xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 730cecb05aaf016ac52ef7cfc691ccec3a0408cd)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/stat.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/vnode.h>
76 #include <sys/conf.h>
77 
78 #include <ufs/ufs/dir.h>
79 #include <ufs/ufs/extattr.h>
80 #include <ufs/ufs/quota.h>
81 #include <ufs/ufs/inode.h>
82 #include <ufs/ufs/ufsmount.h>
83 #include <ufs/ffs/fs.h>
84 #include <ufs/ffs/softdep.h>
85 #include <ufs/ffs/ffs_extern.h>
86 #include <ufs/ufs/ufs_extern.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_object.h>
91 
92 #include <geom/geom.h>
93 
94 #include <ddb/ddb.h>
95 
96 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
97 
98 #ifndef SOFTUPDATES
99 
100 int
101 softdep_flushfiles(oldmnt, flags, td)
102 	struct mount *oldmnt;
103 	int flags;
104 	struct thread *td;
105 {
106 
107 	panic("softdep_flushfiles called");
108 }
109 
110 int
111 softdep_mount(devvp, mp, fs, cred)
112 	struct vnode *devvp;
113 	struct mount *mp;
114 	struct fs *fs;
115 	struct ucred *cred;
116 {
117 
118 	return (0);
119 }
120 
121 void
122 softdep_initialize()
123 {
124 
125 	return;
126 }
127 
128 void
129 softdep_uninitialize()
130 {
131 
132 	return;
133 }
134 
135 void
136 softdep_unmount(mp)
137 	struct mount *mp;
138 {
139 
140 }
141 
142 void
143 softdep_setup_sbupdate(ump, fs, bp)
144 	struct ufsmount *ump;
145 	struct fs *fs;
146 	struct buf *bp;
147 {
148 }
149 
150 void
151 softdep_setup_inomapdep(bp, ip, newinum, mode)
152 	struct buf *bp;
153 	struct inode *ip;
154 	ino_t newinum;
155 	int mode;
156 {
157 
158 	panic("softdep_setup_inomapdep called");
159 }
160 
161 void
162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
163 	struct buf *bp;
164 	struct mount *mp;
165 	ufs2_daddr_t newblkno;
166 	int frags;
167 	int oldfrags;
168 {
169 
170 	panic("softdep_setup_blkmapdep called");
171 }
172 
173 void
174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
175 	struct inode *ip;
176 	ufs_lbn_t lbn;
177 	ufs2_daddr_t newblkno;
178 	ufs2_daddr_t oldblkno;
179 	long newsize;
180 	long oldsize;
181 	struct buf *bp;
182 {
183 
184 	panic("softdep_setup_allocdirect called");
185 }
186 
187 void
188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
189 	struct inode *ip;
190 	ufs_lbn_t lbn;
191 	ufs2_daddr_t newblkno;
192 	ufs2_daddr_t oldblkno;
193 	long newsize;
194 	long oldsize;
195 	struct buf *bp;
196 {
197 
198 	panic("softdep_setup_allocext called");
199 }
200 
201 void
202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
203 	struct inode *ip;
204 	ufs_lbn_t lbn;
205 	struct buf *bp;
206 	int ptrno;
207 	ufs2_daddr_t newblkno;
208 	ufs2_daddr_t oldblkno;
209 	struct buf *nbp;
210 {
211 
212 	panic("softdep_setup_allocindir_page called");
213 }
214 
215 void
216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
217 	struct buf *nbp;
218 	struct inode *ip;
219 	struct buf *bp;
220 	int ptrno;
221 	ufs2_daddr_t newblkno;
222 {
223 
224 	panic("softdep_setup_allocindir_meta called");
225 }
226 
227 void
228 softdep_journal_freeblocks(ip, cred, length, flags)
229 	struct inode *ip;
230 	struct ucred *cred;
231 	off_t length;
232 	int flags;
233 {
234 
235 	panic("softdep_journal_freeblocks called");
236 }
237 
238 void
239 softdep_journal_fsync(ip)
240 	struct inode *ip;
241 {
242 
243 	panic("softdep_journal_fsync called");
244 }
245 
246 void
247 softdep_setup_freeblocks(ip, length, flags)
248 	struct inode *ip;
249 	off_t length;
250 	int flags;
251 {
252 
253 	panic("softdep_setup_freeblocks called");
254 }
255 
256 void
257 softdep_freefile(pvp, ino, mode)
258 		struct vnode *pvp;
259 		ino_t ino;
260 		int mode;
261 {
262 
263 	panic("softdep_freefile called");
264 }
265 
266 int
267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
268 	struct buf *bp;
269 	struct inode *dp;
270 	off_t diroffset;
271 	ino_t newinum;
272 	struct buf *newdirbp;
273 	int isnewblk;
274 {
275 
276 	panic("softdep_setup_directory_add called");
277 }
278 
279 void
280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
281 	struct buf *bp;
282 	struct inode *dp;
283 	caddr_t base;
284 	caddr_t oldloc;
285 	caddr_t newloc;
286 	int entrysize;
287 {
288 
289 	panic("softdep_change_directoryentry_offset called");
290 }
291 
292 void
293 softdep_setup_remove(bp, dp, ip, isrmdir)
294 	struct buf *bp;
295 	struct inode *dp;
296 	struct inode *ip;
297 	int isrmdir;
298 {
299 
300 	panic("softdep_setup_remove called");
301 }
302 
303 void
304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
305 	struct buf *bp;
306 	struct inode *dp;
307 	struct inode *ip;
308 	ino_t newinum;
309 	int isrmdir;
310 {
311 
312 	panic("softdep_setup_directory_change called");
313 }
314 
315 void
316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
317 	struct mount *mp;
318 	struct buf *bp;
319 	ufs2_daddr_t blkno;
320 	int frags;
321 	struct workhead *wkhd;
322 {
323 
324 	panic("%s called", __FUNCTION__);
325 }
326 
327 void
328 softdep_setup_inofree(mp, bp, ino, wkhd)
329 	struct mount *mp;
330 	struct buf *bp;
331 	ino_t ino;
332 	struct workhead *wkhd;
333 {
334 
335 	panic("%s called", __FUNCTION__);
336 }
337 
338 void
339 softdep_setup_unlink(dp, ip)
340 	struct inode *dp;
341 	struct inode *ip;
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_setup_link(dp, ip)
349 	struct inode *dp;
350 	struct inode *ip;
351 {
352 
353 	panic("%s called", __FUNCTION__);
354 }
355 
356 void
357 softdep_revert_link(dp, ip)
358 	struct inode *dp;
359 	struct inode *ip;
360 {
361 
362 	panic("%s called", __FUNCTION__);
363 }
364 
365 void
366 softdep_setup_rmdir(dp, ip)
367 	struct inode *dp;
368 	struct inode *ip;
369 {
370 
371 	panic("%s called", __FUNCTION__);
372 }
373 
374 void
375 softdep_revert_rmdir(dp, ip)
376 	struct inode *dp;
377 	struct inode *ip;
378 {
379 
380 	panic("%s called", __FUNCTION__);
381 }
382 
383 void
384 softdep_setup_create(dp, ip)
385 	struct inode *dp;
386 	struct inode *ip;
387 {
388 
389 	panic("%s called", __FUNCTION__);
390 }
391 
392 void
393 softdep_revert_create(dp, ip)
394 	struct inode *dp;
395 	struct inode *ip;
396 {
397 
398 	panic("%s called", __FUNCTION__);
399 }
400 
401 void
402 softdep_setup_mkdir(dp, ip)
403 	struct inode *dp;
404 	struct inode *ip;
405 {
406 
407 	panic("%s called", __FUNCTION__);
408 }
409 
410 void
411 softdep_revert_mkdir(dp, ip)
412 	struct inode *dp;
413 	struct inode *ip;
414 {
415 
416 	panic("%s called", __FUNCTION__);
417 }
418 
419 void
420 softdep_setup_dotdot_link(dp, ip)
421 	struct inode *dp;
422 	struct inode *ip;
423 {
424 
425 	panic("%s called", __FUNCTION__);
426 }
427 
428 int
429 softdep_prealloc(vp, waitok)
430 	struct vnode *vp;
431 	int waitok;
432 {
433 
434 	panic("%s called", __FUNCTION__);
435 
436 	return (0);
437 }
438 
439 int
440 softdep_journal_lookup(mp, vpp)
441 	struct mount *mp;
442 	struct vnode **vpp;
443 {
444 
445 	return (ENOENT);
446 }
447 
448 void
449 softdep_change_linkcnt(ip)
450 	struct inode *ip;
451 {
452 
453 	panic("softdep_change_linkcnt called");
454 }
455 
456 void
457 softdep_load_inodeblock(ip)
458 	struct inode *ip;
459 {
460 
461 	panic("softdep_load_inodeblock called");
462 }
463 
464 void
465 softdep_update_inodeblock(ip, bp, waitfor)
466 	struct inode *ip;
467 	struct buf *bp;
468 	int waitfor;
469 {
470 
471 	panic("softdep_update_inodeblock called");
472 }
473 
474 int
475 softdep_fsync(vp)
476 	struct vnode *vp;	/* the "in_core" copy of the inode */
477 {
478 
479 	return (0);
480 }
481 
482 void
483 softdep_fsync_mountdev(vp)
484 	struct vnode *vp;
485 {
486 
487 	return;
488 }
489 
490 int
491 softdep_flushworklist(oldmnt, countp, td)
492 	struct mount *oldmnt;
493 	int *countp;
494 	struct thread *td;
495 {
496 
497 	*countp = 0;
498 	return (0);
499 }
500 
501 int
502 softdep_sync_metadata(struct vnode *vp)
503 {
504 
505 	return (0);
506 }
507 
508 int
509 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
510 {
511 
512 	return (0);
513 }
514 
515 int
516 softdep_slowdown(vp)
517 	struct vnode *vp;
518 {
519 
520 	panic("softdep_slowdown called");
521 }
522 
523 void
524 softdep_releasefile(ip)
525 	struct inode *ip;	/* inode with the zero effective link count */
526 {
527 
528 	panic("softdep_releasefile called");
529 }
530 
531 int
532 softdep_request_cleanup(fs, vp, cred, resource)
533 	struct fs *fs;
534 	struct vnode *vp;
535 	struct ucred *cred;
536 	int resource;
537 {
538 
539 	return (0);
540 }
541 
542 int
543 softdep_check_suspend(struct mount *mp,
544 		      struct vnode *devvp,
545 		      int softdep_deps,
546 		      int softdep_accdeps,
547 		      int secondary_writes,
548 		      int secondary_accwrites)
549 {
550 	struct bufobj *bo;
551 	int error;
552 
553 	(void) softdep_deps,
554 	(void) softdep_accdeps;
555 
556 	bo = &devvp->v_bufobj;
557 	ASSERT_BO_LOCKED(bo);
558 
559 	MNT_ILOCK(mp);
560 	while (mp->mnt_secondary_writes != 0) {
561 		BO_UNLOCK(bo);
562 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
563 		    (PUSER - 1) | PDROP, "secwr", 0);
564 		BO_LOCK(bo);
565 		MNT_ILOCK(mp);
566 	}
567 
568 	/*
569 	 * Reasons for needing more work before suspend:
570 	 * - Dirty buffers on devvp.
571 	 * - Secondary writes occurred after start of vnode sync loop
572 	 */
573 	error = 0;
574 	if (bo->bo_numoutput > 0 ||
575 	    bo->bo_dirty.bv_cnt > 0 ||
576 	    secondary_writes != 0 ||
577 	    mp->mnt_secondary_writes != 0 ||
578 	    secondary_accwrites != mp->mnt_secondary_accwrites)
579 		error = EAGAIN;
580 	BO_UNLOCK(bo);
581 	return (error);
582 }
583 
584 void
585 softdep_get_depcounts(struct mount *mp,
586 		      int *softdepactivep,
587 		      int *softdepactiveaccp)
588 {
589 	(void) mp;
590 	*softdepactivep = 0;
591 	*softdepactiveaccp = 0;
592 }
593 
594 void
595 softdep_buf_append(bp, wkhd)
596 	struct buf *bp;
597 	struct workhead *wkhd;
598 {
599 
600 	panic("softdep_buf_appendwork called");
601 }
602 
603 void
604 softdep_inode_append(ip, cred, wkhd)
605 	struct inode *ip;
606 	struct ucred *cred;
607 	struct workhead *wkhd;
608 {
609 
610 	panic("softdep_inode_appendwork called");
611 }
612 
613 void
614 softdep_freework(wkhd)
615 	struct workhead *wkhd;
616 {
617 
618 	panic("softdep_freework called");
619 }
620 
621 #else
622 
623 FEATURE(softupdates, "FFS soft-updates support");
624 
625 /*
626  * These definitions need to be adapted to the system to which
627  * this file is being ported.
628  */
629 
630 #define M_SOFTDEP_FLAGS	(M_WAITOK)
631 
632 #define	D_PAGEDEP	0
633 #define	D_INODEDEP	1
634 #define	D_BMSAFEMAP	2
635 #define	D_NEWBLK	3
636 #define	D_ALLOCDIRECT	4
637 #define	D_INDIRDEP	5
638 #define	D_ALLOCINDIR	6
639 #define	D_FREEFRAG	7
640 #define	D_FREEBLKS	8
641 #define	D_FREEFILE	9
642 #define	D_DIRADD	10
643 #define	D_MKDIR		11
644 #define	D_DIRREM	12
645 #define	D_NEWDIRBLK	13
646 #define	D_FREEWORK	14
647 #define	D_FREEDEP	15
648 #define	D_JADDREF	16
649 #define	D_JREMREF	17
650 #define	D_JMVREF	18
651 #define	D_JNEWBLK	19
652 #define	D_JFREEBLK	20
653 #define	D_JFREEFRAG	21
654 #define	D_JSEG		22
655 #define	D_JSEGDEP	23
656 #define	D_SBDEP		24
657 #define	D_JTRUNC	25
658 #define	D_JFSYNC	26
659 #define	D_SENTINAL	27
660 #define	D_LAST		D_SENTINAL
661 
662 unsigned long dep_current[D_LAST + 1];
663 unsigned long dep_total[D_LAST + 1];
664 unsigned long dep_write[D_LAST + 1];
665 
666 
667 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
668     "soft updates stats");
669 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
670     "total dependencies allocated");
671 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
672     "current dependencies allocated");
673 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
674     "current dependencies written");
675 
676 #define	SOFTDEP_TYPE(type, str, long)					\
677     static MALLOC_DEFINE(M_ ## type, #str, long);			\
678     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
679 	&dep_total[D_ ## type], 0, "");					\
680     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
681 	&dep_current[D_ ## type], 0, "");				\
682     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
683 	&dep_write[D_ ## type], 0, "");
684 
685 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
686 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
687 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
688     "Block or frag allocated from cyl group map");
689 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
690 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
691 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
692 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
693 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
694 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
695 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
696 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
697 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
698 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
699 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
700 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
701 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
702 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
703 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
704 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
705 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
706 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
707 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
708 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
709 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
710 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
711 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
712 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
713 
714 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
715 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
716 
717 /*
718  * translate from workitem type to memory type
719  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
720  */
721 static struct malloc_type *memtype[] = {
722 	M_PAGEDEP,
723 	M_INODEDEP,
724 	M_BMSAFEMAP,
725 	M_NEWBLK,
726 	M_ALLOCDIRECT,
727 	M_INDIRDEP,
728 	M_ALLOCINDIR,
729 	M_FREEFRAG,
730 	M_FREEBLKS,
731 	M_FREEFILE,
732 	M_DIRADD,
733 	M_MKDIR,
734 	M_DIRREM,
735 	M_NEWDIRBLK,
736 	M_FREEWORK,
737 	M_FREEDEP,
738 	M_JADDREF,
739 	M_JREMREF,
740 	M_JMVREF,
741 	M_JNEWBLK,
742 	M_JFREEBLK,
743 	M_JFREEFRAG,
744 	M_JSEG,
745 	M_JSEGDEP,
746 	M_SBDEP,
747 	M_JTRUNC,
748 	M_JFSYNC
749 };
750 
751 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
752 
753 #define DtoM(type) (memtype[type])
754 
755 /*
756  * Names of malloc types.
757  */
758 #define TYPENAME(type)  \
759 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
760 /*
761  * End system adaptation definitions.
762  */
763 
764 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
765 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
766 
767 /*
768  * Forward declarations.
769  */
770 struct inodedep_hashhead;
771 struct newblk_hashhead;
772 struct pagedep_hashhead;
773 struct bmsafemap_hashhead;
774 
775 /*
776  * Private journaling structures.
777  */
778 struct jblocks {
779 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
780 	struct jseg	*jb_writeseg;	/* Next write to complete. */
781 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
782 	struct jextent	*jb_extent;	/* Extent array. */
783 	uint64_t	jb_nextseq;	/* Next sequence number. */
784 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
785 	uint8_t		jb_needseg;	/* Need a forced segment. */
786 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
787 	int		jb_avail;	/* Available extents. */
788 	int		jb_used;	/* Last used extent. */
789 	int		jb_head;	/* Allocator head. */
790 	int		jb_off;		/* Allocator extent offset. */
791 	int		jb_blocks;	/* Total disk blocks covered. */
792 	int		jb_free;	/* Total disk blocks free. */
793 	int		jb_min;		/* Minimum free space. */
794 	int		jb_low;		/* Low on space. */
795 	int		jb_age;		/* Insertion time of oldest rec. */
796 };
797 
798 struct jextent {
799 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
800 	int		je_blocks;	/* Disk block count. */
801 };
802 
803 /*
804  * Internal function prototypes.
805  */
806 static	void softdep_error(char *, int);
807 static	void drain_output(struct vnode *);
808 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
809 static	void clear_remove(void);
810 static	void clear_inodedeps(void);
811 static	void unlinked_inodedep(struct mount *, struct inodedep *);
812 static	void clear_unlinked_inodedep(struct inodedep *);
813 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
814 static	int flush_pagedep_deps(struct vnode *, struct mount *,
815 	    struct diraddhd *);
816 static	int free_pagedep(struct pagedep *);
817 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
818 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
819 static	int flush_deplist(struct allocdirectlst *, int, int *);
820 static	int sync_cgs(struct mount *, int);
821 static	int handle_written_filepage(struct pagedep *, struct buf *);
822 static	int handle_written_sbdep(struct sbdep *, struct buf *);
823 static	void initiate_write_sbdep(struct sbdep *);
824 static  void diradd_inode_written(struct diradd *, struct inodedep *);
825 static	int handle_written_indirdep(struct indirdep *, struct buf *,
826 	    struct buf**);
827 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
828 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
829 	    uint8_t *);
830 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
831 static	void handle_written_jaddref(struct jaddref *);
832 static	void handle_written_jremref(struct jremref *);
833 static	void handle_written_jseg(struct jseg *, struct buf *);
834 static	void handle_written_jnewblk(struct jnewblk *);
835 static	void handle_written_jblkdep(struct jblkdep *);
836 static	void handle_written_jfreefrag(struct jfreefrag *);
837 static	void complete_jseg(struct jseg *);
838 static	void complete_jsegs(struct jseg *);
839 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
840 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
841 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
842 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
843 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
844 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
845 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
846 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
847 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
848 static	inline void inoref_write(struct inoref *, struct jseg *,
849 	    struct jrefrec *);
850 static	void handle_allocdirect_partdone(struct allocdirect *,
851 	    struct workhead *);
852 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
853 	    struct workhead *);
854 static	void indirdep_complete(struct indirdep *);
855 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
856 static	void indirblk_insert(struct freework *);
857 static	void indirblk_remove(struct freework *);
858 static	void handle_allocindir_partdone(struct allocindir *);
859 static	void initiate_write_filepage(struct pagedep *, struct buf *);
860 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
861 static	void handle_written_mkdir(struct mkdir *, int);
862 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
863 	    uint8_t *);
864 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
865 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
866 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
867 static	void handle_workitem_freefile(struct freefile *);
868 static	int handle_workitem_remove(struct dirrem *, int);
869 static	struct dirrem *newdirrem(struct buf *, struct inode *,
870 	    struct inode *, int, struct dirrem **);
871 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
872 	    struct buf *);
873 static	void cancel_indirdep(struct indirdep *, struct buf *,
874 	    struct freeblks *);
875 static	void free_indirdep(struct indirdep *);
876 static	void free_diradd(struct diradd *, struct workhead *);
877 static	void merge_diradd(struct inodedep *, struct diradd *);
878 static	void complete_diradd(struct diradd *);
879 static	struct diradd *diradd_lookup(struct pagedep *, int);
880 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
881 	    struct jremref *);
882 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
883 	    struct jremref *);
884 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
885 	    struct jremref *, struct jremref *);
886 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
887 	    struct jremref *);
888 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
889 	    struct freeblks *, int);
890 static	int setup_trunc_indir(struct freeblks *, struct inode *,
891 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
892 static	void complete_trunc_indir(struct freework *);
893 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
894 	    int);
895 static	void complete_mkdir(struct mkdir *);
896 static	void free_newdirblk(struct newdirblk *);
897 static	void free_jremref(struct jremref *);
898 static	void free_jaddref(struct jaddref *);
899 static	void free_jsegdep(struct jsegdep *);
900 static	void free_jsegs(struct jblocks *);
901 static	void rele_jseg(struct jseg *);
902 static	void free_jseg(struct jseg *, struct jblocks *);
903 static	void free_jnewblk(struct jnewblk *);
904 static	void free_jblkdep(struct jblkdep *);
905 static	void free_jfreefrag(struct jfreefrag *);
906 static	void free_freedep(struct freedep *);
907 static	void journal_jremref(struct dirrem *, struct jremref *,
908 	    struct inodedep *);
909 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
910 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
911 	    struct workhead *);
912 static	void cancel_jfreefrag(struct jfreefrag *);
913 static	inline void setup_freedirect(struct freeblks *, struct inode *,
914 	    int, int);
915 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
916 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
917 	    ufs_lbn_t, int);
918 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
919 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
920 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
921 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
922 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
923 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
924 	    int, int);
925 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
926 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
927 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
928 static	void newblk_freefrag(struct newblk*);
929 static	void free_newblk(struct newblk *);
930 static	void cancel_allocdirect(struct allocdirectlst *,
931 	    struct allocdirect *, struct freeblks *);
932 static	int check_inode_unwritten(struct inodedep *);
933 static	int free_inodedep(struct inodedep *);
934 static	void freework_freeblock(struct freework *);
935 static	void freework_enqueue(struct freework *);
936 static	int handle_workitem_freeblocks(struct freeblks *, int);
937 static	int handle_complete_freeblocks(struct freeblks *, int);
938 static	void handle_workitem_indirblk(struct freework *);
939 static	void handle_written_freework(struct freework *);
940 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
941 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
942 	    struct workhead *);
943 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
944 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
945 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
946 	    ufs2_daddr_t, ufs_lbn_t);
947 static	void handle_workitem_freefrag(struct freefrag *);
948 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
949 	    ufs_lbn_t);
950 static	void allocdirect_merge(struct allocdirectlst *,
951 	    struct allocdirect *, struct allocdirect *);
952 static	struct freefrag *allocindir_merge(struct allocindir *,
953 	    struct allocindir *);
954 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
955 	    struct bmsafemap **);
956 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
957 	    int cg, struct bmsafemap *);
958 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
959 	    int, struct newblk **);
960 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
961 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
962 	    struct inodedep **);
963 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
964 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
965 	    int, struct pagedep **);
966 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
967 	    struct mount *mp, int, struct pagedep **);
968 static	void pause_timer(void *);
969 static	int request_cleanup(struct mount *, int);
970 static	int process_worklist_item(struct mount *, int, int);
971 static	void process_removes(struct vnode *);
972 static	void process_truncates(struct vnode *);
973 static	void jwork_move(struct workhead *, struct workhead *);
974 static	void jwork_insert(struct workhead *, struct jsegdep *);
975 static	void add_to_worklist(struct worklist *, int);
976 static	void wake_worklist(struct worklist *);
977 static	void wait_worklist(struct worklist *, char *);
978 static	void remove_from_worklist(struct worklist *);
979 static	void softdep_flush(void);
980 static	void softdep_flushjournal(struct mount *);
981 static	int softdep_speedup(void);
982 static	void worklist_speedup(void);
983 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
984 static	void journal_unmount(struct mount *);
985 static	int journal_space(struct ufsmount *, int);
986 static	void journal_suspend(struct ufsmount *);
987 static	int journal_unsuspend(struct ufsmount *ump);
988 static	void softdep_prelink(struct vnode *, struct vnode *);
989 static	void add_to_journal(struct worklist *);
990 static	void remove_from_journal(struct worklist *);
991 static	void softdep_process_journal(struct mount *, struct worklist *, int);
992 static	struct jremref *newjremref(struct dirrem *, struct inode *,
993 	    struct inode *ip, off_t, nlink_t);
994 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
995 	    uint16_t);
996 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
997 	    uint16_t);
998 static	inline struct jsegdep *inoref_jseg(struct inoref *);
999 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
1000 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
1001 	    ufs2_daddr_t, int);
1002 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
1003 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
1004 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
1005 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
1006 	    ufs2_daddr_t, long, ufs_lbn_t);
1007 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
1008 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
1009 static	int jwait(struct worklist *, int);
1010 static	struct inodedep *inodedep_lookup_ip(struct inode *);
1011 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
1012 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
1013 static	void handle_jwork(struct workhead *);
1014 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
1015 	    struct mkdir **);
1016 static	struct jblocks *jblocks_create(void);
1017 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
1018 static	void jblocks_free(struct jblocks *, struct mount *, int);
1019 static	void jblocks_destroy(struct jblocks *);
1020 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
1021 
1022 /*
1023  * Exported softdep operations.
1024  */
1025 static	void softdep_disk_io_initiation(struct buf *);
1026 static	void softdep_disk_write_complete(struct buf *);
1027 static	void softdep_deallocate_dependencies(struct buf *);
1028 static	int softdep_count_dependencies(struct buf *bp, int);
1029 
1030 static struct mtx lk;
1031 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
1032 
1033 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
1034 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
1035 #define FREE_LOCK(lk)			mtx_unlock(lk)
1036 
1037 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1038 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1039 
1040 /*
1041  * Worklist queue management.
1042  * These routines require that the lock be held.
1043  */
1044 #ifndef /* NOT */ DEBUG
1045 #define WORKLIST_INSERT(head, item) do {	\
1046 	(item)->wk_state |= ONWORKLIST;		\
1047 	LIST_INSERT_HEAD(head, item, wk_list);	\
1048 } while (0)
1049 #define WORKLIST_REMOVE(item) do {		\
1050 	(item)->wk_state &= ~ONWORKLIST;	\
1051 	LIST_REMOVE(item, wk_list);		\
1052 } while (0)
1053 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1054 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1055 
1056 #else /* DEBUG */
1057 static	void worklist_insert(struct workhead *, struct worklist *, int);
1058 static	void worklist_remove(struct worklist *, int);
1059 
1060 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1061 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1062 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1063 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1064 
1065 static void
1066 worklist_insert(head, item, locked)
1067 	struct workhead *head;
1068 	struct worklist *item;
1069 	int locked;
1070 {
1071 
1072 	if (locked)
1073 		mtx_assert(&lk, MA_OWNED);
1074 	if (item->wk_state & ONWORKLIST)
1075 		panic("worklist_insert: %p %s(0x%X) already on list",
1076 		    item, TYPENAME(item->wk_type), item->wk_state);
1077 	item->wk_state |= ONWORKLIST;
1078 	LIST_INSERT_HEAD(head, item, wk_list);
1079 }
1080 
1081 static void
1082 worklist_remove(item, locked)
1083 	struct worklist *item;
1084 	int locked;
1085 {
1086 
1087 	if (locked)
1088 		mtx_assert(&lk, MA_OWNED);
1089 	if ((item->wk_state & ONWORKLIST) == 0)
1090 		panic("worklist_remove: %p %s(0x%X) not on list",
1091 		    item, TYPENAME(item->wk_type), item->wk_state);
1092 	item->wk_state &= ~ONWORKLIST;
1093 	LIST_REMOVE(item, wk_list);
1094 }
1095 #endif /* DEBUG */
1096 
1097 /*
1098  * Merge two jsegdeps keeping only the oldest one as newer references
1099  * can't be discarded until after older references.
1100  */
1101 static inline struct jsegdep *
1102 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1103 {
1104 	struct jsegdep *swp;
1105 
1106 	if (two == NULL)
1107 		return (one);
1108 
1109 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1110 		swp = one;
1111 		one = two;
1112 		two = swp;
1113 	}
1114 	WORKLIST_REMOVE(&two->jd_list);
1115 	free_jsegdep(two);
1116 
1117 	return (one);
1118 }
1119 
1120 /*
1121  * If two freedeps are compatible free one to reduce list size.
1122  */
1123 static inline struct freedep *
1124 freedep_merge(struct freedep *one, struct freedep *two)
1125 {
1126 	if (two == NULL)
1127 		return (one);
1128 
1129 	if (one->fd_freework == two->fd_freework) {
1130 		WORKLIST_REMOVE(&two->fd_list);
1131 		free_freedep(two);
1132 	}
1133 	return (one);
1134 }
1135 
1136 /*
1137  * Move journal work from one list to another.  Duplicate freedeps and
1138  * jsegdeps are coalesced to keep the lists as small as possible.
1139  */
1140 static void
1141 jwork_move(dst, src)
1142 	struct workhead *dst;
1143 	struct workhead *src;
1144 {
1145 	struct freedep *freedep;
1146 	struct jsegdep *jsegdep;
1147 	struct worklist *wkn;
1148 	struct worklist *wk;
1149 
1150 	KASSERT(dst != src,
1151 	    ("jwork_move: dst == src"));
1152 	freedep = NULL;
1153 	jsegdep = NULL;
1154 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1155 		if (wk->wk_type == D_JSEGDEP)
1156 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1157 		if (wk->wk_type == D_FREEDEP)
1158 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1159 	}
1160 
1161 	mtx_assert(&lk, MA_OWNED);
1162 	while ((wk = LIST_FIRST(src)) != NULL) {
1163 		WORKLIST_REMOVE(wk);
1164 		WORKLIST_INSERT(dst, wk);
1165 		if (wk->wk_type == D_JSEGDEP) {
1166 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1167 			continue;
1168 		}
1169 		if (wk->wk_type == D_FREEDEP)
1170 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1171 	}
1172 }
1173 
1174 static void
1175 jwork_insert(dst, jsegdep)
1176 	struct workhead *dst;
1177 	struct jsegdep *jsegdep;
1178 {
1179 	struct jsegdep *jsegdepn;
1180 	struct worklist *wk;
1181 
1182 	LIST_FOREACH(wk, dst, wk_list)
1183 		if (wk->wk_type == D_JSEGDEP)
1184 			break;
1185 	if (wk == NULL) {
1186 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1187 		return;
1188 	}
1189 	jsegdepn = WK_JSEGDEP(wk);
1190 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1191 		WORKLIST_REMOVE(wk);
1192 		free_jsegdep(jsegdepn);
1193 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1194 	} else
1195 		free_jsegdep(jsegdep);
1196 }
1197 
1198 /*
1199  * Routines for tracking and managing workitems.
1200  */
1201 static	void workitem_free(struct worklist *, int);
1202 static	void workitem_alloc(struct worklist *, int, struct mount *);
1203 
1204 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1205 
1206 static void
1207 workitem_free(item, type)
1208 	struct worklist *item;
1209 	int type;
1210 {
1211 	struct ufsmount *ump;
1212 	mtx_assert(&lk, MA_OWNED);
1213 
1214 #ifdef DEBUG
1215 	if (item->wk_state & ONWORKLIST)
1216 		panic("workitem_free: %s(0x%X) still on list",
1217 		    TYPENAME(item->wk_type), item->wk_state);
1218 	if (item->wk_type != type)
1219 		panic("workitem_free: type mismatch %s != %s",
1220 		    TYPENAME(item->wk_type), TYPENAME(type));
1221 #endif
1222 	if (item->wk_state & IOWAITING)
1223 		wakeup(item);
1224 	ump = VFSTOUFS(item->wk_mp);
1225 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1226 		wakeup(&ump->softdep_deps);
1227 	dep_current[type]--;
1228 	free(item, DtoM(type));
1229 }
1230 
1231 static void
1232 workitem_alloc(item, type, mp)
1233 	struct worklist *item;
1234 	int type;
1235 	struct mount *mp;
1236 {
1237 	struct ufsmount *ump;
1238 
1239 	item->wk_type = type;
1240 	item->wk_mp = mp;
1241 	item->wk_state = 0;
1242 
1243 	ump = VFSTOUFS(mp);
1244 	ACQUIRE_LOCK(&lk);
1245 	dep_current[type]++;
1246 	dep_total[type]++;
1247 	ump->softdep_deps++;
1248 	ump->softdep_accdeps++;
1249 	FREE_LOCK(&lk);
1250 }
1251 
1252 /*
1253  * Workitem queue management
1254  */
1255 static int max_softdeps;	/* maximum number of structs before slowdown */
1256 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1257 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1258 static int proc_waiting;	/* tracks whether we have a timeout posted */
1259 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1260 static struct callout softdep_callout;
1261 static int req_pending;
1262 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1263 static int req_clear_remove;	/* syncer process flush some freeblks */
1264 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1265 
1266 /*
1267  * runtime statistics
1268  */
1269 static int stat_worklist_push;	/* number of worklist cleanups */
1270 static int stat_blk_limit_push;	/* number of times block limit neared */
1271 static int stat_ino_limit_push;	/* number of times inode limit neared */
1272 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1273 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1274 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1275 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1276 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1277 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1278 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1279 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1280 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1281 static int stat_journal_min;	/* Times hit journal min threshold */
1282 static int stat_journal_low;	/* Times hit journal low threshold */
1283 static int stat_journal_wait;	/* Times blocked in jwait(). */
1284 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1285 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1286 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1287 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1288 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1289 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1290 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1291 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1292 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1293 
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1295     &max_softdeps, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1297     &tickdelay, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1299     &maxindirdeps, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1301     &stat_worklist_push, 0,"");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1303     &stat_blk_limit_push, 0,"");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1305     &stat_ino_limit_push, 0,"");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1307     &stat_blk_limit_hit, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1309     &stat_ino_limit_hit, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1311     &stat_sync_limit_hit, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1313     &stat_indir_blk_ptrs, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1315     &stat_inode_bitmap, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1317     &stat_direct_blk_ptrs, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1319     &stat_dir_entry, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1321     &stat_jaddref, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1323     &stat_jnewblk, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1325     &stat_journal_low, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1327     &stat_journal_min, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1329     &stat_journal_wait, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1331     &stat_jwait_filepage, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1333     &stat_jwait_freeblks, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1335     &stat_jwait_inode, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1337     &stat_jwait_newblk, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1339     &stat_cleanup_blkrequests, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1341     &stat_cleanup_inorequests, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1343     &stat_cleanup_high_delay, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1345     &stat_cleanup_retries, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1347     &stat_cleanup_failures, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1349     &softdep_flushcache, 0, "");
1350 
1351 SYSCTL_DECL(_vfs_ffs);
1352 
1353 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1354 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1355 
1356 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1357 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1358 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1359 
1360 static struct proc *softdepproc;
1361 static struct kproc_desc softdep_kp = {
1362 	"softdepflush",
1363 	softdep_flush,
1364 	&softdepproc
1365 };
1366 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1367     &softdep_kp);
1368 
1369 static void
1370 softdep_flush(void)
1371 {
1372 	struct mount *nmp;
1373 	struct mount *mp;
1374 	struct ufsmount *ump;
1375 	struct thread *td;
1376 	int remaining;
1377 	int progress;
1378 
1379 	td = curthread;
1380 	td->td_pflags |= TDP_NORUNNINGBUF;
1381 
1382 	for (;;) {
1383 		kproc_suspend_check(softdepproc);
1384 		ACQUIRE_LOCK(&lk);
1385 		/*
1386 		 * If requested, try removing inode or removal dependencies.
1387 		 */
1388 		if (req_clear_inodedeps) {
1389 			clear_inodedeps();
1390 			req_clear_inodedeps -= 1;
1391 			wakeup_one(&proc_waiting);
1392 		}
1393 		if (req_clear_remove) {
1394 			clear_remove();
1395 			req_clear_remove -= 1;
1396 			wakeup_one(&proc_waiting);
1397 		}
1398 		FREE_LOCK(&lk);
1399 		remaining = progress = 0;
1400 		mtx_lock(&mountlist_mtx);
1401 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1402 			nmp = TAILQ_NEXT(mp, mnt_list);
1403 			if (MOUNTEDSOFTDEP(mp) == 0)
1404 				continue;
1405 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1406 				continue;
1407 			progress += softdep_process_worklist(mp, 0);
1408 			ump = VFSTOUFS(mp);
1409 			remaining += ump->softdep_on_worklist;
1410 			mtx_lock(&mountlist_mtx);
1411 			nmp = TAILQ_NEXT(mp, mnt_list);
1412 			vfs_unbusy(mp);
1413 		}
1414 		mtx_unlock(&mountlist_mtx);
1415 		if (remaining && progress)
1416 			continue;
1417 		ACQUIRE_LOCK(&lk);
1418 		if (!req_pending)
1419 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1420 		req_pending = 0;
1421 		FREE_LOCK(&lk);
1422 	}
1423 }
1424 
1425 static void
1426 worklist_speedup(void)
1427 {
1428 	mtx_assert(&lk, MA_OWNED);
1429 	if (req_pending == 0) {
1430 		req_pending = 1;
1431 		wakeup(&req_pending);
1432 	}
1433 }
1434 
1435 static int
1436 softdep_speedup(void)
1437 {
1438 
1439 	worklist_speedup();
1440 	bd_speedup();
1441 	return speedup_syncer();
1442 }
1443 
1444 /*
1445  * Add an item to the end of the work queue.
1446  * This routine requires that the lock be held.
1447  * This is the only routine that adds items to the list.
1448  * The following routine is the only one that removes items
1449  * and does so in order from first to last.
1450  */
1451 
1452 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1453 #define	WK_NODELAY	0x0002	/* Process immediately. */
1454 
1455 static void
1456 add_to_worklist(wk, flags)
1457 	struct worklist *wk;
1458 	int flags;
1459 {
1460 	struct ufsmount *ump;
1461 
1462 	mtx_assert(&lk, MA_OWNED);
1463 	ump = VFSTOUFS(wk->wk_mp);
1464 	if (wk->wk_state & ONWORKLIST)
1465 		panic("add_to_worklist: %s(0x%X) already on list",
1466 		    TYPENAME(wk->wk_type), wk->wk_state);
1467 	wk->wk_state |= ONWORKLIST;
1468 	if (ump->softdep_on_worklist == 0) {
1469 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1470 		ump->softdep_worklist_tail = wk;
1471 	} else if (flags & WK_HEAD) {
1472 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1473 	} else {
1474 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1475 		ump->softdep_worklist_tail = wk;
1476 	}
1477 	ump->softdep_on_worklist += 1;
1478 	if (flags & WK_NODELAY)
1479 		worklist_speedup();
1480 }
1481 
1482 /*
1483  * Remove the item to be processed. If we are removing the last
1484  * item on the list, we need to recalculate the tail pointer.
1485  */
1486 static void
1487 remove_from_worklist(wk)
1488 	struct worklist *wk;
1489 {
1490 	struct ufsmount *ump;
1491 
1492 	ump = VFSTOUFS(wk->wk_mp);
1493 	WORKLIST_REMOVE(wk);
1494 	if (ump->softdep_worklist_tail == wk)
1495 		ump->softdep_worklist_tail =
1496 		    (struct worklist *)wk->wk_list.le_prev;
1497 	ump->softdep_on_worklist -= 1;
1498 }
1499 
1500 static void
1501 wake_worklist(wk)
1502 	struct worklist *wk;
1503 {
1504 	if (wk->wk_state & IOWAITING) {
1505 		wk->wk_state &= ~IOWAITING;
1506 		wakeup(wk);
1507 	}
1508 }
1509 
1510 static void
1511 wait_worklist(wk, wmesg)
1512 	struct worklist *wk;
1513 	char *wmesg;
1514 {
1515 
1516 	wk->wk_state |= IOWAITING;
1517 	msleep(wk, &lk, PVM, wmesg, 0);
1518 }
1519 
1520 /*
1521  * Process that runs once per second to handle items in the background queue.
1522  *
1523  * Note that we ensure that everything is done in the order in which they
1524  * appear in the queue. The code below depends on this property to ensure
1525  * that blocks of a file are freed before the inode itself is freed. This
1526  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1527  * until all the old ones have been purged from the dependency lists.
1528  */
1529 int
1530 softdep_process_worklist(mp, full)
1531 	struct mount *mp;
1532 	int full;
1533 {
1534 	int cnt, matchcnt;
1535 	struct ufsmount *ump;
1536 	long starttime;
1537 
1538 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1539 	/*
1540 	 * Record the process identifier of our caller so that we can give
1541 	 * this process preferential treatment in request_cleanup below.
1542 	 */
1543 	matchcnt = 0;
1544 	ump = VFSTOUFS(mp);
1545 	ACQUIRE_LOCK(&lk);
1546 	starttime = time_second;
1547 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1548 	while (ump->softdep_on_worklist > 0) {
1549 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1550 			break;
1551 		else
1552 			matchcnt += cnt;
1553 		/*
1554 		 * If requested, try removing inode or removal dependencies.
1555 		 */
1556 		if (req_clear_inodedeps) {
1557 			clear_inodedeps();
1558 			req_clear_inodedeps -= 1;
1559 			wakeup_one(&proc_waiting);
1560 		}
1561 		if (req_clear_remove) {
1562 			clear_remove();
1563 			req_clear_remove -= 1;
1564 			wakeup_one(&proc_waiting);
1565 		}
1566 		/*
1567 		 * We do not generally want to stop for buffer space, but if
1568 		 * we are really being a buffer hog, we will stop and wait.
1569 		 */
1570 		if (should_yield()) {
1571 			FREE_LOCK(&lk);
1572 			kern_yield(PRI_USER);
1573 			bwillwrite();
1574 			ACQUIRE_LOCK(&lk);
1575 		}
1576 		/*
1577 		 * Never allow processing to run for more than one
1578 		 * second. Otherwise the other mountpoints may get
1579 		 * excessively backlogged.
1580 		 */
1581 		if (!full && starttime != time_second)
1582 			break;
1583 	}
1584 	if (full == 0)
1585 		journal_unsuspend(ump);
1586 	FREE_LOCK(&lk);
1587 	return (matchcnt);
1588 }
1589 
1590 /*
1591  * Process all removes associated with a vnode if we are running out of
1592  * journal space.  Any other process which attempts to flush these will
1593  * be unable as we have the vnodes locked.
1594  */
1595 static void
1596 process_removes(vp)
1597 	struct vnode *vp;
1598 {
1599 	struct inodedep *inodedep;
1600 	struct dirrem *dirrem;
1601 	struct mount *mp;
1602 	ino_t inum;
1603 
1604 	mtx_assert(&lk, MA_OWNED);
1605 
1606 	mp = vp->v_mount;
1607 	inum = VTOI(vp)->i_number;
1608 	for (;;) {
1609 top:
1610 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1611 			return;
1612 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1613 			/*
1614 			 * If another thread is trying to lock this vnode
1615 			 * it will fail but we must wait for it to do so
1616 			 * before we can proceed.
1617 			 */
1618 			if (dirrem->dm_state & INPROGRESS) {
1619 				wait_worklist(&dirrem->dm_list, "pwrwait");
1620 				goto top;
1621 			}
1622 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1623 			    (COMPLETE | ONWORKLIST))
1624 				break;
1625 		}
1626 		if (dirrem == NULL)
1627 			return;
1628 		remove_from_worklist(&dirrem->dm_list);
1629 		FREE_LOCK(&lk);
1630 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1631 			panic("process_removes: suspended filesystem");
1632 		handle_workitem_remove(dirrem, 0);
1633 		vn_finished_secondary_write(mp);
1634 		ACQUIRE_LOCK(&lk);
1635 	}
1636 }
1637 
1638 /*
1639  * Process all truncations associated with a vnode if we are running out
1640  * of journal space.  This is called when the vnode lock is already held
1641  * and no other process can clear the truncation.  This function returns
1642  * a value greater than zero if it did any work.
1643  */
1644 static void
1645 process_truncates(vp)
1646 	struct vnode *vp;
1647 {
1648 	struct inodedep *inodedep;
1649 	struct freeblks *freeblks;
1650 	struct mount *mp;
1651 	ino_t inum;
1652 	int cgwait;
1653 
1654 	mtx_assert(&lk, MA_OWNED);
1655 
1656 	mp = vp->v_mount;
1657 	inum = VTOI(vp)->i_number;
1658 	for (;;) {
1659 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1660 			return;
1661 		cgwait = 0;
1662 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1663 			/* Journal entries not yet written.  */
1664 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1665 				jwait(&LIST_FIRST(
1666 				    &freeblks->fb_jblkdephd)->jb_list,
1667 				    MNT_WAIT);
1668 				break;
1669 			}
1670 			/* Another thread is executing this item. */
1671 			if (freeblks->fb_state & INPROGRESS) {
1672 				wait_worklist(&freeblks->fb_list, "ptrwait");
1673 				break;
1674 			}
1675 			/* Freeblks is waiting on a inode write. */
1676 			if ((freeblks->fb_state & COMPLETE) == 0) {
1677 				FREE_LOCK(&lk);
1678 				ffs_update(vp, 1);
1679 				ACQUIRE_LOCK(&lk);
1680 				break;
1681 			}
1682 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1683 			    (ALLCOMPLETE | ONWORKLIST)) {
1684 				remove_from_worklist(&freeblks->fb_list);
1685 				freeblks->fb_state |= INPROGRESS;
1686 				FREE_LOCK(&lk);
1687 				if (vn_start_secondary_write(NULL, &mp,
1688 				    V_NOWAIT))
1689 					panic("process_truncates: "
1690 					    "suspended filesystem");
1691 				handle_workitem_freeblocks(freeblks, 0);
1692 				vn_finished_secondary_write(mp);
1693 				ACQUIRE_LOCK(&lk);
1694 				break;
1695 			}
1696 			if (freeblks->fb_cgwait)
1697 				cgwait++;
1698 		}
1699 		if (cgwait) {
1700 			FREE_LOCK(&lk);
1701 			sync_cgs(mp, MNT_WAIT);
1702 			ffs_sync_snap(mp, MNT_WAIT);
1703 			ACQUIRE_LOCK(&lk);
1704 			continue;
1705 		}
1706 		if (freeblks == NULL)
1707 			break;
1708 	}
1709 	return;
1710 }
1711 
1712 /*
1713  * Process one item on the worklist.
1714  */
1715 static int
1716 process_worklist_item(mp, target, flags)
1717 	struct mount *mp;
1718 	int target;
1719 	int flags;
1720 {
1721 	struct worklist sintenel;
1722 	struct worklist *wk;
1723 	struct ufsmount *ump;
1724 	int matchcnt;
1725 	int error;
1726 
1727 	mtx_assert(&lk, MA_OWNED);
1728 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1729 	/*
1730 	 * If we are being called because of a process doing a
1731 	 * copy-on-write, then it is not safe to write as we may
1732 	 * recurse into the copy-on-write routine.
1733 	 */
1734 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1735 		return (-1);
1736 	PHOLD(curproc);	/* Don't let the stack go away. */
1737 	ump = VFSTOUFS(mp);
1738 	matchcnt = 0;
1739 	sintenel.wk_mp = NULL;
1740 	sintenel.wk_type = D_SENTINAL;
1741 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list);
1742 	for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL;
1743 	    wk = LIST_NEXT(&sintenel, wk_list)) {
1744 		if (wk->wk_type == D_SENTINAL) {
1745 			LIST_REMOVE(&sintenel, wk_list);
1746 			LIST_INSERT_AFTER(wk, &sintenel, wk_list);
1747 			continue;
1748 		}
1749 		if (wk->wk_state & INPROGRESS)
1750 			panic("process_worklist_item: %p already in progress.",
1751 			    wk);
1752 		wk->wk_state |= INPROGRESS;
1753 		remove_from_worklist(wk);
1754 		FREE_LOCK(&lk);
1755 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1756 			panic("process_worklist_item: suspended filesystem");
1757 		switch (wk->wk_type) {
1758 		case D_DIRREM:
1759 			/* removal of a directory entry */
1760 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1761 			break;
1762 
1763 		case D_FREEBLKS:
1764 			/* releasing blocks and/or fragments from a file */
1765 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1766 			    flags);
1767 			break;
1768 
1769 		case D_FREEFRAG:
1770 			/* releasing a fragment when replaced as a file grows */
1771 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1772 			error = 0;
1773 			break;
1774 
1775 		case D_FREEFILE:
1776 			/* releasing an inode when its link count drops to 0 */
1777 			handle_workitem_freefile(WK_FREEFILE(wk));
1778 			error = 0;
1779 			break;
1780 
1781 		default:
1782 			panic("%s_process_worklist: Unknown type %s",
1783 			    "softdep", TYPENAME(wk->wk_type));
1784 			/* NOTREACHED */
1785 		}
1786 		vn_finished_secondary_write(mp);
1787 		ACQUIRE_LOCK(&lk);
1788 		if (error == 0) {
1789 			if (++matchcnt == target)
1790 				break;
1791 			continue;
1792 		}
1793 		/*
1794 		 * We have to retry the worklist item later.  Wake up any
1795 		 * waiters who may be able to complete it immediately and
1796 		 * add the item back to the head so we don't try to execute
1797 		 * it again.
1798 		 */
1799 		wk->wk_state &= ~INPROGRESS;
1800 		wake_worklist(wk);
1801 		add_to_worklist(wk, WK_HEAD);
1802 	}
1803 	LIST_REMOVE(&sintenel, wk_list);
1804 	/* Sentinal could've become the tail from remove_from_worklist. */
1805 	if (ump->softdep_worklist_tail == &sintenel)
1806 		ump->softdep_worklist_tail =
1807 		    (struct worklist *)sintenel.wk_list.le_prev;
1808 	PRELE(curproc);
1809 	return (matchcnt);
1810 }
1811 
1812 /*
1813  * Move dependencies from one buffer to another.
1814  */
1815 int
1816 softdep_move_dependencies(oldbp, newbp)
1817 	struct buf *oldbp;
1818 	struct buf *newbp;
1819 {
1820 	struct worklist *wk, *wktail;
1821 	int dirty;
1822 
1823 	dirty = 0;
1824 	wktail = NULL;
1825 	ACQUIRE_LOCK(&lk);
1826 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1827 		LIST_REMOVE(wk, wk_list);
1828 		if (wk->wk_type == D_BMSAFEMAP &&
1829 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1830 			dirty = 1;
1831 		if (wktail == 0)
1832 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1833 		else
1834 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1835 		wktail = wk;
1836 	}
1837 	FREE_LOCK(&lk);
1838 
1839 	return (dirty);
1840 }
1841 
1842 /*
1843  * Purge the work list of all items associated with a particular mount point.
1844  */
1845 int
1846 softdep_flushworklist(oldmnt, countp, td)
1847 	struct mount *oldmnt;
1848 	int *countp;
1849 	struct thread *td;
1850 {
1851 	struct vnode *devvp;
1852 	int count, error = 0;
1853 	struct ufsmount *ump;
1854 
1855 	/*
1856 	 * Alternately flush the block device associated with the mount
1857 	 * point and process any dependencies that the flushing
1858 	 * creates. We continue until no more worklist dependencies
1859 	 * are found.
1860 	 */
1861 	*countp = 0;
1862 	ump = VFSTOUFS(oldmnt);
1863 	devvp = ump->um_devvp;
1864 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1865 		*countp += count;
1866 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1867 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1868 		VOP_UNLOCK(devvp, 0);
1869 		if (error)
1870 			break;
1871 	}
1872 	return (error);
1873 }
1874 
1875 int
1876 softdep_waitidle(struct mount *mp)
1877 {
1878 	struct ufsmount *ump;
1879 	int error;
1880 	int i;
1881 
1882 	ump = VFSTOUFS(mp);
1883 	ACQUIRE_LOCK(&lk);
1884 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1885 		ump->softdep_req = 1;
1886 		if (ump->softdep_on_worklist)
1887 			panic("softdep_waitidle: work added after flush.");
1888 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1889 	}
1890 	ump->softdep_req = 0;
1891 	FREE_LOCK(&lk);
1892 	error = 0;
1893 	if (i == 10) {
1894 		error = EBUSY;
1895 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1896 		    mp);
1897 	}
1898 
1899 	return (error);
1900 }
1901 
1902 /*
1903  * Flush all vnodes and worklist items associated with a specified mount point.
1904  */
1905 int
1906 softdep_flushfiles(oldmnt, flags, td)
1907 	struct mount *oldmnt;
1908 	int flags;
1909 	struct thread *td;
1910 {
1911 #ifdef QUOTA
1912 	struct ufsmount *ump;
1913 	int i;
1914 #endif
1915 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1916 	int morework;
1917 
1918 	loopcnt = 10;
1919 	retry_flush_count = 3;
1920 retry_flush:
1921 	error = 0;
1922 
1923 	/*
1924 	 * Alternately flush the vnodes associated with the mount
1925 	 * point and process any dependencies that the flushing
1926 	 * creates. In theory, this loop can happen at most twice,
1927 	 * but we give it a few extra just to be sure.
1928 	 */
1929 	for (; loopcnt > 0; loopcnt--) {
1930 		/*
1931 		 * Do another flush in case any vnodes were brought in
1932 		 * as part of the cleanup operations.
1933 		 */
1934 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1935 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1936 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1937 			break;
1938 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1939 		    depcount == 0)
1940 			break;
1941 	}
1942 	/*
1943 	 * If we are unmounting then it is an error to fail. If we
1944 	 * are simply trying to downgrade to read-only, then filesystem
1945 	 * activity can keep us busy forever, so we just fail with EBUSY.
1946 	 */
1947 	if (loopcnt == 0) {
1948 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1949 			panic("softdep_flushfiles: looping");
1950 		error = EBUSY;
1951 	}
1952 	if (!error)
1953 		error = softdep_waitidle(oldmnt);
1954 	if (!error) {
1955 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1956 			retry = 0;
1957 			MNT_ILOCK(oldmnt);
1958 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1959 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1960 			morework = oldmnt->mnt_nvnodelistsize > 0;
1961 #ifdef QUOTA
1962 			ump = VFSTOUFS(oldmnt);
1963 			UFS_LOCK(ump);
1964 			for (i = 0; i < MAXQUOTAS; i++) {
1965 				if (ump->um_quotas[i] != NULLVP)
1966 					morework = 1;
1967 			}
1968 			UFS_UNLOCK(ump);
1969 #endif
1970 			if (morework) {
1971 				if (--retry_flush_count > 0) {
1972 					retry = 1;
1973 					loopcnt = 3;
1974 				} else
1975 					error = EBUSY;
1976 			}
1977 			MNT_IUNLOCK(oldmnt);
1978 			if (retry)
1979 				goto retry_flush;
1980 		}
1981 	}
1982 	return (error);
1983 }
1984 
1985 /*
1986  * Structure hashing.
1987  *
1988  * There are three types of structures that can be looked up:
1989  *	1) pagedep structures identified by mount point, inode number,
1990  *	   and logical block.
1991  *	2) inodedep structures identified by mount point and inode number.
1992  *	3) newblk structures identified by mount point and
1993  *	   physical block number.
1994  *
1995  * The "pagedep" and "inodedep" dependency structures are hashed
1996  * separately from the file blocks and inodes to which they correspond.
1997  * This separation helps when the in-memory copy of an inode or
1998  * file block must be replaced. It also obviates the need to access
1999  * an inode or file page when simply updating (or de-allocating)
2000  * dependency structures. Lookup of newblk structures is needed to
2001  * find newly allocated blocks when trying to associate them with
2002  * their allocdirect or allocindir structure.
2003  *
2004  * The lookup routines optionally create and hash a new instance when
2005  * an existing entry is not found.
2006  */
2007 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2008 #define NODELAY		0x0002	/* cannot do background work */
2009 
2010 /*
2011  * Structures and routines associated with pagedep caching.
2012  */
2013 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
2014 u_long	pagedep_hash;		/* size of hash table - 1 */
2015 #define	PAGEDEP_HASH(mp, inum, lbn) \
2016 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
2017 	    pagedep_hash])
2018 
2019 static int
2020 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
2021 	struct pagedep_hashhead *pagedephd;
2022 	ino_t ino;
2023 	ufs_lbn_t lbn;
2024 	struct mount *mp;
2025 	int flags;
2026 	struct pagedep **pagedeppp;
2027 {
2028 	struct pagedep *pagedep;
2029 
2030 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2031 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
2032 		    mp == pagedep->pd_list.wk_mp) {
2033 			*pagedeppp = pagedep;
2034 			return (1);
2035 		}
2036 	}
2037 	*pagedeppp = NULL;
2038 	return (0);
2039 }
2040 /*
2041  * Look up a pagedep. Return 1 if found, 0 otherwise.
