1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/rwlock.h> 73 #include <sys/stat.h> 74 #include <sys/sysctl.h> 75 #include <sys/syslog.h> 76 #include <sys/vnode.h> 77 #include <sys/conf.h> 78 79 #include <ufs/ufs/dir.h> 80 #include <ufs/ufs/extattr.h> 81 #include <ufs/ufs/quota.h> 82 #include <ufs/ufs/inode.h> 83 #include <ufs/ufs/ufsmount.h> 84 #include <ufs/ffs/fs.h> 85 #include <ufs/ffs/softdep.h> 86 #include <ufs/ffs/ffs_extern.h> 87 #include <ufs/ufs/ufs_extern.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_object.h> 92 93 #include <geom/geom.h> 94 95 #include <ddb/ddb.h> 96 97 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 98 99 #ifndef SOFTUPDATES 100 101 int 102 softdep_flushfiles(oldmnt, flags, td) 103 struct mount *oldmnt; 104 int flags; 105 struct thread *td; 106 { 107 108 panic("softdep_flushfiles called"); 109 } 110 111 int 112 softdep_mount(devvp, mp, fs, cred) 113 struct vnode *devvp; 114 struct mount *mp; 115 struct fs *fs; 116 struct ucred *cred; 117 { 118 119 return (0); 120 } 121 122 void 123 softdep_initialize() 124 { 125 126 return; 127 } 128 129 void 130 softdep_uninitialize() 131 { 132 133 return; 134 } 135 136 void 137 softdep_unmount(mp) 138 struct mount *mp; 139 { 140 141 panic("softdep_unmount called"); 142 } 143 144 void 145 softdep_setup_sbupdate(ump, fs, bp) 146 struct ufsmount *ump; 147 struct fs *fs; 148 struct buf *bp; 149 { 150 151 panic("softdep_setup_sbupdate called"); 152 } 153 154 void 155 softdep_setup_inomapdep(bp, ip, newinum, mode) 156 struct buf *bp; 157 struct inode *ip; 158 ino_t newinum; 159 int mode; 160 { 161 162 panic("softdep_setup_inomapdep called"); 163 } 164 165 void 166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 167 struct buf *bp; 168 struct mount *mp; 169 ufs2_daddr_t newblkno; 170 int frags; 171 int oldfrags; 172 { 173 174 panic("softdep_setup_blkmapdep called"); 175 } 176 177 void 178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 179 struct inode *ip; 180 ufs_lbn_t lbn; 181 ufs2_daddr_t newblkno; 182 ufs2_daddr_t oldblkno; 183 long newsize; 184 long oldsize; 185 struct buf *bp; 186 { 187 188 panic("softdep_setup_allocdirect called"); 189 } 190 191 void 192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 193 struct inode *ip; 194 ufs_lbn_t lbn; 195 ufs2_daddr_t newblkno; 196 ufs2_daddr_t oldblkno; 197 long newsize; 198 long oldsize; 199 struct buf *bp; 200 { 201 202 panic("softdep_setup_allocext called"); 203 } 204 205 void 206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 207 struct inode *ip; 208 ufs_lbn_t lbn; 209 struct buf *bp; 210 int ptrno; 211 ufs2_daddr_t newblkno; 212 ufs2_daddr_t oldblkno; 213 struct buf *nbp; 214 { 215 216 panic("softdep_setup_allocindir_page called"); 217 } 218 219 void 220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 221 struct buf *nbp; 222 struct inode *ip; 223 struct buf *bp; 224 int ptrno; 225 ufs2_daddr_t newblkno; 226 { 227 228 panic("softdep_setup_allocindir_meta called"); 229 } 230 231 void 232 softdep_journal_freeblocks(ip, cred, length, flags) 233 struct inode *ip; 234 struct ucred *cred; 235 off_t length; 236 int flags; 237 { 238 239 panic("softdep_journal_freeblocks called"); 240 } 241 242 void 243 softdep_journal_fsync(ip) 244 struct inode *ip; 245 { 246 247 panic("softdep_journal_fsync called"); 248 } 249 250 void 251 softdep_setup_freeblocks(ip, length, flags) 252 struct inode *ip; 253 off_t length; 254 int flags; 255 { 256 257 panic("softdep_setup_freeblocks called"); 258 } 259 260 void 261 softdep_freefile(pvp, ino, mode) 262 struct vnode *pvp; 263 ino_t ino; 264 int mode; 265 { 266 267 panic("softdep_freefile called"); 268 } 269 270 int 271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 272 struct buf *bp; 273 struct inode *dp; 274 off_t diroffset; 275 ino_t newinum; 276 struct buf *newdirbp; 277 int isnewblk; 278 { 279 280 panic("softdep_setup_directory_add called"); 281 } 282 283 void 284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 285 struct buf *bp; 286 struct inode *dp; 287 caddr_t base; 288 caddr_t oldloc; 289 caddr_t newloc; 290 int entrysize; 291 { 292 293 panic("softdep_change_directoryentry_offset called"); 294 } 295 296 void 297 softdep_setup_remove(bp, dp, ip, isrmdir) 298 struct buf *bp; 299 struct inode *dp; 300 struct inode *ip; 301 int isrmdir; 302 { 303 304 panic("softdep_setup_remove called"); 305 } 306 307 void 308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 309 struct buf *bp; 310 struct inode *dp; 311 struct inode *ip; 312 ino_t newinum; 313 int isrmdir; 314 { 315 316 panic("softdep_setup_directory_change called"); 317 } 318 319 void 320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 321 struct mount *mp; 322 struct buf *bp; 323 ufs2_daddr_t blkno; 324 int frags; 325 struct workhead *wkhd; 326 { 327 328 panic("%s called", __FUNCTION__); 329 } 330 331 void 332 softdep_setup_inofree(mp, bp, ino, wkhd) 333 struct mount *mp; 334 struct buf *bp; 335 ino_t ino; 336 struct workhead *wkhd; 337 { 338 339 panic("%s called", __FUNCTION__); 340 } 341 342 void 343 softdep_setup_unlink(dp, ip) 344 struct inode *dp; 345 struct inode *ip; 346 { 347 348 panic("%s called", __FUNCTION__); 349 } 350 351 void 352 softdep_setup_link(dp, ip) 353 struct inode *dp; 354 struct inode *ip; 355 { 356 357 panic("%s called", __FUNCTION__); 358 } 359 360 void 361 softdep_revert_link(dp, ip) 362 struct inode *dp; 363 struct inode *ip; 364 { 365 366 panic("%s called", __FUNCTION__); 367 } 368 369 void 370 softdep_setup_rmdir(dp, ip) 371 struct inode *dp; 372 struct inode *ip; 373 { 374 375 panic("%s called", __FUNCTION__); 376 } 377 378 void 379 softdep_revert_rmdir(dp, ip) 380 struct inode *dp; 381 struct inode *ip; 382 { 383 384 panic("%s called", __FUNCTION__); 385 } 386 387 void 388 softdep_setup_create(dp, ip) 389 struct inode *dp; 390 struct inode *ip; 391 { 392 393 panic("%s called", __FUNCTION__); 394 } 395 396 void 397 softdep_revert_create(dp, ip) 398 struct inode *dp; 399 struct inode *ip; 400 { 401 402 panic("%s called", __FUNCTION__); 403 } 404 405 void 406 softdep_setup_mkdir(dp, ip) 407 struct inode *dp; 408 struct inode *ip; 409 { 410 411 panic("%s called", __FUNCTION__); 412 } 413 414 void 415 softdep_revert_mkdir(dp, ip) 416 struct inode *dp; 417 struct inode *ip; 418 { 419 420 panic("%s called", __FUNCTION__); 421 } 422 423 void 424 softdep_setup_dotdot_link(dp, ip) 425 struct inode *dp; 426 struct inode *ip; 427 { 428 429 panic("%s called", __FUNCTION__); 430 } 431 432 int 433 softdep_prealloc(vp, waitok) 434 struct vnode *vp; 435 int waitok; 436 { 437 438 panic("%s called", __FUNCTION__); 439 } 440 441 int 442 softdep_journal_lookup(mp, vpp) 443 struct mount *mp; 444 struct vnode **vpp; 445 { 446 447 return (ENOENT); 448 } 449 450 void 451 softdep_change_linkcnt(ip) 452 struct inode *ip; 453 { 454 455 panic("softdep_change_linkcnt called"); 456 } 457 458 void 459 softdep_load_inodeblock(ip) 460 struct inode *ip; 461 { 462 463 panic("softdep_load_inodeblock called"); 464 } 465 466 void 467 softdep_update_inodeblock(ip, bp, waitfor) 468 struct inode *ip; 469 struct buf *bp; 470 int waitfor; 471 { 472 473 panic("softdep_update_inodeblock called"); 474 } 475 476 int 477 softdep_fsync(vp) 478 struct vnode *vp; /* the "in_core" copy of the inode */ 479 { 480 481 return (0); 482 } 483 484 void 485 softdep_fsync_mountdev(vp) 486 struct vnode *vp; 487 { 488 489 return; 490 } 491 492 int 493 softdep_flushworklist(oldmnt, countp, td) 494 struct mount *oldmnt; 495 int *countp; 496 struct thread *td; 497 { 498 499 *countp = 0; 500 return (0); 501 } 502 503 int 504 softdep_sync_metadata(struct vnode *vp) 505 { 506 507 panic("softdep_sync_metadata called"); 508 } 509 510 int 511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 512 { 513 514 panic("softdep_sync_buf called"); 515 } 516 517 int 518 softdep_slowdown(vp) 519 struct vnode *vp; 520 { 521 522 panic("softdep_slowdown called"); 523 } 524 525 int 526 softdep_request_cleanup(fs, vp, cred, resource) 527 struct fs *fs; 528 struct vnode *vp; 529 struct ucred *cred; 530 int resource; 531 { 532 533 return (0); 534 } 535 536 int 537 softdep_check_suspend(struct mount *mp, 538 struct vnode *devvp, 539 int softdep_depcnt, 540 int softdep_accdepcnt, 541 int secondary_writes, 542 int secondary_accwrites) 543 { 544 struct bufobj *bo; 545 int error; 546 547 (void) softdep_depcnt, 548 (void) softdep_accdepcnt; 549 550 bo = &devvp->v_bufobj; 551 ASSERT_BO_WLOCKED(bo); 552 553 MNT_ILOCK(mp); 554 while (mp->mnt_secondary_writes != 0) { 555 BO_UNLOCK(bo); 556 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 557 (PUSER - 1) | PDROP, "secwr", 0); 558 BO_LOCK(bo); 559 MNT_ILOCK(mp); 560 } 561 562 /* 563 * Reasons for needing more work before suspend: 564 * - Dirty buffers on devvp. 565 * - Secondary writes occurred after start of vnode sync loop 566 */ 567 error = 0; 568 if (bo->bo_numoutput > 0 || 569 bo->bo_dirty.bv_cnt > 0 || 570 secondary_writes != 0 || 571 mp->mnt_secondary_writes != 0 || 572 secondary_accwrites != mp->mnt_secondary_accwrites) 573 error = EAGAIN; 574 BO_UNLOCK(bo); 575 return (error); 576 } 577 578 void 579 softdep_get_depcounts(struct mount *mp, 580 int *softdepactivep, 581 int *softdepactiveaccp) 582 { 583 (void) mp; 584 *softdepactivep = 0; 585 *softdepactiveaccp = 0; 586 } 587 588 void 589 softdep_buf_append(bp, wkhd) 590 struct buf *bp; 591 struct workhead *wkhd; 592 { 593 594 panic("softdep_buf_appendwork called"); 595 } 596 597 void 598 softdep_inode_append(ip, cred, wkhd) 599 struct inode *ip; 600 struct ucred *cred; 601 struct workhead *wkhd; 602 { 603 604 panic("softdep_inode_appendwork called"); 605 } 606 607 void 608 softdep_freework(wkhd) 609 struct workhead *wkhd; 610 { 611 612 panic("softdep_freework called"); 613 } 614 615 #else 616 617 FEATURE(softupdates, "FFS soft-updates support"); 618 619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 620 "soft updates stats"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 622 "total dependencies allocated"); 623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 624 "high use dependencies allocated"); 625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 626 "current dependencies allocated"); 627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 628 "current dependencies written"); 629 630 unsigned long dep_current[D_LAST + 1]; 631 unsigned long dep_highuse[D_LAST + 1]; 632 unsigned long dep_total[D_LAST + 1]; 633 unsigned long dep_write[D_LAST + 1]; 634 635 #define SOFTDEP_TYPE(type, str, long) \ 636 static MALLOC_DEFINE(M_ ## type, #str, long); \ 637 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 638 &dep_total[D_ ## type], 0, ""); \ 639 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 640 &dep_current[D_ ## type], 0, ""); \ 641 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 642 &dep_highuse[D_ ## type], 0, ""); \ 643 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 644 &dep_write[D_ ## type], 0, ""); 645 646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 649 "Block or frag allocated from cyl group map"); 650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 674 675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 676 677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 680 681 #define M_SOFTDEP_FLAGS (M_WAITOK) 682 683 /* 684 * translate from workitem type to memory type 685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 686 */ 687 static struct malloc_type *memtype[] = { 688 M_PAGEDEP, 689 M_INODEDEP, 690 M_BMSAFEMAP, 691 M_NEWBLK, 692 M_ALLOCDIRECT, 693 M_INDIRDEP, 694 M_ALLOCINDIR, 695 M_FREEFRAG, 696 M_FREEBLKS, 697 M_FREEFILE, 698 M_DIRADD, 699 M_MKDIR, 700 M_DIRREM, 701 M_NEWDIRBLK, 702 M_FREEWORK, 703 M_FREEDEP, 704 M_JADDREF, 705 M_JREMREF, 706 M_JMVREF, 707 M_JNEWBLK, 708 M_JFREEBLK, 709 M_JFREEFRAG, 710 M_JSEG, 711 M_JSEGDEP, 712 M_SBDEP, 713 M_JTRUNC, 714 M_JFSYNC, 715 M_SENTINEL 716 }; 717 718 #define DtoM(type) (memtype[type]) 719 720 /* 721 * Names of malloc types. 722 */ 723 #define TYPENAME(type) \ 724 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 725 /* 726 * End system adaptation definitions. 727 */ 728 729 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 730 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 731 732 /* 733 * Internal function prototypes. 734 */ 735 static void check_clear_deps(struct mount *); 736 static void softdep_error(char *, int); 737 static int softdep_process_worklist(struct mount *, int); 738 static int softdep_waitidle(struct mount *, int); 739 static void drain_output(struct vnode *); 740 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 741 static int check_inodedep_free(struct inodedep *); 742 static void clear_remove(struct mount *); 743 static void clear_inodedeps(struct mount *); 744 static void unlinked_inodedep(struct mount *, struct inodedep *); 745 static void clear_unlinked_inodedep(struct inodedep *); 746 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 747 static int flush_pagedep_deps(struct vnode *, struct mount *, 748 struct diraddhd *); 749 static int free_pagedep(struct pagedep *); 750 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 751 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 752 static int flush_deplist(struct allocdirectlst *, int, int *); 753 static int sync_cgs(struct mount *, int); 754 static int handle_written_filepage(struct pagedep *, struct buf *); 755 static int handle_written_sbdep(struct sbdep *, struct buf *); 756 static void initiate_write_sbdep(struct sbdep *); 757 static void diradd_inode_written(struct diradd *, struct inodedep *); 758 static int handle_written_indirdep(struct indirdep *, struct buf *, 759 struct buf**); 760 static int handle_written_inodeblock(struct inodedep *, struct buf *); 761 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 762 uint8_t *); 763 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *); 764 static void handle_written_jaddref(struct jaddref *); 765 static void handle_written_jremref(struct jremref *); 766 static void handle_written_jseg(struct jseg *, struct buf *); 767 static void handle_written_jnewblk(struct jnewblk *); 768 static void handle_written_jblkdep(struct jblkdep *); 769 static void handle_written_jfreefrag(struct jfreefrag *); 770 static void complete_jseg(struct jseg *); 771 static void complete_jsegs(struct jseg *); 772 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 773 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 774 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 775 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 776 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 777 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 778 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 779 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 780 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 781 static inline void inoref_write(struct inoref *, struct jseg *, 782 struct jrefrec *); 783 static void handle_allocdirect_partdone(struct allocdirect *, 784 struct workhead *); 785 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 786 struct workhead *); 787 static void indirdep_complete(struct indirdep *); 788 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 789 static void indirblk_insert(struct freework *); 790 static void indirblk_remove(struct freework *); 791 static void handle_allocindir_partdone(struct allocindir *); 792 static void initiate_write_filepage(struct pagedep *, struct buf *); 793 static void initiate_write_indirdep(struct indirdep*, struct buf *); 794 static void handle_written_mkdir(struct mkdir *, int); 795 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 796 uint8_t *); 797 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 798 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 799 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 800 static void handle_workitem_freefile(struct freefile *); 801 static int handle_workitem_remove(struct dirrem *, int); 802 static struct dirrem *newdirrem(struct buf *, struct inode *, 803 struct inode *, int, struct dirrem **); 804 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 805 struct buf *); 806 static void cancel_indirdep(struct indirdep *, struct buf *, 807 struct freeblks *); 808 static void free_indirdep(struct indirdep *); 809 static void free_diradd(struct diradd *, struct workhead *); 810 static void merge_diradd(struct inodedep *, struct diradd *); 811 static void complete_diradd(struct diradd *); 812 static struct diradd *diradd_lookup(struct pagedep *, int); 813 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 814 struct jremref *); 815 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 816 struct jremref *); 817 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 818 struct jremref *, struct jremref *); 819 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 820 struct jremref *); 821 static void cancel_allocindir(struct allocindir *, struct buf *bp, 822 struct freeblks *, int); 823 static int setup_trunc_indir(struct freeblks *, struct inode *, 824 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 825 static void complete_trunc_indir(struct freework *); 826 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 827 int); 828 static void complete_mkdir(struct mkdir *); 829 static void free_newdirblk(struct newdirblk *); 830 static void free_jremref(struct jremref *); 831 static void free_jaddref(struct jaddref *); 832 static void free_jsegdep(struct jsegdep *); 833 static void free_jsegs(struct jblocks *); 834 static void rele_jseg(struct jseg *); 835 static void free_jseg(struct jseg *, struct jblocks *); 836 static void free_jnewblk(struct jnewblk *); 837 static void free_jblkdep(struct jblkdep *); 838 static void free_jfreefrag(struct jfreefrag *); 839 static void free_freedep(struct freedep *); 840 static void journal_jremref(struct dirrem *, struct jremref *, 841 struct inodedep *); 842 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 843 static int cancel_jaddref(struct jaddref *, struct inodedep *, 844 struct workhead *); 845 static void cancel_jfreefrag(struct jfreefrag *); 846 static inline void setup_freedirect(struct freeblks *, struct inode *, 847 int, int); 848 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 849 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 850 ufs_lbn_t, int); 851 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 852 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 853 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 854 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 855 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 856 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 857 int, int); 858 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 859 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 860 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 861 static void newblk_freefrag(struct newblk*); 862 static void free_newblk(struct newblk *); 863 static void cancel_allocdirect(struct allocdirectlst *, 864 struct allocdirect *, struct freeblks *); 865 static int check_inode_unwritten(struct inodedep *); 866 static int free_inodedep(struct inodedep *); 867 static void freework_freeblock(struct freework *); 868 static void freework_enqueue(struct freework *); 869 static int handle_workitem_freeblocks(struct freeblks *, int); 870 static int handle_complete_freeblocks(struct freeblks *, int); 871 static void handle_workitem_indirblk(struct freework *); 872 static void handle_written_freework(struct freework *); 873 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 874 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 875 struct workhead *); 876 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 877 struct inodedep *, struct allocindir *, ufs_lbn_t); 878 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 879 ufs2_daddr_t, ufs_lbn_t); 880 static void handle_workitem_freefrag(struct freefrag *); 881 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 882 ufs_lbn_t); 883 static void allocdirect_merge(struct allocdirectlst *, 884 struct allocdirect *, struct allocdirect *); 885 static struct freefrag *allocindir_merge(struct allocindir *, 886 struct allocindir *); 887 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 888 struct bmsafemap **); 889 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 890 int cg, struct bmsafemap *); 891 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 892 struct newblk **); 893 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 894 static int inodedep_find(struct inodedep_hashhead *, ino_t, 895 struct inodedep **); 896 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 897 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 898 int, struct pagedep **); 899 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 900 struct pagedep **); 901 static void pause_timer(void *); 902 static int request_cleanup(struct mount *, int); 903 static int process_worklist_item(struct mount *, int, int); 904 static void process_removes(struct vnode *); 905 static void process_truncates(struct vnode *); 906 static void jwork_move(struct workhead *, struct workhead *); 907 static void jwork_insert(struct workhead *, struct jsegdep *); 908 static void add_to_worklist(struct worklist *, int); 909 static void wake_worklist(struct worklist *); 910 static void wait_worklist(struct worklist *, char *); 911 static void remove_from_worklist(struct worklist *); 912 static void softdep_flush(void *); 913 static void softdep_flushjournal(struct mount *); 914 static int softdep_speedup(struct ufsmount *); 915 static void worklist_speedup(struct mount *); 916 static int journal_mount(struct mount *, struct fs *, struct ucred *); 917 static void journal_unmount(struct ufsmount *); 918 static int journal_space(struct ufsmount *, int); 919 static void journal_suspend(struct ufsmount *); 920 static int journal_unsuspend(struct ufsmount *ump); 921 static void softdep_prelink(struct vnode *, struct vnode *); 922 static void add_to_journal(struct worklist *); 923 static void remove_from_journal(struct worklist *); 924 static void softdep_process_journal(struct mount *, struct worklist *, int); 925 static struct jremref *newjremref(struct dirrem *, struct inode *, 926 struct inode *ip, off_t, nlink_t); 927 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 928 uint16_t); 929 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 930 uint16_t); 931 static inline struct jsegdep *inoref_jseg(struct inoref *); 932 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 933 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 934 ufs2_daddr_t, int); 935 static void adjust_newfreework(struct freeblks *, int); 936 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 937 static void move_newblock_dep(struct jaddref *, struct inodedep *); 938 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 939 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 940 ufs2_daddr_t, long, ufs_lbn_t); 941 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 942 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 943 static int jwait(struct worklist *, int); 944 static struct inodedep *inodedep_lookup_ip(struct inode *); 945 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 946 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 947 static void handle_jwork(struct workhead *); 948 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 949 struct mkdir **); 950 static struct jblocks *jblocks_create(void); 951 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 952 static void jblocks_free(struct jblocks *, struct mount *, int); 953 static void jblocks_destroy(struct jblocks *); 954 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 955 956 /* 957 * Exported softdep operations. 958 */ 959 static void softdep_disk_io_initiation(struct buf *); 960 static void softdep_disk_write_complete(struct buf *); 961 static void softdep_deallocate_dependencies(struct buf *); 962 static int softdep_count_dependencies(struct buf *bp, int); 963 964 /* 965 * Global lock over all of soft updates. 966 */ 967 static struct mtx lk; 968 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 969 970 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 971 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 972 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 973 974 /* 975 * Per-filesystem soft-updates locking. 976 */ 977 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 978 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 979 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 980 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 981 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 982 RA_WLOCKED) 983 984 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 985 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 986 987 /* 988 * Worklist queue management. 989 * These routines require that the lock be held. 990 */ 991 #ifndef /* NOT */ DEBUG 992 #define WORKLIST_INSERT(head, item) do { \ 993 (item)->wk_state |= ONWORKLIST; \ 994 LIST_INSERT_HEAD(head, item, wk_list); \ 995 } while (0) 996 #define WORKLIST_REMOVE(item) do { \ 997 (item)->wk_state &= ~ONWORKLIST; \ 998 LIST_REMOVE(item, wk_list); \ 999 } while (0) 1000 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1001 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1002 1003 #else /* DEBUG */ 1004 static void worklist_insert(struct workhead *, struct worklist *, int); 1005 static void worklist_remove(struct worklist *, int); 1006 1007 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1008 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1009 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1010 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1011 1012 static void 1013 worklist_insert(head, item, locked) 1014 struct workhead *head; 1015 struct worklist *item; 1016 int locked; 1017 { 1018 1019 if (locked) 1020 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1021 if (item->wk_state & ONWORKLIST) 1022 panic("worklist_insert: %p %s(0x%X) already on list", 1023 item, TYPENAME(item->wk_type), item->wk_state); 1024 item->wk_state |= ONWORKLIST; 1025 LIST_INSERT_HEAD(head, item, wk_list); 1026 } 1027 1028 static void 1029 worklist_remove(item, locked) 1030 struct worklist *item; 1031 int locked; 1032 { 1033 1034 if (locked) 1035 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1036 if ((item->wk_state & ONWORKLIST) == 0) 1037 panic("worklist_remove: %p %s(0x%X) not on list", 1038 item, TYPENAME(item->wk_type), item->wk_state); 1039 item->wk_state &= ~ONWORKLIST; 1040 LIST_REMOVE(item, wk_list); 1041 } 1042 #endif /* DEBUG */ 1043 1044 /* 1045 * Merge two jsegdeps keeping only the oldest one as newer references 1046 * can't be discarded until after older references. 1047 */ 1048 static inline struct jsegdep * 1049 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1050 { 1051 struct jsegdep *swp; 1052 1053 if (two == NULL) 1054 return (one); 1055 1056 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1057 swp = one; 1058 one = two; 1059 two = swp; 1060 } 1061 WORKLIST_REMOVE(&two->jd_list); 1062 free_jsegdep(two); 1063 1064 return (one); 1065 } 1066 1067 /* 1068 * If two freedeps are compatible free one to reduce list size. 1069 */ 1070 static inline struct freedep * 1071 freedep_merge(struct freedep *one, struct freedep *two) 1072 { 1073 if (two == NULL) 1074 return (one); 1075 1076 if (one->fd_freework == two->fd_freework) { 1077 WORKLIST_REMOVE(&two->fd_list); 1078 free_freedep(two); 1079 } 1080 return (one); 1081 } 1082 1083 /* 1084 * Move journal work from one list to another. Duplicate freedeps and 1085 * jsegdeps are coalesced to keep the lists as small as possible. 1086 */ 1087 static void 1088 jwork_move(dst, src) 1089 struct workhead *dst; 1090 struct workhead *src; 1091 { 1092 struct freedep *freedep; 1093 struct jsegdep *jsegdep; 1094 struct worklist *wkn; 1095 struct worklist *wk; 1096 1097 KASSERT(dst != src, 1098 ("jwork_move: dst == src")); 1099 freedep = NULL; 1100 jsegdep = NULL; 1101 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1102 if (wk->wk_type == D_JSEGDEP) 1103 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1104 else if (wk->wk_type == D_FREEDEP) 1105 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1106 } 1107 1108 while ((wk = LIST_FIRST(src)) != NULL) { 1109 WORKLIST_REMOVE(wk); 1110 WORKLIST_INSERT(dst, wk); 1111 if (wk->wk_type == D_JSEGDEP) { 1112 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1113 continue; 1114 } 1115 if (wk->wk_type == D_FREEDEP) 1116 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1117 } 1118 } 1119 1120 static void 1121 jwork_insert(dst, jsegdep) 1122 struct workhead *dst; 1123 struct jsegdep *jsegdep; 1124 { 1125 struct jsegdep *jsegdepn; 1126 struct worklist *wk; 1127 1128 LIST_FOREACH(wk, dst, wk_list) 1129 if (wk->wk_type == D_JSEGDEP) 1130 break; 1131 if (wk == NULL) { 1132 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1133 return; 1134 } 1135 jsegdepn = WK_JSEGDEP(wk); 1136 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1137 WORKLIST_REMOVE(wk); 1138 free_jsegdep(jsegdepn); 1139 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1140 } else 1141 free_jsegdep(jsegdep); 1142 } 1143 1144 /* 1145 * Routines for tracking and managing workitems. 1146 */ 1147 static void workitem_free(struct worklist *, int); 1148 static void workitem_alloc(struct worklist *, int, struct mount *); 1149 static void workitem_reassign(struct worklist *, int); 1150 1151 #define WORKITEM_FREE(item, type) \ 1152 workitem_free((struct worklist *)(item), (type)) 1153 #define WORKITEM_REASSIGN(item, type) \ 1154 workitem_reassign((struct worklist *)(item), (type)) 1155 1156 static void 1157 workitem_free(item, type) 1158 struct worklist *item; 1159 int type; 1160 { 1161 struct ufsmount *ump; 1162 1163 #ifdef DEBUG 1164 if (item->wk_state & ONWORKLIST) 1165 panic("workitem_free: %s(0x%X) still on list", 1166 TYPENAME(item->wk_type), item->wk_state); 1167 if (item->wk_type != type && type != D_NEWBLK) 1168 panic("workitem_free: type mismatch %s != %s", 1169 TYPENAME(item->wk_type), TYPENAME(type)); 1170 #endif 1171 if (item->wk_state & IOWAITING) 1172 wakeup(item); 1173 ump = VFSTOUFS(item->wk_mp); 1174 LOCK_OWNED(ump); 1175 KASSERT(ump->softdep_deps > 0, 1176 ("workitem_free: %s: softdep_deps going negative", 1177 ump->um_fs->fs_fsmnt)); 1178 if (--ump->softdep_deps == 0 && ump->softdep_req) 1179 wakeup(&ump->softdep_deps); 1180 KASSERT(dep_current[item->wk_type] > 0, 1181 ("workitem_free: %s: dep_current[%s] going negative", 1182 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1183 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1184 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1185 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1186 atomic_subtract_long(&dep_current[item->wk_type], 1); 1187 ump->softdep_curdeps[item->wk_type] -= 1; 1188 free(item, DtoM(type)); 1189 } 1190 1191 static void 1192 workitem_alloc(item, type, mp) 1193 struct worklist *item; 1194 int type; 1195 struct mount *mp; 1196 { 1197 struct ufsmount *ump; 1198 1199 item->wk_type = type; 1200 item->wk_mp = mp; 1201 item->wk_state = 0; 1202 1203 ump = VFSTOUFS(mp); 1204 ACQUIRE_GBLLOCK(&lk); 1205 dep_current[type]++; 1206 if (dep_current[type] > dep_highuse[type]) 1207 dep_highuse[type] = dep_current[type]; 1208 dep_total[type]++; 1209 FREE_GBLLOCK(&lk); 1210 ACQUIRE_LOCK(ump); 1211 ump->softdep_curdeps[type] += 1; 1212 ump->softdep_deps++; 1213 ump->softdep_accdeps++; 1214 FREE_LOCK(ump); 1215 } 1216 1217 static void 1218 workitem_reassign(item, newtype) 1219 struct worklist *item; 1220 int newtype; 1221 { 1222 struct ufsmount *ump; 1223 1224 ump = VFSTOUFS(item->wk_mp); 1225 LOCK_OWNED(ump); 1226 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1227 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1228 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1229 ump->softdep_curdeps[item->wk_type] -= 1; 1230 ump->softdep_curdeps[newtype] += 1; 1231 KASSERT(dep_current[item->wk_type] > 0, 1232 ("workitem_reassign: %s: dep_current[%s] going negative", 1233 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1234 ACQUIRE_GBLLOCK(&lk); 1235 dep_current[newtype]++; 1236 dep_current[item->wk_type]--; 1237 if (dep_current[newtype] > dep_highuse[newtype]) 1238 dep_highuse[newtype] = dep_current[newtype]; 1239 dep_total[newtype]++; 1240 FREE_GBLLOCK(&lk); 1241 item->wk_type = newtype; 1242 } 1243 1244 /* 1245 * Workitem queue management 1246 */ 1247 static int max_softdeps; /* maximum number of structs before slowdown */ 1248 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1249 static int proc_waiting; /* tracks whether we have a timeout posted */ 1250 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1251 static struct callout softdep_callout; 1252 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1253 static int req_clear_remove; /* syncer process flush some freeblks */ 1254 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1255 1256 /* 1257 * runtime statistics 1258 */ 1259 static int stat_flush_threads; /* number of softdep flushing threads */ 1260 static int stat_worklist_push; /* number of worklist cleanups */ 1261 static int stat_blk_limit_push; /* number of times block limit neared */ 1262 static int stat_ino_limit_push; /* number of times inode limit neared */ 1263 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1264 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1265 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1266 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1267 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1268 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1269 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1270 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1271 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1272 static int stat_journal_min; /* Times hit journal min threshold */ 1273 static int stat_journal_low; /* Times hit journal low threshold */ 1274 static int stat_journal_wait; /* Times blocked in jwait(). */ 1275 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1276 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1277 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1278 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1279 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1280 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1281 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1282 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1283 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1284 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1285 1286 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1287 &max_softdeps, 0, ""); 1288 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1289 &tickdelay, 0, ""); 1290 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1291 &stat_flush_threads, 0, ""); 1292 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1293 &stat_worklist_push, 0,""); 1294 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1295 &stat_blk_limit_push, 0,""); 1296 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1297 &stat_ino_limit_push, 0,""); 1298 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1299 &stat_blk_limit_hit, 0, ""); 1300 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1301 &stat_ino_limit_hit, 0, ""); 1302 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1303 &stat_sync_limit_hit, 0, ""); 1304 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1305 &stat_indir_blk_ptrs, 0, ""); 1306 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1307 &stat_inode_bitmap, 0, ""); 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1309 &stat_direct_blk_ptrs, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1311 &stat_dir_entry, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1313 &stat_jaddref, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1315 &stat_jnewblk, 0, ""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1317 &stat_journal_low, 0, ""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1319 &stat_journal_min, 0, ""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1321 &stat_journal_wait, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1323 &stat_jwait_filepage, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1325 &stat_jwait_freeblks, 0, ""); 1326 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1327 &stat_jwait_inode, 0, ""); 1328 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1329 &stat_jwait_newblk, 0, ""); 1330 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1331 &stat_cleanup_blkrequests, 0, ""); 1332 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1333 &stat_cleanup_inorequests, 0, ""); 1334 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1335 &stat_cleanup_high_delay, 0, ""); 1336 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1337 &stat_cleanup_retries, 0, ""); 1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1339 &stat_cleanup_failures, 0, ""); 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1341 &softdep_flushcache, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1343 &stat_emptyjblocks, 0, ""); 1344 1345 SYSCTL_DECL(_vfs_ffs); 1346 1347 /* Whether to recompute the summary at mount time */ 1348 static int compute_summary_at_mount = 0; 1349 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1350 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1351 static int print_threads = 0; 1352 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1353 &print_threads, 0, "Notify flusher thread start/stop"); 1354 1355 /* List of all filesystems mounted with soft updates */ 1356 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1357 1358 /* 1359 * This function cleans the worklist for a filesystem. 1360 * Each filesystem running with soft dependencies gets its own 1361 * thread to run in this function. The thread is started up in 1362 * softdep_mount and shutdown in softdep_unmount. They show up 1363 * as part of the kernel "bufdaemon" process whose process 1364 * entry is available in bufdaemonproc. 1365 */ 1366 static int searchfailed; 1367 extern struct proc *bufdaemonproc; 1368 static void 1369 softdep_flush(addr) 1370 void *addr; 1371 { 1372 struct mount *mp; 1373 struct thread *td; 1374 struct ufsmount *ump; 1375 1376 td = curthread; 1377 td->td_pflags |= TDP_NORUNNINGBUF; 1378 mp = (struct mount *)addr; 1379 ump = VFSTOUFS(mp); 1380 atomic_add_int(&stat_flush_threads, 1); 1381 ACQUIRE_LOCK(ump); 1382 ump->softdep_flags &= ~FLUSH_STARTING; 1383 wakeup(&ump->softdep_flushtd); 1384 FREE_LOCK(ump); 1385 if (print_threads) { 1386 if (stat_flush_threads == 1) 1387 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1388 bufdaemonproc->p_pid); 1389 printf("Start thread %s\n", td->td_name); 1390 } 1391 for (;;) { 1392 while (softdep_process_worklist(mp, 0) > 0 || 1393 (MOUNTEDSUJ(mp) && 1394 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1395 kthread_suspend_check(); 1396 ACQUIRE_LOCK(ump); 1397 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1398 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1399 "sdflush", hz / 2); 1400 ump->softdep_flags &= ~FLUSH_CLEANUP; 1401 /* 1402 * Check to see if we are done and need to exit. 1403 */ 1404 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1405 FREE_LOCK(ump); 1406 continue; 1407 } 1408 ump->softdep_flags &= ~FLUSH_EXIT; 1409 FREE_LOCK(ump); 1410 wakeup(&ump->softdep_flags); 1411 if (print_threads) 1412 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1413 atomic_subtract_int(&stat_flush_threads, 1); 1414 kthread_exit(); 1415 panic("kthread_exit failed\n"); 1416 } 1417 } 1418 1419 static void 1420 worklist_speedup(mp) 1421 struct mount *mp; 1422 { 1423 struct ufsmount *ump; 1424 1425 ump = VFSTOUFS(mp); 1426 LOCK_OWNED(ump); 1427 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1428 ump->softdep_flags |= FLUSH_CLEANUP; 1429 wakeup(&ump->softdep_flushtd); 1430 } 1431 1432 static int 1433 softdep_speedup(ump) 1434 struct ufsmount *ump; 1435 { 1436 struct ufsmount *altump; 1437 struct mount_softdeps *sdp; 1438 1439 LOCK_OWNED(ump); 1440 worklist_speedup(ump->um_mountp); 1441 bd_speedup(); 1442 /* 1443 * If we have global shortages, then we need other 1444 * filesystems to help with the cleanup. Here we wakeup a 1445 * flusher thread for a filesystem that is over its fair 1446 * share of resources. 1447 */ 1448 if (req_clear_inodedeps || req_clear_remove) { 1449 ACQUIRE_GBLLOCK(&lk); 1450 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1451 if ((altump = sdp->sd_ump) == ump) 1452 continue; 1453 if (((req_clear_inodedeps && 1454 altump->softdep_curdeps[D_INODEDEP] > 1455 max_softdeps / stat_flush_threads) || 1456 (req_clear_remove && 1457 altump->softdep_curdeps[D_DIRREM] > 1458 (max_softdeps / 2) / stat_flush_threads)) && 1459 TRY_ACQUIRE_LOCK(altump)) 1460 break; 1461 } 1462 if (sdp == NULL) { 1463 searchfailed++; 1464 FREE_GBLLOCK(&lk); 1465 } else { 1466 /* 1467 * Move to the end of the list so we pick a 1468 * different one on out next try. 1469 */ 1470 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1471 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1472 FREE_GBLLOCK(&lk); 1473 if ((altump->softdep_flags & 1474 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1475 altump->softdep_flags |= FLUSH_CLEANUP; 1476 altump->um_softdep->sd_cleanups++; 1477 wakeup(&altump->softdep_flushtd); 1478 FREE_LOCK(altump); 1479 } 1480 } 1481 return (speedup_syncer()); 1482 } 1483 1484 /* 1485 * Add an item to the end of the work queue. 1486 * This routine requires that the lock be held. 1487 * This is the only routine that adds items to the list. 1488 * The following routine is the only one that removes items 1489 * and does so in order from first to last. 1490 */ 1491 1492 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1493 #define WK_NODELAY 0x0002 /* Process immediately. */ 1494 1495 static void 1496 add_to_worklist(wk, flags) 1497 struct worklist *wk; 1498 int flags; 1499 { 1500 struct ufsmount *ump; 1501 1502 ump = VFSTOUFS(wk->wk_mp); 1503 LOCK_OWNED(ump); 1504 if (wk->wk_state & ONWORKLIST) 1505 panic("add_to_worklist: %s(0x%X) already on list", 1506 TYPENAME(wk->wk_type), wk->wk_state); 1507 wk->wk_state |= ONWORKLIST; 1508 if (ump->softdep_on_worklist == 0) { 1509 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1510 ump->softdep_worklist_tail = wk; 1511 } else if (flags & WK_HEAD) { 1512 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1513 } else { 1514 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1515 ump->softdep_worklist_tail = wk; 1516 } 1517 ump->softdep_on_worklist += 1; 1518 if (flags & WK_NODELAY) 1519 worklist_speedup(wk->wk_mp); 1520 } 1521 1522 /* 1523 * Remove the item to be processed. If we are removing the last 1524 * item on the list, we need to recalculate the tail pointer. 1525 */ 1526 static void 1527 remove_from_worklist(wk) 1528 struct worklist *wk; 1529 { 1530 struct ufsmount *ump; 1531 1532 ump = VFSTOUFS(wk->wk_mp); 1533 WORKLIST_REMOVE(wk); 1534 if (ump->softdep_worklist_tail == wk) 1535 ump->softdep_worklist_tail = 1536 (struct worklist *)wk->wk_list.le_prev; 1537 ump->softdep_on_worklist -= 1; 1538 } 1539 1540 static void 1541 wake_worklist(wk) 1542 struct worklist *wk; 1543 { 1544 if (wk->wk_state & IOWAITING) { 1545 wk->wk_state &= ~IOWAITING; 1546 wakeup(wk); 1547 } 1548 } 1549 1550 static void 1551 wait_worklist(wk, wmesg) 1552 struct worklist *wk; 1553 char *wmesg; 1554 { 1555 struct ufsmount *ump; 1556 1557 ump = VFSTOUFS(wk->wk_mp); 1558 wk->wk_state |= IOWAITING; 1559 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1560 } 1561 1562 /* 1563 * Process that runs once per second to handle items in the background queue. 1564 * 1565 * Note that we ensure that everything is done in the order in which they 1566 * appear in the queue. The code below depends on this property to ensure 1567 * that blocks of a file are freed before the inode itself is freed. This 1568 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1569 * until all the old ones have been purged from the dependency lists. 1570 */ 1571 static int 1572 softdep_process_worklist(mp, full) 1573 struct mount *mp; 1574 int full; 1575 { 1576 int cnt, matchcnt; 1577 struct ufsmount *ump; 1578 long starttime; 1579 1580 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1581 if (MOUNTEDSOFTDEP(mp) == 0) 1582 return (0); 1583 matchcnt = 0; 1584 ump = VFSTOUFS(mp); 1585 ACQUIRE_LOCK(ump); 1586 starttime = time_second; 1587 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1588 check_clear_deps(mp); 1589 while (ump->softdep_on_worklist > 0) { 1590 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1591 break; 1592 else 1593 matchcnt += cnt; 1594 check_clear_deps(mp); 1595 /* 1596 * We do not generally want to stop for buffer space, but if 1597 * we are really being a buffer hog, we will stop and wait. 1598 */ 1599 if (should_yield()) { 1600 FREE_LOCK(ump); 1601 kern_yield(PRI_USER); 1602 bwillwrite(); 1603 ACQUIRE_LOCK(ump); 1604 } 1605 /* 1606 * Never allow processing to run for more than one 1607 * second. This gives the syncer thread the opportunity 1608 * to pause if appropriate. 1609 */ 1610 if (!full && starttime != time_second) 1611 break; 1612 } 1613 if (full == 0) 1614 journal_unsuspend(ump); 1615 FREE_LOCK(ump); 1616 return (matchcnt); 1617 } 1618 1619 /* 1620 * Process all removes associated with a vnode if we are running out of 1621 * journal space. Any other process which attempts to flush these will 1622 * be unable as we have the vnodes locked. 1623 */ 1624 static void 1625 process_removes(vp) 1626 struct vnode *vp; 1627 { 1628 struct inodedep *inodedep; 1629 struct dirrem *dirrem; 1630 struct ufsmount *ump; 1631 struct mount *mp; 1632 ino_t inum; 1633 1634 mp = vp->v_mount; 1635 ump = VFSTOUFS(mp); 1636 LOCK_OWNED(ump); 1637 inum = VTOI(vp)->i_number; 1638 for (;;) { 1639 top: 1640 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1641 return; 1642 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1643 /* 1644 * If another thread is trying to lock this vnode 1645 * it will fail but we must wait for it to do so 1646 * before we can proceed. 1647 */ 1648 if (dirrem->dm_state & INPROGRESS) { 1649 wait_worklist(&dirrem->dm_list, "pwrwait"); 1650 goto top; 1651 } 1652 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1653 (COMPLETE | ONWORKLIST)) 1654 break; 1655 } 1656 if (dirrem == NULL) 1657 return; 1658 remove_from_worklist(&dirrem->dm_list); 1659 FREE_LOCK(ump); 1660 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1661 panic("process_removes: suspended filesystem"); 1662 handle_workitem_remove(dirrem, 0); 1663 vn_finished_secondary_write(mp); 1664 ACQUIRE_LOCK(ump); 1665 } 1666 } 1667 1668 /* 1669 * Process all truncations associated with a vnode if we are running out 1670 * of journal space. This is called when the vnode lock is already held 1671 * and no other process can clear the truncation. This function returns 1672 * a value greater than zero if it did any work. 1673 */ 1674 static void 1675 process_truncates(vp) 1676 struct vnode *vp; 1677 { 1678 struct inodedep *inodedep; 1679 struct freeblks *freeblks; 1680 struct ufsmount *ump; 1681 struct mount *mp; 1682 ino_t inum; 1683 int cgwait; 1684 1685 mp = vp->v_mount; 1686 ump = VFSTOUFS(mp); 1687 LOCK_OWNED(ump); 1688 inum = VTOI(vp)->i_number; 1689 for (;;) { 1690 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1691 return; 1692 cgwait = 0; 1693 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1694 /* Journal entries not yet written. */ 1695 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1696 jwait(&LIST_FIRST( 1697 &freeblks->fb_jblkdephd)->jb_list, 1698 MNT_WAIT); 1699 break; 1700 } 1701 /* Another thread is executing this item. */ 1702 if (freeblks->fb_state & INPROGRESS) { 1703 wait_worklist(&freeblks->fb_list, "ptrwait"); 1704 break; 1705 } 1706 /* Freeblks is waiting on a inode write. */ 1707 if ((freeblks->fb_state & COMPLETE) == 0) { 1708 FREE_LOCK(ump); 1709 ffs_update(vp, 1); 1710 ACQUIRE_LOCK(ump); 1711 break; 1712 } 1713 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1714 (ALLCOMPLETE | ONWORKLIST)) { 1715 remove_from_worklist(&freeblks->fb_list); 1716 freeblks->fb_state |= INPROGRESS; 1717 FREE_LOCK(ump); 1718 if (vn_start_secondary_write(NULL, &mp, 1719 V_NOWAIT)) 1720 panic("process_truncates: " 1721 "suspended filesystem"); 1722 handle_workitem_freeblocks(freeblks, 0); 1723 vn_finished_secondary_write(mp); 1724 ACQUIRE_LOCK(ump); 1725 break; 1726 } 1727 if (freeblks->fb_cgwait) 1728 cgwait++; 1729 } 1730 if (cgwait) { 1731 FREE_LOCK(ump); 1732 sync_cgs(mp, MNT_WAIT); 1733 ffs_sync_snap(mp, MNT_WAIT); 1734 ACQUIRE_LOCK(ump); 1735 continue; 1736 } 1737 if (freeblks == NULL) 1738 break; 1739 } 1740 return; 1741 } 1742 1743 /* 1744 * Process one item on the worklist. 1745 */ 1746 static int 1747 process_worklist_item(mp, target, flags) 1748 struct mount *mp; 1749 int target; 1750 int flags; 1751 { 1752 struct worklist sentinel; 1753 struct worklist *wk; 1754 struct ufsmount *ump; 1755 int matchcnt; 1756 int error; 1757 1758 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1759 /* 1760 * If we are being called because of a process doing a 1761 * copy-on-write, then it is not safe to write as we may 1762 * recurse into the copy-on-write routine. 1763 */ 1764 if (curthread->td_pflags & TDP_COWINPROGRESS) 1765 return (-1); 1766 PHOLD(curproc); /* Don't let the stack go away. */ 1767 ump = VFSTOUFS(mp); 1768 LOCK_OWNED(ump); 1769 matchcnt = 0; 1770 sentinel.wk_mp = NULL; 1771 sentinel.wk_type = D_SENTINEL; 1772 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1773 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1774 wk = LIST_NEXT(&sentinel, wk_list)) { 1775 if (wk->wk_type == D_SENTINEL) { 1776 LIST_REMOVE(&sentinel, wk_list); 1777 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1778 continue; 1779 } 1780 if (wk->wk_state & INPROGRESS) 1781 panic("process_worklist_item: %p already in progress.", 1782 wk); 1783 wk->wk_state |= INPROGRESS; 1784 remove_from_worklist(wk); 1785 FREE_LOCK(ump); 1786 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1787 panic("process_worklist_item: suspended filesystem"); 1788 switch (wk->wk_type) { 1789 case D_DIRREM: 1790 /* removal of a directory entry */ 1791 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1792 break; 1793 1794 case D_FREEBLKS: 1795 /* releasing blocks and/or fragments from a file */ 1796 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1797 flags); 1798 break; 1799 1800 case D_FREEFRAG: 1801 /* releasing a fragment when replaced as a file grows */ 1802 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1803 error = 0; 1804 break; 1805 1806 case D_FREEFILE: 1807 /* releasing an inode when its link count drops to 0 */ 1808 handle_workitem_freefile(WK_FREEFILE(wk)); 1809 error = 0; 1810 break; 1811 1812 default: 1813 panic("%s_process_worklist: Unknown type %s", 1814 "softdep", TYPENAME(wk->wk_type)); 1815 /* NOTREACHED */ 1816 } 1817 vn_finished_secondary_write(mp); 1818 ACQUIRE_LOCK(ump); 1819 if (error == 0) { 1820 if (++matchcnt == target) 1821 break; 1822 continue; 1823 } 1824 /* 1825 * We have to retry the worklist item later. Wake up any 1826 * waiters who may be able to complete it immediately and 1827 * add the item back to the head so we don't try to execute 1828 * it again. 1829 */ 1830 wk->wk_state &= ~INPROGRESS; 1831 wake_worklist(wk); 1832 add_to_worklist(wk, WK_HEAD); 1833 } 1834 LIST_REMOVE(&sentinel, wk_list); 1835 /* Sentinal could've become the tail from remove_from_worklist. */ 1836 if (ump->softdep_worklist_tail == &sentinel) 1837 ump->softdep_worklist_tail = 1838 (struct worklist *)sentinel.wk_list.le_prev; 1839 PRELE(curproc); 1840 return (matchcnt); 1841 } 1842 1843 /* 1844 * Move dependencies from one buffer to another. 1845 */ 1846 int 1847 softdep_move_dependencies(oldbp, newbp) 1848 struct buf *oldbp; 1849 struct buf *newbp; 1850 { 1851 struct worklist *wk, *wktail; 1852 struct ufsmount *ump; 1853 int dirty; 1854 1855 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1856 return (0); 1857 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1858 ("softdep_move_dependencies called on non-softdep filesystem")); 1859 dirty = 0; 1860 wktail = NULL; 1861 ump = VFSTOUFS(wk->wk_mp); 1862 ACQUIRE_LOCK(ump); 1863 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1864 LIST_REMOVE(wk, wk_list); 1865 if (wk->wk_type == D_BMSAFEMAP && 1866 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1867 dirty = 1; 1868 if (wktail == 0) 1869 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1870 else 1871 LIST_INSERT_AFTER(wktail, wk, wk_list); 1872 wktail = wk; 1873 } 1874 FREE_LOCK(ump); 1875 1876 return (dirty); 1877 } 1878 1879 /* 1880 * Purge the work list of all items associated with a particular mount point. 1881 */ 1882 int 1883 softdep_flushworklist(oldmnt, countp, td) 1884 struct mount *oldmnt; 1885 int *countp; 1886 struct thread *td; 1887 { 1888 struct vnode *devvp; 1889 struct ufsmount *ump; 1890 int count, error; 1891 1892 /* 1893 * Alternately flush the block device associated with the mount 1894 * point and process any dependencies that the flushing 1895 * creates. We continue until no more worklist dependencies 1896 * are found. 1897 */ 1898 *countp = 0; 1899 error = 0; 1900 ump = VFSTOUFS(oldmnt); 1901 devvp = ump->um_devvp; 1902 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1903 *countp += count; 1904 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1905 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1906 VOP_UNLOCK(devvp, 0); 1907 if (error != 0) 1908 break; 1909 } 1910 return (error); 1911 } 1912 1913 #define SU_WAITIDLE_RETRIES 20 1914 static int 1915 softdep_waitidle(struct mount *mp, int flags __unused) 1916 { 1917 struct ufsmount *ump; 1918 struct vnode *devvp; 1919 struct thread *td; 1920 int error, i; 1921 1922 ump = VFSTOUFS(mp); 1923 devvp = ump->um_devvp; 1924 td = curthread; 1925 error = 0; 1926 ACQUIRE_LOCK(ump); 1927 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1928 ump->softdep_req = 1; 1929 KASSERT((flags & FORCECLOSE) == 0 || 1930 ump->softdep_on_worklist == 0, 1931 ("softdep_waitidle: work added after flush")); 1932 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1933 "softdeps", 10 * hz); 1934 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1935 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1936 VOP_UNLOCK(devvp, 0); 1937 if (error != 0) 1938 break; 1939 ACQUIRE_LOCK(ump); 1940 } 1941 ump->softdep_req = 0; 1942 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1943 error = EBUSY; 1944 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1945 mp); 1946 } 1947 FREE_LOCK(ump); 1948 return (error); 1949 } 1950 1951 /* 1952 * Flush all vnodes and worklist items associated with a specified mount point. 1953 */ 1954 int 1955 softdep_flushfiles(oldmnt, flags, td) 1956 struct mount *oldmnt; 1957 int flags; 1958 struct thread *td; 1959 { 1960 #ifdef QUOTA 1961 struct ufsmount *ump; 1962 int i; 1963 #endif 1964 int error, early, depcount, loopcnt, retry_flush_count, retry; 1965 int morework; 1966 1967 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1968 ("softdep_flushfiles called on non-softdep filesystem")); 1969 loopcnt = 10; 1970 retry_flush_count = 3; 1971 retry_flush: 1972 error = 0; 1973 1974 /* 1975 * Alternately flush the vnodes associated with the mount 1976 * point and process any dependencies that the flushing 1977 * creates. In theory, this loop can happen at most twice, 1978 * but we give it a few extra just to be sure. 1979 */ 1980 for (; loopcnt > 0; loopcnt--) { 1981 /* 1982 * Do another flush in case any vnodes were brought in 1983 * as part of the cleanup operations. 1984 */ 1985 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1986 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1987 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1988 break; 1989 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1990 depcount == 0) 1991 break; 1992 } 1993 /* 1994 * If we are unmounting then it is an error to fail. If we 1995 * are simply trying to downgrade to read-only, then filesystem 1996 * activity can keep us busy forever, so we just fail with EBUSY. 