
6274 	struct freeblks *freeblks;
6275 	struct buf *bp;
6276 	int off;
6277 {
6278 	struct allocindir *aip, *aipn;
6279 
6280 	/*
6281 	 * The first set of allocindirs won't be in savedbp.
6282 	 */
6283 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6284 		if (aip->ai_offset > off)
6285 			cancel_allocindir(aip, bp, freeblks, 1);
6286 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6287 		if (aip->ai_offset > off)
6288 			cancel_allocindir(aip, bp, freeblks, 1);
6289 	/*
6290 	 * These will exist in savedbp.
6291 	 */
6292 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6293 		if (aip->ai_offset > off)
6294 			cancel_allocindir(aip, NULL, freeblks, 0);
6295 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6296 		if (aip->ai_offset > off)
6297 			cancel_allocindir(aip, NULL, freeblks, 0);
6298 }
6299 
6300 /*
6301  * Follow the chain of indirects down to lastlbn creating a freework
6302  * structure for each.  This will be used to start indir_trunc() at
6303  * the right offset and create the journal records for the parrtial
6304  * truncation.  A second step will handle the truncated dependencies.
6305  */
6306 static int
6307 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6308 	struct freeblks *freeblks;
6309 	struct inode *ip;
6310 	ufs_lbn_t lbn;
6311 	ufs_lbn_t lastlbn;
6312 	ufs2_daddr_t blkno;
6313 {
6314 	struct indirdep *indirdep;
6315 	struct indirdep *indirn;
6316 	struct freework *freework;
6317 	struct newblk *newblk;
6318 	struct mount *mp;
6319 	struct ufsmount *ump;
6320 	struct buf *bp;
6321 	uint8_t *start;
6322 	uint8_t *end;
6323 	ufs_lbn_t lbnadd;
6324 	int level;
6325 	int error;
6326 	int off;
6327 
6328 	freework = NULL;
6329 	if (blkno == 0)
6330 		return (0);
6331 	mp = freeblks->fb_list.wk_mp;
6332 	ump = VFSTOUFS(mp);
6333 	/*
6334 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6335 	 * the on-disk address, so we just pass it to bread() instead of
6336 	 * having bread() attempt to calculate it using VOP_BMAP().
6337 	 */
6338 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6339 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6340 	if (error)
6341 		return (error);
6342 	level = lbn_level(lbn);
6343 	lbnadd = lbn_offset(ump->um_fs, level);
6344 	/*
6345 	 * Compute the offset of the last block we want to keep.  Store
6346 	 * in the freework the first block we want to completely free.
6347 	 */
6348 	off = (lastlbn - -(lbn + level)) / lbnadd;
6349 	if (off + 1 == NINDIR(ump->um_fs))
6350 		goto nowork;
6351 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6352 	/*
6353 	 * Link the freework into the indirdep.  This will prevent any new
6354 	 * allocations from proceeding until we are finished with the
6355 	 * truncate and the block is written.
6356 	 */
6357 	ACQUIRE_LOCK(ump);
6358 	indirdep = indirdep_lookup(mp, ip, bp);
6359 	if (indirdep->ir_freeblks)
6360 		panic("setup_trunc_indir: indirdep already truncated.");
6361 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6362 	freework->fw_indir = indirdep;
6363 	/*
6364 	 * Cancel any allocindirs that will not make it to disk.
6365 	 * We have to do this for all copies of the indirdep that
6366 	 * live on this newblk.
6367 	 */
6368 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6369 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6370 		    &newblk) == 0)
6371 			panic("setup_trunc_indir: lost block");
6372 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6373 			trunc_indirdep(indirn, freeblks, bp, off);
6374 	} else
6375 		trunc_indirdep(indirdep, freeblks, bp, off);
6376 	FREE_LOCK(ump);
6377 	/*
6378 	 * Creation is protected by the buf lock. The saveddata is only
6379 	 * needed if a full truncation follows a partial truncation but it
6380 	 * is difficult to allocate in that case so we fetch it anyway.
6381 	 */
6382 	if (indirdep->ir_saveddata == NULL)
6383 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6384 		    M_SOFTDEP_FLAGS);
6385 nowork:
6386 	/* Fetch the blkno of the child and the zero start offset. */
6387 	if (I_IS_UFS1(ip)) {
6388 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6389 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6390 	} else {
6391 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6392 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6393 	}
6394 	if (freework) {
6395 		/* Zero the truncated pointers. */
6396 		end = bp->b_data + bp->b_bcount;
6397 		bzero(start, end - start);
6398 		bdwrite(bp);
6399 	} else
6400 		bqrelse(bp);
6401 	if (level == 0)
6402 		return (0);
6403 	lbn++; /* adjust level */
6404 	lbn -= (off * lbnadd);
6405 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6406 }
6407 
6408 /*
6409  * Complete the partial truncation of an indirect block setup by
6410  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6411  * copy and writes them to disk before the freeblks is allowed to complete.
6412  */
6413 static void
6414 complete_trunc_indir(freework)
6415 	struct freework *freework;
6416 {
6417 	struct freework *fwn;
6418 	struct indirdep *indirdep;
6419 	struct ufsmount *ump;
6420 	struct buf *bp;
6421 	uintptr_t start;
6422 	int count;
6423 
6424 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6425 	LOCK_OWNED(ump);
6426 	indirdep = freework->fw_indir;
6427 	for (;;) {
6428 		bp = indirdep->ir_bp;
6429 		/* See if the block was discarded. */
6430 		if (bp == NULL)
6431 			break;
6432 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6433 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6434 			break;
6435 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6436 		    LOCK_PTR(ump)) == 0)
6437 			BUF_UNLOCK(bp);
6438 		ACQUIRE_LOCK(ump);
6439 	}
6440 	freework->fw_state |= DEPCOMPLETE;
6441 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6442 	/*
6443 	 * Zero the pointers in the saved copy.
6444 	 */
6445 	if (indirdep->ir_state & UFS1FMT)
6446 		start = sizeof(ufs1_daddr_t);
6447 	else
6448 		start = sizeof(ufs2_daddr_t);
6449 	start *= freework->fw_start;
6450 	count = indirdep->ir_savebp->b_bcount - start;
6451 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6452 	bzero((char *)start, count);
6453 	/*
6454 	 * We need to start the next truncation in the list if it has not
6455 	 * been started yet.
6456 	 */
6457 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6458 	if (fwn != NULL) {
6459 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6460 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6461 		if ((fwn->fw_state & ONWORKLIST) == 0)
6462 			freework_enqueue(fwn);
6463 	}
6464 	/*
6465 	 * If bp is NULL the block was fully truncated, restore
6466 	 * the saved block list otherwise free it if it is no
6467 	 * longer needed.
6468 	 */
6469 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6470 		if (bp == NULL)
6471 			bcopy(indirdep->ir_saveddata,
6472 			    indirdep->ir_savebp->b_data,
6473 			    indirdep->ir_savebp->b_bcount);
6474 		free(indirdep->ir_saveddata, M_INDIRDEP);
6475 		indirdep->ir_saveddata = NULL;
6476 	}
6477 	/*
6478 	 * When bp is NULL there is a full truncation pending.  We
6479 	 * must wait for this full truncation to be journaled before
6480 	 * we can release this freework because the disk pointers will
6481 	 * never be written as zero.
6482 	 */
6483 	if (bp == NULL)  {
6484 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6485 			handle_written_freework(freework);
6486 		else
6487 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6488 			   &freework->fw_list);
6489 		if (fwn == NULL) {
6490 			freework->fw_indir = (void *)0x0000deadbeef0000;
6491 			bp = indirdep->ir_savebp;
6492 			indirdep->ir_savebp = NULL;
6493 			free_indirdep(indirdep);
6494 			FREE_LOCK(ump);
6495 			brelse(bp);
6496 			ACQUIRE_LOCK(ump);
6497 		}
6498 	} else {
6499 		/* Complete when the real copy is written. */
6500 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6501 		BUF_UNLOCK(bp);
6502 	}
6503 }
6504 
6505 /*
6506  * Calculate the number of blocks we are going to release where datablocks
6507  * is the current total and length is the new file size.
6508  */
6509 static ufs2_daddr_t
6510 blkcount(fs, datablocks, length)
6511 	struct fs *fs;
6512 	ufs2_daddr_t datablocks;
6513 	off_t length;
6514 {
6515 	off_t totblks, numblks;
6516 
6517 	totblks = 0;
6518 	numblks = howmany(length, fs->fs_bsize);
6519 	if (numblks <= UFS_NDADDR) {
6520 		totblks = howmany(length, fs->fs_fsize);
6521 		goto out;
6522 	}
6523         totblks = blkstofrags(fs, numblks);
6524 	numblks -= UFS_NDADDR;
6525 	/*
6526 	 * Count all single, then double, then triple indirects required.
6527 	 * Subtracting one indirects worth of blocks for each pass
6528 	 * acknowledges one of each pointed to by the inode.
6529 	 */
6530 	for (;;) {
6531 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6532 		numblks -= NINDIR(fs);
6533 		if (numblks <= 0)
6534 			break;
6535 		numblks = howmany(numblks, NINDIR(fs));
6536 	}
6537 out:
6538 	totblks = fsbtodb(fs, totblks);
6539 	/*
6540 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6541 	 * references.  We will correct it later in handle_complete_freeblks()
6542 	 * when we know the real count.
6543 	 */
6544 	if (totblks > datablocks)
6545 		return (0);
6546 	return (datablocks - totblks);
6547 }
6548 
6549 /*
6550  * Handle freeblocks for journaled softupdate filesystems.
6551  *
6552  * Contrary to normal softupdates, we must preserve the block pointers in
6553  * indirects until their subordinates are free.  This is to avoid journaling
6554  * every block that is freed which may consume more space than the journal
6555  * itself.  The recovery program will see the free block journals at the
6556  * base of the truncated area and traverse them to reclaim space.  The
6557  * pointers in the inode may be cleared immediately after the journal
6558  * records are written because each direct and indirect pointer in the
6559  * inode is recorded in a journal.  This permits full truncation to proceed
6560  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6561  *
6562  * The algorithm is as follows:
6563  * 1) Traverse the in-memory state and create journal entries to release
6564  *    the relevant blocks and full indirect trees.
6565  * 2) Traverse the indirect block chain adding partial truncation freework
6566  *    records to indirects in the path to lastlbn.  The freework will
6567  *    prevent new allocation dependencies from being satisfied in this
6568  *    indirect until the truncation completes.
6569  * 3) Read and lock the inode block, performing an update with the new size
6570  *    and pointers.  This prevents truncated data from becoming valid on
6571  *    disk through step 4.
6572  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6573  *    eliminate journal work for those records that do not require it.
6574  * 5) Schedule the journal records to be written followed by the inode block.
6575  * 6) Allocate any necessary frags for the end of file.
6576  * 7) Zero any partially truncated blocks.
6577  *
6578  * From this truncation proceeds asynchronously using the freework and
6579  * indir_trunc machinery.  The file will not be extended again into a
6580  * partially truncated indirect block until all work is completed but
6581  * the normal dependency mechanism ensures that it is rolled back/forward
6582  * as appropriate.  Further truncation may occur without delay and is
6583  * serialized in indir_trunc().
6584  */
6585 void
6586 softdep_journal_freeblocks(ip, cred, length, flags)
6587 	struct inode *ip;	/* The inode whose length is to be reduced */
6588 	struct ucred *cred;
6589 	off_t length;		/* The new length for the file */
6590 	int flags;		/* IO_EXT and/or IO_NORMAL */
6591 {
6592 	struct freeblks *freeblks, *fbn;
6593 	struct worklist *wk, *wkn;
6594 	struct inodedep *inodedep;
6595 	struct jblkdep *jblkdep;
6596 	struct allocdirect *adp, *adpn;
6597 	struct ufsmount *ump;
6598 	struct fs *fs;
6599 	struct buf *bp;
6600 	struct vnode *vp;
6601 	struct mount *mp;
6602 	daddr_t dbn;
6603 	ufs2_daddr_t extblocks, datablocks;
6604 	ufs_lbn_t tmpval, lbn, lastlbn;
6605 	int frags, lastoff, iboff, allocblock, needj, error, i;
6606 
6607 	ump = ITOUMP(ip);
6608 	mp = UFSTOVFS(ump);
6609 	fs = ump->um_fs;
6610 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6611 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6612 	vp = ITOV(ip);
6613 	needj = 1;
6614 	iboff = -1;
6615 	allocblock = 0;
6616 	extblocks = 0;
6617 	datablocks = 0;
6618 	frags = 0;
6619 	freeblks = newfreeblks(mp, ip);
6620 	ACQUIRE_LOCK(ump);
6621 	/*
6622 	 * If we're truncating a removed file that will never be written
6623 	 * we don't need to journal the block frees.  The canceled journals
6624 	 * for the allocations will suffice.
6625 	 */
6626 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6627 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6628 	    length == 0)
6629 		needj = 0;
6630 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6631 	    ip->i_number, length, needj);
6632 	FREE_LOCK(ump);
6633 	/*
6634 	 * Calculate the lbn that we are truncating to.  This results in -1
6635 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6636 	 * to keep, not the first lbn we want to truncate.
6637 	 */
6638 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6639 	lastoff = blkoff(fs, length);
6640 	/*
6641 	 * Compute frags we are keeping in lastlbn.  0 means all.
6642 	 */
6643 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6644 		frags = fragroundup(fs, lastoff);
6645 		/* adp offset of last valid allocdirect. */
6646 		iboff = lastlbn;
6647 	} else if (lastlbn > 0)
6648 		iboff = UFS_NDADDR;
6649 	if (fs->fs_magic == FS_UFS2_MAGIC)
6650 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6651 	/*
6652 	 * Handle normal data blocks and indirects.  This section saves
6653 	 * values used after the inode update to complete frag and indirect
6654 	 * truncation.
6655 	 */
6656 	if ((flags & IO_NORMAL) != 0) {
6657 		/*
6658 		 * Handle truncation of whole direct and indirect blocks.
6659 		 */
6660 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6661 			setup_freedirect(freeblks, ip, i, needj);
6662 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6663 		    i < UFS_NIADDR;
6664 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6665 			/* Release a whole indirect tree. */
6666 			if (lbn > lastlbn) {
6667 				setup_freeindir(freeblks, ip, i, -lbn -i,
6668 				    needj);
6669 				continue;
6670 			}
6671 			iboff = i + UFS_NDADDR;
6672 			/*
6673 			 * Traverse partially truncated indirect tree.
6674 			 */
6675 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6676 				setup_trunc_indir(freeblks, ip, -lbn - i,
6677 				    lastlbn, DIP(ip, i_ib[i]));
6678 		}
6679 		/*
6680 		 * Handle partial truncation to a frag boundary.
6681 		 */
6682 		if (frags) {
6683 			ufs2_daddr_t blkno;
6684 			long oldfrags;
6685 
6686 			oldfrags = blksize(fs, ip, lastlbn);
6687 			blkno = DIP(ip, i_db[lastlbn]);
6688 			if (blkno && oldfrags != frags) {
6689 				oldfrags -= frags;
6690 				oldfrags = numfrags(fs, oldfrags);
6691 				blkno += numfrags(fs, frags);
6692 				newfreework(ump, freeblks, NULL, lastlbn,
6693 				    blkno, oldfrags, 0, needj);
6694 				if (needj)
6695 					adjust_newfreework(freeblks,
6696 					    numfrags(fs, frags));
6697 			} else if (blkno == 0)
6698 				allocblock = 1;
6699 		}
6700 		/*
6701 		 * Add a journal record for partial truncate if we are
6702 		 * handling indirect blocks.  Non-indirects need no extra
6703 		 * journaling.
6704 		 */
6705 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6706 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6707 			newjtrunc(freeblks, length, 0);
6708 		}
6709 		ip->i_size = length;
6710 		DIP_SET(ip, i_size, ip->i_size);
6711 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6712 		datablocks = DIP(ip, i_blocks) - extblocks;
6713 		if (length != 0)
6714 			datablocks = blkcount(fs, datablocks, length);
6715 		freeblks->fb_len = length;
6716 	}
6717 	if ((flags & IO_EXT) != 0) {
6718 		for (i = 0; i < UFS_NXADDR; i++)
6719 			setup_freeext(freeblks, ip, i, needj);
6720 		ip->i_din2->di_extsize = 0;
6721 		datablocks += extblocks;
6722 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6723 	}
6724 #ifdef QUOTA
6725 	/* Reference the quotas in case the block count is wrong in the end. */
6726 	quotaref(vp, freeblks->fb_quota);
6727 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6728 #endif
6729 	freeblks->fb_chkcnt = -datablocks;
6730 	UFS_LOCK(ump);
6731 	fs->fs_pendingblocks += datablocks;
6732 	UFS_UNLOCK(ump);
6733 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6734 	/*
6735 	 * Handle truncation of incomplete alloc direct dependencies.  We
6736 	 * hold the inode block locked to prevent incomplete dependencies
6737 	 * from reaching the disk while we are eliminating those that
6738 	 * have been truncated.  This is a partially inlined ffs_update().
6739 	 */
6740 	ufs_itimes(vp);
6741 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6742 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
6743 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
6744 	    NULL, NULL, 0, cred, 0, NULL, &bp);
6745 	if (error) {
6746 		softdep_error("softdep_journal_freeblocks", error);
6747 		return;
6748 	}
6749 	if (bp->b_bufsize == fs->fs_bsize)
6750 		bp->b_flags |= B_CLUSTEROK;
6751 	softdep_update_inodeblock(ip, bp, 0);
6752 	if (ump->um_fstype == UFS1) {
6753 		*((struct ufs1_dinode *)bp->b_data +
6754 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6755 	} else {
6756 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6757 		*((struct ufs2_dinode *)bp->b_data +
6758 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6759 	}
6760 	ACQUIRE_LOCK(ump);
6761 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6762 	if ((inodedep->id_state & IOSTARTED) != 0)
6763 		panic("softdep_setup_freeblocks: inode busy");
6764 	/*
6765 	 * Add the freeblks structure to the list of operations that
6766 	 * must await the zero'ed inode being written to disk. If we
6767 	 * still have a bitmap dependency (needj), then the inode
6768 	 * has never been written to disk, so we can process the
6769 	 * freeblks below once we have deleted the dependencies.
6770 	 */
6771 	if (needj)
6772 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6773 	else
6774 		freeblks->fb_state |= COMPLETE;
6775 	if ((flags & IO_NORMAL) != 0) {
6776 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6777 			if (adp->ad_offset > iboff)
6778 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6779 				    freeblks);
6780 			/*
6781 			 * Truncate the allocdirect.  We could eliminate
6782 			 * or modify journal records as well.
6783 			 */
6784 			else if (adp->ad_offset == iboff && frags)
6785 				adp->ad_newsize = frags;
6786 		}
6787 	}
6788 	if ((flags & IO_EXT) != 0)
6789 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6790 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6791 			    freeblks);
6792 	/*
6793 	 * Scan the bufwait list for newblock dependencies that will never
6794 	 * make it to disk.
6795 	 */
6796 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6797 		if (wk->wk_type != D_ALLOCDIRECT)
6798 			continue;
6799 		adp = WK_ALLOCDIRECT(wk);
6800 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6801 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6802 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6803 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6804 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6805 		}
6806 	}
6807 	/*
6808 	 * Add journal work.
6809 	 */
6810 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6811 		add_to_journal(&jblkdep->jb_list);
6812 	FREE_LOCK(ump);
6813 	bdwrite(bp);
6814 	/*
6815 	 * Truncate dependency structures beyond length.
6816 	 */
6817 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6818 	/*
6819 	 * This is only set when we need to allocate a fragment because
6820 	 * none existed at the end of a frag-sized file.  It handles only
6821 	 * allocating a new, zero filled block.
6822 	 */
6823 	if (allocblock) {
6824 		ip->i_size = length - lastoff;
6825 		DIP_SET(ip, i_size, ip->i_size);
6826 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6827 		if (error != 0) {
6828 			softdep_error("softdep_journal_freeblks", error);
6829 			return;
6830 		}
6831 		ip->i_size = length;
6832 		DIP_SET(ip, i_size, length);
6833 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
6834 		allocbuf(bp, frags);
6835 		ffs_update(vp, 0);
6836 		bawrite(bp);
6837 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6838 		int size;
6839 
6840 		/*
6841 		 * Zero the end of a truncated frag or block.
6842 		 */
6843 		size = sblksize(fs, length, lastlbn);
6844 		error = bread(vp, lastlbn, size, cred, &bp);
6845 		if (error == 0) {
6846 			bzero((char *)bp->b_data + lastoff, size - lastoff);
6847 			bawrite(bp);
6848 		} else if (!ffs_fsfail_cleanup(ump, error)) {
6849 			softdep_error("softdep_journal_freeblks", error);
6850 			return;
6851 		}
6852 	}
6853 	ACQUIRE_LOCK(ump);
6854 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6855 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6856 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6857 	/*
6858 	 * We zero earlier truncations so they don't erroneously
6859 	 * update i_blocks.
6860 	 */
6861 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6862 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6863 			fbn->fb_len = 0;
6864 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6865 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6866 		freeblks->fb_state |= INPROGRESS;
6867 	else
6868 		freeblks = NULL;
6869 	FREE_LOCK(ump);
6870 	if (freeblks)
6871 		handle_workitem_freeblocks(freeblks, 0);
6872 	trunc_pages(ip, length, extblocks, flags);
6873 
6874 }
6875 
6876 /*
6877  * Flush a JOP_SYNC to the journal.
6878  */
6879 void
6880 softdep_journal_fsync(ip)
6881 	struct inode *ip;
6882 {
6883 	struct jfsync *jfsync;
6884 	struct ufsmount *ump;
6885 
6886 	ump = ITOUMP(ip);
6887 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6888 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6889 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6890 		return;
6891 	ip->i_flag &= ~IN_TRUNCATED;
6892 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6893 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6894 	jfsync->jfs_size = ip->i_size;
6895 	jfsync->jfs_ino = ip->i_number;
6896 	ACQUIRE_LOCK(ump);
6897 	add_to_journal(&jfsync->jfs_list);
6898 	jwait(&jfsync->jfs_list, MNT_WAIT);
6899 	FREE_LOCK(ump);
6900 }
6901 
6902 /*
6903  * Block de-allocation dependencies.
6904  *
6905  * When blocks are de-allocated, the on-disk pointers must be nullified before
6906  * the blocks are made available for use by other files.  (The true
6907  * requirement is that old pointers must be nullified before new on-disk
6908  * pointers are set.  We chose this slightly more stringent requirement to
6909  * reduce complexity.) Our implementation handles this dependency by updating
6910  * the inode (or indirect block) appropriately but delaying the actual block
6911  * de-allocation (i.e., freemap and free space count manipulation) until
6912  * after the updated versions reach stable storage.  After the disk is
6913  * updated, the blocks can be safely de-allocated whenever it is convenient.
6914  * This implementation handles only the common case of reducing a file's
6915  * length to zero. Other cases are handled by the conventional synchronous
6916  * write approach.
6917  *
6918  * The ffs implementation with which we worked double-checks
6919  * the state of the block pointers and file size as it reduces
6920  * a file's length.  Some of this code is replicated here in our
6921  * soft updates implementation.  The freeblks->fb_chkcnt field is
6922  * used to transfer a part of this information to the procedure
6923  * that eventually de-allocates the blocks.
6924  *
6925  * This routine should be called from the routine that shortens
6926  * a file's length, before the inode's size or block pointers
6927  * are modified. It will save the block pointer information for
6928  * later release and zero the inode so that the calling routine
6929  * can release it.
6930  */
6931 void
6932 softdep_setup_freeblocks(ip, length, flags)
6933 	struct inode *ip;	/* The inode whose length is to be reduced */
6934 	off_t length;		/* The new length for the file */
6935 	int flags;		/* IO_EXT and/or IO_NORMAL */
6936 {
6937 	struct ufs1_dinode *dp1;
6938 	struct ufs2_dinode *dp2;
6939 	struct freeblks *freeblks;
6940 	struct inodedep *inodedep;
6941 	struct allocdirect *adp;
6942 	struct ufsmount *ump;
6943 	struct buf *bp;
6944 	struct fs *fs;
6945 	ufs2_daddr_t extblocks, datablocks;
6946 	struct mount *mp;
6947 	int i, delay, error;
6948 	ufs_lbn_t tmpval;
6949 	ufs_lbn_t lbn;
6950 
6951 	ump = ITOUMP(ip);
6952 	mp = UFSTOVFS(ump);
6953 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6954 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6955 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6956 	    ip->i_number, length);
6957 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6958 	fs = ump->um_fs;
6959 	if ((error = bread(ump->um_devvp,
6960 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6961 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6962 		if (!ffs_fsfail_cleanup(ump, error))
6963 			softdep_error("softdep_setup_freeblocks", error);
6964 		return;
6965 	}
6966 	freeblks = newfreeblks(mp, ip);
6967 	extblocks = 0;
6968 	datablocks = 0;
6969 	if (fs->fs_magic == FS_UFS2_MAGIC)
6970 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6971 	if ((flags & IO_NORMAL) != 0) {
6972 		for (i = 0; i < UFS_NDADDR; i++)
6973 			setup_freedirect(freeblks, ip, i, 0);
6974 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6975 		    i < UFS_NIADDR;
6976 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6977 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6978 		ip->i_size = 0;
6979 		DIP_SET(ip, i_size, 0);
6980 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6981 		datablocks = DIP(ip, i_blocks) - extblocks;
6982 	}
6983 	if ((flags & IO_EXT) != 0) {
6984 		for (i = 0; i < UFS_NXADDR; i++)
6985 			setup_freeext(freeblks, ip, i, 0);
6986 		ip->i_din2->di_extsize = 0;
6987 		datablocks += extblocks;
6988 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6989 	}
6990 #ifdef QUOTA
6991 	/* Reference the quotas in case the block count is wrong in the end. */
6992 	quotaref(ITOV(ip), freeblks->fb_quota);
6993 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6994 #endif
6995 	freeblks->fb_chkcnt = -datablocks;
6996 	UFS_LOCK(ump);
6997 	fs->fs_pendingblocks += datablocks;
6998 	UFS_UNLOCK(ump);
6999 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7000 	/*
7001 	 * Push the zero'ed inode to its disk buffer so that we are free
7002 	 * to delete its dependencies below. Once the dependencies are gone
7003 	 * the buffer can be safely released.
7004 	 */
7005 	if (ump->um_fstype == UFS1) {
7006 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7007 		    ino_to_fsbo(fs, ip->i_number));
7008 		ip->i_din1->di_freelink = dp1->di_freelink;
7009 		*dp1 = *ip->i_din1;
7010 	} else {
7011 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7012 		    ino_to_fsbo(fs, ip->i_number));
7013 		ip->i_din2->di_freelink = dp2->di_freelink;
7014 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7015 		*dp2 = *ip->i_din2;
7016 	}
7017 	/*
7018 	 * Find and eliminate any inode dependencies.
7019 	 */
7020 	ACQUIRE_LOCK(ump);
7021 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7022 	if ((inodedep->id_state & IOSTARTED) != 0)
7023 		panic("softdep_setup_freeblocks: inode busy");
7024 	/*
7025 	 * Add the freeblks structure to the list of operations that
7026 	 * must await the zero'ed inode being written to disk. If we
7027 	 * still have a bitmap dependency (delay == 0), then the inode
7028 	 * has never been written to disk, so we can process the
7029 	 * freeblks below once we have deleted the dependencies.
7030 	 */
7031 	delay = (inodedep->id_state & DEPCOMPLETE);
7032 	if (delay)
7033 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7034 	else
7035 		freeblks->fb_state |= COMPLETE;
7036 	/*
7037 	 * Because the file length has been truncated to zero, any
7038 	 * pending block allocation dependency structures associated
7039 	 * with this inode are obsolete and can simply be de-allocated.
7040 	 * We must first merge the two dependency lists to get rid of
7041 	 * any duplicate freefrag structures, then purge the merged list.
7042 	 * If we still have a bitmap dependency, then the inode has never
7043 	 * been written to disk, so we can free any fragments without delay.
7044 	 */
7045 	if (flags & IO_NORMAL) {
7046 		merge_inode_lists(&inodedep->id_newinoupdt,
7047 		    &inodedep->id_inoupdt);
7048 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7049 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7050 			    freeblks);
7051 	}
7052 	if (flags & IO_EXT) {
7053 		merge_inode_lists(&inodedep->id_newextupdt,
7054 		    &inodedep->id_extupdt);
7055 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7056 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7057 			    freeblks);
7058 	}
7059 	FREE_LOCK(ump);
7060 	bdwrite(bp);
7061 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7062 	ACQUIRE_LOCK(ump);
7063 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7064 		(void) free_inodedep(inodedep);
7065 	freeblks->fb_state |= DEPCOMPLETE;
7066 	/*
7067 	 * If the inode with zeroed block pointers is now on disk
7068 	 * we can start freeing blocks.
7069 	 */
7070 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7071 		freeblks->fb_state |= INPROGRESS;
7072 	else
7073 		freeblks = NULL;
7074 	FREE_LOCK(ump);
7075 	if (freeblks)
7076 		handle_workitem_freeblocks(freeblks, 0);
7077 	trunc_pages(ip, length, extblocks, flags);
7078 }
7079 
7080 /*
7081  * Eliminate pages from the page cache that back parts of this inode and
7082  * adjust the vnode pager's idea of our size.  This prevents stale data
7083  * from hanging around in the page cache.
7084  */
7085 static void
7086 trunc_pages(ip, length, extblocks, flags)
7087 	struct inode *ip;
7088 	off_t length;
7089 	ufs2_daddr_t extblocks;
7090 	int flags;
7091 {
7092 	struct vnode *vp;
7093 	struct fs *fs;
7094 	ufs_lbn_t lbn;
7095 	off_t end, extend;
7096 
7097 	vp = ITOV(ip);
7098 	fs = ITOFS(ip);
7099 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7100 	if ((flags & IO_EXT) != 0)
7101 		vn_pages_remove(vp, extend, 0);
7102 	if ((flags & IO_NORMAL) == 0)
7103 		return;
7104 	BO_LOCK(&vp->v_bufobj);
7105 	drain_output(vp);
7106 	BO_UNLOCK(&vp->v_bufobj);
7107 	/*
7108 	 * The vnode pager eliminates file pages we eliminate indirects
7109 	 * below.
7110 	 */
7111 	vnode_pager_setsize(vp, length);
7112 	/*
7113 	 * Calculate the end based on the last indirect we want to keep.  If
7114 	 * the block extends into indirects we can just use the negative of
7115 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7116 	 * be careful not to remove those, if they exist.  double and triple
7117 	 * indirect lbns do not overlap with others so it is not important
7118 	 * to verify how many levels are required.
7119 	 */
7120 	lbn = lblkno(fs, length);
7121 	if (lbn >= UFS_NDADDR) {
7122 		/* Calculate the virtual lbn of the triple indirect. */
7123 		lbn = -lbn - (UFS_NIADDR - 1);
7124 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7125 	} else
7126 		end = extend;
7127 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7128 }
7129 
7130 /*
7131  * See if the buf bp is in the range eliminated by truncation.
7132  */
7133 static int
7134 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7135 	struct buf *bp;
7136 	int *blkoffp;
7137 	ufs_lbn_t lastlbn;
7138 	int lastoff;
7139 	int flags;
7140 {
7141 	ufs_lbn_t lbn;
7142 
7143 	*blkoffp = 0;
7144 	/* Only match ext/normal blocks as appropriate. */
7145 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7146 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7147 		return (0);
7148 	/* ALTDATA is always a full truncation. */
7149 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7150 		return (1);
7151 	/* -1 is full truncation. */
7152 	if (lastlbn == -1)
7153 		return (1);
7154 	/*
7155 	 * If this is a partial truncate we only want those
7156 	 * blocks and indirect blocks that cover the range
7157 	 * we're after.
7158 	 */
7159 	lbn = bp->b_lblkno;
7160 	if (lbn < 0)
7161 		lbn = -(lbn + lbn_level(lbn));
7162 	if (lbn < lastlbn)
7163 		return (0);
7164 	/* Here we only truncate lblkno if it's partial. */
7165 	if (lbn == lastlbn) {
7166 		if (lastoff == 0)
7167 			return (0);
7168 		*blkoffp = lastoff;
7169 	}
7170 	return (1);
7171 }
7172 
7173 /*
7174  * Eliminate any dependencies that exist in memory beyond lblkno:off
7175  */
7176 static void
7177 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7178 	struct inode *ip;
7179 	struct freeblks *freeblks;
7180 	ufs_lbn_t lastlbn;
7181 	int lastoff;
7182 	int flags;
7183 {
7184 	struct bufobj *bo;
7185 	struct vnode *vp;
7186 	struct buf *bp;
7187 	int blkoff;
7188 
7189 	/*
7190 	 * We must wait for any I/O in progress to finish so that
7191 	 * all potential buffers on the dirty list will be visible.
7192 	 * Once they are all there, walk the list and get rid of
7193 	 * any dependencies.
7194 	 */
7195 	vp = ITOV(ip);
7196 	bo = &vp->v_bufobj;
7197 	BO_LOCK(bo);
7198 	drain_output(vp);
7199 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7200 		bp->b_vflags &= ~BV_SCANNED;
7201 restart:
7202 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7203 		if (bp->b_vflags & BV_SCANNED)
7204 			continue;
7205 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7206 			bp->b_vflags |= BV_SCANNED;
7207 			continue;
7208 		}
7209 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7210 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7211 			goto restart;
7212 		BO_UNLOCK(bo);
7213 		if (deallocate_dependencies(bp, freeblks, blkoff))
7214 			bqrelse(bp);
7215 		else
7216 			brelse(bp);
7217 		BO_LOCK(bo);
7218 		goto restart;
7219 	}
7220 	/*
7221 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7222 	 */
7223 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7224 		bp->b_vflags &= ~BV_SCANNED;
7225 cleanrestart:
7226 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7227 		if (bp->b_vflags & BV_SCANNED)
7228 			continue;
7229 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7230 			bp->b_vflags |= BV_SCANNED;
7231 			continue;
7232 		}
7233 		if (BUF_LOCK(bp,
7234 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7235 		    BO_LOCKPTR(bo)) == ENOLCK) {
7236 			BO_LOCK(bo);
7237 			goto cleanrestart;
7238 		}
7239 		bp->b_vflags |= BV_SCANNED;
7240 		bremfree(bp);
7241 		if (blkoff != 0) {
7242 			allocbuf(bp, blkoff);
7243 			bqrelse(bp);
7244 		} else {
7245 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7246 			brelse(bp);
7247 		}
7248 		BO_LOCK(bo);
7249 		goto cleanrestart;
7250 	}
7251 	drain_output(vp);
7252 	BO_UNLOCK(bo);
7253 }
7254 
7255 static int
7256 cancel_pagedep(pagedep, freeblks, blkoff)
7257 	struct pagedep *pagedep;
7258 	struct freeblks *freeblks;
7259 	int blkoff;
7260 {
7261 	struct jremref *jremref;
7262 	struct jmvref *jmvref;
7263 	struct dirrem *dirrem, *tmp;
7264 	int i;
7265 
7266 	/*
7267 	 * Copy any directory remove dependencies to the list
7268 	 * to be processed after the freeblks proceeds.  If
7269 	 * directory entry never made it to disk they
7270 	 * can be dumped directly onto the work list.
7271 	 */
7272 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7273 		/* Skip this directory removal if it is intended to remain. */
7274 		if (dirrem->dm_offset < blkoff)
7275 			continue;
7276 		/*
7277 		 * If there are any dirrems we wait for the journal write
7278 		 * to complete and then restart the buf scan as the lock
7279 		 * has been dropped.
7280 		 */
7281 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7282 			jwait(&jremref->jr_list, MNT_WAIT);
7283 			return (ERESTART);
7284 		}
7285 		LIST_REMOVE(dirrem, dm_next);
7286 		dirrem->dm_dirinum = pagedep->pd_ino;
7287 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7288 	}
7289 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7290 		jwait(&jmvref->jm_list, MNT_WAIT);
7291 		return (ERESTART);
7292 	}
7293 	/*
7294 	 * When we're partially truncating a pagedep we just want to flush
7295 	 * journal entries and return.  There can not be any adds in the
7296 	 * truncated portion of the directory and newblk must remain if
7297 	 * part of the block remains.