2042  * If not found, allocate if DEPALLOC flag is passed.
2043  * Found or allocated entry is returned in pagedeppp.
2044  * This routine must be called with splbio interrupts blocked.
2045  */
2046 static int
2047 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2048 	struct mount *mp;
2049 	struct buf *bp;
2050 	ino_t ino;
2051 	ufs_lbn_t lbn;
2052 	int flags;
2053 	struct pagedep **pagedeppp;
2054 {
2055 	struct pagedep *pagedep;
2056 	struct pagedep_hashhead *pagedephd;
2057 	struct worklist *wk;
2058 	int ret;
2059 	int i;
2060 
2061 	mtx_assert(&lk, MA_OWNED);
2062 	if (bp) {
2063 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2064 			if (wk->wk_type == D_PAGEDEP) {
2065 				*pagedeppp = WK_PAGEDEP(wk);
2066 				return (1);
2067 			}
2068 		}
2069 	}
2070 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2071 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2072 	if (ret) {
2073 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2074 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2075 		return (1);
2076 	}
2077 	if ((flags & DEPALLOC) == 0)
2078 		return (0);
2079 	FREE_LOCK(&lk);
2080 	pagedep = malloc(sizeof(struct pagedep),
2081 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2082 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2083 	ACQUIRE_LOCK(&lk);
2084 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2085 	if (*pagedeppp) {
2086 		/*
2087 		 * This should never happen since we only create pagedeps
2088 		 * with the vnode lock held.  Could be an assert.
2089 		 */
2090 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2091 		return (ret);
2092 	}
2093 	pagedep->pd_ino = ino;
2094 	pagedep->pd_lbn = lbn;
2095 	LIST_INIT(&pagedep->pd_dirremhd);
2096 	LIST_INIT(&pagedep->pd_pendinghd);
2097 	for (i = 0; i < DAHASHSZ; i++)
2098 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2099 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2100 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2101 	*pagedeppp = pagedep;
2102 	return (0);
2103 }
2104 
2105 /*
2106  * Structures and routines associated with inodedep caching.
2107  */
2108 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2109 static u_long	inodedep_hash;	/* size of hash table - 1 */
2110 #define	INODEDEP_HASH(fs, inum) \
2111       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2112 
2113 static int
2114 inodedep_find(inodedephd, fs, inum, inodedeppp)
2115 	struct inodedep_hashhead *inodedephd;
2116 	struct fs *fs;
2117 	ino_t inum;
2118 	struct inodedep **inodedeppp;
2119 {
2120 	struct inodedep *inodedep;
2121 
2122 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2123 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2124 			break;
2125 	if (inodedep) {
2126 		*inodedeppp = inodedep;
2127 		return (1);
2128 	}
2129 	*inodedeppp = NULL;
2130 
2131 	return (0);
2132 }
2133 /*
2134  * Look up an inodedep. Return 1 if found, 0 if not found.
2135  * If not found, allocate if DEPALLOC flag is passed.
2136  * Found or allocated entry is returned in inodedeppp.
2137  * This routine must be called with splbio interrupts blocked.
2138  */
2139 static int
2140 inodedep_lookup(mp, inum, flags, inodedeppp)
2141 	struct mount *mp;
2142 	ino_t inum;
2143 	int flags;
2144 	struct inodedep **inodedeppp;
2145 {
2146 	struct inodedep *inodedep;
2147 	struct inodedep_hashhead *inodedephd;
2148 	struct fs *fs;
2149 
2150 	mtx_assert(&lk, MA_OWNED);
2151 	fs = VFSTOUFS(mp)->um_fs;
2152 	inodedephd = INODEDEP_HASH(fs, inum);
2153 
2154 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2155 		return (1);
2156 	if ((flags & DEPALLOC) == 0)
2157 		return (0);
2158 	/*
2159 	 * If we are over our limit, try to improve the situation.
2160 	 */
2161 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2162 		request_cleanup(mp, FLUSH_INODES);
2163 	FREE_LOCK(&lk);
2164 	inodedep = malloc(sizeof(struct inodedep),
2165 		M_INODEDEP, M_SOFTDEP_FLAGS);
2166 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2167 	ACQUIRE_LOCK(&lk);
2168 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2169 		WORKITEM_FREE(inodedep, D_INODEDEP);
2170 		return (1);
2171 	}
2172 	inodedep->id_fs = fs;
2173 	inodedep->id_ino = inum;
2174 	inodedep->id_state = ALLCOMPLETE;
2175 	inodedep->id_nlinkdelta = 0;
2176 	inodedep->id_savedino1 = NULL;
2177 	inodedep->id_savedsize = -1;
2178 	inodedep->id_savedextsize = -1;
2179 	inodedep->id_savednlink = -1;
2180 	inodedep->id_bmsafemap = NULL;
2181 	inodedep->id_mkdiradd = NULL;
2182 	LIST_INIT(&inodedep->id_dirremhd);
2183 	LIST_INIT(&inodedep->id_pendinghd);
2184 	LIST_INIT(&inodedep->id_inowait);
2185 	LIST_INIT(&inodedep->id_bufwait);
2186 	TAILQ_INIT(&inodedep->id_inoreflst);
2187 	TAILQ_INIT(&inodedep->id_inoupdt);
2188 	TAILQ_INIT(&inodedep->id_newinoupdt);
2189 	TAILQ_INIT(&inodedep->id_extupdt);
2190 	TAILQ_INIT(&inodedep->id_newextupdt);
2191 	TAILQ_INIT(&inodedep->id_freeblklst);
2192 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2193 	*inodedeppp = inodedep;
2194 	return (0);
2195 }
2196 
2197 /*
2198  * Structures and routines associated with newblk caching.
2199  */
2200 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2201 u_long	newblk_hash;		/* size of hash table - 1 */
2202 #define	NEWBLK_HASH(fs, inum) \
2203 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2204 
2205 static int
2206 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2207 	struct newblk_hashhead *newblkhd;
2208 	struct mount *mp;
2209 	ufs2_daddr_t newblkno;
2210 	int flags;
2211 	struct newblk **newblkpp;
2212 {
2213 	struct newblk *newblk;
2214 
2215 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2216 		if (newblkno != newblk->nb_newblkno)
2217 			continue;
2218 		if (mp != newblk->nb_list.wk_mp)
2219 			continue;
2220 		/*
2221 		 * If we're creating a new dependency don't match those that
2222 		 * have already been converted to allocdirects.  This is for
2223 		 * a frag extend.
2224 		 */
2225 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2226 			continue;
2227 		break;
2228 	}
2229 	if (newblk) {
2230 		*newblkpp = newblk;
2231 		return (1);
2232 	}
2233 	*newblkpp = NULL;
2234 	return (0);
2235 }
2236 
2237 /*
2238  * Look up a newblk. Return 1 if found, 0 if not found.
2239  * If not found, allocate if DEPALLOC flag is passed.
2240  * Found or allocated entry is returned in newblkpp.
2241  */
2242 static int
2243 newblk_lookup(mp, newblkno, flags, newblkpp)
2244 	struct mount *mp;
2245 	ufs2_daddr_t newblkno;
2246 	int flags;
2247 	struct newblk **newblkpp;
2248 {
2249 	struct newblk *newblk;
2250 	struct newblk_hashhead *newblkhd;
2251 
2252 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2253 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2254 		return (1);
2255 	if ((flags & DEPALLOC) == 0)
2256 		return (0);
2257 	FREE_LOCK(&lk);
2258 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2259 	    M_SOFTDEP_FLAGS | M_ZERO);
2260 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2261 	ACQUIRE_LOCK(&lk);
2262 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2263 		WORKITEM_FREE(newblk, D_NEWBLK);
2264 		return (1);
2265 	}
2266 	newblk->nb_freefrag = NULL;
2267 	LIST_INIT(&newblk->nb_indirdeps);
2268 	LIST_INIT(&newblk->nb_newdirblk);
2269 	LIST_INIT(&newblk->nb_jwork);
2270 	newblk->nb_state = ATTACHED;
2271 	newblk->nb_newblkno = newblkno;
2272 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2273 	*newblkpp = newblk;
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Structures and routines associated with freed indirect block caching.
2279  */
2280 struct freeworklst *indir_hashtbl;
2281 u_long	indir_hash;		/* size of hash table - 1 */
2282 #define	INDIR_HASH(mp, blkno) \
2283 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2284 
2285 /*
2286  * Lookup an indirect block in the indir hash table.  The freework is
2287  * removed and potentially freed.  The caller must do a blocking journal
2288  * write before writing to the blkno.
2289  */
2290 static int
2291 indirblk_lookup(mp, blkno)
2292 	struct mount *mp;
2293 	ufs2_daddr_t blkno;
2294 {
2295 	struct freework *freework;
2296 	struct freeworklst *wkhd;
2297 
2298 	wkhd = INDIR_HASH(mp, blkno);
2299 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2300 		if (freework->fw_blkno != blkno)
2301 			continue;
2302 		if (freework->fw_list.wk_mp != mp)
2303 			continue;
2304 		indirblk_remove(freework);
2305 		return (1);
2306 	}
2307 	return (0);
2308 }
2309 
2310 /*
2311  * Insert an indirect block represented by freework into the indirblk
2312  * hash table so that it may prevent the block from being re-used prior
2313  * to the journal being written.
2314  */
2315 static void
2316 indirblk_insert(freework)
2317 	struct freework *freework;
2318 {
2319 	struct jblocks *jblocks;
2320 	struct jseg *jseg;
2321 
2322 	jblocks = VFSTOUFS(freework->fw_list.wk_mp)->softdep_jblocks;
2323 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2324 	if (jseg == NULL)
2325 		return;
2326 
2327 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2328 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2329 	    freework->fw_blkno), freework, fw_next);
2330 	freework->fw_state &= ~DEPCOMPLETE;
2331 }
2332 
2333 static void
2334 indirblk_remove(freework)
2335 	struct freework *freework;
2336 {
2337 
2338 	LIST_REMOVE(freework, fw_segs);
2339 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2340 	    freework->fw_blkno), freework, fw_next);
2341 	freework->fw_state |= DEPCOMPLETE;
2342 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2343 		WORKITEM_FREE(freework, D_FREEWORK);
2344 }
2345 
2346 /*
2347  * Executed during filesystem system initialization before
2348  * mounting any filesystems.
2349  */
2350 void
2351 softdep_initialize()
2352 {
2353 	int i;
2354 
2355 	LIST_INIT(&mkdirlisthd);
2356 	max_softdeps = desiredvnodes * 4;
2357 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2358 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2359 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2360 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2361 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2362 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2363 	    M_WAITOK);
2364 	indir_hash = i - 1;
2365 	for (i = 0; i <= indir_hash; i++)
2366 		TAILQ_INIT(&indir_hashtbl[i]);
2367 
2368 	/* initialise bioops hack */
2369 	bioops.io_start = softdep_disk_io_initiation;
2370 	bioops.io_complete = softdep_disk_write_complete;
2371 	bioops.io_deallocate = softdep_deallocate_dependencies;
2372 	bioops.io_countdeps = softdep_count_dependencies;
2373 
2374 	/* Initialize the callout with an mtx. */
2375 	callout_init_mtx(&softdep_callout, &lk, 0);
2376 }
2377 
2378 /*
2379  * Executed after all filesystems have been unmounted during
2380  * filesystem module unload.
2381  */
2382 void
2383 softdep_uninitialize()
2384 {
2385 
2386 	callout_drain(&softdep_callout);
2387 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2388 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2389 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2390 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2391 	free(indir_hashtbl, M_FREEWORK);
2392 }
2393 
2394 /*
2395  * Called at mount time to notify the dependency code that a
2396  * filesystem wishes to use it.
2397  */
2398 int
2399 softdep_mount(devvp, mp, fs, cred)
2400 	struct vnode *devvp;
2401 	struct mount *mp;
2402 	struct fs *fs;
2403 	struct ucred *cred;
2404 {
2405 	struct csum_total cstotal;
2406 	struct ufsmount *ump;
2407 	struct cg *cgp;
2408 	struct buf *bp;
2409 	int error, cyl;
2410 
2411 	MNT_ILOCK(mp);
2412 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2413 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2414 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2415 			MNTK_SOFTDEP | MNTK_NOASYNC;
2416 	}
2417 	MNT_IUNLOCK(mp);
2418 	ump = VFSTOUFS(mp);
2419 	LIST_INIT(&ump->softdep_workitem_pending);
2420 	LIST_INIT(&ump->softdep_journal_pending);
2421 	TAILQ_INIT(&ump->softdep_unlinked);
2422 	LIST_INIT(&ump->softdep_dirtycg);
2423 	ump->softdep_worklist_tail = NULL;
2424 	ump->softdep_on_worklist = 0;
2425 	ump->softdep_deps = 0;
2426 	if ((fs->fs_flags & FS_SUJ) &&
2427 	    (error = journal_mount(mp, fs, cred)) != 0) {
2428 		printf("Failed to start journal: %d\n", error);
2429 		return (error);
2430 	}
2431 	/*
2432 	 * When doing soft updates, the counters in the
2433 	 * superblock may have gotten out of sync. Recomputation
2434 	 * can take a long time and can be deferred for background
2435 	 * fsck.  However, the old behavior of scanning the cylinder
2436 	 * groups and recalculating them at mount time is available
2437 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2438 	 */
2439 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2440 		return (0);
2441 	bzero(&cstotal, sizeof cstotal);
2442 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2443 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2444 		    fs->fs_cgsize, cred, &bp)) != 0) {
2445 			brelse(bp);
2446 			return (error);
2447 		}
2448 		cgp = (struct cg *)bp->b_data;
2449 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2450 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2451 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2452 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2453 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2454 		brelse(bp);
2455 	}
2456 #ifdef DEBUG
2457 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2458 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2459 #endif
2460 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2461 	return (0);
2462 }
2463 
2464 void
2465 softdep_unmount(mp)
2466 	struct mount *mp;
2467 {
2468 
2469 	MNT_ILOCK(mp);
2470 	mp->mnt_flag &= ~MNT_SOFTDEP;
2471 	if (MOUNTEDSUJ(mp) == 0) {
2472 		MNT_IUNLOCK(mp);
2473 		return;
2474 	}
2475 	mp->mnt_flag &= ~MNT_SUJ;
2476 	MNT_IUNLOCK(mp);
2477 	journal_unmount(mp);
2478 }
2479 
2480 static struct jblocks *
2481 jblocks_create(void)
2482 {
2483 	struct jblocks *jblocks;
2484 
2485 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2486 	TAILQ_INIT(&jblocks->jb_segs);
2487 	jblocks->jb_avail = 10;
2488 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2489 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2490 
2491 	return (jblocks);
2492 }
2493 
2494 static ufs2_daddr_t
2495 jblocks_alloc(jblocks, bytes, actual)
2496 	struct jblocks *jblocks;
2497 	int bytes;
2498 	int *actual;
2499 {
2500 	ufs2_daddr_t daddr;
2501 	struct jextent *jext;
2502 	int freecnt;
2503 	int blocks;
2504 
2505 	blocks = bytes / DEV_BSIZE;
2506 	jext = &jblocks->jb_extent[jblocks->jb_head];
2507 	freecnt = jext->je_blocks - jblocks->jb_off;
2508 	if (freecnt == 0) {
2509 		jblocks->jb_off = 0;
2510 		if (++jblocks->jb_head > jblocks->jb_used)
2511 			jblocks->jb_head = 0;
2512 		jext = &jblocks->jb_extent[jblocks->jb_head];
2513 		freecnt = jext->je_blocks;
2514 	}
2515 	if (freecnt > blocks)
2516 		freecnt = blocks;
2517 	*actual = freecnt * DEV_BSIZE;
2518 	daddr = jext->je_daddr + jblocks->jb_off;
2519 	jblocks->jb_off += freecnt;
2520 	jblocks->jb_free -= freecnt;
2521 
2522 	return (daddr);
2523 }
2524 
2525 static void
2526 jblocks_free(jblocks, mp, bytes)
2527 	struct jblocks *jblocks;
2528 	struct mount *mp;
2529 	int bytes;
2530 {
2531 
2532 	jblocks->jb_free += bytes / DEV_BSIZE;
2533 	if (jblocks->jb_suspended)
2534 		worklist_speedup();
2535 	wakeup(jblocks);
2536 }
2537 
2538 static void
2539 jblocks_destroy(jblocks)
2540 	struct jblocks *jblocks;
2541 {
2542 
2543 	if (jblocks->jb_extent)
2544 		free(jblocks->jb_extent, M_JBLOCKS);
2545 	free(jblocks, M_JBLOCKS);
2546 }
2547 
2548 static void
2549 jblocks_add(jblocks, daddr, blocks)
2550 	struct jblocks *jblocks;
2551 	ufs2_daddr_t daddr;
2552 	int blocks;
2553 {
2554 	struct jextent *jext;
2555 
2556 	jblocks->jb_blocks += blocks;
2557 	jblocks->jb_free += blocks;
2558 	jext = &jblocks->jb_extent[jblocks->jb_used];
2559 	/* Adding the first block. */
2560 	if (jext->je_daddr == 0) {
2561 		jext->je_daddr = daddr;
2562 		jext->je_blocks = blocks;
2563 		return;
2564 	}
2565 	/* Extending the last extent. */
2566 	if (jext->je_daddr + jext->je_blocks == daddr) {
2567 		jext->je_blocks += blocks;
2568 		return;
2569 	}
2570 	/* Adding a new extent. */
2571 	if (++jblocks->jb_used == jblocks->jb_avail) {
2572 		jblocks->jb_avail *= 2;
2573 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2574 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2575 		memcpy(jext, jblocks->jb_extent,
2576 		    sizeof(struct jextent) * jblocks->jb_used);
2577 		free(jblocks->jb_extent, M_JBLOCKS);
2578 		jblocks->jb_extent = jext;
2579 	}
2580 	jext = &jblocks->jb_extent[jblocks->jb_used];
2581 	jext->je_daddr = daddr;
2582 	jext->je_blocks = blocks;
2583 	return;
2584 }
2585 
2586 int
2587 softdep_journal_lookup(mp, vpp)
2588 	struct mount *mp;
2589 	struct vnode **vpp;
2590 {
2591 	struct componentname cnp;
2592 	struct vnode *dvp;
2593 	ino_t sujournal;
2594 	int error;
2595 
2596 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2597 	if (error)
2598 		return (error);
2599 	bzero(&cnp, sizeof(cnp));
2600 	cnp.cn_nameiop = LOOKUP;
2601 	cnp.cn_flags = ISLASTCN;
2602 	cnp.cn_thread = curthread;
2603 	cnp.cn_cred = curthread->td_ucred;
2604 	cnp.cn_pnbuf = SUJ_FILE;
2605 	cnp.cn_nameptr = SUJ_FILE;
2606 	cnp.cn_namelen = strlen(SUJ_FILE);
2607 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2608 	vput(dvp);
2609 	if (error != 0)
2610 		return (error);
2611 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2612 	return (error);
2613 }
2614 
2615 /*
2616  * Open and verify the journal file.
2617  */
2618 static int
2619 journal_mount(mp, fs, cred)
2620 	struct mount *mp;
2621 	struct fs *fs;
2622 	struct ucred *cred;
2623 {
2624 	struct jblocks *jblocks;
2625 	struct vnode *vp;
2626 	struct inode *ip;
2627 	ufs2_daddr_t blkno;
2628 	int bcount;
2629 	int error;
2630 	int i;
2631 
2632 	error = softdep_journal_lookup(mp, &vp);
2633 	if (error != 0) {
2634 		printf("Failed to find journal.  Use tunefs to create one\n");
2635 		return (error);
2636 	}
2637 	ip = VTOI(vp);
2638 	if (ip->i_size < SUJ_MIN) {
2639 		error = ENOSPC;
2640 		goto out;
2641 	}
2642 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2643 	jblocks = jblocks_create();
2644 	for (i = 0; i < bcount; i++) {
2645 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2646 		if (error)
2647 			break;
2648 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2649 	}
2650 	if (error) {
2651 		jblocks_destroy(jblocks);
2652 		goto out;
2653 	}
2654 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2655 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2656 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2657 out:
2658 	if (error == 0) {
2659 		MNT_ILOCK(mp);
2660 		mp->mnt_flag |= MNT_SUJ;
2661 		mp->mnt_flag &= ~MNT_SOFTDEP;
2662 		MNT_IUNLOCK(mp);
2663 		/*
2664 		 * Only validate the journal contents if the
2665 		 * filesystem is clean, otherwise we write the logs
2666 		 * but they'll never be used.  If the filesystem was
2667 		 * still dirty when we mounted it the journal is
2668 		 * invalid and a new journal can only be valid if it
2669 		 * starts from a clean mount.
2670 		 */
2671 		if (fs->fs_clean) {
2672 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2673 			ip->i_flags |= IN_MODIFIED;
2674 			ffs_update(vp, 1);
2675 		}
2676 	}
2677 	vput(vp);
2678 	return (error);
2679 }
2680 
2681 static void
2682 journal_unmount(mp)
2683 	struct mount *mp;
2684 {
2685 	struct ufsmount *ump;
2686 
2687 	ump = VFSTOUFS(mp);
2688 	if (ump->softdep_jblocks)
2689 		jblocks_destroy(ump->softdep_jblocks);
2690 	ump->softdep_jblocks = NULL;
2691 }
2692 
2693 /*
2694  * Called when a journal record is ready to be written.  Space is allocated
2695  * and the journal entry is created when the journal is flushed to stable
2696  * store.
2697  */
2698 static void
2699 add_to_journal(wk)
2700 	struct worklist *wk;
2701 {
2702 	struct ufsmount *ump;
2703 
2704 	mtx_assert(&lk, MA_OWNED);
2705 	ump = VFSTOUFS(wk->wk_mp);
2706 	if (wk->wk_state & ONWORKLIST)
2707 		panic("add_to_journal: %s(0x%X) already on list",
2708 		    TYPENAME(wk->wk_type), wk->wk_state);
2709 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2710 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2711 		ump->softdep_jblocks->jb_age = ticks;
2712 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2713 	} else
2714 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2715 	ump->softdep_journal_tail = wk;
2716 	ump->softdep_on_journal += 1;
2717 }
2718 
2719 /*
2720  * Remove an arbitrary item for the journal worklist maintain the tail
2721  * pointer.  This happens when a new operation obviates the need to
2722  * journal an old operation.
2723  */
2724 static void
2725 remove_from_journal(wk)
2726 	struct worklist *wk;
2727 {
2728 	struct ufsmount *ump;
2729 
2730 	mtx_assert(&lk, MA_OWNED);
2731 	ump = VFSTOUFS(wk->wk_mp);
2732 #ifdef SUJ_DEBUG
2733 	{
2734 		struct worklist *wkn;
2735 
2736 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2737 			if (wkn == wk)
2738 				break;
2739 		if (wkn == NULL)
2740 			panic("remove_from_journal: %p is not in journal", wk);
2741 	}
2742 #endif
2743 	/*
2744 	 * We emulate a TAILQ to save space in most structures which do not
2745 	 * require TAILQ semantics.  Here we must update the tail position
2746 	 * when removing the tail which is not the final entry. This works
2747 	 * only if the worklist linkage are at the beginning of the structure.
2748 	 */
2749 	if (ump->softdep_journal_tail == wk)
2750 		ump->softdep_journal_tail =
2751 		    (struct worklist *)wk->wk_list.le_prev;
2752 
2753 	WORKLIST_REMOVE(wk);
2754 	ump->softdep_on_journal -= 1;
2755 }
2756 
2757 /*
2758  * Check for journal space as well as dependency limits so the prelink
2759  * code can throttle both journaled and non-journaled filesystems.
2760  * Threshold is 0 for low and 1 for min.
2761  */
2762 static int
2763 journal_space(ump, thresh)
2764 	struct ufsmount *ump;
2765 	int thresh;
2766 {
2767 	struct jblocks *jblocks;
2768 	int avail;
2769 
2770 	jblocks = ump->softdep_jblocks;
2771 	if (jblocks == NULL)
2772 		return (1);
2773 	/*
2774 	 * We use a tighter restriction here to prevent request_cleanup()
2775 	 * running in threads from running into locks we currently hold.
2776 	 */
2777 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2778 		return (0);
2779 	if (thresh)
2780 		thresh = jblocks->jb_min;
2781 	else
2782 		thresh = jblocks->jb_low;
2783 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2784 	avail = jblocks->jb_free - avail;
2785 
2786 	return (avail > thresh);
2787 }
2788 
2789 static void
2790 journal_suspend(ump)
2791 	struct ufsmount *ump;
2792 {
2793 	struct jblocks *jblocks;
2794 	struct mount *mp;
2795 
2796 	mp = UFSTOVFS(ump);
2797 	jblocks = ump->softdep_jblocks;
2798 	MNT_ILOCK(mp);
2799 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2800 		stat_journal_min++;
2801 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2802 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2803 	}
2804 	jblocks->jb_suspended = 1;
2805 	MNT_IUNLOCK(mp);
2806 }
2807 
2808 static int
2809 journal_unsuspend(struct ufsmount *ump)
2810 {
2811 	struct jblocks *jblocks;
2812 	struct mount *mp;
2813 
2814 	mp = UFSTOVFS(ump);
2815 	jblocks = ump->softdep_jblocks;
2816 
2817 	if (jblocks != NULL && jblocks->jb_suspended &&
2818 	    journal_space(ump, jblocks->jb_min)) {
2819 		jblocks->jb_suspended = 0;
2820 		FREE_LOCK(&lk);
2821 		mp->mnt_susp_owner = curthread;
2822 		vfs_write_resume(mp, 0);
2823 		ACQUIRE_LOCK(&lk);
2824 		return (1);
2825 	}
2826 	return (0);
2827 }
2828 
2829 /*
2830  * Called before any allocation function to be certain that there is
2831  * sufficient space in the journal prior to creating any new records.
2832  * Since in the case of block allocation we may have multiple locked
2833  * buffers at the time of the actual allocation we can not block
2834  * when the journal records are created.  Doing so would create a deadlock
2835  * if any of these buffers needed to be flushed to reclaim space.  Instead
2836  * we require a sufficiently large amount of available space such that
2837  * each thread in the system could have passed this allocation check and
2838  * still have sufficient free space.  With 20% of a minimum journal size
2839  * of 1MB we have 6553 records available.
2840  */
2841 int
2842 softdep_prealloc(vp, waitok)
2843 	struct vnode *vp;
2844 	int waitok;
2845 {
2846 	struct ufsmount *ump;
2847 
2848 	/*
2849 	 * Nothing to do if we are not running journaled soft updates.
2850 	 * If we currently hold the snapshot lock, we must avoid handling
2851 	 * other resources that could cause deadlock.
2852 	 */
2853 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2854 		return (0);
2855 	ump = VFSTOUFS(vp->v_mount);
2856 	ACQUIRE_LOCK(&lk);
2857 	if (journal_space(ump, 0)) {
2858 		FREE_LOCK(&lk);
2859 		return (0);
2860 	}
2861 	stat_journal_low++;
2862 	FREE_LOCK(&lk);
2863 	if (waitok == MNT_NOWAIT)
2864 		return (ENOSPC);
2865 	/*
2866 	 * Attempt to sync this vnode once to flush any journal
2867 	 * work attached to it.
2868 	 */
2869 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2870 		ffs_syncvnode(vp, waitok, 0);
2871 	ACQUIRE_LOCK(&lk);
2872 	process_removes(vp);
2873 	process_truncates(vp);
2874 	if (journal_space(ump, 0) == 0) {
2875 		softdep_speedup();
2876 		if (journal_space(ump, 1) == 0)
2877 			journal_suspend(ump);
2878 	}
2879 	FREE_LOCK(&lk);
2880 
2881 	return (0);
2882 }
2883 
2884 /*
2885  * Before adjusting a link count on a vnode verify that we have sufficient
2886  * journal space.  If not, process operations that depend on the currently
2887  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2888  * and softdep flush threads can not acquire these locks to reclaim space.
2889  */
2890 static void
2891 softdep_prelink(dvp, vp)
2892 	struct vnode *dvp;
2893 	struct vnode *vp;
2894 {
2895 	struct ufsmount *ump;
2896 
2897 	ump = VFSTOUFS(dvp->v_mount);
2898 	mtx_assert(&lk, MA_OWNED);
2899 	/*
2900 	 * Nothing to do if we have sufficient journal space.
2901 	 * If we currently hold the snapshot lock, we must avoid
2902 	 * handling other resources that could cause deadlock.
2903 	 */
2904 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2905 		return;
2906 	stat_journal_low++;
2907 	FREE_LOCK(&lk);
2908 	if (vp)
2909 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2910 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2911 	ACQUIRE_LOCK(&lk);
2912 	/* Process vp before dvp as it may create .. removes. */
2913 	if (vp) {
2914 		process_removes(vp);
2915 		process_truncates(vp);
2916 	}
2917 	process_removes(dvp);
2918 	process_truncates(dvp);
2919 	softdep_speedup();
2920 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2921 	if (journal_space(ump, 0) == 0) {
2922 		softdep_speedup();
2923 		if (journal_space(ump, 1) == 0)
2924 			journal_suspend(ump);
2925 	}
2926 }
2927 
2928 static void
2929 jseg_write(ump, jseg, data)
2930 	struct ufsmount *ump;
2931 	struct jseg *jseg;
2932 	uint8_t *data;
2933 {
2934 	struct jsegrec *rec;
2935 
2936 	rec = (struct jsegrec *)data;
2937 	rec->jsr_seq = jseg->js_seq;
2938 	rec->jsr_oldest = jseg->js_oldseq;
2939 	rec->jsr_cnt = jseg->js_cnt;
2940 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2941 	rec->jsr_crc = 0;
2942 	rec->jsr_time = ump->um_fs->fs_mtime;
2943 }
2944 
2945 static inline void
2946 inoref_write(inoref, jseg, rec)
2947 	struct inoref *inoref;
2948 	struct jseg *jseg;
2949 	struct jrefrec *rec;
2950 {
2951 
2952 	inoref->if_jsegdep->jd_seg = jseg;
2953 	rec->jr_ino = inoref->if_ino;
2954 	rec->jr_parent = inoref->if_parent;
2955 	rec->jr_nlink = inoref->if_nlink;
2956 	rec->jr_mode = inoref->if_mode;
2957 	rec->jr_diroff = inoref->if_diroff;
2958 }
2959 
2960 static void
2961 jaddref_write(jaddref, jseg, data)
2962 	struct jaddref *jaddref;
2963 	struct jseg *jseg;
2964 	uint8_t *data;
2965 {
2966 	struct jrefrec *rec;
2967 
2968 	rec = (struct jrefrec *)data;
2969 	rec->jr_op = JOP_ADDREF;
2970 	inoref_write(&jaddref->ja_ref, jseg, rec);
2971 }
2972 
2973 static void
2974 jremref_write(jremref, jseg, data)
2975 	struct jremref *jremref;
2976 	struct jseg *jseg;
2977 	uint8_t *data;
2978 {
2979 	struct jrefrec *rec;
2980 
2981 	rec = (struct jrefrec *)data;
2982 	rec->jr_op = JOP_REMREF;
2983 	inoref_write(&jremref->jr_ref, jseg, rec);
2984 }
2985 
2986 static void
2987 jmvref_write(jmvref, jseg, data)
2988 	struct jmvref *jmvref;
2989 	struct jseg *jseg;
2990 	uint8_t *data;
2991 {
2992 	struct jmvrec *rec;
2993 
2994 	rec = (struct jmvrec *)data;
2995 	rec->jm_op = JOP_MVREF;
2996 	rec->jm_ino = jmvref->jm_ino;
2997 	rec->jm_parent = jmvref->jm_parent;
2998 	rec->jm_oldoff = jmvref->jm_oldoff;
2999 	rec->jm_newoff = jmvref->jm_newoff;
3000 }
3001 
3002 static void
3003 jnewblk_write(jnewblk, jseg, data)
3004 	struct jnewblk *jnewblk;
3005 	struct jseg *jseg;
3006 	uint8_t *data;
3007 {
3008 	struct jblkrec *rec;
3009 
3010 	jnewblk->jn_jsegdep->jd_seg = jseg;
3011 	rec = (struct jblkrec *)data;
3012 	rec->jb_op = JOP_NEWBLK;
3013 	rec->jb_ino = jnewblk->jn_ino;
3014 	rec->jb_blkno = jnewblk->jn_blkno;
3015 	rec->jb_lbn = jnewblk->jn_lbn;
3016 	rec->jb_frags = jnewblk->jn_frags;
3017 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3018 }
3019 
3020 static void
3021 jfreeblk_write(jfreeblk, jseg, data)
3022 	struct jfreeblk *jfreeblk;
3023 	struct jseg *jseg;
3024 	uint8_t *data;
3025 {
3026 	struct jblkrec *rec;
3027 
3028 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3029 	rec = (struct jblkrec *)data;
3030 	rec->jb_op = JOP_FREEBLK;
3031 	rec->jb_ino = jfreeblk->jf_ino;
3032 	rec->jb_blkno = jfreeblk->jf_blkno;
3033 	rec->jb_lbn = jfreeblk->jf_lbn;
3034 	rec->jb_frags = jfreeblk->jf_frags;
3035 	rec->jb_oldfrags = 0;
3036 }
3037 
3038 static void
3039 jfreefrag_write(jfreefrag, jseg, data)
3040 	struct jfreefrag *jfreefrag;
3041 	struct jseg *jseg;
3042 	uint8_t *data;
3043 {
3044 	struct jblkrec *rec;
3045 
3046 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3047 	rec = (struct jblkrec *)data;
3048 	rec->jb_op = JOP_FREEBLK;
3049 	rec->jb_ino = jfreefrag->fr_ino;
3050 	rec->jb_blkno = jfreefrag->fr_blkno;
3051 	rec->jb_lbn = jfreefrag->fr_lbn;
3052 	rec->jb_frags = jfreefrag->fr_frags;
3053 	rec->jb_oldfrags = 0;
3054 }
3055 
3056 static void
3057 jtrunc_write(jtrunc, jseg, data)
3058 	struct jtrunc *jtrunc;
3059 	struct jseg *jseg;
3060 	uint8_t *data;
3061 {
3062 	struct jtrncrec *rec;
3063 
3064 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3065 	rec = (struct jtrncrec *)data;
3066 	rec->jt_op = JOP_TRUNC;
3067 	rec->jt_ino = jtrunc->jt_ino;
3068 	rec->jt_size = jtrunc->jt_size;
3069 	rec->jt_extsize = jtrunc->jt_extsize;
3070 }
3071 
3072 static void
3073 jfsync_write(jfsync, jseg, data)
3074 	struct jfsync *jfsync;
3075 	struct jseg *jseg;
3076 	uint8_t *data;
3077 {
3078 	struct jtrncrec *rec;
3079 
3080 	rec = (struct jtrncrec *)data;
3081 	rec->jt_op = JOP_SYNC;
3082 	rec->jt_ino = jfsync->jfs_ino;
3083 	rec->jt_size = jfsync->jfs_size;
3084 	rec->jt_extsize = jfsync->jfs_extsize;
3085 }
3086 
3087 static void
3088 softdep_flushjournal(mp)
3089 	struct mount *mp;
3090 {
3091 	struct jblocks *jblocks;
3092 	struct ufsmount *ump;
3093 
3094 	if (MOUNTEDSUJ(mp) == 0)
3095 		return;
3096 	ump = VFSTOUFS(mp);
3097 	jblocks = ump->softdep_jblocks;
3098 	ACQUIRE_LOCK(&lk);
3099 	while (ump->softdep_on_journal) {
3100 		jblocks->jb_needseg = 1;
3101 		softdep_process_journal(mp, NULL, MNT_WAIT);
3102 	}
3103 	FREE_LOCK(&lk);
3104 }
3105 
3106 static void softdep_synchronize_completed(struct bio *);
3107 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3108 
3109 static void
3110 softdep_synchronize_completed(bp)
3111         struct bio *bp;
3112 {
3113 	struct jseg *oldest;
3114 	struct jseg *jseg;
3115 
3116 	/*
3117 	 * caller1 marks the last segment written before we issued the
3118 	 * synchronize cache.
3119 	 */
3120 	jseg = bp->bio_caller1;
3121 	oldest = NULL;
3122 	ACQUIRE_LOCK(&lk);
3123 	/*
3124 	 * Mark all the journal entries waiting on the synchronize cache
3125 	 * as completed so they may continue on.
3126 	 */
3127 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3128 		jseg->js_state |= COMPLETE;
3129 		oldest = jseg;
3130 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3131 	}
3132 	/*
3133 	 * Restart deferred journal entry processing from the oldest
3134 	 * completed jseg.
3135 	 */
3136 	if (oldest)
3137 		complete_jsegs(oldest);
3138 
3139 	FREE_LOCK(&lk);
3140 	g_destroy_bio(bp);
3141 }
3142 
3143 /*
3144  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3145  * barriers.  The journal must be written prior to any blocks that depend
3146  * on it and the journal can not be released until the blocks have be
3147  * written.  This code handles both barriers simultaneously.
3148  */
3149 static void
3150 softdep_synchronize(bp, ump, caller1)
3151 	struct bio *bp;
3152 	struct ufsmount *ump;
3153 	void *caller1;
3154 {
3155 
3156 	bp->bio_cmd = BIO_FLUSH;
3157 	bp->bio_flags |= BIO_ORDERED;
3158 	bp->bio_data = NULL;
3159 	bp->bio_offset = ump->um_cp->provider->mediasize;
3160 	bp->bio_length = 0;
3161 	bp->bio_done = softdep_synchronize_completed;
3162 	bp->bio_caller1 = caller1;
3163 	g_io_request(bp,
3164 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3165 }
3166 
3167 /*
3168  * Flush some journal records to disk.
3169  */
3170 static void
3171 softdep_process_journal(mp, needwk, flags)
3172 	struct mount *mp;
3173 	struct worklist *needwk;
3174 	int flags;
3175 {
3176 	struct jblocks *jblocks;
3177 	struct ufsmount *ump;
3178 	struct worklist *wk;
3179 	struct jseg *jseg;
3180 	struct buf *bp;
3181 	struct bio *bio;
3182 	uint8_t *data;
3183 	struct fs *fs;
3184 	int shouldflush;
3185 	int segwritten;
3186 	int jrecmin;	/* Minimum records per block. */
3187 	int jrecmax;	/* Maximum records per block. */
3188 	int size;
3189 	int cnt;
3190 	int off;
3191 	int devbsize;
3192 
3193 	if (MOUNTEDSUJ(mp) == 0)
3194 		return;
3195 	shouldflush = softdep_flushcache;
3196 	bio = NULL;
3197 	jseg = NULL;
3198 	ump = VFSTOUFS(mp);
3199 	fs = ump->um_fs;
3200 	jblocks = ump->softdep_jblocks;
3201 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3202 	/*
3203 	 * We write anywhere between a disk block and fs block.  The upper
3204 	 * bound is picked to prevent buffer cache fragmentation and limit
3205 	 * processing time per I/O.
3206 	 */
3207 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3208 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3209 	segwritten = 0;
3210 	for (;;) {
3211 		cnt = ump->softdep_on_journal;
3212 		/*
3213 		 * Criteria for writing a segment:
3214 		 * 1) We have a full block.
3215 		 * 2) We're called from jwait() and haven't found the
3216 		 *    journal item yet.
3217 		 * 3) Always write if needseg is set.
3218 		 * 4) If we are called from process_worklist and have
3219 		 *    not yet written anything we write a partial block
3220 		 *    to enforce a 1 second maximum latency on journal
3221 		 *    entries.
3222 		 */
3223 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3224 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3225 			break;
3226 		cnt++;
3227 		/*
3228 		 * Verify some free journal space.  softdep_prealloc() should
3229 	 	 * guarantee that we don't run out so this is indicative of
3230 		 * a problem with the flow control.  Try to recover
3231 		 * gracefully in any event.
3232 		 */
3233 		while (jblocks->jb_free == 0) {
3234 			if (flags != MNT_WAIT)
3235 				break;
3236 			printf("softdep: Out of journal space!\n");
3237 			softdep_speedup();
3238 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3239 		}
3240 		FREE_LOCK(&lk);
3241 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3242 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3243 		LIST_INIT(&jseg->js_entries);
3244 		LIST_INIT(&jseg->js_indirs);
3245 		jseg->js_state = ATTACHED;
3246 		if (shouldflush == 0)
3247 			jseg->js_state |= COMPLETE;
3248 		else if (bio == NULL)
3249 			bio = g_alloc_bio();
3250 		jseg->js_jblocks = jblocks;
3251 		bp = geteblk(fs->fs_bsize, 0);
3252 		ACQUIRE_LOCK(&lk);
3253 		/*
3254 		 * If there was a race while we were allocating the block
3255 		 * and jseg the entry we care about was likely written.
3256 		 * We bail out in both the WAIT and NOWAIT case and assume
3257 		 * the caller will loop if the entry it cares about is
3258 		 * not written.
3259 		 */
3260 		cnt = ump->softdep_on_journal;
3261 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3262 			bp->b_flags |= B_INVAL | B_NOCACHE;
3263 			WORKITEM_FREE(jseg, D_JSEG);
3264 			FREE_LOCK(&lk);
3265 			brelse(bp);
3266 			ACQUIRE_LOCK(&lk);
3267 			break;
3268 		}
3269 		/*
3270 		 * Calculate the disk block size required for the available
3271 		 * records rounded to the min size.
3272 		 */
3273 		if (cnt == 0)
3274 			size = devbsize;
3275 		else if (cnt < jrecmax)
3276 			size = howmany(cnt, jrecmin) * devbsize;
3277 		else
3278 			size = fs->fs_bsize;
3279 		/*
3280 		 * Allocate a disk block for this journal data and account
3281 		 * for truncation of the requested size if enough contiguous
3282 		 * space was not available.
3283 		 */
3284 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3285 		bp->b_lblkno = bp->b_blkno;
3286 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3287 		bp->b_bcount = size;
3288 		bp->b_bufobj = &ump->um_devvp->v_bufobj;
3289 		bp->b_flags &= ~B_INVAL;
3290 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3291 		/*
3292 		 * Initialize our jseg with cnt records.  Assign the next
3293 		 * sequence number to it and link it in-order.
3294 		 */
3295 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3296 		jseg->js_buf = bp;
3297 		jseg->js_cnt = cnt;
3298 		jseg->js_refs = cnt + 1;	/* Self ref. */
3299 		jseg->js_size = size;
3300 		jseg->js_seq = jblocks->jb_nextseq++;
3301 		if (jblocks->jb_oldestseg == NULL)
3302 			jblocks->jb_oldestseg = jseg;
3303 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3304 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3305 		if (jblocks->jb_writeseg == NULL)
3306 			jblocks->jb_writeseg = jseg;
3307 		/*
3308 		 * Start filling in records from the pending list.
3309 		 */
3310 		data = bp->b_data;
3311 		off = 0;
3312 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3313 		    != NULL) {
3314 			if (cnt == 0)
3315 				break;
3316 			/* Place a segment header on every device block. */
3317 			if ((off % devbsize) == 0) {
3318 				jseg_write(ump, jseg, data);
3319 				off += JREC_SIZE;
3320 				data = bp->b_data + off;
3321 			}
3322 			if (wk == needwk)
3323 				needwk = NULL;
3324 			remove_from_journal(wk);
3325 			wk->wk_state |= INPROGRESS;
3326 			WORKLIST_INSERT(&jseg->js_entries, wk);
3327 			switch (wk->wk_type) {
3328 			case D_JADDREF:
3329 				jaddref_write(WK_JADDREF(wk), jseg, data);
3330 				break;
3331 			case D_JREMREF:
3332 				jremref_write(WK_JREMREF(wk), jseg, data);
3333 				break;
3334 			case D_JMVREF:
3335 				jmvref_write(WK_JMVREF(wk), jseg, data);
3336 				break;
3337 			case D_JNEWBLK:
3338 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3339 				break;
3340 			case D_JFREEBLK:
3341 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3342 				break;
3343 			case D_JFREEFRAG:
3344 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3345 				break;
3346 			case D_JTRUNC:
3347 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3348 				break;
3349 			case D_JFSYNC:
3350 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3351 				break;
3352 			default:
3353 				panic("process_journal: Unknown type %s",
3354 				    TYPENAME(wk->wk_type));
3355 				/* NOTREACHED */
3356 			}
3357 			off += JREC_SIZE;
3358 			data = bp->b_data + off;
3359 			cnt--;
3360 		}
3361 		/*
3362 		 * Write this one buffer and continue.
3363 		 */
3364 		segwritten = 1;
3365 		jblocks->jb_needseg = 0;
3366 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3367 		FREE_LOCK(&lk);
3368 		BO_LOCK(bp->b_bufobj);
3369 		bgetvp(ump->um_devvp, bp);
3370 		BO_UNLOCK(bp->b_bufobj);
3371 		/*
3372 		 * We only do the blocking wait once we find the journal
3373 		 * entry we're looking for.
3374 		 */
3375 		if (needwk == NULL && flags == MNT_WAIT)
3376 			bwrite(bp);
3377 		else
3378 			bawrite(bp);
3379 		ACQUIRE_LOCK(&lk);
3380 	}
3381 	/*
3382 	 * If we wrote a segment issue a synchronize cache so the journal
3383 	 * is reflected on disk before the data is written.  Since reclaiming
3384 	 * journal space also requires writing a journal record this
3385 	 * process also enforces a barrier before reclamation.
3386 	 */
3387 	if (segwritten && shouldflush) {
3388 		softdep_synchronize(bio, ump,
3389 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3390 	} else if (bio)
3391 		g_destroy_bio(bio);
3392 	/*
3393 	 * If we've suspended the filesystem because we ran out of journal
3394 	 * space either try to sync it here to make some progress or
3395 	 * unsuspend it if we already have.
3396 	 */
3397 	if (flags == 0 && jblocks->jb_suspended) {
3398 		if (journal_unsuspend(ump))
3399 			return;
3400 		FREE_LOCK(&lk);
3401 		VFS_SYNC(mp, MNT_NOWAIT);
3402 		ffs_sbupdate(ump, MNT_WAIT, 0);
3403 		ACQUIRE_LOCK(&lk);
3404 	}
3405 }
3406 
3407 /*
3408  * Complete a jseg, allowing all dependencies awaiting journal writes
3409  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3410  * structures so that the journal segment can be freed to reclaim space.
3411  */
3412 static void
3413 complete_jseg(jseg)
3414 	struct jseg *jseg;
3415 {
3416 	struct worklist *wk;
3417 	struct jmvref *jmvref;
3418 	int waiting;
3419 #ifdef INVARIANTS
3420 	int i = 0;
3421 #endif
3422 
3423 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3424 		WORKLIST_REMOVE(wk);
3425 		waiting = wk->wk_state & IOWAITING;
3426 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3427 		wk->wk_state |= COMPLETE;
3428 		KASSERT(i++ < jseg->js_cnt,
3429 		    ("handle_written_jseg: overflow %d >= %d",
3430 		    i - 1, jseg->js_cnt));
3431 		switch (wk->wk_type) {
3432 		case D_JADDREF:
3433 			handle_written_jaddref(WK_JADDREF(wk));
3434 			break;
3435 		case D_JREMREF:
3436 			handle_written_jremref(WK_JREMREF(wk));
3437 			break;
3438 		case D_JMVREF:
3439 			rele_jseg(jseg);	/* No jsegdep. */
3440 			jmvref = WK_JMVREF(wk);
3441 			LIST_REMOVE(jmvref, jm_deps);
3442 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3443 				free_pagedep(jmvref->jm_pagedep);
3444 			WORKITEM_FREE(jmvref, D_JMVREF);
3445 			break;
3446 		case D_JNEWBLK:
3447 			handle_written_jnewblk(WK_JNEWBLK(wk));
3448 			break;
3449 		case D_JFREEBLK:
3450 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3451 			break;
3452 		case D_JTRUNC:
3453 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3454 			break;
3455 		case D_JFSYNC:
3456 			rele_jseg(jseg);	/* No jsegdep. */
3457 			WORKITEM_FREE(wk, D_JFSYNC);
3458 			break;
3459 		case D_JFREEFRAG:
3460 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3461 			break;
3462 		default:
3463 			panic("handle_written_jseg: Unknown type %s",
3464 			    TYPENAME(wk->wk_type));
3465 			/* NOTREACHED */
3466 		}
3467 		if (waiting)
3468 			wakeup(wk);
3469 	}
3470 	/* Release the self reference so the structure may be freed. */
3471 	rele_jseg(jseg);
3472 }
3473 
3474 /*
3475  * Determine which jsegs are ready for completion processing.  Waits for
3476  * synchronize cache to complete as well as forcing in-order completion
3477  * of journal entries.
3478  */
3479 static void
3480 complete_jsegs(jseg)
3481 	struct jseg *jseg;
3482 {
3483 	struct jblocks *jblocks;
3484 	struct jseg *jsegn;
3485 
3486 	jblocks = jseg->js_jblocks;
3487 	/*
3488 	 * Don't allow out of order completions.  If this isn't the first
3489 	 * block wait for it to write before we're done.
3490 	 */
3491 	if (jseg != jblocks->jb_writeseg)
3492 		return;
3493 	/* Iterate through available jsegs processing their entries. */
3494 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3495 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3496 		jsegn = TAILQ_NEXT(jseg, js_next);
3497 		complete_jseg(jseg);
3498 		jseg = jsegn;
3499 	}
3500 	jblocks->jb_writeseg = jseg;
3501 	/*
3502 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3503 	 */
3504 	free_jsegs(jblocks);
3505 }
3506 
3507 /*
3508  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3509  * the final completions.
3510  */
3511 static void
3512 handle_written_jseg(jseg, bp)
3513 	struct jseg *jseg;
3514 	struct buf *bp;
3515 {
3516 
3517 	if (jseg->js_refs == 0)
3518 		panic("handle_written_jseg: No self-reference on %p", jseg);
3519 	jseg->js_state |= DEPCOMPLETE;
3520 	/*
3521 	 * We'll never need this buffer again, set flags so it will be
3522 	 * discarded.
3523 	 */
3524 	bp->b_flags |= B_INVAL | B_NOCACHE;
3525 	complete_jsegs(jseg);
3526 }
3527 
3528 static inline struct jsegdep *
3529 inoref_jseg(inoref)
3530 	struct inoref *inoref;
3531 {
3532 	struct jsegdep *jsegdep;
3533 
3534 	jsegdep = inoref->if_jsegdep;
3535 	inoref->if_jsegdep = NULL;
3536 
3537 	return (jsegdep);
3538 }
3539 
3540 /*
3541  * Called once a jremref has made it to stable store.  The jremref is marked
3542  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3543  * for the jremref to complete will be awoken by free_jremref.
3544  */
3545 static void
3546 handle_written_jremref(jremref)
3547 	struct jremref *jremref;
3548 {
3549 	struct inodedep *inodedep;
3550 	struct jsegdep *jsegdep;
3551 	struct dirrem *dirrem;
3552 
3553 	/* Grab the jsegdep. */
3554 	jsegdep = inoref_jseg(&jremref->jr_ref);
3555 	/*
3556 	 * Remove us from the inoref list.
3557 	 */
3558 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3559 	    0, &inodedep) == 0)
3560 		panic("handle_written_jremref: Lost inodedep");
3561 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3562 	/*
3563 	 * Complete the dirrem.
3564 	 */
3565 	dirrem = jremref->jr_dirrem;
3566 	jremref->jr_dirrem = NULL;
3567 	LIST_REMOVE(jremref, jr_deps);
3568 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3569 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3570 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3571 	    (dirrem->dm_state & COMPLETE) != 0)
3572 		add_to_worklist(&dirrem->dm_list, 0);
3573 	free_jremref(jremref);
3574 }
3575 
3576 /*
3577  * Called once a jaddref has made it to stable store.  The dependency is
3578  * marked complete and any dependent structures are added to the inode
3579  * bufwait list to be completed as soon as it is written.  If a bitmap write
3580  * depends on this entry we move the inode into the inodedephd of the
3581  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3582  */
3583 static void
3584 handle_written_jaddref(jaddref)
3585 	struct jaddref *jaddref;
3586 {
3587 	struct jsegdep *jsegdep;
3588 	struct inodedep *inodedep;
3589 	struct diradd *diradd;
3590 	struct mkdir *mkdir;
3591 
3592 	/* Grab the jsegdep. */
3593 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3594 	mkdir = NULL;
3595 	diradd = NULL;
3596 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3597 	    0, &inodedep) == 0)
3598 		panic("handle_written_jaddref: Lost inodedep.");
3599 	if (jaddref->ja_diradd == NULL)
3600 		panic("handle_written_jaddref: No dependency");
3601 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3602 		diradd = jaddref->ja_diradd;
3603 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3604 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3605 		mkdir = jaddref->ja_mkdir;
3606 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3607 	} else if (jaddref->ja_state & MKDIR_BODY)
3608 		mkdir = jaddref->ja_mkdir;
3609 	else
3610 		panic("handle_written_jaddref: Unknown dependency %p",
3611 		    jaddref->ja_diradd);
3612 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3613 	/*
3614 	 * Remove us from the inode list.
3615 	 */
3616 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3617 	/*
3618 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3619 	 */
3620 	if (mkdir) {
3621 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3622 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3623 		    TYPENAME(mkdir->md_list.wk_type)));
3624 		mkdir->md_jaddref = NULL;
3625 		diradd = mkdir->md_diradd;
3626 		mkdir->md_state |= DEPCOMPLETE;
3627 		complete_mkdir(mkdir);
3628 	}
3629 	jwork_insert(&diradd->da_jwork, jsegdep);
3630 	if (jaddref->ja_state & NEWBLOCK) {
3631 		inodedep->id_state |= ONDEPLIST;
3632 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3633 		    inodedep, id_deps);
3634 	}
3635 	free_jaddref(jaddref);
3636 }
3637 
3638 /*
3639  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3640  * is placed in the bmsafemap to await notification of a written bitmap.  If
3641  * the operation was canceled we add the segdep to the appropriate
3642  * dependency to free the journal space once the canceling operation
3643  * completes.
3644  */
3645 static void
3646 handle_written_jnewblk(jnewblk)
3647 	struct jnewblk *jnewblk;
3648 {
3649 	struct bmsafemap *bmsafemap;
3650 	struct freefrag *freefrag;
3651 	struct freework *freework;
3652 	struct jsegdep *jsegdep;
3653 	struct newblk *newblk;
3654 
3655 	/* Grab the jsegdep. */
3656 	jsegdep = jnewblk->jn_jsegdep;
3657 	jnewblk->jn_jsegdep = NULL;
3658 	if (jnewblk->jn_dep == NULL)
3659 		panic("handle_written_jnewblk: No dependency for the segdep.");
3660 	switch (jnewblk->jn_dep->wk_type) {
3661 	case D_NEWBLK:
3662 	case D_ALLOCDIRECT:
3663 	case D_ALLOCINDIR:
3664 		/*
3665 		 * Add the written block to the bmsafemap so it can
3666 		 * be notified when the bitmap is on disk.
3667 		 */
3668 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3669 		newblk->nb_jnewblk = NULL;
3670 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3671 			bmsafemap = newblk->nb_bmsafemap;
3672 			newblk->nb_state |= ONDEPLIST;
3673 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3674 			    nb_deps);
3675 		}
3676 		jwork_insert(&newblk->nb_jwork, jsegdep);
3677 		break;
3678 	case D_FREEFRAG:
3679 		/*
3680 		 * A newblock being removed by a freefrag when replaced by
3681 		 * frag extension.
3682 		 */
3683 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3684 		freefrag->ff_jdep = NULL;
3685 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3686 		break;
3687 	case D_FREEWORK:
3688 		/*
3689 		 * A direct block was removed by truncate.
3690 		 */
3691 		freework = WK_FREEWORK(jnewblk->jn_dep);
3692 		freework->fw_jnewblk = NULL;
3693 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3694 		break;
3695 	default:
3696 		panic("handle_written_jnewblk: Unknown type %d.",
3697 		    jnewblk->jn_dep->wk_type);
3698 	}
3699 	jnewblk->jn_dep = NULL;
3700 	free_jnewblk(jnewblk);
3701 }
3702 
3703 /*
3704  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3705  * an in-flight allocation that has not yet been committed.  Divorce us
3706  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3707  * to the worklist.
