1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/kdb.h> 60 #include <sys/kthread.h> 61 #include <sys/lock.h> 62 #include <sys/malloc.h> 63 #include <sys/mount.h> 64 #include <sys/mutex.h> 65 #include <sys/proc.h> 66 #include <sys/stat.h> 67 #include <sys/sysctl.h> 68 #include <sys/syslog.h> 69 #include <sys/vnode.h> 70 #include <sys/conf.h> 71 #include <ufs/ufs/dir.h> 72 #include <ufs/ufs/extattr.h> 73 #include <ufs/ufs/quota.h> 74 #include <ufs/ufs/inode.h> 75 #include <ufs/ufs/ufsmount.h> 76 #include <ufs/ffs/fs.h> 77 #include <ufs/ffs/softdep.h> 78 #include <ufs/ffs/ffs_extern.h> 79 #include <ufs/ufs/ufs_extern.h> 80 81 #include <vm/vm.h> 82 83 #include "opt_ffs.h" 84 85 #ifndef SOFTUPDATES 86 87 int 88 softdep_flushfiles(oldmnt, flags, td) 89 struct mount *oldmnt; 90 int flags; 91 struct thread *td; 92 { 93 94 panic("softdep_flushfiles called"); 95 } 96 97 int 98 softdep_mount(devvp, mp, fs, cred) 99 struct vnode *devvp; 100 struct mount *mp; 101 struct fs *fs; 102 struct ucred *cred; 103 { 104 105 return (0); 106 } 107 108 void 109 softdep_initialize() 110 { 111 112 return; 113 } 114 115 void 116 softdep_uninitialize() 117 { 118 119 return; 120 } 121 122 void 123 softdep_setup_inomapdep(bp, ip, newinum) 124 struct buf *bp; 125 struct inode *ip; 126 ino_t newinum; 127 { 128 129 panic("softdep_setup_inomapdep called"); 130 } 131 132 void 133 softdep_setup_blkmapdep(bp, mp, newblkno) 134 struct buf *bp; 135 struct mount *mp; 136 ufs2_daddr_t newblkno; 137 { 138 139 panic("softdep_setup_blkmapdep called"); 140 } 141 142 void 143 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 144 struct inode *ip; 145 ufs_lbn_t lbn; 146 ufs2_daddr_t newblkno; 147 ufs2_daddr_t oldblkno; 148 long newsize; 149 long oldsize; 150 struct buf *bp; 151 { 152 153 panic("softdep_setup_allocdirect called"); 154 } 155 156 void 157 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 158 struct inode *ip; 159 ufs_lbn_t lbn; 160 ufs2_daddr_t newblkno; 161 ufs2_daddr_t oldblkno; 162 long newsize; 163 long oldsize; 164 struct buf *bp; 165 { 166 167 panic("softdep_setup_allocdirect called"); 168 } 169 170 void 171 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 172 struct inode *ip; 173 ufs_lbn_t lbn; 174 struct buf *bp; 175 int ptrno; 176 ufs2_daddr_t newblkno; 177 ufs2_daddr_t oldblkno; 178 struct buf *nbp; 179 { 180 181 panic("softdep_setup_allocindir_page called"); 182 } 183 184 void 185 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 186 struct buf *nbp; 187 struct inode *ip; 188 struct buf *bp; 189 int ptrno; 190 ufs2_daddr_t newblkno; 191 { 192 193 panic("softdep_setup_allocindir_meta called"); 194 } 195 196 void 197 softdep_setup_freeblocks(ip, length, flags) 198 struct inode *ip; 199 off_t length; 200 int flags; 201 { 202 203 panic("softdep_setup_freeblocks called"); 204 } 205 206 void 207 softdep_freefile(pvp, ino, mode) 208 struct vnode *pvp; 209 ino_t ino; 210 int mode; 211 { 212 213 panic("softdep_freefile called"); 214 } 215 216 int 217 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 218 struct buf *bp; 219 struct inode *dp; 220 off_t diroffset; 221 ino_t newinum; 222 struct buf *newdirbp; 223 int isnewblk; 224 { 225 226 panic("softdep_setup_directory_add called"); 227 } 228 229 void 230 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 231 struct inode *dp; 232 caddr_t base; 233 caddr_t oldloc; 234 caddr_t newloc; 235 int entrysize; 236 { 237 238 panic("softdep_change_directoryentry_offset called"); 239 } 240 241 void 242 softdep_setup_remove(bp, dp, ip, isrmdir) 243 struct buf *bp; 244 struct inode *dp; 245 struct inode *ip; 246 int isrmdir; 247 { 248 249 panic("softdep_setup_remove called"); 250 } 251 252 void 253 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 254 struct buf *bp; 255 struct inode *dp; 256 struct inode *ip; 257 ino_t newinum; 258 int isrmdir; 259 { 260 261 panic("softdep_setup_directory_change called"); 262 } 263 264 void 265 softdep_change_linkcnt(ip) 266 struct inode *ip; 267 { 268 269 panic("softdep_change_linkcnt called"); 270 } 271 272 void 273 softdep_load_inodeblock(ip) 274 struct inode *ip; 275 { 276 277 panic("softdep_load_inodeblock called"); 278 } 279 280 void 281 softdep_update_inodeblock(ip, bp, waitfor) 282 struct inode *ip; 283 struct buf *bp; 284 int waitfor; 285 { 286 287 panic("softdep_update_inodeblock called"); 288 } 289 290 int 291 softdep_fsync(vp) 292 struct vnode *vp; /* the "in_core" copy of the inode */ 293 { 294 295 return (0); 296 } 297 298 void 299 softdep_fsync_mountdev(vp) 300 struct vnode *vp; 301 { 302 303 return; 304 } 305 306 int 307 softdep_flushworklist(oldmnt, countp, td) 308 struct mount *oldmnt; 309 int *countp; 310 struct thread *td; 311 { 312 313 *countp = 0; 314 return (0); 315 } 316 317 int 318 softdep_sync_metadata(struct vnode *vp) 319 { 320 321 return (0); 322 } 323 324 int 325 softdep_slowdown(vp) 326 struct vnode *vp; 327 { 328 329 panic("softdep_slowdown called"); 330 } 331 332 void 333 softdep_releasefile(ip) 334 struct inode *ip; /* inode with the zero effective link count */ 335 { 336 337 panic("softdep_releasefile called"); 338 } 339 340 int 341 softdep_request_cleanup(fs, vp) 342 struct fs *fs; 343 struct vnode *vp; 344 { 345 346 return (0); 347 } 348 349 int 350 softdep_check_suspend(struct mount *mp, 351 struct vnode *devvp, 352 int softdep_deps, 353 int softdep_accdeps, 354 int secondary_writes, 355 int secondary_accwrites) 356 { 357 struct bufobj *bo; 358 int error; 359 360 (void) softdep_deps, 361 (void) softdep_accdeps; 362 363 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 364 bo = &devvp->v_bufobj; 365 366 for (;;) { 367 if (!MNT_ITRYLOCK(mp)) { 368 VI_UNLOCK(devvp); 369 MNT_ILOCK(mp); 370 MNT_IUNLOCK(mp); 371 VI_LOCK(devvp); 372 continue; 373 } 374 if (mp->mnt_secondary_writes != 0) { 375 VI_UNLOCK(devvp); 376 msleep(&mp->mnt_secondary_writes, 377 MNT_MTX(mp), 378 (PUSER - 1) | PDROP, "secwr", 0); 379 VI_LOCK(devvp); 380 continue; 381 } 382 break; 383 } 384 385 /* 386 * Reasons for needing more work before suspend: 387 * - Dirty buffers on devvp. 388 * - Secondary writes occurred after start of vnode sync loop 389 */ 390 error = 0; 391 if (bo->bo_numoutput > 0 || 392 bo->bo_dirty.bv_cnt > 0 || 393 secondary_writes != 0 || 394 mp->mnt_secondary_writes != 0 || 395 secondary_accwrites != mp->mnt_secondary_accwrites) 396 error = EAGAIN; 397 VI_UNLOCK(devvp); 398 return (error); 399 } 400 401 void 402 softdep_get_depcounts(struct mount *mp, 403 int *softdepactivep, 404 int *softdepactiveaccp) 405 { 406 (void) mp; 407 *softdepactivep = 0; 408 *softdepactiveaccp = 0; 409 } 410 411 #else 412 /* 413 * These definitions need to be adapted to the system to which 414 * this file is being ported. 415 */ 416 /* 417 * malloc types defined for the softdep system. 418 */ 419 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 420 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 421 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 422 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 423 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 424 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 425 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 426 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 427 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 428 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 429 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 430 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 431 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 432 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 433 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes"); 434 435 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 436 437 #define D_PAGEDEP 0 438 #define D_INODEDEP 1 439 #define D_NEWBLK 2 440 #define D_BMSAFEMAP 3 441 #define D_ALLOCDIRECT 4 442 #define D_INDIRDEP 5 443 #define D_ALLOCINDIR 6 444 #define D_FREEFRAG 7 445 #define D_FREEBLKS 8 446 #define D_FREEFILE 9 447 #define D_DIRADD 10 448 #define D_MKDIR 11 449 #define D_DIRREM 12 450 #define D_NEWDIRBLK 13 451 #define D_LAST D_NEWDIRBLK 452 453 /* 454 * translate from workitem type to memory type 455 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 456 */ 457 static struct malloc_type *memtype[] = { 458 M_PAGEDEP, 459 M_INODEDEP, 460 M_NEWBLK, 461 M_BMSAFEMAP, 462 M_ALLOCDIRECT, 463 M_INDIRDEP, 464 M_ALLOCINDIR, 465 M_FREEFRAG, 466 M_FREEBLKS, 467 M_FREEFILE, 468 M_DIRADD, 469 M_MKDIR, 470 M_DIRREM, 471 M_NEWDIRBLK 472 }; 473 474 #define DtoM(type) (memtype[type]) 475 476 /* 477 * Names of malloc types. 478 */ 479 #define TYPENAME(type) \ 480 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 481 /* 482 * End system adaptation definitions. 483 */ 484 485 /* 486 * Forward declarations. 487 */ 488 struct inodedep_hashhead; 489 struct newblk_hashhead; 490 struct pagedep_hashhead; 491 492 /* 493 * Internal function prototypes. 494 */ 495 static void softdep_error(char *, int); 496 static void drain_output(struct vnode *); 497 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 498 static void clear_remove(struct thread *); 499 static void clear_inodedeps(struct thread *); 500 static int flush_pagedep_deps(struct vnode *, struct mount *, 501 struct diraddhd *); 502 static int flush_inodedep_deps(struct mount *, ino_t); 503 static int flush_deplist(struct allocdirectlst *, int, int *); 504 static int handle_written_filepage(struct pagedep *, struct buf *); 505 static void diradd_inode_written(struct diradd *, struct inodedep *); 506 static int handle_written_inodeblock(struct inodedep *, struct buf *); 507 static void handle_allocdirect_partdone(struct allocdirect *); 508 static void handle_allocindir_partdone(struct allocindir *); 509 static void initiate_write_filepage(struct pagedep *, struct buf *); 510 static void handle_written_mkdir(struct mkdir *, int); 511 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 512 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 513 static void handle_workitem_freefile(struct freefile *); 514 static void handle_workitem_remove(struct dirrem *, struct vnode *); 515 static struct dirrem *newdirrem(struct buf *, struct inode *, 516 struct inode *, int, struct dirrem **); 517 static void free_diradd(struct diradd *); 518 static void free_allocindir(struct allocindir *, struct inodedep *); 519 static void free_newdirblk(struct newdirblk *); 520 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 521 ufs2_daddr_t *); 522 static void deallocate_dependencies(struct buf *, struct inodedep *); 523 static void free_allocdirect(struct allocdirectlst *, 524 struct allocdirect *, int); 525 static int check_inode_unwritten(struct inodedep *); 526 static int free_inodedep(struct inodedep *); 527 static void handle_workitem_freeblocks(struct freeblks *, int); 528 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 529 static void setup_allocindir_phase2(struct buf *, struct inode *, 530 struct allocindir *); 531 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 532 ufs2_daddr_t); 533 static void handle_workitem_freefrag(struct freefrag *); 534 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 535 static void allocdirect_merge(struct allocdirectlst *, 536 struct allocdirect *, struct allocdirect *); 537 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *); 538 static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t, 539 struct newblk **); 540 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 541 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 542 struct inodedep **); 543 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 544 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 545 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 546 struct mount *mp, int, struct pagedep **); 547 static void pause_timer(void *); 548 static int request_cleanup(struct mount *, int); 549 static int process_worklist_item(struct mount *, int); 550 static void add_to_worklist(struct worklist *); 551 static void softdep_flush(void); 552 static int softdep_speedup(void); 553 554 /* 555 * Exported softdep operations. 556 */ 557 static void softdep_disk_io_initiation(struct buf *); 558 static void softdep_disk_write_complete(struct buf *); 559 static void softdep_deallocate_dependencies(struct buf *); 560 static int softdep_count_dependencies(struct buf *bp, int); 561 562 static struct mtx lk; 563 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 564 565 #define TRY_ACQUIRE_LOCK(lk) mtx_trylock(lk) 566 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 567 #define FREE_LOCK(lk) mtx_unlock(lk) 568 569 /* 570 * Worklist queue management. 571 * These routines require that the lock be held. 572 */ 573 #ifndef /* NOT */ DEBUG 574 #define WORKLIST_INSERT(head, item) do { \ 575 (item)->wk_state |= ONWORKLIST; \ 576 LIST_INSERT_HEAD(head, item, wk_list); \ 577 } while (0) 578 #define WORKLIST_REMOVE(item) do { \ 579 (item)->wk_state &= ~ONWORKLIST; \ 580 LIST_REMOVE(item, wk_list); \ 581 } while (0) 582 #else /* DEBUG */ 583 static void worklist_insert(struct workhead *, struct worklist *); 584 static void worklist_remove(struct worklist *); 585 586 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 587 #define WORKLIST_REMOVE(item) worklist_remove(item) 588 589 static void 590 worklist_insert(head, item) 591 struct workhead *head; 592 struct worklist *item; 593 { 594 595 mtx_assert(&lk, MA_OWNED); 596 if (item->wk_state & ONWORKLIST) 597 panic("worklist_insert: already on list"); 598 item->wk_state |= ONWORKLIST; 599 LIST_INSERT_HEAD(head, item, wk_list); 600 } 601 602 static void 603 worklist_remove(item) 604 struct worklist *item; 605 { 606 607 mtx_assert(&lk, MA_OWNED); 608 if ((item->wk_state & ONWORKLIST) == 0) 609 panic("worklist_remove: not on list"); 610 item->wk_state &= ~ONWORKLIST; 611 LIST_REMOVE(item, wk_list); 612 } 613 #endif /* DEBUG */ 614 615 /* 616 * Routines for tracking and managing workitems. 617 */ 618 static void workitem_free(struct worklist *, int); 619 static void workitem_alloc(struct worklist *, int, struct mount *); 620 621 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type)) 622 623 static void 624 workitem_free(item, type) 625 struct worklist *item; 626 int type; 627 { 628 struct ufsmount *ump; 629 mtx_assert(&lk, MA_OWNED); 630 631 #ifdef DEBUG 632 if (item->wk_state & ONWORKLIST) 633 panic("workitem_free: still on list"); 634 if (item->wk_type != type) 635 panic("workitem_free: type mismatch"); 636 #endif 637 ump = VFSTOUFS(item->wk_mp); 638 if (--ump->softdep_deps == 0 && ump->softdep_req) 639 wakeup(&ump->softdep_deps); 640 FREE(item, DtoM(type)); 641 } 642 643 static void 644 workitem_alloc(item, type, mp) 645 struct worklist *item; 646 int type; 647 struct mount *mp; 648 { 649 item->wk_type = type; 650 item->wk_mp = mp; 651 item->wk_state = 0; 652 ACQUIRE_LOCK(&lk); 653 VFSTOUFS(mp)->softdep_deps++; 654 VFSTOUFS(mp)->softdep_accdeps++; 655 FREE_LOCK(&lk); 656 } 657 658 /* 659 * Workitem queue management 660 */ 661 static int max_softdeps; /* maximum number of structs before slowdown */ 662 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 663 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 664 static int proc_waiting; /* tracks whether we have a timeout posted */ 665 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 666 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 667 static int req_pending; 668 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 669 #define FLUSH_INODES 1 670 static int req_clear_remove; /* syncer process flush some freeblks */ 671 #define FLUSH_REMOVE 2 672 #define FLUSH_REMOVE_WAIT 3 673 /* 674 * runtime statistics 675 */ 676 static int stat_worklist_push; /* number of worklist cleanups */ 677 static int stat_blk_limit_push; /* number of times block limit neared */ 678 static int stat_ino_limit_push; /* number of times inode limit neared */ 679 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 680 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 681 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 682 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 683 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 684 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 685 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 686 687 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 688 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 689 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 690 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 691 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 692 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 693 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 694 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 695 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 696 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 697 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 698 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 699 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 700 /* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */ 701 702 SYSCTL_DECL(_vfs_ffs); 703 704 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 705 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 706 &compute_summary_at_mount, 0, "Recompute summary at mount"); 707 708 static struct proc *softdepproc; 709 static struct kproc_desc softdep_kp = { 710 "softdepflush", 711 softdep_flush, 712 &softdepproc 713 }; 714 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &softdep_kp) 715 716 static void 717 softdep_flush(void) 718 { 719 struct mount *nmp; 720 struct mount *mp; 721 struct thread *td; 722 int remaining; 723 int vfslocked; 724 725 td = curthread; 726 td->td_pflags |= TDP_NORUNNINGBUF; 727 728 for (;;) { 729 kthread_suspend_check(softdepproc); 730 ACQUIRE_LOCK(&lk); 731 /* 732 * If requested, try removing inode or removal dependencies. 733 */ 734 if (req_clear_inodedeps) { 735 clear_inodedeps(td); 736 req_clear_inodedeps -= 1; 737 wakeup_one(&proc_waiting); 738 } 739 if (req_clear_remove) { 740 clear_remove(td); 741 req_clear_remove -= 1; 742 wakeup_one(&proc_waiting); 743 } 744 FREE_LOCK(&lk); 745 remaining = 0; 746 mtx_lock(&mountlist_mtx); 747 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 748 nmp = TAILQ_NEXT(mp, mnt_list); 749 if ((mp->mnt_flag & MNT_SOFTDEP) == 0) 750 continue; 751 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) 752 continue; 753 vfslocked = VFS_LOCK_GIANT(mp); 754 softdep_process_worklist(mp, 0); 755 remaining += VFSTOUFS(mp)->softdep_on_worklist; 756 VFS_UNLOCK_GIANT(vfslocked); 757 mtx_lock(&mountlist_mtx); 758 nmp = TAILQ_NEXT(mp, mnt_list); 759 vfs_unbusy(mp, td); 760 } 761 mtx_unlock(&mountlist_mtx); 762 if (remaining) 763 continue; 764 ACQUIRE_LOCK(&lk); 765 if (!req_pending) 766 msleep(&req_pending, &lk, PVM, "sdflush", hz); 767 req_pending = 0; 768 FREE_LOCK(&lk); 769 } 770 } 771 772 static int 773 softdep_speedup(void) 774 { 775 776 mtx_assert(&lk, MA_OWNED); 777 if (req_pending == 0) { 778 req_pending = 1; 779 wakeup(&req_pending); 780 } 781 782 return speedup_syncer(); 783 } 784 785 /* 786 * Add an item to the end of the work queue. 787 * This routine requires that the lock be held. 788 * This is the only routine that adds items to the list. 789 * The following routine is the only one that removes items 790 * and does so in order from first to last. 791 */ 792 static void 793 add_to_worklist(wk) 794 struct worklist *wk; 795 { 796 struct ufsmount *ump; 797 798 mtx_assert(&lk, MA_OWNED); 799 ump = VFSTOUFS(wk->wk_mp); 800 if (wk->wk_state & ONWORKLIST) 801 panic("add_to_worklist: already on list"); 802 wk->wk_state |= ONWORKLIST; 803 if (LIST_FIRST(&ump->softdep_workitem_pending) == NULL) 804 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 805 else 806 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 807 ump->softdep_worklist_tail = wk; 808 ump->softdep_on_worklist += 1; 809 } 810 811 /* 812 * Process that runs once per second to handle items in the background queue. 813 * 814 * Note that we ensure that everything is done in the order in which they 815 * appear in the queue. The code below depends on this property to ensure 816 * that blocks of a file are freed before the inode itself is freed. This 817 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 818 * until all the old ones have been purged from the dependency lists. 819 */ 820 int 821 softdep_process_worklist(mp, full) 822 struct mount *mp; 823 int full; 824 { 825 struct thread *td = curthread; 826 int cnt, matchcnt, loopcount; 827 struct ufsmount *ump; 828 long starttime; 829 830 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 831 /* 832 * Record the process identifier of our caller so that we can give 833 * this process preferential treatment in request_cleanup below. 834 */ 835 matchcnt = 0; 836 ump = VFSTOUFS(mp); 837 ACQUIRE_LOCK(&lk); 838 loopcount = 1; 839 starttime = time_second; 840 while (ump->softdep_on_worklist > 0) { 841 if ((cnt = process_worklist_item(mp, 0)) == -1) 842 break; 843 else 844 matchcnt += cnt; 845 /* 846 * If requested, try removing inode or removal dependencies. 847 */ 848 if (req_clear_inodedeps) { 849 clear_inodedeps(td); 850 req_clear_inodedeps -= 1; 851 wakeup_one(&proc_waiting); 852 } 853 if (req_clear_remove) { 854 clear_remove(td); 855 req_clear_remove -= 1; 856 wakeup_one(&proc_waiting); 857 } 858 /* 859 * We do not generally want to stop for buffer space, but if 860 * we are really being a buffer hog, we will stop and wait. 861 */ 862 if (loopcount++ % 128 == 0) { 863 FREE_LOCK(&lk); 864 bwillwrite(); 865 ACQUIRE_LOCK(&lk); 866 } 867 /* 868 * Never allow processing to run for more than one 869 * second. Otherwise the other mountpoints may get 870 * excessively backlogged. 871 */ 872 if (!full && starttime != time_second) { 873 matchcnt = -1; 874 break; 875 } 876 } 877 FREE_LOCK(&lk); 878 return (matchcnt); 879 } 880 881 /* 882 * Process one item on the worklist. 883 */ 884 static int 885 process_worklist_item(mp, flags) 886 struct mount *mp; 887 int flags; 888 { 889 struct worklist *wk, *wkend; 890 struct ufsmount *ump; 891 struct vnode *vp; 892 int matchcnt = 0; 893 894 mtx_assert(&lk, MA_OWNED); 895 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 896 /* 897 * If we are being called because of a process doing a 898 * copy-on-write, then it is not safe to write as we may 899 * recurse into the copy-on-write routine. 900 */ 901 if (curthread->td_pflags & TDP_COWINPROGRESS) 902 return (-1); 903 /* 904 * Normally we just process each item on the worklist in order. 905 * However, if we are in a situation where we cannot lock any 906 * inodes, we have to skip over any dirrem requests whose 907 * vnodes are resident and locked. 908 */ 909 ump = VFSTOUFS(mp); 910 vp = NULL; 911 LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) { 912 if (wk->wk_state & INPROGRESS) 913 continue; 914 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 915 break; 916 wk->wk_state |= INPROGRESS; 917 FREE_LOCK(&lk); 918 ffs_vget(mp, WK_DIRREM(wk)->dm_oldinum, 919 LK_NOWAIT | LK_EXCLUSIVE, &vp); 920 ACQUIRE_LOCK(&lk); 921 wk->wk_state &= ~INPROGRESS; 922 if (vp != NULL) 923 break; 924 } 925 if (wk == 0) 926 return (-1); 927 /* 928 * Remove the item to be processed. If we are removing the last 929 * item on the list, we need to recalculate the tail pointer. 930 * As this happens rarely and usually when the list is short, 931 * we just run down the list to find it rather than tracking it 932 * in the above loop. 933 */ 934 WORKLIST_REMOVE(wk); 935 if (wk == ump->softdep_worklist_tail) { 936 LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list) 937 if (LIST_NEXT(wkend, wk_list) == NULL) 938 break; 939 ump->softdep_worklist_tail = wkend; 940 } 941 ump->softdep_on_worklist -= 1; 942 FREE_LOCK(&lk); 943 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 944 panic("process_worklist_item: suspended filesystem"); 945 matchcnt++; 946 switch (wk->wk_type) { 947 948 case D_DIRREM: 949 /* removal of a directory entry */ 950 handle_workitem_remove(WK_DIRREM(wk), vp); 951 break; 952 953 case D_FREEBLKS: 954 /* releasing blocks and/or fragments from a file */ 955 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 956 break; 957 958 case D_FREEFRAG: 959 /* releasing a fragment when replaced as a file grows */ 960 handle_workitem_freefrag(WK_FREEFRAG(wk)); 961 break; 962 963 case D_FREEFILE: 964 /* releasing an inode when its link count drops to 0 */ 965 handle_workitem_freefile(WK_FREEFILE(wk)); 966 break; 967 968 default: 969 panic("%s_process_worklist: Unknown type %s", 970 "softdep", TYPENAME(wk->wk_type)); 971 /* NOTREACHED */ 972 } 973 vn_finished_secondary_write(mp); 974 ACQUIRE_LOCK(&lk); 975 return (matchcnt); 976 } 977 978 /* 979 * Move dependencies from one buffer to another. 