1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/kdb.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/proc.h> 65 #include <sys/stat.h> 66 #include <sys/syslog.h> 67 #include <sys/vnode.h> 68 #include <sys/conf.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ufs/extattr.h> 71 #include <ufs/ufs/quota.h> 72 #include <ufs/ufs/inode.h> 73 #include <ufs/ufs/ufsmount.h> 74 #include <ufs/ffs/fs.h> 75 #include <ufs/ffs/softdep.h> 76 #include <ufs/ffs/ffs_extern.h> 77 #include <ufs/ufs/ufs_extern.h> 78 79 #include "opt_ffs.h" 80 81 #ifndef SOFTUPDATES 82 83 int 84 softdep_flushfiles(oldmnt, flags, td) 85 struct mount *oldmnt; 86 int flags; 87 struct thread *td; 88 { 89 90 panic("softdep_flushfiles called"); 91 } 92 93 int 94 softdep_mount(devvp, mp, fs, cred) 95 struct vnode *devvp; 96 struct mount *mp; 97 struct fs *fs; 98 struct ucred *cred; 99 { 100 101 return (0); 102 } 103 104 void 105 softdep_initialize() 106 { 107 108 return; 109 } 110 111 void 112 softdep_uninitialize() 113 { 114 115 return; 116 } 117 118 void 119 softdep_setup_inomapdep(bp, ip, newinum) 120 struct buf *bp; 121 struct inode *ip; 122 ino_t newinum; 123 { 124 125 panic("softdep_setup_inomapdep called"); 126 } 127 128 void 129 softdep_setup_blkmapdep(bp, fs, newblkno) 130 struct buf *bp; 131 struct fs *fs; 132 ufs2_daddr_t newblkno; 133 { 134 135 panic("softdep_setup_blkmapdep called"); 136 } 137 138 void 139 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 140 struct inode *ip; 141 ufs_lbn_t lbn; 142 ufs2_daddr_t newblkno; 143 ufs2_daddr_t oldblkno; 144 long newsize; 145 long oldsize; 146 struct buf *bp; 147 { 148 149 panic("softdep_setup_allocdirect called"); 150 } 151 152 void 153 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 154 struct inode *ip; 155 ufs_lbn_t lbn; 156 ufs2_daddr_t newblkno; 157 ufs2_daddr_t oldblkno; 158 long newsize; 159 long oldsize; 160 struct buf *bp; 161 { 162 163 panic("softdep_setup_allocdirect called"); 164 } 165 166 void 167 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 168 struct inode *ip; 169 ufs_lbn_t lbn; 170 struct buf *bp; 171 int ptrno; 172 ufs2_daddr_t newblkno; 173 ufs2_daddr_t oldblkno; 174 struct buf *nbp; 175 { 176 177 panic("softdep_setup_allocindir_page called"); 178 } 179 180 void 181 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 182 struct buf *nbp; 183 struct inode *ip; 184 struct buf *bp; 185 int ptrno; 186 ufs2_daddr_t newblkno; 187 { 188 189 panic("softdep_setup_allocindir_meta called"); 190 } 191 192 void 193 softdep_setup_freeblocks(ip, length, flags) 194 struct inode *ip; 195 off_t length; 196 int flags; 197 { 198 199 panic("softdep_setup_freeblocks called"); 200 } 201 202 void 203 softdep_freefile(pvp, ino, mode) 204 struct vnode *pvp; 205 ino_t ino; 206 int mode; 207 { 208 209 panic("softdep_freefile called"); 210 } 211 212 int 213 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 214 struct buf *bp; 215 struct inode *dp; 216 off_t diroffset; 217 ino_t newinum; 218 struct buf *newdirbp; 219 int isnewblk; 220 { 221 222 panic("softdep_setup_directory_add called"); 223 } 224 225 void 226 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 227 struct inode *dp; 228 caddr_t base; 229 caddr_t oldloc; 230 caddr_t newloc; 231 int entrysize; 232 { 233 234 panic("softdep_change_directoryentry_offset called"); 235 } 236 237 void 238 softdep_setup_remove(bp, dp, ip, isrmdir) 239 struct buf *bp; 240 struct inode *dp; 241 struct inode *ip; 242 int isrmdir; 243 { 244 245 panic("softdep_setup_remove called"); 246 } 247 248 void 249 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 250 struct buf *bp; 251 struct inode *dp; 252 struct inode *ip; 253 ino_t newinum; 254 int isrmdir; 255 { 256 257 panic("softdep_setup_directory_change called"); 258 } 259 260 void 261 softdep_change_linkcnt(ip) 262 struct inode *ip; 263 { 264 265 panic("softdep_change_linkcnt called"); 266 } 267 268 void 269 softdep_load_inodeblock(ip) 270 struct inode *ip; 271 { 272 273 panic("softdep_load_inodeblock called"); 274 } 275 276 void 277 softdep_update_inodeblock(ip, bp, waitfor) 278 struct inode *ip; 279 struct buf *bp; 280 int waitfor; 281 { 282 283 panic("softdep_update_inodeblock called"); 284 } 285 286 int 287 softdep_fsync(vp) 288 struct vnode *vp; /* the "in_core" copy of the inode */ 289 { 290 291 return (0); 292 } 293 294 void 295 softdep_fsync_mountdev(vp) 296 struct vnode *vp; 297 { 298 299 return; 300 } 301 302 int 303 softdep_flushworklist(oldmnt, countp, td) 304 struct mount *oldmnt; 305 int *countp; 306 struct thread *td; 307 { 308 309 *countp = 0; 310 return (0); 311 } 312 313 int 314 softdep_sync_metadata(struct vnode *vp) 315 { 316 317 return (0); 318 } 319 320 int 321 softdep_slowdown(vp) 322 struct vnode *vp; 323 { 324 325 panic("softdep_slowdown called"); 326 } 327 328 void 329 softdep_releasefile(ip) 330 struct inode *ip; /* inode with the zero effective link count */ 331 { 332 333 panic("softdep_releasefile called"); 334 } 335 336 int 337 softdep_request_cleanup(fs, vp) 338 struct fs *fs; 339 struct vnode *vp; 340 { 341 342 return (0); 343 } 344 345 #else 346 /* 347 * These definitions need to be adapted to the system to which 348 * this file is being ported. 349 */ 350 /* 351 * malloc types defined for the softdep system. 352 */ 353 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 354 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 355 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 356 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 357 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 358 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 359 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 360 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 361 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 362 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 363 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 364 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 365 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 366 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 367 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes"); 368 369 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 370 371 #define D_PAGEDEP 0 372 #define D_INODEDEP 1 373 #define D_NEWBLK 2 374 #define D_BMSAFEMAP 3 375 #define D_ALLOCDIRECT 4 376 #define D_INDIRDEP 5 377 #define D_ALLOCINDIR 6 378 #define D_FREEFRAG 7 379 #define D_FREEBLKS 8 380 #define D_FREEFILE 9 381 #define D_DIRADD 10 382 #define D_MKDIR 11 383 #define D_DIRREM 12 384 #define D_NEWDIRBLK 13 385 #define D_LAST D_NEWDIRBLK 386 387 /* 388 * translate from workitem type to memory type 389 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 390 */ 391 static struct malloc_type *memtype[] = { 392 M_PAGEDEP, 393 M_INODEDEP, 394 M_NEWBLK, 395 M_BMSAFEMAP, 396 M_ALLOCDIRECT, 397 M_INDIRDEP, 398 M_ALLOCINDIR, 399 M_FREEFRAG, 400 M_FREEBLKS, 401 M_FREEFILE, 402 M_DIRADD, 403 M_MKDIR, 404 M_DIRREM, 405 M_NEWDIRBLK 406 }; 407 408 #define DtoM(type) (memtype[type]) 409 410 /* 411 * Names of malloc types. 412 */ 413 #define TYPENAME(type) \ 414 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 415 /* 416 * End system adaptaion definitions. 417 */ 418 419 /* 420 * Forward declarations. 421 */ 422 struct inodedep_hashhead; 423 struct newblk_hashhead; 424 struct pagedep_hashhead; 425 426 /* 427 * Internal function prototypes. 428 */ 429 static void softdep_error(char *, int); 430 static void drain_output(struct vnode *); 431 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 432 static void clear_remove(struct thread *); 433 static void clear_inodedeps(struct thread *); 434 static int flush_pagedep_deps(struct vnode *, struct mount *, 435 struct diraddhd *); 436 static int flush_inodedep_deps(struct fs *, ino_t); 437 static int flush_deplist(struct allocdirectlst *, int, int *); 438 static int handle_written_filepage(struct pagedep *, struct buf *); 439 static void diradd_inode_written(struct diradd *, struct inodedep *); 440 static int handle_written_inodeblock(struct inodedep *, struct buf *); 441 static void handle_allocdirect_partdone(struct allocdirect *); 442 static void handle_allocindir_partdone(struct allocindir *); 443 static void initiate_write_filepage(struct pagedep *, struct buf *); 444 static void handle_written_mkdir(struct mkdir *, int); 445 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 446 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 447 static void handle_workitem_freefile(struct freefile *); 448 static void handle_workitem_remove(struct dirrem *, struct vnode *); 449 static struct dirrem *newdirrem(struct buf *, struct inode *, 450 struct inode *, int, struct dirrem **); 451 static void free_diradd(struct diradd *); 452 static void free_allocindir(struct allocindir *, struct inodedep *); 453 static void free_newdirblk(struct newdirblk *); 454 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 455 ufs2_daddr_t *); 456 static void deallocate_dependencies(struct buf *, struct inodedep *); 457 static void free_allocdirect(struct allocdirectlst *, 458 struct allocdirect *, int); 459 static int check_inode_unwritten(struct inodedep *); 460 static int free_inodedep(struct inodedep *); 461 static void handle_workitem_freeblocks(struct freeblks *, int); 462 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 463 static void setup_allocindir_phase2(struct buf *, struct inode *, 464 struct allocindir *); 465 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 466 ufs2_daddr_t); 467 static void handle_workitem_freefrag(struct freefrag *); 468 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 469 static void allocdirect_merge(struct allocdirectlst *, 470 struct allocdirect *, struct allocdirect *); 471 static struct bmsafemap *bmsafemap_lookup(struct buf *); 472 static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t, 473 struct newblk **); 474 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 475 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 476 struct inodedep **); 477 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 478 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 479 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 480 struct mount *mp, int, struct pagedep **); 481 static void pause_timer(void *); 482 static int request_cleanup(int); 483 static int process_worklist_item(struct mount *, int); 484 static void add_to_worklist(struct worklist *); 485 486 /* 487 * Exported softdep operations. 488 */ 489 static void softdep_disk_io_initiation(struct buf *); 490 static void softdep_disk_write_complete(struct buf *); 491 static void softdep_deallocate_dependencies(struct buf *); 492 static int softdep_count_dependencies(struct buf *bp, int); 493 494 static struct mtx lk; 495 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 496 497 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 498 #define FREE_LOCK(lk) mtx_unlock(lk) 499 500 /* 501 * Worklist queue management. 502 * These routines require that the lock be held. 503 */ 504 #ifndef /* NOT */ DEBUG 505 #define WORKLIST_INSERT(head, item) do { \ 506 (item)->wk_state |= ONWORKLIST; \ 507 LIST_INSERT_HEAD(head, item, wk_list); \ 508 } while (0) 509 #define WORKLIST_REMOVE(item) do { \ 510 (item)->wk_state &= ~ONWORKLIST; \ 511 LIST_REMOVE(item, wk_list); \ 512 } while (0) 513 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 514 515 #else /* DEBUG */ 516 static void worklist_insert(struct workhead *, struct worklist *); 517 static void worklist_remove(struct worklist *); 518 static void workitem_free(struct worklist *, int); 519 520 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 521 #define WORKLIST_REMOVE(item) worklist_remove(item) 522 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 523 524 static void 525 worklist_insert(head, item) 526 struct workhead *head; 527 struct worklist *item; 528 { 529 530 mtx_assert(&lk, MA_OWNED); 531 if (item->wk_state & ONWORKLIST) 532 panic("worklist_insert: already on list"); 533 item->wk_state |= ONWORKLIST; 534 LIST_INSERT_HEAD(head, item, wk_list); 535 } 536 537 static void 538 worklist_remove(item) 539 struct worklist *item; 540 { 541 542 mtx_assert(&lk, MA_OWNED); 543 if ((item->wk_state & ONWORKLIST) == 0) 544 panic("worklist_remove: not on list"); 545 item->wk_state &= ~ONWORKLIST; 546 LIST_REMOVE(item, wk_list); 547 } 548 549 static void 550 workitem_free(item, type) 551 struct worklist *item; 552 int type; 553 { 554 555 if (item->wk_state & ONWORKLIST) 556 panic("workitem_free: still on list"); 557 if (item->wk_type != type) 558 panic("workitem_free: type mismatch"); 559 FREE(item, DtoM(type)); 560 } 561 #endif /* DEBUG */ 562 563 /* 564 * Workitem queue management 565 */ 566 static struct workhead softdep_workitem_pending; 567 static struct worklist *worklist_tail; 568 static int num_on_worklist; /* number of worklist items to be processed */ 569 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 570 static int softdep_worklist_req; /* serialized waiters */ 571 static int max_softdeps; /* maximum number of structs before slowdown */ 572 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 573 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 574 static int proc_waiting; /* tracks whether we have a timeout posted */ 575 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 576 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 577 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 578 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 579 #define FLUSH_INODES 1 580 static int req_clear_remove; /* syncer process flush some freeblks */ 581 #define FLUSH_REMOVE 2 582 #define FLUSH_REMOVE_WAIT 3 583 /* 584 * runtime statistics 585 */ 586 static int stat_worklist_push; /* number of worklist cleanups */ 587 static int stat_blk_limit_push; /* number of times block limit neared */ 588 static int stat_ino_limit_push; /* number of times inode limit neared */ 589 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 590 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 591 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 592 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 593 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 594 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 595 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 596 #ifdef DEBUG 597 #include <vm/vm.h> 598 #include <sys/sysctl.h> 599 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 600 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 601 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 602 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 603 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 604 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 605 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 606 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 607 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 608 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 609 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 610 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 611 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 612 #endif /* DEBUG */ 613 614 /* 615 * Add an item to the end of the work queue. 616 * This routine requires that the lock be held. 617 * This is the only routine that adds items to the list. 618 * The following routine is the only one that removes items 619 * and does so in order from first to last. 620 */ 621 static void 622 add_to_worklist(wk) 623 struct worklist *wk; 624 { 625 626 mtx_assert(&lk, MA_OWNED); 627 if (wk->wk_state & ONWORKLIST) 628 panic("add_to_worklist: already on list"); 629 wk->wk_state |= ONWORKLIST; 630 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 631 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 632 else 633 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 634 worklist_tail = wk; 635 num_on_worklist += 1; 636 } 637 638 /* 639 * Process that runs once per second to handle items in the background queue. 640 * 641 * Note that we ensure that everything is done in the order in which they 642 * appear in the queue. The code below depends on this property to ensure 643 * that blocks of a file are freed before the inode itself is freed. This 644 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 645 * until all the old ones have been purged from the dependency lists. 646 */ 647 int 648 softdep_process_worklist(matchmnt) 649 struct mount *matchmnt; 650 { 651 struct thread *td = curthread; 652 int cnt, matchcnt, loopcount; 653 long starttime; 654 655 /* 656 * Record the process identifier of our caller so that we can give 657 * this process preferential treatment in request_cleanup below. 658 */ 659 filesys_syncer = td; 660 matchcnt = 0; 661 662 /* 663 * There is no danger of having multiple processes run this 664 * code, but we have to single-thread it when softdep_flushfiles() 665 * is in operation to get an accurate count of the number of items 666 * related to its mount point that are in the list. 667 */ 668 ACQUIRE_LOCK(&lk); 669 if (matchmnt == NULL) { 670 if (softdep_worklist_busy < 0) { 671 FREE_LOCK(&lk); 672 return(-1); 673 } 674 softdep_worklist_busy += 1; 675 } 676 677 /* 678 * If requested, try removing inode or removal dependencies. 679 */ 680 if (req_clear_inodedeps) { 681 clear_inodedeps(td); 682 req_clear_inodedeps -= 1; 683 wakeup_one(&proc_waiting); 684 } 685 if (req_clear_remove) { 686 clear_remove(td); 687 req_clear_remove -= 1; 688 wakeup_one(&proc_waiting); 689 } 690 loopcount = 1; 691 starttime = time_second; 692 while (num_on_worklist > 0) { 693 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 694 break; 695 else 696 matchcnt += cnt; 697 698 /* 699 * If a umount operation wants to run the worklist 700 * accurately, abort. 701 */ 702 if (softdep_worklist_req && matchmnt == NULL) { 703 matchcnt = -1; 704 break; 705 } 706 707 /* 708 * If requested, try removing inode or removal dependencies. 709 */ 710 if (req_clear_inodedeps) { 711 clear_inodedeps(td); 712 req_clear_inodedeps -= 1; 713 wakeup_one(&proc_waiting); 714 } 715 if (req_clear_remove) { 716 clear_remove(td); 717 req_clear_remove -= 1; 718 wakeup_one(&proc_waiting); 719 } 720 /* 721 * We do not generally want to stop for buffer space, but if 722 * we are really being a buffer hog, we will stop and wait. 723 */ 724 if (loopcount++ % 128 == 0) { 725 FREE_LOCK(&lk); 726 bwillwrite(); 727 ACQUIRE_LOCK(&lk); 728 } 729 /* 730 * Never allow processing to run for more than one 731 * second. Otherwise the other syncer tasks may get 732 * excessively backlogged. 733 */ 734 if (starttime != time_second && matchmnt == NULL) { 735 matchcnt = -1; 736 break; 737 } 738 } 739 if (matchmnt == NULL) { 740 softdep_worklist_busy -= 1; 741 if (softdep_worklist_req && softdep_worklist_busy == 0) 742 wakeup(&softdep_worklist_req); 743 } 744 FREE_LOCK(&lk); 745 return (matchcnt); 746 } 747 748 /* 749 * Process one item on the worklist. 750 */ 751 static int 752 process_worklist_item(matchmnt, flags) 753 struct mount *matchmnt; 754 int flags; 755 { 756 struct worklist *wk, *wkend; 757 struct mount *mp; 758 struct vnode *vp; 759 int matchcnt = 0; 760 761 mtx_assert(&lk, MA_OWNED); 762 /* 763 * If we are being called because of a process doing a 764 * copy-on-write, then it is not safe to write as we may 765 * recurse into the copy-on-write routine. 766 */ 767 if (curthread->td_pflags & TDP_COWINPROGRESS) 768 return (-1); 769 /* 770 * Normally we just process each item on the worklist in order. 771 * However, if we are in a situation where we cannot lock any 772 * inodes, we have to skip over any dirrem requests whose 773 * vnodes are resident and locked. 774 */ 775 vp = NULL; 776 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 777 if (wk->wk_state & INPROGRESS) 778 continue; 779 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 780 break; 781 wk->wk_state |= INPROGRESS; 782 FREE_LOCK(&lk); 783 ffs_vget(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 784 LK_NOWAIT | LK_EXCLUSIVE, &vp); 785 ACQUIRE_LOCK(&lk); 786 wk->wk_state &= ~INPROGRESS; 787 if (vp != NULL) 788 break; 789 } 790 if (wk == 0) 791 return (-1); 792 /* 793 * Remove the item to be processed. If we are removing the last 794 * item on the list, we need to recalculate the tail pointer. 795 * As this happens rarely and usually when the list is short, 796 * we just run down the list to find it rather than tracking it 797 * in the above loop. 798 */ 799 WORKLIST_REMOVE(wk); 800 if (wk == worklist_tail) { 801 LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list) 802 if (LIST_NEXT(wkend, wk_list) == NULL) 803 break; 804 worklist_tail = wkend; 805 } 806 num_on_worklist -= 1; 807 FREE_LOCK(&lk); 808 switch (wk->wk_type) { 809 810 case D_DIRREM: 811 /* removal of a directory entry */ 812 mp = WK_DIRREM(wk)->dm_mnt; 813 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 814 panic("%s: dirrem on suspended filesystem", 815 "process_worklist_item"); 816 if (mp == matchmnt) 817 matchcnt += 1; 818 handle_workitem_remove(WK_DIRREM(wk), vp); 819 break; 820 821 case D_FREEBLKS: 822 /* releasing blocks and/or fragments from a file */ 823 mp = WK_FREEBLKS(wk)->fb_mnt; 824 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 825 panic("%s: freeblks on suspended filesystem", 826 "process_worklist_item"); 827 if (mp == matchmnt) 828 matchcnt += 1; 829 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 830 break; 831 832 case D_FREEFRAG: 833 /* releasing a fragment when replaced as a file grows */ 834 mp = WK_FREEFRAG(wk)->ff_mnt; 835 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 836 panic("%s: freefrag on suspended filesystem", 837 "process_worklist_item"); 838 if (mp == matchmnt) 839 matchcnt += 1; 840 handle_workitem_freefrag(WK_FREEFRAG(wk)); 841 break; 842 843 case D_FREEFILE: 844 /* releasing an inode when its link count drops to 0 */ 845 mp = WK_FREEFILE(wk)->fx_mnt; 846 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 847 panic("%s: freefile on suspended filesystem", 848 "process_worklist_item"); 849 if (mp == matchmnt) 850 matchcnt += 1; 851 handle_workitem_freefile(WK_FREEFILE(wk)); 852 break; 853 854 default: 855 panic("%s_process_worklist: Unknown type %s", 856 "softdep", TYPENAME(wk->wk_type)); 857 /* NOTREACHED */ 858 } 859 ACQUIRE_LOCK(&lk); 860 return (matchcnt); 861 } 862 863 /* 864 * Move dependencies from one buffer to another. 865 */ 866 void 867 softdep_move_dependencies(oldbp, newbp) 868 struct buf *oldbp; 869 struct buf *newbp; 870 { 871 struct worklist *wk, *wktail; 872 873 if (LIST_FIRST(&newbp->b_dep) != NULL) 874 panic("softdep_move_dependencies: need merge code"); 875 wktail = 0; 876 ACQUIRE_LOCK(&lk); 877 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 878 LIST_REMOVE(wk, wk_list); 879 if (wktail == 0) 880 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 881 else 882 LIST_INSERT_AFTER(wktail, wk, wk_list); 883 wktail = wk; 884 } 885 FREE_LOCK(&lk); 886 } 887 888 /* 889 * Purge the work list of all items associated with a particular mount point. 890 */ 891 int 892 softdep_flushworklist(oldmnt, countp, td) 893 struct mount *oldmnt; 894 int *countp; 895 struct thread *td; 896 { 897 struct vnode *devvp; 898 int count, error = 0; 899 900 /* 901 * Await our turn to clear out the queue, then serialize access. 902 */ 903 ACQUIRE_LOCK(&lk); 904 while (softdep_worklist_busy) { 905 softdep_worklist_req += 1; 906 msleep(&softdep_worklist_req, &lk, PRIBIO, "softflush", 0); 907 softdep_worklist_req -= 1; 908 } 909 softdep_worklist_busy = -1; 910 FREE_LOCK(&lk); 911 /* 912 * Alternately flush the block device associated with the mount 913 * point and process any dependencies that the flushing 914 * creates. We continue until no more worklist dependencies 915 * are found. 916 */ 917 *countp = 0; 918 devvp = VFSTOUFS(oldmnt)->um_devvp; 919 while ((count = softdep_process_worklist(oldmnt)) > 0) { 920 *countp += count; 921 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 922 error = VOP_FSYNC(devvp, MNT_WAIT, td); 923 VOP_UNLOCK(devvp, 0, td); 924 if (error) 925 break; 926 } 927 ACQUIRE_LOCK(&lk); 928 softdep_worklist_busy = 0; 929 if (softdep_worklist_req) 930 wakeup(&softdep_worklist_req); 931 FREE_LOCK(&lk); 932 return (error); 933 } 934 935 /* 936 * Flush all vnodes and worklist items associated with a specified mount point. 