1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/kdb.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/proc.h> 65 #include <sys/stat.h> 66 #include <sys/syslog.h> 67 #include <sys/vnode.h> 68 #include <sys/conf.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ufs/extattr.h> 71 #include <ufs/ufs/quota.h> 72 #include <ufs/ufs/inode.h> 73 #include <ufs/ufs/ufsmount.h> 74 #include <ufs/ffs/fs.h> 75 #include <ufs/ffs/softdep.h> 76 #include <ufs/ffs/ffs_extern.h> 77 #include <ufs/ufs/ufs_extern.h> 78 79 /* 80 * These definitions need to be adapted to the system to which 81 * this file is being ported. 82 */ 83 /* 84 * malloc types defined for the softdep system. 85 */ 86 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 87 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 88 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 89 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 90 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 91 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 92 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 93 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 94 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 95 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 96 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 97 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 98 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 99 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 100 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes"); 101 102 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 103 104 #define D_PAGEDEP 0 105 #define D_INODEDEP 1 106 #define D_NEWBLK 2 107 #define D_BMSAFEMAP 3 108 #define D_ALLOCDIRECT 4 109 #define D_INDIRDEP 5 110 #define D_ALLOCINDIR 6 111 #define D_FREEFRAG 7 112 #define D_FREEBLKS 8 113 #define D_FREEFILE 9 114 #define D_DIRADD 10 115 #define D_MKDIR 11 116 #define D_DIRREM 12 117 #define D_NEWDIRBLK 13 118 #define D_LAST D_NEWDIRBLK 119 120 /* 121 * translate from workitem type to memory type 122 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 123 */ 124 static struct malloc_type *memtype[] = { 125 M_PAGEDEP, 126 M_INODEDEP, 127 M_NEWBLK, 128 M_BMSAFEMAP, 129 M_ALLOCDIRECT, 130 M_INDIRDEP, 131 M_ALLOCINDIR, 132 M_FREEFRAG, 133 M_FREEBLKS, 134 M_FREEFILE, 135 M_DIRADD, 136 M_MKDIR, 137 M_DIRREM, 138 M_NEWDIRBLK 139 }; 140 141 #define DtoM(type) (memtype[type]) 142 143 /* 144 * Names of malloc types. 145 */ 146 #define TYPENAME(type) \ 147 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 148 /* 149 * End system adaptaion definitions. 150 */ 151 152 /* 153 * Forward declarations. 154 */ 155 struct inodedep_hashhead; 156 struct newblk_hashhead; 157 struct pagedep_hashhead; 158 159 /* 160 * Internal function prototypes. 161 */ 162 static void softdep_error(char *, int); 163 static void drain_output(struct vnode *); 164 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 165 static void clear_remove(struct thread *); 166 static void clear_inodedeps(struct thread *); 167 static int flush_pagedep_deps(struct vnode *, struct mount *, 168 struct diraddhd *); 169 static int flush_inodedep_deps(struct fs *, ino_t); 170 static int flush_deplist(struct allocdirectlst *, int, int *); 171 static int handle_written_filepage(struct pagedep *, struct buf *); 172 static void diradd_inode_written(struct diradd *, struct inodedep *); 173 static int handle_written_inodeblock(struct inodedep *, struct buf *); 174 static void handle_allocdirect_partdone(struct allocdirect *); 175 static void handle_allocindir_partdone(struct allocindir *); 176 static void initiate_write_filepage(struct pagedep *, struct buf *); 177 static void handle_written_mkdir(struct mkdir *, int); 178 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 179 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 180 static void handle_workitem_freefile(struct freefile *); 181 static void handle_workitem_remove(struct dirrem *, struct vnode *); 182 static struct dirrem *newdirrem(struct buf *, struct inode *, 183 struct inode *, int, struct dirrem **); 184 static void free_diradd(struct diradd *); 185 static void free_allocindir(struct allocindir *, struct inodedep *); 186 static void free_newdirblk(struct newdirblk *); 187 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 188 ufs2_daddr_t *); 189 static void deallocate_dependencies(struct buf *, struct inodedep *); 190 static void free_allocdirect(struct allocdirectlst *, 191 struct allocdirect *, int); 192 static int check_inode_unwritten(struct inodedep *); 193 static int free_inodedep(struct inodedep *); 194 static void handle_workitem_freeblocks(struct freeblks *, int); 195 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 196 static void setup_allocindir_phase2(struct buf *, struct inode *, 197 struct allocindir *); 198 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 199 ufs2_daddr_t); 200 static void handle_workitem_freefrag(struct freefrag *); 201 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 202 static void allocdirect_merge(struct allocdirectlst *, 203 struct allocdirect *, struct allocdirect *); 204 static struct bmsafemap *bmsafemap_lookup(struct buf *); 205 static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t, 206 struct newblk **); 207 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 208 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 209 struct inodedep **); 210 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 211 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 212 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 213 struct mount *mp, int, struct pagedep **); 214 static void pause_timer(void *); 215 static int request_cleanup(int); 216 static int process_worklist_item(struct mount *, int); 217 static void add_to_worklist(struct worklist *); 218 219 /* 220 * Exported softdep operations. 221 */ 222 static void softdep_disk_io_initiation(struct buf *); 223 static void softdep_disk_write_complete(struct buf *); 224 static void softdep_deallocate_dependencies(struct buf *); 225 static int softdep_count_dependencies(struct buf *bp, int); 226 227 static struct mtx lk; 228 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 229 230 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 231 #define FREE_LOCK(lk) mtx_unlock(lk) 232 233 /* 234 * Worklist queue management. 235 * These routines require that the lock be held. 236 */ 237 #ifndef /* NOT */ DEBUG 238 #define WORKLIST_INSERT(head, item) do { \ 239 (item)->wk_state |= ONWORKLIST; \ 240 LIST_INSERT_HEAD(head, item, wk_list); \ 241 } while (0) 242 #define WORKLIST_REMOVE(item) do { \ 243 (item)->wk_state &= ~ONWORKLIST; \ 244 LIST_REMOVE(item, wk_list); \ 245 } while (0) 246 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 247 248 #else /* DEBUG */ 249 static void worklist_insert(struct workhead *, struct worklist *); 250 static void worklist_remove(struct worklist *); 251 static void workitem_free(struct worklist *, int); 252 253 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 254 #define WORKLIST_REMOVE(item) worklist_remove(item) 255 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 256 257 static void 258 worklist_insert(head, item) 259 struct workhead *head; 260 struct worklist *item; 261 { 262 263 mtx_assert(&lk, MA_OWNED); 264 if (item->wk_state & ONWORKLIST) 265 panic("worklist_insert: already on list"); 266 item->wk_state |= ONWORKLIST; 267 LIST_INSERT_HEAD(head, item, wk_list); 268 } 269 270 static void 271 worklist_remove(item) 272 struct worklist *item; 273 { 274 275 mtx_assert(&lk, MA_OWNED); 276 if ((item->wk_state & ONWORKLIST) == 0) 277 panic("worklist_remove: not on list"); 278 item->wk_state &= ~ONWORKLIST; 279 LIST_REMOVE(item, wk_list); 280 } 281 282 static void 283 workitem_free(item, type) 284 struct worklist *item; 285 int type; 286 { 287 288 if (item->wk_state & ONWORKLIST) 289 panic("workitem_free: still on list"); 290 if (item->wk_type != type) 291 panic("workitem_free: type mismatch"); 292 FREE(item, DtoM(type)); 293 } 294 #endif /* DEBUG */ 295 296 /* 297 * Workitem queue management 298 */ 299 static struct workhead softdep_workitem_pending; 300 static struct worklist *worklist_tail; 301 static int num_on_worklist; /* number of worklist items to be processed */ 302 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 303 static int softdep_worklist_req; /* serialized waiters */ 304 static int max_softdeps; /* maximum number of structs before slowdown */ 305 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 306 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 307 static int proc_waiting; /* tracks whether we have a timeout posted */ 308 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 309 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 310 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 311 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 312 #define FLUSH_INODES 1 313 static int req_clear_remove; /* syncer process flush some freeblks */ 314 #define FLUSH_REMOVE 2 315 #define FLUSH_REMOVE_WAIT 3 316 /* 317 * runtime statistics 318 */ 319 static int stat_worklist_push; /* number of worklist cleanups */ 320 static int stat_blk_limit_push; /* number of times block limit neared */ 321 static int stat_ino_limit_push; /* number of times inode limit neared */ 322 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 323 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 324 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 325 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 326 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 327 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 328 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 329 #ifdef DEBUG 330 #include <vm/vm.h> 331 #include <sys/sysctl.h> 332 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 333 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 334 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 335 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 336 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 337 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 338 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 339 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 340 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 341 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 342 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 343 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 344 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 345 #endif /* DEBUG */ 346 347 /* 348 * Add an item to the end of the work queue. 349 * This routine requires that the lock be held. 350 * This is the only routine that adds items to the list. 351 * The following routine is the only one that removes items 352 * and does so in order from first to last. 353 */ 354 static void 355 add_to_worklist(wk) 356 struct worklist *wk; 357 { 358 359 mtx_assert(&lk, MA_OWNED); 360 if (wk->wk_state & ONWORKLIST) 361 panic("add_to_worklist: already on list"); 362 wk->wk_state |= ONWORKLIST; 363 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 364 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 365 else 366 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 367 worklist_tail = wk; 368 num_on_worklist += 1; 369 } 370 371 /* 372 * Process that runs once per second to handle items in the background queue. 373 * 374 * Note that we ensure that everything is done in the order in which they 375 * appear in the queue. The code below depends on this property to ensure 376 * that blocks of a file are freed before the inode itself is freed. This 377 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 378 * until all the old ones have been purged from the dependency lists. 379 */ 380 int 381 softdep_process_worklist(matchmnt) 382 struct mount *matchmnt; 383 { 384 struct thread *td = curthread; 385 int cnt, matchcnt, loopcount; 386 long starttime; 387 388 /* 389 * Record the process identifier of our caller so that we can give 390 * this process preferential treatment in request_cleanup below. 391 */ 392 filesys_syncer = td; 393 matchcnt = 0; 394 395 /* 396 * There is no danger of having multiple processes run this 397 * code, but we have to single-thread it when softdep_flushfiles() 398 * is in operation to get an accurate count of the number of items 399 * related to its mount point that are in the list. 400 */ 401 ACQUIRE_LOCK(&lk); 402 if (matchmnt == NULL) { 403 if (softdep_worklist_busy < 0) { 404 FREE_LOCK(&lk); 405 return(-1); 406 } 407 softdep_worklist_busy += 1; 408 } 409 410 /* 411 * If requested, try removing inode or removal dependencies. 412 */ 413 if (req_clear_inodedeps) { 414 clear_inodedeps(td); 415 req_clear_inodedeps -= 1; 416 wakeup_one(&proc_waiting); 417 } 418 if (req_clear_remove) { 419 clear_remove(td); 420 req_clear_remove -= 1; 421 wakeup_one(&proc_waiting); 422 } 423 loopcount = 1; 424 starttime = time_second; 425 while (num_on_worklist > 0) { 426 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 427 break; 428 else 429 matchcnt += cnt; 430 431 /* 432 * If a umount operation wants to run the worklist 433 * accurately, abort. 434 */ 435 if (softdep_worklist_req && matchmnt == NULL) { 436 matchcnt = -1; 437 break; 438 } 439 440 /* 441 * If requested, try removing inode or removal dependencies. 442 */ 443 if (req_clear_inodedeps) { 444 clear_inodedeps(td); 445 req_clear_inodedeps -= 1; 446 wakeup_one(&proc_waiting); 447 } 448 if (req_clear_remove) { 449 clear_remove(td); 450 req_clear_remove -= 1; 451 wakeup_one(&proc_waiting); 452 } 453 /* 454 * We do not generally want to stop for buffer space, but if 455 * we are really being a buffer hog, we will stop and wait. 456 */ 457 if (loopcount++ % 128 == 0) { 458 FREE_LOCK(&lk); 459 bwillwrite(); 460 ACQUIRE_LOCK(&lk); 461 } 462 /* 463 * Never allow processing to run for more than one 464 * second. Otherwise the other syncer tasks may get 465 * excessively backlogged. 466 */ 467 if (starttime != time_second && matchmnt == NULL) { 468 matchcnt = -1; 469 break; 470 } 471 } 472 if (matchmnt == NULL) { 473 softdep_worklist_busy -= 1; 474 if (softdep_worklist_req && softdep_worklist_busy == 0) 475 wakeup(&softdep_worklist_req); 476 } 477 FREE_LOCK(&lk); 478 return (matchcnt); 479 } 480 481 /* 482 * Process one item on the worklist. 483 */ 484 static int 485 process_worklist_item(matchmnt, flags) 486 struct mount *matchmnt; 487 int flags; 488 { 489 struct worklist *wk, *wkend; 490 struct mount *mp; 491 struct vnode *vp; 492 int matchcnt = 0; 493 494 mtx_assert(&lk, MA_OWNED); 495 /* 496 * If we are being called because of a process doing a 497 * copy-on-write, then it is not safe to write as we may 498 * recurse into the copy-on-write routine. 499 */ 500 if (curthread->td_pflags & TDP_COWINPROGRESS) 501 return (-1); 502 /* 503 * Normally we just process each item on the worklist in order. 504 * However, if we are in a situation where we cannot lock any 505 * inodes, we have to skip over any dirrem requests whose 506 * vnodes are resident and locked. 507 */ 508 vp = NULL; 509 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 510 if (wk->wk_state & INPROGRESS) 511 continue; 512 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 513 break; 514 wk->wk_state |= INPROGRESS; 515 FREE_LOCK(&lk); 516 ffs_vget(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 517 LK_NOWAIT | LK_EXCLUSIVE, &vp); 518 ACQUIRE_LOCK(&lk); 519 wk->wk_state &= ~INPROGRESS; 520 if (vp != NULL) 521 break; 522 } 523 if (wk == 0) 524 return (-1); 525 /* 526 * Remove the item to be processed. If we are removing the last 527 * item on the list, we need to recalculate the tail pointer. 528 * As this happens rarely and usually when the list is short, 529 * we just run down the list to find it rather than tracking it 530 * in the above loop. 531 */ 532 WORKLIST_REMOVE(wk); 533 if (wk == worklist_tail) { 534 LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list) 535 if (LIST_NEXT(wkend, wk_list) == NULL) 536 break; 537 worklist_tail = wkend; 538 } 539 num_on_worklist -= 1; 540 FREE_LOCK(&lk); 541 switch (wk->wk_type) { 542 543 case D_DIRREM: 544 /* removal of a directory entry */ 545 mp = WK_DIRREM(wk)->dm_mnt; 546 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 547 panic("%s: dirrem on suspended filesystem", 548 "process_worklist_item"); 549 if (mp == matchmnt) 550 matchcnt += 1; 551 handle_workitem_remove(WK_DIRREM(wk), vp); 552 break; 553 554 case D_FREEBLKS: 555 /* releasing blocks and/or fragments from a file */ 556 mp = WK_FREEBLKS(wk)->fb_mnt; 557 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 558 panic("%s: freeblks on suspended filesystem", 559 "process_worklist_item"); 560 if (mp == matchmnt) 561 matchcnt += 1; 562 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 563 break; 564 565 case D_FREEFRAG: 566 /* releasing a fragment when replaced as a file grows */ 567 mp = WK_FREEFRAG(wk)->ff_mnt; 568 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 569 panic("%s: freefrag on suspended filesystem", 570 "process_worklist_item"); 571 if (mp == matchmnt) 572 matchcnt += 1; 573 handle_workitem_freefrag(WK_FREEFRAG(wk)); 574 break; 575 576 case D_FREEFILE: 577 /* releasing an inode when its link count drops to 0 */ 578 mp = WK_FREEFILE(wk)->fx_mnt; 579 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 580 panic("%s: freefile on suspended filesystem", 581 "process_worklist_item"); 582 if (mp == matchmnt) 583 matchcnt += 1; 584 handle_workitem_freefile(WK_FREEFILE(wk)); 585 break; 586 587 default: 588 panic("%s_process_worklist: Unknown type %s", 589 "softdep", TYPENAME(wk->wk_type)); 590 /* NOTREACHED */ 591 } 592 ACQUIRE_LOCK(&lk); 593 return (matchcnt); 594 } 595 596 /* 597 * Move dependencies from one buffer to another. 598 */ 599 void 600 softdep_move_dependencies(oldbp, newbp) 601 struct buf *oldbp; 602 struct buf *newbp; 603 { 604 struct worklist *wk, *wktail; 605 606 if (LIST_FIRST(&newbp->b_dep) != NULL) 607 panic("softdep_move_dependencies: need merge code"); 608 wktail = 0; 609 ACQUIRE_LOCK(&lk); 610 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 611 LIST_REMOVE(wk, wk_list); 612 if (wktail == 0) 613 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 614 else 615 LIST_INSERT_AFTER(wktail, wk, wk_list); 616 wktail = wk; 617 } 618 FREE_LOCK(&lk); 619 } 620 621 /* 622 * Purge the work list of all items associated with a particular mount point. 623 */ 624 int 625 softdep_flushworklist(oldmnt, countp, td) 626 struct mount *oldmnt; 627 int *countp; 628 struct thread *td; 629 { 630 struct vnode *devvp; 631 int count, error = 0; 632 633 /* 634 * Await our turn to clear out the queue, then serialize access. 635 */ 636 ACQUIRE_LOCK(&lk); 637 while (softdep_worklist_busy) { 638 softdep_worklist_req += 1; 639 msleep(&softdep_worklist_req, &lk, PRIBIO, "softflush", 0); 640 softdep_worklist_req -= 1; 641 } 642 softdep_worklist_busy = -1; 643 FREE_LOCK(&lk); 644 /* 645 * Alternately flush the block device associated with the mount 646 * point and process any dependencies that the flushing 647 * creates. We continue until no more worklist dependencies 648 * are found. 649 */ 650 *countp = 0; 651 devvp = VFSTOUFS(oldmnt)->um_devvp; 652 while ((count = softdep_process_worklist(oldmnt)) > 0) { 653 *countp += count; 654 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 655 error = VOP_FSYNC(devvp, MNT_WAIT, td); 656 VOP_UNLOCK(devvp, 0, td); 657 if (error) 658 break; 659 } 660 ACQUIRE_LOCK(&lk); 661 softdep_worklist_busy = 0; 662 if (softdep_worklist_req) 663 wakeup(&softdep_worklist_req); 664 FREE_LOCK(&lk); 665 return (error); 666 } 667 668 /* 669 * Flush all vnodes and worklist items associated with a specified mount point. 670 */ 671 int 672 softdep_flushfiles(oldmnt, flags, td) 673 struct mount *oldmnt; 674 int flags; 675 struct thread *td; 676 { 677 int error, count, loopcnt; 678 679 error = 0; 680 681 /* 682 * Alternately flush the vnodes associated with the mount 683 * point and process any dependencies that the flushing 684 * creates. In theory, this loop can happen at most twice, 685 * but we give it a few extra just to be sure. 686 */ 687 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 688 /* 689 * Do another flush in case any vnodes were brought in 690 * as part of the cleanup operations. 691 */ 692 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 693 break; 694 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 695 count == 0) 696 break; 697 } 698 /* 699 * If we are unmounting then it is an error to fail. If we 700 * are simply trying to downgrade to read-only, then filesystem 701 * activity can keep us busy forever, so we just fail with EBUSY. 702 */ 703 if (loopcnt == 0) { 704 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 705 panic("softdep_flushfiles: looping"); 706 error = EBUSY; 707 } 708 return (error); 709 } 710 711 /* 712 * Structure hashing. 713 * 714 * There are three types of structures that can be looked up: 715 * 1) pagedep structures identified by mount point, inode number, 716 * and logical block. 717 * 2) inodedep structures identified by mount point and inode number. 718 * 3) newblk structures identified by mount point and 719 * physical block number. 720 * 721 * The "pagedep" and "inodedep" dependency structures are hashed 722 * separately from the file blocks and inodes to which they correspond. 723 * This separation helps when the in-memory copy of an inode or 724 * file block must be replaced. It also obviates the need to access 725 * an inode or file page when simply updating (or de-allocating) 726 * dependency structures. Lookup of newblk structures is needed to 727 * find newly allocated blocks when trying to associate them with 728 * their allocdirect or allocindir structure. 729 * 730 * The lookup routines optionally create and hash a new instance when 731 * an existing entry is not found. 732 */ 733 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 734 #define NODELAY 0x0002 /* cannot do background work */ 735 736 /* 737 * Structures and routines associated with pagedep caching. 738 */ 739 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 740 u_long pagedep_hash; /* size of hash table - 1 */ 741 #define PAGEDEP_HASH(mp, inum, lbn) \ 742 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 743 pagedep_hash]) 744 745 static int 746 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 747 struct pagedep_hashhead *pagedephd; 748 ino_t ino; 749 ufs_lbn_t lbn; 750 struct mount *mp; 751 int flags; 752 struct pagedep **pagedeppp; 753 { 754 struct pagedep *pagedep; 755 756 LIST_FOREACH(pagedep, pagedephd, pd_hash) 757 if (ino == pagedep->pd_ino && 758 lbn == pagedep->pd_lbn && 759 mp == pagedep->pd_mnt) 760 break; 761 if (pagedep) { 762 *pagedeppp = pagedep; 763 if ((flags & DEPALLOC) != 0 && 764 (pagedep->pd_state & ONWORKLIST) == 0) 765 return (0); 766 return (1); 767 } 768 *pagedeppp = NULL; 769 return (0); 770 } 771 /* 772 * Look up a pagedep. Return 1 if found, 0 if not found or found 773 * when asked to allocate but not associated with any buffer. 774 * If not found, allocate if DEPALLOC flag is passed. 775 * Found or allocated entry is returned in pagedeppp. 776 * This routine must be called with splbio interrupts blocked. 