980 */ 981 void 982 softdep_move_dependencies(oldbp, newbp) 983 struct buf *oldbp; 984 struct buf *newbp; 985 { 986 struct worklist *wk, *wktail; 987 988 if (LIST_FIRST(&newbp->b_dep) != NULL) 989 panic("softdep_move_dependencies: need merge code"); 990 wktail = 0; 991 ACQUIRE_LOCK(&lk); 992 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 993 LIST_REMOVE(wk, wk_list); 994 if (wktail == 0) 995 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 996 else 997 LIST_INSERT_AFTER(wktail, wk, wk_list); 998 wktail = wk; 999 } 1000 FREE_LOCK(&lk); 1001 } 1002 1003 /* 1004 * Purge the work list of all items associated with a particular mount point. 1005 */ 1006 int 1007 softdep_flushworklist(oldmnt, countp, td) 1008 struct mount *oldmnt; 1009 int *countp; 1010 struct thread *td; 1011 { 1012 struct vnode *devvp; 1013 int count, error = 0; 1014 struct ufsmount *ump; 1015 1016 /* 1017 * Alternately flush the block device associated with the mount 1018 * point and process any dependencies that the flushing 1019 * creates. We continue until no more worklist dependencies 1020 * are found. 1021 */ 1022 *countp = 0; 1023 ump = VFSTOUFS(oldmnt); 1024 devvp = ump->um_devvp; 1025 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1026 *countp += count; 1027 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 1028 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1029 VOP_UNLOCK(devvp, 0, td); 1030 if (error) 1031 break; 1032 } 1033 return (error); 1034 } 1035 1036 int 1037 softdep_waitidle(struct mount *mp) 1038 { 1039 struct ufsmount *ump; 1040 int error; 1041 int i; 1042 1043 ump = VFSTOUFS(mp); 1044 ACQUIRE_LOCK(&lk); 1045 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1046 ump->softdep_req = 1; 1047 if (ump->softdep_on_worklist) 1048 panic("softdep_waitidle: work added after flush."); 1049 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1); 1050 } 1051 ump->softdep_req = 0; 1052 FREE_LOCK(&lk); 1053 error = 0; 1054 if (i == 10) { 1055 error = EBUSY; 1056 printf("softdep_waitidle: Failed to flush worklist for %p", 1057 mp); 1058 } 1059 1060 return (error); 1061 } 1062 1063 /* 1064 * Flush all vnodes and worklist items associated with a specified mount point. 1065 */ 1066 int 1067 softdep_flushfiles(oldmnt, flags, td) 1068 struct mount *oldmnt; 1069 int flags; 1070 struct thread *td; 1071 { 1072 int error, count, loopcnt; 1073 1074 error = 0; 1075 1076 /* 1077 * Alternately flush the vnodes associated with the mount 1078 * point and process any dependencies that the flushing 1079 * creates. In theory, this loop can happen at most twice, 1080 * but we give it a few extra just to be sure. 1081 */ 1082 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 1083 /* 1084 * Do another flush in case any vnodes were brought in 1085 * as part of the cleanup operations. 1086 */ 1087 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 1088 break; 1089 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 1090 count == 0) 1091 break; 1092 } 1093 /* 1094 * If we are unmounting then it is an error to fail. If we 1095 * are simply trying to downgrade to read-only, then filesystem 1096 * activity can keep us busy forever, so we just fail with EBUSY. 1097 */ 1098 if (loopcnt == 0) { 1099 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1100 panic("softdep_flushfiles: looping"); 1101 error = EBUSY; 1102 } 1103 if (!error) 1104 error = softdep_waitidle(oldmnt); 1105 return (error); 1106 } 1107 1108 /* 1109 * Structure hashing. 1110 * 1111 * There are three types of structures that can be looked up: 1112 * 1) pagedep structures identified by mount point, inode number, 1113 * and logical block. 1114 * 2) inodedep structures identified by mount point and inode number. 1115 * 3) newblk structures identified by mount point and 1116 * physical block number. 1117 * 1118 * The "pagedep" and "inodedep" dependency structures are hashed 1119 * separately from the file blocks and inodes to which they correspond. 1120 * This separation helps when the in-memory copy of an inode or 1121 * file block must be replaced. It also obviates the need to access 1122 * an inode or file page when simply updating (or de-allocating) 1123 * dependency structures. Lookup of newblk structures is needed to 1124 * find newly allocated blocks when trying to associate them with 1125 * their allocdirect or allocindir structure. 1126 * 1127 * The lookup routines optionally create and hash a new instance when 1128 * an existing entry is not found. 1129 */ 1130 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1131 #define NODELAY 0x0002 /* cannot do background work */ 1132 1133 /* 1134 * Structures and routines associated with pagedep caching. 1135 */ 1136 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 1137 u_long pagedep_hash; /* size of hash table - 1 */ 1138 #define PAGEDEP_HASH(mp, inum, lbn) \ 1139 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 1140 pagedep_hash]) 1141 1142 static int 1143 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 1144 struct pagedep_hashhead *pagedephd; 1145 ino_t ino; 1146 ufs_lbn_t lbn; 1147 struct mount *mp; 1148 int flags; 1149 struct pagedep **pagedeppp; 1150 { 1151 struct pagedep *pagedep; 1152 1153 LIST_FOREACH(pagedep, pagedephd, pd_hash) 1154 if (ino == pagedep->pd_ino && 1155 lbn == pagedep->pd_lbn && 1156 mp == pagedep->pd_list.wk_mp) 1157 break; 1158 if (pagedep) { 1159 *pagedeppp = pagedep; 1160 if ((flags & DEPALLOC) != 0 && 1161 (pagedep->pd_state & ONWORKLIST) == 0) 1162 return (0); 1163 return (1); 1164 } 1165 *pagedeppp = NULL; 1166 return (0); 1167 } 1168 /* 1169 * Look up a pagedep. Return 1 if found, 0 if not found or found 1170 * when asked to allocate but not associated with any buffer. 1171 * If not found, allocate if DEPALLOC flag is passed. 1172 * Found or allocated entry is returned in pagedeppp. 1173 * This routine must be called with splbio interrupts blocked. 1174 */ 1175 static int 1176 pagedep_lookup(ip, lbn, flags, pagedeppp) 1177 struct inode *ip; 1178 ufs_lbn_t lbn; 1179 int flags; 1180 struct pagedep **pagedeppp; 1181 { 1182 struct pagedep *pagedep; 1183 struct pagedep_hashhead *pagedephd; 1184 struct mount *mp; 1185 int ret; 1186 int i; 1187 1188 mtx_assert(&lk, MA_OWNED); 1189 mp = ITOV(ip)->v_mount; 1190 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 1191 1192 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1193 if (*pagedeppp || (flags & DEPALLOC) == 0) 1194 return (ret); 1195 FREE_LOCK(&lk); 1196 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), 1197 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 1198 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 1199 ACQUIRE_LOCK(&lk); 1200 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1201 if (*pagedeppp) { 1202 WORKITEM_FREE(pagedep, D_PAGEDEP); 1203 return (ret); 1204 } 1205 pagedep->pd_ino = ip->i_number; 1206 pagedep->pd_lbn = lbn; 1207 LIST_INIT(&pagedep->pd_dirremhd); 1208 LIST_INIT(&pagedep->pd_pendinghd); 1209 for (i = 0; i < DAHASHSZ; i++) 1210 LIST_INIT(&pagedep->pd_diraddhd[i]); 1211 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 1212 *pagedeppp = pagedep; 1213 return (0); 1214 } 1215 1216 /* 1217 * Structures and routines associated with inodedep caching. 1218 */ 1219 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1220 static u_long inodedep_hash; /* size of hash table - 1 */ 1221 static long num_inodedep; /* number of inodedep allocated */ 1222 #define INODEDEP_HASH(fs, inum) \ 1223 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1224 1225 static int 1226 inodedep_find(inodedephd, fs, inum, inodedeppp) 1227 struct inodedep_hashhead *inodedephd; 1228 struct fs *fs; 1229 ino_t inum; 1230 struct inodedep **inodedeppp; 1231 { 1232 struct inodedep *inodedep; 1233 1234 LIST_FOREACH(inodedep, inodedephd, id_hash) 1235 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1236 break; 1237 if (inodedep) { 1238 *inodedeppp = inodedep; 1239 return (1); 1240 } 1241 *inodedeppp = NULL; 1242 1243 return (0); 1244 } 1245 /* 1246 * Look up an inodedep. Return 1 if found, 0 if not found. 1247 * If not found, allocate if DEPALLOC flag is passed. 1248 * Found or allocated entry is returned in inodedeppp. 1249 * This routine must be called with splbio interrupts blocked. 1250 */ 1251 static int 1252 inodedep_lookup(mp, inum, flags, inodedeppp) 1253 struct mount *mp; 1254 ino_t inum; 1255 int flags; 1256 struct inodedep **inodedeppp; 1257 { 1258 struct inodedep *inodedep; 1259 struct inodedep_hashhead *inodedephd; 1260 struct fs *fs; 1261 1262 mtx_assert(&lk, MA_OWNED); 1263 fs = VFSTOUFS(mp)->um_fs; 1264 inodedephd = INODEDEP_HASH(fs, inum); 1265 1266 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 1267 return (1); 1268 if ((flags & DEPALLOC) == 0) 1269 return (0); 1270 /* 1271 * If we are over our limit, try to improve the situation. 1272 */ 1273 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0) 1274 request_cleanup(mp, FLUSH_INODES); 1275 FREE_LOCK(&lk); 1276 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1277 M_INODEDEP, M_SOFTDEP_FLAGS); 1278 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 1279 ACQUIRE_LOCK(&lk); 1280 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 1281 WORKITEM_FREE(inodedep, D_INODEDEP); 1282 return (1); 1283 } 1284 num_inodedep += 1; 1285 inodedep->id_fs = fs; 1286 inodedep->id_ino = inum; 1287 inodedep->id_state = ALLCOMPLETE; 1288 inodedep->id_nlinkdelta = 0; 1289 inodedep->id_savedino1 = NULL; 1290 inodedep->id_savedsize = -1; 1291 inodedep->id_savedextsize = -1; 1292 inodedep->id_buf = NULL; 1293 LIST_INIT(&inodedep->id_pendinghd); 1294 LIST_INIT(&inodedep->id_inowait); 1295 LIST_INIT(&inodedep->id_bufwait); 1296 TAILQ_INIT(&inodedep->id_inoupdt); 1297 TAILQ_INIT(&inodedep->id_newinoupdt); 1298 TAILQ_INIT(&inodedep->id_extupdt); 1299 TAILQ_INIT(&inodedep->id_newextupdt); 1300 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1301 *inodedeppp = inodedep; 1302 return (0); 1303 } 1304 1305 /* 1306 * Structures and routines associated with newblk caching. 1307 */ 1308 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1309 u_long newblk_hash; /* size of hash table - 1 */ 1310 #define NEWBLK_HASH(fs, inum) \ 1311 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1312 1313 static int 1314 newblk_find(newblkhd, fs, newblkno, newblkpp) 1315 struct newblk_hashhead *newblkhd; 1316 struct fs *fs; 1317 ufs2_daddr_t newblkno; 1318 struct newblk **newblkpp; 1319 { 1320 struct newblk *newblk; 1321 1322 LIST_FOREACH(newblk, newblkhd, nb_hash) 1323 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1324 break; 1325 if (newblk) { 1326 *newblkpp = newblk; 1327 return (1); 1328 } 1329 *newblkpp = NULL; 1330 return (0); 1331 } 1332 1333 /* 1334 * Look up a newblk. Return 1 if found, 0 if not found. 1335 * If not found, allocate if DEPALLOC flag is passed. 1336 * Found or allocated entry is returned in newblkpp. 1337 */ 1338 static int 1339 newblk_lookup(fs, newblkno, flags, newblkpp) 1340 struct fs *fs; 1341 ufs2_daddr_t newblkno; 1342 int flags; 1343 struct newblk **newblkpp; 1344 { 1345 struct newblk *newblk; 1346 struct newblk_hashhead *newblkhd; 1347 1348 newblkhd = NEWBLK_HASH(fs, newblkno); 1349 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) 1350 return (1); 1351 if ((flags & DEPALLOC) == 0) 1352 return (0); 1353 FREE_LOCK(&lk); 1354 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1355 M_NEWBLK, M_SOFTDEP_FLAGS); 1356 ACQUIRE_LOCK(&lk); 1357 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) { 1358 FREE(newblk, M_NEWBLK); 1359 return (1); 1360 } 1361 newblk->nb_state = 0; 1362 newblk->nb_fs = fs; 1363 newblk->nb_newblkno = newblkno; 1364 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1365 *newblkpp = newblk; 1366 return (0); 1367 } 1368 1369 /* 1370 * Executed during filesystem system initialization before 1371 * mounting any filesystems. 1372 */ 1373 void 1374 softdep_initialize() 1375 { 1376 1377 LIST_INIT(&mkdirlisthd); 1378 max_softdeps = desiredvnodes * 4; 1379 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1380 &pagedep_hash); 1381 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1382 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1383 1384 /* initialise bioops hack */ 1385 bioops.io_start = softdep_disk_io_initiation; 1386 bioops.io_complete = softdep_disk_write_complete; 1387 bioops.io_deallocate = softdep_deallocate_dependencies; 1388 bioops.io_countdeps = softdep_count_dependencies; 1389 } 1390 1391 /* 1392 * Executed after all filesystems have been unmounted during 1393 * filesystem module unload. 1394 */ 1395 void 1396 softdep_uninitialize() 1397 { 1398 1399 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1400 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1401 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1402 } 1403 1404 /* 1405 * Called at mount time to notify the dependency code that a 1406 * filesystem wishes to use it. 1407 */ 1408 int 1409 softdep_mount(devvp, mp, fs, cred) 1410 struct vnode *devvp; 1411 struct mount *mp; 1412 struct fs *fs; 1413 struct ucred *cred; 1414 { 1415 struct csum_total cstotal; 1416 struct ufsmount *ump; 1417 struct cg *cgp; 1418 struct buf *bp; 1419 int error, cyl; 1420 1421 mp->mnt_flag &= ~MNT_ASYNC; 1422 mp->mnt_flag |= MNT_SOFTDEP; 1423 ump = VFSTOUFS(mp); 1424 LIST_INIT(&ump->softdep_workitem_pending); 1425 ump->softdep_worklist_tail = NULL; 1426 ump->softdep_on_worklist = 0; 1427 ump->softdep_deps = 0; 1428 /* 1429 * When doing soft updates, the counters in the 1430 * superblock may have gotten out of sync. Recomputation 1431 * can take a long time and can be deferred for background 1432 * fsck. However, the old behavior of scanning the cylinder 1433 * groups and recalculating them at mount time is available 1434 * by setting vfs.ffs.compute_summary_at_mount to one. 1435 */ 1436 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 1437 return (0); 1438 bzero(&cstotal, sizeof cstotal); 1439 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1440 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1441 fs->fs_cgsize, cred, &bp)) != 0) { 1442 brelse(bp); 1443 return (error); 1444 } 1445 cgp = (struct cg *)bp->b_data; 1446 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1447 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1448 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1449 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1450 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1451 brelse(bp); 1452 } 1453 #ifdef DEBUG 1454 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1455 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1456 #endif 1457 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1458 return (0); 1459 } 1460 1461 /* 1462 * Protecting the freemaps (or bitmaps). 1463 * 1464 * To eliminate the need to execute fsck before mounting a filesystem 1465 * after a power failure, one must (conservatively) guarantee that the 1466 * on-disk copy of the bitmaps never indicate that a live inode or block is 1467 * free. So, when a block or inode is allocated, the bitmap should be 1468 * updated (on disk) before any new pointers. When a block or inode is 1469 * freed, the bitmap should not be updated until all pointers have been 1470 * reset. The latter dependency is handled by the delayed de-allocation 1471 * approach described below for block and inode de-allocation. The former 1472 * dependency is handled by calling the following procedure when a block or 1473 * inode is allocated. When an inode is allocated an "inodedep" is created 1474 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1475 * Each "inodedep" is also inserted into the hash indexing structure so 1476 * that any additional link additions can be made dependent on the inode 1477 * allocation. 1478 * 1479 * The ufs filesystem maintains a number of free block counts (e.g., per 1480 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1481 * in addition to the bitmaps. These counts are used to improve efficiency 1482 * during allocation and therefore must be consistent with the bitmaps. 1483 * There is no convenient way to guarantee post-crash consistency of these 1484 * counts with simple update ordering, for two main reasons: (1) The counts 1485 * and bitmaps for a single cylinder group block are not in the same disk 1486 * sector. If a disk write is interrupted (e.g., by power failure), one may 1487 * be written and the other not. (2) Some of the counts are located in the 1488 * superblock rather than the cylinder group block. So, we focus our soft 1489 * updates implementation on protecting the bitmaps. When mounting a 1490 * filesystem, we recompute the auxiliary counts from the bitmaps. 1491 */ 1492 1493 /* 1494 * Called just after updating the cylinder group block to allocate an inode. 1495 */ 1496 void 1497 softdep_setup_inomapdep(bp, ip, newinum) 1498 struct buf *bp; /* buffer for cylgroup block with inode map */ 1499 struct inode *ip; /* inode related to allocation */ 1500 ino_t newinum; /* new inode number being allocated */ 1501 { 1502 struct inodedep *inodedep; 1503 struct bmsafemap *bmsafemap; 1504 1505 /* 1506 * Create a dependency for the newly allocated inode. 1507 * Panic if it already exists as something is seriously wrong. 1508 * Otherwise add it to the dependency list for the buffer holding 1509 * the cylinder group map from which it was allocated. 1510 */ 1511 ACQUIRE_LOCK(&lk); 1512 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY, 1513 &inodedep))) 1514 panic("softdep_setup_inomapdep: found inode"); 1515 inodedep->id_buf = bp; 1516 inodedep->id_state &= ~DEPCOMPLETE; 1517 bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp); 1518 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1519 FREE_LOCK(&lk); 1520 } 1521 1522 /* 1523 * Called just after updating the cylinder group block to 1524 * allocate block or fragment. 1525 */ 1526 void 1527 softdep_setup_blkmapdep(bp, mp, newblkno) 1528 struct buf *bp; /* buffer for cylgroup block with block map */ 1529 struct mount *mp; /* filesystem doing allocation */ 1530 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1531 { 1532 struct newblk *newblk; 1533 struct bmsafemap *bmsafemap; 1534 struct fs *fs; 1535 1536 fs = VFSTOUFS(mp)->um_fs; 1537 /* 1538 * Create a dependency for the newly allocated block. 1539 * Add it to the dependency list for the buffer holding 1540 * the cylinder group map from which it was allocated. 1541 */ 1542 ACQUIRE_LOCK(&lk); 1543 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1544 panic("softdep_setup_blkmapdep: found block"); 1545 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp); 1546 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1547 FREE_LOCK(&lk); 1548 } 1549 1550 /* 1551 * Find the bmsafemap associated with a cylinder group buffer. 1552 * If none exists, create one. The buffer must be locked when 1553 * this routine is called and this routine must be called with 1554 * splbio interrupts blocked. 1555 */ 1556 static struct bmsafemap * 1557 bmsafemap_lookup(mp, bp) 1558 struct mount *mp; 1559 struct buf *bp; 1560 { 1561 struct bmsafemap *bmsafemap; 1562 struct worklist *wk; 1563 1564 mtx_assert(&lk, MA_OWNED); 1565 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1566 if (wk->wk_type == D_BMSAFEMAP) 1567 return (WK_BMSAFEMAP(wk)); 1568 FREE_LOCK(&lk); 1569 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1570 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1571 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 1572 bmsafemap->sm_buf = bp; 1573 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1574 LIST_INIT(&bmsafemap->sm_allocindirhd); 1575 LIST_INIT(&bmsafemap->sm_inodedephd); 1576 LIST_INIT(&bmsafemap->sm_newblkhd); 1577 ACQUIRE_LOCK(&lk); 1578 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1579 return (bmsafemap); 1580 } 1581 1582 /* 1583 * Direct block allocation dependencies. 1584 * 1585 * When a new block is allocated, the corresponding disk locations must be 1586 * initialized (with zeros or new data) before the on-disk inode points to 1587 * them. Also, the freemap from which the block was allocated must be 1588 * updated (on disk) before the inode's pointer. These two dependencies are 1589 * independent of each other and are needed for all file blocks and indirect 1590 * blocks that are pointed to directly by the inode. Just before the 1591 * "in-core" version of the inode is updated with a newly allocated block 1592 * number, a procedure (below) is called to setup allocation dependency 1593 * structures. These structures are removed when the corresponding 1594 * dependencies are satisfied or when the block allocation becomes obsolete 1595 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1596 * fragment that gets upgraded). All of these cases are handled in 1597 * procedures described later. 1598 * 1599 * When a file extension causes a fragment to be upgraded, either to a larger 1600 * fragment or to a full block, the on-disk location may change (if the 1601 * previous fragment could not simply be extended). In this case, the old 1602 * fragment must be de-allocated, but not until after the inode's pointer has 1603 * been updated. In most cases, this is handled by later procedures, which 1604 * will construct a "freefrag" structure to be added to the workitem queue 1605 * when the inode update is complete (or obsolete). The main exception to 1606 * this is when an allocation occurs while a pending allocation dependency 1607 * (for the same block pointer) remains. This case is handled in the main 1608 * allocation dependency setup procedure by immediately freeing the 1609 * unreferenced fragments. 1610 */ 1611 void 1612 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1613 struct inode *ip; /* inode to which block is being added */ 1614 ufs_lbn_t lbn; /* block pointer within inode */ 1615 ufs2_daddr_t newblkno; /* disk block number being added */ 1616 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1617 long newsize; /* size of new block */ 1618 long oldsize; /* size of new block */ 1619 struct buf *bp; /* bp for allocated block */ 1620 { 1621 struct allocdirect *adp, *oldadp; 1622 struct allocdirectlst *adphead; 1623 struct bmsafemap *bmsafemap; 1624 struct inodedep *inodedep; 1625 struct pagedep *pagedep; 1626 struct newblk *newblk; 1627 struct mount *mp; 1628 1629 mp = UFSTOVFS(ip->i_ump); 1630 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1631 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1632 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1633 adp->ad_lbn = lbn; 1634 adp->ad_newblkno = newblkno; 1635 adp->ad_oldblkno = oldblkno; 1636 adp->ad_newsize = newsize; 1637 adp->ad_oldsize = oldsize; 1638 adp->ad_state = ATTACHED; 1639 LIST_INIT(&adp->ad_newdirblk); 1640 if (newblkno == oldblkno) 1641 adp->ad_freefrag = NULL; 1642 else 1643 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1644 1645 ACQUIRE_LOCK(&lk); 1646 if (lbn >= NDADDR) { 1647 /* allocating an indirect block */ 1648 if (oldblkno != 0) 1649 panic("softdep_setup_allocdirect: non-zero indir"); 1650 } else { 1651 /* 1652 * Allocating a direct block. 1653 * 1654 * If we are allocating a directory block, then we must 1655 * allocate an associated pagedep to track additions and 1656 * deletions. 1657 */ 1658 if ((ip->i_mode & IFMT) == IFDIR && 1659 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1660 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1661 } 1662 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1663 panic("softdep_setup_allocdirect: lost block"); 1664 if (newblk->nb_state == DEPCOMPLETE) { 1665 adp->ad_state |= DEPCOMPLETE; 1666 adp->ad_buf = NULL; 1667 } else { 1668 bmsafemap = newblk->nb_bmsafemap; 1669 adp->ad_buf = bmsafemap->sm_buf; 1670 LIST_REMOVE(newblk, nb_deps); 1671 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1672 } 1673 LIST_REMOVE(newblk, nb_hash); 1674 FREE(newblk, M_NEWBLK); 1675 1676 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1677 adp->ad_inodedep = inodedep; 1678 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1679 /* 1680 * The list of allocdirects must be kept in sorted and ascending 1681 * order so that the rollback routines can quickly determine the 1682 * first uncommitted block (the size of the file stored on disk 1683 * ends at the end of the lowest committed fragment, or if there 1684 * are no fragments, at the end of the highest committed block). 1685 * Since files generally grow, the typical case is that the new 1686 * block is to be added at the end of the list. We speed this 1687 * special case by checking against the last allocdirect in the 1688 * list before laboriously traversing the list looking for the 1689 * insertion point. 1690 */ 1691 adphead = &inodedep->id_newinoupdt; 1692 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1693 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1694 /* insert at end of list */ 1695 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1696 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1697 allocdirect_merge(adphead, adp, oldadp); 1698 FREE_LOCK(&lk); 1699 return; 1700 } 1701 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1702 if (oldadp->ad_lbn >= lbn) 1703 break; 1704 } 1705 if (oldadp == NULL) 1706 panic("softdep_setup_allocdirect: lost entry"); 1707 /* insert in middle of list */ 1708 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1709 if (oldadp->ad_lbn == lbn) 1710 allocdirect_merge(adphead, adp, oldadp); 1711 FREE_LOCK(&lk); 1712 } 1713 1714 /* 1715 * Replace an old allocdirect dependency with a newer one. 1716 * This routine must be called with splbio interrupts blocked. 