3708  */
3709 static void
3710 cancel_jfreefrag(jfreefrag)
3711 	struct jfreefrag *jfreefrag;
3712 {
3713 	struct freefrag *freefrag;
3714 
3715 	if (jfreefrag->fr_jsegdep) {
3716 		free_jsegdep(jfreefrag->fr_jsegdep);
3717 		jfreefrag->fr_jsegdep = NULL;
3718 	}
3719 	freefrag = jfreefrag->fr_freefrag;
3720 	jfreefrag->fr_freefrag = NULL;
3721 	free_jfreefrag(jfreefrag);
3722 	freefrag->ff_state |= DEPCOMPLETE;
3723 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3724 }
3725 
3726 /*
3727  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3728  */
3729 static void
3730 free_jfreefrag(jfreefrag)
3731 	struct jfreefrag *jfreefrag;
3732 {
3733 
3734 	if (jfreefrag->fr_state & INPROGRESS)
3735 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3736 	else if (jfreefrag->fr_state & ONWORKLIST)
3737 		remove_from_journal(&jfreefrag->fr_list);
3738 	if (jfreefrag->fr_freefrag != NULL)
3739 		panic("free_jfreefrag:  Still attached to a freefrag.");
3740 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3741 }
3742 
3743 /*
3744  * Called when the journal write for a jfreefrag completes.  The parent
3745  * freefrag is added to the worklist if this completes its dependencies.
3746  */
3747 static void
3748 handle_written_jfreefrag(jfreefrag)
3749 	struct jfreefrag *jfreefrag;
3750 {
3751 	struct jsegdep *jsegdep;
3752 	struct freefrag *freefrag;
3753 
3754 	/* Grab the jsegdep. */
3755 	jsegdep = jfreefrag->fr_jsegdep;
3756 	jfreefrag->fr_jsegdep = NULL;
3757 	freefrag = jfreefrag->fr_freefrag;
3758 	if (freefrag == NULL)
3759 		panic("handle_written_jfreefrag: No freefrag.");
3760 	freefrag->ff_state |= DEPCOMPLETE;
3761 	freefrag->ff_jdep = NULL;
3762 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3763 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3764 		add_to_worklist(&freefrag->ff_list, 0);
3765 	jfreefrag->fr_freefrag = NULL;
3766 	free_jfreefrag(jfreefrag);
3767 }
3768 
3769 /*
3770  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3771  * is removed from the freeblks list of pending journal writes and the
3772  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3773  * have been reclaimed.
3774  */
3775 static void
3776 handle_written_jblkdep(jblkdep)
3777 	struct jblkdep *jblkdep;
3778 {
3779 	struct freeblks *freeblks;
3780 	struct jsegdep *jsegdep;
3781 
3782 	/* Grab the jsegdep. */
3783 	jsegdep = jblkdep->jb_jsegdep;
3784 	jblkdep->jb_jsegdep = NULL;
3785 	freeblks = jblkdep->jb_freeblks;
3786 	LIST_REMOVE(jblkdep, jb_deps);
3787 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3788 	/*
3789 	 * If the freeblks is all journaled, we can add it to the worklist.
3790 	 */
3791 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3792 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3793 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3794 
3795 	free_jblkdep(jblkdep);
3796 }
3797 
3798 static struct jsegdep *
3799 newjsegdep(struct worklist *wk)
3800 {
3801 	struct jsegdep *jsegdep;
3802 
3803 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3804 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3805 	jsegdep->jd_seg = NULL;
3806 
3807 	return (jsegdep);
3808 }
3809 
3810 static struct jmvref *
3811 newjmvref(dp, ino, oldoff, newoff)
3812 	struct inode *dp;
3813 	ino_t ino;
3814 	off_t oldoff;
3815 	off_t newoff;
3816 {
3817 	struct jmvref *jmvref;
3818 
3819 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3820 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3821 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3822 	jmvref->jm_parent = dp->i_number;
3823 	jmvref->jm_ino = ino;
3824 	jmvref->jm_oldoff = oldoff;
3825 	jmvref->jm_newoff = newoff;
3826 
3827 	return (jmvref);
3828 }
3829 
3830 /*
3831  * Allocate a new jremref that tracks the removal of ip from dp with the
3832  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3833  * DEPCOMPLETE as we have all the information required for the journal write
3834  * and the directory has already been removed from the buffer.  The caller
3835  * is responsible for linking the jremref into the pagedep and adding it
3836  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3837  * a DOTDOT addition so handle_workitem_remove() can properly assign
3838  * the jsegdep when we're done.
3839  */
3840 static struct jremref *
3841 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3842     off_t diroff, nlink_t nlink)
3843 {
3844 	struct jremref *jremref;
3845 
3846 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3847 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3848 	jremref->jr_state = ATTACHED;
3849 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3850 	   nlink, ip->i_mode);
3851 	jremref->jr_dirrem = dirrem;
3852 
3853 	return (jremref);
3854 }
3855 
3856 static inline void
3857 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3858     nlink_t nlink, uint16_t mode)
3859 {
3860 
3861 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3862 	inoref->if_diroff = diroff;
3863 	inoref->if_ino = ino;
3864 	inoref->if_parent = parent;
3865 	inoref->if_nlink = nlink;
3866 	inoref->if_mode = mode;
3867 }
3868 
3869 /*
3870  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3871  * directory offset may not be known until later.  The caller is responsible
3872  * adding the entry to the journal when this information is available.  nlink
3873  * should be the link count prior to the addition and mode is only required
3874  * to have the correct FMT.
3875  */
3876 static struct jaddref *
3877 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3878     uint16_t mode)
3879 {
3880 	struct jaddref *jaddref;
3881 
3882 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3883 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3884 	jaddref->ja_state = ATTACHED;
3885 	jaddref->ja_mkdir = NULL;
3886 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3887 
3888 	return (jaddref);
3889 }
3890 
3891 /*
3892  * Create a new free dependency for a freework.  The caller is responsible
3893  * for adjusting the reference count when it has the lock held.  The freedep
3894  * will track an outstanding bitmap write that will ultimately clear the
3895  * freework to continue.
3896  */
3897 static struct freedep *
3898 newfreedep(struct freework *freework)
3899 {
3900 	struct freedep *freedep;
3901 
3902 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3903 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3904 	freedep->fd_freework = freework;
3905 
3906 	return (freedep);
3907 }
3908 
3909 /*
3910  * Free a freedep structure once the buffer it is linked to is written.  If
3911  * this is the last reference to the freework schedule it for completion.
3912  */
3913 static void
3914 free_freedep(freedep)
3915 	struct freedep *freedep;
3916 {
3917 	struct freework *freework;
3918 
3919 	freework = freedep->fd_freework;
3920 	freework->fw_freeblks->fb_cgwait--;
3921 	if (--freework->fw_ref == 0)
3922 		freework_enqueue(freework);
3923 	WORKITEM_FREE(freedep, D_FREEDEP);
3924 }
3925 
3926 /*
3927  * Allocate a new freework structure that may be a level in an indirect
3928  * when parent is not NULL or a top level block when it is.  The top level
3929  * freework structures are allocated without lk held and before the freeblks
3930  * is visible outside of softdep_setup_freeblocks().
3931  */
3932 static struct freework *
3933 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3934 	struct ufsmount *ump;
3935 	struct freeblks *freeblks;
3936 	struct freework *parent;
3937 	ufs_lbn_t lbn;
3938 	ufs2_daddr_t nb;
3939 	int frags;
3940 	int off;
3941 	int journal;
3942 {
3943 	struct freework *freework;
3944 
3945 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3946 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3947 	freework->fw_state = ATTACHED;
3948 	freework->fw_jnewblk = NULL;
3949 	freework->fw_freeblks = freeblks;
3950 	freework->fw_parent = parent;
3951 	freework->fw_lbn = lbn;
3952 	freework->fw_blkno = nb;
3953 	freework->fw_frags = frags;
3954 	freework->fw_indir = NULL;
3955 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3956 		? 0 : NINDIR(ump->um_fs) + 1;
3957 	freework->fw_start = freework->fw_off = off;
3958 	if (journal)
3959 		newjfreeblk(freeblks, lbn, nb, frags);
3960 	if (parent == NULL) {
3961 		ACQUIRE_LOCK(&lk);
3962 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3963 		freeblks->fb_ref++;
3964 		FREE_LOCK(&lk);
3965 	}
3966 
3967 	return (freework);
3968 }
3969 
3970 /*
3971  * Eliminate a jfreeblk for a block that does not need journaling.
3972  */
3973 static void
3974 cancel_jfreeblk(freeblks, blkno)
3975 	struct freeblks *freeblks;
3976 	ufs2_daddr_t blkno;
3977 {
3978 	struct jfreeblk *jfreeblk;
3979 	struct jblkdep *jblkdep;
3980 
3981 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3982 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3983 			continue;
3984 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3985 		if (jfreeblk->jf_blkno == blkno)
3986 			break;
3987 	}
3988 	if (jblkdep == NULL)
3989 		return;
3990 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
3991 	free_jsegdep(jblkdep->jb_jsegdep);
3992 	LIST_REMOVE(jblkdep, jb_deps);
3993 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3994 }
3995 
3996 /*
3997  * Allocate a new jfreeblk to journal top level block pointer when truncating
3998  * a file.  The caller must add this to the worklist when lk is held.
3999  */
4000 static struct jfreeblk *
4001 newjfreeblk(freeblks, lbn, blkno, frags)
4002 	struct freeblks *freeblks;
4003 	ufs_lbn_t lbn;
4004 	ufs2_daddr_t blkno;
4005 	int frags;
4006 {
4007 	struct jfreeblk *jfreeblk;
4008 
4009 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4010 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4011 	    freeblks->fb_list.wk_mp);
4012 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4013 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4014 	jfreeblk->jf_ino = freeblks->fb_inum;
4015 	jfreeblk->jf_lbn = lbn;
4016 	jfreeblk->jf_blkno = blkno;
4017 	jfreeblk->jf_frags = frags;
4018 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4019 
4020 	return (jfreeblk);
4021 }
4022 
4023 /*
4024  * Allocate a new jtrunc to track a partial truncation.
4025  */
4026 static struct jtrunc *
4027 newjtrunc(freeblks, size, extsize)
4028 	struct freeblks *freeblks;
4029 	off_t size;
4030 	int extsize;
4031 {
4032 	struct jtrunc *jtrunc;
4033 
4034 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4035 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4036 	    freeblks->fb_list.wk_mp);
4037 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4038 	jtrunc->jt_dep.jb_freeblks = freeblks;
4039 	jtrunc->jt_ino = freeblks->fb_inum;
4040 	jtrunc->jt_size = size;
4041 	jtrunc->jt_extsize = extsize;
4042 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4043 
4044 	return (jtrunc);
4045 }
4046 
4047 /*
4048  * If we're canceling a new bitmap we have to search for another ref
4049  * to move into the bmsafemap dep.  This might be better expressed
4050  * with another structure.
4051  */
4052 static void
4053 move_newblock_dep(jaddref, inodedep)
4054 	struct jaddref *jaddref;
4055 	struct inodedep *inodedep;
4056 {
4057 	struct inoref *inoref;
4058 	struct jaddref *jaddrefn;
4059 
4060 	jaddrefn = NULL;
4061 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4062 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4063 		if ((jaddref->ja_state & NEWBLOCK) &&
4064 		    inoref->if_list.wk_type == D_JADDREF) {
4065 			jaddrefn = (struct jaddref *)inoref;
4066 			break;
4067 		}
4068 	}
4069 	if (jaddrefn == NULL)
4070 		return;
4071 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4072 	jaddrefn->ja_state |= jaddref->ja_state &
4073 	    (ATTACHED | UNDONE | NEWBLOCK);
4074 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4075 	jaddref->ja_state |= ATTACHED;
4076 	LIST_REMOVE(jaddref, ja_bmdeps);
4077 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4078 	    ja_bmdeps);
4079 }
4080 
4081 /*
4082  * Cancel a jaddref either before it has been written or while it is being
4083  * written.  This happens when a link is removed before the add reaches
4084  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4085  * and inode to prevent the link count or bitmap from reaching the disk
4086  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4087  * required.
4088  *
4089  * Returns 1 if the canceled addref requires journaling of the remove and
4090  * 0 otherwise.
4091  */
4092 static int
4093 cancel_jaddref(jaddref, inodedep, wkhd)
4094 	struct jaddref *jaddref;
4095 	struct inodedep *inodedep;
4096 	struct workhead *wkhd;
4097 {
4098 	struct inoref *inoref;
4099 	struct jsegdep *jsegdep;
4100 	int needsj;
4101 
4102 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4103 	    ("cancel_jaddref: Canceling complete jaddref"));
4104 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4105 		needsj = 1;
4106 	else
4107 		needsj = 0;
4108 	if (inodedep == NULL)
4109 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4110 		    0, &inodedep) == 0)
4111 			panic("cancel_jaddref: Lost inodedep");
4112 	/*
4113 	 * We must adjust the nlink of any reference operation that follows
4114 	 * us so that it is consistent with the in-memory reference.  This
4115 	 * ensures that inode nlink rollbacks always have the correct link.
4116 	 */
4117 	if (needsj == 0) {
4118 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4119 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4120 			if (inoref->if_state & GOINGAWAY)
4121 				break;
4122 			inoref->if_nlink--;
4123 		}
4124 	}
4125 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4126 	if (jaddref->ja_state & NEWBLOCK)
4127 		move_newblock_dep(jaddref, inodedep);
4128 	wake_worklist(&jaddref->ja_list);
4129 	jaddref->ja_mkdir = NULL;
4130 	if (jaddref->ja_state & INPROGRESS) {
4131 		jaddref->ja_state &= ~INPROGRESS;
4132 		WORKLIST_REMOVE(&jaddref->ja_list);
4133 		jwork_insert(wkhd, jsegdep);
4134 	} else {
4135 		free_jsegdep(jsegdep);
4136 		if (jaddref->ja_state & DEPCOMPLETE)
4137 			remove_from_journal(&jaddref->ja_list);
4138 	}
4139 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4140 	/*
4141 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4142 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4143 	 * no longer need this addref attached to the inoreflst and it
4144 	 * will incorrectly adjust nlink if we leave it.
4145 	 */
4146 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4147 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4148 		    if_deps);
4149 		jaddref->ja_state |= COMPLETE;
4150 		free_jaddref(jaddref);
4151 		return (needsj);
4152 	}
4153 	/*
4154 	 * Leave the head of the list for jsegdeps for fast merging.
4155 	 */
4156 	if (LIST_FIRST(wkhd) != NULL) {
4157 		jaddref->ja_state |= ONWORKLIST;
4158 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4159 	} else
4160 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4161 
4162 	return (needsj);
4163 }
4164 
4165 /*
4166  * Attempt to free a jaddref structure when some work completes.  This
4167  * should only succeed once the entry is written and all dependencies have
4168  * been notified.
4169  */
4170 static void
4171 free_jaddref(jaddref)
4172 	struct jaddref *jaddref;
4173 {
4174 
4175 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4176 		return;
4177 	if (jaddref->ja_ref.if_jsegdep)
4178 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4179 		    jaddref, jaddref->ja_state);
4180 	if (jaddref->ja_state & NEWBLOCK)
4181 		LIST_REMOVE(jaddref, ja_bmdeps);
4182 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4183 		panic("free_jaddref: Bad state %p(0x%X)",
4184 		    jaddref, jaddref->ja_state);
4185 	if (jaddref->ja_mkdir != NULL)
4186 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4187 	WORKITEM_FREE(jaddref, D_JADDREF);
4188 }
4189 
4190 /*
4191  * Free a jremref structure once it has been written or discarded.
4192  */
4193 static void
4194 free_jremref(jremref)
4195 	struct jremref *jremref;
4196 {
4197 
4198 	if (jremref->jr_ref.if_jsegdep)
4199 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4200 	if (jremref->jr_state & INPROGRESS)
4201 		panic("free_jremref: IO still pending");
4202 	WORKITEM_FREE(jremref, D_JREMREF);
4203 }
4204 
4205 /*
4206  * Free a jnewblk structure.
4207  */
4208 static void
4209 free_jnewblk(jnewblk)
4210 	struct jnewblk *jnewblk;
4211 {
4212 
4213 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4214 		return;
4215 	LIST_REMOVE(jnewblk, jn_deps);
4216 	if (jnewblk->jn_dep != NULL)
4217 		panic("free_jnewblk: Dependency still attached.");
4218 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4219 }
4220 
4221 /*
4222  * Cancel a jnewblk which has been been made redundant by frag extension.
4223  */
4224 static void
4225 cancel_jnewblk(jnewblk, wkhd)
4226 	struct jnewblk *jnewblk;
4227 	struct workhead *wkhd;
4228 {
4229 	struct jsegdep *jsegdep;
4230 
4231 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4232 	jsegdep = jnewblk->jn_jsegdep;
4233 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4234 		panic("cancel_jnewblk: Invalid state");
4235 	jnewblk->jn_jsegdep  = NULL;
4236 	jnewblk->jn_dep = NULL;
4237 	jnewblk->jn_state |= GOINGAWAY;
4238 	if (jnewblk->jn_state & INPROGRESS) {
4239 		jnewblk->jn_state &= ~INPROGRESS;
4240 		WORKLIST_REMOVE(&jnewblk->jn_list);
4241 		jwork_insert(wkhd, jsegdep);
4242 	} else {
4243 		free_jsegdep(jsegdep);
4244 		remove_from_journal(&jnewblk->jn_list);
4245 	}
4246 	wake_worklist(&jnewblk->jn_list);
4247 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4248 }
4249 
4250 static void
4251 free_jblkdep(jblkdep)
4252 	struct jblkdep *jblkdep;
4253 {
4254 
4255 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4256 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4257 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4258 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4259 	else
4260 		panic("free_jblkdep: Unexpected type %s",
4261 		    TYPENAME(jblkdep->jb_list.wk_type));
4262 }
4263 
4264 /*
4265  * Free a single jseg once it is no longer referenced in memory or on
4266  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4267  * to disappear.
4268  */
4269 static void
4270 free_jseg(jseg, jblocks)
4271 	struct jseg *jseg;
4272 	struct jblocks *jblocks;
4273 {
4274 	struct freework *freework;
4275 
4276 	/*
4277 	 * Free freework structures that were lingering to indicate freed
4278 	 * indirect blocks that forced journal write ordering on reallocate.
4279 	 */
4280 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4281 		indirblk_remove(freework);
4282 	if (jblocks->jb_oldestseg == jseg)
4283 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4284 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4285 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4286 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4287 	    ("free_jseg: Freed jseg has valid entries."));
4288 	WORKITEM_FREE(jseg, D_JSEG);
4289 }
4290 
4291 /*
4292  * Free all jsegs that meet the criteria for being reclaimed and update
4293  * oldestseg.
4294  */
4295 static void
4296 free_jsegs(jblocks)
4297 	struct jblocks *jblocks;
4298 {
4299 	struct jseg *jseg;
4300 
4301 	/*
4302 	 * Free only those jsegs which have none allocated before them to
4303 	 * preserve the journal space ordering.
4304 	 */
4305 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4306 		/*
4307 		 * Only reclaim space when nothing depends on this journal
4308 		 * set and another set has written that it is no longer
4309 		 * valid.
4310 		 */
4311 		if (jseg->js_refs != 0) {
4312 			jblocks->jb_oldestseg = jseg;
4313 			return;
4314 		}
4315 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4316 			break;
4317 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4318 			break;
4319 		/*
4320 		 * We can free jsegs that didn't write entries when
4321 		 * oldestwrseq == js_seq.
4322 		 */
4323 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4324 		    jseg->js_cnt != 0)
4325 			break;
4326 		free_jseg(jseg, jblocks);
4327 	}
4328 	/*
4329 	 * If we exited the loop above we still must discover the
4330 	 * oldest valid segment.
4331 	 */
4332 	if (jseg)
4333 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4334 		     jseg = TAILQ_NEXT(jseg, js_next))
4335 			if (jseg->js_refs != 0)
4336 				break;
4337 	jblocks->jb_oldestseg = jseg;
4338 	/*
4339 	 * The journal has no valid records but some jsegs may still be
4340 	 * waiting on oldestwrseq to advance.  We force a small record
4341 	 * out to permit these lingering records to be reclaimed.
4342 	 */
4343 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4344 		jblocks->jb_needseg = 1;
4345 }
4346 
4347 /*
4348  * Release one reference to a jseg and free it if the count reaches 0.  This
4349  * should eventually reclaim journal space as well.
4350  */
4351 static void
4352 rele_jseg(jseg)
4353 	struct jseg *jseg;
4354 {
4355 
4356 	KASSERT(jseg->js_refs > 0,
4357 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4358 	if (--jseg->js_refs != 0)
4359 		return;
4360 	free_jsegs(jseg->js_jblocks);
4361 }
4362 
4363 /*
4364  * Release a jsegdep and decrement the jseg count.
4365  */
4366 static void
4367 free_jsegdep(jsegdep)
4368 	struct jsegdep *jsegdep;
4369 {
4370 
4371 	if (jsegdep->jd_seg)
4372 		rele_jseg(jsegdep->jd_seg);
4373 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4374 }
4375 
4376 /*
4377  * Wait for a journal item to make it to disk.  Initiate journal processing
4378  * if required.
4379  */
4380 static int
4381 jwait(wk, waitfor)
4382 	struct worklist *wk;
4383 	int waitfor;
4384 {
4385 
4386 	/*
4387 	 * Blocking journal waits cause slow synchronous behavior.  Record
4388 	 * stats on the frequency of these blocking operations.
4389 	 */
4390 	if (waitfor == MNT_WAIT) {
4391 		stat_journal_wait++;
4392 		switch (wk->wk_type) {
4393 		case D_JREMREF:
4394 		case D_JMVREF:
4395 			stat_jwait_filepage++;
4396 			break;
4397 		case D_JTRUNC:
4398 		case D_JFREEBLK:
4399 			stat_jwait_freeblks++;
4400 			break;
4401 		case D_JNEWBLK:
4402 			stat_jwait_newblk++;
4403 			break;
4404 		case D_JADDREF:
4405 			stat_jwait_inode++;
4406 			break;
4407 		default:
4408 			break;
4409 		}
4410 	}
4411 	/*
4412 	 * If IO has not started we process the journal.  We can't mark the
4413 	 * worklist item as IOWAITING because we drop the lock while
4414 	 * processing the journal and the worklist entry may be freed after
4415 	 * this point.  The caller may call back in and re-issue the request.
4416 	 */
4417 	if ((wk->wk_state & INPROGRESS) == 0) {
4418 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4419 		if (waitfor != MNT_WAIT)
4420 			return (EBUSY);
4421 		return (0);
4422 	}
4423 	if (waitfor != MNT_WAIT)
4424 		return (EBUSY);
4425 	wait_worklist(wk, "jwait");
4426 	return (0);
4427 }
4428 
4429 /*
4430  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4431  * appropriate.  This is a convenience function to reduce duplicate code
4432  * for the setup and revert functions below.
4433  */
4434 static struct inodedep *
4435 inodedep_lookup_ip(ip)
4436 	struct inode *ip;
4437 {
4438 	struct inodedep *inodedep;
4439 	int dflags;
4440 
4441 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4442 	    ("inodedep_lookup_ip: bad delta"));
4443 	dflags = DEPALLOC;
4444 	if (IS_SNAPSHOT(ip))
4445 		dflags |= NODELAY;
4446 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4447 	    &inodedep);
4448 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4449 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4450 
4451 	return (inodedep);
4452 }
4453 
4454 /*
4455  * Called prior to creating a new inode and linking it to a directory.  The
4456  * jaddref structure must already be allocated by softdep_setup_inomapdep
4457  * and it is discovered here so we can initialize the mode and update
4458  * nlinkdelta.
4459  */
4460 void
4461 softdep_setup_create(dp, ip)
4462 	struct inode *dp;
4463 	struct inode *ip;
4464 {
4465 	struct inodedep *inodedep;
4466 	struct jaddref *jaddref;
4467 	struct vnode *dvp;
4468 
4469 	KASSERT(ip->i_nlink == 1,
4470 	    ("softdep_setup_create: Invalid link count."));
4471 	dvp = ITOV(dp);
4472 	ACQUIRE_LOCK(&lk);
4473 	inodedep = inodedep_lookup_ip(ip);
4474 	if (DOINGSUJ(dvp)) {
4475 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4476 		    inoreflst);
4477 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4478 		    ("softdep_setup_create: No addref structure present."));
4479 	}
4480 	softdep_prelink(dvp, NULL);
4481 	FREE_LOCK(&lk);
4482 }
4483 
4484 /*
4485  * Create a jaddref structure to track the addition of a DOTDOT link when
4486  * we are reparenting an inode as part of a rename.  This jaddref will be
4487  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4488  * non-journaling softdep.
4489  */
4490 void
4491 softdep_setup_dotdot_link(dp, ip)
4492 	struct inode *dp;
4493 	struct inode *ip;
4494 {
4495 	struct inodedep *inodedep;
4496 	struct jaddref *jaddref;
4497 	struct vnode *dvp;
4498 	struct vnode *vp;
4499 
4500 	dvp = ITOV(dp);
4501 	vp = ITOV(ip);
4502 	jaddref = NULL;
4503 	/*
4504 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4505 	 * is used as a normal link would be.
4506 	 */
4507 	if (DOINGSUJ(dvp))
4508 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4509 		    dp->i_effnlink - 1, dp->i_mode);
4510 	ACQUIRE_LOCK(&lk);
4511 	inodedep = inodedep_lookup_ip(dp);
4512 	if (jaddref)
4513 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4514 		    if_deps);
4515 	softdep_prelink(dvp, ITOV(ip));
4516 	FREE_LOCK(&lk);
4517 }
4518 
4519 /*
4520  * Create a jaddref structure to track a new link to an inode.  The directory
4521  * offset is not known until softdep_setup_directory_add or
4522  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4523  * softdep.
4524  */
4525 void
4526 softdep_setup_link(dp, ip)
4527 	struct inode *dp;
4528 	struct inode *ip;
4529 {
4530 	struct inodedep *inodedep;
4531 	struct jaddref *jaddref;
4532 	struct vnode *dvp;
4533 
4534 	dvp = ITOV(dp);
4535 	jaddref = NULL;
4536 	if (DOINGSUJ(dvp))
4537 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4538 		    ip->i_mode);
4539 	ACQUIRE_LOCK(&lk);
4540 	inodedep = inodedep_lookup_ip(ip);
4541 	if (jaddref)
4542 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4543 		    if_deps);
4544 	softdep_prelink(dvp, ITOV(ip));
4545 	FREE_LOCK(&lk);
4546 }
4547 
4548 /*
4549  * Called to create the jaddref structures to track . and .. references as
4550  * well as lookup and further initialize the incomplete jaddref created
4551  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4552  * nlinkdelta for non-journaling softdep.
4553  */
4554 void
4555 softdep_setup_mkdir(dp, ip)
4556 	struct inode *dp;
4557 	struct inode *ip;
4558 {
4559 	struct inodedep *inodedep;
4560 	struct jaddref *dotdotaddref;
4561 	struct jaddref *dotaddref;
4562 	struct jaddref *jaddref;
4563 	struct vnode *dvp;
4564 
4565 	dvp = ITOV(dp);
4566 	dotaddref = dotdotaddref = NULL;
4567 	if (DOINGSUJ(dvp)) {
4568 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4569 		    ip->i_mode);
4570 		dotaddref->ja_state |= MKDIR_BODY;
4571 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4572 		    dp->i_effnlink - 1, dp->i_mode);
4573 		dotdotaddref->ja_state |= MKDIR_PARENT;
4574 	}
4575 	ACQUIRE_LOCK(&lk);
4576 	inodedep = inodedep_lookup_ip(ip);
4577 	if (DOINGSUJ(dvp)) {
4578 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4579 		    inoreflst);
4580 		KASSERT(jaddref != NULL,
4581 		    ("softdep_setup_mkdir: No addref structure present."));
4582 		KASSERT(jaddref->ja_parent == dp->i_number,
4583 		    ("softdep_setup_mkdir: bad parent %ju",
4584 		    (uintmax_t)jaddref->ja_parent));
4585 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4586 		    if_deps);
4587 	}
4588 	inodedep = inodedep_lookup_ip(dp);
4589 	if (DOINGSUJ(dvp))
4590 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4591 		    &dotdotaddref->ja_ref, if_deps);
4592 	softdep_prelink(ITOV(dp), NULL);
4593 	FREE_LOCK(&lk);
4594 }
4595 
4596 /*
4597  * Called to track nlinkdelta of the inode and parent directories prior to
4598  * unlinking a directory.
4599  */
4600 void
4601 softdep_setup_rmdir(dp, ip)
4602 	struct inode *dp;
4603 	struct inode *ip;
4604 {
4605 	struct vnode *dvp;
4606 
4607 	dvp = ITOV(dp);
4608 	ACQUIRE_LOCK(&lk);
4609 	(void) inodedep_lookup_ip(ip);
4610 	(void) inodedep_lookup_ip(dp);
4611 	softdep_prelink(dvp, ITOV(ip));
4612 	FREE_LOCK(&lk);
4613 }
4614 
4615 /*
4616  * Called to track nlinkdelta of the inode and parent directories prior to
4617  * unlink.
4618  */
4619 void
4620 softdep_setup_unlink(dp, ip)
4621 	struct inode *dp;
4622 	struct inode *ip;
4623 {
4624 	struct vnode *dvp;
4625 
4626 	dvp = ITOV(dp);
4627 	ACQUIRE_LOCK(&lk);
4628 	(void) inodedep_lookup_ip(ip);
4629 	(void) inodedep_lookup_ip(dp);
4630 	softdep_prelink(dvp, ITOV(ip));
4631 	FREE_LOCK(&lk);
4632 }
4633 
4634 /*
4635  * Called to release the journal structures created by a failed non-directory
4636  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4637  */
4638 void
4639 softdep_revert_create(dp, ip)
4640 	struct inode *dp;
4641 	struct inode *ip;
4642 {
4643 	struct inodedep *inodedep;
4644 	struct jaddref *jaddref;
4645 	struct vnode *dvp;
4646 
4647 	dvp = ITOV(dp);
4648 	ACQUIRE_LOCK(&lk);
4649 	inodedep = inodedep_lookup_ip(ip);
4650 	if (DOINGSUJ(dvp)) {
4651 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4652 		    inoreflst);
4653 		KASSERT(jaddref->ja_parent == dp->i_number,
4654 		    ("softdep_revert_create: addref parent mismatch"));
4655 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4656 	}
4657 	FREE_LOCK(&lk);
4658 }
4659 
4660 /*
4661  * Called to release the journal structures created by a failed dotdot link
4662  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4663  */
4664 void
4665 softdep_revert_dotdot_link(dp, ip)
4666 	struct inode *dp;
4667 	struct inode *ip;
4668 {
4669 	struct inodedep *inodedep;
4670 	struct jaddref *jaddref;
4671 	struct vnode *dvp;
4672 
4673 	dvp = ITOV(dp);
4674 	ACQUIRE_LOCK(&lk);
4675 	inodedep = inodedep_lookup_ip(dp);
4676 	if (DOINGSUJ(dvp)) {
4677 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4678 		    inoreflst);
4679 		KASSERT(jaddref->ja_parent == ip->i_number,
4680 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4681 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4682 	}
4683 	FREE_LOCK(&lk);
4684 }
4685 
4686 /*
4687  * Called to release the journal structures created by a failed link
4688  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4689  */
4690 void
4691 softdep_revert_link(dp, ip)
4692 	struct inode *dp;
4693 	struct inode *ip;
4694 {
4695 	struct inodedep *inodedep;
4696 	struct jaddref *jaddref;
4697 	struct vnode *dvp;
4698 
4699 	dvp = ITOV(dp);
4700 	ACQUIRE_LOCK(&lk);
4701 	inodedep = inodedep_lookup_ip(ip);
4702 	if (DOINGSUJ(dvp)) {
4703 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4704 		    inoreflst);
4705 		KASSERT(jaddref->ja_parent == dp->i_number,
4706 		    ("softdep_revert_link: addref parent mismatch"));
4707 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4708 	}
4709 	FREE_LOCK(&lk);
4710 }
4711 
4712 /*
4713  * Called to release the journal structures created by a failed mkdir
4714  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4715  */
4716 void
4717 softdep_revert_mkdir(dp, ip)
4718 	struct inode *dp;
4719 	struct inode *ip;
4720 {
4721 	struct inodedep *inodedep;
4722 	struct jaddref *jaddref;
4723 	struct jaddref *dotaddref;
4724 	struct vnode *dvp;
4725 
4726 	dvp = ITOV(dp);
4727 
4728 	ACQUIRE_LOCK(&lk);
4729 	inodedep = inodedep_lookup_ip(dp);
4730 	if (DOINGSUJ(dvp)) {
4731 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4732 		    inoreflst);
4733 		KASSERT(jaddref->ja_parent == ip->i_number,
4734 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4735 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4736 	}
4737 	inodedep = inodedep_lookup_ip(ip);
4738 	if (DOINGSUJ(dvp)) {
4739 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4740 		    inoreflst);
4741 		KASSERT(jaddref->ja_parent == dp->i_number,
4742 		    ("softdep_revert_mkdir: addref parent mismatch"));
4743 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4744 		    inoreflst, if_deps);
4745 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4746 		KASSERT(dotaddref->ja_parent == ip->i_number,
4747 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4748 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4749 	}
4750 	FREE_LOCK(&lk);
4751 }
4752 
4753 /*
4754  * Called to correct nlinkdelta after a failed rmdir.
4755  */
4756 void
4757 softdep_revert_rmdir(dp, ip)
4758 	struct inode *dp;
4759 	struct inode *ip;
4760 {
4761 
4762 	ACQUIRE_LOCK(&lk);
4763 	(void) inodedep_lookup_ip(ip);
4764 	(void) inodedep_lookup_ip(dp);
4765 	FREE_LOCK(&lk);
4766 }
4767 
4768 /*
4769  * Protecting the freemaps (or bitmaps).
4770  *
4771  * To eliminate the need to execute fsck before mounting a filesystem
4772  * after a power failure, one must (conservatively) guarantee that the
4773  * on-disk copy of the bitmaps never indicate that a live inode or block is
4774  * free.  So, when a block or inode is allocated, the bitmap should be
4775  * updated (on disk) before any new pointers.  When a block or inode is
4776  * freed, the bitmap should not be updated until all pointers have been
4777  * reset.  The latter dependency is handled by the delayed de-allocation
4778  * approach described below for block and inode de-allocation.  The former
4779  * dependency is handled by calling the following procedure when a block or
4780  * inode is allocated. When an inode is allocated an "inodedep" is created
4781  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4782  * Each "inodedep" is also inserted into the hash indexing structure so
4783  * that any additional link additions can be made dependent on the inode
4784  * allocation.
4785  *
4786  * The ufs filesystem maintains a number of free block counts (e.g., per
4787  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4788  * in addition to the bitmaps.  These counts are used to improve efficiency
4789  * during allocation and therefore must be consistent with the bitmaps.
4790  * There is no convenient way to guarantee post-crash consistency of these
4791  * counts with simple update ordering, for two main reasons: (1) The counts
4792  * and bitmaps for a single cylinder group block are not in the same disk
4793  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4794  * be written and the other not.  (2) Some of the counts are located in the
4795  * superblock rather than the cylinder group block. So, we focus our soft
4796  * updates implementation on protecting the bitmaps. When mounting a
4797  * filesystem, we recompute the auxiliary counts from the bitmaps.
4798  */
4799 
4800 /*
4801  * Called just after updating the cylinder group block to allocate an inode.
4802  */
4803 void
4804 softdep_setup_inomapdep(bp, ip, newinum, mode)
4805 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4806 	struct inode *ip;	/* inode related to allocation */
4807 	ino_t newinum;		/* new inode number being allocated */
4808 	int mode;
4809 {
4810 	struct inodedep *inodedep;
4811 	struct bmsafemap *bmsafemap;
4812 	struct jaddref *jaddref;
4813 	struct mount *mp;
4814 	struct fs *fs;
4815 
4816 	mp = UFSTOVFS(ip->i_ump);
4817 	fs = ip->i_ump->um_fs;
4818 	jaddref = NULL;
4819 
4820 	/*
4821 	 * Allocate the journal reference add structure so that the bitmap
4822 	 * can be dependent on it.
4823 	 */
4824 	if (MOUNTEDSUJ(mp)) {
4825 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4826 		jaddref->ja_state |= NEWBLOCK;
4827 	}
4828 
4829 	/*
4830 	 * Create a dependency for the newly allocated inode.
4831 	 * Panic if it already exists as something is seriously wrong.
4832 	 * Otherwise add it to the dependency list for the buffer holding
4833 	 * the cylinder group map from which it was allocated.
4834 	 *
4835 	 * We have to preallocate a bmsafemap entry in case it is needed
4836 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4837 	 * have to finish initializing it before we can FREE_LOCK().
4838 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4839 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4840 	 * creating the inodedep as it can be freed during the time
4841 	 * that we FREE_LOCK() while allocating the inodedep. We must
4842 	 * call workitem_alloc() before entering the locked section as
4843 	 * it also acquires the lock and we must avoid trying doing so
4844 	 * recursively.
4845 	 */
4846 	bmsafemap = malloc(sizeof(struct bmsafemap),
4847 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4848 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4849 	ACQUIRE_LOCK(&lk);
4850 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4851 		panic("softdep_setup_inomapdep: dependency %p for new"
4852 		    "inode already exists", inodedep);
4853 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4854 	if (jaddref) {
4855 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4856 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4857 		    if_deps);
4858 	} else {
4859 		inodedep->id_state |= ONDEPLIST;
4860 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4861 	}
4862 	inodedep->id_bmsafemap = bmsafemap;
4863 	inodedep->id_state &= ~DEPCOMPLETE;
4864 	FREE_LOCK(&lk);
4865 }
4866 
4867 /*
4868  * Called just after updating the cylinder group block to
4869  * allocate block or fragment.
4870  */
4871 void
4872 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4873 	struct buf *bp;		/* buffer for cylgroup block with block map */
4874 	struct mount *mp;	/* filesystem doing allocation */
4875 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4876 	int frags;		/* Number of fragments. */
4877 	int oldfrags;		/* Previous number of fragments for extend. */
4878 {
4879 	struct newblk *newblk;
4880 	struct bmsafemap *bmsafemap;
4881 	struct jnewblk *jnewblk;
4882 	struct fs *fs;
4883 
4884 	fs = VFSTOUFS(mp)->um_fs;
4885 	jnewblk = NULL;
4886 	/*
4887 	 * Create a dependency for the newly allocated block.
4888 	 * Add it to the dependency list for the buffer holding
4889 	 * the cylinder group map from which it was allocated.
4890 	 */
4891 	if (MOUNTEDSUJ(mp)) {
4892 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4893 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4894 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4895 		jnewblk->jn_state = ATTACHED;
4896 		jnewblk->jn_blkno = newblkno;
4897 		jnewblk->jn_frags = frags;
4898 		jnewblk->jn_oldfrags = oldfrags;
4899 #ifdef SUJ_DEBUG
4900 		{
4901 			struct cg *cgp;
4902 			uint8_t *blksfree;
4903 			long bno;
4904 			int i;
4905 
4906 			cgp = (struct cg *)bp->b_data;
4907 			blksfree = cg_blksfree(cgp);
4908 			bno = dtogd(fs, jnewblk->jn_blkno);
4909 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4910 			    i++) {
4911 				if (isset(blksfree, bno + i))
4912 					panic("softdep_setup_blkmapdep: "
4913 					    "free fragment %d from %d-%d "
4914 					    "state 0x%X dep %p", i,
4915 					    jnewblk->jn_oldfrags,
4916 					    jnewblk->jn_frags,
4917 					    jnewblk->jn_state,
4918 					    jnewblk->jn_dep);
4919 			}
4920 		}
4921 #endif
4922 	}
4923 
4924 	CTR3(KTR_SUJ,
4925 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
4926 	    newblkno, frags, oldfrags);
4927 	ACQUIRE_LOCK(&lk);
4928 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4929 		panic("softdep_setup_blkmapdep: found block");
4930 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4931 	    dtog(fs, newblkno), NULL);
4932 	if (jnewblk) {
4933 		jnewblk->jn_dep = (struct worklist *)newblk;
4934 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4935 	} else {
4936 		newblk->nb_state |= ONDEPLIST;
4937 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4938 	}
4939 	newblk->nb_bmsafemap = bmsafemap;
4940 	newblk->nb_jnewblk = jnewblk;
4941 	FREE_LOCK(&lk);
4942 }
4943 
4944 #define	BMSAFEMAP_HASH(fs, cg) \
4945       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4946 
4947 static int
4948 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4949 	struct bmsafemap_hashhead *bmsafemaphd;
4950 	struct mount *mp;
4951 	int cg;
4952 	struct bmsafemap **bmsafemapp;
4953 {
4954 	struct bmsafemap *bmsafemap;
4955 
4956 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4957 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4958 			break;
4959 	if (bmsafemap) {
4960 		*bmsafemapp = bmsafemap;
4961 		return (1);
4962 	}
4963 	*bmsafemapp = NULL;
4964 
4965 	return (0);
4966 }
4967 
4968 /*
4969  * Find the bmsafemap associated with a cylinder group buffer.
4970  * If none exists, create one. The buffer must be locked when
4971  * this routine is called and this routine must be called with
4972  * the softdep lock held. To avoid giving up the lock while
4973  * allocating a new bmsafemap, a preallocated bmsafemap may be
4974  * provided. If it is provided but not needed, it is freed.
4975  */
4976 static struct bmsafemap *
4977 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
4978 	struct mount *mp;
4979 	struct buf *bp;
4980 	int cg;
4981 	struct bmsafemap *newbmsafemap;
4982 {
4983 	struct bmsafemap_hashhead *bmsafemaphd;
4984 	struct bmsafemap *bmsafemap, *collision;
4985 	struct worklist *wk;
4986 	struct fs *fs;
4987 
4988 	mtx_assert(&lk, MA_OWNED);
4989 	if (bp)
4990 		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4991 			if (wk->wk_type == D_BMSAFEMAP) {
4992 				if (newbmsafemap)
4993 					WORKITEM_FREE(newbmsafemap,D_BMSAFEMAP);
4994 				return (WK_BMSAFEMAP(wk));
4995 			}
4996 	fs = VFSTOUFS(mp)->um_fs;
4997 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4998 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) {
4999 		if (newbmsafemap)
5000 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5001 		return (bmsafemap);
5002 	}
5003 	if (newbmsafemap) {
5004 		bmsafemap = newbmsafemap;
5005 	} else {
5006 		FREE_LOCK(&lk);
5007 		bmsafemap = malloc(sizeof(struct bmsafemap),
5008 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5009 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5010 		ACQUIRE_LOCK(&lk);
5011 	}
5012 	bmsafemap->sm_buf = bp;
5013 	LIST_INIT(&bmsafemap->sm_inodedephd);
5014 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5015 	LIST_INIT(&bmsafemap->sm_newblkhd);
5016 	LIST_INIT(&bmsafemap->sm_newblkwr);
5017 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5018 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5019 	LIST_INIT(&bmsafemap->sm_freehd);
5020 	LIST_INIT(&bmsafemap->sm_freewr);
5021 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
5022 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5023 		return (collision);
5024 	}
5025 	bmsafemap->sm_cg = cg;
5026 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5027 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
5028 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5029 	return (bmsafemap);
5030 }
5031 
5032 /*
5033  * Direct block allocation dependencies.
5034  *
5035  * When a new block is allocated, the corresponding disk locations must be
5036  * initialized (with zeros or new data) before the on-disk inode points to
5037  * them.  Also, the freemap from which the block was allocated must be
5038  * updated (on disk) before the inode's pointer. These two dependencies are
5039  * independent of each other and are needed for all file blocks and indirect
5040  * blocks that are pointed to directly by the inode.  Just before the
5041  * "in-core" version of the inode is updated with a newly allocated block
5042  * number, a procedure (below) is called to setup allocation dependency
5043  * structures.  These structures are removed when the corresponding
5044  * dependencies are satisfied or when the block allocation becomes obsolete
5045  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5046  * fragment that gets upgraded).  All of these cases are handled in
5047  * procedures described later.
5048  *
5049  * When a file extension causes a fragment to be upgraded, either to a larger
5050  * fragment or to a full block, the on-disk location may change (if the
5051  * previous fragment could not simply be extended). In this case, the old
5052  * fragment must be de-allocated, but not until after the inode's pointer has
5053  * been updated. In most cases, this is handled by later procedures, which
5054  * will construct a "freefrag" structure to be added to the workitem queue
5055  * when the inode update is complete (or obsolete).  The main exception to
5056  * this is when an allocation occurs while a pending allocation dependency
5057  * (for the same block pointer) remains.  This case is handled in the main
5058  * allocation dependency setup procedure by immediately freeing the
5059  * unreferenced fragments.
5060  */
5061 void
5062 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5063 	struct inode *ip;	/* inode to which block is being added */
5064 	ufs_lbn_t off;		/* block pointer within inode */
5065 	ufs2_daddr_t newblkno;	/* disk block number being added */
5066 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5067 	long newsize;		/* size of new block */
5068 	long oldsize;		/* size of new block */
5069 	struct buf *bp;		/* bp for allocated block */
5070 {
5071 	struct allocdirect *adp, *oldadp;
5072 	struct allocdirectlst *adphead;
5073 	struct freefrag *freefrag;
5074 	struct inodedep *inodedep;
5075 	struct pagedep *pagedep;
5076 	struct jnewblk *jnewblk;
5077 	struct newblk *newblk;
5078 	struct mount *mp;
5079 	ufs_lbn_t lbn;
5080 
5081 	lbn = bp->b_lblkno;
5082 	mp = UFSTOVFS(ip->i_ump);
5083 	if (oldblkno && oldblkno != newblkno)
5084 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5085 	else
5086 		freefrag = NULL;
5087 
5088 	CTR6(KTR_SUJ,
5089 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5090 	    "off %jd newsize %ld oldsize %d",
5091 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5092 	ACQUIRE_LOCK(&lk);
5093 	if (off >= NDADDR) {
5094 		if (lbn > 0)
5095 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5096 			    lbn, off);
5097 		/* allocating an indirect block */
5098 		if (oldblkno != 0)
5099 			panic("softdep_setup_allocdirect: non-zero indir");
5100 	} else {
5101 		if (off != lbn)
5102 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5103 			    lbn, off);
5104 		/*
5105 		 * Allocating a direct block.
5106 		 *
5107 		 * If we are allocating a directory block, then we must
5108 		 * allocate an associated pagedep to track additions and
5109 		 * deletions.
5110 		 */
5111 		if ((ip->i_mode & IFMT) == IFDIR)
5112 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5113 			    &pagedep);
5114 	}
5115 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5116 		panic("softdep_setup_allocdirect: lost block");
5117 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5118 	    ("softdep_setup_allocdirect: newblk already initialized"));
5119 	/*
5120 	 * Convert the newblk to an allocdirect.
5121 	 */
5122 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5123 	adp = (struct allocdirect *)newblk;
5124 	newblk->nb_freefrag = freefrag;
5125 	adp->ad_offset = off;
5126 	adp->ad_oldblkno = oldblkno;
5127 	adp->ad_newsize = newsize;
5128 	adp->ad_oldsize = oldsize;
5129 
5130 	/*
5131 	 * Finish initializing the journal.
5132 	 */
5133 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5134 		jnewblk->jn_ino = ip->i_number;
5135 		jnewblk->jn_lbn = lbn;
5136 		add_to_journal(&jnewblk->jn_list);
5137 	}
5138 	if (freefrag && freefrag->ff_jdep != NULL &&
5139 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5140 		add_to_journal(freefrag->ff_jdep);
5141 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5142 	adp->ad_inodedep = inodedep;
5143 
5144 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5145 	/*
5146 	 * The list of allocdirects must be kept in sorted and ascending
5147 	 * order so that the rollback routines can quickly determine the
5148 	 * first uncommitted block (the size of the file stored on disk
5149 	 * ends at the end of the lowest committed fragment, or if there
5150 	 * are no fragments, at the end of the highest committed block).
5151 	 * Since files generally grow, the typical case is that the new
5152 	 * block is to be added at the end of the list. We speed this
5153 	 * special case by checking against the last allocdirect in the
5154 	 * list before laboriously traversing the list looking for the
5155 	 * insertion point.
5156 	 */
5157 	adphead = &inodedep->id_newinoupdt;
5158 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5159 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5160 		/* insert at end of list */
5161 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5162 		if (oldadp != NULL && oldadp->ad_offset == off)
5163 			allocdirect_merge(adphead, adp, oldadp);
5164 		FREE_LOCK(&lk);
5165 		return;
5166 	}
5167 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5168 		if (oldadp->ad_offset >= off)
5169 			break;
5170 	}
5171 	if (oldadp == NULL)
5172 		panic("softdep_setup_allocdirect: lost entry");
5173 	/* insert in middle of list */
5174 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5175 	if (oldadp->ad_offset == off)
5176 		allocdirect_merge(adphead, adp, oldadp);
5177 
5178 	FREE_LOCK(&lk);
5179 }
5180 
5181 /*
5182  * Merge a newer and older journal record to be stored either in a
5183  * newblock or freefrag.  This handles aggregating journal records for
5184  * fragment allocation into a second record as well as replacing a
5185  * journal free with an aborted journal allocation.  A segment for the
5186  * oldest record will be placed on wkhd if it has been written.  If not
5187  * the segment for the newer record will suffice.
5188  */
5189 static struct worklist *
5190 jnewblk_merge(new, old, wkhd)
5191 	struct worklist *new;
5192 	struct worklist *old;
5193 	struct workhead *wkhd;
5194 {
5195 	struct jnewblk *njnewblk;
5196 	struct jnewblk *jnewblk;
5197 
5198 	/* Handle NULLs to simplify callers. */
5199 	if (new == NULL)
5200 		return (old);
5201 	if (old == NULL)
5202 		return (new);
5203 	/* Replace a jfreefrag with a jnewblk. */
5204 	if (new->wk_type == D_JFREEFRAG) {
5205 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5206 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5207 			    old, new);
5208 		cancel_jfreefrag(WK_JFREEFRAG(new));
5209 		return (old);
5210 	}
5211 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5212 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5213 		    old->wk_type, new->wk_type);
5214 	/*
5215 	 * Handle merging of two jnewblk records that describe
5216 	 * different sets of fragments in the same block.
5217 	 */
5218 	jnewblk = WK_JNEWBLK(old);
5219 	njnewblk = WK_JNEWBLK(new);
5220 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5221 		panic("jnewblk_merge: Merging disparate blocks.");
5222 	/*
5223 	 * The record may be rolled back in the cg.
5224 	 */
5225 	if (jnewblk->jn_state & UNDONE) {
5226 		jnewblk->jn_state &= ~UNDONE;
5227 		njnewblk->jn_state |= UNDONE;
5228 		njnewblk->jn_state &= ~ATTACHED;
5229 	}
5230 	/*
5231 	 * We modify the newer addref and free the older so that if neither
5232 	 * has been written the most up-to-date copy will be on disk.  If
5233 	 * both have been written but rolled back we only temporarily need
5234 	 * one of them to fix the bits when the cg write completes.
5235 	 */
5236 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5237 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5238 	cancel_jnewblk(jnewblk, wkhd);
5239 	WORKLIST_REMOVE(&jnewblk->jn_list);
5240 	free_jnewblk(jnewblk);
5241 	return (new);
5242 }
5243 
5244 /*
5245  * Replace an old allocdirect dependency with a newer one.
5246  * This routine must be called with splbio interrupts blocked.
5247  */
5248 static void
5249 allocdirect_merge(adphead, newadp, oldadp)
5250 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5251 	struct allocdirect *newadp;	/* allocdirect being added */
5252 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5253 {
5254 	struct worklist *wk;
5255 	struct freefrag *freefrag;
5256 
5257 	freefrag = NULL;
5258 	mtx_assert(&lk, MA_OWNED);
5259 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5260 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5261 	    newadp->ad_offset >= NDADDR)
5262 		panic("%s %jd != new %jd || old size %ld != new %ld",
5263 		    "allocdirect_merge: old blkno",
5264 		    (intmax_t)newadp->ad_oldblkno,
5265 		    (intmax_t)oldadp->ad_newblkno,
5266 		    newadp->ad_oldsize, oldadp->ad_newsize);
5267 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5268 	newadp->ad_oldsize = oldadp->ad_oldsize;
5269 	/*
5270 	 * If the old dependency had a fragment to free or had never
5271 	 * previously had a block allocated, then the new dependency
5272 	 * can immediately post its freefrag and adopt the old freefrag.
5273 	 * This action is done by swapping the freefrag dependencies.
5274 	 * The new dependency gains the old one's freefrag, and the
5275 	 * old one gets the new one and then immediately puts it on
5276 	 * the worklist when it is freed by free_newblk. It is
5277 	 * not possible to do this swap when the old dependency had a
5278 	 * non-zero size but no previous fragment to free. This condition
5279 	 * arises when the new block is an extension of the old block.
5280 	 * Here, the first part of the fragment allocated to the new
5281 	 * dependency is part of the block currently claimed on disk by
5282 	 * the old dependency, so cannot legitimately be freed until the
5283 	 * conditions for the new dependency are fulfilled.
5284 	 */
5285 	freefrag = newadp->ad_freefrag;
5286 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5287 		newadp->ad_freefrag = oldadp->ad_freefrag;
5288 		oldadp->ad_freefrag = freefrag;
5289 	}
5290 	/*
5291 	 * If we are tracking a new directory-block allocation,
5292 	 * move it from the old allocdirect to the new allocdirect.
5293 	 */
5294 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5295 		WORKLIST_REMOVE(wk);
5296 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5297 			panic("allocdirect_merge: extra newdirblk");
5298 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5299 	}
5300 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5301 	/*
5302 	 * We need to move any journal dependencies over to the freefrag
5303 	 * that releases this block if it exists.  Otherwise we are
5304 	 * extending an existing block and we'll wait until that is
5305 	 * complete to release the journal space and extend the
5306 	 * new journal to cover this old space as well.
5307 	 */
5308 	if (freefrag == NULL) {
5309 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5310 			panic("allocdirect_merge: %jd != %jd",
5311 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5312 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5313 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5314 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5315 		    &newadp->ad_block.nb_jwork);
5316 		oldadp->ad_block.nb_jnewblk = NULL;
5317 		cancel_newblk(&oldadp->ad_block, NULL,
5318 		    &newadp->ad_block.nb_jwork);
5319 	} else {
5320 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5321 		    &freefrag->ff_list, &freefrag->ff_jwork);
5322 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5323 		    &freefrag->ff_jwork);
5324 	}
5325 	free_newblk(&oldadp->ad_block);
5326 }
5327 
5328 /*
5329  * Allocate a jfreefrag structure to journal a single block free.
5330  */
5331 static struct jfreefrag *
5332 newjfreefrag(freefrag, ip, blkno, size, lbn)
5333 	struct freefrag *freefrag;
5334 	struct inode *ip;
5335 	ufs2_daddr_t blkno;
5336 	long size;
5337 	ufs_lbn_t lbn;
5338 {
5339 	struct jfreefrag *jfreefrag;
5340 	struct fs *fs;
5341 
5342 	fs = ip->i_fs;
5343 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5344 	    M_SOFTDEP_FLAGS);
5345 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5346 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5347 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5348 	jfreefrag->fr_ino = ip->i_number;
5349 	jfreefrag->fr_lbn = lbn;
5350 	jfreefrag->fr_blkno = blkno;
5351 	jfreefrag->fr_frags = numfrags(fs, size);
5352 	jfreefrag->fr_freefrag = freefrag;
5353 
5354 	return (jfreefrag);
5355 }
5356 
5357 /*
5358  * Allocate a new freefrag structure.
5359  */
5360 static struct freefrag *
5361 newfreefrag(ip, blkno, size, lbn)
5362 	struct inode *ip;
5363 	ufs2_daddr_t blkno;
5364 	long size;
5365 	ufs_lbn_t lbn;
5366 {
5367 	struct freefrag *freefrag;
5368 	struct fs *fs;
5369 
5370 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5371 	    ip->i_number, blkno, size, lbn);
5372 	fs = ip->i_fs;
5373 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5374 		panic("newfreefrag: frag size");
5375 	freefrag = malloc(sizeof(struct freefrag),
5376 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5377 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5378 	freefrag->ff_state = ATTACHED;
5379 	LIST_INIT(&freefrag->ff_jwork);
5380 	freefrag->ff_inum = ip->i_number;
5381 	freefrag->ff_vtype = ITOV(ip)->v_type;
5382 	freefrag->ff_blkno = blkno;
5383 	freefrag->ff_fragsize = size;
5384 
5385 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5386 		freefrag->ff_jdep = (struct worklist *)
5387 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5388 	} else {
5389 		freefrag->ff_state |= DEPCOMPLETE;
5390 		freefrag->ff_jdep = NULL;
5391 	}
5392 
5393 	return (freefrag);
5394 }
5395 
5396 /*
5397  * This workitem de-allocates fragments that were replaced during
5398  * file block allocation.
5399  */
5400 static void
5401 handle_workitem_freefrag(freefrag)
5402 	struct freefrag *freefrag;
5403 {
5404 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5405 	struct workhead wkhd;
5406 
5407 	CTR3(KTR_SUJ,
5408 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5409 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5410 	/*
5411 	 * It would be illegal to add new completion items to the
5412 	 * freefrag after it was schedule to be done so it must be
5413 	 * safe to modify the list head here.