777 */ 778 static int 779 pagedep_lookup(ip, lbn, flags, pagedeppp) 780 struct inode *ip; 781 ufs_lbn_t lbn; 782 int flags; 783 struct pagedep **pagedeppp; 784 { 785 struct pagedep *pagedep; 786 struct pagedep_hashhead *pagedephd; 787 struct mount *mp; 788 int ret; 789 int i; 790 791 mtx_assert(&lk, MA_OWNED); 792 mp = ITOV(ip)->v_mount; 793 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 794 795 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 796 if (*pagedeppp || (flags & DEPALLOC) == 0) 797 return (ret); 798 FREE_LOCK(&lk); 799 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), 800 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 801 ACQUIRE_LOCK(&lk); 802 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 803 if (*pagedeppp) { 804 FREE(pagedep, M_PAGEDEP); 805 return (ret); 806 } 807 pagedep->pd_list.wk_type = D_PAGEDEP; 808 pagedep->pd_mnt = mp; 809 pagedep->pd_ino = ip->i_number; 810 pagedep->pd_lbn = lbn; 811 LIST_INIT(&pagedep->pd_dirremhd); 812 LIST_INIT(&pagedep->pd_pendinghd); 813 for (i = 0; i < DAHASHSZ; i++) 814 LIST_INIT(&pagedep->pd_diraddhd[i]); 815 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 816 *pagedeppp = pagedep; 817 return (0); 818 } 819 820 /* 821 * Structures and routines associated with inodedep caching. 822 */ 823 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 824 static u_long inodedep_hash; /* size of hash table - 1 */ 825 static long num_inodedep; /* number of inodedep allocated */ 826 #define INODEDEP_HASH(fs, inum) \ 827 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 828 829 static int 830 inodedep_find(inodedephd, fs, inum, inodedeppp) 831 struct inodedep_hashhead *inodedephd; 832 struct fs *fs; 833 ino_t inum; 834 struct inodedep **inodedeppp; 835 { 836 struct inodedep *inodedep; 837 838 LIST_FOREACH(inodedep, inodedephd, id_hash) 839 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 840 break; 841 if (inodedep) { 842 *inodedeppp = inodedep; 843 return (1); 844 } 845 *inodedeppp = NULL; 846 847 return (0); 848 } 849 /* 850 * Look up an inodedep. Return 1 if found, 0 if not found. 851 * If not found, allocate if DEPALLOC flag is passed. 852 * Found or allocated entry is returned in inodedeppp. 853 * This routine must be called with splbio interrupts blocked. 854 */ 855 static int 856 inodedep_lookup(fs, inum, flags, inodedeppp) 857 struct fs *fs; 858 ino_t inum; 859 int flags; 860 struct inodedep **inodedeppp; 861 { 862 struct inodedep *inodedep; 863 struct inodedep_hashhead *inodedephd; 864 865 mtx_assert(&lk, MA_OWNED); 866 inodedephd = INODEDEP_HASH(fs, inum); 867 868 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 869 return (1); 870 if ((flags & DEPALLOC) == 0) 871 return (0); 872 /* 873 * If we are over our limit, try to improve the situation. 874 */ 875 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0) 876 request_cleanup(FLUSH_INODES); 877 FREE_LOCK(&lk); 878 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 879 M_INODEDEP, M_SOFTDEP_FLAGS); 880 ACQUIRE_LOCK(&lk); 881 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 882 FREE(inodedep, M_INODEDEP); 883 return (1); 884 } 885 num_inodedep += 1; 886 inodedep->id_list.wk_type = D_INODEDEP; 887 inodedep->id_fs = fs; 888 inodedep->id_ino = inum; 889 inodedep->id_state = ALLCOMPLETE; 890 inodedep->id_nlinkdelta = 0; 891 inodedep->id_savedino1 = NULL; 892 inodedep->id_savedsize = -1; 893 inodedep->id_savedextsize = -1; 894 inodedep->id_buf = NULL; 895 LIST_INIT(&inodedep->id_pendinghd); 896 LIST_INIT(&inodedep->id_inowait); 897 LIST_INIT(&inodedep->id_bufwait); 898 TAILQ_INIT(&inodedep->id_inoupdt); 899 TAILQ_INIT(&inodedep->id_newinoupdt); 900 TAILQ_INIT(&inodedep->id_extupdt); 901 TAILQ_INIT(&inodedep->id_newextupdt); 902 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 903 *inodedeppp = inodedep; 904 return (0); 905 } 906 907 /* 908 * Structures and routines associated with newblk caching. 909 */ 910 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 911 u_long newblk_hash; /* size of hash table - 1 */ 912 #define NEWBLK_HASH(fs, inum) \ 913 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 914 915 static int 916 newblk_find(newblkhd, fs, newblkno, newblkpp) 917 struct newblk_hashhead *newblkhd; 918 struct fs *fs; 919 ufs2_daddr_t newblkno; 920 struct newblk **newblkpp; 921 { 922 struct newblk *newblk; 923 924 LIST_FOREACH(newblk, newblkhd, nb_hash) 925 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 926 break; 927 if (newblk) { 928 *newblkpp = newblk; 929 return (1); 930 } 931 *newblkpp = NULL; 932 return (0); 933 } 934 935 /* 936 * Look up a newblk. Return 1 if found, 0 if not found. 937 * If not found, allocate if DEPALLOC flag is passed. 938 * Found or allocated entry is returned in newblkpp. 939 */ 940 static int 941 newblk_lookup(fs, newblkno, flags, newblkpp) 942 struct fs *fs; 943 ufs2_daddr_t newblkno; 944 int flags; 945 struct newblk **newblkpp; 946 { 947 struct newblk *newblk; 948 struct newblk_hashhead *newblkhd; 949 950 newblkhd = NEWBLK_HASH(fs, newblkno); 951 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) 952 return (1); 953 if ((flags & DEPALLOC) == 0) 954 return (0); 955 FREE_LOCK(&lk); 956 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 957 M_NEWBLK, M_SOFTDEP_FLAGS); 958 ACQUIRE_LOCK(&lk); 959 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) { 960 FREE(newblk, M_NEWBLK); 961 return (1); 962 } 963 newblk->nb_state = 0; 964 newblk->nb_fs = fs; 965 newblk->nb_newblkno = newblkno; 966 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 967 *newblkpp = newblk; 968 return (0); 969 } 970 971 /* 972 * Executed during filesystem system initialization before 973 * mounting any filesystems. 974 */ 975 void 976 softdep_initialize() 977 { 978 979 LIST_INIT(&mkdirlisthd); 980 LIST_INIT(&softdep_workitem_pending); 981 max_softdeps = desiredvnodes * 4; 982 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 983 &pagedep_hash); 984 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 985 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 986 987 /* hooks through which the main kernel code calls us */ 988 softdep_process_worklist_hook = softdep_process_worklist; 989 990 /* initialise bioops hack */ 991 bioops.io_start = softdep_disk_io_initiation; 992 bioops.io_complete = softdep_disk_write_complete; 993 bioops.io_deallocate = softdep_deallocate_dependencies; 994 bioops.io_countdeps = softdep_count_dependencies; 995 } 996 997 /* 998 * Executed after all filesystems have been unmounted during 999 * filesystem module unload. 1000 */ 1001 void 1002 softdep_uninitialize() 1003 { 1004 1005 softdep_process_worklist_hook = NULL; 1006 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1007 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1008 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1009 } 1010 1011 /* 1012 * Called at mount time to notify the dependency code that a 1013 * filesystem wishes to use it. 1014 */ 1015 int 1016 softdep_mount(devvp, mp, fs, cred) 1017 struct vnode *devvp; 1018 struct mount *mp; 1019 struct fs *fs; 1020 struct ucred *cred; 1021 { 1022 struct csum_total cstotal; 1023 struct cg *cgp; 1024 struct buf *bp; 1025 int error, cyl; 1026 1027 mp->mnt_flag &= ~MNT_ASYNC; 1028 mp->mnt_flag |= MNT_SOFTDEP; 1029 /* 1030 * When doing soft updates, the counters in the 1031 * superblock may have gotten out of sync, so we have 1032 * to scan the cylinder groups and recalculate them. 1033 */ 1034 if (fs->fs_clean != 0) 1035 return (0); 1036 bzero(&cstotal, sizeof cstotal); 1037 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1038 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1039 fs->fs_cgsize, cred, &bp)) != 0) { 1040 brelse(bp); 1041 return (error); 1042 } 1043 cgp = (struct cg *)bp->b_data; 1044 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1045 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1046 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1047 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1048 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1049 brelse(bp); 1050 } 1051 #ifdef DEBUG 1052 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1053 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1054 #endif 1055 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1056 return (0); 1057 } 1058 1059 /* 1060 * Protecting the freemaps (or bitmaps). 1061 * 1062 * To eliminate the need to execute fsck before mounting a filesystem 1063 * after a power failure, one must (conservatively) guarantee that the 1064 * on-disk copy of the bitmaps never indicate that a live inode or block is 1065 * free. So, when a block or inode is allocated, the bitmap should be 1066 * updated (on disk) before any new pointers. When a block or inode is 1067 * freed, the bitmap should not be updated until all pointers have been 1068 * reset. The latter dependency is handled by the delayed de-allocation 1069 * approach described below for block and inode de-allocation. The former 1070 * dependency is handled by calling the following procedure when a block or 1071 * inode is allocated. When an inode is allocated an "inodedep" is created 1072 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1073 * Each "inodedep" is also inserted into the hash indexing structure so 1074 * that any additional link additions can be made dependent on the inode 1075 * allocation. 1076 * 1077 * The ufs filesystem maintains a number of free block counts (e.g., per 1078 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1079 * in addition to the bitmaps. These counts are used to improve efficiency 1080 * during allocation and therefore must be consistent with the bitmaps. 1081 * There is no convenient way to guarantee post-crash consistency of these 1082 * counts with simple update ordering, for two main reasons: (1) The counts 1083 * and bitmaps for a single cylinder group block are not in the same disk 1084 * sector. If a disk write is interrupted (e.g., by power failure), one may 1085 * be written and the other not. (2) Some of the counts are located in the 1086 * superblock rather than the cylinder group block. So, we focus our soft 1087 * updates implementation on protecting the bitmaps. When mounting a 1088 * filesystem, we recompute the auxiliary counts from the bitmaps. 1089 */ 1090 1091 /* 1092 * Called just after updating the cylinder group block to allocate an inode. 1093 */ 1094 void 1095 softdep_setup_inomapdep(bp, ip, newinum) 1096 struct buf *bp; /* buffer for cylgroup block with inode map */ 1097 struct inode *ip; /* inode related to allocation */ 1098 ino_t newinum; /* new inode number being allocated */ 1099 { 1100 struct inodedep *inodedep; 1101 struct bmsafemap *bmsafemap; 1102 1103 /* 1104 * Create a dependency for the newly allocated inode. 1105 * Panic if it already exists as something is seriously wrong. 1106 * Otherwise add it to the dependency list for the buffer holding 1107 * the cylinder group map from which it was allocated. 1108 */ 1109 ACQUIRE_LOCK(&lk); 1110 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) 1111 panic("softdep_setup_inomapdep: found inode"); 1112 inodedep->id_buf = bp; 1113 inodedep->id_state &= ~DEPCOMPLETE; 1114 bmsafemap = bmsafemap_lookup(bp); 1115 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1116 FREE_LOCK(&lk); 1117 } 1118 1119 /* 1120 * Called just after updating the cylinder group block to 1121 * allocate block or fragment. 1122 */ 1123 void 1124 softdep_setup_blkmapdep(bp, fs, newblkno) 1125 struct buf *bp; /* buffer for cylgroup block with block map */ 1126 struct fs *fs; /* filesystem doing allocation */ 1127 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1128 { 1129 struct newblk *newblk; 1130 struct bmsafemap *bmsafemap; 1131 1132 /* 1133 * Create a dependency for the newly allocated block. 1134 * Add it to the dependency list for the buffer holding 1135 * the cylinder group map from which it was allocated. 1136 */ 1137 ACQUIRE_LOCK(&lk); 1138 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1139 panic("softdep_setup_blkmapdep: found block"); 1140 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1141 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1142 FREE_LOCK(&lk); 1143 } 1144 1145 /* 1146 * Find the bmsafemap associated with a cylinder group buffer. 1147 * If none exists, create one. The buffer must be locked when 1148 * this routine is called and this routine must be called with 1149 * splbio interrupts blocked. 1150 */ 1151 static struct bmsafemap * 1152 bmsafemap_lookup(bp) 1153 struct buf *bp; 1154 { 1155 struct bmsafemap *bmsafemap; 1156 struct worklist *wk; 1157 1158 mtx_assert(&lk, MA_OWNED); 1159 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1160 if (wk->wk_type == D_BMSAFEMAP) 1161 return (WK_BMSAFEMAP(wk)); 1162 FREE_LOCK(&lk); 1163 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1164 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1165 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1166 bmsafemap->sm_list.wk_state = 0; 1167 bmsafemap->sm_buf = bp; 1168 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1169 LIST_INIT(&bmsafemap->sm_allocindirhd); 1170 LIST_INIT(&bmsafemap->sm_inodedephd); 1171 LIST_INIT(&bmsafemap->sm_newblkhd); 1172 ACQUIRE_LOCK(&lk); 1173 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1174 return (bmsafemap); 1175 } 1176 1177 /* 1178 * Direct block allocation dependencies. 1179 * 1180 * When a new block is allocated, the corresponding disk locations must be 1181 * initialized (with zeros or new data) before the on-disk inode points to 1182 * them. Also, the freemap from which the block was allocated must be 1183 * updated (on disk) before the inode's pointer. These two dependencies are 1184 * independent of each other and are needed for all file blocks and indirect 1185 * blocks that are pointed to directly by the inode. Just before the 1186 * "in-core" version of the inode is updated with a newly allocated block 1187 * number, a procedure (below) is called to setup allocation dependency 1188 * structures. These structures are removed when the corresponding 1189 * dependencies are satisfied or when the block allocation becomes obsolete 1190 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1191 * fragment that gets upgraded). All of these cases are handled in 1192 * procedures described later. 1193 * 1194 * When a file extension causes a fragment to be upgraded, either to a larger 1195 * fragment or to a full block, the on-disk location may change (if the 1196 * previous fragment could not simply be extended). In this case, the old 1197 * fragment must be de-allocated, but not until after the inode's pointer has 1198 * been updated. In most cases, this is handled by later procedures, which 1199 * will construct a "freefrag" structure to be added to the workitem queue 1200 * when the inode update is complete (or obsolete). The main exception to 1201 * this is when an allocation occurs while a pending allocation dependency 1202 * (for the same block pointer) remains. This case is handled in the main 1203 * allocation dependency setup procedure by immediately freeing the 1204 * unreferenced fragments. 1205 */ 1206 void 1207 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1208 struct inode *ip; /* inode to which block is being added */ 1209 ufs_lbn_t lbn; /* block pointer within inode */ 1210 ufs2_daddr_t newblkno; /* disk block number being added */ 1211 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1212 long newsize; /* size of new block */ 1213 long oldsize; /* size of new block */ 1214 struct buf *bp; /* bp for allocated block */ 1215 { 1216 struct allocdirect *adp, *oldadp; 1217 struct allocdirectlst *adphead; 1218 struct bmsafemap *bmsafemap; 1219 struct inodedep *inodedep; 1220 struct pagedep *pagedep; 1221 struct newblk *newblk; 1222 1223 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1224 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1225 adp->ad_list.wk_type = D_ALLOCDIRECT; 1226 adp->ad_lbn = lbn; 1227 adp->ad_newblkno = newblkno; 1228 adp->ad_oldblkno = oldblkno; 1229 adp->ad_newsize = newsize; 1230 adp->ad_oldsize = oldsize; 1231 adp->ad_state = ATTACHED; 1232 LIST_INIT(&adp->ad_newdirblk); 1233 if (newblkno == oldblkno) 1234 adp->ad_freefrag = NULL; 1235 else 1236 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1237 1238 ACQUIRE_LOCK(&lk); 1239 if (lbn >= NDADDR) { 1240 /* allocating an indirect block */ 1241 if (oldblkno != 0) 1242 panic("softdep_setup_allocdirect: non-zero indir"); 1243 } else { 1244 /* 1245 * Allocating a direct block. 1246 * 1247 * If we are allocating a directory block, then we must 1248 * allocate an associated pagedep to track additions and 1249 * deletions. 1250 */ 1251 if ((ip->i_mode & IFMT) == IFDIR && 1252 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1253 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1254 } 1255 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1256 panic("softdep_setup_allocdirect: lost block"); 1257 if (newblk->nb_state == DEPCOMPLETE) { 1258 adp->ad_state |= DEPCOMPLETE; 1259 adp->ad_buf = NULL; 1260 } else { 1261 bmsafemap = newblk->nb_bmsafemap; 1262 adp->ad_buf = bmsafemap->sm_buf; 1263 LIST_REMOVE(newblk, nb_deps); 1264 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1265 } 1266 LIST_REMOVE(newblk, nb_hash); 1267 FREE(newblk, M_NEWBLK); 1268 1269 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1270 adp->ad_inodedep = inodedep; 1271 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1272 /* 1273 * The list of allocdirects must be kept in sorted and ascending 1274 * order so that the rollback routines can quickly determine the 1275 * first uncommitted block (the size of the file stored on disk 1276 * ends at the end of the lowest committed fragment, or if there 1277 * are no fragments, at the end of the highest committed block). 1278 * Since files generally grow, the typical case is that the new 1279 * block is to be added at the end of the list. We speed this 1280 * special case by checking against the last allocdirect in the 1281 * list before laboriously traversing the list looking for the 1282 * insertion point. 1283 */ 1284 adphead = &inodedep->id_newinoupdt; 1285 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1286 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1287 /* insert at end of list */ 1288 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1289 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1290 allocdirect_merge(adphead, adp, oldadp); 1291 FREE_LOCK(&lk); 1292 return; 1293 } 1294 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1295 if (oldadp->ad_lbn >= lbn) 1296 break; 1297 } 1298 if (oldadp == NULL) 1299 panic("softdep_setup_allocdirect: lost entry"); 1300 /* insert in middle of list */ 1301 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1302 if (oldadp->ad_lbn == lbn) 1303 allocdirect_merge(adphead, adp, oldadp); 1304 FREE_LOCK(&lk); 1305 } 1306 1307 /* 1308 * Replace an old allocdirect dependency with a newer one. 1309 * This routine must be called with splbio interrupts blocked. 1310 */ 1311 static void 1312 allocdirect_merge(adphead, newadp, oldadp) 1313 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1314 struct allocdirect *newadp; /* allocdirect being added */ 1315 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1316 { 1317 struct worklist *wk; 1318 struct freefrag *freefrag; 1319 struct newdirblk *newdirblk; 1320 1321 mtx_assert(&lk, MA_OWNED); 1322 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1323 newadp->ad_oldsize != oldadp->ad_newsize || 1324 newadp->ad_lbn >= NDADDR) 1325 panic("%s %jd != new %jd || old size %ld != new %ld", 1326 "allocdirect_merge: old blkno", 1327 (intmax_t)newadp->ad_oldblkno, 1328 (intmax_t)oldadp->ad_newblkno, 1329 newadp->ad_oldsize, oldadp->ad_newsize); 1330 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1331 newadp->ad_oldsize = oldadp->ad_oldsize; 1332 /* 1333 * If the old dependency had a fragment to free or had never 1334 * previously had a block allocated, then the new dependency 1335 * can immediately post its freefrag and adopt the old freefrag. 1336 * This action is done by swapping the freefrag dependencies. 1337 * The new dependency gains the old one's freefrag, and the 1338 * old one gets the new one and then immediately puts it on 1339 * the worklist when it is freed by free_allocdirect. It is 1340 * not possible to do this swap when the old dependency had a 1341 * non-zero size but no previous fragment to free. This condition 1342 * arises when the new block is an extension of the old block. 1343 * Here, the first part of the fragment allocated to the new 1344 * dependency is part of the block currently claimed on disk by 1345 * the old dependency, so cannot legitimately be freed until the 1346 * conditions for the new dependency are fulfilled. 1347 */ 1348 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1349 freefrag = newadp->ad_freefrag; 1350 newadp->ad_freefrag = oldadp->ad_freefrag; 1351 oldadp->ad_freefrag = freefrag; 1352 } 1353 /* 1354 * If we are tracking a new directory-block allocation, 1355 * move it from the old allocdirect to the new allocdirect. 1356 */ 1357 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1358 newdirblk = WK_NEWDIRBLK(wk); 1359 WORKLIST_REMOVE(&newdirblk->db_list); 1360 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1361 panic("allocdirect_merge: extra newdirblk"); 1362 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1363 } 1364 free_allocdirect(adphead, oldadp, 0); 1365 } 1366 1367 /* 1368 * Allocate a new freefrag structure if needed. 1369 */ 1370 static struct freefrag * 1371 newfreefrag(ip, blkno, size) 1372 struct inode *ip; 1373 ufs2_daddr_t blkno; 1374 long size; 1375 { 1376 struct freefrag *freefrag; 1377 struct fs *fs; 1378 1379 if (blkno == 0) 1380 return (NULL); 1381 fs = ip->i_fs; 1382 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1383 panic("newfreefrag: frag size"); 1384 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1385 M_FREEFRAG, M_SOFTDEP_FLAGS); 1386 freefrag->ff_list.wk_type = D_FREEFRAG; 1387 freefrag->ff_state = 0; 1388 freefrag->ff_inum = ip->i_number; 1389 freefrag->ff_mnt = ITOV(ip)->v_mount; 1390 freefrag->ff_blkno = blkno; 1391 freefrag->ff_fragsize = size; 1392 return (freefrag); 1393 } 1394 1395 /* 1396 * This workitem de-allocates fragments that were replaced during 1397 * file block allocation. 1398 */ 1399 static void 1400 handle_workitem_freefrag(freefrag) 1401 struct freefrag *freefrag; 1402 { 1403 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1404 1405 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1406 freefrag->ff_fragsize, freefrag->ff_inum); 1407 FREE(freefrag, M_FREEFRAG); 1408 } 1409 1410 /* 1411 * Set up a dependency structure for an external attributes data block. 1412 * This routine follows much of the structure of softdep_setup_allocdirect. 1413 * See the description of softdep_setup_allocdirect above for details. 