xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 67ca7330cf34a789afbbff9ae7e4cdc4a4917ae3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
94 
95 #ifndef SOFTUPDATES
96 
97 int
98 softdep_flushfiles(oldmnt, flags, td)
99 	struct mount *oldmnt;
100 	int flags;
101 	struct thread *td;
102 {
103 
104 	panic("softdep_flushfiles called");
105 }
106 
107 int
108 softdep_mount(devvp, mp, fs, cred)
109 	struct vnode *devvp;
110 	struct mount *mp;
111 	struct fs *fs;
112 	struct ucred *cred;
113 {
114 
115 	return (0);
116 }
117 
118 void
119 softdep_initialize()
120 {
121 
122 	return;
123 }
124 
125 void
126 softdep_uninitialize()
127 {
128 
129 	return;
130 }
131 
132 void
133 softdep_unmount(mp)
134 	struct mount *mp;
135 {
136 
137 	panic("softdep_unmount called");
138 }
139 
140 void
141 softdep_setup_sbupdate(ump, fs, bp)
142 	struct ufsmount *ump;
143 	struct fs *fs;
144 	struct buf *bp;
145 {
146 
147 	panic("softdep_setup_sbupdate called");
148 }
149 
150 void
151 softdep_setup_inomapdep(bp, ip, newinum, mode)
152 	struct buf *bp;
153 	struct inode *ip;
154 	ino_t newinum;
155 	int mode;
156 {
157 
158 	panic("softdep_setup_inomapdep called");
159 }
160 
161 void
162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
163 	struct buf *bp;
164 	struct mount *mp;
165 	ufs2_daddr_t newblkno;
166 	int frags;
167 	int oldfrags;
168 {
169 
170 	panic("softdep_setup_blkmapdep called");
171 }
172 
173 void
174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
175 	struct inode *ip;
176 	ufs_lbn_t lbn;
177 	ufs2_daddr_t newblkno;
178 	ufs2_daddr_t oldblkno;
179 	long newsize;
180 	long oldsize;
181 	struct buf *bp;
182 {
183 
184 	panic("softdep_setup_allocdirect called");
185 }
186 
187 void
188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
189 	struct inode *ip;
190 	ufs_lbn_t lbn;
191 	ufs2_daddr_t newblkno;
192 	ufs2_daddr_t oldblkno;
193 	long newsize;
194 	long oldsize;
195 	struct buf *bp;
196 {
197 
198 	panic("softdep_setup_allocext called");
199 }
200 
201 void
202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
203 	struct inode *ip;
204 	ufs_lbn_t lbn;
205 	struct buf *bp;
206 	int ptrno;
207 	ufs2_daddr_t newblkno;
208 	ufs2_daddr_t oldblkno;
209 	struct buf *nbp;
210 {
211 
212 	panic("softdep_setup_allocindir_page called");
213 }
214 
215 void
216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
217 	struct buf *nbp;
218 	struct inode *ip;
219 	struct buf *bp;
220 	int ptrno;
221 	ufs2_daddr_t newblkno;
222 {
223 
224 	panic("softdep_setup_allocindir_meta called");
225 }
226 
227 void
228 softdep_journal_freeblocks(ip, cred, length, flags)
229 	struct inode *ip;
230 	struct ucred *cred;
231 	off_t length;
232 	int flags;
233 {
234 
235 	panic("softdep_journal_freeblocks called");
236 }
237 
238 void
239 softdep_journal_fsync(ip)
240 	struct inode *ip;
241 {
242 
243 	panic("softdep_journal_fsync called");
244 }
245 
246 void
247 softdep_setup_freeblocks(ip, length, flags)
248 	struct inode *ip;
249 	off_t length;
250 	int flags;
251 {
252 
253 	panic("softdep_setup_freeblocks called");
254 }
255 
256 void
257 softdep_freefile(pvp, ino, mode)
258 		struct vnode *pvp;
259 		ino_t ino;
260 		int mode;
261 {
262 
263 	panic("softdep_freefile called");
264 }
265 
266 int
267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
268 	struct buf *bp;
269 	struct inode *dp;
270 	off_t diroffset;
271 	ino_t newinum;
272 	struct buf *newdirbp;
273 	int isnewblk;
274 {
275 
276 	panic("softdep_setup_directory_add called");
277 }
278 
279 void
280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
281 	struct buf *bp;
282 	struct inode *dp;
283 	caddr_t base;
284 	caddr_t oldloc;
285 	caddr_t newloc;
286 	int entrysize;
287 {
288 
289 	panic("softdep_change_directoryentry_offset called");
290 }
291 
292 void
293 softdep_setup_remove(bp, dp, ip, isrmdir)
294 	struct buf *bp;
295 	struct inode *dp;
296 	struct inode *ip;
297 	int isrmdir;
298 {
299 
300 	panic("softdep_setup_remove called");
301 }
302 
303 void
304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
305 	struct buf *bp;
306 	struct inode *dp;
307 	struct inode *ip;
308 	ino_t newinum;
309 	int isrmdir;
310 {
311 
312 	panic("softdep_setup_directory_change called");
313 }
314 
315 void
316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
317 	struct mount *mp;
318 	struct buf *bp;
319 	ufs2_daddr_t blkno;
320 	int frags;
321 	struct workhead *wkhd;
322 {
323 
324 	panic("%s called", __FUNCTION__);
325 }
326 
327 void
328 softdep_setup_inofree(mp, bp, ino, wkhd)
329 	struct mount *mp;
330 	struct buf *bp;
331 	ino_t ino;
332 	struct workhead *wkhd;
333 {
334 
335 	panic("%s called", __FUNCTION__);
336 }
337 
338 void
339 softdep_setup_unlink(dp, ip)
340 	struct inode *dp;
341 	struct inode *ip;
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_setup_link(dp, ip)
349 	struct inode *dp;
350 	struct inode *ip;
351 {
352 
353 	panic("%s called", __FUNCTION__);
354 }
355 
356 void
357 softdep_revert_link(dp, ip)
358 	struct inode *dp;
359 	struct inode *ip;
360 {
361 
362 	panic("%s called", __FUNCTION__);
363 }
364 
365 void
366 softdep_setup_rmdir(dp, ip)
367 	struct inode *dp;
368 	struct inode *ip;
369 {
370 
371 	panic("%s called", __FUNCTION__);
372 }
373 
374 void
375 softdep_revert_rmdir(dp, ip)
376 	struct inode *dp;
377 	struct inode *ip;
378 {
379 
380 	panic("%s called", __FUNCTION__);
381 }
382 
383 void
384 softdep_setup_create(dp, ip)
385 	struct inode *dp;
386 	struct inode *ip;
387 {
388 
389 	panic("%s called", __FUNCTION__);
390 }
391 
392 void
393 softdep_revert_create(dp, ip)
394 	struct inode *dp;
395 	struct inode *ip;
396 {
397 
398 	panic("%s called", __FUNCTION__);
399 }
400 
401 void
402 softdep_setup_mkdir(dp, ip)
403 	struct inode *dp;
404 	struct inode *ip;
405 {
406 
407 	panic("%s called", __FUNCTION__);
408 }
409 
410 void
411 softdep_revert_mkdir(dp, ip)
412 	struct inode *dp;
413 	struct inode *ip;
414 {
415 
416 	panic("%s called", __FUNCTION__);
417 }
418 
419 void
420 softdep_setup_dotdot_link(dp, ip)
421 	struct inode *dp;
422 	struct inode *ip;
423 {
424 
425 	panic("%s called", __FUNCTION__);
426 }
427 
428 int
429 softdep_prealloc(vp, waitok)
430 	struct vnode *vp;
431 	int waitok;
432 {
433 
434 	panic("%s called", __FUNCTION__);
435 }
436 
437 int
438 softdep_journal_lookup(mp, vpp)
439 	struct mount *mp;
440 	struct vnode **vpp;
441 {
442 
443 	return (ENOENT);
444 }
445 
446 void
447 softdep_change_linkcnt(ip)
448 	struct inode *ip;
449 {
450 
451 	panic("softdep_change_linkcnt called");
452 }
453 
454 void
455 softdep_load_inodeblock(ip)
456 	struct inode *ip;
457 {
458 
459 	panic("softdep_load_inodeblock called");
460 }
461 
462 void
463 softdep_update_inodeblock(ip, bp, waitfor)
464 	struct inode *ip;
465 	struct buf *bp;
466 	int waitfor;
467 {
468 
469 	panic("softdep_update_inodeblock called");
470 }
471 
472 int
473 softdep_fsync(vp)
474 	struct vnode *vp;	/* the "in_core" copy of the inode */
475 {
476 
477 	return (0);
478 }
479 
480 void
481 softdep_fsync_mountdev(vp)
482 	struct vnode *vp;
483 {
484 
485 	return;
486 }
487 
488 int
489 softdep_flushworklist(oldmnt, countp, td)
490 	struct mount *oldmnt;
491 	int *countp;
492 	struct thread *td;
493 {
494 
495 	*countp = 0;
496 	return (0);
497 }
498 
499 int
500 softdep_sync_metadata(struct vnode *vp)
501 {
502 
503 	panic("softdep_sync_metadata called");
504 }
505 
506 int
507 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
508 {
509 
510 	panic("softdep_sync_buf called");
511 }
512 
513 int
514 softdep_slowdown(vp)
515 	struct vnode *vp;
516 {
517 
518 	panic("softdep_slowdown called");
519 }
520 
521 int
522 softdep_request_cleanup(fs, vp, cred, resource)
523 	struct fs *fs;
524 	struct vnode *vp;
525 	struct ucred *cred;
526 	int resource;
527 {
528 
529 	return (0);
530 }
531 
532 int
533 softdep_check_suspend(struct mount *mp,
534 		      struct vnode *devvp,
535 		      int softdep_depcnt,
536 		      int softdep_accdepcnt,
537 		      int secondary_writes,
538 		      int secondary_accwrites)
539 {
540 	struct bufobj *bo;
541 	int error;
542 
543 	(void) softdep_depcnt,
544 	(void) softdep_accdepcnt;
545 
546 	bo = &devvp->v_bufobj;
547 	ASSERT_BO_WLOCKED(bo);
548 
549 	MNT_ILOCK(mp);
550 	while (mp->mnt_secondary_writes != 0) {
551 		BO_UNLOCK(bo);
552 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
553 		    (PUSER - 1) | PDROP, "secwr", 0);
554 		BO_LOCK(bo);
555 		MNT_ILOCK(mp);
556 	}
557 
558 	/*
559 	 * Reasons for needing more work before suspend:
560 	 * - Dirty buffers on devvp.
561 	 * - Secondary writes occurred after start of vnode sync loop
562 	 */
563 	error = 0;
564 	if (bo->bo_numoutput > 0 ||
565 	    bo->bo_dirty.bv_cnt > 0 ||
566 	    secondary_writes != 0 ||
567 	    mp->mnt_secondary_writes != 0 ||
568 	    secondary_accwrites != mp->mnt_secondary_accwrites)
569 		error = EAGAIN;
570 	BO_UNLOCK(bo);
571 	return (error);
572 }
573 
574 void
575 softdep_get_depcounts(struct mount *mp,
576 		      int *softdepactivep,
577 		      int *softdepactiveaccp)
578 {
579 	(void) mp;
580 	*softdepactivep = 0;
581 	*softdepactiveaccp = 0;
582 }
583 
584 void
585 softdep_buf_append(bp, wkhd)
586 	struct buf *bp;
587 	struct workhead *wkhd;
588 {
589 
590 	panic("softdep_buf_appendwork called");
591 }
592 
593 void
594 softdep_inode_append(ip, cred, wkhd)
595 	struct inode *ip;
596 	struct ucred *cred;
597 	struct workhead *wkhd;
598 {
599 
600 	panic("softdep_inode_appendwork called");
601 }
602 
603 void
604 softdep_freework(wkhd)
605 	struct workhead *wkhd;
606 {
607 
608 	panic("softdep_freework called");
609 }
610 
611 #else
612 
613 FEATURE(softupdates, "FFS soft-updates support");
614 
615 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
616     "soft updates stats");
617 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
618     "total dependencies allocated");
619 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
620     "high use dependencies allocated");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
622     "current dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
624     "current dependencies written");
625 
626 unsigned long dep_current[D_LAST + 1];
627 unsigned long dep_highuse[D_LAST + 1];
628 unsigned long dep_total[D_LAST + 1];
629 unsigned long dep_write[D_LAST + 1];
630 
631 #define	SOFTDEP_TYPE(type, str, long)					\
632     static MALLOC_DEFINE(M_ ## type, #str, long);			\
633     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
634 	&dep_total[D_ ## type], 0, "");					\
635     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
636 	&dep_current[D_ ## type], 0, "");				\
637     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
638 	&dep_highuse[D_ ## type], 0, "");				\
639     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_write[D_ ## type], 0, "");
641 
642 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
643 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
644 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
645     "Block or frag allocated from cyl group map");
646 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
647 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
648 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
649 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
650 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
651 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
652 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
653 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
654 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
655 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
656 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
657 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
658 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
659 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
660 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
661 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
662 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
663 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
664 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
665 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
666 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
667 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
668 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
669 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
670 
671 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
672 
673 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
674 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
675 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
676 
677 #define M_SOFTDEP_FLAGS	(M_WAITOK)
678 
679 /*
680  * translate from workitem type to memory type
681  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
682  */
683 static struct malloc_type *memtype[] = {
684 	NULL,
685 	M_PAGEDEP,
686 	M_INODEDEP,
687 	M_BMSAFEMAP,
688 	M_NEWBLK,
689 	M_ALLOCDIRECT,
690 	M_INDIRDEP,
691 	M_ALLOCINDIR,
692 	M_FREEFRAG,
693 	M_FREEBLKS,
694 	M_FREEFILE,
695 	M_DIRADD,
696 	M_MKDIR,
697 	M_DIRREM,
698 	M_NEWDIRBLK,
699 	M_FREEWORK,
700 	M_FREEDEP,
701 	M_JADDREF,
702 	M_JREMREF,
703 	M_JMVREF,
704 	M_JNEWBLK,
705 	M_JFREEBLK,
706 	M_JFREEFRAG,
707 	M_JSEG,
708 	M_JSEGDEP,
709 	M_SBDEP,
710 	M_JTRUNC,
711 	M_JFSYNC,
712 	M_SENTINEL
713 };
714 
715 #define DtoM(type) (memtype[type])
716 
717 /*
718  * Names of malloc types.