1717 */ 1718 static void 1719 allocdirect_merge(adphead, newadp, oldadp) 1720 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1721 struct allocdirect *newadp; /* allocdirect being added */ 1722 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1723 { 1724 struct worklist *wk; 1725 struct freefrag *freefrag; 1726 struct newdirblk *newdirblk; 1727 1728 mtx_assert(&lk, MA_OWNED); 1729 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1730 newadp->ad_oldsize != oldadp->ad_newsize || 1731 newadp->ad_lbn >= NDADDR) 1732 panic("%s %jd != new %jd || old size %ld != new %ld", 1733 "allocdirect_merge: old blkno", 1734 (intmax_t)newadp->ad_oldblkno, 1735 (intmax_t)oldadp->ad_newblkno, 1736 newadp->ad_oldsize, oldadp->ad_newsize); 1737 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1738 newadp->ad_oldsize = oldadp->ad_oldsize; 1739 /* 1740 * If the old dependency had a fragment to free or had never 1741 * previously had a block allocated, then the new dependency 1742 * can immediately post its freefrag and adopt the old freefrag. 1743 * This action is done by swapping the freefrag dependencies. 1744 * The new dependency gains the old one's freefrag, and the 1745 * old one gets the new one and then immediately puts it on 1746 * the worklist when it is freed by free_allocdirect. It is 1747 * not possible to do this swap when the old dependency had a 1748 * non-zero size but no previous fragment to free. This condition 1749 * arises when the new block is an extension of the old block. 1750 * Here, the first part of the fragment allocated to the new 1751 * dependency is part of the block currently claimed on disk by 1752 * the old dependency, so cannot legitimately be freed until the 1753 * conditions for the new dependency are fulfilled. 1754 */ 1755 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1756 freefrag = newadp->ad_freefrag; 1757 newadp->ad_freefrag = oldadp->ad_freefrag; 1758 oldadp->ad_freefrag = freefrag; 1759 } 1760 /* 1761 * If we are tracking a new directory-block allocation, 1762 * move it from the old allocdirect to the new allocdirect. 1763 */ 1764 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1765 newdirblk = WK_NEWDIRBLK(wk); 1766 WORKLIST_REMOVE(&newdirblk->db_list); 1767 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1768 panic("allocdirect_merge: extra newdirblk"); 1769 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1770 } 1771 free_allocdirect(adphead, oldadp, 0); 1772 } 1773 1774 /* 1775 * Allocate a new freefrag structure if needed. 1776 */ 1777 static struct freefrag * 1778 newfreefrag(ip, blkno, size) 1779 struct inode *ip; 1780 ufs2_daddr_t blkno; 1781 long size; 1782 { 1783 struct freefrag *freefrag; 1784 struct fs *fs; 1785 1786 if (blkno == 0) 1787 return (NULL); 1788 fs = ip->i_fs; 1789 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1790 panic("newfreefrag: frag size"); 1791 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1792 M_FREEFRAG, M_SOFTDEP_FLAGS); 1793 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 1794 freefrag->ff_inum = ip->i_number; 1795 freefrag->ff_blkno = blkno; 1796 freefrag->ff_fragsize = size; 1797 return (freefrag); 1798 } 1799 1800 /* 1801 * This workitem de-allocates fragments that were replaced during 1802 * file block allocation. 1803 */ 1804 static void 1805 handle_workitem_freefrag(freefrag) 1806 struct freefrag *freefrag; 1807 { 1808 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 1809 1810 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1811 freefrag->ff_fragsize, freefrag->ff_inum); 1812 ACQUIRE_LOCK(&lk); 1813 WORKITEM_FREE(freefrag, D_FREEFRAG); 1814 FREE_LOCK(&lk); 1815 } 1816 1817 /* 1818 * Set up a dependency structure for an external attributes data block. 1819 * This routine follows much of the structure of softdep_setup_allocdirect. 1820 * See the description of softdep_setup_allocdirect above for details. 1821 */ 1822 void 1823 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1824 struct inode *ip; 1825 ufs_lbn_t lbn; 1826 ufs2_daddr_t newblkno; 1827 ufs2_daddr_t oldblkno; 1828 long newsize; 1829 long oldsize; 1830 struct buf *bp; 1831 { 1832 struct allocdirect *adp, *oldadp; 1833 struct allocdirectlst *adphead; 1834 struct bmsafemap *bmsafemap; 1835 struct inodedep *inodedep; 1836 struct newblk *newblk; 1837 struct mount *mp; 1838 1839 mp = UFSTOVFS(ip->i_ump); 1840 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1841 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1842 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1843 adp->ad_lbn = lbn; 1844 adp->ad_newblkno = newblkno; 1845 adp->ad_oldblkno = oldblkno; 1846 adp->ad_newsize = newsize; 1847 adp->ad_oldsize = oldsize; 1848 adp->ad_state = ATTACHED | EXTDATA; 1849 LIST_INIT(&adp->ad_newdirblk); 1850 if (newblkno == oldblkno) 1851 adp->ad_freefrag = NULL; 1852 else 1853 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1854 1855 ACQUIRE_LOCK(&lk); 1856 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1857 panic("softdep_setup_allocext: lost block"); 1858 1859 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1860 adp->ad_inodedep = inodedep; 1861 1862 if (newblk->nb_state == DEPCOMPLETE) { 1863 adp->ad_state |= DEPCOMPLETE; 1864 adp->ad_buf = NULL; 1865 } else { 1866 bmsafemap = newblk->nb_bmsafemap; 1867 adp->ad_buf = bmsafemap->sm_buf; 1868 LIST_REMOVE(newblk, nb_deps); 1869 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1870 } 1871 LIST_REMOVE(newblk, nb_hash); 1872 FREE(newblk, M_NEWBLK); 1873 1874 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1875 if (lbn >= NXADDR) 1876 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1877 (long long)lbn); 1878 /* 1879 * The list of allocdirects must be kept in sorted and ascending 1880 * order so that the rollback routines can quickly determine the 1881 * first uncommitted block (the size of the file stored on disk 1882 * ends at the end of the lowest committed fragment, or if there 1883 * are no fragments, at the end of the highest committed block). 1884 * Since files generally grow, the typical case is that the new 1885 * block is to be added at the end of the list. We speed this 1886 * special case by checking against the last allocdirect in the 1887 * list before laboriously traversing the list looking for the 1888 * insertion point. 1889 */ 1890 adphead = &inodedep->id_newextupdt; 1891 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1892 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1893 /* insert at end of list */ 1894 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1895 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1896 allocdirect_merge(adphead, adp, oldadp); 1897 FREE_LOCK(&lk); 1898 return; 1899 } 1900 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1901 if (oldadp->ad_lbn >= lbn) 1902 break; 1903 } 1904 if (oldadp == NULL) 1905 panic("softdep_setup_allocext: lost entry"); 1906 /* insert in middle of list */ 1907 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1908 if (oldadp->ad_lbn == lbn) 1909 allocdirect_merge(adphead, adp, oldadp); 1910 FREE_LOCK(&lk); 1911 } 1912 1913 /* 1914 * Indirect block allocation dependencies. 1915 * 1916 * The same dependencies that exist for a direct block also exist when 1917 * a new block is allocated and pointed to by an entry in a block of 1918 * indirect pointers. The undo/redo states described above are also 1919 * used here. Because an indirect block contains many pointers that 1920 * may have dependencies, a second copy of the entire in-memory indirect 1921 * block is kept. The buffer cache copy is always completely up-to-date. 1922 * The second copy, which is used only as a source for disk writes, 1923 * contains only the safe pointers (i.e., those that have no remaining 1924 * update dependencies). The second copy is freed when all pointers 1925 * are safe. The cache is not allowed to replace indirect blocks with 1926 * pending update dependencies. If a buffer containing an indirect 1927 * block with dependencies is written, these routines will mark it 1928 * dirty again. It can only be successfully written once all the 1929 * dependencies are removed. The ffs_fsync routine in conjunction with 1930 * softdep_sync_metadata work together to get all the dependencies 1931 * removed so that a file can be successfully written to disk. Three 1932 * procedures are used when setting up indirect block pointer 1933 * dependencies. The division is necessary because of the organization 1934 * of the "balloc" routine and because of the distinction between file 1935 * pages and file metadata blocks. 1936 */ 1937 1938 /* 1939 * Allocate a new allocindir structure. 1940 */ 1941 static struct allocindir * 1942 newallocindir(ip, ptrno, newblkno, oldblkno) 1943 struct inode *ip; /* inode for file being extended */ 1944 int ptrno; /* offset of pointer in indirect block */ 1945 ufs2_daddr_t newblkno; /* disk block number being added */ 1946 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1947 { 1948 struct allocindir *aip; 1949 1950 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1951 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1952 workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump)); 1953 aip->ai_state = ATTACHED; 1954 aip->ai_offset = ptrno; 1955 aip->ai_newblkno = newblkno; 1956 aip->ai_oldblkno = oldblkno; 1957 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1958 return (aip); 1959 } 1960 1961 /* 1962 * Called just before setting an indirect block pointer 1963 * to a newly allocated file page. 1964 */ 1965 void 1966 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1967 struct inode *ip; /* inode for file being extended */ 1968 ufs_lbn_t lbn; /* allocated block number within file */ 1969 struct buf *bp; /* buffer with indirect blk referencing page */ 1970 int ptrno; /* offset of pointer in indirect block */ 1971 ufs2_daddr_t newblkno; /* disk block number being added */ 1972 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1973 struct buf *nbp; /* buffer holding allocated page */ 1974 { 1975 struct allocindir *aip; 1976 struct pagedep *pagedep; 1977 1978 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 1979 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1980 ACQUIRE_LOCK(&lk); 1981 /* 1982 * If we are allocating a directory page, then we must 1983 * allocate an associated pagedep to track additions and 1984 * deletions. 1985 */ 1986 if ((ip->i_mode & IFMT) == IFDIR && 1987 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1988 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1989 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1990 setup_allocindir_phase2(bp, ip, aip); 1991 FREE_LOCK(&lk); 1992 } 1993 1994 /* 1995 * Called just before setting an indirect block pointer to a 1996 * newly allocated indirect block. 1997 */ 1998 void 1999 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 2000 struct buf *nbp; /* newly allocated indirect block */ 2001 struct inode *ip; /* inode for file being extended */ 2002 struct buf *bp; /* indirect block referencing allocated block */ 2003 int ptrno; /* offset of pointer in indirect block */ 2004 ufs2_daddr_t newblkno; /* disk block number being added */ 2005 { 2006 struct allocindir *aip; 2007 2008 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 2009 aip = newallocindir(ip, ptrno, newblkno, 0); 2010 ACQUIRE_LOCK(&lk); 2011 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 2012 setup_allocindir_phase2(bp, ip, aip); 2013 FREE_LOCK(&lk); 2014 } 2015 2016 /* 2017 * Called to finish the allocation of the "aip" allocated 2018 * by one of the two routines above. 2019 */ 2020 static void 2021 setup_allocindir_phase2(bp, ip, aip) 2022 struct buf *bp; /* in-memory copy of the indirect block */ 2023 struct inode *ip; /* inode for file being extended */ 2024 struct allocindir *aip; /* allocindir allocated by the above routines */ 2025 { 2026 struct worklist *wk; 2027 struct indirdep *indirdep, *newindirdep; 2028 struct bmsafemap *bmsafemap; 2029 struct allocindir *oldaip; 2030 struct freefrag *freefrag; 2031 struct newblk *newblk; 2032 ufs2_daddr_t blkno; 2033 2034 mtx_assert(&lk, MA_OWNED); 2035 if (bp->b_lblkno >= 0) 2036 panic("setup_allocindir_phase2: not indir blk"); 2037 for (indirdep = NULL, newindirdep = NULL; ; ) { 2038 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2039 if (wk->wk_type != D_INDIRDEP) 2040 continue; 2041 indirdep = WK_INDIRDEP(wk); 2042 break; 2043 } 2044 if (indirdep == NULL && newindirdep) { 2045 indirdep = newindirdep; 2046 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 2047 newindirdep = NULL; 2048 } 2049 if (indirdep) { 2050 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 2051 &newblk) == 0) 2052 panic("setup_allocindir: lost block"); 2053 if (newblk->nb_state == DEPCOMPLETE) { 2054 aip->ai_state |= DEPCOMPLETE; 2055 aip->ai_buf = NULL; 2056 } else { 2057 bmsafemap = newblk->nb_bmsafemap; 2058 aip->ai_buf = bmsafemap->sm_buf; 2059 LIST_REMOVE(newblk, nb_deps); 2060 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 2061 aip, ai_deps); 2062 } 2063 LIST_REMOVE(newblk, nb_hash); 2064 FREE(newblk, M_NEWBLK); 2065 aip->ai_indirdep = indirdep; 2066 /* 2067 * Check to see if there is an existing dependency 2068 * for this block. If there is, merge the old 2069 * dependency into the new one. 2070 */ 2071 if (aip->ai_oldblkno == 0) 2072 oldaip = NULL; 2073 else 2074 2075 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 2076 if (oldaip->ai_offset == aip->ai_offset) 2077 break; 2078 freefrag = NULL; 2079 if (oldaip != NULL) { 2080 if (oldaip->ai_newblkno != aip->ai_oldblkno) 2081 panic("setup_allocindir_phase2: blkno"); 2082 aip->ai_oldblkno = oldaip->ai_oldblkno; 2083 freefrag = aip->ai_freefrag; 2084 aip->ai_freefrag = oldaip->ai_freefrag; 2085 oldaip->ai_freefrag = NULL; 2086 free_allocindir(oldaip, NULL); 2087 } 2088 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 2089 if (ip->i_ump->um_fstype == UFS1) 2090 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 2091 [aip->ai_offset] = aip->ai_oldblkno; 2092 else 2093 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 2094 [aip->ai_offset] = aip->ai_oldblkno; 2095 FREE_LOCK(&lk); 2096 if (freefrag != NULL) 2097 handle_workitem_freefrag(freefrag); 2098 } else 2099 FREE_LOCK(&lk); 2100 if (newindirdep) { 2101 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 2102 brelse(newindirdep->ir_savebp); 2103 ACQUIRE_LOCK(&lk); 2104 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 2105 if (indirdep) 2106 break; 2107 FREE_LOCK(&lk); 2108 } 2109 if (indirdep) { 2110 ACQUIRE_LOCK(&lk); 2111 break; 2112 } 2113 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 2114 M_INDIRDEP, M_SOFTDEP_FLAGS); 2115 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, 2116 UFSTOVFS(ip->i_ump)); 2117 newindirdep->ir_state = ATTACHED; 2118 if (ip->i_ump->um_fstype == UFS1) 2119 newindirdep->ir_state |= UFS1FMT; 2120 LIST_INIT(&newindirdep->ir_deplisthd); 2121 LIST_INIT(&newindirdep->ir_donehd); 2122 if (bp->b_blkno == bp->b_lblkno) { 2123 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 2124 NULL, NULL); 2125 bp->b_blkno = blkno; 2126 } 2127 newindirdep->ir_savebp = 2128 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 2129 BUF_KERNPROC(newindirdep->ir_savebp); 2130 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 2131 ACQUIRE_LOCK(&lk); 2132 } 2133 } 2134 2135 /* 2136 * Block de-allocation dependencies. 2137 * 2138 * When blocks are de-allocated, the on-disk pointers must be nullified before 2139 * the blocks are made available for use by other files. (The true 2140 * requirement is that old pointers must be nullified before new on-disk 2141 * pointers are set. We chose this slightly more stringent requirement to 2142 * reduce complexity.) Our implementation handles this dependency by updating 2143 * the inode (or indirect block) appropriately but delaying the actual block 2144 * de-allocation (i.e., freemap and free space count manipulation) until 2145 * after the updated versions reach stable storage. After the disk is 2146 * updated, the blocks can be safely de-allocated whenever it is convenient. 2147 * This implementation handles only the common case of reducing a file's 2148 * length to zero. Other cases are handled by the conventional synchronous 2149 * write approach. 2150 * 2151 * The ffs implementation with which we worked double-checks 2152 * the state of the block pointers and file size as it reduces 2153 * a file's length. Some of this code is replicated here in our 2154 * soft updates implementation. The freeblks->fb_chkcnt field is 2155 * used to transfer a part of this information to the procedure 2156 * that eventually de-allocates the blocks. 2157 * 2158 * This routine should be called from the routine that shortens 2159 * a file's length, before the inode's size or block pointers 2160 * are modified. It will save the block pointer information for 2161 * later release and zero the inode so that the calling routine 2162 * can release it. 2163 */ 2164 void 2165 softdep_setup_freeblocks(ip, length, flags) 2166 struct inode *ip; /* The inode whose length is to be reduced */ 2167 off_t length; /* The new length for the file */ 2168 int flags; /* IO_EXT and/or IO_NORMAL */ 2169 { 2170 struct freeblks *freeblks; 2171 struct inodedep *inodedep; 2172 struct allocdirect *adp; 2173 struct vnode *vp; 2174 struct buf *bp; 2175 struct fs *fs; 2176 ufs2_daddr_t extblocks, datablocks; 2177 struct mount *mp; 2178 int i, delay, error; 2179 2180 fs = ip->i_fs; 2181 mp = UFSTOVFS(ip->i_ump); 2182 if (length != 0) 2183 panic("softdep_setup_freeblocks: non-zero length"); 2184 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 2185 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 2186 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 2187 freeblks->fb_state = ATTACHED; 2188 freeblks->fb_uid = ip->i_uid; 2189 freeblks->fb_previousinum = ip->i_number; 2190 freeblks->fb_devvp = ip->i_devvp; 2191 extblocks = 0; 2192 if (fs->fs_magic == FS_UFS2_MAGIC) 2193 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 2194 datablocks = DIP(ip, i_blocks) - extblocks; 2195 if ((flags & IO_NORMAL) == 0) { 2196 freeblks->fb_oldsize = 0; 2197 freeblks->fb_chkcnt = 0; 2198 } else { 2199 freeblks->fb_oldsize = ip->i_size; 2200 ip->i_size = 0; 2201 DIP_SET(ip, i_size, 0); 2202 freeblks->fb_chkcnt = datablocks; 2203 for (i = 0; i < NDADDR; i++) { 2204 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 2205 DIP_SET(ip, i_db[i], 0); 2206 } 2207 for (i = 0; i < NIADDR; i++) { 2208 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 2209 DIP_SET(ip, i_ib[i], 0); 2210 } 2211 /* 2212 * If the file was removed, then the space being freed was 2213 * accounted for then (see softdep_filereleased()). If the 2214 * file is merely being truncated, then we account for it now. 2215 */ 2216 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2217 UFS_LOCK(ip->i_ump); 2218 fs->fs_pendingblocks += datablocks; 2219 UFS_UNLOCK(ip->i_ump); 2220 } 2221 } 2222 if ((flags & IO_EXT) == 0) { 2223 freeblks->fb_oldextsize = 0; 2224 } else { 2225 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 2226 ip->i_din2->di_extsize = 0; 2227 freeblks->fb_chkcnt += extblocks; 2228 for (i = 0; i < NXADDR; i++) { 2229 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 2230 ip->i_din2->di_extb[i] = 0; 2231 } 2232 } 2233 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 2234 /* 2235 * Push the zero'ed inode to to its disk buffer so that we are free 2236 * to delete its dependencies below. Once the dependencies are gone 2237 * the buffer can be safely released. 2238 */ 2239 if ((error = bread(ip->i_devvp, 2240 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2241 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2242 brelse(bp); 2243 softdep_error("softdep_setup_freeblocks", error); 2244 } 2245 if (ip->i_ump->um_fstype == UFS1) 2246 *((struct ufs1_dinode *)bp->b_data + 2247 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2248 else 2249 *((struct ufs2_dinode *)bp->b_data + 2250 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2251 /* 2252 * Find and eliminate any inode dependencies. 2253 */ 2254 ACQUIRE_LOCK(&lk); 2255 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 2256 if ((inodedep->id_state & IOSTARTED) != 0) 2257 panic("softdep_setup_freeblocks: inode busy"); 2258 /* 2259 * Add the freeblks structure to the list of operations that 2260 * must await the zero'ed inode being written to disk. If we 2261 * still have a bitmap dependency (delay == 0), then the inode 2262 * has never been written to disk, so we can process the 2263 * freeblks below once we have deleted the dependencies. 2264 */ 2265 delay = (inodedep->id_state & DEPCOMPLETE); 2266 if (delay) 2267 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2268 /* 2269 * Because the file length has been truncated to zero, any 2270 * pending block allocation dependency structures associated 2271 * with this inode are obsolete and can simply be de-allocated. 2272 * We must first merge the two dependency lists to get rid of 2273 * any duplicate freefrag structures, then purge the merged list. 2274 * If we still have a bitmap dependency, then the inode has never 2275 * been written to disk, so we can free any fragments without delay. 2276 */ 2277 if (flags & IO_NORMAL) { 2278 merge_inode_lists(&inodedep->id_newinoupdt, 2279 &inodedep->id_inoupdt); 2280 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2281 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2282 } 2283 if (flags & IO_EXT) { 2284 merge_inode_lists(&inodedep->id_newextupdt, 2285 &inodedep->id_extupdt); 2286 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2287 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2288 } 2289 FREE_LOCK(&lk); 2290 bdwrite(bp); 2291 /* 2292 * We must wait for any I/O in progress to finish so that 2293 * all potential buffers on the dirty list will be visible. 2294 * Once they are all there, walk the list and get rid of 2295 * any dependencies. 2296 */ 2297 vp = ITOV(ip); 2298 VI_LOCK(vp); 2299 drain_output(vp); 2300 restart: 2301 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 2302 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2303 ((flags & IO_NORMAL) == 0 && 2304 (bp->b_xflags & BX_ALTDATA) == 0)) 2305 continue; 2306 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL) 2307 goto restart; 2308 VI_UNLOCK(vp); 2309 ACQUIRE_LOCK(&lk); 2310 (void) inodedep_lookup(mp, ip->i_number, 0, &inodedep); 2311 deallocate_dependencies(bp, inodedep); 2312 FREE_LOCK(&lk); 2313 bp->b_flags |= B_INVAL | B_NOCACHE; 2314 brelse(bp); 2315 VI_LOCK(vp); 2316 goto restart; 2317 } 2318 VI_UNLOCK(vp); 2319 ACQUIRE_LOCK(&lk); 2320 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 2321 (void) free_inodedep(inodedep); 2322 2323 if(delay) { 2324 freeblks->fb_state |= DEPCOMPLETE; 2325 /* 2326 * If the inode with zeroed block pointers is now on disk 2327 * we can start freeing blocks. Add freeblks to the worklist 2328 * instead of calling handle_workitem_freeblocks directly as 2329 * it is more likely that additional IO is needed to complete 2330 * the request here than in the !delay case. 2331 */ 2332 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 2333 add_to_worklist(&freeblks->fb_list); 2334 } 2335 2336 FREE_LOCK(&lk); 2337 /* 2338 * If the inode has never been written to disk (delay == 0), 2339 * then we can process the freeblks now that we have deleted 2340 * the dependencies. 2341 */ 2342 if (!delay) 2343 handle_workitem_freeblocks(freeblks, 0); 2344 } 2345 2346 /* 2347 * Reclaim any dependency structures from a buffer that is about to 2348 * be reallocated to a new vnode. The buffer must be locked, thus, 2349 * no I/O completion operations can occur while we are manipulating 2350 * its associated dependencies. The mutex is held so that other I/O's 2351 * associated with related dependencies do not occur. 2352 */ 2353 static void 2354 deallocate_dependencies(bp, inodedep) 2355 struct buf *bp; 2356 struct inodedep *inodedep; 2357 { 2358 struct worklist *wk; 2359 struct indirdep *indirdep; 2360 struct allocindir *aip; 2361 struct pagedep *pagedep; 2362 struct dirrem *dirrem; 2363 struct diradd *dap; 2364 int i; 2365 2366 mtx_assert(&lk, MA_OWNED); 2367 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2368 switch (wk->wk_type) { 2369 2370 case D_INDIRDEP: 2371 indirdep = WK_INDIRDEP(wk); 2372 /* 2373 * None of the indirect pointers will ever be visible, 2374 * so they can simply be tossed. GOINGAWAY ensures 2375 * that allocated pointers will be saved in the buffer 2376 * cache until they are freed. Note that they will 2377 * only be able to be found by their physical address 2378 * since the inode mapping the logical address will 2379 * be gone. The save buffer used for the safe copy 2380 * was allocated in setup_allocindir_phase2 using 2381 * the physical address so it could be used for this 2382 * purpose. Hence we swap the safe copy with the real 2383 * copy, allowing the safe copy to be freed and holding 2384 * on to the real copy for later use in indir_trunc. 