1997 */ 1998 if (loopcnt == 0) { 1999 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2000 panic("softdep_flushfiles: looping"); 2001 error = EBUSY; 2002 } 2003 if (!error) 2004 error = softdep_waitidle(oldmnt, flags); 2005 if (!error) { 2006 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2007 retry = 0; 2008 MNT_ILOCK(oldmnt); 2009 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 2010 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 2011 morework = oldmnt->mnt_nvnodelistsize > 0; 2012 #ifdef QUOTA 2013 ump = VFSTOUFS(oldmnt); 2014 UFS_LOCK(ump); 2015 for (i = 0; i < MAXQUOTAS; i++) { 2016 if (ump->um_quotas[i] != NULLVP) 2017 morework = 1; 2018 } 2019 UFS_UNLOCK(ump); 2020 #endif 2021 if (morework) { 2022 if (--retry_flush_count > 0) { 2023 retry = 1; 2024 loopcnt = 3; 2025 } else 2026 error = EBUSY; 2027 } 2028 MNT_IUNLOCK(oldmnt); 2029 if (retry) 2030 goto retry_flush; 2031 } 2032 } 2033 return (error); 2034 } 2035 2036 /* 2037 * Structure hashing. 2038 * 2039 * There are four types of structures that can be looked up: 2040 * 1) pagedep structures identified by mount point, inode number, 2041 * and logical block. 2042 * 2) inodedep structures identified by mount point and inode number. 2043 * 3) newblk structures identified by mount point and 2044 * physical block number. 2045 * 4) bmsafemap structures identified by mount point and 2046 * cylinder group number. 2047 * 2048 * The "pagedep" and "inodedep" dependency structures are hashed 2049 * separately from the file blocks and inodes to which they correspond. 2050 * This separation helps when the in-memory copy of an inode or 2051 * file block must be replaced. It also obviates the need to access 2052 * an inode or file page when simply updating (or de-allocating) 2053 * dependency structures. Lookup of newblk structures is needed to 2054 * find newly allocated blocks when trying to associate them with 2055 * their allocdirect or allocindir structure. 2056 * 2057 * The lookup routines optionally create and hash a new instance when 2058 * an existing entry is not found. The bmsafemap lookup routine always 2059 * allocates a new structure if an existing one is not found. 2060 */ 2061 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2062 #define NODELAY 0x0002 /* cannot do background work */ 2063 2064 /* 2065 * Structures and routines associated with pagedep caching. 2066 */ 2067 #define PAGEDEP_HASH(ump, inum, lbn) \ 2068 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2069 2070 static int 2071 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2072 struct pagedep_hashhead *pagedephd; 2073 ino_t ino; 2074 ufs_lbn_t lbn; 2075 struct pagedep **pagedeppp; 2076 { 2077 struct pagedep *pagedep; 2078 2079 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2080 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2081 *pagedeppp = pagedep; 2082 return (1); 2083 } 2084 } 2085 *pagedeppp = NULL; 2086 return (0); 2087 } 2088 /* 2089 * Look up a pagedep. Return 1 if found, 0 otherwise. 2090 * If not found, allocate if DEPALLOC flag is passed. 2091 * Found or allocated entry is returned in pagedeppp. 2092 * This routine must be called with splbio interrupts blocked. 2093 */ 2094 static int 2095 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2096 struct mount *mp; 2097 struct buf *bp; 2098 ino_t ino; 2099 ufs_lbn_t lbn; 2100 int flags; 2101 struct pagedep **pagedeppp; 2102 { 2103 struct pagedep *pagedep; 2104 struct pagedep_hashhead *pagedephd; 2105 struct worklist *wk; 2106 struct ufsmount *ump; 2107 int ret; 2108 int i; 2109 2110 ump = VFSTOUFS(mp); 2111 LOCK_OWNED(ump); 2112 if (bp) { 2113 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2114 if (wk->wk_type == D_PAGEDEP) { 2115 *pagedeppp = WK_PAGEDEP(wk); 2116 return (1); 2117 } 2118 } 2119 } 2120 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2121 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2122 if (ret) { 2123 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2124 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2125 return (1); 2126 } 2127 if ((flags & DEPALLOC) == 0) 2128 return (0); 2129 FREE_LOCK(ump); 2130 pagedep = malloc(sizeof(struct pagedep), 2131 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2132 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2133 ACQUIRE_LOCK(ump); 2134 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2135 if (*pagedeppp) { 2136 /* 2137 * This should never happen since we only create pagedeps 2138 * with the vnode lock held. Could be an assert. 2139 */ 2140 WORKITEM_FREE(pagedep, D_PAGEDEP); 2141 return (ret); 2142 } 2143 pagedep->pd_ino = ino; 2144 pagedep->pd_lbn = lbn; 2145 LIST_INIT(&pagedep->pd_dirremhd); 2146 LIST_INIT(&pagedep->pd_pendinghd); 2147 for (i = 0; i < DAHASHSZ; i++) 2148 LIST_INIT(&pagedep->pd_diraddhd[i]); 2149 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2150 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2151 *pagedeppp = pagedep; 2152 return (0); 2153 } 2154 2155 /* 2156 * Structures and routines associated with inodedep caching. 2157 */ 2158 #define INODEDEP_HASH(ump, inum) \ 2159 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2160 2161 static int 2162 inodedep_find(inodedephd, inum, inodedeppp) 2163 struct inodedep_hashhead *inodedephd; 2164 ino_t inum; 2165 struct inodedep **inodedeppp; 2166 { 2167 struct inodedep *inodedep; 2168 2169 LIST_FOREACH(inodedep, inodedephd, id_hash) 2170 if (inum == inodedep->id_ino) 2171 break; 2172 if (inodedep) { 2173 *inodedeppp = inodedep; 2174 return (1); 2175 } 2176 *inodedeppp = NULL; 2177 2178 return (0); 2179 } 2180 /* 2181 * Look up an inodedep. Return 1 if found, 0 if not found. 2182 * If not found, allocate if DEPALLOC flag is passed. 2183 * Found or allocated entry is returned in inodedeppp. 2184 * This routine must be called with splbio interrupts blocked. 2185 */ 2186 static int 2187 inodedep_lookup(mp, inum, flags, inodedeppp) 2188 struct mount *mp; 2189 ino_t inum; 2190 int flags; 2191 struct inodedep **inodedeppp; 2192 { 2193 struct inodedep *inodedep; 2194 struct inodedep_hashhead *inodedephd; 2195 struct ufsmount *ump; 2196 struct fs *fs; 2197 2198 ump = VFSTOUFS(mp); 2199 LOCK_OWNED(ump); 2200 fs = ump->um_fs; 2201 inodedephd = INODEDEP_HASH(ump, inum); 2202 2203 if (inodedep_find(inodedephd, inum, inodedeppp)) 2204 return (1); 2205 if ((flags & DEPALLOC) == 0) 2206 return (0); 2207 /* 2208 * If the system is over its limit and our filesystem is 2209 * responsible for more than our share of that usage and 2210 * we are not in a rush, request some inodedep cleanup. 2211 */ 2212 while (dep_current[D_INODEDEP] > max_softdeps && 2213 (flags & NODELAY) == 0 && 2214 ump->softdep_curdeps[D_INODEDEP] > 2215 max_softdeps / stat_flush_threads) 2216 request_cleanup(mp, FLUSH_INODES); 2217 FREE_LOCK(ump); 2218 inodedep = malloc(sizeof(struct inodedep), 2219 M_INODEDEP, M_SOFTDEP_FLAGS); 2220 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2221 ACQUIRE_LOCK(ump); 2222 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2223 WORKITEM_FREE(inodedep, D_INODEDEP); 2224 return (1); 2225 } 2226 inodedep->id_fs = fs; 2227 inodedep->id_ino = inum; 2228 inodedep->id_state = ALLCOMPLETE; 2229 inodedep->id_nlinkdelta = 0; 2230 inodedep->id_savedino1 = NULL; 2231 inodedep->id_savedsize = -1; 2232 inodedep->id_savedextsize = -1; 2233 inodedep->id_savednlink = -1; 2234 inodedep->id_bmsafemap = NULL; 2235 inodedep->id_mkdiradd = NULL; 2236 LIST_INIT(&inodedep->id_dirremhd); 2237 LIST_INIT(&inodedep->id_pendinghd); 2238 LIST_INIT(&inodedep->id_inowait); 2239 LIST_INIT(&inodedep->id_bufwait); 2240 TAILQ_INIT(&inodedep->id_inoreflst); 2241 TAILQ_INIT(&inodedep->id_inoupdt); 2242 TAILQ_INIT(&inodedep->id_newinoupdt); 2243 TAILQ_INIT(&inodedep->id_extupdt); 2244 TAILQ_INIT(&inodedep->id_newextupdt); 2245 TAILQ_INIT(&inodedep->id_freeblklst); 2246 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2247 *inodedeppp = inodedep; 2248 return (0); 2249 } 2250 2251 /* 2252 * Structures and routines associated with newblk caching. 2253 */ 2254 #define NEWBLK_HASH(ump, inum) \ 2255 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2256 2257 static int 2258 newblk_find(newblkhd, newblkno, flags, newblkpp) 2259 struct newblk_hashhead *newblkhd; 2260 ufs2_daddr_t newblkno; 2261 int flags; 2262 struct newblk **newblkpp; 2263 { 2264 struct newblk *newblk; 2265 2266 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2267 if (newblkno != newblk->nb_newblkno) 2268 continue; 2269 /* 2270 * If we're creating a new dependency don't match those that 2271 * have already been converted to allocdirects. This is for 2272 * a frag extend. 2273 */ 2274 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2275 continue; 2276 break; 2277 } 2278 if (newblk) { 2279 *newblkpp = newblk; 2280 return (1); 2281 } 2282 *newblkpp = NULL; 2283 return (0); 2284 } 2285 2286 /* 2287 * Look up a newblk. Return 1 if found, 0 if not found. 2288 * If not found, allocate if DEPALLOC flag is passed. 2289 * Found or allocated entry is returned in newblkpp. 2290 */ 2291 static int 2292 newblk_lookup(mp, newblkno, flags, newblkpp) 2293 struct mount *mp; 2294 ufs2_daddr_t newblkno; 2295 int flags; 2296 struct newblk **newblkpp; 2297 { 2298 struct newblk *newblk; 2299 struct newblk_hashhead *newblkhd; 2300 struct ufsmount *ump; 2301 2302 ump = VFSTOUFS(mp); 2303 LOCK_OWNED(ump); 2304 newblkhd = NEWBLK_HASH(ump, newblkno); 2305 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2306 return (1); 2307 if ((flags & DEPALLOC) == 0) 2308 return (0); 2309 FREE_LOCK(ump); 2310 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2311 M_SOFTDEP_FLAGS | M_ZERO); 2312 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2313 ACQUIRE_LOCK(ump); 2314 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2315 WORKITEM_FREE(newblk, D_NEWBLK); 2316 return (1); 2317 } 2318 newblk->nb_freefrag = NULL; 2319 LIST_INIT(&newblk->nb_indirdeps); 2320 LIST_INIT(&newblk->nb_newdirblk); 2321 LIST_INIT(&newblk->nb_jwork); 2322 newblk->nb_state = ATTACHED; 2323 newblk->nb_newblkno = newblkno; 2324 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2325 *newblkpp = newblk; 2326 return (0); 2327 } 2328 2329 /* 2330 * Structures and routines associated with freed indirect block caching. 2331 */ 2332 #define INDIR_HASH(ump, blkno) \ 2333 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2334 2335 /* 2336 * Lookup an indirect block in the indir hash table. The freework is 2337 * removed and potentially freed. The caller must do a blocking journal 2338 * write before writing to the blkno. 2339 */ 2340 static int 2341 indirblk_lookup(mp, blkno) 2342 struct mount *mp; 2343 ufs2_daddr_t blkno; 2344 { 2345 struct freework *freework; 2346 struct indir_hashhead *wkhd; 2347 struct ufsmount *ump; 2348 2349 ump = VFSTOUFS(mp); 2350 wkhd = INDIR_HASH(ump, blkno); 2351 TAILQ_FOREACH(freework, wkhd, fw_next) { 2352 if (freework->fw_blkno != blkno) 2353 continue; 2354 indirblk_remove(freework); 2355 return (1); 2356 } 2357 return (0); 2358 } 2359 2360 /* 2361 * Insert an indirect block represented by freework into the indirblk 2362 * hash table so that it may prevent the block from being re-used prior 2363 * to the journal being written. 2364 */ 2365 static void 2366 indirblk_insert(freework) 2367 struct freework *freework; 2368 { 2369 struct jblocks *jblocks; 2370 struct jseg *jseg; 2371 struct ufsmount *ump; 2372 2373 ump = VFSTOUFS(freework->fw_list.wk_mp); 2374 jblocks = ump->softdep_jblocks; 2375 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2376 if (jseg == NULL) 2377 return; 2378 2379 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2380 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2381 fw_next); 2382 freework->fw_state &= ~DEPCOMPLETE; 2383 } 2384 2385 static void 2386 indirblk_remove(freework) 2387 struct freework *freework; 2388 { 2389 struct ufsmount *ump; 2390 2391 ump = VFSTOUFS(freework->fw_list.wk_mp); 2392 LIST_REMOVE(freework, fw_segs); 2393 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2394 freework->fw_state |= DEPCOMPLETE; 2395 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2396 WORKITEM_FREE(freework, D_FREEWORK); 2397 } 2398 2399 /* 2400 * Executed during filesystem system initialization before 2401 * mounting any filesystems. 2402 */ 2403 void 2404 softdep_initialize() 2405 { 2406 2407 TAILQ_INIT(&softdepmounts); 2408 max_softdeps = desiredvnodes * 4; 2409 2410 /* initialise bioops hack */ 2411 bioops.io_start = softdep_disk_io_initiation; 2412 bioops.io_complete = softdep_disk_write_complete; 2413 bioops.io_deallocate = softdep_deallocate_dependencies; 2414 bioops.io_countdeps = softdep_count_dependencies; 2415 2416 /* Initialize the callout with an mtx. */ 2417 callout_init_mtx(&softdep_callout, &lk, 0); 2418 } 2419 2420 /* 2421 * Executed after all filesystems have been unmounted during 2422 * filesystem module unload. 2423 */ 2424 void 2425 softdep_uninitialize() 2426 { 2427 2428 /* clear bioops hack */ 2429 bioops.io_start = NULL; 2430 bioops.io_complete = NULL; 2431 bioops.io_deallocate = NULL; 2432 bioops.io_countdeps = NULL; 2433 2434 callout_drain(&softdep_callout); 2435 } 2436 2437 /* 2438 * Called at mount time to notify the dependency code that a 2439 * filesystem wishes to use it. 2440 */ 2441 int 2442 softdep_mount(devvp, mp, fs, cred) 2443 struct vnode *devvp; 2444 struct mount *mp; 2445 struct fs *fs; 2446 struct ucred *cred; 2447 { 2448 struct csum_total cstotal; 2449 struct mount_softdeps *sdp; 2450 struct ufsmount *ump; 2451 struct cg *cgp; 2452 struct buf *bp; 2453 int i, error, cyl; 2454 2455 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2456 M_WAITOK | M_ZERO); 2457 MNT_ILOCK(mp); 2458 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2459 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2460 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2461 MNTK_SOFTDEP | MNTK_NOASYNC; 2462 } 2463 ump = VFSTOUFS(mp); 2464 ump->um_softdep = sdp; 2465 MNT_IUNLOCK(mp); 2466 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2467 sdp->sd_ump = ump; 2468 LIST_INIT(&ump->softdep_workitem_pending); 2469 LIST_INIT(&ump->softdep_journal_pending); 2470 TAILQ_INIT(&ump->softdep_unlinked); 2471 LIST_INIT(&ump->softdep_dirtycg); 2472 ump->softdep_worklist_tail = NULL; 2473 ump->softdep_on_worklist = 0; 2474 ump->softdep_deps = 0; 2475 LIST_INIT(&ump->softdep_mkdirlisthd); 2476 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2477 &ump->pagedep_hash_size); 2478 ump->pagedep_nextclean = 0; 2479 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2480 &ump->inodedep_hash_size); 2481 ump->inodedep_nextclean = 0; 2482 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2483 &ump->newblk_hash_size); 2484 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2485 &ump->bmsafemap_hash_size); 2486 i = 1 << (ffs(desiredvnodes / 10) - 1); 2487 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2488 M_FREEWORK, M_WAITOK); 2489 ump->indir_hash_size = i - 1; 2490 for (i = 0; i <= ump->indir_hash_size; i++) 2491 TAILQ_INIT(&ump->indir_hashtbl[i]); 2492 ACQUIRE_GBLLOCK(&lk); 2493 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2494 FREE_GBLLOCK(&lk); 2495 if ((fs->fs_flags & FS_SUJ) && 2496 (error = journal_mount(mp, fs, cred)) != 0) { 2497 printf("Failed to start journal: %d\n", error); 2498 softdep_unmount(mp); 2499 return (error); 2500 } 2501 /* 2502 * Start our flushing thread in the bufdaemon process. 2503 */ 2504 ACQUIRE_LOCK(ump); 2505 ump->softdep_flags |= FLUSH_STARTING; 2506 FREE_LOCK(ump); 2507 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2508 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2509 mp->mnt_stat.f_mntonname); 2510 ACQUIRE_LOCK(ump); 2511 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2512 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2513 hz / 2); 2514 } 2515 FREE_LOCK(ump); 2516 /* 2517 * When doing soft updates, the counters in the 2518 * superblock may have gotten out of sync. Recomputation 2519 * can take a long time and can be deferred for background 2520 * fsck. However, the old behavior of scanning the cylinder 2521 * groups and recalculating them at mount time is available 2522 * by setting vfs.ffs.compute_summary_at_mount to one. 2523 */ 2524 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2525 return (0); 2526 bzero(&cstotal, sizeof cstotal); 2527 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2528 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2529 fs->fs_cgsize, cred, &bp)) != 0) { 2530 brelse(bp); 2531 softdep_unmount(mp); 2532 return (error); 2533 } 2534 cgp = (struct cg *)bp->b_data; 2535 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2536 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2537 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2538 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2539 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2540 brelse(bp); 2541 } 2542 #ifdef DEBUG 2543 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2544 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2545 #endif 2546 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2547 return (0); 2548 } 2549 2550 void 2551 softdep_unmount(mp) 2552 struct mount *mp; 2553 { 2554 struct ufsmount *ump; 2555 #ifdef INVARIANTS 2556 int i; 2557 #endif 2558 2559 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2560 ("softdep_unmount called on non-softdep filesystem")); 2561 ump = VFSTOUFS(mp); 2562 MNT_ILOCK(mp); 2563 mp->mnt_flag &= ~MNT_SOFTDEP; 2564 if (MOUNTEDSUJ(mp) == 0) { 2565 MNT_IUNLOCK(mp); 2566 } else { 2567 mp->mnt_flag &= ~MNT_SUJ; 2568 MNT_IUNLOCK(mp); 2569 journal_unmount(ump); 2570 } 2571 /* 2572 * Shut down our flushing thread. Check for NULL is if 2573 * softdep_mount errors out before the thread has been created. 2574 */ 2575 if (ump->softdep_flushtd != NULL) { 2576 ACQUIRE_LOCK(ump); 2577 ump->softdep_flags |= FLUSH_EXIT; 2578 wakeup(&ump->softdep_flushtd); 2579 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2580 "sdwait", 0); 2581 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2582 ("Thread shutdown failed")); 2583 } 2584 /* 2585 * Free up our resources. 2586 */ 2587 ACQUIRE_GBLLOCK(&lk); 2588 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2589 FREE_GBLLOCK(&lk); 2590 rw_destroy(LOCK_PTR(ump)); 2591 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2592 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2593 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2594 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2595 ump->bmsafemap_hash_size); 2596 free(ump->indir_hashtbl, M_FREEWORK); 2597 #ifdef INVARIANTS 2598 for (i = 0; i <= D_LAST; i++) 2599 KASSERT(ump->softdep_curdeps[i] == 0, 2600 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2601 TYPENAME(i), ump->softdep_curdeps[i])); 2602 #endif 2603 free(ump->um_softdep, M_MOUNTDATA); 2604 } 2605 2606 static struct jblocks * 2607 jblocks_create(void) 2608 { 2609 struct jblocks *jblocks; 2610 2611 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2612 TAILQ_INIT(&jblocks->jb_segs); 2613 jblocks->jb_avail = 10; 2614 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2615 M_JBLOCKS, M_WAITOK | M_ZERO); 2616 2617 return (jblocks); 2618 } 2619 2620 static ufs2_daddr_t 2621 jblocks_alloc(jblocks, bytes, actual) 2622 struct jblocks *jblocks; 2623 int bytes; 2624 int *actual; 2625 { 2626 ufs2_daddr_t daddr; 2627 struct jextent *jext; 2628 int freecnt; 2629 int blocks; 2630 2631 blocks = bytes / DEV_BSIZE; 2632 jext = &jblocks->jb_extent[jblocks->jb_head]; 2633 freecnt = jext->je_blocks - jblocks->jb_off; 2634 if (freecnt == 0) { 2635 jblocks->jb_off = 0; 2636 if (++jblocks->jb_head > jblocks->jb_used) 2637 jblocks->jb_head = 0; 2638 jext = &jblocks->jb_extent[jblocks->jb_head]; 2639 freecnt = jext->je_blocks; 2640 } 2641 if (freecnt > blocks) 2642 freecnt = blocks; 2643 *actual = freecnt * DEV_BSIZE; 2644 daddr = jext->je_daddr + jblocks->jb_off; 2645 jblocks->jb_off += freecnt; 2646 jblocks->jb_free -= freecnt; 2647 2648 return (daddr); 2649 } 2650 2651 static void 2652 jblocks_free(jblocks, mp, bytes) 2653 struct jblocks *jblocks; 2654 struct mount *mp; 2655 int bytes; 2656 { 2657 2658 LOCK_OWNED(VFSTOUFS(mp)); 2659 jblocks->jb_free += bytes / DEV_BSIZE; 2660 if (jblocks->jb_suspended) 2661 worklist_speedup(mp); 2662 wakeup(jblocks); 2663 } 2664 2665 static void 2666 jblocks_destroy(jblocks) 2667 struct jblocks *jblocks; 2668 { 2669 2670 if (jblocks->jb_extent) 2671 free(jblocks->jb_extent, M_JBLOCKS); 2672 free(jblocks, M_JBLOCKS); 2673 } 2674 2675 static void 2676 jblocks_add(jblocks, daddr, blocks) 2677 struct jblocks *jblocks; 2678 ufs2_daddr_t daddr; 2679 int blocks; 2680 { 2681 struct jextent *jext; 2682 2683 jblocks->jb_blocks += blocks; 2684 jblocks->jb_free += blocks; 2685 jext = &jblocks->jb_extent[jblocks->jb_used]; 2686 /* Adding the first block. */ 2687 if (jext->je_daddr == 0) { 2688 jext->je_daddr = daddr; 2689 jext->je_blocks = blocks; 2690 return; 2691 } 2692 /* Extending the last extent. */ 2693 if (jext->je_daddr + jext->je_blocks == daddr) { 2694 jext->je_blocks += blocks; 2695 return; 2696 } 2697 /* Adding a new extent. */ 2698 if (++jblocks->jb_used == jblocks->jb_avail) { 2699 jblocks->jb_avail *= 2; 2700 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2701 M_JBLOCKS, M_WAITOK | M_ZERO); 2702 memcpy(jext, jblocks->jb_extent, 2703 sizeof(struct jextent) * jblocks->jb_used); 2704 free(jblocks->jb_extent, M_JBLOCKS); 2705 jblocks->jb_extent = jext; 2706 } 2707 jext = &jblocks->jb_extent[jblocks->jb_used]; 2708 jext->je_daddr = daddr; 2709 jext->je_blocks = blocks; 2710 return; 2711 } 2712 2713 int 2714 softdep_journal_lookup(mp, vpp) 2715 struct mount *mp; 2716 struct vnode **vpp; 2717 { 2718 struct componentname cnp; 2719 struct vnode *dvp; 2720 ino_t sujournal; 2721 int error; 2722 2723 error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp); 2724 if (error) 2725 return (error); 2726 bzero(&cnp, sizeof(cnp)); 2727 cnp.cn_nameiop = LOOKUP; 2728 cnp.cn_flags = ISLASTCN; 2729 cnp.cn_thread = curthread; 2730 cnp.cn_cred = curthread->td_ucred; 2731 cnp.cn_pnbuf = SUJ_FILE; 2732 cnp.cn_nameptr = SUJ_FILE; 2733 cnp.cn_namelen = strlen(SUJ_FILE); 2734 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2735 vput(dvp); 2736 if (error != 0) 2737 return (error); 2738 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2739 return (error); 2740 } 2741 2742 /* 2743 * Open and verify the journal file. 2744 */ 2745 static int 2746 journal_mount(mp, fs, cred) 2747 struct mount *mp; 2748 struct fs *fs; 2749 struct ucred *cred; 2750 { 2751 struct jblocks *jblocks; 2752 struct ufsmount *ump; 2753 struct vnode *vp; 2754 struct inode *ip; 2755 ufs2_daddr_t blkno; 2756 int bcount; 2757 int error; 2758 int i; 2759 2760 ump = VFSTOUFS(mp); 2761 ump->softdep_journal_tail = NULL; 2762 ump->softdep_on_journal = 0; 2763 ump->softdep_accdeps = 0; 2764 ump->softdep_req = 0; 2765 ump->softdep_jblocks = NULL; 2766 error = softdep_journal_lookup(mp, &vp); 2767 if (error != 0) { 2768 printf("Failed to find journal. Use tunefs to create one\n"); 2769 return (error); 2770 } 2771 ip = VTOI(vp); 2772 if (ip->i_size < SUJ_MIN) { 2773 error = ENOSPC; 2774 goto out; 2775 } 2776 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2777 jblocks = jblocks_create(); 2778 for (i = 0; i < bcount; i++) { 2779 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2780 if (error) 2781 break; 2782 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2783 } 2784 if (error) { 2785 jblocks_destroy(jblocks); 2786 goto out; 2787 } 2788 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2789 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2790 ump->softdep_jblocks = jblocks; 2791 out: 2792 if (error == 0) { 2793 MNT_ILOCK(mp); 2794 mp->mnt_flag |= MNT_SUJ; 2795 mp->mnt_flag &= ~MNT_SOFTDEP; 2796 MNT_IUNLOCK(mp); 2797 /* 2798 * Only validate the journal contents if the 2799 * filesystem is clean, otherwise we write the logs 2800 * but they'll never be used. If the filesystem was 2801 * still dirty when we mounted it the journal is 2802 * invalid and a new journal can only be valid if it 2803 * starts from a clean mount. 2804 */ 2805 if (fs->fs_clean) { 2806 DIP_SET(ip, i_modrev, fs->fs_mtime); 2807 ip->i_flags |= IN_MODIFIED; 2808 ffs_update(vp, 1); 2809 } 2810 } 2811 vput(vp); 2812 return (error); 2813 } 2814 2815 static void 2816 journal_unmount(ump) 2817 struct ufsmount *ump; 2818 { 2819 2820 if (ump->softdep_jblocks) 2821 jblocks_destroy(ump->softdep_jblocks); 2822 ump->softdep_jblocks = NULL; 2823 } 2824 2825 /* 2826 * Called when a journal record is ready to be written. Space is allocated 2827 * and the journal entry is created when the journal is flushed to stable 2828 * store. 2829 */ 2830 static void 2831 add_to_journal(wk) 2832 struct worklist *wk; 2833 { 2834 struct ufsmount *ump; 2835 2836 ump = VFSTOUFS(wk->wk_mp); 2837 LOCK_OWNED(ump); 2838 if (wk->wk_state & ONWORKLIST) 2839 panic("add_to_journal: %s(0x%X) already on list", 2840 TYPENAME(wk->wk_type), wk->wk_state); 2841 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2842 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2843 ump->softdep_jblocks->jb_age = ticks; 2844 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2845 } else 2846 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2847 ump->softdep_journal_tail = wk; 2848 ump->softdep_on_journal += 1; 2849 } 2850 2851 /* 2852 * Remove an arbitrary item for the journal worklist maintain the tail 2853 * pointer. This happens when a new operation obviates the need to 2854 * journal an old operation. 2855 */ 2856 static void 2857 remove_from_journal(wk) 2858 struct worklist *wk; 2859 { 2860 struct ufsmount *ump; 2861 2862 ump = VFSTOUFS(wk->wk_mp); 2863 LOCK_OWNED(ump); 2864 #ifdef SUJ_DEBUG 2865 { 2866 struct worklist *wkn; 2867 2868 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2869 if (wkn == wk) 2870 break; 2871 if (wkn == NULL) 2872 panic("remove_from_journal: %p is not in journal", wk); 2873 } 2874 #endif 2875 /* 2876 * We emulate a TAILQ to save space in most structures which do not 2877 * require TAILQ semantics. Here we must update the tail position 2878 * when removing the tail which is not the final entry. This works 2879 * only if the worklist linkage are at the beginning of the structure. 2880 */ 2881 if (ump->softdep_journal_tail == wk) 2882 ump->softdep_journal_tail = 2883 (struct worklist *)wk->wk_list.le_prev; 2884 2885 WORKLIST_REMOVE(wk); 2886 ump->softdep_on_journal -= 1; 2887 } 2888 2889 /* 2890 * Check for journal space as well as dependency limits so the prelink 2891 * code can throttle both journaled and non-journaled filesystems. 2892 * Threshold is 0 for low and 1 for min. 2893 */ 2894 static int 2895 journal_space(ump, thresh) 2896 struct ufsmount *ump; 2897 int thresh; 2898 { 2899 struct jblocks *jblocks; 2900 int limit, avail; 2901 2902 jblocks = ump->softdep_jblocks; 2903 if (jblocks == NULL) 2904 return (1); 2905 /* 2906 * We use a tighter restriction here to prevent request_cleanup() 2907 * running in threads from running into locks we currently hold. 2908 * We have to be over the limit and our filesystem has to be 2909 * responsible for more than our share of that usage. 2910 */ 2911 limit = (max_softdeps / 10) * 9; 2912 if (dep_current[D_INODEDEP] > limit && 2913 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2914 return (0); 2915 if (thresh) 2916 thresh = jblocks->jb_min; 2917 else 2918 thresh = jblocks->jb_low; 2919 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2920 avail = jblocks->jb_free - avail; 2921 2922 return (avail > thresh); 2923 } 2924 2925 static void 2926 journal_suspend(ump) 2927 struct ufsmount *ump; 2928 { 2929 struct jblocks *jblocks; 2930 struct mount *mp; 2931 2932 mp = UFSTOVFS(ump); 2933 jblocks = ump->softdep_jblocks; 2934 MNT_ILOCK(mp); 2935 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2936 stat_journal_min++; 2937 mp->mnt_kern_flag |= MNTK_SUSPEND; 2938 mp->mnt_susp_owner = ump->softdep_flushtd; 2939 } 2940 jblocks->jb_suspended = 1; 2941 MNT_IUNLOCK(mp); 2942 } 2943 2944 static int 2945 journal_unsuspend(struct ufsmount *ump) 2946 { 2947 struct jblocks *jblocks; 2948 struct mount *mp; 2949 2950 mp = UFSTOVFS(ump); 2951 jblocks = ump->softdep_jblocks; 2952 2953 if (jblocks != NULL && jblocks->jb_suspended && 2954 journal_space(ump, jblocks->jb_min)) { 2955 jblocks->jb_suspended = 0; 2956 FREE_LOCK(ump); 2957 mp->mnt_susp_owner = curthread; 2958 vfs_write_resume(mp, 0); 2959 ACQUIRE_LOCK(ump); 2960 return (1); 2961 } 2962 return (0); 2963 } 2964 2965 /* 2966 * Called before any allocation function to be certain that there is 2967 * sufficient space in the journal prior to creating any new records. 2968 * Since in the case of block allocation we may have multiple locked 2969 * buffers at the time of the actual allocation we can not block 2970 * when the journal records are created. Doing so would create a deadlock 2971 * if any of these buffers needed to be flushed to reclaim space. Instead 2972 * we require a sufficiently large amount of available space such that 2973 * each thread in the system could have passed this allocation check and 2974 * still have sufficient free space. With 20% of a minimum journal size 2975 * of 1MB we have 6553 records available. 2976 */ 2977 int 2978 softdep_prealloc(vp, waitok) 2979 struct vnode *vp; 2980 int waitok; 2981 { 2982 struct ufsmount *ump; 2983 2984 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 2985 ("softdep_prealloc called on non-softdep filesystem")); 2986 /* 2987 * Nothing to do if we are not running journaled soft updates. 2988 * If we currently hold the snapshot lock, we must avoid handling 2989 * other resources that could cause deadlock. 2990 */ 2991 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp))) 2992 return (0); 2993 ump = VFSTOUFS(vp->v_mount); 2994 ACQUIRE_LOCK(ump); 2995 if (journal_space(ump, 0)) { 2996 FREE_LOCK(ump); 2997 return (0); 2998 } 2999 stat_journal_low++; 3000 FREE_LOCK(ump); 3001 if (waitok == MNT_NOWAIT) 3002 return (ENOSPC); 3003 /* 3004 * Attempt to sync this vnode once to flush any journal 3005 * work attached to it. 3006 */ 3007 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3008 ffs_syncvnode(vp, waitok, 0); 3009 ACQUIRE_LOCK(ump); 3010 process_removes(vp); 3011 process_truncates(vp); 3012 if (journal_space(ump, 0) == 0) { 3013 softdep_speedup(ump); 3014 if (journal_space(ump, 1) == 0) 3015 journal_suspend(ump); 3016 } 3017 FREE_LOCK(ump); 3018 3019 return (0); 3020 } 3021 3022 /* 3023 * Before adjusting a link count on a vnode verify that we have sufficient 3024 * journal space. If not, process operations that depend on the currently 3025 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3026 * and softdep flush threads can not acquire these locks to reclaim space. 3027 */ 3028 static void 3029 softdep_prelink(dvp, vp) 3030 struct vnode *dvp; 3031 struct vnode *vp; 3032 { 3033 struct ufsmount *ump; 3034 3035 ump = VFSTOUFS(dvp->v_mount); 3036 LOCK_OWNED(ump); 3037 /* 3038 * Nothing to do if we have sufficient journal space. 3039 * If we currently hold the snapshot lock, we must avoid 3040 * handling other resources that could cause deadlock. 3041 */ 3042 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3043 return; 3044 stat_journal_low++; 3045 FREE_LOCK(ump); 3046 if (vp) 3047 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3048 ffs_syncvnode(dvp, MNT_WAIT, 0); 3049 ACQUIRE_LOCK(ump); 3050 /* Process vp before dvp as it may create .. removes. */ 3051 if (vp) { 3052 process_removes(vp); 3053 process_truncates(vp); 3054 } 3055 process_removes(dvp); 3056 process_truncates(dvp); 3057 softdep_speedup(ump); 3058 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3059 if (journal_space(ump, 0) == 0) { 3060 softdep_speedup(ump); 3061 if (journal_space(ump, 1) == 0) 3062 journal_suspend(ump); 3063 } 3064 } 3065 3066 static void 3067 jseg_write(ump, jseg, data) 3068 struct ufsmount *ump; 3069 struct jseg *jseg; 3070 uint8_t *data; 3071 { 3072 struct jsegrec *rec; 3073 3074 rec = (struct jsegrec *)data; 3075 rec->jsr_seq = jseg->js_seq; 3076 rec->jsr_oldest = jseg->js_oldseq; 3077 rec->jsr_cnt = jseg->js_cnt; 3078 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3079 rec->jsr_crc = 0; 3080 rec->jsr_time = ump->um_fs->fs_mtime; 3081 } 3082 3083 static inline void 3084 inoref_write(inoref, jseg, rec) 3085 struct inoref *inoref; 3086 struct jseg *jseg; 3087 struct jrefrec *rec; 3088 { 3089 3090 inoref->if_jsegdep->jd_seg = jseg; 3091 rec->jr_ino = inoref->if_ino; 3092 rec->jr_parent = inoref->if_parent; 3093 rec->jr_nlink = inoref->if_nlink; 3094 rec->jr_mode = inoref->if_mode; 3095 rec->jr_diroff = inoref->if_diroff; 3096 } 3097 3098 static void 3099 jaddref_write(jaddref, jseg, data) 3100 struct jaddref *jaddref; 3101 struct jseg *jseg; 3102 uint8_t *data; 3103 { 3104 struct jrefrec *rec; 3105 3106 rec = (struct jrefrec *)data; 3107 rec->jr_op = JOP_ADDREF; 3108 inoref_write(&jaddref->ja_ref, jseg, rec); 3109 } 3110 3111 static void 3112 jremref_write(jremref, jseg, data) 3113 struct jremref *jremref; 3114 struct jseg *jseg; 3115 uint8_t *data; 3116 { 3117 struct jrefrec *rec; 3118 3119 rec = (struct jrefrec *)data; 3120 rec->jr_op = JOP_REMREF; 3121 inoref_write(&jremref->jr_ref, jseg, rec); 3122 } 3123 3124 static void 3125 jmvref_write(jmvref, jseg, data) 3126 struct jmvref *jmvref; 3127 struct jseg *jseg; 3128 uint8_t *data; 3129 { 3130 struct jmvrec *rec; 3131 3132 rec = (struct jmvrec *)data; 3133 rec->jm_op = JOP_MVREF; 3134 rec->jm_ino = jmvref->jm_ino; 3135 rec->jm_parent = jmvref->jm_parent; 3136 rec->jm_oldoff = jmvref->jm_oldoff; 3137 rec->jm_newoff = jmvref->jm_newoff; 3138 } 3139 3140 static void 3141 jnewblk_write(jnewblk, jseg, data) 3142 struct jnewblk *jnewblk; 3143 struct jseg *jseg; 3144 uint8_t *data; 3145 { 3146 struct jblkrec *rec; 3147 3148 jnewblk->jn_jsegdep->jd_seg = jseg; 3149 rec = (struct jblkrec *)data; 3150 rec->jb_op = JOP_NEWBLK; 3151 rec->jb_ino = jnewblk->jn_ino; 3152 rec->jb_blkno = jnewblk->jn_blkno; 3153 rec->jb_lbn = jnewblk->jn_lbn; 3154 rec->jb_frags = jnewblk->jn_frags; 3155 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3156 } 3157 3158 static void 3159 jfreeblk_write(jfreeblk, jseg, data) 3160 struct jfreeblk *jfreeblk; 3161 struct jseg *jseg; 3162 uint8_t *data; 3163 { 3164 struct jblkrec *rec; 3165 3166 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3167 rec = (struct jblkrec *)data; 3168 rec->jb_op = JOP_FREEBLK; 3169 rec->jb_ino = jfreeblk->jf_ino; 3170 rec->jb_blkno = jfreeblk->jf_blkno; 3171 rec->jb_lbn = jfreeblk->jf_lbn; 3172 rec->jb_frags = jfreeblk->jf_frags; 3173 rec->jb_oldfrags = 0; 3174 } 3175 3176 static void 3177 jfreefrag_write(jfreefrag, jseg, data) 3178 struct jfreefrag *jfreefrag; 3179 struct jseg *jseg; 3180 uint8_t *data; 3181 { 3182 struct jblkrec *rec; 3183 3184 jfreefrag->fr_jsegdep->jd_seg = jseg; 3185 rec = (struct jblkrec *)data; 3186 rec->jb_op = JOP_FREEBLK; 3187 rec->jb_ino = jfreefrag->fr_ino; 3188 rec->jb_blkno = jfreefrag->fr_blkno; 3189 rec->jb_lbn = jfreefrag->fr_lbn; 3190 rec->jb_frags = jfreefrag->fr_frags; 3191 rec->jb_oldfrags = 0; 3192 } 3193 3194 static void 3195 jtrunc_write(jtrunc, jseg, data) 3196 struct jtrunc *jtrunc; 3197 struct jseg *jseg; 3198 uint8_t *data; 3199 { 3200 struct jtrncrec *rec; 3201 3202 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3203 rec = (struct jtrncrec *)data; 3204 rec->jt_op = JOP_TRUNC; 3205 rec->jt_ino = jtrunc->jt_ino; 3206 rec->jt_size = jtrunc->jt_size; 3207 rec->jt_extsize = jtrunc->jt_extsize; 3208 } 3209 3210 static void 3211 jfsync_write(jfsync, jseg, data) 3212 struct jfsync *jfsync; 3213 struct jseg *jseg; 3214 uint8_t *data; 3215 { 3216 struct jtrncrec *rec; 3217 3218 rec = (struct jtrncrec *)data; 3219 rec->jt_op = JOP_SYNC; 3220 rec->jt_ino = jfsync->jfs_ino; 3221 rec->jt_size = jfsync->jfs_size; 3222 rec->jt_extsize = jfsync->jfs_extsize; 3223 } 3224 3225 static void 3226 softdep_flushjournal(mp) 3227 struct mount *mp; 3228 { 3229 struct jblocks *jblocks; 3230 struct ufsmount *ump; 3231 3232 if (MOUNTEDSUJ(mp) == 0) 3233 return; 3234 ump = VFSTOUFS(mp); 3235 jblocks = ump->softdep_jblocks; 3236 ACQUIRE_LOCK(ump); 3237 while (ump->softdep_on_journal) { 3238 jblocks->jb_needseg = 1; 3239 softdep_process_journal(mp, NULL, MNT_WAIT); 3240 } 3241 FREE_LOCK(ump); 3242 } 3243 3244 static void softdep_synchronize_completed(struct bio *); 3245 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3246 3247 static void 3248 softdep_synchronize_completed(bp) 3249 struct bio *bp; 3250 { 3251 struct jseg *oldest; 3252 struct jseg *jseg; 3253 struct ufsmount *ump; 3254 3255 /* 3256 * caller1 marks the last segment written before we issued the 3257 * synchronize cache. 3258 */ 3259 jseg = bp->bio_caller1; 3260 if (jseg == NULL) { 3261 g_destroy_bio(bp); 3262 return; 3263 } 3264 ump = VFSTOUFS(jseg->js_list.wk_mp); 3265 ACQUIRE_LOCK(ump); 3266 oldest = NULL; 3267 /* 3268 * Mark all the journal entries waiting on the synchronize cache 3269 * as completed so they may continue on. 3270 */ 3271 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3272 jseg->js_state |= COMPLETE; 3273 oldest = jseg; 3274 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3275 } 3276 /* 3277 * Restart deferred journal entry processing from the oldest 3278 * completed jseg. 3279 */ 3280 if (oldest) 3281 complete_jsegs(oldest); 3282 3283 FREE_LOCK(ump); 3284 g_destroy_bio(bp); 3285 } 3286 3287 /* 3288 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3289 * barriers. The journal must be written prior to any blocks that depend 3290 * on it and the journal can not be released until the blocks have be 3291 * written. This code handles both barriers simultaneously. 3292 */ 3293 static void 3294 softdep_synchronize(bp, ump, caller1) 3295 struct bio *bp; 3296 struct ufsmount *ump; 3297 void *caller1; 3298 { 3299 3300 bp->bio_cmd = BIO_FLUSH; 3301 bp->bio_flags |= BIO_ORDERED; 3302 bp->bio_data = NULL; 3303 bp->bio_offset = ump->um_cp->provider->mediasize; 3304 bp->bio_length = 0; 3305 bp->bio_done = softdep_synchronize_completed; 3306 bp->bio_caller1 = caller1; 3307 g_io_request(bp, 3308 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3309 } 3310 3311 /* 3312 * Flush some journal records to disk. 3313 */ 3314 static void 3315 softdep_process_journal(mp, needwk, flags) 3316 struct mount *mp; 3317 struct worklist *needwk; 3318 int flags; 3319 { 3320 struct jblocks *jblocks; 3321 struct ufsmount *ump; 3322 struct worklist *wk; 3323 struct jseg *jseg; 3324 struct buf *bp; 3325 struct bio *bio; 3326 uint8_t *data; 3327 struct fs *fs; 3328 int shouldflush; 3329 int segwritten; 3330 int jrecmin; /* Minimum records per block. */ 3331 int jrecmax; /* Maximum records per block. */ 3332 int size; 3333 int cnt; 3334 int off; 3335 int devbsize; 3336 3337 if (MOUNTEDSUJ(mp) == 0) 3338 return; 3339 shouldflush = softdep_flushcache; 3340 bio = NULL; 3341 jseg = NULL; 3342 ump = VFSTOUFS(mp); 3343 LOCK_OWNED(ump); 3344 fs = ump->um_fs; 3345 jblocks = ump->softdep_jblocks; 3346 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3347 /* 3348 * We write anywhere between a disk block and fs block. The upper 3349 * bound is picked to prevent buffer cache fragmentation and limit 3350 * processing time per I/O. 3351 */ 3352 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3353 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3354 segwritten = 0; 3355 for (;;) { 3356 cnt = ump->softdep_on_journal; 3357 /* 3358 * Criteria for writing a segment: 3359 * 1) We have a full block. 3360 * 2) We're called from jwait() and haven't found the 3361 * journal item yet. 3362 * 3) Always write if needseg is set. 3363 * 4) If we are called from process_worklist and have 3364 * not yet written anything we write a partial block 3365 * to enforce a 1 second maximum latency on journal 3366 * entries. 3367 */ 3368 if (cnt < (jrecmax - 1) && needwk == NULL && 3369 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3370 break; 3371 cnt++; 3372 /* 3373 * Verify some free journal space. softdep_prealloc() should 3374 * guarantee that we don't run out so this is indicative of 3375 * a problem with the flow control. Try to recover 3376 * gracefully in any event. 3377 */ 3378 while (jblocks->jb_free == 0) { 3379 if (flags != MNT_WAIT) 3380 break; 3381 printf("softdep: Out of journal space!\n"); 3382 softdep_speedup(ump); 3383 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3384 } 3385 FREE_LOCK(ump); 3386 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3387 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3388 LIST_INIT(&jseg->js_entries); 3389 LIST_INIT(&jseg->js_indirs); 3390 jseg->js_state = ATTACHED; 3391 if (shouldflush == 0) 3392 jseg->js_state |= COMPLETE; 3393 else if (bio == NULL) 3394 bio = g_alloc_bio(); 3395 jseg->js_jblocks = jblocks; 3396 bp = geteblk(fs->fs_bsize, 0); 3397 ACQUIRE_LOCK(ump); 3398 /* 3399 * If there was a race while we were allocating the block 3400 * and jseg the entry we care about was likely written. 3401 * We bail out in both the WAIT and NOWAIT case and assume 3402 * the caller will loop if the entry it cares about is 3403 * not written. 3404 */ 3405 cnt = ump->softdep_on_journal; 3406 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3407 bp->b_flags |= B_INVAL | B_NOCACHE; 3408 WORKITEM_FREE(jseg, D_JSEG); 3409 FREE_LOCK(ump); 3410 brelse(bp); 3411 ACQUIRE_LOCK(ump); 3412 break; 3413 } 3414 /* 3415 * Calculate the disk block size required for the available 3416 * records rounded to the min size. 3417 */ 3418 if (cnt == 0) 3419 size = devbsize; 3420 else if (cnt < jrecmax) 3421 size = howmany(cnt, jrecmin) * devbsize; 3422 else 3423 size = fs->fs_bsize; 3424 /* 3425 * Allocate a disk block for this journal data and account 3426 * for truncation of the requested size if enough contiguous 3427 * space was not available. 3428 */ 3429 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3430 bp->b_lblkno = bp->b_blkno; 3431 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3432 bp->b_bcount = size; 3433 bp->b_flags &= ~B_INVAL; 3434 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3435 /* 3436 * Initialize our jseg with cnt records. Assign the next 3437 * sequence number to it and link it in-order. 3438 */ 3439 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3440 jseg->js_buf = bp; 3441 jseg->js_cnt = cnt; 3442 jseg->js_refs = cnt + 1; /* Self ref. */ 3443 jseg->js_size = size; 3444 jseg->js_seq = jblocks->jb_nextseq++; 3445 if (jblocks->jb_oldestseg == NULL) 3446 jblocks->jb_oldestseg = jseg; 3447 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3448 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3449 if (jblocks->jb_writeseg == NULL) 3450 jblocks->jb_writeseg = jseg; 3451 /* 3452 * Start filling in records from the pending list. 3453 */ 3454 data = bp->b_data; 3455 off = 0; 3456 3457 /* 3458 * Always put a header on the first block. 3459 * XXX As with below, there might not be a chance to get 3460 * into the loop. Ensure that something valid is written. 3461 */ 3462 jseg_write(ump, jseg, data); 3463 off += JREC_SIZE; 3464 data = bp->b_data + off; 3465 3466 /* 3467 * XXX Something is wrong here. There's no work to do, 3468 * but we need to perform and I/O and allow it to complete 3469 * anyways. 3470 */ 3471 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3472 stat_emptyjblocks++; 3473 3474 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3475 != NULL) { 3476 if (cnt == 0) 3477 break; 3478 /* Place a segment header on every device block. */ 3479 if ((off % devbsize) == 0) { 3480 jseg_write(ump, jseg, data); 3481 off += JREC_SIZE; 3482 data = bp->b_data + off; 3483 } 3484 if (wk == needwk) 3485 needwk = NULL; 3486 remove_from_journal(wk); 3487 wk->wk_state |= INPROGRESS; 3488 WORKLIST_INSERT(&jseg->js_entries, wk); 3489 switch (wk->wk_type) { 3490 case D_JADDREF: 3491 jaddref_write(WK_JADDREF(wk), jseg, data); 3492 break; 3493 case D_JREMREF: 3494 jremref_write(WK_JREMREF(wk), jseg, data); 3495 break; 3496 case D_JMVREF: 3497 jmvref_write(WK_JMVREF(wk), jseg, data); 3498 break; 3499 case D_JNEWBLK: 3500 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3501 break; 3502 case D_JFREEBLK: 3503 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3504 break; 3505 case D_JFREEFRAG: 3506 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3507 break; 3508 case D_JTRUNC: 3509 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3510 break; 3511 case D_JFSYNC: 3512 jfsync_write(WK_JFSYNC(wk), jseg, data); 3513 break; 3514 default: 3515 panic("process_journal: Unknown type %s", 3516 TYPENAME(wk->wk_type)); 3517 /* NOTREACHED */ 3518 } 3519 off += JREC_SIZE; 3520 data = bp->b_data + off; 3521 cnt--; 3522 } 3523 3524 /* Clear any remaining space so we don't leak kernel data */ 3525 if (size > off) 3526 bzero(data, size - off); 3527 3528 /* 3529 * Write this one buffer and continue. 3530 */ 3531 segwritten = 1; 3532 jblocks->jb_needseg = 0; 3533 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3534 FREE_LOCK(ump); 3535 pbgetvp(ump->um_devvp, bp); 3536 /* 3537 * We only do the blocking wait once we find the journal 3538 * entry we're looking for. 3539 */ 3540 if (needwk == NULL && flags == MNT_WAIT) 3541 bwrite(bp); 3542 else 3543 bawrite(bp); 3544 ACQUIRE_LOCK(ump); 3545 } 3546 /* 3547 * If we wrote a segment issue a synchronize cache so the journal 3548 * is reflected on disk before the data is written. Since reclaiming 3549 * journal space also requires writing a journal record this 3550 * process also enforces a barrier before reclamation. 3551 */ 3552 if (segwritten && shouldflush) { 3553 softdep_synchronize(bio, ump, 3554 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3555 } else if (bio) 3556 g_destroy_bio(bio); 3557 /* 3558 * If we've suspended the filesystem because we ran out of journal 3559 * space either try to sync it here to make some progress or 3560 * unsuspend it if we already have. 3561 */ 3562 if (flags == 0 && jblocks->jb_suspended) { 3563 if (journal_unsuspend(ump)) 3564 return; 3565 FREE_LOCK(ump); 3566 VFS_SYNC(mp, MNT_NOWAIT); 3567 ffs_sbupdate(ump, MNT_WAIT, 0); 3568 ACQUIRE_LOCK(ump); 3569 } 3570 } 3571 3572 /* 3573 * Complete a jseg, allowing all dependencies awaiting journal writes 3574 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3575 * structures so that the journal segment can be freed to reclaim space. 3576 */ 3577 static void 3578 complete_jseg(jseg) 3579 struct jseg *jseg; 3580 { 3581 struct worklist *wk; 3582 struct jmvref *jmvref; 3583 int waiting; 3584 #ifdef INVARIANTS 3585 int i = 0; 3586 #endif 3587 3588 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3589 WORKLIST_REMOVE(wk); 3590 waiting = wk->wk_state & IOWAITING; 3591 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3592 wk->wk_state |= COMPLETE; 3593 KASSERT(i++ < jseg->js_cnt, 3594 ("handle_written_jseg: overflow %d >= %d", 3595 i - 1, jseg->js_cnt)); 3596 switch (wk->wk_type) { 3597 case D_JADDREF: 3598 handle_written_jaddref(WK_JADDREF(wk)); 3599 break; 3600 case D_JREMREF: 3601 handle_written_jremref(WK_JREMREF(wk)); 3602 break; 3603 case D_JMVREF: 3604 rele_jseg(jseg); /* No jsegdep. */ 3605 jmvref = WK_JMVREF(wk); 3606 LIST_REMOVE(jmvref, jm_deps); 3607 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3608 free_pagedep(jmvref->jm_pagedep); 3609 WORKITEM_FREE(jmvref, D_JMVREF); 3610 break; 3611 case D_JNEWBLK: 3612 handle_written_jnewblk(WK_JNEWBLK(wk)); 3613 break; 3614 case D_JFREEBLK: 3615 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3616 break; 3617 case D_JTRUNC: 3618 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3619 break; 3620 case D_JFSYNC: 3621 rele_jseg(jseg); /* No jsegdep. */ 3622 WORKITEM_FREE(wk, D_JFSYNC); 3623 break; 3624 case D_JFREEFRAG: 3625 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3626 break; 3627 default: 3628 panic("handle_written_jseg: Unknown type %s", 3629 TYPENAME(wk->wk_type)); 3630 /* NOTREACHED */ 3631 } 3632 if (waiting) 3633 wakeup(wk); 3634 } 3635 /* Release the self reference so the structure may be freed. */ 3636 rele_jseg(jseg); 3637 } 3638 3639 /* 3640 * Determine which jsegs are ready for completion processing. Waits for 3641 * synchronize cache to complete as well as forcing in-order completion 3642 * of journal entries. 3643 */ 3644 static void 3645 complete_jsegs(jseg) 3646 struct jseg *jseg; 3647 { 3648 struct jblocks *jblocks; 3649 struct jseg *jsegn; 3650 3651 jblocks = jseg->js_jblocks; 3652 /* 3653 * Don't allow out of order completions. If this isn't the first 3654 * block wait for it to write before we're done. 3655 */ 3656 if (jseg != jblocks->jb_writeseg) 3657 return; 3658 /* Iterate through available jsegs processing their entries. */ 3659 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3660 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3661 jsegn = TAILQ_NEXT(jseg, js_next); 3662 complete_jseg(jseg); 3663 jseg = jsegn; 3664 } 3665 jblocks->jb_writeseg = jseg; 3666 /* 3667 * Attempt to free jsegs now that oldestwrseq may have advanced. 3668 */ 3669 free_jsegs(jblocks); 3670 } 3671 3672 /* 3673 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3674 * the final completions. 3675 */ 3676 static void 3677 handle_written_jseg(jseg, bp) 3678 struct jseg *jseg; 3679 struct buf *bp; 3680 { 3681 3682 if (jseg->js_refs == 0) 3683 panic("handle_written_jseg: No self-reference on %p", jseg); 3684 jseg->js_state |= DEPCOMPLETE; 3685 /* 3686 * We'll never need this buffer again, set flags so it will be 3687 * discarded. 3688 */ 3689 bp->b_flags |= B_INVAL | B_NOCACHE; 3690 pbrelvp(bp); 3691 complete_jsegs(jseg); 3692 } 3693 3694 static inline struct jsegdep * 3695 inoref_jseg(inoref) 3696 struct inoref *inoref; 3697 { 3698 struct jsegdep *jsegdep; 3699 3700 jsegdep = inoref->if_jsegdep; 3701 inoref->if_jsegdep = NULL; 3702 3703 return (jsegdep); 3704 } 3705 3706 /* 3707 * Called once a jremref has made it to stable store. The jremref is marked 3708 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3709 * for the jremref to complete will be awoken by free_jremref. 3710 */ 3711 static void 3712 handle_written_jremref(jremref) 3713 struct jremref *jremref; 3714 { 3715 struct inodedep *inodedep; 3716 struct jsegdep *jsegdep; 3717 struct dirrem *dirrem; 3718 3719 /* Grab the jsegdep. */ 3720 jsegdep = inoref_jseg(&jremref->jr_ref); 3721 /* 3722 * Remove us from the inoref list. 3723 */ 3724 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3725 0, &inodedep) == 0) 3726 panic("handle_written_jremref: Lost inodedep"); 3727 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3728 /* 3729 * Complete the dirrem. 3730 */ 3731 dirrem = jremref->jr_dirrem; 3732 jremref->jr_dirrem = NULL; 3733 LIST_REMOVE(jremref, jr_deps); 3734 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3735 jwork_insert(&dirrem->dm_jwork, jsegdep); 3736 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3737 (dirrem->dm_state & COMPLETE) != 0) 3738 add_to_worklist(&dirrem->dm_list, 0); 3739 free_jremref(jremref); 3740 } 3741 3742 /* 3743 * Called once a jaddref has made it to stable store. The dependency is 3744 * marked complete and any dependent structures are added to the inode 3745 * bufwait list to be completed as soon as it is written. If a bitmap write 3746 * depends on this entry we move the inode into the inodedephd of the 3747 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3748 */ 3749 static void 3750 handle_written_jaddref(jaddref) 3751 struct jaddref *jaddref; 3752 { 3753 struct jsegdep *jsegdep; 3754 struct inodedep *inodedep; 3755 struct diradd *diradd; 3756 struct mkdir *mkdir; 3757 3758 /* Grab the jsegdep. */ 3759 jsegdep = inoref_jseg(&jaddref->ja_ref); 3760 mkdir = NULL; 3761 diradd = NULL; 3762 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3763 0, &inodedep) == 0) 3764 panic("handle_written_jaddref: Lost inodedep."); 3765 if (jaddref->ja_diradd == NULL) 3766 panic("handle_written_jaddref: No dependency"); 3767 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3768 diradd = jaddref->ja_diradd; 3769 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3770 } else if (jaddref->ja_state & MKDIR_PARENT) { 3771 mkdir = jaddref->ja_mkdir; 3772 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3773 } else if (jaddref->ja_state & MKDIR_BODY) 3774 mkdir = jaddref->ja_mkdir; 3775 else 3776 panic("handle_written_jaddref: Unknown dependency %p", 3777 jaddref->ja_diradd); 3778 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3779 /* 3780 * Remove us from the inode list. 3781 */ 3782 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3783 /* 3784 * The mkdir may be waiting on the jaddref to clear before freeing. 3785 */ 3786 if (mkdir) { 3787 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3788 ("handle_written_jaddref: Incorrect type for mkdir %s", 3789 TYPENAME(mkdir->md_list.wk_type))); 3790 mkdir->md_jaddref = NULL; 3791 diradd = mkdir->md_diradd; 3792 mkdir->md_state |= DEPCOMPLETE; 3793 complete_mkdir(mkdir); 3794 } 3795 jwork_insert(&diradd->da_jwork, jsegdep); 3796 if (jaddref->ja_state & NEWBLOCK) { 3797 inodedep->id_state |= ONDEPLIST; 3798 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3799 inodedep, id_deps); 3800 } 3801 free_jaddref(jaddref); 3802 } 3803 3804 /* 3805 * Called once a jnewblk journal is written. The allocdirect or allocindir 3806 * is placed in the bmsafemap to await notification of a written bitmap. If 3807 * the operation was canceled we add the segdep to the appropriate 3808 * dependency to free the journal space once the canceling operation 3809 * completes. 3810 */ 3811 static void 3812 handle_written_jnewblk(jnewblk) 3813 struct jnewblk *jnewblk; 3814 { 3815 struct bmsafemap *bmsafemap; 3816 struct freefrag *freefrag; 3817 struct freework *freework; 3818 struct jsegdep *jsegdep; 3819 struct newblk *newblk; 3820 3821 /* Grab the jsegdep. */ 3822 jsegdep = jnewblk->jn_jsegdep; 3823 jnewblk->jn_jsegdep = NULL; 3824 if (jnewblk->jn_dep == NULL) 3825 panic("handle_written_jnewblk: No dependency for the segdep."); 3826 switch (jnewblk->jn_dep->wk_type) { 3827 case D_NEWBLK: 3828 case D_ALLOCDIRECT: 3829 case D_ALLOCINDIR: 3830 /* 3831 * Add the written block to the bmsafemap so it can 3832 * be notified when the bitmap is on disk. 3833 */ 3834 newblk = WK_NEWBLK(jnewblk->jn_dep); 3835 newblk->nb_jnewblk = NULL; 3836 if ((newblk->nb_state & GOINGAWAY) == 0) { 3837 bmsafemap = newblk->nb_bmsafemap; 3838 newblk->nb_state |= ONDEPLIST; 3839 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3840 nb_deps); 3841 } 3842 jwork_insert(&newblk->nb_jwork, jsegdep); 3843 break; 3844 case D_FREEFRAG: 3845 /* 3846 * A newblock being removed by a freefrag when replaced by 3847 * frag extension. 3848 */ 3849 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3850 freefrag->ff_jdep = NULL; 3851 jwork_insert(&freefrag->ff_jwork, jsegdep); 3852 break; 3853 case D_FREEWORK: 3854 /* 3855 * A direct block was removed by truncate. 3856 */ 3857 freework = WK_FREEWORK(jnewblk->jn_dep); 3858 freework->fw_jnewblk = NULL; 3859 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3860 break; 3861 default: 3862 panic("handle_written_jnewblk: Unknown type %d.", 3863 jnewblk->jn_dep->wk_type); 3864 } 3865 jnewblk->jn_dep = NULL; 3866 free_jnewblk(jnewblk); 3867 } 3868 3869 /* 3870 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3871 * an in-flight allocation that has not yet been committed. Divorce us 3872 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3873 * to the worklist. 3874 */ 3875 static void 3876 cancel_jfreefrag(jfreefrag) 3877 struct jfreefrag *jfreefrag; 3878 { 3879 struct freefrag *freefrag; 3880 3881 if (jfreefrag->fr_jsegdep) { 3882 free_jsegdep(jfreefrag->fr_jsegdep); 3883 jfreefrag->fr_jsegdep = NULL; 3884 } 3885 freefrag = jfreefrag->fr_freefrag; 3886 jfreefrag->fr_freefrag = NULL; 3887 free_jfreefrag(jfreefrag); 3888 freefrag->ff_state |= DEPCOMPLETE; 3889 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3890 } 3891 3892 /* 3893 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3894 */ 3895 static void 3896 free_jfreefrag(jfreefrag) 3897 struct jfreefrag *jfreefrag; 3898 { 3899 3900 if (jfreefrag->fr_state & INPROGRESS) 3901 WORKLIST_REMOVE(&jfreefrag->fr_list); 3902 else if (jfreefrag->fr_state & ONWORKLIST) 3903 remove_from_journal(&jfreefrag->fr_list); 3904 if (jfreefrag->fr_freefrag != NULL) 3905 panic("free_jfreefrag: Still attached to a freefrag."); 3906 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3907 } 3908 3909 /* 3910 * Called when the journal write for a jfreefrag completes. The parent 3911 * freefrag is added to the worklist if this completes its dependencies. 3912 */ 3913 static void 3914 handle_written_jfreefrag(jfreefrag) 3915 struct jfreefrag *jfreefrag; 3916 { 3917 struct jsegdep *jsegdep; 3918 struct freefrag *freefrag; 3919 3920 /* Grab the jsegdep. */ 3921 jsegdep = jfreefrag->fr_jsegdep; 3922 jfreefrag->fr_jsegdep = NULL; 3923 freefrag = jfreefrag->fr_freefrag; 3924 if (freefrag == NULL) 3925 panic("handle_written_jfreefrag: No freefrag."); 3926 freefrag->ff_state |= DEPCOMPLETE; 3927 freefrag->ff_jdep = NULL; 3928 jwork_insert(&freefrag->ff_jwork, jsegdep); 3929 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3930 add_to_worklist(&freefrag->ff_list, 0); 3931 jfreefrag->fr_freefrag = NULL; 3932 free_jfreefrag(jfreefrag); 3933 } 3934 3935 /* 3936 * Called when the journal write for a jfreeblk completes. The jfreeblk 3937 * is removed from the freeblks list of pending journal writes and the 3938 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3939 * have been reclaimed. 