937 */ 938 int 939 softdep_flushfiles(oldmnt, flags, td) 940 struct mount *oldmnt; 941 int flags; 942 struct thread *td; 943 { 944 int error, count, loopcnt; 945 946 error = 0; 947 948 /* 949 * Alternately flush the vnodes associated with the mount 950 * point and process any dependencies that the flushing 951 * creates. In theory, this loop can happen at most twice, 952 * but we give it a few extra just to be sure. 953 */ 954 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 955 /* 956 * Do another flush in case any vnodes were brought in 957 * as part of the cleanup operations. 958 */ 959 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 960 break; 961 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 962 count == 0) 963 break; 964 } 965 /* 966 * If we are unmounting then it is an error to fail. If we 967 * are simply trying to downgrade to read-only, then filesystem 968 * activity can keep us busy forever, so we just fail with EBUSY. 969 */ 970 if (loopcnt == 0) { 971 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 972 panic("softdep_flushfiles: looping"); 973 error = EBUSY; 974 } 975 return (error); 976 } 977 978 /* 979 * Structure hashing. 980 * 981 * There are three types of structures that can be looked up: 982 * 1) pagedep structures identified by mount point, inode number, 983 * and logical block. 984 * 2) inodedep structures identified by mount point and inode number. 985 * 3) newblk structures identified by mount point and 986 * physical block number. 987 * 988 * The "pagedep" and "inodedep" dependency structures are hashed 989 * separately from the file blocks and inodes to which they correspond. 990 * This separation helps when the in-memory copy of an inode or 991 * file block must be replaced. It also obviates the need to access 992 * an inode or file page when simply updating (or de-allocating) 993 * dependency structures. Lookup of newblk structures is needed to 994 * find newly allocated blocks when trying to associate them with 995 * their allocdirect or allocindir structure. 996 * 997 * The lookup routines optionally create and hash a new instance when 998 * an existing entry is not found. 999 */ 1000 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1001 #define NODELAY 0x0002 /* cannot do background work */ 1002 1003 /* 1004 * Structures and routines associated with pagedep caching. 1005 */ 1006 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 1007 u_long pagedep_hash; /* size of hash table - 1 */ 1008 #define PAGEDEP_HASH(mp, inum, lbn) \ 1009 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 1010 pagedep_hash]) 1011 1012 static int 1013 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 1014 struct pagedep_hashhead *pagedephd; 1015 ino_t ino; 1016 ufs_lbn_t lbn; 1017 struct mount *mp; 1018 int flags; 1019 struct pagedep **pagedeppp; 1020 { 1021 struct pagedep *pagedep; 1022 1023 LIST_FOREACH(pagedep, pagedephd, pd_hash) 1024 if (ino == pagedep->pd_ino && 1025 lbn == pagedep->pd_lbn && 1026 mp == pagedep->pd_mnt) 1027 break; 1028 if (pagedep) { 1029 *pagedeppp = pagedep; 1030 if ((flags & DEPALLOC) != 0 && 1031 (pagedep->pd_state & ONWORKLIST) == 0) 1032 return (0); 1033 return (1); 1034 } 1035 *pagedeppp = NULL; 1036 return (0); 1037 } 1038 /* 1039 * Look up a pagedep. Return 1 if found, 0 if not found or found 1040 * when asked to allocate but not associated with any buffer. 1041 * If not found, allocate if DEPALLOC flag is passed. 1042 * Found or allocated entry is returned in pagedeppp. 1043 * This routine must be called with splbio interrupts blocked. 1044 */ 1045 static int 1046 pagedep_lookup(ip, lbn, flags, pagedeppp) 1047 struct inode *ip; 1048 ufs_lbn_t lbn; 1049 int flags; 1050 struct pagedep **pagedeppp; 1051 { 1052 struct pagedep *pagedep; 1053 struct pagedep_hashhead *pagedephd; 1054 struct mount *mp; 1055 int ret; 1056 int i; 1057 1058 mtx_assert(&lk, MA_OWNED); 1059 mp = ITOV(ip)->v_mount; 1060 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 1061 1062 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1063 if (*pagedeppp || (flags & DEPALLOC) == 0) 1064 return (ret); 1065 FREE_LOCK(&lk); 1066 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), 1067 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 1068 ACQUIRE_LOCK(&lk); 1069 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1070 if (*pagedeppp) { 1071 FREE(pagedep, M_PAGEDEP); 1072 return (ret); 1073 } 1074 pagedep->pd_list.wk_type = D_PAGEDEP; 1075 pagedep->pd_mnt = mp; 1076 pagedep->pd_ino = ip->i_number; 1077 pagedep->pd_lbn = lbn; 1078 LIST_INIT(&pagedep->pd_dirremhd); 1079 LIST_INIT(&pagedep->pd_pendinghd); 1080 for (i = 0; i < DAHASHSZ; i++) 1081 LIST_INIT(&pagedep->pd_diraddhd[i]); 1082 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 1083 *pagedeppp = pagedep; 1084 return (0); 1085 } 1086 1087 /* 1088 * Structures and routines associated with inodedep caching. 1089 */ 1090 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1091 static u_long inodedep_hash; /* size of hash table - 1 */ 1092 static long num_inodedep; /* number of inodedep allocated */ 1093 #define INODEDEP_HASH(fs, inum) \ 1094 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1095 1096 static int 1097 inodedep_find(inodedephd, fs, inum, inodedeppp) 1098 struct inodedep_hashhead *inodedephd; 1099 struct fs *fs; 1100 ino_t inum; 1101 struct inodedep **inodedeppp; 1102 { 1103 struct inodedep *inodedep; 1104 1105 LIST_FOREACH(inodedep, inodedephd, id_hash) 1106 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1107 break; 1108 if (inodedep) { 1109 *inodedeppp = inodedep; 1110 return (1); 1111 } 1112 *inodedeppp = NULL; 1113 1114 return (0); 1115 } 1116 /* 1117 * Look up an inodedep. Return 1 if found, 0 if not found. 1118 * If not found, allocate if DEPALLOC flag is passed. 1119 * Found or allocated entry is returned in inodedeppp. 1120 * This routine must be called with splbio interrupts blocked. 1121 */ 1122 static int 1123 inodedep_lookup(fs, inum, flags, inodedeppp) 1124 struct fs *fs; 1125 ino_t inum; 1126 int flags; 1127 struct inodedep **inodedeppp; 1128 { 1129 struct inodedep *inodedep; 1130 struct inodedep_hashhead *inodedephd; 1131 1132 mtx_assert(&lk, MA_OWNED); 1133 inodedephd = INODEDEP_HASH(fs, inum); 1134 1135 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 1136 return (1); 1137 if ((flags & DEPALLOC) == 0) 1138 return (0); 1139 /* 1140 * If we are over our limit, try to improve the situation. 1141 */ 1142 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0) 1143 request_cleanup(FLUSH_INODES); 1144 FREE_LOCK(&lk); 1145 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1146 M_INODEDEP, M_SOFTDEP_FLAGS); 1147 ACQUIRE_LOCK(&lk); 1148 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 1149 FREE(inodedep, M_INODEDEP); 1150 return (1); 1151 } 1152 num_inodedep += 1; 1153 inodedep->id_list.wk_type = D_INODEDEP; 1154 inodedep->id_fs = fs; 1155 inodedep->id_ino = inum; 1156 inodedep->id_state = ALLCOMPLETE; 1157 inodedep->id_nlinkdelta = 0; 1158 inodedep->id_savedino1 = NULL; 1159 inodedep->id_savedsize = -1; 1160 inodedep->id_savedextsize = -1; 1161 inodedep->id_buf = NULL; 1162 LIST_INIT(&inodedep->id_pendinghd); 1163 LIST_INIT(&inodedep->id_inowait); 1164 LIST_INIT(&inodedep->id_bufwait); 1165 TAILQ_INIT(&inodedep->id_inoupdt); 1166 TAILQ_INIT(&inodedep->id_newinoupdt); 1167 TAILQ_INIT(&inodedep->id_extupdt); 1168 TAILQ_INIT(&inodedep->id_newextupdt); 1169 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1170 *inodedeppp = inodedep; 1171 return (0); 1172 } 1173 1174 /* 1175 * Structures and routines associated with newblk caching. 1176 */ 1177 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1178 u_long newblk_hash; /* size of hash table - 1 */ 1179 #define NEWBLK_HASH(fs, inum) \ 1180 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1181 1182 static int 1183 newblk_find(newblkhd, fs, newblkno, newblkpp) 1184 struct newblk_hashhead *newblkhd; 1185 struct fs *fs; 1186 ufs2_daddr_t newblkno; 1187 struct newblk **newblkpp; 1188 { 1189 struct newblk *newblk; 1190 1191 LIST_FOREACH(newblk, newblkhd, nb_hash) 1192 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1193 break; 1194 if (newblk) { 1195 *newblkpp = newblk; 1196 return (1); 1197 } 1198 *newblkpp = NULL; 1199 return (0); 1200 } 1201 1202 /* 1203 * Look up a newblk. Return 1 if found, 0 if not found. 1204 * If not found, allocate if DEPALLOC flag is passed. 1205 * Found or allocated entry is returned in newblkpp. 1206 */ 1207 static int 1208 newblk_lookup(fs, newblkno, flags, newblkpp) 1209 struct fs *fs; 1210 ufs2_daddr_t newblkno; 1211 int flags; 1212 struct newblk **newblkpp; 1213 { 1214 struct newblk *newblk; 1215 struct newblk_hashhead *newblkhd; 1216 1217 newblkhd = NEWBLK_HASH(fs, newblkno); 1218 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) 1219 return (1); 1220 if ((flags & DEPALLOC) == 0) 1221 return (0); 1222 FREE_LOCK(&lk); 1223 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1224 M_NEWBLK, M_SOFTDEP_FLAGS); 1225 ACQUIRE_LOCK(&lk); 1226 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) { 1227 FREE(newblk, M_NEWBLK); 1228 return (1); 1229 } 1230 newblk->nb_state = 0; 1231 newblk->nb_fs = fs; 1232 newblk->nb_newblkno = newblkno; 1233 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1234 *newblkpp = newblk; 1235 return (0); 1236 } 1237 1238 /* 1239 * Executed during filesystem system initialization before 1240 * mounting any filesystems. 1241 */ 1242 void 1243 softdep_initialize() 1244 { 1245 1246 LIST_INIT(&mkdirlisthd); 1247 LIST_INIT(&softdep_workitem_pending); 1248 max_softdeps = desiredvnodes * 4; 1249 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1250 &pagedep_hash); 1251 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1252 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1253 1254 /* hooks through which the main kernel code calls us */ 1255 softdep_process_worklist_hook = softdep_process_worklist; 1256 1257 /* initialise bioops hack */ 1258 bioops.io_start = softdep_disk_io_initiation; 1259 bioops.io_complete = softdep_disk_write_complete; 1260 bioops.io_deallocate = softdep_deallocate_dependencies; 1261 bioops.io_countdeps = softdep_count_dependencies; 1262 } 1263 1264 /* 1265 * Executed after all filesystems have been unmounted during 1266 * filesystem module unload. 1267 */ 1268 void 1269 softdep_uninitialize() 1270 { 1271 1272 softdep_process_worklist_hook = NULL; 1273 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1274 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1275 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1276 } 1277 1278 /* 1279 * Called at mount time to notify the dependency code that a 1280 * filesystem wishes to use it. 1281 */ 1282 int 1283 softdep_mount(devvp, mp, fs, cred) 1284 struct vnode *devvp; 1285 struct mount *mp; 1286 struct fs *fs; 1287 struct ucred *cred; 1288 { 1289 struct csum_total cstotal; 1290 struct cg *cgp; 1291 struct buf *bp; 1292 int error, cyl; 1293 1294 mp->mnt_flag &= ~MNT_ASYNC; 1295 mp->mnt_flag |= MNT_SOFTDEP; 1296 /* 1297 * When doing soft updates, the counters in the 1298 * superblock may have gotten out of sync, so we have 1299 * to scan the cylinder groups and recalculate them. 1300 */ 1301 if (fs->fs_clean != 0) 1302 return (0); 1303 bzero(&cstotal, sizeof cstotal); 1304 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1305 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1306 fs->fs_cgsize, cred, &bp)) != 0) { 1307 brelse(bp); 1308 return (error); 1309 } 1310 cgp = (struct cg *)bp->b_data; 1311 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1312 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1313 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1314 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1315 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1316 brelse(bp); 1317 } 1318 #ifdef DEBUG 1319 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1320 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1321 #endif 1322 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1323 return (0); 1324 } 1325 1326 /* 1327 * Protecting the freemaps (or bitmaps). 1328 * 1329 * To eliminate the need to execute fsck before mounting a filesystem 1330 * after a power failure, one must (conservatively) guarantee that the 1331 * on-disk copy of the bitmaps never indicate that a live inode or block is 1332 * free. So, when a block or inode is allocated, the bitmap should be 1333 * updated (on disk) before any new pointers. When a block or inode is 1334 * freed, the bitmap should not be updated until all pointers have been 1335 * reset. The latter dependency is handled by the delayed de-allocation 1336 * approach described below for block and inode de-allocation. The former 1337 * dependency is handled by calling the following procedure when a block or 1338 * inode is allocated. When an inode is allocated an "inodedep" is created 1339 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1340 * Each "inodedep" is also inserted into the hash indexing structure so 1341 * that any additional link additions can be made dependent on the inode 1342 * allocation. 1343 * 1344 * The ufs filesystem maintains a number of free block counts (e.g., per 1345 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1346 * in addition to the bitmaps. These counts are used to improve efficiency 1347 * during allocation and therefore must be consistent with the bitmaps. 1348 * There is no convenient way to guarantee post-crash consistency of these 1349 * counts with simple update ordering, for two main reasons: (1) The counts 1350 * and bitmaps for a single cylinder group block are not in the same disk 1351 * sector. If a disk write is interrupted (e.g., by power failure), one may 1352 * be written and the other not. (2) Some of the counts are located in the 1353 * superblock rather than the cylinder group block. So, we focus our soft 1354 * updates implementation on protecting the bitmaps. When mounting a 1355 * filesystem, we recompute the auxiliary counts from the bitmaps. 1356 */ 1357 1358 /* 1359 * Called just after updating the cylinder group block to allocate an inode. 1360 */ 1361 void 1362 softdep_setup_inomapdep(bp, ip, newinum) 1363 struct buf *bp; /* buffer for cylgroup block with inode map */ 1364 struct inode *ip; /* inode related to allocation */ 1365 ino_t newinum; /* new inode number being allocated */ 1366 { 1367 struct inodedep *inodedep; 1368 struct bmsafemap *bmsafemap; 1369 1370 /* 1371 * Create a dependency for the newly allocated inode. 1372 * Panic if it already exists as something is seriously wrong. 1373 * Otherwise add it to the dependency list for the buffer holding 1374 * the cylinder group map from which it was allocated. 1375 */ 1376 ACQUIRE_LOCK(&lk); 1377 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) 1378 panic("softdep_setup_inomapdep: found inode"); 1379 inodedep->id_buf = bp; 1380 inodedep->id_state &= ~DEPCOMPLETE; 1381 bmsafemap = bmsafemap_lookup(bp); 1382 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1383 FREE_LOCK(&lk); 1384 } 1385 1386 /* 1387 * Called just after updating the cylinder group block to 1388 * allocate block or fragment. 1389 */ 1390 void 1391 softdep_setup_blkmapdep(bp, fs, newblkno) 1392 struct buf *bp; /* buffer for cylgroup block with block map */ 1393 struct fs *fs; /* filesystem doing allocation */ 1394 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1395 { 1396 struct newblk *newblk; 1397 struct bmsafemap *bmsafemap; 1398 1399 /* 1400 * Create a dependency for the newly allocated block. 1401 * Add it to the dependency list for the buffer holding 1402 * the cylinder group map from which it was allocated. 1403 */ 1404 ACQUIRE_LOCK(&lk); 1405 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1406 panic("softdep_setup_blkmapdep: found block"); 1407 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1408 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1409 FREE_LOCK(&lk); 1410 } 1411 1412 /* 1413 * Find the bmsafemap associated with a cylinder group buffer. 1414 * If none exists, create one. The buffer must be locked when 1415 * this routine is called and this routine must be called with 1416 * splbio interrupts blocked. 1417 */ 1418 static struct bmsafemap * 1419 bmsafemap_lookup(bp) 1420 struct buf *bp; 1421 { 1422 struct bmsafemap *bmsafemap; 1423 struct worklist *wk; 1424 1425 mtx_assert(&lk, MA_OWNED); 1426 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1427 if (wk->wk_type == D_BMSAFEMAP) 1428 return (WK_BMSAFEMAP(wk)); 1429 FREE_LOCK(&lk); 1430 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1431 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1432 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1433 bmsafemap->sm_list.wk_state = 0; 1434 bmsafemap->sm_buf = bp; 1435 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1436 LIST_INIT(&bmsafemap->sm_allocindirhd); 1437 LIST_INIT(&bmsafemap->sm_inodedephd); 1438 LIST_INIT(&bmsafemap->sm_newblkhd); 1439 ACQUIRE_LOCK(&lk); 1440 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1441 return (bmsafemap); 1442 } 1443 1444 /* 1445 * Direct block allocation dependencies. 1446 * 1447 * When a new block is allocated, the corresponding disk locations must be 1448 * initialized (with zeros or new data) before the on-disk inode points to 1449 * them. Also, the freemap from which the block was allocated must be 1450 * updated (on disk) before the inode's pointer. These two dependencies are 1451 * independent of each other and are needed for all file blocks and indirect 1452 * blocks that are pointed to directly by the inode. Just before the 1453 * "in-core" version of the inode is updated with a newly allocated block 1454 * number, a procedure (below) is called to setup allocation dependency 1455 * structures. These structures are removed when the corresponding 1456 * dependencies are satisfied or when the block allocation becomes obsolete 1457 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1458 * fragment that gets upgraded). All of these cases are handled in 1459 * procedures described later. 1460 * 1461 * When a file extension causes a fragment to be upgraded, either to a larger 1462 * fragment or to a full block, the on-disk location may change (if the 1463 * previous fragment could not simply be extended). In this case, the old 1464 * fragment must be de-allocated, but not until after the inode's pointer has 1465 * been updated. In most cases, this is handled by later procedures, which 1466 * will construct a "freefrag" structure to be added to the workitem queue 1467 * when the inode update is complete (or obsolete). The main exception to 1468 * this is when an allocation occurs while a pending allocation dependency 1469 * (for the same block pointer) remains. This case is handled in the main 1470 * allocation dependency setup procedure by immediately freeing the 1471 * unreferenced fragments. 1472 */ 1473 void 1474 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1475 struct inode *ip; /* inode to which block is being added */ 1476 ufs_lbn_t lbn; /* block pointer within inode */ 1477 ufs2_daddr_t newblkno; /* disk block number being added */ 1478 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1479 long newsize; /* size of new block */ 1480 long oldsize; /* size of new block */ 1481 struct buf *bp; /* bp for allocated block */ 1482 { 1483 struct allocdirect *adp, *oldadp; 1484 struct allocdirectlst *adphead; 1485 struct bmsafemap *bmsafemap; 1486 struct inodedep *inodedep; 1487 struct pagedep *pagedep; 1488 struct newblk *newblk; 1489 1490 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1491 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1492 adp->ad_list.wk_type = D_ALLOCDIRECT; 1493 adp->ad_lbn = lbn; 1494 adp->ad_newblkno = newblkno; 1495 adp->ad_oldblkno = oldblkno; 1496 adp->ad_newsize = newsize; 1497 adp->ad_oldsize = oldsize; 1498 adp->ad_state = ATTACHED; 1499 LIST_INIT(&adp->ad_newdirblk); 1500 if (newblkno == oldblkno) 1501 adp->ad_freefrag = NULL; 1502 else 1503 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1504 1505 ACQUIRE_LOCK(&lk); 1506 if (lbn >= NDADDR) { 1507 /* allocating an indirect block */ 1508 if (oldblkno != 0) 1509 panic("softdep_setup_allocdirect: non-zero indir"); 1510 } else { 1511 /* 1512 * Allocating a direct block. 1513 * 1514 * If we are allocating a directory block, then we must 1515 * allocate an associated pagedep to track additions and 1516 * deletions. 1517 */ 1518 if ((ip->i_mode & IFMT) == IFDIR && 1519 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1520 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1521 } 1522 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1523 panic("softdep_setup_allocdirect: lost block"); 1524 if (newblk->nb_state == DEPCOMPLETE) { 1525 adp->ad_state |= DEPCOMPLETE; 1526 adp->ad_buf = NULL; 1527 } else { 1528 bmsafemap = newblk->nb_bmsafemap; 1529 adp->ad_buf = bmsafemap->sm_buf; 1530 LIST_REMOVE(newblk, nb_deps); 1531 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1532 } 1533 LIST_REMOVE(newblk, nb_hash); 1534 FREE(newblk, M_NEWBLK); 1535 1536 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1537 adp->ad_inodedep = inodedep; 1538 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1539 /* 1540 * The list of allocdirects must be kept in sorted and ascending 1541 * order so that the rollback routines can quickly determine the 1542 * first uncommitted block (the size of the file stored on disk 1543 * ends at the end of the lowest committed fragment, or if there 1544 * are no fragments, at the end of the highest committed block). 1545 * Since files generally grow, the typical case is that the new 1546 * block is to be added at the end of the list. We speed this 1547 * special case by checking against the last allocdirect in the 1548 * list before laboriously traversing the list looking for the 1549 * insertion point. 1550 */ 1551 adphead = &inodedep->id_newinoupdt; 1552 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1553 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1554 /* insert at end of list */ 1555 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1556 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1557 allocdirect_merge(adphead, adp, oldadp); 1558 FREE_LOCK(&lk); 1559 return; 1560 } 1561 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1562 if (oldadp->ad_lbn >= lbn) 1563 break; 1564 } 1565 if (oldadp == NULL) 1566 panic("softdep_setup_allocdirect: lost entry"); 1567 /* insert in middle of list */ 1568 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1569 if (oldadp->ad_lbn == lbn) 1570 allocdirect_merge(adphead, adp, oldadp); 1571 FREE_LOCK(&lk); 1572 } 1573 1574 /* 1575 * Replace an old allocdirect dependency with a newer one. 1576 * This routine must be called with splbio interrupts blocked. 1577 */ 1578 static void 1579 allocdirect_merge(adphead, newadp, oldadp) 1580 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1581 struct allocdirect *newadp; /* allocdirect being added */ 1582 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1583 { 1584 struct worklist *wk; 1585 struct freefrag *freefrag; 1586 struct newdirblk *newdirblk; 1587 1588 mtx_assert(&lk, MA_OWNED); 1589 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1590 newadp->ad_oldsize != oldadp->ad_newsize || 1591 newadp->ad_lbn >= NDADDR) 1592 panic("%s %jd != new %jd || old size %ld != new %ld", 1593 "allocdirect_merge: old blkno", 1594 (intmax_t)newadp->ad_oldblkno, 1595 (intmax_t)oldadp->ad_newblkno, 1596 newadp->ad_oldsize, oldadp->ad_newsize); 1597 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1598 newadp->ad_oldsize = oldadp->ad_oldsize; 1599 /* 1600 * If the old dependency had a fragment to free or had never 1601 * previously had a block allocated, then the new dependency 1602 * can immediately post its freefrag and adopt the old freefrag. 