1414 */ 1415 void 1416 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1417 struct inode *ip; 1418 ufs_lbn_t lbn; 1419 ufs2_daddr_t newblkno; 1420 ufs2_daddr_t oldblkno; 1421 long newsize; 1422 long oldsize; 1423 struct buf *bp; 1424 { 1425 struct allocdirect *adp, *oldadp; 1426 struct allocdirectlst *adphead; 1427 struct bmsafemap *bmsafemap; 1428 struct inodedep *inodedep; 1429 struct newblk *newblk; 1430 1431 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1432 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1433 adp->ad_list.wk_type = D_ALLOCDIRECT; 1434 adp->ad_lbn = lbn; 1435 adp->ad_newblkno = newblkno; 1436 adp->ad_oldblkno = oldblkno; 1437 adp->ad_newsize = newsize; 1438 adp->ad_oldsize = oldsize; 1439 adp->ad_state = ATTACHED | EXTDATA; 1440 LIST_INIT(&adp->ad_newdirblk); 1441 if (newblkno == oldblkno) 1442 adp->ad_freefrag = NULL; 1443 else 1444 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1445 1446 ACQUIRE_LOCK(&lk); 1447 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1448 panic("softdep_setup_allocext: lost block"); 1449 1450 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1451 adp->ad_inodedep = inodedep; 1452 1453 if (newblk->nb_state == DEPCOMPLETE) { 1454 adp->ad_state |= DEPCOMPLETE; 1455 adp->ad_buf = NULL; 1456 } else { 1457 bmsafemap = newblk->nb_bmsafemap; 1458 adp->ad_buf = bmsafemap->sm_buf; 1459 LIST_REMOVE(newblk, nb_deps); 1460 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1461 } 1462 LIST_REMOVE(newblk, nb_hash); 1463 FREE(newblk, M_NEWBLK); 1464 1465 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1466 if (lbn >= NXADDR) 1467 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1468 (long long)lbn); 1469 /* 1470 * The list of allocdirects must be kept in sorted and ascending 1471 * order so that the rollback routines can quickly determine the 1472 * first uncommitted block (the size of the file stored on disk 1473 * ends at the end of the lowest committed fragment, or if there 1474 * are no fragments, at the end of the highest committed block). 1475 * Since files generally grow, the typical case is that the new 1476 * block is to be added at the end of the list. We speed this 1477 * special case by checking against the last allocdirect in the 1478 * list before laboriously traversing the list looking for the 1479 * insertion point. 1480 */ 1481 adphead = &inodedep->id_newextupdt; 1482 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1483 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1484 /* insert at end of list */ 1485 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1486 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1487 allocdirect_merge(adphead, adp, oldadp); 1488 FREE_LOCK(&lk); 1489 return; 1490 } 1491 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1492 if (oldadp->ad_lbn >= lbn) 1493 break; 1494 } 1495 if (oldadp == NULL) 1496 panic("softdep_setup_allocext: lost entry"); 1497 /* insert in middle of list */ 1498 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1499 if (oldadp->ad_lbn == lbn) 1500 allocdirect_merge(adphead, adp, oldadp); 1501 FREE_LOCK(&lk); 1502 } 1503 1504 /* 1505 * Indirect block allocation dependencies. 1506 * 1507 * The same dependencies that exist for a direct block also exist when 1508 * a new block is allocated and pointed to by an entry in a block of 1509 * indirect pointers. The undo/redo states described above are also 1510 * used here. Because an indirect block contains many pointers that 1511 * may have dependencies, a second copy of the entire in-memory indirect 1512 * block is kept. The buffer cache copy is always completely up-to-date. 1513 * The second copy, which is used only as a source for disk writes, 1514 * contains only the safe pointers (i.e., those that have no remaining 1515 * update dependencies). The second copy is freed when all pointers 1516 * are safe. The cache is not allowed to replace indirect blocks with 1517 * pending update dependencies. If a buffer containing an indirect 1518 * block with dependencies is written, these routines will mark it 1519 * dirty again. It can only be successfully written once all the 1520 * dependencies are removed. The ffs_fsync routine in conjunction with 1521 * softdep_sync_metadata work together to get all the dependencies 1522 * removed so that a file can be successfully written to disk. Three 1523 * procedures are used when setting up indirect block pointer 1524 * dependencies. The division is necessary because of the organization 1525 * of the "balloc" routine and because of the distinction between file 1526 * pages and file metadata blocks. 1527 */ 1528 1529 /* 1530 * Allocate a new allocindir structure. 1531 */ 1532 static struct allocindir * 1533 newallocindir(ip, ptrno, newblkno, oldblkno) 1534 struct inode *ip; /* inode for file being extended */ 1535 int ptrno; /* offset of pointer in indirect block */ 1536 ufs2_daddr_t newblkno; /* disk block number being added */ 1537 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1538 { 1539 struct allocindir *aip; 1540 1541 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1542 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1543 aip->ai_list.wk_type = D_ALLOCINDIR; 1544 aip->ai_state = ATTACHED; 1545 aip->ai_offset = ptrno; 1546 aip->ai_newblkno = newblkno; 1547 aip->ai_oldblkno = oldblkno; 1548 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1549 return (aip); 1550 } 1551 1552 /* 1553 * Called just before setting an indirect block pointer 1554 * to a newly allocated file page. 1555 */ 1556 void 1557 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1558 struct inode *ip; /* inode for file being extended */ 1559 ufs_lbn_t lbn; /* allocated block number within file */ 1560 struct buf *bp; /* buffer with indirect blk referencing page */ 1561 int ptrno; /* offset of pointer in indirect block */ 1562 ufs2_daddr_t newblkno; /* disk block number being added */ 1563 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1564 struct buf *nbp; /* buffer holding allocated page */ 1565 { 1566 struct allocindir *aip; 1567 struct pagedep *pagedep; 1568 1569 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1570 ACQUIRE_LOCK(&lk); 1571 /* 1572 * If we are allocating a directory page, then we must 1573 * allocate an associated pagedep to track additions and 1574 * deletions. 1575 */ 1576 if ((ip->i_mode & IFMT) == IFDIR && 1577 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1578 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1579 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1580 setup_allocindir_phase2(bp, ip, aip); 1581 FREE_LOCK(&lk); 1582 } 1583 1584 /* 1585 * Called just before setting an indirect block pointer to a 1586 * newly allocated indirect block. 1587 */ 1588 void 1589 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1590 struct buf *nbp; /* newly allocated indirect block */ 1591 struct inode *ip; /* inode for file being extended */ 1592 struct buf *bp; /* indirect block referencing allocated block */ 1593 int ptrno; /* offset of pointer in indirect block */ 1594 ufs2_daddr_t newblkno; /* disk block number being added */ 1595 { 1596 struct allocindir *aip; 1597 1598 aip = newallocindir(ip, ptrno, newblkno, 0); 1599 ACQUIRE_LOCK(&lk); 1600 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1601 setup_allocindir_phase2(bp, ip, aip); 1602 FREE_LOCK(&lk); 1603 } 1604 1605 /* 1606 * Called to finish the allocation of the "aip" allocated 1607 * by one of the two routines above. 1608 */ 1609 static void 1610 setup_allocindir_phase2(bp, ip, aip) 1611 struct buf *bp; /* in-memory copy of the indirect block */ 1612 struct inode *ip; /* inode for file being extended */ 1613 struct allocindir *aip; /* allocindir allocated by the above routines */ 1614 { 1615 struct worklist *wk; 1616 struct indirdep *indirdep, *newindirdep; 1617 struct bmsafemap *bmsafemap; 1618 struct allocindir *oldaip; 1619 struct freefrag *freefrag; 1620 struct newblk *newblk; 1621 ufs2_daddr_t blkno; 1622 1623 mtx_assert(&lk, MA_OWNED); 1624 if (bp->b_lblkno >= 0) 1625 panic("setup_allocindir_phase2: not indir blk"); 1626 for (indirdep = NULL, newindirdep = NULL; ; ) { 1627 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1628 if (wk->wk_type != D_INDIRDEP) 1629 continue; 1630 indirdep = WK_INDIRDEP(wk); 1631 break; 1632 } 1633 if (indirdep == NULL && newindirdep) { 1634 indirdep = newindirdep; 1635 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1636 newindirdep = NULL; 1637 } 1638 if (indirdep) { 1639 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1640 &newblk) == 0) 1641 panic("setup_allocindir: lost block"); 1642 if (newblk->nb_state == DEPCOMPLETE) { 1643 aip->ai_state |= DEPCOMPLETE; 1644 aip->ai_buf = NULL; 1645 } else { 1646 bmsafemap = newblk->nb_bmsafemap; 1647 aip->ai_buf = bmsafemap->sm_buf; 1648 LIST_REMOVE(newblk, nb_deps); 1649 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1650 aip, ai_deps); 1651 } 1652 LIST_REMOVE(newblk, nb_hash); 1653 FREE(newblk, M_NEWBLK); 1654 aip->ai_indirdep = indirdep; 1655 /* 1656 * Check to see if there is an existing dependency 1657 * for this block. If there is, merge the old 1658 * dependency into the new one. 1659 */ 1660 if (aip->ai_oldblkno == 0) 1661 oldaip = NULL; 1662 else 1663 1664 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1665 if (oldaip->ai_offset == aip->ai_offset) 1666 break; 1667 freefrag = NULL; 1668 if (oldaip != NULL) { 1669 if (oldaip->ai_newblkno != aip->ai_oldblkno) 1670 panic("setup_allocindir_phase2: blkno"); 1671 aip->ai_oldblkno = oldaip->ai_oldblkno; 1672 freefrag = aip->ai_freefrag; 1673 aip->ai_freefrag = oldaip->ai_freefrag; 1674 oldaip->ai_freefrag = NULL; 1675 free_allocindir(oldaip, NULL); 1676 } 1677 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1678 if (ip->i_ump->um_fstype == UFS1) 1679 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1680 [aip->ai_offset] = aip->ai_oldblkno; 1681 else 1682 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1683 [aip->ai_offset] = aip->ai_oldblkno; 1684 FREE_LOCK(&lk); 1685 if (freefrag != NULL) 1686 handle_workitem_freefrag(freefrag); 1687 } else 1688 FREE_LOCK(&lk); 1689 if (newindirdep) { 1690 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 1691 brelse(newindirdep->ir_savebp); 1692 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1693 } 1694 if (indirdep) { 1695 ACQUIRE_LOCK(&lk); 1696 break; 1697 } 1698 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1699 M_INDIRDEP, M_SOFTDEP_FLAGS); 1700 newindirdep->ir_list.wk_type = D_INDIRDEP; 1701 newindirdep->ir_state = ATTACHED; 1702 if (ip->i_ump->um_fstype == UFS1) 1703 newindirdep->ir_state |= UFS1FMT; 1704 LIST_INIT(&newindirdep->ir_deplisthd); 1705 LIST_INIT(&newindirdep->ir_donehd); 1706 if (bp->b_blkno == bp->b_lblkno) { 1707 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 1708 NULL, NULL); 1709 bp->b_blkno = blkno; 1710 } 1711 newindirdep->ir_savebp = 1712 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 1713 BUF_KERNPROC(newindirdep->ir_savebp); 1714 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1715 ACQUIRE_LOCK(&lk); 1716 } 1717 } 1718 1719 /* 1720 * Block de-allocation dependencies. 1721 * 1722 * When blocks are de-allocated, the on-disk pointers must be nullified before 1723 * the blocks are made available for use by other files. (The true 1724 * requirement is that old pointers must be nullified before new on-disk 1725 * pointers are set. We chose this slightly more stringent requirement to 1726 * reduce complexity.) Our implementation handles this dependency by updating 1727 * the inode (or indirect block) appropriately but delaying the actual block 1728 * de-allocation (i.e., freemap and free space count manipulation) until 1729 * after the updated versions reach stable storage. After the disk is 1730 * updated, the blocks can be safely de-allocated whenever it is convenient. 1731 * This implementation handles only the common case of reducing a file's 1732 * length to zero. Other cases are handled by the conventional synchronous 1733 * write approach. 1734 * 1735 * The ffs implementation with which we worked double-checks 1736 * the state of the block pointers and file size as it reduces 1737 * a file's length. Some of this code is replicated here in our 1738 * soft updates implementation. The freeblks->fb_chkcnt field is 1739 * used to transfer a part of this information to the procedure 1740 * that eventually de-allocates the blocks. 1741 * 1742 * This routine should be called from the routine that shortens 1743 * a file's length, before the inode's size or block pointers 1744 * are modified. It will save the block pointer information for 1745 * later release and zero the inode so that the calling routine 1746 * can release it. 1747 */ 1748 void 1749 softdep_setup_freeblocks(ip, length, flags) 1750 struct inode *ip; /* The inode whose length is to be reduced */ 1751 off_t length; /* The new length for the file */ 1752 int flags; /* IO_EXT and/or IO_NORMAL */ 1753 { 1754 struct freeblks *freeblks; 1755 struct inodedep *inodedep; 1756 struct allocdirect *adp; 1757 struct vnode *vp; 1758 struct buf *bp; 1759 struct fs *fs; 1760 ufs2_daddr_t extblocks, datablocks; 1761 int i, delay, error; 1762 1763 fs = ip->i_fs; 1764 if (length != 0) 1765 panic("softdep_setup_freeblocks: non-zero length"); 1766 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1767 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1768 freeblks->fb_list.wk_type = D_FREEBLKS; 1769 freeblks->fb_uid = ip->i_uid; 1770 freeblks->fb_previousinum = ip->i_number; 1771 freeblks->fb_devvp = ip->i_devvp; 1772 freeblks->fb_mnt = ITOV(ip)->v_mount; 1773 extblocks = 0; 1774 if (fs->fs_magic == FS_UFS2_MAGIC) 1775 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 1776 datablocks = DIP(ip, i_blocks) - extblocks; 1777 if ((flags & IO_NORMAL) == 0) { 1778 freeblks->fb_oldsize = 0; 1779 freeblks->fb_chkcnt = 0; 1780 } else { 1781 freeblks->fb_oldsize = ip->i_size; 1782 ip->i_size = 0; 1783 DIP_SET(ip, i_size, 0); 1784 freeblks->fb_chkcnt = datablocks; 1785 for (i = 0; i < NDADDR; i++) { 1786 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 1787 DIP_SET(ip, i_db[i], 0); 1788 } 1789 for (i = 0; i < NIADDR; i++) { 1790 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 1791 DIP_SET(ip, i_ib[i], 0); 1792 } 1793 /* 1794 * If the file was removed, then the space being freed was 1795 * accounted for then (see softdep_filereleased()). If the 1796 * file is merely being truncated, then we account for it now. 1797 */ 1798 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 1799 UFS_LOCK(ip->i_ump); 1800 fs->fs_pendingblocks += datablocks; 1801 UFS_UNLOCK(ip->i_ump); 1802 } 1803 } 1804 if ((flags & IO_EXT) == 0) { 1805 freeblks->fb_oldextsize = 0; 1806 } else { 1807 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 1808 ip->i_din2->di_extsize = 0; 1809 freeblks->fb_chkcnt += extblocks; 1810 for (i = 0; i < NXADDR; i++) { 1811 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 1812 ip->i_din2->di_extb[i] = 0; 1813 } 1814 } 1815 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 1816 /* 1817 * Push the zero'ed inode to to its disk buffer so that we are free 1818 * to delete its dependencies below. Once the dependencies are gone 1819 * the buffer can be safely released. 1820 */ 1821 if ((error = bread(ip->i_devvp, 1822 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1823 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 1824 brelse(bp); 1825 softdep_error("softdep_setup_freeblocks", error); 1826 } 1827 if (ip->i_ump->um_fstype == UFS1) 1828 *((struct ufs1_dinode *)bp->b_data + 1829 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 1830 else 1831 *((struct ufs2_dinode *)bp->b_data + 1832 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 1833 /* 1834 * Find and eliminate any inode dependencies. 1835 */ 1836 ACQUIRE_LOCK(&lk); 1837 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 1838 if ((inodedep->id_state & IOSTARTED) != 0) 1839 panic("softdep_setup_freeblocks: inode busy"); 1840 /* 1841 * Add the freeblks structure to the list of operations that 1842 * must await the zero'ed inode being written to disk. If we 1843 * still have a bitmap dependency (delay == 0), then the inode 1844 * has never been written to disk, so we can process the 1845 * freeblks below once we have deleted the dependencies. 1846 */ 1847 delay = (inodedep->id_state & DEPCOMPLETE); 1848 if (delay) 1849 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 1850 /* 1851 * Because the file length has been truncated to zero, any 1852 * pending block allocation dependency structures associated 1853 * with this inode are obsolete and can simply be de-allocated. 1854 * We must first merge the two dependency lists to get rid of 1855 * any duplicate freefrag structures, then purge the merged list. 1856 * If we still have a bitmap dependency, then the inode has never 1857 * been written to disk, so we can free any fragments without delay. 1858 */ 1859 if (flags & IO_NORMAL) { 1860 merge_inode_lists(&inodedep->id_newinoupdt, 1861 &inodedep->id_inoupdt); 1862 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 1863 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 1864 } 1865 if (flags & IO_EXT) { 1866 merge_inode_lists(&inodedep->id_newextupdt, 1867 &inodedep->id_extupdt); 1868 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 1869 free_allocdirect(&inodedep->id_extupdt, adp, delay); 1870 } 1871 FREE_LOCK(&lk); 1872 bdwrite(bp); 1873 /* 1874 * We must wait for any I/O in progress to finish so that 1875 * all potential buffers on the dirty list will be visible. 1876 * Once they are all there, walk the list and get rid of 1877 * any dependencies. 1878 */ 1879 vp = ITOV(ip); 1880 VI_LOCK(vp); 1881 drain_output(vp); 1882 restart: 1883 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 1884 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 1885 ((flags & IO_NORMAL) == 0 && 1886 (bp->b_xflags & BX_ALTDATA) == 0)) 1887 continue; 1888 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL) 1889 goto restart; 1890 VI_UNLOCK(vp); 1891 ACQUIRE_LOCK(&lk); 1892 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 1893 deallocate_dependencies(bp, inodedep); 1894 FREE_LOCK(&lk); 1895 bp->b_flags |= B_INVAL | B_NOCACHE; 1896 brelse(bp); 1897 VI_LOCK(vp); 1898 goto restart; 1899 } 1900 VI_UNLOCK(vp); 1901 ACQUIRE_LOCK(&lk); 1902 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 1903 (void) free_inodedep(inodedep); 1904 FREE_LOCK(&lk); 1905 /* 1906 * If the inode has never been written to disk (delay == 0), 1907 * then we can process the freeblks now that we have deleted 1908 * the dependencies. 1909 */ 1910 if (!delay) 1911 handle_workitem_freeblocks(freeblks, 0); 1912 } 1913 1914 /* 1915 * Reclaim any dependency structures from a buffer that is about to 1916 * be reallocated to a new vnode. The buffer must be locked, thus, 1917 * no I/O completion operations can occur while we are manipulating 1918 * its associated dependencies. The mutex is held so that other I/O's 1919 * associated with related dependencies do not occur. 1920 */ 1921 static void 1922 deallocate_dependencies(bp, inodedep) 1923 struct buf *bp; 1924 struct inodedep *inodedep; 1925 { 1926 struct worklist *wk; 1927 struct indirdep *indirdep; 1928 struct allocindir *aip; 1929 struct pagedep *pagedep; 1930 struct dirrem *dirrem; 1931 struct diradd *dap; 1932 int i; 1933 1934 mtx_assert(&lk, MA_OWNED); 1935 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 1936 switch (wk->wk_type) { 1937 1938 case D_INDIRDEP: 1939 indirdep = WK_INDIRDEP(wk); 1940 /* 1941 * None of the indirect pointers will ever be visible, 1942 * so they can simply be tossed. GOINGAWAY ensures 1943 * that allocated pointers will be saved in the buffer 1944 * cache until they are freed. Note that they will 1945 * only be able to be found by their physical address 1946 * since the inode mapping the logical address will 1947 * be gone. The save buffer used for the safe copy 1948 * was allocated in setup_allocindir_phase2 using 1949 * the physical address so it could be used for this 1950 * purpose. Hence we swap the safe copy with the real 1951 * copy, allowing the safe copy to be freed and holding 1952 * on to the real copy for later use in indir_trunc. 1953 */ 1954 if (indirdep->ir_state & GOINGAWAY) 1955 panic("deallocate_dependencies: already gone"); 1956 indirdep->ir_state |= GOINGAWAY; 1957 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 1958 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 1959 free_allocindir(aip, inodedep); 1960 if (bp->b_lblkno >= 0 || 1961 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 1962 panic("deallocate_dependencies: not indir"); 1963 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 1964 bp->b_bcount); 1965 WORKLIST_REMOVE(wk); 1966 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 1967 continue; 1968 1969 case D_PAGEDEP: 1970 pagedep = WK_PAGEDEP(wk); 1971 /* 1972 * None of the directory additions will ever be 1973 * visible, so they can simply be tossed. 1974 */ 1975 for (i = 0; i < DAHASHSZ; i++) 1976 while ((dap = 1977 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 1978 free_diradd(dap); 1979 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 1980 free_diradd(dap); 1981 /* 1982 * Copy any directory remove dependencies to the list 1983 * to be processed after the zero'ed inode is written. 1984 * If the inode has already been written, then they 1985 * can be dumped directly onto the work list. 1986 */ 1987 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 1988 LIST_REMOVE(dirrem, dm_next); 1989 dirrem->dm_dirinum = pagedep->pd_ino; 1990 if (inodedep == NULL || 1991 (inodedep->id_state & ALLCOMPLETE) == 1992 ALLCOMPLETE) 1993 add_to_worklist(&dirrem->dm_list); 1994 else 1995 WORKLIST_INSERT(&inodedep->id_bufwait, 1996 &dirrem->dm_list); 1997 } 1998 if ((pagedep->pd_state & NEWBLOCK) != 0) { 1999 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2000 if (wk->wk_type == D_NEWDIRBLK && 2001 WK_NEWDIRBLK(wk)->db_pagedep == 2002 pagedep) 2003 break; 2004 if (wk != NULL) { 2005 WORKLIST_REMOVE(wk); 2006 free_newdirblk(WK_NEWDIRBLK(wk)); 2007 } else 2008 panic("deallocate_dependencies: " 2009 "lost pagedep"); 2010 } 2011 WORKLIST_REMOVE(&pagedep->pd_list); 2012 LIST_REMOVE(pagedep, pd_hash); 2013 WORKITEM_FREE(pagedep, D_PAGEDEP); 2014 continue; 2015 2016 case D_ALLOCINDIR: 2017 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2018 continue; 2019 2020 case D_ALLOCDIRECT: 2021 case D_INODEDEP: 2022 panic("deallocate_dependencies: Unexpected type %s", 2023 TYPENAME(wk->wk_type)); 2024 /* NOTREACHED */ 2025 2026 default: 2027 panic("deallocate_dependencies: Unknown type %s", 2028 TYPENAME(wk->wk_type)); 2029 /* NOTREACHED */ 2030 } 2031 } 2032 } 2033 2034 /* 2035 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2036 * This routine must be called with splbio interrupts blocked. 2037 */ 2038 static void 2039 free_allocdirect(adphead, adp, delay) 2040 struct allocdirectlst *adphead; 2041 struct allocdirect *adp; 2042 int delay; 2043 { 2044 struct newdirblk *newdirblk; 2045 struct worklist *wk; 2046 2047 mtx_assert(&lk, MA_OWNED); 2048 if ((adp->ad_state & DEPCOMPLETE) == 0) 2049 LIST_REMOVE(adp, ad_deps); 2050 TAILQ_REMOVE(adphead, adp, ad_next); 2051 if ((adp->ad_state & COMPLETE) == 0) 2052 WORKLIST_REMOVE(&adp->ad_list); 2053 if (adp->ad_freefrag != NULL) { 2054 if (delay) 2055 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2056 &adp->ad_freefrag->ff_list); 2057 else 2058 add_to_worklist(&adp->ad_freefrag->ff_list); 2059 } 2060 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2061 newdirblk = WK_NEWDIRBLK(wk); 2062 WORKLIST_REMOVE(&newdirblk->db_list); 2063 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2064 panic("free_allocdirect: extra newdirblk"); 2065 if (delay) 2066 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2067 &newdirblk->db_list); 2068 else 2069 free_newdirblk(newdirblk); 2070 } 2071 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2072 } 2073 2074 /* 2075 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2076 * This routine must be called with splbio interrupts blocked. 