1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/malloc.h> 60 #include <sys/mount.h> 61 #include <sys/proc.h> 62 #include <sys/stat.h> 63 #include <sys/syslog.h> 64 #include <sys/vnode.h> 65 #include <sys/conf.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ufs/extattr.h> 68 #include <ufs/ufs/quota.h> 69 #include <ufs/ufs/inode.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ffs/fs.h> 72 #include <ufs/ffs/softdep.h> 73 #include <ufs/ffs/ffs_extern.h> 74 #include <ufs/ufs/ufs_extern.h> 75 76 /* 77 * These definitions need to be adapted to the system to which 78 * this file is being ported. 79 */ 80 /* 81 * malloc types defined for the softdep system. 82 */ 83 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 84 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 85 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 86 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 87 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 88 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 89 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 90 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 91 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 92 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 93 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 94 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 95 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 96 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 97 98 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 99 100 #define D_PAGEDEP 0 101 #define D_INODEDEP 1 102 #define D_NEWBLK 2 103 #define D_BMSAFEMAP 3 104 #define D_ALLOCDIRECT 4 105 #define D_INDIRDEP 5 106 #define D_ALLOCINDIR 6 107 #define D_FREEFRAG 7 108 #define D_FREEBLKS 8 109 #define D_FREEFILE 9 110 #define D_DIRADD 10 111 #define D_MKDIR 11 112 #define D_DIRREM 12 113 #define D_NEWDIRBLK 13 114 #define D_LAST D_NEWDIRBLK 115 116 /* 117 * translate from workitem type to memory type 118 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 119 */ 120 static struct malloc_type *memtype[] = { 121 M_PAGEDEP, 122 M_INODEDEP, 123 M_NEWBLK, 124 M_BMSAFEMAP, 125 M_ALLOCDIRECT, 126 M_INDIRDEP, 127 M_ALLOCINDIR, 128 M_FREEFRAG, 129 M_FREEBLKS, 130 M_FREEFILE, 131 M_DIRADD, 132 M_MKDIR, 133 M_DIRREM, 134 M_NEWDIRBLK 135 }; 136 137 #define DtoM(type) (memtype[type]) 138 139 /* 140 * Names of malloc types. 141 */ 142 #define TYPENAME(type) \ 143 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 144 /* 145 * End system adaptaion definitions. 146 */ 147 148 /* 149 * Internal function prototypes. 150 */ 151 static void softdep_error(char *, int); 152 static void drain_output(struct vnode *, int); 153 static int getdirtybuf(struct buf **, int); 154 static void clear_remove(struct thread *); 155 static void clear_inodedeps(struct thread *); 156 static int flush_pagedep_deps(struct vnode *, struct mount *, 157 struct diraddhd *); 158 static int flush_inodedep_deps(struct fs *, ino_t); 159 static int flush_deplist(struct allocdirectlst *, int, int *); 160 static int handle_written_filepage(struct pagedep *, struct buf *); 161 static void diradd_inode_written(struct diradd *, struct inodedep *); 162 static int handle_written_inodeblock(struct inodedep *, struct buf *); 163 static void handle_allocdirect_partdone(struct allocdirect *); 164 static void handle_allocindir_partdone(struct allocindir *); 165 static void initiate_write_filepage(struct pagedep *, struct buf *); 166 static void handle_written_mkdir(struct mkdir *, int); 167 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 168 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 169 static void handle_workitem_freefile(struct freefile *); 170 static void handle_workitem_remove(struct dirrem *, struct vnode *); 171 static struct dirrem *newdirrem(struct buf *, struct inode *, 172 struct inode *, int, struct dirrem **); 173 static void free_diradd(struct diradd *); 174 static void free_allocindir(struct allocindir *, struct inodedep *); 175 static void free_newdirblk(struct newdirblk *); 176 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 177 ufs2_daddr_t *); 178 static void deallocate_dependencies(struct buf *, struct inodedep *); 179 static void free_allocdirect(struct allocdirectlst *, 180 struct allocdirect *, int); 181 static int check_inode_unwritten(struct inodedep *); 182 static int free_inodedep(struct inodedep *); 183 static void handle_workitem_freeblocks(struct freeblks *, int); 184 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 185 static void setup_allocindir_phase2(struct buf *, struct inode *, 186 struct allocindir *); 187 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 188 ufs2_daddr_t); 189 static void handle_workitem_freefrag(struct freefrag *); 190 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 191 static void allocdirect_merge(struct allocdirectlst *, 192 struct allocdirect *, struct allocdirect *); 193 static struct bmsafemap *bmsafemap_lookup(struct buf *); 194 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 195 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 196 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 197 static void pause_timer(void *); 198 static int request_cleanup(int, int); 199 static int process_worklist_item(struct mount *, int); 200 static void add_to_worklist(struct worklist *); 201 202 /* 203 * Exported softdep operations. 204 */ 205 static void softdep_disk_io_initiation(struct buf *); 206 static void softdep_disk_write_complete(struct buf *); 207 static void softdep_deallocate_dependencies(struct buf *); 208 static void softdep_move_dependencies(struct buf *, struct buf *); 209 static int softdep_count_dependencies(struct buf *bp, int); 210 211 /* 212 * Locking primitives. 213 * 214 * For a uniprocessor, all we need to do is protect against disk 215 * interrupts. For a multiprocessor, this lock would have to be 216 * a mutex. A single mutex is used throughout this file, though 217 * finer grain locking could be used if contention warranted it. 218 * 219 * For a multiprocessor, the sleep call would accept a lock and 220 * release it after the sleep processing was complete. In a uniprocessor 221 * implementation there is no such interlock, so we simple mark 222 * the places where it needs to be done with the `interlocked' form 223 * of the lock calls. Since the uniprocessor sleep already interlocks 224 * the spl, there is nothing that really needs to be done. 225 */ 226 #ifndef /* NOT */ DEBUG 227 static struct lockit { 228 int lkt_spl; 229 } lk = { 0 }; 230 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 231 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 232 233 #else /* DEBUG */ 234 #define NOHOLDER ((struct thread *)-1) 235 #define SPECIAL_FLAG ((struct thread *)-2) 236 static struct lockit { 237 int lkt_spl; 238 struct thread *lkt_held; 239 } lk = { 0, NOHOLDER }; 240 241 static void acquire_lock(struct lockit *); 242 static void free_lock(struct lockit *); 243 void softdep_panic(char *); 244 245 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 246 #define FREE_LOCK(lk) free_lock(lk) 247 248 static void 249 acquire_lock(lk) 250 struct lockit *lk; 251 { 252 struct thread *holder; 253 254 if (lk->lkt_held != NOHOLDER) { 255 holder = lk->lkt_held; 256 FREE_LOCK(lk); 257 if (holder == curthread) 258 panic("softdep_lock: locking against myself"); 259 else 260 panic("softdep_lock: lock held by %p", holder); 261 } 262 lk->lkt_spl = splbio(); 263 lk->lkt_held = curthread; 264 } 265 266 static void 267 free_lock(lk) 268 struct lockit *lk; 269 { 270 271 if (lk->lkt_held == NOHOLDER) 272 panic("softdep_unlock: lock not held"); 273 lk->lkt_held = NOHOLDER; 274 splx(lk->lkt_spl); 275 } 276 277 /* 278 * Function to release soft updates lock and panic. 279 */ 280 void 281 softdep_panic(msg) 282 char *msg; 283 { 284 285 if (lk.lkt_held != NOHOLDER) 286 FREE_LOCK(&lk); 287 panic(msg); 288 } 289 #endif /* DEBUG */ 290 291 static int interlocked_sleep(struct lockit *, int, void *, struct mtx *, int, 292 const char *, int); 293 294 /* 295 * When going to sleep, we must save our SPL so that it does 296 * not get lost if some other process uses the lock while we 297 * are sleeping. We restore it after we have slept. This routine 298 * wraps the interlocking with functions that sleep. The list 299 * below enumerates the available set of operations. 300 */ 301 #define UNKNOWN 0 302 #define SLEEP 1 303 #define LOCKBUF 2 304 305 static int 306 interlocked_sleep(lk, op, ident, mtx, flags, wmesg, timo) 307 struct lockit *lk; 308 int op; 309 void *ident; 310 struct mtx *mtx; 311 int flags; 312 const char *wmesg; 313 int timo; 314 { 315 struct thread *holder; 316 int s, retval; 317 318 s = lk->lkt_spl; 319 # ifdef DEBUG 320 if (lk->lkt_held == NOHOLDER) 321 panic("interlocked_sleep: lock not held"); 322 lk->lkt_held = NOHOLDER; 323 # endif /* DEBUG */ 324 switch (op) { 325 case SLEEP: 326 retval = msleep(ident, mtx, flags, wmesg, timo); 327 break; 328 case LOCKBUF: 329 retval = BUF_LOCK((struct buf *)ident, flags, NULL); 330 break; 331 default: 332 panic("interlocked_sleep: unknown operation"); 333 } 334 # ifdef DEBUG 335 if (lk->lkt_held != NOHOLDER) { 336 holder = lk->lkt_held; 337 FREE_LOCK(lk); 338 if (holder == curthread) 339 panic("interlocked_sleep: locking against self"); 340 else 341 panic("interlocked_sleep: lock held by %p", holder); 342 } 343 lk->lkt_held = curthread; 344 # endif /* DEBUG */ 345 lk->lkt_spl = s; 346 return (retval); 347 } 348 349 /* 350 * Place holder for real semaphores. 351 */ 352 struct sema { 353 int value; 354 struct thread *holder; 355 char *name; 356 int prio; 357 int timo; 358 }; 359 static void sema_init(struct sema *, char *, int, int); 360 static int sema_get(struct sema *, struct lockit *); 361 static void sema_release(struct sema *); 362 363 static void 364 sema_init(semap, name, prio, timo) 365 struct sema *semap; 366 char *name; 367 int prio, timo; 368 { 369 370 semap->holder = NOHOLDER; 371 semap->value = 0; 372 semap->name = name; 373 semap->prio = prio; 374 semap->timo = timo; 375 } 376 377 static int 378 sema_get(semap, interlock) 379 struct sema *semap; 380 struct lockit *interlock; 381 { 382 383 if (semap->value++ > 0) { 384 if (interlock != NULL) { 385 interlocked_sleep(interlock, SLEEP, (caddr_t)semap, 386 NULL, semap->prio, semap->name, 387 semap->timo); 388 FREE_LOCK(interlock); 389 } else { 390 tsleep(semap, semap->prio, semap->name, 391 semap->timo); 392 } 393 return (0); 394 } 395 semap->holder = curthread; 396 if (interlock != NULL) 397 FREE_LOCK(interlock); 398 return (1); 399 } 400 401 static void 402 sema_release(semap) 403 struct sema *semap; 404 { 405 406 if (semap->value <= 0 || semap->holder != curthread) { 407 if (lk.lkt_held != NOHOLDER) 408 FREE_LOCK(&lk); 409 panic("sema_release: not held"); 410 } 411 if (--semap->value > 0) { 412 semap->value = 0; 413 wakeup(semap); 414 } 415 semap->holder = NOHOLDER; 416 } 417 418 /* 419 * Worklist queue management. 420 * These routines require that the lock be held. 421 */ 422 #ifndef /* NOT */ DEBUG 423 #define WORKLIST_INSERT(head, item) do { \ 424 (item)->wk_state |= ONWORKLIST; \ 425 LIST_INSERT_HEAD(head, item, wk_list); \ 426 } while (0) 427 #define WORKLIST_REMOVE(item) do { \ 428 (item)->wk_state &= ~ONWORKLIST; \ 429 LIST_REMOVE(item, wk_list); \ 430 } while (0) 431 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 432 433 #else /* DEBUG */ 434 static void worklist_insert(struct workhead *, struct worklist *); 435 static void worklist_remove(struct worklist *); 436 static void workitem_free(struct worklist *, int); 437 438 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 439 #define WORKLIST_REMOVE(item) worklist_remove(item) 440 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 441 442 static void 443 worklist_insert(head, item) 444 struct workhead *head; 445 struct worklist *item; 446 { 447 448 if (lk.lkt_held == NOHOLDER) 449 panic("worklist_insert: lock not held"); 450 if (item->wk_state & ONWORKLIST) { 451 FREE_LOCK(&lk); 452 panic("worklist_insert: already on list"); 453 } 454 item->wk_state |= ONWORKLIST; 455 LIST_INSERT_HEAD(head, item, wk_list); 456 } 457 458 static void 459 worklist_remove(item) 460 struct worklist *item; 461 { 462 463 if (lk.lkt_held == NOHOLDER) 464 panic("worklist_remove: lock not held"); 465 if ((item->wk_state & ONWORKLIST) == 0) { 466 FREE_LOCK(&lk); 467 panic("worklist_remove: not on list"); 468 } 469 item->wk_state &= ~ONWORKLIST; 470 LIST_REMOVE(item, wk_list); 471 } 472 473 static void 474 workitem_free(item, type) 475 struct worklist *item; 476 int type; 477 { 478 479 if (item->wk_state & ONWORKLIST) { 480 if (lk.lkt_held != NOHOLDER) 481 FREE_LOCK(&lk); 482 panic("workitem_free: still on list"); 483 } 484 if (item->wk_type != type) { 485 if (lk.lkt_held != NOHOLDER) 486 FREE_LOCK(&lk); 487 panic("workitem_free: type mismatch"); 488 } 489 FREE(item, DtoM(type)); 490 } 491 #endif /* DEBUG */ 492 493 /* 494 * Workitem queue management 495 */ 496 static struct workhead softdep_workitem_pending; 497 static struct worklist *worklist_tail; 498 static int num_on_worklist; /* number of worklist items to be processed */ 499 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 500 static int softdep_worklist_req; /* serialized waiters */ 501 static int max_softdeps; /* maximum number of structs before slowdown */ 502 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 503 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 504 static int proc_waiting; /* tracks whether we have a timeout posted */ 505 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 506 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 507 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 508 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 509 #define FLUSH_INODES 1 510 static int req_clear_remove; /* syncer process flush some freeblks */ 511 #define FLUSH_REMOVE 2 512 #define FLUSH_REMOVE_WAIT 3 513 /* 514 * runtime statistics 515 */ 516 static int stat_worklist_push; /* number of worklist cleanups */ 517 static int stat_blk_limit_push; /* number of times block limit neared */ 518 static int stat_ino_limit_push; /* number of times inode limit neared */ 519 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 520 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 521 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 522 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 523 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 524 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 525 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 526 #ifdef DEBUG 527 #include <vm/vm.h> 528 #include <sys/sysctl.h> 529 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 530 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 531 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 532 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 533 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 534 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 535 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 536 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 537 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 538 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 539 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 540 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 541 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 542 #endif /* DEBUG */ 543 544 /* 545 * Add an item to the end of the work queue. 546 * This routine requires that the lock be held. 547 * This is the only routine that adds items to the list. 548 * The following routine is the only one that removes items 549 * and does so in order from first to last. 550 */ 551 static void 552 add_to_worklist(wk) 553 struct worklist *wk; 554 { 555 556 if (wk->wk_state & ONWORKLIST) { 557 if (lk.lkt_held != NOHOLDER) 558 FREE_LOCK(&lk); 559 panic("add_to_worklist: already on list"); 560 } 561 wk->wk_state |= ONWORKLIST; 562 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 563 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 564 else 565 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 566 worklist_tail = wk; 567 num_on_worklist += 1; 568 } 569 570 /* 571 * Process that runs once per second to handle items in the background queue. 572 * 573 * Note that we ensure that everything is done in the order in which they 574 * appear in the queue. The code below depends on this property to ensure 575 * that blocks of a file are freed before the inode itself is freed. This 576 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 577 * until all the old ones have been purged from the dependency lists. 578 */ 579 int 580 softdep_process_worklist(matchmnt) 581 struct mount *matchmnt; 582 { 583 struct thread *td = curthread; 584 int cnt, matchcnt, loopcount; 585 long starttime; 586 587 /* 588 * Record the process identifier of our caller so that we can give 589 * this process preferential treatment in request_cleanup below. 590 */ 591 filesys_syncer = td; 592 matchcnt = 0; 593 594 /* 595 * There is no danger of having multiple processes run this 596 * code, but we have to single-thread it when softdep_flushfiles() 597 * is in operation to get an accurate count of the number of items 598 * related to its mount point that are in the list. 599 */ 600 if (matchmnt == NULL) { 601 if (softdep_worklist_busy < 0) 602 return(-1); 603 softdep_worklist_busy += 1; 604 } 605 606 /* 607 * If requested, try removing inode or removal dependencies. 608 */ 609 if (req_clear_inodedeps) { 610 clear_inodedeps(td); 611 req_clear_inodedeps -= 1; 612 wakeup_one(&proc_waiting); 613 } 614 if (req_clear_remove) { 615 clear_remove(td); 616 req_clear_remove -= 1; 617 wakeup_one(&proc_waiting); 618 } 619 loopcount = 1; 620 starttime = time_second; 621 while (num_on_worklist > 0) { 622 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 623 break; 624 else 625 matchcnt += cnt; 626 627 /* 628 * If a umount operation wants to run the worklist 629 * accurately, abort. 630 */ 631 if (softdep_worklist_req && matchmnt == NULL) { 632 matchcnt = -1; 633 break; 634 } 635 636 /* 637 * If requested, try removing inode or removal dependencies. 638 */ 639 if (req_clear_inodedeps) { 640 clear_inodedeps(td); 641 req_clear_inodedeps -= 1; 642 wakeup_one(&proc_waiting); 643 } 644 if (req_clear_remove) { 645 clear_remove(td); 646 req_clear_remove -= 1; 647 wakeup_one(&proc_waiting); 648 } 649 /* 650 * We do not generally want to stop for buffer space, but if 651 * we are really being a buffer hog, we will stop and wait. 652 */ 653 if (loopcount++ % 128 == 0) 654 bwillwrite(); 655 /* 656 * Never allow processing to run for more than one 657 * second. Otherwise the other syncer tasks may get 658 * excessively backlogged. 659 */ 660 if (starttime != time_second && matchmnt == NULL) { 661 matchcnt = -1; 662 break; 663 } 664 } 665 if (matchmnt == NULL) { 666 softdep_worklist_busy -= 1; 667 if (softdep_worklist_req && softdep_worklist_busy == 0) 668 wakeup(&softdep_worklist_req); 669 } 670 return (matchcnt); 671 } 672 673 /* 674 * Process one item on the worklist. 675 */ 676 static int 677 process_worklist_item(matchmnt, flags) 678 struct mount *matchmnt; 679 int flags; 680 { 681 struct worklist *wk, *wkend; 682 struct mount *mp; 683 struct vnode *vp; 684 int matchcnt = 0; 685 686 /* 687 * If we are being called because of a process doing a 688 * copy-on-write, then it is not safe to write as we may 689 * recurse into the copy-on-write routine. 690 */ 691 if (curthread->td_proc->p_flag & P_COWINPROGRESS) 692 return (-1); 693 ACQUIRE_LOCK(&lk); 694 /* 695 * Normally we just process each item on the worklist in order. 696 * However, if we are in a situation where we cannot lock any 697 * inodes, we have to skip over any dirrem requests whose 698 * vnodes are resident and locked. 699 */ 700 vp = NULL; 701 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 702 if (wk->wk_state & INPROGRESS) 703 continue; 704 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 705 break; 706 wk->wk_state |= INPROGRESS; 707 FREE_LOCK(&lk); 708 VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 709 LK_NOWAIT | LK_EXCLUSIVE, &vp); 710 ACQUIRE_LOCK(&lk); 711 wk->wk_state &= ~INPROGRESS; 712 if (vp != NULL) 713 break; 714 } 715 if (wk == 0) { 716 FREE_LOCK(&lk); 717 return (-1); 718 } 719 /* 720 * Remove the item to be processed. If we are removing the last 721 * item on the list, we need to recalculate the tail pointer. 722 * As this happens rarely and usually when the list is short, 723 * we just run down the list to find it rather than tracking it 724 * in the above loop. 725 */ 726 WORKLIST_REMOVE(wk); 727 if (wk == worklist_tail) { 728 LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list) 729 if (LIST_NEXT(wkend, wk_list) == NULL) 730 break; 731 worklist_tail = wkend; 732 } 733 num_on_worklist -= 1; 734 FREE_LOCK(&lk); 735 switch (wk->wk_type) { 736 737 case D_DIRREM: 738 /* removal of a directory entry */ 739 mp = WK_DIRREM(wk)->dm_mnt; 740 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 741 panic("%s: dirrem on suspended filesystem", 742 "process_worklist_item"); 743 if (mp == matchmnt) 744 matchcnt += 1; 745 handle_workitem_remove(WK_DIRREM(wk), vp); 746 break; 747 748 case D_FREEBLKS: 749 /* releasing blocks and/or fragments from a file */ 750 mp = WK_FREEBLKS(wk)->fb_mnt; 751 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 752 panic("%s: freeblks on suspended filesystem", 753 "process_worklist_item"); 754 if (mp == matchmnt) 755 matchcnt += 1; 756 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 757 break; 758 759 case D_FREEFRAG: 760 /* releasing a fragment when replaced as a file grows */ 761 mp = WK_FREEFRAG(wk)->ff_mnt; 762 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 763 panic("%s: freefrag on suspended filesystem", 764 "process_worklist_item"); 765 if (mp == matchmnt) 766 matchcnt += 1; 767 handle_workitem_freefrag(WK_FREEFRAG(wk)); 768 break; 769 770 case D_FREEFILE: 771 /* releasing an inode when its link count drops to 0 */ 772 mp = WK_FREEFILE(wk)->fx_mnt; 773 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 774 panic("%s: freefile on suspended filesystem", 775 "process_worklist_item"); 776 if (mp == matchmnt) 777 matchcnt += 1; 778 handle_workitem_freefile(WK_FREEFILE(wk)); 779 break; 780 781 default: 782 panic("%s_process_worklist: Unknown type %s", 783 "softdep", TYPENAME(wk->wk_type)); 784 /* NOTREACHED */ 785 } 786 return (matchcnt); 787 } 788 789 /* 790 * Move dependencies from one buffer to another. 791 */ 792 static void 793 softdep_move_dependencies(oldbp, newbp) 794 struct buf *oldbp; 795 struct buf *newbp; 796 { 797 struct worklist *wk, *wktail; 798 799 if (LIST_FIRST(&newbp->b_dep) != NULL) 800 panic("softdep_move_dependencies: need merge code"); 801 wktail = 0; 802 ACQUIRE_LOCK(&lk); 803 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 804 LIST_REMOVE(wk, wk_list); 805 if (wktail == 0) 806 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 807 else 808 LIST_INSERT_AFTER(wktail, wk, wk_list); 809 wktail = wk; 810 } 811 FREE_LOCK(&lk); 812 } 813 814 /* 815 * Purge the work list of all items associated with a particular mount point. 816 */ 817 int 818 softdep_flushworklist(oldmnt, countp, td) 819 struct mount *oldmnt; 820 int *countp; 821 struct thread *td; 822 { 823 struct vnode *devvp; 824 int count, error = 0; 825 826 /* 827 * Await our turn to clear out the queue, then serialize access. 828 */ 829 while (softdep_worklist_busy) { 830 softdep_worklist_req += 1; 831 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); 832 softdep_worklist_req -= 1; 833 } 834 softdep_worklist_busy = -1; 835 /* 836 * Alternately flush the block device associated with the mount 837 * point and process any dependencies that the flushing 838 * creates. We continue until no more worklist dependencies 839 * are found. 