5414 	 */
5415 	LIST_INIT(&wkhd);
5416 	ACQUIRE_LOCK(&lk);
5417 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5418 	/*
5419 	 * If the journal has not been written we must cancel it here.
5420 	 */
5421 	if (freefrag->ff_jdep) {
5422 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5423 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5424 			    freefrag->ff_jdep->wk_type);
5425 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5426 	}
5427 	FREE_LOCK(&lk);
5428 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5429 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5430 	ACQUIRE_LOCK(&lk);
5431 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5432 	FREE_LOCK(&lk);
5433 }
5434 
5435 /*
5436  * Set up a dependency structure for an external attributes data block.
5437  * This routine follows much of the structure of softdep_setup_allocdirect.
5438  * See the description of softdep_setup_allocdirect above for details.
5439  */
5440 void
5441 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5442 	struct inode *ip;
5443 	ufs_lbn_t off;
5444 	ufs2_daddr_t newblkno;
5445 	ufs2_daddr_t oldblkno;
5446 	long newsize;
5447 	long oldsize;
5448 	struct buf *bp;
5449 {
5450 	struct allocdirect *adp, *oldadp;
5451 	struct allocdirectlst *adphead;
5452 	struct freefrag *freefrag;
5453 	struct inodedep *inodedep;
5454 	struct jnewblk *jnewblk;
5455 	struct newblk *newblk;
5456 	struct mount *mp;
5457 	ufs_lbn_t lbn;
5458 
5459 	if (off >= NXADDR)
5460 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5461 		    (long long)off);
5462 
5463 	lbn = bp->b_lblkno;
5464 	mp = UFSTOVFS(ip->i_ump);
5465 	if (oldblkno && oldblkno != newblkno)
5466 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5467 	else
5468 		freefrag = NULL;
5469 
5470 	ACQUIRE_LOCK(&lk);
5471 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5472 		panic("softdep_setup_allocext: lost block");
5473 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5474 	    ("softdep_setup_allocext: newblk already initialized"));
5475 	/*
5476 	 * Convert the newblk to an allocdirect.
5477 	 */
5478 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5479 	adp = (struct allocdirect *)newblk;
5480 	newblk->nb_freefrag = freefrag;
5481 	adp->ad_offset = off;
5482 	adp->ad_oldblkno = oldblkno;
5483 	adp->ad_newsize = newsize;
5484 	adp->ad_oldsize = oldsize;
5485 	adp->ad_state |=  EXTDATA;
5486 
5487 	/*
5488 	 * Finish initializing the journal.
5489 	 */
5490 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5491 		jnewblk->jn_ino = ip->i_number;
5492 		jnewblk->jn_lbn = lbn;
5493 		add_to_journal(&jnewblk->jn_list);
5494 	}
5495 	if (freefrag && freefrag->ff_jdep != NULL &&
5496 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5497 		add_to_journal(freefrag->ff_jdep);
5498 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5499 	adp->ad_inodedep = inodedep;
5500 
5501 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5502 	/*
5503 	 * The list of allocdirects must be kept in sorted and ascending
5504 	 * order so that the rollback routines can quickly determine the
5505 	 * first uncommitted block (the size of the file stored on disk
5506 	 * ends at the end of the lowest committed fragment, or if there
5507 	 * are no fragments, at the end of the highest committed block).
5508 	 * Since files generally grow, the typical case is that the new
5509 	 * block is to be added at the end of the list. We speed this
5510 	 * special case by checking against the last allocdirect in the
5511 	 * list before laboriously traversing the list looking for the
5512 	 * insertion point.
5513 	 */
5514 	adphead = &inodedep->id_newextupdt;
5515 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5516 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5517 		/* insert at end of list */
5518 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5519 		if (oldadp != NULL && oldadp->ad_offset == off)
5520 			allocdirect_merge(adphead, adp, oldadp);
5521 		FREE_LOCK(&lk);
5522 		return;
5523 	}
5524 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5525 		if (oldadp->ad_offset >= off)
5526 			break;
5527 	}
5528 	if (oldadp == NULL)
5529 		panic("softdep_setup_allocext: lost entry");
5530 	/* insert in middle of list */
5531 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5532 	if (oldadp->ad_offset == off)
5533 		allocdirect_merge(adphead, adp, oldadp);
5534 	FREE_LOCK(&lk);
5535 }
5536 
5537 /*
5538  * Indirect block allocation dependencies.
5539  *
5540  * The same dependencies that exist for a direct block also exist when
5541  * a new block is allocated and pointed to by an entry in a block of
5542  * indirect pointers. The undo/redo states described above are also
5543  * used here. Because an indirect block contains many pointers that
5544  * may have dependencies, a second copy of the entire in-memory indirect
5545  * block is kept. The buffer cache copy is always completely up-to-date.
5546  * The second copy, which is used only as a source for disk writes,
5547  * contains only the safe pointers (i.e., those that have no remaining
5548  * update dependencies). The second copy is freed when all pointers
5549  * are safe. The cache is not allowed to replace indirect blocks with
5550  * pending update dependencies. If a buffer containing an indirect
5551  * block with dependencies is written, these routines will mark it
5552  * dirty again. It can only be successfully written once all the
5553  * dependencies are removed. The ffs_fsync routine in conjunction with
5554  * softdep_sync_metadata work together to get all the dependencies
5555  * removed so that a file can be successfully written to disk. Three
5556  * procedures are used when setting up indirect block pointer
5557  * dependencies. The division is necessary because of the organization
5558  * of the "balloc" routine and because of the distinction between file
5559  * pages and file metadata blocks.
5560  */
5561 
5562 /*
5563  * Allocate a new allocindir structure.
5564  */
5565 static struct allocindir *
5566 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5567 	struct inode *ip;	/* inode for file being extended */
5568 	int ptrno;		/* offset of pointer in indirect block */
5569 	ufs2_daddr_t newblkno;	/* disk block number being added */
5570 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5571 	ufs_lbn_t lbn;
5572 {
5573 	struct newblk *newblk;
5574 	struct allocindir *aip;
5575 	struct freefrag *freefrag;
5576 	struct jnewblk *jnewblk;
5577 
5578 	if (oldblkno)
5579 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5580 	else
5581 		freefrag = NULL;
5582 	ACQUIRE_LOCK(&lk);
5583 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5584 		panic("new_allocindir: lost block");
5585 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5586 	    ("newallocindir: newblk already initialized"));
5587 	newblk->nb_list.wk_type = D_ALLOCINDIR;
5588 	newblk->nb_freefrag = freefrag;
5589 	aip = (struct allocindir *)newblk;
5590 	aip->ai_offset = ptrno;
5591 	aip->ai_oldblkno = oldblkno;
5592 	aip->ai_lbn = lbn;
5593 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5594 		jnewblk->jn_ino = ip->i_number;
5595 		jnewblk->jn_lbn = lbn;
5596 		add_to_journal(&jnewblk->jn_list);
5597 	}
5598 	if (freefrag && freefrag->ff_jdep != NULL &&
5599 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5600 		add_to_journal(freefrag->ff_jdep);
5601 	return (aip);
5602 }
5603 
5604 /*
5605  * Called just before setting an indirect block pointer
5606  * to a newly allocated file page.
5607  */
5608 void
5609 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5610 	struct inode *ip;	/* inode for file being extended */
5611 	ufs_lbn_t lbn;		/* allocated block number within file */
5612 	struct buf *bp;		/* buffer with indirect blk referencing page */
5613 	int ptrno;		/* offset of pointer in indirect block */
5614 	ufs2_daddr_t newblkno;	/* disk block number being added */
5615 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5616 	struct buf *nbp;	/* buffer holding allocated page */
5617 {
5618 	struct inodedep *inodedep;
5619 	struct freefrag *freefrag;
5620 	struct allocindir *aip;
5621 	struct pagedep *pagedep;
5622 	struct mount *mp;
5623 	int dflags;
5624 
5625 	if (lbn != nbp->b_lblkno)
5626 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5627 		    lbn, bp->b_lblkno);
5628 	CTR4(KTR_SUJ,
5629 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5630 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5631 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5632 	mp = UFSTOVFS(ip->i_ump);
5633 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5634 	dflags = DEPALLOC;
5635 	if (IS_SNAPSHOT(ip))
5636 		dflags |= NODELAY;
5637 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5638 	/*
5639 	 * If we are allocating a directory page, then we must
5640 	 * allocate an associated pagedep to track additions and
5641 	 * deletions.
5642 	 */
5643 	if ((ip->i_mode & IFMT) == IFDIR)
5644 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5645 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5646 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5647 	FREE_LOCK(&lk);
5648 	if (freefrag)
5649 		handle_workitem_freefrag(freefrag);
5650 }
5651 
5652 /*
5653  * Called just before setting an indirect block pointer to a
5654  * newly allocated indirect block.
5655  */
5656 void
5657 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5658 	struct buf *nbp;	/* newly allocated indirect block */
5659 	struct inode *ip;	/* inode for file being extended */
5660 	struct buf *bp;		/* indirect block referencing allocated block */
5661 	int ptrno;		/* offset of pointer in indirect block */
5662 	ufs2_daddr_t newblkno;	/* disk block number being added */
5663 {
5664 	struct inodedep *inodedep;
5665 	struct allocindir *aip;
5666 	ufs_lbn_t lbn;
5667 	int dflags;
5668 
5669 	CTR3(KTR_SUJ,
5670 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5671 	    ip->i_number, newblkno, ptrno);
5672 	lbn = nbp->b_lblkno;
5673 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5674 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5675 	dflags = DEPALLOC;
5676 	if (IS_SNAPSHOT(ip))
5677 		dflags |= NODELAY;
5678 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5679 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5680 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5681 		panic("softdep_setup_allocindir_meta: Block already existed");
5682 	FREE_LOCK(&lk);
5683 }
5684 
5685 static void
5686 indirdep_complete(indirdep)
5687 	struct indirdep *indirdep;
5688 {
5689 	struct allocindir *aip;
5690 
5691 	LIST_REMOVE(indirdep, ir_next);
5692 	indirdep->ir_state |= DEPCOMPLETE;
5693 
5694 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5695 		LIST_REMOVE(aip, ai_next);
5696 		free_newblk(&aip->ai_block);
5697 	}
5698 	/*
5699 	 * If this indirdep is not attached to a buf it was simply waiting
5700 	 * on completion to clear completehd.  free_indirdep() asserts
5701 	 * that nothing is dangling.
5702 	 */
5703 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5704 		free_indirdep(indirdep);
5705 }
5706 
5707 static struct indirdep *
5708 indirdep_lookup(mp, ip, bp)
5709 	struct mount *mp;
5710 	struct inode *ip;
5711 	struct buf *bp;
5712 {
5713 	struct indirdep *indirdep, *newindirdep;
5714 	struct newblk *newblk;
5715 	struct worklist *wk;
5716 	struct fs *fs;
5717 	ufs2_daddr_t blkno;
5718 
5719 	mtx_assert(&lk, MA_OWNED);
5720 	indirdep = NULL;
5721 	newindirdep = NULL;
5722 	fs = ip->i_fs;
5723 	for (;;) {
5724 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5725 			if (wk->wk_type != D_INDIRDEP)
5726 				continue;
5727 			indirdep = WK_INDIRDEP(wk);
5728 			break;
5729 		}
5730 		/* Found on the buffer worklist, no new structure to free. */
5731 		if (indirdep != NULL && newindirdep == NULL)
5732 			return (indirdep);
5733 		if (indirdep != NULL && newindirdep != NULL)
5734 			panic("indirdep_lookup: simultaneous create");
5735 		/* None found on the buffer and a new structure is ready. */
5736 		if (indirdep == NULL && newindirdep != NULL)
5737 			break;
5738 		/* None found and no new structure available. */
5739 		FREE_LOCK(&lk);
5740 		newindirdep = malloc(sizeof(struct indirdep),
5741 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5742 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5743 		newindirdep->ir_state = ATTACHED;
5744 		if (ip->i_ump->um_fstype == UFS1)
5745 			newindirdep->ir_state |= UFS1FMT;
5746 		TAILQ_INIT(&newindirdep->ir_trunc);
5747 		newindirdep->ir_saveddata = NULL;
5748 		LIST_INIT(&newindirdep->ir_deplisthd);
5749 		LIST_INIT(&newindirdep->ir_donehd);
5750 		LIST_INIT(&newindirdep->ir_writehd);
5751 		LIST_INIT(&newindirdep->ir_completehd);
5752 		if (bp->b_blkno == bp->b_lblkno) {
5753 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5754 			    NULL, NULL);
5755 			bp->b_blkno = blkno;
5756 		}
5757 		newindirdep->ir_freeblks = NULL;
5758 		newindirdep->ir_savebp =
5759 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5760 		newindirdep->ir_bp = bp;
5761 		BUF_KERNPROC(newindirdep->ir_savebp);
5762 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5763 		ACQUIRE_LOCK(&lk);
5764 	}
5765 	indirdep = newindirdep;
5766 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5767 	/*
5768 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5769 	 * that we don't free dependencies until the pointers are valid.
5770 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5771 	 * than using the hash.
5772 	 */
5773 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5774 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5775 	else
5776 		indirdep->ir_state |= DEPCOMPLETE;
5777 	return (indirdep);
5778 }
5779 
5780 /*
5781  * Called to finish the allocation of the "aip" allocated
5782  * by one of the two routines above.
5783  */
5784 static struct freefrag *
5785 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5786 	struct buf *bp;		/* in-memory copy of the indirect block */
5787 	struct inode *ip;	/* inode for file being extended */
5788 	struct inodedep *inodedep; /* Inodedep for ip */
5789 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5790 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5791 {
5792 	struct fs *fs;
5793 	struct indirdep *indirdep;
5794 	struct allocindir *oldaip;
5795 	struct freefrag *freefrag;
5796 	struct mount *mp;
5797 
5798 	mtx_assert(&lk, MA_OWNED);
5799 	mp = UFSTOVFS(ip->i_ump);
5800 	fs = ip->i_fs;
5801 	if (bp->b_lblkno >= 0)
5802 		panic("setup_allocindir_phase2: not indir blk");
5803 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5804 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5805 	indirdep = indirdep_lookup(mp, ip, bp);
5806 	KASSERT(indirdep->ir_savebp != NULL,
5807 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5808 	aip->ai_indirdep = indirdep;
5809 	/*
5810 	 * Check for an unwritten dependency for this indirect offset.  If
5811 	 * there is, merge the old dependency into the new one.  This happens
5812 	 * as a result of reallocblk only.
5813 	 */
5814 	freefrag = NULL;
5815 	if (aip->ai_oldblkno != 0) {
5816 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5817 			if (oldaip->ai_offset == aip->ai_offset) {
5818 				freefrag = allocindir_merge(aip, oldaip);
5819 				goto done;
5820 			}
5821 		}
5822 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5823 			if (oldaip->ai_offset == aip->ai_offset) {
5824 				freefrag = allocindir_merge(aip, oldaip);
5825 				goto done;
5826 			}
5827 		}
5828 	}
5829 done:
5830 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5831 	return (freefrag);
5832 }
5833 
5834 /*
5835  * Merge two allocindirs which refer to the same block.  Move newblock
5836  * dependencies and setup the freefrags appropriately.
5837  */
5838 static struct freefrag *
5839 allocindir_merge(aip, oldaip)
5840 	struct allocindir *aip;
5841 	struct allocindir *oldaip;
5842 {
5843 	struct freefrag *freefrag;
5844 	struct worklist *wk;
5845 
5846 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5847 		panic("allocindir_merge: blkno");
5848 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5849 	freefrag = aip->ai_freefrag;
5850 	aip->ai_freefrag = oldaip->ai_freefrag;
5851 	oldaip->ai_freefrag = NULL;
5852 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5853 	/*
5854 	 * If we are tracking a new directory-block allocation,
5855 	 * move it from the old allocindir to the new allocindir.
5856 	 */
5857 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5858 		WORKLIST_REMOVE(wk);
5859 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5860 			panic("allocindir_merge: extra newdirblk");
5861 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5862 	}
5863 	/*
5864 	 * We can skip journaling for this freefrag and just complete
5865 	 * any pending journal work for the allocindir that is being
5866 	 * removed after the freefrag completes.
5867 	 */
5868 	if (freefrag->ff_jdep)
5869 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5870 	LIST_REMOVE(oldaip, ai_next);
5871 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5872 	    &freefrag->ff_list, &freefrag->ff_jwork);
5873 	free_newblk(&oldaip->ai_block);
5874 
5875 	return (freefrag);
5876 }
5877 
5878 static inline void
5879 setup_freedirect(freeblks, ip, i, needj)
5880 	struct freeblks *freeblks;
5881 	struct inode *ip;
5882 	int i;
5883 	int needj;
5884 {
5885 	ufs2_daddr_t blkno;
5886 	int frags;
5887 
5888 	blkno = DIP(ip, i_db[i]);
5889 	if (blkno == 0)
5890 		return;
5891 	DIP_SET(ip, i_db[i], 0);
5892 	frags = sblksize(ip->i_fs, ip->i_size, i);
5893 	frags = numfrags(ip->i_fs, frags);
5894 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5895 }
5896 
5897 static inline void
5898 setup_freeext(freeblks, ip, i, needj)
5899 	struct freeblks *freeblks;
5900 	struct inode *ip;
5901 	int i;
5902 	int needj;
5903 {
5904 	ufs2_daddr_t blkno;
5905 	int frags;
5906 
5907 	blkno = ip->i_din2->di_extb[i];
5908 	if (blkno == 0)
5909 		return;
5910 	ip->i_din2->di_extb[i] = 0;
5911 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5912 	frags = numfrags(ip->i_fs, frags);
5913 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5914 }
5915 
5916 static inline void
5917 setup_freeindir(freeblks, ip, i, lbn, needj)
5918 	struct freeblks *freeblks;
5919 	struct inode *ip;
5920 	int i;
5921 	ufs_lbn_t lbn;
5922 	int needj;
5923 {
5924 	ufs2_daddr_t blkno;
5925 
5926 	blkno = DIP(ip, i_ib[i]);
5927 	if (blkno == 0)
5928 		return;
5929 	DIP_SET(ip, i_ib[i], 0);
5930 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5931 	    0, needj);
5932 }
5933 
5934 static inline struct freeblks *
5935 newfreeblks(mp, ip)
5936 	struct mount *mp;
5937 	struct inode *ip;
5938 {
5939 	struct freeblks *freeblks;
5940 
5941 	freeblks = malloc(sizeof(struct freeblks),
5942 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5943 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5944 	LIST_INIT(&freeblks->fb_jblkdephd);
5945 	LIST_INIT(&freeblks->fb_jwork);
5946 	freeblks->fb_ref = 0;
5947 	freeblks->fb_cgwait = 0;
5948 	freeblks->fb_state = ATTACHED;
5949 	freeblks->fb_uid = ip->i_uid;
5950 	freeblks->fb_inum = ip->i_number;
5951 	freeblks->fb_vtype = ITOV(ip)->v_type;
5952 	freeblks->fb_modrev = DIP(ip, i_modrev);
5953 	freeblks->fb_devvp = ip->i_devvp;
5954 	freeblks->fb_chkcnt = 0;
5955 	freeblks->fb_len = 0;
5956 
5957 	return (freeblks);
5958 }
5959 
5960 static void
5961 trunc_indirdep(indirdep, freeblks, bp, off)
5962 	struct indirdep *indirdep;
5963 	struct freeblks *freeblks;
5964 	struct buf *bp;
5965 	int off;
5966 {
5967 	struct allocindir *aip, *aipn;
5968 
5969 	/*
5970 	 * The first set of allocindirs won't be in savedbp.
5971 	 */
5972 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5973 		if (aip->ai_offset > off)
5974 			cancel_allocindir(aip, bp, freeblks, 1);
5975 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5976 		if (aip->ai_offset > off)
5977 			cancel_allocindir(aip, bp, freeblks, 1);
5978 	/*
5979 	 * These will exist in savedbp.
5980 	 */
5981 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5982 		if (aip->ai_offset > off)
5983 			cancel_allocindir(aip, NULL, freeblks, 0);
5984 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5985 		if (aip->ai_offset > off)
5986 			cancel_allocindir(aip, NULL, freeblks, 0);
5987 }
5988 
5989 /*
5990  * Follow the chain of indirects down to lastlbn creating a freework
5991  * structure for each.  This will be used to start indir_trunc() at
5992  * the right offset and create the journal records for the parrtial
5993  * truncation.  A second step will handle the truncated dependencies.
5994  */
5995 static int
5996 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
5997 	struct freeblks *freeblks;
5998 	struct inode *ip;
5999 	ufs_lbn_t lbn;
6000 	ufs_lbn_t lastlbn;
6001 	ufs2_daddr_t blkno;
6002 {
6003 	struct indirdep *indirdep;
6004 	struct indirdep *indirn;
6005 	struct freework *freework;
6006 	struct newblk *newblk;
6007 	struct mount *mp;
6008 	struct buf *bp;
6009 	uint8_t *start;
6010 	uint8_t *end;
6011 	ufs_lbn_t lbnadd;
6012 	int level;
6013 	int error;
6014 	int off;
6015 
6016 
6017 	freework = NULL;
6018 	if (blkno == 0)
6019 		return (0);
6020 	mp = freeblks->fb_list.wk_mp;
6021 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6022 	if ((bp->b_flags & B_CACHE) == 0) {
6023 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6024 		bp->b_iocmd = BIO_READ;
6025 		bp->b_flags &= ~B_INVAL;
6026 		bp->b_ioflags &= ~BIO_ERROR;
6027 		vfs_busy_pages(bp, 0);
6028 		bp->b_iooffset = dbtob(bp->b_blkno);
6029 		bstrategy(bp);
6030 		curthread->td_ru.ru_inblock++;
6031 		error = bufwait(bp);
6032 		if (error) {
6033 			brelse(bp);
6034 			return (error);
6035 		}
6036 	}
6037 	level = lbn_level(lbn);
6038 	lbnadd = lbn_offset(ip->i_fs, level);
6039 	/*
6040 	 * Compute the offset of the last block we want to keep.  Store
6041 	 * in the freework the first block we want to completely free.
6042 	 */
6043 	off = (lastlbn - -(lbn + level)) / lbnadd;
6044 	if (off + 1 == NINDIR(ip->i_fs))
6045 		goto nowork;
6046 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6047 	    0);
6048 	/*
6049 	 * Link the freework into the indirdep.  This will prevent any new
6050 	 * allocations from proceeding until we are finished with the
6051 	 * truncate and the block is written.
6052 	 */
6053 	ACQUIRE_LOCK(&lk);
6054 	indirdep = indirdep_lookup(mp, ip, bp);
6055 	if (indirdep->ir_freeblks)
6056 		panic("setup_trunc_indir: indirdep already truncated.");
6057 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6058 	freework->fw_indir = indirdep;
6059 	/*
6060 	 * Cancel any allocindirs that will not make it to disk.
6061 	 * We have to do this for all copies of the indirdep that
6062 	 * live on this newblk.
6063 	 */
6064 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6065 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6066 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6067 			trunc_indirdep(indirn, freeblks, bp, off);
6068 	} else
6069 		trunc_indirdep(indirdep, freeblks, bp, off);
6070 	FREE_LOCK(&lk);
6071 	/*
6072 	 * Creation is protected by the buf lock. The saveddata is only
6073 	 * needed if a full truncation follows a partial truncation but it
6074 	 * is difficult to allocate in that case so we fetch it anyway.
6075 	 */
6076 	if (indirdep->ir_saveddata == NULL)
6077 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6078 		    M_SOFTDEP_FLAGS);
6079 nowork:
6080 	/* Fetch the blkno of the child and the zero start offset. */
6081 	if (ip->i_ump->um_fstype == UFS1) {
6082 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6083 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6084 	} else {
6085 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6086 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6087 	}
6088 	if (freework) {
6089 		/* Zero the truncated pointers. */
6090 		end = bp->b_data + bp->b_bcount;
6091 		bzero(start, end - start);
6092 		bdwrite(bp);
6093 	} else
6094 		bqrelse(bp);
6095 	if (level == 0)
6096 		return (0);
6097 	lbn++; /* adjust level */
6098 	lbn -= (off * lbnadd);
6099 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6100 }
6101 
6102 /*
6103  * Complete the partial truncation of an indirect block setup by
6104  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6105  * copy and writes them to disk before the freeblks is allowed to complete.
6106  */
6107 static void
6108 complete_trunc_indir(freework)
6109 	struct freework *freework;
6110 {
6111 	struct freework *fwn;
6112 	struct indirdep *indirdep;
6113 	struct buf *bp;
6114 	uintptr_t start;
6115 	int count;
6116 
6117 	indirdep = freework->fw_indir;
6118 	for (;;) {
6119 		bp = indirdep->ir_bp;
6120 		/* See if the block was discarded. */
6121 		if (bp == NULL)
6122 			break;
6123 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6124 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6125 			break;
6126 		if (BUF_LOCK(bp,
6127 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
6128 			BUF_UNLOCK(bp);
6129 		ACQUIRE_LOCK(&lk);
6130 	}
6131 	mtx_assert(&lk, MA_OWNED);
6132 	freework->fw_state |= DEPCOMPLETE;
6133 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6134 	/*
6135 	 * Zero the pointers in the saved copy.
6136 	 */
6137 	if (indirdep->ir_state & UFS1FMT)
6138 		start = sizeof(ufs1_daddr_t);
6139 	else
6140 		start = sizeof(ufs2_daddr_t);
6141 	start *= freework->fw_start;
6142 	count = indirdep->ir_savebp->b_bcount - start;
6143 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6144 	bzero((char *)start, count);
6145 	/*
6146 	 * We need to start the next truncation in the list if it has not
6147 	 * been started yet.
6148 	 */
6149 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6150 	if (fwn != NULL) {
6151 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6152 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6153 		if ((fwn->fw_state & ONWORKLIST) == 0)
6154 			freework_enqueue(fwn);
6155 	}
6156 	/*
6157 	 * If bp is NULL the block was fully truncated, restore
6158 	 * the saved block list otherwise free it if it is no
6159 	 * longer needed.
6160 	 */
6161 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6162 		if (bp == NULL)
6163 			bcopy(indirdep->ir_saveddata,
6164 			    indirdep->ir_savebp->b_data,
6165 			    indirdep->ir_savebp->b_bcount);
6166 		free(indirdep->ir_saveddata, M_INDIRDEP);
6167 		indirdep->ir_saveddata = NULL;
6168 	}
6169 	/*
6170 	 * When bp is NULL there is a full truncation pending.  We
6171 	 * must wait for this full truncation to be journaled before
6172 	 * we can release this freework because the disk pointers will
6173 	 * never be written as zero.
6174 	 */
6175 	if (bp == NULL)  {
6176 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6177 			handle_written_freework(freework);
6178 		else
6179 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6180 			   &freework->fw_list);
6181 	} else {
6182 		/* Complete when the real copy is written. */
6183 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6184 		BUF_UNLOCK(bp);
6185 	}
6186 }
6187 
6188 /*
6189  * Calculate the number of blocks we are going to release where datablocks
6190  * is the current total and length is the new file size.
6191  */
6192 ufs2_daddr_t
6193 blkcount(fs, datablocks, length)
6194 	struct fs *fs;
6195 	ufs2_daddr_t datablocks;
6196 	off_t length;
6197 {
6198 	off_t totblks, numblks;
6199 
6200 	totblks = 0;
6201 	numblks = howmany(length, fs->fs_bsize);
6202 	if (numblks <= NDADDR) {
6203 		totblks = howmany(length, fs->fs_fsize);
6204 		goto out;
6205 	}
6206         totblks = blkstofrags(fs, numblks);
6207 	numblks -= NDADDR;
6208 	/*
6209 	 * Count all single, then double, then triple indirects required.
6210 	 * Subtracting one indirects worth of blocks for each pass
6211 	 * acknowledges one of each pointed to by the inode.
6212 	 */
6213 	for (;;) {
6214 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6215 		numblks -= NINDIR(fs);
6216 		if (numblks <= 0)
6217 			break;
6218 		numblks = howmany(numblks, NINDIR(fs));
6219 	}
6220 out:
6221 	totblks = fsbtodb(fs, totblks);
6222 	/*
6223 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6224 	 * references.  We will correct it later in handle_complete_freeblks()
6225 	 * when we know the real count.
6226 	 */
6227 	if (totblks > datablocks)
6228 		return (0);
6229 	return (datablocks - totblks);
6230 }
6231 
6232 /*
6233  * Handle freeblocks for journaled softupdate filesystems.
6234  *
6235  * Contrary to normal softupdates, we must preserve the block pointers in
6236  * indirects until their subordinates are free.  This is to avoid journaling
6237  * every block that is freed which may consume more space than the journal
6238  * itself.  The recovery program will see the free block journals at the
6239  * base of the truncated area and traverse them to reclaim space.  The
6240  * pointers in the inode may be cleared immediately after the journal
6241  * records are written because each direct and indirect pointer in the
6242  * inode is recorded in a journal.  This permits full truncation to proceed
6243  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6244  *
6245  * The algorithm is as follows:
6246  * 1) Traverse the in-memory state and create journal entries to release
6247  *    the relevant blocks and full indirect trees.
6248  * 2) Traverse the indirect block chain adding partial truncation freework
6249  *    records to indirects in the path to lastlbn.  The freework will
6250  *    prevent new allocation dependencies from being satisfied in this
6251  *    indirect until the truncation completes.
6252  * 3) Read and lock the inode block, performing an update with the new size
6253  *    and pointers.  This prevents truncated data from becoming valid on
6254  *    disk through step 4.
6255  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6256  *    eliminate journal work for those records that do not require it.
6257  * 5) Schedule the journal records to be written followed by the inode block.
6258  * 6) Allocate any necessary frags for the end of file.
6259  * 7) Zero any partially truncated blocks.
6260  *
6261  * From this truncation proceeds asynchronously using the freework and
6262  * indir_trunc machinery.  The file will not be extended again into a
6263  * partially truncated indirect block until all work is completed but
6264  * the normal dependency mechanism ensures that it is rolled back/forward
6265  * as appropriate.  Further truncation may occur without delay and is
6266  * serialized in indir_trunc().
6267  */
6268 void
6269 softdep_journal_freeblocks(ip, cred, length, flags)
6270 	struct inode *ip;	/* The inode whose length is to be reduced */
6271 	struct ucred *cred;
6272 	off_t length;		/* The new length for the file */
6273 	int flags;		/* IO_EXT and/or IO_NORMAL */
6274 {
6275 	struct freeblks *freeblks, *fbn;
6276 	struct worklist *wk, *wkn;
6277 	struct inodedep *inodedep;
6278 	struct jblkdep *jblkdep;
6279 	struct allocdirect *adp, *adpn;
6280 	struct fs *fs;
6281 	struct buf *bp;
6282 	struct vnode *vp;
6283 	struct mount *mp;
6284 	ufs2_daddr_t extblocks, datablocks;
6285 	ufs_lbn_t tmpval, lbn, lastlbn;
6286 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6287 
6288 	fs = ip->i_fs;
6289 	mp = UFSTOVFS(ip->i_ump);
6290 	vp = ITOV(ip);
6291 	needj = 1;
6292 	iboff = -1;
6293 	allocblock = 0;
6294 	extblocks = 0;
6295 	datablocks = 0;
6296 	frags = 0;
6297 	freeblks = newfreeblks(mp, ip);
6298 	ACQUIRE_LOCK(&lk);
6299 	/*
6300 	 * If we're truncating a removed file that will never be written
6301 	 * we don't need to journal the block frees.  The canceled journals
6302 	 * for the allocations will suffice.
6303 	 */
6304 	dflags = DEPALLOC;
6305 	if (IS_SNAPSHOT(ip))
6306 		dflags |= NODELAY;
6307 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6308 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6309 	    length == 0)
6310 		needj = 0;
6311 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6312 	    ip->i_number, length, needj);
6313 	FREE_LOCK(&lk);
6314 	/*
6315 	 * Calculate the lbn that we are truncating to.  This results in -1
6316 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6317 	 * to keep, not the first lbn we want to truncate.
6318 	 */
6319 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6320 	lastoff = blkoff(fs, length);
6321 	/*
6322 	 * Compute frags we are keeping in lastlbn.  0 means all.
6323 	 */
6324 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6325 		frags = fragroundup(fs, lastoff);
6326 		/* adp offset of last valid allocdirect. */
6327 		iboff = lastlbn;
6328 	} else if (lastlbn > 0)
6329 		iboff = NDADDR;
6330 	if (fs->fs_magic == FS_UFS2_MAGIC)
6331 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6332 	/*
6333 	 * Handle normal data blocks and indirects.  This section saves
6334 	 * values used after the inode update to complete frag and indirect
6335 	 * truncation.
6336 	 */
6337 	if ((flags & IO_NORMAL) != 0) {
6338 		/*
6339 		 * Handle truncation of whole direct and indirect blocks.
6340 		 */
6341 		for (i = iboff + 1; i < NDADDR; i++)
6342 			setup_freedirect(freeblks, ip, i, needj);
6343 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6344 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6345 			/* Release a whole indirect tree. */
6346 			if (lbn > lastlbn) {
6347 				setup_freeindir(freeblks, ip, i, -lbn -i,
6348 				    needj);
6349 				continue;
6350 			}
6351 			iboff = i + NDADDR;
6352 			/*
6353 			 * Traverse partially truncated indirect tree.
6354 			 */
6355 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6356 				setup_trunc_indir(freeblks, ip, -lbn - i,
6357 				    lastlbn, DIP(ip, i_ib[i]));
6358 		}
6359 		/*
6360 		 * Handle partial truncation to a frag boundary.
6361 		 */
6362 		if (frags) {
6363 			ufs2_daddr_t blkno;
6364 			long oldfrags;
6365 
6366 			oldfrags = blksize(fs, ip, lastlbn);
6367 			blkno = DIP(ip, i_db[lastlbn]);
6368 			if (blkno && oldfrags != frags) {
6369 				oldfrags -= frags;
6370 				oldfrags = numfrags(ip->i_fs, oldfrags);
6371 				blkno += numfrags(ip->i_fs, frags);
6372 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6373 				    blkno, oldfrags, 0, needj);
6374 			} else if (blkno == 0)
6375 				allocblock = 1;
6376 		}
6377 		/*
6378 		 * Add a journal record for partial truncate if we are
6379 		 * handling indirect blocks.  Non-indirects need no extra
6380 		 * journaling.
6381 		 */
6382 		if (length != 0 && lastlbn >= NDADDR) {
6383 			ip->i_flag |= IN_TRUNCATED;
6384 			newjtrunc(freeblks, length, 0);
6385 		}
6386 		ip->i_size = length;
6387 		DIP_SET(ip, i_size, ip->i_size);
6388 		datablocks = DIP(ip, i_blocks) - extblocks;
6389 		if (length != 0)
6390 			datablocks = blkcount(ip->i_fs, datablocks, length);
6391 		freeblks->fb_len = length;
6392 	}
6393 	if ((flags & IO_EXT) != 0) {
6394 		for (i = 0; i < NXADDR; i++)
6395 			setup_freeext(freeblks, ip, i, needj);
6396 		ip->i_din2->di_extsize = 0;
6397 		datablocks += extblocks;
6398 	}
6399 #ifdef QUOTA
6400 	/* Reference the quotas in case the block count is wrong in the end. */
6401 	quotaref(vp, freeblks->fb_quota);
6402 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6403 #endif
6404 	freeblks->fb_chkcnt = -datablocks;
6405 	UFS_LOCK(ip->i_ump);
6406 	fs->fs_pendingblocks += datablocks;
6407 	UFS_UNLOCK(ip->i_ump);
6408 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6409 	/*
6410 	 * Handle truncation of incomplete alloc direct dependencies.  We
6411 	 * hold the inode block locked to prevent incomplete dependencies
6412 	 * from reaching the disk while we are eliminating those that
6413 	 * have been truncated.  This is a partially inlined ffs_update().
6414 	 */
6415 	ufs_itimes(vp);
6416 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6417 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6418 	    (int)fs->fs_bsize, cred, &bp);
6419 	if (error) {
6420 		brelse(bp);
6421 		softdep_error("softdep_journal_freeblocks", error);
6422 		return;
6423 	}
6424 	if (bp->b_bufsize == fs->fs_bsize)
6425 		bp->b_flags |= B_CLUSTEROK;
6426 	softdep_update_inodeblock(ip, bp, 0);
6427 	if (ip->i_ump->um_fstype == UFS1)
6428 		*((struct ufs1_dinode *)bp->b_data +
6429 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6430 	else
6431 		*((struct ufs2_dinode *)bp->b_data +
6432 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6433 	ACQUIRE_LOCK(&lk);
6434 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6435 	if ((inodedep->id_state & IOSTARTED) != 0)
6436 		panic("softdep_setup_freeblocks: inode busy");
6437 	/*
6438 	 * Add the freeblks structure to the list of operations that
6439 	 * must await the zero'ed inode being written to disk. If we
6440 	 * still have a bitmap dependency (needj), then the inode
6441 	 * has never been written to disk, so we can process the
6442 	 * freeblks below once we have deleted the dependencies.
6443 	 */
6444 	if (needj)
6445 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6446 	else
6447 		freeblks->fb_state |= COMPLETE;
6448 	if ((flags & IO_NORMAL) != 0) {
6449 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6450 			if (adp->ad_offset > iboff)
6451 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6452 				    freeblks);
6453 			/*
6454 			 * Truncate the allocdirect.  We could eliminate
6455 			 * or modify journal records as well.
6456 			 */
6457 			else if (adp->ad_offset == iboff && frags)
6458 				adp->ad_newsize = frags;
6459 		}
6460 	}
6461 	if ((flags & IO_EXT) != 0)
6462 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6463 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6464 			    freeblks);
6465 	/*
6466 	 * Scan the bufwait list for newblock dependencies that will never
6467 	 * make it to disk.
6468 	 */
6469 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6470 		if (wk->wk_type != D_ALLOCDIRECT)
6471 			continue;
6472 		adp = WK_ALLOCDIRECT(wk);
6473 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6474 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6475 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6476 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6477 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6478 		}
6479 	}
6480 	/*
6481 	 * Add journal work.
6482 	 */
6483 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6484 		add_to_journal(&jblkdep->jb_list);
6485 	FREE_LOCK(&lk);
6486 	bdwrite(bp);
6487 	/*
6488 	 * Truncate dependency structures beyond length.
6489 	 */
6490 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6491 	/*
6492 	 * This is only set when we need to allocate a fragment because
6493 	 * none existed at the end of a frag-sized file.  It handles only
6494 	 * allocating a new, zero filled block.
6495 	 */
6496 	if (allocblock) {
6497 		ip->i_size = length - lastoff;
6498 		DIP_SET(ip, i_size, ip->i_size);
6499 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6500 		if (error != 0) {
6501 			softdep_error("softdep_journal_freeblks", error);
6502 			return;
6503 		}
6504 		ip->i_size = length;
6505 		DIP_SET(ip, i_size, length);
6506 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6507 		allocbuf(bp, frags);
6508 		ffs_update(vp, 0);
6509 		bawrite(bp);
6510 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6511 		int size;
6512 
6513 		/*
6514 		 * Zero the end of a truncated frag or block.
6515 		 */
6516 		size = sblksize(fs, length, lastlbn);
6517 		error = bread(vp, lastlbn, size, cred, &bp);
6518 		if (error) {
6519 			softdep_error("softdep_journal_freeblks", error);
6520 			return;
6521 		}
6522 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6523 		bawrite(bp);
6524 
6525 	}
6526 	ACQUIRE_LOCK(&lk);
6527 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6528 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6529 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6530 	/*
6531 	 * We zero earlier truncations so they don't erroneously
6532 	 * update i_blocks.
6533 	 */
6534 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6535 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6536 			fbn->fb_len = 0;
6537 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6538 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6539 		freeblks->fb_state |= INPROGRESS;
6540 	else
6541 		freeblks = NULL;
6542 	FREE_LOCK(&lk);
6543 	if (freeblks)
6544 		handle_workitem_freeblocks(freeblks, 0);
6545 	trunc_pages(ip, length, extblocks, flags);
6546 
6547 }
6548 
6549 /*
6550  * Flush a JOP_SYNC to the journal.
6551  */
6552 void
6553 softdep_journal_fsync(ip)
6554 	struct inode *ip;
6555 {
6556 	struct jfsync *jfsync;
6557 
6558 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6559 		return;
6560 	ip->i_flag &= ~IN_TRUNCATED;
6561 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6562 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6563 	jfsync->jfs_size = ip->i_size;
6564 	jfsync->jfs_ino = ip->i_number;
6565 	ACQUIRE_LOCK(&lk);
6566 	add_to_journal(&jfsync->jfs_list);
6567 	jwait(&jfsync->jfs_list, MNT_WAIT);
6568 	FREE_LOCK(&lk);
6569 }
6570 
6571 /*
6572  * Block de-allocation dependencies.
6573  *
6574  * When blocks are de-allocated, the on-disk pointers must be nullified before
6575  * the blocks are made available for use by other files.  (The true
6576  * requirement is that old pointers must be nullified before new on-disk
6577  * pointers are set.  We chose this slightly more stringent requirement to
6578  * reduce complexity.) Our implementation handles this dependency by updating
6579  * the inode (or indirect block) appropriately but delaying the actual block
6580  * de-allocation (i.e., freemap and free space count manipulation) until
6581  * after the updated versions reach stable storage.  After the disk is
6582  * updated, the blocks can be safely de-allocated whenever it is convenient.
6583  * This implementation handles only the common case of reducing a file's
6584  * length to zero. Other cases are handled by the conventional synchronous
6585  * write approach.
6586  *
6587  * The ffs implementation with which we worked double-checks
6588  * the state of the block pointers and file size as it reduces
6589  * a file's length.  Some of this code is replicated here in our
6590  * soft updates implementation.  The freeblks->fb_chkcnt field is
6591  * used to transfer a part of this information to the procedure
6592  * that eventually de-allocates the blocks.
6593  *
6594  * This routine should be called from the routine that shortens
6595  * a file's length, before the inode's size or block pointers
6596  * are modified. It will save the block pointer information for
6597  * later release and zero the inode so that the calling routine
6598  * can release it.
6599  */
6600 void
6601 softdep_setup_freeblocks(ip, length, flags)
6602 	struct inode *ip;	/* The inode whose length is to be reduced */
6603 	off_t length;		/* The new length for the file */
6604 	int flags;		/* IO_EXT and/or IO_NORMAL */
6605 {
6606 	struct ufs1_dinode *dp1;
6607 	struct ufs2_dinode *dp2;
6608 	struct freeblks *freeblks;
6609 	struct inodedep *inodedep;
6610 	struct allocdirect *adp;
6611 	struct buf *bp;
6612 	struct fs *fs;
6613 	ufs2_daddr_t extblocks, datablocks;
6614 	struct mount *mp;
6615 	int i, delay, error, dflags;
6616 	ufs_lbn_t tmpval;
6617 	ufs_lbn_t lbn;
6618 
6619 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6620 	    ip->i_number, length);
6621 	fs = ip->i_fs;
6622 	mp = UFSTOVFS(ip->i_ump);
6623 	if (length != 0)
6624 		panic("softdep_setup_freeblocks: non-zero length");
6625 	freeblks = newfreeblks(mp, ip);
6626 	extblocks = 0;
6627 	datablocks = 0;
6628 	if (fs->fs_magic == FS_UFS2_MAGIC)
6629 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6630 	if ((flags & IO_NORMAL) != 0) {
6631 		for (i = 0; i < NDADDR; i++)
6632 			setup_freedirect(freeblks, ip, i, 0);
6633 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6634 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6635 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6636 		ip->i_size = 0;
6637 		DIP_SET(ip, i_size, 0);
6638 		datablocks = DIP(ip, i_blocks) - extblocks;
6639 	}
6640 	if ((flags & IO_EXT) != 0) {
6641 		for (i = 0; i < NXADDR; i++)
6642 			setup_freeext(freeblks, ip, i, 0);
6643 		ip->i_din2->di_extsize = 0;
6644 		datablocks += extblocks;
6645 	}
6646 #ifdef QUOTA
6647 	/* Reference the quotas in case the block count is wrong in the end. */
6648 	quotaref(ITOV(ip), freeblks->fb_quota);
6649 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6650 #endif
6651 	freeblks->fb_chkcnt = -datablocks;
6652 	UFS_LOCK(ip->i_ump);
6653 	fs->fs_pendingblocks += datablocks;
6654 	UFS_UNLOCK(ip->i_ump);
6655 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6656 	/*
6657 	 * Push the zero'ed inode to to its disk buffer so that we are free
6658 	 * to delete its dependencies below. Once the dependencies are gone
6659 	 * the buffer can be safely released.
6660 	 */
6661 	if ((error = bread(ip->i_devvp,
6662 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6663 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6664 		brelse(bp);
6665 		softdep_error("softdep_setup_freeblocks", error);
6666 	}
6667 	if (ip->i_ump->um_fstype == UFS1) {
6668 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6669 		    ino_to_fsbo(fs, ip->i_number));
6670 		ip->i_din1->di_freelink = dp1->di_freelink;
6671 		*dp1 = *ip->i_din1;
6672 	} else {
6673 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6674 		    ino_to_fsbo(fs, ip->i_number));
6675 		ip->i_din2->di_freelink = dp2->di_freelink;
6676 		*dp2 = *ip->i_din2;
6677 	}
6678 	/*
6679 	 * Find and eliminate any inode dependencies.
6680 	 */
6681 	ACQUIRE_LOCK(&lk);
6682 	dflags = DEPALLOC;
6683 	if (IS_SNAPSHOT(ip))
6684 		dflags |= NODELAY;
6685 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6686 	if ((inodedep->id_state & IOSTARTED) != 0)
6687 		panic("softdep_setup_freeblocks: inode busy");
6688 	/*
6689 	 * Add the freeblks structure to the list of operations that
6690 	 * must await the zero'ed inode being written to disk. If we
6691 	 * still have a bitmap dependency (delay == 0), then the inode
6692 	 * has never been written to disk, so we can process the
6693 	 * freeblks below once we have deleted the dependencies.
6694 	 */
6695 	delay = (inodedep->id_state & DEPCOMPLETE);
6696 	if (delay)
6697 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6698 	else
6699 		freeblks->fb_state |= COMPLETE;
6700 	/*
6701 	 * Because the file length has been truncated to zero, any
6702 	 * pending block allocation dependency structures associated
6703 	 * with this inode are obsolete and can simply be de-allocated.
6704 	 * We must first merge the two dependency lists to get rid of
6705 	 * any duplicate freefrag structures, then purge the merged list.
6706 	 * If we still have a bitmap dependency, then the inode has never
6707 	 * been written to disk, so we can free any fragments without delay.
6708 	 */
6709 	if (flags & IO_NORMAL) {
6710 		merge_inode_lists(&inodedep->id_newinoupdt,
6711 		    &inodedep->id_inoupdt);
6712 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6713 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6714 			    freeblks);
6715 	}
6716 	if (flags & IO_EXT) {
6717 		merge_inode_lists(&inodedep->id_newextupdt,
6718 		    &inodedep->id_extupdt);
6719 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6720 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6721 			    freeblks);
6722 	}
6723 	FREE_LOCK(&lk);
6724 	bdwrite(bp);
6725 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6726 	ACQUIRE_LOCK(&lk);
6727 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6728 		(void) free_inodedep(inodedep);
6729 	freeblks->fb_state |= DEPCOMPLETE;
6730 	/*
6731 	 * If the inode with zeroed block pointers is now on disk
6732 	 * we can start freeing blocks.
6733 	 */
6734 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6735 		freeblks->fb_state |= INPROGRESS;
6736 	else
6737 		freeblks = NULL;
6738 	FREE_LOCK(&lk);
6739 	if (freeblks)
6740 		handle_workitem_freeblocks(freeblks, 0);
6741 	trunc_pages(ip, length, extblocks, flags);
6742 }
6743 
6744 /*
6745  * Eliminate pages from the page cache that back parts of this inode and
6746  * adjust the vnode pager's idea of our size.  This prevents stale data
6747  * from hanging around in the page cache.
6748  */
6749 static void
6750 trunc_pages(ip, length, extblocks, flags)
6751 	struct inode *ip;
6752 	off_t length;
6753 	ufs2_daddr_t extblocks;
6754 	int flags;
6755 {
6756 	struct vnode *vp;
6757 	struct fs *fs;
6758 	ufs_lbn_t lbn;
6759 	off_t end, extend;
6760 
6761 	vp = ITOV(ip);
6762 	fs = ip->i_fs;
6763 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6764 	if ((flags & IO_EXT) != 0)
6765 		vn_pages_remove(vp, extend, 0);
6766 	if ((flags & IO_NORMAL) == 0)
6767 		return;
6768 	BO_LOCK(&vp->v_bufobj);
6769 	drain_output(vp);
6770 	BO_UNLOCK(&vp->v_bufobj);
6771 	/*
6772 	 * The vnode pager eliminates file pages we eliminate indirects
6773 	 * below.
6774 	 */
6775 	vnode_pager_setsize(vp, length);
6776 	/*
6777 	 * Calculate the end based on the last indirect we want to keep.  If
6778 	 * the block extends into indirects we can just use the negative of
6779 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6780 	 * be careful not to remove those, if they exist.  double and triple
6781 	 * indirect lbns do not overlap with others so it is not important
6782 	 * to verify how many levels are required.
6783 	 */
6784 	lbn = lblkno(fs, length);
6785 	if (lbn >= NDADDR) {
6786 		/* Calculate the virtual lbn of the triple indirect. */
6787 		lbn = -lbn - (NIADDR - 1);
6788 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6789 	} else
6790 		end = extend;
6791 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6792 }
6793 
6794 /*
6795  * See if the buf bp is in the range eliminated by truncation.
6796  */
6797 static int
6798 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6799 	struct buf *bp;
6800 	int *blkoffp;
6801 	ufs_lbn_t lastlbn;
6802 	int lastoff;
6803 	int flags;
6804 {
6805 	ufs_lbn_t lbn;
6806 
6807 	*blkoffp = 0;
6808 	/* Only match ext/normal blocks as appropriate. */
6809 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6810 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6811 		return (0);
6812 	/* ALTDATA is always a full truncation. */
6813 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6814 		return (1);
6815 	/* -1 is full truncation. */
6816 	if (lastlbn == -1)
6817 		return (1);
6818 	/*
6819 	 * If this is a partial truncate we only want those
6820 	 * blocks and indirect blocks that cover the range
6821 	 * we're after.
6822 	 */
6823 	lbn = bp->b_lblkno;
6824 	if (lbn < 0)
6825 		lbn = -(lbn + lbn_level(lbn));
6826 	if (lbn < lastlbn)
6827 		return (0);
6828 	/* Here we only truncate lblkno if it's partial. */
6829 	if (lbn == lastlbn) {
6830 		if (lastoff == 0)
6831 			return (0);
6832 		*blkoffp = lastoff;
6833 	}
6834 	return (1);
6835 }
6836 
6837 /*
6838  * Eliminate any dependencies that exist in memory beyond lblkno:off
6839  */
6840 static void
6841 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6842 	struct inode *ip;
6843 	struct freeblks *freeblks;
6844 	ufs_lbn_t lastlbn;
6845 	int lastoff;
6846 	int flags;
6847 {
6848 	struct bufobj *bo;
6849 	struct vnode *vp;
6850 	struct buf *bp;
6851 	struct fs *fs;
6852 	int blkoff;
6853 
6854 	/*
6855 	 * We must wait for any I/O in progress to finish so that
6856 	 * all potential buffers on the dirty list will be visible.
6857 	 * Once they are all there, walk the list and get rid of
6858 	 * any dependencies.
6859 	 */
6860 	fs = ip->i_fs;
6861 	vp = ITOV(ip);
6862 	bo = &vp->v_bufobj;
6863 	BO_LOCK(bo);
6864 	drain_output(vp);
6865 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6866 		bp->b_vflags &= ~BV_SCANNED;
6867 restart:
6868 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6869 		if (bp->b_vflags & BV_SCANNED)
6870 			continue;
6871 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6872 			bp->b_vflags |= BV_SCANNED;
6873 			continue;
6874 		}
6875 		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
6876 			goto restart;
6877 		BO_UNLOCK(bo);
6878 		if (deallocate_dependencies(bp, freeblks, blkoff))
6879 			bqrelse(bp);
6880 		else
6881 			brelse(bp);
6882 		BO_LOCK(bo);
6883 		goto restart;
6884 	}
6885 	/*
6886 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6887 	 */
6888 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6889 		bp->b_vflags &= ~BV_SCANNED;
6890 cleanrestart:
6891 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6892 		if (bp->b_vflags & BV_SCANNED)
6893 			continue;
6894 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6895 			bp->b_vflags |= BV_SCANNED;
6896 			continue;
6897 		}
6898 		if (BUF_LOCK(bp,
6899 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6900 		    BO_MTX(bo)) == ENOLCK) {
6901 			BO_LOCK(bo);
6902 			goto cleanrestart;
6903 		}
6904 		bp->b_vflags |= BV_SCANNED;
6905 		BO_LOCK(bo);
6906 		bremfree(bp);
6907 		BO_UNLOCK(bo);
6908 		if (blkoff != 0) {
6909 			allocbuf(bp, blkoff);
6910 			bqrelse(bp);
6911 		} else {
6912 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6913 			brelse(bp);
6914 		}
6915 		BO_LOCK(bo);
6916 		goto cleanrestart;
6917 	}
6918 	drain_output(vp);
6919 	BO_UNLOCK(bo);
6920 }
6921 
6922 static int
6923 cancel_pagedep(pagedep, freeblks, blkoff)
6924 	struct pagedep *pagedep;
6925 	struct freeblks *freeblks;
6926 	int blkoff;
6927 {
6928 	struct jremref *jremref;
6929 	struct jmvref *jmvref;
6930 	struct dirrem *dirrem, *tmp;
6931 	int i;
6932 
6933 	/*
6934 	 * Copy any directory remove dependencies to the list
6935 	 * to be processed after the freeblks proceeds.  If
6936 	 * directory entry never made it to disk they
6937 	 * can be dumped directly onto the work list.
6938 	 */
6939 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6940 		/* Skip this directory removal if it is intended to remain. */
6941 		if (dirrem->dm_offset < blkoff)
6942 			continue;
6943 		/*
6944 		 * If there are any dirrems we wait for the journal write
6945 		 * to complete and then restart the buf scan as the lock
6946 		 * has been dropped.
6947 		 */
6948 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6949 			jwait(&jremref->jr_list, MNT_WAIT);
6950 			return (ERESTART);
6951 		}
6952 		LIST_REMOVE(dirrem, dm_next);
6953 		dirrem->dm_dirinum = pagedep->pd_ino;
6954 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6955 	}
6956 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6957 		jwait(&jmvref->jm_list, MNT_WAIT);
6958 		return (ERESTART);
6959 	}
6960 	/*
6961 	 * When we're partially truncating a pagedep we just want to flush
6962 	 * journal entries and return.  There can not be any adds in the
6963 	 * truncated portion of the directory and newblk must remain if
6964 	 * part of the block remains.
6965 	 */
6966 	if (blkoff != 0) {
6967 		struct diradd *dap;
6968 
6969 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6970 			if (dap->da_offset > blkoff)
6971 				panic("cancel_pagedep: diradd %p off %d > %d",
6972 				    dap, dap->da_offset, blkoff);
6973 		for (i = 0; i < DAHASHSZ; i++)
6974 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6975 				if (dap->da_offset > blkoff)
6976 					panic("cancel_pagedep: diradd %p off %d > %d",
6977 					    dap, dap->da_offset, blkoff);
6978 		return (0);
6979 	}
6980 	/*
6981 	 * There should be no directory add dependencies present
6982 	 * as the directory could not be truncated until all
6983 	 * children were removed.
6984 	 */
6985 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6986 	    ("deallocate_dependencies: pendinghd != NULL"));
6987 	for (i = 0; i < DAHASHSZ; i++)
6988 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6989 		    ("deallocate_dependencies: diraddhd != NULL"));
6990 	if ((pagedep->pd_state & NEWBLOCK) != 0)
6991 		free_newdirblk(pagedep->pd_newdirblk);
6992 	if (free_pagedep(pagedep) == 0)
6993 		panic("Failed to free pagedep %p", pagedep);
6994 	return (0);
6995 }
6996 
6997 /*
6998  * Reclaim any dependency structures from a buffer that is about to
6999  * be reallocated to a new vnode. The buffer must be locked, thus,
7000  * no I/O completion operations can occur while we are manipulating
7001  * its associated dependencies. The mutex is held so that other I/O's
7002  * associated with related dependencies do not occur.
