xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 /*
45  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46  */
47 #ifndef DIAGNOSTIC
48 #define DIAGNOSTIC
49 #endif
50 #ifndef DEBUG
51 #define DEBUG
52 #endif
53 
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/systm.h>
57 #include <sys/bio.h>
58 #include <sys/buf.h>
59 #include <sys/kdb.h>
60 #include <sys/kthread.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/proc.h>
66 #include <sys/stat.h>
67 #include <sys/sysctl.h>
68 #include <sys/syslog.h>
69 #include <sys/vnode.h>
70 #include <sys/conf.h>
71 #include <ufs/ufs/dir.h>
72 #include <ufs/ufs/extattr.h>
73 #include <ufs/ufs/quota.h>
74 #include <ufs/ufs/inode.h>
75 #include <ufs/ufs/ufsmount.h>
76 #include <ufs/ffs/fs.h>
77 #include <ufs/ffs/softdep.h>
78 #include <ufs/ffs/ffs_extern.h>
79 #include <ufs/ufs/ufs_extern.h>
80 
81 #include <vm/vm.h>
82 
83 #include "opt_ffs.h"
84 
85 #ifndef SOFTUPDATES
86 
87 int
88 softdep_flushfiles(oldmnt, flags, td)
89 	struct mount *oldmnt;
90 	int flags;
91 	struct thread *td;
92 {
93 
94 	panic("softdep_flushfiles called");
95 }
96 
97 int
98 softdep_mount(devvp, mp, fs, cred)
99 	struct vnode *devvp;
100 	struct mount *mp;
101 	struct fs *fs;
102 	struct ucred *cred;
103 {
104 
105 	return (0);
106 }
107 
108 void
109 softdep_initialize()
110 {
111 
112 	return;
113 }
114 
115 void
116 softdep_uninitialize()
117 {
118 
119 	return;
120 }
121 
122 void
123 softdep_setup_inomapdep(bp, ip, newinum)
124 	struct buf *bp;
125 	struct inode *ip;
126 	ino_t newinum;
127 {
128 
129 	panic("softdep_setup_inomapdep called");
130 }
131 
132 void
133 softdep_setup_blkmapdep(bp, mp, newblkno)
134 	struct buf *bp;
135 	struct mount *mp;
136 	ufs2_daddr_t newblkno;
137 {
138 
139 	panic("softdep_setup_blkmapdep called");
140 }
141 
142 void
143 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
144 	struct inode *ip;
145 	ufs_lbn_t lbn;
146 	ufs2_daddr_t newblkno;
147 	ufs2_daddr_t oldblkno;
148 	long newsize;
149 	long oldsize;
150 	struct buf *bp;
151 {
152 
153 	panic("softdep_setup_allocdirect called");
154 }
155 
156 void
157 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
158 	struct inode *ip;
159 	ufs_lbn_t lbn;
160 	ufs2_daddr_t newblkno;
161 	ufs2_daddr_t oldblkno;
162 	long newsize;
163 	long oldsize;
164 	struct buf *bp;
165 {
166 
167 	panic("softdep_setup_allocdirect called");
168 }
169 
170 void
171 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
172 	struct inode *ip;
173 	ufs_lbn_t lbn;
174 	struct buf *bp;
175 	int ptrno;
176 	ufs2_daddr_t newblkno;
177 	ufs2_daddr_t oldblkno;
178 	struct buf *nbp;
179 {
180 
181 	panic("softdep_setup_allocindir_page called");
182 }
183 
184 void
185 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
186 	struct buf *nbp;
187 	struct inode *ip;
188 	struct buf *bp;
189 	int ptrno;
190 	ufs2_daddr_t newblkno;
191 {
192 
193 	panic("softdep_setup_allocindir_meta called");
194 }
195 
196 void
197 softdep_setup_freeblocks(ip, length, flags)
198 	struct inode *ip;
199 	off_t length;
200 	int flags;
201 {
202 
203 	panic("softdep_setup_freeblocks called");
204 }
205 
206 void
207 softdep_freefile(pvp, ino, mode)
208 		struct vnode *pvp;
209 		ino_t ino;
210 		int mode;
211 {
212 
213 	panic("softdep_freefile called");
214 }
215 
216 int
217 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
218 	struct buf *bp;
219 	struct inode *dp;
220 	off_t diroffset;
221 	ino_t newinum;
222 	struct buf *newdirbp;
223 	int isnewblk;
224 {
225 
226 	panic("softdep_setup_directory_add called");
227 }
228 
229 void
230 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
231 	struct inode *dp;
232 	caddr_t base;
233 	caddr_t oldloc;
234 	caddr_t newloc;
235 	int entrysize;
236 {
237 
238 	panic("softdep_change_directoryentry_offset called");
239 }
240 
241 void
242 softdep_setup_remove(bp, dp, ip, isrmdir)
243 	struct buf *bp;
244 	struct inode *dp;
245 	struct inode *ip;
246 	int isrmdir;
247 {
248 
249 	panic("softdep_setup_remove called");
250 }
251 
252 void
253 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
254 	struct buf *bp;
255 	struct inode *dp;
256 	struct inode *ip;
257 	ino_t newinum;
258 	int isrmdir;
259 {
260 
261 	panic("softdep_setup_directory_change called");
262 }
263 
264 void
265 softdep_change_linkcnt(ip)
266 	struct inode *ip;
267 {
268 
269 	panic("softdep_change_linkcnt called");
270 }
271 
272 void
273 softdep_load_inodeblock(ip)
274 	struct inode *ip;
275 {
276 
277 	panic("softdep_load_inodeblock called");
278 }
279 
280 void
281 softdep_update_inodeblock(ip, bp, waitfor)
282 	struct inode *ip;
283 	struct buf *bp;
284 	int waitfor;
285 {
286 
287 	panic("softdep_update_inodeblock called");
288 }
289 
290 int
291 softdep_fsync(vp)
292 	struct vnode *vp;	/* the "in_core" copy of the inode */
293 {
294 
295 	return (0);
296 }
297 
298 void
299 softdep_fsync_mountdev(vp)
300 	struct vnode *vp;
301 {
302 
303 	return;
304 }
305 
306 int
307 softdep_flushworklist(oldmnt, countp, td)
308 	struct mount *oldmnt;
309 	int *countp;
310 	struct thread *td;
311 {
312 
313 	*countp = 0;
314 	return (0);
315 }
316 
317 int
318 softdep_sync_metadata(struct vnode *vp)
319 {
320 
321 	return (0);
322 }
323 
324 int
325 softdep_slowdown(vp)
326 	struct vnode *vp;
327 {
328 
329 	panic("softdep_slowdown called");
330 }
331 
332 void
333 softdep_releasefile(ip)
334 	struct inode *ip;	/* inode with the zero effective link count */
335 {
336 
337 	panic("softdep_releasefile called");
338 }
339 
340 int
341 softdep_request_cleanup(fs, vp)
342 	struct fs *fs;
343 	struct vnode *vp;
344 {
345 
346 	return (0);
347 }
348 
349 int
350 softdep_check_suspend(struct mount *mp,
351 		      struct vnode *devvp,
352 		      int softdep_deps,
353 		      int softdep_accdeps,
354 		      int secondary_writes,
355 		      int secondary_accwrites)
356 {
357 	struct bufobj *bo;
358 	int error;
359 
360 	(void) softdep_deps,
361 	(void) softdep_accdeps;
362 
363 	ASSERT_VI_LOCKED(devvp, "softdep_check_suspend");
364 	bo = &devvp->v_bufobj;
365 
366 	for (;;) {
367 		if (!MNT_ITRYLOCK(mp)) {
368 			VI_UNLOCK(devvp);
369 			MNT_ILOCK(mp);
370 			MNT_IUNLOCK(mp);
371 			VI_LOCK(devvp);
372 			continue;
373 		}
374 		if (mp->mnt_secondary_writes != 0) {
375 			VI_UNLOCK(devvp);
376 			msleep(&mp->mnt_secondary_writes,
377 			       MNT_MTX(mp),
378 			       (PUSER - 1) | PDROP, "secwr", 0);
379 			VI_LOCK(devvp);
380 			continue;
381 		}
382 		break;
383 	}
384 
385 	/*
386 	 * Reasons for needing more work before suspend:
387 	 * - Dirty buffers on devvp.
388 	 * - Secondary writes occurred after start of vnode sync loop
389 	 */
390 	error = 0;
391 	if (bo->bo_numoutput > 0 ||
392 	    bo->bo_dirty.bv_cnt > 0 ||
393 	    secondary_writes != 0 ||
394 	    mp->mnt_secondary_writes != 0 ||
395 	    secondary_accwrites != mp->mnt_secondary_accwrites)
396 		error = EAGAIN;
397 	VI_UNLOCK(devvp);
398 	return (error);
399 }
400 
401 void
402 softdep_get_depcounts(struct mount *mp,
403 		      int *softdepactivep,
404 		      int *softdepactiveaccp)
405 {
406 	(void) mp;
407 	*softdepactivep = 0;
408 	*softdepactiveaccp = 0;
409 }
410 
411 #else
412 /*
413  * These definitions need to be adapted to the system to which
414  * this file is being ported.
415  */
416 /*
417  * malloc types defined for the softdep system.
418  */
419 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
420 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
421 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
422 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
423 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
424 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
425 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
426 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
427 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
428 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
429 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
430 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
431 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
432 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
433 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes");
434 
435 #define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
436 
437 #define	D_PAGEDEP	0
438 #define	D_INODEDEP	1
439 #define	D_NEWBLK	2
440 #define	D_BMSAFEMAP	3
441 #define	D_ALLOCDIRECT	4
442 #define	D_INDIRDEP	5
443 #define	D_ALLOCINDIR	6
444 #define	D_FREEFRAG	7
445 #define	D_FREEBLKS	8
446 #define	D_FREEFILE	9
447 #define	D_DIRADD	10
448 #define	D_MKDIR		11
449 #define	D_DIRREM	12
450 #define	D_NEWDIRBLK	13
451 #define	D_LAST		D_NEWDIRBLK
452 
453 /*
454  * translate from workitem type to memory type
455  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
456  */
457 static struct malloc_type *memtype[] = {
458 	M_PAGEDEP,
459 	M_INODEDEP,
460 	M_NEWBLK,
461 	M_BMSAFEMAP,
462 	M_ALLOCDIRECT,
463 	M_INDIRDEP,
464 	M_ALLOCINDIR,
465 	M_FREEFRAG,
466 	M_FREEBLKS,
467 	M_FREEFILE,
468 	M_DIRADD,
469 	M_MKDIR,
470 	M_DIRREM,
471 	M_NEWDIRBLK
472 };
473 
474 #define DtoM(type) (memtype[type])
475 
476 /*
477  * Names of malloc types.
478  */
479 #define TYPENAME(type)  \
480 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
481 /*
482  * End system adaptation definitions.
483  */
484 
485 /*
486  * Forward declarations.
487  */
488 struct inodedep_hashhead;
489 struct newblk_hashhead;
490 struct pagedep_hashhead;
491 
492 /*
493  * Internal function prototypes.
494  */
495 static	void softdep_error(char *, int);
496 static	void drain_output(struct vnode *);
497 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
498 static	void clear_remove(struct thread *);
499 static	void clear_inodedeps(struct thread *);
500 static	int flush_pagedep_deps(struct vnode *, struct mount *,
501 	    struct diraddhd *);
502 static	int flush_inodedep_deps(struct mount *, ino_t);
503 static	int flush_deplist(struct allocdirectlst *, int, int *);
504 static	int handle_written_filepage(struct pagedep *, struct buf *);
505 static  void diradd_inode_written(struct diradd *, struct inodedep *);
506 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
507 static	void handle_allocdirect_partdone(struct allocdirect *);
508 static	void handle_allocindir_partdone(struct allocindir *);
509 static	void initiate_write_filepage(struct pagedep *, struct buf *);
510 static	void handle_written_mkdir(struct mkdir *, int);
511 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
512 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
513 static	void handle_workitem_freefile(struct freefile *);
514 static	void handle_workitem_remove(struct dirrem *, struct vnode *);
515 static	struct dirrem *newdirrem(struct buf *, struct inode *,
516 	    struct inode *, int, struct dirrem **);
517 static	void free_diradd(struct diradd *);
518 static	void free_allocindir(struct allocindir *, struct inodedep *);
519 static	void free_newdirblk(struct newdirblk *);
520 static	int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
521 	    ufs2_daddr_t *);
522 static	void deallocate_dependencies(struct buf *, struct inodedep *);
523 static	void free_allocdirect(struct allocdirectlst *,
524 	    struct allocdirect *, int);
525 static	int check_inode_unwritten(struct inodedep *);
526 static	int free_inodedep(struct inodedep *);
527 static	void handle_workitem_freeblocks(struct freeblks *, int);
528 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
529 static	void setup_allocindir_phase2(struct buf *, struct inode *,
530 	    struct allocindir *);
531 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
532 	    ufs2_daddr_t);
533 static	void handle_workitem_freefrag(struct freefrag *);
534 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
535 static	void allocdirect_merge(struct allocdirectlst *,
536 	    struct allocdirect *, struct allocdirect *);
537 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *);
538 static	int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t,
539 	    struct newblk **);
540 static	int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
541 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
542 	    struct inodedep **);
543 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
544 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
545 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
546 	    struct mount *mp, int, struct pagedep **);
547 static	void pause_timer(void *);
548 static	int request_cleanup(struct mount *, int);
549 static	int process_worklist_item(struct mount *, int);
550 static	void add_to_worklist(struct worklist *);
551 static	void softdep_flush(void);
552 static	int softdep_speedup(void);
553 
554 /*
555  * Exported softdep operations.
556  */
557 static	void softdep_disk_io_initiation(struct buf *);
558 static	void softdep_disk_write_complete(struct buf *);
559 static	void softdep_deallocate_dependencies(struct buf *);
560 static	int softdep_count_dependencies(struct buf *bp, int);
561 
562 static struct mtx lk;
563 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
564 
565 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
566 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
567 #define FREE_LOCK(lk)			mtx_unlock(lk)
568 
569 /*
570  * Worklist queue management.
571  * These routines require that the lock be held.
572  */
573 #ifndef /* NOT */ DEBUG
574 #define WORKLIST_INSERT(head, item) do {	\
575 	(item)->wk_state |= ONWORKLIST;		\
576 	LIST_INSERT_HEAD(head, item, wk_list);	\
577 } while (0)
578 #define WORKLIST_REMOVE(item) do {		\
579 	(item)->wk_state &= ~ONWORKLIST;	\
580 	LIST_REMOVE(item, wk_list);		\
581 } while (0)
582 #else /* DEBUG */
583 static	void worklist_insert(struct workhead *, struct worklist *);
584 static	void worklist_remove(struct worklist *);
585 
586 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
587 #define WORKLIST_REMOVE(item) worklist_remove(item)
588 
589 static void
590 worklist_insert(head, item)
591 	struct workhead *head;
592 	struct worklist *item;
593 {
594 
595 	mtx_assert(&lk, MA_OWNED);
596 	if (item->wk_state & ONWORKLIST)
597 		panic("worklist_insert: already on list");
598 	item->wk_state |= ONWORKLIST;
599 	LIST_INSERT_HEAD(head, item, wk_list);
600 }
601 
602 static void
603 worklist_remove(item)
604 	struct worklist *item;
605 {
606 
607 	mtx_assert(&lk, MA_OWNED);
608 	if ((item->wk_state & ONWORKLIST) == 0)
609 		panic("worklist_remove: not on list");
610 	item->wk_state &= ~ONWORKLIST;
611 	LIST_REMOVE(item, wk_list);
612 }
613 #endif /* DEBUG */
614 
615 /*
616  * Routines for tracking and managing workitems.
617  */
618 static	void workitem_free(struct worklist *, int);
619 static	void workitem_alloc(struct worklist *, int, struct mount *);
620 
621 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
622 
623 static void
624 workitem_free(item, type)
625 	struct worklist *item;
626 	int type;
627 {
628 	struct ufsmount *ump;
629 	mtx_assert(&lk, MA_OWNED);
630 
631 #ifdef DEBUG
632 	if (item->wk_state & ONWORKLIST)
633 		panic("workitem_free: still on list");
634 	if (item->wk_type != type)
635 		panic("workitem_free: type mismatch");
636 #endif
637 	ump = VFSTOUFS(item->wk_mp);
638 	if (--ump->softdep_deps == 0 && ump->softdep_req)
639 		wakeup(&ump->softdep_deps);
640 	FREE(item, DtoM(type));
641 }
642 
643 static void
644 workitem_alloc(item, type, mp)
645 	struct worklist *item;
646 	int type;
647 	struct mount *mp;
648 {
649 	item->wk_type = type;
650 	item->wk_mp = mp;
651 	item->wk_state = 0;
652 	ACQUIRE_LOCK(&lk);
653 	VFSTOUFS(mp)->softdep_deps++;
654 	VFSTOUFS(mp)->softdep_accdeps++;
655 	FREE_LOCK(&lk);
656 }
657 
658 /*
659  * Workitem queue management
660  */
661 static int max_softdeps;	/* maximum number of structs before slowdown */
662 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
663 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
664 static int proc_waiting;	/* tracks whether we have a timeout posted */
665 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
666 static struct callout_handle handle; /* handle on posted proc_waiting timeout */
667 static int req_pending;
668 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
669 #define FLUSH_INODES		1
670 static int req_clear_remove;	/* syncer process flush some freeblks */
671 #define FLUSH_REMOVE		2
672 #define FLUSH_REMOVE_WAIT	3
673 /*
674  * runtime statistics
675  */
676 static int stat_worklist_push;	/* number of worklist cleanups */
677 static int stat_blk_limit_push;	/* number of times block limit neared */
678 static int stat_ino_limit_push;	/* number of times inode limit neared */
679 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
680 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
681 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
682 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
683 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
684 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
685 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
686 
687 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
688 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
689 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
690 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
691 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
692 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
693 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
694 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
695 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
696 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
697 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
698 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
699 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
700 /* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */
701 
702 SYSCTL_DECL(_vfs_ffs);
703 
704 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
705 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
706 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
707 
708 static struct proc *softdepproc;
709 static struct kproc_desc softdep_kp = {
710 	"softdepflush",
711 	softdep_flush,
712 	&softdepproc
713 };
714 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &softdep_kp)
715 
716 static void
717 softdep_flush(void)
718 {
719 	struct mount *nmp;
720 	struct mount *mp;
721 	struct thread *td;
722 	int remaining;
723 	int vfslocked;
724 
725 	td = curthread;
726 	td->td_pflags |= TDP_NORUNNINGBUF;
727 
728 	for (;;) {
729 		kthread_suspend_check(softdepproc);
730 		ACQUIRE_LOCK(&lk);
731 		/*
732 		 * If requested, try removing inode or removal dependencies.
733 		 */
734 		if (req_clear_inodedeps) {
735 			clear_inodedeps(td);
736 			req_clear_inodedeps -= 1;
737 			wakeup_one(&proc_waiting);
738 		}
739 		if (req_clear_remove) {
740 			clear_remove(td);
741 			req_clear_remove -= 1;
742 			wakeup_one(&proc_waiting);
743 		}
744 		FREE_LOCK(&lk);
745 		remaining = 0;
746 		mtx_lock(&mountlist_mtx);
747 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
748 			nmp = TAILQ_NEXT(mp, mnt_list);
749 			if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
750 				continue;
751 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
752 				continue;
753 			vfslocked = VFS_LOCK_GIANT(mp);
754 			softdep_process_worklist(mp, 0);
755 			remaining += VFSTOUFS(mp)->softdep_on_worklist;
756 			VFS_UNLOCK_GIANT(vfslocked);
757 			mtx_lock(&mountlist_mtx);
758 			nmp = TAILQ_NEXT(mp, mnt_list);
759 			vfs_unbusy(mp, td);
760 		}
761 		mtx_unlock(&mountlist_mtx);
762 		if (remaining)
763 			continue;
764 		ACQUIRE_LOCK(&lk);
765 		if (!req_pending)
766 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
767 		req_pending = 0;
768 		FREE_LOCK(&lk);
769 	}
770 }
771 
772 static int
773 softdep_speedup(void)
774 {
775 
776 	mtx_assert(&lk, MA_OWNED);
777 	if (req_pending == 0) {
778 		req_pending = 1;
779 		wakeup(&req_pending);
780 	}
781 
782 	return speedup_syncer();
783 }
784 
785 /*
786  * Add an item to the end of the work queue.
787  * This routine requires that the lock be held.
788  * This is the only routine that adds items to the list.
789  * The following routine is the only one that removes items
790  * and does so in order from first to last.
791  */
792 static void
793 add_to_worklist(wk)
794 	struct worklist *wk;
795 {
796 	struct ufsmount *ump;
797 
798 	mtx_assert(&lk, MA_OWNED);
799 	ump = VFSTOUFS(wk->wk_mp);
800 	if (wk->wk_state & ONWORKLIST)
801 		panic("add_to_worklist: already on list");
802 	wk->wk_state |= ONWORKLIST;
803 	if (LIST_FIRST(&ump->softdep_workitem_pending) == NULL)
804 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
805 	else
806 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
807 	ump->softdep_worklist_tail = wk;
808 	ump->softdep_on_worklist += 1;
809 }
810 
811 /*
812  * Process that runs once per second to handle items in the background queue.
813  *
814  * Note that we ensure that everything is done in the order in which they
815  * appear in the queue. The code below depends on this property to ensure
816  * that blocks of a file are freed before the inode itself is freed. This
817  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
818  * until all the old ones have been purged from the dependency lists.
819  */
820 int
821 softdep_process_worklist(mp, full)
822 	struct mount *mp;
823 	int full;
824 {
825 	struct thread *td = curthread;
826 	int cnt, matchcnt, loopcount;
827 	struct ufsmount *ump;
828 	long starttime;
829 
830 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
831 	/*
832 	 * Record the process identifier of our caller so that we can give
833 	 * this process preferential treatment in request_cleanup below.
834 	 */
835 	matchcnt = 0;
836 	ump = VFSTOUFS(mp);
837 	ACQUIRE_LOCK(&lk);
838 	loopcount = 1;
839 	starttime = time_second;
840 	while (ump->softdep_on_worklist > 0) {
841 		if ((cnt = process_worklist_item(mp, 0)) == -1)
842 			break;
843 		else
844 			matchcnt += cnt;
845 		/*
846 		 * If requested, try removing inode or removal dependencies.
847 		 */
848 		if (req_clear_inodedeps) {
849 			clear_inodedeps(td);
850 			req_clear_inodedeps -= 1;
851 			wakeup_one(&proc_waiting);
852 		}
853 		if (req_clear_remove) {
854 			clear_remove(td);
855 			req_clear_remove -= 1;
856 			wakeup_one(&proc_waiting);
857 		}
858 		/*
859 		 * We do not generally want to stop for buffer space, but if
860 		 * we are really being a buffer hog, we will stop and wait.
861 		 */
862 		if (loopcount++ % 128 == 0) {
863 			FREE_LOCK(&lk);
864 			bwillwrite();
865 			ACQUIRE_LOCK(&lk);
866 		}
867 		/*
868 		 * Never allow processing to run for more than one
869 		 * second. Otherwise the other mountpoints may get
870 		 * excessively backlogged.
871 		 */
872 		if (!full && starttime != time_second) {
873 			matchcnt = -1;
874 			break;
875 		}
876 	}
877 	FREE_LOCK(&lk);
878 	return (matchcnt);
879 }
880 
881 /*
882  * Process one item on the worklist.
883  */
884 static int
885 process_worklist_item(mp, flags)
886 	struct mount *mp;
887 	int flags;
888 {
889 	struct worklist *wk, *wkend;
890 	struct ufsmount *ump;
891 	struct vnode *vp;
892 	int matchcnt = 0;
893 
894 	mtx_assert(&lk, MA_OWNED);
895 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
896 	/*
897 	 * If we are being called because of a process doing a
898 	 * copy-on-write, then it is not safe to write as we may
899 	 * recurse into the copy-on-write routine.
900 	 */
901 	if (curthread->td_pflags & TDP_COWINPROGRESS)
902 		return (-1);
903 	/*
904 	 * Normally we just process each item on the worklist in order.
905 	 * However, if we are in a situation where we cannot lock any
906 	 * inodes, we have to skip over any dirrem requests whose
907 	 * vnodes are resident and locked.
908 	 */
909 	ump = VFSTOUFS(mp);
910 	vp = NULL;
911 	LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
912 		if (wk->wk_state & INPROGRESS)
913 			continue;
914 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
915 			break;
916 		wk->wk_state |= INPROGRESS;
917 		FREE_LOCK(&lk);
918 		ffs_vget(mp, WK_DIRREM(wk)->dm_oldinum,
919 		    LK_NOWAIT | LK_EXCLUSIVE, &vp);
920 		ACQUIRE_LOCK(&lk);
921 		wk->wk_state &= ~INPROGRESS;
922 		if (vp != NULL)
923 			break;
924 	}
925 	if (wk == 0)
926 		return (-1);
927 	/*
928 	 * Remove the item to be processed. If we are removing the last
929 	 * item on the list, we need to recalculate the tail pointer.
930 	 * As this happens rarely and usually when the list is short,
931 	 * we just run down the list to find it rather than tracking it
932 	 * in the above loop.
933 	 */
934 	WORKLIST_REMOVE(wk);
935 	if (wk == ump->softdep_worklist_tail) {
936 		LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
937 			if (LIST_NEXT(wkend, wk_list) == NULL)
938 				break;
939 		ump->softdep_worklist_tail = wkend;
940 	}
941 	ump->softdep_on_worklist -= 1;
942 	FREE_LOCK(&lk);
943 	if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
944 		panic("process_worklist_item: suspended filesystem");
945 	matchcnt++;
946 	switch (wk->wk_type) {
947 
948 	case D_DIRREM:
949 		/* removal of a directory entry */
950 		handle_workitem_remove(WK_DIRREM(wk), vp);
951 		break;
952 
953 	case D_FREEBLKS:
954 		/* releasing blocks and/or fragments from a file */
955 		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
956 		break;
957 
958 	case D_FREEFRAG:
959 		/* releasing a fragment when replaced as a file grows */
960 		handle_workitem_freefrag(WK_FREEFRAG(wk));
961 		break;
962 
963 	case D_FREEFILE:
964 		/* releasing an inode when its link count drops to 0 */
965 		handle_workitem_freefile(WK_FREEFILE(wk));
966 		break;
967 
968 	default:
969 		panic("%s_process_worklist: Unknown type %s",
970 		    "softdep", TYPENAME(wk->wk_type));
971 		/* NOTREACHED */
972 	}
973 	vn_finished_secondary_write(mp);
974 	ACQUIRE_LOCK(&lk);
975 	return (matchcnt);
976 }
977 
978 /*
979  * Move dependencies from one buffer to another.
980  */
981 void
982 softdep_move_dependencies(oldbp, newbp)
983 	struct buf *oldbp;
984 	struct buf *newbp;
985 {
986 	struct worklist *wk, *wktail;
987 
988 	if (LIST_FIRST(&newbp->b_dep) != NULL)
989 		panic("softdep_move_dependencies: need merge code");
990 	wktail = 0;
991 	ACQUIRE_LOCK(&lk);
992 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
993 		LIST_REMOVE(wk, wk_list);
994 		if (wktail == 0)
995 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
996 		else
997 			LIST_INSERT_AFTER(wktail, wk, wk_list);
998 		wktail = wk;
999 	}
1000 	FREE_LOCK(&lk);
1001 }
1002 
1003 /*
1004  * Purge the work list of all items associated with a particular mount point.
