1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 #include <sys/cdefs.h> 43 #include "opt_ffs.h" 44 #include "opt_quota.h" 45 #include "opt_ddb.h" 46 47 #include <sys/param.h> 48 #include <sys/kernel.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/kdb.h> 53 #include <sys/kthread.h> 54 #include <sys/ktr.h> 55 #include <sys/limits.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mount.h> 59 #include <sys/mutex.h> 60 #include <sys/namei.h> 61 #include <sys/priv.h> 62 #include <sys/proc.h> 63 #include <sys/racct.h> 64 #include <sys/rwlock.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/vnode.h> 69 #include <sys/conf.h> 70 71 #include <ufs/ufs/dir.h> 72 #include <ufs/ufs/extattr.h> 73 #include <ufs/ufs/quota.h> 74 #include <ufs/ufs/inode.h> 75 #include <ufs/ufs/ufsmount.h> 76 #include <ufs/ffs/fs.h> 77 #include <ufs/ffs/softdep.h> 78 #include <ufs/ffs/ffs_extern.h> 79 #include <ufs/ufs/ufs_extern.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_extern.h> 83 #include <vm/vm_object.h> 84 85 #include <geom/geom.h> 86 #include <geom/geom_vfs.h> 87 88 #include <ddb/ddb.h> 89 90 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 91 92 #ifndef SOFTUPDATES 93 94 int 95 softdep_flushfiles(struct mount *oldmnt, 96 int flags, 97 struct thread *td) 98 { 99 100 panic("softdep_flushfiles called"); 101 } 102 103 int 104 softdep_mount(struct vnode *devvp, 105 struct mount *mp, 106 struct fs *fs, 107 struct ucred *cred) 108 { 109 110 return (0); 111 } 112 113 void 114 softdep_initialize(void) 115 { 116 117 return; 118 } 119 120 void 121 softdep_uninitialize(void) 122 { 123 124 return; 125 } 126 127 void 128 softdep_unmount(struct mount *mp) 129 { 130 131 panic("softdep_unmount called"); 132 } 133 134 void 135 softdep_setup_sbupdate(struct ufsmount *ump, 136 struct fs *fs, 137 struct buf *bp) 138 { 139 140 panic("softdep_setup_sbupdate called"); 141 } 142 143 void 144 softdep_setup_inomapdep(struct buf *bp, 145 struct inode *ip, 146 ino_t newinum, 147 int mode) 148 { 149 150 panic("softdep_setup_inomapdep called"); 151 } 152 153 void 154 softdep_setup_blkmapdep(struct buf *bp, 155 struct mount *mp, 156 ufs2_daddr_t newblkno, 157 int frags, 158 int oldfrags) 159 { 160 161 panic("softdep_setup_blkmapdep called"); 162 } 163 164 void 165 softdep_setup_allocdirect(struct inode *ip, 166 ufs_lbn_t lbn, 167 ufs2_daddr_t newblkno, 168 ufs2_daddr_t oldblkno, 169 long newsize, 170 long oldsize, 171 struct buf *bp) 172 { 173 174 panic("softdep_setup_allocdirect called"); 175 } 176 177 void 178 softdep_setup_allocext(struct inode *ip, 179 ufs_lbn_t lbn, 180 ufs2_daddr_t newblkno, 181 ufs2_daddr_t oldblkno, 182 long newsize, 183 long oldsize, 184 struct buf *bp) 185 { 186 187 panic("softdep_setup_allocext called"); 188 } 189 190 void 191 softdep_setup_allocindir_page(struct inode *ip, 192 ufs_lbn_t lbn, 193 struct buf *bp, 194 int ptrno, 195 ufs2_daddr_t newblkno, 196 ufs2_daddr_t oldblkno, 197 struct buf *nbp) 198 { 199 200 panic("softdep_setup_allocindir_page called"); 201 } 202 203 void 204 softdep_setup_allocindir_meta(struct buf *nbp, 205 struct inode *ip, 206 struct buf *bp, 207 int ptrno, 208 ufs2_daddr_t newblkno) 209 { 210 211 panic("softdep_setup_allocindir_meta called"); 212 } 213 214 void 215 softdep_journal_freeblocks(struct inode *ip, 216 struct ucred *cred, 217 off_t length, 218 int flags) 219 { 220 221 panic("softdep_journal_freeblocks called"); 222 } 223 224 void 225 softdep_journal_fsync(struct inode *ip) 226 { 227 228 panic("softdep_journal_fsync called"); 229 } 230 231 void 232 softdep_setup_freeblocks(struct inode *ip, 233 off_t length, 234 int flags) 235 { 236 237 panic("softdep_setup_freeblocks called"); 238 } 239 240 void 241 softdep_freefile(struct vnode *pvp, 242 ino_t ino, 243 int mode) 244 { 245 246 panic("softdep_freefile called"); 247 } 248 249 int 250 softdep_setup_directory_add(struct buf *bp, 251 struct inode *dp, 252 off_t diroffset, 253 ino_t newinum, 254 struct buf *newdirbp, 255 int isnewblk) 256 { 257 258 panic("softdep_setup_directory_add called"); 259 } 260 261 void 262 softdep_change_directoryentry_offset(struct buf *bp, 263 struct inode *dp, 264 caddr_t base, 265 caddr_t oldloc, 266 caddr_t newloc, 267 int entrysize) 268 { 269 270 panic("softdep_change_directoryentry_offset called"); 271 } 272 273 void 274 softdep_setup_remove(struct buf *bp, 275 struct inode *dp, 276 struct inode *ip, 277 int isrmdir) 278 { 279 280 panic("softdep_setup_remove called"); 281 } 282 283 void 284 softdep_setup_directory_change(struct buf *bp, 285 struct inode *dp, 286 struct inode *ip, 287 ino_t newinum, 288 int isrmdir) 289 { 290 291 panic("softdep_setup_directory_change called"); 292 } 293 294 void 295 softdep_setup_blkfree(struct mount *mp, 296 struct buf *bp, 297 ufs2_daddr_t blkno, 298 int frags, 299 struct workhead *wkhd, 300 bool doingrecovery) 301 { 302 303 panic("%s called", __FUNCTION__); 304 } 305 306 void 307 softdep_setup_inofree(struct mount *mp, 308 struct buf *bp, 309 ino_t ino, 310 struct workhead *wkhd, 311 bool doingrecovery) 312 { 313 314 panic("%s called", __FUNCTION__); 315 } 316 317 void 318 softdep_setup_unlink(struct inode *dp, struct inode *ip) 319 { 320 321 panic("%s called", __FUNCTION__); 322 } 323 324 void 325 softdep_setup_link(struct inode *dp, struct inode *ip) 326 { 327 328 panic("%s called", __FUNCTION__); 329 } 330 331 void 332 softdep_revert_link(struct inode *dp, struct inode *ip) 333 { 334 335 panic("%s called", __FUNCTION__); 336 } 337 338 void 339 softdep_setup_rmdir(struct inode *dp, struct inode *ip) 340 { 341 342 panic("%s called", __FUNCTION__); 343 } 344 345 void 346 softdep_revert_rmdir(struct inode *dp, struct inode *ip) 347 { 348 349 panic("%s called", __FUNCTION__); 350 } 351 352 void 353 softdep_setup_create(struct inode *dp, struct inode *ip) 354 { 355 356 panic("%s called", __FUNCTION__); 357 } 358 359 void 360 softdep_revert_create(struct inode *dp, struct inode *ip) 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_mkdir(struct inode *dp, struct inode *ip) 368 { 369 370 panic("%s called", __FUNCTION__); 371 } 372 373 void 374 softdep_revert_mkdir(struct inode *dp, struct inode *ip) 375 { 376 377 panic("%s called", __FUNCTION__); 378 } 379 380 void 381 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip) 382 { 383 384 panic("%s called", __FUNCTION__); 385 } 386 387 int 388 softdep_prealloc(struct vnode *vp, int waitok) 389 { 390 391 panic("%s called", __FUNCTION__); 392 } 393 394 int 395 softdep_journal_lookup(struct mount *mp, struct vnode **vpp) 396 { 397 398 return (ENOENT); 399 } 400 401 void 402 softdep_change_linkcnt(struct inode *ip) 403 { 404 405 panic("softdep_change_linkcnt called"); 406 } 407 408 void 409 softdep_load_inodeblock(struct inode *ip) 410 { 411 412 panic("softdep_load_inodeblock called"); 413 } 414 415 void 416 softdep_update_inodeblock(struct inode *ip, 417 struct buf *bp, 418 int waitfor) 419 { 420 421 panic("softdep_update_inodeblock called"); 422 } 423 424 int 425 softdep_fsync(struct vnode *vp) /* the "in_core" copy of the inode */ 426 { 427 428 return (0); 429 } 430 431 void 432 softdep_fsync_mountdev(struct vnode *vp) 433 { 434 435 return; 436 } 437 438 int 439 softdep_flushworklist(struct mount *oldmnt, 440 int *countp, 441 struct thread *td) 442 { 443 444 *countp = 0; 445 return (0); 446 } 447 448 int 449 softdep_sync_metadata(struct vnode *vp) 450 { 451 452 panic("softdep_sync_metadata called"); 453 } 454 455 int 456 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 457 { 458 459 panic("softdep_sync_buf called"); 460 } 461 462 int 463 softdep_slowdown(struct vnode *vp) 464 { 465 466 panic("softdep_slowdown called"); 467 } 468 469 int 470 softdep_request_cleanup(struct fs *fs, 471 struct vnode *vp, 472 struct ucred *cred, 473 int resource) 474 { 475 476 return (0); 477 } 478 479 int 480 softdep_check_suspend(struct mount *mp, 481 struct vnode *devvp, 482 int softdep_depcnt, 483 int softdep_accdepcnt, 484 int secondary_writes, 485 int secondary_accwrites) 486 { 487 struct bufobj *bo; 488 int error; 489 490 (void) softdep_depcnt, 491 (void) softdep_accdepcnt; 492 493 bo = &devvp->v_bufobj; 494 ASSERT_BO_WLOCKED(bo); 495 496 MNT_ILOCK(mp); 497 while (mp->mnt_secondary_writes != 0) { 498 BO_UNLOCK(bo); 499 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 500 (PUSER - 1) | PDROP, "secwr", 0); 501 BO_LOCK(bo); 502 MNT_ILOCK(mp); 503 } 504 505 /* 506 * Reasons for needing more work before suspend: 507 * - Dirty buffers on devvp. 508 * - Secondary writes occurred after start of vnode sync loop 509 */ 510 error = 0; 511 if (bo->bo_numoutput > 0 || 512 bo->bo_dirty.bv_cnt > 0 || 513 secondary_writes != 0 || 514 mp->mnt_secondary_writes != 0 || 515 secondary_accwrites != mp->mnt_secondary_accwrites) 516 error = EAGAIN; 517 BO_UNLOCK(bo); 518 return (error); 519 } 520 521 void 522 softdep_get_depcounts(struct mount *mp, 523 int *softdepactivep, 524 int *softdepactiveaccp) 525 { 526 (void) mp; 527 *softdepactivep = 0; 528 *softdepactiveaccp = 0; 529 } 530 531 void 532 softdep_buf_append(struct buf *bp, struct workhead *wkhd) 533 { 534 535 panic("softdep_buf_appendwork called"); 536 } 537 538 void 539 softdep_inode_append(struct inode *ip, 540 struct ucred *cred, 541 struct workhead *wkhd) 542 { 543 544 panic("softdep_inode_appendwork called"); 545 } 546 547 void 548 softdep_freework(struct workhead *wkhd) 549 { 550 551 panic("softdep_freework called"); 552 } 553 554 int 555 softdep_prerename(struct vnode *fdvp, 556 struct vnode *fvp, 557 struct vnode *tdvp, 558 struct vnode *tvp) 559 { 560 561 panic("softdep_prerename called"); 562 } 563 564 int 565 softdep_prelink(struct vnode *dvp, 566 struct vnode *vp, 567 struct componentname *cnp) 568 { 569 570 panic("softdep_prelink called"); 571 } 572 573 #else 574 575 FEATURE(softupdates, "FFS soft-updates support"); 576 577 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 578 "soft updates stats"); 579 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 580 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 581 "total dependencies allocated"); 582 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 583 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 584 "high use dependencies allocated"); 585 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 586 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 587 "current dependencies allocated"); 588 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 589 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 590 "current dependencies written"); 591 592 unsigned long dep_current[D_LAST + 1]; 593 unsigned long dep_highuse[D_LAST + 1]; 594 unsigned long dep_total[D_LAST + 1]; 595 unsigned long dep_write[D_LAST + 1]; 596 597 #define SOFTDEP_TYPE(type, str, long) \ 598 static MALLOC_DEFINE(M_ ## type, #str, long); \ 599 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 600 &dep_total[D_ ## type], 0, ""); \ 601 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 602 &dep_current[D_ ## type], 0, ""); \ 603 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 604 &dep_highuse[D_ ## type], 0, ""); \ 605 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 606 &dep_write[D_ ## type], 0, ""); 607 608 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 609 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 610 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 611 "Block or frag allocated from cyl group map"); 612 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 613 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 614 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 615 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 616 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 617 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 618 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 619 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 620 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 621 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 622 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 623 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 624 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 625 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 626 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 627 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 628 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 629 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 630 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 631 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 632 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 633 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 634 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 635 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 636 637 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 638 639 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 640 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 641 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 642 643 #define M_SOFTDEP_FLAGS (M_WAITOK) 644 645 /* 646 * translate from workitem type to memory type 647 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 648 */ 649 static struct malloc_type *memtype[] = { 650 NULL, 651 M_PAGEDEP, 652 M_INODEDEP, 653 M_BMSAFEMAP, 654 M_NEWBLK, 655 M_ALLOCDIRECT, 656 M_INDIRDEP, 657 M_ALLOCINDIR, 658 M_FREEFRAG, 659 M_FREEBLKS, 660 M_FREEFILE, 661 M_DIRADD, 662 M_MKDIR, 663 M_DIRREM, 664 M_NEWDIRBLK, 665 M_FREEWORK, 666 M_FREEDEP, 667 M_JADDREF, 668 M_JREMREF, 669 M_JMVREF, 670 M_JNEWBLK, 671 M_JFREEBLK, 672 M_JFREEFRAG, 673 M_JSEG, 674 M_JSEGDEP, 675 M_SBDEP, 676 M_JTRUNC, 677 M_JFSYNC, 678 M_SENTINEL 679 }; 680 681 #define DtoM(type) (memtype[type]) 682 683 /* 684 * Names of malloc types. 685 */ 686 #define TYPENAME(type) \ 687 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 688 memtype[type]->ks_shortdesc : "???") 689 /* 690 * End system adaptation definitions. 691 */ 692 693 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 694 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 695 696 /* 697 * Internal function prototypes. 698 */ 699 static void check_clear_deps(struct mount *); 700 static void softdep_error(char *, int); 701 static int softdep_prerename_vnode(struct ufsmount *, struct vnode *); 702 static int softdep_process_worklist(struct mount *, int); 703 static int softdep_waitidle(struct mount *, int); 704 static void drain_output(struct vnode *); 705 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 706 static int check_inodedep_free(struct inodedep *); 707 static void clear_remove(struct mount *); 708 static void clear_inodedeps(struct mount *); 709 static void unlinked_inodedep(struct mount *, struct inodedep *); 710 static void clear_unlinked_inodedep(struct inodedep *); 711 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 712 static int flush_pagedep_deps(struct vnode *, struct mount *, 713 struct diraddhd *, struct buf *); 714 static int free_pagedep(struct pagedep *); 715 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 716 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 717 static int flush_deplist(struct allocdirectlst *, int, int *); 718 static int sync_cgs(struct mount *, int); 719 static int handle_written_filepage(struct pagedep *, struct buf *, int); 720 static int handle_written_sbdep(struct sbdep *, struct buf *); 721 static void initiate_write_sbdep(struct sbdep *); 722 static void diradd_inode_written(struct diradd *, struct inodedep *); 723 static int handle_written_indirdep(struct indirdep *, struct buf *, 724 struct buf**, int); 725 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 726 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 727 uint8_t *); 728 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 729 static void handle_written_jaddref(struct jaddref *); 730 static void handle_written_jremref(struct jremref *); 731 static void handle_written_jseg(struct jseg *, struct buf *); 732 static void handle_written_jnewblk(struct jnewblk *); 733 static void handle_written_jblkdep(struct jblkdep *); 734 static void handle_written_jfreefrag(struct jfreefrag *); 735 static void complete_jseg(struct jseg *); 736 static void complete_jsegs(struct jseg *); 737 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 738 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 739 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 740 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 741 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 742 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 743 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 744 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 745 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 746 static inline void inoref_write(struct inoref *, struct jseg *, 747 struct jrefrec *); 748 static void handle_allocdirect_partdone(struct allocdirect *, 749 struct workhead *); 750 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 751 struct workhead *); 752 static void indirdep_complete(struct indirdep *); 753 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 754 static void indirblk_insert(struct freework *); 755 static void indirblk_remove(struct freework *); 756 static void handle_allocindir_partdone(struct allocindir *); 757 static void initiate_write_filepage(struct pagedep *, struct buf *); 758 static void initiate_write_indirdep(struct indirdep*, struct buf *); 759 static void handle_written_mkdir(struct mkdir *, int); 760 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 761 uint8_t *); 762 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 763 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 764 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 765 static void handle_workitem_freefile(struct freefile *); 766 static int handle_workitem_remove(struct dirrem *, int); 767 static struct dirrem *newdirrem(struct buf *, struct inode *, 768 struct inode *, int, struct dirrem **); 769 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 770 struct buf *); 771 static void cancel_indirdep(struct indirdep *, struct buf *, 772 struct freeblks *); 773 static void free_indirdep(struct indirdep *); 774 static void free_diradd(struct diradd *, struct workhead *); 775 static void merge_diradd(struct inodedep *, struct diradd *); 776 static void complete_diradd(struct diradd *); 777 static struct diradd *diradd_lookup(struct pagedep *, int); 778 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 779 struct jremref *); 780 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 781 struct jremref *); 782 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 783 struct jremref *, struct jremref *); 784 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 785 struct jremref *); 786 static void cancel_allocindir(struct allocindir *, struct buf *bp, 787 struct freeblks *, int); 788 static int setup_trunc_indir(struct freeblks *, struct inode *, 789 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 790 static void complete_trunc_indir(struct freework *); 791 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 792 int); 793 static void complete_mkdir(struct mkdir *); 794 static void free_newdirblk(struct newdirblk *); 795 static void free_jremref(struct jremref *); 796 static void free_jaddref(struct jaddref *); 797 static void free_jsegdep(struct jsegdep *); 798 static void free_jsegs(struct jblocks *); 799 static void rele_jseg(struct jseg *); 800 static void free_jseg(struct jseg *, struct jblocks *); 801 static void free_jnewblk(struct jnewblk *); 802 static void free_jblkdep(struct jblkdep *); 803 static void free_jfreefrag(struct jfreefrag *); 804 static void free_freedep(struct freedep *); 805 static void journal_jremref(struct dirrem *, struct jremref *, 806 struct inodedep *); 807 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 808 static int cancel_jaddref(struct jaddref *, struct inodedep *, 809 struct workhead *); 810 static void cancel_jfreefrag(struct jfreefrag *); 811 static inline void setup_freedirect(struct freeblks *, struct inode *, 812 int, int); 813 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 814 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 815 ufs_lbn_t, int); 816 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 817 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 818 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 819 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 820 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 821 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 822 int, int); 823 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 824 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 825 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 826 static void newblk_freefrag(struct newblk*); 827 static void free_newblk(struct newblk *); 828 static void cancel_allocdirect(struct allocdirectlst *, 829 struct allocdirect *, struct freeblks *); 830 static int check_inode_unwritten(struct inodedep *); 831 static int free_inodedep(struct inodedep *); 832 static void freework_freeblock(struct freework *, uint64_t); 833 static void freework_enqueue(struct freework *); 834 static int handle_workitem_freeblocks(struct freeblks *, int); 835 static int handle_complete_freeblocks(struct freeblks *, int); 836 static void handle_workitem_indirblk(struct freework *); 837 static void handle_written_freework(struct freework *); 838 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 839 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 840 struct workhead *); 841 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 842 struct inodedep *, struct allocindir *, ufs_lbn_t); 843 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 844 ufs2_daddr_t, ufs_lbn_t); 845 static void handle_workitem_freefrag(struct freefrag *); 846 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 847 ufs_lbn_t, uint64_t); 848 static void allocdirect_merge(struct allocdirectlst *, 849 struct allocdirect *, struct allocdirect *); 850 static struct freefrag *allocindir_merge(struct allocindir *, 851 struct allocindir *); 852 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 853 struct bmsafemap **); 854 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 855 int cg, struct bmsafemap *); 856 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 857 struct newblk **); 858 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 859 static int inodedep_find(struct inodedep_hashhead *, ino_t, 860 struct inodedep **); 861 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 862 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 863 int, struct pagedep **); 864 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 865 struct pagedep **); 866 static void pause_timer(void *); 867 static int request_cleanup(struct mount *, int); 868 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 869 static void schedule_cleanup(struct mount *); 870 static void softdep_ast_cleanup_proc(struct thread *, int); 871 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 872 static int process_worklist_item(struct mount *, int, int); 873 static void process_removes(struct vnode *); 874 static void process_truncates(struct vnode *); 875 static void jwork_move(struct workhead *, struct workhead *); 876 static void jwork_insert(struct workhead *, struct jsegdep *); 877 static void add_to_worklist(struct worklist *, int); 878 static void wake_worklist(struct worklist *); 879 static void wait_worklist(struct worklist *, char *); 880 static void remove_from_worklist(struct worklist *); 881 static void softdep_flush(void *); 882 static void softdep_flushjournal(struct mount *); 883 static int softdep_speedup(struct ufsmount *); 884 static void worklist_speedup(struct mount *); 885 static int journal_mount(struct mount *, struct fs *, struct ucred *); 886 static void journal_unmount(struct ufsmount *); 887 static int journal_space(struct ufsmount *, int); 888 static void journal_suspend(struct ufsmount *); 889 static int journal_unsuspend(struct ufsmount *ump); 890 static void add_to_journal(struct worklist *); 891 static void remove_from_journal(struct worklist *); 892 static bool softdep_excess_items(struct ufsmount *, int); 893 static void softdep_process_journal(struct mount *, struct worklist *, int); 894 static struct jremref *newjremref(struct dirrem *, struct inode *, 895 struct inode *ip, off_t, nlink_t); 896 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 897 uint16_t); 898 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 899 uint16_t); 900 static inline struct jsegdep *inoref_jseg(struct inoref *); 901 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 902 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 903 ufs2_daddr_t, int); 904 static void adjust_newfreework(struct freeblks *, int); 905 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 906 static void move_newblock_dep(struct jaddref *, struct inodedep *); 907 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 908 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 909 ufs2_daddr_t, long, ufs_lbn_t); 910 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 911 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 912 static int jwait(struct worklist *, int); 913 static struct inodedep *inodedep_lookup_ip(struct inode *); 914 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 915 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 916 static void handle_jwork(struct workhead *); 917 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 918 struct mkdir **); 919 static struct jblocks *jblocks_create(void); 920 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 921 static void jblocks_free(struct jblocks *, struct mount *, int); 922 static void jblocks_destroy(struct jblocks *); 923 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 924 925 /* 926 * Exported softdep operations. 927 */ 928 static void softdep_disk_io_initiation(struct buf *); 929 static void softdep_disk_write_complete(struct buf *); 930 static void softdep_deallocate_dependencies(struct buf *); 931 static int softdep_count_dependencies(struct buf *bp, int); 932 933 /* 934 * Global lock over all of soft updates. 935 */ 936 static struct mtx lk; 937 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 938 939 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 940 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 941 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 942 943 /* 944 * Per-filesystem soft-updates locking. 945 */ 946 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 947 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 948 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 949 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 950 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 951 RA_WLOCKED) 952 953 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 954 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 955 956 /* 957 * Worklist queue management. 958 * These routines require that the lock be held. 959 */ 960 #ifndef /* NOT */ INVARIANTS 961 #define WORKLIST_INSERT(head, item) do { \ 962 (item)->wk_state |= ONWORKLIST; \ 963 LIST_INSERT_HEAD(head, item, wk_list); \ 964 } while (0) 965 #define WORKLIST_REMOVE(item) do { \ 966 (item)->wk_state &= ~ONWORKLIST; \ 967 LIST_REMOVE(item, wk_list); \ 968 } while (0) 969 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 970 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 971 972 #else /* INVARIANTS */ 973 static void worklist_insert(struct workhead *, struct worklist *, int, 974 const char *, int); 975 static void worklist_remove(struct worklist *, int, const char *, int); 976 977 #define WORKLIST_INSERT(head, item) \ 978 worklist_insert(head, item, 1, __func__, __LINE__) 979 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 980 worklist_insert(head, item, 0, __func__, __LINE__) 981 #define WORKLIST_REMOVE(item)\ 982 worklist_remove(item, 1, __func__, __LINE__) 983 #define WORKLIST_REMOVE_UNLOCKED(item)\ 984 worklist_remove(item, 0, __func__, __LINE__) 985 986 static void 987 worklist_insert(struct workhead *head, 988 struct worklist *item, 989 int locked, 990 const char *func, 991 int line) 992 { 993 994 if (locked) 995 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 996 if (item->wk_state & ONWORKLIST) 997 panic("worklist_insert: %p %s(0x%X) already on list, " 998 "added in function %s at line %d", 999 item, TYPENAME(item->wk_type), item->wk_state, 1000 item->wk_func, item->wk_line); 1001 item->wk_state |= ONWORKLIST; 1002 item->wk_func = func; 1003 item->wk_line = line; 1004 LIST_INSERT_HEAD(head, item, wk_list); 1005 } 1006 1007 static void 1008 worklist_remove(struct worklist *item, 1009 int locked, 1010 const char *func, 1011 int line) 1012 { 1013 1014 if (locked) 1015 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1016 if ((item->wk_state & ONWORKLIST) == 0) 1017 panic("worklist_remove: %p %s(0x%X) not on list, " 1018 "removed in function %s at line %d", 1019 item, TYPENAME(item->wk_type), item->wk_state, 1020 item->wk_func, item->wk_line); 1021 item->wk_state &= ~ONWORKLIST; 1022 item->wk_func = func; 1023 item->wk_line = line; 1024 LIST_REMOVE(item, wk_list); 1025 } 1026 #endif /* INVARIANTS */ 1027 1028 /* 1029 * Merge two jsegdeps keeping only the oldest one as newer references 1030 * can't be discarded until after older references. 1031 */ 1032 static inline struct jsegdep * 1033 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1034 { 1035 struct jsegdep *swp; 1036 1037 if (two == NULL) 1038 return (one); 1039 1040 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1041 swp = one; 1042 one = two; 1043 two = swp; 1044 } 1045 WORKLIST_REMOVE(&two->jd_list); 1046 free_jsegdep(two); 1047 1048 return (one); 1049 } 1050 1051 /* 1052 * If two freedeps are compatible free one to reduce list size. 1053 */ 1054 static inline struct freedep * 1055 freedep_merge(struct freedep *one, struct freedep *two) 1056 { 1057 if (two == NULL) 1058 return (one); 1059 1060 if (one->fd_freework == two->fd_freework) { 1061 WORKLIST_REMOVE(&two->fd_list); 1062 free_freedep(two); 1063 } 1064 return (one); 1065 } 1066 1067 /* 1068 * Move journal work from one list to another. Duplicate freedeps and 1069 * jsegdeps are coalesced to keep the lists as small as possible. 1070 */ 1071 static void 1072 jwork_move(struct workhead *dst, struct workhead *src) 1073 { 1074 struct freedep *freedep; 1075 struct jsegdep *jsegdep; 1076 struct worklist *wkn; 1077 struct worklist *wk; 1078 1079 KASSERT(dst != src, 1080 ("jwork_move: dst == src")); 1081 freedep = NULL; 1082 jsegdep = NULL; 1083 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1084 if (wk->wk_type == D_JSEGDEP) 1085 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1086 else if (wk->wk_type == D_FREEDEP) 1087 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1088 } 1089 1090 while ((wk = LIST_FIRST(src)) != NULL) { 1091 WORKLIST_REMOVE(wk); 1092 WORKLIST_INSERT(dst, wk); 1093 if (wk->wk_type == D_JSEGDEP) { 1094 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1095 continue; 1096 } 1097 if (wk->wk_type == D_FREEDEP) 1098 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1099 } 1100 } 1101 1102 static void 1103 jwork_insert(struct workhead *dst, struct jsegdep *jsegdep) 1104 { 1105 struct jsegdep *jsegdepn; 1106 struct worklist *wk; 1107 1108 LIST_FOREACH(wk, dst, wk_list) 1109 if (wk->wk_type == D_JSEGDEP) 1110 break; 1111 if (wk == NULL) { 1112 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1113 return; 1114 } 1115 jsegdepn = WK_JSEGDEP(wk); 1116 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1117 WORKLIST_REMOVE(wk); 1118 free_jsegdep(jsegdepn); 1119 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1120 } else 1121 free_jsegdep(jsegdep); 1122 } 1123 1124 /* 1125 * Routines for tracking and managing workitems. 1126 */ 1127 static void workitem_free(struct worklist *, int); 1128 static void workitem_alloc(struct worklist *, int, struct mount *); 1129 static void workitem_reassign(struct worklist *, int); 1130 1131 #define WORKITEM_FREE(item, type) \ 1132 workitem_free((struct worklist *)(item), (type)) 1133 #define WORKITEM_REASSIGN(item, type) \ 1134 workitem_reassign((struct worklist *)(item), (type)) 1135 1136 static void 1137 workitem_free(struct worklist *item, int type) 1138 { 1139 struct ufsmount *ump; 1140 1141 #ifdef INVARIANTS 1142 if (item->wk_state & ONWORKLIST) 1143 panic("workitem_free: %s(0x%X) still on list, " 1144 "added in function %s at line %d", 1145 TYPENAME(item->wk_type), item->wk_state, 1146 item->wk_func, item->wk_line); 1147 if (item->wk_type != type && type != D_NEWBLK) 1148 panic("workitem_free: type mismatch %s != %s", 1149 TYPENAME(item->wk_type), TYPENAME(type)); 1150 #endif 1151 if (item->wk_state & IOWAITING) 1152 wakeup(item); 1153 ump = VFSTOUFS(item->wk_mp); 1154 LOCK_OWNED(ump); 1155 KASSERT(ump->softdep_deps > 0, 1156 ("workitem_free: %s: softdep_deps going negative", 1157 ump->um_fs->fs_fsmnt)); 1158 if (--ump->softdep_deps == 0 && ump->softdep_req) 1159 wakeup(&ump->softdep_deps); 1160 KASSERT(dep_current[item->wk_type] > 0, 1161 ("workitem_free: %s: dep_current[%s] going negative", 1162 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1163 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1164 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1165 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1166 atomic_subtract_long(&dep_current[item->wk_type], 1); 1167 ump->softdep_curdeps[item->wk_type] -= 1; 1168 LIST_REMOVE(item, wk_all); 1169 free(item, DtoM(type)); 1170 } 1171 1172 static void 1173 workitem_alloc(struct worklist *item, 1174 int type, 1175 struct mount *mp) 1176 { 1177 struct ufsmount *ump; 1178 1179 item->wk_type = type; 1180 item->wk_mp = mp; 1181 item->wk_state = 0; 1182 1183 ump = VFSTOUFS(mp); 1184 ACQUIRE_GBLLOCK(&lk); 1185 dep_current[type]++; 1186 if (dep_current[type] > dep_highuse[type]) 1187 dep_highuse[type] = dep_current[type]; 1188 dep_total[type]++; 1189 FREE_GBLLOCK(&lk); 1190 ACQUIRE_LOCK(ump); 1191 ump->softdep_curdeps[type] += 1; 1192 ump->softdep_deps++; 1193 ump->softdep_accdeps++; 1194 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1195 FREE_LOCK(ump); 1196 } 1197 1198 static void 1199 workitem_reassign(struct worklist *item, int newtype) 1200 { 1201 struct ufsmount *ump; 1202 1203 ump = VFSTOUFS(item->wk_mp); 1204 LOCK_OWNED(ump); 1205 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1206 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1207 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1208 ump->softdep_curdeps[item->wk_type] -= 1; 1209 ump->softdep_curdeps[newtype] += 1; 1210 KASSERT(dep_current[item->wk_type] > 0, 1211 ("workitem_reassign: %s: dep_current[%s] going negative", 1212 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1213 ACQUIRE_GBLLOCK(&lk); 1214 dep_current[newtype]++; 1215 dep_current[item->wk_type]--; 1216 if (dep_current[newtype] > dep_highuse[newtype]) 1217 dep_highuse[newtype] = dep_current[newtype]; 1218 dep_total[newtype]++; 1219 FREE_GBLLOCK(&lk); 1220 item->wk_type = newtype; 1221 LIST_REMOVE(item, wk_all); 1222 LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all); 1223 } 1224 1225 /* 1226 * Workitem queue management 1227 */ 1228 static int max_softdeps; /* maximum number of structs before slowdown */ 1229 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1230 static int proc_waiting; /* tracks whether we have a timeout posted */ 1231 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1232 static struct callout softdep_callout; 1233 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1234 static int req_clear_remove; /* syncer process flush some freeblks */ 1235 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1236 1237 /* 1238 * runtime statistics 1239 */ 1240 static int stat_flush_threads; /* number of softdep flushing threads */ 1241 static int stat_worklist_push; /* number of worklist cleanups */ 1242 static int stat_delayed_inact; /* number of delayed inactivation cleanups */ 1243 static int stat_blk_limit_push; /* number of times block limit neared */ 1244 static int stat_ino_limit_push; /* number of times inode limit neared */ 1245 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1246 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1247 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1248 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1249 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1250 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1251 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1252 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1253 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1254 static int stat_journal_min; /* Times hit journal min threshold */ 1255 static int stat_journal_low; /* Times hit journal low threshold */ 1256 static int stat_journal_wait; /* Times blocked in jwait(). */ 1257 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1258 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1259 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1260 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1261 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1262 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1263 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1264 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1265 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1266 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1267 1268 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1269 &max_softdeps, 0, ""); 1270 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1271 &tickdelay, 0, ""); 1272 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1273 &stat_flush_threads, 0, ""); 1274 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1275 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1276 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD, 1277 &stat_delayed_inact, 0, ""); 1278 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1279 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1280 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1281 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1282 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1283 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1284 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1285 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1286 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1287 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1288 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1289 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1290 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1291 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1292 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1293 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1294 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1295 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1296 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1297 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1298 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1299 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1300 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1301 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1302 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1303 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1304 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1305 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1306 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1307 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1309 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1311 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1313 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1315 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1317 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1319 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1321 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1323 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1324 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1326 &softdep_flushcache, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1328 &stat_emptyjblocks, 0, ""); 1329 1330 SYSCTL_DECL(_vfs_ffs); 1331 1332 /* Whether to recompute the summary at mount time */ 1333 static int compute_summary_at_mount = 0; 1334 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1335 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1336 static int print_threads = 0; 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1338 &print_threads, 0, "Notify flusher thread start/stop"); 1339 1340 /* List of all filesystems mounted with soft updates */ 1341 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1342 1343 static void 1344 get_parent_vp_unlock_bp(struct mount *mp, 1345 struct buf *bp, 1346 struct diraddhd *diraddhdp, 1347 struct diraddhd *unfinishedp) 1348 { 1349 struct diradd *dap; 1350 1351 /* 1352 * Requeue unfinished dependencies before 1353 * unlocking buffer, which could make 1354 * diraddhdp invalid. 1355 */ 1356 ACQUIRE_LOCK(VFSTOUFS(mp)); 1357 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1358 LIST_REMOVE(dap, da_pdlist); 1359 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1360 } 1361 FREE_LOCK(VFSTOUFS(mp)); 1362 1363 bp->b_vflags &= ~BV_SCANNED; 1364 BUF_NOREC(bp); 1365 BUF_UNLOCK(bp); 1366 } 1367 1368 /* 1369 * This function fetches inode inum on mount point mp. We already 1370 * hold a locked vnode vp, and might have a locked buffer bp belonging 1371 * to vp. 1372 1373 * We must not block on acquiring the new inode lock as we will get 1374 * into a lock-order reversal with the buffer lock and possibly get a 1375 * deadlock. Thus if we cannot instantiate the requested vnode 1376 * without sleeping on its lock, we must unlock the vnode and the 1377 * buffer before doing a blocking on the vnode lock. We return 1378 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1379 * that the caller can reassess its state. 1380 * 1381 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1382 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1383 * point. 1384 * 1385 * Since callers expect to operate on fully constructed vnode, we also 1386 * recheck v_data after relock, and return ENOENT if NULL. 1387 * 1388 * If unlocking bp, we must unroll dequeueing its unfinished 1389 * dependencies, and clear scan flag, before unlocking. If unlocking 1390 * vp while it is under deactivation, we re-queue deactivation. 1391 */ 1392 static int 1393 get_parent_vp(struct vnode *vp, 1394 struct mount *mp, 1395 ino_t inum, 1396 struct buf *bp, 1397 struct diraddhd *diraddhdp, 1398 struct diraddhd *unfinishedp, 1399 struct vnode **rvp) 1400 { 1401 struct vnode *pvp; 1402 int error; 1403 bool bplocked; 1404 1405 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1406 for (bplocked = true, pvp = NULL;;) { 1407 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1408 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1409 if (error == 0) { 1410 /* 1411 * Since we could have unlocked vp, the inode 1412 * number could no longer indicate a 1413 * constructed node. In this case, we must 1414 * restart the syscall. 1415 */ 1416 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1417 if (bp != NULL && bplocked) 1418 get_parent_vp_unlock_bp(mp, bp, 1419 diraddhdp, unfinishedp); 1420 if (VTOI(pvp)->i_mode == 0) 1421 vgone(pvp); 1422 error = ERELOOKUP; 1423 goto out2; 1424 } 1425 goto out1; 1426 } 1427 if (bp != NULL && bplocked) { 1428 get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); 1429 bplocked = false; 1430 } 1431 1432 /* 1433 * Do not drop vnode lock while inactivating during 1434 * vunref. This would result in leaks of the VI flags 1435 * and reclaiming of non-truncated vnode. Instead, 1436 * re-schedule inactivation hoping that we would be 1437 * able to sync inode later. 1438 */ 1439 if ((vp->v_iflag & VI_DOINGINACT) != 0 && 1440 (vp->v_vflag & VV_UNREF) != 0) { 1441 VI_LOCK(vp); 1442 vp->v_iflag |= VI_OWEINACT; 1443 VI_UNLOCK(vp); 1444 return (ERELOOKUP); 1445 } 1446 1447 VOP_UNLOCK(vp); 1448 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1449 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1450 if (error != 0) { 1451 MPASS(error != ERELOOKUP); 1452 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1453 break; 1454 } 1455 if (VTOI(pvp)->i_mode == 0) { 1456 vgone(pvp); 1457 vput(pvp); 1458 pvp = NULL; 1459 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1460 error = ERELOOKUP; 1461 break; 1462 } 1463 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1464 if (error == 0) 1465 break; 1466 vput(pvp); 1467 pvp = NULL; 1468 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1469 if (vp->v_data == NULL) { 1470 error = ENOENT; 1471 break; 1472 } 1473 } 1474 if (bp != NULL) { 1475 MPASS(!bplocked); 1476 error = ERELOOKUP; 1477 } 1478 out2: 1479 if (error != 0 && pvp != NULL) { 1480 vput(pvp); 1481 pvp = NULL; 1482 } 1483 out1: 1484 *rvp = pvp; 1485 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1486 return (error); 1487 } 1488 1489 /* 1490 * This function cleans the worklist for a filesystem. 1491 * Each filesystem running with soft dependencies gets its own 1492 * thread to run in this function. The thread is started up in 1493 * softdep_mount and shutdown in softdep_unmount. They show up 1494 * as part of the kernel "bufdaemon" process whose process 1495 * entry is available in bufdaemonproc. 1496 */ 1497 static int searchfailed; 1498 extern struct proc *bufdaemonproc; 1499 static void 1500 softdep_flush(void *addr) 1501 { 1502 struct mount *mp; 1503 struct thread *td; 1504 struct ufsmount *ump; 1505 int cleanups; 1506 1507 td = curthread; 1508 td->td_pflags |= TDP_NORUNNINGBUF; 1509 mp = (struct mount *)addr; 1510 ump = VFSTOUFS(mp); 1511 atomic_add_int(&stat_flush_threads, 1); 1512 ACQUIRE_LOCK(ump); 1513 ump->softdep_flags &= ~FLUSH_STARTING; 1514 wakeup(&ump->softdep_flushtd); 1515 FREE_LOCK(ump); 1516 if (print_threads) { 1517 if (stat_flush_threads == 1) 1518 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1519 bufdaemonproc->p_pid); 1520 printf("Start thread %s\n", td->td_name); 1521 } 1522 for (;;) { 1523 while (softdep_process_worklist(mp, 0) > 0 || 1524 (MOUNTEDSUJ(mp) && 1525 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1526 kthread_suspend_check(); 1527 ACQUIRE_LOCK(ump); 1528 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1529 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1530 "sdflush", hz / 2); 1531 ump->softdep_flags &= ~FLUSH_CLEANUP; 1532 /* 1533 * Check to see if we are done and need to exit. 1534 */ 1535 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1536 FREE_LOCK(ump); 1537 continue; 1538 } 1539 ump->softdep_flags &= ~FLUSH_EXIT; 1540 cleanups = ump->um_softdep->sd_cleanups; 1541 FREE_LOCK(ump); 1542 wakeup(&ump->softdep_flags); 1543 if (print_threads) { 1544 printf("Stop thread %s: searchfailed %d, " 1545 "did cleanups %d\n", 1546 td->td_name, searchfailed, cleanups); 1547 } 1548 atomic_subtract_int(&stat_flush_threads, 1); 1549 kthread_exit(); 1550 panic("kthread_exit failed\n"); 1551 } 1552 } 1553 1554 static void 1555 worklist_speedup(struct mount *mp) 1556 { 1557 struct ufsmount *ump; 1558 1559 ump = VFSTOUFS(mp); 1560 LOCK_OWNED(ump); 1561 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1562 ump->softdep_flags |= FLUSH_CLEANUP; 1563 wakeup(&ump->softdep_flushtd); 1564 } 1565 1566 static void 1567 softdep_send_speedup(struct ufsmount *ump, 1568 off_t shortage, 1569 uint64_t flags) 1570 { 1571 struct buf *bp; 1572 1573 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1574 return; 1575 1576 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1577 bp->b_iocmd = BIO_SPEEDUP; 1578 bp->b_ioflags = flags; 1579 bp->b_bcount = omin(shortage, LONG_MAX); 1580 g_vfs_strategy(ump->um_bo, bp); 1581 bufwait(bp); 1582 free(bp, M_TRIM); 1583 } 1584 1585 static int 1586 softdep_speedup(struct ufsmount *ump) 1587 { 1588 struct ufsmount *altump; 1589 struct mount_softdeps *sdp; 1590 1591 LOCK_OWNED(ump); 1592 worklist_speedup(ump->um_mountp); 1593 bd_speedup(); 1594 /* 1595 * If we have global shortages, then we need other 1596 * filesystems to help with the cleanup. Here we wakeup a 1597 * flusher thread for a filesystem that is over its fair 1598 * share of resources. 1599 */ 1600 if (req_clear_inodedeps || req_clear_remove) { 1601 ACQUIRE_GBLLOCK(&lk); 1602 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1603 if ((altump = sdp->sd_ump) == ump) 1604 continue; 1605 if (((req_clear_inodedeps && 1606 altump->softdep_curdeps[D_INODEDEP] > 1607 max_softdeps / stat_flush_threads) || 1608 (req_clear_remove && 1609 altump->softdep_curdeps[D_DIRREM] > 1610 (max_softdeps / 2) / stat_flush_threads)) && 1611 TRY_ACQUIRE_LOCK(altump)) 1612 break; 1613 } 1614 if (sdp == NULL) { 1615 searchfailed++; 1616 FREE_GBLLOCK(&lk); 1617 } else { 1618 /* 1619 * Move to the end of the list so we pick a 1620 * different one on out next try. 1621 */ 1622 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1623 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1624 FREE_GBLLOCK(&lk); 1625 if ((altump->softdep_flags & 1626 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1627 altump->softdep_flags |= FLUSH_CLEANUP; 1628 altump->um_softdep->sd_cleanups++; 1629 wakeup(&altump->softdep_flushtd); 1630 FREE_LOCK(altump); 1631 } 1632 } 1633 return (speedup_syncer()); 1634 } 1635 1636 /* 1637 * Add an item to the end of the work queue. 1638 * This routine requires that the lock be held. 1639 * This is the only routine that adds items to the list. 1640 * The following routine is the only one that removes items 1641 * and does so in order from first to last. 1642 */ 1643 1644 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1645 #define WK_NODELAY 0x0002 /* Process immediately. */ 1646 1647 static void 1648 add_to_worklist(struct worklist *wk, int flags) 1649 { 1650 struct ufsmount *ump; 1651 1652 ump = VFSTOUFS(wk->wk_mp); 1653 LOCK_OWNED(ump); 1654 if (wk->wk_state & ONWORKLIST) 1655 panic("add_to_worklist: %s(0x%X) already on list", 1656 TYPENAME(wk->wk_type), wk->wk_state); 1657 wk->wk_state |= ONWORKLIST; 1658 if (ump->softdep_on_worklist == 0) { 1659 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1660 ump->softdep_worklist_tail = wk; 1661 } else if (flags & WK_HEAD) { 1662 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1663 } else { 1664 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1665 ump->softdep_worklist_tail = wk; 1666 } 1667 ump->softdep_on_worklist += 1; 1668 if (flags & WK_NODELAY) 1669 worklist_speedup(wk->wk_mp); 1670 } 1671 1672 /* 1673 * Remove the item to be processed. If we are removing the last 1674 * item on the list, we need to recalculate the tail pointer. 1675 */ 1676 static void 1677 remove_from_worklist(struct worklist *wk) 1678 { 1679 struct ufsmount *ump; 1680 1681 ump = VFSTOUFS(wk->wk_mp); 1682 if (ump->softdep_worklist_tail == wk) 1683 ump->softdep_worklist_tail = 1684 (struct worklist *)wk->wk_list.le_prev; 1685 WORKLIST_REMOVE(wk); 1686 ump->softdep_on_worklist -= 1; 1687 } 1688 1689 static void 1690 wake_worklist(struct worklist *wk) 1691 { 1692 if (wk->wk_state & IOWAITING) { 1693 wk->wk_state &= ~IOWAITING; 1694 wakeup(wk); 1695 } 1696 } 1697 1698 static void 1699 wait_worklist(struct worklist *wk, char *wmesg) 1700 { 1701 struct ufsmount *ump; 1702 1703 ump = VFSTOUFS(wk->wk_mp); 1704 wk->wk_state |= IOWAITING; 1705 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1706 } 1707 1708 /* 1709 * Process that runs once per second to handle items in the background queue. 1710 * 1711 * Note that we ensure that everything is done in the order in which they 1712 * appear in the queue. The code below depends on this property to ensure 1713 * that blocks of a file are freed before the inode itself is freed. This 1714 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1715 * until all the old ones have been purged from the dependency lists. 1716 */ 1717 static int 1718 softdep_process_worklist(struct mount *mp, int full) 1719 { 1720 int cnt, matchcnt; 1721 struct ufsmount *ump; 1722 long starttime; 1723 1724 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1725 ump = VFSTOUFS(mp); 1726 if (ump->um_softdep == NULL) 1727 return (0); 1728 matchcnt = 0; 1729 ACQUIRE_LOCK(ump); 1730 starttime = time_second; 1731 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1732 check_clear_deps(mp); 1733 while (ump->softdep_on_worklist > 0) { 1734 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1735 break; 1736 else 1737 matchcnt += cnt; 1738 check_clear_deps(mp); 1739 /* 1740 * We do not generally want to stop for buffer space, but if 1741 * we are really being a buffer hog, we will stop and wait. 1742 */ 1743 if (should_yield()) { 1744 FREE_LOCK(ump); 1745 kern_yield(PRI_USER); 1746 bwillwrite(); 1747 ACQUIRE_LOCK(ump); 1748 } 1749 /* 1750 * Never allow processing to run for more than one 1751 * second. This gives the syncer thread the opportunity 1752 * to pause if appropriate. 1753 */ 1754 if (!full && starttime != time_second) 1755 break; 1756 } 1757 if (full == 0) 1758 journal_unsuspend(ump); 1759 FREE_LOCK(ump); 1760 return (matchcnt); 1761 } 1762 1763 /* 1764 * Process all removes associated with a vnode if we are running out of 1765 * journal space. Any other process which attempts to flush these will 1766 * be unable as we have the vnodes locked. 1767 */ 1768 static void 1769 process_removes(struct vnode *vp) 1770 { 1771 struct inodedep *inodedep; 1772 struct dirrem *dirrem; 1773 struct ufsmount *ump; 1774 struct mount *mp; 1775 ino_t inum; 1776 1777 mp = vp->v_mount; 1778 ump = VFSTOUFS(mp); 1779 LOCK_OWNED(ump); 1780 inum = VTOI(vp)->i_number; 1781 for (;;) { 1782 top: 1783 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1784 return; 1785 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1786 /* 1787 * If another thread is trying to lock this vnode 1788 * it will fail but we must wait for it to do so 1789 * before we can proceed. 1790 */ 1791 if (dirrem->dm_state & INPROGRESS) { 1792 wait_worklist(&dirrem->dm_list, "pwrwait"); 1793 goto top; 1794 } 1795 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1796 (COMPLETE | ONWORKLIST)) 1797 break; 1798 } 1799 if (dirrem == NULL) 1800 return; 1801 remove_from_worklist(&dirrem->dm_list); 1802 FREE_LOCK(ump); 1803 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1804 panic("process_removes: suspended filesystem"); 1805 handle_workitem_remove(dirrem, 0); 1806 vn_finished_secondary_write(mp); 1807 ACQUIRE_LOCK(ump); 1808 } 1809 } 1810 1811 /* 1812 * Process all truncations associated with a vnode if we are running out 1813 * of journal space. This is called when the vnode lock is already held 1814 * and no other process can clear the truncation. This function returns 1815 * a value greater than zero if it did any work. 1816 */ 1817 static void 1818 process_truncates(struct vnode *vp) 1819 { 1820 struct inodedep *inodedep; 1821 struct freeblks *freeblks; 1822 struct ufsmount *ump; 1823 struct mount *mp; 1824 ino_t inum; 1825 int cgwait; 1826 1827 mp = vp->v_mount; 1828 ump = VFSTOUFS(mp); 1829 LOCK_OWNED(ump); 1830 inum = VTOI(vp)->i_number; 1831 for (;;) { 1832 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1833 return; 1834 cgwait = 0; 1835 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1836 /* Journal entries not yet written. */ 1837 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1838 jwait(&LIST_FIRST( 1839 &freeblks->fb_jblkdephd)->jb_list, 1840 MNT_WAIT); 1841 break; 1842 } 1843 /* Another thread is executing this item. */ 1844 if (freeblks->fb_state & INPROGRESS) { 1845 wait_worklist(&freeblks->fb_list, "ptrwait"); 1846 break; 1847 } 1848 /* Freeblks is waiting on a inode write. */ 1849 if ((freeblks->fb_state & COMPLETE) == 0) { 1850 FREE_LOCK(ump); 1851 ffs_update(vp, 1); 1852 ACQUIRE_LOCK(ump); 1853 break; 1854 } 1855 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1856 (ALLCOMPLETE | ONWORKLIST)) { 1857 remove_from_worklist(&freeblks->fb_list); 1858 freeblks->fb_state |= INPROGRESS; 1859 FREE_LOCK(ump); 1860 if (vn_start_secondary_write(NULL, &mp, 1861 V_NOWAIT)) 1862 panic("process_truncates: " 1863 "suspended filesystem"); 1864 handle_workitem_freeblocks(freeblks, 0); 1865 vn_finished_secondary_write(mp); 1866 ACQUIRE_LOCK(ump); 1867 break; 1868 } 1869 if (freeblks->fb_cgwait) 1870 cgwait++; 1871 } 1872 if (cgwait) { 1873 FREE_LOCK(ump); 1874 sync_cgs(mp, MNT_WAIT); 1875 ffs_sync_snap(mp, MNT_WAIT); 1876 ACQUIRE_LOCK(ump); 1877 continue; 1878 } 1879 if (freeblks == NULL) 1880 break; 1881 } 1882 return; 1883 } 1884 1885 /* 1886 * Process one item on the worklist. 1887 */ 1888 static int 1889 process_worklist_item(struct mount *mp, 1890 int target, 1891 int flags) 1892 { 1893 struct worklist sentinel; 1894 struct worklist *wk; 1895 struct ufsmount *ump; 1896 int matchcnt; 1897 int error; 1898 1899 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1900 /* 1901 * If we are being called because of a process doing a 1902 * copy-on-write, then it is not safe to write as we may 1903 * recurse into the copy-on-write routine. 1904 */ 1905 if (curthread->td_pflags & TDP_COWINPROGRESS) 1906 return (-1); 1907 ump = VFSTOUFS(mp); 1908 LOCK_OWNED(ump); 1909 matchcnt = 0; 1910 sentinel.wk_mp = NULL; 1911 sentinel.wk_type = D_SENTINEL; 1912 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1913 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1914 wk = LIST_NEXT(&sentinel, wk_list)) { 1915 if (wk->wk_type == D_SENTINEL) { 1916 LIST_REMOVE(&sentinel, wk_list); 1917 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1918 continue; 1919 } 1920 if (wk->wk_state & INPROGRESS) 1921 panic("process_worklist_item: %p already in progress.", 1922 wk); 1923 wk->wk_state |= INPROGRESS; 1924 remove_from_worklist(wk); 1925 FREE_LOCK(ump); 1926 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1927 panic("process_worklist_item: suspended filesystem"); 1928 switch (wk->wk_type) { 1929 case D_DIRREM: 1930 /* removal of a directory entry */ 1931 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1932 break; 1933 1934 case D_FREEBLKS: 1935 /* releasing blocks and/or fragments from a file */ 1936 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1937 flags); 1938 break; 1939 1940 case D_FREEFRAG: 1941 /* releasing a fragment when replaced as a file grows */ 1942 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1943 error = 0; 1944 break; 1945 1946 case D_FREEFILE: 1947 /* releasing an inode when its link count drops to 0 */ 1948 handle_workitem_freefile(WK_FREEFILE(wk)); 1949 error = 0; 1950 break; 1951 1952 default: 1953 panic("%s_process_worklist: Unknown type %s", 1954 "softdep", TYPENAME(wk->wk_type)); 1955 /* NOTREACHED */ 1956 } 1957 vn_finished_secondary_write(mp); 1958 ACQUIRE_LOCK(ump); 1959 if (error == 0) { 1960 if (++matchcnt == target) 1961 break; 1962 continue; 1963 } 1964 /* 1965 * We have to retry the worklist item later. Wake up any 1966 * waiters who may be able to complete it immediately and 1967 * add the item back to the head so we don't try to execute 1968 * it again. 1969 */ 1970 wk->wk_state &= ~INPROGRESS; 1971 wake_worklist(wk); 1972 add_to_worklist(wk, WK_HEAD); 1973 } 1974 /* Sentinal could've become the tail from remove_from_worklist. */ 1975 if (ump->softdep_worklist_tail == &sentinel) 1976 ump->softdep_worklist_tail = 1977 (struct worklist *)sentinel.wk_list.le_prev; 1978 LIST_REMOVE(&sentinel, wk_list); 1979 return (matchcnt); 1980 } 1981 1982 /* 1983 * Move dependencies from one buffer to another. 1984 */ 1985 int 1986 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp) 1987 { 1988 struct worklist *wk, *wktail; 1989 struct ufsmount *ump; 1990 int dirty; 1991 1992 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1993 return (0); 1994 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1995 ("softdep_move_dependencies called on non-softdep filesystem")); 1996 dirty = 0; 1997 wktail = NULL; 1998 ump = VFSTOUFS(wk->wk_mp); 1999 ACQUIRE_LOCK(ump); 2000 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2001 LIST_REMOVE(wk, wk_list); 2002 if (wk->wk_type == D_BMSAFEMAP && 2003 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2004 dirty = 1; 2005 if (wktail == NULL) 2006 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2007 else 2008 LIST_INSERT_AFTER(wktail, wk, wk_list); 2009 wktail = wk; 2010 } 2011 FREE_LOCK(ump); 2012 2013 return (dirty); 2014 } 2015 2016 /* 2017 * Purge the work list of all items associated with a particular mount point. 