2077 */ 2078 static void 2079 free_newdirblk(newdirblk) 2080 struct newdirblk *newdirblk; 2081 { 2082 struct pagedep *pagedep; 2083 struct diradd *dap; 2084 int i; 2085 2086 mtx_assert(&lk, MA_OWNED); 2087 /* 2088 * If the pagedep is still linked onto the directory buffer 2089 * dependency chain, then some of the entries on the 2090 * pd_pendinghd list may not be committed to disk yet. In 2091 * this case, we will simply clear the NEWBLOCK flag and 2092 * let the pd_pendinghd list be processed when the pagedep 2093 * is next written. If the pagedep is no longer on the buffer 2094 * dependency chain, then all the entries on the pd_pending 2095 * list are committed to disk and we can free them here. 2096 */ 2097 pagedep = newdirblk->db_pagedep; 2098 pagedep->pd_state &= ~NEWBLOCK; 2099 if ((pagedep->pd_state & ONWORKLIST) == 0) 2100 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2101 free_diradd(dap); 2102 /* 2103 * If no dependencies remain, the pagedep will be freed. 2104 */ 2105 for (i = 0; i < DAHASHSZ; i++) 2106 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2107 break; 2108 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2109 LIST_REMOVE(pagedep, pd_hash); 2110 WORKITEM_FREE(pagedep, D_PAGEDEP); 2111 } 2112 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2113 } 2114 2115 /* 2116 * Prepare an inode to be freed. The actual free operation is not 2117 * done until the zero'ed inode has been written to disk. 2118 */ 2119 void 2120 softdep_freefile(pvp, ino, mode) 2121 struct vnode *pvp; 2122 ino_t ino; 2123 int mode; 2124 { 2125 struct inode *ip = VTOI(pvp); 2126 struct inodedep *inodedep; 2127 struct freefile *freefile; 2128 2129 /* 2130 * This sets up the inode de-allocation dependency. 2131 */ 2132 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2133 M_FREEFILE, M_SOFTDEP_FLAGS); 2134 freefile->fx_list.wk_type = D_FREEFILE; 2135 freefile->fx_list.wk_state = 0; 2136 freefile->fx_mode = mode; 2137 freefile->fx_oldinum = ino; 2138 freefile->fx_devvp = ip->i_devvp; 2139 freefile->fx_mnt = ITOV(ip)->v_mount; 2140 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2141 UFS_LOCK(ip->i_ump); 2142 ip->i_fs->fs_pendinginodes += 1; 2143 UFS_UNLOCK(ip->i_ump); 2144 } 2145 2146 /* 2147 * If the inodedep does not exist, then the zero'ed inode has 2148 * been written to disk. If the allocated inode has never been 2149 * written to disk, then the on-disk inode is zero'ed. In either 2150 * case we can free the file immediately. 2151 */ 2152 ACQUIRE_LOCK(&lk); 2153 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2154 check_inode_unwritten(inodedep)) { 2155 FREE_LOCK(&lk); 2156 handle_workitem_freefile(freefile); 2157 return; 2158 } 2159 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2160 FREE_LOCK(&lk); 2161 } 2162 2163 /* 2164 * Check to see if an inode has never been written to disk. If 2165 * so free the inodedep and return success, otherwise return failure. 2166 * This routine must be called with splbio interrupts blocked. 2167 * 2168 * If we still have a bitmap dependency, then the inode has never 2169 * been written to disk. Drop the dependency as it is no longer 2170 * necessary since the inode is being deallocated. We set the 2171 * ALLCOMPLETE flags since the bitmap now properly shows that the 2172 * inode is not allocated. Even if the inode is actively being 2173 * written, it has been rolled back to its zero'ed state, so we 2174 * are ensured that a zero inode is what is on the disk. For short 2175 * lived files, this change will usually result in removing all the 2176 * dependencies from the inode so that it can be freed immediately. 2177 */ 2178 static int 2179 check_inode_unwritten(inodedep) 2180 struct inodedep *inodedep; 2181 { 2182 2183 mtx_assert(&lk, MA_OWNED); 2184 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2185 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2186 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2187 LIST_FIRST(&inodedep->id_inowait) != NULL || 2188 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2189 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2190 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2191 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2192 inodedep->id_nlinkdelta != 0) 2193 return (0); 2194 inodedep->id_state |= ALLCOMPLETE; 2195 LIST_REMOVE(inodedep, id_deps); 2196 inodedep->id_buf = NULL; 2197 if (inodedep->id_state & ONWORKLIST) 2198 WORKLIST_REMOVE(&inodedep->id_list); 2199 if (inodedep->id_savedino1 != NULL) { 2200 FREE(inodedep->id_savedino1, M_SAVEDINO); 2201 inodedep->id_savedino1 = NULL; 2202 } 2203 if (free_inodedep(inodedep) == 0) 2204 panic("check_inode_unwritten: busy inode"); 2205 return (1); 2206 } 2207 2208 /* 2209 * Try to free an inodedep structure. Return 1 if it could be freed. 2210 */ 2211 static int 2212 free_inodedep(inodedep) 2213 struct inodedep *inodedep; 2214 { 2215 2216 mtx_assert(&lk, MA_OWNED); 2217 if ((inodedep->id_state & ONWORKLIST) != 0 || 2218 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2219 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2220 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2221 LIST_FIRST(&inodedep->id_inowait) != NULL || 2222 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2223 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2224 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2225 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2226 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2227 return (0); 2228 LIST_REMOVE(inodedep, id_hash); 2229 WORKITEM_FREE(inodedep, D_INODEDEP); 2230 num_inodedep -= 1; 2231 return (1); 2232 } 2233 2234 /* 2235 * This workitem routine performs the block de-allocation. 2236 * The workitem is added to the pending list after the updated 2237 * inode block has been written to disk. As mentioned above, 2238 * checks regarding the number of blocks de-allocated (compared 2239 * to the number of blocks allocated for the file) are also 2240 * performed in this function. 2241 */ 2242 static void 2243 handle_workitem_freeblocks(freeblks, flags) 2244 struct freeblks *freeblks; 2245 int flags; 2246 { 2247 struct inode *ip; 2248 struct vnode *vp; 2249 struct fs *fs; 2250 struct ufsmount *ump; 2251 int i, nblocks, level, bsize; 2252 ufs2_daddr_t bn, blocksreleased = 0; 2253 int error, allerror = 0; 2254 ufs_lbn_t baselbns[NIADDR], tmpval; 2255 int fs_pendingblocks; 2256 2257 ump = VFSTOUFS(freeblks->fb_mnt); 2258 fs = ump->um_fs; 2259 fs_pendingblocks = 0; 2260 tmpval = 1; 2261 baselbns[0] = NDADDR; 2262 for (i = 1; i < NIADDR; i++) { 2263 tmpval *= NINDIR(fs); 2264 baselbns[i] = baselbns[i - 1] + tmpval; 2265 } 2266 nblocks = btodb(fs->fs_bsize); 2267 blocksreleased = 0; 2268 /* 2269 * Release all extended attribute blocks or frags. 2270 */ 2271 if (freeblks->fb_oldextsize > 0) { 2272 for (i = (NXADDR - 1); i >= 0; i--) { 2273 if ((bn = freeblks->fb_eblks[i]) == 0) 2274 continue; 2275 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2276 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2277 freeblks->fb_previousinum); 2278 blocksreleased += btodb(bsize); 2279 } 2280 } 2281 /* 2282 * Release all data blocks or frags. 2283 */ 2284 if (freeblks->fb_oldsize > 0) { 2285 /* 2286 * Indirect blocks first. 2287 */ 2288 for (level = (NIADDR - 1); level >= 0; level--) { 2289 if ((bn = freeblks->fb_iblks[level]) == 0) 2290 continue; 2291 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2292 level, baselbns[level], &blocksreleased)) == 0) 2293 allerror = error; 2294 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, 2295 fs->fs_bsize, freeblks->fb_previousinum); 2296 fs_pendingblocks += nblocks; 2297 blocksreleased += nblocks; 2298 } 2299 /* 2300 * All direct blocks or frags. 2301 */ 2302 for (i = (NDADDR - 1); i >= 0; i--) { 2303 if ((bn = freeblks->fb_dblks[i]) == 0) 2304 continue; 2305 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2306 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2307 freeblks->fb_previousinum); 2308 fs_pendingblocks += btodb(bsize); 2309 blocksreleased += btodb(bsize); 2310 } 2311 } 2312 UFS_LOCK(ump); 2313 fs->fs_pendingblocks -= fs_pendingblocks; 2314 UFS_UNLOCK(ump); 2315 /* 2316 * If we still have not finished background cleanup, then check 2317 * to see if the block count needs to be adjusted. 2318 */ 2319 if (freeblks->fb_chkcnt != blocksreleased && 2320 (fs->fs_flags & FS_UNCLEAN) != 0 && 2321 ffs_vget(freeblks->fb_mnt, freeblks->fb_previousinum, 2322 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2323 ip = VTOI(vp); 2324 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2325 freeblks->fb_chkcnt - blocksreleased); 2326 ip->i_flag |= IN_CHANGE; 2327 vput(vp); 2328 } 2329 2330 #ifdef DIAGNOSTIC 2331 if (freeblks->fb_chkcnt != blocksreleased && 2332 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2333 printf("handle_workitem_freeblocks: block count\n"); 2334 if (allerror) 2335 softdep_error("handle_workitem_freeblks", allerror); 2336 #endif /* DIAGNOSTIC */ 2337 2338 WORKITEM_FREE(freeblks, D_FREEBLKS); 2339 } 2340 2341 /* 2342 * Release blocks associated with the inode ip and stored in the indirect 2343 * block dbn. If level is greater than SINGLE, the block is an indirect block 2344 * and recursive calls to indirtrunc must be used to cleanse other indirect 2345 * blocks. 2346 */ 2347 static int 2348 indir_trunc(freeblks, dbn, level, lbn, countp) 2349 struct freeblks *freeblks; 2350 ufs2_daddr_t dbn; 2351 int level; 2352 ufs_lbn_t lbn; 2353 ufs2_daddr_t *countp; 2354 { 2355 struct buf *bp; 2356 struct fs *fs; 2357 struct worklist *wk; 2358 struct indirdep *indirdep; 2359 struct ufsmount *ump; 2360 ufs1_daddr_t *bap1 = 0; 2361 ufs2_daddr_t nb, *bap2 = 0; 2362 ufs_lbn_t lbnadd; 2363 int i, nblocks, ufs1fmt; 2364 int error, allerror = 0; 2365 int fs_pendingblocks; 2366 2367 ump = VFSTOUFS(freeblks->fb_mnt); 2368 fs = ump->um_fs; 2369 fs_pendingblocks = 0; 2370 lbnadd = 1; 2371 for (i = level; i > 0; i--) 2372 lbnadd *= NINDIR(fs); 2373 /* 2374 * Get buffer of block pointers to be freed. This routine is not 2375 * called until the zero'ed inode has been written, so it is safe 2376 * to free blocks as they are encountered. Because the inode has 2377 * been zero'ed, calls to bmap on these blocks will fail. So, we 2378 * have to use the on-disk address and the block device for the 2379 * filesystem to look them up. If the file was deleted before its 2380 * indirect blocks were all written to disk, the routine that set 2381 * us up (deallocate_dependencies) will have arranged to leave 2382 * a complete copy of the indirect block in memory for our use. 2383 * Otherwise we have to read the blocks in from the disk. 2384 */ 2385 #ifdef notyet 2386 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2387 GB_NOCREAT); 2388 #else 2389 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn); 2390 #endif 2391 ACQUIRE_LOCK(&lk); 2392 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2393 if (wk->wk_type != D_INDIRDEP || 2394 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2395 (indirdep->ir_state & GOINGAWAY) == 0) 2396 panic("indir_trunc: lost indirdep"); 2397 WORKLIST_REMOVE(wk); 2398 WORKITEM_FREE(indirdep, D_INDIRDEP); 2399 if (LIST_FIRST(&bp->b_dep) != NULL) 2400 panic("indir_trunc: dangling dep"); 2401 VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1; 2402 FREE_LOCK(&lk); 2403 } else { 2404 #ifdef notyet 2405 if (bp) 2406 brelse(bp); 2407 #endif 2408 FREE_LOCK(&lk); 2409 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2410 NOCRED, &bp); 2411 if (error) { 2412 brelse(bp); 2413 return (error); 2414 } 2415 } 2416 /* 2417 * Recursively free indirect blocks. 2418 */ 2419 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2420 ufs1fmt = 1; 2421 bap1 = (ufs1_daddr_t *)bp->b_data; 2422 } else { 2423 ufs1fmt = 0; 2424 bap2 = (ufs2_daddr_t *)bp->b_data; 2425 } 2426 nblocks = btodb(fs->fs_bsize); 2427 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2428 if (ufs1fmt) 2429 nb = bap1[i]; 2430 else 2431 nb = bap2[i]; 2432 if (nb == 0) 2433 continue; 2434 if (level != 0) { 2435 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2436 level - 1, lbn + (i * lbnadd), countp)) != 0) 2437 allerror = error; 2438 } 2439 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2440 freeblks->fb_previousinum); 2441 fs_pendingblocks += nblocks; 2442 *countp += nblocks; 2443 } 2444 UFS_LOCK(ump); 2445 fs->fs_pendingblocks -= fs_pendingblocks; 2446 UFS_UNLOCK(ump); 2447 bp->b_flags |= B_INVAL | B_NOCACHE; 2448 brelse(bp); 2449 return (allerror); 2450 } 2451 2452 /* 2453 * Free an allocindir. 2454 * This routine must be called with splbio interrupts blocked. 2455 */ 2456 static void 2457 free_allocindir(aip, inodedep) 2458 struct allocindir *aip; 2459 struct inodedep *inodedep; 2460 { 2461 struct freefrag *freefrag; 2462 2463 mtx_assert(&lk, MA_OWNED); 2464 if ((aip->ai_state & DEPCOMPLETE) == 0) 2465 LIST_REMOVE(aip, ai_deps); 2466 if (aip->ai_state & ONWORKLIST) 2467 WORKLIST_REMOVE(&aip->ai_list); 2468 LIST_REMOVE(aip, ai_next); 2469 if ((freefrag = aip->ai_freefrag) != NULL) { 2470 if (inodedep == NULL) 2471 add_to_worklist(&freefrag->ff_list); 2472 else 2473 WORKLIST_INSERT(&inodedep->id_bufwait, 2474 &freefrag->ff_list); 2475 } 2476 WORKITEM_FREE(aip, D_ALLOCINDIR); 2477 } 2478 2479 /* 2480 * Directory entry addition dependencies. 2481 * 2482 * When adding a new directory entry, the inode (with its incremented link 2483 * count) must be written to disk before the directory entry's pointer to it. 2484 * Also, if the inode is newly allocated, the corresponding freemap must be 2485 * updated (on disk) before the directory entry's pointer. These requirements 2486 * are met via undo/redo on the directory entry's pointer, which consists 2487 * simply of the inode number. 2488 * 2489 * As directory entries are added and deleted, the free space within a 2490 * directory block can become fragmented. The ufs filesystem will compact 2491 * a fragmented directory block to make space for a new entry. When this 2492 * occurs, the offsets of previously added entries change. Any "diradd" 2493 * dependency structures corresponding to these entries must be updated with 2494 * the new offsets. 2495 */ 2496 2497 /* 2498 * This routine is called after the in-memory inode's link 2499 * count has been incremented, but before the directory entry's 2500 * pointer to the inode has been set. 2501 */ 2502 int 2503 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2504 struct buf *bp; /* buffer containing directory block */ 2505 struct inode *dp; /* inode for directory */ 2506 off_t diroffset; /* offset of new entry in directory */ 2507 ino_t newinum; /* inode referenced by new directory entry */ 2508 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2509 int isnewblk; /* entry is in a newly allocated block */ 2510 { 2511 int offset; /* offset of new entry within directory block */ 2512 ufs_lbn_t lbn; /* block in directory containing new entry */ 2513 struct fs *fs; 2514 struct diradd *dap; 2515 struct allocdirect *adp; 2516 struct pagedep *pagedep; 2517 struct inodedep *inodedep; 2518 struct newdirblk *newdirblk = 0; 2519 struct mkdir *mkdir1, *mkdir2; 2520 2521 /* 2522 * Whiteouts have no dependencies. 2523 */ 2524 if (newinum == WINO) { 2525 if (newdirbp != NULL) 2526 bdwrite(newdirbp); 2527 return (0); 2528 } 2529 2530 fs = dp->i_fs; 2531 lbn = lblkno(fs, diroffset); 2532 offset = blkoff(fs, diroffset); 2533 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2534 M_SOFTDEP_FLAGS|M_ZERO); 2535 dap->da_list.wk_type = D_DIRADD; 2536 dap->da_offset = offset; 2537 dap->da_newinum = newinum; 2538 dap->da_state = ATTACHED; 2539 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2540 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2541 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2542 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2543 newdirblk->db_state = 0; 2544 } 2545 if (newdirbp == NULL) { 2546 dap->da_state |= DEPCOMPLETE; 2547 ACQUIRE_LOCK(&lk); 2548 } else { 2549 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2550 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2551 M_SOFTDEP_FLAGS); 2552 mkdir1->md_list.wk_type = D_MKDIR; 2553 mkdir1->md_state = MKDIR_BODY; 2554 mkdir1->md_diradd = dap; 2555 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2556 M_SOFTDEP_FLAGS); 2557 mkdir2->md_list.wk_type = D_MKDIR; 2558 mkdir2->md_state = MKDIR_PARENT; 2559 mkdir2->md_diradd = dap; 2560 /* 2561 * Dependency on "." and ".." being written to disk. 2562 */ 2563 mkdir1->md_buf = newdirbp; 2564 ACQUIRE_LOCK(&lk); 2565 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2566 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2567 FREE_LOCK(&lk); 2568 bdwrite(newdirbp); 2569 /* 2570 * Dependency on link count increase for parent directory 2571 */ 2572 ACQUIRE_LOCK(&lk); 2573 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2574 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2575 dap->da_state &= ~MKDIR_PARENT; 2576 WORKITEM_FREE(mkdir2, D_MKDIR); 2577 } else { 2578 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2579 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2580 } 2581 } 2582 /* 2583 * Link into parent directory pagedep to await its being written. 2584 */ 2585 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2586 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2587 dap->da_pagedep = pagedep; 2588 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2589 da_pdlist); 2590 /* 2591 * Link into its inodedep. Put it on the id_bufwait list if the inode 2592 * is not yet written. If it is written, do the post-inode write 2593 * processing to put it on the id_pendinghd list. 2594 */ 2595 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2596 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2597 diradd_inode_written(dap, inodedep); 2598 else 2599 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2600 if (isnewblk) { 2601 /* 2602 * Directories growing into indirect blocks are rare 2603 * enough and the frequency of new block allocation 2604 * in those cases even more rare, that we choose not 2605 * to bother tracking them. Rather we simply force the 2606 * new directory entry to disk. 2607 */ 2608 if (lbn >= NDADDR) { 2609 FREE_LOCK(&lk); 2610 /* 2611 * We only have a new allocation when at the 2612 * beginning of a new block, not when we are 2613 * expanding into an existing block. 2614 */ 2615 if (blkoff(fs, diroffset) == 0) 2616 return (1); 2617 return (0); 2618 } 2619 /* 2620 * We only have a new allocation when at the beginning 2621 * of a new fragment, not when we are expanding into an 2622 * existing fragment. Also, there is nothing to do if we 2623 * are already tracking this block. 2624 */ 2625 if (fragoff(fs, diroffset) != 0) { 2626 FREE_LOCK(&lk); 2627 return (0); 2628 } 2629 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2630 FREE_LOCK(&lk); 2631 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2632 return (0); 2633 } 2634 /* 2635 * Find our associated allocdirect and have it track us. 2636 */ 2637 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2638 panic("softdep_setup_directory_add: lost inodedep"); 2639 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2640 if (adp == NULL || adp->ad_lbn != lbn) 2641 panic("softdep_setup_directory_add: lost entry"); 2642 pagedep->pd_state |= NEWBLOCK; 2643 newdirblk->db_pagedep = pagedep; 2644 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2645 } 2646 FREE_LOCK(&lk); 2647 return (0); 2648 } 2649 2650 /* 2651 * This procedure is called to change the offset of a directory 2652 * entry when compacting a directory block which must be owned 2653 * exclusively by the caller. Note that the actual entry movement 2654 * must be done in this procedure to ensure that no I/O completions 2655 * occur while the move is in progress. 2656 */ 2657 void 2658 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2659 struct inode *dp; /* inode for directory */ 2660 caddr_t base; /* address of dp->i_offset */ 2661 caddr_t oldloc; /* address of old directory location */ 2662 caddr_t newloc; /* address of new directory location */ 2663 int entrysize; /* size of directory entry */ 2664 { 2665 int offset, oldoffset, newoffset; 2666 struct pagedep *pagedep; 2667 struct diradd *dap; 2668 ufs_lbn_t lbn; 2669 2670 ACQUIRE_LOCK(&lk); 2671 lbn = lblkno(dp->i_fs, dp->i_offset); 2672 offset = blkoff(dp->i_fs, dp->i_offset); 2673 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2674 goto done; 2675 oldoffset = offset + (oldloc - base); 2676 newoffset = offset + (newloc - base); 2677 2678 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2679 if (dap->da_offset != oldoffset) 2680 continue; 2681 dap->da_offset = newoffset; 2682 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2683 break; 2684 LIST_REMOVE(dap, da_pdlist); 2685 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2686 dap, da_pdlist); 2687 break; 2688 } 2689 if (dap == NULL) { 2690 2691 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2692 if (dap->da_offset == oldoffset) { 2693 dap->da_offset = newoffset; 2694 break; 2695 } 2696 } 2697 } 2698 done: 2699 bcopy(oldloc, newloc, entrysize); 2700 FREE_LOCK(&lk); 2701 } 2702 2703 /* 2704 * Free a diradd dependency structure. This routine must be called 2705 * with splbio interrupts blocked. 2706 */ 2707 static void 2708 free_diradd(dap) 2709 struct diradd *dap; 2710 { 2711 struct dirrem *dirrem; 2712 struct pagedep *pagedep; 2713 struct inodedep *inodedep; 2714 struct mkdir *mkdir, *nextmd; 2715 2716 mtx_assert(&lk, MA_OWNED); 2717 WORKLIST_REMOVE(&dap->da_list); 2718 LIST_REMOVE(dap, da_pdlist); 2719 if ((dap->da_state & DIRCHG) == 0) { 2720 pagedep = dap->da_pagedep; 2721 } else { 2722 dirrem = dap->da_previous; 2723 pagedep = dirrem->dm_pagedep; 2724 dirrem->dm_dirinum = pagedep->pd_ino; 2725 add_to_worklist(&dirrem->dm_list); 2726 } 2727 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2728 0, &inodedep) != 0) 2729 (void) free_inodedep(inodedep); 2730 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2731 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2732 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2733 if (mkdir->md_diradd != dap) 2734 continue; 2735 dap->da_state &= ~mkdir->md_state; 2736 WORKLIST_REMOVE(&mkdir->md_list); 2737 LIST_REMOVE(mkdir, md_mkdirs); 2738 WORKITEM_FREE(mkdir, D_MKDIR); 2739 } 2740 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 2741 panic("free_diradd: unfound ref"); 2742 } 2743 WORKITEM_FREE(dap, D_DIRADD); 2744 } 2745 2746 /* 2747 * Directory entry removal dependencies. 2748 * 2749 * When removing a directory entry, the entry's inode pointer must be 2750 * zero'ed on disk before the corresponding inode's link count is decremented 2751 * (possibly freeing the inode for re-use). This dependency is handled by 2752 * updating the directory entry but delaying the inode count reduction until 2753 * after the directory block has been written to disk. After this point, the 2754 * inode count can be decremented whenever it is convenient. 