1005  */
1006 int
1007 softdep_flushworklist(oldmnt, countp, td)
1008 	struct mount *oldmnt;
1009 	int *countp;
1010 	struct thread *td;
1011 {
1012 	struct vnode *devvp;
1013 	int count, error = 0;
1014 	struct ufsmount *ump;
1015 
1016 	/*
1017 	 * Alternately flush the block device associated with the mount
1018 	 * point and process any dependencies that the flushing
1019 	 * creates. We continue until no more worklist dependencies
1020 	 * are found.
1021 	 */
1022 	*countp = 0;
1023 	ump = VFSTOUFS(oldmnt);
1024 	devvp = ump->um_devvp;
1025 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1026 		*countp += count;
1027 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
1028 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1029 		VOP_UNLOCK(devvp, 0, td);
1030 		if (error)
1031 			break;
1032 	}
1033 	return (error);
1034 }
1035 
1036 int
1037 softdep_waitidle(struct mount *mp)
1038 {
1039 	struct ufsmount *ump;
1040 	int error;
1041 	int i;
1042 
1043 	ump = VFSTOUFS(mp);
1044 	ACQUIRE_LOCK(&lk);
1045 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1046 		ump->softdep_req = 1;
1047 		if (ump->softdep_on_worklist)
1048 			panic("softdep_waitidle: work added after flush.");
1049 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1050 	}
1051 	ump->softdep_req = 0;
1052 	FREE_LOCK(&lk);
1053 	error = 0;
1054 	if (i == 10) {
1055 		error = EBUSY;
1056 		printf("softdep_waitidle: Failed to flush worklist for %p",
1057 		    mp);
1058 	}
1059 
1060 	return (error);
1061 }
1062 
1063 /*
1064  * Flush all vnodes and worklist items associated with a specified mount point.
1065  */
1066 int
1067 softdep_flushfiles(oldmnt, flags, td)
1068 	struct mount *oldmnt;
1069 	int flags;
1070 	struct thread *td;
1071 {
1072 	int error, count, loopcnt;
1073 
1074 	error = 0;
1075 
1076 	/*
1077 	 * Alternately flush the vnodes associated with the mount
1078 	 * point and process any dependencies that the flushing
1079 	 * creates. In theory, this loop can happen at most twice,
1080 	 * but we give it a few extra just to be sure.
1081 	 */
1082 	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
1083 		/*
1084 		 * Do another flush in case any vnodes were brought in
1085 		 * as part of the cleanup operations.
1086 		 */
1087 		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1088 			break;
1089 		if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
1090 		    count == 0)
1091 			break;
1092 	}
1093 	/*
1094 	 * If we are unmounting then it is an error to fail. If we
1095 	 * are simply trying to downgrade to read-only, then filesystem
1096 	 * activity can keep us busy forever, so we just fail with EBUSY.
1097 	 */
1098 	if (loopcnt == 0) {
1099 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1100 			panic("softdep_flushfiles: looping");
1101 		error = EBUSY;
1102 	}
1103 	if (!error)
1104 		error = softdep_waitidle(oldmnt);
1105 	return (error);
1106 }
1107 
1108 /*
1109  * Structure hashing.
1110  *
1111  * There are three types of structures that can be looked up:
1112  *	1) pagedep structures identified by mount point, inode number,
1113  *	   and logical block.
1114  *	2) inodedep structures identified by mount point and inode number.
1115  *	3) newblk structures identified by mount point and
1116  *	   physical block number.
1117  *
1118  * The "pagedep" and "inodedep" dependency structures are hashed
1119  * separately from the file blocks and inodes to which they correspond.
1120  * This separation helps when the in-memory copy of an inode or
1121  * file block must be replaced. It also obviates the need to access
1122  * an inode or file page when simply updating (or de-allocating)
1123  * dependency structures. Lookup of newblk structures is needed to
1124  * find newly allocated blocks when trying to associate them with
1125  * their allocdirect or allocindir structure.
1126  *
1127  * The lookup routines optionally create and hash a new instance when
1128  * an existing entry is not found.
1129  */
1130 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1131 #define NODELAY		0x0002	/* cannot do background work */
1132 
1133 /*
1134  * Structures and routines associated with pagedep caching.
1135  */
1136 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1137 u_long	pagedep_hash;		/* size of hash table - 1 */
1138 #define	PAGEDEP_HASH(mp, inum, lbn) \
1139 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1140 	    pagedep_hash])
1141 
1142 static int
1143 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1144 	struct pagedep_hashhead *pagedephd;
1145 	ino_t ino;
1146 	ufs_lbn_t lbn;
1147 	struct mount *mp;
1148 	int flags;
1149 	struct pagedep **pagedeppp;
1150 {
1151 	struct pagedep *pagedep;
1152 
1153 	LIST_FOREACH(pagedep, pagedephd, pd_hash)
1154 		if (ino == pagedep->pd_ino &&
1155 		    lbn == pagedep->pd_lbn &&
1156 		    mp == pagedep->pd_list.wk_mp)
1157 			break;
1158 	if (pagedep) {
1159 		*pagedeppp = pagedep;
1160 		if ((flags & DEPALLOC) != 0 &&
1161 		    (pagedep->pd_state & ONWORKLIST) == 0)
1162 			return (0);
1163 		return (1);
1164 	}
1165 	*pagedeppp = NULL;
1166 	return (0);
1167 }
1168 /*
1169  * Look up a pagedep. Return 1 if found, 0 if not found or found
1170  * when asked to allocate but not associated with any buffer.
1171  * If not found, allocate if DEPALLOC flag is passed.
1172  * Found or allocated entry is returned in pagedeppp.
1173  * This routine must be called with splbio interrupts blocked.
1174  */
1175 static int
1176 pagedep_lookup(ip, lbn, flags, pagedeppp)
1177 	struct inode *ip;
1178 	ufs_lbn_t lbn;
1179 	int flags;
1180 	struct pagedep **pagedeppp;
1181 {
1182 	struct pagedep *pagedep;
1183 	struct pagedep_hashhead *pagedephd;
1184 	struct mount *mp;
1185 	int ret;
1186 	int i;
1187 
1188 	mtx_assert(&lk, MA_OWNED);
1189 	mp = ITOV(ip)->v_mount;
1190 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
1191 
1192 	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1193 	if (*pagedeppp || (flags & DEPALLOC) == 0)
1194 		return (ret);
1195 	FREE_LOCK(&lk);
1196 	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep),
1197 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1198 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1199 	ACQUIRE_LOCK(&lk);
1200 	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1201 	if (*pagedeppp) {
1202 		WORKITEM_FREE(pagedep, D_PAGEDEP);
1203 		return (ret);
1204 	}
1205 	pagedep->pd_ino = ip->i_number;
1206 	pagedep->pd_lbn = lbn;
1207 	LIST_INIT(&pagedep->pd_dirremhd);
1208 	LIST_INIT(&pagedep->pd_pendinghd);
1209 	for (i = 0; i < DAHASHSZ; i++)
1210 		LIST_INIT(&pagedep->pd_diraddhd[i]);
1211 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1212 	*pagedeppp = pagedep;
1213 	return (0);
1214 }
1215 
1216 /*
1217  * Structures and routines associated with inodedep caching.
1218  */
1219 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1220 static u_long	inodedep_hash;	/* size of hash table - 1 */
1221 static long	num_inodedep;	/* number of inodedep allocated */
1222 #define	INODEDEP_HASH(fs, inum) \
1223       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1224 
1225 static int
1226 inodedep_find(inodedephd, fs, inum, inodedeppp)
1227 	struct inodedep_hashhead *inodedephd;
1228 	struct fs *fs;
1229 	ino_t inum;
1230 	struct inodedep **inodedeppp;
1231 {
1232 	struct inodedep *inodedep;
1233 
1234 	LIST_FOREACH(inodedep, inodedephd, id_hash)
1235 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1236 			break;
1237 	if (inodedep) {
1238 		*inodedeppp = inodedep;
1239 		return (1);
1240 	}
1241 	*inodedeppp = NULL;
1242 
1243 	return (0);
1244 }
1245 /*
1246  * Look up an inodedep. Return 1 if found, 0 if not found.
1247  * If not found, allocate if DEPALLOC flag is passed.
1248  * Found or allocated entry is returned in inodedeppp.
1249  * This routine must be called with splbio interrupts blocked.
1250  */
1251 static int
1252 inodedep_lookup(mp, inum, flags, inodedeppp)
1253 	struct mount *mp;
1254 	ino_t inum;
1255 	int flags;
1256 	struct inodedep **inodedeppp;
1257 {
1258 	struct inodedep *inodedep;
1259 	struct inodedep_hashhead *inodedephd;
1260 	struct fs *fs;
1261 
1262 	mtx_assert(&lk, MA_OWNED);
1263 	fs = VFSTOUFS(mp)->um_fs;
1264 	inodedephd = INODEDEP_HASH(fs, inum);
1265 
1266 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1267 		return (1);
1268 	if ((flags & DEPALLOC) == 0)
1269 		return (0);
1270 	/*
1271 	 * If we are over our limit, try to improve the situation.
1272 	 */
1273 	if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1274 		request_cleanup(mp, FLUSH_INODES);
1275 	FREE_LOCK(&lk);
1276 	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1277 		M_INODEDEP, M_SOFTDEP_FLAGS);
1278 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1279 	ACQUIRE_LOCK(&lk);
1280 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1281 		WORKITEM_FREE(inodedep, D_INODEDEP);
1282 		return (1);
1283 	}
1284 	num_inodedep += 1;
1285 	inodedep->id_fs = fs;
1286 	inodedep->id_ino = inum;
1287 	inodedep->id_state = ALLCOMPLETE;
1288 	inodedep->id_nlinkdelta = 0;
1289 	inodedep->id_savedino1 = NULL;
1290 	inodedep->id_savedsize = -1;
1291 	inodedep->id_savedextsize = -1;
1292 	inodedep->id_buf = NULL;
1293 	LIST_INIT(&inodedep->id_pendinghd);
1294 	LIST_INIT(&inodedep->id_inowait);
1295 	LIST_INIT(&inodedep->id_bufwait);
1296 	TAILQ_INIT(&inodedep->id_inoupdt);
1297 	TAILQ_INIT(&inodedep->id_newinoupdt);
1298 	TAILQ_INIT(&inodedep->id_extupdt);
1299 	TAILQ_INIT(&inodedep->id_newextupdt);
1300 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1301 	*inodedeppp = inodedep;
1302 	return (0);
1303 }
1304 
1305 /*
1306  * Structures and routines associated with newblk caching.
1307  */
1308 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1309 u_long	newblk_hash;		/* size of hash table - 1 */
1310 #define	NEWBLK_HASH(fs, inum) \
1311 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1312 
1313 static int
1314 newblk_find(newblkhd, fs, newblkno, newblkpp)
1315 	struct newblk_hashhead *newblkhd;
1316 	struct fs *fs;
1317 	ufs2_daddr_t newblkno;
1318 	struct newblk **newblkpp;
1319 {
1320 	struct newblk *newblk;
1321 
1322 	LIST_FOREACH(newblk, newblkhd, nb_hash)
1323 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1324 			break;
1325 	if (newblk) {
1326 		*newblkpp = newblk;
1327 		return (1);
1328 	}
1329 	*newblkpp = NULL;
1330 	return (0);
1331 }
1332 
1333 /*
1334  * Look up a newblk. Return 1 if found, 0 if not found.
1335  * If not found, allocate if DEPALLOC flag is passed.
1336  * Found or allocated entry is returned in newblkpp.
1337  */
1338 static int
1339 newblk_lookup(fs, newblkno, flags, newblkpp)
1340 	struct fs *fs;
1341 	ufs2_daddr_t newblkno;
1342 	int flags;
1343 	struct newblk **newblkpp;
1344 {
1345 	struct newblk *newblk;
1346 	struct newblk_hashhead *newblkhd;
1347 
1348 	newblkhd = NEWBLK_HASH(fs, newblkno);
1349 	if (newblk_find(newblkhd, fs, newblkno, newblkpp))
1350 		return (1);
1351 	if ((flags & DEPALLOC) == 0)
1352 		return (0);
1353 	FREE_LOCK(&lk);
1354 	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1355 		M_NEWBLK, M_SOFTDEP_FLAGS);
1356 	ACQUIRE_LOCK(&lk);
1357 	if (newblk_find(newblkhd, fs, newblkno, newblkpp)) {
1358 		FREE(newblk, M_NEWBLK);
1359 		return (1);
1360 	}
1361 	newblk->nb_state = 0;
1362 	newblk->nb_fs = fs;
1363 	newblk->nb_newblkno = newblkno;
1364 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1365 	*newblkpp = newblk;
1366 	return (0);
1367 }
1368 
1369 /*
1370  * Executed during filesystem system initialization before
1371  * mounting any filesystems.
1372  */
1373 void
1374 softdep_initialize()
1375 {
1376 
1377 	LIST_INIT(&mkdirlisthd);
1378 	max_softdeps = desiredvnodes * 4;
1379 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1380 	    &pagedep_hash);
1381 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1382 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1383 
1384 	/* initialise bioops hack */
1385 	bioops.io_start = softdep_disk_io_initiation;
1386 	bioops.io_complete = softdep_disk_write_complete;
1387 	bioops.io_deallocate = softdep_deallocate_dependencies;
1388 	bioops.io_countdeps = softdep_count_dependencies;
1389 }
1390 
1391 /*
1392  * Executed after all filesystems have been unmounted during
1393  * filesystem module unload.
1394  */
1395 void
1396 softdep_uninitialize()
1397 {
1398 
1399 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1400 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1401 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1402 }
1403 
1404 /*
1405  * Called at mount time to notify the dependency code that a
1406  * filesystem wishes to use it.
1407  */
1408 int
1409 softdep_mount(devvp, mp, fs, cred)
1410 	struct vnode *devvp;
1411 	struct mount *mp;
1412 	struct fs *fs;
1413 	struct ucred *cred;
1414 {
1415 	struct csum_total cstotal;
1416 	struct ufsmount *ump;
1417 	struct cg *cgp;
1418 	struct buf *bp;
1419 	int error, cyl;
1420 
1421 	mp->mnt_flag &= ~MNT_ASYNC;
1422 	mp->mnt_flag |= MNT_SOFTDEP;
1423 	ump = VFSTOUFS(mp);
1424 	LIST_INIT(&ump->softdep_workitem_pending);
1425 	ump->softdep_worklist_tail = NULL;
1426 	ump->softdep_on_worklist = 0;
1427 	ump->softdep_deps = 0;
1428 	/*
1429 	 * When doing soft updates, the counters in the
1430 	 * superblock may have gotten out of sync. Recomputation
1431 	 * can take a long time and can be deferred for background
1432 	 * fsck.  However, the old behavior of scanning the cylinder
1433 	 * groups and recalculating them at mount time is available
1434 	 * by setting vfs.ffs.compute_summary_at_mount to one.
1435 	 */
1436 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
1437 		return (0);
1438 	bzero(&cstotal, sizeof cstotal);
1439 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1440 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1441 		    fs->fs_cgsize, cred, &bp)) != 0) {
1442 			brelse(bp);
1443 			return (error);
1444 		}
1445 		cgp = (struct cg *)bp->b_data;
1446 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1447 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1448 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1449 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1450 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1451 		brelse(bp);
1452 	}
1453 #ifdef DEBUG
1454 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1455 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1456 #endif
1457 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1458 	return (0);
1459 }
1460 
1461 /*
1462  * Protecting the freemaps (or bitmaps).
1463  *
1464  * To eliminate the need to execute fsck before mounting a filesystem
1465  * after a power failure, one must (conservatively) guarantee that the
1466  * on-disk copy of the bitmaps never indicate that a live inode or block is
1467  * free.  So, when a block or inode is allocated, the bitmap should be
1468  * updated (on disk) before any new pointers.  When a block or inode is
1469  * freed, the bitmap should not be updated until all pointers have been
1470  * reset.  The latter dependency is handled by the delayed de-allocation
1471  * approach described below for block and inode de-allocation.  The former
1472  * dependency is handled by calling the following procedure when a block or
1473  * inode is allocated. When an inode is allocated an "inodedep" is created
1474  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1475  * Each "inodedep" is also inserted into the hash indexing structure so
1476  * that any additional link additions can be made dependent on the inode
1477  * allocation.
1478  *
1479  * The ufs filesystem maintains a number of free block counts (e.g., per
1480  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1481  * in addition to the bitmaps.  These counts are used to improve efficiency
1482  * during allocation and therefore must be consistent with the bitmaps.
1483  * There is no convenient way to guarantee post-crash consistency of these
1484  * counts with simple update ordering, for two main reasons: (1) The counts
1485  * and bitmaps for a single cylinder group block are not in the same disk
1486  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1487  * be written and the other not.  (2) Some of the counts are located in the
1488  * superblock rather than the cylinder group block. So, we focus our soft
1489  * updates implementation on protecting the bitmaps. When mounting a
1490  * filesystem, we recompute the auxiliary counts from the bitmaps.
1491  */
1492 
1493 /*
1494  * Called just after updating the cylinder group block to allocate an inode.
1495  */
1496 void
1497 softdep_setup_inomapdep(bp, ip, newinum)
1498 	struct buf *bp;		/* buffer for cylgroup block with inode map */
1499 	struct inode *ip;	/* inode related to allocation */
1500 	ino_t newinum;		/* new inode number being allocated */
1501 {
1502 	struct inodedep *inodedep;
1503 	struct bmsafemap *bmsafemap;
1504 
1505 	/*
1506 	 * Create a dependency for the newly allocated inode.
1507 	 * Panic if it already exists as something is seriously wrong.
1508 	 * Otherwise add it to the dependency list for the buffer holding
1509 	 * the cylinder group map from which it was allocated.
1510 	 */
1511 	ACQUIRE_LOCK(&lk);
1512 	if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY,
1513 	    &inodedep)))
1514 		panic("softdep_setup_inomapdep: found inode");
1515 	inodedep->id_buf = bp;
1516 	inodedep->id_state &= ~DEPCOMPLETE;
1517 	bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp);
1518 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1519 	FREE_LOCK(&lk);
1520 }
1521 
1522 /*
1523  * Called just after updating the cylinder group block to
1524  * allocate block or fragment.
1525  */
1526 void
1527 softdep_setup_blkmapdep(bp, mp, newblkno)
1528 	struct buf *bp;		/* buffer for cylgroup block with block map */
1529 	struct mount *mp;	/* filesystem doing allocation */
1530 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
1531 {
1532 	struct newblk *newblk;
1533 	struct bmsafemap *bmsafemap;
1534 	struct fs *fs;
1535 
1536 	fs = VFSTOUFS(mp)->um_fs;
1537 	/*
1538 	 * Create a dependency for the newly allocated block.
1539 	 * Add it to the dependency list for the buffer holding
1540 	 * the cylinder group map from which it was allocated.
1541 	 */
1542 	ACQUIRE_LOCK(&lk);
1543 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1544 		panic("softdep_setup_blkmapdep: found block");
1545 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp);
1546 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1547 	FREE_LOCK(&lk);
1548 }
1549 
1550 /*
1551  * Find the bmsafemap associated with a cylinder group buffer.
1552  * If none exists, create one. The buffer must be locked when
1553  * this routine is called and this routine must be called with
1554  * splbio interrupts blocked.
1555  */
1556 static struct bmsafemap *
1557 bmsafemap_lookup(mp, bp)
1558 	struct mount *mp;
1559 	struct buf *bp;
1560 {
1561 	struct bmsafemap *bmsafemap;
1562 	struct worklist *wk;
1563 
1564 	mtx_assert(&lk, MA_OWNED);
1565 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1566 		if (wk->wk_type == D_BMSAFEMAP)
1567 			return (WK_BMSAFEMAP(wk));
1568 	FREE_LOCK(&lk);
1569 	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1570 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1571 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
1572 	bmsafemap->sm_buf = bp;
1573 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1574 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1575 	LIST_INIT(&bmsafemap->sm_inodedephd);
1576 	LIST_INIT(&bmsafemap->sm_newblkhd);
1577 	ACQUIRE_LOCK(&lk);
1578 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1579 	return (bmsafemap);
1580 }
1581 
1582 /*
1583  * Direct block allocation dependencies.
1584  *
1585  * When a new block is allocated, the corresponding disk locations must be
1586  * initialized (with zeros or new data) before the on-disk inode points to
1587  * them.  Also, the freemap from which the block was allocated must be
1588  * updated (on disk) before the inode's pointer. These two dependencies are
1589  * independent of each other and are needed for all file blocks and indirect
1590  * blocks that are pointed to directly by the inode.  Just before the
1591  * "in-core" version of the inode is updated with a newly allocated block
1592  * number, a procedure (below) is called to setup allocation dependency
1593  * structures.  These structures are removed when the corresponding
1594  * dependencies are satisfied or when the block allocation becomes obsolete
1595  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1596  * fragment that gets upgraded).  All of these cases are handled in
1597  * procedures described later.
1598  *
1599  * When a file extension causes a fragment to be upgraded, either to a larger
1600  * fragment or to a full block, the on-disk location may change (if the
1601  * previous fragment could not simply be extended). In this case, the old
1602  * fragment must be de-allocated, but not until after the inode's pointer has
1603  * been updated. In most cases, this is handled by later procedures, which
1604  * will construct a "freefrag" structure to be added to the workitem queue
1605  * when the inode update is complete (or obsolete).  The main exception to
1606  * this is when an allocation occurs while a pending allocation dependency
1607  * (for the same block pointer) remains.  This case is handled in the main
1608  * allocation dependency setup procedure by immediately freeing the
1609  * unreferenced fragments.
1610  */
1611 void
1612 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1613 	struct inode *ip;	/* inode to which block is being added */
1614 	ufs_lbn_t lbn;		/* block pointer within inode */
1615 	ufs2_daddr_t newblkno;	/* disk block number being added */
1616 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1617 	long newsize;		/* size of new block */
1618 	long oldsize;		/* size of new block */
1619 	struct buf *bp;		/* bp for allocated block */
1620 {
1621 	struct allocdirect *adp, *oldadp;
1622 	struct allocdirectlst *adphead;
1623 	struct bmsafemap *bmsafemap;
1624 	struct inodedep *inodedep;
1625 	struct pagedep *pagedep;
1626 	struct newblk *newblk;
1627 	struct mount *mp;
1628 
1629 	mp = UFSTOVFS(ip->i_ump);
1630 	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1631 		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1632 	workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1633 	adp->ad_lbn = lbn;
1634 	adp->ad_newblkno = newblkno;
1635 	adp->ad_oldblkno = oldblkno;
1636 	adp->ad_newsize = newsize;
1637 	adp->ad_oldsize = oldsize;
1638 	adp->ad_state = ATTACHED;
1639 	LIST_INIT(&adp->ad_newdirblk);
1640 	if (newblkno == oldblkno)
1641 		adp->ad_freefrag = NULL;
1642 	else
1643 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1644 
1645 	ACQUIRE_LOCK(&lk);
1646 	if (lbn >= NDADDR) {
1647 		/* allocating an indirect block */
1648 		if (oldblkno != 0)
1649 			panic("softdep_setup_allocdirect: non-zero indir");
1650 	} else {
1651 		/*
1652 		 * Allocating a direct block.
1653 		 *
1654 		 * If we are allocating a directory block, then we must
1655 		 * allocate an associated pagedep to track additions and
1656 		 * deletions.
1657 		 */
1658 		if ((ip->i_mode & IFMT) == IFDIR &&
1659 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1660 			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1661 	}
1662 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1663 		panic("softdep_setup_allocdirect: lost block");
1664 	if (newblk->nb_state == DEPCOMPLETE) {
1665 		adp->ad_state |= DEPCOMPLETE;
1666 		adp->ad_buf = NULL;
1667 	} else {
1668 		bmsafemap = newblk->nb_bmsafemap;
1669 		adp->ad_buf = bmsafemap->sm_buf;
1670 		LIST_REMOVE(newblk, nb_deps);
1671 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1672 	}
1673 	LIST_REMOVE(newblk, nb_hash);
1674 	FREE(newblk, M_NEWBLK);
1675 
1676 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1677 	adp->ad_inodedep = inodedep;
1678 	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1679 	/*
1680 	 * The list of allocdirects must be kept in sorted and ascending
1681 	 * order so that the rollback routines can quickly determine the
1682 	 * first uncommitted block (the size of the file stored on disk
1683 	 * ends at the end of the lowest committed fragment, or if there
1684 	 * are no fragments, at the end of the highest committed block).
1685 	 * Since files generally grow, the typical case is that the new
1686 	 * block is to be added at the end of the list. We speed this
1687 	 * special case by checking against the last allocdirect in the
1688 	 * list before laboriously traversing the list looking for the
1689 	 * insertion point.
1690 	 */
1691 	adphead = &inodedep->id_newinoupdt;
1692 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1693 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1694 		/* insert at end of list */
1695 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1696 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1697 			allocdirect_merge(adphead, adp, oldadp);
1698 		FREE_LOCK(&lk);
1699 		return;
1700 	}
1701 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1702 		if (oldadp->ad_lbn >= lbn)
1703 			break;
1704 	}
1705 	if (oldadp == NULL)
1706 		panic("softdep_setup_allocdirect: lost entry");
1707 	/* insert in middle of list */
1708 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1709 	if (oldadp->ad_lbn == lbn)
1710 		allocdirect_merge(adphead, adp, oldadp);
1711 	FREE_LOCK(&lk);
1712 }
1713 
1714 /*
1715  * Replace an old allocdirect dependency with a newer one.
1716  * This routine must be called with splbio interrupts blocked.
1717  */
1718 static void
1719 allocdirect_merge(adphead, newadp, oldadp)
1720 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1721 	struct allocdirect *newadp;	/* allocdirect being added */
1722 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1723 {
1724 	struct worklist *wk;
1725 	struct freefrag *freefrag;
1726 	struct newdirblk *newdirblk;
1727 
1728 	mtx_assert(&lk, MA_OWNED);
1729 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1730 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1731 	    newadp->ad_lbn >= NDADDR)
1732 		panic("%s %jd != new %jd || old size %ld != new %ld",
1733 		    "allocdirect_merge: old blkno",
1734 		    (intmax_t)newadp->ad_oldblkno,
1735 		    (intmax_t)oldadp->ad_newblkno,
1736 		    newadp->ad_oldsize, oldadp->ad_newsize);
1737 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1738 	newadp->ad_oldsize = oldadp->ad_oldsize;
1739 	/*
1740 	 * If the old dependency had a fragment to free or had never
1741 	 * previously had a block allocated, then the new dependency
1742 	 * can immediately post its freefrag and adopt the old freefrag.
1743 	 * This action is done by swapping the freefrag dependencies.
1744 	 * The new dependency gains the old one's freefrag, and the
1745 	 * old one gets the new one and then immediately puts it on
1746 	 * the worklist when it is freed by free_allocdirect. It is
1747 	 * not possible to do this swap when the old dependency had a
1748 	 * non-zero size but no previous fragment to free. This condition
1749 	 * arises when the new block is an extension of the old block.