1603 * This action is done by swapping the freefrag dependencies. 1604 * The new dependency gains the old one's freefrag, and the 1605 * old one gets the new one and then immediately puts it on 1606 * the worklist when it is freed by free_allocdirect. It is 1607 * not possible to do this swap when the old dependency had a 1608 * non-zero size but no previous fragment to free. This condition 1609 * arises when the new block is an extension of the old block. 1610 * Here, the first part of the fragment allocated to the new 1611 * dependency is part of the block currently claimed on disk by 1612 * the old dependency, so cannot legitimately be freed until the 1613 * conditions for the new dependency are fulfilled. 1614 */ 1615 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1616 freefrag = newadp->ad_freefrag; 1617 newadp->ad_freefrag = oldadp->ad_freefrag; 1618 oldadp->ad_freefrag = freefrag; 1619 } 1620 /* 1621 * If we are tracking a new directory-block allocation, 1622 * move it from the old allocdirect to the new allocdirect. 1623 */ 1624 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1625 newdirblk = WK_NEWDIRBLK(wk); 1626 WORKLIST_REMOVE(&newdirblk->db_list); 1627 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1628 panic("allocdirect_merge: extra newdirblk"); 1629 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1630 } 1631 free_allocdirect(adphead, oldadp, 0); 1632 } 1633 1634 /* 1635 * Allocate a new freefrag structure if needed. 1636 */ 1637 static struct freefrag * 1638 newfreefrag(ip, blkno, size) 1639 struct inode *ip; 1640 ufs2_daddr_t blkno; 1641 long size; 1642 { 1643 struct freefrag *freefrag; 1644 struct fs *fs; 1645 1646 if (blkno == 0) 1647 return (NULL); 1648 fs = ip->i_fs; 1649 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1650 panic("newfreefrag: frag size"); 1651 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1652 M_FREEFRAG, M_SOFTDEP_FLAGS); 1653 freefrag->ff_list.wk_type = D_FREEFRAG; 1654 freefrag->ff_state = 0; 1655 freefrag->ff_inum = ip->i_number; 1656 freefrag->ff_mnt = ITOV(ip)->v_mount; 1657 freefrag->ff_blkno = blkno; 1658 freefrag->ff_fragsize = size; 1659 return (freefrag); 1660 } 1661 1662 /* 1663 * This workitem de-allocates fragments that were replaced during 1664 * file block allocation. 1665 */ 1666 static void 1667 handle_workitem_freefrag(freefrag) 1668 struct freefrag *freefrag; 1669 { 1670 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1671 1672 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1673 freefrag->ff_fragsize, freefrag->ff_inum); 1674 FREE(freefrag, M_FREEFRAG); 1675 } 1676 1677 /* 1678 * Set up a dependency structure for an external attributes data block. 1679 * This routine follows much of the structure of softdep_setup_allocdirect. 1680 * See the description of softdep_setup_allocdirect above for details. 1681 */ 1682 void 1683 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1684 struct inode *ip; 1685 ufs_lbn_t lbn; 1686 ufs2_daddr_t newblkno; 1687 ufs2_daddr_t oldblkno; 1688 long newsize; 1689 long oldsize; 1690 struct buf *bp; 1691 { 1692 struct allocdirect *adp, *oldadp; 1693 struct allocdirectlst *adphead; 1694 struct bmsafemap *bmsafemap; 1695 struct inodedep *inodedep; 1696 struct newblk *newblk; 1697 1698 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1699 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1700 adp->ad_list.wk_type = D_ALLOCDIRECT; 1701 adp->ad_lbn = lbn; 1702 adp->ad_newblkno = newblkno; 1703 adp->ad_oldblkno = oldblkno; 1704 adp->ad_newsize = newsize; 1705 adp->ad_oldsize = oldsize; 1706 adp->ad_state = ATTACHED | EXTDATA; 1707 LIST_INIT(&adp->ad_newdirblk); 1708 if (newblkno == oldblkno) 1709 adp->ad_freefrag = NULL; 1710 else 1711 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1712 1713 ACQUIRE_LOCK(&lk); 1714 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1715 panic("softdep_setup_allocext: lost block"); 1716 1717 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1718 adp->ad_inodedep = inodedep; 1719 1720 if (newblk->nb_state == DEPCOMPLETE) { 1721 adp->ad_state |= DEPCOMPLETE; 1722 adp->ad_buf = NULL; 1723 } else { 1724 bmsafemap = newblk->nb_bmsafemap; 1725 adp->ad_buf = bmsafemap->sm_buf; 1726 LIST_REMOVE(newblk, nb_deps); 1727 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1728 } 1729 LIST_REMOVE(newblk, nb_hash); 1730 FREE(newblk, M_NEWBLK); 1731 1732 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1733 if (lbn >= NXADDR) 1734 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1735 (long long)lbn); 1736 /* 1737 * The list of allocdirects must be kept in sorted and ascending 1738 * order so that the rollback routines can quickly determine the 1739 * first uncommitted block (the size of the file stored on disk 1740 * ends at the end of the lowest committed fragment, or if there 1741 * are no fragments, at the end of the highest committed block). 1742 * Since files generally grow, the typical case is that the new 1743 * block is to be added at the end of the list. We speed this 1744 * special case by checking against the last allocdirect in the 1745 * list before laboriously traversing the list looking for the 1746 * insertion point. 1747 */ 1748 adphead = &inodedep->id_newextupdt; 1749 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1750 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1751 /* insert at end of list */ 1752 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1753 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1754 allocdirect_merge(adphead, adp, oldadp); 1755 FREE_LOCK(&lk); 1756 return; 1757 } 1758 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1759 if (oldadp->ad_lbn >= lbn) 1760 break; 1761 } 1762 if (oldadp == NULL) 1763 panic("softdep_setup_allocext: lost entry"); 1764 /* insert in middle of list */ 1765 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1766 if (oldadp->ad_lbn == lbn) 1767 allocdirect_merge(adphead, adp, oldadp); 1768 FREE_LOCK(&lk); 1769 } 1770 1771 /* 1772 * Indirect block allocation dependencies. 1773 * 1774 * The same dependencies that exist for a direct block also exist when 1775 * a new block is allocated and pointed to by an entry in a block of 1776 * indirect pointers. The undo/redo states described above are also 1777 * used here. Because an indirect block contains many pointers that 1778 * may have dependencies, a second copy of the entire in-memory indirect 1779 * block is kept. The buffer cache copy is always completely up-to-date. 1780 * The second copy, which is used only as a source for disk writes, 1781 * contains only the safe pointers (i.e., those that have no remaining 1782 * update dependencies). The second copy is freed when all pointers 1783 * are safe. The cache is not allowed to replace indirect blocks with 1784 * pending update dependencies. If a buffer containing an indirect 1785 * block with dependencies is written, these routines will mark it 1786 * dirty again. It can only be successfully written once all the 1787 * dependencies are removed. The ffs_fsync routine in conjunction with 1788 * softdep_sync_metadata work together to get all the dependencies 1789 * removed so that a file can be successfully written to disk. Three 1790 * procedures are used when setting up indirect block pointer 1791 * dependencies. The division is necessary because of the organization 1792 * of the "balloc" routine and because of the distinction between file 1793 * pages and file metadata blocks. 1794 */ 1795 1796 /* 1797 * Allocate a new allocindir structure. 1798 */ 1799 static struct allocindir * 1800 newallocindir(ip, ptrno, newblkno, oldblkno) 1801 struct inode *ip; /* inode for file being extended */ 1802 int ptrno; /* offset of pointer in indirect block */ 1803 ufs2_daddr_t newblkno; /* disk block number being added */ 1804 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1805 { 1806 struct allocindir *aip; 1807 1808 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1809 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1810 aip->ai_list.wk_type = D_ALLOCINDIR; 1811 aip->ai_state = ATTACHED; 1812 aip->ai_offset = ptrno; 1813 aip->ai_newblkno = newblkno; 1814 aip->ai_oldblkno = oldblkno; 1815 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1816 return (aip); 1817 } 1818 1819 /* 1820 * Called just before setting an indirect block pointer 1821 * to a newly allocated file page. 1822 */ 1823 void 1824 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1825 struct inode *ip; /* inode for file being extended */ 1826 ufs_lbn_t lbn; /* allocated block number within file */ 1827 struct buf *bp; /* buffer with indirect blk referencing page */ 1828 int ptrno; /* offset of pointer in indirect block */ 1829 ufs2_daddr_t newblkno; /* disk block number being added */ 1830 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1831 struct buf *nbp; /* buffer holding allocated page */ 1832 { 1833 struct allocindir *aip; 1834 struct pagedep *pagedep; 1835 1836 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1837 ACQUIRE_LOCK(&lk); 1838 /* 1839 * If we are allocating a directory page, then we must 1840 * allocate an associated pagedep to track additions and 1841 * deletions. 1842 */ 1843 if ((ip->i_mode & IFMT) == IFDIR && 1844 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1845 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1846 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1847 setup_allocindir_phase2(bp, ip, aip); 1848 FREE_LOCK(&lk); 1849 } 1850 1851 /* 1852 * Called just before setting an indirect block pointer to a 1853 * newly allocated indirect block. 1854 */ 1855 void 1856 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1857 struct buf *nbp; /* newly allocated indirect block */ 1858 struct inode *ip; /* inode for file being extended */ 1859 struct buf *bp; /* indirect block referencing allocated block */ 1860 int ptrno; /* offset of pointer in indirect block */ 1861 ufs2_daddr_t newblkno; /* disk block number being added */ 1862 { 1863 struct allocindir *aip; 1864 1865 aip = newallocindir(ip, ptrno, newblkno, 0); 1866 ACQUIRE_LOCK(&lk); 1867 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1868 setup_allocindir_phase2(bp, ip, aip); 1869 FREE_LOCK(&lk); 1870 } 1871 1872 /* 1873 * Called to finish the allocation of the "aip" allocated 1874 * by one of the two routines above. 1875 */ 1876 static void 1877 setup_allocindir_phase2(bp, ip, aip) 1878 struct buf *bp; /* in-memory copy of the indirect block */ 1879 struct inode *ip; /* inode for file being extended */ 1880 struct allocindir *aip; /* allocindir allocated by the above routines */ 1881 { 1882 struct worklist *wk; 1883 struct indirdep *indirdep, *newindirdep; 1884 struct bmsafemap *bmsafemap; 1885 struct allocindir *oldaip; 1886 struct freefrag *freefrag; 1887 struct newblk *newblk; 1888 ufs2_daddr_t blkno; 1889 1890 mtx_assert(&lk, MA_OWNED); 1891 if (bp->b_lblkno >= 0) 1892 panic("setup_allocindir_phase2: not indir blk"); 1893 for (indirdep = NULL, newindirdep = NULL; ; ) { 1894 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1895 if (wk->wk_type != D_INDIRDEP) 1896 continue; 1897 indirdep = WK_INDIRDEP(wk); 1898 break; 1899 } 1900 if (indirdep == NULL && newindirdep) { 1901 indirdep = newindirdep; 1902 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1903 newindirdep = NULL; 1904 } 1905 if (indirdep) { 1906 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1907 &newblk) == 0) 1908 panic("setup_allocindir: lost block"); 1909 if (newblk->nb_state == DEPCOMPLETE) { 1910 aip->ai_state |= DEPCOMPLETE; 1911 aip->ai_buf = NULL; 1912 } else { 1913 bmsafemap = newblk->nb_bmsafemap; 1914 aip->ai_buf = bmsafemap->sm_buf; 1915 LIST_REMOVE(newblk, nb_deps); 1916 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1917 aip, ai_deps); 1918 } 1919 LIST_REMOVE(newblk, nb_hash); 1920 FREE(newblk, M_NEWBLK); 1921 aip->ai_indirdep = indirdep; 1922 /* 1923 * Check to see if there is an existing dependency 1924 * for this block. If there is, merge the old 1925 * dependency into the new one. 1926 */ 1927 if (aip->ai_oldblkno == 0) 1928 oldaip = NULL; 1929 else 1930 1931 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1932 if (oldaip->ai_offset == aip->ai_offset) 1933 break; 1934 freefrag = NULL; 1935 if (oldaip != NULL) { 1936 if (oldaip->ai_newblkno != aip->ai_oldblkno) 1937 panic("setup_allocindir_phase2: blkno"); 1938 aip->ai_oldblkno = oldaip->ai_oldblkno; 1939 freefrag = aip->ai_freefrag; 1940 aip->ai_freefrag = oldaip->ai_freefrag; 1941 oldaip->ai_freefrag = NULL; 1942 free_allocindir(oldaip, NULL); 1943 } 1944 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1945 if (ip->i_ump->um_fstype == UFS1) 1946 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1947 [aip->ai_offset] = aip->ai_oldblkno; 1948 else 1949 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1950 [aip->ai_offset] = aip->ai_oldblkno; 1951 FREE_LOCK(&lk); 1952 if (freefrag != NULL) 1953 handle_workitem_freefrag(freefrag); 1954 } else 1955 FREE_LOCK(&lk); 1956 if (newindirdep) { 1957 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 1958 brelse(newindirdep->ir_savebp); 1959 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1960 } 1961 if (indirdep) { 1962 ACQUIRE_LOCK(&lk); 1963 break; 1964 } 1965 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1966 M_INDIRDEP, M_SOFTDEP_FLAGS); 1967 newindirdep->ir_list.wk_type = D_INDIRDEP; 1968 newindirdep->ir_state = ATTACHED; 1969 if (ip->i_ump->um_fstype == UFS1) 1970 newindirdep->ir_state |= UFS1FMT; 1971 LIST_INIT(&newindirdep->ir_deplisthd); 1972 LIST_INIT(&newindirdep->ir_donehd); 1973 if (bp->b_blkno == bp->b_lblkno) { 1974 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 1975 NULL, NULL); 1976 bp->b_blkno = blkno; 1977 } 1978 newindirdep->ir_savebp = 1979 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 1980 BUF_KERNPROC(newindirdep->ir_savebp); 1981 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1982 ACQUIRE_LOCK(&lk); 1983 } 1984 } 1985 1986 /* 1987 * Block de-allocation dependencies. 1988 * 1989 * When blocks are de-allocated, the on-disk pointers must be nullified before 1990 * the blocks are made available for use by other files. (The true 1991 * requirement is that old pointers must be nullified before new on-disk 1992 * pointers are set. We chose this slightly more stringent requirement to 1993 * reduce complexity.) Our implementation handles this dependency by updating 1994 * the inode (or indirect block) appropriately but delaying the actual block 1995 * de-allocation (i.e., freemap and free space count manipulation) until 1996 * after the updated versions reach stable storage. After the disk is 1997 * updated, the blocks can be safely de-allocated whenever it is convenient. 1998 * This implementation handles only the common case of reducing a file's 1999 * length to zero. Other cases are handled by the conventional synchronous 2000 * write approach. 2001 * 2002 * The ffs implementation with which we worked double-checks 2003 * the state of the block pointers and file size as it reduces 2004 * a file's length. Some of this code is replicated here in our 2005 * soft updates implementation. The freeblks->fb_chkcnt field is 2006 * used to transfer a part of this information to the procedure 2007 * that eventually de-allocates the blocks. 2008 * 2009 * This routine should be called from the routine that shortens 2010 * a file's length, before the inode's size or block pointers 2011 * are modified. It will save the block pointer information for 2012 * later release and zero the inode so that the calling routine 2013 * can release it. 2014 */ 2015 void 2016 softdep_setup_freeblocks(ip, length, flags) 2017 struct inode *ip; /* The inode whose length is to be reduced */ 2018 off_t length; /* The new length for the file */ 2019 int flags; /* IO_EXT and/or IO_NORMAL */ 2020 { 2021 struct freeblks *freeblks; 2022 struct inodedep *inodedep; 2023 struct allocdirect *adp; 2024 struct vnode *vp; 2025 struct buf *bp; 2026 struct fs *fs; 2027 ufs2_daddr_t extblocks, datablocks; 2028 int i, delay, error; 2029 2030 fs = ip->i_fs; 2031 if (length != 0) 2032 panic("softdep_setup_freeblocks: non-zero length"); 2033 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 2034 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 2035 freeblks->fb_list.wk_type = D_FREEBLKS; 2036 freeblks->fb_uid = ip->i_uid; 2037 freeblks->fb_previousinum = ip->i_number; 2038 freeblks->fb_devvp = ip->i_devvp; 2039 freeblks->fb_mnt = ITOV(ip)->v_mount; 2040 extblocks = 0; 2041 if (fs->fs_magic == FS_UFS2_MAGIC) 2042 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 2043 datablocks = DIP(ip, i_blocks) - extblocks; 2044 if ((flags & IO_NORMAL) == 0) { 2045 freeblks->fb_oldsize = 0; 2046 freeblks->fb_chkcnt = 0; 2047 } else { 2048 freeblks->fb_oldsize = ip->i_size; 2049 ip->i_size = 0; 2050 DIP_SET(ip, i_size, 0); 2051 freeblks->fb_chkcnt = datablocks; 2052 for (i = 0; i < NDADDR; i++) { 2053 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 2054 DIP_SET(ip, i_db[i], 0); 2055 } 2056 for (i = 0; i < NIADDR; i++) { 2057 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 2058 DIP_SET(ip, i_ib[i], 0); 2059 } 2060 /* 2061 * If the file was removed, then the space being freed was 2062 * accounted for then (see softdep_filereleased()). If the 2063 * file is merely being truncated, then we account for it now. 2064 */ 2065 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2066 UFS_LOCK(ip->i_ump); 2067 fs->fs_pendingblocks += datablocks; 2068 UFS_UNLOCK(ip->i_ump); 2069 } 2070 } 2071 if ((flags & IO_EXT) == 0) { 2072 freeblks->fb_oldextsize = 0; 2073 } else { 2074 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 2075 ip->i_din2->di_extsize = 0; 2076 freeblks->fb_chkcnt += extblocks; 2077 for (i = 0; i < NXADDR; i++) { 2078 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 2079 ip->i_din2->di_extb[i] = 0; 2080 } 2081 } 2082 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 2083 /* 2084 * Push the zero'ed inode to to its disk buffer so that we are free 2085 * to delete its dependencies below. Once the dependencies are gone 2086 * the buffer can be safely released. 2087 */ 2088 if ((error = bread(ip->i_devvp, 2089 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2090 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2091 brelse(bp); 2092 softdep_error("softdep_setup_freeblocks", error); 2093 } 2094 if (ip->i_ump->um_fstype == UFS1) 2095 *((struct ufs1_dinode *)bp->b_data + 2096 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2097 else 2098 *((struct ufs2_dinode *)bp->b_data + 2099 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2100 /* 2101 * Find and eliminate any inode dependencies. 2102 */ 2103 ACQUIRE_LOCK(&lk); 2104 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 2105 if ((inodedep->id_state & IOSTARTED) != 0) 2106 panic("softdep_setup_freeblocks: inode busy"); 2107 /* 2108 * Add the freeblks structure to the list of operations that 2109 * must await the zero'ed inode being written to disk. If we 2110 * still have a bitmap dependency (delay == 0), then the inode 2111 * has never been written to disk, so we can process the 2112 * freeblks below once we have deleted the dependencies. 2113 */ 2114 delay = (inodedep->id_state & DEPCOMPLETE); 2115 if (delay) 2116 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2117 /* 2118 * Because the file length has been truncated to zero, any 2119 * pending block allocation dependency structures associated 2120 * with this inode are obsolete and can simply be de-allocated. 2121 * We must first merge the two dependency lists to get rid of 2122 * any duplicate freefrag structures, then purge the merged list. 2123 * If we still have a bitmap dependency, then the inode has never 2124 * been written to disk, so we can free any fragments without delay. 2125 */ 2126 if (flags & IO_NORMAL) { 2127 merge_inode_lists(&inodedep->id_newinoupdt, 2128 &inodedep->id_inoupdt); 2129 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2130 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2131 } 2132 if (flags & IO_EXT) { 2133 merge_inode_lists(&inodedep->id_newextupdt, 2134 &inodedep->id_extupdt); 2135 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2136 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2137 } 2138 FREE_LOCK(&lk); 2139 bdwrite(bp); 2140 /* 2141 * We must wait for any I/O in progress to finish so that 2142 * all potential buffers on the dirty list will be visible. 2143 * Once they are all there, walk the list and get rid of 2144 * any dependencies. 2145 */ 2146 vp = ITOV(ip); 2147 VI_LOCK(vp); 2148 drain_output(vp); 2149 restart: 2150 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 2151 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2152 ((flags & IO_NORMAL) == 0 && 2153 (bp->b_xflags & BX_ALTDATA) == 0)) 2154 continue; 2155 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL) 2156 goto restart; 2157 VI_UNLOCK(vp); 2158 ACQUIRE_LOCK(&lk); 2159 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 2160 deallocate_dependencies(bp, inodedep); 2161 FREE_LOCK(&lk); 2162 bp->b_flags |= B_INVAL | B_NOCACHE; 2163 brelse(bp); 2164 VI_LOCK(vp); 2165 goto restart; 2166 } 2167 VI_UNLOCK(vp); 2168 ACQUIRE_LOCK(&lk); 2169 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 2170 (void) free_inodedep(inodedep); 2171 FREE_LOCK(&lk); 2172 /* 2173 * If the inode has never been written to disk (delay == 0), 2174 * then we can process the freeblks now that we have deleted 2175 * the dependencies. 2176 */ 2177 if (!delay) 2178 handle_workitem_freeblocks(freeblks, 0); 2179 } 2180 2181 /* 2182 * Reclaim any dependency structures from a buffer that is about to 2183 * be reallocated to a new vnode. The buffer must be locked, thus, 2184 * no I/O completion operations can occur while we are manipulating 2185 * its associated dependencies. The mutex is held so that other I/O's 2186 * associated with related dependencies do not occur. 2187 */ 2188 static void 2189 deallocate_dependencies(bp, inodedep) 2190 struct buf *bp; 2191 struct inodedep *inodedep; 2192 { 2193 struct worklist *wk; 2194 struct indirdep *indirdep; 2195 struct allocindir *aip; 2196 struct pagedep *pagedep; 2197 struct dirrem *dirrem; 2198 struct diradd *dap; 2199 int i; 2200 2201 mtx_assert(&lk, MA_OWNED); 2202 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2203 switch (wk->wk_type) { 2204 2205 case D_INDIRDEP: 2206 indirdep = WK_INDIRDEP(wk); 2207 /* 2208 * None of the indirect pointers will ever be visible, 2209 * so they can simply be tossed. GOINGAWAY ensures 2210 * that allocated pointers will be saved in the buffer 2211 * cache until they are freed. Note that they will 2212 * only be able to be found by their physical address 2213 * since the inode mapping the logical address will 2214 * be gone. The save buffer used for the safe copy 2215 * was allocated in setup_allocindir_phase2 using 2216 * the physical address so it could be used for this 2217 * purpose. Hence we swap the safe copy with the real 2218 * copy, allowing the safe copy to be freed and holding 2219 * on to the real copy for later use in indir_trunc. 2220 */ 2221 if (indirdep->ir_state & GOINGAWAY) 2222 panic("deallocate_dependencies: already gone"); 2223 indirdep->ir_state |= GOINGAWAY; 2224 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2225 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2226 free_allocindir(aip, inodedep); 2227 if (bp->b_lblkno >= 0 || 2228 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 2229 panic("deallocate_dependencies: not indir"); 2230 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2231 bp->b_bcount); 2232 WORKLIST_REMOVE(wk); 2233 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2234 continue; 2235 2236 case D_PAGEDEP: 2237 pagedep = WK_PAGEDEP(wk); 2238 /* 2239 * None of the directory additions will ever be 2240 * visible, so they can simply be tossed. 