7003  */
7004 static int
7005 deallocate_dependencies(bp, freeblks, off)
7006 	struct buf *bp;
7007 	struct freeblks *freeblks;
7008 	int off;
7009 {
7010 	struct indirdep *indirdep;
7011 	struct pagedep *pagedep;
7012 	struct allocdirect *adp;
7013 	struct worklist *wk, *wkn;
7014 
7015 	ACQUIRE_LOCK(&lk);
7016 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7017 		switch (wk->wk_type) {
7018 		case D_INDIRDEP:
7019 			indirdep = WK_INDIRDEP(wk);
7020 			if (bp->b_lblkno >= 0 ||
7021 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7022 				panic("deallocate_dependencies: not indir");
7023 			cancel_indirdep(indirdep, bp, freeblks);
7024 			continue;
7025 
7026 		case D_PAGEDEP:
7027 			pagedep = WK_PAGEDEP(wk);
7028 			if (cancel_pagedep(pagedep, freeblks, off)) {
7029 				FREE_LOCK(&lk);
7030 				return (ERESTART);
7031 			}
7032 			continue;
7033 
7034 		case D_ALLOCINDIR:
7035 			/*
7036 			 * Simply remove the allocindir, we'll find it via
7037 			 * the indirdep where we can clear pointers if
7038 			 * needed.
7039 			 */
7040 			WORKLIST_REMOVE(wk);
7041 			continue;
7042 
7043 		case D_FREEWORK:
7044 			/*
7045 			 * A truncation is waiting for the zero'd pointers
7046 			 * to be written.  It can be freed when the freeblks
7047 			 * is journaled.
7048 			 */
7049 			WORKLIST_REMOVE(wk);
7050 			wk->wk_state |= ONDEPLIST;
7051 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7052 			break;
7053 
7054 		case D_ALLOCDIRECT:
7055 			adp = WK_ALLOCDIRECT(wk);
7056 			if (off != 0)
7057 				continue;
7058 			/* FALLTHROUGH */
7059 		default:
7060 			panic("deallocate_dependencies: Unexpected type %s",
7061 			    TYPENAME(wk->wk_type));
7062 			/* NOTREACHED */
7063 		}
7064 	}
7065 	FREE_LOCK(&lk);
7066 	/*
7067 	 * Don't throw away this buf, we were partially truncating and
7068 	 * some deps may always remain.
7069 	 */
7070 	if (off) {
7071 		allocbuf(bp, off);
7072 		bp->b_vflags |= BV_SCANNED;
7073 		return (EBUSY);
7074 	}
7075 	bp->b_flags |= B_INVAL | B_NOCACHE;
7076 
7077 	return (0);
7078 }
7079 
7080 /*
7081  * An allocdirect is being canceled due to a truncate.  We must make sure
7082  * the journal entry is released in concert with the blkfree that releases
7083  * the storage.  Completed journal entries must not be released until the
7084  * space is no longer pointed to by the inode or in the bitmap.
7085  */
7086 static void
7087 cancel_allocdirect(adphead, adp, freeblks)
7088 	struct allocdirectlst *adphead;
7089 	struct allocdirect *adp;
7090 	struct freeblks *freeblks;
7091 {
7092 	struct freework *freework;
7093 	struct newblk *newblk;
7094 	struct worklist *wk;
7095 
7096 	TAILQ_REMOVE(adphead, adp, ad_next);
7097 	newblk = (struct newblk *)adp;
7098 	freework = NULL;
7099 	/*
7100 	 * Find the correct freework structure.
7101 	 */
7102 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7103 		if (wk->wk_type != D_FREEWORK)
7104 			continue;
7105 		freework = WK_FREEWORK(wk);
7106 		if (freework->fw_blkno == newblk->nb_newblkno)
7107 			break;
7108 	}
7109 	if (freework == NULL)
7110 		panic("cancel_allocdirect: Freework not found");
7111 	/*
7112 	 * If a newblk exists at all we still have the journal entry that
7113 	 * initiated the allocation so we do not need to journal the free.
7114 	 */
7115 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7116 	/*
7117 	 * If the journal hasn't been written the jnewblk must be passed
7118 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7119 	 * this by linking the journal dependency into the freework to be
7120 	 * freed when freework_freeblock() is called.  If the journal has
7121 	 * been written we can simply reclaim the journal space when the
7122 	 * freeblks work is complete.
7123 	 */
7124 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7125 	    &freeblks->fb_jwork);
7126 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7127 }
7128 
7129 
7130 /*
7131  * Cancel a new block allocation.  May be an indirect or direct block.  We
7132  * remove it from various lists and return any journal record that needs to
7133  * be resolved by the caller.
7134  *
7135  * A special consideration is made for indirects which were never pointed
7136  * at on disk and will never be found once this block is released.
7137  */
7138 static struct jnewblk *
7139 cancel_newblk(newblk, wk, wkhd)
7140 	struct newblk *newblk;
7141 	struct worklist *wk;
7142 	struct workhead *wkhd;
7143 {
7144 	struct jnewblk *jnewblk;
7145 
7146 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7147 
7148 	newblk->nb_state |= GOINGAWAY;
7149 	/*
7150 	 * Previously we traversed the completedhd on each indirdep
7151 	 * attached to this newblk to cancel them and gather journal
7152 	 * work.  Since we need only the oldest journal segment and
7153 	 * the lowest point on the tree will always have the oldest
7154 	 * journal segment we are free to release the segments
7155 	 * of any subordinates and may leave the indirdep list to
7156 	 * indirdep_complete() when this newblk is freed.
7157 	 */
7158 	if (newblk->nb_state & ONDEPLIST) {
7159 		newblk->nb_state &= ~ONDEPLIST;
7160 		LIST_REMOVE(newblk, nb_deps);
7161 	}
7162 	if (newblk->nb_state & ONWORKLIST)
7163 		WORKLIST_REMOVE(&newblk->nb_list);
7164 	/*
7165 	 * If the journal entry hasn't been written we save a pointer to
7166 	 * the dependency that frees it until it is written or the
7167 	 * superseding operation completes.
7168 	 */
7169 	jnewblk = newblk->nb_jnewblk;
7170 	if (jnewblk != NULL && wk != NULL) {
7171 		newblk->nb_jnewblk = NULL;
7172 		jnewblk->jn_dep = wk;
7173 	}
7174 	if (!LIST_EMPTY(&newblk->nb_jwork))
7175 		jwork_move(wkhd, &newblk->nb_jwork);
7176 	/*
7177 	 * When truncating we must free the newdirblk early to remove
7178 	 * the pagedep from the hash before returning.
7179 	 */
7180 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7181 		free_newdirblk(WK_NEWDIRBLK(wk));
7182 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7183 		panic("cancel_newblk: extra newdirblk");
7184 
7185 	return (jnewblk);
7186 }
7187 
7188 /*
7189  * Schedule the freefrag associated with a newblk to be released once
7190  * the pointers are written and the previous block is no longer needed.
7191  */
7192 static void
7193 newblk_freefrag(newblk)
7194 	struct newblk *newblk;
7195 {
7196 	struct freefrag *freefrag;
7197 
7198 	if (newblk->nb_freefrag == NULL)
7199 		return;
7200 	freefrag = newblk->nb_freefrag;
7201 	newblk->nb_freefrag = NULL;
7202 	freefrag->ff_state |= COMPLETE;
7203 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7204 		add_to_worklist(&freefrag->ff_list, 0);
7205 }
7206 
7207 /*
7208  * Free a newblk. Generate a new freefrag work request if appropriate.
7209  * This must be called after the inode pointer and any direct block pointers
7210  * are valid or fully removed via truncate or frag extension.
7211  */
7212 static void
7213 free_newblk(newblk)
7214 	struct newblk *newblk;
7215 {
7216 	struct indirdep *indirdep;
7217 	struct worklist *wk;
7218 
7219 	KASSERT(newblk->nb_jnewblk == NULL,
7220 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
7221 	mtx_assert(&lk, MA_OWNED);
7222 	newblk_freefrag(newblk);
7223 	if (newblk->nb_state & ONDEPLIST)
7224 		LIST_REMOVE(newblk, nb_deps);
7225 	if (newblk->nb_state & ONWORKLIST)
7226 		WORKLIST_REMOVE(&newblk->nb_list);
7227 	LIST_REMOVE(newblk, nb_hash);
7228 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7229 		free_newdirblk(WK_NEWDIRBLK(wk));
7230 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7231 		panic("free_newblk: extra newdirblk");
7232 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7233 		indirdep_complete(indirdep);
7234 	handle_jwork(&newblk->nb_jwork);
7235 	newblk->nb_list.wk_type = D_NEWBLK;
7236 	WORKITEM_FREE(newblk, D_NEWBLK);
7237 }
7238 
7239 /*
7240  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7241  * This routine must be called with splbio interrupts blocked.
7242  */
7243 static void
7244 free_newdirblk(newdirblk)
7245 	struct newdirblk *newdirblk;
7246 {
7247 	struct pagedep *pagedep;
7248 	struct diradd *dap;
7249 	struct worklist *wk;
7250 
7251 	mtx_assert(&lk, MA_OWNED);
7252 	WORKLIST_REMOVE(&newdirblk->db_list);
7253 	/*
7254 	 * If the pagedep is still linked onto the directory buffer
7255 	 * dependency chain, then some of the entries on the
7256 	 * pd_pendinghd list may not be committed to disk yet. In
7257 	 * this case, we will simply clear the NEWBLOCK flag and
7258 	 * let the pd_pendinghd list be processed when the pagedep
7259 	 * is next written. If the pagedep is no longer on the buffer
7260 	 * dependency chain, then all the entries on the pd_pending
7261 	 * list are committed to disk and we can free them here.
7262 	 */
7263 	pagedep = newdirblk->db_pagedep;
7264 	pagedep->pd_state &= ~NEWBLOCK;
7265 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7266 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7267 			free_diradd(dap, NULL);
7268 		/*
7269 		 * If no dependencies remain, the pagedep will be freed.
7270 		 */
7271 		free_pagedep(pagedep);
7272 	}
7273 	/* Should only ever be one item in the list. */
7274 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7275 		WORKLIST_REMOVE(wk);
7276 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7277 	}
7278 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7279 }
7280 
7281 /*
7282  * Prepare an inode to be freed. The actual free operation is not
7283  * done until the zero'ed inode has been written to disk.
7284  */
7285 void
7286 softdep_freefile(pvp, ino, mode)
7287 	struct vnode *pvp;
7288 	ino_t ino;
7289 	int mode;
7290 {
7291 	struct inode *ip = VTOI(pvp);
7292 	struct inodedep *inodedep;
7293 	struct freefile *freefile;
7294 	struct freeblks *freeblks;
7295 
7296 	/*
7297 	 * This sets up the inode de-allocation dependency.
7298 	 */
7299 	freefile = malloc(sizeof(struct freefile),
7300 		M_FREEFILE, M_SOFTDEP_FLAGS);
7301 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7302 	freefile->fx_mode = mode;
7303 	freefile->fx_oldinum = ino;
7304 	freefile->fx_devvp = ip->i_devvp;
7305 	LIST_INIT(&freefile->fx_jwork);
7306 	UFS_LOCK(ip->i_ump);
7307 	ip->i_fs->fs_pendinginodes += 1;
7308 	UFS_UNLOCK(ip->i_ump);
7309 
7310 	/*
7311 	 * If the inodedep does not exist, then the zero'ed inode has
7312 	 * been written to disk. If the allocated inode has never been
7313 	 * written to disk, then the on-disk inode is zero'ed. In either
7314 	 * case we can free the file immediately.  If the journal was
7315 	 * canceled before being written the inode will never make it to
7316 	 * disk and we must send the canceled journal entrys to
7317 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7318 	 * Any blocks waiting on the inode to write can be safely freed
7319 	 * here as it will never been written.
7320 	 */
7321 	ACQUIRE_LOCK(&lk);
7322 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7323 	if (inodedep) {
7324 		/*
7325 		 * Clear out freeblks that no longer need to reference
7326 		 * this inode.
7327 		 */
7328 		while ((freeblks =
7329 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7330 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7331 			    fb_next);
7332 			freeblks->fb_state &= ~ONDEPLIST;
7333 		}
7334 		/*
7335 		 * Remove this inode from the unlinked list.
7336 		 */
7337 		if (inodedep->id_state & UNLINKED) {
7338 			/*
7339 			 * Save the journal work to be freed with the bitmap
7340 			 * before we clear UNLINKED.  Otherwise it can be lost
7341 			 * if the inode block is written.
7342 			 */
7343 			handle_bufwait(inodedep, &freefile->fx_jwork);
7344 			clear_unlinked_inodedep(inodedep);
7345 			/* Re-acquire inodedep as we've dropped lk. */
7346 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7347 		}
7348 	}
7349 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7350 		FREE_LOCK(&lk);
7351 		handle_workitem_freefile(freefile);
7352 		return;
7353 	}
7354 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7355 		inodedep->id_state |= GOINGAWAY;
7356 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7357 	FREE_LOCK(&lk);
7358 	if (ip->i_number == ino)
7359 		ip->i_flag |= IN_MODIFIED;
7360 }
7361 
7362 /*
7363  * Check to see if an inode has never been written to disk. If
7364  * so free the inodedep and return success, otherwise return failure.
7365  * This routine must be called with splbio interrupts blocked.
7366  *
7367  * If we still have a bitmap dependency, then the inode has never
7368  * been written to disk. Drop the dependency as it is no longer
7369  * necessary since the inode is being deallocated. We set the
7370  * ALLCOMPLETE flags since the bitmap now properly shows that the
7371  * inode is not allocated. Even if the inode is actively being
7372  * written, it has been rolled back to its zero'ed state, so we
7373  * are ensured that a zero inode is what is on the disk. For short
7374  * lived files, this change will usually result in removing all the
7375  * dependencies from the inode so that it can be freed immediately.
7376  */
7377 static int
7378 check_inode_unwritten(inodedep)
7379 	struct inodedep *inodedep;
7380 {
7381 
7382 	mtx_assert(&lk, MA_OWNED);
7383 
7384 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7385 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7386 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7387 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7388 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7389 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7390 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7391 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7392 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7393 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7394 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7395 	    inodedep->id_mkdiradd != NULL ||
7396 	    inodedep->id_nlinkdelta != 0)
7397 		return (0);
7398 	/*
7399 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7400 	 * trying to allocate memory without holding "Softdep Lock".
7401 	 */
7402 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7403 	    inodedep->id_savedino1 == NULL)
7404 		return (0);
7405 
7406 	if (inodedep->id_state & ONDEPLIST)
7407 		LIST_REMOVE(inodedep, id_deps);
7408 	inodedep->id_state &= ~ONDEPLIST;
7409 	inodedep->id_state |= ALLCOMPLETE;
7410 	inodedep->id_bmsafemap = NULL;
7411 	if (inodedep->id_state & ONWORKLIST)
7412 		WORKLIST_REMOVE(&inodedep->id_list);
7413 	if (inodedep->id_savedino1 != NULL) {
7414 		free(inodedep->id_savedino1, M_SAVEDINO);
7415 		inodedep->id_savedino1 = NULL;
7416 	}
7417 	if (free_inodedep(inodedep) == 0)
7418 		panic("check_inode_unwritten: busy inode");
7419 	return (1);
7420 }
7421 
7422 /*
7423  * Try to free an inodedep structure. Return 1 if it could be freed.
7424  */
7425 static int
7426 free_inodedep(inodedep)
7427 	struct inodedep *inodedep;
7428 {
7429 
7430 	mtx_assert(&lk, MA_OWNED);
7431 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7432 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7433 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7434 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7435 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7436 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7437 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7438 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7439 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7440 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7441 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7442 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7443 	    inodedep->id_mkdiradd != NULL ||
7444 	    inodedep->id_nlinkdelta != 0 ||
7445 	    inodedep->id_savedino1 != NULL)
7446 		return (0);
7447 	if (inodedep->id_state & ONDEPLIST)
7448 		LIST_REMOVE(inodedep, id_deps);
7449 	LIST_REMOVE(inodedep, id_hash);
7450 	WORKITEM_FREE(inodedep, D_INODEDEP);
7451 	return (1);
7452 }
7453 
7454 /*
7455  * Free the block referenced by a freework structure.  The parent freeblks
7456  * structure is released and completed when the final cg bitmap reaches
7457  * the disk.  This routine may be freeing a jnewblk which never made it to
7458  * disk in which case we do not have to wait as the operation is undone
7459  * in memory immediately.
7460  */
7461 static void
7462 freework_freeblock(freework)
7463 	struct freework *freework;
7464 {
7465 	struct freeblks *freeblks;
7466 	struct jnewblk *jnewblk;
7467 	struct ufsmount *ump;
7468 	struct workhead wkhd;
7469 	struct fs *fs;
7470 	int bsize;
7471 	int needj;
7472 
7473 	mtx_assert(&lk, MA_OWNED);
7474 	/*
7475 	 * Handle partial truncate separately.
7476 	 */
7477 	if (freework->fw_indir) {
7478 		complete_trunc_indir(freework);
7479 		return;
7480 	}
7481 	freeblks = freework->fw_freeblks;
7482 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7483 	fs = ump->um_fs;
7484 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7485 	bsize = lfragtosize(fs, freework->fw_frags);
7486 	LIST_INIT(&wkhd);
7487 	/*
7488 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7489 	 * on the indirblk hashtable and prevents premature freeing.
7490 	 */
7491 	freework->fw_state |= DEPCOMPLETE;
7492 	/*
7493 	 * SUJ needs to wait for the segment referencing freed indirect
7494 	 * blocks to expire so that we know the checker will not confuse
7495 	 * a re-allocated indirect block with its old contents.
7496 	 */
7497 	if (needj && freework->fw_lbn <= -NDADDR)
7498 		indirblk_insert(freework);
7499 	/*
7500 	 * If we are canceling an existing jnewblk pass it to the free
7501 	 * routine, otherwise pass the freeblk which will ultimately
7502 	 * release the freeblks.  If we're not journaling, we can just
7503 	 * free the freeblks immediately.
7504 	 */
7505 	jnewblk = freework->fw_jnewblk;
7506 	if (jnewblk != NULL) {
7507 		cancel_jnewblk(jnewblk, &wkhd);
7508 		needj = 0;
7509 	} else if (needj) {
7510 		freework->fw_state |= DELAYEDFREE;
7511 		freeblks->fb_cgwait++;
7512 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7513 	}
7514 	FREE_LOCK(&lk);
7515 	freeblks_free(ump, freeblks, btodb(bsize));
7516 	CTR4(KTR_SUJ,
7517 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7518 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7519 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7520 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7521 	ACQUIRE_LOCK(&lk);
7522 	/*
7523 	 * The jnewblk will be discarded and the bits in the map never
7524 	 * made it to disk.  We can immediately free the freeblk.
7525 	 */
7526 	if (needj == 0)
7527 		handle_written_freework(freework);
7528 }
7529 
7530 /*
7531  * We enqueue freework items that need processing back on the freeblks and
7532  * add the freeblks to the worklist.  This makes it easier to find all work
7533  * required to flush a truncation in process_truncates().
7534  */
7535 static void
7536 freework_enqueue(freework)
7537 	struct freework *freework;
7538 {
7539 	struct freeblks *freeblks;
7540 
7541 	freeblks = freework->fw_freeblks;
7542 	if ((freework->fw_state & INPROGRESS) == 0)
7543 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7544 	if ((freeblks->fb_state &
7545 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7546 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7547 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7548 }
7549 
7550 /*
7551  * Start, continue, or finish the process of freeing an indirect block tree.
7552  * The free operation may be paused at any point with fw_off containing the
7553  * offset to restart from.  This enables us to implement some flow control
7554  * for large truncates which may fan out and generate a huge number of
7555  * dependencies.
7556  */
7557 static void
7558 handle_workitem_indirblk(freework)
7559 	struct freework *freework;
7560 {
7561 	struct freeblks *freeblks;
7562 	struct ufsmount *ump;
7563 	struct fs *fs;
7564 
7565 	freeblks = freework->fw_freeblks;
7566 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7567 	fs = ump->um_fs;
7568 	if (freework->fw_state & DEPCOMPLETE) {
7569 		handle_written_freework(freework);
7570 		return;
7571 	}
7572 	if (freework->fw_off == NINDIR(fs)) {
7573 		freework_freeblock(freework);
7574 		return;
7575 	}
7576 	freework->fw_state |= INPROGRESS;
7577 	FREE_LOCK(&lk);
7578 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7579 	    freework->fw_lbn);
7580 	ACQUIRE_LOCK(&lk);
7581 }
7582 
7583 /*
7584  * Called when a freework structure attached to a cg buf is written.  The
7585  * ref on either the parent or the freeblks structure is released and
7586  * the freeblks is added back to the worklist if there is more work to do.
7587  */
7588 static void
7589 handle_written_freework(freework)
7590 	struct freework *freework;
7591 {
7592 	struct freeblks *freeblks;
7593 	struct freework *parent;
7594 
7595 	freeblks = freework->fw_freeblks;
7596 	parent = freework->fw_parent;
7597 	if (freework->fw_state & DELAYEDFREE)
7598 		freeblks->fb_cgwait--;
7599 	freework->fw_state |= COMPLETE;
7600 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7601 		WORKITEM_FREE(freework, D_FREEWORK);
7602 	if (parent) {
7603 		if (--parent->fw_ref == 0)
7604 			freework_enqueue(parent);
7605 		return;
7606 	}
7607 	if (--freeblks->fb_ref != 0)
7608 		return;
7609 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7610 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7611 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7612 }
7613 
7614 /*
7615  * This workitem routine performs the block de-allocation.
7616  * The workitem is added to the pending list after the updated
7617  * inode block has been written to disk.  As mentioned above,
7618  * checks regarding the number of blocks de-allocated (compared
7619  * to the number of blocks allocated for the file) are also
7620  * performed in this function.
7621  */
7622 static int
7623 handle_workitem_freeblocks(freeblks, flags)
7624 	struct freeblks *freeblks;
7625 	int flags;
7626 {
7627 	struct freework *freework;
7628 	struct newblk *newblk;
7629 	struct allocindir *aip;
7630 	struct ufsmount *ump;
7631 	struct worklist *wk;
7632 
7633 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7634 	    ("handle_workitem_freeblocks: Journal entries not written."));
7635 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7636 	ACQUIRE_LOCK(&lk);
7637 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7638 		WORKLIST_REMOVE(wk);
7639 		switch (wk->wk_type) {
7640 		case D_DIRREM:
7641 			wk->wk_state |= COMPLETE;
7642 			add_to_worklist(wk, 0);
7643 			continue;
7644 
7645 		case D_ALLOCDIRECT:
7646 			free_newblk(WK_NEWBLK(wk));
7647 			continue;
7648 
7649 		case D_ALLOCINDIR:
7650 			aip = WK_ALLOCINDIR(wk);
7651 			freework = NULL;
7652 			if (aip->ai_state & DELAYEDFREE) {
7653 				FREE_LOCK(&lk);
7654 				freework = newfreework(ump, freeblks, NULL,
7655 				    aip->ai_lbn, aip->ai_newblkno,
7656 				    ump->um_fs->fs_frag, 0, 0);
7657 				ACQUIRE_LOCK(&lk);
7658 			}
7659 			newblk = WK_NEWBLK(wk);
7660 			if (newblk->nb_jnewblk) {
7661 				freework->fw_jnewblk = newblk->nb_jnewblk;
7662 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7663 				newblk->nb_jnewblk = NULL;
7664 			}
7665 			free_newblk(newblk);
7666 			continue;
7667 
7668 		case D_FREEWORK:
7669 			freework = WK_FREEWORK(wk);
7670 			if (freework->fw_lbn <= -NDADDR)
7671 				handle_workitem_indirblk(freework);
7672 			else
7673 				freework_freeblock(freework);
7674 			continue;
7675 		default:
7676 			panic("handle_workitem_freeblocks: Unknown type %s",
7677 			    TYPENAME(wk->wk_type));
7678 		}
7679 	}
7680 	if (freeblks->fb_ref != 0) {
7681 		freeblks->fb_state &= ~INPROGRESS;
7682 		wake_worklist(&freeblks->fb_list);
7683 		freeblks = NULL;
7684 	}
7685 	FREE_LOCK(&lk);
7686 	if (freeblks)
7687 		return handle_complete_freeblocks(freeblks, flags);
7688 	return (0);
7689 }
7690 
7691 /*
7692  * Handle completion of block free via truncate.  This allows fs_pending
7693  * to track the actual free block count more closely than if we only updated
7694  * it at the end.  We must be careful to handle cases where the block count
7695  * on free was incorrect.
7696  */
7697 static void
7698 freeblks_free(ump, freeblks, blocks)
7699 	struct ufsmount *ump;
7700 	struct freeblks *freeblks;
7701 	int blocks;
7702 {
7703 	struct fs *fs;
7704 	ufs2_daddr_t remain;
7705 
7706 	UFS_LOCK(ump);
7707 	remain = -freeblks->fb_chkcnt;
7708 	freeblks->fb_chkcnt += blocks;
7709 	if (remain > 0) {
7710 		if (remain < blocks)
7711 			blocks = remain;
7712 		fs = ump->um_fs;
7713 		fs->fs_pendingblocks -= blocks;
7714 	}
7715 	UFS_UNLOCK(ump);
7716 }
7717 
7718 /*
7719  * Once all of the freework workitems are complete we can retire the
7720  * freeblocks dependency and any journal work awaiting completion.  This
7721  * can not be called until all other dependencies are stable on disk.
7722  */
7723 static int
7724 handle_complete_freeblocks(freeblks, flags)
7725 	struct freeblks *freeblks;
7726 	int flags;
7727 {
7728 	struct inodedep *inodedep;
7729 	struct inode *ip;
7730 	struct vnode *vp;
7731 	struct fs *fs;
7732 	struct ufsmount *ump;
7733 	ufs2_daddr_t spare;
7734 
7735 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7736 	fs = ump->um_fs;
7737 	flags = LK_EXCLUSIVE | flags;
7738 	spare = freeblks->fb_chkcnt;
7739 
7740 	/*
7741 	 * If we did not release the expected number of blocks we may have
7742 	 * to adjust the inode block count here.  Only do so if it wasn't
7743 	 * a truncation to zero and the modrev still matches.
7744 	 */
7745 	if (spare && freeblks->fb_len != 0) {
7746 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7747 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7748 			return (EBUSY);
7749 		ip = VTOI(vp);
7750 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7751 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7752 			ip->i_flag |= IN_CHANGE;
7753 			/*
7754 			 * We must wait so this happens before the
7755 			 * journal is reclaimed.
7756 			 */
7757 			ffs_update(vp, 1);
7758 		}
7759 		vput(vp);
7760 	}
7761 	if (spare < 0) {
7762 		UFS_LOCK(ump);
7763 		fs->fs_pendingblocks += spare;
7764 		UFS_UNLOCK(ump);
7765 	}
7766 #ifdef QUOTA
7767 	/* Handle spare. */
7768 	if (spare)
7769 		quotaadj(freeblks->fb_quota, ump, -spare);
7770 	quotarele(freeblks->fb_quota);
7771 #endif
7772 	ACQUIRE_LOCK(&lk);
7773 	if (freeblks->fb_state & ONDEPLIST) {
7774 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7775 		    0, &inodedep);
7776 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7777 		freeblks->fb_state &= ~ONDEPLIST;
7778 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7779 			free_inodedep(inodedep);
7780 	}
7781 	/*
7782 	 * All of the freeblock deps must be complete prior to this call
7783 	 * so it's now safe to complete earlier outstanding journal entries.
7784 	 */
7785 	handle_jwork(&freeblks->fb_jwork);
7786 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7787 	FREE_LOCK(&lk);
7788 	return (0);
7789 }
7790 
7791 /*
7792  * Release blocks associated with the freeblks and stored in the indirect
7793  * block dbn. If level is greater than SINGLE, the block is an indirect block
7794  * and recursive calls to indirtrunc must be used to cleanse other indirect
7795  * blocks.
7796  *
7797  * This handles partial and complete truncation of blocks.  Partial is noted
7798  * with goingaway == 0.  In this case the freework is completed after the
7799  * zero'd indirects are written to disk.  For full truncation the freework
7800  * is completed after the block is freed.
7801  */
7802 static void
7803 indir_trunc(freework, dbn, lbn)
7804 	struct freework *freework;
7805 	ufs2_daddr_t dbn;
7806 	ufs_lbn_t lbn;
7807 {
7808 	struct freework *nfreework;
7809 	struct workhead wkhd;
7810 	struct freeblks *freeblks;
7811 	struct buf *bp;
7812 	struct fs *fs;
7813 	struct indirdep *indirdep;
7814 	struct ufsmount *ump;
7815 	ufs1_daddr_t *bap1 = 0;
7816 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7817 	ufs_lbn_t lbnadd, nlbn;
7818 	int i, nblocks, ufs1fmt;
7819 	int freedblocks;
7820 	int goingaway;
7821 	int freedeps;
7822 	int needj;
7823 	int level;
7824 	int cnt;
7825 
7826 	freeblks = freework->fw_freeblks;
7827 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7828 	fs = ump->um_fs;
7829 	/*
7830 	 * Get buffer of block pointers to be freed.  There are three cases:
7831 	 *
7832 	 * 1) Partial truncate caches the indirdep pointer in the freework
7833 	 *    which provides us a back copy to the save bp which holds the
7834 	 *    pointers we want to clear.  When this completes the zero
7835 	 *    pointers are written to the real copy.
7836 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7837 	 *    eliminated the real copy and placed the indirdep on the saved
7838 	 *    copy.  The indirdep and buf are discarded when this completes.
7839 	 * 3) The indirect was not in memory, we read a copy off of the disk
7840 	 *    using the devvp and drop and invalidate the buffer when we're
7841 	 *    done.
7842 	 */
7843 	goingaway = 1;
7844 	indirdep = NULL;
7845 	if (freework->fw_indir != NULL) {
7846 		goingaway = 0;
7847 		indirdep = freework->fw_indir;
7848 		bp = indirdep->ir_savebp;
7849 		if (bp == NULL || bp->b_blkno != dbn)
7850 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7851 			    bp, (intmax_t)dbn);
7852 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7853 		/*
7854 		 * The lock prevents the buf dep list from changing and
7855 	 	 * indirects on devvp should only ever have one dependency.
7856 		 */
7857 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7858 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7859 			panic("indir_trunc: Bad indirdep %p from buf %p",
7860 			    indirdep, bp);
7861 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7862 	    NOCRED, &bp) != 0) {
7863 		brelse(bp);
7864 		return;
7865 	}
7866 	ACQUIRE_LOCK(&lk);
7867 	/* Protects against a race with complete_trunc_indir(). */
7868 	freework->fw_state &= ~INPROGRESS;
7869 	/*
7870 	 * If we have an indirdep we need to enforce the truncation order
7871 	 * and discard it when it is complete.
7872 	 */
7873 	if (indirdep) {
7874 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7875 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7876 			/*
7877 			 * Add the complete truncate to the list on the
7878 			 * indirdep to enforce in-order processing.
7879 			 */
7880 			if (freework->fw_indir == NULL)
7881 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7882 				    freework, fw_next);
7883 			FREE_LOCK(&lk);
7884 			return;
7885 		}
7886 		/*
7887 		 * If we're goingaway, free the indirdep.  Otherwise it will
7888 		 * linger until the write completes.
7889 		 */
7890 		if (goingaway) {
7891 			free_indirdep(indirdep);
7892 			ump->um_numindirdeps -= 1;
7893 		}
7894 	}
7895 	FREE_LOCK(&lk);
7896 	/* Initialize pointers depending on block size. */
7897 	if (ump->um_fstype == UFS1) {
7898 		bap1 = (ufs1_daddr_t *)bp->b_data;
7899 		nb = bap1[freework->fw_off];
7900 		ufs1fmt = 1;
7901 	} else {
7902 		bap2 = (ufs2_daddr_t *)bp->b_data;
7903 		nb = bap2[freework->fw_off];
7904 		ufs1fmt = 0;
7905 	}
7906 	level = lbn_level(lbn);
7907 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7908 	lbnadd = lbn_offset(fs, level);
7909 	nblocks = btodb(fs->fs_bsize);
7910 	nfreework = freework;
7911 	freedeps = 0;
7912 	cnt = 0;
7913 	/*
7914 	 * Reclaim blocks.  Traverses into nested indirect levels and
7915 	 * arranges for the current level to be freed when subordinates
7916 	 * are free when journaling.
7917 	 */
7918 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7919 		if (i != NINDIR(fs) - 1) {
7920 			if (ufs1fmt)
7921 				nnb = bap1[i+1];
7922 			else
7923 				nnb = bap2[i+1];
7924 		} else
7925 			nnb = 0;
7926 		if (nb == 0)
7927 			continue;
7928 		cnt++;
7929 		if (level != 0) {
7930 			nlbn = (lbn + 1) - (i * lbnadd);
7931 			if (needj != 0) {
7932 				nfreework = newfreework(ump, freeblks, freework,
7933 				    nlbn, nb, fs->fs_frag, 0, 0);
7934 				freedeps++;
7935 			}
7936 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7937 		} else {
7938 			struct freedep *freedep;
7939 
7940 			/*
7941 			 * Attempt to aggregate freedep dependencies for
7942 			 * all blocks being released to the same CG.
7943 			 */
7944 			LIST_INIT(&wkhd);
7945 			if (needj != 0 &&
7946 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7947 				freedep = newfreedep(freework);
7948 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7949 				    &freedep->fd_list);
7950 				freedeps++;
7951 			}
7952 			CTR3(KTR_SUJ,
7953 			    "indir_trunc: ino %d blkno %jd size %ld",
7954 			    freeblks->fb_inum, nb, fs->fs_bsize);
7955 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7956 			    fs->fs_bsize, freeblks->fb_inum,
7957 			    freeblks->fb_vtype, &wkhd);
7958 		}
7959 	}
7960 	if (goingaway) {
7961 		bp->b_flags |= B_INVAL | B_NOCACHE;
7962 		brelse(bp);
7963 	}
7964 	freedblocks = 0;
7965 	if (level == 0)
7966 		freedblocks = (nblocks * cnt);
7967 	if (needj == 0)
7968 		freedblocks += nblocks;
7969 	freeblks_free(ump, freeblks, freedblocks);
7970 	/*
7971 	 * If we are journaling set up the ref counts and offset so this
7972 	 * indirect can be completed when its children are free.
7973 	 */
7974 	if (needj) {
7975 		ACQUIRE_LOCK(&lk);
7976 		freework->fw_off = i;
7977 		freework->fw_ref += freedeps;
7978 		freework->fw_ref -= NINDIR(fs) + 1;
7979 		if (level == 0)
7980 			freeblks->fb_cgwait += freedeps;
7981 		if (freework->fw_ref == 0)
7982 			freework_freeblock(freework);
7983 		FREE_LOCK(&lk);
7984 		return;
7985 	}
7986 	/*
7987 	 * If we're not journaling we can free the indirect now.
7988 	 */
7989 	dbn = dbtofsb(fs, dbn);
7990 	CTR3(KTR_SUJ,
7991 	    "indir_trunc 2: ino %d blkno %jd size %ld",
7992 	    freeblks->fb_inum, dbn, fs->fs_bsize);
7993 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7994 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7995 	/* Non SUJ softdep does single-threaded truncations. */
7996 	if (freework->fw_blkno == dbn) {
7997 		freework->fw_state |= ALLCOMPLETE;
7998 		ACQUIRE_LOCK(&lk);
7999 		handle_written_freework(freework);
8000 		FREE_LOCK(&lk);
8001 	}
8002 	return;
8003 }
8004 
8005 /*
8006  * Cancel an allocindir when it is removed via truncation.  When bp is not
8007  * NULL the indirect never appeared on disk and is scheduled to be freed
8008  * independently of the indir so we can more easily track journal work.
8009  */
8010 static void
8011 cancel_allocindir(aip, bp, freeblks, trunc)
8012 	struct allocindir *aip;
8013 	struct buf *bp;
8014 	struct freeblks *freeblks;
8015 	int trunc;
8016 {
8017 	struct indirdep *indirdep;
8018 	struct freefrag *freefrag;
8019 	struct newblk *newblk;
8020 
8021 	newblk = (struct newblk *)aip;
8022 	LIST_REMOVE(aip, ai_next);
8023 	/*
8024 	 * We must eliminate the pointer in bp if it must be freed on its
8025 	 * own due to partial truncate or pending journal work.
8026 	 */
8027 	if (bp && (trunc || newblk->nb_jnewblk)) {
8028 		/*
8029 		 * Clear the pointer and mark the aip to be freed
8030 		 * directly if it never existed on disk.
8031 		 */
8032 		aip->ai_state |= DELAYEDFREE;
8033 		indirdep = aip->ai_indirdep;
8034 		if (indirdep->ir_state & UFS1FMT)
8035 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8036 		else
8037 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8038 	}
8039 	/*
8040 	 * When truncating the previous pointer will be freed via
8041 	 * savedbp.  Eliminate the freefrag which would dup free.
8042 	 */
8043 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8044 		newblk->nb_freefrag = NULL;
8045 		if (freefrag->ff_jdep)
8046 			cancel_jfreefrag(
8047 			    WK_JFREEFRAG(freefrag->ff_jdep));
8048 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8049 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8050 	}
8051 	/*
8052 	 * If the journal hasn't been written the jnewblk must be passed
8053 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8054 	 * this by leaving the journal dependency on the newblk to be freed
8055 	 * when a freework is created in handle_workitem_freeblocks().
8056 	 */
8057 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8058 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8059 }
8060 
8061 /*
8062  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8063  * in to a newdirblk so any subsequent additions are tracked properly.  The
8064  * caller is responsible for adding the mkdir1 dependency to the journal
8065  * and updating id_mkdiradd.  This function returns with lk held.
8066  */
8067 static struct mkdir *
8068 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8069 	struct diradd *dap;
8070 	ino_t newinum;
8071 	ino_t dinum;
8072 	struct buf *newdirbp;
8073 	struct mkdir **mkdirp;
8074 {
8075 	struct newblk *newblk;
8076 	struct pagedep *pagedep;
8077 	struct inodedep *inodedep;
8078 	struct newdirblk *newdirblk = 0;
8079 	struct mkdir *mkdir1, *mkdir2;
8080 	struct worklist *wk;
8081 	struct jaddref *jaddref;
8082 	struct mount *mp;
8083 
8084 	mp = dap->da_list.wk_mp;
8085 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8086 	    M_SOFTDEP_FLAGS);
8087 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8088 	LIST_INIT(&newdirblk->db_mkdir);
8089 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8090 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8091 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8092 	mkdir1->md_diradd = dap;
8093 	mkdir1->md_jaddref = NULL;
8094 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8095 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8096 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8097 	mkdir2->md_diradd = dap;
8098 	mkdir2->md_jaddref = NULL;
8099 	if (MOUNTEDSUJ(mp) == 0) {
8100 		mkdir1->md_state |= DEPCOMPLETE;
8101 		mkdir2->md_state |= DEPCOMPLETE;
8102 	}
8103 	/*
8104 	 * Dependency on "." and ".." being written to disk.
8105 	 */
8106 	mkdir1->md_buf = newdirbp;
8107 	ACQUIRE_LOCK(&lk);
8108 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
8109 	/*
8110 	 * We must link the pagedep, allocdirect, and newdirblk for
8111 	 * the initial file page so the pointer to the new directory
8112 	 * is not written until the directory contents are live and
8113 	 * any subsequent additions are not marked live until the
8114 	 * block is reachable via the inode.
8115 	 */
8116 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8117 		panic("setup_newdir: lost pagedep");
8118 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8119 		if (wk->wk_type == D_ALLOCDIRECT)
8120 			break;
8121 	if (wk == NULL)
8122 		panic("setup_newdir: lost allocdirect");
8123 	if (pagedep->pd_state & NEWBLOCK)
8124 		panic("setup_newdir: NEWBLOCK already set");
8125 	newblk = WK_NEWBLK(wk);
8126 	pagedep->pd_state |= NEWBLOCK;
8127 	pagedep->pd_newdirblk = newdirblk;
8128 	newdirblk->db_pagedep = pagedep;
8129 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8130 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8131 	/*
8132 	 * Look up the inodedep for the parent directory so that we
8133 	 * can link mkdir2 into the pending dotdot jaddref or
8134 	 * the inode write if there is none.  If the inode is
8135 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8136 	 * been satisfied and mkdir2 can be freed.
8137 	 */
8138 	inodedep_lookup(mp, dinum, 0, &inodedep);
8139 	if (MOUNTEDSUJ(mp)) {
8140 		if (inodedep == NULL)
8141 			panic("setup_newdir: Lost parent.");
8142 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8143 		    inoreflst);
8144 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8145 		    (jaddref->ja_state & MKDIR_PARENT),
8146 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8147 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8148 		mkdir2->md_jaddref = jaddref;
8149 		jaddref->ja_mkdir = mkdir2;
8150 	} else if (inodedep == NULL ||
8151 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8152 		dap->da_state &= ~MKDIR_PARENT;
8153 		WORKITEM_FREE(mkdir2, D_MKDIR);
8154 	} else {
8155 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8156 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8157 	}
8158 	*mkdirp = mkdir2;
8159 
8160 	return (mkdir1);
8161 }
8162 
8163 /*
8164  * Directory entry addition dependencies.
8165  *
8166  * When adding a new directory entry, the inode (with its incremented link
8167  * count) must be written to disk before the directory entry's pointer to it.
8168  * Also, if the inode is newly allocated, the corresponding freemap must be
8169  * updated (on disk) before the directory entry's pointer. These requirements
8170  * are met via undo/redo on the directory entry's pointer, which consists
8171  * simply of the inode number.
8172  *
8173  * As directory entries are added and deleted, the free space within a
8174  * directory block can become fragmented.  The ufs filesystem will compact
8175  * a fragmented directory block to make space for a new entry. When this
8176  * occurs, the offsets of previously added entries change. Any "diradd"
8177  * dependency structures corresponding to these entries must be updated with
8178  * the new offsets.
8179  */
8180 
8181 /*
8182  * This routine is called after the in-memory inode's link
8183  * count has been incremented, but before the directory entry's
8184  * pointer to the inode has been set.
8185  */
8186 int
8187 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8188 	struct buf *bp;		/* buffer containing directory block */
8189 	struct inode *dp;	/* inode for directory */
8190 	off_t diroffset;	/* offset of new entry in directory */
8191 	ino_t newinum;		/* inode referenced by new directory entry */
8192 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8193 	int isnewblk;		/* entry is in a newly allocated block */
8194 {
8195 	int offset;		/* offset of new entry within directory block */
8196 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8197 	struct fs *fs;
8198 	struct diradd *dap;
8199 	struct newblk *newblk;
8200 	struct pagedep *pagedep;
8201 	struct inodedep *inodedep;
8202 	struct newdirblk *newdirblk = 0;
8203 	struct mkdir *mkdir1, *mkdir2;
8204 	struct jaddref *jaddref;
8205 	struct mount *mp;
8206 	int isindir;
8207 
8208 	/*
8209 	 * Whiteouts have no dependencies.
8210 	 */
8211 	if (newinum == WINO) {
8212 		if (newdirbp != NULL)
8213 			bdwrite(newdirbp);
8214 		return (0);
8215 	}
8216 	jaddref = NULL;
8217 	mkdir1 = mkdir2 = NULL;
8218 	mp = UFSTOVFS(dp->i_ump);
8219 	fs = dp->i_fs;
8220 	lbn = lblkno(fs, diroffset);
8221 	offset = blkoff(fs, diroffset);
8222 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8223 		M_SOFTDEP_FLAGS|M_ZERO);
8224 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8225 	dap->da_offset = offset;
8226 	dap->da_newinum = newinum;
8227 	dap->da_state = ATTACHED;
8228 	LIST_INIT(&dap->da_jwork);
8229 	isindir = bp->b_lblkno >= NDADDR;
8230 	if (isnewblk &&
8231 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8232 		newdirblk = malloc(sizeof(struct newdirblk),
8233 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8234 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8235 		LIST_INIT(&newdirblk->db_mkdir);
8236 	}
8237 	/*
8238 	 * If we're creating a new directory setup the dependencies and set
8239 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8240 	 * we can move on.
8241 	 */
8242 	if (newdirbp == NULL) {
8243 		dap->da_state |= DEPCOMPLETE;
8244 		ACQUIRE_LOCK(&lk);
8245 	} else {
8246 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8247 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8248 		    &mkdir2);
8249 	}
8250 	/*
8251 	 * Link into parent directory pagedep to await its being written.
8252 	 */
8253 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8254 #ifdef DEBUG
8255 	if (diradd_lookup(pagedep, offset) != NULL)
8256 		panic("softdep_setup_directory_add: %p already at off %d\n",
8257 		    diradd_lookup(pagedep, offset), offset);
8258 #endif
8259 	dap->da_pagedep = pagedep;
8260 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8261 	    da_pdlist);
8262 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8263 	/*
8264 	 * If we're journaling, link the diradd into the jaddref so it
8265 	 * may be completed after the journal entry is written.  Otherwise,
8266 	 * link the diradd into its inodedep.  If the inode is not yet
8267 	 * written place it on the bufwait list, otherwise do the post-inode
8268 	 * write processing to put it on the id_pendinghd list.
8269 	 */
8270 	if (MOUNTEDSUJ(mp)) {
8271 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8272 		    inoreflst);
8273 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8274 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8275 		jaddref->ja_diroff = diroffset;
8276 		jaddref->ja_diradd = dap;
8277 		add_to_journal(&jaddref->ja_list);
8278 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8279 		diradd_inode_written(dap, inodedep);
8280 	else
8281 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8282 	/*
8283 	 * Add the journal entries for . and .. links now that the primary
8284 	 * link is written.
8285 	 */
8286 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8287 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8288 		    inoreflst, if_deps);
8289 		KASSERT(jaddref != NULL &&
8290 		    jaddref->ja_ino == jaddref->ja_parent &&
8291 		    (jaddref->ja_state & MKDIR_BODY),
8292 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8293 		    jaddref));
8294 		mkdir1->md_jaddref = jaddref;
8295 		jaddref->ja_mkdir = mkdir1;
8296 		/*
8297 		 * It is important that the dotdot journal entry
8298 		 * is added prior to the dot entry since dot writes
8299 		 * both the dot and dotdot links.  These both must
8300 		 * be added after the primary link for the journal
8301 		 * to remain consistent.
8302 		 */
8303 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8304 		add_to_journal(&jaddref->ja_list);
8305 	}
8306 	/*
8307 	 * If we are adding a new directory remember this diradd so that if
8308 	 * we rename it we can keep the dot and dotdot dependencies.  If
8309 	 * we are adding a new name for an inode that has a mkdiradd we
8310 	 * must be in rename and we have to move the dot and dotdot
8311 	 * dependencies to this new name.  The old name is being orphaned
8312 	 * soon.
8313 	 */
8314 	if (mkdir1 != NULL) {
8315 		if (inodedep->id_mkdiradd != NULL)
8316 			panic("softdep_setup_directory_add: Existing mkdir");
8317 		inodedep->id_mkdiradd = dap;
8318 	} else if (inodedep->id_mkdiradd)
8319 		merge_diradd(inodedep, dap);
8320 	if (newdirblk) {
8321 		/*
8322 		 * There is nothing to do if we are already tracking
8323 		 * this block.
8324 		 */
8325 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8326 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8327 			FREE_LOCK(&lk);
8328 			return (0);
8329 		}
8330 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8331 		    == 0)
8332 			panic("softdep_setup_directory_add: lost entry");
8333 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8334 		pagedep->pd_state |= NEWBLOCK;
8335 		pagedep->pd_newdirblk = newdirblk;
8336 		newdirblk->db_pagedep = pagedep;
8337 		FREE_LOCK(&lk);
8338 		/*
8339 		 * If we extended into an indirect signal direnter to sync.
8340 		 */
8341 		if (isindir)
8342 			return (1);
8343 		return (0);
8344 	}
8345 	FREE_LOCK(&lk);
8346 	return (0);
8347 }
8348 
8349 /*
8350  * This procedure is called to change the offset of a directory
8351  * entry when compacting a directory block which must be owned
8352  * exclusively by the caller. Note that the actual entry movement
8353  * must be done in this procedure to ensure that no I/O completions
8354  * occur while the move is in progress.
8355  */
8356 void
8357 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8358 	struct buf *bp;		/* Buffer holding directory block. */
8359 	struct inode *dp;	/* inode for directory */
8360 	caddr_t base;		/* address of dp->i_offset */
8361 	caddr_t oldloc;		/* address of old directory location */
8362 	caddr_t newloc;		/* address of new directory location */
8363 	int entrysize;		/* size of directory entry */
8364 {
8365 	int offset, oldoffset, newoffset;
8366 	struct pagedep *pagedep;
8367 	struct jmvref *jmvref;
8368 	struct diradd *dap;
8369 	struct direct *de;
8370 	struct mount *mp;
8371 	ufs_lbn_t lbn;
8372 	int flags;
8373 
8374 	mp = UFSTOVFS(dp->i_ump);
8375 	de = (struct direct *)oldloc;
8376 	jmvref = NULL;
8377 	flags = 0;
8378 	/*
8379 	 * Moves are always journaled as it would be too complex to
8380 	 * determine if any affected adds or removes are present in the
8381 	 * journal.
8382 	 */
8383 	if (MOUNTEDSUJ(mp)) {
8384 		flags = DEPALLOC;
8385 		jmvref = newjmvref(dp, de->d_ino,
8386 		    dp->i_offset + (oldloc - base),
8387 		    dp->i_offset + (newloc - base));
8388 	}
8389 	lbn = lblkno(dp->i_fs, dp->i_offset);
8390 	offset = blkoff(dp->i_fs, dp->i_offset);
8391 	oldoffset = offset + (oldloc - base);
8392 	newoffset = offset + (newloc - base);
8393 	ACQUIRE_LOCK(&lk);
8394 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8395 		goto done;
8396 	dap = diradd_lookup(pagedep, oldoffset);
8397 	if (dap) {
8398 		dap->da_offset = newoffset;
8399 		newoffset = DIRADDHASH(newoffset);
8400 		oldoffset = DIRADDHASH(oldoffset);
8401 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8402 		    newoffset != oldoffset) {
8403 			LIST_REMOVE(dap, da_pdlist);
8404 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8405 			    dap, da_pdlist);
8406 		}
8407 	}
8408 done:
8409 	if (jmvref) {
8410 		jmvref->jm_pagedep = pagedep;
8411 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8412 		add_to_journal(&jmvref->jm_list);
8413 	}
8414 	bcopy(oldloc, newloc, entrysize);
8415 	FREE_LOCK(&lk);
8416 }
8417 
8418 /*
8419  * Move the mkdir dependencies and journal work from one diradd to another
8420  * when renaming a directory.  The new name must depend on the mkdir deps
8421  * completing as the old name did.  Directories can only have one valid link
8422  * at a time so one must be canonical.
8423  */
8424 static void
8425 merge_diradd(inodedep, newdap)
8426 	struct inodedep *inodedep;
8427 	struct diradd *newdap;
8428 {
8429 	struct diradd *olddap;
8430 	struct mkdir *mkdir, *nextmd;
8431 	short state;
8432 
8433 	olddap = inodedep->id_mkdiradd;
8434 	inodedep->id_mkdiradd = newdap;
8435 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8436 		newdap->da_state &= ~DEPCOMPLETE;
8437 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8438 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8439 			if (mkdir->md_diradd != olddap)
8440 				continue;
8441 			mkdir->md_diradd = newdap;
8442 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8443 			newdap->da_state |= state;
8444 			olddap->da_state &= ~state;
8445 			if ((olddap->da_state &
8446 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8447 				break;
8448 		}
8449 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8450 			panic("merge_diradd: unfound ref");
8451 	}
8452 	/*
8453 	 * Any mkdir related journal items are not safe to be freed until
8454 	 * the new name is stable.
8455 	 */
8456 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8457 	olddap->da_state |= DEPCOMPLETE;
8458 	complete_diradd(olddap);
8459 }
8460 
8461 /*
8462  * Move the diradd to the pending list when all diradd dependencies are
8463  * complete.
8464  */
8465 static void
8466 complete_diradd(dap)
8467 	struct diradd *dap;
8468 {
8469 	struct pagedep *pagedep;
8470 
8471 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8472 		if (dap->da_state & DIRCHG)
8473 			pagedep = dap->da_previous->dm_pagedep;
8474 		else
8475 			pagedep = dap->da_pagedep;
8476 		LIST_REMOVE(dap, da_pdlist);
8477 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8478 	}
8479 }
8480 
8481 /*
8482  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8483  * add entries and conditonally journal the remove.
8484  */
8485 static void
8486 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8487 	struct diradd *dap;
8488 	struct dirrem *dirrem;
8489 	struct jremref *jremref;
8490 	struct jremref *dotremref;
8491 	struct jremref *dotdotremref;
8492 {
8493 	struct inodedep *inodedep;
8494 	struct jaddref *jaddref;
8495 	struct inoref *inoref;
8496 	struct mkdir *mkdir;
8497 
8498 	/*
8499 	 * If no remove references were allocated we're on a non-journaled
8500 	 * filesystem and can skip the cancel step.
8501 	 */
8502 	if (jremref == NULL) {
8503 		free_diradd(dap, NULL);
8504 		return;
8505 	}
8506 	/*
8507 	 * Cancel the primary name an free it if it does not require
8508 	 * journaling.
8509 	 */
8510 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8511 	    0, &inodedep) != 0) {
8512 		/* Abort the addref that reference this diradd.  */
8513 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8514 			if (inoref->if_list.wk_type != D_JADDREF)
8515 				continue;
8516 			jaddref = (struct jaddref *)inoref;
8517 			if (jaddref->ja_diradd != dap)
8518 				continue;
8519 			if (cancel_jaddref(jaddref, inodedep,
8520 			    &dirrem->dm_jwork) == 0) {
8521 				free_jremref(jremref);
8522 				jremref = NULL;
8523 			}
8524 			break;
8525 		}
8526 	}
8527 	/*
8528 	 * Cancel subordinate names and free them if they do not require
8529 	 * journaling.
8530 	 */
8531 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8532 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8533 			if (mkdir->md_diradd != dap)
8534 				continue;
8535 			if ((jaddref = mkdir->md_jaddref) == NULL)
8536 				continue;
8537 			mkdir->md_jaddref = NULL;
8538 			if (mkdir->md_state & MKDIR_PARENT) {
8539 				if (cancel_jaddref(jaddref, NULL,
8540 				    &dirrem->dm_jwork) == 0) {
8541 					free_jremref(dotdotremref);
8542 					dotdotremref = NULL;
8543 				}
8544 			} else {
8545 				if (cancel_jaddref(jaddref, inodedep,
8546 				    &dirrem->dm_jwork) == 0) {
8547 					free_jremref(dotremref);
8548 					dotremref = NULL;
8549 				}
8550 			}
8551 		}
8552 	}
8553 
8554 	if (jremref)
8555 		journal_jremref(dirrem, jremref, inodedep);
8556 	if (dotremref)
8557 		journal_jremref(dirrem, dotremref, inodedep);
8558 	if (dotdotremref)
8559 		journal_jremref(dirrem, dotdotremref, NULL);
8560 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8561 	free_diradd(dap, &dirrem->dm_jwork);
8562 }
8563 
8564 /*
8565  * Free a diradd dependency structure. This routine must be called
8566  * with splbio interrupts blocked.
8567  */
8568 static void
8569 free_diradd(dap, wkhd)
8570 	struct diradd *dap;
8571 	struct workhead *wkhd;
8572 {
8573 	struct dirrem *dirrem;
8574 	struct pagedep *pagedep;
8575 	struct inodedep *inodedep;
8576 	struct mkdir *mkdir, *nextmd;
8577 
8578 	mtx_assert(&lk, MA_OWNED);
8579 	LIST_REMOVE(dap, da_pdlist);
8580 	if (dap->da_state & ONWORKLIST)
8581 		WORKLIST_REMOVE(&dap->da_list);
8582 	if ((dap->da_state & DIRCHG) == 0) {
8583 		pagedep = dap->da_pagedep;
8584 	} else {
8585 		dirrem = dap->da_previous;
8586 		pagedep = dirrem->dm_pagedep;
8587 		dirrem->dm_dirinum = pagedep->pd_ino;
8588 		dirrem->dm_state |= COMPLETE;
8589 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8590 			add_to_worklist(&dirrem->dm_list, 0);
8591 	}
8592 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8593 	    0, &inodedep) != 0)
8594 		if (inodedep->id_mkdiradd == dap)
8595 			inodedep->id_mkdiradd = NULL;
8596 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8597 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8598 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8599 			if (mkdir->md_diradd != dap)
8600 				continue;
8601 			dap->da_state &=
8602 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8603 			LIST_REMOVE(mkdir, md_mkdirs);
8604 			if (mkdir->md_state & ONWORKLIST)
8605 				WORKLIST_REMOVE(&mkdir->md_list);
8606 			if (mkdir->md_jaddref != NULL)
8607 				panic("free_diradd: Unexpected jaddref");
8608 			WORKITEM_FREE(mkdir, D_MKDIR);
8609 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8610 				break;
8611 		}
8612 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8613 			panic("free_diradd: unfound ref");
8614 	}
8615 	if (inodedep)
8616 		free_inodedep(inodedep);
8617 	/*
8618 	 * Free any journal segments waiting for the directory write.