719  */
720 #define TYPENAME(type)  \
721 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
722 	memtype[type]->ks_shortdesc : "???")
723 /*
724  * End system adaptation definitions.
725  */
726 
727 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
728 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
729 
730 /*
731  * Internal function prototypes.
732  */
733 static	void check_clear_deps(struct mount *);
734 static	void softdep_error(char *, int);
735 static	int softdep_process_worklist(struct mount *, int);
736 static	int softdep_waitidle(struct mount *, int);
737 static	void drain_output(struct vnode *);
738 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
739 static	int check_inodedep_free(struct inodedep *);
740 static	void clear_remove(struct mount *);
741 static	void clear_inodedeps(struct mount *);
742 static	void unlinked_inodedep(struct mount *, struct inodedep *);
743 static	void clear_unlinked_inodedep(struct inodedep *);
744 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
745 static	int flush_pagedep_deps(struct vnode *, struct mount *,
746 	    struct diraddhd *);
747 static	int free_pagedep(struct pagedep *);
748 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
749 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
750 static	int flush_deplist(struct allocdirectlst *, int, int *);
751 static	int sync_cgs(struct mount *, int);
752 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
753 static	int handle_written_sbdep(struct sbdep *, struct buf *);
754 static	void initiate_write_sbdep(struct sbdep *);
755 static	void diradd_inode_written(struct diradd *, struct inodedep *);
756 static	int handle_written_indirdep(struct indirdep *, struct buf *,
757 	    struct buf**, int);
758 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
759 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
760 	    uint8_t *);
761 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
762 static	void handle_written_jaddref(struct jaddref *);
763 static	void handle_written_jremref(struct jremref *);
764 static	void handle_written_jseg(struct jseg *, struct buf *);
765 static	void handle_written_jnewblk(struct jnewblk *);
766 static	void handle_written_jblkdep(struct jblkdep *);
767 static	void handle_written_jfreefrag(struct jfreefrag *);
768 static	void complete_jseg(struct jseg *);
769 static	void complete_jsegs(struct jseg *);
770 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
771 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
772 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
773 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
774 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
775 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
776 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
777 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
778 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
779 static	inline void inoref_write(struct inoref *, struct jseg *,
780 	    struct jrefrec *);
781 static	void handle_allocdirect_partdone(struct allocdirect *,
782 	    struct workhead *);
783 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
784 	    struct workhead *);
785 static	void indirdep_complete(struct indirdep *);
786 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
787 static	void indirblk_insert(struct freework *);
788 static	void indirblk_remove(struct freework *);
789 static	void handle_allocindir_partdone(struct allocindir *);
790 static	void initiate_write_filepage(struct pagedep *, struct buf *);
791 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
792 static	void handle_written_mkdir(struct mkdir *, int);
793 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
794 	    uint8_t *);
795 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
796 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
797 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
798 static	void handle_workitem_freefile(struct freefile *);
799 static	int handle_workitem_remove(struct dirrem *, int);
800 static	struct dirrem *newdirrem(struct buf *, struct inode *,
801 	    struct inode *, int, struct dirrem **);
802 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
803 	    struct buf *);
804 static	void cancel_indirdep(struct indirdep *, struct buf *,
805 	    struct freeblks *);
806 static	void free_indirdep(struct indirdep *);
807 static	void free_diradd(struct diradd *, struct workhead *);
808 static	void merge_diradd(struct inodedep *, struct diradd *);
809 static	void complete_diradd(struct diradd *);
810 static	struct diradd *diradd_lookup(struct pagedep *, int);
811 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
812 	    struct jremref *);
813 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
814 	    struct jremref *);
815 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
816 	    struct jremref *, struct jremref *);
817 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
818 	    struct jremref *);
819 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
820 	    struct freeblks *, int);
821 static	int setup_trunc_indir(struct freeblks *, struct inode *,
822 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
823 static	void complete_trunc_indir(struct freework *);
824 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
825 	    int);
826 static	void complete_mkdir(struct mkdir *);
827 static	void free_newdirblk(struct newdirblk *);
828 static	void free_jremref(struct jremref *);
829 static	void free_jaddref(struct jaddref *);
830 static	void free_jsegdep(struct jsegdep *);
831 static	void free_jsegs(struct jblocks *);
832 static	void rele_jseg(struct jseg *);
833 static	void free_jseg(struct jseg *, struct jblocks *);
834 static	void free_jnewblk(struct jnewblk *);
835 static	void free_jblkdep(struct jblkdep *);
836 static	void free_jfreefrag(struct jfreefrag *);
837 static	void free_freedep(struct freedep *);
838 static	void journal_jremref(struct dirrem *, struct jremref *,
839 	    struct inodedep *);
840 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
841 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
842 	    struct workhead *);
843 static	void cancel_jfreefrag(struct jfreefrag *);
844 static	inline void setup_freedirect(struct freeblks *, struct inode *,
845 	    int, int);
846 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
847 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
848 	    ufs_lbn_t, int);
849 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
850 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
851 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
852 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
853 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
854 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
855 	    int, int);
856 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
857 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
858 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
859 static	void newblk_freefrag(struct newblk*);
860 static	void free_newblk(struct newblk *);
861 static	void cancel_allocdirect(struct allocdirectlst *,
862 	    struct allocdirect *, struct freeblks *);
863 static	int check_inode_unwritten(struct inodedep *);
864 static	int free_inodedep(struct inodedep *);
865 static	void freework_freeblock(struct freework *, u_long);
866 static	void freework_enqueue(struct freework *);
867 static	int handle_workitem_freeblocks(struct freeblks *, int);
868 static	int handle_complete_freeblocks(struct freeblks *, int);
869 static	void handle_workitem_indirblk(struct freework *);
870 static	void handle_written_freework(struct freework *);
871 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
872 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
873 	    struct workhead *);
874 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
875 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
876 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
877 	    ufs2_daddr_t, ufs_lbn_t);
878 static	void handle_workitem_freefrag(struct freefrag *);
879 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
880 	    ufs_lbn_t, u_long);
881 static	void allocdirect_merge(struct allocdirectlst *,
882 	    struct allocdirect *, struct allocdirect *);
883 static	struct freefrag *allocindir_merge(struct allocindir *,
884 	    struct allocindir *);
885 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
886 	    struct bmsafemap **);
887 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
888 	    int cg, struct bmsafemap *);
889 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
890 	    struct newblk **);
891 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
892 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
893 	    struct inodedep **);
894 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
895 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
896 	    int, struct pagedep **);
897 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
898 	    struct pagedep **);
899 static	void pause_timer(void *);
900 static	int request_cleanup(struct mount *, int);
901 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
902 static	void schedule_cleanup(struct mount *);
903 static void softdep_ast_cleanup_proc(struct thread *);
904 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
905 static	int process_worklist_item(struct mount *, int, int);
906 static	void process_removes(struct vnode *);
907 static	void process_truncates(struct vnode *);
908 static	void jwork_move(struct workhead *, struct workhead *);
909 static	void jwork_insert(struct workhead *, struct jsegdep *);
910 static	void add_to_worklist(struct worklist *, int);
911 static	void wake_worklist(struct worklist *);
912 static	void wait_worklist(struct worklist *, char *);
913 static	void remove_from_worklist(struct worklist *);
914 static	void softdep_flush(void *);
915 static	void softdep_flushjournal(struct mount *);
916 static	int softdep_speedup(struct ufsmount *);
917 static	void worklist_speedup(struct mount *);
918 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
919 static	void journal_unmount(struct ufsmount *);
920 static	int journal_space(struct ufsmount *, int);
921 static	void journal_suspend(struct ufsmount *);
922 static	int journal_unsuspend(struct ufsmount *ump);
923 static	void softdep_prelink(struct vnode *, struct vnode *);
924 static	void add_to_journal(struct worklist *);
925 static	void remove_from_journal(struct worklist *);
926 static	bool softdep_excess_items(struct ufsmount *, int);
927 static	void softdep_process_journal(struct mount *, struct worklist *, int);
928 static	struct jremref *newjremref(struct dirrem *, struct inode *,
929 	    struct inode *ip, off_t, nlink_t);
930 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
931 	    uint16_t);
932 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
933 	    uint16_t);
934 static	inline struct jsegdep *inoref_jseg(struct inoref *);
935 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
936 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
937 	    ufs2_daddr_t, int);
938 static	void adjust_newfreework(struct freeblks *, int);
939 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
940 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
941 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
942 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
943 	    ufs2_daddr_t, long, ufs_lbn_t);
944 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
945 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
946 static	int jwait(struct worklist *, int);
947 static	struct inodedep *inodedep_lookup_ip(struct inode *);
948 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
949 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
950 static	void handle_jwork(struct workhead *);
951 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
952 	    struct mkdir **);
953 static	struct jblocks *jblocks_create(void);
954 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
955 static	void jblocks_free(struct jblocks *, struct mount *, int);
956 static	void jblocks_destroy(struct jblocks *);
957 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
958 
959 /*
960  * Exported softdep operations.
961  */
962 static	void softdep_disk_io_initiation(struct buf *);
963 static	void softdep_disk_write_complete(struct buf *);
964 static	void softdep_deallocate_dependencies(struct buf *);
965 static	int softdep_count_dependencies(struct buf *bp, int);
966 
967 /*
968  * Global lock over all of soft updates.
969  */
970 static struct mtx lk;
971 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
972 
973 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
974 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
975 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
976 
977 /*
978  * Per-filesystem soft-updates locking.
979  */
980 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
981 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
982 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
983 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
984 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
985 				    RA_WLOCKED)
986 
987 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
988 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
989 
990 /*
991  * Worklist queue management.
992  * These routines require that the lock be held.
993  */
994 #ifndef /* NOT */ INVARIANTS
995 #define WORKLIST_INSERT(head, item) do {	\
996 	(item)->wk_state |= ONWORKLIST;		\
997 	LIST_INSERT_HEAD(head, item, wk_list);	\
998 } while (0)
999 #define WORKLIST_REMOVE(item) do {		\
1000 	(item)->wk_state &= ~ONWORKLIST;	\
1001 	LIST_REMOVE(item, wk_list);		\
1002 } while (0)
1003 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1004 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1005 
1006 #else /* INVARIANTS */
1007 static	void worklist_insert(struct workhead *, struct worklist *, int,
1008 	const char *, int);
1009 static	void worklist_remove(struct worklist *, int, const char *, int);
1010 
1011 #define WORKLIST_INSERT(head, item) \
1012 	worklist_insert(head, item, 1, __func__, __LINE__)
1013 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1014 	worklist_insert(head, item, 0, __func__, __LINE__)
1015 #define WORKLIST_REMOVE(item)\
1016 	worklist_remove(item, 1, __func__, __LINE__)
1017 #define WORKLIST_REMOVE_UNLOCKED(item)\
1018 	worklist_remove(item, 0, __func__, __LINE__)
1019 
1020 static void
1021 worklist_insert(head, item, locked, func, line)
1022 	struct workhead *head;
1023 	struct worklist *item;
1024 	int locked;
1025 	const char *func;
1026 	int line;
1027 {
1028 
1029 	if (locked)
1030 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1031 	if (item->wk_state & ONWORKLIST)
1032 		panic("worklist_insert: %p %s(0x%X) already on list, "
1033 		    "added in function %s at line %d",
1034 		    item, TYPENAME(item->wk_type), item->wk_state,
1035 		    item->wk_func, item->wk_line);
1036 	item->wk_state |= ONWORKLIST;
1037 	item->wk_func = func;
1038 	item->wk_line = line;
1039 	LIST_INSERT_HEAD(head, item, wk_list);
1040 }
1041 
1042 static void
1043 worklist_remove(item, locked, func, line)
1044 	struct worklist *item;
1045 	int locked;
1046 	const char *func;
1047 	int line;
1048 {
1049 
1050 	if (locked)
1051 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1052 	if ((item->wk_state & ONWORKLIST) == 0)
1053 		panic("worklist_remove: %p %s(0x%X) not on list, "
1054 		    "removed in function %s at line %d",
1055 		    item, TYPENAME(item->wk_type), item->wk_state,
1056 		    item->wk_func, item->wk_line);
1057 	item->wk_state &= ~ONWORKLIST;
1058 	item->wk_func = func;
1059 	item->wk_line = line;
1060 	LIST_REMOVE(item, wk_list);
1061 }
1062 #endif /* INVARIANTS */
1063 
1064 /*
1065  * Merge two jsegdeps keeping only the oldest one as newer references
1066  * can't be discarded until after older references.