840 */ 841 *countp = 0; 842 devvp = VFSTOUFS(oldmnt)->um_devvp; 843 while ((count = softdep_process_worklist(oldmnt)) > 0) { 844 *countp += count; 845 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 846 error = VOP_FSYNC(devvp, td->td_ucred, MNT_WAIT, td); 847 VOP_UNLOCK(devvp, 0, td); 848 if (error) 849 break; 850 } 851 softdep_worklist_busy = 0; 852 if (softdep_worklist_req) 853 wakeup(&softdep_worklist_req); 854 return (error); 855 } 856 857 /* 858 * Flush all vnodes and worklist items associated with a specified mount point. 859 */ 860 int 861 softdep_flushfiles(oldmnt, flags, td) 862 struct mount *oldmnt; 863 int flags; 864 struct thread *td; 865 { 866 int error, count, loopcnt; 867 868 error = 0; 869 870 /* 871 * Alternately flush the vnodes associated with the mount 872 * point and process any dependencies that the flushing 873 * creates. In theory, this loop can happen at most twice, 874 * but we give it a few extra just to be sure. 875 */ 876 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 877 /* 878 * Do another flush in case any vnodes were brought in 879 * as part of the cleanup operations. 880 */ 881 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 882 break; 883 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 884 count == 0) 885 break; 886 } 887 /* 888 * If we are unmounting then it is an error to fail. If we 889 * are simply trying to downgrade to read-only, then filesystem 890 * activity can keep us busy forever, so we just fail with EBUSY. 891 */ 892 if (loopcnt == 0) { 893 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 894 panic("softdep_flushfiles: looping"); 895 error = EBUSY; 896 } 897 return (error); 898 } 899 900 /* 901 * Structure hashing. 902 * 903 * There are three types of structures that can be looked up: 904 * 1) pagedep structures identified by mount point, inode number, 905 * and logical block. 906 * 2) inodedep structures identified by mount point and inode number. 907 * 3) newblk structures identified by mount point and 908 * physical block number. 909 * 910 * The "pagedep" and "inodedep" dependency structures are hashed 911 * separately from the file blocks and inodes to which they correspond. 912 * This separation helps when the in-memory copy of an inode or 913 * file block must be replaced. It also obviates the need to access 914 * an inode or file page when simply updating (or de-allocating) 915 * dependency structures. Lookup of newblk structures is needed to 916 * find newly allocated blocks when trying to associate them with 917 * their allocdirect or allocindir structure. 918 * 919 * The lookup routines optionally create and hash a new instance when 920 * an existing entry is not found. 921 */ 922 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 923 #define NODELAY 0x0002 /* cannot do background work */ 924 925 /* 926 * Structures and routines associated with pagedep caching. 927 */ 928 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 929 u_long pagedep_hash; /* size of hash table - 1 */ 930 #define PAGEDEP_HASH(mp, inum, lbn) \ 931 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 932 pagedep_hash]) 933 static struct sema pagedep_in_progress; 934 935 /* 936 * Look up a pagedep. Return 1 if found, 0 if not found or found 937 * when asked to allocate but not associated with any buffer. 938 * If not found, allocate if DEPALLOC flag is passed. 939 * Found or allocated entry is returned in pagedeppp. 940 * This routine must be called with splbio interrupts blocked. 941 */ 942 static int 943 pagedep_lookup(ip, lbn, flags, pagedeppp) 944 struct inode *ip; 945 ufs_lbn_t lbn; 946 int flags; 947 struct pagedep **pagedeppp; 948 { 949 struct pagedep *pagedep; 950 struct pagedep_hashhead *pagedephd; 951 struct mount *mp; 952 int i; 953 954 #ifdef DEBUG 955 if (lk.lkt_held == NOHOLDER) 956 panic("pagedep_lookup: lock not held"); 957 #endif 958 mp = ITOV(ip)->v_mount; 959 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 960 top: 961 LIST_FOREACH(pagedep, pagedephd, pd_hash) 962 if (ip->i_number == pagedep->pd_ino && 963 lbn == pagedep->pd_lbn && 964 mp == pagedep->pd_mnt) 965 break; 966 if (pagedep) { 967 *pagedeppp = pagedep; 968 if ((flags & DEPALLOC) != 0 && 969 (pagedep->pd_state & ONWORKLIST) == 0) 970 return (0); 971 return (1); 972 } 973 if ((flags & DEPALLOC) == 0) { 974 *pagedeppp = NULL; 975 return (0); 976 } 977 if (sema_get(&pagedep_in_progress, &lk) == 0) { 978 ACQUIRE_LOCK(&lk); 979 goto top; 980 } 981 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 982 M_SOFTDEP_FLAGS|M_ZERO); 983 pagedep->pd_list.wk_type = D_PAGEDEP; 984 pagedep->pd_mnt = mp; 985 pagedep->pd_ino = ip->i_number; 986 pagedep->pd_lbn = lbn; 987 LIST_INIT(&pagedep->pd_dirremhd); 988 LIST_INIT(&pagedep->pd_pendinghd); 989 for (i = 0; i < DAHASHSZ; i++) 990 LIST_INIT(&pagedep->pd_diraddhd[i]); 991 ACQUIRE_LOCK(&lk); 992 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 993 sema_release(&pagedep_in_progress); 994 *pagedeppp = pagedep; 995 return (0); 996 } 997 998 /* 999 * Structures and routines associated with inodedep caching. 1000 */ 1001 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1002 static u_long inodedep_hash; /* size of hash table - 1 */ 1003 static long num_inodedep; /* number of inodedep allocated */ 1004 #define INODEDEP_HASH(fs, inum) \ 1005 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1006 static struct sema inodedep_in_progress; 1007 1008 /* 1009 * Look up an inodedep. Return 1 if found, 0 if not found. 1010 * If not found, allocate if DEPALLOC flag is passed. 1011 * Found or allocated entry is returned in inodedeppp. 1012 * This routine must be called with splbio interrupts blocked. 1013 */ 1014 static int 1015 inodedep_lookup(fs, inum, flags, inodedeppp) 1016 struct fs *fs; 1017 ino_t inum; 1018 int flags; 1019 struct inodedep **inodedeppp; 1020 { 1021 struct inodedep *inodedep; 1022 struct inodedep_hashhead *inodedephd; 1023 int firsttry; 1024 1025 #ifdef DEBUG 1026 if (lk.lkt_held == NOHOLDER) 1027 panic("inodedep_lookup: lock not held"); 1028 #endif 1029 firsttry = 1; 1030 inodedephd = INODEDEP_HASH(fs, inum); 1031 top: 1032 LIST_FOREACH(inodedep, inodedephd, id_hash) 1033 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1034 break; 1035 if (inodedep) { 1036 *inodedeppp = inodedep; 1037 return (1); 1038 } 1039 if ((flags & DEPALLOC) == 0) { 1040 *inodedeppp = NULL; 1041 return (0); 1042 } 1043 /* 1044 * If we are over our limit, try to improve the situation. 1045 */ 1046 if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && 1047 request_cleanup(FLUSH_INODES, 1)) { 1048 firsttry = 0; 1049 goto top; 1050 } 1051 if (sema_get(&inodedep_in_progress, &lk) == 0) { 1052 ACQUIRE_LOCK(&lk); 1053 goto top; 1054 } 1055 num_inodedep += 1; 1056 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1057 M_INODEDEP, M_SOFTDEP_FLAGS); 1058 inodedep->id_list.wk_type = D_INODEDEP; 1059 inodedep->id_fs = fs; 1060 inodedep->id_ino = inum; 1061 inodedep->id_state = ALLCOMPLETE; 1062 inodedep->id_nlinkdelta = 0; 1063 inodedep->id_savedino1 = NULL; 1064 inodedep->id_savedsize = -1; 1065 inodedep->id_savedextsize = -1; 1066 inodedep->id_buf = NULL; 1067 LIST_INIT(&inodedep->id_pendinghd); 1068 LIST_INIT(&inodedep->id_inowait); 1069 LIST_INIT(&inodedep->id_bufwait); 1070 TAILQ_INIT(&inodedep->id_inoupdt); 1071 TAILQ_INIT(&inodedep->id_newinoupdt); 1072 TAILQ_INIT(&inodedep->id_extupdt); 1073 TAILQ_INIT(&inodedep->id_newextupdt); 1074 ACQUIRE_LOCK(&lk); 1075 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1076 sema_release(&inodedep_in_progress); 1077 *inodedeppp = inodedep; 1078 return (0); 1079 } 1080 1081 /* 1082 * Structures and routines associated with newblk caching. 1083 */ 1084 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1085 u_long newblk_hash; /* size of hash table - 1 */ 1086 #define NEWBLK_HASH(fs, inum) \ 1087 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1088 static struct sema newblk_in_progress; 1089 1090 /* 1091 * Look up a newblk. Return 1 if found, 0 if not found. 1092 * If not found, allocate if DEPALLOC flag is passed. 1093 * Found or allocated entry is returned in newblkpp. 1094 */ 1095 static int 1096 newblk_lookup(fs, newblkno, flags, newblkpp) 1097 struct fs *fs; 1098 ufs2_daddr_t newblkno; 1099 int flags; 1100 struct newblk **newblkpp; 1101 { 1102 struct newblk *newblk; 1103 struct newblk_hashhead *newblkhd; 1104 1105 newblkhd = NEWBLK_HASH(fs, newblkno); 1106 top: 1107 LIST_FOREACH(newblk, newblkhd, nb_hash) 1108 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1109 break; 1110 if (newblk) { 1111 *newblkpp = newblk; 1112 return (1); 1113 } 1114 if ((flags & DEPALLOC) == 0) { 1115 *newblkpp = NULL; 1116 return (0); 1117 } 1118 if (sema_get(&newblk_in_progress, 0) == 0) 1119 goto top; 1120 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1121 M_NEWBLK, M_SOFTDEP_FLAGS); 1122 newblk->nb_state = 0; 1123 newblk->nb_fs = fs; 1124 newblk->nb_newblkno = newblkno; 1125 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1126 sema_release(&newblk_in_progress); 1127 *newblkpp = newblk; 1128 return (0); 1129 } 1130 1131 /* 1132 * Executed during filesystem system initialization before 1133 * mounting any filesystems. 1134 */ 1135 void 1136 softdep_initialize() 1137 { 1138 1139 LIST_INIT(&mkdirlisthd); 1140 LIST_INIT(&softdep_workitem_pending); 1141 max_softdeps = desiredvnodes * 4; 1142 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1143 &pagedep_hash); 1144 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 1145 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1146 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 1147 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1148 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 1149 1150 /* hooks through which the main kernel code calls us */ 1151 softdep_process_worklist_hook = softdep_process_worklist; 1152 softdep_fsync_hook = softdep_fsync; 1153 1154 /* initialise bioops hack */ 1155 bioops.io_start = softdep_disk_io_initiation; 1156 bioops.io_complete = softdep_disk_write_complete; 1157 bioops.io_deallocate = softdep_deallocate_dependencies; 1158 bioops.io_movedeps = softdep_move_dependencies; 1159 bioops.io_countdeps = softdep_count_dependencies; 1160 } 1161 1162 /* 1163 * Executed after all filesystems have been unmounted during 1164 * filesystem module unload. 1165 */ 1166 void 1167 softdep_uninitialize() 1168 { 1169 1170 softdep_process_worklist_hook = NULL; 1171 softdep_fsync_hook = NULL; 1172 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1173 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1174 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1175 } 1176 1177 /* 1178 * Called at mount time to notify the dependency code that a 1179 * filesystem wishes to use it. 1180 */ 1181 int 1182 softdep_mount(devvp, mp, fs, cred) 1183 struct vnode *devvp; 1184 struct mount *mp; 1185 struct fs *fs; 1186 struct ucred *cred; 1187 { 1188 struct csum_total cstotal; 1189 struct cg *cgp; 1190 struct buf *bp; 1191 int error, cyl; 1192 1193 mp->mnt_flag &= ~MNT_ASYNC; 1194 mp->mnt_flag |= MNT_SOFTDEP; 1195 /* 1196 * When doing soft updates, the counters in the 1197 * superblock may have gotten out of sync, so we have 1198 * to scan the cylinder groups and recalculate them. 1199 */ 1200 if (fs->fs_clean != 0) 1201 return (0); 1202 bzero(&cstotal, sizeof cstotal); 1203 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1204 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1205 fs->fs_cgsize, cred, &bp)) != 0) { 1206 brelse(bp); 1207 return (error); 1208 } 1209 cgp = (struct cg *)bp->b_data; 1210 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1211 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1212 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1213 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1214 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1215 brelse(bp); 1216 } 1217 #ifdef DEBUG 1218 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1219 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1220 #endif 1221 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1222 return (0); 1223 } 1224 1225 /* 1226 * Protecting the freemaps (or bitmaps). 1227 * 1228 * To eliminate the need to execute fsck before mounting a filesystem 1229 * after a power failure, one must (conservatively) guarantee that the 1230 * on-disk copy of the bitmaps never indicate that a live inode or block is 1231 * free. So, when a block or inode is allocated, the bitmap should be 1232 * updated (on disk) before any new pointers. When a block or inode is 1233 * freed, the bitmap should not be updated until all pointers have been 1234 * reset. The latter dependency is handled by the delayed de-allocation 1235 * approach described below for block and inode de-allocation. The former 1236 * dependency is handled by calling the following procedure when a block or 1237 * inode is allocated. When an inode is allocated an "inodedep" is created 1238 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1239 * Each "inodedep" is also inserted into the hash indexing structure so 1240 * that any additional link additions can be made dependent on the inode 1241 * allocation. 1242 * 1243 * The ufs filesystem maintains a number of free block counts (e.g., per 1244 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1245 * in addition to the bitmaps. These counts are used to improve efficiency 1246 * during allocation and therefore must be consistent with the bitmaps. 1247 * There is no convenient way to guarantee post-crash consistency of these 1248 * counts with simple update ordering, for two main reasons: (1) The counts 1249 * and bitmaps for a single cylinder group block are not in the same disk 1250 * sector. If a disk write is interrupted (e.g., by power failure), one may 1251 * be written and the other not. (2) Some of the counts are located in the 1252 * superblock rather than the cylinder group block. So, we focus our soft 1253 * updates implementation on protecting the bitmaps. When mounting a 1254 * filesystem, we recompute the auxiliary counts from the bitmaps. 1255 */ 1256 1257 /* 1258 * Called just after updating the cylinder group block to allocate an inode. 1259 */ 1260 void 1261 softdep_setup_inomapdep(bp, ip, newinum) 1262 struct buf *bp; /* buffer for cylgroup block with inode map */ 1263 struct inode *ip; /* inode related to allocation */ 1264 ino_t newinum; /* new inode number being allocated */ 1265 { 1266 struct inodedep *inodedep; 1267 struct bmsafemap *bmsafemap; 1268 1269 /* 1270 * Create a dependency for the newly allocated inode. 1271 * Panic if it already exists as something is seriously wrong. 1272 * Otherwise add it to the dependency list for the buffer holding 1273 * the cylinder group map from which it was allocated. 1274 */ 1275 ACQUIRE_LOCK(&lk); 1276 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) { 1277 FREE_LOCK(&lk); 1278 panic("softdep_setup_inomapdep: found inode"); 1279 } 1280 inodedep->id_buf = bp; 1281 inodedep->id_state &= ~DEPCOMPLETE; 1282 bmsafemap = bmsafemap_lookup(bp); 1283 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1284 FREE_LOCK(&lk); 1285 } 1286 1287 /* 1288 * Called just after updating the cylinder group block to 1289 * allocate block or fragment. 1290 */ 1291 void 1292 softdep_setup_blkmapdep(bp, fs, newblkno) 1293 struct buf *bp; /* buffer for cylgroup block with block map */ 1294 struct fs *fs; /* filesystem doing allocation */ 1295 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1296 { 1297 struct newblk *newblk; 1298 struct bmsafemap *bmsafemap; 1299 1300 /* 1301 * Create a dependency for the newly allocated block. 1302 * Add it to the dependency list for the buffer holding 1303 * the cylinder group map from which it was allocated. 1304 */ 1305 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1306 panic("softdep_setup_blkmapdep: found block"); 1307 ACQUIRE_LOCK(&lk); 1308 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1309 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1310 FREE_LOCK(&lk); 1311 } 1312 1313 /* 1314 * Find the bmsafemap associated with a cylinder group buffer. 1315 * If none exists, create one. The buffer must be locked when 1316 * this routine is called and this routine must be called with 1317 * splbio interrupts blocked. 1318 */ 1319 static struct bmsafemap * 1320 bmsafemap_lookup(bp) 1321 struct buf *bp; 1322 { 1323 struct bmsafemap *bmsafemap; 1324 struct worklist *wk; 1325 1326 #ifdef DEBUG 1327 if (lk.lkt_held == NOHOLDER) 1328 panic("bmsafemap_lookup: lock not held"); 1329 #endif 1330 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1331 if (wk->wk_type == D_BMSAFEMAP) 1332 return (WK_BMSAFEMAP(wk)); 1333 FREE_LOCK(&lk); 1334 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1335 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1336 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1337 bmsafemap->sm_list.wk_state = 0; 1338 bmsafemap->sm_buf = bp; 1339 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1340 LIST_INIT(&bmsafemap->sm_allocindirhd); 1341 LIST_INIT(&bmsafemap->sm_inodedephd); 1342 LIST_INIT(&bmsafemap->sm_newblkhd); 1343 ACQUIRE_LOCK(&lk); 1344 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1345 return (bmsafemap); 1346 } 1347 1348 /* 1349 * Direct block allocation dependencies. 1350 * 1351 * When a new block is allocated, the corresponding disk locations must be 1352 * initialized (with zeros or new data) before the on-disk inode points to 1353 * them. Also, the freemap from which the block was allocated must be 1354 * updated (on disk) before the inode's pointer. These two dependencies are 1355 * independent of each other and are needed for all file blocks and indirect 1356 * blocks that are pointed to directly by the inode. Just before the 1357 * "in-core" version of the inode is updated with a newly allocated block 1358 * number, a procedure (below) is called to setup allocation dependency 1359 * structures. These structures are removed when the corresponding 1360 * dependencies are satisfied or when the block allocation becomes obsolete 1361 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1362 * fragment that gets upgraded). All of these cases are handled in 1363 * procedures described later. 1364 * 1365 * When a file extension causes a fragment to be upgraded, either to a larger 1366 * fragment or to a full block, the on-disk location may change (if the 1367 * previous fragment could not simply be extended). In this case, the old 1368 * fragment must be de-allocated, but not until after the inode's pointer has 1369 * been updated. In most cases, this is handled by later procedures, which 1370 * will construct a "freefrag" structure to be added to the workitem queue 1371 * when the inode update is complete (or obsolete). The main exception to 1372 * this is when an allocation occurs while a pending allocation dependency 1373 * (for the same block pointer) remains. This case is handled in the main 1374 * allocation dependency setup procedure by immediately freeing the 1375 * unreferenced fragments. 1376 */ 1377 void 1378 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1379 struct inode *ip; /* inode to which block is being added */ 1380 ufs_lbn_t lbn; /* block pointer within inode */ 1381 ufs2_daddr_t newblkno; /* disk block number being added */ 1382 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1383 long newsize; /* size of new block */ 1384 long oldsize; /* size of new block */ 1385 struct buf *bp; /* bp for allocated block */ 1386 { 1387 struct allocdirect *adp, *oldadp; 1388 struct allocdirectlst *adphead; 1389 struct bmsafemap *bmsafemap; 1390 struct inodedep *inodedep; 1391 struct pagedep *pagedep; 1392 struct newblk *newblk; 1393 1394 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1395 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1396 adp->ad_list.wk_type = D_ALLOCDIRECT; 1397 adp->ad_lbn = lbn; 1398 adp->ad_newblkno = newblkno; 1399 adp->ad_oldblkno = oldblkno; 1400 adp->ad_newsize = newsize; 1401 adp->ad_oldsize = oldsize; 1402 adp->ad_state = ATTACHED; 1403 LIST_INIT(&adp->ad_newdirblk); 1404 if (newblkno == oldblkno) 1405 adp->ad_freefrag = NULL; 1406 else 1407 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1408 1409 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1410 panic("softdep_setup_allocdirect: lost block"); 1411 1412 ACQUIRE_LOCK(&lk); 1413 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1414 adp->ad_inodedep = inodedep; 1415 1416 if (newblk->nb_state == DEPCOMPLETE) { 1417 adp->ad_state |= DEPCOMPLETE; 1418 adp->ad_buf = NULL; 1419 } else { 1420 bmsafemap = newblk->nb_bmsafemap; 1421 adp->ad_buf = bmsafemap->sm_buf; 1422 LIST_REMOVE(newblk, nb_deps); 1423 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1424 } 1425 LIST_REMOVE(newblk, nb_hash); 1426 FREE(newblk, M_NEWBLK); 1427 1428 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1429 if (lbn >= NDADDR) { 1430 /* allocating an indirect block */ 1431 if (oldblkno != 0) { 1432 FREE_LOCK(&lk); 1433 panic("softdep_setup_allocdirect: non-zero indir"); 1434 } 1435 } else { 1436 /* 1437 * Allocating a direct block. 1438 * 1439 * If we are allocating a directory block, then we must 1440 * allocate an associated pagedep to track additions and 1441 * deletions. 1442 */ 1443 if ((ip->i_mode & IFMT) == IFDIR && 1444 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1445 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1446 } 1447 /* 1448 * The list of allocdirects must be kept in sorted and ascending 1449 * order so that the rollback routines can quickly determine the 1450 * first uncommitted block (the size of the file stored on disk 1451 * ends at the end of the lowest committed fragment, or if there 1452 * are no fragments, at the end of the highest committed block). 1453 * Since files generally grow, the typical case is that the new 1454 * block is to be added at the end of the list. We speed this 1455 * special case by checking against the last allocdirect in the 1456 * list before laboriously traversing the list looking for the 1457 * insertion point. 1458 */ 1459 adphead = &inodedep->id_newinoupdt; 1460 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1461 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1462 /* insert at end of list */ 1463 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1464 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1465 allocdirect_merge(adphead, adp, oldadp); 1466 FREE_LOCK(&lk); 1467 return; 1468 } 1469 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1470 if (oldadp->ad_lbn >= lbn) 1471 break; 1472 } 1473 if (oldadp == NULL) { 1474 FREE_LOCK(&lk); 1475 panic("softdep_setup_allocdirect: lost entry"); 1476 } 1477 /* insert in middle of list */ 1478 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1479 if (oldadp->ad_lbn == lbn) 1480 allocdirect_merge(adphead, adp, oldadp); 1481 FREE_LOCK(&lk); 1482 } 1483 1484 /* 1485 * Replace an old allocdirect dependency with a newer one. 1486 * This routine must be called with splbio interrupts blocked. 1487 */ 1488 static void 1489 allocdirect_merge(adphead, newadp, oldadp) 1490 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1491 struct allocdirect *newadp; /* allocdirect being added */ 1492 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1493 { 1494 struct worklist *wk; 1495 struct freefrag *freefrag; 1496 struct newdirblk *newdirblk; 1497 1498 #ifdef DEBUG 1499 if (lk.lkt_held == NOHOLDER) 1500 panic("allocdirect_merge: lock not held"); 1501 #endif 1502 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1503 newadp->ad_oldsize != oldadp->ad_newsize || 1504 newadp->ad_lbn >= NDADDR) { 1505 FREE_LOCK(&lk); 1506 panic("%s %jd != new %jd || old size %ld != new %ld", 1507 "allocdirect_merge: old blkno", 1508 (intmax_t)newadp->ad_oldblkno, 1509 (intmax_t)oldadp->ad_newblkno, 1510 newadp->ad_oldsize, oldadp->ad_newsize); 1511 } 1512 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1513 newadp->ad_oldsize = oldadp->ad_oldsize; 1514 /* 1515 * If the old dependency had a fragment to free or had never 1516 * previously had a block allocated, then the new dependency 1517 * can immediately post its freefrag and adopt the old freefrag. 1518 * This action is done by swapping the freefrag dependencies. 