2018 */ 2019 int 2020 softdep_flushworklist(struct mount *oldmnt, 2021 int *countp, 2022 struct thread *td) 2023 { 2024 struct vnode *devvp; 2025 struct ufsmount *ump; 2026 int count, error; 2027 2028 /* 2029 * Alternately flush the block device associated with the mount 2030 * point and process any dependencies that the flushing 2031 * creates. We continue until no more worklist dependencies 2032 * are found. 2033 */ 2034 *countp = 0; 2035 error = 0; 2036 ump = VFSTOUFS(oldmnt); 2037 devvp = ump->um_devvp; 2038 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2039 *countp += count; 2040 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2041 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2042 VOP_UNLOCK(devvp); 2043 if (error != 0) 2044 break; 2045 } 2046 return (error); 2047 } 2048 2049 #define SU_WAITIDLE_RETRIES 20 2050 static int 2051 softdep_waitidle(struct mount *mp, int flags __unused) 2052 { 2053 struct ufsmount *ump; 2054 struct vnode *devvp; 2055 struct thread *td; 2056 int error, i; 2057 2058 ump = VFSTOUFS(mp); 2059 KASSERT(ump->um_softdep != NULL, 2060 ("softdep_waitidle called on non-softdep filesystem")); 2061 devvp = ump->um_devvp; 2062 td = curthread; 2063 error = 0; 2064 ACQUIRE_LOCK(ump); 2065 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2066 ump->softdep_req = 1; 2067 KASSERT((flags & FORCECLOSE) == 0 || 2068 ump->softdep_on_worklist == 0, 2069 ("softdep_waitidle: work added after flush")); 2070 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2071 "softdeps", 10 * hz); 2072 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2073 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2074 VOP_UNLOCK(devvp); 2075 ACQUIRE_LOCK(ump); 2076 if (error != 0) 2077 break; 2078 } 2079 ump->softdep_req = 0; 2080 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2081 error = EBUSY; 2082 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2083 mp); 2084 } 2085 FREE_LOCK(ump); 2086 return (error); 2087 } 2088 2089 /* 2090 * Flush all vnodes and worklist items associated with a specified mount point. 2091 */ 2092 int 2093 softdep_flushfiles(struct mount *oldmnt, 2094 int flags, 2095 struct thread *td) 2096 { 2097 struct ufsmount *ump __unused; 2098 #ifdef QUOTA 2099 int i; 2100 #endif 2101 int error, early, depcount, loopcnt, retry_flush_count, retry; 2102 int morework; 2103 2104 ump = VFSTOUFS(oldmnt); 2105 KASSERT(ump->um_softdep != NULL, 2106 ("softdep_flushfiles called on non-softdep filesystem")); 2107 loopcnt = 10; 2108 retry_flush_count = 3; 2109 retry_flush: 2110 error = 0; 2111 2112 /* 2113 * Alternately flush the vnodes associated with the mount 2114 * point and process any dependencies that the flushing 2115 * creates. In theory, this loop can happen at most twice, 2116 * but we give it a few extra just to be sure. 2117 */ 2118 for (; loopcnt > 0; loopcnt--) { 2119 /* 2120 * Do another flush in case any vnodes were brought in 2121 * as part of the cleanup operations. 2122 */ 2123 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2124 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2125 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2126 break; 2127 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2128 depcount == 0) 2129 break; 2130 } 2131 /* 2132 * If we are unmounting then it is an error to fail. If we 2133 * are simply trying to downgrade to read-only, then filesystem 2134 * activity can keep us busy forever, so we just fail with EBUSY. 2135 */ 2136 if (loopcnt == 0) { 2137 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2138 panic("softdep_flushfiles: looping"); 2139 error = EBUSY; 2140 } 2141 if (!error) 2142 error = softdep_waitidle(oldmnt, flags); 2143 if (!error) { 2144 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2145 retry = 0; 2146 MNT_ILOCK(oldmnt); 2147 morework = oldmnt->mnt_nvnodelistsize > 0; 2148 #ifdef QUOTA 2149 UFS_LOCK(ump); 2150 for (i = 0; i < MAXQUOTAS; i++) { 2151 if (ump->um_quotas[i] != NULLVP) 2152 morework = 1; 2153 } 2154 UFS_UNLOCK(ump); 2155 #endif 2156 if (morework) { 2157 if (--retry_flush_count > 0) { 2158 retry = 1; 2159 loopcnt = 3; 2160 } else 2161 error = EBUSY; 2162 } 2163 MNT_IUNLOCK(oldmnt); 2164 if (retry) 2165 goto retry_flush; 2166 } 2167 } 2168 return (error); 2169 } 2170 2171 /* 2172 * Structure hashing. 2173 * 2174 * There are four types of structures that can be looked up: 2175 * 1) pagedep structures identified by mount point, inode number, 2176 * and logical block. 2177 * 2) inodedep structures identified by mount point and inode number. 2178 * 3) newblk structures identified by mount point and 2179 * physical block number. 2180 * 4) bmsafemap structures identified by mount point and 2181 * cylinder group number. 2182 * 2183 * The "pagedep" and "inodedep" dependency structures are hashed 2184 * separately from the file blocks and inodes to which they correspond. 2185 * This separation helps when the in-memory copy of an inode or 2186 * file block must be replaced. It also obviates the need to access 2187 * an inode or file page when simply updating (or de-allocating) 2188 * dependency structures. Lookup of newblk structures is needed to 2189 * find newly allocated blocks when trying to associate them with 2190 * their allocdirect or allocindir structure. 2191 * 2192 * The lookup routines optionally create and hash a new instance when 2193 * an existing entry is not found. The bmsafemap lookup routine always 2194 * allocates a new structure if an existing one is not found. 2195 */ 2196 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2197 2198 /* 2199 * Structures and routines associated with pagedep caching. 2200 */ 2201 #define PAGEDEP_HASH(ump, inum, lbn) \ 2202 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2203 2204 static int 2205 pagedep_find(struct pagedep_hashhead *pagedephd, 2206 ino_t ino, 2207 ufs_lbn_t lbn, 2208 struct pagedep **pagedeppp) 2209 { 2210 struct pagedep *pagedep; 2211 2212 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2213 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2214 *pagedeppp = pagedep; 2215 return (1); 2216 } 2217 } 2218 *pagedeppp = NULL; 2219 return (0); 2220 } 2221 /* 2222 * Look up a pagedep. Return 1 if found, 0 otherwise. 2223 * If not found, allocate if DEPALLOC flag is passed. 2224 * Found or allocated entry is returned in pagedeppp. 2225 */ 2226 static int 2227 pagedep_lookup(struct mount *mp, 2228 struct buf *bp, 2229 ino_t ino, 2230 ufs_lbn_t lbn, 2231 int flags, 2232 struct pagedep **pagedeppp) 2233 { 2234 struct pagedep *pagedep; 2235 struct pagedep_hashhead *pagedephd; 2236 struct worklist *wk; 2237 struct ufsmount *ump; 2238 int ret; 2239 int i; 2240 2241 ump = VFSTOUFS(mp); 2242 LOCK_OWNED(ump); 2243 if (bp) { 2244 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2245 if (wk->wk_type == D_PAGEDEP) { 2246 *pagedeppp = WK_PAGEDEP(wk); 2247 return (1); 2248 } 2249 } 2250 } 2251 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2252 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2253 if (ret) { 2254 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2255 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2256 return (1); 2257 } 2258 if ((flags & DEPALLOC) == 0) 2259 return (0); 2260 FREE_LOCK(ump); 2261 pagedep = malloc(sizeof(struct pagedep), 2262 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2263 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2264 ACQUIRE_LOCK(ump); 2265 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2266 if (*pagedeppp) { 2267 /* 2268 * This should never happen since we only create pagedeps 2269 * with the vnode lock held. Could be an assert. 2270 */ 2271 WORKITEM_FREE(pagedep, D_PAGEDEP); 2272 return (ret); 2273 } 2274 pagedep->pd_ino = ino; 2275 pagedep->pd_lbn = lbn; 2276 LIST_INIT(&pagedep->pd_dirremhd); 2277 LIST_INIT(&pagedep->pd_pendinghd); 2278 for (i = 0; i < DAHASHSZ; i++) 2279 LIST_INIT(&pagedep->pd_diraddhd[i]); 2280 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2281 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2282 *pagedeppp = pagedep; 2283 return (0); 2284 } 2285 2286 /* 2287 * Structures and routines associated with inodedep caching. 2288 */ 2289 #define INODEDEP_HASH(ump, inum) \ 2290 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2291 2292 static int 2293 inodedep_find(struct inodedep_hashhead *inodedephd, 2294 ino_t inum, 2295 struct inodedep **inodedeppp) 2296 { 2297 struct inodedep *inodedep; 2298 2299 LIST_FOREACH(inodedep, inodedephd, id_hash) 2300 if (inum == inodedep->id_ino) 2301 break; 2302 if (inodedep) { 2303 *inodedeppp = inodedep; 2304 return (1); 2305 } 2306 *inodedeppp = NULL; 2307 2308 return (0); 2309 } 2310 /* 2311 * Look up an inodedep. Return 1 if found, 0 if not found. 2312 * If not found, allocate if DEPALLOC flag is passed. 2313 * Found or allocated entry is returned in inodedeppp. 2314 */ 2315 static int 2316 inodedep_lookup(struct mount *mp, 2317 ino_t inum, 2318 int flags, 2319 struct inodedep **inodedeppp) 2320 { 2321 struct inodedep *inodedep; 2322 struct inodedep_hashhead *inodedephd; 2323 struct ufsmount *ump; 2324 struct fs *fs; 2325 2326 ump = VFSTOUFS(mp); 2327 LOCK_OWNED(ump); 2328 fs = ump->um_fs; 2329 inodedephd = INODEDEP_HASH(ump, inum); 2330 2331 if (inodedep_find(inodedephd, inum, inodedeppp)) 2332 return (1); 2333 if ((flags & DEPALLOC) == 0) 2334 return (0); 2335 /* 2336 * If the system is over its limit and our filesystem is 2337 * responsible for more than our share of that usage and 2338 * we are not in a rush, request some inodedep cleanup. 2339 */ 2340 if (softdep_excess_items(ump, D_INODEDEP)) 2341 schedule_cleanup(mp); 2342 else 2343 FREE_LOCK(ump); 2344 inodedep = malloc(sizeof(struct inodedep), 2345 M_INODEDEP, M_SOFTDEP_FLAGS); 2346 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2347 ACQUIRE_LOCK(ump); 2348 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2349 WORKITEM_FREE(inodedep, D_INODEDEP); 2350 return (1); 2351 } 2352 inodedep->id_fs = fs; 2353 inodedep->id_ino = inum; 2354 inodedep->id_state = ALLCOMPLETE; 2355 inodedep->id_nlinkdelta = 0; 2356 inodedep->id_nlinkwrote = -1; 2357 inodedep->id_savedino1 = NULL; 2358 inodedep->id_savedsize = -1; 2359 inodedep->id_savedextsize = -1; 2360 inodedep->id_savednlink = -1; 2361 inodedep->id_bmsafemap = NULL; 2362 inodedep->id_mkdiradd = NULL; 2363 LIST_INIT(&inodedep->id_dirremhd); 2364 LIST_INIT(&inodedep->id_pendinghd); 2365 LIST_INIT(&inodedep->id_inowait); 2366 LIST_INIT(&inodedep->id_bufwait); 2367 TAILQ_INIT(&inodedep->id_inoreflst); 2368 TAILQ_INIT(&inodedep->id_inoupdt); 2369 TAILQ_INIT(&inodedep->id_newinoupdt); 2370 TAILQ_INIT(&inodedep->id_extupdt); 2371 TAILQ_INIT(&inodedep->id_newextupdt); 2372 TAILQ_INIT(&inodedep->id_freeblklst); 2373 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2374 *inodedeppp = inodedep; 2375 return (0); 2376 } 2377 2378 /* 2379 * Structures and routines associated with newblk caching. 2380 */ 2381 #define NEWBLK_HASH(ump, inum) \ 2382 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2383 2384 static int 2385 newblk_find(struct newblk_hashhead *newblkhd, 2386 ufs2_daddr_t newblkno, 2387 int flags, 2388 struct newblk **newblkpp) 2389 { 2390 struct newblk *newblk; 2391 2392 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2393 if (newblkno != newblk->nb_newblkno) 2394 continue; 2395 /* 2396 * If we're creating a new dependency don't match those that 2397 * have already been converted to allocdirects. This is for 2398 * a frag extend. 2399 */ 2400 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2401 continue; 2402 break; 2403 } 2404 if (newblk) { 2405 *newblkpp = newblk; 2406 return (1); 2407 } 2408 *newblkpp = NULL; 2409 return (0); 2410 } 2411 2412 /* 2413 * Look up a newblk. Return 1 if found, 0 if not found. 2414 * If not found, allocate if DEPALLOC flag is passed. 2415 * Found or allocated entry is returned in newblkpp. 2416 */ 2417 static int 2418 newblk_lookup(struct mount *mp, 2419 ufs2_daddr_t newblkno, 2420 int flags, 2421 struct newblk **newblkpp) 2422 { 2423 struct newblk *newblk; 2424 struct newblk_hashhead *newblkhd; 2425 struct ufsmount *ump; 2426 2427 ump = VFSTOUFS(mp); 2428 LOCK_OWNED(ump); 2429 newblkhd = NEWBLK_HASH(ump, newblkno); 2430 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2431 return (1); 2432 if ((flags & DEPALLOC) == 0) 2433 return (0); 2434 if (softdep_excess_items(ump, D_NEWBLK) || 2435 softdep_excess_items(ump, D_ALLOCDIRECT) || 2436 softdep_excess_items(ump, D_ALLOCINDIR)) 2437 schedule_cleanup(mp); 2438 else 2439 FREE_LOCK(ump); 2440 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2441 M_SOFTDEP_FLAGS | M_ZERO); 2442 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2443 ACQUIRE_LOCK(ump); 2444 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2445 WORKITEM_FREE(newblk, D_NEWBLK); 2446 return (1); 2447 } 2448 newblk->nb_freefrag = NULL; 2449 LIST_INIT(&newblk->nb_indirdeps); 2450 LIST_INIT(&newblk->nb_newdirblk); 2451 LIST_INIT(&newblk->nb_jwork); 2452 newblk->nb_state = ATTACHED; 2453 newblk->nb_newblkno = newblkno; 2454 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2455 *newblkpp = newblk; 2456 return (0); 2457 } 2458 2459 /* 2460 * Structures and routines associated with freed indirect block caching. 2461 */ 2462 #define INDIR_HASH(ump, blkno) \ 2463 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2464 2465 /* 2466 * Lookup an indirect block in the indir hash table. The freework is 2467 * removed and potentially freed. The caller must do a blocking journal 2468 * write before writing to the blkno. 2469 */ 2470 static int 2471 indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno) 2472 { 2473 struct freework *freework; 2474 struct indir_hashhead *wkhd; 2475 struct ufsmount *ump; 2476 2477 ump = VFSTOUFS(mp); 2478 wkhd = INDIR_HASH(ump, blkno); 2479 TAILQ_FOREACH(freework, wkhd, fw_next) { 2480 if (freework->fw_blkno != blkno) 2481 continue; 2482 indirblk_remove(freework); 2483 return (1); 2484 } 2485 return (0); 2486 } 2487 2488 /* 2489 * Insert an indirect block represented by freework into the indirblk 2490 * hash table so that it may prevent the block from being re-used prior 2491 * to the journal being written. 2492 */ 2493 static void 2494 indirblk_insert(struct freework *freework) 2495 { 2496 struct jblocks *jblocks; 2497 struct jseg *jseg; 2498 struct ufsmount *ump; 2499 2500 ump = VFSTOUFS(freework->fw_list.wk_mp); 2501 jblocks = ump->softdep_jblocks; 2502 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2503 if (jseg == NULL) 2504 return; 2505 2506 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2507 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2508 fw_next); 2509 freework->fw_state &= ~DEPCOMPLETE; 2510 } 2511 2512 static void 2513 indirblk_remove(struct freework *freework) 2514 { 2515 struct ufsmount *ump; 2516 2517 ump = VFSTOUFS(freework->fw_list.wk_mp); 2518 LIST_REMOVE(freework, fw_segs); 2519 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2520 freework->fw_state |= DEPCOMPLETE; 2521 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2522 WORKITEM_FREE(freework, D_FREEWORK); 2523 } 2524 2525 /* 2526 * Executed during filesystem system initialization before 2527 * mounting any filesystems. 2528 */ 2529 void 2530 softdep_initialize(void) 2531 { 2532 2533 TAILQ_INIT(&softdepmounts); 2534 #ifdef __LP64__ 2535 max_softdeps = desiredvnodes * 4; 2536 #else 2537 max_softdeps = desiredvnodes * 2; 2538 #endif 2539 2540 /* initialise bioops hack */ 2541 bioops.io_start = softdep_disk_io_initiation; 2542 bioops.io_complete = softdep_disk_write_complete; 2543 bioops.io_deallocate = softdep_deallocate_dependencies; 2544 bioops.io_countdeps = softdep_count_dependencies; 2545 ast_register(TDA_UFS, ASTR_KCLEAR | ASTR_ASTF_REQUIRED, 0, 2546 softdep_ast_cleanup_proc); 2547 2548 /* Initialize the callout with an mtx. */ 2549 callout_init_mtx(&softdep_callout, &lk, 0); 2550 } 2551 2552 /* 2553 * Executed after all filesystems have been unmounted during 2554 * filesystem module unload. 2555 */ 2556 void 2557 softdep_uninitialize(void) 2558 { 2559 2560 /* clear bioops hack */ 2561 bioops.io_start = NULL; 2562 bioops.io_complete = NULL; 2563 bioops.io_deallocate = NULL; 2564 bioops.io_countdeps = NULL; 2565 ast_deregister(TDA_UFS); 2566 2567 callout_drain(&softdep_callout); 2568 } 2569 2570 /* 2571 * Called at mount time to notify the dependency code that a 2572 * filesystem wishes to use it. 2573 */ 2574 int 2575 softdep_mount(struct vnode *devvp, 2576 struct mount *mp, 2577 struct fs *fs, 2578 struct ucred *cred) 2579 { 2580 struct csum_total cstotal; 2581 struct mount_softdeps *sdp; 2582 struct ufsmount *ump; 2583 struct cg *cgp; 2584 struct buf *bp; 2585 uint64_t cyl, i; 2586 int error; 2587 2588 ump = VFSTOUFS(mp); 2589 2590 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2591 M_WAITOK | M_ZERO); 2592 rw_init(&sdp->sd_fslock, "SUrw"); 2593 sdp->sd_ump = ump; 2594 LIST_INIT(&sdp->sd_workitem_pending); 2595 LIST_INIT(&sdp->sd_journal_pending); 2596 TAILQ_INIT(&sdp->sd_unlinked); 2597 LIST_INIT(&sdp->sd_dirtycg); 2598 sdp->sd_worklist_tail = NULL; 2599 sdp->sd_on_worklist = 0; 2600 sdp->sd_deps = 0; 2601 LIST_INIT(&sdp->sd_mkdirlisthd); 2602 sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP, 2603 &sdp->sd_pdhashsize); 2604 sdp->sd_pdnextclean = 0; 2605 sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP, 2606 &sdp->sd_idhashsize); 2607 sdp->sd_idnextclean = 0; 2608 sdp->sd_newblkhash = hashinit(max_softdeps / 2, M_NEWBLK, 2609 &sdp->sd_newblkhashsize); 2610 sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize); 2611 i = 1 << (ffs(desiredvnodes / 10) - 1); 2612 sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead), 2613 M_FREEWORK, M_WAITOK); 2614 sdp->sd_indirhashsize = i - 1; 2615 for (i = 0; i <= sdp->sd_indirhashsize; i++) 2616 TAILQ_INIT(&sdp->sd_indirhash[i]); 2617 for (i = 0; i <= D_LAST; i++) 2618 LIST_INIT(&sdp->sd_alldeps[i]); 2619 ACQUIRE_GBLLOCK(&lk); 2620 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2621 FREE_GBLLOCK(&lk); 2622 2623 ump->um_softdep = sdp; 2624 MNT_ILOCK(mp); 2625 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2626 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2627 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2628 MNTK_SOFTDEP | MNTK_NOASYNC; 2629 } 2630 MNT_IUNLOCK(mp); 2631 2632 if ((fs->fs_flags & FS_SUJ) && 2633 (error = journal_mount(mp, fs, cred)) != 0) { 2634 printf("%s: failed to start journal: %d\n", 2635 mp->mnt_stat.f_mntonname, error); 2636 softdep_unmount(mp); 2637 return (error); 2638 } 2639 /* 2640 * Start our flushing thread in the bufdaemon process. 2641 */ 2642 ACQUIRE_LOCK(ump); 2643 ump->softdep_flags |= FLUSH_STARTING; 2644 FREE_LOCK(ump); 2645 error = kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2646 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2647 mp->mnt_stat.f_mntonname); 2648 ACQUIRE_LOCK(ump); 2649 if (error != 0) { 2650 printf("%s: failed to start softdepflush thread: %d\n", 2651 mp->mnt_stat.f_mntonname, error); 2652 ump->softdep_flags &= ~FLUSH_STARTING; 2653 FREE_LOCK(ump); 2654 softdep_unmount(mp); 2655 return (error); 2656 } 2657 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2658 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2659 hz / 2); 2660 } 2661 FREE_LOCK(ump); 2662 /* 2663 * When doing soft updates, the counters in the 2664 * superblock may have gotten out of sync. Recomputation 2665 * can take a long time and can be deferred for background 2666 * fsck. However, the old behavior of scanning the cylinder 2667 * groups and recalculating them at mount time is available 2668 * by setting vfs.ffs.compute_summary_at_mount to one. 2669 */ 2670 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2671 return (0); 2672 bzero(&cstotal, sizeof cstotal); 2673 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2674 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2675 fs->fs_cgsize, cred, &bp)) != 0) { 2676 brelse(bp); 2677 softdep_unmount(mp); 2678 return (error); 2679 } 2680 cgp = (struct cg *)bp->b_data; 2681 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2682 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2683 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2684 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2685 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2686 brelse(bp); 2687 } 2688 #ifdef INVARIANTS 2689 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2690 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2691 #endif 2692 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2693 return (0); 2694 } 2695 2696 void 2697 softdep_unmount(struct mount *mp) 2698 { 2699 struct ufsmount *ump; 2700 struct mount_softdeps *ums; 2701 2702 ump = VFSTOUFS(mp); 2703 KASSERT(ump->um_softdep != NULL, 2704 ("softdep_unmount called on non-softdep filesystem")); 2705 MNT_ILOCK(mp); 2706 mp->mnt_flag &= ~MNT_SOFTDEP; 2707 if ((mp->mnt_flag & MNT_SUJ) == 0) { 2708 MNT_IUNLOCK(mp); 2709 } else { 2710 mp->mnt_flag &= ~MNT_SUJ; 2711 MNT_IUNLOCK(mp); 2712 journal_unmount(ump); 2713 } 2714 /* 2715 * Shut down our flushing thread. Check for NULL is if 2716 * softdep_mount errors out before the thread has been created. 2717 */ 2718 if (ump->softdep_flushtd != NULL) { 2719 ACQUIRE_LOCK(ump); 2720 ump->softdep_flags |= FLUSH_EXIT; 2721 wakeup(&ump->softdep_flushtd); 2722 while ((ump->softdep_flags & FLUSH_EXIT) != 0) { 2723 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM, 2724 "sdwait", 0); 2725 } 2726 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2727 ("Thread shutdown failed")); 2728 FREE_LOCK(ump); 2729 } 2730 2731 /* 2732 * We are no longer have softdep structure attached to ump. 2733 */ 2734 ums = ump->um_softdep; 2735 ACQUIRE_GBLLOCK(&lk); 2736 TAILQ_REMOVE(&softdepmounts, ums, sd_next); 2737 FREE_GBLLOCK(&lk); 2738 ump->um_softdep = NULL; 2739 2740 KASSERT(ums->sd_on_journal == 0, 2741 ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal)); 2742 KASSERT(ums->sd_on_worklist == 0, 2743 ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist)); 2744 KASSERT(ums->sd_deps == 0, 2745 ("ump %p ums %p deps %d", ump, ums, ums->sd_deps)); 2746 2747 /* 2748 * Free up our resources. 2749 */ 2750 rw_destroy(&ums->sd_fslock); 2751 hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize); 2752 hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize); 2753 hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize); 2754 hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize); 2755 free(ums->sd_indirhash, M_FREEWORK); 2756 #ifdef INVARIANTS 2757 for (int i = 0; i <= D_LAST; i++) { 2758 KASSERT(ums->sd_curdeps[i] == 0, 2759 ("Unmount %s: Dep type %s != 0 (%jd)", ump->um_fs->fs_fsmnt, 2760 TYPENAME(i), (intmax_t)ums->sd_curdeps[i])); 2761 KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]), 2762 ("Unmount %s: Dep type %s not empty (%p)", 2763 ump->um_fs->fs_fsmnt, 2764 TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i]))); 2765 } 2766 #endif 2767 free(ums, M_MOUNTDATA); 2768 } 2769 2770 static struct jblocks * 2771 jblocks_create(void) 2772 { 2773 struct jblocks *jblocks; 2774 2775 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2776 TAILQ_INIT(&jblocks->jb_segs); 2777 jblocks->jb_avail = 10; 2778 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2779 M_JBLOCKS, M_WAITOK | M_ZERO); 2780 2781 return (jblocks); 2782 } 2783 2784 static ufs2_daddr_t 2785 jblocks_alloc(struct jblocks *jblocks, 2786 int bytes, 2787 int *actual) 2788 { 2789 ufs2_daddr_t daddr; 2790 struct jextent *jext; 2791 int freecnt; 2792 int blocks; 2793 2794 blocks = bytes / DEV_BSIZE; 2795 jext = &jblocks->jb_extent[jblocks->jb_head]; 2796 freecnt = jext->je_blocks - jblocks->jb_off; 2797 if (freecnt == 0) { 2798 jblocks->jb_off = 0; 2799 if (++jblocks->jb_head > jblocks->jb_used) 2800 jblocks->jb_head = 0; 2801 jext = &jblocks->jb_extent[jblocks->jb_head]; 2802 freecnt = jext->je_blocks; 2803 } 2804 if (freecnt > blocks) 2805 freecnt = blocks; 2806 *actual = freecnt * DEV_BSIZE; 2807 daddr = jext->je_daddr + jblocks->jb_off; 2808 jblocks->jb_off += freecnt; 2809 jblocks->jb_free -= freecnt; 2810 2811 return (daddr); 2812 } 2813 2814 static void 2815 jblocks_free(struct jblocks *jblocks, 2816 struct mount *mp, 2817 int bytes) 2818 { 2819 2820 LOCK_OWNED(VFSTOUFS(mp)); 2821 jblocks->jb_free += bytes / DEV_BSIZE; 2822 if (jblocks->jb_suspended) 2823 worklist_speedup(mp); 2824 wakeup(jblocks); 2825 } 2826 2827 static void 2828 jblocks_destroy(struct jblocks *jblocks) 2829 { 2830 2831 if (jblocks->jb_extent) 2832 free(jblocks->jb_extent, M_JBLOCKS); 2833 free(jblocks, M_JBLOCKS); 2834 } 2835 2836 static void 2837 jblocks_add(struct jblocks *jblocks, 2838 ufs2_daddr_t daddr, 2839 int blocks) 2840 { 2841 struct jextent *jext; 2842 2843 jblocks->jb_blocks += blocks; 2844 jblocks->jb_free += blocks; 2845 jext = &jblocks->jb_extent[jblocks->jb_used]; 2846 /* Adding the first block. */ 2847 if (jext->je_daddr == 0) { 2848 jext->je_daddr = daddr; 2849 jext->je_blocks = blocks; 2850 return; 2851 } 2852 /* Extending the last extent. */ 2853 if (jext->je_daddr + jext->je_blocks == daddr) { 2854 jext->je_blocks += blocks; 2855 return; 2856 } 2857 /* Adding a new extent. */ 2858 if (++jblocks->jb_used == jblocks->jb_avail) { 2859 jblocks->jb_avail *= 2; 2860 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2861 M_JBLOCKS, M_WAITOK | M_ZERO); 2862 memcpy(jext, jblocks->jb_extent, 2863 sizeof(struct jextent) * jblocks->jb_used); 2864 free(jblocks->jb_extent, M_JBLOCKS); 2865 jblocks->jb_extent = jext; 2866 } 2867 jext = &jblocks->jb_extent[jblocks->jb_used]; 2868 jext->je_daddr = daddr; 2869 jext->je_blocks = blocks; 2870 return; 2871 } 2872 2873 int 2874 softdep_journal_lookup(struct mount *mp, struct vnode **vpp) 2875 { 2876 struct componentname cnp; 2877 struct vnode *dvp; 2878 ino_t sujournal; 2879 int error; 2880 2881 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2882 if (error) 2883 return (error); 2884 bzero(&cnp, sizeof(cnp)); 2885 cnp.cn_nameiop = LOOKUP; 2886 cnp.cn_flags = ISLASTCN; 2887 cnp.cn_cred = curthread->td_ucred; 2888 cnp.cn_pnbuf = SUJ_FILE; 2889 cnp.cn_nameptr = SUJ_FILE; 2890 cnp.cn_namelen = strlen(SUJ_FILE); 2891 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2892 vput(dvp); 2893 if (error != 0) 2894 return (error); 2895 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2896 return (error); 2897 } 2898 2899 /* 2900 * Open and verify the journal file. 2901 */ 2902 static int 2903 journal_mount(struct mount *mp, 2904 struct fs *fs, 2905 struct ucred *cred) 2906 { 2907 struct jblocks *jblocks; 2908 struct ufsmount *ump; 2909 struct vnode *vp; 2910 struct inode *ip; 2911 ufs2_daddr_t blkno; 2912 int bcount; 2913 int error; 2914 int i; 2915 2916 ump = VFSTOUFS(mp); 2917 ump->softdep_journal_tail = NULL; 2918 ump->softdep_on_journal = 0; 2919 ump->softdep_accdeps = 0; 2920 ump->softdep_req = 0; 2921 ump->softdep_jblocks = NULL; 2922 error = softdep_journal_lookup(mp, &vp); 2923 if (error != 0) { 2924 printf("Failed to find journal. Use tunefs to create one\n"); 2925 return (error); 2926 } 2927 ip = VTOI(vp); 2928 if (ip->i_size < SUJ_MIN) { 2929 error = ENOSPC; 2930 goto out; 2931 } 2932 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2933 jblocks = jblocks_create(); 2934 for (i = 0; i < bcount; i++) { 2935 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2936 if (error) 2937 break; 2938 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2939 } 2940 if (error) { 2941 jblocks_destroy(jblocks); 2942 goto out; 2943 } 2944 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2945 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2946 ump->softdep_jblocks = jblocks; 2947 2948 MNT_ILOCK(mp); 2949 mp->mnt_flag |= MNT_SUJ; 2950 MNT_IUNLOCK(mp); 2951 2952 /* 2953 * Only validate the journal contents if the 2954 * filesystem is clean, otherwise we write the logs 2955 * but they'll never be used. If the filesystem was 2956 * still dirty when we mounted it the journal is 2957 * invalid and a new journal can only be valid if it 2958 * starts from a clean mount. 2959 */ 2960 if (fs->fs_clean) { 2961 DIP_SET(ip, i_modrev, fs->fs_mtime); 2962 ip->i_flags |= IN_MODIFIED; 2963 ffs_update(vp, 1); 2964 } 2965 out: 2966 vput(vp); 2967 return (error); 2968 } 2969 2970 static void 2971 journal_unmount(struct ufsmount *ump) 2972 { 2973 2974 if (ump->softdep_jblocks) 2975 jblocks_destroy(ump->softdep_jblocks); 2976 ump->softdep_jblocks = NULL; 2977 } 2978 2979 /* 2980 * Called when a journal record is ready to be written. Space is allocated 2981 * and the journal entry is created when the journal is flushed to stable 2982 * store. 2983 */ 2984 static void 2985 add_to_journal(struct worklist *wk) 2986 { 2987 struct ufsmount *ump; 2988 2989 ump = VFSTOUFS(wk->wk_mp); 2990 LOCK_OWNED(ump); 2991 if (wk->wk_state & ONWORKLIST) 2992 panic("add_to_journal: %s(0x%X) already on list", 2993 TYPENAME(wk->wk_type), wk->wk_state); 2994 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2995 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2996 ump->softdep_jblocks->jb_age = ticks; 2997 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2998 } else 2999 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 3000 ump->softdep_journal_tail = wk; 3001 ump->softdep_on_journal += 1; 3002 } 3003 3004 /* 3005 * Remove an arbitrary item for the journal worklist maintain the tail 3006 * pointer. This happens when a new operation obviates the need to 3007 * journal an old operation. 3008 */ 3009 static void 3010 remove_from_journal(struct worklist *wk) 3011 { 3012 struct ufsmount *ump; 3013 3014 ump = VFSTOUFS(wk->wk_mp); 3015 LOCK_OWNED(ump); 3016 #ifdef INVARIANTS 3017 { 3018 struct worklist *wkn; 3019 3020 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3021 if (wkn == wk) 3022 break; 3023 if (wkn == NULL) 3024 panic("remove_from_journal: %p is not in journal", wk); 3025 } 3026 #endif 3027 /* 3028 * We emulate a TAILQ to save space in most structures which do not 3029 * require TAILQ semantics. Here we must update the tail position 3030 * when removing the tail which is not the final entry. This works 3031 * only if the worklist linkage are at the beginning of the structure. 3032 */ 3033 if (ump->softdep_journal_tail == wk) 3034 ump->softdep_journal_tail = 3035 (struct worklist *)wk->wk_list.le_prev; 3036 WORKLIST_REMOVE(wk); 3037 ump->softdep_on_journal -= 1; 3038 } 3039 3040 /* 3041 * Check for journal space as well as dependency limits so the prelink 3042 * code can throttle both journaled and non-journaled filesystems. 3043 * Threshold is 0 for low and 1 for min. 3044 */ 3045 static int 3046 journal_space(struct ufsmount *ump, int thresh) 3047 { 3048 struct jblocks *jblocks; 3049 int limit, avail; 3050 3051 jblocks = ump->softdep_jblocks; 3052 if (jblocks == NULL) 3053 return (1); 3054 /* 3055 * We use a tighter restriction here to prevent request_cleanup() 3056 * running in threads from running into locks we currently hold. 3057 * We have to be over the limit and our filesystem has to be 3058 * responsible for more than our share of that usage. 3059 */ 3060 limit = (max_softdeps / 10) * 9; 3061 if (dep_current[D_INODEDEP] > limit && 3062 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3063 return (0); 3064 if (thresh) 3065 thresh = jblocks->jb_min; 3066 else 3067 thresh = jblocks->jb_low; 3068 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3069 avail = jblocks->jb_free - avail; 3070 3071 return (avail > thresh); 3072 } 3073 3074 static void 3075 journal_suspend(struct ufsmount *ump) 3076 { 3077 struct jblocks *jblocks; 3078 struct mount *mp; 3079 bool set; 3080 3081 mp = UFSTOVFS(ump); 3082 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3083 return; 3084 3085 jblocks = ump->softdep_jblocks; 3086 vfs_op_enter(mp); 3087 set = false; 3088 MNT_ILOCK(mp); 3089 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3090 stat_journal_min++; 3091 mp->mnt_kern_flag |= MNTK_SUSPEND; 3092 mp->mnt_susp_owner = ump->softdep_flushtd; 3093 set = true; 3094 } 3095 jblocks->jb_suspended = 1; 3096 MNT_IUNLOCK(mp); 3097 if (!set) 3098 vfs_op_exit(mp); 3099 } 3100 3101 static int 3102 journal_unsuspend(struct ufsmount *ump) 3103 { 3104 struct jblocks *jblocks; 3105 struct mount *mp; 3106 3107 mp = UFSTOVFS(ump); 3108 jblocks = ump->softdep_jblocks; 3109 3110 if (jblocks != NULL && jblocks->jb_suspended && 3111 journal_space(ump, jblocks->jb_min)) { 3112 jblocks->jb_suspended = 0; 3113 FREE_LOCK(ump); 3114 mp->mnt_susp_owner = curthread; 3115 vfs_write_resume(mp, 0); 3116 ACQUIRE_LOCK(ump); 3117 return (1); 3118 } 3119 return (0); 3120 } 3121 3122 static void 3123 journal_check_space(struct ufsmount *ump) 3124 { 3125 struct mount *mp; 3126 3127 LOCK_OWNED(ump); 3128 3129 if (journal_space(ump, 0) == 0) { 3130 softdep_speedup(ump); 3131 mp = UFSTOVFS(ump); 3132 FREE_LOCK(ump); 3133 VFS_SYNC(mp, MNT_NOWAIT); 3134 ffs_sbupdate(ump, MNT_WAIT, 0); 3135 ACQUIRE_LOCK(ump); 3136 if (journal_space(ump, 1) == 0) 3137 journal_suspend(ump); 3138 } 3139 } 3140 3141 /* 3142 * Called before any allocation function to be certain that there is 3143 * sufficient space in the journal prior to creating any new records. 3144 * Since in the case of block allocation we may have multiple locked 3145 * buffers at the time of the actual allocation we can not block 3146 * when the journal records are created. Doing so would create a deadlock 3147 * if any of these buffers needed to be flushed to reclaim space. Instead 3148 * we require a sufficiently large amount of available space such that 3149 * each thread in the system could have passed this allocation check and 3150 * still have sufficient free space. With 20% of a minimum journal size 3151 * of 1MB we have 6553 records available. 3152 */ 3153 int 3154 softdep_prealloc(struct vnode *vp, int waitok) 3155 { 3156 struct ufsmount *ump; 3157 3158 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3159 ("softdep_prealloc called on non-softdep filesystem")); 3160 /* 3161 * Nothing to do if we are not running journaled soft updates. 3162 * If we currently hold the snapshot lock, we must avoid 3163 * handling other resources that could cause deadlock. Do not 3164 * touch quotas vnode since it is typically recursed with 3165 * other vnode locks held. 3166 */ 3167 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3168 (vp->v_vflag & VV_SYSTEM) != 0) 3169 return (0); 3170 ump = VFSTOUFS(vp->v_mount); 3171 ACQUIRE_LOCK(ump); 3172 if (journal_space(ump, 0)) { 3173 FREE_LOCK(ump); 3174 return (0); 3175 } 3176 stat_journal_low++; 3177 FREE_LOCK(ump); 3178 if (waitok == MNT_NOWAIT) 3179 return (ENOSPC); 3180 /* 3181 * Attempt to sync this vnode once to flush any journal 3182 * work attached to it. 3183 */ 3184 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3185 ffs_syncvnode(vp, waitok, 0); 3186 ACQUIRE_LOCK(ump); 3187 process_removes(vp); 3188 process_truncates(vp); 3189 journal_check_space(ump); 3190 FREE_LOCK(ump); 3191 3192 return (0); 3193 } 3194 3195 /* 3196 * Try hard to sync all data and metadata for the vnode, and workitems 3197 * flushing which might conflict with the vnode lock. This is a 3198 * helper for softdep_prerename(). 3199 */ 3200 static int 3201 softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp) 3202 { 3203 int error; 3204 3205 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3206 if (vp->v_data == NULL) 3207 return (0); 3208 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3209 if (error != 0) 3210 return (error); 3211 ACQUIRE_LOCK(ump); 3212 process_removes(vp); 3213 process_truncates(vp); 3214 FREE_LOCK(ump); 3215 return (0); 3216 } 3217 3218 /* 3219 * Must be called from VOP_RENAME() after all vnodes are locked. 3220 * Ensures that there is enough journal space for rename. It is 3221 * sufficiently different from softdep_prelink() by having to handle 3222 * four vnodes. 3223 */ 3224 int 3225 softdep_prerename(struct vnode *fdvp, 3226 struct vnode *fvp, 3227 struct vnode *tdvp, 3228 struct vnode *tvp) 3229 { 3230 struct ufsmount *ump; 3231 int error; 3232 3233 ump = VFSTOUFS(fdvp->v_mount); 3234 3235 if (journal_space(ump, 0)) 3236 return (0); 3237 3238 VOP_UNLOCK(tdvp); 3239 VOP_UNLOCK(fvp); 3240 if (tvp != NULL && tvp != tdvp) 3241 VOP_UNLOCK(tvp); 3242 3243 error = softdep_prerename_vnode(ump, fdvp); 3244 VOP_UNLOCK(fdvp); 3245 if (error != 0) 3246 return (error); 3247 3248 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3249 error = softdep_prerename_vnode(ump, fvp); 3250 VOP_UNLOCK(fvp); 3251 if (error != 0) 3252 return (error); 3253 3254 if (tdvp != fdvp) { 3255 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3256 error = softdep_prerename_vnode(ump, tdvp); 3257 VOP_UNLOCK(tdvp); 3258 if (error != 0) 3259 return (error); 3260 } 3261 3262 if (tvp != fvp && tvp != NULL) { 3263 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3264 error = softdep_prerename_vnode(ump, tvp); 3265 VOP_UNLOCK(tvp); 3266 if (error != 0) 3267 return (error); 3268 } 3269 3270 ACQUIRE_LOCK(ump); 3271 softdep_speedup(ump); 3272 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3273 journal_check_space(ump); 3274 FREE_LOCK(ump); 3275 return (ERELOOKUP); 3276 } 3277 3278 /* 3279 * Before adjusting a link count on a vnode verify that we have sufficient 3280 * journal space. If not, process operations that depend on the currently 3281 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3282 * and softdep flush threads can not acquire these locks to reclaim space. 3283 * 3284 * Returns 0 if all owned locks are still valid and were not dropped 3285 * in the process, in other case it returns either an error from sync, 3286 * or ERELOOKUP if any of the locks were re-acquired. In the later 3287 * case, the state of the vnodes cannot be relied upon and our VFS 3288 * syscall must be restarted at top level from the lookup. 3289 */ 3290 int 3291 softdep_prelink(struct vnode *dvp, 3292 struct vnode *vp, 3293 struct componentname *cnp) 3294 { 3295 struct ufsmount *ump; 3296 struct nameidata *ndp; 3297 3298 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3299 if (vp != NULL) 3300 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3301 ump = VFSTOUFS(dvp->v_mount); 3302 3303 /* 3304 * Nothing to do if we have sufficient journal space. We skip 3305 * flushing when vp is a snapshot to avoid deadlock where 3306 * another thread is trying to update the inodeblock for dvp 3307 * and is waiting on snaplk that vp holds. 3308 */ 3309 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) 3310 return (0); 3311 3312 /* 3313 * Check if the journal space consumption can in theory be 3314 * accounted on dvp and vp. If the vnodes metadata was not 3315 * changed comparing with the previous round-trip into 3316 * softdep_prelink(), as indicated by the seqc generation 3317 * recorded in the nameidata, then there is no point in 3318 * starting the sync. 3319 */ 3320 ndp = __containerof(cnp, struct nameidata, ni_cnd); 3321 if (!seqc_in_modify(ndp->ni_dvp_seqc) && 3322 vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) && 3323 (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) && 3324 vn_seqc_consistent(vp, ndp->ni_vp_seqc)))) 3325 return (0); 3326 3327 stat_journal_low++; 3328 if (vp != NULL) { 3329 VOP_UNLOCK(dvp); 3330 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3331 vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true, LK_EXCLUSIVE); 3332 if (dvp->v_data == NULL) 3333 goto out; 3334 } 3335 if (vp != NULL) 3336 VOP_UNLOCK(vp); 3337 ffs_syncvnode(dvp, MNT_WAIT, 0); 3338 /* Process vp before dvp as it may create .. removes. */ 3339 if (vp != NULL) { 3340 VOP_UNLOCK(dvp); 3341 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3342 if (vp->v_data == NULL) { 3343 vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true, 3344 LK_EXCLUSIVE); 3345 goto out; 3346 } 3347 ACQUIRE_LOCK(ump); 3348 process_removes(vp); 3349 process_truncates(vp); 3350 FREE_LOCK(ump); 3351 VOP_UNLOCK(vp); 3352 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3353 if (dvp->v_data == NULL) { 3354 vn_lock_pair(dvp, true, LK_EXCLUSIVE, vp, false, 3355 LK_EXCLUSIVE); 3356 goto out; 3357 } 3358 } 3359 3360 ACQUIRE_LOCK(ump); 3361 process_removes(dvp); 3362 process_truncates(dvp); 3363 VOP_UNLOCK(dvp); 3364 softdep_speedup(ump); 3365 3366 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3367 journal_check_space(ump); 3368 FREE_LOCK(ump); 3369 3370 vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, false, LK_EXCLUSIVE); 3371 out: 3372 ndp->ni_dvp_seqc = vn_seqc_read_any(dvp); 3373 if (vp != NULL) 3374 ndp->ni_vp_seqc = vn_seqc_read_any(vp); 3375 return (ERELOOKUP); 3376 } 3377 3378 static void 3379 jseg_write(struct ufsmount *ump, 3380 struct jseg *jseg, 3381 uint8_t *data) 3382 { 3383 struct jsegrec *rec; 3384 3385 rec = (struct jsegrec *)data; 3386 rec->jsr_seq = jseg->js_seq; 3387 rec->jsr_oldest = jseg->js_oldseq; 3388 rec->jsr_cnt = jseg->js_cnt; 3389 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3390 rec->jsr_crc = 0; 3391 rec->jsr_time = ump->um_fs->fs_mtime; 3392 } 3393 3394 static inline void 3395 inoref_write(struct inoref *inoref, 3396 struct jseg *jseg, 3397 struct jrefrec *rec) 3398 { 3399 3400 inoref->if_jsegdep->jd_seg = jseg; 3401 rec->jr_ino = inoref->if_ino; 3402 rec->jr_parent = inoref->if_parent; 3403 rec->jr_nlink = inoref->if_nlink; 3404 rec->jr_mode = inoref->if_mode; 3405 rec->jr_diroff = inoref->if_diroff; 3406 } 3407 3408 static void 3409 jaddref_write(struct jaddref *jaddref, 3410 struct jseg *jseg, 3411 uint8_t *data) 3412 { 3413 struct jrefrec *rec; 3414 3415 rec = (struct jrefrec *)data; 3416 rec->jr_op = JOP_ADDREF; 3417 inoref_write(&jaddref->ja_ref, jseg, rec); 3418 } 3419 3420 static void 3421 jremref_write(struct jremref *jremref, 3422 struct jseg *jseg, 3423 uint8_t *data) 3424 { 3425 struct jrefrec *rec; 3426 3427 rec = (struct jrefrec *)data; 3428 rec->jr_op = JOP_REMREF; 3429 inoref_write(&jremref->jr_ref, jseg, rec); 3430 } 3431 3432 static void 3433 jmvref_write(struct jmvref *jmvref, 3434 struct jseg *jseg, 3435 uint8_t *data) 3436 { 3437 struct jmvrec *rec; 3438 3439 rec = (struct jmvrec *)data; 3440 rec->jm_op = JOP_MVREF; 3441 rec->jm_ino = jmvref->jm_ino; 3442 rec->jm_parent = jmvref->jm_parent; 3443 rec->jm_oldoff = jmvref->jm_oldoff; 3444 rec->jm_newoff = jmvref->jm_newoff; 3445 } 3446 3447 static void 3448 jnewblk_write(struct jnewblk *jnewblk, 3449 struct jseg *jseg, 3450 uint8_t *data) 3451 { 3452 struct jblkrec *rec; 3453 3454 jnewblk->jn_jsegdep->jd_seg = jseg; 3455 rec = (struct jblkrec *)data; 3456 rec->jb_op = JOP_NEWBLK; 3457 rec->jb_ino = jnewblk->jn_ino; 3458 rec->jb_blkno = jnewblk->jn_blkno; 3459 rec->jb_lbn = jnewblk->jn_lbn; 3460 rec->jb_frags = jnewblk->jn_frags; 3461 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3462 } 3463 3464 static void 3465 jfreeblk_write(struct jfreeblk *jfreeblk, 3466 struct jseg *jseg, 3467 uint8_t *data) 3468 { 3469 struct jblkrec *rec; 3470 3471 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3472 rec = (struct jblkrec *)data; 3473 rec->jb_op = JOP_FREEBLK; 3474 rec->jb_ino = jfreeblk->jf_ino; 3475 rec->jb_blkno = jfreeblk->jf_blkno; 3476 rec->jb_lbn = jfreeblk->jf_lbn; 3477 rec->jb_frags = jfreeblk->jf_frags; 3478 rec->jb_oldfrags = 0; 3479 } 3480 3481 static void 3482 jfreefrag_write(struct jfreefrag *jfreefrag, 3483 struct jseg *jseg, 3484 uint8_t *data) 3485 { 3486 struct jblkrec *rec; 3487 3488 jfreefrag->fr_jsegdep->jd_seg = jseg; 3489 rec = (struct jblkrec *)data; 3490 rec->jb_op = JOP_FREEBLK; 3491 rec->jb_ino = jfreefrag->fr_ino; 3492 rec->jb_blkno = jfreefrag->fr_blkno; 3493 rec->jb_lbn = jfreefrag->fr_lbn; 3494 rec->jb_frags = jfreefrag->fr_frags; 3495 rec->jb_oldfrags = 0; 3496 } 3497 3498 static void 3499 jtrunc_write(struct jtrunc *jtrunc, 3500 struct jseg *jseg, 3501 uint8_t *data) 3502 { 3503 struct jtrncrec *rec; 3504 3505 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3506 rec = (struct jtrncrec *)data; 3507 rec->jt_op = JOP_TRUNC; 3508 rec->jt_ino = jtrunc->jt_ino; 3509 rec->jt_size = jtrunc->jt_size; 3510 rec->jt_extsize = jtrunc->jt_extsize; 3511 } 3512 3513 static void 3514 jfsync_write(struct jfsync *jfsync, 3515 struct jseg *jseg, 3516 uint8_t *data) 3517 { 3518 struct jtrncrec *rec; 3519 3520 rec = (struct jtrncrec *)data; 3521 rec->jt_op = JOP_SYNC; 3522 rec->jt_ino = jfsync->jfs_ino; 3523 rec->jt_size = jfsync->jfs_size; 3524 rec->jt_extsize = jfsync->jfs_extsize; 3525 } 3526 3527 static void 3528 softdep_flushjournal(struct mount *mp) 3529 { 3530 struct jblocks *jblocks; 3531 struct ufsmount *ump; 3532 3533 if (MOUNTEDSUJ(mp) == 0) 3534 return; 3535 ump = VFSTOUFS(mp); 3536 jblocks = ump->softdep_jblocks; 3537 ACQUIRE_LOCK(ump); 3538 while (ump->softdep_on_journal) { 3539 jblocks->jb_needseg = 1; 3540 softdep_process_journal(mp, NULL, MNT_WAIT); 3541 } 3542 FREE_LOCK(ump); 3543 } 3544 3545 static void softdep_synchronize_completed(struct bio *); 3546 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3547 3548 static void 3549 softdep_synchronize_completed(struct bio *bp) 3550 { 3551 struct jseg *oldest; 3552 struct jseg *jseg; 3553 struct ufsmount *ump; 3554 3555 /* 3556 * caller1 marks the last segment written before we issued the 3557 * synchronize cache. 3558 */ 3559 jseg = bp->bio_caller1; 3560 if (jseg == NULL) { 3561 g_destroy_bio(bp); 3562 return; 3563 } 3564 ump = VFSTOUFS(jseg->js_list.wk_mp); 3565 ACQUIRE_LOCK(ump); 3566 oldest = NULL; 3567 /* 3568 * Mark all the journal entries waiting on the synchronize cache 3569 * as completed so they may continue on. 3570 */ 3571 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3572 jseg->js_state |= COMPLETE; 3573 oldest = jseg; 3574 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3575 } 3576 /* 3577 * Restart deferred journal entry processing from the oldest 3578 * completed jseg. 3579 */ 3580 if (oldest) 3581 complete_jsegs(oldest); 3582 3583 FREE_LOCK(ump); 3584 g_destroy_bio(bp); 3585 } 3586 3587 /* 3588 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3589 * barriers. The journal must be written prior to any blocks that depend 3590 * on it and the journal can not be released until the blocks have be 3591 * written. This code handles both barriers simultaneously. 3592 */ 3593 static void 3594 softdep_synchronize(struct bio *bp, 3595 struct ufsmount *ump, 3596 void *caller1) 3597 { 3598 3599 bp->bio_cmd = BIO_FLUSH; 3600 bp->bio_flags |= BIO_ORDERED; 3601 bp->bio_data = NULL; 3602 bp->bio_offset = ump->um_cp->provider->mediasize; 3603 bp->bio_length = 0; 3604 bp->bio_done = softdep_synchronize_completed; 3605 bp->bio_caller1 = caller1; 3606 g_io_request(bp, ump->um_cp); 3607 } 3608 3609 /* 3610 * Flush some journal records to disk. 3611 */ 3612 static void 3613 softdep_process_journal(struct mount *mp, 3614 struct worklist *needwk, 3615 int flags) 3616 { 3617 struct jblocks *jblocks; 3618 struct ufsmount *ump; 3619 struct worklist *wk; 3620 struct jseg *jseg; 3621 struct buf *bp; 3622 struct bio *bio; 3623 uint8_t *data; 3624 struct fs *fs; 3625 int shouldflush; 3626 int segwritten; 3627 int jrecmin; /* Minimum records per block. */ 3628 int jrecmax; /* Maximum records per block. */ 3629 int size; 3630 int cnt; 3631 int off; 3632 int devbsize; 3633 3634 ump = VFSTOUFS(mp); 3635 if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL) 3636 return; 3637 shouldflush = softdep_flushcache; 3638 bio = NULL; 3639 jseg = NULL; 3640 LOCK_OWNED(ump); 3641 fs = ump->um_fs; 3642 jblocks = ump->softdep_jblocks; 3643 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3644 /* 3645 * We write anywhere between a disk block and fs block. The upper 3646 * bound is picked to prevent buffer cache fragmentation and limit 3647 * processing time per I/O. 3648 */ 3649 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3650 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3651 segwritten = 0; 3652 for (;;) { 3653 cnt = ump->softdep_on_journal; 3654 /* 3655 * Criteria for writing a segment: 3656 * 1) We have a full block. 3657 * 2) We're called from jwait() and haven't found the 3658 * journal item yet. 3659 * 3) Always write if needseg is set. 3660 * 4) If we are called from process_worklist and have 3661 * not yet written anything we write a partial block 3662 * to enforce a 1 second maximum latency on journal 3663 * entries. 3664 */ 3665 if (cnt < (jrecmax - 1) && needwk == NULL && 3666 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3667 break; 3668 cnt++; 3669 /* 3670 * Verify some free journal space. softdep_prealloc() should 3671 * guarantee that we don't run out so this is indicative of 3672 * a problem with the flow control. Try to recover 3673 * gracefully in any event. 3674 */ 3675 while (jblocks->jb_free == 0) { 3676 if (flags != MNT_WAIT) 3677 break; 3678 printf("softdep: Out of journal space!\n"); 3679 softdep_speedup(ump); 3680 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3681 } 3682 FREE_LOCK(ump); 3683 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3684 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3685 LIST_INIT(&jseg->js_entries); 3686 LIST_INIT(&jseg->js_indirs); 3687 jseg->js_state = ATTACHED; 3688 if (shouldflush == 0) 3689 jseg->js_state |= COMPLETE; 3690 else if (bio == NULL) 3691 bio = g_alloc_bio(); 3692 jseg->js_jblocks = jblocks; 3693 bp = geteblk(fs->fs_bsize, 0); 3694 ACQUIRE_LOCK(ump); 3695 /* 3696 * If there was a race while we were allocating the block 3697 * and jseg the entry we care about was likely written. 3698 * We bail out in both the WAIT and NOWAIT case and assume 3699 * the caller will loop if the entry it cares about is 3700 * not written. 3701 */ 3702 cnt = ump->softdep_on_journal; 3703 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3704 bp->b_flags |= B_INVAL | B_NOCACHE; 3705 WORKITEM_FREE(jseg, D_JSEG); 3706 FREE_LOCK(ump); 3707 brelse(bp); 3708 ACQUIRE_LOCK(ump); 3709 break; 3710 } 3711 /* 3712 * Calculate the disk block size required for the available 3713 * records rounded to the min size. 3714 */ 3715 if (cnt == 0) 3716 size = devbsize; 3717 else if (cnt < jrecmax) 3718 size = howmany(cnt, jrecmin) * devbsize; 3719 else 3720 size = fs->fs_bsize; 3721 /* 3722 * Allocate a disk block for this journal data and account 3723 * for truncation of the requested size if enough contiguous 3724 * space was not available. 3725 */ 3726 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3727 bp->b_lblkno = bp->b_blkno; 3728 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3729 bp->b_bcount = size; 3730 bp->b_flags &= ~B_INVAL; 3731 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3732 /* 3733 * Initialize our jseg with cnt records. Assign the next 3734 * sequence number to it and link it in-order. 3735 */ 3736 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3737 jseg->js_buf = bp; 3738 jseg->js_cnt = cnt; 3739 jseg->js_refs = cnt + 1; /* Self ref. */ 3740 jseg->js_size = size; 3741 jseg->js_seq = jblocks->jb_nextseq++; 3742 if (jblocks->jb_oldestseg == NULL) 3743 jblocks->jb_oldestseg = jseg; 3744 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3745 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3746 if (jblocks->jb_writeseg == NULL) 3747 jblocks->jb_writeseg = jseg; 3748 /* 3749 * Start filling in records from the pending list. 3750 */ 3751 data = bp->b_data; 3752 off = 0; 3753 3754 /* 3755 * Always put a header on the first block. 3756 * XXX As with below, there might not be a chance to get 3757 * into the loop. Ensure that something valid is written. 3758 */ 3759 jseg_write(ump, jseg, data); 3760 off += JREC_SIZE; 3761 data = bp->b_data + off; 3762 3763 /* 3764 * XXX Something is wrong here. There's no work to do, 3765 * but we need to perform and I/O and allow it to complete 3766 * anyways. 3767 */ 3768 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3769 stat_emptyjblocks++; 3770 3771 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3772 != NULL) { 3773 if (cnt == 0) 3774 break; 3775 /* Place a segment header on every device block. */ 3776 if ((off % devbsize) == 0) { 3777 jseg_write(ump, jseg, data); 3778 off += JREC_SIZE; 3779 data = bp->b_data + off; 3780 } 3781 if (wk == needwk) 3782 needwk = NULL; 3783 remove_from_journal(wk); 3784 wk->wk_state |= INPROGRESS; 3785 WORKLIST_INSERT(&jseg->js_entries, wk); 3786 switch (wk->wk_type) { 3787 case D_JADDREF: 3788 jaddref_write(WK_JADDREF(wk), jseg, data); 3789 break; 3790 case D_JREMREF: 3791 jremref_write(WK_JREMREF(wk), jseg, data); 3792 break; 3793 case D_JMVREF: 3794 jmvref_write(WK_JMVREF(wk), jseg, data); 3795 break; 3796 case D_JNEWBLK: 3797 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3798 break; 3799 case D_JFREEBLK: 3800 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3801 break; 3802 case D_JFREEFRAG: 3803 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3804 break; 3805 case D_JTRUNC: 3806 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3807 break; 3808 case D_JFSYNC: 3809 jfsync_write(WK_JFSYNC(wk), jseg, data); 3810 break; 3811 default: 3812 panic("process_journal: Unknown type %s", 3813 TYPENAME(wk->wk_type)); 3814 /* NOTREACHED */ 3815 } 3816 off += JREC_SIZE; 3817 data = bp->b_data + off; 3818 cnt--; 3819 } 3820 3821 /* Clear any remaining space so we don't leak kernel data */ 3822 if (size > off) 3823 bzero(data, size - off); 3824 3825 /* 3826 * Write this one buffer and continue. 3827 */ 3828 segwritten = 1; 3829 jblocks->jb_needseg = 0; 3830 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3831 FREE_LOCK(ump); 3832 bp->b_xflags |= BX_CVTENXIO; 3833 pbgetvp(ump->um_devvp, bp); 3834 /* 3835 * We only do the blocking wait once we find the journal 3836 * entry we're looking for. 3837 */ 3838 if (needwk == NULL && flags == MNT_WAIT) 3839 bwrite(bp); 3840 else 3841 bawrite(bp); 3842 ACQUIRE_LOCK(ump); 3843 } 3844 /* 3845 * If we wrote a segment issue a synchronize cache so the journal 3846 * is reflected on disk before the data is written. Since reclaiming 3847 * journal space also requires writing a journal record this 3848 * process also enforces a barrier before reclamation. 3849 */ 3850 if (segwritten && shouldflush) { 3851 softdep_synchronize(bio, ump, 3852 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3853 } else if (bio) 3854 g_destroy_bio(bio); 3855 /* 3856 * If we've suspended the filesystem because we ran out of journal 3857 * space either try to sync it here to make some progress or 3858 * unsuspend it if we already have. 3859 */ 3860 if (flags == 0 && jblocks->jb_suspended) { 3861 if (journal_unsuspend(ump)) 3862 return; 3863 FREE_LOCK(ump); 3864 VFS_SYNC(mp, MNT_NOWAIT); 3865 ffs_sbupdate(ump, MNT_WAIT, 0); 3866 ACQUIRE_LOCK(ump); 3867 } 3868 } 3869 3870 /* 3871 * Complete a jseg, allowing all dependencies awaiting journal writes 3872 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3873 * structures so that the journal segment can be freed to reclaim space. 3874 */ 3875 static void 3876 complete_jseg(struct jseg *jseg) 3877 { 3878 struct worklist *wk; 3879 struct jmvref *jmvref; 3880 #ifdef INVARIANTS 3881 int i = 0; 3882 #endif 3883 3884 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3885 WORKLIST_REMOVE(wk); 3886 wk->wk_state &= ~INPROGRESS; 3887 wk->wk_state |= COMPLETE; 3888 KASSERT(i++ < jseg->js_cnt, 3889 ("handle_written_jseg: overflow %d >= %d", 3890 i - 1, jseg->js_cnt)); 3891 switch (wk->wk_type) { 3892 case D_JADDREF: 3893 handle_written_jaddref(WK_JADDREF(wk)); 3894 break; 3895 case D_JREMREF: 3896 handle_written_jremref(WK_JREMREF(wk)); 3897 break; 3898 case D_JMVREF: 3899 rele_jseg(jseg); /* No jsegdep. */ 3900 jmvref = WK_JMVREF(wk); 3901 LIST_REMOVE(jmvref, jm_deps); 3902 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3903 free_pagedep(jmvref->jm_pagedep); 3904 WORKITEM_FREE(jmvref, D_JMVREF); 3905 break; 3906 case D_JNEWBLK: 3907 handle_written_jnewblk(WK_JNEWBLK(wk)); 3908 break; 3909 case D_JFREEBLK: 3910 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3911 break; 3912 case D_JTRUNC: 3913 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3914 break; 3915 case D_JFSYNC: 3916 rele_jseg(jseg); /* No jsegdep. */ 3917 WORKITEM_FREE(wk, D_JFSYNC); 3918 break; 3919 case D_JFREEFRAG: 3920 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3921 break; 3922 default: 3923 panic("handle_written_jseg: Unknown type %s", 3924 TYPENAME(wk->wk_type)); 3925 /* NOTREACHED */ 3926 } 3927 } 3928 /* Release the self reference so the structure may be freed. */ 3929 rele_jseg(jseg); 3930 } 3931 3932 /* 3933 * Determine which jsegs are ready for completion processing. Waits for 3934 * synchronize cache to complete as well as forcing in-order completion 3935 * of journal entries. 3936 */ 3937 static void 3938 complete_jsegs(struct jseg *jseg) 3939 { 3940 struct jblocks *jblocks; 3941 struct jseg *jsegn; 3942 3943 jblocks = jseg->js_jblocks; 3944 /* 3945 * Don't allow out of order completions. If this isn't the first 3946 * block wait for it to write before we're done. 3947 */ 3948 if (jseg != jblocks->jb_writeseg) 3949 return; 3950 /* Iterate through available jsegs processing their entries. */ 3951 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3952 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3953 jsegn = TAILQ_NEXT(jseg, js_next); 3954 complete_jseg(jseg); 3955 jseg = jsegn; 3956 } 3957 jblocks->jb_writeseg = jseg; 3958 /* 3959 * Attempt to free jsegs now that oldestwrseq may have advanced. 3960 */ 3961 free_jsegs(jblocks); 3962 } 3963 3964 /* 3965 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3966 * the final completions. 3967 */ 3968 static void 3969 handle_written_jseg(struct jseg *jseg, struct buf *bp) 3970 { 3971 3972 if (jseg->js_refs == 0) 3973 panic("handle_written_jseg: No self-reference on %p", jseg); 3974 jseg->js_state |= DEPCOMPLETE; 3975 /* 3976 * We'll never need this buffer again, set flags so it will be 3977 * discarded. 3978 */ 3979 bp->b_flags |= B_INVAL | B_NOCACHE; 3980 pbrelvp(bp); 3981 complete_jsegs(jseg); 3982 } 3983 3984 static inline struct jsegdep * 3985 inoref_jseg(struct inoref *inoref) 3986 { 3987 struct jsegdep *jsegdep; 3988 3989 jsegdep = inoref->if_jsegdep; 3990 inoref->if_jsegdep = NULL; 3991 3992 return (jsegdep); 3993 } 3994 3995 /* 3996 * Called once a jremref has made it to stable store. The jremref is marked 3997 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3998 * for the jremref to complete will be awoken by free_jremref. 3999 */ 4000 static void 4001 handle_written_jremref(struct jremref *jremref) 4002 { 4003 struct inodedep *inodedep; 4004 struct jsegdep *jsegdep; 4005 struct dirrem *dirrem; 4006 4007 /* Grab the jsegdep. */ 4008 jsegdep = inoref_jseg(&jremref->jr_ref); 4009 /* 4010 * Remove us from the inoref list. 4011 */ 4012 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4013 0, &inodedep) == 0) 4014 panic("handle_written_jremref: Lost inodedep"); 4015 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4016 /* 4017 * Complete the dirrem. 4018 */ 4019 dirrem = jremref->jr_dirrem; 4020 jremref->jr_dirrem = NULL; 4021 LIST_REMOVE(jremref, jr_deps); 4022 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4023 jwork_insert(&dirrem->dm_jwork, jsegdep); 4024 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4025 (dirrem->dm_state & COMPLETE) != 0) 4026 add_to_worklist(&dirrem->dm_list, 0); 4027 free_jremref(jremref); 4028 } 4029 4030 /* 4031 * Called once a jaddref has made it to stable store. The dependency is 4032 * marked complete and any dependent structures are added to the inode 4033 * bufwait list to be completed as soon as it is written. If a bitmap write 4034 * depends on this entry we move the inode into the inodedephd of the 4035 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4036 */ 4037 static void 4038 handle_written_jaddref(struct jaddref *jaddref) 4039 { 4040 struct jsegdep *jsegdep; 4041 struct inodedep *inodedep; 4042 struct diradd *diradd; 4043 struct mkdir *mkdir; 4044 4045 /* Grab the jsegdep. */ 4046 jsegdep = inoref_jseg(&jaddref->ja_ref); 4047 mkdir = NULL; 4048 diradd = NULL; 4049 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4050 0, &inodedep) == 0) 4051 panic("handle_written_jaddref: Lost inodedep."); 4052 if (jaddref->ja_diradd == NULL) 4053 panic("handle_written_jaddref: No dependency"); 4054 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4055 diradd = jaddref->ja_diradd; 4056 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4057 } else if (jaddref->ja_state & MKDIR_PARENT) { 4058 mkdir = jaddref->ja_mkdir; 4059 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4060 } else if (jaddref->ja_state & MKDIR_BODY) 4061 mkdir = jaddref->ja_mkdir; 4062 else 4063 panic("handle_written_jaddref: Unknown dependency %p", 4064 jaddref->ja_diradd); 4065 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4066 /* 4067 * Remove us from the inode list. 4068 */ 4069 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4070 /* 4071 * The mkdir may be waiting on the jaddref to clear before freeing. 