1067  */
1068 static inline struct jsegdep *
1069 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1070 {
1071 	struct jsegdep *swp;
1072 
1073 	if (two == NULL)
1074 		return (one);
1075 
1076 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1077 		swp = one;
1078 		one = two;
1079 		two = swp;
1080 	}
1081 	WORKLIST_REMOVE(&two->jd_list);
1082 	free_jsegdep(two);
1083 
1084 	return (one);
1085 }
1086 
1087 /*
1088  * If two freedeps are compatible free one to reduce list size.
1089  */
1090 static inline struct freedep *
1091 freedep_merge(struct freedep *one, struct freedep *two)
1092 {
1093 	if (two == NULL)
1094 		return (one);
1095 
1096 	if (one->fd_freework == two->fd_freework) {
1097 		WORKLIST_REMOVE(&two->fd_list);
1098 		free_freedep(two);
1099 	}
1100 	return (one);
1101 }
1102 
1103 /*
1104  * Move journal work from one list to another.  Duplicate freedeps and
1105  * jsegdeps are coalesced to keep the lists as small as possible.
1106  */
1107 static void
1108 jwork_move(dst, src)
1109 	struct workhead *dst;
1110 	struct workhead *src;
1111 {
1112 	struct freedep *freedep;
1113 	struct jsegdep *jsegdep;
1114 	struct worklist *wkn;
1115 	struct worklist *wk;
1116 
1117 	KASSERT(dst != src,
1118 	    ("jwork_move: dst == src"));
1119 	freedep = NULL;
1120 	jsegdep = NULL;
1121 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1122 		if (wk->wk_type == D_JSEGDEP)
1123 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1124 		else if (wk->wk_type == D_FREEDEP)
1125 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1126 	}
1127 
1128 	while ((wk = LIST_FIRST(src)) != NULL) {
1129 		WORKLIST_REMOVE(wk);
1130 		WORKLIST_INSERT(dst, wk);
1131 		if (wk->wk_type == D_JSEGDEP) {
1132 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1133 			continue;
1134 		}
1135 		if (wk->wk_type == D_FREEDEP)
1136 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1137 	}
1138 }
1139 
1140 static void
1141 jwork_insert(dst, jsegdep)
1142 	struct workhead *dst;
1143 	struct jsegdep *jsegdep;
1144 {
1145 	struct jsegdep *jsegdepn;
1146 	struct worklist *wk;
1147 
1148 	LIST_FOREACH(wk, dst, wk_list)
1149 		if (wk->wk_type == D_JSEGDEP)
1150 			break;
1151 	if (wk == NULL) {
1152 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1153 		return;
1154 	}
1155 	jsegdepn = WK_JSEGDEP(wk);
1156 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1157 		WORKLIST_REMOVE(wk);
1158 		free_jsegdep(jsegdepn);
1159 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1160 	} else
1161 		free_jsegdep(jsegdep);
1162 }
1163 
1164 /*
1165  * Routines for tracking and managing workitems.
1166  */
1167 static	void workitem_free(struct worklist *, int);
1168 static	void workitem_alloc(struct worklist *, int, struct mount *);
1169 static	void workitem_reassign(struct worklist *, int);
1170 
1171 #define	WORKITEM_FREE(item, type) \
1172 	workitem_free((struct worklist *)(item), (type))
1173 #define	WORKITEM_REASSIGN(item, type) \
1174 	workitem_reassign((struct worklist *)(item), (type))
1175 
1176 static void
1177 workitem_free(item, type)
1178 	struct worklist *item;
1179 	int type;
1180 {
1181 	struct ufsmount *ump;
1182 
1183 #ifdef INVARIANTS
1184 	if (item->wk_state & ONWORKLIST)
1185 		panic("workitem_free: %s(0x%X) still on list, "
1186 		    "added in function %s at line %d",
1187 		    TYPENAME(item->wk_type), item->wk_state,
1188 		    item->wk_func, item->wk_line);
1189 	if (item->wk_type != type && type != D_NEWBLK)
1190 		panic("workitem_free: type mismatch %s != %s",
1191 		    TYPENAME(item->wk_type), TYPENAME(type));
1192 #endif
1193 	if (item->wk_state & IOWAITING)
1194 		wakeup(item);
1195 	ump = VFSTOUFS(item->wk_mp);
1196 	LOCK_OWNED(ump);
1197 	KASSERT(ump->softdep_deps > 0,
1198 	    ("workitem_free: %s: softdep_deps going negative",
1199 	    ump->um_fs->fs_fsmnt));
1200 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1201 		wakeup(&ump->softdep_deps);
1202 	KASSERT(dep_current[item->wk_type] > 0,
1203 	    ("workitem_free: %s: dep_current[%s] going negative",
1204 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1205 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1206 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1207 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1208 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1209 	ump->softdep_curdeps[item->wk_type] -= 1;
1210 	free(item, DtoM(type));
1211 }
1212 
1213 static void
1214 workitem_alloc(item, type, mp)
1215 	struct worklist *item;
1216 	int type;
1217 	struct mount *mp;
1218 {
1219 	struct ufsmount *ump;
1220 
1221 	item->wk_type = type;
1222 	item->wk_mp = mp;
1223 	item->wk_state = 0;
1224 
1225 	ump = VFSTOUFS(mp);
1226 	ACQUIRE_GBLLOCK(&lk);
1227 	dep_current[type]++;
1228 	if (dep_current[type] > dep_highuse[type])
1229 		dep_highuse[type] = dep_current[type];
1230 	dep_total[type]++;
1231 	FREE_GBLLOCK(&lk);
1232 	ACQUIRE_LOCK(ump);
1233 	ump->softdep_curdeps[type] += 1;
1234 	ump->softdep_deps++;
1235 	ump->softdep_accdeps++;
1236 	FREE_LOCK(ump);
1237 }
1238 
1239 static void
1240 workitem_reassign(item, newtype)
1241 	struct worklist *item;
1242 	int newtype;
1243 {
1244 	struct ufsmount *ump;
1245 
1246 	ump = VFSTOUFS(item->wk_mp);
1247 	LOCK_OWNED(ump);
1248 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1249 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1250 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1251 	ump->softdep_curdeps[item->wk_type] -= 1;
1252 	ump->softdep_curdeps[newtype] += 1;
1253 	KASSERT(dep_current[item->wk_type] > 0,
1254 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1255 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1256 	ACQUIRE_GBLLOCK(&lk);
1257 	dep_current[newtype]++;
1258 	dep_current[item->wk_type]--;
1259 	if (dep_current[newtype] > dep_highuse[newtype])
1260 		dep_highuse[newtype] = dep_current[newtype];
1261 	dep_total[newtype]++;
1262 	FREE_GBLLOCK(&lk);
1263 	item->wk_type = newtype;
1264 }
1265 
1266 /*
1267  * Workitem queue management
1268  */
1269 static int max_softdeps;	/* maximum number of structs before slowdown */
1270 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1271 static int proc_waiting;	/* tracks whether we have a timeout posted */
1272 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1273 static struct callout softdep_callout;
1274 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1275 static int req_clear_remove;	/* syncer process flush some freeblks */
1276 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1277 
1278 /*
1279  * runtime statistics
1280  */
1281 static int stat_flush_threads;	/* number of softdep flushing threads */
1282 static int stat_worklist_push;	/* number of worklist cleanups */
1283 static int stat_blk_limit_push;	/* number of times block limit neared */
1284 static int stat_ino_limit_push;	/* number of times inode limit neared */
1285 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1286 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1287 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1288 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1289 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1290 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1291 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1292 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1293 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1294 static int stat_journal_min;	/* Times hit journal min threshold */
1295 static int stat_journal_low;	/* Times hit journal low threshold */
1296 static int stat_journal_wait;	/* Times blocked in jwait(). */
1297 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1298 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1299 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1300 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1301 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1302 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1303 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1304 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1305 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1306 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1307 
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1309     &max_softdeps, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1311     &tickdelay, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1313     &stat_flush_threads, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1315     &stat_worklist_push, 0,"");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1317     &stat_blk_limit_push, 0,"");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1319     &stat_ino_limit_push, 0,"");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1321     &stat_blk_limit_hit, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1323     &stat_ino_limit_hit, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1325     &stat_sync_limit_hit, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1327     &stat_indir_blk_ptrs, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1329     &stat_inode_bitmap, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1331     &stat_direct_blk_ptrs, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1333     &stat_dir_entry, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1335     &stat_jaddref, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1337     &stat_jnewblk, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1339     &stat_journal_low, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1341     &stat_journal_min, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1343     &stat_journal_wait, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1345     &stat_jwait_filepage, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1347     &stat_jwait_freeblks, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1349     &stat_jwait_inode, 0, "");
1350 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1351     &stat_jwait_newblk, 0, "");
1352 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1353     &stat_cleanup_blkrequests, 0, "");
1354 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1355     &stat_cleanup_inorequests, 0, "");
1356 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1357     &stat_cleanup_high_delay, 0, "");
1358 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1359     &stat_cleanup_retries, 0, "");
1360 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1361     &stat_cleanup_failures, 0, "");
1362 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1363     &softdep_flushcache, 0, "");
1364 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1365     &stat_emptyjblocks, 0, "");
1366 
1367 SYSCTL_DECL(_vfs_ffs);
1368 
1369 /* Whether to recompute the summary at mount time */
1370 static int compute_summary_at_mount = 0;
1371 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1372 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1373 static int print_threads = 0;
1374 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1375     &print_threads, 0, "Notify flusher thread start/stop");
1376 
1377 /* List of all filesystems mounted with soft updates */
1378 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1379 
1380 /*
1381  * This function cleans the worklist for a filesystem.
1382  * Each filesystem running with soft dependencies gets its own
1383  * thread to run in this function. The thread is started up in
1384  * softdep_mount and shutdown in softdep_unmount. They show up
1385  * as part of the kernel "bufdaemon" process whose process
1386  * entry is available in bufdaemonproc.
1387  */
1388 static int searchfailed;
1389 extern struct proc *bufdaemonproc;
1390 static void
1391 softdep_flush(addr)
1392 	void *addr;
1393 {
1394 	struct mount *mp;
1395 	struct thread *td;
1396 	struct ufsmount *ump;
1397 
1398 	td = curthread;
1399 	td->td_pflags |= TDP_NORUNNINGBUF;
1400 	mp = (struct mount *)addr;
1401 	ump = VFSTOUFS(mp);
1402 	atomic_add_int(&stat_flush_threads, 1);
1403 	ACQUIRE_LOCK(ump);
1404 	ump->softdep_flags &= ~FLUSH_STARTING;
1405 	wakeup(&ump->softdep_flushtd);
1406 	FREE_LOCK(ump);
1407 	if (print_threads) {
1408 		if (stat_flush_threads == 1)
1409 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1410 			    bufdaemonproc->p_pid);
1411 		printf("Start thread %s\n", td->td_name);
1412 	}
1413 	for (;;) {
1414 		while (softdep_process_worklist(mp, 0) > 0 ||
1415 		    (MOUNTEDSUJ(mp) &&
1416 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1417 			kthread_suspend_check();
1418 		ACQUIRE_LOCK(ump);
1419 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1420 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1421 			    "sdflush", hz / 2);
1422 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1423 		/*
1424 		 * Check to see if we are done and need to exit.
1425 		 */
1426 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1427 			FREE_LOCK(ump);
1428 			continue;
1429 		}
1430 		ump->softdep_flags &= ~FLUSH_EXIT;
1431 		FREE_LOCK(ump);
1432 		wakeup(&ump->softdep_flags);
1433 		if (print_threads)
1434 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1435 		atomic_subtract_int(&stat_flush_threads, 1);
1436 		kthread_exit();
1437 		panic("kthread_exit failed\n");
1438 	}
1439 }
1440 
1441 static void
1442 worklist_speedup(mp)
1443 	struct mount *mp;
1444 {
1445 	struct ufsmount *ump;
1446 
1447 	ump = VFSTOUFS(mp);
1448 	LOCK_OWNED(ump);
1449 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1450 		ump->softdep_flags |= FLUSH_CLEANUP;
1451 	wakeup(&ump->softdep_flushtd);
1452 }
1453 
1454 static int
1455 softdep_speedup(ump)
1456 	struct ufsmount *ump;
1457 {
1458 	struct ufsmount *altump;
1459 	struct mount_softdeps *sdp;
1460 
1461 	LOCK_OWNED(ump);
1462 	worklist_speedup(ump->um_mountp);
1463 	bd_speedup();
1464 	/*
1465 	 * If we have global shortages, then we need other
1466 	 * filesystems to help with the cleanup. Here we wakeup a
1467 	 * flusher thread for a filesystem that is over its fair
1468 	 * share of resources.
1469 	 */
1470 	if (req_clear_inodedeps || req_clear_remove) {
1471 		ACQUIRE_GBLLOCK(&lk);
1472 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1473 			if ((altump = sdp->sd_ump) == ump)
1474 				continue;
1475 			if (((req_clear_inodedeps &&
1476 			    altump->softdep_curdeps[D_INODEDEP] >
1477 			    max_softdeps / stat_flush_threads) ||
1478 			    (req_clear_remove &&
1479 			    altump->softdep_curdeps[D_DIRREM] >
1480 			    (max_softdeps / 2) / stat_flush_threads)) &&
1481 			    TRY_ACQUIRE_LOCK(altump))
1482 				break;
1483 		}
1484 		if (sdp == NULL) {
1485 			searchfailed++;
1486 			FREE_GBLLOCK(&lk);
1487 		} else {
1488 			/*
1489 			 * Move to the end of the list so we pick a
1490 			 * different one on out next try.