3940 */ 3941 static void 3942 handle_written_jblkdep(jblkdep) 3943 struct jblkdep *jblkdep; 3944 { 3945 struct freeblks *freeblks; 3946 struct jsegdep *jsegdep; 3947 3948 /* Grab the jsegdep. */ 3949 jsegdep = jblkdep->jb_jsegdep; 3950 jblkdep->jb_jsegdep = NULL; 3951 freeblks = jblkdep->jb_freeblks; 3952 LIST_REMOVE(jblkdep, jb_deps); 3953 jwork_insert(&freeblks->fb_jwork, jsegdep); 3954 /* 3955 * If the freeblks is all journaled, we can add it to the worklist. 3956 */ 3957 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3958 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3959 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3960 3961 free_jblkdep(jblkdep); 3962 } 3963 3964 static struct jsegdep * 3965 newjsegdep(struct worklist *wk) 3966 { 3967 struct jsegdep *jsegdep; 3968 3969 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3970 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3971 jsegdep->jd_seg = NULL; 3972 3973 return (jsegdep); 3974 } 3975 3976 static struct jmvref * 3977 newjmvref(dp, ino, oldoff, newoff) 3978 struct inode *dp; 3979 ino_t ino; 3980 off_t oldoff; 3981 off_t newoff; 3982 { 3983 struct jmvref *jmvref; 3984 3985 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3986 workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump)); 3987 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3988 jmvref->jm_parent = dp->i_number; 3989 jmvref->jm_ino = ino; 3990 jmvref->jm_oldoff = oldoff; 3991 jmvref->jm_newoff = newoff; 3992 3993 return (jmvref); 3994 } 3995 3996 /* 3997 * Allocate a new jremref that tracks the removal of ip from dp with the 3998 * directory entry offset of diroff. Mark the entry as ATTACHED and 3999 * DEPCOMPLETE as we have all the information required for the journal write 4000 * and the directory has already been removed from the buffer. The caller 4001 * is responsible for linking the jremref into the pagedep and adding it 4002 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4003 * a DOTDOT addition so handle_workitem_remove() can properly assign 4004 * the jsegdep when we're done. 4005 */ 4006 static struct jremref * 4007 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4008 off_t diroff, nlink_t nlink) 4009 { 4010 struct jremref *jremref; 4011 4012 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4013 workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump)); 4014 jremref->jr_state = ATTACHED; 4015 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4016 nlink, ip->i_mode); 4017 jremref->jr_dirrem = dirrem; 4018 4019 return (jremref); 4020 } 4021 4022 static inline void 4023 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4024 nlink_t nlink, uint16_t mode) 4025 { 4026 4027 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4028 inoref->if_diroff = diroff; 4029 inoref->if_ino = ino; 4030 inoref->if_parent = parent; 4031 inoref->if_nlink = nlink; 4032 inoref->if_mode = mode; 4033 } 4034 4035 /* 4036 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4037 * directory offset may not be known until later. The caller is responsible 4038 * adding the entry to the journal when this information is available. nlink 4039 * should be the link count prior to the addition and mode is only required 4040 * to have the correct FMT. 4041 */ 4042 static struct jaddref * 4043 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4044 uint16_t mode) 4045 { 4046 struct jaddref *jaddref; 4047 4048 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4049 workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump)); 4050 jaddref->ja_state = ATTACHED; 4051 jaddref->ja_mkdir = NULL; 4052 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4053 4054 return (jaddref); 4055 } 4056 4057 /* 4058 * Create a new free dependency for a freework. The caller is responsible 4059 * for adjusting the reference count when it has the lock held. The freedep 4060 * will track an outstanding bitmap write that will ultimately clear the 4061 * freework to continue. 4062 */ 4063 static struct freedep * 4064 newfreedep(struct freework *freework) 4065 { 4066 struct freedep *freedep; 4067 4068 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4069 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4070 freedep->fd_freework = freework; 4071 4072 return (freedep); 4073 } 4074 4075 /* 4076 * Free a freedep structure once the buffer it is linked to is written. If 4077 * this is the last reference to the freework schedule it for completion. 4078 */ 4079 static void 4080 free_freedep(freedep) 4081 struct freedep *freedep; 4082 { 4083 struct freework *freework; 4084 4085 freework = freedep->fd_freework; 4086 freework->fw_freeblks->fb_cgwait--; 4087 if (--freework->fw_ref == 0) 4088 freework_enqueue(freework); 4089 WORKITEM_FREE(freedep, D_FREEDEP); 4090 } 4091 4092 /* 4093 * Allocate a new freework structure that may be a level in an indirect 4094 * when parent is not NULL or a top level block when it is. The top level 4095 * freework structures are allocated without the per-filesystem lock held 4096 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4097 */ 4098 static struct freework * 4099 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4100 struct ufsmount *ump; 4101 struct freeblks *freeblks; 4102 struct freework *parent; 4103 ufs_lbn_t lbn; 4104 ufs2_daddr_t nb; 4105 int frags; 4106 int off; 4107 int journal; 4108 { 4109 struct freework *freework; 4110 4111 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4112 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4113 freework->fw_state = ATTACHED; 4114 freework->fw_jnewblk = NULL; 4115 freework->fw_freeblks = freeblks; 4116 freework->fw_parent = parent; 4117 freework->fw_lbn = lbn; 4118 freework->fw_blkno = nb; 4119 freework->fw_frags = frags; 4120 freework->fw_indir = NULL; 4121 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR) 4122 ? 0 : NINDIR(ump->um_fs) + 1; 4123 freework->fw_start = freework->fw_off = off; 4124 if (journal) 4125 newjfreeblk(freeblks, lbn, nb, frags); 4126 if (parent == NULL) { 4127 ACQUIRE_LOCK(ump); 4128 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4129 freeblks->fb_ref++; 4130 FREE_LOCK(ump); 4131 } 4132 4133 return (freework); 4134 } 4135 4136 /* 4137 * Eliminate a jfreeblk for a block that does not need journaling. 4138 */ 4139 static void 4140 cancel_jfreeblk(freeblks, blkno) 4141 struct freeblks *freeblks; 4142 ufs2_daddr_t blkno; 4143 { 4144 struct jfreeblk *jfreeblk; 4145 struct jblkdep *jblkdep; 4146 4147 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4148 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4149 continue; 4150 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4151 if (jfreeblk->jf_blkno == blkno) 4152 break; 4153 } 4154 if (jblkdep == NULL) 4155 return; 4156 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4157 free_jsegdep(jblkdep->jb_jsegdep); 4158 LIST_REMOVE(jblkdep, jb_deps); 4159 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4160 } 4161 4162 /* 4163 * Allocate a new jfreeblk to journal top level block pointer when truncating 4164 * a file. The caller must add this to the worklist when the per-filesystem 4165 * lock is held. 4166 */ 4167 static struct jfreeblk * 4168 newjfreeblk(freeblks, lbn, blkno, frags) 4169 struct freeblks *freeblks; 4170 ufs_lbn_t lbn; 4171 ufs2_daddr_t blkno; 4172 int frags; 4173 { 4174 struct jfreeblk *jfreeblk; 4175 4176 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4177 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4178 freeblks->fb_list.wk_mp); 4179 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4180 jfreeblk->jf_dep.jb_freeblks = freeblks; 4181 jfreeblk->jf_ino = freeblks->fb_inum; 4182 jfreeblk->jf_lbn = lbn; 4183 jfreeblk->jf_blkno = blkno; 4184 jfreeblk->jf_frags = frags; 4185 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4186 4187 return (jfreeblk); 4188 } 4189 4190 /* 4191 * The journal is only prepared to handle full-size block numbers, so we 4192 * have to adjust the record to reflect the change to a full-size block. 4193 * For example, suppose we have a block made up of fragments 8-15 and 4194 * want to free its last two fragments. We are given a request that says: 4195 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4196 * where frags are the number of fragments to free and oldfrags are the 4197 * number of fragments to keep. To block align it, we have to change it to 4198 * have a valid full-size blkno, so it becomes: 4199 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4200 */ 4201 static void 4202 adjust_newfreework(freeblks, frag_offset) 4203 struct freeblks *freeblks; 4204 int frag_offset; 4205 { 4206 struct jfreeblk *jfreeblk; 4207 4208 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4209 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4210 ("adjust_newfreework: Missing freeblks dependency")); 4211 4212 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4213 jfreeblk->jf_blkno -= frag_offset; 4214 jfreeblk->jf_frags += frag_offset; 4215 } 4216 4217 /* 4218 * Allocate a new jtrunc to track a partial truncation. 4219 */ 4220 static struct jtrunc * 4221 newjtrunc(freeblks, size, extsize) 4222 struct freeblks *freeblks; 4223 off_t size; 4224 int extsize; 4225 { 4226 struct jtrunc *jtrunc; 4227 4228 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4229 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4230 freeblks->fb_list.wk_mp); 4231 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4232 jtrunc->jt_dep.jb_freeblks = freeblks; 4233 jtrunc->jt_ino = freeblks->fb_inum; 4234 jtrunc->jt_size = size; 4235 jtrunc->jt_extsize = extsize; 4236 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4237 4238 return (jtrunc); 4239 } 4240 4241 /* 4242 * If we're canceling a new bitmap we have to search for another ref 4243 * to move into the bmsafemap dep. This might be better expressed 4244 * with another structure. 4245 */ 4246 static void 4247 move_newblock_dep(jaddref, inodedep) 4248 struct jaddref *jaddref; 4249 struct inodedep *inodedep; 4250 { 4251 struct inoref *inoref; 4252 struct jaddref *jaddrefn; 4253 4254 jaddrefn = NULL; 4255 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4256 inoref = TAILQ_NEXT(inoref, if_deps)) { 4257 if ((jaddref->ja_state & NEWBLOCK) && 4258 inoref->if_list.wk_type == D_JADDREF) { 4259 jaddrefn = (struct jaddref *)inoref; 4260 break; 4261 } 4262 } 4263 if (jaddrefn == NULL) 4264 return; 4265 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4266 jaddrefn->ja_state |= jaddref->ja_state & 4267 (ATTACHED | UNDONE | NEWBLOCK); 4268 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4269 jaddref->ja_state |= ATTACHED; 4270 LIST_REMOVE(jaddref, ja_bmdeps); 4271 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4272 ja_bmdeps); 4273 } 4274 4275 /* 4276 * Cancel a jaddref either before it has been written or while it is being 4277 * written. This happens when a link is removed before the add reaches 4278 * the disk. The jaddref dependency is kept linked into the bmsafemap 4279 * and inode to prevent the link count or bitmap from reaching the disk 4280 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4281 * required. 4282 * 4283 * Returns 1 if the canceled addref requires journaling of the remove and 4284 * 0 otherwise. 4285 */ 4286 static int 4287 cancel_jaddref(jaddref, inodedep, wkhd) 4288 struct jaddref *jaddref; 4289 struct inodedep *inodedep; 4290 struct workhead *wkhd; 4291 { 4292 struct inoref *inoref; 4293 struct jsegdep *jsegdep; 4294 int needsj; 4295 4296 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4297 ("cancel_jaddref: Canceling complete jaddref")); 4298 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4299 needsj = 1; 4300 else 4301 needsj = 0; 4302 if (inodedep == NULL) 4303 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4304 0, &inodedep) == 0) 4305 panic("cancel_jaddref: Lost inodedep"); 4306 /* 4307 * We must adjust the nlink of any reference operation that follows 4308 * us so that it is consistent with the in-memory reference. This 4309 * ensures that inode nlink rollbacks always have the correct link. 4310 */ 4311 if (needsj == 0) { 4312 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4313 inoref = TAILQ_NEXT(inoref, if_deps)) { 4314 if (inoref->if_state & GOINGAWAY) 4315 break; 4316 inoref->if_nlink--; 4317 } 4318 } 4319 jsegdep = inoref_jseg(&jaddref->ja_ref); 4320 if (jaddref->ja_state & NEWBLOCK) 4321 move_newblock_dep(jaddref, inodedep); 4322 wake_worklist(&jaddref->ja_list); 4323 jaddref->ja_mkdir = NULL; 4324 if (jaddref->ja_state & INPROGRESS) { 4325 jaddref->ja_state &= ~INPROGRESS; 4326 WORKLIST_REMOVE(&jaddref->ja_list); 4327 jwork_insert(wkhd, jsegdep); 4328 } else { 4329 free_jsegdep(jsegdep); 4330 if (jaddref->ja_state & DEPCOMPLETE) 4331 remove_from_journal(&jaddref->ja_list); 4332 } 4333 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4334 /* 4335 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4336 * can arrange for them to be freed with the bitmap. Otherwise we 4337 * no longer need this addref attached to the inoreflst and it 4338 * will incorrectly adjust nlink if we leave it. 4339 */ 4340 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4341 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4342 if_deps); 4343 jaddref->ja_state |= COMPLETE; 4344 free_jaddref(jaddref); 4345 return (needsj); 4346 } 4347 /* 4348 * Leave the head of the list for jsegdeps for fast merging. 4349 */ 4350 if (LIST_FIRST(wkhd) != NULL) { 4351 jaddref->ja_state |= ONWORKLIST; 4352 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4353 } else 4354 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4355 4356 return (needsj); 4357 } 4358 4359 /* 4360 * Attempt to free a jaddref structure when some work completes. This 4361 * should only succeed once the entry is written and all dependencies have 4362 * been notified. 4363 */ 4364 static void 4365 free_jaddref(jaddref) 4366 struct jaddref *jaddref; 4367 { 4368 4369 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4370 return; 4371 if (jaddref->ja_ref.if_jsegdep) 4372 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4373 jaddref, jaddref->ja_state); 4374 if (jaddref->ja_state & NEWBLOCK) 4375 LIST_REMOVE(jaddref, ja_bmdeps); 4376 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4377 panic("free_jaddref: Bad state %p(0x%X)", 4378 jaddref, jaddref->ja_state); 4379 if (jaddref->ja_mkdir != NULL) 4380 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4381 WORKITEM_FREE(jaddref, D_JADDREF); 4382 } 4383 4384 /* 4385 * Free a jremref structure once it has been written or discarded. 4386 */ 4387 static void 4388 free_jremref(jremref) 4389 struct jremref *jremref; 4390 { 4391 4392 if (jremref->jr_ref.if_jsegdep) 4393 free_jsegdep(jremref->jr_ref.if_jsegdep); 4394 if (jremref->jr_state & INPROGRESS) 4395 panic("free_jremref: IO still pending"); 4396 WORKITEM_FREE(jremref, D_JREMREF); 4397 } 4398 4399 /* 4400 * Free a jnewblk structure. 4401 */ 4402 static void 4403 free_jnewblk(jnewblk) 4404 struct jnewblk *jnewblk; 4405 { 4406 4407 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4408 return; 4409 LIST_REMOVE(jnewblk, jn_deps); 4410 if (jnewblk->jn_dep != NULL) 4411 panic("free_jnewblk: Dependency still attached."); 4412 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4413 } 4414 4415 /* 4416 * Cancel a jnewblk which has been been made redundant by frag extension. 4417 */ 4418 static void 4419 cancel_jnewblk(jnewblk, wkhd) 4420 struct jnewblk *jnewblk; 4421 struct workhead *wkhd; 4422 { 4423 struct jsegdep *jsegdep; 4424 4425 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4426 jsegdep = jnewblk->jn_jsegdep; 4427 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4428 panic("cancel_jnewblk: Invalid state"); 4429 jnewblk->jn_jsegdep = NULL; 4430 jnewblk->jn_dep = NULL; 4431 jnewblk->jn_state |= GOINGAWAY; 4432 if (jnewblk->jn_state & INPROGRESS) { 4433 jnewblk->jn_state &= ~INPROGRESS; 4434 WORKLIST_REMOVE(&jnewblk->jn_list); 4435 jwork_insert(wkhd, jsegdep); 4436 } else { 4437 free_jsegdep(jsegdep); 4438 remove_from_journal(&jnewblk->jn_list); 4439 } 4440 wake_worklist(&jnewblk->jn_list); 4441 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4442 } 4443 4444 static void 4445 free_jblkdep(jblkdep) 4446 struct jblkdep *jblkdep; 4447 { 4448 4449 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4450 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4451 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4452 WORKITEM_FREE(jblkdep, D_JTRUNC); 4453 else 4454 panic("free_jblkdep: Unexpected type %s", 4455 TYPENAME(jblkdep->jb_list.wk_type)); 4456 } 4457 4458 /* 4459 * Free a single jseg once it is no longer referenced in memory or on 4460 * disk. Reclaim journal blocks and dependencies waiting for the segment 4461 * to disappear. 4462 */ 4463 static void 4464 free_jseg(jseg, jblocks) 4465 struct jseg *jseg; 4466 struct jblocks *jblocks; 4467 { 4468 struct freework *freework; 4469 4470 /* 4471 * Free freework structures that were lingering to indicate freed 4472 * indirect blocks that forced journal write ordering on reallocate. 4473 */ 4474 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4475 indirblk_remove(freework); 4476 if (jblocks->jb_oldestseg == jseg) 4477 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4478 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4479 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4480 KASSERT(LIST_EMPTY(&jseg->js_entries), 4481 ("free_jseg: Freed jseg has valid entries.")); 4482 WORKITEM_FREE(jseg, D_JSEG); 4483 } 4484 4485 /* 4486 * Free all jsegs that meet the criteria for being reclaimed and update 4487 * oldestseg. 4488 */ 4489 static void 4490 free_jsegs(jblocks) 4491 struct jblocks *jblocks; 4492 { 4493 struct jseg *jseg; 4494 4495 /* 4496 * Free only those jsegs which have none allocated before them to 4497 * preserve the journal space ordering. 4498 */ 4499 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4500 /* 4501 * Only reclaim space when nothing depends on this journal 4502 * set and another set has written that it is no longer 4503 * valid. 4504 */ 4505 if (jseg->js_refs != 0) { 4506 jblocks->jb_oldestseg = jseg; 4507 return; 4508 } 4509 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4510 break; 4511 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4512 break; 4513 /* 4514 * We can free jsegs that didn't write entries when 4515 * oldestwrseq == js_seq. 4516 */ 4517 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4518 jseg->js_cnt != 0) 4519 break; 4520 free_jseg(jseg, jblocks); 4521 } 4522 /* 4523 * If we exited the loop above we still must discover the 4524 * oldest valid segment. 4525 */ 4526 if (jseg) 4527 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4528 jseg = TAILQ_NEXT(jseg, js_next)) 4529 if (jseg->js_refs != 0) 4530 break; 4531 jblocks->jb_oldestseg = jseg; 4532 /* 4533 * The journal has no valid records but some jsegs may still be 4534 * waiting on oldestwrseq to advance. We force a small record 4535 * out to permit these lingering records to be reclaimed. 4536 */ 4537 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4538 jblocks->jb_needseg = 1; 4539 } 4540 4541 /* 4542 * Release one reference to a jseg and free it if the count reaches 0. This 4543 * should eventually reclaim journal space as well. 4544 */ 4545 static void 4546 rele_jseg(jseg) 4547 struct jseg *jseg; 4548 { 4549 4550 KASSERT(jseg->js_refs > 0, 4551 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4552 if (--jseg->js_refs != 0) 4553 return; 4554 free_jsegs(jseg->js_jblocks); 4555 } 4556 4557 /* 4558 * Release a jsegdep and decrement the jseg count. 4559 */ 4560 static void 4561 free_jsegdep(jsegdep) 4562 struct jsegdep *jsegdep; 4563 { 4564 4565 if (jsegdep->jd_seg) 4566 rele_jseg(jsegdep->jd_seg); 4567 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4568 } 4569 4570 /* 4571 * Wait for a journal item to make it to disk. Initiate journal processing 4572 * if required. 4573 */ 4574 static int 4575 jwait(wk, waitfor) 4576 struct worklist *wk; 4577 int waitfor; 4578 { 4579 4580 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4581 /* 4582 * Blocking journal waits cause slow synchronous behavior. Record 4583 * stats on the frequency of these blocking operations. 4584 */ 4585 if (waitfor == MNT_WAIT) { 4586 stat_journal_wait++; 4587 switch (wk->wk_type) { 4588 case D_JREMREF: 4589 case D_JMVREF: 4590 stat_jwait_filepage++; 4591 break; 4592 case D_JTRUNC: 4593 case D_JFREEBLK: 4594 stat_jwait_freeblks++; 4595 break; 4596 case D_JNEWBLK: 4597 stat_jwait_newblk++; 4598 break; 4599 case D_JADDREF: 4600 stat_jwait_inode++; 4601 break; 4602 default: 4603 break; 4604 } 4605 } 4606 /* 4607 * If IO has not started we process the journal. We can't mark the 4608 * worklist item as IOWAITING because we drop the lock while 4609 * processing the journal and the worklist entry may be freed after 4610 * this point. The caller may call back in and re-issue the request. 4611 */ 4612 if ((wk->wk_state & INPROGRESS) == 0) { 4613 softdep_process_journal(wk->wk_mp, wk, waitfor); 4614 if (waitfor != MNT_WAIT) 4615 return (EBUSY); 4616 return (0); 4617 } 4618 if (waitfor != MNT_WAIT) 4619 return (EBUSY); 4620 wait_worklist(wk, "jwait"); 4621 return (0); 4622 } 4623 4624 /* 4625 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4626 * appropriate. This is a convenience function to reduce duplicate code 4627 * for the setup and revert functions below. 4628 */ 4629 static struct inodedep * 4630 inodedep_lookup_ip(ip) 4631 struct inode *ip; 4632 { 4633 struct inodedep *inodedep; 4634 int dflags; 4635 4636 KASSERT(ip->i_nlink >= ip->i_effnlink, 4637 ("inodedep_lookup_ip: bad delta")); 4638 dflags = DEPALLOC; 4639 if (IS_SNAPSHOT(ip)) 4640 dflags |= NODELAY; 4641 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, 4642 &inodedep); 4643 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4644 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4645 4646 return (inodedep); 4647 } 4648 4649 /* 4650 * Called prior to creating a new inode and linking it to a directory. The 4651 * jaddref structure must already be allocated by softdep_setup_inomapdep 4652 * and it is discovered here so we can initialize the mode and update 4653 * nlinkdelta. 4654 */ 4655 void 4656 softdep_setup_create(dp, ip) 4657 struct inode *dp; 4658 struct inode *ip; 4659 { 4660 struct inodedep *inodedep; 4661 struct jaddref *jaddref; 4662 struct vnode *dvp; 4663 4664 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4665 ("softdep_setup_create called on non-softdep filesystem")); 4666 KASSERT(ip->i_nlink == 1, 4667 ("softdep_setup_create: Invalid link count.")); 4668 dvp = ITOV(dp); 4669 ACQUIRE_LOCK(dp->i_ump); 4670 inodedep = inodedep_lookup_ip(ip); 4671 if (DOINGSUJ(dvp)) { 4672 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4673 inoreflst); 4674 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4675 ("softdep_setup_create: No addref structure present.")); 4676 } 4677 softdep_prelink(dvp, NULL); 4678 FREE_LOCK(dp->i_ump); 4679 } 4680 4681 /* 4682 * Create a jaddref structure to track the addition of a DOTDOT link when 4683 * we are reparenting an inode as part of a rename. This jaddref will be 4684 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4685 * non-journaling softdep. 4686 */ 4687 void 4688 softdep_setup_dotdot_link(dp, ip) 4689 struct inode *dp; 4690 struct inode *ip; 4691 { 4692 struct inodedep *inodedep; 4693 struct jaddref *jaddref; 4694 struct vnode *dvp; 4695 struct vnode *vp; 4696 4697 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4698 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4699 dvp = ITOV(dp); 4700 vp = ITOV(ip); 4701 jaddref = NULL; 4702 /* 4703 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4704 * is used as a normal link would be. 4705 */ 4706 if (DOINGSUJ(dvp)) 4707 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4708 dp->i_effnlink - 1, dp->i_mode); 4709 ACQUIRE_LOCK(dp->i_ump); 4710 inodedep = inodedep_lookup_ip(dp); 4711 if (jaddref) 4712 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4713 if_deps); 4714 softdep_prelink(dvp, ITOV(ip)); 4715 FREE_LOCK(dp->i_ump); 4716 } 4717 4718 /* 4719 * Create a jaddref structure to track a new link to an inode. The directory 4720 * offset is not known until softdep_setup_directory_add or 4721 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4722 * softdep. 4723 */ 4724 void 4725 softdep_setup_link(dp, ip) 4726 struct inode *dp; 4727 struct inode *ip; 4728 { 4729 struct inodedep *inodedep; 4730 struct jaddref *jaddref; 4731 struct vnode *dvp; 4732 4733 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4734 ("softdep_setup_link called on non-softdep filesystem")); 4735 dvp = ITOV(dp); 4736 jaddref = NULL; 4737 if (DOINGSUJ(dvp)) 4738 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4739 ip->i_mode); 4740 ACQUIRE_LOCK(dp->i_ump); 4741 inodedep = inodedep_lookup_ip(ip); 4742 if (jaddref) 4743 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4744 if_deps); 4745 softdep_prelink(dvp, ITOV(ip)); 4746 FREE_LOCK(dp->i_ump); 4747 } 4748 4749 /* 4750 * Called to create the jaddref structures to track . and .. references as 4751 * well as lookup and further initialize the incomplete jaddref created 4752 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4753 * nlinkdelta for non-journaling softdep. 4754 */ 4755 void 4756 softdep_setup_mkdir(dp, ip) 4757 struct inode *dp; 4758 struct inode *ip; 4759 { 4760 struct inodedep *inodedep; 4761 struct jaddref *dotdotaddref; 4762 struct jaddref *dotaddref; 4763 struct jaddref *jaddref; 4764 struct vnode *dvp; 4765 4766 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4767 ("softdep_setup_mkdir called on non-softdep filesystem")); 4768 dvp = ITOV(dp); 4769 dotaddref = dotdotaddref = NULL; 4770 if (DOINGSUJ(dvp)) { 4771 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4772 ip->i_mode); 4773 dotaddref->ja_state |= MKDIR_BODY; 4774 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4775 dp->i_effnlink - 1, dp->i_mode); 4776 dotdotaddref->ja_state |= MKDIR_PARENT; 4777 } 4778 ACQUIRE_LOCK(dp->i_ump); 4779 inodedep = inodedep_lookup_ip(ip); 4780 if (DOINGSUJ(dvp)) { 4781 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4782 inoreflst); 4783 KASSERT(jaddref != NULL, 4784 ("softdep_setup_mkdir: No addref structure present.")); 4785 KASSERT(jaddref->ja_parent == dp->i_number, 4786 ("softdep_setup_mkdir: bad parent %ju", 4787 (uintmax_t)jaddref->ja_parent)); 4788 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4789 if_deps); 4790 } 4791 inodedep = inodedep_lookup_ip(dp); 4792 if (DOINGSUJ(dvp)) 4793 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4794 &dotdotaddref->ja_ref, if_deps); 4795 softdep_prelink(ITOV(dp), NULL); 4796 FREE_LOCK(dp->i_ump); 4797 } 4798 4799 /* 4800 * Called to track nlinkdelta of the inode and parent directories prior to 4801 * unlinking a directory. 4802 */ 4803 void 4804 softdep_setup_rmdir(dp, ip) 4805 struct inode *dp; 4806 struct inode *ip; 4807 { 4808 struct vnode *dvp; 4809 4810 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4811 ("softdep_setup_rmdir called on non-softdep filesystem")); 4812 dvp = ITOV(dp); 4813 ACQUIRE_LOCK(dp->i_ump); 4814 (void) inodedep_lookup_ip(ip); 4815 (void) inodedep_lookup_ip(dp); 4816 softdep_prelink(dvp, ITOV(ip)); 4817 FREE_LOCK(dp->i_ump); 4818 } 4819 4820 /* 4821 * Called to track nlinkdelta of the inode and parent directories prior to 4822 * unlink. 4823 */ 4824 void 4825 softdep_setup_unlink(dp, ip) 4826 struct inode *dp; 4827 struct inode *ip; 4828 { 4829 struct vnode *dvp; 4830 4831 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4832 ("softdep_setup_unlink called on non-softdep filesystem")); 4833 dvp = ITOV(dp); 4834 ACQUIRE_LOCK(dp->i_ump); 4835 (void) inodedep_lookup_ip(ip); 4836 (void) inodedep_lookup_ip(dp); 4837 softdep_prelink(dvp, ITOV(ip)); 4838 FREE_LOCK(dp->i_ump); 4839 } 4840 4841 /* 4842 * Called to release the journal structures created by a failed non-directory 4843 * creation. Adjusts nlinkdelta for non-journaling softdep. 4844 */ 4845 void 4846 softdep_revert_create(dp, ip) 4847 struct inode *dp; 4848 struct inode *ip; 4849 { 4850 struct inodedep *inodedep; 4851 struct jaddref *jaddref; 4852 struct vnode *dvp; 4853 4854 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4855 ("softdep_revert_create called on non-softdep filesystem")); 4856 dvp = ITOV(dp); 4857 ACQUIRE_LOCK(dp->i_ump); 4858 inodedep = inodedep_lookup_ip(ip); 4859 if (DOINGSUJ(dvp)) { 4860 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4861 inoreflst); 4862 KASSERT(jaddref->ja_parent == dp->i_number, 4863 ("softdep_revert_create: addref parent mismatch")); 4864 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4865 } 4866 FREE_LOCK(dp->i_ump); 4867 } 4868 4869 /* 4870 * Called to release the journal structures created by a failed link 4871 * addition. Adjusts nlinkdelta for non-journaling softdep. 4872 */ 4873 void 4874 softdep_revert_link(dp, ip) 4875 struct inode *dp; 4876 struct inode *ip; 4877 { 4878 struct inodedep *inodedep; 4879 struct jaddref *jaddref; 4880 struct vnode *dvp; 4881 4882 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4883 ("softdep_revert_link called on non-softdep filesystem")); 4884 dvp = ITOV(dp); 4885 ACQUIRE_LOCK(dp->i_ump); 4886 inodedep = inodedep_lookup_ip(ip); 4887 if (DOINGSUJ(dvp)) { 4888 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4889 inoreflst); 4890 KASSERT(jaddref->ja_parent == dp->i_number, 4891 ("softdep_revert_link: addref parent mismatch")); 4892 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4893 } 4894 FREE_LOCK(dp->i_ump); 4895 } 4896 4897 /* 4898 * Called to release the journal structures created by a failed mkdir 4899 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4900 */ 4901 void 4902 softdep_revert_mkdir(dp, ip) 4903 struct inode *dp; 4904 struct inode *ip; 4905 { 4906 struct inodedep *inodedep; 4907 struct jaddref *jaddref; 4908 struct jaddref *dotaddref; 4909 struct vnode *dvp; 4910 4911 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4912 ("softdep_revert_mkdir called on non-softdep filesystem")); 4913 dvp = ITOV(dp); 4914 4915 ACQUIRE_LOCK(dp->i_ump); 4916 inodedep = inodedep_lookup_ip(dp); 4917 if (DOINGSUJ(dvp)) { 4918 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4919 inoreflst); 4920 KASSERT(jaddref->ja_parent == ip->i_number, 4921 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4922 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4923 } 4924 inodedep = inodedep_lookup_ip(ip); 4925 if (DOINGSUJ(dvp)) { 4926 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4927 inoreflst); 4928 KASSERT(jaddref->ja_parent == dp->i_number, 4929 ("softdep_revert_mkdir: addref parent mismatch")); 4930 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4931 inoreflst, if_deps); 4932 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4933 KASSERT(dotaddref->ja_parent == ip->i_number, 4934 ("softdep_revert_mkdir: dot addref parent mismatch")); 4935 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4936 } 4937 FREE_LOCK(dp->i_ump); 4938 } 4939 4940 /* 4941 * Called to correct nlinkdelta after a failed rmdir. 4942 */ 4943 void 4944 softdep_revert_rmdir(dp, ip) 4945 struct inode *dp; 4946 struct inode *ip; 4947 { 4948 4949 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4950 ("softdep_revert_rmdir called on non-softdep filesystem")); 4951 ACQUIRE_LOCK(dp->i_ump); 4952 (void) inodedep_lookup_ip(ip); 4953 (void) inodedep_lookup_ip(dp); 4954 FREE_LOCK(dp->i_ump); 4955 } 4956 4957 /* 4958 * Protecting the freemaps (or bitmaps). 4959 * 4960 * To eliminate the need to execute fsck before mounting a filesystem 4961 * after a power failure, one must (conservatively) guarantee that the 4962 * on-disk copy of the bitmaps never indicate that a live inode or block is 4963 * free. So, when a block or inode is allocated, the bitmap should be 4964 * updated (on disk) before any new pointers. When a block or inode is 4965 * freed, the bitmap should not be updated until all pointers have been 4966 * reset. The latter dependency is handled by the delayed de-allocation 4967 * approach described below for block and inode de-allocation. The former 4968 * dependency is handled by calling the following procedure when a block or 4969 * inode is allocated. When an inode is allocated an "inodedep" is created 4970 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4971 * Each "inodedep" is also inserted into the hash indexing structure so 4972 * that any additional link additions can be made dependent on the inode 4973 * allocation. 4974 * 4975 * The ufs filesystem maintains a number of free block counts (e.g., per 4976 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4977 * in addition to the bitmaps. These counts are used to improve efficiency 4978 * during allocation and therefore must be consistent with the bitmaps. 4979 * There is no convenient way to guarantee post-crash consistency of these 4980 * counts with simple update ordering, for two main reasons: (1) The counts 4981 * and bitmaps for a single cylinder group block are not in the same disk 4982 * sector. If a disk write is interrupted (e.g., by power failure), one may 4983 * be written and the other not. (2) Some of the counts are located in the 4984 * superblock rather than the cylinder group block. So, we focus our soft 4985 * updates implementation on protecting the bitmaps. When mounting a 4986 * filesystem, we recompute the auxiliary counts from the bitmaps. 4987 */ 4988 4989 /* 4990 * Called just after updating the cylinder group block to allocate an inode. 4991 */ 4992 void 4993 softdep_setup_inomapdep(bp, ip, newinum, mode) 4994 struct buf *bp; /* buffer for cylgroup block with inode map */ 4995 struct inode *ip; /* inode related to allocation */ 4996 ino_t newinum; /* new inode number being allocated */ 4997 int mode; 4998 { 4999 struct inodedep *inodedep; 5000 struct bmsafemap *bmsafemap; 5001 struct jaddref *jaddref; 5002 struct mount *mp; 5003 struct fs *fs; 5004 5005 mp = UFSTOVFS(ip->i_ump); 5006 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5007 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5008 fs = ip->i_ump->um_fs; 5009 jaddref = NULL; 5010 5011 /* 5012 * Allocate the journal reference add structure so that the bitmap 5013 * can be dependent on it. 5014 */ 5015 if (MOUNTEDSUJ(mp)) { 5016 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5017 jaddref->ja_state |= NEWBLOCK; 5018 } 5019 5020 /* 5021 * Create a dependency for the newly allocated inode. 5022 * Panic if it already exists as something is seriously wrong. 5023 * Otherwise add it to the dependency list for the buffer holding 5024 * the cylinder group map from which it was allocated. 5025 * 5026 * We have to preallocate a bmsafemap entry in case it is needed 5027 * in bmsafemap_lookup since once we allocate the inodedep, we 5028 * have to finish initializing it before we can FREE_LOCK(). 5029 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5030 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5031 * creating the inodedep as it can be freed during the time 5032 * that we FREE_LOCK() while allocating the inodedep. We must 5033 * call workitem_alloc() before entering the locked section as 5034 * it also acquires the lock and we must avoid trying doing so 5035 * recursively. 5036 */ 5037 bmsafemap = malloc(sizeof(struct bmsafemap), 5038 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5039 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5040 ACQUIRE_LOCK(ip->i_ump); 5041 if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep))) 5042 panic("softdep_setup_inomapdep: dependency %p for new" 5043 "inode already exists", inodedep); 5044 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5045 if (jaddref) { 5046 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5047 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5048 if_deps); 5049 } else { 5050 inodedep->id_state |= ONDEPLIST; 5051 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5052 } 5053 inodedep->id_bmsafemap = bmsafemap; 5054 inodedep->id_state &= ~DEPCOMPLETE; 5055 FREE_LOCK(ip->i_ump); 5056 } 5057 5058 /* 5059 * Called just after updating the cylinder group block to 5060 * allocate block or fragment. 5061 */ 5062 void 5063 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5064 struct buf *bp; /* buffer for cylgroup block with block map */ 5065 struct mount *mp; /* filesystem doing allocation */ 5066 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5067 int frags; /* Number of fragments. */ 5068 int oldfrags; /* Previous number of fragments for extend. */ 5069 { 5070 struct newblk *newblk; 5071 struct bmsafemap *bmsafemap; 5072 struct jnewblk *jnewblk; 5073 struct ufsmount *ump; 5074 struct fs *fs; 5075 5076 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5077 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5078 ump = VFSTOUFS(mp); 5079 fs = ump->um_fs; 5080 jnewblk = NULL; 5081 /* 5082 * Create a dependency for the newly allocated block. 5083 * Add it to the dependency list for the buffer holding 5084 * the cylinder group map from which it was allocated. 5085 */ 5086 if (MOUNTEDSUJ(mp)) { 5087 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5088 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5089 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5090 jnewblk->jn_state = ATTACHED; 5091 jnewblk->jn_blkno = newblkno; 5092 jnewblk->jn_frags = frags; 5093 jnewblk->jn_oldfrags = oldfrags; 5094 #ifdef SUJ_DEBUG 5095 { 5096 struct cg *cgp; 5097 uint8_t *blksfree; 5098 long bno; 5099 int i; 5100 5101 cgp = (struct cg *)bp->b_data; 5102 blksfree = cg_blksfree(cgp); 5103 bno = dtogd(fs, jnewblk->jn_blkno); 5104 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5105 i++) { 5106 if (isset(blksfree, bno + i)) 5107 panic("softdep_setup_blkmapdep: " 5108 "free fragment %d from %d-%d " 5109 "state 0x%X dep %p", i, 5110 jnewblk->jn_oldfrags, 5111 jnewblk->jn_frags, 5112 jnewblk->jn_state, 5113 jnewblk->jn_dep); 5114 } 5115 } 5116 #endif 5117 } 5118 5119 CTR3(KTR_SUJ, 5120 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5121 newblkno, frags, oldfrags); 5122 ACQUIRE_LOCK(ump); 5123 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5124 panic("softdep_setup_blkmapdep: found block"); 5125 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5126 dtog(fs, newblkno), NULL); 5127 if (jnewblk) { 5128 jnewblk->jn_dep = (struct worklist *)newblk; 5129 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5130 } else { 5131 newblk->nb_state |= ONDEPLIST; 5132 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5133 } 5134 newblk->nb_bmsafemap = bmsafemap; 5135 newblk->nb_jnewblk = jnewblk; 5136 FREE_LOCK(ump); 5137 } 5138 5139 #define BMSAFEMAP_HASH(ump, cg) \ 5140 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5141 5142 static int 5143 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5144 struct bmsafemap_hashhead *bmsafemaphd; 5145 int cg; 5146 struct bmsafemap **bmsafemapp; 5147 { 5148 struct bmsafemap *bmsafemap; 5149 5150 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5151 if (bmsafemap->sm_cg == cg) 5152 break; 5153 if (bmsafemap) { 5154 *bmsafemapp = bmsafemap; 5155 return (1); 5156 } 5157 *bmsafemapp = NULL; 5158 5159 return (0); 5160 } 5161 5162 /* 5163 * Find the bmsafemap associated with a cylinder group buffer. 5164 * If none exists, create one. The buffer must be locked when 5165 * this routine is called and this routine must be called with 5166 * the softdep lock held. To avoid giving up the lock while 5167 * allocating a new bmsafemap, a preallocated bmsafemap may be 5168 * provided. If it is provided but not needed, it is freed. 5169 */ 5170 static struct bmsafemap * 5171 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5172 struct mount *mp; 5173 struct buf *bp; 5174 int cg; 5175 struct bmsafemap *newbmsafemap; 5176 { 5177 struct bmsafemap_hashhead *bmsafemaphd; 5178 struct bmsafemap *bmsafemap, *collision; 5179 struct worklist *wk; 5180 struct ufsmount *ump; 5181 5182 ump = VFSTOUFS(mp); 5183 LOCK_OWNED(ump); 5184 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5185 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5186 if (wk->wk_type == D_BMSAFEMAP) { 5187 if (newbmsafemap) 5188 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5189 return (WK_BMSAFEMAP(wk)); 5190 } 5191 } 5192 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5193 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5194 if (newbmsafemap) 5195 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5196 return (bmsafemap); 5197 } 5198 if (newbmsafemap) { 5199 bmsafemap = newbmsafemap; 5200 } else { 5201 FREE_LOCK(ump); 5202 bmsafemap = malloc(sizeof(struct bmsafemap), 5203 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5204 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5205 ACQUIRE_LOCK(ump); 5206 } 5207 bmsafemap->sm_buf = bp; 5208 LIST_INIT(&bmsafemap->sm_inodedephd); 5209 LIST_INIT(&bmsafemap->sm_inodedepwr); 5210 LIST_INIT(&bmsafemap->sm_newblkhd); 5211 LIST_INIT(&bmsafemap->sm_newblkwr); 5212 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5213 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5214 LIST_INIT(&bmsafemap->sm_freehd); 5215 LIST_INIT(&bmsafemap->sm_freewr); 5216 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5217 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5218 return (collision); 5219 } 5220 bmsafemap->sm_cg = cg; 5221 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5222 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5223 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5224 return (bmsafemap); 5225 } 5226 5227 /* 5228 * Direct block allocation dependencies. 5229 * 5230 * When a new block is allocated, the corresponding disk locations must be 5231 * initialized (with zeros or new data) before the on-disk inode points to 5232 * them. Also, the freemap from which the block was allocated must be 5233 * updated (on disk) before the inode's pointer. These two dependencies are 5234 * independent of each other and are needed for all file blocks and indirect 5235 * blocks that are pointed to directly by the inode. Just before the 5236 * "in-core" version of the inode is updated with a newly allocated block 5237 * number, a procedure (below) is called to setup allocation dependency 5238 * structures. These structures are removed when the corresponding 5239 * dependencies are satisfied or when the block allocation becomes obsolete 5240 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5241 * fragment that gets upgraded). All of these cases are handled in 5242 * procedures described later. 5243 * 5244 * When a file extension causes a fragment to be upgraded, either to a larger 5245 * fragment or to a full block, the on-disk location may change (if the 5246 * previous fragment could not simply be extended). In this case, the old 5247 * fragment must be de-allocated, but not until after the inode's pointer has 5248 * been updated. In most cases, this is handled by later procedures, which 5249 * will construct a "freefrag" structure to be added to the workitem queue 5250 * when the inode update is complete (or obsolete). The main exception to 5251 * this is when an allocation occurs while a pending allocation dependency 5252 * (for the same block pointer) remains. This case is handled in the main 5253 * allocation dependency setup procedure by immediately freeing the 5254 * unreferenced fragments. 5255 */ 5256 void 5257 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5258 struct inode *ip; /* inode to which block is being added */ 5259 ufs_lbn_t off; /* block pointer within inode */ 5260 ufs2_daddr_t newblkno; /* disk block number being added */ 5261 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5262 long newsize; /* size of new block */ 5263 long oldsize; /* size of new block */ 5264 struct buf *bp; /* bp for allocated block */ 5265 { 5266 struct allocdirect *adp, *oldadp; 5267 struct allocdirectlst *adphead; 5268 struct freefrag *freefrag; 5269 struct inodedep *inodedep; 5270 struct pagedep *pagedep; 5271 struct jnewblk *jnewblk; 5272 struct newblk *newblk; 5273 struct mount *mp; 5274 ufs_lbn_t lbn; 5275 5276 lbn = bp->b_lblkno; 5277 mp = UFSTOVFS(ip->i_ump); 5278 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5279 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5280 if (oldblkno && oldblkno != newblkno) 5281 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5282 else 5283 freefrag = NULL; 5284 5285 CTR6(KTR_SUJ, 5286 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5287 "off %jd newsize %ld oldsize %d", 5288 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5289 ACQUIRE_LOCK(ip->i_ump); 5290 if (off >= NDADDR) { 5291 if (lbn > 0) 5292 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5293 lbn, off); 5294 /* allocating an indirect block */ 5295 if (oldblkno != 0) 5296 panic("softdep_setup_allocdirect: non-zero indir"); 5297 } else { 5298 if (off != lbn) 5299 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5300 lbn, off); 5301 /* 5302 * Allocating a direct block. 5303 * 5304 * If we are allocating a directory block, then we must 5305 * allocate an associated pagedep to track additions and 5306 * deletions. 5307 */ 5308 if ((ip->i_mode & IFMT) == IFDIR) 5309 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5310 &pagedep); 5311 } 5312 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5313 panic("softdep_setup_allocdirect: lost block"); 5314 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5315 ("softdep_setup_allocdirect: newblk already initialized")); 5316 /* 5317 * Convert the newblk to an allocdirect. 5318 */ 5319 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5320 adp = (struct allocdirect *)newblk; 5321 newblk->nb_freefrag = freefrag; 5322 adp->ad_offset = off; 5323 adp->ad_oldblkno = oldblkno; 5324 adp->ad_newsize = newsize; 5325 adp->ad_oldsize = oldsize; 5326 5327 /* 5328 * Finish initializing the journal. 5329 */ 5330 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5331 jnewblk->jn_ino = ip->i_number; 5332 jnewblk->jn_lbn = lbn; 5333 add_to_journal(&jnewblk->jn_list); 5334 } 5335 if (freefrag && freefrag->ff_jdep != NULL && 5336 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5337 add_to_journal(freefrag->ff_jdep); 5338 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5339 adp->ad_inodedep = inodedep; 5340 5341 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5342 /* 5343 * The list of allocdirects must be kept in sorted and ascending 5344 * order so that the rollback routines can quickly determine the 5345 * first uncommitted block (the size of the file stored on disk 5346 * ends at the end of the lowest committed fragment, or if there 5347 * are no fragments, at the end of the highest committed block). 5348 * Since files generally grow, the typical case is that the new 5349 * block is to be added at the end of the list. We speed this 5350 * special case by checking against the last allocdirect in the 5351 * list before laboriously traversing the list looking for the 5352 * insertion point. 5353 */ 5354 adphead = &inodedep->id_newinoupdt; 5355 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5356 if (oldadp == NULL || oldadp->ad_offset <= off) { 5357 /* insert at end of list */ 5358 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5359 if (oldadp != NULL && oldadp->ad_offset == off) 5360 allocdirect_merge(adphead, adp, oldadp); 5361 FREE_LOCK(ip->i_ump); 5362 return; 5363 } 5364 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5365 if (oldadp->ad_offset >= off) 5366 break; 5367 } 5368 if (oldadp == NULL) 5369 panic("softdep_setup_allocdirect: lost entry"); 5370 /* insert in middle of list */ 5371 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5372 if (oldadp->ad_offset == off) 5373 allocdirect_merge(adphead, adp, oldadp); 5374 5375 FREE_LOCK(ip->i_ump); 5376 } 5377 5378 /* 5379 * Merge a newer and older journal record to be stored either in a 5380 * newblock or freefrag. This handles aggregating journal records for 5381 * fragment allocation into a second record as well as replacing a 5382 * journal free with an aborted journal allocation. A segment for the 5383 * oldest record will be placed on wkhd if it has been written. If not 5384 * the segment for the newer record will suffice. 5385 */ 5386 static struct worklist * 5387 jnewblk_merge(new, old, wkhd) 5388 struct worklist *new; 5389 struct worklist *old; 5390 struct workhead *wkhd; 5391 { 5392 struct jnewblk *njnewblk; 5393 struct jnewblk *jnewblk; 5394 5395 /* Handle NULLs to simplify callers. */ 5396 if (new == NULL) 5397 return (old); 5398 if (old == NULL) 5399 return (new); 5400 /* Replace a jfreefrag with a jnewblk. */ 5401 if (new->wk_type == D_JFREEFRAG) { 5402 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5403 panic("jnewblk_merge: blkno mismatch: %p, %p", 5404 old, new); 5405 cancel_jfreefrag(WK_JFREEFRAG(new)); 5406 return (old); 5407 } 5408 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5409 panic("jnewblk_merge: Bad type: old %d new %d\n", 5410 old->wk_type, new->wk_type); 5411 /* 5412 * Handle merging of two jnewblk records that describe 5413 * different sets of fragments in the same block. 5414 */ 5415 jnewblk = WK_JNEWBLK(old); 5416 njnewblk = WK_JNEWBLK(new); 5417 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5418 panic("jnewblk_merge: Merging disparate blocks."); 5419 /* 5420 * The record may be rolled back in the cg. 5421 */ 5422 if (jnewblk->jn_state & UNDONE) { 5423 jnewblk->jn_state &= ~UNDONE; 5424 njnewblk->jn_state |= UNDONE; 5425 njnewblk->jn_state &= ~ATTACHED; 5426 } 5427 /* 5428 * We modify the newer addref and free the older so that if neither 5429 * has been written the most up-to-date copy will be on disk. If 5430 * both have been written but rolled back we only temporarily need 5431 * one of them to fix the bits when the cg write completes. 5432 */ 5433 jnewblk->jn_state |= ATTACHED | COMPLETE; 5434 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5435 cancel_jnewblk(jnewblk, wkhd); 5436 WORKLIST_REMOVE(&jnewblk->jn_list); 5437 free_jnewblk(jnewblk); 5438 return (new); 5439 } 5440 5441 /* 5442 * Replace an old allocdirect dependency with a newer one. 5443 * This routine must be called with splbio interrupts blocked. 5444 */ 5445 static void 5446 allocdirect_merge(adphead, newadp, oldadp) 5447 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5448 struct allocdirect *newadp; /* allocdirect being added */ 5449 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5450 { 5451 struct worklist *wk; 5452 struct freefrag *freefrag; 5453 5454 freefrag = NULL; 5455 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5456 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5457 newadp->ad_oldsize != oldadp->ad_newsize || 5458 newadp->ad_offset >= NDADDR) 5459 panic("%s %jd != new %jd || old size %ld != new %ld", 5460 "allocdirect_merge: old blkno", 5461 (intmax_t)newadp->ad_oldblkno, 5462 (intmax_t)oldadp->ad_newblkno, 5463 newadp->ad_oldsize, oldadp->ad_newsize); 5464 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5465 newadp->ad_oldsize = oldadp->ad_oldsize; 5466 /* 5467 * If the old dependency had a fragment to free or had never 5468 * previously had a block allocated, then the new dependency 5469 * can immediately post its freefrag and adopt the old freefrag. 5470 * This action is done by swapping the freefrag dependencies. 5471 * The new dependency gains the old one's freefrag, and the 5472 * old one gets the new one and then immediately puts it on 5473 * the worklist when it is freed by free_newblk. It is 5474 * not possible to do this swap when the old dependency had a 5475 * non-zero size but no previous fragment to free. This condition 5476 * arises when the new block is an extension of the old block. 5477 * Here, the first part of the fragment allocated to the new 5478 * dependency is part of the block currently claimed on disk by 5479 * the old dependency, so cannot legitimately be freed until the 5480 * conditions for the new dependency are fulfilled. 5481 */ 5482 freefrag = newadp->ad_freefrag; 5483 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5484 newadp->ad_freefrag = oldadp->ad_freefrag; 5485 oldadp->ad_freefrag = freefrag; 5486 } 5487 /* 5488 * If we are tracking a new directory-block allocation, 5489 * move it from the old allocdirect to the new allocdirect. 5490 */ 5491 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5492 WORKLIST_REMOVE(wk); 5493 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5494 panic("allocdirect_merge: extra newdirblk"); 5495 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5496 } 5497 TAILQ_REMOVE(adphead, oldadp, ad_next); 5498 /* 5499 * We need to move any journal dependencies over to the freefrag 5500 * that releases this block if it exists. Otherwise we are 5501 * extending an existing block and we'll wait until that is 5502 * complete to release the journal space and extend the 5503 * new journal to cover this old space as well. 5504 */ 5505 if (freefrag == NULL) { 5506 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5507 panic("allocdirect_merge: %jd != %jd", 5508 oldadp->ad_newblkno, newadp->ad_newblkno); 5509 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5510 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5511 &oldadp->ad_block.nb_jnewblk->jn_list, 5512 &newadp->ad_block.nb_jwork); 5513 oldadp->ad_block.nb_jnewblk = NULL; 5514 cancel_newblk(&oldadp->ad_block, NULL, 5515 &newadp->ad_block.nb_jwork); 5516 } else { 5517 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5518 &freefrag->ff_list, &freefrag->ff_jwork); 5519 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5520 &freefrag->ff_jwork); 5521 } 5522 free_newblk(&oldadp->ad_block); 5523 } 5524 5525 /* 5526 * Allocate a jfreefrag structure to journal a single block free. 5527 */ 5528 static struct jfreefrag * 5529 newjfreefrag(freefrag, ip, blkno, size, lbn) 5530 struct freefrag *freefrag; 5531 struct inode *ip; 5532 ufs2_daddr_t blkno; 5533 long size; 5534 ufs_lbn_t lbn; 5535 { 5536 struct jfreefrag *jfreefrag; 5537 struct fs *fs; 5538 5539 fs = ip->i_fs; 5540 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5541 M_SOFTDEP_FLAGS); 5542 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump)); 5543 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5544 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5545 jfreefrag->fr_ino = ip->i_number; 5546 jfreefrag->fr_lbn = lbn; 5547 jfreefrag->fr_blkno = blkno; 5548 jfreefrag->fr_frags = numfrags(fs, size); 5549 jfreefrag->fr_freefrag = freefrag; 5550 5551 return (jfreefrag); 5552 } 5553 5554 /* 5555 * Allocate a new freefrag structure. 5556 */ 5557 static struct freefrag * 5558 newfreefrag(ip, blkno, size, lbn) 5559 struct inode *ip; 5560 ufs2_daddr_t blkno; 5561 long size; 5562 ufs_lbn_t lbn; 5563 { 5564 struct freefrag *freefrag; 5565 struct fs *fs; 5566 5567 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5568 ip->i_number, blkno, size, lbn); 5569 fs = ip->i_fs; 5570 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5571 panic("newfreefrag: frag size"); 5572 freefrag = malloc(sizeof(struct freefrag), 5573 M_FREEFRAG, M_SOFTDEP_FLAGS); 5574 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 5575 freefrag->ff_state = ATTACHED; 5576 LIST_INIT(&freefrag->ff_jwork); 5577 freefrag->ff_inum = ip->i_number; 5578 freefrag->ff_vtype = ITOV(ip)->v_type; 5579 freefrag->ff_blkno = blkno; 5580 freefrag->ff_fragsize = size; 5581 5582 if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) { 5583 freefrag->ff_jdep = (struct worklist *) 5584 newjfreefrag(freefrag, ip, blkno, size, lbn); 5585 } else { 5586 freefrag->ff_state |= DEPCOMPLETE; 5587 freefrag->ff_jdep = NULL; 5588 } 5589 5590 return (freefrag); 5591 } 5592 5593 /* 5594 * This workitem de-allocates fragments that were replaced during 5595 * file block allocation. 