4072 */ 4073 if (mkdir) { 4074 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4075 ("handle_written_jaddref: Incorrect type for mkdir %s", 4076 TYPENAME(mkdir->md_list.wk_type))); 4077 mkdir->md_jaddref = NULL; 4078 diradd = mkdir->md_diradd; 4079 mkdir->md_state |= DEPCOMPLETE; 4080 complete_mkdir(mkdir); 4081 } 4082 jwork_insert(&diradd->da_jwork, jsegdep); 4083 if (jaddref->ja_state & NEWBLOCK) { 4084 inodedep->id_state |= ONDEPLIST; 4085 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4086 inodedep, id_deps); 4087 } 4088 free_jaddref(jaddref); 4089 } 4090 4091 /* 4092 * Called once a jnewblk journal is written. The allocdirect or allocindir 4093 * is placed in the bmsafemap to await notification of a written bitmap. If 4094 * the operation was canceled we add the segdep to the appropriate 4095 * dependency to free the journal space once the canceling operation 4096 * completes. 4097 */ 4098 static void 4099 handle_written_jnewblk(struct jnewblk *jnewblk) 4100 { 4101 struct bmsafemap *bmsafemap; 4102 struct freefrag *freefrag; 4103 struct freework *freework; 4104 struct jsegdep *jsegdep; 4105 struct newblk *newblk; 4106 4107 /* Grab the jsegdep. */ 4108 jsegdep = jnewblk->jn_jsegdep; 4109 jnewblk->jn_jsegdep = NULL; 4110 if (jnewblk->jn_dep == NULL) 4111 panic("handle_written_jnewblk: No dependency for the segdep."); 4112 switch (jnewblk->jn_dep->wk_type) { 4113 case D_NEWBLK: 4114 case D_ALLOCDIRECT: 4115 case D_ALLOCINDIR: 4116 /* 4117 * Add the written block to the bmsafemap so it can 4118 * be notified when the bitmap is on disk. 4119 */ 4120 newblk = WK_NEWBLK(jnewblk->jn_dep); 4121 newblk->nb_jnewblk = NULL; 4122 if ((newblk->nb_state & GOINGAWAY) == 0) { 4123 bmsafemap = newblk->nb_bmsafemap; 4124 newblk->nb_state |= ONDEPLIST; 4125 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4126 nb_deps); 4127 } 4128 jwork_insert(&newblk->nb_jwork, jsegdep); 4129 break; 4130 case D_FREEFRAG: 4131 /* 4132 * A newblock being removed by a freefrag when replaced by 4133 * frag extension. 4134 */ 4135 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4136 freefrag->ff_jdep = NULL; 4137 jwork_insert(&freefrag->ff_jwork, jsegdep); 4138 break; 4139 case D_FREEWORK: 4140 /* 4141 * A direct block was removed by truncate. 4142 */ 4143 freework = WK_FREEWORK(jnewblk->jn_dep); 4144 freework->fw_jnewblk = NULL; 4145 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4146 break; 4147 default: 4148 panic("handle_written_jnewblk: Unknown type %d.", 4149 jnewblk->jn_dep->wk_type); 4150 } 4151 jnewblk->jn_dep = NULL; 4152 free_jnewblk(jnewblk); 4153 } 4154 4155 /* 4156 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4157 * an in-flight allocation that has not yet been committed. Divorce us 4158 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4159 * to the worklist. 4160 */ 4161 static void 4162 cancel_jfreefrag(struct jfreefrag *jfreefrag) 4163 { 4164 struct freefrag *freefrag; 4165 4166 if (jfreefrag->fr_jsegdep) { 4167 free_jsegdep(jfreefrag->fr_jsegdep); 4168 jfreefrag->fr_jsegdep = NULL; 4169 } 4170 freefrag = jfreefrag->fr_freefrag; 4171 jfreefrag->fr_freefrag = NULL; 4172 free_jfreefrag(jfreefrag); 4173 freefrag->ff_state |= DEPCOMPLETE; 4174 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4175 } 4176 4177 /* 4178 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4179 */ 4180 static void 4181 free_jfreefrag(struct jfreefrag *jfreefrag) 4182 { 4183 4184 if (jfreefrag->fr_state & INPROGRESS) 4185 WORKLIST_REMOVE(&jfreefrag->fr_list); 4186 else if (jfreefrag->fr_state & ONWORKLIST) 4187 remove_from_journal(&jfreefrag->fr_list); 4188 if (jfreefrag->fr_freefrag != NULL) 4189 panic("free_jfreefrag: Still attached to a freefrag."); 4190 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4191 } 4192 4193 /* 4194 * Called when the journal write for a jfreefrag completes. The parent 4195 * freefrag is added to the worklist if this completes its dependencies. 4196 */ 4197 static void 4198 handle_written_jfreefrag(struct jfreefrag *jfreefrag) 4199 { 4200 struct jsegdep *jsegdep; 4201 struct freefrag *freefrag; 4202 4203 /* Grab the jsegdep. */ 4204 jsegdep = jfreefrag->fr_jsegdep; 4205 jfreefrag->fr_jsegdep = NULL; 4206 freefrag = jfreefrag->fr_freefrag; 4207 if (freefrag == NULL) 4208 panic("handle_written_jfreefrag: No freefrag."); 4209 freefrag->ff_state |= DEPCOMPLETE; 4210 freefrag->ff_jdep = NULL; 4211 jwork_insert(&freefrag->ff_jwork, jsegdep); 4212 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4213 add_to_worklist(&freefrag->ff_list, 0); 4214 jfreefrag->fr_freefrag = NULL; 4215 free_jfreefrag(jfreefrag); 4216 } 4217 4218 /* 4219 * Called when the journal write for a jfreeblk completes. The jfreeblk 4220 * is removed from the freeblks list of pending journal writes and the 4221 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4222 * have been reclaimed. 4223 */ 4224 static void 4225 handle_written_jblkdep(struct jblkdep *jblkdep) 4226 { 4227 struct freeblks *freeblks; 4228 struct jsegdep *jsegdep; 4229 4230 /* Grab the jsegdep. */ 4231 jsegdep = jblkdep->jb_jsegdep; 4232 jblkdep->jb_jsegdep = NULL; 4233 freeblks = jblkdep->jb_freeblks; 4234 LIST_REMOVE(jblkdep, jb_deps); 4235 jwork_insert(&freeblks->fb_jwork, jsegdep); 4236 /* 4237 * If the freeblks is all journaled, we can add it to the worklist. 4238 */ 4239 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4240 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4241 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4242 4243 free_jblkdep(jblkdep); 4244 } 4245 4246 static struct jsegdep * 4247 newjsegdep(struct worklist *wk) 4248 { 4249 struct jsegdep *jsegdep; 4250 4251 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4252 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4253 jsegdep->jd_seg = NULL; 4254 4255 return (jsegdep); 4256 } 4257 4258 static struct jmvref * 4259 newjmvref(struct inode *dp, 4260 ino_t ino, 4261 off_t oldoff, 4262 off_t newoff) 4263 { 4264 struct jmvref *jmvref; 4265 4266 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4267 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4268 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4269 jmvref->jm_parent = dp->i_number; 4270 jmvref->jm_ino = ino; 4271 jmvref->jm_oldoff = oldoff; 4272 jmvref->jm_newoff = newoff; 4273 4274 return (jmvref); 4275 } 4276 4277 /* 4278 * Allocate a new jremref that tracks the removal of ip from dp with the 4279 * directory entry offset of diroff. Mark the entry as ATTACHED and 4280 * DEPCOMPLETE as we have all the information required for the journal write 4281 * and the directory has already been removed from the buffer. The caller 4282 * is responsible for linking the jremref into the pagedep and adding it 4283 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4284 * a DOTDOT addition so handle_workitem_remove() can properly assign 4285 * the jsegdep when we're done. 4286 */ 4287 static struct jremref * 4288 newjremref(struct dirrem *dirrem, 4289 struct inode *dp, 4290 struct inode *ip, 4291 off_t diroff, 4292 nlink_t nlink) 4293 { 4294 struct jremref *jremref; 4295 4296 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4297 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4298 jremref->jr_state = ATTACHED; 4299 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4300 nlink, ip->i_mode); 4301 jremref->jr_dirrem = dirrem; 4302 4303 return (jremref); 4304 } 4305 4306 static inline void 4307 newinoref(struct inoref *inoref, 4308 ino_t ino, 4309 ino_t parent, 4310 off_t diroff, 4311 nlink_t nlink, 4312 uint16_t mode) 4313 { 4314 4315 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4316 inoref->if_diroff = diroff; 4317 inoref->if_ino = ino; 4318 inoref->if_parent = parent; 4319 inoref->if_nlink = nlink; 4320 inoref->if_mode = mode; 4321 } 4322 4323 /* 4324 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4325 * directory offset may not be known until later. The caller is responsible 4326 * adding the entry to the journal when this information is available. nlink 4327 * should be the link count prior to the addition and mode is only required 4328 * to have the correct FMT. 4329 */ 4330 static struct jaddref * 4331 newjaddref(struct inode *dp, 4332 ino_t ino, 4333 off_t diroff, 4334 int16_t nlink, 4335 uint16_t mode) 4336 { 4337 struct jaddref *jaddref; 4338 4339 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4340 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4341 jaddref->ja_state = ATTACHED; 4342 jaddref->ja_mkdir = NULL; 4343 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4344 4345 return (jaddref); 4346 } 4347 4348 /* 4349 * Create a new free dependency for a freework. The caller is responsible 4350 * for adjusting the reference count when it has the lock held. The freedep 4351 * will track an outstanding bitmap write that will ultimately clear the 4352 * freework to continue. 4353 */ 4354 static struct freedep * 4355 newfreedep(struct freework *freework) 4356 { 4357 struct freedep *freedep; 4358 4359 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4360 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4361 freedep->fd_freework = freework; 4362 4363 return (freedep); 4364 } 4365 4366 /* 4367 * Free a freedep structure once the buffer it is linked to is written. If 4368 * this is the last reference to the freework schedule it for completion. 4369 */ 4370 static void 4371 free_freedep(struct freedep *freedep) 4372 { 4373 struct freework *freework; 4374 4375 freework = freedep->fd_freework; 4376 freework->fw_freeblks->fb_cgwait--; 4377 if (--freework->fw_ref == 0) 4378 freework_enqueue(freework); 4379 WORKITEM_FREE(freedep, D_FREEDEP); 4380 } 4381 4382 /* 4383 * Allocate a new freework structure that may be a level in an indirect 4384 * when parent is not NULL or a top level block when it is. The top level 4385 * freework structures are allocated without the per-filesystem lock held 4386 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4387 */ 4388 static struct freework * 4389 newfreework(struct ufsmount *ump, 4390 struct freeblks *freeblks, 4391 struct freework *parent, 4392 ufs_lbn_t lbn, 4393 ufs2_daddr_t nb, 4394 int frags, 4395 int off, 4396 int journal) 4397 { 4398 struct freework *freework; 4399 4400 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4401 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4402 freework->fw_state = ATTACHED; 4403 freework->fw_jnewblk = NULL; 4404 freework->fw_freeblks = freeblks; 4405 freework->fw_parent = parent; 4406 freework->fw_lbn = lbn; 4407 freework->fw_blkno = nb; 4408 freework->fw_frags = frags; 4409 freework->fw_indir = NULL; 4410 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4411 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4412 freework->fw_start = freework->fw_off = off; 4413 if (journal) 4414 newjfreeblk(freeblks, lbn, nb, frags); 4415 if (parent == NULL) { 4416 ACQUIRE_LOCK(ump); 4417 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4418 freeblks->fb_ref++; 4419 FREE_LOCK(ump); 4420 } 4421 4422 return (freework); 4423 } 4424 4425 /* 4426 * Eliminate a jfreeblk for a block that does not need journaling. 4427 */ 4428 static void 4429 cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno) 4430 { 4431 struct jfreeblk *jfreeblk; 4432 struct jblkdep *jblkdep; 4433 4434 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4435 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4436 continue; 4437 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4438 if (jfreeblk->jf_blkno == blkno) 4439 break; 4440 } 4441 if (jblkdep == NULL) 4442 return; 4443 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4444 free_jsegdep(jblkdep->jb_jsegdep); 4445 LIST_REMOVE(jblkdep, jb_deps); 4446 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4447 } 4448 4449 /* 4450 * Allocate a new jfreeblk to journal top level block pointer when truncating 4451 * a file. The caller must add this to the worklist when the per-filesystem 4452 * lock is held. 4453 */ 4454 static struct jfreeblk * 4455 newjfreeblk(struct freeblks *freeblks, 4456 ufs_lbn_t lbn, 4457 ufs2_daddr_t blkno, 4458 int frags) 4459 { 4460 struct jfreeblk *jfreeblk; 4461 4462 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4463 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4464 freeblks->fb_list.wk_mp); 4465 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4466 jfreeblk->jf_dep.jb_freeblks = freeblks; 4467 jfreeblk->jf_ino = freeblks->fb_inum; 4468 jfreeblk->jf_lbn = lbn; 4469 jfreeblk->jf_blkno = blkno; 4470 jfreeblk->jf_frags = frags; 4471 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4472 4473 return (jfreeblk); 4474 } 4475 4476 /* 4477 * The journal is only prepared to handle full-size block numbers, so we 4478 * have to adjust the record to reflect the change to a full-size block. 4479 * For example, suppose we have a block made up of fragments 8-15 and 4480 * want to free its last two fragments. We are given a request that says: 4481 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4482 * where frags are the number of fragments to free and oldfrags are the 4483 * number of fragments to keep. To block align it, we have to change it to 4484 * have a valid full-size blkno, so it becomes: 4485 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4486 */ 4487 static void 4488 adjust_newfreework(struct freeblks *freeblks, int frag_offset) 4489 { 4490 struct jfreeblk *jfreeblk; 4491 4492 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4493 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4494 ("adjust_newfreework: Missing freeblks dependency")); 4495 4496 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4497 jfreeblk->jf_blkno -= frag_offset; 4498 jfreeblk->jf_frags += frag_offset; 4499 } 4500 4501 /* 4502 * Allocate a new jtrunc to track a partial truncation. 4503 */ 4504 static struct jtrunc * 4505 newjtrunc(struct freeblks *freeblks, 4506 off_t size, 4507 int extsize) 4508 { 4509 struct jtrunc *jtrunc; 4510 4511 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4512 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4513 freeblks->fb_list.wk_mp); 4514 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4515 jtrunc->jt_dep.jb_freeblks = freeblks; 4516 jtrunc->jt_ino = freeblks->fb_inum; 4517 jtrunc->jt_size = size; 4518 jtrunc->jt_extsize = extsize; 4519 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4520 4521 return (jtrunc); 4522 } 4523 4524 /* 4525 * If we're canceling a new bitmap we have to search for another ref 4526 * to move into the bmsafemap dep. This might be better expressed 4527 * with another structure. 4528 */ 4529 static void 4530 move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep) 4531 { 4532 struct inoref *inoref; 4533 struct jaddref *jaddrefn; 4534 4535 jaddrefn = NULL; 4536 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4537 inoref = TAILQ_NEXT(inoref, if_deps)) { 4538 if ((jaddref->ja_state & NEWBLOCK) && 4539 inoref->if_list.wk_type == D_JADDREF) { 4540 jaddrefn = (struct jaddref *)inoref; 4541 break; 4542 } 4543 } 4544 if (jaddrefn == NULL) 4545 return; 4546 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4547 jaddrefn->ja_state |= jaddref->ja_state & 4548 (ATTACHED | UNDONE | NEWBLOCK); 4549 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4550 jaddref->ja_state |= ATTACHED; 4551 LIST_REMOVE(jaddref, ja_bmdeps); 4552 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4553 ja_bmdeps); 4554 } 4555 4556 /* 4557 * Cancel a jaddref either before it has been written or while it is being 4558 * written. This happens when a link is removed before the add reaches 4559 * the disk. The jaddref dependency is kept linked into the bmsafemap 4560 * and inode to prevent the link count or bitmap from reaching the disk 4561 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4562 * required. 4563 * 4564 * Returns 1 if the canceled addref requires journaling of the remove and 4565 * 0 otherwise. 4566 */ 4567 static int 4568 cancel_jaddref(struct jaddref *jaddref, 4569 struct inodedep *inodedep, 4570 struct workhead *wkhd) 4571 { 4572 struct inoref *inoref; 4573 struct jsegdep *jsegdep; 4574 int needsj; 4575 4576 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4577 ("cancel_jaddref: Canceling complete jaddref")); 4578 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4579 needsj = 1; 4580 else 4581 needsj = 0; 4582 if (inodedep == NULL) 4583 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4584 0, &inodedep) == 0) 4585 panic("cancel_jaddref: Lost inodedep"); 4586 /* 4587 * We must adjust the nlink of any reference operation that follows 4588 * us so that it is consistent with the in-memory reference. This 4589 * ensures that inode nlink rollbacks always have the correct link. 4590 */ 4591 if (needsj == 0) { 4592 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4593 inoref = TAILQ_NEXT(inoref, if_deps)) { 4594 if (inoref->if_state & GOINGAWAY) 4595 break; 4596 inoref->if_nlink--; 4597 } 4598 } 4599 jsegdep = inoref_jseg(&jaddref->ja_ref); 4600 if (jaddref->ja_state & NEWBLOCK) 4601 move_newblock_dep(jaddref, inodedep); 4602 wake_worklist(&jaddref->ja_list); 4603 jaddref->ja_mkdir = NULL; 4604 if (jaddref->ja_state & INPROGRESS) { 4605 jaddref->ja_state &= ~INPROGRESS; 4606 WORKLIST_REMOVE(&jaddref->ja_list); 4607 jwork_insert(wkhd, jsegdep); 4608 } else { 4609 free_jsegdep(jsegdep); 4610 if (jaddref->ja_state & DEPCOMPLETE) 4611 remove_from_journal(&jaddref->ja_list); 4612 } 4613 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4614 /* 4615 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4616 * can arrange for them to be freed with the bitmap. Otherwise we 4617 * no longer need this addref attached to the inoreflst and it 4618 * will incorrectly adjust nlink if we leave it. 4619 */ 4620 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4621 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4622 if_deps); 4623 jaddref->ja_state |= COMPLETE; 4624 free_jaddref(jaddref); 4625 return (needsj); 4626 } 4627 /* 4628 * Leave the head of the list for jsegdeps for fast merging. 4629 */ 4630 if (LIST_FIRST(wkhd) != NULL) { 4631 jaddref->ja_state |= ONWORKLIST; 4632 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4633 } else 4634 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4635 4636 return (needsj); 4637 } 4638 4639 /* 4640 * Attempt to free a jaddref structure when some work completes. This 4641 * should only succeed once the entry is written and all dependencies have 4642 * been notified. 4643 */ 4644 static void 4645 free_jaddref(struct jaddref *jaddref) 4646 { 4647 4648 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4649 return; 4650 if (jaddref->ja_ref.if_jsegdep) 4651 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4652 jaddref, jaddref->ja_state); 4653 if (jaddref->ja_state & NEWBLOCK) 4654 LIST_REMOVE(jaddref, ja_bmdeps); 4655 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4656 panic("free_jaddref: Bad state %p(0x%X)", 4657 jaddref, jaddref->ja_state); 4658 if (jaddref->ja_mkdir != NULL) 4659 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4660 WORKITEM_FREE(jaddref, D_JADDREF); 4661 } 4662 4663 /* 4664 * Free a jremref structure once it has been written or discarded. 4665 */ 4666 static void 4667 free_jremref(struct jremref *jremref) 4668 { 4669 4670 if (jremref->jr_ref.if_jsegdep) 4671 free_jsegdep(jremref->jr_ref.if_jsegdep); 4672 if (jremref->jr_state & INPROGRESS) 4673 panic("free_jremref: IO still pending"); 4674 WORKITEM_FREE(jremref, D_JREMREF); 4675 } 4676 4677 /* 4678 * Free a jnewblk structure. 4679 */ 4680 static void 4681 free_jnewblk(struct jnewblk *jnewblk) 4682 { 4683 4684 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4685 return; 4686 LIST_REMOVE(jnewblk, jn_deps); 4687 if (jnewblk->jn_dep != NULL) 4688 panic("free_jnewblk: Dependency still attached."); 4689 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4690 } 4691 4692 /* 4693 * Cancel a jnewblk which has been been made redundant by frag extension. 4694 */ 4695 static void 4696 cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd) 4697 { 4698 struct jsegdep *jsegdep; 4699 4700 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4701 jsegdep = jnewblk->jn_jsegdep; 4702 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4703 panic("cancel_jnewblk: Invalid state"); 4704 jnewblk->jn_jsegdep = NULL; 4705 jnewblk->jn_dep = NULL; 4706 jnewblk->jn_state |= GOINGAWAY; 4707 if (jnewblk->jn_state & INPROGRESS) { 4708 jnewblk->jn_state &= ~INPROGRESS; 4709 WORKLIST_REMOVE(&jnewblk->jn_list); 4710 jwork_insert(wkhd, jsegdep); 4711 } else { 4712 free_jsegdep(jsegdep); 4713 remove_from_journal(&jnewblk->jn_list); 4714 } 4715 wake_worklist(&jnewblk->jn_list); 4716 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4717 } 4718 4719 static void 4720 free_jblkdep(struct jblkdep *jblkdep) 4721 { 4722 4723 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4724 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4725 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4726 WORKITEM_FREE(jblkdep, D_JTRUNC); 4727 else 4728 panic("free_jblkdep: Unexpected type %s", 4729 TYPENAME(jblkdep->jb_list.wk_type)); 4730 } 4731 4732 /* 4733 * Free a single jseg once it is no longer referenced in memory or on 4734 * disk. Reclaim journal blocks and dependencies waiting for the segment 4735 * to disappear. 4736 */ 4737 static void 4738 free_jseg(struct jseg *jseg, struct jblocks *jblocks) 4739 { 4740 struct freework *freework; 4741 4742 /* 4743 * Free freework structures that were lingering to indicate freed 4744 * indirect blocks that forced journal write ordering on reallocate. 4745 */ 4746 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4747 indirblk_remove(freework); 4748 if (jblocks->jb_oldestseg == jseg) 4749 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4750 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4751 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4752 KASSERT(LIST_EMPTY(&jseg->js_entries), 4753 ("free_jseg: Freed jseg has valid entries.")); 4754 WORKITEM_FREE(jseg, D_JSEG); 4755 } 4756 4757 /* 4758 * Free all jsegs that meet the criteria for being reclaimed and update 4759 * oldestseg. 4760 */ 4761 static void 4762 free_jsegs(struct jblocks *jblocks) 4763 { 4764 struct jseg *jseg; 4765 4766 /* 4767 * Free only those jsegs which have none allocated before them to 4768 * preserve the journal space ordering. 4769 */ 4770 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4771 /* 4772 * Only reclaim space when nothing depends on this journal 4773 * set and another set has written that it is no longer 4774 * valid. 4775 */ 4776 if (jseg->js_refs != 0) { 4777 jblocks->jb_oldestseg = jseg; 4778 return; 4779 } 4780 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4781 break; 4782 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4783 break; 4784 /* 4785 * We can free jsegs that didn't write entries when 4786 * oldestwrseq == js_seq. 4787 */ 4788 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4789 jseg->js_cnt != 0) 4790 break; 4791 free_jseg(jseg, jblocks); 4792 } 4793 /* 4794 * If we exited the loop above we still must discover the 4795 * oldest valid segment. 4796 */ 4797 if (jseg) 4798 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4799 jseg = TAILQ_NEXT(jseg, js_next)) 4800 if (jseg->js_refs != 0) 4801 break; 4802 jblocks->jb_oldestseg = jseg; 4803 /* 4804 * The journal has no valid records but some jsegs may still be 4805 * waiting on oldestwrseq to advance. We force a small record 4806 * out to permit these lingering records to be reclaimed. 4807 */ 4808 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4809 jblocks->jb_needseg = 1; 4810 } 4811 4812 /* 4813 * Release one reference to a jseg and free it if the count reaches 0. This 4814 * should eventually reclaim journal space as well. 4815 */ 4816 static void 4817 rele_jseg(struct jseg *jseg) 4818 { 4819 4820 KASSERT(jseg->js_refs > 0, 4821 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4822 if (--jseg->js_refs != 0) 4823 return; 4824 free_jsegs(jseg->js_jblocks); 4825 } 4826 4827 /* 4828 * Release a jsegdep and decrement the jseg count. 4829 */ 4830 static void 4831 free_jsegdep(struct jsegdep *jsegdep) 4832 { 4833 4834 if (jsegdep->jd_seg) 4835 rele_jseg(jsegdep->jd_seg); 4836 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4837 } 4838 4839 /* 4840 * Wait for a journal item to make it to disk. Initiate journal processing 4841 * if required. 4842 */ 4843 static int 4844 jwait(struct worklist *wk, int waitfor) 4845 { 4846 4847 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4848 /* 4849 * Blocking journal waits cause slow synchronous behavior. Record 4850 * stats on the frequency of these blocking operations. 4851 */ 4852 if (waitfor == MNT_WAIT) { 4853 stat_journal_wait++; 4854 switch (wk->wk_type) { 4855 case D_JREMREF: 4856 case D_JMVREF: 4857 stat_jwait_filepage++; 4858 break; 4859 case D_JTRUNC: 4860 case D_JFREEBLK: 4861 stat_jwait_freeblks++; 4862 break; 4863 case D_JNEWBLK: 4864 stat_jwait_newblk++; 4865 break; 4866 case D_JADDREF: 4867 stat_jwait_inode++; 4868 break; 4869 default: 4870 break; 4871 } 4872 } 4873 /* 4874 * If IO has not started we process the journal. We can't mark the 4875 * worklist item as IOWAITING because we drop the lock while 4876 * processing the journal and the worklist entry may be freed after 4877 * this point. The caller may call back in and re-issue the request. 4878 */ 4879 if ((wk->wk_state & INPROGRESS) == 0) { 4880 softdep_process_journal(wk->wk_mp, wk, waitfor); 4881 if (waitfor != MNT_WAIT) 4882 return (EBUSY); 4883 return (0); 4884 } 4885 if (waitfor != MNT_WAIT) 4886 return (EBUSY); 4887 wait_worklist(wk, "jwait"); 4888 return (0); 4889 } 4890 4891 /* 4892 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4893 * appropriate. This is a convenience function to reduce duplicate code 4894 * for the setup and revert functions below. 4895 */ 4896 static struct inodedep * 4897 inodedep_lookup_ip(struct inode *ip) 4898 { 4899 struct inodedep *inodedep; 4900 4901 KASSERT(ip->i_nlink >= ip->i_effnlink, 4902 ("inodedep_lookup_ip: bad delta")); 4903 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4904 &inodedep); 4905 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4906 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4907 4908 return (inodedep); 4909 } 4910 4911 /* 4912 * Called prior to creating a new inode and linking it to a directory. The 4913 * jaddref structure must already be allocated by softdep_setup_inomapdep 4914 * and it is discovered here so we can initialize the mode and update 4915 * nlinkdelta. 4916 */ 4917 void 4918 softdep_setup_create(struct inode *dp, struct inode *ip) 4919 { 4920 struct inodedep *inodedep; 4921 struct jaddref *jaddref __diagused; 4922 struct vnode *dvp; 4923 4924 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4925 ("softdep_setup_create called on non-softdep filesystem")); 4926 KASSERT(ip->i_nlink == 1, 4927 ("softdep_setup_create: Invalid link count.")); 4928 dvp = ITOV(dp); 4929 ACQUIRE_LOCK(ITOUMP(dp)); 4930 inodedep = inodedep_lookup_ip(ip); 4931 if (DOINGSUJ(dvp)) { 4932 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4933 inoreflst); 4934 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4935 ("softdep_setup_create: No addref structure present.")); 4936 } 4937 FREE_LOCK(ITOUMP(dp)); 4938 } 4939 4940 /* 4941 * Create a jaddref structure to track the addition of a DOTDOT link when 4942 * we are reparenting an inode as part of a rename. This jaddref will be 4943 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4944 * non-journaling softdep. 4945 */ 4946 void 4947 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip) 4948 { 4949 struct inodedep *inodedep; 4950 struct jaddref *jaddref; 4951 struct vnode *dvp; 4952 4953 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4954 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4955 dvp = ITOV(dp); 4956 jaddref = NULL; 4957 /* 4958 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4959 * is used as a normal link would be. 4960 */ 4961 if (DOINGSUJ(dvp)) 4962 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4963 dp->i_effnlink - 1, dp->i_mode); 4964 ACQUIRE_LOCK(ITOUMP(dp)); 4965 inodedep = inodedep_lookup_ip(dp); 4966 if (jaddref) 4967 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4968 if_deps); 4969 FREE_LOCK(ITOUMP(dp)); 4970 } 4971 4972 /* 4973 * Create a jaddref structure to track a new link to an inode. The directory 4974 * offset is not known until softdep_setup_directory_add or 4975 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4976 * softdep. 4977 */ 4978 void 4979 softdep_setup_link(struct inode *dp, struct inode *ip) 4980 { 4981 struct inodedep *inodedep; 4982 struct jaddref *jaddref; 4983 struct vnode *dvp; 4984 4985 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4986 ("softdep_setup_link called on non-softdep filesystem")); 4987 dvp = ITOV(dp); 4988 jaddref = NULL; 4989 if (DOINGSUJ(dvp)) 4990 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4991 ip->i_mode); 4992 ACQUIRE_LOCK(ITOUMP(dp)); 4993 inodedep = inodedep_lookup_ip(ip); 4994 if (jaddref) 4995 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4996 if_deps); 4997 FREE_LOCK(ITOUMP(dp)); 4998 } 4999 5000 /* 5001 * Called to create the jaddref structures to track . and .. references as 5002 * well as lookup and further initialize the incomplete jaddref created 5003 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 5004 * nlinkdelta for non-journaling softdep. 5005 */ 5006 void 5007 softdep_setup_mkdir(struct inode *dp, struct inode *ip) 5008 { 5009 struct inodedep *inodedep; 5010 struct jaddref *dotdotaddref; 5011 struct jaddref *dotaddref; 5012 struct jaddref *jaddref; 5013 struct vnode *dvp; 5014 5015 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5016 ("softdep_setup_mkdir called on non-softdep filesystem")); 5017 dvp = ITOV(dp); 5018 dotaddref = dotdotaddref = NULL; 5019 if (DOINGSUJ(dvp)) { 5020 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5021 ip->i_mode); 5022 dotaddref->ja_state |= MKDIR_BODY; 5023 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5024 dp->i_effnlink - 1, dp->i_mode); 5025 dotdotaddref->ja_state |= MKDIR_PARENT; 5026 } 5027 ACQUIRE_LOCK(ITOUMP(dp)); 5028 inodedep = inodedep_lookup_ip(ip); 5029 if (DOINGSUJ(dvp)) { 5030 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5031 inoreflst); 5032 KASSERT(jaddref != NULL, 5033 ("softdep_setup_mkdir: No addref structure present.")); 5034 KASSERT(jaddref->ja_parent == dp->i_number, 5035 ("softdep_setup_mkdir: bad parent %ju", 5036 (uintmax_t)jaddref->ja_parent)); 5037 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5038 if_deps); 5039 } 5040 inodedep = inodedep_lookup_ip(dp); 5041 if (DOINGSUJ(dvp)) 5042 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5043 &dotdotaddref->ja_ref, if_deps); 5044 FREE_LOCK(ITOUMP(dp)); 5045 } 5046 5047 /* 5048 * Called to track nlinkdelta of the inode and parent directories prior to 5049 * unlinking a directory. 5050 */ 5051 void 5052 softdep_setup_rmdir(struct inode *dp, struct inode *ip) 5053 { 5054 5055 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5056 ("softdep_setup_rmdir called on non-softdep filesystem")); 5057 ACQUIRE_LOCK(ITOUMP(dp)); 5058 (void) inodedep_lookup_ip(ip); 5059 (void) inodedep_lookup_ip(dp); 5060 FREE_LOCK(ITOUMP(dp)); 5061 } 5062 5063 /* 5064 * Called to track nlinkdelta of the inode and parent directories prior to 5065 * unlink. 5066 */ 5067 void 5068 softdep_setup_unlink(struct inode *dp, struct inode *ip) 5069 { 5070 5071 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5072 ("softdep_setup_unlink called on non-softdep filesystem")); 5073 ACQUIRE_LOCK(ITOUMP(dp)); 5074 (void) inodedep_lookup_ip(ip); 5075 (void) inodedep_lookup_ip(dp); 5076 FREE_LOCK(ITOUMP(dp)); 5077 } 5078 5079 /* 5080 * Called to release the journal structures created by a failed non-directory 5081 * creation. Adjusts nlinkdelta for non-journaling softdep. 5082 */ 5083 void 5084 softdep_revert_create(struct inode *dp, struct inode *ip) 5085 { 5086 struct inodedep *inodedep; 5087 struct jaddref *jaddref; 5088 struct vnode *dvp; 5089 5090 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5091 ("softdep_revert_create called on non-softdep filesystem")); 5092 dvp = ITOV(dp); 5093 ACQUIRE_LOCK(ITOUMP(dp)); 5094 inodedep = inodedep_lookup_ip(ip); 5095 if (DOINGSUJ(dvp)) { 5096 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5097 inoreflst); 5098 KASSERT(jaddref->ja_parent == dp->i_number, 5099 ("softdep_revert_create: addref parent mismatch")); 5100 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5101 } 5102 FREE_LOCK(ITOUMP(dp)); 5103 } 5104 5105 /* 5106 * Called to release the journal structures created by a failed link 5107 * addition. Adjusts nlinkdelta for non-journaling softdep. 5108 */ 5109 void 5110 softdep_revert_link(struct inode *dp, struct inode *ip) 5111 { 5112 struct inodedep *inodedep; 5113 struct jaddref *jaddref; 5114 struct vnode *dvp; 5115 5116 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5117 ("softdep_revert_link called on non-softdep filesystem")); 5118 dvp = ITOV(dp); 5119 ACQUIRE_LOCK(ITOUMP(dp)); 5120 inodedep = inodedep_lookup_ip(ip); 5121 if (DOINGSUJ(dvp)) { 5122 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5123 inoreflst); 5124 KASSERT(jaddref->ja_parent == dp->i_number, 5125 ("softdep_revert_link: addref parent mismatch")); 5126 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5127 } 5128 FREE_LOCK(ITOUMP(dp)); 5129 } 5130 5131 /* 5132 * Called to release the journal structures created by a failed mkdir 5133 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5134 */ 5135 void 5136 softdep_revert_mkdir(struct inode *dp, struct inode *ip) 5137 { 5138 struct inodedep *inodedep; 5139 struct jaddref *jaddref; 5140 struct jaddref *dotaddref; 5141 struct vnode *dvp; 5142 5143 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5144 ("softdep_revert_mkdir called on non-softdep filesystem")); 5145 dvp = ITOV(dp); 5146 5147 ACQUIRE_LOCK(ITOUMP(dp)); 5148 inodedep = inodedep_lookup_ip(dp); 5149 if (DOINGSUJ(dvp)) { 5150 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5151 inoreflst); 5152 KASSERT(jaddref->ja_parent == ip->i_number, 5153 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5154 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5155 } 5156 inodedep = inodedep_lookup_ip(ip); 5157 if (DOINGSUJ(dvp)) { 5158 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5159 inoreflst); 5160 KASSERT(jaddref->ja_parent == dp->i_number, 5161 ("softdep_revert_mkdir: addref parent mismatch")); 5162 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5163 inoreflst, if_deps); 5164 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5165 KASSERT(dotaddref->ja_parent == ip->i_number, 5166 ("softdep_revert_mkdir: dot addref parent mismatch")); 5167 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5168 } 5169 FREE_LOCK(ITOUMP(dp)); 5170 } 5171 5172 /* 5173 * Called to correct nlinkdelta after a failed rmdir. 5174 */ 5175 void 5176 softdep_revert_rmdir(struct inode *dp, struct inode *ip) 5177 { 5178 5179 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5180 ("softdep_revert_rmdir called on non-softdep filesystem")); 5181 ACQUIRE_LOCK(ITOUMP(dp)); 5182 (void) inodedep_lookup_ip(ip); 5183 (void) inodedep_lookup_ip(dp); 5184 FREE_LOCK(ITOUMP(dp)); 5185 } 5186 5187 /* 5188 * Protecting the freemaps (or bitmaps). 5189 * 5190 * To eliminate the need to execute fsck before mounting a filesystem 5191 * after a power failure, one must (conservatively) guarantee that the 5192 * on-disk copy of the bitmaps never indicate that a live inode or block is 5193 * free. So, when a block or inode is allocated, the bitmap should be 5194 * updated (on disk) before any new pointers. When a block or inode is 5195 * freed, the bitmap should not be updated until all pointers have been 5196 * reset. The latter dependency is handled by the delayed de-allocation 5197 * approach described below for block and inode de-allocation. The former 5198 * dependency is handled by calling the following procedure when a block or 5199 * inode is allocated. When an inode is allocated an "inodedep" is created 5200 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5201 * Each "inodedep" is also inserted into the hash indexing structure so 5202 * that any additional link additions can be made dependent on the inode 5203 * allocation. 5204 * 5205 * The ufs filesystem maintains a number of free block counts (e.g., per 5206 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5207 * in addition to the bitmaps. These counts are used to improve efficiency 5208 * during allocation and therefore must be consistent with the bitmaps. 5209 * There is no convenient way to guarantee post-crash consistency of these 5210 * counts with simple update ordering, for two main reasons: (1) The counts 5211 * and bitmaps for a single cylinder group block are not in the same disk 5212 * sector. If a disk write is interrupted (e.g., by power failure), one may 5213 * be written and the other not. (2) Some of the counts are located in the 5214 * superblock rather than the cylinder group block. So, we focus our soft 5215 * updates implementation on protecting the bitmaps. When mounting a 5216 * filesystem, we recompute the auxiliary counts from the bitmaps. 5217 */ 5218 5219 /* 5220 * Called just after updating the cylinder group block to allocate an inode. 5221 */ 5222 void 5223 softdep_setup_inomapdep( 5224 struct buf *bp, /* buffer for cylgroup block with inode map */ 5225 struct inode *ip, /* inode related to allocation */ 5226 ino_t newinum, /* new inode number being allocated */ 5227 int mode) 5228 { 5229 struct inodedep *inodedep; 5230 struct bmsafemap *bmsafemap; 5231 struct jaddref *jaddref; 5232 struct mount *mp; 5233 struct fs *fs; 5234 5235 mp = ITOVFS(ip); 5236 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5237 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5238 fs = VFSTOUFS(mp)->um_fs; 5239 jaddref = NULL; 5240 5241 /* 5242 * Allocate the journal reference add structure so that the bitmap 5243 * can be dependent on it. 5244 */ 5245 if (MOUNTEDSUJ(mp)) { 5246 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5247 jaddref->ja_state |= NEWBLOCK; 5248 } 5249 5250 /* 5251 * Create a dependency for the newly allocated inode. 5252 * Panic if it already exists as something is seriously wrong. 5253 * Otherwise add it to the dependency list for the buffer holding 5254 * the cylinder group map from which it was allocated. 5255 * 5256 * We have to preallocate a bmsafemap entry in case it is needed 5257 * in bmsafemap_lookup since once we allocate the inodedep, we 5258 * have to finish initializing it before we can FREE_LOCK(). 5259 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5260 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5261 * creating the inodedep as it can be freed during the time 5262 * that we FREE_LOCK() while allocating the inodedep. We must 5263 * call workitem_alloc() before entering the locked section as 5264 * it also acquires the lock and we must avoid trying doing so 5265 * recursively. 5266 */ 5267 bmsafemap = malloc(sizeof(struct bmsafemap), 5268 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5269 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5270 ACQUIRE_LOCK(ITOUMP(ip)); 5271 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5272 panic("softdep_setup_inomapdep: dependency %p for new" 5273 "inode already exists", inodedep); 5274 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5275 if (jaddref) { 5276 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5277 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5278 if_deps); 5279 } else { 5280 inodedep->id_state |= ONDEPLIST; 5281 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5282 } 5283 inodedep->id_bmsafemap = bmsafemap; 5284 inodedep->id_state &= ~DEPCOMPLETE; 5285 FREE_LOCK(ITOUMP(ip)); 5286 } 5287 5288 /* 5289 * Called just after updating the cylinder group block to 5290 * allocate block or fragment. 5291 */ 5292 void 5293 softdep_setup_blkmapdep( 5294 struct buf *bp, /* buffer for cylgroup block with block map */ 5295 struct mount *mp, /* filesystem doing allocation */ 5296 ufs2_daddr_t newblkno, /* number of newly allocated block */ 5297 int frags, /* Number of fragments. */ 5298 int oldfrags) /* Previous number of fragments for extend. */ 5299 { 5300 struct newblk *newblk; 5301 struct bmsafemap *bmsafemap; 5302 struct jnewblk *jnewblk; 5303 struct ufsmount *ump; 5304 struct fs *fs; 5305 5306 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5307 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5308 ump = VFSTOUFS(mp); 5309 fs = ump->um_fs; 5310 jnewblk = NULL; 5311 /* 5312 * Create a dependency for the newly allocated block. 5313 * Add it to the dependency list for the buffer holding 5314 * the cylinder group map from which it was allocated. 5315 */ 5316 if (MOUNTEDSUJ(mp)) { 5317 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5318 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5319 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5320 jnewblk->jn_state = ATTACHED; 5321 jnewblk->jn_blkno = newblkno; 5322 jnewblk->jn_frags = frags; 5323 jnewblk->jn_oldfrags = oldfrags; 5324 #ifdef INVARIANTS 5325 { 5326 struct cg *cgp; 5327 uint8_t *blksfree; 5328 long bno; 5329 int i; 5330 5331 cgp = (struct cg *)bp->b_data; 5332 blksfree = cg_blksfree(cgp); 5333 bno = dtogd(fs, jnewblk->jn_blkno); 5334 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5335 i++) { 5336 if (isset(blksfree, bno + i)) 5337 panic("softdep_setup_blkmapdep: " 5338 "free fragment %d from %d-%d " 5339 "state 0x%X dep %p", i, 5340 jnewblk->jn_oldfrags, 5341 jnewblk->jn_frags, 5342 jnewblk->jn_state, 5343 jnewblk->jn_dep); 5344 } 5345 } 5346 #endif 5347 } 5348 5349 CTR3(KTR_SUJ, 5350 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5351 newblkno, frags, oldfrags); 5352 ACQUIRE_LOCK(ump); 5353 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5354 panic("softdep_setup_blkmapdep: found block"); 5355 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5356 dtog(fs, newblkno), NULL); 5357 if (jnewblk) { 5358 jnewblk->jn_dep = (struct worklist *)newblk; 5359 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5360 } else { 5361 newblk->nb_state |= ONDEPLIST; 5362 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5363 } 5364 newblk->nb_bmsafemap = bmsafemap; 5365 newblk->nb_jnewblk = jnewblk; 5366 FREE_LOCK(ump); 5367 } 5368 5369 #define BMSAFEMAP_HASH(ump, cg) \ 5370 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5371 5372 static int 5373 bmsafemap_find( 5374 struct bmsafemap_hashhead *bmsafemaphd, 5375 int cg, 5376 struct bmsafemap **bmsafemapp) 5377 { 5378 struct bmsafemap *bmsafemap; 5379 5380 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5381 if (bmsafemap->sm_cg == cg) 5382 break; 5383 if (bmsafemap) { 5384 *bmsafemapp = bmsafemap; 5385 return (1); 5386 } 5387 *bmsafemapp = NULL; 5388 5389 return (0); 5390 } 5391 5392 /* 5393 * Find the bmsafemap associated with a cylinder group buffer. 5394 * If none exists, create one. The buffer must be locked when 5395 * this routine is called and this routine must be called with 5396 * the softdep lock held. To avoid giving up the lock while 5397 * allocating a new bmsafemap, a preallocated bmsafemap may be 5398 * provided. If it is provided but not needed, it is freed. 5399 */ 5400 static struct bmsafemap * 5401 bmsafemap_lookup(struct mount *mp, 5402 struct buf *bp, 5403 int cg, 5404 struct bmsafemap *newbmsafemap) 5405 { 5406 struct bmsafemap_hashhead *bmsafemaphd; 5407 struct bmsafemap *bmsafemap, *collision; 5408 struct worklist *wk; 5409 struct ufsmount *ump; 5410 5411 ump = VFSTOUFS(mp); 5412 LOCK_OWNED(ump); 5413 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5414 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5415 if (wk->wk_type == D_BMSAFEMAP) { 5416 if (newbmsafemap) 5417 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5418 return (WK_BMSAFEMAP(wk)); 5419 } 5420 } 5421 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5422 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5423 if (newbmsafemap) 5424 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5425 return (bmsafemap); 5426 } 5427 if (newbmsafemap) { 5428 bmsafemap = newbmsafemap; 5429 } else { 5430 FREE_LOCK(ump); 5431 bmsafemap = malloc(sizeof(struct bmsafemap), 5432 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5433 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5434 ACQUIRE_LOCK(ump); 5435 } 5436 bmsafemap->sm_buf = bp; 5437 LIST_INIT(&bmsafemap->sm_inodedephd); 5438 LIST_INIT(&bmsafemap->sm_inodedepwr); 5439 LIST_INIT(&bmsafemap->sm_newblkhd); 5440 LIST_INIT(&bmsafemap->sm_newblkwr); 5441 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5442 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5443 LIST_INIT(&bmsafemap->sm_freehd); 5444 LIST_INIT(&bmsafemap->sm_freewr); 5445 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5446 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5447 return (collision); 5448 } 5449 bmsafemap->sm_cg = cg; 5450 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5451 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5452 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5453 return (bmsafemap); 5454 } 5455 5456 /* 5457 * Direct block allocation dependencies. 5458 * 5459 * When a new block is allocated, the corresponding disk locations must be 5460 * initialized (with zeros or new data) before the on-disk inode points to 5461 * them. Also, the freemap from which the block was allocated must be 5462 * updated (on disk) before the inode's pointer. These two dependencies are 5463 * independent of each other and are needed for all file blocks and indirect 5464 * blocks that are pointed to directly by the inode. Just before the 5465 * "in-core" version of the inode is updated with a newly allocated block 5466 * number, a procedure (below) is called to setup allocation dependency 5467 * structures. These structures are removed when the corresponding 5468 * dependencies are satisfied or when the block allocation becomes obsolete 5469 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5470 * fragment that gets upgraded). All of these cases are handled in 5471 * procedures described later. 5472 * 5473 * When a file extension causes a fragment to be upgraded, either to a larger 5474 * fragment or to a full block, the on-disk location may change (if the 5475 * previous fragment could not simply be extended). In this case, the old 5476 * fragment must be de-allocated, but not until after the inode's pointer has 5477 * been updated. In most cases, this is handled by later procedures, which 5478 * will construct a "freefrag" structure to be added to the workitem queue 5479 * when the inode update is complete (or obsolete). The main exception to 5480 * this is when an allocation occurs while a pending allocation dependency 5481 * (for the same block pointer) remains. This case is handled in the main 5482 * allocation dependency setup procedure by immediately freeing the 5483 * unreferenced fragments. 5484 */ 5485 void 5486 softdep_setup_allocdirect( 5487 struct inode *ip, /* inode to which block is being added */ 5488 ufs_lbn_t off, /* block pointer within inode */ 5489 ufs2_daddr_t newblkno, /* disk block number being added */ 5490 ufs2_daddr_t oldblkno, /* previous block number, 0 unless frag */ 5491 long newsize, /* size of new block */ 5492 long oldsize, /* size of new block */ 5493 struct buf *bp) /* bp for allocated block */ 5494 { 5495 struct allocdirect *adp, *oldadp; 5496 struct allocdirectlst *adphead; 5497 struct freefrag *freefrag; 5498 struct inodedep *inodedep; 5499 struct pagedep *pagedep; 5500 struct jnewblk *jnewblk; 5501 struct newblk *newblk; 5502 struct mount *mp; 5503 ufs_lbn_t lbn; 5504 5505 lbn = bp->b_lblkno; 5506 mp = ITOVFS(ip); 5507 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5508 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5509 if (oldblkno && oldblkno != newblkno) 5510 /* 5511 * The usual case is that a smaller fragment that 5512 * was just allocated has been replaced with a bigger 5513 * fragment or a full-size block. If it is marked as 5514 * B_DELWRI, the current contents have not been written 5515 * to disk. It is possible that the block was written 5516 * earlier, but very uncommon. If the block has never 5517 * been written, there is no need to send a BIO_DELETE 5518 * for it when it is freed. The gain from avoiding the 5519 * TRIMs for the common case of unwritten blocks far 5520 * exceeds the cost of the write amplification for the 5521 * uncommon case of failing to send a TRIM for a block 5522 * that had been written. 5523 */ 5524 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5525 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5526 else 5527 freefrag = NULL; 5528 5529 CTR6(KTR_SUJ, 5530 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5531 "off %jd newsize %ld oldsize %d", 5532 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5533 ACQUIRE_LOCK(ITOUMP(ip)); 5534 if (off >= UFS_NDADDR) { 5535 if (lbn > 0) 5536 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5537 lbn, off); 5538 /* allocating an indirect block */ 5539 if (oldblkno != 0) 5540 panic("softdep_setup_allocdirect: non-zero indir"); 5541 } else { 5542 if (off != lbn) 5543 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5544 lbn, off); 5545 /* 5546 * Allocating a direct block. 5547 * 5548 * If we are allocating a directory block, then we must 5549 * allocate an associated pagedep to track additions and 5550 * deletions. 5551 */ 5552 if ((ip->i_mode & IFMT) == IFDIR) 5553 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5554 &pagedep); 5555 } 5556 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5557 panic("softdep_setup_allocdirect: lost block"); 5558 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5559 ("softdep_setup_allocdirect: newblk already initialized")); 5560 /* 5561 * Convert the newblk to an allocdirect. 5562 */ 5563 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5564 adp = (struct allocdirect *)newblk; 5565 newblk->nb_freefrag = freefrag; 5566 adp->ad_offset = off; 5567 adp->ad_oldblkno = oldblkno; 5568 adp->ad_newsize = newsize; 5569 adp->ad_oldsize = oldsize; 5570 5571 /* 5572 * Finish initializing the journal. 5573 */ 5574 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5575 jnewblk->jn_ino = ip->i_number; 5576 jnewblk->jn_lbn = lbn; 5577 add_to_journal(&jnewblk->jn_list); 5578 } 5579 if (freefrag && freefrag->ff_jdep != NULL && 5580 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5581 add_to_journal(freefrag->ff_jdep); 5582 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5583 adp->ad_inodedep = inodedep; 5584 5585 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5586 /* 5587 * The list of allocdirects must be kept in sorted and ascending 5588 * order so that the rollback routines can quickly determine the 5589 * first uncommitted block (the size of the file stored on disk 5590 * ends at the end of the lowest committed fragment, or if there 5591 * are no fragments, at the end of the highest committed block). 5592 * Since files generally grow, the typical case is that the new 5593 * block is to be added at the end of the list. We speed this 5594 * special case by checking against the last allocdirect in the 5595 * list before laboriously traversing the list looking for the 5596 * insertion point. 5597 */ 5598 adphead = &inodedep->id_newinoupdt; 5599 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5600 if (oldadp == NULL || oldadp->ad_offset <= off) { 5601 /* insert at end of list */ 5602 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5603 if (oldadp != NULL && oldadp->ad_offset == off) 5604 allocdirect_merge(adphead, adp, oldadp); 5605 FREE_LOCK(ITOUMP(ip)); 5606 return; 5607 } 5608 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5609 if (oldadp->ad_offset >= off) 5610 break; 5611 } 5612 if (oldadp == NULL) 5613 panic("softdep_setup_allocdirect: lost entry"); 5614 /* insert in middle of list */ 5615 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5616 if (oldadp->ad_offset == off) 5617 allocdirect_merge(adphead, adp, oldadp); 5618 5619 FREE_LOCK(ITOUMP(ip)); 5620 } 5621 5622 /* 5623 * Merge a newer and older journal record to be stored either in a 5624 * newblock or freefrag. This handles aggregating journal records for 5625 * fragment allocation into a second record as well as replacing a 5626 * journal free with an aborted journal allocation. A segment for the 5627 * oldest record will be placed on wkhd if it has been written. If not 5628 * the segment for the newer record will suffice. 5629 */ 5630 static struct worklist * 5631 jnewblk_merge(struct worklist *new, 5632 struct worklist *old, 5633 struct workhead *wkhd) 5634 { 5635 struct jnewblk *njnewblk; 5636 struct jnewblk *jnewblk; 5637 5638 /* Handle NULLs to simplify callers. */ 5639 if (new == NULL) 5640 return (old); 5641 if (old == NULL) 5642 return (new); 5643 /* Replace a jfreefrag with a jnewblk. */ 5644 if (new->wk_type == D_JFREEFRAG) { 5645 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5646 panic("jnewblk_merge: blkno mismatch: %p, %p", 5647 old, new); 5648 cancel_jfreefrag(WK_JFREEFRAG(new)); 5649 return (old); 5650 } 5651 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5652 panic("jnewblk_merge: Bad type: old %d new %d\n", 5653 old->wk_type, new->wk_type); 5654 /* 5655 * Handle merging of two jnewblk records that describe 5656 * different sets of fragments in the same block. 5657 */ 5658 jnewblk = WK_JNEWBLK(old); 5659 njnewblk = WK_JNEWBLK(new); 5660 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5661 panic("jnewblk_merge: Merging disparate blocks."); 5662 /* 5663 * The record may be rolled back in the cg. 5664 */ 5665 if (jnewblk->jn_state & UNDONE) { 5666 jnewblk->jn_state &= ~UNDONE; 5667 njnewblk->jn_state |= UNDONE; 5668 njnewblk->jn_state &= ~ATTACHED; 5669 } 5670 /* 5671 * We modify the newer addref and free the older so that if neither 5672 * has been written the most up-to-date copy will be on disk. If 5673 * both have been written but rolled back we only temporarily need 5674 * one of them to fix the bits when the cg write completes. 5675 */ 5676 jnewblk->jn_state |= ATTACHED | COMPLETE; 5677 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5678 cancel_jnewblk(jnewblk, wkhd); 5679 WORKLIST_REMOVE(&jnewblk->jn_list); 5680 free_jnewblk(jnewblk); 5681 return (new); 5682 } 5683 5684 /* 5685 * Replace an old allocdirect dependency with a newer one. 5686 */ 5687 static void 5688 allocdirect_merge( 5689 struct allocdirectlst *adphead, /* head of list holding allocdirects */ 5690 struct allocdirect *newadp, /* allocdirect being added */ 5691 struct allocdirect *oldadp) /* existing allocdirect being checked */ 5692 { 5693 struct worklist *wk; 5694 struct freefrag *freefrag; 5695 5696 freefrag = NULL; 5697 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5698 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5699 newadp->ad_oldsize != oldadp->ad_newsize || 5700 newadp->ad_offset >= UFS_NDADDR) 5701 panic("%s %jd != new %jd || old size %ld != new %ld", 5702 "allocdirect_merge: old blkno", 5703 (intmax_t)newadp->ad_oldblkno, 5704 (intmax_t)oldadp->ad_newblkno, 5705 newadp->ad_oldsize, oldadp->ad_newsize); 5706 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5707 newadp->ad_oldsize = oldadp->ad_oldsize; 5708 /* 5709 * If the old dependency had a fragment to free or had never 5710 * previously had a block allocated, then the new dependency 5711 * can immediately post its freefrag and adopt the old freefrag. 5712 * This action is done by swapping the freefrag dependencies. 5713 * The new dependency gains the old one's freefrag, and the 5714 * old one gets the new one and then immediately puts it on 5715 * the worklist when it is freed by free_newblk. It is 5716 * not possible to do this swap when the old dependency had a 5717 * non-zero size but no previous fragment to free. This condition 5718 * arises when the new block is an extension of the old block. 5719 * Here, the first part of the fragment allocated to the new 5720 * dependency is part of the block currently claimed on disk by 5721 * the old dependency, so cannot legitimately be freed until the 5722 * conditions for the new dependency are fulfilled. 5723 */ 5724 freefrag = newadp->ad_freefrag; 5725 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5726 newadp->ad_freefrag = oldadp->ad_freefrag; 5727 oldadp->ad_freefrag = freefrag; 5728 } 5729 /* 5730 * If we are tracking a new directory-block allocation, 5731 * move it from the old allocdirect to the new allocdirect. 5732 */ 5733 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5734 WORKLIST_REMOVE(wk); 5735 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5736 panic("allocdirect_merge: extra newdirblk"); 5737 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5738 } 5739 TAILQ_REMOVE(adphead, oldadp, ad_next); 5740 /* 5741 * We need to move any journal dependencies over to the freefrag 5742 * that releases this block if it exists. Otherwise we are 5743 * extending an existing block and we'll wait until that is 5744 * complete to release the journal space and extend the 5745 * new journal to cover this old space as well. 5746 */ 5747 if (freefrag == NULL) { 5748 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5749 panic("allocdirect_merge: %jd != %jd", 5750 oldadp->ad_newblkno, newadp->ad_newblkno); 5751 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5752 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5753 &oldadp->ad_block.nb_jnewblk->jn_list, 5754 &newadp->ad_block.nb_jwork); 5755 oldadp->ad_block.nb_jnewblk = NULL; 5756 cancel_newblk(&oldadp->ad_block, NULL, 5757 &newadp->ad_block.nb_jwork); 5758 } else { 5759 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5760 &freefrag->ff_list, &freefrag->ff_jwork); 5761 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5762 &freefrag->ff_jwork); 5763 } 5764 free_newblk(&oldadp->ad_block); 5765 } 5766 5767 /* 5768 * Allocate a jfreefrag structure to journal a single block free. 5769 */ 5770 static struct jfreefrag * 5771 newjfreefrag(struct freefrag *freefrag, 5772 struct inode *ip, 5773 ufs2_daddr_t blkno, 5774 long size, 5775 ufs_lbn_t lbn) 5776 { 5777 struct jfreefrag *jfreefrag; 5778 struct fs *fs; 5779 5780 fs = ITOFS(ip); 5781 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5782 M_SOFTDEP_FLAGS); 5783 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5784 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5785 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5786 jfreefrag->fr_ino = ip->i_number; 5787 jfreefrag->fr_lbn = lbn; 5788 jfreefrag->fr_blkno = blkno; 5789 jfreefrag->fr_frags = numfrags(fs, size); 5790 jfreefrag->fr_freefrag = freefrag; 5791 5792 return (jfreefrag); 5793 } 5794 5795 /* 5796 * Allocate a new freefrag structure. 5797 */ 5798 static struct freefrag * 5799 newfreefrag(struct inode *ip, 5800 ufs2_daddr_t blkno, 5801 long size, 5802 ufs_lbn_t lbn, 5803 uint64_t key) 5804 { 5805 struct freefrag *freefrag; 5806 struct ufsmount *ump; 5807 struct fs *fs; 5808 5809 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5810 ip->i_number, blkno, size, lbn); 5811 ump = ITOUMP(ip); 5812 fs = ump->um_fs; 5813 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5814 panic("newfreefrag: frag size"); 5815 freefrag = malloc(sizeof(struct freefrag), 5816 M_FREEFRAG, M_SOFTDEP_FLAGS); 5817 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5818 freefrag->ff_state = ATTACHED; 5819 LIST_INIT(&freefrag->ff_jwork); 5820 freefrag->ff_inum = ip->i_number; 5821 freefrag->ff_vtype = ITOV(ip)->v_type; 5822 freefrag->ff_blkno = blkno; 5823 freefrag->ff_fragsize = size; 5824 freefrag->ff_key = key; 5825 5826 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5827 freefrag->ff_jdep = (struct worklist *) 5828 newjfreefrag(freefrag, ip, blkno, size, lbn); 5829 } else { 5830 freefrag->ff_state |= DEPCOMPLETE; 5831 freefrag->ff_jdep = NULL; 5832 } 5833 5834 return (freefrag); 5835 } 5836 5837 /* 5838 * This workitem de-allocates fragments that were replaced during 5839 * file block allocation. 