2755 */ 2756 2757 /* 2758 * This routine should be called immediately after removing 2759 * a directory entry. The inode's link count should not be 2760 * decremented by the calling procedure -- the soft updates 2761 * code will do this task when it is safe. 2762 */ 2763 void 2764 softdep_setup_remove(bp, dp, ip, isrmdir) 2765 struct buf *bp; /* buffer containing directory block */ 2766 struct inode *dp; /* inode for the directory being modified */ 2767 struct inode *ip; /* inode for directory entry being removed */ 2768 int isrmdir; /* indicates if doing RMDIR */ 2769 { 2770 struct dirrem *dirrem, *prevdirrem; 2771 2772 /* 2773 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2774 */ 2775 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2776 2777 /* 2778 * If the COMPLETE flag is clear, then there were no active 2779 * entries and we want to roll back to a zeroed entry until 2780 * the new inode is committed to disk. If the COMPLETE flag is 2781 * set then we have deleted an entry that never made it to 2782 * disk. If the entry we deleted resulted from a name change, 2783 * then the old name still resides on disk. We cannot delete 2784 * its inode (returned to us in prevdirrem) until the zeroed 2785 * directory entry gets to disk. The new inode has never been 2786 * referenced on the disk, so can be deleted immediately. 2787 */ 2788 if ((dirrem->dm_state & COMPLETE) == 0) { 2789 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2790 dm_next); 2791 FREE_LOCK(&lk); 2792 } else { 2793 if (prevdirrem != NULL) 2794 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2795 prevdirrem, dm_next); 2796 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2797 FREE_LOCK(&lk); 2798 handle_workitem_remove(dirrem, NULL); 2799 } 2800 } 2801 2802 /* 2803 * Allocate a new dirrem if appropriate and return it along with 2804 * its associated pagedep. Called without a lock, returns with lock. 2805 */ 2806 static long num_dirrem; /* number of dirrem allocated */ 2807 static struct dirrem * 2808 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2809 struct buf *bp; /* buffer containing directory block */ 2810 struct inode *dp; /* inode for the directory being modified */ 2811 struct inode *ip; /* inode for directory entry being removed */ 2812 int isrmdir; /* indicates if doing RMDIR */ 2813 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2814 { 2815 int offset; 2816 ufs_lbn_t lbn; 2817 struct diradd *dap; 2818 struct dirrem *dirrem; 2819 struct pagedep *pagedep; 2820 2821 /* 2822 * Whiteouts have no deletion dependencies. 2823 */ 2824 if (ip == NULL) 2825 panic("newdirrem: whiteout"); 2826 /* 2827 * If we are over our limit, try to improve the situation. 2828 * Limiting the number of dirrem structures will also limit 2829 * the number of freefile and freeblks structures. 2830 */ 2831 ACQUIRE_LOCK(&lk); 2832 if (num_dirrem > max_softdeps / 2) 2833 (void) request_cleanup(FLUSH_REMOVE); 2834 num_dirrem += 1; 2835 FREE_LOCK(&lk); 2836 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2837 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 2838 dirrem->dm_list.wk_type = D_DIRREM; 2839 dirrem->dm_state = isrmdir ? RMDIR : 0; 2840 dirrem->dm_mnt = ITOV(ip)->v_mount; 2841 dirrem->dm_oldinum = ip->i_number; 2842 *prevdirremp = NULL; 2843 2844 ACQUIRE_LOCK(&lk); 2845 lbn = lblkno(dp->i_fs, dp->i_offset); 2846 offset = blkoff(dp->i_fs, dp->i_offset); 2847 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2848 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2849 dirrem->dm_pagedep = pagedep; 2850 /* 2851 * Check for a diradd dependency for the same directory entry. 2852 * If present, then both dependencies become obsolete and can 2853 * be de-allocated. Check for an entry on both the pd_dirraddhd 2854 * list and the pd_pendinghd list. 2855 */ 2856 2857 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 2858 if (dap->da_offset == offset) 2859 break; 2860 if (dap == NULL) { 2861 2862 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 2863 if (dap->da_offset == offset) 2864 break; 2865 if (dap == NULL) 2866 return (dirrem); 2867 } 2868 /* 2869 * Must be ATTACHED at this point. 2870 */ 2871 if ((dap->da_state & ATTACHED) == 0) 2872 panic("newdirrem: not ATTACHED"); 2873 if (dap->da_newinum != ip->i_number) 2874 panic("newdirrem: inum %d should be %d", 2875 ip->i_number, dap->da_newinum); 2876 /* 2877 * If we are deleting a changed name that never made it to disk, 2878 * then return the dirrem describing the previous inode (which 2879 * represents the inode currently referenced from this entry on disk). 2880 */ 2881 if ((dap->da_state & DIRCHG) != 0) { 2882 *prevdirremp = dap->da_previous; 2883 dap->da_state &= ~DIRCHG; 2884 dap->da_pagedep = pagedep; 2885 } 2886 /* 2887 * We are deleting an entry that never made it to disk. 2888 * Mark it COMPLETE so we can delete its inode immediately. 2889 */ 2890 dirrem->dm_state |= COMPLETE; 2891 free_diradd(dap); 2892 return (dirrem); 2893 } 2894 2895 /* 2896 * Directory entry change dependencies. 2897 * 2898 * Changing an existing directory entry requires that an add operation 2899 * be completed first followed by a deletion. The semantics for the addition 2900 * are identical to the description of adding a new entry above except 2901 * that the rollback is to the old inode number rather than zero. Once 2902 * the addition dependency is completed, the removal is done as described 2903 * in the removal routine above. 2904 */ 2905 2906 /* 2907 * This routine should be called immediately after changing 2908 * a directory entry. The inode's link count should not be 2909 * decremented by the calling procedure -- the soft updates 2910 * code will perform this task when it is safe. 2911 */ 2912 void 2913 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 2914 struct buf *bp; /* buffer containing directory block */ 2915 struct inode *dp; /* inode for the directory being modified */ 2916 struct inode *ip; /* inode for directory entry being removed */ 2917 ino_t newinum; /* new inode number for changed entry */ 2918 int isrmdir; /* indicates if doing RMDIR */ 2919 { 2920 int offset; 2921 struct diradd *dap = NULL; 2922 struct dirrem *dirrem, *prevdirrem; 2923 struct pagedep *pagedep; 2924 struct inodedep *inodedep; 2925 2926 offset = blkoff(dp->i_fs, dp->i_offset); 2927 2928 /* 2929 * Whiteouts do not need diradd dependencies. 2930 */ 2931 if (newinum != WINO) { 2932 MALLOC(dap, struct diradd *, sizeof(struct diradd), 2933 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 2934 dap->da_list.wk_type = D_DIRADD; 2935 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 2936 dap->da_offset = offset; 2937 dap->da_newinum = newinum; 2938 } 2939 2940 /* 2941 * Allocate a new dirrem and ACQUIRE_LOCK. 2942 */ 2943 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2944 pagedep = dirrem->dm_pagedep; 2945 /* 2946 * The possible values for isrmdir: 2947 * 0 - non-directory file rename 2948 * 1 - directory rename within same directory 2949 * inum - directory rename to new directory of given inode number 2950 * When renaming to a new directory, we are both deleting and 2951 * creating a new directory entry, so the link count on the new 2952 * directory should not change. Thus we do not need the followup 2953 * dirrem which is usually done in handle_workitem_remove. We set 2954 * the DIRCHG flag to tell handle_workitem_remove to skip the 2955 * followup dirrem. 2956 */ 2957 if (isrmdir > 1) 2958 dirrem->dm_state |= DIRCHG; 2959 2960 /* 2961 * Whiteouts have no additional dependencies, 2962 * so just put the dirrem on the correct list. 2963 */ 2964 if (newinum == WINO) { 2965 if ((dirrem->dm_state & COMPLETE) == 0) { 2966 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 2967 dm_next); 2968 } else { 2969 dirrem->dm_dirinum = pagedep->pd_ino; 2970 add_to_worklist(&dirrem->dm_list); 2971 } 2972 FREE_LOCK(&lk); 2973 return; 2974 } 2975 2976 /* 2977 * If the COMPLETE flag is clear, then there were no active 2978 * entries and we want to roll back to the previous inode until 2979 * the new inode is committed to disk. If the COMPLETE flag is 2980 * set, then we have deleted an entry that never made it to disk. 2981 * If the entry we deleted resulted from a name change, then the old 2982 * inode reference still resides on disk. Any rollback that we do 2983 * needs to be to that old inode (returned to us in prevdirrem). If 2984 * the entry we deleted resulted from a create, then there is 2985 * no entry on the disk, so we want to roll back to zero rather 2986 * than the uncommitted inode. In either of the COMPLETE cases we 2987 * want to immediately free the unwritten and unreferenced inode. 2988 */ 2989 if ((dirrem->dm_state & COMPLETE) == 0) { 2990 dap->da_previous = dirrem; 2991 } else { 2992 if (prevdirrem != NULL) { 2993 dap->da_previous = prevdirrem; 2994 } else { 2995 dap->da_state &= ~DIRCHG; 2996 dap->da_pagedep = pagedep; 2997 } 2998 dirrem->dm_dirinum = pagedep->pd_ino; 2999 add_to_worklist(&dirrem->dm_list); 3000 } 3001 /* 3002 * Link into its inodedep. Put it on the id_bufwait list if the inode 3003 * is not yet written. If it is written, do the post-inode write 3004 * processing to put it on the id_pendinghd list. 3005 */ 3006 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3007 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3008 dap->da_state |= COMPLETE; 3009 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3010 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3011 } else { 3012 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3013 dap, da_pdlist); 3014 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3015 } 3016 FREE_LOCK(&lk); 3017 } 3018 3019 /* 3020 * Called whenever the link count on an inode is changed. 3021 * It creates an inode dependency so that the new reference(s) 3022 * to the inode cannot be committed to disk until the updated 3023 * inode has been written. 3024 */ 3025 void 3026 softdep_change_linkcnt(ip) 3027 struct inode *ip; /* the inode with the increased link count */ 3028 { 3029 struct inodedep *inodedep; 3030 3031 ACQUIRE_LOCK(&lk); 3032 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3033 if (ip->i_nlink < ip->i_effnlink) 3034 panic("softdep_change_linkcnt: bad delta"); 3035 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3036 FREE_LOCK(&lk); 3037 } 3038 3039 /* 3040 * Called when the effective link count and the reference count 3041 * on an inode drops to zero. At this point there are no names 3042 * referencing the file in the filesystem and no active file 3043 * references. The space associated with the file will be freed 3044 * as soon as the necessary soft dependencies are cleared. 3045 */ 3046 void 3047 softdep_releasefile(ip) 3048 struct inode *ip; /* inode with the zero effective link count */ 3049 { 3050 struct inodedep *inodedep; 3051 struct fs *fs; 3052 int extblocks; 3053 3054 if (ip->i_effnlink > 0) 3055 panic("softdep_filerelease: file still referenced"); 3056 /* 3057 * We may be called several times as the real reference count 3058 * drops to zero. We only want to account for the space once. 3059 */ 3060 if (ip->i_flag & IN_SPACECOUNTED) 3061 return; 3062 /* 3063 * We have to deactivate a snapshot otherwise copyonwrites may 3064 * add blocks and the cleanup may remove blocks after we have 3065 * tried to account for them. 3066 */ 3067 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3068 ffs_snapremove(ITOV(ip)); 3069 /* 3070 * If we are tracking an nlinkdelta, we have to also remember 3071 * whether we accounted for the freed space yet. 3072 */ 3073 ACQUIRE_LOCK(&lk); 3074 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3075 inodedep->id_state |= SPACECOUNTED; 3076 FREE_LOCK(&lk); 3077 fs = ip->i_fs; 3078 extblocks = 0; 3079 if (fs->fs_magic == FS_UFS2_MAGIC) 3080 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3081 UFS_LOCK(ip->i_ump); 3082 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3083 ip->i_fs->fs_pendinginodes += 1; 3084 UFS_UNLOCK(ip->i_ump); 3085 ip->i_flag |= IN_SPACECOUNTED; 3086 } 3087 3088 /* 3089 * This workitem decrements the inode's link count. 3090 * If the link count reaches zero, the file is removed. 3091 */ 3092 static void 3093 handle_workitem_remove(dirrem, xp) 3094 struct dirrem *dirrem; 3095 struct vnode *xp; 3096 { 3097 struct thread *td = curthread; 3098 struct inodedep *inodedep; 3099 struct vnode *vp; 3100 struct inode *ip; 3101 ino_t oldinum; 3102 int error; 3103 3104 if ((vp = xp) == NULL && 3105 (error = ffs_vget(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3106 &vp)) != 0) { 3107 softdep_error("handle_workitem_remove: vget", error); 3108 return; 3109 } 3110 ip = VTOI(vp); 3111 ACQUIRE_LOCK(&lk); 3112 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0) 3113 panic("handle_workitem_remove: lost inodedep"); 3114 /* 3115 * Normal file deletion. 3116 */ 3117 if ((dirrem->dm_state & RMDIR) == 0) { 3118 ip->i_nlink--; 3119 DIP_SET(ip, i_nlink, ip->i_nlink); 3120 ip->i_flag |= IN_CHANGE; 3121 if (ip->i_nlink < ip->i_effnlink) 3122 panic("handle_workitem_remove: bad file delta"); 3123 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3124 num_dirrem -= 1; 3125 FREE_LOCK(&lk); 3126 vput(vp); 3127 WORKITEM_FREE(dirrem, D_DIRREM); 3128 return; 3129 } 3130 /* 3131 * Directory deletion. Decrement reference count for both the 3132 * just deleted parent directory entry and the reference for ".". 3133 * Next truncate the directory to length zero. When the 3134 * truncation completes, arrange to have the reference count on 3135 * the parent decremented to account for the loss of "..". 3136 */ 3137 ip->i_nlink -= 2; 3138 DIP_SET(ip, i_nlink, ip->i_nlink); 3139 ip->i_flag |= IN_CHANGE; 3140 if (ip->i_nlink < ip->i_effnlink) 3141 panic("handle_workitem_remove: bad dir delta"); 3142 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3143 FREE_LOCK(&lk); 3144 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3145 softdep_error("handle_workitem_remove: truncate", error); 3146 ACQUIRE_LOCK(&lk); 3147 /* 3148 * Rename a directory to a new parent. Since, we are both deleting 3149 * and creating a new directory entry, the link count on the new 3150 * directory should not change. Thus we skip the followup dirrem. 3151 */ 3152 if (dirrem->dm_state & DIRCHG) { 3153 num_dirrem -= 1; 3154 FREE_LOCK(&lk); 3155 vput(vp); 3156 WORKITEM_FREE(dirrem, D_DIRREM); 3157 return; 3158 } 3159 /* 3160 * If the inodedep does not exist, then the zero'ed inode has 3161 * been written to disk. If the allocated inode has never been 3162 * written to disk, then the on-disk inode is zero'ed. In either 3163 * case we can remove the file immediately. 3164 */ 3165 dirrem->dm_state = 0; 3166 oldinum = dirrem->dm_oldinum; 3167 dirrem->dm_oldinum = dirrem->dm_dirinum; 3168 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3169 check_inode_unwritten(inodedep)) { 3170 FREE_LOCK(&lk); 3171 vput(vp); 3172 handle_workitem_remove(dirrem, NULL); 3173 return; 3174 } 3175 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3176 FREE_LOCK(&lk); 3177 vput(vp); 3178 } 3179 3180 /* 3181 * Inode de-allocation dependencies. 3182 * 3183 * When an inode's link count is reduced to zero, it can be de-allocated. We 3184 * found it convenient to postpone de-allocation until after the inode is 3185 * written to disk with its new link count (zero). At this point, all of the 3186 * on-disk inode's block pointers are nullified and, with careful dependency 3187 * list ordering, all dependencies related to the inode will be satisfied and 3188 * the corresponding dependency structures de-allocated. So, if/when the 3189 * inode is reused, there will be no mixing of old dependencies with new 3190 * ones. This artificial dependency is set up by the block de-allocation 3191 * procedure above (softdep_setup_freeblocks) and completed by the 3192 * following procedure. 3193 */ 3194 static void 3195 handle_workitem_freefile(freefile) 3196 struct freefile *freefile; 3197 { 3198 struct fs *fs; 3199 struct inodedep *idp; 3200 struct ufsmount *ump; 3201 int error; 3202 3203 ump = VFSTOUFS(freefile->fx_mnt); 3204 fs = ump->um_fs; 3205 #ifdef DEBUG 3206 ACQUIRE_LOCK(&lk); 3207 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3208 FREE_LOCK(&lk); 3209 if (error) 3210 panic("handle_workitem_freefile: inodedep survived"); 3211 #endif 3212 UFS_LOCK(ump); 3213 fs->fs_pendinginodes -= 1; 3214 UFS_UNLOCK(ump); 3215 if ((error = ffs_freefile(VFSTOUFS(freefile->fx_mnt), fs, 3216 freefile->fx_devvp, freefile->fx_oldinum, freefile->fx_mode)) != 0) 3217 softdep_error("handle_workitem_freefile", error); 3218 WORKITEM_FREE(freefile, D_FREEFILE); 3219 } 3220 3221 int 3222 softdep_disk_prewrite(struct buf *bp) 3223 { 3224 int error; 3225 struct vnode *vp = bp->b_vp; 3226 3227 KASSERT(bp->b_iocmd == BIO_WRITE, 3228 ("softdep_disk_prewrite on non-BIO_WRITE buffer")); 3229 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 3230 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 3231 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 3232 panic("softdep_disk_prewrite: bad I/O"); 3233 bp->b_flags &= ~B_VALIDSUSPWRT; 3234 if (LIST_FIRST(&bp->b_dep) != NULL) 3235 buf_start(bp); 3236 mp_fixme("This should require the vnode lock."); 3237 if ((vp->v_vflag & VV_COPYONWRITE) && 3238 vp->v_rdev->si_snapdata != NULL && 3239 (error = (ffs_copyonwrite)(vp, bp)) != 0 && 3240 error != EOPNOTSUPP) { 3241 bp->b_error = error; 3242 bp->b_ioflags |= BIO_ERROR; 3243 bufdone(bp); 3244 return (1); 3245 } 3246 return (0); 3247 } 3248 3249 3250 /* 3251 * Disk writes. 3252 * 3253 * The dependency structures constructed above are most actively used when file 3254 * system blocks are written to disk. No constraints are placed on when a 3255 * block can be written, but unsatisfied update dependencies are made safe by 3256 * modifying (or replacing) the source memory for the duration of the disk 3257 * write. When the disk write completes, the memory block is again brought 3258 * up-to-date. 3259 * 3260 * In-core inode structure reclamation. 3261 * 3262 * Because there are a finite number of "in-core" inode structures, they are 3263 * reused regularly. By transferring all inode-related dependencies to the 3264 * in-memory inode block and indexing them separately (via "inodedep"s), we 3265 * can allow "in-core" inode structures to be reused at any time and avoid 3266 * any increase in contention. 3267 * 3268 * Called just before entering the device driver to initiate a new disk I/O. 3269 * The buffer must be locked, thus, no I/O completion operations can occur 3270 * while we are manipulating its associated dependencies. 3271 */ 3272 static void 3273 softdep_disk_io_initiation(bp) 3274 struct buf *bp; /* structure describing disk write to occur */ 3275 { 3276 struct worklist *wk, *nextwk; 3277 struct indirdep *indirdep; 3278 struct inodedep *inodedep; 3279 3280 /* 3281 * We only care about write operations. There should never 3282 * be dependencies for reads. 3283 */ 3284 if (bp->b_iocmd != BIO_WRITE) 3285 panic("softdep_disk_io_initiation: not write"); 3286 ACQUIRE_LOCK(&lk); 3287 /* 3288 * Do any necessary pre-I/O processing. 3289 */ 3290 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, nextwk) { 3291 switch (wk->wk_type) { 3292 3293 case D_PAGEDEP: 3294 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3295 continue; 3296 3297 case D_INODEDEP: 3298 inodedep = WK_INODEDEP(wk); 3299 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3300 initiate_write_inodeblock_ufs1(inodedep, bp); 3301 else 3302 initiate_write_inodeblock_ufs2(inodedep, bp); 3303 continue; 3304 3305 case D_INDIRDEP: 3306 indirdep = WK_INDIRDEP(wk); 3307 if (indirdep->ir_state & GOINGAWAY) 3308 panic("disk_io_initiation: indirdep gone"); 3309 /* 3310 * If there are no remaining dependencies, this 3311 * will be writing the real pointers, so the 3312 * dependency can be freed. 3313 */ 3314 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3315 struct buf *bp; 3316 3317 bp = indirdep->ir_savebp; 3318 bp->b_flags |= B_INVAL | B_NOCACHE; 3319 /* inline expand WORKLIST_REMOVE(wk); */ 3320 wk->wk_state &= ~ONWORKLIST; 3321 LIST_REMOVE(wk, wk_list); 3322 WORKITEM_FREE(indirdep, D_INDIRDEP); 3323 FREE_LOCK(&lk); 3324 brelse(bp); 3325 ACQUIRE_LOCK(&lk); 3326 continue; 3327 } 3328 /* 3329 * Replace up-to-date version with safe version. 3330 */ 3331 FREE_LOCK(&lk); 3332 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3333 M_INDIRDEP, M_SOFTDEP_FLAGS); 3334 ACQUIRE_LOCK(&lk); 3335 indirdep->ir_state &= ~ATTACHED; 3336 indirdep->ir_state |= UNDONE; 3337 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3338 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3339 bp->b_bcount); 3340 continue; 3341 3342 case D_MKDIR: 3343 case D_BMSAFEMAP: 3344 case D_ALLOCDIRECT: 3345 case D_ALLOCINDIR: 3346 continue; 3347 3348 default: 3349 panic("handle_disk_io_initiation: Unexpected type %s", 3350 TYPENAME(wk->wk_type)); 3351 /* NOTREACHED */ 3352 } 3353 } 3354 FREE_LOCK(&lk); 3355 } 3356 3357 /* 3358 * Called from within the procedure above to deal with unsatisfied 3359 * allocation dependencies in a directory. The buffer must be locked, 3360 * thus, no I/O completion operations can occur while we are 3361 * manipulating its associated dependencies. 3362 */ 3363 static void 3364 initiate_write_filepage(pagedep, bp) 3365 struct pagedep *pagedep; 3366 struct buf *bp; 3367 { 3368 struct diradd *dap; 3369 struct direct *ep; 3370 int i; 3371 3372 if (pagedep->pd_state & IOSTARTED) { 3373 /* 3374 * This can only happen if there is a driver that does not 3375 * understand chaining. Here biodone will reissue the call 3376 * to strategy for the incomplete buffers. 3377 */ 3378 printf("initiate_write_filepage: already started\n"); 3379 return; 3380 } 3381 pagedep->pd_state |= IOSTARTED; 3382 for (i = 0; i < DAHASHSZ; i++) { 3383 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3384 ep = (struct direct *) 3385 ((char *)bp->b_data + dap->da_offset); 3386 if (ep->d_ino != dap->da_newinum) 3387 panic("%s: dir inum %d != new %d", 3388 "initiate_write_filepage", 3389 ep->d_ino, dap->da_newinum); 3390 if (dap->da_state & DIRCHG) 3391 ep->d_ino = dap->da_previous->dm_oldinum; 3392 else 3393 ep->d_ino = 0; 3394 dap->da_state &= ~ATTACHED; 3395 dap->da_state |= UNDONE; 3396 } 3397 } 3398 } 3399 3400 /* 3401 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3402 * Note that any bug fixes made to this routine must be done in the 3403 * version found below. 3404 * 3405 * Called from within the procedure above to deal with unsatisfied 3406 * allocation dependencies in an inodeblock. The buffer must be 3407 * locked, thus, no I/O completion operations can occur while we 3408 * are manipulating its associated dependencies. 