5596 */ 5597 static void 5598 handle_workitem_freefrag(freefrag) 5599 struct freefrag *freefrag; 5600 { 5601 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5602 struct workhead wkhd; 5603 5604 CTR3(KTR_SUJ, 5605 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5606 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5607 /* 5608 * It would be illegal to add new completion items to the 5609 * freefrag after it was schedule to be done so it must be 5610 * safe to modify the list head here. 5611 */ 5612 LIST_INIT(&wkhd); 5613 ACQUIRE_LOCK(ump); 5614 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5615 /* 5616 * If the journal has not been written we must cancel it here. 5617 */ 5618 if (freefrag->ff_jdep) { 5619 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5620 panic("handle_workitem_freefrag: Unexpected type %d\n", 5621 freefrag->ff_jdep->wk_type); 5622 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5623 } 5624 FREE_LOCK(ump); 5625 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5626 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5627 ACQUIRE_LOCK(ump); 5628 WORKITEM_FREE(freefrag, D_FREEFRAG); 5629 FREE_LOCK(ump); 5630 } 5631 5632 /* 5633 * Set up a dependency structure for an external attributes data block. 5634 * This routine follows much of the structure of softdep_setup_allocdirect. 5635 * See the description of softdep_setup_allocdirect above for details. 5636 */ 5637 void 5638 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5639 struct inode *ip; 5640 ufs_lbn_t off; 5641 ufs2_daddr_t newblkno; 5642 ufs2_daddr_t oldblkno; 5643 long newsize; 5644 long oldsize; 5645 struct buf *bp; 5646 { 5647 struct allocdirect *adp, *oldadp; 5648 struct allocdirectlst *adphead; 5649 struct freefrag *freefrag; 5650 struct inodedep *inodedep; 5651 struct jnewblk *jnewblk; 5652 struct newblk *newblk; 5653 struct mount *mp; 5654 ufs_lbn_t lbn; 5655 5656 mp = UFSTOVFS(ip->i_ump); 5657 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5658 ("softdep_setup_allocext called on non-softdep filesystem")); 5659 KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR", 5660 (long long)off)); 5661 5662 lbn = bp->b_lblkno; 5663 if (oldblkno && oldblkno != newblkno) 5664 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5665 else 5666 freefrag = NULL; 5667 5668 ACQUIRE_LOCK(ip->i_ump); 5669 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5670 panic("softdep_setup_allocext: lost block"); 5671 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5672 ("softdep_setup_allocext: newblk already initialized")); 5673 /* 5674 * Convert the newblk to an allocdirect. 5675 */ 5676 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5677 adp = (struct allocdirect *)newblk; 5678 newblk->nb_freefrag = freefrag; 5679 adp->ad_offset = off; 5680 adp->ad_oldblkno = oldblkno; 5681 adp->ad_newsize = newsize; 5682 adp->ad_oldsize = oldsize; 5683 adp->ad_state |= EXTDATA; 5684 5685 /* 5686 * Finish initializing the journal. 5687 */ 5688 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5689 jnewblk->jn_ino = ip->i_number; 5690 jnewblk->jn_lbn = lbn; 5691 add_to_journal(&jnewblk->jn_list); 5692 } 5693 if (freefrag && freefrag->ff_jdep != NULL && 5694 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5695 add_to_journal(freefrag->ff_jdep); 5696 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5697 adp->ad_inodedep = inodedep; 5698 5699 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5700 /* 5701 * The list of allocdirects must be kept in sorted and ascending 5702 * order so that the rollback routines can quickly determine the 5703 * first uncommitted block (the size of the file stored on disk 5704 * ends at the end of the lowest committed fragment, or if there 5705 * are no fragments, at the end of the highest committed block). 5706 * Since files generally grow, the typical case is that the new 5707 * block is to be added at the end of the list. We speed this 5708 * special case by checking against the last allocdirect in the 5709 * list before laboriously traversing the list looking for the 5710 * insertion point. 5711 */ 5712 adphead = &inodedep->id_newextupdt; 5713 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5714 if (oldadp == NULL || oldadp->ad_offset <= off) { 5715 /* insert at end of list */ 5716 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5717 if (oldadp != NULL && oldadp->ad_offset == off) 5718 allocdirect_merge(adphead, adp, oldadp); 5719 FREE_LOCK(ip->i_ump); 5720 return; 5721 } 5722 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5723 if (oldadp->ad_offset >= off) 5724 break; 5725 } 5726 if (oldadp == NULL) 5727 panic("softdep_setup_allocext: lost entry"); 5728 /* insert in middle of list */ 5729 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5730 if (oldadp->ad_offset == off) 5731 allocdirect_merge(adphead, adp, oldadp); 5732 FREE_LOCK(ip->i_ump); 5733 } 5734 5735 /* 5736 * Indirect block allocation dependencies. 5737 * 5738 * The same dependencies that exist for a direct block also exist when 5739 * a new block is allocated and pointed to by an entry in a block of 5740 * indirect pointers. The undo/redo states described above are also 5741 * used here. Because an indirect block contains many pointers that 5742 * may have dependencies, a second copy of the entire in-memory indirect 5743 * block is kept. The buffer cache copy is always completely up-to-date. 5744 * The second copy, which is used only as a source for disk writes, 5745 * contains only the safe pointers (i.e., those that have no remaining 5746 * update dependencies). The second copy is freed when all pointers 5747 * are safe. The cache is not allowed to replace indirect blocks with 5748 * pending update dependencies. If a buffer containing an indirect 5749 * block with dependencies is written, these routines will mark it 5750 * dirty again. It can only be successfully written once all the 5751 * dependencies are removed. The ffs_fsync routine in conjunction with 5752 * softdep_sync_metadata work together to get all the dependencies 5753 * removed so that a file can be successfully written to disk. Three 5754 * procedures are used when setting up indirect block pointer 5755 * dependencies. The division is necessary because of the organization 5756 * of the "balloc" routine and because of the distinction between file 5757 * pages and file metadata blocks. 5758 */ 5759 5760 /* 5761 * Allocate a new allocindir structure. 5762 */ 5763 static struct allocindir * 5764 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5765 struct inode *ip; /* inode for file being extended */ 5766 int ptrno; /* offset of pointer in indirect block */ 5767 ufs2_daddr_t newblkno; /* disk block number being added */ 5768 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5769 ufs_lbn_t lbn; 5770 { 5771 struct newblk *newblk; 5772 struct allocindir *aip; 5773 struct freefrag *freefrag; 5774 struct jnewblk *jnewblk; 5775 5776 if (oldblkno) 5777 freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn); 5778 else 5779 freefrag = NULL; 5780 ACQUIRE_LOCK(ip->i_ump); 5781 if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0) 5782 panic("new_allocindir: lost block"); 5783 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5784 ("newallocindir: newblk already initialized")); 5785 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5786 newblk->nb_freefrag = freefrag; 5787 aip = (struct allocindir *)newblk; 5788 aip->ai_offset = ptrno; 5789 aip->ai_oldblkno = oldblkno; 5790 aip->ai_lbn = lbn; 5791 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5792 jnewblk->jn_ino = ip->i_number; 5793 jnewblk->jn_lbn = lbn; 5794 add_to_journal(&jnewblk->jn_list); 5795 } 5796 if (freefrag && freefrag->ff_jdep != NULL && 5797 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5798 add_to_journal(freefrag->ff_jdep); 5799 return (aip); 5800 } 5801 5802 /* 5803 * Called just before setting an indirect block pointer 5804 * to a newly allocated file page. 5805 */ 5806 void 5807 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5808 struct inode *ip; /* inode for file being extended */ 5809 ufs_lbn_t lbn; /* allocated block number within file */ 5810 struct buf *bp; /* buffer with indirect blk referencing page */ 5811 int ptrno; /* offset of pointer in indirect block */ 5812 ufs2_daddr_t newblkno; /* disk block number being added */ 5813 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5814 struct buf *nbp; /* buffer holding allocated page */ 5815 { 5816 struct inodedep *inodedep; 5817 struct freefrag *freefrag; 5818 struct allocindir *aip; 5819 struct pagedep *pagedep; 5820 struct mount *mp; 5821 int dflags; 5822 5823 mp = UFSTOVFS(ip->i_ump); 5824 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5825 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5826 KASSERT(lbn == nbp->b_lblkno, 5827 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5828 lbn, bp->b_lblkno)); 5829 CTR4(KTR_SUJ, 5830 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5831 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5832 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5833 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5834 dflags = DEPALLOC; 5835 if (IS_SNAPSHOT(ip)) 5836 dflags |= NODELAY; 5837 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 5838 /* 5839 * If we are allocating a directory page, then we must 5840 * allocate an associated pagedep to track additions and 5841 * deletions. 5842 */ 5843 if ((ip->i_mode & IFMT) == IFDIR) 5844 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5845 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5846 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5847 FREE_LOCK(ip->i_ump); 5848 if (freefrag) 5849 handle_workitem_freefrag(freefrag); 5850 } 5851 5852 /* 5853 * Called just before setting an indirect block pointer to a 5854 * newly allocated indirect block. 5855 */ 5856 void 5857 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5858 struct buf *nbp; /* newly allocated indirect block */ 5859 struct inode *ip; /* inode for file being extended */ 5860 struct buf *bp; /* indirect block referencing allocated block */ 5861 int ptrno; /* offset of pointer in indirect block */ 5862 ufs2_daddr_t newblkno; /* disk block number being added */ 5863 { 5864 struct inodedep *inodedep; 5865 struct allocindir *aip; 5866 ufs_lbn_t lbn; 5867 int dflags; 5868 5869 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 5870 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5871 CTR3(KTR_SUJ, 5872 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5873 ip->i_number, newblkno, ptrno); 5874 lbn = nbp->b_lblkno; 5875 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5876 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5877 dflags = DEPALLOC; 5878 if (IS_SNAPSHOT(ip)) 5879 dflags |= NODELAY; 5880 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 5881 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5882 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5883 panic("softdep_setup_allocindir_meta: Block already existed"); 5884 FREE_LOCK(ip->i_ump); 5885 } 5886 5887 static void 5888 indirdep_complete(indirdep) 5889 struct indirdep *indirdep; 5890 { 5891 struct allocindir *aip; 5892 5893 LIST_REMOVE(indirdep, ir_next); 5894 indirdep->ir_state |= DEPCOMPLETE; 5895 5896 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5897 LIST_REMOVE(aip, ai_next); 5898 free_newblk(&aip->ai_block); 5899 } 5900 /* 5901 * If this indirdep is not attached to a buf it was simply waiting 5902 * on completion to clear completehd. free_indirdep() asserts 5903 * that nothing is dangling. 5904 */ 5905 if ((indirdep->ir_state & ONWORKLIST) == 0) 5906 free_indirdep(indirdep); 5907 } 5908 5909 static struct indirdep * 5910 indirdep_lookup(mp, ip, bp) 5911 struct mount *mp; 5912 struct inode *ip; 5913 struct buf *bp; 5914 { 5915 struct indirdep *indirdep, *newindirdep; 5916 struct newblk *newblk; 5917 struct ufsmount *ump; 5918 struct worklist *wk; 5919 struct fs *fs; 5920 ufs2_daddr_t blkno; 5921 5922 ump = VFSTOUFS(mp); 5923 LOCK_OWNED(ump); 5924 indirdep = NULL; 5925 newindirdep = NULL; 5926 fs = ip->i_fs; 5927 for (;;) { 5928 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5929 if (wk->wk_type != D_INDIRDEP) 5930 continue; 5931 indirdep = WK_INDIRDEP(wk); 5932 break; 5933 } 5934 /* Found on the buffer worklist, no new structure to free. */ 5935 if (indirdep != NULL && newindirdep == NULL) 5936 return (indirdep); 5937 if (indirdep != NULL && newindirdep != NULL) 5938 panic("indirdep_lookup: simultaneous create"); 5939 /* None found on the buffer and a new structure is ready. */ 5940 if (indirdep == NULL && newindirdep != NULL) 5941 break; 5942 /* None found and no new structure available. */ 5943 FREE_LOCK(ump); 5944 newindirdep = malloc(sizeof(struct indirdep), 5945 M_INDIRDEP, M_SOFTDEP_FLAGS); 5946 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5947 newindirdep->ir_state = ATTACHED; 5948 if (ip->i_ump->um_fstype == UFS1) 5949 newindirdep->ir_state |= UFS1FMT; 5950 TAILQ_INIT(&newindirdep->ir_trunc); 5951 newindirdep->ir_saveddata = NULL; 5952 LIST_INIT(&newindirdep->ir_deplisthd); 5953 LIST_INIT(&newindirdep->ir_donehd); 5954 LIST_INIT(&newindirdep->ir_writehd); 5955 LIST_INIT(&newindirdep->ir_completehd); 5956 if (bp->b_blkno == bp->b_lblkno) { 5957 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5958 NULL, NULL); 5959 bp->b_blkno = blkno; 5960 } 5961 newindirdep->ir_freeblks = NULL; 5962 newindirdep->ir_savebp = 5963 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5964 newindirdep->ir_bp = bp; 5965 BUF_KERNPROC(newindirdep->ir_savebp); 5966 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5967 ACQUIRE_LOCK(ump); 5968 } 5969 indirdep = newindirdep; 5970 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5971 /* 5972 * If the block is not yet allocated we don't set DEPCOMPLETE so 5973 * that we don't free dependencies until the pointers are valid. 5974 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5975 * than using the hash. 5976 */ 5977 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5978 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5979 else 5980 indirdep->ir_state |= DEPCOMPLETE; 5981 return (indirdep); 5982 } 5983 5984 /* 5985 * Called to finish the allocation of the "aip" allocated 5986 * by one of the two routines above. 5987 */ 5988 static struct freefrag * 5989 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5990 struct buf *bp; /* in-memory copy of the indirect block */ 5991 struct inode *ip; /* inode for file being extended */ 5992 struct inodedep *inodedep; /* Inodedep for ip */ 5993 struct allocindir *aip; /* allocindir allocated by the above routines */ 5994 ufs_lbn_t lbn; /* Logical block number for this block. */ 5995 { 5996 struct fs *fs; 5997 struct indirdep *indirdep; 5998 struct allocindir *oldaip; 5999 struct freefrag *freefrag; 6000 struct mount *mp; 6001 6002 LOCK_OWNED(ip->i_ump); 6003 mp = UFSTOVFS(ip->i_ump); 6004 fs = ip->i_fs; 6005 if (bp->b_lblkno >= 0) 6006 panic("setup_allocindir_phase2: not indir blk"); 6007 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6008 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6009 indirdep = indirdep_lookup(mp, ip, bp); 6010 KASSERT(indirdep->ir_savebp != NULL, 6011 ("setup_allocindir_phase2 NULL ir_savebp")); 6012 aip->ai_indirdep = indirdep; 6013 /* 6014 * Check for an unwritten dependency for this indirect offset. If 6015 * there is, merge the old dependency into the new one. This happens 6016 * as a result of reallocblk only. 6017 */ 6018 freefrag = NULL; 6019 if (aip->ai_oldblkno != 0) { 6020 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6021 if (oldaip->ai_offset == aip->ai_offset) { 6022 freefrag = allocindir_merge(aip, oldaip); 6023 goto done; 6024 } 6025 } 6026 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6027 if (oldaip->ai_offset == aip->ai_offset) { 6028 freefrag = allocindir_merge(aip, oldaip); 6029 goto done; 6030 } 6031 } 6032 } 6033 done: 6034 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6035 return (freefrag); 6036 } 6037 6038 /* 6039 * Merge two allocindirs which refer to the same block. Move newblock 6040 * dependencies and setup the freefrags appropriately. 6041 */ 6042 static struct freefrag * 6043 allocindir_merge(aip, oldaip) 6044 struct allocindir *aip; 6045 struct allocindir *oldaip; 6046 { 6047 struct freefrag *freefrag; 6048 struct worklist *wk; 6049 6050 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6051 panic("allocindir_merge: blkno"); 6052 aip->ai_oldblkno = oldaip->ai_oldblkno; 6053 freefrag = aip->ai_freefrag; 6054 aip->ai_freefrag = oldaip->ai_freefrag; 6055 oldaip->ai_freefrag = NULL; 6056 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6057 /* 6058 * If we are tracking a new directory-block allocation, 6059 * move it from the old allocindir to the new allocindir. 6060 */ 6061 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6062 WORKLIST_REMOVE(wk); 6063 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6064 panic("allocindir_merge: extra newdirblk"); 6065 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6066 } 6067 /* 6068 * We can skip journaling for this freefrag and just complete 6069 * any pending journal work for the allocindir that is being 6070 * removed after the freefrag completes. 6071 */ 6072 if (freefrag->ff_jdep) 6073 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6074 LIST_REMOVE(oldaip, ai_next); 6075 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6076 &freefrag->ff_list, &freefrag->ff_jwork); 6077 free_newblk(&oldaip->ai_block); 6078 6079 return (freefrag); 6080 } 6081 6082 static inline void 6083 setup_freedirect(freeblks, ip, i, needj) 6084 struct freeblks *freeblks; 6085 struct inode *ip; 6086 int i; 6087 int needj; 6088 { 6089 ufs2_daddr_t blkno; 6090 int frags; 6091 6092 blkno = DIP(ip, i_db[i]); 6093 if (blkno == 0) 6094 return; 6095 DIP_SET(ip, i_db[i], 0); 6096 frags = sblksize(ip->i_fs, ip->i_size, i); 6097 frags = numfrags(ip->i_fs, frags); 6098 newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj); 6099 } 6100 6101 static inline void 6102 setup_freeext(freeblks, ip, i, needj) 6103 struct freeblks *freeblks; 6104 struct inode *ip; 6105 int i; 6106 int needj; 6107 { 6108 ufs2_daddr_t blkno; 6109 int frags; 6110 6111 blkno = ip->i_din2->di_extb[i]; 6112 if (blkno == 0) 6113 return; 6114 ip->i_din2->di_extb[i] = 0; 6115 frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i); 6116 frags = numfrags(ip->i_fs, frags); 6117 newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6118 } 6119 6120 static inline void 6121 setup_freeindir(freeblks, ip, i, lbn, needj) 6122 struct freeblks *freeblks; 6123 struct inode *ip; 6124 int i; 6125 ufs_lbn_t lbn; 6126 int needj; 6127 { 6128 ufs2_daddr_t blkno; 6129 6130 blkno = DIP(ip, i_ib[i]); 6131 if (blkno == 0) 6132 return; 6133 DIP_SET(ip, i_ib[i], 0); 6134 newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag, 6135 0, needj); 6136 } 6137 6138 static inline struct freeblks * 6139 newfreeblks(mp, ip) 6140 struct mount *mp; 6141 struct inode *ip; 6142 { 6143 struct freeblks *freeblks; 6144 6145 freeblks = malloc(sizeof(struct freeblks), 6146 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6147 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6148 LIST_INIT(&freeblks->fb_jblkdephd); 6149 LIST_INIT(&freeblks->fb_jwork); 6150 freeblks->fb_ref = 0; 6151 freeblks->fb_cgwait = 0; 6152 freeblks->fb_state = ATTACHED; 6153 freeblks->fb_uid = ip->i_uid; 6154 freeblks->fb_inum = ip->i_number; 6155 freeblks->fb_vtype = ITOV(ip)->v_type; 6156 freeblks->fb_modrev = DIP(ip, i_modrev); 6157 freeblks->fb_devvp = ip->i_devvp; 6158 freeblks->fb_chkcnt = 0; 6159 freeblks->fb_len = 0; 6160 6161 return (freeblks); 6162 } 6163 6164 static void 6165 trunc_indirdep(indirdep, freeblks, bp, off) 6166 struct indirdep *indirdep; 6167 struct freeblks *freeblks; 6168 struct buf *bp; 6169 int off; 6170 { 6171 struct allocindir *aip, *aipn; 6172 6173 /* 6174 * The first set of allocindirs won't be in savedbp. 6175 */ 6176 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6177 if (aip->ai_offset > off) 6178 cancel_allocindir(aip, bp, freeblks, 1); 6179 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6180 if (aip->ai_offset > off) 6181 cancel_allocindir(aip, bp, freeblks, 1); 6182 /* 6183 * These will exist in savedbp. 6184 */ 6185 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6186 if (aip->ai_offset > off) 6187 cancel_allocindir(aip, NULL, freeblks, 0); 6188 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6189 if (aip->ai_offset > off) 6190 cancel_allocindir(aip, NULL, freeblks, 0); 6191 } 6192 6193 /* 6194 * Follow the chain of indirects down to lastlbn creating a freework 6195 * structure for each. This will be used to start indir_trunc() at 6196 * the right offset and create the journal records for the parrtial 6197 * truncation. A second step will handle the truncated dependencies. 6198 */ 6199 static int 6200 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6201 struct freeblks *freeblks; 6202 struct inode *ip; 6203 ufs_lbn_t lbn; 6204 ufs_lbn_t lastlbn; 6205 ufs2_daddr_t blkno; 6206 { 6207 struct indirdep *indirdep; 6208 struct indirdep *indirn; 6209 struct freework *freework; 6210 struct newblk *newblk; 6211 struct mount *mp; 6212 struct buf *bp; 6213 uint8_t *start; 6214 uint8_t *end; 6215 ufs_lbn_t lbnadd; 6216 int level; 6217 int error; 6218 int off; 6219 6220 6221 freework = NULL; 6222 if (blkno == 0) 6223 return (0); 6224 mp = freeblks->fb_list.wk_mp; 6225 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6226 if ((bp->b_flags & B_CACHE) == 0) { 6227 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6228 bp->b_iocmd = BIO_READ; 6229 bp->b_flags &= ~B_INVAL; 6230 bp->b_ioflags &= ~BIO_ERROR; 6231 vfs_busy_pages(bp, 0); 6232 bp->b_iooffset = dbtob(bp->b_blkno); 6233 bstrategy(bp); 6234 curthread->td_ru.ru_inblock++; 6235 error = bufwait(bp); 6236 if (error) { 6237 brelse(bp); 6238 return (error); 6239 } 6240 } 6241 level = lbn_level(lbn); 6242 lbnadd = lbn_offset(ip->i_fs, level); 6243 /* 6244 * Compute the offset of the last block we want to keep. Store 6245 * in the freework the first block we want to completely free. 6246 */ 6247 off = (lastlbn - -(lbn + level)) / lbnadd; 6248 if (off + 1 == NINDIR(ip->i_fs)) 6249 goto nowork; 6250 freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1, 6251 0); 6252 /* 6253 * Link the freework into the indirdep. This will prevent any new 6254 * allocations from proceeding until we are finished with the 6255 * truncate and the block is written. 6256 */ 6257 ACQUIRE_LOCK(ip->i_ump); 6258 indirdep = indirdep_lookup(mp, ip, bp); 6259 if (indirdep->ir_freeblks) 6260 panic("setup_trunc_indir: indirdep already truncated."); 6261 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6262 freework->fw_indir = indirdep; 6263 /* 6264 * Cancel any allocindirs that will not make it to disk. 6265 * We have to do this for all copies of the indirdep that 6266 * live on this newblk. 6267 */ 6268 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6269 newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk); 6270 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6271 trunc_indirdep(indirn, freeblks, bp, off); 6272 } else 6273 trunc_indirdep(indirdep, freeblks, bp, off); 6274 FREE_LOCK(ip->i_ump); 6275 /* 6276 * Creation is protected by the buf lock. The saveddata is only 6277 * needed if a full truncation follows a partial truncation but it 6278 * is difficult to allocate in that case so we fetch it anyway. 6279 */ 6280 if (indirdep->ir_saveddata == NULL) 6281 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6282 M_SOFTDEP_FLAGS); 6283 nowork: 6284 /* Fetch the blkno of the child and the zero start offset. */ 6285 if (ip->i_ump->um_fstype == UFS1) { 6286 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6287 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6288 } else { 6289 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6290 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6291 } 6292 if (freework) { 6293 /* Zero the truncated pointers. */ 6294 end = bp->b_data + bp->b_bcount; 6295 bzero(start, end - start); 6296 bdwrite(bp); 6297 } else 6298 bqrelse(bp); 6299 if (level == 0) 6300 return (0); 6301 lbn++; /* adjust level */ 6302 lbn -= (off * lbnadd); 6303 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6304 } 6305 6306 /* 6307 * Complete the partial truncation of an indirect block setup by 6308 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6309 * copy and writes them to disk before the freeblks is allowed to complete. 6310 */ 6311 static void 6312 complete_trunc_indir(freework) 6313 struct freework *freework; 6314 { 6315 struct freework *fwn; 6316 struct indirdep *indirdep; 6317 struct ufsmount *ump; 6318 struct buf *bp; 6319 uintptr_t start; 6320 int count; 6321 6322 ump = VFSTOUFS(freework->fw_list.wk_mp); 6323 LOCK_OWNED(ump); 6324 indirdep = freework->fw_indir; 6325 for (;;) { 6326 bp = indirdep->ir_bp; 6327 /* See if the block was discarded. */ 6328 if (bp == NULL) 6329 break; 6330 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6331 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6332 break; 6333 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6334 LOCK_PTR(ump)) == 0) 6335 BUF_UNLOCK(bp); 6336 ACQUIRE_LOCK(ump); 6337 } 6338 freework->fw_state |= DEPCOMPLETE; 6339 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6340 /* 6341 * Zero the pointers in the saved copy. 6342 */ 6343 if (indirdep->ir_state & UFS1FMT) 6344 start = sizeof(ufs1_daddr_t); 6345 else 6346 start = sizeof(ufs2_daddr_t); 6347 start *= freework->fw_start; 6348 count = indirdep->ir_savebp->b_bcount - start; 6349 start += (uintptr_t)indirdep->ir_savebp->b_data; 6350 bzero((char *)start, count); 6351 /* 6352 * We need to start the next truncation in the list if it has not 6353 * been started yet. 6354 */ 6355 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6356 if (fwn != NULL) { 6357 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6358 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6359 if ((fwn->fw_state & ONWORKLIST) == 0) 6360 freework_enqueue(fwn); 6361 } 6362 /* 6363 * If bp is NULL the block was fully truncated, restore 6364 * the saved block list otherwise free it if it is no 6365 * longer needed. 6366 */ 6367 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6368 if (bp == NULL) 6369 bcopy(indirdep->ir_saveddata, 6370 indirdep->ir_savebp->b_data, 6371 indirdep->ir_savebp->b_bcount); 6372 free(indirdep->ir_saveddata, M_INDIRDEP); 6373 indirdep->ir_saveddata = NULL; 6374 } 6375 /* 6376 * When bp is NULL there is a full truncation pending. We 6377 * must wait for this full truncation to be journaled before 6378 * we can release this freework because the disk pointers will 6379 * never be written as zero. 6380 */ 6381 if (bp == NULL) { 6382 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6383 handle_written_freework(freework); 6384 else 6385 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6386 &freework->fw_list); 6387 } else { 6388 /* Complete when the real copy is written. */ 6389 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6390 BUF_UNLOCK(bp); 6391 } 6392 } 6393 6394 /* 6395 * Calculate the number of blocks we are going to release where datablocks 6396 * is the current total and length is the new file size. 6397 */ 6398 static ufs2_daddr_t 6399 blkcount(fs, datablocks, length) 6400 struct fs *fs; 6401 ufs2_daddr_t datablocks; 6402 off_t length; 6403 { 6404 off_t totblks, numblks; 6405 6406 totblks = 0; 6407 numblks = howmany(length, fs->fs_bsize); 6408 if (numblks <= NDADDR) { 6409 totblks = howmany(length, fs->fs_fsize); 6410 goto out; 6411 } 6412 totblks = blkstofrags(fs, numblks); 6413 numblks -= NDADDR; 6414 /* 6415 * Count all single, then double, then triple indirects required. 6416 * Subtracting one indirects worth of blocks for each pass 6417 * acknowledges one of each pointed to by the inode. 6418 */ 6419 for (;;) { 6420 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6421 numblks -= NINDIR(fs); 6422 if (numblks <= 0) 6423 break; 6424 numblks = howmany(numblks, NINDIR(fs)); 6425 } 6426 out: 6427 totblks = fsbtodb(fs, totblks); 6428 /* 6429 * Handle sparse files. We can't reclaim more blocks than the inode 6430 * references. We will correct it later in handle_complete_freeblks() 6431 * when we know the real count. 6432 */ 6433 if (totblks > datablocks) 6434 return (0); 6435 return (datablocks - totblks); 6436 } 6437 6438 /* 6439 * Handle freeblocks for journaled softupdate filesystems. 6440 * 6441 * Contrary to normal softupdates, we must preserve the block pointers in 6442 * indirects until their subordinates are free. This is to avoid journaling 6443 * every block that is freed which may consume more space than the journal 6444 * itself. The recovery program will see the free block journals at the 6445 * base of the truncated area and traverse them to reclaim space. The 6446 * pointers in the inode may be cleared immediately after the journal 6447 * records are written because each direct and indirect pointer in the 6448 * inode is recorded in a journal. This permits full truncation to proceed 6449 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6450 * 6451 * The algorithm is as follows: 6452 * 1) Traverse the in-memory state and create journal entries to release 6453 * the relevant blocks and full indirect trees. 6454 * 2) Traverse the indirect block chain adding partial truncation freework 6455 * records to indirects in the path to lastlbn. The freework will 6456 * prevent new allocation dependencies from being satisfied in this 6457 * indirect until the truncation completes. 6458 * 3) Read and lock the inode block, performing an update with the new size 6459 * and pointers. This prevents truncated data from becoming valid on 6460 * disk through step 4. 6461 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6462 * eliminate journal work for those records that do not require it. 6463 * 5) Schedule the journal records to be written followed by the inode block. 6464 * 6) Allocate any necessary frags for the end of file. 6465 * 7) Zero any partially truncated blocks. 6466 * 6467 * From this truncation proceeds asynchronously using the freework and 6468 * indir_trunc machinery. The file will not be extended again into a 6469 * partially truncated indirect block until all work is completed but 6470 * the normal dependency mechanism ensures that it is rolled back/forward 6471 * as appropriate. Further truncation may occur without delay and is 6472 * serialized in indir_trunc(). 6473 */ 6474 void 6475 softdep_journal_freeblocks(ip, cred, length, flags) 6476 struct inode *ip; /* The inode whose length is to be reduced */ 6477 struct ucred *cred; 6478 off_t length; /* The new length for the file */ 6479 int flags; /* IO_EXT and/or IO_NORMAL */ 6480 { 6481 struct freeblks *freeblks, *fbn; 6482 struct worklist *wk, *wkn; 6483 struct inodedep *inodedep; 6484 struct jblkdep *jblkdep; 6485 struct allocdirect *adp, *adpn; 6486 struct ufsmount *ump; 6487 struct fs *fs; 6488 struct buf *bp; 6489 struct vnode *vp; 6490 struct mount *mp; 6491 ufs2_daddr_t extblocks, datablocks; 6492 ufs_lbn_t tmpval, lbn, lastlbn; 6493 int frags, lastoff, iboff, allocblock, needj, dflags, error, i; 6494 6495 fs = ip->i_fs; 6496 ump = ip->i_ump; 6497 mp = UFSTOVFS(ump); 6498 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6499 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6500 vp = ITOV(ip); 6501 needj = 1; 6502 iboff = -1; 6503 allocblock = 0; 6504 extblocks = 0; 6505 datablocks = 0; 6506 frags = 0; 6507 freeblks = newfreeblks(mp, ip); 6508 ACQUIRE_LOCK(ump); 6509 /* 6510 * If we're truncating a removed file that will never be written 6511 * we don't need to journal the block frees. The canceled journals 6512 * for the allocations will suffice. 6513 */ 6514 dflags = DEPALLOC; 6515 if (IS_SNAPSHOT(ip)) 6516 dflags |= NODELAY; 6517 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6518 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6519 length == 0) 6520 needj = 0; 6521 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6522 ip->i_number, length, needj); 6523 FREE_LOCK(ump); 6524 /* 6525 * Calculate the lbn that we are truncating to. This results in -1 6526 * if we're truncating the 0 bytes. So it is the last lbn we want 6527 * to keep, not the first lbn we want to truncate. 6528 */ 6529 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6530 lastoff = blkoff(fs, length); 6531 /* 6532 * Compute frags we are keeping in lastlbn. 0 means all. 6533 */ 6534 if (lastlbn >= 0 && lastlbn < NDADDR) { 6535 frags = fragroundup(fs, lastoff); 6536 /* adp offset of last valid allocdirect. */ 6537 iboff = lastlbn; 6538 } else if (lastlbn > 0) 6539 iboff = NDADDR; 6540 if (fs->fs_magic == FS_UFS2_MAGIC) 6541 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6542 /* 6543 * Handle normal data blocks and indirects. This section saves 6544 * values used after the inode update to complete frag and indirect 6545 * truncation. 6546 */ 6547 if ((flags & IO_NORMAL) != 0) { 6548 /* 6549 * Handle truncation of whole direct and indirect blocks. 6550 */ 6551 for (i = iboff + 1; i < NDADDR; i++) 6552 setup_freedirect(freeblks, ip, i, needj); 6553 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6554 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6555 /* Release a whole indirect tree. */ 6556 if (lbn > lastlbn) { 6557 setup_freeindir(freeblks, ip, i, -lbn -i, 6558 needj); 6559 continue; 6560 } 6561 iboff = i + NDADDR; 6562 /* 6563 * Traverse partially truncated indirect tree. 6564 */ 6565 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6566 setup_trunc_indir(freeblks, ip, -lbn - i, 6567 lastlbn, DIP(ip, i_ib[i])); 6568 } 6569 /* 6570 * Handle partial truncation to a frag boundary. 6571 */ 6572 if (frags) { 6573 ufs2_daddr_t blkno; 6574 long oldfrags; 6575 6576 oldfrags = blksize(fs, ip, lastlbn); 6577 blkno = DIP(ip, i_db[lastlbn]); 6578 if (blkno && oldfrags != frags) { 6579 oldfrags -= frags; 6580 oldfrags = numfrags(ip->i_fs, oldfrags); 6581 blkno += numfrags(ip->i_fs, frags); 6582 newfreework(ump, freeblks, NULL, lastlbn, 6583 blkno, oldfrags, 0, needj); 6584 if (needj) 6585 adjust_newfreework(freeblks, 6586 numfrags(ip->i_fs, frags)); 6587 } else if (blkno == 0) 6588 allocblock = 1; 6589 } 6590 /* 6591 * Add a journal record for partial truncate if we are 6592 * handling indirect blocks. Non-indirects need no extra 6593 * journaling. 6594 */ 6595 if (length != 0 && lastlbn >= NDADDR) { 6596 ip->i_flag |= IN_TRUNCATED; 6597 newjtrunc(freeblks, length, 0); 6598 } 6599 ip->i_size = length; 6600 DIP_SET(ip, i_size, ip->i_size); 6601 datablocks = DIP(ip, i_blocks) - extblocks; 6602 if (length != 0) 6603 datablocks = blkcount(ip->i_fs, datablocks, length); 6604 freeblks->fb_len = length; 6605 } 6606 if ((flags & IO_EXT) != 0) { 6607 for (i = 0; i < NXADDR; i++) 6608 setup_freeext(freeblks, ip, i, needj); 6609 ip->i_din2->di_extsize = 0; 6610 datablocks += extblocks; 6611 } 6612 #ifdef QUOTA 6613 /* Reference the quotas in case the block count is wrong in the end. */ 6614 quotaref(vp, freeblks->fb_quota); 6615 (void) chkdq(ip, -datablocks, NOCRED, 0); 6616 #endif 6617 freeblks->fb_chkcnt = -datablocks; 6618 UFS_LOCK(ump); 6619 fs->fs_pendingblocks += datablocks; 6620 UFS_UNLOCK(ump); 6621 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6622 /* 6623 * Handle truncation of incomplete alloc direct dependencies. We 6624 * hold the inode block locked to prevent incomplete dependencies 6625 * from reaching the disk while we are eliminating those that 6626 * have been truncated. This is a partially inlined ffs_update(). 6627 */ 6628 ufs_itimes(vp); 6629 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6630 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6631 (int)fs->fs_bsize, cred, &bp); 6632 if (error) { 6633 brelse(bp); 6634 softdep_error("softdep_journal_freeblocks", error); 6635 return; 6636 } 6637 if (bp->b_bufsize == fs->fs_bsize) 6638 bp->b_flags |= B_CLUSTEROK; 6639 softdep_update_inodeblock(ip, bp, 0); 6640 if (ump->um_fstype == UFS1) 6641 *((struct ufs1_dinode *)bp->b_data + 6642 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6643 else 6644 *((struct ufs2_dinode *)bp->b_data + 6645 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6646 ACQUIRE_LOCK(ump); 6647 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6648 if ((inodedep->id_state & IOSTARTED) != 0) 6649 panic("softdep_setup_freeblocks: inode busy"); 6650 /* 6651 * Add the freeblks structure to the list of operations that 6652 * must await the zero'ed inode being written to disk. If we 6653 * still have a bitmap dependency (needj), then the inode 6654 * has never been written to disk, so we can process the 6655 * freeblks below once we have deleted the dependencies. 6656 */ 6657 if (needj) 6658 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6659 else 6660 freeblks->fb_state |= COMPLETE; 6661 if ((flags & IO_NORMAL) != 0) { 6662 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6663 if (adp->ad_offset > iboff) 6664 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6665 freeblks); 6666 /* 6667 * Truncate the allocdirect. We could eliminate 6668 * or modify journal records as well. 6669 */ 6670 else if (adp->ad_offset == iboff && frags) 6671 adp->ad_newsize = frags; 6672 } 6673 } 6674 if ((flags & IO_EXT) != 0) 6675 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6676 cancel_allocdirect(&inodedep->id_extupdt, adp, 6677 freeblks); 6678 /* 6679 * Scan the bufwait list for newblock dependencies that will never 6680 * make it to disk. 6681 */ 6682 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6683 if (wk->wk_type != D_ALLOCDIRECT) 6684 continue; 6685 adp = WK_ALLOCDIRECT(wk); 6686 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6687 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6688 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6689 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6690 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6691 } 6692 } 6693 /* 6694 * Add journal work. 6695 */ 6696 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6697 add_to_journal(&jblkdep->jb_list); 6698 FREE_LOCK(ump); 6699 bdwrite(bp); 6700 /* 6701 * Truncate dependency structures beyond length. 6702 */ 6703 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6704 /* 6705 * This is only set when we need to allocate a fragment because 6706 * none existed at the end of a frag-sized file. It handles only 6707 * allocating a new, zero filled block. 6708 */ 6709 if (allocblock) { 6710 ip->i_size = length - lastoff; 6711 DIP_SET(ip, i_size, ip->i_size); 6712 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6713 if (error != 0) { 6714 softdep_error("softdep_journal_freeblks", error); 6715 return; 6716 } 6717 ip->i_size = length; 6718 DIP_SET(ip, i_size, length); 6719 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6720 allocbuf(bp, frags); 6721 ffs_update(vp, 0); 6722 bawrite(bp); 6723 } else if (lastoff != 0 && vp->v_type != VDIR) { 6724 int size; 6725 6726 /* 6727 * Zero the end of a truncated frag or block. 6728 */ 6729 size = sblksize(fs, length, lastlbn); 6730 error = bread(vp, lastlbn, size, cred, &bp); 6731 if (error) { 6732 softdep_error("softdep_journal_freeblks", error); 6733 return; 6734 } 6735 bzero((char *)bp->b_data + lastoff, size - lastoff); 6736 bawrite(bp); 6737 6738 } 6739 ACQUIRE_LOCK(ump); 6740 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6741 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6742 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6743 /* 6744 * We zero earlier truncations so they don't erroneously 6745 * update i_blocks. 6746 */ 6747 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6748 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6749 fbn->fb_len = 0; 6750 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6751 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6752 freeblks->fb_state |= INPROGRESS; 6753 else 6754 freeblks = NULL; 6755 FREE_LOCK(ump); 6756 if (freeblks) 6757 handle_workitem_freeblocks(freeblks, 0); 6758 trunc_pages(ip, length, extblocks, flags); 6759 6760 } 6761 6762 /* 6763 * Flush a JOP_SYNC to the journal. 6764 */ 6765 void 6766 softdep_journal_fsync(ip) 6767 struct inode *ip; 6768 { 6769 struct jfsync *jfsync; 6770 6771 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 6772 ("softdep_journal_fsync called on non-softdep filesystem")); 6773 if ((ip->i_flag & IN_TRUNCATED) == 0) 6774 return; 6775 ip->i_flag &= ~IN_TRUNCATED; 6776 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6777 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump)); 6778 jfsync->jfs_size = ip->i_size; 6779 jfsync->jfs_ino = ip->i_number; 6780 ACQUIRE_LOCK(ip->i_ump); 6781 add_to_journal(&jfsync->jfs_list); 6782 jwait(&jfsync->jfs_list, MNT_WAIT); 6783 FREE_LOCK(ip->i_ump); 6784 } 6785 6786 /* 6787 * Block de-allocation dependencies. 6788 * 6789 * When blocks are de-allocated, the on-disk pointers must be nullified before 6790 * the blocks are made available for use by other files. (The true 6791 * requirement is that old pointers must be nullified before new on-disk 6792 * pointers are set. We chose this slightly more stringent requirement to 6793 * reduce complexity.) Our implementation handles this dependency by updating 6794 * the inode (or indirect block) appropriately but delaying the actual block 6795 * de-allocation (i.e., freemap and free space count manipulation) until 6796 * after the updated versions reach stable storage. After the disk is 6797 * updated, the blocks can be safely de-allocated whenever it is convenient. 6798 * This implementation handles only the common case of reducing a file's 6799 * length to zero. Other cases are handled by the conventional synchronous 6800 * write approach. 6801 * 6802 * The ffs implementation with which we worked double-checks 6803 * the state of the block pointers and file size as it reduces 6804 * a file's length. Some of this code is replicated here in our 6805 * soft updates implementation. The freeblks->fb_chkcnt field is 6806 * used to transfer a part of this information to the procedure 6807 * that eventually de-allocates the blocks. 6808 * 6809 * This routine should be called from the routine that shortens 6810 * a file's length, before the inode's size or block pointers 6811 * are modified. It will save the block pointer information for 6812 * later release and zero the inode so that the calling routine 6813 * can release it. 6814 */ 6815 void 6816 softdep_setup_freeblocks(ip, length, flags) 6817 struct inode *ip; /* The inode whose length is to be reduced */ 6818 off_t length; /* The new length for the file */ 6819 int flags; /* IO_EXT and/or IO_NORMAL */ 6820 { 6821 struct ufs1_dinode *dp1; 6822 struct ufs2_dinode *dp2; 6823 struct freeblks *freeblks; 6824 struct inodedep *inodedep; 6825 struct allocdirect *adp; 6826 struct ufsmount *ump; 6827 struct buf *bp; 6828 struct fs *fs; 6829 ufs2_daddr_t extblocks, datablocks; 6830 struct mount *mp; 6831 int i, delay, error, dflags; 6832 ufs_lbn_t tmpval; 6833 ufs_lbn_t lbn; 6834 6835 ump = ip->i_ump; 6836 mp = UFSTOVFS(ump); 6837 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6838 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6839 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6840 ip->i_number, length); 6841 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6842 fs = ip->i_fs; 6843 freeblks = newfreeblks(mp, ip); 6844 extblocks = 0; 6845 datablocks = 0; 6846 if (fs->fs_magic == FS_UFS2_MAGIC) 6847 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6848 if ((flags & IO_NORMAL) != 0) { 6849 for (i = 0; i < NDADDR; i++) 6850 setup_freedirect(freeblks, ip, i, 0); 6851 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6852 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6853 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6854 ip->i_size = 0; 6855 DIP_SET(ip, i_size, 0); 6856 datablocks = DIP(ip, i_blocks) - extblocks; 6857 } 6858 if ((flags & IO_EXT) != 0) { 6859 for (i = 0; i < NXADDR; i++) 6860 setup_freeext(freeblks, ip, i, 0); 6861 ip->i_din2->di_extsize = 0; 6862 datablocks += extblocks; 6863 } 6864 #ifdef QUOTA 6865 /* Reference the quotas in case the block count is wrong in the end. */ 6866 quotaref(ITOV(ip), freeblks->fb_quota); 6867 (void) chkdq(ip, -datablocks, NOCRED, 0); 6868 #endif 6869 freeblks->fb_chkcnt = -datablocks; 6870 UFS_LOCK(ump); 6871 fs->fs_pendingblocks += datablocks; 6872 UFS_UNLOCK(ump); 6873 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6874 /* 6875 * Push the zero'ed inode to to its disk buffer so that we are free 6876 * to delete its dependencies below. Once the dependencies are gone 6877 * the buffer can be safely released. 6878 */ 6879 if ((error = bread(ip->i_devvp, 6880 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6881 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6882 brelse(bp); 6883 softdep_error("softdep_setup_freeblocks", error); 6884 } 6885 if (ump->um_fstype == UFS1) { 6886 dp1 = ((struct ufs1_dinode *)bp->b_data + 6887 ino_to_fsbo(fs, ip->i_number)); 6888 ip->i_din1->di_freelink = dp1->di_freelink; 6889 *dp1 = *ip->i_din1; 6890 } else { 6891 dp2 = ((struct ufs2_dinode *)bp->b_data + 6892 ino_to_fsbo(fs, ip->i_number)); 6893 ip->i_din2->di_freelink = dp2->di_freelink; 6894 *dp2 = *ip->i_din2; 6895 } 6896 /* 6897 * Find and eliminate any inode dependencies. 6898 */ 6899 ACQUIRE_LOCK(ump); 6900 dflags = DEPALLOC; 6901 if (IS_SNAPSHOT(ip)) 6902 dflags |= NODELAY; 6903 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6904 if ((inodedep->id_state & IOSTARTED) != 0) 6905 panic("softdep_setup_freeblocks: inode busy"); 6906 /* 6907 * Add the freeblks structure to the list of operations that 6908 * must await the zero'ed inode being written to disk. If we 6909 * still have a bitmap dependency (delay == 0), then the inode 6910 * has never been written to disk, so we can process the 6911 * freeblks below once we have deleted the dependencies. 6912 */ 6913 delay = (inodedep->id_state & DEPCOMPLETE); 6914 if (delay) 6915 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6916 else 6917 freeblks->fb_state |= COMPLETE; 6918 /* 6919 * Because the file length has been truncated to zero, any 6920 * pending block allocation dependency structures associated 6921 * with this inode are obsolete and can simply be de-allocated. 6922 * We must first merge the two dependency lists to get rid of 6923 * any duplicate freefrag structures, then purge the merged list. 6924 * If we still have a bitmap dependency, then the inode has never 6925 * been written to disk, so we can free any fragments without delay. 6926 */ 6927 if (flags & IO_NORMAL) { 6928 merge_inode_lists(&inodedep->id_newinoupdt, 6929 &inodedep->id_inoupdt); 6930 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 6931 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6932 freeblks); 6933 } 6934 if (flags & IO_EXT) { 6935 merge_inode_lists(&inodedep->id_newextupdt, 6936 &inodedep->id_extupdt); 6937 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6938 cancel_allocdirect(&inodedep->id_extupdt, adp, 6939 freeblks); 6940 } 6941 FREE_LOCK(ump); 6942 bdwrite(bp); 6943 trunc_dependencies(ip, freeblks, -1, 0, flags); 6944 ACQUIRE_LOCK(ump); 6945 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6946 (void) free_inodedep(inodedep); 6947 freeblks->fb_state |= DEPCOMPLETE; 6948 /* 6949 * If the inode with zeroed block pointers is now on disk 6950 * we can start freeing blocks. 6951 */ 6952 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6953 freeblks->fb_state |= INPROGRESS; 6954 else 6955 freeblks = NULL; 6956 FREE_LOCK(ump); 6957 if (freeblks) 6958 handle_workitem_freeblocks(freeblks, 0); 6959 trunc_pages(ip, length, extblocks, flags); 6960 } 6961 6962 /* 6963 * Eliminate pages from the page cache that back parts of this inode and 6964 * adjust the vnode pager's idea of our size. This prevents stale data 6965 * from hanging around in the page cache. 6966 */ 6967 static void 6968 trunc_pages(ip, length, extblocks, flags) 6969 struct inode *ip; 6970 off_t length; 6971 ufs2_daddr_t extblocks; 6972 int flags; 6973 { 6974 struct vnode *vp; 6975 struct fs *fs; 6976 ufs_lbn_t lbn; 6977 off_t end, extend; 6978 6979 vp = ITOV(ip); 6980 fs = ip->i_fs; 6981 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 6982 if ((flags & IO_EXT) != 0) 6983 vn_pages_remove(vp, extend, 0); 6984 if ((flags & IO_NORMAL) == 0) 6985 return; 6986 BO_LOCK(&vp->v_bufobj); 6987 drain_output(vp); 6988 BO_UNLOCK(&vp->v_bufobj); 6989 /* 6990 * The vnode pager eliminates file pages we eliminate indirects 6991 * below. 6992 */ 6993 vnode_pager_setsize(vp, length); 6994 /* 6995 * Calculate the end based on the last indirect we want to keep. If 6996 * the block extends into indirects we can just use the negative of 6997 * its lbn. Doubles and triples exist at lower numbers so we must 6998 * be careful not to remove those, if they exist. double and triple 6999 * indirect lbns do not overlap with others so it is not important 7000 * to verify how many levels are required. 7001 */ 7002 lbn = lblkno(fs, length); 7003 if (lbn >= NDADDR) { 7004 /* Calculate the virtual lbn of the triple indirect. */ 7005 lbn = -lbn - (NIADDR - 1); 7006 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7007 } else 7008 end = extend; 7009 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7010 } 7011 7012 /* 7013 * See if the buf bp is in the range eliminated by truncation. 7014 */ 7015 static int 7016 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7017 struct buf *bp; 7018 int *blkoffp; 7019 ufs_lbn_t lastlbn; 7020 int lastoff; 7021 int flags; 7022 { 7023 ufs_lbn_t lbn; 7024 7025 *blkoffp = 0; 7026 /* Only match ext/normal blocks as appropriate. */ 7027 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7028 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7029 return (0); 7030 /* ALTDATA is always a full truncation. */ 7031 if ((bp->b_xflags & BX_ALTDATA) != 0) 7032 return (1); 7033 /* -1 is full truncation. */ 7034 if (lastlbn == -1) 7035 return (1); 7036 /* 7037 * If this is a partial truncate we only want those 7038 * blocks and indirect blocks that cover the range 7039 * we're after. 7040 */ 7041 lbn = bp->b_lblkno; 7042 if (lbn < 0) 7043 lbn = -(lbn + lbn_level(lbn)); 7044 if (lbn < lastlbn) 7045 return (0); 7046 /* Here we only truncate lblkno if it's partial. */ 7047 if (lbn == lastlbn) { 7048 if (lastoff == 0) 7049 return (0); 7050 *blkoffp = lastoff; 7051 } 7052 return (1); 7053 } 7054 7055 /* 7056 * Eliminate any dependencies that exist in memory beyond lblkno:off 7057 */ 7058 static void 7059 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7060 struct inode *ip; 7061 struct freeblks *freeblks; 7062 ufs_lbn_t lastlbn; 7063 int lastoff; 7064 int flags; 7065 { 7066 struct bufobj *bo; 7067 struct vnode *vp; 7068 struct buf *bp; 7069 struct fs *fs; 7070 int blkoff; 7071 7072 /* 7073 * We must wait for any I/O in progress to finish so that 7074 * all potential buffers on the dirty list will be visible. 7075 * Once they are all there, walk the list and get rid of 7076 * any dependencies. 7077 */ 7078 fs = ip->i_fs; 7079 vp = ITOV(ip); 7080 bo = &vp->v_bufobj; 7081 BO_LOCK(bo); 7082 drain_output(vp); 7083 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7084 bp->b_vflags &= ~BV_SCANNED; 7085 restart: 7086 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7087 if (bp->b_vflags & BV_SCANNED) 7088 continue; 7089 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7090 bp->b_vflags |= BV_SCANNED; 7091 continue; 7092 } 7093 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7094 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7095 goto restart; 7096 BO_UNLOCK(bo); 7097 if (deallocate_dependencies(bp, freeblks, blkoff)) 7098 bqrelse(bp); 7099 else 7100 brelse(bp); 7101 BO_LOCK(bo); 7102 goto restart; 7103 } 7104 /* 7105 * Now do the work of vtruncbuf while also matching indirect blocks. 7106 */ 7107 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7108 bp->b_vflags &= ~BV_SCANNED; 7109 cleanrestart: 7110 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7111 if (bp->b_vflags & BV_SCANNED) 7112 continue; 7113 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7114 bp->b_vflags |= BV_SCANNED; 7115 continue; 7116 } 7117 if (BUF_LOCK(bp, 7118 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7119 BO_LOCKPTR(bo)) == ENOLCK) { 7120 BO_LOCK(bo); 7121 goto cleanrestart; 7122 } 7123 bp->b_vflags |= BV_SCANNED; 7124 bremfree(bp); 7125 if (blkoff != 0) { 7126 allocbuf(bp, blkoff); 7127 bqrelse(bp); 7128 } else { 7129 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7130 brelse(bp); 7131 } 7132 BO_LOCK(bo); 7133 goto cleanrestart; 7134 } 7135 drain_output(vp); 7136 BO_UNLOCK(bo); 7137 } 7138 7139 static int 7140 cancel_pagedep(pagedep, freeblks, blkoff) 7141 struct pagedep *pagedep; 7142 struct freeblks *freeblks; 7143 int blkoff; 7144 { 7145 struct jremref *jremref; 7146 struct jmvref *jmvref; 7147 struct dirrem *dirrem, *tmp; 7148 int i; 7149 7150 /* 7151 * Copy any directory remove dependencies to the list 7152 * to be processed after the freeblks proceeds. If 7153 * directory entry never made it to disk they 7154 * can be dumped directly onto the work list. 7155 */ 7156 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7157 /* Skip this directory removal if it is intended to remain. */ 7158 if (dirrem->dm_offset < blkoff) 7159 continue; 7160 /* 7161 * If there are any dirrems we wait for the journal write 7162 * to complete and then restart the buf scan as the lock 7163 * has been dropped. 7164 */ 7165 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7166 jwait(&jremref->jr_list, MNT_WAIT); 7167 return (ERESTART); 7168 } 7169 LIST_REMOVE(dirrem, dm_next); 7170 dirrem->dm_dirinum = pagedep->pd_ino; 7171 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7172 } 7173 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7174 jwait(&jmvref->jm_list, MNT_WAIT); 7175 return (ERESTART); 7176 } 7177 /* 7178 * When we're partially truncating a pagedep we just want to flush 7179 * journal entries and return. There can not be any adds in the 7180 * truncated portion of the directory and newblk must remain if 7181 * part of the block remains. 7182 */ 7183 if (blkoff != 0) { 7184 struct diradd *dap; 7185 7186 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7187 if (dap->da_offset > blkoff) 7188 panic("cancel_pagedep: diradd %p off %d > %d", 7189 dap, dap->da_offset, blkoff); 7190 for (i = 0; i < DAHASHSZ; i++) 7191 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7192 if (dap->da_offset > blkoff) 7193 panic("cancel_pagedep: diradd %p off %d > %d", 7194 dap, dap->da_offset, blkoff); 7195 return (0); 7196 } 7197 /* 7198 * There should be no directory add dependencies present 7199 * as the directory could not be truncated until all 7200 * children were removed. 7201 */ 7202 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7203 ("deallocate_dependencies: pendinghd != NULL")); 7204 for (i = 0; i < DAHASHSZ; i++) 7205 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7206 ("deallocate_dependencies: diraddhd != NULL")); 7207 if ((pagedep->pd_state & NEWBLOCK) != 0) 7208 free_newdirblk(pagedep->pd_newdirblk); 7209 if (free_pagedep(pagedep) == 0) 7210 panic("Failed to free pagedep %p", pagedep); 7211 return (0); 7212 } 7213 7214 /* 7215 * Reclaim any dependency structures from a buffer that is about to 7216 * be reallocated to a new vnode. The buffer must be locked, thus, 7217 * no I/O completion operations can occur while we are manipulating 7218 * its associated dependencies. The mutex is held so that other I/O's 7219 * associated with related dependencies do not occur. 7220 */ 7221 static int 7222 deallocate_dependencies(bp, freeblks, off) 7223 struct buf *bp; 7224 struct freeblks *freeblks; 7225 int off; 7226 { 7227 struct indirdep *indirdep; 7228 struct pagedep *pagedep; 7229 struct allocdirect *adp; 7230 struct worklist *wk, *wkn; 7231 struct ufsmount *ump; 7232 7233 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 7234 goto done; 7235 ump = VFSTOUFS(wk->wk_mp); 7236 ACQUIRE_LOCK(ump); 7237 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7238 switch (wk->wk_type) { 7239 case D_INDIRDEP: 7240 indirdep = WK_INDIRDEP(wk); 7241 if (bp->b_lblkno >= 0 || 7242 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7243 panic("deallocate_dependencies: not indir"); 7244 cancel_indirdep(indirdep, bp, freeblks); 7245 continue; 7246 7247 case D_PAGEDEP: 7248 pagedep = WK_PAGEDEP(wk); 7249 if (cancel_pagedep(pagedep, freeblks, off)) { 7250 FREE_LOCK(ump); 7251 return (ERESTART); 7252 } 7253 continue; 7254 7255 case D_ALLOCINDIR: 7256 /* 7257 * Simply remove the allocindir, we'll find it via 7258 * the indirdep where we can clear pointers if 7259 * needed. 7260 */ 7261 WORKLIST_REMOVE(wk); 7262 continue; 7263 7264 case D_FREEWORK: 7265 /* 7266 * A truncation is waiting for the zero'd pointers 7267 * to be written. It can be freed when the freeblks 7268 * is journaled. 