1750 	 * Here, the first part of the fragment allocated to the new
1751 	 * dependency is part of the block currently claimed on disk by
1752 	 * the old dependency, so cannot legitimately be freed until the
1753 	 * conditions for the new dependency are fulfilled.
1754 	 */
1755 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1756 		freefrag = newadp->ad_freefrag;
1757 		newadp->ad_freefrag = oldadp->ad_freefrag;
1758 		oldadp->ad_freefrag = freefrag;
1759 	}
1760 	/*
1761 	 * If we are tracking a new directory-block allocation,
1762 	 * move it from the old allocdirect to the new allocdirect.
1763 	 */
1764 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1765 		newdirblk = WK_NEWDIRBLK(wk);
1766 		WORKLIST_REMOVE(&newdirblk->db_list);
1767 		if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
1768 			panic("allocdirect_merge: extra newdirblk");
1769 		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1770 	}
1771 	free_allocdirect(adphead, oldadp, 0);
1772 }
1773 
1774 /*
1775  * Allocate a new freefrag structure if needed.
1776  */
1777 static struct freefrag *
1778 newfreefrag(ip, blkno, size)
1779 	struct inode *ip;
1780 	ufs2_daddr_t blkno;
1781 	long size;
1782 {
1783 	struct freefrag *freefrag;
1784 	struct fs *fs;
1785 
1786 	if (blkno == 0)
1787 		return (NULL);
1788 	fs = ip->i_fs;
1789 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1790 		panic("newfreefrag: frag size");
1791 	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1792 		M_FREEFRAG, M_SOFTDEP_FLAGS);
1793 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
1794 	freefrag->ff_inum = ip->i_number;
1795 	freefrag->ff_blkno = blkno;
1796 	freefrag->ff_fragsize = size;
1797 	return (freefrag);
1798 }
1799 
1800 /*
1801  * This workitem de-allocates fragments that were replaced during
1802  * file block allocation.
1803  */
1804 static void
1805 handle_workitem_freefrag(freefrag)
1806 	struct freefrag *freefrag;
1807 {
1808 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
1809 
1810 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1811 	    freefrag->ff_fragsize, freefrag->ff_inum);
1812 	ACQUIRE_LOCK(&lk);
1813 	WORKITEM_FREE(freefrag, D_FREEFRAG);
1814 	FREE_LOCK(&lk);
1815 }
1816 
1817 /*
1818  * Set up a dependency structure for an external attributes data block.
1819  * This routine follows much of the structure of softdep_setup_allocdirect.
1820  * See the description of softdep_setup_allocdirect above for details.
1821  */
1822 void
1823 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1824 	struct inode *ip;
1825 	ufs_lbn_t lbn;
1826 	ufs2_daddr_t newblkno;
1827 	ufs2_daddr_t oldblkno;
1828 	long newsize;
1829 	long oldsize;
1830 	struct buf *bp;
1831 {
1832 	struct allocdirect *adp, *oldadp;
1833 	struct allocdirectlst *adphead;
1834 	struct bmsafemap *bmsafemap;
1835 	struct inodedep *inodedep;
1836 	struct newblk *newblk;
1837 	struct mount *mp;
1838 
1839 	mp = UFSTOVFS(ip->i_ump);
1840 	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1841 		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1842 	workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1843 	adp->ad_lbn = lbn;
1844 	adp->ad_newblkno = newblkno;
1845 	adp->ad_oldblkno = oldblkno;
1846 	adp->ad_newsize = newsize;
1847 	adp->ad_oldsize = oldsize;
1848 	adp->ad_state = ATTACHED | EXTDATA;
1849 	LIST_INIT(&adp->ad_newdirblk);
1850 	if (newblkno == oldblkno)
1851 		adp->ad_freefrag = NULL;
1852 	else
1853 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1854 
1855 	ACQUIRE_LOCK(&lk);
1856 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1857 		panic("softdep_setup_allocext: lost block");
1858 
1859 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1860 	adp->ad_inodedep = inodedep;
1861 
1862 	if (newblk->nb_state == DEPCOMPLETE) {
1863 		adp->ad_state |= DEPCOMPLETE;
1864 		adp->ad_buf = NULL;
1865 	} else {
1866 		bmsafemap = newblk->nb_bmsafemap;
1867 		adp->ad_buf = bmsafemap->sm_buf;
1868 		LIST_REMOVE(newblk, nb_deps);
1869 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1870 	}
1871 	LIST_REMOVE(newblk, nb_hash);
1872 	FREE(newblk, M_NEWBLK);
1873 
1874 	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1875 	if (lbn >= NXADDR)
1876 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
1877 		    (long long)lbn);
1878 	/*
1879 	 * The list of allocdirects must be kept in sorted and ascending
1880 	 * order so that the rollback routines can quickly determine the
1881 	 * first uncommitted block (the size of the file stored on disk
1882 	 * ends at the end of the lowest committed fragment, or if there
1883 	 * are no fragments, at the end of the highest committed block).
1884 	 * Since files generally grow, the typical case is that the new
1885 	 * block is to be added at the end of the list. We speed this
1886 	 * special case by checking against the last allocdirect in the
1887 	 * list before laboriously traversing the list looking for the
1888 	 * insertion point.
1889 	 */
1890 	adphead = &inodedep->id_newextupdt;
1891 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1892 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1893 		/* insert at end of list */
1894 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1895 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1896 			allocdirect_merge(adphead, adp, oldadp);
1897 		FREE_LOCK(&lk);
1898 		return;
1899 	}
1900 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1901 		if (oldadp->ad_lbn >= lbn)
1902 			break;
1903 	}
1904 	if (oldadp == NULL)
1905 		panic("softdep_setup_allocext: lost entry");
1906 	/* insert in middle of list */
1907 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1908 	if (oldadp->ad_lbn == lbn)
1909 		allocdirect_merge(adphead, adp, oldadp);
1910 	FREE_LOCK(&lk);
1911 }
1912 
1913 /*
1914  * Indirect block allocation dependencies.
1915  *
1916  * The same dependencies that exist for a direct block also exist when
1917  * a new block is allocated and pointed to by an entry in a block of
1918  * indirect pointers. The undo/redo states described above are also
1919  * used here. Because an indirect block contains many pointers that
1920  * may have dependencies, a second copy of the entire in-memory indirect
1921  * block is kept. The buffer cache copy is always completely up-to-date.
1922  * The second copy, which is used only as a source for disk writes,
1923  * contains only the safe pointers (i.e., those that have no remaining
1924  * update dependencies). The second copy is freed when all pointers
1925  * are safe. The cache is not allowed to replace indirect blocks with
1926  * pending update dependencies. If a buffer containing an indirect
1927  * block with dependencies is written, these routines will mark it
1928  * dirty again. It can only be successfully written once all the
1929  * dependencies are removed. The ffs_fsync routine in conjunction with
1930  * softdep_sync_metadata work together to get all the dependencies
1931  * removed so that a file can be successfully written to disk. Three
1932  * procedures are used when setting up indirect block pointer
1933  * dependencies. The division is necessary because of the organization
1934  * of the "balloc" routine and because of the distinction between file
1935  * pages and file metadata blocks.
1936  */
1937 
1938 /*
1939  * Allocate a new allocindir structure.
1940  */
1941 static struct allocindir *
1942 newallocindir(ip, ptrno, newblkno, oldblkno)
1943 	struct inode *ip;	/* inode for file being extended */
1944 	int ptrno;		/* offset of pointer in indirect block */
1945 	ufs2_daddr_t newblkno;	/* disk block number being added */
1946 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1947 {
1948 	struct allocindir *aip;
1949 
1950 	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1951 		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1952 	workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump));
1953 	aip->ai_state = ATTACHED;
1954 	aip->ai_offset = ptrno;
1955 	aip->ai_newblkno = newblkno;
1956 	aip->ai_oldblkno = oldblkno;
1957 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1958 	return (aip);
1959 }
1960 
1961 /*
1962  * Called just before setting an indirect block pointer
1963  * to a newly allocated file page.
1964  */
1965 void
1966 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1967 	struct inode *ip;	/* inode for file being extended */
1968 	ufs_lbn_t lbn;		/* allocated block number within file */
1969 	struct buf *bp;		/* buffer with indirect blk referencing page */
1970 	int ptrno;		/* offset of pointer in indirect block */
1971 	ufs2_daddr_t newblkno;	/* disk block number being added */
1972 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1973 	struct buf *nbp;	/* buffer holding allocated page */
1974 {
1975 	struct allocindir *aip;
1976 	struct pagedep *pagedep;
1977 
1978 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
1979 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1980 	ACQUIRE_LOCK(&lk);
1981 	/*
1982 	 * If we are allocating a directory page, then we must
1983 	 * allocate an associated pagedep to track additions and
1984 	 * deletions.
1985 	 */
1986 	if ((ip->i_mode & IFMT) == IFDIR &&
1987 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1988 		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1989 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1990 	setup_allocindir_phase2(bp, ip, aip);
1991 	FREE_LOCK(&lk);
1992 }
1993 
1994 /*
1995  * Called just before setting an indirect block pointer to a
1996  * newly allocated indirect block.
1997  */
1998 void
1999 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
2000 	struct buf *nbp;	/* newly allocated indirect block */
2001 	struct inode *ip;	/* inode for file being extended */
2002 	struct buf *bp;		/* indirect block referencing allocated block */
2003 	int ptrno;		/* offset of pointer in indirect block */
2004 	ufs2_daddr_t newblkno;	/* disk block number being added */
2005 {
2006 	struct allocindir *aip;
2007 
2008 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
2009 	aip = newallocindir(ip, ptrno, newblkno, 0);
2010 	ACQUIRE_LOCK(&lk);
2011 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
2012 	setup_allocindir_phase2(bp, ip, aip);
2013 	FREE_LOCK(&lk);
2014 }
2015 
2016 /*
2017  * Called to finish the allocation of the "aip" allocated
2018  * by one of the two routines above.
2019  */
2020 static void
2021 setup_allocindir_phase2(bp, ip, aip)
2022 	struct buf *bp;		/* in-memory copy of the indirect block */
2023 	struct inode *ip;	/* inode for file being extended */
2024 	struct allocindir *aip;	/* allocindir allocated by the above routines */
2025 {
2026 	struct worklist *wk;
2027 	struct indirdep *indirdep, *newindirdep;
2028 	struct bmsafemap *bmsafemap;
2029 	struct allocindir *oldaip;
2030 	struct freefrag *freefrag;
2031 	struct newblk *newblk;
2032 	ufs2_daddr_t blkno;
2033 
2034 	mtx_assert(&lk, MA_OWNED);
2035 	if (bp->b_lblkno >= 0)
2036 		panic("setup_allocindir_phase2: not indir blk");
2037 	for (indirdep = NULL, newindirdep = NULL; ; ) {
2038 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2039 			if (wk->wk_type != D_INDIRDEP)
2040 				continue;
2041 			indirdep = WK_INDIRDEP(wk);
2042 			break;
2043 		}
2044 		if (indirdep == NULL && newindirdep) {
2045 			indirdep = newindirdep;
2046 			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
2047 			newindirdep = NULL;
2048 		}
2049 		if (indirdep) {
2050 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
2051 			    &newblk) == 0)
2052 				panic("setup_allocindir: lost block");
2053 			if (newblk->nb_state == DEPCOMPLETE) {
2054 				aip->ai_state |= DEPCOMPLETE;
2055 				aip->ai_buf = NULL;
2056 			} else {
2057 				bmsafemap = newblk->nb_bmsafemap;
2058 				aip->ai_buf = bmsafemap->sm_buf;
2059 				LIST_REMOVE(newblk, nb_deps);
2060 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
2061 				    aip, ai_deps);
2062 			}
2063 			LIST_REMOVE(newblk, nb_hash);
2064 			FREE(newblk, M_NEWBLK);
2065 			aip->ai_indirdep = indirdep;
2066 			/*
2067 			 * Check to see if there is an existing dependency
2068 			 * for this block. If there is, merge the old
2069 			 * dependency into the new one.
2070 			 */
2071 			if (aip->ai_oldblkno == 0)
2072 				oldaip = NULL;
2073 			else
2074 
2075 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
2076 					if (oldaip->ai_offset == aip->ai_offset)
2077 						break;
2078 			freefrag = NULL;
2079 			if (oldaip != NULL) {
2080 				if (oldaip->ai_newblkno != aip->ai_oldblkno)
2081 					panic("setup_allocindir_phase2: blkno");
2082 				aip->ai_oldblkno = oldaip->ai_oldblkno;
2083 				freefrag = aip->ai_freefrag;
2084 				aip->ai_freefrag = oldaip->ai_freefrag;
2085 				oldaip->ai_freefrag = NULL;
2086 				free_allocindir(oldaip, NULL);
2087 			}
2088 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
2089 			if (ip->i_ump->um_fstype == UFS1)
2090 				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
2091 				    [aip->ai_offset] = aip->ai_oldblkno;
2092 			else
2093 				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
2094 				    [aip->ai_offset] = aip->ai_oldblkno;
2095 			FREE_LOCK(&lk);
2096 			if (freefrag != NULL)
2097 				handle_workitem_freefrag(freefrag);
2098 		} else
2099 			FREE_LOCK(&lk);
2100 		if (newindirdep) {
2101 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
2102 			brelse(newindirdep->ir_savebp);
2103 			ACQUIRE_LOCK(&lk);
2104 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
2105 			if (indirdep)
2106 				break;
2107 			FREE_LOCK(&lk);
2108 		}
2109 		if (indirdep) {
2110 			ACQUIRE_LOCK(&lk);
2111 			break;
2112 		}
2113 		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
2114 			M_INDIRDEP, M_SOFTDEP_FLAGS);
2115 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP,
2116 		    UFSTOVFS(ip->i_ump));
2117 		newindirdep->ir_state = ATTACHED;
2118 		if (ip->i_ump->um_fstype == UFS1)
2119 			newindirdep->ir_state |= UFS1FMT;
2120 		LIST_INIT(&newindirdep->ir_deplisthd);
2121 		LIST_INIT(&newindirdep->ir_donehd);
2122 		if (bp->b_blkno == bp->b_lblkno) {
2123 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
2124 			    NULL, NULL);
2125 			bp->b_blkno = blkno;
2126 		}
2127 		newindirdep->ir_savebp =
2128 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
2129 		BUF_KERNPROC(newindirdep->ir_savebp);
2130 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
2131 		ACQUIRE_LOCK(&lk);
2132 	}
2133 }
2134 
2135 /*
2136  * Block de-allocation dependencies.
2137  *
2138  * When blocks are de-allocated, the on-disk pointers must be nullified before
2139  * the blocks are made available for use by other files.  (The true
2140  * requirement is that old pointers must be nullified before new on-disk
2141  * pointers are set.  We chose this slightly more stringent requirement to
2142  * reduce complexity.) Our implementation handles this dependency by updating
2143  * the inode (or indirect block) appropriately but delaying the actual block
2144  * de-allocation (i.e., freemap and free space count manipulation) until
2145  * after the updated versions reach stable storage.  After the disk is
2146  * updated, the blocks can be safely de-allocated whenever it is convenient.
2147  * This implementation handles only the common case of reducing a file's
2148  * length to zero. Other cases are handled by the conventional synchronous
2149  * write approach.
2150  *
2151  * The ffs implementation with which we worked double-checks
2152  * the state of the block pointers and file size as it reduces
2153  * a file's length.  Some of this code is replicated here in our
2154  * soft updates implementation.  The freeblks->fb_chkcnt field is
2155  * used to transfer a part of this information to the procedure
2156  * that eventually de-allocates the blocks.
2157  *
2158  * This routine should be called from the routine that shortens
2159  * a file's length, before the inode's size or block pointers
2160  * are modified. It will save the block pointer information for
2161  * later release and zero the inode so that the calling routine
2162  * can release it.
2163  */
2164 void
2165 softdep_setup_freeblocks(ip, length, flags)
2166 	struct inode *ip;	/* The inode whose length is to be reduced */
2167 	off_t length;		/* The new length for the file */
2168 	int flags;		/* IO_EXT and/or IO_NORMAL */
2169 {
2170 	struct freeblks *freeblks;
2171 	struct inodedep *inodedep;
2172 	struct allocdirect *adp;
2173 	struct vnode *vp;
2174 	struct buf *bp;
2175 	struct fs *fs;
2176 	ufs2_daddr_t extblocks, datablocks;
2177 	struct mount *mp;
2178 	int i, delay, error;
2179 
2180 	fs = ip->i_fs;
2181 	mp = UFSTOVFS(ip->i_ump);
2182 	if (length != 0)
2183 		panic("softdep_setup_freeblocks: non-zero length");
2184 	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
2185 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
2186 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
2187 	freeblks->fb_state = ATTACHED;
2188 	freeblks->fb_uid = ip->i_uid;
2189 	freeblks->fb_previousinum = ip->i_number;
2190 	freeblks->fb_devvp = ip->i_devvp;
2191 	extblocks = 0;
2192 	if (fs->fs_magic == FS_UFS2_MAGIC)
2193 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
2194 	datablocks = DIP(ip, i_blocks) - extblocks;
2195 	if ((flags & IO_NORMAL) == 0) {
2196 		freeblks->fb_oldsize = 0;
2197 		freeblks->fb_chkcnt = 0;
2198 	} else {
2199 		freeblks->fb_oldsize = ip->i_size;
2200 		ip->i_size = 0;
2201 		DIP_SET(ip, i_size, 0);
2202 		freeblks->fb_chkcnt = datablocks;
2203 		for (i = 0; i < NDADDR; i++) {
2204 			freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
2205 			DIP_SET(ip, i_db[i], 0);
2206 		}
2207 		for (i = 0; i < NIADDR; i++) {
2208 			freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
2209 			DIP_SET(ip, i_ib[i], 0);
2210 		}
2211 		/*
2212 		 * If the file was removed, then the space being freed was
2213 		 * accounted for then (see softdep_filereleased()). If the
2214 		 * file is merely being truncated, then we account for it now.
2215 		 */
2216 		if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2217 			UFS_LOCK(ip->i_ump);
2218 			fs->fs_pendingblocks += datablocks;
2219 			UFS_UNLOCK(ip->i_ump);
2220 		}
2221 	}
2222 	if ((flags & IO_EXT) == 0) {
2223 		freeblks->fb_oldextsize = 0;
2224 	} else {
2225 		freeblks->fb_oldextsize = ip->i_din2->di_extsize;
2226 		ip->i_din2->di_extsize = 0;
2227 		freeblks->fb_chkcnt += extblocks;
2228 		for (i = 0; i < NXADDR; i++) {
2229 			freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
2230 			ip->i_din2->di_extb[i] = 0;
2231 		}
2232 	}
2233 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
2234 	/*
2235 	 * Push the zero'ed inode to to its disk buffer so that we are free
2236 	 * to delete its dependencies below. Once the dependencies are gone
2237 	 * the buffer can be safely released.
2238 	 */
2239 	if ((error = bread(ip->i_devvp,
2240 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
2241 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
2242 		brelse(bp);
2243 		softdep_error("softdep_setup_freeblocks", error);
2244 	}
2245 	if (ip->i_ump->um_fstype == UFS1)
2246 		*((struct ufs1_dinode *)bp->b_data +
2247 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
2248 	else
2249 		*((struct ufs2_dinode *)bp->b_data +
2250 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
2251 	/*
2252 	 * Find and eliminate any inode dependencies.
2253 	 */
2254 	ACQUIRE_LOCK(&lk);
2255 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
2256 	if ((inodedep->id_state & IOSTARTED) != 0)
2257 		panic("softdep_setup_freeblocks: inode busy");
2258 	/*
2259 	 * Add the freeblks structure to the list of operations that
2260 	 * must await the zero'ed inode being written to disk. If we
2261 	 * still have a bitmap dependency (delay == 0), then the inode
2262 	 * has never been written to disk, so we can process the
2263 	 * freeblks below once we have deleted the dependencies.
2264 	 */
2265 	delay = (inodedep->id_state & DEPCOMPLETE);
2266 	if (delay)
2267 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
2268 	/*
2269 	 * Because the file length has been truncated to zero, any
2270 	 * pending block allocation dependency structures associated
2271 	 * with this inode are obsolete and can simply be de-allocated.
2272 	 * We must first merge the two dependency lists to get rid of
2273 	 * any duplicate freefrag structures, then purge the merged list.
2274 	 * If we still have a bitmap dependency, then the inode has never
2275 	 * been written to disk, so we can free any fragments without delay.
2276 	 */
2277 	if (flags & IO_NORMAL) {
2278 		merge_inode_lists(&inodedep->id_newinoupdt,
2279 		    &inodedep->id_inoupdt);
2280 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
2281 			free_allocdirect(&inodedep->id_inoupdt, adp, delay);
2282 	}
2283 	if (flags & IO_EXT) {
2284 		merge_inode_lists(&inodedep->id_newextupdt,
2285 		    &inodedep->id_extupdt);
2286 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
2287 			free_allocdirect(&inodedep->id_extupdt, adp, delay);
2288 	}
2289 	FREE_LOCK(&lk);
2290 	bdwrite(bp);
2291 	/*
2292 	 * We must wait for any I/O in progress to finish so that
2293 	 * all potential buffers on the dirty list will be visible.
2294 	 * Once they are all there, walk the list and get rid of
2295 	 * any dependencies.
2296 	 */
2297 	vp = ITOV(ip);
2298 	VI_LOCK(vp);
2299 	drain_output(vp);
2300 restart:
2301 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
2302 		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
2303 		    ((flags & IO_NORMAL) == 0 &&
2304 		      (bp->b_xflags & BX_ALTDATA) == 0))
2305 			continue;
2306 		if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL)
2307 			goto restart;
2308 		VI_UNLOCK(vp);
2309 		ACQUIRE_LOCK(&lk);
2310 		(void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
2311 		deallocate_dependencies(bp, inodedep);
2312 		FREE_LOCK(&lk);
2313 		bp->b_flags |= B_INVAL | B_NOCACHE;
2314 		brelse(bp);
2315 		VI_LOCK(vp);
2316 		goto restart;
2317 	}
2318 	VI_UNLOCK(vp);
2319 	ACQUIRE_LOCK(&lk);
2320 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
2321 		(void) free_inodedep(inodedep);
2322 
2323 	if(delay) {
2324 		freeblks->fb_state |= DEPCOMPLETE;
2325 		/*
2326 		 * If the inode with zeroed block pointers is now on disk
2327 		 * we can start freeing blocks. Add freeblks to the worklist
2328 		 * instead of calling  handle_workitem_freeblocks directly as
2329 		 * it is more likely that additional IO is needed to complete
2330 		 * the request here than in the !delay case.
2331 		 */
2332 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
2333 			add_to_worklist(&freeblks->fb_list);
2334 	}
2335 
2336 	FREE_LOCK(&lk);
2337 	/*
2338 	 * If the inode has never been written to disk (delay == 0),
2339 	 * then we can process the freeblks now that we have deleted
2340 	 * the dependencies.
2341 	 */
2342 	if (!delay)
2343 		handle_workitem_freeblocks(freeblks, 0);
2344 }
2345 
2346 /*
2347  * Reclaim any dependency structures from a buffer that is about to
2348  * be reallocated to a new vnode. The buffer must be locked, thus,
2349  * no I/O completion operations can occur while we are manipulating
2350  * its associated dependencies. The mutex is held so that other I/O's
2351  * associated with related dependencies do not occur.
2352  */
2353 static void
2354 deallocate_dependencies(bp, inodedep)
2355 	struct buf *bp;
2356 	struct inodedep *inodedep;
2357 {
2358 	struct worklist *wk;
2359 	struct indirdep *indirdep;
2360 	struct allocindir *aip;
2361 	struct pagedep *pagedep;
2362 	struct dirrem *dirrem;
2363 	struct diradd *dap;
2364 	int i;
2365 
2366 	mtx_assert(&lk, MA_OWNED);
2367 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2368 		switch (wk->wk_type) {
2369 
2370 		case D_INDIRDEP:
2371 			indirdep = WK_INDIRDEP(wk);
2372 			/*
2373 			 * None of the indirect pointers will ever be visible,
2374 			 * so they can simply be tossed. GOINGAWAY ensures
2375 			 * that allocated pointers will be saved in the buffer
2376 			 * cache until they are freed. Note that they will
2377 			 * only be able to be found by their physical address
2378 			 * since the inode mapping the logical address will
2379 			 * be gone. The save buffer used for the safe copy
2380 			 * was allocated in setup_allocindir_phase2 using
2381 			 * the physical address so it could be used for this
2382 			 * purpose. Hence we swap the safe copy with the real
2383 			 * copy, allowing the safe copy to be freed and holding
2384 			 * on to the real copy for later use in indir_trunc.
2385 			 */
2386 			if (indirdep->ir_state & GOINGAWAY)
2387 				panic("deallocate_dependencies: already gone");
2388 			indirdep->ir_state |= GOINGAWAY;
2389 			VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
2390 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2391 				free_allocindir(aip, inodedep);
2392 			if (bp->b_lblkno >= 0 ||
2393 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
2394 				panic("deallocate_dependencies: not indir");
2395 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2396 			    bp->b_bcount);
2397 			WORKLIST_REMOVE(wk);
2398 			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
2399 			continue;
2400 
2401 		case D_PAGEDEP:
2402 			pagedep = WK_PAGEDEP(wk);
2403 			/*
2404 			 * None of the directory additions will ever be
2405 			 * visible, so they can simply be tossed.
2406 			 */
2407 			for (i = 0; i < DAHASHSZ; i++)
2408 				while ((dap =
2409 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2410 					free_diradd(dap);
2411 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2412 				free_diradd(dap);
2413 			/*
2414 			 * Copy any directory remove dependencies to the list
2415 			 * to be processed after the zero'ed inode is written.
2416 			 * If the inode has already been written, then they
2417 			 * can be dumped directly onto the work list.
2418 			 */
2419 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2420 				LIST_REMOVE(dirrem, dm_next);
2421 				dirrem->dm_dirinum = pagedep->pd_ino;
2422 				if (inodedep == NULL ||
2423 				    (inodedep->id_state & ALLCOMPLETE) ==
2424 				     ALLCOMPLETE)
2425 					add_to_worklist(&dirrem->dm_list);
2426 				else
2427 					WORKLIST_INSERT(&inodedep->id_bufwait,
2428 					    &dirrem->dm_list);
2429 			}
2430 			if ((pagedep->pd_state & NEWBLOCK) != 0) {
2431 				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2432 					if (wk->wk_type == D_NEWDIRBLK &&
2433 					    WK_NEWDIRBLK(wk)->db_pagedep ==
2434 					      pagedep)
2435 						break;
2436 				if (wk != NULL) {
2437 					WORKLIST_REMOVE(wk);
2438 					free_newdirblk(WK_NEWDIRBLK(wk));
2439 				} else
2440 					panic("deallocate_dependencies: "
2441 					      "lost pagedep");
2442 			}
2443 			WORKLIST_REMOVE(&pagedep->pd_list);
2444 			LIST_REMOVE(pagedep, pd_hash);
2445 			WORKITEM_FREE(pagedep, D_PAGEDEP);
2446 			continue;
2447 
2448 		case D_ALLOCINDIR:
2449 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2450 			continue;
2451 
2452 		case D_ALLOCDIRECT:
2453 		case D_INODEDEP:
2454 			panic("deallocate_dependencies: Unexpected type %s",
2455 			    TYPENAME(wk->wk_type));
2456 			/* NOTREACHED */
2457 
2458 		default:
2459 			panic("deallocate_dependencies: Unknown type %s",
2460 			    TYPENAME(wk->wk_type));
2461 			/* NOTREACHED */
2462 		}
2463 	}
2464 }
2465 
2466 /*
2467  * Free an allocdirect. Generate a new freefrag work request if appropriate.