5840 */ 5841 static void 5842 handle_workitem_freefrag(struct freefrag *freefrag) 5843 { 5844 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5845 struct workhead wkhd; 5846 5847 CTR3(KTR_SUJ, 5848 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5849 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5850 /* 5851 * It would be illegal to add new completion items to the 5852 * freefrag after it was schedule to be done so it must be 5853 * safe to modify the list head here. 5854 */ 5855 LIST_INIT(&wkhd); 5856 ACQUIRE_LOCK(ump); 5857 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5858 /* 5859 * If the journal has not been written we must cancel it here. 5860 */ 5861 if (freefrag->ff_jdep) { 5862 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5863 panic("handle_workitem_freefrag: Unexpected type %d\n", 5864 freefrag->ff_jdep->wk_type); 5865 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5866 } 5867 FREE_LOCK(ump); 5868 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5869 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5870 &wkhd, freefrag->ff_key); 5871 ACQUIRE_LOCK(ump); 5872 WORKITEM_FREE(freefrag, D_FREEFRAG); 5873 FREE_LOCK(ump); 5874 } 5875 5876 /* 5877 * Set up a dependency structure for an external attributes data block. 5878 * This routine follows much of the structure of softdep_setup_allocdirect. 5879 * See the description of softdep_setup_allocdirect above for details. 5880 */ 5881 void 5882 softdep_setup_allocext( 5883 struct inode *ip, 5884 ufs_lbn_t off, 5885 ufs2_daddr_t newblkno, 5886 ufs2_daddr_t oldblkno, 5887 long newsize, 5888 long oldsize, 5889 struct buf *bp) 5890 { 5891 struct allocdirect *adp, *oldadp; 5892 struct allocdirectlst *adphead; 5893 struct freefrag *freefrag; 5894 struct inodedep *inodedep; 5895 struct jnewblk *jnewblk; 5896 struct newblk *newblk; 5897 struct mount *mp; 5898 struct ufsmount *ump; 5899 ufs_lbn_t lbn; 5900 5901 mp = ITOVFS(ip); 5902 ump = VFSTOUFS(mp); 5903 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5904 ("softdep_setup_allocext called on non-softdep filesystem")); 5905 KASSERT(off < UFS_NXADDR, 5906 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5907 5908 lbn = bp->b_lblkno; 5909 if (oldblkno && oldblkno != newblkno) 5910 /* 5911 * The usual case is that a smaller fragment that 5912 * was just allocated has been replaced with a bigger 5913 * fragment or a full-size block. If it is marked as 5914 * B_DELWRI, the current contents have not been written 5915 * to disk. It is possible that the block was written 5916 * earlier, but very uncommon. If the block has never 5917 * been written, there is no need to send a BIO_DELETE 5918 * for it when it is freed. The gain from avoiding the 5919 * TRIMs for the common case of unwritten blocks far 5920 * exceeds the cost of the write amplification for the 5921 * uncommon case of failing to send a TRIM for a block 5922 * that had been written. 5923 */ 5924 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5925 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5926 else 5927 freefrag = NULL; 5928 5929 ACQUIRE_LOCK(ump); 5930 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5931 panic("softdep_setup_allocext: lost block"); 5932 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5933 ("softdep_setup_allocext: newblk already initialized")); 5934 /* 5935 * Convert the newblk to an allocdirect. 5936 */ 5937 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5938 adp = (struct allocdirect *)newblk; 5939 newblk->nb_freefrag = freefrag; 5940 adp->ad_offset = off; 5941 adp->ad_oldblkno = oldblkno; 5942 adp->ad_newsize = newsize; 5943 adp->ad_oldsize = oldsize; 5944 adp->ad_state |= EXTDATA; 5945 5946 /* 5947 * Finish initializing the journal. 5948 */ 5949 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5950 jnewblk->jn_ino = ip->i_number; 5951 jnewblk->jn_lbn = lbn; 5952 add_to_journal(&jnewblk->jn_list); 5953 } 5954 if (freefrag && freefrag->ff_jdep != NULL && 5955 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5956 add_to_journal(freefrag->ff_jdep); 5957 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5958 adp->ad_inodedep = inodedep; 5959 5960 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5961 /* 5962 * The list of allocdirects must be kept in sorted and ascending 5963 * order so that the rollback routines can quickly determine the 5964 * first uncommitted block (the size of the file stored on disk 5965 * ends at the end of the lowest committed fragment, or if there 5966 * are no fragments, at the end of the highest committed block). 5967 * Since files generally grow, the typical case is that the new 5968 * block is to be added at the end of the list. We speed this 5969 * special case by checking against the last allocdirect in the 5970 * list before laboriously traversing the list looking for the 5971 * insertion point. 5972 */ 5973 adphead = &inodedep->id_newextupdt; 5974 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5975 if (oldadp == NULL || oldadp->ad_offset <= off) { 5976 /* insert at end of list */ 5977 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5978 if (oldadp != NULL && oldadp->ad_offset == off) 5979 allocdirect_merge(adphead, adp, oldadp); 5980 FREE_LOCK(ump); 5981 return; 5982 } 5983 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5984 if (oldadp->ad_offset >= off) 5985 break; 5986 } 5987 if (oldadp == NULL) 5988 panic("softdep_setup_allocext: lost entry"); 5989 /* insert in middle of list */ 5990 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5991 if (oldadp->ad_offset == off) 5992 allocdirect_merge(adphead, adp, oldadp); 5993 FREE_LOCK(ump); 5994 } 5995 5996 /* 5997 * Indirect block allocation dependencies. 5998 * 5999 * The same dependencies that exist for a direct block also exist when 6000 * a new block is allocated and pointed to by an entry in a block of 6001 * indirect pointers. The undo/redo states described above are also 6002 * used here. Because an indirect block contains many pointers that 6003 * may have dependencies, a second copy of the entire in-memory indirect 6004 * block is kept. The buffer cache copy is always completely up-to-date. 6005 * The second copy, which is used only as a source for disk writes, 6006 * contains only the safe pointers (i.e., those that have no remaining 6007 * update dependencies). The second copy is freed when all pointers 6008 * are safe. The cache is not allowed to replace indirect blocks with 6009 * pending update dependencies. If a buffer containing an indirect 6010 * block with dependencies is written, these routines will mark it 6011 * dirty again. It can only be successfully written once all the 6012 * dependencies are removed. The ffs_fsync routine in conjunction with 6013 * softdep_sync_metadata work together to get all the dependencies 6014 * removed so that a file can be successfully written to disk. Three 6015 * procedures are used when setting up indirect block pointer 6016 * dependencies. The division is necessary because of the organization 6017 * of the "balloc" routine and because of the distinction between file 6018 * pages and file metadata blocks. 6019 */ 6020 6021 /* 6022 * Allocate a new allocindir structure. 6023 */ 6024 static struct allocindir * 6025 newallocindir( 6026 struct inode *ip, /* inode for file being extended */ 6027 int ptrno, /* offset of pointer in indirect block */ 6028 ufs2_daddr_t newblkno, /* disk block number being added */ 6029 ufs2_daddr_t oldblkno, /* previous block number, 0 if none */ 6030 ufs_lbn_t lbn) 6031 { 6032 struct newblk *newblk; 6033 struct allocindir *aip; 6034 struct freefrag *freefrag; 6035 struct jnewblk *jnewblk; 6036 6037 if (oldblkno) 6038 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6039 SINGLETON_KEY); 6040 else 6041 freefrag = NULL; 6042 ACQUIRE_LOCK(ITOUMP(ip)); 6043 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6044 panic("new_allocindir: lost block"); 6045 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6046 ("newallocindir: newblk already initialized")); 6047 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6048 newblk->nb_freefrag = freefrag; 6049 aip = (struct allocindir *)newblk; 6050 aip->ai_offset = ptrno; 6051 aip->ai_oldblkno = oldblkno; 6052 aip->ai_lbn = lbn; 6053 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6054 jnewblk->jn_ino = ip->i_number; 6055 jnewblk->jn_lbn = lbn; 6056 add_to_journal(&jnewblk->jn_list); 6057 } 6058 if (freefrag && freefrag->ff_jdep != NULL && 6059 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6060 add_to_journal(freefrag->ff_jdep); 6061 return (aip); 6062 } 6063 6064 /* 6065 * Called just before setting an indirect block pointer 6066 * to a newly allocated file page. 6067 */ 6068 void 6069 softdep_setup_allocindir_page( 6070 struct inode *ip, /* inode for file being extended */ 6071 ufs_lbn_t lbn, /* allocated block number within file */ 6072 struct buf *bp, /* buffer with indirect blk referencing page */ 6073 int ptrno, /* offset of pointer in indirect block */ 6074 ufs2_daddr_t newblkno, /* disk block number being added */ 6075 ufs2_daddr_t oldblkno, /* previous block number, 0 if none */ 6076 struct buf *nbp) /* buffer holding allocated page */ 6077 { 6078 struct inodedep *inodedep; 6079 struct freefrag *freefrag; 6080 struct allocindir *aip; 6081 struct pagedep *pagedep; 6082 struct mount *mp; 6083 struct ufsmount *ump; 6084 6085 mp = ITOVFS(ip); 6086 ump = VFSTOUFS(mp); 6087 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6088 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6089 KASSERT(lbn == nbp->b_lblkno, 6090 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6091 lbn, bp->b_lblkno)); 6092 CTR4(KTR_SUJ, 6093 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6094 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6095 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6096 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6097 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6098 /* 6099 * If we are allocating a directory page, then we must 6100 * allocate an associated pagedep to track additions and 6101 * deletions. 6102 */ 6103 if ((ip->i_mode & IFMT) == IFDIR) 6104 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6105 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6106 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6107 FREE_LOCK(ump); 6108 if (freefrag) 6109 handle_workitem_freefrag(freefrag); 6110 } 6111 6112 /* 6113 * Called just before setting an indirect block pointer to a 6114 * newly allocated indirect block. 6115 */ 6116 void 6117 softdep_setup_allocindir_meta( 6118 struct buf *nbp, /* newly allocated indirect block */ 6119 struct inode *ip, /* inode for file being extended */ 6120 struct buf *bp, /* indirect block referencing allocated block */ 6121 int ptrno, /* offset of pointer in indirect block */ 6122 ufs2_daddr_t newblkno) /* disk block number being added */ 6123 { 6124 struct inodedep *inodedep; 6125 struct allocindir *aip; 6126 struct ufsmount *ump; 6127 ufs_lbn_t lbn; 6128 6129 ump = ITOUMP(ip); 6130 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6131 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6132 CTR3(KTR_SUJ, 6133 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6134 ip->i_number, newblkno, ptrno); 6135 lbn = nbp->b_lblkno; 6136 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6137 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6138 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6139 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6140 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6141 panic("softdep_setup_allocindir_meta: Block already existed"); 6142 FREE_LOCK(ump); 6143 } 6144 6145 static void 6146 indirdep_complete(struct indirdep *indirdep) 6147 { 6148 struct allocindir *aip; 6149 6150 LIST_REMOVE(indirdep, ir_next); 6151 indirdep->ir_state |= DEPCOMPLETE; 6152 6153 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6154 LIST_REMOVE(aip, ai_next); 6155 free_newblk(&aip->ai_block); 6156 } 6157 /* 6158 * If this indirdep is not attached to a buf it was simply waiting 6159 * on completion to clear completehd. free_indirdep() asserts 6160 * that nothing is dangling. 6161 */ 6162 if ((indirdep->ir_state & ONWORKLIST) == 0) 6163 free_indirdep(indirdep); 6164 } 6165 6166 static struct indirdep * 6167 indirdep_lookup(struct mount *mp, 6168 struct inode *ip, 6169 struct buf *bp) 6170 { 6171 struct indirdep *indirdep, *newindirdep; 6172 struct newblk *newblk; 6173 struct ufsmount *ump; 6174 struct worklist *wk; 6175 struct fs *fs; 6176 ufs2_daddr_t blkno; 6177 6178 ump = VFSTOUFS(mp); 6179 LOCK_OWNED(ump); 6180 indirdep = NULL; 6181 newindirdep = NULL; 6182 fs = ump->um_fs; 6183 for (;;) { 6184 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6185 if (wk->wk_type != D_INDIRDEP) 6186 continue; 6187 indirdep = WK_INDIRDEP(wk); 6188 break; 6189 } 6190 /* Found on the buffer worklist, no new structure to free. */ 6191 if (indirdep != NULL && newindirdep == NULL) 6192 return (indirdep); 6193 if (indirdep != NULL && newindirdep != NULL) 6194 panic("indirdep_lookup: simultaneous create"); 6195 /* None found on the buffer and a new structure is ready. */ 6196 if (indirdep == NULL && newindirdep != NULL) 6197 break; 6198 /* None found and no new structure available. */ 6199 FREE_LOCK(ump); 6200 newindirdep = malloc(sizeof(struct indirdep), 6201 M_INDIRDEP, M_SOFTDEP_FLAGS); 6202 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6203 newindirdep->ir_state = ATTACHED; 6204 if (I_IS_UFS1(ip)) 6205 newindirdep->ir_state |= UFS1FMT; 6206 TAILQ_INIT(&newindirdep->ir_trunc); 6207 newindirdep->ir_saveddata = NULL; 6208 LIST_INIT(&newindirdep->ir_deplisthd); 6209 LIST_INIT(&newindirdep->ir_donehd); 6210 LIST_INIT(&newindirdep->ir_writehd); 6211 LIST_INIT(&newindirdep->ir_completehd); 6212 if (bp->b_blkno == bp->b_lblkno) { 6213 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6214 NULL, NULL); 6215 bp->b_blkno = blkno; 6216 } 6217 newindirdep->ir_freeblks = NULL; 6218 newindirdep->ir_savebp = 6219 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6220 newindirdep->ir_bp = bp; 6221 BUF_KERNPROC(newindirdep->ir_savebp); 6222 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6223 ACQUIRE_LOCK(ump); 6224 } 6225 indirdep = newindirdep; 6226 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6227 /* 6228 * If the block is not yet allocated we don't set DEPCOMPLETE so 6229 * that we don't free dependencies until the pointers are valid. 6230 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6231 * than using the hash. 6232 */ 6233 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6234 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6235 else 6236 indirdep->ir_state |= DEPCOMPLETE; 6237 return (indirdep); 6238 } 6239 6240 /* 6241 * Called to finish the allocation of the "aip" allocated 6242 * by one of the two routines above. 6243 */ 6244 static struct freefrag * 6245 setup_allocindir_phase2( 6246 struct buf *bp, /* in-memory copy of the indirect block */ 6247 struct inode *ip, /* inode for file being extended */ 6248 struct inodedep *inodedep, /* Inodedep for ip */ 6249 struct allocindir *aip, /* allocindir allocated by the above routines */ 6250 ufs_lbn_t lbn) /* Logical block number for this block. */ 6251 { 6252 struct fs *fs __diagused; 6253 struct indirdep *indirdep; 6254 struct allocindir *oldaip; 6255 struct freefrag *freefrag; 6256 struct mount *mp; 6257 struct ufsmount *ump; 6258 6259 mp = ITOVFS(ip); 6260 ump = VFSTOUFS(mp); 6261 LOCK_OWNED(ump); 6262 fs = ump->um_fs; 6263 if (bp->b_lblkno >= 0) 6264 panic("setup_allocindir_phase2: not indir blk"); 6265 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6266 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6267 indirdep = indirdep_lookup(mp, ip, bp); 6268 KASSERT(indirdep->ir_savebp != NULL, 6269 ("setup_allocindir_phase2 NULL ir_savebp")); 6270 aip->ai_indirdep = indirdep; 6271 /* 6272 * Check for an unwritten dependency for this indirect offset. If 6273 * there is, merge the old dependency into the new one. This happens 6274 * as a result of reallocblk only. 6275 */ 6276 freefrag = NULL; 6277 if (aip->ai_oldblkno != 0) { 6278 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6279 if (oldaip->ai_offset == aip->ai_offset) { 6280 freefrag = allocindir_merge(aip, oldaip); 6281 goto done; 6282 } 6283 } 6284 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6285 if (oldaip->ai_offset == aip->ai_offset) { 6286 freefrag = allocindir_merge(aip, oldaip); 6287 goto done; 6288 } 6289 } 6290 } 6291 done: 6292 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6293 return (freefrag); 6294 } 6295 6296 /* 6297 * Merge two allocindirs which refer to the same block. Move newblock 6298 * dependencies and setup the freefrags appropriately. 6299 */ 6300 static struct freefrag * 6301 allocindir_merge( 6302 struct allocindir *aip, 6303 struct allocindir *oldaip) 6304 { 6305 struct freefrag *freefrag; 6306 struct worklist *wk; 6307 6308 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6309 panic("allocindir_merge: blkno"); 6310 aip->ai_oldblkno = oldaip->ai_oldblkno; 6311 freefrag = aip->ai_freefrag; 6312 aip->ai_freefrag = oldaip->ai_freefrag; 6313 oldaip->ai_freefrag = NULL; 6314 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6315 /* 6316 * If we are tracking a new directory-block allocation, 6317 * move it from the old allocindir to the new allocindir. 6318 */ 6319 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6320 WORKLIST_REMOVE(wk); 6321 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6322 panic("allocindir_merge: extra newdirblk"); 6323 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6324 } 6325 /* 6326 * We can skip journaling for this freefrag and just complete 6327 * any pending journal work for the allocindir that is being 6328 * removed after the freefrag completes. 6329 */ 6330 if (freefrag->ff_jdep) 6331 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6332 LIST_REMOVE(oldaip, ai_next); 6333 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6334 &freefrag->ff_list, &freefrag->ff_jwork); 6335 free_newblk(&oldaip->ai_block); 6336 6337 return (freefrag); 6338 } 6339 6340 static inline void 6341 setup_freedirect( 6342 struct freeblks *freeblks, 6343 struct inode *ip, 6344 int i, 6345 int needj) 6346 { 6347 struct ufsmount *ump; 6348 ufs2_daddr_t blkno; 6349 int frags; 6350 6351 blkno = DIP(ip, i_db[i]); 6352 if (blkno == 0) 6353 return; 6354 DIP_SET(ip, i_db[i], 0); 6355 ump = ITOUMP(ip); 6356 frags = sblksize(ump->um_fs, ip->i_size, i); 6357 frags = numfrags(ump->um_fs, frags); 6358 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6359 } 6360 6361 static inline void 6362 setup_freeext( 6363 struct freeblks *freeblks, 6364 struct inode *ip, 6365 int i, 6366 int needj) 6367 { 6368 struct ufsmount *ump; 6369 ufs2_daddr_t blkno; 6370 int frags; 6371 6372 blkno = ip->i_din2->di_extb[i]; 6373 if (blkno == 0) 6374 return; 6375 ip->i_din2->di_extb[i] = 0; 6376 ump = ITOUMP(ip); 6377 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6378 frags = numfrags(ump->um_fs, frags); 6379 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6380 } 6381 6382 static inline void 6383 setup_freeindir( 6384 struct freeblks *freeblks, 6385 struct inode *ip, 6386 int i, 6387 ufs_lbn_t lbn, 6388 int needj) 6389 { 6390 struct ufsmount *ump; 6391 ufs2_daddr_t blkno; 6392 6393 blkno = DIP(ip, i_ib[i]); 6394 if (blkno == 0) 6395 return; 6396 DIP_SET(ip, i_ib[i], 0); 6397 ump = ITOUMP(ip); 6398 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6399 0, needj); 6400 } 6401 6402 static inline struct freeblks * 6403 newfreeblks(struct mount *mp, struct inode *ip) 6404 { 6405 struct freeblks *freeblks; 6406 6407 freeblks = malloc(sizeof(struct freeblks), 6408 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6409 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6410 LIST_INIT(&freeblks->fb_jblkdephd); 6411 LIST_INIT(&freeblks->fb_jwork); 6412 freeblks->fb_ref = 0; 6413 freeblks->fb_cgwait = 0; 6414 freeblks->fb_state = ATTACHED; 6415 freeblks->fb_uid = ip->i_uid; 6416 freeblks->fb_inum = ip->i_number; 6417 freeblks->fb_vtype = ITOV(ip)->v_type; 6418 freeblks->fb_modrev = DIP(ip, i_modrev); 6419 freeblks->fb_devvp = ITODEVVP(ip); 6420 freeblks->fb_chkcnt = 0; 6421 freeblks->fb_len = 0; 6422 6423 return (freeblks); 6424 } 6425 6426 static void 6427 trunc_indirdep( 6428 struct indirdep *indirdep, 6429 struct freeblks *freeblks, 6430 struct buf *bp, 6431 int off) 6432 { 6433 struct allocindir *aip, *aipn; 6434 6435 /* 6436 * The first set of allocindirs won't be in savedbp. 6437 */ 6438 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6439 if (aip->ai_offset > off) 6440 cancel_allocindir(aip, bp, freeblks, 1); 6441 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6442 if (aip->ai_offset > off) 6443 cancel_allocindir(aip, bp, freeblks, 1); 6444 /* 6445 * These will exist in savedbp. 6446 */ 6447 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6448 if (aip->ai_offset > off) 6449 cancel_allocindir(aip, NULL, freeblks, 0); 6450 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6451 if (aip->ai_offset > off) 6452 cancel_allocindir(aip, NULL, freeblks, 0); 6453 } 6454 6455 /* 6456 * Follow the chain of indirects down to lastlbn creating a freework 6457 * structure for each. This will be used to start indir_trunc() at 6458 * the right offset and create the journal records for the parrtial 6459 * truncation. A second step will handle the truncated dependencies. 6460 */ 6461 static int 6462 setup_trunc_indir( 6463 struct freeblks *freeblks, 6464 struct inode *ip, 6465 ufs_lbn_t lbn, 6466 ufs_lbn_t lastlbn, 6467 ufs2_daddr_t blkno) 6468 { 6469 struct indirdep *indirdep; 6470 struct indirdep *indirn; 6471 struct freework *freework; 6472 struct newblk *newblk; 6473 struct mount *mp; 6474 struct ufsmount *ump; 6475 struct buf *bp; 6476 uint8_t *start; 6477 uint8_t *end; 6478 ufs_lbn_t lbnadd; 6479 int level; 6480 int error; 6481 int off; 6482 6483 freework = NULL; 6484 if (blkno == 0) 6485 return (0); 6486 mp = freeblks->fb_list.wk_mp; 6487 ump = VFSTOUFS(mp); 6488 /* 6489 * Here, calls to VOP_BMAP() will fail. However, we already have 6490 * the on-disk address, so we just pass it to bread() instead of 6491 * having bread() attempt to calculate it using VOP_BMAP(). 6492 */ 6493 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6494 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6495 if (error) 6496 return (error); 6497 level = lbn_level(lbn); 6498 lbnadd = lbn_offset(ump->um_fs, level); 6499 /* 6500 * Compute the offset of the last block we want to keep. Store 6501 * in the freework the first block we want to completely free. 6502 */ 6503 off = (lastlbn - -(lbn + level)) / lbnadd; 6504 if (off + 1 == NINDIR(ump->um_fs)) 6505 goto nowork; 6506 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6507 /* 6508 * Link the freework into the indirdep. This will prevent any new 6509 * allocations from proceeding until we are finished with the 6510 * truncate and the block is written. 6511 */ 6512 ACQUIRE_LOCK(ump); 6513 indirdep = indirdep_lookup(mp, ip, bp); 6514 if (indirdep->ir_freeblks) 6515 panic("setup_trunc_indir: indirdep already truncated."); 6516 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6517 freework->fw_indir = indirdep; 6518 /* 6519 * Cancel any allocindirs that will not make it to disk. 6520 * We have to do this for all copies of the indirdep that 6521 * live on this newblk. 6522 */ 6523 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6524 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6525 &newblk) == 0) 6526 panic("setup_trunc_indir: lost block"); 6527 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6528 trunc_indirdep(indirn, freeblks, bp, off); 6529 } else 6530 trunc_indirdep(indirdep, freeblks, bp, off); 6531 FREE_LOCK(ump); 6532 /* 6533 * Creation is protected by the buf lock. The saveddata is only 6534 * needed if a full truncation follows a partial truncation but it 6535 * is difficult to allocate in that case so we fetch it anyway. 6536 */ 6537 if (indirdep->ir_saveddata == NULL) 6538 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6539 M_SOFTDEP_FLAGS); 6540 nowork: 6541 /* Fetch the blkno of the child and the zero start offset. */ 6542 if (I_IS_UFS1(ip)) { 6543 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6544 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6545 } else { 6546 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6547 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6548 } 6549 if (freework) { 6550 /* Zero the truncated pointers. */ 6551 end = bp->b_data + bp->b_bcount; 6552 bzero(start, end - start); 6553 bdwrite(bp); 6554 } else 6555 bqrelse(bp); 6556 if (level == 0) 6557 return (0); 6558 lbn++; /* adjust level */ 6559 lbn -= (off * lbnadd); 6560 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6561 } 6562 6563 /* 6564 * Complete the partial truncation of an indirect block setup by 6565 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6566 * copy and writes them to disk before the freeblks is allowed to complete. 6567 */ 6568 static void 6569 complete_trunc_indir(struct freework *freework) 6570 { 6571 struct freework *fwn; 6572 struct indirdep *indirdep; 6573 struct ufsmount *ump; 6574 struct buf *bp; 6575 uintptr_t start; 6576 int count; 6577 6578 ump = VFSTOUFS(freework->fw_list.wk_mp); 6579 LOCK_OWNED(ump); 6580 indirdep = freework->fw_indir; 6581 for (;;) { 6582 bp = indirdep->ir_bp; 6583 /* See if the block was discarded. */ 6584 if (bp == NULL) 6585 break; 6586 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6587 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6588 break; 6589 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6590 LOCK_PTR(ump)) == 0) 6591 BUF_UNLOCK(bp); 6592 ACQUIRE_LOCK(ump); 6593 } 6594 freework->fw_state |= DEPCOMPLETE; 6595 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6596 /* 6597 * Zero the pointers in the saved copy. 6598 */ 6599 if (indirdep->ir_state & UFS1FMT) 6600 start = sizeof(ufs1_daddr_t); 6601 else 6602 start = sizeof(ufs2_daddr_t); 6603 start *= freework->fw_start; 6604 count = indirdep->ir_savebp->b_bcount - start; 6605 start += (uintptr_t)indirdep->ir_savebp->b_data; 6606 bzero((char *)start, count); 6607 /* 6608 * We need to start the next truncation in the list if it has not 6609 * been started yet. 6610 */ 6611 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6612 if (fwn != NULL) { 6613 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6614 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6615 if ((fwn->fw_state & ONWORKLIST) == 0) 6616 freework_enqueue(fwn); 6617 } 6618 /* 6619 * If bp is NULL the block was fully truncated, restore 6620 * the saved block list otherwise free it if it is no 6621 * longer needed. 6622 */ 6623 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6624 if (bp == NULL) 6625 bcopy(indirdep->ir_saveddata, 6626 indirdep->ir_savebp->b_data, 6627 indirdep->ir_savebp->b_bcount); 6628 free(indirdep->ir_saveddata, M_INDIRDEP); 6629 indirdep->ir_saveddata = NULL; 6630 } 6631 /* 6632 * When bp is NULL there is a full truncation pending. We 6633 * must wait for this full truncation to be journaled before 6634 * we can release this freework because the disk pointers will 6635 * never be written as zero. 6636 */ 6637 if (bp == NULL) { 6638 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6639 handle_written_freework(freework); 6640 else 6641 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6642 &freework->fw_list); 6643 if (fwn == NULL) { 6644 freework->fw_indir = (void *)0x0000deadbeef0000; 6645 bp = indirdep->ir_savebp; 6646 indirdep->ir_savebp = NULL; 6647 free_indirdep(indirdep); 6648 FREE_LOCK(ump); 6649 brelse(bp); 6650 ACQUIRE_LOCK(ump); 6651 } 6652 } else { 6653 /* Complete when the real copy is written. */ 6654 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6655 BUF_UNLOCK(bp); 6656 } 6657 } 6658 6659 /* 6660 * Calculate the number of blocks we are going to release where datablocks 6661 * is the current total and length is the new file size. 6662 */ 6663 static ufs2_daddr_t 6664 blkcount(struct fs *fs, 6665 ufs2_daddr_t datablocks, 6666 off_t length) 6667 { 6668 off_t totblks, numblks; 6669 6670 totblks = 0; 6671 numblks = howmany(length, fs->fs_bsize); 6672 if (numblks <= UFS_NDADDR) { 6673 totblks = howmany(length, fs->fs_fsize); 6674 goto out; 6675 } 6676 totblks = blkstofrags(fs, numblks); 6677 numblks -= UFS_NDADDR; 6678 /* 6679 * Count all single, then double, then triple indirects required. 6680 * Subtracting one indirects worth of blocks for each pass 6681 * acknowledges one of each pointed to by the inode. 6682 */ 6683 for (;;) { 6684 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6685 numblks -= NINDIR(fs); 6686 if (numblks <= 0) 6687 break; 6688 numblks = howmany(numblks, NINDIR(fs)); 6689 } 6690 out: 6691 totblks = fsbtodb(fs, totblks); 6692 /* 6693 * Handle sparse files. We can't reclaim more blocks than the inode 6694 * references. We will correct it later in handle_complete_freeblks() 6695 * when we know the real count. 6696 */ 6697 if (totblks > datablocks) 6698 return (0); 6699 return (datablocks - totblks); 6700 } 6701 6702 /* 6703 * Handle freeblocks for journaled softupdate filesystems. 6704 * 6705 * Contrary to normal softupdates, we must preserve the block pointers in 6706 * indirects until their subordinates are free. This is to avoid journaling 6707 * every block that is freed which may consume more space than the journal 6708 * itself. The recovery program will see the free block journals at the 6709 * base of the truncated area and traverse them to reclaim space. The 6710 * pointers in the inode may be cleared immediately after the journal 6711 * records are written because each direct and indirect pointer in the 6712 * inode is recorded in a journal. This permits full truncation to proceed 6713 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6714 * 6715 * The algorithm is as follows: 6716 * 1) Traverse the in-memory state and create journal entries to release 6717 * the relevant blocks and full indirect trees. 6718 * 2) Traverse the indirect block chain adding partial truncation freework 6719 * records to indirects in the path to lastlbn. The freework will 6720 * prevent new allocation dependencies from being satisfied in this 6721 * indirect until the truncation completes. 6722 * 3) Read and lock the inode block, performing an update with the new size 6723 * and pointers. This prevents truncated data from becoming valid on 6724 * disk through step 4. 6725 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6726 * eliminate journal work for those records that do not require it. 6727 * 5) Schedule the journal records to be written followed by the inode block. 6728 * 6) Allocate any necessary frags for the end of file. 6729 * 7) Zero any partially truncated blocks. 6730 * 6731 * From this truncation proceeds asynchronously using the freework and 6732 * indir_trunc machinery. The file will not be extended again into a 6733 * partially truncated indirect block until all work is completed but 6734 * the normal dependency mechanism ensures that it is rolled back/forward 6735 * as appropriate. Further truncation may occur without delay and is 6736 * serialized in indir_trunc(). 6737 */ 6738 void 6739 softdep_journal_freeblocks( 6740 struct inode *ip, /* The inode whose length is to be reduced */ 6741 struct ucred *cred, 6742 off_t length, /* The new length for the file */ 6743 int flags) /* IO_EXT and/or IO_NORMAL */ 6744 { 6745 struct freeblks *freeblks, *fbn; 6746 struct worklist *wk, *wkn; 6747 struct inodedep *inodedep; 6748 struct jblkdep *jblkdep; 6749 struct allocdirect *adp, *adpn; 6750 struct ufsmount *ump; 6751 struct fs *fs; 6752 struct buf *bp; 6753 struct vnode *vp; 6754 struct mount *mp; 6755 daddr_t dbn; 6756 ufs2_daddr_t extblocks, datablocks; 6757 ufs_lbn_t tmpval, lbn, lastlbn; 6758 int frags, lastoff, iboff, allocblock, needj, error, i; 6759 6760 ump = ITOUMP(ip); 6761 mp = UFSTOVFS(ump); 6762 fs = ump->um_fs; 6763 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6764 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6765 vp = ITOV(ip); 6766 needj = 1; 6767 iboff = -1; 6768 allocblock = 0; 6769 extblocks = 0; 6770 datablocks = 0; 6771 frags = 0; 6772 freeblks = newfreeblks(mp, ip); 6773 ACQUIRE_LOCK(ump); 6774 /* 6775 * If we're truncating a removed file that will never be written 6776 * we don't need to journal the block frees. The canceled journals 6777 * for the allocations will suffice. 6778 */ 6779 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6780 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6781 length == 0) 6782 needj = 0; 6783 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6784 ip->i_number, length, needj); 6785 FREE_LOCK(ump); 6786 /* 6787 * Calculate the lbn that we are truncating to. This results in -1 6788 * if we're truncating the 0 bytes. So it is the last lbn we want 6789 * to keep, not the first lbn we want to truncate. 6790 */ 6791 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6792 lastoff = blkoff(fs, length); 6793 /* 6794 * Compute frags we are keeping in lastlbn. 0 means all. 6795 */ 6796 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6797 frags = fragroundup(fs, lastoff); 6798 /* adp offset of last valid allocdirect. */ 6799 iboff = lastlbn; 6800 } else if (lastlbn > 0) 6801 iboff = UFS_NDADDR; 6802 if (fs->fs_magic == FS_UFS2_MAGIC) 6803 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6804 /* 6805 * Handle normal data blocks and indirects. This section saves 6806 * values used after the inode update to complete frag and indirect 6807 * truncation. 6808 */ 6809 if ((flags & IO_NORMAL) != 0) { 6810 /* 6811 * Handle truncation of whole direct and indirect blocks. 6812 */ 6813 for (i = iboff + 1; i < UFS_NDADDR; i++) 6814 setup_freedirect(freeblks, ip, i, needj); 6815 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6816 i < UFS_NIADDR; 6817 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6818 /* Release a whole indirect tree. */ 6819 if (lbn > lastlbn) { 6820 setup_freeindir(freeblks, ip, i, -lbn -i, 6821 needj); 6822 continue; 6823 } 6824 iboff = i + UFS_NDADDR; 6825 /* 6826 * Traverse partially truncated indirect tree. 6827 */ 6828 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6829 setup_trunc_indir(freeblks, ip, -lbn - i, 6830 lastlbn, DIP(ip, i_ib[i])); 6831 } 6832 /* 6833 * Handle partial truncation to a frag boundary. 6834 */ 6835 if (frags) { 6836 ufs2_daddr_t blkno; 6837 long oldfrags; 6838 6839 oldfrags = blksize(fs, ip, lastlbn); 6840 blkno = DIP(ip, i_db[lastlbn]); 6841 if (blkno && oldfrags != frags) { 6842 oldfrags -= frags; 6843 oldfrags = numfrags(fs, oldfrags); 6844 blkno += numfrags(fs, frags); 6845 newfreework(ump, freeblks, NULL, lastlbn, 6846 blkno, oldfrags, 0, needj); 6847 if (needj) 6848 adjust_newfreework(freeblks, 6849 numfrags(fs, frags)); 6850 } else if (blkno == 0) 6851 allocblock = 1; 6852 } 6853 /* 6854 * Add a journal record for partial truncate if we are 6855 * handling indirect blocks. Non-indirects need no extra 6856 * journaling. 6857 */ 6858 if (length != 0 && lastlbn >= UFS_NDADDR) { 6859 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 6860 newjtrunc(freeblks, length, 0); 6861 } 6862 ip->i_size = length; 6863 DIP_SET(ip, i_size, ip->i_size); 6864 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 6865 datablocks = DIP(ip, i_blocks) - extblocks; 6866 if (length != 0) 6867 datablocks = blkcount(fs, datablocks, length); 6868 freeblks->fb_len = length; 6869 } 6870 if ((flags & IO_EXT) != 0) { 6871 for (i = 0; i < UFS_NXADDR; i++) 6872 setup_freeext(freeblks, ip, i, needj); 6873 ip->i_din2->di_extsize = 0; 6874 datablocks += extblocks; 6875 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 6876 } 6877 #ifdef QUOTA 6878 /* Reference the quotas in case the block count is wrong in the end. */ 6879 quotaref(vp, freeblks->fb_quota); 6880 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6881 #endif 6882 freeblks->fb_chkcnt = -datablocks; 6883 UFS_LOCK(ump); 6884 fs->fs_pendingblocks += datablocks; 6885 UFS_UNLOCK(ump); 6886 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6887 /* 6888 * Handle truncation of incomplete alloc direct dependencies. We 6889 * hold the inode block locked to prevent incomplete dependencies 6890 * from reaching the disk while we are eliminating those that 6891 * have been truncated. This is a partially inlined ffs_update(). 6892 */ 6893 ufs_itimes(vp); 6894 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6895 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 6896 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 6897 NULL, NULL, 0, cred, 0, NULL, &bp); 6898 if (error) { 6899 softdep_error("softdep_journal_freeblocks", error); 6900 return; 6901 } 6902 if (bp->b_bufsize == fs->fs_bsize) 6903 bp->b_flags |= B_CLUSTEROK; 6904 softdep_update_inodeblock(ip, bp, 0); 6905 if (ump->um_fstype == UFS1) { 6906 *((struct ufs1_dinode *)bp->b_data + 6907 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6908 } else { 6909 ffs_update_dinode_ckhash(fs, ip->i_din2); 6910 *((struct ufs2_dinode *)bp->b_data + 6911 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6912 } 6913 ACQUIRE_LOCK(ump); 6914 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6915 if ((inodedep->id_state & IOSTARTED) != 0) 6916 panic("softdep_setup_freeblocks: inode busy"); 6917 /* 6918 * Add the freeblks structure to the list of operations that 6919 * must await the zero'ed inode being written to disk. If we 6920 * still have a bitmap dependency (needj), then the inode 6921 * has never been written to disk, so we can process the 6922 * freeblks below once we have deleted the dependencies. 6923 */ 6924 if (needj) 6925 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6926 else 6927 freeblks->fb_state |= COMPLETE; 6928 if ((flags & IO_NORMAL) != 0) { 6929 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6930 if (adp->ad_offset > iboff) 6931 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6932 freeblks); 6933 /* 6934 * Truncate the allocdirect. We could eliminate 6935 * or modify journal records as well. 6936 */ 6937 else if (adp->ad_offset == iboff && frags) 6938 adp->ad_newsize = frags; 6939 } 6940 } 6941 if ((flags & IO_EXT) != 0) 6942 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6943 cancel_allocdirect(&inodedep->id_extupdt, adp, 6944 freeblks); 6945 /* 6946 * Scan the bufwait list for newblock dependencies that will never 6947 * make it to disk. 6948 */ 6949 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6950 if (wk->wk_type != D_ALLOCDIRECT) 6951 continue; 6952 adp = WK_ALLOCDIRECT(wk); 6953 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6954 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6955 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6956 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6957 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6958 } 6959 } 6960 /* 6961 * Add journal work. 6962 */ 6963 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6964 add_to_journal(&jblkdep->jb_list); 6965 FREE_LOCK(ump); 6966 bdwrite(bp); 6967 /* 6968 * Truncate dependency structures beyond length. 6969 */ 6970 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6971 /* 6972 * This is only set when we need to allocate a fragment because 6973 * none existed at the end of a frag-sized file. It handles only 6974 * allocating a new, zero filled block. 6975 */ 6976 if (allocblock) { 6977 ip->i_size = length - lastoff; 6978 DIP_SET(ip, i_size, ip->i_size); 6979 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6980 if (error != 0) { 6981 softdep_error("softdep_journal_freeblks", error); 6982 return; 6983 } 6984 ip->i_size = length; 6985 DIP_SET(ip, i_size, length); 6986 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 6987 allocbuf(bp, frags); 6988 ffs_update(vp, 0); 6989 bawrite(bp); 6990 } else if (lastoff != 0 && vp->v_type != VDIR) { 6991 int size; 6992 6993 /* 6994 * Zero the end of a truncated frag or block. 6995 */ 6996 size = sblksize(fs, length, lastlbn); 6997 error = bread(vp, lastlbn, size, cred, &bp); 6998 if (error == 0) { 6999 bzero((char *)bp->b_data + lastoff, size - lastoff); 7000 bawrite(bp); 7001 } else if (!ffs_fsfail_cleanup(ump, error)) { 7002 softdep_error("softdep_journal_freeblks", error); 7003 return; 7004 } 7005 } 7006 ACQUIRE_LOCK(ump); 7007 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7008 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7009 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7010 /* 7011 * We zero earlier truncations so they don't erroneously 7012 * update i_blocks. 7013 */ 7014 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7015 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7016 fbn->fb_len = 0; 7017 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7018 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7019 freeblks->fb_state |= INPROGRESS; 7020 else 7021 freeblks = NULL; 7022 FREE_LOCK(ump); 7023 if (freeblks) 7024 handle_workitem_freeblocks(freeblks, 0); 7025 trunc_pages(ip, length, extblocks, flags); 7026 7027 } 7028 7029 /* 7030 * Flush a JOP_SYNC to the journal. 7031 */ 7032 void 7033 softdep_journal_fsync(struct inode *ip) 7034 { 7035 struct jfsync *jfsync; 7036 struct ufsmount *ump; 7037 7038 ump = ITOUMP(ip); 7039 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7040 ("softdep_journal_fsync called on non-softdep filesystem")); 7041 if ((ip->i_flag & IN_TRUNCATED) == 0) 7042 return; 7043 ip->i_flag &= ~IN_TRUNCATED; 7044 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7045 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7046 jfsync->jfs_size = ip->i_size; 7047 jfsync->jfs_ino = ip->i_number; 7048 ACQUIRE_LOCK(ump); 7049 add_to_journal(&jfsync->jfs_list); 7050 jwait(&jfsync->jfs_list, MNT_WAIT); 7051 FREE_LOCK(ump); 7052 } 7053 7054 /* 7055 * Block de-allocation dependencies. 7056 * 7057 * When blocks are de-allocated, the on-disk pointers must be nullified before 7058 * the blocks are made available for use by other files. (The true 7059 * requirement is that old pointers must be nullified before new on-disk 7060 * pointers are set. We chose this slightly more stringent requirement to 7061 * reduce complexity.) Our implementation handles this dependency by updating 7062 * the inode (or indirect block) appropriately but delaying the actual block 7063 * de-allocation (i.e., freemap and free space count manipulation) until 7064 * after the updated versions reach stable storage. After the disk is 7065 * updated, the blocks can be safely de-allocated whenever it is convenient. 7066 * This implementation handles only the common case of reducing a file's 7067 * length to zero. Other cases are handled by the conventional synchronous 7068 * write approach. 7069 * 7070 * The ffs implementation with which we worked double-checks 7071 * the state of the block pointers and file size as it reduces 7072 * a file's length. Some of this code is replicated here in our 7073 * soft updates implementation. The freeblks->fb_chkcnt field is 7074 * used to transfer a part of this information to the procedure 7075 * that eventually de-allocates the blocks. 7076 * 7077 * This routine should be called from the routine that shortens 7078 * a file's length, before the inode's size or block pointers 7079 * are modified. It will save the block pointer information for 7080 * later release and zero the inode so that the calling routine 7081 * can release it. 7082 */ 7083 void 7084 softdep_setup_freeblocks( 7085 struct inode *ip, /* The inode whose length is to be reduced */ 7086 off_t length, /* The new length for the file */ 7087 int flags) /* IO_EXT and/or IO_NORMAL */ 7088 { 7089 struct ufs1_dinode *dp1; 7090 struct ufs2_dinode *dp2; 7091 struct freeblks *freeblks; 7092 struct inodedep *inodedep; 7093 struct allocdirect *adp; 7094 struct ufsmount *ump; 7095 struct buf *bp; 7096 struct fs *fs; 7097 ufs2_daddr_t extblocks, datablocks; 7098 struct mount *mp; 7099 int i, delay, error; 7100 ufs_lbn_t tmpval; 7101 ufs_lbn_t lbn; 7102 7103 ump = ITOUMP(ip); 7104 mp = UFSTOVFS(ump); 7105 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7106 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7107 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7108 ip->i_number, length); 7109 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7110 fs = ump->um_fs; 7111 if ((error = bread(ump->um_devvp, 7112 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7113 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7114 if (!ffs_fsfail_cleanup(ump, error)) 7115 softdep_error("softdep_setup_freeblocks", error); 7116 return; 7117 } 7118 freeblks = newfreeblks(mp, ip); 7119 extblocks = 0; 7120 datablocks = 0; 7121 if (fs->fs_magic == FS_UFS2_MAGIC) 7122 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7123 if ((flags & IO_NORMAL) != 0) { 7124 for (i = 0; i < UFS_NDADDR; i++) 7125 setup_freedirect(freeblks, ip, i, 0); 7126 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7127 i < UFS_NIADDR; 7128 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7129 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7130 ip->i_size = 0; 7131 DIP_SET(ip, i_size, 0); 7132 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7133 datablocks = DIP(ip, i_blocks) - extblocks; 7134 } 7135 if ((flags & IO_EXT) != 0) { 7136 for (i = 0; i < UFS_NXADDR; i++) 7137 setup_freeext(freeblks, ip, i, 0); 7138 ip->i_din2->di_extsize = 0; 7139 datablocks += extblocks; 7140 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7141 } 7142 #ifdef QUOTA 7143 /* Reference the quotas in case the block count is wrong in the end. */ 7144 quotaref(ITOV(ip), freeblks->fb_quota); 7145 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7146 #endif 7147 freeblks->fb_chkcnt = -datablocks; 7148 UFS_LOCK(ump); 7149 fs->fs_pendingblocks += datablocks; 7150 UFS_UNLOCK(ump); 7151 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7152 /* 7153 * Push the zero'ed inode to its disk buffer so that we are free 7154 * to delete its dependencies below. Once the dependencies are gone 7155 * the buffer can be safely released. 7156 */ 7157 if (ump->um_fstype == UFS1) { 7158 dp1 = ((struct ufs1_dinode *)bp->b_data + 7159 ino_to_fsbo(fs, ip->i_number)); 7160 ip->i_din1->di_freelink = dp1->di_freelink; 7161 *dp1 = *ip->i_din1; 7162 } else { 7163 dp2 = ((struct ufs2_dinode *)bp->b_data + 7164 ino_to_fsbo(fs, ip->i_number)); 7165 ip->i_din2->di_freelink = dp2->di_freelink; 7166 ffs_update_dinode_ckhash(fs, ip->i_din2); 7167 *dp2 = *ip->i_din2; 7168 } 7169 /* 7170 * Find and eliminate any inode dependencies. 7171 */ 7172 ACQUIRE_LOCK(ump); 7173 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7174 if ((inodedep->id_state & IOSTARTED) != 0) 7175 panic("softdep_setup_freeblocks: inode busy"); 7176 /* 7177 * Add the freeblks structure to the list of operations that 7178 * must await the zero'ed inode being written to disk. If we 7179 * still have a bitmap dependency (delay == 0), then the inode 7180 * has never been written to disk, so we can process the 7181 * freeblks below once we have deleted the dependencies. 7182 */ 7183 delay = (inodedep->id_state & DEPCOMPLETE); 7184 if (delay) 7185 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7186 else 7187 freeblks->fb_state |= COMPLETE; 7188 /* 7189 * Because the file length has been truncated to zero, any 7190 * pending block allocation dependency structures associated 7191 * with this inode are obsolete and can simply be de-allocated. 7192 * We must first merge the two dependency lists to get rid of 7193 * any duplicate freefrag structures, then purge the merged list. 7194 * If we still have a bitmap dependency, then the inode has never 7195 * been written to disk, so we can free any fragments without delay. 7196 */ 7197 if (flags & IO_NORMAL) { 7198 merge_inode_lists(&inodedep->id_newinoupdt, 7199 &inodedep->id_inoupdt); 7200 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7201 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7202 freeblks); 7203 } 7204 if (flags & IO_EXT) { 7205 merge_inode_lists(&inodedep->id_newextupdt, 7206 &inodedep->id_extupdt); 7207 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7208 cancel_allocdirect(&inodedep->id_extupdt, adp, 7209 freeblks); 7210 } 7211 FREE_LOCK(ump); 7212 bdwrite(bp); 7213 trunc_dependencies(ip, freeblks, -1, 0, flags); 7214 ACQUIRE_LOCK(ump); 7215 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7216 (void) free_inodedep(inodedep); 7217 freeblks->fb_state |= DEPCOMPLETE; 7218 /* 7219 * If the inode with zeroed block pointers is now on disk 7220 * we can start freeing blocks. 7221 */ 7222 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7223 freeblks->fb_state |= INPROGRESS; 7224 else 7225 freeblks = NULL; 7226 FREE_LOCK(ump); 7227 if (freeblks) 7228 handle_workitem_freeblocks(freeblks, 0); 7229 trunc_pages(ip, length, extblocks, flags); 7230 } 7231 7232 /* 7233 * Eliminate pages from the page cache that back parts of this inode and 7234 * adjust the vnode pager's idea of our size. This prevents stale data 7235 * from hanging around in the page cache. 7236 */ 7237 static void 7238 trunc_pages( 7239 struct inode *ip, 7240 off_t length, 7241 ufs2_daddr_t extblocks, 7242 int flags) 7243 { 7244 struct vnode *vp; 7245 struct fs *fs; 7246 ufs_lbn_t lbn; 7247 off_t end, extend; 7248 7249 vp = ITOV(ip); 7250 fs = ITOFS(ip); 7251 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7252 if ((flags & IO_EXT) != 0) 7253 vn_pages_remove(vp, extend, 0); 7254 if ((flags & IO_NORMAL) == 0) 7255 return; 7256 BO_LOCK(&vp->v_bufobj); 7257 drain_output(vp); 7258 BO_UNLOCK(&vp->v_bufobj); 7259 /* 7260 * The vnode pager eliminates file pages we eliminate indirects 7261 * below. 7262 */ 7263 vnode_pager_setsize(vp, length); 7264 /* 7265 * Calculate the end based on the last indirect we want to keep. If 7266 * the block extends into indirects we can just use the negative of 7267 * its lbn. Doubles and triples exist at lower numbers so we must 7268 * be careful not to remove those, if they exist. double and triple 7269 * indirect lbns do not overlap with others so it is not important 7270 * to verify how many levels are required. 7271 */ 7272 lbn = lblkno(fs, length); 7273 if (lbn >= UFS_NDADDR) { 7274 /* Calculate the virtual lbn of the triple indirect. */ 7275 lbn = -lbn - (UFS_NIADDR - 1); 7276 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7277 } else 7278 end = extend; 7279 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7280 } 7281 7282 /* 7283 * See if the buf bp is in the range eliminated by truncation. 7284 */ 7285 static int 7286 trunc_check_buf( 7287 struct buf *bp, 7288 int *blkoffp, 7289 ufs_lbn_t lastlbn, 7290 int lastoff, 7291 int flags) 7292 { 7293 ufs_lbn_t lbn; 7294 7295 *blkoffp = 0; 7296 /* Only match ext/normal blocks as appropriate. */ 7297 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7298 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7299 return (0); 7300 /* ALTDATA is always a full truncation. */ 7301 if ((bp->b_xflags & BX_ALTDATA) != 0) 7302 return (1); 7303 /* -1 is full truncation. */ 7304 if (lastlbn == -1) 7305 return (1); 7306 /* 7307 * If this is a partial truncate we only want those 7308 * blocks and indirect blocks that cover the range 7309 * we're after. 7310 */ 7311 lbn = bp->b_lblkno; 7312 if (lbn < 0) 7313 lbn = -(lbn + lbn_level(lbn)); 7314 if (lbn < lastlbn) 7315 return (0); 7316 /* Here we only truncate lblkno if it's partial. */ 7317 if (lbn == lastlbn) { 7318 if (lastoff == 0) 7319 return (0); 7320 *blkoffp = lastoff; 7321 } 7322 return (1); 7323 } 7324 7325 /* 7326 * Eliminate any dependencies that exist in memory beyond lblkno:off 7327 */ 7328 static void 7329 trunc_dependencies( 7330 struct inode *ip, 7331 struct freeblks *freeblks, 7332 ufs_lbn_t lastlbn, 7333 int lastoff, 7334 int flags) 7335 { 7336 struct bufobj *bo; 7337 struct vnode *vp; 7338 struct buf *bp; 7339 int blkoff; 7340 7341 /* 7342 * We must wait for any I/O in progress to finish so that 7343 * all potential buffers on the dirty list will be visible. 7344 * Once they are all there, walk the list and get rid of 7345 * any dependencies. 7346 */ 7347 vp = ITOV(ip); 7348 bo = &vp->v_bufobj; 7349 BO_LOCK(bo); 7350 drain_output(vp); 7351 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7352 bp->b_vflags &= ~BV_SCANNED; 7353 restart: 7354 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7355 if (bp->b_vflags & BV_SCANNED) 7356 continue; 7357 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7358 bp->b_vflags |= BV_SCANNED; 7359 continue; 7360 } 7361 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7362 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7363 goto restart; 7364 BO_UNLOCK(bo); 7365 if (deallocate_dependencies(bp, freeblks, blkoff)) 7366 bqrelse(bp); 7367 else 7368 brelse(bp); 7369 BO_LOCK(bo); 7370 goto restart; 7371 } 7372 /* 7373 * Now do the work of vtruncbuf while also matching indirect blocks. 7374 */ 7375 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7376 bp->b_vflags &= ~BV_SCANNED; 7377 cleanrestart: 7378 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7379 if (bp->b_vflags & BV_SCANNED) 7380 continue; 7381 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7382 bp->b_vflags |= BV_SCANNED; 7383 continue; 7384 } 7385 if (BUF_LOCK(bp, 7386 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7387 BO_LOCKPTR(bo)) == ENOLCK) { 7388 BO_LOCK(bo); 7389 goto cleanrestart; 7390 } 7391 BO_LOCK(bo); 7392 bp->b_vflags |= BV_SCANNED; 7393 BO_UNLOCK(bo); 7394 bremfree(bp); 7395 if (blkoff != 0) { 7396 allocbuf(bp, blkoff); 7397 bqrelse(bp); 7398 } else { 7399 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7400 brelse(bp); 7401 } 7402 BO_LOCK(bo); 7403 goto cleanrestart; 7404 } 7405 drain_output(vp); 7406 BO_UNLOCK(bo); 7407 } 7408 7409 static int 7410 cancel_pagedep( 7411 struct pagedep *pagedep, 7412 struct freeblks *freeblks, 7413 int blkoff) 7414 { 7415 struct jremref *jremref; 7416 struct jmvref *jmvref; 7417 struct dirrem *dirrem, *tmp; 7418 int i; 7419 7420 /* 7421 * Copy any directory remove dependencies to the list 7422 * to be processed after the freeblks proceeds. If 7423 * directory entry never made it to disk they 7424 * can be dumped directly onto the work list. 7425 */ 7426 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7427 /* Skip this directory removal if it is intended to remain. */ 7428 if (dirrem->dm_offset < blkoff) 7429 continue; 7430 /* 7431 * If there are any dirrems we wait for the journal write 7432 * to complete and then restart the buf scan as the lock 7433 * has been dropped. 7434 */ 7435 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7436 jwait(&jremref->jr_list, MNT_WAIT); 7437 return (ERESTART); 7438 } 7439 LIST_REMOVE(dirrem, dm_next); 7440 dirrem->dm_dirinum = pagedep->pd_ino; 7441 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7442 } 7443 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7444 jwait(&jmvref->jm_list, MNT_WAIT); 7445 return (ERESTART); 7446 } 7447 /* 7448 * When we're partially truncating a pagedep we just want to flush 7449 * journal entries and return. There can not be any adds in the 7450 * truncated portion of the directory and newblk must remain if 7451 * part of the block remains. 7452 */ 7453 if (blkoff != 0) { 7454 struct diradd *dap; 7455 7456 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7457 if (dap->da_offset > blkoff) 7458 panic("cancel_pagedep: diradd %p off %d > %d", 7459 dap, dap->da_offset, blkoff); 7460 for (i = 0; i < DAHASHSZ; i++) 7461 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7462 if (dap->da_offset > blkoff) 7463 panic("cancel_pagedep: diradd %p off %d > %d", 7464 dap, dap->da_offset, blkoff); 7465 return (0); 7466 } 7467 /* 7468 * There should be no directory add dependencies present 7469 * as the directory could not be truncated until all 7470 * children were removed. 7471 */ 7472 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7473 ("deallocate_dependencies: pendinghd != NULL")); 7474 for (i = 0; i < DAHASHSZ; i++) 7475 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7476 ("deallocate_dependencies: diraddhd != NULL")); 7477 if ((pagedep->pd_state & NEWBLOCK) != 0) 7478 free_newdirblk(pagedep->pd_newdirblk); 7479 if (free_pagedep(pagedep) == 0) 7480 panic("Failed to free pagedep %p", pagedep); 7481 return (0); 7482 } 7483 7484 /* 7485 * Reclaim any dependency structures from a buffer that is about to 7486 * be reallocated to a new vnode. The buffer must be locked, thus, 7487 * no I/O completion operations can occur while we are manipulating 7488 * its associated dependencies. The mutex is held so that other I/O's 7489 * associated with related dependencies do not occur. 7490 */ 7491 static int 7492 deallocate_dependencies( 7493 struct buf *bp, 7494 struct freeblks *freeblks, 7495 int off) 7496 { 7497 struct indirdep *indirdep; 7498 struct pagedep *pagedep; 7499 struct worklist *wk, *wkn; 7500 struct ufsmount *ump; 7501 7502 ump = softdep_bp_to_mp(bp); 7503 if (ump == NULL) 7504 goto done; 7505 ACQUIRE_LOCK(ump); 7506 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7507 switch (wk->wk_type) { 7508 case D_INDIRDEP: 7509 indirdep = WK_INDIRDEP(wk); 7510 if (bp->b_lblkno >= 0 || 7511 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7512 panic("deallocate_dependencies: not indir"); 7513 cancel_indirdep(indirdep, bp, freeblks); 7514 continue; 7515 7516 case D_PAGEDEP: 7517 pagedep = WK_PAGEDEP(wk); 7518 if (cancel_pagedep(pagedep, freeblks, off)) { 7519 FREE_LOCK(ump); 7520 return (ERESTART); 7521 } 7522 continue; 7523 7524 case D_ALLOCINDIR: 7525 /* 7526 * Simply remove the allocindir, we'll find it via 7527 * the indirdep where we can clear pointers if 7528 * needed. 7529 */ 7530 WORKLIST_REMOVE(wk); 7531 continue; 7532 7533 case D_FREEWORK: 7534 /* 7535 * A truncation is waiting for the zero'd pointers 7536 * to be written. It can be freed when the freeblks 7537 * is journaled. 7538 */ 7539 WORKLIST_REMOVE(wk); 7540 wk->wk_state |= ONDEPLIST; 7541 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7542 break; 7543 7544 case D_ALLOCDIRECT: 7545 if (off != 0) 7546 continue; 7547 /* FALLTHROUGH */ 7548 default: 7549 panic("deallocate_dependencies: Unexpected type %s", 7550 TYPENAME(wk->wk_type)); 7551 /* NOTREACHED */ 7552 } 7553 } 7554 FREE_LOCK(ump); 7555 done: 7556 /* 7557 * Don't throw away this buf, we were partially truncating and 7558 * some deps may always remain. 7559 */ 7560 if (off) { 7561 allocbuf(bp, off); 7562 bp->b_vflags |= BV_SCANNED; 7563 return (EBUSY); 7564 } 7565 bp->b_flags |= B_INVAL | B_NOCACHE; 7566 7567 return (0); 7568 } 7569 7570 /* 7571 * An allocdirect is being canceled due to a truncate. We must make sure 7572 * the journal entry is released in concert with the blkfree that releases 7573 * the storage. Completed journal entries must not be released until the 7574 * space is no longer pointed to by the inode or in the bitmap. 7575 */ 7576 static void 7577 cancel_allocdirect( 7578 struct allocdirectlst *adphead, 7579 struct allocdirect *adp, 7580 struct freeblks *freeblks) 7581 { 7582 struct freework *freework; 7583 struct newblk *newblk; 7584 struct worklist *wk; 7585 7586 TAILQ_REMOVE(adphead, adp, ad_next); 7587 newblk = (struct newblk *)adp; 7588 freework = NULL; 7589 /* 7590 * Find the correct freework structure. 7591 */ 7592 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7593 if (wk->wk_type != D_FREEWORK) 7594 continue; 7595 freework = WK_FREEWORK(wk); 7596 if (freework->fw_blkno == newblk->nb_newblkno) 7597 break; 7598 } 7599 if (freework == NULL) 7600 panic("cancel_allocdirect: Freework not found"); 7601 /* 7602 * If a newblk exists at all we still have the journal entry that 7603 * initiated the allocation so we do not need to journal the free. 7604 */ 7605 cancel_jfreeblk(freeblks, freework->fw_blkno); 7606 /* 7607 * If the journal hasn't been written the jnewblk must be passed 7608 * to the call to ffs_blkfree that reclaims the space. We accomplish 7609 * this by linking the journal dependency into the freework to be 7610 * freed when freework_freeblock() is called. If the journal has 7611 * been written we can simply reclaim the journal space when the 7612 * freeblks work is complete. 7613 */ 7614 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7615 &freeblks->fb_jwork); 7616 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7617 } 7618 7619 /* 7620 * Cancel a new block allocation. May be an indirect or direct block. We 7621 * remove it from various lists and return any journal record that needs to 7622 * be resolved by the caller. 7623 * 7624 * A special consideration is made for indirects which were never pointed 7625 * at on disk and will never be found once this block is released. 