7298 	 */
7299 	if (blkoff != 0) {
7300 		struct diradd *dap;
7301 
7302 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7303 			if (dap->da_offset > blkoff)
7304 				panic("cancel_pagedep: diradd %p off %d > %d",
7305 				    dap, dap->da_offset, blkoff);
7306 		for (i = 0; i < DAHASHSZ; i++)
7307 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7308 				if (dap->da_offset > blkoff)
7309 					panic("cancel_pagedep: diradd %p off %d > %d",
7310 					    dap, dap->da_offset, blkoff);
7311 		return (0);
7312 	}
7313 	/*
7314 	 * There should be no directory add dependencies present
7315 	 * as the directory could not be truncated until all
7316 	 * children were removed.
7317 	 */
7318 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7319 	    ("deallocate_dependencies: pendinghd != NULL"));
7320 	for (i = 0; i < DAHASHSZ; i++)
7321 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7322 		    ("deallocate_dependencies: diraddhd != NULL"));
7323 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7324 		free_newdirblk(pagedep->pd_newdirblk);
7325 	if (free_pagedep(pagedep) == 0)
7326 		panic("Failed to free pagedep %p", pagedep);
7327 	return (0);
7328 }
7329 
7330 /*
7331  * Reclaim any dependency structures from a buffer that is about to
7332  * be reallocated to a new vnode. The buffer must be locked, thus,
7333  * no I/O completion operations can occur while we are manipulating
7334  * its associated dependencies. The mutex is held so that other I/O's
7335  * associated with related dependencies do not occur.
7336  */
7337 static int
7338 deallocate_dependencies(bp, freeblks, off)
7339 	struct buf *bp;
7340 	struct freeblks *freeblks;
7341 	int off;
7342 {
7343 	struct indirdep *indirdep;
7344 	struct pagedep *pagedep;
7345 	struct worklist *wk, *wkn;
7346 	struct ufsmount *ump;
7347 
7348 	ump = softdep_bp_to_mp(bp);
7349 	if (ump == NULL)
7350 		goto done;
7351 	ACQUIRE_LOCK(ump);
7352 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7353 		switch (wk->wk_type) {
7354 		case D_INDIRDEP:
7355 			indirdep = WK_INDIRDEP(wk);
7356 			if (bp->b_lblkno >= 0 ||
7357 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7358 				panic("deallocate_dependencies: not indir");
7359 			cancel_indirdep(indirdep, bp, freeblks);
7360 			continue;
7361 
7362 		case D_PAGEDEP:
7363 			pagedep = WK_PAGEDEP(wk);
7364 			if (cancel_pagedep(pagedep, freeblks, off)) {
7365 				FREE_LOCK(ump);
7366 				return (ERESTART);
7367 			}
7368 			continue;
7369 
7370 		case D_ALLOCINDIR:
7371 			/*
7372 			 * Simply remove the allocindir, we'll find it via
7373 			 * the indirdep where we can clear pointers if
7374 			 * needed.
7375 			 */
7376 			WORKLIST_REMOVE(wk);
7377 			continue;
7378 
7379 		case D_FREEWORK:
7380 			/*
7381 			 * A truncation is waiting for the zero'd pointers
7382 			 * to be written.  It can be freed when the freeblks
7383 			 * is journaled.
7384 			 */
7385 			WORKLIST_REMOVE(wk);
7386 			wk->wk_state |= ONDEPLIST;
7387 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7388 			break;
7389 
7390 		case D_ALLOCDIRECT:
7391 			if (off != 0)
7392 				continue;
7393 			/* FALLTHROUGH */
7394 		default:
7395 			panic("deallocate_dependencies: Unexpected type %s",
7396 			    TYPENAME(wk->wk_type));
7397 			/* NOTREACHED */
7398 		}
7399 	}
7400 	FREE_LOCK(ump);
7401 done:
7402 	/*
7403 	 * Don't throw away this buf, we were partially truncating and
7404 	 * some deps may always remain.
7405 	 */
7406 	if (off) {
7407 		allocbuf(bp, off);
7408 		bp->b_vflags |= BV_SCANNED;
7409 		return (EBUSY);
7410 	}
7411 	bp->b_flags |= B_INVAL | B_NOCACHE;
7412 
7413 	return (0);
7414 }
7415 
7416 /*
7417  * An allocdirect is being canceled due to a truncate.  We must make sure
7418  * the journal entry is released in concert with the blkfree that releases
7419  * the storage.  Completed journal entries must not be released until the
7420  * space is no longer pointed to by the inode or in the bitmap.
7421  */
7422 static void
7423 cancel_allocdirect(adphead, adp, freeblks)
7424 	struct allocdirectlst *adphead;
7425 	struct allocdirect *adp;
7426 	struct freeblks *freeblks;
7427 {
7428 	struct freework *freework;
7429 	struct newblk *newblk;
7430 	struct worklist *wk;
7431 
7432 	TAILQ_REMOVE(adphead, adp, ad_next);
7433 	newblk = (struct newblk *)adp;
7434 	freework = NULL;
7435 	/*
7436 	 * Find the correct freework structure.
7437 	 */
7438 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7439 		if (wk->wk_type != D_FREEWORK)
7440 			continue;
7441 		freework = WK_FREEWORK(wk);
7442 		if (freework->fw_blkno == newblk->nb_newblkno)
7443 			break;
7444 	}
7445 	if (freework == NULL)
7446 		panic("cancel_allocdirect: Freework not found");
7447 	/*
7448 	 * If a newblk exists at all we still have the journal entry that
7449 	 * initiated the allocation so we do not need to journal the free.
7450 	 */
7451 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7452 	/*
7453 	 * If the journal hasn't been written the jnewblk must be passed
7454 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7455 	 * this by linking the journal dependency into the freework to be
7456 	 * freed when freework_freeblock() is called.  If the journal has
7457 	 * been written we can simply reclaim the journal space when the
7458 	 * freeblks work is complete.
7459 	 */
7460 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7461 	    &freeblks->fb_jwork);
7462 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7463 }
7464 
7465 /*
7466  * Cancel a new block allocation.  May be an indirect or direct block.  We
7467  * remove it from various lists and return any journal record that needs to
7468  * be resolved by the caller.
7469  *
7470  * A special consideration is made for indirects which were never pointed
7471  * at on disk and will never be found once this block is released.
7472  */
7473 static struct jnewblk *
7474 cancel_newblk(newblk, wk, wkhd)
7475 	struct newblk *newblk;
7476 	struct worklist *wk;
7477 	struct workhead *wkhd;
7478 {
7479 	struct jnewblk *jnewblk;
7480 
7481 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7482 
7483 	newblk->nb_state |= GOINGAWAY;
7484 	/*
7485 	 * Previously we traversed the completedhd on each indirdep
7486 	 * attached to this newblk to cancel them and gather journal
7487 	 * work.  Since we need only the oldest journal segment and
7488 	 * the lowest point on the tree will always have the oldest
7489 	 * journal segment we are free to release the segments
7490 	 * of any subordinates and may leave the indirdep list to
7491 	 * indirdep_complete() when this newblk is freed.
7492 	 */
7493 	if (newblk->nb_state & ONDEPLIST) {
7494 		newblk->nb_state &= ~ONDEPLIST;
7495 		LIST_REMOVE(newblk, nb_deps);
7496 	}
7497 	if (newblk->nb_state & ONWORKLIST)
7498 		WORKLIST_REMOVE(&newblk->nb_list);
7499 	/*
7500 	 * If the journal entry hasn't been written we save a pointer to
7501 	 * the dependency that frees it until it is written or the
7502 	 * superseding operation completes.
7503 	 */
7504 	jnewblk = newblk->nb_jnewblk;
7505 	if (jnewblk != NULL && wk != NULL) {
7506 		newblk->nb_jnewblk = NULL;
7507 		jnewblk->jn_dep = wk;
7508 	}
7509 	if (!LIST_EMPTY(&newblk->nb_jwork))
7510 		jwork_move(wkhd, &newblk->nb_jwork);
7511 	/*
7512 	 * When truncating we must free the newdirblk early to remove
7513 	 * the pagedep from the hash before returning.
7514 	 */
7515 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7516 		free_newdirblk(WK_NEWDIRBLK(wk));
7517 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7518 		panic("cancel_newblk: extra newdirblk");
7519 
7520 	return (jnewblk);
7521 }
7522 
7523 /*
7524  * Schedule the freefrag associated with a newblk to be released once
7525  * the pointers are written and the previous block is no longer needed.
7526  */
7527 static void
7528 newblk_freefrag(newblk)
7529 	struct newblk *newblk;
7530 {
7531 	struct freefrag *freefrag;
7532 
7533 	if (newblk->nb_freefrag == NULL)
7534 		return;
7535 	freefrag = newblk->nb_freefrag;
7536 	newblk->nb_freefrag = NULL;
7537 	freefrag->ff_state |= COMPLETE;
7538 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7539 		add_to_worklist(&freefrag->ff_list, 0);
7540 }
7541 
7542 /*
7543  * Free a newblk. Generate a new freefrag work request if appropriate.
7544  * This must be called after the inode pointer and any direct block pointers
7545  * are valid or fully removed via truncate or frag extension.
7546  */
7547 static void
7548 free_newblk(newblk)
7549 	struct newblk *newblk;
7550 {
7551 	struct indirdep *indirdep;
7552 	struct worklist *wk;
7553 
7554 	KASSERT(newblk->nb_jnewblk == NULL,
7555 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7556 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7557 	    ("free_newblk: unclaimed newblk"));
7558 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7559 	newblk_freefrag(newblk);
7560 	if (newblk->nb_state & ONDEPLIST)
7561 		LIST_REMOVE(newblk, nb_deps);
7562 	if (newblk->nb_state & ONWORKLIST)
7563 		WORKLIST_REMOVE(&newblk->nb_list);
7564 	LIST_REMOVE(newblk, nb_hash);
7565 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7566 		free_newdirblk(WK_NEWDIRBLK(wk));
7567 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7568 		panic("free_newblk: extra newdirblk");
7569 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7570 		indirdep_complete(indirdep);
7571 	handle_jwork(&newblk->nb_jwork);
7572 	WORKITEM_FREE(newblk, D_NEWBLK);
7573 }
7574 
7575 /*
7576  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7577  */
7578 static void
7579 free_newdirblk(newdirblk)
7580 	struct newdirblk *newdirblk;
7581 {
7582 	struct pagedep *pagedep;
7583 	struct diradd *dap;
7584 	struct worklist *wk;
7585 
7586 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7587 	WORKLIST_REMOVE(&newdirblk->db_list);
7588 	/*
7589 	 * If the pagedep is still linked onto the directory buffer
7590 	 * dependency chain, then some of the entries on the
7591 	 * pd_pendinghd list may not be committed to disk yet. In
7592 	 * this case, we will simply clear the NEWBLOCK flag and
7593 	 * let the pd_pendinghd list be processed when the pagedep
7594 	 * is next written. If the pagedep is no longer on the buffer
7595 	 * dependency chain, then all the entries on the pd_pending
7596 	 * list are committed to disk and we can free them here.
7597 	 */
7598 	pagedep = newdirblk->db_pagedep;
7599 	pagedep->pd_state &= ~NEWBLOCK;
7600 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7601 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7602 			free_diradd(dap, NULL);
7603 		/*
7604 		 * If no dependencies remain, the pagedep will be freed.
7605 		 */
7606 		free_pagedep(pagedep);
7607 	}
7608 	/* Should only ever be one item in the list. */
7609 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7610 		WORKLIST_REMOVE(wk);
7611 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7612 	}
7613 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7614 }
7615 
7616 /*
7617  * Prepare an inode to be freed. The actual free operation is not
7618  * done until the zero'ed inode has been written to disk.
7619  */
7620 void
7621 softdep_freefile(pvp, ino, mode)
7622 	struct vnode *pvp;
7623 	ino_t ino;
7624 	int mode;
7625 {
7626 	struct inode *ip = VTOI(pvp);
7627 	struct inodedep *inodedep;
7628 	struct freefile *freefile;
7629 	struct freeblks *freeblks;
7630 	struct ufsmount *ump;
7631 
7632 	ump = ITOUMP(ip);
7633 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7634 	    ("softdep_freefile called on non-softdep filesystem"));
7635 	/*
7636 	 * This sets up the inode de-allocation dependency.
7637 	 */
7638 	freefile = malloc(sizeof(struct freefile),
7639 		M_FREEFILE, M_SOFTDEP_FLAGS);
7640 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7641 	freefile->fx_mode = mode;
7642 	freefile->fx_oldinum = ino;
7643 	freefile->fx_devvp = ump->um_devvp;
7644 	LIST_INIT(&freefile->fx_jwork);
7645 	UFS_LOCK(ump);
7646 	ump->um_fs->fs_pendinginodes += 1;
7647 	UFS_UNLOCK(ump);
7648 
7649 	/*
7650 	 * If the inodedep does not exist, then the zero'ed inode has
7651 	 * been written to disk. If the allocated inode has never been
7652 	 * written to disk, then the on-disk inode is zero'ed. In either
7653 	 * case we can free the file immediately.  If the journal was
7654 	 * canceled before being written the inode will never make it to
7655 	 * disk and we must send the canceled journal entrys to
7656 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7657 	 * Any blocks waiting on the inode to write can be safely freed
7658 	 * here as it will never been written.
7659 	 */
7660 	ACQUIRE_LOCK(ump);
7661 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7662 	if (inodedep) {
7663 		/*
7664 		 * Clear out freeblks that no longer need to reference
7665 		 * this inode.
7666 		 */
7667 		while ((freeblks =
7668 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7669 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7670 			    fb_next);
7671 			freeblks->fb_state &= ~ONDEPLIST;
7672 		}
7673 		/*
7674 		 * Remove this inode from the unlinked list.
7675 		 */
7676 		if (inodedep->id_state & UNLINKED) {
7677 			/*
7678 			 * Save the journal work to be freed with the bitmap
7679 			 * before we clear UNLINKED.  Otherwise it can be lost
7680 			 * if the inode block is written.
7681 			 */
7682 			handle_bufwait(inodedep, &freefile->fx_jwork);
7683 			clear_unlinked_inodedep(inodedep);
7684 			/*
7685 			 * Re-acquire inodedep as we've dropped the
7686 			 * per-filesystem lock in clear_unlinked_inodedep().
7687 			 */
7688 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7689 		}
7690 	}
7691 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7692 		FREE_LOCK(ump);
7693 		handle_workitem_freefile(freefile);
7694 		return;
7695 	}
7696 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7697 		inodedep->id_state |= GOINGAWAY;
7698 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7699 	FREE_LOCK(ump);
7700 	if (ip->i_number == ino)
7701 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7702 }
7703 
7704 /*
7705  * Check to see if an inode has never been written to disk. If
7706  * so free the inodedep and return success, otherwise return failure.
7707  *
7708  * If we still have a bitmap dependency, then the inode has never
7709  * been written to disk. Drop the dependency as it is no longer
7710  * necessary since the inode is being deallocated. We set the
7711  * ALLCOMPLETE flags since the bitmap now properly shows that the
7712  * inode is not allocated. Even if the inode is actively being
7713  * written, it has been rolled back to its zero'ed state, so we
7714  * are ensured that a zero inode is what is on the disk. For short
7715  * lived files, this change will usually result in removing all the
7716  * dependencies from the inode so that it can be freed immediately.
7717  */
7718 static int
7719 check_inode_unwritten(inodedep)
7720 	struct inodedep *inodedep;
7721 {
7722 
7723 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7724 
7725 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7726 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7727 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7728 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7729 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7730 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7731 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7732 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7733 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7734 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7735 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7736 	    inodedep->id_mkdiradd != NULL ||
7737 	    inodedep->id_nlinkdelta != 0)
7738 		return (0);
7739 	/*
7740 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7741 	 * trying to allocate memory without holding "Softdep Lock".
7742 	 */
7743 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7744 	    inodedep->id_savedino1 == NULL)
7745 		return (0);
7746 
7747 	if (inodedep->id_state & ONDEPLIST)
7748 		LIST_REMOVE(inodedep, id_deps);
7749 	inodedep->id_state &= ~ONDEPLIST;
7750 	inodedep->id_state |= ALLCOMPLETE;
7751 	inodedep->id_bmsafemap = NULL;
7752 	if (inodedep->id_state & ONWORKLIST)
7753 		WORKLIST_REMOVE(&inodedep->id_list);
7754 	if (inodedep->id_savedino1 != NULL) {
7755 		free(inodedep->id_savedino1, M_SAVEDINO);
7756 		inodedep->id_savedino1 = NULL;
7757 	}
7758 	if (free_inodedep(inodedep) == 0)
7759 		panic("check_inode_unwritten: busy inode");
7760 	return (1);
7761 }
7762 
7763 static int
7764 check_inodedep_free(inodedep)
7765 	struct inodedep *inodedep;
7766 {
7767 
7768 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7769 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7770 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7771 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7772 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7773 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7774 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7775 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7776 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7777 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7778 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7779 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7780 	    inodedep->id_mkdiradd != NULL ||
7781 	    inodedep->id_nlinkdelta != 0 ||
7782 	    inodedep->id_savedino1 != NULL)
7783 		return (0);
7784 	return (1);
7785 }
7786 
7787 /*
7788  * Try to free an inodedep structure. Return 1 if it could be freed.
7789  */
7790 static int
7791 free_inodedep(inodedep)
7792 	struct inodedep *inodedep;
7793 {
7794 
7795 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7796 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7797 	    !check_inodedep_free(inodedep))
7798 		return (0);
7799 	if (inodedep->id_state & ONDEPLIST)
7800 		LIST_REMOVE(inodedep, id_deps);
7801 	LIST_REMOVE(inodedep, id_hash);
7802 	WORKITEM_FREE(inodedep, D_INODEDEP);
7803 	return (1);
7804 }
7805 
7806 /*
7807  * Free the block referenced by a freework structure.  The parent freeblks
7808  * structure is released and completed when the final cg bitmap reaches
7809  * the disk.  This routine may be freeing a jnewblk which never made it to
7810  * disk in which case we do not have to wait as the operation is undone
7811  * in memory immediately.
7812  */
7813 static void
7814 freework_freeblock(freework, key)
7815 	struct freework *freework;
7816 	u_long key;
7817 {
7818 	struct freeblks *freeblks;
7819 	struct jnewblk *jnewblk;
7820 	struct ufsmount *ump;
7821 	struct workhead wkhd;
7822 	struct fs *fs;
7823 	int bsize;
7824 	int needj;
7825 
7826 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7827 	LOCK_OWNED(ump);
7828 	/*
7829 	 * Handle partial truncate separately.
7830 	 */
7831 	if (freework->fw_indir) {
7832 		complete_trunc_indir(freework);
7833 		return;
7834 	}
7835 	freeblks = freework->fw_freeblks;
7836 	fs = ump->um_fs;
7837 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7838 	bsize = lfragtosize(fs, freework->fw_frags);
7839 	LIST_INIT(&wkhd);
7840 	/*
7841 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7842 	 * on the indirblk hashtable and prevents premature freeing.
7843 	 */
7844 	freework->fw_state |= DEPCOMPLETE;
7845 	/*
7846 	 * SUJ needs to wait for the segment referencing freed indirect
7847 	 * blocks to expire so that we know the checker will not confuse
7848 	 * a re-allocated indirect block with its old contents.
7849 	 */
7850 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7851 		indirblk_insert(freework);
7852 	/*
7853 	 * If we are canceling an existing jnewblk pass it to the free
7854 	 * routine, otherwise pass the freeblk which will ultimately
7855 	 * release the freeblks.  If we're not journaling, we can just
7856 	 * free the freeblks immediately.
7857 	 */
7858 	jnewblk = freework->fw_jnewblk;
7859 	if (jnewblk != NULL) {
7860 		cancel_jnewblk(jnewblk, &wkhd);
7861 		needj = 0;
7862 	} else if (needj) {
7863 		freework->fw_state |= DELAYEDFREE;
7864 		freeblks->fb_cgwait++;
7865 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7866 	}
7867 	FREE_LOCK(ump);
7868 	freeblks_free(ump, freeblks, btodb(bsize));
7869 	CTR4(KTR_SUJ,
7870 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
7871 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7872 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7873 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
7874 	ACQUIRE_LOCK(ump);
7875 	/*
7876 	 * The jnewblk will be discarded and the bits in the map never
7877 	 * made it to disk.  We can immediately free the freeblk.
7878 	 */
7879 	if (needj == 0)
7880 		handle_written_freework(freework);
7881 }
7882 
7883 /*
7884  * We enqueue freework items that need processing back on the freeblks and
7885  * add the freeblks to the worklist.  This makes it easier to find all work
7886  * required to flush a truncation in process_truncates().
7887  */
7888 static void
7889 freework_enqueue(freework)
7890 	struct freework *freework;
7891 {
7892 	struct freeblks *freeblks;
7893 
7894 	freeblks = freework->fw_freeblks;
7895 	if ((freework->fw_state & INPROGRESS) == 0)
7896 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7897 	if ((freeblks->fb_state &
7898 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7899 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7900 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7901 }
7902 
7903 /*
7904  * Start, continue, or finish the process of freeing an indirect block tree.
7905  * The free operation may be paused at any point with fw_off containing the
7906  * offset to restart from.  This enables us to implement some flow control
7907  * for large truncates which may fan out and generate a huge number of
7908  * dependencies.
7909  */
7910 static void
7911 handle_workitem_indirblk(freework)
7912 	struct freework *freework;
7913 {
7914 	struct freeblks *freeblks;
7915 	struct ufsmount *ump;
7916 	struct fs *fs;
7917 
7918 	freeblks = freework->fw_freeblks;
7919 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7920 	fs = ump->um_fs;
7921 	if (freework->fw_state & DEPCOMPLETE) {
7922 		handle_written_freework(freework);
7923 		return;
7924 	}
7925 	if (freework->fw_off == NINDIR(fs)) {
7926 		freework_freeblock(freework, SINGLETON_KEY);
7927 		return;
7928 	}
7929 	freework->fw_state |= INPROGRESS;
7930 	FREE_LOCK(ump);
7931 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7932 	    freework->fw_lbn);
7933 	ACQUIRE_LOCK(ump);
7934 }
7935 
7936 /*
7937  * Called when a freework structure attached to a cg buf is written.  The
7938  * ref on either the parent or the freeblks structure is released and
7939  * the freeblks is added back to the worklist if there is more work to do.
7940  */
7941 static void
7942 handle_written_freework(freework)
7943 	struct freework *freework;
7944 {
7945 	struct freeblks *freeblks;
7946 	struct freework *parent;
7947 
7948 	freeblks = freework->fw_freeblks;
7949 	parent = freework->fw_parent;
7950 	if (freework->fw_state & DELAYEDFREE)
7951 		freeblks->fb_cgwait--;
7952 	freework->fw_state |= COMPLETE;
7953 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7954 		WORKITEM_FREE(freework, D_FREEWORK);
7955 	if (parent) {
7956 		if (--parent->fw_ref == 0)
7957 			freework_enqueue(parent);
7958 		return;
7959 	}
7960 	if (--freeblks->fb_ref != 0)
7961 		return;
7962 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7963 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7964 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7965 }
7966 
7967 /*
7968  * This workitem routine performs the block de-allocation.
7969  * The workitem is added to the pending list after the updated
7970  * inode block has been written to disk.  As mentioned above,
7971  * checks regarding the number of blocks de-allocated (compared
7972  * to the number of blocks allocated for the file) are also
7973  * performed in this function.
7974  */
7975 static int
7976 handle_workitem_freeblocks(freeblks, flags)
7977 	struct freeblks *freeblks;
7978 	int flags;
7979 {
7980 	struct freework *freework;
7981 	struct newblk *newblk;
7982 	struct allocindir *aip;
7983 	struct ufsmount *ump;
7984 	struct worklist *wk;
7985 	u_long key;
7986 
7987 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7988 	    ("handle_workitem_freeblocks: Journal entries not written."));
7989 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7990 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
7991 	ACQUIRE_LOCK(ump);
7992 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7993 		WORKLIST_REMOVE(wk);
7994 		switch (wk->wk_type) {
7995 		case D_DIRREM:
7996 			wk->wk_state |= COMPLETE;
7997 			add_to_worklist(wk, 0);
7998 			continue;
7999 
8000 		case D_ALLOCDIRECT:
8001 			free_newblk(WK_NEWBLK(wk));
8002 			continue;
8003 
8004 		case D_ALLOCINDIR:
8005 			aip = WK_ALLOCINDIR(wk);
8006 			freework = NULL;
8007 			if (aip->ai_state & DELAYEDFREE) {
8008 				FREE_LOCK(ump);
8009 				freework = newfreework(ump, freeblks, NULL,
8010 				    aip->ai_lbn, aip->ai_newblkno,
8011 				    ump->um_fs->fs_frag, 0, 0);
8012 				ACQUIRE_LOCK(ump);
8013 			}
8014 			newblk = WK_NEWBLK(wk);
8015 			if (newblk->nb_jnewblk) {
8016 				freework->fw_jnewblk = newblk->nb_jnewblk;
8017 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8018 				newblk->nb_jnewblk = NULL;
8019 			}
8020 			free_newblk(newblk);
8021 			continue;
8022 
8023 		case D_FREEWORK:
8024 			freework = WK_FREEWORK(wk);
8025 			if (freework->fw_lbn <= -UFS_NDADDR)
8026 				handle_workitem_indirblk(freework);
8027 			else
8028 				freework_freeblock(freework, key);
8029 			continue;
8030 		default:
8031 			panic("handle_workitem_freeblocks: Unknown type %s",
8032 			    TYPENAME(wk->wk_type));
8033 		}
8034 	}
8035 	if (freeblks->fb_ref != 0) {
8036 		freeblks->fb_state &= ~INPROGRESS;
8037 		wake_worklist(&freeblks->fb_list);
8038 		freeblks = NULL;
8039 	}
8040 	FREE_LOCK(ump);
8041 	ffs_blkrelease_finish(ump, key);
8042 	if (freeblks)
8043 		return handle_complete_freeblocks(freeblks, flags);
8044 	return (0);
8045 }
8046 
8047 /*
8048  * Handle completion of block free via truncate.  This allows fs_pending
8049  * to track the actual free block count more closely than if we only updated
8050  * it at the end.  We must be careful to handle cases where the block count
8051  * on free was incorrect.
8052  */
8053 static void
8054 freeblks_free(ump, freeblks, blocks)
8055 	struct ufsmount *ump;
8056 	struct freeblks *freeblks;
8057 	int blocks;
8058 {
8059 	struct fs *fs;
8060 	ufs2_daddr_t remain;
8061 
8062 	UFS_LOCK(ump);
8063 	remain = -freeblks->fb_chkcnt;
8064 	freeblks->fb_chkcnt += blocks;
8065 	if (remain > 0) {
8066 		if (remain < blocks)
8067 			blocks = remain;
8068 		fs = ump->um_fs;
8069 		fs->fs_pendingblocks -= blocks;
8070 	}
8071 	UFS_UNLOCK(ump);
8072 }
8073 
8074 /*
8075  * Once all of the freework workitems are complete we can retire the
8076  * freeblocks dependency and any journal work awaiting completion.  This
8077  * can not be called until all other dependencies are stable on disk.
8078  */
8079 static int
8080 handle_complete_freeblocks(freeblks, flags)
8081 	struct freeblks *freeblks;
8082 	int flags;
8083 {
8084 	struct inodedep *inodedep;
8085 	struct inode *ip;
8086 	struct vnode *vp;
8087 	struct fs *fs;
8088 	struct ufsmount *ump;
8089 	ufs2_daddr_t spare;
8090 
8091 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8092 	fs = ump->um_fs;
8093 	flags = LK_EXCLUSIVE | flags;
8094 	spare = freeblks->fb_chkcnt;
8095 
8096 	/*
8097 	 * If we did not release the expected number of blocks we may have
8098 	 * to adjust the inode block count here.  Only do so if it wasn't
8099 	 * a truncation to zero and the modrev still matches.
8100 	 */
8101 	if (spare && freeblks->fb_len != 0) {
8102 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8103 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8104 			return (EBUSY);
8105 		ip = VTOI(vp);
8106 		if (ip->i_mode == 0) {
8107 			vgone(vp);
8108 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8109 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8110 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8111 			/*
8112 			 * We must wait so this happens before the
8113 			 * journal is reclaimed.
8114 			 */
8115 			ffs_update(vp, 1);
8116 		}
8117 		vput(vp);
8118 	}
8119 	if (spare < 0) {
8120 		UFS_LOCK(ump);
8121 		fs->fs_pendingblocks += spare;
8122 		UFS_UNLOCK(ump);
8123 	}
8124 #ifdef QUOTA
8125 	/* Handle spare. */
8126 	if (spare)
8127 		quotaadj(freeblks->fb_quota, ump, -spare);
8128 	quotarele(freeblks->fb_quota);
8129 #endif
8130 	ACQUIRE_LOCK(ump);
8131 	if (freeblks->fb_state & ONDEPLIST) {
8132 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8133 		    0, &inodedep);
8134 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8135 		freeblks->fb_state &= ~ONDEPLIST;
8136 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8137 			free_inodedep(inodedep);
8138 	}
8139 	/*
8140 	 * All of the freeblock deps must be complete prior to this call
8141 	 * so it's now safe to complete earlier outstanding journal entries.
8142 	 */
8143 	handle_jwork(&freeblks->fb_jwork);
8144 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8145 	FREE_LOCK(ump);
8146 	return (0);
8147 }
8148 
8149 /*
8150  * Release blocks associated with the freeblks and stored in the indirect
8151  * block dbn. If level is greater than SINGLE, the block is an indirect block
8152  * and recursive calls to indirtrunc must be used to cleanse other indirect
8153  * blocks.
8154  *
8155  * This handles partial and complete truncation of blocks.  Partial is noted
8156  * with goingaway == 0.  In this case the freework is completed after the
8157  * zero'd indirects are written to disk.  For full truncation the freework
8158  * is completed after the block is freed.
8159  */
8160 static void
8161 indir_trunc(freework, dbn, lbn)
8162 	struct freework *freework;
8163 	ufs2_daddr_t dbn;
8164 	ufs_lbn_t lbn;
8165 {
8166 	struct freework *nfreework;
8167 	struct workhead wkhd;
8168 	struct freeblks *freeblks;
8169 	struct buf *bp;
8170 	struct fs *fs;
8171 	struct indirdep *indirdep;
8172 	struct mount *mp;
8173 	struct ufsmount *ump;
8174 	ufs1_daddr_t *bap1;
8175 	ufs2_daddr_t nb, nnb, *bap2;
8176 	ufs_lbn_t lbnadd, nlbn;
8177 	u_long key;
8178 	int nblocks, ufs1fmt, freedblocks;
8179 	int goingaway, freedeps, needj, level, cnt, i, error;
8180 
8181 	freeblks = freework->fw_freeblks;
8182 	mp = freeblks->fb_list.wk_mp;
8183 	ump = VFSTOUFS(mp);
8184 	fs = ump->um_fs;
8185 	/*
8186 	 * Get buffer of block pointers to be freed.  There are three cases:
8187 	 *
8188 	 * 1) Partial truncate caches the indirdep pointer in the freework
8189 	 *    which provides us a back copy to the save bp which holds the
8190 	 *    pointers we want to clear.  When this completes the zero
8191 	 *    pointers are written to the real copy.
8192 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8193 	 *    eliminated the real copy and placed the indirdep on the saved
8194 	 *    copy.  The indirdep and buf are discarded when this completes.
8195 	 * 3) The indirect was not in memory, we read a copy off of the disk
8196 	 *    using the devvp and drop and invalidate the buffer when we're
8197 	 *    done.
8198 	 */
8199 	goingaway = 1;
8200 	indirdep = NULL;
8201 	if (freework->fw_indir != NULL) {
8202 		goingaway = 0;
8203 		indirdep = freework->fw_indir;
8204 		bp = indirdep->ir_savebp;
8205 		if (bp == NULL || bp->b_blkno != dbn)
8206 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8207 			    bp, (intmax_t)dbn);
8208 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8209 		/*
8210 		 * The lock prevents the buf dep list from changing and
8211 	 	 * indirects on devvp should only ever have one dependency.
8212 		 */
8213 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8214 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8215 			panic("indir_trunc: Bad indirdep %p from buf %p",
8216 			    indirdep, bp);
8217 	} else {
8218 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8219 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8220 		if (error)
8221 			return;
8222 	}
8223 	ACQUIRE_LOCK(ump);
8224 	/* Protects against a race with complete_trunc_indir(). */
8225 	freework->fw_state &= ~INPROGRESS;
8226 	/*
8227 	 * If we have an indirdep we need to enforce the truncation order
8228 	 * and discard it when it is complete.
8229 	 */
8230 	if (indirdep) {
8231 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8232 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8233 			/*
8234 			 * Add the complete truncate to the list on the
8235 			 * indirdep to enforce in-order processing.
8236 			 */
8237 			if (freework->fw_indir == NULL)
8238 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8239 				    freework, fw_next);
8240 			FREE_LOCK(ump);
8241 			return;
8242 		}
8243 		/*
8244 		 * If we're goingaway, free the indirdep.  Otherwise it will
8245 		 * linger until the write completes.
8246 		 */
8247 		if (goingaway) {
8248 			KASSERT(indirdep->ir_savebp == bp,
8249 			    ("indir_trunc: losing ir_savebp %p",
8250 			    indirdep->ir_savebp));
8251 			indirdep->ir_savebp = NULL;
8252 			free_indirdep(indirdep);
8253 		}
8254 	}
8255 	FREE_LOCK(ump);
8256 	/* Initialize pointers depending on block size. */
8257 	if (ump->um_fstype == UFS1) {
8258 		bap1 = (ufs1_daddr_t *)bp->b_data;
8259 		nb = bap1[freework->fw_off];
8260 		ufs1fmt = 1;
8261 		bap2 = NULL;
8262 	} else {
8263 		bap2 = (ufs2_daddr_t *)bp->b_data;
8264 		nb = bap2[freework->fw_off];
8265 		ufs1fmt = 0;
8266 		bap1 = NULL;
8267 	}
8268 	level = lbn_level(lbn);
8269 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8270 	lbnadd = lbn_offset(fs, level);
8271 	nblocks = btodb(fs->fs_bsize);
8272 	nfreework = freework;
8273 	freedeps = 0;
8274 	cnt = 0;
8275 	/*
8276 	 * Reclaim blocks.  Traverses into nested indirect levels and
8277 	 * arranges for the current level to be freed when subordinates
8278 	 * are free when journaling.
8279 	 */
8280 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8281 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8282 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8283 		    fs->fs_bsize) != 0)
8284 			nb = 0;
8285 		if (i != NINDIR(fs) - 1) {
8286 			if (ufs1fmt)
8287 				nnb = bap1[i+1];
8288 			else
8289 				nnb = bap2[i+1];
8290 		} else
8291 			nnb = 0;
8292 		if (nb == 0)
8293 			continue;
8294 		cnt++;
8295 		if (level != 0) {
8296 			nlbn = (lbn + 1) - (i * lbnadd);
8297 			if (needj != 0) {
8298 				nfreework = newfreework(ump, freeblks, freework,
8299 				    nlbn, nb, fs->fs_frag, 0, 0);
8300 				freedeps++;
8301 			}
8302 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8303 		} else {
8304 			struct freedep *freedep;
8305 
8306 			/*
8307 			 * Attempt to aggregate freedep dependencies for
8308 			 * all blocks being released to the same CG.
8309 			 */
8310 			LIST_INIT(&wkhd);
8311 			if (needj != 0 &&
8312 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8313 				freedep = newfreedep(freework);
8314 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8315 				    &freedep->fd_list);
8316 				freedeps++;
8317 			}
8318 			CTR3(KTR_SUJ,
8319 			    "indir_trunc: ino %jd blkno %jd size %d",
8320 			    freeblks->fb_inum, nb, fs->fs_bsize);
8321 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8322 			    fs->fs_bsize, freeblks->fb_inum,
8323 			    freeblks->fb_vtype, &wkhd, key);
8324 		}
8325 	}
8326 	ffs_blkrelease_finish(ump, key);
8327 	if (goingaway) {
8328 		bp->b_flags |= B_INVAL | B_NOCACHE;
8329 		brelse(bp);
8330 	}
8331 	freedblocks = 0;
8332 	if (level == 0)
8333 		freedblocks = (nblocks * cnt);
8334 	if (needj == 0)
8335 		freedblocks += nblocks;
8336 	freeblks_free(ump, freeblks, freedblocks);
8337 	/*
8338 	 * If we are journaling set up the ref counts and offset so this
8339 	 * indirect can be completed when its children are free.