2468  * This routine must be called with splbio interrupts blocked.
2469  */
2470 static void
2471 free_allocdirect(adphead, adp, delay)
2472 	struct allocdirectlst *adphead;
2473 	struct allocdirect *adp;
2474 	int delay;
2475 {
2476 	struct newdirblk *newdirblk;
2477 	struct worklist *wk;
2478 
2479 	mtx_assert(&lk, MA_OWNED);
2480 	if ((adp->ad_state & DEPCOMPLETE) == 0)
2481 		LIST_REMOVE(adp, ad_deps);
2482 	TAILQ_REMOVE(adphead, adp, ad_next);
2483 	if ((adp->ad_state & COMPLETE) == 0)
2484 		WORKLIST_REMOVE(&adp->ad_list);
2485 	if (adp->ad_freefrag != NULL) {
2486 		if (delay)
2487 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2488 			    &adp->ad_freefrag->ff_list);
2489 		else
2490 			add_to_worklist(&adp->ad_freefrag->ff_list);
2491 	}
2492 	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2493 		newdirblk = WK_NEWDIRBLK(wk);
2494 		WORKLIST_REMOVE(&newdirblk->db_list);
2495 		if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
2496 			panic("free_allocdirect: extra newdirblk");
2497 		if (delay)
2498 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2499 			    &newdirblk->db_list);
2500 		else
2501 			free_newdirblk(newdirblk);
2502 	}
2503 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2504 }
2505 
2506 /*
2507  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2508  * This routine must be called with splbio interrupts blocked.
2509  */
2510 static void
2511 free_newdirblk(newdirblk)
2512 	struct newdirblk *newdirblk;
2513 {
2514 	struct pagedep *pagedep;
2515 	struct diradd *dap;
2516 	int i;
2517 
2518 	mtx_assert(&lk, MA_OWNED);
2519 	/*
2520 	 * If the pagedep is still linked onto the directory buffer
2521 	 * dependency chain, then some of the entries on the
2522 	 * pd_pendinghd list may not be committed to disk yet. In
2523 	 * this case, we will simply clear the NEWBLOCK flag and
2524 	 * let the pd_pendinghd list be processed when the pagedep
2525 	 * is next written. If the pagedep is no longer on the buffer
2526 	 * dependency chain, then all the entries on the pd_pending
2527 	 * list are committed to disk and we can free them here.
2528 	 */
2529 	pagedep = newdirblk->db_pagedep;
2530 	pagedep->pd_state &= ~NEWBLOCK;
2531 	if ((pagedep->pd_state & ONWORKLIST) == 0)
2532 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2533 			free_diradd(dap);
2534 	/*
2535 	 * If no dependencies remain, the pagedep will be freed.
2536 	 */
2537 	for (i = 0; i < DAHASHSZ; i++)
2538 		if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
2539 			break;
2540 	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2541 		LIST_REMOVE(pagedep, pd_hash);
2542 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2543 	}
2544 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2545 }
2546 
2547 /*
2548  * Prepare an inode to be freed. The actual free operation is not
2549  * done until the zero'ed inode has been written to disk.
2550  */
2551 void
2552 softdep_freefile(pvp, ino, mode)
2553 	struct vnode *pvp;
2554 	ino_t ino;
2555 	int mode;
2556 {
2557 	struct inode *ip = VTOI(pvp);
2558 	struct inodedep *inodedep;
2559 	struct freefile *freefile;
2560 
2561 	/*
2562 	 * This sets up the inode de-allocation dependency.
2563 	 */
2564 	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2565 		M_FREEFILE, M_SOFTDEP_FLAGS);
2566 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
2567 	freefile->fx_mode = mode;
2568 	freefile->fx_oldinum = ino;
2569 	freefile->fx_devvp = ip->i_devvp;
2570 	if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2571 		UFS_LOCK(ip->i_ump);
2572 		ip->i_fs->fs_pendinginodes += 1;
2573 		UFS_UNLOCK(ip->i_ump);
2574 	}
2575 
2576 	/*
2577 	 * If the inodedep does not exist, then the zero'ed inode has
2578 	 * been written to disk. If the allocated inode has never been
2579 	 * written to disk, then the on-disk inode is zero'ed. In either
2580 	 * case we can free the file immediately.
2581 	 */
2582 	ACQUIRE_LOCK(&lk);
2583 	if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 ||
2584 	    check_inode_unwritten(inodedep)) {
2585 		FREE_LOCK(&lk);
2586 		handle_workitem_freefile(freefile);
2587 		return;
2588 	}
2589 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2590 	FREE_LOCK(&lk);
2591 }
2592 
2593 /*
2594  * Check to see if an inode has never been written to disk. If
2595  * so free the inodedep and return success, otherwise return failure.
2596  * This routine must be called with splbio interrupts blocked.
2597  *
2598  * If we still have a bitmap dependency, then the inode has never
2599  * been written to disk. Drop the dependency as it is no longer
2600  * necessary since the inode is being deallocated. We set the
2601  * ALLCOMPLETE flags since the bitmap now properly shows that the
2602  * inode is not allocated. Even if the inode is actively being
2603  * written, it has been rolled back to its zero'ed state, so we
2604  * are ensured that a zero inode is what is on the disk. For short
2605  * lived files, this change will usually result in removing all the
2606  * dependencies from the inode so that it can be freed immediately.
2607  */
2608 static int
2609 check_inode_unwritten(inodedep)
2610 	struct inodedep *inodedep;
2611 {
2612 
2613 	mtx_assert(&lk, MA_OWNED);
2614 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2615 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2616 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2617 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2618 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2619 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2620 	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2621 	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2622 	    inodedep->id_nlinkdelta != 0)
2623 		return (0);
2624 
2625 	/*
2626 	 * Another process might be in initiate_write_inodeblock_ufs[12]
2627 	 * trying to allocate memory without holding "Softdep Lock".
2628 	 */
2629 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2630 	    inodedep->id_savedino1 == NULL)
2631 		return (0);
2632 
2633 	inodedep->id_state |= ALLCOMPLETE;
2634 	LIST_REMOVE(inodedep, id_deps);
2635 	inodedep->id_buf = NULL;
2636 	if (inodedep->id_state & ONWORKLIST)
2637 		WORKLIST_REMOVE(&inodedep->id_list);
2638 	if (inodedep->id_savedino1 != NULL) {
2639 		FREE(inodedep->id_savedino1, M_SAVEDINO);
2640 		inodedep->id_savedino1 = NULL;
2641 	}
2642 	if (free_inodedep(inodedep) == 0)
2643 		panic("check_inode_unwritten: busy inode");
2644 	return (1);
2645 }
2646 
2647 /*
2648  * Try to free an inodedep structure. Return 1 if it could be freed.
2649  */
2650 static int
2651 free_inodedep(inodedep)
2652 	struct inodedep *inodedep;
2653 {
2654 
2655 	mtx_assert(&lk, MA_OWNED);
2656 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2657 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2658 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2659 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2660 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2661 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2662 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2663 	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2664 	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2665 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2666 		return (0);
2667 	LIST_REMOVE(inodedep, id_hash);
2668 	WORKITEM_FREE(inodedep, D_INODEDEP);
2669 	num_inodedep -= 1;
2670 	return (1);
2671 }
2672 
2673 /*
2674  * This workitem routine performs the block de-allocation.
2675  * The workitem is added to the pending list after the updated
2676  * inode block has been written to disk.  As mentioned above,
2677  * checks regarding the number of blocks de-allocated (compared
2678  * to the number of blocks allocated for the file) are also
2679  * performed in this function.
2680  */
2681 static void
2682 handle_workitem_freeblocks(freeblks, flags)
2683 	struct freeblks *freeblks;
2684 	int flags;
2685 {
2686 	struct inode *ip;
2687 	struct vnode *vp;
2688 	struct fs *fs;
2689 	struct ufsmount *ump;
2690 	int i, nblocks, level, bsize;
2691 	ufs2_daddr_t bn, blocksreleased = 0;
2692 	int error, allerror = 0;
2693 	ufs_lbn_t baselbns[NIADDR], tmpval;
2694 	int fs_pendingblocks;
2695 
2696 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2697 	fs = ump->um_fs;
2698 	fs_pendingblocks = 0;
2699 	tmpval = 1;
2700 	baselbns[0] = NDADDR;
2701 	for (i = 1; i < NIADDR; i++) {
2702 		tmpval *= NINDIR(fs);
2703 		baselbns[i] = baselbns[i - 1] + tmpval;
2704 	}
2705 	nblocks = btodb(fs->fs_bsize);
2706 	blocksreleased = 0;
2707 	/*
2708 	 * Release all extended attribute blocks or frags.
2709 	 */
2710 	if (freeblks->fb_oldextsize > 0) {
2711 		for (i = (NXADDR - 1); i >= 0; i--) {
2712 			if ((bn = freeblks->fb_eblks[i]) == 0)
2713 				continue;
2714 			bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2715 			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2716 			    freeblks->fb_previousinum);
2717 			blocksreleased += btodb(bsize);
2718 		}
2719 	}
2720 	/*
2721 	 * Release all data blocks or frags.
2722 	 */
2723 	if (freeblks->fb_oldsize > 0) {
2724 		/*
2725 		 * Indirect blocks first.
2726 		 */
2727 		for (level = (NIADDR - 1); level >= 0; level--) {
2728 			if ((bn = freeblks->fb_iblks[level]) == 0)
2729 				continue;
2730 			if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2731 			    level, baselbns[level], &blocksreleased)) == 0)
2732 				allerror = error;
2733 			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn,
2734 			    fs->fs_bsize, freeblks->fb_previousinum);
2735 			fs_pendingblocks += nblocks;
2736 			blocksreleased += nblocks;
2737 		}
2738 		/*
2739 		 * All direct blocks or frags.
2740 		 */
2741 		for (i = (NDADDR - 1); i >= 0; i--) {
2742 			if ((bn = freeblks->fb_dblks[i]) == 0)
2743 				continue;
2744 			bsize = sblksize(fs, freeblks->fb_oldsize, i);
2745 			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2746 			    freeblks->fb_previousinum);
2747 			fs_pendingblocks += btodb(bsize);
2748 			blocksreleased += btodb(bsize);
2749 		}
2750 	}
2751 	UFS_LOCK(ump);
2752 	fs->fs_pendingblocks -= fs_pendingblocks;
2753 	UFS_UNLOCK(ump);
2754 	/*
2755 	 * If we still have not finished background cleanup, then check
2756 	 * to see if the block count needs to be adjusted.
2757 	 */
2758 	if (freeblks->fb_chkcnt != blocksreleased &&
2759 	    (fs->fs_flags & FS_UNCLEAN) != 0 &&
2760 	    ffs_vget(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
2761 	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) {
2762 		ip = VTOI(vp);
2763 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2764 		    freeblks->fb_chkcnt - blocksreleased);
2765 		ip->i_flag |= IN_CHANGE;
2766 		vput(vp);
2767 	}
2768 
2769 #ifdef DIAGNOSTIC
2770 	if (freeblks->fb_chkcnt != blocksreleased &&
2771 	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2772 		printf("handle_workitem_freeblocks: block count\n");
2773 	if (allerror)
2774 		softdep_error("handle_workitem_freeblks", allerror);
2775 #endif /* DIAGNOSTIC */
2776 
2777 	ACQUIRE_LOCK(&lk);
2778 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2779 	FREE_LOCK(&lk);
2780 }
2781 
2782 /*
2783  * Release blocks associated with the inode ip and stored in the indirect
2784  * block dbn. If level is greater than SINGLE, the block is an indirect block
2785  * and recursive calls to indirtrunc must be used to cleanse other indirect
2786  * blocks.
2787  */
2788 static int
2789 indir_trunc(freeblks, dbn, level, lbn, countp)
2790 	struct freeblks *freeblks;
2791 	ufs2_daddr_t dbn;
2792 	int level;
2793 	ufs_lbn_t lbn;
2794 	ufs2_daddr_t *countp;
2795 {
2796 	struct buf *bp;
2797 	struct fs *fs;
2798 	struct worklist *wk;
2799 	struct indirdep *indirdep;
2800 	struct ufsmount *ump;
2801 	ufs1_daddr_t *bap1 = 0;
2802 	ufs2_daddr_t nb, *bap2 = 0;
2803 	ufs_lbn_t lbnadd;
2804 	int i, nblocks, ufs1fmt;
2805 	int error, allerror = 0;
2806 	int fs_pendingblocks;
2807 
2808 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2809 	fs = ump->um_fs;
2810 	fs_pendingblocks = 0;
2811 	lbnadd = 1;
2812 	for (i = level; i > 0; i--)
2813 		lbnadd *= NINDIR(fs);
2814 	/*
2815 	 * Get buffer of block pointers to be freed. This routine is not
2816 	 * called until the zero'ed inode has been written, so it is safe
2817 	 * to free blocks as they are encountered. Because the inode has
2818 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2819 	 * have to use the on-disk address and the block device for the
2820 	 * filesystem to look them up. If the file was deleted before its
2821 	 * indirect blocks were all written to disk, the routine that set
2822 	 * us up (deallocate_dependencies) will have arranged to leave
2823 	 * a complete copy of the indirect block in memory for our use.
2824 	 * Otherwise we have to read the blocks in from the disk.
2825 	 */
2826 #ifdef notyet
2827 	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2828 	    GB_NOCREAT);
2829 #else
2830 	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2831 #endif
2832 	ACQUIRE_LOCK(&lk);
2833 	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2834 		if (wk->wk_type != D_INDIRDEP ||
2835 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2836 		    (indirdep->ir_state & GOINGAWAY) == 0)
2837 			panic("indir_trunc: lost indirdep");
2838 		WORKLIST_REMOVE(wk);
2839 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2840 		if (LIST_FIRST(&bp->b_dep) != NULL)
2841 			panic("indir_trunc: dangling dep");
2842 		ump->um_numindirdeps -= 1;
2843 		FREE_LOCK(&lk);
2844 	} else {
2845 #ifdef notyet
2846 		if (bp)
2847 			brelse(bp);
2848 #endif
2849 		FREE_LOCK(&lk);
2850 		error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2851 		    NOCRED, &bp);
2852 		if (error) {
2853 			brelse(bp);
2854 			return (error);
2855 		}
2856 	}
2857 	/*
2858 	 * Recursively free indirect blocks.
2859 	 */
2860 	if (ump->um_fstype == UFS1) {
2861 		ufs1fmt = 1;
2862 		bap1 = (ufs1_daddr_t *)bp->b_data;
2863 	} else {
2864 		ufs1fmt = 0;
2865 		bap2 = (ufs2_daddr_t *)bp->b_data;
2866 	}
2867 	nblocks = btodb(fs->fs_bsize);
2868 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2869 		if (ufs1fmt)
2870 			nb = bap1[i];
2871 		else
2872 			nb = bap2[i];
2873 		if (nb == 0)
2874 			continue;
2875 		if (level != 0) {
2876 			if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2877 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2878 				allerror = error;
2879 		}
2880 		ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2881 		    freeblks->fb_previousinum);
2882 		fs_pendingblocks += nblocks;
2883 		*countp += nblocks;
2884 	}
2885 	UFS_LOCK(ump);
2886 	fs->fs_pendingblocks -= fs_pendingblocks;
2887 	UFS_UNLOCK(ump);
2888 	bp->b_flags |= B_INVAL | B_NOCACHE;
2889 	brelse(bp);
2890 	return (allerror);
2891 }
2892 
2893 /*
2894  * Free an allocindir.
2895  * This routine must be called with splbio interrupts blocked.
2896  */
2897 static void
2898 free_allocindir(aip, inodedep)
2899 	struct allocindir *aip;
2900 	struct inodedep *inodedep;
2901 {
2902 	struct freefrag *freefrag;
2903 
2904 	mtx_assert(&lk, MA_OWNED);
2905 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2906 		LIST_REMOVE(aip, ai_deps);
2907 	if (aip->ai_state & ONWORKLIST)
2908 		WORKLIST_REMOVE(&aip->ai_list);
2909 	LIST_REMOVE(aip, ai_next);
2910 	if ((freefrag = aip->ai_freefrag) != NULL) {
2911 		if (inodedep == NULL)
2912 			add_to_worklist(&freefrag->ff_list);
2913 		else
2914 			WORKLIST_INSERT(&inodedep->id_bufwait,
2915 			    &freefrag->ff_list);
2916 	}
2917 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2918 }
2919 
2920 /*
2921  * Directory entry addition dependencies.
2922  *
2923  * When adding a new directory entry, the inode (with its incremented link
2924  * count) must be written to disk before the directory entry's pointer to it.
2925  * Also, if the inode is newly allocated, the corresponding freemap must be
2926  * updated (on disk) before the directory entry's pointer. These requirements
2927  * are met via undo/redo on the directory entry's pointer, which consists
2928  * simply of the inode number.
2929  *
2930  * As directory entries are added and deleted, the free space within a
2931  * directory block can become fragmented.  The ufs filesystem will compact
2932  * a fragmented directory block to make space for a new entry. When this
2933  * occurs, the offsets of previously added entries change. Any "diradd"
2934  * dependency structures corresponding to these entries must be updated with
2935  * the new offsets.
2936  */
2937 
2938 /*
2939  * This routine is called after the in-memory inode's link
2940  * count has been incremented, but before the directory entry's
2941  * pointer to the inode has been set.
2942  */
2943 int
2944 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2945 	struct buf *bp;		/* buffer containing directory block */
2946 	struct inode *dp;	/* inode for directory */
2947 	off_t diroffset;	/* offset of new entry in directory */
2948 	ino_t newinum;		/* inode referenced by new directory entry */
2949 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2950 	int isnewblk;		/* entry is in a newly allocated block */
2951 {
2952 	int offset;		/* offset of new entry within directory block */
2953 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2954 	struct fs *fs;
2955 	struct diradd *dap;
2956 	struct allocdirect *adp;
2957 	struct pagedep *pagedep;
2958 	struct inodedep *inodedep;
2959 	struct newdirblk *newdirblk = 0;
2960 	struct mkdir *mkdir1, *mkdir2;
2961 	struct mount *mp;
2962 
2963 	/*
2964 	 * Whiteouts have no dependencies.
2965 	 */
2966 	if (newinum == WINO) {
2967 		if (newdirbp != NULL)
2968 			bdwrite(newdirbp);
2969 		return (0);
2970 	}
2971 	mp = UFSTOVFS(dp->i_ump);
2972 	fs = dp->i_fs;
2973 	lbn = lblkno(fs, diroffset);
2974 	offset = blkoff(fs, diroffset);
2975 	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2976 		M_SOFTDEP_FLAGS|M_ZERO);
2977 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
2978 	dap->da_offset = offset;
2979 	dap->da_newinum = newinum;
2980 	dap->da_state = ATTACHED;
2981 	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2982 		MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2983 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
2984 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
2985 	}
2986 	if (newdirbp == NULL) {
2987 		dap->da_state |= DEPCOMPLETE;
2988 		ACQUIRE_LOCK(&lk);
2989 	} else {
2990 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2991 		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2992 		    M_SOFTDEP_FLAGS);
2993 		workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
2994 		mkdir1->md_state = MKDIR_BODY;
2995 		mkdir1->md_diradd = dap;
2996 		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2997 		    M_SOFTDEP_FLAGS);
2998 		workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
2999 		mkdir2->md_state = MKDIR_PARENT;
3000 		mkdir2->md_diradd = dap;
3001 		/*
3002 		 * Dependency on "." and ".." being written to disk.
3003 		 */
3004 		mkdir1->md_buf = newdirbp;
3005 		ACQUIRE_LOCK(&lk);
3006 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
3007 		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
3008 		FREE_LOCK(&lk);
3009 		bdwrite(newdirbp);
3010 		/*
3011 		 * Dependency on link count increase for parent directory
3012 		 */
3013 		ACQUIRE_LOCK(&lk);
3014 		if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0
3015 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3016 			dap->da_state &= ~MKDIR_PARENT;
3017 			WORKITEM_FREE(mkdir2, D_MKDIR);
3018 		} else {
3019 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
3020 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
3021 		}
3022 	}
3023 	/*
3024 	 * Link into parent directory pagedep to await its being written.
3025 	 */
3026 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3027 		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3028 	dap->da_pagedep = pagedep;
3029 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
3030 	    da_pdlist);
3031 	/*
3032 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3033 	 * is not yet written. If it is written, do the post-inode write
3034 	 * processing to put it on the id_pendinghd list.
3035 	 */
3036 	(void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
3037 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
3038 		diradd_inode_written(dap, inodedep);
3039 	else
3040 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3041 	if (isnewblk) {
3042 		/*
3043 		 * Directories growing into indirect blocks are rare
3044 		 * enough and the frequency of new block allocation
3045 		 * in those cases even more rare, that we choose not
3046 		 * to bother tracking them. Rather we simply force the
3047 		 * new directory entry to disk.
3048 		 */
3049 		if (lbn >= NDADDR) {
3050 			FREE_LOCK(&lk);
3051 			/*
3052 			 * We only have a new allocation when at the
3053 			 * beginning of a new block, not when we are
3054 			 * expanding into an existing block.
3055 			 */
3056 			if (blkoff(fs, diroffset) == 0)
3057 				return (1);
3058 			return (0);
3059 		}
3060 		/*
3061 		 * We only have a new allocation when at the beginning
3062 		 * of a new fragment, not when we are expanding into an
3063 		 * existing fragment. Also, there is nothing to do if we
3064 		 * are already tracking this block.
3065 		 */
3066 		if (fragoff(fs, diroffset) != 0) {
3067 			FREE_LOCK(&lk);
3068 			return (0);
3069 		}
3070 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
3071 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
3072 			FREE_LOCK(&lk);
3073 			return (0);
3074 		}
3075 		/*
3076 		 * Find our associated allocdirect and have it track us.
3077 		 */
3078 		if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0)
3079 			panic("softdep_setup_directory_add: lost inodedep");
3080 		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
3081 		if (adp == NULL || adp->ad_lbn != lbn)
3082 			panic("softdep_setup_directory_add: lost entry");
3083 		pagedep->pd_state |= NEWBLOCK;
3084 		newdirblk->db_pagedep = pagedep;
3085 		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
3086 	}
3087 	FREE_LOCK(&lk);
3088 	return (0);
3089 }
3090 
3091 /*
3092  * This procedure is called to change the offset of a directory
3093  * entry when compacting a directory block which must be owned
3094  * exclusively by the caller. Note that the actual entry movement
3095  * must be done in this procedure to ensure that no I/O completions
3096  * occur while the move is in progress.
3097  */
3098 void
3099 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
3100 	struct inode *dp;	/* inode for directory */
3101 	caddr_t base;		/* address of dp->i_offset */
3102 	caddr_t oldloc;		/* address of old directory location */
3103 	caddr_t newloc;		/* address of new directory location */
3104 	int entrysize;		/* size of directory entry */
3105 {
3106 	int offset, oldoffset, newoffset;
3107 	struct pagedep *pagedep;
3108 	struct diradd *dap;
3109 	ufs_lbn_t lbn;
3110 
3111 	ACQUIRE_LOCK(&lk);
3112 	lbn = lblkno(dp->i_fs, dp->i_offset);
3113 	offset = blkoff(dp->i_fs, dp->i_offset);
3114 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
3115 		goto done;
3116 	oldoffset = offset + (oldloc - base);
3117 	newoffset = offset + (newloc - base);
3118 
3119 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
3120 		if (dap->da_offset != oldoffset)
3121 			continue;
3122 		dap->da_offset = newoffset;
3123 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
3124 			break;
3125 		LIST_REMOVE(dap, da_pdlist);
3126 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
3127 		    dap, da_pdlist);
3128 		break;
3129 	}
3130 	if (dap == NULL) {
3131 
3132 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
3133 			if (dap->da_offset == oldoffset) {
3134 				dap->da_offset = newoffset;
3135 				break;
3136 			}
3137 		}
3138 	}
3139 done:
3140 	bcopy(oldloc, newloc, entrysize);
3141 	FREE_LOCK(&lk);
3142 }
3143 
3144 /*
3145  * Free a diradd dependency structure. This routine must be called
3146  * with splbio interrupts blocked.
3147  */
3148 static void
3149 free_diradd(dap)
3150 	struct diradd *dap;
3151 {
3152 	struct dirrem *dirrem;
3153 	struct pagedep *pagedep;
3154 	struct inodedep *inodedep;
3155 	struct mkdir *mkdir, *nextmd;
3156 
3157 	mtx_assert(&lk, MA_OWNED);
3158 	WORKLIST_REMOVE(&dap->da_list);
3159 	LIST_REMOVE(dap, da_pdlist);
3160 	if ((dap->da_state & DIRCHG) == 0) {
3161 		pagedep = dap->da_pagedep;
3162 	} else {
3163 		dirrem = dap->da_previous;
3164 		pagedep = dirrem->dm_pagedep;
3165 		dirrem->dm_dirinum = pagedep->pd_ino;
3166 		add_to_worklist(&dirrem->dm_list);
3167 	}
3168 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
3169 	    0, &inodedep) != 0)
3170 		(void) free_inodedep(inodedep);
3171 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
3172 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
3173 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
3174 			if (mkdir->md_diradd != dap)
3175 				continue;
3176 			dap->da_state &= ~mkdir->md_state;
3177 			WORKLIST_REMOVE(&mkdir->md_list);
3178 			LIST_REMOVE(mkdir, md_mkdirs);
3179 			WORKITEM_FREE(mkdir, D_MKDIR);
3180 		}
3181 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
3182 			panic("free_diradd: unfound ref");
3183 	}
3184 	WORKITEM_FREE(dap, D_DIRADD);
3185 }
3186 
3187 /*
3188  * Directory entry removal dependencies.
3189  *
3190  * When removing a directory entry, the entry's inode pointer must be
3191  * zero'ed on disk before the corresponding inode's link count is decremented
3192  * (possibly freeing the inode for re-use). This dependency is handled by
3193  * updating the directory entry but delaying the inode count reduction until
3194  * after the directory block has been written to disk. After this point, the
3195  * inode count can be decremented whenever it is convenient.
3196  */
3197 
3198 /*
3199  * This routine should be called immediately after removing
3200  * a directory entry.  The inode's link count should not be
3201  * decremented by the calling procedure -- the soft updates
3202  * code will do this task when it is safe.
3203  */
3204 void
3205 softdep_setup_remove(bp, dp, ip, isrmdir)
3206 	struct buf *bp;		/* buffer containing directory block */
3207 	struct inode *dp;	/* inode for the directory being modified */
3208 	struct inode *ip;	/* inode for directory entry being removed */
3209 	int isrmdir;		/* indicates if doing RMDIR */
3210 {
3211 	struct dirrem *dirrem, *prevdirrem;
3212 
3213 	/*
3214 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
3215 	 */
3216 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3217 
3218 	/*
3219 	 * If the COMPLETE flag is clear, then there were no active
3220 	 * entries and we want to roll back to a zeroed entry until
3221 	 * the new inode is committed to disk. If the COMPLETE flag is
3222 	 * set then we have deleted an entry that never made it to
3223 	 * disk. If the entry we deleted resulted from a name change,
3224 	 * then the old name still resides on disk. We cannot delete
3225 	 * its inode (returned to us in prevdirrem) until the zeroed
3226 	 * directory entry gets to disk. The new inode has never been
3227 	 * referenced on the disk, so can be deleted immediately.