2385 */ 2386 if (indirdep->ir_state & GOINGAWAY) 2387 panic("deallocate_dependencies: already gone"); 2388 indirdep->ir_state |= GOINGAWAY; 2389 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2390 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2391 free_allocindir(aip, inodedep); 2392 if (bp->b_lblkno >= 0 || 2393 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 2394 panic("deallocate_dependencies: not indir"); 2395 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2396 bp->b_bcount); 2397 WORKLIST_REMOVE(wk); 2398 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2399 continue; 2400 2401 case D_PAGEDEP: 2402 pagedep = WK_PAGEDEP(wk); 2403 /* 2404 * None of the directory additions will ever be 2405 * visible, so they can simply be tossed. 2406 */ 2407 for (i = 0; i < DAHASHSZ; i++) 2408 while ((dap = 2409 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2410 free_diradd(dap); 2411 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2412 free_diradd(dap); 2413 /* 2414 * Copy any directory remove dependencies to the list 2415 * to be processed after the zero'ed inode is written. 2416 * If the inode has already been written, then they 2417 * can be dumped directly onto the work list. 2418 */ 2419 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2420 LIST_REMOVE(dirrem, dm_next); 2421 dirrem->dm_dirinum = pagedep->pd_ino; 2422 if (inodedep == NULL || 2423 (inodedep->id_state & ALLCOMPLETE) == 2424 ALLCOMPLETE) 2425 add_to_worklist(&dirrem->dm_list); 2426 else 2427 WORKLIST_INSERT(&inodedep->id_bufwait, 2428 &dirrem->dm_list); 2429 } 2430 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2431 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2432 if (wk->wk_type == D_NEWDIRBLK && 2433 WK_NEWDIRBLK(wk)->db_pagedep == 2434 pagedep) 2435 break; 2436 if (wk != NULL) { 2437 WORKLIST_REMOVE(wk); 2438 free_newdirblk(WK_NEWDIRBLK(wk)); 2439 } else 2440 panic("deallocate_dependencies: " 2441 "lost pagedep"); 2442 } 2443 WORKLIST_REMOVE(&pagedep->pd_list); 2444 LIST_REMOVE(pagedep, pd_hash); 2445 WORKITEM_FREE(pagedep, D_PAGEDEP); 2446 continue; 2447 2448 case D_ALLOCINDIR: 2449 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2450 continue; 2451 2452 case D_ALLOCDIRECT: 2453 case D_INODEDEP: 2454 panic("deallocate_dependencies: Unexpected type %s", 2455 TYPENAME(wk->wk_type)); 2456 /* NOTREACHED */ 2457 2458 default: 2459 panic("deallocate_dependencies: Unknown type %s", 2460 TYPENAME(wk->wk_type)); 2461 /* NOTREACHED */ 2462 } 2463 } 2464 } 2465 2466 /* 2467 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2468 * This routine must be called with splbio interrupts blocked. 2469 */ 2470 static void 2471 free_allocdirect(adphead, adp, delay) 2472 struct allocdirectlst *adphead; 2473 struct allocdirect *adp; 2474 int delay; 2475 { 2476 struct newdirblk *newdirblk; 2477 struct worklist *wk; 2478 2479 mtx_assert(&lk, MA_OWNED); 2480 if ((adp->ad_state & DEPCOMPLETE) == 0) 2481 LIST_REMOVE(adp, ad_deps); 2482 TAILQ_REMOVE(adphead, adp, ad_next); 2483 if ((adp->ad_state & COMPLETE) == 0) 2484 WORKLIST_REMOVE(&adp->ad_list); 2485 if (adp->ad_freefrag != NULL) { 2486 if (delay) 2487 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2488 &adp->ad_freefrag->ff_list); 2489 else 2490 add_to_worklist(&adp->ad_freefrag->ff_list); 2491 } 2492 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2493 newdirblk = WK_NEWDIRBLK(wk); 2494 WORKLIST_REMOVE(&newdirblk->db_list); 2495 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2496 panic("free_allocdirect: extra newdirblk"); 2497 if (delay) 2498 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2499 &newdirblk->db_list); 2500 else 2501 free_newdirblk(newdirblk); 2502 } 2503 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2504 } 2505 2506 /* 2507 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2508 * This routine must be called with splbio interrupts blocked. 2509 */ 2510 static void 2511 free_newdirblk(newdirblk) 2512 struct newdirblk *newdirblk; 2513 { 2514 struct pagedep *pagedep; 2515 struct diradd *dap; 2516 int i; 2517 2518 mtx_assert(&lk, MA_OWNED); 2519 /* 2520 * If the pagedep is still linked onto the directory buffer 2521 * dependency chain, then some of the entries on the 2522 * pd_pendinghd list may not be committed to disk yet. In 2523 * this case, we will simply clear the NEWBLOCK flag and 2524 * let the pd_pendinghd list be processed when the pagedep 2525 * is next written. If the pagedep is no longer on the buffer 2526 * dependency chain, then all the entries on the pd_pending 2527 * list are committed to disk and we can free them here. 2528 */ 2529 pagedep = newdirblk->db_pagedep; 2530 pagedep->pd_state &= ~NEWBLOCK; 2531 if ((pagedep->pd_state & ONWORKLIST) == 0) 2532 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2533 free_diradd(dap); 2534 /* 2535 * If no dependencies remain, the pagedep will be freed. 2536 */ 2537 for (i = 0; i < DAHASHSZ; i++) 2538 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2539 break; 2540 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2541 LIST_REMOVE(pagedep, pd_hash); 2542 WORKITEM_FREE(pagedep, D_PAGEDEP); 2543 } 2544 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2545 } 2546 2547 /* 2548 * Prepare an inode to be freed. The actual free operation is not 2549 * done until the zero'ed inode has been written to disk. 2550 */ 2551 void 2552 softdep_freefile(pvp, ino, mode) 2553 struct vnode *pvp; 2554 ino_t ino; 2555 int mode; 2556 { 2557 struct inode *ip = VTOI(pvp); 2558 struct inodedep *inodedep; 2559 struct freefile *freefile; 2560 2561 /* 2562 * This sets up the inode de-allocation dependency. 2563 */ 2564 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2565 M_FREEFILE, M_SOFTDEP_FLAGS); 2566 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 2567 freefile->fx_mode = mode; 2568 freefile->fx_oldinum = ino; 2569 freefile->fx_devvp = ip->i_devvp; 2570 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2571 UFS_LOCK(ip->i_ump); 2572 ip->i_fs->fs_pendinginodes += 1; 2573 UFS_UNLOCK(ip->i_ump); 2574 } 2575 2576 /* 2577 * If the inodedep does not exist, then the zero'ed inode has 2578 * been written to disk. If the allocated inode has never been 2579 * written to disk, then the on-disk inode is zero'ed. In either 2580 * case we can free the file immediately. 2581 */ 2582 ACQUIRE_LOCK(&lk); 2583 if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 || 2584 check_inode_unwritten(inodedep)) { 2585 FREE_LOCK(&lk); 2586 handle_workitem_freefile(freefile); 2587 return; 2588 } 2589 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2590 FREE_LOCK(&lk); 2591 } 2592 2593 /* 2594 * Check to see if an inode has never been written to disk. If 2595 * so free the inodedep and return success, otherwise return failure. 2596 * This routine must be called with splbio interrupts blocked. 2597 * 2598 * If we still have a bitmap dependency, then the inode has never 2599 * been written to disk. Drop the dependency as it is no longer 2600 * necessary since the inode is being deallocated. We set the 2601 * ALLCOMPLETE flags since the bitmap now properly shows that the 2602 * inode is not allocated. Even if the inode is actively being 2603 * written, it has been rolled back to its zero'ed state, so we 2604 * are ensured that a zero inode is what is on the disk. For short 2605 * lived files, this change will usually result in removing all the 2606 * dependencies from the inode so that it can be freed immediately. 2607 */ 2608 static int 2609 check_inode_unwritten(inodedep) 2610 struct inodedep *inodedep; 2611 { 2612 2613 mtx_assert(&lk, MA_OWNED); 2614 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2615 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2616 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2617 LIST_FIRST(&inodedep->id_inowait) != NULL || 2618 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2619 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2620 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2621 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2622 inodedep->id_nlinkdelta != 0) 2623 return (0); 2624 2625 /* 2626 * Another process might be in initiate_write_inodeblock_ufs[12] 2627 * trying to allocate memory without holding "Softdep Lock". 2628 */ 2629 if ((inodedep->id_state & IOSTARTED) != 0 && 2630 inodedep->id_savedino1 == NULL) 2631 return (0); 2632 2633 inodedep->id_state |= ALLCOMPLETE; 2634 LIST_REMOVE(inodedep, id_deps); 2635 inodedep->id_buf = NULL; 2636 if (inodedep->id_state & ONWORKLIST) 2637 WORKLIST_REMOVE(&inodedep->id_list); 2638 if (inodedep->id_savedino1 != NULL) { 2639 FREE(inodedep->id_savedino1, M_SAVEDINO); 2640 inodedep->id_savedino1 = NULL; 2641 } 2642 if (free_inodedep(inodedep) == 0) 2643 panic("check_inode_unwritten: busy inode"); 2644 return (1); 2645 } 2646 2647 /* 2648 * Try to free an inodedep structure. Return 1 if it could be freed. 2649 */ 2650 static int 2651 free_inodedep(inodedep) 2652 struct inodedep *inodedep; 2653 { 2654 2655 mtx_assert(&lk, MA_OWNED); 2656 if ((inodedep->id_state & ONWORKLIST) != 0 || 2657 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2658 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2659 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2660 LIST_FIRST(&inodedep->id_inowait) != NULL || 2661 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2662 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2663 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2664 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2665 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2666 return (0); 2667 LIST_REMOVE(inodedep, id_hash); 2668 WORKITEM_FREE(inodedep, D_INODEDEP); 2669 num_inodedep -= 1; 2670 return (1); 2671 } 2672 2673 /* 2674 * This workitem routine performs the block de-allocation. 2675 * The workitem is added to the pending list after the updated 2676 * inode block has been written to disk. As mentioned above, 2677 * checks regarding the number of blocks de-allocated (compared 2678 * to the number of blocks allocated for the file) are also 2679 * performed in this function. 2680 */ 2681 static void 2682 handle_workitem_freeblocks(freeblks, flags) 2683 struct freeblks *freeblks; 2684 int flags; 2685 { 2686 struct inode *ip; 2687 struct vnode *vp; 2688 struct fs *fs; 2689 struct ufsmount *ump; 2690 int i, nblocks, level, bsize; 2691 ufs2_daddr_t bn, blocksreleased = 0; 2692 int error, allerror = 0; 2693 ufs_lbn_t baselbns[NIADDR], tmpval; 2694 int fs_pendingblocks; 2695 2696 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2697 fs = ump->um_fs; 2698 fs_pendingblocks = 0; 2699 tmpval = 1; 2700 baselbns[0] = NDADDR; 2701 for (i = 1; i < NIADDR; i++) { 2702 tmpval *= NINDIR(fs); 2703 baselbns[i] = baselbns[i - 1] + tmpval; 2704 } 2705 nblocks = btodb(fs->fs_bsize); 2706 blocksreleased = 0; 2707 /* 2708 * Release all extended attribute blocks or frags. 2709 */ 2710 if (freeblks->fb_oldextsize > 0) { 2711 for (i = (NXADDR - 1); i >= 0; i--) { 2712 if ((bn = freeblks->fb_eblks[i]) == 0) 2713 continue; 2714 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2715 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2716 freeblks->fb_previousinum); 2717 blocksreleased += btodb(bsize); 2718 } 2719 } 2720 /* 2721 * Release all data blocks or frags. 2722 */ 2723 if (freeblks->fb_oldsize > 0) { 2724 /* 2725 * Indirect blocks first. 2726 */ 2727 for (level = (NIADDR - 1); level >= 0; level--) { 2728 if ((bn = freeblks->fb_iblks[level]) == 0) 2729 continue; 2730 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2731 level, baselbns[level], &blocksreleased)) == 0) 2732 allerror = error; 2733 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, 2734 fs->fs_bsize, freeblks->fb_previousinum); 2735 fs_pendingblocks += nblocks; 2736 blocksreleased += nblocks; 2737 } 2738 /* 2739 * All direct blocks or frags. 2740 */ 2741 for (i = (NDADDR - 1); i >= 0; i--) { 2742 if ((bn = freeblks->fb_dblks[i]) == 0) 2743 continue; 2744 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2745 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2746 freeblks->fb_previousinum); 2747 fs_pendingblocks += btodb(bsize); 2748 blocksreleased += btodb(bsize); 2749 } 2750 } 2751 UFS_LOCK(ump); 2752 fs->fs_pendingblocks -= fs_pendingblocks; 2753 UFS_UNLOCK(ump); 2754 /* 2755 * If we still have not finished background cleanup, then check 2756 * to see if the block count needs to be adjusted. 2757 */ 2758 if (freeblks->fb_chkcnt != blocksreleased && 2759 (fs->fs_flags & FS_UNCLEAN) != 0 && 2760 ffs_vget(freeblks->fb_list.wk_mp, freeblks->fb_previousinum, 2761 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2762 ip = VTOI(vp); 2763 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2764 freeblks->fb_chkcnt - blocksreleased); 2765 ip->i_flag |= IN_CHANGE; 2766 vput(vp); 2767 } 2768 2769 #ifdef DIAGNOSTIC 2770 if (freeblks->fb_chkcnt != blocksreleased && 2771 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2772 printf("handle_workitem_freeblocks: block count\n"); 2773 if (allerror) 2774 softdep_error("handle_workitem_freeblks", allerror); 2775 #endif /* DIAGNOSTIC */ 2776 2777 ACQUIRE_LOCK(&lk); 2778 WORKITEM_FREE(freeblks, D_FREEBLKS); 2779 FREE_LOCK(&lk); 2780 } 2781 2782 /* 2783 * Release blocks associated with the inode ip and stored in the indirect 2784 * block dbn. If level is greater than SINGLE, the block is an indirect block 2785 * and recursive calls to indirtrunc must be used to cleanse other indirect 2786 * blocks. 2787 */ 2788 static int 2789 indir_trunc(freeblks, dbn, level, lbn, countp) 2790 struct freeblks *freeblks; 2791 ufs2_daddr_t dbn; 2792 int level; 2793 ufs_lbn_t lbn; 2794 ufs2_daddr_t *countp; 2795 { 2796 struct buf *bp; 2797 struct fs *fs; 2798 struct worklist *wk; 2799 struct indirdep *indirdep; 2800 struct ufsmount *ump; 2801 ufs1_daddr_t *bap1 = 0; 2802 ufs2_daddr_t nb, *bap2 = 0; 2803 ufs_lbn_t lbnadd; 2804 int i, nblocks, ufs1fmt; 2805 int error, allerror = 0; 2806 int fs_pendingblocks; 2807 2808 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2809 fs = ump->um_fs; 2810 fs_pendingblocks = 0; 2811 lbnadd = 1; 2812 for (i = level; i > 0; i--) 2813 lbnadd *= NINDIR(fs); 2814 /* 2815 * Get buffer of block pointers to be freed. This routine is not 2816 * called until the zero'ed inode has been written, so it is safe 2817 * to free blocks as they are encountered. Because the inode has 2818 * been zero'ed, calls to bmap on these blocks will fail. So, we 2819 * have to use the on-disk address and the block device for the 2820 * filesystem to look them up. If the file was deleted before its 2821 * indirect blocks were all written to disk, the routine that set 2822 * us up (deallocate_dependencies) will have arranged to leave 2823 * a complete copy of the indirect block in memory for our use. 2824 * Otherwise we have to read the blocks in from the disk. 2825 */ 2826 #ifdef notyet 2827 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2828 GB_NOCREAT); 2829 #else 2830 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn); 2831 #endif 2832 ACQUIRE_LOCK(&lk); 2833 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2834 if (wk->wk_type != D_INDIRDEP || 2835 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2836 (indirdep->ir_state & GOINGAWAY) == 0) 2837 panic("indir_trunc: lost indirdep"); 2838 WORKLIST_REMOVE(wk); 2839 WORKITEM_FREE(indirdep, D_INDIRDEP); 2840 if (LIST_FIRST(&bp->b_dep) != NULL) 2841 panic("indir_trunc: dangling dep"); 2842 ump->um_numindirdeps -= 1; 2843 FREE_LOCK(&lk); 2844 } else { 2845 #ifdef notyet 2846 if (bp) 2847 brelse(bp); 2848 #endif 2849 FREE_LOCK(&lk); 2850 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2851 NOCRED, &bp); 2852 if (error) { 2853 brelse(bp); 2854 return (error); 2855 } 2856 } 2857 /* 2858 * Recursively free indirect blocks. 2859 */ 2860 if (ump->um_fstype == UFS1) { 2861 ufs1fmt = 1; 2862 bap1 = (ufs1_daddr_t *)bp->b_data; 2863 } else { 2864 ufs1fmt = 0; 2865 bap2 = (ufs2_daddr_t *)bp->b_data; 2866 } 2867 nblocks = btodb(fs->fs_bsize); 2868 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2869 if (ufs1fmt) 2870 nb = bap1[i]; 2871 else 2872 nb = bap2[i]; 2873 if (nb == 0) 2874 continue; 2875 if (level != 0) { 2876 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2877 level - 1, lbn + (i * lbnadd), countp)) != 0) 2878 allerror = error; 2879 } 2880 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2881 freeblks->fb_previousinum); 2882 fs_pendingblocks += nblocks; 2883 *countp += nblocks; 2884 } 2885 UFS_LOCK(ump); 2886 fs->fs_pendingblocks -= fs_pendingblocks; 2887 UFS_UNLOCK(ump); 2888 bp->b_flags |= B_INVAL | B_NOCACHE; 2889 brelse(bp); 2890 return (allerror); 2891 } 2892 2893 /* 2894 * Free an allocindir. 2895 * This routine must be called with splbio interrupts blocked. 2896 */ 2897 static void 2898 free_allocindir(aip, inodedep) 2899 struct allocindir *aip; 2900 struct inodedep *inodedep; 2901 { 2902 struct freefrag *freefrag; 2903 2904 mtx_assert(&lk, MA_OWNED); 2905 if ((aip->ai_state & DEPCOMPLETE) == 0) 2906 LIST_REMOVE(aip, ai_deps); 2907 if (aip->ai_state & ONWORKLIST) 2908 WORKLIST_REMOVE(&aip->ai_list); 2909 LIST_REMOVE(aip, ai_next); 2910 if ((freefrag = aip->ai_freefrag) != NULL) { 2911 if (inodedep == NULL) 2912 add_to_worklist(&freefrag->ff_list); 2913 else 2914 WORKLIST_INSERT(&inodedep->id_bufwait, 2915 &freefrag->ff_list); 2916 } 2917 WORKITEM_FREE(aip, D_ALLOCINDIR); 2918 } 2919 2920 /* 2921 * Directory entry addition dependencies. 2922 * 2923 * When adding a new directory entry, the inode (with its incremented link 2924 * count) must be written to disk before the directory entry's pointer to it. 2925 * Also, if the inode is newly allocated, the corresponding freemap must be 2926 * updated (on disk) before the directory entry's pointer. These requirements 2927 * are met via undo/redo on the directory entry's pointer, which consists 2928 * simply of the inode number. 2929 * 2930 * As directory entries are added and deleted, the free space within a 2931 * directory block can become fragmented. The ufs filesystem will compact 2932 * a fragmented directory block to make space for a new entry. When this 2933 * occurs, the offsets of previously added entries change. Any "diradd" 2934 * dependency structures corresponding to these entries must be updated with 2935 * the new offsets. 2936 */ 2937 2938 /* 2939 * This routine is called after the in-memory inode's link 2940 * count has been incremented, but before the directory entry's 2941 * pointer to the inode has been set. 2942 */ 2943 int 2944 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2945 struct buf *bp; /* buffer containing directory block */ 2946 struct inode *dp; /* inode for directory */ 2947 off_t diroffset; /* offset of new entry in directory */ 2948 ino_t newinum; /* inode referenced by new directory entry */ 2949 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2950 int isnewblk; /* entry is in a newly allocated block */ 2951 { 2952 int offset; /* offset of new entry within directory block */ 2953 ufs_lbn_t lbn; /* block in directory containing new entry */ 2954 struct fs *fs; 2955 struct diradd *dap; 2956 struct allocdirect *adp; 2957 struct pagedep *pagedep; 2958 struct inodedep *inodedep; 2959 struct newdirblk *newdirblk = 0; 2960 struct mkdir *mkdir1, *mkdir2; 2961 struct mount *mp; 2962 2963 /* 2964 * Whiteouts have no dependencies. 2965 */ 2966 if (newinum == WINO) { 2967 if (newdirbp != NULL) 2968 bdwrite(newdirbp); 2969 return (0); 2970 } 2971 mp = UFSTOVFS(dp->i_ump); 2972 fs = dp->i_fs; 2973 lbn = lblkno(fs, diroffset); 2974 offset = blkoff(fs, diroffset); 2975 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2976 M_SOFTDEP_FLAGS|M_ZERO); 2977 workitem_alloc(&dap->da_list, D_DIRADD, mp); 2978 dap->da_offset = offset; 2979 dap->da_newinum = newinum; 2980 dap->da_state = ATTACHED; 2981 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2982 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2983 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2984 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 2985 } 2986 if (newdirbp == NULL) { 2987 dap->da_state |= DEPCOMPLETE; 2988 ACQUIRE_LOCK(&lk); 2989 } else { 2990 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2991 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2992 M_SOFTDEP_FLAGS); 2993 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 2994 mkdir1->md_state = MKDIR_BODY; 2995 mkdir1->md_diradd = dap; 2996 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2997 M_SOFTDEP_FLAGS); 2998 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 2999 mkdir2->md_state = MKDIR_PARENT; 3000 mkdir2->md_diradd = dap; 3001 /* 3002 * Dependency on "." and ".." being written to disk. 3003 */ 3004 mkdir1->md_buf = newdirbp; 3005 ACQUIRE_LOCK(&lk); 3006 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 3007 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 3008 FREE_LOCK(&lk); 3009 bdwrite(newdirbp); 3010 /* 3011 * Dependency on link count increase for parent directory 3012 */ 3013 ACQUIRE_LOCK(&lk); 3014 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0 3015 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3016 dap->da_state &= ~MKDIR_PARENT; 3017 WORKITEM_FREE(mkdir2, D_MKDIR); 3018 } else { 3019 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 3020 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 3021 } 3022 } 3023 /* 3024 * Link into parent directory pagedep to await its being written. 3025 */ 3026 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3027 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3028 dap->da_pagedep = pagedep; 3029 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 3030 da_pdlist); 3031 /* 3032 * Link into its inodedep. Put it on the id_bufwait list if the inode 3033 * is not yet written. If it is written, do the post-inode write 3034 * processing to put it on the id_pendinghd list. 3035 */ 3036 (void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 3037 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 3038 diradd_inode_written(dap, inodedep); 3039 else 3040 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3041 if (isnewblk) { 3042 /* 3043 * Directories growing into indirect blocks are rare 3044 * enough and the frequency of new block allocation 3045 * in those cases even more rare, that we choose not 3046 * to bother tracking them. Rather we simply force the 3047 * new directory entry to disk. 3048 */ 3049 if (lbn >= NDADDR) { 3050 FREE_LOCK(&lk); 3051 /* 3052 * We only have a new allocation when at the 3053 * beginning of a new block, not when we are 3054 * expanding into an existing block. 3055 */ 3056 if (blkoff(fs, diroffset) == 0) 3057 return (1); 3058 return (0); 3059 } 3060 /* 3061 * We only have a new allocation when at the beginning 3062 * of a new fragment, not when we are expanding into an 3063 * existing fragment. Also, there is nothing to do if we 3064 * are already tracking this block. 3065 */ 3066 if (fragoff(fs, diroffset) != 0) { 3067 FREE_LOCK(&lk); 3068 return (0); 3069 } 3070 if ((pagedep->pd_state & NEWBLOCK) != 0) { 3071 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 3072 FREE_LOCK(&lk); 3073 return (0); 3074 } 3075 /* 3076 * Find our associated allocdirect and have it track us. 3077 */ 3078 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0) 3079 panic("softdep_setup_directory_add: lost inodedep"); 3080 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 3081 if (adp == NULL || adp->ad_lbn != lbn) 3082 panic("softdep_setup_directory_add: lost entry"); 3083 pagedep->pd_state |= NEWBLOCK; 3084 newdirblk->db_pagedep = pagedep; 3085 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 3086 } 3087 FREE_LOCK(&lk); 3088 return (0); 3089 } 3090 3091 /* 3092 * This procedure is called to change the offset of a directory 3093 * entry when compacting a directory block which must be owned 3094 * exclusively by the caller. Note that the actual entry movement 3095 * must be done in this procedure to ensure that no I/O completions 3096 * occur while the move is in progress. 