8340 	 */
8341 	if (needj) {
8342 		ACQUIRE_LOCK(ump);
8343 		freework->fw_off = i;
8344 		freework->fw_ref += freedeps;
8345 		freework->fw_ref -= NINDIR(fs) + 1;
8346 		if (level == 0)
8347 			freeblks->fb_cgwait += freedeps;
8348 		if (freework->fw_ref == 0)
8349 			freework_freeblock(freework, SINGLETON_KEY);
8350 		FREE_LOCK(ump);
8351 		return;
8352 	}
8353 	/*
8354 	 * If we're not journaling we can free the indirect now.
8355 	 */
8356 	dbn = dbtofsb(fs, dbn);
8357 	CTR3(KTR_SUJ,
8358 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8359 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8360 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8361 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8362 	/* Non SUJ softdep does single-threaded truncations. */
8363 	if (freework->fw_blkno == dbn) {
8364 		freework->fw_state |= ALLCOMPLETE;
8365 		ACQUIRE_LOCK(ump);
8366 		handle_written_freework(freework);
8367 		FREE_LOCK(ump);
8368 	}
8369 	return;
8370 }
8371 
8372 /*
8373  * Cancel an allocindir when it is removed via truncation.  When bp is not
8374  * NULL the indirect never appeared on disk and is scheduled to be freed
8375  * independently of the indir so we can more easily track journal work.
8376  */
8377 static void
8378 cancel_allocindir(aip, bp, freeblks, trunc)
8379 	struct allocindir *aip;
8380 	struct buf *bp;
8381 	struct freeblks *freeblks;
8382 	int trunc;
8383 {
8384 	struct indirdep *indirdep;
8385 	struct freefrag *freefrag;
8386 	struct newblk *newblk;
8387 
8388 	newblk = (struct newblk *)aip;
8389 	LIST_REMOVE(aip, ai_next);
8390 	/*
8391 	 * We must eliminate the pointer in bp if it must be freed on its
8392 	 * own due to partial truncate or pending journal work.
8393 	 */
8394 	if (bp && (trunc || newblk->nb_jnewblk)) {
8395 		/*
8396 		 * Clear the pointer and mark the aip to be freed
8397 		 * directly if it never existed on disk.
8398 		 */
8399 		aip->ai_state |= DELAYEDFREE;
8400 		indirdep = aip->ai_indirdep;
8401 		if (indirdep->ir_state & UFS1FMT)
8402 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8403 		else
8404 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8405 	}
8406 	/*
8407 	 * When truncating the previous pointer will be freed via
8408 	 * savedbp.  Eliminate the freefrag which would dup free.
8409 	 */
8410 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8411 		newblk->nb_freefrag = NULL;
8412 		if (freefrag->ff_jdep)
8413 			cancel_jfreefrag(
8414 			    WK_JFREEFRAG(freefrag->ff_jdep));
8415 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8416 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8417 	}
8418 	/*
8419 	 * If the journal hasn't been written the jnewblk must be passed
8420 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8421 	 * this by leaving the journal dependency on the newblk to be freed
8422 	 * when a freework is created in handle_workitem_freeblocks().
8423 	 */
8424 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8425 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8426 }
8427 
8428 /*
8429  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8430  * in to a newdirblk so any subsequent additions are tracked properly.  The
8431  * caller is responsible for adding the mkdir1 dependency to the journal
8432  * and updating id_mkdiradd.  This function returns with the per-filesystem
8433  * lock held.
8434  */
8435 static struct mkdir *
8436 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8437 	struct diradd *dap;
8438 	ino_t newinum;
8439 	ino_t dinum;
8440 	struct buf *newdirbp;
8441 	struct mkdir **mkdirp;
8442 {
8443 	struct newblk *newblk;
8444 	struct pagedep *pagedep;
8445 	struct inodedep *inodedep;
8446 	struct newdirblk *newdirblk;
8447 	struct mkdir *mkdir1, *mkdir2;
8448 	struct worklist *wk;
8449 	struct jaddref *jaddref;
8450 	struct ufsmount *ump;
8451 	struct mount *mp;
8452 
8453 	mp = dap->da_list.wk_mp;
8454 	ump = VFSTOUFS(mp);
8455 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8456 	    M_SOFTDEP_FLAGS);
8457 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8458 	LIST_INIT(&newdirblk->db_mkdir);
8459 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8460 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8461 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8462 	mkdir1->md_diradd = dap;
8463 	mkdir1->md_jaddref = NULL;
8464 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8465 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8466 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8467 	mkdir2->md_diradd = dap;
8468 	mkdir2->md_jaddref = NULL;
8469 	if (MOUNTEDSUJ(mp) == 0) {
8470 		mkdir1->md_state |= DEPCOMPLETE;
8471 		mkdir2->md_state |= DEPCOMPLETE;
8472 	}
8473 	/*
8474 	 * Dependency on "." and ".." being written to disk.
8475 	 */
8476 	mkdir1->md_buf = newdirbp;
8477 	ACQUIRE_LOCK(VFSTOUFS(mp));
8478 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8479 	/*
8480 	 * We must link the pagedep, allocdirect, and newdirblk for
8481 	 * the initial file page so the pointer to the new directory
8482 	 * is not written until the directory contents are live and
8483 	 * any subsequent additions are not marked live until the
8484 	 * block is reachable via the inode.
8485 	 */
8486 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8487 		panic("setup_newdir: lost pagedep");
8488 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8489 		if (wk->wk_type == D_ALLOCDIRECT)
8490 			break;
8491 	if (wk == NULL)
8492 		panic("setup_newdir: lost allocdirect");
8493 	if (pagedep->pd_state & NEWBLOCK)
8494 		panic("setup_newdir: NEWBLOCK already set");
8495 	newblk = WK_NEWBLK(wk);
8496 	pagedep->pd_state |= NEWBLOCK;
8497 	pagedep->pd_newdirblk = newdirblk;
8498 	newdirblk->db_pagedep = pagedep;
8499 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8500 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8501 	/*
8502 	 * Look up the inodedep for the parent directory so that we
8503 	 * can link mkdir2 into the pending dotdot jaddref or
8504 	 * the inode write if there is none.  If the inode is
8505 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8506 	 * been satisfied and mkdir2 can be freed.
8507 	 */
8508 	inodedep_lookup(mp, dinum, 0, &inodedep);
8509 	if (MOUNTEDSUJ(mp)) {
8510 		if (inodedep == NULL)
8511 			panic("setup_newdir: Lost parent.");
8512 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8513 		    inoreflst);
8514 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8515 		    (jaddref->ja_state & MKDIR_PARENT),
8516 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8517 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8518 		mkdir2->md_jaddref = jaddref;
8519 		jaddref->ja_mkdir = mkdir2;
8520 	} else if (inodedep == NULL ||
8521 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8522 		dap->da_state &= ~MKDIR_PARENT;
8523 		WORKITEM_FREE(mkdir2, D_MKDIR);
8524 		mkdir2 = NULL;
8525 	} else {
8526 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8527 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8528 	}
8529 	*mkdirp = mkdir2;
8530 
8531 	return (mkdir1);
8532 }
8533 
8534 /*
8535  * Directory entry addition dependencies.
8536  *
8537  * When adding a new directory entry, the inode (with its incremented link
8538  * count) must be written to disk before the directory entry's pointer to it.
8539  * Also, if the inode is newly allocated, the corresponding freemap must be
8540  * updated (on disk) before the directory entry's pointer. These requirements
8541  * are met via undo/redo on the directory entry's pointer, which consists
8542  * simply of the inode number.
8543  *
8544  * As directory entries are added and deleted, the free space within a
8545  * directory block can become fragmented.  The ufs filesystem will compact
8546  * a fragmented directory block to make space for a new entry. When this
8547  * occurs, the offsets of previously added entries change. Any "diradd"
8548  * dependency structures corresponding to these entries must be updated with
8549  * the new offsets.
8550  */
8551 
8552 /*
8553  * This routine is called after the in-memory inode's link
8554  * count has been incremented, but before the directory entry's
8555  * pointer to the inode has been set.
8556  */
8557 int
8558 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8559 	struct buf *bp;		/* buffer containing directory block */
8560 	struct inode *dp;	/* inode for directory */
8561 	off_t diroffset;	/* offset of new entry in directory */
8562 	ino_t newinum;		/* inode referenced by new directory entry */
8563 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8564 	int isnewblk;		/* entry is in a newly allocated block */
8565 {
8566 	int offset;		/* offset of new entry within directory block */
8567 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8568 	struct fs *fs;
8569 	struct diradd *dap;
8570 	struct newblk *newblk;
8571 	struct pagedep *pagedep;
8572 	struct inodedep *inodedep;
8573 	struct newdirblk *newdirblk;
8574 	struct mkdir *mkdir1, *mkdir2;
8575 	struct jaddref *jaddref;
8576 	struct ufsmount *ump;
8577 	struct mount *mp;
8578 	int isindir;
8579 
8580 	mp = ITOVFS(dp);
8581 	ump = VFSTOUFS(mp);
8582 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8583 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8584 	/*
8585 	 * Whiteouts have no dependencies.
8586 	 */
8587 	if (newinum == UFS_WINO) {
8588 		if (newdirbp != NULL)
8589 			bdwrite(newdirbp);
8590 		return (0);
8591 	}
8592 	jaddref = NULL;
8593 	mkdir1 = mkdir2 = NULL;
8594 	fs = ump->um_fs;
8595 	lbn = lblkno(fs, diroffset);
8596 	offset = blkoff(fs, diroffset);
8597 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8598 		M_SOFTDEP_FLAGS|M_ZERO);
8599 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8600 	dap->da_offset = offset;
8601 	dap->da_newinum = newinum;
8602 	dap->da_state = ATTACHED;
8603 	LIST_INIT(&dap->da_jwork);
8604 	isindir = bp->b_lblkno >= UFS_NDADDR;
8605 	newdirblk = NULL;
8606 	if (isnewblk &&
8607 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8608 		newdirblk = malloc(sizeof(struct newdirblk),
8609 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8610 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8611 		LIST_INIT(&newdirblk->db_mkdir);
8612 	}
8613 	/*
8614 	 * If we're creating a new directory setup the dependencies and set
8615 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8616 	 * we can move on.
8617 	 */
8618 	if (newdirbp == NULL) {
8619 		dap->da_state |= DEPCOMPLETE;
8620 		ACQUIRE_LOCK(ump);
8621 	} else {
8622 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8623 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8624 		    &mkdir2);
8625 	}
8626 	/*
8627 	 * Link into parent directory pagedep to await its being written.
8628 	 */
8629 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8630 #ifdef INVARIANTS
8631 	if (diradd_lookup(pagedep, offset) != NULL)
8632 		panic("softdep_setup_directory_add: %p already at off %d\n",
8633 		    diradd_lookup(pagedep, offset), offset);
8634 #endif
8635 	dap->da_pagedep = pagedep;
8636 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8637 	    da_pdlist);
8638 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8639 	/*
8640 	 * If we're journaling, link the diradd into the jaddref so it
8641 	 * may be completed after the journal entry is written.  Otherwise,
8642 	 * link the diradd into its inodedep.  If the inode is not yet
8643 	 * written place it on the bufwait list, otherwise do the post-inode
8644 	 * write processing to put it on the id_pendinghd list.
8645 	 */
8646 	if (MOUNTEDSUJ(mp)) {
8647 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8648 		    inoreflst);
8649 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8650 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8651 		jaddref->ja_diroff = diroffset;
8652 		jaddref->ja_diradd = dap;
8653 		add_to_journal(&jaddref->ja_list);
8654 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8655 		diradd_inode_written(dap, inodedep);
8656 	else
8657 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8658 	/*
8659 	 * Add the journal entries for . and .. links now that the primary
8660 	 * link is written.
8661 	 */
8662 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8663 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8664 		    inoreflst, if_deps);
8665 		KASSERT(jaddref != NULL &&
8666 		    jaddref->ja_ino == jaddref->ja_parent &&
8667 		    (jaddref->ja_state & MKDIR_BODY),
8668 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8669 		    jaddref));
8670 		mkdir1->md_jaddref = jaddref;
8671 		jaddref->ja_mkdir = mkdir1;
8672 		/*
8673 		 * It is important that the dotdot journal entry
8674 		 * is added prior to the dot entry since dot writes
8675 		 * both the dot and dotdot links.  These both must
8676 		 * be added after the primary link for the journal
8677 		 * to remain consistent.
8678 		 */
8679 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8680 		add_to_journal(&jaddref->ja_list);
8681 	}
8682 	/*
8683 	 * If we are adding a new directory remember this diradd so that if
8684 	 * we rename it we can keep the dot and dotdot dependencies.  If
8685 	 * we are adding a new name for an inode that has a mkdiradd we
8686 	 * must be in rename and we have to move the dot and dotdot
8687 	 * dependencies to this new name.  The old name is being orphaned
8688 	 * soon.
8689 	 */
8690 	if (mkdir1 != NULL) {
8691 		if (inodedep->id_mkdiradd != NULL)
8692 			panic("softdep_setup_directory_add: Existing mkdir");
8693 		inodedep->id_mkdiradd = dap;
8694 	} else if (inodedep->id_mkdiradd)
8695 		merge_diradd(inodedep, dap);
8696 	if (newdirblk != NULL) {
8697 		/*
8698 		 * There is nothing to do if we are already tracking
8699 		 * this block.
8700 		 */
8701 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8702 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8703 			FREE_LOCK(ump);
8704 			return (0);
8705 		}
8706 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8707 		    == 0)
8708 			panic("softdep_setup_directory_add: lost entry");
8709 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8710 		pagedep->pd_state |= NEWBLOCK;
8711 		pagedep->pd_newdirblk = newdirblk;
8712 		newdirblk->db_pagedep = pagedep;
8713 		FREE_LOCK(ump);
8714 		/*
8715 		 * If we extended into an indirect signal direnter to sync.
8716 		 */
8717 		if (isindir)
8718 			return (1);
8719 		return (0);
8720 	}
8721 	FREE_LOCK(ump);
8722 	return (0);
8723 }
8724 
8725 /*
8726  * This procedure is called to change the offset of a directory
8727  * entry when compacting a directory block which must be owned
8728  * exclusively by the caller. Note that the actual entry movement
8729  * must be done in this procedure to ensure that no I/O completions
8730  * occur while the move is in progress.
8731  */
8732 void
8733 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8734 	struct buf *bp;		/* Buffer holding directory block. */
8735 	struct inode *dp;	/* inode for directory */
8736 	caddr_t base;		/* address of dp->i_offset */
8737 	caddr_t oldloc;		/* address of old directory location */
8738 	caddr_t newloc;		/* address of new directory location */
8739 	int entrysize;		/* size of directory entry */
8740 {
8741 	int offset, oldoffset, newoffset;
8742 	struct pagedep *pagedep;
8743 	struct jmvref *jmvref;
8744 	struct diradd *dap;
8745 	struct direct *de;
8746 	struct mount *mp;
8747 	struct ufsmount *ump;
8748 	ufs_lbn_t lbn;
8749 	int flags;
8750 
8751 	mp = ITOVFS(dp);
8752 	ump = VFSTOUFS(mp);
8753 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8754 	    ("softdep_change_directoryentry_offset called on "
8755 	     "non-softdep filesystem"));
8756 	de = (struct direct *)oldloc;
8757 	jmvref = NULL;
8758 	flags = 0;
8759 	/*
8760 	 * Moves are always journaled as it would be too complex to
8761 	 * determine if any affected adds or removes are present in the
8762 	 * journal.
8763 	 */
8764 	if (MOUNTEDSUJ(mp)) {
8765 		flags = DEPALLOC;
8766 		jmvref = newjmvref(dp, de->d_ino,
8767 		    dp->i_offset + (oldloc - base),
8768 		    dp->i_offset + (newloc - base));
8769 	}
8770 	lbn = lblkno(ump->um_fs, dp->i_offset);
8771 	offset = blkoff(ump->um_fs, dp->i_offset);
8772 	oldoffset = offset + (oldloc - base);
8773 	newoffset = offset + (newloc - base);
8774 	ACQUIRE_LOCK(ump);
8775 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8776 		goto done;
8777 	dap = diradd_lookup(pagedep, oldoffset);
8778 	if (dap) {
8779 		dap->da_offset = newoffset;
8780 		newoffset = DIRADDHASH(newoffset);
8781 		oldoffset = DIRADDHASH(oldoffset);
8782 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8783 		    newoffset != oldoffset) {
8784 			LIST_REMOVE(dap, da_pdlist);
8785 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8786 			    dap, da_pdlist);
8787 		}
8788 	}
8789 done:
8790 	if (jmvref) {
8791 		jmvref->jm_pagedep = pagedep;
8792 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8793 		add_to_journal(&jmvref->jm_list);
8794 	}
8795 	bcopy(oldloc, newloc, entrysize);
8796 	FREE_LOCK(ump);
8797 }
8798 
8799 /*
8800  * Move the mkdir dependencies and journal work from one diradd to another
8801  * when renaming a directory.  The new name must depend on the mkdir deps
8802  * completing as the old name did.  Directories can only have one valid link
8803  * at a time so one must be canonical.
8804  */
8805 static void
8806 merge_diradd(inodedep, newdap)
8807 	struct inodedep *inodedep;
8808 	struct diradd *newdap;
8809 {
8810 	struct diradd *olddap;
8811 	struct mkdir *mkdir, *nextmd;
8812 	struct ufsmount *ump;
8813 	short state;
8814 
8815 	olddap = inodedep->id_mkdiradd;
8816 	inodedep->id_mkdiradd = newdap;
8817 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8818 		newdap->da_state &= ~DEPCOMPLETE;
8819 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8820 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8821 		     mkdir = nextmd) {
8822 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8823 			if (mkdir->md_diradd != olddap)
8824 				continue;
8825 			mkdir->md_diradd = newdap;
8826 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8827 			newdap->da_state |= state;
8828 			olddap->da_state &= ~state;
8829 			if ((olddap->da_state &
8830 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8831 				break;
8832 		}
8833 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8834 			panic("merge_diradd: unfound ref");
8835 	}
8836 	/*
8837 	 * Any mkdir related journal items are not safe to be freed until
8838 	 * the new name is stable.
8839 	 */
8840 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8841 	olddap->da_state |= DEPCOMPLETE;
8842 	complete_diradd(olddap);
8843 }
8844 
8845 /*
8846  * Move the diradd to the pending list when all diradd dependencies are
8847  * complete.
8848  */
8849 static void
8850 complete_diradd(dap)
8851 	struct diradd *dap;
8852 {
8853 	struct pagedep *pagedep;
8854 
8855 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8856 		if (dap->da_state & DIRCHG)
8857 			pagedep = dap->da_previous->dm_pagedep;
8858 		else
8859 			pagedep = dap->da_pagedep;
8860 		LIST_REMOVE(dap, da_pdlist);
8861 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8862 	}
8863 }
8864 
8865 /*
8866  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8867  * add entries and conditonally journal the remove.
8868  */
8869 static void
8870 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8871 	struct diradd *dap;
8872 	struct dirrem *dirrem;
8873 	struct jremref *jremref;
8874 	struct jremref *dotremref;
8875 	struct jremref *dotdotremref;
8876 {
8877 	struct inodedep *inodedep;
8878 	struct jaddref *jaddref;
8879 	struct inoref *inoref;
8880 	struct ufsmount *ump;
8881 	struct mkdir *mkdir;
8882 
8883 	/*
8884 	 * If no remove references were allocated we're on a non-journaled
8885 	 * filesystem and can skip the cancel step.
8886 	 */
8887 	if (jremref == NULL) {
8888 		free_diradd(dap, NULL);
8889 		return;
8890 	}
8891 	/*
8892 	 * Cancel the primary name an free it if it does not require
8893 	 * journaling.
8894 	 */
8895 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8896 	    0, &inodedep) != 0) {
8897 		/* Abort the addref that reference this diradd.  */
8898 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8899 			if (inoref->if_list.wk_type != D_JADDREF)
8900 				continue;
8901 			jaddref = (struct jaddref *)inoref;
8902 			if (jaddref->ja_diradd != dap)
8903 				continue;
8904 			if (cancel_jaddref(jaddref, inodedep,
8905 			    &dirrem->dm_jwork) == 0) {
8906 				free_jremref(jremref);
8907 				jremref = NULL;
8908 			}
8909 			break;
8910 		}
8911 	}
8912 	/*
8913 	 * Cancel subordinate names and free them if they do not require
8914 	 * journaling.
8915 	 */
8916 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8917 		ump = VFSTOUFS(dap->da_list.wk_mp);
8918 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8919 			if (mkdir->md_diradd != dap)
8920 				continue;
8921 			if ((jaddref = mkdir->md_jaddref) == NULL)
8922 				continue;
8923 			mkdir->md_jaddref = NULL;
8924 			if (mkdir->md_state & MKDIR_PARENT) {
8925 				if (cancel_jaddref(jaddref, NULL,
8926 				    &dirrem->dm_jwork) == 0) {
8927 					free_jremref(dotdotremref);
8928 					dotdotremref = NULL;
8929 				}
8930 			} else {
8931 				if (cancel_jaddref(jaddref, inodedep,
8932 				    &dirrem->dm_jwork) == 0) {
8933 					free_jremref(dotremref);
8934 					dotremref = NULL;
8935 				}
8936 			}
8937 		}
8938 	}
8939 
8940 	if (jremref)
8941 		journal_jremref(dirrem, jremref, inodedep);
8942 	if (dotremref)
8943 		journal_jremref(dirrem, dotremref, inodedep);
8944 	if (dotdotremref)
8945 		journal_jremref(dirrem, dotdotremref, NULL);
8946 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8947 	free_diradd(dap, &dirrem->dm_jwork);
8948 }
8949 
8950 /*
8951  * Free a diradd dependency structure.
8952  */
8953 static void
8954 free_diradd(dap, wkhd)
8955 	struct diradd *dap;
8956 	struct workhead *wkhd;
8957 {
8958 	struct dirrem *dirrem;
8959 	struct pagedep *pagedep;
8960 	struct inodedep *inodedep;
8961 	struct mkdir *mkdir, *nextmd;
8962 	struct ufsmount *ump;
8963 
8964 	ump = VFSTOUFS(dap->da_list.wk_mp);
8965 	LOCK_OWNED(ump);
8966 	LIST_REMOVE(dap, da_pdlist);
8967 	if (dap->da_state & ONWORKLIST)
8968 		WORKLIST_REMOVE(&dap->da_list);
8969 	if ((dap->da_state & DIRCHG) == 0) {
8970 		pagedep = dap->da_pagedep;
8971 	} else {
8972 		dirrem = dap->da_previous;
8973 		pagedep = dirrem->dm_pagedep;
8974 		dirrem->dm_dirinum = pagedep->pd_ino;
8975 		dirrem->dm_state |= COMPLETE;
8976 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8977 			add_to_worklist(&dirrem->dm_list, 0);
8978 	}
8979 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8980 	    0, &inodedep) != 0)
8981 		if (inodedep->id_mkdiradd == dap)
8982 			inodedep->id_mkdiradd = NULL;
8983 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8984 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8985 		     mkdir = nextmd) {
8986 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8987 			if (mkdir->md_diradd != dap)
8988 				continue;
8989 			dap->da_state &=
8990 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8991 			LIST_REMOVE(mkdir, md_mkdirs);
8992 			if (mkdir->md_state & ONWORKLIST)
8993 				WORKLIST_REMOVE(&mkdir->md_list);
8994 			if (mkdir->md_jaddref != NULL)
8995 				panic("free_diradd: Unexpected jaddref");
8996 			WORKITEM_FREE(mkdir, D_MKDIR);
8997 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8998 				break;
8999 		}
9000 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9001 			panic("free_diradd: unfound ref");
9002 	}
9003 	if (inodedep)
9004 		free_inodedep(inodedep);
9005 	/*
9006 	 * Free any journal segments waiting for the directory write.
9007 	 */
9008 	handle_jwork(&dap->da_jwork);
9009 	WORKITEM_FREE(dap, D_DIRADD);
9010 }
9011 
9012 /*
9013  * Directory entry removal dependencies.
9014  *
9015  * When removing a directory entry, the entry's inode pointer must be
9016  * zero'ed on disk before the corresponding inode's link count is decremented
9017  * (possibly freeing the inode for re-use). This dependency is handled by
9018  * updating the directory entry but delaying the inode count reduction until
9019  * after the directory block has been written to disk. After this point, the
9020  * inode count can be decremented whenever it is convenient.
9021  */
9022 
9023 /*
9024  * This routine should be called immediately after removing
9025  * a directory entry.  The inode's link count should not be
9026  * decremented by the calling procedure -- the soft updates
9027  * code will do this task when it is safe.
9028  */
9029 void
9030 softdep_setup_remove(bp, dp, ip, isrmdir)
9031 	struct buf *bp;		/* buffer containing directory block */
9032 	struct inode *dp;	/* inode for the directory being modified */
9033 	struct inode *ip;	/* inode for directory entry being removed */
9034 	int isrmdir;		/* indicates if doing RMDIR */
9035 {
9036 	struct dirrem *dirrem, *prevdirrem;
9037 	struct inodedep *inodedep;
9038 	struct ufsmount *ump;
9039 	int direct;
9040 
9041 	ump = ITOUMP(ip);
9042 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9043 	    ("softdep_setup_remove called on non-softdep filesystem"));
9044 	/*
9045 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9046 	 * newdirrem() to setup the full directory remove which requires
9047 	 * isrmdir > 1.
9048 	 */
9049 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9050 	/*
9051 	 * Add the dirrem to the inodedep's pending remove list for quick
9052 	 * discovery later.
9053 	 */
9054 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9055 		panic("softdep_setup_remove: Lost inodedep.");
9056 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9057 	dirrem->dm_state |= ONDEPLIST;
9058 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9059 
9060 	/*
9061 	 * If the COMPLETE flag is clear, then there were no active
9062 	 * entries and we want to roll back to a zeroed entry until
9063 	 * the new inode is committed to disk. If the COMPLETE flag is
9064 	 * set then we have deleted an entry that never made it to
9065 	 * disk. If the entry we deleted resulted from a name change,
9066 	 * then the old name still resides on disk. We cannot delete
9067 	 * its inode (returned to us in prevdirrem) until the zeroed
9068 	 * directory entry gets to disk. The new inode has never been
9069 	 * referenced on the disk, so can be deleted immediately.
9070 	 */
9071 	if ((dirrem->dm_state & COMPLETE) == 0) {
9072 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9073 		    dm_next);
9074 		FREE_LOCK(ump);
9075 	} else {
9076 		if (prevdirrem != NULL)
9077 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9078 			    prevdirrem, dm_next);
9079 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9080 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9081 		FREE_LOCK(ump);
9082 		if (direct)
9083 			handle_workitem_remove(dirrem, 0);
9084 	}
9085 }
9086 
9087 /*
9088  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9089  * pd_pendinghd list of a pagedep.
9090  */
9091 static struct diradd *
9092 diradd_lookup(pagedep, offset)
9093 	struct pagedep *pagedep;
9094 	int offset;
9095 {
9096 	struct diradd *dap;
9097 
9098 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9099 		if (dap->da_offset == offset)
9100 			return (dap);
9101 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9102 		if (dap->da_offset == offset)
9103 			return (dap);
9104 	return (NULL);
9105 }
9106 
9107 /*
9108  * Search for a .. diradd dependency in a directory that is being removed.
9109  * If the directory was renamed to a new parent we have a diradd rather
9110  * than a mkdir for the .. entry.  We need to cancel it now before
9111  * it is found in truncate().
9112  */
9113 static struct jremref *
9114 cancel_diradd_dotdot(ip, dirrem, jremref)
9115 	struct inode *ip;
9116 	struct dirrem *dirrem;
9117 	struct jremref *jremref;
9118 {
9119 	struct pagedep *pagedep;
9120 	struct diradd *dap;
9121 	struct worklist *wk;
9122 
9123 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9124 		return (jremref);
9125 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9126 	if (dap == NULL)
9127 		return (jremref);
9128 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9129 	/*
9130 	 * Mark any journal work as belonging to the parent so it is freed
9131 	 * with the .. reference.
9132 	 */
9133 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9134 		wk->wk_state |= MKDIR_PARENT;
9135 	return (NULL);
9136 }
9137 
9138 /*
9139  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9140  * replace it with a dirrem/diradd pair as a result of re-parenting a
9141  * directory.  This ensures that we don't simultaneously have a mkdir and
9142  * a diradd for the same .. entry.
9143  */
9144 static struct jremref *
9145 cancel_mkdir_dotdot(ip, dirrem, jremref)
9146 	struct inode *ip;
9147 	struct dirrem *dirrem;
9148 	struct jremref *jremref;
9149 {
9150 	struct inodedep *inodedep;
9151 	struct jaddref *jaddref;
9152 	struct ufsmount *ump;
9153 	struct mkdir *mkdir;
9154 	struct diradd *dap;
9155 	struct mount *mp;
9156 
9157 	mp = ITOVFS(ip);
9158 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9159 		return (jremref);
9160 	dap = inodedep->id_mkdiradd;
9161 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9162 		return (jremref);
9163 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9164 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9165 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9166 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9167 			break;
9168 	if (mkdir == NULL)
9169 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9170 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9171 		mkdir->md_jaddref = NULL;
9172 		jaddref->ja_state &= ~MKDIR_PARENT;
9173 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9174 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9175 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9176 			journal_jremref(dirrem, jremref, inodedep);
9177 			jremref = NULL;
9178 		}
9179 	}
9180 	if (mkdir->md_state & ONWORKLIST)
9181 		WORKLIST_REMOVE(&mkdir->md_list);
9182 	mkdir->md_state |= ALLCOMPLETE;
9183 	complete_mkdir(mkdir);
9184 	return (jremref);
9185 }
9186 
9187 static void
9188 journal_jremref(dirrem, jremref, inodedep)
9189 	struct dirrem *dirrem;
9190 	struct jremref *jremref;
9191 	struct inodedep *inodedep;
9192 {
9193 
9194 	if (inodedep == NULL)
9195 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9196 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9197 			panic("journal_jremref: Lost inodedep");
9198 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9199 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9200 	add_to_journal(&jremref->jr_list);
9201 }
9202 
9203 static void
9204 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9205 	struct dirrem *dirrem;
9206 	struct jremref *jremref;
9207 	struct jremref *dotremref;
9208 	struct jremref *dotdotremref;
9209 {
9210 	struct inodedep *inodedep;
9211 
9212 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9213 	    &inodedep) == 0)
9214 		panic("dirrem_journal: Lost inodedep");
9215 	journal_jremref(dirrem, jremref, inodedep);
9216 	if (dotremref)
9217 		journal_jremref(dirrem, dotremref, inodedep);
9218 	if (dotdotremref)
9219 		journal_jremref(dirrem, dotdotremref, NULL);
9220 }
9221 
9222 /*
9223  * Allocate a new dirrem if appropriate and return it along with
9224  * its associated pagedep. Called without a lock, returns with lock.
9225  */
9226 static struct dirrem *
9227 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9228 	struct buf *bp;		/* buffer containing directory block */
9229 	struct inode *dp;	/* inode for the directory being modified */
9230 	struct inode *ip;	/* inode for directory entry being removed */
9231 	int isrmdir;		/* indicates if doing RMDIR */
9232 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9233 {
9234 	int offset;
9235 	ufs_lbn_t lbn;
9236 	struct diradd *dap;
9237 	struct dirrem *dirrem;
9238 	struct pagedep *pagedep;
9239 	struct jremref *jremref;
9240 	struct jremref *dotremref;
9241 	struct jremref *dotdotremref;
9242 	struct vnode *dvp;
9243 	struct ufsmount *ump;
9244 
9245 	/*
9246 	 * Whiteouts have no deletion dependencies.
9247 	 */
9248 	if (ip == NULL)
9249 		panic("newdirrem: whiteout");
9250 	dvp = ITOV(dp);
9251 	ump = ITOUMP(dp);
9252 
9253 	/*
9254 	 * If the system is over its limit and our filesystem is
9255 	 * responsible for more than our share of that usage and
9256 	 * we are not a snapshot, request some inodedep cleanup.
9257 	 * Limiting the number of dirrem structures will also limit
9258 	 * the number of freefile and freeblks structures.
9259 	 */
9260 	ACQUIRE_LOCK(ump);
9261 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9262 		schedule_cleanup(UFSTOVFS(ump));
9263 	else
9264 		FREE_LOCK(ump);
9265 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9266 	    M_ZERO);
9267 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9268 	LIST_INIT(&dirrem->dm_jremrefhd);
9269 	LIST_INIT(&dirrem->dm_jwork);
9270 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9271 	dirrem->dm_oldinum = ip->i_number;
9272 	*prevdirremp = NULL;
9273 	/*
9274 	 * Allocate remove reference structures to track journal write
9275 	 * dependencies.  We will always have one for the link and
9276 	 * when doing directories we will always have one more for dot.
9277 	 * When renaming a directory we skip the dotdot link change so
9278 	 * this is not needed.
9279 	 */
9280 	jremref = dotremref = dotdotremref = NULL;
9281 	if (DOINGSUJ(dvp)) {
9282 		if (isrmdir) {
9283 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9284 			    ip->i_effnlink + 2);
9285 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9286 			    ip->i_effnlink + 1);
9287 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9288 			    dp->i_effnlink + 1);
9289 			dotdotremref->jr_state |= MKDIR_PARENT;
9290 		} else
9291 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9292 			    ip->i_effnlink + 1);
9293 	}
9294 	ACQUIRE_LOCK(ump);
9295 	lbn = lblkno(ump->um_fs, dp->i_offset);
9296 	offset = blkoff(ump->um_fs, dp->i_offset);
9297 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9298 	    &pagedep);
9299 	dirrem->dm_pagedep = pagedep;
9300 	dirrem->dm_offset = offset;
9301 	/*
9302 	 * If we're renaming a .. link to a new directory, cancel any
9303 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9304 	 * the jremref is preserved for any potential diradd in this
9305 	 * location.  This can not coincide with a rmdir.
9306 	 */
9307 	if (dp->i_offset == DOTDOT_OFFSET) {
9308 		if (isrmdir)
9309 			panic("newdirrem: .. directory change during remove?");
9310 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9311 	}
9312 	/*
9313 	 * If we're removing a directory search for the .. dependency now and
9314 	 * cancel it.  Any pending journal work will be added to the dirrem
9315 	 * to be completed when the workitem remove completes.
9316 	 */
9317 	if (isrmdir)
9318 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9319 	/*
9320 	 * Check for a diradd dependency for the same directory entry.
9321 	 * If present, then both dependencies become obsolete and can
9322 	 * be de-allocated.
9323 	 */
9324 	dap = diradd_lookup(pagedep, offset);
9325 	if (dap == NULL) {
9326 		/*
9327 		 * Link the jremref structures into the dirrem so they are
9328 		 * written prior to the pagedep.
9329 		 */
9330 		if (jremref)
9331 			dirrem_journal(dirrem, jremref, dotremref,
9332 			    dotdotremref);
9333 		return (dirrem);
9334 	}
9335 	/*
9336 	 * Must be ATTACHED at this point.
9337 	 */
9338 	if ((dap->da_state & ATTACHED) == 0)
9339 		panic("newdirrem: not ATTACHED");
9340 	if (dap->da_newinum != ip->i_number)
9341 		panic("newdirrem: inum %ju should be %ju",
9342 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9343 	/*
9344 	 * If we are deleting a changed name that never made it to disk,
9345 	 * then return the dirrem describing the previous inode (which
9346 	 * represents the inode currently referenced from this entry on disk).
9347 	 */
9348 	if ((dap->da_state & DIRCHG) != 0) {
9349 		*prevdirremp = dap->da_previous;
9350 		dap->da_state &= ~DIRCHG;
9351 		dap->da_pagedep = pagedep;
9352 	}
9353 	/*
9354 	 * We are deleting an entry that never made it to disk.
9355 	 * Mark it COMPLETE so we can delete its inode immediately.
9356 	 */
9357 	dirrem->dm_state |= COMPLETE;
9358 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9359 #ifdef INVARIANTS
9360 	if (isrmdir == 0) {
9361 		struct worklist *wk;
9362 
9363 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9364 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9365 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9366 	}
9367 #endif
9368 
9369 	return (dirrem);
9370 }
9371 
9372 /*
9373  * Directory entry change dependencies.