7269 */ 7270 WORKLIST_REMOVE(wk); 7271 wk->wk_state |= ONDEPLIST; 7272 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7273 break; 7274 7275 case D_ALLOCDIRECT: 7276 adp = WK_ALLOCDIRECT(wk); 7277 if (off != 0) 7278 continue; 7279 /* FALLTHROUGH */ 7280 default: 7281 panic("deallocate_dependencies: Unexpected type %s", 7282 TYPENAME(wk->wk_type)); 7283 /* NOTREACHED */ 7284 } 7285 } 7286 FREE_LOCK(ump); 7287 done: 7288 /* 7289 * Don't throw away this buf, we were partially truncating and 7290 * some deps may always remain. 7291 */ 7292 if (off) { 7293 allocbuf(bp, off); 7294 bp->b_vflags |= BV_SCANNED; 7295 return (EBUSY); 7296 } 7297 bp->b_flags |= B_INVAL | B_NOCACHE; 7298 7299 return (0); 7300 } 7301 7302 /* 7303 * An allocdirect is being canceled due to a truncate. We must make sure 7304 * the journal entry is released in concert with the blkfree that releases 7305 * the storage. Completed journal entries must not be released until the 7306 * space is no longer pointed to by the inode or in the bitmap. 7307 */ 7308 static void 7309 cancel_allocdirect(adphead, adp, freeblks) 7310 struct allocdirectlst *adphead; 7311 struct allocdirect *adp; 7312 struct freeblks *freeblks; 7313 { 7314 struct freework *freework; 7315 struct newblk *newblk; 7316 struct worklist *wk; 7317 7318 TAILQ_REMOVE(adphead, adp, ad_next); 7319 newblk = (struct newblk *)adp; 7320 freework = NULL; 7321 /* 7322 * Find the correct freework structure. 7323 */ 7324 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7325 if (wk->wk_type != D_FREEWORK) 7326 continue; 7327 freework = WK_FREEWORK(wk); 7328 if (freework->fw_blkno == newblk->nb_newblkno) 7329 break; 7330 } 7331 if (freework == NULL) 7332 panic("cancel_allocdirect: Freework not found"); 7333 /* 7334 * If a newblk exists at all we still have the journal entry that 7335 * initiated the allocation so we do not need to journal the free. 7336 */ 7337 cancel_jfreeblk(freeblks, freework->fw_blkno); 7338 /* 7339 * If the journal hasn't been written the jnewblk must be passed 7340 * to the call to ffs_blkfree that reclaims the space. We accomplish 7341 * this by linking the journal dependency into the freework to be 7342 * freed when freework_freeblock() is called. If the journal has 7343 * been written we can simply reclaim the journal space when the 7344 * freeblks work is complete. 7345 */ 7346 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7347 &freeblks->fb_jwork); 7348 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7349 } 7350 7351 7352 /* 7353 * Cancel a new block allocation. May be an indirect or direct block. We 7354 * remove it from various lists and return any journal record that needs to 7355 * be resolved by the caller. 7356 * 7357 * A special consideration is made for indirects which were never pointed 7358 * at on disk and will never be found once this block is released. 7359 */ 7360 static struct jnewblk * 7361 cancel_newblk(newblk, wk, wkhd) 7362 struct newblk *newblk; 7363 struct worklist *wk; 7364 struct workhead *wkhd; 7365 { 7366 struct jnewblk *jnewblk; 7367 7368 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7369 7370 newblk->nb_state |= GOINGAWAY; 7371 /* 7372 * Previously we traversed the completedhd on each indirdep 7373 * attached to this newblk to cancel them and gather journal 7374 * work. Since we need only the oldest journal segment and 7375 * the lowest point on the tree will always have the oldest 7376 * journal segment we are free to release the segments 7377 * of any subordinates and may leave the indirdep list to 7378 * indirdep_complete() when this newblk is freed. 7379 */ 7380 if (newblk->nb_state & ONDEPLIST) { 7381 newblk->nb_state &= ~ONDEPLIST; 7382 LIST_REMOVE(newblk, nb_deps); 7383 } 7384 if (newblk->nb_state & ONWORKLIST) 7385 WORKLIST_REMOVE(&newblk->nb_list); 7386 /* 7387 * If the journal entry hasn't been written we save a pointer to 7388 * the dependency that frees it until it is written or the 7389 * superseding operation completes. 7390 */ 7391 jnewblk = newblk->nb_jnewblk; 7392 if (jnewblk != NULL && wk != NULL) { 7393 newblk->nb_jnewblk = NULL; 7394 jnewblk->jn_dep = wk; 7395 } 7396 if (!LIST_EMPTY(&newblk->nb_jwork)) 7397 jwork_move(wkhd, &newblk->nb_jwork); 7398 /* 7399 * When truncating we must free the newdirblk early to remove 7400 * the pagedep from the hash before returning. 7401 */ 7402 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7403 free_newdirblk(WK_NEWDIRBLK(wk)); 7404 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7405 panic("cancel_newblk: extra newdirblk"); 7406 7407 return (jnewblk); 7408 } 7409 7410 /* 7411 * Schedule the freefrag associated with a newblk to be released once 7412 * the pointers are written and the previous block is no longer needed. 7413 */ 7414 static void 7415 newblk_freefrag(newblk) 7416 struct newblk *newblk; 7417 { 7418 struct freefrag *freefrag; 7419 7420 if (newblk->nb_freefrag == NULL) 7421 return; 7422 freefrag = newblk->nb_freefrag; 7423 newblk->nb_freefrag = NULL; 7424 freefrag->ff_state |= COMPLETE; 7425 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7426 add_to_worklist(&freefrag->ff_list, 0); 7427 } 7428 7429 /* 7430 * Free a newblk. Generate a new freefrag work request if appropriate. 7431 * This must be called after the inode pointer and any direct block pointers 7432 * are valid or fully removed via truncate or frag extension. 7433 */ 7434 static void 7435 free_newblk(newblk) 7436 struct newblk *newblk; 7437 { 7438 struct indirdep *indirdep; 7439 struct worklist *wk; 7440 7441 KASSERT(newblk->nb_jnewblk == NULL, 7442 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7443 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7444 ("free_newblk: unclaimed newblk")); 7445 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7446 newblk_freefrag(newblk); 7447 if (newblk->nb_state & ONDEPLIST) 7448 LIST_REMOVE(newblk, nb_deps); 7449 if (newblk->nb_state & ONWORKLIST) 7450 WORKLIST_REMOVE(&newblk->nb_list); 7451 LIST_REMOVE(newblk, nb_hash); 7452 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7453 free_newdirblk(WK_NEWDIRBLK(wk)); 7454 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7455 panic("free_newblk: extra newdirblk"); 7456 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7457 indirdep_complete(indirdep); 7458 handle_jwork(&newblk->nb_jwork); 7459 WORKITEM_FREE(newblk, D_NEWBLK); 7460 } 7461 7462 /* 7463 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7464 * This routine must be called with splbio interrupts blocked. 7465 */ 7466 static void 7467 free_newdirblk(newdirblk) 7468 struct newdirblk *newdirblk; 7469 { 7470 struct pagedep *pagedep; 7471 struct diradd *dap; 7472 struct worklist *wk; 7473 7474 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7475 WORKLIST_REMOVE(&newdirblk->db_list); 7476 /* 7477 * If the pagedep is still linked onto the directory buffer 7478 * dependency chain, then some of the entries on the 7479 * pd_pendinghd list may not be committed to disk yet. In 7480 * this case, we will simply clear the NEWBLOCK flag and 7481 * let the pd_pendinghd list be processed when the pagedep 7482 * is next written. If the pagedep is no longer on the buffer 7483 * dependency chain, then all the entries on the pd_pending 7484 * list are committed to disk and we can free them here. 7485 */ 7486 pagedep = newdirblk->db_pagedep; 7487 pagedep->pd_state &= ~NEWBLOCK; 7488 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7489 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7490 free_diradd(dap, NULL); 7491 /* 7492 * If no dependencies remain, the pagedep will be freed. 7493 */ 7494 free_pagedep(pagedep); 7495 } 7496 /* Should only ever be one item in the list. */ 7497 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7498 WORKLIST_REMOVE(wk); 7499 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7500 } 7501 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7502 } 7503 7504 /* 7505 * Prepare an inode to be freed. The actual free operation is not 7506 * done until the zero'ed inode has been written to disk. 7507 */ 7508 void 7509 softdep_freefile(pvp, ino, mode) 7510 struct vnode *pvp; 7511 ino_t ino; 7512 int mode; 7513 { 7514 struct inode *ip = VTOI(pvp); 7515 struct inodedep *inodedep; 7516 struct freefile *freefile; 7517 struct freeblks *freeblks; 7518 struct ufsmount *ump; 7519 7520 ump = ip->i_ump; 7521 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7522 ("softdep_freefile called on non-softdep filesystem")); 7523 /* 7524 * This sets up the inode de-allocation dependency. 7525 */ 7526 freefile = malloc(sizeof(struct freefile), 7527 M_FREEFILE, M_SOFTDEP_FLAGS); 7528 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7529 freefile->fx_mode = mode; 7530 freefile->fx_oldinum = ino; 7531 freefile->fx_devvp = ip->i_devvp; 7532 LIST_INIT(&freefile->fx_jwork); 7533 UFS_LOCK(ump); 7534 ip->i_fs->fs_pendinginodes += 1; 7535 UFS_UNLOCK(ump); 7536 7537 /* 7538 * If the inodedep does not exist, then the zero'ed inode has 7539 * been written to disk. If the allocated inode has never been 7540 * written to disk, then the on-disk inode is zero'ed. In either 7541 * case we can free the file immediately. If the journal was 7542 * canceled before being written the inode will never make it to 7543 * disk and we must send the canceled journal entrys to 7544 * ffs_freefile() to be cleared in conjunction with the bitmap. 7545 * Any blocks waiting on the inode to write can be safely freed 7546 * here as it will never been written. 7547 */ 7548 ACQUIRE_LOCK(ump); 7549 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7550 if (inodedep) { 7551 /* 7552 * Clear out freeblks that no longer need to reference 7553 * this inode. 7554 */ 7555 while ((freeblks = 7556 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7557 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7558 fb_next); 7559 freeblks->fb_state &= ~ONDEPLIST; 7560 } 7561 /* 7562 * Remove this inode from the unlinked list. 7563 */ 7564 if (inodedep->id_state & UNLINKED) { 7565 /* 7566 * Save the journal work to be freed with the bitmap 7567 * before we clear UNLINKED. Otherwise it can be lost 7568 * if the inode block is written. 7569 */ 7570 handle_bufwait(inodedep, &freefile->fx_jwork); 7571 clear_unlinked_inodedep(inodedep); 7572 /* 7573 * Re-acquire inodedep as we've dropped the 7574 * per-filesystem lock in clear_unlinked_inodedep(). 7575 */ 7576 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7577 } 7578 } 7579 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7580 FREE_LOCK(ump); 7581 handle_workitem_freefile(freefile); 7582 return; 7583 } 7584 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7585 inodedep->id_state |= GOINGAWAY; 7586 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7587 FREE_LOCK(ump); 7588 if (ip->i_number == ino) 7589 ip->i_flag |= IN_MODIFIED; 7590 } 7591 7592 /* 7593 * Check to see if an inode has never been written to disk. If 7594 * so free the inodedep and return success, otherwise return failure. 7595 * This routine must be called with splbio interrupts blocked. 7596 * 7597 * If we still have a bitmap dependency, then the inode has never 7598 * been written to disk. Drop the dependency as it is no longer 7599 * necessary since the inode is being deallocated. We set the 7600 * ALLCOMPLETE flags since the bitmap now properly shows that the 7601 * inode is not allocated. Even if the inode is actively being 7602 * written, it has been rolled back to its zero'ed state, so we 7603 * are ensured that a zero inode is what is on the disk. For short 7604 * lived files, this change will usually result in removing all the 7605 * dependencies from the inode so that it can be freed immediately. 7606 */ 7607 static int 7608 check_inode_unwritten(inodedep) 7609 struct inodedep *inodedep; 7610 { 7611 7612 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7613 7614 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7615 !LIST_EMPTY(&inodedep->id_dirremhd) || 7616 !LIST_EMPTY(&inodedep->id_pendinghd) || 7617 !LIST_EMPTY(&inodedep->id_bufwait) || 7618 !LIST_EMPTY(&inodedep->id_inowait) || 7619 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7620 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7621 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7622 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7623 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7624 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7625 inodedep->id_mkdiradd != NULL || 7626 inodedep->id_nlinkdelta != 0) 7627 return (0); 7628 /* 7629 * Another process might be in initiate_write_inodeblock_ufs[12] 7630 * trying to allocate memory without holding "Softdep Lock". 7631 */ 7632 if ((inodedep->id_state & IOSTARTED) != 0 && 7633 inodedep->id_savedino1 == NULL) 7634 return (0); 7635 7636 if (inodedep->id_state & ONDEPLIST) 7637 LIST_REMOVE(inodedep, id_deps); 7638 inodedep->id_state &= ~ONDEPLIST; 7639 inodedep->id_state |= ALLCOMPLETE; 7640 inodedep->id_bmsafemap = NULL; 7641 if (inodedep->id_state & ONWORKLIST) 7642 WORKLIST_REMOVE(&inodedep->id_list); 7643 if (inodedep->id_savedino1 != NULL) { 7644 free(inodedep->id_savedino1, M_SAVEDINO); 7645 inodedep->id_savedino1 = NULL; 7646 } 7647 if (free_inodedep(inodedep) == 0) 7648 panic("check_inode_unwritten: busy inode"); 7649 return (1); 7650 } 7651 7652 static int 7653 check_inodedep_free(inodedep) 7654 struct inodedep *inodedep; 7655 { 7656 7657 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7658 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7659 !LIST_EMPTY(&inodedep->id_dirremhd) || 7660 !LIST_EMPTY(&inodedep->id_pendinghd) || 7661 !LIST_EMPTY(&inodedep->id_bufwait) || 7662 !LIST_EMPTY(&inodedep->id_inowait) || 7663 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7664 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7665 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7666 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7667 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7668 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7669 inodedep->id_mkdiradd != NULL || 7670 inodedep->id_nlinkdelta != 0 || 7671 inodedep->id_savedino1 != NULL) 7672 return (0); 7673 return (1); 7674 } 7675 7676 /* 7677 * Try to free an inodedep structure. Return 1 if it could be freed. 7678 */ 7679 static int 7680 free_inodedep(inodedep) 7681 struct inodedep *inodedep; 7682 { 7683 7684 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7685 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7686 !check_inodedep_free(inodedep)) 7687 return (0); 7688 if (inodedep->id_state & ONDEPLIST) 7689 LIST_REMOVE(inodedep, id_deps); 7690 LIST_REMOVE(inodedep, id_hash); 7691 WORKITEM_FREE(inodedep, D_INODEDEP); 7692 return (1); 7693 } 7694 7695 /* 7696 * Free the block referenced by a freework structure. The parent freeblks 7697 * structure is released and completed when the final cg bitmap reaches 7698 * the disk. This routine may be freeing a jnewblk which never made it to 7699 * disk in which case we do not have to wait as the operation is undone 7700 * in memory immediately. 7701 */ 7702 static void 7703 freework_freeblock(freework) 7704 struct freework *freework; 7705 { 7706 struct freeblks *freeblks; 7707 struct jnewblk *jnewblk; 7708 struct ufsmount *ump; 7709 struct workhead wkhd; 7710 struct fs *fs; 7711 int bsize; 7712 int needj; 7713 7714 ump = VFSTOUFS(freework->fw_list.wk_mp); 7715 LOCK_OWNED(ump); 7716 /* 7717 * Handle partial truncate separately. 7718 */ 7719 if (freework->fw_indir) { 7720 complete_trunc_indir(freework); 7721 return; 7722 } 7723 freeblks = freework->fw_freeblks; 7724 fs = ump->um_fs; 7725 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7726 bsize = lfragtosize(fs, freework->fw_frags); 7727 LIST_INIT(&wkhd); 7728 /* 7729 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7730 * on the indirblk hashtable and prevents premature freeing. 7731 */ 7732 freework->fw_state |= DEPCOMPLETE; 7733 /* 7734 * SUJ needs to wait for the segment referencing freed indirect 7735 * blocks to expire so that we know the checker will not confuse 7736 * a re-allocated indirect block with its old contents. 7737 */ 7738 if (needj && freework->fw_lbn <= -NDADDR) 7739 indirblk_insert(freework); 7740 /* 7741 * If we are canceling an existing jnewblk pass it to the free 7742 * routine, otherwise pass the freeblk which will ultimately 7743 * release the freeblks. If we're not journaling, we can just 7744 * free the freeblks immediately. 7745 */ 7746 jnewblk = freework->fw_jnewblk; 7747 if (jnewblk != NULL) { 7748 cancel_jnewblk(jnewblk, &wkhd); 7749 needj = 0; 7750 } else if (needj) { 7751 freework->fw_state |= DELAYEDFREE; 7752 freeblks->fb_cgwait++; 7753 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7754 } 7755 FREE_LOCK(ump); 7756 freeblks_free(ump, freeblks, btodb(bsize)); 7757 CTR4(KTR_SUJ, 7758 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7759 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7760 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7761 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7762 ACQUIRE_LOCK(ump); 7763 /* 7764 * The jnewblk will be discarded and the bits in the map never 7765 * made it to disk. We can immediately free the freeblk. 7766 */ 7767 if (needj == 0) 7768 handle_written_freework(freework); 7769 } 7770 7771 /* 7772 * We enqueue freework items that need processing back on the freeblks and 7773 * add the freeblks to the worklist. This makes it easier to find all work 7774 * required to flush a truncation in process_truncates(). 7775 */ 7776 static void 7777 freework_enqueue(freework) 7778 struct freework *freework; 7779 { 7780 struct freeblks *freeblks; 7781 7782 freeblks = freework->fw_freeblks; 7783 if ((freework->fw_state & INPROGRESS) == 0) 7784 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7785 if ((freeblks->fb_state & 7786 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7787 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7788 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7789 } 7790 7791 /* 7792 * Start, continue, or finish the process of freeing an indirect block tree. 7793 * The free operation may be paused at any point with fw_off containing the 7794 * offset to restart from. This enables us to implement some flow control 7795 * for large truncates which may fan out and generate a huge number of 7796 * dependencies. 7797 */ 7798 static void 7799 handle_workitem_indirblk(freework) 7800 struct freework *freework; 7801 { 7802 struct freeblks *freeblks; 7803 struct ufsmount *ump; 7804 struct fs *fs; 7805 7806 freeblks = freework->fw_freeblks; 7807 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7808 fs = ump->um_fs; 7809 if (freework->fw_state & DEPCOMPLETE) { 7810 handle_written_freework(freework); 7811 return; 7812 } 7813 if (freework->fw_off == NINDIR(fs)) { 7814 freework_freeblock(freework); 7815 return; 7816 } 7817 freework->fw_state |= INPROGRESS; 7818 FREE_LOCK(ump); 7819 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7820 freework->fw_lbn); 7821 ACQUIRE_LOCK(ump); 7822 } 7823 7824 /* 7825 * Called when a freework structure attached to a cg buf is written. The 7826 * ref on either the parent or the freeblks structure is released and 7827 * the freeblks is added back to the worklist if there is more work to do. 7828 */ 7829 static void 7830 handle_written_freework(freework) 7831 struct freework *freework; 7832 { 7833 struct freeblks *freeblks; 7834 struct freework *parent; 7835 7836 freeblks = freework->fw_freeblks; 7837 parent = freework->fw_parent; 7838 if (freework->fw_state & DELAYEDFREE) 7839 freeblks->fb_cgwait--; 7840 freework->fw_state |= COMPLETE; 7841 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7842 WORKITEM_FREE(freework, D_FREEWORK); 7843 if (parent) { 7844 if (--parent->fw_ref == 0) 7845 freework_enqueue(parent); 7846 return; 7847 } 7848 if (--freeblks->fb_ref != 0) 7849 return; 7850 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7851 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7852 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7853 } 7854 7855 /* 7856 * This workitem routine performs the block de-allocation. 7857 * The workitem is added to the pending list after the updated 7858 * inode block has been written to disk. As mentioned above, 7859 * checks regarding the number of blocks de-allocated (compared 7860 * to the number of blocks allocated for the file) are also 7861 * performed in this function. 7862 */ 7863 static int 7864 handle_workitem_freeblocks(freeblks, flags) 7865 struct freeblks *freeblks; 7866 int flags; 7867 { 7868 struct freework *freework; 7869 struct newblk *newblk; 7870 struct allocindir *aip; 7871 struct ufsmount *ump; 7872 struct worklist *wk; 7873 7874 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7875 ("handle_workitem_freeblocks: Journal entries not written.")); 7876 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7877 ACQUIRE_LOCK(ump); 7878 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7879 WORKLIST_REMOVE(wk); 7880 switch (wk->wk_type) { 7881 case D_DIRREM: 7882 wk->wk_state |= COMPLETE; 7883 add_to_worklist(wk, 0); 7884 continue; 7885 7886 case D_ALLOCDIRECT: 7887 free_newblk(WK_NEWBLK(wk)); 7888 continue; 7889 7890 case D_ALLOCINDIR: 7891 aip = WK_ALLOCINDIR(wk); 7892 freework = NULL; 7893 if (aip->ai_state & DELAYEDFREE) { 7894 FREE_LOCK(ump); 7895 freework = newfreework(ump, freeblks, NULL, 7896 aip->ai_lbn, aip->ai_newblkno, 7897 ump->um_fs->fs_frag, 0, 0); 7898 ACQUIRE_LOCK(ump); 7899 } 7900 newblk = WK_NEWBLK(wk); 7901 if (newblk->nb_jnewblk) { 7902 freework->fw_jnewblk = newblk->nb_jnewblk; 7903 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7904 newblk->nb_jnewblk = NULL; 7905 } 7906 free_newblk(newblk); 7907 continue; 7908 7909 case D_FREEWORK: 7910 freework = WK_FREEWORK(wk); 7911 if (freework->fw_lbn <= -NDADDR) 7912 handle_workitem_indirblk(freework); 7913 else 7914 freework_freeblock(freework); 7915 continue; 7916 default: 7917 panic("handle_workitem_freeblocks: Unknown type %s", 7918 TYPENAME(wk->wk_type)); 7919 } 7920 } 7921 if (freeblks->fb_ref != 0) { 7922 freeblks->fb_state &= ~INPROGRESS; 7923 wake_worklist(&freeblks->fb_list); 7924 freeblks = NULL; 7925 } 7926 FREE_LOCK(ump); 7927 if (freeblks) 7928 return handle_complete_freeblocks(freeblks, flags); 7929 return (0); 7930 } 7931 7932 /* 7933 * Handle completion of block free via truncate. This allows fs_pending 7934 * to track the actual free block count more closely than if we only updated 7935 * it at the end. We must be careful to handle cases where the block count 7936 * on free was incorrect. 7937 */ 7938 static void 7939 freeblks_free(ump, freeblks, blocks) 7940 struct ufsmount *ump; 7941 struct freeblks *freeblks; 7942 int blocks; 7943 { 7944 struct fs *fs; 7945 ufs2_daddr_t remain; 7946 7947 UFS_LOCK(ump); 7948 remain = -freeblks->fb_chkcnt; 7949 freeblks->fb_chkcnt += blocks; 7950 if (remain > 0) { 7951 if (remain < blocks) 7952 blocks = remain; 7953 fs = ump->um_fs; 7954 fs->fs_pendingblocks -= blocks; 7955 } 7956 UFS_UNLOCK(ump); 7957 } 7958 7959 /* 7960 * Once all of the freework workitems are complete we can retire the 7961 * freeblocks dependency and any journal work awaiting completion. This 7962 * can not be called until all other dependencies are stable on disk. 7963 */ 7964 static int 7965 handle_complete_freeblocks(freeblks, flags) 7966 struct freeblks *freeblks; 7967 int flags; 7968 { 7969 struct inodedep *inodedep; 7970 struct inode *ip; 7971 struct vnode *vp; 7972 struct fs *fs; 7973 struct ufsmount *ump; 7974 ufs2_daddr_t spare; 7975 7976 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7977 fs = ump->um_fs; 7978 flags = LK_EXCLUSIVE | flags; 7979 spare = freeblks->fb_chkcnt; 7980 7981 /* 7982 * If we did not release the expected number of blocks we may have 7983 * to adjust the inode block count here. Only do so if it wasn't 7984 * a truncation to zero and the modrev still matches. 7985 */ 7986 if (spare && freeblks->fb_len != 0) { 7987 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7988 flags, &vp, FFSV_FORCEINSMQ) != 0) 7989 return (EBUSY); 7990 ip = VTOI(vp); 7991 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 7992 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 7993 ip->i_flag |= IN_CHANGE; 7994 /* 7995 * We must wait so this happens before the 7996 * journal is reclaimed. 7997 */ 7998 ffs_update(vp, 1); 7999 } 8000 vput(vp); 8001 } 8002 if (spare < 0) { 8003 UFS_LOCK(ump); 8004 fs->fs_pendingblocks += spare; 8005 UFS_UNLOCK(ump); 8006 } 8007 #ifdef QUOTA 8008 /* Handle spare. */ 8009 if (spare) 8010 quotaadj(freeblks->fb_quota, ump, -spare); 8011 quotarele(freeblks->fb_quota); 8012 #endif 8013 ACQUIRE_LOCK(ump); 8014 if (freeblks->fb_state & ONDEPLIST) { 8015 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8016 0, &inodedep); 8017 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8018 freeblks->fb_state &= ~ONDEPLIST; 8019 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8020 free_inodedep(inodedep); 8021 } 8022 /* 8023 * All of the freeblock deps must be complete prior to this call 8024 * so it's now safe to complete earlier outstanding journal entries. 8025 */ 8026 handle_jwork(&freeblks->fb_jwork); 8027 WORKITEM_FREE(freeblks, D_FREEBLKS); 8028 FREE_LOCK(ump); 8029 return (0); 8030 } 8031 8032 /* 8033 * Release blocks associated with the freeblks and stored in the indirect 8034 * block dbn. If level is greater than SINGLE, the block is an indirect block 8035 * and recursive calls to indirtrunc must be used to cleanse other indirect 8036 * blocks. 8037 * 8038 * This handles partial and complete truncation of blocks. Partial is noted 8039 * with goingaway == 0. In this case the freework is completed after the 8040 * zero'd indirects are written to disk. For full truncation the freework 8041 * is completed after the block is freed. 8042 */ 8043 static void 8044 indir_trunc(freework, dbn, lbn) 8045 struct freework *freework; 8046 ufs2_daddr_t dbn; 8047 ufs_lbn_t lbn; 8048 { 8049 struct freework *nfreework; 8050 struct workhead wkhd; 8051 struct freeblks *freeblks; 8052 struct buf *bp; 8053 struct fs *fs; 8054 struct indirdep *indirdep; 8055 struct ufsmount *ump; 8056 ufs1_daddr_t *bap1 = 0; 8057 ufs2_daddr_t nb, nnb, *bap2 = 0; 8058 ufs_lbn_t lbnadd, nlbn; 8059 int i, nblocks, ufs1fmt; 8060 int freedblocks; 8061 int goingaway; 8062 int freedeps; 8063 int needj; 8064 int level; 8065 int cnt; 8066 8067 freeblks = freework->fw_freeblks; 8068 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8069 fs = ump->um_fs; 8070 /* 8071 * Get buffer of block pointers to be freed. There are three cases: 8072 * 8073 * 1) Partial truncate caches the indirdep pointer in the freework 8074 * which provides us a back copy to the save bp which holds the 8075 * pointers we want to clear. When this completes the zero 8076 * pointers are written to the real copy. 8077 * 2) The indirect is being completely truncated, cancel_indirdep() 8078 * eliminated the real copy and placed the indirdep on the saved 8079 * copy. The indirdep and buf are discarded when this completes. 8080 * 3) The indirect was not in memory, we read a copy off of the disk 8081 * using the devvp and drop and invalidate the buffer when we're 8082 * done. 8083 */ 8084 goingaway = 1; 8085 indirdep = NULL; 8086 if (freework->fw_indir != NULL) { 8087 goingaway = 0; 8088 indirdep = freework->fw_indir; 8089 bp = indirdep->ir_savebp; 8090 if (bp == NULL || bp->b_blkno != dbn) 8091 panic("indir_trunc: Bad saved buf %p blkno %jd", 8092 bp, (intmax_t)dbn); 8093 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8094 /* 8095 * The lock prevents the buf dep list from changing and 8096 * indirects on devvp should only ever have one dependency. 8097 */ 8098 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8099 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8100 panic("indir_trunc: Bad indirdep %p from buf %p", 8101 indirdep, bp); 8102 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8103 NOCRED, &bp) != 0) { 8104 brelse(bp); 8105 return; 8106 } 8107 ACQUIRE_LOCK(ump); 8108 /* Protects against a race with complete_trunc_indir(). */ 8109 freework->fw_state &= ~INPROGRESS; 8110 /* 8111 * If we have an indirdep we need to enforce the truncation order 8112 * and discard it when it is complete. 8113 */ 8114 if (indirdep) { 8115 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8116 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8117 /* 8118 * Add the complete truncate to the list on the 8119 * indirdep to enforce in-order processing. 8120 */ 8121 if (freework->fw_indir == NULL) 8122 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8123 freework, fw_next); 8124 FREE_LOCK(ump); 8125 return; 8126 } 8127 /* 8128 * If we're goingaway, free the indirdep. Otherwise it will 8129 * linger until the write completes. 8130 */ 8131 if (goingaway) 8132 free_indirdep(indirdep); 8133 } 8134 FREE_LOCK(ump); 8135 /* Initialize pointers depending on block size. */ 8136 if (ump->um_fstype == UFS1) { 8137 bap1 = (ufs1_daddr_t *)bp->b_data; 8138 nb = bap1[freework->fw_off]; 8139 ufs1fmt = 1; 8140 } else { 8141 bap2 = (ufs2_daddr_t *)bp->b_data; 8142 nb = bap2[freework->fw_off]; 8143 ufs1fmt = 0; 8144 } 8145 level = lbn_level(lbn); 8146 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8147 lbnadd = lbn_offset(fs, level); 8148 nblocks = btodb(fs->fs_bsize); 8149 nfreework = freework; 8150 freedeps = 0; 8151 cnt = 0; 8152 /* 8153 * Reclaim blocks. Traverses into nested indirect levels and 8154 * arranges for the current level to be freed when subordinates 8155 * are free when journaling. 8156 */ 8157 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8158 if (i != NINDIR(fs) - 1) { 8159 if (ufs1fmt) 8160 nnb = bap1[i+1]; 8161 else 8162 nnb = bap2[i+1]; 8163 } else 8164 nnb = 0; 8165 if (nb == 0) 8166 continue; 8167 cnt++; 8168 if (level != 0) { 8169 nlbn = (lbn + 1) - (i * lbnadd); 8170 if (needj != 0) { 8171 nfreework = newfreework(ump, freeblks, freework, 8172 nlbn, nb, fs->fs_frag, 0, 0); 8173 freedeps++; 8174 } 8175 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8176 } else { 8177 struct freedep *freedep; 8178 8179 /* 8180 * Attempt to aggregate freedep dependencies for 8181 * all blocks being released to the same CG. 8182 */ 8183 LIST_INIT(&wkhd); 8184 if (needj != 0 && 8185 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8186 freedep = newfreedep(freework); 8187 WORKLIST_INSERT_UNLOCKED(&wkhd, 8188 &freedep->fd_list); 8189 freedeps++; 8190 } 8191 CTR3(KTR_SUJ, 8192 "indir_trunc: ino %d blkno %jd size %ld", 8193 freeblks->fb_inum, nb, fs->fs_bsize); 8194 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8195 fs->fs_bsize, freeblks->fb_inum, 8196 freeblks->fb_vtype, &wkhd); 8197 } 8198 } 8199 if (goingaway) { 8200 bp->b_flags |= B_INVAL | B_NOCACHE; 8201 brelse(bp); 8202 } 8203 freedblocks = 0; 8204 if (level == 0) 8205 freedblocks = (nblocks * cnt); 8206 if (needj == 0) 8207 freedblocks += nblocks; 8208 freeblks_free(ump, freeblks, freedblocks); 8209 /* 8210 * If we are journaling set up the ref counts and offset so this 8211 * indirect can be completed when its children are free. 8212 */ 8213 if (needj) { 8214 ACQUIRE_LOCK(ump); 8215 freework->fw_off = i; 8216 freework->fw_ref += freedeps; 8217 freework->fw_ref -= NINDIR(fs) + 1; 8218 if (level == 0) 8219 freeblks->fb_cgwait += freedeps; 8220 if (freework->fw_ref == 0) 8221 freework_freeblock(freework); 8222 FREE_LOCK(ump); 8223 return; 8224 } 8225 /* 8226 * If we're not journaling we can free the indirect now. 8227 */ 8228 dbn = dbtofsb(fs, dbn); 8229 CTR3(KTR_SUJ, 8230 "indir_trunc 2: ino %d blkno %jd size %ld", 8231 freeblks->fb_inum, dbn, fs->fs_bsize); 8232 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8233 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8234 /* Non SUJ softdep does single-threaded truncations. */ 8235 if (freework->fw_blkno == dbn) { 8236 freework->fw_state |= ALLCOMPLETE; 8237 ACQUIRE_LOCK(ump); 8238 handle_written_freework(freework); 8239 FREE_LOCK(ump); 8240 } 8241 return; 8242 } 8243 8244 /* 8245 * Cancel an allocindir when it is removed via truncation. When bp is not 8246 * NULL the indirect never appeared on disk and is scheduled to be freed 8247 * independently of the indir so we can more easily track journal work. 8248 */ 8249 static void 8250 cancel_allocindir(aip, bp, freeblks, trunc) 8251 struct allocindir *aip; 8252 struct buf *bp; 8253 struct freeblks *freeblks; 8254 int trunc; 8255 { 8256 struct indirdep *indirdep; 8257 struct freefrag *freefrag; 8258 struct newblk *newblk; 8259 8260 newblk = (struct newblk *)aip; 8261 LIST_REMOVE(aip, ai_next); 8262 /* 8263 * We must eliminate the pointer in bp if it must be freed on its 8264 * own due to partial truncate or pending journal work. 8265 */ 8266 if (bp && (trunc || newblk->nb_jnewblk)) { 8267 /* 8268 * Clear the pointer and mark the aip to be freed 8269 * directly if it never existed on disk. 8270 */ 8271 aip->ai_state |= DELAYEDFREE; 8272 indirdep = aip->ai_indirdep; 8273 if (indirdep->ir_state & UFS1FMT) 8274 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8275 else 8276 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8277 } 8278 /* 8279 * When truncating the previous pointer will be freed via 8280 * savedbp. Eliminate the freefrag which would dup free. 8281 */ 8282 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8283 newblk->nb_freefrag = NULL; 8284 if (freefrag->ff_jdep) 8285 cancel_jfreefrag( 8286 WK_JFREEFRAG(freefrag->ff_jdep)); 8287 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8288 WORKITEM_FREE(freefrag, D_FREEFRAG); 8289 } 8290 /* 8291 * If the journal hasn't been written the jnewblk must be passed 8292 * to the call to ffs_blkfree that reclaims the space. We accomplish 8293 * this by leaving the journal dependency on the newblk to be freed 8294 * when a freework is created in handle_workitem_freeblocks(). 8295 */ 8296 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8297 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8298 } 8299 8300 /* 8301 * Create the mkdir dependencies for . and .. in a new directory. Link them 8302 * in to a newdirblk so any subsequent additions are tracked properly. The 8303 * caller is responsible for adding the mkdir1 dependency to the journal 8304 * and updating id_mkdiradd. This function returns with the per-filesystem 8305 * lock held. 8306 */ 8307 static struct mkdir * 8308 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8309 struct diradd *dap; 8310 ino_t newinum; 8311 ino_t dinum; 8312 struct buf *newdirbp; 8313 struct mkdir **mkdirp; 8314 { 8315 struct newblk *newblk; 8316 struct pagedep *pagedep; 8317 struct inodedep *inodedep; 8318 struct newdirblk *newdirblk = 0; 8319 struct mkdir *mkdir1, *mkdir2; 8320 struct worklist *wk; 8321 struct jaddref *jaddref; 8322 struct ufsmount *ump; 8323 struct mount *mp; 8324 8325 mp = dap->da_list.wk_mp; 8326 ump = VFSTOUFS(mp); 8327 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8328 M_SOFTDEP_FLAGS); 8329 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8330 LIST_INIT(&newdirblk->db_mkdir); 8331 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8332 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8333 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8334 mkdir1->md_diradd = dap; 8335 mkdir1->md_jaddref = NULL; 8336 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8337 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8338 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8339 mkdir2->md_diradd = dap; 8340 mkdir2->md_jaddref = NULL; 8341 if (MOUNTEDSUJ(mp) == 0) { 8342 mkdir1->md_state |= DEPCOMPLETE; 8343 mkdir2->md_state |= DEPCOMPLETE; 8344 } 8345 /* 8346 * Dependency on "." and ".." being written to disk. 8347 */ 8348 mkdir1->md_buf = newdirbp; 8349 ACQUIRE_LOCK(VFSTOUFS(mp)); 8350 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8351 /* 8352 * We must link the pagedep, allocdirect, and newdirblk for 8353 * the initial file page so the pointer to the new directory 8354 * is not written until the directory contents are live and 8355 * any subsequent additions are not marked live until the 8356 * block is reachable via the inode. 8357 */ 8358 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8359 panic("setup_newdir: lost pagedep"); 8360 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8361 if (wk->wk_type == D_ALLOCDIRECT) 8362 break; 8363 if (wk == NULL) 8364 panic("setup_newdir: lost allocdirect"); 8365 if (pagedep->pd_state & NEWBLOCK) 8366 panic("setup_newdir: NEWBLOCK already set"); 8367 newblk = WK_NEWBLK(wk); 8368 pagedep->pd_state |= NEWBLOCK; 8369 pagedep->pd_newdirblk = newdirblk; 8370 newdirblk->db_pagedep = pagedep; 8371 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8372 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8373 /* 8374 * Look up the inodedep for the parent directory so that we 8375 * can link mkdir2 into the pending dotdot jaddref or 8376 * the inode write if there is none. If the inode is 8377 * ALLCOMPLETE and no jaddref is present all dependencies have 8378 * been satisfied and mkdir2 can be freed. 8379 */ 8380 inodedep_lookup(mp, dinum, 0, &inodedep); 8381 if (MOUNTEDSUJ(mp)) { 8382 if (inodedep == NULL) 8383 panic("setup_newdir: Lost parent."); 8384 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8385 inoreflst); 8386 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8387 (jaddref->ja_state & MKDIR_PARENT), 8388 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8389 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8390 mkdir2->md_jaddref = jaddref; 8391 jaddref->ja_mkdir = mkdir2; 8392 } else if (inodedep == NULL || 8393 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8394 dap->da_state &= ~MKDIR_PARENT; 8395 WORKITEM_FREE(mkdir2, D_MKDIR); 8396 mkdir2 = NULL; 8397 } else { 8398 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8399 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8400 } 8401 *mkdirp = mkdir2; 8402 8403 return (mkdir1); 8404 } 8405 8406 /* 8407 * Directory entry addition dependencies. 8408 * 8409 * When adding a new directory entry, the inode (with its incremented link 8410 * count) must be written to disk before the directory entry's pointer to it. 8411 * Also, if the inode is newly allocated, the corresponding freemap must be 8412 * updated (on disk) before the directory entry's pointer. These requirements 8413 * are met via undo/redo on the directory entry's pointer, which consists 8414 * simply of the inode number. 8415 * 8416 * As directory entries are added and deleted, the free space within a 8417 * directory block can become fragmented. The ufs filesystem will compact 8418 * a fragmented directory block to make space for a new entry. When this 8419 * occurs, the offsets of previously added entries change. Any "diradd" 8420 * dependency structures corresponding to these entries must be updated with 8421 * the new offsets. 8422 */ 8423 8424 /* 8425 * This routine is called after the in-memory inode's link 8426 * count has been incremented, but before the directory entry's 8427 * pointer to the inode has been set. 8428 */ 8429 int 8430 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8431 struct buf *bp; /* buffer containing directory block */ 8432 struct inode *dp; /* inode for directory */ 8433 off_t diroffset; /* offset of new entry in directory */ 8434 ino_t newinum; /* inode referenced by new directory entry */ 8435 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8436 int isnewblk; /* entry is in a newly allocated block */ 8437 { 8438 int offset; /* offset of new entry within directory block */ 8439 ufs_lbn_t lbn; /* block in directory containing new entry */ 8440 struct fs *fs; 8441 struct diradd *dap; 8442 struct newblk *newblk; 8443 struct pagedep *pagedep; 8444 struct inodedep *inodedep; 8445 struct newdirblk *newdirblk = 0; 8446 struct mkdir *mkdir1, *mkdir2; 8447 struct jaddref *jaddref; 8448 struct ufsmount *ump; 8449 struct mount *mp; 8450 int isindir; 8451 8452 ump = dp->i_ump; 8453 mp = UFSTOVFS(ump); 8454 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8455 ("softdep_setup_directory_add called on non-softdep filesystem")); 8456 /* 8457 * Whiteouts have no dependencies. 8458 */ 8459 if (newinum == WINO) { 8460 if (newdirbp != NULL) 8461 bdwrite(newdirbp); 8462 return (0); 8463 } 8464 jaddref = NULL; 8465 mkdir1 = mkdir2 = NULL; 8466 fs = dp->i_fs; 8467 lbn = lblkno(fs, diroffset); 8468 offset = blkoff(fs, diroffset); 8469 dap = malloc(sizeof(struct diradd), M_DIRADD, 8470 M_SOFTDEP_FLAGS|M_ZERO); 8471 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8472 dap->da_offset = offset; 8473 dap->da_newinum = newinum; 8474 dap->da_state = ATTACHED; 8475 LIST_INIT(&dap->da_jwork); 8476 isindir = bp->b_lblkno >= NDADDR; 8477 if (isnewblk && 8478 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8479 newdirblk = malloc(sizeof(struct newdirblk), 8480 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8481 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8482 LIST_INIT(&newdirblk->db_mkdir); 8483 } 8484 /* 8485 * If we're creating a new directory setup the dependencies and set 8486 * the dap state to wait for them. Otherwise it's COMPLETE and 8487 * we can move on. 8488 */ 8489 if (newdirbp == NULL) { 8490 dap->da_state |= DEPCOMPLETE; 8491 ACQUIRE_LOCK(ump); 8492 } else { 8493 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8494 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8495 &mkdir2); 8496 } 8497 /* 8498 * Link into parent directory pagedep to await its being written. 8499 */ 8500 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8501 #ifdef DEBUG 8502 if (diradd_lookup(pagedep, offset) != NULL) 8503 panic("softdep_setup_directory_add: %p already at off %d\n", 8504 diradd_lookup(pagedep, offset), offset); 8505 #endif 8506 dap->da_pagedep = pagedep; 8507 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8508 da_pdlist); 8509 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8510 /* 8511 * If we're journaling, link the diradd into the jaddref so it 8512 * may be completed after the journal entry is written. Otherwise, 8513 * link the diradd into its inodedep. If the inode is not yet 8514 * written place it on the bufwait list, otherwise do the post-inode 8515 * write processing to put it on the id_pendinghd list. 8516 */ 8517 if (MOUNTEDSUJ(mp)) { 8518 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8519 inoreflst); 8520 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8521 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8522 jaddref->ja_diroff = diroffset; 8523 jaddref->ja_diradd = dap; 8524 add_to_journal(&jaddref->ja_list); 8525 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8526 diradd_inode_written(dap, inodedep); 8527 else 8528 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8529 /* 8530 * Add the journal entries for . and .. links now that the primary 8531 * link is written. 8532 */ 8533 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8534 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8535 inoreflst, if_deps); 8536 KASSERT(jaddref != NULL && 8537 jaddref->ja_ino == jaddref->ja_parent && 8538 (jaddref->ja_state & MKDIR_BODY), 8539 ("softdep_setup_directory_add: bad dot jaddref %p", 8540 jaddref)); 8541 mkdir1->md_jaddref = jaddref; 8542 jaddref->ja_mkdir = mkdir1; 8543 /* 8544 * It is important that the dotdot journal entry 8545 * is added prior to the dot entry since dot writes 8546 * both the dot and dotdot links. These both must 8547 * be added after the primary link for the journal 8548 * to remain consistent. 8549 */ 8550 add_to_journal(&mkdir2->md_jaddref->ja_list); 8551 add_to_journal(&jaddref->ja_list); 8552 } 8553 /* 8554 * If we are adding a new directory remember this diradd so that if 8555 * we rename it we can keep the dot and dotdot dependencies. If 8556 * we are adding a new name for an inode that has a mkdiradd we 8557 * must be in rename and we have to move the dot and dotdot 8558 * dependencies to this new name. The old name is being orphaned 8559 * soon. 8560 */ 8561 if (mkdir1 != NULL) { 8562 if (inodedep->id_mkdiradd != NULL) 8563 panic("softdep_setup_directory_add: Existing mkdir"); 8564 inodedep->id_mkdiradd = dap; 8565 } else if (inodedep->id_mkdiradd) 8566 merge_diradd(inodedep, dap); 8567 if (newdirblk) { 8568 /* 8569 * There is nothing to do if we are already tracking 8570 * this block. 8571 */ 8572 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8573 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8574 FREE_LOCK(ump); 8575 return (0); 8576 } 8577 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8578 == 0) 8579 panic("softdep_setup_directory_add: lost entry"); 8580 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8581 pagedep->pd_state |= NEWBLOCK; 8582 pagedep->pd_newdirblk = newdirblk; 8583 newdirblk->db_pagedep = pagedep; 8584 FREE_LOCK(ump); 8585 /* 8586 * If we extended into an indirect signal direnter to sync. 8587 */ 8588 if (isindir) 8589 return (1); 8590 return (0); 8591 } 8592 FREE_LOCK(ump); 8593 return (0); 8594 } 8595 8596 /* 8597 * This procedure is called to change the offset of a directory 8598 * entry when compacting a directory block which must be owned 8599 * exclusively by the caller. Note that the actual entry movement 8600 * must be done in this procedure to ensure that no I/O completions 8601 * occur while the move is in progress. 8602 */ 8603 void 8604 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8605 struct buf *bp; /* Buffer holding directory block. */ 8606 struct inode *dp; /* inode for directory */ 8607 caddr_t base; /* address of dp->i_offset */ 8608 caddr_t oldloc; /* address of old directory location */ 8609 caddr_t newloc; /* address of new directory location */ 8610 int entrysize; /* size of directory entry */ 8611 { 8612 int offset, oldoffset, newoffset; 8613 struct pagedep *pagedep; 8614 struct jmvref *jmvref; 8615 struct diradd *dap; 8616 struct direct *de; 8617 struct mount *mp; 8618 ufs_lbn_t lbn; 8619 int flags; 8620 8621 mp = UFSTOVFS(dp->i_ump); 8622 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8623 ("softdep_change_directoryentry_offset called on " 8624 "non-softdep filesystem")); 8625 de = (struct direct *)oldloc; 8626 jmvref = NULL; 8627 flags = 0; 8628 /* 8629 * Moves are always journaled as it would be too complex to 8630 * determine if any affected adds or removes are present in the 8631 * journal. 8632 */ 8633 if (MOUNTEDSUJ(mp)) { 8634 flags = DEPALLOC; 8635 jmvref = newjmvref(dp, de->d_ino, 8636 dp->i_offset + (oldloc - base), 8637 dp->i_offset + (newloc - base)); 8638 } 8639 lbn = lblkno(dp->i_fs, dp->i_offset); 8640 offset = blkoff(dp->i_fs, dp->i_offset); 8641 oldoffset = offset + (oldloc - base); 8642 newoffset = offset + (newloc - base); 8643 ACQUIRE_LOCK(dp->i_ump); 8644 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8645 goto done; 8646 dap = diradd_lookup(pagedep, oldoffset); 8647 if (dap) { 8648 dap->da_offset = newoffset; 8649 newoffset = DIRADDHASH(newoffset); 8650 oldoffset = DIRADDHASH(oldoffset); 8651 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8652 newoffset != oldoffset) { 8653 LIST_REMOVE(dap, da_pdlist); 8654 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8655 dap, da_pdlist); 8656 } 8657 } 8658 done: 8659 if (jmvref) { 8660 jmvref->jm_pagedep = pagedep; 8661 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8662 add_to_journal(&jmvref->jm_list); 8663 } 8664 bcopy(oldloc, newloc, entrysize); 8665 FREE_LOCK(dp->i_ump); 8666 } 8667 8668 /* 8669 * Move the mkdir dependencies and journal work from one diradd to another 8670 * when renaming a directory. The new name must depend on the mkdir deps 8671 * completing as the old name did. Directories can only have one valid link 8672 * at a time so one must be canonical. 8673 */ 8674 static void 8675 merge_diradd(inodedep, newdap) 8676 struct inodedep *inodedep; 8677 struct diradd *newdap; 8678 { 8679 struct diradd *olddap; 8680 struct mkdir *mkdir, *nextmd; 8681 struct ufsmount *ump; 8682 short state; 8683 8684 olddap = inodedep->id_mkdiradd; 8685 inodedep->id_mkdiradd = newdap; 8686 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8687 newdap->da_state &= ~DEPCOMPLETE; 8688 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8689 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8690 mkdir = nextmd) { 8691 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8692 if (mkdir->md_diradd != olddap) 8693 continue; 8694 mkdir->md_diradd = newdap; 8695 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8696 newdap->da_state |= state; 8697 olddap->da_state &= ~state; 8698 if ((olddap->da_state & 8699 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8700 break; 8701 } 8702 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8703 panic("merge_diradd: unfound ref"); 8704 } 8705 /* 8706 * Any mkdir related journal items are not safe to be freed until 8707 * the new name is stable. 8708 */ 8709 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8710 olddap->da_state |= DEPCOMPLETE; 8711 complete_diradd(olddap); 8712 } 8713 8714 /* 8715 * Move the diradd to the pending list when all diradd dependencies are 8716 * complete. 8717 */ 8718 static void 8719 complete_diradd(dap) 8720 struct diradd *dap; 8721 { 8722 struct pagedep *pagedep; 8723 8724 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8725 if (dap->da_state & DIRCHG) 8726 pagedep = dap->da_previous->dm_pagedep; 8727 else 8728 pagedep = dap->da_pagedep; 8729 LIST_REMOVE(dap, da_pdlist); 8730 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8731 } 8732 } 8733 8734 /* 8735 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8736 * add entries and conditonally journal the remove. 8737 */ 8738 static void 8739 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8740 struct diradd *dap; 8741 struct dirrem *dirrem; 8742 struct jremref *jremref; 8743 struct jremref *dotremref; 8744 struct jremref *dotdotremref; 8745 { 8746 struct inodedep *inodedep; 8747 struct jaddref *jaddref; 8748 struct inoref *inoref; 8749 struct ufsmount *ump; 8750 struct mkdir *mkdir; 8751 8752 /* 8753 * If no remove references were allocated we're on a non-journaled 8754 * filesystem and can skip the cancel step. 8755 */ 8756 if (jremref == NULL) { 8757 free_diradd(dap, NULL); 8758 return; 8759 } 8760 /* 8761 * Cancel the primary name an free it if it does not require 8762 * journaling. 8763 */ 8764 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8765 0, &inodedep) != 0) { 8766 /* Abort the addref that reference this diradd. */ 8767 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8768 if (inoref->if_list.wk_type != D_JADDREF) 8769 continue; 8770 jaddref = (struct jaddref *)inoref; 8771 if (jaddref->ja_diradd != dap) 8772 continue; 8773 if (cancel_jaddref(jaddref, inodedep, 8774 &dirrem->dm_jwork) == 0) { 8775 free_jremref(jremref); 8776 jremref = NULL; 8777 } 8778 break; 8779 } 8780 } 8781 /* 8782 * Cancel subordinate names and free them if they do not require 8783 * journaling. 8784 */ 8785 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8786 ump = VFSTOUFS(dap->da_list.wk_mp); 8787 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8788 if (mkdir->md_diradd != dap) 8789 continue; 8790 if ((jaddref = mkdir->md_jaddref) == NULL) 8791 continue; 8792 mkdir->md_jaddref = NULL; 8793 if (mkdir->md_state & MKDIR_PARENT) { 8794 if (cancel_jaddref(jaddref, NULL, 8795 &dirrem->dm_jwork) == 0) { 8796 free_jremref(dotdotremref); 8797 dotdotremref = NULL; 8798 } 8799 } else { 8800 if (cancel_jaddref(jaddref, inodedep, 8801 &dirrem->dm_jwork) == 0) { 8802 free_jremref(dotremref); 8803 dotremref = NULL; 8804 } 8805 } 8806 } 8807 } 8808 8809 if (jremref) 8810 journal_jremref(dirrem, jremref, inodedep); 8811 if (dotremref) 8812 journal_jremref(dirrem, dotremref, inodedep); 8813 if (dotdotremref) 8814 journal_jremref(dirrem, dotdotremref, NULL); 8815 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8816 free_diradd(dap, &dirrem->dm_jwork); 8817 } 8818 8819 /* 8820 * Free a diradd dependency structure. This routine must be called 8821 * with splbio interrupts blocked. 8822 */ 8823 static void 8824 free_diradd(dap, wkhd) 8825 struct diradd *dap; 8826 struct workhead *wkhd; 8827 { 8828 struct dirrem *dirrem; 8829 struct pagedep *pagedep; 8830 struct inodedep *inodedep; 8831 struct mkdir *mkdir, *nextmd; 8832 struct ufsmount *ump; 8833 8834 ump = VFSTOUFS(dap->da_list.wk_mp); 8835 LOCK_OWNED(ump); 8836 LIST_REMOVE(dap, da_pdlist); 8837 if (dap->da_state & ONWORKLIST) 8838 WORKLIST_REMOVE(&dap->da_list); 8839 if ((dap->da_state & DIRCHG) == 0) { 8840 pagedep = dap->da_pagedep; 8841 } else { 8842 dirrem = dap->da_previous; 8843 pagedep = dirrem->dm_pagedep; 8844 dirrem->dm_dirinum = pagedep->pd_ino; 8845 dirrem->dm_state |= COMPLETE; 8846 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8847 add_to_worklist(&dirrem->dm_list, 0); 8848 } 8849 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8850 0, &inodedep) != 0) 8851 if (inodedep->id_mkdiradd == dap) 8852 inodedep->id_mkdiradd = NULL; 8853 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8854 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8855 mkdir = nextmd) { 8856 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8857 if (mkdir->md_diradd != dap) 8858 continue; 8859 dap->da_state &= 8860 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8861 LIST_REMOVE(mkdir, md_mkdirs); 8862 if (mkdir->md_state & ONWORKLIST) 8863 WORKLIST_REMOVE(&mkdir->md_list); 8864 if (mkdir->md_jaddref != NULL) 8865 panic("free_diradd: Unexpected jaddref"); 8866 WORKITEM_FREE(mkdir, D_MKDIR); 8867 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8868 break; 8869 } 8870 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8871 panic("free_diradd: unfound ref"); 8872 } 8873 if (inodedep) 8874 free_inodedep(inodedep); 8875 /* 8876 * Free any journal segments waiting for the directory write. 8877 */ 8878 handle_jwork(&dap->da_jwork); 8879 WORKITEM_FREE(dap, D_DIRADD); 8880 } 8881 8882 /* 8883 * Directory entry removal dependencies. 8884 * 8885 * When removing a directory entry, the entry's inode pointer must be 8886 * zero'ed on disk before the corresponding inode's link count is decremented 8887 * (possibly freeing the inode for re-use). This dependency is handled by 8888 * updating the directory entry but delaying the inode count reduction until 8889 * after the directory block has been written to disk. After this point, the 8890 * inode count can be decremented whenever it is convenient. 8891 */ 8892 8893 /* 8894 * This routine should be called immediately after removing 8895 * a directory entry. The inode's link count should not be 8896 * decremented by the calling procedure -- the soft updates 8897 * code will do this task when it is safe. 8898 */ 8899 void 8900 softdep_setup_remove(bp, dp, ip, isrmdir) 8901 struct buf *bp; /* buffer containing directory block */ 8902 struct inode *dp; /* inode for the directory being modified */ 8903 struct inode *ip; /* inode for directory entry being removed */ 8904 int isrmdir; /* indicates if doing RMDIR */ 8905 { 8906 struct dirrem *dirrem, *prevdirrem; 8907 struct inodedep *inodedep; 8908 int direct; 8909 8910 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 8911 ("softdep_setup_remove called on non-softdep filesystem")); 8912 /* 8913 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8914 * newdirrem() to setup the full directory remove which requires 8915 * isrmdir > 1. 8916 */ 8917 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8918 /* 8919 * Add the dirrem to the inodedep's pending remove list for quick 8920 * discovery later. 8921 */ 8922 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8923 &inodedep) == 0) 8924 panic("softdep_setup_remove: Lost inodedep."); 8925 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8926 dirrem->dm_state |= ONDEPLIST; 8927 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8928 8929 /* 8930 * If the COMPLETE flag is clear, then there were no active 8931 * entries and we want to roll back to a zeroed entry until 8932 * the new inode is committed to disk. If the COMPLETE flag is 8933 * set then we have deleted an entry that never made it to 8934 * disk. If the entry we deleted resulted from a name change, 8935 * then the old name still resides on disk. We cannot delete 8936 * its inode (returned to us in prevdirrem) until the zeroed 8937 * directory entry gets to disk. The new inode has never been 8938 * referenced on the disk, so can be deleted immediately. 