3228 	 */
3229 	if ((dirrem->dm_state & COMPLETE) == 0) {
3230 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
3231 		    dm_next);
3232 		FREE_LOCK(&lk);
3233 	} else {
3234 		if (prevdirrem != NULL)
3235 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
3236 			    prevdirrem, dm_next);
3237 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
3238 		FREE_LOCK(&lk);
3239 		handle_workitem_remove(dirrem, NULL);
3240 	}
3241 }
3242 
3243 /*
3244  * Allocate a new dirrem if appropriate and return it along with
3245  * its associated pagedep. Called without a lock, returns with lock.
3246  */
3247 static long num_dirrem;		/* number of dirrem allocated */
3248 static struct dirrem *
3249 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
3250 	struct buf *bp;		/* buffer containing directory block */
3251 	struct inode *dp;	/* inode for the directory being modified */
3252 	struct inode *ip;	/* inode for directory entry being removed */
3253 	int isrmdir;		/* indicates if doing RMDIR */
3254 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
3255 {
3256 	int offset;
3257 	ufs_lbn_t lbn;
3258 	struct diradd *dap;
3259 	struct dirrem *dirrem;
3260 	struct pagedep *pagedep;
3261 
3262 	/*
3263 	 * Whiteouts have no deletion dependencies.
3264 	 */
3265 	if (ip == NULL)
3266 		panic("newdirrem: whiteout");
3267 	/*
3268 	 * If we are over our limit, try to improve the situation.
3269 	 * Limiting the number of dirrem structures will also limit
3270 	 * the number of freefile and freeblks structures.
3271 	 */
3272 	ACQUIRE_LOCK(&lk);
3273 	if (num_dirrem > max_softdeps / 2)
3274 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
3275 	num_dirrem += 1;
3276 	FREE_LOCK(&lk);
3277 	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
3278 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
3279 	workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount);
3280 	dirrem->dm_state = isrmdir ? RMDIR : 0;
3281 	dirrem->dm_oldinum = ip->i_number;
3282 	*prevdirremp = NULL;
3283 
3284 	ACQUIRE_LOCK(&lk);
3285 	lbn = lblkno(dp->i_fs, dp->i_offset);
3286 	offset = blkoff(dp->i_fs, dp->i_offset);
3287 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3288 		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3289 	dirrem->dm_pagedep = pagedep;
3290 	/*
3291 	 * Check for a diradd dependency for the same directory entry.
3292 	 * If present, then both dependencies become obsolete and can
3293 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
3294 	 * list and the pd_pendinghd list.
3295 	 */
3296 
3297 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
3298 		if (dap->da_offset == offset)
3299 			break;
3300 	if (dap == NULL) {
3301 
3302 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
3303 			if (dap->da_offset == offset)
3304 				break;
3305 		if (dap == NULL)
3306 			return (dirrem);
3307 	}
3308 	/*
3309 	 * Must be ATTACHED at this point.
3310 	 */
3311 	if ((dap->da_state & ATTACHED) == 0)
3312 		panic("newdirrem: not ATTACHED");
3313 	if (dap->da_newinum != ip->i_number)
3314 		panic("newdirrem: inum %d should be %d",
3315 		    ip->i_number, dap->da_newinum);
3316 	/*
3317 	 * If we are deleting a changed name that never made it to disk,
3318 	 * then return the dirrem describing the previous inode (which
3319 	 * represents the inode currently referenced from this entry on disk).
3320 	 */
3321 	if ((dap->da_state & DIRCHG) != 0) {
3322 		*prevdirremp = dap->da_previous;
3323 		dap->da_state &= ~DIRCHG;
3324 		dap->da_pagedep = pagedep;
3325 	}
3326 	/*
3327 	 * We are deleting an entry that never made it to disk.
3328 	 * Mark it COMPLETE so we can delete its inode immediately.
3329 	 */
3330 	dirrem->dm_state |= COMPLETE;
3331 	free_diradd(dap);
3332 	return (dirrem);
3333 }
3334 
3335 /*
3336  * Directory entry change dependencies.
3337  *
3338  * Changing an existing directory entry requires that an add operation
3339  * be completed first followed by a deletion. The semantics for the addition
3340  * are identical to the description of adding a new entry above except
3341  * that the rollback is to the old inode number rather than zero. Once
3342  * the addition dependency is completed, the removal is done as described
3343  * in the removal routine above.
3344  */
3345 
3346 /*
3347  * This routine should be called immediately after changing
3348  * a directory entry.  The inode's link count should not be
3349  * decremented by the calling procedure -- the soft updates
3350  * code will perform this task when it is safe.
3351  */
3352 void
3353 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
3354 	struct buf *bp;		/* buffer containing directory block */
3355 	struct inode *dp;	/* inode for the directory being modified */
3356 	struct inode *ip;	/* inode for directory entry being removed */
3357 	ino_t newinum;		/* new inode number for changed entry */
3358 	int isrmdir;		/* indicates if doing RMDIR */
3359 {
3360 	int offset;
3361 	struct diradd *dap = NULL;
3362 	struct dirrem *dirrem, *prevdirrem;
3363 	struct pagedep *pagedep;
3364 	struct inodedep *inodedep;
3365 	struct mount *mp;
3366 
3367 	offset = blkoff(dp->i_fs, dp->i_offset);
3368 	mp = UFSTOVFS(dp->i_ump);
3369 
3370 	/*
3371 	 * Whiteouts do not need diradd dependencies.
3372 	 */
3373 	if (newinum != WINO) {
3374 		MALLOC(dap, struct diradd *, sizeof(struct diradd),
3375 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
3376 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
3377 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
3378 		dap->da_offset = offset;
3379 		dap->da_newinum = newinum;
3380 	}
3381 
3382 	/*
3383 	 * Allocate a new dirrem and ACQUIRE_LOCK.
3384 	 */
3385 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3386 	pagedep = dirrem->dm_pagedep;
3387 	/*
3388 	 * The possible values for isrmdir:
3389 	 *	0 - non-directory file rename
3390 	 *	1 - directory rename within same directory
3391 	 *   inum - directory rename to new directory of given inode number
3392 	 * When renaming to a new directory, we are both deleting and
3393 	 * creating a new directory entry, so the link count on the new
3394 	 * directory should not change. Thus we do not need the followup
3395 	 * dirrem which is usually done in handle_workitem_remove. We set
3396 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
3397 	 * followup dirrem.
3398 	 */
3399 	if (isrmdir > 1)
3400 		dirrem->dm_state |= DIRCHG;
3401 
3402 	/*
3403 	 * Whiteouts have no additional dependencies,
3404 	 * so just put the dirrem on the correct list.
3405 	 */
3406 	if (newinum == WINO) {
3407 		if ((dirrem->dm_state & COMPLETE) == 0) {
3408 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
3409 			    dm_next);
3410 		} else {
3411 			dirrem->dm_dirinum = pagedep->pd_ino;
3412 			add_to_worklist(&dirrem->dm_list);
3413 		}
3414 		FREE_LOCK(&lk);
3415 		return;
3416 	}
3417 
3418 	/*
3419 	 * If the COMPLETE flag is clear, then there were no active
3420 	 * entries and we want to roll back to the previous inode until
3421 	 * the new inode is committed to disk. If the COMPLETE flag is
3422 	 * set, then we have deleted an entry that never made it to disk.
3423 	 * If the entry we deleted resulted from a name change, then the old
3424 	 * inode reference still resides on disk. Any rollback that we do
3425 	 * needs to be to that old inode (returned to us in prevdirrem). If
3426 	 * the entry we deleted resulted from a create, then there is
3427 	 * no entry on the disk, so we want to roll back to zero rather
3428 	 * than the uncommitted inode. In either of the COMPLETE cases we
3429 	 * want to immediately free the unwritten and unreferenced inode.
3430 	 */
3431 	if ((dirrem->dm_state & COMPLETE) == 0) {
3432 		dap->da_previous = dirrem;
3433 	} else {
3434 		if (prevdirrem != NULL) {
3435 			dap->da_previous = prevdirrem;
3436 		} else {
3437 			dap->da_state &= ~DIRCHG;
3438 			dap->da_pagedep = pagedep;
3439 		}
3440 		dirrem->dm_dirinum = pagedep->pd_ino;
3441 		add_to_worklist(&dirrem->dm_list);
3442 	}
3443 	/*
3444 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3445 	 * is not yet written. If it is written, do the post-inode write
3446 	 * processing to put it on the id_pendinghd list.
3447 	 */
3448 	if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 ||
3449 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3450 		dap->da_state |= COMPLETE;
3451 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3452 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3453 	} else {
3454 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3455 		    dap, da_pdlist);
3456 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3457 	}
3458 	FREE_LOCK(&lk);
3459 }
3460 
3461 /*
3462  * Called whenever the link count on an inode is changed.
3463  * It creates an inode dependency so that the new reference(s)
3464  * to the inode cannot be committed to disk until the updated
3465  * inode has been written.
3466  */
3467 void
3468 softdep_change_linkcnt(ip)
3469 	struct inode *ip;	/* the inode with the increased link count */
3470 {
3471 	struct inodedep *inodedep;
3472 
3473 	ACQUIRE_LOCK(&lk);
3474 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3475 	    DEPALLOC, &inodedep);
3476 	if (ip->i_nlink < ip->i_effnlink)
3477 		panic("softdep_change_linkcnt: bad delta");
3478 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3479 	FREE_LOCK(&lk);
3480 }
3481 
3482 /*
3483  * Called when the effective link count and the reference count
3484  * on an inode drops to zero. At this point there are no names
3485  * referencing the file in the filesystem and no active file
3486  * references. The space associated with the file will be freed
3487  * as soon as the necessary soft dependencies are cleared.
3488  */
3489 void
3490 softdep_releasefile(ip)
3491 	struct inode *ip;	/* inode with the zero effective link count */
3492 {
3493 	struct inodedep *inodedep;
3494 	struct fs *fs;
3495 	int extblocks;
3496 
3497 	if (ip->i_effnlink > 0)
3498 		panic("softdep_filerelease: file still referenced");
3499 	/*
3500 	 * We may be called several times as the real reference count
3501 	 * drops to zero. We only want to account for the space once.
3502 	 */
3503 	if (ip->i_flag & IN_SPACECOUNTED)
3504 		return;
3505 	/*
3506 	 * We have to deactivate a snapshot otherwise copyonwrites may
3507 	 * add blocks and the cleanup may remove blocks after we have
3508 	 * tried to account for them.
3509 	 */
3510 	if ((ip->i_flags & SF_SNAPSHOT) != 0)
3511 		ffs_snapremove(ITOV(ip));
3512 	/*
3513 	 * If we are tracking an nlinkdelta, we have to also remember
3514 	 * whether we accounted for the freed space yet.
3515 	 */
3516 	ACQUIRE_LOCK(&lk);
3517 	if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep)))
3518 		inodedep->id_state |= SPACECOUNTED;
3519 	FREE_LOCK(&lk);
3520 	fs = ip->i_fs;
3521 	extblocks = 0;
3522 	if (fs->fs_magic == FS_UFS2_MAGIC)
3523 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3524 	UFS_LOCK(ip->i_ump);
3525 	ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3526 	ip->i_fs->fs_pendinginodes += 1;
3527 	UFS_UNLOCK(ip->i_ump);
3528 	ip->i_flag |= IN_SPACECOUNTED;
3529 }
3530 
3531 /*
3532  * This workitem decrements the inode's link count.
3533  * If the link count reaches zero, the file is removed.
3534  */
3535 static void
3536 handle_workitem_remove(dirrem, xp)
3537 	struct dirrem *dirrem;
3538 	struct vnode *xp;
3539 {
3540 	struct thread *td = curthread;
3541 	struct inodedep *inodedep;
3542 	struct vnode *vp;
3543 	struct inode *ip;
3544 	ino_t oldinum;
3545 	int error;
3546 
3547 	if ((vp = xp) == NULL &&
3548 	    (error = ffs_vget(dirrem->dm_list.wk_mp,
3549 	    dirrem->dm_oldinum, LK_EXCLUSIVE, &vp)) != 0) {
3550 		softdep_error("handle_workitem_remove: vget", error);
3551 		return;
3552 	}
3553 	ip = VTOI(vp);
3554 	ACQUIRE_LOCK(&lk);
3555 	if ((inodedep_lookup(dirrem->dm_list.wk_mp,
3556 	    dirrem->dm_oldinum, 0, &inodedep)) == 0)
3557 		panic("handle_workitem_remove: lost inodedep");
3558 	/*
3559 	 * Normal file deletion.
3560 	 */
3561 	if ((dirrem->dm_state & RMDIR) == 0) {
3562 		ip->i_nlink--;
3563 		DIP_SET(ip, i_nlink, ip->i_nlink);
3564 		ip->i_flag |= IN_CHANGE;
3565 		if (ip->i_nlink < ip->i_effnlink)
3566 			panic("handle_workitem_remove: bad file delta");
3567 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3568 		num_dirrem -= 1;
3569 		WORKITEM_FREE(dirrem, D_DIRREM);
3570 		FREE_LOCK(&lk);
3571 		vput(vp);
3572 		return;
3573 	}
3574 	/*
3575 	 * Directory deletion. Decrement reference count for both the
3576 	 * just deleted parent directory entry and the reference for ".".
3577 	 * Next truncate the directory to length zero. When the
3578 	 * truncation completes, arrange to have the reference count on
3579 	 * the parent decremented to account for the loss of "..".
3580 	 */
3581 	ip->i_nlink -= 2;
3582 	DIP_SET(ip, i_nlink, ip->i_nlink);
3583 	ip->i_flag |= IN_CHANGE;
3584 	if (ip->i_nlink < ip->i_effnlink)
3585 		panic("handle_workitem_remove: bad dir delta");
3586 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3587 	FREE_LOCK(&lk);
3588 	if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3589 		softdep_error("handle_workitem_remove: truncate", error);
3590 	ACQUIRE_LOCK(&lk);
3591 	/*
3592 	 * Rename a directory to a new parent. Since, we are both deleting
3593 	 * and creating a new directory entry, the link count on the new
3594 	 * directory should not change. Thus we skip the followup dirrem.
3595 	 */
3596 	if (dirrem->dm_state & DIRCHG) {
3597 		num_dirrem -= 1;
3598 		WORKITEM_FREE(dirrem, D_DIRREM);
3599 		FREE_LOCK(&lk);
3600 		vput(vp);
3601 		return;
3602 	}
3603 	/*
3604 	 * If the inodedep does not exist, then the zero'ed inode has
3605 	 * been written to disk. If the allocated inode has never been
3606 	 * written to disk, then the on-disk inode is zero'ed. In either
3607 	 * case we can remove the file immediately.
3608 	 */
3609 	dirrem->dm_state = 0;
3610 	oldinum = dirrem->dm_oldinum;
3611 	dirrem->dm_oldinum = dirrem->dm_dirinum;
3612 	if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum,
3613 	    0, &inodedep) == 0 || check_inode_unwritten(inodedep)) {
3614 		FREE_LOCK(&lk);
3615 		vput(vp);
3616 		handle_workitem_remove(dirrem, NULL);
3617 		return;
3618 	}
3619 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3620 	FREE_LOCK(&lk);
3621 	ip->i_flag |= IN_CHANGE;
3622 	ffs_update(vp, 0);
3623 	vput(vp);
3624 }
3625 
3626 /*
3627  * Inode de-allocation dependencies.
3628  *
3629  * When an inode's link count is reduced to zero, it can be de-allocated. We
3630  * found it convenient to postpone de-allocation until after the inode is
3631  * written to disk with its new link count (zero).  At this point, all of the
3632  * on-disk inode's block pointers are nullified and, with careful dependency
3633  * list ordering, all dependencies related to the inode will be satisfied and
3634  * the corresponding dependency structures de-allocated.  So, if/when the
3635  * inode is reused, there will be no mixing of old dependencies with new
3636  * ones.  This artificial dependency is set up by the block de-allocation
3637  * procedure above (softdep_setup_freeblocks) and completed by the
3638  * following procedure.
3639  */
3640 static void
3641 handle_workitem_freefile(freefile)
3642 	struct freefile *freefile;
3643 {
3644 	struct fs *fs;
3645 	struct inodedep *idp;
3646 	struct ufsmount *ump;
3647 	int error;
3648 
3649 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
3650 	fs = ump->um_fs;
3651 #ifdef DEBUG
3652 	ACQUIRE_LOCK(&lk);
3653 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
3654 	FREE_LOCK(&lk);
3655 	if (error)
3656 		panic("handle_workitem_freefile: inodedep survived");
3657 #endif
3658 	UFS_LOCK(ump);
3659 	fs->fs_pendinginodes -= 1;
3660 	UFS_UNLOCK(ump);
3661 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
3662 	    freefile->fx_oldinum, freefile->fx_mode)) != 0)
3663 		softdep_error("handle_workitem_freefile", error);
3664 	ACQUIRE_LOCK(&lk);
3665 	WORKITEM_FREE(freefile, D_FREEFILE);
3666 	FREE_LOCK(&lk);
3667 }
3668 
3669 
3670 /*
3671  * Helper function which unlinks marker element from work list and returns
3672  * the next element on the list.
3673  */
3674 static __inline struct worklist *
3675 markernext(struct worklist *marker)
3676 {
3677 	struct worklist *next;
3678 
3679 	next = LIST_NEXT(marker, wk_list);
3680 	LIST_REMOVE(marker, wk_list);
3681 	return next;
3682 }
3683 
3684 /*
3685  * Disk writes.
3686  *
3687  * The dependency structures constructed above are most actively used when file
3688  * system blocks are written to disk.  No constraints are placed on when a
3689  * block can be written, but unsatisfied update dependencies are made safe by
3690  * modifying (or replacing) the source memory for the duration of the disk
3691  * write.  When the disk write completes, the memory block is again brought
3692  * up-to-date.
3693  *
3694  * In-core inode structure reclamation.
3695  *
3696  * Because there are a finite number of "in-core" inode structures, they are
3697  * reused regularly.  By transferring all inode-related dependencies to the
3698  * in-memory inode block and indexing them separately (via "inodedep"s), we
3699  * can allow "in-core" inode structures to be reused at any time and avoid
3700  * any increase in contention.
3701  *
3702  * Called just before entering the device driver to initiate a new disk I/O.
3703  * The buffer must be locked, thus, no I/O completion operations can occur
3704  * while we are manipulating its associated dependencies.
3705  */
3706 static void
3707 softdep_disk_io_initiation(bp)
3708 	struct buf *bp;		/* structure describing disk write to occur */
3709 {
3710 	struct worklist *wk;
3711 	struct worklist marker;
3712 	struct indirdep *indirdep;
3713 	struct inodedep *inodedep;
3714 
3715 	/*
3716 	 * We only care about write operations. There should never
3717 	 * be dependencies for reads.
3718 	 */
3719 	if (bp->b_iocmd != BIO_WRITE)
3720 		panic("softdep_disk_io_initiation: not write");
3721 
3722 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3723 	PHOLD(curproc);			/* Don't swap out kernel stack */
3724 
3725 	ACQUIRE_LOCK(&lk);
3726 	/*
3727 	 * Do any necessary pre-I/O processing.
3728 	 */
3729 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
3730 	     wk = markernext(&marker)) {
3731 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3732 		switch (wk->wk_type) {
3733 
3734 		case D_PAGEDEP:
3735 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3736 			continue;
3737 
3738 		case D_INODEDEP:
3739 			inodedep = WK_INODEDEP(wk);
3740 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3741 				initiate_write_inodeblock_ufs1(inodedep, bp);
3742 			else
3743 				initiate_write_inodeblock_ufs2(inodedep, bp);
3744 			continue;
3745 
3746 		case D_INDIRDEP:
3747 			indirdep = WK_INDIRDEP(wk);
3748 			if (indirdep->ir_state & GOINGAWAY)
3749 				panic("disk_io_initiation: indirdep gone");
3750 			/*
3751 			 * If there are no remaining dependencies, this
3752 			 * will be writing the real pointers, so the
3753 			 * dependency can be freed.
3754 			 */
3755 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3756 				struct buf *bp;
3757 
3758 				bp = indirdep->ir_savebp;
3759 				bp->b_flags |= B_INVAL | B_NOCACHE;
3760 				/* inline expand WORKLIST_REMOVE(wk); */
3761 				wk->wk_state &= ~ONWORKLIST;
3762 				LIST_REMOVE(wk, wk_list);
3763 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3764 				FREE_LOCK(&lk);
3765 				brelse(bp);
3766 				ACQUIRE_LOCK(&lk);
3767 				continue;
3768 			}
3769 			/*
3770 			 * Replace up-to-date version with safe version.
3771 			 */
3772 			FREE_LOCK(&lk);
3773 			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3774 			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3775 			ACQUIRE_LOCK(&lk);
3776 			indirdep->ir_state &= ~ATTACHED;
3777 			indirdep->ir_state |= UNDONE;
3778 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3779 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3780 			    bp->b_bcount);
3781 			continue;
3782 
3783 		case D_MKDIR:
3784 		case D_BMSAFEMAP:
3785 		case D_ALLOCDIRECT:
3786 		case D_ALLOCINDIR:
3787 			continue;
3788 
3789 		default:
3790 			panic("handle_disk_io_initiation: Unexpected type %s",
3791 			    TYPENAME(wk->wk_type));
3792 			/* NOTREACHED */
3793 		}
3794 	}
3795 	FREE_LOCK(&lk);
3796 	PRELE(curproc);			/* Allow swapout of kernel stack */
3797 }
3798 
3799 /*
3800  * Called from within the procedure above to deal with unsatisfied
3801  * allocation dependencies in a directory. The buffer must be locked,
3802  * thus, no I/O completion operations can occur while we are
3803  * manipulating its associated dependencies.
3804  */
3805 static void
3806 initiate_write_filepage(pagedep, bp)
3807 	struct pagedep *pagedep;
3808 	struct buf *bp;
3809 {
3810 	struct diradd *dap;
3811 	struct direct *ep;
3812 	int i;
3813 
3814 	if (pagedep->pd_state & IOSTARTED) {
3815 		/*
3816 		 * This can only happen if there is a driver that does not
3817 		 * understand chaining. Here biodone will reissue the call
3818 		 * to strategy for the incomplete buffers.
3819 		 */
3820 		printf("initiate_write_filepage: already started\n");
3821 		return;
3822 	}
3823 	pagedep->pd_state |= IOSTARTED;
3824 	for (i = 0; i < DAHASHSZ; i++) {
3825 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3826 			ep = (struct direct *)
3827 			    ((char *)bp->b_data + dap->da_offset);
3828 			if (ep->d_ino != dap->da_newinum)
3829 				panic("%s: dir inum %d != new %d",
3830 				    "initiate_write_filepage",
3831 				    ep->d_ino, dap->da_newinum);
3832 			if (dap->da_state & DIRCHG)
3833 				ep->d_ino = dap->da_previous->dm_oldinum;
3834 			else
3835 				ep->d_ino = 0;
3836 			dap->da_state &= ~ATTACHED;
3837 			dap->da_state |= UNDONE;
3838 		}
3839 	}
3840 }
3841 
3842 /*
3843  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3844  * Note that any bug fixes made to this routine must be done in the
3845  * version found below.
3846  *
3847  * Called from within the procedure above to deal with unsatisfied
3848  * allocation dependencies in an inodeblock. The buffer must be
3849  * locked, thus, no I/O completion operations can occur while we
3850  * are manipulating its associated dependencies.
3851  */
3852 static void
3853 initiate_write_inodeblock_ufs1(inodedep, bp)
3854 	struct inodedep *inodedep;
3855 	struct buf *bp;			/* The inode block */
3856 {
3857 	struct allocdirect *adp, *lastadp;
3858 	struct ufs1_dinode *dp;
3859 	struct ufs1_dinode *sip;
3860 	struct fs *fs;
3861 	ufs_lbn_t i, prevlbn = 0;
3862 	int deplist;
3863 
3864 	if (inodedep->id_state & IOSTARTED)
3865 		panic("initiate_write_inodeblock_ufs1: already started");
3866 	inodedep->id_state |= IOSTARTED;
3867 	fs = inodedep->id_fs;
3868 	dp = (struct ufs1_dinode *)bp->b_data +
3869 	    ino_to_fsbo(fs, inodedep->id_ino);
3870 	/*
3871 	 * If the bitmap is not yet written, then the allocated
3872 	 * inode cannot be written to disk.
3873 	 */
3874 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3875 		if (inodedep->id_savedino1 != NULL)
3876 			panic("initiate_write_inodeblock_ufs1: I/O underway");
3877 		FREE_LOCK(&lk);
3878 		MALLOC(sip, struct ufs1_dinode *,
3879 		    sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
3880 		ACQUIRE_LOCK(&lk);
3881 		inodedep->id_savedino1 = sip;
3882 		*inodedep->id_savedino1 = *dp;
3883 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3884 		dp->di_gen = inodedep->id_savedino1->di_gen;
3885 		return;
3886 	}
3887 	/*
3888 	 * If no dependencies, then there is nothing to roll back.
3889 	 */
3890 	inodedep->id_savedsize = dp->di_size;
3891 	inodedep->id_savedextsize = 0;
3892 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3893 		return;
3894 	/*
3895 	 * Set the dependencies to busy.
3896 	 */
3897 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3898 	     adp = TAILQ_NEXT(adp, ad_next)) {
3899 #ifdef DIAGNOSTIC
3900 		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3901 			panic("softdep_write_inodeblock: lbn order");
3902 		prevlbn = adp->ad_lbn;
3903 		if (adp->ad_lbn < NDADDR &&
3904 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3905 			panic("%s: direct pointer #%jd mismatch %d != %jd",
3906 			    "softdep_write_inodeblock",
3907 			    (intmax_t)adp->ad_lbn,
3908 			    dp->di_db[adp->ad_lbn],
3909 			    (intmax_t)adp->ad_newblkno);
3910 		if (adp->ad_lbn >= NDADDR &&
3911 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3912 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
3913 			    "softdep_write_inodeblock",
3914 			    (intmax_t)adp->ad_lbn - NDADDR,
3915 			    dp->di_ib[adp->ad_lbn - NDADDR],
3916 			    (intmax_t)adp->ad_newblkno);
3917 		deplist |= 1 << adp->ad_lbn;
3918 		if ((adp->ad_state & ATTACHED) == 0)
3919 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3920 			    adp->ad_state);
3921 #endif /* DIAGNOSTIC */
3922 		adp->ad_state &= ~ATTACHED;
3923 		adp->ad_state |= UNDONE;
3924 	}
3925 	/*
3926 	 * The on-disk inode cannot claim to be any larger than the last
3927 	 * fragment that has been written. Otherwise, the on-disk inode
3928 	 * might have fragments that were not the last block in the file
3929 	 * which would corrupt the filesystem.