7626 */ 7627 static struct jnewblk * 7628 cancel_newblk( 7629 struct newblk *newblk, 7630 struct worklist *wk, 7631 struct workhead *wkhd) 7632 { 7633 struct jnewblk *jnewblk; 7634 7635 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7636 7637 newblk->nb_state |= GOINGAWAY; 7638 /* 7639 * Previously we traversed the completedhd on each indirdep 7640 * attached to this newblk to cancel them and gather journal 7641 * work. Since we need only the oldest journal segment and 7642 * the lowest point on the tree will always have the oldest 7643 * journal segment we are free to release the segments 7644 * of any subordinates and may leave the indirdep list to 7645 * indirdep_complete() when this newblk is freed. 7646 */ 7647 if (newblk->nb_state & ONDEPLIST) { 7648 newblk->nb_state &= ~ONDEPLIST; 7649 LIST_REMOVE(newblk, nb_deps); 7650 } 7651 if (newblk->nb_state & ONWORKLIST) 7652 WORKLIST_REMOVE(&newblk->nb_list); 7653 /* 7654 * If the journal entry hasn't been written we save a pointer to 7655 * the dependency that frees it until it is written or the 7656 * superseding operation completes. 7657 */ 7658 jnewblk = newblk->nb_jnewblk; 7659 if (jnewblk != NULL && wk != NULL) { 7660 newblk->nb_jnewblk = NULL; 7661 jnewblk->jn_dep = wk; 7662 } 7663 if (!LIST_EMPTY(&newblk->nb_jwork)) 7664 jwork_move(wkhd, &newblk->nb_jwork); 7665 /* 7666 * When truncating we must free the newdirblk early to remove 7667 * the pagedep from the hash before returning. 7668 */ 7669 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7670 free_newdirblk(WK_NEWDIRBLK(wk)); 7671 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7672 panic("cancel_newblk: extra newdirblk"); 7673 7674 return (jnewblk); 7675 } 7676 7677 /* 7678 * Schedule the freefrag associated with a newblk to be released once 7679 * the pointers are written and the previous block is no longer needed. 7680 */ 7681 static void 7682 newblk_freefrag(struct newblk *newblk) 7683 { 7684 struct freefrag *freefrag; 7685 7686 if (newblk->nb_freefrag == NULL) 7687 return; 7688 freefrag = newblk->nb_freefrag; 7689 newblk->nb_freefrag = NULL; 7690 freefrag->ff_state |= COMPLETE; 7691 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7692 add_to_worklist(&freefrag->ff_list, 0); 7693 } 7694 7695 /* 7696 * Free a newblk. Generate a new freefrag work request if appropriate. 7697 * This must be called after the inode pointer and any direct block pointers 7698 * are valid or fully removed via truncate or frag extension. 7699 */ 7700 static void 7701 free_newblk(struct newblk *newblk) 7702 { 7703 struct indirdep *indirdep; 7704 struct worklist *wk; 7705 7706 KASSERT(newblk->nb_jnewblk == NULL, 7707 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7708 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7709 ("free_newblk: unclaimed newblk")); 7710 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7711 newblk_freefrag(newblk); 7712 if (newblk->nb_state & ONDEPLIST) 7713 LIST_REMOVE(newblk, nb_deps); 7714 if (newblk->nb_state & ONWORKLIST) 7715 WORKLIST_REMOVE(&newblk->nb_list); 7716 LIST_REMOVE(newblk, nb_hash); 7717 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7718 free_newdirblk(WK_NEWDIRBLK(wk)); 7719 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7720 panic("free_newblk: extra newdirblk"); 7721 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7722 indirdep_complete(indirdep); 7723 handle_jwork(&newblk->nb_jwork); 7724 WORKITEM_FREE(newblk, D_NEWBLK); 7725 } 7726 7727 /* 7728 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7729 */ 7730 static void 7731 free_newdirblk(struct newdirblk *newdirblk) 7732 { 7733 struct pagedep *pagedep; 7734 struct diradd *dap; 7735 struct worklist *wk; 7736 7737 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7738 WORKLIST_REMOVE(&newdirblk->db_list); 7739 /* 7740 * If the pagedep is still linked onto the directory buffer 7741 * dependency chain, then some of the entries on the 7742 * pd_pendinghd list may not be committed to disk yet. In 7743 * this case, we will simply clear the NEWBLOCK flag and 7744 * let the pd_pendinghd list be processed when the pagedep 7745 * is next written. If the pagedep is no longer on the buffer 7746 * dependency chain, then all the entries on the pd_pending 7747 * list are committed to disk and we can free them here. 7748 */ 7749 pagedep = newdirblk->db_pagedep; 7750 pagedep->pd_state &= ~NEWBLOCK; 7751 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7752 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7753 free_diradd(dap, NULL); 7754 /* 7755 * If no dependencies remain, the pagedep will be freed. 7756 */ 7757 free_pagedep(pagedep); 7758 } 7759 /* Should only ever be one item in the list. */ 7760 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7761 WORKLIST_REMOVE(wk); 7762 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7763 } 7764 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7765 } 7766 7767 /* 7768 * Prepare an inode to be freed. The actual free operation is not 7769 * done until the zero'ed inode has been written to disk. 7770 */ 7771 void 7772 softdep_freefile( 7773 struct vnode *pvp, 7774 ino_t ino, 7775 int mode) 7776 { 7777 struct inode *ip = VTOI(pvp); 7778 struct inodedep *inodedep; 7779 struct freefile *freefile; 7780 struct freeblks *freeblks; 7781 struct ufsmount *ump; 7782 7783 ump = ITOUMP(ip); 7784 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7785 ("softdep_freefile called on non-softdep filesystem")); 7786 /* 7787 * This sets up the inode de-allocation dependency. 7788 */ 7789 freefile = malloc(sizeof(struct freefile), 7790 M_FREEFILE, M_SOFTDEP_FLAGS); 7791 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7792 freefile->fx_mode = mode; 7793 freefile->fx_oldinum = ino; 7794 freefile->fx_devvp = ump->um_devvp; 7795 LIST_INIT(&freefile->fx_jwork); 7796 UFS_LOCK(ump); 7797 ump->um_fs->fs_pendinginodes += 1; 7798 UFS_UNLOCK(ump); 7799 7800 /* 7801 * If the inodedep does not exist, then the zero'ed inode has 7802 * been written to disk. If the allocated inode has never been 7803 * written to disk, then the on-disk inode is zero'ed. In either 7804 * case we can free the file immediately. If the journal was 7805 * canceled before being written the inode will never make it to 7806 * disk and we must send the canceled journal entrys to 7807 * ffs_freefile() to be cleared in conjunction with the bitmap. 7808 * Any blocks waiting on the inode to write can be safely freed 7809 * here as it will never been written. 7810 */ 7811 ACQUIRE_LOCK(ump); 7812 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7813 if (inodedep) { 7814 /* 7815 * Clear out freeblks that no longer need to reference 7816 * this inode. 7817 */ 7818 while ((freeblks = 7819 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7820 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7821 fb_next); 7822 freeblks->fb_state &= ~ONDEPLIST; 7823 } 7824 /* 7825 * Remove this inode from the unlinked list. 7826 */ 7827 if (inodedep->id_state & UNLINKED) { 7828 /* 7829 * Save the journal work to be freed with the bitmap 7830 * before we clear UNLINKED. Otherwise it can be lost 7831 * if the inode block is written. 7832 */ 7833 handle_bufwait(inodedep, &freefile->fx_jwork); 7834 clear_unlinked_inodedep(inodedep); 7835 /* 7836 * Re-acquire inodedep as we've dropped the 7837 * per-filesystem lock in clear_unlinked_inodedep(). 7838 */ 7839 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7840 } 7841 } 7842 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7843 FREE_LOCK(ump); 7844 handle_workitem_freefile(freefile); 7845 return; 7846 } 7847 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7848 inodedep->id_state |= GOINGAWAY; 7849 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7850 FREE_LOCK(ump); 7851 if (ip->i_number == ino) 7852 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 7853 } 7854 7855 /* 7856 * Check to see if an inode has never been written to disk. If 7857 * so free the inodedep and return success, otherwise return failure. 7858 * 7859 * If we still have a bitmap dependency, then the inode has never 7860 * been written to disk. Drop the dependency as it is no longer 7861 * necessary since the inode is being deallocated. We set the 7862 * ALLCOMPLETE flags since the bitmap now properly shows that the 7863 * inode is not allocated. Even if the inode is actively being 7864 * written, it has been rolled back to its zero'ed state, so we 7865 * are ensured that a zero inode is what is on the disk. For short 7866 * lived files, this change will usually result in removing all the 7867 * dependencies from the inode so that it can be freed immediately. 7868 */ 7869 static int 7870 check_inode_unwritten(struct inodedep *inodedep) 7871 { 7872 7873 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7874 7875 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7876 !LIST_EMPTY(&inodedep->id_dirremhd) || 7877 !LIST_EMPTY(&inodedep->id_pendinghd) || 7878 !LIST_EMPTY(&inodedep->id_bufwait) || 7879 !LIST_EMPTY(&inodedep->id_inowait) || 7880 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7881 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7882 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7883 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7884 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7885 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7886 inodedep->id_mkdiradd != NULL || 7887 inodedep->id_nlinkdelta != 0) 7888 return (0); 7889 /* 7890 * Another process might be in initiate_write_inodeblock_ufs[12] 7891 * trying to allocate memory without holding "Softdep Lock". 7892 */ 7893 if ((inodedep->id_state & IOSTARTED) != 0 && 7894 inodedep->id_savedino1 == NULL) 7895 return (0); 7896 7897 if (inodedep->id_state & ONDEPLIST) 7898 LIST_REMOVE(inodedep, id_deps); 7899 inodedep->id_state &= ~ONDEPLIST; 7900 inodedep->id_state |= ALLCOMPLETE; 7901 inodedep->id_bmsafemap = NULL; 7902 if (inodedep->id_state & ONWORKLIST) 7903 WORKLIST_REMOVE(&inodedep->id_list); 7904 if (inodedep->id_savedino1 != NULL) { 7905 free(inodedep->id_savedino1, M_SAVEDINO); 7906 inodedep->id_savedino1 = NULL; 7907 } 7908 if (free_inodedep(inodedep) == 0) 7909 panic("check_inode_unwritten: busy inode"); 7910 return (1); 7911 } 7912 7913 static int 7914 check_inodedep_free(struct inodedep *inodedep) 7915 { 7916 7917 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7918 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7919 !LIST_EMPTY(&inodedep->id_dirremhd) || 7920 !LIST_EMPTY(&inodedep->id_pendinghd) || 7921 !LIST_EMPTY(&inodedep->id_bufwait) || 7922 !LIST_EMPTY(&inodedep->id_inowait) || 7923 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7924 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7925 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7926 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7927 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7928 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7929 inodedep->id_mkdiradd != NULL || 7930 inodedep->id_nlinkdelta != 0 || 7931 inodedep->id_savedino1 != NULL) 7932 return (0); 7933 return (1); 7934 } 7935 7936 /* 7937 * Try to free an inodedep structure. Return 1 if it could be freed. 7938 */ 7939 static int 7940 free_inodedep(struct inodedep *inodedep) 7941 { 7942 7943 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7944 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7945 !check_inodedep_free(inodedep)) 7946 return (0); 7947 if (inodedep->id_state & ONDEPLIST) 7948 LIST_REMOVE(inodedep, id_deps); 7949 LIST_REMOVE(inodedep, id_hash); 7950 WORKITEM_FREE(inodedep, D_INODEDEP); 7951 return (1); 7952 } 7953 7954 /* 7955 * Free the block referenced by a freework structure. The parent freeblks 7956 * structure is released and completed when the final cg bitmap reaches 7957 * the disk. This routine may be freeing a jnewblk which never made it to 7958 * disk in which case we do not have to wait as the operation is undone 7959 * in memory immediately. 7960 */ 7961 static void 7962 freework_freeblock(struct freework *freework, uint64_t key) 7963 { 7964 struct freeblks *freeblks; 7965 struct jnewblk *jnewblk; 7966 struct ufsmount *ump; 7967 struct workhead wkhd; 7968 struct fs *fs; 7969 int bsize; 7970 int needj; 7971 7972 ump = VFSTOUFS(freework->fw_list.wk_mp); 7973 LOCK_OWNED(ump); 7974 /* 7975 * Handle partial truncate separately. 7976 */ 7977 if (freework->fw_indir) { 7978 complete_trunc_indir(freework); 7979 return; 7980 } 7981 freeblks = freework->fw_freeblks; 7982 fs = ump->um_fs; 7983 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7984 bsize = lfragtosize(fs, freework->fw_frags); 7985 LIST_INIT(&wkhd); 7986 /* 7987 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7988 * on the indirblk hashtable and prevents premature freeing. 7989 */ 7990 freework->fw_state |= DEPCOMPLETE; 7991 /* 7992 * SUJ needs to wait for the segment referencing freed indirect 7993 * blocks to expire so that we know the checker will not confuse 7994 * a re-allocated indirect block with its old contents. 7995 */ 7996 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7997 indirblk_insert(freework); 7998 /* 7999 * If we are canceling an existing jnewblk pass it to the free 8000 * routine, otherwise pass the freeblk which will ultimately 8001 * release the freeblks. If we're not journaling, we can just 8002 * free the freeblks immediately. 8003 */ 8004 jnewblk = freework->fw_jnewblk; 8005 if (jnewblk != NULL) { 8006 cancel_jnewblk(jnewblk, &wkhd); 8007 needj = 0; 8008 } else if (needj) { 8009 freework->fw_state |= DELAYEDFREE; 8010 freeblks->fb_cgwait++; 8011 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8012 } 8013 FREE_LOCK(ump); 8014 freeblks_free(ump, freeblks, btodb(bsize)); 8015 CTR4(KTR_SUJ, 8016 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8017 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8018 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8019 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8020 ACQUIRE_LOCK(ump); 8021 /* 8022 * The jnewblk will be discarded and the bits in the map never 8023 * made it to disk. We can immediately free the freeblk. 8024 */ 8025 if (needj == 0) 8026 handle_written_freework(freework); 8027 } 8028 8029 /* 8030 * We enqueue freework items that need processing back on the freeblks and 8031 * add the freeblks to the worklist. This makes it easier to find all work 8032 * required to flush a truncation in process_truncates(). 8033 */ 8034 static void 8035 freework_enqueue(struct freework *freework) 8036 { 8037 struct freeblks *freeblks; 8038 8039 freeblks = freework->fw_freeblks; 8040 if ((freework->fw_state & INPROGRESS) == 0) 8041 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8042 if ((freeblks->fb_state & 8043 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8044 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8045 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8046 } 8047 8048 /* 8049 * Start, continue, or finish the process of freeing an indirect block tree. 8050 * The free operation may be paused at any point with fw_off containing the 8051 * offset to restart from. This enables us to implement some flow control 8052 * for large truncates which may fan out and generate a huge number of 8053 * dependencies. 8054 */ 8055 static void 8056 handle_workitem_indirblk(struct freework *freework) 8057 { 8058 struct freeblks *freeblks; 8059 struct ufsmount *ump; 8060 struct fs *fs; 8061 8062 freeblks = freework->fw_freeblks; 8063 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8064 fs = ump->um_fs; 8065 if (freework->fw_state & DEPCOMPLETE) { 8066 handle_written_freework(freework); 8067 return; 8068 } 8069 if (freework->fw_off == NINDIR(fs)) { 8070 freework_freeblock(freework, SINGLETON_KEY); 8071 return; 8072 } 8073 freework->fw_state |= INPROGRESS; 8074 FREE_LOCK(ump); 8075 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8076 freework->fw_lbn); 8077 ACQUIRE_LOCK(ump); 8078 } 8079 8080 /* 8081 * Called when a freework structure attached to a cg buf is written. The 8082 * ref on either the parent or the freeblks structure is released and 8083 * the freeblks is added back to the worklist if there is more work to do. 8084 */ 8085 static void 8086 handle_written_freework(struct freework *freework) 8087 { 8088 struct freeblks *freeblks; 8089 struct freework *parent; 8090 8091 freeblks = freework->fw_freeblks; 8092 parent = freework->fw_parent; 8093 if (freework->fw_state & DELAYEDFREE) 8094 freeblks->fb_cgwait--; 8095 freework->fw_state |= COMPLETE; 8096 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8097 WORKITEM_FREE(freework, D_FREEWORK); 8098 if (parent) { 8099 if (--parent->fw_ref == 0) 8100 freework_enqueue(parent); 8101 return; 8102 } 8103 if (--freeblks->fb_ref != 0) 8104 return; 8105 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8106 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8107 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8108 } 8109 8110 /* 8111 * This workitem routine performs the block de-allocation. 8112 * The workitem is added to the pending list after the updated 8113 * inode block has been written to disk. As mentioned above, 8114 * checks regarding the number of blocks de-allocated (compared 8115 * to the number of blocks allocated for the file) are also 8116 * performed in this function. 8117 */ 8118 static int 8119 handle_workitem_freeblocks(struct freeblks *freeblks, int flags) 8120 { 8121 struct freework *freework; 8122 struct newblk *newblk; 8123 struct allocindir *aip; 8124 struct ufsmount *ump; 8125 struct worklist *wk; 8126 uint64_t key; 8127 8128 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8129 ("handle_workitem_freeblocks: Journal entries not written.")); 8130 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8131 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8132 ACQUIRE_LOCK(ump); 8133 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8134 WORKLIST_REMOVE(wk); 8135 switch (wk->wk_type) { 8136 case D_DIRREM: 8137 wk->wk_state |= COMPLETE; 8138 add_to_worklist(wk, 0); 8139 continue; 8140 8141 case D_ALLOCDIRECT: 8142 free_newblk(WK_NEWBLK(wk)); 8143 continue; 8144 8145 case D_ALLOCINDIR: 8146 aip = WK_ALLOCINDIR(wk); 8147 freework = NULL; 8148 if (aip->ai_state & DELAYEDFREE) { 8149 FREE_LOCK(ump); 8150 freework = newfreework(ump, freeblks, NULL, 8151 aip->ai_lbn, aip->ai_newblkno, 8152 ump->um_fs->fs_frag, 0, 0); 8153 ACQUIRE_LOCK(ump); 8154 } 8155 newblk = WK_NEWBLK(wk); 8156 if (newblk->nb_jnewblk) { 8157 freework->fw_jnewblk = newblk->nb_jnewblk; 8158 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8159 newblk->nb_jnewblk = NULL; 8160 } 8161 free_newblk(newblk); 8162 continue; 8163 8164 case D_FREEWORK: 8165 freework = WK_FREEWORK(wk); 8166 if (freework->fw_lbn <= -UFS_NDADDR) 8167 handle_workitem_indirblk(freework); 8168 else 8169 freework_freeblock(freework, key); 8170 continue; 8171 default: 8172 panic("handle_workitem_freeblocks: Unknown type %s", 8173 TYPENAME(wk->wk_type)); 8174 } 8175 } 8176 if (freeblks->fb_ref != 0) { 8177 freeblks->fb_state &= ~INPROGRESS; 8178 wake_worklist(&freeblks->fb_list); 8179 freeblks = NULL; 8180 } 8181 FREE_LOCK(ump); 8182 ffs_blkrelease_finish(ump, key); 8183 if (freeblks) 8184 return handle_complete_freeblocks(freeblks, flags); 8185 return (0); 8186 } 8187 8188 /* 8189 * Handle completion of block free via truncate. This allows fs_pending 8190 * to track the actual free block count more closely than if we only updated 8191 * it at the end. We must be careful to handle cases where the block count 8192 * on free was incorrect. 8193 */ 8194 static void 8195 freeblks_free(struct ufsmount *ump, 8196 struct freeblks *freeblks, 8197 int blocks) 8198 { 8199 struct fs *fs; 8200 ufs2_daddr_t remain; 8201 8202 UFS_LOCK(ump); 8203 remain = -freeblks->fb_chkcnt; 8204 freeblks->fb_chkcnt += blocks; 8205 if (remain > 0) { 8206 if (remain < blocks) 8207 blocks = remain; 8208 fs = ump->um_fs; 8209 fs->fs_pendingblocks -= blocks; 8210 } 8211 UFS_UNLOCK(ump); 8212 } 8213 8214 /* 8215 * Once all of the freework workitems are complete we can retire the 8216 * freeblocks dependency and any journal work awaiting completion. This 8217 * can not be called until all other dependencies are stable on disk. 8218 */ 8219 static int 8220 handle_complete_freeblocks(struct freeblks *freeblks, int flags) 8221 { 8222 struct inodedep *inodedep; 8223 struct inode *ip; 8224 struct vnode *vp; 8225 struct fs *fs; 8226 struct ufsmount *ump; 8227 ufs2_daddr_t spare; 8228 8229 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8230 fs = ump->um_fs; 8231 flags = LK_EXCLUSIVE | flags; 8232 spare = freeblks->fb_chkcnt; 8233 8234 /* 8235 * If we did not release the expected number of blocks we may have 8236 * to adjust the inode block count here. Only do so if it wasn't 8237 * a truncation to zero and the modrev still matches. 8238 */ 8239 if (spare && freeblks->fb_len != 0) { 8240 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8241 flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0) 8242 return (EBUSY); 8243 ip = VTOI(vp); 8244 if (ip->i_mode == 0) { 8245 vgone(vp); 8246 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8247 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8248 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8249 /* 8250 * We must wait so this happens before the 8251 * journal is reclaimed. 8252 */ 8253 ffs_update(vp, 1); 8254 } 8255 vput(vp); 8256 } 8257 if (spare < 0) { 8258 UFS_LOCK(ump); 8259 fs->fs_pendingblocks += spare; 8260 UFS_UNLOCK(ump); 8261 } 8262 #ifdef QUOTA 8263 /* Handle spare. */ 8264 if (spare) 8265 quotaadj(freeblks->fb_quota, ump, -spare); 8266 quotarele(freeblks->fb_quota); 8267 #endif 8268 ACQUIRE_LOCK(ump); 8269 if (freeblks->fb_state & ONDEPLIST) { 8270 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8271 0, &inodedep); 8272 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8273 freeblks->fb_state &= ~ONDEPLIST; 8274 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8275 free_inodedep(inodedep); 8276 } 8277 /* 8278 * All of the freeblock deps must be complete prior to this call 8279 * so it's now safe to complete earlier outstanding journal entries. 8280 */ 8281 handle_jwork(&freeblks->fb_jwork); 8282 WORKITEM_FREE(freeblks, D_FREEBLKS); 8283 FREE_LOCK(ump); 8284 return (0); 8285 } 8286 8287 /* 8288 * Release blocks associated with the freeblks and stored in the indirect 8289 * block dbn. If level is greater than SINGLE, the block is an indirect block 8290 * and recursive calls to indirtrunc must be used to cleanse other indirect 8291 * blocks. 8292 * 8293 * This handles partial and complete truncation of blocks. Partial is noted 8294 * with goingaway == 0. In this case the freework is completed after the 8295 * zero'd indirects are written to disk. For full truncation the freework 8296 * is completed after the block is freed. 8297 */ 8298 static void 8299 indir_trunc(struct freework *freework, 8300 ufs2_daddr_t dbn, 8301 ufs_lbn_t lbn) 8302 { 8303 struct freework *nfreework; 8304 struct workhead wkhd; 8305 struct freeblks *freeblks; 8306 struct buf *bp; 8307 struct fs *fs; 8308 struct indirdep *indirdep; 8309 struct mount *mp; 8310 struct ufsmount *ump; 8311 ufs1_daddr_t *bap1; 8312 ufs2_daddr_t nb, nnb, *bap2; 8313 ufs_lbn_t lbnadd, nlbn; 8314 uint64_t key; 8315 int nblocks, ufs1fmt, freedblocks; 8316 int goingaway, freedeps, needj, level, cnt, i, error; 8317 8318 freeblks = freework->fw_freeblks; 8319 mp = freeblks->fb_list.wk_mp; 8320 ump = VFSTOUFS(mp); 8321 fs = ump->um_fs; 8322 /* 8323 * Get buffer of block pointers to be freed. There are three cases: 8324 * 8325 * 1) Partial truncate caches the indirdep pointer in the freework 8326 * which provides us a back copy to the save bp which holds the 8327 * pointers we want to clear. When this completes the zero 8328 * pointers are written to the real copy. 8329 * 2) The indirect is being completely truncated, cancel_indirdep() 8330 * eliminated the real copy and placed the indirdep on the saved 8331 * copy. The indirdep and buf are discarded when this completes. 8332 * 3) The indirect was not in memory, we read a copy off of the disk 8333 * using the devvp and drop and invalidate the buffer when we're 8334 * done. 8335 */ 8336 goingaway = 1; 8337 indirdep = NULL; 8338 if (freework->fw_indir != NULL) { 8339 goingaway = 0; 8340 indirdep = freework->fw_indir; 8341 bp = indirdep->ir_savebp; 8342 if (bp == NULL || bp->b_blkno != dbn) 8343 panic("indir_trunc: Bad saved buf %p blkno %jd", 8344 bp, (intmax_t)dbn); 8345 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8346 /* 8347 * The lock prevents the buf dep list from changing and 8348 * indirects on devvp should only ever have one dependency. 8349 */ 8350 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8351 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8352 panic("indir_trunc: Bad indirdep %p from buf %p", 8353 indirdep, bp); 8354 } else { 8355 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8356 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8357 if (error) 8358 return; 8359 } 8360 ACQUIRE_LOCK(ump); 8361 /* Protects against a race with complete_trunc_indir(). */ 8362 freework->fw_state &= ~INPROGRESS; 8363 /* 8364 * If we have an indirdep we need to enforce the truncation order 8365 * and discard it when it is complete. 8366 */ 8367 if (indirdep) { 8368 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8369 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8370 /* 8371 * Add the complete truncate to the list on the 8372 * indirdep to enforce in-order processing. 8373 */ 8374 if (freework->fw_indir == NULL) 8375 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8376 freework, fw_next); 8377 FREE_LOCK(ump); 8378 return; 8379 } 8380 /* 8381 * If we're goingaway, free the indirdep. Otherwise it will 8382 * linger until the write completes. 8383 */ 8384 if (goingaway) { 8385 KASSERT(indirdep->ir_savebp == bp, 8386 ("indir_trunc: losing ir_savebp %p", 8387 indirdep->ir_savebp)); 8388 indirdep->ir_savebp = NULL; 8389 free_indirdep(indirdep); 8390 } 8391 } 8392 FREE_LOCK(ump); 8393 /* Initialize pointers depending on block size. */ 8394 if (ump->um_fstype == UFS1) { 8395 bap1 = (ufs1_daddr_t *)bp->b_data; 8396 nb = bap1[freework->fw_off]; 8397 ufs1fmt = 1; 8398 bap2 = NULL; 8399 } else { 8400 bap2 = (ufs2_daddr_t *)bp->b_data; 8401 nb = bap2[freework->fw_off]; 8402 ufs1fmt = 0; 8403 bap1 = NULL; 8404 } 8405 level = lbn_level(lbn); 8406 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8407 lbnadd = lbn_offset(fs, level); 8408 nblocks = btodb(fs->fs_bsize); 8409 nfreework = freework; 8410 freedeps = 0; 8411 cnt = 0; 8412 /* 8413 * Reclaim blocks. Traverses into nested indirect levels and 8414 * arranges for the current level to be freed when subordinates 8415 * are free when journaling. 8416 */ 8417 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8418 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8419 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8420 fs->fs_bsize) != 0) 8421 nb = 0; 8422 if (i != NINDIR(fs) - 1) { 8423 if (ufs1fmt) 8424 nnb = bap1[i+1]; 8425 else 8426 nnb = bap2[i+1]; 8427 } else 8428 nnb = 0; 8429 if (nb == 0) 8430 continue; 8431 cnt++; 8432 if (level != 0) { 8433 nlbn = (lbn + 1) - (i * lbnadd); 8434 if (needj != 0) { 8435 nfreework = newfreework(ump, freeblks, freework, 8436 nlbn, nb, fs->fs_frag, 0, 0); 8437 freedeps++; 8438 } 8439 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8440 } else { 8441 struct freedep *freedep; 8442 8443 /* 8444 * Attempt to aggregate freedep dependencies for 8445 * all blocks being released to the same CG. 8446 */ 8447 LIST_INIT(&wkhd); 8448 if (needj != 0 && 8449 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8450 freedep = newfreedep(freework); 8451 WORKLIST_INSERT_UNLOCKED(&wkhd, 8452 &freedep->fd_list); 8453 freedeps++; 8454 } 8455 CTR3(KTR_SUJ, 8456 "indir_trunc: ino %jd blkno %jd size %d", 8457 freeblks->fb_inum, nb, fs->fs_bsize); 8458 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8459 fs->fs_bsize, freeblks->fb_inum, 8460 freeblks->fb_vtype, &wkhd, key); 8461 } 8462 } 8463 ffs_blkrelease_finish(ump, key); 8464 if (goingaway) { 8465 bp->b_flags |= B_INVAL | B_NOCACHE; 8466 brelse(bp); 8467 } 8468 freedblocks = 0; 8469 if (level == 0) 8470 freedblocks = (nblocks * cnt); 8471 if (needj == 0) 8472 freedblocks += nblocks; 8473 freeblks_free(ump, freeblks, freedblocks); 8474 /* 8475 * If we are journaling set up the ref counts and offset so this 8476 * indirect can be completed when its children are free. 8477 */ 8478 if (needj) { 8479 ACQUIRE_LOCK(ump); 8480 freework->fw_off = i; 8481 freework->fw_ref += freedeps; 8482 freework->fw_ref -= NINDIR(fs) + 1; 8483 if (level == 0) 8484 freeblks->fb_cgwait += freedeps; 8485 if (freework->fw_ref == 0) 8486 freework_freeblock(freework, SINGLETON_KEY); 8487 FREE_LOCK(ump); 8488 return; 8489 } 8490 /* 8491 * If we're not journaling we can free the indirect now. 8492 */ 8493 dbn = dbtofsb(fs, dbn); 8494 CTR3(KTR_SUJ, 8495 "indir_trunc 2: ino %jd blkno %jd size %d", 8496 freeblks->fb_inum, dbn, fs->fs_bsize); 8497 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8498 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8499 /* Non SUJ softdep does single-threaded truncations. */ 8500 if (freework->fw_blkno == dbn) { 8501 freework->fw_state |= ALLCOMPLETE; 8502 ACQUIRE_LOCK(ump); 8503 handle_written_freework(freework); 8504 FREE_LOCK(ump); 8505 } 8506 return; 8507 } 8508 8509 /* 8510 * Cancel an allocindir when it is removed via truncation. When bp is not 8511 * NULL the indirect never appeared on disk and is scheduled to be freed 8512 * independently of the indir so we can more easily track journal work. 8513 */ 8514 static void 8515 cancel_allocindir( 8516 struct allocindir *aip, 8517 struct buf *bp, 8518 struct freeblks *freeblks, 8519 int trunc) 8520 { 8521 struct indirdep *indirdep; 8522 struct freefrag *freefrag; 8523 struct newblk *newblk; 8524 8525 newblk = (struct newblk *)aip; 8526 LIST_REMOVE(aip, ai_next); 8527 /* 8528 * We must eliminate the pointer in bp if it must be freed on its 8529 * own due to partial truncate or pending journal work. 8530 */ 8531 if (bp && (trunc || newblk->nb_jnewblk)) { 8532 /* 8533 * Clear the pointer and mark the aip to be freed 8534 * directly if it never existed on disk. 8535 */ 8536 aip->ai_state |= DELAYEDFREE; 8537 indirdep = aip->ai_indirdep; 8538 if (indirdep->ir_state & UFS1FMT) 8539 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8540 else 8541 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8542 } 8543 /* 8544 * When truncating the previous pointer will be freed via 8545 * savedbp. Eliminate the freefrag which would dup free. 8546 */ 8547 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8548 newblk->nb_freefrag = NULL; 8549 if (freefrag->ff_jdep) 8550 cancel_jfreefrag( 8551 WK_JFREEFRAG(freefrag->ff_jdep)); 8552 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8553 WORKITEM_FREE(freefrag, D_FREEFRAG); 8554 } 8555 /* 8556 * If the journal hasn't been written the jnewblk must be passed 8557 * to the call to ffs_blkfree that reclaims the space. We accomplish 8558 * this by leaving the journal dependency on the newblk to be freed 8559 * when a freework is created in handle_workitem_freeblocks(). 8560 */ 8561 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8562 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8563 } 8564 8565 /* 8566 * Create the mkdir dependencies for . and .. in a new directory. Link them 8567 * in to a newdirblk so any subsequent additions are tracked properly. The 8568 * caller is responsible for adding the mkdir1 dependency to the journal 8569 * and updating id_mkdiradd. This function returns with the per-filesystem 8570 * lock held. 8571 */ 8572 static struct mkdir * 8573 setup_newdir( 8574 struct diradd *dap, 8575 ino_t newinum, 8576 ino_t dinum, 8577 struct buf *newdirbp, 8578 struct mkdir **mkdirp) 8579 { 8580 struct newblk *newblk; 8581 struct pagedep *pagedep; 8582 struct inodedep *inodedep; 8583 struct newdirblk *newdirblk; 8584 struct mkdir *mkdir1, *mkdir2; 8585 struct worklist *wk; 8586 struct jaddref *jaddref; 8587 struct ufsmount *ump; 8588 struct mount *mp; 8589 8590 mp = dap->da_list.wk_mp; 8591 ump = VFSTOUFS(mp); 8592 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8593 M_SOFTDEP_FLAGS); 8594 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8595 LIST_INIT(&newdirblk->db_mkdir); 8596 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8597 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8598 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8599 mkdir1->md_diradd = dap; 8600 mkdir1->md_jaddref = NULL; 8601 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8602 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8603 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8604 mkdir2->md_diradd = dap; 8605 mkdir2->md_jaddref = NULL; 8606 if (MOUNTEDSUJ(mp) == 0) { 8607 mkdir1->md_state |= DEPCOMPLETE; 8608 mkdir2->md_state |= DEPCOMPLETE; 8609 } 8610 /* 8611 * Dependency on "." and ".." being written to disk. 8612 */ 8613 mkdir1->md_buf = newdirbp; 8614 ACQUIRE_LOCK(VFSTOUFS(mp)); 8615 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8616 /* 8617 * We must link the pagedep, allocdirect, and newdirblk for 8618 * the initial file page so the pointer to the new directory 8619 * is not written until the directory contents are live and 8620 * any subsequent additions are not marked live until the 8621 * block is reachable via the inode. 8622 */ 8623 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8624 panic("setup_newdir: lost pagedep"); 8625 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8626 if (wk->wk_type == D_ALLOCDIRECT) 8627 break; 8628 if (wk == NULL) 8629 panic("setup_newdir: lost allocdirect"); 8630 if (pagedep->pd_state & NEWBLOCK) 8631 panic("setup_newdir: NEWBLOCK already set"); 8632 newblk = WK_NEWBLK(wk); 8633 pagedep->pd_state |= NEWBLOCK; 8634 pagedep->pd_newdirblk = newdirblk; 8635 newdirblk->db_pagedep = pagedep; 8636 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8637 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8638 /* 8639 * Look up the inodedep for the parent directory so that we 8640 * can link mkdir2 into the pending dotdot jaddref or 8641 * the inode write if there is none. If the inode is 8642 * ALLCOMPLETE and no jaddref is present all dependencies have 8643 * been satisfied and mkdir2 can be freed. 8644 */ 8645 inodedep_lookup(mp, dinum, 0, &inodedep); 8646 if (MOUNTEDSUJ(mp)) { 8647 if (inodedep == NULL) 8648 panic("setup_newdir: Lost parent."); 8649 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8650 inoreflst); 8651 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8652 (jaddref->ja_state & MKDIR_PARENT), 8653 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8654 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8655 mkdir2->md_jaddref = jaddref; 8656 jaddref->ja_mkdir = mkdir2; 8657 } else if (inodedep == NULL || 8658 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8659 dap->da_state &= ~MKDIR_PARENT; 8660 WORKITEM_FREE(mkdir2, D_MKDIR); 8661 mkdir2 = NULL; 8662 } else { 8663 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8664 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8665 } 8666 *mkdirp = mkdir2; 8667 8668 return (mkdir1); 8669 } 8670 8671 /* 8672 * Directory entry addition dependencies. 8673 * 8674 * When adding a new directory entry, the inode (with its incremented link 8675 * count) must be written to disk before the directory entry's pointer to it. 8676 * Also, if the inode is newly allocated, the corresponding freemap must be 8677 * updated (on disk) before the directory entry's pointer. These requirements 8678 * are met via undo/redo on the directory entry's pointer, which consists 8679 * simply of the inode number. 8680 * 8681 * As directory entries are added and deleted, the free space within a 8682 * directory block can become fragmented. The ufs filesystem will compact 8683 * a fragmented directory block to make space for a new entry. When this 8684 * occurs, the offsets of previously added entries change. Any "diradd" 8685 * dependency structures corresponding to these entries must be updated with 8686 * the new offsets. 8687 */ 8688 8689 /* 8690 * This routine is called after the in-memory inode's link 8691 * count has been incremented, but before the directory entry's 8692 * pointer to the inode has been set. 8693 */ 8694 int 8695 softdep_setup_directory_add( 8696 struct buf *bp, /* buffer containing directory block */ 8697 struct inode *dp, /* inode for directory */ 8698 off_t diroffset, /* offset of new entry in directory */ 8699 ino_t newinum, /* inode referenced by new directory entry */ 8700 struct buf *newdirbp, /* non-NULL => contents of new mkdir */ 8701 int isnewblk) /* entry is in a newly allocated block */ 8702 { 8703 int offset; /* offset of new entry within directory block */ 8704 ufs_lbn_t lbn; /* block in directory containing new entry */ 8705 struct fs *fs; 8706 struct diradd *dap; 8707 struct newblk *newblk; 8708 struct pagedep *pagedep; 8709 struct inodedep *inodedep; 8710 struct newdirblk *newdirblk; 8711 struct mkdir *mkdir1, *mkdir2; 8712 struct jaddref *jaddref; 8713 struct ufsmount *ump; 8714 struct mount *mp; 8715 int isindir; 8716 8717 mp = ITOVFS(dp); 8718 ump = VFSTOUFS(mp); 8719 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8720 ("softdep_setup_directory_add called on non-softdep filesystem")); 8721 /* 8722 * Whiteouts have no dependencies. 8723 */ 8724 if (newinum == UFS_WINO) { 8725 if (newdirbp != NULL) 8726 bdwrite(newdirbp); 8727 return (0); 8728 } 8729 jaddref = NULL; 8730 mkdir1 = mkdir2 = NULL; 8731 fs = ump->um_fs; 8732 lbn = lblkno(fs, diroffset); 8733 offset = blkoff(fs, diroffset); 8734 dap = malloc(sizeof(struct diradd), M_DIRADD, 8735 M_SOFTDEP_FLAGS|M_ZERO); 8736 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8737 dap->da_offset = offset; 8738 dap->da_newinum = newinum; 8739 dap->da_state = ATTACHED; 8740 LIST_INIT(&dap->da_jwork); 8741 isindir = bp->b_lblkno >= UFS_NDADDR; 8742 newdirblk = NULL; 8743 if (isnewblk && 8744 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8745 newdirblk = malloc(sizeof(struct newdirblk), 8746 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8747 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8748 LIST_INIT(&newdirblk->db_mkdir); 8749 } 8750 /* 8751 * If we're creating a new directory setup the dependencies and set 8752 * the dap state to wait for them. Otherwise it's COMPLETE and 8753 * we can move on. 8754 */ 8755 if (newdirbp == NULL) { 8756 dap->da_state |= DEPCOMPLETE; 8757 ACQUIRE_LOCK(ump); 8758 } else { 8759 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8760 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8761 &mkdir2); 8762 } 8763 /* 8764 * Link into parent directory pagedep to await its being written. 8765 */ 8766 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8767 #ifdef INVARIANTS 8768 if (diradd_lookup(pagedep, offset) != NULL) 8769 panic("softdep_setup_directory_add: %p already at off %d\n", 8770 diradd_lookup(pagedep, offset), offset); 8771 #endif 8772 dap->da_pagedep = pagedep; 8773 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8774 da_pdlist); 8775 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8776 /* 8777 * If we're journaling, link the diradd into the jaddref so it 8778 * may be completed after the journal entry is written. Otherwise, 8779 * link the diradd into its inodedep. If the inode is not yet 8780 * written place it on the bufwait list, otherwise do the post-inode 8781 * write processing to put it on the id_pendinghd list. 8782 */ 8783 if (MOUNTEDSUJ(mp)) { 8784 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8785 inoreflst); 8786 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8787 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8788 jaddref->ja_diroff = diroffset; 8789 jaddref->ja_diradd = dap; 8790 add_to_journal(&jaddref->ja_list); 8791 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8792 diradd_inode_written(dap, inodedep); 8793 else 8794 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8795 /* 8796 * Add the journal entries for . and .. links now that the primary 8797 * link is written. 8798 */ 8799 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8800 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8801 inoreflst, if_deps); 8802 KASSERT(jaddref != NULL && 8803 jaddref->ja_ino == jaddref->ja_parent && 8804 (jaddref->ja_state & MKDIR_BODY), 8805 ("softdep_setup_directory_add: bad dot jaddref %p", 8806 jaddref)); 8807 mkdir1->md_jaddref = jaddref; 8808 jaddref->ja_mkdir = mkdir1; 8809 /* 8810 * It is important that the dotdot journal entry 8811 * is added prior to the dot entry since dot writes 8812 * both the dot and dotdot links. These both must 8813 * be added after the primary link for the journal 8814 * to remain consistent. 8815 */ 8816 add_to_journal(&mkdir2->md_jaddref->ja_list); 8817 add_to_journal(&jaddref->ja_list); 8818 } 8819 /* 8820 * If we are adding a new directory remember this diradd so that if 8821 * we rename it we can keep the dot and dotdot dependencies. If 8822 * we are adding a new name for an inode that has a mkdiradd we 8823 * must be in rename and we have to move the dot and dotdot 8824 * dependencies to this new name. The old name is being orphaned 8825 * soon. 8826 */ 8827 if (mkdir1 != NULL) { 8828 if (inodedep->id_mkdiradd != NULL) 8829 panic("softdep_setup_directory_add: Existing mkdir"); 8830 inodedep->id_mkdiradd = dap; 8831 } else if (inodedep->id_mkdiradd) 8832 merge_diradd(inodedep, dap); 8833 if (newdirblk != NULL) { 8834 /* 8835 * There is nothing to do if we are already tracking 8836 * this block. 8837 */ 8838 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8839 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8840 FREE_LOCK(ump); 8841 return (0); 8842 } 8843 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8844 == 0) 8845 panic("softdep_setup_directory_add: lost entry"); 8846 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8847 pagedep->pd_state |= NEWBLOCK; 8848 pagedep->pd_newdirblk = newdirblk; 8849 newdirblk->db_pagedep = pagedep; 8850 FREE_LOCK(ump); 8851 /* 8852 * If we extended into an indirect signal direnter to sync. 8853 */ 8854 if (isindir) 8855 return (1); 8856 return (0); 8857 } 8858 FREE_LOCK(ump); 8859 return (0); 8860 } 8861 8862 /* 8863 * This procedure is called to change the offset of a directory 8864 * entry when compacting a directory block which must be owned 8865 * exclusively by the caller. Note that the actual entry movement 8866 * must be done in this procedure to ensure that no I/O completions 8867 * occur while the move is in progress. 8868 */ 8869 void 8870 softdep_change_directoryentry_offset( 8871 struct buf *bp, /* Buffer holding directory block. */ 8872 struct inode *dp, /* inode for directory */ 8873 caddr_t base, /* address of dp->i_offset */ 8874 caddr_t oldloc, /* address of old directory location */ 8875 caddr_t newloc, /* address of new directory location */ 8876 int entrysize) /* size of directory entry */ 8877 { 8878 int offset, oldoffset, newoffset; 8879 struct pagedep *pagedep; 8880 struct jmvref *jmvref; 8881 struct diradd *dap; 8882 struct direct *de; 8883 struct mount *mp; 8884 struct ufsmount *ump; 8885 ufs_lbn_t lbn; 8886 int flags; 8887 8888 mp = ITOVFS(dp); 8889 ump = VFSTOUFS(mp); 8890 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8891 ("softdep_change_directoryentry_offset called on " 8892 "non-softdep filesystem")); 8893 de = (struct direct *)oldloc; 8894 jmvref = NULL; 8895 flags = 0; 8896 /* 8897 * Moves are always journaled as it would be too complex to 8898 * determine if any affected adds or removes are present in the 8899 * journal. 8900 */ 8901 if (MOUNTEDSUJ(mp)) { 8902 flags = DEPALLOC; 8903 jmvref = newjmvref(dp, de->d_ino, 8904 I_OFFSET(dp) + (oldloc - base), 8905 I_OFFSET(dp) + (newloc - base)); 8906 } 8907 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 8908 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 8909 oldoffset = offset + (oldloc - base); 8910 newoffset = offset + (newloc - base); 8911 ACQUIRE_LOCK(ump); 8912 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8913 goto done; 8914 dap = diradd_lookup(pagedep, oldoffset); 8915 if (dap) { 8916 dap->da_offset = newoffset; 8917 newoffset = DIRADDHASH(newoffset); 8918 oldoffset = DIRADDHASH(oldoffset); 8919 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8920 newoffset != oldoffset) { 8921 LIST_REMOVE(dap, da_pdlist); 8922 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8923 dap, da_pdlist); 8924 } 8925 } 8926 done: 8927 if (jmvref) { 8928 jmvref->jm_pagedep = pagedep; 8929 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8930 add_to_journal(&jmvref->jm_list); 8931 } 8932 bcopy(oldloc, newloc, entrysize); 8933 FREE_LOCK(ump); 8934 } 8935 8936 /* 8937 * Move the mkdir dependencies and journal work from one diradd to another 8938 * when renaming a directory. The new name must depend on the mkdir deps 8939 * completing as the old name did. Directories can only have one valid link 8940 * at a time so one must be canonical. 8941 */ 8942 static void 8943 merge_diradd(struct inodedep *inodedep, struct diradd *newdap) 8944 { 8945 struct diradd *olddap; 8946 struct mkdir *mkdir, *nextmd; 8947 struct ufsmount *ump; 8948 short state; 8949 8950 olddap = inodedep->id_mkdiradd; 8951 inodedep->id_mkdiradd = newdap; 8952 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8953 newdap->da_state &= ~DEPCOMPLETE; 8954 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8955 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8956 mkdir = nextmd) { 8957 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8958 if (mkdir->md_diradd != olddap) 8959 continue; 8960 mkdir->md_diradd = newdap; 8961 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8962 newdap->da_state |= state; 8963 olddap->da_state &= ~state; 8964 if ((olddap->da_state & 8965 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8966 break; 8967 } 8968 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8969 panic("merge_diradd: unfound ref"); 8970 } 8971 /* 8972 * Any mkdir related journal items are not safe to be freed until 8973 * the new name is stable. 8974 */ 8975 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8976 olddap->da_state |= DEPCOMPLETE; 8977 complete_diradd(olddap); 8978 } 8979 8980 /* 8981 * Move the diradd to the pending list when all diradd dependencies are 8982 * complete. 8983 */ 8984 static void 8985 complete_diradd(struct diradd *dap) 8986 { 8987 struct pagedep *pagedep; 8988 8989 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8990 if (dap->da_state & DIRCHG) 8991 pagedep = dap->da_previous->dm_pagedep; 8992 else 8993 pagedep = dap->da_pagedep; 8994 LIST_REMOVE(dap, da_pdlist); 8995 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8996 } 8997 } 8998 8999 /* 9000 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 9001 * add entries and conditionally journal the remove. 9002 */ 9003 static void 9004 cancel_diradd( 9005 struct diradd *dap, 9006 struct dirrem *dirrem, 9007 struct jremref *jremref, 9008 struct jremref *dotremref, 9009 struct jremref *dotdotremref) 9010 { 9011 struct inodedep *inodedep; 9012 struct jaddref *jaddref; 9013 struct inoref *inoref; 9014 struct ufsmount *ump; 9015 struct mkdir *mkdir; 9016 9017 /* 9018 * If no remove references were allocated we're on a non-journaled 9019 * filesystem and can skip the cancel step. 9020 */ 9021 if (jremref == NULL) { 9022 free_diradd(dap, NULL); 9023 return; 9024 } 9025 /* 9026 * Cancel the primary name an free it if it does not require 9027 * journaling. 9028 */ 9029 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9030 0, &inodedep) != 0) { 9031 /* Abort the addref that reference this diradd. */ 9032 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9033 if (inoref->if_list.wk_type != D_JADDREF) 9034 continue; 9035 jaddref = (struct jaddref *)inoref; 9036 if (jaddref->ja_diradd != dap) 9037 continue; 9038 if (cancel_jaddref(jaddref, inodedep, 9039 &dirrem->dm_jwork) == 0) { 9040 free_jremref(jremref); 9041 jremref = NULL; 9042 } 9043 break; 9044 } 9045 } 9046 /* 9047 * Cancel subordinate names and free them if they do not require 9048 * journaling. 9049 */ 9050 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9051 ump = VFSTOUFS(dap->da_list.wk_mp); 9052 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9053 if (mkdir->md_diradd != dap) 9054 continue; 9055 if ((jaddref = mkdir->md_jaddref) == NULL) 9056 continue; 9057 mkdir->md_jaddref = NULL; 9058 if (mkdir->md_state & MKDIR_PARENT) { 9059 if (cancel_jaddref(jaddref, NULL, 9060 &dirrem->dm_jwork) == 0) { 9061 free_jremref(dotdotremref); 9062 dotdotremref = NULL; 9063 } 9064 } else { 9065 if (cancel_jaddref(jaddref, inodedep, 9066 &dirrem->dm_jwork) == 0) { 9067 free_jremref(dotremref); 9068 dotremref = NULL; 9069 } 9070 } 9071 } 9072 } 9073 9074 if (jremref) 9075 journal_jremref(dirrem, jremref, inodedep); 9076 if (dotremref) 9077 journal_jremref(dirrem, dotremref, inodedep); 9078 if (dotdotremref) 9079 journal_jremref(dirrem, dotdotremref, NULL); 9080 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9081 free_diradd(dap, &dirrem->dm_jwork); 9082 } 9083 9084 /* 9085 * Free a diradd dependency structure. 9086 */ 9087 static void 9088 free_diradd(struct diradd *dap, struct workhead *wkhd) 9089 { 9090 struct dirrem *dirrem; 9091 struct pagedep *pagedep; 9092 struct inodedep *inodedep; 9093 struct mkdir *mkdir, *nextmd; 9094 struct ufsmount *ump; 9095 9096 ump = VFSTOUFS(dap->da_list.wk_mp); 9097 LOCK_OWNED(ump); 9098 LIST_REMOVE(dap, da_pdlist); 9099 if (dap->da_state & ONWORKLIST) 9100 WORKLIST_REMOVE(&dap->da_list); 9101 if ((dap->da_state & DIRCHG) == 0) { 9102 pagedep = dap->da_pagedep; 9103 } else { 9104 dirrem = dap->da_previous; 9105 pagedep = dirrem->dm_pagedep; 9106 dirrem->dm_dirinum = pagedep->pd_ino; 9107 dirrem->dm_state |= COMPLETE; 9108 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9109 add_to_worklist(&dirrem->dm_list, 0); 9110 } 9111 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9112 0, &inodedep) != 0) 9113 if (inodedep->id_mkdiradd == dap) 9114 inodedep->id_mkdiradd = NULL; 9115 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9116 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9117 mkdir = nextmd) { 9118 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9119 if (mkdir->md_diradd != dap) 9120 continue; 9121 dap->da_state &= 9122 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9123 LIST_REMOVE(mkdir, md_mkdirs); 9124 if (mkdir->md_state & ONWORKLIST) 9125 WORKLIST_REMOVE(&mkdir->md_list); 9126 if (mkdir->md_jaddref != NULL) 9127 panic("free_diradd: Unexpected jaddref"); 9128 WORKITEM_FREE(mkdir, D_MKDIR); 9129 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9130 break; 9131 } 9132 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9133 panic("free_diradd: unfound ref"); 9134 } 9135 if (inodedep) 9136 free_inodedep(inodedep); 9137 /* 9138 * Free any journal segments waiting for the directory write. 9139 */ 9140 handle_jwork(&dap->da_jwork); 9141 WORKITEM_FREE(dap, D_DIRADD); 9142 } 9143 9144 /* 9145 * Directory entry removal dependencies. 9146 * 9147 * When removing a directory entry, the entry's inode pointer must be 9148 * zero'ed on disk before the corresponding inode's link count is decremented 9149 * (possibly freeing the inode for re-use). This dependency is handled by 9150 * updating the directory entry but delaying the inode count reduction until 9151 * after the directory block has been written to disk. After this point, the 9152 * inode count can be decremented whenever it is convenient. 9153 */ 9154 9155 /* 9156 * This routine should be called immediately after removing 9157 * a directory entry. The inode's link count should not be 9158 * decremented by the calling procedure -- the soft updates 9159 * code will do this task when it is safe. 9160 */ 9161 void 9162 softdep_setup_remove( 9163 struct buf *bp, /* buffer containing directory block */ 9164 struct inode *dp, /* inode for the directory being modified */ 9165 struct inode *ip, /* inode for directory entry being removed */ 9166 int isrmdir) /* indicates if doing RMDIR */ 9167 { 9168 struct dirrem *dirrem, *prevdirrem; 9169 struct inodedep *inodedep; 9170 struct ufsmount *ump; 9171 int direct; 9172 9173 ump = ITOUMP(ip); 9174 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9175 ("softdep_setup_remove called on non-softdep filesystem")); 9176 /* 9177 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9178 * newdirrem() to setup the full directory remove which requires 9179 * isrmdir > 1. 9180 */ 9181 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9182 /* 9183 * Add the dirrem to the inodedep's pending remove list for quick 9184 * discovery later. 9185 */ 9186 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9187 panic("softdep_setup_remove: Lost inodedep."); 9188 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9189 dirrem->dm_state |= ONDEPLIST; 9190 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9191 9192 /* 9193 * If the COMPLETE flag is clear, then there were no active 9194 * entries and we want to roll back to a zeroed entry until 9195 * the new inode is committed to disk. If the COMPLETE flag is 9196 * set then we have deleted an entry that never made it to 9197 * disk. If the entry we deleted resulted from a name change, 9198 * then the old name still resides on disk. We cannot delete 9199 * its inode (returned to us in prevdirrem) until the zeroed 9200 * directory entry gets to disk. The new inode has never been 9201 * referenced on the disk, so can be deleted immediately. 9202 */ 9203 if ((dirrem->dm_state & COMPLETE) == 0) { 9204 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9205 dm_next); 9206 FREE_LOCK(ump); 9207 } else { 9208 if (prevdirrem != NULL) 9209 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9210 prevdirrem, dm_next); 9211 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9212 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9213 FREE_LOCK(ump); 9214 if (direct) 9215 handle_workitem_remove(dirrem, 0); 9216 } 9217 } 9218 9219 /* 9220 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9221 * pd_pendinghd list of a pagedep. 9222 */ 9223 static struct diradd * 9224 diradd_lookup(struct pagedep *pagedep, int offset) 9225 { 9226 struct diradd *dap; 9227 9228 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9229 if (dap->da_offset == offset) 9230 return (dap); 9231 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9232 if (dap->da_offset == offset) 9233 return (dap); 9234 return (NULL); 9235 } 9236 9237 /* 9238 * Search for a .. diradd dependency in a directory that is being removed. 9239 * If the directory was renamed to a new parent we have a diradd rather 9240 * than a mkdir for the .. entry. We need to cancel it now before 9241 * it is found in truncate(). 9242 */ 9243 static struct jremref * 9244 cancel_diradd_dotdot(struct inode *ip, 9245 struct dirrem *dirrem, 9246 struct jremref *jremref) 9247 { 9248 struct pagedep *pagedep; 9249 struct diradd *dap; 9250 struct worklist *wk; 9251 9252 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9253 return (jremref); 9254 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9255 if (dap == NULL) 9256 return (jremref); 9257 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9258 /* 9259 * Mark any journal work as belonging to the parent so it is freed 9260 * with the .. reference. 9261 */ 9262 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9263 wk->wk_state |= MKDIR_PARENT; 9264 return (NULL); 9265 } 9266 9267 /* 9268 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9269 * replace it with a dirrem/diradd pair as a result of re-parenting a 9270 * directory. This ensures that we don't simultaneously have a mkdir and 9271 * a diradd for the same .. entry. 9272 */ 9273 static struct jremref * 9274 cancel_mkdir_dotdot(struct inode *ip, 9275 struct dirrem *dirrem, 9276 struct jremref *jremref) 9277 { 9278 struct inodedep *inodedep; 9279 struct jaddref *jaddref; 9280 struct ufsmount *ump; 9281 struct mkdir *mkdir; 9282 struct diradd *dap; 9283 struct mount *mp; 9284 9285 mp = ITOVFS(ip); 9286 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9287 return (jremref); 9288 dap = inodedep->id_mkdiradd; 9289 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9290 return (jremref); 9291 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9292 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9293 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9294 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9295 break; 9296 if (mkdir == NULL) 9297 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9298 if ((jaddref = mkdir->md_jaddref) != NULL) { 9299 mkdir->md_jaddref = NULL; 9300 jaddref->ja_state &= ~MKDIR_PARENT; 9301 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9302 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9303 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9304 journal_jremref(dirrem, jremref, inodedep); 9305 jremref = NULL; 9306 } 9307 } 9308 if (mkdir->md_state & ONWORKLIST) 9309 WORKLIST_REMOVE(&mkdir->md_list); 9310 mkdir->md_state |= ALLCOMPLETE; 9311 complete_mkdir(mkdir); 9312 return (jremref); 9313 } 9314 9315 static void 9316 journal_jremref(struct dirrem *dirrem, 9317 struct jremref *jremref, 9318 struct inodedep *inodedep) 9319 { 9320 9321 if (inodedep == NULL) 9322 if (inodedep_lookup(jremref->jr_list.wk_mp, 9323 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9324 panic("journal_jremref: Lost inodedep"); 9325 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9326 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9327 add_to_journal(&jremref->jr_list); 9328 } 9329 9330 static void 9331 dirrem_journal( 9332 struct dirrem *dirrem, 9333 struct jremref *jremref, 9334 struct jremref *dotremref, 9335 struct jremref *dotdotremref) 9336 { 9337 struct inodedep *inodedep; 9338 9339 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9340 &inodedep) == 0) 9341 panic("dirrem_journal: Lost inodedep"); 9342 journal_jremref(dirrem, jremref, inodedep); 9343 if (dotremref) 9344 journal_jremref(dirrem, dotremref, inodedep); 9345 if (dotdotremref) 9346 journal_jremref(dirrem, dotdotremref, NULL); 9347 } 9348 9349 /* 9350 * Allocate a new dirrem if appropriate and return it along with 9351 * its associated pagedep. Called without a lock, returns with lock. 9352 */ 9353 static struct dirrem * 9354 newdirrem( 9355 struct buf *bp, /* buffer containing directory block */ 9356 struct inode *dp, /* inode for the directory being modified */ 9357 struct inode *ip, /* inode for directory entry being removed */ 9358 int isrmdir, /* indicates if doing RMDIR */ 9359 struct dirrem **prevdirremp) /* previously referenced inode, if any */ 9360 { 9361 int offset; 9362 ufs_lbn_t lbn; 9363 struct diradd *dap; 9364 struct dirrem *dirrem; 9365 struct pagedep *pagedep; 9366 struct jremref *jremref; 9367 struct jremref *dotremref; 9368 struct jremref *dotdotremref; 9369 struct vnode *dvp; 9370 struct ufsmount *ump; 9371 9372 /* 9373 * Whiteouts have no deletion dependencies. 9374 */ 9375 if (ip == NULL) 9376 panic("newdirrem: whiteout"); 9377 dvp = ITOV(dp); 9378 ump = ITOUMP(dp); 9379 9380 /* 9381 * If the system is over its limit and our filesystem is 9382 * responsible for more than our share of that usage and 9383 * we are not a snapshot, request some inodedep cleanup. 9384 * Limiting the number of dirrem structures will also limit 9385 * the number of freefile and freeblks structures. 9386 */ 9387 ACQUIRE_LOCK(ump); 9388 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9389 schedule_cleanup(UFSTOVFS(ump)); 9390 else 9391 FREE_LOCK(ump); 9392 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9393 M_ZERO); 9394 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9395 LIST_INIT(&dirrem->dm_jremrefhd); 9396 LIST_INIT(&dirrem->dm_jwork); 9397 dirrem->dm_state = isrmdir ? RMDIR : 0; 9398 dirrem->dm_oldinum = ip->i_number; 9399 *prevdirremp = NULL; 9400 /* 9401 * Allocate remove reference structures to track journal write 9402 * dependencies. We will always have one for the link and 9403 * when doing directories we will always have one more for dot. 9404 * When renaming a directory we skip the dotdot link change so 9405 * this is not needed. 