2241 */ 2242 for (i = 0; i < DAHASHSZ; i++) 2243 while ((dap = 2244 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2245 free_diradd(dap); 2246 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2247 free_diradd(dap); 2248 /* 2249 * Copy any directory remove dependencies to the list 2250 * to be processed after the zero'ed inode is written. 2251 * If the inode has already been written, then they 2252 * can be dumped directly onto the work list. 2253 */ 2254 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2255 LIST_REMOVE(dirrem, dm_next); 2256 dirrem->dm_dirinum = pagedep->pd_ino; 2257 if (inodedep == NULL || 2258 (inodedep->id_state & ALLCOMPLETE) == 2259 ALLCOMPLETE) 2260 add_to_worklist(&dirrem->dm_list); 2261 else 2262 WORKLIST_INSERT(&inodedep->id_bufwait, 2263 &dirrem->dm_list); 2264 } 2265 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2266 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2267 if (wk->wk_type == D_NEWDIRBLK && 2268 WK_NEWDIRBLK(wk)->db_pagedep == 2269 pagedep) 2270 break; 2271 if (wk != NULL) { 2272 WORKLIST_REMOVE(wk); 2273 free_newdirblk(WK_NEWDIRBLK(wk)); 2274 } else 2275 panic("deallocate_dependencies: " 2276 "lost pagedep"); 2277 } 2278 WORKLIST_REMOVE(&pagedep->pd_list); 2279 LIST_REMOVE(pagedep, pd_hash); 2280 WORKITEM_FREE(pagedep, D_PAGEDEP); 2281 continue; 2282 2283 case D_ALLOCINDIR: 2284 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2285 continue; 2286 2287 case D_ALLOCDIRECT: 2288 case D_INODEDEP: 2289 panic("deallocate_dependencies: Unexpected type %s", 2290 TYPENAME(wk->wk_type)); 2291 /* NOTREACHED */ 2292 2293 default: 2294 panic("deallocate_dependencies: Unknown type %s", 2295 TYPENAME(wk->wk_type)); 2296 /* NOTREACHED */ 2297 } 2298 } 2299 } 2300 2301 /* 2302 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2303 * This routine must be called with splbio interrupts blocked. 2304 */ 2305 static void 2306 free_allocdirect(adphead, adp, delay) 2307 struct allocdirectlst *adphead; 2308 struct allocdirect *adp; 2309 int delay; 2310 { 2311 struct newdirblk *newdirblk; 2312 struct worklist *wk; 2313 2314 mtx_assert(&lk, MA_OWNED); 2315 if ((adp->ad_state & DEPCOMPLETE) == 0) 2316 LIST_REMOVE(adp, ad_deps); 2317 TAILQ_REMOVE(adphead, adp, ad_next); 2318 if ((adp->ad_state & COMPLETE) == 0) 2319 WORKLIST_REMOVE(&adp->ad_list); 2320 if (adp->ad_freefrag != NULL) { 2321 if (delay) 2322 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2323 &adp->ad_freefrag->ff_list); 2324 else 2325 add_to_worklist(&adp->ad_freefrag->ff_list); 2326 } 2327 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2328 newdirblk = WK_NEWDIRBLK(wk); 2329 WORKLIST_REMOVE(&newdirblk->db_list); 2330 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2331 panic("free_allocdirect: extra newdirblk"); 2332 if (delay) 2333 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2334 &newdirblk->db_list); 2335 else 2336 free_newdirblk(newdirblk); 2337 } 2338 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2339 } 2340 2341 /* 2342 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2343 * This routine must be called with splbio interrupts blocked. 2344 */ 2345 static void 2346 free_newdirblk(newdirblk) 2347 struct newdirblk *newdirblk; 2348 { 2349 struct pagedep *pagedep; 2350 struct diradd *dap; 2351 int i; 2352 2353 mtx_assert(&lk, MA_OWNED); 2354 /* 2355 * If the pagedep is still linked onto the directory buffer 2356 * dependency chain, then some of the entries on the 2357 * pd_pendinghd list may not be committed to disk yet. In 2358 * this case, we will simply clear the NEWBLOCK flag and 2359 * let the pd_pendinghd list be processed when the pagedep 2360 * is next written. If the pagedep is no longer on the buffer 2361 * dependency chain, then all the entries on the pd_pending 2362 * list are committed to disk and we can free them here. 2363 */ 2364 pagedep = newdirblk->db_pagedep; 2365 pagedep->pd_state &= ~NEWBLOCK; 2366 if ((pagedep->pd_state & ONWORKLIST) == 0) 2367 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2368 free_diradd(dap); 2369 /* 2370 * If no dependencies remain, the pagedep will be freed. 2371 */ 2372 for (i = 0; i < DAHASHSZ; i++) 2373 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2374 break; 2375 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2376 LIST_REMOVE(pagedep, pd_hash); 2377 WORKITEM_FREE(pagedep, D_PAGEDEP); 2378 } 2379 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2380 } 2381 2382 /* 2383 * Prepare an inode to be freed. The actual free operation is not 2384 * done until the zero'ed inode has been written to disk. 2385 */ 2386 void 2387 softdep_freefile(pvp, ino, mode) 2388 struct vnode *pvp; 2389 ino_t ino; 2390 int mode; 2391 { 2392 struct inode *ip = VTOI(pvp); 2393 struct inodedep *inodedep; 2394 struct freefile *freefile; 2395 2396 /* 2397 * This sets up the inode de-allocation dependency. 2398 */ 2399 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2400 M_FREEFILE, M_SOFTDEP_FLAGS); 2401 freefile->fx_list.wk_type = D_FREEFILE; 2402 freefile->fx_list.wk_state = 0; 2403 freefile->fx_mode = mode; 2404 freefile->fx_oldinum = ino; 2405 freefile->fx_devvp = ip->i_devvp; 2406 freefile->fx_mnt = ITOV(ip)->v_mount; 2407 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2408 UFS_LOCK(ip->i_ump); 2409 ip->i_fs->fs_pendinginodes += 1; 2410 UFS_UNLOCK(ip->i_ump); 2411 } 2412 2413 /* 2414 * If the inodedep does not exist, then the zero'ed inode has 2415 * been written to disk. If the allocated inode has never been 2416 * written to disk, then the on-disk inode is zero'ed. In either 2417 * case we can free the file immediately. 2418 */ 2419 ACQUIRE_LOCK(&lk); 2420 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2421 check_inode_unwritten(inodedep)) { 2422 FREE_LOCK(&lk); 2423 handle_workitem_freefile(freefile); 2424 return; 2425 } 2426 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2427 FREE_LOCK(&lk); 2428 } 2429 2430 /* 2431 * Check to see if an inode has never been written to disk. If 2432 * so free the inodedep and return success, otherwise return failure. 2433 * This routine must be called with splbio interrupts blocked. 2434 * 2435 * If we still have a bitmap dependency, then the inode has never 2436 * been written to disk. Drop the dependency as it is no longer 2437 * necessary since the inode is being deallocated. We set the 2438 * ALLCOMPLETE flags since the bitmap now properly shows that the 2439 * inode is not allocated. Even if the inode is actively being 2440 * written, it has been rolled back to its zero'ed state, so we 2441 * are ensured that a zero inode is what is on the disk. For short 2442 * lived files, this change will usually result in removing all the 2443 * dependencies from the inode so that it can be freed immediately. 2444 */ 2445 static int 2446 check_inode_unwritten(inodedep) 2447 struct inodedep *inodedep; 2448 { 2449 2450 mtx_assert(&lk, MA_OWNED); 2451 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2452 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2453 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2454 LIST_FIRST(&inodedep->id_inowait) != NULL || 2455 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2456 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2457 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2458 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2459 inodedep->id_nlinkdelta != 0) 2460 return (0); 2461 inodedep->id_state |= ALLCOMPLETE; 2462 LIST_REMOVE(inodedep, id_deps); 2463 inodedep->id_buf = NULL; 2464 if (inodedep->id_state & ONWORKLIST) 2465 WORKLIST_REMOVE(&inodedep->id_list); 2466 if (inodedep->id_savedino1 != NULL) { 2467 FREE(inodedep->id_savedino1, M_SAVEDINO); 2468 inodedep->id_savedino1 = NULL; 2469 } 2470 if (free_inodedep(inodedep) == 0) 2471 panic("check_inode_unwritten: busy inode"); 2472 return (1); 2473 } 2474 2475 /* 2476 * Try to free an inodedep structure. Return 1 if it could be freed. 2477 */ 2478 static int 2479 free_inodedep(inodedep) 2480 struct inodedep *inodedep; 2481 { 2482 2483 mtx_assert(&lk, MA_OWNED); 2484 if ((inodedep->id_state & ONWORKLIST) != 0 || 2485 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2486 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2487 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2488 LIST_FIRST(&inodedep->id_inowait) != NULL || 2489 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2490 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2491 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2492 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2493 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2494 return (0); 2495 LIST_REMOVE(inodedep, id_hash); 2496 WORKITEM_FREE(inodedep, D_INODEDEP); 2497 num_inodedep -= 1; 2498 return (1); 2499 } 2500 2501 /* 2502 * This workitem routine performs the block de-allocation. 2503 * The workitem is added to the pending list after the updated 2504 * inode block has been written to disk. As mentioned above, 2505 * checks regarding the number of blocks de-allocated (compared 2506 * to the number of blocks allocated for the file) are also 2507 * performed in this function. 2508 */ 2509 static void 2510 handle_workitem_freeblocks(freeblks, flags) 2511 struct freeblks *freeblks; 2512 int flags; 2513 { 2514 struct inode *ip; 2515 struct vnode *vp; 2516 struct fs *fs; 2517 struct ufsmount *ump; 2518 int i, nblocks, level, bsize; 2519 ufs2_daddr_t bn, blocksreleased = 0; 2520 int error, allerror = 0; 2521 ufs_lbn_t baselbns[NIADDR], tmpval; 2522 int fs_pendingblocks; 2523 2524 ump = VFSTOUFS(freeblks->fb_mnt); 2525 fs = ump->um_fs; 2526 fs_pendingblocks = 0; 2527 tmpval = 1; 2528 baselbns[0] = NDADDR; 2529 for (i = 1; i < NIADDR; i++) { 2530 tmpval *= NINDIR(fs); 2531 baselbns[i] = baselbns[i - 1] + tmpval; 2532 } 2533 nblocks = btodb(fs->fs_bsize); 2534 blocksreleased = 0; 2535 /* 2536 * Release all extended attribute blocks or frags. 2537 */ 2538 if (freeblks->fb_oldextsize > 0) { 2539 for (i = (NXADDR - 1); i >= 0; i--) { 2540 if ((bn = freeblks->fb_eblks[i]) == 0) 2541 continue; 2542 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2543 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2544 freeblks->fb_previousinum); 2545 blocksreleased += btodb(bsize); 2546 } 2547 } 2548 /* 2549 * Release all data blocks or frags. 2550 */ 2551 if (freeblks->fb_oldsize > 0) { 2552 /* 2553 * Indirect blocks first. 2554 */ 2555 for (level = (NIADDR - 1); level >= 0; level--) { 2556 if ((bn = freeblks->fb_iblks[level]) == 0) 2557 continue; 2558 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2559 level, baselbns[level], &blocksreleased)) == 0) 2560 allerror = error; 2561 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, 2562 fs->fs_bsize, freeblks->fb_previousinum); 2563 fs_pendingblocks += nblocks; 2564 blocksreleased += nblocks; 2565 } 2566 /* 2567 * All direct blocks or frags. 2568 */ 2569 for (i = (NDADDR - 1); i >= 0; i--) { 2570 if ((bn = freeblks->fb_dblks[i]) == 0) 2571 continue; 2572 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2573 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2574 freeblks->fb_previousinum); 2575 fs_pendingblocks += btodb(bsize); 2576 blocksreleased += btodb(bsize); 2577 } 2578 } 2579 UFS_LOCK(ump); 2580 fs->fs_pendingblocks -= fs_pendingblocks; 2581 UFS_UNLOCK(ump); 2582 /* 2583 * If we still have not finished background cleanup, then check 2584 * to see if the block count needs to be adjusted. 2585 */ 2586 if (freeblks->fb_chkcnt != blocksreleased && 2587 (fs->fs_flags & FS_UNCLEAN) != 0 && 2588 ffs_vget(freeblks->fb_mnt, freeblks->fb_previousinum, 2589 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2590 ip = VTOI(vp); 2591 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2592 freeblks->fb_chkcnt - blocksreleased); 2593 ip->i_flag |= IN_CHANGE; 2594 vput(vp); 2595 } 2596 2597 #ifdef DIAGNOSTIC 2598 if (freeblks->fb_chkcnt != blocksreleased && 2599 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2600 printf("handle_workitem_freeblocks: block count\n"); 2601 if (allerror) 2602 softdep_error("handle_workitem_freeblks", allerror); 2603 #endif /* DIAGNOSTIC */ 2604 2605 WORKITEM_FREE(freeblks, D_FREEBLKS); 2606 } 2607 2608 /* 2609 * Release blocks associated with the inode ip and stored in the indirect 2610 * block dbn. If level is greater than SINGLE, the block is an indirect block 2611 * and recursive calls to indirtrunc must be used to cleanse other indirect 2612 * blocks. 2613 */ 2614 static int 2615 indir_trunc(freeblks, dbn, level, lbn, countp) 2616 struct freeblks *freeblks; 2617 ufs2_daddr_t dbn; 2618 int level; 2619 ufs_lbn_t lbn; 2620 ufs2_daddr_t *countp; 2621 { 2622 struct buf *bp; 2623 struct fs *fs; 2624 struct worklist *wk; 2625 struct indirdep *indirdep; 2626 struct ufsmount *ump; 2627 ufs1_daddr_t *bap1 = 0; 2628 ufs2_daddr_t nb, *bap2 = 0; 2629 ufs_lbn_t lbnadd; 2630 int i, nblocks, ufs1fmt; 2631 int error, allerror = 0; 2632 int fs_pendingblocks; 2633 2634 ump = VFSTOUFS(freeblks->fb_mnt); 2635 fs = ump->um_fs; 2636 fs_pendingblocks = 0; 2637 lbnadd = 1; 2638 for (i = level; i > 0; i--) 2639 lbnadd *= NINDIR(fs); 2640 /* 2641 * Get buffer of block pointers to be freed. This routine is not 2642 * called until the zero'ed inode has been written, so it is safe 2643 * to free blocks as they are encountered. Because the inode has 2644 * been zero'ed, calls to bmap on these blocks will fail. So, we 2645 * have to use the on-disk address and the block device for the 2646 * filesystem to look them up. If the file was deleted before its 2647 * indirect blocks were all written to disk, the routine that set 2648 * us up (deallocate_dependencies) will have arranged to leave 2649 * a complete copy of the indirect block in memory for our use. 2650 * Otherwise we have to read the blocks in from the disk. 2651 */ 2652 #ifdef notyet 2653 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2654 GB_NOCREAT); 2655 #else 2656 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn); 2657 #endif 2658 ACQUIRE_LOCK(&lk); 2659 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2660 if (wk->wk_type != D_INDIRDEP || 2661 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2662 (indirdep->ir_state & GOINGAWAY) == 0) 2663 panic("indir_trunc: lost indirdep"); 2664 WORKLIST_REMOVE(wk); 2665 WORKITEM_FREE(indirdep, D_INDIRDEP); 2666 if (LIST_FIRST(&bp->b_dep) != NULL) 2667 panic("indir_trunc: dangling dep"); 2668 VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1; 2669 FREE_LOCK(&lk); 2670 } else { 2671 #ifdef notyet 2672 if (bp) 2673 brelse(bp); 2674 #endif 2675 FREE_LOCK(&lk); 2676 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2677 NOCRED, &bp); 2678 if (error) { 2679 brelse(bp); 2680 return (error); 2681 } 2682 } 2683 /* 2684 * Recursively free indirect blocks. 2685 */ 2686 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2687 ufs1fmt = 1; 2688 bap1 = (ufs1_daddr_t *)bp->b_data; 2689 } else { 2690 ufs1fmt = 0; 2691 bap2 = (ufs2_daddr_t *)bp->b_data; 2692 } 2693 nblocks = btodb(fs->fs_bsize); 2694 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2695 if (ufs1fmt) 2696 nb = bap1[i]; 2697 else 2698 nb = bap2[i]; 2699 if (nb == 0) 2700 continue; 2701 if (level != 0) { 2702 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2703 level - 1, lbn + (i * lbnadd), countp)) != 0) 2704 allerror = error; 2705 } 2706 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2707 freeblks->fb_previousinum); 2708 fs_pendingblocks += nblocks; 2709 *countp += nblocks; 2710 } 2711 UFS_LOCK(ump); 2712 fs->fs_pendingblocks -= fs_pendingblocks; 2713 UFS_UNLOCK(ump); 2714 bp->b_flags |= B_INVAL | B_NOCACHE; 2715 brelse(bp); 2716 return (allerror); 2717 } 2718 2719 /* 2720 * Free an allocindir. 2721 * This routine must be called with splbio interrupts blocked. 2722 */ 2723 static void 2724 free_allocindir(aip, inodedep) 2725 struct allocindir *aip; 2726 struct inodedep *inodedep; 2727 { 2728 struct freefrag *freefrag; 2729 2730 mtx_assert(&lk, MA_OWNED); 2731 if ((aip->ai_state & DEPCOMPLETE) == 0) 2732 LIST_REMOVE(aip, ai_deps); 2733 if (aip->ai_state & ONWORKLIST) 2734 WORKLIST_REMOVE(&aip->ai_list); 2735 LIST_REMOVE(aip, ai_next); 2736 if ((freefrag = aip->ai_freefrag) != NULL) { 2737 if (inodedep == NULL) 2738 add_to_worklist(&freefrag->ff_list); 2739 else 2740 WORKLIST_INSERT(&inodedep->id_bufwait, 2741 &freefrag->ff_list); 2742 } 2743 WORKITEM_FREE(aip, D_ALLOCINDIR); 2744 } 2745 2746 /* 2747 * Directory entry addition dependencies. 2748 * 2749 * When adding a new directory entry, the inode (with its incremented link 2750 * count) must be written to disk before the directory entry's pointer to it. 2751 * Also, if the inode is newly allocated, the corresponding freemap must be 2752 * updated (on disk) before the directory entry's pointer. These requirements 2753 * are met via undo/redo on the directory entry's pointer, which consists 2754 * simply of the inode number. 2755 * 2756 * As directory entries are added and deleted, the free space within a 2757 * directory block can become fragmented. The ufs filesystem will compact 2758 * a fragmented directory block to make space for a new entry. When this 2759 * occurs, the offsets of previously added entries change. Any "diradd" 2760 * dependency structures corresponding to these entries must be updated with 2761 * the new offsets. 2762 */ 2763 2764 /* 2765 * This routine is called after the in-memory inode's link 2766 * count has been incremented, but before the directory entry's 2767 * pointer to the inode has been set. 2768 */ 2769 int 2770 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2771 struct buf *bp; /* buffer containing directory block */ 2772 struct inode *dp; /* inode for directory */ 2773 off_t diroffset; /* offset of new entry in directory */ 2774 ino_t newinum; /* inode referenced by new directory entry */ 2775 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2776 int isnewblk; /* entry is in a newly allocated block */ 2777 { 2778 int offset; /* offset of new entry within directory block */ 2779 ufs_lbn_t lbn; /* block in directory containing new entry */ 2780 struct fs *fs; 2781 struct diradd *dap; 2782 struct allocdirect *adp; 2783 struct pagedep *pagedep; 2784 struct inodedep *inodedep; 2785 struct newdirblk *newdirblk = 0; 2786 struct mkdir *mkdir1, *mkdir2; 2787 2788 /* 2789 * Whiteouts have no dependencies. 2790 */ 2791 if (newinum == WINO) { 2792 if (newdirbp != NULL) 2793 bdwrite(newdirbp); 2794 return (0); 2795 } 2796 2797 fs = dp->i_fs; 2798 lbn = lblkno(fs, diroffset); 2799 offset = blkoff(fs, diroffset); 2800 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2801 M_SOFTDEP_FLAGS|M_ZERO); 2802 dap->da_list.wk_type = D_DIRADD; 2803 dap->da_offset = offset; 2804 dap->da_newinum = newinum; 2805 dap->da_state = ATTACHED; 2806 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2807 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2808 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2809 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2810 newdirblk->db_state = 0; 2811 } 2812 if (newdirbp == NULL) { 2813 dap->da_state |= DEPCOMPLETE; 2814 ACQUIRE_LOCK(&lk); 2815 } else { 2816 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2817 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2818 M_SOFTDEP_FLAGS); 2819 mkdir1->md_list.wk_type = D_MKDIR; 2820 mkdir1->md_state = MKDIR_BODY; 2821 mkdir1->md_diradd = dap; 2822 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2823 M_SOFTDEP_FLAGS); 2824 mkdir2->md_list.wk_type = D_MKDIR; 2825 mkdir2->md_state = MKDIR_PARENT; 2826 mkdir2->md_diradd = dap; 2827 /* 2828 * Dependency on "." and ".." being written to disk. 2829 */ 2830 mkdir1->md_buf = newdirbp; 2831 ACQUIRE_LOCK(&lk); 2832 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2833 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2834 FREE_LOCK(&lk); 2835 bdwrite(newdirbp); 2836 /* 2837 * Dependency on link count increase for parent directory 2838 */ 2839 ACQUIRE_LOCK(&lk); 2840 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2841 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2842 dap->da_state &= ~MKDIR_PARENT; 2843 WORKITEM_FREE(mkdir2, D_MKDIR); 2844 } else { 2845 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2846 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2847 } 2848 } 2849 /* 2850 * Link into parent directory pagedep to await its being written. 2851 */ 2852 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2853 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2854 dap->da_pagedep = pagedep; 2855 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2856 da_pdlist); 2857 /* 2858 * Link into its inodedep. Put it on the id_bufwait list if the inode 2859 * is not yet written. If it is written, do the post-inode write 2860 * processing to put it on the id_pendinghd list. 2861 */ 2862 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2863 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2864 diradd_inode_written(dap, inodedep); 2865 else 2866 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2867 if (isnewblk) { 2868 /* 2869 * Directories growing into indirect blocks are rare 2870 * enough and the frequency of new block allocation 2871 * in those cases even more rare, that we choose not 2872 * to bother tracking them. Rather we simply force the 2873 * new directory entry to disk. 2874 */ 2875 if (lbn >= NDADDR) { 2876 FREE_LOCK(&lk); 2877 /* 2878 * We only have a new allocation when at the 2879 * beginning of a new block, not when we are 2880 * expanding into an existing block. 2881 */ 2882 if (blkoff(fs, diroffset) == 0) 2883 return (1); 2884 return (0); 2885 } 2886 /* 2887 * We only have a new allocation when at the beginning 2888 * of a new fragment, not when we are expanding into an 2889 * existing fragment. Also, there is nothing to do if we 2890 * are already tracking this block. 2891 */ 2892 if (fragoff(fs, diroffset) != 0) { 2893 FREE_LOCK(&lk); 2894 return (0); 2895 } 2896 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2897 FREE_LOCK(&lk); 2898 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2899 return (0); 2900 } 2901 /* 2902 * Find our associated allocdirect and have it track us. 2903 */ 2904 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2905 panic("softdep_setup_directory_add: lost inodedep"); 2906 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2907 if (adp == NULL || adp->ad_lbn != lbn) 2908 panic("softdep_setup_directory_add: lost entry"); 2909 pagedep->pd_state |= NEWBLOCK; 2910 newdirblk->db_pagedep = pagedep; 2911 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2912 } 2913 FREE_LOCK(&lk); 2914 return (0); 2915 } 2916 2917 /* 2918 * This procedure is called to change the offset of a directory 2919 * entry when compacting a directory block which must be owned 2920 * exclusively by the caller. Note that the actual entry movement 2921 * must be done in this procedure to ensure that no I/O completions 2922 * occur while the move is in progress. 2923 */ 2924 void 2925 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2926 struct inode *dp; /* inode for directory */ 2927 caddr_t base; /* address of dp->i_offset */ 2928 caddr_t oldloc; /* address of old directory location */ 2929 caddr_t newloc; /* address of new directory location */ 2930 int entrysize; /* size of directory entry */ 2931 { 2932 int offset, oldoffset, newoffset; 2933 struct pagedep *pagedep; 2934 struct diradd *dap; 2935 ufs_lbn_t lbn; 2936 2937 ACQUIRE_LOCK(&lk); 2938 lbn = lblkno(dp->i_fs, dp->i_offset); 2939 offset = blkoff(dp->i_fs, dp->i_offset); 2940 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2941 goto done; 2942 oldoffset = offset + (oldloc - base); 2943 newoffset = offset + (newloc - base); 2944 2945 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2946 if (dap->da_offset != oldoffset) 2947 continue; 2948 dap->da_offset = newoffset; 2949 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2950 break; 2951 LIST_REMOVE(dap, da_pdlist); 2952 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2953 dap, da_pdlist); 2954 break; 2955 } 2956 if (dap == NULL) { 2957 2958 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2959 if (dap->da_offset == oldoffset) { 2960 dap->da_offset = newoffset; 2961 break; 2962 } 2963 } 2964 } 2965 done: 2966 bcopy(oldloc, newloc, entrysize); 2967 FREE_LOCK(&lk); 2968 } 2969 2970 /* 2971 * Free a diradd dependency structure. This routine must be called 2972 * with splbio interrupts blocked. 