8939 */ 8940 if ((dirrem->dm_state & COMPLETE) == 0) { 8941 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8942 dm_next); 8943 FREE_LOCK(ip->i_ump); 8944 } else { 8945 if (prevdirrem != NULL) 8946 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8947 prevdirrem, dm_next); 8948 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8949 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8950 FREE_LOCK(ip->i_ump); 8951 if (direct) 8952 handle_workitem_remove(dirrem, 0); 8953 } 8954 } 8955 8956 /* 8957 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8958 * pd_pendinghd list of a pagedep. 8959 */ 8960 static struct diradd * 8961 diradd_lookup(pagedep, offset) 8962 struct pagedep *pagedep; 8963 int offset; 8964 { 8965 struct diradd *dap; 8966 8967 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8968 if (dap->da_offset == offset) 8969 return (dap); 8970 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8971 if (dap->da_offset == offset) 8972 return (dap); 8973 return (NULL); 8974 } 8975 8976 /* 8977 * Search for a .. diradd dependency in a directory that is being removed. 8978 * If the directory was renamed to a new parent we have a diradd rather 8979 * than a mkdir for the .. entry. We need to cancel it now before 8980 * it is found in truncate(). 8981 */ 8982 static struct jremref * 8983 cancel_diradd_dotdot(ip, dirrem, jremref) 8984 struct inode *ip; 8985 struct dirrem *dirrem; 8986 struct jremref *jremref; 8987 { 8988 struct pagedep *pagedep; 8989 struct diradd *dap; 8990 struct worklist *wk; 8991 8992 if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0, 8993 &pagedep) == 0) 8994 return (jremref); 8995 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 8996 if (dap == NULL) 8997 return (jremref); 8998 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 8999 /* 9000 * Mark any journal work as belonging to the parent so it is freed 9001 * with the .. reference. 9002 */ 9003 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9004 wk->wk_state |= MKDIR_PARENT; 9005 return (NULL); 9006 } 9007 9008 /* 9009 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9010 * replace it with a dirrem/diradd pair as a result of re-parenting a 9011 * directory. This ensures that we don't simultaneously have a mkdir and 9012 * a diradd for the same .. entry. 9013 */ 9014 static struct jremref * 9015 cancel_mkdir_dotdot(ip, dirrem, jremref) 9016 struct inode *ip; 9017 struct dirrem *dirrem; 9018 struct jremref *jremref; 9019 { 9020 struct inodedep *inodedep; 9021 struct jaddref *jaddref; 9022 struct ufsmount *ump; 9023 struct mkdir *mkdir; 9024 struct diradd *dap; 9025 9026 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 9027 &inodedep) == 0) 9028 return (jremref); 9029 dap = inodedep->id_mkdiradd; 9030 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9031 return (jremref); 9032 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9033 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9034 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9035 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9036 break; 9037 if (mkdir == NULL) 9038 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9039 if ((jaddref = mkdir->md_jaddref) != NULL) { 9040 mkdir->md_jaddref = NULL; 9041 jaddref->ja_state &= ~MKDIR_PARENT; 9042 if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0, 9043 &inodedep) == 0) 9044 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9045 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9046 journal_jremref(dirrem, jremref, inodedep); 9047 jremref = NULL; 9048 } 9049 } 9050 if (mkdir->md_state & ONWORKLIST) 9051 WORKLIST_REMOVE(&mkdir->md_list); 9052 mkdir->md_state |= ALLCOMPLETE; 9053 complete_mkdir(mkdir); 9054 return (jremref); 9055 } 9056 9057 static void 9058 journal_jremref(dirrem, jremref, inodedep) 9059 struct dirrem *dirrem; 9060 struct jremref *jremref; 9061 struct inodedep *inodedep; 9062 { 9063 9064 if (inodedep == NULL) 9065 if (inodedep_lookup(jremref->jr_list.wk_mp, 9066 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9067 panic("journal_jremref: Lost inodedep"); 9068 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9069 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9070 add_to_journal(&jremref->jr_list); 9071 } 9072 9073 static void 9074 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9075 struct dirrem *dirrem; 9076 struct jremref *jremref; 9077 struct jremref *dotremref; 9078 struct jremref *dotdotremref; 9079 { 9080 struct inodedep *inodedep; 9081 9082 9083 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9084 &inodedep) == 0) 9085 panic("dirrem_journal: Lost inodedep"); 9086 journal_jremref(dirrem, jremref, inodedep); 9087 if (dotremref) 9088 journal_jremref(dirrem, dotremref, inodedep); 9089 if (dotdotremref) 9090 journal_jremref(dirrem, dotdotremref, NULL); 9091 } 9092 9093 /* 9094 * Allocate a new dirrem if appropriate and return it along with 9095 * its associated pagedep. Called without a lock, returns with lock. 9096 */ 9097 static struct dirrem * 9098 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9099 struct buf *bp; /* buffer containing directory block */ 9100 struct inode *dp; /* inode for the directory being modified */ 9101 struct inode *ip; /* inode for directory entry being removed */ 9102 int isrmdir; /* indicates if doing RMDIR */ 9103 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9104 { 9105 int offset; 9106 ufs_lbn_t lbn; 9107 struct diradd *dap; 9108 struct dirrem *dirrem; 9109 struct pagedep *pagedep; 9110 struct jremref *jremref; 9111 struct jremref *dotremref; 9112 struct jremref *dotdotremref; 9113 struct vnode *dvp; 9114 9115 /* 9116 * Whiteouts have no deletion dependencies. 9117 */ 9118 if (ip == NULL) 9119 panic("newdirrem: whiteout"); 9120 dvp = ITOV(dp); 9121 /* 9122 * If the system is over its limit and our filesystem is 9123 * responsible for more than our share of that usage and 9124 * we are not a snapshot, request some inodedep cleanup. 9125 * Limiting the number of dirrem structures will also limit 9126 * the number of freefile and freeblks structures. 9127 */ 9128 ACQUIRE_LOCK(ip->i_ump); 9129 while (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2 && 9130 ip->i_ump->softdep_curdeps[D_DIRREM] > 9131 (max_softdeps / 2) / stat_flush_threads) 9132 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS); 9133 FREE_LOCK(ip->i_ump); 9134 dirrem = malloc(sizeof(struct dirrem), 9135 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 9136 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9137 LIST_INIT(&dirrem->dm_jremrefhd); 9138 LIST_INIT(&dirrem->dm_jwork); 9139 dirrem->dm_state = isrmdir ? RMDIR : 0; 9140 dirrem->dm_oldinum = ip->i_number; 9141 *prevdirremp = NULL; 9142 /* 9143 * Allocate remove reference structures to track journal write 9144 * dependencies. We will always have one for the link and 9145 * when doing directories we will always have one more for dot. 9146 * When renaming a directory we skip the dotdot link change so 9147 * this is not needed. 9148 */ 9149 jremref = dotremref = dotdotremref = NULL; 9150 if (DOINGSUJ(dvp)) { 9151 if (isrmdir) { 9152 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9153 ip->i_effnlink + 2); 9154 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9155 ip->i_effnlink + 1); 9156 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9157 dp->i_effnlink + 1); 9158 dotdotremref->jr_state |= MKDIR_PARENT; 9159 } else 9160 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9161 ip->i_effnlink + 1); 9162 } 9163 ACQUIRE_LOCK(ip->i_ump); 9164 lbn = lblkno(dp->i_fs, dp->i_offset); 9165 offset = blkoff(dp->i_fs, dp->i_offset); 9166 pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC, 9167 &pagedep); 9168 dirrem->dm_pagedep = pagedep; 9169 dirrem->dm_offset = offset; 9170 /* 9171 * If we're renaming a .. link to a new directory, cancel any 9172 * existing MKDIR_PARENT mkdir. If it has already been canceled 9173 * the jremref is preserved for any potential diradd in this 9174 * location. This can not coincide with a rmdir. 9175 */ 9176 if (dp->i_offset == DOTDOT_OFFSET) { 9177 if (isrmdir) 9178 panic("newdirrem: .. directory change during remove?"); 9179 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9180 } 9181 /* 9182 * If we're removing a directory search for the .. dependency now and 9183 * cancel it. Any pending journal work will be added to the dirrem 9184 * to be completed when the workitem remove completes. 9185 */ 9186 if (isrmdir) 9187 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9188 /* 9189 * Check for a diradd dependency for the same directory entry. 9190 * If present, then both dependencies become obsolete and can 9191 * be de-allocated. 9192 */ 9193 dap = diradd_lookup(pagedep, offset); 9194 if (dap == NULL) { 9195 /* 9196 * Link the jremref structures into the dirrem so they are 9197 * written prior to the pagedep. 9198 */ 9199 if (jremref) 9200 dirrem_journal(dirrem, jremref, dotremref, 9201 dotdotremref); 9202 return (dirrem); 9203 } 9204 /* 9205 * Must be ATTACHED at this point. 9206 */ 9207 if ((dap->da_state & ATTACHED) == 0) 9208 panic("newdirrem: not ATTACHED"); 9209 if (dap->da_newinum != ip->i_number) 9210 panic("newdirrem: inum %ju should be %ju", 9211 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9212 /* 9213 * If we are deleting a changed name that never made it to disk, 9214 * then return the dirrem describing the previous inode (which 9215 * represents the inode currently referenced from this entry on disk). 9216 */ 9217 if ((dap->da_state & DIRCHG) != 0) { 9218 *prevdirremp = dap->da_previous; 9219 dap->da_state &= ~DIRCHG; 9220 dap->da_pagedep = pagedep; 9221 } 9222 /* 9223 * We are deleting an entry that never made it to disk. 9224 * Mark it COMPLETE so we can delete its inode immediately. 9225 */ 9226 dirrem->dm_state |= COMPLETE; 9227 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9228 #ifdef SUJ_DEBUG 9229 if (isrmdir == 0) { 9230 struct worklist *wk; 9231 9232 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9233 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9234 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9235 } 9236 #endif 9237 9238 return (dirrem); 9239 } 9240 9241 /* 9242 * Directory entry change dependencies. 9243 * 9244 * Changing an existing directory entry requires that an add operation 9245 * be completed first followed by a deletion. The semantics for the addition 9246 * are identical to the description of adding a new entry above except 9247 * that the rollback is to the old inode number rather than zero. Once 9248 * the addition dependency is completed, the removal is done as described 9249 * in the removal routine above. 9250 */ 9251 9252 /* 9253 * This routine should be called immediately after changing 9254 * a directory entry. The inode's link count should not be 9255 * decremented by the calling procedure -- the soft updates 9256 * code will perform this task when it is safe. 9257 */ 9258 void 9259 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9260 struct buf *bp; /* buffer containing directory block */ 9261 struct inode *dp; /* inode for the directory being modified */ 9262 struct inode *ip; /* inode for directory entry being removed */ 9263 ino_t newinum; /* new inode number for changed entry */ 9264 int isrmdir; /* indicates if doing RMDIR */ 9265 { 9266 int offset; 9267 struct diradd *dap = NULL; 9268 struct dirrem *dirrem, *prevdirrem; 9269 struct pagedep *pagedep; 9270 struct inodedep *inodedep; 9271 struct jaddref *jaddref; 9272 struct mount *mp; 9273 9274 offset = blkoff(dp->i_fs, dp->i_offset); 9275 mp = UFSTOVFS(dp->i_ump); 9276 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9277 ("softdep_setup_directory_change called on non-softdep filesystem")); 9278 9279 /* 9280 * Whiteouts do not need diradd dependencies. 9281 */ 9282 if (newinum != WINO) { 9283 dap = malloc(sizeof(struct diradd), 9284 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9285 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9286 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9287 dap->da_offset = offset; 9288 dap->da_newinum = newinum; 9289 LIST_INIT(&dap->da_jwork); 9290 } 9291 9292 /* 9293 * Allocate a new dirrem and ACQUIRE_LOCK. 9294 */ 9295 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9296 pagedep = dirrem->dm_pagedep; 9297 /* 9298 * The possible values for isrmdir: 9299 * 0 - non-directory file rename 9300 * 1 - directory rename within same directory 9301 * inum - directory rename to new directory of given inode number 9302 * When renaming to a new directory, we are both deleting and 9303 * creating a new directory entry, so the link count on the new 9304 * directory should not change. Thus we do not need the followup 9305 * dirrem which is usually done in handle_workitem_remove. We set 9306 * the DIRCHG flag to tell handle_workitem_remove to skip the 9307 * followup dirrem. 9308 */ 9309 if (isrmdir > 1) 9310 dirrem->dm_state |= DIRCHG; 9311 9312 /* 9313 * Whiteouts have no additional dependencies, 9314 * so just put the dirrem on the correct list. 9315 */ 9316 if (newinum == WINO) { 9317 if ((dirrem->dm_state & COMPLETE) == 0) { 9318 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9319 dm_next); 9320 } else { 9321 dirrem->dm_dirinum = pagedep->pd_ino; 9322 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9323 add_to_worklist(&dirrem->dm_list, 0); 9324 } 9325 FREE_LOCK(dp->i_ump); 9326 return; 9327 } 9328 /* 9329 * Add the dirrem to the inodedep's pending remove list for quick 9330 * discovery later. A valid nlinkdelta ensures that this lookup 9331 * will not fail. 9332 */ 9333 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9334 panic("softdep_setup_directory_change: Lost inodedep."); 9335 dirrem->dm_state |= ONDEPLIST; 9336 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9337 9338 /* 9339 * If the COMPLETE flag is clear, then there were no active 9340 * entries and we want to roll back to the previous inode until 9341 * the new inode is committed to disk. If the COMPLETE flag is 9342 * set, then we have deleted an entry that never made it to disk. 9343 * If the entry we deleted resulted from a name change, then the old 9344 * inode reference still resides on disk. Any rollback that we do 9345 * needs to be to that old inode (returned to us in prevdirrem). If 9346 * the entry we deleted resulted from a create, then there is 9347 * no entry on the disk, so we want to roll back to zero rather 9348 * than the uncommitted inode. In either of the COMPLETE cases we 9349 * want to immediately free the unwritten and unreferenced inode. 9350 */ 9351 if ((dirrem->dm_state & COMPLETE) == 0) { 9352 dap->da_previous = dirrem; 9353 } else { 9354 if (prevdirrem != NULL) { 9355 dap->da_previous = prevdirrem; 9356 } else { 9357 dap->da_state &= ~DIRCHG; 9358 dap->da_pagedep = pagedep; 9359 } 9360 dirrem->dm_dirinum = pagedep->pd_ino; 9361 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9362 add_to_worklist(&dirrem->dm_list, 0); 9363 } 9364 /* 9365 * Lookup the jaddref for this journal entry. We must finish 9366 * initializing it and make the diradd write dependent on it. 9367 * If we're not journaling, put it on the id_bufwait list if the 9368 * inode is not yet written. If it is written, do the post-inode 9369 * write processing to put it on the id_pendinghd list. 9370 */ 9371 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 9372 if (MOUNTEDSUJ(mp)) { 9373 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9374 inoreflst); 9375 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9376 ("softdep_setup_directory_change: bad jaddref %p", 9377 jaddref)); 9378 jaddref->ja_diroff = dp->i_offset; 9379 jaddref->ja_diradd = dap; 9380 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9381 dap, da_pdlist); 9382 add_to_journal(&jaddref->ja_list); 9383 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9384 dap->da_state |= COMPLETE; 9385 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9386 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9387 } else { 9388 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9389 dap, da_pdlist); 9390 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9391 } 9392 /* 9393 * If we're making a new name for a directory that has not been 9394 * committed when need to move the dot and dotdot references to 9395 * this new name. 9396 */ 9397 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9398 merge_diradd(inodedep, dap); 9399 FREE_LOCK(dp->i_ump); 9400 } 9401 9402 /* 9403 * Called whenever the link count on an inode is changed. 9404 * It creates an inode dependency so that the new reference(s) 9405 * to the inode cannot be committed to disk until the updated 9406 * inode has been written. 9407 */ 9408 void 9409 softdep_change_linkcnt(ip) 9410 struct inode *ip; /* the inode with the increased link count */ 9411 { 9412 struct inodedep *inodedep; 9413 int dflags; 9414 9415 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 9416 ("softdep_change_linkcnt called on non-softdep filesystem")); 9417 ACQUIRE_LOCK(ip->i_ump); 9418 dflags = DEPALLOC; 9419 if (IS_SNAPSHOT(ip)) 9420 dflags |= NODELAY; 9421 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 9422 if (ip->i_nlink < ip->i_effnlink) 9423 panic("softdep_change_linkcnt: bad delta"); 9424 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9425 FREE_LOCK(ip->i_ump); 9426 } 9427 9428 /* 9429 * Attach a sbdep dependency to the superblock buf so that we can keep 9430 * track of the head of the linked list of referenced but unlinked inodes. 9431 */ 9432 void 9433 softdep_setup_sbupdate(ump, fs, bp) 9434 struct ufsmount *ump; 9435 struct fs *fs; 9436 struct buf *bp; 9437 { 9438 struct sbdep *sbdep; 9439 struct worklist *wk; 9440 9441 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9442 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9443 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9444 if (wk->wk_type == D_SBDEP) 9445 break; 9446 if (wk != NULL) 9447 return; 9448 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9449 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9450 sbdep->sb_fs = fs; 9451 sbdep->sb_ump = ump; 9452 ACQUIRE_LOCK(ump); 9453 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9454 FREE_LOCK(ump); 9455 } 9456 9457 /* 9458 * Return the first unlinked inodedep which is ready to be the head of the 9459 * list. The inodedep and all those after it must have valid next pointers. 9460 */ 9461 static struct inodedep * 9462 first_unlinked_inodedep(ump) 9463 struct ufsmount *ump; 9464 { 9465 struct inodedep *inodedep; 9466 struct inodedep *idp; 9467 9468 LOCK_OWNED(ump); 9469 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9470 inodedep; inodedep = idp) { 9471 if ((inodedep->id_state & UNLINKNEXT) == 0) 9472 return (NULL); 9473 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9474 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9475 break; 9476 if ((inodedep->id_state & UNLINKPREV) == 0) 9477 break; 9478 } 9479 return (inodedep); 9480 } 9481 9482 /* 9483 * Set the sujfree unlinked head pointer prior to writing a superblock. 9484 */ 9485 static void 9486 initiate_write_sbdep(sbdep) 9487 struct sbdep *sbdep; 9488 { 9489 struct inodedep *inodedep; 9490 struct fs *bpfs; 9491 struct fs *fs; 9492 9493 bpfs = sbdep->sb_fs; 9494 fs = sbdep->sb_ump->um_fs; 9495 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9496 if (inodedep) { 9497 fs->fs_sujfree = inodedep->id_ino; 9498 inodedep->id_state |= UNLINKPREV; 9499 } else 9500 fs->fs_sujfree = 0; 9501 bpfs->fs_sujfree = fs->fs_sujfree; 9502 } 9503 9504 /* 9505 * After a superblock is written determine whether it must be written again 9506 * due to a changing unlinked list head. 9507 */ 9508 static int 9509 handle_written_sbdep(sbdep, bp) 9510 struct sbdep *sbdep; 9511 struct buf *bp; 9512 { 9513 struct inodedep *inodedep; 9514 struct mount *mp; 9515 struct fs *fs; 9516 9517 LOCK_OWNED(sbdep->sb_ump); 9518 fs = sbdep->sb_fs; 9519 mp = UFSTOVFS(sbdep->sb_ump); 9520 /* 9521 * If the superblock doesn't match the in-memory list start over. 9522 */ 9523 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9524 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9525 (inodedep == NULL && fs->fs_sujfree != 0)) { 9526 bdirty(bp); 9527 return (1); 9528 } 9529 WORKITEM_FREE(sbdep, D_SBDEP); 9530 if (fs->fs_sujfree == 0) 9531 return (0); 9532 /* 9533 * Now that we have a record of this inode in stable store allow it 9534 * to be written to free up pending work. Inodes may see a lot of 9535 * write activity after they are unlinked which we must not hold up. 9536 */ 9537 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9538 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9539 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9540 inodedep, inodedep->id_state); 9541 if (inodedep->id_state & UNLINKONLIST) 9542 break; 9543 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9544 } 9545 9546 return (0); 9547 } 9548 9549 /* 9550 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9551 */ 9552 static void 9553 unlinked_inodedep(mp, inodedep) 9554 struct mount *mp; 9555 struct inodedep *inodedep; 9556 { 9557 struct ufsmount *ump; 9558 9559 ump = VFSTOUFS(mp); 9560 LOCK_OWNED(ump); 9561 if (MOUNTEDSUJ(mp) == 0) 9562 return; 9563 ump->um_fs->fs_fmod = 1; 9564 if (inodedep->id_state & UNLINKED) 9565 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9566 inodedep->id_state |= UNLINKED; 9567 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9568 } 9569 9570 /* 9571 * Remove an inodedep from the unlinked inodedep list. This may require 9572 * disk writes if the inode has made it that far. 9573 */ 9574 static void 9575 clear_unlinked_inodedep(inodedep) 9576 struct inodedep *inodedep; 9577 { 9578 struct ufsmount *ump; 9579 struct inodedep *idp; 9580 struct inodedep *idn; 9581 struct fs *fs; 9582 struct buf *bp; 9583 ino_t ino; 9584 ino_t nino; 9585 ino_t pino; 9586 int error; 9587 9588 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9589 fs = ump->um_fs; 9590 ino = inodedep->id_ino; 9591 error = 0; 9592 for (;;) { 9593 LOCK_OWNED(ump); 9594 KASSERT((inodedep->id_state & UNLINKED) != 0, 9595 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9596 inodedep)); 9597 /* 9598 * If nothing has yet been written simply remove us from 9599 * the in memory list and return. This is the most common 9600 * case where handle_workitem_remove() loses the final 9601 * reference. 9602 */ 9603 if ((inodedep->id_state & UNLINKLINKS) == 0) 9604 break; 9605 /* 9606 * If we have a NEXT pointer and no PREV pointer we can simply 9607 * clear NEXT's PREV and remove ourselves from the list. Be 9608 * careful not to clear PREV if the superblock points at 9609 * next as well. 9610 */ 9611 idn = TAILQ_NEXT(inodedep, id_unlinked); 9612 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9613 if (idn && fs->fs_sujfree != idn->id_ino) 9614 idn->id_state &= ~UNLINKPREV; 9615 break; 9616 } 9617 /* 9618 * Here we have an inodedep which is actually linked into 9619 * the list. We must remove it by forcing a write to the 9620 * link before us, whether it be the superblock or an inode. 9621 * Unfortunately the list may change while we're waiting 9622 * on the buf lock for either resource so we must loop until 9623 * we lock the right one. If both the superblock and an 9624 * inode point to this inode we must clear the inode first 9625 * followed by the superblock. 9626 */ 9627 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9628 pino = 0; 9629 if (idp && (idp->id_state & UNLINKNEXT)) 9630 pino = idp->id_ino; 9631 FREE_LOCK(ump); 9632 if (pino == 0) { 9633 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9634 (int)fs->fs_sbsize, 0, 0, 0); 9635 } else { 9636 error = bread(ump->um_devvp, 9637 fsbtodb(fs, ino_to_fsba(fs, pino)), 9638 (int)fs->fs_bsize, NOCRED, &bp); 9639 if (error) 9640 brelse(bp); 9641 } 9642 ACQUIRE_LOCK(ump); 9643 if (error) 9644 break; 9645 /* If the list has changed restart the loop. */ 9646 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9647 nino = 0; 9648 if (idp && (idp->id_state & UNLINKNEXT)) 9649 nino = idp->id_ino; 9650 if (nino != pino || 9651 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9652 FREE_LOCK(ump); 9653 brelse(bp); 9654 ACQUIRE_LOCK(ump); 9655 continue; 9656 } 9657 nino = 0; 9658 idn = TAILQ_NEXT(inodedep, id_unlinked); 9659 if (idn) 9660 nino = idn->id_ino; 9661 /* 9662 * Remove us from the in memory list. After this we cannot 9663 * access the inodedep. 9664 */ 9665 KASSERT((inodedep->id_state & UNLINKED) != 0, 9666 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9667 inodedep)); 9668 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9669 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9670 FREE_LOCK(ump); 9671 /* 9672 * The predecessor's next pointer is manually updated here 9673 * so that the NEXT flag is never cleared for an element 9674 * that is in the list. 9675 */ 9676 if (pino == 0) { 9677 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9678 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9679 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9680 bp); 9681 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9682 ((struct ufs1_dinode *)bp->b_data + 9683 ino_to_fsbo(fs, pino))->di_freelink = nino; 9684 else 9685 ((struct ufs2_dinode *)bp->b_data + 9686 ino_to_fsbo(fs, pino))->di_freelink = nino; 9687 /* 9688 * If the bwrite fails we have no recourse to recover. The 9689 * filesystem is corrupted already. 9690 */ 9691 bwrite(bp); 9692 ACQUIRE_LOCK(ump); 9693 /* 9694 * If the superblock pointer still needs to be cleared force 9695 * a write here. 9696 */ 9697 if (fs->fs_sujfree == ino) { 9698 FREE_LOCK(ump); 9699 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9700 (int)fs->fs_sbsize, 0, 0, 0); 9701 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9702 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9703 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9704 bp); 9705 bwrite(bp); 9706 ACQUIRE_LOCK(ump); 9707 } 9708 9709 if (fs->fs_sujfree != ino) 9710 return; 9711 panic("clear_unlinked_inodedep: Failed to clear free head"); 9712 } 9713 if (inodedep->id_ino == fs->fs_sujfree) 9714 panic("clear_unlinked_inodedep: Freeing head of free list"); 9715 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9716 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9717 return; 9718 } 9719 9720 /* 9721 * This workitem decrements the inode's link count. 9722 * If the link count reaches zero, the file is removed. 9723 */ 9724 static int 9725 handle_workitem_remove(dirrem, flags) 9726 struct dirrem *dirrem; 9727 int flags; 9728 { 9729 struct inodedep *inodedep; 9730 struct workhead dotdotwk; 9731 struct worklist *wk; 9732 struct ufsmount *ump; 9733 struct mount *mp; 9734 struct vnode *vp; 9735 struct inode *ip; 9736 ino_t oldinum; 9737 9738 if (dirrem->dm_state & ONWORKLIST) 9739 panic("handle_workitem_remove: dirrem %p still on worklist", 9740 dirrem); 9741 oldinum = dirrem->dm_oldinum; 9742 mp = dirrem->dm_list.wk_mp; 9743 ump = VFSTOUFS(mp); 9744 flags |= LK_EXCLUSIVE; 9745 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9746 return (EBUSY); 9747 ip = VTOI(vp); 9748 ACQUIRE_LOCK(ump); 9749 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9750 panic("handle_workitem_remove: lost inodedep"); 9751 if (dirrem->dm_state & ONDEPLIST) 9752 LIST_REMOVE(dirrem, dm_inonext); 9753 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9754 ("handle_workitem_remove: Journal entries not written.")); 9755 9756 /* 9757 * Move all dependencies waiting on the remove to complete 9758 * from the dirrem to the inode inowait list to be completed 9759 * after the inode has been updated and written to disk. Any 9760 * marked MKDIR_PARENT are saved to be completed when the .. ref 9761 * is removed. 9762 */ 9763 LIST_INIT(&dotdotwk); 9764 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9765 WORKLIST_REMOVE(wk); 9766 if (wk->wk_state & MKDIR_PARENT) { 9767 wk->wk_state &= ~MKDIR_PARENT; 9768 WORKLIST_INSERT(&dotdotwk, wk); 9769 continue; 9770 } 9771 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9772 } 9773 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9774 /* 9775 * Normal file deletion. 9776 */ 9777 if ((dirrem->dm_state & RMDIR) == 0) { 9778 ip->i_nlink--; 9779 DIP_SET(ip, i_nlink, ip->i_nlink); 9780 ip->i_flag |= IN_CHANGE; 9781 if (ip->i_nlink < ip->i_effnlink) 9782 panic("handle_workitem_remove: bad file delta"); 9783 if (ip->i_nlink == 0) 9784 unlinked_inodedep(mp, inodedep); 9785 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9786 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9787 ("handle_workitem_remove: worklist not empty. %s", 9788 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9789 WORKITEM_FREE(dirrem, D_DIRREM); 9790 FREE_LOCK(ump); 9791 goto out; 9792 } 9793 /* 9794 * Directory deletion. Decrement reference count for both the 9795 * just deleted parent directory entry and the reference for ".". 9796 * Arrange to have the reference count on the parent decremented 9797 * to account for the loss of "..". 9798 */ 9799 ip->i_nlink -= 2; 9800 DIP_SET(ip, i_nlink, ip->i_nlink); 9801 ip->i_flag |= IN_CHANGE; 9802 if (ip->i_nlink < ip->i_effnlink) 9803 panic("handle_workitem_remove: bad dir delta"); 9804 if (ip->i_nlink == 0) 9805 unlinked_inodedep(mp, inodedep); 9806 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9807 /* 9808 * Rename a directory to a new parent. Since, we are both deleting 9809 * and creating a new directory entry, the link count on the new 9810 * directory should not change. Thus we skip the followup dirrem. 9811 */ 9812 if (dirrem->dm_state & DIRCHG) { 9813 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9814 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9815 WORKITEM_FREE(dirrem, D_DIRREM); 9816 FREE_LOCK(ump); 9817 goto out; 9818 } 9819 dirrem->dm_state = ONDEPLIST; 9820 dirrem->dm_oldinum = dirrem->dm_dirinum; 9821 /* 9822 * Place the dirrem on the parent's diremhd list. 9823 */ 9824 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9825 panic("handle_workitem_remove: lost dir inodedep"); 9826 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9827 /* 9828 * If the allocated inode has never been written to disk, then 9829 * the on-disk inode is zero'ed and we can remove the file 9830 * immediately. When journaling if the inode has been marked 9831 * unlinked and not DEPCOMPLETE we know it can never be written. 9832 */ 9833 inodedep_lookup(mp, oldinum, 0, &inodedep); 9834 if (inodedep == NULL || 9835 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9836 check_inode_unwritten(inodedep)) { 9837 FREE_LOCK(ump); 9838 vput(vp); 9839 return handle_workitem_remove(dirrem, flags); 9840 } 9841 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9842 FREE_LOCK(ump); 9843 ip->i_flag |= IN_CHANGE; 9844 out: 9845 ffs_update(vp, 0); 9846 vput(vp); 9847 return (0); 9848 } 9849 9850 /* 9851 * Inode de-allocation dependencies. 9852 * 9853 * When an inode's link count is reduced to zero, it can be de-allocated. We 9854 * found it convenient to postpone de-allocation until after the inode is 9855 * written to disk with its new link count (zero). At this point, all of the 9856 * on-disk inode's block pointers are nullified and, with careful dependency 9857 * list ordering, all dependencies related to the inode will be satisfied and 9858 * the corresponding dependency structures de-allocated. So, if/when the 9859 * inode is reused, there will be no mixing of old dependencies with new 9860 * ones. This artificial dependency is set up by the block de-allocation 9861 * procedure above (softdep_setup_freeblocks) and completed by the 9862 * following procedure. 9863 */ 9864 static void 9865 handle_workitem_freefile(freefile) 9866 struct freefile *freefile; 9867 { 9868 struct workhead wkhd; 9869 struct fs *fs; 9870 struct inodedep *idp; 9871 struct ufsmount *ump; 9872 int error; 9873 9874 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9875 fs = ump->um_fs; 9876 #ifdef DEBUG 9877 ACQUIRE_LOCK(ump); 9878 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9879 FREE_LOCK(ump); 9880 if (error) 9881 panic("handle_workitem_freefile: inodedep %p survived", idp); 9882 #endif 9883 UFS_LOCK(ump); 9884 fs->fs_pendinginodes -= 1; 9885 UFS_UNLOCK(ump); 9886 LIST_INIT(&wkhd); 9887 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9888 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9889 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9890 softdep_error("handle_workitem_freefile", error); 9891 ACQUIRE_LOCK(ump); 9892 WORKITEM_FREE(freefile, D_FREEFILE); 9893 FREE_LOCK(ump); 9894 } 9895 9896 9897 /* 9898 * Helper function which unlinks marker element from work list and returns 9899 * the next element on the list. 9900 */ 9901 static __inline struct worklist * 9902 markernext(struct worklist *marker) 9903 { 9904 struct worklist *next; 9905 9906 next = LIST_NEXT(marker, wk_list); 9907 LIST_REMOVE(marker, wk_list); 9908 return next; 9909 } 9910 9911 /* 9912 * Disk writes. 9913 * 9914 * The dependency structures constructed above are most actively used when file 9915 * system blocks are written to disk. No constraints are placed on when a 9916 * block can be written, but unsatisfied update dependencies are made safe by 9917 * modifying (or replacing) the source memory for the duration of the disk 9918 * write. When the disk write completes, the memory block is again brought 9919 * up-to-date. 9920 * 9921 * In-core inode structure reclamation. 9922 * 9923 * Because there are a finite number of "in-core" inode structures, they are 9924 * reused regularly. By transferring all inode-related dependencies to the 9925 * in-memory inode block and indexing them separately (via "inodedep"s), we 9926 * can allow "in-core" inode structures to be reused at any time and avoid 9927 * any increase in contention. 9928 * 9929 * Called just before entering the device driver to initiate a new disk I/O. 9930 * The buffer must be locked, thus, no I/O completion operations can occur 9931 * while we are manipulating its associated dependencies. 9932 */ 9933 static void 9934 softdep_disk_io_initiation(bp) 9935 struct buf *bp; /* structure describing disk write to occur */ 9936 { 9937 struct worklist *wk; 9938 struct worklist marker; 9939 struct inodedep *inodedep; 9940 struct freeblks *freeblks; 9941 struct jblkdep *jblkdep; 9942 struct newblk *newblk; 9943 struct ufsmount *ump; 9944 9945 /* 9946 * We only care about write operations. There should never 9947 * be dependencies for reads. 9948 */ 9949 if (bp->b_iocmd != BIO_WRITE) 9950 panic("softdep_disk_io_initiation: not write"); 9951 9952 if (bp->b_vflags & BV_BKGRDINPROG) 9953 panic("softdep_disk_io_initiation: Writing buffer with " 9954 "background write in progress: %p", bp); 9955 9956 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 9957 return; 9958 ump = VFSTOUFS(wk->wk_mp); 9959 9960 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9961 PHOLD(curproc); /* Don't swap out kernel stack */ 9962 ACQUIRE_LOCK(ump); 9963 /* 9964 * Do any necessary pre-I/O processing. 9965 */ 9966 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9967 wk = markernext(&marker)) { 9968 LIST_INSERT_AFTER(wk, &marker, wk_list); 9969 switch (wk->wk_type) { 9970 9971 case D_PAGEDEP: 9972 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9973 continue; 9974 9975 case D_INODEDEP: 9976 inodedep = WK_INODEDEP(wk); 9977 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9978 initiate_write_inodeblock_ufs1(inodedep, bp); 9979 else 9980 initiate_write_inodeblock_ufs2(inodedep, bp); 9981 continue; 9982 9983 case D_INDIRDEP: 9984 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 9985 continue; 9986 9987 case D_BMSAFEMAP: 9988 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 9989 continue; 9990 9991 case D_JSEG: 9992 WK_JSEG(wk)->js_buf = NULL; 9993 continue; 9994 9995 case D_FREEBLKS: 9996 freeblks = WK_FREEBLKS(wk); 9997 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 9998 /* 9999 * We have to wait for the freeblks to be journaled 10000 * before we can write an inodeblock with updated 10001 * pointers. Be careful to arrange the marker so 10002 * we revisit the freeblks if it's not removed by 10003 * the first jwait(). 10004 */ 10005 if (jblkdep != NULL) { 10006 LIST_REMOVE(&marker, wk_list); 10007 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10008 jwait(&jblkdep->jb_list, MNT_WAIT); 10009 } 10010 continue; 10011 case D_ALLOCDIRECT: 10012 case D_ALLOCINDIR: 10013 /* 10014 * We have to wait for the jnewblk to be journaled 10015 * before we can write to a block if the contents 10016 * may be confused with an earlier file's indirect 10017 * at recovery time. Handle the marker as described 10018 * above. 10019 */ 10020 newblk = WK_NEWBLK(wk); 10021 if (newblk->nb_jnewblk != NULL && 10022 indirblk_lookup(newblk->nb_list.wk_mp, 10023 newblk->nb_newblkno)) { 10024 LIST_REMOVE(&marker, wk_list); 10025 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10026 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10027 } 10028 continue; 10029 10030 case D_SBDEP: 10031 initiate_write_sbdep(WK_SBDEP(wk)); 10032 continue; 10033 10034 case D_MKDIR: 10035 case D_FREEWORK: 10036 case D_FREEDEP: 10037 case D_JSEGDEP: 10038 continue; 10039 10040 default: 10041 panic("handle_disk_io_initiation: Unexpected type %s", 10042 TYPENAME(wk->wk_type)); 10043 /* NOTREACHED */ 10044 } 10045 } 10046 FREE_LOCK(ump); 10047 PRELE(curproc); /* Allow swapout of kernel stack */ 10048 } 10049 10050 /* 10051 * Called from within the procedure above to deal with unsatisfied 10052 * allocation dependencies in a directory. The buffer must be locked, 10053 * thus, no I/O completion operations can occur while we are 10054 * manipulating its associated dependencies. 10055 */ 10056 static void 10057 initiate_write_filepage(pagedep, bp) 10058 struct pagedep *pagedep; 10059 struct buf *bp; 10060 { 10061 struct jremref *jremref; 10062 struct jmvref *jmvref; 10063 struct dirrem *dirrem; 10064 struct diradd *dap; 10065 struct direct *ep; 10066 int i; 10067 10068 if (pagedep->pd_state & IOSTARTED) { 10069 /* 10070 * This can only happen if there is a driver that does not 10071 * understand chaining. Here biodone will reissue the call 10072 * to strategy for the incomplete buffers. 10073 */ 10074 printf("initiate_write_filepage: already started\n"); 10075 return; 10076 } 10077 pagedep->pd_state |= IOSTARTED; 10078 /* 10079 * Wait for all journal remove dependencies to hit the disk. 10080 * We can not allow any potentially conflicting directory adds 10081 * to be visible before removes and rollback is too difficult. 10082 * The per-filesystem lock may be dropped and re-acquired, however 10083 * we hold the buf locked so the dependency can not go away. 10084 */ 10085 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10086 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10087 jwait(&jremref->jr_list, MNT_WAIT); 10088 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10089 jwait(&jmvref->jm_list, MNT_WAIT); 10090 for (i = 0; i < DAHASHSZ; i++) { 10091 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10092 ep = (struct direct *) 10093 ((char *)bp->b_data + dap->da_offset); 10094 if (ep->d_ino != dap->da_newinum) 10095 panic("%s: dir inum %ju != new %ju", 10096 "initiate_write_filepage", 10097 (uintmax_t)ep->d_ino, 10098 (uintmax_t)dap->da_newinum); 10099 if (dap->da_state & DIRCHG) 10100 ep->d_ino = dap->da_previous->dm_oldinum; 10101 else 10102 ep->d_ino = 0; 10103 dap->da_state &= ~ATTACHED; 10104 dap->da_state |= UNDONE; 10105 } 10106 } 10107 } 10108 10109 /* 10110 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10111 * Note that any bug fixes made to this routine must be done in the 10112 * version found below. 10113 * 10114 * Called from within the procedure above to deal with unsatisfied 10115 * allocation dependencies in an inodeblock. The buffer must be 10116 * locked, thus, no I/O completion operations can occur while we 10117 * are manipulating its associated dependencies. 10118 */ 10119 static void 10120 initiate_write_inodeblock_ufs1(inodedep, bp) 10121 struct inodedep *inodedep; 10122 struct buf *bp; /* The inode block */ 10123 { 10124 struct allocdirect *adp, *lastadp; 10125 struct ufs1_dinode *dp; 10126 struct ufs1_dinode *sip; 10127 struct inoref *inoref; 10128 struct ufsmount *ump; 10129 struct fs *fs; 10130 ufs_lbn_t i; 10131 #ifdef INVARIANTS 10132 ufs_lbn_t prevlbn = 0; 10133 #endif 10134 int deplist; 10135 10136 if (inodedep->id_state & IOSTARTED) 10137 panic("initiate_write_inodeblock_ufs1: already started"); 10138 inodedep->id_state |= IOSTARTED; 10139 fs = inodedep->id_fs; 10140 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10141 LOCK_OWNED(ump); 10142 dp = (struct ufs1_dinode *)bp->b_data + 10143 ino_to_fsbo(fs, inodedep->id_ino); 10144 10145 /* 10146 * If we're on the unlinked list but have not yet written our 10147 * next pointer initialize it here. 10148 */ 10149 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10150 struct inodedep *inon; 10151 10152 inon = TAILQ_NEXT(inodedep, id_unlinked); 10153 dp->di_freelink = inon ? inon->id_ino : 0; 10154 } 10155 /* 10156 * If the bitmap is not yet written, then the allocated 10157 * inode cannot be written to disk. 10158 */ 10159 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10160 if (inodedep->id_savedino1 != NULL) 10161 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10162 FREE_LOCK(ump); 10163 sip = malloc(sizeof(struct ufs1_dinode), 10164 M_SAVEDINO, M_SOFTDEP_FLAGS); 10165 ACQUIRE_LOCK(ump); 10166 inodedep->id_savedino1 = sip; 10167 *inodedep->id_savedino1 = *dp; 10168 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10169 dp->di_gen = inodedep->id_savedino1->di_gen; 10170 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10171 return; 10172 } 10173 /* 10174 * If no dependencies, then there is nothing to roll back. 10175 */ 10176 inodedep->id_savedsize = dp->di_size; 10177 inodedep->id_savedextsize = 0; 10178 inodedep->id_savednlink = dp->di_nlink; 10179 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10180 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10181 return; 10182 /* 10183 * Revert the link count to that of the first unwritten journal entry. 10184 */ 10185 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10186 if (inoref) 10187 dp->di_nlink = inoref->if_nlink; 10188 /* 10189 * Set the dependencies to busy. 10190 */ 10191 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10192 adp = TAILQ_NEXT(adp, ad_next)) { 10193 #ifdef INVARIANTS 10194 if (deplist != 0 && prevlbn >= adp->ad_offset) 10195 panic("softdep_write_inodeblock: lbn order"); 10196 prevlbn = adp->ad_offset; 10197 if (adp->ad_offset < NDADDR && 10198 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10199 panic("%s: direct pointer #%jd mismatch %d != %jd", 10200 "softdep_write_inodeblock", 10201 (intmax_t)adp->ad_offset, 10202 dp->di_db[adp->ad_offset], 10203 (intmax_t)adp->ad_newblkno); 10204 if (adp->ad_offset >= NDADDR && 10205 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10206 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10207 "softdep_write_inodeblock", 10208 (intmax_t)adp->ad_offset - NDADDR, 10209 dp->di_ib[adp->ad_offset - NDADDR], 10210 (intmax_t)adp->ad_newblkno); 10211 deplist |= 1 << adp->ad_offset; 10212 if ((adp->ad_state & ATTACHED) == 0) 10213 panic("softdep_write_inodeblock: Unknown state 0x%x", 10214 adp->ad_state); 10215 #endif /* INVARIANTS */ 10216 adp->ad_state &= ~ATTACHED; 10217 adp->ad_state |= UNDONE; 10218 } 10219 /* 10220 * The on-disk inode cannot claim to be any larger than the last 10221 * fragment that has been written. Otherwise, the on-disk inode 10222 * might have fragments that were not the last block in the file 10223 * which would corrupt the filesystem. 10224 */ 10225 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10226 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10227 if (adp->ad_offset >= NDADDR) 10228 break; 10229 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10230 /* keep going until hitting a rollback to a frag */ 10231 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10232 continue; 10233 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10234 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10235 #ifdef INVARIANTS 10236 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10237 panic("softdep_write_inodeblock: lost dep1"); 10238 #endif /* INVARIANTS */ 10239 dp->di_db[i] = 0; 10240 } 10241 for (i = 0; i < NIADDR; i++) { 10242 #ifdef INVARIANTS 10243 if (dp->di_ib[i] != 0 && 10244 (deplist & ((1 << NDADDR) << i)) == 0) 10245 panic("softdep_write_inodeblock: lost dep2"); 10246 #endif /* INVARIANTS */ 10247 dp->di_ib[i] = 0; 10248 } 10249 return; 10250 } 10251 /* 10252 * If we have zero'ed out the last allocated block of the file, 10253 * roll back the size to the last currently allocated block. 10254 * We know that this last allocated block is a full-sized as 10255 * we already checked for fragments in the loop above. 10256 */ 10257 if (lastadp != NULL && 10258 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10259 for (i = lastadp->ad_offset; i >= 0; i--) 10260 if (dp->di_db[i] != 0) 10261 break; 10262 dp->di_size = (i + 1) * fs->fs_bsize; 10263 } 10264 /* 10265 * The only dependencies are for indirect blocks. 10266 * 10267 * The file size for indirect block additions is not guaranteed. 10268 * Such a guarantee would be non-trivial to achieve. The conventional 10269 * synchronous write implementation also does not make this guarantee. 10270 * Fsck should catch and fix discrepancies. Arguably, the file size 10271 * can be over-estimated without destroying integrity when the file 10272 * moves into the indirect blocks (i.e., is large). If we want to 10273 * postpone fsck, we are stuck with this argument. 10274 */ 10275 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10276 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10277 } 10278 10279 /* 10280 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10281 * Note that any bug fixes made to this routine must be done in the 10282 * version found above. 10283 * 10284 * Called from within the procedure above to deal with unsatisfied 10285 * allocation dependencies in an inodeblock. The buffer must be 10286 * locked, thus, no I/O completion operations can occur while we 10287 * are manipulating its associated dependencies. 10288 */ 10289 static void 10290 initiate_write_inodeblock_ufs2(inodedep, bp) 10291 struct inodedep *inodedep; 10292 struct buf *bp; /* The inode block */ 10293 { 10294 struct allocdirect *adp, *lastadp; 10295 struct ufs2_dinode *dp; 10296 struct ufs2_dinode *sip; 10297 struct inoref *inoref; 10298 struct ufsmount *ump; 10299 struct fs *fs; 10300 ufs_lbn_t i; 10301 #ifdef INVARIANTS 10302 ufs_lbn_t prevlbn = 0; 10303 #endif 10304 int deplist; 10305 10306 if (inodedep->id_state & IOSTARTED) 10307 panic("initiate_write_inodeblock_ufs2: already started"); 10308 inodedep->id_state |= IOSTARTED; 10309 fs = inodedep->id_fs; 10310 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10311 LOCK_OWNED(ump); 10312 dp = (struct ufs2_dinode *)bp->b_data + 10313 ino_to_fsbo(fs, inodedep->id_ino); 10314 10315 /* 10316 * If we're on the unlinked list but have not yet written our 10317 * next pointer initialize it here. 10318 */ 10319 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10320 struct inodedep *inon; 10321 10322 inon = TAILQ_NEXT(inodedep, id_unlinked); 10323 dp->di_freelink = inon ? inon->id_ino : 0; 10324 } 10325 /* 10326 * If the bitmap is not yet written, then the allocated 10327 * inode cannot be written to disk. 10328 */ 10329 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10330 if (inodedep->id_savedino2 != NULL) 10331 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10332 FREE_LOCK(ump); 10333 sip = malloc(sizeof(struct ufs2_dinode), 10334 M_SAVEDINO, M_SOFTDEP_FLAGS); 10335 ACQUIRE_LOCK(ump); 10336 inodedep->id_savedino2 = sip; 10337 *inodedep->id_savedino2 = *dp; 10338 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10339 dp->di_gen = inodedep->id_savedino2->di_gen; 10340 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10341 return; 10342 } 10343 /* 10344 * If no dependencies, then there is nothing to roll back. 10345 */ 10346 inodedep->id_savedsize = dp->di_size; 10347 inodedep->id_savedextsize = dp->di_extsize; 10348 inodedep->id_savednlink = dp->di_nlink; 10349 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10350 TAILQ_EMPTY(&inodedep->id_extupdt) && 10351 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10352 return; 10353 /* 10354 * Revert the link count to that of the first unwritten journal entry. 10355 */ 10356 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10357 if (inoref) 10358 dp->di_nlink = inoref->if_nlink; 10359 10360 /* 10361 * Set the ext data dependencies to busy. 10362 */ 10363 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10364 adp = TAILQ_NEXT(adp, ad_next)) { 10365 #ifdef INVARIANTS 10366 if (deplist != 0 && prevlbn >= adp->ad_offset) 10367 panic("softdep_write_inodeblock: lbn order"); 10368 prevlbn = adp->ad_offset; 10369 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10370 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10371 "softdep_write_inodeblock", 10372 (intmax_t)adp->ad_offset, 10373 (intmax_t)dp->di_extb[adp->ad_offset], 10374 (intmax_t)adp->ad_newblkno); 10375 deplist |= 1 << adp->ad_offset; 10376 if ((adp->ad_state & ATTACHED) == 0) 10377 panic("softdep_write_inodeblock: Unknown state 0x%x", 10378 adp->ad_state); 10379 #endif /* INVARIANTS */ 10380 adp->ad_state &= ~ATTACHED; 10381 adp->ad_state |= UNDONE; 10382 } 10383 /* 10384 * The on-disk inode cannot claim to be any larger than the last 10385 * fragment that has been written. Otherwise, the on-disk inode 10386 * might have fragments that were not the last block in the ext 10387 * data which would corrupt the filesystem. 10388 */ 10389 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10390 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10391 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10392 /* keep going until hitting a rollback to a frag */ 10393 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10394 continue; 10395 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10396 for (i = adp->ad_offset + 1; i < NXADDR; i++) { 10397 #ifdef INVARIANTS 10398 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10399 panic("softdep_write_inodeblock: lost dep1"); 10400 #endif /* INVARIANTS */ 10401 dp->di_extb[i] = 0; 10402 } 10403 lastadp = NULL; 10404 break; 10405 } 10406 /* 10407 * If we have zero'ed out the last allocated block of the ext 10408 * data, roll back the size to the last currently allocated block. 10409 * We know that this last allocated block is a full-sized as 10410 * we already checked for fragments in the loop above. 10411 */ 10412 if (lastadp != NULL && 10413 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10414 for (i = lastadp->ad_offset; i >= 0; i--) 10415 if (dp->di_extb[i] != 0) 10416 break; 10417 dp->di_extsize = (i + 1) * fs->fs_bsize; 10418 } 10419 /* 10420 * Set the file data dependencies to busy. 10421 */ 10422 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10423 adp = TAILQ_NEXT(adp, ad_next)) { 10424 #ifdef INVARIANTS 10425 if (deplist != 0 && prevlbn >= adp->ad_offset) 10426 panic("softdep_write_inodeblock: lbn order"); 10427 if ((adp->ad_state & ATTACHED) == 0) 10428 panic("inodedep %p and adp %p not attached", inodedep, adp); 10429 prevlbn = adp->ad_offset; 10430 if (adp->ad_offset < NDADDR && 10431 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10432 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10433 "softdep_write_inodeblock", 10434 (intmax_t)adp->ad_offset, 10435 (intmax_t)dp->di_db[adp->ad_offset], 10436 (intmax_t)adp->ad_newblkno); 10437 if (adp->ad_offset >= NDADDR && 10438 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10439 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10440 "softdep_write_inodeblock:", 10441 (intmax_t)adp->ad_offset - NDADDR, 10442 (intmax_t)dp->di_ib[adp->ad_offset - NDADDR], 10443 (intmax_t)adp->ad_newblkno); 10444 deplist |= 1 << adp->ad_offset; 10445 if ((adp->ad_state & ATTACHED) == 0) 10446 panic("softdep_write_inodeblock: Unknown state 0x%x", 10447 adp->ad_state); 10448 #endif /* INVARIANTS */ 10449 adp->ad_state &= ~ATTACHED; 10450 adp->ad_state |= UNDONE; 10451 } 10452 /* 10453 * The on-disk inode cannot claim to be any larger than the last 10454 * fragment that has been written. Otherwise, the on-disk inode 10455 * might have fragments that were not the last block in the file 10456 * which would corrupt the filesystem. 10457 */ 10458 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10459 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10460 if (adp->ad_offset >= NDADDR) 10461 break; 10462 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10463 /* keep going until hitting a rollback to a frag */ 10464 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10465 continue; 10466 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10467 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10468 #ifdef INVARIANTS 10469 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10470 panic("softdep_write_inodeblock: lost dep2"); 10471 #endif /* INVARIANTS */ 10472 dp->di_db[i] = 0; 10473 } 10474 for (i = 0; i < NIADDR; i++) { 10475 #ifdef INVARIANTS 10476 if (dp->di_ib[i] != 0 && 10477 (deplist & ((1 << NDADDR) << i)) == 0) 10478 panic("softdep_write_inodeblock: lost dep3"); 10479 #endif /* INVARIANTS */ 10480 dp->di_ib[i] = 0; 10481 } 10482 return; 10483 } 10484 /* 10485 * If we have zero'ed out the last allocated block of the file, 10486 * roll back the size to the last currently allocated block. 10487 * We know that this last allocated block is a full-sized as 10488 * we already checked for fragments in the loop above. 10489 */ 10490 if (lastadp != NULL && 10491 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10492 for (i = lastadp->ad_offset; i >= 0; i--) 10493 if (dp->di_db[i] != 0) 10494 break; 10495 dp->di_size = (i + 1) * fs->fs_bsize; 10496 } 10497 /* 10498 * The only dependencies are for indirect blocks. 10499 * 10500 * The file size for indirect block additions is not guaranteed. 10501 * Such a guarantee would be non-trivial to achieve. The conventional 10502 * synchronous write implementation also does not make this guarantee. 10503 * Fsck should catch and fix discrepancies. Arguably, the file size 10504 * can be over-estimated without destroying integrity when the file 10505 * moves into the indirect blocks (i.e., is large). If we want to 10506 * postpone fsck, we are stuck with this argument. 10507 */ 10508 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10509 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10510 } 10511 10512 /* 10513 * Cancel an indirdep as a result of truncation. Release all of the 10514 * children allocindirs and place their journal work on the appropriate 10515 * list. 10516 */ 10517 static void 10518 cancel_indirdep(indirdep, bp, freeblks) 10519 struct indirdep *indirdep; 10520 struct buf *bp; 10521 struct freeblks *freeblks; 10522 { 10523 struct allocindir *aip; 10524 10525 /* 10526 * None of the indirect pointers will ever be visible, 10527 * so they can simply be tossed. GOINGAWAY ensures 10528 * that allocated pointers will be saved in the buffer 10529 * cache until they are freed. Note that they will 10530 * only be able to be found by their physical address 10531 * since the inode mapping the logical address will 10532 * be gone. The save buffer used for the safe copy 10533 * was allocated in setup_allocindir_phase2 using 10534 * the physical address so it could be used for this 10535 * purpose. Hence we swap the safe copy with the real 10536 * copy, allowing the safe copy to be freed and holding 10537 * on to the real copy for later use in indir_trunc. 10538 */ 10539 if (indirdep->ir_state & GOINGAWAY) 10540 panic("cancel_indirdep: already gone"); 10541 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10542 indirdep->ir_state |= DEPCOMPLETE; 10543 LIST_REMOVE(indirdep, ir_next); 10544 } 10545 indirdep->ir_state |= GOINGAWAY; 10546 /* 10547 * Pass in bp for blocks still have journal writes 10548 * pending so we can cancel them on their own. 10549 */ 10550 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 10551 cancel_allocindir(aip, bp, freeblks, 0); 10552 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) 10553 cancel_allocindir(aip, NULL, freeblks, 0); 10554 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) 10555 cancel_allocindir(aip, NULL, freeblks, 0); 10556 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0) 10557 cancel_allocindir(aip, NULL, freeblks, 0); 10558 /* 10559 * If there are pending partial truncations we need to keep the 10560 * old block copy around until they complete. This is because 10561 * the current b_data is not a perfect superset of the available 10562 * blocks. 