1491 			 */
1492 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1493 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1494 			FREE_GBLLOCK(&lk);
1495 			if ((altump->softdep_flags &
1496 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1497 				altump->softdep_flags |= FLUSH_CLEANUP;
1498 			altump->um_softdep->sd_cleanups++;
1499 			wakeup(&altump->softdep_flushtd);
1500 			FREE_LOCK(altump);
1501 		}
1502 	}
1503 	return (speedup_syncer());
1504 }
1505 
1506 /*
1507  * Add an item to the end of the work queue.
1508  * This routine requires that the lock be held.
1509  * This is the only routine that adds items to the list.
1510  * The following routine is the only one that removes items
1511  * and does so in order from first to last.
1512  */
1513 
1514 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1515 #define	WK_NODELAY	0x0002	/* Process immediately. */
1516 
1517 static void
1518 add_to_worklist(wk, flags)
1519 	struct worklist *wk;
1520 	int flags;
1521 {
1522 	struct ufsmount *ump;
1523 
1524 	ump = VFSTOUFS(wk->wk_mp);
1525 	LOCK_OWNED(ump);
1526 	if (wk->wk_state & ONWORKLIST)
1527 		panic("add_to_worklist: %s(0x%X) already on list",
1528 		    TYPENAME(wk->wk_type), wk->wk_state);
1529 	wk->wk_state |= ONWORKLIST;
1530 	if (ump->softdep_on_worklist == 0) {
1531 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1532 		ump->softdep_worklist_tail = wk;
1533 	} else if (flags & WK_HEAD) {
1534 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1535 	} else {
1536 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1537 		ump->softdep_worklist_tail = wk;
1538 	}
1539 	ump->softdep_on_worklist += 1;
1540 	if (flags & WK_NODELAY)
1541 		worklist_speedup(wk->wk_mp);
1542 }
1543 
1544 /*
1545  * Remove the item to be processed. If we are removing the last
1546  * item on the list, we need to recalculate the tail pointer.
1547  */
1548 static void
1549 remove_from_worklist(wk)
1550 	struct worklist *wk;
1551 {
1552 	struct ufsmount *ump;
1553 
1554 	ump = VFSTOUFS(wk->wk_mp);
1555 	if (ump->softdep_worklist_tail == wk)
1556 		ump->softdep_worklist_tail =
1557 		    (struct worklist *)wk->wk_list.le_prev;
1558 	WORKLIST_REMOVE(wk);
1559 	ump->softdep_on_worklist -= 1;
1560 }
1561 
1562 static void
1563 wake_worklist(wk)
1564 	struct worklist *wk;
1565 {
1566 	if (wk->wk_state & IOWAITING) {
1567 		wk->wk_state &= ~IOWAITING;
1568 		wakeup(wk);
1569 	}
1570 }
1571 
1572 static void
1573 wait_worklist(wk, wmesg)
1574 	struct worklist *wk;
1575 	char *wmesg;
1576 {
1577 	struct ufsmount *ump;
1578 
1579 	ump = VFSTOUFS(wk->wk_mp);
1580 	wk->wk_state |= IOWAITING;
1581 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1582 }
1583 
1584 /*
1585  * Process that runs once per second to handle items in the background queue.
1586  *
1587  * Note that we ensure that everything is done in the order in which they
1588  * appear in the queue. The code below depends on this property to ensure
1589  * that blocks of a file are freed before the inode itself is freed. This
1590  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1591  * until all the old ones have been purged from the dependency lists.
1592  */
1593 static int
1594 softdep_process_worklist(mp, full)
1595 	struct mount *mp;
1596 	int full;
1597 {
1598 	int cnt, matchcnt;
1599 	struct ufsmount *ump;
1600 	long starttime;
1601 
1602 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1603 	if (MOUNTEDSOFTDEP(mp) == 0)
1604 		return (0);
1605 	matchcnt = 0;
1606 	ump = VFSTOUFS(mp);
1607 	ACQUIRE_LOCK(ump);
1608 	starttime = time_second;
1609 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1610 	check_clear_deps(mp);
1611 	while (ump->softdep_on_worklist > 0) {
1612 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1613 			break;
1614 		else
1615 			matchcnt += cnt;
1616 		check_clear_deps(mp);
1617 		/*
1618 		 * We do not generally want to stop for buffer space, but if
1619 		 * we are really being a buffer hog, we will stop and wait.
1620 		 */
1621 		if (should_yield()) {
1622 			FREE_LOCK(ump);
1623 			kern_yield(PRI_USER);
1624 			bwillwrite();
1625 			ACQUIRE_LOCK(ump);
1626 		}
1627 		/*
1628 		 * Never allow processing to run for more than one
1629 		 * second. This gives the syncer thread the opportunity
1630 		 * to pause if appropriate.
1631 		 */
1632 		if (!full && starttime != time_second)
1633 			break;
1634 	}
1635 	if (full == 0)
1636 		journal_unsuspend(ump);
1637 	FREE_LOCK(ump);
1638 	return (matchcnt);
1639 }
1640 
1641 /*
1642  * Process all removes associated with a vnode if we are running out of
1643  * journal space.  Any other process which attempts to flush these will
1644  * be unable as we have the vnodes locked.
1645  */
1646 static void
1647 process_removes(vp)
1648 	struct vnode *vp;
1649 {
1650 	struct inodedep *inodedep;
1651 	struct dirrem *dirrem;
1652 	struct ufsmount *ump;
1653 	struct mount *mp;
1654 	ino_t inum;
1655 
1656 	mp = vp->v_mount;
1657 	ump = VFSTOUFS(mp);
1658 	LOCK_OWNED(ump);
1659 	inum = VTOI(vp)->i_number;
1660 	for (;;) {
1661 top:
1662 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1663 			return;
1664 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1665 			/*
1666 			 * If another thread is trying to lock this vnode
1667 			 * it will fail but we must wait for it to do so
1668 			 * before we can proceed.
1669 			 */
1670 			if (dirrem->dm_state & INPROGRESS) {
1671 				wait_worklist(&dirrem->dm_list, "pwrwait");
1672 				goto top;
1673 			}
1674 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1675 			    (COMPLETE | ONWORKLIST))
1676 				break;
1677 		}
1678 		if (dirrem == NULL)
1679 			return;
1680 		remove_from_worklist(&dirrem->dm_list);
1681 		FREE_LOCK(ump);
1682 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1683 			panic("process_removes: suspended filesystem");
1684 		handle_workitem_remove(dirrem, 0);
1685 		vn_finished_secondary_write(mp);
1686 		ACQUIRE_LOCK(ump);
1687 	}
1688 }
1689 
1690 /*
1691  * Process all truncations associated with a vnode if we are running out
1692  * of journal space.  This is called when the vnode lock is already held
1693  * and no other process can clear the truncation.  This function returns
1694  * a value greater than zero if it did any work.
1695  */
1696 static void
1697 process_truncates(vp)
1698 	struct vnode *vp;
1699 {
1700 	struct inodedep *inodedep;
1701 	struct freeblks *freeblks;
1702 	struct ufsmount *ump;
1703 	struct mount *mp;
1704 	ino_t inum;
1705 	int cgwait;
1706 
1707 	mp = vp->v_mount;
1708 	ump = VFSTOUFS(mp);
1709 	LOCK_OWNED(ump);
1710 	inum = VTOI(vp)->i_number;
1711 	for (;;) {
1712 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1713 			return;
1714 		cgwait = 0;
1715 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1716 			/* Journal entries not yet written.  */
1717 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1718 				jwait(&LIST_FIRST(
1719 				    &freeblks->fb_jblkdephd)->jb_list,
1720 				    MNT_WAIT);
1721 				break;
1722 			}
1723 			/* Another thread is executing this item. */
1724 			if (freeblks->fb_state & INPROGRESS) {
1725 				wait_worklist(&freeblks->fb_list, "ptrwait");
1726 				break;
1727 			}
1728 			/* Freeblks is waiting on a inode write. */
1729 			if ((freeblks->fb_state & COMPLETE) == 0) {
1730 				FREE_LOCK(ump);
1731 				ffs_update(vp, 1);
1732 				ACQUIRE_LOCK(ump);
1733 				break;
1734 			}
1735 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1736 			    (ALLCOMPLETE | ONWORKLIST)) {
1737 				remove_from_worklist(&freeblks->fb_list);
1738 				freeblks->fb_state |= INPROGRESS;
1739 				FREE_LOCK(ump);
1740 				if (vn_start_secondary_write(NULL, &mp,
1741 				    V_NOWAIT))
1742 					panic("process_truncates: "
1743 					    "suspended filesystem");
1744 				handle_workitem_freeblocks(freeblks, 0);
1745 				vn_finished_secondary_write(mp);
1746 				ACQUIRE_LOCK(ump);
1747 				break;
1748 			}
1749 			if (freeblks->fb_cgwait)
1750 				cgwait++;
1751 		}
1752 		if (cgwait) {
1753 			FREE_LOCK(ump);
1754 			sync_cgs(mp, MNT_WAIT);
1755 			ffs_sync_snap(mp, MNT_WAIT);
1756 			ACQUIRE_LOCK(ump);
1757 			continue;
1758 		}
1759 		if (freeblks == NULL)
1760 			break;
1761 	}
1762 	return;
1763 }
1764 
1765 /*
1766  * Process one item on the worklist.
1767  */
1768 static int
1769 process_worklist_item(mp, target, flags)
1770 	struct mount *mp;
1771 	int target;
1772 	int flags;
1773 {
1774 	struct worklist sentinel;
1775 	struct worklist *wk;
1776 	struct ufsmount *ump;
1777 	int matchcnt;
1778 	int error;
1779 
1780 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1781 	/*
1782 	 * If we are being called because of a process doing a
1783 	 * copy-on-write, then it is not safe to write as we may
1784 	 * recurse into the copy-on-write routine.
1785 	 */
1786 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1787 		return (-1);
1788 	PHOLD(curproc);	/* Don't let the stack go away. */
1789 	ump = VFSTOUFS(mp);
1790 	LOCK_OWNED(ump);
1791 	matchcnt = 0;
1792 	sentinel.wk_mp = NULL;
1793 	sentinel.wk_type = D_SENTINEL;
1794 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1795 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1796 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1797 		if (wk->wk_type == D_SENTINEL) {
1798 			LIST_REMOVE(&sentinel, wk_list);
1799 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1800 			continue;
1801 		}
1802 		if (wk->wk_state & INPROGRESS)
1803 			panic("process_worklist_item: %p already in progress.",
1804 			    wk);
1805 		wk->wk_state |= INPROGRESS;
1806 		remove_from_worklist(wk);
1807 		FREE_LOCK(ump);
1808 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1809 			panic("process_worklist_item: suspended filesystem");
1810 		switch (wk->wk_type) {
1811 		case D_DIRREM:
1812 			/* removal of a directory entry */
1813 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1814 			break;
1815 
1816 		case D_FREEBLKS:
1817 			/* releasing blocks and/or fragments from a file */
1818 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1819 			    flags);
1820 			break;
1821 
1822 		case D_FREEFRAG:
1823 			/* releasing a fragment when replaced as a file grows */
1824 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1825 			error = 0;
1826 			break;
1827 
1828 		case D_FREEFILE:
1829 			/* releasing an inode when its link count drops to 0 */
1830 			handle_workitem_freefile(WK_FREEFILE(wk));
1831 			error = 0;
1832 			break;
1833 
1834 		default:
1835 			panic("%s_process_worklist: Unknown type %s",
1836 			    "softdep", TYPENAME(wk->wk_type));
1837 			/* NOTREACHED */
1838 		}
1839 		vn_finished_secondary_write(mp);
1840 		ACQUIRE_LOCK(ump);
1841 		if (error == 0) {
1842 			if (++matchcnt == target)
1843 				break;
1844 			continue;
1845 		}
1846 		/*
1847 		 * We have to retry the worklist item later.  Wake up any
1848 		 * waiters who may be able to complete it immediately and
1849 		 * add the item back to the head so we don't try to execute
1850 		 * it again.
1851 		 */
1852 		wk->wk_state &= ~INPROGRESS;
1853 		wake_worklist(wk);
1854 		add_to_worklist(wk, WK_HEAD);
1855 	}
1856 	/* Sentinal could've become the tail from remove_from_worklist. */
1857 	if (ump->softdep_worklist_tail == &sentinel)
1858 		ump->softdep_worklist_tail =
1859 		    (struct worklist *)sentinel.wk_list.le_prev;
1860 	LIST_REMOVE(&sentinel, wk_list);
1861 	PRELE(curproc);
1862 	return (matchcnt);
1863 }
1864 
1865 /*
1866  * Move dependencies from one buffer to another.
1867  */
1868 int
1869 softdep_move_dependencies(oldbp, newbp)
1870 	struct buf *oldbp;
1871 	struct buf *newbp;
1872 {
1873 	struct worklist *wk, *wktail;
1874 	struct ufsmount *ump;
1875 	int dirty;
1876 
1877 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1878 		return (0);
1879 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1880 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1881 	dirty = 0;
1882 	wktail = NULL;
1883 	ump = VFSTOUFS(wk->wk_mp);
1884 	ACQUIRE_LOCK(ump);
1885 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1886 		LIST_REMOVE(wk, wk_list);
1887 		if (wk->wk_type == D_BMSAFEMAP &&
1888 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1889 			dirty = 1;
1890 		if (wktail == NULL)
1891 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1892 		else
1893 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1894 		wktail = wk;
1895 	}
1896 	FREE_LOCK(ump);
1897 
1898 	return (dirty);
1899 }
1900 
1901 /*
1902  * Purge the work list of all items associated with a particular mount point.