9374  *
9375  * Changing an existing directory entry requires that an add operation
9376  * be completed first followed by a deletion. The semantics for the addition
9377  * are identical to the description of adding a new entry above except
9378  * that the rollback is to the old inode number rather than zero. Once
9379  * the addition dependency is completed, the removal is done as described
9380  * in the removal routine above.
9381  */
9382 
9383 /*
9384  * This routine should be called immediately after changing
9385  * a directory entry.  The inode's link count should not be
9386  * decremented by the calling procedure -- the soft updates
9387  * code will perform this task when it is safe.
9388  */
9389 void
9390 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9391 	struct buf *bp;		/* buffer containing directory block */
9392 	struct inode *dp;	/* inode for the directory being modified */
9393 	struct inode *ip;	/* inode for directory entry being removed */
9394 	ino_t newinum;		/* new inode number for changed entry */
9395 	int isrmdir;		/* indicates if doing RMDIR */
9396 {
9397 	int offset;
9398 	struct diradd *dap = NULL;
9399 	struct dirrem *dirrem, *prevdirrem;
9400 	struct pagedep *pagedep;
9401 	struct inodedep *inodedep;
9402 	struct jaddref *jaddref;
9403 	struct mount *mp;
9404 	struct ufsmount *ump;
9405 
9406 	mp = ITOVFS(dp);
9407 	ump = VFSTOUFS(mp);
9408 	offset = blkoff(ump->um_fs, dp->i_offset);
9409 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9410 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9411 
9412 	/*
9413 	 * Whiteouts do not need diradd dependencies.
9414 	 */
9415 	if (newinum != UFS_WINO) {
9416 		dap = malloc(sizeof(struct diradd),
9417 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9418 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9419 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9420 		dap->da_offset = offset;
9421 		dap->da_newinum = newinum;
9422 		LIST_INIT(&dap->da_jwork);
9423 	}
9424 
9425 	/*
9426 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9427 	 */
9428 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9429 	pagedep = dirrem->dm_pagedep;
9430 	/*
9431 	 * The possible values for isrmdir:
9432 	 *	0 - non-directory file rename
9433 	 *	1 - directory rename within same directory
9434 	 *   inum - directory rename to new directory of given inode number
9435 	 * When renaming to a new directory, we are both deleting and
9436 	 * creating a new directory entry, so the link count on the new
9437 	 * directory should not change. Thus we do not need the followup
9438 	 * dirrem which is usually done in handle_workitem_remove. We set
9439 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9440 	 * followup dirrem.
9441 	 */
9442 	if (isrmdir > 1)
9443 		dirrem->dm_state |= DIRCHG;
9444 
9445 	/*
9446 	 * Whiteouts have no additional dependencies,
9447 	 * so just put the dirrem on the correct list.
9448 	 */
9449 	if (newinum == UFS_WINO) {
9450 		if ((dirrem->dm_state & COMPLETE) == 0) {
9451 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9452 			    dm_next);
9453 		} else {
9454 			dirrem->dm_dirinum = pagedep->pd_ino;
9455 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9456 				add_to_worklist(&dirrem->dm_list, 0);
9457 		}
9458 		FREE_LOCK(ump);
9459 		return;
9460 	}
9461 	/*
9462 	 * Add the dirrem to the inodedep's pending remove list for quick
9463 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9464 	 * will not fail.
9465 	 */
9466 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9467 		panic("softdep_setup_directory_change: Lost inodedep.");
9468 	dirrem->dm_state |= ONDEPLIST;
9469 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9470 
9471 	/*
9472 	 * If the COMPLETE flag is clear, then there were no active
9473 	 * entries and we want to roll back to the previous inode until
9474 	 * the new inode is committed to disk. If the COMPLETE flag is
9475 	 * set, then we have deleted an entry that never made it to disk.
9476 	 * If the entry we deleted resulted from a name change, then the old
9477 	 * inode reference still resides on disk. Any rollback that we do
9478 	 * needs to be to that old inode (returned to us in prevdirrem). If
9479 	 * the entry we deleted resulted from a create, then there is
9480 	 * no entry on the disk, so we want to roll back to zero rather
9481 	 * than the uncommitted inode. In either of the COMPLETE cases we
9482 	 * want to immediately free the unwritten and unreferenced inode.
9483 	 */
9484 	if ((dirrem->dm_state & COMPLETE) == 0) {
9485 		dap->da_previous = dirrem;
9486 	} else {
9487 		if (prevdirrem != NULL) {
9488 			dap->da_previous = prevdirrem;
9489 		} else {
9490 			dap->da_state &= ~DIRCHG;
9491 			dap->da_pagedep = pagedep;
9492 		}
9493 		dirrem->dm_dirinum = pagedep->pd_ino;
9494 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9495 			add_to_worklist(&dirrem->dm_list, 0);
9496 	}
9497 	/*
9498 	 * Lookup the jaddref for this journal entry.  We must finish
9499 	 * initializing it and make the diradd write dependent on it.
9500 	 * If we're not journaling, put it on the id_bufwait list if the
9501 	 * inode is not yet written. If it is written, do the post-inode
9502 	 * write processing to put it on the id_pendinghd list.
9503 	 */
9504 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9505 	if (MOUNTEDSUJ(mp)) {
9506 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9507 		    inoreflst);
9508 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9509 		    ("softdep_setup_directory_change: bad jaddref %p",
9510 		    jaddref));
9511 		jaddref->ja_diroff = dp->i_offset;
9512 		jaddref->ja_diradd = dap;
9513 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9514 		    dap, da_pdlist);
9515 		add_to_journal(&jaddref->ja_list);
9516 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9517 		dap->da_state |= COMPLETE;
9518 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9519 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9520 	} else {
9521 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9522 		    dap, da_pdlist);
9523 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9524 	}
9525 	/*
9526 	 * If we're making a new name for a directory that has not been
9527 	 * committed when need to move the dot and dotdot references to
9528 	 * this new name.
9529 	 */
9530 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9531 		merge_diradd(inodedep, dap);
9532 	FREE_LOCK(ump);
9533 }
9534 
9535 /*
9536  * Called whenever the link count on an inode is changed.
9537  * It creates an inode dependency so that the new reference(s)
9538  * to the inode cannot be committed to disk until the updated
9539  * inode has been written.
9540  */
9541 void
9542 softdep_change_linkcnt(ip)
9543 	struct inode *ip;	/* the inode with the increased link count */
9544 {
9545 	struct inodedep *inodedep;
9546 	struct ufsmount *ump;
9547 
9548 	ump = ITOUMP(ip);
9549 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9550 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9551 	ACQUIRE_LOCK(ump);
9552 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9553 	if (ip->i_nlink < ip->i_effnlink)
9554 		panic("softdep_change_linkcnt: bad delta");
9555 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9556 	FREE_LOCK(ump);
9557 }
9558 
9559 /*
9560  * Attach a sbdep dependency to the superblock buf so that we can keep
9561  * track of the head of the linked list of referenced but unlinked inodes.
9562  */
9563 void
9564 softdep_setup_sbupdate(ump, fs, bp)
9565 	struct ufsmount *ump;
9566 	struct fs *fs;
9567 	struct buf *bp;
9568 {
9569 	struct sbdep *sbdep;
9570 	struct worklist *wk;
9571 
9572 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9573 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9574 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9575 		if (wk->wk_type == D_SBDEP)
9576 			break;
9577 	if (wk != NULL)
9578 		return;
9579 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9580 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9581 	sbdep->sb_fs = fs;
9582 	sbdep->sb_ump = ump;
9583 	ACQUIRE_LOCK(ump);
9584 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9585 	FREE_LOCK(ump);
9586 }
9587 
9588 /*
9589  * Return the first unlinked inodedep which is ready to be the head of the
9590  * list.  The inodedep and all those after it must have valid next pointers.
9591  */
9592 static struct inodedep *
9593 first_unlinked_inodedep(ump)
9594 	struct ufsmount *ump;
9595 {
9596 	struct inodedep *inodedep;
9597 	struct inodedep *idp;
9598 
9599 	LOCK_OWNED(ump);
9600 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9601 	    inodedep; inodedep = idp) {
9602 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9603 			return (NULL);
9604 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9605 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9606 			break;
9607 		if ((inodedep->id_state & UNLINKPREV) == 0)
9608 			break;
9609 	}
9610 	return (inodedep);
9611 }
9612 
9613 /*
9614  * Set the sujfree unlinked head pointer prior to writing a superblock.
9615  */
9616 static void
9617 initiate_write_sbdep(sbdep)
9618 	struct sbdep *sbdep;
9619 {
9620 	struct inodedep *inodedep;
9621 	struct fs *bpfs;
9622 	struct fs *fs;
9623 
9624 	bpfs = sbdep->sb_fs;
9625 	fs = sbdep->sb_ump->um_fs;
9626 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9627 	if (inodedep) {
9628 		fs->fs_sujfree = inodedep->id_ino;
9629 		inodedep->id_state |= UNLINKPREV;
9630 	} else
9631 		fs->fs_sujfree = 0;
9632 	bpfs->fs_sujfree = fs->fs_sujfree;
9633 	/*
9634 	 * Because we have made changes to the superblock, we need to
9635 	 * recompute its check-hash.
9636 	 */
9637 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9638 }
9639 
9640 /*
9641  * After a superblock is written determine whether it must be written again
9642  * due to a changing unlinked list head.
9643  */
9644 static int
9645 handle_written_sbdep(sbdep, bp)
9646 	struct sbdep *sbdep;
9647 	struct buf *bp;
9648 {
9649 	struct inodedep *inodedep;
9650 	struct fs *fs;
9651 
9652 	LOCK_OWNED(sbdep->sb_ump);
9653 	fs = sbdep->sb_fs;
9654 	/*
9655 	 * If the superblock doesn't match the in-memory list start over.
9656 	 */
9657 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9658 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9659 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9660 		bdirty(bp);
9661 		return (1);
9662 	}
9663 	WORKITEM_FREE(sbdep, D_SBDEP);
9664 	if (fs->fs_sujfree == 0)
9665 		return (0);
9666 	/*
9667 	 * Now that we have a record of this inode in stable store allow it
9668 	 * to be written to free up pending work.  Inodes may see a lot of
9669 	 * write activity after they are unlinked which we must not hold up.
9670 	 */
9671 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9672 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9673 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9674 			    inodedep, inodedep->id_state);
9675 		if (inodedep->id_state & UNLINKONLIST)
9676 			break;
9677 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9678 	}
9679 
9680 	return (0);
9681 }
9682 
9683 /*
9684  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9685  */
9686 static void
9687 unlinked_inodedep(mp, inodedep)
9688 	struct mount *mp;
9689 	struct inodedep *inodedep;
9690 {
9691 	struct ufsmount *ump;
9692 
9693 	ump = VFSTOUFS(mp);
9694 	LOCK_OWNED(ump);
9695 	if (MOUNTEDSUJ(mp) == 0)
9696 		return;
9697 	ump->um_fs->fs_fmod = 1;
9698 	if (inodedep->id_state & UNLINKED)
9699 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9700 	inodedep->id_state |= UNLINKED;
9701 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9702 }
9703 
9704 /*
9705  * Remove an inodedep from the unlinked inodedep list.  This may require
9706  * disk writes if the inode has made it that far.
9707  */
9708 static void
9709 clear_unlinked_inodedep(inodedep)
9710 	struct inodedep *inodedep;
9711 {
9712 	struct ufs2_dinode *dip;
9713 	struct ufsmount *ump;
9714 	struct inodedep *idp;
9715 	struct inodedep *idn;
9716 	struct fs *fs, *bpfs;
9717 	struct buf *bp;
9718 	daddr_t dbn;
9719 	ino_t ino;
9720 	ino_t nino;
9721 	ino_t pino;
9722 	int error;
9723 
9724 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9725 	fs = ump->um_fs;
9726 	ino = inodedep->id_ino;
9727 	error = 0;
9728 	for (;;) {
9729 		LOCK_OWNED(ump);
9730 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9731 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9732 		    inodedep));
9733 		/*
9734 		 * If nothing has yet been written simply remove us from
9735 		 * the in memory list and return.  This is the most common
9736 		 * case where handle_workitem_remove() loses the final
9737 		 * reference.
9738 		 */
9739 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9740 			break;
9741 		/*
9742 		 * If we have a NEXT pointer and no PREV pointer we can simply
9743 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9744 		 * careful not to clear PREV if the superblock points at
9745 		 * next as well.
9746 		 */
9747 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9748 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9749 			if (idn && fs->fs_sujfree != idn->id_ino)
9750 				idn->id_state &= ~UNLINKPREV;
9751 			break;
9752 		}
9753 		/*
9754 		 * Here we have an inodedep which is actually linked into
9755 		 * the list.  We must remove it by forcing a write to the
9756 		 * link before us, whether it be the superblock or an inode.
9757 		 * Unfortunately the list may change while we're waiting
9758 		 * on the buf lock for either resource so we must loop until
9759 		 * we lock the right one.  If both the superblock and an
9760 		 * inode point to this inode we must clear the inode first
9761 		 * followed by the superblock.
9762 		 */
9763 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9764 		pino = 0;
9765 		if (idp && (idp->id_state & UNLINKNEXT))
9766 			pino = idp->id_ino;
9767 		FREE_LOCK(ump);
9768 		if (pino == 0) {
9769 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9770 			    (int)fs->fs_sbsize, 0, 0, 0);
9771 		} else {
9772 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
9773 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
9774 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
9775 			    &bp);
9776 		}
9777 		ACQUIRE_LOCK(ump);
9778 		if (error)
9779 			break;
9780 		/* If the list has changed restart the loop. */
9781 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9782 		nino = 0;
9783 		if (idp && (idp->id_state & UNLINKNEXT))
9784 			nino = idp->id_ino;
9785 		if (nino != pino ||
9786 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9787 			FREE_LOCK(ump);
9788 			brelse(bp);
9789 			ACQUIRE_LOCK(ump);
9790 			continue;
9791 		}
9792 		nino = 0;
9793 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9794 		if (idn)
9795 			nino = idn->id_ino;
9796 		/*
9797 		 * Remove us from the in memory list.  After this we cannot
9798 		 * access the inodedep.
9799 		 */
9800 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9801 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9802 		    inodedep));
9803 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9804 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9805 		FREE_LOCK(ump);
9806 		/*
9807 		 * The predecessor's next pointer is manually updated here
9808 		 * so that the NEXT flag is never cleared for an element
9809 		 * that is in the list.
9810 		 */
9811 		if (pino == 0) {
9812 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9813 			bpfs = (struct fs *)bp->b_data;
9814 			ffs_oldfscompat_write(bpfs, ump);
9815 			softdep_setup_sbupdate(ump, bpfs, bp);
9816 			/*
9817 			 * Because we may have made changes to the superblock,
9818 			 * we need to recompute its check-hash.
9819 			 */
9820 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9821 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9822 			((struct ufs1_dinode *)bp->b_data +
9823 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9824 		} else {
9825 			dip = (struct ufs2_dinode *)bp->b_data +
9826 			    ino_to_fsbo(fs, pino);
9827 			dip->di_freelink = nino;
9828 			ffs_update_dinode_ckhash(fs, dip);
9829 		}
9830 		/*
9831 		 * If the bwrite fails we have no recourse to recover.  The
9832 		 * filesystem is corrupted already.
9833 		 */
9834 		bwrite(bp);
9835 		ACQUIRE_LOCK(ump);
9836 		/*
9837 		 * If the superblock pointer still needs to be cleared force
9838 		 * a write here.
9839 		 */
9840 		if (fs->fs_sujfree == ino) {
9841 			FREE_LOCK(ump);
9842 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9843 			    (int)fs->fs_sbsize, 0, 0, 0);
9844 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9845 			bpfs = (struct fs *)bp->b_data;
9846 			ffs_oldfscompat_write(bpfs, ump);
9847 			softdep_setup_sbupdate(ump, bpfs, bp);
9848 			/*
9849 			 * Because we may have made changes to the superblock,
9850 			 * we need to recompute its check-hash.
9851 			 */
9852 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9853 			bwrite(bp);
9854 			ACQUIRE_LOCK(ump);
9855 		}
9856 
9857 		if (fs->fs_sujfree != ino)
9858 			return;
9859 		panic("clear_unlinked_inodedep: Failed to clear free head");
9860 	}
9861 	if (inodedep->id_ino == fs->fs_sujfree)
9862 		panic("clear_unlinked_inodedep: Freeing head of free list");
9863 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9864 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9865 	return;
9866 }
9867 
9868 /*
9869  * This workitem decrements the inode's link count.
9870  * If the link count reaches zero, the file is removed.
9871  */
9872 static int
9873 handle_workitem_remove(dirrem, flags)
9874 	struct dirrem *dirrem;
9875 	int flags;
9876 {
9877 	struct inodedep *inodedep;
9878 	struct workhead dotdotwk;
9879 	struct worklist *wk;
9880 	struct ufsmount *ump;
9881 	struct mount *mp;
9882 	struct vnode *vp;
9883 	struct inode *ip;
9884 	ino_t oldinum;
9885 
9886 	if (dirrem->dm_state & ONWORKLIST)
9887 		panic("handle_workitem_remove: dirrem %p still on worklist",
9888 		    dirrem);
9889 	oldinum = dirrem->dm_oldinum;
9890 	mp = dirrem->dm_list.wk_mp;
9891 	ump = VFSTOUFS(mp);
9892 	flags |= LK_EXCLUSIVE;
9893 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9894 		return (EBUSY);
9895 	ip = VTOI(vp);
9896 	MPASS(ip->i_mode != 0);
9897 	ACQUIRE_LOCK(ump);
9898 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9899 		panic("handle_workitem_remove: lost inodedep");
9900 	if (dirrem->dm_state & ONDEPLIST)
9901 		LIST_REMOVE(dirrem, dm_inonext);
9902 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9903 	    ("handle_workitem_remove:  Journal entries not written."));
9904 
9905 	/*
9906 	 * Move all dependencies waiting on the remove to complete
9907 	 * from the dirrem to the inode inowait list to be completed
9908 	 * after the inode has been updated and written to disk.
9909 	 *
9910 	 * Any marked MKDIR_PARENT are saved to be completed when the
9911 	 * dotdot ref is removed unless DIRCHG is specified.  For
9912 	 * directory change operations there will be no further
9913 	 * directory writes and the jsegdeps need to be moved along
9914 	 * with the rest to be completed when the inode is free or
9915 	 * stable in the inode free list.
9916 	 */
9917 	LIST_INIT(&dotdotwk);
9918 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9919 		WORKLIST_REMOVE(wk);
9920 		if ((dirrem->dm_state & DIRCHG) == 0 &&
9921 		    wk->wk_state & MKDIR_PARENT) {
9922 			wk->wk_state &= ~MKDIR_PARENT;
9923 			WORKLIST_INSERT(&dotdotwk, wk);
9924 			continue;
9925 		}
9926 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9927 	}
9928 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9929 	/*
9930 	 * Normal file deletion.
9931 	 */
9932 	if ((dirrem->dm_state & RMDIR) == 0) {
9933 		ip->i_nlink--;
9934 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
9935 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
9936 		    ip->i_nlink));
9937 		DIP_SET(ip, i_nlink, ip->i_nlink);
9938 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
9939 		if (ip->i_nlink < ip->i_effnlink)
9940 			panic("handle_workitem_remove: bad file delta");
9941 		if (ip->i_nlink == 0)
9942 			unlinked_inodedep(mp, inodedep);
9943 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9944 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9945 		    ("handle_workitem_remove: worklist not empty. %s",
9946 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9947 		WORKITEM_FREE(dirrem, D_DIRREM);
9948 		FREE_LOCK(ump);
9949 		goto out;
9950 	}
9951 	/*
9952 	 * Directory deletion. Decrement reference count for both the
9953 	 * just deleted parent directory entry and the reference for ".".
9954 	 * Arrange to have the reference count on the parent decremented
9955 	 * to account for the loss of "..".
9956 	 */
9957 	ip->i_nlink -= 2;
9958 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
9959 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
9960 	DIP_SET(ip, i_nlink, ip->i_nlink);
9961 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
9962 	if (ip->i_nlink < ip->i_effnlink)
9963 		panic("handle_workitem_remove: bad dir delta");
9964 	if (ip->i_nlink == 0)
9965 		unlinked_inodedep(mp, inodedep);
9966 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9967 	/*
9968 	 * Rename a directory to a new parent. Since, we are both deleting
9969 	 * and creating a new directory entry, the link count on the new
9970 	 * directory should not change. Thus we skip the followup dirrem.
9971 	 */
9972 	if (dirrem->dm_state & DIRCHG) {
9973 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9974 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9975 		WORKITEM_FREE(dirrem, D_DIRREM);
9976 		FREE_LOCK(ump);
9977 		goto out;
9978 	}
9979 	dirrem->dm_state = ONDEPLIST;
9980 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9981 	/*
9982 	 * Place the dirrem on the parent's diremhd list.
9983 	 */
9984 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9985 		panic("handle_workitem_remove: lost dir inodedep");
9986 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9987 	/*
9988 	 * If the allocated inode has never been written to disk, then
9989 	 * the on-disk inode is zero'ed and we can remove the file
9990 	 * immediately.  When journaling if the inode has been marked
9991 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9992 	 */
9993 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9994 	if (inodedep == NULL ||
9995 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9996 	    check_inode_unwritten(inodedep)) {
9997 		FREE_LOCK(ump);
9998 		vput(vp);
9999 		return handle_workitem_remove(dirrem, flags);
10000 	}
10001 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10002 	FREE_LOCK(ump);
10003 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10004 out:
10005 	ffs_update(vp, 0);
10006 	vput(vp);
10007 	return (0);
10008 }
10009 
10010 /*
10011  * Inode de-allocation dependencies.
10012  *
10013  * When an inode's link count is reduced to zero, it can be de-allocated. We
10014  * found it convenient to postpone de-allocation until after the inode is
10015  * written to disk with its new link count (zero).  At this point, all of the
10016  * on-disk inode's block pointers are nullified and, with careful dependency
10017  * list ordering, all dependencies related to the inode will be satisfied and
10018  * the corresponding dependency structures de-allocated.  So, if/when the
10019  * inode is reused, there will be no mixing of old dependencies with new
10020  * ones.  This artificial dependency is set up by the block de-allocation
10021  * procedure above (softdep_setup_freeblocks) and completed by the
10022  * following procedure.
10023  */
10024 static void
10025 handle_workitem_freefile(freefile)
10026 	struct freefile *freefile;
10027 {
10028 	struct workhead wkhd;
10029 	struct fs *fs;
10030 	struct ufsmount *ump;
10031 	int error;
10032 #ifdef INVARIANTS
10033 	struct inodedep *idp;
10034 #endif
10035 
10036 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10037 	fs = ump->um_fs;
10038 #ifdef INVARIANTS
10039 	ACQUIRE_LOCK(ump);
10040 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10041 	FREE_LOCK(ump);
10042 	if (error)
10043 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10044 #endif
10045 	UFS_LOCK(ump);
10046 	fs->fs_pendinginodes -= 1;
10047 	UFS_UNLOCK(ump);
10048 	LIST_INIT(&wkhd);
10049 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10050 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10051 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10052 		softdep_error("handle_workitem_freefile", error);
10053 	ACQUIRE_LOCK(ump);
10054 	WORKITEM_FREE(freefile, D_FREEFILE);
10055 	FREE_LOCK(ump);
10056 }
10057 
10058 /*
10059  * Helper function which unlinks marker element from work list and returns
10060  * the next element on the list.
10061  */
10062 static __inline struct worklist *
10063 markernext(struct worklist *marker)
10064 {
10065 	struct worklist *next;
10066 
10067 	next = LIST_NEXT(marker, wk_list);
10068 	LIST_REMOVE(marker, wk_list);
10069 	return next;
10070 }
10071 
10072 /*
10073  * Disk writes.
10074  *
10075  * The dependency structures constructed above are most actively used when file
10076  * system blocks are written to disk.  No constraints are placed on when a
10077  * block can be written, but unsatisfied update dependencies are made safe by
10078  * modifying (or replacing) the source memory for the duration of the disk
10079  * write.  When the disk write completes, the memory block is again brought
10080  * up-to-date.
10081  *
10082  * In-core inode structure reclamation.
10083  *
10084  * Because there are a finite number of "in-core" inode structures, they are
10085  * reused regularly.  By transferring all inode-related dependencies to the
10086  * in-memory inode block and indexing them separately (via "inodedep"s), we
10087  * can allow "in-core" inode structures to be reused at any time and avoid
10088  * any increase in contention.
10089  *
10090  * Called just before entering the device driver to initiate a new disk I/O.
10091  * The buffer must be locked, thus, no I/O completion operations can occur
10092  * while we are manipulating its associated dependencies.
10093  */
10094 static void
10095 softdep_disk_io_initiation(bp)
10096 	struct buf *bp;		/* structure describing disk write to occur */
10097 {
10098 	struct worklist *wk;
10099 	struct worklist marker;
10100 	struct inodedep *inodedep;
10101 	struct freeblks *freeblks;
10102 	struct jblkdep *jblkdep;
10103 	struct newblk *newblk;
10104 	struct ufsmount *ump;
10105 
10106 	/*
10107 	 * We only care about write operations. There should never
10108 	 * be dependencies for reads.
10109 	 */
10110 	if (bp->b_iocmd != BIO_WRITE)
10111 		panic("softdep_disk_io_initiation: not write");
10112 
10113 	if (bp->b_vflags & BV_BKGRDINPROG)
10114 		panic("softdep_disk_io_initiation: Writing buffer with "
10115 		    "background write in progress: %p", bp);
10116 
10117 	ump = softdep_bp_to_mp(bp);
10118 	if (ump == NULL)
10119 		return;
10120 
10121 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10122 	PHOLD(curproc);			/* Don't swap out kernel stack */
10123 	ACQUIRE_LOCK(ump);
10124 	/*
10125 	 * Do any necessary pre-I/O processing.
10126 	 */
10127 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10128 	     wk = markernext(&marker)) {
10129 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10130 		switch (wk->wk_type) {
10131 		case D_PAGEDEP:
10132 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10133 			continue;
10134 
10135 		case D_INODEDEP:
10136 			inodedep = WK_INODEDEP(wk);
10137 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10138 				initiate_write_inodeblock_ufs1(inodedep, bp);
10139 			else
10140 				initiate_write_inodeblock_ufs2(inodedep, bp);
10141 			continue;
10142 
10143 		case D_INDIRDEP:
10144 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10145 			continue;
10146 
10147 		case D_BMSAFEMAP:
10148 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10149 			continue;
10150 
10151 		case D_JSEG:
10152 			WK_JSEG(wk)->js_buf = NULL;
10153 			continue;
10154 
10155 		case D_FREEBLKS:
10156 			freeblks = WK_FREEBLKS(wk);
10157 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10158 			/*
10159 			 * We have to wait for the freeblks to be journaled
10160 			 * before we can write an inodeblock with updated
10161 			 * pointers.  Be careful to arrange the marker so
10162 			 * we revisit the freeblks if it's not removed by
10163 			 * the first jwait().
10164 			 */
10165 			if (jblkdep != NULL) {
10166 				LIST_REMOVE(&marker, wk_list);
10167 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10168 				jwait(&jblkdep->jb_list, MNT_WAIT);
10169 			}
10170 			continue;
10171 		case D_ALLOCDIRECT:
10172 		case D_ALLOCINDIR:
10173 			/*
10174 			 * We have to wait for the jnewblk to be journaled
10175 			 * before we can write to a block if the contents
10176 			 * may be confused with an earlier file's indirect
10177 			 * at recovery time.  Handle the marker as described
10178 			 * above.
10179 			 */
10180 			newblk = WK_NEWBLK(wk);
10181 			if (newblk->nb_jnewblk != NULL &&
10182 			    indirblk_lookup(newblk->nb_list.wk_mp,
10183 			    newblk->nb_newblkno)) {
10184 				LIST_REMOVE(&marker, wk_list);
10185 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10186 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10187 			}
10188 			continue;
10189 
10190 		case D_SBDEP:
10191 			initiate_write_sbdep(WK_SBDEP(wk));
10192 			continue;
10193 
10194 		case D_MKDIR:
10195 		case D_FREEWORK:
10196 		case D_FREEDEP:
10197 		case D_JSEGDEP:
10198 			continue;
10199 
10200 		default:
10201 			panic("handle_disk_io_initiation: Unexpected type %s",
10202 			    TYPENAME(wk->wk_type));
10203 			/* NOTREACHED */
10204 		}
10205 	}
10206 	FREE_LOCK(ump);
10207 	PRELE(curproc);			/* Allow swapout of kernel stack */
10208 }
10209 
10210 /*
10211  * Called from within the procedure above to deal with unsatisfied
10212  * allocation dependencies in a directory. The buffer must be locked,
10213  * thus, no I/O completion operations can occur while we are
10214  * manipulating its associated dependencies.
10215  */
10216 static void
10217 initiate_write_filepage(pagedep, bp)
10218 	struct pagedep *pagedep;
10219 	struct buf *bp;
10220 {
10221 	struct jremref *jremref;
10222 	struct jmvref *jmvref;
10223 	struct dirrem *dirrem;
10224 	struct diradd *dap;
10225 	struct direct *ep;
10226 	int i;
10227 
10228 	if (pagedep->pd_state & IOSTARTED) {
10229 		/*
10230 		 * This can only happen if there is a driver that does not
10231 		 * understand chaining. Here biodone will reissue the call
10232 		 * to strategy for the incomplete buffers.
10233 		 */
10234 		printf("initiate_write_filepage: already started\n");
10235 		return;
10236 	}
10237 	pagedep->pd_state |= IOSTARTED;
10238 	/*
10239 	 * Wait for all journal remove dependencies to hit the disk.
10240 	 * We can not allow any potentially conflicting directory adds
10241 	 * to be visible before removes and rollback is too difficult.
10242 	 * The per-filesystem lock may be dropped and re-acquired, however
10243 	 * we hold the buf locked so the dependency can not go away.
10244 	 */
10245 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10246 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10247 			jwait(&jremref->jr_list, MNT_WAIT);
10248 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10249 		jwait(&jmvref->jm_list, MNT_WAIT);
10250 	for (i = 0; i < DAHASHSZ; i++) {
10251 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10252 			ep = (struct direct *)
10253 			    ((char *)bp->b_data + dap->da_offset);
10254 			if (ep->d_ino != dap->da_newinum)
10255 				panic("%s: dir inum %ju != new %ju",
10256 				    "initiate_write_filepage",
10257 				    (uintmax_t)ep->d_ino,
10258 				    (uintmax_t)dap->da_newinum);
10259 			if (dap->da_state & DIRCHG)
10260 				ep->d_ino = dap->da_previous->dm_oldinum;
10261 			else
10262 				ep->d_ino = 0;
10263 			dap->da_state &= ~ATTACHED;
10264 			dap->da_state |= UNDONE;
10265 		}
10266 	}
10267 }
10268 
10269 /*
10270  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10271  * Note that any bug fixes made to this routine must be done in the
10272  * version found below.
10273  *
10274  * Called from within the procedure above to deal with unsatisfied
10275  * allocation dependencies in an inodeblock. The buffer must be
10276  * locked, thus, no I/O completion operations can occur while we
10277  * are manipulating its associated dependencies.
10278  */
10279 static void
10280 initiate_write_inodeblock_ufs1(inodedep, bp)
10281 	struct inodedep *inodedep;
10282 	struct buf *bp;			/* The inode block */
10283 {
10284 	struct allocdirect *adp, *lastadp;
10285 	struct ufs1_dinode *dp;
10286 	struct ufs1_dinode *sip;
10287 	struct inoref *inoref;
10288 	struct ufsmount *ump;
10289 	struct fs *fs;
10290 	ufs_lbn_t i;
10291 #ifdef INVARIANTS
10292 	ufs_lbn_t prevlbn = 0;
10293 #endif
10294 	int deplist;
10295 
10296 	if (inodedep->id_state & IOSTARTED)
10297 		panic("initiate_write_inodeblock_ufs1: already started");
10298 	inodedep->id_state |= IOSTARTED;
10299 	fs = inodedep->id_fs;
10300 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10301 	LOCK_OWNED(ump);
10302 	dp = (struct ufs1_dinode *)bp->b_data +
10303 	    ino_to_fsbo(fs, inodedep->id_ino);
10304 
10305 	/*
10306 	 * If we're on the unlinked list but have not yet written our
10307 	 * next pointer initialize it here.
10308 	 */
10309 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10310 		struct inodedep *inon;
10311 
10312 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10313 		dp->di_freelink = inon ? inon->id_ino : 0;
10314 	}
10315 	/*
10316 	 * If the bitmap is not yet written, then the allocated
10317 	 * inode cannot be written to disk.
10318 	 */
10319 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10320 		if (inodedep->id_savedino1 != NULL)
10321 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10322 		FREE_LOCK(ump);
10323 		sip = malloc(sizeof(struct ufs1_dinode),
10324 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10325 		ACQUIRE_LOCK(ump);
10326 		inodedep->id_savedino1 = sip;
10327 		*inodedep->id_savedino1 = *dp;
10328 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10329 		dp->di_gen = inodedep->id_savedino1->di_gen;
10330 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10331 		return;
10332 	}
10333 	/*
10334 	 * If no dependencies, then there is nothing to roll back.
10335 	 */
10336 	inodedep->id_savedsize = dp->di_size;
10337 	inodedep->id_savedextsize = 0;
10338 	inodedep->id_savednlink = dp->di_nlink;
10339 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10340 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10341 		return;
10342 	/*
10343 	 * Revert the link count to that of the first unwritten journal entry.
10344 	 */
10345 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10346 	if (inoref)
10347 		dp->di_nlink = inoref->if_nlink;
10348 	/*
10349 	 * Set the dependencies to busy.
10350 	 */
10351 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10352 	     adp = TAILQ_NEXT(adp, ad_next)) {
10353 #ifdef INVARIANTS
10354 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10355 			panic("softdep_write_inodeblock: lbn order");
10356 		prevlbn = adp->ad_offset;
10357 		if (adp->ad_offset < UFS_NDADDR &&
10358 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10359 			panic("initiate_write_inodeblock_ufs1: "
10360 			    "direct pointer #%jd mismatch %d != %jd",
10361 			    (intmax_t)adp->ad_offset,
10362 			    dp->di_db[adp->ad_offset],
10363 			    (intmax_t)adp->ad_newblkno);
10364 		if (adp->ad_offset >= UFS_NDADDR &&
10365 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10366 			panic("initiate_write_inodeblock_ufs1: "
10367 			    "indirect pointer #%jd mismatch %d != %jd",
10368 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10369 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10370 			    (intmax_t)adp->ad_newblkno);
10371 		deplist |= 1 << adp->ad_offset;
10372 		if ((adp->ad_state & ATTACHED) == 0)
10373 			panic("initiate_write_inodeblock_ufs1: "
10374 			    "Unknown state 0x%x", adp->ad_state);
10375 #endif /* INVARIANTS */
10376 		adp->ad_state &= ~ATTACHED;
10377 		adp->ad_state |= UNDONE;
10378 	}
10379 	/*
10380 	 * The on-disk inode cannot claim to be any larger than the last
10381 	 * fragment that has been written. Otherwise, the on-disk inode
10382 	 * might have fragments that were not the last block in the file
10383 	 * which would corrupt the filesystem.
10384 	 */
10385 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10386 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10387 		if (adp->ad_offset >= UFS_NDADDR)
10388 			break;
10389 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10390 		/* keep going until hitting a rollback to a frag */
10391 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10392 			continue;
10393 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10394 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10395 #ifdef INVARIANTS
10396 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10397 				panic("initiate_write_inodeblock_ufs1: "
10398 				    "lost dep1");
10399 #endif /* INVARIANTS */
10400 			dp->di_db[i] = 0;
10401 		}
10402 		for (i = 0; i < UFS_NIADDR; i++) {
10403 #ifdef INVARIANTS
10404 			if (dp->di_ib[i] != 0 &&
10405 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10406 				panic("initiate_write_inodeblock_ufs1: "
10407 				    "lost dep2");
10408 #endif /* INVARIANTS */
10409 			dp->di_ib[i] = 0;
10410 		}
10411 		return;
10412 	}
10413 	/*
10414 	 * If we have zero'ed out the last allocated block of the file,
10415 	 * roll back the size to the last currently allocated block.
10416 	 * We know that this last allocated block is a full-sized as
10417 	 * we already checked for fragments in the loop above.
10418 	 */
10419 	if (lastadp != NULL &&
10420 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10421 		for (i = lastadp->ad_offset; i >= 0; i--)
10422 			if (dp->di_db[i] != 0)
10423 				break;
10424 		dp->di_size = (i + 1) * fs->fs_bsize;
10425 	}
10426 	/*
10427 	 * The only dependencies are for indirect blocks.