1519 * The new dependency gains the old one's freefrag, and the 1520 * old one gets the new one and then immediately puts it on 1521 * the worklist when it is freed by free_allocdirect. It is 1522 * not possible to do this swap when the old dependency had a 1523 * non-zero size but no previous fragment to free. This condition 1524 * arises when the new block is an extension of the old block. 1525 * Here, the first part of the fragment allocated to the new 1526 * dependency is part of the block currently claimed on disk by 1527 * the old dependency, so cannot legitimately be freed until the 1528 * conditions for the new dependency are fulfilled. 1529 */ 1530 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1531 freefrag = newadp->ad_freefrag; 1532 newadp->ad_freefrag = oldadp->ad_freefrag; 1533 oldadp->ad_freefrag = freefrag; 1534 } 1535 /* 1536 * If we are tracking a new directory-block allocation, 1537 * move it from the old allocdirect to the new allocdirect. 1538 */ 1539 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1540 newdirblk = WK_NEWDIRBLK(wk); 1541 WORKLIST_REMOVE(&newdirblk->db_list); 1542 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1543 panic("allocdirect_merge: extra newdirblk"); 1544 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1545 } 1546 free_allocdirect(adphead, oldadp, 0); 1547 } 1548 1549 /* 1550 * Allocate a new freefrag structure if needed. 1551 */ 1552 static struct freefrag * 1553 newfreefrag(ip, blkno, size) 1554 struct inode *ip; 1555 ufs2_daddr_t blkno; 1556 long size; 1557 { 1558 struct freefrag *freefrag; 1559 struct fs *fs; 1560 1561 if (blkno == 0) 1562 return (NULL); 1563 fs = ip->i_fs; 1564 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1565 panic("newfreefrag: frag size"); 1566 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1567 M_FREEFRAG, M_SOFTDEP_FLAGS); 1568 freefrag->ff_list.wk_type = D_FREEFRAG; 1569 freefrag->ff_state = 0; 1570 freefrag->ff_inum = ip->i_number; 1571 freefrag->ff_mnt = ITOV(ip)->v_mount; 1572 freefrag->ff_blkno = blkno; 1573 freefrag->ff_fragsize = size; 1574 return (freefrag); 1575 } 1576 1577 /* 1578 * This workitem de-allocates fragments that were replaced during 1579 * file block allocation. 1580 */ 1581 static void 1582 handle_workitem_freefrag(freefrag) 1583 struct freefrag *freefrag; 1584 { 1585 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1586 1587 ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1588 freefrag->ff_fragsize, freefrag->ff_inum); 1589 FREE(freefrag, M_FREEFRAG); 1590 } 1591 1592 /* 1593 * Set up a dependency structure for an external attributes data block. 1594 * This routine follows much of the structure of softdep_setup_allocdirect. 1595 * See the description of softdep_setup_allocdirect above for details. 1596 */ 1597 void 1598 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1599 struct inode *ip; 1600 ufs_lbn_t lbn; 1601 ufs2_daddr_t newblkno; 1602 ufs2_daddr_t oldblkno; 1603 long newsize; 1604 long oldsize; 1605 struct buf *bp; 1606 { 1607 struct allocdirect *adp, *oldadp; 1608 struct allocdirectlst *adphead; 1609 struct bmsafemap *bmsafemap; 1610 struct inodedep *inodedep; 1611 struct newblk *newblk; 1612 1613 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1614 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1615 adp->ad_list.wk_type = D_ALLOCDIRECT; 1616 adp->ad_lbn = lbn; 1617 adp->ad_newblkno = newblkno; 1618 adp->ad_oldblkno = oldblkno; 1619 adp->ad_newsize = newsize; 1620 adp->ad_oldsize = oldsize; 1621 adp->ad_state = ATTACHED | EXTDATA; 1622 LIST_INIT(&adp->ad_newdirblk); 1623 if (newblkno == oldblkno) 1624 adp->ad_freefrag = NULL; 1625 else 1626 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1627 1628 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1629 panic("softdep_setup_allocext: lost block"); 1630 1631 ACQUIRE_LOCK(&lk); 1632 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1633 adp->ad_inodedep = inodedep; 1634 1635 if (newblk->nb_state == DEPCOMPLETE) { 1636 adp->ad_state |= DEPCOMPLETE; 1637 adp->ad_buf = NULL; 1638 } else { 1639 bmsafemap = newblk->nb_bmsafemap; 1640 adp->ad_buf = bmsafemap->sm_buf; 1641 LIST_REMOVE(newblk, nb_deps); 1642 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1643 } 1644 LIST_REMOVE(newblk, nb_hash); 1645 FREE(newblk, M_NEWBLK); 1646 1647 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1648 if (lbn >= NXADDR) { 1649 FREE_LOCK(&lk); 1650 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1651 (long long)lbn); 1652 } 1653 /* 1654 * The list of allocdirects must be kept in sorted and ascending 1655 * order so that the rollback routines can quickly determine the 1656 * first uncommitted block (the size of the file stored on disk 1657 * ends at the end of the lowest committed fragment, or if there 1658 * are no fragments, at the end of the highest committed block). 1659 * Since files generally grow, the typical case is that the new 1660 * block is to be added at the end of the list. We speed this 1661 * special case by checking against the last allocdirect in the 1662 * list before laboriously traversing the list looking for the 1663 * insertion point. 1664 */ 1665 adphead = &inodedep->id_newextupdt; 1666 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1667 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1668 /* insert at end of list */ 1669 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1670 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1671 allocdirect_merge(adphead, adp, oldadp); 1672 FREE_LOCK(&lk); 1673 return; 1674 } 1675 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1676 if (oldadp->ad_lbn >= lbn) 1677 break; 1678 } 1679 if (oldadp == NULL) { 1680 FREE_LOCK(&lk); 1681 panic("softdep_setup_allocext: lost entry"); 1682 } 1683 /* insert in middle of list */ 1684 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1685 if (oldadp->ad_lbn == lbn) 1686 allocdirect_merge(adphead, adp, oldadp); 1687 FREE_LOCK(&lk); 1688 } 1689 1690 /* 1691 * Indirect block allocation dependencies. 1692 * 1693 * The same dependencies that exist for a direct block also exist when 1694 * a new block is allocated and pointed to by an entry in a block of 1695 * indirect pointers. The undo/redo states described above are also 1696 * used here. Because an indirect block contains many pointers that 1697 * may have dependencies, a second copy of the entire in-memory indirect 1698 * block is kept. The buffer cache copy is always completely up-to-date. 1699 * The second copy, which is used only as a source for disk writes, 1700 * contains only the safe pointers (i.e., those that have no remaining 1701 * update dependencies). The second copy is freed when all pointers 1702 * are safe. The cache is not allowed to replace indirect blocks with 1703 * pending update dependencies. If a buffer containing an indirect 1704 * block with dependencies is written, these routines will mark it 1705 * dirty again. It can only be successfully written once all the 1706 * dependencies are removed. The ffs_fsync routine in conjunction with 1707 * softdep_sync_metadata work together to get all the dependencies 1708 * removed so that a file can be successfully written to disk. Three 1709 * procedures are used when setting up indirect block pointer 1710 * dependencies. The division is necessary because of the organization 1711 * of the "balloc" routine and because of the distinction between file 1712 * pages and file metadata blocks. 1713 */ 1714 1715 /* 1716 * Allocate a new allocindir structure. 1717 */ 1718 static struct allocindir * 1719 newallocindir(ip, ptrno, newblkno, oldblkno) 1720 struct inode *ip; /* inode for file being extended */ 1721 int ptrno; /* offset of pointer in indirect block */ 1722 ufs2_daddr_t newblkno; /* disk block number being added */ 1723 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1724 { 1725 struct allocindir *aip; 1726 1727 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1728 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1729 aip->ai_list.wk_type = D_ALLOCINDIR; 1730 aip->ai_state = ATTACHED; 1731 aip->ai_offset = ptrno; 1732 aip->ai_newblkno = newblkno; 1733 aip->ai_oldblkno = oldblkno; 1734 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1735 return (aip); 1736 } 1737 1738 /* 1739 * Called just before setting an indirect block pointer 1740 * to a newly allocated file page. 1741 */ 1742 void 1743 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1744 struct inode *ip; /* inode for file being extended */ 1745 ufs_lbn_t lbn; /* allocated block number within file */ 1746 struct buf *bp; /* buffer with indirect blk referencing page */ 1747 int ptrno; /* offset of pointer in indirect block */ 1748 ufs2_daddr_t newblkno; /* disk block number being added */ 1749 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1750 struct buf *nbp; /* buffer holding allocated page */ 1751 { 1752 struct allocindir *aip; 1753 struct pagedep *pagedep; 1754 1755 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1756 ACQUIRE_LOCK(&lk); 1757 /* 1758 * If we are allocating a directory page, then we must 1759 * allocate an associated pagedep to track additions and 1760 * deletions. 1761 */ 1762 if ((ip->i_mode & IFMT) == IFDIR && 1763 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1764 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1765 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1766 FREE_LOCK(&lk); 1767 setup_allocindir_phase2(bp, ip, aip); 1768 } 1769 1770 /* 1771 * Called just before setting an indirect block pointer to a 1772 * newly allocated indirect block. 1773 */ 1774 void 1775 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1776 struct buf *nbp; /* newly allocated indirect block */ 1777 struct inode *ip; /* inode for file being extended */ 1778 struct buf *bp; /* indirect block referencing allocated block */ 1779 int ptrno; /* offset of pointer in indirect block */ 1780 ufs2_daddr_t newblkno; /* disk block number being added */ 1781 { 1782 struct allocindir *aip; 1783 1784 aip = newallocindir(ip, ptrno, newblkno, 0); 1785 ACQUIRE_LOCK(&lk); 1786 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1787 FREE_LOCK(&lk); 1788 setup_allocindir_phase2(bp, ip, aip); 1789 } 1790 1791 /* 1792 * Called to finish the allocation of the "aip" allocated 1793 * by one of the two routines above. 1794 */ 1795 static void 1796 setup_allocindir_phase2(bp, ip, aip) 1797 struct buf *bp; /* in-memory copy of the indirect block */ 1798 struct inode *ip; /* inode for file being extended */ 1799 struct allocindir *aip; /* allocindir allocated by the above routines */ 1800 { 1801 struct worklist *wk; 1802 struct indirdep *indirdep, *newindirdep; 1803 struct bmsafemap *bmsafemap; 1804 struct allocindir *oldaip; 1805 struct freefrag *freefrag; 1806 struct newblk *newblk; 1807 ufs2_daddr_t blkno; 1808 1809 if (bp->b_lblkno >= 0) 1810 panic("setup_allocindir_phase2: not indir blk"); 1811 for (indirdep = NULL, newindirdep = NULL; ; ) { 1812 ACQUIRE_LOCK(&lk); 1813 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1814 if (wk->wk_type != D_INDIRDEP) 1815 continue; 1816 indirdep = WK_INDIRDEP(wk); 1817 break; 1818 } 1819 if (indirdep == NULL && newindirdep) { 1820 indirdep = newindirdep; 1821 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1822 newindirdep = NULL; 1823 } 1824 FREE_LOCK(&lk); 1825 if (indirdep) { 1826 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1827 &newblk) == 0) 1828 panic("setup_allocindir: lost block"); 1829 ACQUIRE_LOCK(&lk); 1830 if (newblk->nb_state == DEPCOMPLETE) { 1831 aip->ai_state |= DEPCOMPLETE; 1832 aip->ai_buf = NULL; 1833 } else { 1834 bmsafemap = newblk->nb_bmsafemap; 1835 aip->ai_buf = bmsafemap->sm_buf; 1836 LIST_REMOVE(newblk, nb_deps); 1837 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1838 aip, ai_deps); 1839 } 1840 LIST_REMOVE(newblk, nb_hash); 1841 FREE(newblk, M_NEWBLK); 1842 aip->ai_indirdep = indirdep; 1843 /* 1844 * Check to see if there is an existing dependency 1845 * for this block. If there is, merge the old 1846 * dependency into the new one. 1847 */ 1848 if (aip->ai_oldblkno == 0) 1849 oldaip = NULL; 1850 else 1851 1852 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1853 if (oldaip->ai_offset == aip->ai_offset) 1854 break; 1855 freefrag = NULL; 1856 if (oldaip != NULL) { 1857 if (oldaip->ai_newblkno != aip->ai_oldblkno) { 1858 FREE_LOCK(&lk); 1859 panic("setup_allocindir_phase2: blkno"); 1860 } 1861 aip->ai_oldblkno = oldaip->ai_oldblkno; 1862 freefrag = aip->ai_freefrag; 1863 aip->ai_freefrag = oldaip->ai_freefrag; 1864 oldaip->ai_freefrag = NULL; 1865 free_allocindir(oldaip, NULL); 1866 } 1867 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1868 if (ip->i_ump->um_fstype == UFS1) 1869 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1870 [aip->ai_offset] = aip->ai_oldblkno; 1871 else 1872 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1873 [aip->ai_offset] = aip->ai_oldblkno; 1874 FREE_LOCK(&lk); 1875 if (freefrag != NULL) 1876 handle_workitem_freefrag(freefrag); 1877 } 1878 if (newindirdep) { 1879 brelse(newindirdep->ir_savebp); 1880 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1881 } 1882 if (indirdep) 1883 break; 1884 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1885 M_INDIRDEP, M_SOFTDEP_FLAGS); 1886 newindirdep->ir_list.wk_type = D_INDIRDEP; 1887 newindirdep->ir_state = ATTACHED; 1888 if (ip->i_ump->um_fstype == UFS1) 1889 newindirdep->ir_state |= UFS1FMT; 1890 LIST_INIT(&newindirdep->ir_deplisthd); 1891 LIST_INIT(&newindirdep->ir_donehd); 1892 if (bp->b_blkno == bp->b_lblkno) { 1893 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 1894 NULL, NULL); 1895 bp->b_blkno = blkno; 1896 } 1897 newindirdep->ir_savebp = 1898 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 1899 BUF_KERNPROC(newindirdep->ir_savebp); 1900 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1901 } 1902 } 1903 1904 /* 1905 * Block de-allocation dependencies. 1906 * 1907 * When blocks are de-allocated, the on-disk pointers must be nullified before 1908 * the blocks are made available for use by other files. (The true 1909 * requirement is that old pointers must be nullified before new on-disk 1910 * pointers are set. We chose this slightly more stringent requirement to 1911 * reduce complexity.) Our implementation handles this dependency by updating 1912 * the inode (or indirect block) appropriately but delaying the actual block 1913 * de-allocation (i.e., freemap and free space count manipulation) until 1914 * after the updated versions reach stable storage. After the disk is 1915 * updated, the blocks can be safely de-allocated whenever it is convenient. 1916 * This implementation handles only the common case of reducing a file's 1917 * length to zero. Other cases are handled by the conventional synchronous 1918 * write approach. 1919 * 1920 * The ffs implementation with which we worked double-checks 1921 * the state of the block pointers and file size as it reduces 1922 * a file's length. Some of this code is replicated here in our 1923 * soft updates implementation. The freeblks->fb_chkcnt field is 1924 * used to transfer a part of this information to the procedure 1925 * that eventually de-allocates the blocks. 1926 * 1927 * This routine should be called from the routine that shortens 1928 * a file's length, before the inode's size or block pointers 1929 * are modified. It will save the block pointer information for 1930 * later release and zero the inode so that the calling routine 1931 * can release it. 1932 */ 1933 void 1934 softdep_setup_freeblocks(ip, length, flags) 1935 struct inode *ip; /* The inode whose length is to be reduced */ 1936 off_t length; /* The new length for the file */ 1937 int flags; /* IO_EXT and/or IO_NORMAL */ 1938 { 1939 struct freeblks *freeblks; 1940 struct inodedep *inodedep; 1941 struct allocdirect *adp; 1942 struct vnode *vp; 1943 struct buf *bp; 1944 struct fs *fs; 1945 ufs2_daddr_t extblocks, datablocks; 1946 int i, delay, error; 1947 1948 fs = ip->i_fs; 1949 if (length != 0) 1950 panic("softdep_setup_freeblocks: non-zero length"); 1951 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1952 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1953 freeblks->fb_list.wk_type = D_FREEBLKS; 1954 freeblks->fb_uid = ip->i_uid; 1955 freeblks->fb_previousinum = ip->i_number; 1956 freeblks->fb_devvp = ip->i_devvp; 1957 freeblks->fb_mnt = ITOV(ip)->v_mount; 1958 extblocks = 0; 1959 if (fs->fs_magic == FS_UFS2_MAGIC) 1960 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 1961 datablocks = DIP(ip, i_blocks) - extblocks; 1962 if ((flags & IO_NORMAL) == 0) { 1963 freeblks->fb_oldsize = 0; 1964 freeblks->fb_chkcnt = 0; 1965 } else { 1966 freeblks->fb_oldsize = ip->i_size; 1967 ip->i_size = 0; 1968 DIP(ip, i_size) = 0; 1969 freeblks->fb_chkcnt = datablocks; 1970 for (i = 0; i < NDADDR; i++) { 1971 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 1972 DIP(ip, i_db[i]) = 0; 1973 } 1974 for (i = 0; i < NIADDR; i++) { 1975 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 1976 DIP(ip, i_ib[i]) = 0; 1977 } 1978 /* 1979 * If the file was removed, then the space being freed was 1980 * accounted for then (see softdep_filereleased()). If the 1981 * file is merely being truncated, then we account for it now. 1982 */ 1983 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 1984 fs->fs_pendingblocks += datablocks; 1985 } 1986 if ((flags & IO_EXT) == 0) { 1987 freeblks->fb_oldextsize = 0; 1988 } else { 1989 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 1990 ip->i_din2->di_extsize = 0; 1991 freeblks->fb_chkcnt += extblocks; 1992 for (i = 0; i < NXADDR; i++) { 1993 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 1994 ip->i_din2->di_extb[i] = 0; 1995 } 1996 } 1997 DIP(ip, i_blocks) -= freeblks->fb_chkcnt; 1998 /* 1999 * Push the zero'ed inode to to its disk buffer so that we are free 2000 * to delete its dependencies below. Once the dependencies are gone 2001 * the buffer can be safely released. 2002 */ 2003 if ((error = bread(ip->i_devvp, 2004 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2005 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2006 brelse(bp); 2007 softdep_error("softdep_setup_freeblocks", error); 2008 } 2009 if (ip->i_ump->um_fstype == UFS1) 2010 *((struct ufs1_dinode *)bp->b_data + 2011 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2012 else 2013 *((struct ufs2_dinode *)bp->b_data + 2014 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2015 /* 2016 * Find and eliminate any inode dependencies. 2017 */ 2018 ACQUIRE_LOCK(&lk); 2019 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 2020 if ((inodedep->id_state & IOSTARTED) != 0) { 2021 FREE_LOCK(&lk); 2022 panic("softdep_setup_freeblocks: inode busy"); 2023 } 2024 /* 2025 * Add the freeblks structure to the list of operations that 2026 * must await the zero'ed inode being written to disk. If we 2027 * still have a bitmap dependency (delay == 0), then the inode 2028 * has never been written to disk, so we can process the 2029 * freeblks below once we have deleted the dependencies. 2030 */ 2031 delay = (inodedep->id_state & DEPCOMPLETE); 2032 if (delay) 2033 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2034 /* 2035 * Because the file length has been truncated to zero, any 2036 * pending block allocation dependency structures associated 2037 * with this inode are obsolete and can simply be de-allocated. 2038 * We must first merge the two dependency lists to get rid of 2039 * any duplicate freefrag structures, then purge the merged list. 2040 * If we still have a bitmap dependency, then the inode has never 2041 * been written to disk, so we can free any fragments without delay. 2042 */ 2043 if (flags & IO_NORMAL) { 2044 merge_inode_lists(&inodedep->id_newinoupdt, 2045 &inodedep->id_inoupdt); 2046 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2047 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2048 } 2049 if (flags & IO_EXT) { 2050 merge_inode_lists(&inodedep->id_newextupdt, 2051 &inodedep->id_extupdt); 2052 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2053 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2054 } 2055 FREE_LOCK(&lk); 2056 bdwrite(bp); 2057 /* 2058 * We must wait for any I/O in progress to finish so that 2059 * all potential buffers on the dirty list will be visible. 2060 * Once they are all there, walk the list and get rid of 2061 * any dependencies. 2062 */ 2063 vp = ITOV(ip); 2064 ACQUIRE_LOCK(&lk); 2065 drain_output(vp, 1); 2066 restart: 2067 VI_LOCK(vp); 2068 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 2069 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2070 ((flags & IO_NORMAL) == 0 && 2071 (bp->b_xflags & BX_ALTDATA) == 0)) 2072 continue; 2073 VI_UNLOCK(vp); 2074 if (getdirtybuf(&bp, MNT_WAIT) == 0) 2075 goto restart; 2076 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 2077 deallocate_dependencies(bp, inodedep); 2078 bp->b_flags |= B_INVAL | B_NOCACHE; 2079 FREE_LOCK(&lk); 2080 brelse(bp); 2081 ACQUIRE_LOCK(&lk); 2082 goto restart; 2083 } 2084 VI_UNLOCK(vp); 2085 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 2086 (void) free_inodedep(inodedep); 2087 FREE_LOCK(&lk); 2088 /* 2089 * If the inode has never been written to disk (delay == 0), 2090 * then we can process the freeblks now that we have deleted 2091 * the dependencies. 2092 */ 2093 if (!delay) 2094 handle_workitem_freeblocks(freeblks, 0); 2095 } 2096 2097 /* 2098 * Reclaim any dependency structures from a buffer that is about to 2099 * be reallocated to a new vnode. The buffer must be locked, thus, 2100 * no I/O completion operations can occur while we are manipulating 2101 * its associated dependencies. The mutex is held so that other I/O's 2102 * associated with related dependencies do not occur. 2103 */ 2104 static void 2105 deallocate_dependencies(bp, inodedep) 2106 struct buf *bp; 2107 struct inodedep *inodedep; 2108 { 2109 struct worklist *wk; 2110 struct indirdep *indirdep; 2111 struct allocindir *aip; 2112 struct pagedep *pagedep; 2113 struct dirrem *dirrem; 2114 struct diradd *dap; 2115 int i; 2116 2117 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2118 switch (wk->wk_type) { 2119 2120 case D_INDIRDEP: 2121 indirdep = WK_INDIRDEP(wk); 2122 /* 2123 * None of the indirect pointers will ever be visible, 2124 * so they can simply be tossed. GOINGAWAY ensures 2125 * that allocated pointers will be saved in the buffer 2126 * cache until they are freed. Note that they will 2127 * only be able to be found by their physical address 2128 * since the inode mapping the logical address will 2129 * be gone. The save buffer used for the safe copy 2130 * was allocated in setup_allocindir_phase2 using 2131 * the physical address so it could be used for this 2132 * purpose. Hence we swap the safe copy with the real 2133 * copy, allowing the safe copy to be freed and holding 2134 * on to the real copy for later use in indir_trunc. 2135 */ 2136 if (indirdep->ir_state & GOINGAWAY) { 2137 FREE_LOCK(&lk); 2138 panic("deallocate_dependencies: already gone"); 2139 } 2140 indirdep->ir_state |= GOINGAWAY; 2141 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2142 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2143 free_allocindir(aip, inodedep); 2144 if (bp->b_lblkno >= 0 || 2145 bp->b_blkno != indirdep->ir_savebp->b_lblkno) { 2146 FREE_LOCK(&lk); 2147 panic("deallocate_dependencies: not indir"); 2148 } 2149 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2150 bp->b_bcount); 2151 WORKLIST_REMOVE(wk); 2152 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2153 continue; 2154 2155 case D_PAGEDEP: 2156 pagedep = WK_PAGEDEP(wk); 2157 /* 2158 * None of the directory additions will ever be 2159 * visible, so they can simply be tossed. 2160 */ 2161 for (i = 0; i < DAHASHSZ; i++) 2162 while ((dap = 2163 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2164 free_diradd(dap); 2165 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2166 free_diradd(dap); 2167 /* 2168 * Copy any directory remove dependencies to the list 2169 * to be processed after the zero'ed inode is written. 