3409 */ 3410 static void 3411 initiate_write_inodeblock_ufs1(inodedep, bp) 3412 struct inodedep *inodedep; 3413 struct buf *bp; /* The inode block */ 3414 { 3415 struct allocdirect *adp, *lastadp; 3416 struct ufs1_dinode *dp; 3417 struct fs *fs; 3418 ufs_lbn_t i, prevlbn = 0; 3419 int deplist; 3420 3421 if (inodedep->id_state & IOSTARTED) 3422 panic("initiate_write_inodeblock_ufs1: already started"); 3423 inodedep->id_state |= IOSTARTED; 3424 fs = inodedep->id_fs; 3425 dp = (struct ufs1_dinode *)bp->b_data + 3426 ino_to_fsbo(fs, inodedep->id_ino); 3427 /* 3428 * If the bitmap is not yet written, then the allocated 3429 * inode cannot be written to disk. 3430 */ 3431 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3432 if (inodedep->id_savedino1 != NULL) 3433 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3434 FREE_LOCK(&lk); 3435 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3436 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3437 ACQUIRE_LOCK(&lk); 3438 *inodedep->id_savedino1 = *dp; 3439 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3440 return; 3441 } 3442 /* 3443 * If no dependencies, then there is nothing to roll back. 3444 */ 3445 inodedep->id_savedsize = dp->di_size; 3446 inodedep->id_savedextsize = 0; 3447 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3448 return; 3449 /* 3450 * Set the dependencies to busy. 3451 */ 3452 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3453 adp = TAILQ_NEXT(adp, ad_next)) { 3454 #ifdef DIAGNOSTIC 3455 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3456 panic("softdep_write_inodeblock: lbn order"); 3457 prevlbn = adp->ad_lbn; 3458 if (adp->ad_lbn < NDADDR && 3459 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3460 panic("%s: direct pointer #%jd mismatch %d != %jd", 3461 "softdep_write_inodeblock", 3462 (intmax_t)adp->ad_lbn, 3463 dp->di_db[adp->ad_lbn], 3464 (intmax_t)adp->ad_newblkno); 3465 if (adp->ad_lbn >= NDADDR && 3466 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3467 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3468 "softdep_write_inodeblock", 3469 (intmax_t)adp->ad_lbn - NDADDR, 3470 dp->di_ib[adp->ad_lbn - NDADDR], 3471 (intmax_t)adp->ad_newblkno); 3472 deplist |= 1 << adp->ad_lbn; 3473 if ((adp->ad_state & ATTACHED) == 0) 3474 panic("softdep_write_inodeblock: Unknown state 0x%x", 3475 adp->ad_state); 3476 #endif /* DIAGNOSTIC */ 3477 adp->ad_state &= ~ATTACHED; 3478 adp->ad_state |= UNDONE; 3479 } 3480 /* 3481 * The on-disk inode cannot claim to be any larger than the last 3482 * fragment that has been written. Otherwise, the on-disk inode 3483 * might have fragments that were not the last block in the file 3484 * which would corrupt the filesystem. 3485 */ 3486 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3487 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3488 if (adp->ad_lbn >= NDADDR) 3489 break; 3490 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3491 /* keep going until hitting a rollback to a frag */ 3492 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3493 continue; 3494 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3495 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3496 #ifdef DIAGNOSTIC 3497 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3498 panic("softdep_write_inodeblock: lost dep1"); 3499 #endif /* DIAGNOSTIC */ 3500 dp->di_db[i] = 0; 3501 } 3502 for (i = 0; i < NIADDR; i++) { 3503 #ifdef DIAGNOSTIC 3504 if (dp->di_ib[i] != 0 && 3505 (deplist & ((1 << NDADDR) << i)) == 0) 3506 panic("softdep_write_inodeblock: lost dep2"); 3507 #endif /* DIAGNOSTIC */ 3508 dp->di_ib[i] = 0; 3509 } 3510 return; 3511 } 3512 /* 3513 * If we have zero'ed out the last allocated block of the file, 3514 * roll back the size to the last currently allocated block. 3515 * We know that this last allocated block is a full-sized as 3516 * we already checked for fragments in the loop above. 3517 */ 3518 if (lastadp != NULL && 3519 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3520 for (i = lastadp->ad_lbn; i >= 0; i--) 3521 if (dp->di_db[i] != 0) 3522 break; 3523 dp->di_size = (i + 1) * fs->fs_bsize; 3524 } 3525 /* 3526 * The only dependencies are for indirect blocks. 3527 * 3528 * The file size for indirect block additions is not guaranteed. 3529 * Such a guarantee would be non-trivial to achieve. The conventional 3530 * synchronous write implementation also does not make this guarantee. 3531 * Fsck should catch and fix discrepancies. Arguably, the file size 3532 * can be over-estimated without destroying integrity when the file 3533 * moves into the indirect blocks (i.e., is large). If we want to 3534 * postpone fsck, we are stuck with this argument. 3535 */ 3536 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3537 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3538 } 3539 3540 /* 3541 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3542 * Note that any bug fixes made to this routine must be done in the 3543 * version found above. 3544 * 3545 * Called from within the procedure above to deal with unsatisfied 3546 * allocation dependencies in an inodeblock. The buffer must be 3547 * locked, thus, no I/O completion operations can occur while we 3548 * are manipulating its associated dependencies. 3549 */ 3550 static void 3551 initiate_write_inodeblock_ufs2(inodedep, bp) 3552 struct inodedep *inodedep; 3553 struct buf *bp; /* The inode block */ 3554 { 3555 struct allocdirect *adp, *lastadp; 3556 struct ufs2_dinode *dp; 3557 struct fs *fs; 3558 ufs_lbn_t i, prevlbn = 0; 3559 int deplist; 3560 3561 if (inodedep->id_state & IOSTARTED) 3562 panic("initiate_write_inodeblock_ufs2: already started"); 3563 inodedep->id_state |= IOSTARTED; 3564 fs = inodedep->id_fs; 3565 dp = (struct ufs2_dinode *)bp->b_data + 3566 ino_to_fsbo(fs, inodedep->id_ino); 3567 /* 3568 * If the bitmap is not yet written, then the allocated 3569 * inode cannot be written to disk. 3570 */ 3571 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3572 if (inodedep->id_savedino2 != NULL) 3573 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3574 FREE_LOCK(&lk); 3575 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3576 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3577 ACQUIRE_LOCK(&lk); 3578 *inodedep->id_savedino2 = *dp; 3579 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3580 return; 3581 } 3582 /* 3583 * If no dependencies, then there is nothing to roll back. 3584 */ 3585 inodedep->id_savedsize = dp->di_size; 3586 inodedep->id_savedextsize = dp->di_extsize; 3587 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 3588 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 3589 return; 3590 /* 3591 * Set the ext data dependencies to busy. 3592 */ 3593 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3594 adp = TAILQ_NEXT(adp, ad_next)) { 3595 #ifdef DIAGNOSTIC 3596 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3597 panic("softdep_write_inodeblock: lbn order"); 3598 prevlbn = adp->ad_lbn; 3599 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) 3600 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3601 "softdep_write_inodeblock", 3602 (intmax_t)adp->ad_lbn, 3603 (intmax_t)dp->di_extb[adp->ad_lbn], 3604 (intmax_t)adp->ad_newblkno); 3605 deplist |= 1 << adp->ad_lbn; 3606 if ((adp->ad_state & ATTACHED) == 0) 3607 panic("softdep_write_inodeblock: Unknown state 0x%x", 3608 adp->ad_state); 3609 #endif /* DIAGNOSTIC */ 3610 adp->ad_state &= ~ATTACHED; 3611 adp->ad_state |= UNDONE; 3612 } 3613 /* 3614 * The on-disk inode cannot claim to be any larger than the last 3615 * fragment that has been written. Otherwise, the on-disk inode 3616 * might have fragments that were not the last block in the ext 3617 * data which would corrupt the filesystem. 3618 */ 3619 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3620 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3621 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 3622 /* keep going until hitting a rollback to a frag */ 3623 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3624 continue; 3625 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3626 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 3627 #ifdef DIAGNOSTIC 3628 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 3629 panic("softdep_write_inodeblock: lost dep1"); 3630 #endif /* DIAGNOSTIC */ 3631 dp->di_extb[i] = 0; 3632 } 3633 lastadp = NULL; 3634 break; 3635 } 3636 /* 3637 * If we have zero'ed out the last allocated block of the ext 3638 * data, roll back the size to the last currently allocated block. 3639 * We know that this last allocated block is a full-sized as 3640 * we already checked for fragments in the loop above. 3641 */ 3642 if (lastadp != NULL && 3643 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3644 for (i = lastadp->ad_lbn; i >= 0; i--) 3645 if (dp->di_extb[i] != 0) 3646 break; 3647 dp->di_extsize = (i + 1) * fs->fs_bsize; 3648 } 3649 /* 3650 * Set the file data dependencies to busy. 3651 */ 3652 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3653 adp = TAILQ_NEXT(adp, ad_next)) { 3654 #ifdef DIAGNOSTIC 3655 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3656 panic("softdep_write_inodeblock: lbn order"); 3657 prevlbn = adp->ad_lbn; 3658 if (adp->ad_lbn < NDADDR && 3659 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3660 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3661 "softdep_write_inodeblock", 3662 (intmax_t)adp->ad_lbn, 3663 (intmax_t)dp->di_db[adp->ad_lbn], 3664 (intmax_t)adp->ad_newblkno); 3665 if (adp->ad_lbn >= NDADDR && 3666 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3667 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3668 "softdep_write_inodeblock:", 3669 (intmax_t)adp->ad_lbn - NDADDR, 3670 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3671 (intmax_t)adp->ad_newblkno); 3672 deplist |= 1 << adp->ad_lbn; 3673 if ((adp->ad_state & ATTACHED) == 0) 3674 panic("softdep_write_inodeblock: Unknown state 0x%x", 3675 adp->ad_state); 3676 #endif /* DIAGNOSTIC */ 3677 adp->ad_state &= ~ATTACHED; 3678 adp->ad_state |= UNDONE; 3679 } 3680 /* 3681 * The on-disk inode cannot claim to be any larger than the last 3682 * fragment that has been written. Otherwise, the on-disk inode 3683 * might have fragments that were not the last block in the file 3684 * which would corrupt the filesystem. 3685 */ 3686 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3687 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3688 if (adp->ad_lbn >= NDADDR) 3689 break; 3690 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3691 /* keep going until hitting a rollback to a frag */ 3692 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3693 continue; 3694 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3695 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3696 #ifdef DIAGNOSTIC 3697 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3698 panic("softdep_write_inodeblock: lost dep2"); 3699 #endif /* DIAGNOSTIC */ 3700 dp->di_db[i] = 0; 3701 } 3702 for (i = 0; i < NIADDR; i++) { 3703 #ifdef DIAGNOSTIC 3704 if (dp->di_ib[i] != 0 && 3705 (deplist & ((1 << NDADDR) << i)) == 0) 3706 panic("softdep_write_inodeblock: lost dep3"); 3707 #endif /* DIAGNOSTIC */ 3708 dp->di_ib[i] = 0; 3709 } 3710 return; 3711 } 3712 /* 3713 * If we have zero'ed out the last allocated block of the file, 3714 * roll back the size to the last currently allocated block. 3715 * We know that this last allocated block is a full-sized as 3716 * we already checked for fragments in the loop above. 3717 */ 3718 if (lastadp != NULL && 3719 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3720 for (i = lastadp->ad_lbn; i >= 0; i--) 3721 if (dp->di_db[i] != 0) 3722 break; 3723 dp->di_size = (i + 1) * fs->fs_bsize; 3724 } 3725 /* 3726 * The only dependencies are for indirect blocks. 3727 * 3728 * The file size for indirect block additions is not guaranteed. 3729 * Such a guarantee would be non-trivial to achieve. The conventional 3730 * synchronous write implementation also does not make this guarantee. 3731 * Fsck should catch and fix discrepancies. Arguably, the file size 3732 * can be over-estimated without destroying integrity when the file 3733 * moves into the indirect blocks (i.e., is large). If we want to 3734 * postpone fsck, we are stuck with this argument. 3735 */ 3736 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3737 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3738 } 3739 3740 /* 3741 * This routine is called during the completion interrupt 3742 * service routine for a disk write (from the procedure called 3743 * by the device driver to inform the filesystem caches of 3744 * a request completion). It should be called early in this 3745 * procedure, before the block is made available to other 3746 * processes or other routines are called. 3747 */ 3748 static void 3749 softdep_disk_write_complete(bp) 3750 struct buf *bp; /* describes the completed disk write */ 3751 { 3752 struct worklist *wk; 3753 struct worklist *owk; 3754 struct workhead reattach; 3755 struct newblk *newblk; 3756 struct allocindir *aip; 3757 struct allocdirect *adp; 3758 struct indirdep *indirdep; 3759 struct inodedep *inodedep; 3760 struct bmsafemap *bmsafemap; 3761 3762 /* 3763 * If an error occurred while doing the write, then the data 3764 * has not hit the disk and the dependencies cannot be unrolled. 3765 */ 3766 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 3767 return; 3768 LIST_INIT(&reattach); 3769 /* 3770 * This lock must not be released anywhere in this code segment. 3771 */ 3772 ACQUIRE_LOCK(&lk); 3773 owk = NULL; 3774 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3775 WORKLIST_REMOVE(wk); 3776 if (wk == owk) 3777 panic("duplicate worklist: %p\n", wk); 3778 owk = wk; 3779 switch (wk->wk_type) { 3780 3781 case D_PAGEDEP: 3782 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3783 WORKLIST_INSERT(&reattach, wk); 3784 continue; 3785 3786 case D_INODEDEP: 3787 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3788 WORKLIST_INSERT(&reattach, wk); 3789 continue; 3790 3791 case D_BMSAFEMAP: 3792 bmsafemap = WK_BMSAFEMAP(wk); 3793 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3794 newblk->nb_state |= DEPCOMPLETE; 3795 newblk->nb_bmsafemap = NULL; 3796 LIST_REMOVE(newblk, nb_deps); 3797 } 3798 while ((adp = 3799 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3800 adp->ad_state |= DEPCOMPLETE; 3801 adp->ad_buf = NULL; 3802 LIST_REMOVE(adp, ad_deps); 3803 handle_allocdirect_partdone(adp); 3804 } 3805 while ((aip = 3806 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3807 aip->ai_state |= DEPCOMPLETE; 3808 aip->ai_buf = NULL; 3809 LIST_REMOVE(aip, ai_deps); 3810 handle_allocindir_partdone(aip); 3811 } 3812 while ((inodedep = 3813 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 3814 inodedep->id_state |= DEPCOMPLETE; 3815 LIST_REMOVE(inodedep, id_deps); 3816 inodedep->id_buf = NULL; 3817 } 3818 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 3819 continue; 3820 3821 case D_MKDIR: 3822 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 3823 continue; 3824 3825 case D_ALLOCDIRECT: 3826 adp = WK_ALLOCDIRECT(wk); 3827 adp->ad_state |= COMPLETE; 3828 handle_allocdirect_partdone(adp); 3829 continue; 3830 3831 case D_ALLOCINDIR: 3832 aip = WK_ALLOCINDIR(wk); 3833 aip->ai_state |= COMPLETE; 3834 handle_allocindir_partdone(aip); 3835 continue; 3836 3837 case D_INDIRDEP: 3838 indirdep = WK_INDIRDEP(wk); 3839 if (indirdep->ir_state & GOINGAWAY) 3840 panic("disk_write_complete: indirdep gone"); 3841 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 3842 FREE(indirdep->ir_saveddata, M_INDIRDEP); 3843 indirdep->ir_saveddata = 0; 3844 indirdep->ir_state &= ~UNDONE; 3845 indirdep->ir_state |= ATTACHED; 3846 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 3847 handle_allocindir_partdone(aip); 3848 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 3849 panic("disk_write_complete: not gone"); 3850 } 3851 WORKLIST_INSERT(&reattach, wk); 3852 if ((bp->b_flags & B_DELWRI) == 0) 3853 stat_indir_blk_ptrs++; 3854 bdirty(bp); 3855 continue; 3856 3857 default: 3858 panic("handle_disk_write_complete: Unknown type %s", 3859 TYPENAME(wk->wk_type)); 3860 /* NOTREACHED */ 3861 } 3862 } 3863 /* 3864 * Reattach any requests that must be redone. 3865 */ 3866 while ((wk = LIST_FIRST(&reattach)) != NULL) { 3867 WORKLIST_REMOVE(wk); 3868 WORKLIST_INSERT(&bp->b_dep, wk); 3869 } 3870 FREE_LOCK(&lk); 3871 } 3872 3873 /* 3874 * Called from within softdep_disk_write_complete above. Note that 3875 * this routine is always called from interrupt level with further 3876 * splbio interrupts blocked. 3877 */ 3878 static void 3879 handle_allocdirect_partdone(adp) 3880 struct allocdirect *adp; /* the completed allocdirect */ 3881 { 3882 struct allocdirectlst *listhead; 3883 struct allocdirect *listadp; 3884 struct inodedep *inodedep; 3885 long bsize, delay; 3886 3887 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3888 return; 3889 if (adp->ad_buf != NULL) 3890 panic("handle_allocdirect_partdone: dangling dep"); 3891 /* 3892 * The on-disk inode cannot claim to be any larger than the last 3893 * fragment that has been written. Otherwise, the on-disk inode 3894 * might have fragments that were not the last block in the file 3895 * which would corrupt the filesystem. Thus, we cannot free any 3896 * allocdirects after one whose ad_oldblkno claims a fragment as 3897 * these blocks must be rolled back to zero before writing the inode. 3898 * We check the currently active set of allocdirects in id_inoupdt 3899 * or id_extupdt as appropriate. 3900 */ 3901 inodedep = adp->ad_inodedep; 3902 bsize = inodedep->id_fs->fs_bsize; 3903 if (adp->ad_state & EXTDATA) 3904 listhead = &inodedep->id_extupdt; 3905 else 3906 listhead = &inodedep->id_inoupdt; 3907 TAILQ_FOREACH(listadp, listhead, ad_next) { 3908 /* found our block */ 3909 if (listadp == adp) 3910 break; 3911 /* continue if ad_oldlbn is not a fragment */ 3912 if (listadp->ad_oldsize == 0 || 3913 listadp->ad_oldsize == bsize) 3914 continue; 3915 /* hit a fragment */ 3916 return; 3917 } 3918 /* 3919 * If we have reached the end of the current list without 3920 * finding the just finished dependency, then it must be 3921 * on the future dependency list. Future dependencies cannot 3922 * be freed until they are moved to the current list. 3923 */ 3924 if (listadp == NULL) { 3925 #ifdef DEBUG 3926 if (adp->ad_state & EXTDATA) 3927 listhead = &inodedep->id_newextupdt; 3928 else 3929 listhead = &inodedep->id_newinoupdt; 3930 TAILQ_FOREACH(listadp, listhead, ad_next) 3931 /* found our block */ 3932 if (listadp == adp) 3933 break; 3934 if (listadp == NULL) 3935 panic("handle_allocdirect_partdone: lost dep"); 3936 #endif /* DEBUG */ 3937 return; 3938 } 3939 /* 3940 * If we have found the just finished dependency, then free 3941 * it along with anything that follows it that is complete. 3942 * If the inode still has a bitmap dependency, then it has 3943 * never been written to disk, hence the on-disk inode cannot 3944 * reference the old fragment so we can free it without delay. 3945 */ 3946 delay = (inodedep->id_state & DEPCOMPLETE); 3947 for (; adp; adp = listadp) { 3948 listadp = TAILQ_NEXT(adp, ad_next); 3949 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3950 return; 3951 free_allocdirect(listhead, adp, delay); 3952 } 3953 } 3954 3955 /* 3956 * Called from within softdep_disk_write_complete above. Note that 3957 * this routine is always called from interrupt level with further 3958 * splbio interrupts blocked. 3959 */ 3960 static void 3961 handle_allocindir_partdone(aip) 3962 struct allocindir *aip; /* the completed allocindir */ 3963 { 3964 struct indirdep *indirdep; 3965 3966 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 3967 return; 3968 if (aip->ai_buf != NULL) 3969 panic("handle_allocindir_partdone: dangling dependency"); 3970 indirdep = aip->ai_indirdep; 3971 if (indirdep->ir_state & UNDONE) { 3972 LIST_REMOVE(aip, ai_next); 3973 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 3974 return; 3975 } 3976 if (indirdep->ir_state & UFS1FMT) 3977 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3978 aip->ai_newblkno; 3979 else 3980 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3981 aip->ai_newblkno; 3982 LIST_REMOVE(aip, ai_next); 3983 if (aip->ai_freefrag != NULL) 3984 add_to_worklist(&aip->ai_freefrag->ff_list); 3985 WORKITEM_FREE(aip, D_ALLOCINDIR); 3986 } 3987 3988 /* 3989 * Called from within softdep_disk_write_complete above to restore 3990 * in-memory inode block contents to their most up-to-date state. Note 3991 * that this routine is always called from interrupt level with further 3992 * splbio interrupts blocked. 3993 */ 3994 static int 3995 handle_written_inodeblock(inodedep, bp) 3996 struct inodedep *inodedep; 3997 struct buf *bp; /* buffer containing the inode block */ 3998 { 3999 struct worklist *wk, *filefree; 4000 struct allocdirect *adp, *nextadp; 4001 struct ufs1_dinode *dp1 = NULL; 4002 struct ufs2_dinode *dp2 = NULL; 4003 int hadchanges, fstype; 4004 4005 if ((inodedep->id_state & IOSTARTED) == 0) 4006 panic("handle_written_inodeblock: not started"); 4007 inodedep->id_state &= ~IOSTARTED; 4008 inodedep->id_state |= COMPLETE; 4009 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4010 fstype = UFS1; 4011 dp1 = (struct ufs1_dinode *)bp->b_data + 4012 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4013 } else { 4014 fstype = UFS2; 4015 dp2 = (struct ufs2_dinode *)bp->b_data + 4016 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4017 } 4018 /* 4019 * If we had to rollback the inode allocation because of 4020 * bitmaps being incomplete, then simply restore it. 4021 * Keep the block dirty so that it will not be reclaimed until 4022 * all associated dependencies have been cleared and the 4023 * corresponding updates written to disk. 4024 */ 4025 if (inodedep->id_savedino1 != NULL) { 4026 if (fstype == UFS1) 4027 *dp1 = *inodedep->id_savedino1; 4028 else 4029 *dp2 = *inodedep->id_savedino2; 4030 FREE(inodedep->id_savedino1, M_SAVEDINO); 4031 inodedep->id_savedino1 = NULL; 4032 if ((bp->b_flags & B_DELWRI) == 0) 4033 stat_inode_bitmap++; 4034 bdirty(bp); 4035 return (1); 4036 } 4037 /* 4038 * Roll forward anything that had to be rolled back before 4039 * the inode could be updated. 4040 */ 4041 hadchanges = 0; 4042 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4043 nextadp = TAILQ_NEXT(adp, ad_next); 4044 if (adp->ad_state & ATTACHED) 4045 panic("handle_written_inodeblock: new entry"); 4046 if (fstype == UFS1) { 4047 if (adp->ad_lbn < NDADDR) { 4048 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4049 panic("%s %s #%jd mismatch %d != %jd", 4050 "handle_written_inodeblock:", 4051 "direct pointer", 4052 (intmax_t)adp->ad_lbn, 4053 dp1->di_db[adp->ad_lbn], 4054 (intmax_t)adp->ad_oldblkno); 4055 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4056 } else { 4057 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) 4058 panic("%s: %s #%jd allocated as %d", 4059 "handle_written_inodeblock", 4060 "indirect pointer", 4061 (intmax_t)adp->ad_lbn - NDADDR, 4062 dp1->di_ib[adp->ad_lbn - NDADDR]); 4063 dp1->di_ib[adp->ad_lbn - NDADDR] = 4064 adp->ad_newblkno; 4065 } 4066 } else { 4067 if (adp->ad_lbn < NDADDR) { 4068 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4069 panic("%s: %s #%jd %s %jd != %jd", 4070 "handle_written_inodeblock", 4071 "direct pointer", 4072 (intmax_t)adp->ad_lbn, "mismatch", 4073 (intmax_t)dp2->di_db[adp->ad_lbn], 4074 (intmax_t)adp->ad_oldblkno); 4075 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4076 } else { 4077 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) 4078 panic("%s: %s #%jd allocated as %jd", 4079 "handle_written_inodeblock", 4080 "indirect pointer", 4081 (intmax_t)adp->ad_lbn - NDADDR, 4082 (intmax_t) 4083 dp2->di_ib[adp->ad_lbn - NDADDR]); 4084 dp2->di_ib[adp->ad_lbn - NDADDR] = 4085 adp->ad_newblkno; 4086 } 4087 } 4088 adp->ad_state &= ~UNDONE; 4089 adp->ad_state |= ATTACHED; 4090 hadchanges = 1; 4091 } 4092 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4093 nextadp = TAILQ_NEXT(adp, ad_next); 4094 if (adp->ad_state & ATTACHED) 4095 panic("handle_written_inodeblock: new entry"); 4096 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) 4097 panic("%s: direct pointers #%jd %s %jd != %jd", 4098 "handle_written_inodeblock", 4099 (intmax_t)adp->ad_lbn, "mismatch", 4100 (intmax_t)dp2->di_extb[adp->ad_lbn], 4101 (intmax_t)adp->ad_oldblkno); 4102 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4103 adp->ad_state &= ~UNDONE; 4104 adp->ad_state |= ATTACHED; 4105 hadchanges = 1; 4106 } 4107 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4108 stat_direct_blk_ptrs++; 4109 /* 4110 * Reset the file size to its most up-to-date value. 