1903  */
1904 int
1905 softdep_flushworklist(oldmnt, countp, td)
1906 	struct mount *oldmnt;
1907 	int *countp;
1908 	struct thread *td;
1909 {
1910 	struct vnode *devvp;
1911 	struct ufsmount *ump;
1912 	int count, error;
1913 
1914 	/*
1915 	 * Alternately flush the block device associated with the mount
1916 	 * point and process any dependencies that the flushing
1917 	 * creates. We continue until no more worklist dependencies
1918 	 * are found.
1919 	 */
1920 	*countp = 0;
1921 	error = 0;
1922 	ump = VFSTOUFS(oldmnt);
1923 	devvp = ump->um_devvp;
1924 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1925 		*countp += count;
1926 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1927 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1928 		VOP_UNLOCK(devvp, 0);
1929 		if (error != 0)
1930 			break;
1931 	}
1932 	return (error);
1933 }
1934 
1935 #define	SU_WAITIDLE_RETRIES	20
1936 static int
1937 softdep_waitidle(struct mount *mp, int flags __unused)
1938 {
1939 	struct ufsmount *ump;
1940 	struct vnode *devvp;
1941 	struct thread *td;
1942 	int error, i;
1943 
1944 	ump = VFSTOUFS(mp);
1945 	devvp = ump->um_devvp;
1946 	td = curthread;
1947 	error = 0;
1948 	ACQUIRE_LOCK(ump);
1949 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1950 		ump->softdep_req = 1;
1951 		KASSERT((flags & FORCECLOSE) == 0 ||
1952 		    ump->softdep_on_worklist == 0,
1953 		    ("softdep_waitidle: work added after flush"));
1954 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1955 		    "softdeps", 10 * hz);
1956 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1957 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1958 		VOP_UNLOCK(devvp, 0);
1959 		ACQUIRE_LOCK(ump);
1960 		if (error != 0)
1961 			break;
1962 	}
1963 	ump->softdep_req = 0;
1964 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1965 		error = EBUSY;
1966 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1967 		    mp);
1968 	}
1969 	FREE_LOCK(ump);
1970 	return (error);
1971 }
1972 
1973 /*
1974  * Flush all vnodes and worklist items associated with a specified mount point.
1975  */
1976 int
1977 softdep_flushfiles(oldmnt, flags, td)
1978 	struct mount *oldmnt;
1979 	int flags;
1980 	struct thread *td;
1981 {
1982 #ifdef QUOTA
1983 	struct ufsmount *ump;
1984 	int i;
1985 #endif
1986 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1987 	int morework;
1988 
1989 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1990 	    ("softdep_flushfiles called on non-softdep filesystem"));
1991 	loopcnt = 10;
1992 	retry_flush_count = 3;
1993 retry_flush:
1994 	error = 0;
1995 
1996 	/*
1997 	 * Alternately flush the vnodes associated with the mount
1998 	 * point and process any dependencies that the flushing
1999 	 * creates. In theory, this loop can happen at most twice,
2000 	 * but we give it a few extra just to be sure.
2001 	 */
2002 	for (; loopcnt > 0; loopcnt--) {
2003 		/*
2004 		 * Do another flush in case any vnodes were brought in
2005 		 * as part of the cleanup operations.
2006 		 */
2007 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2008 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2009 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2010 			break;
2011 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2012 		    depcount == 0)
2013 			break;
2014 	}
2015 	/*
2016 	 * If we are unmounting then it is an error to fail. If we
2017 	 * are simply trying to downgrade to read-only, then filesystem
2018 	 * activity can keep us busy forever, so we just fail with EBUSY.
2019 	 */
2020 	if (loopcnt == 0) {
2021 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2022 			panic("softdep_flushfiles: looping");
2023 		error = EBUSY;
2024 	}
2025 	if (!error)
2026 		error = softdep_waitidle(oldmnt, flags);
2027 	if (!error) {
2028 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2029 			retry = 0;
2030 			MNT_ILOCK(oldmnt);
2031 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2032 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2033 			morework = oldmnt->mnt_nvnodelistsize > 0;
2034 #ifdef QUOTA
2035 			ump = VFSTOUFS(oldmnt);
2036 			UFS_LOCK(ump);
2037 			for (i = 0; i < MAXQUOTAS; i++) {
2038 				if (ump->um_quotas[i] != NULLVP)
2039 					morework = 1;
2040 			}
2041 			UFS_UNLOCK(ump);
2042 #endif
2043 			if (morework) {
2044 				if (--retry_flush_count > 0) {
2045 					retry = 1;
2046 					loopcnt = 3;
2047 				} else
2048 					error = EBUSY;
2049 			}
2050 			MNT_IUNLOCK(oldmnt);
2051 			if (retry)
2052 				goto retry_flush;
2053 		}
2054 	}
2055 	return (error);
2056 }
2057 
2058 /*
2059  * Structure hashing.
2060  *
2061  * There are four types of structures that can be looked up:
2062  *	1) pagedep structures identified by mount point, inode number,
2063  *	   and logical block.
2064  *	2) inodedep structures identified by mount point and inode number.
2065  *	3) newblk structures identified by mount point and
2066  *	   physical block number.
2067  *	4) bmsafemap structures identified by mount point and
2068  *	   cylinder group number.
2069  *
2070  * The "pagedep" and "inodedep" dependency structures are hashed
2071  * separately from the file blocks and inodes to which they correspond.
2072  * This separation helps when the in-memory copy of an inode or
2073  * file block must be replaced. It also obviates the need to access
2074  * an inode or file page when simply updating (or de-allocating)
2075  * dependency structures. Lookup of newblk structures is needed to
2076  * find newly allocated blocks when trying to associate them with
2077  * their allocdirect or allocindir structure.
2078  *
2079  * The lookup routines optionally create and hash a new instance when
2080  * an existing entry is not found. The bmsafemap lookup routine always
2081  * allocates a new structure if an existing one is not found.
2082  */
2083 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2084 
2085 /*
2086  * Structures and routines associated with pagedep caching.
2087  */
2088 #define	PAGEDEP_HASH(ump, inum, lbn) \
2089 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2090 
2091 static int
2092 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2093 	struct pagedep_hashhead *pagedephd;
2094 	ino_t ino;
2095 	ufs_lbn_t lbn;
2096 	struct pagedep **pagedeppp;
2097 {
2098 	struct pagedep *pagedep;
2099 
2100 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2101 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2102 			*pagedeppp = pagedep;
2103 			return (1);
2104 		}
2105 	}
2106 	*pagedeppp = NULL;
2107 	return (0);
2108 }
2109 /*
2110  * Look up a pagedep. Return 1 if found, 0 otherwise.
2111  * If not found, allocate if DEPALLOC flag is passed.
2112  * Found or allocated entry is returned in pagedeppp.
2113  * This routine must be called with splbio interrupts blocked.
2114  */
2115 static int
2116 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2117 	struct mount *mp;
2118 	struct buf *bp;
2119 	ino_t ino;
2120 	ufs_lbn_t lbn;
2121 	int flags;
2122 	struct pagedep **pagedeppp;
2123 {
2124 	struct pagedep *pagedep;
2125 	struct pagedep_hashhead *pagedephd;
2126 	struct worklist *wk;
2127 	struct ufsmount *ump;
2128 	int ret;
2129 	int i;
2130 
2131 	ump = VFSTOUFS(mp);
2132 	LOCK_OWNED(ump);
2133 	if (bp) {
2134 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2135 			if (wk->wk_type == D_PAGEDEP) {
2136 				*pagedeppp = WK_PAGEDEP(wk);
2137 				return (1);
2138 			}
2139 		}
2140 	}
2141 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2142 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2143 	if (ret) {
2144 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2145 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2146 		return (1);
2147 	}
2148 	if ((flags & DEPALLOC) == 0)
2149 		return (0);
2150 	FREE_LOCK(ump);
2151 	pagedep = malloc(sizeof(struct pagedep),
2152 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2153 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2154 	ACQUIRE_LOCK(ump);
2155 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2156 	if (*pagedeppp) {
2157 		/*
2158 		 * This should never happen since we only create pagedeps
2159 		 * with the vnode lock held.  Could be an assert.
2160 		 */
2161 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2162 		return (ret);
2163 	}
2164 	pagedep->pd_ino = ino;
2165 	pagedep->pd_lbn = lbn;
2166 	LIST_INIT(&pagedep->pd_dirremhd);
2167 	LIST_INIT(&pagedep->pd_pendinghd);
2168 	for (i = 0; i < DAHASHSZ; i++)
2169 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2170 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2171 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2172 	*pagedeppp = pagedep;
2173 	return (0);
2174 }
2175 
2176 /*
2177  * Structures and routines associated with inodedep caching.
2178  */
2179 #define	INODEDEP_HASH(ump, inum) \
2180       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2181 
2182 static int
2183 inodedep_find(inodedephd, inum, inodedeppp)
2184 	struct inodedep_hashhead *inodedephd;
2185 	ino_t inum;
2186 	struct inodedep **inodedeppp;
2187 {
2188 	struct inodedep *inodedep;
2189 
2190 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2191 		if (inum == inodedep->id_ino)
2192 			break;
2193 	if (inodedep) {
2194 		*inodedeppp = inodedep;
2195 		return (1);
2196 	}
2197 	*inodedeppp = NULL;
2198 
2199 	return (0);
2200 }
2201 /*
2202  * Look up an inodedep. Return 1 if found, 0 if not found.
2203  * If not found, allocate if DEPALLOC flag is passed.
2204  * Found or allocated entry is returned in inodedeppp.
2205  * This routine must be called with splbio interrupts blocked.
2206  */
2207 static int
2208 inodedep_lookup(mp, inum, flags, inodedeppp)
2209 	struct mount *mp;
2210 	ino_t inum;
2211 	int flags;
2212 	struct inodedep **inodedeppp;
2213 {
2214 	struct inodedep *inodedep;
2215 	struct inodedep_hashhead *inodedephd;
2216 	struct ufsmount *ump;
2217 	struct fs *fs;
2218 
2219 	ump = VFSTOUFS(mp);
2220 	LOCK_OWNED(ump);
2221 	fs = ump->um_fs;
2222 	inodedephd = INODEDEP_HASH(ump, inum);
2223 
2224 	if (inodedep_find(inodedephd, inum, inodedeppp))
2225 		return (1);
2226 	if ((flags & DEPALLOC) == 0)
2227 		return (0);
2228 	/*
2229 	 * If the system is over its limit and our filesystem is
2230 	 * responsible for more than our share of that usage and
2231 	 * we are not in a rush, request some inodedep cleanup.
2232 	 */
2233 	if (softdep_excess_items(ump, D_INODEDEP))
2234 		schedule_cleanup(mp);
2235 	else
2236 		FREE_LOCK(ump);
2237 	inodedep = malloc(sizeof(struct inodedep),
2238 		M_INODEDEP, M_SOFTDEP_FLAGS);
2239 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2240 	ACQUIRE_LOCK(ump);
2241 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2242 		WORKITEM_FREE(inodedep, D_INODEDEP);
2243 		return (1);
2244 	}
2245 	inodedep->id_fs = fs;
2246 	inodedep->id_ino = inum;
2247 	inodedep->id_state = ALLCOMPLETE;
2248 	inodedep->id_nlinkdelta = 0;
2249 	inodedep->id_savedino1 = NULL;
2250 	inodedep->id_savedsize = -1;
2251 	inodedep->id_savedextsize = -1;
2252 	inodedep->id_savednlink = -1;
2253 	inodedep->id_bmsafemap = NULL;
2254 	inodedep->id_mkdiradd = NULL;
2255 	LIST_INIT(&inodedep->id_dirremhd);
2256 	LIST_INIT(&inodedep->id_pendinghd);
2257 	LIST_INIT(&inodedep->id_inowait);
2258 	LIST_INIT(&inodedep->id_bufwait);
2259 	TAILQ_INIT(&inodedep->id_inoreflst);
2260 	TAILQ_INIT(&inodedep->id_inoupdt);
2261 	TAILQ_INIT(&inodedep->id_newinoupdt);
2262 	TAILQ_INIT(&inodedep->id_extupdt);
2263 	TAILQ_INIT(&inodedep->id_newextupdt);
2264 	TAILQ_INIT(&inodedep->id_freeblklst);
2265 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2266 	*inodedeppp = inodedep;
2267 	return (0);
2268 }
2269 
2270 /*
2271  * Structures and routines associated with newblk caching.
2272  */
2273 #define	NEWBLK_HASH(ump, inum) \
2274 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2275 
2276 static int
2277 newblk_find(newblkhd, newblkno, flags, newblkpp)
2278 	struct newblk_hashhead *newblkhd;
2279 	ufs2_daddr_t newblkno;
2280 	int flags;
2281 	struct newblk **newblkpp;
2282 {
2283 	struct newblk *newblk;
2284 
2285 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2286 		if (newblkno != newblk->nb_newblkno)
2287 			continue;
2288 		/*
2289 		 * If we're creating a new dependency don't match those that
2290 		 * have already been converted to allocdirects.  This is for
2291 		 * a frag extend.
2292 		 */
2293 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2294 			continue;
2295 		break;
2296 	}
2297 	if (newblk) {
2298 		*newblkpp = newblk;
2299 		return (1);
2300 	}
2301 	*newblkpp = NULL;
2302 	return (0);
2303 }
2304 
2305 /*
2306  * Look up a newblk. Return 1 if found, 0 if not found.