3097 */ 3098 void 3099 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 3100 struct inode *dp; /* inode for directory */ 3101 caddr_t base; /* address of dp->i_offset */ 3102 caddr_t oldloc; /* address of old directory location */ 3103 caddr_t newloc; /* address of new directory location */ 3104 int entrysize; /* size of directory entry */ 3105 { 3106 int offset, oldoffset, newoffset; 3107 struct pagedep *pagedep; 3108 struct diradd *dap; 3109 ufs_lbn_t lbn; 3110 3111 ACQUIRE_LOCK(&lk); 3112 lbn = lblkno(dp->i_fs, dp->i_offset); 3113 offset = blkoff(dp->i_fs, dp->i_offset); 3114 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 3115 goto done; 3116 oldoffset = offset + (oldloc - base); 3117 newoffset = offset + (newloc - base); 3118 3119 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 3120 if (dap->da_offset != oldoffset) 3121 continue; 3122 dap->da_offset = newoffset; 3123 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 3124 break; 3125 LIST_REMOVE(dap, da_pdlist); 3126 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 3127 dap, da_pdlist); 3128 break; 3129 } 3130 if (dap == NULL) { 3131 3132 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 3133 if (dap->da_offset == oldoffset) { 3134 dap->da_offset = newoffset; 3135 break; 3136 } 3137 } 3138 } 3139 done: 3140 bcopy(oldloc, newloc, entrysize); 3141 FREE_LOCK(&lk); 3142 } 3143 3144 /* 3145 * Free a diradd dependency structure. This routine must be called 3146 * with splbio interrupts blocked. 3147 */ 3148 static void 3149 free_diradd(dap) 3150 struct diradd *dap; 3151 { 3152 struct dirrem *dirrem; 3153 struct pagedep *pagedep; 3154 struct inodedep *inodedep; 3155 struct mkdir *mkdir, *nextmd; 3156 3157 mtx_assert(&lk, MA_OWNED); 3158 WORKLIST_REMOVE(&dap->da_list); 3159 LIST_REMOVE(dap, da_pdlist); 3160 if ((dap->da_state & DIRCHG) == 0) { 3161 pagedep = dap->da_pagedep; 3162 } else { 3163 dirrem = dap->da_previous; 3164 pagedep = dirrem->dm_pagedep; 3165 dirrem->dm_dirinum = pagedep->pd_ino; 3166 add_to_worklist(&dirrem->dm_list); 3167 } 3168 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 3169 0, &inodedep) != 0) 3170 (void) free_inodedep(inodedep); 3171 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 3172 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 3173 nextmd = LIST_NEXT(mkdir, md_mkdirs); 3174 if (mkdir->md_diradd != dap) 3175 continue; 3176 dap->da_state &= ~mkdir->md_state; 3177 WORKLIST_REMOVE(&mkdir->md_list); 3178 LIST_REMOVE(mkdir, md_mkdirs); 3179 WORKITEM_FREE(mkdir, D_MKDIR); 3180 } 3181 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 3182 panic("free_diradd: unfound ref"); 3183 } 3184 WORKITEM_FREE(dap, D_DIRADD); 3185 } 3186 3187 /* 3188 * Directory entry removal dependencies. 3189 * 3190 * When removing a directory entry, the entry's inode pointer must be 3191 * zero'ed on disk before the corresponding inode's link count is decremented 3192 * (possibly freeing the inode for re-use). This dependency is handled by 3193 * updating the directory entry but delaying the inode count reduction until 3194 * after the directory block has been written to disk. After this point, the 3195 * inode count can be decremented whenever it is convenient. 3196 */ 3197 3198 /* 3199 * This routine should be called immediately after removing 3200 * a directory entry. The inode's link count should not be 3201 * decremented by the calling procedure -- the soft updates 3202 * code will do this task when it is safe. 3203 */ 3204 void 3205 softdep_setup_remove(bp, dp, ip, isrmdir) 3206 struct buf *bp; /* buffer containing directory block */ 3207 struct inode *dp; /* inode for the directory being modified */ 3208 struct inode *ip; /* inode for directory entry being removed */ 3209 int isrmdir; /* indicates if doing RMDIR */ 3210 { 3211 struct dirrem *dirrem, *prevdirrem; 3212 3213 /* 3214 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 3215 */ 3216 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3217 3218 /* 3219 * If the COMPLETE flag is clear, then there were no active 3220 * entries and we want to roll back to a zeroed entry until 3221 * the new inode is committed to disk. If the COMPLETE flag is 3222 * set then we have deleted an entry that never made it to 3223 * disk. If the entry we deleted resulted from a name change, 3224 * then the old name still resides on disk. We cannot delete 3225 * its inode (returned to us in prevdirrem) until the zeroed 3226 * directory entry gets to disk. The new inode has never been 3227 * referenced on the disk, so can be deleted immediately. 3228 */ 3229 if ((dirrem->dm_state & COMPLETE) == 0) { 3230 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 3231 dm_next); 3232 FREE_LOCK(&lk); 3233 } else { 3234 if (prevdirrem != NULL) 3235 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 3236 prevdirrem, dm_next); 3237 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 3238 FREE_LOCK(&lk); 3239 handle_workitem_remove(dirrem, NULL); 3240 } 3241 } 3242 3243 /* 3244 * Allocate a new dirrem if appropriate and return it along with 3245 * its associated pagedep. Called without a lock, returns with lock. 3246 */ 3247 static long num_dirrem; /* number of dirrem allocated */ 3248 static struct dirrem * 3249 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 3250 struct buf *bp; /* buffer containing directory block */ 3251 struct inode *dp; /* inode for the directory being modified */ 3252 struct inode *ip; /* inode for directory entry being removed */ 3253 int isrmdir; /* indicates if doing RMDIR */ 3254 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 3255 { 3256 int offset; 3257 ufs_lbn_t lbn; 3258 struct diradd *dap; 3259 struct dirrem *dirrem; 3260 struct pagedep *pagedep; 3261 3262 /* 3263 * Whiteouts have no deletion dependencies. 3264 */ 3265 if (ip == NULL) 3266 panic("newdirrem: whiteout"); 3267 /* 3268 * If we are over our limit, try to improve the situation. 3269 * Limiting the number of dirrem structures will also limit 3270 * the number of freefile and freeblks structures. 3271 */ 3272 ACQUIRE_LOCK(&lk); 3273 if (num_dirrem > max_softdeps / 2) 3274 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE); 3275 num_dirrem += 1; 3276 FREE_LOCK(&lk); 3277 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3278 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3279 workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount); 3280 dirrem->dm_state = isrmdir ? RMDIR : 0; 3281 dirrem->dm_oldinum = ip->i_number; 3282 *prevdirremp = NULL; 3283 3284 ACQUIRE_LOCK(&lk); 3285 lbn = lblkno(dp->i_fs, dp->i_offset); 3286 offset = blkoff(dp->i_fs, dp->i_offset); 3287 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3288 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3289 dirrem->dm_pagedep = pagedep; 3290 /* 3291 * Check for a diradd dependency for the same directory entry. 3292 * If present, then both dependencies become obsolete and can 3293 * be de-allocated. Check for an entry on both the pd_dirraddhd 3294 * list and the pd_pendinghd list. 3295 */ 3296 3297 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3298 if (dap->da_offset == offset) 3299 break; 3300 if (dap == NULL) { 3301 3302 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3303 if (dap->da_offset == offset) 3304 break; 3305 if (dap == NULL) 3306 return (dirrem); 3307 } 3308 /* 3309 * Must be ATTACHED at this point. 3310 */ 3311 if ((dap->da_state & ATTACHED) == 0) 3312 panic("newdirrem: not ATTACHED"); 3313 if (dap->da_newinum != ip->i_number) 3314 panic("newdirrem: inum %d should be %d", 3315 ip->i_number, dap->da_newinum); 3316 /* 3317 * If we are deleting a changed name that never made it to disk, 3318 * then return the dirrem describing the previous inode (which 3319 * represents the inode currently referenced from this entry on disk). 3320 */ 3321 if ((dap->da_state & DIRCHG) != 0) { 3322 *prevdirremp = dap->da_previous; 3323 dap->da_state &= ~DIRCHG; 3324 dap->da_pagedep = pagedep; 3325 } 3326 /* 3327 * We are deleting an entry that never made it to disk. 3328 * Mark it COMPLETE so we can delete its inode immediately. 3329 */ 3330 dirrem->dm_state |= COMPLETE; 3331 free_diradd(dap); 3332 return (dirrem); 3333 } 3334 3335 /* 3336 * Directory entry change dependencies. 3337 * 3338 * Changing an existing directory entry requires that an add operation 3339 * be completed first followed by a deletion. The semantics for the addition 3340 * are identical to the description of adding a new entry above except 3341 * that the rollback is to the old inode number rather than zero. Once 3342 * the addition dependency is completed, the removal is done as described 3343 * in the removal routine above. 3344 */ 3345 3346 /* 3347 * This routine should be called immediately after changing 3348 * a directory entry. The inode's link count should not be 3349 * decremented by the calling procedure -- the soft updates 3350 * code will perform this task when it is safe. 3351 */ 3352 void 3353 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3354 struct buf *bp; /* buffer containing directory block */ 3355 struct inode *dp; /* inode for the directory being modified */ 3356 struct inode *ip; /* inode for directory entry being removed */ 3357 ino_t newinum; /* new inode number for changed entry */ 3358 int isrmdir; /* indicates if doing RMDIR */ 3359 { 3360 int offset; 3361 struct diradd *dap = NULL; 3362 struct dirrem *dirrem, *prevdirrem; 3363 struct pagedep *pagedep; 3364 struct inodedep *inodedep; 3365 struct mount *mp; 3366 3367 offset = blkoff(dp->i_fs, dp->i_offset); 3368 mp = UFSTOVFS(dp->i_ump); 3369 3370 /* 3371 * Whiteouts do not need diradd dependencies. 3372 */ 3373 if (newinum != WINO) { 3374 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3375 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3376 workitem_alloc(&dap->da_list, D_DIRADD, mp); 3377 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3378 dap->da_offset = offset; 3379 dap->da_newinum = newinum; 3380 } 3381 3382 /* 3383 * Allocate a new dirrem and ACQUIRE_LOCK. 3384 */ 3385 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3386 pagedep = dirrem->dm_pagedep; 3387 /* 3388 * The possible values for isrmdir: 3389 * 0 - non-directory file rename 3390 * 1 - directory rename within same directory 3391 * inum - directory rename to new directory of given inode number 3392 * When renaming to a new directory, we are both deleting and 3393 * creating a new directory entry, so the link count on the new 3394 * directory should not change. Thus we do not need the followup 3395 * dirrem which is usually done in handle_workitem_remove. We set 3396 * the DIRCHG flag to tell handle_workitem_remove to skip the 3397 * followup dirrem. 3398 */ 3399 if (isrmdir > 1) 3400 dirrem->dm_state |= DIRCHG; 3401 3402 /* 3403 * Whiteouts have no additional dependencies, 3404 * so just put the dirrem on the correct list. 3405 */ 3406 if (newinum == WINO) { 3407 if ((dirrem->dm_state & COMPLETE) == 0) { 3408 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3409 dm_next); 3410 } else { 3411 dirrem->dm_dirinum = pagedep->pd_ino; 3412 add_to_worklist(&dirrem->dm_list); 3413 } 3414 FREE_LOCK(&lk); 3415 return; 3416 } 3417 3418 /* 3419 * If the COMPLETE flag is clear, then there were no active 3420 * entries and we want to roll back to the previous inode until 3421 * the new inode is committed to disk. If the COMPLETE flag is 3422 * set, then we have deleted an entry that never made it to disk. 3423 * If the entry we deleted resulted from a name change, then the old 3424 * inode reference still resides on disk. Any rollback that we do 3425 * needs to be to that old inode (returned to us in prevdirrem). If 3426 * the entry we deleted resulted from a create, then there is 3427 * no entry on the disk, so we want to roll back to zero rather 3428 * than the uncommitted inode. In either of the COMPLETE cases we 3429 * want to immediately free the unwritten and unreferenced inode. 3430 */ 3431 if ((dirrem->dm_state & COMPLETE) == 0) { 3432 dap->da_previous = dirrem; 3433 } else { 3434 if (prevdirrem != NULL) { 3435 dap->da_previous = prevdirrem; 3436 } else { 3437 dap->da_state &= ~DIRCHG; 3438 dap->da_pagedep = pagedep; 3439 } 3440 dirrem->dm_dirinum = pagedep->pd_ino; 3441 add_to_worklist(&dirrem->dm_list); 3442 } 3443 /* 3444 * Link into its inodedep. Put it on the id_bufwait list if the inode 3445 * is not yet written. If it is written, do the post-inode write 3446 * processing to put it on the id_pendinghd list. 3447 */ 3448 if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 || 3449 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3450 dap->da_state |= COMPLETE; 3451 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3452 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3453 } else { 3454 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3455 dap, da_pdlist); 3456 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3457 } 3458 FREE_LOCK(&lk); 3459 } 3460 3461 /* 3462 * Called whenever the link count on an inode is changed. 3463 * It creates an inode dependency so that the new reference(s) 3464 * to the inode cannot be committed to disk until the updated 3465 * inode has been written. 3466 */ 3467 void 3468 softdep_change_linkcnt(ip) 3469 struct inode *ip; /* the inode with the increased link count */ 3470 { 3471 struct inodedep *inodedep; 3472 3473 ACQUIRE_LOCK(&lk); 3474 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 3475 DEPALLOC, &inodedep); 3476 if (ip->i_nlink < ip->i_effnlink) 3477 panic("softdep_change_linkcnt: bad delta"); 3478 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3479 FREE_LOCK(&lk); 3480 } 3481 3482 /* 3483 * Called when the effective link count and the reference count 3484 * on an inode drops to zero. At this point there are no names 3485 * referencing the file in the filesystem and no active file 3486 * references. The space associated with the file will be freed 3487 * as soon as the necessary soft dependencies are cleared. 3488 */ 3489 void 3490 softdep_releasefile(ip) 3491 struct inode *ip; /* inode with the zero effective link count */ 3492 { 3493 struct inodedep *inodedep; 3494 struct fs *fs; 3495 int extblocks; 3496 3497 if (ip->i_effnlink > 0) 3498 panic("softdep_filerelease: file still referenced"); 3499 /* 3500 * We may be called several times as the real reference count 3501 * drops to zero. We only want to account for the space once. 3502 */ 3503 if (ip->i_flag & IN_SPACECOUNTED) 3504 return; 3505 /* 3506 * We have to deactivate a snapshot otherwise copyonwrites may 3507 * add blocks and the cleanup may remove blocks after we have 3508 * tried to account for them. 3509 */ 3510 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3511 ffs_snapremove(ITOV(ip)); 3512 /* 3513 * If we are tracking an nlinkdelta, we have to also remember 3514 * whether we accounted for the freed space yet. 3515 */ 3516 ACQUIRE_LOCK(&lk); 3517 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep))) 3518 inodedep->id_state |= SPACECOUNTED; 3519 FREE_LOCK(&lk); 3520 fs = ip->i_fs; 3521 extblocks = 0; 3522 if (fs->fs_magic == FS_UFS2_MAGIC) 3523 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3524 UFS_LOCK(ip->i_ump); 3525 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3526 ip->i_fs->fs_pendinginodes += 1; 3527 UFS_UNLOCK(ip->i_ump); 3528 ip->i_flag |= IN_SPACECOUNTED; 3529 } 3530 3531 /* 3532 * This workitem decrements the inode's link count. 3533 * If the link count reaches zero, the file is removed. 3534 */ 3535 static void 3536 handle_workitem_remove(dirrem, xp) 3537 struct dirrem *dirrem; 3538 struct vnode *xp; 3539 { 3540 struct thread *td = curthread; 3541 struct inodedep *inodedep; 3542 struct vnode *vp; 3543 struct inode *ip; 3544 ino_t oldinum; 3545 int error; 3546 3547 if ((vp = xp) == NULL && 3548 (error = ffs_vget(dirrem->dm_list.wk_mp, 3549 dirrem->dm_oldinum, LK_EXCLUSIVE, &vp)) != 0) { 3550 softdep_error("handle_workitem_remove: vget", error); 3551 return; 3552 } 3553 ip = VTOI(vp); 3554 ACQUIRE_LOCK(&lk); 3555 if ((inodedep_lookup(dirrem->dm_list.wk_mp, 3556 dirrem->dm_oldinum, 0, &inodedep)) == 0) 3557 panic("handle_workitem_remove: lost inodedep"); 3558 /* 3559 * Normal file deletion. 3560 */ 3561 if ((dirrem->dm_state & RMDIR) == 0) { 3562 ip->i_nlink--; 3563 DIP_SET(ip, i_nlink, ip->i_nlink); 3564 ip->i_flag |= IN_CHANGE; 3565 if (ip->i_nlink < ip->i_effnlink) 3566 panic("handle_workitem_remove: bad file delta"); 3567 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3568 num_dirrem -= 1; 3569 WORKITEM_FREE(dirrem, D_DIRREM); 3570 FREE_LOCK(&lk); 3571 vput(vp); 3572 return; 3573 } 3574 /* 3575 * Directory deletion. Decrement reference count for both the 3576 * just deleted parent directory entry and the reference for ".". 3577 * Next truncate the directory to length zero. When the 3578 * truncation completes, arrange to have the reference count on 3579 * the parent decremented to account for the loss of "..". 3580 */ 3581 ip->i_nlink -= 2; 3582 DIP_SET(ip, i_nlink, ip->i_nlink); 3583 ip->i_flag |= IN_CHANGE; 3584 if (ip->i_nlink < ip->i_effnlink) 3585 panic("handle_workitem_remove: bad dir delta"); 3586 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3587 FREE_LOCK(&lk); 3588 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3589 softdep_error("handle_workitem_remove: truncate", error); 3590 ACQUIRE_LOCK(&lk); 3591 /* 3592 * Rename a directory to a new parent. Since, we are both deleting 3593 * and creating a new directory entry, the link count on the new 3594 * directory should not change. Thus we skip the followup dirrem. 3595 */ 3596 if (dirrem->dm_state & DIRCHG) { 3597 num_dirrem -= 1; 3598 WORKITEM_FREE(dirrem, D_DIRREM); 3599 FREE_LOCK(&lk); 3600 vput(vp); 3601 return; 3602 } 3603 /* 3604 * If the inodedep does not exist, then the zero'ed inode has 3605 * been written to disk. If the allocated inode has never been 3606 * written to disk, then the on-disk inode is zero'ed. In either 3607 * case we can remove the file immediately. 3608 */ 3609 dirrem->dm_state = 0; 3610 oldinum = dirrem->dm_oldinum; 3611 dirrem->dm_oldinum = dirrem->dm_dirinum; 3612 if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum, 3613 0, &inodedep) == 0 || check_inode_unwritten(inodedep)) { 3614 FREE_LOCK(&lk); 3615 vput(vp); 3616 handle_workitem_remove(dirrem, NULL); 3617 return; 3618 } 3619 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3620 FREE_LOCK(&lk); 3621 ip->i_flag |= IN_CHANGE; 3622 ffs_update(vp, 0); 3623 vput(vp); 3624 } 3625 3626 /* 3627 * Inode de-allocation dependencies. 3628 * 3629 * When an inode's link count is reduced to zero, it can be de-allocated. We 3630 * found it convenient to postpone de-allocation until after the inode is 3631 * written to disk with its new link count (zero). At this point, all of the 3632 * on-disk inode's block pointers are nullified and, with careful dependency 3633 * list ordering, all dependencies related to the inode will be satisfied and 3634 * the corresponding dependency structures de-allocated. So, if/when the 3635 * inode is reused, there will be no mixing of old dependencies with new 3636 * ones. This artificial dependency is set up by the block de-allocation 3637 * procedure above (softdep_setup_freeblocks) and completed by the 3638 * following procedure. 3639 */ 3640 static void 3641 handle_workitem_freefile(freefile) 3642 struct freefile *freefile; 3643 { 3644 struct fs *fs; 3645 struct inodedep *idp; 3646 struct ufsmount *ump; 3647 int error; 3648 3649 ump = VFSTOUFS(freefile->fx_list.wk_mp); 3650 fs = ump->um_fs; 3651 #ifdef DEBUG 3652 ACQUIRE_LOCK(&lk); 3653 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 3654 FREE_LOCK(&lk); 3655 if (error) 3656 panic("handle_workitem_freefile: inodedep survived"); 3657 #endif 3658 UFS_LOCK(ump); 3659 fs->fs_pendinginodes -= 1; 3660 UFS_UNLOCK(ump); 3661 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 3662 freefile->fx_oldinum, freefile->fx_mode)) != 0) 3663 softdep_error("handle_workitem_freefile", error); 3664 ACQUIRE_LOCK(&lk); 3665 WORKITEM_FREE(freefile, D_FREEFILE); 3666 FREE_LOCK(&lk); 3667 } 3668 3669 3670 /* 3671 * Helper function which unlinks marker element from work list and returns 3672 * the next element on the list. 3673 */ 3674 static __inline struct worklist * 3675 markernext(struct worklist *marker) 3676 { 3677 struct worklist *next; 3678 3679 next = LIST_NEXT(marker, wk_list); 3680 LIST_REMOVE(marker, wk_list); 3681 return next; 3682 } 3683 3684 /* 3685 * Disk writes. 3686 * 3687 * The dependency structures constructed above are most actively used when file 3688 * system blocks are written to disk. No constraints are placed on when a 3689 * block can be written, but unsatisfied update dependencies are made safe by 3690 * modifying (or replacing) the source memory for the duration of the disk 3691 * write. When the disk write completes, the memory block is again brought 3692 * up-to-date. 3693 * 3694 * In-core inode structure reclamation. 3695 * 3696 * Because there are a finite number of "in-core" inode structures, they are 3697 * reused regularly. By transferring all inode-related dependencies to the 3698 * in-memory inode block and indexing them separately (via "inodedep"s), we 3699 * can allow "in-core" inode structures to be reused at any time and avoid 3700 * any increase in contention. 3701 * 3702 * Called just before entering the device driver to initiate a new disk I/O. 3703 * The buffer must be locked, thus, no I/O completion operations can occur 3704 * while we are manipulating its associated dependencies. 3705 */ 3706 static void 3707 softdep_disk_io_initiation(bp) 3708 struct buf *bp; /* structure describing disk write to occur */ 3709 { 3710 struct worklist *wk; 3711 struct worklist marker; 3712 struct indirdep *indirdep; 3713 struct inodedep *inodedep; 3714 3715 /* 3716 * We only care about write operations. There should never 3717 * be dependencies for reads. 3718 */ 3719 if (bp->b_iocmd != BIO_WRITE) 3720 panic("softdep_disk_io_initiation: not write"); 3721 3722 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 3723 PHOLD(curproc); /* Don't swap out kernel stack */ 3724 3725 ACQUIRE_LOCK(&lk); 3726 /* 3727 * Do any necessary pre-I/O processing. 3728 */ 3729 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 3730 wk = markernext(&marker)) { 3731 LIST_INSERT_AFTER(wk, &marker, wk_list); 3732 switch (wk->wk_type) { 3733 3734 case D_PAGEDEP: 3735 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3736 continue; 3737 3738 case D_INODEDEP: 3739 inodedep = WK_INODEDEP(wk); 3740 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3741 initiate_write_inodeblock_ufs1(inodedep, bp); 3742 else 3743 initiate_write_inodeblock_ufs2(inodedep, bp); 3744 continue; 3745 3746 case D_INDIRDEP: 3747 indirdep = WK_INDIRDEP(wk); 3748 if (indirdep->ir_state & GOINGAWAY) 3749 panic("disk_io_initiation: indirdep gone"); 3750 /* 3751 * If there are no remaining dependencies, this 3752 * will be writing the real pointers, so the 3753 * dependency can be freed. 3754 */ 3755 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3756 struct buf *bp; 3757 3758 bp = indirdep->ir_savebp; 3759 bp->b_flags |= B_INVAL | B_NOCACHE; 3760 /* inline expand WORKLIST_REMOVE(wk); */ 3761 wk->wk_state &= ~ONWORKLIST; 3762 LIST_REMOVE(wk, wk_list); 3763 WORKITEM_FREE(indirdep, D_INDIRDEP); 3764 FREE_LOCK(&lk); 3765 brelse(bp); 3766 ACQUIRE_LOCK(&lk); 3767 continue; 3768 } 3769 /* 3770 * Replace up-to-date version with safe version. 3771 */ 3772 FREE_LOCK(&lk); 3773 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3774 M_INDIRDEP, M_SOFTDEP_FLAGS); 3775 ACQUIRE_LOCK(&lk); 3776 indirdep->ir_state &= ~ATTACHED; 3777 indirdep->ir_state |= UNDONE; 3778 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3779 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3780 bp->b_bcount); 3781 continue; 3782 3783 case D_MKDIR: 3784 case D_BMSAFEMAP: 3785 case D_ALLOCDIRECT: 3786 case D_ALLOCINDIR: 3787 continue; 3788 3789 default: 3790 panic("handle_disk_io_initiation: Unexpected type %s", 3791 TYPENAME(wk->wk_type)); 3792 /* NOTREACHED */ 3793 } 3794 } 3795 FREE_LOCK(&lk); 3796 PRELE(curproc); /* Allow swapout of kernel stack */ 3797 } 3798 3799 /* 3800 * Called from within the procedure above to deal with unsatisfied 3801 * allocation dependencies in a directory. The buffer must be locked, 3802 * thus, no I/O completion operations can occur while we are 3803 * manipulating its associated dependencies. 3804 */ 3805 static void 3806 initiate_write_filepage(pagedep, bp) 3807 struct pagedep *pagedep; 3808 struct buf *bp; 3809 { 3810 struct diradd *dap; 3811 struct direct *ep; 3812 int i; 3813 3814 if (pagedep->pd_state & IOSTARTED) { 3815 /* 3816 * This can only happen if there is a driver that does not 3817 * understand chaining. Here biodone will reissue the call 3818 * to strategy for the incomplete buffers. 3819 */ 3820 printf("initiate_write_filepage: already started\n"); 3821 return; 3822 } 3823 pagedep->pd_state |= IOSTARTED; 3824 for (i = 0; i < DAHASHSZ; i++) { 3825 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3826 ep = (struct direct *) 3827 ((char *)bp->b_data + dap->da_offset); 3828 if (ep->d_ino != dap->da_newinum) 3829 panic("%s: dir inum %d != new %d", 3830 "initiate_write_filepage", 3831 ep->d_ino, dap->da_newinum); 3832 if (dap->da_state & DIRCHG) 3833 ep->d_ino = dap->da_previous->dm_oldinum; 3834 else 3835 ep->d_ino = 0; 3836 dap->da_state &= ~ATTACHED; 3837 dap->da_state |= UNDONE; 3838 } 3839 } 3840 } 3841 3842 /* 3843 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3844 * Note that any bug fixes made to this routine must be done in the 3845 * version found below. 