10428 	 *
10429 	 * The file size for indirect block additions is not guaranteed.
10430 	 * Such a guarantee would be non-trivial to achieve. The conventional
10431 	 * synchronous write implementation also does not make this guarantee.
10432 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10433 	 * can be over-estimated without destroying integrity when the file
10434 	 * moves into the indirect blocks (i.e., is large). If we want to
10435 	 * postpone fsck, we are stuck with this argument.
10436 	 */
10437 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10438 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10439 }
10440 
10441 /*
10442  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10443  * Note that any bug fixes made to this routine must be done in the
10444  * version found above.
10445  *
10446  * Called from within the procedure above to deal with unsatisfied
10447  * allocation dependencies in an inodeblock. The buffer must be
10448  * locked, thus, no I/O completion operations can occur while we
10449  * are manipulating its associated dependencies.
10450  */
10451 static void
10452 initiate_write_inodeblock_ufs2(inodedep, bp)
10453 	struct inodedep *inodedep;
10454 	struct buf *bp;			/* The inode block */
10455 {
10456 	struct allocdirect *adp, *lastadp;
10457 	struct ufs2_dinode *dp;
10458 	struct ufs2_dinode *sip;
10459 	struct inoref *inoref;
10460 	struct ufsmount *ump;
10461 	struct fs *fs;
10462 	ufs_lbn_t i;
10463 #ifdef INVARIANTS
10464 	ufs_lbn_t prevlbn = 0;
10465 #endif
10466 	int deplist;
10467 
10468 	if (inodedep->id_state & IOSTARTED)
10469 		panic("initiate_write_inodeblock_ufs2: already started");
10470 	inodedep->id_state |= IOSTARTED;
10471 	fs = inodedep->id_fs;
10472 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10473 	LOCK_OWNED(ump);
10474 	dp = (struct ufs2_dinode *)bp->b_data +
10475 	    ino_to_fsbo(fs, inodedep->id_ino);
10476 
10477 	/*
10478 	 * If we're on the unlinked list but have not yet written our
10479 	 * next pointer initialize it here.
10480 	 */
10481 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10482 		struct inodedep *inon;
10483 
10484 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10485 		dp->di_freelink = inon ? inon->id_ino : 0;
10486 		ffs_update_dinode_ckhash(fs, dp);
10487 	}
10488 	/*
10489 	 * If the bitmap is not yet written, then the allocated
10490 	 * inode cannot be written to disk.
10491 	 */
10492 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10493 		if (inodedep->id_savedino2 != NULL)
10494 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10495 		FREE_LOCK(ump);
10496 		sip = malloc(sizeof(struct ufs2_dinode),
10497 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10498 		ACQUIRE_LOCK(ump);
10499 		inodedep->id_savedino2 = sip;
10500 		*inodedep->id_savedino2 = *dp;
10501 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10502 		dp->di_gen = inodedep->id_savedino2->di_gen;
10503 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10504 		return;
10505 	}
10506 	/*
10507 	 * If no dependencies, then there is nothing to roll back.
10508 	 */
10509 	inodedep->id_savedsize = dp->di_size;
10510 	inodedep->id_savedextsize = dp->di_extsize;
10511 	inodedep->id_savednlink = dp->di_nlink;
10512 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10513 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10514 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10515 		return;
10516 	/*
10517 	 * Revert the link count to that of the first unwritten journal entry.
10518 	 */
10519 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10520 	if (inoref)
10521 		dp->di_nlink = inoref->if_nlink;
10522 
10523 	/*
10524 	 * Set the ext data dependencies to busy.
10525 	 */
10526 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10527 	     adp = TAILQ_NEXT(adp, ad_next)) {
10528 #ifdef INVARIANTS
10529 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10530 			panic("initiate_write_inodeblock_ufs2: lbn order");
10531 		prevlbn = adp->ad_offset;
10532 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10533 			panic("initiate_write_inodeblock_ufs2: "
10534 			    "ext pointer #%jd mismatch %jd != %jd",
10535 			    (intmax_t)adp->ad_offset,
10536 			    (intmax_t)dp->di_extb[adp->ad_offset],
10537 			    (intmax_t)adp->ad_newblkno);
10538 		deplist |= 1 << adp->ad_offset;
10539 		if ((adp->ad_state & ATTACHED) == 0)
10540 			panic("initiate_write_inodeblock_ufs2: Unknown "
10541 			    "state 0x%x", adp->ad_state);
10542 #endif /* INVARIANTS */
10543 		adp->ad_state &= ~ATTACHED;
10544 		adp->ad_state |= UNDONE;
10545 	}
10546 	/*
10547 	 * The on-disk inode cannot claim to be any larger than the last
10548 	 * fragment that has been written. Otherwise, the on-disk inode
10549 	 * might have fragments that were not the last block in the ext
10550 	 * data which would corrupt the filesystem.
10551 	 */
10552 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10553 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10554 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10555 		/* keep going until hitting a rollback to a frag */
10556 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10557 			continue;
10558 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10559 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10560 #ifdef INVARIANTS
10561 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10562 				panic("initiate_write_inodeblock_ufs2: "
10563 				    "lost dep1");
10564 #endif /* INVARIANTS */
10565 			dp->di_extb[i] = 0;
10566 		}
10567 		lastadp = NULL;
10568 		break;
10569 	}
10570 	/*
10571 	 * If we have zero'ed out the last allocated block of the ext
10572 	 * data, roll back the size to the last currently allocated block.
10573 	 * We know that this last allocated block is a full-sized as
10574 	 * we already checked for fragments in the loop above.
10575 	 */
10576 	if (lastadp != NULL &&
10577 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10578 		for (i = lastadp->ad_offset; i >= 0; i--)
10579 			if (dp->di_extb[i] != 0)
10580 				break;
10581 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10582 	}
10583 	/*
10584 	 * Set the file data dependencies to busy.
10585 	 */
10586 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10587 	     adp = TAILQ_NEXT(adp, ad_next)) {
10588 #ifdef INVARIANTS
10589 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10590 			panic("softdep_write_inodeblock: lbn order");
10591 		if ((adp->ad_state & ATTACHED) == 0)
10592 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10593 		prevlbn = adp->ad_offset;
10594 		if (!ffs_fsfail_cleanup(ump, 0) &&
10595 		    adp->ad_offset < UFS_NDADDR &&
10596 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10597 			panic("initiate_write_inodeblock_ufs2: "
10598 			    "direct pointer #%jd mismatch %jd != %jd",
10599 			    (intmax_t)adp->ad_offset,
10600 			    (intmax_t)dp->di_db[adp->ad_offset],
10601 			    (intmax_t)adp->ad_newblkno);
10602 		if (!ffs_fsfail_cleanup(ump, 0) &&
10603 		    adp->ad_offset >= UFS_NDADDR &&
10604 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10605 			panic("initiate_write_inodeblock_ufs2: "
10606 			    "indirect pointer #%jd mismatch %jd != %jd",
10607 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10608 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10609 			    (intmax_t)adp->ad_newblkno);
10610 		deplist |= 1 << adp->ad_offset;
10611 		if ((adp->ad_state & ATTACHED) == 0)
10612 			panic("initiate_write_inodeblock_ufs2: Unknown "
10613 			     "state 0x%x", adp->ad_state);
10614 #endif /* INVARIANTS */
10615 		adp->ad_state &= ~ATTACHED;
10616 		adp->ad_state |= UNDONE;
10617 	}
10618 	/*
10619 	 * The on-disk inode cannot claim to be any larger than the last
10620 	 * fragment that has been written. Otherwise, the on-disk inode
10621 	 * might have fragments that were not the last block in the file
10622 	 * which would corrupt the filesystem.
10623 	 */
10624 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10625 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10626 		if (adp->ad_offset >= UFS_NDADDR)
10627 			break;
10628 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10629 		/* keep going until hitting a rollback to a frag */
10630 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10631 			continue;
10632 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10633 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10634 #ifdef INVARIANTS
10635 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10636 				panic("initiate_write_inodeblock_ufs2: "
10637 				    "lost dep2");
10638 #endif /* INVARIANTS */
10639 			dp->di_db[i] = 0;
10640 		}
10641 		for (i = 0; i < UFS_NIADDR; i++) {
10642 #ifdef INVARIANTS
10643 			if (dp->di_ib[i] != 0 &&
10644 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10645 				panic("initiate_write_inodeblock_ufs2: "
10646 				    "lost dep3");
10647 #endif /* INVARIANTS */
10648 			dp->di_ib[i] = 0;
10649 		}
10650 		ffs_update_dinode_ckhash(fs, dp);
10651 		return;
10652 	}
10653 	/*
10654 	 * If we have zero'ed out the last allocated block of the file,
10655 	 * roll back the size to the last currently allocated block.
10656 	 * We know that this last allocated block is a full-sized as
10657 	 * we already checked for fragments in the loop above.
10658 	 */
10659 	if (lastadp != NULL &&
10660 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10661 		for (i = lastadp->ad_offset; i >= 0; i--)
10662 			if (dp->di_db[i] != 0)
10663 				break;
10664 		dp->di_size = (i + 1) * fs->fs_bsize;
10665 	}
10666 	/*
10667 	 * The only dependencies are for indirect blocks.
10668 	 *
10669 	 * The file size for indirect block additions is not guaranteed.
10670 	 * Such a guarantee would be non-trivial to achieve. The conventional
10671 	 * synchronous write implementation also does not make this guarantee.
10672 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10673 	 * can be over-estimated without destroying integrity when the file
10674 	 * moves into the indirect blocks (i.e., is large). If we want to
10675 	 * postpone fsck, we are stuck with this argument.
10676 	 */
10677 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10678 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10679 	ffs_update_dinode_ckhash(fs, dp);
10680 }
10681 
10682 /*
10683  * Cancel an indirdep as a result of truncation.  Release all of the
10684  * children allocindirs and place their journal work on the appropriate
10685  * list.
10686  */
10687 static void
10688 cancel_indirdep(indirdep, bp, freeblks)
10689 	struct indirdep *indirdep;
10690 	struct buf *bp;
10691 	struct freeblks *freeblks;
10692 {
10693 	struct allocindir *aip;
10694 
10695 	/*
10696 	 * None of the indirect pointers will ever be visible,
10697 	 * so they can simply be tossed. GOINGAWAY ensures
10698 	 * that allocated pointers will be saved in the buffer
10699 	 * cache until they are freed. Note that they will
10700 	 * only be able to be found by their physical address
10701 	 * since the inode mapping the logical address will
10702 	 * be gone. The save buffer used for the safe copy
10703 	 * was allocated in setup_allocindir_phase2 using
10704 	 * the physical address so it could be used for this
10705 	 * purpose. Hence we swap the safe copy with the real
10706 	 * copy, allowing the safe copy to be freed and holding
10707 	 * on to the real copy for later use in indir_trunc.
10708 	 */
10709 	if (indirdep->ir_state & GOINGAWAY)
10710 		panic("cancel_indirdep: already gone");
10711 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10712 		indirdep->ir_state |= DEPCOMPLETE;
10713 		LIST_REMOVE(indirdep, ir_next);
10714 	}
10715 	indirdep->ir_state |= GOINGAWAY;
10716 	/*
10717 	 * Pass in bp for blocks still have journal writes
10718 	 * pending so we can cancel them on their own.
10719 	 */
10720 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10721 		cancel_allocindir(aip, bp, freeblks, 0);
10722 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10723 		cancel_allocindir(aip, NULL, freeblks, 0);
10724 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10725 		cancel_allocindir(aip, NULL, freeblks, 0);
10726 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10727 		cancel_allocindir(aip, NULL, freeblks, 0);
10728 	/*
10729 	 * If there are pending partial truncations we need to keep the
10730 	 * old block copy around until they complete.  This is because
10731 	 * the current b_data is not a perfect superset of the available
10732 	 * blocks.
10733 	 */
10734 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10735 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10736 	else
10737 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10738 	WORKLIST_REMOVE(&indirdep->ir_list);
10739 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10740 	indirdep->ir_bp = NULL;
10741 	indirdep->ir_freeblks = freeblks;
10742 }
10743 
10744 /*
10745  * Free an indirdep once it no longer has new pointers to track.
10746  */
10747 static void
10748 free_indirdep(indirdep)
10749 	struct indirdep *indirdep;
10750 {
10751 
10752 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10753 	    ("free_indirdep: Indir trunc list not empty."));
10754 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10755 	    ("free_indirdep: Complete head not empty."));
10756 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10757 	    ("free_indirdep: write head not empty."));
10758 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10759 	    ("free_indirdep: done head not empty."));
10760 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10761 	    ("free_indirdep: deplist head not empty."));
10762 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10763 	    ("free_indirdep: %p still on newblk list.", indirdep));
10764 	KASSERT(indirdep->ir_saveddata == NULL,
10765 	    ("free_indirdep: %p still has saved data.", indirdep));
10766 	KASSERT(indirdep->ir_savebp == NULL,
10767 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
10768 	if (indirdep->ir_state & ONWORKLIST)
10769 		WORKLIST_REMOVE(&indirdep->ir_list);
10770 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10771 }
10772 
10773 /*
10774  * Called before a write to an indirdep.  This routine is responsible for
10775  * rolling back pointers to a safe state which includes only those
10776  * allocindirs which have been completed.
10777  */
10778 static void
10779 initiate_write_indirdep(indirdep, bp)
10780 	struct indirdep *indirdep;
10781 	struct buf *bp;
10782 {
10783 	struct ufsmount *ump;
10784 
10785 	indirdep->ir_state |= IOSTARTED;
10786 	if (indirdep->ir_state & GOINGAWAY)
10787 		panic("disk_io_initiation: indirdep gone");
10788 	/*
10789 	 * If there are no remaining dependencies, this will be writing
10790 	 * the real pointers.
10791 	 */
10792 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10793 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10794 		return;
10795 	/*
10796 	 * Replace up-to-date version with safe version.
10797 	 */
10798 	if (indirdep->ir_saveddata == NULL) {
10799 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10800 		LOCK_OWNED(ump);
10801 		FREE_LOCK(ump);
10802 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10803 		    M_SOFTDEP_FLAGS);
10804 		ACQUIRE_LOCK(ump);
10805 	}
10806 	indirdep->ir_state &= ~ATTACHED;
10807 	indirdep->ir_state |= UNDONE;
10808 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10809 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10810 	    bp->b_bcount);
10811 }
10812 
10813 /*
10814  * Called when an inode has been cleared in a cg bitmap.  This finally
10815  * eliminates any canceled jaddrefs
10816  */
10817 void
10818 softdep_setup_inofree(mp, bp, ino, wkhd)
10819 	struct mount *mp;
10820 	struct buf *bp;
10821 	ino_t ino;
10822 	struct workhead *wkhd;
10823 {
10824 	struct worklist *wk, *wkn;
10825 	struct inodedep *inodedep;
10826 	struct ufsmount *ump;
10827 	uint8_t *inosused;
10828 	struct cg *cgp;
10829 	struct fs *fs;
10830 
10831 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10832 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10833 	ump = VFSTOUFS(mp);
10834 	ACQUIRE_LOCK(ump);
10835 	if (!ffs_fsfail_cleanup(ump, 0)) {
10836 		fs = ump->um_fs;
10837 		cgp = (struct cg *)bp->b_data;
10838 		inosused = cg_inosused(cgp);
10839 		if (isset(inosused, ino % fs->fs_ipg))
10840 			panic("softdep_setup_inofree: inode %ju not freed.",
10841 			    (uintmax_t)ino);
10842 	}
10843 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10844 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10845 		    (uintmax_t)ino, inodedep);
10846 	if (wkhd) {
10847 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10848 			if (wk->wk_type != D_JADDREF)
10849 				continue;
10850 			WORKLIST_REMOVE(wk);
10851 			/*
10852 			 * We can free immediately even if the jaddref
10853 			 * isn't attached in a background write as now
10854 			 * the bitmaps are reconciled.
10855 			 */
10856 			wk->wk_state |= COMPLETE | ATTACHED;
10857 			free_jaddref(WK_JADDREF(wk));
10858 		}
10859 		jwork_move(&bp->b_dep, wkhd);
10860 	}
10861 	FREE_LOCK(ump);
10862 }
10863 
10864 /*
10865  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10866  * map.  Any dependencies waiting for the write to clear are added to the
10867  * buf's list and any jnewblks that are being canceled are discarded
10868  * immediately.
10869  */
10870 void
10871 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10872 	struct mount *mp;
10873 	struct buf *bp;
10874 	ufs2_daddr_t blkno;
10875 	int frags;
10876 	struct workhead *wkhd;
10877 {
10878 	struct bmsafemap *bmsafemap;
10879 	struct jnewblk *jnewblk;
10880 	struct ufsmount *ump;
10881 	struct worklist *wk;
10882 	struct fs *fs;
10883 #ifdef INVARIANTS
10884 	uint8_t *blksfree;
10885 	struct cg *cgp;
10886 	ufs2_daddr_t jstart;
10887 	ufs2_daddr_t jend;
10888 	ufs2_daddr_t end;
10889 	long bno;
10890 	int i;
10891 #endif
10892 
10893 	CTR3(KTR_SUJ,
10894 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10895 	    blkno, frags, wkhd);
10896 
10897 	ump = VFSTOUFS(mp);
10898 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10899 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10900 	ACQUIRE_LOCK(ump);
10901 	/* Lookup the bmsafemap so we track when it is dirty. */
10902 	fs = ump->um_fs;
10903 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10904 	/*
10905 	 * Detach any jnewblks which have been canceled.  They must linger
10906 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10907 	 * an unjournaled allocation from hitting the disk.
10908 	 */
10909 	if (wkhd) {
10910 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10911 			CTR2(KTR_SUJ,
10912 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10913 			    blkno, wk->wk_type);
10914 			WORKLIST_REMOVE(wk);
10915 			if (wk->wk_type != D_JNEWBLK) {
10916 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10917 				continue;
10918 			}
10919 			jnewblk = WK_JNEWBLK(wk);
10920 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10921 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10922 #ifdef INVARIANTS
10923 			/*
10924 			 * Assert that this block is free in the bitmap
10925 			 * before we discard the jnewblk.
10926 			 */
10927 			cgp = (struct cg *)bp->b_data;
10928 			blksfree = cg_blksfree(cgp);
10929 			bno = dtogd(fs, jnewblk->jn_blkno);
10930 			for (i = jnewblk->jn_oldfrags;
10931 			    i < jnewblk->jn_frags; i++) {
10932 				if (isset(blksfree, bno + i))
10933 					continue;
10934 				panic("softdep_setup_blkfree: not free");
10935 			}
10936 #endif
10937 			/*
10938 			 * Even if it's not attached we can free immediately
10939 			 * as the new bitmap is correct.
10940 			 */
10941 			wk->wk_state |= COMPLETE | ATTACHED;
10942 			free_jnewblk(jnewblk);
10943 		}
10944 	}
10945 
10946 #ifdef INVARIANTS
10947 	/*
10948 	 * Assert that we are not freeing a block which has an outstanding
10949 	 * allocation dependency.
10950 	 */
10951 	fs = VFSTOUFS(mp)->um_fs;
10952 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10953 	end = blkno + frags;
10954 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10955 		/*
10956 		 * Don't match against blocks that will be freed when the
10957 		 * background write is done.
10958 		 */
10959 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10960 		    (COMPLETE | DEPCOMPLETE))
10961 			continue;
10962 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10963 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10964 		if ((blkno >= jstart && blkno < jend) ||
10965 		    (end > jstart && end <= jend)) {
10966 			printf("state 0x%X %jd - %d %d dep %p\n",
10967 			    jnewblk->jn_state, jnewblk->jn_blkno,
10968 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10969 			    jnewblk->jn_dep);
10970 			panic("softdep_setup_blkfree: "
10971 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10972 			    blkno, end, frags, jstart, jend);
10973 		}
10974 	}
10975 #endif
10976 	FREE_LOCK(ump);
10977 }
10978 
10979 /*
10980  * Revert a block allocation when the journal record that describes it
10981  * is not yet written.
10982  */
10983 static int
10984 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10985 	struct jnewblk *jnewblk;
10986 	struct fs *fs;
10987 	struct cg *cgp;
10988 	uint8_t *blksfree;
10989 {
10990 	ufs1_daddr_t fragno;
10991 	long cgbno, bbase;
10992 	int frags, blk;
10993 	int i;
10994 
10995 	frags = 0;
10996 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10997 	/*
10998 	 * We have to test which frags need to be rolled back.  We may
10999 	 * be operating on a stale copy when doing background writes.
11000 	 */
11001 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11002 		if (isclr(blksfree, cgbno + i))
11003 			frags++;
11004 	if (frags == 0)
11005 		return (0);
11006 	/*
11007 	 * This is mostly ffs_blkfree() sans some validation and
11008 	 * superblock updates.
11009 	 */
11010 	if (frags == fs->fs_frag) {
11011 		fragno = fragstoblks(fs, cgbno);
11012 		ffs_setblock(fs, blksfree, fragno);
11013 		ffs_clusteracct(fs, cgp, fragno, 1);
11014 		cgp->cg_cs.cs_nbfree++;
11015 	} else {
11016 		cgbno += jnewblk->jn_oldfrags;
11017 		bbase = cgbno - fragnum(fs, cgbno);
11018 		/* Decrement the old frags.  */
11019 		blk = blkmap(fs, blksfree, bbase);
11020 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11021 		/* Deallocate the fragment */
11022 		for (i = 0; i < frags; i++)
11023 			setbit(blksfree, cgbno + i);
11024 		cgp->cg_cs.cs_nffree += frags;
11025 		/* Add back in counts associated with the new frags */
11026 		blk = blkmap(fs, blksfree, bbase);
11027 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11028 		/* If a complete block has been reassembled, account for it. */
11029 		fragno = fragstoblks(fs, bbase);
11030 		if (ffs_isblock(fs, blksfree, fragno)) {
11031 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11032 			ffs_clusteracct(fs, cgp, fragno, 1);
11033 			cgp->cg_cs.cs_nbfree++;
11034 		}
11035 	}
11036 	stat_jnewblk++;
11037 	jnewblk->jn_state &= ~ATTACHED;
11038 	jnewblk->jn_state |= UNDONE;
11039 
11040 	return (frags);
11041 }
11042 
11043 static void
11044 initiate_write_bmsafemap(bmsafemap, bp)
11045 	struct bmsafemap *bmsafemap;
11046 	struct buf *bp;			/* The cg block. */
11047 {
11048 	struct jaddref *jaddref;
11049 	struct jnewblk *jnewblk;
11050 	uint8_t *inosused;
11051 	uint8_t *blksfree;
11052 	struct cg *cgp;
11053 	struct fs *fs;
11054 	ino_t ino;
11055 
11056 	/*
11057 	 * If this is a background write, we did this at the time that
11058 	 * the copy was made, so do not need to do it again.
11059 	 */
11060 	if (bmsafemap->sm_state & IOSTARTED)
11061 		return;
11062 	bmsafemap->sm_state |= IOSTARTED;
11063 	/*
11064 	 * Clear any inode allocations which are pending journal writes.
11065 	 */
11066 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11067 		cgp = (struct cg *)bp->b_data;
11068 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11069 		inosused = cg_inosused(cgp);
11070 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11071 			ino = jaddref->ja_ino % fs->fs_ipg;
11072 			if (isset(inosused, ino)) {
11073 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11074 					cgp->cg_cs.cs_ndir--;
11075 				cgp->cg_cs.cs_nifree++;
11076 				clrbit(inosused, ino);
11077 				jaddref->ja_state &= ~ATTACHED;
11078 				jaddref->ja_state |= UNDONE;
11079 				stat_jaddref++;
11080 			} else
11081 				panic("initiate_write_bmsafemap: inode %ju "
11082 				    "marked free", (uintmax_t)jaddref->ja_ino);
11083 		}
11084 	}
11085 	/*
11086 	 * Clear any block allocations which are pending journal writes.
11087 	 */
11088 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11089 		cgp = (struct cg *)bp->b_data;
11090 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11091 		blksfree = cg_blksfree(cgp);
11092 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11093 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11094 				continue;
11095 			panic("initiate_write_bmsafemap: block %jd "
11096 			    "marked free", jnewblk->jn_blkno);
11097 		}
11098 	}
11099 	/*
11100 	 * Move allocation lists to the written lists so they can be
11101 	 * cleared once the block write is complete.
11102 	 */
11103 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11104 	    inodedep, id_deps);
11105 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11106 	    newblk, nb_deps);
11107 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11108 	    wk_list);
11109 }
11110 
11111 void
11112 softdep_handle_error(struct buf *bp)
11113 {
11114 	struct ufsmount *ump;
11115 
11116 	ump = softdep_bp_to_mp(bp);
11117 	if (ump == NULL)
11118 		return;
11119 
11120 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11121 		/*
11122 		 * No future writes will succeed, so the on-disk image is safe.
11123 		 * Pretend that this write succeeded so that the softdep state
11124 		 * will be cleaned up naturally.
11125 		 */
11126 		bp->b_ioflags &= ~BIO_ERROR;
11127 		bp->b_error = 0;
11128 	}
11129 }
11130 
11131 /*
11132  * This routine is called during the completion interrupt
11133  * service routine for a disk write (from the procedure called
11134  * by the device driver to inform the filesystem caches of
11135  * a request completion).  It should be called early in this
11136  * procedure, before the block is made available to other
11137  * processes or other routines are called.
11138  *
11139  */
11140 static void
11141 softdep_disk_write_complete(bp)
11142 	struct buf *bp;		/* describes the completed disk write */
11143 {
11144 	struct worklist *wk;
11145 	struct worklist *owk;
11146 	struct ufsmount *ump;
11147 	struct workhead reattach;
11148 	struct freeblks *freeblks;
11149 	struct buf *sbp;
11150 
11151 	ump = softdep_bp_to_mp(bp);
11152 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11153 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11154 	     "with outstanding dependencies for buffer %p", bp));
11155 	if (ump == NULL)
11156 		return;
11157 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11158 		softdep_handle_error(bp);
11159 	/*
11160 	 * If an error occurred while doing the write, then the data
11161 	 * has not hit the disk and the dependencies cannot be processed.
11162 	 * But we do have to go through and roll forward any dependencies
11163 	 * that were rolled back before the disk write.
11164 	 */
11165 	sbp = NULL;
11166 	ACQUIRE_LOCK(ump);
11167 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11168 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11169 			switch (wk->wk_type) {
11170 			case D_PAGEDEP:
11171 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11172 				continue;
11173 
11174 			case D_INODEDEP:
11175 				handle_written_inodeblock(WK_INODEDEP(wk),
11176 				    bp, 0);
11177 				continue;
11178 
11179 			case D_BMSAFEMAP:
11180 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11181 				    bp, 0);
11182 				continue;
11183 
11184 			case D_INDIRDEP:
11185 				handle_written_indirdep(WK_INDIRDEP(wk),
11186 				    bp, &sbp, 0);
11187 				continue;
11188 			default:
11189 				/* nothing to roll forward */
11190 				continue;
11191 			}
11192 		}
11193 		FREE_LOCK(ump);
11194 		if (sbp)
11195 			brelse(sbp);
11196 		return;
11197 	}
11198 	LIST_INIT(&reattach);
11199 
11200 	/*
11201 	 * Ump SU lock must not be released anywhere in this code segment.
11202 	 */
11203 	owk = NULL;
11204 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11205 		WORKLIST_REMOVE(wk);
11206 		atomic_add_long(&dep_write[wk->wk_type], 1);
11207 		if (wk == owk)
11208 			panic("duplicate worklist: %p\n", wk);
11209 		owk = wk;
11210 		switch (wk->wk_type) {
11211 		case D_PAGEDEP:
11212 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11213 			    WRITESUCCEEDED))
11214 				WORKLIST_INSERT(&reattach, wk);
11215 			continue;
11216 
11217 		case D_INODEDEP:
11218 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11219 			    WRITESUCCEEDED))
11220 				WORKLIST_INSERT(&reattach, wk);
11221 			continue;
11222 
11223 		case D_BMSAFEMAP:
11224 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11225 			    WRITESUCCEEDED))
11226 				WORKLIST_INSERT(&reattach, wk);
11227 			continue;
11228 
11229 		case D_MKDIR:
11230 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11231 			continue;
11232 
11233 		case D_ALLOCDIRECT:
11234 			wk->wk_state |= COMPLETE;
11235 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11236 			continue;
11237 
11238 		case D_ALLOCINDIR:
11239 			wk->wk_state |= COMPLETE;
11240 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11241 			continue;
11242 
11243 		case D_INDIRDEP:
11244 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11245 			    WRITESUCCEEDED))
11246 				WORKLIST_INSERT(&reattach, wk);
11247 			continue;
11248 
11249 		case D_FREEBLKS:
11250 			wk->wk_state |= COMPLETE;
11251 			freeblks = WK_FREEBLKS(wk);
11252 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11253 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11254 				add_to_worklist(wk, WK_NODELAY);
11255 			continue;
11256 
11257 		case D_FREEWORK:
11258 			handle_written_freework(WK_FREEWORK(wk));
11259 			break;
11260 
11261 		case D_JSEGDEP:
11262 			free_jsegdep(WK_JSEGDEP(wk));
11263 			continue;
11264 
11265 		case D_JSEG:
11266 			handle_written_jseg(WK_JSEG(wk), bp);
11267 			continue;
11268 
11269 		case D_SBDEP:
11270 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11271 				WORKLIST_INSERT(&reattach, wk);
11272 			continue;
11273 
11274 		case D_FREEDEP:
11275 			free_freedep(WK_FREEDEP(wk));
11276 			continue;
11277 
11278 		default:
11279 			panic("handle_disk_write_complete: Unknown type %s",
11280 			    TYPENAME(wk->wk_type));
11281 			/* NOTREACHED */
11282 		}
11283 	}
11284 	/*
11285 	 * Reattach any requests that must be redone.
11286 	 */
11287 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11288 		WORKLIST_REMOVE(wk);
11289 		WORKLIST_INSERT(&bp->b_dep, wk);
11290 	}
11291 	FREE_LOCK(ump);
11292 	if (sbp)
11293 		brelse(sbp);
11294 }
11295 
11296 /*
11297  * Called from within softdep_disk_write_complete above.
11298  */
11299 static void
11300 handle_allocdirect_partdone(adp, wkhd)
11301 	struct allocdirect *adp;	/* the completed allocdirect */
11302 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11303 {
11304 	struct allocdirectlst *listhead;
11305 	struct allocdirect *listadp;
11306 	struct inodedep *inodedep;
11307 	long bsize;
11308 
11309 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11310 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11311 		return;
11312 	/*
11313 	 * The on-disk inode cannot claim to be any larger than the last
11314 	 * fragment that has been written. Otherwise, the on-disk inode
11315 	 * might have fragments that were not the last block in the file
11316 	 * which would corrupt the filesystem. Thus, we cannot free any
11317 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11318 	 * these blocks must be rolled back to zero before writing the inode.
11319 	 * We check the currently active set of allocdirects in id_inoupdt
11320 	 * or id_extupdt as appropriate.
11321 	 */
11322 	inodedep = adp->ad_inodedep;
11323 	bsize = inodedep->id_fs->fs_bsize;
11324 	if (adp->ad_state & EXTDATA)
11325 		listhead = &inodedep->id_extupdt;
11326 	else
11327 		listhead = &inodedep->id_inoupdt;
11328 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11329 		/* found our block */
11330 		if (listadp == adp)
11331 			break;
11332 		/* continue if ad_oldlbn is not a fragment */
11333 		if (listadp->ad_oldsize == 0 ||
11334 		    listadp->ad_oldsize == bsize)
11335 			continue;
11336 		/* hit a fragment */
11337 		return;
11338 	}
11339 	/*
11340 	 * If we have reached the end of the current list without
11341 	 * finding the just finished dependency, then it must be
11342 	 * on the future dependency list. Future dependencies cannot
11343 	 * be freed until they are moved to the current list.
11344 	 */
11345 	if (listadp == NULL) {
11346 #ifdef INVARIANTS
11347 		if (adp->ad_state & EXTDATA)
11348 			listhead = &inodedep->id_newextupdt;
11349 		else
11350 			listhead = &inodedep->id_newinoupdt;
11351 		TAILQ_FOREACH(listadp, listhead, ad_next)
11352 			/* found our block */
11353 			if (listadp == adp)
11354 				break;
11355 		if (listadp == NULL)
11356 			panic("handle_allocdirect_partdone: lost dep");
11357 #endif /* INVARIANTS */
11358 		return;
11359 	}
11360 	/*
11361 	 * If we have found the just finished dependency, then queue
11362 	 * it along with anything that follows it that is complete.
11363 	 * Since the pointer has not yet been written in the inode
11364 	 * as the dependency prevents it, place the allocdirect on the
11365 	 * bufwait list where it will be freed once the pointer is
11366 	 * valid.
11367 	 */
11368 	if (wkhd == NULL)
11369 		wkhd = &inodedep->id_bufwait;
11370 	for (; adp; adp = listadp) {
11371 		listadp = TAILQ_NEXT(adp, ad_next);
11372 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11373 			return;
11374 		TAILQ_REMOVE(listhead, adp, ad_next);
11375 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11376 	}
11377 }
11378 
11379 /*
11380  * Called from within softdep_disk_write_complete above.  This routine
11381  * completes successfully written allocindirs.
11382  */
11383 static void
11384 handle_allocindir_partdone(aip)
11385 	struct allocindir *aip;		/* the completed allocindir */
11386 {
11387 	struct indirdep *indirdep;
11388 
11389 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11390 		return;
11391 	indirdep = aip->ai_indirdep;
11392 	LIST_REMOVE(aip, ai_next);
11393 	/*
11394 	 * Don't set a pointer while the buffer is undergoing IO or while
11395 	 * we have active truncations.
11396 	 */
11397 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11398 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11399 		return;
11400 	}
11401 	if (indirdep->ir_state & UFS1FMT)
11402 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11403 		    aip->ai_newblkno;
11404 	else
11405 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11406 		    aip->ai_newblkno;
11407 	/*
11408 	 * Await the pointer write before freeing the allocindir.
11409 	 */
11410 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11411 }
11412 
11413 /*
11414  * Release segments held on a jwork list.
11415  */
11416 static void
11417 handle_jwork(wkhd)
11418 	struct workhead *wkhd;
11419 {
11420 	struct worklist *wk;
11421 
11422 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11423 		WORKLIST_REMOVE(wk);
11424 		switch (wk->wk_type) {
11425 		case D_JSEGDEP:
11426 			free_jsegdep(WK_JSEGDEP(wk));
11427 			continue;
11428 		case D_FREEDEP:
11429 			free_freedep(WK_FREEDEP(wk));
11430 			continue;
11431 		case D_FREEFRAG:
11432 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11433 			WORKITEM_FREE(wk, D_FREEFRAG);
11434 			continue;
11435 		case D_FREEWORK:
11436 			handle_written_freework(WK_FREEWORK(wk));
11437 			continue;
11438 		default:
11439 			panic("handle_jwork: Unknown type %s\n",
11440 			    TYPENAME(wk->wk_type));
11441 		}
11442 	}
11443 }
11444 
11445 /*
11446  * Handle the bufwait list on an inode when it is safe to release items
11447  * held there.  This normally happens after an inode block is written but
11448  * may be delayed and handled later if there are pending journal items that
11449  * are not yet safe to be released.
11450  */
11451 static struct freefile *
11452 handle_bufwait(inodedep, refhd)
11453 	struct inodedep *inodedep;
11454 	struct workhead *refhd;
11455 {
11456 	struct jaddref *jaddref;
11457 	struct freefile *freefile;
11458 	struct worklist *wk;
11459 
11460 	freefile = NULL;
11461 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11462 		WORKLIST_REMOVE(wk);
11463 		switch (wk->wk_type) {
11464 		case D_FREEFILE:
11465 			/*
11466 			 * We defer adding freefile to the worklist
11467 			 * until all other additions have been made to
11468 			 * ensure that it will be done after all the
11469 			 * old blocks have been freed.