2973 */ 2974 static void 2975 free_diradd(dap) 2976 struct diradd *dap; 2977 { 2978 struct dirrem *dirrem; 2979 struct pagedep *pagedep; 2980 struct inodedep *inodedep; 2981 struct mkdir *mkdir, *nextmd; 2982 2983 mtx_assert(&lk, MA_OWNED); 2984 WORKLIST_REMOVE(&dap->da_list); 2985 LIST_REMOVE(dap, da_pdlist); 2986 if ((dap->da_state & DIRCHG) == 0) { 2987 pagedep = dap->da_pagedep; 2988 } else { 2989 dirrem = dap->da_previous; 2990 pagedep = dirrem->dm_pagedep; 2991 dirrem->dm_dirinum = pagedep->pd_ino; 2992 add_to_worklist(&dirrem->dm_list); 2993 } 2994 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2995 0, &inodedep) != 0) 2996 (void) free_inodedep(inodedep); 2997 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2998 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2999 nextmd = LIST_NEXT(mkdir, md_mkdirs); 3000 if (mkdir->md_diradd != dap) 3001 continue; 3002 dap->da_state &= ~mkdir->md_state; 3003 WORKLIST_REMOVE(&mkdir->md_list); 3004 LIST_REMOVE(mkdir, md_mkdirs); 3005 WORKITEM_FREE(mkdir, D_MKDIR); 3006 } 3007 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 3008 panic("free_diradd: unfound ref"); 3009 } 3010 WORKITEM_FREE(dap, D_DIRADD); 3011 } 3012 3013 /* 3014 * Directory entry removal dependencies. 3015 * 3016 * When removing a directory entry, the entry's inode pointer must be 3017 * zero'ed on disk before the corresponding inode's link count is decremented 3018 * (possibly freeing the inode for re-use). This dependency is handled by 3019 * updating the directory entry but delaying the inode count reduction until 3020 * after the directory block has been written to disk. After this point, the 3021 * inode count can be decremented whenever it is convenient. 3022 */ 3023 3024 /* 3025 * This routine should be called immediately after removing 3026 * a directory entry. The inode's link count should not be 3027 * decremented by the calling procedure -- the soft updates 3028 * code will do this task when it is safe. 3029 */ 3030 void 3031 softdep_setup_remove(bp, dp, ip, isrmdir) 3032 struct buf *bp; /* buffer containing directory block */ 3033 struct inode *dp; /* inode for the directory being modified */ 3034 struct inode *ip; /* inode for directory entry being removed */ 3035 int isrmdir; /* indicates if doing RMDIR */ 3036 { 3037 struct dirrem *dirrem, *prevdirrem; 3038 3039 /* 3040 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 3041 */ 3042 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3043 3044 /* 3045 * If the COMPLETE flag is clear, then there were no active 3046 * entries and we want to roll back to a zeroed entry until 3047 * the new inode is committed to disk. If the COMPLETE flag is 3048 * set then we have deleted an entry that never made it to 3049 * disk. If the entry we deleted resulted from a name change, 3050 * then the old name still resides on disk. We cannot delete 3051 * its inode (returned to us in prevdirrem) until the zeroed 3052 * directory entry gets to disk. The new inode has never been 3053 * referenced on the disk, so can be deleted immediately. 3054 */ 3055 if ((dirrem->dm_state & COMPLETE) == 0) { 3056 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 3057 dm_next); 3058 FREE_LOCK(&lk); 3059 } else { 3060 if (prevdirrem != NULL) 3061 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 3062 prevdirrem, dm_next); 3063 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 3064 FREE_LOCK(&lk); 3065 handle_workitem_remove(dirrem, NULL); 3066 } 3067 } 3068 3069 /* 3070 * Allocate a new dirrem if appropriate and return it along with 3071 * its associated pagedep. Called without a lock, returns with lock. 3072 */ 3073 static long num_dirrem; /* number of dirrem allocated */ 3074 static struct dirrem * 3075 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 3076 struct buf *bp; /* buffer containing directory block */ 3077 struct inode *dp; /* inode for the directory being modified */ 3078 struct inode *ip; /* inode for directory entry being removed */ 3079 int isrmdir; /* indicates if doing RMDIR */ 3080 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 3081 { 3082 int offset; 3083 ufs_lbn_t lbn; 3084 struct diradd *dap; 3085 struct dirrem *dirrem; 3086 struct pagedep *pagedep; 3087 3088 /* 3089 * Whiteouts have no deletion dependencies. 3090 */ 3091 if (ip == NULL) 3092 panic("newdirrem: whiteout"); 3093 /* 3094 * If we are over our limit, try to improve the situation. 3095 * Limiting the number of dirrem structures will also limit 3096 * the number of freefile and freeblks structures. 3097 */ 3098 ACQUIRE_LOCK(&lk); 3099 if (num_dirrem > max_softdeps / 2) 3100 (void) request_cleanup(FLUSH_REMOVE); 3101 num_dirrem += 1; 3102 FREE_LOCK(&lk); 3103 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3104 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3105 dirrem->dm_list.wk_type = D_DIRREM; 3106 dirrem->dm_state = isrmdir ? RMDIR : 0; 3107 dirrem->dm_mnt = ITOV(ip)->v_mount; 3108 dirrem->dm_oldinum = ip->i_number; 3109 *prevdirremp = NULL; 3110 3111 ACQUIRE_LOCK(&lk); 3112 lbn = lblkno(dp->i_fs, dp->i_offset); 3113 offset = blkoff(dp->i_fs, dp->i_offset); 3114 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3115 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3116 dirrem->dm_pagedep = pagedep; 3117 /* 3118 * Check for a diradd dependency for the same directory entry. 3119 * If present, then both dependencies become obsolete and can 3120 * be de-allocated. Check for an entry on both the pd_dirraddhd 3121 * list and the pd_pendinghd list. 3122 */ 3123 3124 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3125 if (dap->da_offset == offset) 3126 break; 3127 if (dap == NULL) { 3128 3129 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3130 if (dap->da_offset == offset) 3131 break; 3132 if (dap == NULL) 3133 return (dirrem); 3134 } 3135 /* 3136 * Must be ATTACHED at this point. 3137 */ 3138 if ((dap->da_state & ATTACHED) == 0) 3139 panic("newdirrem: not ATTACHED"); 3140 if (dap->da_newinum != ip->i_number) 3141 panic("newdirrem: inum %d should be %d", 3142 ip->i_number, dap->da_newinum); 3143 /* 3144 * If we are deleting a changed name that never made it to disk, 3145 * then return the dirrem describing the previous inode (which 3146 * represents the inode currently referenced from this entry on disk). 3147 */ 3148 if ((dap->da_state & DIRCHG) != 0) { 3149 *prevdirremp = dap->da_previous; 3150 dap->da_state &= ~DIRCHG; 3151 dap->da_pagedep = pagedep; 3152 } 3153 /* 3154 * We are deleting an entry that never made it to disk. 3155 * Mark it COMPLETE so we can delete its inode immediately. 3156 */ 3157 dirrem->dm_state |= COMPLETE; 3158 free_diradd(dap); 3159 return (dirrem); 3160 } 3161 3162 /* 3163 * Directory entry change dependencies. 3164 * 3165 * Changing an existing directory entry requires that an add operation 3166 * be completed first followed by a deletion. The semantics for the addition 3167 * are identical to the description of adding a new entry above except 3168 * that the rollback is to the old inode number rather than zero. Once 3169 * the addition dependency is completed, the removal is done as described 3170 * in the removal routine above. 3171 */ 3172 3173 /* 3174 * This routine should be called immediately after changing 3175 * a directory entry. The inode's link count should not be 3176 * decremented by the calling procedure -- the soft updates 3177 * code will perform this task when it is safe. 3178 */ 3179 void 3180 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3181 struct buf *bp; /* buffer containing directory block */ 3182 struct inode *dp; /* inode for the directory being modified */ 3183 struct inode *ip; /* inode for directory entry being removed */ 3184 ino_t newinum; /* new inode number for changed entry */ 3185 int isrmdir; /* indicates if doing RMDIR */ 3186 { 3187 int offset; 3188 struct diradd *dap = NULL; 3189 struct dirrem *dirrem, *prevdirrem; 3190 struct pagedep *pagedep; 3191 struct inodedep *inodedep; 3192 3193 offset = blkoff(dp->i_fs, dp->i_offset); 3194 3195 /* 3196 * Whiteouts do not need diradd dependencies. 3197 */ 3198 if (newinum != WINO) { 3199 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3200 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3201 dap->da_list.wk_type = D_DIRADD; 3202 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3203 dap->da_offset = offset; 3204 dap->da_newinum = newinum; 3205 } 3206 3207 /* 3208 * Allocate a new dirrem and ACQUIRE_LOCK. 3209 */ 3210 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3211 pagedep = dirrem->dm_pagedep; 3212 /* 3213 * The possible values for isrmdir: 3214 * 0 - non-directory file rename 3215 * 1 - directory rename within same directory 3216 * inum - directory rename to new directory of given inode number 3217 * When renaming to a new directory, we are both deleting and 3218 * creating a new directory entry, so the link count on the new 3219 * directory should not change. Thus we do not need the followup 3220 * dirrem which is usually done in handle_workitem_remove. We set 3221 * the DIRCHG flag to tell handle_workitem_remove to skip the 3222 * followup dirrem. 3223 */ 3224 if (isrmdir > 1) 3225 dirrem->dm_state |= DIRCHG; 3226 3227 /* 3228 * Whiteouts have no additional dependencies, 3229 * so just put the dirrem on the correct list. 3230 */ 3231 if (newinum == WINO) { 3232 if ((dirrem->dm_state & COMPLETE) == 0) { 3233 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3234 dm_next); 3235 } else { 3236 dirrem->dm_dirinum = pagedep->pd_ino; 3237 add_to_worklist(&dirrem->dm_list); 3238 } 3239 FREE_LOCK(&lk); 3240 return; 3241 } 3242 3243 /* 3244 * If the COMPLETE flag is clear, then there were no active 3245 * entries and we want to roll back to the previous inode until 3246 * the new inode is committed to disk. If the COMPLETE flag is 3247 * set, then we have deleted an entry that never made it to disk. 3248 * If the entry we deleted resulted from a name change, then the old 3249 * inode reference still resides on disk. Any rollback that we do 3250 * needs to be to that old inode (returned to us in prevdirrem). If 3251 * the entry we deleted resulted from a create, then there is 3252 * no entry on the disk, so we want to roll back to zero rather 3253 * than the uncommitted inode. In either of the COMPLETE cases we 3254 * want to immediately free the unwritten and unreferenced inode. 3255 */ 3256 if ((dirrem->dm_state & COMPLETE) == 0) { 3257 dap->da_previous = dirrem; 3258 } else { 3259 if (prevdirrem != NULL) { 3260 dap->da_previous = prevdirrem; 3261 } else { 3262 dap->da_state &= ~DIRCHG; 3263 dap->da_pagedep = pagedep; 3264 } 3265 dirrem->dm_dirinum = pagedep->pd_ino; 3266 add_to_worklist(&dirrem->dm_list); 3267 } 3268 /* 3269 * Link into its inodedep. Put it on the id_bufwait list if the inode 3270 * is not yet written. If it is written, do the post-inode write 3271 * processing to put it on the id_pendinghd list. 3272 */ 3273 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3274 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3275 dap->da_state |= COMPLETE; 3276 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3277 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3278 } else { 3279 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3280 dap, da_pdlist); 3281 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3282 } 3283 FREE_LOCK(&lk); 3284 } 3285 3286 /* 3287 * Called whenever the link count on an inode is changed. 3288 * It creates an inode dependency so that the new reference(s) 3289 * to the inode cannot be committed to disk until the updated 3290 * inode has been written. 3291 */ 3292 void 3293 softdep_change_linkcnt(ip) 3294 struct inode *ip; /* the inode with the increased link count */ 3295 { 3296 struct inodedep *inodedep; 3297 3298 ACQUIRE_LOCK(&lk); 3299 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3300 if (ip->i_nlink < ip->i_effnlink) 3301 panic("softdep_change_linkcnt: bad delta"); 3302 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3303 FREE_LOCK(&lk); 3304 } 3305 3306 /* 3307 * Called when the effective link count and the reference count 3308 * on an inode drops to zero. At this point there are no names 3309 * referencing the file in the filesystem and no active file 3310 * references. The space associated with the file will be freed 3311 * as soon as the necessary soft dependencies are cleared. 3312 */ 3313 void 3314 softdep_releasefile(ip) 3315 struct inode *ip; /* inode with the zero effective link count */ 3316 { 3317 struct inodedep *inodedep; 3318 struct fs *fs; 3319 int extblocks; 3320 3321 if (ip->i_effnlink > 0) 3322 panic("softdep_filerelease: file still referenced"); 3323 /* 3324 * We may be called several times as the real reference count 3325 * drops to zero. We only want to account for the space once. 3326 */ 3327 if (ip->i_flag & IN_SPACECOUNTED) 3328 return; 3329 /* 3330 * We have to deactivate a snapshot otherwise copyonwrites may 3331 * add blocks and the cleanup may remove blocks after we have 3332 * tried to account for them. 3333 */ 3334 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3335 ffs_snapremove(ITOV(ip)); 3336 /* 3337 * If we are tracking an nlinkdelta, we have to also remember 3338 * whether we accounted for the freed space yet. 3339 */ 3340 ACQUIRE_LOCK(&lk); 3341 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3342 inodedep->id_state |= SPACECOUNTED; 3343 FREE_LOCK(&lk); 3344 fs = ip->i_fs; 3345 extblocks = 0; 3346 if (fs->fs_magic == FS_UFS2_MAGIC) 3347 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3348 UFS_LOCK(ip->i_ump); 3349 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3350 ip->i_fs->fs_pendinginodes += 1; 3351 UFS_UNLOCK(ip->i_ump); 3352 ip->i_flag |= IN_SPACECOUNTED; 3353 } 3354 3355 /* 3356 * This workitem decrements the inode's link count. 3357 * If the link count reaches zero, the file is removed. 3358 */ 3359 static void 3360 handle_workitem_remove(dirrem, xp) 3361 struct dirrem *dirrem; 3362 struct vnode *xp; 3363 { 3364 struct thread *td = curthread; 3365 struct inodedep *inodedep; 3366 struct vnode *vp; 3367 struct inode *ip; 3368 ino_t oldinum; 3369 int error; 3370 3371 if ((vp = xp) == NULL && 3372 (error = ffs_vget(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3373 &vp)) != 0) { 3374 softdep_error("handle_workitem_remove: vget", error); 3375 return; 3376 } 3377 ip = VTOI(vp); 3378 ACQUIRE_LOCK(&lk); 3379 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0) 3380 panic("handle_workitem_remove: lost inodedep"); 3381 /* 3382 * Normal file deletion. 3383 */ 3384 if ((dirrem->dm_state & RMDIR) == 0) { 3385 ip->i_nlink--; 3386 DIP_SET(ip, i_nlink, ip->i_nlink); 3387 ip->i_flag |= IN_CHANGE; 3388 if (ip->i_nlink < ip->i_effnlink) 3389 panic("handle_workitem_remove: bad file delta"); 3390 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3391 num_dirrem -= 1; 3392 FREE_LOCK(&lk); 3393 vput(vp); 3394 WORKITEM_FREE(dirrem, D_DIRREM); 3395 return; 3396 } 3397 /* 3398 * Directory deletion. Decrement reference count for both the 3399 * just deleted parent directory entry and the reference for ".". 3400 * Next truncate the directory to length zero. When the 3401 * truncation completes, arrange to have the reference count on 3402 * the parent decremented to account for the loss of "..". 3403 */ 3404 ip->i_nlink -= 2; 3405 DIP_SET(ip, i_nlink, ip->i_nlink); 3406 ip->i_flag |= IN_CHANGE; 3407 if (ip->i_nlink < ip->i_effnlink) 3408 panic("handle_workitem_remove: bad dir delta"); 3409 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3410 FREE_LOCK(&lk); 3411 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3412 softdep_error("handle_workitem_remove: truncate", error); 3413 ACQUIRE_LOCK(&lk); 3414 /* 3415 * Rename a directory to a new parent. Since, we are both deleting 3416 * and creating a new directory entry, the link count on the new 3417 * directory should not change. Thus we skip the followup dirrem. 3418 */ 3419 if (dirrem->dm_state & DIRCHG) { 3420 num_dirrem -= 1; 3421 FREE_LOCK(&lk); 3422 vput(vp); 3423 WORKITEM_FREE(dirrem, D_DIRREM); 3424 return; 3425 } 3426 /* 3427 * If the inodedep does not exist, then the zero'ed inode has 3428 * been written to disk. If the allocated inode has never been 3429 * written to disk, then the on-disk inode is zero'ed. In either 3430 * case we can remove the file immediately. 3431 */ 3432 dirrem->dm_state = 0; 3433 oldinum = dirrem->dm_oldinum; 3434 dirrem->dm_oldinum = dirrem->dm_dirinum; 3435 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3436 check_inode_unwritten(inodedep)) { 3437 FREE_LOCK(&lk); 3438 vput(vp); 3439 handle_workitem_remove(dirrem, NULL); 3440 return; 3441 } 3442 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3443 FREE_LOCK(&lk); 3444 vput(vp); 3445 } 3446 3447 /* 3448 * Inode de-allocation dependencies. 3449 * 3450 * When an inode's link count is reduced to zero, it can be de-allocated. We 3451 * found it convenient to postpone de-allocation until after the inode is 3452 * written to disk with its new link count (zero). At this point, all of the 3453 * on-disk inode's block pointers are nullified and, with careful dependency 3454 * list ordering, all dependencies related to the inode will be satisfied and 3455 * the corresponding dependency structures de-allocated. So, if/when the 3456 * inode is reused, there will be no mixing of old dependencies with new 3457 * ones. This artificial dependency is set up by the block de-allocation 3458 * procedure above (softdep_setup_freeblocks) and completed by the 3459 * following procedure. 3460 */ 3461 static void 3462 handle_workitem_freefile(freefile) 3463 struct freefile *freefile; 3464 { 3465 struct fs *fs; 3466 struct inodedep *idp; 3467 struct ufsmount *ump; 3468 int error; 3469 3470 ump = VFSTOUFS(freefile->fx_mnt); 3471 fs = ump->um_fs; 3472 #ifdef DEBUG 3473 ACQUIRE_LOCK(&lk); 3474 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3475 FREE_LOCK(&lk); 3476 if (error) 3477 panic("handle_workitem_freefile: inodedep survived"); 3478 #endif 3479 UFS_LOCK(ump); 3480 fs->fs_pendinginodes -= 1; 3481 UFS_UNLOCK(ump); 3482 if ((error = ffs_freefile(VFSTOUFS(freefile->fx_mnt), fs, 3483 freefile->fx_devvp, freefile->fx_oldinum, freefile->fx_mode)) != 0) 3484 softdep_error("handle_workitem_freefile", error); 3485 WORKITEM_FREE(freefile, D_FREEFILE); 3486 } 3487 3488 int 3489 softdep_disk_prewrite(struct buf *bp) 3490 { 3491 int error; 3492 struct vnode *vp = bp->b_vp; 3493 3494 KASSERT(bp->b_iocmd == BIO_WRITE, 3495 ("softdep_disk_prewrite on non-BIO_WRITE buffer")); 3496 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 3497 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 3498 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 3499 panic("softdep_disk_prewrite: bad I/O"); 3500 bp->b_flags &= ~B_VALIDSUSPWRT; 3501 if (LIST_FIRST(&bp->b_dep) != NULL) 3502 buf_start(bp); 3503 mp_fixme("This should require the vnode lock."); 3504 if ((vp->v_vflag & VV_COPYONWRITE) && 3505 vp->v_rdev->si_snapdata != NULL && 3506 (error = (ffs_copyonwrite)(vp, bp)) != 0 && 3507 error != EOPNOTSUPP) { 3508 bp->b_error = error; 3509 bp->b_ioflags |= BIO_ERROR; 3510 bufdone(bp); 3511 return (1); 3512 } 3513 return (0); 3514 } 3515 3516 3517 /* 3518 * Disk writes. 3519 * 3520 * The dependency structures constructed above are most actively used when file 3521 * system blocks are written to disk. No constraints are placed on when a 3522 * block can be written, but unsatisfied update dependencies are made safe by 3523 * modifying (or replacing) the source memory for the duration of the disk 3524 * write. When the disk write completes, the memory block is again brought 3525 * up-to-date. 3526 * 3527 * In-core inode structure reclamation. 3528 * 3529 * Because there are a finite number of "in-core" inode structures, they are 3530 * reused regularly. By transferring all inode-related dependencies to the 3531 * in-memory inode block and indexing them separately (via "inodedep"s), we 3532 * can allow "in-core" inode structures to be reused at any time and avoid 3533 * any increase in contention. 3534 * 3535 * Called just before entering the device driver to initiate a new disk I/O. 3536 * The buffer must be locked, thus, no I/O completion operations can occur 3537 * while we are manipulating its associated dependencies. 3538 */ 3539 static void 3540 softdep_disk_io_initiation(bp) 3541 struct buf *bp; /* structure describing disk write to occur */ 3542 { 3543 struct worklist *wk, *nextwk; 3544 struct indirdep *indirdep; 3545 struct inodedep *inodedep; 3546 3547 /* 3548 * We only care about write operations. There should never 3549 * be dependencies for reads. 3550 */ 3551 if (bp->b_iocmd != BIO_WRITE) 3552 panic("softdep_disk_io_initiation: not write"); 3553 ACQUIRE_LOCK(&lk); 3554 /* 3555 * Do any necessary pre-I/O processing. 3556 */ 3557 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, nextwk) { 3558 switch (wk->wk_type) { 3559 3560 case D_PAGEDEP: 3561 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3562 continue; 3563 3564 case D_INODEDEP: 3565 inodedep = WK_INODEDEP(wk); 3566 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3567 initiate_write_inodeblock_ufs1(inodedep, bp); 3568 else 3569 initiate_write_inodeblock_ufs2(inodedep, bp); 3570 continue; 3571 3572 case D_INDIRDEP: 3573 indirdep = WK_INDIRDEP(wk); 3574 if (indirdep->ir_state & GOINGAWAY) 3575 panic("disk_io_initiation: indirdep gone"); 3576 /* 3577 * If there are no remaining dependencies, this 3578 * will be writing the real pointers, so the 3579 * dependency can be freed. 3580 */ 3581 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3582 struct buf *bp; 3583 3584 bp = indirdep->ir_savebp; 3585 bp->b_flags |= B_INVAL | B_NOCACHE; 3586 /* inline expand WORKLIST_REMOVE(wk); */ 3587 wk->wk_state &= ~ONWORKLIST; 3588 LIST_REMOVE(wk, wk_list); 3589 WORKITEM_FREE(indirdep, D_INDIRDEP); 3590 FREE_LOCK(&lk); 3591 brelse(bp); 3592 ACQUIRE_LOCK(&lk); 3593 continue; 3594 } 3595 /* 3596 * Replace up-to-date version with safe version. 3597 */ 3598 FREE_LOCK(&lk); 3599 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3600 M_INDIRDEP, M_SOFTDEP_FLAGS); 3601 ACQUIRE_LOCK(&lk); 3602 indirdep->ir_state &= ~ATTACHED; 3603 indirdep->ir_state |= UNDONE; 3604 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3605 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3606 bp->b_bcount); 3607 continue; 3608 3609 case D_MKDIR: 3610 case D_BMSAFEMAP: 3611 case D_ALLOCDIRECT: 3612 case D_ALLOCINDIR: 3613 continue; 3614 3615 default: 3616 panic("handle_disk_io_initiation: Unexpected type %s", 3617 TYPENAME(wk->wk_type)); 3618 /* NOTREACHED */ 3619 } 3620 } 3621 FREE_LOCK(&lk); 3622 } 3623 3624 /* 3625 * Called from within the procedure above to deal with unsatisfied 3626 * allocation dependencies in a directory. The buffer must be locked, 3627 * thus, no I/O completion operations can occur while we are 3628 * manipulating its associated dependencies. 3629 */ 3630 static void 3631 initiate_write_filepage(pagedep, bp) 3632 struct pagedep *pagedep; 3633 struct buf *bp; 3634 { 3635 struct diradd *dap; 3636 struct direct *ep; 3637 int i; 3638 3639 if (pagedep->pd_state & IOSTARTED) { 3640 /* 3641 * This can only happen if there is a driver that does not 3642 * understand chaining. Here biodone will reissue the call 3643 * to strategy for the incomplete buffers. 3644 */ 3645 printf("initiate_write_filepage: already started\n"); 3646 return; 3647 } 3648 pagedep->pd_state |= IOSTARTED; 3649 for (i = 0; i < DAHASHSZ; i++) { 3650 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3651 ep = (struct direct *) 3652 ((char *)bp->b_data + dap->da_offset); 3653 if (ep->d_ino != dap->da_newinum) 3654 panic("%s: dir inum %d != new %d", 3655 "initiate_write_filepage", 3656 ep->d_ino, dap->da_newinum); 3657 if (dap->da_state & DIRCHG) 3658 ep->d_ino = dap->da_previous->dm_oldinum; 3659 else 3660 ep->d_ino = 0; 3661 dap->da_state &= ~ATTACHED; 3662 dap->da_state |= UNDONE; 3663 } 3664 } 3665 } 3666 3667 /* 3668 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3669 * Note that any bug fixes made to this routine must be done in the 3670 * version found below. 