2170 * If the inode has already been written, then they 2171 * can be dumped directly onto the work list. 2172 */ 2173 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2174 LIST_REMOVE(dirrem, dm_next); 2175 dirrem->dm_dirinum = pagedep->pd_ino; 2176 if (inodedep == NULL || 2177 (inodedep->id_state & ALLCOMPLETE) == 2178 ALLCOMPLETE) 2179 add_to_worklist(&dirrem->dm_list); 2180 else 2181 WORKLIST_INSERT(&inodedep->id_bufwait, 2182 &dirrem->dm_list); 2183 } 2184 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2185 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2186 if (wk->wk_type == D_NEWDIRBLK && 2187 WK_NEWDIRBLK(wk)->db_pagedep == 2188 pagedep) 2189 break; 2190 if (wk != NULL) { 2191 WORKLIST_REMOVE(wk); 2192 free_newdirblk(WK_NEWDIRBLK(wk)); 2193 } else { 2194 FREE_LOCK(&lk); 2195 panic("deallocate_dependencies: " 2196 "lost pagedep"); 2197 } 2198 } 2199 WORKLIST_REMOVE(&pagedep->pd_list); 2200 LIST_REMOVE(pagedep, pd_hash); 2201 WORKITEM_FREE(pagedep, D_PAGEDEP); 2202 continue; 2203 2204 case D_ALLOCINDIR: 2205 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2206 continue; 2207 2208 case D_ALLOCDIRECT: 2209 case D_INODEDEP: 2210 FREE_LOCK(&lk); 2211 panic("deallocate_dependencies: Unexpected type %s", 2212 TYPENAME(wk->wk_type)); 2213 /* NOTREACHED */ 2214 2215 default: 2216 FREE_LOCK(&lk); 2217 panic("deallocate_dependencies: Unknown type %s", 2218 TYPENAME(wk->wk_type)); 2219 /* NOTREACHED */ 2220 } 2221 } 2222 } 2223 2224 /* 2225 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2226 * This routine must be called with splbio interrupts blocked. 2227 */ 2228 static void 2229 free_allocdirect(adphead, adp, delay) 2230 struct allocdirectlst *adphead; 2231 struct allocdirect *adp; 2232 int delay; 2233 { 2234 struct newdirblk *newdirblk; 2235 struct worklist *wk; 2236 2237 #ifdef DEBUG 2238 if (lk.lkt_held == NOHOLDER) 2239 panic("free_allocdirect: lock not held"); 2240 #endif 2241 if ((adp->ad_state & DEPCOMPLETE) == 0) 2242 LIST_REMOVE(adp, ad_deps); 2243 TAILQ_REMOVE(adphead, adp, ad_next); 2244 if ((adp->ad_state & COMPLETE) == 0) 2245 WORKLIST_REMOVE(&adp->ad_list); 2246 if (adp->ad_freefrag != NULL) { 2247 if (delay) 2248 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2249 &adp->ad_freefrag->ff_list); 2250 else 2251 add_to_worklist(&adp->ad_freefrag->ff_list); 2252 } 2253 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2254 newdirblk = WK_NEWDIRBLK(wk); 2255 WORKLIST_REMOVE(&newdirblk->db_list); 2256 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2257 panic("free_allocdirect: extra newdirblk"); 2258 if (delay) 2259 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2260 &newdirblk->db_list); 2261 else 2262 free_newdirblk(newdirblk); 2263 } 2264 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2265 } 2266 2267 /* 2268 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2269 * This routine must be called with splbio interrupts blocked. 2270 */ 2271 static void 2272 free_newdirblk(newdirblk) 2273 struct newdirblk *newdirblk; 2274 { 2275 struct pagedep *pagedep; 2276 struct diradd *dap; 2277 int i; 2278 2279 #ifdef DEBUG 2280 if (lk.lkt_held == NOHOLDER) 2281 panic("free_newdirblk: lock not held"); 2282 #endif 2283 /* 2284 * If the pagedep is still linked onto the directory buffer 2285 * dependency chain, then some of the entries on the 2286 * pd_pendinghd list may not be committed to disk yet. In 2287 * this case, we will simply clear the NEWBLOCK flag and 2288 * let the pd_pendinghd list be processed when the pagedep 2289 * is next written. If the pagedep is no longer on the buffer 2290 * dependency chain, then all the entries on the pd_pending 2291 * list are committed to disk and we can free them here. 2292 */ 2293 pagedep = newdirblk->db_pagedep; 2294 pagedep->pd_state &= ~NEWBLOCK; 2295 if ((pagedep->pd_state & ONWORKLIST) == 0) 2296 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2297 free_diradd(dap); 2298 /* 2299 * If no dependencies remain, the pagedep will be freed. 2300 */ 2301 for (i = 0; i < DAHASHSZ; i++) 2302 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2303 break; 2304 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2305 LIST_REMOVE(pagedep, pd_hash); 2306 WORKITEM_FREE(pagedep, D_PAGEDEP); 2307 } 2308 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2309 } 2310 2311 /* 2312 * Prepare an inode to be freed. The actual free operation is not 2313 * done until the zero'ed inode has been written to disk. 2314 */ 2315 void 2316 softdep_freefile(pvp, ino, mode) 2317 struct vnode *pvp; 2318 ino_t ino; 2319 int mode; 2320 { 2321 struct inode *ip = VTOI(pvp); 2322 struct inodedep *inodedep; 2323 struct freefile *freefile; 2324 2325 /* 2326 * This sets up the inode de-allocation dependency. 2327 */ 2328 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2329 M_FREEFILE, M_SOFTDEP_FLAGS); 2330 freefile->fx_list.wk_type = D_FREEFILE; 2331 freefile->fx_list.wk_state = 0; 2332 freefile->fx_mode = mode; 2333 freefile->fx_oldinum = ino; 2334 freefile->fx_devvp = ip->i_devvp; 2335 freefile->fx_mnt = ITOV(ip)->v_mount; 2336 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 2337 ip->i_fs->fs_pendinginodes += 1; 2338 2339 /* 2340 * If the inodedep does not exist, then the zero'ed inode has 2341 * been written to disk. If the allocated inode has never been 2342 * written to disk, then the on-disk inode is zero'ed. In either 2343 * case we can free the file immediately. 2344 */ 2345 ACQUIRE_LOCK(&lk); 2346 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2347 check_inode_unwritten(inodedep)) { 2348 FREE_LOCK(&lk); 2349 handle_workitem_freefile(freefile); 2350 return; 2351 } 2352 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2353 FREE_LOCK(&lk); 2354 } 2355 2356 /* 2357 * Check to see if an inode has never been written to disk. If 2358 * so free the inodedep and return success, otherwise return failure. 2359 * This routine must be called with splbio interrupts blocked. 2360 * 2361 * If we still have a bitmap dependency, then the inode has never 2362 * been written to disk. Drop the dependency as it is no longer 2363 * necessary since the inode is being deallocated. We set the 2364 * ALLCOMPLETE flags since the bitmap now properly shows that the 2365 * inode is not allocated. Even if the inode is actively being 2366 * written, it has been rolled back to its zero'ed state, so we 2367 * are ensured that a zero inode is what is on the disk. For short 2368 * lived files, this change will usually result in removing all the 2369 * dependencies from the inode so that it can be freed immediately. 2370 */ 2371 static int 2372 check_inode_unwritten(inodedep) 2373 struct inodedep *inodedep; 2374 { 2375 2376 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2377 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2378 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2379 LIST_FIRST(&inodedep->id_inowait) != NULL || 2380 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2381 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2382 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2383 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2384 inodedep->id_nlinkdelta != 0) 2385 return (0); 2386 inodedep->id_state |= ALLCOMPLETE; 2387 LIST_REMOVE(inodedep, id_deps); 2388 inodedep->id_buf = NULL; 2389 if (inodedep->id_state & ONWORKLIST) 2390 WORKLIST_REMOVE(&inodedep->id_list); 2391 if (inodedep->id_savedino1 != NULL) { 2392 FREE(inodedep->id_savedino1, M_INODEDEP); 2393 inodedep->id_savedino1 = NULL; 2394 } 2395 if (free_inodedep(inodedep) == 0) { 2396 FREE_LOCK(&lk); 2397 panic("check_inode_unwritten: busy inode"); 2398 } 2399 return (1); 2400 } 2401 2402 /* 2403 * Try to free an inodedep structure. Return 1 if it could be freed. 2404 */ 2405 static int 2406 free_inodedep(inodedep) 2407 struct inodedep *inodedep; 2408 { 2409 2410 if ((inodedep->id_state & ONWORKLIST) != 0 || 2411 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2412 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2413 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2414 LIST_FIRST(&inodedep->id_inowait) != NULL || 2415 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2416 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2417 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2418 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2419 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2420 return (0); 2421 LIST_REMOVE(inodedep, id_hash); 2422 WORKITEM_FREE(inodedep, D_INODEDEP); 2423 num_inodedep -= 1; 2424 return (1); 2425 } 2426 2427 /* 2428 * This workitem routine performs the block de-allocation. 2429 * The workitem is added to the pending list after the updated 2430 * inode block has been written to disk. As mentioned above, 2431 * checks regarding the number of blocks de-allocated (compared 2432 * to the number of blocks allocated for the file) are also 2433 * performed in this function. 2434 */ 2435 static void 2436 handle_workitem_freeblocks(freeblks, flags) 2437 struct freeblks *freeblks; 2438 int flags; 2439 { 2440 struct inode *ip; 2441 struct vnode *vp; 2442 struct fs *fs; 2443 int i, nblocks, level, bsize; 2444 ufs2_daddr_t bn, blocksreleased = 0; 2445 int error, allerror = 0; 2446 ufs_lbn_t baselbns[NIADDR], tmpval; 2447 2448 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2449 tmpval = 1; 2450 baselbns[0] = NDADDR; 2451 for (i = 1; i < NIADDR; i++) { 2452 tmpval *= NINDIR(fs); 2453 baselbns[i] = baselbns[i - 1] + tmpval; 2454 } 2455 nblocks = btodb(fs->fs_bsize); 2456 blocksreleased = 0; 2457 /* 2458 * Release all extended attribute blocks or frags. 2459 */ 2460 if (freeblks->fb_oldextsize > 0) { 2461 for (i = (NXADDR - 1); i >= 0; i--) { 2462 if ((bn = freeblks->fb_eblks[i]) == 0) 2463 continue; 2464 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2465 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2466 freeblks->fb_previousinum); 2467 blocksreleased += btodb(bsize); 2468 } 2469 } 2470 /* 2471 * Release all data blocks or frags. 2472 */ 2473 if (freeblks->fb_oldsize > 0) { 2474 /* 2475 * Indirect blocks first. 2476 */ 2477 for (level = (NIADDR - 1); level >= 0; level--) { 2478 if ((bn = freeblks->fb_iblks[level]) == 0) 2479 continue; 2480 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2481 level, baselbns[level], &blocksreleased)) == 0) 2482 allerror = error; 2483 ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize, 2484 freeblks->fb_previousinum); 2485 fs->fs_pendingblocks -= nblocks; 2486 blocksreleased += nblocks; 2487 } 2488 /* 2489 * All direct blocks or frags. 2490 */ 2491 for (i = (NDADDR - 1); i >= 0; i--) { 2492 if ((bn = freeblks->fb_dblks[i]) == 0) 2493 continue; 2494 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2495 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2496 freeblks->fb_previousinum); 2497 fs->fs_pendingblocks -= btodb(bsize); 2498 blocksreleased += btodb(bsize); 2499 } 2500 } 2501 /* 2502 * If we still have not finished background cleanup, then check 2503 * to see if the block count needs to be adjusted. 2504 */ 2505 if (freeblks->fb_chkcnt != blocksreleased && 2506 (fs->fs_flags & FS_UNCLEAN) != 0 && 2507 VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, 2508 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2509 ip = VTOI(vp); 2510 DIP(ip, i_blocks) += freeblks->fb_chkcnt - blocksreleased; 2511 ip->i_flag |= IN_CHANGE; 2512 vput(vp); 2513 } 2514 2515 #ifdef DIAGNOSTIC 2516 if (freeblks->fb_chkcnt != blocksreleased && 2517 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2518 printf("handle_workitem_freeblocks: block count\n"); 2519 if (allerror) 2520 softdep_error("handle_workitem_freeblks", allerror); 2521 #endif /* DIAGNOSTIC */ 2522 2523 WORKITEM_FREE(freeblks, D_FREEBLKS); 2524 } 2525 2526 /* 2527 * Release blocks associated with the inode ip and stored in the indirect 2528 * block dbn. If level is greater than SINGLE, the block is an indirect block 2529 * and recursive calls to indirtrunc must be used to cleanse other indirect 2530 * blocks. 2531 */ 2532 static int 2533 indir_trunc(freeblks, dbn, level, lbn, countp) 2534 struct freeblks *freeblks; 2535 ufs2_daddr_t dbn; 2536 int level; 2537 ufs_lbn_t lbn; 2538 ufs2_daddr_t *countp; 2539 { 2540 struct buf *bp; 2541 struct fs *fs; 2542 struct worklist *wk; 2543 struct indirdep *indirdep; 2544 ufs1_daddr_t *bap1 = 0; 2545 ufs2_daddr_t nb, *bap2 = 0; 2546 ufs_lbn_t lbnadd; 2547 int i, nblocks, ufs1fmt; 2548 int error, allerror = 0; 2549 2550 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2551 lbnadd = 1; 2552 for (i = level; i > 0; i--) 2553 lbnadd *= NINDIR(fs); 2554 /* 2555 * Get buffer of block pointers to be freed. This routine is not 2556 * called until the zero'ed inode has been written, so it is safe 2557 * to free blocks as they are encountered. Because the inode has 2558 * been zero'ed, calls to bmap on these blocks will fail. So, we 2559 * have to use the on-disk address and the block device for the 2560 * filesystem to look them up. If the file was deleted before its 2561 * indirect blocks were all written to disk, the routine that set 2562 * us up (deallocate_dependencies) will have arranged to leave 2563 * a complete copy of the indirect block in memory for our use. 2564 * Otherwise we have to read the blocks in from the disk. 2565 */ 2566 ACQUIRE_LOCK(&lk); 2567 if ((bp = incore(freeblks->fb_devvp, dbn)) != NULL && 2568 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2569 if (wk->wk_type != D_INDIRDEP || 2570 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2571 (indirdep->ir_state & GOINGAWAY) == 0) { 2572 FREE_LOCK(&lk); 2573 panic("indir_trunc: lost indirdep"); 2574 } 2575 WORKLIST_REMOVE(wk); 2576 WORKITEM_FREE(indirdep, D_INDIRDEP); 2577 if (LIST_FIRST(&bp->b_dep) != NULL) { 2578 FREE_LOCK(&lk); 2579 panic("indir_trunc: dangling dep"); 2580 } 2581 VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1; 2582 FREE_LOCK(&lk); 2583 } else { 2584 FREE_LOCK(&lk); 2585 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2586 NOCRED, &bp); 2587 if (error) { 2588 brelse(bp); 2589 return (error); 2590 } 2591 } 2592 /* 2593 * Recursively free indirect blocks. 2594 */ 2595 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2596 ufs1fmt = 1; 2597 bap1 = (ufs1_daddr_t *)bp->b_data; 2598 } else { 2599 ufs1fmt = 0; 2600 bap2 = (ufs2_daddr_t *)bp->b_data; 2601 } 2602 nblocks = btodb(fs->fs_bsize); 2603 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2604 if (ufs1fmt) 2605 nb = bap1[i]; 2606 else 2607 nb = bap2[i]; 2608 if (nb == 0) 2609 continue; 2610 if (level != 0) { 2611 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2612 level - 1, lbn + (i * lbnadd), countp)) != 0) 2613 allerror = error; 2614 } 2615 ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2616 freeblks->fb_previousinum); 2617 fs->fs_pendingblocks -= nblocks; 2618 *countp += nblocks; 2619 } 2620 bp->b_flags |= B_INVAL | B_NOCACHE; 2621 brelse(bp); 2622 return (allerror); 2623 } 2624 2625 /* 2626 * Free an allocindir. 2627 * This routine must be called with splbio interrupts blocked. 2628 */ 2629 static void 2630 free_allocindir(aip, inodedep) 2631 struct allocindir *aip; 2632 struct inodedep *inodedep; 2633 { 2634 struct freefrag *freefrag; 2635 2636 #ifdef DEBUG 2637 if (lk.lkt_held == NOHOLDER) 2638 panic("free_allocindir: lock not held"); 2639 #endif 2640 if ((aip->ai_state & DEPCOMPLETE) == 0) 2641 LIST_REMOVE(aip, ai_deps); 2642 if (aip->ai_state & ONWORKLIST) 2643 WORKLIST_REMOVE(&aip->ai_list); 2644 LIST_REMOVE(aip, ai_next); 2645 if ((freefrag = aip->ai_freefrag) != NULL) { 2646 if (inodedep == NULL) 2647 add_to_worklist(&freefrag->ff_list); 2648 else 2649 WORKLIST_INSERT(&inodedep->id_bufwait, 2650 &freefrag->ff_list); 2651 } 2652 WORKITEM_FREE(aip, D_ALLOCINDIR); 2653 } 2654 2655 /* 2656 * Directory entry addition dependencies. 2657 * 2658 * When adding a new directory entry, the inode (with its incremented link 2659 * count) must be written to disk before the directory entry's pointer to it. 2660 * Also, if the inode is newly allocated, the corresponding freemap must be 2661 * updated (on disk) before the directory entry's pointer. These requirements 2662 * are met via undo/redo on the directory entry's pointer, which consists 2663 * simply of the inode number. 2664 * 2665 * As directory entries are added and deleted, the free space within a 2666 * directory block can become fragmented. The ufs filesystem will compact 2667 * a fragmented directory block to make space for a new entry. When this 2668 * occurs, the offsets of previously added entries change. Any "diradd" 2669 * dependency structures corresponding to these entries must be updated with 2670 * the new offsets. 2671 */ 2672 2673 /* 2674 * This routine is called after the in-memory inode's link 2675 * count has been incremented, but before the directory entry's 2676 * pointer to the inode has been set. 2677 */ 2678 int 2679 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2680 struct buf *bp; /* buffer containing directory block */ 2681 struct inode *dp; /* inode for directory */ 2682 off_t diroffset; /* offset of new entry in directory */ 2683 ino_t newinum; /* inode referenced by new directory entry */ 2684 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2685 int isnewblk; /* entry is in a newly allocated block */ 2686 { 2687 int offset; /* offset of new entry within directory block */ 2688 ufs_lbn_t lbn; /* block in directory containing new entry */ 2689 struct fs *fs; 2690 struct diradd *dap; 2691 struct allocdirect *adp; 2692 struct pagedep *pagedep; 2693 struct inodedep *inodedep; 2694 struct newdirblk *newdirblk = 0; 2695 struct mkdir *mkdir1, *mkdir2; 2696 2697 /* 2698 * Whiteouts have no dependencies. 2699 */ 2700 if (newinum == WINO) { 2701 if (newdirbp != NULL) 2702 bdwrite(newdirbp); 2703 return (0); 2704 } 2705 2706 fs = dp->i_fs; 2707 lbn = lblkno(fs, diroffset); 2708 offset = blkoff(fs, diroffset); 2709 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2710 M_SOFTDEP_FLAGS|M_ZERO); 2711 dap->da_list.wk_type = D_DIRADD; 2712 dap->da_offset = offset; 2713 dap->da_newinum = newinum; 2714 dap->da_state = ATTACHED; 2715 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2716 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2717 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2718 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2719 newdirblk->db_state = 0; 2720 } 2721 if (newdirbp == NULL) { 2722 dap->da_state |= DEPCOMPLETE; 2723 ACQUIRE_LOCK(&lk); 2724 } else { 2725 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2726 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2727 M_SOFTDEP_FLAGS); 2728 mkdir1->md_list.wk_type = D_MKDIR; 2729 mkdir1->md_state = MKDIR_BODY; 2730 mkdir1->md_diradd = dap; 2731 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2732 M_SOFTDEP_FLAGS); 2733 mkdir2->md_list.wk_type = D_MKDIR; 2734 mkdir2->md_state = MKDIR_PARENT; 2735 mkdir2->md_diradd = dap; 2736 /* 2737 * Dependency on "." and ".." being written to disk. 2738 */ 2739 mkdir1->md_buf = newdirbp; 2740 ACQUIRE_LOCK(&lk); 2741 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2742 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2743 FREE_LOCK(&lk); 2744 bdwrite(newdirbp); 2745 /* 2746 * Dependency on link count increase for parent directory 2747 */ 2748 ACQUIRE_LOCK(&lk); 2749 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2750 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2751 dap->da_state &= ~MKDIR_PARENT; 2752 WORKITEM_FREE(mkdir2, D_MKDIR); 2753 } else { 2754 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2755 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2756 } 2757 } 2758 /* 2759 * Link into parent directory pagedep to await its being written. 2760 */ 2761 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2762 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2763 dap->da_pagedep = pagedep; 2764 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2765 da_pdlist); 2766 /* 2767 * Link into its inodedep. Put it on the id_bufwait list if the inode 2768 * is not yet written. If it is written, do the post-inode write 2769 * processing to put it on the id_pendinghd list. 2770 */ 2771 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2772 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2773 diradd_inode_written(dap, inodedep); 2774 else 2775 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2776 if (isnewblk) { 2777 /* 2778 * Directories growing into indirect blocks are rare 2779 * enough and the frequency of new block allocation 2780 * in those cases even more rare, that we choose not 2781 * to bother tracking them. Rather we simply force the 2782 * new directory entry to disk. 2783 */ 2784 if (lbn >= NDADDR) { 2785 FREE_LOCK(&lk); 2786 /* 2787 * We only have a new allocation when at the 2788 * beginning of a new block, not when we are 2789 * expanding into an existing block. 2790 */ 2791 if (blkoff(fs, diroffset) == 0) 2792 return (1); 2793 return (0); 2794 } 2795 /* 2796 * We only have a new allocation when at the beginning 2797 * of a new fragment, not when we are expanding into an 2798 * existing fragment. Also, there is nothing to do if we 2799 * are already tracking this block. 2800 */ 2801 if (fragoff(fs, diroffset) != 0) { 2802 FREE_LOCK(&lk); 2803 return (0); 2804 } 2805 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2806 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2807 FREE_LOCK(&lk); 2808 return (0); 2809 } 2810 /* 2811 * Find our associated allocdirect and have it track us. 2812 */ 2813 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2814 panic("softdep_setup_directory_add: lost inodedep"); 2815 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2816 if (adp == NULL || adp->ad_lbn != lbn) { 2817 FREE_LOCK(&lk); 2818 panic("softdep_setup_directory_add: lost entry"); 2819 } 2820 pagedep->pd_state |= NEWBLOCK; 2821 newdirblk->db_pagedep = pagedep; 2822 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2823 } 2824 FREE_LOCK(&lk); 2825 return (0); 2826 } 2827 2828 /* 2829 * This procedure is called to change the offset of a directory 2830 * entry when compacting a directory block which must be owned 2831 * exclusively by the caller. Note that the actual entry movement 2832 * must be done in this procedure to ensure that no I/O completions 2833 * occur while the move is in progress. 2834 */ 2835 void 2836 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2837 struct inode *dp; /* inode for directory */ 2838 caddr_t base; /* address of dp->i_offset */ 2839 caddr_t oldloc; /* address of old directory location */ 2840 caddr_t newloc; /* address of new directory location */ 2841 int entrysize; /* size of directory entry */ 2842 { 2843 int offset, oldoffset, newoffset; 2844 struct pagedep *pagedep; 2845 struct diradd *dap; 2846 ufs_lbn_t lbn; 2847 2848 ACQUIRE_LOCK(&lk); 2849 lbn = lblkno(dp->i_fs, dp->i_offset); 2850 offset = blkoff(dp->i_fs, dp->i_offset); 2851 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2852 goto done; 2853 oldoffset = offset + (oldloc - base); 2854 newoffset = offset + (newloc - base); 2855 2856 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2857 if (dap->da_offset != oldoffset) 2858 continue; 2859 dap->da_offset = newoffset; 2860 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2861 break; 2862 LIST_REMOVE(dap, da_pdlist); 2863 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2864 dap, da_pdlist); 2865 break; 2866 } 2867 if (dap == NULL) { 2868 2869 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2870 if (dap->da_offset == oldoffset) { 2871 dap->da_offset = newoffset; 2872 break; 2873 } 2874 } 2875 } 2876 done: 2877 bcopy(oldloc, newloc, entrysize); 2878 FREE_LOCK(&lk); 2879 } 2880 2881 /* 2882 * Free a diradd dependency structure. This routine must be called 2883 * with splbio interrupts blocked. 