8619 	 */
8620 	handle_jwork(&dap->da_jwork);
8621 	WORKITEM_FREE(dap, D_DIRADD);
8622 }
8623 
8624 /*
8625  * Directory entry removal dependencies.
8626  *
8627  * When removing a directory entry, the entry's inode pointer must be
8628  * zero'ed on disk before the corresponding inode's link count is decremented
8629  * (possibly freeing the inode for re-use). This dependency is handled by
8630  * updating the directory entry but delaying the inode count reduction until
8631  * after the directory block has been written to disk. After this point, the
8632  * inode count can be decremented whenever it is convenient.
8633  */
8634 
8635 /*
8636  * This routine should be called immediately after removing
8637  * a directory entry.  The inode's link count should not be
8638  * decremented by the calling procedure -- the soft updates
8639  * code will do this task when it is safe.
8640  */
8641 void
8642 softdep_setup_remove(bp, dp, ip, isrmdir)
8643 	struct buf *bp;		/* buffer containing directory block */
8644 	struct inode *dp;	/* inode for the directory being modified */
8645 	struct inode *ip;	/* inode for directory entry being removed */
8646 	int isrmdir;		/* indicates if doing RMDIR */
8647 {
8648 	struct dirrem *dirrem, *prevdirrem;
8649 	struct inodedep *inodedep;
8650 	int direct;
8651 
8652 	/*
8653 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8654 	 * newdirrem() to setup the full directory remove which requires
8655 	 * isrmdir > 1.
8656 	 */
8657 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8658 	/*
8659 	 * Add the dirrem to the inodedep's pending remove list for quick
8660 	 * discovery later.
8661 	 */
8662 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8663 	    &inodedep) == 0)
8664 		panic("softdep_setup_remove: Lost inodedep.");
8665 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8666 	dirrem->dm_state |= ONDEPLIST;
8667 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8668 
8669 	/*
8670 	 * If the COMPLETE flag is clear, then there were no active
8671 	 * entries and we want to roll back to a zeroed entry until
8672 	 * the new inode is committed to disk. If the COMPLETE flag is
8673 	 * set then we have deleted an entry that never made it to
8674 	 * disk. If the entry we deleted resulted from a name change,
8675 	 * then the old name still resides on disk. We cannot delete
8676 	 * its inode (returned to us in prevdirrem) until the zeroed
8677 	 * directory entry gets to disk. The new inode has never been
8678 	 * referenced on the disk, so can be deleted immediately.
8679 	 */
8680 	if ((dirrem->dm_state & COMPLETE) == 0) {
8681 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8682 		    dm_next);
8683 		FREE_LOCK(&lk);
8684 	} else {
8685 		if (prevdirrem != NULL)
8686 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8687 			    prevdirrem, dm_next);
8688 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8689 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8690 		FREE_LOCK(&lk);
8691 		if (direct)
8692 			handle_workitem_remove(dirrem, 0);
8693 	}
8694 }
8695 
8696 /*
8697  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8698  * pd_pendinghd list of a pagedep.
8699  */
8700 static struct diradd *
8701 diradd_lookup(pagedep, offset)
8702 	struct pagedep *pagedep;
8703 	int offset;
8704 {
8705 	struct diradd *dap;
8706 
8707 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8708 		if (dap->da_offset == offset)
8709 			return (dap);
8710 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8711 		if (dap->da_offset == offset)
8712 			return (dap);
8713 	return (NULL);
8714 }
8715 
8716 /*
8717  * Search for a .. diradd dependency in a directory that is being removed.
8718  * If the directory was renamed to a new parent we have a diradd rather
8719  * than a mkdir for the .. entry.  We need to cancel it now before
8720  * it is found in truncate().
8721  */
8722 static struct jremref *
8723 cancel_diradd_dotdot(ip, dirrem, jremref)
8724 	struct inode *ip;
8725 	struct dirrem *dirrem;
8726 	struct jremref *jremref;
8727 {
8728 	struct pagedep *pagedep;
8729 	struct diradd *dap;
8730 	struct worklist *wk;
8731 
8732 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8733 	    &pagedep) == 0)
8734 		return (jremref);
8735 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8736 	if (dap == NULL)
8737 		return (jremref);
8738 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8739 	/*
8740 	 * Mark any journal work as belonging to the parent so it is freed
8741 	 * with the .. reference.
8742 	 */
8743 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8744 		wk->wk_state |= MKDIR_PARENT;
8745 	return (NULL);
8746 }
8747 
8748 /*
8749  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8750  * replace it with a dirrem/diradd pair as a result of re-parenting a
8751  * directory.  This ensures that we don't simultaneously have a mkdir and
8752  * a diradd for the same .. entry.
8753  */
8754 static struct jremref *
8755 cancel_mkdir_dotdot(ip, dirrem, jremref)
8756 	struct inode *ip;
8757 	struct dirrem *dirrem;
8758 	struct jremref *jremref;
8759 {
8760 	struct inodedep *inodedep;
8761 	struct jaddref *jaddref;
8762 	struct mkdir *mkdir;
8763 	struct diradd *dap;
8764 
8765 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8766 	    &inodedep) == 0)
8767 		return (jremref);
8768 	dap = inodedep->id_mkdiradd;
8769 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8770 		return (jremref);
8771 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8772 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8773 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8774 			break;
8775 	if (mkdir == NULL)
8776 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8777 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8778 		mkdir->md_jaddref = NULL;
8779 		jaddref->ja_state &= ~MKDIR_PARENT;
8780 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8781 		    &inodedep) == 0)
8782 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8783 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8784 			journal_jremref(dirrem, jremref, inodedep);
8785 			jremref = NULL;
8786 		}
8787 	}
8788 	if (mkdir->md_state & ONWORKLIST)
8789 		WORKLIST_REMOVE(&mkdir->md_list);
8790 	mkdir->md_state |= ALLCOMPLETE;
8791 	complete_mkdir(mkdir);
8792 	return (jremref);
8793 }
8794 
8795 static void
8796 journal_jremref(dirrem, jremref, inodedep)
8797 	struct dirrem *dirrem;
8798 	struct jremref *jremref;
8799 	struct inodedep *inodedep;
8800 {
8801 
8802 	if (inodedep == NULL)
8803 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8804 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8805 			panic("journal_jremref: Lost inodedep");
8806 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8807 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8808 	add_to_journal(&jremref->jr_list);
8809 }
8810 
8811 static void
8812 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8813 	struct dirrem *dirrem;
8814 	struct jremref *jremref;
8815 	struct jremref *dotremref;
8816 	struct jremref *dotdotremref;
8817 {
8818 	struct inodedep *inodedep;
8819 
8820 
8821 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8822 	    &inodedep) == 0)
8823 		panic("dirrem_journal: Lost inodedep");
8824 	journal_jremref(dirrem, jremref, inodedep);
8825 	if (dotremref)
8826 		journal_jremref(dirrem, dotremref, inodedep);
8827 	if (dotdotremref)
8828 		journal_jremref(dirrem, dotdotremref, NULL);
8829 }
8830 
8831 /*
8832  * Allocate a new dirrem if appropriate and return it along with
8833  * its associated pagedep. Called without a lock, returns with lock.
8834  */
8835 static struct dirrem *
8836 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8837 	struct buf *bp;		/* buffer containing directory block */
8838 	struct inode *dp;	/* inode for the directory being modified */
8839 	struct inode *ip;	/* inode for directory entry being removed */
8840 	int isrmdir;		/* indicates if doing RMDIR */
8841 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8842 {
8843 	int offset;
8844 	ufs_lbn_t lbn;
8845 	struct diradd *dap;
8846 	struct dirrem *dirrem;
8847 	struct pagedep *pagedep;
8848 	struct jremref *jremref;
8849 	struct jremref *dotremref;
8850 	struct jremref *dotdotremref;
8851 	struct vnode *dvp;
8852 
8853 	/*
8854 	 * Whiteouts have no deletion dependencies.
8855 	 */
8856 	if (ip == NULL)
8857 		panic("newdirrem: whiteout");
8858 	dvp = ITOV(dp);
8859 	/*
8860 	 * If we are over our limit, try to improve the situation.
8861 	 * Limiting the number of dirrem structures will also limit
8862 	 * the number of freefile and freeblks structures.
8863 	 */
8864 	ACQUIRE_LOCK(&lk);
8865 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8866 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8867 	FREE_LOCK(&lk);
8868 	dirrem = malloc(sizeof(struct dirrem),
8869 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8870 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8871 	LIST_INIT(&dirrem->dm_jremrefhd);
8872 	LIST_INIT(&dirrem->dm_jwork);
8873 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8874 	dirrem->dm_oldinum = ip->i_number;
8875 	*prevdirremp = NULL;
8876 	/*
8877 	 * Allocate remove reference structures to track journal write
8878 	 * dependencies.  We will always have one for the link and
8879 	 * when doing directories we will always have one more for dot.
8880 	 * When renaming a directory we skip the dotdot link change so
8881 	 * this is not needed.
8882 	 */
8883 	jremref = dotremref = dotdotremref = NULL;
8884 	if (DOINGSUJ(dvp)) {
8885 		if (isrmdir) {
8886 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8887 			    ip->i_effnlink + 2);
8888 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8889 			    ip->i_effnlink + 1);
8890 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8891 			    dp->i_effnlink + 1);
8892 			dotdotremref->jr_state |= MKDIR_PARENT;
8893 		} else
8894 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8895 			    ip->i_effnlink + 1);
8896 	}
8897 	ACQUIRE_LOCK(&lk);
8898 	lbn = lblkno(dp->i_fs, dp->i_offset);
8899 	offset = blkoff(dp->i_fs, dp->i_offset);
8900 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8901 	    &pagedep);
8902 	dirrem->dm_pagedep = pagedep;
8903 	dirrem->dm_offset = offset;
8904 	/*
8905 	 * If we're renaming a .. link to a new directory, cancel any
8906 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8907 	 * the jremref is preserved for any potential diradd in this
8908 	 * location.  This can not coincide with a rmdir.
8909 	 */
8910 	if (dp->i_offset == DOTDOT_OFFSET) {
8911 		if (isrmdir)
8912 			panic("newdirrem: .. directory change during remove?");
8913 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8914 	}
8915 	/*
8916 	 * If we're removing a directory search for the .. dependency now and
8917 	 * cancel it.  Any pending journal work will be added to the dirrem
8918 	 * to be completed when the workitem remove completes.
8919 	 */
8920 	if (isrmdir)
8921 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8922 	/*
8923 	 * Check for a diradd dependency for the same directory entry.
8924 	 * If present, then both dependencies become obsolete and can
8925 	 * be de-allocated.
8926 	 */
8927 	dap = diradd_lookup(pagedep, offset);
8928 	if (dap == NULL) {
8929 		/*
8930 		 * Link the jremref structures into the dirrem so they are
8931 		 * written prior to the pagedep.
8932 		 */
8933 		if (jremref)
8934 			dirrem_journal(dirrem, jremref, dotremref,
8935 			    dotdotremref);
8936 		return (dirrem);
8937 	}
8938 	/*
8939 	 * Must be ATTACHED at this point.
8940 	 */
8941 	if ((dap->da_state & ATTACHED) == 0)
8942 		panic("newdirrem: not ATTACHED");
8943 	if (dap->da_newinum != ip->i_number)
8944 		panic("newdirrem: inum %ju should be %ju",
8945 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
8946 	/*
8947 	 * If we are deleting a changed name that never made it to disk,
8948 	 * then return the dirrem describing the previous inode (which
8949 	 * represents the inode currently referenced from this entry on disk).
8950 	 */
8951 	if ((dap->da_state & DIRCHG) != 0) {
8952 		*prevdirremp = dap->da_previous;
8953 		dap->da_state &= ~DIRCHG;
8954 		dap->da_pagedep = pagedep;
8955 	}
8956 	/*
8957 	 * We are deleting an entry that never made it to disk.
8958 	 * Mark it COMPLETE so we can delete its inode immediately.
8959 	 */
8960 	dirrem->dm_state |= COMPLETE;
8961 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8962 #ifdef SUJ_DEBUG
8963 	if (isrmdir == 0) {
8964 		struct worklist *wk;
8965 
8966 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8967 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8968 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8969 	}
8970 #endif
8971 
8972 	return (dirrem);
8973 }
8974 
8975 /*
8976  * Directory entry change dependencies.
8977  *
8978  * Changing an existing directory entry requires that an add operation
8979  * be completed first followed by a deletion. The semantics for the addition
8980  * are identical to the description of adding a new entry above except
8981  * that the rollback is to the old inode number rather than zero. Once
8982  * the addition dependency is completed, the removal is done as described
8983  * in the removal routine above.
8984  */
8985 
8986 /*
8987  * This routine should be called immediately after changing
8988  * a directory entry.  The inode's link count should not be
8989  * decremented by the calling procedure -- the soft updates
8990  * code will perform this task when it is safe.
8991  */
8992 void
8993 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8994 	struct buf *bp;		/* buffer containing directory block */
8995 	struct inode *dp;	/* inode for the directory being modified */
8996 	struct inode *ip;	/* inode for directory entry being removed */
8997 	ino_t newinum;		/* new inode number for changed entry */
8998 	int isrmdir;		/* indicates if doing RMDIR */
8999 {
9000 	int offset;
9001 	struct diradd *dap = NULL;
9002 	struct dirrem *dirrem, *prevdirrem;
9003 	struct pagedep *pagedep;
9004 	struct inodedep *inodedep;
9005 	struct jaddref *jaddref;
9006 	struct mount *mp;
9007 
9008 	offset = blkoff(dp->i_fs, dp->i_offset);
9009 	mp = UFSTOVFS(dp->i_ump);
9010 
9011 	/*
9012 	 * Whiteouts do not need diradd dependencies.
9013 	 */
9014 	if (newinum != WINO) {
9015 		dap = malloc(sizeof(struct diradd),
9016 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9017 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9018 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9019 		dap->da_offset = offset;
9020 		dap->da_newinum = newinum;
9021 		LIST_INIT(&dap->da_jwork);
9022 	}
9023 
9024 	/*
9025 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9026 	 */
9027 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9028 	pagedep = dirrem->dm_pagedep;
9029 	/*
9030 	 * The possible values for isrmdir:
9031 	 *	0 - non-directory file rename
9032 	 *	1 - directory rename within same directory
9033 	 *   inum - directory rename to new directory of given inode number
9034 	 * When renaming to a new directory, we are both deleting and
9035 	 * creating a new directory entry, so the link count on the new
9036 	 * directory should not change. Thus we do not need the followup
9037 	 * dirrem which is usually done in handle_workitem_remove. We set
9038 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9039 	 * followup dirrem.
9040 	 */
9041 	if (isrmdir > 1)
9042 		dirrem->dm_state |= DIRCHG;
9043 
9044 	/*
9045 	 * Whiteouts have no additional dependencies,
9046 	 * so just put the dirrem on the correct list.
9047 	 */
9048 	if (newinum == WINO) {
9049 		if ((dirrem->dm_state & COMPLETE) == 0) {
9050 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9051 			    dm_next);
9052 		} else {
9053 			dirrem->dm_dirinum = pagedep->pd_ino;
9054 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9055 				add_to_worklist(&dirrem->dm_list, 0);
9056 		}
9057 		FREE_LOCK(&lk);
9058 		return;
9059 	}
9060 	/*
9061 	 * Add the dirrem to the inodedep's pending remove list for quick
9062 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9063 	 * will not fail.
9064 	 */
9065 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9066 		panic("softdep_setup_directory_change: Lost inodedep.");
9067 	dirrem->dm_state |= ONDEPLIST;
9068 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9069 
9070 	/*
9071 	 * If the COMPLETE flag is clear, then there were no active
9072 	 * entries and we want to roll back to the previous inode until
9073 	 * the new inode is committed to disk. If the COMPLETE flag is
9074 	 * set, then we have deleted an entry that never made it to disk.
9075 	 * If the entry we deleted resulted from a name change, then the old
9076 	 * inode reference still resides on disk. Any rollback that we do
9077 	 * needs to be to that old inode (returned to us in prevdirrem). If
9078 	 * the entry we deleted resulted from a create, then there is
9079 	 * no entry on the disk, so we want to roll back to zero rather
9080 	 * than the uncommitted inode. In either of the COMPLETE cases we
9081 	 * want to immediately free the unwritten and unreferenced inode.
9082 	 */
9083 	if ((dirrem->dm_state & COMPLETE) == 0) {
9084 		dap->da_previous = dirrem;
9085 	} else {
9086 		if (prevdirrem != NULL) {
9087 			dap->da_previous = prevdirrem;
9088 		} else {
9089 			dap->da_state &= ~DIRCHG;
9090 			dap->da_pagedep = pagedep;
9091 		}
9092 		dirrem->dm_dirinum = pagedep->pd_ino;
9093 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9094 			add_to_worklist(&dirrem->dm_list, 0);
9095 	}
9096 	/*
9097 	 * Lookup the jaddref for this journal entry.  We must finish
9098 	 * initializing it and make the diradd write dependent on it.
9099 	 * If we're not journaling, put it on the id_bufwait list if the
9100 	 * inode is not yet written. If it is written, do the post-inode
9101 	 * write processing to put it on the id_pendinghd list.
9102 	 */
9103 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9104 	if (MOUNTEDSUJ(mp)) {
9105 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9106 		    inoreflst);
9107 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9108 		    ("softdep_setup_directory_change: bad jaddref %p",
9109 		    jaddref));
9110 		jaddref->ja_diroff = dp->i_offset;
9111 		jaddref->ja_diradd = dap;
9112 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9113 		    dap, da_pdlist);
9114 		add_to_journal(&jaddref->ja_list);
9115 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9116 		dap->da_state |= COMPLETE;
9117 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9118 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9119 	} else {
9120 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9121 		    dap, da_pdlist);
9122 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9123 	}
9124 	/*
9125 	 * If we're making a new name for a directory that has not been
9126 	 * committed when need to move the dot and dotdot references to
9127 	 * this new name.
9128 	 */
9129 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9130 		merge_diradd(inodedep, dap);
9131 	FREE_LOCK(&lk);
9132 }
9133 
9134 /*
9135  * Called whenever the link count on an inode is changed.
9136  * It creates an inode dependency so that the new reference(s)
9137  * to the inode cannot be committed to disk until the updated
9138  * inode has been written.
9139  */
9140 void
9141 softdep_change_linkcnt(ip)
9142 	struct inode *ip;	/* the inode with the increased link count */
9143 {
9144 	struct inodedep *inodedep;
9145 	int dflags;
9146 
9147 	ACQUIRE_LOCK(&lk);
9148 	dflags = DEPALLOC;
9149 	if (IS_SNAPSHOT(ip))
9150 		dflags |= NODELAY;
9151 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9152 	if (ip->i_nlink < ip->i_effnlink)
9153 		panic("softdep_change_linkcnt: bad delta");
9154 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9155 	FREE_LOCK(&lk);
9156 }
9157 
9158 /*
9159  * Attach a sbdep dependency to the superblock buf so that we can keep
9160  * track of the head of the linked list of referenced but unlinked inodes.
9161  */
9162 void
9163 softdep_setup_sbupdate(ump, fs, bp)
9164 	struct ufsmount *ump;
9165 	struct fs *fs;
9166 	struct buf *bp;
9167 {
9168 	struct sbdep *sbdep;
9169 	struct worklist *wk;
9170 
9171 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
9172 		return;
9173 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9174 		if (wk->wk_type == D_SBDEP)
9175 			break;
9176 	if (wk != NULL)
9177 		return;
9178 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9179 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9180 	sbdep->sb_fs = fs;
9181 	sbdep->sb_ump = ump;
9182 	ACQUIRE_LOCK(&lk);
9183 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9184 	FREE_LOCK(&lk);
9185 }
9186 
9187 /*
9188  * Return the first unlinked inodedep which is ready to be the head of the
9189  * list.  The inodedep and all those after it must have valid next pointers.
9190  */
9191 static struct inodedep *
9192 first_unlinked_inodedep(ump)
9193 	struct ufsmount *ump;
9194 {
9195 	struct inodedep *inodedep;
9196 	struct inodedep *idp;
9197 
9198 	mtx_assert(&lk, MA_OWNED);
9199 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9200 	    inodedep; inodedep = idp) {
9201 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9202 			return (NULL);
9203 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9204 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9205 			break;
9206 		if ((inodedep->id_state & UNLINKPREV) == 0)
9207 			break;
9208 	}
9209 	return (inodedep);
9210 }
9211 
9212 /*
9213  * Set the sujfree unlinked head pointer prior to writing a superblock.
9214  */
9215 static void
9216 initiate_write_sbdep(sbdep)
9217 	struct sbdep *sbdep;
9218 {
9219 	struct inodedep *inodedep;
9220 	struct fs *bpfs;
9221 	struct fs *fs;
9222 
9223 	bpfs = sbdep->sb_fs;
9224 	fs = sbdep->sb_ump->um_fs;
9225 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9226 	if (inodedep) {
9227 		fs->fs_sujfree = inodedep->id_ino;
9228 		inodedep->id_state |= UNLINKPREV;
9229 	} else
9230 		fs->fs_sujfree = 0;
9231 	bpfs->fs_sujfree = fs->fs_sujfree;
9232 }
9233 
9234 /*
9235  * After a superblock is written determine whether it must be written again
9236  * due to a changing unlinked list head.
9237  */
9238 static int
9239 handle_written_sbdep(sbdep, bp)
9240 	struct sbdep *sbdep;
9241 	struct buf *bp;
9242 {
9243 	struct inodedep *inodedep;
9244 	struct mount *mp;
9245 	struct fs *fs;
9246 
9247 	mtx_assert(&lk, MA_OWNED);
9248 	fs = sbdep->sb_fs;
9249 	mp = UFSTOVFS(sbdep->sb_ump);
9250 	/*
9251 	 * If the superblock doesn't match the in-memory list start over.
9252 	 */
9253 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9254 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9255 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9256 		bdirty(bp);
9257 		return (1);
9258 	}
9259 	WORKITEM_FREE(sbdep, D_SBDEP);
9260 	if (fs->fs_sujfree == 0)
9261 		return (0);
9262 	/*
9263 	 * Now that we have a record of this inode in stable store allow it
9264 	 * to be written to free up pending work.  Inodes may see a lot of
9265 	 * write activity after they are unlinked which we must not hold up.
9266 	 */
9267 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9268 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9269 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9270 			    inodedep, inodedep->id_state);
9271 		if (inodedep->id_state & UNLINKONLIST)
9272 			break;
9273 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9274 	}
9275 
9276 	return (0);
9277 }
9278 
9279 /*
9280  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9281  */
9282 static void
9283 unlinked_inodedep(mp, inodedep)
9284 	struct mount *mp;
9285 	struct inodedep *inodedep;
9286 {
9287 	struct ufsmount *ump;
9288 
9289 	mtx_assert(&lk, MA_OWNED);
9290 	if (MOUNTEDSUJ(mp) == 0)
9291 		return;
9292 	ump = VFSTOUFS(mp);
9293 	ump->um_fs->fs_fmod = 1;
9294 	if (inodedep->id_state & UNLINKED)
9295 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9296 	inodedep->id_state |= UNLINKED;
9297 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9298 }
9299 
9300 /*
9301  * Remove an inodedep from the unlinked inodedep list.  This may require
9302  * disk writes if the inode has made it that far.
9303  */
9304 static void
9305 clear_unlinked_inodedep(inodedep)
9306 	struct inodedep *inodedep;
9307 {
9308 	struct ufsmount *ump;
9309 	struct inodedep *idp;
9310 	struct inodedep *idn;
9311 	struct fs *fs;
9312 	struct buf *bp;
9313 	ino_t ino;
9314 	ino_t nino;
9315 	ino_t pino;
9316 	int error;
9317 
9318 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9319 	fs = ump->um_fs;
9320 	ino = inodedep->id_ino;
9321 	error = 0;
9322 	for (;;) {
9323 		mtx_assert(&lk, MA_OWNED);
9324 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9325 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9326 		    inodedep));
9327 		/*
9328 		 * If nothing has yet been written simply remove us from
9329 		 * the in memory list and return.  This is the most common
9330 		 * case where handle_workitem_remove() loses the final
9331 		 * reference.
9332 		 */
9333 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9334 			break;
9335 		/*
9336 		 * If we have a NEXT pointer and no PREV pointer we can simply
9337 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9338 		 * careful not to clear PREV if the superblock points at
9339 		 * next as well.
9340 		 */
9341 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9342 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9343 			if (idn && fs->fs_sujfree != idn->id_ino)
9344 				idn->id_state &= ~UNLINKPREV;
9345 			break;
9346 		}
9347 		/*
9348 		 * Here we have an inodedep which is actually linked into
9349 		 * the list.  We must remove it by forcing a write to the
9350 		 * link before us, whether it be the superblock or an inode.
9351 		 * Unfortunately the list may change while we're waiting
9352 		 * on the buf lock for either resource so we must loop until
9353 		 * we lock the right one.  If both the superblock and an
9354 		 * inode point to this inode we must clear the inode first
9355 		 * followed by the superblock.
9356 		 */
9357 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9358 		pino = 0;
9359 		if (idp && (idp->id_state & UNLINKNEXT))
9360 			pino = idp->id_ino;
9361 		FREE_LOCK(&lk);
9362 		if (pino == 0)
9363 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9364 			    (int)fs->fs_sbsize, 0, 0, 0);
9365 		else
9366 			error = bread(ump->um_devvp,
9367 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9368 			    (int)fs->fs_bsize, NOCRED, &bp);
9369 		ACQUIRE_LOCK(&lk);
9370 		if (error)
9371 			break;
9372 		/* If the list has changed restart the loop. */
9373 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9374 		nino = 0;
9375 		if (idp && (idp->id_state & UNLINKNEXT))
9376 			nino = idp->id_ino;
9377 		if (nino != pino ||
9378 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9379 			FREE_LOCK(&lk);
9380 			brelse(bp);
9381 			ACQUIRE_LOCK(&lk);
9382 			continue;
9383 		}
9384 		nino = 0;
9385 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9386 		if (idn)
9387 			nino = idn->id_ino;
9388 		/*
9389 		 * Remove us from the in memory list.  After this we cannot
9390 		 * access the inodedep.
9391 		 */
9392 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9393 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9394 		    inodedep));
9395 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9396 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9397 		FREE_LOCK(&lk);
9398 		/*
9399 		 * The predecessor's next pointer is manually updated here
9400 		 * so that the NEXT flag is never cleared for an element
9401 		 * that is in the list.
9402 		 */
9403 		if (pino == 0) {
9404 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9405 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9406 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9407 			    bp);
9408 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9409 			((struct ufs1_dinode *)bp->b_data +
9410 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9411 		else
9412 			((struct ufs2_dinode *)bp->b_data +
9413 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9414 		/*
9415 		 * If the bwrite fails we have no recourse to recover.  The
9416 		 * filesystem is corrupted already.
9417 		 */
9418 		bwrite(bp);
9419 		ACQUIRE_LOCK(&lk);
9420 		/*
9421 		 * If the superblock pointer still needs to be cleared force
9422 		 * a write here.
9423 		 */
9424 		if (fs->fs_sujfree == ino) {
9425 			FREE_LOCK(&lk);
9426 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9427 			    (int)fs->fs_sbsize, 0, 0, 0);
9428 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9429 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9430 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9431 			    bp);
9432 			bwrite(bp);
9433 			ACQUIRE_LOCK(&lk);
9434 		}
9435 
9436 		if (fs->fs_sujfree != ino)
9437 			return;
9438 		panic("clear_unlinked_inodedep: Failed to clear free head");
9439 	}
9440 	if (inodedep->id_ino == fs->fs_sujfree)
9441 		panic("clear_unlinked_inodedep: Freeing head of free list");
9442 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9443 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9444 	return;
9445 }
9446 
9447 /*
9448  * This workitem decrements the inode's link count.
9449  * If the link count reaches zero, the file is removed.
9450  */
9451 static int
9452 handle_workitem_remove(dirrem, flags)
9453 	struct dirrem *dirrem;
9454 	int flags;
9455 {
9456 	struct inodedep *inodedep;
9457 	struct workhead dotdotwk;
9458 	struct worklist *wk;
9459 	struct ufsmount *ump;
9460 	struct mount *mp;
9461 	struct vnode *vp;
9462 	struct inode *ip;
9463 	ino_t oldinum;
9464 
9465 	if (dirrem->dm_state & ONWORKLIST)
9466 		panic("handle_workitem_remove: dirrem %p still on worklist",
9467 		    dirrem);
9468 	oldinum = dirrem->dm_oldinum;
9469 	mp = dirrem->dm_list.wk_mp;
9470 	ump = VFSTOUFS(mp);
9471 	flags |= LK_EXCLUSIVE;
9472 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9473 		return (EBUSY);
9474 	ip = VTOI(vp);
9475 	ACQUIRE_LOCK(&lk);
9476 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9477 		panic("handle_workitem_remove: lost inodedep");
9478 	if (dirrem->dm_state & ONDEPLIST)
9479 		LIST_REMOVE(dirrem, dm_inonext);
9480 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9481 	    ("handle_workitem_remove:  Journal entries not written."));
9482 
9483 	/*
9484 	 * Move all dependencies waiting on the remove to complete
9485 	 * from the dirrem to the inode inowait list to be completed
9486 	 * after the inode has been updated and written to disk.  Any
9487 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9488 	 * is removed.
9489 	 */
9490 	LIST_INIT(&dotdotwk);
9491 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9492 		WORKLIST_REMOVE(wk);
9493 		if (wk->wk_state & MKDIR_PARENT) {
9494 			wk->wk_state &= ~MKDIR_PARENT;
9495 			WORKLIST_INSERT(&dotdotwk, wk);
9496 			continue;
9497 		}
9498 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9499 	}
9500 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9501 	/*
9502 	 * Normal file deletion.
9503 	 */
9504 	if ((dirrem->dm_state & RMDIR) == 0) {
9505 		ip->i_nlink--;
9506 		DIP_SET(ip, i_nlink, ip->i_nlink);
9507 		ip->i_flag |= IN_CHANGE;
9508 		if (ip->i_nlink < ip->i_effnlink)
9509 			panic("handle_workitem_remove: bad file delta");
9510 		if (ip->i_nlink == 0)
9511 			unlinked_inodedep(mp, inodedep);
9512 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9513 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9514 		    ("handle_workitem_remove: worklist not empty. %s",
9515 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9516 		WORKITEM_FREE(dirrem, D_DIRREM);
9517 		FREE_LOCK(&lk);
9518 		goto out;
9519 	}
9520 	/*
9521 	 * Directory deletion. Decrement reference count for both the
9522 	 * just deleted parent directory entry and the reference for ".".
9523 	 * Arrange to have the reference count on the parent decremented
9524 	 * to account for the loss of "..".
9525 	 */
9526 	ip->i_nlink -= 2;
9527 	DIP_SET(ip, i_nlink, ip->i_nlink);
9528 	ip->i_flag |= IN_CHANGE;
9529 	if (ip->i_nlink < ip->i_effnlink)
9530 		panic("handle_workitem_remove: bad dir delta");
9531 	if (ip->i_nlink == 0)
9532 		unlinked_inodedep(mp, inodedep);
9533 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9534 	/*
9535 	 * Rename a directory to a new parent. Since, we are both deleting
9536 	 * and creating a new directory entry, the link count on the new
9537 	 * directory should not change. Thus we skip the followup dirrem.
9538 	 */
9539 	if (dirrem->dm_state & DIRCHG) {
9540 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9541 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9542 		WORKITEM_FREE(dirrem, D_DIRREM);
9543 		FREE_LOCK(&lk);
9544 		goto out;
9545 	}
9546 	dirrem->dm_state = ONDEPLIST;
9547 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9548 	/*
9549 	 * Place the dirrem on the parent's diremhd list.
9550 	 */
9551 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9552 		panic("handle_workitem_remove: lost dir inodedep");
9553 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9554 	/*
9555 	 * If the allocated inode has never been written to disk, then
9556 	 * the on-disk inode is zero'ed and we can remove the file
9557 	 * immediately.  When journaling if the inode has been marked
9558 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9559 	 */
9560 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9561 	if (inodedep == NULL ||
9562 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9563 	    check_inode_unwritten(inodedep)) {
9564 		FREE_LOCK(&lk);
9565 		vput(vp);
9566 		return handle_workitem_remove(dirrem, flags);
9567 	}
9568 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9569 	FREE_LOCK(&lk);
9570 	ip->i_flag |= IN_CHANGE;
9571 out:
9572 	ffs_update(vp, 0);
9573 	vput(vp);
9574 	return (0);
9575 }
9576 
9577 /*
9578  * Inode de-allocation dependencies.
9579  *
9580  * When an inode's link count is reduced to zero, it can be de-allocated. We
9581  * found it convenient to postpone de-allocation until after the inode is
9582  * written to disk with its new link count (zero).  At this point, all of the
9583  * on-disk inode's block pointers are nullified and, with careful dependency
9584  * list ordering, all dependencies related to the inode will be satisfied and
9585  * the corresponding dependency structures de-allocated.  So, if/when the
9586  * inode is reused, there will be no mixing of old dependencies with new
9587  * ones.  This artificial dependency is set up by the block de-allocation
9588  * procedure above (softdep_setup_freeblocks) and completed by the
9589  * following procedure.
9590  */
9591 static void
9592 handle_workitem_freefile(freefile)
9593 	struct freefile *freefile;
9594 {
9595 	struct workhead wkhd;
9596 	struct fs *fs;
9597 	struct inodedep *idp;
9598 	struct ufsmount *ump;
9599 	int error;
9600 
9601 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9602 	fs = ump->um_fs;
9603 #ifdef DEBUG
9604 	ACQUIRE_LOCK(&lk);
9605 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9606 	FREE_LOCK(&lk);
9607 	if (error)
9608 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9609 #endif
9610 	UFS_LOCK(ump);
9611 	fs->fs_pendinginodes -= 1;
9612 	UFS_UNLOCK(ump);
9613 	LIST_INIT(&wkhd);
9614 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9615 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9616 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9617 		softdep_error("handle_workitem_freefile", error);
9618 	ACQUIRE_LOCK(&lk);
9619 	WORKITEM_FREE(freefile, D_FREEFILE);
9620 	FREE_LOCK(&lk);
9621 }
9622 
9623 
9624 /*
9625  * Helper function which unlinks marker element from work list and returns
9626  * the next element on the list.
9627  */
9628 static __inline struct worklist *
9629 markernext(struct worklist *marker)
9630 {
9631 	struct worklist *next;
9632 
9633 	next = LIST_NEXT(marker, wk_list);
9634 	LIST_REMOVE(marker, wk_list);
9635 	return next;
9636 }
9637 
9638 /*
9639  * Disk writes.
9640  *
9641  * The dependency structures constructed above are most actively used when file
9642  * system blocks are written to disk.  No constraints are placed on when a
9643  * block can be written, but unsatisfied update dependencies are made safe by
9644  * modifying (or replacing) the source memory for the duration of the disk
9645  * write.  When the disk write completes, the memory block is again brought
9646  * up-to-date.
9647  *
9648  * In-core inode structure reclamation.
9649  *
9650  * Because there are a finite number of "in-core" inode structures, they are
9651  * reused regularly.  By transferring all inode-related dependencies to the
9652  * in-memory inode block and indexing them separately (via "inodedep"s), we
9653  * can allow "in-core" inode structures to be reused at any time and avoid
9654  * any increase in contention.
9655  *
9656  * Called just before entering the device driver to initiate a new disk I/O.
9657  * The buffer must be locked, thus, no I/O completion operations can occur
9658  * while we are manipulating its associated dependencies.
9659  */
9660 static void
9661 softdep_disk_io_initiation(bp)
9662 	struct buf *bp;		/* structure describing disk write to occur */
9663 {
9664 	struct worklist *wk;
9665 	struct worklist marker;
9666 	struct inodedep *inodedep;
9667 	struct freeblks *freeblks;
9668 	struct jblkdep *jblkdep;
9669 	struct newblk *newblk;
9670 
9671 	/*
9672 	 * We only care about write operations. There should never
9673 	 * be dependencies for reads.
9674 	 */
9675 	if (bp->b_iocmd != BIO_WRITE)
9676 		panic("softdep_disk_io_initiation: not write");
9677 
9678 	if (bp->b_vflags & BV_BKGRDINPROG)
9679 		panic("softdep_disk_io_initiation: Writing buffer with "
9680 		    "background write in progress: %p", bp);
9681 
9682 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9683 	PHOLD(curproc);			/* Don't swap out kernel stack */
9684 
9685 	ACQUIRE_LOCK(&lk);
9686 	/*
9687 	 * Do any necessary pre-I/O processing.
9688 	 */
9689 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9690 	     wk = markernext(&marker)) {
9691 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9692 		switch (wk->wk_type) {
9693 
9694 		case D_PAGEDEP:
9695 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9696 			continue;
9697 
9698 		case D_INODEDEP:
9699 			inodedep = WK_INODEDEP(wk);
9700 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9701 				initiate_write_inodeblock_ufs1(inodedep, bp);
9702 			else
9703 				initiate_write_inodeblock_ufs2(inodedep, bp);
9704 			continue;
9705 
9706 		case D_INDIRDEP:
9707 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9708 			continue;
9709 
9710 		case D_BMSAFEMAP:
9711 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9712 			continue;
9713 
9714 		case D_JSEG:
9715 			WK_JSEG(wk)->js_buf = NULL;
9716 			continue;
9717 
9718 		case D_FREEBLKS:
9719 			freeblks = WK_FREEBLKS(wk);
9720 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9721 			/*
9722 			 * We have to wait for the freeblks to be journaled
9723 			 * before we can write an inodeblock with updated
9724 			 * pointers.  Be careful to arrange the marker so
9725 			 * we revisit the freeblks if it's not removed by
9726 			 * the first jwait().
9727 			 */
9728 			if (jblkdep != NULL) {
9729 				LIST_REMOVE(&marker, wk_list);
9730 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9731 				jwait(&jblkdep->jb_list, MNT_WAIT);
9732 			}
9733 			continue;
9734 		case D_ALLOCDIRECT:
9735 		case D_ALLOCINDIR:
9736 			/*
9737 			 * We have to wait for the jnewblk to be journaled
9738 			 * before we can write to a block if the contents
9739 			 * may be confused with an earlier file's indirect
9740 			 * at recovery time.  Handle the marker as described
9741 			 * above.
9742 			 */
9743 			newblk = WK_NEWBLK(wk);
9744 			if (newblk->nb_jnewblk != NULL &&
9745 			    indirblk_lookup(newblk->nb_list.wk_mp,
9746 			    newblk->nb_newblkno)) {
9747 				LIST_REMOVE(&marker, wk_list);
9748 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9749 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9750 			}
9751 			continue;
9752 
9753 		case D_SBDEP:
9754 			initiate_write_sbdep(WK_SBDEP(wk));
9755 			continue;
9756 
9757 		case D_MKDIR:
9758 		case D_FREEWORK:
9759 		case D_FREEDEP:
9760 		case D_JSEGDEP:
9761 			continue;
9762 
9763 		default:
9764 			panic("handle_disk_io_initiation: Unexpected type %s",
9765 			    TYPENAME(wk->wk_type));
9766 			/* NOTREACHED */
9767 		}
9768 	}
9769 	FREE_LOCK(&lk);
9770 	PRELE(curproc);			/* Allow swapout of kernel stack */
9771 }
9772 
9773 /*
9774  * Called from within the procedure above to deal with unsatisfied
9775  * allocation dependencies in a directory. The buffer must be locked,
9776  * thus, no I/O completion operations can occur while we are
9777  * manipulating its associated dependencies.
9778  */
9779 static void
9780 initiate_write_filepage(pagedep, bp)
9781 	struct pagedep *pagedep;
9782 	struct buf *bp;
9783 {
9784 	struct jremref *jremref;
9785 	struct jmvref *jmvref;
9786 	struct dirrem *dirrem;
9787 	struct diradd *dap;
9788 	struct direct *ep;
9789 	int i;
9790 
9791 	if (pagedep->pd_state & IOSTARTED) {
9792 		/*
9793 		 * This can only happen if there is a driver that does not
9794 		 * understand chaining. Here biodone will reissue the call
9795 		 * to strategy for the incomplete buffers.
9796 		 */
9797 		printf("initiate_write_filepage: already started\n");
9798 		return;
9799 	}
9800 	pagedep->pd_state |= IOSTARTED;
9801 	/*
9802 	 * Wait for all journal remove dependencies to hit the disk.
9803 	 * We can not allow any potentially conflicting directory adds
9804 	 * to be visible before removes and rollback is too difficult.
9805 	 * lk may be dropped and re-acquired, however we hold the buf
9806 	 * locked so the dependency can not go away.
9807 	 */
9808 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9809 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9810 			jwait(&jremref->jr_list, MNT_WAIT);
9811 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9812 		jwait(&jmvref->jm_list, MNT_WAIT);
9813 	for (i = 0; i < DAHASHSZ; i++) {
9814 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9815 			ep = (struct direct *)
9816 			    ((char *)bp->b_data + dap->da_offset);
9817 			if (ep->d_ino != dap->da_newinum)
9818 				panic("%s: dir inum %ju != new %ju",
9819 				    "initiate_write_filepage",
9820 				    (uintmax_t)ep->d_ino,
9821 				    (uintmax_t)dap->da_newinum);
9822 			if (dap->da_state & DIRCHG)
9823 				ep->d_ino = dap->da_previous->dm_oldinum;
9824 			else
9825 				ep->d_ino = 0;
9826 			dap->da_state &= ~ATTACHED;
9827 			dap->da_state |= UNDONE;
9828 		}
9829 	}
9830 }
9831 
9832 /*
9833  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9834  * Note that any bug fixes made to this routine must be done in the
9835  * version found below.
9836  *
9837  * Called from within the procedure above to deal with unsatisfied
9838  * allocation dependencies in an inodeblock. The buffer must be
9839  * locked, thus, no I/O completion operations can occur while we
9840  * are manipulating its associated dependencies.
9841  */
9842 static void
9843 initiate_write_inodeblock_ufs1(inodedep, bp)
9844 	struct inodedep *inodedep;
9845 	struct buf *bp;			/* The inode block */
9846 {
9847 	struct allocdirect *adp, *lastadp;
9848 	struct ufs1_dinode *dp;
9849 	struct ufs1_dinode *sip;
9850 	struct inoref *inoref;
9851 	struct fs *fs;
9852 	ufs_lbn_t i;
9853 #ifdef INVARIANTS
9854 	ufs_lbn_t prevlbn = 0;
9855 #endif
9856 	int deplist;
9857 
9858 	if (inodedep->id_state & IOSTARTED)
9859 		panic("initiate_write_inodeblock_ufs1: already started");
9860 	inodedep->id_state |= IOSTARTED;
9861 	fs = inodedep->id_fs;
9862 	dp = (struct ufs1_dinode *)bp->b_data +
9863 	    ino_to_fsbo(fs, inodedep->id_ino);
9864 
9865 	/*
9866 	 * If we're on the unlinked list but have not yet written our
9867 	 * next pointer initialize it here.
9868 	 */
9869 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9870 		struct inodedep *inon;
9871 
9872 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9873 		dp->di_freelink = inon ? inon->id_ino : 0;
9874 	}
9875 	/*
9876 	 * If the bitmap is not yet written, then the allocated
9877 	 * inode cannot be written to disk.
9878 	 */
9879 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9880 		if (inodedep->id_savedino1 != NULL)
9881 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9882 		FREE_LOCK(&lk);
9883 		sip = malloc(sizeof(struct ufs1_dinode),
9884 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9885 		ACQUIRE_LOCK(&lk);
9886 		inodedep->id_savedino1 = sip;
9887 		*inodedep->id_savedino1 = *dp;
9888 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9889 		dp->di_gen = inodedep->id_savedino1->di_gen;
9890 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9891 		return;
9892 	}
9893 	/*
9894 	 * If no dependencies, then there is nothing to roll back.
9895 	 */
9896 	inodedep->id_savedsize = dp->di_size;
9897 	inodedep->id_savedextsize = 0;
9898 	inodedep->id_savednlink = dp->di_nlink;
9899 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9900 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9901 		return;
9902 	/*
9903 	 * Revert the link count to that of the first unwritten journal entry.
9904 	 */
9905 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9906 	if (inoref)
9907 		dp->di_nlink = inoref->if_nlink;
9908 	/*
9909 	 * Set the dependencies to busy.
9910 	 */
9911 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9912 	     adp = TAILQ_NEXT(adp, ad_next)) {
9913 #ifdef INVARIANTS
9914 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9915 			panic("softdep_write_inodeblock: lbn order");
9916 		prevlbn = adp->ad_offset;
9917 		if (adp->ad_offset < NDADDR &&
9918 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9919 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9920 			    "softdep_write_inodeblock",
9921 			    (intmax_t)adp->ad_offset,
9922 			    dp->di_db[adp->ad_offset],
9923 			    (intmax_t)adp->ad_newblkno);
9924 		if (adp->ad_offset >= NDADDR &&
9925 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9926 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9927 			    "softdep_write_inodeblock",
9928 			    (intmax_t)adp->ad_offset - NDADDR,
9929 			    dp->di_ib[adp->ad_offset - NDADDR],
9930 			    (intmax_t)adp->ad_newblkno);
9931 		deplist |= 1 << adp->ad_offset;
9932 		if ((adp->ad_state & ATTACHED) == 0)
9933 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9934 			    adp->ad_state);
9935 #endif /* INVARIANTS */
9936 		adp->ad_state &= ~ATTACHED;
9937 		adp->ad_state |= UNDONE;
9938 	}
9939 	/*
9940 	 * The on-disk inode cannot claim to be any larger than the last
9941 	 * fragment that has been written. Otherwise, the on-disk inode
9942 	 * might have fragments that were not the last block in the file
9943 	 * which would corrupt the filesystem.
9944 	 */
9945 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9946 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9947 		if (adp->ad_offset >= NDADDR)
9948 			break;
9949 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9950 		/* keep going until hitting a rollback to a frag */
9951 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9952 			continue;
9953 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9954 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9955 #ifdef INVARIANTS
9956 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9957 				panic("softdep_write_inodeblock: lost dep1");
9958 #endif /* INVARIANTS */
9959 			dp->di_db[i] = 0;
9960 		}
9961 		for (i = 0; i < NIADDR; i++) {
9962 #ifdef INVARIANTS
9963 			if (dp->di_ib[i] != 0 &&
9964 			    (deplist & ((1 << NDADDR) << i)) == 0)
9965 				panic("softdep_write_inodeblock: lost dep2");
9966 #endif /* INVARIANTS */
9967 			dp->di_ib[i] = 0;
9968 		}
9969 		return;
9970 	}
9971 	/*
9972 	 * If we have zero'ed out the last allocated block of the file,
9973 	 * roll back the size to the last currently allocated block.
9974 	 * We know that this last allocated block is a full-sized as
9975 	 * we already checked for fragments in the loop above.
9976 	 */
9977 	if (lastadp != NULL &&
9978 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9979 		for (i = lastadp->ad_offset; i >= 0; i--)
9980 			if (dp->di_db[i] != 0)
9981 				break;
9982 		dp->di_size = (i + 1) * fs->fs_bsize;
9983 	}
9984 	/*
9985 	 * The only dependencies are for indirect blocks.
9986 	 *
9987 	 * The file size for indirect block additions is not guaranteed.
9988 	 * Such a guarantee would be non-trivial to achieve. The conventional
9989 	 * synchronous write implementation also does not make this guarantee.
9990 	 * Fsck should catch and fix discrepancies. Arguably, the file size
9991 	 * can be over-estimated without destroying integrity when the file
9992 	 * moves into the indirect blocks (i.e., is large). If we want to
9993 	 * postpone fsck, we are stuck with this argument.
9994 	 */
9995 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
9996 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
9997 }
9998 
9999 /*
10000  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10001  * Note that any bug fixes made to this routine must be done in the
10002  * version found above.
10003  *
10004  * Called from within the procedure above to deal with unsatisfied
10005  * allocation dependencies in an inodeblock. The buffer must be
10006  * locked, thus, no I/O completion operations can occur while we
10007  * are manipulating its associated dependencies.
10008  */
10009 static void
10010 initiate_write_inodeblock_ufs2(inodedep, bp)
10011 	struct inodedep *inodedep;
10012 	struct buf *bp;			/* The inode block */
10013 {
10014 	struct allocdirect *adp, *lastadp;
10015 	struct ufs2_dinode *dp;
10016 	struct ufs2_dinode *sip;
10017 	struct inoref *inoref;
10018 	struct fs *fs;
10019 	ufs_lbn_t i;
10020 #ifdef INVARIANTS
10021 	ufs_lbn_t prevlbn = 0;
10022 #endif
10023 	int deplist;
10024 
10025 	if (inodedep->id_state & IOSTARTED)
10026 		panic("initiate_write_inodeblock_ufs2: already started");
10027 	inodedep->id_state |= IOSTARTED;
10028 	fs = inodedep->id_fs;
10029 	dp = (struct ufs2_dinode *)bp->b_data +
10030 	    ino_to_fsbo(fs, inodedep->id_ino);
10031 
10032 	/*
10033 	 * If we're on the unlinked list but have not yet written our
10034 	 * next pointer initialize it here.
10035 	 */
10036 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10037 		struct inodedep *inon;
10038 
10039 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10040 		dp->di_freelink = inon ? inon->id_ino : 0;
10041 	}
10042 	/*
10043 	 * If the bitmap is not yet written, then the allocated
10044 	 * inode cannot be written to disk.
10045 	 */
10046 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10047 		if (inodedep->id_savedino2 != NULL)
10048 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10049 		FREE_LOCK(&lk);
10050 		sip = malloc(sizeof(struct ufs2_dinode),
10051 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10052 		ACQUIRE_LOCK(&lk);
10053 		inodedep->id_savedino2 = sip;
10054 		*inodedep->id_savedino2 = *dp;
10055 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10056 		dp->di_gen = inodedep->id_savedino2->di_gen;
10057 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10058 		return;
10059 	}
10060 	/*
10061 	 * If no dependencies, then there is nothing to roll back.
10062 	 */
10063 	inodedep->id_savedsize = dp->di_size;
10064 	inodedep->id_savedextsize = dp->di_extsize;
10065 	inodedep->id_savednlink = dp->di_nlink;
10066 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10067 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10068 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10069 		return;
10070 	/*
10071 	 * Revert the link count to that of the first unwritten journal entry.
10072 	 */
10073 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10074 	if (inoref)
10075 		dp->di_nlink = inoref->if_nlink;
10076 
10077 	/*
10078 	 * Set the ext data dependencies to busy.
10079 	 */
10080 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10081 	     adp = TAILQ_NEXT(adp, ad_next)) {
10082 #ifdef INVARIANTS
10083 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10084 			panic("softdep_write_inodeblock: lbn order");
10085 		prevlbn = adp->ad_offset;
10086 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10087 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10088 			    "softdep_write_inodeblock",
10089 			    (intmax_t)adp->ad_offset,
10090 			    (intmax_t)dp->di_extb[adp->ad_offset],
10091 			    (intmax_t)adp->ad_newblkno);
10092 		deplist |= 1 << adp->ad_offset;
10093 		if ((adp->ad_state & ATTACHED) == 0)
10094 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10095 			    adp->ad_state);
10096 #endif /* INVARIANTS */
10097 		adp->ad_state &= ~ATTACHED;
10098 		adp->ad_state |= UNDONE;
10099 	}
10100 	/*
10101 	 * The on-disk inode cannot claim to be any larger than the last
10102 	 * fragment that has been written. Otherwise, the on-disk inode
10103 	 * might have fragments that were not the last block in the ext
10104 	 * data which would corrupt the filesystem.
10105 	 */
10106 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10107 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10108 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10109 		/* keep going until hitting a rollback to a frag */
10110 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10111 			continue;
10112 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10113 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10114 #ifdef INVARIANTS
10115 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10116 				panic("softdep_write_inodeblock: lost dep1");
10117 #endif /* INVARIANTS */
10118 			dp->di_extb[i] = 0;
10119 		}
10120 		lastadp = NULL;
10121 		break;
10122 	}
10123 	/*
10124 	 * If we have zero'ed out the last allocated block of the ext
10125 	 * data, roll back the size to the last currently allocated block.
10126 	 * We know that this last allocated block is a full-sized as
10127 	 * we already checked for fragments in the loop above.
10128 	 */
10129 	if (lastadp != NULL &&
10130 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10131 		for (i = lastadp->ad_offset; i >= 0; i--)
10132 			if (dp->di_extb[i] != 0)
10133 				break;
10134 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10135 	}
10136 	/*
10137 	 * Set the file data dependencies to busy.
10138 	 */
10139 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10140 	     adp = TAILQ_NEXT(adp, ad_next)) {
10141 #ifdef INVARIANTS
10142 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10143 			panic("softdep_write_inodeblock: lbn order");
10144 		if ((adp->ad_state & ATTACHED) == 0)
10145 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10146 		prevlbn = adp->ad_offset;
10147 		if (adp->ad_offset < NDADDR &&
10148 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10149 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10150 			    "softdep_write_inodeblock",
10151 			    (intmax_t)adp->ad_offset,
10152 			    (intmax_t)dp->di_db[adp->ad_offset],
10153 			    (intmax_t)adp->ad_newblkno);
10154 		if (adp->ad_offset >= NDADDR &&
10155 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10156 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10157 			    "softdep_write_inodeblock:",
10158 			    (intmax_t)adp->ad_offset - NDADDR,
10159 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10160 			    (intmax_t)adp->ad_newblkno);
10161 		deplist |= 1 << adp->ad_offset;
10162 		if ((adp->ad_state & ATTACHED) == 0)
10163 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10164 			    adp->ad_state);
10165 #endif /* INVARIANTS */
10166 		adp->ad_state &= ~ATTACHED;
10167 		adp->ad_state |= UNDONE;
10168 	}
10169 	/*
10170 	 * The on-disk inode cannot claim to be any larger than the last
10171 	 * fragment that has been written. Otherwise, the on-disk inode
10172 	 * might have fragments that were not the last block in the file
10173 	 * which would corrupt the filesystem.
10174 	 */
10175 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10176 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10177 		if (adp->ad_offset >= NDADDR)
10178 			break;
10179 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10180 		/* keep going until hitting a rollback to a frag */
10181 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10182 			continue;
10183 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10184 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10185 #ifdef INVARIANTS
10186 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10187 				panic("softdep_write_inodeblock: lost dep2");
10188 #endif /* INVARIANTS */
10189 			dp->di_db[i] = 0;
10190 		}
10191 		for (i = 0; i < NIADDR; i++) {
10192 #ifdef INVARIANTS
10193 			if (dp->di_ib[i] != 0 &&
10194 			    (deplist & ((1 << NDADDR) << i)) == 0)
10195 				panic("softdep_write_inodeblock: lost dep3");
10196 #endif /* INVARIANTS */
10197 			dp->di_ib[i] = 0;
10198 		}
10199 		return;
10200 	}
10201 	/*
10202 	 * If we have zero'ed out the last allocated block of the file,
10203 	 * roll back the size to the last currently allocated block.
10204 	 * We know that this last allocated block is a full-sized as
10205 	 * we already checked for fragments in the loop above.
10206 	 */
10207 	if (lastadp != NULL &&
10208 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10209 		for (i = lastadp->ad_offset; i >= 0; i--)
10210 			if (dp->di_db[i] != 0)
10211 				break;
10212 		dp->di_size = (i + 1) * fs->fs_bsize;
10213 	}
10214 	/*
10215 	 * The only dependencies are for indirect blocks.
10216 	 *
10217 	 * The file size for indirect block additions is not guaranteed.
10218 	 * Such a guarantee would be non-trivial to achieve. The conventional
10219 	 * synchronous write implementation also does not make this guarantee.
10220 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10221 	 * can be over-estimated without destroying integrity when the file
10222 	 * moves into the indirect blocks (i.e., is large). If we want to
10223 	 * postpone fsck, we are stuck with this argument.
10224 	 */
10225 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10226 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10227 }
10228 
10229 /*
10230  * Cancel an indirdep as a result of truncation.  Release all of the
10231  * children allocindirs and place their journal work on the appropriate
10232  * list.
10233  */
10234 static void
10235 cancel_indirdep(indirdep, bp, freeblks)
10236 	struct indirdep *indirdep;
10237 	struct buf *bp;
10238 	struct freeblks *freeblks;
10239 {
10240 	struct allocindir *aip;
10241 
10242 	/*
10243 	 * None of the indirect pointers will ever be visible,
10244 	 * so they can simply be tossed. GOINGAWAY ensures
10245 	 * that allocated pointers will be saved in the buffer
10246 	 * cache until they are freed. Note that they will
10247 	 * only be able to be found by their physical address
10248 	 * since the inode mapping the logical address will
10249 	 * be gone. The save buffer used for the safe copy
10250 	 * was allocated in setup_allocindir_phase2 using
10251 	 * the physical address so it could be used for this
10252 	 * purpose. Hence we swap the safe copy with the real
10253 	 * copy, allowing the safe copy to be freed and holding
10254 	 * on to the real copy for later use in indir_trunc.