3671 * 3672 * Called from within the procedure above to deal with unsatisfied 3673 * allocation dependencies in an inodeblock. The buffer must be 3674 * locked, thus, no I/O completion operations can occur while we 3675 * are manipulating its associated dependencies. 3676 */ 3677 static void 3678 initiate_write_inodeblock_ufs1(inodedep, bp) 3679 struct inodedep *inodedep; 3680 struct buf *bp; /* The inode block */ 3681 { 3682 struct allocdirect *adp, *lastadp; 3683 struct ufs1_dinode *dp; 3684 struct fs *fs; 3685 ufs_lbn_t i, prevlbn = 0; 3686 int deplist; 3687 3688 if (inodedep->id_state & IOSTARTED) 3689 panic("initiate_write_inodeblock_ufs1: already started"); 3690 inodedep->id_state |= IOSTARTED; 3691 fs = inodedep->id_fs; 3692 dp = (struct ufs1_dinode *)bp->b_data + 3693 ino_to_fsbo(fs, inodedep->id_ino); 3694 /* 3695 * If the bitmap is not yet written, then the allocated 3696 * inode cannot be written to disk. 3697 */ 3698 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3699 if (inodedep->id_savedino1 != NULL) 3700 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3701 FREE_LOCK(&lk); 3702 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3703 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3704 ACQUIRE_LOCK(&lk); 3705 *inodedep->id_savedino1 = *dp; 3706 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3707 return; 3708 } 3709 /* 3710 * If no dependencies, then there is nothing to roll back. 3711 */ 3712 inodedep->id_savedsize = dp->di_size; 3713 inodedep->id_savedextsize = 0; 3714 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3715 return; 3716 /* 3717 * Set the dependencies to busy. 3718 */ 3719 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3720 adp = TAILQ_NEXT(adp, ad_next)) { 3721 #ifdef DIAGNOSTIC 3722 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3723 panic("softdep_write_inodeblock: lbn order"); 3724 prevlbn = adp->ad_lbn; 3725 if (adp->ad_lbn < NDADDR && 3726 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3727 panic("%s: direct pointer #%jd mismatch %d != %jd", 3728 "softdep_write_inodeblock", 3729 (intmax_t)adp->ad_lbn, 3730 dp->di_db[adp->ad_lbn], 3731 (intmax_t)adp->ad_newblkno); 3732 if (adp->ad_lbn >= NDADDR && 3733 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3734 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3735 "softdep_write_inodeblock", 3736 (intmax_t)adp->ad_lbn - NDADDR, 3737 dp->di_ib[adp->ad_lbn - NDADDR], 3738 (intmax_t)adp->ad_newblkno); 3739 deplist |= 1 << adp->ad_lbn; 3740 if ((adp->ad_state & ATTACHED) == 0) 3741 panic("softdep_write_inodeblock: Unknown state 0x%x", 3742 adp->ad_state); 3743 #endif /* DIAGNOSTIC */ 3744 adp->ad_state &= ~ATTACHED; 3745 adp->ad_state |= UNDONE; 3746 } 3747 /* 3748 * The on-disk inode cannot claim to be any larger than the last 3749 * fragment that has been written. Otherwise, the on-disk inode 3750 * might have fragments that were not the last block in the file 3751 * which would corrupt the filesystem. 3752 */ 3753 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3754 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3755 if (adp->ad_lbn >= NDADDR) 3756 break; 3757 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3758 /* keep going until hitting a rollback to a frag */ 3759 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3760 continue; 3761 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3762 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3763 #ifdef DIAGNOSTIC 3764 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3765 panic("softdep_write_inodeblock: lost dep1"); 3766 #endif /* DIAGNOSTIC */ 3767 dp->di_db[i] = 0; 3768 } 3769 for (i = 0; i < NIADDR; i++) { 3770 #ifdef DIAGNOSTIC 3771 if (dp->di_ib[i] != 0 && 3772 (deplist & ((1 << NDADDR) << i)) == 0) 3773 panic("softdep_write_inodeblock: lost dep2"); 3774 #endif /* DIAGNOSTIC */ 3775 dp->di_ib[i] = 0; 3776 } 3777 return; 3778 } 3779 /* 3780 * If we have zero'ed out the last allocated block of the file, 3781 * roll back the size to the last currently allocated block. 3782 * We know that this last allocated block is a full-sized as 3783 * we already checked for fragments in the loop above. 3784 */ 3785 if (lastadp != NULL && 3786 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3787 for (i = lastadp->ad_lbn; i >= 0; i--) 3788 if (dp->di_db[i] != 0) 3789 break; 3790 dp->di_size = (i + 1) * fs->fs_bsize; 3791 } 3792 /* 3793 * The only dependencies are for indirect blocks. 3794 * 3795 * The file size for indirect block additions is not guaranteed. 3796 * Such a guarantee would be non-trivial to achieve. The conventional 3797 * synchronous write implementation also does not make this guarantee. 3798 * Fsck should catch and fix discrepancies. Arguably, the file size 3799 * can be over-estimated without destroying integrity when the file 3800 * moves into the indirect blocks (i.e., is large). If we want to 3801 * postpone fsck, we are stuck with this argument. 3802 */ 3803 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3804 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3805 } 3806 3807 /* 3808 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3809 * Note that any bug fixes made to this routine must be done in the 3810 * version found above. 3811 * 3812 * Called from within the procedure above to deal with unsatisfied 3813 * allocation dependencies in an inodeblock. The buffer must be 3814 * locked, thus, no I/O completion operations can occur while we 3815 * are manipulating its associated dependencies. 3816 */ 3817 static void 3818 initiate_write_inodeblock_ufs2(inodedep, bp) 3819 struct inodedep *inodedep; 3820 struct buf *bp; /* The inode block */ 3821 { 3822 struct allocdirect *adp, *lastadp; 3823 struct ufs2_dinode *dp; 3824 struct fs *fs; 3825 ufs_lbn_t i, prevlbn = 0; 3826 int deplist; 3827 3828 if (inodedep->id_state & IOSTARTED) 3829 panic("initiate_write_inodeblock_ufs2: already started"); 3830 inodedep->id_state |= IOSTARTED; 3831 fs = inodedep->id_fs; 3832 dp = (struct ufs2_dinode *)bp->b_data + 3833 ino_to_fsbo(fs, inodedep->id_ino); 3834 /* 3835 * If the bitmap is not yet written, then the allocated 3836 * inode cannot be written to disk. 3837 */ 3838 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3839 if (inodedep->id_savedino2 != NULL) 3840 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3841 FREE_LOCK(&lk); 3842 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3843 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3844 ACQUIRE_LOCK(&lk); 3845 *inodedep->id_savedino2 = *dp; 3846 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3847 return; 3848 } 3849 /* 3850 * If no dependencies, then there is nothing to roll back. 3851 */ 3852 inodedep->id_savedsize = dp->di_size; 3853 inodedep->id_savedextsize = dp->di_extsize; 3854 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 3855 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 3856 return; 3857 /* 3858 * Set the ext data dependencies to busy. 3859 */ 3860 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3861 adp = TAILQ_NEXT(adp, ad_next)) { 3862 #ifdef DIAGNOSTIC 3863 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3864 panic("softdep_write_inodeblock: lbn order"); 3865 prevlbn = adp->ad_lbn; 3866 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) 3867 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3868 "softdep_write_inodeblock", 3869 (intmax_t)adp->ad_lbn, 3870 (intmax_t)dp->di_extb[adp->ad_lbn], 3871 (intmax_t)adp->ad_newblkno); 3872 deplist |= 1 << adp->ad_lbn; 3873 if ((adp->ad_state & ATTACHED) == 0) 3874 panic("softdep_write_inodeblock: Unknown state 0x%x", 3875 adp->ad_state); 3876 #endif /* DIAGNOSTIC */ 3877 adp->ad_state &= ~ATTACHED; 3878 adp->ad_state |= UNDONE; 3879 } 3880 /* 3881 * The on-disk inode cannot claim to be any larger than the last 3882 * fragment that has been written. Otherwise, the on-disk inode 3883 * might have fragments that were not the last block in the ext 3884 * data which would corrupt the filesystem. 3885 */ 3886 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3887 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3888 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 3889 /* keep going until hitting a rollback to a frag */ 3890 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3891 continue; 3892 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3893 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 3894 #ifdef DIAGNOSTIC 3895 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 3896 panic("softdep_write_inodeblock: lost dep1"); 3897 #endif /* DIAGNOSTIC */ 3898 dp->di_extb[i] = 0; 3899 } 3900 lastadp = NULL; 3901 break; 3902 } 3903 /* 3904 * If we have zero'ed out the last allocated block of the ext 3905 * data, roll back the size to the last currently allocated block. 3906 * We know that this last allocated block is a full-sized as 3907 * we already checked for fragments in the loop above. 3908 */ 3909 if (lastadp != NULL && 3910 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3911 for (i = lastadp->ad_lbn; i >= 0; i--) 3912 if (dp->di_extb[i] != 0) 3913 break; 3914 dp->di_extsize = (i + 1) * fs->fs_bsize; 3915 } 3916 /* 3917 * Set the file data dependencies to busy. 3918 */ 3919 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3920 adp = TAILQ_NEXT(adp, ad_next)) { 3921 #ifdef DIAGNOSTIC 3922 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3923 panic("softdep_write_inodeblock: lbn order"); 3924 prevlbn = adp->ad_lbn; 3925 if (adp->ad_lbn < NDADDR && 3926 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3927 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3928 "softdep_write_inodeblock", 3929 (intmax_t)adp->ad_lbn, 3930 (intmax_t)dp->di_db[adp->ad_lbn], 3931 (intmax_t)adp->ad_newblkno); 3932 if (adp->ad_lbn >= NDADDR && 3933 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3934 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3935 "softdep_write_inodeblock:", 3936 (intmax_t)adp->ad_lbn - NDADDR, 3937 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3938 (intmax_t)adp->ad_newblkno); 3939 deplist |= 1 << adp->ad_lbn; 3940 if ((adp->ad_state & ATTACHED) == 0) 3941 panic("softdep_write_inodeblock: Unknown state 0x%x", 3942 adp->ad_state); 3943 #endif /* DIAGNOSTIC */ 3944 adp->ad_state &= ~ATTACHED; 3945 adp->ad_state |= UNDONE; 3946 } 3947 /* 3948 * The on-disk inode cannot claim to be any larger than the last 3949 * fragment that has been written. Otherwise, the on-disk inode 3950 * might have fragments that were not the last block in the file 3951 * which would corrupt the filesystem. 3952 */ 3953 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3954 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3955 if (adp->ad_lbn >= NDADDR) 3956 break; 3957 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3958 /* keep going until hitting a rollback to a frag */ 3959 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3960 continue; 3961 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3962 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3963 #ifdef DIAGNOSTIC 3964 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3965 panic("softdep_write_inodeblock: lost dep2"); 3966 #endif /* DIAGNOSTIC */ 3967 dp->di_db[i] = 0; 3968 } 3969 for (i = 0; i < NIADDR; i++) { 3970 #ifdef DIAGNOSTIC 3971 if (dp->di_ib[i] != 0 && 3972 (deplist & ((1 << NDADDR) << i)) == 0) 3973 panic("softdep_write_inodeblock: lost dep3"); 3974 #endif /* DIAGNOSTIC */ 3975 dp->di_ib[i] = 0; 3976 } 3977 return; 3978 } 3979 /* 3980 * If we have zero'ed out the last allocated block of the file, 3981 * roll back the size to the last currently allocated block. 3982 * We know that this last allocated block is a full-sized as 3983 * we already checked for fragments in the loop above. 3984 */ 3985 if (lastadp != NULL && 3986 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3987 for (i = lastadp->ad_lbn; i >= 0; i--) 3988 if (dp->di_db[i] != 0) 3989 break; 3990 dp->di_size = (i + 1) * fs->fs_bsize; 3991 } 3992 /* 3993 * The only dependencies are for indirect blocks. 3994 * 3995 * The file size for indirect block additions is not guaranteed. 3996 * Such a guarantee would be non-trivial to achieve. The conventional 3997 * synchronous write implementation also does not make this guarantee. 3998 * Fsck should catch and fix discrepancies. Arguably, the file size 3999 * can be over-estimated without destroying integrity when the file 4000 * moves into the indirect blocks (i.e., is large). If we want to 4001 * postpone fsck, we are stuck with this argument. 4002 */ 4003 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4004 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4005 } 4006 4007 /* 4008 * This routine is called during the completion interrupt 4009 * service routine for a disk write (from the procedure called 4010 * by the device driver to inform the filesystem caches of 4011 * a request completion). It should be called early in this 4012 * procedure, before the block is made available to other 4013 * processes or other routines are called. 4014 */ 4015 static void 4016 softdep_disk_write_complete(bp) 4017 struct buf *bp; /* describes the completed disk write */ 4018 { 4019 struct worklist *wk; 4020 struct worklist *owk; 4021 struct workhead reattach; 4022 struct newblk *newblk; 4023 struct allocindir *aip; 4024 struct allocdirect *adp; 4025 struct indirdep *indirdep; 4026 struct inodedep *inodedep; 4027 struct bmsafemap *bmsafemap; 4028 4029 /* 4030 * If an error occurred while doing the write, then the data 4031 * has not hit the disk and the dependencies cannot be unrolled. 4032 */ 4033 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 4034 return; 4035 LIST_INIT(&reattach); 4036 /* 4037 * This lock must not be released anywhere in this code segment. 4038 */ 4039 ACQUIRE_LOCK(&lk); 4040 owk = NULL; 4041 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4042 WORKLIST_REMOVE(wk); 4043 if (wk == owk) 4044 panic("duplicate worklist: %p\n", wk); 4045 owk = wk; 4046 switch (wk->wk_type) { 4047 4048 case D_PAGEDEP: 4049 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 4050 WORKLIST_INSERT(&reattach, wk); 4051 continue; 4052 4053 case D_INODEDEP: 4054 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 4055 WORKLIST_INSERT(&reattach, wk); 4056 continue; 4057 4058 case D_BMSAFEMAP: 4059 bmsafemap = WK_BMSAFEMAP(wk); 4060 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 4061 newblk->nb_state |= DEPCOMPLETE; 4062 newblk->nb_bmsafemap = NULL; 4063 LIST_REMOVE(newblk, nb_deps); 4064 } 4065 while ((adp = 4066 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 4067 adp->ad_state |= DEPCOMPLETE; 4068 adp->ad_buf = NULL; 4069 LIST_REMOVE(adp, ad_deps); 4070 handle_allocdirect_partdone(adp); 4071 } 4072 while ((aip = 4073 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 4074 aip->ai_state |= DEPCOMPLETE; 4075 aip->ai_buf = NULL; 4076 LIST_REMOVE(aip, ai_deps); 4077 handle_allocindir_partdone(aip); 4078 } 4079 while ((inodedep = 4080 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4081 inodedep->id_state |= DEPCOMPLETE; 4082 LIST_REMOVE(inodedep, id_deps); 4083 inodedep->id_buf = NULL; 4084 } 4085 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4086 continue; 4087 4088 case D_MKDIR: 4089 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4090 continue; 4091 4092 case D_ALLOCDIRECT: 4093 adp = WK_ALLOCDIRECT(wk); 4094 adp->ad_state |= COMPLETE; 4095 handle_allocdirect_partdone(adp); 4096 continue; 4097 4098 case D_ALLOCINDIR: 4099 aip = WK_ALLOCINDIR(wk); 4100 aip->ai_state |= COMPLETE; 4101 handle_allocindir_partdone(aip); 4102 continue; 4103 4104 case D_INDIRDEP: 4105 indirdep = WK_INDIRDEP(wk); 4106 if (indirdep->ir_state & GOINGAWAY) 4107 panic("disk_write_complete: indirdep gone"); 4108 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4109 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4110 indirdep->ir_saveddata = 0; 4111 indirdep->ir_state &= ~UNDONE; 4112 indirdep->ir_state |= ATTACHED; 4113 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4114 handle_allocindir_partdone(aip); 4115 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 4116 panic("disk_write_complete: not gone"); 4117 } 4118 WORKLIST_INSERT(&reattach, wk); 4119 if ((bp->b_flags & B_DELWRI) == 0) 4120 stat_indir_blk_ptrs++; 4121 bdirty(bp); 4122 continue; 4123 4124 default: 4125 panic("handle_disk_write_complete: Unknown type %s", 4126 TYPENAME(wk->wk_type)); 4127 /* NOTREACHED */ 4128 } 4129 } 4130 /* 4131 * Reattach any requests that must be redone. 4132 */ 4133 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4134 WORKLIST_REMOVE(wk); 4135 WORKLIST_INSERT(&bp->b_dep, wk); 4136 } 4137 FREE_LOCK(&lk); 4138 } 4139 4140 /* 4141 * Called from within softdep_disk_write_complete above. Note that 4142 * this routine is always called from interrupt level with further 4143 * splbio interrupts blocked. 4144 */ 4145 static void 4146 handle_allocdirect_partdone(adp) 4147 struct allocdirect *adp; /* the completed allocdirect */ 4148 { 4149 struct allocdirectlst *listhead; 4150 struct allocdirect *listadp; 4151 struct inodedep *inodedep; 4152 long bsize, delay; 4153 4154 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4155 return; 4156 if (adp->ad_buf != NULL) 4157 panic("handle_allocdirect_partdone: dangling dep"); 4158 /* 4159 * The on-disk inode cannot claim to be any larger than the last 4160 * fragment that has been written. Otherwise, the on-disk inode 4161 * might have fragments that were not the last block in the file 4162 * which would corrupt the filesystem. Thus, we cannot free any 4163 * allocdirects after one whose ad_oldblkno claims a fragment as 4164 * these blocks must be rolled back to zero before writing the inode. 4165 * We check the currently active set of allocdirects in id_inoupdt 4166 * or id_extupdt as appropriate. 4167 */ 4168 inodedep = adp->ad_inodedep; 4169 bsize = inodedep->id_fs->fs_bsize; 4170 if (adp->ad_state & EXTDATA) 4171 listhead = &inodedep->id_extupdt; 4172 else 4173 listhead = &inodedep->id_inoupdt; 4174 TAILQ_FOREACH(listadp, listhead, ad_next) { 4175 /* found our block */ 4176 if (listadp == adp) 4177 break; 4178 /* continue if ad_oldlbn is not a fragment */ 4179 if (listadp->ad_oldsize == 0 || 4180 listadp->ad_oldsize == bsize) 4181 continue; 4182 /* hit a fragment */ 4183 return; 4184 } 4185 /* 4186 * If we have reached the end of the current list without 4187 * finding the just finished dependency, then it must be 4188 * on the future dependency list. Future dependencies cannot 4189 * be freed until they are moved to the current list. 4190 */ 4191 if (listadp == NULL) { 4192 #ifdef DEBUG 4193 if (adp->ad_state & EXTDATA) 4194 listhead = &inodedep->id_newextupdt; 4195 else 4196 listhead = &inodedep->id_newinoupdt; 4197 TAILQ_FOREACH(listadp, listhead, ad_next) 4198 /* found our block */ 4199 if (listadp == adp) 4200 break; 4201 if (listadp == NULL) 4202 panic("handle_allocdirect_partdone: lost dep"); 4203 #endif /* DEBUG */ 4204 return; 4205 } 4206 /* 4207 * If we have found the just finished dependency, then free 4208 * it along with anything that follows it that is complete. 4209 * If the inode still has a bitmap dependency, then it has 4210 * never been written to disk, hence the on-disk inode cannot 4211 * reference the old fragment so we can free it without delay. 4212 */ 4213 delay = (inodedep->id_state & DEPCOMPLETE); 4214 for (; adp; adp = listadp) { 4215 listadp = TAILQ_NEXT(adp, ad_next); 4216 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4217 return; 4218 free_allocdirect(listhead, adp, delay); 4219 } 4220 } 4221 4222 /* 4223 * Called from within softdep_disk_write_complete above. Note that 4224 * this routine is always called from interrupt level with further 4225 * splbio interrupts blocked. 4226 */ 4227 static void 4228 handle_allocindir_partdone(aip) 4229 struct allocindir *aip; /* the completed allocindir */ 4230 { 4231 struct indirdep *indirdep; 4232 4233 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4234 return; 4235 if (aip->ai_buf != NULL) 4236 panic("handle_allocindir_partdone: dangling dependency"); 4237 indirdep = aip->ai_indirdep; 4238 if (indirdep->ir_state & UNDONE) { 4239 LIST_REMOVE(aip, ai_next); 4240 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4241 return; 4242 } 4243 if (indirdep->ir_state & UFS1FMT) 4244 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4245 aip->ai_newblkno; 4246 else 4247 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4248 aip->ai_newblkno; 4249 LIST_REMOVE(aip, ai_next); 4250 if (aip->ai_freefrag != NULL) 4251 add_to_worklist(&aip->ai_freefrag->ff_list); 4252 WORKITEM_FREE(aip, D_ALLOCINDIR); 4253 } 4254 4255 /* 4256 * Called from within softdep_disk_write_complete above to restore 4257 * in-memory inode block contents to their most up-to-date state. Note 4258 * that this routine is always called from interrupt level with further 4259 * splbio interrupts blocked. 4260 */ 4261 static int 4262 handle_written_inodeblock(inodedep, bp) 4263 struct inodedep *inodedep; 4264 struct buf *bp; /* buffer containing the inode block */ 4265 { 4266 struct worklist *wk, *filefree; 4267 struct allocdirect *adp, *nextadp; 4268 struct ufs1_dinode *dp1 = NULL; 4269 struct ufs2_dinode *dp2 = NULL; 4270 int hadchanges, fstype; 4271 4272 if ((inodedep->id_state & IOSTARTED) == 0) 4273 panic("handle_written_inodeblock: not started"); 4274 inodedep->id_state &= ~IOSTARTED; 4275 inodedep->id_state |= COMPLETE; 4276 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4277 fstype = UFS1; 4278 dp1 = (struct ufs1_dinode *)bp->b_data + 4279 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4280 } else { 4281 fstype = UFS2; 4282 dp2 = (struct ufs2_dinode *)bp->b_data + 4283 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4284 } 4285 /* 4286 * If we had to rollback the inode allocation because of 4287 * bitmaps being incomplete, then simply restore it. 4288 * Keep the block dirty so that it will not be reclaimed until 4289 * all associated dependencies have been cleared and the 4290 * corresponding updates written to disk. 4291 */ 4292 if (inodedep->id_savedino1 != NULL) { 4293 if (fstype == UFS1) 4294 *dp1 = *inodedep->id_savedino1; 4295 else 4296 *dp2 = *inodedep->id_savedino2; 4297 FREE(inodedep->id_savedino1, M_SAVEDINO); 4298 inodedep->id_savedino1 = NULL; 4299 if ((bp->b_flags & B_DELWRI) == 0) 4300 stat_inode_bitmap++; 4301 bdirty(bp); 4302 return (1); 4303 } 4304 /* 4305 * Roll forward anything that had to be rolled back before 4306 * the inode could be updated. 