2884 */ 2885 static void 2886 free_diradd(dap) 2887 struct diradd *dap; 2888 { 2889 struct dirrem *dirrem; 2890 struct pagedep *pagedep; 2891 struct inodedep *inodedep; 2892 struct mkdir *mkdir, *nextmd; 2893 2894 #ifdef DEBUG 2895 if (lk.lkt_held == NOHOLDER) 2896 panic("free_diradd: lock not held"); 2897 #endif 2898 WORKLIST_REMOVE(&dap->da_list); 2899 LIST_REMOVE(dap, da_pdlist); 2900 if ((dap->da_state & DIRCHG) == 0) { 2901 pagedep = dap->da_pagedep; 2902 } else { 2903 dirrem = dap->da_previous; 2904 pagedep = dirrem->dm_pagedep; 2905 dirrem->dm_dirinum = pagedep->pd_ino; 2906 add_to_worklist(&dirrem->dm_list); 2907 } 2908 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2909 0, &inodedep) != 0) 2910 (void) free_inodedep(inodedep); 2911 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2912 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2913 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2914 if (mkdir->md_diradd != dap) 2915 continue; 2916 dap->da_state &= ~mkdir->md_state; 2917 WORKLIST_REMOVE(&mkdir->md_list); 2918 LIST_REMOVE(mkdir, md_mkdirs); 2919 WORKITEM_FREE(mkdir, D_MKDIR); 2920 } 2921 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2922 FREE_LOCK(&lk); 2923 panic("free_diradd: unfound ref"); 2924 } 2925 } 2926 WORKITEM_FREE(dap, D_DIRADD); 2927 } 2928 2929 /* 2930 * Directory entry removal dependencies. 2931 * 2932 * When removing a directory entry, the entry's inode pointer must be 2933 * zero'ed on disk before the corresponding inode's link count is decremented 2934 * (possibly freeing the inode for re-use). This dependency is handled by 2935 * updating the directory entry but delaying the inode count reduction until 2936 * after the directory block has been written to disk. After this point, the 2937 * inode count can be decremented whenever it is convenient. 2938 */ 2939 2940 /* 2941 * This routine should be called immediately after removing 2942 * a directory entry. The inode's link count should not be 2943 * decremented by the calling procedure -- the soft updates 2944 * code will do this task when it is safe. 2945 */ 2946 void 2947 softdep_setup_remove(bp, dp, ip, isrmdir) 2948 struct buf *bp; /* buffer containing directory block */ 2949 struct inode *dp; /* inode for the directory being modified */ 2950 struct inode *ip; /* inode for directory entry being removed */ 2951 int isrmdir; /* indicates if doing RMDIR */ 2952 { 2953 struct dirrem *dirrem, *prevdirrem; 2954 2955 /* 2956 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2957 */ 2958 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2959 2960 /* 2961 * If the COMPLETE flag is clear, then there were no active 2962 * entries and we want to roll back to a zeroed entry until 2963 * the new inode is committed to disk. If the COMPLETE flag is 2964 * set then we have deleted an entry that never made it to 2965 * disk. If the entry we deleted resulted from a name change, 2966 * then the old name still resides on disk. We cannot delete 2967 * its inode (returned to us in prevdirrem) until the zeroed 2968 * directory entry gets to disk. The new inode has never been 2969 * referenced on the disk, so can be deleted immediately. 2970 */ 2971 if ((dirrem->dm_state & COMPLETE) == 0) { 2972 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2973 dm_next); 2974 FREE_LOCK(&lk); 2975 } else { 2976 if (prevdirrem != NULL) 2977 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2978 prevdirrem, dm_next); 2979 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2980 FREE_LOCK(&lk); 2981 handle_workitem_remove(dirrem, NULL); 2982 } 2983 } 2984 2985 /* 2986 * Allocate a new dirrem if appropriate and return it along with 2987 * its associated pagedep. Called without a lock, returns with lock. 2988 */ 2989 static long num_dirrem; /* number of dirrem allocated */ 2990 static struct dirrem * 2991 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2992 struct buf *bp; /* buffer containing directory block */ 2993 struct inode *dp; /* inode for the directory being modified */ 2994 struct inode *ip; /* inode for directory entry being removed */ 2995 int isrmdir; /* indicates if doing RMDIR */ 2996 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2997 { 2998 int offset; 2999 ufs_lbn_t lbn; 3000 struct diradd *dap; 3001 struct dirrem *dirrem; 3002 struct pagedep *pagedep; 3003 3004 /* 3005 * Whiteouts have no deletion dependencies. 3006 */ 3007 if (ip == NULL) 3008 panic("newdirrem: whiteout"); 3009 /* 3010 * If we are over our limit, try to improve the situation. 3011 * Limiting the number of dirrem structures will also limit 3012 * the number of freefile and freeblks structures. 3013 */ 3014 if (num_dirrem > max_softdeps / 2) 3015 (void) request_cleanup(FLUSH_REMOVE, 0); 3016 num_dirrem += 1; 3017 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3018 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3019 dirrem->dm_list.wk_type = D_DIRREM; 3020 dirrem->dm_state = isrmdir ? RMDIR : 0; 3021 dirrem->dm_mnt = ITOV(ip)->v_mount; 3022 dirrem->dm_oldinum = ip->i_number; 3023 *prevdirremp = NULL; 3024 3025 ACQUIRE_LOCK(&lk); 3026 lbn = lblkno(dp->i_fs, dp->i_offset); 3027 offset = blkoff(dp->i_fs, dp->i_offset); 3028 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3029 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3030 dirrem->dm_pagedep = pagedep; 3031 /* 3032 * Check for a diradd dependency for the same directory entry. 3033 * If present, then both dependencies become obsolete and can 3034 * be de-allocated. Check for an entry on both the pd_dirraddhd 3035 * list and the pd_pendinghd list. 3036 */ 3037 3038 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3039 if (dap->da_offset == offset) 3040 break; 3041 if (dap == NULL) { 3042 3043 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3044 if (dap->da_offset == offset) 3045 break; 3046 if (dap == NULL) 3047 return (dirrem); 3048 } 3049 /* 3050 * Must be ATTACHED at this point. 3051 */ 3052 if ((dap->da_state & ATTACHED) == 0) { 3053 FREE_LOCK(&lk); 3054 panic("newdirrem: not ATTACHED"); 3055 } 3056 if (dap->da_newinum != ip->i_number) { 3057 FREE_LOCK(&lk); 3058 panic("newdirrem: inum %d should be %d", 3059 ip->i_number, dap->da_newinum); 3060 } 3061 /* 3062 * If we are deleting a changed name that never made it to disk, 3063 * then return the dirrem describing the previous inode (which 3064 * represents the inode currently referenced from this entry on disk). 3065 */ 3066 if ((dap->da_state & DIRCHG) != 0) { 3067 *prevdirremp = dap->da_previous; 3068 dap->da_state &= ~DIRCHG; 3069 dap->da_pagedep = pagedep; 3070 } 3071 /* 3072 * We are deleting an entry that never made it to disk. 3073 * Mark it COMPLETE so we can delete its inode immediately. 3074 */ 3075 dirrem->dm_state |= COMPLETE; 3076 free_diradd(dap); 3077 return (dirrem); 3078 } 3079 3080 /* 3081 * Directory entry change dependencies. 3082 * 3083 * Changing an existing directory entry requires that an add operation 3084 * be completed first followed by a deletion. The semantics for the addition 3085 * are identical to the description of adding a new entry above except 3086 * that the rollback is to the old inode number rather than zero. Once 3087 * the addition dependency is completed, the removal is done as described 3088 * in the removal routine above. 3089 */ 3090 3091 /* 3092 * This routine should be called immediately after changing 3093 * a directory entry. The inode's link count should not be 3094 * decremented by the calling procedure -- the soft updates 3095 * code will perform this task when it is safe. 3096 */ 3097 void 3098 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3099 struct buf *bp; /* buffer containing directory block */ 3100 struct inode *dp; /* inode for the directory being modified */ 3101 struct inode *ip; /* inode for directory entry being removed */ 3102 ino_t newinum; /* new inode number for changed entry */ 3103 int isrmdir; /* indicates if doing RMDIR */ 3104 { 3105 int offset; 3106 struct diradd *dap = NULL; 3107 struct dirrem *dirrem, *prevdirrem; 3108 struct pagedep *pagedep; 3109 struct inodedep *inodedep; 3110 3111 offset = blkoff(dp->i_fs, dp->i_offset); 3112 3113 /* 3114 * Whiteouts do not need diradd dependencies. 3115 */ 3116 if (newinum != WINO) { 3117 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3118 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3119 dap->da_list.wk_type = D_DIRADD; 3120 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3121 dap->da_offset = offset; 3122 dap->da_newinum = newinum; 3123 } 3124 3125 /* 3126 * Allocate a new dirrem and ACQUIRE_LOCK. 3127 */ 3128 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3129 pagedep = dirrem->dm_pagedep; 3130 /* 3131 * The possible values for isrmdir: 3132 * 0 - non-directory file rename 3133 * 1 - directory rename within same directory 3134 * inum - directory rename to new directory of given inode number 3135 * When renaming to a new directory, we are both deleting and 3136 * creating a new directory entry, so the link count on the new 3137 * directory should not change. Thus we do not need the followup 3138 * dirrem which is usually done in handle_workitem_remove. We set 3139 * the DIRCHG flag to tell handle_workitem_remove to skip the 3140 * followup dirrem. 3141 */ 3142 if (isrmdir > 1) 3143 dirrem->dm_state |= DIRCHG; 3144 3145 /* 3146 * Whiteouts have no additional dependencies, 3147 * so just put the dirrem on the correct list. 3148 */ 3149 if (newinum == WINO) { 3150 if ((dirrem->dm_state & COMPLETE) == 0) { 3151 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3152 dm_next); 3153 } else { 3154 dirrem->dm_dirinum = pagedep->pd_ino; 3155 add_to_worklist(&dirrem->dm_list); 3156 } 3157 FREE_LOCK(&lk); 3158 return; 3159 } 3160 3161 /* 3162 * If the COMPLETE flag is clear, then there were no active 3163 * entries and we want to roll back to the previous inode until 3164 * the new inode is committed to disk. If the COMPLETE flag is 3165 * set, then we have deleted an entry that never made it to disk. 3166 * If the entry we deleted resulted from a name change, then the old 3167 * inode reference still resides on disk. Any rollback that we do 3168 * needs to be to that old inode (returned to us in prevdirrem). If 3169 * the entry we deleted resulted from a create, then there is 3170 * no entry on the disk, so we want to roll back to zero rather 3171 * than the uncommitted inode. In either of the COMPLETE cases we 3172 * want to immediately free the unwritten and unreferenced inode. 3173 */ 3174 if ((dirrem->dm_state & COMPLETE) == 0) { 3175 dap->da_previous = dirrem; 3176 } else { 3177 if (prevdirrem != NULL) { 3178 dap->da_previous = prevdirrem; 3179 } else { 3180 dap->da_state &= ~DIRCHG; 3181 dap->da_pagedep = pagedep; 3182 } 3183 dirrem->dm_dirinum = pagedep->pd_ino; 3184 add_to_worklist(&dirrem->dm_list); 3185 } 3186 /* 3187 * Link into its inodedep. Put it on the id_bufwait list if the inode 3188 * is not yet written. If it is written, do the post-inode write 3189 * processing to put it on the id_pendinghd list. 3190 */ 3191 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3192 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3193 dap->da_state |= COMPLETE; 3194 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3195 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3196 } else { 3197 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3198 dap, da_pdlist); 3199 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3200 } 3201 FREE_LOCK(&lk); 3202 } 3203 3204 /* 3205 * Called whenever the link count on an inode is changed. 3206 * It creates an inode dependency so that the new reference(s) 3207 * to the inode cannot be committed to disk until the updated 3208 * inode has been written. 3209 */ 3210 void 3211 softdep_change_linkcnt(ip) 3212 struct inode *ip; /* the inode with the increased link count */ 3213 { 3214 struct inodedep *inodedep; 3215 3216 ACQUIRE_LOCK(&lk); 3217 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3218 if (ip->i_nlink < ip->i_effnlink) { 3219 FREE_LOCK(&lk); 3220 panic("softdep_change_linkcnt: bad delta"); 3221 } 3222 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3223 FREE_LOCK(&lk); 3224 } 3225 3226 /* 3227 * Called when the effective link count and the reference count 3228 * on an inode drops to zero. At this point there are no names 3229 * referencing the file in the filesystem and no active file 3230 * references. The space associated with the file will be freed 3231 * as soon as the necessary soft dependencies are cleared. 3232 */ 3233 void 3234 softdep_releasefile(ip) 3235 struct inode *ip; /* inode with the zero effective link count */ 3236 { 3237 struct inodedep *inodedep; 3238 struct fs *fs; 3239 int extblocks; 3240 3241 if (ip->i_effnlink > 0) 3242 panic("softdep_filerelease: file still referenced"); 3243 /* 3244 * We may be called several times as the real reference count 3245 * drops to zero. We only want to account for the space once. 3246 */ 3247 if (ip->i_flag & IN_SPACECOUNTED) 3248 return; 3249 /* 3250 * We have to deactivate a snapshot otherwise copyonwrites may 3251 * add blocks and the cleanup may remove blocks after we have 3252 * tried to account for them. 3253 */ 3254 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3255 ffs_snapremove(ITOV(ip)); 3256 /* 3257 * If we are tracking an nlinkdelta, we have to also remember 3258 * whether we accounted for the freed space yet. 3259 */ 3260 ACQUIRE_LOCK(&lk); 3261 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3262 inodedep->id_state |= SPACECOUNTED; 3263 FREE_LOCK(&lk); 3264 fs = ip->i_fs; 3265 extblocks = 0; 3266 if (fs->fs_magic == FS_UFS2_MAGIC) 3267 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3268 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3269 ip->i_fs->fs_pendinginodes += 1; 3270 ip->i_flag |= IN_SPACECOUNTED; 3271 } 3272 3273 /* 3274 * This workitem decrements the inode's link count. 3275 * If the link count reaches zero, the file is removed. 3276 */ 3277 static void 3278 handle_workitem_remove(dirrem, xp) 3279 struct dirrem *dirrem; 3280 struct vnode *xp; 3281 { 3282 struct thread *td = curthread; 3283 struct inodedep *inodedep; 3284 struct vnode *vp; 3285 struct inode *ip; 3286 ino_t oldinum; 3287 int error; 3288 3289 if ((vp = xp) == NULL && 3290 (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3291 &vp)) != 0) { 3292 softdep_error("handle_workitem_remove: vget", error); 3293 return; 3294 } 3295 ip = VTOI(vp); 3296 ACQUIRE_LOCK(&lk); 3297 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){ 3298 FREE_LOCK(&lk); 3299 panic("handle_workitem_remove: lost inodedep"); 3300 } 3301 /* 3302 * Normal file deletion. 3303 */ 3304 if ((dirrem->dm_state & RMDIR) == 0) { 3305 ip->i_nlink--; 3306 DIP(ip, i_nlink) = ip->i_nlink; 3307 ip->i_flag |= IN_CHANGE; 3308 if (ip->i_nlink < ip->i_effnlink) { 3309 FREE_LOCK(&lk); 3310 panic("handle_workitem_remove: bad file delta"); 3311 } 3312 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3313 FREE_LOCK(&lk); 3314 vput(vp); 3315 num_dirrem -= 1; 3316 WORKITEM_FREE(dirrem, D_DIRREM); 3317 return; 3318 } 3319 /* 3320 * Directory deletion. Decrement reference count for both the 3321 * just deleted parent directory entry and the reference for ".". 3322 * Next truncate the directory to length zero. When the 3323 * truncation completes, arrange to have the reference count on 3324 * the parent decremented to account for the loss of "..". 3325 */ 3326 ip->i_nlink -= 2; 3327 DIP(ip, i_nlink) = ip->i_nlink; 3328 ip->i_flag |= IN_CHANGE; 3329 if (ip->i_nlink < ip->i_effnlink) { 3330 FREE_LOCK(&lk); 3331 panic("handle_workitem_remove: bad dir delta"); 3332 } 3333 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3334 FREE_LOCK(&lk); 3335 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3336 softdep_error("handle_workitem_remove: truncate", error); 3337 /* 3338 * Rename a directory to a new parent. Since, we are both deleting 3339 * and creating a new directory entry, the link count on the new 3340 * directory should not change. Thus we skip the followup dirrem. 3341 */ 3342 if (dirrem->dm_state & DIRCHG) { 3343 vput(vp); 3344 num_dirrem -= 1; 3345 WORKITEM_FREE(dirrem, D_DIRREM); 3346 return; 3347 } 3348 /* 3349 * If the inodedep does not exist, then the zero'ed inode has 3350 * been written to disk. If the allocated inode has never been 3351 * written to disk, then the on-disk inode is zero'ed. In either 3352 * case we can remove the file immediately. 3353 */ 3354 ACQUIRE_LOCK(&lk); 3355 dirrem->dm_state = 0; 3356 oldinum = dirrem->dm_oldinum; 3357 dirrem->dm_oldinum = dirrem->dm_dirinum; 3358 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3359 check_inode_unwritten(inodedep)) { 3360 FREE_LOCK(&lk); 3361 vput(vp); 3362 handle_workitem_remove(dirrem, NULL); 3363 return; 3364 } 3365 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3366 FREE_LOCK(&lk); 3367 vput(vp); 3368 } 3369 3370 /* 3371 * Inode de-allocation dependencies. 3372 * 3373 * When an inode's link count is reduced to zero, it can be de-allocated. We 3374 * found it convenient to postpone de-allocation until after the inode is 3375 * written to disk with its new link count (zero). At this point, all of the 3376 * on-disk inode's block pointers are nullified and, with careful dependency 3377 * list ordering, all dependencies related to the inode will be satisfied and 3378 * the corresponding dependency structures de-allocated. So, if/when the 3379 * inode is reused, there will be no mixing of old dependencies with new 3380 * ones. This artificial dependency is set up by the block de-allocation 3381 * procedure above (softdep_setup_freeblocks) and completed by the 3382 * following procedure. 3383 */ 3384 static void 3385 handle_workitem_freefile(freefile) 3386 struct freefile *freefile; 3387 { 3388 struct fs *fs; 3389 struct inodedep *idp; 3390 int error; 3391 3392 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 3393 #ifdef DEBUG 3394 ACQUIRE_LOCK(&lk); 3395 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3396 FREE_LOCK(&lk); 3397 if (error) 3398 panic("handle_workitem_freefile: inodedep survived"); 3399 #endif 3400 fs->fs_pendinginodes -= 1; 3401 if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum, 3402 freefile->fx_mode)) != 0) 3403 softdep_error("handle_workitem_freefile", error); 3404 WORKITEM_FREE(freefile, D_FREEFILE); 3405 } 3406 3407 /* 3408 * Disk writes. 3409 * 3410 * The dependency structures constructed above are most actively used when file 3411 * system blocks are written to disk. No constraints are placed on when a 3412 * block can be written, but unsatisfied update dependencies are made safe by 3413 * modifying (or replacing) the source memory for the duration of the disk 3414 * write. When the disk write completes, the memory block is again brought 3415 * up-to-date. 3416 * 3417 * In-core inode structure reclamation. 3418 * 3419 * Because there are a finite number of "in-core" inode structures, they are 3420 * reused regularly. By transferring all inode-related dependencies to the 3421 * in-memory inode block and indexing them separately (via "inodedep"s), we 3422 * can allow "in-core" inode structures to be reused at any time and avoid 3423 * any increase in contention. 3424 * 3425 * Called just before entering the device driver to initiate a new disk I/O. 3426 * The buffer must be locked, thus, no I/O completion operations can occur 3427 * while we are manipulating its associated dependencies. 3428 */ 3429 static void 3430 softdep_disk_io_initiation(bp) 3431 struct buf *bp; /* structure describing disk write to occur */ 3432 { 3433 struct worklist *wk, *nextwk; 3434 struct indirdep *indirdep; 3435 struct inodedep *inodedep; 3436 3437 /* 3438 * We only care about write operations. There should never 3439 * be dependencies for reads. 3440 */ 3441 if (bp->b_iocmd == BIO_READ) 3442 panic("softdep_disk_io_initiation: read"); 3443 /* 3444 * Do any necessary pre-I/O processing. 3445 */ 3446 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 3447 nextwk = LIST_NEXT(wk, wk_list); 3448 switch (wk->wk_type) { 3449 3450 case D_PAGEDEP: 3451 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3452 continue; 3453 3454 case D_INODEDEP: 3455 inodedep = WK_INODEDEP(wk); 3456 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3457 initiate_write_inodeblock_ufs1(inodedep, bp); 3458 else 3459 initiate_write_inodeblock_ufs2(inodedep, bp); 3460 continue; 3461 3462 case D_INDIRDEP: 3463 indirdep = WK_INDIRDEP(wk); 3464 if (indirdep->ir_state & GOINGAWAY) 3465 panic("disk_io_initiation: indirdep gone"); 3466 /* 3467 * If there are no remaining dependencies, this 3468 * will be writing the real pointers, so the 3469 * dependency can be freed. 3470 */ 3471 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3472 indirdep->ir_savebp->b_flags |= 3473 B_INVAL | B_NOCACHE; 3474 brelse(indirdep->ir_savebp); 3475 /* inline expand WORKLIST_REMOVE(wk); */ 3476 wk->wk_state &= ~ONWORKLIST; 3477 LIST_REMOVE(wk, wk_list); 3478 WORKITEM_FREE(indirdep, D_INDIRDEP); 3479 continue; 3480 } 3481 /* 3482 * Replace up-to-date version with safe version. 3483 */ 3484 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3485 M_INDIRDEP, M_SOFTDEP_FLAGS); 3486 ACQUIRE_LOCK(&lk); 3487 indirdep->ir_state &= ~ATTACHED; 3488 indirdep->ir_state |= UNDONE; 3489 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3490 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3491 bp->b_bcount); 3492 FREE_LOCK(&lk); 3493 continue; 3494 3495 case D_MKDIR: 3496 case D_BMSAFEMAP: 3497 case D_ALLOCDIRECT: 3498 case D_ALLOCINDIR: 3499 continue; 3500 3501 default: 3502 panic("handle_disk_io_initiation: Unexpected type %s", 3503 TYPENAME(wk->wk_type)); 3504 /* NOTREACHED */ 3505 } 3506 } 3507 } 3508 3509 /* 3510 * Called from within the procedure above to deal with unsatisfied 3511 * allocation dependencies in a directory. The buffer must be locked, 3512 * thus, no I/O completion operations can occur while we are 3513 * manipulating its associated dependencies. 3514 */ 3515 static void 3516 initiate_write_filepage(pagedep, bp) 3517 struct pagedep *pagedep; 3518 struct buf *bp; 3519 { 3520 struct diradd *dap; 3521 struct direct *ep; 3522 int i; 3523 3524 if (pagedep->pd_state & IOSTARTED) { 3525 /* 3526 * This can only happen if there is a driver that does not 3527 * understand chaining. Here biodone will reissue the call 3528 * to strategy for the incomplete buffers. 3529 */ 3530 printf("initiate_write_filepage: already started\n"); 3531 return; 3532 } 3533 pagedep->pd_state |= IOSTARTED; 3534 ACQUIRE_LOCK(&lk); 3535 for (i = 0; i < DAHASHSZ; i++) { 3536 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3537 ep = (struct direct *) 3538 ((char *)bp->b_data + dap->da_offset); 3539 if (ep->d_ino != dap->da_newinum) { 3540 FREE_LOCK(&lk); 3541 panic("%s: dir inum %d != new %d", 3542 "initiate_write_filepage", 3543 ep->d_ino, dap->da_newinum); 3544 } 3545 if (dap->da_state & DIRCHG) 3546 ep->d_ino = dap->da_previous->dm_oldinum; 3547 else 3548 ep->d_ino = 0; 3549 dap->da_state &= ~ATTACHED; 3550 dap->da_state |= UNDONE; 3551 } 3552 } 3553 FREE_LOCK(&lk); 3554 } 3555 3556 /* 3557 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3558 * Note that any bug fixes made to this routine must be done in the 3559 * version found below. 3560 * 3561 * Called from within the procedure above to deal with unsatisfied 3562 * allocation dependencies in an inodeblock. The buffer must be 3563 * locked, thus, no I/O completion operations can occur while we 3564 * are manipulating its associated dependencies. 