3930 	 */
3931 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3932 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3933 		if (adp->ad_lbn >= NDADDR)
3934 			break;
3935 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3936 		/* keep going until hitting a rollback to a frag */
3937 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3938 			continue;
3939 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3940 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3941 #ifdef DIAGNOSTIC
3942 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3943 				panic("softdep_write_inodeblock: lost dep1");
3944 #endif /* DIAGNOSTIC */
3945 			dp->di_db[i] = 0;
3946 		}
3947 		for (i = 0; i < NIADDR; i++) {
3948 #ifdef DIAGNOSTIC
3949 			if (dp->di_ib[i] != 0 &&
3950 			    (deplist & ((1 << NDADDR) << i)) == 0)
3951 				panic("softdep_write_inodeblock: lost dep2");
3952 #endif /* DIAGNOSTIC */
3953 			dp->di_ib[i] = 0;
3954 		}
3955 		return;
3956 	}
3957 	/*
3958 	 * If we have zero'ed out the last allocated block of the file,
3959 	 * roll back the size to the last currently allocated block.
3960 	 * We know that this last allocated block is a full-sized as
3961 	 * we already checked for fragments in the loop above.
3962 	 */
3963 	if (lastadp != NULL &&
3964 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3965 		for (i = lastadp->ad_lbn; i >= 0; i--)
3966 			if (dp->di_db[i] != 0)
3967 				break;
3968 		dp->di_size = (i + 1) * fs->fs_bsize;
3969 	}
3970 	/*
3971 	 * The only dependencies are for indirect blocks.
3972 	 *
3973 	 * The file size for indirect block additions is not guaranteed.
3974 	 * Such a guarantee would be non-trivial to achieve. The conventional
3975 	 * synchronous write implementation also does not make this guarantee.
3976 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3977 	 * can be over-estimated without destroying integrity when the file
3978 	 * moves into the indirect blocks (i.e., is large). If we want to
3979 	 * postpone fsck, we are stuck with this argument.
3980 	 */
3981 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3982 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3983 }
3984 
3985 /*
3986  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
3987  * Note that any bug fixes made to this routine must be done in the
3988  * version found above.
3989  *
3990  * Called from within the procedure above to deal with unsatisfied
3991  * allocation dependencies in an inodeblock. The buffer must be
3992  * locked, thus, no I/O completion operations can occur while we
3993  * are manipulating its associated dependencies.
3994  */
3995 static void
3996 initiate_write_inodeblock_ufs2(inodedep, bp)
3997 	struct inodedep *inodedep;
3998 	struct buf *bp;			/* The inode block */
3999 {
4000 	struct allocdirect *adp, *lastadp;
4001 	struct ufs2_dinode *dp;
4002 	struct ufs2_dinode *sip;
4003 	struct fs *fs;
4004 	ufs_lbn_t i, prevlbn = 0;
4005 	int deplist;
4006 
4007 	if (inodedep->id_state & IOSTARTED)
4008 		panic("initiate_write_inodeblock_ufs2: already started");
4009 	inodedep->id_state |= IOSTARTED;
4010 	fs = inodedep->id_fs;
4011 	dp = (struct ufs2_dinode *)bp->b_data +
4012 	    ino_to_fsbo(fs, inodedep->id_ino);
4013 	/*
4014 	 * If the bitmap is not yet written, then the allocated
4015 	 * inode cannot be written to disk.
4016 	 */
4017 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4018 		if (inodedep->id_savedino2 != NULL)
4019 			panic("initiate_write_inodeblock_ufs2: I/O underway");
4020 		FREE_LOCK(&lk);
4021 		MALLOC(sip, struct ufs2_dinode *,
4022 		    sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
4023 		ACQUIRE_LOCK(&lk);
4024 		inodedep->id_savedino2 = sip;
4025 		*inodedep->id_savedino2 = *dp;
4026 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
4027 		dp->di_gen = inodedep->id_savedino2->di_gen;
4028 		return;
4029 	}
4030 	/*
4031 	 * If no dependencies, then there is nothing to roll back.
4032 	 */
4033 	inodedep->id_savedsize = dp->di_size;
4034 	inodedep->id_savedextsize = dp->di_extsize;
4035 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL &&
4036 	    TAILQ_FIRST(&inodedep->id_extupdt) == NULL)
4037 		return;
4038 	/*
4039 	 * Set the ext data dependencies to busy.
4040 	 */
4041 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4042 	     adp = TAILQ_NEXT(adp, ad_next)) {
4043 #ifdef DIAGNOSTIC
4044 		if (deplist != 0 && prevlbn >= adp->ad_lbn)
4045 			panic("softdep_write_inodeblock: lbn order");
4046 		prevlbn = adp->ad_lbn;
4047 		if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno)
4048 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
4049 			    "softdep_write_inodeblock",
4050 			    (intmax_t)adp->ad_lbn,
4051 			    (intmax_t)dp->di_extb[adp->ad_lbn],
4052 			    (intmax_t)adp->ad_newblkno);
4053 		deplist |= 1 << adp->ad_lbn;
4054 		if ((adp->ad_state & ATTACHED) == 0)
4055 			panic("softdep_write_inodeblock: Unknown state 0x%x",
4056 			    adp->ad_state);
4057 #endif /* DIAGNOSTIC */
4058 		adp->ad_state &= ~ATTACHED;
4059 		adp->ad_state |= UNDONE;
4060 	}
4061 	/*
4062 	 * The on-disk inode cannot claim to be any larger than the last
4063 	 * fragment that has been written. Otherwise, the on-disk inode
4064 	 * might have fragments that were not the last block in the ext
4065 	 * data which would corrupt the filesystem.
4066 	 */
4067 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4068 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4069 		dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
4070 		/* keep going until hitting a rollback to a frag */
4071 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4072 			continue;
4073 		dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4074 		for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
4075 #ifdef DIAGNOSTIC
4076 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
4077 				panic("softdep_write_inodeblock: lost dep1");
4078 #endif /* DIAGNOSTIC */
4079 			dp->di_extb[i] = 0;
4080 		}
4081 		lastadp = NULL;
4082 		break;
4083 	}
4084 	/*
4085 	 * If we have zero'ed out the last allocated block of the ext
4086 	 * data, roll back the size to the last currently allocated block.
4087 	 * We know that this last allocated block is a full-sized as
4088 	 * we already checked for fragments in the loop above.
4089 	 */
4090 	if (lastadp != NULL &&
4091 	    dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4092 		for (i = lastadp->ad_lbn; i >= 0; i--)
4093 			if (dp->di_extb[i] != 0)
4094 				break;
4095 		dp->di_extsize = (i + 1) * fs->fs_bsize;
4096 	}
4097 	/*
4098 	 * Set the file data dependencies to busy.
4099 	 */
4100 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4101 	     adp = TAILQ_NEXT(adp, ad_next)) {
4102 #ifdef DIAGNOSTIC
4103 		if (deplist != 0 && prevlbn >= adp->ad_lbn)
4104 			panic("softdep_write_inodeblock: lbn order");
4105 		prevlbn = adp->ad_lbn;
4106 		if (adp->ad_lbn < NDADDR &&
4107 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
4108 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
4109 			    "softdep_write_inodeblock",
4110 			    (intmax_t)adp->ad_lbn,
4111 			    (intmax_t)dp->di_db[adp->ad_lbn],
4112 			    (intmax_t)adp->ad_newblkno);
4113 		if (adp->ad_lbn >= NDADDR &&
4114 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
4115 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
4116 			    "softdep_write_inodeblock:",
4117 			    (intmax_t)adp->ad_lbn - NDADDR,
4118 			    (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
4119 			    (intmax_t)adp->ad_newblkno);
4120 		deplist |= 1 << adp->ad_lbn;
4121 		if ((adp->ad_state & ATTACHED) == 0)
4122 			panic("softdep_write_inodeblock: Unknown state 0x%x",
4123 			    adp->ad_state);
4124 #endif /* DIAGNOSTIC */
4125 		adp->ad_state &= ~ATTACHED;
4126 		adp->ad_state |= UNDONE;
4127 	}
4128 	/*
4129 	 * The on-disk inode cannot claim to be any larger than the last
4130 	 * fragment that has been written. Otherwise, the on-disk inode
4131 	 * might have fragments that were not the last block in the file
4132 	 * which would corrupt the filesystem.
4133 	 */
4134 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4135 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4136 		if (adp->ad_lbn >= NDADDR)
4137 			break;
4138 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
4139 		/* keep going until hitting a rollback to a frag */
4140 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4141 			continue;
4142 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4143 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
4144 #ifdef DIAGNOSTIC
4145 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
4146 				panic("softdep_write_inodeblock: lost dep2");
4147 #endif /* DIAGNOSTIC */
4148 			dp->di_db[i] = 0;
4149 		}
4150 		for (i = 0; i < NIADDR; i++) {
4151 #ifdef DIAGNOSTIC
4152 			if (dp->di_ib[i] != 0 &&
4153 			    (deplist & ((1 << NDADDR) << i)) == 0)
4154 				panic("softdep_write_inodeblock: lost dep3");
4155 #endif /* DIAGNOSTIC */
4156 			dp->di_ib[i] = 0;
4157 		}
4158 		return;
4159 	}
4160 	/*
4161 	 * If we have zero'ed out the last allocated block of the file,
4162 	 * roll back the size to the last currently allocated block.
4163 	 * We know that this last allocated block is a full-sized as
4164 	 * we already checked for fragments in the loop above.
4165 	 */
4166 	if (lastadp != NULL &&
4167 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4168 		for (i = lastadp->ad_lbn; i >= 0; i--)
4169 			if (dp->di_db[i] != 0)
4170 				break;
4171 		dp->di_size = (i + 1) * fs->fs_bsize;
4172 	}
4173 	/*
4174 	 * The only dependencies are for indirect blocks.
4175 	 *
4176 	 * The file size for indirect block additions is not guaranteed.
4177 	 * Such a guarantee would be non-trivial to achieve. The conventional
4178 	 * synchronous write implementation also does not make this guarantee.
4179 	 * Fsck should catch and fix discrepancies. Arguably, the file size
4180 	 * can be over-estimated without destroying integrity when the file
4181 	 * moves into the indirect blocks (i.e., is large). If we want to
4182 	 * postpone fsck, we are stuck with this argument.
4183 	 */
4184 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
4185 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
4186 }
4187 
4188 /*
4189  * This routine is called during the completion interrupt
4190  * service routine for a disk write (from the procedure called
4191  * by the device driver to inform the filesystem caches of
4192  * a request completion).  It should be called early in this
4193  * procedure, before the block is made available to other
4194  * processes or other routines are called.
4195  */
4196 static void
4197 softdep_disk_write_complete(bp)
4198 	struct buf *bp;		/* describes the completed disk write */
4199 {
4200 	struct worklist *wk;
4201 	struct worklist *owk;
4202 	struct workhead reattach;
4203 	struct newblk *newblk;
4204 	struct allocindir *aip;
4205 	struct allocdirect *adp;
4206 	struct indirdep *indirdep;
4207 	struct inodedep *inodedep;
4208 	struct bmsafemap *bmsafemap;
4209 
4210 	/*
4211 	 * If an error occurred while doing the write, then the data
4212 	 * has not hit the disk and the dependencies cannot be unrolled.
4213 	 */
4214 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
4215 		return;
4216 	LIST_INIT(&reattach);
4217 	/*
4218 	 * This lock must not be released anywhere in this code segment.
4219 	 */
4220 	ACQUIRE_LOCK(&lk);
4221 	owk = NULL;
4222 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
4223 		WORKLIST_REMOVE(wk);
4224 		if (wk == owk)
4225 			panic("duplicate worklist: %p\n", wk);
4226 		owk = wk;
4227 		switch (wk->wk_type) {
4228 
4229 		case D_PAGEDEP:
4230 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
4231 				WORKLIST_INSERT(&reattach, wk);
4232 			continue;
4233 
4234 		case D_INODEDEP:
4235 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
4236 				WORKLIST_INSERT(&reattach, wk);
4237 			continue;
4238 
4239 		case D_BMSAFEMAP:
4240 			bmsafemap = WK_BMSAFEMAP(wk);
4241 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
4242 				newblk->nb_state |= DEPCOMPLETE;
4243 				newblk->nb_bmsafemap = NULL;
4244 				LIST_REMOVE(newblk, nb_deps);
4245 			}
4246 			while ((adp =
4247 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
4248 				adp->ad_state |= DEPCOMPLETE;
4249 				adp->ad_buf = NULL;
4250 				LIST_REMOVE(adp, ad_deps);
4251 				handle_allocdirect_partdone(adp);
4252 			}
4253 			while ((aip =
4254 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
4255 				aip->ai_state |= DEPCOMPLETE;
4256 				aip->ai_buf = NULL;
4257 				LIST_REMOVE(aip, ai_deps);
4258 				handle_allocindir_partdone(aip);
4259 			}
4260 			while ((inodedep =
4261 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
4262 				inodedep->id_state |= DEPCOMPLETE;
4263 				LIST_REMOVE(inodedep, id_deps);
4264 				inodedep->id_buf = NULL;
4265 			}
4266 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4267 			continue;
4268 
4269 		case D_MKDIR:
4270 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
4271 			continue;
4272 
4273 		case D_ALLOCDIRECT:
4274 			adp = WK_ALLOCDIRECT(wk);
4275 			adp->ad_state |= COMPLETE;
4276 			handle_allocdirect_partdone(adp);
4277 			continue;
4278 
4279 		case D_ALLOCINDIR:
4280 			aip = WK_ALLOCINDIR(wk);
4281 			aip->ai_state |= COMPLETE;
4282 			handle_allocindir_partdone(aip);
4283 			continue;
4284 
4285 		case D_INDIRDEP:
4286 			indirdep = WK_INDIRDEP(wk);
4287 			if (indirdep->ir_state & GOINGAWAY)
4288 				panic("disk_write_complete: indirdep gone");
4289 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
4290 			FREE(indirdep->ir_saveddata, M_INDIRDEP);
4291 			indirdep->ir_saveddata = 0;
4292 			indirdep->ir_state &= ~UNDONE;
4293 			indirdep->ir_state |= ATTACHED;
4294 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
4295 				handle_allocindir_partdone(aip);
4296 				if (aip == LIST_FIRST(&indirdep->ir_donehd))
4297 					panic("disk_write_complete: not gone");
4298 			}
4299 			WORKLIST_INSERT(&reattach, wk);
4300 			if ((bp->b_flags & B_DELWRI) == 0)
4301 				stat_indir_blk_ptrs++;
4302 			bdirty(bp);
4303 			continue;
4304 
4305 		default:
4306 			panic("handle_disk_write_complete: Unknown type %s",
4307 			    TYPENAME(wk->wk_type));
4308 			/* NOTREACHED */
4309 		}
4310 	}
4311 	/*
4312 	 * Reattach any requests that must be redone.
4313 	 */
4314 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
4315 		WORKLIST_REMOVE(wk);
4316 		WORKLIST_INSERT(&bp->b_dep, wk);
4317 	}
4318 	FREE_LOCK(&lk);
4319 }
4320 
4321 /*
4322  * Called from within softdep_disk_write_complete above. Note that
4323  * this routine is always called from interrupt level with further
4324  * splbio interrupts blocked.
4325  */
4326 static void
4327 handle_allocdirect_partdone(adp)
4328 	struct allocdirect *adp;	/* the completed allocdirect */
4329 {
4330 	struct allocdirectlst *listhead;
4331 	struct allocdirect *listadp;
4332 	struct inodedep *inodedep;
4333 	long bsize, delay;
4334 
4335 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4336 		return;
4337 	if (adp->ad_buf != NULL)
4338 		panic("handle_allocdirect_partdone: dangling dep");
4339 	/*
4340 	 * The on-disk inode cannot claim to be any larger than the last
4341 	 * fragment that has been written. Otherwise, the on-disk inode
4342 	 * might have fragments that were not the last block in the file
4343 	 * which would corrupt the filesystem. Thus, we cannot free any
4344 	 * allocdirects after one whose ad_oldblkno claims a fragment as
4345 	 * these blocks must be rolled back to zero before writing the inode.
4346 	 * We check the currently active set of allocdirects in id_inoupdt
4347 	 * or id_extupdt as appropriate.
4348 	 */
4349 	inodedep = adp->ad_inodedep;
4350 	bsize = inodedep->id_fs->fs_bsize;
4351 	if (adp->ad_state & EXTDATA)
4352 		listhead = &inodedep->id_extupdt;
4353 	else
4354 		listhead = &inodedep->id_inoupdt;
4355 	TAILQ_FOREACH(listadp, listhead, ad_next) {
4356 		/* found our block */
4357 		if (listadp == adp)
4358 			break;
4359 		/* continue if ad_oldlbn is not a fragment */
4360 		if (listadp->ad_oldsize == 0 ||
4361 		    listadp->ad_oldsize == bsize)
4362 			continue;
4363 		/* hit a fragment */
4364 		return;
4365 	}
4366 	/*
4367 	 * If we have reached the end of the current list without
4368 	 * finding the just finished dependency, then it must be
4369 	 * on the future dependency list. Future dependencies cannot
4370 	 * be freed until they are moved to the current list.
4371 	 */
4372 	if (listadp == NULL) {
4373 #ifdef DEBUG
4374 		if (adp->ad_state & EXTDATA)
4375 			listhead = &inodedep->id_newextupdt;
4376 		else
4377 			listhead = &inodedep->id_newinoupdt;
4378 		TAILQ_FOREACH(listadp, listhead, ad_next)
4379 			/* found our block */
4380 			if (listadp == adp)
4381 				break;
4382 		if (listadp == NULL)
4383 			panic("handle_allocdirect_partdone: lost dep");
4384 #endif /* DEBUG */
4385 		return;
4386 	}
4387 	/*
4388 	 * If we have found the just finished dependency, then free
4389 	 * it along with anything that follows it that is complete.
4390 	 * If the inode still has a bitmap dependency, then it has
4391 	 * never been written to disk, hence the on-disk inode cannot
4392 	 * reference the old fragment so we can free it without delay.
4393 	 */
4394 	delay = (inodedep->id_state & DEPCOMPLETE);
4395 	for (; adp; adp = listadp) {
4396 		listadp = TAILQ_NEXT(adp, ad_next);
4397 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4398 			return;
4399 		free_allocdirect(listhead, adp, delay);
4400 	}
4401 }
4402 
4403 /*
4404  * Called from within softdep_disk_write_complete above. Note that
4405  * this routine is always called from interrupt level with further
4406  * splbio interrupts blocked.
4407  */
4408 static void
4409 handle_allocindir_partdone(aip)
4410 	struct allocindir *aip;		/* the completed allocindir */
4411 {
4412 	struct indirdep *indirdep;
4413 
4414 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
4415 		return;
4416 	if (aip->ai_buf != NULL)
4417 		panic("handle_allocindir_partdone: dangling dependency");
4418 	indirdep = aip->ai_indirdep;
4419 	if (indirdep->ir_state & UNDONE) {
4420 		LIST_REMOVE(aip, ai_next);
4421 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
4422 		return;
4423 	}
4424 	if (indirdep->ir_state & UFS1FMT)
4425 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4426 		    aip->ai_newblkno;
4427 	else
4428 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4429 		    aip->ai_newblkno;
4430 	LIST_REMOVE(aip, ai_next);
4431 	if (aip->ai_freefrag != NULL)
4432 		add_to_worklist(&aip->ai_freefrag->ff_list);
4433 	WORKITEM_FREE(aip, D_ALLOCINDIR);
4434 }
4435 
4436 /*
4437  * Called from within softdep_disk_write_complete above to restore
4438  * in-memory inode block contents to their most up-to-date state. Note
4439  * that this routine is always called from interrupt level with further
4440  * splbio interrupts blocked.
4441  */
4442 static int
4443 handle_written_inodeblock(inodedep, bp)
4444 	struct inodedep *inodedep;
4445 	struct buf *bp;		/* buffer containing the inode block */
4446 {
4447 	struct worklist *wk, *filefree;
4448 	struct allocdirect *adp, *nextadp;
4449 	struct ufs1_dinode *dp1 = NULL;
4450 	struct ufs2_dinode *dp2 = NULL;
4451 	int hadchanges, fstype;
4452 
4453 	if ((inodedep->id_state & IOSTARTED) == 0)
4454 		panic("handle_written_inodeblock: not started");
4455 	inodedep->id_state &= ~IOSTARTED;
4456 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4457 		fstype = UFS1;
4458 		dp1 = (struct ufs1_dinode *)bp->b_data +
4459 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4460 	} else {
4461 		fstype = UFS2;
4462 		dp2 = (struct ufs2_dinode *)bp->b_data +
4463 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4464 	}
4465 	/*
4466 	 * If we had to rollback the inode allocation because of
4467 	 * bitmaps being incomplete, then simply restore it.
4468 	 * Keep the block dirty so that it will not be reclaimed until
4469 	 * all associated dependencies have been cleared and the
4470 	 * corresponding updates written to disk.
4471 	 */
4472 	if (inodedep->id_savedino1 != NULL) {
4473 		if (fstype == UFS1)
4474 			*dp1 = *inodedep->id_savedino1;
4475 		else
4476 			*dp2 = *inodedep->id_savedino2;
4477 		FREE(inodedep->id_savedino1, M_SAVEDINO);
4478 		inodedep->id_savedino1 = NULL;
4479 		if ((bp->b_flags & B_DELWRI) == 0)
4480 			stat_inode_bitmap++;
4481 		bdirty(bp);
4482 		return (1);
4483 	}
4484 	inodedep->id_state |= COMPLETE;
4485 	/*
4486 	 * Roll forward anything that had to be rolled back before
4487 	 * the inode could be updated.
4488 	 */
4489 	hadchanges = 0;
4490 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4491 		nextadp = TAILQ_NEXT(adp, ad_next);
4492 		if (adp->ad_state & ATTACHED)
4493 			panic("handle_written_inodeblock: new entry");
4494 		if (fstype == UFS1) {
4495 			if (adp->ad_lbn < NDADDR) {
4496 				if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4497 					panic("%s %s #%jd mismatch %d != %jd",
4498 					    "handle_written_inodeblock:",
4499 					    "direct pointer",
4500 					    (intmax_t)adp->ad_lbn,
4501 					    dp1->di_db[adp->ad_lbn],
4502 					    (intmax_t)adp->ad_oldblkno);
4503 				dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4504 			} else {
4505 				if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0)
4506 					panic("%s: %s #%jd allocated as %d",
4507 					    "handle_written_inodeblock",
4508 					    "indirect pointer",
4509 					    (intmax_t)adp->ad_lbn - NDADDR,
4510 					    dp1->di_ib[adp->ad_lbn - NDADDR]);
4511 				dp1->di_ib[adp->ad_lbn - NDADDR] =
4512 				    adp->ad_newblkno;
4513 			}
4514 		} else {
4515 			if (adp->ad_lbn < NDADDR) {
4516 				if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4517 					panic("%s: %s #%jd %s %jd != %jd",
4518 					    "handle_written_inodeblock",
4519 					    "direct pointer",
4520 					    (intmax_t)adp->ad_lbn, "mismatch",
4521 					    (intmax_t)dp2->di_db[adp->ad_lbn],
4522 					    (intmax_t)adp->ad_oldblkno);
4523 				dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4524 			} else {
4525 				if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0)
4526 					panic("%s: %s #%jd allocated as %jd",
4527 					    "handle_written_inodeblock",
4528 					    "indirect pointer",
4529 					    (intmax_t)adp->ad_lbn - NDADDR,
4530 					    (intmax_t)
4531 					    dp2->di_ib[adp->ad_lbn - NDADDR]);
4532 				dp2->di_ib[adp->ad_lbn - NDADDR] =
4533 				    adp->ad_newblkno;
4534 			}
4535 		}
4536 		adp->ad_state &= ~UNDONE;
4537 		adp->ad_state |= ATTACHED;
4538 		hadchanges = 1;
4539 	}
4540 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4541 		nextadp = TAILQ_NEXT(adp, ad_next);
4542 		if (adp->ad_state & ATTACHED)
4543 			panic("handle_written_inodeblock: new entry");
4544 		if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno)
4545 			panic("%s: direct pointers #%jd %s %jd != %jd",
4546 			    "handle_written_inodeblock",
4547 			    (intmax_t)adp->ad_lbn, "mismatch",
4548 			    (intmax_t)dp2->di_extb[adp->ad_lbn],
4549 			    (intmax_t)adp->ad_oldblkno);
4550 		dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4551 		adp->ad_state &= ~UNDONE;
4552 		adp->ad_state |= ATTACHED;
4553 		hadchanges = 1;
4554 	}
4555 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4556 		stat_direct_blk_ptrs++;
4557 	/*
4558 	 * Reset the file size to its most up-to-date value.
4559 	 */
4560 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
4561 		panic("handle_written_inodeblock: bad size");
4562 	if (fstype == UFS1) {
4563 		if (dp1->di_size != inodedep->id_savedsize) {
4564 			dp1->di_size = inodedep->id_savedsize;
4565 			hadchanges = 1;
4566 		}
4567 	} else {
4568 		if (dp2->di_size != inodedep->id_savedsize) {
4569 			dp2->di_size = inodedep->id_savedsize;
4570 			hadchanges = 1;
4571 		}
4572 		if (dp2->di_extsize != inodedep->id_savedextsize) {
4573 			dp2->di_extsize = inodedep->id_savedextsize;
4574 			hadchanges = 1;
4575 		}
4576 	}
4577 	inodedep->id_savedsize = -1;
4578 	inodedep->id_savedextsize = -1;
4579 	/*
4580 	 * If there were any rollbacks in the inode block, then it must be
4581 	 * marked dirty so that its will eventually get written back in
4582 	 * its correct form.
4583 	 */
4584 	if (hadchanges)
4585 		bdirty(bp);
4586 	/*
4587 	 * Process any allocdirects that completed during the update.
4588 	 */
4589 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4590 		handle_allocdirect_partdone(adp);
4591 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4592 		handle_allocdirect_partdone(adp);
4593 	/*
4594 	 * Process deallocations that were held pending until the
4595 	 * inode had been written to disk. Freeing of the inode
4596 	 * is delayed until after all blocks have been freed to
4597 	 * avoid creation of new <vfsid, inum, lbn> triples
4598 	 * before the old ones have been deleted.
4599 	 */
4600 	filefree = NULL;
4601 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4602 		WORKLIST_REMOVE(wk);
4603 		switch (wk->wk_type) {
4604 
4605 		case D_FREEFILE:
4606 			/*
4607 			 * We defer adding filefree to the worklist until
4608 			 * all other additions have been made to ensure
4609 			 * that it will be done after all the old blocks
4610 			 * have been freed.
4611 			 */
4612 			if (filefree != NULL)
4613 				panic("handle_written_inodeblock: filefree");
4614 			filefree = wk;
4615 			continue;
4616 
4617 		case D_MKDIR:
4618 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4619 			continue;
4620 
4621 		case D_DIRADD:
4622 			diradd_inode_written(WK_DIRADD(wk), inodedep);
4623 			continue;
4624 
4625 		case D_FREEBLKS:
4626 			wk->wk_state |= COMPLETE;
4627 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
4628 				continue;
4629 			 /* -- fall through -- */
4630 		case D_FREEFRAG:
4631 		case D_DIRREM:
4632 			add_to_worklist(wk);
4633 			continue;
4634 
4635 		case D_NEWDIRBLK:
4636 			free_newdirblk(WK_NEWDIRBLK(wk));
4637 			continue;
4638 
4639 		default:
4640 			panic("handle_written_inodeblock: Unknown type %s",
4641 			    TYPENAME(wk->wk_type));
4642 			/* NOTREACHED */
4643 		}
4644 	}
4645 	if (filefree != NULL) {
4646 		if (free_inodedep(inodedep) == 0)
4647 			panic("handle_written_inodeblock: live inodedep");
4648 		add_to_worklist(filefree);
4649 		return (0);
4650 	}
4651 
4652 	/*
4653 	 * If no outstanding dependencies, free it.