10255 	 */
10256 	if (indirdep->ir_state & GOINGAWAY)
10257 		panic("cancel_indirdep: already gone");
10258 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10259 		indirdep->ir_state |= DEPCOMPLETE;
10260 		LIST_REMOVE(indirdep, ir_next);
10261 	}
10262 	indirdep->ir_state |= GOINGAWAY;
10263 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10264 	/*
10265 	 * Pass in bp for blocks still have journal writes
10266 	 * pending so we can cancel them on their own.
10267 	 */
10268 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10269 		cancel_allocindir(aip, bp, freeblks, 0);
10270 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10271 		cancel_allocindir(aip, NULL, freeblks, 0);
10272 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10273 		cancel_allocindir(aip, NULL, freeblks, 0);
10274 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10275 		cancel_allocindir(aip, NULL, freeblks, 0);
10276 	/*
10277 	 * If there are pending partial truncations we need to keep the
10278 	 * old block copy around until they complete.  This is because
10279 	 * the current b_data is not a perfect superset of the available
10280 	 * blocks.
10281 	 */
10282 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10283 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10284 	else
10285 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10286 	WORKLIST_REMOVE(&indirdep->ir_list);
10287 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10288 	indirdep->ir_bp = NULL;
10289 	indirdep->ir_freeblks = freeblks;
10290 }
10291 
10292 /*
10293  * Free an indirdep once it no longer has new pointers to track.
10294  */
10295 static void
10296 free_indirdep(indirdep)
10297 	struct indirdep *indirdep;
10298 {
10299 
10300 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10301 	    ("free_indirdep: Indir trunc list not empty."));
10302 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10303 	    ("free_indirdep: Complete head not empty."));
10304 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10305 	    ("free_indirdep: write head not empty."));
10306 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10307 	    ("free_indirdep: done head not empty."));
10308 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10309 	    ("free_indirdep: deplist head not empty."));
10310 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10311 	    ("free_indirdep: %p still on newblk list.", indirdep));
10312 	KASSERT(indirdep->ir_saveddata == NULL,
10313 	    ("free_indirdep: %p still has saved data.", indirdep));
10314 	if (indirdep->ir_state & ONWORKLIST)
10315 		WORKLIST_REMOVE(&indirdep->ir_list);
10316 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10317 }
10318 
10319 /*
10320  * Called before a write to an indirdep.  This routine is responsible for
10321  * rolling back pointers to a safe state which includes only those
10322  * allocindirs which have been completed.
10323  */
10324 static void
10325 initiate_write_indirdep(indirdep, bp)
10326 	struct indirdep *indirdep;
10327 	struct buf *bp;
10328 {
10329 
10330 	indirdep->ir_state |= IOSTARTED;
10331 	if (indirdep->ir_state & GOINGAWAY)
10332 		panic("disk_io_initiation: indirdep gone");
10333 	/*
10334 	 * If there are no remaining dependencies, this will be writing
10335 	 * the real pointers.
10336 	 */
10337 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10338 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10339 		return;
10340 	/*
10341 	 * Replace up-to-date version with safe version.
10342 	 */
10343 	if (indirdep->ir_saveddata == NULL) {
10344 		FREE_LOCK(&lk);
10345 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10346 		    M_SOFTDEP_FLAGS);
10347 		ACQUIRE_LOCK(&lk);
10348 	}
10349 	indirdep->ir_state &= ~ATTACHED;
10350 	indirdep->ir_state |= UNDONE;
10351 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10352 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10353 	    bp->b_bcount);
10354 }
10355 
10356 /*
10357  * Called when an inode has been cleared in a cg bitmap.  This finally
10358  * eliminates any canceled jaddrefs
10359  */
10360 void
10361 softdep_setup_inofree(mp, bp, ino, wkhd)
10362 	struct mount *mp;
10363 	struct buf *bp;
10364 	ino_t ino;
10365 	struct workhead *wkhd;
10366 {
10367 	struct worklist *wk, *wkn;
10368 	struct inodedep *inodedep;
10369 	uint8_t *inosused;
10370 	struct cg *cgp;
10371 	struct fs *fs;
10372 
10373 	ACQUIRE_LOCK(&lk);
10374 	fs = VFSTOUFS(mp)->um_fs;
10375 	cgp = (struct cg *)bp->b_data;
10376 	inosused = cg_inosused(cgp);
10377 	if (isset(inosused, ino % fs->fs_ipg))
10378 		panic("softdep_setup_inofree: inode %ju not freed.",
10379 		    (uintmax_t)ino);
10380 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10381 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10382 		    (uintmax_t)ino, inodedep);
10383 	if (wkhd) {
10384 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10385 			if (wk->wk_type != D_JADDREF)
10386 				continue;
10387 			WORKLIST_REMOVE(wk);
10388 			/*
10389 			 * We can free immediately even if the jaddref
10390 			 * isn't attached in a background write as now
10391 			 * the bitmaps are reconciled.
10392 		 	 */
10393 			wk->wk_state |= COMPLETE | ATTACHED;
10394 			free_jaddref(WK_JADDREF(wk));
10395 		}
10396 		jwork_move(&bp->b_dep, wkhd);
10397 	}
10398 	FREE_LOCK(&lk);
10399 }
10400 
10401 
10402 /*
10403  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10404  * map.  Any dependencies waiting for the write to clear are added to the
10405  * buf's list and any jnewblks that are being canceled are discarded
10406  * immediately.
10407  */
10408 void
10409 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10410 	struct mount *mp;
10411 	struct buf *bp;
10412 	ufs2_daddr_t blkno;
10413 	int frags;
10414 	struct workhead *wkhd;
10415 {
10416 	struct bmsafemap *bmsafemap;
10417 	struct jnewblk *jnewblk;
10418 	struct worklist *wk;
10419 	struct fs *fs;
10420 #ifdef SUJ_DEBUG
10421 	uint8_t *blksfree;
10422 	struct cg *cgp;
10423 	ufs2_daddr_t jstart;
10424 	ufs2_daddr_t jend;
10425 	ufs2_daddr_t end;
10426 	long bno;
10427 	int i;
10428 #endif
10429 
10430 	CTR3(KTR_SUJ,
10431 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10432 	    blkno, frags, wkhd);
10433 
10434 	ACQUIRE_LOCK(&lk);
10435 	/* Lookup the bmsafemap so we track when it is dirty. */
10436 	fs = VFSTOUFS(mp)->um_fs;
10437 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10438 	/*
10439 	 * Detach any jnewblks which have been canceled.  They must linger
10440 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10441 	 * an unjournaled allocation from hitting the disk.
10442 	 */
10443 	if (wkhd) {
10444 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10445 			CTR2(KTR_SUJ,
10446 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10447 			    blkno, wk->wk_type);
10448 			WORKLIST_REMOVE(wk);
10449 			if (wk->wk_type != D_JNEWBLK) {
10450 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10451 				continue;
10452 			}
10453 			jnewblk = WK_JNEWBLK(wk);
10454 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10455 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10456 #ifdef SUJ_DEBUG
10457 			/*
10458 			 * Assert that this block is free in the bitmap
10459 			 * before we discard the jnewblk.
10460 			 */
10461 			cgp = (struct cg *)bp->b_data;
10462 			blksfree = cg_blksfree(cgp);
10463 			bno = dtogd(fs, jnewblk->jn_blkno);
10464 			for (i = jnewblk->jn_oldfrags;
10465 			    i < jnewblk->jn_frags; i++) {
10466 				if (isset(blksfree, bno + i))
10467 					continue;
10468 				panic("softdep_setup_blkfree: not free");
10469 			}
10470 #endif
10471 			/*
10472 			 * Even if it's not attached we can free immediately
10473 			 * as the new bitmap is correct.
10474 			 */
10475 			wk->wk_state |= COMPLETE | ATTACHED;
10476 			free_jnewblk(jnewblk);
10477 		}
10478 	}
10479 
10480 #ifdef SUJ_DEBUG
10481 	/*
10482 	 * Assert that we are not freeing a block which has an outstanding
10483 	 * allocation dependency.
10484 	 */
10485 	fs = VFSTOUFS(mp)->um_fs;
10486 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10487 	end = blkno + frags;
10488 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10489 		/*
10490 		 * Don't match against blocks that will be freed when the
10491 		 * background write is done.
10492 		 */
10493 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10494 		    (COMPLETE | DEPCOMPLETE))
10495 			continue;
10496 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10497 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10498 		if ((blkno >= jstart && blkno < jend) ||
10499 		    (end > jstart && end <= jend)) {
10500 			printf("state 0x%X %jd - %d %d dep %p\n",
10501 			    jnewblk->jn_state, jnewblk->jn_blkno,
10502 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10503 			    jnewblk->jn_dep);
10504 			panic("softdep_setup_blkfree: "
10505 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10506 			    blkno, end, frags, jstart, jend);
10507 		}
10508 	}
10509 #endif
10510 	FREE_LOCK(&lk);
10511 }
10512 
10513 /*
10514  * Revert a block allocation when the journal record that describes it
10515  * is not yet written.
10516  */
10517 int
10518 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10519 	struct jnewblk *jnewblk;
10520 	struct fs *fs;
10521 	struct cg *cgp;
10522 	uint8_t *blksfree;
10523 {
10524 	ufs1_daddr_t fragno;
10525 	long cgbno, bbase;
10526 	int frags, blk;
10527 	int i;
10528 
10529 	frags = 0;
10530 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10531 	/*
10532 	 * We have to test which frags need to be rolled back.  We may
10533 	 * be operating on a stale copy when doing background writes.
10534 	 */
10535 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10536 		if (isclr(blksfree, cgbno + i))
10537 			frags++;
10538 	if (frags == 0)
10539 		return (0);
10540 	/*
10541 	 * This is mostly ffs_blkfree() sans some validation and
10542 	 * superblock updates.
10543 	 */
10544 	if (frags == fs->fs_frag) {
10545 		fragno = fragstoblks(fs, cgbno);
10546 		ffs_setblock(fs, blksfree, fragno);
10547 		ffs_clusteracct(fs, cgp, fragno, 1);
10548 		cgp->cg_cs.cs_nbfree++;
10549 	} else {
10550 		cgbno += jnewblk->jn_oldfrags;
10551 		bbase = cgbno - fragnum(fs, cgbno);
10552 		/* Decrement the old frags.  */
10553 		blk = blkmap(fs, blksfree, bbase);
10554 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10555 		/* Deallocate the fragment */
10556 		for (i = 0; i < frags; i++)
10557 			setbit(blksfree, cgbno + i);
10558 		cgp->cg_cs.cs_nffree += frags;
10559 		/* Add back in counts associated with the new frags */
10560 		blk = blkmap(fs, blksfree, bbase);
10561 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10562                 /* If a complete block has been reassembled, account for it. */
10563 		fragno = fragstoblks(fs, bbase);
10564 		if (ffs_isblock(fs, blksfree, fragno)) {
10565 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10566 			ffs_clusteracct(fs, cgp, fragno, 1);
10567 			cgp->cg_cs.cs_nbfree++;
10568 		}
10569 	}
10570 	stat_jnewblk++;
10571 	jnewblk->jn_state &= ~ATTACHED;
10572 	jnewblk->jn_state |= UNDONE;
10573 
10574 	return (frags);
10575 }
10576 
10577 static void
10578 initiate_write_bmsafemap(bmsafemap, bp)
10579 	struct bmsafemap *bmsafemap;
10580 	struct buf *bp;			/* The cg block. */
10581 {
10582 	struct jaddref *jaddref;
10583 	struct jnewblk *jnewblk;
10584 	uint8_t *inosused;
10585 	uint8_t *blksfree;
10586 	struct cg *cgp;
10587 	struct fs *fs;
10588 	ino_t ino;
10589 
10590 	if (bmsafemap->sm_state & IOSTARTED)
10591 		return;
10592 	bmsafemap->sm_state |= IOSTARTED;
10593 	/*
10594 	 * Clear any inode allocations which are pending journal writes.
10595 	 */
10596 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10597 		cgp = (struct cg *)bp->b_data;
10598 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10599 		inosused = cg_inosused(cgp);
10600 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10601 			ino = jaddref->ja_ino % fs->fs_ipg;
10602 			if (isset(inosused, ino)) {
10603 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10604 					cgp->cg_cs.cs_ndir--;
10605 				cgp->cg_cs.cs_nifree++;
10606 				clrbit(inosused, ino);
10607 				jaddref->ja_state &= ~ATTACHED;
10608 				jaddref->ja_state |= UNDONE;
10609 				stat_jaddref++;
10610 			} else
10611 				panic("initiate_write_bmsafemap: inode %ju "
10612 				    "marked free", (uintmax_t)jaddref->ja_ino);
10613 		}
10614 	}
10615 	/*
10616 	 * Clear any block allocations which are pending journal writes.
10617 	 */
10618 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10619 		cgp = (struct cg *)bp->b_data;
10620 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10621 		blksfree = cg_blksfree(cgp);
10622 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10623 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10624 				continue;
10625 			panic("initiate_write_bmsafemap: block %jd "
10626 			    "marked free", jnewblk->jn_blkno);
10627 		}
10628 	}
10629 	/*
10630 	 * Move allocation lists to the written lists so they can be
10631 	 * cleared once the block write is complete.
10632 	 */
10633 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10634 	    inodedep, id_deps);
10635 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10636 	    newblk, nb_deps);
10637 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10638 	    wk_list);
10639 }
10640 
10641 /*
10642  * This routine is called during the completion interrupt
10643  * service routine for a disk write (from the procedure called
10644  * by the device driver to inform the filesystem caches of
10645  * a request completion).  It should be called early in this
10646  * procedure, before the block is made available to other
10647  * processes or other routines are called.
10648  *
10649  */
10650 static void
10651 softdep_disk_write_complete(bp)
10652 	struct buf *bp;		/* describes the completed disk write */
10653 {
10654 	struct worklist *wk;
10655 	struct worklist *owk;
10656 	struct workhead reattach;
10657 	struct freeblks *freeblks;
10658 	struct buf *sbp;
10659 
10660 	/*
10661 	 * If an error occurred while doing the write, then the data
10662 	 * has not hit the disk and the dependencies cannot be unrolled.
10663 	 */
10664 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10665 		return;
10666 	LIST_INIT(&reattach);
10667 	/*
10668 	 * This lock must not be released anywhere in this code segment.
10669 	 */
10670 	sbp = NULL;
10671 	owk = NULL;
10672 	ACQUIRE_LOCK(&lk);
10673 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10674 		WORKLIST_REMOVE(wk);
10675 		dep_write[wk->wk_type]++;
10676 		if (wk == owk)
10677 			panic("duplicate worklist: %p\n", wk);
10678 		owk = wk;
10679 		switch (wk->wk_type) {
10680 
10681 		case D_PAGEDEP:
10682 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10683 				WORKLIST_INSERT(&reattach, wk);
10684 			continue;
10685 
10686 		case D_INODEDEP:
10687 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10688 				WORKLIST_INSERT(&reattach, wk);
10689 			continue;
10690 
10691 		case D_BMSAFEMAP:
10692 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10693 				WORKLIST_INSERT(&reattach, wk);
10694 			continue;
10695 
10696 		case D_MKDIR:
10697 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10698 			continue;
10699 
10700 		case D_ALLOCDIRECT:
10701 			wk->wk_state |= COMPLETE;
10702 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10703 			continue;
10704 
10705 		case D_ALLOCINDIR:
10706 			wk->wk_state |= COMPLETE;
10707 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10708 			continue;
10709 
10710 		case D_INDIRDEP:
10711 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10712 				WORKLIST_INSERT(&reattach, wk);
10713 			continue;
10714 
10715 		case D_FREEBLKS:
10716 			wk->wk_state |= COMPLETE;
10717 			freeblks = WK_FREEBLKS(wk);
10718 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10719 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10720 				add_to_worklist(wk, WK_NODELAY);
10721 			continue;
10722 
10723 		case D_FREEWORK:
10724 			handle_written_freework(WK_FREEWORK(wk));
10725 			break;
10726 
10727 		case D_JSEGDEP:
10728 			free_jsegdep(WK_JSEGDEP(wk));
10729 			continue;
10730 
10731 		case D_JSEG:
10732 			handle_written_jseg(WK_JSEG(wk), bp);
10733 			continue;
10734 
10735 		case D_SBDEP:
10736 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10737 				WORKLIST_INSERT(&reattach, wk);
10738 			continue;
10739 
10740 		case D_FREEDEP:
10741 			free_freedep(WK_FREEDEP(wk));
10742 			continue;
10743 
10744 		default:
10745 			panic("handle_disk_write_complete: Unknown type %s",
10746 			    TYPENAME(wk->wk_type));
10747 			/* NOTREACHED */
10748 		}
10749 	}
10750 	/*
10751 	 * Reattach any requests that must be redone.
10752 	 */
10753 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10754 		WORKLIST_REMOVE(wk);
10755 		WORKLIST_INSERT(&bp->b_dep, wk);
10756 	}
10757 	FREE_LOCK(&lk);
10758 	if (sbp)
10759 		brelse(sbp);
10760 }
10761 
10762 /*
10763  * Called from within softdep_disk_write_complete above. Note that
10764  * this routine is always called from interrupt level with further
10765  * splbio interrupts blocked.
10766  */
10767 static void
10768 handle_allocdirect_partdone(adp, wkhd)
10769 	struct allocdirect *adp;	/* the completed allocdirect */
10770 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10771 {
10772 	struct allocdirectlst *listhead;
10773 	struct allocdirect *listadp;
10774 	struct inodedep *inodedep;
10775 	long bsize;
10776 
10777 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10778 		return;
10779 	/*
10780 	 * The on-disk inode cannot claim to be any larger than the last
10781 	 * fragment that has been written. Otherwise, the on-disk inode
10782 	 * might have fragments that were not the last block in the file
10783 	 * which would corrupt the filesystem. Thus, we cannot free any
10784 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10785 	 * these blocks must be rolled back to zero before writing the inode.
10786 	 * We check the currently active set of allocdirects in id_inoupdt
10787 	 * or id_extupdt as appropriate.
10788 	 */
10789 	inodedep = adp->ad_inodedep;
10790 	bsize = inodedep->id_fs->fs_bsize;
10791 	if (adp->ad_state & EXTDATA)
10792 		listhead = &inodedep->id_extupdt;
10793 	else
10794 		listhead = &inodedep->id_inoupdt;
10795 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10796 		/* found our block */
10797 		if (listadp == adp)
10798 			break;
10799 		/* continue if ad_oldlbn is not a fragment */
10800 		if (listadp->ad_oldsize == 0 ||
10801 		    listadp->ad_oldsize == bsize)
10802 			continue;
10803 		/* hit a fragment */
10804 		return;
10805 	}
10806 	/*
10807 	 * If we have reached the end of the current list without
10808 	 * finding the just finished dependency, then it must be
10809 	 * on the future dependency list. Future dependencies cannot
10810 	 * be freed until they are moved to the current list.
10811 	 */
10812 	if (listadp == NULL) {
10813 #ifdef DEBUG
10814 		if (adp->ad_state & EXTDATA)
10815 			listhead = &inodedep->id_newextupdt;
10816 		else
10817 			listhead = &inodedep->id_newinoupdt;
10818 		TAILQ_FOREACH(listadp, listhead, ad_next)
10819 			/* found our block */
10820 			if (listadp == adp)
10821 				break;
10822 		if (listadp == NULL)
10823 			panic("handle_allocdirect_partdone: lost dep");
10824 #endif /* DEBUG */
10825 		return;
10826 	}
10827 	/*
10828 	 * If we have found the just finished dependency, then queue
10829 	 * it along with anything that follows it that is complete.
10830 	 * Since the pointer has not yet been written in the inode
10831 	 * as the dependency prevents it, place the allocdirect on the
10832 	 * bufwait list where it will be freed once the pointer is
10833 	 * valid.
10834 	 */
10835 	if (wkhd == NULL)
10836 		wkhd = &inodedep->id_bufwait;
10837 	for (; adp; adp = listadp) {
10838 		listadp = TAILQ_NEXT(adp, ad_next);
10839 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10840 			return;
10841 		TAILQ_REMOVE(listhead, adp, ad_next);
10842 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10843 	}
10844 }
10845 
10846 /*
10847  * Called from within softdep_disk_write_complete above.  This routine
10848  * completes successfully written allocindirs.
10849  */
10850 static void
10851 handle_allocindir_partdone(aip)
10852 	struct allocindir *aip;		/* the completed allocindir */
10853 {
10854 	struct indirdep *indirdep;
10855 
10856 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10857 		return;
10858 	indirdep = aip->ai_indirdep;
10859 	LIST_REMOVE(aip, ai_next);
10860 	/*
10861 	 * Don't set a pointer while the buffer is undergoing IO or while
10862 	 * we have active truncations.
10863 	 */
10864 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10865 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10866 		return;
10867 	}
10868 	if (indirdep->ir_state & UFS1FMT)
10869 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10870 		    aip->ai_newblkno;
10871 	else
10872 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10873 		    aip->ai_newblkno;
10874 	/*
10875 	 * Await the pointer write before freeing the allocindir.
10876 	 */
10877 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10878 }
10879 
10880 /*
10881  * Release segments held on a jwork list.
10882  */
10883 static void
10884 handle_jwork(wkhd)
10885 	struct workhead *wkhd;
10886 {
10887 	struct worklist *wk;
10888 
10889 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10890 		WORKLIST_REMOVE(wk);
10891 		switch (wk->wk_type) {
10892 		case D_JSEGDEP:
10893 			free_jsegdep(WK_JSEGDEP(wk));
10894 			continue;
10895 		case D_FREEDEP:
10896 			free_freedep(WK_FREEDEP(wk));
10897 			continue;
10898 		case D_FREEFRAG:
10899 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10900 			WORKITEM_FREE(wk, D_FREEFRAG);
10901 			continue;
10902 		case D_FREEWORK:
10903 			handle_written_freework(WK_FREEWORK(wk));
10904 			continue;
10905 		default:
10906 			panic("handle_jwork: Unknown type %s\n",
10907 			    TYPENAME(wk->wk_type));
10908 		}
10909 	}
10910 }
10911 
10912 /*
10913  * Handle the bufwait list on an inode when it is safe to release items
10914  * held there.  This normally happens after an inode block is written but
10915  * may be delayed and handled later if there are pending journal items that
10916  * are not yet safe to be released.
10917  */
10918 static struct freefile *
10919 handle_bufwait(inodedep, refhd)
10920 	struct inodedep *inodedep;
10921 	struct workhead *refhd;
10922 {
10923 	struct jaddref *jaddref;
10924 	struct freefile *freefile;
10925 	struct worklist *wk;
10926 
10927 	freefile = NULL;
10928 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10929 		WORKLIST_REMOVE(wk);
10930 		switch (wk->wk_type) {
10931 		case D_FREEFILE:
10932 			/*
10933 			 * We defer adding freefile to the worklist
10934 			 * until all other additions have been made to
10935 			 * ensure that it will be done after all the
10936 			 * old blocks have been freed.
10937 			 */
10938 			if (freefile != NULL)
10939 				panic("handle_bufwait: freefile");
10940 			freefile = WK_FREEFILE(wk);
10941 			continue;
10942 
10943 		case D_MKDIR:
10944 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10945 			continue;
10946 
10947 		case D_DIRADD:
10948 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10949 			continue;
10950 
10951 		case D_FREEFRAG:
10952 			wk->wk_state |= COMPLETE;
10953 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10954 				add_to_worklist(wk, 0);
10955 			continue;
10956 
10957 		case D_DIRREM:
10958 			wk->wk_state |= COMPLETE;
10959 			add_to_worklist(wk, 0);
10960 			continue;
10961 
10962 		case D_ALLOCDIRECT:
10963 		case D_ALLOCINDIR:
10964 			free_newblk(WK_NEWBLK(wk));
10965 			continue;
10966 
10967 		case D_JNEWBLK:
10968 			wk->wk_state |= COMPLETE;
10969 			free_jnewblk(WK_JNEWBLK(wk));
10970 			continue;
10971 
10972 		/*
10973 		 * Save freed journal segments and add references on
10974 		 * the supplied list which will delay their release
10975 		 * until the cg bitmap is cleared on disk.
10976 		 */
10977 		case D_JSEGDEP:
10978 			if (refhd == NULL)
10979 				free_jsegdep(WK_JSEGDEP(wk));
10980 			else
10981 				WORKLIST_INSERT(refhd, wk);
10982 			continue;
10983 
10984 		case D_JADDREF:
10985 			jaddref = WK_JADDREF(wk);
10986 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10987 			    if_deps);
10988 			/*
10989 			 * Transfer any jaddrefs to the list to be freed with
10990 			 * the bitmap if we're handling a removed file.
10991 			 */
10992 			if (refhd == NULL) {
10993 				wk->wk_state |= COMPLETE;
10994 				free_jaddref(jaddref);
10995 			} else
10996 				WORKLIST_INSERT(refhd, wk);
10997 			continue;
10998 
10999 		default:
11000 			panic("handle_bufwait: Unknown type %p(%s)",
11001 			    wk, TYPENAME(wk->wk_type));
11002 			/* NOTREACHED */
11003 		}
11004 	}
11005 	return (freefile);
11006 }
11007 /*
11008  * Called from within softdep_disk_write_complete above to restore
11009  * in-memory inode block contents to their most up-to-date state. Note
11010  * that this routine is always called from interrupt level with further
11011  * splbio interrupts blocked.
11012  */
11013 static int
11014 handle_written_inodeblock(inodedep, bp)
11015 	struct inodedep *inodedep;
11016 	struct buf *bp;		/* buffer containing the inode block */
11017 {
11018 	struct freefile *freefile;
11019 	struct allocdirect *adp, *nextadp;
11020 	struct ufs1_dinode *dp1 = NULL;
11021 	struct ufs2_dinode *dp2 = NULL;
11022 	struct workhead wkhd;
11023 	int hadchanges, fstype;
11024 	ino_t freelink;
11025 
11026 	LIST_INIT(&wkhd);
11027 	hadchanges = 0;
11028 	freefile = NULL;
11029 	if ((inodedep->id_state & IOSTARTED) == 0)
11030 		panic("handle_written_inodeblock: not started");
11031 	inodedep->id_state &= ~IOSTARTED;
11032 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11033 		fstype = UFS1;
11034 		dp1 = (struct ufs1_dinode *)bp->b_data +
11035 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11036 		freelink = dp1->di_freelink;
11037 	} else {
11038 		fstype = UFS2;
11039 		dp2 = (struct ufs2_dinode *)bp->b_data +
11040 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11041 		freelink = dp2->di_freelink;
11042 	}
11043 	/*
11044 	 * Leave this inodeblock dirty until it's in the list.
11045 	 */
11046 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11047 		struct inodedep *inon;
11048 
11049 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11050 		if ((inon == NULL && freelink == 0) ||
11051 		    (inon && inon->id_ino == freelink)) {
11052 			if (inon)
11053 				inon->id_state |= UNLINKPREV;
11054 			inodedep->id_state |= UNLINKNEXT;
11055 		}
11056 		hadchanges = 1;
11057 	}
11058 	/*
11059 	 * If we had to rollback the inode allocation because of
11060 	 * bitmaps being incomplete, then simply restore it.
11061 	 * Keep the block dirty so that it will not be reclaimed until
11062 	 * all associated dependencies have been cleared and the
11063 	 * corresponding updates written to disk.
11064 	 */
11065 	if (inodedep->id_savedino1 != NULL) {
11066 		hadchanges = 1;
11067 		if (fstype == UFS1)
11068 			*dp1 = *inodedep->id_savedino1;
11069 		else
11070 			*dp2 = *inodedep->id_savedino2;
11071 		free(inodedep->id_savedino1, M_SAVEDINO);
11072 		inodedep->id_savedino1 = NULL;
11073 		if ((bp->b_flags & B_DELWRI) == 0)
11074 			stat_inode_bitmap++;
11075 		bdirty(bp);
11076 		/*
11077 		 * If the inode is clear here and GOINGAWAY it will never
11078 		 * be written.  Process the bufwait and clear any pending
11079 		 * work which may include the freefile.
11080 		 */
11081 		if (inodedep->id_state & GOINGAWAY)
11082 			goto bufwait;
11083 		return (1);
11084 	}
11085 	inodedep->id_state |= COMPLETE;
11086 	/*
11087 	 * Roll forward anything that had to be rolled back before
11088 	 * the inode could be updated.
11089 	 */
11090 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11091 		nextadp = TAILQ_NEXT(adp, ad_next);
11092 		if (adp->ad_state & ATTACHED)
11093 			panic("handle_written_inodeblock: new entry");
11094 		if (fstype == UFS1) {
11095 			if (adp->ad_offset < NDADDR) {
11096 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11097 					panic("%s %s #%jd mismatch %d != %jd",
11098 					    "handle_written_inodeblock:",
11099 					    "direct pointer",
11100 					    (intmax_t)adp->ad_offset,
11101 					    dp1->di_db[adp->ad_offset],
11102 					    (intmax_t)adp->ad_oldblkno);
11103 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11104 			} else {
11105 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11106 					panic("%s: %s #%jd allocated as %d",
11107 					    "handle_written_inodeblock",
11108 					    "indirect pointer",
11109 					    (intmax_t)adp->ad_offset - NDADDR,
11110 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11111 				dp1->di_ib[adp->ad_offset - NDADDR] =
11112 				    adp->ad_newblkno;
11113 			}
11114 		} else {
11115 			if (adp->ad_offset < NDADDR) {
11116 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11117 					panic("%s: %s #%jd %s %jd != %jd",
11118 					    "handle_written_inodeblock",
11119 					    "direct pointer",
11120 					    (intmax_t)adp->ad_offset, "mismatch",
11121 					    (intmax_t)dp2->di_db[adp->ad_offset],
11122 					    (intmax_t)adp->ad_oldblkno);
11123 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11124 			} else {
11125 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11126 					panic("%s: %s #%jd allocated as %jd",
11127 					    "handle_written_inodeblock",
11128 					    "indirect pointer",
11129 					    (intmax_t)adp->ad_offset - NDADDR,
11130 					    (intmax_t)
11131 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11132 				dp2->di_ib[adp->ad_offset - NDADDR] =
11133 				    adp->ad_newblkno;
11134 			}
11135 		}
11136 		adp->ad_state &= ~UNDONE;
11137 		adp->ad_state |= ATTACHED;
11138 		hadchanges = 1;
11139 	}
11140 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11141 		nextadp = TAILQ_NEXT(adp, ad_next);
11142 		if (adp->ad_state & ATTACHED)
11143 			panic("handle_written_inodeblock: new entry");
11144 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11145 			panic("%s: direct pointers #%jd %s %jd != %jd",
11146 			    "handle_written_inodeblock",
11147 			    (intmax_t)adp->ad_offset, "mismatch",
11148 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11149 			    (intmax_t)adp->ad_oldblkno);
11150 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11151 		adp->ad_state &= ~UNDONE;
11152 		adp->ad_state |= ATTACHED;
11153 		hadchanges = 1;
11154 	}
11155 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11156 		stat_direct_blk_ptrs++;
11157 	/*
11158 	 * Reset the file size to its most up-to-date value.
11159 	 */
11160 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11161 		panic("handle_written_inodeblock: bad size");
11162 	if (inodedep->id_savednlink > LINK_MAX)
11163 		panic("handle_written_inodeblock: Invalid link count "
11164 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11165 	if (fstype == UFS1) {
11166 		if (dp1->di_nlink != inodedep->id_savednlink) {
11167 			dp1->di_nlink = inodedep->id_savednlink;
11168 			hadchanges = 1;
11169 		}
11170 		if (dp1->di_size != inodedep->id_savedsize) {
11171 			dp1->di_size = inodedep->id_savedsize;
11172 			hadchanges = 1;
11173 		}
11174 	} else {
11175 		if (dp2->di_nlink != inodedep->id_savednlink) {
11176 			dp2->di_nlink = inodedep->id_savednlink;
11177 			hadchanges = 1;
11178 		}
11179 		if (dp2->di_size != inodedep->id_savedsize) {
11180 			dp2->di_size = inodedep->id_savedsize;
11181 			hadchanges = 1;
11182 		}
11183 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11184 			dp2->di_extsize = inodedep->id_savedextsize;
11185 			hadchanges = 1;
11186 		}
11187 	}
11188 	inodedep->id_savedsize = -1;
11189 	inodedep->id_savedextsize = -1;
11190 	inodedep->id_savednlink = -1;
11191 	/*
11192 	 * If there were any rollbacks in the inode block, then it must be
11193 	 * marked dirty so that its will eventually get written back in
11194 	 * its correct form.
11195 	 */
11196 	if (hadchanges)
11197 		bdirty(bp);
11198 bufwait:
11199 	/*
11200 	 * Process any allocdirects that completed during the update.
11201 	 */
11202 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11203 		handle_allocdirect_partdone(adp, &wkhd);
11204 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11205 		handle_allocdirect_partdone(adp, &wkhd);
11206 	/*
11207 	 * Process deallocations that were held pending until the
11208 	 * inode had been written to disk. Freeing of the inode
11209 	 * is delayed until after all blocks have been freed to
11210 	 * avoid creation of new <vfsid, inum, lbn> triples
11211 	 * before the old ones have been deleted.  Completely
11212 	 * unlinked inodes are not processed until the unlinked
11213 	 * inode list is written or the last reference is removed.
11214 	 */
11215 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11216 		freefile = handle_bufwait(inodedep, NULL);
11217 		if (freefile && !LIST_EMPTY(&wkhd)) {
11218 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11219 			freefile = NULL;
11220 		}
11221 	}
11222 	/*
11223 	 * Move rolled forward dependency completions to the bufwait list
11224 	 * now that those that were already written have been processed.
11225 	 */
11226 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11227 		panic("handle_written_inodeblock: bufwait but no changes");
11228 	jwork_move(&inodedep->id_bufwait, &wkhd);
11229 
11230 	if (freefile != NULL) {
11231 		/*
11232 		 * If the inode is goingaway it was never written.  Fake up
11233 		 * the state here so free_inodedep() can succeed.
11234 		 */
11235 		if (inodedep->id_state & GOINGAWAY)
11236 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11237 		if (free_inodedep(inodedep) == 0)
11238 			panic("handle_written_inodeblock: live inodedep %p",
11239 			    inodedep);
11240 		add_to_worklist(&freefile->fx_list, 0);
11241 		return (0);
11242 	}
11243 
11244 	/*
11245 	 * If no outstanding dependencies, free it.
11246 	 */
11247 	if (free_inodedep(inodedep) ||
11248 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11249 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11250 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11251 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11252 		return (0);
11253 	return (hadchanges);
11254 }
11255 
11256 static int
11257 handle_written_indirdep(indirdep, bp, bpp)
11258 	struct indirdep *indirdep;
11259 	struct buf *bp;
11260 	struct buf **bpp;
11261 {
11262 	struct allocindir *aip;
11263 	struct buf *sbp;
11264 	int chgs;
11265 
11266 	if (indirdep->ir_state & GOINGAWAY)
11267 		panic("handle_written_indirdep: indirdep gone");
11268 	if ((indirdep->ir_state & IOSTARTED) == 0)
11269 		panic("handle_written_indirdep: IO not started");
11270 	chgs = 0;
11271 	/*
11272 	 * If there were rollbacks revert them here.
11273 	 */
11274 	if (indirdep->ir_saveddata) {
11275 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11276 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11277 			free(indirdep->ir_saveddata, M_INDIRDEP);
11278 			indirdep->ir_saveddata = NULL;
11279 		}
11280 		chgs = 1;
11281 	}
11282 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11283 	indirdep->ir_state |= ATTACHED;
11284 	/*
11285 	 * Move allocindirs with written pointers to the completehd if
11286 	 * the indirdep's pointer is not yet written.  Otherwise
11287 	 * free them here.
11288 	 */
11289 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11290 		LIST_REMOVE(aip, ai_next);
11291 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11292 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11293 			    ai_next);
11294 			newblk_freefrag(&aip->ai_block);
11295 			continue;
11296 		}
11297 		free_newblk(&aip->ai_block);
11298 	}
11299 	/*
11300 	 * Move allocindirs that have finished dependency processing from
11301 	 * the done list to the write list after updating the pointers.
11302 	 */
11303 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11304 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11305 			handle_allocindir_partdone(aip);
11306 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11307 				panic("disk_write_complete: not gone");
11308 			chgs = 1;
11309 		}
11310 	}
11311 	/*
11312 	 * Preserve the indirdep if there were any changes or if it is not
11313 	 * yet valid on disk.
11314 	 */
11315 	if (chgs) {
11316 		stat_indir_blk_ptrs++;
11317 		bdirty(bp);
11318 		return (1);
11319 	}
11320 	/*
11321 	 * If there were no changes we can discard the savedbp and detach
11322 	 * ourselves from the buf.  We are only carrying completed pointers
11323 	 * in this case.
11324 	 */
11325 	sbp = indirdep->ir_savebp;
11326 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11327 	indirdep->ir_savebp = NULL;
11328 	indirdep->ir_bp = NULL;
11329 	if (*bpp != NULL)
11330 		panic("handle_written_indirdep: bp already exists.");
11331 	*bpp = sbp;
11332 	/*
11333 	 * The indirdep may not be freed until its parent points at it.
11334 	 */
11335 	if (indirdep->ir_state & DEPCOMPLETE)
11336 		free_indirdep(indirdep);
11337 
11338 	return (0);
11339 }
11340 
11341 /*
11342  * Process a diradd entry after its dependent inode has been written.
11343  * This routine must be called with splbio interrupts blocked.
11344  */
11345 static void
11346 diradd_inode_written(dap, inodedep)
11347 	struct diradd *dap;
11348 	struct inodedep *inodedep;
11349 {
11350 
11351 	dap->da_state |= COMPLETE;
11352 	complete_diradd(dap);
11353 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11354 }
11355 
11356 /*
11357  * Returns true if the bmsafemap will have rollbacks when written.  Must
11358  * only be called with lk and the buf lock on the cg held.
11359  */
11360 static int
11361 bmsafemap_backgroundwrite(bmsafemap, bp)
11362 	struct bmsafemap *bmsafemap;
11363 	struct buf *bp;
11364 {
11365 	int dirty;
11366 
11367 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11368 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11369 	/*
11370 	 * If we're initiating a background write we need to process the
11371 	 * rollbacks as they exist now, not as they exist when IO starts.
11372 	 * No other consumers will look at the contents of the shadowed
11373 	 * buf so this is safe to do here.
11374 	 */
11375 	if (bp->b_xflags & BX_BKGRDMARKER)
11376 		initiate_write_bmsafemap(bmsafemap, bp);
11377 
11378 	return (dirty);
11379 }
11380 
11381 /*
11382  * Re-apply an allocation when a cg write is complete.
11383  */
11384 static int
11385 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11386 	struct jnewblk *jnewblk;
11387 	struct fs *fs;
11388 	struct cg *cgp;
11389 	uint8_t *blksfree;
11390 {
11391 	ufs1_daddr_t fragno;
11392 	ufs2_daddr_t blkno;
11393 	long cgbno, bbase;
11394 	int frags, blk;
11395 	int i;
11396 
11397 	frags = 0;
11398 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11399 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11400 		if (isclr(blksfree, cgbno + i))
11401 			panic("jnewblk_rollforward: re-allocated fragment");
11402 		frags++;
11403 	}
11404 	if (frags == fs->fs_frag) {
11405 		blkno = fragstoblks(fs, cgbno);
11406 		ffs_clrblock(fs, blksfree, (long)blkno);
11407 		ffs_clusteracct(fs, cgp, blkno, -1);
11408 		cgp->cg_cs.cs_nbfree--;
11409 	} else {
11410 		bbase = cgbno - fragnum(fs, cgbno);
11411 		cgbno += jnewblk->jn_oldfrags;
11412                 /* If a complete block had been reassembled, account for it. */
11413 		fragno = fragstoblks(fs, bbase);
11414 		if (ffs_isblock(fs, blksfree, fragno)) {
11415 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11416 			ffs_clusteracct(fs, cgp, fragno, -1);
11417 			cgp->cg_cs.cs_nbfree--;
11418 		}
11419 		/* Decrement the old frags.  */
11420 		blk = blkmap(fs, blksfree, bbase);
11421 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11422 		/* Allocate the fragment */
11423 		for (i = 0; i < frags; i++)
11424 			clrbit(blksfree, cgbno + i);
11425 		cgp->cg_cs.cs_nffree -= frags;
11426 		/* Add back in counts associated with the new frags */
11427 		blk = blkmap(fs, blksfree, bbase);
11428 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11429 	}
11430 	return (frags);
11431 }
11432 
11433 /*
11434  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11435  * changes if it's not a background write.  Set all written dependencies
11436  * to DEPCOMPLETE and free the structure if possible.
11437  */
11438 static int
11439 handle_written_bmsafemap(bmsafemap, bp)
11440 	struct bmsafemap *bmsafemap;
11441 	struct buf *bp;
11442 {
11443 	struct newblk *newblk;
11444 	struct inodedep *inodedep;
11445 	struct jaddref *jaddref, *jatmp;
11446 	struct jnewblk *jnewblk, *jntmp;
11447 	struct ufsmount *ump;
11448 	uint8_t *inosused;
11449 	uint8_t *blksfree;
11450 	struct cg *cgp;
11451 	struct fs *fs;
11452 	ino_t ino;
11453 	int chgs;
11454 
11455 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11456 		panic("initiate_write_bmsafemap: Not started\n");
11457 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11458 	chgs = 0;
11459 	bmsafemap->sm_state &= ~IOSTARTED;
11460 	/*
11461 	 * Release journal work that was waiting on the write.
11462 	 */
11463 	handle_jwork(&bmsafemap->sm_freewr);
11464 
11465 	/*
11466 	 * Restore unwritten inode allocation pending jaddref writes.
11467 	 */
11468 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11469 		cgp = (struct cg *)bp->b_data;
11470 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11471 		inosused = cg_inosused(cgp);
11472 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11473 		    ja_bmdeps, jatmp) {
11474 			if ((jaddref->ja_state & UNDONE) == 0)
11475 				continue;
11476 			ino = jaddref->ja_ino % fs->fs_ipg;
11477 			if (isset(inosused, ino))
11478 				panic("handle_written_bmsafemap: "
11479 				    "re-allocated inode");
11480 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
11481 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11482 					cgp->cg_cs.cs_ndir++;
11483 				cgp->cg_cs.cs_nifree--;
11484 				setbit(inosused, ino);
11485 				chgs = 1;
11486 			}
11487 			jaddref->ja_state &= ~UNDONE;
11488 			jaddref->ja_state |= ATTACHED;
11489 			free_jaddref(jaddref);
11490 		}
11491 	}
11492 	/*
11493 	 * Restore any block allocations which are pending journal writes.
11494 	 */
11495 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11496 		cgp = (struct cg *)bp->b_data;
11497 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11498 		blksfree = cg_blksfree(cgp);
11499 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11500 		    jntmp) {
11501 			if ((jnewblk->jn_state & UNDONE) == 0)
11502 				continue;
11503 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0 &&
11504 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11505 				chgs = 1;
11506 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11507 			jnewblk->jn_state |= ATTACHED;
11508 			free_jnewblk(jnewblk);
11509 		}
11510 	}
11511 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11512 		newblk->nb_state |= DEPCOMPLETE;
11513 		newblk->nb_state &= ~ONDEPLIST;
11514 		newblk->nb_bmsafemap = NULL;
11515 		LIST_REMOVE(newblk, nb_deps);
11516 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11517 			handle_allocdirect_partdone(
11518 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11519 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11520 			handle_allocindir_partdone(
11521 			    WK_ALLOCINDIR(&newblk->nb_list));
11522 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11523 			panic("handle_written_bmsafemap: Unexpected type: %s",
11524 			    TYPENAME(newblk->nb_list.wk_type));
11525 	}
11526 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11527 		inodedep->id_state |= DEPCOMPLETE;
11528 		inodedep->id_state &= ~ONDEPLIST;
11529 		LIST_REMOVE(inodedep, id_deps);
11530 		inodedep->id_bmsafemap = NULL;
11531 	}
11532 	LIST_REMOVE(bmsafemap, sm_next);
11533 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11534 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11535 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11536 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11537 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11538 		LIST_REMOVE(bmsafemap, sm_hash);
11539 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11540 		return (0);
11541 	}
11542 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11543 	bdirty(bp);
11544 	return (1);
11545 }
11546 
11547 /*
11548  * Try to free a mkdir dependency.
11549  */
11550 static void
11551 complete_mkdir(mkdir)
11552 	struct mkdir *mkdir;
11553 {
11554 	struct diradd *dap;
11555 
11556 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11557 		return;
11558 	LIST_REMOVE(mkdir, md_mkdirs);
11559 	dap = mkdir->md_diradd;
11560 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11561 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11562 		dap->da_state |= DEPCOMPLETE;
11563 		complete_diradd(dap);
11564 	}
11565 	WORKITEM_FREE(mkdir, D_MKDIR);
11566 }
11567 
11568 /*
11569  * Handle the completion of a mkdir dependency.
11570  */
11571 static void
11572 handle_written_mkdir(mkdir, type)
11573 	struct mkdir *mkdir;
11574 	int type;
11575 {
11576 
11577 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11578 		panic("handle_written_mkdir: bad type");
11579 	mkdir->md_state |= COMPLETE;
11580 	complete_mkdir(mkdir);
11581 }
11582 
11583 static int
11584 free_pagedep(pagedep)
11585 	struct pagedep *pagedep;
11586 {
11587 	int i;
11588 
11589 	if (pagedep->pd_state & NEWBLOCK)
11590 		return (0);
11591 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11592 		return (0);
11593 	for (i = 0; i < DAHASHSZ; i++)
11594 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11595 			return (0);
11596 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11597 		return (0);
11598 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11599 		return (0);
11600 	if (pagedep->pd_state & ONWORKLIST)
11601 		WORKLIST_REMOVE(&pagedep->pd_list);
11602 	LIST_REMOVE(pagedep, pd_hash);
11603 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11604 
11605 	return (1);
11606 }
11607 
11608 /*
11609  * Called from within softdep_disk_write_complete above.
11610  * A write operation was just completed. Removed inodes can
11611  * now be freed and associated block pointers may be committed.
11612  * Note that this routine is always called from interrupt level
11613  * with further splbio interrupts blocked.
11614  */
11615 static int
11616 handle_written_filepage(pagedep, bp)
11617 	struct pagedep *pagedep;
11618 	struct buf *bp;		/* buffer containing the written page */
11619 {
11620 	struct dirrem *dirrem;
11621 	struct diradd *dap, *nextdap;
11622 	struct direct *ep;
11623 	int i, chgs;
11624 
11625 	if ((pagedep->pd_state & IOSTARTED) == 0)
11626 		panic("handle_written_filepage: not started");
11627 	pagedep->pd_state &= ~IOSTARTED;
11628 	/*
11629 	 * Process any directory removals that have been committed.
11630 	 */
11631 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11632 		LIST_REMOVE(dirrem, dm_next);
11633 		dirrem->dm_state |= COMPLETE;
11634 		dirrem->dm_dirinum = pagedep->pd_ino;
11635 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11636 		    ("handle_written_filepage: Journal entries not written."));
11637 		add_to_worklist(&dirrem->dm_list, 0);
11638 	}
11639 	/*
11640 	 * Free any directory additions that have been committed.
11641 	 * If it is a newly allocated block, we have to wait until
11642 	 * the on-disk directory inode claims the new block.
11643 	 */
11644 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11645 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11646 			free_diradd(dap, NULL);
11647 	/*
11648 	 * Uncommitted directory entries must be restored.
11649 	 */
11650 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11651 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11652 		     dap = nextdap) {
11653 			nextdap = LIST_NEXT(dap, da_pdlist);
11654 			if (dap->da_state & ATTACHED)
11655 				panic("handle_written_filepage: attached");
11656 			ep = (struct direct *)
11657 			    ((char *)bp->b_data + dap->da_offset);
11658 			ep->d_ino = dap->da_newinum;
11659 			dap->da_state &= ~UNDONE;
11660 			dap->da_state |= ATTACHED;
11661 			chgs = 1;
11662 			/*
11663 			 * If the inode referenced by the directory has
11664 			 * been written out, then the dependency can be
11665 			 * moved to the pending list.
11666 			 */
11667 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11668 				LIST_REMOVE(dap, da_pdlist);
11669 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11670 				    da_pdlist);
11671 			}
11672 		}
11673 	}
11674 	/*
11675 	 * If there were any rollbacks in the directory, then it must be
11676 	 * marked dirty so that its will eventually get written back in
11677 	 * its correct form.
11678 	 */
11679 	if (chgs) {
11680 		if ((bp->b_flags & B_DELWRI) == 0)
11681 			stat_dir_entry++;
11682 		bdirty(bp);
11683 		return (1);
11684 	}
11685 	/*
11686 	 * If we are not waiting for a new directory block to be
11687 	 * claimed by its inode, then the pagedep will be freed.
11688 	 * Otherwise it will remain to track any new entries on
11689 	 * the page in case they are fsync'ed.
11690 	 */
11691 	free_pagedep(pagedep);
11692 	return (0);
11693 }
11694 
11695 /*
11696  * Writing back in-core inode structures.
11697  *
11698  * The filesystem only accesses an inode's contents when it occupies an
11699  * "in-core" inode structure.  These "in-core" structures are separate from
11700  * the page frames used to cache inode blocks.  Only the latter are
11701  * transferred to/from the disk.  So, when the updated contents of the
11702  * "in-core" inode structure are copied to the corresponding in-memory inode
11703  * block, the dependencies are also transferred.  The following procedure is
11704  * called when copying a dirty "in-core" inode to a cached inode block.
11705  */
11706 
11707 /*
11708  * Called when an inode is loaded from disk. If the effective link count
11709  * differed from the actual link count when it was last flushed, then we
11710  * need to ensure that the correct effective link count is put back.
11711  */
11712 void
11713 softdep_load_inodeblock(ip)
11714 	struct inode *ip;	/* the "in_core" copy of the inode */
11715 {
11716 	struct inodedep *inodedep;
11717 
11718 	/*
11719 	 * Check for alternate nlink count.
11720 	 */
11721 	ip->i_effnlink = ip->i_nlink;
11722 	ACQUIRE_LOCK(&lk);
11723 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11724 	    &inodedep) == 0) {
11725 		FREE_LOCK(&lk);
11726 		return;
11727 	}
11728 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11729 	FREE_LOCK(&lk);
11730 }
11731 
11732 /*
11733  * This routine is called just before the "in-core" inode
11734  * information is to be copied to the in-memory inode block.
11735  * Recall that an inode block contains several inodes. If
11736  * the force flag is set, then the dependencies will be
11737  * cleared so that the update can always be made. Note that
11738  * the buffer is locked when this routine is called, so we
11739  * will never be in the middle of writing the inode block
11740  * to disk.
11741  */
11742 void
11743 softdep_update_inodeblock(ip, bp, waitfor)
11744 	struct inode *ip;	/* the "in_core" copy of the inode */
11745 	struct buf *bp;		/* the buffer containing the inode block */
11746 	int waitfor;		/* nonzero => update must be allowed */
11747 {
11748 	struct inodedep *inodedep;
11749 	struct inoref *inoref;
11750 	struct worklist *wk;
11751 	struct mount *mp;
11752 	struct buf *ibp;
11753 	struct fs *fs;
11754 	int error;
11755 
11756 	mp = UFSTOVFS(ip->i_ump);
11757 	fs = ip->i_fs;
11758 	/*
11759 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11760 	 * does not have access to the in-core ip so must write directly into
11761 	 * the inode block buffer when setting freelink.
11762 	 */
11763 	if (fs->fs_magic == FS_UFS1_MAGIC)
11764 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11765 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11766 	else
11767 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11768 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11769 	/*
11770 	 * If the effective link count is not equal to the actual link
11771 	 * count, then we must track the difference in an inodedep while
11772 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11773 	 * if there is no existing inodedep, then there are no dependencies
11774 	 * to track.
11775 	 */
11776 	ACQUIRE_LOCK(&lk);
11777 again:
11778 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11779 		FREE_LOCK(&lk);
11780 		if (ip->i_effnlink != ip->i_nlink)
11781 			panic("softdep_update_inodeblock: bad link count");
11782 		return;
11783 	}
11784 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11785 		panic("softdep_update_inodeblock: bad delta");
11786 	/*
11787 	 * If we're flushing all dependencies we must also move any waiting
11788 	 * for journal writes onto the bufwait list prior to I/O.
11789 	 */
11790 	if (waitfor) {
11791 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11792 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11793 			    == DEPCOMPLETE) {
11794 				jwait(&inoref->if_list, MNT_WAIT);
11795 				goto again;
11796 			}
11797 		}
11798 	}
11799 	/*
11800 	 * Changes have been initiated. Anything depending on these
11801 	 * changes cannot occur until this inode has been written.
11802 	 */
11803 	inodedep->id_state &= ~COMPLETE;
11804 	if ((inodedep->id_state & ONWORKLIST) == 0)
11805 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11806 	/*
11807 	 * Any new dependencies associated with the incore inode must
11808 	 * now be moved to the list associated with the buffer holding
11809 	 * the in-memory copy of the inode. Once merged process any
11810 	 * allocdirects that are completed by the merger.
11811 	 */
11812 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11813 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11814 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11815 		    NULL);
11816 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11817 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11818 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11819 		    NULL);
11820 	/*
11821 	 * Now that the inode has been pushed into the buffer, the
11822 	 * operations dependent on the inode being written to disk
11823 	 * can be moved to the id_bufwait so that they will be
11824 	 * processed when the buffer I/O completes.
11825 	 */
11826 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11827 		WORKLIST_REMOVE(wk);
11828 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11829 	}
11830 	/*
11831 	 * Newly allocated inodes cannot be written until the bitmap
11832 	 * that allocates them have been written (indicated by
11833 	 * DEPCOMPLETE being set in id_state). If we are doing a
11834 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11835 	 * to be written so that the update can be done.
11836 	 */
11837 	if (waitfor == 0) {
11838 		FREE_LOCK(&lk);
11839 		return;
11840 	}
11841 retry:
11842 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11843 		FREE_LOCK(&lk);
11844 		return;
11845 	}
11846 	ibp = inodedep->id_bmsafemap->sm_buf;
11847 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11848 	if (ibp == NULL) {
11849 		/*
11850 		 * If ibp came back as NULL, the dependency could have been
11851 		 * freed while we slept.  Look it up again, and check to see
11852 		 * that it has completed.
11853 		 */
11854 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11855 			goto retry;
11856 		FREE_LOCK(&lk);
11857 		return;
11858 	}
11859 	FREE_LOCK(&lk);
11860 	if ((error = bwrite(ibp)) != 0)
11861 		softdep_error("softdep_update_inodeblock: bwrite", error);
11862 }
11863 
11864 /*
11865  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11866  * old inode dependency list (such as id_inoupdt). This routine must be
11867  * called with splbio interrupts blocked.
11868  */
11869 static void
11870 merge_inode_lists(newlisthead, oldlisthead)
11871 	struct allocdirectlst *newlisthead;
11872 	struct allocdirectlst *oldlisthead;
11873 {
11874 	struct allocdirect *listadp, *newadp;
11875 
11876 	newadp = TAILQ_FIRST(newlisthead);
11877 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11878 		if (listadp->ad_offset < newadp->ad_offset) {
11879 			listadp = TAILQ_NEXT(listadp, ad_next);
11880 			continue;
11881 		}
11882 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11883 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11884 		if (listadp->ad_offset == newadp->ad_offset) {
11885 			allocdirect_merge(oldlisthead, newadp,
11886 			    listadp);
11887 			listadp = newadp;
11888 		}
11889 		newadp = TAILQ_FIRST(newlisthead);
11890 	}
11891 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11892 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11893 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11894 	}
11895 }
11896 
11897 /*
11898  * If we are doing an fsync, then we must ensure that any directory
11899  * entries for the inode have been written after the inode gets to disk.