11470 			 */
11471 			if (freefile != NULL)
11472 				panic("handle_bufwait: freefile");
11473 			freefile = WK_FREEFILE(wk);
11474 			continue;
11475 
11476 		case D_MKDIR:
11477 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11478 			continue;
11479 
11480 		case D_DIRADD:
11481 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11482 			continue;
11483 
11484 		case D_FREEFRAG:
11485 			wk->wk_state |= COMPLETE;
11486 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11487 				add_to_worklist(wk, 0);
11488 			continue;
11489 
11490 		case D_DIRREM:
11491 			wk->wk_state |= COMPLETE;
11492 			add_to_worklist(wk, 0);
11493 			continue;
11494 
11495 		case D_ALLOCDIRECT:
11496 		case D_ALLOCINDIR:
11497 			free_newblk(WK_NEWBLK(wk));
11498 			continue;
11499 
11500 		case D_JNEWBLK:
11501 			wk->wk_state |= COMPLETE;
11502 			free_jnewblk(WK_JNEWBLK(wk));
11503 			continue;
11504 
11505 		/*
11506 		 * Save freed journal segments and add references on
11507 		 * the supplied list which will delay their release
11508 		 * until the cg bitmap is cleared on disk.
11509 		 */
11510 		case D_JSEGDEP:
11511 			if (refhd == NULL)
11512 				free_jsegdep(WK_JSEGDEP(wk));
11513 			else
11514 				WORKLIST_INSERT(refhd, wk);
11515 			continue;
11516 
11517 		case D_JADDREF:
11518 			jaddref = WK_JADDREF(wk);
11519 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11520 			    if_deps);
11521 			/*
11522 			 * Transfer any jaddrefs to the list to be freed with
11523 			 * the bitmap if we're handling a removed file.
11524 			 */
11525 			if (refhd == NULL) {
11526 				wk->wk_state |= COMPLETE;
11527 				free_jaddref(jaddref);
11528 			} else
11529 				WORKLIST_INSERT(refhd, wk);
11530 			continue;
11531 
11532 		default:
11533 			panic("handle_bufwait: Unknown type %p(%s)",
11534 			    wk, TYPENAME(wk->wk_type));
11535 			/* NOTREACHED */
11536 		}
11537 	}
11538 	return (freefile);
11539 }
11540 /*
11541  * Called from within softdep_disk_write_complete above to restore
11542  * in-memory inode block contents to their most up-to-date state. Note
11543  * that this routine is always called from interrupt level with further
11544  * interrupts from this device blocked.
11545  *
11546  * If the write did not succeed, we will do all the roll-forward
11547  * operations, but we will not take the actions that will allow its
11548  * dependencies to be processed.
11549  */
11550 static int
11551 handle_written_inodeblock(inodedep, bp, flags)
11552 	struct inodedep *inodedep;
11553 	struct buf *bp;		/* buffer containing the inode block */
11554 	int flags;
11555 {
11556 	struct freefile *freefile;
11557 	struct allocdirect *adp, *nextadp;
11558 	struct ufs1_dinode *dp1 = NULL;
11559 	struct ufs2_dinode *dp2 = NULL;
11560 	struct workhead wkhd;
11561 	int hadchanges, fstype;
11562 	ino_t freelink;
11563 
11564 	LIST_INIT(&wkhd);
11565 	hadchanges = 0;
11566 	freefile = NULL;
11567 	if ((inodedep->id_state & IOSTARTED) == 0)
11568 		panic("handle_written_inodeblock: not started");
11569 	inodedep->id_state &= ~IOSTARTED;
11570 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11571 		fstype = UFS1;
11572 		dp1 = (struct ufs1_dinode *)bp->b_data +
11573 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11574 		freelink = dp1->di_freelink;
11575 	} else {
11576 		fstype = UFS2;
11577 		dp2 = (struct ufs2_dinode *)bp->b_data +
11578 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11579 		freelink = dp2->di_freelink;
11580 	}
11581 	/*
11582 	 * Leave this inodeblock dirty until it's in the list.
11583 	 */
11584 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11585 	    (flags & WRITESUCCEEDED)) {
11586 		struct inodedep *inon;
11587 
11588 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11589 		if ((inon == NULL && freelink == 0) ||
11590 		    (inon && inon->id_ino == freelink)) {
11591 			if (inon)
11592 				inon->id_state |= UNLINKPREV;
11593 			inodedep->id_state |= UNLINKNEXT;
11594 		}
11595 		hadchanges = 1;
11596 	}
11597 	/*
11598 	 * If we had to rollback the inode allocation because of
11599 	 * bitmaps being incomplete, then simply restore it.
11600 	 * Keep the block dirty so that it will not be reclaimed until
11601 	 * all associated dependencies have been cleared and the
11602 	 * corresponding updates written to disk.
11603 	 */
11604 	if (inodedep->id_savedino1 != NULL) {
11605 		hadchanges = 1;
11606 		if (fstype == UFS1)
11607 			*dp1 = *inodedep->id_savedino1;
11608 		else
11609 			*dp2 = *inodedep->id_savedino2;
11610 		free(inodedep->id_savedino1, M_SAVEDINO);
11611 		inodedep->id_savedino1 = NULL;
11612 		if ((bp->b_flags & B_DELWRI) == 0)
11613 			stat_inode_bitmap++;
11614 		bdirty(bp);
11615 		/*
11616 		 * If the inode is clear here and GOINGAWAY it will never
11617 		 * be written.  Process the bufwait and clear any pending
11618 		 * work which may include the freefile.
11619 		 */
11620 		if (inodedep->id_state & GOINGAWAY)
11621 			goto bufwait;
11622 		return (1);
11623 	}
11624 	if (flags & WRITESUCCEEDED)
11625 		inodedep->id_state |= COMPLETE;
11626 	/*
11627 	 * Roll forward anything that had to be rolled back before
11628 	 * the inode could be updated.
11629 	 */
11630 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11631 		nextadp = TAILQ_NEXT(adp, ad_next);
11632 		if (adp->ad_state & ATTACHED)
11633 			panic("handle_written_inodeblock: new entry");
11634 		if (fstype == UFS1) {
11635 			if (adp->ad_offset < UFS_NDADDR) {
11636 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11637 					panic("%s %s #%jd mismatch %d != %jd",
11638 					    "handle_written_inodeblock:",
11639 					    "direct pointer",
11640 					    (intmax_t)adp->ad_offset,
11641 					    dp1->di_db[adp->ad_offset],
11642 					    (intmax_t)adp->ad_oldblkno);
11643 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11644 			} else {
11645 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11646 				    0)
11647 					panic("%s: %s #%jd allocated as %d",
11648 					    "handle_written_inodeblock",
11649 					    "indirect pointer",
11650 					    (intmax_t)adp->ad_offset -
11651 					    UFS_NDADDR,
11652 					    dp1->di_ib[adp->ad_offset -
11653 					    UFS_NDADDR]);
11654 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11655 				    adp->ad_newblkno;
11656 			}
11657 		} else {
11658 			if (adp->ad_offset < UFS_NDADDR) {
11659 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11660 					panic("%s: %s #%jd %s %jd != %jd",
11661 					    "handle_written_inodeblock",
11662 					    "direct pointer",
11663 					    (intmax_t)adp->ad_offset, "mismatch",
11664 					    (intmax_t)dp2->di_db[adp->ad_offset],
11665 					    (intmax_t)adp->ad_oldblkno);
11666 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11667 			} else {
11668 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11669 				    0)
11670 					panic("%s: %s #%jd allocated as %jd",
11671 					    "handle_written_inodeblock",
11672 					    "indirect pointer",
11673 					    (intmax_t)adp->ad_offset -
11674 					    UFS_NDADDR,
11675 					    (intmax_t)
11676 					    dp2->di_ib[adp->ad_offset -
11677 					    UFS_NDADDR]);
11678 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11679 				    adp->ad_newblkno;
11680 			}
11681 		}
11682 		adp->ad_state &= ~UNDONE;
11683 		adp->ad_state |= ATTACHED;
11684 		hadchanges = 1;
11685 	}
11686 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11687 		nextadp = TAILQ_NEXT(adp, ad_next);
11688 		if (adp->ad_state & ATTACHED)
11689 			panic("handle_written_inodeblock: new entry");
11690 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11691 			panic("%s: direct pointers #%jd %s %jd != %jd",
11692 			    "handle_written_inodeblock",
11693 			    (intmax_t)adp->ad_offset, "mismatch",
11694 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11695 			    (intmax_t)adp->ad_oldblkno);
11696 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11697 		adp->ad_state &= ~UNDONE;
11698 		adp->ad_state |= ATTACHED;
11699 		hadchanges = 1;
11700 	}
11701 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11702 		stat_direct_blk_ptrs++;
11703 	/*
11704 	 * Reset the file size to its most up-to-date value.
11705 	 */
11706 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11707 		panic("handle_written_inodeblock: bad size");
11708 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11709 		panic("handle_written_inodeblock: Invalid link count "
11710 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11711 		    inodedep);
11712 	if (fstype == UFS1) {
11713 		if (dp1->di_nlink != inodedep->id_savednlink) {
11714 			dp1->di_nlink = inodedep->id_savednlink;
11715 			hadchanges = 1;
11716 		}
11717 		if (dp1->di_size != inodedep->id_savedsize) {
11718 			dp1->di_size = inodedep->id_savedsize;
11719 			hadchanges = 1;
11720 		}
11721 	} else {
11722 		if (dp2->di_nlink != inodedep->id_savednlink) {
11723 			dp2->di_nlink = inodedep->id_savednlink;
11724 			hadchanges = 1;
11725 		}
11726 		if (dp2->di_size != inodedep->id_savedsize) {
11727 			dp2->di_size = inodedep->id_savedsize;
11728 			hadchanges = 1;
11729 		}
11730 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11731 			dp2->di_extsize = inodedep->id_savedextsize;
11732 			hadchanges = 1;
11733 		}
11734 	}
11735 	inodedep->id_savedsize = -1;
11736 	inodedep->id_savedextsize = -1;
11737 	inodedep->id_savednlink = -1;
11738 	/*
11739 	 * If there were any rollbacks in the inode block, then it must be
11740 	 * marked dirty so that its will eventually get written back in
11741 	 * its correct form.
11742 	 */
11743 	if (hadchanges) {
11744 		if (fstype == UFS2)
11745 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11746 		bdirty(bp);
11747 	}
11748 bufwait:
11749 	/*
11750 	 * If the write did not succeed, we have done all the roll-forward
11751 	 * operations, but we cannot take the actions that will allow its
11752 	 * dependencies to be processed.
11753 	 */
11754 	if ((flags & WRITESUCCEEDED) == 0)
11755 		return (hadchanges);
11756 	/*
11757 	 * Process any allocdirects that completed during the update.
11758 	 */
11759 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11760 		handle_allocdirect_partdone(adp, &wkhd);
11761 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11762 		handle_allocdirect_partdone(adp, &wkhd);
11763 	/*
11764 	 * Process deallocations that were held pending until the
11765 	 * inode had been written to disk. Freeing of the inode
11766 	 * is delayed until after all blocks have been freed to
11767 	 * avoid creation of new <vfsid, inum, lbn> triples
11768 	 * before the old ones have been deleted.  Completely
11769 	 * unlinked inodes are not processed until the unlinked
11770 	 * inode list is written or the last reference is removed.
11771 	 */
11772 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11773 		freefile = handle_bufwait(inodedep, NULL);
11774 		if (freefile && !LIST_EMPTY(&wkhd)) {
11775 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11776 			freefile = NULL;
11777 		}
11778 	}
11779 	/*
11780 	 * Move rolled forward dependency completions to the bufwait list
11781 	 * now that those that were already written have been processed.
11782 	 */
11783 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11784 		panic("handle_written_inodeblock: bufwait but no changes");
11785 	jwork_move(&inodedep->id_bufwait, &wkhd);
11786 
11787 	if (freefile != NULL) {
11788 		/*
11789 		 * If the inode is goingaway it was never written.  Fake up
11790 		 * the state here so free_inodedep() can succeed.
11791 		 */
11792 		if (inodedep->id_state & GOINGAWAY)
11793 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11794 		if (free_inodedep(inodedep) == 0)
11795 			panic("handle_written_inodeblock: live inodedep %p",
11796 			    inodedep);
11797 		add_to_worklist(&freefile->fx_list, 0);
11798 		return (0);
11799 	}
11800 
11801 	/*
11802 	 * If no outstanding dependencies, free it.
11803 	 */
11804 	if (free_inodedep(inodedep) ||
11805 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11806 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11807 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11808 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11809 		return (0);
11810 	return (hadchanges);
11811 }
11812 
11813 /*
11814  * Perform needed roll-forwards and kick off any dependencies that
11815  * can now be processed.
11816  *
11817  * If the write did not succeed, we will do all the roll-forward
11818  * operations, but we will not take the actions that will allow its
11819  * dependencies to be processed.
11820  */
11821 static int
11822 handle_written_indirdep(indirdep, bp, bpp, flags)
11823 	struct indirdep *indirdep;
11824 	struct buf *bp;
11825 	struct buf **bpp;
11826 	int flags;
11827 {
11828 	struct allocindir *aip;
11829 	struct buf *sbp;
11830 	int chgs;
11831 
11832 	if (indirdep->ir_state & GOINGAWAY)
11833 		panic("handle_written_indirdep: indirdep gone");
11834 	if ((indirdep->ir_state & IOSTARTED) == 0)
11835 		panic("handle_written_indirdep: IO not started");
11836 	chgs = 0;
11837 	/*
11838 	 * If there were rollbacks revert them here.
11839 	 */
11840 	if (indirdep->ir_saveddata) {
11841 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11842 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11843 			free(indirdep->ir_saveddata, M_INDIRDEP);
11844 			indirdep->ir_saveddata = NULL;
11845 		}
11846 		chgs = 1;
11847 	}
11848 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11849 	indirdep->ir_state |= ATTACHED;
11850 	/*
11851 	 * If the write did not succeed, we have done all the roll-forward
11852 	 * operations, but we cannot take the actions that will allow its
11853 	 * dependencies to be processed.
11854 	 */
11855 	if ((flags & WRITESUCCEEDED) == 0) {
11856 		stat_indir_blk_ptrs++;
11857 		bdirty(bp);
11858 		return (1);
11859 	}
11860 	/*
11861 	 * Move allocindirs with written pointers to the completehd if
11862 	 * the indirdep's pointer is not yet written.  Otherwise
11863 	 * free them here.
11864 	 */
11865 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11866 		LIST_REMOVE(aip, ai_next);
11867 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11868 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11869 			    ai_next);
11870 			newblk_freefrag(&aip->ai_block);
11871 			continue;
11872 		}
11873 		free_newblk(&aip->ai_block);
11874 	}
11875 	/*
11876 	 * Move allocindirs that have finished dependency processing from
11877 	 * the done list to the write list after updating the pointers.
11878 	 */
11879 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11880 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11881 			handle_allocindir_partdone(aip);
11882 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11883 				panic("disk_write_complete: not gone");
11884 			chgs = 1;
11885 		}
11886 	}
11887 	/*
11888 	 * Preserve the indirdep if there were any changes or if it is not
11889 	 * yet valid on disk.
11890 	 */
11891 	if (chgs) {
11892 		stat_indir_blk_ptrs++;
11893 		bdirty(bp);
11894 		return (1);
11895 	}
11896 	/*
11897 	 * If there were no changes we can discard the savedbp and detach
11898 	 * ourselves from the buf.  We are only carrying completed pointers
11899 	 * in this case.
11900 	 */
11901 	sbp = indirdep->ir_savebp;
11902 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11903 	indirdep->ir_savebp = NULL;
11904 	indirdep->ir_bp = NULL;
11905 	if (*bpp != NULL)
11906 		panic("handle_written_indirdep: bp already exists.");
11907 	*bpp = sbp;
11908 	/*
11909 	 * The indirdep may not be freed until its parent points at it.
11910 	 */
11911 	if (indirdep->ir_state & DEPCOMPLETE)
11912 		free_indirdep(indirdep);
11913 
11914 	return (0);
11915 }
11916 
11917 /*
11918  * Process a diradd entry after its dependent inode has been written.
11919  */
11920 static void
11921 diradd_inode_written(dap, inodedep)
11922 	struct diradd *dap;
11923 	struct inodedep *inodedep;
11924 {
11925 
11926 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
11927 	dap->da_state |= COMPLETE;
11928 	complete_diradd(dap);
11929 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11930 }
11931 
11932 /*
11933  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11934  * be called with the per-filesystem lock and the buf lock on the cg held.
11935  */
11936 static int
11937 bmsafemap_backgroundwrite(bmsafemap, bp)
11938 	struct bmsafemap *bmsafemap;
11939 	struct buf *bp;
11940 {
11941 	int dirty;
11942 
11943 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11944 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11945 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11946 	/*
11947 	 * If we're initiating a background write we need to process the
11948 	 * rollbacks as they exist now, not as they exist when IO starts.
11949 	 * No other consumers will look at the contents of the shadowed
11950 	 * buf so this is safe to do here.
11951 	 */
11952 	if (bp->b_xflags & BX_BKGRDMARKER)
11953 		initiate_write_bmsafemap(bmsafemap, bp);
11954 
11955 	return (dirty);
11956 }
11957 
11958 /*
11959  * Re-apply an allocation when a cg write is complete.
11960  */
11961 static int
11962 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11963 	struct jnewblk *jnewblk;
11964 	struct fs *fs;
11965 	struct cg *cgp;
11966 	uint8_t *blksfree;
11967 {
11968 	ufs1_daddr_t fragno;
11969 	ufs2_daddr_t blkno;
11970 	long cgbno, bbase;
11971 	int frags, blk;
11972 	int i;
11973 
11974 	frags = 0;
11975 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11976 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11977 		if (isclr(blksfree, cgbno + i))
11978 			panic("jnewblk_rollforward: re-allocated fragment");
11979 		frags++;
11980 	}
11981 	if (frags == fs->fs_frag) {
11982 		blkno = fragstoblks(fs, cgbno);
11983 		ffs_clrblock(fs, blksfree, (long)blkno);
11984 		ffs_clusteracct(fs, cgp, blkno, -1);
11985 		cgp->cg_cs.cs_nbfree--;
11986 	} else {
11987 		bbase = cgbno - fragnum(fs, cgbno);
11988 		cgbno += jnewblk->jn_oldfrags;
11989                 /* If a complete block had been reassembled, account for it. */
11990 		fragno = fragstoblks(fs, bbase);
11991 		if (ffs_isblock(fs, blksfree, fragno)) {
11992 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11993 			ffs_clusteracct(fs, cgp, fragno, -1);
11994 			cgp->cg_cs.cs_nbfree--;
11995 		}
11996 		/* Decrement the old frags.  */
11997 		blk = blkmap(fs, blksfree, bbase);
11998 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11999 		/* Allocate the fragment */
12000 		for (i = 0; i < frags; i++)
12001 			clrbit(blksfree, cgbno + i);
12002 		cgp->cg_cs.cs_nffree -= frags;
12003 		/* Add back in counts associated with the new frags */
12004 		blk = blkmap(fs, blksfree, bbase);
12005 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12006 	}
12007 	return (frags);
12008 }
12009 
12010 /*
12011  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12012  * changes if it's not a background write.  Set all written dependencies
12013  * to DEPCOMPLETE and free the structure if possible.
12014  *
12015  * If the write did not succeed, we will do all the roll-forward
12016  * operations, but we will not take the actions that will allow its
12017  * dependencies to be processed.
12018  */
12019 static int
12020 handle_written_bmsafemap(bmsafemap, bp, flags)
12021 	struct bmsafemap *bmsafemap;
12022 	struct buf *bp;
12023 	int flags;
12024 {
12025 	struct newblk *newblk;
12026 	struct inodedep *inodedep;
12027 	struct jaddref *jaddref, *jatmp;
12028 	struct jnewblk *jnewblk, *jntmp;
12029 	struct ufsmount *ump;
12030 	uint8_t *inosused;
12031 	uint8_t *blksfree;
12032 	struct cg *cgp;
12033 	struct fs *fs;
12034 	ino_t ino;
12035 	int foreground;
12036 	int chgs;
12037 
12038 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12039 		panic("handle_written_bmsafemap: Not started\n");
12040 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12041 	chgs = 0;
12042 	bmsafemap->sm_state &= ~IOSTARTED;
12043 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12044 	/*
12045 	 * If write was successful, release journal work that was waiting
12046 	 * on the write. Otherwise move the work back.
12047 	 */
12048 	if (flags & WRITESUCCEEDED)
12049 		handle_jwork(&bmsafemap->sm_freewr);
12050 	else
12051 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12052 		    worklist, wk_list);
12053 
12054 	/*
12055 	 * Restore unwritten inode allocation pending jaddref writes.
12056 	 */
12057 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12058 		cgp = (struct cg *)bp->b_data;
12059 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12060 		inosused = cg_inosused(cgp);
12061 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12062 		    ja_bmdeps, jatmp) {
12063 			if ((jaddref->ja_state & UNDONE) == 0)
12064 				continue;
12065 			ino = jaddref->ja_ino % fs->fs_ipg;
12066 			if (isset(inosused, ino))
12067 				panic("handle_written_bmsafemap: "
12068 				    "re-allocated inode");
12069 			/* Do the roll-forward only if it's a real copy. */
12070 			if (foreground) {
12071 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12072 					cgp->cg_cs.cs_ndir++;
12073 				cgp->cg_cs.cs_nifree--;
12074 				setbit(inosused, ino);
12075 				chgs = 1;
12076 			}
12077 			jaddref->ja_state &= ~UNDONE;
12078 			jaddref->ja_state |= ATTACHED;
12079 			free_jaddref(jaddref);
12080 		}
12081 	}
12082 	/*
12083 	 * Restore any block allocations which are pending journal writes.
12084 	 */
12085 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12086 		cgp = (struct cg *)bp->b_data;
12087 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12088 		blksfree = cg_blksfree(cgp);
12089 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12090 		    jntmp) {
12091 			if ((jnewblk->jn_state & UNDONE) == 0)
12092 				continue;
12093 			/* Do the roll-forward only if it's a real copy. */
12094 			if (foreground &&
12095 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12096 				chgs = 1;
12097 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12098 			jnewblk->jn_state |= ATTACHED;
12099 			free_jnewblk(jnewblk);
12100 		}
12101 	}
12102 	/*
12103 	 * If the write did not succeed, we have done all the roll-forward
12104 	 * operations, but we cannot take the actions that will allow its
12105 	 * dependencies to be processed.
12106 	 */
12107 	if ((flags & WRITESUCCEEDED) == 0) {
12108 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12109 		    newblk, nb_deps);
12110 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12111 		    worklist, wk_list);
12112 		if (foreground)
12113 			bdirty(bp);
12114 		return (1);
12115 	}
12116 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12117 		newblk->nb_state |= DEPCOMPLETE;
12118 		newblk->nb_state &= ~ONDEPLIST;
12119 		newblk->nb_bmsafemap = NULL;
12120 		LIST_REMOVE(newblk, nb_deps);
12121 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12122 			handle_allocdirect_partdone(
12123 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12124 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12125 			handle_allocindir_partdone(
12126 			    WK_ALLOCINDIR(&newblk->nb_list));
12127 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12128 			panic("handle_written_bmsafemap: Unexpected type: %s",
12129 			    TYPENAME(newblk->nb_list.wk_type));
12130 	}
12131 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12132 		inodedep->id_state |= DEPCOMPLETE;
12133 		inodedep->id_state &= ~ONDEPLIST;
12134 		LIST_REMOVE(inodedep, id_deps);
12135 		inodedep->id_bmsafemap = NULL;
12136 	}
12137 	LIST_REMOVE(bmsafemap, sm_next);
12138 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12139 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12140 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12141 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12142 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12143 		LIST_REMOVE(bmsafemap, sm_hash);
12144 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12145 		return (0);
12146 	}
12147 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12148 	if (foreground)
12149 		bdirty(bp);
12150 	return (1);
12151 }
12152 
12153 /*
12154  * Try to free a mkdir dependency.
12155  */
12156 static void
12157 complete_mkdir(mkdir)
12158 	struct mkdir *mkdir;
12159 {
12160 	struct diradd *dap;
12161 
12162 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12163 		return;
12164 	LIST_REMOVE(mkdir, md_mkdirs);
12165 	dap = mkdir->md_diradd;
12166 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12167 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12168 		dap->da_state |= DEPCOMPLETE;
12169 		complete_diradd(dap);
12170 	}
12171 	WORKITEM_FREE(mkdir, D_MKDIR);
12172 }
12173 
12174 /*
12175  * Handle the completion of a mkdir dependency.
12176  */
12177 static void
12178 handle_written_mkdir(mkdir, type)
12179 	struct mkdir *mkdir;
12180 	int type;
12181 {
12182 
12183 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12184 		panic("handle_written_mkdir: bad type");
12185 	mkdir->md_state |= COMPLETE;
12186 	complete_mkdir(mkdir);
12187 }
12188 
12189 static int
12190 free_pagedep(pagedep)
12191 	struct pagedep *pagedep;
12192 {
12193 	int i;
12194 
12195 	if (pagedep->pd_state & NEWBLOCK)
12196 		return (0);
12197 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12198 		return (0);
12199 	for (i = 0; i < DAHASHSZ; i++)
12200 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12201 			return (0);
12202 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12203 		return (0);
12204 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12205 		return (0);
12206 	if (pagedep->pd_state & ONWORKLIST)
12207 		WORKLIST_REMOVE(&pagedep->pd_list);
12208 	LIST_REMOVE(pagedep, pd_hash);
12209 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12210 
12211 	return (1);
12212 }
12213 
12214 /*
12215  * Called from within softdep_disk_write_complete above.
12216  * A write operation was just completed. Removed inodes can
12217  * now be freed and associated block pointers may be committed.
12218  * Note that this routine is always called from interrupt level
12219  * with further interrupts from this device blocked.
12220  *
12221  * If the write did not succeed, we will do all the roll-forward
12222  * operations, but we will not take the actions that will allow its
12223  * dependencies to be processed.
12224  */
12225 static int
12226 handle_written_filepage(pagedep, bp, flags)
12227 	struct pagedep *pagedep;
12228 	struct buf *bp;		/* buffer containing the written page */
12229 	int flags;
12230 {
12231 	struct dirrem *dirrem;
12232 	struct diradd *dap, *nextdap;
12233 	struct direct *ep;
12234 	int i, chgs;
12235 
12236 	if ((pagedep->pd_state & IOSTARTED) == 0)
12237 		panic("handle_written_filepage: not started");
12238 	pagedep->pd_state &= ~IOSTARTED;
12239 	if ((flags & WRITESUCCEEDED) == 0)
12240 		goto rollforward;
12241 	/*
12242 	 * Process any directory removals that have been committed.
12243 	 */
12244 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12245 		LIST_REMOVE(dirrem, dm_next);
12246 		dirrem->dm_state |= COMPLETE;
12247 		dirrem->dm_dirinum = pagedep->pd_ino;
12248 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12249 		    ("handle_written_filepage: Journal entries not written."));
12250 		add_to_worklist(&dirrem->dm_list, 0);
12251 	}
12252 	/*
12253 	 * Free any directory additions that have been committed.
12254 	 * If it is a newly allocated block, we have to wait until
12255 	 * the on-disk directory inode claims the new block.
12256 	 */
12257 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12258 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12259 			free_diradd(dap, NULL);
12260 rollforward:
12261 	/*
12262 	 * Uncommitted directory entries must be restored.
12263 	 */
12264 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12265 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12266 		     dap = nextdap) {
12267 			nextdap = LIST_NEXT(dap, da_pdlist);
12268 			if (dap->da_state & ATTACHED)
12269 				panic("handle_written_filepage: attached");
12270 			ep = (struct direct *)
12271 			    ((char *)bp->b_data + dap->da_offset);
12272 			ep->d_ino = dap->da_newinum;
12273 			dap->da_state &= ~UNDONE;
12274 			dap->da_state |= ATTACHED;
12275 			chgs = 1;
12276 			/*
12277 			 * If the inode referenced by the directory has
12278 			 * been written out, then the dependency can be
12279 			 * moved to the pending list.
12280 			 */
12281 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12282 				LIST_REMOVE(dap, da_pdlist);
12283 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12284 				    da_pdlist);
12285 			}
12286 		}
12287 	}
12288 	/*
12289 	 * If there were any rollbacks in the directory, then it must be
12290 	 * marked dirty so that its will eventually get written back in
12291 	 * its correct form.
12292 	 */
12293 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12294 		if ((bp->b_flags & B_DELWRI) == 0)
12295 			stat_dir_entry++;
12296 		bdirty(bp);
12297 		return (1);
12298 	}
12299 	/*
12300 	 * If we are not waiting for a new directory block to be
12301 	 * claimed by its inode, then the pagedep will be freed.
12302 	 * Otherwise it will remain to track any new entries on
12303 	 * the page in case they are fsync'ed.
12304 	 */
12305 	free_pagedep(pagedep);
12306 	return (0);
12307 }
12308 
12309 /*
12310  * Writing back in-core inode structures.
12311  *
12312  * The filesystem only accesses an inode's contents when it occupies an
12313  * "in-core" inode structure.  These "in-core" structures are separate from
12314  * the page frames used to cache inode blocks.  Only the latter are
12315  * transferred to/from the disk.  So, when the updated contents of the
12316  * "in-core" inode structure are copied to the corresponding in-memory inode
12317  * block, the dependencies are also transferred.  The following procedure is
12318  * called when copying a dirty "in-core" inode to a cached inode block.
12319  */
12320 
12321 /*
12322  * Called when an inode is loaded from disk. If the effective link count
12323  * differed from the actual link count when it was last flushed, then we
12324  * need to ensure that the correct effective link count is put back.
12325  */
12326 void
12327 softdep_load_inodeblock(ip)
12328 	struct inode *ip;	/* the "in_core" copy of the inode */
12329 {
12330 	struct inodedep *inodedep;
12331 	struct ufsmount *ump;
12332 
12333 	ump = ITOUMP(ip);
12334 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12335 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12336 	/*
12337 	 * Check for alternate nlink count.
12338 	 */
12339 	ip->i_effnlink = ip->i_nlink;
12340 	ACQUIRE_LOCK(ump);
12341 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12342 		FREE_LOCK(ump);
12343 		return;
12344 	}
12345 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12346 	    inodedep->id_nlinkwrote != -1) {
12347 		KASSERT(ip->i_nlink == 0 &&
12348 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12349 		    ("read bad i_nlink value"));
12350 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12351 	}
12352 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12353 	KASSERT(ip->i_effnlink >= 0,
12354 	    ("softdep_load_inodeblock: negative i_effnlink"));
12355 	FREE_LOCK(ump);
12356 }
12357 
12358 /*
12359  * This routine is called just before the "in-core" inode
12360  * information is to be copied to the in-memory inode block.
12361  * Recall that an inode block contains several inodes. If
12362  * the force flag is set, then the dependencies will be
12363  * cleared so that the update can always be made. Note that
12364  * the buffer is locked when this routine is called, so we
12365  * will never be in the middle of writing the inode block
12366  * to disk.
12367  */
12368 void
12369 softdep_update_inodeblock(ip, bp, waitfor)
12370 	struct inode *ip;	/* the "in_core" copy of the inode */
12371 	struct buf *bp;		/* the buffer containing the inode block */
12372 	int waitfor;		/* nonzero => update must be allowed */
12373 {
12374 	struct inodedep *inodedep;
12375 	struct inoref *inoref;
12376 	struct ufsmount *ump;
12377 	struct worklist *wk;
12378 	struct mount *mp;
12379 	struct buf *ibp;
12380 	struct fs *fs;
12381 	int error;
12382 
12383 	ump = ITOUMP(ip);
12384 	mp = UFSTOVFS(ump);
12385 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12386 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12387 	fs = ump->um_fs;
12388 	/*
12389 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12390 	 * does not have access to the in-core ip so must write directly into
12391 	 * the inode block buffer when setting freelink.
12392 	 */
12393 	if (fs->fs_magic == FS_UFS1_MAGIC)
12394 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12395 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12396 	else
12397 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12398 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12399 	/*
12400 	 * If the effective link count is not equal to the actual link
12401 	 * count, then we must track the difference in an inodedep while
12402 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12403 	 * if there is no existing inodedep, then there are no dependencies
12404 	 * to track.
12405 	 */
12406 	ACQUIRE_LOCK(ump);
12407 again:
12408 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12409 		FREE_LOCK(ump);
12410 		if (ip->i_effnlink != ip->i_nlink)
12411 			panic("softdep_update_inodeblock: bad link count");
12412 		return;
12413 	}
12414 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12415 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12416 	    "inodedep %p id_nlinkdelta %jd",
12417 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12418 	inodedep->id_nlinkwrote = ip->i_nlink;
12419 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12420 		panic("softdep_update_inodeblock: bad delta");
12421 	/*
12422 	 * If we're flushing all dependencies we must also move any waiting
12423 	 * for journal writes onto the bufwait list prior to I/O.
12424 	 */
12425 	if (waitfor) {
12426 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12427 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12428 			    == DEPCOMPLETE) {
12429 				jwait(&inoref->if_list, MNT_WAIT);
12430 				goto again;
12431 			}
12432 		}
12433 	}
12434 	/*
12435 	 * Changes have been initiated. Anything depending on these
12436 	 * changes cannot occur until this inode has been written.
12437 	 */
12438 	inodedep->id_state &= ~COMPLETE;
12439 	if ((inodedep->id_state & ONWORKLIST) == 0)
12440 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12441 	/*
12442 	 * Any new dependencies associated with the incore inode must
12443 	 * now be moved to the list associated with the buffer holding
12444 	 * the in-memory copy of the inode. Once merged process any
12445 	 * allocdirects that are completed by the merger.
12446 	 */
12447 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12448 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12449 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12450 		    NULL);
12451 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12452 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12453 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12454 		    NULL);
12455 	/*
12456 	 * Now that the inode has been pushed into the buffer, the
12457 	 * operations dependent on the inode being written to disk
12458 	 * can be moved to the id_bufwait so that they will be
12459 	 * processed when the buffer I/O completes.
12460 	 */
12461 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12462 		WORKLIST_REMOVE(wk);
12463 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12464 	}
12465 	/*
12466 	 * Newly allocated inodes cannot be written until the bitmap
12467 	 * that allocates them have been written (indicated by
12468 	 * DEPCOMPLETE being set in id_state). If we are doing a
12469 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12470 	 * to be written so that the update can be done.
12471 	 */
12472 	if (waitfor == 0) {
12473 		FREE_LOCK(ump);
12474 		return;
12475 	}
12476 retry:
12477 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12478 		FREE_LOCK(ump);
12479 		return;
12480 	}
12481 	ibp = inodedep->id_bmsafemap->sm_buf;
12482 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12483 	if (ibp == NULL) {
12484 		/*
12485 		 * If ibp came back as NULL, the dependency could have been
12486 		 * freed while we slept.  Look it up again, and check to see
12487 		 * that it has completed.
12488 		 */
12489 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12490 			goto retry;
12491 		FREE_LOCK(ump);
12492 		return;
12493 	}
12494 	FREE_LOCK(ump);
12495 	if ((error = bwrite(ibp)) != 0)
12496 		softdep_error("softdep_update_inodeblock: bwrite", error);
12497 }
12498 
12499 /*
12500  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12501  * old inode dependency list (such as id_inoupdt).
12502  */
12503 static void
12504 merge_inode_lists(newlisthead, oldlisthead)
12505 	struct allocdirectlst *newlisthead;
12506 	struct allocdirectlst *oldlisthead;
12507 {
12508 	struct allocdirect *listadp, *newadp;
12509 
12510 	newadp = TAILQ_FIRST(newlisthead);
12511 	if (newadp != NULL)
12512 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12513 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12514 		if (listadp->ad_offset < newadp->ad_offset) {
12515 			listadp = TAILQ_NEXT(listadp, ad_next);
12516 			continue;
12517 		}
12518 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12519 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12520 		if (listadp->ad_offset == newadp->ad_offset) {
12521 			allocdirect_merge(oldlisthead, newadp,
12522 			    listadp);
12523 			listadp = newadp;
12524 		}
12525 		newadp = TAILQ_FIRST(newlisthead);
12526 	}
12527 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12528 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12529 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12530 	}
12531 }
12532 
12533 /*
12534  * If we are doing an fsync, then we must ensure that any directory
12535  * entries for the inode have been written after the inode gets to disk.