4654 	 */
4655 	if (free_inodedep(inodedep) ||
4656 	    (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4657 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4658 		return (0);
4659 	return (hadchanges);
4660 }
4661 
4662 /*
4663  * Process a diradd entry after its dependent inode has been written.
4664  * This routine must be called with splbio interrupts blocked.
4665  */
4666 static void
4667 diradd_inode_written(dap, inodedep)
4668 	struct diradd *dap;
4669 	struct inodedep *inodedep;
4670 {
4671 	struct pagedep *pagedep;
4672 
4673 	dap->da_state |= COMPLETE;
4674 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4675 		if (dap->da_state & DIRCHG)
4676 			pagedep = dap->da_previous->dm_pagedep;
4677 		else
4678 			pagedep = dap->da_pagedep;
4679 		LIST_REMOVE(dap, da_pdlist);
4680 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4681 	}
4682 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4683 }
4684 
4685 /*
4686  * Handle the completion of a mkdir dependency.
4687  */
4688 static void
4689 handle_written_mkdir(mkdir, type)
4690 	struct mkdir *mkdir;
4691 	int type;
4692 {
4693 	struct diradd *dap;
4694 	struct pagedep *pagedep;
4695 
4696 	if (mkdir->md_state != type)
4697 		panic("handle_written_mkdir: bad type");
4698 	dap = mkdir->md_diradd;
4699 	dap->da_state &= ~type;
4700 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4701 		dap->da_state |= DEPCOMPLETE;
4702 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4703 		if (dap->da_state & DIRCHG)
4704 			pagedep = dap->da_previous->dm_pagedep;
4705 		else
4706 			pagedep = dap->da_pagedep;
4707 		LIST_REMOVE(dap, da_pdlist);
4708 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4709 	}
4710 	LIST_REMOVE(mkdir, md_mkdirs);
4711 	WORKITEM_FREE(mkdir, D_MKDIR);
4712 }
4713 
4714 /*
4715  * Called from within softdep_disk_write_complete above.
4716  * A write operation was just completed. Removed inodes can
4717  * now be freed and associated block pointers may be committed.
4718  * Note that this routine is always called from interrupt level
4719  * with further splbio interrupts blocked.
4720  */
4721 static int
4722 handle_written_filepage(pagedep, bp)
4723 	struct pagedep *pagedep;
4724 	struct buf *bp;		/* buffer containing the written page */
4725 {
4726 	struct dirrem *dirrem;
4727 	struct diradd *dap, *nextdap;
4728 	struct direct *ep;
4729 	int i, chgs;
4730 
4731 	if ((pagedep->pd_state & IOSTARTED) == 0)
4732 		panic("handle_written_filepage: not started");
4733 	pagedep->pd_state &= ~IOSTARTED;
4734 	/*
4735 	 * Process any directory removals that have been committed.
4736 	 */
4737 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4738 		LIST_REMOVE(dirrem, dm_next);
4739 		dirrem->dm_dirinum = pagedep->pd_ino;
4740 		add_to_worklist(&dirrem->dm_list);
4741 	}
4742 	/*
4743 	 * Free any directory additions that have been committed.
4744 	 * If it is a newly allocated block, we have to wait until
4745 	 * the on-disk directory inode claims the new block.
4746 	 */
4747 	if ((pagedep->pd_state & NEWBLOCK) == 0)
4748 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4749 			free_diradd(dap);
4750 	/*
4751 	 * Uncommitted directory entries must be restored.
4752 	 */
4753 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4754 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4755 		     dap = nextdap) {
4756 			nextdap = LIST_NEXT(dap, da_pdlist);
4757 			if (dap->da_state & ATTACHED)
4758 				panic("handle_written_filepage: attached");
4759 			ep = (struct direct *)
4760 			    ((char *)bp->b_data + dap->da_offset);
4761 			ep->d_ino = dap->da_newinum;
4762 			dap->da_state &= ~UNDONE;
4763 			dap->da_state |= ATTACHED;
4764 			chgs = 1;
4765 			/*
4766 			 * If the inode referenced by the directory has
4767 			 * been written out, then the dependency can be
4768 			 * moved to the pending list.
4769 			 */
4770 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4771 				LIST_REMOVE(dap, da_pdlist);
4772 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4773 				    da_pdlist);
4774 			}
4775 		}
4776 	}
4777 	/*
4778 	 * If there were any rollbacks in the directory, then it must be
4779 	 * marked dirty so that its will eventually get written back in
4780 	 * its correct form.
4781 	 */
4782 	if (chgs) {
4783 		if ((bp->b_flags & B_DELWRI) == 0)
4784 			stat_dir_entry++;
4785 		bdirty(bp);
4786 		return (1);
4787 	}
4788 	/*
4789 	 * If we are not waiting for a new directory block to be
4790 	 * claimed by its inode, then the pagedep will be freed.
4791 	 * Otherwise it will remain to track any new entries on
4792 	 * the page in case they are fsync'ed.
4793 	 */
4794 	if ((pagedep->pd_state & NEWBLOCK) == 0) {
4795 		LIST_REMOVE(pagedep, pd_hash);
4796 		WORKITEM_FREE(pagedep, D_PAGEDEP);
4797 	}
4798 	return (0);
4799 }
4800 
4801 /*
4802  * Writing back in-core inode structures.
4803  *
4804  * The filesystem only accesses an inode's contents when it occupies an
4805  * "in-core" inode structure.  These "in-core" structures are separate from
4806  * the page frames used to cache inode blocks.  Only the latter are
4807  * transferred to/from the disk.  So, when the updated contents of the
4808  * "in-core" inode structure are copied to the corresponding in-memory inode
4809  * block, the dependencies are also transferred.  The following procedure is
4810  * called when copying a dirty "in-core" inode to a cached inode block.
4811  */
4812 
4813 /*
4814  * Called when an inode is loaded from disk. If the effective link count
4815  * differed from the actual link count when it was last flushed, then we
4816  * need to ensure that the correct effective link count is put back.
4817  */
4818 void
4819 softdep_load_inodeblock(ip)
4820 	struct inode *ip;	/* the "in_core" copy of the inode */
4821 {
4822 	struct inodedep *inodedep;
4823 
4824 	/*
4825 	 * Check for alternate nlink count.
4826 	 */
4827 	ip->i_effnlink = ip->i_nlink;
4828 	ACQUIRE_LOCK(&lk);
4829 	if (inodedep_lookup(UFSTOVFS(ip->i_ump),
4830 	    ip->i_number, 0, &inodedep) == 0) {
4831 		FREE_LOCK(&lk);
4832 		return;
4833 	}
4834 	ip->i_effnlink -= inodedep->id_nlinkdelta;
4835 	if (inodedep->id_state & SPACECOUNTED)
4836 		ip->i_flag |= IN_SPACECOUNTED;
4837 	FREE_LOCK(&lk);
4838 }
4839 
4840 /*
4841  * This routine is called just before the "in-core" inode
4842  * information is to be copied to the in-memory inode block.
4843  * Recall that an inode block contains several inodes. If
4844  * the force flag is set, then the dependencies will be
4845  * cleared so that the update can always be made. Note that
4846  * the buffer is locked when this routine is called, so we
4847  * will never be in the middle of writing the inode block
4848  * to disk.
4849  */
4850 void
4851 softdep_update_inodeblock(ip, bp, waitfor)
4852 	struct inode *ip;	/* the "in_core" copy of the inode */
4853 	struct buf *bp;		/* the buffer containing the inode block */
4854 	int waitfor;		/* nonzero => update must be allowed */
4855 {
4856 	struct inodedep *inodedep;
4857 	struct worklist *wk;
4858 	struct mount *mp;
4859 	struct buf *ibp;
4860 	int error;
4861 
4862 	/*
4863 	 * If the effective link count is not equal to the actual link
4864 	 * count, then we must track the difference in an inodedep while
4865 	 * the inode is (potentially) tossed out of the cache. Otherwise,
4866 	 * if there is no existing inodedep, then there are no dependencies
4867 	 * to track.
4868 	 */
4869 	mp = UFSTOVFS(ip->i_ump);
4870 	ACQUIRE_LOCK(&lk);
4871 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
4872 		FREE_LOCK(&lk);
4873 		if (ip->i_effnlink != ip->i_nlink)
4874 			panic("softdep_update_inodeblock: bad link count");
4875 		return;
4876 	}
4877 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
4878 		panic("softdep_update_inodeblock: bad delta");
4879 	/*
4880 	 * Changes have been initiated. Anything depending on these
4881 	 * changes cannot occur until this inode has been written.
4882 	 */
4883 	inodedep->id_state &= ~COMPLETE;
4884 	if ((inodedep->id_state & ONWORKLIST) == 0)
4885 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4886 	/*
4887 	 * Any new dependencies associated with the incore inode must
4888 	 * now be moved to the list associated with the buffer holding
4889 	 * the in-memory copy of the inode. Once merged process any
4890 	 * allocdirects that are completed by the merger.
4891 	 */
4892 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4893 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4894 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4895 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4896 	if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL)
4897 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4898 	/*
4899 	 * Now that the inode has been pushed into the buffer, the
4900 	 * operations dependent on the inode being written to disk
4901 	 * can be moved to the id_bufwait so that they will be
4902 	 * processed when the buffer I/O completes.
4903 	 */
4904 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4905 		WORKLIST_REMOVE(wk);
4906 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4907 	}
4908 	/*
4909 	 * Newly allocated inodes cannot be written until the bitmap
4910 	 * that allocates them have been written (indicated by
4911 	 * DEPCOMPLETE being set in id_state). If we are doing a
4912 	 * forced sync (e.g., an fsync on a file), we force the bitmap
4913 	 * to be written so that the update can be done.
4914 	 */
4915 	if (waitfor == 0) {
4916 		FREE_LOCK(&lk);
4917 		return;
4918 	}
4919 retry:
4920 	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
4921 		FREE_LOCK(&lk);
4922 		return;
4923 	}
4924 	ibp = inodedep->id_buf;
4925 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
4926 	if (ibp == NULL) {
4927 		/*
4928 		 * If ibp came back as NULL, the dependency could have been
4929 		 * freed while we slept.  Look it up again, and check to see
4930 		 * that it has completed.
4931 		 */
4932 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
4933 			goto retry;
4934 		FREE_LOCK(&lk);
4935 		return;
4936 	}
4937 	FREE_LOCK(&lk);
4938 	if ((error = bwrite(ibp)) != 0)
4939 		softdep_error("softdep_update_inodeblock: bwrite", error);
4940 }
4941 
4942 /*
4943  * Merge the a new inode dependency list (such as id_newinoupdt) into an
4944  * old inode dependency list (such as id_inoupdt). This routine must be
4945  * called with splbio interrupts blocked.
4946  */
4947 static void
4948 merge_inode_lists(newlisthead, oldlisthead)
4949 	struct allocdirectlst *newlisthead;
4950 	struct allocdirectlst *oldlisthead;
4951 {
4952 	struct allocdirect *listadp, *newadp;
4953 
4954 	newadp = TAILQ_FIRST(newlisthead);
4955 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
4956 		if (listadp->ad_lbn < newadp->ad_lbn) {
4957 			listadp = TAILQ_NEXT(listadp, ad_next);
4958 			continue;
4959 		}
4960 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4961 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4962 		if (listadp->ad_lbn == newadp->ad_lbn) {
4963 			allocdirect_merge(oldlisthead, newadp,
4964 			    listadp);
4965 			listadp = newadp;
4966 		}
4967 		newadp = TAILQ_FIRST(newlisthead);
4968 	}
4969 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
4970 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4971 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
4972 	}
4973 }
4974 
4975 /*
4976  * If we are doing an fsync, then we must ensure that any directory
4977  * entries for the inode have been written after the inode gets to disk.
4978  */
4979 int
4980 softdep_fsync(vp)
4981 	struct vnode *vp;	/* the "in_core" copy of the inode */
4982 {
4983 	struct inodedep *inodedep;
4984 	struct pagedep *pagedep;
4985 	struct worklist *wk;
4986 	struct diradd *dap;
4987 	struct mount *mp;
4988 	struct vnode *pvp;
4989 	struct inode *ip;
4990 	struct buf *bp;
4991 	struct fs *fs;
4992 	struct thread *td = curthread;
4993 	int error, flushparent;
4994 	ino_t parentino;
4995 	ufs_lbn_t lbn;
4996 
4997 	ip = VTOI(vp);
4998 	fs = ip->i_fs;
4999 	mp = vp->v_mount;
5000 	ACQUIRE_LOCK(&lk);
5001 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
5002 		FREE_LOCK(&lk);
5003 		return (0);
5004 	}
5005 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
5006 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
5007 	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
5008 	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
5009 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
5010 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL)
5011 		panic("softdep_fsync: pending ops");
5012 	for (error = 0, flushparent = 0; ; ) {
5013 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
5014 			break;
5015 		if (wk->wk_type != D_DIRADD)
5016 			panic("softdep_fsync: Unexpected type %s",
5017 			    TYPENAME(wk->wk_type));
5018 		dap = WK_DIRADD(wk);
5019 		/*
5020 		 * Flush our parent if this directory entry has a MKDIR_PARENT
5021 		 * dependency or is contained in a newly allocated block.
5022 		 */
5023 		if (dap->da_state & DIRCHG)
5024 			pagedep = dap->da_previous->dm_pagedep;
5025 		else
5026 			pagedep = dap->da_pagedep;
5027 		parentino = pagedep->pd_ino;
5028 		lbn = pagedep->pd_lbn;
5029 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
5030 			panic("softdep_fsync: dirty");
5031 		if ((dap->da_state & MKDIR_PARENT) ||
5032 		    (pagedep->pd_state & NEWBLOCK))
5033 			flushparent = 1;
5034 		else
5035 			flushparent = 0;
5036 		/*
5037 		 * If we are being fsync'ed as part of vgone'ing this vnode,
5038 		 * then we will not be able to release and recover the
5039 		 * vnode below, so we just have to give up on writing its
5040 		 * directory entry out. It will eventually be written, just
5041 		 * not now, but then the user was not asking to have it
5042 		 * written, so we are not breaking any promises.
5043 		 */
5044 		if (vp->v_iflag & VI_DOOMED)
5045 			break;
5046 		/*
5047 		 * We prevent deadlock by always fetching inodes from the
5048 		 * root, moving down the directory tree. Thus, when fetching
5049 		 * our parent directory, we first try to get the lock. If
5050 		 * that fails, we must unlock ourselves before requesting
5051 		 * the lock on our parent. See the comment in ufs_lookup
5052 		 * for details on possible races.
5053 		 */
5054 		FREE_LOCK(&lk);
5055 		if (ffs_vget(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) {
5056 			VOP_UNLOCK(vp, 0, td);
5057 			error = ffs_vget(mp, parentino, LK_EXCLUSIVE, &pvp);
5058 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
5059 			if (error != 0)
5060 				return (error);
5061 		}
5062 		/*
5063 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
5064 		 * that are contained in direct blocks will be resolved by
5065 		 * doing a ffs_update. Pagedeps contained in indirect blocks
5066 		 * may require a complete sync'ing of the directory. So, we
5067 		 * try the cheap and fast ffs_update first, and if that fails,
5068 		 * then we do the slower ffs_syncvnode of the directory.
5069 		 */
5070 		if (flushparent) {
5071 			if ((error = ffs_update(pvp, 1)) != 0) {
5072 				vput(pvp);
5073 				return (error);
5074 			}
5075 			if ((pagedep->pd_state & NEWBLOCK) &&
5076 			    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
5077 				vput(pvp);
5078 				return (error);
5079 			}
5080 		}
5081 		/*
5082 		 * Flush directory page containing the inode's name.
5083 		 */
5084 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
5085 		    &bp);
5086 		if (error == 0)
5087 			error = bwrite(bp);
5088 		else
5089 			brelse(bp);
5090 		vput(pvp);
5091 		if (error != 0)
5092 			return (error);
5093 		ACQUIRE_LOCK(&lk);
5094 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
5095 			break;
5096 	}
5097 	FREE_LOCK(&lk);
5098 	return (0);
5099 }
5100 
5101 /*
5102  * Flush all the dirty bitmaps associated with the block device
5103  * before flushing the rest of the dirty blocks so as to reduce
5104  * the number of dependencies that will have to be rolled back.
5105  */
5106 void
5107 softdep_fsync_mountdev(vp)
5108 	struct vnode *vp;
5109 {
5110 	struct buf *bp, *nbp;
5111 	struct worklist *wk;
5112 
5113 	if (!vn_isdisk(vp, NULL))
5114 		panic("softdep_fsync_mountdev: vnode not a disk");
5115 restart:
5116 	ACQUIRE_LOCK(&lk);
5117 	VI_LOCK(vp);
5118 	TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
5119 		/*
5120 		 * If it is already scheduled, skip to the next buffer.
5121 		 */
5122 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
5123 			continue;
5124 
5125 		if ((bp->b_flags & B_DELWRI) == 0)
5126 			panic("softdep_fsync_mountdev: not dirty");
5127 		/*
5128 		 * We are only interested in bitmaps with outstanding
5129 		 * dependencies.
5130 		 */
5131 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
5132 		    wk->wk_type != D_BMSAFEMAP ||
5133 		    (bp->b_vflags & BV_BKGRDINPROG)) {
5134 			BUF_UNLOCK(bp);
5135 			continue;
5136 		}
5137 		VI_UNLOCK(vp);
5138 		FREE_LOCK(&lk);
5139 		bremfree(bp);
5140 		(void) bawrite(bp);
5141 		goto restart;
5142 	}
5143 	FREE_LOCK(&lk);
5144 	drain_output(vp);
5145 	VI_UNLOCK(vp);
5146 }
5147 
5148 /*
5149  * This routine is called when we are trying to synchronously flush a
5150  * file. This routine must eliminate any filesystem metadata dependencies
5151  * so that the syncing routine can succeed by pushing the dirty blocks
5152  * associated with the file. If any I/O errors occur, they are returned.
5153  */
5154 int
5155 softdep_sync_metadata(struct vnode *vp)
5156 {
5157 	struct pagedep *pagedep;
5158 	struct allocdirect *adp;
5159 	struct allocindir *aip;
5160 	struct buf *bp, *nbp;
5161 	struct worklist *wk;
5162 	int i, error, waitfor;
5163 
5164 	if (!DOINGSOFTDEP(vp))
5165 		return (0);
5166 	/*
5167 	 * Ensure that any direct block dependencies have been cleared.
5168 	 */
5169 	ACQUIRE_LOCK(&lk);
5170 	if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
5171 		FREE_LOCK(&lk);
5172 		return (error);
5173 	}
5174 	FREE_LOCK(&lk);
5175 	/*
5176 	 * For most files, the only metadata dependencies are the
5177 	 * cylinder group maps that allocate their inode or blocks.
5178 	 * The block allocation dependencies can be found by traversing
5179 	 * the dependency lists for any buffers that remain on their
5180 	 * dirty buffer list. The inode allocation dependency will
5181 	 * be resolved when the inode is updated with MNT_WAIT.
5182 	 * This work is done in two passes. The first pass grabs most
5183 	 * of the buffers and begins asynchronously writing them. The
5184 	 * only way to wait for these asynchronous writes is to sleep
5185 	 * on the filesystem vnode which may stay busy for a long time
5186 	 * if the filesystem is active. So, instead, we make a second
5187 	 * pass over the dependencies blocking on each write. In the
5188 	 * usual case we will be blocking against a write that we
5189 	 * initiated, so when it is done the dependency will have been
5190 	 * resolved. Thus the second pass is expected to end quickly.
5191 	 */
5192 	waitfor = MNT_NOWAIT;
5193 
5194 top:
5195 	/*
5196 	 * We must wait for any I/O in progress to finish so that
5197 	 * all potential buffers on the dirty list will be visible.
5198 	 */
5199 	VI_LOCK(vp);
5200 	drain_output(vp);
5201 	while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) {
5202 		bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT);
5203 		if (bp)
5204 			break;
5205 	}
5206 	VI_UNLOCK(vp);
5207 	if (bp == NULL)
5208 		return (0);
5209 loop:
5210 	/* While syncing snapshots, we must allow recursive lookups */
5211 	bp->b_lock.lk_flags |= LK_CANRECURSE;
5212 	ACQUIRE_LOCK(&lk);
5213 	/*
5214 	 * As we hold the buffer locked, none of its dependencies
5215 	 * will disappear.
5216 	 */
5217 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5218 		switch (wk->wk_type) {
5219 
5220 		case D_ALLOCDIRECT:
5221 			adp = WK_ALLOCDIRECT(wk);
5222 			if (adp->ad_state & DEPCOMPLETE)
5223 				continue;
5224 			nbp = adp->ad_buf;
5225 			nbp = getdirtybuf(nbp, &lk, waitfor);
5226 			if (nbp == NULL)
5227 				continue;
5228 			FREE_LOCK(&lk);
5229 			if (waitfor == MNT_NOWAIT) {
5230 				bawrite(nbp);
5231 			} else if ((error = bwrite(nbp)) != 0) {
5232 				break;
5233 			}
5234 			ACQUIRE_LOCK(&lk);
5235 			continue;
5236 
5237 		case D_ALLOCINDIR:
5238 			aip = WK_ALLOCINDIR(wk);
5239 			if (aip->ai_state & DEPCOMPLETE)
5240 				continue;
5241 			nbp = aip->ai_buf;
5242 			nbp = getdirtybuf(nbp, &lk, waitfor);
5243 			if (nbp == NULL)
5244 				continue;
5245 			FREE_LOCK(&lk);
5246 			if (waitfor == MNT_NOWAIT) {
5247 				bawrite(nbp);
5248 			} else if ((error = bwrite(nbp)) != 0) {
5249 				break;
5250 			}
5251 			ACQUIRE_LOCK(&lk);
5252 			continue;
5253 
5254 		case D_INDIRDEP:
5255 		restart:
5256 
5257 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
5258 				if (aip->ai_state & DEPCOMPLETE)
5259 					continue;
5260 				nbp = aip->ai_buf;
5261 				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
5262 				if (nbp == NULL)
5263 					goto restart;
5264 				FREE_LOCK(&lk);
5265 				if ((error = bwrite(nbp)) != 0) {
5266 					break;
5267 				}
5268 				ACQUIRE_LOCK(&lk);
5269 				goto restart;
5270 			}
5271 			continue;
5272 
5273 		case D_INODEDEP:
5274 			if ((error = flush_inodedep_deps(wk->wk_mp,
5275 			    WK_INODEDEP(wk)->id_ino)) != 0) {
5276 				FREE_LOCK(&lk);
5277 				break;
5278 			}
5279 			continue;
5280 
5281 		case D_PAGEDEP:
5282 			/*
5283 			 * We are trying to sync a directory that may
5284 			 * have dependencies on both its own metadata
5285 			 * and/or dependencies on the inodes of any
5286 			 * recently allocated files. We walk its diradd
5287 			 * lists pushing out the associated inode.
5288 			 */
5289 			pagedep = WK_PAGEDEP(wk);
5290 			for (i = 0; i < DAHASHSZ; i++) {
5291 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
5292 					continue;
5293 				if ((error =
5294 				    flush_pagedep_deps(vp, wk->wk_mp,
5295 						&pagedep->pd_diraddhd[i]))) {
5296 					FREE_LOCK(&lk);
5297 					break;
5298 				}
5299 			}
5300 			continue;
5301 
5302 		case D_MKDIR:
5303 			/*
5304 			 * This case should never happen if the vnode has
5305 			 * been properly sync'ed. However, if this function
5306 			 * is used at a place where the vnode has not yet
5307 			 * been sync'ed, this dependency can show up. So,
5308 			 * rather than panic, just flush it.
5309 			 */
5310 			nbp = WK_MKDIR(wk)->md_buf;
5311 			nbp = getdirtybuf(nbp, &lk, waitfor);
5312 			if (nbp == NULL)
5313 				continue;
5314 			FREE_LOCK(&lk);
5315 			if (waitfor == MNT_NOWAIT) {
5316 				bawrite(nbp);
5317 			} else if ((error = bwrite(nbp)) != 0) {
5318 				break;
5319 			}
5320 			ACQUIRE_LOCK(&lk);
5321 			continue;
5322 
5323 		case D_BMSAFEMAP:
5324 			/*
5325 			 * This case should never happen if the vnode has
5326 			 * been properly sync'ed. However, if this function
5327 			 * is used at a place where the vnode has not yet
5328 			 * been sync'ed, this dependency can show up. So,
5329 			 * rather than panic, just flush it.
5330 			 */
5331 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
5332 			nbp = getdirtybuf(nbp, &lk, waitfor);
5333 			if (nbp == NULL)
5334 				continue;
5335 			FREE_LOCK(&lk);
5336 			if (waitfor == MNT_NOWAIT) {
5337 				bawrite(nbp);
5338 			} else if ((error = bwrite(nbp)) != 0) {
5339 				break;
5340 			}
5341 			ACQUIRE_LOCK(&lk);
5342 			continue;
5343 
5344 		default:
5345 			panic("softdep_sync_metadata: Unknown type %s",
5346 			    TYPENAME(wk->wk_type));
5347 			/* NOTREACHED */
5348 		}
5349 		/* We reach here only in error and unlocked */
5350 		if (error == 0)
5351 			panic("softdep_sync_metadata: zero error");
5352 		bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5353 		bawrite(bp);
5354 		return (error);
5355 	}
5356 	FREE_LOCK(&lk);
5357 	VI_LOCK(vp);
5358 	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
5359 		nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT);
5360 		if (nbp)
5361 			break;
5362 	}
5363 	VI_UNLOCK(vp);
5364 	bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5365 	bawrite(bp);
5366 	if (nbp != NULL) {
5367 		bp = nbp;
5368 		goto loop;
5369 	}
5370 	/*
5371 	 * The brief unlock is to allow any pent up dependency
5372 	 * processing to be done. Then proceed with the second pass.
5373 	 */
5374 	if (waitfor == MNT_NOWAIT) {
5375 		waitfor = MNT_WAIT;
5376 		goto top;
5377 	}
5378 
5379 	/*
5380 	 * If we have managed to get rid of all the dirty buffers,
5381 	 * then we are done. For certain directories and block
5382 	 * devices, we may need to do further work.
5383 	 *
5384 	 * We must wait for any I/O in progress to finish so that
5385 	 * all potential buffers on the dirty list will be visible.
5386 	 */
5387 	VI_LOCK(vp);
5388 	drain_output(vp);
5389 	VI_UNLOCK(vp);
5390 	return (0);
5391 }
5392 
5393 /*
5394  * Flush the dependencies associated with an inodedep.
5395  * Called with splbio blocked.
5396  */
5397 static int
5398 flush_inodedep_deps(mp, ino)
5399 	struct mount *mp;
5400 	ino_t ino;
5401 {
5402 	struct inodedep *inodedep;
5403 	int error, waitfor;
5404 
5405 	/*
5406 	 * This work is done in two passes. The first pass grabs most
5407 	 * of the buffers and begins asynchronously writing them. The
5408 	 * only way to wait for these asynchronous writes is to sleep
5409 	 * on the filesystem vnode which may stay busy for a long time
5410 	 * if the filesystem is active. So, instead, we make a second
5411 	 * pass over the dependencies blocking on each write. In the
5412 	 * usual case we will be blocking against a write that we
5413 	 * initiated, so when it is done the dependency will have been
5414 	 * resolved. Thus the second pass is expected to end quickly.