10563 */ 10564 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10565 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10566 else 10567 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10568 WORKLIST_REMOVE(&indirdep->ir_list); 10569 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10570 indirdep->ir_bp = NULL; 10571 indirdep->ir_freeblks = freeblks; 10572 } 10573 10574 /* 10575 * Free an indirdep once it no longer has new pointers to track. 10576 */ 10577 static void 10578 free_indirdep(indirdep) 10579 struct indirdep *indirdep; 10580 { 10581 10582 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10583 ("free_indirdep: Indir trunc list not empty.")); 10584 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10585 ("free_indirdep: Complete head not empty.")); 10586 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10587 ("free_indirdep: write head not empty.")); 10588 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10589 ("free_indirdep: done head not empty.")); 10590 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10591 ("free_indirdep: deplist head not empty.")); 10592 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10593 ("free_indirdep: %p still on newblk list.", indirdep)); 10594 KASSERT(indirdep->ir_saveddata == NULL, 10595 ("free_indirdep: %p still has saved data.", indirdep)); 10596 if (indirdep->ir_state & ONWORKLIST) 10597 WORKLIST_REMOVE(&indirdep->ir_list); 10598 WORKITEM_FREE(indirdep, D_INDIRDEP); 10599 } 10600 10601 /* 10602 * Called before a write to an indirdep. This routine is responsible for 10603 * rolling back pointers to a safe state which includes only those 10604 * allocindirs which have been completed. 10605 */ 10606 static void 10607 initiate_write_indirdep(indirdep, bp) 10608 struct indirdep *indirdep; 10609 struct buf *bp; 10610 { 10611 struct ufsmount *ump; 10612 10613 indirdep->ir_state |= IOSTARTED; 10614 if (indirdep->ir_state & GOINGAWAY) 10615 panic("disk_io_initiation: indirdep gone"); 10616 /* 10617 * If there are no remaining dependencies, this will be writing 10618 * the real pointers. 10619 */ 10620 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10621 TAILQ_EMPTY(&indirdep->ir_trunc)) 10622 return; 10623 /* 10624 * Replace up-to-date version with safe version. 10625 */ 10626 if (indirdep->ir_saveddata == NULL) { 10627 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10628 LOCK_OWNED(ump); 10629 FREE_LOCK(ump); 10630 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10631 M_SOFTDEP_FLAGS); 10632 ACQUIRE_LOCK(ump); 10633 } 10634 indirdep->ir_state &= ~ATTACHED; 10635 indirdep->ir_state |= UNDONE; 10636 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10637 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10638 bp->b_bcount); 10639 } 10640 10641 /* 10642 * Called when an inode has been cleared in a cg bitmap. This finally 10643 * eliminates any canceled jaddrefs 10644 */ 10645 void 10646 softdep_setup_inofree(mp, bp, ino, wkhd) 10647 struct mount *mp; 10648 struct buf *bp; 10649 ino_t ino; 10650 struct workhead *wkhd; 10651 { 10652 struct worklist *wk, *wkn; 10653 struct inodedep *inodedep; 10654 struct ufsmount *ump; 10655 uint8_t *inosused; 10656 struct cg *cgp; 10657 struct fs *fs; 10658 10659 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10660 ("softdep_setup_inofree called on non-softdep filesystem")); 10661 ump = VFSTOUFS(mp); 10662 ACQUIRE_LOCK(ump); 10663 fs = ump->um_fs; 10664 cgp = (struct cg *)bp->b_data; 10665 inosused = cg_inosused(cgp); 10666 if (isset(inosused, ino % fs->fs_ipg)) 10667 panic("softdep_setup_inofree: inode %ju not freed.", 10668 (uintmax_t)ino); 10669 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10670 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10671 (uintmax_t)ino, inodedep); 10672 if (wkhd) { 10673 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10674 if (wk->wk_type != D_JADDREF) 10675 continue; 10676 WORKLIST_REMOVE(wk); 10677 /* 10678 * We can free immediately even if the jaddref 10679 * isn't attached in a background write as now 10680 * the bitmaps are reconciled. 10681 */ 10682 wk->wk_state |= COMPLETE | ATTACHED; 10683 free_jaddref(WK_JADDREF(wk)); 10684 } 10685 jwork_move(&bp->b_dep, wkhd); 10686 } 10687 FREE_LOCK(ump); 10688 } 10689 10690 10691 /* 10692 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10693 * map. Any dependencies waiting for the write to clear are added to the 10694 * buf's list and any jnewblks that are being canceled are discarded 10695 * immediately. 10696 */ 10697 void 10698 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10699 struct mount *mp; 10700 struct buf *bp; 10701 ufs2_daddr_t blkno; 10702 int frags; 10703 struct workhead *wkhd; 10704 { 10705 struct bmsafemap *bmsafemap; 10706 struct jnewblk *jnewblk; 10707 struct ufsmount *ump; 10708 struct worklist *wk; 10709 struct fs *fs; 10710 #ifdef SUJ_DEBUG 10711 uint8_t *blksfree; 10712 struct cg *cgp; 10713 ufs2_daddr_t jstart; 10714 ufs2_daddr_t jend; 10715 ufs2_daddr_t end; 10716 long bno; 10717 int i; 10718 #endif 10719 10720 CTR3(KTR_SUJ, 10721 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10722 blkno, frags, wkhd); 10723 10724 ump = VFSTOUFS(mp); 10725 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10726 ("softdep_setup_blkfree called on non-softdep filesystem")); 10727 ACQUIRE_LOCK(ump); 10728 /* Lookup the bmsafemap so we track when it is dirty. */ 10729 fs = ump->um_fs; 10730 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10731 /* 10732 * Detach any jnewblks which have been canceled. They must linger 10733 * until the bitmap is cleared again by ffs_blkfree() to prevent 10734 * an unjournaled allocation from hitting the disk. 10735 */ 10736 if (wkhd) { 10737 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10738 CTR2(KTR_SUJ, 10739 "softdep_setup_blkfree: blkno %jd wk type %d", 10740 blkno, wk->wk_type); 10741 WORKLIST_REMOVE(wk); 10742 if (wk->wk_type != D_JNEWBLK) { 10743 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10744 continue; 10745 } 10746 jnewblk = WK_JNEWBLK(wk); 10747 KASSERT(jnewblk->jn_state & GOINGAWAY, 10748 ("softdep_setup_blkfree: jnewblk not canceled.")); 10749 #ifdef SUJ_DEBUG 10750 /* 10751 * Assert that this block is free in the bitmap 10752 * before we discard the jnewblk. 10753 */ 10754 cgp = (struct cg *)bp->b_data; 10755 blksfree = cg_blksfree(cgp); 10756 bno = dtogd(fs, jnewblk->jn_blkno); 10757 for (i = jnewblk->jn_oldfrags; 10758 i < jnewblk->jn_frags; i++) { 10759 if (isset(blksfree, bno + i)) 10760 continue; 10761 panic("softdep_setup_blkfree: not free"); 10762 } 10763 #endif 10764 /* 10765 * Even if it's not attached we can free immediately 10766 * as the new bitmap is correct. 10767 */ 10768 wk->wk_state |= COMPLETE | ATTACHED; 10769 free_jnewblk(jnewblk); 10770 } 10771 } 10772 10773 #ifdef SUJ_DEBUG 10774 /* 10775 * Assert that we are not freeing a block which has an outstanding 10776 * allocation dependency. 10777 */ 10778 fs = VFSTOUFS(mp)->um_fs; 10779 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10780 end = blkno + frags; 10781 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10782 /* 10783 * Don't match against blocks that will be freed when the 10784 * background write is done. 10785 */ 10786 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10787 (COMPLETE | DEPCOMPLETE)) 10788 continue; 10789 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10790 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10791 if ((blkno >= jstart && blkno < jend) || 10792 (end > jstart && end <= jend)) { 10793 printf("state 0x%X %jd - %d %d dep %p\n", 10794 jnewblk->jn_state, jnewblk->jn_blkno, 10795 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10796 jnewblk->jn_dep); 10797 panic("softdep_setup_blkfree: " 10798 "%jd-%jd(%d) overlaps with %jd-%jd", 10799 blkno, end, frags, jstart, jend); 10800 } 10801 } 10802 #endif 10803 FREE_LOCK(ump); 10804 } 10805 10806 /* 10807 * Revert a block allocation when the journal record that describes it 10808 * is not yet written. 10809 */ 10810 static int 10811 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10812 struct jnewblk *jnewblk; 10813 struct fs *fs; 10814 struct cg *cgp; 10815 uint8_t *blksfree; 10816 { 10817 ufs1_daddr_t fragno; 10818 long cgbno, bbase; 10819 int frags, blk; 10820 int i; 10821 10822 frags = 0; 10823 cgbno = dtogd(fs, jnewblk->jn_blkno); 10824 /* 10825 * We have to test which frags need to be rolled back. We may 10826 * be operating on a stale copy when doing background writes. 10827 */ 10828 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10829 if (isclr(blksfree, cgbno + i)) 10830 frags++; 10831 if (frags == 0) 10832 return (0); 10833 /* 10834 * This is mostly ffs_blkfree() sans some validation and 10835 * superblock updates. 10836 */ 10837 if (frags == fs->fs_frag) { 10838 fragno = fragstoblks(fs, cgbno); 10839 ffs_setblock(fs, blksfree, fragno); 10840 ffs_clusteracct(fs, cgp, fragno, 1); 10841 cgp->cg_cs.cs_nbfree++; 10842 } else { 10843 cgbno += jnewblk->jn_oldfrags; 10844 bbase = cgbno - fragnum(fs, cgbno); 10845 /* Decrement the old frags. */ 10846 blk = blkmap(fs, blksfree, bbase); 10847 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10848 /* Deallocate the fragment */ 10849 for (i = 0; i < frags; i++) 10850 setbit(blksfree, cgbno + i); 10851 cgp->cg_cs.cs_nffree += frags; 10852 /* Add back in counts associated with the new frags */ 10853 blk = blkmap(fs, blksfree, bbase); 10854 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10855 /* If a complete block has been reassembled, account for it. */ 10856 fragno = fragstoblks(fs, bbase); 10857 if (ffs_isblock(fs, blksfree, fragno)) { 10858 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10859 ffs_clusteracct(fs, cgp, fragno, 1); 10860 cgp->cg_cs.cs_nbfree++; 10861 } 10862 } 10863 stat_jnewblk++; 10864 jnewblk->jn_state &= ~ATTACHED; 10865 jnewblk->jn_state |= UNDONE; 10866 10867 return (frags); 10868 } 10869 10870 static void 10871 initiate_write_bmsafemap(bmsafemap, bp) 10872 struct bmsafemap *bmsafemap; 10873 struct buf *bp; /* The cg block. */ 10874 { 10875 struct jaddref *jaddref; 10876 struct jnewblk *jnewblk; 10877 uint8_t *inosused; 10878 uint8_t *blksfree; 10879 struct cg *cgp; 10880 struct fs *fs; 10881 ino_t ino; 10882 10883 if (bmsafemap->sm_state & IOSTARTED) 10884 return; 10885 bmsafemap->sm_state |= IOSTARTED; 10886 /* 10887 * Clear any inode allocations which are pending journal writes. 10888 */ 10889 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10890 cgp = (struct cg *)bp->b_data; 10891 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10892 inosused = cg_inosused(cgp); 10893 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10894 ino = jaddref->ja_ino % fs->fs_ipg; 10895 if (isset(inosused, ino)) { 10896 if ((jaddref->ja_mode & IFMT) == IFDIR) 10897 cgp->cg_cs.cs_ndir--; 10898 cgp->cg_cs.cs_nifree++; 10899 clrbit(inosused, ino); 10900 jaddref->ja_state &= ~ATTACHED; 10901 jaddref->ja_state |= UNDONE; 10902 stat_jaddref++; 10903 } else 10904 panic("initiate_write_bmsafemap: inode %ju " 10905 "marked free", (uintmax_t)jaddref->ja_ino); 10906 } 10907 } 10908 /* 10909 * Clear any block allocations which are pending journal writes. 10910 */ 10911 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10912 cgp = (struct cg *)bp->b_data; 10913 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10914 blksfree = cg_blksfree(cgp); 10915 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10916 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10917 continue; 10918 panic("initiate_write_bmsafemap: block %jd " 10919 "marked free", jnewblk->jn_blkno); 10920 } 10921 } 10922 /* 10923 * Move allocation lists to the written lists so they can be 10924 * cleared once the block write is complete. 10925 */ 10926 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10927 inodedep, id_deps); 10928 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10929 newblk, nb_deps); 10930 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10931 wk_list); 10932 } 10933 10934 /* 10935 * This routine is called during the completion interrupt 10936 * service routine for a disk write (from the procedure called 10937 * by the device driver to inform the filesystem caches of 10938 * a request completion). It should be called early in this 10939 * procedure, before the block is made available to other 10940 * processes or other routines are called. 10941 * 10942 */ 10943 static void 10944 softdep_disk_write_complete(bp) 10945 struct buf *bp; /* describes the completed disk write */ 10946 { 10947 struct worklist *wk; 10948 struct worklist *owk; 10949 struct ufsmount *ump; 10950 struct workhead reattach; 10951 struct freeblks *freeblks; 10952 struct buf *sbp; 10953 10954 /* 10955 * If an error occurred while doing the write, then the data 10956 * has not hit the disk and the dependencies cannot be unrolled. 10957 */ 10958 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 10959 return; 10960 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 10961 return; 10962 ump = VFSTOUFS(wk->wk_mp); 10963 LIST_INIT(&reattach); 10964 /* 10965 * This lock must not be released anywhere in this code segment. 10966 */ 10967 sbp = NULL; 10968 owk = NULL; 10969 ACQUIRE_LOCK(ump); 10970 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 10971 WORKLIST_REMOVE(wk); 10972 atomic_add_long(&dep_write[wk->wk_type], 1); 10973 if (wk == owk) 10974 panic("duplicate worklist: %p\n", wk); 10975 owk = wk; 10976 switch (wk->wk_type) { 10977 10978 case D_PAGEDEP: 10979 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 10980 WORKLIST_INSERT(&reattach, wk); 10981 continue; 10982 10983 case D_INODEDEP: 10984 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 10985 WORKLIST_INSERT(&reattach, wk); 10986 continue; 10987 10988 case D_BMSAFEMAP: 10989 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp)) 10990 WORKLIST_INSERT(&reattach, wk); 10991 continue; 10992 10993 case D_MKDIR: 10994 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 10995 continue; 10996 10997 case D_ALLOCDIRECT: 10998 wk->wk_state |= COMPLETE; 10999 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11000 continue; 11001 11002 case D_ALLOCINDIR: 11003 wk->wk_state |= COMPLETE; 11004 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11005 continue; 11006 11007 case D_INDIRDEP: 11008 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp)) 11009 WORKLIST_INSERT(&reattach, wk); 11010 continue; 11011 11012 case D_FREEBLKS: 11013 wk->wk_state |= COMPLETE; 11014 freeblks = WK_FREEBLKS(wk); 11015 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11016 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11017 add_to_worklist(wk, WK_NODELAY); 11018 continue; 11019 11020 case D_FREEWORK: 11021 handle_written_freework(WK_FREEWORK(wk)); 11022 break; 11023 11024 case D_JSEGDEP: 11025 free_jsegdep(WK_JSEGDEP(wk)); 11026 continue; 11027 11028 case D_JSEG: 11029 handle_written_jseg(WK_JSEG(wk), bp); 11030 continue; 11031 11032 case D_SBDEP: 11033 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11034 WORKLIST_INSERT(&reattach, wk); 11035 continue; 11036 11037 case D_FREEDEP: 11038 free_freedep(WK_FREEDEP(wk)); 11039 continue; 11040 11041 default: 11042 panic("handle_disk_write_complete: Unknown type %s", 11043 TYPENAME(wk->wk_type)); 11044 /* NOTREACHED */ 11045 } 11046 } 11047 /* 11048 * Reattach any requests that must be redone. 11049 */ 11050 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11051 WORKLIST_REMOVE(wk); 11052 WORKLIST_INSERT(&bp->b_dep, wk); 11053 } 11054 FREE_LOCK(ump); 11055 if (sbp) 11056 brelse(sbp); 11057 } 11058 11059 /* 11060 * Called from within softdep_disk_write_complete above. Note that 11061 * this routine is always called from interrupt level with further 11062 * splbio interrupts blocked. 11063 */ 11064 static void 11065 handle_allocdirect_partdone(adp, wkhd) 11066 struct allocdirect *adp; /* the completed allocdirect */ 11067 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11068 { 11069 struct allocdirectlst *listhead; 11070 struct allocdirect *listadp; 11071 struct inodedep *inodedep; 11072 long bsize; 11073 11074 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11075 return; 11076 /* 11077 * The on-disk inode cannot claim to be any larger than the last 11078 * fragment that has been written. Otherwise, the on-disk inode 11079 * might have fragments that were not the last block in the file 11080 * which would corrupt the filesystem. Thus, we cannot free any 11081 * allocdirects after one whose ad_oldblkno claims a fragment as 11082 * these blocks must be rolled back to zero before writing the inode. 11083 * We check the currently active set of allocdirects in id_inoupdt 11084 * or id_extupdt as appropriate. 11085 */ 11086 inodedep = adp->ad_inodedep; 11087 bsize = inodedep->id_fs->fs_bsize; 11088 if (adp->ad_state & EXTDATA) 11089 listhead = &inodedep->id_extupdt; 11090 else 11091 listhead = &inodedep->id_inoupdt; 11092 TAILQ_FOREACH(listadp, listhead, ad_next) { 11093 /* found our block */ 11094 if (listadp == adp) 11095 break; 11096 /* continue if ad_oldlbn is not a fragment */ 11097 if (listadp->ad_oldsize == 0 || 11098 listadp->ad_oldsize == bsize) 11099 continue; 11100 /* hit a fragment */ 11101 return; 11102 } 11103 /* 11104 * If we have reached the end of the current list without 11105 * finding the just finished dependency, then it must be 11106 * on the future dependency list. Future dependencies cannot 11107 * be freed until they are moved to the current list. 11108 */ 11109 if (listadp == NULL) { 11110 #ifdef DEBUG 11111 if (adp->ad_state & EXTDATA) 11112 listhead = &inodedep->id_newextupdt; 11113 else 11114 listhead = &inodedep->id_newinoupdt; 11115 TAILQ_FOREACH(listadp, listhead, ad_next) 11116 /* found our block */ 11117 if (listadp == adp) 11118 break; 11119 if (listadp == NULL) 11120 panic("handle_allocdirect_partdone: lost dep"); 11121 #endif /* DEBUG */ 11122 return; 11123 } 11124 /* 11125 * If we have found the just finished dependency, then queue 11126 * it along with anything that follows it that is complete. 11127 * Since the pointer has not yet been written in the inode 11128 * as the dependency prevents it, place the allocdirect on the 11129 * bufwait list where it will be freed once the pointer is 11130 * valid. 11131 */ 11132 if (wkhd == NULL) 11133 wkhd = &inodedep->id_bufwait; 11134 for (; adp; adp = listadp) { 11135 listadp = TAILQ_NEXT(adp, ad_next); 11136 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11137 return; 11138 TAILQ_REMOVE(listhead, adp, ad_next); 11139 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11140 } 11141 } 11142 11143 /* 11144 * Called from within softdep_disk_write_complete above. This routine 11145 * completes successfully written allocindirs. 11146 */ 11147 static void 11148 handle_allocindir_partdone(aip) 11149 struct allocindir *aip; /* the completed allocindir */ 11150 { 11151 struct indirdep *indirdep; 11152 11153 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11154 return; 11155 indirdep = aip->ai_indirdep; 11156 LIST_REMOVE(aip, ai_next); 11157 /* 11158 * Don't set a pointer while the buffer is undergoing IO or while 11159 * we have active truncations. 11160 */ 11161 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11162 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11163 return; 11164 } 11165 if (indirdep->ir_state & UFS1FMT) 11166 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11167 aip->ai_newblkno; 11168 else 11169 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11170 aip->ai_newblkno; 11171 /* 11172 * Await the pointer write before freeing the allocindir. 11173 */ 11174 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11175 } 11176 11177 /* 11178 * Release segments held on a jwork list. 11179 */ 11180 static void 11181 handle_jwork(wkhd) 11182 struct workhead *wkhd; 11183 { 11184 struct worklist *wk; 11185 11186 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11187 WORKLIST_REMOVE(wk); 11188 switch (wk->wk_type) { 11189 case D_JSEGDEP: 11190 free_jsegdep(WK_JSEGDEP(wk)); 11191 continue; 11192 case D_FREEDEP: 11193 free_freedep(WK_FREEDEP(wk)); 11194 continue; 11195 case D_FREEFRAG: 11196 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11197 WORKITEM_FREE(wk, D_FREEFRAG); 11198 continue; 11199 case D_FREEWORK: 11200 handle_written_freework(WK_FREEWORK(wk)); 11201 continue; 11202 default: 11203 panic("handle_jwork: Unknown type %s\n", 11204 TYPENAME(wk->wk_type)); 11205 } 11206 } 11207 } 11208 11209 /* 11210 * Handle the bufwait list on an inode when it is safe to release items 11211 * held there. This normally happens after an inode block is written but 11212 * may be delayed and handled later if there are pending journal items that 11213 * are not yet safe to be released. 11214 */ 11215 static struct freefile * 11216 handle_bufwait(inodedep, refhd) 11217 struct inodedep *inodedep; 11218 struct workhead *refhd; 11219 { 11220 struct jaddref *jaddref; 11221 struct freefile *freefile; 11222 struct worklist *wk; 11223 11224 freefile = NULL; 11225 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11226 WORKLIST_REMOVE(wk); 11227 switch (wk->wk_type) { 11228 case D_FREEFILE: 11229 /* 11230 * We defer adding freefile to the worklist 11231 * until all other additions have been made to 11232 * ensure that it will be done after all the 11233 * old blocks have been freed. 11234 */ 11235 if (freefile != NULL) 11236 panic("handle_bufwait: freefile"); 11237 freefile = WK_FREEFILE(wk); 11238 continue; 11239 11240 case D_MKDIR: 11241 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11242 continue; 11243 11244 case D_DIRADD: 11245 diradd_inode_written(WK_DIRADD(wk), inodedep); 11246 continue; 11247 11248 case D_FREEFRAG: 11249 wk->wk_state |= COMPLETE; 11250 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11251 add_to_worklist(wk, 0); 11252 continue; 11253 11254 case D_DIRREM: 11255 wk->wk_state |= COMPLETE; 11256 add_to_worklist(wk, 0); 11257 continue; 11258 11259 case D_ALLOCDIRECT: 11260 case D_ALLOCINDIR: 11261 free_newblk(WK_NEWBLK(wk)); 11262 continue; 11263 11264 case D_JNEWBLK: 11265 wk->wk_state |= COMPLETE; 11266 free_jnewblk(WK_JNEWBLK(wk)); 11267 continue; 11268 11269 /* 11270 * Save freed journal segments and add references on 11271 * the supplied list which will delay their release 11272 * until the cg bitmap is cleared on disk. 11273 */ 11274 case D_JSEGDEP: 11275 if (refhd == NULL) 11276 free_jsegdep(WK_JSEGDEP(wk)); 11277 else 11278 WORKLIST_INSERT(refhd, wk); 11279 continue; 11280 11281 case D_JADDREF: 11282 jaddref = WK_JADDREF(wk); 11283 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11284 if_deps); 11285 /* 11286 * Transfer any jaddrefs to the list to be freed with 11287 * the bitmap if we're handling a removed file. 11288 */ 11289 if (refhd == NULL) { 11290 wk->wk_state |= COMPLETE; 11291 free_jaddref(jaddref); 11292 } else 11293 WORKLIST_INSERT(refhd, wk); 11294 continue; 11295 11296 default: 11297 panic("handle_bufwait: Unknown type %p(%s)", 11298 wk, TYPENAME(wk->wk_type)); 11299 /* NOTREACHED */ 11300 } 11301 } 11302 return (freefile); 11303 } 11304 /* 11305 * Called from within softdep_disk_write_complete above to restore 11306 * in-memory inode block contents to their most up-to-date state. Note 11307 * that this routine is always called from interrupt level with further 11308 * splbio interrupts blocked. 11309 */ 11310 static int 11311 handle_written_inodeblock(inodedep, bp) 11312 struct inodedep *inodedep; 11313 struct buf *bp; /* buffer containing the inode block */ 11314 { 11315 struct freefile *freefile; 11316 struct allocdirect *adp, *nextadp; 11317 struct ufs1_dinode *dp1 = NULL; 11318 struct ufs2_dinode *dp2 = NULL; 11319 struct workhead wkhd; 11320 int hadchanges, fstype; 11321 ino_t freelink; 11322 11323 LIST_INIT(&wkhd); 11324 hadchanges = 0; 11325 freefile = NULL; 11326 if ((inodedep->id_state & IOSTARTED) == 0) 11327 panic("handle_written_inodeblock: not started"); 11328 inodedep->id_state &= ~IOSTARTED; 11329 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11330 fstype = UFS1; 11331 dp1 = (struct ufs1_dinode *)bp->b_data + 11332 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11333 freelink = dp1->di_freelink; 11334 } else { 11335 fstype = UFS2; 11336 dp2 = (struct ufs2_dinode *)bp->b_data + 11337 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11338 freelink = dp2->di_freelink; 11339 } 11340 /* 11341 * Leave this inodeblock dirty until it's in the list. 11342 */ 11343 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) { 11344 struct inodedep *inon; 11345 11346 inon = TAILQ_NEXT(inodedep, id_unlinked); 11347 if ((inon == NULL && freelink == 0) || 11348 (inon && inon->id_ino == freelink)) { 11349 if (inon) 11350 inon->id_state |= UNLINKPREV; 11351 inodedep->id_state |= UNLINKNEXT; 11352 } 11353 hadchanges = 1; 11354 } 11355 /* 11356 * If we had to rollback the inode allocation because of 11357 * bitmaps being incomplete, then simply restore it. 11358 * Keep the block dirty so that it will not be reclaimed until 11359 * all associated dependencies have been cleared and the 11360 * corresponding updates written to disk. 11361 */ 11362 if (inodedep->id_savedino1 != NULL) { 11363 hadchanges = 1; 11364 if (fstype == UFS1) 11365 *dp1 = *inodedep->id_savedino1; 11366 else 11367 *dp2 = *inodedep->id_savedino2; 11368 free(inodedep->id_savedino1, M_SAVEDINO); 11369 inodedep->id_savedino1 = NULL; 11370 if ((bp->b_flags & B_DELWRI) == 0) 11371 stat_inode_bitmap++; 11372 bdirty(bp); 11373 /* 11374 * If the inode is clear here and GOINGAWAY it will never 11375 * be written. Process the bufwait and clear any pending 11376 * work which may include the freefile. 11377 */ 11378 if (inodedep->id_state & GOINGAWAY) 11379 goto bufwait; 11380 return (1); 11381 } 11382 inodedep->id_state |= COMPLETE; 11383 /* 11384 * Roll forward anything that had to be rolled back before 11385 * the inode could be updated. 11386 */ 11387 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11388 nextadp = TAILQ_NEXT(adp, ad_next); 11389 if (adp->ad_state & ATTACHED) 11390 panic("handle_written_inodeblock: new entry"); 11391 if (fstype == UFS1) { 11392 if (adp->ad_offset < NDADDR) { 11393 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11394 panic("%s %s #%jd mismatch %d != %jd", 11395 "handle_written_inodeblock:", 11396 "direct pointer", 11397 (intmax_t)adp->ad_offset, 11398 dp1->di_db[adp->ad_offset], 11399 (intmax_t)adp->ad_oldblkno); 11400 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11401 } else { 11402 if (dp1->di_ib[adp->ad_offset - NDADDR] != 0) 11403 panic("%s: %s #%jd allocated as %d", 11404 "handle_written_inodeblock", 11405 "indirect pointer", 11406 (intmax_t)adp->ad_offset - NDADDR, 11407 dp1->di_ib[adp->ad_offset - NDADDR]); 11408 dp1->di_ib[adp->ad_offset - NDADDR] = 11409 adp->ad_newblkno; 11410 } 11411 } else { 11412 if (adp->ad_offset < NDADDR) { 11413 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11414 panic("%s: %s #%jd %s %jd != %jd", 11415 "handle_written_inodeblock", 11416 "direct pointer", 11417 (intmax_t)adp->ad_offset, "mismatch", 11418 (intmax_t)dp2->di_db[adp->ad_offset], 11419 (intmax_t)adp->ad_oldblkno); 11420 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11421 } else { 11422 if (dp2->di_ib[adp->ad_offset - NDADDR] != 0) 11423 panic("%s: %s #%jd allocated as %jd", 11424 "handle_written_inodeblock", 11425 "indirect pointer", 11426 (intmax_t)adp->ad_offset - NDADDR, 11427 (intmax_t) 11428 dp2->di_ib[adp->ad_offset - NDADDR]); 11429 dp2->di_ib[adp->ad_offset - NDADDR] = 11430 adp->ad_newblkno; 11431 } 11432 } 11433 adp->ad_state &= ~UNDONE; 11434 adp->ad_state |= ATTACHED; 11435 hadchanges = 1; 11436 } 11437 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11438 nextadp = TAILQ_NEXT(adp, ad_next); 11439 if (adp->ad_state & ATTACHED) 11440 panic("handle_written_inodeblock: new entry"); 11441 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11442 panic("%s: direct pointers #%jd %s %jd != %jd", 11443 "handle_written_inodeblock", 11444 (intmax_t)adp->ad_offset, "mismatch", 11445 (intmax_t)dp2->di_extb[adp->ad_offset], 11446 (intmax_t)adp->ad_oldblkno); 11447 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11448 adp->ad_state &= ~UNDONE; 11449 adp->ad_state |= ATTACHED; 11450 hadchanges = 1; 11451 } 11452 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11453 stat_direct_blk_ptrs++; 11454 /* 11455 * Reset the file size to its most up-to-date value. 11456 */ 11457 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11458 panic("handle_written_inodeblock: bad size"); 11459 if (inodedep->id_savednlink > LINK_MAX) 11460 panic("handle_written_inodeblock: Invalid link count " 11461 "%d for inodedep %p", inodedep->id_savednlink, inodedep); 11462 if (fstype == UFS1) { 11463 if (dp1->di_nlink != inodedep->id_savednlink) { 11464 dp1->di_nlink = inodedep->id_savednlink; 11465 hadchanges = 1; 11466 } 11467 if (dp1->di_size != inodedep->id_savedsize) { 11468 dp1->di_size = inodedep->id_savedsize; 11469 hadchanges = 1; 11470 } 11471 } else { 11472 if (dp2->di_nlink != inodedep->id_savednlink) { 11473 dp2->di_nlink = inodedep->id_savednlink; 11474 hadchanges = 1; 11475 } 11476 if (dp2->di_size != inodedep->id_savedsize) { 11477 dp2->di_size = inodedep->id_savedsize; 11478 hadchanges = 1; 11479 } 11480 if (dp2->di_extsize != inodedep->id_savedextsize) { 11481 dp2->di_extsize = inodedep->id_savedextsize; 11482 hadchanges = 1; 11483 } 11484 } 11485 inodedep->id_savedsize = -1; 11486 inodedep->id_savedextsize = -1; 11487 inodedep->id_savednlink = -1; 11488 /* 11489 * If there were any rollbacks in the inode block, then it must be 11490 * marked dirty so that its will eventually get written back in 11491 * its correct form. 11492 */ 11493 if (hadchanges) 11494 bdirty(bp); 11495 bufwait: 11496 /* 11497 * Process any allocdirects that completed during the update. 11498 */ 11499 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11500 handle_allocdirect_partdone(adp, &wkhd); 11501 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11502 handle_allocdirect_partdone(adp, &wkhd); 11503 /* 11504 * Process deallocations that were held pending until the 11505 * inode had been written to disk. Freeing of the inode 11506 * is delayed until after all blocks have been freed to 11507 * avoid creation of new <vfsid, inum, lbn> triples 11508 * before the old ones have been deleted. Completely 11509 * unlinked inodes are not processed until the unlinked 11510 * inode list is written or the last reference is removed. 11511 */ 11512 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11513 freefile = handle_bufwait(inodedep, NULL); 11514 if (freefile && !LIST_EMPTY(&wkhd)) { 11515 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11516 freefile = NULL; 11517 } 11518 } 11519 /* 11520 * Move rolled forward dependency completions to the bufwait list 11521 * now that those that were already written have been processed. 11522 */ 11523 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11524 panic("handle_written_inodeblock: bufwait but no changes"); 11525 jwork_move(&inodedep->id_bufwait, &wkhd); 11526 11527 if (freefile != NULL) { 11528 /* 11529 * If the inode is goingaway it was never written. Fake up 11530 * the state here so free_inodedep() can succeed. 11531 */ 11532 if (inodedep->id_state & GOINGAWAY) 11533 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11534 if (free_inodedep(inodedep) == 0) 11535 panic("handle_written_inodeblock: live inodedep %p", 11536 inodedep); 11537 add_to_worklist(&freefile->fx_list, 0); 11538 return (0); 11539 } 11540 11541 /* 11542 * If no outstanding dependencies, free it. 11543 */ 11544 if (free_inodedep(inodedep) || 11545 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11546 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11547 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11548 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11549 return (0); 11550 return (hadchanges); 11551 } 11552 11553 static int 11554 handle_written_indirdep(indirdep, bp, bpp) 11555 struct indirdep *indirdep; 11556 struct buf *bp; 11557 struct buf **bpp; 11558 { 11559 struct allocindir *aip; 11560 struct buf *sbp; 11561 int chgs; 11562 11563 if (indirdep->ir_state & GOINGAWAY) 11564 panic("handle_written_indirdep: indirdep gone"); 11565 if ((indirdep->ir_state & IOSTARTED) == 0) 11566 panic("handle_written_indirdep: IO not started"); 11567 chgs = 0; 11568 /* 11569 * If there were rollbacks revert them here. 11570 */ 11571 if (indirdep->ir_saveddata) { 11572 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11573 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11574 free(indirdep->ir_saveddata, M_INDIRDEP); 11575 indirdep->ir_saveddata = NULL; 11576 } 11577 chgs = 1; 11578 } 11579 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11580 indirdep->ir_state |= ATTACHED; 11581 /* 11582 * Move allocindirs with written pointers to the completehd if 11583 * the indirdep's pointer is not yet written. Otherwise 11584 * free them here. 11585 */ 11586 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) { 11587 LIST_REMOVE(aip, ai_next); 11588 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11589 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11590 ai_next); 11591 newblk_freefrag(&aip->ai_block); 11592 continue; 11593 } 11594 free_newblk(&aip->ai_block); 11595 } 11596 /* 11597 * Move allocindirs that have finished dependency processing from 11598 * the done list to the write list after updating the pointers. 11599 */ 11600 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11601 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 11602 handle_allocindir_partdone(aip); 11603 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11604 panic("disk_write_complete: not gone"); 11605 chgs = 1; 11606 } 11607 } 11608 /* 11609 * Preserve the indirdep if there were any changes or if it is not 11610 * yet valid on disk. 11611 */ 11612 if (chgs) { 11613 stat_indir_blk_ptrs++; 11614 bdirty(bp); 11615 return (1); 11616 } 11617 /* 11618 * If there were no changes we can discard the savedbp and detach 11619 * ourselves from the buf. We are only carrying completed pointers 11620 * in this case. 11621 */ 11622 sbp = indirdep->ir_savebp; 11623 sbp->b_flags |= B_INVAL | B_NOCACHE; 11624 indirdep->ir_savebp = NULL; 11625 indirdep->ir_bp = NULL; 11626 if (*bpp != NULL) 11627 panic("handle_written_indirdep: bp already exists."); 11628 *bpp = sbp; 11629 /* 11630 * The indirdep may not be freed until its parent points at it. 11631 */ 11632 if (indirdep->ir_state & DEPCOMPLETE) 11633 free_indirdep(indirdep); 11634 11635 return (0); 11636 } 11637 11638 /* 11639 * Process a diradd entry after its dependent inode has been written. 11640 * This routine must be called with splbio interrupts blocked. 11641 */ 11642 static void 11643 diradd_inode_written(dap, inodedep) 11644 struct diradd *dap; 11645 struct inodedep *inodedep; 11646 { 11647 11648 dap->da_state |= COMPLETE; 11649 complete_diradd(dap); 11650 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11651 } 11652 11653 /* 11654 * Returns true if the bmsafemap will have rollbacks when written. Must only 11655 * be called with the per-filesystem lock and the buf lock on the cg held. 11656 */ 11657 static int 11658 bmsafemap_backgroundwrite(bmsafemap, bp) 11659 struct bmsafemap *bmsafemap; 11660 struct buf *bp; 11661 { 11662 int dirty; 11663 11664 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11665 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11666 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11667 /* 11668 * If we're initiating a background write we need to process the 11669 * rollbacks as they exist now, not as they exist when IO starts. 11670 * No other consumers will look at the contents of the shadowed 11671 * buf so this is safe to do here. 11672 */ 11673 if (bp->b_xflags & BX_BKGRDMARKER) 11674 initiate_write_bmsafemap(bmsafemap, bp); 11675 11676 return (dirty); 11677 } 11678 11679 /* 11680 * Re-apply an allocation when a cg write is complete. 11681 */ 11682 static int 11683 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11684 struct jnewblk *jnewblk; 11685 struct fs *fs; 11686 struct cg *cgp; 11687 uint8_t *blksfree; 11688 { 11689 ufs1_daddr_t fragno; 11690 ufs2_daddr_t blkno; 11691 long cgbno, bbase; 11692 int frags, blk; 11693 int i; 11694 11695 frags = 0; 11696 cgbno = dtogd(fs, jnewblk->jn_blkno); 11697 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11698 if (isclr(blksfree, cgbno + i)) 11699 panic("jnewblk_rollforward: re-allocated fragment"); 11700 frags++; 11701 } 11702 if (frags == fs->fs_frag) { 11703 blkno = fragstoblks(fs, cgbno); 11704 ffs_clrblock(fs, blksfree, (long)blkno); 11705 ffs_clusteracct(fs, cgp, blkno, -1); 11706 cgp->cg_cs.cs_nbfree--; 11707 } else { 11708 bbase = cgbno - fragnum(fs, cgbno); 11709 cgbno += jnewblk->jn_oldfrags; 11710 /* If a complete block had been reassembled, account for it. */ 11711 fragno = fragstoblks(fs, bbase); 11712 if (ffs_isblock(fs, blksfree, fragno)) { 11713 cgp->cg_cs.cs_nffree += fs->fs_frag; 11714 ffs_clusteracct(fs, cgp, fragno, -1); 11715 cgp->cg_cs.cs_nbfree--; 11716 } 11717 /* Decrement the old frags. */ 11718 blk = blkmap(fs, blksfree, bbase); 11719 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11720 /* Allocate the fragment */ 11721 for (i = 0; i < frags; i++) 11722 clrbit(blksfree, cgbno + i); 11723 cgp->cg_cs.cs_nffree -= frags; 11724 /* Add back in counts associated with the new frags */ 11725 blk = blkmap(fs, blksfree, bbase); 11726 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11727 } 11728 return (frags); 11729 } 11730 11731 /* 11732 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11733 * changes if it's not a background write. Set all written dependencies 11734 * to DEPCOMPLETE and free the structure if possible. 11735 */ 11736 static int 11737 handle_written_bmsafemap(bmsafemap, bp) 11738 struct bmsafemap *bmsafemap; 11739 struct buf *bp; 11740 { 11741 struct newblk *newblk; 11742 struct inodedep *inodedep; 11743 struct jaddref *jaddref, *jatmp; 11744 struct jnewblk *jnewblk, *jntmp; 11745 struct ufsmount *ump; 11746 uint8_t *inosused; 11747 uint8_t *blksfree; 11748 struct cg *cgp; 11749 struct fs *fs; 11750 ino_t ino; 11751 int foreground; 11752 int chgs; 11753 11754 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11755 panic("initiate_write_bmsafemap: Not started\n"); 11756 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11757 chgs = 0; 11758 bmsafemap->sm_state &= ~IOSTARTED; 11759 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11760 /* 11761 * Release journal work that was waiting on the write. 11762 */ 11763 handle_jwork(&bmsafemap->sm_freewr); 11764 11765 /* 11766 * Restore unwritten inode allocation pending jaddref writes. 11767 */ 11768 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11769 cgp = (struct cg *)bp->b_data; 11770 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11771 inosused = cg_inosused(cgp); 11772 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11773 ja_bmdeps, jatmp) { 11774 if ((jaddref->ja_state & UNDONE) == 0) 11775 continue; 11776 ino = jaddref->ja_ino % fs->fs_ipg; 11777 if (isset(inosused, ino)) 11778 panic("handle_written_bmsafemap: " 11779 "re-allocated inode"); 11780 /* Do the roll-forward only if it's a real copy. */ 11781 if (foreground) { 11782 if ((jaddref->ja_mode & IFMT) == IFDIR) 11783 cgp->cg_cs.cs_ndir++; 11784 cgp->cg_cs.cs_nifree--; 11785 setbit(inosused, ino); 11786 chgs = 1; 11787 } 11788 jaddref->ja_state &= ~UNDONE; 11789 jaddref->ja_state |= ATTACHED; 11790 free_jaddref(jaddref); 11791 } 11792 } 11793 /* 11794 * Restore any block allocations which are pending journal writes. 11795 */ 11796 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11797 cgp = (struct cg *)bp->b_data; 11798 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11799 blksfree = cg_blksfree(cgp); 11800 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11801 jntmp) { 11802 if ((jnewblk->jn_state & UNDONE) == 0) 11803 continue; 11804 /* Do the roll-forward only if it's a real copy. */ 11805 if (foreground && 11806 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11807 chgs = 1; 11808 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11809 jnewblk->jn_state |= ATTACHED; 11810 free_jnewblk(jnewblk); 11811 } 11812 } 11813 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11814 newblk->nb_state |= DEPCOMPLETE; 11815 newblk->nb_state &= ~ONDEPLIST; 11816 newblk->nb_bmsafemap = NULL; 11817 LIST_REMOVE(newblk, nb_deps); 11818 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11819 handle_allocdirect_partdone( 11820 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11821 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11822 handle_allocindir_partdone( 11823 WK_ALLOCINDIR(&newblk->nb_list)); 11824 else if (newblk->nb_list.wk_type != D_NEWBLK) 11825 panic("handle_written_bmsafemap: Unexpected type: %s", 11826 TYPENAME(newblk->nb_list.wk_type)); 11827 } 11828 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11829 inodedep->id_state |= DEPCOMPLETE; 11830 inodedep->id_state &= ~ONDEPLIST; 11831 LIST_REMOVE(inodedep, id_deps); 11832 inodedep->id_bmsafemap = NULL; 11833 } 11834 LIST_REMOVE(bmsafemap, sm_next); 11835 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11836 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11837 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11838 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11839 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11840 LIST_REMOVE(bmsafemap, sm_hash); 11841 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11842 return (0); 11843 } 11844 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11845 if (foreground) 11846 bdirty(bp); 11847 return (1); 11848 } 11849 11850 /* 11851 * Try to free a mkdir dependency. 11852 */ 11853 static void 11854 complete_mkdir(mkdir) 11855 struct mkdir *mkdir; 11856 { 11857 struct diradd *dap; 11858 11859 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11860 return; 11861 LIST_REMOVE(mkdir, md_mkdirs); 11862 dap = mkdir->md_diradd; 11863 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11864 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11865 dap->da_state |= DEPCOMPLETE; 11866 complete_diradd(dap); 11867 } 11868 WORKITEM_FREE(mkdir, D_MKDIR); 11869 } 11870 11871 /* 11872 * Handle the completion of a mkdir dependency. 11873 */ 11874 static void 11875 handle_written_mkdir(mkdir, type) 11876 struct mkdir *mkdir; 11877 int type; 11878 { 11879 11880 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 11881 panic("handle_written_mkdir: bad type"); 11882 mkdir->md_state |= COMPLETE; 11883 complete_mkdir(mkdir); 11884 } 11885 11886 static int 11887 free_pagedep(pagedep) 11888 struct pagedep *pagedep; 11889 { 11890 int i; 11891 11892 if (pagedep->pd_state & NEWBLOCK) 11893 return (0); 11894 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 11895 return (0); 11896 for (i = 0; i < DAHASHSZ; i++) 11897 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 11898 return (0); 11899 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 11900 return (0); 11901 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 11902 return (0); 11903 if (pagedep->pd_state & ONWORKLIST) 11904 WORKLIST_REMOVE(&pagedep->pd_list); 11905 LIST_REMOVE(pagedep, pd_hash); 11906 WORKITEM_FREE(pagedep, D_PAGEDEP); 11907 11908 return (1); 11909 } 11910 11911 /* 11912 * Called from within softdep_disk_write_complete above. 11913 * A write operation was just completed. Removed inodes can 11914 * now be freed and associated block pointers may be committed. 11915 * Note that this routine is always called from interrupt level 11916 * with further splbio interrupts blocked. 11917 */ 11918 static int 11919 handle_written_filepage(pagedep, bp) 11920 struct pagedep *pagedep; 11921 struct buf *bp; /* buffer containing the written page */ 11922 { 11923 struct dirrem *dirrem; 11924 struct diradd *dap, *nextdap; 11925 struct direct *ep; 11926 int i, chgs; 11927 11928 if ((pagedep->pd_state & IOSTARTED) == 0) 11929 panic("handle_written_filepage: not started"); 11930 pagedep->pd_state &= ~IOSTARTED; 11931 /* 11932 * Process any directory removals that have been committed. 11933 */ 11934 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 11935 LIST_REMOVE(dirrem, dm_next); 11936 dirrem->dm_state |= COMPLETE; 11937 dirrem->dm_dirinum = pagedep->pd_ino; 11938 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 11939 ("handle_written_filepage: Journal entries not written.")); 11940 add_to_worklist(&dirrem->dm_list, 0); 11941 } 11942 /* 11943 * Free any directory additions that have been committed. 11944 * If it is a newly allocated block, we have to wait until 11945 * the on-disk directory inode claims the new block. 11946 */ 11947 if ((pagedep->pd_state & NEWBLOCK) == 0) 11948 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 11949 free_diradd(dap, NULL); 11950 /* 11951 * Uncommitted directory entries must be restored. 11952 */ 11953 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 11954 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 11955 dap = nextdap) { 11956 nextdap = LIST_NEXT(dap, da_pdlist); 11957 if (dap->da_state & ATTACHED) 11958 panic("handle_written_filepage: attached"); 11959 ep = (struct direct *) 11960 ((char *)bp->b_data + dap->da_offset); 11961 ep->d_ino = dap->da_newinum; 11962 dap->da_state &= ~UNDONE; 11963 dap->da_state |= ATTACHED; 11964 chgs = 1; 11965 /* 11966 * If the inode referenced by the directory has 11967 * been written out, then the dependency can be 11968 * moved to the pending list. 11969 */ 11970 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 11971 LIST_REMOVE(dap, da_pdlist); 11972 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 11973 da_pdlist); 11974 } 11975 } 11976 } 11977 /* 11978 * If there were any rollbacks in the directory, then it must be 11979 * marked dirty so that its will eventually get written back in 11980 * its correct form. 11981 */ 11982 if (chgs) { 11983 if ((bp->b_flags & B_DELWRI) == 0) 11984 stat_dir_entry++; 11985 bdirty(bp); 11986 return (1); 11987 } 11988 /* 11989 * If we are not waiting for a new directory block to be 11990 * claimed by its inode, then the pagedep will be freed. 11991 * Otherwise it will remain to track any new entries on 11992 * the page in case they are fsync'ed. 11993 */ 11994 free_pagedep(pagedep); 11995 return (0); 11996 } 11997 11998 /* 11999 * Writing back in-core inode structures. 12000 * 12001 * The filesystem only accesses an inode's contents when it occupies an 12002 * "in-core" inode structure. These "in-core" structures are separate from 12003 * the page frames used to cache inode blocks. Only the latter are 12004 * transferred to/from the disk. So, when the updated contents of the 12005 * "in-core" inode structure are copied to the corresponding in-memory inode 12006 * block, the dependencies are also transferred. The following procedure is 12007 * called when copying a dirty "in-core" inode to a cached inode block. 12008 */ 12009 12010 /* 12011 * Called when an inode is loaded from disk. If the effective link count 12012 * differed from the actual link count when it was last flushed, then we 12013 * need to ensure that the correct effective link count is put back. 12014 */ 12015 void 12016 softdep_load_inodeblock(ip) 12017 struct inode *ip; /* the "in_core" copy of the inode */ 12018 { 12019 struct inodedep *inodedep; 12020 12021 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 12022 ("softdep_load_inodeblock called on non-softdep filesystem")); 12023 /* 12024 * Check for alternate nlink count. 12025 */ 12026 ip->i_effnlink = ip->i_nlink; 12027 ACQUIRE_LOCK(ip->i_ump); 12028 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 12029 &inodedep) == 0) { 12030 FREE_LOCK(ip->i_ump); 12031 return; 12032 } 12033 ip->i_effnlink -= inodedep->id_nlinkdelta; 12034 FREE_LOCK(ip->i_ump); 12035 } 12036 12037 /* 12038 * This routine is called just before the "in-core" inode 12039 * information is to be copied to the in-memory inode block. 12040 * Recall that an inode block contains several inodes. If 12041 * the force flag is set, then the dependencies will be 12042 * cleared so that the update can always be made. Note that 12043 * the buffer is locked when this routine is called, so we 12044 * will never be in the middle of writing the inode block 12045 * to disk. 12046 */ 12047 void 12048 softdep_update_inodeblock(ip, bp, waitfor) 12049 struct inode *ip; /* the "in_core" copy of the inode */ 12050 struct buf *bp; /* the buffer containing the inode block */ 12051 int waitfor; /* nonzero => update must be allowed */ 12052 { 12053 struct inodedep *inodedep; 12054 struct inoref *inoref; 12055 struct ufsmount *ump; 12056 struct worklist *wk; 12057 struct mount *mp; 12058 struct buf *ibp; 12059 struct fs *fs; 12060 int error; 12061 12062 ump = ip->i_ump; 12063 mp = UFSTOVFS(ump); 12064 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12065 ("softdep_update_inodeblock called on non-softdep filesystem")); 12066 fs = ip->i_fs; 12067 /* 12068 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12069 * does not have access to the in-core ip so must write directly into 12070 * the inode block buffer when setting freelink. 12071 */ 12072 if (fs->fs_magic == FS_UFS1_MAGIC) 12073 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12074 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12075 else 12076 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12077 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12078 /* 12079 * If the effective link count is not equal to the actual link 12080 * count, then we must track the difference in an inodedep while 12081 * the inode is (potentially) tossed out of the cache. Otherwise, 12082 * if there is no existing inodedep, then there are no dependencies 12083 * to track. 12084 */ 12085 ACQUIRE_LOCK(ump); 12086 again: 12087 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12088 FREE_LOCK(ump); 12089 if (ip->i_effnlink != ip->i_nlink) 12090 panic("softdep_update_inodeblock: bad link count"); 12091 return; 12092 } 12093 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12094 panic("softdep_update_inodeblock: bad delta"); 12095 /* 12096 * If we're flushing all dependencies we must also move any waiting 12097 * for journal writes onto the bufwait list prior to I/O. 12098 */ 12099 if (waitfor) { 12100 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12101 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12102 == DEPCOMPLETE) { 12103 jwait(&inoref->if_list, MNT_WAIT); 12104 goto again; 12105 } 12106 } 12107 } 12108 /* 12109 * Changes have been initiated. Anything depending on these 12110 * changes cannot occur until this inode has been written. 12111 */ 12112 inodedep->id_state &= ~COMPLETE; 12113 if ((inodedep->id_state & ONWORKLIST) == 0) 12114 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12115 /* 12116 * Any new dependencies associated with the incore inode must 12117 * now be moved to the list associated with the buffer holding 12118 * the in-memory copy of the inode. Once merged process any 12119 * allocdirects that are completed by the merger. 12120 */ 12121 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12122 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12123 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12124 NULL); 12125 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12126 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12127 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12128 NULL); 12129 /* 12130 * Now that the inode has been pushed into the buffer, the 12131 * operations dependent on the inode being written to disk 12132 * can be moved to the id_bufwait so that they will be 12133 * processed when the buffer I/O completes. 12134 */ 12135 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12136 WORKLIST_REMOVE(wk); 12137 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12138 } 12139 /* 12140 * Newly allocated inodes cannot be written until the bitmap 12141 * that allocates them have been written (indicated by 12142 * DEPCOMPLETE being set in id_state). If we are doing a 12143 * forced sync (e.g., an fsync on a file), we force the bitmap 12144 * to be written so that the update can be done. 12145 */ 12146 if (waitfor == 0) { 12147 FREE_LOCK(ump); 12148 return; 12149 } 12150 retry: 12151 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12152 FREE_LOCK(ump); 12153 return; 12154 } 12155 ibp = inodedep->id_bmsafemap->sm_buf; 12156 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12157 if (ibp == NULL) { 12158 /* 12159 * If ibp came back as NULL, the dependency could have been 12160 * freed while we slept. Look it up again, and check to see 12161 * that it has completed. 12162 */ 12163 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12164 goto retry; 12165 FREE_LOCK(ump); 12166 return; 12167 } 12168 FREE_LOCK(ump); 12169 if ((error = bwrite(ibp)) != 0) 12170 softdep_error("softdep_update_inodeblock: bwrite", error); 12171 } 12172 12173 /* 12174 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12175 * old inode dependency list (such as id_inoupdt). This routine must be 12176 * called with splbio interrupts blocked. 12177 */ 12178 static void 12179 merge_inode_lists(newlisthead, oldlisthead) 12180 struct allocdirectlst *newlisthead; 12181 struct allocdirectlst *oldlisthead; 12182 { 12183 struct allocdirect *listadp, *newadp; 12184 12185 newadp = TAILQ_FIRST(newlisthead); 12186 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12187 if (listadp->ad_offset < newadp->ad_offset) { 12188 listadp = TAILQ_NEXT(listadp, ad_next); 12189 continue; 12190 } 12191 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12192 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12193 if (listadp->ad_offset == newadp->ad_offset) { 12194 allocdirect_merge(oldlisthead, newadp, 12195 listadp); 12196 listadp = newadp; 12197 } 12198 newadp = TAILQ_FIRST(newlisthead); 12199 } 12200 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12201 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12202 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12203 } 12204 } 12205 12206 /* 12207 * If we are doing an fsync, then we must ensure that any directory 12208 * entries for the inode have been written after the inode gets to disk. 12209 */ 12210 int 12211 softdep_fsync(vp) 12212 struct vnode *vp; /* the "in_core" copy of the inode */ 12213 { 12214 struct inodedep *inodedep; 12215 struct pagedep *pagedep; 12216 struct inoref *inoref; 12217 struct ufsmount *ump; 12218 struct worklist *wk; 12219 struct diradd *dap; 12220 struct mount *mp; 12221 struct vnode *pvp; 12222 struct inode *ip; 12223 struct buf *bp; 12224 struct fs *fs; 12225 struct thread *td = curthread; 12226 int error, flushparent, pagedep_new_block; 12227 ino_t parentino; 12228 ufs_lbn_t lbn; 12229 12230 ip = VTOI(vp); 12231 fs = ip->i_fs; 12232 ump = ip->i_ump; 12233 mp = vp->v_mount; 12234 if (MOUNTEDSOFTDEP(mp) == 0) 12235 return (0); 12236 ACQUIRE_LOCK(ump); 12237 restart: 12238 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12239 FREE_LOCK(ump); 12240 return (0); 12241 } 12242 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12243 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12244 == DEPCOMPLETE) { 12245 jwait(&inoref->if_list, MNT_WAIT); 12246 goto restart; 12247 } 12248 } 12249 if (!LIST_EMPTY(&inodedep->id_inowait) || 12250 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12251 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12252 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12253 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12254 panic("softdep_fsync: pending ops %p", inodedep); 12255 for (error = 0, flushparent = 0; ; ) { 12256 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12257 break; 12258 if (wk->wk_type != D_DIRADD) 12259 panic("softdep_fsync: Unexpected type %s", 12260 TYPENAME(wk->wk_type)); 12261 dap = WK_DIRADD(wk); 12262 /* 12263 * Flush our parent if this directory entry has a MKDIR_PARENT 12264 * dependency or is contained in a newly allocated block. 12265 */ 12266 if (dap->da_state & DIRCHG) 12267 pagedep = dap->da_previous->dm_pagedep; 12268 else 12269 pagedep = dap->da_pagedep; 12270 parentino = pagedep->pd_ino; 12271 lbn = pagedep->pd_lbn; 12272 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12273 panic("softdep_fsync: dirty"); 12274 if ((dap->da_state & MKDIR_PARENT) || 12275 (pagedep->pd_state & NEWBLOCK)) 12276 flushparent = 1; 12277 else 12278 flushparent = 0; 12279 /* 12280 * If we are being fsync'ed as part of vgone'ing this vnode, 12281 * then we will not be able to release and recover the 12282 * vnode below, so we just have to give up on writing its 12283 * directory entry out. It will eventually be written, just 12284 * not now, but then the user was not asking to have it 12285 * written, so we are not breaking any promises. 