2307  * If not found, allocate if DEPALLOC flag is passed.
2308  * Found or allocated entry is returned in newblkpp.
2309  */
2310 static int
2311 newblk_lookup(mp, newblkno, flags, newblkpp)
2312 	struct mount *mp;
2313 	ufs2_daddr_t newblkno;
2314 	int flags;
2315 	struct newblk **newblkpp;
2316 {
2317 	struct newblk *newblk;
2318 	struct newblk_hashhead *newblkhd;
2319 	struct ufsmount *ump;
2320 
2321 	ump = VFSTOUFS(mp);
2322 	LOCK_OWNED(ump);
2323 	newblkhd = NEWBLK_HASH(ump, newblkno);
2324 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2325 		return (1);
2326 	if ((flags & DEPALLOC) == 0)
2327 		return (0);
2328 	if (softdep_excess_items(ump, D_NEWBLK) ||
2329 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2330 	    softdep_excess_items(ump, D_ALLOCINDIR))
2331 		schedule_cleanup(mp);
2332 	else
2333 		FREE_LOCK(ump);
2334 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2335 	    M_SOFTDEP_FLAGS | M_ZERO);
2336 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2337 	ACQUIRE_LOCK(ump);
2338 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2339 		WORKITEM_FREE(newblk, D_NEWBLK);
2340 		return (1);
2341 	}
2342 	newblk->nb_freefrag = NULL;
2343 	LIST_INIT(&newblk->nb_indirdeps);
2344 	LIST_INIT(&newblk->nb_newdirblk);
2345 	LIST_INIT(&newblk->nb_jwork);
2346 	newblk->nb_state = ATTACHED;
2347 	newblk->nb_newblkno = newblkno;
2348 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2349 	*newblkpp = newblk;
2350 	return (0);
2351 }
2352 
2353 /*
2354  * Structures and routines associated with freed indirect block caching.
2355  */
2356 #define	INDIR_HASH(ump, blkno) \
2357 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2358 
2359 /*
2360  * Lookup an indirect block in the indir hash table.  The freework is
2361  * removed and potentially freed.  The caller must do a blocking journal
2362  * write before writing to the blkno.
2363  */
2364 static int
2365 indirblk_lookup(mp, blkno)
2366 	struct mount *mp;
2367 	ufs2_daddr_t blkno;
2368 {
2369 	struct freework *freework;
2370 	struct indir_hashhead *wkhd;
2371 	struct ufsmount *ump;
2372 
2373 	ump = VFSTOUFS(mp);
2374 	wkhd = INDIR_HASH(ump, blkno);
2375 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2376 		if (freework->fw_blkno != blkno)
2377 			continue;
2378 		indirblk_remove(freework);
2379 		return (1);
2380 	}
2381 	return (0);
2382 }
2383 
2384 /*
2385  * Insert an indirect block represented by freework into the indirblk
2386  * hash table so that it may prevent the block from being re-used prior
2387  * to the journal being written.
2388  */
2389 static void
2390 indirblk_insert(freework)
2391 	struct freework *freework;
2392 {
2393 	struct jblocks *jblocks;
2394 	struct jseg *jseg;
2395 	struct ufsmount *ump;
2396 
2397 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2398 	jblocks = ump->softdep_jblocks;
2399 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2400 	if (jseg == NULL)
2401 		return;
2402 
2403 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2404 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2405 	    fw_next);
2406 	freework->fw_state &= ~DEPCOMPLETE;
2407 }
2408 
2409 static void
2410 indirblk_remove(freework)
2411 	struct freework *freework;
2412 {
2413 	struct ufsmount *ump;
2414 
2415 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2416 	LIST_REMOVE(freework, fw_segs);
2417 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2418 	freework->fw_state |= DEPCOMPLETE;
2419 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2420 		WORKITEM_FREE(freework, D_FREEWORK);
2421 }
2422 
2423 /*
2424  * Executed during filesystem system initialization before
2425  * mounting any filesystems.
2426  */
2427 void
2428 softdep_initialize()
2429 {
2430 
2431 	TAILQ_INIT(&softdepmounts);
2432 #ifdef __LP64__
2433 	max_softdeps = desiredvnodes * 4;
2434 #else
2435 	max_softdeps = desiredvnodes * 2;
2436 #endif
2437 
2438 	/* initialise bioops hack */
2439 	bioops.io_start = softdep_disk_io_initiation;
2440 	bioops.io_complete = softdep_disk_write_complete;
2441 	bioops.io_deallocate = softdep_deallocate_dependencies;
2442 	bioops.io_countdeps = softdep_count_dependencies;
2443 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2444 
2445 	/* Initialize the callout with an mtx. */
2446 	callout_init_mtx(&softdep_callout, &lk, 0);
2447 }
2448 
2449 /*
2450  * Executed after all filesystems have been unmounted during
2451  * filesystem module unload.
2452  */
2453 void
2454 softdep_uninitialize()
2455 {
2456 
2457 	/* clear bioops hack */
2458 	bioops.io_start = NULL;
2459 	bioops.io_complete = NULL;
2460 	bioops.io_deallocate = NULL;
2461 	bioops.io_countdeps = NULL;
2462 	softdep_ast_cleanup = NULL;
2463 
2464 	callout_drain(&softdep_callout);
2465 }
2466 
2467 /*
2468  * Called at mount time to notify the dependency code that a
2469  * filesystem wishes to use it.
2470  */
2471 int
2472 softdep_mount(devvp, mp, fs, cred)
2473 	struct vnode *devvp;
2474 	struct mount *mp;
2475 	struct fs *fs;
2476 	struct ucred *cred;
2477 {
2478 	struct csum_total cstotal;
2479 	struct mount_softdeps *sdp;
2480 	struct ufsmount *ump;
2481 	struct cg *cgp;
2482 	struct buf *bp;
2483 	u_int cyl, i;
2484 	int error;
2485 
2486 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2487 	    M_WAITOK | M_ZERO);
2488 	MNT_ILOCK(mp);
2489 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2490 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2491 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2492 			MNTK_SOFTDEP | MNTK_NOASYNC;
2493 	}
2494 	ump = VFSTOUFS(mp);
2495 	ump->um_softdep = sdp;
2496 	MNT_IUNLOCK(mp);
2497 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2498 	sdp->sd_ump = ump;
2499 	LIST_INIT(&ump->softdep_workitem_pending);
2500 	LIST_INIT(&ump->softdep_journal_pending);
2501 	TAILQ_INIT(&ump->softdep_unlinked);
2502 	LIST_INIT(&ump->softdep_dirtycg);
2503 	ump->softdep_worklist_tail = NULL;
2504 	ump->softdep_on_worklist = 0;
2505 	ump->softdep_deps = 0;
2506 	LIST_INIT(&ump->softdep_mkdirlisthd);
2507 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2508 	    &ump->pagedep_hash_size);
2509 	ump->pagedep_nextclean = 0;
2510 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2511 	    &ump->inodedep_hash_size);
2512 	ump->inodedep_nextclean = 0;
2513 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2514 	    &ump->newblk_hash_size);
2515 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2516 	    &ump->bmsafemap_hash_size);
2517 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2518 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2519 	    M_FREEWORK, M_WAITOK);
2520 	ump->indir_hash_size = i - 1;
2521 	for (i = 0; i <= ump->indir_hash_size; i++)
2522 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2523 	ACQUIRE_GBLLOCK(&lk);
2524 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2525 	FREE_GBLLOCK(&lk);
2526 	if ((fs->fs_flags & FS_SUJ) &&
2527 	    (error = journal_mount(mp, fs, cred)) != 0) {
2528 		printf("Failed to start journal: %d\n", error);
2529 		softdep_unmount(mp);
2530 		return (error);
2531 	}
2532 	/*
2533 	 * Start our flushing thread in the bufdaemon process.
2534 	 */
2535 	ACQUIRE_LOCK(ump);
2536 	ump->softdep_flags |= FLUSH_STARTING;
2537 	FREE_LOCK(ump);
2538 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2539 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2540 	    mp->mnt_stat.f_mntonname);
2541 	ACQUIRE_LOCK(ump);
2542 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2543 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2544 		    hz / 2);
2545 	}
2546 	FREE_LOCK(ump);
2547 	/*
2548 	 * When doing soft updates, the counters in the
2549 	 * superblock may have gotten out of sync. Recomputation
2550 	 * can take a long time and can be deferred for background
2551 	 * fsck.  However, the old behavior of scanning the cylinder
2552 	 * groups and recalculating them at mount time is available
2553 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2554 	 */
2555 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2556 		return (0);
2557 	bzero(&cstotal, sizeof cstotal);
2558 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2559 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2560 		    fs->fs_cgsize, cred, &bp)) != 0) {
2561 			brelse(bp);
2562 			softdep_unmount(mp);
2563 			return (error);
2564 		}
2565 		cgp = (struct cg *)bp->b_data;
2566 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2567 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2568 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2569 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2570 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2571 		brelse(bp);
2572 	}
2573 #ifdef INVARIANTS
2574 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2575 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2576 #endif
2577 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2578 	return (0);
2579 }
2580 
2581 void
2582 softdep_unmount(mp)
2583 	struct mount *mp;
2584 {
2585 	struct ufsmount *ump;
2586 #ifdef INVARIANTS
2587 	int i;
2588 #endif
2589 
2590 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2591 	    ("softdep_unmount called on non-softdep filesystem"));
2592 	ump = VFSTOUFS(mp);
2593 	MNT_ILOCK(mp);
2594 	mp->mnt_flag &= ~MNT_SOFTDEP;
2595 	if (MOUNTEDSUJ(mp) == 0) {
2596 		MNT_IUNLOCK(mp);
2597 	} else {
2598 		mp->mnt_flag &= ~MNT_SUJ;
2599 		MNT_IUNLOCK(mp);
2600 		journal_unmount(ump);
2601 	}
2602 	/*
2603 	 * Shut down our flushing thread. Check for NULL is if
2604 	 * softdep_mount errors out before the thread has been created.
2605 	 */
2606 	if (ump->softdep_flushtd != NULL) {
2607 		ACQUIRE_LOCK(ump);
2608 		ump->softdep_flags |= FLUSH_EXIT;
2609 		wakeup(&ump->softdep_flushtd);
2610 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2611 		    "sdwait", 0);
2612 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2613 		    ("Thread shutdown failed"));
2614 	}
2615 	/*
2616 	 * Free up our resources.
2617 	 */
2618 	ACQUIRE_GBLLOCK(&lk);
2619 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2620 	FREE_GBLLOCK(&lk);
2621 	rw_destroy(LOCK_PTR(ump));
2622 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2623 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2624 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2625 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2626 	    ump->bmsafemap_hash_size);
2627 	free(ump->indir_hashtbl, M_FREEWORK);
2628 #ifdef INVARIANTS
2629 	for (i = 0; i <= D_LAST; i++)
2630 		KASSERT(ump->softdep_curdeps[i] == 0,
2631 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2632 		    TYPENAME(i), ump->softdep_curdeps[i]));
2633 #endif
2634 	free(ump->um_softdep, M_MOUNTDATA);
2635 }
2636 
2637 static struct jblocks *
2638 jblocks_create(void)
2639 {
2640 	struct jblocks *jblocks;
2641 
2642 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2643 	TAILQ_INIT(&jblocks->jb_segs);
2644 	jblocks->jb_avail = 10;
2645 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2646 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2647 
2648 	return (jblocks);
2649 }
2650 
2651 static ufs2_daddr_t
2652 jblocks_alloc(jblocks, bytes, actual)
2653 	struct jblocks *jblocks;
2654 	int bytes;
2655 	int *actual;
2656 {
2657 	ufs2_daddr_t daddr;
2658 	struct jextent *jext;
2659 	int freecnt;
2660 	int blocks;
2661 
2662 	blocks = bytes / DEV_BSIZE;
2663 	jext = &jblocks->jb_extent[jblocks->jb_head];
2664 	freecnt = jext->je_blocks - jblocks->jb_off;
2665 	if (freecnt == 0) {
2666 		jblocks->jb_off = 0;
2667 		if (++jblocks->jb_head > jblocks->jb_used)
2668 			jblocks->jb_head = 0;
2669 		jext = &jblocks->jb_extent[jblocks->jb_head];
2670 		freecnt = jext->je_blocks;
2671 	}
2672 	if (freecnt > blocks)
2673 		freecnt = blocks;
2674 	*actual = freecnt * DEV_BSIZE;
2675 	daddr = jext->je_daddr + jblocks->jb_off;
2676 	jblocks->jb_off += freecnt;
2677 	jblocks->jb_free -= freecnt;
2678 
2679 	return (daddr);
2680 }
2681 
2682 static void
2683 jblocks_free(jblocks, mp, bytes)
2684 	struct jblocks *jblocks;
2685 	struct mount *mp;
2686 	int bytes;
2687 {
2688 
2689 	LOCK_OWNED(VFSTOUFS(mp));
2690 	jblocks->jb_free += bytes / DEV_BSIZE;
2691 	if (jblocks->jb_suspended)
2692 		worklist_speedup(mp);
2693 	wakeup(jblocks);
2694 }
2695 
2696 static void
2697 jblocks_destroy(jblocks)
2698 	struct jblocks *jblocks;
2699 {
2700 
2701 	if (jblocks->jb_extent)
2702 		free(jblocks->jb_extent, M_JBLOCKS);
2703 	free(jblocks, M_JBLOCKS);
2704 }
2705 
2706 static void
2707 jblocks_add(jblocks, daddr, blocks)
2708 	struct jblocks *jblocks;
2709 	ufs2_daddr_t daddr;
2710 	int blocks;
2711 {
2712 	struct jextent *jext;
2713 
2714 	jblocks->jb_blocks += blocks;
2715 	jblocks->jb_free += blocks;
2716 	jext = &jblocks->jb_extent[jblocks->jb_used];
2717 	/* Adding the first block. */
2718 	if (jext->je_daddr == 0) {
2719 		jext->je_daddr = daddr;
2720 		jext->je_blocks = blocks;
2721 		return;
2722 	}
2723 	/* Extending the last extent. */
2724 	if (jext->je_daddr + jext->je_blocks == daddr) {
2725 		jext->je_blocks += blocks;
2726 		return;
2727 	}
2728 	/* Adding a new extent. */
2729 	if (++jblocks->jb_used == jblocks->jb_avail) {
2730 		jblocks->jb_avail *= 2;
2731 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2732 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2733 		memcpy(jext, jblocks->jb_extent,
2734 		    sizeof(struct jextent) * jblocks->jb_used);
2735 		free(jblocks->jb_extent, M_JBLOCKS);
2736 		jblocks->jb_extent = jext;
2737 	}
2738 	jext = &jblocks->jb_extent[jblocks->jb_used];
2739 	jext->je_daddr = daddr;
2740 	jext->je_blocks = blocks;
2741 	return;
2742 }
2743 
2744 int
2745 softdep_journal_lookup(mp, vpp)
2746 	struct mount *mp;
2747 	struct vnode **vpp;
2748 {
2749 	struct componentname cnp;
2750 	struct vnode *dvp;
2751 	ino_t sujournal;
2752 	int error;
2753 
2754 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2755 	if (error)
2756 		return (error);
2757 	bzero(&cnp, sizeof(cnp));
2758 	cnp.cn_nameiop = LOOKUP;
2759 	cnp.cn_flags = ISLASTCN;
2760 	cnp.cn_thread = curthread;
2761 	cnp.cn_cred = curthread->td_ucred;
2762 	cnp.cn_pnbuf = SUJ_FILE;
2763 	cnp.cn_nameptr = SUJ_FILE;
2764 	cnp.cn_namelen = strlen(SUJ_FILE);
2765 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2766 	vput(dvp);
2767 	if (error != 0)
2768 		return (error);
2769 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2770 	return (error);
2771 }
2772 
2773 /*
2774  * Open and verify the journal file.