4307 */ 4308 hadchanges = 0; 4309 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4310 nextadp = TAILQ_NEXT(adp, ad_next); 4311 if (adp->ad_state & ATTACHED) 4312 panic("handle_written_inodeblock: new entry"); 4313 if (fstype == UFS1) { 4314 if (adp->ad_lbn < NDADDR) { 4315 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4316 panic("%s %s #%jd mismatch %d != %jd", 4317 "handle_written_inodeblock:", 4318 "direct pointer", 4319 (intmax_t)adp->ad_lbn, 4320 dp1->di_db[adp->ad_lbn], 4321 (intmax_t)adp->ad_oldblkno); 4322 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4323 } else { 4324 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) 4325 panic("%s: %s #%jd allocated as %d", 4326 "handle_written_inodeblock", 4327 "indirect pointer", 4328 (intmax_t)adp->ad_lbn - NDADDR, 4329 dp1->di_ib[adp->ad_lbn - NDADDR]); 4330 dp1->di_ib[adp->ad_lbn - NDADDR] = 4331 adp->ad_newblkno; 4332 } 4333 } else { 4334 if (adp->ad_lbn < NDADDR) { 4335 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4336 panic("%s: %s #%jd %s %jd != %jd", 4337 "handle_written_inodeblock", 4338 "direct pointer", 4339 (intmax_t)adp->ad_lbn, "mismatch", 4340 (intmax_t)dp2->di_db[adp->ad_lbn], 4341 (intmax_t)adp->ad_oldblkno); 4342 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4343 } else { 4344 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) 4345 panic("%s: %s #%jd allocated as %jd", 4346 "handle_written_inodeblock", 4347 "indirect pointer", 4348 (intmax_t)adp->ad_lbn - NDADDR, 4349 (intmax_t) 4350 dp2->di_ib[adp->ad_lbn - NDADDR]); 4351 dp2->di_ib[adp->ad_lbn - NDADDR] = 4352 adp->ad_newblkno; 4353 } 4354 } 4355 adp->ad_state &= ~UNDONE; 4356 adp->ad_state |= ATTACHED; 4357 hadchanges = 1; 4358 } 4359 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4360 nextadp = TAILQ_NEXT(adp, ad_next); 4361 if (adp->ad_state & ATTACHED) 4362 panic("handle_written_inodeblock: new entry"); 4363 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) 4364 panic("%s: direct pointers #%jd %s %jd != %jd", 4365 "handle_written_inodeblock", 4366 (intmax_t)adp->ad_lbn, "mismatch", 4367 (intmax_t)dp2->di_extb[adp->ad_lbn], 4368 (intmax_t)adp->ad_oldblkno); 4369 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4370 adp->ad_state &= ~UNDONE; 4371 adp->ad_state |= ATTACHED; 4372 hadchanges = 1; 4373 } 4374 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4375 stat_direct_blk_ptrs++; 4376 /* 4377 * Reset the file size to its most up-to-date value. 4378 */ 4379 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 4380 panic("handle_written_inodeblock: bad size"); 4381 if (fstype == UFS1) { 4382 if (dp1->di_size != inodedep->id_savedsize) { 4383 dp1->di_size = inodedep->id_savedsize; 4384 hadchanges = 1; 4385 } 4386 } else { 4387 if (dp2->di_size != inodedep->id_savedsize) { 4388 dp2->di_size = inodedep->id_savedsize; 4389 hadchanges = 1; 4390 } 4391 if (dp2->di_extsize != inodedep->id_savedextsize) { 4392 dp2->di_extsize = inodedep->id_savedextsize; 4393 hadchanges = 1; 4394 } 4395 } 4396 inodedep->id_savedsize = -1; 4397 inodedep->id_savedextsize = -1; 4398 /* 4399 * If there were any rollbacks in the inode block, then it must be 4400 * marked dirty so that its will eventually get written back in 4401 * its correct form. 4402 */ 4403 if (hadchanges) 4404 bdirty(bp); 4405 /* 4406 * Process any allocdirects that completed during the update. 4407 */ 4408 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4409 handle_allocdirect_partdone(adp); 4410 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4411 handle_allocdirect_partdone(adp); 4412 /* 4413 * Process deallocations that were held pending until the 4414 * inode had been written to disk. Freeing of the inode 4415 * is delayed until after all blocks have been freed to 4416 * avoid creation of new <vfsid, inum, lbn> triples 4417 * before the old ones have been deleted. 4418 */ 4419 filefree = NULL; 4420 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4421 WORKLIST_REMOVE(wk); 4422 switch (wk->wk_type) { 4423 4424 case D_FREEFILE: 4425 /* 4426 * We defer adding filefree to the worklist until 4427 * all other additions have been made to ensure 4428 * that it will be done after all the old blocks 4429 * have been freed. 4430 */ 4431 if (filefree != NULL) 4432 panic("handle_written_inodeblock: filefree"); 4433 filefree = wk; 4434 continue; 4435 4436 case D_MKDIR: 4437 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4438 continue; 4439 4440 case D_DIRADD: 4441 diradd_inode_written(WK_DIRADD(wk), inodedep); 4442 continue; 4443 4444 case D_FREEBLKS: 4445 case D_FREEFRAG: 4446 case D_DIRREM: 4447 add_to_worklist(wk); 4448 continue; 4449 4450 case D_NEWDIRBLK: 4451 free_newdirblk(WK_NEWDIRBLK(wk)); 4452 continue; 4453 4454 default: 4455 panic("handle_written_inodeblock: Unknown type %s", 4456 TYPENAME(wk->wk_type)); 4457 /* NOTREACHED */ 4458 } 4459 } 4460 if (filefree != NULL) { 4461 if (free_inodedep(inodedep) == 0) 4462 panic("handle_written_inodeblock: live inodedep"); 4463 add_to_worklist(filefree); 4464 return (0); 4465 } 4466 4467 /* 4468 * If no outstanding dependencies, free it. 4469 */ 4470 if (free_inodedep(inodedep) || 4471 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4472 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4473 return (0); 4474 return (hadchanges); 4475 } 4476 4477 /* 4478 * Process a diradd entry after its dependent inode has been written. 4479 * This routine must be called with splbio interrupts blocked. 4480 */ 4481 static void 4482 diradd_inode_written(dap, inodedep) 4483 struct diradd *dap; 4484 struct inodedep *inodedep; 4485 { 4486 struct pagedep *pagedep; 4487 4488 dap->da_state |= COMPLETE; 4489 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4490 if (dap->da_state & DIRCHG) 4491 pagedep = dap->da_previous->dm_pagedep; 4492 else 4493 pagedep = dap->da_pagedep; 4494 LIST_REMOVE(dap, da_pdlist); 4495 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4496 } 4497 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4498 } 4499 4500 /* 4501 * Handle the completion of a mkdir dependency. 4502 */ 4503 static void 4504 handle_written_mkdir(mkdir, type) 4505 struct mkdir *mkdir; 4506 int type; 4507 { 4508 struct diradd *dap; 4509 struct pagedep *pagedep; 4510 4511 if (mkdir->md_state != type) 4512 panic("handle_written_mkdir: bad type"); 4513 dap = mkdir->md_diradd; 4514 dap->da_state &= ~type; 4515 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4516 dap->da_state |= DEPCOMPLETE; 4517 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4518 if (dap->da_state & DIRCHG) 4519 pagedep = dap->da_previous->dm_pagedep; 4520 else 4521 pagedep = dap->da_pagedep; 4522 LIST_REMOVE(dap, da_pdlist); 4523 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4524 } 4525 LIST_REMOVE(mkdir, md_mkdirs); 4526 WORKITEM_FREE(mkdir, D_MKDIR); 4527 } 4528 4529 /* 4530 * Called from within softdep_disk_write_complete above. 4531 * A write operation was just completed. Removed inodes can 4532 * now be freed and associated block pointers may be committed. 4533 * Note that this routine is always called from interrupt level 4534 * with further splbio interrupts blocked. 4535 */ 4536 static int 4537 handle_written_filepage(pagedep, bp) 4538 struct pagedep *pagedep; 4539 struct buf *bp; /* buffer containing the written page */ 4540 { 4541 struct dirrem *dirrem; 4542 struct diradd *dap, *nextdap; 4543 struct direct *ep; 4544 int i, chgs; 4545 4546 if ((pagedep->pd_state & IOSTARTED) == 0) 4547 panic("handle_written_filepage: not started"); 4548 pagedep->pd_state &= ~IOSTARTED; 4549 /* 4550 * Process any directory removals that have been committed. 4551 */ 4552 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4553 LIST_REMOVE(dirrem, dm_next); 4554 dirrem->dm_dirinum = pagedep->pd_ino; 4555 add_to_worklist(&dirrem->dm_list); 4556 } 4557 /* 4558 * Free any directory additions that have been committed. 4559 * If it is a newly allocated block, we have to wait until 4560 * the on-disk directory inode claims the new block. 4561 */ 4562 if ((pagedep->pd_state & NEWBLOCK) == 0) 4563 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4564 free_diradd(dap); 4565 /* 4566 * Uncommitted directory entries must be restored. 4567 */ 4568 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4569 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4570 dap = nextdap) { 4571 nextdap = LIST_NEXT(dap, da_pdlist); 4572 if (dap->da_state & ATTACHED) 4573 panic("handle_written_filepage: attached"); 4574 ep = (struct direct *) 4575 ((char *)bp->b_data + dap->da_offset); 4576 ep->d_ino = dap->da_newinum; 4577 dap->da_state &= ~UNDONE; 4578 dap->da_state |= ATTACHED; 4579 chgs = 1; 4580 /* 4581 * If the inode referenced by the directory has 4582 * been written out, then the dependency can be 4583 * moved to the pending list. 4584 */ 4585 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4586 LIST_REMOVE(dap, da_pdlist); 4587 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4588 da_pdlist); 4589 } 4590 } 4591 } 4592 /* 4593 * If there were any rollbacks in the directory, then it must be 4594 * marked dirty so that its will eventually get written back in 4595 * its correct form. 4596 */ 4597 if (chgs) { 4598 if ((bp->b_flags & B_DELWRI) == 0) 4599 stat_dir_entry++; 4600 bdirty(bp); 4601 return (1); 4602 } 4603 /* 4604 * If we are not waiting for a new directory block to be 4605 * claimed by its inode, then the pagedep will be freed. 4606 * Otherwise it will remain to track any new entries on 4607 * the page in case they are fsync'ed. 4608 */ 4609 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4610 LIST_REMOVE(pagedep, pd_hash); 4611 WORKITEM_FREE(pagedep, D_PAGEDEP); 4612 } 4613 return (0); 4614 } 4615 4616 /* 4617 * Writing back in-core inode structures. 4618 * 4619 * The filesystem only accesses an inode's contents when it occupies an 4620 * "in-core" inode structure. These "in-core" structures are separate from 4621 * the page frames used to cache inode blocks. Only the latter are 4622 * transferred to/from the disk. So, when the updated contents of the 4623 * "in-core" inode structure are copied to the corresponding in-memory inode 4624 * block, the dependencies are also transferred. The following procedure is 4625 * called when copying a dirty "in-core" inode to a cached inode block. 4626 */ 4627 4628 /* 4629 * Called when an inode is loaded from disk. If the effective link count 4630 * differed from the actual link count when it was last flushed, then we 4631 * need to ensure that the correct effective link count is put back. 4632 */ 4633 void 4634 softdep_load_inodeblock(ip) 4635 struct inode *ip; /* the "in_core" copy of the inode */ 4636 { 4637 struct inodedep *inodedep; 4638 4639 /* 4640 * Check for alternate nlink count. 4641 */ 4642 ip->i_effnlink = ip->i_nlink; 4643 ACQUIRE_LOCK(&lk); 4644 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4645 FREE_LOCK(&lk); 4646 return; 4647 } 4648 ip->i_effnlink -= inodedep->id_nlinkdelta; 4649 if (inodedep->id_state & SPACECOUNTED) 4650 ip->i_flag |= IN_SPACECOUNTED; 4651 FREE_LOCK(&lk); 4652 } 4653 4654 /* 4655 * This routine is called just before the "in-core" inode 4656 * information is to be copied to the in-memory inode block. 4657 * Recall that an inode block contains several inodes. If 4658 * the force flag is set, then the dependencies will be 4659 * cleared so that the update can always be made. Note that 4660 * the buffer is locked when this routine is called, so we 4661 * will never be in the middle of writing the inode block 4662 * to disk. 4663 */ 4664 void 4665 softdep_update_inodeblock(ip, bp, waitfor) 4666 struct inode *ip; /* the "in_core" copy of the inode */ 4667 struct buf *bp; /* the buffer containing the inode block */ 4668 int waitfor; /* nonzero => update must be allowed */ 4669 { 4670 struct inodedep *inodedep; 4671 struct worklist *wk; 4672 struct buf *ibp; 4673 int error; 4674 4675 /* 4676 * If the effective link count is not equal to the actual link 4677 * count, then we must track the difference in an inodedep while 4678 * the inode is (potentially) tossed out of the cache. Otherwise, 4679 * if there is no existing inodedep, then there are no dependencies 4680 * to track. 4681 */ 4682 ACQUIRE_LOCK(&lk); 4683 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4684 FREE_LOCK(&lk); 4685 if (ip->i_effnlink != ip->i_nlink) 4686 panic("softdep_update_inodeblock: bad link count"); 4687 return; 4688 } 4689 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 4690 panic("softdep_update_inodeblock: bad delta"); 4691 /* 4692 * Changes have been initiated. Anything depending on these 4693 * changes cannot occur until this inode has been written. 4694 */ 4695 inodedep->id_state &= ~COMPLETE; 4696 if ((inodedep->id_state & ONWORKLIST) == 0) 4697 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4698 /* 4699 * Any new dependencies associated with the incore inode must 4700 * now be moved to the list associated with the buffer holding 4701 * the in-memory copy of the inode. Once merged process any 4702 * allocdirects that are completed by the merger. 4703 */ 4704 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4705 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4706 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4707 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4708 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4709 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4710 /* 4711 * Now that the inode has been pushed into the buffer, the 4712 * operations dependent on the inode being written to disk 4713 * can be moved to the id_bufwait so that they will be 4714 * processed when the buffer I/O completes. 4715 */ 4716 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4717 WORKLIST_REMOVE(wk); 4718 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4719 } 4720 /* 4721 * Newly allocated inodes cannot be written until the bitmap 4722 * that allocates them have been written (indicated by 4723 * DEPCOMPLETE being set in id_state). If we are doing a 4724 * forced sync (e.g., an fsync on a file), we force the bitmap 4725 * to be written so that the update can be done. 4726 */ 4727 if (waitfor == 0) { 4728 FREE_LOCK(&lk); 4729 return; 4730 } 4731 retry: 4732 if ((inodedep->id_state & DEPCOMPLETE) != 0) { 4733 FREE_LOCK(&lk); 4734 return; 4735 } 4736 ibp = inodedep->id_buf; 4737 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 4738 if (ibp == NULL) { 4739 /* 4740 * If ibp came back as NULL, the dependency could have been 4741 * freed while we slept. Look it up again, and check to see 4742 * that it has completed. 4743 */ 4744 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0) 4745 goto retry; 4746 FREE_LOCK(&lk); 4747 return; 4748 } 4749 FREE_LOCK(&lk); 4750 if ((error = bwrite(ibp)) != 0) 4751 softdep_error("softdep_update_inodeblock: bwrite", error); 4752 } 4753 4754 /* 4755 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4756 * old inode dependency list (such as id_inoupdt). This routine must be 4757 * called with splbio interrupts blocked. 4758 */ 4759 static void 4760 merge_inode_lists(newlisthead, oldlisthead) 4761 struct allocdirectlst *newlisthead; 4762 struct allocdirectlst *oldlisthead; 4763 { 4764 struct allocdirect *listadp, *newadp; 4765 4766 newadp = TAILQ_FIRST(newlisthead); 4767 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4768 if (listadp->ad_lbn < newadp->ad_lbn) { 4769 listadp = TAILQ_NEXT(listadp, ad_next); 4770 continue; 4771 } 4772 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4773 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4774 if (listadp->ad_lbn == newadp->ad_lbn) { 4775 allocdirect_merge(oldlisthead, newadp, 4776 listadp); 4777 listadp = newadp; 4778 } 4779 newadp = TAILQ_FIRST(newlisthead); 4780 } 4781 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4782 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4783 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4784 } 4785 } 4786 4787 /* 4788 * If we are doing an fsync, then we must ensure that any directory 4789 * entries for the inode have been written after the inode gets to disk. 4790 */ 4791 int 4792 softdep_fsync(vp) 4793 struct vnode *vp; /* the "in_core" copy of the inode */ 4794 { 4795 struct inodedep *inodedep; 4796 struct pagedep *pagedep; 4797 struct worklist *wk; 4798 struct diradd *dap; 4799 struct mount *mnt; 4800 struct vnode *pvp; 4801 struct inode *ip; 4802 struct buf *bp; 4803 struct fs *fs; 4804 struct thread *td = curthread; 4805 int error, flushparent; 4806 ino_t parentino; 4807 ufs_lbn_t lbn; 4808 4809 ip = VTOI(vp); 4810 fs = ip->i_fs; 4811 ACQUIRE_LOCK(&lk); 4812 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4813 FREE_LOCK(&lk); 4814 return (0); 4815 } 4816 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4817 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4818 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 4819 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 4820 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4821 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 4822 panic("softdep_fsync: pending ops"); 4823 for (error = 0, flushparent = 0; ; ) { 4824 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4825 break; 4826 if (wk->wk_type != D_DIRADD) 4827 panic("softdep_fsync: Unexpected type %s", 4828 TYPENAME(wk->wk_type)); 4829 dap = WK_DIRADD(wk); 4830 /* 4831 * Flush our parent if this directory entry has a MKDIR_PARENT 4832 * dependency or is contained in a newly allocated block. 4833 */ 4834 if (dap->da_state & DIRCHG) 4835 pagedep = dap->da_previous->dm_pagedep; 4836 else 4837 pagedep = dap->da_pagedep; 4838 mnt = pagedep->pd_mnt; 4839 parentino = pagedep->pd_ino; 4840 lbn = pagedep->pd_lbn; 4841 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 4842 panic("softdep_fsync: dirty"); 4843 if ((dap->da_state & MKDIR_PARENT) || 4844 (pagedep->pd_state & NEWBLOCK)) 4845 flushparent = 1; 4846 else 4847 flushparent = 0; 4848 /* 4849 * If we are being fsync'ed as part of vgone'ing this vnode, 4850 * then we will not be able to release and recover the 4851 * vnode below, so we just have to give up on writing its 4852 * directory entry out. It will eventually be written, just 4853 * not now, but then the user was not asking to have it 4854 * written, so we are not breaking any promises. 4855 */ 4856 if (vp->v_iflag & VI_XLOCK) 4857 break; 4858 /* 4859 * We prevent deadlock by always fetching inodes from the 4860 * root, moving down the directory tree. Thus, when fetching 4861 * our parent directory, we first try to get the lock. If 4862 * that fails, we must unlock ourselves before requesting 4863 * the lock on our parent. See the comment in ufs_lookup 4864 * for details on possible races. 4865 */ 4866 FREE_LOCK(&lk); 4867 if (ffs_vget(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4868 VOP_UNLOCK(vp, 0, td); 4869 error = ffs_vget(mnt, parentino, LK_EXCLUSIVE, &pvp); 4870 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4871 if (error != 0) 4872 return (error); 4873 } 4874 /* 4875 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4876 * that are contained in direct blocks will be resolved by 4877 * doing a ffs_update. Pagedeps contained in indirect blocks 4878 * may require a complete sync'ing of the directory. So, we 4879 * try the cheap and fast ffs_update first, and if that fails, 4880 * then we do the slower ffs_syncvnode of the directory. 4881 */ 4882 if (flushparent) { 4883 if ((error = ffs_update(pvp, 1)) != 0) { 4884 vput(pvp); 4885 return (error); 4886 } 4887 if ((pagedep->pd_state & NEWBLOCK) && 4888 (error = ffs_syncvnode(pvp, MNT_WAIT))) { 4889 vput(pvp); 4890 return (error); 4891 } 4892 } 4893 /* 4894 * Flush directory page containing the inode's name. 4895 */ 4896 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4897 &bp); 4898 if (error == 0) 4899 error = bwrite(bp); 4900 else 4901 brelse(bp); 4902 vput(pvp); 4903 if (error != 0) 4904 return (error); 4905 ACQUIRE_LOCK(&lk); 4906 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4907 break; 4908 } 4909 FREE_LOCK(&lk); 4910 return (0); 4911 } 4912 4913 /* 4914 * Flush all the dirty bitmaps associated with the block device 4915 * before flushing the rest of the dirty blocks so as to reduce 4916 * the number of dependencies that will have to be rolled back. 4917 */ 4918 void 4919 softdep_fsync_mountdev(vp) 4920 struct vnode *vp; 4921 { 4922 struct buf *bp, *nbp; 4923 struct worklist *wk; 4924 4925 if (!vn_isdisk(vp, NULL)) 4926 panic("softdep_fsync_mountdev: vnode not a disk"); 4927 ACQUIRE_LOCK(&lk); 4928 VI_LOCK(vp); 4929 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 4930 /* 4931 * If it is already scheduled, skip to the next buffer. 4932 */ 4933 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 4934 continue; 4935 4936 if ((bp->b_flags & B_DELWRI) == 0) 4937 panic("softdep_fsync_mountdev: not dirty"); 4938 /* 4939 * We are only interested in bitmaps with outstanding 4940 * dependencies. 4941 */ 4942 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4943 wk->wk_type != D_BMSAFEMAP || 4944 (bp->b_vflags & BV_BKGRDINPROG)) { 4945 BUF_UNLOCK(bp); 4946 continue; 4947 } 4948 VI_UNLOCK(vp); 4949 FREE_LOCK(&lk); 4950 bremfree(bp); 4951 (void) bawrite(bp); 4952 ACQUIRE_LOCK(&lk); 4953 /* 4954 * Since we may have slept during the I/O, we need 4955 * to start from a known point. 4956 */ 4957 VI_LOCK(vp); 4958 nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd); 4959 } 4960 FREE_LOCK(&lk); 4961 drain_output(vp); 4962 VI_UNLOCK(vp); 4963 } 4964 4965 /* 4966 * This routine is called when we are trying to synchronously flush a 4967 * file. This routine must eliminate any filesystem metadata dependencies 4968 * so that the syncing routine can succeed by pushing the dirty blocks 4969 * associated with the file. If any I/O errors occur, they are returned. 4970 */ 4971 int 4972 softdep_sync_metadata(struct vnode *vp) 4973 { 4974 struct pagedep *pagedep; 4975 struct allocdirect *adp; 4976 struct allocindir *aip; 4977 struct buf *bp, *nbp; 4978 struct worklist *wk; 4979 int i, error, waitfor; 4980 4981 if (!DOINGSOFTDEP(vp)) 4982 return (0); 4983 /* 4984 * Ensure that any direct block dependencies have been cleared. 4985 */ 4986 ACQUIRE_LOCK(&lk); 4987 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4988 FREE_LOCK(&lk); 4989 return (error); 4990 } 4991 FREE_LOCK(&lk); 4992 /* 4993 * For most files, the only metadata dependencies are the 4994 * cylinder group maps that allocate their inode or blocks. 4995 * The block allocation dependencies can be found by traversing 4996 * the dependency lists for any buffers that remain on their 4997 * dirty buffer list. The inode allocation dependency will 4998 * be resolved when the inode is updated with MNT_WAIT. 4999 * This work is done in two passes. The first pass grabs most 5000 * of the buffers and begins asynchronously writing them. The 5001 * only way to wait for these asynchronous writes is to sleep 5002 * on the filesystem vnode which may stay busy for a long time 5003 * if the filesystem is active. So, instead, we make a second 5004 * pass over the dependencies blocking on each write. In the 5005 * usual case we will be blocking against a write that we 5006 * initiated, so when it is done the dependency will have been 5007 * resolved. Thus the second pass is expected to end quickly. 5008 */ 5009 waitfor = MNT_NOWAIT; 5010 5011 top: 5012 /* 5013 * We must wait for any I/O in progress to finish so that 5014 * all potential buffers on the dirty list will be visible. 5015 */ 5016 VI_LOCK(vp); 5017 drain_output(vp); 5018 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) { 5019 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT); 5020 if (bp) 5021 break; 5022 } 5023 VI_UNLOCK(vp); 5024 if (bp == NULL) 5025 return (0); 5026 loop: 5027 /* While syncing snapshots, we must allow recursive lookups */ 5028 bp->b_lock.lk_flags |= LK_CANRECURSE; 5029 ACQUIRE_LOCK(&lk); 5030 /* 5031 * As we hold the buffer locked, none of its dependencies 5032 * will disappear. 5033 */ 5034 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5035 switch (wk->wk_type) { 5036 5037 case D_ALLOCDIRECT: 5038 adp = WK_ALLOCDIRECT(wk); 5039 if (adp->ad_state & DEPCOMPLETE) 5040 continue; 5041 nbp = adp->ad_buf; 5042 nbp = getdirtybuf(nbp, &lk, waitfor); 5043 if (nbp == NULL) 5044 continue; 5045 FREE_LOCK(&lk); 5046 if (waitfor == MNT_NOWAIT) { 5047 bawrite(nbp); 5048 } else if ((error = bwrite(nbp)) != 0) { 5049 break; 5050 } 5051 ACQUIRE_LOCK(&lk); 5052 continue; 5053 5054 case D_ALLOCINDIR: 5055 aip = WK_ALLOCINDIR(wk); 5056 if (aip->ai_state & DEPCOMPLETE) 5057 continue; 5058 nbp = aip->ai_buf; 5059 nbp = getdirtybuf(nbp, &lk, waitfor); 5060 if (nbp == NULL) 5061 continue; 5062 FREE_LOCK(&lk); 5063 if (waitfor == MNT_NOWAIT) { 5064 bawrite(nbp); 5065 } else if ((error = bwrite(nbp)) != 0) { 5066 break; 5067 } 5068 ACQUIRE_LOCK(&lk); 5069 continue; 5070 5071 case D_INDIRDEP: 5072 restart: 5073 5074 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5075 if (aip->ai_state & DEPCOMPLETE) 5076 continue; 5077 nbp = aip->ai_buf; 5078 nbp = getdirtybuf(nbp, &lk, MNT_WAIT); 5079 if (nbp == NULL) 5080 goto restart; 5081 FREE_LOCK(&lk); 5082 if ((error = bwrite(nbp)) != 0) { 5083 break; 5084 } 5085 ACQUIRE_LOCK(&lk); 5086 goto restart; 5087 } 5088 continue; 5089 5090 case D_INODEDEP: 5091 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 5092 WK_INODEDEP(wk)->id_ino)) != 0) { 5093 FREE_LOCK(&lk); 5094 break; 5095 } 5096 continue; 5097 5098 case D_PAGEDEP: 5099 /* 5100 * We are trying to sync a directory that may 5101 * have dependencies on both its own metadata 5102 * and/or dependencies on the inodes of any 5103 * recently allocated files. We walk its diradd 5104 * lists pushing out the associated inode. 