3565 */ 3566 static void 3567 initiate_write_inodeblock_ufs1(inodedep, bp) 3568 struct inodedep *inodedep; 3569 struct buf *bp; /* The inode block */ 3570 { 3571 struct allocdirect *adp, *lastadp; 3572 struct ufs1_dinode *dp; 3573 struct fs *fs; 3574 ufs_lbn_t i, prevlbn = 0; 3575 int deplist; 3576 3577 if (inodedep->id_state & IOSTARTED) 3578 panic("initiate_write_inodeblock_ufs1: already started"); 3579 inodedep->id_state |= IOSTARTED; 3580 fs = inodedep->id_fs; 3581 dp = (struct ufs1_dinode *)bp->b_data + 3582 ino_to_fsbo(fs, inodedep->id_ino); 3583 /* 3584 * If the bitmap is not yet written, then the allocated 3585 * inode cannot be written to disk. 3586 */ 3587 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3588 if (inodedep->id_savedino1 != NULL) 3589 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3590 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3591 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3592 *inodedep->id_savedino1 = *dp; 3593 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3594 return; 3595 } 3596 /* 3597 * If no dependencies, then there is nothing to roll back. 3598 */ 3599 inodedep->id_savedsize = dp->di_size; 3600 inodedep->id_savedextsize = 0; 3601 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3602 return; 3603 /* 3604 * Set the dependencies to busy. 3605 */ 3606 ACQUIRE_LOCK(&lk); 3607 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3608 adp = TAILQ_NEXT(adp, ad_next)) { 3609 #ifdef DIAGNOSTIC 3610 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3611 FREE_LOCK(&lk); 3612 panic("softdep_write_inodeblock: lbn order"); 3613 } 3614 prevlbn = adp->ad_lbn; 3615 if (adp->ad_lbn < NDADDR && 3616 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3617 FREE_LOCK(&lk); 3618 panic("%s: direct pointer #%jd mismatch %d != %jd", 3619 "softdep_write_inodeblock", 3620 (intmax_t)adp->ad_lbn, 3621 dp->di_db[adp->ad_lbn], 3622 (intmax_t)adp->ad_newblkno); 3623 } 3624 if (adp->ad_lbn >= NDADDR && 3625 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3626 FREE_LOCK(&lk); 3627 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3628 "softdep_write_inodeblock", 3629 (intmax_t)adp->ad_lbn - NDADDR, 3630 dp->di_ib[adp->ad_lbn - NDADDR], 3631 (intmax_t)adp->ad_newblkno); 3632 } 3633 deplist |= 1 << adp->ad_lbn; 3634 if ((adp->ad_state & ATTACHED) == 0) { 3635 FREE_LOCK(&lk); 3636 panic("softdep_write_inodeblock: Unknown state 0x%x", 3637 adp->ad_state); 3638 } 3639 #endif /* DIAGNOSTIC */ 3640 adp->ad_state &= ~ATTACHED; 3641 adp->ad_state |= UNDONE; 3642 } 3643 /* 3644 * The on-disk inode cannot claim to be any larger than the last 3645 * fragment that has been written. Otherwise, the on-disk inode 3646 * might have fragments that were not the last block in the file 3647 * which would corrupt the filesystem. 3648 */ 3649 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3650 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3651 if (adp->ad_lbn >= NDADDR) 3652 break; 3653 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3654 /* keep going until hitting a rollback to a frag */ 3655 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3656 continue; 3657 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3658 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3659 #ifdef DIAGNOSTIC 3660 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3661 FREE_LOCK(&lk); 3662 panic("softdep_write_inodeblock: lost dep1"); 3663 } 3664 #endif /* DIAGNOSTIC */ 3665 dp->di_db[i] = 0; 3666 } 3667 for (i = 0; i < NIADDR; i++) { 3668 #ifdef DIAGNOSTIC 3669 if (dp->di_ib[i] != 0 && 3670 (deplist & ((1 << NDADDR) << i)) == 0) { 3671 FREE_LOCK(&lk); 3672 panic("softdep_write_inodeblock: lost dep2"); 3673 } 3674 #endif /* DIAGNOSTIC */ 3675 dp->di_ib[i] = 0; 3676 } 3677 FREE_LOCK(&lk); 3678 return; 3679 } 3680 /* 3681 * If we have zero'ed out the last allocated block of the file, 3682 * roll back the size to the last currently allocated block. 3683 * We know that this last allocated block is a full-sized as 3684 * we already checked for fragments in the loop above. 3685 */ 3686 if (lastadp != NULL && 3687 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3688 for (i = lastadp->ad_lbn; i >= 0; i--) 3689 if (dp->di_db[i] != 0) 3690 break; 3691 dp->di_size = (i + 1) * fs->fs_bsize; 3692 } 3693 /* 3694 * The only dependencies are for indirect blocks. 3695 * 3696 * The file size for indirect block additions is not guaranteed. 3697 * Such a guarantee would be non-trivial to achieve. The conventional 3698 * synchronous write implementation also does not make this guarantee. 3699 * Fsck should catch and fix discrepancies. Arguably, the file size 3700 * can be over-estimated without destroying integrity when the file 3701 * moves into the indirect blocks (i.e., is large). If we want to 3702 * postpone fsck, we are stuck with this argument. 3703 */ 3704 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3705 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3706 FREE_LOCK(&lk); 3707 } 3708 3709 /* 3710 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3711 * Note that any bug fixes made to this routine must be done in the 3712 * version found above. 3713 * 3714 * Called from within the procedure above to deal with unsatisfied 3715 * allocation dependencies in an inodeblock. The buffer must be 3716 * locked, thus, no I/O completion operations can occur while we 3717 * are manipulating its associated dependencies. 3718 */ 3719 static void 3720 initiate_write_inodeblock_ufs2(inodedep, bp) 3721 struct inodedep *inodedep; 3722 struct buf *bp; /* The inode block */ 3723 { 3724 struct allocdirect *adp, *lastadp; 3725 struct ufs2_dinode *dp; 3726 struct fs *fs; 3727 ufs_lbn_t i, prevlbn = 0; 3728 int deplist; 3729 3730 if (inodedep->id_state & IOSTARTED) 3731 panic("initiate_write_inodeblock_ufs2: already started"); 3732 inodedep->id_state |= IOSTARTED; 3733 fs = inodedep->id_fs; 3734 dp = (struct ufs2_dinode *)bp->b_data + 3735 ino_to_fsbo(fs, inodedep->id_ino); 3736 /* 3737 * If the bitmap is not yet written, then the allocated 3738 * inode cannot be written to disk. 3739 */ 3740 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3741 if (inodedep->id_savedino2 != NULL) 3742 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3743 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3744 sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3745 *inodedep->id_savedino2 = *dp; 3746 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3747 return; 3748 } 3749 /* 3750 * If no dependencies, then there is nothing to roll back. 3751 */ 3752 inodedep->id_savedsize = dp->di_size; 3753 inodedep->id_savedextsize = dp->di_extsize; 3754 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 3755 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 3756 return; 3757 /* 3758 * Set the ext data dependencies to busy. 3759 */ 3760 ACQUIRE_LOCK(&lk); 3761 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3762 adp = TAILQ_NEXT(adp, ad_next)) { 3763 #ifdef DIAGNOSTIC 3764 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3765 FREE_LOCK(&lk); 3766 panic("softdep_write_inodeblock: lbn order"); 3767 } 3768 prevlbn = adp->ad_lbn; 3769 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) { 3770 FREE_LOCK(&lk); 3771 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3772 "softdep_write_inodeblock", 3773 (intmax_t)adp->ad_lbn, 3774 (intmax_t)dp->di_extb[adp->ad_lbn], 3775 (intmax_t)adp->ad_newblkno); 3776 } 3777 deplist |= 1 << adp->ad_lbn; 3778 if ((adp->ad_state & ATTACHED) == 0) { 3779 FREE_LOCK(&lk); 3780 panic("softdep_write_inodeblock: Unknown state 0x%x", 3781 adp->ad_state); 3782 } 3783 #endif /* DIAGNOSTIC */ 3784 adp->ad_state &= ~ATTACHED; 3785 adp->ad_state |= UNDONE; 3786 } 3787 /* 3788 * The on-disk inode cannot claim to be any larger than the last 3789 * fragment that has been written. Otherwise, the on-disk inode 3790 * might have fragments that were not the last block in the ext 3791 * data which would corrupt the filesystem. 3792 */ 3793 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3794 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3795 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 3796 /* keep going until hitting a rollback to a frag */ 3797 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3798 continue; 3799 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3800 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 3801 #ifdef DIAGNOSTIC 3802 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) { 3803 FREE_LOCK(&lk); 3804 panic("softdep_write_inodeblock: lost dep1"); 3805 } 3806 #endif /* DIAGNOSTIC */ 3807 dp->di_extb[i] = 0; 3808 } 3809 lastadp = NULL; 3810 break; 3811 } 3812 /* 3813 * If we have zero'ed out the last allocated block of the ext 3814 * data, roll back the size to the last currently allocated block. 3815 * We know that this last allocated block is a full-sized as 3816 * we already checked for fragments in the loop above. 3817 */ 3818 if (lastadp != NULL && 3819 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3820 for (i = lastadp->ad_lbn; i >= 0; i--) 3821 if (dp->di_extb[i] != 0) 3822 break; 3823 dp->di_extsize = (i + 1) * fs->fs_bsize; 3824 } 3825 /* 3826 * Set the file data dependencies to busy. 3827 */ 3828 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3829 adp = TAILQ_NEXT(adp, ad_next)) { 3830 #ifdef DIAGNOSTIC 3831 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3832 FREE_LOCK(&lk); 3833 panic("softdep_write_inodeblock: lbn order"); 3834 } 3835 prevlbn = adp->ad_lbn; 3836 if (adp->ad_lbn < NDADDR && 3837 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3838 FREE_LOCK(&lk); 3839 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3840 "softdep_write_inodeblock", 3841 (intmax_t)adp->ad_lbn, 3842 (intmax_t)dp->di_db[adp->ad_lbn], 3843 (intmax_t)adp->ad_newblkno); 3844 } 3845 if (adp->ad_lbn >= NDADDR && 3846 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3847 FREE_LOCK(&lk); 3848 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3849 "softdep_write_inodeblock:", 3850 (intmax_t)adp->ad_lbn - NDADDR, 3851 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3852 (intmax_t)adp->ad_newblkno); 3853 } 3854 deplist |= 1 << adp->ad_lbn; 3855 if ((adp->ad_state & ATTACHED) == 0) { 3856 FREE_LOCK(&lk); 3857 panic("softdep_write_inodeblock: Unknown state 0x%x", 3858 adp->ad_state); 3859 } 3860 #endif /* DIAGNOSTIC */ 3861 adp->ad_state &= ~ATTACHED; 3862 adp->ad_state |= UNDONE; 3863 } 3864 /* 3865 * The on-disk inode cannot claim to be any larger than the last 3866 * fragment that has been written. Otherwise, the on-disk inode 3867 * might have fragments that were not the last block in the file 3868 * which would corrupt the filesystem. 3869 */ 3870 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3871 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3872 if (adp->ad_lbn >= NDADDR) 3873 break; 3874 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3875 /* keep going until hitting a rollback to a frag */ 3876 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3877 continue; 3878 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3879 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3880 #ifdef DIAGNOSTIC 3881 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3882 FREE_LOCK(&lk); 3883 panic("softdep_write_inodeblock: lost dep2"); 3884 } 3885 #endif /* DIAGNOSTIC */ 3886 dp->di_db[i] = 0; 3887 } 3888 for (i = 0; i < NIADDR; i++) { 3889 #ifdef DIAGNOSTIC 3890 if (dp->di_ib[i] != 0 && 3891 (deplist & ((1 << NDADDR) << i)) == 0) { 3892 FREE_LOCK(&lk); 3893 panic("softdep_write_inodeblock: lost dep3"); 3894 } 3895 #endif /* DIAGNOSTIC */ 3896 dp->di_ib[i] = 0; 3897 } 3898 FREE_LOCK(&lk); 3899 return; 3900 } 3901 /* 3902 * If we have zero'ed out the last allocated block of the file, 3903 * roll back the size to the last currently allocated block. 3904 * We know that this last allocated block is a full-sized as 3905 * we already checked for fragments in the loop above. 3906 */ 3907 if (lastadp != NULL && 3908 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3909 for (i = lastadp->ad_lbn; i >= 0; i--) 3910 if (dp->di_db[i] != 0) 3911 break; 3912 dp->di_size = (i + 1) * fs->fs_bsize; 3913 } 3914 /* 3915 * The only dependencies are for indirect blocks. 3916 * 3917 * The file size for indirect block additions is not guaranteed. 3918 * Such a guarantee would be non-trivial to achieve. The conventional 3919 * synchronous write implementation also does not make this guarantee. 3920 * Fsck should catch and fix discrepancies. Arguably, the file size 3921 * can be over-estimated without destroying integrity when the file 3922 * moves into the indirect blocks (i.e., is large). If we want to 3923 * postpone fsck, we are stuck with this argument. 3924 */ 3925 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3926 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3927 FREE_LOCK(&lk); 3928 } 3929 3930 /* 3931 * This routine is called during the completion interrupt 3932 * service routine for a disk write (from the procedure called 3933 * by the device driver to inform the filesystem caches of 3934 * a request completion). It should be called early in this 3935 * procedure, before the block is made available to other 3936 * processes or other routines are called. 3937 */ 3938 static void 3939 softdep_disk_write_complete(bp) 3940 struct buf *bp; /* describes the completed disk write */ 3941 { 3942 struct worklist *wk; 3943 struct workhead reattach; 3944 struct newblk *newblk; 3945 struct allocindir *aip; 3946 struct allocdirect *adp; 3947 struct indirdep *indirdep; 3948 struct inodedep *inodedep; 3949 struct bmsafemap *bmsafemap; 3950 3951 /* 3952 * If an error occurred while doing the write, then the data 3953 * has not hit the disk and the dependencies cannot be unrolled. 3954 */ 3955 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 3956 return; 3957 #ifdef DEBUG 3958 if (lk.lkt_held != NOHOLDER) 3959 panic("softdep_disk_write_complete: lock is held"); 3960 lk.lkt_held = SPECIAL_FLAG; 3961 #endif 3962 LIST_INIT(&reattach); 3963 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3964 WORKLIST_REMOVE(wk); 3965 switch (wk->wk_type) { 3966 3967 case D_PAGEDEP: 3968 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3969 WORKLIST_INSERT(&reattach, wk); 3970 continue; 3971 3972 case D_INODEDEP: 3973 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3974 WORKLIST_INSERT(&reattach, wk); 3975 continue; 3976 3977 case D_BMSAFEMAP: 3978 bmsafemap = WK_BMSAFEMAP(wk); 3979 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3980 newblk->nb_state |= DEPCOMPLETE; 3981 newblk->nb_bmsafemap = NULL; 3982 LIST_REMOVE(newblk, nb_deps); 3983 } 3984 while ((adp = 3985 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3986 adp->ad_state |= DEPCOMPLETE; 3987 adp->ad_buf = NULL; 3988 LIST_REMOVE(adp, ad_deps); 3989 handle_allocdirect_partdone(adp); 3990 } 3991 while ((aip = 3992 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3993 aip->ai_state |= DEPCOMPLETE; 3994 aip->ai_buf = NULL; 3995 LIST_REMOVE(aip, ai_deps); 3996 handle_allocindir_partdone(aip); 3997 } 3998 while ((inodedep = 3999 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4000 inodedep->id_state |= DEPCOMPLETE; 4001 LIST_REMOVE(inodedep, id_deps); 4002 inodedep->id_buf = NULL; 4003 } 4004 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4005 continue; 4006 4007 case D_MKDIR: 4008 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4009 continue; 4010 4011 case D_ALLOCDIRECT: 4012 adp = WK_ALLOCDIRECT(wk); 4013 adp->ad_state |= COMPLETE; 4014 handle_allocdirect_partdone(adp); 4015 continue; 4016 4017 case D_ALLOCINDIR: 4018 aip = WK_ALLOCINDIR(wk); 4019 aip->ai_state |= COMPLETE; 4020 handle_allocindir_partdone(aip); 4021 continue; 4022 4023 case D_INDIRDEP: 4024 indirdep = WK_INDIRDEP(wk); 4025 if (indirdep->ir_state & GOINGAWAY) { 4026 lk.lkt_held = NOHOLDER; 4027 panic("disk_write_complete: indirdep gone"); 4028 } 4029 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4030 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4031 indirdep->ir_saveddata = 0; 4032 indirdep->ir_state &= ~UNDONE; 4033 indirdep->ir_state |= ATTACHED; 4034 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4035 handle_allocindir_partdone(aip); 4036 if (aip == LIST_FIRST(&indirdep->ir_donehd)) { 4037 lk.lkt_held = NOHOLDER; 4038 panic("disk_write_complete: not gone"); 4039 } 4040 } 4041 WORKLIST_INSERT(&reattach, wk); 4042 if ((bp->b_flags & B_DELWRI) == 0) 4043 stat_indir_blk_ptrs++; 4044 bdirty(bp); 4045 continue; 4046 4047 default: 4048 lk.lkt_held = NOHOLDER; 4049 panic("handle_disk_write_complete: Unknown type %s", 4050 TYPENAME(wk->wk_type)); 4051 /* NOTREACHED */ 4052 } 4053 } 4054 /* 4055 * Reattach any requests that must be redone. 4056 */ 4057 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4058 WORKLIST_REMOVE(wk); 4059 WORKLIST_INSERT(&bp->b_dep, wk); 4060 } 4061 #ifdef DEBUG 4062 if (lk.lkt_held != SPECIAL_FLAG) 4063 panic("softdep_disk_write_complete: lock lost"); 4064 lk.lkt_held = NOHOLDER; 4065 #endif 4066 } 4067 4068 /* 4069 * Called from within softdep_disk_write_complete above. Note that 4070 * this routine is always called from interrupt level with further 4071 * splbio interrupts blocked. 4072 */ 4073 static void 4074 handle_allocdirect_partdone(adp) 4075 struct allocdirect *adp; /* the completed allocdirect */ 4076 { 4077 struct allocdirectlst *listhead; 4078 struct allocdirect *listadp; 4079 struct inodedep *inodedep; 4080 long bsize, delay; 4081 4082 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4083 return; 4084 if (adp->ad_buf != NULL) { 4085 lk.lkt_held = NOHOLDER; 4086 panic("handle_allocdirect_partdone: dangling dep"); 4087 } 4088 /* 4089 * The on-disk inode cannot claim to be any larger than the last 4090 * fragment that has been written. Otherwise, the on-disk inode 4091 * might have fragments that were not the last block in the file 4092 * which would corrupt the filesystem. Thus, we cannot free any 4093 * allocdirects after one whose ad_oldblkno claims a fragment as 4094 * these blocks must be rolled back to zero before writing the inode. 4095 * We check the currently active set of allocdirects in id_inoupdt 4096 * or id_extupdt as appropriate. 4097 */ 4098 inodedep = adp->ad_inodedep; 4099 bsize = inodedep->id_fs->fs_bsize; 4100 if (adp->ad_state & EXTDATA) 4101 listhead = &inodedep->id_extupdt; 4102 else 4103 listhead = &inodedep->id_inoupdt; 4104 TAILQ_FOREACH(listadp, listhead, ad_next) { 4105 /* found our block */ 4106 if (listadp == adp) 4107 break; 4108 /* continue if ad_oldlbn is not a fragment */ 4109 if (listadp->ad_oldsize == 0 || 4110 listadp->ad_oldsize == bsize) 4111 continue; 4112 /* hit a fragment */ 4113 return; 4114 } 4115 /* 4116 * If we have reached the end of the current list without 4117 * finding the just finished dependency, then it must be 4118 * on the future dependency list. Future dependencies cannot 4119 * be freed until they are moved to the current list. 4120 */ 4121 if (listadp == NULL) { 4122 #ifdef DEBUG 4123 if (adp->ad_state & EXTDATA) 4124 listhead = &inodedep->id_newextupdt; 4125 else 4126 listhead = &inodedep->id_newinoupdt; 4127 TAILQ_FOREACH(listadp, listhead, ad_next) 4128 /* found our block */ 4129 if (listadp == adp) 4130 break; 4131 if (listadp == NULL) { 4132 lk.lkt_held = NOHOLDER; 4133 panic("handle_allocdirect_partdone: lost dep"); 4134 } 4135 #endif /* DEBUG */ 4136 return; 4137 } 4138 /* 4139 * If we have found the just finished dependency, then free 4140 * it along with anything that follows it that is complete. 4141 * If the inode still has a bitmap dependency, then it has 4142 * never been written to disk, hence the on-disk inode cannot 4143 * reference the old fragment so we can free it without delay. 4144 */ 4145 delay = (inodedep->id_state & DEPCOMPLETE); 4146 for (; adp; adp = listadp) { 4147 listadp = TAILQ_NEXT(adp, ad_next); 4148 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4149 return; 4150 free_allocdirect(listhead, adp, delay); 4151 } 4152 } 4153 4154 /* 4155 * Called from within softdep_disk_write_complete above. Note that 4156 * this routine is always called from interrupt level with further 4157 * splbio interrupts blocked. 4158 */ 4159 static void 4160 handle_allocindir_partdone(aip) 4161 struct allocindir *aip; /* the completed allocindir */ 4162 { 4163 struct indirdep *indirdep; 4164 4165 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4166 return; 4167 if (aip->ai_buf != NULL) { 4168 lk.lkt_held = NOHOLDER; 4169 panic("handle_allocindir_partdone: dangling dependency"); 4170 } 4171 indirdep = aip->ai_indirdep; 4172 if (indirdep->ir_state & UNDONE) { 4173 LIST_REMOVE(aip, ai_next); 4174 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4175 return; 4176 } 4177 if (indirdep->ir_state & UFS1FMT) 4178 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4179 aip->ai_newblkno; 4180 else 4181 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4182 aip->ai_newblkno; 4183 LIST_REMOVE(aip, ai_next); 4184 if (aip->ai_freefrag != NULL) 4185 add_to_worklist(&aip->ai_freefrag->ff_list); 4186 WORKITEM_FREE(aip, D_ALLOCINDIR); 4187 } 4188 4189 /* 4190 * Called from within softdep_disk_write_complete above to restore 4191 * in-memory inode block contents to their most up-to-date state. Note 4192 * that this routine is always called from interrupt level with further 4193 * splbio interrupts blocked. 4194 */ 4195 static int 4196 handle_written_inodeblock(inodedep, bp) 4197 struct inodedep *inodedep; 4198 struct buf *bp; /* buffer containing the inode block */ 4199 { 4200 struct worklist *wk, *filefree; 4201 struct allocdirect *adp, *nextadp; 4202 struct ufs1_dinode *dp1 = NULL; 4203 struct ufs2_dinode *dp2 = NULL; 4204 int hadchanges, fstype; 4205 4206 if ((inodedep->id_state & IOSTARTED) == 0) { 4207 lk.lkt_held = NOHOLDER; 4208 panic("handle_written_inodeblock: not started"); 4209 } 4210 inodedep->id_state &= ~IOSTARTED; 4211 inodedep->id_state |= COMPLETE; 4212 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4213 fstype = UFS1; 4214 dp1 = (struct ufs1_dinode *)bp->b_data + 4215 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4216 } else { 4217 fstype = UFS2; 4218 dp2 = (struct ufs2_dinode *)bp->b_data + 4219 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4220 } 4221 /* 4222 * If we had to rollback the inode allocation because of 4223 * bitmaps being incomplete, then simply restore it. 4224 * Keep the block dirty so that it will not be reclaimed until 4225 * all associated dependencies have been cleared and the 4226 * corresponding updates written to disk. 4227 */ 4228 if (inodedep->id_savedino1 != NULL) { 4229 if (fstype == UFS1) 4230 *dp1 = *inodedep->id_savedino1; 4231 else 4232 *dp2 = *inodedep->id_savedino2; 4233 FREE(inodedep->id_savedino1, M_INODEDEP); 4234 inodedep->id_savedino1 = NULL; 4235 if ((bp->b_flags & B_DELWRI) == 0) 4236 stat_inode_bitmap++; 4237 bdirty(bp); 4238 return (1); 4239 } 4240 /* 4241 * Roll forward anything that had to be rolled back before 4242 * the inode could be updated. 4243 */ 4244 hadchanges = 0; 4245 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4246 nextadp = TAILQ_NEXT(adp, ad_next); 4247 if (adp->ad_state & ATTACHED) { 4248 lk.lkt_held = NOHOLDER; 4249 panic("handle_written_inodeblock: new entry"); 4250 } 4251 if (fstype == UFS1) { 4252 if (adp->ad_lbn < NDADDR) { 4253 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4254 lk.lkt_held = NOHOLDER; 4255 panic("%s %s #%jd mismatch %d != %jd", 4256 "handle_written_inodeblock:", 4257 "direct pointer", 4258 (intmax_t)adp->ad_lbn, 4259 dp1->di_db[adp->ad_lbn], 4260 (intmax_t)adp->ad_oldblkno); 4261 } 4262 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4263 } else { 4264 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) { 4265 lk.lkt_held = NOHOLDER; 4266 panic("%s: %s #%jd allocated as %d", 4267 "handle_written_inodeblock", 4268 "indirect pointer", 4269 (intmax_t)adp->ad_lbn - NDADDR, 4270 dp1->di_ib[adp->ad_lbn - NDADDR]); 4271 } 4272 dp1->di_ib[adp->ad_lbn - NDADDR] = 4273 adp->ad_newblkno; 4274 } 4275 } else { 4276 if (adp->ad_lbn < NDADDR) { 4277 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4278 lk.lkt_held = NOHOLDER; 4279 panic("%s: %s #%jd %s %jd != %jd", 4280 "handle_written_inodeblock", 4281 "direct pointer", 4282 (intmax_t)adp->ad_lbn, "mismatch", 4283 (intmax_t)dp2->di_db[adp->ad_lbn], 4284 (intmax_t)adp->ad_oldblkno); 4285 } 4286 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4287 } else { 4288 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) { 4289 lk.lkt_held = NOHOLDER; 4290 panic("%s: %s #%jd allocated as %jd", 4291 "handle_written_inodeblock", 4292 "indirect pointer", 4293 (intmax_t)adp->ad_lbn - NDADDR, 4294 (intmax_t) 4295 dp2->di_ib[adp->ad_lbn - NDADDR]); 4296 } 4297 dp2->di_ib[adp->ad_lbn - NDADDR] = 4298 adp->ad_newblkno; 4299 } 4300 } 4301 adp->ad_state &= ~UNDONE; 4302 adp->ad_state |= ATTACHED; 4303 hadchanges = 1; 4304 } 4305 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4306 nextadp = TAILQ_NEXT(adp, ad_next); 4307 if (adp->ad_state & ATTACHED) { 4308 lk.lkt_held = NOHOLDER; 4309 panic("handle_written_inodeblock: new entry"); 4310 } 4311 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) { 4312 lk.lkt_held = NOHOLDER; 4313 panic("%s: direct pointers #%jd %s %jd != %jd", 4314 "handle_written_inodeblock", 4315 (intmax_t)adp->ad_lbn, "mismatch", 4316 (intmax_t)dp2->di_extb[adp->ad_lbn], 4317 (intmax_t)adp->ad_oldblkno); 4318 } 4319 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4320 adp->ad_state &= ~UNDONE; 4321 adp->ad_state |= ATTACHED; 4322 hadchanges = 1; 4323 } 4324 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4325 stat_direct_blk_ptrs++; 4326 /* 4327 * Reset the file size to its most up-to-date value. 