2775  */
2776 static int
2777 journal_mount(mp, fs, cred)
2778 	struct mount *mp;
2779 	struct fs *fs;
2780 	struct ucred *cred;
2781 {
2782 	struct jblocks *jblocks;
2783 	struct ufsmount *ump;
2784 	struct vnode *vp;
2785 	struct inode *ip;
2786 	ufs2_daddr_t blkno;
2787 	int bcount;
2788 	int error;
2789 	int i;
2790 
2791 	ump = VFSTOUFS(mp);
2792 	ump->softdep_journal_tail = NULL;
2793 	ump->softdep_on_journal = 0;
2794 	ump->softdep_accdeps = 0;
2795 	ump->softdep_req = 0;
2796 	ump->softdep_jblocks = NULL;
2797 	error = softdep_journal_lookup(mp, &vp);
2798 	if (error != 0) {
2799 		printf("Failed to find journal.  Use tunefs to create one\n");
2800 		return (error);
2801 	}
2802 	ip = VTOI(vp);
2803 	if (ip->i_size < SUJ_MIN) {
2804 		error = ENOSPC;
2805 		goto out;
2806 	}
2807 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2808 	jblocks = jblocks_create();
2809 	for (i = 0; i < bcount; i++) {
2810 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2811 		if (error)
2812 			break;
2813 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2814 	}
2815 	if (error) {
2816 		jblocks_destroy(jblocks);
2817 		goto out;
2818 	}
2819 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2820 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2821 	ump->softdep_jblocks = jblocks;
2822 out:
2823 	if (error == 0) {
2824 		MNT_ILOCK(mp);
2825 		mp->mnt_flag |= MNT_SUJ;
2826 		mp->mnt_flag &= ~MNT_SOFTDEP;
2827 		MNT_IUNLOCK(mp);
2828 		/*
2829 		 * Only validate the journal contents if the
2830 		 * filesystem is clean, otherwise we write the logs
2831 		 * but they'll never be used.  If the filesystem was
2832 		 * still dirty when we mounted it the journal is
2833 		 * invalid and a new journal can only be valid if it
2834 		 * starts from a clean mount.
2835 		 */
2836 		if (fs->fs_clean) {
2837 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2838 			ip->i_flags |= IN_MODIFIED;
2839 			ffs_update(vp, 1);
2840 		}
2841 	}
2842 	vput(vp);
2843 	return (error);
2844 }
2845 
2846 static void
2847 journal_unmount(ump)
2848 	struct ufsmount *ump;
2849 {
2850 
2851 	if (ump->softdep_jblocks)
2852 		jblocks_destroy(ump->softdep_jblocks);
2853 	ump->softdep_jblocks = NULL;
2854 }
2855 
2856 /*
2857  * Called when a journal record is ready to be written.  Space is allocated
2858  * and the journal entry is created when the journal is flushed to stable
2859  * store.
2860  */
2861 static void
2862 add_to_journal(wk)
2863 	struct worklist *wk;
2864 {
2865 	struct ufsmount *ump;
2866 
2867 	ump = VFSTOUFS(wk->wk_mp);
2868 	LOCK_OWNED(ump);
2869 	if (wk->wk_state & ONWORKLIST)
2870 		panic("add_to_journal: %s(0x%X) already on list",
2871 		    TYPENAME(wk->wk_type), wk->wk_state);
2872 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2873 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2874 		ump->softdep_jblocks->jb_age = ticks;
2875 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2876 	} else
2877 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2878 	ump->softdep_journal_tail = wk;
2879 	ump->softdep_on_journal += 1;
2880 }
2881 
2882 /*
2883  * Remove an arbitrary item for the journal worklist maintain the tail
2884  * pointer.  This happens when a new operation obviates the need to
2885  * journal an old operation.
2886  */
2887 static void
2888 remove_from_journal(wk)
2889 	struct worklist *wk;
2890 {
2891 	struct ufsmount *ump;
2892 
2893 	ump = VFSTOUFS(wk->wk_mp);
2894 	LOCK_OWNED(ump);
2895 #ifdef INVARIANTS
2896 	{
2897 		struct worklist *wkn;
2898 
2899 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2900 			if (wkn == wk)
2901 				break;
2902 		if (wkn == NULL)
2903 			panic("remove_from_journal: %p is not in journal", wk);
2904 	}
2905 #endif
2906 	/*
2907 	 * We emulate a TAILQ to save space in most structures which do not
2908 	 * require TAILQ semantics.  Here we must update the tail position
2909 	 * when removing the tail which is not the final entry. This works
2910 	 * only if the worklist linkage are at the beginning of the structure.
2911 	 */
2912 	if (ump->softdep_journal_tail == wk)
2913 		ump->softdep_journal_tail =
2914 		    (struct worklist *)wk->wk_list.le_prev;
2915 	WORKLIST_REMOVE(wk);
2916 	ump->softdep_on_journal -= 1;
2917 }
2918 
2919 /*
2920  * Check for journal space as well as dependency limits so the prelink
2921  * code can throttle both journaled and non-journaled filesystems.
2922  * Threshold is 0 for low and 1 for min.
2923  */
2924 static int
2925 journal_space(ump, thresh)
2926 	struct ufsmount *ump;
2927 	int thresh;
2928 {
2929 	struct jblocks *jblocks;
2930 	int limit, avail;
2931 
2932 	jblocks = ump->softdep_jblocks;
2933 	if (jblocks == NULL)
2934 		return (1);
2935 	/*
2936 	 * We use a tighter restriction here to prevent request_cleanup()
2937 	 * running in threads from running into locks we currently hold.
2938 	 * We have to be over the limit and our filesystem has to be
2939 	 * responsible for more than our share of that usage.
2940 	 */
2941 	limit = (max_softdeps / 10) * 9;
2942 	if (dep_current[D_INODEDEP] > limit &&
2943 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2944 		return (0);
2945 	if (thresh)
2946 		thresh = jblocks->jb_min;
2947 	else
2948 		thresh = jblocks->jb_low;
2949 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2950 	avail = jblocks->jb_free - avail;
2951 
2952 	return (avail > thresh);
2953 }
2954 
2955 static void
2956 journal_suspend(ump)
2957 	struct ufsmount *ump;
2958 {
2959 	struct jblocks *jblocks;
2960 	struct mount *mp;
2961 
2962 	mp = UFSTOVFS(ump);
2963 	jblocks = ump->softdep_jblocks;
2964 	MNT_ILOCK(mp);
2965 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2966 		stat_journal_min++;
2967 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2968 		mp->mnt_susp_owner = ump->softdep_flushtd;
2969 	}
2970 	jblocks->jb_suspended = 1;
2971 	MNT_IUNLOCK(mp);
2972 }
2973 
2974 static int
2975 journal_unsuspend(struct ufsmount *ump)
2976 {
2977 	struct jblocks *jblocks;
2978 	struct mount *mp;
2979 
2980 	mp = UFSTOVFS(ump);
2981 	jblocks = ump->softdep_jblocks;
2982 
2983 	if (jblocks != NULL && jblocks->jb_suspended &&
2984 	    journal_space(ump, jblocks->jb_min)) {
2985 		jblocks->jb_suspended = 0;
2986 		FREE_LOCK(ump);
2987 		mp->mnt_susp_owner = curthread;
2988 		vfs_write_resume(mp, 0);
2989 		ACQUIRE_LOCK(ump);
2990 		return (1);
2991 	}
2992 	return (0);
2993 }
2994 
2995 /*
2996  * Called before any allocation function to be certain that there is
2997  * sufficient space in the journal prior to creating any new records.
2998  * Since in the case of block allocation we may have multiple locked
2999  * buffers at the time of the actual allocation we can not block
3000  * when the journal records are created.  Doing so would create a deadlock
3001  * if any of these buffers needed to be flushed to reclaim space.  Instead
3002  * we require a sufficiently large amount of available space such that
3003  * each thread in the system could have passed this allocation check and
3004  * still have sufficient free space.  With 20% of a minimum journal size
3005  * of 1MB we have 6553 records available.
3006  */
3007 int
3008 softdep_prealloc(vp, waitok)
3009 	struct vnode *vp;
3010 	int waitok;
3011 {
3012 	struct ufsmount *ump;
3013 
3014 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3015 	    ("softdep_prealloc called on non-softdep filesystem"));
3016 	/*
3017 	 * Nothing to do if we are not running journaled soft updates.
3018 	 * If we currently hold the snapshot lock, we must avoid
3019 	 * handling other resources that could cause deadlock.  Do not
3020 	 * touch quotas vnode since it is typically recursed with
3021 	 * other vnode locks held.
3022 	 */
3023 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3024 	    (vp->v_vflag & VV_SYSTEM) != 0)
3025 		return (0);
3026 	ump = VFSTOUFS(vp->v_mount);
3027 	ACQUIRE_LOCK(ump);
3028 	if (journal_space(ump, 0)) {
3029 		FREE_LOCK(ump);
3030 		return (0);
3031 	}
3032 	stat_journal_low++;
3033 	FREE_LOCK(ump);
3034 	if (waitok == MNT_NOWAIT)
3035 		return (ENOSPC);
3036 	/*
3037 	 * Attempt to sync this vnode once to flush any journal
3038 	 * work attached to it.
3039 	 */
3040 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3041 		ffs_syncvnode(vp, waitok, 0);
3042 	ACQUIRE_LOCK(ump);
3043 	process_removes(vp);
3044 	process_truncates(vp);
3045 	if (journal_space(ump, 0) == 0) {
3046 		softdep_speedup(ump);
3047 		if (journal_space(ump, 1) == 0)
3048 			journal_suspend(ump);
3049 	}
3050 	FREE_LOCK(ump);
3051 
3052 	return (0);
3053 }
3054 
3055 /*
3056  * Before adjusting a link count on a vnode verify that we have sufficient
3057  * journal space.  If not, process operations that depend on the currently
3058  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3059  * and softdep flush threads can not acquire these locks to reclaim space.
3060  */
3061 static void
3062 softdep_prelink(dvp, vp)
3063 	struct vnode *dvp;
3064 	struct vnode *vp;
3065 {
3066 	struct ufsmount *ump;
3067 
3068 	ump = VFSTOUFS(dvp->v_mount);
3069 	LOCK_OWNED(ump);
3070 	/*
3071 	 * Nothing to do if we have sufficient journal space.
3072 	 * If we currently hold the snapshot lock, we must avoid
3073 	 * handling other resources that could cause deadlock.