5415 	 * We give a brief window at the top of the loop to allow
5416 	 * any pending I/O to complete.
5417 	 */
5418 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
5419 		if (error)
5420 			return (error);
5421 		FREE_LOCK(&lk);
5422 		ACQUIRE_LOCK(&lk);
5423 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
5424 			return (0);
5425 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
5426 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
5427 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
5428 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
5429 			continue;
5430 		/*
5431 		 * If pass2, we are done, otherwise do pass 2.
5432 		 */
5433 		if (waitfor == MNT_WAIT)
5434 			break;
5435 		waitfor = MNT_WAIT;
5436 	}
5437 	/*
5438 	 * Try freeing inodedep in case all dependencies have been removed.
5439 	 */
5440 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
5441 		(void) free_inodedep(inodedep);
5442 	return (0);
5443 }
5444 
5445 /*
5446  * Flush an inode dependency list.
5447  * Called with splbio blocked.
5448  */
5449 static int
5450 flush_deplist(listhead, waitfor, errorp)
5451 	struct allocdirectlst *listhead;
5452 	int waitfor;
5453 	int *errorp;
5454 {
5455 	struct allocdirect *adp;
5456 	struct buf *bp;
5457 
5458 	mtx_assert(&lk, MA_OWNED);
5459 	TAILQ_FOREACH(adp, listhead, ad_next) {
5460 		if (adp->ad_state & DEPCOMPLETE)
5461 			continue;
5462 		bp = adp->ad_buf;
5463 		bp = getdirtybuf(bp, &lk, waitfor);
5464 		if (bp == NULL) {
5465 			if (waitfor == MNT_NOWAIT)
5466 				continue;
5467 			return (1);
5468 		}
5469 		FREE_LOCK(&lk);
5470 		if (waitfor == MNT_NOWAIT) {
5471 			bawrite(bp);
5472 		} else if ((*errorp = bwrite(bp)) != 0) {
5473 			ACQUIRE_LOCK(&lk);
5474 			return (1);
5475 		}
5476 		ACQUIRE_LOCK(&lk);
5477 		return (1);
5478 	}
5479 	return (0);
5480 }
5481 
5482 /*
5483  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5484  * Called with splbio blocked.
5485  */
5486 static int
5487 flush_pagedep_deps(pvp, mp, diraddhdp)
5488 	struct vnode *pvp;
5489 	struct mount *mp;
5490 	struct diraddhd *diraddhdp;
5491 {
5492 	struct inodedep *inodedep;
5493 	struct ufsmount *ump;
5494 	struct diradd *dap;
5495 	struct vnode *vp;
5496 	int error = 0;
5497 	struct buf *bp;
5498 	ino_t inum;
5499 
5500 	ump = VFSTOUFS(mp);
5501 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5502 		/*
5503 		 * Flush ourselves if this directory entry
5504 		 * has a MKDIR_PARENT dependency.
5505 		 */
5506 		if (dap->da_state & MKDIR_PARENT) {
5507 			FREE_LOCK(&lk);
5508 			if ((error = ffs_update(pvp, 1)) != 0)
5509 				break;
5510 			ACQUIRE_LOCK(&lk);
5511 			/*
5512 			 * If that cleared dependencies, go on to next.
5513 			 */
5514 			if (dap != LIST_FIRST(diraddhdp))
5515 				continue;
5516 			if (dap->da_state & MKDIR_PARENT)
5517 				panic("flush_pagedep_deps: MKDIR_PARENT");
5518 		}
5519 		/*
5520 		 * A newly allocated directory must have its "." and
5521 		 * ".." entries written out before its name can be
5522 		 * committed in its parent. We do not want or need
5523 		 * the full semantics of a synchronous ffs_syncvnode as
5524 		 * that may end up here again, once for each directory
5525 		 * level in the filesystem. Instead, we push the blocks
5526 		 * and wait for them to clear. We have to fsync twice
5527 		 * because the first call may choose to defer blocks
5528 		 * that still have dependencies, but deferral will
5529 		 * happen at most once.
5530 		 */
5531 		inum = dap->da_newinum;
5532 		if (dap->da_state & MKDIR_BODY) {
5533 			FREE_LOCK(&lk);
5534 			if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp)))
5535 				break;
5536 			if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) ||
5537 			    (error=ffs_syncvnode(vp, MNT_NOWAIT))) {
5538 				vput(vp);
5539 				break;
5540 			}
5541 			VI_LOCK(vp);
5542 			drain_output(vp);
5543 			VI_UNLOCK(vp);
5544 			vput(vp);
5545 			ACQUIRE_LOCK(&lk);
5546 			/*
5547 			 * If that cleared dependencies, go on to next.
5548 			 */
5549 			if (dap != LIST_FIRST(diraddhdp))
5550 				continue;
5551 			if (dap->da_state & MKDIR_BODY)
5552 				panic("flush_pagedep_deps: MKDIR_BODY");
5553 		}
5554 		/*
5555 		 * Flush the inode on which the directory entry depends.
5556 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5557 		 * the only remaining dependency is that the updated inode
5558 		 * count must get pushed to disk. The inode has already
5559 		 * been pushed into its inode buffer (via VOP_UPDATE) at
5560 		 * the time of the reference count change. So we need only
5561 		 * locate that buffer, ensure that there will be no rollback
5562 		 * caused by a bitmap dependency, then write the inode buffer.
5563 		 */
5564 retry:
5565 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
5566 			panic("flush_pagedep_deps: lost inode");
5567 		/*
5568 		 * If the inode still has bitmap dependencies,
5569 		 * push them to disk.
5570 		 */
5571 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5572 			bp = inodedep->id_buf;
5573 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
5574 			if (bp == NULL)
5575 				goto retry;
5576 			FREE_LOCK(&lk);
5577 			if ((error = bwrite(bp)) != 0)
5578 				break;
5579 			ACQUIRE_LOCK(&lk);
5580 			if (dap != LIST_FIRST(diraddhdp))
5581 				continue;
5582 		}
5583 		/*
5584 		 * If the inode is still sitting in a buffer waiting
5585 		 * to be written, push it to disk.
5586 		 */
5587 		FREE_LOCK(&lk);
5588 		if ((error = bread(ump->um_devvp,
5589 		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5590 		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5591 			brelse(bp);
5592 			break;
5593 		}
5594 		if ((error = bwrite(bp)) != 0)
5595 			break;
5596 		ACQUIRE_LOCK(&lk);
5597 		/*
5598 		 * If we have failed to get rid of all the dependencies
5599 		 * then something is seriously wrong.
5600 		 */
5601 		if (dap == LIST_FIRST(diraddhdp))
5602 			panic("flush_pagedep_deps: flush failed");
5603 	}
5604 	if (error)
5605 		ACQUIRE_LOCK(&lk);
5606 	return (error);
5607 }
5608 
5609 /*
5610  * A large burst of file addition or deletion activity can drive the
5611  * memory load excessively high. First attempt to slow things down
5612  * using the techniques below. If that fails, this routine requests
5613  * the offending operations to fall back to running synchronously
5614  * until the memory load returns to a reasonable level.
5615  */
5616 int
5617 softdep_slowdown(vp)
5618 	struct vnode *vp;
5619 {
5620 	int max_softdeps_hard;
5621 
5622 	ACQUIRE_LOCK(&lk);
5623 	max_softdeps_hard = max_softdeps * 11 / 10;
5624 	if (num_dirrem < max_softdeps_hard / 2 &&
5625 	    num_inodedep < max_softdeps_hard &&
5626 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) {
5627 		FREE_LOCK(&lk);
5628   		return (0);
5629 	}
5630 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5631 		softdep_speedup();
5632 	stat_sync_limit_hit += 1;
5633 	FREE_LOCK(&lk);
5634 	return (1);
5635 }
5636 
5637 /*
5638  * Called by the allocation routines when they are about to fail
5639  * in the hope that we can free up some disk space.
5640  *
5641  * First check to see if the work list has anything on it. If it has,
5642  * clean up entries until we successfully free some space. Because this
5643  * process holds inodes locked, we cannot handle any remove requests
5644  * that might block on a locked inode as that could lead to deadlock.
5645  * If the worklist yields no free space, encourage the syncer daemon
5646  * to help us. In no event will we try for longer than tickdelay seconds.
5647  */
5648 int
5649 softdep_request_cleanup(fs, vp)
5650 	struct fs *fs;
5651 	struct vnode *vp;
5652 {
5653 	struct ufsmount *ump;
5654 	long starttime;
5655 	ufs2_daddr_t needed;
5656 	int error;
5657 
5658 	ump = VTOI(vp)->i_ump;
5659 	mtx_assert(UFS_MTX(ump), MA_OWNED);
5660 	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5661 	starttime = time_second + tickdelay;
5662 	/*
5663 	 * If we are being called because of a process doing a
5664 	 * copy-on-write, then it is not safe to update the vnode
5665 	 * as we may recurse into the copy-on-write routine.
5666 	 */
5667 	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
5668 		UFS_UNLOCK(ump);
5669 		error = ffs_update(vp, 1);
5670 		UFS_LOCK(ump);
5671 		if (error != 0)
5672 			return (0);
5673 	}
5674 	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5675 		if (time_second > starttime)
5676 			return (0);
5677 		UFS_UNLOCK(ump);
5678 		ACQUIRE_LOCK(&lk);
5679 		if (ump->softdep_on_worklist > 0 &&
5680 		    process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
5681 			stat_worklist_push += 1;
5682 			FREE_LOCK(&lk);
5683 			UFS_LOCK(ump);
5684 			continue;
5685 		}
5686 		request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
5687 		FREE_LOCK(&lk);
5688 		UFS_LOCK(ump);
5689 	}
5690 	return (1);
5691 }
5692 
5693 /*
5694  * If memory utilization has gotten too high, deliberately slow things
5695  * down and speed up the I/O processing.
5696  */
5697 extern struct thread *syncertd;
5698 static int
5699 request_cleanup(mp, resource)
5700 	struct mount *mp;
5701 	int resource;
5702 {
5703 	struct thread *td = curthread;
5704 	struct ufsmount *ump;
5705 
5706 	mtx_assert(&lk, MA_OWNED);
5707 	/*
5708 	 * We never hold up the filesystem syncer or buf daemon.
5709 	 */
5710 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
5711 		return (0);
5712 	ump = VFSTOUFS(mp);
5713 	/*
5714 	 * First check to see if the work list has gotten backlogged.
5715 	 * If it has, co-opt this process to help clean up two entries.
5716 	 * Because this process may hold inodes locked, we cannot
5717 	 * handle any remove requests that might block on a locked
5718 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
5719 	 * to avoid recursively processing the worklist.
5720 	 */
5721 	if (ump->softdep_on_worklist > max_softdeps / 10) {
5722 		td->td_pflags |= TDP_SOFTDEP;
5723 		process_worklist_item(mp, LK_NOWAIT);
5724 		process_worklist_item(mp, LK_NOWAIT);
5725 		td->td_pflags &= ~TDP_SOFTDEP;
5726 		stat_worklist_push += 2;
5727 		return(1);
5728 	}
5729 	/*
5730 	 * Next, we attempt to speed up the syncer process. If that
5731 	 * is successful, then we allow the process to continue.
5732 	 */
5733 	if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
5734 		return(0);
5735 	/*
5736 	 * If we are resource constrained on inode dependencies, try
5737 	 * flushing some dirty inodes. Otherwise, we are constrained
5738 	 * by file deletions, so try accelerating flushes of directories
5739 	 * with removal dependencies. We would like to do the cleanup
5740 	 * here, but we probably hold an inode locked at this point and
5741 	 * that might deadlock against one that we try to clean. So,
5742 	 * the best that we can do is request the syncer daemon to do
5743 	 * the cleanup for us.
5744 	 */
5745 	switch (resource) {
5746 
5747 	case FLUSH_INODES:
5748 		stat_ino_limit_push += 1;
5749 		req_clear_inodedeps += 1;
5750 		stat_countp = &stat_ino_limit_hit;
5751 		break;
5752 
5753 	case FLUSH_REMOVE:
5754 	case FLUSH_REMOVE_WAIT:
5755 		stat_blk_limit_push += 1;
5756 		req_clear_remove += 1;
5757 		stat_countp = &stat_blk_limit_hit;
5758 		break;
5759 
5760 	default:
5761 		panic("request_cleanup: unknown type");
5762 	}
5763 	/*
5764 	 * Hopefully the syncer daemon will catch up and awaken us.
5765 	 * We wait at most tickdelay before proceeding in any case.
5766 	 */
5767 	proc_waiting += 1;
5768 	if (handle.callout == NULL)
5769 		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5770 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
5771 	proc_waiting -= 1;
5772 	return (1);
5773 }
5774 
5775 /*
5776  * Awaken processes pausing in request_cleanup and clear proc_waiting
5777  * to indicate that there is no longer a timer running.
5778  */
5779 static void
5780 pause_timer(arg)
5781 	void *arg;
5782 {
5783 
5784 	ACQUIRE_LOCK(&lk);
5785 	*stat_countp += 1;
5786 	wakeup_one(&proc_waiting);
5787 	if (proc_waiting > 0)
5788 		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5789 	else
5790 		handle.callout = NULL;
5791 	FREE_LOCK(&lk);
5792 }
5793 
5794 /*
5795  * Flush out a directory with at least one removal dependency in an effort to
5796  * reduce the number of dirrem, freefile, and freeblks dependency structures.
5797  */
5798 static void
5799 clear_remove(td)
5800 	struct thread *td;
5801 {
5802 	struct pagedep_hashhead *pagedephd;
5803 	struct pagedep *pagedep;
5804 	static int next = 0;
5805 	struct mount *mp;
5806 	struct vnode *vp;
5807 	int error, cnt;
5808 	ino_t ino;
5809 
5810 	mtx_assert(&lk, MA_OWNED);
5811 
5812 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
5813 		pagedephd = &pagedep_hashtbl[next++];
5814 		if (next >= pagedep_hash)
5815 			next = 0;
5816 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5817 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
5818 				continue;
5819 			mp = pagedep->pd_list.wk_mp;
5820 			ino = pagedep->pd_ino;
5821 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5822 				continue;
5823 			FREE_LOCK(&lk);
5824 			if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) {
5825 				softdep_error("clear_remove: vget", error);
5826 				vn_finished_write(mp);
5827 				ACQUIRE_LOCK(&lk);
5828 				return;
5829 			}
5830 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5831 				softdep_error("clear_remove: fsync", error);
5832 			VI_LOCK(vp);
5833 			drain_output(vp);
5834 			VI_UNLOCK(vp);
5835 			vput(vp);
5836 			vn_finished_write(mp);
5837 			ACQUIRE_LOCK(&lk);
5838 			return;
5839 		}
5840 	}
5841 }
5842 
5843 /*
5844  * Clear out a block of dirty inodes in an effort to reduce
5845  * the number of inodedep dependency structures.
5846  */
5847 static void
5848 clear_inodedeps(td)
5849 	struct thread *td;
5850 {
5851 	struct inodedep_hashhead *inodedephd;
5852 	struct inodedep *inodedep;
5853 	static int next = 0;
5854 	struct mount *mp;
5855 	struct vnode *vp;
5856 	struct fs *fs;
5857 	int error, cnt;
5858 	ino_t firstino, lastino, ino;
5859 
5860 	mtx_assert(&lk, MA_OWNED);
5861 	/*
5862 	 * Pick a random inode dependency to be cleared.
5863 	 * We will then gather up all the inodes in its block
5864 	 * that have dependencies and flush them out.
5865 	 */
5866 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5867 		inodedephd = &inodedep_hashtbl[next++];
5868 		if (next >= inodedep_hash)
5869 			next = 0;
5870 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5871 			break;
5872 	}
5873 	if (inodedep == NULL)
5874 		return;
5875 	fs = inodedep->id_fs;
5876 	mp = inodedep->id_list.wk_mp;
5877 	/*
5878 	 * Find the last inode in the block with dependencies.
5879 	 */
5880 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5881 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5882 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
5883 			break;
5884 	/*
5885 	 * Asynchronously push all but the last inode with dependencies.
5886 	 * Synchronously push the last inode with dependencies to ensure
5887 	 * that the inode block gets written to free up the inodedeps.
5888 	 */
5889 	for (ino = firstino; ino <= lastino; ino++) {
5890 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
5891 			continue;
5892 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5893 			continue;
5894 		FREE_LOCK(&lk);
5895 		if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) {
5896 			softdep_error("clear_inodedeps: vget", error);
5897 			vn_finished_write(mp);
5898 			ACQUIRE_LOCK(&lk);
5899 			return;
5900 		}
5901 		if (ino == lastino) {
5902 			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
5903 				softdep_error("clear_inodedeps: fsync1", error);
5904 		} else {
5905 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5906 				softdep_error("clear_inodedeps: fsync2", error);
5907 			VI_LOCK(vp);
5908 			drain_output(vp);
5909 			VI_UNLOCK(vp);
5910 		}
5911 		vput(vp);
5912 		vn_finished_write(mp);
5913 		ACQUIRE_LOCK(&lk);
5914 	}
5915 }
5916 
5917 /*
5918  * Function to determine if the buffer has outstanding dependencies
5919  * that will cause a roll-back if the buffer is written. If wantcount
5920  * is set, return number of dependencies, otherwise just yes or no.
5921  */
5922 static int
5923 softdep_count_dependencies(bp, wantcount)
5924 	struct buf *bp;
5925 	int wantcount;
5926 {
5927 	struct worklist *wk;
5928 	struct inodedep *inodedep;
5929 	struct indirdep *indirdep;
5930 	struct allocindir *aip;
5931 	struct pagedep *pagedep;
5932 	struct diradd *dap;
5933 	int i, retval;
5934 
5935 	retval = 0;
5936 	ACQUIRE_LOCK(&lk);
5937 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5938 		switch (wk->wk_type) {
5939 
5940 		case D_INODEDEP:
5941 			inodedep = WK_INODEDEP(wk);
5942 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5943 				/* bitmap allocation dependency */
5944 				retval += 1;
5945 				if (!wantcount)
5946 					goto out;
5947 			}
5948 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5949 				/* direct block pointer dependency */
5950 				retval += 1;
5951 				if (!wantcount)
5952 					goto out;
5953 			}
5954 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
5955 				/* direct block pointer dependency */
5956 				retval += 1;
5957 				if (!wantcount)
5958 					goto out;
5959 			}
5960 			continue;
5961 
5962 		case D_INDIRDEP:
5963 			indirdep = WK_INDIRDEP(wk);
5964 
5965 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5966 				/* indirect block pointer dependency */
5967 				retval += 1;
5968 				if (!wantcount)
5969 					goto out;
5970 			}
5971 			continue;
5972 
5973 		case D_PAGEDEP:
5974 			pagedep = WK_PAGEDEP(wk);
5975 			for (i = 0; i < DAHASHSZ; i++) {
5976 
5977 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5978 					/* directory entry dependency */
5979 					retval += 1;
5980 					if (!wantcount)
5981 						goto out;
5982 				}
5983 			}
5984 			continue;
5985 
5986 		case D_BMSAFEMAP:
5987 		case D_ALLOCDIRECT:
5988 		case D_ALLOCINDIR:
5989 		case D_MKDIR:
5990 			/* never a dependency on these blocks */
5991 			continue;
5992 
5993 		default:
5994 			panic("softdep_check_for_rollback: Unexpected type %s",
5995 			    TYPENAME(wk->wk_type));
5996 			/* NOTREACHED */
5997 		}
5998 	}
5999 out:
6000 	FREE_LOCK(&lk);
6001 	return retval;
6002 }
6003 
6004 /*
6005  * Acquire exclusive access to a buffer.
6006  * Must be called with a locked mtx parameter.
6007  * Return acquired buffer or NULL on failure.
6008  */
6009 static struct buf *
6010 getdirtybuf(bp, mtx, waitfor)
6011 	struct buf *bp;
6012 	struct mtx *mtx;
6013 	int waitfor;
6014 {
6015 	int error;
6016 
6017 	mtx_assert(mtx, MA_OWNED);
6018 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
6019 		if (waitfor != MNT_WAIT)
6020 			return (NULL);
6021 		error = BUF_LOCK(bp,
6022 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
6023 		/*
6024 		 * Even if we sucessfully acquire bp here, we have dropped
6025 		 * mtx, which may violates our guarantee.
6026 		 */
6027 		if (error == 0)
6028 			BUF_UNLOCK(bp);
6029 		else if (error != ENOLCK)
6030 			panic("getdirtybuf: inconsistent lock: %d", error);
6031 		mtx_lock(mtx);
6032 		return (NULL);
6033 	}
6034 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6035 		if (mtx == &lk && waitfor == MNT_WAIT) {
6036 			mtx_unlock(mtx);
6037 			BO_LOCK(bp->b_bufobj);
6038 			BUF_UNLOCK(bp);
6039 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6040 				bp->b_vflags |= BV_BKGRDWAIT;
6041 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
6042 				       PRIBIO | PDROP, "getbuf", 0);
6043 			} else
6044 				BO_UNLOCK(bp->b_bufobj);
6045 			mtx_lock(mtx);
6046 			return (NULL);
6047 		}
6048 		BUF_UNLOCK(bp);
6049 		if (waitfor != MNT_WAIT)
6050 			return (NULL);
6051 		/*
6052 		 * The mtx argument must be bp->b_vp's mutex in
6053 		 * this case.
6054 		 */
6055 #ifdef	DEBUG_VFS_LOCKS
6056 		if (bp->b_vp->v_type != VCHR)
6057 			ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf");
6058 #endif
6059 		bp->b_vflags |= BV_BKGRDWAIT;
6060 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
6061 		return (NULL);
6062 	}
6063 	if ((bp->b_flags & B_DELWRI) == 0) {
6064 		BUF_UNLOCK(bp);
6065 		return (NULL);
6066 	}
6067 	bremfree(bp);
6068 	return (bp);
6069 }
6070 
6071 
6072 /*
6073  * Check if it is safe to suspend the file system now.  On entry,
6074  * the vnode interlock for devvp should be held.  Return 0 with
6075  * the mount interlock held if the file system can be suspended now,
6076  * otherwise return EAGAIN with the mount interlock held.
6077  */
6078 int
6079 softdep_check_suspend(struct mount *mp,
6080 		      struct vnode *devvp,
6081 		      int softdep_deps,
6082 		      int softdep_accdeps,
6083 		      int secondary_writes,
6084 		      int secondary_accwrites)
6085 {
6086 	struct bufobj *bo;
6087 	struct ufsmount *ump;
6088 	int error;
6089 
6090 	ASSERT_VI_LOCKED(devvp, "softdep_check_suspend");
6091 	ump = VFSTOUFS(mp);
6092 	bo = &devvp->v_bufobj;
6093 
6094 	for (;;) {
6095 		if (!TRY_ACQUIRE_LOCK(&lk)) {
6096 			VI_UNLOCK(devvp);
6097 			ACQUIRE_LOCK(&lk);
6098 			FREE_LOCK(&lk);
6099 			VI_LOCK(devvp);
6100 			continue;
6101 		}
6102 		if (!MNT_ITRYLOCK(mp)) {
6103 			FREE_LOCK(&lk);
6104 			VI_UNLOCK(devvp);
6105 			MNT_ILOCK(mp);
6106 			MNT_IUNLOCK(mp);
6107 			VI_LOCK(devvp);
6108 			continue;
6109 		}
6110 		if (mp->mnt_secondary_writes != 0) {
6111 			FREE_LOCK(&lk);
6112 			VI_UNLOCK(devvp);
6113 			msleep(&mp->mnt_secondary_writes,
6114 			       MNT_MTX(mp),
6115 			       (PUSER - 1) | PDROP, "secwr", 0);
6116 			VI_LOCK(devvp);
6117 			continue;
6118 		}
6119 		break;
6120 	}
6121 
6122 	/*
6123 	 * Reasons for needing more work before suspend:
6124 	 * - Dirty buffers on devvp.
6125 	 * - Softdep activity occurred after start of vnode sync loop
6126 	 * - Secondary writes occurred after start of vnode sync loop
6127 	 */
6128 	error = 0;
6129 	if (bo->bo_numoutput > 0 ||
6130 	    bo->bo_dirty.bv_cnt > 0 ||
6131 	    softdep_deps != 0 ||
6132 	    ump->softdep_deps != 0 ||
6133 	    softdep_accdeps != ump->softdep_accdeps ||
6134 	    secondary_writes != 0 ||
6135 	    mp->mnt_secondary_writes != 0 ||
6136 	    secondary_accwrites != mp->mnt_secondary_accwrites)
6137 		error = EAGAIN;
6138 	FREE_LOCK(&lk);
6139 	VI_UNLOCK(devvp);
6140 	return (error);
6141 }
6142 
6143 
6144 /*
6145  * Get the number of dependency structures for the file system, both
6146  * the current number and the total number allocated.  These will
6147  * later be used to detect that softdep processing has occurred.
6148  */
6149 void
6150 softdep_get_depcounts(struct mount *mp,
6151 		      int *softdep_depsp,
6152 		      int *softdep_accdepsp)
6153 {
6154 	struct ufsmount *ump;
6155 
6156 	ump = VFSTOUFS(mp);
6157 	ACQUIRE_LOCK(&lk);
6158 	*softdep_depsp = ump->softdep_deps;
6159 	*softdep_accdepsp = ump->softdep_accdeps;
6160 	FREE_LOCK(&lk);
6161 }
6162 
6163 /*
6164  * Wait for pending output on a vnode to complete.
6165  * Must be called with vnode lock and interlock locked.
6166  *
6167  * XXX: Should just be a call to bufobj_wwait().
6168  */
6169 static void
6170 drain_output(vp)
6171 	struct vnode *vp;
6172 {
6173 	ASSERT_VOP_LOCKED(vp, "drain_output");
6174 	ASSERT_VI_LOCKED(vp, "drain_output");
6175 
6176 	while (vp->v_bufobj.bo_numoutput) {
6177 		vp->v_bufobj.bo_flag |= BO_WWAIT;
6178 		msleep((caddr_t)&vp->v_bufobj.bo_numoutput,
6179 		    VI_MTX(vp), PRIBIO + 1, "drainvp", 0);
6180 	}
6181 }
6182 
6183 /*
6184  * Called whenever a buffer that is being invalidated or reallocated
6185  * contains dependencies. This should only happen if an I/O error has
6186  * occurred. The routine is called with the buffer locked.
6187  */
6188 static void
6189 softdep_deallocate_dependencies(bp)
6190 	struct buf *bp;
6191 {
6192 
6193 	if ((bp->b_ioflags & BIO_ERROR) == 0)
6194 		panic("softdep_deallocate_dependencies: dangling deps");
6195 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
6196 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
6197 }
6198 
6199 /*
6200  * Function to handle asynchronous write errors in the filesystem.
6201  */
6202 static void
6203 softdep_error(func, error)
6204 	char *func;
6205 	int error;
6206 {
6207 
6208 	/* XXX should do something better! */
6209 	printf("%s: got error %d while accessing filesystem\n", func, error);
6210 }
6211 
6212 #endif /* SOFTUPDATES */
6213