12536  */
12537 int
12538 softdep_fsync(vp)
12539 	struct vnode *vp;	/* the "in_core" copy of the inode */
12540 {
12541 	struct inodedep *inodedep;
12542 	struct pagedep *pagedep;
12543 	struct inoref *inoref;
12544 	struct ufsmount *ump;
12545 	struct worklist *wk;
12546 	struct diradd *dap;
12547 	struct mount *mp;
12548 	struct vnode *pvp;
12549 	struct inode *ip;
12550 	struct buf *bp;
12551 	struct fs *fs;
12552 	struct thread *td = curthread;
12553 	int error, flushparent, pagedep_new_block;
12554 	ino_t parentino;
12555 	ufs_lbn_t lbn;
12556 
12557 	ip = VTOI(vp);
12558 	mp = vp->v_mount;
12559 	ump = VFSTOUFS(mp);
12560 	fs = ump->um_fs;
12561 	if (MOUNTEDSOFTDEP(mp) == 0)
12562 		return (0);
12563 	ACQUIRE_LOCK(ump);
12564 restart:
12565 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12566 		FREE_LOCK(ump);
12567 		return (0);
12568 	}
12569 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12570 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12571 		    == DEPCOMPLETE) {
12572 			jwait(&inoref->if_list, MNT_WAIT);
12573 			goto restart;
12574 		}
12575 	}
12576 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12577 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12578 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12579 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12580 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12581 		panic("softdep_fsync: pending ops %p", inodedep);
12582 	for (error = 0, flushparent = 0; ; ) {
12583 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12584 			break;
12585 		if (wk->wk_type != D_DIRADD)
12586 			panic("softdep_fsync: Unexpected type %s",
12587 			    TYPENAME(wk->wk_type));
12588 		dap = WK_DIRADD(wk);
12589 		/*
12590 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12591 		 * dependency or is contained in a newly allocated block.
12592 		 */
12593 		if (dap->da_state & DIRCHG)
12594 			pagedep = dap->da_previous->dm_pagedep;
12595 		else
12596 			pagedep = dap->da_pagedep;
12597 		parentino = pagedep->pd_ino;
12598 		lbn = pagedep->pd_lbn;
12599 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12600 			panic("softdep_fsync: dirty");
12601 		if ((dap->da_state & MKDIR_PARENT) ||
12602 		    (pagedep->pd_state & NEWBLOCK))
12603 			flushparent = 1;
12604 		else
12605 			flushparent = 0;
12606 		/*
12607 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12608 		 * then we will not be able to release and recover the
12609 		 * vnode below, so we just have to give up on writing its
12610 		 * directory entry out. It will eventually be written, just
12611 		 * not now, but then the user was not asking to have it
12612 		 * written, so we are not breaking any promises.
12613 		 */
12614 		if (VN_IS_DOOMED(vp))
12615 			break;
12616 		/*
12617 		 * We prevent deadlock by always fetching inodes from the
12618 		 * root, moving down the directory tree. Thus, when fetching
12619 		 * our parent directory, we first try to get the lock. If
12620 		 * that fails, we must unlock ourselves before requesting
12621 		 * the lock on our parent. See the comment in ufs_lookup
12622 		 * for details on possible races.
12623 		 */
12624 		FREE_LOCK(ump);
12625 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12626 		    FFSV_FORCEINSMQ)) {
12627 			/*
12628 			 * Unmount cannot proceed after unlock because
12629 			 * caller must have called vn_start_write().
12630 			 */
12631 			VOP_UNLOCK(vp);
12632 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12633 			    &pvp, FFSV_FORCEINSMQ);
12634 			MPASS(VTOI(pvp)->i_mode != 0);
12635 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12636 			if (VN_IS_DOOMED(vp)) {
12637 				if (error == 0)
12638 					vput(pvp);
12639 				error = ENOENT;
12640 			}
12641 			if (error != 0)
12642 				return (error);
12643 		}
12644 		/*
12645 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12646 		 * that are contained in direct blocks will be resolved by
12647 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12648 		 * may require a complete sync'ing of the directory. So, we
12649 		 * try the cheap and fast ffs_update first, and if that fails,
12650 		 * then we do the slower ffs_syncvnode of the directory.
12651 		 */
12652 		if (flushparent) {
12653 			int locked;
12654 
12655 			if ((error = ffs_update(pvp, 1)) != 0) {
12656 				vput(pvp);
12657 				return (error);
12658 			}
12659 			ACQUIRE_LOCK(ump);
12660 			locked = 1;
12661 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12662 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12663 					if (wk->wk_type != D_DIRADD)
12664 						panic("softdep_fsync: Unexpected type %s",
12665 						      TYPENAME(wk->wk_type));
12666 					dap = WK_DIRADD(wk);
12667 					if (dap->da_state & DIRCHG)
12668 						pagedep = dap->da_previous->dm_pagedep;
12669 					else
12670 						pagedep = dap->da_pagedep;
12671 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12672 					FREE_LOCK(ump);
12673 					locked = 0;
12674 					if (pagedep_new_block && (error =
12675 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12676 						vput(pvp);
12677 						return (error);
12678 					}
12679 				}
12680 			}
12681 			if (locked)
12682 				FREE_LOCK(ump);
12683 		}
12684 		/*
12685 		 * Flush directory page containing the inode's name.
12686 		 */
12687 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12688 		    &bp);
12689 		if (error == 0)
12690 			error = bwrite(bp);
12691 		else
12692 			brelse(bp);
12693 		vput(pvp);
12694 		if (!ffs_fsfail_cleanup(ump, error))
12695 			return (error);
12696 		ACQUIRE_LOCK(ump);
12697 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12698 			break;
12699 	}
12700 	FREE_LOCK(ump);
12701 	return (0);
12702 }
12703 
12704 /*
12705  * Flush all the dirty bitmaps associated with the block device
12706  * before flushing the rest of the dirty blocks so as to reduce
12707  * the number of dependencies that will have to be rolled back.
12708  *
12709  * XXX Unused?
12710  */
12711 void
12712 softdep_fsync_mountdev(vp)
12713 	struct vnode *vp;
12714 {
12715 	struct buf *bp, *nbp;
12716 	struct worklist *wk;
12717 	struct bufobj *bo;
12718 
12719 	if (!vn_isdisk(vp))
12720 		panic("softdep_fsync_mountdev: vnode not a disk");
12721 	bo = &vp->v_bufobj;
12722 restart:
12723 	BO_LOCK(bo);
12724 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12725 		/*
12726 		 * If it is already scheduled, skip to the next buffer.
12727 		 */
12728 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12729 			continue;
12730 
12731 		if ((bp->b_flags & B_DELWRI) == 0)
12732 			panic("softdep_fsync_mountdev: not dirty");
12733 		/*
12734 		 * We are only interested in bitmaps with outstanding
12735 		 * dependencies.
12736 		 */
12737 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12738 		    wk->wk_type != D_BMSAFEMAP ||
12739 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12740 			BUF_UNLOCK(bp);
12741 			continue;
12742 		}
12743 		BO_UNLOCK(bo);
12744 		bremfree(bp);
12745 		(void) bawrite(bp);
12746 		goto restart;
12747 	}
12748 	drain_output(vp);
12749 	BO_UNLOCK(bo);
12750 }
12751 
12752 /*
12753  * Sync all cylinder groups that were dirty at the time this function is
12754  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12755  * is used to flush freedep activity that may be holding up writes to a
12756  * indirect block.
12757  */
12758 static int
12759 sync_cgs(mp, waitfor)
12760 	struct mount *mp;
12761 	int waitfor;
12762 {
12763 	struct bmsafemap *bmsafemap;
12764 	struct bmsafemap *sentinel;
12765 	struct ufsmount *ump;
12766 	struct buf *bp;
12767 	int error;
12768 
12769 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12770 	sentinel->sm_cg = -1;
12771 	ump = VFSTOUFS(mp);
12772 	error = 0;
12773 	ACQUIRE_LOCK(ump);
12774 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12775 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12776 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12777 		/* Skip sentinels and cgs with no work to release. */
12778 		if (bmsafemap->sm_cg == -1 ||
12779 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12780 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12781 			LIST_REMOVE(sentinel, sm_next);
12782 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12783 			continue;
12784 		}
12785 		/*
12786 		 * If we don't get the lock and we're waiting try again, if
12787 		 * not move on to the next buf and try to sync it.
12788 		 */
12789 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12790 		if (bp == NULL && waitfor == MNT_WAIT)
12791 			continue;
12792 		LIST_REMOVE(sentinel, sm_next);
12793 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12794 		if (bp == NULL)
12795 			continue;
12796 		FREE_LOCK(ump);
12797 		if (waitfor == MNT_NOWAIT)
12798 			bawrite(bp);
12799 		else
12800 			error = bwrite(bp);
12801 		ACQUIRE_LOCK(ump);
12802 		if (error)
12803 			break;
12804 	}
12805 	LIST_REMOVE(sentinel, sm_next);
12806 	FREE_LOCK(ump);
12807 	free(sentinel, M_BMSAFEMAP);
12808 	return (error);
12809 }
12810 
12811 /*
12812  * This routine is called when we are trying to synchronously flush a
12813  * file. This routine must eliminate any filesystem metadata dependencies
12814  * so that the syncing routine can succeed.
12815  */
12816 int
12817 softdep_sync_metadata(struct vnode *vp)
12818 {
12819 	struct inode *ip;
12820 	int error;
12821 
12822 	ip = VTOI(vp);
12823 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12824 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12825 	/*
12826 	 * Ensure that any direct block dependencies have been cleared,
12827 	 * truncations are started, and inode references are journaled.
12828 	 */
12829 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12830 	/*
12831 	 * Write all journal records to prevent rollbacks on devvp.
12832 	 */
12833 	if (vp->v_type == VCHR)
12834 		softdep_flushjournal(vp->v_mount);
12835 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12836 	/*
12837 	 * Ensure that all truncates are written so we won't find deps on
12838 	 * indirect blocks.
12839 	 */
12840 	process_truncates(vp);
12841 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12842 
12843 	return (error);
12844 }
12845 
12846 /*
12847  * This routine is called when we are attempting to sync a buf with
12848  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12849  * other IO it can but returns EBUSY if the buffer is not yet able to
12850  * be written.  Dependencies which will not cause rollbacks will always
12851  * return 0.
12852  */
12853 int
12854 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12855 {
12856 	struct indirdep *indirdep;
12857 	struct pagedep *pagedep;
12858 	struct allocindir *aip;
12859 	struct newblk *newblk;
12860 	struct ufsmount *ump;
12861 	struct buf *nbp;
12862 	struct worklist *wk;
12863 	int i, error;
12864 
12865 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12866 	    ("softdep_sync_buf called on non-softdep filesystem"));
12867 	/*
12868 	 * For VCHR we just don't want to force flush any dependencies that
12869 	 * will cause rollbacks.
12870 	 */
12871 	if (vp->v_type == VCHR) {
12872 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12873 			return (EBUSY);
12874 		return (0);
12875 	}
12876 	ump = VFSTOUFS(vp->v_mount);
12877 	ACQUIRE_LOCK(ump);
12878 	/*
12879 	 * As we hold the buffer locked, none of its dependencies
12880 	 * will disappear.
12881 	 */
12882 	error = 0;
12883 top:
12884 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12885 		switch (wk->wk_type) {
12886 		case D_ALLOCDIRECT:
12887 		case D_ALLOCINDIR:
12888 			newblk = WK_NEWBLK(wk);
12889 			if (newblk->nb_jnewblk != NULL) {
12890 				if (waitfor == MNT_NOWAIT) {
12891 					error = EBUSY;
12892 					goto out_unlock;
12893 				}
12894 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12895 				goto top;
12896 			}
12897 			if (newblk->nb_state & DEPCOMPLETE ||
12898 			    waitfor == MNT_NOWAIT)
12899 				continue;
12900 			nbp = newblk->nb_bmsafemap->sm_buf;
12901 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12902 			if (nbp == NULL)
12903 				goto top;
12904 			FREE_LOCK(ump);
12905 			if ((error = bwrite(nbp)) != 0)
12906 				goto out;
12907 			ACQUIRE_LOCK(ump);
12908 			continue;
12909 
12910 		case D_INDIRDEP:
12911 			indirdep = WK_INDIRDEP(wk);
12912 			if (waitfor == MNT_NOWAIT) {
12913 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12914 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12915 					error = EBUSY;
12916 					goto out_unlock;
12917 				}
12918 			}
12919 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12920 				panic("softdep_sync_buf: truncation pending.");
12921 		restart:
12922 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12923 				newblk = (struct newblk *)aip;
12924 				if (newblk->nb_jnewblk != NULL) {
12925 					jwait(&newblk->nb_jnewblk->jn_list,
12926 					    waitfor);
12927 					goto restart;
12928 				}
12929 				if (newblk->nb_state & DEPCOMPLETE)
12930 					continue;
12931 				nbp = newblk->nb_bmsafemap->sm_buf;
12932 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12933 				if (nbp == NULL)
12934 					goto restart;
12935 				FREE_LOCK(ump);
12936 				if ((error = bwrite(nbp)) != 0)
12937 					goto out;
12938 				ACQUIRE_LOCK(ump);
12939 				goto restart;
12940 			}
12941 			continue;
12942 
12943 		case D_PAGEDEP:
12944 			/*
12945 			 * Only flush directory entries in synchronous passes.
12946 			 */
12947 			if (waitfor != MNT_WAIT) {
12948 				error = EBUSY;
12949 				goto out_unlock;
12950 			}
12951 			/*
12952 			 * While syncing snapshots, we must allow recursive
12953 			 * lookups.
12954 			 */
12955 			BUF_AREC(bp);
12956 			/*
12957 			 * We are trying to sync a directory that may
12958 			 * have dependencies on both its own metadata
12959 			 * and/or dependencies on the inodes of any
12960 			 * recently allocated files. We walk its diradd
12961 			 * lists pushing out the associated inode.
12962 			 */
12963 			pagedep = WK_PAGEDEP(wk);
12964 			for (i = 0; i < DAHASHSZ; i++) {
12965 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12966 					continue;
12967 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12968 				    &pagedep->pd_diraddhd[i]))) {
12969 					BUF_NOREC(bp);
12970 					goto out_unlock;
12971 				}
12972 			}
12973 			BUF_NOREC(bp);
12974 			continue;
12975 
12976 		case D_FREEWORK:
12977 		case D_FREEDEP:
12978 		case D_JSEGDEP:
12979 		case D_JNEWBLK:
12980 			continue;
12981 
12982 		default:
12983 			panic("softdep_sync_buf: Unknown type %s",
12984 			    TYPENAME(wk->wk_type));
12985 			/* NOTREACHED */
12986 		}
12987 	}
12988 out_unlock:
12989 	FREE_LOCK(ump);
12990 out:
12991 	return (error);
12992 }
12993 
12994 /*
12995  * Flush the dependencies associated with an inodedep.
12996  */
12997 static int
12998 flush_inodedep_deps(vp, mp, ino)
12999 	struct vnode *vp;
13000 	struct mount *mp;
13001 	ino_t ino;
13002 {
13003 	struct inodedep *inodedep;
13004 	struct inoref *inoref;
13005 	struct ufsmount *ump;
13006 	int error, waitfor;
13007 
13008 	/*
13009 	 * This work is done in two passes. The first pass grabs most
13010 	 * of the buffers and begins asynchronously writing them. The
13011 	 * only way to wait for these asynchronous writes is to sleep
13012 	 * on the filesystem vnode which may stay busy for a long time
13013 	 * if the filesystem is active. So, instead, we make a second
13014 	 * pass over the dependencies blocking on each write. In the
13015 	 * usual case we will be blocking against a write that we
13016 	 * initiated, so when it is done the dependency will have been
13017 	 * resolved. Thus the second pass is expected to end quickly.
13018 	 * We give a brief window at the top of the loop to allow
13019 	 * any pending I/O to complete.
13020 	 */
13021 	ump = VFSTOUFS(mp);
13022 	LOCK_OWNED(ump);
13023 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13024 		if (error)
13025 			return (error);
13026 		FREE_LOCK(ump);
13027 		ACQUIRE_LOCK(ump);
13028 restart:
13029 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13030 			return (0);
13031 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13032 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13033 			    == DEPCOMPLETE) {
13034 				jwait(&inoref->if_list, MNT_WAIT);
13035 				goto restart;
13036 			}
13037 		}
13038 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13039 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13040 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13041 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13042 			continue;
13043 		/*
13044 		 * If pass2, we are done, otherwise do pass 2.
13045 		 */
13046 		if (waitfor == MNT_WAIT)
13047 			break;
13048 		waitfor = MNT_WAIT;
13049 	}
13050 	/*
13051 	 * Try freeing inodedep in case all dependencies have been removed.
13052 	 */
13053 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13054 		(void) free_inodedep(inodedep);
13055 	return (0);
13056 }
13057 
13058 /*
13059  * Flush an inode dependency list.
13060  */
13061 static int
13062 flush_deplist(listhead, waitfor, errorp)
13063 	struct allocdirectlst *listhead;
13064 	int waitfor;
13065 	int *errorp;
13066 {
13067 	struct allocdirect *adp;
13068 	struct newblk *newblk;
13069 	struct ufsmount *ump;
13070 	struct buf *bp;
13071 
13072 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13073 		return (0);
13074 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13075 	LOCK_OWNED(ump);
13076 	TAILQ_FOREACH(adp, listhead, ad_next) {
13077 		newblk = (struct newblk *)adp;
13078 		if (newblk->nb_jnewblk != NULL) {
13079 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13080 			return (1);
13081 		}
13082 		if (newblk->nb_state & DEPCOMPLETE)
13083 			continue;
13084 		bp = newblk->nb_bmsafemap->sm_buf;
13085 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13086 		if (bp == NULL) {
13087 			if (waitfor == MNT_NOWAIT)
13088 				continue;
13089 			return (1);
13090 		}
13091 		FREE_LOCK(ump);
13092 		if (waitfor == MNT_NOWAIT)
13093 			bawrite(bp);
13094 		else
13095 			*errorp = bwrite(bp);
13096 		ACQUIRE_LOCK(ump);
13097 		return (1);
13098 	}
13099 	return (0);
13100 }
13101 
13102 /*
13103  * Flush dependencies associated with an allocdirect block.
13104  */
13105 static int
13106 flush_newblk_dep(vp, mp, lbn)
13107 	struct vnode *vp;
13108 	struct mount *mp;
13109 	ufs_lbn_t lbn;
13110 {
13111 	struct newblk *newblk;
13112 	struct ufsmount *ump;
13113 	struct bufobj *bo;
13114 	struct inode *ip;
13115 	struct buf *bp;
13116 	ufs2_daddr_t blkno;
13117 	int error;
13118 
13119 	error = 0;
13120 	bo = &vp->v_bufobj;
13121 	ip = VTOI(vp);
13122 	blkno = DIP(ip, i_db[lbn]);
13123 	if (blkno == 0)
13124 		panic("flush_newblk_dep: Missing block");
13125 	ump = VFSTOUFS(mp);
13126 	ACQUIRE_LOCK(ump);
13127 	/*
13128 	 * Loop until all dependencies related to this block are satisfied.
13129 	 * We must be careful to restart after each sleep in case a write
13130 	 * completes some part of this process for us.
13131 	 */
13132 	for (;;) {
13133 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13134 			FREE_LOCK(ump);
13135 			break;
13136 		}
13137 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13138 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13139 		/*
13140 		 * Flush the journal.
13141 		 */
13142 		if (newblk->nb_jnewblk != NULL) {
13143 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13144 			continue;
13145 		}
13146 		/*
13147 		 * Write the bitmap dependency.
13148 		 */
13149 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13150 			bp = newblk->nb_bmsafemap->sm_buf;
13151 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13152 			if (bp == NULL)
13153 				continue;
13154 			FREE_LOCK(ump);
13155 			error = bwrite(bp);
13156 			if (error)
13157 				break;
13158 			ACQUIRE_LOCK(ump);
13159 			continue;
13160 		}
13161 		/*
13162 		 * Write the buffer.
13163 		 */
13164 		FREE_LOCK(ump);
13165 		BO_LOCK(bo);
13166 		bp = gbincore(bo, lbn);
13167 		if (bp != NULL) {
13168 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13169 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13170 			if (error == ENOLCK) {
13171 				ACQUIRE_LOCK(ump);
13172 				error = 0;
13173 				continue; /* Slept, retry */
13174 			}
13175 			if (error != 0)
13176 				break;	/* Failed */
13177 			if (bp->b_flags & B_DELWRI) {
13178 				bremfree(bp);
13179 				error = bwrite(bp);
13180 				if (error)
13181 					break;
13182 			} else
13183 				BUF_UNLOCK(bp);
13184 		} else
13185 			BO_UNLOCK(bo);
13186 		/*
13187 		 * We have to wait for the direct pointers to
13188 		 * point at the newdirblk before the dependency
13189 		 * will go away.
13190 		 */
13191 		error = ffs_update(vp, 1);
13192 		if (error)
13193 			break;
13194 		ACQUIRE_LOCK(ump);
13195 	}
13196 	return (error);
13197 }
13198 
13199 /*
13200  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13201  */
13202 static int
13203 flush_pagedep_deps(pvp, mp, diraddhdp)
13204 	struct vnode *pvp;
13205 	struct mount *mp;
13206 	struct diraddhd *diraddhdp;
13207 {
13208 	struct inodedep *inodedep;
13209 	struct inoref *inoref;
13210 	struct ufsmount *ump;
13211 	struct diradd *dap;
13212 	struct vnode *vp;
13213 	int error = 0;
13214 	struct buf *bp;
13215 	ino_t inum;
13216 	struct diraddhd unfinished;
13217 
13218 	LIST_INIT(&unfinished);
13219 	ump = VFSTOUFS(mp);
13220 	LOCK_OWNED(ump);
13221 restart:
13222 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13223 		/*
13224 		 * Flush ourselves if this directory entry
13225 		 * has a MKDIR_PARENT dependency.
13226 		 */
13227 		if (dap->da_state & MKDIR_PARENT) {
13228 			FREE_LOCK(ump);
13229 			if ((error = ffs_update(pvp, 1)) != 0)
13230 				break;
13231 			ACQUIRE_LOCK(ump);
13232 			/*
13233 			 * If that cleared dependencies, go on to next.
13234 			 */
13235 			if (dap != LIST_FIRST(diraddhdp))
13236 				continue;
13237 			/*
13238 			 * All MKDIR_PARENT dependencies and all the
13239 			 * NEWBLOCK pagedeps that are contained in direct
13240 			 * blocks were resolved by doing above ffs_update.
13241 			 * Pagedeps contained in indirect blocks may
13242 			 * require a complete sync'ing of the directory.
13243 			 * We are in the midst of doing a complete sync,
13244 			 * so if they are not resolved in this pass we
13245 			 * defer them for now as they will be sync'ed by
13246 			 * our caller shortly.
13247 			 */
13248 			LIST_REMOVE(dap, da_pdlist);
13249 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13250 			continue;
13251 		}
13252 		/*
13253 		 * A newly allocated directory must have its "." and
13254 		 * ".." entries written out before its name can be
13255 		 * committed in its parent.
13256 		 */
13257 		inum = dap->da_newinum;
13258 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13259 			panic("flush_pagedep_deps: lost inode1");
13260 		/*
13261 		 * Wait for any pending journal adds to complete so we don't
13262 		 * cause rollbacks while syncing.
13263 		 */
13264 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13265 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13266 			    == DEPCOMPLETE) {
13267 				jwait(&inoref->if_list, MNT_WAIT);
13268 				goto restart;
13269 			}
13270 		}
13271 		if (dap->da_state & MKDIR_BODY) {
13272 			FREE_LOCK(ump);
13273 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13274 			    FFSV_FORCEINSMQ)))
13275 				break;
13276 			MPASS(VTOI(vp)->i_mode != 0);
13277 			error = flush_newblk_dep(vp, mp, 0);
13278 			/*
13279 			 * If we still have the dependency we might need to
13280 			 * update the vnode to sync the new link count to
13281 			 * disk.
13282 			 */
13283 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13284 				error = ffs_update(vp, 1);
13285 			vput(vp);
13286 			if (error != 0)
13287 				break;
13288 			ACQUIRE_LOCK(ump);
13289 			/*
13290 			 * If that cleared dependencies, go on to next.
13291 			 */
13292 			if (dap != LIST_FIRST(diraddhdp))
13293 				continue;
13294 			if (dap->da_state & MKDIR_BODY) {
13295 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13296 				    &inodedep);
13297 				panic("flush_pagedep_deps: MKDIR_BODY "
13298 				    "inodedep %p dap %p vp %p",
13299 				    inodedep, dap, vp);
13300 			}
13301 		}
13302 		/*
13303 		 * Flush the inode on which the directory entry depends.
13304 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13305 		 * the only remaining dependency is that the updated inode
13306 		 * count must get pushed to disk. The inode has already
13307 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13308 		 * the time of the reference count change. So we need only
13309 		 * locate that buffer, ensure that there will be no rollback
13310 		 * caused by a bitmap dependency, then write the inode buffer.
13311 		 */
13312 retry:
13313 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13314 			panic("flush_pagedep_deps: lost inode");
13315 		/*
13316 		 * If the inode still has bitmap dependencies,
13317 		 * push them to disk.
13318 		 */
13319 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13320 			bp = inodedep->id_bmsafemap->sm_buf;
13321 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13322 			if (bp == NULL)
13323 				goto retry;
13324 			FREE_LOCK(ump);
13325 			if ((error = bwrite(bp)) != 0)
13326 				break;
13327 			ACQUIRE_LOCK(ump);
13328 			if (dap != LIST_FIRST(diraddhdp))
13329 				continue;
13330 		}
13331 		/*
13332 		 * If the inode is still sitting in a buffer waiting
13333 		 * to be written or waiting for the link count to be
13334 		 * adjusted update it here to flush it to disk.
13335 		 */
13336 		if (dap == LIST_FIRST(diraddhdp)) {
13337 			FREE_LOCK(ump);
13338 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13339 			    FFSV_FORCEINSMQ)))
13340 				break;
13341 			MPASS(VTOI(vp)->i_mode != 0);
13342 			error = ffs_update(vp, 1);
13343 			vput(vp);
13344 			if (error)
13345 				break;
13346 			ACQUIRE_LOCK(ump);
13347 		}
13348 		/*
13349 		 * If we have failed to get rid of all the dependencies
13350 		 * then something is seriously wrong.
13351 		 */
13352 		if (dap == LIST_FIRST(diraddhdp)) {
13353 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13354 			panic("flush_pagedep_deps: failed to flush "
13355 			    "inodedep %p ino %ju dap %p",
13356 			    inodedep, (uintmax_t)inum, dap);
13357 		}
13358 	}
13359 	if (error)
13360 		ACQUIRE_LOCK(ump);
13361 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13362 		LIST_REMOVE(dap, da_pdlist);
13363 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13364 	}
13365 	return (error);
13366 }
13367 
13368 /*
13369  * A large burst of file addition or deletion activity can drive the
13370  * memory load excessively high. First attempt to slow things down
13371  * using the techniques below. If that fails, this routine requests
13372  * the offending operations to fall back to running synchronously
13373  * until the memory load returns to a reasonable level.
13374  */
13375 int
13376 softdep_slowdown(vp)
13377 	struct vnode *vp;
13378 {
13379 	struct ufsmount *ump;
13380 	int jlow;
13381 	int max_softdeps_hard;
13382 
13383 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13384 	    ("softdep_slowdown called on non-softdep filesystem"));
13385 	ump = VFSTOUFS(vp->v_mount);
13386 	ACQUIRE_LOCK(ump);
13387 	jlow = 0;
13388 	/*
13389 	 * Check for journal space if needed.
13390 	 */
13391 	if (DOINGSUJ(vp)) {
13392 		if (journal_space(ump, 0) == 0)
13393 			jlow = 1;
13394 	}
13395 	/*
13396 	 * If the system is under its limits and our filesystem is
13397 	 * not responsible for more than our share of the usage and
13398 	 * we are not low on journal space, then no need to slow down.
13399 	 */
13400 	max_softdeps_hard = max_softdeps * 11 / 10;
13401 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13402 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13403 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13404 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13405 	    ump->softdep_curdeps[D_DIRREM] <
13406 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13407 	    ump->softdep_curdeps[D_INODEDEP] <
13408 	    max_softdeps_hard / stat_flush_threads &&
13409 	    ump->softdep_curdeps[D_INDIRDEP] <
13410 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13411 	    ump->softdep_curdeps[D_FREEBLKS] <
13412 	    max_softdeps_hard / stat_flush_threads) {
13413 		FREE_LOCK(ump);
13414   		return (0);
13415 	}
13416 	/*
13417 	 * If the journal is low or our filesystem is over its limit
13418 	 * then speedup the cleanup.
13419 	 */
13420 	if (ump->softdep_curdeps[D_INDIRDEP] <
13421 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13422 		softdep_speedup(ump);
13423 	stat_sync_limit_hit += 1;
13424 	FREE_LOCK(ump);
13425 	/*
13426 	 * We only slow down the rate at which new dependencies are
13427 	 * generated if we are not using journaling. With journaling,
13428 	 * the cleanup should always be sufficient to keep things
13429 	 * under control.
13430 	 */
13431 	if (DOINGSUJ(vp))
13432 		return (0);
13433 	return (1);
13434 }
13435 
13436 /*
13437  * Called by the allocation routines when they are about to fail
13438  * in the hope that we can free up the requested resource (inodes
13439  * or disk space).
13440  *
13441  * First check to see if the work list has anything on it. If it has,
13442  * clean up entries until we successfully free the requested resource.
13443  * Because this process holds inodes locked, we cannot handle any remove
13444  * requests that might block on a locked inode as that could lead to
13445  * deadlock. If the worklist yields none of the requested resource,
13446  * start syncing out vnodes to free up the needed space.
13447  */
13448 int
13449 softdep_request_cleanup(fs, vp, cred, resource)
13450 	struct fs *fs;
13451 	struct vnode *vp;
13452 	struct ucred *cred;
13453 	int resource;
13454 {
13455 	struct ufsmount *ump;
13456 	struct mount *mp;
13457 	long starttime;
13458 	ufs2_daddr_t needed;
13459 	int error, failed_vnode;
13460 
13461 	/*
13462 	 * If we are being called because of a process doing a
13463 	 * copy-on-write, then it is not safe to process any
13464 	 * worklist items as we will recurse into the copyonwrite
13465 	 * routine.  This will result in an incoherent snapshot.
13466 	 * If the vnode that we hold is a snapshot, we must avoid
13467 	 * handling other resources that could cause deadlock.
13468 	 */
13469 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13470 		return (0);
13471 
13472 	if (resource == FLUSH_BLOCKS_WAIT)
13473 		stat_cleanup_blkrequests += 1;
13474 	else
13475 		stat_cleanup_inorequests += 1;
13476 
13477 	mp = vp->v_mount;
13478 	ump = VFSTOUFS(mp);
13479 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13480 	UFS_UNLOCK(ump);
13481 	error = ffs_update(vp, 1);
13482 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13483 		UFS_LOCK(ump);
13484 		return (0);
13485 	}
13486 	/*
13487 	 * If we are in need of resources, start by cleaning up
13488 	 * any block removals associated with our inode.
13489 	 */
13490 	ACQUIRE_LOCK(ump);
13491 	process_removes(vp);
13492 	process_truncates(vp);
13493 	FREE_LOCK(ump);
13494 	/*
13495 	 * Now clean up at least as many resources as we will need.
13496 	 *
13497 	 * When requested to clean up inodes, the number that are needed
13498 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13499 	 * plus a bit of slop (2) in case some more writers show up while
13500 	 * we are cleaning.
13501 	 *
13502 	 * When requested to free up space, the amount of space that
13503 	 * we need is enough blocks to allocate a full-sized segment
13504 	 * (fs_contigsumsize). The number of such segments that will
13505 	 * be needed is set by the number of simultaneous writers
13506 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13507 	 * writers show up while we are cleaning.
13508 	 *
13509 	 * Additionally, if we are unpriviledged and allocating space,
13510 	 * we need to ensure that we clean up enough blocks to get the
13511 	 * needed number of blocks over the threshold of the minimum
13512 	 * number of blocks required to be kept free by the filesystem
13513 	 * (fs_minfree).
13514 	 */
13515 	if (resource == FLUSH_INODES_WAIT) {
13516 		needed = vfs_mount_fetch_counter(vp->v_mount,
13517 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13518 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13519 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13520 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13521 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13522 			needed += fragstoblks(fs,
13523 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13524 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13525 	} else {
13526 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13527 		    resource);
13528 		UFS_LOCK(ump);
13529 		return (0);
13530 	}
13531 	starttime = time_second;
13532 retry:
13533 	if (resource == FLUSH_BLOCKS_WAIT &&
13534 	    fs->fs_cstotal.cs_nbfree <= needed)
13535 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13536 		    BIO_SPEEDUP_TRIM);
13537 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13538 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13539 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13540 	    fs->fs_cstotal.cs_nifree <= needed)) {
13541 		ACQUIRE_LOCK(ump);
13542 		if (ump->softdep_on_worklist > 0 &&
13543 		    process_worklist_item(UFSTOVFS(ump),
13544 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13545 			stat_worklist_push += 1;
13546 		FREE_LOCK(ump);
13547 	}
13548 	/*
13549 	 * If we still need resources and there are no more worklist
13550 	 * entries to process to obtain them, we have to start flushing
13551 	 * the dirty vnodes to force the release of additional requests
13552 	 * to the worklist that we can then process to reap addition
13553 	 * resources. We walk the vnodes associated with the mount point
13554 	 * until we get the needed worklist requests that we can reap.
13555 	 *
13556 	 * If there are several threads all needing to clean the same
13557 	 * mount point, only one is allowed to walk the mount list.
13558 	 * When several threads all try to walk the same mount list,
13559 	 * they end up competing with each other and often end up in
13560 	 * livelock. This approach ensures that forward progress is
13561 	 * made at the cost of occational ENOSPC errors being returned
13562 	 * that might otherwise have been avoided.
13563 	 */
13564 	error = 1;
13565 	if ((resource == FLUSH_BLOCKS_WAIT &&
13566 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13567 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13568 	     fs->fs_cstotal.cs_nifree <= needed)) {
13569 		ACQUIRE_LOCK(ump);
13570 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13571 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13572 			FREE_LOCK(ump);
13573 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13574 			ACQUIRE_LOCK(ump);
13575 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13576 			FREE_LOCK(ump);
13577 			if (ump->softdep_on_worklist > 0) {
13578 				stat_cleanup_retries += 1;
13579 				if (!failed_vnode)
13580 					goto retry;
13581 			}
13582 		} else {
13583 			FREE_LOCK(ump);
13584 			error = 0;
13585 		}
13586 		stat_cleanup_failures += 1;
13587 	}
13588 	if (time_second - starttime > stat_cleanup_high_delay)
13589 		stat_cleanup_high_delay = time_second - starttime;
13590 	UFS_LOCK(ump);
13591 	return (error);
13592 }
13593 
13594 /*
13595  * Scan the vnodes for the specified mount point flushing out any
13596  * vnodes that can be locked without waiting. Finally, try to flush
13597  * the device associated with the mount point if it can be locked
13598  * without waiting.
13599  *
13600  * We return 0 if we were able to lock every vnode in our scan.
13601  * If we had to skip one or more vnodes, we return 1.
13602  */
13603 static int
13604 softdep_request_cleanup_flush(mp, ump)
13605 	struct mount *mp;
13606 	struct ufsmount *ump;
13607 {
13608 	struct thread *td;
13609 	struct vnode *lvp, *mvp;
13610 	int failed_vnode;
13611 
13612 	failed_vnode = 0;
13613 	td = curthread;
13614 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13615 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13616 			VI_UNLOCK(lvp);
13617 			continue;
13618 		}
13619 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13620 			failed_vnode = 1;
13621 			continue;
13622 		}
13623 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13624 			vput(lvp);
13625 			continue;
13626 		}
13627 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13628 		vput(lvp);
13629 	}
13630 	lvp = ump->um_devvp;
13631 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13632 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13633 		VOP_UNLOCK(lvp);
13634 	}
13635 	return (failed_vnode);
13636 }
13637 
13638 static bool
13639 softdep_excess_items(struct ufsmount *ump, int item)
13640 {
13641 
13642 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13643 	return (dep_current[item] > max_softdeps &&
13644 	    ump->softdep_curdeps[item] > max_softdeps /
13645 	    stat_flush_threads);
13646 }
13647 
13648 static void
13649 schedule_cleanup(struct mount *mp)
13650 {
13651 	struct ufsmount *ump;
13652 	struct thread *td;
13653 
13654 	ump = VFSTOUFS(mp);
13655 	LOCK_OWNED(ump);
13656 	FREE_LOCK(ump);
13657 	td = curthread;
13658 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13659 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13660 		/*
13661 		 * No ast is delivered to kernel threads, so nobody
13662 		 * would deref the mp.  Some kernel threads
13663 		 * explicitely check for AST, e.g. NFS daemon does
13664 		 * this in the serving loop.