3846 * 3847 * Called from within the procedure above to deal with unsatisfied 3848 * allocation dependencies in an inodeblock. The buffer must be 3849 * locked, thus, no I/O completion operations can occur while we 3850 * are manipulating its associated dependencies. 3851 */ 3852 static void 3853 initiate_write_inodeblock_ufs1(inodedep, bp) 3854 struct inodedep *inodedep; 3855 struct buf *bp; /* The inode block */ 3856 { 3857 struct allocdirect *adp, *lastadp; 3858 struct ufs1_dinode *dp; 3859 struct ufs1_dinode *sip; 3860 struct fs *fs; 3861 ufs_lbn_t i, prevlbn = 0; 3862 int deplist; 3863 3864 if (inodedep->id_state & IOSTARTED) 3865 panic("initiate_write_inodeblock_ufs1: already started"); 3866 inodedep->id_state |= IOSTARTED; 3867 fs = inodedep->id_fs; 3868 dp = (struct ufs1_dinode *)bp->b_data + 3869 ino_to_fsbo(fs, inodedep->id_ino); 3870 /* 3871 * If the bitmap is not yet written, then the allocated 3872 * inode cannot be written to disk. 3873 */ 3874 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3875 if (inodedep->id_savedino1 != NULL) 3876 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3877 FREE_LOCK(&lk); 3878 MALLOC(sip, struct ufs1_dinode *, 3879 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3880 ACQUIRE_LOCK(&lk); 3881 inodedep->id_savedino1 = sip; 3882 *inodedep->id_savedino1 = *dp; 3883 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3884 dp->di_gen = inodedep->id_savedino1->di_gen; 3885 return; 3886 } 3887 /* 3888 * If no dependencies, then there is nothing to roll back. 3889 */ 3890 inodedep->id_savedsize = dp->di_size; 3891 inodedep->id_savedextsize = 0; 3892 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3893 return; 3894 /* 3895 * Set the dependencies to busy. 3896 */ 3897 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3898 adp = TAILQ_NEXT(adp, ad_next)) { 3899 #ifdef DIAGNOSTIC 3900 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3901 panic("softdep_write_inodeblock: lbn order"); 3902 prevlbn = adp->ad_lbn; 3903 if (adp->ad_lbn < NDADDR && 3904 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3905 panic("%s: direct pointer #%jd mismatch %d != %jd", 3906 "softdep_write_inodeblock", 3907 (intmax_t)adp->ad_lbn, 3908 dp->di_db[adp->ad_lbn], 3909 (intmax_t)adp->ad_newblkno); 3910 if (adp->ad_lbn >= NDADDR && 3911 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3912 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3913 "softdep_write_inodeblock", 3914 (intmax_t)adp->ad_lbn - NDADDR, 3915 dp->di_ib[adp->ad_lbn - NDADDR], 3916 (intmax_t)adp->ad_newblkno); 3917 deplist |= 1 << adp->ad_lbn; 3918 if ((adp->ad_state & ATTACHED) == 0) 3919 panic("softdep_write_inodeblock: Unknown state 0x%x", 3920 adp->ad_state); 3921 #endif /* DIAGNOSTIC */ 3922 adp->ad_state &= ~ATTACHED; 3923 adp->ad_state |= UNDONE; 3924 } 3925 /* 3926 * The on-disk inode cannot claim to be any larger than the last 3927 * fragment that has been written. Otherwise, the on-disk inode 3928 * might have fragments that were not the last block in the file 3929 * which would corrupt the filesystem. 3930 */ 3931 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3932 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3933 if (adp->ad_lbn >= NDADDR) 3934 break; 3935 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3936 /* keep going until hitting a rollback to a frag */ 3937 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3938 continue; 3939 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3940 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3941 #ifdef DIAGNOSTIC 3942 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3943 panic("softdep_write_inodeblock: lost dep1"); 3944 #endif /* DIAGNOSTIC */ 3945 dp->di_db[i] = 0; 3946 } 3947 for (i = 0; i < NIADDR; i++) { 3948 #ifdef DIAGNOSTIC 3949 if (dp->di_ib[i] != 0 && 3950 (deplist & ((1 << NDADDR) << i)) == 0) 3951 panic("softdep_write_inodeblock: lost dep2"); 3952 #endif /* DIAGNOSTIC */ 3953 dp->di_ib[i] = 0; 3954 } 3955 return; 3956 } 3957 /* 3958 * If we have zero'ed out the last allocated block of the file, 3959 * roll back the size to the last currently allocated block. 3960 * We know that this last allocated block is a full-sized as 3961 * we already checked for fragments in the loop above. 3962 */ 3963 if (lastadp != NULL && 3964 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3965 for (i = lastadp->ad_lbn; i >= 0; i--) 3966 if (dp->di_db[i] != 0) 3967 break; 3968 dp->di_size = (i + 1) * fs->fs_bsize; 3969 } 3970 /* 3971 * The only dependencies are for indirect blocks. 3972 * 3973 * The file size for indirect block additions is not guaranteed. 3974 * Such a guarantee would be non-trivial to achieve. The conventional 3975 * synchronous write implementation also does not make this guarantee. 3976 * Fsck should catch and fix discrepancies. Arguably, the file size 3977 * can be over-estimated without destroying integrity when the file 3978 * moves into the indirect blocks (i.e., is large). If we want to 3979 * postpone fsck, we are stuck with this argument. 3980 */ 3981 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3982 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3983 } 3984 3985 /* 3986 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3987 * Note that any bug fixes made to this routine must be done in the 3988 * version found above. 3989 * 3990 * Called from within the procedure above to deal with unsatisfied 3991 * allocation dependencies in an inodeblock. The buffer must be 3992 * locked, thus, no I/O completion operations can occur while we 3993 * are manipulating its associated dependencies. 3994 */ 3995 static void 3996 initiate_write_inodeblock_ufs2(inodedep, bp) 3997 struct inodedep *inodedep; 3998 struct buf *bp; /* The inode block */ 3999 { 4000 struct allocdirect *adp, *lastadp; 4001 struct ufs2_dinode *dp; 4002 struct ufs2_dinode *sip; 4003 struct fs *fs; 4004 ufs_lbn_t i, prevlbn = 0; 4005 int deplist; 4006 4007 if (inodedep->id_state & IOSTARTED) 4008 panic("initiate_write_inodeblock_ufs2: already started"); 4009 inodedep->id_state |= IOSTARTED; 4010 fs = inodedep->id_fs; 4011 dp = (struct ufs2_dinode *)bp->b_data + 4012 ino_to_fsbo(fs, inodedep->id_ino); 4013 /* 4014 * If the bitmap is not yet written, then the allocated 4015 * inode cannot be written to disk. 4016 */ 4017 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4018 if (inodedep->id_savedino2 != NULL) 4019 panic("initiate_write_inodeblock_ufs2: I/O underway"); 4020 FREE_LOCK(&lk); 4021 MALLOC(sip, struct ufs2_dinode *, 4022 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 4023 ACQUIRE_LOCK(&lk); 4024 inodedep->id_savedino2 = sip; 4025 *inodedep->id_savedino2 = *dp; 4026 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 4027 dp->di_gen = inodedep->id_savedino2->di_gen; 4028 return; 4029 } 4030 /* 4031 * If no dependencies, then there is nothing to roll back. 4032 */ 4033 inodedep->id_savedsize = dp->di_size; 4034 inodedep->id_savedextsize = dp->di_extsize; 4035 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 4036 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 4037 return; 4038 /* 4039 * Set the ext data dependencies to busy. 4040 */ 4041 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4042 adp = TAILQ_NEXT(adp, ad_next)) { 4043 #ifdef DIAGNOSTIC 4044 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4045 panic("softdep_write_inodeblock: lbn order"); 4046 prevlbn = adp->ad_lbn; 4047 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) 4048 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4049 "softdep_write_inodeblock", 4050 (intmax_t)adp->ad_lbn, 4051 (intmax_t)dp->di_extb[adp->ad_lbn], 4052 (intmax_t)adp->ad_newblkno); 4053 deplist |= 1 << adp->ad_lbn; 4054 if ((adp->ad_state & ATTACHED) == 0) 4055 panic("softdep_write_inodeblock: Unknown state 0x%x", 4056 adp->ad_state); 4057 #endif /* DIAGNOSTIC */ 4058 adp->ad_state &= ~ATTACHED; 4059 adp->ad_state |= UNDONE; 4060 } 4061 /* 4062 * The on-disk inode cannot claim to be any larger than the last 4063 * fragment that has been written. Otherwise, the on-disk inode 4064 * might have fragments that were not the last block in the ext 4065 * data which would corrupt the filesystem. 4066 */ 4067 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4068 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4069 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 4070 /* keep going until hitting a rollback to a frag */ 4071 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4072 continue; 4073 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4074 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 4075 #ifdef DIAGNOSTIC 4076 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 4077 panic("softdep_write_inodeblock: lost dep1"); 4078 #endif /* DIAGNOSTIC */ 4079 dp->di_extb[i] = 0; 4080 } 4081 lastadp = NULL; 4082 break; 4083 } 4084 /* 4085 * If we have zero'ed out the last allocated block of the ext 4086 * data, roll back the size to the last currently allocated block. 4087 * We know that this last allocated block is a full-sized as 4088 * we already checked for fragments in the loop above. 4089 */ 4090 if (lastadp != NULL && 4091 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4092 for (i = lastadp->ad_lbn; i >= 0; i--) 4093 if (dp->di_extb[i] != 0) 4094 break; 4095 dp->di_extsize = (i + 1) * fs->fs_bsize; 4096 } 4097 /* 4098 * Set the file data dependencies to busy. 4099 */ 4100 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4101 adp = TAILQ_NEXT(adp, ad_next)) { 4102 #ifdef DIAGNOSTIC 4103 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4104 panic("softdep_write_inodeblock: lbn order"); 4105 prevlbn = adp->ad_lbn; 4106 if (adp->ad_lbn < NDADDR && 4107 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 4108 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4109 "softdep_write_inodeblock", 4110 (intmax_t)adp->ad_lbn, 4111 (intmax_t)dp->di_db[adp->ad_lbn], 4112 (intmax_t)adp->ad_newblkno); 4113 if (adp->ad_lbn >= NDADDR && 4114 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 4115 panic("%s indirect pointer #%jd mismatch %jd != %jd", 4116 "softdep_write_inodeblock:", 4117 (intmax_t)adp->ad_lbn - NDADDR, 4118 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 4119 (intmax_t)adp->ad_newblkno); 4120 deplist |= 1 << adp->ad_lbn; 4121 if ((adp->ad_state & ATTACHED) == 0) 4122 panic("softdep_write_inodeblock: Unknown state 0x%x", 4123 adp->ad_state); 4124 #endif /* DIAGNOSTIC */ 4125 adp->ad_state &= ~ATTACHED; 4126 adp->ad_state |= UNDONE; 4127 } 4128 /* 4129 * The on-disk inode cannot claim to be any larger than the last 4130 * fragment that has been written. Otherwise, the on-disk inode 4131 * might have fragments that were not the last block in the file 4132 * which would corrupt the filesystem. 4133 */ 4134 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4135 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4136 if (adp->ad_lbn >= NDADDR) 4137 break; 4138 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 4139 /* keep going until hitting a rollback to a frag */ 4140 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4141 continue; 4142 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4143 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 4144 #ifdef DIAGNOSTIC 4145 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 4146 panic("softdep_write_inodeblock: lost dep2"); 4147 #endif /* DIAGNOSTIC */ 4148 dp->di_db[i] = 0; 4149 } 4150 for (i = 0; i < NIADDR; i++) { 4151 #ifdef DIAGNOSTIC 4152 if (dp->di_ib[i] != 0 && 4153 (deplist & ((1 << NDADDR) << i)) == 0) 4154 panic("softdep_write_inodeblock: lost dep3"); 4155 #endif /* DIAGNOSTIC */ 4156 dp->di_ib[i] = 0; 4157 } 4158 return; 4159 } 4160 /* 4161 * If we have zero'ed out the last allocated block of the file, 4162 * roll back the size to the last currently allocated block. 4163 * We know that this last allocated block is a full-sized as 4164 * we already checked for fragments in the loop above. 4165 */ 4166 if (lastadp != NULL && 4167 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4168 for (i = lastadp->ad_lbn; i >= 0; i--) 4169 if (dp->di_db[i] != 0) 4170 break; 4171 dp->di_size = (i + 1) * fs->fs_bsize; 4172 } 4173 /* 4174 * The only dependencies are for indirect blocks. 4175 * 4176 * The file size for indirect block additions is not guaranteed. 4177 * Such a guarantee would be non-trivial to achieve. The conventional 4178 * synchronous write implementation also does not make this guarantee. 4179 * Fsck should catch and fix discrepancies. Arguably, the file size 4180 * can be over-estimated without destroying integrity when the file 4181 * moves into the indirect blocks (i.e., is large). If we want to 4182 * postpone fsck, we are stuck with this argument. 4183 */ 4184 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4185 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4186 } 4187 4188 /* 4189 * This routine is called during the completion interrupt 4190 * service routine for a disk write (from the procedure called 4191 * by the device driver to inform the filesystem caches of 4192 * a request completion). It should be called early in this 4193 * procedure, before the block is made available to other 4194 * processes or other routines are called. 4195 */ 4196 static void 4197 softdep_disk_write_complete(bp) 4198 struct buf *bp; /* describes the completed disk write */ 4199 { 4200 struct worklist *wk; 4201 struct worklist *owk; 4202 struct workhead reattach; 4203 struct newblk *newblk; 4204 struct allocindir *aip; 4205 struct allocdirect *adp; 4206 struct indirdep *indirdep; 4207 struct inodedep *inodedep; 4208 struct bmsafemap *bmsafemap; 4209 4210 /* 4211 * If an error occurred while doing the write, then the data 4212 * has not hit the disk and the dependencies cannot be unrolled. 4213 */ 4214 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 4215 return; 4216 LIST_INIT(&reattach); 4217 /* 4218 * This lock must not be released anywhere in this code segment. 4219 */ 4220 ACQUIRE_LOCK(&lk); 4221 owk = NULL; 4222 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4223 WORKLIST_REMOVE(wk); 4224 if (wk == owk) 4225 panic("duplicate worklist: %p\n", wk); 4226 owk = wk; 4227 switch (wk->wk_type) { 4228 4229 case D_PAGEDEP: 4230 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 4231 WORKLIST_INSERT(&reattach, wk); 4232 continue; 4233 4234 case D_INODEDEP: 4235 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 4236 WORKLIST_INSERT(&reattach, wk); 4237 continue; 4238 4239 case D_BMSAFEMAP: 4240 bmsafemap = WK_BMSAFEMAP(wk); 4241 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 4242 newblk->nb_state |= DEPCOMPLETE; 4243 newblk->nb_bmsafemap = NULL; 4244 LIST_REMOVE(newblk, nb_deps); 4245 } 4246 while ((adp = 4247 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 4248 adp->ad_state |= DEPCOMPLETE; 4249 adp->ad_buf = NULL; 4250 LIST_REMOVE(adp, ad_deps); 4251 handle_allocdirect_partdone(adp); 4252 } 4253 while ((aip = 4254 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 4255 aip->ai_state |= DEPCOMPLETE; 4256 aip->ai_buf = NULL; 4257 LIST_REMOVE(aip, ai_deps); 4258 handle_allocindir_partdone(aip); 4259 } 4260 while ((inodedep = 4261 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4262 inodedep->id_state |= DEPCOMPLETE; 4263 LIST_REMOVE(inodedep, id_deps); 4264 inodedep->id_buf = NULL; 4265 } 4266 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4267 continue; 4268 4269 case D_MKDIR: 4270 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4271 continue; 4272 4273 case D_ALLOCDIRECT: 4274 adp = WK_ALLOCDIRECT(wk); 4275 adp->ad_state |= COMPLETE; 4276 handle_allocdirect_partdone(adp); 4277 continue; 4278 4279 case D_ALLOCINDIR: 4280 aip = WK_ALLOCINDIR(wk); 4281 aip->ai_state |= COMPLETE; 4282 handle_allocindir_partdone(aip); 4283 continue; 4284 4285 case D_INDIRDEP: 4286 indirdep = WK_INDIRDEP(wk); 4287 if (indirdep->ir_state & GOINGAWAY) 4288 panic("disk_write_complete: indirdep gone"); 4289 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4290 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4291 indirdep->ir_saveddata = 0; 4292 indirdep->ir_state &= ~UNDONE; 4293 indirdep->ir_state |= ATTACHED; 4294 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4295 handle_allocindir_partdone(aip); 4296 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 4297 panic("disk_write_complete: not gone"); 4298 } 4299 WORKLIST_INSERT(&reattach, wk); 4300 if ((bp->b_flags & B_DELWRI) == 0) 4301 stat_indir_blk_ptrs++; 4302 bdirty(bp); 4303 continue; 4304 4305 default: 4306 panic("handle_disk_write_complete: Unknown type %s", 4307 TYPENAME(wk->wk_type)); 4308 /* NOTREACHED */ 4309 } 4310 } 4311 /* 4312 * Reattach any requests that must be redone. 4313 */ 4314 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4315 WORKLIST_REMOVE(wk); 4316 WORKLIST_INSERT(&bp->b_dep, wk); 4317 } 4318 FREE_LOCK(&lk); 4319 } 4320 4321 /* 4322 * Called from within softdep_disk_write_complete above. Note that 4323 * this routine is always called from interrupt level with further 4324 * splbio interrupts blocked. 4325 */ 4326 static void 4327 handle_allocdirect_partdone(adp) 4328 struct allocdirect *adp; /* the completed allocdirect */ 4329 { 4330 struct allocdirectlst *listhead; 4331 struct allocdirect *listadp; 4332 struct inodedep *inodedep; 4333 long bsize, delay; 4334 4335 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4336 return; 4337 if (adp->ad_buf != NULL) 4338 panic("handle_allocdirect_partdone: dangling dep"); 4339 /* 4340 * The on-disk inode cannot claim to be any larger than the last 4341 * fragment that has been written. Otherwise, the on-disk inode 4342 * might have fragments that were not the last block in the file 4343 * which would corrupt the filesystem. Thus, we cannot free any 4344 * allocdirects after one whose ad_oldblkno claims a fragment as 4345 * these blocks must be rolled back to zero before writing the inode. 4346 * We check the currently active set of allocdirects in id_inoupdt 4347 * or id_extupdt as appropriate. 4348 */ 4349 inodedep = adp->ad_inodedep; 4350 bsize = inodedep->id_fs->fs_bsize; 4351 if (adp->ad_state & EXTDATA) 4352 listhead = &inodedep->id_extupdt; 4353 else 4354 listhead = &inodedep->id_inoupdt; 4355 TAILQ_FOREACH(listadp, listhead, ad_next) { 4356 /* found our block */ 4357 if (listadp == adp) 4358 break; 4359 /* continue if ad_oldlbn is not a fragment */ 4360 if (listadp->ad_oldsize == 0 || 4361 listadp->ad_oldsize == bsize) 4362 continue; 4363 /* hit a fragment */ 4364 return; 4365 } 4366 /* 4367 * If we have reached the end of the current list without 4368 * finding the just finished dependency, then it must be 4369 * on the future dependency list. Future dependencies cannot 4370 * be freed until they are moved to the current list. 4371 */ 4372 if (listadp == NULL) { 4373 #ifdef DEBUG 4374 if (adp->ad_state & EXTDATA) 4375 listhead = &inodedep->id_newextupdt; 4376 else 4377 listhead = &inodedep->id_newinoupdt; 4378 TAILQ_FOREACH(listadp, listhead, ad_next) 4379 /* found our block */ 4380 if (listadp == adp) 4381 break; 4382 if (listadp == NULL) 4383 panic("handle_allocdirect_partdone: lost dep"); 4384 #endif /* DEBUG */ 4385 return; 4386 } 4387 /* 4388 * If we have found the just finished dependency, then free 4389 * it along with anything that follows it that is complete. 4390 * If the inode still has a bitmap dependency, then it has 4391 * never been written to disk, hence the on-disk inode cannot 4392 * reference the old fragment so we can free it without delay. 4393 */ 4394 delay = (inodedep->id_state & DEPCOMPLETE); 4395 for (; adp; adp = listadp) { 4396 listadp = TAILQ_NEXT(adp, ad_next); 4397 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4398 return; 4399 free_allocdirect(listhead, adp, delay); 4400 } 4401 } 4402 4403 /* 4404 * Called from within softdep_disk_write_complete above. Note that 4405 * this routine is always called from interrupt level with further 4406 * splbio interrupts blocked. 4407 */ 4408 static void 4409 handle_allocindir_partdone(aip) 4410 struct allocindir *aip; /* the completed allocindir */ 4411 { 4412 struct indirdep *indirdep; 4413 4414 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4415 return; 4416 if (aip->ai_buf != NULL) 4417 panic("handle_allocindir_partdone: dangling dependency"); 4418 indirdep = aip->ai_indirdep; 4419 if (indirdep->ir_state & UNDONE) { 4420 LIST_REMOVE(aip, ai_next); 4421 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4422 return; 4423 } 4424 if (indirdep->ir_state & UFS1FMT) 4425 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4426 aip->ai_newblkno; 4427 else 4428 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4429 aip->ai_newblkno; 4430 LIST_REMOVE(aip, ai_next); 4431 if (aip->ai_freefrag != NULL) 4432 add_to_worklist(&aip->ai_freefrag->ff_list); 4433 WORKITEM_FREE(aip, D_ALLOCINDIR); 4434 } 4435 4436 /* 4437 * Called from within softdep_disk_write_complete above to restore 4438 * in-memory inode block contents to their most up-to-date state. Note 4439 * that this routine is always called from interrupt level with further 4440 * splbio interrupts blocked. 4441 */ 4442 static int 4443 handle_written_inodeblock(inodedep, bp) 4444 struct inodedep *inodedep; 4445 struct buf *bp; /* buffer containing the inode block */ 4446 { 4447 struct worklist *wk, *filefree; 4448 struct allocdirect *adp, *nextadp; 4449 struct ufs1_dinode *dp1 = NULL; 4450 struct ufs2_dinode *dp2 = NULL; 4451 int hadchanges, fstype; 4452 4453 if ((inodedep->id_state & IOSTARTED) == 0) 4454 panic("handle_written_inodeblock: not started"); 4455 inodedep->id_state &= ~IOSTARTED; 4456 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4457 fstype = UFS1; 4458 dp1 = (struct ufs1_dinode *)bp->b_data + 4459 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4460 } else { 4461 fstype = UFS2; 4462 dp2 = (struct ufs2_dinode *)bp->b_data + 4463 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4464 } 4465 /* 4466 * If we had to rollback the inode allocation because of 4467 * bitmaps being incomplete, then simply restore it. 4468 * Keep the block dirty so that it will not be reclaimed until 4469 * all associated dependencies have been cleared and the 4470 * corresponding updates written to disk. 4471 */ 4472 if (inodedep->id_savedino1 != NULL) { 4473 if (fstype == UFS1) 4474 *dp1 = *inodedep->id_savedino1; 4475 else 4476 *dp2 = *inodedep->id_savedino2; 4477 FREE(inodedep->id_savedino1, M_SAVEDINO); 4478 inodedep->id_savedino1 = NULL; 4479 if ((bp->b_flags & B_DELWRI) == 0) 4480 stat_inode_bitmap++; 4481 bdirty(bp); 4482 return (1); 4483 } 4484 inodedep->id_state |= COMPLETE; 4485 /* 4486 * Roll forward anything that had to be rolled back before 4487 * the inode could be updated. 4488 */ 4489 hadchanges = 0; 4490 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4491 nextadp = TAILQ_NEXT(adp, ad_next); 4492 if (adp->ad_state & ATTACHED) 4493 panic("handle_written_inodeblock: new entry"); 4494 if (fstype == UFS1) { 4495 if (adp->ad_lbn < NDADDR) { 4496 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4497 panic("%s %s #%jd mismatch %d != %jd", 4498 "handle_written_inodeblock:", 4499 "direct pointer", 4500 (intmax_t)adp->ad_lbn, 4501 dp1->di_db[adp->ad_lbn], 4502 (intmax_t)adp->ad_oldblkno); 4503 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4504 } else { 4505 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) 4506 panic("%s: %s #%jd allocated as %d", 4507 "handle_written_inodeblock", 4508 "indirect pointer", 4509 (intmax_t)adp->ad_lbn - NDADDR, 4510 dp1->di_ib[adp->ad_lbn - NDADDR]); 4511 dp1->di_ib[adp->ad_lbn - NDADDR] = 4512 adp->ad_newblkno; 4513 } 4514 } else { 4515 if (adp->ad_lbn < NDADDR) { 4516 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4517 panic("%s: %s #%jd %s %jd != %jd", 4518 "handle_written_inodeblock", 4519 "direct pointer", 4520 (intmax_t)adp->ad_lbn, "mismatch", 4521 (intmax_t)dp2->di_db[adp->ad_lbn], 4522 (intmax_t)adp->ad_oldblkno); 4523 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4524 } else { 4525 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) 4526 panic("%s: %s #%jd allocated as %jd", 4527 "handle_written_inodeblock", 4528 "indirect pointer", 4529 (intmax_t)adp->ad_lbn - NDADDR, 4530 (intmax_t) 4531 dp2->di_ib[adp->ad_lbn - NDADDR]); 4532 dp2->di_ib[adp->ad_lbn - NDADDR] = 4533 adp->ad_newblkno; 4534 } 4535 } 4536 adp->ad_state &= ~UNDONE; 4537 adp->ad_state |= ATTACHED; 4538 hadchanges = 1; 4539 } 4540 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4541 nextadp = TAILQ_NEXT(adp, ad_next); 4542 if (adp->ad_state & ATTACHED) 4543 panic("handle_written_inodeblock: new entry"); 4544 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) 4545 panic("%s: direct pointers #%jd %s %jd != %jd", 4546 "handle_written_inodeblock", 4547 (intmax_t)adp->ad_lbn, "mismatch", 4548 (intmax_t)dp2->di_extb[adp->ad_lbn], 4549 (intmax_t)adp->ad_oldblkno); 4550 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4551 adp->ad_state &= ~UNDONE; 4552 adp->ad_state |= ATTACHED; 4553 hadchanges = 1; 4554 } 4555 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4556 stat_direct_blk_ptrs++; 4557 /* 4558 * Reset the file size to its most up-to-date value. 