9406 */ 9407 jremref = dotremref = dotdotremref = NULL; 9408 if (DOINGSUJ(dvp)) { 9409 if (isrmdir) { 9410 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9411 ip->i_effnlink + 2); 9412 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9413 ip->i_effnlink + 1); 9414 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9415 dp->i_effnlink + 1); 9416 dotdotremref->jr_state |= MKDIR_PARENT; 9417 } else 9418 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9419 ip->i_effnlink + 1); 9420 } 9421 ACQUIRE_LOCK(ump); 9422 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9423 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9424 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9425 &pagedep); 9426 dirrem->dm_pagedep = pagedep; 9427 dirrem->dm_offset = offset; 9428 /* 9429 * If we're renaming a .. link to a new directory, cancel any 9430 * existing MKDIR_PARENT mkdir. If it has already been canceled 9431 * the jremref is preserved for any potential diradd in this 9432 * location. This can not coincide with a rmdir. 9433 */ 9434 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9435 if (isrmdir) 9436 panic("newdirrem: .. directory change during remove?"); 9437 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9438 } 9439 /* 9440 * If we're removing a directory search for the .. dependency now and 9441 * cancel it. Any pending journal work will be added to the dirrem 9442 * to be completed when the workitem remove completes. 9443 */ 9444 if (isrmdir) 9445 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9446 /* 9447 * Check for a diradd dependency for the same directory entry. 9448 * If present, then both dependencies become obsolete and can 9449 * be de-allocated. 9450 */ 9451 dap = diradd_lookup(pagedep, offset); 9452 if (dap == NULL) { 9453 /* 9454 * Link the jremref structures into the dirrem so they are 9455 * written prior to the pagedep. 9456 */ 9457 if (jremref) 9458 dirrem_journal(dirrem, jremref, dotremref, 9459 dotdotremref); 9460 return (dirrem); 9461 } 9462 /* 9463 * Must be ATTACHED at this point. 9464 */ 9465 if ((dap->da_state & ATTACHED) == 0) 9466 panic("newdirrem: not ATTACHED"); 9467 if (dap->da_newinum != ip->i_number) 9468 panic("newdirrem: inum %ju should be %ju", 9469 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9470 /* 9471 * If we are deleting a changed name that never made it to disk, 9472 * then return the dirrem describing the previous inode (which 9473 * represents the inode currently referenced from this entry on disk). 9474 */ 9475 if ((dap->da_state & DIRCHG) != 0) { 9476 *prevdirremp = dap->da_previous; 9477 dap->da_state &= ~DIRCHG; 9478 dap->da_pagedep = pagedep; 9479 } 9480 /* 9481 * We are deleting an entry that never made it to disk. 9482 * Mark it COMPLETE so we can delete its inode immediately. 9483 */ 9484 dirrem->dm_state |= COMPLETE; 9485 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9486 #ifdef INVARIANTS 9487 if (isrmdir == 0) { 9488 struct worklist *wk; 9489 9490 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9491 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9492 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9493 } 9494 #endif 9495 9496 return (dirrem); 9497 } 9498 9499 /* 9500 * Directory entry change dependencies. 9501 * 9502 * Changing an existing directory entry requires that an add operation 9503 * be completed first followed by a deletion. The semantics for the addition 9504 * are identical to the description of adding a new entry above except 9505 * that the rollback is to the old inode number rather than zero. Once 9506 * the addition dependency is completed, the removal is done as described 9507 * in the removal routine above. 9508 */ 9509 9510 /* 9511 * This routine should be called immediately after changing 9512 * a directory entry. The inode's link count should not be 9513 * decremented by the calling procedure -- the soft updates 9514 * code will perform this task when it is safe. 9515 */ 9516 void 9517 softdep_setup_directory_change( 9518 struct buf *bp, /* buffer containing directory block */ 9519 struct inode *dp, /* inode for the directory being modified */ 9520 struct inode *ip, /* inode for directory entry being removed */ 9521 ino_t newinum, /* new inode number for changed entry */ 9522 int isrmdir) /* indicates if doing RMDIR */ 9523 { 9524 int offset; 9525 struct diradd *dap = NULL; 9526 struct dirrem *dirrem, *prevdirrem; 9527 struct pagedep *pagedep; 9528 struct inodedep *inodedep; 9529 struct jaddref *jaddref; 9530 struct mount *mp; 9531 struct ufsmount *ump; 9532 9533 mp = ITOVFS(dp); 9534 ump = VFSTOUFS(mp); 9535 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9536 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9537 ("softdep_setup_directory_change called on non-softdep filesystem")); 9538 9539 /* 9540 * Whiteouts do not need diradd dependencies. 9541 */ 9542 if (newinum != UFS_WINO) { 9543 dap = malloc(sizeof(struct diradd), 9544 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9545 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9546 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9547 dap->da_offset = offset; 9548 dap->da_newinum = newinum; 9549 LIST_INIT(&dap->da_jwork); 9550 } 9551 9552 /* 9553 * Allocate a new dirrem and ACQUIRE_LOCK. 9554 */ 9555 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9556 pagedep = dirrem->dm_pagedep; 9557 /* 9558 * The possible values for isrmdir: 9559 * 0 - non-directory file rename 9560 * 1 - directory rename within same directory 9561 * inum - directory rename to new directory of given inode number 9562 * When renaming to a new directory, we are both deleting and 9563 * creating a new directory entry, so the link count on the new 9564 * directory should not change. Thus we do not need the followup 9565 * dirrem which is usually done in handle_workitem_remove. We set 9566 * the DIRCHG flag to tell handle_workitem_remove to skip the 9567 * followup dirrem. 9568 */ 9569 if (isrmdir > 1) 9570 dirrem->dm_state |= DIRCHG; 9571 9572 /* 9573 * Whiteouts have no additional dependencies, 9574 * so just put the dirrem on the correct list. 9575 */ 9576 if (newinum == UFS_WINO) { 9577 if ((dirrem->dm_state & COMPLETE) == 0) { 9578 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9579 dm_next); 9580 } else { 9581 dirrem->dm_dirinum = pagedep->pd_ino; 9582 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9583 add_to_worklist(&dirrem->dm_list, 0); 9584 } 9585 FREE_LOCK(ump); 9586 return; 9587 } 9588 /* 9589 * Add the dirrem to the inodedep's pending remove list for quick 9590 * discovery later. A valid nlinkdelta ensures that this lookup 9591 * will not fail. 9592 */ 9593 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9594 panic("softdep_setup_directory_change: Lost inodedep."); 9595 dirrem->dm_state |= ONDEPLIST; 9596 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9597 9598 /* 9599 * If the COMPLETE flag is clear, then there were no active 9600 * entries and we want to roll back to the previous inode until 9601 * the new inode is committed to disk. If the COMPLETE flag is 9602 * set, then we have deleted an entry that never made it to disk. 9603 * If the entry we deleted resulted from a name change, then the old 9604 * inode reference still resides on disk. Any rollback that we do 9605 * needs to be to that old inode (returned to us in prevdirrem). If 9606 * the entry we deleted resulted from a create, then there is 9607 * no entry on the disk, so we want to roll back to zero rather 9608 * than the uncommitted inode. In either of the COMPLETE cases we 9609 * want to immediately free the unwritten and unreferenced inode. 9610 */ 9611 if ((dirrem->dm_state & COMPLETE) == 0) { 9612 dap->da_previous = dirrem; 9613 } else { 9614 if (prevdirrem != NULL) { 9615 dap->da_previous = prevdirrem; 9616 } else { 9617 dap->da_state &= ~DIRCHG; 9618 dap->da_pagedep = pagedep; 9619 } 9620 dirrem->dm_dirinum = pagedep->pd_ino; 9621 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9622 add_to_worklist(&dirrem->dm_list, 0); 9623 } 9624 /* 9625 * Lookup the jaddref for this journal entry. We must finish 9626 * initializing it and make the diradd write dependent on it. 9627 * If we're not journaling, put it on the id_bufwait list if the 9628 * inode is not yet written. If it is written, do the post-inode 9629 * write processing to put it on the id_pendinghd list. 9630 */ 9631 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9632 if (MOUNTEDSUJ(mp)) { 9633 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9634 inoreflst); 9635 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9636 ("softdep_setup_directory_change: bad jaddref %p", 9637 jaddref)); 9638 jaddref->ja_diroff = I_OFFSET(dp); 9639 jaddref->ja_diradd = dap; 9640 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9641 dap, da_pdlist); 9642 add_to_journal(&jaddref->ja_list); 9643 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9644 dap->da_state |= COMPLETE; 9645 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9646 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9647 } else { 9648 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9649 dap, da_pdlist); 9650 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9651 } 9652 /* 9653 * If we're making a new name for a directory that has not been 9654 * committed when need to move the dot and dotdot references to 9655 * this new name. 9656 */ 9657 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9658 merge_diradd(inodedep, dap); 9659 FREE_LOCK(ump); 9660 } 9661 9662 /* 9663 * Called whenever the link count on an inode is changed. 9664 * It creates an inode dependency so that the new reference(s) 9665 * to the inode cannot be committed to disk until the updated 9666 * inode has been written. 9667 */ 9668 void 9669 softdep_change_linkcnt( 9670 struct inode *ip) /* the inode with the increased link count */ 9671 { 9672 struct inodedep *inodedep; 9673 struct ufsmount *ump; 9674 9675 ump = ITOUMP(ip); 9676 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9677 ("softdep_change_linkcnt called on non-softdep filesystem")); 9678 ACQUIRE_LOCK(ump); 9679 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9680 if (ip->i_nlink < ip->i_effnlink) 9681 panic("softdep_change_linkcnt: bad delta"); 9682 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9683 FREE_LOCK(ump); 9684 } 9685 9686 /* 9687 * Attach a sbdep dependency to the superblock buf so that we can keep 9688 * track of the head of the linked list of referenced but unlinked inodes. 9689 */ 9690 void 9691 softdep_setup_sbupdate( 9692 struct ufsmount *ump, 9693 struct fs *fs, 9694 struct buf *bp) 9695 { 9696 struct sbdep *sbdep; 9697 struct worklist *wk; 9698 9699 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9700 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9701 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9702 if (wk->wk_type == D_SBDEP) 9703 break; 9704 if (wk != NULL) 9705 return; 9706 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9707 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9708 sbdep->sb_fs = fs; 9709 sbdep->sb_ump = ump; 9710 ACQUIRE_LOCK(ump); 9711 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9712 FREE_LOCK(ump); 9713 } 9714 9715 /* 9716 * Return the first unlinked inodedep which is ready to be the head of the 9717 * list. The inodedep and all those after it must have valid next pointers. 9718 */ 9719 static struct inodedep * 9720 first_unlinked_inodedep(struct ufsmount *ump) 9721 { 9722 struct inodedep *inodedep; 9723 struct inodedep *idp; 9724 9725 LOCK_OWNED(ump); 9726 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9727 inodedep; inodedep = idp) { 9728 if ((inodedep->id_state & UNLINKNEXT) == 0) 9729 return (NULL); 9730 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9731 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9732 break; 9733 if ((inodedep->id_state & UNLINKPREV) == 0) 9734 break; 9735 } 9736 return (inodedep); 9737 } 9738 9739 /* 9740 * Set the sujfree unlinked head pointer prior to writing a superblock. 9741 */ 9742 static void 9743 initiate_write_sbdep(struct sbdep *sbdep) 9744 { 9745 struct inodedep *inodedep; 9746 struct fs *bpfs; 9747 struct fs *fs; 9748 9749 bpfs = sbdep->sb_fs; 9750 fs = sbdep->sb_ump->um_fs; 9751 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9752 if (inodedep) { 9753 fs->fs_sujfree = inodedep->id_ino; 9754 inodedep->id_state |= UNLINKPREV; 9755 } else 9756 fs->fs_sujfree = 0; 9757 bpfs->fs_sujfree = fs->fs_sujfree; 9758 /* 9759 * Because we have made changes to the superblock, we need to 9760 * recompute its check-hash. 9761 */ 9762 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9763 } 9764 9765 /* 9766 * After a superblock is written determine whether it must be written again 9767 * due to a changing unlinked list head. 9768 */ 9769 static int 9770 handle_written_sbdep(struct sbdep *sbdep, struct buf *bp) 9771 { 9772 struct inodedep *inodedep; 9773 struct fs *fs; 9774 9775 LOCK_OWNED(sbdep->sb_ump); 9776 fs = sbdep->sb_fs; 9777 /* 9778 * If the superblock doesn't match the in-memory list start over. 9779 */ 9780 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9781 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9782 (inodedep == NULL && fs->fs_sujfree != 0)) { 9783 bdirty(bp); 9784 return (1); 9785 } 9786 WORKITEM_FREE(sbdep, D_SBDEP); 9787 if (fs->fs_sujfree == 0) 9788 return (0); 9789 /* 9790 * Now that we have a record of this inode in stable store allow it 9791 * to be written to free up pending work. Inodes may see a lot of 9792 * write activity after they are unlinked which we must not hold up. 9793 */ 9794 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9795 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9796 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9797 inodedep, inodedep->id_state); 9798 if (inodedep->id_state & UNLINKONLIST) 9799 break; 9800 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9801 } 9802 9803 return (0); 9804 } 9805 9806 /* 9807 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9808 */ 9809 static void 9810 unlinked_inodedep( struct mount *mp, struct inodedep *inodedep) 9811 { 9812 struct ufsmount *ump; 9813 9814 ump = VFSTOUFS(mp); 9815 LOCK_OWNED(ump); 9816 if (MOUNTEDSUJ(mp) == 0) 9817 return; 9818 ump->um_fs->fs_fmod = 1; 9819 if (inodedep->id_state & UNLINKED) 9820 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9821 inodedep->id_state |= UNLINKED; 9822 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9823 } 9824 9825 /* 9826 * Remove an inodedep from the unlinked inodedep list. This may require 9827 * disk writes if the inode has made it that far. 9828 */ 9829 static void 9830 clear_unlinked_inodedep( struct inodedep *inodedep) 9831 { 9832 struct ufs2_dinode *dip; 9833 struct ufsmount *ump; 9834 struct inodedep *idp; 9835 struct inodedep *idn; 9836 struct fs *fs, *bpfs; 9837 struct buf *bp; 9838 daddr_t dbn; 9839 ino_t ino; 9840 ino_t nino; 9841 ino_t pino; 9842 int error; 9843 9844 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9845 fs = ump->um_fs; 9846 ino = inodedep->id_ino; 9847 error = 0; 9848 for (;;) { 9849 LOCK_OWNED(ump); 9850 KASSERT((inodedep->id_state & UNLINKED) != 0, 9851 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9852 inodedep)); 9853 /* 9854 * If nothing has yet been written simply remove us from 9855 * the in memory list and return. This is the most common 9856 * case where handle_workitem_remove() loses the final 9857 * reference. 9858 */ 9859 if ((inodedep->id_state & UNLINKLINKS) == 0) 9860 break; 9861 /* 9862 * If we have a NEXT pointer and no PREV pointer we can simply 9863 * clear NEXT's PREV and remove ourselves from the list. Be 9864 * careful not to clear PREV if the superblock points at 9865 * next as well. 9866 */ 9867 idn = TAILQ_NEXT(inodedep, id_unlinked); 9868 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9869 if (idn && fs->fs_sujfree != idn->id_ino) 9870 idn->id_state &= ~UNLINKPREV; 9871 break; 9872 } 9873 /* 9874 * Here we have an inodedep which is actually linked into 9875 * the list. We must remove it by forcing a write to the 9876 * link before us, whether it be the superblock or an inode. 9877 * Unfortunately the list may change while we're waiting 9878 * on the buf lock for either resource so we must loop until 9879 * we lock the right one. If both the superblock and an 9880 * inode point to this inode we must clear the inode first 9881 * followed by the superblock. 9882 */ 9883 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9884 pino = 0; 9885 if (idp && (idp->id_state & UNLINKNEXT)) 9886 pino = idp->id_ino; 9887 FREE_LOCK(ump); 9888 if (pino == 0) { 9889 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9890 (int)fs->fs_sbsize, 0, 0, 0); 9891 } else { 9892 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 9893 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 9894 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 9895 &bp); 9896 } 9897 ACQUIRE_LOCK(ump); 9898 if (error) 9899 break; 9900 /* If the list has changed restart the loop. */ 9901 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9902 nino = 0; 9903 if (idp && (idp->id_state & UNLINKNEXT)) 9904 nino = idp->id_ino; 9905 if (nino != pino || 9906 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9907 FREE_LOCK(ump); 9908 brelse(bp); 9909 ACQUIRE_LOCK(ump); 9910 continue; 9911 } 9912 nino = 0; 9913 idn = TAILQ_NEXT(inodedep, id_unlinked); 9914 if (idn) 9915 nino = idn->id_ino; 9916 /* 9917 * Remove us from the in memory list. After this we cannot 9918 * access the inodedep. 9919 */ 9920 KASSERT((inodedep->id_state & UNLINKED) != 0, 9921 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9922 inodedep)); 9923 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9924 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9925 FREE_LOCK(ump); 9926 /* 9927 * The predecessor's next pointer is manually updated here 9928 * so that the NEXT flag is never cleared for an element 9929 * that is in the list. 9930 */ 9931 if (pino == 0) { 9932 bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize); 9933 bpfs = (struct fs *)bp->b_data; 9934 ffs_oldfscompat_write(bpfs, ump); 9935 softdep_setup_sbupdate(ump, bpfs, bp); 9936 /* 9937 * Because we may have made changes to the superblock, 9938 * we need to recompute its check-hash. 9939 */ 9940 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9941 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9942 ((struct ufs1_dinode *)bp->b_data + 9943 ino_to_fsbo(fs, pino))->di_freelink = nino; 9944 } else { 9945 dip = (struct ufs2_dinode *)bp->b_data + 9946 ino_to_fsbo(fs, pino); 9947 dip->di_freelink = nino; 9948 ffs_update_dinode_ckhash(fs, dip); 9949 } 9950 /* 9951 * If the bwrite fails we have no recourse to recover. The 9952 * filesystem is corrupted already. 9953 */ 9954 bwrite(bp); 9955 ACQUIRE_LOCK(ump); 9956 /* 9957 * If the superblock pointer still needs to be cleared force 9958 * a write here. 9959 */ 9960 if (fs->fs_sujfree == ino) { 9961 FREE_LOCK(ump); 9962 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9963 (int)fs->fs_sbsize, 0, 0, 0); 9964 bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize); 9965 bpfs = (struct fs *)bp->b_data; 9966 ffs_oldfscompat_write(bpfs, ump); 9967 softdep_setup_sbupdate(ump, bpfs, bp); 9968 /* 9969 * Because we may have made changes to the superblock, 9970 * we need to recompute its check-hash. 9971 */ 9972 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9973 bwrite(bp); 9974 ACQUIRE_LOCK(ump); 9975 } 9976 9977 if (fs->fs_sujfree != ino) 9978 return; 9979 panic("clear_unlinked_inodedep: Failed to clear free head"); 9980 } 9981 if (inodedep->id_ino == fs->fs_sujfree) 9982 panic("clear_unlinked_inodedep: Freeing head of free list"); 9983 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9984 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9985 return; 9986 } 9987 9988 /* 9989 * This workitem decrements the inode's link count. 9990 * If the link count reaches zero, the file is removed. 9991 */ 9992 static int 9993 handle_workitem_remove(struct dirrem *dirrem, int flags) 9994 { 9995 struct inodedep *inodedep; 9996 struct workhead dotdotwk; 9997 struct worklist *wk; 9998 struct ufsmount *ump; 9999 struct mount *mp; 10000 struct vnode *vp; 10001 struct inode *ip; 10002 ino_t oldinum; 10003 10004 if (dirrem->dm_state & ONWORKLIST) 10005 panic("handle_workitem_remove: dirrem %p still on worklist", 10006 dirrem); 10007 oldinum = dirrem->dm_oldinum; 10008 mp = dirrem->dm_list.wk_mp; 10009 ump = VFSTOUFS(mp); 10010 flags |= LK_EXCLUSIVE; 10011 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ | 10012 FFSV_FORCEINODEDEP) != 0) 10013 return (EBUSY); 10014 ip = VTOI(vp); 10015 MPASS(ip->i_mode != 0); 10016 ACQUIRE_LOCK(ump); 10017 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10018 panic("handle_workitem_remove: lost inodedep"); 10019 if (dirrem->dm_state & ONDEPLIST) 10020 LIST_REMOVE(dirrem, dm_inonext); 10021 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10022 ("handle_workitem_remove: Journal entries not written.")); 10023 10024 /* 10025 * Move all dependencies waiting on the remove to complete 10026 * from the dirrem to the inode inowait list to be completed 10027 * after the inode has been updated and written to disk. 10028 * 10029 * Any marked MKDIR_PARENT are saved to be completed when the 10030 * dotdot ref is removed unless DIRCHG is specified. For 10031 * directory change operations there will be no further 10032 * directory writes and the jsegdeps need to be moved along 10033 * with the rest to be completed when the inode is free or 10034 * stable in the inode free list. 10035 */ 10036 LIST_INIT(&dotdotwk); 10037 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10038 WORKLIST_REMOVE(wk); 10039 if ((dirrem->dm_state & DIRCHG) == 0 && 10040 wk->wk_state & MKDIR_PARENT) { 10041 wk->wk_state &= ~MKDIR_PARENT; 10042 WORKLIST_INSERT(&dotdotwk, wk); 10043 continue; 10044 } 10045 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10046 } 10047 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10048 /* 10049 * Normal file deletion. 10050 */ 10051 if ((dirrem->dm_state & RMDIR) == 0) { 10052 ip->i_nlink--; 10053 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10054 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10055 ip->i_nlink)); 10056 DIP_SET_NLINK(ip, ip->i_nlink); 10057 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10058 if (ip->i_nlink < ip->i_effnlink) 10059 panic("handle_workitem_remove: bad file delta"); 10060 if (ip->i_nlink == 0) 10061 unlinked_inodedep(mp, inodedep); 10062 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10063 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10064 ("handle_workitem_remove: worklist not empty. %s", 10065 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10066 WORKITEM_FREE(dirrem, D_DIRREM); 10067 FREE_LOCK(ump); 10068 goto out; 10069 } 10070 /* 10071 * Directory deletion. Decrement reference count for both the 10072 * just deleted parent directory entry and the reference for ".". 10073 * Arrange to have the reference count on the parent decremented 10074 * to account for the loss of "..". 10075 */ 10076 ip->i_nlink -= 2; 10077 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10078 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10079 DIP_SET_NLINK(ip, ip->i_nlink); 10080 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10081 if (ip->i_nlink < ip->i_effnlink) 10082 panic("handle_workitem_remove: bad dir delta"); 10083 if (ip->i_nlink == 0) 10084 unlinked_inodedep(mp, inodedep); 10085 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10086 /* 10087 * Rename a directory to a new parent. Since, we are both deleting 10088 * and creating a new directory entry, the link count on the new 10089 * directory should not change. Thus we skip the followup dirrem. 10090 */ 10091 if (dirrem->dm_state & DIRCHG) { 10092 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10093 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10094 WORKITEM_FREE(dirrem, D_DIRREM); 10095 FREE_LOCK(ump); 10096 goto out; 10097 } 10098 dirrem->dm_state = ONDEPLIST; 10099 dirrem->dm_oldinum = dirrem->dm_dirinum; 10100 /* 10101 * Place the dirrem on the parent's diremhd list. 10102 */ 10103 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10104 panic("handle_workitem_remove: lost dir inodedep"); 10105 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10106 /* 10107 * If the allocated inode has never been written to disk, then 10108 * the on-disk inode is zero'ed and we can remove the file 10109 * immediately. When journaling if the inode has been marked 10110 * unlinked and not DEPCOMPLETE we know it can never be written. 10111 */ 10112 inodedep_lookup(mp, oldinum, 0, &inodedep); 10113 if (inodedep == NULL || 10114 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10115 check_inode_unwritten(inodedep)) { 10116 FREE_LOCK(ump); 10117 vput(vp); 10118 return handle_workitem_remove(dirrem, flags); 10119 } 10120 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10121 FREE_LOCK(ump); 10122 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10123 out: 10124 ffs_update(vp, 0); 10125 vput(vp); 10126 return (0); 10127 } 10128 10129 /* 10130 * Inode de-allocation dependencies. 10131 * 10132 * When an inode's link count is reduced to zero, it can be de-allocated. We 10133 * found it convenient to postpone de-allocation until after the inode is 10134 * written to disk with its new link count (zero). At this point, all of the 10135 * on-disk inode's block pointers are nullified and, with careful dependency 10136 * list ordering, all dependencies related to the inode will be satisfied and 10137 * the corresponding dependency structures de-allocated. So, if/when the 10138 * inode is reused, there will be no mixing of old dependencies with new 10139 * ones. This artificial dependency is set up by the block de-allocation 10140 * procedure above (softdep_setup_freeblocks) and completed by the 10141 * following procedure. 10142 */ 10143 static void 10144 handle_workitem_freefile(struct freefile *freefile) 10145 { 10146 struct workhead wkhd; 10147 struct fs *fs; 10148 struct ufsmount *ump; 10149 int error; 10150 #ifdef INVARIANTS 10151 struct inodedep *idp; 10152 #endif 10153 10154 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10155 fs = ump->um_fs; 10156 #ifdef INVARIANTS 10157 ACQUIRE_LOCK(ump); 10158 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10159 FREE_LOCK(ump); 10160 if (error) 10161 panic("handle_workitem_freefile: inodedep %p survived", idp); 10162 #endif 10163 UFS_LOCK(ump); 10164 fs->fs_pendinginodes -= 1; 10165 UFS_UNLOCK(ump); 10166 LIST_INIT(&wkhd); 10167 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10168 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10169 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10170 softdep_error("handle_workitem_freefile", error); 10171 ACQUIRE_LOCK(ump); 10172 WORKITEM_FREE(freefile, D_FREEFILE); 10173 FREE_LOCK(ump); 10174 } 10175 10176 /* 10177 * Helper function which unlinks marker element from work list and returns 10178 * the next element on the list. 10179 */ 10180 static __inline struct worklist * 10181 markernext(struct worklist *marker) 10182 { 10183 struct worklist *next; 10184 10185 next = LIST_NEXT(marker, wk_list); 10186 LIST_REMOVE(marker, wk_list); 10187 return next; 10188 } 10189 10190 /* 10191 * Disk writes. 10192 * 10193 * The dependency structures constructed above are most actively used when file 10194 * system blocks are written to disk. No constraints are placed on when a 10195 * block can be written, but unsatisfied update dependencies are made safe by 10196 * modifying (or replacing) the source memory for the duration of the disk 10197 * write. When the disk write completes, the memory block is again brought 10198 * up-to-date. 10199 * 10200 * In-core inode structure reclamation. 10201 * 10202 * Because there are a finite number of "in-core" inode structures, they are 10203 * reused regularly. By transferring all inode-related dependencies to the 10204 * in-memory inode block and indexing them separately (via "inodedep"s), we 10205 * can allow "in-core" inode structures to be reused at any time and avoid 10206 * any increase in contention. 10207 * 10208 * Called just before entering the device driver to initiate a new disk I/O. 10209 * The buffer must be locked, thus, no I/O completion operations can occur 10210 * while we are manipulating its associated dependencies. 10211 */ 10212 static void 10213 softdep_disk_io_initiation( 10214 struct buf *bp) /* structure describing disk write to occur */ 10215 { 10216 struct worklist *wk; 10217 struct worklist marker; 10218 struct inodedep *inodedep; 10219 struct freeblks *freeblks; 10220 struct jblkdep *jblkdep; 10221 struct newblk *newblk; 10222 struct ufsmount *ump; 10223 10224 /* 10225 * We only care about write operations. There should never 10226 * be dependencies for reads. 10227 */ 10228 if (bp->b_iocmd != BIO_WRITE) 10229 panic("softdep_disk_io_initiation: not write"); 10230 10231 if (bp->b_vflags & BV_BKGRDINPROG) 10232 panic("softdep_disk_io_initiation: Writing buffer with " 10233 "background write in progress: %p", bp); 10234 10235 ump = softdep_bp_to_mp(bp); 10236 if (ump == NULL) 10237 return; 10238 10239 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10240 ACQUIRE_LOCK(ump); 10241 /* 10242 * Do any necessary pre-I/O processing. 10243 */ 10244 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10245 wk = markernext(&marker)) { 10246 LIST_INSERT_AFTER(wk, &marker, wk_list); 10247 switch (wk->wk_type) { 10248 case D_PAGEDEP: 10249 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10250 continue; 10251 10252 case D_INODEDEP: 10253 inodedep = WK_INODEDEP(wk); 10254 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10255 initiate_write_inodeblock_ufs1(inodedep, bp); 10256 else 10257 initiate_write_inodeblock_ufs2(inodedep, bp); 10258 continue; 10259 10260 case D_INDIRDEP: 10261 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10262 continue; 10263 10264 case D_BMSAFEMAP: 10265 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10266 continue; 10267 10268 case D_JSEG: 10269 WK_JSEG(wk)->js_buf = NULL; 10270 continue; 10271 10272 case D_FREEBLKS: 10273 freeblks = WK_FREEBLKS(wk); 10274 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10275 /* 10276 * We have to wait for the freeblks to be journaled 10277 * before we can write an inodeblock with updated 10278 * pointers. Be careful to arrange the marker so 10279 * we revisit the freeblks if it's not removed by 10280 * the first jwait(). 10281 */ 10282 if (jblkdep != NULL) { 10283 LIST_REMOVE(&marker, wk_list); 10284 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10285 jwait(&jblkdep->jb_list, MNT_WAIT); 10286 } 10287 continue; 10288 case D_ALLOCDIRECT: 10289 case D_ALLOCINDIR: 10290 /* 10291 * We have to wait for the jnewblk to be journaled 10292 * before we can write to a block if the contents 10293 * may be confused with an earlier file's indirect 10294 * at recovery time. Handle the marker as described 10295 * above. 10296 */ 10297 newblk = WK_NEWBLK(wk); 10298 if (newblk->nb_jnewblk != NULL && 10299 indirblk_lookup(newblk->nb_list.wk_mp, 10300 newblk->nb_newblkno)) { 10301 LIST_REMOVE(&marker, wk_list); 10302 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10303 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10304 } 10305 continue; 10306 10307 case D_SBDEP: 10308 initiate_write_sbdep(WK_SBDEP(wk)); 10309 continue; 10310 10311 case D_MKDIR: 10312 case D_FREEWORK: 10313 case D_FREEDEP: 10314 case D_JSEGDEP: 10315 continue; 10316 10317 default: 10318 panic("handle_disk_io_initiation: Unexpected type %s", 10319 TYPENAME(wk->wk_type)); 10320 /* NOTREACHED */ 10321 } 10322 } 10323 FREE_LOCK(ump); 10324 } 10325 10326 /* 10327 * Called from within the procedure above to deal with unsatisfied 10328 * allocation dependencies in a directory. The buffer must be locked, 10329 * thus, no I/O completion operations can occur while we are 10330 * manipulating its associated dependencies. 10331 */ 10332 static void 10333 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp) 10334 { 10335 struct jremref *jremref; 10336 struct jmvref *jmvref; 10337 struct dirrem *dirrem; 10338 struct diradd *dap; 10339 struct direct *ep; 10340 int i; 10341 10342 if (pagedep->pd_state & IOSTARTED) { 10343 /* 10344 * This can only happen if there is a driver that does not 10345 * understand chaining. Here biodone will reissue the call 10346 * to strategy for the incomplete buffers. 10347 */ 10348 printf("initiate_write_filepage: already started\n"); 10349 return; 10350 } 10351 pagedep->pd_state |= IOSTARTED; 10352 /* 10353 * Wait for all journal remove dependencies to hit the disk. 10354 * We can not allow any potentially conflicting directory adds 10355 * to be visible before removes and rollback is too difficult. 10356 * The per-filesystem lock may be dropped and re-acquired, however 10357 * we hold the buf locked so the dependency can not go away. 10358 */ 10359 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10360 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10361 jwait(&jremref->jr_list, MNT_WAIT); 10362 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10363 jwait(&jmvref->jm_list, MNT_WAIT); 10364 for (i = 0; i < DAHASHSZ; i++) { 10365 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10366 ep = (struct direct *) 10367 ((char *)bp->b_data + dap->da_offset); 10368 if (ep->d_ino != dap->da_newinum) 10369 panic("%s: dir inum %ju != new %ju", 10370 "initiate_write_filepage", 10371 (uintmax_t)ep->d_ino, 10372 (uintmax_t)dap->da_newinum); 10373 if (dap->da_state & DIRCHG) 10374 ep->d_ino = dap->da_previous->dm_oldinum; 10375 else 10376 ep->d_ino = 0; 10377 dap->da_state &= ~ATTACHED; 10378 dap->da_state |= UNDONE; 10379 } 10380 } 10381 } 10382 10383 /* 10384 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10385 * Note that any bug fixes made to this routine must be done in the 10386 * version found below. 10387 * 10388 * Called from within the procedure above to deal with unsatisfied 10389 * allocation dependencies in an inodeblock. The buffer must be 10390 * locked, thus, no I/O completion operations can occur while we 10391 * are manipulating its associated dependencies. 10392 */ 10393 static void 10394 initiate_write_inodeblock_ufs1( 10395 struct inodedep *inodedep, 10396 struct buf *bp) /* The inode block */ 10397 { 10398 struct allocdirect *adp, *lastadp; 10399 struct ufs1_dinode *dp; 10400 struct ufs1_dinode *sip; 10401 struct inoref *inoref; 10402 struct ufsmount *ump; 10403 struct fs *fs; 10404 ufs_lbn_t i; 10405 #ifdef INVARIANTS 10406 ufs_lbn_t prevlbn = 0; 10407 #endif 10408 int deplist __diagused; 10409 10410 if (inodedep->id_state & IOSTARTED) 10411 panic("initiate_write_inodeblock_ufs1: already started"); 10412 inodedep->id_state |= IOSTARTED; 10413 fs = inodedep->id_fs; 10414 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10415 LOCK_OWNED(ump); 10416 dp = (struct ufs1_dinode *)bp->b_data + 10417 ino_to_fsbo(fs, inodedep->id_ino); 10418 10419 /* 10420 * If we're on the unlinked list but have not yet written our 10421 * next pointer initialize it here. 10422 */ 10423 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10424 struct inodedep *inon; 10425 10426 inon = TAILQ_NEXT(inodedep, id_unlinked); 10427 dp->di_freelink = inon ? inon->id_ino : 0; 10428 } 10429 /* 10430 * If the bitmap is not yet written, then the allocated 10431 * inode cannot be written to disk. 10432 */ 10433 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10434 if (inodedep->id_savedino1 != NULL) 10435 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10436 FREE_LOCK(ump); 10437 sip = malloc(sizeof(struct ufs1_dinode), 10438 M_SAVEDINO, M_SOFTDEP_FLAGS); 10439 ACQUIRE_LOCK(ump); 10440 inodedep->id_savedino1 = sip; 10441 *inodedep->id_savedino1 = *dp; 10442 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10443 dp->di_gen = inodedep->id_savedino1->di_gen; 10444 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10445 return; 10446 } 10447 /* 10448 * If no dependencies, then there is nothing to roll back. 10449 */ 10450 inodedep->id_savedsize = dp->di_size; 10451 inodedep->id_savedextsize = 0; 10452 inodedep->id_savednlink = dp->di_nlink; 10453 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10454 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10455 return; 10456 /* 10457 * Revert the link count to that of the first unwritten journal entry. 10458 */ 10459 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10460 if (inoref) 10461 dp->di_nlink = inoref->if_nlink; 10462 /* 10463 * Set the dependencies to busy. 10464 */ 10465 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10466 adp = TAILQ_NEXT(adp, ad_next)) { 10467 #ifdef INVARIANTS 10468 if (deplist != 0 && prevlbn >= adp->ad_offset) 10469 panic("softdep_write_inodeblock: lbn order"); 10470 prevlbn = adp->ad_offset; 10471 if (adp->ad_offset < UFS_NDADDR && 10472 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10473 panic("initiate_write_inodeblock_ufs1: " 10474 "direct pointer #%jd mismatch %d != %jd", 10475 (intmax_t)adp->ad_offset, 10476 dp->di_db[adp->ad_offset], 10477 (intmax_t)adp->ad_newblkno); 10478 if (adp->ad_offset >= UFS_NDADDR && 10479 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10480 panic("initiate_write_inodeblock_ufs1: " 10481 "indirect pointer #%jd mismatch %d != %jd", 10482 (intmax_t)adp->ad_offset - UFS_NDADDR, 10483 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10484 (intmax_t)adp->ad_newblkno); 10485 deplist |= 1 << adp->ad_offset; 10486 if ((adp->ad_state & ATTACHED) == 0) 10487 panic("initiate_write_inodeblock_ufs1: " 10488 "Unknown state 0x%x", adp->ad_state); 10489 #endif /* INVARIANTS */ 10490 adp->ad_state &= ~ATTACHED; 10491 adp->ad_state |= UNDONE; 10492 } 10493 /* 10494 * The on-disk inode cannot claim to be any larger than the last 10495 * fragment that has been written. Otherwise, the on-disk inode 10496 * might have fragments that were not the last block in the file 10497 * which would corrupt the filesystem. 10498 */ 10499 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10500 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10501 if (adp->ad_offset >= UFS_NDADDR) 10502 break; 10503 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10504 /* keep going until hitting a rollback to a frag */ 10505 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10506 continue; 10507 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10508 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10509 #ifdef INVARIANTS 10510 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10511 panic("initiate_write_inodeblock_ufs1: " 10512 "lost dep1"); 10513 #endif /* INVARIANTS */ 10514 dp->di_db[i] = 0; 10515 } 10516 for (i = 0; i < UFS_NIADDR; i++) { 10517 #ifdef INVARIANTS 10518 if (dp->di_ib[i] != 0 && 10519 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10520 panic("initiate_write_inodeblock_ufs1: " 10521 "lost dep2"); 10522 #endif /* INVARIANTS */ 10523 dp->di_ib[i] = 0; 10524 } 10525 return; 10526 } 10527 /* 10528 * If we have zero'ed out the last allocated block of the file, 10529 * roll back the size to the last currently allocated block. 10530 * We know that this last allocated block is a full-sized as 10531 * we already checked for fragments in the loop above. 10532 */ 10533 if (lastadp != NULL && 10534 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10535 for (i = lastadp->ad_offset; i >= 0; i--) 10536 if (dp->di_db[i] != 0) 10537 break; 10538 dp->di_size = (i + 1) * fs->fs_bsize; 10539 } 10540 /* 10541 * The only dependencies are for indirect blocks. 10542 * 10543 * The file size for indirect block additions is not guaranteed. 10544 * Such a guarantee would be non-trivial to achieve. The conventional 10545 * synchronous write implementation also does not make this guarantee. 10546 * Fsck should catch and fix discrepancies. Arguably, the file size 10547 * can be over-estimated without destroying integrity when the file 10548 * moves into the indirect blocks (i.e., is large). If we want to 10549 * postpone fsck, we are stuck with this argument. 10550 */ 10551 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10552 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10553 } 10554 10555 /* 10556 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10557 * Note that any bug fixes made to this routine must be done in the 10558 * version found above. 10559 * 10560 * Called from within the procedure above to deal with unsatisfied 10561 * allocation dependencies in an inodeblock. The buffer must be 10562 * locked, thus, no I/O completion operations can occur while we 10563 * are manipulating its associated dependencies. 10564 */ 10565 static void 10566 initiate_write_inodeblock_ufs2( 10567 struct inodedep *inodedep, 10568 struct buf *bp) /* The inode block */ 10569 { 10570 struct allocdirect *adp, *lastadp; 10571 struct ufs2_dinode *dp; 10572 struct ufs2_dinode *sip; 10573 struct inoref *inoref; 10574 struct ufsmount *ump; 10575 struct fs *fs; 10576 ufs_lbn_t i; 10577 #ifdef INVARIANTS 10578 ufs_lbn_t prevlbn = 0; 10579 #endif 10580 int deplist __diagused; 10581 10582 if (inodedep->id_state & IOSTARTED) 10583 panic("initiate_write_inodeblock_ufs2: already started"); 10584 inodedep->id_state |= IOSTARTED; 10585 fs = inodedep->id_fs; 10586 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10587 LOCK_OWNED(ump); 10588 dp = (struct ufs2_dinode *)bp->b_data + 10589 ino_to_fsbo(fs, inodedep->id_ino); 10590 10591 /* 10592 * If we're on the unlinked list but have not yet written our 10593 * next pointer initialize it here. 10594 */ 10595 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10596 struct inodedep *inon; 10597 10598 inon = TAILQ_NEXT(inodedep, id_unlinked); 10599 dp->di_freelink = inon ? inon->id_ino : 0; 10600 ffs_update_dinode_ckhash(fs, dp); 10601 } 10602 /* 10603 * If the bitmap is not yet written, then the allocated 10604 * inode cannot be written to disk. 10605 */ 10606 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10607 if (inodedep->id_savedino2 != NULL) 10608 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10609 FREE_LOCK(ump); 10610 sip = malloc(sizeof(struct ufs2_dinode), 10611 M_SAVEDINO, M_SOFTDEP_FLAGS); 10612 ACQUIRE_LOCK(ump); 10613 inodedep->id_savedino2 = sip; 10614 *inodedep->id_savedino2 = *dp; 10615 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10616 dp->di_gen = inodedep->id_savedino2->di_gen; 10617 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10618 return; 10619 } 10620 /* 10621 * If no dependencies, then there is nothing to roll back. 10622 */ 10623 inodedep->id_savedsize = dp->di_size; 10624 inodedep->id_savedextsize = dp->di_extsize; 10625 inodedep->id_savednlink = dp->di_nlink; 10626 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10627 TAILQ_EMPTY(&inodedep->id_extupdt) && 10628 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10629 return; 10630 /* 10631 * Revert the link count to that of the first unwritten journal entry. 10632 */ 10633 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10634 if (inoref) 10635 dp->di_nlink = inoref->if_nlink; 10636 10637 /* 10638 * Set the ext data dependencies to busy. 10639 */ 10640 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10641 adp = TAILQ_NEXT(adp, ad_next)) { 10642 #ifdef INVARIANTS 10643 if (deplist != 0 && prevlbn >= adp->ad_offset) 10644 panic("initiate_write_inodeblock_ufs2: lbn order"); 10645 prevlbn = adp->ad_offset; 10646 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10647 panic("initiate_write_inodeblock_ufs2: " 10648 "ext pointer #%jd mismatch %jd != %jd", 10649 (intmax_t)adp->ad_offset, 10650 (intmax_t)dp->di_extb[adp->ad_offset], 10651 (intmax_t)adp->ad_newblkno); 10652 deplist |= 1 << adp->ad_offset; 10653 if ((adp->ad_state & ATTACHED) == 0) 10654 panic("initiate_write_inodeblock_ufs2: Unknown " 10655 "state 0x%x", adp->ad_state); 10656 #endif /* INVARIANTS */ 10657 adp->ad_state &= ~ATTACHED; 10658 adp->ad_state |= UNDONE; 10659 } 10660 /* 10661 * The on-disk inode cannot claim to be any larger than the last 10662 * fragment that has been written. Otherwise, the on-disk inode 10663 * might have fragments that were not the last block in the ext 10664 * data which would corrupt the filesystem. 10665 */ 10666 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10667 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10668 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10669 /* keep going until hitting a rollback to a frag */ 10670 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10671 continue; 10672 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10673 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10674 #ifdef INVARIANTS 10675 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10676 panic("initiate_write_inodeblock_ufs2: " 10677 "lost dep1"); 10678 #endif /* INVARIANTS */ 10679 dp->di_extb[i] = 0; 10680 } 10681 lastadp = NULL; 10682 break; 10683 } 10684 /* 10685 * If we have zero'ed out the last allocated block of the ext 10686 * data, roll back the size to the last currently allocated block. 10687 * We know that this last allocated block is a full-sized as 10688 * we already checked for fragments in the loop above. 10689 */ 10690 if (lastadp != NULL && 10691 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10692 for (i = lastadp->ad_offset; i >= 0; i--) 10693 if (dp->di_extb[i] != 0) 10694 break; 10695 dp->di_extsize = (i + 1) * fs->fs_bsize; 10696 } 10697 /* 10698 * Set the file data dependencies to busy. 10699 */ 10700 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10701 adp = TAILQ_NEXT(adp, ad_next)) { 10702 #ifdef INVARIANTS 10703 if (deplist != 0 && prevlbn >= adp->ad_offset) 10704 panic("softdep_write_inodeblock: lbn order"); 10705 if ((adp->ad_state & ATTACHED) == 0) 10706 panic("inodedep %p and adp %p not attached", inodedep, adp); 10707 prevlbn = adp->ad_offset; 10708 if (!ffs_fsfail_cleanup(ump, 0) && 10709 adp->ad_offset < UFS_NDADDR && 10710 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10711 panic("initiate_write_inodeblock_ufs2: " 10712 "direct pointer #%jd mismatch %jd != %jd", 10713 (intmax_t)adp->ad_offset, 10714 (intmax_t)dp->di_db[adp->ad_offset], 10715 (intmax_t)adp->ad_newblkno); 10716 if (!ffs_fsfail_cleanup(ump, 0) && 10717 adp->ad_offset >= UFS_NDADDR && 10718 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10719 panic("initiate_write_inodeblock_ufs2: " 10720 "indirect pointer #%jd mismatch %jd != %jd", 10721 (intmax_t)adp->ad_offset - UFS_NDADDR, 10722 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10723 (intmax_t)adp->ad_newblkno); 10724 deplist |= 1 << adp->ad_offset; 10725 if ((adp->ad_state & ATTACHED) == 0) 10726 panic("initiate_write_inodeblock_ufs2: Unknown " 10727 "state 0x%x", adp->ad_state); 10728 #endif /* INVARIANTS */ 10729 adp->ad_state &= ~ATTACHED; 10730 adp->ad_state |= UNDONE; 10731 } 10732 /* 10733 * The on-disk inode cannot claim to be any larger than the last 10734 * fragment that has been written. Otherwise, the on-disk inode 10735 * might have fragments that were not the last block in the file 10736 * which would corrupt the filesystem. 10737 */ 10738 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10739 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10740 if (adp->ad_offset >= UFS_NDADDR) 10741 break; 10742 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10743 /* keep going until hitting a rollback to a frag */ 10744 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10745 continue; 10746 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10747 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10748 #ifdef INVARIANTS 10749 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10750 panic("initiate_write_inodeblock_ufs2: " 10751 "lost dep2"); 10752 #endif /* INVARIANTS */ 10753 dp->di_db[i] = 0; 10754 } 10755 for (i = 0; i < UFS_NIADDR; i++) { 10756 #ifdef INVARIANTS 10757 if (dp->di_ib[i] != 0 && 10758 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10759 panic("initiate_write_inodeblock_ufs2: " 10760 "lost dep3"); 10761 #endif /* INVARIANTS */ 10762 dp->di_ib[i] = 0; 10763 } 10764 ffs_update_dinode_ckhash(fs, dp); 10765 return; 10766 } 10767 /* 10768 * If we have zero'ed out the last allocated block of the file, 10769 * roll back the size to the last currently allocated block. 10770 * We know that this last allocated block is a full-sized as 10771 * we already checked for fragments in the loop above. 10772 */ 10773 if (lastadp != NULL && 10774 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10775 for (i = lastadp->ad_offset; i >= 0; i--) 10776 if (dp->di_db[i] != 0) 10777 break; 10778 dp->di_size = (i + 1) * fs->fs_bsize; 10779 } 10780 /* 10781 * The only dependencies are for indirect blocks. 10782 * 10783 * The file size for indirect block additions is not guaranteed. 10784 * Such a guarantee would be non-trivial to achieve. The conventional 10785 * synchronous write implementation also does not make this guarantee. 10786 * Fsck should catch and fix discrepancies. Arguably, the file size 10787 * can be over-estimated without destroying integrity when the file 10788 * moves into the indirect blocks (i.e., is large). If we want to 10789 * postpone fsck, we are stuck with this argument. 10790 */ 10791 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10792 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10793 ffs_update_dinode_ckhash(fs, dp); 10794 } 10795 10796 /* 10797 * Cancel an indirdep as a result of truncation. Release all of the 10798 * children allocindirs and place their journal work on the appropriate 10799 * list. 10800 */ 10801 static void 10802 cancel_indirdep( 10803 struct indirdep *indirdep, 10804 struct buf *bp, 10805 struct freeblks *freeblks) 10806 { 10807 struct allocindir *aip; 10808 10809 /* 10810 * None of the indirect pointers will ever be visible, 10811 * so they can simply be tossed. GOINGAWAY ensures 10812 * that allocated pointers will be saved in the buffer 10813 * cache until they are freed. Note that they will 10814 * only be able to be found by their physical address 10815 * since the inode mapping the logical address will 10816 * be gone. The save buffer used for the safe copy 10817 * was allocated in setup_allocindir_phase2 using 10818 * the physical address so it could be used for this 10819 * purpose. Hence we swap the safe copy with the real 10820 * copy, allowing the safe copy to be freed and holding 10821 * on to the real copy for later use in indir_trunc. 10822 */ 10823 if (indirdep->ir_state & GOINGAWAY) 10824 panic("cancel_indirdep: already gone"); 10825 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10826 indirdep->ir_state |= DEPCOMPLETE; 10827 LIST_REMOVE(indirdep, ir_next); 10828 } 10829 indirdep->ir_state |= GOINGAWAY; 10830 /* 10831 * Pass in bp for blocks still have journal writes 10832 * pending so we can cancel them on their own. 10833 */ 10834 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10835 cancel_allocindir(aip, bp, freeblks, 0); 10836 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10837 cancel_allocindir(aip, NULL, freeblks, 0); 10838 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10839 cancel_allocindir(aip, NULL, freeblks, 0); 10840 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10841 cancel_allocindir(aip, NULL, freeblks, 0); 10842 /* 10843 * If there are pending partial truncations we need to keep the 10844 * old block copy around until they complete. This is because 10845 * the current b_data is not a perfect superset of the available 10846 * blocks. 10847 */ 10848 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10849 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10850 else 10851 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10852 WORKLIST_REMOVE(&indirdep->ir_list); 10853 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10854 indirdep->ir_bp = NULL; 10855 indirdep->ir_freeblks = freeblks; 10856 } 10857 10858 /* 10859 * Free an indirdep once it no longer has new pointers to track. 10860 */ 10861 static void 10862 free_indirdep(struct indirdep *indirdep) 10863 { 10864 10865 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10866 ("free_indirdep: Indir trunc list not empty.")); 10867 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10868 ("free_indirdep: Complete head not empty.")); 10869 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10870 ("free_indirdep: write head not empty.")); 10871 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10872 ("free_indirdep: done head not empty.")); 10873 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10874 ("free_indirdep: deplist head not empty.")); 10875 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10876 ("free_indirdep: %p still on newblk list.", indirdep)); 10877 KASSERT(indirdep->ir_saveddata == NULL, 10878 ("free_indirdep: %p still has saved data.", indirdep)); 10879 KASSERT(indirdep->ir_savebp == NULL, 10880 ("free_indirdep: %p still has savebp buffer.", indirdep)); 10881 if (indirdep->ir_state & ONWORKLIST) 10882 WORKLIST_REMOVE(&indirdep->ir_list); 10883 WORKITEM_FREE(indirdep, D_INDIRDEP); 10884 } 10885 10886 /* 10887 * Called before a write to an indirdep. This routine is responsible for 10888 * rolling back pointers to a safe state which includes only those 10889 * allocindirs which have been completed. 10890 */ 10891 static void 10892 initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp) 10893 { 10894 struct ufsmount *ump; 10895 10896 indirdep->ir_state |= IOSTARTED; 10897 if (indirdep->ir_state & GOINGAWAY) 10898 panic("disk_io_initiation: indirdep gone"); 10899 /* 10900 * If there are no remaining dependencies, this will be writing 10901 * the real pointers. 10902 */ 10903 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10904 TAILQ_EMPTY(&indirdep->ir_trunc)) 10905 return; 10906 /* 10907 * Replace up-to-date version with safe version. 10908 */ 10909 if (indirdep->ir_saveddata == NULL) { 10910 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10911 LOCK_OWNED(ump); 10912 FREE_LOCK(ump); 10913 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10914 M_SOFTDEP_FLAGS); 10915 ACQUIRE_LOCK(ump); 10916 } 10917 indirdep->ir_state &= ~ATTACHED; 10918 indirdep->ir_state |= UNDONE; 10919 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10920 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10921 bp->b_bcount); 10922 } 10923 10924 /* 10925 * Called when an inode has been cleared in a cg bitmap. This finally 10926 * eliminates any canceled jaddrefs 10927 */ 10928 void 10929 softdep_setup_inofree(struct mount *mp, 10930 struct buf *bp, 10931 ino_t ino, 10932 struct workhead *wkhd, 10933 bool doingrecovery) 10934 { 10935 struct worklist *wk, *wkn; 10936 struct ufsmount *ump; 10937 #ifdef INVARIANTS 10938 struct inodedep *inodedep; 10939 #endif 10940 10941 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10942 ("softdep_setup_inofree called on non-softdep filesystem")); 10943 ump = VFSTOUFS(mp); 10944 ACQUIRE_LOCK(ump); 10945 KASSERT(doingrecovery || ffs_fsfail_cleanup(ump, 0) || 10946 isclr(cg_inosused((struct cg *)bp->b_data), 10947 ino % ump->um_fs->fs_ipg), 10948 ("softdep_setup_inofree: inode %ju not freed.", (uintmax_t)ino)); 10949 KASSERT(inodedep_lookup(mp, ino, 0, &inodedep) == 0, 10950 ("softdep_setup_inofree: ino %ju has existing inodedep %p", 10951 (uintmax_t)ino, inodedep)); 10952 if (wkhd) { 10953 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10954 if (wk->wk_type != D_JADDREF) 10955 continue; 10956 WORKLIST_REMOVE(wk); 10957 /* 10958 * We can free immediately even if the jaddref 10959 * isn't attached in a background write as now 10960 * the bitmaps are reconciled. 10961 */ 10962 wk->wk_state |= COMPLETE | ATTACHED; 10963 free_jaddref(WK_JADDREF(wk)); 10964 } 10965 jwork_move(&bp->b_dep, wkhd); 10966 } 10967 FREE_LOCK(ump); 10968 } 10969 10970 /* 10971 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10972 * map. Any dependencies waiting for the write to clear are added to the 10973 * buf's list and any jnewblks that are being canceled are discarded 10974 * immediately. 10975 */ 10976 void 10977 softdep_setup_blkfree( 10978 struct mount *mp, 10979 struct buf *bp, 10980 ufs2_daddr_t blkno, 10981 int frags, 10982 struct workhead *wkhd, 10983 bool doingrecovery) 10984 { 10985 struct bmsafemap *bmsafemap; 10986 struct jnewblk *jnewblk; 10987 struct ufsmount *ump; 10988 struct worklist *wk; 10989 struct fs *fs; 10990 #ifdef INVARIANTS 10991 uint8_t *blksfree; 10992 struct cg *cgp; 10993 ufs2_daddr_t jstart; 10994 ufs2_daddr_t jend; 10995 ufs2_daddr_t end; 10996 long bno; 10997 int i; 10998 #endif 10999 11000 CTR3(KTR_SUJ, 11001 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 11002 blkno, frags, wkhd); 11003 11004 ump = VFSTOUFS(mp); 11005 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11006 ("softdep_setup_blkfree called on non-softdep filesystem")); 11007 ACQUIRE_LOCK(ump); 11008 /* Lookup the bmsafemap so we track when it is dirty. */ 11009 fs = ump->um_fs; 11010 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11011 /* 11012 * Detach any jnewblks which have been canceled. They must linger 11013 * until the bitmap is cleared again by ffs_blkfree() to prevent 11014 * an unjournaled allocation from hitting the disk. 11015 */ 11016 if (wkhd) { 11017 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11018 CTR2(KTR_SUJ, 11019 "softdep_setup_blkfree: blkno %jd wk type %d", 11020 blkno, wk->wk_type); 11021 WORKLIST_REMOVE(wk); 11022 if (wk->wk_type != D_JNEWBLK) { 11023 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11024 continue; 11025 } 11026 jnewblk = WK_JNEWBLK(wk); 11027 KASSERT(jnewblk->jn_state & GOINGAWAY, 11028 ("softdep_setup_blkfree: jnewblk not canceled.")); 11029 #ifdef INVARIANTS 11030 if (!doingrecovery && !ffs_fsfail_cleanup(ump, 0)) { 11031 /* 11032 * Assert that this block is free in the 11033 * bitmap before we discard the jnewblk. 11034 */ 11035 cgp = (struct cg *)bp->b_data; 11036 blksfree = cg_blksfree(cgp); 11037 bno = dtogd(fs, jnewblk->jn_blkno); 11038 for (i = jnewblk->jn_oldfrags; 11039 i < jnewblk->jn_frags; i++) { 11040 if (isset(blksfree, bno + i)) 11041 continue; 11042 panic("softdep_setup_blkfree: block " 11043 "%ju not freed.", 11044 (uintmax_t)jnewblk->jn_blkno); 11045 } 11046 } 11047 #endif 11048 /* 11049 * Even if it's not attached we can free immediately 11050 * as the new bitmap is correct. 11051 */ 11052 wk->wk_state |= COMPLETE | ATTACHED; 11053 free_jnewblk(jnewblk); 11054 } 11055 } 11056 11057 #ifdef INVARIANTS 11058 /* 11059 * Assert that we are not freeing a block which has an outstanding 11060 * allocation dependency. 11061 */ 11062 fs = VFSTOUFS(mp)->um_fs; 11063 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11064 end = blkno + frags; 11065 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11066 /* 11067 * Don't match against blocks that will be freed when the 11068 * background write is done. 11069 */ 11070 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11071 (COMPLETE | DEPCOMPLETE)) 11072 continue; 11073 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11074 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11075 if ((blkno >= jstart && blkno < jend) || 11076 (end > jstart && end <= jend)) { 11077 printf("state 0x%X %jd - %d %d dep %p\n", 11078 jnewblk->jn_state, jnewblk->jn_blkno, 11079 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11080 jnewblk->jn_dep); 11081 panic("softdep_setup_blkfree: " 11082 "%jd-%jd(%d) overlaps with %jd-%jd", 11083 blkno, end, frags, jstart, jend); 11084 } 11085 } 11086 #endif 11087 FREE_LOCK(ump); 11088 } 11089 11090 /* 11091 * Revert a block allocation when the journal record that describes it 11092 * is not yet written. 11093 */ 11094 static int 11095 jnewblk_rollback( 11096 struct jnewblk *jnewblk, 11097 struct fs *fs, 11098 struct cg *cgp, 11099 uint8_t *blksfree) 11100 { 11101 ufs1_daddr_t fragno; 11102 long cgbno, bbase; 11103 int frags, blk; 11104 int i; 11105 11106 frags = 0; 11107 cgbno = dtogd(fs, jnewblk->jn_blkno); 11108 /* 11109 * We have to test which frags need to be rolled back. We may 11110 * be operating on a stale copy when doing background writes. 11111 */ 11112 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11113 if (isclr(blksfree, cgbno + i)) 11114 frags++; 11115 if (frags == 0) 11116 return (0); 11117 /* 11118 * This is mostly ffs_blkfree() sans some validation and 11119 * superblock updates. 