5105 */ 5106 pagedep = WK_PAGEDEP(wk); 5107 for (i = 0; i < DAHASHSZ; i++) { 5108 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5109 continue; 5110 if ((error = 5111 flush_pagedep_deps(vp, pagedep->pd_mnt, 5112 &pagedep->pd_diraddhd[i]))) { 5113 FREE_LOCK(&lk); 5114 break; 5115 } 5116 } 5117 continue; 5118 5119 case D_MKDIR: 5120 /* 5121 * This case should never happen if the vnode has 5122 * been properly sync'ed. However, if this function 5123 * is used at a place where the vnode has not yet 5124 * been sync'ed, this dependency can show up. So, 5125 * rather than panic, just flush it. 5126 */ 5127 nbp = WK_MKDIR(wk)->md_buf; 5128 nbp = getdirtybuf(nbp, &lk, waitfor); 5129 if (nbp == NULL) 5130 continue; 5131 FREE_LOCK(&lk); 5132 if (waitfor == MNT_NOWAIT) { 5133 bawrite(nbp); 5134 } else if ((error = bwrite(nbp)) != 0) { 5135 break; 5136 } 5137 ACQUIRE_LOCK(&lk); 5138 continue; 5139 5140 case D_BMSAFEMAP: 5141 /* 5142 * This case should never happen if the vnode has 5143 * been properly sync'ed. However, if this function 5144 * is used at a place where the vnode has not yet 5145 * been sync'ed, this dependency can show up. So, 5146 * rather than panic, just flush it. 5147 */ 5148 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5149 nbp = getdirtybuf(nbp, &lk, waitfor); 5150 if (nbp == NULL) 5151 continue; 5152 FREE_LOCK(&lk); 5153 if (waitfor == MNT_NOWAIT) { 5154 bawrite(nbp); 5155 } else if ((error = bwrite(nbp)) != 0) { 5156 break; 5157 } 5158 ACQUIRE_LOCK(&lk); 5159 continue; 5160 5161 default: 5162 panic("softdep_sync_metadata: Unknown type %s", 5163 TYPENAME(wk->wk_type)); 5164 /* NOTREACHED */ 5165 } 5166 /* We reach here only in error and unlocked */ 5167 if (error == 0) 5168 panic("softdep_sync_metadata: zero error"); 5169 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5170 bawrite(bp); 5171 return (error); 5172 } 5173 FREE_LOCK(&lk); 5174 VI_LOCK(vp); 5175 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) { 5176 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT); 5177 if (nbp) 5178 break; 5179 } 5180 VI_UNLOCK(vp); 5181 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5182 bawrite(bp); 5183 if (nbp != NULL) { 5184 bp = nbp; 5185 goto loop; 5186 } 5187 /* 5188 * The brief unlock is to allow any pent up dependency 5189 * processing to be done. Then proceed with the second pass. 5190 */ 5191 if (waitfor == MNT_NOWAIT) { 5192 waitfor = MNT_WAIT; 5193 goto top; 5194 } 5195 5196 /* 5197 * If we have managed to get rid of all the dirty buffers, 5198 * then we are done. For certain directories and block 5199 * devices, we may need to do further work. 5200 * 5201 * We must wait for any I/O in progress to finish so that 5202 * all potential buffers on the dirty list will be visible. 5203 */ 5204 VI_LOCK(vp); 5205 drain_output(vp); 5206 VI_UNLOCK(vp); 5207 return (0); 5208 } 5209 5210 /* 5211 * Flush the dependencies associated with an inodedep. 5212 * Called with splbio blocked. 5213 */ 5214 static int 5215 flush_inodedep_deps(fs, ino) 5216 struct fs *fs; 5217 ino_t ino; 5218 { 5219 struct inodedep *inodedep; 5220 int error, waitfor; 5221 5222 /* 5223 * This work is done in two passes. The first pass grabs most 5224 * of the buffers and begins asynchronously writing them. The 5225 * only way to wait for these asynchronous writes is to sleep 5226 * on the filesystem vnode which may stay busy for a long time 5227 * if the filesystem is active. So, instead, we make a second 5228 * pass over the dependencies blocking on each write. In the 5229 * usual case we will be blocking against a write that we 5230 * initiated, so when it is done the dependency will have been 5231 * resolved. Thus the second pass is expected to end quickly. 5232 * We give a brief window at the top of the loop to allow 5233 * any pending I/O to complete. 5234 */ 5235 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5236 if (error) 5237 return (error); 5238 FREE_LOCK(&lk); 5239 ACQUIRE_LOCK(&lk); 5240 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5241 return (0); 5242 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5243 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5244 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5245 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5246 continue; 5247 /* 5248 * If pass2, we are done, otherwise do pass 2. 5249 */ 5250 if (waitfor == MNT_WAIT) 5251 break; 5252 waitfor = MNT_WAIT; 5253 } 5254 /* 5255 * Try freeing inodedep in case all dependencies have been removed. 5256 */ 5257 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 5258 (void) free_inodedep(inodedep); 5259 return (0); 5260 } 5261 5262 /* 5263 * Flush an inode dependency list. 5264 * Called with splbio blocked. 5265 */ 5266 static int 5267 flush_deplist(listhead, waitfor, errorp) 5268 struct allocdirectlst *listhead; 5269 int waitfor; 5270 int *errorp; 5271 { 5272 struct allocdirect *adp; 5273 struct buf *bp; 5274 5275 mtx_assert(&lk, MA_OWNED); 5276 TAILQ_FOREACH(adp, listhead, ad_next) { 5277 if (adp->ad_state & DEPCOMPLETE) 5278 continue; 5279 bp = adp->ad_buf; 5280 bp = getdirtybuf(bp, &lk, waitfor); 5281 if (bp == NULL) { 5282 if (waitfor == MNT_NOWAIT) 5283 continue; 5284 return (1); 5285 } 5286 FREE_LOCK(&lk); 5287 if (waitfor == MNT_NOWAIT) { 5288 bawrite(bp); 5289 } else if ((*errorp = bwrite(bp)) != 0) { 5290 ACQUIRE_LOCK(&lk); 5291 return (1); 5292 } 5293 ACQUIRE_LOCK(&lk); 5294 return (1); 5295 } 5296 return (0); 5297 } 5298 5299 /* 5300 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5301 * Called with splbio blocked. 5302 */ 5303 static int 5304 flush_pagedep_deps(pvp, mp, diraddhdp) 5305 struct vnode *pvp; 5306 struct mount *mp; 5307 struct diraddhd *diraddhdp; 5308 { 5309 struct inodedep *inodedep; 5310 struct ufsmount *ump; 5311 struct diradd *dap; 5312 struct vnode *vp; 5313 int error = 0; 5314 struct buf *bp; 5315 ino_t inum; 5316 5317 ump = VFSTOUFS(mp); 5318 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5319 /* 5320 * Flush ourselves if this directory entry 5321 * has a MKDIR_PARENT dependency. 5322 */ 5323 if (dap->da_state & MKDIR_PARENT) { 5324 FREE_LOCK(&lk); 5325 if ((error = ffs_update(pvp, 1)) != 0) 5326 break; 5327 ACQUIRE_LOCK(&lk); 5328 /* 5329 * If that cleared dependencies, go on to next. 5330 */ 5331 if (dap != LIST_FIRST(diraddhdp)) 5332 continue; 5333 if (dap->da_state & MKDIR_PARENT) 5334 panic("flush_pagedep_deps: MKDIR_PARENT"); 5335 } 5336 /* 5337 * A newly allocated directory must have its "." and 5338 * ".." entries written out before its name can be 5339 * committed in its parent. We do not want or need 5340 * the full semantics of a synchronous ffs_syncvnode as 5341 * that may end up here again, once for each directory 5342 * level in the filesystem. Instead, we push the blocks 5343 * and wait for them to clear. We have to fsync twice 5344 * because the first call may choose to defer blocks 5345 * that still have dependencies, but deferral will 5346 * happen at most once. 5347 */ 5348 inum = dap->da_newinum; 5349 if (dap->da_state & MKDIR_BODY) { 5350 FREE_LOCK(&lk); 5351 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp))) 5352 break; 5353 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) || 5354 (error=ffs_syncvnode(vp, MNT_NOWAIT))) { 5355 vput(vp); 5356 break; 5357 } 5358 VI_LOCK(vp); 5359 drain_output(vp); 5360 VI_UNLOCK(vp); 5361 vput(vp); 5362 ACQUIRE_LOCK(&lk); 5363 /* 5364 * If that cleared dependencies, go on to next. 5365 */ 5366 if (dap != LIST_FIRST(diraddhdp)) 5367 continue; 5368 if (dap->da_state & MKDIR_BODY) 5369 panic("flush_pagedep_deps: MKDIR_BODY"); 5370 } 5371 /* 5372 * Flush the inode on which the directory entry depends. 5373 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5374 * the only remaining dependency is that the updated inode 5375 * count must get pushed to disk. The inode has already 5376 * been pushed into its inode buffer (via VOP_UPDATE) at 5377 * the time of the reference count change. So we need only 5378 * locate that buffer, ensure that there will be no rollback 5379 * caused by a bitmap dependency, then write the inode buffer. 5380 */ 5381 retry: 5382 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) 5383 panic("flush_pagedep_deps: lost inode"); 5384 /* 5385 * If the inode still has bitmap dependencies, 5386 * push them to disk. 5387 */ 5388 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5389 bp = inodedep->id_buf; 5390 bp = getdirtybuf(bp, &lk, MNT_WAIT); 5391 if (bp == NULL) 5392 goto retry; 5393 FREE_LOCK(&lk); 5394 if ((error = bwrite(bp)) != 0) 5395 break; 5396 ACQUIRE_LOCK(&lk); 5397 if (dap != LIST_FIRST(diraddhdp)) 5398 continue; 5399 } 5400 /* 5401 * If the inode is still sitting in a buffer waiting 5402 * to be written, push it to disk. 5403 */ 5404 FREE_LOCK(&lk); 5405 if ((error = bread(ump->um_devvp, 5406 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5407 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5408 brelse(bp); 5409 break; 5410 } 5411 if ((error = bwrite(bp)) != 0) 5412 break; 5413 ACQUIRE_LOCK(&lk); 5414 /* 5415 * If we have failed to get rid of all the dependencies 5416 * then something is seriously wrong. 5417 */ 5418 if (dap == LIST_FIRST(diraddhdp)) 5419 panic("flush_pagedep_deps: flush failed"); 5420 } 5421 if (error) 5422 ACQUIRE_LOCK(&lk); 5423 return (error); 5424 } 5425 5426 /* 5427 * A large burst of file addition or deletion activity can drive the 5428 * memory load excessively high. First attempt to slow things down 5429 * using the techniques below. If that fails, this routine requests 5430 * the offending operations to fall back to running synchronously 5431 * until the memory load returns to a reasonable level. 5432 */ 5433 int 5434 softdep_slowdown(vp) 5435 struct vnode *vp; 5436 { 5437 int max_softdeps_hard; 5438 5439 max_softdeps_hard = max_softdeps * 11 / 10; 5440 if (num_dirrem < max_softdeps_hard / 2 && 5441 num_inodedep < max_softdeps_hard && 5442 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) 5443 return (0); 5444 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5445 speedup_syncer(); 5446 stat_sync_limit_hit += 1; 5447 return (1); 5448 } 5449 5450 /* 5451 * Called by the allocation routines when they are about to fail 5452 * in the hope that we can free up some disk space. 5453 * 5454 * First check to see if the work list has anything on it. If it has, 5455 * clean up entries until we successfully free some space. Because this 5456 * process holds inodes locked, we cannot handle any remove requests 5457 * that might block on a locked inode as that could lead to deadlock. 5458 * If the worklist yields no free space, encourage the syncer daemon 5459 * to help us. In no event will we try for longer than tickdelay seconds. 5460 */ 5461 int 5462 softdep_request_cleanup(fs, vp) 5463 struct fs *fs; 5464 struct vnode *vp; 5465 { 5466 struct ufsmount *ump; 5467 long starttime; 5468 ufs2_daddr_t needed; 5469 int error; 5470 5471 ump = VTOI(vp)->i_ump; 5472 mtx_assert(UFS_MTX(ump), MA_OWNED); 5473 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5474 starttime = time_second + tickdelay; 5475 /* 5476 * If we are being called because of a process doing a 5477 * copy-on-write, then it is not safe to update the vnode 5478 * as we may recurse into the copy-on-write routine. 5479 */ 5480 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) { 5481 UFS_UNLOCK(ump); 5482 error = ffs_update(vp, 1); 5483 UFS_LOCK(ump); 5484 if (error != 0) 5485 return (0); 5486 } 5487 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5488 if (time_second > starttime) 5489 return (0); 5490 UFS_UNLOCK(ump); 5491 ACQUIRE_LOCK(&lk); 5492 if (num_on_worklist > 0 && 5493 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5494 stat_worklist_push += 1; 5495 FREE_LOCK(&lk); 5496 UFS_LOCK(ump); 5497 continue; 5498 } 5499 request_cleanup(FLUSH_REMOVE_WAIT); 5500 FREE_LOCK(&lk); 5501 UFS_LOCK(ump); 5502 } 5503 return (1); 5504 } 5505 5506 /* 5507 * If memory utilization has gotten too high, deliberately slow things 5508 * down and speed up the I/O processing. 5509 */ 5510 static int 5511 request_cleanup(resource) 5512 int resource; 5513 { 5514 struct thread *td = curthread; 5515 5516 mtx_assert(&lk, MA_OWNED); 5517 /* 5518 * We never hold up the filesystem syncer process. 5519 */ 5520 if (td == filesys_syncer) 5521 return (0); 5522 /* 5523 * First check to see if the work list has gotten backlogged. 5524 * If it has, co-opt this process to help clean up two entries. 5525 * Because this process may hold inodes locked, we cannot 5526 * handle any remove requests that might block on a locked 5527 * inode as that could lead to deadlock. 5528 */ 5529 if (num_on_worklist > max_softdeps / 10) { 5530 process_worklist_item(NULL, LK_NOWAIT); 5531 process_worklist_item(NULL, LK_NOWAIT); 5532 stat_worklist_push += 2; 5533 return(1); 5534 } 5535 /* 5536 * Next, we attempt to speed up the syncer process. If that 5537 * is successful, then we allow the process to continue. 5538 */ 5539 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5540 return(0); 5541 /* 5542 * If we are resource constrained on inode dependencies, try 5543 * flushing some dirty inodes. Otherwise, we are constrained 5544 * by file deletions, so try accelerating flushes of directories 5545 * with removal dependencies. We would like to do the cleanup 5546 * here, but we probably hold an inode locked at this point and 5547 * that might deadlock against one that we try to clean. So, 5548 * the best that we can do is request the syncer daemon to do 5549 * the cleanup for us. 5550 */ 5551 switch (resource) { 5552 5553 case FLUSH_INODES: 5554 stat_ino_limit_push += 1; 5555 req_clear_inodedeps += 1; 5556 stat_countp = &stat_ino_limit_hit; 5557 break; 5558 5559 case FLUSH_REMOVE: 5560 case FLUSH_REMOVE_WAIT: 5561 stat_blk_limit_push += 1; 5562 req_clear_remove += 1; 5563 stat_countp = &stat_blk_limit_hit; 5564 break; 5565 5566 default: 5567 panic("request_cleanup: unknown type"); 5568 } 5569 /* 5570 * Hopefully the syncer daemon will catch up and awaken us. 5571 * We wait at most tickdelay before proceeding in any case. 5572 */ 5573 proc_waiting += 1; 5574 if (handle.callout == NULL) 5575 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5576 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 5577 proc_waiting -= 1; 5578 return (1); 5579 } 5580 5581 /* 5582 * Awaken processes pausing in request_cleanup and clear proc_waiting 5583 * to indicate that there is no longer a timer running. 5584 */ 5585 static void 5586 pause_timer(arg) 5587 void *arg; 5588 { 5589 5590 ACQUIRE_LOCK(&lk); 5591 *stat_countp += 1; 5592 wakeup_one(&proc_waiting); 5593 if (proc_waiting > 0) 5594 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5595 else 5596 handle.callout = NULL; 5597 FREE_LOCK(&lk); 5598 } 5599 5600 /* 5601 * Flush out a directory with at least one removal dependency in an effort to 5602 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5603 */ 5604 static void 5605 clear_remove(td) 5606 struct thread *td; 5607 { 5608 struct pagedep_hashhead *pagedephd; 5609 struct pagedep *pagedep; 5610 static int next = 0; 5611 struct mount *mp; 5612 struct vnode *vp; 5613 int error, cnt; 5614 ino_t ino; 5615 5616 mtx_assert(&lk, MA_OWNED); 5617 5618 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5619 pagedephd = &pagedep_hashtbl[next++]; 5620 if (next >= pagedep_hash) 5621 next = 0; 5622 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5623 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5624 continue; 5625 mp = pagedep->pd_mnt; 5626 ino = pagedep->pd_ino; 5627 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5628 continue; 5629 FREE_LOCK(&lk); 5630 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) { 5631 softdep_error("clear_remove: vget", error); 5632 vn_finished_write(mp); 5633 ACQUIRE_LOCK(&lk); 5634 return; 5635 } 5636 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5637 softdep_error("clear_remove: fsync", error); 5638 VI_LOCK(vp); 5639 drain_output(vp); 5640 VI_UNLOCK(vp); 5641 vput(vp); 5642 vn_finished_write(mp); 5643 ACQUIRE_LOCK(&lk); 5644 return; 5645 } 5646 } 5647 } 5648 5649 /* 5650 * Clear out a block of dirty inodes in an effort to reduce 5651 * the number of inodedep dependency structures. 5652 */ 5653 static void 5654 clear_inodedeps(td) 5655 struct thread *td; 5656 { 5657 struct inodedep_hashhead *inodedephd; 5658 struct inodedep *inodedep; 5659 static int next = 0; 5660 struct mount *mp; 5661 struct vnode *vp; 5662 struct fs *fs; 5663 int error, cnt; 5664 ino_t firstino, lastino, ino; 5665 5666 mtx_assert(&lk, MA_OWNED); 5667 /* 5668 * Pick a random inode dependency to be cleared. 5669 * We will then gather up all the inodes in its block 5670 * that have dependencies and flush them out. 5671 */ 5672 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5673 inodedephd = &inodedep_hashtbl[next++]; 5674 if (next >= inodedep_hash) 5675 next = 0; 5676 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5677 break; 5678 } 5679 if (inodedep == NULL) 5680 return; 5681 /* 5682 * Ugly code to find mount point given pointer to superblock. 5683 */ 5684 fs = inodedep->id_fs; 5685 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5686 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5687 break; 5688 /* 5689 * Find the last inode in the block with dependencies. 5690 */ 5691 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5692 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5693 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5694 break; 5695 /* 5696 * Asynchronously push all but the last inode with dependencies. 5697 * Synchronously push the last inode with dependencies to ensure 5698 * that the inode block gets written to free up the inodedeps. 5699 */ 5700 for (ino = firstino; ino <= lastino; ino++) { 5701 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5702 continue; 5703 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5704 continue; 5705 FREE_LOCK(&lk); 5706 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5707 softdep_error("clear_inodedeps: vget", error); 5708 vn_finished_write(mp); 5709 ACQUIRE_LOCK(&lk); 5710 return; 5711 } 5712 if (ino == lastino) { 5713 if ((error = ffs_syncvnode(vp, MNT_WAIT))) 5714 softdep_error("clear_inodedeps: fsync1", error); 5715 } else { 5716 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5717 softdep_error("clear_inodedeps: fsync2", error); 5718 VI_LOCK(vp); 5719 drain_output(vp); 5720 VI_UNLOCK(vp); 5721 } 5722 vput(vp); 5723 vn_finished_write(mp); 5724 ACQUIRE_LOCK(&lk); 5725 } 5726 } 5727 5728 /* 5729 * Function to determine if the buffer has outstanding dependencies 5730 * that will cause a roll-back if the buffer is written. If wantcount 5731 * is set, return number of dependencies, otherwise just yes or no. 5732 */ 5733 static int 5734 softdep_count_dependencies(bp, wantcount) 5735 struct buf *bp; 5736 int wantcount; 5737 { 5738 struct worklist *wk; 5739 struct inodedep *inodedep; 5740 struct indirdep *indirdep; 5741 struct allocindir *aip; 5742 struct pagedep *pagedep; 5743 struct diradd *dap; 5744 int i, retval; 5745 5746 retval = 0; 5747 ACQUIRE_LOCK(&lk); 5748 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5749 switch (wk->wk_type) { 5750 5751 case D_INODEDEP: 5752 inodedep = WK_INODEDEP(wk); 5753 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5754 /* bitmap allocation dependency */ 5755 retval += 1; 5756 if (!wantcount) 5757 goto out; 5758 } 5759 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5760 /* direct block pointer dependency */ 5761 retval += 1; 5762 if (!wantcount) 5763 goto out; 5764 } 5765 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5766 /* direct block pointer dependency */ 5767 retval += 1; 5768 if (!wantcount) 5769 goto out; 5770 } 5771 continue; 5772 5773 case D_INDIRDEP: 5774 indirdep = WK_INDIRDEP(wk); 5775 5776 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5777 /* indirect block pointer dependency */ 5778 retval += 1; 5779 if (!wantcount) 5780 goto out; 5781 } 5782 continue; 5783 5784 case D_PAGEDEP: 5785 pagedep = WK_PAGEDEP(wk); 5786 for (i = 0; i < DAHASHSZ; i++) { 5787 5788 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5789 /* directory entry dependency */ 5790 retval += 1; 5791 if (!wantcount) 5792 goto out; 5793 } 5794 } 5795 continue; 5796 5797 case D_BMSAFEMAP: 5798 case D_ALLOCDIRECT: 5799 case D_ALLOCINDIR: 5800 case D_MKDIR: 5801 /* never a dependency on these blocks */ 5802 continue; 5803 5804 default: 5805 panic("softdep_check_for_rollback: Unexpected type %s", 5806 TYPENAME(wk->wk_type)); 5807 /* NOTREACHED */ 5808 } 5809 } 5810 out: 5811 FREE_LOCK(&lk); 5812 return retval; 5813 } 5814 5815 /* 5816 * Acquire exclusive access to a buffer. 5817 * Must be called with a locked mtx parameter. 5818 * Return acquired buffer or NULL on failure. 5819 */ 5820 static struct buf * 5821 getdirtybuf(bp, mtx, waitfor) 5822 struct buf *bp; 5823 struct mtx *mtx; 5824 int waitfor; 5825 { 5826 int error; 5827 5828 mtx_assert(mtx, MA_OWNED); 5829 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 5830 if (waitfor != MNT_WAIT) 5831 return (NULL); 5832 error = BUF_LOCK(bp, 5833 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 5834 /* 5835 * Even if we sucessfully acquire bp here, we have dropped 5836 * mtx, which may violates our guarantee. 5837 */ 5838 if (error == 0) 5839 BUF_UNLOCK(bp); 5840 else if (error != ENOLCK) 5841 panic("getdirtybuf: inconsistent lock: %d", error); 5842 mtx_lock(mtx); 5843 return (NULL); 5844 } 5845 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 5846 BUF_UNLOCK(bp); 5847 if (waitfor != MNT_WAIT) 5848 return (NULL); 5849 /* 5850 * The mtx argument must be bp->b_vp's mutex in 5851 * this case. 5852 */ 5853 #ifdef DEBUG_VFS_LOCKS 5854 if (bp->b_vp->v_type != VCHR) 5855 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 5856 #endif 5857 bp->b_vflags |= BV_BKGRDWAIT; 5858 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 5859 return (NULL); 5860 } 5861 if ((bp->b_flags & B_DELWRI) == 0) { 5862 BUF_UNLOCK(bp); 5863 return (NULL); 5864 } 5865 bremfree(bp); 5866 return (bp); 5867 } 5868 5869 /* 5870 * Wait for pending output on a vnode to complete. 5871 * Must be called with vnode lock and interlock locked. 5872 * 5873 * XXX: Should just be a call to bufobj_wwait(). 5874 */ 5875 static void 5876 drain_output(vp) 5877 struct vnode *vp; 5878 { 5879 ASSERT_VOP_LOCKED(vp, "drain_output"); 5880 ASSERT_VI_LOCKED(vp, "drain_output"); 5881 5882 while (vp->v_bufobj.bo_numoutput) { 5883 vp->v_bufobj.bo_flag |= BO_WWAIT; 5884 msleep((caddr_t)&vp->v_bufobj.bo_numoutput, 5885 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 5886 } 5887 } 5888 5889 /* 5890 * Called whenever a buffer that is being invalidated or reallocated 5891 * contains dependencies. This should only happen if an I/O error has 5892 * occurred. The routine is called with the buffer locked. 5893 */ 5894 static void 5895 softdep_deallocate_dependencies(bp) 5896 struct buf *bp; 5897 { 5898 5899 if ((bp->b_ioflags & BIO_ERROR) == 0) 5900 panic("softdep_deallocate_dependencies: dangling deps"); 5901 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5902 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5903 } 5904 5905 /* 5906 * Function to handle asynchronous write errors in the filesystem. 5907 */ 5908 static void 5909 softdep_error(func, error) 5910 char *func; 5911 int error; 5912 { 5913 5914 /* XXX should do something better! */ 5915 printf("%s: got error %d while accessing filesystem\n", func, error); 5916 } 5917 5918 #endif /* SOFTUPDATES */ 5919