4559 */ 4560 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 4561 panic("handle_written_inodeblock: bad size"); 4562 if (fstype == UFS1) { 4563 if (dp1->di_size != inodedep->id_savedsize) { 4564 dp1->di_size = inodedep->id_savedsize; 4565 hadchanges = 1; 4566 } 4567 } else { 4568 if (dp2->di_size != inodedep->id_savedsize) { 4569 dp2->di_size = inodedep->id_savedsize; 4570 hadchanges = 1; 4571 } 4572 if (dp2->di_extsize != inodedep->id_savedextsize) { 4573 dp2->di_extsize = inodedep->id_savedextsize; 4574 hadchanges = 1; 4575 } 4576 } 4577 inodedep->id_savedsize = -1; 4578 inodedep->id_savedextsize = -1; 4579 /* 4580 * If there were any rollbacks in the inode block, then it must be 4581 * marked dirty so that its will eventually get written back in 4582 * its correct form. 4583 */ 4584 if (hadchanges) 4585 bdirty(bp); 4586 /* 4587 * Process any allocdirects that completed during the update. 4588 */ 4589 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4590 handle_allocdirect_partdone(adp); 4591 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4592 handle_allocdirect_partdone(adp); 4593 /* 4594 * Process deallocations that were held pending until the 4595 * inode had been written to disk. Freeing of the inode 4596 * is delayed until after all blocks have been freed to 4597 * avoid creation of new <vfsid, inum, lbn> triples 4598 * before the old ones have been deleted. 4599 */ 4600 filefree = NULL; 4601 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4602 WORKLIST_REMOVE(wk); 4603 switch (wk->wk_type) { 4604 4605 case D_FREEFILE: 4606 /* 4607 * We defer adding filefree to the worklist until 4608 * all other additions have been made to ensure 4609 * that it will be done after all the old blocks 4610 * have been freed. 4611 */ 4612 if (filefree != NULL) 4613 panic("handle_written_inodeblock: filefree"); 4614 filefree = wk; 4615 continue; 4616 4617 case D_MKDIR: 4618 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4619 continue; 4620 4621 case D_DIRADD: 4622 diradd_inode_written(WK_DIRADD(wk), inodedep); 4623 continue; 4624 4625 case D_FREEBLKS: 4626 wk->wk_state |= COMPLETE; 4627 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE) 4628 continue; 4629 /* -- fall through -- */ 4630 case D_FREEFRAG: 4631 case D_DIRREM: 4632 add_to_worklist(wk); 4633 continue; 4634 4635 case D_NEWDIRBLK: 4636 free_newdirblk(WK_NEWDIRBLK(wk)); 4637 continue; 4638 4639 default: 4640 panic("handle_written_inodeblock: Unknown type %s", 4641 TYPENAME(wk->wk_type)); 4642 /* NOTREACHED */ 4643 } 4644 } 4645 if (filefree != NULL) { 4646 if (free_inodedep(inodedep) == 0) 4647 panic("handle_written_inodeblock: live inodedep"); 4648 add_to_worklist(filefree); 4649 return (0); 4650 } 4651 4652 /* 4653 * If no outstanding dependencies, free it. 4654 */ 4655 if (free_inodedep(inodedep) || 4656 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4657 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4658 return (0); 4659 return (hadchanges); 4660 } 4661 4662 /* 4663 * Process a diradd entry after its dependent inode has been written. 4664 * This routine must be called with splbio interrupts blocked. 4665 */ 4666 static void 4667 diradd_inode_written(dap, inodedep) 4668 struct diradd *dap; 4669 struct inodedep *inodedep; 4670 { 4671 struct pagedep *pagedep; 4672 4673 dap->da_state |= COMPLETE; 4674 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4675 if (dap->da_state & DIRCHG) 4676 pagedep = dap->da_previous->dm_pagedep; 4677 else 4678 pagedep = dap->da_pagedep; 4679 LIST_REMOVE(dap, da_pdlist); 4680 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4681 } 4682 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4683 } 4684 4685 /* 4686 * Handle the completion of a mkdir dependency. 4687 */ 4688 static void 4689 handle_written_mkdir(mkdir, type) 4690 struct mkdir *mkdir; 4691 int type; 4692 { 4693 struct diradd *dap; 4694 struct pagedep *pagedep; 4695 4696 if (mkdir->md_state != type) 4697 panic("handle_written_mkdir: bad type"); 4698 dap = mkdir->md_diradd; 4699 dap->da_state &= ~type; 4700 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4701 dap->da_state |= DEPCOMPLETE; 4702 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4703 if (dap->da_state & DIRCHG) 4704 pagedep = dap->da_previous->dm_pagedep; 4705 else 4706 pagedep = dap->da_pagedep; 4707 LIST_REMOVE(dap, da_pdlist); 4708 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4709 } 4710 LIST_REMOVE(mkdir, md_mkdirs); 4711 WORKITEM_FREE(mkdir, D_MKDIR); 4712 } 4713 4714 /* 4715 * Called from within softdep_disk_write_complete above. 4716 * A write operation was just completed. Removed inodes can 4717 * now be freed and associated block pointers may be committed. 4718 * Note that this routine is always called from interrupt level 4719 * with further splbio interrupts blocked. 4720 */ 4721 static int 4722 handle_written_filepage(pagedep, bp) 4723 struct pagedep *pagedep; 4724 struct buf *bp; /* buffer containing the written page */ 4725 { 4726 struct dirrem *dirrem; 4727 struct diradd *dap, *nextdap; 4728 struct direct *ep; 4729 int i, chgs; 4730 4731 if ((pagedep->pd_state & IOSTARTED) == 0) 4732 panic("handle_written_filepage: not started"); 4733 pagedep->pd_state &= ~IOSTARTED; 4734 /* 4735 * Process any directory removals that have been committed. 4736 */ 4737 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4738 LIST_REMOVE(dirrem, dm_next); 4739 dirrem->dm_dirinum = pagedep->pd_ino; 4740 add_to_worklist(&dirrem->dm_list); 4741 } 4742 /* 4743 * Free any directory additions that have been committed. 4744 * If it is a newly allocated block, we have to wait until 4745 * the on-disk directory inode claims the new block. 4746 */ 4747 if ((pagedep->pd_state & NEWBLOCK) == 0) 4748 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4749 free_diradd(dap); 4750 /* 4751 * Uncommitted directory entries must be restored. 4752 */ 4753 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4754 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4755 dap = nextdap) { 4756 nextdap = LIST_NEXT(dap, da_pdlist); 4757 if (dap->da_state & ATTACHED) 4758 panic("handle_written_filepage: attached"); 4759 ep = (struct direct *) 4760 ((char *)bp->b_data + dap->da_offset); 4761 ep->d_ino = dap->da_newinum; 4762 dap->da_state &= ~UNDONE; 4763 dap->da_state |= ATTACHED; 4764 chgs = 1; 4765 /* 4766 * If the inode referenced by the directory has 4767 * been written out, then the dependency can be 4768 * moved to the pending list. 4769 */ 4770 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4771 LIST_REMOVE(dap, da_pdlist); 4772 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4773 da_pdlist); 4774 } 4775 } 4776 } 4777 /* 4778 * If there were any rollbacks in the directory, then it must be 4779 * marked dirty so that its will eventually get written back in 4780 * its correct form. 4781 */ 4782 if (chgs) { 4783 if ((bp->b_flags & B_DELWRI) == 0) 4784 stat_dir_entry++; 4785 bdirty(bp); 4786 return (1); 4787 } 4788 /* 4789 * If we are not waiting for a new directory block to be 4790 * claimed by its inode, then the pagedep will be freed. 4791 * Otherwise it will remain to track any new entries on 4792 * the page in case they are fsync'ed. 4793 */ 4794 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4795 LIST_REMOVE(pagedep, pd_hash); 4796 WORKITEM_FREE(pagedep, D_PAGEDEP); 4797 } 4798 return (0); 4799 } 4800 4801 /* 4802 * Writing back in-core inode structures. 4803 * 4804 * The filesystem only accesses an inode's contents when it occupies an 4805 * "in-core" inode structure. These "in-core" structures are separate from 4806 * the page frames used to cache inode blocks. Only the latter are 4807 * transferred to/from the disk. So, when the updated contents of the 4808 * "in-core" inode structure are copied to the corresponding in-memory inode 4809 * block, the dependencies are also transferred. The following procedure is 4810 * called when copying a dirty "in-core" inode to a cached inode block. 4811 */ 4812 4813 /* 4814 * Called when an inode is loaded from disk. If the effective link count 4815 * differed from the actual link count when it was last flushed, then we 4816 * need to ensure that the correct effective link count is put back. 4817 */ 4818 void 4819 softdep_load_inodeblock(ip) 4820 struct inode *ip; /* the "in_core" copy of the inode */ 4821 { 4822 struct inodedep *inodedep; 4823 4824 /* 4825 * Check for alternate nlink count. 4826 */ 4827 ip->i_effnlink = ip->i_nlink; 4828 ACQUIRE_LOCK(&lk); 4829 if (inodedep_lookup(UFSTOVFS(ip->i_ump), 4830 ip->i_number, 0, &inodedep) == 0) { 4831 FREE_LOCK(&lk); 4832 return; 4833 } 4834 ip->i_effnlink -= inodedep->id_nlinkdelta; 4835 if (inodedep->id_state & SPACECOUNTED) 4836 ip->i_flag |= IN_SPACECOUNTED; 4837 FREE_LOCK(&lk); 4838 } 4839 4840 /* 4841 * This routine is called just before the "in-core" inode 4842 * information is to be copied to the in-memory inode block. 4843 * Recall that an inode block contains several inodes. If 4844 * the force flag is set, then the dependencies will be 4845 * cleared so that the update can always be made. Note that 4846 * the buffer is locked when this routine is called, so we 4847 * will never be in the middle of writing the inode block 4848 * to disk. 4849 */ 4850 void 4851 softdep_update_inodeblock(ip, bp, waitfor) 4852 struct inode *ip; /* the "in_core" copy of the inode */ 4853 struct buf *bp; /* the buffer containing the inode block */ 4854 int waitfor; /* nonzero => update must be allowed */ 4855 { 4856 struct inodedep *inodedep; 4857 struct worklist *wk; 4858 struct mount *mp; 4859 struct buf *ibp; 4860 int error; 4861 4862 /* 4863 * If the effective link count is not equal to the actual link 4864 * count, then we must track the difference in an inodedep while 4865 * the inode is (potentially) tossed out of the cache. Otherwise, 4866 * if there is no existing inodedep, then there are no dependencies 4867 * to track. 4868 */ 4869 mp = UFSTOVFS(ip->i_ump); 4870 ACQUIRE_LOCK(&lk); 4871 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 4872 FREE_LOCK(&lk); 4873 if (ip->i_effnlink != ip->i_nlink) 4874 panic("softdep_update_inodeblock: bad link count"); 4875 return; 4876 } 4877 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 4878 panic("softdep_update_inodeblock: bad delta"); 4879 /* 4880 * Changes have been initiated. Anything depending on these 4881 * changes cannot occur until this inode has been written. 4882 */ 4883 inodedep->id_state &= ~COMPLETE; 4884 if ((inodedep->id_state & ONWORKLIST) == 0) 4885 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4886 /* 4887 * Any new dependencies associated with the incore inode must 4888 * now be moved to the list associated with the buffer holding 4889 * the in-memory copy of the inode. Once merged process any 4890 * allocdirects that are completed by the merger. 4891 */ 4892 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4893 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4894 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4895 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4896 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4897 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4898 /* 4899 * Now that the inode has been pushed into the buffer, the 4900 * operations dependent on the inode being written to disk 4901 * can be moved to the id_bufwait so that they will be 4902 * processed when the buffer I/O completes. 4903 */ 4904 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4905 WORKLIST_REMOVE(wk); 4906 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4907 } 4908 /* 4909 * Newly allocated inodes cannot be written until the bitmap 4910 * that allocates them have been written (indicated by 4911 * DEPCOMPLETE being set in id_state). If we are doing a 4912 * forced sync (e.g., an fsync on a file), we force the bitmap 4913 * to be written so that the update can be done. 4914 */ 4915 if (waitfor == 0) { 4916 FREE_LOCK(&lk); 4917 return; 4918 } 4919 retry: 4920 if ((inodedep->id_state & DEPCOMPLETE) != 0) { 4921 FREE_LOCK(&lk); 4922 return; 4923 } 4924 ibp = inodedep->id_buf; 4925 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 4926 if (ibp == NULL) { 4927 /* 4928 * If ibp came back as NULL, the dependency could have been 4929 * freed while we slept. Look it up again, and check to see 4930 * that it has completed. 4931 */ 4932 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 4933 goto retry; 4934 FREE_LOCK(&lk); 4935 return; 4936 } 4937 FREE_LOCK(&lk); 4938 if ((error = bwrite(ibp)) != 0) 4939 softdep_error("softdep_update_inodeblock: bwrite", error); 4940 } 4941 4942 /* 4943 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4944 * old inode dependency list (such as id_inoupdt). This routine must be 4945 * called with splbio interrupts blocked. 4946 */ 4947 static void 4948 merge_inode_lists(newlisthead, oldlisthead) 4949 struct allocdirectlst *newlisthead; 4950 struct allocdirectlst *oldlisthead; 4951 { 4952 struct allocdirect *listadp, *newadp; 4953 4954 newadp = TAILQ_FIRST(newlisthead); 4955 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4956 if (listadp->ad_lbn < newadp->ad_lbn) { 4957 listadp = TAILQ_NEXT(listadp, ad_next); 4958 continue; 4959 } 4960 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4961 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4962 if (listadp->ad_lbn == newadp->ad_lbn) { 4963 allocdirect_merge(oldlisthead, newadp, 4964 listadp); 4965 listadp = newadp; 4966 } 4967 newadp = TAILQ_FIRST(newlisthead); 4968 } 4969 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4970 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4971 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4972 } 4973 } 4974 4975 /* 4976 * If we are doing an fsync, then we must ensure that any directory 4977 * entries for the inode have been written after the inode gets to disk. 4978 */ 4979 int 4980 softdep_fsync(vp) 4981 struct vnode *vp; /* the "in_core" copy of the inode */ 4982 { 4983 struct inodedep *inodedep; 4984 struct pagedep *pagedep; 4985 struct worklist *wk; 4986 struct diradd *dap; 4987 struct mount *mp; 4988 struct vnode *pvp; 4989 struct inode *ip; 4990 struct buf *bp; 4991 struct fs *fs; 4992 struct thread *td = curthread; 4993 int error, flushparent; 4994 ino_t parentino; 4995 ufs_lbn_t lbn; 4996 4997 ip = VTOI(vp); 4998 fs = ip->i_fs; 4999 mp = vp->v_mount; 5000 ACQUIRE_LOCK(&lk); 5001 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 5002 FREE_LOCK(&lk); 5003 return (0); 5004 } 5005 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 5006 LIST_FIRST(&inodedep->id_bufwait) != NULL || 5007 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 5008 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 5009 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 5010 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 5011 panic("softdep_fsync: pending ops"); 5012 for (error = 0, flushparent = 0; ; ) { 5013 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 5014 break; 5015 if (wk->wk_type != D_DIRADD) 5016 panic("softdep_fsync: Unexpected type %s", 5017 TYPENAME(wk->wk_type)); 5018 dap = WK_DIRADD(wk); 5019 /* 5020 * Flush our parent if this directory entry has a MKDIR_PARENT 5021 * dependency or is contained in a newly allocated block. 5022 */ 5023 if (dap->da_state & DIRCHG) 5024 pagedep = dap->da_previous->dm_pagedep; 5025 else 5026 pagedep = dap->da_pagedep; 5027 parentino = pagedep->pd_ino; 5028 lbn = pagedep->pd_lbn; 5029 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 5030 panic("softdep_fsync: dirty"); 5031 if ((dap->da_state & MKDIR_PARENT) || 5032 (pagedep->pd_state & NEWBLOCK)) 5033 flushparent = 1; 5034 else 5035 flushparent = 0; 5036 /* 5037 * If we are being fsync'ed as part of vgone'ing this vnode, 5038 * then we will not be able to release and recover the 5039 * vnode below, so we just have to give up on writing its 5040 * directory entry out. It will eventually be written, just 5041 * not now, but then the user was not asking to have it 5042 * written, so we are not breaking any promises. 5043 */ 5044 if (vp->v_iflag & VI_DOOMED) 5045 break; 5046 /* 5047 * We prevent deadlock by always fetching inodes from the 5048 * root, moving down the directory tree. Thus, when fetching 5049 * our parent directory, we first try to get the lock. If 5050 * that fails, we must unlock ourselves before requesting 5051 * the lock on our parent. See the comment in ufs_lookup 5052 * for details on possible races. 5053 */ 5054 FREE_LOCK(&lk); 5055 if (ffs_vget(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 5056 VOP_UNLOCK(vp, 0, td); 5057 error = ffs_vget(mp, parentino, LK_EXCLUSIVE, &pvp); 5058 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 5059 if (error != 0) 5060 return (error); 5061 } 5062 /* 5063 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 5064 * that are contained in direct blocks will be resolved by 5065 * doing a ffs_update. Pagedeps contained in indirect blocks 5066 * may require a complete sync'ing of the directory. So, we 5067 * try the cheap and fast ffs_update first, and if that fails, 5068 * then we do the slower ffs_syncvnode of the directory. 5069 */ 5070 if (flushparent) { 5071 if ((error = ffs_update(pvp, 1)) != 0) { 5072 vput(pvp); 5073 return (error); 5074 } 5075 if ((pagedep->pd_state & NEWBLOCK) && 5076 (error = ffs_syncvnode(pvp, MNT_WAIT))) { 5077 vput(pvp); 5078 return (error); 5079 } 5080 } 5081 /* 5082 * Flush directory page containing the inode's name. 5083 */ 5084 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 5085 &bp); 5086 if (error == 0) 5087 error = bwrite(bp); 5088 else 5089 brelse(bp); 5090 vput(pvp); 5091 if (error != 0) 5092 return (error); 5093 ACQUIRE_LOCK(&lk); 5094 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 5095 break; 5096 } 5097 FREE_LOCK(&lk); 5098 return (0); 5099 } 5100 5101 /* 5102 * Flush all the dirty bitmaps associated with the block device 5103 * before flushing the rest of the dirty blocks so as to reduce 5104 * the number of dependencies that will have to be rolled back. 5105 */ 5106 void 5107 softdep_fsync_mountdev(vp) 5108 struct vnode *vp; 5109 { 5110 struct buf *bp, *nbp; 5111 struct worklist *wk; 5112 5113 if (!vn_isdisk(vp, NULL)) 5114 panic("softdep_fsync_mountdev: vnode not a disk"); 5115 restart: 5116 ACQUIRE_LOCK(&lk); 5117 VI_LOCK(vp); 5118 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 5119 /* 5120 * If it is already scheduled, skip to the next buffer. 5121 */ 5122 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 5123 continue; 5124 5125 if ((bp->b_flags & B_DELWRI) == 0) 5126 panic("softdep_fsync_mountdev: not dirty"); 5127 /* 5128 * We are only interested in bitmaps with outstanding 5129 * dependencies. 5130 */ 5131 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 5132 wk->wk_type != D_BMSAFEMAP || 5133 (bp->b_vflags & BV_BKGRDINPROG)) { 5134 BUF_UNLOCK(bp); 5135 continue; 5136 } 5137 VI_UNLOCK(vp); 5138 FREE_LOCK(&lk); 5139 bremfree(bp); 5140 (void) bawrite(bp); 5141 goto restart; 5142 } 5143 FREE_LOCK(&lk); 5144 drain_output(vp); 5145 VI_UNLOCK(vp); 5146 } 5147 5148 /* 5149 * This routine is called when we are trying to synchronously flush a 5150 * file. This routine must eliminate any filesystem metadata dependencies 5151 * so that the syncing routine can succeed by pushing the dirty blocks 5152 * associated with the file. If any I/O errors occur, they are returned. 5153 */ 5154 int 5155 softdep_sync_metadata(struct vnode *vp) 5156 { 5157 struct pagedep *pagedep; 5158 struct allocdirect *adp; 5159 struct allocindir *aip; 5160 struct buf *bp, *nbp; 5161 struct worklist *wk; 5162 int i, error, waitfor; 5163 5164 if (!DOINGSOFTDEP(vp)) 5165 return (0); 5166 /* 5167 * Ensure that any direct block dependencies have been cleared. 5168 */ 5169 ACQUIRE_LOCK(&lk); 5170 if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) { 5171 FREE_LOCK(&lk); 5172 return (error); 5173 } 5174 FREE_LOCK(&lk); 5175 /* 5176 * For most files, the only metadata dependencies are the 5177 * cylinder group maps that allocate their inode or blocks. 5178 * The block allocation dependencies can be found by traversing 5179 * the dependency lists for any buffers that remain on their 5180 * dirty buffer list. The inode allocation dependency will 5181 * be resolved when the inode is updated with MNT_WAIT. 5182 * This work is done in two passes. The first pass grabs most 5183 * of the buffers and begins asynchronously writing them. The 5184 * only way to wait for these asynchronous writes is to sleep 5185 * on the filesystem vnode which may stay busy for a long time 5186 * if the filesystem is active. So, instead, we make a second 5187 * pass over the dependencies blocking on each write. In the 5188 * usual case we will be blocking against a write that we 5189 * initiated, so when it is done the dependency will have been 5190 * resolved. Thus the second pass is expected to end quickly. 5191 */ 5192 waitfor = MNT_NOWAIT; 5193 5194 top: 5195 /* 5196 * We must wait for any I/O in progress to finish so that 5197 * all potential buffers on the dirty list will be visible. 5198 */ 5199 VI_LOCK(vp); 5200 drain_output(vp); 5201 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) { 5202 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT); 5203 if (bp) 5204 break; 5205 } 5206 VI_UNLOCK(vp); 5207 if (bp == NULL) 5208 return (0); 5209 loop: 5210 /* While syncing snapshots, we must allow recursive lookups */ 5211 bp->b_lock.lk_flags |= LK_CANRECURSE; 5212 ACQUIRE_LOCK(&lk); 5213 /* 5214 * As we hold the buffer locked, none of its dependencies 5215 * will disappear. 5216 */ 5217 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5218 switch (wk->wk_type) { 5219 5220 case D_ALLOCDIRECT: 5221 adp = WK_ALLOCDIRECT(wk); 5222 if (adp->ad_state & DEPCOMPLETE) 5223 continue; 5224 nbp = adp->ad_buf; 5225 nbp = getdirtybuf(nbp, &lk, waitfor); 5226 if (nbp == NULL) 5227 continue; 5228 FREE_LOCK(&lk); 5229 if (waitfor == MNT_NOWAIT) { 5230 bawrite(nbp); 5231 } else if ((error = bwrite(nbp)) != 0) { 5232 break; 5233 } 5234 ACQUIRE_LOCK(&lk); 5235 continue; 5236 5237 case D_ALLOCINDIR: 5238 aip = WK_ALLOCINDIR(wk); 5239 if (aip->ai_state & DEPCOMPLETE) 5240 continue; 5241 nbp = aip->ai_buf; 5242 nbp = getdirtybuf(nbp, &lk, waitfor); 5243 if (nbp == NULL) 5244 continue; 5245 FREE_LOCK(&lk); 5246 if (waitfor == MNT_NOWAIT) { 5247 bawrite(nbp); 5248 } else if ((error = bwrite(nbp)) != 0) { 5249 break; 5250 } 5251 ACQUIRE_LOCK(&lk); 5252 continue; 5253 5254 case D_INDIRDEP: 5255 restart: 5256 5257 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5258 if (aip->ai_state & DEPCOMPLETE) 5259 continue; 5260 nbp = aip->ai_buf; 5261 nbp = getdirtybuf(nbp, &lk, MNT_WAIT); 5262 if (nbp == NULL) 5263 goto restart; 5264 FREE_LOCK(&lk); 5265 if ((error = bwrite(nbp)) != 0) { 5266 break; 5267 } 5268 ACQUIRE_LOCK(&lk); 5269 goto restart; 5270 } 5271 continue; 5272 5273 case D_INODEDEP: 5274 if ((error = flush_inodedep_deps(wk->wk_mp, 5275 WK_INODEDEP(wk)->id_ino)) != 0) { 5276 FREE_LOCK(&lk); 5277 break; 5278 } 5279 continue; 5280 5281 case D_PAGEDEP: 5282 /* 5283 * We are trying to sync a directory that may 5284 * have dependencies on both its own metadata 5285 * and/or dependencies on the inodes of any 5286 * recently allocated files. We walk its diradd 5287 * lists pushing out the associated inode. 5288 */ 5289 pagedep = WK_PAGEDEP(wk); 5290 for (i = 0; i < DAHASHSZ; i++) { 5291 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5292 continue; 5293 if ((error = 5294 flush_pagedep_deps(vp, wk->wk_mp, 5295 &pagedep->pd_diraddhd[i]))) { 5296 FREE_LOCK(&lk); 5297 break; 5298 } 5299 } 5300 continue; 5301 5302 case D_MKDIR: 5303 /* 5304 * This case should never happen if the vnode has 5305 * been properly sync'ed. However, if this function 5306 * is used at a place where the vnode has not yet 5307 * been sync'ed, this dependency can show up. So, 5308 * rather than panic, just flush it. 5309 */ 5310 nbp = WK_MKDIR(wk)->md_buf; 5311 nbp = getdirtybuf(nbp, &lk, waitfor); 5312 if (nbp == NULL) 5313 continue; 5314 FREE_LOCK(&lk); 5315 if (waitfor == MNT_NOWAIT) { 5316 bawrite(nbp); 5317 } else if ((error = bwrite(nbp)) != 0) { 5318 break; 5319 } 5320 ACQUIRE_LOCK(&lk); 5321 continue; 5322 5323 case D_BMSAFEMAP: 5324 /* 5325 * This case should never happen if the vnode has 5326 * been properly sync'ed. However, if this function 5327 * is used at a place where the vnode has not yet 5328 * been sync'ed, this dependency can show up. So, 5329 * rather than panic, just flush it. 5330 */ 5331 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5332 nbp = getdirtybuf(nbp, &lk, waitfor); 5333 if (nbp == NULL) 5334 continue; 5335 FREE_LOCK(&lk); 5336 if (waitfor == MNT_NOWAIT) { 5337 bawrite(nbp); 5338 } else if ((error = bwrite(nbp)) != 0) { 5339 break; 5340 } 5341 ACQUIRE_LOCK(&lk); 5342 continue; 5343 5344 default: 5345 panic("softdep_sync_metadata: Unknown type %s", 5346 TYPENAME(wk->wk_type)); 5347 /* NOTREACHED */ 5348 } 5349 /* We reach here only in error and unlocked */ 5350 if (error == 0) 5351 panic("softdep_sync_metadata: zero error"); 5352 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5353 bawrite(bp); 5354 return (error); 5355 } 5356 FREE_LOCK(&lk); 5357 VI_LOCK(vp); 5358 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) { 5359 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT); 5360 if (nbp) 5361 break; 5362 } 5363 VI_UNLOCK(vp); 5364 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5365 bawrite(bp); 5366 if (nbp != NULL) { 5367 bp = nbp; 5368 goto loop; 5369 } 5370 /* 5371 * The brief unlock is to allow any pent up dependency 5372 * processing to be done. Then proceed with the second pass. 5373 */ 5374 if (waitfor == MNT_NOWAIT) { 5375 waitfor = MNT_WAIT; 5376 goto top; 5377 } 5378 5379 /* 5380 * If we have managed to get rid of all the dirty buffers, 5381 * then we are done. For certain directories and block 5382 * devices, we may need to do further work. 5383 * 5384 * We must wait for any I/O in progress to finish so that 5385 * all potential buffers on the dirty list will be visible. 