11120 */ 11121 if (frags == fs->fs_frag) { 11122 fragno = fragstoblks(fs, cgbno); 11123 ffs_setblock(fs, blksfree, fragno); 11124 ffs_clusteracct(fs, cgp, fragno, 1); 11125 cgp->cg_cs.cs_nbfree++; 11126 } else { 11127 cgbno += jnewblk->jn_oldfrags; 11128 bbase = cgbno - fragnum(fs, cgbno); 11129 /* Decrement the old frags. */ 11130 blk = blkmap(fs, blksfree, bbase); 11131 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11132 /* Deallocate the fragment */ 11133 for (i = 0; i < frags; i++) 11134 setbit(blksfree, cgbno + i); 11135 cgp->cg_cs.cs_nffree += frags; 11136 /* Add back in counts associated with the new frags */ 11137 blk = blkmap(fs, blksfree, bbase); 11138 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11139 /* If a complete block has been reassembled, account for it. */ 11140 fragno = fragstoblks(fs, bbase); 11141 if (ffs_isblock(fs, blksfree, fragno)) { 11142 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11143 ffs_clusteracct(fs, cgp, fragno, 1); 11144 cgp->cg_cs.cs_nbfree++; 11145 } 11146 } 11147 stat_jnewblk++; 11148 jnewblk->jn_state &= ~ATTACHED; 11149 jnewblk->jn_state |= UNDONE; 11150 11151 return (frags); 11152 } 11153 11154 static void 11155 initiate_write_bmsafemap( 11156 struct bmsafemap *bmsafemap, 11157 struct buf *bp) /* The cg block. */ 11158 { 11159 struct jaddref *jaddref; 11160 struct jnewblk *jnewblk; 11161 uint8_t *inosused; 11162 uint8_t *blksfree; 11163 struct cg *cgp; 11164 struct fs *fs; 11165 ino_t ino; 11166 11167 /* 11168 * If this is a background write, we did this at the time that 11169 * the copy was made, so do not need to do it again. 11170 */ 11171 if (bmsafemap->sm_state & IOSTARTED) 11172 return; 11173 bmsafemap->sm_state |= IOSTARTED; 11174 /* 11175 * Clear any inode allocations which are pending journal writes. 11176 */ 11177 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11178 cgp = (struct cg *)bp->b_data; 11179 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11180 inosused = cg_inosused(cgp); 11181 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11182 ino = jaddref->ja_ino % fs->fs_ipg; 11183 if (isset(inosused, ino)) { 11184 if ((jaddref->ja_mode & IFMT) == IFDIR) 11185 cgp->cg_cs.cs_ndir--; 11186 cgp->cg_cs.cs_nifree++; 11187 clrbit(inosused, ino); 11188 jaddref->ja_state &= ~ATTACHED; 11189 jaddref->ja_state |= UNDONE; 11190 stat_jaddref++; 11191 } else 11192 panic("initiate_write_bmsafemap: inode %ju " 11193 "marked free", (uintmax_t)jaddref->ja_ino); 11194 } 11195 } 11196 /* 11197 * Clear any block allocations which are pending journal writes. 11198 */ 11199 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11200 cgp = (struct cg *)bp->b_data; 11201 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11202 blksfree = cg_blksfree(cgp); 11203 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11204 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11205 continue; 11206 panic("initiate_write_bmsafemap: block %jd " 11207 "marked free", jnewblk->jn_blkno); 11208 } 11209 } 11210 /* 11211 * Move allocation lists to the written lists so they can be 11212 * cleared once the block write is complete. 11213 */ 11214 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11215 inodedep, id_deps); 11216 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11217 newblk, nb_deps); 11218 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11219 wk_list); 11220 } 11221 11222 void 11223 softdep_handle_error(struct buf *bp) 11224 { 11225 struct ufsmount *ump; 11226 11227 ump = softdep_bp_to_mp(bp); 11228 if (ump == NULL) 11229 return; 11230 11231 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11232 /* 11233 * No future writes will succeed, so the on-disk image is safe. 11234 * Pretend that this write succeeded so that the softdep state 11235 * will be cleaned up naturally. 11236 */ 11237 bp->b_ioflags &= ~BIO_ERROR; 11238 bp->b_error = 0; 11239 } 11240 } 11241 11242 /* 11243 * This routine is called during the completion interrupt 11244 * service routine for a disk write (from the procedure called 11245 * by the device driver to inform the filesystem caches of 11246 * a request completion). It should be called early in this 11247 * procedure, before the block is made available to other 11248 * processes or other routines are called. 11249 * 11250 */ 11251 static void 11252 softdep_disk_write_complete( 11253 struct buf *bp) /* describes the completed disk write */ 11254 { 11255 struct worklist *wk; 11256 struct worklist *owk; 11257 struct ufsmount *ump; 11258 struct workhead reattach; 11259 struct freeblks *freeblks; 11260 struct buf *sbp; 11261 11262 ump = softdep_bp_to_mp(bp); 11263 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11264 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11265 "with outstanding dependencies for buffer %p", bp)); 11266 if (ump == NULL) 11267 return; 11268 if ((bp->b_ioflags & BIO_ERROR) != 0) 11269 softdep_handle_error(bp); 11270 /* 11271 * If an error occurred while doing the write, then the data 11272 * has not hit the disk and the dependencies cannot be processed. 11273 * But we do have to go through and roll forward any dependencies 11274 * that were rolled back before the disk write. 11275 */ 11276 sbp = NULL; 11277 ACQUIRE_LOCK(ump); 11278 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11279 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11280 switch (wk->wk_type) { 11281 case D_PAGEDEP: 11282 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11283 continue; 11284 11285 case D_INODEDEP: 11286 handle_written_inodeblock(WK_INODEDEP(wk), 11287 bp, 0); 11288 continue; 11289 11290 case D_BMSAFEMAP: 11291 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11292 bp, 0); 11293 continue; 11294 11295 case D_INDIRDEP: 11296 handle_written_indirdep(WK_INDIRDEP(wk), 11297 bp, &sbp, 0); 11298 continue; 11299 default: 11300 /* nothing to roll forward */ 11301 continue; 11302 } 11303 } 11304 FREE_LOCK(ump); 11305 if (sbp) 11306 brelse(sbp); 11307 return; 11308 } 11309 LIST_INIT(&reattach); 11310 11311 /* 11312 * Ump SU lock must not be released anywhere in this code segment. 11313 */ 11314 owk = NULL; 11315 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11316 WORKLIST_REMOVE(wk); 11317 atomic_add_long(&dep_write[wk->wk_type], 1); 11318 if (wk == owk) 11319 panic("duplicate worklist: %p\n", wk); 11320 owk = wk; 11321 switch (wk->wk_type) { 11322 case D_PAGEDEP: 11323 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11324 WRITESUCCEEDED)) 11325 WORKLIST_INSERT(&reattach, wk); 11326 continue; 11327 11328 case D_INODEDEP: 11329 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11330 WRITESUCCEEDED)) 11331 WORKLIST_INSERT(&reattach, wk); 11332 continue; 11333 11334 case D_BMSAFEMAP: 11335 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11336 WRITESUCCEEDED)) 11337 WORKLIST_INSERT(&reattach, wk); 11338 continue; 11339 11340 case D_MKDIR: 11341 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11342 continue; 11343 11344 case D_ALLOCDIRECT: 11345 wk->wk_state |= COMPLETE; 11346 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11347 continue; 11348 11349 case D_ALLOCINDIR: 11350 wk->wk_state |= COMPLETE; 11351 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11352 continue; 11353 11354 case D_INDIRDEP: 11355 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11356 WRITESUCCEEDED)) 11357 WORKLIST_INSERT(&reattach, wk); 11358 continue; 11359 11360 case D_FREEBLKS: 11361 wk->wk_state |= COMPLETE; 11362 freeblks = WK_FREEBLKS(wk); 11363 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11364 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11365 add_to_worklist(wk, WK_NODELAY); 11366 continue; 11367 11368 case D_FREEWORK: 11369 handle_written_freework(WK_FREEWORK(wk)); 11370 break; 11371 11372 case D_JSEGDEP: 11373 free_jsegdep(WK_JSEGDEP(wk)); 11374 continue; 11375 11376 case D_JSEG: 11377 handle_written_jseg(WK_JSEG(wk), bp); 11378 continue; 11379 11380 case D_SBDEP: 11381 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11382 WORKLIST_INSERT(&reattach, wk); 11383 continue; 11384 11385 case D_FREEDEP: 11386 free_freedep(WK_FREEDEP(wk)); 11387 continue; 11388 11389 default: 11390 panic("handle_disk_write_complete: Unknown type %s", 11391 TYPENAME(wk->wk_type)); 11392 /* NOTREACHED */ 11393 } 11394 } 11395 /* 11396 * Reattach any requests that must be redone. 11397 */ 11398 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11399 WORKLIST_REMOVE(wk); 11400 WORKLIST_INSERT(&bp->b_dep, wk); 11401 } 11402 FREE_LOCK(ump); 11403 if (sbp) 11404 brelse(sbp); 11405 } 11406 11407 /* 11408 * Called from within softdep_disk_write_complete above. 11409 */ 11410 static void 11411 handle_allocdirect_partdone( 11412 struct allocdirect *adp, /* the completed allocdirect */ 11413 struct workhead *wkhd) /* Work to do when inode is writtne. */ 11414 { 11415 struct allocdirectlst *listhead; 11416 struct allocdirect *listadp; 11417 struct inodedep *inodedep; 11418 long bsize; 11419 11420 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11421 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11422 return; 11423 /* 11424 * The on-disk inode cannot claim to be any larger than the last 11425 * fragment that has been written. Otherwise, the on-disk inode 11426 * might have fragments that were not the last block in the file 11427 * which would corrupt the filesystem. Thus, we cannot free any 11428 * allocdirects after one whose ad_oldblkno claims a fragment as 11429 * these blocks must be rolled back to zero before writing the inode. 11430 * We check the currently active set of allocdirects in id_inoupdt 11431 * or id_extupdt as appropriate. 11432 */ 11433 inodedep = adp->ad_inodedep; 11434 bsize = inodedep->id_fs->fs_bsize; 11435 if (adp->ad_state & EXTDATA) 11436 listhead = &inodedep->id_extupdt; 11437 else 11438 listhead = &inodedep->id_inoupdt; 11439 TAILQ_FOREACH(listadp, listhead, ad_next) { 11440 /* found our block */ 11441 if (listadp == adp) 11442 break; 11443 /* continue if ad_oldlbn is not a fragment */ 11444 if (listadp->ad_oldsize == 0 || 11445 listadp->ad_oldsize == bsize) 11446 continue; 11447 /* hit a fragment */ 11448 return; 11449 } 11450 /* 11451 * If we have reached the end of the current list without 11452 * finding the just finished dependency, then it must be 11453 * on the future dependency list. Future dependencies cannot 11454 * be freed until they are moved to the current list. 11455 */ 11456 if (listadp == NULL) { 11457 #ifdef INVARIANTS 11458 if (adp->ad_state & EXTDATA) 11459 listhead = &inodedep->id_newextupdt; 11460 else 11461 listhead = &inodedep->id_newinoupdt; 11462 TAILQ_FOREACH(listadp, listhead, ad_next) 11463 /* found our block */ 11464 if (listadp == adp) 11465 break; 11466 if (listadp == NULL) 11467 panic("handle_allocdirect_partdone: lost dep"); 11468 #endif /* INVARIANTS */ 11469 return; 11470 } 11471 /* 11472 * If we have found the just finished dependency, then queue 11473 * it along with anything that follows it that is complete. 11474 * Since the pointer has not yet been written in the inode 11475 * as the dependency prevents it, place the allocdirect on the 11476 * bufwait list where it will be freed once the pointer is 11477 * valid. 11478 */ 11479 if (wkhd == NULL) 11480 wkhd = &inodedep->id_bufwait; 11481 for (; adp; adp = listadp) { 11482 listadp = TAILQ_NEXT(adp, ad_next); 11483 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11484 return; 11485 TAILQ_REMOVE(listhead, adp, ad_next); 11486 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11487 } 11488 } 11489 11490 /* 11491 * Called from within softdep_disk_write_complete above. This routine 11492 * completes successfully written allocindirs. 11493 */ 11494 static void 11495 handle_allocindir_partdone( 11496 struct allocindir *aip) /* the completed allocindir */ 11497 { 11498 struct indirdep *indirdep; 11499 11500 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11501 return; 11502 indirdep = aip->ai_indirdep; 11503 LIST_REMOVE(aip, ai_next); 11504 /* 11505 * Don't set a pointer while the buffer is undergoing IO or while 11506 * we have active truncations. 11507 */ 11508 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11509 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11510 return; 11511 } 11512 if (indirdep->ir_state & UFS1FMT) 11513 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11514 aip->ai_newblkno; 11515 else 11516 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11517 aip->ai_newblkno; 11518 /* 11519 * Await the pointer write before freeing the allocindir. 11520 */ 11521 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11522 } 11523 11524 /* 11525 * Release segments held on a jwork list. 11526 */ 11527 static void 11528 handle_jwork(struct workhead *wkhd) 11529 { 11530 struct worklist *wk; 11531 11532 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11533 WORKLIST_REMOVE(wk); 11534 switch (wk->wk_type) { 11535 case D_JSEGDEP: 11536 free_jsegdep(WK_JSEGDEP(wk)); 11537 continue; 11538 case D_FREEDEP: 11539 free_freedep(WK_FREEDEP(wk)); 11540 continue; 11541 case D_FREEFRAG: 11542 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11543 WORKITEM_FREE(wk, D_FREEFRAG); 11544 continue; 11545 case D_FREEWORK: 11546 handle_written_freework(WK_FREEWORK(wk)); 11547 continue; 11548 default: 11549 panic("handle_jwork: Unknown type %s\n", 11550 TYPENAME(wk->wk_type)); 11551 } 11552 } 11553 } 11554 11555 /* 11556 * Handle the bufwait list on an inode when it is safe to release items 11557 * held there. This normally happens after an inode block is written but 11558 * may be delayed and handled later if there are pending journal items that 11559 * are not yet safe to be released. 11560 */ 11561 static struct freefile * 11562 handle_bufwait( 11563 struct inodedep *inodedep, 11564 struct workhead *refhd) 11565 { 11566 struct jaddref *jaddref; 11567 struct freefile *freefile; 11568 struct worklist *wk; 11569 11570 freefile = NULL; 11571 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11572 WORKLIST_REMOVE(wk); 11573 switch (wk->wk_type) { 11574 case D_FREEFILE: 11575 /* 11576 * We defer adding freefile to the worklist 11577 * until all other additions have been made to 11578 * ensure that it will be done after all the 11579 * old blocks have been freed. 11580 */ 11581 if (freefile != NULL) 11582 panic("handle_bufwait: freefile"); 11583 freefile = WK_FREEFILE(wk); 11584 continue; 11585 11586 case D_MKDIR: 11587 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11588 continue; 11589 11590 case D_DIRADD: 11591 diradd_inode_written(WK_DIRADD(wk), inodedep); 11592 continue; 11593 11594 case D_FREEFRAG: 11595 wk->wk_state |= COMPLETE; 11596 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11597 add_to_worklist(wk, 0); 11598 continue; 11599 11600 case D_DIRREM: 11601 wk->wk_state |= COMPLETE; 11602 add_to_worklist(wk, 0); 11603 continue; 11604 11605 case D_ALLOCDIRECT: 11606 case D_ALLOCINDIR: 11607 free_newblk(WK_NEWBLK(wk)); 11608 continue; 11609 11610 case D_JNEWBLK: 11611 wk->wk_state |= COMPLETE; 11612 free_jnewblk(WK_JNEWBLK(wk)); 11613 continue; 11614 11615 /* 11616 * Save freed journal segments and add references on 11617 * the supplied list which will delay their release 11618 * until the cg bitmap is cleared on disk. 11619 */ 11620 case D_JSEGDEP: 11621 if (refhd == NULL) 11622 free_jsegdep(WK_JSEGDEP(wk)); 11623 else 11624 WORKLIST_INSERT(refhd, wk); 11625 continue; 11626 11627 case D_JADDREF: 11628 jaddref = WK_JADDREF(wk); 11629 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11630 if_deps); 11631 /* 11632 * Transfer any jaddrefs to the list to be freed with 11633 * the bitmap if we're handling a removed file. 11634 */ 11635 if (refhd == NULL) { 11636 wk->wk_state |= COMPLETE; 11637 free_jaddref(jaddref); 11638 } else 11639 WORKLIST_INSERT(refhd, wk); 11640 continue; 11641 11642 default: 11643 panic("handle_bufwait: Unknown type %p(%s)", 11644 wk, TYPENAME(wk->wk_type)); 11645 /* NOTREACHED */ 11646 } 11647 } 11648 return (freefile); 11649 } 11650 /* 11651 * Called from within softdep_disk_write_complete above to restore 11652 * in-memory inode block contents to their most up-to-date state. Note 11653 * that this routine is always called from interrupt level with further 11654 * interrupts from this device blocked. 11655 * 11656 * If the write did not succeed, we will do all the roll-forward 11657 * operations, but we will not take the actions that will allow its 11658 * dependencies to be processed. 11659 */ 11660 static int 11661 handle_written_inodeblock( 11662 struct inodedep *inodedep, 11663 struct buf *bp, /* buffer containing the inode block */ 11664 int flags) 11665 { 11666 struct freefile *freefile; 11667 struct allocdirect *adp, *nextadp; 11668 struct ufs1_dinode *dp1 = NULL; 11669 struct ufs2_dinode *dp2 = NULL; 11670 struct workhead wkhd; 11671 int hadchanges, fstype; 11672 ino_t freelink; 11673 11674 LIST_INIT(&wkhd); 11675 hadchanges = 0; 11676 freefile = NULL; 11677 if ((inodedep->id_state & IOSTARTED) == 0) 11678 panic("handle_written_inodeblock: not started"); 11679 inodedep->id_state &= ~IOSTARTED; 11680 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11681 fstype = UFS1; 11682 dp1 = (struct ufs1_dinode *)bp->b_data + 11683 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11684 freelink = dp1->di_freelink; 11685 } else { 11686 fstype = UFS2; 11687 dp2 = (struct ufs2_dinode *)bp->b_data + 11688 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11689 freelink = dp2->di_freelink; 11690 } 11691 /* 11692 * Leave this inodeblock dirty until it's in the list. 11693 */ 11694 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11695 (flags & WRITESUCCEEDED)) { 11696 struct inodedep *inon; 11697 11698 inon = TAILQ_NEXT(inodedep, id_unlinked); 11699 if ((inon == NULL && freelink == 0) || 11700 (inon && inon->id_ino == freelink)) { 11701 if (inon) 11702 inon->id_state |= UNLINKPREV; 11703 inodedep->id_state |= UNLINKNEXT; 11704 } 11705 hadchanges = 1; 11706 } 11707 /* 11708 * If we had to rollback the inode allocation because of 11709 * bitmaps being incomplete, then simply restore it. 11710 * Keep the block dirty so that it will not be reclaimed until 11711 * all associated dependencies have been cleared and the 11712 * corresponding updates written to disk. 11713 */ 11714 if (inodedep->id_savedino1 != NULL) { 11715 hadchanges = 1; 11716 if (fstype == UFS1) 11717 *dp1 = *inodedep->id_savedino1; 11718 else 11719 *dp2 = *inodedep->id_savedino2; 11720 free(inodedep->id_savedino1, M_SAVEDINO); 11721 inodedep->id_savedino1 = NULL; 11722 if ((bp->b_flags & B_DELWRI) == 0) 11723 stat_inode_bitmap++; 11724 bdirty(bp); 11725 /* 11726 * If the inode is clear here and GOINGAWAY it will never 11727 * be written. Process the bufwait and clear any pending 11728 * work which may include the freefile. 11729 */ 11730 if (inodedep->id_state & GOINGAWAY) 11731 goto bufwait; 11732 return (1); 11733 } 11734 if (flags & WRITESUCCEEDED) 11735 inodedep->id_state |= COMPLETE; 11736 /* 11737 * Roll forward anything that had to be rolled back before 11738 * the inode could be updated. 11739 */ 11740 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11741 nextadp = TAILQ_NEXT(adp, ad_next); 11742 if (adp->ad_state & ATTACHED) 11743 panic("handle_written_inodeblock: new entry"); 11744 if (fstype == UFS1) { 11745 if (adp->ad_offset < UFS_NDADDR) { 11746 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11747 panic("%s %s #%jd mismatch %d != %jd", 11748 "handle_written_inodeblock:", 11749 "direct pointer", 11750 (intmax_t)adp->ad_offset, 11751 dp1->di_db[adp->ad_offset], 11752 (intmax_t)adp->ad_oldblkno); 11753 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11754 } else { 11755 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11756 0) 11757 panic("%s: %s #%jd allocated as %d", 11758 "handle_written_inodeblock", 11759 "indirect pointer", 11760 (intmax_t)adp->ad_offset - 11761 UFS_NDADDR, 11762 dp1->di_ib[adp->ad_offset - 11763 UFS_NDADDR]); 11764 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11765 adp->ad_newblkno; 11766 } 11767 } else { 11768 if (adp->ad_offset < UFS_NDADDR) { 11769 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11770 panic("%s: %s #%jd %s %jd != %jd", 11771 "handle_written_inodeblock", 11772 "direct pointer", 11773 (intmax_t)adp->ad_offset, "mismatch", 11774 (intmax_t)dp2->di_db[adp->ad_offset], 11775 (intmax_t)adp->ad_oldblkno); 11776 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11777 } else { 11778 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11779 0) 11780 panic("%s: %s #%jd allocated as %jd", 11781 "handle_written_inodeblock", 11782 "indirect pointer", 11783 (intmax_t)adp->ad_offset - 11784 UFS_NDADDR, 11785 (intmax_t) 11786 dp2->di_ib[adp->ad_offset - 11787 UFS_NDADDR]); 11788 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11789 adp->ad_newblkno; 11790 } 11791 } 11792 adp->ad_state &= ~UNDONE; 11793 adp->ad_state |= ATTACHED; 11794 hadchanges = 1; 11795 } 11796 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11797 nextadp = TAILQ_NEXT(adp, ad_next); 11798 if (adp->ad_state & ATTACHED) 11799 panic("handle_written_inodeblock: new entry"); 11800 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11801 panic("%s: direct pointers #%jd %s %jd != %jd", 11802 "handle_written_inodeblock", 11803 (intmax_t)adp->ad_offset, "mismatch", 11804 (intmax_t)dp2->di_extb[adp->ad_offset], 11805 (intmax_t)adp->ad_oldblkno); 11806 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11807 adp->ad_state &= ~UNDONE; 11808 adp->ad_state |= ATTACHED; 11809 hadchanges = 1; 11810 } 11811 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11812 stat_direct_blk_ptrs++; 11813 /* 11814 * Reset the file size to its most up-to-date value. 11815 */ 11816 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11817 panic("handle_written_inodeblock: bad size"); 11818 if (inodedep->id_savednlink > UFS_LINK_MAX) 11819 panic("handle_written_inodeblock: Invalid link count " 11820 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11821 inodedep); 11822 if (fstype == UFS1) { 11823 if (dp1->di_nlink != inodedep->id_savednlink) { 11824 dp1->di_nlink = inodedep->id_savednlink; 11825 hadchanges = 1; 11826 } 11827 if (dp1->di_size != inodedep->id_savedsize) { 11828 dp1->di_size = inodedep->id_savedsize; 11829 hadchanges = 1; 11830 } 11831 } else { 11832 if (dp2->di_nlink != inodedep->id_savednlink) { 11833 dp2->di_nlink = inodedep->id_savednlink; 11834 hadchanges = 1; 11835 } 11836 if (dp2->di_size != inodedep->id_savedsize) { 11837 dp2->di_size = inodedep->id_savedsize; 11838 hadchanges = 1; 11839 } 11840 if (dp2->di_extsize != inodedep->id_savedextsize) { 11841 dp2->di_extsize = inodedep->id_savedextsize; 11842 hadchanges = 1; 11843 } 11844 } 11845 inodedep->id_savedsize = -1; 11846 inodedep->id_savedextsize = -1; 11847 inodedep->id_savednlink = -1; 11848 /* 11849 * If there were any rollbacks in the inode block, then it must be 11850 * marked dirty so that its will eventually get written back in 11851 * its correct form. 11852 */ 11853 if (hadchanges) { 11854 if (fstype == UFS2) 11855 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11856 bdirty(bp); 11857 } 11858 bufwait: 11859 /* 11860 * If the write did not succeed, we have done all the roll-forward 11861 * operations, but we cannot take the actions that will allow its 11862 * dependencies to be processed. 11863 */ 11864 if ((flags & WRITESUCCEEDED) == 0) 11865 return (hadchanges); 11866 /* 11867 * Process any allocdirects that completed during the update. 11868 */ 11869 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11870 handle_allocdirect_partdone(adp, &wkhd); 11871 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11872 handle_allocdirect_partdone(adp, &wkhd); 11873 /* 11874 * Process deallocations that were held pending until the 11875 * inode had been written to disk. Freeing of the inode 11876 * is delayed until after all blocks have been freed to 11877 * avoid creation of new <vfsid, inum, lbn> triples 11878 * before the old ones have been deleted. Completely 11879 * unlinked inodes are not processed until the unlinked 11880 * inode list is written or the last reference is removed. 11881 */ 11882 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11883 freefile = handle_bufwait(inodedep, NULL); 11884 if (freefile && !LIST_EMPTY(&wkhd)) { 11885 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11886 freefile = NULL; 11887 } 11888 } 11889 /* 11890 * Move rolled forward dependency completions to the bufwait list 11891 * now that those that were already written have been processed. 11892 */ 11893 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11894 panic("handle_written_inodeblock: bufwait but no changes"); 11895 jwork_move(&inodedep->id_bufwait, &wkhd); 11896 11897 if (freefile != NULL) { 11898 /* 11899 * If the inode is goingaway it was never written. Fake up 11900 * the state here so free_inodedep() can succeed. 11901 */ 11902 if (inodedep->id_state & GOINGAWAY) 11903 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11904 if (free_inodedep(inodedep) == 0) 11905 panic("handle_written_inodeblock: live inodedep %p", 11906 inodedep); 11907 add_to_worklist(&freefile->fx_list, 0); 11908 return (0); 11909 } 11910 11911 /* 11912 * If no outstanding dependencies, free it. 11913 */ 11914 if (free_inodedep(inodedep) || 11915 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11916 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11917 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11918 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11919 return (0); 11920 return (hadchanges); 11921 } 11922 11923 /* 11924 * Perform needed roll-forwards and kick off any dependencies that 11925 * can now be processed. 11926 * 11927 * If the write did not succeed, we will do all the roll-forward 11928 * operations, but we will not take the actions that will allow its 11929 * dependencies to be processed. 11930 */ 11931 static int 11932 handle_written_indirdep( 11933 struct indirdep *indirdep, 11934 struct buf *bp, 11935 struct buf **bpp, 11936 int flags) 11937 { 11938 struct allocindir *aip; 11939 struct buf *sbp; 11940 int chgs; 11941 11942 if (indirdep->ir_state & GOINGAWAY) 11943 panic("handle_written_indirdep: indirdep gone"); 11944 if ((indirdep->ir_state & IOSTARTED) == 0) 11945 panic("handle_written_indirdep: IO not started"); 11946 chgs = 0; 11947 /* 11948 * If there were rollbacks revert them here. 11949 */ 11950 if (indirdep->ir_saveddata) { 11951 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11952 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11953 free(indirdep->ir_saveddata, M_INDIRDEP); 11954 indirdep->ir_saveddata = NULL; 11955 } 11956 chgs = 1; 11957 } 11958 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11959 indirdep->ir_state |= ATTACHED; 11960 /* 11961 * If the write did not succeed, we have done all the roll-forward 11962 * operations, but we cannot take the actions that will allow its 11963 * dependencies to be processed. 11964 */ 11965 if ((flags & WRITESUCCEEDED) == 0) { 11966 stat_indir_blk_ptrs++; 11967 bdirty(bp); 11968 return (1); 11969 } 11970 /* 11971 * Move allocindirs with written pointers to the completehd if 11972 * the indirdep's pointer is not yet written. Otherwise 11973 * free them here. 11974 */ 11975 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11976 LIST_REMOVE(aip, ai_next); 11977 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11978 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11979 ai_next); 11980 newblk_freefrag(&aip->ai_block); 11981 continue; 11982 } 11983 free_newblk(&aip->ai_block); 11984 } 11985 /* 11986 * Move allocindirs that have finished dependency processing from 11987 * the done list to the write list after updating the pointers. 11988 */ 11989 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11990 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11991 handle_allocindir_partdone(aip); 11992 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11993 panic("disk_write_complete: not gone"); 11994 chgs = 1; 11995 } 11996 } 11997 /* 11998 * Preserve the indirdep if there were any changes or if it is not 11999 * yet valid on disk. 12000 */ 12001 if (chgs) { 12002 stat_indir_blk_ptrs++; 12003 bdirty(bp); 12004 return (1); 12005 } 12006 /* 12007 * If there were no changes we can discard the savedbp and detach 12008 * ourselves from the buf. We are only carrying completed pointers 12009 * in this case. 12010 */ 12011 sbp = indirdep->ir_savebp; 12012 sbp->b_flags |= B_INVAL | B_NOCACHE; 12013 indirdep->ir_savebp = NULL; 12014 indirdep->ir_bp = NULL; 12015 if (*bpp != NULL) 12016 panic("handle_written_indirdep: bp already exists."); 12017 *bpp = sbp; 12018 /* 12019 * The indirdep may not be freed until its parent points at it. 12020 */ 12021 if (indirdep->ir_state & DEPCOMPLETE) 12022 free_indirdep(indirdep); 12023 12024 return (0); 12025 } 12026 12027 /* 12028 * Process a diradd entry after its dependent inode has been written. 12029 */ 12030 static void 12031 diradd_inode_written( 12032 struct diradd *dap, 12033 struct inodedep *inodedep) 12034 { 12035 12036 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12037 dap->da_state |= COMPLETE; 12038 complete_diradd(dap); 12039 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12040 } 12041 12042 /* 12043 * Returns true if the bmsafemap will have rollbacks when written. Must only 12044 * be called with the per-filesystem lock and the buf lock on the cg held. 12045 */ 12046 static int 12047 bmsafemap_backgroundwrite( 12048 struct bmsafemap *bmsafemap, 12049 struct buf *bp) 12050 { 12051 int dirty; 12052 12053 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12054 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12055 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12056 /* 12057 * If we're initiating a background write we need to process the 12058 * rollbacks as they exist now, not as they exist when IO starts. 12059 * No other consumers will look at the contents of the shadowed 12060 * buf so this is safe to do here. 12061 */ 12062 if (bp->b_xflags & BX_BKGRDMARKER) 12063 initiate_write_bmsafemap(bmsafemap, bp); 12064 12065 return (dirty); 12066 } 12067 12068 /* 12069 * Re-apply an allocation when a cg write is complete. 12070 */ 12071 static int 12072 jnewblk_rollforward( 12073 struct jnewblk *jnewblk, 12074 struct fs *fs, 12075 struct cg *cgp, 12076 uint8_t *blksfree) 12077 { 12078 ufs1_daddr_t fragno; 12079 ufs2_daddr_t blkno; 12080 long cgbno, bbase; 12081 int frags, blk; 12082 int i; 12083 12084 frags = 0; 12085 cgbno = dtogd(fs, jnewblk->jn_blkno); 12086 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12087 if (isclr(blksfree, cgbno + i)) 12088 panic("jnewblk_rollforward: re-allocated fragment"); 12089 frags++; 12090 } 12091 if (frags == fs->fs_frag) { 12092 blkno = fragstoblks(fs, cgbno); 12093 ffs_clrblock(fs, blksfree, (long)blkno); 12094 ffs_clusteracct(fs, cgp, blkno, -1); 12095 cgp->cg_cs.cs_nbfree--; 12096 } else { 12097 bbase = cgbno - fragnum(fs, cgbno); 12098 cgbno += jnewblk->jn_oldfrags; 12099 /* If a complete block had been reassembled, account for it. */ 12100 fragno = fragstoblks(fs, bbase); 12101 if (ffs_isblock(fs, blksfree, fragno)) { 12102 cgp->cg_cs.cs_nffree += fs->fs_frag; 12103 ffs_clusteracct(fs, cgp, fragno, -1); 12104 cgp->cg_cs.cs_nbfree--; 12105 } 12106 /* Decrement the old frags. */ 12107 blk = blkmap(fs, blksfree, bbase); 12108 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12109 /* Allocate the fragment */ 12110 for (i = 0; i < frags; i++) 12111 clrbit(blksfree, cgbno + i); 12112 cgp->cg_cs.cs_nffree -= frags; 12113 /* Add back in counts associated with the new frags */ 12114 blk = blkmap(fs, blksfree, bbase); 12115 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12116 } 12117 return (frags); 12118 } 12119 12120 /* 12121 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12122 * changes if it's not a background write. Set all written dependencies 12123 * to DEPCOMPLETE and free the structure if possible. 12124 * 12125 * If the write did not succeed, we will do all the roll-forward 12126 * operations, but we will not take the actions that will allow its 12127 * dependencies to be processed. 12128 */ 12129 static int 12130 handle_written_bmsafemap( 12131 struct bmsafemap *bmsafemap, 12132 struct buf *bp, 12133 int flags) 12134 { 12135 struct newblk *newblk; 12136 struct inodedep *inodedep; 12137 struct jaddref *jaddref, *jatmp; 12138 struct jnewblk *jnewblk, *jntmp; 12139 struct ufsmount *ump; 12140 uint8_t *inosused; 12141 uint8_t *blksfree; 12142 struct cg *cgp; 12143 struct fs *fs; 12144 ino_t ino; 12145 int foreground; 12146 int chgs; 12147 12148 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12149 panic("handle_written_bmsafemap: Not started\n"); 12150 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12151 chgs = 0; 12152 bmsafemap->sm_state &= ~IOSTARTED; 12153 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12154 /* 12155 * If write was successful, release journal work that was waiting 12156 * on the write. Otherwise move the work back. 12157 */ 12158 if (flags & WRITESUCCEEDED) 12159 handle_jwork(&bmsafemap->sm_freewr); 12160 else 12161 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12162 worklist, wk_list); 12163 12164 /* 12165 * Restore unwritten inode allocation pending jaddref writes. 12166 */ 12167 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12168 cgp = (struct cg *)bp->b_data; 12169 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12170 inosused = cg_inosused(cgp); 12171 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12172 ja_bmdeps, jatmp) { 12173 if ((jaddref->ja_state & UNDONE) == 0) 12174 continue; 12175 ino = jaddref->ja_ino % fs->fs_ipg; 12176 if (isset(inosused, ino)) 12177 panic("handle_written_bmsafemap: " 12178 "re-allocated inode"); 12179 /* Do the roll-forward only if it's a real copy. */ 12180 if (foreground) { 12181 if ((jaddref->ja_mode & IFMT) == IFDIR) 12182 cgp->cg_cs.cs_ndir++; 12183 cgp->cg_cs.cs_nifree--; 12184 setbit(inosused, ino); 12185 chgs = 1; 12186 } 12187 jaddref->ja_state &= ~UNDONE; 12188 jaddref->ja_state |= ATTACHED; 12189 free_jaddref(jaddref); 12190 } 12191 } 12192 /* 12193 * Restore any block allocations which are pending journal writes. 12194 */ 12195 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12196 cgp = (struct cg *)bp->b_data; 12197 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12198 blksfree = cg_blksfree(cgp); 12199 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12200 jntmp) { 12201 if ((jnewblk->jn_state & UNDONE) == 0) 12202 continue; 12203 /* Do the roll-forward only if it's a real copy. */ 12204 if (foreground && 12205 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12206 chgs = 1; 12207 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12208 jnewblk->jn_state |= ATTACHED; 12209 free_jnewblk(jnewblk); 12210 } 12211 } 12212 /* 12213 * If the write did not succeed, we have done all the roll-forward 12214 * operations, but we cannot take the actions that will allow its 12215 * dependencies to be processed. 12216 */ 12217 if ((flags & WRITESUCCEEDED) == 0) { 12218 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12219 newblk, nb_deps); 12220 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12221 worklist, wk_list); 12222 if (foreground) 12223 bdirty(bp); 12224 return (1); 12225 } 12226 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12227 newblk->nb_state |= DEPCOMPLETE; 12228 newblk->nb_state &= ~ONDEPLIST; 12229 newblk->nb_bmsafemap = NULL; 12230 LIST_REMOVE(newblk, nb_deps); 12231 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12232 handle_allocdirect_partdone( 12233 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12234 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12235 handle_allocindir_partdone( 12236 WK_ALLOCINDIR(&newblk->nb_list)); 12237 else if (newblk->nb_list.wk_type != D_NEWBLK) 12238 panic("handle_written_bmsafemap: Unexpected type: %s", 12239 TYPENAME(newblk->nb_list.wk_type)); 12240 } 12241 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12242 inodedep->id_state |= DEPCOMPLETE; 12243 inodedep->id_state &= ~ONDEPLIST; 12244 LIST_REMOVE(inodedep, id_deps); 12245 inodedep->id_bmsafemap = NULL; 12246 } 12247 LIST_REMOVE(bmsafemap, sm_next); 12248 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12249 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12250 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12251 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12252 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12253 LIST_REMOVE(bmsafemap, sm_hash); 12254 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12255 return (0); 12256 } 12257 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12258 if (foreground) 12259 bdirty(bp); 12260 return (1); 12261 } 12262 12263 /* 12264 * Try to free a mkdir dependency. 12265 */ 12266 static void 12267 complete_mkdir(struct mkdir *mkdir) 12268 { 12269 struct diradd *dap; 12270 12271 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12272 return; 12273 LIST_REMOVE(mkdir, md_mkdirs); 12274 dap = mkdir->md_diradd; 12275 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12276 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12277 dap->da_state |= DEPCOMPLETE; 12278 complete_diradd(dap); 12279 } 12280 WORKITEM_FREE(mkdir, D_MKDIR); 12281 } 12282 12283 /* 12284 * Handle the completion of a mkdir dependency. 12285 */ 12286 static void 12287 handle_written_mkdir(struct mkdir *mkdir, int type) 12288 { 12289 12290 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12291 panic("handle_written_mkdir: bad type"); 12292 mkdir->md_state |= COMPLETE; 12293 complete_mkdir(mkdir); 12294 } 12295 12296 static int 12297 free_pagedep(struct pagedep *pagedep) 12298 { 12299 int i; 12300 12301 if (pagedep->pd_state & NEWBLOCK) 12302 return (0); 12303 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12304 return (0); 12305 for (i = 0; i < DAHASHSZ; i++) 12306 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12307 return (0); 12308 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12309 return (0); 12310 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12311 return (0); 12312 if (pagedep->pd_state & ONWORKLIST) 12313 WORKLIST_REMOVE(&pagedep->pd_list); 12314 LIST_REMOVE(pagedep, pd_hash); 12315 WORKITEM_FREE(pagedep, D_PAGEDEP); 12316 12317 return (1); 12318 } 12319 12320 /* 12321 * Called from within softdep_disk_write_complete above. 12322 * A write operation was just completed. Removed inodes can 12323 * now be freed and associated block pointers may be committed. 12324 * Note that this routine is always called from interrupt level 12325 * with further interrupts from this device blocked. 12326 * 12327 * If the write did not succeed, we will do all the roll-forward 12328 * operations, but we will not take the actions that will allow its 12329 * dependencies to be processed. 12330 */ 12331 static int 12332 handle_written_filepage( 12333 struct pagedep *pagedep, 12334 struct buf *bp, /* buffer containing the written page */ 12335 int flags) 12336 { 12337 struct dirrem *dirrem; 12338 struct diradd *dap, *nextdap; 12339 struct direct *ep; 12340 int i, chgs; 12341 12342 if ((pagedep->pd_state & IOSTARTED) == 0) 12343 panic("handle_written_filepage: not started"); 12344 pagedep->pd_state &= ~IOSTARTED; 12345 if ((flags & WRITESUCCEEDED) == 0) 12346 goto rollforward; 12347 /* 12348 * Process any directory removals that have been committed. 12349 */ 12350 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12351 LIST_REMOVE(dirrem, dm_next); 12352 dirrem->dm_state |= COMPLETE; 12353 dirrem->dm_dirinum = pagedep->pd_ino; 12354 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12355 ("handle_written_filepage: Journal entries not written.")); 12356 add_to_worklist(&dirrem->dm_list, 0); 12357 } 12358 /* 12359 * Free any directory additions that have been committed. 12360 * If it is a newly allocated block, we have to wait until 12361 * the on-disk directory inode claims the new block. 12362 */ 12363 if ((pagedep->pd_state & NEWBLOCK) == 0) 12364 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12365 free_diradd(dap, NULL); 12366 rollforward: 12367 /* 12368 * Uncommitted directory entries must be restored. 12369 */ 12370 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12371 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12372 dap = nextdap) { 12373 nextdap = LIST_NEXT(dap, da_pdlist); 12374 if (dap->da_state & ATTACHED) 12375 panic("handle_written_filepage: attached"); 12376 ep = (struct direct *) 12377 ((char *)bp->b_data + dap->da_offset); 12378 ep->d_ino = dap->da_newinum; 12379 dap->da_state &= ~UNDONE; 12380 dap->da_state |= ATTACHED; 12381 chgs = 1; 12382 /* 12383 * If the inode referenced by the directory has 12384 * been written out, then the dependency can be 12385 * moved to the pending list. 12386 */ 12387 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12388 LIST_REMOVE(dap, da_pdlist); 12389 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12390 da_pdlist); 12391 } 12392 } 12393 } 12394 /* 12395 * If there were any rollbacks in the directory, then it must be 12396 * marked dirty so that its will eventually get written back in 12397 * its correct form. 12398 */ 12399 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12400 if ((bp->b_flags & B_DELWRI) == 0) 12401 stat_dir_entry++; 12402 bdirty(bp); 12403 return (1); 12404 } 12405 /* 12406 * If we are not waiting for a new directory block to be 12407 * claimed by its inode, then the pagedep will be freed. 12408 * Otherwise it will remain to track any new entries on 12409 * the page in case they are fsync'ed. 12410 */ 12411 free_pagedep(pagedep); 12412 return (0); 12413 } 12414 12415 /* 12416 * Writing back in-core inode structures. 12417 * 12418 * The filesystem only accesses an inode's contents when it occupies an 12419 * "in-core" inode structure. These "in-core" structures are separate from 12420 * the page frames used to cache inode blocks. Only the latter are 12421 * transferred to/from the disk. So, when the updated contents of the 12422 * "in-core" inode structure are copied to the corresponding in-memory inode 12423 * block, the dependencies are also transferred. The following procedure is 12424 * called when copying a dirty "in-core" inode to a cached inode block. 12425 */ 12426 12427 /* 12428 * Called when an inode is loaded from disk. If the effective link count 12429 * differed from the actual link count when it was last flushed, then we 12430 * need to ensure that the correct effective link count is put back. 12431 */ 12432 void 12433 softdep_load_inodeblock( 12434 struct inode *ip) /* the "in_core" copy of the inode */ 12435 { 12436 struct inodedep *inodedep; 12437 struct ufsmount *ump; 12438 12439 ump = ITOUMP(ip); 12440 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12441 ("softdep_load_inodeblock called on non-softdep filesystem")); 12442 /* 12443 * Check for alternate nlink count. 12444 */ 12445 ip->i_effnlink = ip->i_nlink; 12446 ACQUIRE_LOCK(ump); 12447 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12448 FREE_LOCK(ump); 12449 return; 12450 } 12451 if (ip->i_nlink != inodedep->id_nlinkwrote && 12452 inodedep->id_nlinkwrote != -1) { 12453 KASSERT(ip->i_nlink == 0 && 12454 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12455 ("read bad i_nlink value")); 12456 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12457 } 12458 ip->i_effnlink -= inodedep->id_nlinkdelta; 12459 KASSERT(ip->i_effnlink >= 0, 12460 ("softdep_load_inodeblock: negative i_effnlink")); 12461 FREE_LOCK(ump); 12462 } 12463 12464 /* 12465 * This routine is called just before the "in-core" inode 12466 * information is to be copied to the in-memory inode block. 12467 * Recall that an inode block contains several inodes. If 12468 * the force flag is set, then the dependencies will be 12469 * cleared so that the update can always be made. Note that 12470 * the buffer is locked when this routine is called, so we 12471 * will never be in the middle of writing the inode block 12472 * to disk. 12473 */ 12474 void 12475 softdep_update_inodeblock( 12476 struct inode *ip, /* the "in_core" copy of the inode */ 12477 struct buf *bp, /* the buffer containing the inode block */ 12478 int waitfor) /* nonzero => update must be allowed */ 12479 { 12480 struct inodedep *inodedep; 12481 struct inoref *inoref; 12482 struct ufsmount *ump; 12483 struct worklist *wk; 12484 struct mount *mp; 12485 struct buf *ibp; 12486 struct fs *fs; 12487 int error; 12488 12489 ump = ITOUMP(ip); 12490 mp = UFSTOVFS(ump); 12491 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12492 ("softdep_update_inodeblock called on non-softdep filesystem")); 12493 fs = ump->um_fs; 12494 /* 12495 * If the effective link count is not equal to the actual link 12496 * count, then we must track the difference in an inodedep while 12497 * the inode is (potentially) tossed out of the cache. Otherwise, 12498 * if there is no existing inodedep, then there are no dependencies 12499 * to track. 12500 */ 12501 ACQUIRE_LOCK(ump); 12502 again: 12503 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12504 FREE_LOCK(ump); 12505 if (ip->i_effnlink != ip->i_nlink) 12506 panic("softdep_update_inodeblock: bad link count"); 12507 return; 12508 } 12509 /* 12510 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12511 * does not have access to the in-core ip so must write directly into 12512 * the inode block buffer when setting freelink. 12513 */ 12514 if ((inodedep->id_state & UNLINKED) != 0) { 12515 if (fs->fs_magic == FS_UFS1_MAGIC) 12516 DIP_SET(ip, i_freelink, 12517 ((struct ufs1_dinode *)bp->b_data + 12518 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12519 else 12520 DIP_SET(ip, i_freelink, 12521 ((struct ufs2_dinode *)bp->b_data + 12522 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12523 } 12524 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12525 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12526 "inodedep %p id_nlinkdelta %jd", 12527 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12528 inodedep->id_nlinkwrote = ip->i_nlink; 12529 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12530 panic("softdep_update_inodeblock: bad delta"); 12531 /* 12532 * If we're flushing all dependencies we must also move any waiting 12533 * for journal writes onto the bufwait list prior to I/O. 12534 */ 12535 if (waitfor) { 12536 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12537 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12538 == DEPCOMPLETE) { 12539 jwait(&inoref->if_list, MNT_WAIT); 12540 goto again; 12541 } 12542 } 12543 } 12544 /* 12545 * Changes have been initiated. Anything depending on these 12546 * changes cannot occur until this inode has been written. 12547 */ 12548 inodedep->id_state &= ~COMPLETE; 12549 if ((inodedep->id_state & ONWORKLIST) == 0) 12550 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12551 /* 12552 * Any new dependencies associated with the incore inode must 12553 * now be moved to the list associated with the buffer holding 12554 * the in-memory copy of the inode. Once merged process any 12555 * allocdirects that are completed by the merger. 12556 */ 12557 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12558 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12559 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12560 NULL); 12561 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12562 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12563 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12564 NULL); 12565 /* 12566 * Now that the inode has been pushed into the buffer, the 12567 * operations dependent on the inode being written to disk 12568 * can be moved to the id_bufwait so that they will be 12569 * processed when the buffer I/O completes. 12570 */ 12571 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12572 WORKLIST_REMOVE(wk); 12573 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12574 } 12575 /* 12576 * Newly allocated inodes cannot be written until the bitmap 12577 * that allocates them have been written (indicated by 12578 * DEPCOMPLETE being set in id_state). If we are doing a 12579 * forced sync (e.g., an fsync on a file), we force the bitmap 12580 * to be written so that the update can be done. 12581 */ 12582 if (waitfor == 0) { 12583 FREE_LOCK(ump); 12584 return; 12585 } 12586 retry: 12587 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12588 FREE_LOCK(ump); 12589 return; 12590 } 12591 ibp = inodedep->id_bmsafemap->sm_buf; 12592 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12593 if (ibp == NULL) { 12594 /* 12595 * If ibp came back as NULL, the dependency could have been 12596 * freed while we slept. Look it up again, and check to see 12597 * that it has completed. 12598 */ 12599 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12600 goto retry; 12601 FREE_LOCK(ump); 12602 return; 12603 } 12604 FREE_LOCK(ump); 12605 if ((error = bwrite(ibp)) != 0) 12606 softdep_error("softdep_update_inodeblock: bwrite", error); 12607 } 12608 12609 /* 12610 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12611 * old inode dependency list (such as id_inoupdt). 12612 */ 12613 static void 12614 merge_inode_lists( 12615 struct allocdirectlst *newlisthead, 12616 struct allocdirectlst *oldlisthead) 12617 { 12618 struct allocdirect *listadp, *newadp; 12619 12620 newadp = TAILQ_FIRST(newlisthead); 12621 if (newadp != NULL) 12622 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12623 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12624 if (listadp->ad_offset < newadp->ad_offset) { 12625 listadp = TAILQ_NEXT(listadp, ad_next); 12626 continue; 12627 } 12628 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12629 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12630 if (listadp->ad_offset == newadp->ad_offset) { 12631 allocdirect_merge(oldlisthead, newadp, 12632 listadp); 12633 listadp = newadp; 12634 } 12635 newadp = TAILQ_FIRST(newlisthead); 12636 } 12637 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12638 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12639 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12640 } 12641 } 12642 12643 /* 12644 * If we are doing an fsync, then we must ensure that any directory 12645 * entries for the inode have been written after the inode gets to disk. 12646 */ 12647 int 12648 softdep_fsync( 12649 struct vnode *vp) /* the "in_core" copy of the inode */ 12650 { 12651 struct inodedep *inodedep; 12652 struct pagedep *pagedep; 12653 struct inoref *inoref; 12654 struct ufsmount *ump; 12655 struct worklist *wk; 12656 struct diradd *dap; 12657 struct mount *mp; 12658 struct vnode *pvp; 12659 struct inode *ip; 12660 struct buf *bp; 12661 struct fs *fs; 12662 struct thread *td = curthread; 12663 int error, flushparent, pagedep_new_block; 12664 ino_t parentino; 12665 ufs_lbn_t lbn; 12666 12667 ip = VTOI(vp); 12668 mp = vp->v_mount; 12669 ump = VFSTOUFS(mp); 12670 fs = ump->um_fs; 12671 if (MOUNTEDSOFTDEP(mp) == 0) 12672 return (0); 12673 ACQUIRE_LOCK(ump); 12674 restart: 12675 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12676 FREE_LOCK(ump); 12677 return (0); 12678 } 12679 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12680 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12681 == DEPCOMPLETE) { 12682 jwait(&inoref->if_list, MNT_WAIT); 12683 goto restart; 12684 } 12685 } 12686 if (!LIST_EMPTY(&inodedep->id_inowait) || 12687 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12688 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12689 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12690 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12691 panic("softdep_fsync: pending ops %p", inodedep); 12692 for (error = 0, flushparent = 0; ; ) { 12693 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12694 break; 12695 if (wk->wk_type != D_DIRADD) 12696 panic("softdep_fsync: Unexpected type %s", 12697 TYPENAME(wk->wk_type)); 12698 dap = WK_DIRADD(wk); 12699 /* 12700 * Flush our parent if this directory entry has a MKDIR_PARENT 12701 * dependency or is contained in a newly allocated block. 12702 */ 12703 if (dap->da_state & DIRCHG) 12704 pagedep = dap->da_previous->dm_pagedep; 12705 else 12706 pagedep = dap->da_pagedep; 12707 parentino = pagedep->pd_ino; 12708 lbn = pagedep->pd_lbn; 12709 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12710 panic("softdep_fsync: dirty"); 12711 if ((dap->da_state & MKDIR_PARENT) || 12712 (pagedep->pd_state & NEWBLOCK)) 12713 flushparent = 1; 12714 else 12715 flushparent = 0; 12716 /* 12717 * If we are being fsync'ed as part of vgone'ing this vnode, 12718 * then we will not be able to release and recover the 12719 * vnode below, so we just have to give up on writing its 12720 * directory entry out. It will eventually be written, just 12721 * not now, but then the user was not asking to have it 12722 * written, so we are not breaking any promises. 12723 */ 12724 if (VN_IS_DOOMED(vp)) 12725 break; 12726 /* 12727 * We prevent deadlock by always fetching inodes from the 12728 * root, moving down the directory tree. Thus, when fetching 12729 * our parent directory, we first try to get the lock. If 12730 * that fails, we must unlock ourselves before requesting 12731 * the lock on our parent. See the comment in ufs_lookup 12732 * for details on possible races. 12733 */ 12734 FREE_LOCK(ump); 12735 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12736 &pvp); 12737 if (error == ERELOOKUP) 12738 error = 0; 12739 if (error != 0) 12740 return (error); 12741 /* 12742 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12743 * that are contained in direct blocks will be resolved by 12744 * doing a ffs_update. Pagedeps contained in indirect blocks 12745 * may require a complete sync'ing of the directory. So, we 12746 * try the cheap and fast ffs_update first, and if that fails, 12747 * then we do the slower ffs_syncvnode of the directory. 12748 */ 12749 if (flushparent) { 12750 int locked; 12751 12752 if ((error = ffs_update(pvp, 1)) != 0) { 12753 vput(pvp); 12754 return (error); 12755 } 12756 ACQUIRE_LOCK(ump); 12757 locked = 1; 12758 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12759 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12760 if (wk->wk_type != D_DIRADD) 12761 panic("softdep_fsync: Unexpected type %s", 12762 TYPENAME(wk->wk_type)); 12763 dap = WK_DIRADD(wk); 12764 if (dap->da_state & DIRCHG) 12765 pagedep = dap->da_previous->dm_pagedep; 12766 else 12767 pagedep = dap->da_pagedep; 12768 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12769 FREE_LOCK(ump); 12770 locked = 0; 12771 if (pagedep_new_block) { 12772 VOP_UNLOCK(vp); 12773 error = ffs_syncvnode(pvp, 12774 MNT_WAIT, 0); 12775 if (error == 0) 12776 error = ERELOOKUP; 12777 vput(pvp); 12778 vn_lock(vp, LK_EXCLUSIVE | 12779 LK_RETRY); 12780 return (error); 12781 } 12782 } 12783 } 12784 if (locked) 12785 FREE_LOCK(ump); 12786 } 12787 /* 12788 * Flush directory page containing the inode's name. 12789 */ 12790 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12791 &bp); 12792 if (error == 0) 12793 error = bwrite(bp); 12794 else 12795 brelse(bp); 12796 vput(pvp); 12797 if (!ffs_fsfail_cleanup(ump, error)) 12798 return (error); 12799 ACQUIRE_LOCK(ump); 12800 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12801 break; 12802 } 12803 FREE_LOCK(ump); 12804 return (0); 12805 } 12806 12807 /* 12808 * Flush all the dirty bitmaps associated with the block device 12809 * before flushing the rest of the dirty blocks so as to reduce 12810 * the number of dependencies that will have to be rolled back. 12811 * 12812 * XXX Unused? 12813 */ 12814 void 12815 softdep_fsync_mountdev(struct vnode *vp) 12816 { 12817 struct buf *bp, *nbp; 12818 struct worklist *wk; 12819 struct bufobj *bo; 12820 12821 if (!vn_isdisk(vp)) 12822 panic("softdep_fsync_mountdev: vnode not a disk"); 12823 bo = &vp->v_bufobj; 12824 restart: 12825 BO_LOCK(bo); 12826 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12827 /* 12828 * If it is already scheduled, skip to the next buffer. 12829 */ 12830 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12831 continue; 12832 12833 if ((bp->b_flags & B_DELWRI) == 0) 12834 panic("softdep_fsync_mountdev: not dirty"); 12835 /* 12836 * We are only interested in bitmaps with outstanding 12837 * dependencies. 12838 */ 12839 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12840 wk->wk_type != D_BMSAFEMAP || 12841 (bp->b_vflags & BV_BKGRDINPROG)) { 12842 BUF_UNLOCK(bp); 12843 continue; 12844 } 12845 BO_UNLOCK(bo); 12846 bremfree(bp); 12847 (void) bawrite(bp); 12848 goto restart; 12849 } 12850 drain_output(vp); 12851 BO_UNLOCK(bo); 12852 } 12853 12854 /* 12855 * Sync all cylinder groups that were dirty at the time this function is 12856 * called. Newly dirtied cgs will be inserted before the sentinel. This 12857 * is used to flush freedep activity that may be holding up writes to a 12858 * indirect block. 12859 */ 12860 static int 12861 sync_cgs(struct mount *mp, int waitfor) 12862 { 12863 struct bmsafemap *bmsafemap; 12864 struct bmsafemap *sentinel; 12865 struct ufsmount *ump; 12866 struct buf *bp; 12867 int error; 12868 12869 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12870 sentinel->sm_cg = -1; 12871 ump = VFSTOUFS(mp); 12872 error = 0; 12873 ACQUIRE_LOCK(ump); 12874 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12875 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12876 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12877 /* Skip sentinels and cgs with no work to release. */ 12878 if (bmsafemap->sm_cg == -1 || 12879 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12880 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12881 LIST_REMOVE(sentinel, sm_next); 12882 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12883 continue; 12884 } 12885 /* 12886 * If we don't get the lock and we're waiting try again, if 12887 * not move on to the next buf and try to sync it. 12888 */ 12889 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12890 if (bp == NULL && waitfor == MNT_WAIT) 12891 continue; 12892 LIST_REMOVE(sentinel, sm_next); 12893 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12894 if (bp == NULL) 12895 continue; 12896 FREE_LOCK(ump); 12897 if (waitfor == MNT_NOWAIT) 12898 bawrite(bp); 12899 else 12900 error = bwrite(bp); 12901 ACQUIRE_LOCK(ump); 12902 if (error) 12903 break; 12904 } 12905 LIST_REMOVE(sentinel, sm_next); 12906 FREE_LOCK(ump); 12907 free(sentinel, M_BMSAFEMAP); 12908 return (error); 12909 } 12910 12911 /* 12912 * This routine is called when we are trying to synchronously flush a 12913 * file. This routine must eliminate any filesystem metadata dependencies 12914 * so that the syncing routine can succeed. 12915 */ 12916 int 12917 softdep_sync_metadata(struct vnode *vp) 12918 { 12919 struct inode *ip; 12920 int error; 12921 12922 ip = VTOI(vp); 12923 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12924 ("softdep_sync_metadata called on non-softdep filesystem")); 12925 /* 12926 * Ensure that any direct block dependencies have been cleared, 12927 * truncations are started, and inode references are journaled. 12928 */ 12929 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12930 /* 12931 * Write all journal records to prevent rollbacks on devvp. 12932 */ 12933 if (vp->v_type == VCHR) 12934 softdep_flushjournal(vp->v_mount); 12935 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12936 /* 12937 * Ensure that all truncates are written so we won't find deps on 12938 * indirect blocks. 12939 */ 12940 process_truncates(vp); 12941 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12942 12943 return (error); 12944 } 12945 12946 /* 12947 * This routine is called when we are attempting to sync a buf with 12948 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12949 * other IO it can but returns EBUSY if the buffer is not yet able to 12950 * be written. Dependencies which will not cause rollbacks will always 12951 * return 0. 12952 */ 12953 int 12954 softdep_sync_buf(struct vnode *vp, 12955 struct buf *bp, 12956 int waitfor) 12957 { 12958 struct indirdep *indirdep; 12959 struct pagedep *pagedep; 12960 struct allocindir *aip; 12961 struct newblk *newblk; 12962 struct ufsmount *ump; 12963 struct buf *nbp; 12964 struct worklist *wk; 12965 int i, error; 12966 12967 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12968 ("softdep_sync_buf called on non-softdep filesystem")); 12969 /* 12970 * For VCHR we just don't want to force flush any dependencies that 12971 * will cause rollbacks. 12972 */ 12973 if (vp->v_type == VCHR) { 12974 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12975 return (EBUSY); 12976 return (0); 12977 } 12978 ump = VFSTOUFS(vp->v_mount); 12979 ACQUIRE_LOCK(ump); 12980 /* 12981 * As we hold the buffer locked, none of its dependencies 12982 * will disappear. 