4111 */ 4112 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 4113 panic("handle_written_inodeblock: bad size"); 4114 if (fstype == UFS1) { 4115 if (dp1->di_size != inodedep->id_savedsize) { 4116 dp1->di_size = inodedep->id_savedsize; 4117 hadchanges = 1; 4118 } 4119 } else { 4120 if (dp2->di_size != inodedep->id_savedsize) { 4121 dp2->di_size = inodedep->id_savedsize; 4122 hadchanges = 1; 4123 } 4124 if (dp2->di_extsize != inodedep->id_savedextsize) { 4125 dp2->di_extsize = inodedep->id_savedextsize; 4126 hadchanges = 1; 4127 } 4128 } 4129 inodedep->id_savedsize = -1; 4130 inodedep->id_savedextsize = -1; 4131 /* 4132 * If there were any rollbacks in the inode block, then it must be 4133 * marked dirty so that its will eventually get written back in 4134 * its correct form. 4135 */ 4136 if (hadchanges) 4137 bdirty(bp); 4138 /* 4139 * Process any allocdirects that completed during the update. 4140 */ 4141 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4142 handle_allocdirect_partdone(adp); 4143 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4144 handle_allocdirect_partdone(adp); 4145 /* 4146 * Process deallocations that were held pending until the 4147 * inode had been written to disk. Freeing of the inode 4148 * is delayed until after all blocks have been freed to 4149 * avoid creation of new <vfsid, inum, lbn> triples 4150 * before the old ones have been deleted. 4151 */ 4152 filefree = NULL; 4153 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4154 WORKLIST_REMOVE(wk); 4155 switch (wk->wk_type) { 4156 4157 case D_FREEFILE: 4158 /* 4159 * We defer adding filefree to the worklist until 4160 * all other additions have been made to ensure 4161 * that it will be done after all the old blocks 4162 * have been freed. 4163 */ 4164 if (filefree != NULL) 4165 panic("handle_written_inodeblock: filefree"); 4166 filefree = wk; 4167 continue; 4168 4169 case D_MKDIR: 4170 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4171 continue; 4172 4173 case D_DIRADD: 4174 diradd_inode_written(WK_DIRADD(wk), inodedep); 4175 continue; 4176 4177 case D_FREEBLKS: 4178 case D_FREEFRAG: 4179 case D_DIRREM: 4180 add_to_worklist(wk); 4181 continue; 4182 4183 case D_NEWDIRBLK: 4184 free_newdirblk(WK_NEWDIRBLK(wk)); 4185 continue; 4186 4187 default: 4188 panic("handle_written_inodeblock: Unknown type %s", 4189 TYPENAME(wk->wk_type)); 4190 /* NOTREACHED */ 4191 } 4192 } 4193 if (filefree != NULL) { 4194 if (free_inodedep(inodedep) == 0) 4195 panic("handle_written_inodeblock: live inodedep"); 4196 add_to_worklist(filefree); 4197 return (0); 4198 } 4199 4200 /* 4201 * If no outstanding dependencies, free it. 4202 */ 4203 if (free_inodedep(inodedep) || 4204 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4205 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4206 return (0); 4207 return (hadchanges); 4208 } 4209 4210 /* 4211 * Process a diradd entry after its dependent inode has been written. 4212 * This routine must be called with splbio interrupts blocked. 4213 */ 4214 static void 4215 diradd_inode_written(dap, inodedep) 4216 struct diradd *dap; 4217 struct inodedep *inodedep; 4218 { 4219 struct pagedep *pagedep; 4220 4221 dap->da_state |= COMPLETE; 4222 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4223 if (dap->da_state & DIRCHG) 4224 pagedep = dap->da_previous->dm_pagedep; 4225 else 4226 pagedep = dap->da_pagedep; 4227 LIST_REMOVE(dap, da_pdlist); 4228 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4229 } 4230 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4231 } 4232 4233 /* 4234 * Handle the completion of a mkdir dependency. 4235 */ 4236 static void 4237 handle_written_mkdir(mkdir, type) 4238 struct mkdir *mkdir; 4239 int type; 4240 { 4241 struct diradd *dap; 4242 struct pagedep *pagedep; 4243 4244 if (mkdir->md_state != type) 4245 panic("handle_written_mkdir: bad type"); 4246 dap = mkdir->md_diradd; 4247 dap->da_state &= ~type; 4248 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4249 dap->da_state |= DEPCOMPLETE; 4250 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4251 if (dap->da_state & DIRCHG) 4252 pagedep = dap->da_previous->dm_pagedep; 4253 else 4254 pagedep = dap->da_pagedep; 4255 LIST_REMOVE(dap, da_pdlist); 4256 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4257 } 4258 LIST_REMOVE(mkdir, md_mkdirs); 4259 WORKITEM_FREE(mkdir, D_MKDIR); 4260 } 4261 4262 /* 4263 * Called from within softdep_disk_write_complete above. 4264 * A write operation was just completed. Removed inodes can 4265 * now be freed and associated block pointers may be committed. 4266 * Note that this routine is always called from interrupt level 4267 * with further splbio interrupts blocked. 4268 */ 4269 static int 4270 handle_written_filepage(pagedep, bp) 4271 struct pagedep *pagedep; 4272 struct buf *bp; /* buffer containing the written page */ 4273 { 4274 struct dirrem *dirrem; 4275 struct diradd *dap, *nextdap; 4276 struct direct *ep; 4277 int i, chgs; 4278 4279 if ((pagedep->pd_state & IOSTARTED) == 0) 4280 panic("handle_written_filepage: not started"); 4281 pagedep->pd_state &= ~IOSTARTED; 4282 /* 4283 * Process any directory removals that have been committed. 4284 */ 4285 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4286 LIST_REMOVE(dirrem, dm_next); 4287 dirrem->dm_dirinum = pagedep->pd_ino; 4288 add_to_worklist(&dirrem->dm_list); 4289 } 4290 /* 4291 * Free any directory additions that have been committed. 4292 * If it is a newly allocated block, we have to wait until 4293 * the on-disk directory inode claims the new block. 4294 */ 4295 if ((pagedep->pd_state & NEWBLOCK) == 0) 4296 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4297 free_diradd(dap); 4298 /* 4299 * Uncommitted directory entries must be restored. 4300 */ 4301 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4302 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4303 dap = nextdap) { 4304 nextdap = LIST_NEXT(dap, da_pdlist); 4305 if (dap->da_state & ATTACHED) 4306 panic("handle_written_filepage: attached"); 4307 ep = (struct direct *) 4308 ((char *)bp->b_data + dap->da_offset); 4309 ep->d_ino = dap->da_newinum; 4310 dap->da_state &= ~UNDONE; 4311 dap->da_state |= ATTACHED; 4312 chgs = 1; 4313 /* 4314 * If the inode referenced by the directory has 4315 * been written out, then the dependency can be 4316 * moved to the pending list. 4317 */ 4318 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4319 LIST_REMOVE(dap, da_pdlist); 4320 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4321 da_pdlist); 4322 } 4323 } 4324 } 4325 /* 4326 * If there were any rollbacks in the directory, then it must be 4327 * marked dirty so that its will eventually get written back in 4328 * its correct form. 4329 */ 4330 if (chgs) { 4331 if ((bp->b_flags & B_DELWRI) == 0) 4332 stat_dir_entry++; 4333 bdirty(bp); 4334 return (1); 4335 } 4336 /* 4337 * If we are not waiting for a new directory block to be 4338 * claimed by its inode, then the pagedep will be freed. 4339 * Otherwise it will remain to track any new entries on 4340 * the page in case they are fsync'ed. 4341 */ 4342 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4343 LIST_REMOVE(pagedep, pd_hash); 4344 WORKITEM_FREE(pagedep, D_PAGEDEP); 4345 } 4346 return (0); 4347 } 4348 4349 /* 4350 * Writing back in-core inode structures. 4351 * 4352 * The filesystem only accesses an inode's contents when it occupies an 4353 * "in-core" inode structure. These "in-core" structures are separate from 4354 * the page frames used to cache inode blocks. Only the latter are 4355 * transferred to/from the disk. So, when the updated contents of the 4356 * "in-core" inode structure are copied to the corresponding in-memory inode 4357 * block, the dependencies are also transferred. The following procedure is 4358 * called when copying a dirty "in-core" inode to a cached inode block. 4359 */ 4360 4361 /* 4362 * Called when an inode is loaded from disk. If the effective link count 4363 * differed from the actual link count when it was last flushed, then we 4364 * need to ensure that the correct effective link count is put back. 4365 */ 4366 void 4367 softdep_load_inodeblock(ip) 4368 struct inode *ip; /* the "in_core" copy of the inode */ 4369 { 4370 struct inodedep *inodedep; 4371 4372 /* 4373 * Check for alternate nlink count. 4374 */ 4375 ip->i_effnlink = ip->i_nlink; 4376 ACQUIRE_LOCK(&lk); 4377 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4378 FREE_LOCK(&lk); 4379 return; 4380 } 4381 ip->i_effnlink -= inodedep->id_nlinkdelta; 4382 if (inodedep->id_state & SPACECOUNTED) 4383 ip->i_flag |= IN_SPACECOUNTED; 4384 FREE_LOCK(&lk); 4385 } 4386 4387 /* 4388 * This routine is called just before the "in-core" inode 4389 * information is to be copied to the in-memory inode block. 4390 * Recall that an inode block contains several inodes. If 4391 * the force flag is set, then the dependencies will be 4392 * cleared so that the update can always be made. Note that 4393 * the buffer is locked when this routine is called, so we 4394 * will never be in the middle of writing the inode block 4395 * to disk. 4396 */ 4397 void 4398 softdep_update_inodeblock(ip, bp, waitfor) 4399 struct inode *ip; /* the "in_core" copy of the inode */ 4400 struct buf *bp; /* the buffer containing the inode block */ 4401 int waitfor; /* nonzero => update must be allowed */ 4402 { 4403 struct inodedep *inodedep; 4404 struct worklist *wk; 4405 struct buf *ibp; 4406 int error; 4407 4408 /* 4409 * If the effective link count is not equal to the actual link 4410 * count, then we must track the difference in an inodedep while 4411 * the inode is (potentially) tossed out of the cache. Otherwise, 4412 * if there is no existing inodedep, then there are no dependencies 4413 * to track. 4414 */ 4415 ACQUIRE_LOCK(&lk); 4416 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4417 FREE_LOCK(&lk); 4418 if (ip->i_effnlink != ip->i_nlink) 4419 panic("softdep_update_inodeblock: bad link count"); 4420 return; 4421 } 4422 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 4423 panic("softdep_update_inodeblock: bad delta"); 4424 /* 4425 * Changes have been initiated. Anything depending on these 4426 * changes cannot occur until this inode has been written. 4427 */ 4428 inodedep->id_state &= ~COMPLETE; 4429 if ((inodedep->id_state & ONWORKLIST) == 0) 4430 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4431 /* 4432 * Any new dependencies associated with the incore inode must 4433 * now be moved to the list associated with the buffer holding 4434 * the in-memory copy of the inode. Once merged process any 4435 * allocdirects that are completed by the merger. 4436 */ 4437 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4438 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4439 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4440 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4441 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4442 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4443 /* 4444 * Now that the inode has been pushed into the buffer, the 4445 * operations dependent on the inode being written to disk 4446 * can be moved to the id_bufwait so that they will be 4447 * processed when the buffer I/O completes. 4448 */ 4449 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4450 WORKLIST_REMOVE(wk); 4451 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4452 } 4453 /* 4454 * Newly allocated inodes cannot be written until the bitmap 4455 * that allocates them have been written (indicated by 4456 * DEPCOMPLETE being set in id_state). If we are doing a 4457 * forced sync (e.g., an fsync on a file), we force the bitmap 4458 * to be written so that the update can be done. 4459 */ 4460 if (waitfor == 0) { 4461 FREE_LOCK(&lk); 4462 return; 4463 } 4464 retry: 4465 if ((inodedep->id_state & DEPCOMPLETE) != 0) { 4466 FREE_LOCK(&lk); 4467 return; 4468 } 4469 ibp = inodedep->id_buf; 4470 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 4471 if (ibp == NULL) { 4472 /* 4473 * If ibp came back as NULL, the dependency could have been 4474 * freed while we slept. Look it up again, and check to see 4475 * that it has completed. 4476 */ 4477 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0) 4478 goto retry; 4479 FREE_LOCK(&lk); 4480 return; 4481 } 4482 FREE_LOCK(&lk); 4483 if ((error = bwrite(ibp)) != 0) 4484 softdep_error("softdep_update_inodeblock: bwrite", error); 4485 } 4486 4487 /* 4488 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4489 * old inode dependency list (such as id_inoupdt). This routine must be 4490 * called with splbio interrupts blocked. 4491 */ 4492 static void 4493 merge_inode_lists(newlisthead, oldlisthead) 4494 struct allocdirectlst *newlisthead; 4495 struct allocdirectlst *oldlisthead; 4496 { 4497 struct allocdirect *listadp, *newadp; 4498 4499 newadp = TAILQ_FIRST(newlisthead); 4500 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4501 if (listadp->ad_lbn < newadp->ad_lbn) { 4502 listadp = TAILQ_NEXT(listadp, ad_next); 4503 continue; 4504 } 4505 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4506 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4507 if (listadp->ad_lbn == newadp->ad_lbn) { 4508 allocdirect_merge(oldlisthead, newadp, 4509 listadp); 4510 listadp = newadp; 4511 } 4512 newadp = TAILQ_FIRST(newlisthead); 4513 } 4514 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4515 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4516 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4517 } 4518 } 4519 4520 /* 4521 * If we are doing an fsync, then we must ensure that any directory 4522 * entries for the inode have been written after the inode gets to disk. 4523 */ 4524 int 4525 softdep_fsync(vp) 4526 struct vnode *vp; /* the "in_core" copy of the inode */ 4527 { 4528 struct inodedep *inodedep; 4529 struct pagedep *pagedep; 4530 struct worklist *wk; 4531 struct diradd *dap; 4532 struct mount *mnt; 4533 struct vnode *pvp; 4534 struct inode *ip; 4535 struct buf *bp; 4536 struct fs *fs; 4537 struct thread *td = curthread; 4538 int error, flushparent; 4539 ino_t parentino; 4540 ufs_lbn_t lbn; 4541 4542 ip = VTOI(vp); 4543 fs = ip->i_fs; 4544 ACQUIRE_LOCK(&lk); 4545 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4546 FREE_LOCK(&lk); 4547 return (0); 4548 } 4549 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4550 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4551 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 4552 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 4553 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4554 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 4555 panic("softdep_fsync: pending ops"); 4556 for (error = 0, flushparent = 0; ; ) { 4557 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4558 break; 4559 if (wk->wk_type != D_DIRADD) 4560 panic("softdep_fsync: Unexpected type %s", 4561 TYPENAME(wk->wk_type)); 4562 dap = WK_DIRADD(wk); 4563 /* 4564 * Flush our parent if this directory entry has a MKDIR_PARENT 4565 * dependency or is contained in a newly allocated block. 4566 */ 4567 if (dap->da_state & DIRCHG) 4568 pagedep = dap->da_previous->dm_pagedep; 4569 else 4570 pagedep = dap->da_pagedep; 4571 mnt = pagedep->pd_mnt; 4572 parentino = pagedep->pd_ino; 4573 lbn = pagedep->pd_lbn; 4574 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 4575 panic("softdep_fsync: dirty"); 4576 if ((dap->da_state & MKDIR_PARENT) || 4577 (pagedep->pd_state & NEWBLOCK)) 4578 flushparent = 1; 4579 else 4580 flushparent = 0; 4581 /* 4582 * If we are being fsync'ed as part of vgone'ing this vnode, 4583 * then we will not be able to release and recover the 4584 * vnode below, so we just have to give up on writing its 4585 * directory entry out. It will eventually be written, just 4586 * not now, but then the user was not asking to have it 4587 * written, so we are not breaking any promises. 4588 */ 4589 if (vp->v_iflag & VI_XLOCK) 4590 break; 4591 /* 4592 * We prevent deadlock by always fetching inodes from the 4593 * root, moving down the directory tree. Thus, when fetching 4594 * our parent directory, we first try to get the lock. If 4595 * that fails, we must unlock ourselves before requesting 4596 * the lock on our parent. See the comment in ufs_lookup 4597 * for details on possible races. 4598 */ 4599 FREE_LOCK(&lk); 4600 if (ffs_vget(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4601 VOP_UNLOCK(vp, 0, td); 4602 error = ffs_vget(mnt, parentino, LK_EXCLUSIVE, &pvp); 4603 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4604 if (error != 0) 4605 return (error); 4606 } 4607 /* 4608 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4609 * that are contained in direct blocks will be resolved by 4610 * doing a ffs_update. Pagedeps contained in indirect blocks 4611 * may require a complete sync'ing of the directory. So, we 4612 * try the cheap and fast ffs_update first, and if that fails, 4613 * then we do the slower ffs_syncvnode of the directory. 4614 */ 4615 if (flushparent) { 4616 if ((error = ffs_update(pvp, 1)) != 0) { 4617 vput(pvp); 4618 return (error); 4619 } 4620 if ((pagedep->pd_state & NEWBLOCK) && 4621 (error = ffs_syncvnode(pvp, MNT_WAIT))) { 4622 vput(pvp); 4623 return (error); 4624 } 4625 } 4626 /* 4627 * Flush directory page containing the inode's name. 4628 */ 4629 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4630 &bp); 4631 if (error == 0) 4632 error = bwrite(bp); 4633 else 4634 brelse(bp); 4635 vput(pvp); 4636 if (error != 0) 4637 return (error); 4638 ACQUIRE_LOCK(&lk); 4639 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4640 break; 4641 } 4642 FREE_LOCK(&lk); 4643 return (0); 4644 } 4645 4646 /* 4647 * Flush all the dirty bitmaps associated with the block device 4648 * before flushing the rest of the dirty blocks so as to reduce 4649 * the number of dependencies that will have to be rolled back. 4650 */ 4651 void 4652 softdep_fsync_mountdev(vp) 4653 struct vnode *vp; 4654 { 4655 struct buf *bp, *nbp; 4656 struct worklist *wk; 4657 4658 if (!vn_isdisk(vp, NULL)) 4659 panic("softdep_fsync_mountdev: vnode not a disk"); 4660 ACQUIRE_LOCK(&lk); 4661 VI_LOCK(vp); 4662 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 4663 /* 4664 * If it is already scheduled, skip to the next buffer. 4665 */ 4666 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 4667 continue; 4668 4669 if ((bp->b_flags & B_DELWRI) == 0) 4670 panic("softdep_fsync_mountdev: not dirty"); 4671 /* 4672 * We are only interested in bitmaps with outstanding 4673 * dependencies. 4674 */ 4675 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4676 wk->wk_type != D_BMSAFEMAP || 4677 (bp->b_vflags & BV_BKGRDINPROG)) { 4678 BUF_UNLOCK(bp); 4679 continue; 4680 } 4681 VI_UNLOCK(vp); 4682 FREE_LOCK(&lk); 4683 bremfree(bp); 4684 (void) bawrite(bp); 4685 ACQUIRE_LOCK(&lk); 4686 /* 4687 * Since we may have slept during the I/O, we need 4688 * to start from a known point. 4689 */ 4690 VI_LOCK(vp); 4691 nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd); 4692 } 4693 FREE_LOCK(&lk); 4694 drain_output(vp); 4695 VI_UNLOCK(vp); 4696 } 4697 4698 /* 4699 * This routine is called when we are trying to synchronously flush a 4700 * file. This routine must eliminate any filesystem metadata dependencies 4701 * so that the syncing routine can succeed by pushing the dirty blocks 4702 * associated with the file. If any I/O errors occur, they are returned. 4703 */ 4704 int 4705 softdep_sync_metadata(struct vnode *vp) 4706 { 4707 struct pagedep *pagedep; 4708 struct allocdirect *adp; 4709 struct allocindir *aip; 4710 struct buf *bp, *nbp; 4711 struct worklist *wk; 4712 int i, error, waitfor; 4713 4714 if (!DOINGSOFTDEP(vp)) 4715 return (0); 4716 /* 4717 * Ensure that any direct block dependencies have been cleared. 4718 */ 4719 ACQUIRE_LOCK(&lk); 4720 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4721 FREE_LOCK(&lk); 4722 return (error); 4723 } 4724 FREE_LOCK(&lk); 4725 /* 4726 * For most files, the only metadata dependencies are the 4727 * cylinder group maps that allocate their inode or blocks. 4728 * The block allocation dependencies can be found by traversing 4729 * the dependency lists for any buffers that remain on their 4730 * dirty buffer list. The inode allocation dependency will 4731 * be resolved when the inode is updated with MNT_WAIT. 4732 * This work is done in two passes. The first pass grabs most 4733 * of the buffers and begins asynchronously writing them. The 4734 * only way to wait for these asynchronous writes is to sleep 4735 * on the filesystem vnode which may stay busy for a long time 4736 * if the filesystem is active. So, instead, we make a second 4737 * pass over the dependencies blocking on each write. In the 4738 * usual case we will be blocking against a write that we 4739 * initiated, so when it is done the dependency will have been 4740 * resolved. Thus the second pass is expected to end quickly. 4741 */ 4742 waitfor = MNT_NOWAIT; 4743 4744 top: 4745 /* 4746 * We must wait for any I/O in progress to finish so that 4747 * all potential buffers on the dirty list will be visible. 4748 */ 4749 VI_LOCK(vp); 4750 drain_output(vp); 4751 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) { 4752 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT); 4753 if (bp) 4754 break; 4755 } 4756 VI_UNLOCK(vp); 4757 if (bp == NULL) 4758 return (0); 4759 loop: 4760 /* While syncing snapshots, we must allow recursive lookups */ 4761 bp->b_lock.lk_flags |= LK_CANRECURSE; 4762 ACQUIRE_LOCK(&lk); 4763 /* 4764 * As we hold the buffer locked, none of its dependencies 4765 * will disappear. 4766 */ 4767 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 4768 switch (wk->wk_type) { 4769 4770 case D_ALLOCDIRECT: 4771 adp = WK_ALLOCDIRECT(wk); 4772 if (adp->ad_state & DEPCOMPLETE) 4773 continue; 4774 nbp = adp->ad_buf; 4775 nbp = getdirtybuf(nbp, &lk, waitfor); 4776 if (nbp == NULL) 4777 continue; 4778 FREE_LOCK(&lk); 4779 if (waitfor == MNT_NOWAIT) { 4780 bawrite(nbp); 4781 } else if ((error = bwrite(nbp)) != 0) { 4782 break; 4783 } 4784 ACQUIRE_LOCK(&lk); 4785 continue; 4786 4787 case D_ALLOCINDIR: 4788 aip = WK_ALLOCINDIR(wk); 4789 if (aip->ai_state & DEPCOMPLETE) 4790 continue; 4791 nbp = aip->ai_buf; 4792 nbp = getdirtybuf(nbp, &lk, waitfor); 4793 if (nbp == NULL) 4794 continue; 4795 FREE_LOCK(&lk); 4796 if (waitfor == MNT_NOWAIT) { 4797 bawrite(nbp); 4798 } else if ((error = bwrite(nbp)) != 0) { 4799 break; 4800 } 4801 ACQUIRE_LOCK(&lk); 4802 continue; 4803 4804 case D_INDIRDEP: 4805 restart: 4806 4807 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 4808 if (aip->ai_state & DEPCOMPLETE) 4809 continue; 4810 nbp = aip->ai_buf; 4811 nbp = getdirtybuf(nbp, &lk, MNT_WAIT); 4812 if (nbp == NULL) 4813 goto restart; 4814 FREE_LOCK(&lk); 4815 if ((error = bwrite(nbp)) != 0) { 4816 break; 4817 } 4818 ACQUIRE_LOCK(&lk); 4819 goto restart; 4820 } 4821 continue; 4822 4823 case D_INODEDEP: 4824 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 4825 WK_INODEDEP(wk)->id_ino)) != 0) { 4826 FREE_LOCK(&lk); 4827 break; 4828 } 4829 continue; 4830 4831 case D_PAGEDEP: 4832 /* 4833 * We are trying to sync a directory that may 4834 * have dependencies on both its own metadata 4835 * and/or dependencies on the inodes of any 4836 * recently allocated files. We walk its diradd 4837 * lists pushing out the associated inode. 