5386 */ 5387 VI_LOCK(vp); 5388 drain_output(vp); 5389 VI_UNLOCK(vp); 5390 return (0); 5391 } 5392 5393 /* 5394 * Flush the dependencies associated with an inodedep. 5395 * Called with splbio blocked. 5396 */ 5397 static int 5398 flush_inodedep_deps(mp, ino) 5399 struct mount *mp; 5400 ino_t ino; 5401 { 5402 struct inodedep *inodedep; 5403 int error, waitfor; 5404 5405 /* 5406 * This work is done in two passes. The first pass grabs most 5407 * of the buffers and begins asynchronously writing them. The 5408 * only way to wait for these asynchronous writes is to sleep 5409 * on the filesystem vnode which may stay busy for a long time 5410 * if the filesystem is active. So, instead, we make a second 5411 * pass over the dependencies blocking on each write. In the 5412 * usual case we will be blocking against a write that we 5413 * initiated, so when it is done the dependency will have been 5414 * resolved. Thus the second pass is expected to end quickly. 5415 * We give a brief window at the top of the loop to allow 5416 * any pending I/O to complete. 5417 */ 5418 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5419 if (error) 5420 return (error); 5421 FREE_LOCK(&lk); 5422 ACQUIRE_LOCK(&lk); 5423 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5424 return (0); 5425 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5426 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5427 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5428 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5429 continue; 5430 /* 5431 * If pass2, we are done, otherwise do pass 2. 5432 */ 5433 if (waitfor == MNT_WAIT) 5434 break; 5435 waitfor = MNT_WAIT; 5436 } 5437 /* 5438 * Try freeing inodedep in case all dependencies have been removed. 5439 */ 5440 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 5441 (void) free_inodedep(inodedep); 5442 return (0); 5443 } 5444 5445 /* 5446 * Flush an inode dependency list. 5447 * Called with splbio blocked. 5448 */ 5449 static int 5450 flush_deplist(listhead, waitfor, errorp) 5451 struct allocdirectlst *listhead; 5452 int waitfor; 5453 int *errorp; 5454 { 5455 struct allocdirect *adp; 5456 struct buf *bp; 5457 5458 mtx_assert(&lk, MA_OWNED); 5459 TAILQ_FOREACH(adp, listhead, ad_next) { 5460 if (adp->ad_state & DEPCOMPLETE) 5461 continue; 5462 bp = adp->ad_buf; 5463 bp = getdirtybuf(bp, &lk, waitfor); 5464 if (bp == NULL) { 5465 if (waitfor == MNT_NOWAIT) 5466 continue; 5467 return (1); 5468 } 5469 FREE_LOCK(&lk); 5470 if (waitfor == MNT_NOWAIT) { 5471 bawrite(bp); 5472 } else if ((*errorp = bwrite(bp)) != 0) { 5473 ACQUIRE_LOCK(&lk); 5474 return (1); 5475 } 5476 ACQUIRE_LOCK(&lk); 5477 return (1); 5478 } 5479 return (0); 5480 } 5481 5482 /* 5483 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5484 * Called with splbio blocked. 5485 */ 5486 static int 5487 flush_pagedep_deps(pvp, mp, diraddhdp) 5488 struct vnode *pvp; 5489 struct mount *mp; 5490 struct diraddhd *diraddhdp; 5491 { 5492 struct inodedep *inodedep; 5493 struct ufsmount *ump; 5494 struct diradd *dap; 5495 struct vnode *vp; 5496 int error = 0; 5497 struct buf *bp; 5498 ino_t inum; 5499 5500 ump = VFSTOUFS(mp); 5501 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5502 /* 5503 * Flush ourselves if this directory entry 5504 * has a MKDIR_PARENT dependency. 5505 */ 5506 if (dap->da_state & MKDIR_PARENT) { 5507 FREE_LOCK(&lk); 5508 if ((error = ffs_update(pvp, 1)) != 0) 5509 break; 5510 ACQUIRE_LOCK(&lk); 5511 /* 5512 * If that cleared dependencies, go on to next. 5513 */ 5514 if (dap != LIST_FIRST(diraddhdp)) 5515 continue; 5516 if (dap->da_state & MKDIR_PARENT) 5517 panic("flush_pagedep_deps: MKDIR_PARENT"); 5518 } 5519 /* 5520 * A newly allocated directory must have its "." and 5521 * ".." entries written out before its name can be 5522 * committed in its parent. We do not want or need 5523 * the full semantics of a synchronous ffs_syncvnode as 5524 * that may end up here again, once for each directory 5525 * level in the filesystem. Instead, we push the blocks 5526 * and wait for them to clear. We have to fsync twice 5527 * because the first call may choose to defer blocks 5528 * that still have dependencies, but deferral will 5529 * happen at most once. 5530 */ 5531 inum = dap->da_newinum; 5532 if (dap->da_state & MKDIR_BODY) { 5533 FREE_LOCK(&lk); 5534 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp))) 5535 break; 5536 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) || 5537 (error=ffs_syncvnode(vp, MNT_NOWAIT))) { 5538 vput(vp); 5539 break; 5540 } 5541 VI_LOCK(vp); 5542 drain_output(vp); 5543 VI_UNLOCK(vp); 5544 vput(vp); 5545 ACQUIRE_LOCK(&lk); 5546 /* 5547 * If that cleared dependencies, go on to next. 5548 */ 5549 if (dap != LIST_FIRST(diraddhdp)) 5550 continue; 5551 if (dap->da_state & MKDIR_BODY) 5552 panic("flush_pagedep_deps: MKDIR_BODY"); 5553 } 5554 /* 5555 * Flush the inode on which the directory entry depends. 5556 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5557 * the only remaining dependency is that the updated inode 5558 * count must get pushed to disk. The inode has already 5559 * been pushed into its inode buffer (via VOP_UPDATE) at 5560 * the time of the reference count change. So we need only 5561 * locate that buffer, ensure that there will be no rollback 5562 * caused by a bitmap dependency, then write the inode buffer. 5563 */ 5564 retry: 5565 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 5566 panic("flush_pagedep_deps: lost inode"); 5567 /* 5568 * If the inode still has bitmap dependencies, 5569 * push them to disk. 5570 */ 5571 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5572 bp = inodedep->id_buf; 5573 bp = getdirtybuf(bp, &lk, MNT_WAIT); 5574 if (bp == NULL) 5575 goto retry; 5576 FREE_LOCK(&lk); 5577 if ((error = bwrite(bp)) != 0) 5578 break; 5579 ACQUIRE_LOCK(&lk); 5580 if (dap != LIST_FIRST(diraddhdp)) 5581 continue; 5582 } 5583 /* 5584 * If the inode is still sitting in a buffer waiting 5585 * to be written, push it to disk. 5586 */ 5587 FREE_LOCK(&lk); 5588 if ((error = bread(ump->um_devvp, 5589 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5590 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5591 brelse(bp); 5592 break; 5593 } 5594 if ((error = bwrite(bp)) != 0) 5595 break; 5596 ACQUIRE_LOCK(&lk); 5597 /* 5598 * If we have failed to get rid of all the dependencies 5599 * then something is seriously wrong. 5600 */ 5601 if (dap == LIST_FIRST(diraddhdp)) 5602 panic("flush_pagedep_deps: flush failed"); 5603 } 5604 if (error) 5605 ACQUIRE_LOCK(&lk); 5606 return (error); 5607 } 5608 5609 /* 5610 * A large burst of file addition or deletion activity can drive the 5611 * memory load excessively high. First attempt to slow things down 5612 * using the techniques below. If that fails, this routine requests 5613 * the offending operations to fall back to running synchronously 5614 * until the memory load returns to a reasonable level. 5615 */ 5616 int 5617 softdep_slowdown(vp) 5618 struct vnode *vp; 5619 { 5620 int max_softdeps_hard; 5621 5622 ACQUIRE_LOCK(&lk); 5623 max_softdeps_hard = max_softdeps * 11 / 10; 5624 if (num_dirrem < max_softdeps_hard / 2 && 5625 num_inodedep < max_softdeps_hard && 5626 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) { 5627 FREE_LOCK(&lk); 5628 return (0); 5629 } 5630 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5631 softdep_speedup(); 5632 stat_sync_limit_hit += 1; 5633 FREE_LOCK(&lk); 5634 return (1); 5635 } 5636 5637 /* 5638 * Called by the allocation routines when they are about to fail 5639 * in the hope that we can free up some disk space. 5640 * 5641 * First check to see if the work list has anything on it. If it has, 5642 * clean up entries until we successfully free some space. Because this 5643 * process holds inodes locked, we cannot handle any remove requests 5644 * that might block on a locked inode as that could lead to deadlock. 5645 * If the worklist yields no free space, encourage the syncer daemon 5646 * to help us. In no event will we try for longer than tickdelay seconds. 5647 */ 5648 int 5649 softdep_request_cleanup(fs, vp) 5650 struct fs *fs; 5651 struct vnode *vp; 5652 { 5653 struct ufsmount *ump; 5654 long starttime; 5655 ufs2_daddr_t needed; 5656 int error; 5657 5658 ump = VTOI(vp)->i_ump; 5659 mtx_assert(UFS_MTX(ump), MA_OWNED); 5660 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5661 starttime = time_second + tickdelay; 5662 /* 5663 * If we are being called because of a process doing a 5664 * copy-on-write, then it is not safe to update the vnode 5665 * as we may recurse into the copy-on-write routine. 5666 */ 5667 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) { 5668 UFS_UNLOCK(ump); 5669 error = ffs_update(vp, 1); 5670 UFS_LOCK(ump); 5671 if (error != 0) 5672 return (0); 5673 } 5674 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5675 if (time_second > starttime) 5676 return (0); 5677 UFS_UNLOCK(ump); 5678 ACQUIRE_LOCK(&lk); 5679 if (ump->softdep_on_worklist > 0 && 5680 process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) { 5681 stat_worklist_push += 1; 5682 FREE_LOCK(&lk); 5683 UFS_LOCK(ump); 5684 continue; 5685 } 5686 request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT); 5687 FREE_LOCK(&lk); 5688 UFS_LOCK(ump); 5689 } 5690 return (1); 5691 } 5692 5693 /* 5694 * If memory utilization has gotten too high, deliberately slow things 5695 * down and speed up the I/O processing. 5696 */ 5697 extern struct thread *syncertd; 5698 static int 5699 request_cleanup(mp, resource) 5700 struct mount *mp; 5701 int resource; 5702 { 5703 struct thread *td = curthread; 5704 struct ufsmount *ump; 5705 5706 mtx_assert(&lk, MA_OWNED); 5707 /* 5708 * We never hold up the filesystem syncer or buf daemon. 5709 */ 5710 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 5711 return (0); 5712 ump = VFSTOUFS(mp); 5713 /* 5714 * First check to see if the work list has gotten backlogged. 5715 * If it has, co-opt this process to help clean up two entries. 5716 * Because this process may hold inodes locked, we cannot 5717 * handle any remove requests that might block on a locked 5718 * inode as that could lead to deadlock. We set TDP_SOFTDEP 5719 * to avoid recursively processing the worklist. 5720 */ 5721 if (ump->softdep_on_worklist > max_softdeps / 10) { 5722 td->td_pflags |= TDP_SOFTDEP; 5723 process_worklist_item(mp, LK_NOWAIT); 5724 process_worklist_item(mp, LK_NOWAIT); 5725 td->td_pflags &= ~TDP_SOFTDEP; 5726 stat_worklist_push += 2; 5727 return(1); 5728 } 5729 /* 5730 * Next, we attempt to speed up the syncer process. If that 5731 * is successful, then we allow the process to continue. 5732 */ 5733 if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT) 5734 return(0); 5735 /* 5736 * If we are resource constrained on inode dependencies, try 5737 * flushing some dirty inodes. Otherwise, we are constrained 5738 * by file deletions, so try accelerating flushes of directories 5739 * with removal dependencies. We would like to do the cleanup 5740 * here, but we probably hold an inode locked at this point and 5741 * that might deadlock against one that we try to clean. So, 5742 * the best that we can do is request the syncer daemon to do 5743 * the cleanup for us. 5744 */ 5745 switch (resource) { 5746 5747 case FLUSH_INODES: 5748 stat_ino_limit_push += 1; 5749 req_clear_inodedeps += 1; 5750 stat_countp = &stat_ino_limit_hit; 5751 break; 5752 5753 case FLUSH_REMOVE: 5754 case FLUSH_REMOVE_WAIT: 5755 stat_blk_limit_push += 1; 5756 req_clear_remove += 1; 5757 stat_countp = &stat_blk_limit_hit; 5758 break; 5759 5760 default: 5761 panic("request_cleanup: unknown type"); 5762 } 5763 /* 5764 * Hopefully the syncer daemon will catch up and awaken us. 5765 * We wait at most tickdelay before proceeding in any case. 5766 */ 5767 proc_waiting += 1; 5768 if (handle.callout == NULL) 5769 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5770 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 5771 proc_waiting -= 1; 5772 return (1); 5773 } 5774 5775 /* 5776 * Awaken processes pausing in request_cleanup and clear proc_waiting 5777 * to indicate that there is no longer a timer running. 5778 */ 5779 static void 5780 pause_timer(arg) 5781 void *arg; 5782 { 5783 5784 ACQUIRE_LOCK(&lk); 5785 *stat_countp += 1; 5786 wakeup_one(&proc_waiting); 5787 if (proc_waiting > 0) 5788 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5789 else 5790 handle.callout = NULL; 5791 FREE_LOCK(&lk); 5792 } 5793 5794 /* 5795 * Flush out a directory with at least one removal dependency in an effort to 5796 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5797 */ 5798 static void 5799 clear_remove(td) 5800 struct thread *td; 5801 { 5802 struct pagedep_hashhead *pagedephd; 5803 struct pagedep *pagedep; 5804 static int next = 0; 5805 struct mount *mp; 5806 struct vnode *vp; 5807 int error, cnt; 5808 ino_t ino; 5809 5810 mtx_assert(&lk, MA_OWNED); 5811 5812 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5813 pagedephd = &pagedep_hashtbl[next++]; 5814 if (next >= pagedep_hash) 5815 next = 0; 5816 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5817 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5818 continue; 5819 mp = pagedep->pd_list.wk_mp; 5820 ino = pagedep->pd_ino; 5821 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5822 continue; 5823 FREE_LOCK(&lk); 5824 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) { 5825 softdep_error("clear_remove: vget", error); 5826 vn_finished_write(mp); 5827 ACQUIRE_LOCK(&lk); 5828 return; 5829 } 5830 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5831 softdep_error("clear_remove: fsync", error); 5832 VI_LOCK(vp); 5833 drain_output(vp); 5834 VI_UNLOCK(vp); 5835 vput(vp); 5836 vn_finished_write(mp); 5837 ACQUIRE_LOCK(&lk); 5838 return; 5839 } 5840 } 5841 } 5842 5843 /* 5844 * Clear out a block of dirty inodes in an effort to reduce 5845 * the number of inodedep dependency structures. 5846 */ 5847 static void 5848 clear_inodedeps(td) 5849 struct thread *td; 5850 { 5851 struct inodedep_hashhead *inodedephd; 5852 struct inodedep *inodedep; 5853 static int next = 0; 5854 struct mount *mp; 5855 struct vnode *vp; 5856 struct fs *fs; 5857 int error, cnt; 5858 ino_t firstino, lastino, ino; 5859 5860 mtx_assert(&lk, MA_OWNED); 5861 /* 5862 * Pick a random inode dependency to be cleared. 5863 * We will then gather up all the inodes in its block 5864 * that have dependencies and flush them out. 5865 */ 5866 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5867 inodedephd = &inodedep_hashtbl[next++]; 5868 if (next >= inodedep_hash) 5869 next = 0; 5870 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5871 break; 5872 } 5873 if (inodedep == NULL) 5874 return; 5875 fs = inodedep->id_fs; 5876 mp = inodedep->id_list.wk_mp; 5877 /* 5878 * Find the last inode in the block with dependencies. 5879 */ 5880 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5881 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5882 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 5883 break; 5884 /* 5885 * Asynchronously push all but the last inode with dependencies. 5886 * Synchronously push the last inode with dependencies to ensure 5887 * that the inode block gets written to free up the inodedeps. 5888 */ 5889 for (ino = firstino; ino <= lastino; ino++) { 5890 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5891 continue; 5892 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5893 continue; 5894 FREE_LOCK(&lk); 5895 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5896 softdep_error("clear_inodedeps: vget", error); 5897 vn_finished_write(mp); 5898 ACQUIRE_LOCK(&lk); 5899 return; 5900 } 5901 if (ino == lastino) { 5902 if ((error = ffs_syncvnode(vp, MNT_WAIT))) 5903 softdep_error("clear_inodedeps: fsync1", error); 5904 } else { 5905 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5906 softdep_error("clear_inodedeps: fsync2", error); 5907 VI_LOCK(vp); 5908 drain_output(vp); 5909 VI_UNLOCK(vp); 5910 } 5911 vput(vp); 5912 vn_finished_write(mp); 5913 ACQUIRE_LOCK(&lk); 5914 } 5915 } 5916 5917 /* 5918 * Function to determine if the buffer has outstanding dependencies 5919 * that will cause a roll-back if the buffer is written. If wantcount 5920 * is set, return number of dependencies, otherwise just yes or no. 5921 */ 5922 static int 5923 softdep_count_dependencies(bp, wantcount) 5924 struct buf *bp; 5925 int wantcount; 5926 { 5927 struct worklist *wk; 5928 struct inodedep *inodedep; 5929 struct indirdep *indirdep; 5930 struct allocindir *aip; 5931 struct pagedep *pagedep; 5932 struct diradd *dap; 5933 int i, retval; 5934 5935 retval = 0; 5936 ACQUIRE_LOCK(&lk); 5937 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5938 switch (wk->wk_type) { 5939 5940 case D_INODEDEP: 5941 inodedep = WK_INODEDEP(wk); 5942 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5943 /* bitmap allocation dependency */ 5944 retval += 1; 5945 if (!wantcount) 5946 goto out; 5947 } 5948 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5949 /* direct block pointer dependency */ 5950 retval += 1; 5951 if (!wantcount) 5952 goto out; 5953 } 5954 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5955 /* direct block pointer dependency */ 5956 retval += 1; 5957 if (!wantcount) 5958 goto out; 5959 } 5960 continue; 5961 5962 case D_INDIRDEP: 5963 indirdep = WK_INDIRDEP(wk); 5964 5965 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5966 /* indirect block pointer dependency */ 5967 retval += 1; 5968 if (!wantcount) 5969 goto out; 5970 } 5971 continue; 5972 5973 case D_PAGEDEP: 5974 pagedep = WK_PAGEDEP(wk); 5975 for (i = 0; i < DAHASHSZ; i++) { 5976 5977 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5978 /* directory entry dependency */ 5979 retval += 1; 5980 if (!wantcount) 5981 goto out; 5982 } 5983 } 5984 continue; 5985 5986 case D_BMSAFEMAP: 5987 case D_ALLOCDIRECT: 5988 case D_ALLOCINDIR: 5989 case D_MKDIR: 5990 /* never a dependency on these blocks */ 5991 continue; 5992 5993 default: 5994 panic("softdep_check_for_rollback: Unexpected type %s", 5995 TYPENAME(wk->wk_type)); 5996 /* NOTREACHED */ 5997 } 5998 } 5999 out: 6000 FREE_LOCK(&lk); 6001 return retval; 6002 } 6003 6004 /* 6005 * Acquire exclusive access to a buffer. 6006 * Must be called with a locked mtx parameter. 6007 * Return acquired buffer or NULL on failure. 6008 */ 6009 static struct buf * 6010 getdirtybuf(bp, mtx, waitfor) 6011 struct buf *bp; 6012 struct mtx *mtx; 6013 int waitfor; 6014 { 6015 int error; 6016 6017 mtx_assert(mtx, MA_OWNED); 6018 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 6019 if (waitfor != MNT_WAIT) 6020 return (NULL); 6021 error = BUF_LOCK(bp, 6022 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 6023 /* 6024 * Even if we sucessfully acquire bp here, we have dropped 6025 * mtx, which may violates our guarantee. 6026 */ 6027 if (error == 0) 6028 BUF_UNLOCK(bp); 6029 else if (error != ENOLCK) 6030 panic("getdirtybuf: inconsistent lock: %d", error); 6031 mtx_lock(mtx); 6032 return (NULL); 6033 } 6034 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6035 if (mtx == &lk && waitfor == MNT_WAIT) { 6036 mtx_unlock(mtx); 6037 BO_LOCK(bp->b_bufobj); 6038 BUF_UNLOCK(bp); 6039 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6040 bp->b_vflags |= BV_BKGRDWAIT; 6041 msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), 6042 PRIBIO | PDROP, "getbuf", 0); 6043 } else 6044 BO_UNLOCK(bp->b_bufobj); 6045 mtx_lock(mtx); 6046 return (NULL); 6047 } 6048 BUF_UNLOCK(bp); 6049 if (waitfor != MNT_WAIT) 6050 return (NULL); 6051 /* 6052 * The mtx argument must be bp->b_vp's mutex in 6053 * this case. 6054 */ 6055 #ifdef DEBUG_VFS_LOCKS 6056 if (bp->b_vp->v_type != VCHR) 6057 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 6058 #endif 6059 bp->b_vflags |= BV_BKGRDWAIT; 6060 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 6061 return (NULL); 6062 } 6063 if ((bp->b_flags & B_DELWRI) == 0) { 6064 BUF_UNLOCK(bp); 6065 return (NULL); 6066 } 6067 bremfree(bp); 6068 return (bp); 6069 } 6070 6071 6072 /* 6073 * Check if it is safe to suspend the file system now. On entry, 6074 * the vnode interlock for devvp should be held. Return 0 with 6075 * the mount interlock held if the file system can be suspended now, 6076 * otherwise return EAGAIN with the mount interlock held. 6077 */ 6078 int 6079 softdep_check_suspend(struct mount *mp, 6080 struct vnode *devvp, 6081 int softdep_deps, 6082 int softdep_accdeps, 6083 int secondary_writes, 6084 int secondary_accwrites) 6085 { 6086 struct bufobj *bo; 6087 struct ufsmount *ump; 6088 int error; 6089 6090 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 6091 ump = VFSTOUFS(mp); 6092 bo = &devvp->v_bufobj; 6093 6094 for (;;) { 6095 if (!TRY_ACQUIRE_LOCK(&lk)) { 6096 VI_UNLOCK(devvp); 6097 ACQUIRE_LOCK(&lk); 6098 FREE_LOCK(&lk); 6099 VI_LOCK(devvp); 6100 continue; 6101 } 6102 if (!MNT_ITRYLOCK(mp)) { 6103 FREE_LOCK(&lk); 6104 VI_UNLOCK(devvp); 6105 MNT_ILOCK(mp); 6106 MNT_IUNLOCK(mp); 6107 VI_LOCK(devvp); 6108 continue; 6109 } 6110 if (mp->mnt_secondary_writes != 0) { 6111 FREE_LOCK(&lk); 6112 VI_UNLOCK(devvp); 6113 msleep(&mp->mnt_secondary_writes, 6114 MNT_MTX(mp), 6115 (PUSER - 1) | PDROP, "secwr", 0); 6116 VI_LOCK(devvp); 6117 continue; 6118 } 6119 break; 6120 } 6121 6122 /* 6123 * Reasons for needing more work before suspend: 6124 * - Dirty buffers on devvp. 6125 * - Softdep activity occurred after start of vnode sync loop 6126 * - Secondary writes occurred after start of vnode sync loop 6127 */ 6128 error = 0; 6129 if (bo->bo_numoutput > 0 || 6130 bo->bo_dirty.bv_cnt > 0 || 6131 softdep_deps != 0 || 6132 ump->softdep_deps != 0 || 6133 softdep_accdeps != ump->softdep_accdeps || 6134 secondary_writes != 0 || 6135 mp->mnt_secondary_writes != 0 || 6136 secondary_accwrites != mp->mnt_secondary_accwrites) 6137 error = EAGAIN; 6138 FREE_LOCK(&lk); 6139 VI_UNLOCK(devvp); 6140 return (error); 6141 } 6142 6143 6144 /* 6145 * Get the number of dependency structures for the file system, both 6146 * the current number and the total number allocated. These will 6147 * later be used to detect that softdep processing has occurred. 6148 */ 6149 void 6150 softdep_get_depcounts(struct mount *mp, 6151 int *softdep_depsp, 6152 int *softdep_accdepsp) 6153 { 6154 struct ufsmount *ump; 6155 6156 ump = VFSTOUFS(mp); 6157 ACQUIRE_LOCK(&lk); 6158 *softdep_depsp = ump->softdep_deps; 6159 *softdep_accdepsp = ump->softdep_accdeps; 6160 FREE_LOCK(&lk); 6161 } 6162 6163 /* 6164 * Wait for pending output on a vnode to complete. 6165 * Must be called with vnode lock and interlock locked. 6166 * 6167 * XXX: Should just be a call to bufobj_wwait(). 6168 */ 6169 static void 6170 drain_output(vp) 6171 struct vnode *vp; 6172 { 6173 ASSERT_VOP_LOCKED(vp, "drain_output"); 6174 ASSERT_VI_LOCKED(vp, "drain_output"); 6175 6176 while (vp->v_bufobj.bo_numoutput) { 6177 vp->v_bufobj.bo_flag |= BO_WWAIT; 6178 msleep((caddr_t)&vp->v_bufobj.bo_numoutput, 6179 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 6180 } 6181 } 6182 6183 /* 6184 * Called whenever a buffer that is being invalidated or reallocated 6185 * contains dependencies. This should only happen if an I/O error has 6186 * occurred. The routine is called with the buffer locked. 6187 */ 6188 static void 6189 softdep_deallocate_dependencies(bp) 6190 struct buf *bp; 6191 { 6192 6193 if ((bp->b_ioflags & BIO_ERROR) == 0) 6194 panic("softdep_deallocate_dependencies: dangling deps"); 6195 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 6196 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 6197 } 6198 6199 /* 6200 * Function to handle asynchronous write errors in the filesystem. 6201 */ 6202 static void 6203 softdep_error(func, error) 6204 char *func; 6205 int error; 6206 { 6207 6208 /* XXX should do something better! */ 6209 printf("%s: got error %d while accessing filesystem\n", func, error); 6210 } 6211 6212 #endif /* SOFTUPDATES */ 6213