4328 */ 4329 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) { 4330 lk.lkt_held = NOHOLDER; 4331 panic("handle_written_inodeblock: bad size"); 4332 } 4333 if (fstype == UFS1) { 4334 if (dp1->di_size != inodedep->id_savedsize) { 4335 dp1->di_size = inodedep->id_savedsize; 4336 hadchanges = 1; 4337 } 4338 } else { 4339 if (dp2->di_size != inodedep->id_savedsize) { 4340 dp2->di_size = inodedep->id_savedsize; 4341 hadchanges = 1; 4342 } 4343 if (dp2->di_extsize != inodedep->id_savedextsize) { 4344 dp2->di_extsize = inodedep->id_savedextsize; 4345 hadchanges = 1; 4346 } 4347 } 4348 inodedep->id_savedsize = -1; 4349 inodedep->id_savedextsize = -1; 4350 /* 4351 * If there were any rollbacks in the inode block, then it must be 4352 * marked dirty so that its will eventually get written back in 4353 * its correct form. 4354 */ 4355 if (hadchanges) 4356 bdirty(bp); 4357 /* 4358 * Process any allocdirects that completed during the update. 4359 */ 4360 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4361 handle_allocdirect_partdone(adp); 4362 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4363 handle_allocdirect_partdone(adp); 4364 /* 4365 * Process deallocations that were held pending until the 4366 * inode had been written to disk. Freeing of the inode 4367 * is delayed until after all blocks have been freed to 4368 * avoid creation of new <vfsid, inum, lbn> triples 4369 * before the old ones have been deleted. 4370 */ 4371 filefree = NULL; 4372 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4373 WORKLIST_REMOVE(wk); 4374 switch (wk->wk_type) { 4375 4376 case D_FREEFILE: 4377 /* 4378 * We defer adding filefree to the worklist until 4379 * all other additions have been made to ensure 4380 * that it will be done after all the old blocks 4381 * have been freed. 4382 */ 4383 if (filefree != NULL) { 4384 lk.lkt_held = NOHOLDER; 4385 panic("handle_written_inodeblock: filefree"); 4386 } 4387 filefree = wk; 4388 continue; 4389 4390 case D_MKDIR: 4391 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4392 continue; 4393 4394 case D_DIRADD: 4395 diradd_inode_written(WK_DIRADD(wk), inodedep); 4396 continue; 4397 4398 case D_FREEBLKS: 4399 case D_FREEFRAG: 4400 case D_DIRREM: 4401 add_to_worklist(wk); 4402 continue; 4403 4404 case D_NEWDIRBLK: 4405 free_newdirblk(WK_NEWDIRBLK(wk)); 4406 continue; 4407 4408 default: 4409 lk.lkt_held = NOHOLDER; 4410 panic("handle_written_inodeblock: Unknown type %s", 4411 TYPENAME(wk->wk_type)); 4412 /* NOTREACHED */ 4413 } 4414 } 4415 if (filefree != NULL) { 4416 if (free_inodedep(inodedep) == 0) { 4417 lk.lkt_held = NOHOLDER; 4418 panic("handle_written_inodeblock: live inodedep"); 4419 } 4420 add_to_worklist(filefree); 4421 return (0); 4422 } 4423 4424 /* 4425 * If no outstanding dependencies, free it. 4426 */ 4427 if (free_inodedep(inodedep) || 4428 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4429 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4430 return (0); 4431 return (hadchanges); 4432 } 4433 4434 /* 4435 * Process a diradd entry after its dependent inode has been written. 4436 * This routine must be called with splbio interrupts blocked. 4437 */ 4438 static void 4439 diradd_inode_written(dap, inodedep) 4440 struct diradd *dap; 4441 struct inodedep *inodedep; 4442 { 4443 struct pagedep *pagedep; 4444 4445 dap->da_state |= COMPLETE; 4446 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4447 if (dap->da_state & DIRCHG) 4448 pagedep = dap->da_previous->dm_pagedep; 4449 else 4450 pagedep = dap->da_pagedep; 4451 LIST_REMOVE(dap, da_pdlist); 4452 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4453 } 4454 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4455 } 4456 4457 /* 4458 * Handle the completion of a mkdir dependency. 4459 */ 4460 static void 4461 handle_written_mkdir(mkdir, type) 4462 struct mkdir *mkdir; 4463 int type; 4464 { 4465 struct diradd *dap; 4466 struct pagedep *pagedep; 4467 4468 if (mkdir->md_state != type) { 4469 lk.lkt_held = NOHOLDER; 4470 panic("handle_written_mkdir: bad type"); 4471 } 4472 dap = mkdir->md_diradd; 4473 dap->da_state &= ~type; 4474 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4475 dap->da_state |= DEPCOMPLETE; 4476 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4477 if (dap->da_state & DIRCHG) 4478 pagedep = dap->da_previous->dm_pagedep; 4479 else 4480 pagedep = dap->da_pagedep; 4481 LIST_REMOVE(dap, da_pdlist); 4482 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4483 } 4484 LIST_REMOVE(mkdir, md_mkdirs); 4485 WORKITEM_FREE(mkdir, D_MKDIR); 4486 } 4487 4488 /* 4489 * Called from within softdep_disk_write_complete above. 4490 * A write operation was just completed. Removed inodes can 4491 * now be freed and associated block pointers may be committed. 4492 * Note that this routine is always called from interrupt level 4493 * with further splbio interrupts blocked. 4494 */ 4495 static int 4496 handle_written_filepage(pagedep, bp) 4497 struct pagedep *pagedep; 4498 struct buf *bp; /* buffer containing the written page */ 4499 { 4500 struct dirrem *dirrem; 4501 struct diradd *dap, *nextdap; 4502 struct direct *ep; 4503 int i, chgs; 4504 4505 if ((pagedep->pd_state & IOSTARTED) == 0) { 4506 lk.lkt_held = NOHOLDER; 4507 panic("handle_written_filepage: not started"); 4508 } 4509 pagedep->pd_state &= ~IOSTARTED; 4510 /* 4511 * Process any directory removals that have been committed. 4512 */ 4513 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4514 LIST_REMOVE(dirrem, dm_next); 4515 dirrem->dm_dirinum = pagedep->pd_ino; 4516 add_to_worklist(&dirrem->dm_list); 4517 } 4518 /* 4519 * Free any directory additions that have been committed. 4520 * If it is a newly allocated block, we have to wait until 4521 * the on-disk directory inode claims the new block. 4522 */ 4523 if ((pagedep->pd_state & NEWBLOCK) == 0) 4524 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4525 free_diradd(dap); 4526 /* 4527 * Uncommitted directory entries must be restored. 4528 */ 4529 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4530 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4531 dap = nextdap) { 4532 nextdap = LIST_NEXT(dap, da_pdlist); 4533 if (dap->da_state & ATTACHED) { 4534 lk.lkt_held = NOHOLDER; 4535 panic("handle_written_filepage: attached"); 4536 } 4537 ep = (struct direct *) 4538 ((char *)bp->b_data + dap->da_offset); 4539 ep->d_ino = dap->da_newinum; 4540 dap->da_state &= ~UNDONE; 4541 dap->da_state |= ATTACHED; 4542 chgs = 1; 4543 /* 4544 * If the inode referenced by the directory has 4545 * been written out, then the dependency can be 4546 * moved to the pending list. 4547 */ 4548 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4549 LIST_REMOVE(dap, da_pdlist); 4550 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4551 da_pdlist); 4552 } 4553 } 4554 } 4555 /* 4556 * If there were any rollbacks in the directory, then it must be 4557 * marked dirty so that its will eventually get written back in 4558 * its correct form. 4559 */ 4560 if (chgs) { 4561 if ((bp->b_flags & B_DELWRI) == 0) 4562 stat_dir_entry++; 4563 bdirty(bp); 4564 return (1); 4565 } 4566 /* 4567 * If we are not waiting for a new directory block to be 4568 * claimed by its inode, then the pagedep will be freed. 4569 * Otherwise it will remain to track any new entries on 4570 * the page in case they are fsync'ed. 4571 */ 4572 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4573 LIST_REMOVE(pagedep, pd_hash); 4574 WORKITEM_FREE(pagedep, D_PAGEDEP); 4575 } 4576 return (0); 4577 } 4578 4579 /* 4580 * Writing back in-core inode structures. 4581 * 4582 * The filesystem only accesses an inode's contents when it occupies an 4583 * "in-core" inode structure. These "in-core" structures are separate from 4584 * the page frames used to cache inode blocks. Only the latter are 4585 * transferred to/from the disk. So, when the updated contents of the 4586 * "in-core" inode structure are copied to the corresponding in-memory inode 4587 * block, the dependencies are also transferred. The following procedure is 4588 * called when copying a dirty "in-core" inode to a cached inode block. 4589 */ 4590 4591 /* 4592 * Called when an inode is loaded from disk. If the effective link count 4593 * differed from the actual link count when it was last flushed, then we 4594 * need to ensure that the correct effective link count is put back. 4595 */ 4596 void 4597 softdep_load_inodeblock(ip) 4598 struct inode *ip; /* the "in_core" copy of the inode */ 4599 { 4600 struct inodedep *inodedep; 4601 4602 /* 4603 * Check for alternate nlink count. 4604 */ 4605 ip->i_effnlink = ip->i_nlink; 4606 ACQUIRE_LOCK(&lk); 4607 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4608 FREE_LOCK(&lk); 4609 return; 4610 } 4611 ip->i_effnlink -= inodedep->id_nlinkdelta; 4612 if (inodedep->id_state & SPACECOUNTED) 4613 ip->i_flag |= IN_SPACECOUNTED; 4614 FREE_LOCK(&lk); 4615 } 4616 4617 /* 4618 * This routine is called just before the "in-core" inode 4619 * information is to be copied to the in-memory inode block. 4620 * Recall that an inode block contains several inodes. If 4621 * the force flag is set, then the dependencies will be 4622 * cleared so that the update can always be made. Note that 4623 * the buffer is locked when this routine is called, so we 4624 * will never be in the middle of writing the inode block 4625 * to disk. 4626 */ 4627 void 4628 softdep_update_inodeblock(ip, bp, waitfor) 4629 struct inode *ip; /* the "in_core" copy of the inode */ 4630 struct buf *bp; /* the buffer containing the inode block */ 4631 int waitfor; /* nonzero => update must be allowed */ 4632 { 4633 struct inodedep *inodedep; 4634 struct worklist *wk; 4635 int error, gotit; 4636 4637 /* 4638 * If the effective link count is not equal to the actual link 4639 * count, then we must track the difference in an inodedep while 4640 * the inode is (potentially) tossed out of the cache. Otherwise, 4641 * if there is no existing inodedep, then there are no dependencies 4642 * to track. 4643 */ 4644 ACQUIRE_LOCK(&lk); 4645 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4646 FREE_LOCK(&lk); 4647 if (ip->i_effnlink != ip->i_nlink) 4648 panic("softdep_update_inodeblock: bad link count"); 4649 return; 4650 } 4651 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) { 4652 FREE_LOCK(&lk); 4653 panic("softdep_update_inodeblock: bad delta"); 4654 } 4655 /* 4656 * Changes have been initiated. Anything depending on these 4657 * changes cannot occur until this inode has been written. 4658 */ 4659 inodedep->id_state &= ~COMPLETE; 4660 if ((inodedep->id_state & ONWORKLIST) == 0) 4661 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4662 /* 4663 * Any new dependencies associated with the incore inode must 4664 * now be moved to the list associated with the buffer holding 4665 * the in-memory copy of the inode. Once merged process any 4666 * allocdirects that are completed by the merger. 4667 */ 4668 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4669 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4670 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4671 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4672 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4673 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4674 /* 4675 * Now that the inode has been pushed into the buffer, the 4676 * operations dependent on the inode being written to disk 4677 * can be moved to the id_bufwait so that they will be 4678 * processed when the buffer I/O completes. 4679 */ 4680 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4681 WORKLIST_REMOVE(wk); 4682 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4683 } 4684 /* 4685 * Newly allocated inodes cannot be written until the bitmap 4686 * that allocates them have been written (indicated by 4687 * DEPCOMPLETE being set in id_state). If we are doing a 4688 * forced sync (e.g., an fsync on a file), we force the bitmap 4689 * to be written so that the update can be done. 4690 */ 4691 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 4692 FREE_LOCK(&lk); 4693 return; 4694 } 4695 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4696 FREE_LOCK(&lk); 4697 if (gotit && 4698 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4699 softdep_error("softdep_update_inodeblock: bwrite", error); 4700 if ((inodedep->id_state & DEPCOMPLETE) == 0) 4701 panic("softdep_update_inodeblock: update failed"); 4702 } 4703 4704 /* 4705 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4706 * old inode dependency list (such as id_inoupdt). This routine must be 4707 * called with splbio interrupts blocked. 4708 */ 4709 static void 4710 merge_inode_lists(newlisthead, oldlisthead) 4711 struct allocdirectlst *newlisthead; 4712 struct allocdirectlst *oldlisthead; 4713 { 4714 struct allocdirect *listadp, *newadp; 4715 4716 newadp = TAILQ_FIRST(newlisthead); 4717 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4718 if (listadp->ad_lbn < newadp->ad_lbn) { 4719 listadp = TAILQ_NEXT(listadp, ad_next); 4720 continue; 4721 } 4722 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4723 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4724 if (listadp->ad_lbn == newadp->ad_lbn) { 4725 allocdirect_merge(oldlisthead, newadp, 4726 listadp); 4727 listadp = newadp; 4728 } 4729 newadp = TAILQ_FIRST(newlisthead); 4730 } 4731 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4732 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4733 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4734 } 4735 } 4736 4737 /* 4738 * If we are doing an fsync, then we must ensure that any directory 4739 * entries for the inode have been written after the inode gets to disk. 4740 */ 4741 int 4742 softdep_fsync(vp) 4743 struct vnode *vp; /* the "in_core" copy of the inode */ 4744 { 4745 struct inodedep *inodedep; 4746 struct pagedep *pagedep; 4747 struct worklist *wk; 4748 struct diradd *dap; 4749 struct mount *mnt; 4750 struct vnode *pvp; 4751 struct inode *ip; 4752 struct buf *bp; 4753 struct fs *fs; 4754 struct thread *td = curthread; 4755 int error, flushparent; 4756 ino_t parentino; 4757 ufs_lbn_t lbn; 4758 4759 ip = VTOI(vp); 4760 fs = ip->i_fs; 4761 ACQUIRE_LOCK(&lk); 4762 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4763 FREE_LOCK(&lk); 4764 return (0); 4765 } 4766 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4767 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4768 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 4769 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 4770 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4771 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { 4772 FREE_LOCK(&lk); 4773 panic("softdep_fsync: pending ops"); 4774 } 4775 for (error = 0, flushparent = 0; ; ) { 4776 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4777 break; 4778 if (wk->wk_type != D_DIRADD) { 4779 FREE_LOCK(&lk); 4780 panic("softdep_fsync: Unexpected type %s", 4781 TYPENAME(wk->wk_type)); 4782 } 4783 dap = WK_DIRADD(wk); 4784 /* 4785 * Flush our parent if this directory entry has a MKDIR_PARENT 4786 * dependency or is contained in a newly allocated block. 4787 */ 4788 if (dap->da_state & DIRCHG) 4789 pagedep = dap->da_previous->dm_pagedep; 4790 else 4791 pagedep = dap->da_pagedep; 4792 mnt = pagedep->pd_mnt; 4793 parentino = pagedep->pd_ino; 4794 lbn = pagedep->pd_lbn; 4795 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { 4796 FREE_LOCK(&lk); 4797 panic("softdep_fsync: dirty"); 4798 } 4799 if ((dap->da_state & MKDIR_PARENT) || 4800 (pagedep->pd_state & NEWBLOCK)) 4801 flushparent = 1; 4802 else 4803 flushparent = 0; 4804 /* 4805 * If we are being fsync'ed as part of vgone'ing this vnode, 4806 * then we will not be able to release and recover the 4807 * vnode below, so we just have to give up on writing its 4808 * directory entry out. It will eventually be written, just 4809 * not now, but then the user was not asking to have it 4810 * written, so we are not breaking any promises. 4811 */ 4812 mp_fixme("This operation is not atomic wrt the rest of the code"); 4813 VI_LOCK(vp); 4814 if (vp->v_iflag & VI_XLOCK) { 4815 VI_UNLOCK(vp); 4816 break; 4817 } else 4818 VI_UNLOCK(vp); 4819 /* 4820 * We prevent deadlock by always fetching inodes from the 4821 * root, moving down the directory tree. Thus, when fetching 4822 * our parent directory, we first try to get the lock. If 4823 * that fails, we must unlock ourselves before requesting 4824 * the lock on our parent. See the comment in ufs_lookup 4825 * for details on possible races. 4826 */ 4827 FREE_LOCK(&lk); 4828 if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4829 VOP_UNLOCK(vp, 0, td); 4830 error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp); 4831 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4832 if (error != 0) 4833 return (error); 4834 } 4835 /* 4836 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4837 * that are contained in direct blocks will be resolved by 4838 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks 4839 * may require a complete sync'ing of the directory. So, we 4840 * try the cheap and fast UFS_UPDATE first, and if that fails, 4841 * then we do the slower VOP_FSYNC of the directory. 4842 */ 4843 if (flushparent) { 4844 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 4845 vput(pvp); 4846 return (error); 4847 } 4848 if ((pagedep->pd_state & NEWBLOCK) && 4849 (error = VOP_FSYNC(pvp, td->td_ucred, MNT_WAIT, td))) { 4850 vput(pvp); 4851 return (error); 4852 } 4853 } 4854 /* 4855 * Flush directory page containing the inode's name. 4856 */ 4857 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4858 &bp); 4859 if (error == 0) 4860 error = BUF_WRITE(bp); 4861 else 4862 brelse(bp); 4863 vput(pvp); 4864 if (error != 0) 4865 return (error); 4866 ACQUIRE_LOCK(&lk); 4867 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4868 break; 4869 } 4870 FREE_LOCK(&lk); 4871 return (0); 4872 } 4873 4874 /* 4875 * Flush all the dirty bitmaps associated with the block device 4876 * before flushing the rest of the dirty blocks so as to reduce 4877 * the number of dependencies that will have to be rolled back. 4878 */ 4879 void 4880 softdep_fsync_mountdev(vp) 4881 struct vnode *vp; 4882 { 4883 struct buf *bp, *nbp; 4884 struct worklist *wk; 4885 4886 if (!vn_isdisk(vp, NULL)) 4887 panic("softdep_fsync_mountdev: vnode not a disk"); 4888 ACQUIRE_LOCK(&lk); 4889 VI_LOCK(vp); 4890 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 4891 nbp = TAILQ_NEXT(bp, b_vnbufs); 4892 /* 4893 * If it is already scheduled, skip to the next buffer. 4894 */ 4895 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, 4896 VI_MTX(vp))) { 4897 VI_LOCK(vp); 4898 continue; 4899 } 4900 if ((bp->b_flags & B_DELWRI) == 0) { 4901 FREE_LOCK(&lk); 4902 panic("softdep_fsync_mountdev: not dirty"); 4903 } 4904 /* 4905 * We are only interested in bitmaps with outstanding 4906 * dependencies. 4907 */ 4908 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4909 wk->wk_type != D_BMSAFEMAP || 4910 (bp->b_xflags & BX_BKGRDINPROG)) { 4911 BUF_UNLOCK(bp); 4912 VI_LOCK(vp); 4913 continue; 4914 } 4915 bremfree(bp); 4916 FREE_LOCK(&lk); 4917 (void) bawrite(bp); 4918 ACQUIRE_LOCK(&lk); 4919 /* 4920 * Since we may have slept during the I/O, we need 4921 * to start from a known point. 4922 */ 4923 VI_LOCK(vp); 4924 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4925 } 4926 VI_UNLOCK(vp); 4927 drain_output(vp, 1); 4928 FREE_LOCK(&lk); 4929 } 4930 4931 /* 4932 * This routine is called when we are trying to synchronously flush a 4933 * file. This routine must eliminate any filesystem metadata dependencies 4934 * so that the syncing routine can succeed by pushing the dirty blocks 4935 * associated with the file. If any I/O errors occur, they are returned. 4936 */ 4937 int 4938 softdep_sync_metadata(ap) 4939 struct vop_fsync_args /* { 4940 struct vnode *a_vp; 4941 struct ucred *a_cred; 4942 int a_waitfor; 4943 struct thread *a_td; 4944 } */ *ap; 4945 { 4946 struct vnode *vp = ap->a_vp; 4947 struct pagedep *pagedep; 4948 struct allocdirect *adp; 4949 struct allocindir *aip; 4950 struct buf *bp, *nbp; 4951 struct worklist *wk; 4952 int i, error, waitfor; 4953 4954 /* 4955 * Check whether this vnode is involved in a filesystem 4956 * that is doing soft dependency processing. 4957 */ 4958 if (!vn_isdisk(vp, NULL)) { 4959 if (!DOINGSOFTDEP(vp)) 4960 return (0); 4961 } else 4962 if (vp->v_rdev->si_mountpoint == NULL || 4963 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0) 4964 return (0); 4965 /* 4966 * Ensure that any direct block dependencies have been cleared. 4967 */ 4968 ACQUIRE_LOCK(&lk); 4969 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4970 FREE_LOCK(&lk); 4971 return (error); 4972 } 4973 /* 4974 * For most files, the only metadata dependencies are the 4975 * cylinder group maps that allocate their inode or blocks. 4976 * The block allocation dependencies can be found by traversing 4977 * the dependency lists for any buffers that remain on their 4978 * dirty buffer list. The inode allocation dependency will 4979 * be resolved when the inode is updated with MNT_WAIT. 4980 * This work is done in two passes. The first pass grabs most 4981 * of the buffers and begins asynchronously writing them. The 4982 * only way to wait for these asynchronous writes is to sleep 4983 * on the filesystem vnode which may stay busy for a long time 4984 * if the filesystem is active. So, instead, we make a second 4985 * pass over the dependencies blocking on each write. In the 4986 * usual case we will be blocking against a write that we 4987 * initiated, so when it is done the dependency will have been 4988 * resolved. Thus the second pass is expected to end quickly. 4989 */ 4990 waitfor = MNT_NOWAIT; 4991 top: 4992 /* 4993 * We must wait for any I/O in progress to finish so that 4994 * all potential buffers on the dirty list will be visible. 4995 */ 4996 drain_output(vp, 1); 4997 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 4998 FREE_LOCK(&lk); 4999 return (0); 5000 } 5001 mp_fixme("The locking is somewhat complicated nonexistant here."); 5002 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 5003 /* While syncing snapshots, we must allow recursive lookups */ 5004 bp->b_lock.lk_flags |= LK_CANRECURSE; 5005 loop: 5006 /* 5007 * As we hold the buffer locked, none of its dependencies 5008 * will disappear. 5009 */ 5010 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5011 switch (wk->wk_type) { 5012 5013 case D_ALLOCDIRECT: 5014 adp = WK_ALLOCDIRECT(wk); 5015 if (adp->ad_state & DEPCOMPLETE) 5016 continue; 5017 nbp = adp->ad_buf; 5018 if (getdirtybuf(&nbp, waitfor) == 0) 5019 continue; 5020 FREE_LOCK(&lk); 5021 if (waitfor == MNT_NOWAIT) { 5022 bawrite(nbp); 5023 } else if ((error = BUF_WRITE(nbp)) != 0) { 5024 break; 5025 } 5026 ACQUIRE_LOCK(&lk); 5027 continue; 5028 5029 case D_ALLOCINDIR: 5030 aip = WK_ALLOCINDIR(wk); 5031 if (aip->ai_state & DEPCOMPLETE) 5032 continue; 5033 nbp = aip->ai_buf; 5034 if (getdirtybuf(&nbp, waitfor) == 0) 5035 continue; 5036 FREE_LOCK(&lk); 5037 if (waitfor == MNT_NOWAIT) { 5038 bawrite(nbp); 5039 } else if ((error = BUF_WRITE(nbp)) != 0) { 5040 break; 5041 } 5042 ACQUIRE_LOCK(&lk); 5043 continue; 5044 5045 case D_INDIRDEP: 5046 restart: 5047 5048 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5049 if (aip->ai_state & DEPCOMPLETE) 5050 continue; 5051 nbp = aip->ai_buf; 5052 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 5053 goto restart; 5054 FREE_LOCK(&lk); 5055 if ((error = BUF_WRITE(nbp)) != 0) { 5056 break; 5057 } 5058 ACQUIRE_LOCK(&lk); 5059 goto restart; 5060 } 5061 continue; 5062 5063 case D_INODEDEP: 5064 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 5065 WK_INODEDEP(wk)->id_ino)) != 0) { 5066 FREE_LOCK(&lk); 5067 break; 5068 } 5069 continue; 5070 5071 case D_PAGEDEP: 5072 /* 5073 * We are trying to sync a directory that may 5074 * have dependencies on both its own metadata 5075 * and/or dependencies on the inodes of any 5076 * recently allocated files. We walk its diradd 5077 * lists pushing out the associated inode. 