4838 */ 4839 pagedep = WK_PAGEDEP(wk); 4840 for (i = 0; i < DAHASHSZ; i++) { 4841 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 4842 continue; 4843 if ((error = 4844 flush_pagedep_deps(vp, pagedep->pd_mnt, 4845 &pagedep->pd_diraddhd[i]))) { 4846 FREE_LOCK(&lk); 4847 break; 4848 } 4849 } 4850 continue; 4851 4852 case D_MKDIR: 4853 /* 4854 * This case should never happen if the vnode has 4855 * been properly sync'ed. However, if this function 4856 * is used at a place where the vnode has not yet 4857 * been sync'ed, this dependency can show up. So, 4858 * rather than panic, just flush it. 4859 */ 4860 nbp = WK_MKDIR(wk)->md_buf; 4861 nbp = getdirtybuf(nbp, &lk, waitfor); 4862 if (nbp == NULL) 4863 continue; 4864 FREE_LOCK(&lk); 4865 if (waitfor == MNT_NOWAIT) { 4866 bawrite(nbp); 4867 } else if ((error = bwrite(nbp)) != 0) { 4868 break; 4869 } 4870 ACQUIRE_LOCK(&lk); 4871 continue; 4872 4873 case D_BMSAFEMAP: 4874 /* 4875 * This case should never happen if the vnode has 4876 * been properly sync'ed. However, if this function 4877 * is used at a place where the vnode has not yet 4878 * been sync'ed, this dependency can show up. So, 4879 * rather than panic, just flush it. 4880 */ 4881 nbp = WK_BMSAFEMAP(wk)->sm_buf; 4882 nbp = getdirtybuf(nbp, &lk, waitfor); 4883 if (nbp == NULL) 4884 continue; 4885 FREE_LOCK(&lk); 4886 if (waitfor == MNT_NOWAIT) { 4887 bawrite(nbp); 4888 } else if ((error = bwrite(nbp)) != 0) { 4889 break; 4890 } 4891 ACQUIRE_LOCK(&lk); 4892 continue; 4893 4894 default: 4895 panic("softdep_sync_metadata: Unknown type %s", 4896 TYPENAME(wk->wk_type)); 4897 /* NOTREACHED */ 4898 } 4899 /* We reach here only in error and unlocked */ 4900 if (error == 0) 4901 panic("softdep_sync_metadata: zero error"); 4902 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4903 bawrite(bp); 4904 return (error); 4905 } 4906 FREE_LOCK(&lk); 4907 VI_LOCK(vp); 4908 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) { 4909 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT); 4910 if (nbp) 4911 break; 4912 } 4913 VI_UNLOCK(vp); 4914 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4915 bawrite(bp); 4916 if (nbp != NULL) { 4917 bp = nbp; 4918 goto loop; 4919 } 4920 /* 4921 * The brief unlock is to allow any pent up dependency 4922 * processing to be done. Then proceed with the second pass. 4923 */ 4924 if (waitfor == MNT_NOWAIT) { 4925 waitfor = MNT_WAIT; 4926 goto top; 4927 } 4928 4929 /* 4930 * If we have managed to get rid of all the dirty buffers, 4931 * then we are done. For certain directories and block 4932 * devices, we may need to do further work. 4933 * 4934 * We must wait for any I/O in progress to finish so that 4935 * all potential buffers on the dirty list will be visible. 4936 */ 4937 VI_LOCK(vp); 4938 drain_output(vp); 4939 VI_UNLOCK(vp); 4940 return (0); 4941 } 4942 4943 /* 4944 * Flush the dependencies associated with an inodedep. 4945 * Called with splbio blocked. 4946 */ 4947 static int 4948 flush_inodedep_deps(fs, ino) 4949 struct fs *fs; 4950 ino_t ino; 4951 { 4952 struct inodedep *inodedep; 4953 int error, waitfor; 4954 4955 /* 4956 * This work is done in two passes. The first pass grabs most 4957 * of the buffers and begins asynchronously writing them. The 4958 * only way to wait for these asynchronous writes is to sleep 4959 * on the filesystem vnode which may stay busy for a long time 4960 * if the filesystem is active. So, instead, we make a second 4961 * pass over the dependencies blocking on each write. In the 4962 * usual case we will be blocking against a write that we 4963 * initiated, so when it is done the dependency will have been 4964 * resolved. Thus the second pass is expected to end quickly. 4965 * We give a brief window at the top of the loop to allow 4966 * any pending I/O to complete. 4967 */ 4968 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 4969 if (error) 4970 return (error); 4971 FREE_LOCK(&lk); 4972 ACQUIRE_LOCK(&lk); 4973 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4974 return (0); 4975 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 4976 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 4977 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 4978 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 4979 continue; 4980 /* 4981 * If pass2, we are done, otherwise do pass 2. 4982 */ 4983 if (waitfor == MNT_WAIT) 4984 break; 4985 waitfor = MNT_WAIT; 4986 } 4987 /* 4988 * Try freeing inodedep in case all dependencies have been removed. 4989 */ 4990 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 4991 (void) free_inodedep(inodedep); 4992 return (0); 4993 } 4994 4995 /* 4996 * Flush an inode dependency list. 4997 * Called with splbio blocked. 4998 */ 4999 static int 5000 flush_deplist(listhead, waitfor, errorp) 5001 struct allocdirectlst *listhead; 5002 int waitfor; 5003 int *errorp; 5004 { 5005 struct allocdirect *adp; 5006 struct buf *bp; 5007 5008 mtx_assert(&lk, MA_OWNED); 5009 TAILQ_FOREACH(adp, listhead, ad_next) { 5010 if (adp->ad_state & DEPCOMPLETE) 5011 continue; 5012 bp = adp->ad_buf; 5013 bp = getdirtybuf(bp, &lk, waitfor); 5014 if (bp == NULL) { 5015 if (waitfor == MNT_NOWAIT) 5016 continue; 5017 return (1); 5018 } 5019 FREE_LOCK(&lk); 5020 if (waitfor == MNT_NOWAIT) { 5021 bawrite(bp); 5022 } else if ((*errorp = bwrite(bp)) != 0) { 5023 ACQUIRE_LOCK(&lk); 5024 return (1); 5025 } 5026 ACQUIRE_LOCK(&lk); 5027 return (1); 5028 } 5029 return (0); 5030 } 5031 5032 /* 5033 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5034 * Called with splbio blocked. 5035 */ 5036 static int 5037 flush_pagedep_deps(pvp, mp, diraddhdp) 5038 struct vnode *pvp; 5039 struct mount *mp; 5040 struct diraddhd *diraddhdp; 5041 { 5042 struct inodedep *inodedep; 5043 struct ufsmount *ump; 5044 struct diradd *dap; 5045 struct vnode *vp; 5046 int error = 0; 5047 struct buf *bp; 5048 ino_t inum; 5049 5050 ump = VFSTOUFS(mp); 5051 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5052 /* 5053 * Flush ourselves if this directory entry 5054 * has a MKDIR_PARENT dependency. 5055 */ 5056 if (dap->da_state & MKDIR_PARENT) { 5057 FREE_LOCK(&lk); 5058 if ((error = ffs_update(pvp, 1)) != 0) 5059 break; 5060 ACQUIRE_LOCK(&lk); 5061 /* 5062 * If that cleared dependencies, go on to next. 5063 */ 5064 if (dap != LIST_FIRST(diraddhdp)) 5065 continue; 5066 if (dap->da_state & MKDIR_PARENT) 5067 panic("flush_pagedep_deps: MKDIR_PARENT"); 5068 } 5069 /* 5070 * A newly allocated directory must have its "." and 5071 * ".." entries written out before its name can be 5072 * committed in its parent. We do not want or need 5073 * the full semantics of a synchronous ffs_syncvnode as 5074 * that may end up here again, once for each directory 5075 * level in the filesystem. Instead, we push the blocks 5076 * and wait for them to clear. We have to fsync twice 5077 * because the first call may choose to defer blocks 5078 * that still have dependencies, but deferral will 5079 * happen at most once. 5080 */ 5081 inum = dap->da_newinum; 5082 if (dap->da_state & MKDIR_BODY) { 5083 FREE_LOCK(&lk); 5084 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp))) 5085 break; 5086 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) || 5087 (error=ffs_syncvnode(vp, MNT_NOWAIT))) { 5088 vput(vp); 5089 break; 5090 } 5091 VI_LOCK(vp); 5092 drain_output(vp); 5093 VI_UNLOCK(vp); 5094 vput(vp); 5095 ACQUIRE_LOCK(&lk); 5096 /* 5097 * If that cleared dependencies, go on to next. 5098 */ 5099 if (dap != LIST_FIRST(diraddhdp)) 5100 continue; 5101 if (dap->da_state & MKDIR_BODY) 5102 panic("flush_pagedep_deps: MKDIR_BODY"); 5103 } 5104 /* 5105 * Flush the inode on which the directory entry depends. 5106 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5107 * the only remaining dependency is that the updated inode 5108 * count must get pushed to disk. The inode has already 5109 * been pushed into its inode buffer (via VOP_UPDATE) at 5110 * the time of the reference count change. So we need only 5111 * locate that buffer, ensure that there will be no rollback 5112 * caused by a bitmap dependency, then write the inode buffer. 5113 */ 5114 retry: 5115 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) 5116 panic("flush_pagedep_deps: lost inode"); 5117 /* 5118 * If the inode still has bitmap dependencies, 5119 * push them to disk. 5120 */ 5121 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5122 bp = inodedep->id_buf; 5123 bp = getdirtybuf(bp, &lk, MNT_WAIT); 5124 if (bp == NULL) 5125 goto retry; 5126 FREE_LOCK(&lk); 5127 if ((error = bwrite(bp)) != 0) 5128 break; 5129 ACQUIRE_LOCK(&lk); 5130 if (dap != LIST_FIRST(diraddhdp)) 5131 continue; 5132 } 5133 /* 5134 * If the inode is still sitting in a buffer waiting 5135 * to be written, push it to disk. 5136 */ 5137 FREE_LOCK(&lk); 5138 if ((error = bread(ump->um_devvp, 5139 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5140 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5141 brelse(bp); 5142 break; 5143 } 5144 if ((error = bwrite(bp)) != 0) 5145 break; 5146 ACQUIRE_LOCK(&lk); 5147 /* 5148 * If we have failed to get rid of all the dependencies 5149 * then something is seriously wrong. 5150 */ 5151 if (dap == LIST_FIRST(diraddhdp)) 5152 panic("flush_pagedep_deps: flush failed"); 5153 } 5154 if (error) 5155 ACQUIRE_LOCK(&lk); 5156 return (error); 5157 } 5158 5159 /* 5160 * A large burst of file addition or deletion activity can drive the 5161 * memory load excessively high. First attempt to slow things down 5162 * using the techniques below. If that fails, this routine requests 5163 * the offending operations to fall back to running synchronously 5164 * until the memory load returns to a reasonable level. 5165 */ 5166 int 5167 softdep_slowdown(vp) 5168 struct vnode *vp; 5169 { 5170 int max_softdeps_hard; 5171 5172 max_softdeps_hard = max_softdeps * 11 / 10; 5173 if (num_dirrem < max_softdeps_hard / 2 && 5174 num_inodedep < max_softdeps_hard && 5175 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) 5176 return (0); 5177 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5178 speedup_syncer(); 5179 stat_sync_limit_hit += 1; 5180 return (1); 5181 } 5182 5183 /* 5184 * Called by the allocation routines when they are about to fail 5185 * in the hope that we can free up some disk space. 5186 * 5187 * First check to see if the work list has anything on it. If it has, 5188 * clean up entries until we successfully free some space. Because this 5189 * process holds inodes locked, we cannot handle any remove requests 5190 * that might block on a locked inode as that could lead to deadlock. 5191 * If the worklist yields no free space, encourage the syncer daemon 5192 * to help us. In no event will we try for longer than tickdelay seconds. 5193 */ 5194 int 5195 softdep_request_cleanup(fs, vp) 5196 struct fs *fs; 5197 struct vnode *vp; 5198 { 5199 struct ufsmount *ump; 5200 long starttime; 5201 ufs2_daddr_t needed; 5202 int error; 5203 5204 ump = VTOI(vp)->i_ump; 5205 mtx_assert(UFS_MTX(ump), MA_OWNED); 5206 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5207 starttime = time_second + tickdelay; 5208 /* 5209 * If we are being called because of a process doing a 5210 * copy-on-write, then it is not safe to update the vnode 5211 * as we may recurse into the copy-on-write routine. 5212 */ 5213 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) { 5214 UFS_UNLOCK(ump); 5215 error = ffs_update(vp, 1); 5216 UFS_LOCK(ump); 5217 if (error != 0) 5218 return (0); 5219 } 5220 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5221 if (time_second > starttime) 5222 return (0); 5223 UFS_UNLOCK(ump); 5224 ACQUIRE_LOCK(&lk); 5225 if (num_on_worklist > 0 && 5226 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5227 stat_worklist_push += 1; 5228 FREE_LOCK(&lk); 5229 UFS_LOCK(ump); 5230 continue; 5231 } 5232 request_cleanup(FLUSH_REMOVE_WAIT); 5233 FREE_LOCK(&lk); 5234 UFS_LOCK(ump); 5235 } 5236 return (1); 5237 } 5238 5239 /* 5240 * If memory utilization has gotten too high, deliberately slow things 5241 * down and speed up the I/O processing. 5242 */ 5243 static int 5244 request_cleanup(resource) 5245 int resource; 5246 { 5247 struct thread *td = curthread; 5248 5249 mtx_assert(&lk, MA_OWNED); 5250 /* 5251 * We never hold up the filesystem syncer process. 5252 */ 5253 if (td == filesys_syncer) 5254 return (0); 5255 /* 5256 * First check to see if the work list has gotten backlogged. 5257 * If it has, co-opt this process to help clean up two entries. 5258 * Because this process may hold inodes locked, we cannot 5259 * handle any remove requests that might block on a locked 5260 * inode as that could lead to deadlock. 5261 */ 5262 if (num_on_worklist > max_softdeps / 10) { 5263 process_worklist_item(NULL, LK_NOWAIT); 5264 process_worklist_item(NULL, LK_NOWAIT); 5265 stat_worklist_push += 2; 5266 return(1); 5267 } 5268 /* 5269 * Next, we attempt to speed up the syncer process. If that 5270 * is successful, then we allow the process to continue. 5271 */ 5272 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5273 return(0); 5274 /* 5275 * If we are resource constrained on inode dependencies, try 5276 * flushing some dirty inodes. Otherwise, we are constrained 5277 * by file deletions, so try accelerating flushes of directories 5278 * with removal dependencies. We would like to do the cleanup 5279 * here, but we probably hold an inode locked at this point and 5280 * that might deadlock against one that we try to clean. So, 5281 * the best that we can do is request the syncer daemon to do 5282 * the cleanup for us. 5283 */ 5284 switch (resource) { 5285 5286 case FLUSH_INODES: 5287 stat_ino_limit_push += 1; 5288 req_clear_inodedeps += 1; 5289 stat_countp = &stat_ino_limit_hit; 5290 break; 5291 5292 case FLUSH_REMOVE: 5293 case FLUSH_REMOVE_WAIT: 5294 stat_blk_limit_push += 1; 5295 req_clear_remove += 1; 5296 stat_countp = &stat_blk_limit_hit; 5297 break; 5298 5299 default: 5300 panic("request_cleanup: unknown type"); 5301 } 5302 /* 5303 * Hopefully the syncer daemon will catch up and awaken us. 5304 * We wait at most tickdelay before proceeding in any case. 5305 */ 5306 proc_waiting += 1; 5307 if (handle.callout == NULL) 5308 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5309 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 5310 proc_waiting -= 1; 5311 return (1); 5312 } 5313 5314 /* 5315 * Awaken processes pausing in request_cleanup and clear proc_waiting 5316 * to indicate that there is no longer a timer running. 5317 */ 5318 static void 5319 pause_timer(arg) 5320 void *arg; 5321 { 5322 5323 ACQUIRE_LOCK(&lk); 5324 *stat_countp += 1; 5325 wakeup_one(&proc_waiting); 5326 if (proc_waiting > 0) 5327 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5328 else 5329 handle.callout = NULL; 5330 FREE_LOCK(&lk); 5331 } 5332 5333 /* 5334 * Flush out a directory with at least one removal dependency in an effort to 5335 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5336 */ 5337 static void 5338 clear_remove(td) 5339 struct thread *td; 5340 { 5341 struct pagedep_hashhead *pagedephd; 5342 struct pagedep *pagedep; 5343 static int next = 0; 5344 struct mount *mp; 5345 struct vnode *vp; 5346 int error, cnt; 5347 ino_t ino; 5348 5349 mtx_assert(&lk, MA_OWNED); 5350 5351 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5352 pagedephd = &pagedep_hashtbl[next++]; 5353 if (next >= pagedep_hash) 5354 next = 0; 5355 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5356 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5357 continue; 5358 mp = pagedep->pd_mnt; 5359 ino = pagedep->pd_ino; 5360 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5361 continue; 5362 FREE_LOCK(&lk); 5363 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) { 5364 softdep_error("clear_remove: vget", error); 5365 vn_finished_write(mp); 5366 ACQUIRE_LOCK(&lk); 5367 return; 5368 } 5369 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5370 softdep_error("clear_remove: fsync", error); 5371 VI_LOCK(vp); 5372 drain_output(vp); 5373 VI_UNLOCK(vp); 5374 vput(vp); 5375 vn_finished_write(mp); 5376 ACQUIRE_LOCK(&lk); 5377 return; 5378 } 5379 } 5380 } 5381 5382 /* 5383 * Clear out a block of dirty inodes in an effort to reduce 5384 * the number of inodedep dependency structures. 5385 */ 5386 static void 5387 clear_inodedeps(td) 5388 struct thread *td; 5389 { 5390 struct inodedep_hashhead *inodedephd; 5391 struct inodedep *inodedep; 5392 static int next = 0; 5393 struct mount *mp; 5394 struct vnode *vp; 5395 struct fs *fs; 5396 int error, cnt; 5397 ino_t firstino, lastino, ino; 5398 5399 mtx_assert(&lk, MA_OWNED); 5400 /* 5401 * Pick a random inode dependency to be cleared. 5402 * We will then gather up all the inodes in its block 5403 * that have dependencies and flush them out. 5404 */ 5405 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5406 inodedephd = &inodedep_hashtbl[next++]; 5407 if (next >= inodedep_hash) 5408 next = 0; 5409 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5410 break; 5411 } 5412 if (inodedep == NULL) 5413 return; 5414 /* 5415 * Ugly code to find mount point given pointer to superblock. 5416 */ 5417 fs = inodedep->id_fs; 5418 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5419 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5420 break; 5421 /* 5422 * Find the last inode in the block with dependencies. 5423 */ 5424 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5425 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5426 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5427 break; 5428 /* 5429 * Asynchronously push all but the last inode with dependencies. 5430 * Synchronously push the last inode with dependencies to ensure 5431 * that the inode block gets written to free up the inodedeps. 5432 */ 5433 for (ino = firstino; ino <= lastino; ino++) { 5434 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5435 continue; 5436 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5437 continue; 5438 FREE_LOCK(&lk); 5439 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5440 softdep_error("clear_inodedeps: vget", error); 5441 vn_finished_write(mp); 5442 ACQUIRE_LOCK(&lk); 5443 return; 5444 } 5445 if (ino == lastino) { 5446 if ((error = ffs_syncvnode(vp, MNT_WAIT))) 5447 softdep_error("clear_inodedeps: fsync1", error); 5448 } else { 5449 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5450 softdep_error("clear_inodedeps: fsync2", error); 5451 VI_LOCK(vp); 5452 drain_output(vp); 5453 VI_UNLOCK(vp); 5454 } 5455 vput(vp); 5456 vn_finished_write(mp); 5457 ACQUIRE_LOCK(&lk); 5458 } 5459 } 5460 5461 /* 5462 * Function to determine if the buffer has outstanding dependencies 5463 * that will cause a roll-back if the buffer is written. If wantcount 5464 * is set, return number of dependencies, otherwise just yes or no. 5465 */ 5466 static int 5467 softdep_count_dependencies(bp, wantcount) 5468 struct buf *bp; 5469 int wantcount; 5470 { 5471 struct worklist *wk; 5472 struct inodedep *inodedep; 5473 struct indirdep *indirdep; 5474 struct allocindir *aip; 5475 struct pagedep *pagedep; 5476 struct diradd *dap; 5477 int i, retval; 5478 5479 retval = 0; 5480 ACQUIRE_LOCK(&lk); 5481 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5482 switch (wk->wk_type) { 5483 5484 case D_INODEDEP: 5485 inodedep = WK_INODEDEP(wk); 5486 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5487 /* bitmap allocation dependency */ 5488 retval += 1; 5489 if (!wantcount) 5490 goto out; 5491 } 5492 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5493 /* direct block pointer dependency */ 5494 retval += 1; 5495 if (!wantcount) 5496 goto out; 5497 } 5498 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5499 /* direct block pointer dependency */ 5500 retval += 1; 5501 if (!wantcount) 5502 goto out; 5503 } 5504 continue; 5505 5506 case D_INDIRDEP: 5507 indirdep = WK_INDIRDEP(wk); 5508 5509 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5510 /* indirect block pointer dependency */ 5511 retval += 1; 5512 if (!wantcount) 5513 goto out; 5514 } 5515 continue; 5516 5517 case D_PAGEDEP: 5518 pagedep = WK_PAGEDEP(wk); 5519 for (i = 0; i < DAHASHSZ; i++) { 5520 5521 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5522 /* directory entry dependency */ 5523 retval += 1; 5524 if (!wantcount) 5525 goto out; 5526 } 5527 } 5528 continue; 5529 5530 case D_BMSAFEMAP: 5531 case D_ALLOCDIRECT: 5532 case D_ALLOCINDIR: 5533 case D_MKDIR: 5534 /* never a dependency on these blocks */ 5535 continue; 5536 5537 default: 5538 panic("softdep_check_for_rollback: Unexpected type %s", 5539 TYPENAME(wk->wk_type)); 5540 /* NOTREACHED */ 5541 } 5542 } 5543 out: 5544 FREE_LOCK(&lk); 5545 return retval; 5546 } 5547 5548 /* 5549 * Acquire exclusive access to a buffer. 5550 * Must be called with a locked mtx parameter. 5551 * Return acquired buffer or NULL on failure. 5552 */ 5553 static struct buf * 5554 getdirtybuf(bp, mtx, waitfor) 5555 struct buf *bp; 5556 struct mtx *mtx; 5557 int waitfor; 5558 { 5559 int error; 5560 5561 mtx_assert(mtx, MA_OWNED); 5562 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 5563 if (waitfor != MNT_WAIT) 5564 return (NULL); 5565 error = BUF_LOCK(bp, 5566 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 5567 /* 5568 * Even if we sucessfully acquire bp here, we have dropped 5569 * mtx, which may violates our guarantee. 5570 */ 5571 if (error == 0) 5572 BUF_UNLOCK(bp); 5573 else if (error != ENOLCK) 5574 panic("getdirtybuf: inconsistent lock: %d", error); 5575 mtx_lock(mtx); 5576 return (NULL); 5577 } 5578 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 5579 BUF_UNLOCK(bp); 5580 if (waitfor != MNT_WAIT) 5581 return (NULL); 5582 /* 5583 * The mtx argument must be bp->b_vp's mutex in 5584 * this case. 5585 */ 5586 #ifdef DEBUG_VFS_LOCKS 5587 if (bp->b_vp->v_type != VCHR) 5588 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 5589 #endif 5590 bp->b_vflags |= BV_BKGRDWAIT; 5591 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 5592 return (NULL); 5593 } 5594 if ((bp->b_flags & B_DELWRI) == 0) { 5595 BUF_UNLOCK(bp); 5596 return (NULL); 5597 } 5598 bremfree(bp); 5599 return (bp); 5600 } 5601 5602 /* 5603 * Wait for pending output on a vnode to complete. 5604 * Must be called with vnode lock and interlock locked. 5605 * 5606 * XXX: Should just be a call to bufobj_wwait(). 5607 */ 5608 static void 5609 drain_output(vp) 5610 struct vnode *vp; 5611 { 5612 ASSERT_VOP_LOCKED(vp, "drain_output"); 5613 ASSERT_VI_LOCKED(vp, "drain_output"); 5614 5615 while (vp->v_bufobj.bo_numoutput) { 5616 vp->v_bufobj.bo_flag |= BO_WWAIT; 5617 msleep((caddr_t)&vp->v_bufobj.bo_numoutput, 5618 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 5619 } 5620 } 5621 5622 /* 5623 * Called whenever a buffer that is being invalidated or reallocated 5624 * contains dependencies. This should only happen if an I/O error has 5625 * occurred. The routine is called with the buffer locked. 5626 */ 5627 static void 5628 softdep_deallocate_dependencies(bp) 5629 struct buf *bp; 5630 { 5631 5632 if ((bp->b_ioflags & BIO_ERROR) == 0) 5633 panic("softdep_deallocate_dependencies: dangling deps"); 5634 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5635 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5636 } 5637 5638 /* 5639 * Function to handle asynchronous write errors in the filesystem. 5640 */ 5641 static void 5642 softdep_error(func, error) 5643 char *func; 5644 int error; 5645 { 5646 5647 /* XXX should do something better! */ 5648 printf("%s: got error %d while accessing filesystem\n", func, error); 5649 } 5650