12983 */ 12984 error = 0; 12985 top: 12986 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12987 switch (wk->wk_type) { 12988 case D_ALLOCDIRECT: 12989 case D_ALLOCINDIR: 12990 newblk = WK_NEWBLK(wk); 12991 if (newblk->nb_jnewblk != NULL) { 12992 if (waitfor == MNT_NOWAIT) { 12993 error = EBUSY; 12994 goto out_unlock; 12995 } 12996 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12997 goto top; 12998 } 12999 if (newblk->nb_state & DEPCOMPLETE || 13000 waitfor == MNT_NOWAIT) 13001 continue; 13002 nbp = newblk->nb_bmsafemap->sm_buf; 13003 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13004 if (nbp == NULL) 13005 goto top; 13006 FREE_LOCK(ump); 13007 if ((error = bwrite(nbp)) != 0) 13008 goto out; 13009 ACQUIRE_LOCK(ump); 13010 continue; 13011 13012 case D_INDIRDEP: 13013 indirdep = WK_INDIRDEP(wk); 13014 if (waitfor == MNT_NOWAIT) { 13015 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 13016 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13017 error = EBUSY; 13018 goto out_unlock; 13019 } 13020 } 13021 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13022 panic("softdep_sync_buf: truncation pending."); 13023 restart: 13024 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13025 newblk = (struct newblk *)aip; 13026 if (newblk->nb_jnewblk != NULL) { 13027 jwait(&newblk->nb_jnewblk->jn_list, 13028 waitfor); 13029 goto restart; 13030 } 13031 if (newblk->nb_state & DEPCOMPLETE) 13032 continue; 13033 nbp = newblk->nb_bmsafemap->sm_buf; 13034 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13035 if (nbp == NULL) 13036 goto restart; 13037 FREE_LOCK(ump); 13038 if ((error = bwrite(nbp)) != 0) 13039 goto out; 13040 ACQUIRE_LOCK(ump); 13041 goto restart; 13042 } 13043 continue; 13044 13045 case D_PAGEDEP: 13046 /* 13047 * Only flush directory entries in synchronous passes. 13048 */ 13049 if (waitfor != MNT_WAIT) { 13050 error = EBUSY; 13051 goto out_unlock; 13052 } 13053 /* 13054 * While syncing snapshots, we must allow recursive 13055 * lookups. 13056 */ 13057 BUF_AREC(bp); 13058 /* 13059 * We are trying to sync a directory that may 13060 * have dependencies on both its own metadata 13061 * and/or dependencies on the inodes of any 13062 * recently allocated files. We walk its diradd 13063 * lists pushing out the associated inode. 13064 */ 13065 pagedep = WK_PAGEDEP(wk); 13066 for (i = 0; i < DAHASHSZ; i++) { 13067 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13068 continue; 13069 error = flush_pagedep_deps(vp, wk->wk_mp, 13070 &pagedep->pd_diraddhd[i], bp); 13071 if (error != 0) { 13072 if (error != ERELOOKUP) 13073 BUF_NOREC(bp); 13074 goto out_unlock; 13075 } 13076 } 13077 BUF_NOREC(bp); 13078 continue; 13079 13080 case D_FREEWORK: 13081 case D_FREEDEP: 13082 case D_JSEGDEP: 13083 case D_JNEWBLK: 13084 continue; 13085 13086 default: 13087 panic("softdep_sync_buf: Unknown type %s", 13088 TYPENAME(wk->wk_type)); 13089 /* NOTREACHED */ 13090 } 13091 } 13092 out_unlock: 13093 FREE_LOCK(ump); 13094 out: 13095 return (error); 13096 } 13097 13098 /* 13099 * Flush the dependencies associated with an inodedep. 13100 */ 13101 static int 13102 flush_inodedep_deps( 13103 struct vnode *vp, 13104 struct mount *mp, 13105 ino_t ino) 13106 { 13107 struct inodedep *inodedep; 13108 struct inoref *inoref; 13109 struct ufsmount *ump; 13110 int error, waitfor; 13111 13112 /* 13113 * This work is done in two passes. The first pass grabs most 13114 * of the buffers and begins asynchronously writing them. The 13115 * only way to wait for these asynchronous writes is to sleep 13116 * on the filesystem vnode which may stay busy for a long time 13117 * if the filesystem is active. So, instead, we make a second 13118 * pass over the dependencies blocking on each write. In the 13119 * usual case we will be blocking against a write that we 13120 * initiated, so when it is done the dependency will have been 13121 * resolved. Thus the second pass is expected to end quickly. 13122 * We give a brief window at the top of the loop to allow 13123 * any pending I/O to complete. 13124 */ 13125 ump = VFSTOUFS(mp); 13126 LOCK_OWNED(ump); 13127 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13128 if (error) 13129 return (error); 13130 FREE_LOCK(ump); 13131 ACQUIRE_LOCK(ump); 13132 restart: 13133 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13134 return (0); 13135 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13136 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13137 == DEPCOMPLETE) { 13138 jwait(&inoref->if_list, MNT_WAIT); 13139 goto restart; 13140 } 13141 } 13142 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13143 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13144 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13145 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13146 continue; 13147 /* 13148 * If pass2, we are done, otherwise do pass 2. 13149 */ 13150 if (waitfor == MNT_WAIT) 13151 break; 13152 waitfor = MNT_WAIT; 13153 } 13154 /* 13155 * Try freeing inodedep in case all dependencies have been removed. 13156 */ 13157 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13158 (void) free_inodedep(inodedep); 13159 return (0); 13160 } 13161 13162 /* 13163 * Flush an inode dependency list. 13164 */ 13165 static int 13166 flush_deplist( 13167 struct allocdirectlst *listhead, 13168 int waitfor, 13169 int *errorp) 13170 { 13171 struct allocdirect *adp; 13172 struct newblk *newblk; 13173 struct ufsmount *ump; 13174 struct buf *bp; 13175 13176 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13177 return (0); 13178 ump = VFSTOUFS(adp->ad_list.wk_mp); 13179 LOCK_OWNED(ump); 13180 TAILQ_FOREACH(adp, listhead, ad_next) { 13181 newblk = (struct newblk *)adp; 13182 if (newblk->nb_jnewblk != NULL) { 13183 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13184 return (1); 13185 } 13186 if (newblk->nb_state & DEPCOMPLETE) 13187 continue; 13188 bp = newblk->nb_bmsafemap->sm_buf; 13189 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13190 if (bp == NULL) { 13191 if (waitfor == MNT_NOWAIT) 13192 continue; 13193 return (1); 13194 } 13195 FREE_LOCK(ump); 13196 if (waitfor == MNT_NOWAIT) 13197 bawrite(bp); 13198 else 13199 *errorp = bwrite(bp); 13200 ACQUIRE_LOCK(ump); 13201 return (1); 13202 } 13203 return (0); 13204 } 13205 13206 /* 13207 * Flush dependencies associated with an allocdirect block. 13208 */ 13209 static int 13210 flush_newblk_dep( 13211 struct vnode *vp, 13212 struct mount *mp, 13213 ufs_lbn_t lbn) 13214 { 13215 struct newblk *newblk; 13216 struct ufsmount *ump; 13217 struct bufobj *bo; 13218 struct inode *ip; 13219 struct buf *bp; 13220 ufs2_daddr_t blkno; 13221 int error; 13222 13223 error = 0; 13224 bo = &vp->v_bufobj; 13225 ip = VTOI(vp); 13226 blkno = DIP(ip, i_db[lbn]); 13227 if (blkno == 0) 13228 panic("flush_newblk_dep: Missing block"); 13229 ump = VFSTOUFS(mp); 13230 ACQUIRE_LOCK(ump); 13231 /* 13232 * Loop until all dependencies related to this block are satisfied. 13233 * We must be careful to restart after each sleep in case a write 13234 * completes some part of this process for us. 13235 */ 13236 for (;;) { 13237 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13238 FREE_LOCK(ump); 13239 break; 13240 } 13241 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13242 panic("flush_newblk_dep: Bad newblk %p", newblk); 13243 /* 13244 * Flush the journal. 13245 */ 13246 if (newblk->nb_jnewblk != NULL) { 13247 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13248 continue; 13249 } 13250 /* 13251 * Write the bitmap dependency. 13252 */ 13253 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13254 bp = newblk->nb_bmsafemap->sm_buf; 13255 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13256 if (bp == NULL) 13257 continue; 13258 FREE_LOCK(ump); 13259 error = bwrite(bp); 13260 if (error) 13261 break; 13262 ACQUIRE_LOCK(ump); 13263 continue; 13264 } 13265 /* 13266 * Write the buffer. 13267 */ 13268 FREE_LOCK(ump); 13269 BO_LOCK(bo); 13270 bp = gbincore(bo, lbn); 13271 if (bp != NULL) { 13272 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13273 LK_INTERLOCK, BO_LOCKPTR(bo)); 13274 if (error == ENOLCK) { 13275 ACQUIRE_LOCK(ump); 13276 error = 0; 13277 continue; /* Slept, retry */ 13278 } 13279 if (error != 0) 13280 break; /* Failed */ 13281 if (bp->b_flags & B_DELWRI) { 13282 bremfree(bp); 13283 error = bwrite(bp); 13284 if (error) 13285 break; 13286 } else 13287 BUF_UNLOCK(bp); 13288 } else 13289 BO_UNLOCK(bo); 13290 /* 13291 * We have to wait for the direct pointers to 13292 * point at the newdirblk before the dependency 13293 * will go away. 13294 */ 13295 error = ffs_update(vp, 1); 13296 if (error) 13297 break; 13298 ACQUIRE_LOCK(ump); 13299 } 13300 return (error); 13301 } 13302 13303 /* 13304 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13305 */ 13306 static int 13307 flush_pagedep_deps( 13308 struct vnode *pvp, 13309 struct mount *mp, 13310 struct diraddhd *diraddhdp, 13311 struct buf *locked_bp) 13312 { 13313 struct inodedep *inodedep; 13314 struct inoref *inoref; 13315 struct ufsmount *ump; 13316 struct diradd *dap; 13317 struct vnode *vp; 13318 int error = 0; 13319 struct buf *bp; 13320 ino_t inum; 13321 struct diraddhd unfinished; 13322 13323 LIST_INIT(&unfinished); 13324 ump = VFSTOUFS(mp); 13325 LOCK_OWNED(ump); 13326 restart: 13327 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13328 /* 13329 * Flush ourselves if this directory entry 13330 * has a MKDIR_PARENT dependency. 13331 */ 13332 if (dap->da_state & MKDIR_PARENT) { 13333 FREE_LOCK(ump); 13334 if ((error = ffs_update(pvp, 1)) != 0) 13335 break; 13336 ACQUIRE_LOCK(ump); 13337 /* 13338 * If that cleared dependencies, go on to next. 13339 */ 13340 if (dap != LIST_FIRST(diraddhdp)) 13341 continue; 13342 /* 13343 * All MKDIR_PARENT dependencies and all the 13344 * NEWBLOCK pagedeps that are contained in direct 13345 * blocks were resolved by doing above ffs_update. 13346 * Pagedeps contained in indirect blocks may 13347 * require a complete sync'ing of the directory. 13348 * We are in the midst of doing a complete sync, 13349 * so if they are not resolved in this pass we 13350 * defer them for now as they will be sync'ed by 13351 * our caller shortly. 13352 */ 13353 LIST_REMOVE(dap, da_pdlist); 13354 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13355 continue; 13356 } 13357 /* 13358 * A newly allocated directory must have its "." and 13359 * ".." entries written out before its name can be 13360 * committed in its parent. 13361 */ 13362 inum = dap->da_newinum; 13363 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13364 panic("flush_pagedep_deps: lost inode1"); 13365 /* 13366 * Wait for any pending journal adds to complete so we don't 13367 * cause rollbacks while syncing. 13368 */ 13369 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13370 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13371 == DEPCOMPLETE) { 13372 jwait(&inoref->if_list, MNT_WAIT); 13373 goto restart; 13374 } 13375 } 13376 if (dap->da_state & MKDIR_BODY) { 13377 FREE_LOCK(ump); 13378 error = get_parent_vp(pvp, mp, inum, locked_bp, 13379 diraddhdp, &unfinished, &vp); 13380 if (error != 0) 13381 break; 13382 error = flush_newblk_dep(vp, mp, 0); 13383 /* 13384 * If we still have the dependency we might need to 13385 * update the vnode to sync the new link count to 13386 * disk. 13387 */ 13388 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13389 error = ffs_update(vp, 1); 13390 vput(vp); 13391 if (error != 0) 13392 break; 13393 ACQUIRE_LOCK(ump); 13394 /* 13395 * If that cleared dependencies, go on to next. 13396 */ 13397 if (dap != LIST_FIRST(diraddhdp)) 13398 continue; 13399 if (dap->da_state & MKDIR_BODY) { 13400 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13401 &inodedep); 13402 panic("flush_pagedep_deps: MKDIR_BODY " 13403 "inodedep %p dap %p vp %p", 13404 inodedep, dap, vp); 13405 } 13406 } 13407 /* 13408 * Flush the inode on which the directory entry depends. 13409 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13410 * the only remaining dependency is that the updated inode 13411 * count must get pushed to disk. The inode has already 13412 * been pushed into its inode buffer (via VOP_UPDATE) at 13413 * the time of the reference count change. So we need only 13414 * locate that buffer, ensure that there will be no rollback 13415 * caused by a bitmap dependency, then write the inode buffer. 13416 */ 13417 retry: 13418 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13419 panic("flush_pagedep_deps: lost inode"); 13420 /* 13421 * If the inode still has bitmap dependencies, 13422 * push them to disk. 13423 */ 13424 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13425 bp = inodedep->id_bmsafemap->sm_buf; 13426 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13427 if (bp == NULL) 13428 goto retry; 13429 FREE_LOCK(ump); 13430 if ((error = bwrite(bp)) != 0) 13431 break; 13432 ACQUIRE_LOCK(ump); 13433 if (dap != LIST_FIRST(diraddhdp)) 13434 continue; 13435 } 13436 /* 13437 * If the inode is still sitting in a buffer waiting 13438 * to be written or waiting for the link count to be 13439 * adjusted update it here to flush it to disk. 13440 */ 13441 if (dap == LIST_FIRST(diraddhdp)) { 13442 FREE_LOCK(ump); 13443 error = get_parent_vp(pvp, mp, inum, locked_bp, 13444 diraddhdp, &unfinished, &vp); 13445 if (error != 0) 13446 break; 13447 error = ffs_update(vp, 1); 13448 vput(vp); 13449 if (error) 13450 break; 13451 ACQUIRE_LOCK(ump); 13452 } 13453 /* 13454 * If we have failed to get rid of all the dependencies 13455 * then something is seriously wrong. 13456 */ 13457 if (dap == LIST_FIRST(diraddhdp)) { 13458 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13459 panic("flush_pagedep_deps: failed to flush " 13460 "inodedep %p ino %ju dap %p", 13461 inodedep, (uintmax_t)inum, dap); 13462 } 13463 } 13464 if (error) 13465 ACQUIRE_LOCK(ump); 13466 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13467 LIST_REMOVE(dap, da_pdlist); 13468 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13469 } 13470 return (error); 13471 } 13472 13473 /* 13474 * A large burst of file addition or deletion activity can drive the 13475 * memory load excessively high. First attempt to slow things down 13476 * using the techniques below. If that fails, this routine requests 13477 * the offending operations to fall back to running synchronously 13478 * until the memory load returns to a reasonable level. 13479 */ 13480 int 13481 softdep_slowdown(struct vnode *vp) 13482 { 13483 struct ufsmount *ump; 13484 int jlow; 13485 int max_softdeps_hard; 13486 13487 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13488 ("softdep_slowdown called on non-softdep filesystem")); 13489 ump = VFSTOUFS(vp->v_mount); 13490 ACQUIRE_LOCK(ump); 13491 jlow = 0; 13492 /* 13493 * Check for journal space if needed. 13494 */ 13495 if (DOINGSUJ(vp)) { 13496 if (journal_space(ump, 0) == 0) 13497 jlow = 1; 13498 } 13499 /* 13500 * If the system is under its limits and our filesystem is 13501 * not responsible for more than our share of the usage and 13502 * we are not low on journal space, then no need to slow down. 13503 */ 13504 max_softdeps_hard = max_softdeps * 11 / 10; 13505 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13506 dep_current[D_INODEDEP] < max_softdeps_hard && 13507 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13508 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13509 ump->softdep_curdeps[D_DIRREM] < 13510 (max_softdeps_hard / 2) / stat_flush_threads && 13511 ump->softdep_curdeps[D_INODEDEP] < 13512 max_softdeps_hard / stat_flush_threads && 13513 ump->softdep_curdeps[D_INDIRDEP] < 13514 (max_softdeps_hard / 1000) / stat_flush_threads && 13515 ump->softdep_curdeps[D_FREEBLKS] < 13516 max_softdeps_hard / stat_flush_threads) { 13517 FREE_LOCK(ump); 13518 return (0); 13519 } 13520 /* 13521 * If the journal is low or our filesystem is over its limit 13522 * then speedup the cleanup. 13523 */ 13524 if (ump->softdep_curdeps[D_INDIRDEP] < 13525 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13526 softdep_speedup(ump); 13527 stat_sync_limit_hit += 1; 13528 FREE_LOCK(ump); 13529 /* 13530 * We only slow down the rate at which new dependencies are 13531 * generated if we are not using journaling. With journaling, 13532 * the cleanup should always be sufficient to keep things 13533 * under control. 13534 */ 13535 if (DOINGSUJ(vp)) 13536 return (0); 13537 return (1); 13538 } 13539 13540 static int 13541 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused) 13542 { 13543 return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 && 13544 ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0)); 13545 } 13546 13547 static void 13548 softdep_request_cleanup_inactivate(struct mount *mp) 13549 { 13550 struct vnode *vp, *mvp; 13551 int error; 13552 13553 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter, 13554 NULL) { 13555 vholdl(vp); 13556 vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); 13557 VI_LOCK(vp); 13558 if (IS_UFS(vp) && vp->v_usecount == 0) { 13559 while ((vp->v_iflag & VI_OWEINACT) != 0) { 13560 error = vinactive(vp); 13561 if (error != 0 && error != ERELOOKUP) 13562 break; 13563 } 13564 atomic_add_int(&stat_delayed_inact, 1); 13565 } 13566 VOP_UNLOCK(vp); 13567 vdropl(vp); 13568 } 13569 } 13570 13571 /* 13572 * Called by the allocation routines when they are about to fail 13573 * in the hope that we can free up the requested resource (inodes 13574 * or disk space). 13575 * 13576 * First check to see if the work list has anything on it. If it has, 13577 * clean up entries until we successfully free the requested resource. 13578 * Because this process holds inodes locked, we cannot handle any remove 13579 * requests that might block on a locked inode as that could lead to 13580 * deadlock. If the worklist yields none of the requested resource, 13581 * start syncing out vnodes to free up the needed space. 13582 */ 13583 int 13584 softdep_request_cleanup( 13585 struct fs *fs, 13586 struct vnode *vp, 13587 struct ucred *cred, 13588 int resource) 13589 { 13590 struct ufsmount *ump; 13591 struct mount *mp; 13592 long starttime; 13593 ufs2_daddr_t needed; 13594 int error, failed_vnode; 13595 13596 /* 13597 * If we are being called because of a process doing a 13598 * copy-on-write, then it is not safe to process any 13599 * worklist items as we will recurse into the copyonwrite 13600 * routine. This will result in an incoherent snapshot. 13601 * If the vnode that we hold is a snapshot, we must avoid 13602 * handling other resources that could cause deadlock. 13603 */ 13604 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13605 return (0); 13606 13607 if (resource == FLUSH_BLOCKS_WAIT) 13608 stat_cleanup_blkrequests += 1; 13609 else 13610 stat_cleanup_inorequests += 1; 13611 13612 mp = vp->v_mount; 13613 ump = VFSTOUFS(mp); 13614 mtx_assert(UFS_MTX(ump), MA_OWNED); 13615 UFS_UNLOCK(ump); 13616 error = ffs_update(vp, 1); 13617 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13618 UFS_LOCK(ump); 13619 return (0); 13620 } 13621 /* 13622 * If we are in need of resources, start by cleaning up 13623 * any block removals associated with our inode. 13624 */ 13625 ACQUIRE_LOCK(ump); 13626 process_removes(vp); 13627 process_truncates(vp); 13628 FREE_LOCK(ump); 13629 /* 13630 * Now clean up at least as many resources as we will need. 13631 * 13632 * When requested to clean up inodes, the number that are needed 13633 * is set by the number of simultaneous writers (mnt_writeopcount) 13634 * plus a bit of slop (2) in case some more writers show up while 13635 * we are cleaning. 13636 * 13637 * When requested to free up space, the amount of space that 13638 * we need is enough blocks to allocate a full-sized segment 13639 * (fs_contigsumsize). The number of such segments that will 13640 * be needed is set by the number of simultaneous writers 13641 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13642 * writers show up while we are cleaning. 13643 * 13644 * Additionally, if we are unpriviledged and allocating space, 13645 * we need to ensure that we clean up enough blocks to get the 13646 * needed number of blocks over the threshold of the minimum 13647 * number of blocks required to be kept free by the filesystem 13648 * (fs_minfree). 13649 */ 13650 if (resource == FLUSH_INODES_WAIT) { 13651 needed = vfs_mount_fetch_counter(vp->v_mount, 13652 MNT_COUNT_WRITEOPCOUNT) + 2; 13653 } else if (resource == FLUSH_BLOCKS_WAIT) { 13654 needed = (vfs_mount_fetch_counter(vp->v_mount, 13655 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13656 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13657 needed += fragstoblks(fs, 13658 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13659 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13660 } else { 13661 printf("softdep_request_cleanup: Unknown resource type %d\n", 13662 resource); 13663 UFS_LOCK(ump); 13664 return (0); 13665 } 13666 starttime = time_second; 13667 retry: 13668 if (resource == FLUSH_BLOCKS_WAIT && 13669 fs->fs_cstotal.cs_nbfree <= needed) 13670 softdep_send_speedup(ump, needed * fs->fs_bsize, 13671 BIO_SPEEDUP_TRIM); 13672 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13673 fs->fs_cstotal.cs_nbfree <= needed) || 13674 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13675 fs->fs_cstotal.cs_nifree <= needed)) { 13676 ACQUIRE_LOCK(ump); 13677 if (ump->softdep_on_worklist > 0 && 13678 process_worklist_item(UFSTOVFS(ump), 13679 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13680 stat_worklist_push += 1; 13681 FREE_LOCK(ump); 13682 } 13683 13684 /* 13685 * Check that there are vnodes pending inactivation. As they 13686 * have been unlinked, inactivating them will free up their 13687 * inodes. 13688 */ 13689 ACQUIRE_LOCK(ump); 13690 if (resource == FLUSH_INODES_WAIT && 13691 fs->fs_cstotal.cs_nifree <= needed && 13692 fs->fs_pendinginodes <= needed) { 13693 if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) { 13694 ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE; 13695 FREE_LOCK(ump); 13696 softdep_request_cleanup_inactivate(mp); 13697 ACQUIRE_LOCK(ump); 13698 ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE; 13699 wakeup(&ump->um_softdep->sd_flags); 13700 } else { 13701 while ((ump->um_softdep->sd_flags & 13702 FLUSH_DI_ACTIVE) != 0) { 13703 msleep(&ump->um_softdep->sd_flags, 13704 LOCK_PTR(ump), PVM, "ffsvina", hz); 13705 } 13706 } 13707 } 13708 FREE_LOCK(ump); 13709 13710 /* 13711 * If we still need resources and there are no more worklist 13712 * entries to process to obtain them, we have to start flushing 13713 * the dirty vnodes to force the release of additional requests 13714 * to the worklist that we can then process to reap addition 13715 * resources. We walk the vnodes associated with the mount point 13716 * until we get the needed worklist requests that we can reap. 13717 * 13718 * If there are several threads all needing to clean the same 13719 * mount point, only one is allowed to walk the mount list. 13720 * When several threads all try to walk the same mount list, 13721 * they end up competing with each other and often end up in 13722 * livelock. This approach ensures that forward progress is 13723 * made at the cost of occational ENOSPC errors being returned 13724 * that might otherwise have been avoided. 13725 */ 13726 error = 1; 13727 if ((resource == FLUSH_BLOCKS_WAIT && 13728 fs->fs_cstotal.cs_nbfree <= needed) || 13729 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13730 fs->fs_cstotal.cs_nifree <= needed)) { 13731 ACQUIRE_LOCK(ump); 13732 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13733 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13734 FREE_LOCK(ump); 13735 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13736 ACQUIRE_LOCK(ump); 13737 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13738 wakeup(&ump->um_softdep->sd_flags); 13739 FREE_LOCK(ump); 13740 if (ump->softdep_on_worklist > 0) { 13741 stat_cleanup_retries += 1; 13742 if (!failed_vnode) 13743 goto retry; 13744 } 13745 } else { 13746 while ((ump->um_softdep->sd_flags & 13747 FLUSH_RC_ACTIVE) != 0) { 13748 msleep(&ump->um_softdep->sd_flags, 13749 LOCK_PTR(ump), PVM, "ffsrca", hz); 13750 } 13751 FREE_LOCK(ump); 13752 error = 0; 13753 } 13754 stat_cleanup_failures += 1; 13755 } 13756 if (time_second - starttime > stat_cleanup_high_delay) 13757 stat_cleanup_high_delay = time_second - starttime; 13758 UFS_LOCK(ump); 13759 return (error); 13760 } 13761 13762 /* 13763 * Scan the vnodes for the specified mount point flushing out any 13764 * vnodes that can be locked without waiting. Finally, try to flush 13765 * the device associated with the mount point if it can be locked 13766 * without waiting. 13767 * 13768 * We return 0 if we were able to lock every vnode in our scan. 13769 * If we had to skip one or more vnodes, we return 1. 13770 */ 13771 static int 13772 softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump) 13773 { 13774 struct thread *td; 13775 struct vnode *lvp, *mvp; 13776 int failed_vnode; 13777 13778 failed_vnode = 0; 13779 td = curthread; 13780 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13781 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13782 VI_UNLOCK(lvp); 13783 continue; 13784 } 13785 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 13786 failed_vnode = 1; 13787 continue; 13788 } 13789 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13790 vput(lvp); 13791 continue; 13792 } 13793 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13794 vput(lvp); 13795 } 13796 lvp = ump->um_devvp; 13797 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13798 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13799 VOP_UNLOCK(lvp); 13800 } 13801 return (failed_vnode); 13802 } 13803 13804 static bool 13805 softdep_excess_items(struct ufsmount *ump, int item) 13806 { 13807 13808 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13809 return (dep_current[item] > max_softdeps && 13810 ump->softdep_curdeps[item] > max_softdeps / 13811 stat_flush_threads); 13812 } 13813 13814 static void 13815 schedule_cleanup(struct mount *mp) 13816 { 13817 struct ufsmount *ump; 13818 struct thread *td; 13819 13820 ump = VFSTOUFS(mp); 13821 LOCK_OWNED(ump); 13822 FREE_LOCK(ump); 13823 td = curthread; 13824 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13825 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13826 /* 13827 * No ast is delivered to kernel threads, so nobody 13828 * would deref the mp. Some kernel threads 13829 * explicitly check for AST, e.g. NFS daemon does 13830 * this in the serving loop. 13831 */ 13832 return; 13833 } 13834 if (td->td_su != NULL) 13835 vfs_rel(td->td_su); 13836 vfs_ref(mp); 13837 td->td_su = mp; 13838 ast_sched(td, TDA_UFS); 13839 } 13840 13841 static void 13842 softdep_ast_cleanup_proc(struct thread *td, int ast __unused) 13843 { 13844 struct mount *mp; 13845 struct ufsmount *ump; 13846 int error; 13847 bool req; 13848 13849 while ((mp = td->td_su) != NULL) { 13850 td->td_su = NULL; 13851 error = vfs_busy(mp, MBF_NOWAIT); 13852 vfs_rel(mp); 13853 if (error != 0) 13854 return; 13855 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13856 ump = VFSTOUFS(mp); 13857 for (;;) { 13858 req = false; 13859 ACQUIRE_LOCK(ump); 13860 if (softdep_excess_items(ump, D_INODEDEP)) { 13861 req = true; 13862 request_cleanup(mp, FLUSH_INODES); 13863 } 13864 if (softdep_excess_items(ump, D_DIRREM)) { 13865 req = true; 13866 request_cleanup(mp, FLUSH_BLOCKS); 13867 } 13868 FREE_LOCK(ump); 13869 if (softdep_excess_items(ump, D_NEWBLK) || 13870 softdep_excess_items(ump, D_ALLOCDIRECT) || 13871 softdep_excess_items(ump, D_ALLOCINDIR)) { 13872 error = vn_start_write(NULL, &mp, 13873 V_WAIT); 13874 if (error == 0) { 13875 req = true; 13876 VFS_SYNC(mp, MNT_WAIT); 13877 vn_finished_write(mp); 13878 } 13879 } 13880 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13881 break; 13882 } 13883 } 13884 vfs_unbusy(mp); 13885 } 13886 if ((mp = td->td_su) != NULL) { 13887 td->td_su = NULL; 13888 vfs_rel(mp); 13889 } 13890 } 13891 13892 /* 13893 * If memory utilization has gotten too high, deliberately slow things 13894 * down and speed up the I/O processing. 13895 */ 13896 static int 13897 request_cleanup(struct mount *mp, int resource) 13898 { 13899 struct thread *td = curthread; 13900 struct ufsmount *ump; 13901 13902 ump = VFSTOUFS(mp); 13903 LOCK_OWNED(ump); 13904 /* 13905 * We never hold up the filesystem syncer or buf daemon. 13906 */ 13907 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13908 return (0); 13909 /* 13910 * First check to see if the work list has gotten backlogged. 13911 * If it has, co-opt this process to help clean up two entries. 13912 * Because this process may hold inodes locked, we cannot 13913 * handle any remove requests that might block on a locked 13914 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13915 * to avoid recursively processing the worklist. 13916 */ 13917 if (ump->softdep_on_worklist > max_softdeps / 10) { 13918 td->td_pflags |= TDP_SOFTDEP; 13919 process_worklist_item(mp, 2, LK_NOWAIT); 13920 td->td_pflags &= ~TDP_SOFTDEP; 13921 stat_worklist_push += 2; 13922 return(1); 13923 } 13924 /* 13925 * Next, we attempt to speed up the syncer process. If that 13926 * is successful, then we allow the process to continue. 13927 */ 13928 if (softdep_speedup(ump) && 13929 resource != FLUSH_BLOCKS_WAIT && 13930 resource != FLUSH_INODES_WAIT) 13931 return(0); 13932 /* 13933 * If we are resource constrained on inode dependencies, try 13934 * flushing some dirty inodes. Otherwise, we are constrained 13935 * by file deletions, so try accelerating flushes of directories 13936 * with removal dependencies. We would like to do the cleanup 13937 * here, but we probably hold an inode locked at this point and 13938 * that might deadlock against one that we try to clean. So, 13939 * the best that we can do is request the syncer daemon to do 13940 * the cleanup for us. 13941 */ 13942 switch (resource) { 13943 case FLUSH_INODES: 13944 case FLUSH_INODES_WAIT: 13945 ACQUIRE_GBLLOCK(&lk); 13946 stat_ino_limit_push += 1; 13947 req_clear_inodedeps += 1; 13948 FREE_GBLLOCK(&lk); 13949 stat_countp = &stat_ino_limit_hit; 13950 break; 13951 13952 case FLUSH_BLOCKS: 13953 case FLUSH_BLOCKS_WAIT: 13954 ACQUIRE_GBLLOCK(&lk); 13955 stat_blk_limit_push += 1; 13956 req_clear_remove += 1; 13957 FREE_GBLLOCK(&lk); 13958 stat_countp = &stat_blk_limit_hit; 13959 break; 13960 13961 default: 13962 panic("request_cleanup: unknown type"); 13963 } 13964 /* 13965 * Hopefully the syncer daemon will catch up and awaken us. 13966 * We wait at most tickdelay before proceeding in any case. 13967 */ 13968 ACQUIRE_GBLLOCK(&lk); 13969 FREE_LOCK(ump); 13970 proc_waiting += 1; 13971 if (callout_pending(&softdep_callout) == FALSE) 13972 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13973 pause_timer, 0); 13974 13975 if ((td->td_pflags & TDP_KTHREAD) == 0) 13976 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13977 proc_waiting -= 1; 13978 FREE_GBLLOCK(&lk); 13979 ACQUIRE_LOCK(ump); 13980 return (1); 13981 } 13982 13983 /* 13984 * Awaken processes pausing in request_cleanup and clear proc_waiting 13985 * to indicate that there is no longer a timer running. Pause_timer 13986 * will be called with the global softdep mutex (&lk) locked. 13987 */ 13988 static void 13989 pause_timer(void *arg) 13990 { 13991 13992 GBLLOCK_OWNED(&lk); 13993 /* 13994 * The callout_ API has acquired mtx and will hold it around this 13995 * function call. 13996 */ 13997 *stat_countp += proc_waiting; 13998 wakeup(&proc_waiting); 13999 } 14000 14001 /* 14002 * If requested, try removing inode or removal dependencies. 14003 */ 14004 static void 14005 check_clear_deps(struct mount *mp) 14006 { 14007 struct ufsmount *ump; 14008 bool suj_susp; 14009 14010 /* 14011 * Tell the lower layers that any TRIM or WRITE transactions that have 14012 * been delayed for performance reasons should proceed to help alleviate 14013 * the shortage faster. The race between checking req_* and the softdep 14014 * mutex (lk) is fine since this is an advisory operation that at most 14015 * causes deferred work to be done sooner. 14016 */ 14017 ump = VFSTOUFS(mp); 14018 suj_susp = ump->um_softdep->sd_jblocks != NULL && 14019 ump->softdep_jblocks->jb_suspended; 14020 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14021 FREE_LOCK(ump); 14022 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14023 ACQUIRE_LOCK(ump); 14024 } 14025 14026 /* 14027 * If we are suspended, it may be because of our using 14028 * too many inodedeps, so help clear them out. 14029 */ 14030 if (suj_susp) 14031 clear_inodedeps(mp); 14032 14033 /* 14034 * General requests for cleanup of backed up dependencies 14035 */ 14036 ACQUIRE_GBLLOCK(&lk); 14037 if (req_clear_inodedeps) { 14038 req_clear_inodedeps -= 1; 14039 FREE_GBLLOCK(&lk); 14040 clear_inodedeps(mp); 14041 ACQUIRE_GBLLOCK(&lk); 14042 wakeup(&proc_waiting); 14043 } 14044 if (req_clear_remove) { 14045 req_clear_remove -= 1; 14046 FREE_GBLLOCK(&lk); 14047 clear_remove(mp); 14048 ACQUIRE_GBLLOCK(&lk); 14049 wakeup(&proc_waiting); 14050 } 14051 FREE_GBLLOCK(&lk); 14052 } 14053 14054 /* 14055 * Flush out a directory with at least one removal dependency in an effort to 14056 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14057 */ 14058 static void 14059 clear_remove(struct mount *mp) 14060 { 14061 struct pagedep_hashhead *pagedephd; 14062 struct pagedep *pagedep; 14063 struct ufsmount *ump; 14064 struct vnode *vp; 14065 struct bufobj *bo; 14066 int error, cnt; 14067 ino_t ino; 14068 14069 ump = VFSTOUFS(mp); 14070 LOCK_OWNED(ump); 14071 14072 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14073 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14074 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14075 ump->pagedep_nextclean = 0; 14076 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14077 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14078 continue; 14079 ino = pagedep->pd_ino; 14080 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14081 continue; 14082 FREE_LOCK(ump); 14083 14084 /* 14085 * Let unmount clear deps 14086 */ 14087 error = vfs_busy(mp, MBF_NOWAIT); 14088 if (error != 0) 14089 goto finish_write; 14090 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14091 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 14092 vfs_unbusy(mp); 14093 if (error != 0) { 14094 softdep_error("clear_remove: vget", error); 14095 goto finish_write; 14096 } 14097 MPASS(VTOI(vp)->i_mode != 0); 14098 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14099 softdep_error("clear_remove: fsync", error); 14100 bo = &vp->v_bufobj; 14101 BO_LOCK(bo); 14102 drain_output(vp); 14103 BO_UNLOCK(bo); 14104 vput(vp); 14105 finish_write: 14106 vn_finished_write(mp); 14107 ACQUIRE_LOCK(ump); 14108 return; 14109 } 14110 } 14111 } 14112 14113 /* 14114 * Clear out a block of dirty inodes in an effort to reduce 14115 * the number of inodedep dependency structures. 14116 */ 14117 static void 14118 clear_inodedeps(struct mount *mp) 14119 { 14120 struct inodedep_hashhead *inodedephd; 14121 struct inodedep *inodedep; 14122 struct ufsmount *ump; 14123 struct vnode *vp; 14124 struct fs *fs; 14125 int error, cnt; 14126 ino_t firstino, lastino, ino; 14127 14128 ump = VFSTOUFS(mp); 14129 fs = ump->um_fs; 14130 LOCK_OWNED(ump); 14131 /* 14132 * Pick a random inode dependency to be cleared. 14133 * We will then gather up all the inodes in its block 14134 * that have dependencies and flush them out. 14135 */ 14136 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14137 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14138 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14139 ump->inodedep_nextclean = 0; 14140 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14141 break; 14142 } 14143 if (inodedep == NULL) 14144 return; 14145 /* 14146 * Find the last inode in the block with dependencies. 14147 */ 14148 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14149 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14150 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14151 break; 14152 /* 14153 * Asynchronously push all but the last inode with dependencies. 14154 * Synchronously push the last inode with dependencies to ensure 14155 * that the inode block gets written to free up the inodedeps. 14156 */ 14157 for (ino = firstino; ino <= lastino; ino++) { 14158 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14159 continue; 14160 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14161 continue; 14162 FREE_LOCK(ump); 14163 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14164 if (error != 0) { 14165 vn_finished_write(mp); 14166 ACQUIRE_LOCK(ump); 14167 return; 14168 } 14169 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14170 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) { 14171 softdep_error("clear_inodedeps: vget", error); 14172 vfs_unbusy(mp); 14173 vn_finished_write(mp); 14174 ACQUIRE_LOCK(ump); 14175 return; 14176 } 14177 vfs_unbusy(mp); 14178 if (VTOI(vp)->i_mode == 0) { 14179 vgone(vp); 14180 } else if (ino == lastino) { 14181 do { 14182 error = ffs_syncvnode(vp, MNT_WAIT, 0); 14183 } while (error == ERELOOKUP); 14184 if (error != 0) 14185 softdep_error("clear_inodedeps: fsync1", error); 14186 } else { 14187 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14188 softdep_error("clear_inodedeps: fsync2", error); 14189 BO_LOCK(&vp->v_bufobj); 14190 drain_output(vp); 14191 BO_UNLOCK(&vp->v_bufobj); 14192 } 14193 vput(vp); 14194 vn_finished_write(mp); 14195 ACQUIRE_LOCK(ump); 14196 } 14197 } 14198 14199 void 14200 softdep_buf_append(struct buf *bp, struct workhead *wkhd) 14201 { 14202 struct worklist *wk; 14203 struct ufsmount *ump; 14204 14205 if ((wk = LIST_FIRST(wkhd)) == NULL) 14206 return; 14207 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14208 ("softdep_buf_append called on non-softdep filesystem")); 14209 ump = VFSTOUFS(wk->wk_mp); 14210 ACQUIRE_LOCK(ump); 14211 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14212 WORKLIST_REMOVE(wk); 14213 WORKLIST_INSERT(&bp->b_dep, wk); 14214 } 14215 FREE_LOCK(ump); 14216 14217 } 14218 14219 void 14220 softdep_inode_append( 14221 struct inode *ip, 14222 struct ucred *cred, 14223 struct workhead *wkhd) 14224 { 14225 struct buf *bp; 14226 struct fs *fs; 14227 struct ufsmount *ump; 14228 int error; 14229 14230 ump = ITOUMP(ip); 14231 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14232 ("softdep_inode_append called on non-softdep filesystem")); 14233 fs = ump->um_fs; 14234 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14235 (int)fs->fs_bsize, cred, &bp); 14236 if (error) { 14237 bqrelse(bp); 14238 softdep_freework(wkhd); 14239 return; 14240 } 14241 softdep_buf_append(bp, wkhd); 14242 bqrelse(bp); 14243 } 14244 14245 void 14246 softdep_freework(struct workhead *wkhd) 14247 { 14248 struct worklist *wk; 14249 struct ufsmount *ump; 14250 14251 if ((wk = LIST_FIRST(wkhd)) == NULL) 14252 return; 14253 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14254 ("softdep_freework called on non-softdep filesystem")); 14255 ump = VFSTOUFS(wk->wk_mp); 14256 ACQUIRE_LOCK(ump); 14257 handle_jwork(wkhd); 14258 FREE_LOCK(ump); 14259 } 14260 14261 static struct ufsmount * 14262 softdep_bp_to_mp(struct buf *bp) 14263 { 14264 struct mount *mp; 14265 struct vnode *vp; 14266 14267 if (LIST_EMPTY(&bp->b_dep)) 14268 return (NULL); 14269 vp = bp->b_vp; 14270 KASSERT(vp != NULL, 14271 ("%s, buffer with dependencies lacks vnode", __func__)); 14272 14273 /* 14274 * The ump mount point is stable after we get a correct 14275 * pointer, since bp is locked and this prevents unmount from 14276 * proceeding. But to get to it, we cannot dereference bp->b_dep 14277 * head wk_mp, because we do not yet own SU ump lock and 14278 * workitem might be freed while dereferenced. 14279 */ 14280 retry: 14281 switch (vp->v_type) { 14282 case VCHR: 14283 VI_LOCK(vp); 14284 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14285 VI_UNLOCK(vp); 14286 if (mp == NULL) 14287 goto retry; 14288 break; 14289 case VREG: 14290 case VDIR: 14291 case VLNK: 14292 case VFIFO: 14293 case VSOCK: 14294 mp = vp->v_mount; 14295 break; 14296 case VBLK: 14297 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14298 /* FALLTHROUGH */ 14299 case VNON: 14300 case VBAD: 14301 case VMARKER: 14302 mp = NULL; 14303 break; 14304 default: 14305 vn_printf(vp, "unknown vnode type"); 14306 mp = NULL; 14307 break; 14308 } 14309 return (VFSTOUFS(mp)); 14310 } 14311 14312 /* 14313 * Function to determine if the buffer has outstanding dependencies 14314 * that will cause a roll-back if the buffer is written. If wantcount 14315 * is set, return number of dependencies, otherwise just yes or no. 14316 */ 14317 static int 14318 softdep_count_dependencies(struct buf *bp, int wantcount) 14319 { 14320 struct worklist *wk; 14321 struct ufsmount *ump; 14322 struct bmsafemap *bmsafemap; 14323 struct freework *freework; 14324 struct inodedep *inodedep; 14325 struct indirdep *indirdep; 14326 struct freeblks *freeblks; 14327 struct allocindir *aip; 14328 struct pagedep *pagedep; 14329 struct dirrem *dirrem; 14330 struct newblk *newblk; 14331 struct mkdir *mkdir; 14332 struct diradd *dap; 14333 int i, retval; 14334 14335 ump = softdep_bp_to_mp(bp); 14336 if (ump == NULL) 14337 return (0); 14338 retval = 0; 14339 ACQUIRE_LOCK(ump); 14340 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14341 switch (wk->wk_type) { 14342 case D_INODEDEP: 14343 inodedep = WK_INODEDEP(wk); 14344 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14345 /* bitmap allocation dependency */ 14346 retval += 1; 14347 if (!wantcount) 14348 goto out; 14349 } 14350 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14351 /* direct block pointer dependency */ 14352 retval += 1; 14353 if (!wantcount) 14354 goto out; 14355 } 14356 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14357 /* direct block pointer dependency */ 14358 retval += 1; 14359 if (!wantcount) 14360 goto out; 14361 } 14362 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14363 /* Add reference dependency. */ 14364 retval += 1; 14365 if (!wantcount) 14366 goto out; 14367 } 14368 continue; 14369 14370 case D_INDIRDEP: 14371 indirdep = WK_INDIRDEP(wk); 14372 14373 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14374 /* indirect truncation dependency */ 14375 retval += 1; 14376 if (!wantcount) 14377 goto out; 14378 } 14379 14380 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14381 /* indirect block pointer dependency */ 14382 retval += 1; 14383 if (!wantcount) 14384 goto out; 14385 } 14386 continue; 14387 14388 case D_PAGEDEP: 14389 pagedep = WK_PAGEDEP(wk); 14390 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14391 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14392 /* Journal remove ref dependency. */ 14393 retval += 1; 14394 if (!wantcount) 14395 goto out; 14396 } 14397 } 14398 for (i = 0; i < DAHASHSZ; i++) { 14399 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14400 /* directory entry dependency */ 14401 retval += 1; 14402 if (!wantcount) 14403 goto out; 14404 } 14405 } 14406 continue; 14407 14408 case D_BMSAFEMAP: 14409 bmsafemap = WK_BMSAFEMAP(wk); 14410 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14411 /* Add reference dependency. */ 14412 retval += 1; 14413 if (!wantcount) 14414 goto out; 14415 } 14416 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14417 /* Allocate block dependency. */ 14418 retval += 1; 14419 if (!wantcount) 14420 goto out; 14421 } 14422 continue; 14423 14424 case D_FREEBLKS: 14425 freeblks = WK_FREEBLKS(wk); 14426 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14427 /* Freeblk journal dependency. */ 14428 retval += 1; 14429 if (!wantcount) 14430 goto out; 14431 } 14432 continue; 14433 14434 case D_ALLOCDIRECT: 14435 case D_ALLOCINDIR: 14436 newblk = WK_NEWBLK(wk); 14437 if (newblk->nb_jnewblk) { 14438 /* Journal allocate dependency. */ 14439 retval += 1; 14440 if (!wantcount) 14441 goto out; 14442 } 14443 continue; 14444 14445 case D_MKDIR: 14446 mkdir = WK_MKDIR(wk); 14447 if (mkdir->md_jaddref) { 14448 /* Journal reference dependency. */ 14449 retval += 1; 14450 if (!wantcount) 14451 goto out; 14452 } 14453 continue; 14454 14455 case D_FREEWORK: 14456 case D_FREEDEP: 14457 case D_JSEGDEP: 14458 case D_JSEG: 14459 case D_SBDEP: 14460 /* never a dependency on these blocks */ 14461 continue; 14462 14463 default: 14464 panic("softdep_count_dependencies: Unexpected type %s", 14465 TYPENAME(wk->wk_type)); 14466 /* NOTREACHED */ 14467 } 14468 } 14469 out: 14470 FREE_LOCK(ump); 14471 return (retval); 14472 } 14473 14474 /* 14475 * Acquire exclusive access to a buffer. 14476 * Must be called with a locked mtx parameter. 14477 * Return acquired buffer or NULL on failure. 14478 */ 14479 static struct buf * 14480 getdirtybuf(struct buf *bp, 14481 struct rwlock *lock, 14482 int waitfor) 14483 { 14484 int error; 14485 14486 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14487 if (waitfor != MNT_WAIT) 14488 return (NULL); 14489 error = BUF_LOCK(bp, 14490 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14491 /* 14492 * Even if we successfully acquire bp here, we have dropped 14493 * lock, which may violates our guarantee. 14494 */ 14495 if (error == 0) 14496 BUF_UNLOCK(bp); 14497 else if (error != ENOLCK) 14498 panic("getdirtybuf: inconsistent lock: %d", error); 14499 rw_wlock(lock); 14500 return (NULL); 14501 } 14502 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14503 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14504 rw_wunlock(lock); 14505 BO_LOCK(bp->b_bufobj); 14506 BUF_UNLOCK(bp); 14507 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14508 bp->b_vflags |= BV_BKGRDWAIT; 14509 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14510 PRIBIO | PDROP, "getbuf", 0); 14511 } else 14512 BO_UNLOCK(bp->b_bufobj); 14513 rw_wlock(lock); 14514 return (NULL); 14515 } 14516 BUF_UNLOCK(bp); 14517 if (waitfor != MNT_WAIT) 14518 return (NULL); 14519 #ifdef DEBUG_VFS_LOCKS 14520 if (bp->b_vp->v_type != VCHR) 14521 ASSERT_BO_WLOCKED(bp->b_bufobj); 14522 #endif 14523 bp->b_vflags |= BV_BKGRDWAIT; 14524 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14525 return (NULL); 14526 } 14527 if ((bp->b_flags & B_DELWRI) == 0) { 14528 BUF_UNLOCK(bp); 14529 return (NULL); 14530 } 14531 bremfree(bp); 14532 return (bp); 14533 } 14534 14535 /* 14536 * Check if it is safe to suspend the file system now. On entry, 14537 * the vnode interlock for devvp should be held. Return 0 with 14538 * the mount interlock held if the file system can be suspended now, 14539 * otherwise return EAGAIN with the mount interlock held. 14540 */ 14541 int 14542 softdep_check_suspend(struct mount *mp, 14543 struct vnode *devvp, 14544 int softdep_depcnt, 14545 int softdep_accdepcnt, 14546 int secondary_writes, 14547 int secondary_accwrites) 14548 { 14549 struct buf *bp; 14550 struct bufobj *bo; 14551 struct ufsmount *ump; 14552 struct inodedep *inodedep; 14553 struct indirdep *indirdep; 14554 struct worklist *wk, *nextwk; 14555 int error, unlinked; 14556 14557 bo = &devvp->v_bufobj; 14558 ASSERT_BO_WLOCKED(bo); 14559 14560 /* 14561 * If we are not running with soft updates, then we need only 14562 * deal with secondary writes as we try to suspend. 14563 */ 14564 if (MOUNTEDSOFTDEP(mp) == 0) { 14565 MNT_ILOCK(mp); 14566 while (mp->mnt_secondary_writes != 0) { 14567 BO_UNLOCK(bo); 14568 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14569 (PUSER - 1) | PDROP, "secwr", 0); 14570 BO_LOCK(bo); 14571 MNT_ILOCK(mp); 14572 } 14573 14574 /* 14575 * Reasons for needing more work before suspend: 14576 * - Dirty buffers on devvp. 14577 * - Secondary writes occurred after start of vnode sync loop 14578 */ 14579 error = 0; 14580 if (bo->bo_numoutput > 0 || 14581 bo->bo_dirty.bv_cnt > 0 || 14582 secondary_writes != 0 || 14583 mp->mnt_secondary_writes != 0 || 14584 secondary_accwrites != mp->mnt_secondary_accwrites) 14585 error = EAGAIN; 14586 BO_UNLOCK(bo); 14587 return (error); 14588 } 14589 14590 /* 14591 * If we are running with soft updates, then we need to coordinate 14592 * with them as we try to suspend. 14593 */ 14594 ump = VFSTOUFS(mp); 14595 for (;;) { 14596 if (!TRY_ACQUIRE_LOCK(ump)) { 14597 BO_UNLOCK(bo); 14598 ACQUIRE_LOCK(ump); 14599 FREE_LOCK(ump); 14600 BO_LOCK(bo); 14601 continue; 14602 } 14603 MNT_ILOCK(mp); 14604 if (mp->mnt_secondary_writes != 0) { 14605 FREE_LOCK(ump); 14606 BO_UNLOCK(bo); 14607 msleep(&mp->mnt_secondary_writes, 14608 MNT_MTX(mp), 14609 (PUSER - 1) | PDROP, "secwr", 0); 14610 BO_LOCK(bo); 14611 continue; 14612 } 14613 break; 14614 } 14615 14616 unlinked = 0; 14617 if (MOUNTEDSUJ(mp)) { 14618 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14619 inodedep != NULL; 14620 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14621 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14622 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14623 UNLINKONLIST) || 14624 !check_inodedep_free(inodedep)) 14625 continue; 14626 unlinked++; 14627 } 14628 } 14629 14630 /* 14631 * XXX Check for orphaned indirdep dependency structures. 14632 * 14633 * During forcible unmount after a disk failure there is a 14634 * bug that causes one or more indirdep dependency structures 14635 * to fail to be deallocated. We check for them here and clean 14636 * them up so that the unmount can succeed. 14637 */ 14638 if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 && 14639 ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) { 14640 LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP], 14641 wk_all, nextwk) { 14642 indirdep = WK_INDIRDEP(wk); 14643 if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) != 14644 (GOINGAWAY | DEPCOMPLETE) || 14645 !TAILQ_EMPTY(&indirdep->ir_trunc) || 14646 !LIST_EMPTY(&indirdep->ir_completehd) || 14647 !LIST_EMPTY(&indirdep->ir_writehd) || 14648 !LIST_EMPTY(&indirdep->ir_donehd) || 14649 !LIST_EMPTY(&indirdep->ir_deplisthd) || 14650 indirdep->ir_saveddata != NULL || 14651 indirdep->ir_savebp == NULL) { 14652 printf("%s: skipping orphaned indirdep %p\n", 14653 __FUNCTION__, indirdep); 14654 continue; 14655 } 14656 printf("%s: freeing orphaned indirdep %p\n", 14657 __FUNCTION__, indirdep); 14658 bp = indirdep->ir_savebp; 14659 indirdep->ir_savebp = NULL; 14660 free_indirdep(indirdep); 14661 FREE_LOCK(ump); 14662 brelse(bp); 14663 while (!TRY_ACQUIRE_LOCK(ump)) { 14664 BO_UNLOCK(bo); 14665 ACQUIRE_LOCK(ump); 14666 FREE_LOCK(ump); 14667 BO_LOCK(bo); 14668 } 14669 } 14670 } 14671 14672 /* 14673 * Reasons for needing more work before suspend: 14674 * - Dirty buffers on devvp. 14675 * - Dependency structures still exist 14676 * - Softdep activity occurred after start of vnode sync loop 14677 * - Secondary writes occurred after start of vnode sync loop 14678 */ 14679 error = 0; 14680 if (bo->bo_numoutput > 0 || 14681 bo->bo_dirty.bv_cnt > 0 || 14682 softdep_depcnt != unlinked || 14683 ump->softdep_deps != unlinked || 14684 softdep_accdepcnt != ump->softdep_accdeps || 14685 secondary_writes != 0 || 14686 mp->mnt_secondary_writes != 0 || 14687 secondary_accwrites != mp->mnt_secondary_accwrites) 14688 error = EAGAIN; 14689 FREE_LOCK(ump); 14690 BO_UNLOCK(bo); 14691 return (error); 14692 } 14693 14694 /* 14695 * Get the number of dependency structures for the file system, both 14696 * the current number and the total number allocated. These will 14697 * later be used to detect that softdep processing has occurred. 14698 */ 14699 void 14700 softdep_get_depcounts(struct mount *mp, 14701 int *softdep_depsp, 14702 int *softdep_accdepsp) 14703 { 14704 struct ufsmount *ump; 14705 14706 if (MOUNTEDSOFTDEP(mp) == 0) { 14707 *softdep_depsp = 0; 14708 *softdep_accdepsp = 0; 14709 return; 14710 } 14711 ump = VFSTOUFS(mp); 14712 ACQUIRE_LOCK(ump); 14713 *softdep_depsp = ump->softdep_deps; 14714 *softdep_accdepsp = ump->softdep_accdeps; 14715 FREE_LOCK(ump); 14716 } 14717 14718 /* 14719 * Wait for pending output on a vnode to complete. 14720 */ 14721 static void 14722 drain_output(struct vnode *vp) 14723 { 14724 14725 ASSERT_VOP_LOCKED(vp, "drain_output"); 14726 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14727 } 14728 14729 /* 14730 * Called whenever a buffer that is being invalidated or reallocated 14731 * contains dependencies. This should only happen if an I/O error has 14732 * occurred. The routine is called with the buffer locked. 14733 */ 14734 static void 14735 softdep_deallocate_dependencies(struct buf *bp) 14736 { 14737 14738 if ((bp->b_ioflags & BIO_ERROR) == 0) 14739 panic("softdep_deallocate_dependencies: dangling deps"); 14740 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14741 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14742 else 14743 printf("softdep_deallocate_dependencies: " 14744 "got error %d while accessing filesystem\n", bp->b_error); 14745 if (bp->b_error != ENXIO) 14746 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14747 } 14748 14749 /* 14750 * Function to handle asynchronous write errors in the filesystem. 14751 */ 14752 static void 14753 softdep_error(char *func, int error) 14754 { 14755 14756 /* XXX should do something better! */ 14757 printf("%s: got error %d while accessing filesystem\n", func, error); 14758 } 14759 14760 #ifdef DDB 14761 14762 /* exported to ffs_vfsops.c */ 14763 extern void db_print_ffs(struct ufsmount *ump); 14764 void 14765 db_print_ffs(struct ufsmount *ump) 14766 { 14767 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14768 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14769 db_printf(" fs %p ", ump->um_fs); 14770 14771 if (ump->um_softdep != NULL) { 14772 db_printf("su_wl %d su_deps %d su_req %d\n", 14773 ump->softdep_on_worklist, ump->softdep_deps, 14774 ump->softdep_req); 14775 } else { 14776 db_printf("su disabled\n"); 14777 } 14778 } 14779 14780 static void 14781 worklist_print(struct worklist *wk, int verbose) 14782 { 14783 14784 if (!verbose) { 14785 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14786 wk->wk_state, PRINT_SOFTDEP_FLAGS); 14787 return; 14788 } 14789 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14790 TYPENAME(wk->wk_type), wk->wk_state, PRINT_SOFTDEP_FLAGS, 14791 LIST_NEXT(wk, wk_list)); 14792 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14793 } 14794 14795 static void 14796 inodedep_print(struct inodedep *inodedep, int verbose) 14797 { 14798 14799 worklist_print(&inodedep->id_list, 0); 14800 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14801 inodedep->id_fs, 14802 (intmax_t)inodedep->id_ino, 14803 (intmax_t)fsbtodb(inodedep->id_fs, 14804 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14805 (intmax_t)inodedep->id_nlinkdelta, 14806 (intmax_t)inodedep->id_savednlink); 14807 14808 if (verbose == 0) 14809 return; 14810 14811 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14812 inodedep->id_bmsafemap, 14813 inodedep->id_mkdiradd, 14814 TAILQ_FIRST(&inodedep->id_inoreflst)); 14815 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14816 LIST_FIRST(&inodedep->id_dirremhd), 14817 LIST_FIRST(&inodedep->id_pendinghd), 14818 LIST_FIRST(&inodedep->id_bufwait)); 14819 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14820 LIST_FIRST(&inodedep->id_inowait), 14821 TAILQ_FIRST(&inodedep->id_inoupdt), 14822 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14823 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14824 TAILQ_FIRST(&inodedep->id_extupdt), 14825 TAILQ_FIRST(&inodedep->id_newextupdt), 14826 TAILQ_FIRST(&inodedep->id_freeblklst)); 14827 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14828 inodedep->id_savedino1, 14829 (intmax_t)inodedep->id_savedsize, 14830 (intmax_t)inodedep->id_savedextsize); 14831 } 14832 14833 static void 14834 newblk_print(struct newblk *nbp) 14835 { 14836 14837 worklist_print(&nbp->nb_list, 0); 14838 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14839 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14840 &nbp->nb_jnewblk, 14841 &nbp->nb_bmsafemap, 14842 &nbp->nb_freefrag); 14843 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14844 LIST_FIRST(&nbp->nb_indirdeps), 14845 LIST_FIRST(&nbp->nb_newdirblk), 14846 LIST_FIRST(&nbp->nb_jwork)); 14847 } 14848 14849 static void 14850 allocdirect_print(struct allocdirect *adp) 14851 { 14852 14853 newblk_print(&adp->ad_block); 14854 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14855 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14856 db_printf(" offset %d, inodedep %p\n", 14857 adp->ad_offset, adp->ad_inodedep); 14858 } 14859 14860 static void 14861 allocindir_print(struct allocindir *aip) 14862 { 14863 14864 newblk_print(&aip->ai_block); 14865 db_printf(" oldblkno %jd, lbn %jd\n", 14866 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14867 db_printf(" offset %d, indirdep %p\n", 14868 aip->ai_offset, aip->ai_indirdep); 14869 } 14870 14871 static void 14872 mkdir_print(struct mkdir *mkdir) 14873 { 14874 14875 worklist_print(&mkdir->md_list, 0); 14876 db_printf(" diradd %p, jaddref %p, buf %p\n", 14877 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14878 } 14879 14880 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14881 { 14882 14883 if (have_addr == 0) { 14884 db_printf("inodedep address required\n"); 14885 return; 14886 } 14887 inodedep_print((struct inodedep*)addr, 1); 14888 } 14889 14890 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14891 { 14892 struct inodedep_hashhead *inodedephd; 14893 struct inodedep *inodedep; 14894 struct ufsmount *ump; 14895 int cnt; 14896 14897 if (have_addr == 0) { 14898 db_printf("ufsmount address required\n"); 14899 return; 14900 } 14901 ump = (struct ufsmount *)addr; 14902 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14903 inodedephd = &ump->inodedep_hashtbl[cnt]; 14904 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14905 inodedep_print(inodedep, 0); 14906 } 14907 } 14908 } 14909 14910 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14911 { 14912 14913 if (have_addr == 0) { 14914 db_printf("worklist address required\n"); 14915 return; 14916 } 14917 worklist_print((struct worklist *)addr, 1); 14918 } 14919 14920 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14921 { 14922 struct worklist *wk; 14923 struct workhead *wkhd; 14924 14925 if (have_addr == 0) { 14926 db_printf("worklist address required " 14927 "(for example value in bp->b_dep)\n"); 14928 return; 14929 } 14930 /* 14931 * We often do not have the address of the worklist head but 14932 * instead a pointer to its first entry (e.g., we have the 14933 * contents of bp->b_dep rather than &bp->b_dep). But the back 14934 * pointer of bp->b_dep will point at the head of the list, so 14935 * we cheat and use that instead. If we are in the middle of 14936 * a list we will still get the same result, so nothing 14937 * unexpected will result. 14938 */ 14939 wk = (struct worklist *)addr; 14940 if (wk == NULL) 14941 return; 14942 wkhd = (struct workhead *)wk->wk_list.le_prev; 14943 LIST_FOREACH(wk, wkhd, wk_list) { 14944 switch(wk->wk_type) { 14945 case D_INODEDEP: 14946 inodedep_print(WK_INODEDEP(wk), 0); 14947 continue; 14948 case D_ALLOCDIRECT: 14949 allocdirect_print(WK_ALLOCDIRECT(wk)); 14950 continue; 14951 case D_ALLOCINDIR: 14952 allocindir_print(WK_ALLOCINDIR(wk)); 14953 continue; 14954 case D_MKDIR: 14955 mkdir_print(WK_MKDIR(wk)); 14956 continue; 14957 default: 14958 worklist_print(wk, 0); 14959 continue; 14960 } 14961 } 14962 } 14963 14964 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14965 { 14966 if (have_addr == 0) { 14967 db_printf("mkdir address required\n"); 14968 return; 14969 } 14970 mkdir_print((struct mkdir *)addr); 14971 } 14972 14973 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14974 { 14975 struct mkdirlist *mkdirlisthd; 14976 struct mkdir *mkdir; 14977 14978 if (have_addr == 0) { 14979 db_printf("mkdir listhead address required\n"); 14980 return; 14981 } 14982 mkdirlisthd = (struct mkdirlist *)addr; 14983 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14984 mkdir_print(mkdir); 14985 if (mkdir->md_diradd != NULL) { 14986 db_printf(" "); 14987 worklist_print(&mkdir->md_diradd->da_list, 0); 14988 } 14989 if (mkdir->md_jaddref != NULL) { 14990 db_printf(" "); 14991 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14992 } 14993 } 14994 } 14995 14996 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14997 { 14998 if (have_addr == 0) { 14999 db_printf("allocdirect address required\n"); 15000 return; 15001 } 15002 allocdirect_print((struct allocdirect *)addr); 15003 } 15004 15005 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 15006 { 15007 if (have_addr == 0) { 15008 db_printf("allocindir address required\n"); 15009 return; 15010 } 15011 allocindir_print((struct allocindir *)addr); 15012 } 15013 15014 #endif /* DDB */ 15015 15016 #endif /* SOFTUPDATES */ 15017