11900  */
11901 int
11902 softdep_fsync(vp)
11903 	struct vnode *vp;	/* the "in_core" copy of the inode */
11904 {
11905 	struct inodedep *inodedep;
11906 	struct pagedep *pagedep;
11907 	struct inoref *inoref;
11908 	struct worklist *wk;
11909 	struct diradd *dap;
11910 	struct mount *mp;
11911 	struct vnode *pvp;
11912 	struct inode *ip;
11913 	struct buf *bp;
11914 	struct fs *fs;
11915 	struct thread *td = curthread;
11916 	int error, flushparent, pagedep_new_block;
11917 	ino_t parentino;
11918 	ufs_lbn_t lbn;
11919 
11920 	ip = VTOI(vp);
11921 	fs = ip->i_fs;
11922 	mp = vp->v_mount;
11923 	ACQUIRE_LOCK(&lk);
11924 restart:
11925 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11926 		FREE_LOCK(&lk);
11927 		return (0);
11928 	}
11929 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11930 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11931 		    == DEPCOMPLETE) {
11932 			jwait(&inoref->if_list, MNT_WAIT);
11933 			goto restart;
11934 		}
11935 	}
11936 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11937 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11938 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11939 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11940 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11941 		panic("softdep_fsync: pending ops %p", inodedep);
11942 	for (error = 0, flushparent = 0; ; ) {
11943 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11944 			break;
11945 		if (wk->wk_type != D_DIRADD)
11946 			panic("softdep_fsync: Unexpected type %s",
11947 			    TYPENAME(wk->wk_type));
11948 		dap = WK_DIRADD(wk);
11949 		/*
11950 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11951 		 * dependency or is contained in a newly allocated block.
11952 		 */
11953 		if (dap->da_state & DIRCHG)
11954 			pagedep = dap->da_previous->dm_pagedep;
11955 		else
11956 			pagedep = dap->da_pagedep;
11957 		parentino = pagedep->pd_ino;
11958 		lbn = pagedep->pd_lbn;
11959 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11960 			panic("softdep_fsync: dirty");
11961 		if ((dap->da_state & MKDIR_PARENT) ||
11962 		    (pagedep->pd_state & NEWBLOCK))
11963 			flushparent = 1;
11964 		else
11965 			flushparent = 0;
11966 		/*
11967 		 * If we are being fsync'ed as part of vgone'ing this vnode,
11968 		 * then we will not be able to release and recover the
11969 		 * vnode below, so we just have to give up on writing its
11970 		 * directory entry out. It will eventually be written, just
11971 		 * not now, but then the user was not asking to have it
11972 		 * written, so we are not breaking any promises.
11973 		 */
11974 		if (vp->v_iflag & VI_DOOMED)
11975 			break;
11976 		/*
11977 		 * We prevent deadlock by always fetching inodes from the
11978 		 * root, moving down the directory tree. Thus, when fetching
11979 		 * our parent directory, we first try to get the lock. If
11980 		 * that fails, we must unlock ourselves before requesting
11981 		 * the lock on our parent. See the comment in ufs_lookup
11982 		 * for details on possible races.
11983 		 */
11984 		FREE_LOCK(&lk);
11985 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11986 		    FFSV_FORCEINSMQ)) {
11987 			error = vfs_busy(mp, MBF_NOWAIT);
11988 			if (error != 0) {
11989 				vfs_ref(mp);
11990 				VOP_UNLOCK(vp, 0);
11991 				error = vfs_busy(mp, 0);
11992 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11993 				vfs_rel(mp);
11994 				if (error != 0)
11995 					return (ENOENT);
11996 				if (vp->v_iflag & VI_DOOMED) {
11997 					vfs_unbusy(mp);
11998 					return (ENOENT);
11999 				}
12000 			}
12001 			VOP_UNLOCK(vp, 0);
12002 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12003 			    &pvp, FFSV_FORCEINSMQ);
12004 			vfs_unbusy(mp);
12005 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12006 			if (vp->v_iflag & VI_DOOMED) {
12007 				if (error == 0)
12008 					vput(pvp);
12009 				error = ENOENT;
12010 			}
12011 			if (error != 0)
12012 				return (error);
12013 		}
12014 		/*
12015 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12016 		 * that are contained in direct blocks will be resolved by
12017 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12018 		 * may require a complete sync'ing of the directory. So, we
12019 		 * try the cheap and fast ffs_update first, and if that fails,
12020 		 * then we do the slower ffs_syncvnode of the directory.
12021 		 */
12022 		if (flushparent) {
12023 			int locked;
12024 
12025 			if ((error = ffs_update(pvp, 1)) != 0) {
12026 				vput(pvp);
12027 				return (error);
12028 			}
12029 			ACQUIRE_LOCK(&lk);
12030 			locked = 1;
12031 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12032 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12033 					if (wk->wk_type != D_DIRADD)
12034 						panic("softdep_fsync: Unexpected type %s",
12035 						      TYPENAME(wk->wk_type));
12036 					dap = WK_DIRADD(wk);
12037 					if (dap->da_state & DIRCHG)
12038 						pagedep = dap->da_previous->dm_pagedep;
12039 					else
12040 						pagedep = dap->da_pagedep;
12041 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12042 					FREE_LOCK(&lk);
12043 					locked = 0;
12044 					if (pagedep_new_block && (error =
12045 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12046 						vput(pvp);
12047 						return (error);
12048 					}
12049 				}
12050 			}
12051 			if (locked)
12052 				FREE_LOCK(&lk);
12053 		}
12054 		/*
12055 		 * Flush directory page containing the inode's name.
12056 		 */
12057 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12058 		    &bp);
12059 		if (error == 0)
12060 			error = bwrite(bp);
12061 		else
12062 			brelse(bp);
12063 		vput(pvp);
12064 		if (error != 0)
12065 			return (error);
12066 		ACQUIRE_LOCK(&lk);
12067 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12068 			break;
12069 	}
12070 	FREE_LOCK(&lk);
12071 	return (0);
12072 }
12073 
12074 /*
12075  * Flush all the dirty bitmaps associated with the block device
12076  * before flushing the rest of the dirty blocks so as to reduce
12077  * the number of dependencies that will have to be rolled back.
12078  *
12079  * XXX Unused?
12080  */
12081 void
12082 softdep_fsync_mountdev(vp)
12083 	struct vnode *vp;
12084 {
12085 	struct buf *bp, *nbp;
12086 	struct worklist *wk;
12087 	struct bufobj *bo;
12088 
12089 	if (!vn_isdisk(vp, NULL))
12090 		panic("softdep_fsync_mountdev: vnode not a disk");
12091 	bo = &vp->v_bufobj;
12092 restart:
12093 	BO_LOCK(bo);
12094 	ACQUIRE_LOCK(&lk);
12095 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12096 		/*
12097 		 * If it is already scheduled, skip to the next buffer.
12098 		 */
12099 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12100 			continue;
12101 
12102 		if ((bp->b_flags & B_DELWRI) == 0)
12103 			panic("softdep_fsync_mountdev: not dirty");
12104 		/*
12105 		 * We are only interested in bitmaps with outstanding
12106 		 * dependencies.
12107 		 */
12108 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12109 		    wk->wk_type != D_BMSAFEMAP ||
12110 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12111 			BUF_UNLOCK(bp);
12112 			continue;
12113 		}
12114 		FREE_LOCK(&lk);
12115 		BO_UNLOCK(bo);
12116 		bremfree(bp);
12117 		(void) bawrite(bp);
12118 		goto restart;
12119 	}
12120 	FREE_LOCK(&lk);
12121 	drain_output(vp);
12122 	BO_UNLOCK(bo);
12123 }
12124 
12125 /*
12126  * Sync all cylinder groups that were dirty at the time this function is
12127  * called.  Newly dirtied cgs will be inserted before the sintenel.  This
12128  * is used to flush freedep activity that may be holding up writes to a
12129  * indirect block.
12130  */
12131 static int
12132 sync_cgs(mp, waitfor)
12133 	struct mount *mp;
12134 	int waitfor;
12135 {
12136 	struct bmsafemap *bmsafemap;
12137 	struct bmsafemap *sintenel;
12138 	struct ufsmount *ump;
12139 	struct buf *bp;
12140 	int error;
12141 
12142 	sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12143 	sintenel->sm_cg = -1;
12144 	ump = VFSTOUFS(mp);
12145 	error = 0;
12146 	ACQUIRE_LOCK(&lk);
12147 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next);
12148 	for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL;
12149 	    bmsafemap = LIST_NEXT(sintenel, sm_next)) {
12150 		/* Skip sintenels and cgs with no work to release. */
12151 		if (bmsafemap->sm_cg == -1 ||
12152 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12153 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12154 			LIST_REMOVE(sintenel, sm_next);
12155 			LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
12156 			continue;
12157 		}
12158 		/*
12159 		 * If we don't get the lock and we're waiting try again, if
12160 		 * not move on to the next buf and try to sync it.
12161 		 */
12162 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
12163 		if (bp == NULL && waitfor == MNT_WAIT)
12164 			continue;
12165 		LIST_REMOVE(sintenel, sm_next);
12166 		LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
12167 		if (bp == NULL)
12168 			continue;
12169 		FREE_LOCK(&lk);
12170 		if (waitfor == MNT_NOWAIT)
12171 			bawrite(bp);
12172 		else
12173 			error = bwrite(bp);
12174 		ACQUIRE_LOCK(&lk);
12175 		if (error)
12176 			break;
12177 	}
12178 	LIST_REMOVE(sintenel, sm_next);
12179 	FREE_LOCK(&lk);
12180 	free(sintenel, M_BMSAFEMAP);
12181 	return (error);
12182 }
12183 
12184 /*
12185  * This routine is called when we are trying to synchronously flush a
12186  * file. This routine must eliminate any filesystem metadata dependencies
12187  * so that the syncing routine can succeed.
12188  */
12189 int
12190 softdep_sync_metadata(struct vnode *vp)
12191 {
12192 	int error;
12193 
12194 	/*
12195 	 * Ensure that any direct block dependencies have been cleared,
12196 	 * truncations are started, and inode references are journaled.
12197 	 */
12198 	ACQUIRE_LOCK(&lk);
12199 	/*
12200 	 * Write all journal records to prevent rollbacks on devvp.
12201 	 */
12202 	if (vp->v_type == VCHR)
12203 		softdep_flushjournal(vp->v_mount);
12204 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
12205 	/*
12206 	 * Ensure that all truncates are written so we won't find deps on
12207 	 * indirect blocks.
12208 	 */
12209 	process_truncates(vp);
12210 	FREE_LOCK(&lk);
12211 
12212 	return (error);
12213 }
12214 
12215 /*
12216  * This routine is called when we are attempting to sync a buf with
12217  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12218  * other IO it can but returns EBUSY if the buffer is not yet able to
12219  * be written.  Dependencies which will not cause rollbacks will always
12220  * return 0.
12221  */
12222 int
12223 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12224 {
12225 	struct indirdep *indirdep;
12226 	struct pagedep *pagedep;
12227 	struct allocindir *aip;
12228 	struct newblk *newblk;
12229 	struct buf *nbp;
12230 	struct worklist *wk;
12231 	int i, error;
12232 
12233 	/*
12234 	 * For VCHR we just don't want to force flush any dependencies that
12235 	 * will cause rollbacks.
12236 	 */
12237 	if (vp->v_type == VCHR) {
12238 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12239 			return (EBUSY);
12240 		return (0);
12241 	}
12242 	ACQUIRE_LOCK(&lk);
12243 	/*
12244 	 * As we hold the buffer locked, none of its dependencies
12245 	 * will disappear.
12246 	 */
12247 	error = 0;
12248 top:
12249 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12250 		switch (wk->wk_type) {
12251 
12252 		case D_ALLOCDIRECT:
12253 		case D_ALLOCINDIR:
12254 			newblk = WK_NEWBLK(wk);
12255 			if (newblk->nb_jnewblk != NULL) {
12256 				if (waitfor == MNT_NOWAIT) {
12257 					error = EBUSY;
12258 					goto out_unlock;
12259 				}
12260 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12261 				goto top;
12262 			}
12263 			if (newblk->nb_state & DEPCOMPLETE ||
12264 			    waitfor == MNT_NOWAIT)
12265 				continue;
12266 			nbp = newblk->nb_bmsafemap->sm_buf;
12267 			nbp = getdirtybuf(nbp, &lk, waitfor);
12268 			if (nbp == NULL)
12269 				goto top;
12270 			FREE_LOCK(&lk);
12271 			if ((error = bwrite(nbp)) != 0)
12272 				goto out;
12273 			ACQUIRE_LOCK(&lk);
12274 			continue;
12275 
12276 		case D_INDIRDEP:
12277 			indirdep = WK_INDIRDEP(wk);
12278 			if (waitfor == MNT_NOWAIT) {
12279 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12280 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12281 					error = EBUSY;
12282 					goto out_unlock;
12283 				}
12284 			}
12285 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12286 				panic("softdep_sync_buf: truncation pending.");
12287 		restart:
12288 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12289 				newblk = (struct newblk *)aip;
12290 				if (newblk->nb_jnewblk != NULL) {
12291 					jwait(&newblk->nb_jnewblk->jn_list,
12292 					    waitfor);
12293 					goto restart;
12294 				}
12295 				if (newblk->nb_state & DEPCOMPLETE)
12296 					continue;
12297 				nbp = newblk->nb_bmsafemap->sm_buf;
12298 				nbp = getdirtybuf(nbp, &lk, waitfor);
12299 				if (nbp == NULL)
12300 					goto restart;
12301 				FREE_LOCK(&lk);
12302 				if ((error = bwrite(nbp)) != 0)
12303 					goto out;
12304 				ACQUIRE_LOCK(&lk);
12305 				goto restart;
12306 			}
12307 			continue;
12308 
12309 		case D_PAGEDEP:
12310 			/*
12311 			 * Only flush directory entries in synchronous passes.
12312 			 */
12313 			if (waitfor != MNT_WAIT) {
12314 				error = EBUSY;
12315 				goto out_unlock;
12316 			}
12317 			/*
12318 			 * While syncing snapshots, we must allow recursive
12319 			 * lookups.
12320 			 */
12321 			BUF_AREC(bp);
12322 			/*
12323 			 * We are trying to sync a directory that may
12324 			 * have dependencies on both its own metadata
12325 			 * and/or dependencies on the inodes of any
12326 			 * recently allocated files. We walk its diradd
12327 			 * lists pushing out the associated inode.
12328 			 */
12329 			pagedep = WK_PAGEDEP(wk);
12330 			for (i = 0; i < DAHASHSZ; i++) {
12331 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12332 					continue;
12333 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12334 				    &pagedep->pd_diraddhd[i]))) {
12335 					BUF_NOREC(bp);
12336 					goto out_unlock;
12337 				}
12338 			}
12339 			BUF_NOREC(bp);
12340 			continue;
12341 
12342 		case D_FREEWORK:
12343 		case D_FREEDEP:
12344 		case D_JSEGDEP:
12345 		case D_JNEWBLK:
12346 			continue;
12347 
12348 		default:
12349 			panic("softdep_sync_buf: Unknown type %s",
12350 			    TYPENAME(wk->wk_type));
12351 			/* NOTREACHED */
12352 		}
12353 	}
12354 out_unlock:
12355 	FREE_LOCK(&lk);
12356 out:
12357 	return (error);
12358 }
12359 
12360 /*
12361  * Flush the dependencies associated with an inodedep.
12362  * Called with splbio blocked.
12363  */
12364 static int
12365 flush_inodedep_deps(vp, mp, ino)
12366 	struct vnode *vp;
12367 	struct mount *mp;
12368 	ino_t ino;
12369 {
12370 	struct inodedep *inodedep;
12371 	struct inoref *inoref;
12372 	int error, waitfor;
12373 
12374 	/*
12375 	 * This work is done in two passes. The first pass grabs most
12376 	 * of the buffers and begins asynchronously writing them. The
12377 	 * only way to wait for these asynchronous writes is to sleep
12378 	 * on the filesystem vnode which may stay busy for a long time
12379 	 * if the filesystem is active. So, instead, we make a second
12380 	 * pass over the dependencies blocking on each write. In the
12381 	 * usual case we will be blocking against a write that we
12382 	 * initiated, so when it is done the dependency will have been
12383 	 * resolved. Thus the second pass is expected to end quickly.
12384 	 * We give a brief window at the top of the loop to allow
12385 	 * any pending I/O to complete.
12386 	 */
12387 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12388 		if (error)
12389 			return (error);
12390 		FREE_LOCK(&lk);
12391 		ACQUIRE_LOCK(&lk);
12392 restart:
12393 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12394 			return (0);
12395 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12396 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12397 			    == DEPCOMPLETE) {
12398 				jwait(&inoref->if_list, MNT_WAIT);
12399 				goto restart;
12400 			}
12401 		}
12402 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12403 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12404 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12405 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12406 			continue;
12407 		/*
12408 		 * If pass2, we are done, otherwise do pass 2.
12409 		 */
12410 		if (waitfor == MNT_WAIT)
12411 			break;
12412 		waitfor = MNT_WAIT;
12413 	}
12414 	/*
12415 	 * Try freeing inodedep in case all dependencies have been removed.
12416 	 */
12417 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12418 		(void) free_inodedep(inodedep);
12419 	return (0);
12420 }
12421 
12422 /*
12423  * Flush an inode dependency list.
12424  * Called with splbio blocked.
12425  */
12426 static int
12427 flush_deplist(listhead, waitfor, errorp)
12428 	struct allocdirectlst *listhead;
12429 	int waitfor;
12430 	int *errorp;
12431 {
12432 	struct allocdirect *adp;
12433 	struct newblk *newblk;
12434 	struct buf *bp;
12435 
12436 	mtx_assert(&lk, MA_OWNED);
12437 	TAILQ_FOREACH(adp, listhead, ad_next) {
12438 		newblk = (struct newblk *)adp;
12439 		if (newblk->nb_jnewblk != NULL) {
12440 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12441 			return (1);
12442 		}
12443 		if (newblk->nb_state & DEPCOMPLETE)
12444 			continue;
12445 		bp = newblk->nb_bmsafemap->sm_buf;
12446 		bp = getdirtybuf(bp, &lk, waitfor);
12447 		if (bp == NULL) {
12448 			if (waitfor == MNT_NOWAIT)
12449 				continue;
12450 			return (1);
12451 		}
12452 		FREE_LOCK(&lk);
12453 		if (waitfor == MNT_NOWAIT)
12454 			bawrite(bp);
12455 		else
12456 			*errorp = bwrite(bp);
12457 		ACQUIRE_LOCK(&lk);
12458 		return (1);
12459 	}
12460 	return (0);
12461 }
12462 
12463 /*
12464  * Flush dependencies associated with an allocdirect block.
12465  */
12466 static int
12467 flush_newblk_dep(vp, mp, lbn)
12468 	struct vnode *vp;
12469 	struct mount *mp;
12470 	ufs_lbn_t lbn;
12471 {
12472 	struct newblk *newblk;
12473 	struct bufobj *bo;
12474 	struct inode *ip;
12475 	struct buf *bp;
12476 	ufs2_daddr_t blkno;
12477 	int error;
12478 
12479 	error = 0;
12480 	bo = &vp->v_bufobj;
12481 	ip = VTOI(vp);
12482 	blkno = DIP(ip, i_db[lbn]);
12483 	if (blkno == 0)
12484 		panic("flush_newblk_dep: Missing block");
12485 	ACQUIRE_LOCK(&lk);
12486 	/*
12487 	 * Loop until all dependencies related to this block are satisfied.
12488 	 * We must be careful to restart after each sleep in case a write
12489 	 * completes some part of this process for us.
12490 	 */
12491 	for (;;) {
12492 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12493 			FREE_LOCK(&lk);
12494 			break;
12495 		}
12496 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12497 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12498 		/*
12499 		 * Flush the journal.
12500 		 */
12501 		if (newblk->nb_jnewblk != NULL) {
12502 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12503 			continue;
12504 		}
12505 		/*
12506 		 * Write the bitmap dependency.
12507 		 */
12508 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12509 			bp = newblk->nb_bmsafemap->sm_buf;
12510 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12511 			if (bp == NULL)
12512 				continue;
12513 			FREE_LOCK(&lk);
12514 			error = bwrite(bp);
12515 			if (error)
12516 				break;
12517 			ACQUIRE_LOCK(&lk);
12518 			continue;
12519 		}
12520 		/*
12521 		 * Write the buffer.
12522 		 */
12523 		FREE_LOCK(&lk);
12524 		BO_LOCK(bo);
12525 		bp = gbincore(bo, lbn);
12526 		if (bp != NULL) {
12527 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12528 			    LK_INTERLOCK, BO_MTX(bo));
12529 			if (error == ENOLCK) {
12530 				ACQUIRE_LOCK(&lk);
12531 				continue; /* Slept, retry */
12532 			}
12533 			if (error != 0)
12534 				break;	/* Failed */
12535 			if (bp->b_flags & B_DELWRI) {
12536 				bremfree(bp);
12537 				error = bwrite(bp);
12538 				if (error)
12539 					break;
12540 			} else
12541 				BUF_UNLOCK(bp);
12542 		} else
12543 			BO_UNLOCK(bo);
12544 		/*
12545 		 * We have to wait for the direct pointers to
12546 		 * point at the newdirblk before the dependency
12547 		 * will go away.
12548 		 */
12549 		error = ffs_update(vp, 1);
12550 		if (error)
12551 			break;
12552 		ACQUIRE_LOCK(&lk);
12553 	}
12554 	return (error);
12555 }
12556 
12557 /*
12558  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12559  * Called with splbio blocked.
12560  */
12561 static int
12562 flush_pagedep_deps(pvp, mp, diraddhdp)
12563 	struct vnode *pvp;
12564 	struct mount *mp;
12565 	struct diraddhd *diraddhdp;
12566 {
12567 	struct inodedep *inodedep;
12568 	struct inoref *inoref;
12569 	struct ufsmount *ump;
12570 	struct diradd *dap;
12571 	struct vnode *vp;
12572 	int error = 0;
12573 	struct buf *bp;
12574 	ino_t inum;
12575 
12576 	ump = VFSTOUFS(mp);
12577 restart:
12578 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12579 		/*
12580 		 * Flush ourselves if this directory entry
12581 		 * has a MKDIR_PARENT dependency.
12582 		 */
12583 		if (dap->da_state & MKDIR_PARENT) {
12584 			FREE_LOCK(&lk);
12585 			if ((error = ffs_update(pvp, 1)) != 0)
12586 				break;
12587 			ACQUIRE_LOCK(&lk);
12588 			/*
12589 			 * If that cleared dependencies, go on to next.
12590 			 */
12591 			if (dap != LIST_FIRST(diraddhdp))
12592 				continue;
12593 			if (dap->da_state & MKDIR_PARENT)
12594 				panic("flush_pagedep_deps: MKDIR_PARENT");
12595 		}
12596 		/*
12597 		 * A newly allocated directory must have its "." and
12598 		 * ".." entries written out before its name can be
12599 		 * committed in its parent.
12600 		 */
12601 		inum = dap->da_newinum;
12602 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12603 			panic("flush_pagedep_deps: lost inode1");
12604 		/*
12605 		 * Wait for any pending journal adds to complete so we don't
12606 		 * cause rollbacks while syncing.
12607 		 */
12608 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12609 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12610 			    == DEPCOMPLETE) {
12611 				jwait(&inoref->if_list, MNT_WAIT);
12612 				goto restart;
12613 			}
12614 		}
12615 		if (dap->da_state & MKDIR_BODY) {
12616 			FREE_LOCK(&lk);
12617 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12618 			    FFSV_FORCEINSMQ)))
12619 				break;
12620 			error = flush_newblk_dep(vp, mp, 0);
12621 			/*
12622 			 * If we still have the dependency we might need to
12623 			 * update the vnode to sync the new link count to
12624 			 * disk.
12625 			 */
12626 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12627 				error = ffs_update(vp, 1);
12628 			vput(vp);
12629 			if (error != 0)
12630 				break;
12631 			ACQUIRE_LOCK(&lk);
12632 			/*
12633 			 * If that cleared dependencies, go on to next.
12634 			 */
12635 			if (dap != LIST_FIRST(diraddhdp))
12636 				continue;
12637 			if (dap->da_state & MKDIR_BODY) {
12638 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12639 				    &inodedep);
12640 				panic("flush_pagedep_deps: MKDIR_BODY "
12641 				    "inodedep %p dap %p vp %p",
12642 				    inodedep, dap, vp);
12643 			}
12644 		}
12645 		/*
12646 		 * Flush the inode on which the directory entry depends.
12647 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12648 		 * the only remaining dependency is that the updated inode
12649 		 * count must get pushed to disk. The inode has already
12650 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12651 		 * the time of the reference count change. So we need only
12652 		 * locate that buffer, ensure that there will be no rollback
12653 		 * caused by a bitmap dependency, then write the inode buffer.
12654 		 */
12655 retry:
12656 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12657 			panic("flush_pagedep_deps: lost inode");
12658 		/*
12659 		 * If the inode still has bitmap dependencies,
12660 		 * push them to disk.
12661 		 */
12662 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12663 			bp = inodedep->id_bmsafemap->sm_buf;
12664 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12665 			if (bp == NULL)
12666 				goto retry;
12667 			FREE_LOCK(&lk);
12668 			if ((error = bwrite(bp)) != 0)
12669 				break;
12670 			ACQUIRE_LOCK(&lk);
12671 			if (dap != LIST_FIRST(diraddhdp))
12672 				continue;
12673 		}
12674 		/*
12675 		 * If the inode is still sitting in a buffer waiting
12676 		 * to be written or waiting for the link count to be
12677 		 * adjusted update it here to flush it to disk.
12678 		 */
12679 		if (dap == LIST_FIRST(diraddhdp)) {
12680 			FREE_LOCK(&lk);
12681 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12682 			    FFSV_FORCEINSMQ)))
12683 				break;
12684 			error = ffs_update(vp, 1);
12685 			vput(vp);
12686 			if (error)
12687 				break;
12688 			ACQUIRE_LOCK(&lk);
12689 		}
12690 		/*
12691 		 * If we have failed to get rid of all the dependencies
12692 		 * then something is seriously wrong.
12693 		 */
12694 		if (dap == LIST_FIRST(diraddhdp)) {
12695 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12696 			panic("flush_pagedep_deps: failed to flush "
12697 			    "inodedep %p ino %ju dap %p",
12698 			    inodedep, (uintmax_t)inum, dap);
12699 		}
12700 	}
12701 	if (error)
12702 		ACQUIRE_LOCK(&lk);
12703 	return (error);
12704 }
12705 
12706 /*
12707  * A large burst of file addition or deletion activity can drive the
12708  * memory load excessively high. First attempt to slow things down
12709  * using the techniques below. If that fails, this routine requests
12710  * the offending operations to fall back to running synchronously
12711  * until the memory load returns to a reasonable level.
12712  */
12713 int
12714 softdep_slowdown(vp)
12715 	struct vnode *vp;
12716 {
12717 	struct ufsmount *ump;
12718 	int jlow;
12719 	int max_softdeps_hard;
12720 
12721 	ACQUIRE_LOCK(&lk);
12722 	jlow = 0;
12723 	/*
12724 	 * Check for journal space if needed.
12725 	 */
12726 	if (DOINGSUJ(vp)) {
12727 		ump = VFSTOUFS(vp->v_mount);
12728 		if (journal_space(ump, 0) == 0)
12729 			jlow = 1;
12730 	}
12731 	max_softdeps_hard = max_softdeps * 11 / 10;
12732 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12733 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12734 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12735 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12736 		FREE_LOCK(&lk);
12737   		return (0);
12738 	}
12739 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12740 		softdep_speedup();
12741 	stat_sync_limit_hit += 1;
12742 	FREE_LOCK(&lk);
12743 	if (DOINGSUJ(vp))
12744 		return (0);
12745 	return (1);
12746 }
12747 
12748 /*
12749  * Called by the allocation routines when they are about to fail
12750  * in the hope that we can free up the requested resource (inodes
12751  * or disk space).
12752  *
12753  * First check to see if the work list has anything on it. If it has,
12754  * clean up entries until we successfully free the requested resource.
12755  * Because this process holds inodes locked, we cannot handle any remove
12756  * requests that might block on a locked inode as that could lead to
12757  * deadlock. If the worklist yields none of the requested resource,
12758  * start syncing out vnodes to free up the needed space.
12759  */
12760 int
12761 softdep_request_cleanup(fs, vp, cred, resource)
12762 	struct fs *fs;
12763 	struct vnode *vp;
12764 	struct ucred *cred;
12765 	int resource;
12766 {
12767 	struct ufsmount *ump;
12768 	struct mount *mp;
12769 	struct vnode *lvp, *mvp;
12770 	long starttime;
12771 	ufs2_daddr_t needed;
12772 	int error;
12773 
12774 	/*
12775 	 * If we are being called because of a process doing a
12776 	 * copy-on-write, then it is not safe to process any
12777 	 * worklist items as we will recurse into the copyonwrite
12778 	 * routine.  This will result in an incoherent snapshot.
12779 	 * If the vnode that we hold is a snapshot, we must avoid
12780 	 * handling other resources that could cause deadlock.
12781 	 */
12782 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12783 		return (0);
12784 
12785 	if (resource == FLUSH_BLOCKS_WAIT)
12786 		stat_cleanup_blkrequests += 1;
12787 	else
12788 		stat_cleanup_inorequests += 1;
12789 
12790 	mp = vp->v_mount;
12791 	ump = VFSTOUFS(mp);
12792 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12793 	UFS_UNLOCK(ump);
12794 	error = ffs_update(vp, 1);
12795 	if (error != 0) {
12796 		UFS_LOCK(ump);
12797 		return (0);
12798 	}
12799 	/*
12800 	 * If we are in need of resources, consider pausing for
12801 	 * tickdelay to give ourselves some breathing room.
12802 	 */
12803 	ACQUIRE_LOCK(&lk);
12804 	process_removes(vp);
12805 	process_truncates(vp);
12806 	request_cleanup(UFSTOVFS(ump), resource);
12807 	FREE_LOCK(&lk);
12808 	/*
12809 	 * Now clean up at least as many resources as we will need.
12810 	 *
12811 	 * When requested to clean up inodes, the number that are needed
12812 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12813 	 * plus a bit of slop (2) in case some more writers show up while
12814 	 * we are cleaning.
12815 	 *
12816 	 * When requested to free up space, the amount of space that
12817 	 * we need is enough blocks to allocate a full-sized segment
12818 	 * (fs_contigsumsize). The number of such segments that will
12819 	 * be needed is set by the number of simultaneous writers
12820 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12821 	 * writers show up while we are cleaning.
12822 	 *
12823 	 * Additionally, if we are unpriviledged and allocating space,
12824 	 * we need to ensure that we clean up enough blocks to get the
12825 	 * needed number of blocks over the threshhold of the minimum
12826 	 * number of blocks required to be kept free by the filesystem
12827 	 * (fs_minfree).
12828 	 */
12829 	if (resource == FLUSH_INODES_WAIT) {
12830 		needed = vp->v_mount->mnt_writeopcount + 2;
12831 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12832 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12833 		    fs->fs_contigsumsize;
12834 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12835 			needed += fragstoblks(fs,
12836 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12837 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12838 	} else {
12839 		UFS_LOCK(ump);
12840 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12841 		    resource);
12842 		return (0);
12843 	}
12844 	starttime = time_second;
12845 retry:
12846 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12847 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12848 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12849 	    fs->fs_cstotal.cs_nifree <= needed)) {
12850 		ACQUIRE_LOCK(&lk);
12851 		if (ump->softdep_on_worklist > 0 &&
12852 		    process_worklist_item(UFSTOVFS(ump),
12853 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12854 			stat_worklist_push += 1;
12855 		FREE_LOCK(&lk);
12856 	}
12857 	/*
12858 	 * If we still need resources and there are no more worklist
12859 	 * entries to process to obtain them, we have to start flushing
12860 	 * the dirty vnodes to force the release of additional requests
12861 	 * to the worklist that we can then process to reap addition
12862 	 * resources. We walk the vnodes associated with the mount point
12863 	 * until we get the needed worklist requests that we can reap.
12864 	 */
12865 	if ((resource == FLUSH_BLOCKS_WAIT &&
12866 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12867 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12868 	     fs->fs_cstotal.cs_nifree <= needed)) {
12869 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
12870 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12871 				VI_UNLOCK(lvp);
12872 				continue;
12873 			}
12874 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12875 			    curthread))
12876 				continue;
12877 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12878 				vput(lvp);
12879 				continue;
12880 			}
12881 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
12882 			vput(lvp);
12883 		}
12884 		lvp = ump->um_devvp;
12885 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12886 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12887 			VOP_UNLOCK(lvp, 0);
12888 		}
12889 		if (ump->softdep_on_worklist > 0) {
12890 			stat_cleanup_retries += 1;
12891 			goto retry;
12892 		}
12893 		stat_cleanup_failures += 1;
12894 	}
12895 	if (time_second - starttime > stat_cleanup_high_delay)
12896 		stat_cleanup_high_delay = time_second - starttime;
12897 	UFS_LOCK(ump);
12898 	return (1);
12899 }
12900 
12901 /*
12902  * If memory utilization has gotten too high, deliberately slow things
12903  * down and speed up the I/O processing.
12904  */
12905 extern struct thread *syncertd;
12906 static int
12907 request_cleanup(mp, resource)
12908 	struct mount *mp;
12909 	int resource;
12910 {
12911 	struct thread *td = curthread;
12912 	struct ufsmount *ump;
12913 
12914 	mtx_assert(&lk, MA_OWNED);
12915 	/*
12916 	 * We never hold up the filesystem syncer or buf daemon.
12917 	 */
12918 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12919 		return (0);
12920 	ump = VFSTOUFS(mp);
12921 	/*
12922 	 * First check to see if the work list has gotten backlogged.
12923 	 * If it has, co-opt this process to help clean up two entries.
12924 	 * Because this process may hold inodes locked, we cannot
12925 	 * handle any remove requests that might block on a locked
12926 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12927 	 * to avoid recursively processing the worklist.
12928 	 */
12929 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12930 		td->td_pflags |= TDP_SOFTDEP;
12931 		process_worklist_item(mp, 2, LK_NOWAIT);
12932 		td->td_pflags &= ~TDP_SOFTDEP;
12933 		stat_worklist_push += 2;
12934 		return(1);
12935 	}
12936 	/*
12937 	 * Next, we attempt to speed up the syncer process. If that
12938 	 * is successful, then we allow the process to continue.
12939 	 */
12940 	if (softdep_speedup() &&
12941 	    resource != FLUSH_BLOCKS_WAIT &&
12942 	    resource != FLUSH_INODES_WAIT)
12943 		return(0);
12944 	/*
12945 	 * If we are resource constrained on inode dependencies, try
12946 	 * flushing some dirty inodes. Otherwise, we are constrained
12947 	 * by file deletions, so try accelerating flushes of directories
12948 	 * with removal dependencies. We would like to do the cleanup
12949 	 * here, but we probably hold an inode locked at this point and
12950 	 * that might deadlock against one that we try to clean. So,
12951 	 * the best that we can do is request the syncer daemon to do
12952 	 * the cleanup for us.
12953 	 */
12954 	switch (resource) {
12955 
12956 	case FLUSH_INODES:
12957 	case FLUSH_INODES_WAIT:
12958 		stat_ino_limit_push += 1;
12959 		req_clear_inodedeps += 1;
12960 		stat_countp = &stat_ino_limit_hit;
12961 		break;
12962 
12963 	case FLUSH_BLOCKS:
12964 	case FLUSH_BLOCKS_WAIT:
12965 		stat_blk_limit_push += 1;
12966 		req_clear_remove += 1;
12967 		stat_countp = &stat_blk_limit_hit;
12968 		break;
12969 
12970 	default:
12971 		panic("request_cleanup: unknown type");
12972 	}
12973 	/*
12974 	 * Hopefully the syncer daemon will catch up and awaken us.
12975 	 * We wait at most tickdelay before proceeding in any case.
12976 	 */
12977 	proc_waiting += 1;
12978 	if (callout_pending(&softdep_callout) == FALSE)
12979 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12980 		    pause_timer, 0);
12981 
12982 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12983 	proc_waiting -= 1;
12984 	return (1);
12985 }
12986 
12987 /*
12988  * Awaken processes pausing in request_cleanup and clear proc_waiting
12989  * to indicate that there is no longer a timer running.
12990  */
12991 static void
12992 pause_timer(arg)
12993 	void *arg;
12994 {
12995 
12996 	/*
12997 	 * The callout_ API has acquired mtx and will hold it around this
12998 	 * function call.
12999 	 */
13000 	*stat_countp += 1;
13001 	wakeup_one(&proc_waiting);
13002 	if (proc_waiting > 0)
13003 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13004 		    pause_timer, 0);
13005 }
13006 
13007 /*
13008  * Flush out a directory with at least one removal dependency in an effort to
13009  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13010  */
13011 static void
13012 clear_remove(void)
13013 {
13014 	struct pagedep_hashhead *pagedephd;
13015 	struct pagedep *pagedep;
13016 	static int next = 0;
13017 	struct mount *mp;
13018 	struct vnode *vp;
13019 	struct bufobj *bo;
13020 	int error, cnt;
13021 	ino_t ino;
13022 
13023 	mtx_assert(&lk, MA_OWNED);
13024 
13025 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
13026 		pagedephd = &pagedep_hashtbl[next++];
13027 		if (next >= pagedep_hash)
13028 			next = 0;
13029 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13030 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13031 				continue;
13032 			mp = pagedep->pd_list.wk_mp;
13033 			ino = pagedep->pd_ino;
13034 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13035 				continue;
13036 			FREE_LOCK(&lk);
13037 
13038 			/*
13039 			 * Let unmount clear deps
13040 			 */
13041 			error = vfs_busy(mp, MBF_NOWAIT);
13042 			if (error != 0)
13043 				goto finish_write;
13044 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13045 			     FFSV_FORCEINSMQ);
13046 			vfs_unbusy(mp);
13047 			if (error != 0) {
13048 				softdep_error("clear_remove: vget", error);
13049 				goto finish_write;
13050 			}
13051 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13052 				softdep_error("clear_remove: fsync", error);
13053 			bo = &vp->v_bufobj;
13054 			BO_LOCK(bo);
13055 			drain_output(vp);
13056 			BO_UNLOCK(bo);
13057 			vput(vp);
13058 		finish_write:
13059 			vn_finished_write(mp);
13060 			ACQUIRE_LOCK(&lk);
13061 			return;
13062 		}
13063 	}
13064 }
13065 
13066 /*
13067  * Clear out a block of dirty inodes in an effort to reduce
13068  * the number of inodedep dependency structures.
13069  */
13070 static void
13071 clear_inodedeps(void)
13072 {
13073 	struct inodedep_hashhead *inodedephd;
13074 	struct inodedep *inodedep;
13075 	static int next = 0;
13076 	struct mount *mp;
13077 	struct vnode *vp;
13078 	struct fs *fs;
13079 	int error, cnt;
13080 	ino_t firstino, lastino, ino;
13081 
13082 	mtx_assert(&lk, MA_OWNED);
13083 	/*
13084 	 * Pick a random inode dependency to be cleared.
13085 	 * We will then gather up all the inodes in its block
13086 	 * that have dependencies and flush them out.
13087 	 */
13088 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13089 		inodedephd = &inodedep_hashtbl[next++];
13090 		if (next >= inodedep_hash)
13091 			next = 0;
13092 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13093 			break;
13094 	}
13095 	if (inodedep == NULL)
13096 		return;
13097 	fs = inodedep->id_fs;
13098 	mp = inodedep->id_list.wk_mp;
13099 	/*
13100 	 * Find the last inode in the block with dependencies.
13101 	 */
13102 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13103 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13104 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13105 			break;
13106 	/*
13107 	 * Asynchronously push all but the last inode with dependencies.
13108 	 * Synchronously push the last inode with dependencies to ensure
13109 	 * that the inode block gets written to free up the inodedeps.
13110 	 */
13111 	for (ino = firstino; ino <= lastino; ino++) {
13112 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13113 			continue;
13114 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13115 			continue;
13116 		FREE_LOCK(&lk);
13117 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13118 		if (error != 0) {
13119 			vn_finished_write(mp);
13120 			ACQUIRE_LOCK(&lk);
13121 			return;
13122 		}
13123 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13124 		    FFSV_FORCEINSMQ)) != 0) {
13125 			softdep_error("clear_inodedeps: vget", error);
13126 			vfs_unbusy(mp);
13127 			vn_finished_write(mp);
13128 			ACQUIRE_LOCK(&lk);
13129 			return;
13130 		}
13131 		vfs_unbusy(mp);
13132 		if (ino == lastino) {
13133 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13134 				softdep_error("clear_inodedeps: fsync1", error);
13135 		} else {
13136 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13137 				softdep_error("clear_inodedeps: fsync2", error);
13138 			BO_LOCK(&vp->v_bufobj);
13139 			drain_output(vp);
13140 			BO_UNLOCK(&vp->v_bufobj);
13141 		}
13142 		vput(vp);
13143 		vn_finished_write(mp);
13144 		ACQUIRE_LOCK(&lk);
13145 	}
13146 }
13147 
13148 void
13149 softdep_buf_append(bp, wkhd)
13150 	struct buf *bp;
13151 	struct workhead *wkhd;
13152 {
13153 	struct worklist *wk;
13154 
13155 	ACQUIRE_LOCK(&lk);
13156 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13157 		WORKLIST_REMOVE(wk);
13158 		WORKLIST_INSERT(&bp->b_dep, wk);
13159 	}
13160 	FREE_LOCK(&lk);
13161 
13162 }
13163 
13164 void
13165 softdep_inode_append(ip, cred, wkhd)
13166 	struct inode *ip;
13167 	struct ucred *cred;
13168 	struct workhead *wkhd;
13169 {
13170 	struct buf *bp;
13171 	struct fs *fs;
13172 	int error;
13173 
13174 	fs = ip->i_fs;
13175 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13176 	    (int)fs->fs_bsize, cred, &bp);
13177 	if (error) {
13178 		softdep_freework(wkhd);
13179 		return;
13180 	}
13181 	softdep_buf_append(bp, wkhd);
13182 	bqrelse(bp);
13183 }
13184 
13185 void
13186 softdep_freework(wkhd)
13187 	struct workhead *wkhd;
13188 {
13189 
13190 	ACQUIRE_LOCK(&lk);
13191 	handle_jwork(wkhd);
13192 	FREE_LOCK(&lk);
13193 }
13194 
13195 /*
13196  * Function to determine if the buffer has outstanding dependencies
13197  * that will cause a roll-back if the buffer is written. If wantcount
13198  * is set, return number of dependencies, otherwise just yes or no.
13199  */
13200 static int
13201 softdep_count_dependencies(bp, wantcount)
13202 	struct buf *bp;
13203 	int wantcount;
13204 {
13205 	struct worklist *wk;
13206 	struct bmsafemap *bmsafemap;
13207 	struct freework *freework;
13208 	struct inodedep *inodedep;
13209 	struct indirdep *indirdep;
13210 	struct freeblks *freeblks;
13211 	struct allocindir *aip;
13212 	struct pagedep *pagedep;
13213 	struct dirrem *dirrem;
13214 	struct newblk *newblk;
13215 	struct mkdir *mkdir;
13216 	struct diradd *dap;
13217 	int i, retval;
13218 
13219 	retval = 0;
13220 	ACQUIRE_LOCK(&lk);
13221 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13222 		switch (wk->wk_type) {
13223 
13224 		case D_INODEDEP:
13225 			inodedep = WK_INODEDEP(wk);
13226 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13227 				/* bitmap allocation dependency */
13228 				retval += 1;
13229 				if (!wantcount)
13230 					goto out;
13231 			}
13232 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13233 				/* direct block pointer dependency */
13234 				retval += 1;
13235 				if (!wantcount)
13236 					goto out;
13237 			}
13238 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13239 				/* direct block pointer dependency */
13240 				retval += 1;
13241 				if (!wantcount)
13242 					goto out;
13243 			}
13244 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13245 				/* Add reference dependency. */
13246 				retval += 1;
13247 				if (!wantcount)
13248 					goto out;
13249 			}
13250 			continue;
13251 
13252 		case D_INDIRDEP:
13253 			indirdep = WK_INDIRDEP(wk);
13254 
13255 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13256 				/* indirect truncation dependency */
13257 				retval += 1;
13258 				if (!wantcount)
13259 					goto out;
13260 			}
13261 
13262 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13263 				/* indirect block pointer dependency */
13264 				retval += 1;
13265 				if (!wantcount)
13266 					goto out;
13267 			}
13268 			continue;
13269 
13270 		case D_PAGEDEP:
13271 			pagedep = WK_PAGEDEP(wk);
13272 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13273 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13274 					/* Journal remove ref dependency. */
13275 					retval += 1;
13276 					if (!wantcount)
13277 						goto out;
13278 				}
13279 			}
13280 			for (i = 0; i < DAHASHSZ; i++) {
13281 
13282 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13283 					/* directory entry dependency */
13284 					retval += 1;
13285 					if (!wantcount)
13286 						goto out;
13287 				}
13288 			}
13289 			continue;
13290 
13291 		case D_BMSAFEMAP:
13292 			bmsafemap = WK_BMSAFEMAP(wk);
13293 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13294 				/* Add reference dependency. */
13295 				retval += 1;
13296 				if (!wantcount)
13297 					goto out;
13298 			}
13299 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13300 				/* Allocate block dependency. */
13301 				retval += 1;
13302 				if (!wantcount)
13303 					goto out;
13304 			}
13305 			continue;
13306 
13307 		case D_FREEBLKS:
13308 			freeblks = WK_FREEBLKS(wk);
13309 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13310 				/* Freeblk journal dependency. */
13311 				retval += 1;
13312 				if (!wantcount)
13313 					goto out;
13314 			}
13315 			continue;
13316 
13317 		case D_ALLOCDIRECT:
13318 		case D_ALLOCINDIR:
13319 			newblk = WK_NEWBLK(wk);
13320 			if (newblk->nb_jnewblk) {
13321 				/* Journal allocate dependency. */
13322 				retval += 1;
13323 				if (!wantcount)
13324 					goto out;
13325 			}
13326 			continue;
13327 
13328 		case D_MKDIR:
13329 			mkdir = WK_MKDIR(wk);
13330 			if (mkdir->md_jaddref) {
13331 				/* Journal reference dependency. */
13332 				retval += 1;
13333 				if (!wantcount)
13334 					goto out;
13335 			}
13336 			continue;
13337 
13338 		case D_FREEWORK:
13339 		case D_FREEDEP:
13340 		case D_JSEGDEP:
13341 		case D_JSEG:
13342 		case D_SBDEP:
13343 			/* never a dependency on these blocks */
13344 			continue;
13345 
13346 		default:
13347 			panic("softdep_count_dependencies: Unexpected type %s",
13348 			    TYPENAME(wk->wk_type));
13349 			/* NOTREACHED */
13350 		}
13351 	}
13352 out:
13353 	FREE_LOCK(&lk);
13354 	return retval;
13355 }
13356 
13357 /*
13358  * Acquire exclusive access to a buffer.
13359  * Must be called with a locked mtx parameter.
13360  * Return acquired buffer or NULL on failure.
13361  */
13362 static struct buf *
13363 getdirtybuf(bp, mtx, waitfor)
13364 	struct buf *bp;
13365 	struct mtx *mtx;
13366 	int waitfor;
13367 {
13368 	int error;
13369 
13370 	mtx_assert(mtx, MA_OWNED);
13371 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13372 		if (waitfor != MNT_WAIT)
13373 			return (NULL);
13374 		error = BUF_LOCK(bp,
13375 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
13376 		/*
13377 		 * Even if we sucessfully acquire bp here, we have dropped
13378 		 * mtx, which may violates our guarantee.
13379 		 */
13380 		if (error == 0)
13381 			BUF_UNLOCK(bp);
13382 		else if (error != ENOLCK)
13383 			panic("getdirtybuf: inconsistent lock: %d", error);
13384 		mtx_lock(mtx);
13385 		return (NULL);
13386 	}
13387 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13388 		if (mtx == &lk && waitfor == MNT_WAIT) {
13389 			mtx_unlock(mtx);
13390 			BO_LOCK(bp->b_bufobj);
13391 			BUF_UNLOCK(bp);
13392 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13393 				bp->b_vflags |= BV_BKGRDWAIT;
13394 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
13395 				       PRIBIO | PDROP, "getbuf", 0);
13396 			} else
13397 				BO_UNLOCK(bp->b_bufobj);
13398 			mtx_lock(mtx);
13399 			return (NULL);
13400 		}
13401 		BUF_UNLOCK(bp);
13402 		if (waitfor != MNT_WAIT)
13403 			return (NULL);
13404 		/*
13405 		 * The mtx argument must be bp->b_vp's mutex in
13406 		 * this case.
13407 		 */
13408 #ifdef	DEBUG_VFS_LOCKS
13409 		if (bp->b_vp->v_type != VCHR)
13410 			ASSERT_BO_LOCKED(bp->b_bufobj);
13411 #endif
13412 		bp->b_vflags |= BV_BKGRDWAIT;
13413 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
13414 		return (NULL);
13415 	}
13416 	if ((bp->b_flags & B_DELWRI) == 0) {
13417 		BUF_UNLOCK(bp);
13418 		return (NULL);
13419 	}
13420 	bremfree(bp);
13421 	return (bp);
13422 }
13423 
13424 
13425 /*
13426  * Check if it is safe to suspend the file system now.  On entry,
13427  * the vnode interlock for devvp should be held.  Return 0 with
13428  * the mount interlock held if the file system can be suspended now,
13429  * otherwise return EAGAIN with the mount interlock held.
13430  */
13431 int
13432 softdep_check_suspend(struct mount *mp,
13433 		      struct vnode *devvp,
13434 		      int softdep_deps,
13435 		      int softdep_accdeps,
13436 		      int secondary_writes,
13437 		      int secondary_accwrites)
13438 {
13439 	struct bufobj *bo;
13440 	struct ufsmount *ump;
13441 	int error;
13442 
13443 	ump = VFSTOUFS(mp);
13444 	bo = &devvp->v_bufobj;
13445 	ASSERT_BO_LOCKED(bo);
13446 
13447 	for (;;) {
13448 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13449 			BO_UNLOCK(bo);
13450 			ACQUIRE_LOCK(&lk);
13451 			FREE_LOCK(&lk);
13452 			BO_LOCK(bo);
13453 			continue;
13454 		}
13455 		MNT_ILOCK(mp);
13456 		if (mp->mnt_secondary_writes != 0) {
13457 			FREE_LOCK(&lk);
13458 			BO_UNLOCK(bo);
13459 			msleep(&mp->mnt_secondary_writes,
13460 			       MNT_MTX(mp),
13461 			       (PUSER - 1) | PDROP, "secwr", 0);
13462 			BO_LOCK(bo);
13463 			continue;
13464 		}
13465 		break;
13466 	}
13467 
13468 	/*
13469 	 * Reasons for needing more work before suspend:
13470 	 * - Dirty buffers on devvp.
13471 	 * - Softdep activity occurred after start of vnode sync loop
13472 	 * - Secondary writes occurred after start of vnode sync loop
13473 	 */
13474 	error = 0;
13475 	if (bo->bo_numoutput > 0 ||
13476 	    bo->bo_dirty.bv_cnt > 0 ||
13477 	    softdep_deps != 0 ||
13478 	    ump->softdep_deps != 0 ||
13479 	    softdep_accdeps != ump->softdep_accdeps ||
13480 	    secondary_writes != 0 ||
13481 	    mp->mnt_secondary_writes != 0 ||
13482 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13483 		error = EAGAIN;
13484 	FREE_LOCK(&lk);
13485 	BO_UNLOCK(bo);
13486 	return (error);
13487 }
13488 
13489 
13490 /*
13491  * Get the number of dependency structures for the file system, both
13492  * the current number and the total number allocated.  These will
13493  * later be used to detect that softdep processing has occurred.
13494  */
13495 void
13496 softdep_get_depcounts(struct mount *mp,
13497 		      int *softdep_depsp,
13498 		      int *softdep_accdepsp)
13499 {
13500 	struct ufsmount *ump;
13501 
13502 	ump = VFSTOUFS(mp);
13503 	ACQUIRE_LOCK(&lk);
13504 	*softdep_depsp = ump->softdep_deps;
13505 	*softdep_accdepsp = ump->softdep_accdeps;
13506 	FREE_LOCK(&lk);
13507 }
13508 
13509 /*
13510  * Wait for pending output on a vnode to complete.
13511  * Must be called with vnode lock and interlock locked.
13512  *
13513  * XXX: Should just be a call to bufobj_wwait().
13514  */
13515 static void
13516 drain_output(vp)
13517 	struct vnode *vp;
13518 {
13519 	struct bufobj *bo;
13520 
13521 	bo = &vp->v_bufobj;
13522 	ASSERT_VOP_LOCKED(vp, "drain_output");
13523 	ASSERT_BO_LOCKED(bo);
13524 
13525 	while (bo->bo_numoutput) {
13526 		bo->bo_flag |= BO_WWAIT;
13527 		msleep((caddr_t)&bo->bo_numoutput,
13528 		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
13529 	}
13530 }
13531 
13532 /*
13533  * Called whenever a buffer that is being invalidated or reallocated
13534  * contains dependencies. This should only happen if an I/O error has
13535  * occurred. The routine is called with the buffer locked.
13536  */
13537 static void
13538 softdep_deallocate_dependencies(bp)
13539 	struct buf *bp;
13540 {
13541 
13542 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13543 		panic("softdep_deallocate_dependencies: dangling deps");
13544 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13545 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13546 	else
13547 		printf("softdep_deallocate_dependencies: "
13548 		    "got error %d while accessing filesystem\n", bp->b_error);
13549 	if (bp->b_error != ENXIO)
13550 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13551 }
13552 
13553 /*
13554  * Function to handle asynchronous write errors in the filesystem.
13555  */
13556 static void
13557 softdep_error(func, error)
13558 	char *func;
13559 	int error;
13560 {
13561 
13562 	/* XXX should do something better! */
13563 	printf("%s: got error %d while accessing filesystem\n", func, error);
13564 }
13565 
13566 #ifdef DDB
13567 
13568 static void
13569 inodedep_print(struct inodedep *inodedep, int verbose)
13570 {
13571 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13572 	    " saveino %p\n",
13573 	    inodedep, inodedep->id_fs, inodedep->id_state,
13574 	    (intmax_t)inodedep->id_ino,
13575 	    (intmax_t)fsbtodb(inodedep->id_fs,
13576 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13577 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13578 	    inodedep->id_savedino1);
13579 
13580 	if (verbose == 0)
13581 		return;
13582 
13583 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13584 	    "mkdiradd %p\n",
13585 	    LIST_FIRST(&inodedep->id_pendinghd),
13586 	    LIST_FIRST(&inodedep->id_bufwait),
13587 	    LIST_FIRST(&inodedep->id_inowait),
13588 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13589 	    inodedep->id_mkdiradd);
13590 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13591 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13592 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13593 	    TAILQ_FIRST(&inodedep->id_extupdt),
13594 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13595 }
13596 
13597 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13598 {
13599 
13600 	if (have_addr == 0) {
13601 		db_printf("Address required\n");
13602 		return;
13603 	}
13604 	inodedep_print((struct inodedep*)addr, 1);
13605 }
13606 
13607 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13608 {
13609 	struct inodedep_hashhead *inodedephd;
13610 	struct inodedep *inodedep;
13611 	struct fs *fs;
13612 	int cnt;
13613 
13614 	fs = have_addr ? (struct fs *)addr : NULL;
13615 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13616 		inodedephd = &inodedep_hashtbl[cnt];
13617 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13618 			if (fs != NULL && fs != inodedep->id_fs)
13619 				continue;
13620 			inodedep_print(inodedep, 0);
13621 		}
13622 	}
13623 }
13624 
13625 DB_SHOW_COMMAND(worklist, db_show_worklist)
13626 {
13627 	struct worklist *wk;
13628 
13629 	if (have_addr == 0) {
13630 		db_printf("Address required\n");
13631 		return;
13632 	}
13633 	wk = (struct worklist *)addr;
13634 	printf("worklist: %p type %s state 0x%X\n",
13635 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13636 }
13637 
13638 DB_SHOW_COMMAND(workhead, db_show_workhead)
13639 {
13640 	struct workhead *wkhd;
13641 	struct worklist *wk;
13642 	int i;
13643 
13644 	if (have_addr == 0) {
13645 		db_printf("Address required\n");
13646 		return;
13647 	}
13648 	wkhd = (struct workhead *)addr;
13649 	wk = LIST_FIRST(wkhd);
13650 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13651 		db_printf("worklist: %p type %s state 0x%X",
13652 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13653 	if (i == 100)
13654 		db_printf("workhead overflow");
13655 	printf("\n");
13656 }
13657 
13658 
13659 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13660 {
13661 	struct jaddref *jaddref;
13662 	struct diradd *diradd;
13663 	struct mkdir *mkdir;
13664 
13665 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13666 		diradd = mkdir->md_diradd;
13667 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13668 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13669 		if ((jaddref = mkdir->md_jaddref) != NULL)
13670 			db_printf(" jaddref %p jaddref state 0x%X",
13671 			    jaddref, jaddref->ja_state);
13672 		db_printf("\n");
13673 	}
13674 }
13675 
13676 #endif /* DDB */
13677 
13678 #endif /* SOFTUPDATES */
13679