5078 */ 5079 pagedep = WK_PAGEDEP(wk); 5080 for (i = 0; i < DAHASHSZ; i++) { 5081 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5082 continue; 5083 if ((error = 5084 flush_pagedep_deps(vp, pagedep->pd_mnt, 5085 &pagedep->pd_diraddhd[i]))) { 5086 FREE_LOCK(&lk); 5087 break; 5088 } 5089 } 5090 continue; 5091 5092 case D_MKDIR: 5093 /* 5094 * This case should never happen if the vnode has 5095 * been properly sync'ed. However, if this function 5096 * is used at a place where the vnode has not yet 5097 * been sync'ed, this dependency can show up. So, 5098 * rather than panic, just flush it. 5099 */ 5100 nbp = WK_MKDIR(wk)->md_buf; 5101 if (getdirtybuf(&nbp, waitfor) == 0) 5102 continue; 5103 FREE_LOCK(&lk); 5104 if (waitfor == MNT_NOWAIT) { 5105 bawrite(nbp); 5106 } else if ((error = BUF_WRITE(nbp)) != 0) { 5107 break; 5108 } 5109 ACQUIRE_LOCK(&lk); 5110 continue; 5111 5112 case D_BMSAFEMAP: 5113 /* 5114 * This case should never happen if the vnode has 5115 * been properly sync'ed. However, if this function 5116 * is used at a place where the vnode has not yet 5117 * been sync'ed, this dependency can show up. So, 5118 * rather than panic, just flush it. 5119 */ 5120 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5121 if (getdirtybuf(&nbp, waitfor) == 0) 5122 continue; 5123 FREE_LOCK(&lk); 5124 if (waitfor == MNT_NOWAIT) { 5125 bawrite(nbp); 5126 } else if ((error = BUF_WRITE(nbp)) != 0) { 5127 break; 5128 } 5129 ACQUIRE_LOCK(&lk); 5130 continue; 5131 5132 default: 5133 FREE_LOCK(&lk); 5134 panic("softdep_sync_metadata: Unknown type %s", 5135 TYPENAME(wk->wk_type)); 5136 /* NOTREACHED */ 5137 } 5138 /* We reach here only in error and unlocked */ 5139 if (error == 0) 5140 panic("softdep_sync_metadata: zero error"); 5141 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5142 bawrite(bp); 5143 return (error); 5144 } 5145 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 5146 nbp = TAILQ_NEXT(bp, b_vnbufs); 5147 FREE_LOCK(&lk); 5148 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5149 bawrite(bp); 5150 ACQUIRE_LOCK(&lk); 5151 if (nbp != NULL) { 5152 bp = nbp; 5153 goto loop; 5154 } 5155 /* 5156 * The brief unlock is to allow any pent up dependency 5157 * processing to be done. Then proceed with the second pass. 5158 */ 5159 if (waitfor == MNT_NOWAIT) { 5160 waitfor = MNT_WAIT; 5161 FREE_LOCK(&lk); 5162 ACQUIRE_LOCK(&lk); 5163 goto top; 5164 } 5165 5166 /* 5167 * If we have managed to get rid of all the dirty buffers, 5168 * then we are done. For certain directories and block 5169 * devices, we may need to do further work. 5170 * 5171 * We must wait for any I/O in progress to finish so that 5172 * all potential buffers on the dirty list will be visible. 5173 */ 5174 drain_output(vp, 1); 5175 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 5176 FREE_LOCK(&lk); 5177 return (0); 5178 } 5179 5180 FREE_LOCK(&lk); 5181 /* 5182 * If we are trying to sync a block device, some of its buffers may 5183 * contain metadata that cannot be written until the contents of some 5184 * partially written files have been written to disk. The only easy 5185 * way to accomplish this is to sync the entire filesystem (luckily 5186 * this happens rarely). 5187 */ 5188 if (vn_isdisk(vp, NULL) && 5189 vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) && 5190 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred, 5191 ap->a_td)) != 0) 5192 return (error); 5193 return (0); 5194 } 5195 5196 /* 5197 * Flush the dependencies associated with an inodedep. 5198 * Called with splbio blocked. 5199 */ 5200 static int 5201 flush_inodedep_deps(fs, ino) 5202 struct fs *fs; 5203 ino_t ino; 5204 { 5205 struct inodedep *inodedep; 5206 int error, waitfor; 5207 5208 /* 5209 * This work is done in two passes. The first pass grabs most 5210 * of the buffers and begins asynchronously writing them. The 5211 * only way to wait for these asynchronous writes is to sleep 5212 * on the filesystem vnode which may stay busy for a long time 5213 * if the filesystem is active. So, instead, we make a second 5214 * pass over the dependencies blocking on each write. In the 5215 * usual case we will be blocking against a write that we 5216 * initiated, so when it is done the dependency will have been 5217 * resolved. Thus the second pass is expected to end quickly. 5218 * We give a brief window at the top of the loop to allow 5219 * any pending I/O to complete. 5220 */ 5221 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5222 if (error) 5223 return (error); 5224 FREE_LOCK(&lk); 5225 ACQUIRE_LOCK(&lk); 5226 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5227 return (0); 5228 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5229 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5230 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5231 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5232 continue; 5233 /* 5234 * If pass2, we are done, otherwise do pass 2. 5235 */ 5236 if (waitfor == MNT_WAIT) 5237 break; 5238 waitfor = MNT_WAIT; 5239 } 5240 /* 5241 * Try freeing inodedep in case all dependencies have been removed. 5242 */ 5243 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 5244 (void) free_inodedep(inodedep); 5245 return (0); 5246 } 5247 5248 /* 5249 * Flush an inode dependency list. 5250 * Called with splbio blocked. 5251 */ 5252 static int 5253 flush_deplist(listhead, waitfor, errorp) 5254 struct allocdirectlst *listhead; 5255 int waitfor; 5256 int *errorp; 5257 { 5258 struct allocdirect *adp; 5259 struct buf *bp; 5260 5261 TAILQ_FOREACH(adp, listhead, ad_next) { 5262 if (adp->ad_state & DEPCOMPLETE) 5263 continue; 5264 bp = adp->ad_buf; 5265 if (getdirtybuf(&bp, waitfor) == 0) { 5266 if (waitfor == MNT_NOWAIT) 5267 continue; 5268 return (1); 5269 } 5270 FREE_LOCK(&lk); 5271 if (waitfor == MNT_NOWAIT) { 5272 bawrite(bp); 5273 } else if ((*errorp = BUF_WRITE(bp)) != 0) { 5274 ACQUIRE_LOCK(&lk); 5275 return (1); 5276 } 5277 ACQUIRE_LOCK(&lk); 5278 return (1); 5279 } 5280 return (0); 5281 } 5282 5283 /* 5284 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5285 * Called with splbio blocked. 5286 */ 5287 static int 5288 flush_pagedep_deps(pvp, mp, diraddhdp) 5289 struct vnode *pvp; 5290 struct mount *mp; 5291 struct diraddhd *diraddhdp; 5292 { 5293 struct thread *td = curthread; 5294 struct inodedep *inodedep; 5295 struct ufsmount *ump; 5296 struct diradd *dap; 5297 struct vnode *vp; 5298 int gotit, error = 0; 5299 struct buf *bp; 5300 ino_t inum; 5301 5302 ump = VFSTOUFS(mp); 5303 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5304 /* 5305 * Flush ourselves if this directory entry 5306 * has a MKDIR_PARENT dependency. 5307 */ 5308 if (dap->da_state & MKDIR_PARENT) { 5309 FREE_LOCK(&lk); 5310 if ((error = UFS_UPDATE(pvp, 1)) != 0) 5311 break; 5312 ACQUIRE_LOCK(&lk); 5313 /* 5314 * If that cleared dependencies, go on to next. 5315 */ 5316 if (dap != LIST_FIRST(diraddhdp)) 5317 continue; 5318 if (dap->da_state & MKDIR_PARENT) { 5319 FREE_LOCK(&lk); 5320 panic("flush_pagedep_deps: MKDIR_PARENT"); 5321 } 5322 } 5323 /* 5324 * A newly allocated directory must have its "." and 5325 * ".." entries written out before its name can be 5326 * committed in its parent. We do not want or need 5327 * the full semantics of a synchronous VOP_FSYNC as 5328 * that may end up here again, once for each directory 5329 * level in the filesystem. Instead, we push the blocks 5330 * and wait for them to clear. We have to fsync twice 5331 * because the first call may choose to defer blocks 5332 * that still have dependencies, but deferral will 5333 * happen at most once. 5334 */ 5335 inum = dap->da_newinum; 5336 if (dap->da_state & MKDIR_BODY) { 5337 FREE_LOCK(&lk); 5338 if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp))) 5339 break; 5340 if ((error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)) || 5341 (error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) { 5342 vput(vp); 5343 break; 5344 } 5345 drain_output(vp, 0); 5346 vput(vp); 5347 ACQUIRE_LOCK(&lk); 5348 /* 5349 * If that cleared dependencies, go on to next. 5350 */ 5351 if (dap != LIST_FIRST(diraddhdp)) 5352 continue; 5353 if (dap->da_state & MKDIR_BODY) { 5354 FREE_LOCK(&lk); 5355 panic("flush_pagedep_deps: MKDIR_BODY"); 5356 } 5357 } 5358 /* 5359 * Flush the inode on which the directory entry depends. 5360 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5361 * the only remaining dependency is that the updated inode 5362 * count must get pushed to disk. The inode has already 5363 * been pushed into its inode buffer (via VOP_UPDATE) at 5364 * the time of the reference count change. So we need only 5365 * locate that buffer, ensure that there will be no rollback 5366 * caused by a bitmap dependency, then write the inode buffer. 5367 */ 5368 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { 5369 FREE_LOCK(&lk); 5370 panic("flush_pagedep_deps: lost inode"); 5371 } 5372 /* 5373 * If the inode still has bitmap dependencies, 5374 * push them to disk. 5375 */ 5376 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5377 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 5378 FREE_LOCK(&lk); 5379 if (gotit && 5380 (error = BUF_WRITE(inodedep->id_buf)) != 0) 5381 break; 5382 ACQUIRE_LOCK(&lk); 5383 if (dap != LIST_FIRST(diraddhdp)) 5384 continue; 5385 } 5386 /* 5387 * If the inode is still sitting in a buffer waiting 5388 * to be written, push it to disk. 5389 */ 5390 FREE_LOCK(&lk); 5391 if ((error = bread(ump->um_devvp, 5392 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5393 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5394 brelse(bp); 5395 break; 5396 } 5397 if ((error = BUF_WRITE(bp)) != 0) 5398 break; 5399 ACQUIRE_LOCK(&lk); 5400 /* 5401 * If we have failed to get rid of all the dependencies 5402 * then something is seriously wrong. 5403 */ 5404 if (dap == LIST_FIRST(diraddhdp)) { 5405 FREE_LOCK(&lk); 5406 panic("flush_pagedep_deps: flush failed"); 5407 } 5408 } 5409 if (error) 5410 ACQUIRE_LOCK(&lk); 5411 return (error); 5412 } 5413 5414 /* 5415 * A large burst of file addition or deletion activity can drive the 5416 * memory load excessively high. First attempt to slow things down 5417 * using the techniques below. If that fails, this routine requests 5418 * the offending operations to fall back to running synchronously 5419 * until the memory load returns to a reasonable level. 5420 */ 5421 int 5422 softdep_slowdown(vp) 5423 struct vnode *vp; 5424 { 5425 int max_softdeps_hard; 5426 5427 max_softdeps_hard = max_softdeps * 11 / 10; 5428 if (num_dirrem < max_softdeps_hard / 2 && 5429 num_inodedep < max_softdeps_hard && 5430 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) 5431 return (0); 5432 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5433 speedup_syncer(); 5434 stat_sync_limit_hit += 1; 5435 return (1); 5436 } 5437 5438 /* 5439 * Called by the allocation routines when they are about to fail 5440 * in the hope that we can free up some disk space. 5441 * 5442 * First check to see if the work list has anything on it. If it has, 5443 * clean up entries until we successfully free some space. Because this 5444 * process holds inodes locked, we cannot handle any remove requests 5445 * that might block on a locked inode as that could lead to deadlock. 5446 * If the worklist yields no free space, encourage the syncer daemon 5447 * to help us. In no event will we try for longer than tickdelay seconds. 5448 */ 5449 int 5450 softdep_request_cleanup(fs, vp) 5451 struct fs *fs; 5452 struct vnode *vp; 5453 { 5454 long starttime; 5455 ufs2_daddr_t needed; 5456 5457 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5458 starttime = time_second + tickdelay; 5459 /* 5460 * If we are being called because of a process doing a 5461 * copy-on-write, then it is not safe to update the vnode 5462 * as we may recurse into the copy-on-write routine. 5463 */ 5464 if ((curthread->td_proc->p_flag & P_COWINPROGRESS) == 0 && 5465 UFS_UPDATE(vp, 1) != 0) 5466 return (0); 5467 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5468 if (time_second > starttime) 5469 return (0); 5470 if (num_on_worklist > 0 && 5471 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5472 stat_worklist_push += 1; 5473 continue; 5474 } 5475 request_cleanup(FLUSH_REMOVE_WAIT, 0); 5476 } 5477 return (1); 5478 } 5479 5480 /* 5481 * If memory utilization has gotten too high, deliberately slow things 5482 * down and speed up the I/O processing. 5483 */ 5484 static int 5485 request_cleanup(resource, islocked) 5486 int resource; 5487 int islocked; 5488 { 5489 struct thread *td = curthread; 5490 5491 /* 5492 * We never hold up the filesystem syncer process. 5493 */ 5494 if (td == filesys_syncer) 5495 return (0); 5496 /* 5497 * First check to see if the work list has gotten backlogged. 5498 * If it has, co-opt this process to help clean up two entries. 5499 * Because this process may hold inodes locked, we cannot 5500 * handle any remove requests that might block on a locked 5501 * inode as that could lead to deadlock. 5502 */ 5503 if (num_on_worklist > max_softdeps / 10) { 5504 if (islocked) 5505 FREE_LOCK(&lk); 5506 process_worklist_item(NULL, LK_NOWAIT); 5507 process_worklist_item(NULL, LK_NOWAIT); 5508 stat_worklist_push += 2; 5509 if (islocked) 5510 ACQUIRE_LOCK(&lk); 5511 return(1); 5512 } 5513 /* 5514 * Next, we attempt to speed up the syncer process. If that 5515 * is successful, then we allow the process to continue. 5516 */ 5517 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5518 return(0); 5519 /* 5520 * If we are resource constrained on inode dependencies, try 5521 * flushing some dirty inodes. Otherwise, we are constrained 5522 * by file deletions, so try accelerating flushes of directories 5523 * with removal dependencies. We would like to do the cleanup 5524 * here, but we probably hold an inode locked at this point and 5525 * that might deadlock against one that we try to clean. So, 5526 * the best that we can do is request the syncer daemon to do 5527 * the cleanup for us. 5528 */ 5529 switch (resource) { 5530 5531 case FLUSH_INODES: 5532 stat_ino_limit_push += 1; 5533 req_clear_inodedeps += 1; 5534 stat_countp = &stat_ino_limit_hit; 5535 break; 5536 5537 case FLUSH_REMOVE: 5538 case FLUSH_REMOVE_WAIT: 5539 stat_blk_limit_push += 1; 5540 req_clear_remove += 1; 5541 stat_countp = &stat_blk_limit_hit; 5542 break; 5543 5544 default: 5545 if (islocked) 5546 FREE_LOCK(&lk); 5547 panic("request_cleanup: unknown type"); 5548 } 5549 /* 5550 * Hopefully the syncer daemon will catch up and awaken us. 5551 * We wait at most tickdelay before proceeding in any case. 5552 */ 5553 if (islocked == 0) 5554 ACQUIRE_LOCK(&lk); 5555 proc_waiting += 1; 5556 if (handle.callout == NULL) 5557 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5558 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, NULL, PPAUSE, 5559 "softupdate", 0); 5560 proc_waiting -= 1; 5561 if (islocked == 0) 5562 FREE_LOCK(&lk); 5563 return (1); 5564 } 5565 5566 /* 5567 * Awaken processes pausing in request_cleanup and clear proc_waiting 5568 * to indicate that there is no longer a timer running. 5569 */ 5570 static void 5571 pause_timer(arg) 5572 void *arg; 5573 { 5574 5575 *stat_countp += 1; 5576 wakeup_one(&proc_waiting); 5577 if (proc_waiting > 0) 5578 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5579 else 5580 handle.callout = NULL; 5581 } 5582 5583 /* 5584 * Flush out a directory with at least one removal dependency in an effort to 5585 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5586 */ 5587 static void 5588 clear_remove(td) 5589 struct thread *td; 5590 { 5591 struct pagedep_hashhead *pagedephd; 5592 struct pagedep *pagedep; 5593 static int next = 0; 5594 struct mount *mp; 5595 struct vnode *vp; 5596 int error, cnt; 5597 ino_t ino; 5598 5599 ACQUIRE_LOCK(&lk); 5600 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5601 pagedephd = &pagedep_hashtbl[next++]; 5602 if (next >= pagedep_hash) 5603 next = 0; 5604 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5605 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5606 continue; 5607 mp = pagedep->pd_mnt; 5608 ino = pagedep->pd_ino; 5609 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5610 continue; 5611 FREE_LOCK(&lk); 5612 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) { 5613 softdep_error("clear_remove: vget", error); 5614 vn_finished_write(mp); 5615 return; 5616 } 5617 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5618 softdep_error("clear_remove: fsync", error); 5619 drain_output(vp, 0); 5620 vput(vp); 5621 vn_finished_write(mp); 5622 return; 5623 } 5624 } 5625 FREE_LOCK(&lk); 5626 } 5627 5628 /* 5629 * Clear out a block of dirty inodes in an effort to reduce 5630 * the number of inodedep dependency structures. 5631 */ 5632 static void 5633 clear_inodedeps(td) 5634 struct thread *td; 5635 { 5636 struct inodedep_hashhead *inodedephd; 5637 struct inodedep *inodedep; 5638 static int next = 0; 5639 struct mount *mp; 5640 struct vnode *vp; 5641 struct fs *fs; 5642 int error, cnt; 5643 ino_t firstino, lastino, ino; 5644 5645 ACQUIRE_LOCK(&lk); 5646 /* 5647 * Pick a random inode dependency to be cleared. 5648 * We will then gather up all the inodes in its block 5649 * that have dependencies and flush them out. 5650 */ 5651 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5652 inodedephd = &inodedep_hashtbl[next++]; 5653 if (next >= inodedep_hash) 5654 next = 0; 5655 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5656 break; 5657 } 5658 if (inodedep == NULL) 5659 return; 5660 /* 5661 * Ugly code to find mount point given pointer to superblock. 5662 */ 5663 fs = inodedep->id_fs; 5664 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5665 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5666 break; 5667 /* 5668 * Find the last inode in the block with dependencies. 5669 */ 5670 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5671 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5672 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5673 break; 5674 /* 5675 * Asynchronously push all but the last inode with dependencies. 5676 * Synchronously push the last inode with dependencies to ensure 5677 * that the inode block gets written to free up the inodedeps. 5678 */ 5679 for (ino = firstino; ino <= lastino; ino++) { 5680 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5681 continue; 5682 FREE_LOCK(&lk); 5683 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5684 continue; 5685 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5686 softdep_error("clear_inodedeps: vget", error); 5687 vn_finished_write(mp); 5688 return; 5689 } 5690 if (ino == lastino) { 5691 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_WAIT, td))) 5692 softdep_error("clear_inodedeps: fsync1", error); 5693 } else { 5694 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5695 softdep_error("clear_inodedeps: fsync2", error); 5696 drain_output(vp, 0); 5697 } 5698 vput(vp); 5699 vn_finished_write(mp); 5700 ACQUIRE_LOCK(&lk); 5701 } 5702 FREE_LOCK(&lk); 5703 } 5704 5705 /* 5706 * Function to determine if the buffer has outstanding dependencies 5707 * that will cause a roll-back if the buffer is written. If wantcount 5708 * is set, return number of dependencies, otherwise just yes or no. 5709 */ 5710 static int 5711 softdep_count_dependencies(bp, wantcount) 5712 struct buf *bp; 5713 int wantcount; 5714 { 5715 struct worklist *wk; 5716 struct inodedep *inodedep; 5717 struct indirdep *indirdep; 5718 struct allocindir *aip; 5719 struct pagedep *pagedep; 5720 struct diradd *dap; 5721 int i, retval; 5722 5723 retval = 0; 5724 ACQUIRE_LOCK(&lk); 5725 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5726 switch (wk->wk_type) { 5727 5728 case D_INODEDEP: 5729 inodedep = WK_INODEDEP(wk); 5730 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5731 /* bitmap allocation dependency */ 5732 retval += 1; 5733 if (!wantcount) 5734 goto out; 5735 } 5736 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5737 /* direct block pointer dependency */ 5738 retval += 1; 5739 if (!wantcount) 5740 goto out; 5741 } 5742 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5743 /* direct block pointer dependency */ 5744 retval += 1; 5745 if (!wantcount) 5746 goto out; 5747 } 5748 continue; 5749 5750 case D_INDIRDEP: 5751 indirdep = WK_INDIRDEP(wk); 5752 5753 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5754 /* indirect block pointer dependency */ 5755 retval += 1; 5756 if (!wantcount) 5757 goto out; 5758 } 5759 continue; 5760 5761 case D_PAGEDEP: 5762 pagedep = WK_PAGEDEP(wk); 5763 for (i = 0; i < DAHASHSZ; i++) { 5764 5765 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5766 /* directory entry dependency */ 5767 retval += 1; 5768 if (!wantcount) 5769 goto out; 5770 } 5771 } 5772 continue; 5773 5774 case D_BMSAFEMAP: 5775 case D_ALLOCDIRECT: 5776 case D_ALLOCINDIR: 5777 case D_MKDIR: 5778 /* never a dependency on these blocks */ 5779 continue; 5780 5781 default: 5782 FREE_LOCK(&lk); 5783 panic("softdep_check_for_rollback: Unexpected type %s", 5784 TYPENAME(wk->wk_type)); 5785 /* NOTREACHED */ 5786 } 5787 } 5788 out: 5789 FREE_LOCK(&lk); 5790 return retval; 5791 } 5792 5793 /* 5794 * Acquire exclusive access to a buffer. 5795 * Must be called with splbio blocked. 5796 * Return 1 if buffer was acquired. 5797 */ 5798 static int 5799 getdirtybuf(bpp, waitfor) 5800 struct buf **bpp; 5801 int waitfor; 5802 { 5803 struct buf *bp; 5804 int error; 5805 5806 for (;;) { 5807 if ((bp = *bpp) == NULL) 5808 return (0); 5809 /* XXX Probably needs interlock */ 5810 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 5811 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 5812 break; 5813 BUF_UNLOCK(bp); 5814 if (waitfor != MNT_WAIT) 5815 return (0); 5816 bp->b_xflags |= BX_BKGRDWAIT; 5817 interlocked_sleep(&lk, SLEEP, &bp->b_xflags, NULL, 5818 PRIBIO, "getbuf", 0); 5819 continue; 5820 } 5821 if (waitfor != MNT_WAIT) 5822 return (0); 5823 error = interlocked_sleep(&lk, LOCKBUF, bp, NULL, 5824 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0); 5825 if (error != ENOLCK) { 5826 FREE_LOCK(&lk); 5827 panic("getdirtybuf: inconsistent lock"); 5828 } 5829 } 5830 if ((bp->b_flags & B_DELWRI) == 0) { 5831 BUF_UNLOCK(bp); 5832 return (0); 5833 } 5834 bremfree(bp); 5835 return (1); 5836 } 5837 5838 /* 5839 * Wait for pending output on a vnode to complete. 5840 * Must be called with vnode locked. 5841 */ 5842 static void 5843 drain_output(vp, islocked) 5844 struct vnode *vp; 5845 int islocked; 5846 { 5847 5848 if (!islocked) 5849 ACQUIRE_LOCK(&lk); 5850 VI_LOCK(vp); 5851 while (vp->v_numoutput) { 5852 vp->v_iflag |= VI_BWAIT; 5853 interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput, 5854 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 5855 } 5856 VI_UNLOCK(vp); 5857 if (!islocked) 5858 FREE_LOCK(&lk); 5859 } 5860 5861 /* 5862 * Called whenever a buffer that is being invalidated or reallocated 5863 * contains dependencies. This should only happen if an I/O error has 5864 * occurred. The routine is called with the buffer locked. 5865 */ 5866 static void 5867 softdep_deallocate_dependencies(bp) 5868 struct buf *bp; 5869 { 5870 5871 if ((bp->b_ioflags & BIO_ERROR) == 0) 5872 panic("softdep_deallocate_dependencies: dangling deps"); 5873 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5874 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5875 } 5876 5877 /* 5878 * Function to handle asynchronous write errors in the filesystem. 5879 */ 5880 static void 5881 softdep_error(func, error) 5882 char *func; 5883 int error; 5884 { 5885 5886 /* XXX should do something better! */ 5887 printf("%s: got error %d while accessing filesystem\n", func, error); 5888 } 5889