13665 		 */
13666 		return;
13667 	}
13668 	if (td->td_su != NULL)
13669 		vfs_rel(td->td_su);
13670 	vfs_ref(mp);
13671 	td->td_su = mp;
13672 	thread_lock(td);
13673 	td->td_flags |= TDF_ASTPENDING;
13674 	thread_unlock(td);
13675 }
13676 
13677 static void
13678 softdep_ast_cleanup_proc(struct thread *td)
13679 {
13680 	struct mount *mp;
13681 	struct ufsmount *ump;
13682 	int error;
13683 	bool req;
13684 
13685 	while ((mp = td->td_su) != NULL) {
13686 		td->td_su = NULL;
13687 		error = vfs_busy(mp, MBF_NOWAIT);
13688 		vfs_rel(mp);
13689 		if (error != 0)
13690 			return;
13691 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13692 			ump = VFSTOUFS(mp);
13693 			for (;;) {
13694 				req = false;
13695 				ACQUIRE_LOCK(ump);
13696 				if (softdep_excess_items(ump, D_INODEDEP)) {
13697 					req = true;
13698 					request_cleanup(mp, FLUSH_INODES);
13699 				}
13700 				if (softdep_excess_items(ump, D_DIRREM)) {
13701 					req = true;
13702 					request_cleanup(mp, FLUSH_BLOCKS);
13703 				}
13704 				FREE_LOCK(ump);
13705 				if (softdep_excess_items(ump, D_NEWBLK) ||
13706 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13707 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13708 					error = vn_start_write(NULL, &mp,
13709 					    V_WAIT);
13710 					if (error == 0) {
13711 						req = true;
13712 						VFS_SYNC(mp, MNT_WAIT);
13713 						vn_finished_write(mp);
13714 					}
13715 				}
13716 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13717 					break;
13718 			}
13719 		}
13720 		vfs_unbusy(mp);
13721 	}
13722 	if ((mp = td->td_su) != NULL) {
13723 		td->td_su = NULL;
13724 		vfs_rel(mp);
13725 	}
13726 }
13727 
13728 /*
13729  * If memory utilization has gotten too high, deliberately slow things
13730  * down and speed up the I/O processing.
13731  */
13732 static int
13733 request_cleanup(mp, resource)
13734 	struct mount *mp;
13735 	int resource;
13736 {
13737 	struct thread *td = curthread;
13738 	struct ufsmount *ump;
13739 
13740 	ump = VFSTOUFS(mp);
13741 	LOCK_OWNED(ump);
13742 	/*
13743 	 * We never hold up the filesystem syncer or buf daemon.
13744 	 */
13745 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13746 		return (0);
13747 	/*
13748 	 * First check to see if the work list has gotten backlogged.
13749 	 * If it has, co-opt this process to help clean up two entries.
13750 	 * Because this process may hold inodes locked, we cannot
13751 	 * handle any remove requests that might block on a locked
13752 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13753 	 * to avoid recursively processing the worklist.
13754 	 */
13755 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13756 		td->td_pflags |= TDP_SOFTDEP;
13757 		process_worklist_item(mp, 2, LK_NOWAIT);
13758 		td->td_pflags &= ~TDP_SOFTDEP;
13759 		stat_worklist_push += 2;
13760 		return(1);
13761 	}
13762 	/*
13763 	 * Next, we attempt to speed up the syncer process. If that
13764 	 * is successful, then we allow the process to continue.
13765 	 */
13766 	if (softdep_speedup(ump) &&
13767 	    resource != FLUSH_BLOCKS_WAIT &&
13768 	    resource != FLUSH_INODES_WAIT)
13769 		return(0);
13770 	/*
13771 	 * If we are resource constrained on inode dependencies, try
13772 	 * flushing some dirty inodes. Otherwise, we are constrained
13773 	 * by file deletions, so try accelerating flushes of directories
13774 	 * with removal dependencies. We would like to do the cleanup
13775 	 * here, but we probably hold an inode locked at this point and
13776 	 * that might deadlock against one that we try to clean. So,
13777 	 * the best that we can do is request the syncer daemon to do
13778 	 * the cleanup for us.
13779 	 */
13780 	switch (resource) {
13781 	case FLUSH_INODES:
13782 	case FLUSH_INODES_WAIT:
13783 		ACQUIRE_GBLLOCK(&lk);
13784 		stat_ino_limit_push += 1;
13785 		req_clear_inodedeps += 1;
13786 		FREE_GBLLOCK(&lk);
13787 		stat_countp = &stat_ino_limit_hit;
13788 		break;
13789 
13790 	case FLUSH_BLOCKS:
13791 	case FLUSH_BLOCKS_WAIT:
13792 		ACQUIRE_GBLLOCK(&lk);
13793 		stat_blk_limit_push += 1;
13794 		req_clear_remove += 1;
13795 		FREE_GBLLOCK(&lk);
13796 		stat_countp = &stat_blk_limit_hit;
13797 		break;
13798 
13799 	default:
13800 		panic("request_cleanup: unknown type");
13801 	}
13802 	/*
13803 	 * Hopefully the syncer daemon will catch up and awaken us.
13804 	 * We wait at most tickdelay before proceeding in any case.
13805 	 */
13806 	ACQUIRE_GBLLOCK(&lk);
13807 	FREE_LOCK(ump);
13808 	proc_waiting += 1;
13809 	if (callout_pending(&softdep_callout) == FALSE)
13810 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13811 		    pause_timer, 0);
13812 
13813 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13814 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13815 	proc_waiting -= 1;
13816 	FREE_GBLLOCK(&lk);
13817 	ACQUIRE_LOCK(ump);
13818 	return (1);
13819 }
13820 
13821 /*
13822  * Awaken processes pausing in request_cleanup and clear proc_waiting
13823  * to indicate that there is no longer a timer running. Pause_timer
13824  * will be called with the global softdep mutex (&lk) locked.
13825  */
13826 static void
13827 pause_timer(arg)
13828 	void *arg;
13829 {
13830 
13831 	GBLLOCK_OWNED(&lk);
13832 	/*
13833 	 * The callout_ API has acquired mtx and will hold it around this
13834 	 * function call.
13835 	 */
13836 	*stat_countp += proc_waiting;
13837 	wakeup(&proc_waiting);
13838 }
13839 
13840 /*
13841  * If requested, try removing inode or removal dependencies.
13842  */
13843 static void
13844 check_clear_deps(mp)
13845 	struct mount *mp;
13846 {
13847 	struct ufsmount *ump;
13848 	bool suj_susp;
13849 
13850 	/*
13851 	 * Tell the lower layers that any TRIM or WRITE transactions that have
13852 	 * been delayed for performance reasons should proceed to help alleviate
13853 	 * the shortage faster. The race between checking req_* and the softdep
13854 	 * mutex (lk) is fine since this is an advisory operation that at most
13855 	 * causes deferred work to be done sooner.
13856 	 */
13857 	ump = VFSTOUFS(mp);
13858 	suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended;
13859 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
13860 		FREE_LOCK(ump);
13861 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
13862 		ACQUIRE_LOCK(ump);
13863 	}
13864 
13865 	/*
13866 	 * If we are suspended, it may be because of our using
13867 	 * too many inodedeps, so help clear them out.
13868 	 */
13869 	if (suj_susp)
13870 		clear_inodedeps(mp);
13871 
13872 	/*
13873 	 * General requests for cleanup of backed up dependencies
13874 	 */
13875 	ACQUIRE_GBLLOCK(&lk);
13876 	if (req_clear_inodedeps) {
13877 		req_clear_inodedeps -= 1;
13878 		FREE_GBLLOCK(&lk);
13879 		clear_inodedeps(mp);
13880 		ACQUIRE_GBLLOCK(&lk);
13881 		wakeup(&proc_waiting);
13882 	}
13883 	if (req_clear_remove) {
13884 		req_clear_remove -= 1;
13885 		FREE_GBLLOCK(&lk);
13886 		clear_remove(mp);
13887 		ACQUIRE_GBLLOCK(&lk);
13888 		wakeup(&proc_waiting);
13889 	}
13890 	FREE_GBLLOCK(&lk);
13891 }
13892 
13893 /*
13894  * Flush out a directory with at least one removal dependency in an effort to
13895  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13896  */
13897 static void
13898 clear_remove(mp)
13899 	struct mount *mp;
13900 {
13901 	struct pagedep_hashhead *pagedephd;
13902 	struct pagedep *pagedep;
13903 	struct ufsmount *ump;
13904 	struct vnode *vp;
13905 	struct bufobj *bo;
13906 	int error, cnt;
13907 	ino_t ino;
13908 
13909 	ump = VFSTOUFS(mp);
13910 	LOCK_OWNED(ump);
13911 
13912 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13913 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13914 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13915 			ump->pagedep_nextclean = 0;
13916 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13917 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13918 				continue;
13919 			ino = pagedep->pd_ino;
13920 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13921 				continue;
13922 			FREE_LOCK(ump);
13923 
13924 			/*
13925 			 * Let unmount clear deps
13926 			 */
13927 			error = vfs_busy(mp, MBF_NOWAIT);
13928 			if (error != 0)
13929 				goto finish_write;
13930 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13931 			     FFSV_FORCEINSMQ);
13932 			vfs_unbusy(mp);
13933 			if (error != 0) {
13934 				softdep_error("clear_remove: vget", error);
13935 				goto finish_write;
13936 			}
13937 			MPASS(VTOI(vp)->i_mode != 0);
13938 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13939 				softdep_error("clear_remove: fsync", error);
13940 			bo = &vp->v_bufobj;
13941 			BO_LOCK(bo);
13942 			drain_output(vp);
13943 			BO_UNLOCK(bo);
13944 			vput(vp);
13945 		finish_write:
13946 			vn_finished_write(mp);
13947 			ACQUIRE_LOCK(ump);
13948 			return;
13949 		}
13950 	}
13951 }
13952 
13953 /*
13954  * Clear out a block of dirty inodes in an effort to reduce
13955  * the number of inodedep dependency structures.
13956  */
13957 static void
13958 clear_inodedeps(mp)
13959 	struct mount *mp;
13960 {
13961 	struct inodedep_hashhead *inodedephd;
13962 	struct inodedep *inodedep;
13963 	struct ufsmount *ump;
13964 	struct vnode *vp;
13965 	struct fs *fs;
13966 	int error, cnt;
13967 	ino_t firstino, lastino, ino;
13968 
13969 	ump = VFSTOUFS(mp);
13970 	fs = ump->um_fs;
13971 	LOCK_OWNED(ump);
13972 	/*
13973 	 * Pick a random inode dependency to be cleared.
13974 	 * We will then gather up all the inodes in its block
13975 	 * that have dependencies and flush them out.
13976 	 */
13977 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13978 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13979 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13980 			ump->inodedep_nextclean = 0;
13981 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13982 			break;
13983 	}
13984 	if (inodedep == NULL)
13985 		return;
13986 	/*
13987 	 * Find the last inode in the block with dependencies.
13988 	 */
13989 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13990 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13991 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13992 			break;
13993 	/*
13994 	 * Asynchronously push all but the last inode with dependencies.
13995 	 * Synchronously push the last inode with dependencies to ensure
13996 	 * that the inode block gets written to free up the inodedeps.
13997 	 */
13998 	for (ino = firstino; ino <= lastino; ino++) {
13999 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14000 			continue;
14001 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14002 			continue;
14003 		FREE_LOCK(ump);
14004 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14005 		if (error != 0) {
14006 			vn_finished_write(mp);
14007 			ACQUIRE_LOCK(ump);
14008 			return;
14009 		}
14010 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14011 		    FFSV_FORCEINSMQ)) != 0) {
14012 			softdep_error("clear_inodedeps: vget", error);
14013 			vfs_unbusy(mp);
14014 			vn_finished_write(mp);
14015 			ACQUIRE_LOCK(ump);
14016 			return;
14017 		}
14018 		vfs_unbusy(mp);
14019 		if (VTOI(vp)->i_mode == 0) {
14020 			vgone(vp);
14021 		} else if (ino == lastino) {
14022 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
14023 				softdep_error("clear_inodedeps: fsync1", error);
14024 		} else {
14025 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14026 				softdep_error("clear_inodedeps: fsync2", error);
14027 			BO_LOCK(&vp->v_bufobj);
14028 			drain_output(vp);
14029 			BO_UNLOCK(&vp->v_bufobj);
14030 		}
14031 		vput(vp);
14032 		vn_finished_write(mp);
14033 		ACQUIRE_LOCK(ump);
14034 	}
14035 }
14036 
14037 void
14038 softdep_buf_append(bp, wkhd)
14039 	struct buf *bp;
14040 	struct workhead *wkhd;
14041 {
14042 	struct worklist *wk;
14043 	struct ufsmount *ump;
14044 
14045 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14046 		return;
14047 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14048 	    ("softdep_buf_append called on non-softdep filesystem"));
14049 	ump = VFSTOUFS(wk->wk_mp);
14050 	ACQUIRE_LOCK(ump);
14051 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14052 		WORKLIST_REMOVE(wk);
14053 		WORKLIST_INSERT(&bp->b_dep, wk);
14054 	}
14055 	FREE_LOCK(ump);
14056 
14057 }
14058 
14059 void
14060 softdep_inode_append(ip, cred, wkhd)
14061 	struct inode *ip;
14062 	struct ucred *cred;
14063 	struct workhead *wkhd;
14064 {
14065 	struct buf *bp;
14066 	struct fs *fs;
14067 	struct ufsmount *ump;
14068 	int error;
14069 
14070 	ump = ITOUMP(ip);
14071 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14072 	    ("softdep_inode_append called on non-softdep filesystem"));
14073 	fs = ump->um_fs;
14074 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14075 	    (int)fs->fs_bsize, cred, &bp);
14076 	if (error) {
14077 		bqrelse(bp);
14078 		softdep_freework(wkhd);
14079 		return;
14080 	}
14081 	softdep_buf_append(bp, wkhd);
14082 	bqrelse(bp);
14083 }
14084 
14085 void
14086 softdep_freework(wkhd)
14087 	struct workhead *wkhd;
14088 {
14089 	struct worklist *wk;
14090 	struct ufsmount *ump;
14091 
14092 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14093 		return;
14094 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14095 	    ("softdep_freework called on non-softdep filesystem"));
14096 	ump = VFSTOUFS(wk->wk_mp);
14097 	ACQUIRE_LOCK(ump);
14098 	handle_jwork(wkhd);
14099 	FREE_LOCK(ump);
14100 }
14101 
14102 static struct ufsmount *
14103 softdep_bp_to_mp(bp)
14104 	struct buf *bp;
14105 {
14106 	struct mount *mp;
14107 	struct vnode *vp;
14108 
14109 	if (LIST_EMPTY(&bp->b_dep))
14110 		return (NULL);
14111 	vp = bp->b_vp;
14112 	KASSERT(vp != NULL,
14113 	    ("%s, buffer with dependencies lacks vnode", __func__));
14114 
14115 	/*
14116 	 * The ump mount point is stable after we get a correct
14117 	 * pointer, since bp is locked and this prevents unmount from
14118 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14119 	 * head wk_mp, because we do not yet own SU ump lock and
14120 	 * workitem might be freed while dereferenced.
14121 	 */
14122 retry:
14123 	switch (vp->v_type) {
14124 	case VCHR:
14125 		VI_LOCK(vp);
14126 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14127 		VI_UNLOCK(vp);
14128 		if (mp == NULL)
14129 			goto retry;
14130 		break;
14131 	case VREG:
14132 	case VDIR:
14133 	case VLNK:
14134 	case VFIFO:
14135 	case VSOCK:
14136 		mp = vp->v_mount;
14137 		break;
14138 	case VBLK:
14139 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14140 		/* FALLTHROUGH */
14141 	case VNON:
14142 	case VBAD:
14143 	case VMARKER:
14144 		mp = NULL;
14145 		break;
14146 	default:
14147 		vn_printf(vp, "unknown vnode type");
14148 		mp = NULL;
14149 		break;
14150 	}
14151 	return (VFSTOUFS(mp));
14152 }
14153 
14154 /*
14155  * Function to determine if the buffer has outstanding dependencies
14156  * that will cause a roll-back if the buffer is written. If wantcount
14157  * is set, return number of dependencies, otherwise just yes or no.
14158  */
14159 static int
14160 softdep_count_dependencies(bp, wantcount)
14161 	struct buf *bp;
14162 	int wantcount;
14163 {
14164 	struct worklist *wk;
14165 	struct ufsmount *ump;
14166 	struct bmsafemap *bmsafemap;
14167 	struct freework *freework;
14168 	struct inodedep *inodedep;
14169 	struct indirdep *indirdep;
14170 	struct freeblks *freeblks;
14171 	struct allocindir *aip;
14172 	struct pagedep *pagedep;
14173 	struct dirrem *dirrem;
14174 	struct newblk *newblk;
14175 	struct mkdir *mkdir;
14176 	struct diradd *dap;
14177 	int i, retval;
14178 
14179 	ump = softdep_bp_to_mp(bp);
14180 	if (ump == NULL)
14181 		return (0);
14182 	retval = 0;
14183 	ACQUIRE_LOCK(ump);
14184 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14185 		switch (wk->wk_type) {
14186 		case D_INODEDEP:
14187 			inodedep = WK_INODEDEP(wk);
14188 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14189 				/* bitmap allocation dependency */
14190 				retval += 1;
14191 				if (!wantcount)
14192 					goto out;
14193 			}
14194 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14195 				/* direct block pointer dependency */
14196 				retval += 1;
14197 				if (!wantcount)
14198 					goto out;
14199 			}
14200 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14201 				/* direct block pointer dependency */
14202 				retval += 1;
14203 				if (!wantcount)
14204 					goto out;
14205 			}
14206 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14207 				/* Add reference dependency. */
14208 				retval += 1;
14209 				if (!wantcount)
14210 					goto out;
14211 			}
14212 			continue;
14213 
14214 		case D_INDIRDEP:
14215 			indirdep = WK_INDIRDEP(wk);
14216 
14217 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14218 				/* indirect truncation dependency */
14219 				retval += 1;
14220 				if (!wantcount)
14221 					goto out;
14222 			}
14223 
14224 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14225 				/* indirect block pointer dependency */
14226 				retval += 1;
14227 				if (!wantcount)
14228 					goto out;
14229 			}
14230 			continue;
14231 
14232 		case D_PAGEDEP:
14233 			pagedep = WK_PAGEDEP(wk);
14234 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14235 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14236 					/* Journal remove ref dependency. */
14237 					retval += 1;
14238 					if (!wantcount)
14239 						goto out;
14240 				}
14241 			}
14242 			for (i = 0; i < DAHASHSZ; i++) {
14243 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14244 					/* directory entry dependency */
14245 					retval += 1;
14246 					if (!wantcount)
14247 						goto out;
14248 				}
14249 			}
14250 			continue;
14251 
14252 		case D_BMSAFEMAP:
14253 			bmsafemap = WK_BMSAFEMAP(wk);
14254 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14255 				/* Add reference dependency. */
14256 				retval += 1;
14257 				if (!wantcount)
14258 					goto out;
14259 			}
14260 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14261 				/* Allocate block dependency. */
14262 				retval += 1;
14263 				if (!wantcount)
14264 					goto out;
14265 			}
14266 			continue;
14267 
14268 		case D_FREEBLKS:
14269 			freeblks = WK_FREEBLKS(wk);
14270 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14271 				/* Freeblk journal dependency. */
14272 				retval += 1;
14273 				if (!wantcount)
14274 					goto out;
14275 			}
14276 			continue;
14277 
14278 		case D_ALLOCDIRECT:
14279 		case D_ALLOCINDIR:
14280 			newblk = WK_NEWBLK(wk);
14281 			if (newblk->nb_jnewblk) {
14282 				/* Journal allocate dependency. */
14283 				retval += 1;
14284 				if (!wantcount)
14285 					goto out;
14286 			}
14287 			continue;
14288 
14289 		case D_MKDIR:
14290 			mkdir = WK_MKDIR(wk);
14291 			if (mkdir->md_jaddref) {
14292 				/* Journal reference dependency. */
14293 				retval += 1;
14294 				if (!wantcount)
14295 					goto out;
14296 			}
14297 			continue;
14298 
14299 		case D_FREEWORK:
14300 		case D_FREEDEP:
14301 		case D_JSEGDEP:
14302 		case D_JSEG:
14303 		case D_SBDEP:
14304 			/* never a dependency on these blocks */
14305 			continue;
14306 
14307 		default:
14308 			panic("softdep_count_dependencies: Unexpected type %s",
14309 			    TYPENAME(wk->wk_type));
14310 			/* NOTREACHED */
14311 		}
14312 	}
14313 out:
14314 	FREE_LOCK(ump);
14315 	return (retval);
14316 }
14317 
14318 /*
14319  * Acquire exclusive access to a buffer.
14320  * Must be called with a locked mtx parameter.
14321  * Return acquired buffer or NULL on failure.
14322  */
14323 static struct buf *
14324 getdirtybuf(bp, lock, waitfor)
14325 	struct buf *bp;
14326 	struct rwlock *lock;
14327 	int waitfor;
14328 {
14329 	int error;
14330 
14331 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14332 		if (waitfor != MNT_WAIT)
14333 			return (NULL);
14334 		error = BUF_LOCK(bp,
14335 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14336 		/*
14337 		 * Even if we successfully acquire bp here, we have dropped
14338 		 * lock, which may violates our guarantee.
14339 		 */
14340 		if (error == 0)
14341 			BUF_UNLOCK(bp);
14342 		else if (error != ENOLCK)
14343 			panic("getdirtybuf: inconsistent lock: %d", error);
14344 		rw_wlock(lock);
14345 		return (NULL);
14346 	}
14347 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14348 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14349 			rw_wunlock(lock);
14350 			BO_LOCK(bp->b_bufobj);
14351 			BUF_UNLOCK(bp);
14352 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14353 				bp->b_vflags |= BV_BKGRDWAIT;
14354 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14355 				       PRIBIO | PDROP, "getbuf", 0);
14356 			} else
14357 				BO_UNLOCK(bp->b_bufobj);
14358 			rw_wlock(lock);
14359 			return (NULL);
14360 		}
14361 		BUF_UNLOCK(bp);
14362 		if (waitfor != MNT_WAIT)
14363 			return (NULL);
14364 #ifdef DEBUG_VFS_LOCKS
14365 		if (bp->b_vp->v_type != VCHR)
14366 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14367 #endif
14368 		bp->b_vflags |= BV_BKGRDWAIT;
14369 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14370 		return (NULL);
14371 	}
14372 	if ((bp->b_flags & B_DELWRI) == 0) {
14373 		BUF_UNLOCK(bp);
14374 		return (NULL);
14375 	}
14376 	bremfree(bp);
14377 	return (bp);
14378 }
14379 
14380 /*
14381  * Check if it is safe to suspend the file system now.  On entry,
14382  * the vnode interlock for devvp should be held.  Return 0 with
14383  * the mount interlock held if the file system can be suspended now,
14384  * otherwise return EAGAIN with the mount interlock held.
14385  */
14386 int
14387 softdep_check_suspend(struct mount *mp,
14388 		      struct vnode *devvp,
14389 		      int softdep_depcnt,
14390 		      int softdep_accdepcnt,
14391 		      int secondary_writes,
14392 		      int secondary_accwrites)
14393 {
14394 	struct bufobj *bo;
14395 	struct ufsmount *ump;
14396 	struct inodedep *inodedep;
14397 	int error, unlinked;
14398 
14399 	bo = &devvp->v_bufobj;
14400 	ASSERT_BO_WLOCKED(bo);
14401 
14402 	/*
14403 	 * If we are not running with soft updates, then we need only
14404 	 * deal with secondary writes as we try to suspend.
14405 	 */
14406 	if (MOUNTEDSOFTDEP(mp) == 0) {
14407 		MNT_ILOCK(mp);
14408 		while (mp->mnt_secondary_writes != 0) {
14409 			BO_UNLOCK(bo);
14410 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14411 			    (PUSER - 1) | PDROP, "secwr", 0);
14412 			BO_LOCK(bo);
14413 			MNT_ILOCK(mp);
14414 		}
14415 
14416 		/*
14417 		 * Reasons for needing more work before suspend:
14418 		 * - Dirty buffers on devvp.
14419 		 * - Secondary writes occurred after start of vnode sync loop
14420 		 */
14421 		error = 0;
14422 		if (bo->bo_numoutput > 0 ||
14423 		    bo->bo_dirty.bv_cnt > 0 ||
14424 		    secondary_writes != 0 ||
14425 		    mp->mnt_secondary_writes != 0 ||
14426 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14427 			error = EAGAIN;
14428 		BO_UNLOCK(bo);
14429 		return (error);
14430 	}
14431 
14432 	/*
14433 	 * If we are running with soft updates, then we need to coordinate
14434 	 * with them as we try to suspend.
14435 	 */
14436 	ump = VFSTOUFS(mp);
14437 	for (;;) {
14438 		if (!TRY_ACQUIRE_LOCK(ump)) {
14439 			BO_UNLOCK(bo);
14440 			ACQUIRE_LOCK(ump);
14441 			FREE_LOCK(ump);
14442 			BO_LOCK(bo);
14443 			continue;
14444 		}
14445 		MNT_ILOCK(mp);
14446 		if (mp->mnt_secondary_writes != 0) {
14447 			FREE_LOCK(ump);
14448 			BO_UNLOCK(bo);
14449 			msleep(&mp->mnt_secondary_writes,
14450 			       MNT_MTX(mp),
14451 			       (PUSER - 1) | PDROP, "secwr", 0);
14452 			BO_LOCK(bo);
14453 			continue;
14454 		}
14455 		break;
14456 	}
14457 
14458 	unlinked = 0;
14459 	if (MOUNTEDSUJ(mp)) {
14460 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14461 		    inodedep != NULL;
14462 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14463 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14464 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14465 			    UNLINKONLIST) ||
14466 			    !check_inodedep_free(inodedep))
14467 				continue;
14468 			unlinked++;
14469 		}
14470 	}
14471 
14472 	/*
14473 	 * Reasons for needing more work before suspend:
14474 	 * - Dirty buffers on devvp.
14475 	 * - Softdep activity occurred after start of vnode sync loop
14476 	 * - Secondary writes occurred after start of vnode sync loop
14477 	 */
14478 	error = 0;
14479 	if (bo->bo_numoutput > 0 ||
14480 	    bo->bo_dirty.bv_cnt > 0 ||
14481 	    softdep_depcnt != unlinked ||
14482 	    ump->softdep_deps != unlinked ||
14483 	    softdep_accdepcnt != ump->softdep_accdeps ||
14484 	    secondary_writes != 0 ||
14485 	    mp->mnt_secondary_writes != 0 ||
14486 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14487 		error = EAGAIN;
14488 	FREE_LOCK(ump);
14489 	BO_UNLOCK(bo);
14490 	return (error);
14491 }
14492 
14493 /*
14494  * Get the number of dependency structures for the file system, both
14495  * the current number and the total number allocated.  These will
14496  * later be used to detect that softdep processing has occurred.
14497  */
14498 void
14499 softdep_get_depcounts(struct mount *mp,
14500 		      int *softdep_depsp,
14501 		      int *softdep_accdepsp)
14502 {
14503 	struct ufsmount *ump;
14504 
14505 	if (MOUNTEDSOFTDEP(mp) == 0) {
14506 		*softdep_depsp = 0;
14507 		*softdep_accdepsp = 0;
14508 		return;
14509 	}
14510 	ump = VFSTOUFS(mp);
14511 	ACQUIRE_LOCK(ump);
14512 	*softdep_depsp = ump->softdep_deps;
14513 	*softdep_accdepsp = ump->softdep_accdeps;
14514 	FREE_LOCK(ump);
14515 }
14516 
14517 /*
14518  * Wait for pending output on a vnode to complete.
14519  */
14520 static void
14521 drain_output(vp)
14522 	struct vnode *vp;
14523 {
14524 
14525 	ASSERT_VOP_LOCKED(vp, "drain_output");
14526 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14527 }
14528 
14529 /*
14530  * Called whenever a buffer that is being invalidated or reallocated
14531  * contains dependencies. This should only happen if an I/O error has
14532  * occurred. The routine is called with the buffer locked.
14533  */
14534 static void
14535 softdep_deallocate_dependencies(bp)
14536 	struct buf *bp;
14537 {
14538 
14539 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14540 		panic("softdep_deallocate_dependencies: dangling deps");
14541 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14542 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14543 	else
14544 		printf("softdep_deallocate_dependencies: "
14545 		    "got error %d while accessing filesystem\n", bp->b_error);
14546 	if (bp->b_error != ENXIO)
14547 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14548 }
14549 
14550 /*
14551  * Function to handle asynchronous write errors in the filesystem.
14552  */
14553 static void
14554 softdep_error(func, error)
14555 	char *func;
14556 	int error;
14557 {
14558 
14559 	/* XXX should do something better! */
14560 	printf("%s: got error %d while accessing filesystem\n", func, error);
14561 }
14562 
14563 #ifdef DDB
14564 
14565 /* exported to ffs_vfsops.c */
14566 extern void db_print_ffs(struct ufsmount *ump);
14567 void
14568 db_print_ffs(struct ufsmount *ump)
14569 {
14570 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14571 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14572 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14573 	    ump->um_fs, ump->softdep_on_worklist,
14574 	    ump->softdep_deps, ump->softdep_req);
14575 }
14576 
14577 static void
14578 worklist_print(struct worklist *wk, int verbose)
14579 {
14580 
14581 	if (!verbose) {
14582 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14583 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14584 		return;
14585 	}
14586 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14587 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14588 	    LIST_NEXT(wk, wk_list));
14589 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14590 }
14591 
14592 static void
14593 inodedep_print(struct inodedep *inodedep, int verbose)
14594 {
14595 
14596 	worklist_print(&inodedep->id_list, 0);
14597 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14598 	    inodedep->id_fs,
14599 	    (intmax_t)inodedep->id_ino,
14600 	    (intmax_t)fsbtodb(inodedep->id_fs,
14601 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14602 	    (intmax_t)inodedep->id_nlinkdelta,
14603 	    (intmax_t)inodedep->id_savednlink);
14604 
14605 	if (verbose == 0)
14606 		return;
14607 
14608 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14609 	    inodedep->id_bmsafemap,
14610 	    inodedep->id_mkdiradd,
14611 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14612 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14613 	    LIST_FIRST(&inodedep->id_dirremhd),
14614 	    LIST_FIRST(&inodedep->id_pendinghd),
14615 	    LIST_FIRST(&inodedep->id_bufwait));
14616 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14617 	    LIST_FIRST(&inodedep->id_inowait),
14618 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14619 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14620 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14621 	    TAILQ_FIRST(&inodedep->id_extupdt),
14622 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14623 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14624 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14625 	    inodedep->id_savedino1,
14626 	    (intmax_t)inodedep->id_savedsize,
14627 	    (intmax_t)inodedep->id_savedextsize);
14628 }
14629 
14630 static void
14631 newblk_print(struct newblk *nbp)
14632 {
14633 
14634 	worklist_print(&nbp->nb_list, 0);
14635 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14636 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14637 	    &nbp->nb_jnewblk,
14638 	    &nbp->nb_bmsafemap,
14639 	    &nbp->nb_freefrag);
14640 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14641 	    LIST_FIRST(&nbp->nb_indirdeps),
14642 	    LIST_FIRST(&nbp->nb_newdirblk),
14643 	    LIST_FIRST(&nbp->nb_jwork));
14644 }
14645 
14646 static void
14647 allocdirect_print(struct allocdirect *adp)
14648 {
14649 
14650 	newblk_print(&adp->ad_block);
14651 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14652 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14653 	db_printf("    offset %d, inodedep %p\n",
14654 	    adp->ad_offset, adp->ad_inodedep);
14655 }
14656 
14657 static void
14658 allocindir_print(struct allocindir *aip)
14659 {
14660 
14661 	newblk_print(&aip->ai_block);
14662 	db_printf("    oldblkno %jd, lbn %jd\n",
14663 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14664 	db_printf("    offset %d, indirdep %p\n",
14665 	    aip->ai_offset, aip->ai_indirdep);
14666 }
14667 
14668 static void
14669 mkdir_print(struct mkdir *mkdir)
14670 {
14671 
14672 	worklist_print(&mkdir->md_list, 0);
14673 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14674 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14675 }
14676 
14677 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14678 {
14679 
14680 	if (have_addr == 0) {
14681 		db_printf("inodedep address required\n");
14682 		return;
14683 	}
14684 	inodedep_print((struct inodedep*)addr, 1);
14685 }
14686 
14687 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14688 {
14689 	struct inodedep_hashhead *inodedephd;
14690 	struct inodedep *inodedep;
14691 	struct ufsmount *ump;
14692 	int cnt;
14693 
14694 	if (have_addr == 0) {
14695 		db_printf("ufsmount address required\n");
14696 		return;
14697 	}
14698 	ump = (struct ufsmount *)addr;
14699 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14700 		inodedephd = &ump->inodedep_hashtbl[cnt];
14701 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14702 			inodedep_print(inodedep, 0);
14703 		}
14704 	}
14705 }
14706 
14707 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14708 {
14709 
14710 	if (have_addr == 0) {
14711 		db_printf("worklist address required\n");
14712 		return;
14713 	}
14714 	worklist_print((struct worklist *)addr, 1);
14715 }
14716 
14717 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14718 {
14719 	struct worklist *wk;
14720 	struct workhead *wkhd;
14721 
14722 	if (have_addr == 0) {
14723 		db_printf("worklist address required "
14724 		    "(for example value in bp->b_dep)\n");
14725 		return;
14726 	}
14727 	/*
14728 	 * We often do not have the address of the worklist head but
14729 	 * instead a pointer to its first entry (e.g., we have the
14730 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14731 	 * pointer of bp->b_dep will point at the head of the list, so
14732 	 * we cheat and use that instead. If we are in the middle of
14733 	 * a list we will still get the same result, so nothing
14734 	 * unexpected will result.
14735 	 */
14736 	wk = (struct worklist *)addr;
14737 	if (wk == NULL)
14738 		return;
14739 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14740 	LIST_FOREACH(wk, wkhd, wk_list) {
14741 		switch(wk->wk_type) {
14742 		case D_INODEDEP:
14743 			inodedep_print(WK_INODEDEP(wk), 0);
14744 			continue;
14745 		case D_ALLOCDIRECT:
14746 			allocdirect_print(WK_ALLOCDIRECT(wk));
14747 			continue;
14748 		case D_ALLOCINDIR:
14749 			allocindir_print(WK_ALLOCINDIR(wk));
14750 			continue;
14751 		case D_MKDIR:
14752 			mkdir_print(WK_MKDIR(wk));
14753 			continue;
14754 		default:
14755 			worklist_print(wk, 0);
14756 			continue;
14757 		}
14758 	}
14759 }
14760 
14761 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14762 {
14763 	if (have_addr == 0) {
14764 		db_printf("mkdir address required\n");
14765 		return;
14766 	}
14767 	mkdir_print((struct mkdir *)addr);
14768 }
14769 
14770 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14771 {
14772 	struct mkdirlist *mkdirlisthd;
14773 	struct mkdir *mkdir;
14774 
14775 	if (have_addr == 0) {
14776 		db_printf("mkdir listhead address required\n");
14777 		return;
14778 	}
14779 	mkdirlisthd = (struct mkdirlist *)addr;
14780 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14781 		mkdir_print(mkdir);
14782 		if (mkdir->md_diradd != NULL) {
14783 			db_printf("    ");
14784 			worklist_print(&mkdir->md_diradd->da_list, 0);
14785 		}
14786 		if (mkdir->md_jaddref != NULL) {
14787 			db_printf("    ");
14788 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14789 		}
14790 	}
14791 }
14792 
14793 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14794 {
14795 	if (have_addr == 0) {
14796 		db_printf("allocdirect address required\n");
14797 		return;
14798 	}
14799 	allocdirect_print((struct allocdirect *)addr);
14800 }
14801 
14802 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14803 {
14804 	if (have_addr == 0) {
14805 		db_printf("allocindir address required\n");
14806 		return;
14807 	}
14808 	allocindir_print((struct allocindir *)addr);
14809 }
14810 
14811 #endif /* DDB */
14812 
14813 #endif /* SOFTUPDATES */
14814