12286 */ 12287 if (vp->v_iflag & VI_DOOMED) 12288 break; 12289 /* 12290 * We prevent deadlock by always fetching inodes from the 12291 * root, moving down the directory tree. Thus, when fetching 12292 * our parent directory, we first try to get the lock. If 12293 * that fails, we must unlock ourselves before requesting 12294 * the lock on our parent. See the comment in ufs_lookup 12295 * for details on possible races. 12296 */ 12297 FREE_LOCK(ump); 12298 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12299 FFSV_FORCEINSMQ)) { 12300 error = vfs_busy(mp, MBF_NOWAIT); 12301 if (error != 0) { 12302 vfs_ref(mp); 12303 VOP_UNLOCK(vp, 0); 12304 error = vfs_busy(mp, 0); 12305 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12306 vfs_rel(mp); 12307 if (error != 0) 12308 return (ENOENT); 12309 if (vp->v_iflag & VI_DOOMED) { 12310 vfs_unbusy(mp); 12311 return (ENOENT); 12312 } 12313 } 12314 VOP_UNLOCK(vp, 0); 12315 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12316 &pvp, FFSV_FORCEINSMQ); 12317 vfs_unbusy(mp); 12318 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12319 if (vp->v_iflag & VI_DOOMED) { 12320 if (error == 0) 12321 vput(pvp); 12322 error = ENOENT; 12323 } 12324 if (error != 0) 12325 return (error); 12326 } 12327 /* 12328 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12329 * that are contained in direct blocks will be resolved by 12330 * doing a ffs_update. Pagedeps contained in indirect blocks 12331 * may require a complete sync'ing of the directory. So, we 12332 * try the cheap and fast ffs_update first, and if that fails, 12333 * then we do the slower ffs_syncvnode of the directory. 12334 */ 12335 if (flushparent) { 12336 int locked; 12337 12338 if ((error = ffs_update(pvp, 1)) != 0) { 12339 vput(pvp); 12340 return (error); 12341 } 12342 ACQUIRE_LOCK(ump); 12343 locked = 1; 12344 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12345 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12346 if (wk->wk_type != D_DIRADD) 12347 panic("softdep_fsync: Unexpected type %s", 12348 TYPENAME(wk->wk_type)); 12349 dap = WK_DIRADD(wk); 12350 if (dap->da_state & DIRCHG) 12351 pagedep = dap->da_previous->dm_pagedep; 12352 else 12353 pagedep = dap->da_pagedep; 12354 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12355 FREE_LOCK(ump); 12356 locked = 0; 12357 if (pagedep_new_block && (error = 12358 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12359 vput(pvp); 12360 return (error); 12361 } 12362 } 12363 } 12364 if (locked) 12365 FREE_LOCK(ump); 12366 } 12367 /* 12368 * Flush directory page containing the inode's name. 12369 */ 12370 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12371 &bp); 12372 if (error == 0) 12373 error = bwrite(bp); 12374 else 12375 brelse(bp); 12376 vput(pvp); 12377 if (error != 0) 12378 return (error); 12379 ACQUIRE_LOCK(ump); 12380 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12381 break; 12382 } 12383 FREE_LOCK(ump); 12384 return (0); 12385 } 12386 12387 /* 12388 * Flush all the dirty bitmaps associated with the block device 12389 * before flushing the rest of the dirty blocks so as to reduce 12390 * the number of dependencies that will have to be rolled back. 12391 * 12392 * XXX Unused? 12393 */ 12394 void 12395 softdep_fsync_mountdev(vp) 12396 struct vnode *vp; 12397 { 12398 struct buf *bp, *nbp; 12399 struct worklist *wk; 12400 struct bufobj *bo; 12401 12402 if (!vn_isdisk(vp, NULL)) 12403 panic("softdep_fsync_mountdev: vnode not a disk"); 12404 bo = &vp->v_bufobj; 12405 restart: 12406 BO_LOCK(bo); 12407 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12408 /* 12409 * If it is already scheduled, skip to the next buffer. 12410 */ 12411 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12412 continue; 12413 12414 if ((bp->b_flags & B_DELWRI) == 0) 12415 panic("softdep_fsync_mountdev: not dirty"); 12416 /* 12417 * We are only interested in bitmaps with outstanding 12418 * dependencies. 12419 */ 12420 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12421 wk->wk_type != D_BMSAFEMAP || 12422 (bp->b_vflags & BV_BKGRDINPROG)) { 12423 BUF_UNLOCK(bp); 12424 continue; 12425 } 12426 BO_UNLOCK(bo); 12427 bremfree(bp); 12428 (void) bawrite(bp); 12429 goto restart; 12430 } 12431 drain_output(vp); 12432 BO_UNLOCK(bo); 12433 } 12434 12435 /* 12436 * Sync all cylinder groups that were dirty at the time this function is 12437 * called. Newly dirtied cgs will be inserted before the sentinel. This 12438 * is used to flush freedep activity that may be holding up writes to a 12439 * indirect block. 12440 */ 12441 static int 12442 sync_cgs(mp, waitfor) 12443 struct mount *mp; 12444 int waitfor; 12445 { 12446 struct bmsafemap *bmsafemap; 12447 struct bmsafemap *sentinel; 12448 struct ufsmount *ump; 12449 struct buf *bp; 12450 int error; 12451 12452 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12453 sentinel->sm_cg = -1; 12454 ump = VFSTOUFS(mp); 12455 error = 0; 12456 ACQUIRE_LOCK(ump); 12457 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12458 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12459 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12460 /* Skip sentinels and cgs with no work to release. */ 12461 if (bmsafemap->sm_cg == -1 || 12462 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12463 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12464 LIST_REMOVE(sentinel, sm_next); 12465 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12466 continue; 12467 } 12468 /* 12469 * If we don't get the lock and we're waiting try again, if 12470 * not move on to the next buf and try to sync it. 12471 */ 12472 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12473 if (bp == NULL && waitfor == MNT_WAIT) 12474 continue; 12475 LIST_REMOVE(sentinel, sm_next); 12476 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12477 if (bp == NULL) 12478 continue; 12479 FREE_LOCK(ump); 12480 if (waitfor == MNT_NOWAIT) 12481 bawrite(bp); 12482 else 12483 error = bwrite(bp); 12484 ACQUIRE_LOCK(ump); 12485 if (error) 12486 break; 12487 } 12488 LIST_REMOVE(sentinel, sm_next); 12489 FREE_LOCK(ump); 12490 free(sentinel, M_BMSAFEMAP); 12491 return (error); 12492 } 12493 12494 /* 12495 * This routine is called when we are trying to synchronously flush a 12496 * file. This routine must eliminate any filesystem metadata dependencies 12497 * so that the syncing routine can succeed. 12498 */ 12499 int 12500 softdep_sync_metadata(struct vnode *vp) 12501 { 12502 struct inode *ip; 12503 int error; 12504 12505 ip = VTOI(vp); 12506 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 12507 ("softdep_sync_metadata called on non-softdep filesystem")); 12508 /* 12509 * Ensure that any direct block dependencies have been cleared, 12510 * truncations are started, and inode references are journaled. 12511 */ 12512 ACQUIRE_LOCK(ip->i_ump); 12513 /* 12514 * Write all journal records to prevent rollbacks on devvp. 12515 */ 12516 if (vp->v_type == VCHR) 12517 softdep_flushjournal(vp->v_mount); 12518 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12519 /* 12520 * Ensure that all truncates are written so we won't find deps on 12521 * indirect blocks. 12522 */ 12523 process_truncates(vp); 12524 FREE_LOCK(ip->i_ump); 12525 12526 return (error); 12527 } 12528 12529 /* 12530 * This routine is called when we are attempting to sync a buf with 12531 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12532 * other IO it can but returns EBUSY if the buffer is not yet able to 12533 * be written. Dependencies which will not cause rollbacks will always 12534 * return 0. 12535 */ 12536 int 12537 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12538 { 12539 struct indirdep *indirdep; 12540 struct pagedep *pagedep; 12541 struct allocindir *aip; 12542 struct newblk *newblk; 12543 struct ufsmount *ump; 12544 struct buf *nbp; 12545 struct worklist *wk; 12546 int i, error; 12547 12548 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12549 ("softdep_sync_buf called on non-softdep filesystem")); 12550 /* 12551 * For VCHR we just don't want to force flush any dependencies that 12552 * will cause rollbacks. 12553 */ 12554 if (vp->v_type == VCHR) { 12555 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12556 return (EBUSY); 12557 return (0); 12558 } 12559 ump = VTOI(vp)->i_ump; 12560 ACQUIRE_LOCK(ump); 12561 /* 12562 * As we hold the buffer locked, none of its dependencies 12563 * will disappear. 12564 */ 12565 error = 0; 12566 top: 12567 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12568 switch (wk->wk_type) { 12569 12570 case D_ALLOCDIRECT: 12571 case D_ALLOCINDIR: 12572 newblk = WK_NEWBLK(wk); 12573 if (newblk->nb_jnewblk != NULL) { 12574 if (waitfor == MNT_NOWAIT) { 12575 error = EBUSY; 12576 goto out_unlock; 12577 } 12578 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12579 goto top; 12580 } 12581 if (newblk->nb_state & DEPCOMPLETE || 12582 waitfor == MNT_NOWAIT) 12583 continue; 12584 nbp = newblk->nb_bmsafemap->sm_buf; 12585 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12586 if (nbp == NULL) 12587 goto top; 12588 FREE_LOCK(ump); 12589 if ((error = bwrite(nbp)) != 0) 12590 goto out; 12591 ACQUIRE_LOCK(ump); 12592 continue; 12593 12594 case D_INDIRDEP: 12595 indirdep = WK_INDIRDEP(wk); 12596 if (waitfor == MNT_NOWAIT) { 12597 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12598 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12599 error = EBUSY; 12600 goto out_unlock; 12601 } 12602 } 12603 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12604 panic("softdep_sync_buf: truncation pending."); 12605 restart: 12606 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12607 newblk = (struct newblk *)aip; 12608 if (newblk->nb_jnewblk != NULL) { 12609 jwait(&newblk->nb_jnewblk->jn_list, 12610 waitfor); 12611 goto restart; 12612 } 12613 if (newblk->nb_state & DEPCOMPLETE) 12614 continue; 12615 nbp = newblk->nb_bmsafemap->sm_buf; 12616 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12617 if (nbp == NULL) 12618 goto restart; 12619 FREE_LOCK(ump); 12620 if ((error = bwrite(nbp)) != 0) 12621 goto out; 12622 ACQUIRE_LOCK(ump); 12623 goto restart; 12624 } 12625 continue; 12626 12627 case D_PAGEDEP: 12628 /* 12629 * Only flush directory entries in synchronous passes. 12630 */ 12631 if (waitfor != MNT_WAIT) { 12632 error = EBUSY; 12633 goto out_unlock; 12634 } 12635 /* 12636 * While syncing snapshots, we must allow recursive 12637 * lookups. 12638 */ 12639 BUF_AREC(bp); 12640 /* 12641 * We are trying to sync a directory that may 12642 * have dependencies on both its own metadata 12643 * and/or dependencies on the inodes of any 12644 * recently allocated files. We walk its diradd 12645 * lists pushing out the associated inode. 12646 */ 12647 pagedep = WK_PAGEDEP(wk); 12648 for (i = 0; i < DAHASHSZ; i++) { 12649 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12650 continue; 12651 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12652 &pagedep->pd_diraddhd[i]))) { 12653 BUF_NOREC(bp); 12654 goto out_unlock; 12655 } 12656 } 12657 BUF_NOREC(bp); 12658 continue; 12659 12660 case D_FREEWORK: 12661 case D_FREEDEP: 12662 case D_JSEGDEP: 12663 case D_JNEWBLK: 12664 continue; 12665 12666 default: 12667 panic("softdep_sync_buf: Unknown type %s", 12668 TYPENAME(wk->wk_type)); 12669 /* NOTREACHED */ 12670 } 12671 } 12672 out_unlock: 12673 FREE_LOCK(ump); 12674 out: 12675 return (error); 12676 } 12677 12678 /* 12679 * Flush the dependencies associated with an inodedep. 12680 * Called with splbio blocked. 12681 */ 12682 static int 12683 flush_inodedep_deps(vp, mp, ino) 12684 struct vnode *vp; 12685 struct mount *mp; 12686 ino_t ino; 12687 { 12688 struct inodedep *inodedep; 12689 struct inoref *inoref; 12690 struct ufsmount *ump; 12691 int error, waitfor; 12692 12693 /* 12694 * This work is done in two passes. The first pass grabs most 12695 * of the buffers and begins asynchronously writing them. The 12696 * only way to wait for these asynchronous writes is to sleep 12697 * on the filesystem vnode which may stay busy for a long time 12698 * if the filesystem is active. So, instead, we make a second 12699 * pass over the dependencies blocking on each write. In the 12700 * usual case we will be blocking against a write that we 12701 * initiated, so when it is done the dependency will have been 12702 * resolved. Thus the second pass is expected to end quickly. 12703 * We give a brief window at the top of the loop to allow 12704 * any pending I/O to complete. 12705 */ 12706 ump = VFSTOUFS(mp); 12707 LOCK_OWNED(ump); 12708 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12709 if (error) 12710 return (error); 12711 FREE_LOCK(ump); 12712 ACQUIRE_LOCK(ump); 12713 restart: 12714 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12715 return (0); 12716 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12717 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12718 == DEPCOMPLETE) { 12719 jwait(&inoref->if_list, MNT_WAIT); 12720 goto restart; 12721 } 12722 } 12723 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12724 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12725 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12726 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12727 continue; 12728 /* 12729 * If pass2, we are done, otherwise do pass 2. 12730 */ 12731 if (waitfor == MNT_WAIT) 12732 break; 12733 waitfor = MNT_WAIT; 12734 } 12735 /* 12736 * Try freeing inodedep in case all dependencies have been removed. 12737 */ 12738 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12739 (void) free_inodedep(inodedep); 12740 return (0); 12741 } 12742 12743 /* 12744 * Flush an inode dependency list. 12745 * Called with splbio blocked. 12746 */ 12747 static int 12748 flush_deplist(listhead, waitfor, errorp) 12749 struct allocdirectlst *listhead; 12750 int waitfor; 12751 int *errorp; 12752 { 12753 struct allocdirect *adp; 12754 struct newblk *newblk; 12755 struct ufsmount *ump; 12756 struct buf *bp; 12757 12758 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12759 return (0); 12760 ump = VFSTOUFS(adp->ad_list.wk_mp); 12761 LOCK_OWNED(ump); 12762 TAILQ_FOREACH(adp, listhead, ad_next) { 12763 newblk = (struct newblk *)adp; 12764 if (newblk->nb_jnewblk != NULL) { 12765 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12766 return (1); 12767 } 12768 if (newblk->nb_state & DEPCOMPLETE) 12769 continue; 12770 bp = newblk->nb_bmsafemap->sm_buf; 12771 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12772 if (bp == NULL) { 12773 if (waitfor == MNT_NOWAIT) 12774 continue; 12775 return (1); 12776 } 12777 FREE_LOCK(ump); 12778 if (waitfor == MNT_NOWAIT) 12779 bawrite(bp); 12780 else 12781 *errorp = bwrite(bp); 12782 ACQUIRE_LOCK(ump); 12783 return (1); 12784 } 12785 return (0); 12786 } 12787 12788 /* 12789 * Flush dependencies associated with an allocdirect block. 12790 */ 12791 static int 12792 flush_newblk_dep(vp, mp, lbn) 12793 struct vnode *vp; 12794 struct mount *mp; 12795 ufs_lbn_t lbn; 12796 { 12797 struct newblk *newblk; 12798 struct ufsmount *ump; 12799 struct bufobj *bo; 12800 struct inode *ip; 12801 struct buf *bp; 12802 ufs2_daddr_t blkno; 12803 int error; 12804 12805 error = 0; 12806 bo = &vp->v_bufobj; 12807 ip = VTOI(vp); 12808 blkno = DIP(ip, i_db[lbn]); 12809 if (blkno == 0) 12810 panic("flush_newblk_dep: Missing block"); 12811 ump = VFSTOUFS(mp); 12812 ACQUIRE_LOCK(ump); 12813 /* 12814 * Loop until all dependencies related to this block are satisfied. 12815 * We must be careful to restart after each sleep in case a write 12816 * completes some part of this process for us. 12817 */ 12818 for (;;) { 12819 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12820 FREE_LOCK(ump); 12821 break; 12822 } 12823 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12824 panic("flush_newblk_deps: Bad newblk %p", newblk); 12825 /* 12826 * Flush the journal. 12827 */ 12828 if (newblk->nb_jnewblk != NULL) { 12829 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12830 continue; 12831 } 12832 /* 12833 * Write the bitmap dependency. 12834 */ 12835 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12836 bp = newblk->nb_bmsafemap->sm_buf; 12837 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12838 if (bp == NULL) 12839 continue; 12840 FREE_LOCK(ump); 12841 error = bwrite(bp); 12842 if (error) 12843 break; 12844 ACQUIRE_LOCK(ump); 12845 continue; 12846 } 12847 /* 12848 * Write the buffer. 12849 */ 12850 FREE_LOCK(ump); 12851 BO_LOCK(bo); 12852 bp = gbincore(bo, lbn); 12853 if (bp != NULL) { 12854 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12855 LK_INTERLOCK, BO_LOCKPTR(bo)); 12856 if (error == ENOLCK) { 12857 ACQUIRE_LOCK(ump); 12858 continue; /* Slept, retry */ 12859 } 12860 if (error != 0) 12861 break; /* Failed */ 12862 if (bp->b_flags & B_DELWRI) { 12863 bremfree(bp); 12864 error = bwrite(bp); 12865 if (error) 12866 break; 12867 } else 12868 BUF_UNLOCK(bp); 12869 } else 12870 BO_UNLOCK(bo); 12871 /* 12872 * We have to wait for the direct pointers to 12873 * point at the newdirblk before the dependency 12874 * will go away. 12875 */ 12876 error = ffs_update(vp, 1); 12877 if (error) 12878 break; 12879 ACQUIRE_LOCK(ump); 12880 } 12881 return (error); 12882 } 12883 12884 /* 12885 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 12886 * Called with splbio blocked. 12887 */ 12888 static int 12889 flush_pagedep_deps(pvp, mp, diraddhdp) 12890 struct vnode *pvp; 12891 struct mount *mp; 12892 struct diraddhd *diraddhdp; 12893 { 12894 struct inodedep *inodedep; 12895 struct inoref *inoref; 12896 struct ufsmount *ump; 12897 struct diradd *dap; 12898 struct vnode *vp; 12899 int error = 0; 12900 struct buf *bp; 12901 ino_t inum; 12902 struct diraddhd unfinished; 12903 12904 LIST_INIT(&unfinished); 12905 ump = VFSTOUFS(mp); 12906 LOCK_OWNED(ump); 12907 restart: 12908 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 12909 /* 12910 * Flush ourselves if this directory entry 12911 * has a MKDIR_PARENT dependency. 12912 */ 12913 if (dap->da_state & MKDIR_PARENT) { 12914 FREE_LOCK(ump); 12915 if ((error = ffs_update(pvp, 1)) != 0) 12916 break; 12917 ACQUIRE_LOCK(ump); 12918 /* 12919 * If that cleared dependencies, go on to next. 12920 */ 12921 if (dap != LIST_FIRST(diraddhdp)) 12922 continue; 12923 /* 12924 * All MKDIR_PARENT dependencies and all the 12925 * NEWBLOCK pagedeps that are contained in direct 12926 * blocks were resolved by doing above ffs_update. 12927 * Pagedeps contained in indirect blocks may 12928 * require a complete sync'ing of the directory. 12929 * We are in the midst of doing a complete sync, 12930 * so if they are not resolved in this pass we 12931 * defer them for now as they will be sync'ed by 12932 * our caller shortly. 12933 */ 12934 LIST_REMOVE(dap, da_pdlist); 12935 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 12936 continue; 12937 } 12938 /* 12939 * A newly allocated directory must have its "." and 12940 * ".." entries written out before its name can be 12941 * committed in its parent. 12942 */ 12943 inum = dap->da_newinum; 12944 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12945 panic("flush_pagedep_deps: lost inode1"); 12946 /* 12947 * Wait for any pending journal adds to complete so we don't 12948 * cause rollbacks while syncing. 12949 */ 12950 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12951 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12952 == DEPCOMPLETE) { 12953 jwait(&inoref->if_list, MNT_WAIT); 12954 goto restart; 12955 } 12956 } 12957 if (dap->da_state & MKDIR_BODY) { 12958 FREE_LOCK(ump); 12959 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12960 FFSV_FORCEINSMQ))) 12961 break; 12962 error = flush_newblk_dep(vp, mp, 0); 12963 /* 12964 * If we still have the dependency we might need to 12965 * update the vnode to sync the new link count to 12966 * disk. 12967 */ 12968 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 12969 error = ffs_update(vp, 1); 12970 vput(vp); 12971 if (error != 0) 12972 break; 12973 ACQUIRE_LOCK(ump); 12974 /* 12975 * If that cleared dependencies, go on to next. 12976 */ 12977 if (dap != LIST_FIRST(diraddhdp)) 12978 continue; 12979 if (dap->da_state & MKDIR_BODY) { 12980 inodedep_lookup(UFSTOVFS(ump), inum, 0, 12981 &inodedep); 12982 panic("flush_pagedep_deps: MKDIR_BODY " 12983 "inodedep %p dap %p vp %p", 12984 inodedep, dap, vp); 12985 } 12986 } 12987 /* 12988 * Flush the inode on which the directory entry depends. 12989 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 12990 * the only remaining dependency is that the updated inode 12991 * count must get pushed to disk. The inode has already 12992 * been pushed into its inode buffer (via VOP_UPDATE) at 12993 * the time of the reference count change. So we need only 12994 * locate that buffer, ensure that there will be no rollback 12995 * caused by a bitmap dependency, then write the inode buffer. 12996 */ 12997 retry: 12998 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12999 panic("flush_pagedep_deps: lost inode"); 13000 /* 13001 * If the inode still has bitmap dependencies, 13002 * push them to disk. 13003 */ 13004 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13005 bp = inodedep->id_bmsafemap->sm_buf; 13006 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13007 if (bp == NULL) 13008 goto retry; 13009 FREE_LOCK(ump); 13010 if ((error = bwrite(bp)) != 0) 13011 break; 13012 ACQUIRE_LOCK(ump); 13013 if (dap != LIST_FIRST(diraddhdp)) 13014 continue; 13015 } 13016 /* 13017 * If the inode is still sitting in a buffer waiting 13018 * to be written or waiting for the link count to be 13019 * adjusted update it here to flush it to disk. 13020 */ 13021 if (dap == LIST_FIRST(diraddhdp)) { 13022 FREE_LOCK(ump); 13023 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13024 FFSV_FORCEINSMQ))) 13025 break; 13026 error = ffs_update(vp, 1); 13027 vput(vp); 13028 if (error) 13029 break; 13030 ACQUIRE_LOCK(ump); 13031 } 13032 /* 13033 * If we have failed to get rid of all the dependencies 13034 * then something is seriously wrong. 13035 */ 13036 if (dap == LIST_FIRST(diraddhdp)) { 13037 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13038 panic("flush_pagedep_deps: failed to flush " 13039 "inodedep %p ino %ju dap %p", 13040 inodedep, (uintmax_t)inum, dap); 13041 } 13042 } 13043 if (error) 13044 ACQUIRE_LOCK(ump); 13045 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13046 LIST_REMOVE(dap, da_pdlist); 13047 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13048 } 13049 return (error); 13050 } 13051 13052 /* 13053 * A large burst of file addition or deletion activity can drive the 13054 * memory load excessively high. First attempt to slow things down 13055 * using the techniques below. If that fails, this routine requests 13056 * the offending operations to fall back to running synchronously 13057 * until the memory load returns to a reasonable level. 13058 */ 13059 int 13060 softdep_slowdown(vp) 13061 struct vnode *vp; 13062 { 13063 struct ufsmount *ump; 13064 int jlow; 13065 int max_softdeps_hard; 13066 13067 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13068 ("softdep_slowdown called on non-softdep filesystem")); 13069 ump = VFSTOUFS(vp->v_mount); 13070 ACQUIRE_LOCK(ump); 13071 jlow = 0; 13072 /* 13073 * Check for journal space if needed. 13074 */ 13075 if (DOINGSUJ(vp)) { 13076 if (journal_space(ump, 0) == 0) 13077 jlow = 1; 13078 } 13079 /* 13080 * If the system is under its limits and our filesystem is 13081 * not responsible for more than our share of the usage and 13082 * we are not low on journal space, then no need to slow down. 13083 */ 13084 max_softdeps_hard = max_softdeps * 11 / 10; 13085 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13086 dep_current[D_INODEDEP] < max_softdeps_hard && 13087 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13088 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13089 ump->softdep_curdeps[D_DIRREM] < 13090 (max_softdeps_hard / 2) / stat_flush_threads && 13091 ump->softdep_curdeps[D_INODEDEP] < 13092 max_softdeps_hard / stat_flush_threads && 13093 ump->softdep_curdeps[D_INDIRDEP] < 13094 (max_softdeps_hard / 1000) / stat_flush_threads && 13095 ump->softdep_curdeps[D_FREEBLKS] < 13096 max_softdeps_hard / stat_flush_threads) { 13097 FREE_LOCK(ump); 13098 return (0); 13099 } 13100 /* 13101 * If the journal is low or our filesystem is over its limit 13102 * then speedup the cleanup. 13103 */ 13104 if (ump->softdep_curdeps[D_INDIRDEP] < 13105 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13106 softdep_speedup(ump); 13107 stat_sync_limit_hit += 1; 13108 FREE_LOCK(ump); 13109 /* 13110 * We only slow down the rate at which new dependencies are 13111 * generated if we are not using journaling. With journaling, 13112 * the cleanup should always be sufficient to keep things 13113 * under control. 13114 */ 13115 if (DOINGSUJ(vp)) 13116 return (0); 13117 return (1); 13118 } 13119 13120 /* 13121 * Called by the allocation routines when they are about to fail 13122 * in the hope that we can free up the requested resource (inodes 13123 * or disk space). 13124 * 13125 * First check to see if the work list has anything on it. If it has, 13126 * clean up entries until we successfully free the requested resource. 13127 * Because this process holds inodes locked, we cannot handle any remove 13128 * requests that might block on a locked inode as that could lead to 13129 * deadlock. If the worklist yields none of the requested resource, 13130 * start syncing out vnodes to free up the needed space. 13131 */ 13132 int 13133 softdep_request_cleanup(fs, vp, cred, resource) 13134 struct fs *fs; 13135 struct vnode *vp; 13136 struct ucred *cred; 13137 int resource; 13138 { 13139 struct ufsmount *ump; 13140 struct mount *mp; 13141 struct vnode *lvp, *mvp; 13142 long starttime; 13143 ufs2_daddr_t needed; 13144 int error; 13145 13146 /* 13147 * If we are being called because of a process doing a 13148 * copy-on-write, then it is not safe to process any 13149 * worklist items as we will recurse into the copyonwrite 13150 * routine. This will result in an incoherent snapshot. 13151 * If the vnode that we hold is a snapshot, we must avoid 13152 * handling other resources that could cause deadlock. 13153 */ 13154 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13155 return (0); 13156 13157 if (resource == FLUSH_BLOCKS_WAIT) 13158 stat_cleanup_blkrequests += 1; 13159 else 13160 stat_cleanup_inorequests += 1; 13161 13162 mp = vp->v_mount; 13163 ump = VFSTOUFS(mp); 13164 mtx_assert(UFS_MTX(ump), MA_OWNED); 13165 UFS_UNLOCK(ump); 13166 error = ffs_update(vp, 1); 13167 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13168 UFS_LOCK(ump); 13169 return (0); 13170 } 13171 /* 13172 * If we are in need of resources, start by cleaning up 13173 * any block removals associated with our inode. 13174 */ 13175 ACQUIRE_LOCK(ump); 13176 process_removes(vp); 13177 process_truncates(vp); 13178 FREE_LOCK(ump); 13179 /* 13180 * Now clean up at least as many resources as we will need. 13181 * 13182 * When requested to clean up inodes, the number that are needed 13183 * is set by the number of simultaneous writers (mnt_writeopcount) 13184 * plus a bit of slop (2) in case some more writers show up while 13185 * we are cleaning. 13186 * 13187 * When requested to free up space, the amount of space that 13188 * we need is enough blocks to allocate a full-sized segment 13189 * (fs_contigsumsize). The number of such segments that will 13190 * be needed is set by the number of simultaneous writers 13191 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13192 * writers show up while we are cleaning. 13193 * 13194 * Additionally, if we are unpriviledged and allocating space, 13195 * we need to ensure that we clean up enough blocks to get the 13196 * needed number of blocks over the threshhold of the minimum 13197 * number of blocks required to be kept free by the filesystem 13198 * (fs_minfree). 13199 */ 13200 if (resource == FLUSH_INODES_WAIT) { 13201 needed = vp->v_mount->mnt_writeopcount + 2; 13202 } else if (resource == FLUSH_BLOCKS_WAIT) { 13203 needed = (vp->v_mount->mnt_writeopcount + 2) * 13204 fs->fs_contigsumsize; 13205 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13206 needed += fragstoblks(fs, 13207 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13208 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13209 } else { 13210 UFS_LOCK(ump); 13211 printf("softdep_request_cleanup: Unknown resource type %d\n", 13212 resource); 13213 return (0); 13214 } 13215 starttime = time_second; 13216 retry: 13217 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13218 fs->fs_cstotal.cs_nbfree <= needed) || 13219 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13220 fs->fs_cstotal.cs_nifree <= needed)) { 13221 ACQUIRE_LOCK(ump); 13222 if (ump->softdep_on_worklist > 0 && 13223 process_worklist_item(UFSTOVFS(ump), 13224 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13225 stat_worklist_push += 1; 13226 FREE_LOCK(ump); 13227 } 13228 /* 13229 * If we still need resources and there are no more worklist 13230 * entries to process to obtain them, we have to start flushing 13231 * the dirty vnodes to force the release of additional requests 13232 * to the worklist that we can then process to reap addition 13233 * resources. We walk the vnodes associated with the mount point 13234 * until we get the needed worklist requests that we can reap. 13235 */ 13236 if ((resource == FLUSH_BLOCKS_WAIT && 13237 fs->fs_cstotal.cs_nbfree <= needed) || 13238 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13239 fs->fs_cstotal.cs_nifree <= needed)) { 13240 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13241 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13242 VI_UNLOCK(lvp); 13243 continue; 13244 } 13245 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13246 curthread)) 13247 continue; 13248 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13249 vput(lvp); 13250 continue; 13251 } 13252 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13253 vput(lvp); 13254 } 13255 lvp = ump->um_devvp; 13256 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13257 VOP_FSYNC(lvp, MNT_NOWAIT, curthread); 13258 VOP_UNLOCK(lvp, 0); 13259 } 13260 if (ump->softdep_on_worklist > 0) { 13261 stat_cleanup_retries += 1; 13262 goto retry; 13263 } 13264 stat_cleanup_failures += 1; 13265 } 13266 if (time_second - starttime > stat_cleanup_high_delay) 13267 stat_cleanup_high_delay = time_second - starttime; 13268 UFS_LOCK(ump); 13269 return (1); 13270 } 13271 13272 /* 13273 * If memory utilization has gotten too high, deliberately slow things 13274 * down and speed up the I/O processing. 13275 */ 13276 static int 13277 request_cleanup(mp, resource) 13278 struct mount *mp; 13279 int resource; 13280 { 13281 struct thread *td = curthread; 13282 struct ufsmount *ump; 13283 13284 ump = VFSTOUFS(mp); 13285 LOCK_OWNED(ump); 13286 /* 13287 * We never hold up the filesystem syncer or buf daemon. 13288 */ 13289 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13290 return (0); 13291 /* 13292 * First check to see if the work list has gotten backlogged. 13293 * If it has, co-opt this process to help clean up two entries. 13294 * Because this process may hold inodes locked, we cannot 13295 * handle any remove requests that might block on a locked 13296 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13297 * to avoid recursively processing the worklist. 13298 */ 13299 if (ump->softdep_on_worklist > max_softdeps / 10) { 13300 td->td_pflags |= TDP_SOFTDEP; 13301 process_worklist_item(mp, 2, LK_NOWAIT); 13302 td->td_pflags &= ~TDP_SOFTDEP; 13303 stat_worklist_push += 2; 13304 return(1); 13305 } 13306 /* 13307 * Next, we attempt to speed up the syncer process. If that 13308 * is successful, then we allow the process to continue. 13309 */ 13310 if (softdep_speedup(ump) && 13311 resource != FLUSH_BLOCKS_WAIT && 13312 resource != FLUSH_INODES_WAIT) 13313 return(0); 13314 /* 13315 * If we are resource constrained on inode dependencies, try 13316 * flushing some dirty inodes. Otherwise, we are constrained 13317 * by file deletions, so try accelerating flushes of directories 13318 * with removal dependencies. We would like to do the cleanup 13319 * here, but we probably hold an inode locked at this point and 13320 * that might deadlock against one that we try to clean. So, 13321 * the best that we can do is request the syncer daemon to do 13322 * the cleanup for us. 13323 */ 13324 switch (resource) { 13325 13326 case FLUSH_INODES: 13327 case FLUSH_INODES_WAIT: 13328 ACQUIRE_GBLLOCK(&lk); 13329 stat_ino_limit_push += 1; 13330 req_clear_inodedeps += 1; 13331 FREE_GBLLOCK(&lk); 13332 stat_countp = &stat_ino_limit_hit; 13333 break; 13334 13335 case FLUSH_BLOCKS: 13336 case FLUSH_BLOCKS_WAIT: 13337 ACQUIRE_GBLLOCK(&lk); 13338 stat_blk_limit_push += 1; 13339 req_clear_remove += 1; 13340 FREE_GBLLOCK(&lk); 13341 stat_countp = &stat_blk_limit_hit; 13342 break; 13343 13344 default: 13345 panic("request_cleanup: unknown type"); 13346 } 13347 /* 13348 * Hopefully the syncer daemon will catch up and awaken us. 13349 * We wait at most tickdelay before proceeding in any case. 13350 */ 13351 ACQUIRE_GBLLOCK(&lk); 13352 FREE_LOCK(ump); 13353 proc_waiting += 1; 13354 if (callout_pending(&softdep_callout) == FALSE) 13355 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13356 pause_timer, 0); 13357 13358 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13359 proc_waiting -= 1; 13360 FREE_GBLLOCK(&lk); 13361 ACQUIRE_LOCK(ump); 13362 return (1); 13363 } 13364 13365 /* 13366 * Awaken processes pausing in request_cleanup and clear proc_waiting 13367 * to indicate that there is no longer a timer running. Pause_timer 13368 * will be called with the global softdep mutex (&lk) locked. 13369 */ 13370 static void 13371 pause_timer(arg) 13372 void *arg; 13373 { 13374 13375 GBLLOCK_OWNED(&lk); 13376 /* 13377 * The callout_ API has acquired mtx and will hold it around this 13378 * function call. 13379 */ 13380 *stat_countp += proc_waiting; 13381 wakeup(&proc_waiting); 13382 } 13383 13384 /* 13385 * If requested, try removing inode or removal dependencies. 13386 */ 13387 static void 13388 check_clear_deps(mp) 13389 struct mount *mp; 13390 { 13391 13392 /* 13393 * If we are suspended, it may be because of our using 13394 * too many inodedeps, so help clear them out. 13395 */ 13396 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13397 clear_inodedeps(mp); 13398 /* 13399 * General requests for cleanup of backed up dependencies 13400 */ 13401 ACQUIRE_GBLLOCK(&lk); 13402 if (req_clear_inodedeps) { 13403 req_clear_inodedeps -= 1; 13404 FREE_GBLLOCK(&lk); 13405 clear_inodedeps(mp); 13406 ACQUIRE_GBLLOCK(&lk); 13407 wakeup(&proc_waiting); 13408 } 13409 if (req_clear_remove) { 13410 req_clear_remove -= 1; 13411 FREE_GBLLOCK(&lk); 13412 clear_remove(mp); 13413 ACQUIRE_GBLLOCK(&lk); 13414 wakeup(&proc_waiting); 13415 } 13416 FREE_GBLLOCK(&lk); 13417 } 13418 13419 /* 13420 * Flush out a directory with at least one removal dependency in an effort to 13421 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13422 */ 13423 static void 13424 clear_remove(mp) 13425 struct mount *mp; 13426 { 13427 struct pagedep_hashhead *pagedephd; 13428 struct pagedep *pagedep; 13429 struct ufsmount *ump; 13430 struct vnode *vp; 13431 struct bufobj *bo; 13432 int error, cnt; 13433 ino_t ino; 13434 13435 ump = VFSTOUFS(mp); 13436 LOCK_OWNED(ump); 13437 13438 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13439 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13440 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13441 ump->pagedep_nextclean = 0; 13442 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13443 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13444 continue; 13445 ino = pagedep->pd_ino; 13446 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13447 continue; 13448 FREE_LOCK(ump); 13449 13450 /* 13451 * Let unmount clear deps 13452 */ 13453 error = vfs_busy(mp, MBF_NOWAIT); 13454 if (error != 0) 13455 goto finish_write; 13456 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13457 FFSV_FORCEINSMQ); 13458 vfs_unbusy(mp); 13459 if (error != 0) { 13460 softdep_error("clear_remove: vget", error); 13461 goto finish_write; 13462 } 13463 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13464 softdep_error("clear_remove: fsync", error); 13465 bo = &vp->v_bufobj; 13466 BO_LOCK(bo); 13467 drain_output(vp); 13468 BO_UNLOCK(bo); 13469 vput(vp); 13470 finish_write: 13471 vn_finished_write(mp); 13472 ACQUIRE_LOCK(ump); 13473 return; 13474 } 13475 } 13476 } 13477 13478 /* 13479 * Clear out a block of dirty inodes in an effort to reduce 13480 * the number of inodedep dependency structures. 13481 */ 13482 static void 13483 clear_inodedeps(mp) 13484 struct mount *mp; 13485 { 13486 struct inodedep_hashhead *inodedephd; 13487 struct inodedep *inodedep; 13488 struct ufsmount *ump; 13489 struct vnode *vp; 13490 struct fs *fs; 13491 int error, cnt; 13492 ino_t firstino, lastino, ino; 13493 13494 ump = VFSTOUFS(mp); 13495 fs = ump->um_fs; 13496 LOCK_OWNED(ump); 13497 /* 13498 * Pick a random inode dependency to be cleared. 13499 * We will then gather up all the inodes in its block 13500 * that have dependencies and flush them out. 13501 */ 13502 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13503 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13504 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13505 ump->inodedep_nextclean = 0; 13506 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13507 break; 13508 } 13509 if (inodedep == NULL) 13510 return; 13511 /* 13512 * Find the last inode in the block with dependencies. 13513 */ 13514 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 13515 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13516 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13517 break; 13518 /* 13519 * Asynchronously push all but the last inode with dependencies. 13520 * Synchronously push the last inode with dependencies to ensure 13521 * that the inode block gets written to free up the inodedeps. 13522 */ 13523 for (ino = firstino; ino <= lastino; ino++) { 13524 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13525 continue; 13526 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13527 continue; 13528 FREE_LOCK(ump); 13529 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13530 if (error != 0) { 13531 vn_finished_write(mp); 13532 ACQUIRE_LOCK(ump); 13533 return; 13534 } 13535 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13536 FFSV_FORCEINSMQ)) != 0) { 13537 softdep_error("clear_inodedeps: vget", error); 13538 vfs_unbusy(mp); 13539 vn_finished_write(mp); 13540 ACQUIRE_LOCK(ump); 13541 return; 13542 } 13543 vfs_unbusy(mp); 13544 if (ino == lastino) { 13545 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13546 softdep_error("clear_inodedeps: fsync1", error); 13547 } else { 13548 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13549 softdep_error("clear_inodedeps: fsync2", error); 13550 BO_LOCK(&vp->v_bufobj); 13551 drain_output(vp); 13552 BO_UNLOCK(&vp->v_bufobj); 13553 } 13554 vput(vp); 13555 vn_finished_write(mp); 13556 ACQUIRE_LOCK(ump); 13557 } 13558 } 13559 13560 void 13561 softdep_buf_append(bp, wkhd) 13562 struct buf *bp; 13563 struct workhead *wkhd; 13564 { 13565 struct worklist *wk; 13566 struct ufsmount *ump; 13567 13568 if ((wk = LIST_FIRST(wkhd)) == NULL) 13569 return; 13570 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13571 ("softdep_buf_append called on non-softdep filesystem")); 13572 ump = VFSTOUFS(wk->wk_mp); 13573 ACQUIRE_LOCK(ump); 13574 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13575 WORKLIST_REMOVE(wk); 13576 WORKLIST_INSERT(&bp->b_dep, wk); 13577 } 13578 FREE_LOCK(ump); 13579 13580 } 13581 13582 void 13583 softdep_inode_append(ip, cred, wkhd) 13584 struct inode *ip; 13585 struct ucred *cred; 13586 struct workhead *wkhd; 13587 { 13588 struct buf *bp; 13589 struct fs *fs; 13590 int error; 13591 13592 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 13593 ("softdep_inode_append called on non-softdep filesystem")); 13594 fs = ip->i_fs; 13595 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13596 (int)fs->fs_bsize, cred, &bp); 13597 if (error) { 13598 bqrelse(bp); 13599 softdep_freework(wkhd); 13600 return; 13601 } 13602 softdep_buf_append(bp, wkhd); 13603 bqrelse(bp); 13604 } 13605 13606 void 13607 softdep_freework(wkhd) 13608 struct workhead *wkhd; 13609 { 13610 struct worklist *wk; 13611 struct ufsmount *ump; 13612 13613 if ((wk = LIST_FIRST(wkhd)) == NULL) 13614 return; 13615 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13616 ("softdep_freework called on non-softdep filesystem")); 13617 ump = VFSTOUFS(wk->wk_mp); 13618 ACQUIRE_LOCK(ump); 13619 handle_jwork(wkhd); 13620 FREE_LOCK(ump); 13621 } 13622 13623 /* 13624 * Function to determine if the buffer has outstanding dependencies 13625 * that will cause a roll-back if the buffer is written. If wantcount 13626 * is set, return number of dependencies, otherwise just yes or no. 13627 */ 13628 static int 13629 softdep_count_dependencies(bp, wantcount) 13630 struct buf *bp; 13631 int wantcount; 13632 { 13633 struct worklist *wk; 13634 struct ufsmount *ump; 13635 struct bmsafemap *bmsafemap; 13636 struct freework *freework; 13637 struct inodedep *inodedep; 13638 struct indirdep *indirdep; 13639 struct freeblks *freeblks; 13640 struct allocindir *aip; 13641 struct pagedep *pagedep; 13642 struct dirrem *dirrem; 13643 struct newblk *newblk; 13644 struct mkdir *mkdir; 13645 struct diradd *dap; 13646 int i, retval; 13647 13648 retval = 0; 13649 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 13650 return (0); 13651 ump = VFSTOUFS(wk->wk_mp); 13652 ACQUIRE_LOCK(ump); 13653 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13654 switch (wk->wk_type) { 13655 13656 case D_INODEDEP: 13657 inodedep = WK_INODEDEP(wk); 13658 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13659 /* bitmap allocation dependency */ 13660 retval += 1; 13661 if (!wantcount) 13662 goto out; 13663 } 13664 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13665 /* direct block pointer dependency */ 13666 retval += 1; 13667 if (!wantcount) 13668 goto out; 13669 } 13670 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13671 /* direct block pointer dependency */ 13672 retval += 1; 13673 if (!wantcount) 13674 goto out; 13675 } 13676 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13677 /* Add reference dependency. */ 13678 retval += 1; 13679 if (!wantcount) 13680 goto out; 13681 } 13682 continue; 13683 13684 case D_INDIRDEP: 13685 indirdep = WK_INDIRDEP(wk); 13686 13687 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13688 /* indirect truncation dependency */ 13689 retval += 1; 13690 if (!wantcount) 13691 goto out; 13692 } 13693 13694 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13695 /* indirect block pointer dependency */ 13696 retval += 1; 13697 if (!wantcount) 13698 goto out; 13699 } 13700 continue; 13701 13702 case D_PAGEDEP: 13703 pagedep = WK_PAGEDEP(wk); 13704 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13705 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13706 /* Journal remove ref dependency. */ 13707 retval += 1; 13708 if (!wantcount) 13709 goto out; 13710 } 13711 } 13712 for (i = 0; i < DAHASHSZ; i++) { 13713 13714 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13715 /* directory entry dependency */ 13716 retval += 1; 13717 if (!wantcount) 13718 goto out; 13719 } 13720 } 13721 continue; 13722 13723 case D_BMSAFEMAP: 13724 bmsafemap = WK_BMSAFEMAP(wk); 13725 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 13726 /* Add reference dependency. */ 13727 retval += 1; 13728 if (!wantcount) 13729 goto out; 13730 } 13731 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 13732 /* Allocate block dependency. */ 13733 retval += 1; 13734 if (!wantcount) 13735 goto out; 13736 } 13737 continue; 13738 13739 case D_FREEBLKS: 13740 freeblks = WK_FREEBLKS(wk); 13741 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 13742 /* Freeblk journal dependency. */ 13743 retval += 1; 13744 if (!wantcount) 13745 goto out; 13746 } 13747 continue; 13748 13749 case D_ALLOCDIRECT: 13750 case D_ALLOCINDIR: 13751 newblk = WK_NEWBLK(wk); 13752 if (newblk->nb_jnewblk) { 13753 /* Journal allocate dependency. */ 13754 retval += 1; 13755 if (!wantcount) 13756 goto out; 13757 } 13758 continue; 13759 13760 case D_MKDIR: 13761 mkdir = WK_MKDIR(wk); 13762 if (mkdir->md_jaddref) { 13763 /* Journal reference dependency. */ 13764 retval += 1; 13765 if (!wantcount) 13766 goto out; 13767 } 13768 continue; 13769 13770 case D_FREEWORK: 13771 case D_FREEDEP: 13772 case D_JSEGDEP: 13773 case D_JSEG: 13774 case D_SBDEP: 13775 /* never a dependency on these blocks */ 13776 continue; 13777 13778 default: 13779 panic("softdep_count_dependencies: Unexpected type %s", 13780 TYPENAME(wk->wk_type)); 13781 /* NOTREACHED */ 13782 } 13783 } 13784 out: 13785 FREE_LOCK(ump); 13786 return retval; 13787 } 13788 13789 /* 13790 * Acquire exclusive access to a buffer. 13791 * Must be called with a locked mtx parameter. 13792 * Return acquired buffer or NULL on failure. 13793 */ 13794 static struct buf * 13795 getdirtybuf(bp, lock, waitfor) 13796 struct buf *bp; 13797 struct rwlock *lock; 13798 int waitfor; 13799 { 13800 int error; 13801 13802 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 13803 if (waitfor != MNT_WAIT) 13804 return (NULL); 13805 error = BUF_LOCK(bp, 13806 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 13807 /* 13808 * Even if we sucessfully acquire bp here, we have dropped 13809 * lock, which may violates our guarantee. 13810 */ 13811 if (error == 0) 13812 BUF_UNLOCK(bp); 13813 else if (error != ENOLCK) 13814 panic("getdirtybuf: inconsistent lock: %d", error); 13815 rw_wlock(lock); 13816 return (NULL); 13817 } 13818 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13819 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 13820 rw_wunlock(lock); 13821 BO_LOCK(bp->b_bufobj); 13822 BUF_UNLOCK(bp); 13823 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13824 bp->b_vflags |= BV_BKGRDWAIT; 13825 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 13826 PRIBIO | PDROP, "getbuf", 0); 13827 } else 13828 BO_UNLOCK(bp->b_bufobj); 13829 rw_wlock(lock); 13830 return (NULL); 13831 } 13832 BUF_UNLOCK(bp); 13833 if (waitfor != MNT_WAIT) 13834 return (NULL); 13835 /* 13836 * The lock argument must be bp->b_vp's mutex in 13837 * this case. 13838 */ 13839 #ifdef DEBUG_VFS_LOCKS 13840 if (bp->b_vp->v_type != VCHR) 13841 ASSERT_BO_WLOCKED(bp->b_bufobj); 13842 #endif 13843 bp->b_vflags |= BV_BKGRDWAIT; 13844 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 13845 return (NULL); 13846 } 13847 if ((bp->b_flags & B_DELWRI) == 0) { 13848 BUF_UNLOCK(bp); 13849 return (NULL); 13850 } 13851 bremfree(bp); 13852 return (bp); 13853 } 13854 13855 13856 /* 13857 * Check if it is safe to suspend the file system now. On entry, 13858 * the vnode interlock for devvp should be held. Return 0 with 13859 * the mount interlock held if the file system can be suspended now, 13860 * otherwise return EAGAIN with the mount interlock held. 13861 */ 13862 int 13863 softdep_check_suspend(struct mount *mp, 13864 struct vnode *devvp, 13865 int softdep_depcnt, 13866 int softdep_accdepcnt, 13867 int secondary_writes, 13868 int secondary_accwrites) 13869 { 13870 struct bufobj *bo; 13871 struct ufsmount *ump; 13872 struct inodedep *inodedep; 13873 int error, unlinked; 13874 13875 bo = &devvp->v_bufobj; 13876 ASSERT_BO_WLOCKED(bo); 13877 13878 /* 13879 * If we are not running with soft updates, then we need only 13880 * deal with secondary writes as we try to suspend. 13881 */ 13882 if (MOUNTEDSOFTDEP(mp) == 0) { 13883 MNT_ILOCK(mp); 13884 while (mp->mnt_secondary_writes != 0) { 13885 BO_UNLOCK(bo); 13886 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 13887 (PUSER - 1) | PDROP, "secwr", 0); 13888 BO_LOCK(bo); 13889 MNT_ILOCK(mp); 13890 } 13891 13892 /* 13893 * Reasons for needing more work before suspend: 13894 * - Dirty buffers on devvp. 13895 * - Secondary writes occurred after start of vnode sync loop 13896 */ 13897 error = 0; 13898 if (bo->bo_numoutput > 0 || 13899 bo->bo_dirty.bv_cnt > 0 || 13900 secondary_writes != 0 || 13901 mp->mnt_secondary_writes != 0 || 13902 secondary_accwrites != mp->mnt_secondary_accwrites) 13903 error = EAGAIN; 13904 BO_UNLOCK(bo); 13905 return (error); 13906 } 13907 13908 /* 13909 * If we are running with soft updates, then we need to coordinate 13910 * with them as we try to suspend. 13911 */ 13912 ump = VFSTOUFS(mp); 13913 for (;;) { 13914 if (!TRY_ACQUIRE_LOCK(ump)) { 13915 BO_UNLOCK(bo); 13916 ACQUIRE_LOCK(ump); 13917 FREE_LOCK(ump); 13918 BO_LOCK(bo); 13919 continue; 13920 } 13921 MNT_ILOCK(mp); 13922 if (mp->mnt_secondary_writes != 0) { 13923 FREE_LOCK(ump); 13924 BO_UNLOCK(bo); 13925 msleep(&mp->mnt_secondary_writes, 13926 MNT_MTX(mp), 13927 (PUSER - 1) | PDROP, "secwr", 0); 13928 BO_LOCK(bo); 13929 continue; 13930 } 13931 break; 13932 } 13933 13934 unlinked = 0; 13935 if (MOUNTEDSUJ(mp)) { 13936 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 13937 inodedep != NULL; 13938 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 13939 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 13940 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 13941 UNLINKONLIST) || 13942 !check_inodedep_free(inodedep)) 13943 continue; 13944 unlinked++; 13945 } 13946 } 13947 13948 /* 13949 * Reasons for needing more work before suspend: 13950 * - Dirty buffers on devvp. 13951 * - Softdep activity occurred after start of vnode sync loop 13952 * - Secondary writes occurred after start of vnode sync loop 13953 */ 13954 error = 0; 13955 if (bo->bo_numoutput > 0 || 13956 bo->bo_dirty.bv_cnt > 0 || 13957 softdep_depcnt != unlinked || 13958 ump->softdep_deps != unlinked || 13959 softdep_accdepcnt != ump->softdep_accdeps || 13960 secondary_writes != 0 || 13961 mp->mnt_secondary_writes != 0 || 13962 secondary_accwrites != mp->mnt_secondary_accwrites) 13963 error = EAGAIN; 13964 FREE_LOCK(ump); 13965 BO_UNLOCK(bo); 13966 return (error); 13967 } 13968 13969 13970 /* 13971 * Get the number of dependency structures for the file system, both 13972 * the current number and the total number allocated. These will 13973 * later be used to detect that softdep processing has occurred. 13974 */ 13975 void 13976 softdep_get_depcounts(struct mount *mp, 13977 int *softdep_depsp, 13978 int *softdep_accdepsp) 13979 { 13980 struct ufsmount *ump; 13981 13982 if (MOUNTEDSOFTDEP(mp) == 0) { 13983 *softdep_depsp = 0; 13984 *softdep_accdepsp = 0; 13985 return; 13986 } 13987 ump = VFSTOUFS(mp); 13988 ACQUIRE_LOCK(ump); 13989 *softdep_depsp = ump->softdep_deps; 13990 *softdep_accdepsp = ump->softdep_accdeps; 13991 FREE_LOCK(ump); 13992 } 13993 13994 /* 13995 * Wait for pending output on a vnode to complete. 13996 * Must be called with vnode lock and interlock locked. 13997 * 13998 * XXX: Should just be a call to bufobj_wwait(). 13999 */ 14000 static void 14001 drain_output(vp) 14002 struct vnode *vp; 14003 { 14004 struct bufobj *bo; 14005 14006 bo = &vp->v_bufobj; 14007 ASSERT_VOP_LOCKED(vp, "drain_output"); 14008 ASSERT_BO_WLOCKED(bo); 14009 14010 while (bo->bo_numoutput) { 14011 bo->bo_flag |= BO_WWAIT; 14012 msleep((caddr_t)&bo->bo_numoutput, 14013 BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0); 14014 } 14015 } 14016 14017 /* 14018 * Called whenever a buffer that is being invalidated or reallocated 14019 * contains dependencies. This should only happen if an I/O error has 14020 * occurred. The routine is called with the buffer locked. 14021 */ 14022 static void 14023 softdep_deallocate_dependencies(bp) 14024 struct buf *bp; 14025 { 14026 14027 if ((bp->b_ioflags & BIO_ERROR) == 0) 14028 panic("softdep_deallocate_dependencies: dangling deps"); 14029 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14030 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14031 else 14032 printf("softdep_deallocate_dependencies: " 14033 "got error %d while accessing filesystem\n", bp->b_error); 14034 if (bp->b_error != ENXIO) 14035 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14036 } 14037 14038 /* 14039 * Function to handle asynchronous write errors in the filesystem. 14040 */ 14041 static void 14042 softdep_error(func, error) 14043 char *func; 14044 int error; 14045 { 14046 14047 /* XXX should do something better! */ 14048 printf("%s: got error %d while accessing filesystem\n", func, error); 14049 } 14050 14051 #ifdef DDB 14052 14053 static void 14054 inodedep_print(struct inodedep *inodedep, int verbose) 14055 { 14056 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d" 14057 " saveino %p\n", 14058 inodedep, inodedep->id_fs, inodedep->id_state, 14059 (intmax_t)inodedep->id_ino, 14060 (intmax_t)fsbtodb(inodedep->id_fs, 14061 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14062 inodedep->id_nlinkdelta, inodedep->id_savednlink, 14063 inodedep->id_savedino1); 14064 14065 if (verbose == 0) 14066 return; 14067 14068 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 14069 "mkdiradd %p\n", 14070 LIST_FIRST(&inodedep->id_pendinghd), 14071 LIST_FIRST(&inodedep->id_bufwait), 14072 LIST_FIRST(&inodedep->id_inowait), 14073 TAILQ_FIRST(&inodedep->id_inoreflst), 14074 inodedep->id_mkdiradd); 14075 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 14076 TAILQ_FIRST(&inodedep->id_inoupdt), 14077 TAILQ_FIRST(&inodedep->id_newinoupdt), 14078 TAILQ_FIRST(&inodedep->id_extupdt), 14079 TAILQ_FIRST(&inodedep->id_newextupdt)); 14080 } 14081 14082 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 14083 { 14084 14085 if (have_addr == 0) { 14086 db_printf("Address required\n"); 14087 return; 14088 } 14089 inodedep_print((struct inodedep*)addr, 1); 14090 } 14091 14092 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 14093 { 14094 struct inodedep_hashhead *inodedephd; 14095 struct inodedep *inodedep; 14096 struct ufsmount *ump; 14097 int cnt; 14098 14099 if (have_addr == 0) { 14100 db_printf("Address required\n"); 14101 return; 14102 } 14103 ump = (struct ufsmount *)addr; 14104 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14105 inodedephd = &ump->inodedep_hashtbl[cnt]; 14106 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14107 inodedep_print(inodedep, 0); 14108 } 14109 } 14110 } 14111 14112 DB_SHOW_COMMAND(worklist, db_show_worklist) 14113 { 14114 struct worklist *wk; 14115 14116 if (have_addr == 0) { 14117 db_printf("Address required\n"); 14118 return; 14119 } 14120 wk = (struct worklist *)addr; 14121 printf("worklist: %p type %s state 0x%X\n", 14122 wk, TYPENAME(wk->wk_type), wk->wk_state); 14123 } 14124 14125 DB_SHOW_COMMAND(workhead, db_show_workhead) 14126 { 14127 struct workhead *wkhd; 14128 struct worklist *wk; 14129 int i; 14130 14131 if (have_addr == 0) { 14132 db_printf("Address required\n"); 14133 return; 14134 } 14135 wkhd = (struct workhead *)addr; 14136 wk = LIST_FIRST(wkhd); 14137 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 14138 db_printf("worklist: %p type %s state 0x%X", 14139 wk, TYPENAME(wk->wk_type), wk->wk_state); 14140 if (i == 100) 14141 db_printf("workhead overflow"); 14142 printf("\n"); 14143 } 14144 14145 14146 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 14147 { 14148 struct mkdirlist *mkdirlisthd; 14149 struct jaddref *jaddref; 14150 struct diradd *diradd; 14151 struct mkdir *mkdir; 14152 14153 if (have_addr == 0) { 14154 db_printf("Address required\n"); 14155 return; 14156 } 14157 mkdirlisthd = (struct mkdirlist *)addr; 14158 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14159 diradd = mkdir->md_diradd; 14160 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 14161 mkdir, mkdir->md_state, diradd, diradd->da_state); 14162 if ((jaddref = mkdir->md_jaddref) != NULL) 14163 db_printf(" jaddref %p jaddref state 0x%X", 14164 jaddref, jaddref->ja_state); 14165 db_printf("\n"); 14166 } 14167 } 14168 14169 /* exported to ffs_vfsops.c */ 14170 extern void db_print_ffs(struct ufsmount *ump); 14171 void 14172 db_print_ffs(struct ufsmount *ump) 14173 { 14174 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 14175 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 14176 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 14177 ump->softdep_deps, ump->softdep_req); 14178 } 14179 14180 #endif /* DDB */ 14181 14182 #endif /* SOFTUPDATES */ 14183