3074 	 */
3075 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3076 		return;
3077 	stat_journal_low++;
3078 	FREE_LOCK(ump);
3079 	if (vp)
3080 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3081 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3082 	ACQUIRE_LOCK(ump);
3083 	/* Process vp before dvp as it may create .. removes. */
3084 	if (vp) {
3085 		process_removes(vp);
3086 		process_truncates(vp);
3087 	}
3088 	process_removes(dvp);
3089 	process_truncates(dvp);
3090 	softdep_speedup(ump);
3091 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3092 	if (journal_space(ump, 0) == 0) {
3093 		softdep_speedup(ump);
3094 		if (journal_space(ump, 1) == 0)
3095 			journal_suspend(ump);
3096 	}
3097 }
3098 
3099 static void
3100 jseg_write(ump, jseg, data)
3101 	struct ufsmount *ump;
3102 	struct jseg *jseg;
3103 	uint8_t *data;
3104 {
3105 	struct jsegrec *rec;
3106 
3107 	rec = (struct jsegrec *)data;
3108 	rec->jsr_seq = jseg->js_seq;
3109 	rec->jsr_oldest = jseg->js_oldseq;
3110 	rec->jsr_cnt = jseg->js_cnt;
3111 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3112 	rec->jsr_crc = 0;
3113 	rec->jsr_time = ump->um_fs->fs_mtime;
3114 }
3115 
3116 static inline void
3117 inoref_write(inoref, jseg, rec)
3118 	struct inoref *inoref;
3119 	struct jseg *jseg;
3120 	struct jrefrec *rec;
3121 {
3122 
3123 	inoref->if_jsegdep->jd_seg = jseg;
3124 	rec->jr_ino = inoref->if_ino;
3125 	rec->jr_parent = inoref->if_parent;
3126 	rec->jr_nlink = inoref->if_nlink;
3127 	rec->jr_mode = inoref->if_mode;
3128 	rec->jr_diroff = inoref->if_diroff;
3129 }
3130 
3131 static void
3132 jaddref_write(jaddref, jseg, data)
3133 	struct jaddref *jaddref;
3134 	struct jseg *jseg;
3135 	uint8_t *data;
3136 {
3137 	struct jrefrec *rec;
3138 
3139 	rec = (struct jrefrec *)data;
3140 	rec->jr_op = JOP_ADDREF;
3141 	inoref_write(&jaddref->ja_ref, jseg, rec);
3142 }
3143 
3144 static void
3145 jremref_write(jremref, jseg, data)
3146 	struct jremref *jremref;
3147 	struct jseg *jseg;
3148 	uint8_t *data;
3149 {
3150 	struct jrefrec *rec;
3151 
3152 	rec = (struct jrefrec *)data;
3153 	rec->jr_op = JOP_REMREF;
3154 	inoref_write(&jremref->jr_ref, jseg, rec);
3155 }
3156 
3157 static void
3158 jmvref_write(jmvref, jseg, data)
3159 	struct jmvref *jmvref;
3160 	struct jseg *jseg;
3161 	uint8_t *data;
3162 {
3163 	struct jmvrec *rec;
3164 
3165 	rec = (struct jmvrec *)data;
3166 	rec->jm_op = JOP_MVREF;
3167 	rec->jm_ino = jmvref->jm_ino;
3168 	rec->jm_parent = jmvref->jm_parent;
3169 	rec->jm_oldoff = jmvref->jm_oldoff;
3170 	rec->jm_newoff = jmvref->jm_newoff;
3171 }
3172 
3173 static void
3174 jnewblk_write(jnewblk, jseg, data)
3175 	struct jnewblk *jnewblk;
3176 	struct jseg *jseg;
3177 	uint8_t *data;
3178 {
3179 	struct jblkrec *rec;
3180 
3181 	jnewblk->jn_jsegdep->jd_seg = jseg;
3182 	rec = (struct jblkrec *)data;
3183 	rec->jb_op = JOP_NEWBLK;
3184 	rec->jb_ino = jnewblk->jn_ino;
3185 	rec->jb_blkno = jnewblk->jn_blkno;
3186 	rec->jb_lbn = jnewblk->jn_lbn;
3187 	rec->jb_frags = jnewblk->jn_frags;
3188 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3189 }
3190 
3191 static void
3192 jfreeblk_write(jfreeblk, jseg, data)
3193 	struct jfreeblk *jfreeblk;
3194 	struct jseg *jseg;
3195 	uint8_t *data;
3196 {
3197 	struct jblkrec *rec;
3198 
3199 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3200 	rec = (struct jblkrec *)data;
3201 	rec->jb_op = JOP_FREEBLK;
3202 	rec->jb_ino = jfreeblk->jf_ino;
3203 	rec->jb_blkno = jfreeblk->jf_blkno;
3204 	rec->jb_lbn = jfreeblk->jf_lbn;
3205 	rec->jb_frags = jfreeblk->jf_frags;
3206 	rec->jb_oldfrags = 0;
3207 }
3208 
3209 static void
3210 jfreefrag_write(jfreefrag, jseg, data)
3211 	struct jfreefrag *jfreefrag;
3212 	struct jseg *jseg;
3213 	uint8_t *data;
3214 {
3215 	struct jblkrec *rec;
3216 
3217 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3218 	rec = (struct jblkrec *)data;
3219 	rec->jb_op = JOP_FREEBLK;
3220 	rec->jb_ino = jfreefrag->fr_ino;
3221 	rec->jb_blkno = jfreefrag->fr_blkno;
3222 	rec->jb_lbn = jfreefrag->fr_lbn;
3223 	rec->jb_frags = jfreefrag->fr_frags;
3224 	rec->jb_oldfrags = 0;
3225 }
3226 
3227 static void
3228 jtrunc_write(jtrunc, jseg, data)
3229 	struct jtrunc *jtrunc;
3230 	struct jseg *jseg;
3231 	uint8_t *data;
3232 {
3233 	struct jtrncrec *rec;
3234 
3235 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3236 	rec = (struct jtrncrec *)data;
3237 	rec->jt_op = JOP_TRUNC;
3238 	rec->jt_ino = jtrunc->jt_ino;
3239 	rec->jt_size = jtrunc->jt_size;
3240 	rec->jt_extsize = jtrunc->jt_extsize;
3241 }
3242 
3243 static void
3244 jfsync_write(jfsync, jseg, data)
3245 	struct jfsync *jfsync;
3246 	struct jseg *jseg;
3247 	uint8_t *data;
3248 {
3249 	struct jtrncrec *rec;
3250 
3251 	rec = (struct jtrncrec *)data;
3252 	rec->jt_op = JOP_SYNC;
3253 	rec->jt_ino = jfsync->jfs_ino;
3254 	rec->jt_size = jfsync->jfs_size;
3255 	rec->jt_extsize = jfsync->jfs_extsize;
3256 }
3257 
3258 static void
3259 softdep_flushjournal(mp)
3260 	struct mount *mp;
3261 {
3262 	struct jblocks *jblocks;
3263 	struct ufsmount *ump;
3264 
3265 	if (MOUNTEDSUJ(mp) == 0)
3266 		return;
3267 	ump = VFSTOUFS(mp);
3268 	jblocks = ump->softdep_jblocks;
3269 	ACQUIRE_LOCK(ump);
3270 	while (ump->softdep_on_journal) {
3271 		jblocks->jb_needseg = 1;
3272 		softdep_process_journal(mp, NULL, MNT_WAIT);
3273 	}
3274 	FREE_LOCK(ump);
3275 }
3276 
3277 static void softdep_synchronize_completed(struct bio *);
3278 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3279 
3280 static void
3281 softdep_synchronize_completed(bp)
3282         struct bio *bp;
3283 {
3284 	struct jseg *oldest;
3285 	struct jseg *jseg;
3286 	struct ufsmount *ump;
3287 
3288 	/*
3289 	 * caller1 marks the last segment written before we issued the
3290 	 * synchronize cache.
3291 	 */
3292 	jseg = bp->bio_caller1;
3293 	if (jseg == NULL) {
3294 		g_destroy_bio(bp);
3295 		return;
3296 	}
3297 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3298 	ACQUIRE_LOCK(ump);
3299 	oldest = NULL;
3300 	/*
3301 	 * Mark all the journal entries waiting on the synchronize cache
3302 	 * as completed so they may continue on.
3303 	 */
3304 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3305 		jseg->js_state |= COMPLETE;
3306 		oldest = jseg;
3307 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3308 	}
3309 	/*
3310 	 * Restart deferred journal entry processing from the oldest
3311 	 * completed jseg.
3312 	 */
3313 	if (oldest)
3314 		complete_jsegs(oldest);
3315 
3316 	FREE_LOCK(ump);
3317 	g_destroy_bio(bp);
3318 }
3319 
3320 /*
3321  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3322  * barriers.  The journal must be written prior to any blocks that depend
3323  * on it and the journal can not be released until the blocks have be
3324  * written.  This code handles both barriers simultaneously.
3325  */
3326 static void
3327 softdep_synchronize(bp, ump, caller1)
3328 	struct bio *bp;
3329 	struct ufsmount *ump;
3330 	void *caller1;
3331 {
3332 
3333 	bp->bio_cmd = BIO_FLUSH;
3334 	bp->bio_flags |= BIO_ORDERED;
3335 	bp->bio_data = NULL;
3336 	bp->bio_offset = ump->um_cp->provider->mediasize;
3337 	bp->bio_length = 0;
3338 	bp->bio_done = softdep_synchronize_completed;
3339 	bp->bio_caller1 = caller1;
3340 	g_io_request(bp,
3341 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3342 }
3343 
3344 /*
3345  * Flush some journal records to disk.
3346  */
3347 static void
3348 softdep_process_journal(mp, needwk, flags)
3349 	struct mount *mp;
3350 	struct worklist *needwk;
3351 	int flags;
3352 {
3353 	struct jblocks *jblocks;
3354 	struct ufsmount *ump;
3355 	struct worklist *wk;
3356 	struct jseg *jseg;
3357 	struct buf *bp;
3358 	struct bio *bio;
3359 	uint8_t *data;
3360 	struct fs *fs;
3361 	int shouldflush;
3362 	int segwritten;
3363 	int jrecmin;	/* Minimum records per block. */
3364 	int jrecmax;	/* Maximum records per block. */
3365 	int size;
3366 	int cnt;
3367 	int off;
3368 	int devbsize;
3369 
3370 	if (MOUNTEDSUJ(mp) == 0)
3371 		return;
3372 	shouldflush = softdep_flushcache;
3373 	bio = NULL;
3374 	jseg = NULL;
3375 	ump = VFSTOUFS(mp);
3376 	LOCK_OWNED(ump);
3377 	fs = ump->um_fs;
3378 	jblocks = ump->softdep_jblocks;
3379 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3380 	/*
3381 	 * We write anywhere between a disk block and fs block.  The upper
3382 	 * bound is picked to prevent buffer cache fragmentation and limit
3383 	 * processing time per I/O.
3384 	 */
3385 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3386 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3387 	segwritten = 0;
3388 	for (;;) {
3389 		cnt = ump->softdep_on_journal;
3390 		/*
3391 		 * Criteria for writing a segment:
3392 		 * 1) We have a full block.
3393 		 * 2) We're called from jwait() and haven't found the
3394 		 *    journal item yet.
3395 		 * 3) Always write if needseg is set.
3396 		 * 4) If we are called from process_worklist and have
3397 		 *    not yet written anything we write a partial block
3398 		 *    to enforce a 1 second maximum latency on journal
3399 		 *    entries.
3400 		 */
3401 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3402 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3403 			break;
3404 		cnt++;
3405 		/*
3406 		 * Verify some free journal space.  softdep_prealloc() should
3407 		 * guarantee that we don't run out so this is indicative of
3408 		 * a problem with the flow control.  Try to recover
3409 		 * gracefully in any event.
3410 		 */
3411 		while (jblocks->jb_free == 0) {
3412 			if (flags != MNT_WAIT)
3413 				break;
3414 			printf("softdep: Out of journal space!\n");
3415 			softdep_speedup(ump);
3416 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3417 		}
3418 		FREE_LOCK(ump);
3419 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3420 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3421 		LIST_INIT(&jseg->js_entries);
3422 		LIST_INIT(&jseg->js_indirs);
3423 		jseg->js_state = ATTACHED;
3424 		if (shouldflush == 0)
3425 			jseg->js_state |= COMPLETE;
3426 		else if (bio == NULL)
3427 			bio = g_alloc_bio();
3428 		jseg->js_jblocks = jblocks;
3429 		bp = geteblk(fs->fs_bsize, 0);
3430 		ACQUIRE_LOCK(ump);
3431 		/*
3432 		 * If there was a race while we were allocating the block
3433 		 * and jseg the entry we care about was likely written.
3434 		 * We bail out in both the WAIT and NOWAIT case and assume
3435 		 * the caller will loop if the entry it cares about is
3436 		 * not written.
3437 		 */
3438 		cnt = ump->softdep_on_journal;
3439 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3440 			bp->b_flags |= B_INVAL | B_NOCACHE;
3441 			WORKITEM_FREE(jseg, D_JSEG);
3442 			FREE_LOCK(ump);
3443 			brelse(bp);
3444 			ACQUIRE_LOCK(ump);
3445 			break;
3446 		}
3447 		/*
3448 		 * Calculate the disk block size required for the available
3449 		 * records rounded to the min size.
3450 		 */
3451 		if (cnt == 0)
3452 			size = devbsize;
3453 		else if (cnt < jrecmax)
3454 			size = howmany(cnt, jrecmin) * devbsize;
3455 		else
3456 			size = fs->fs_bsize;
3457 		/*
3458 		 * Allocate a disk block for this journal data and account
3459 		 * for truncation of the requested size if enough contiguous
3460 		 * space was not available.
3461 		 */
3462 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3463 		bp->b_lblkno = bp->b_blkno;
3464 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3465 		bp->b_bcount = size;
3466 		bp->b_flags &= ~B_INVAL;
3467 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3468 		/*
3469 		 * Initialize our jseg with cnt records.  Assign the next
3470 		 * sequence number to it and link it in-order.
3471 		 */
3472 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3473 		jseg->js_buf = bp;
3474 		jseg->js_cnt = cnt;
3475 		jseg->js_refs = cnt + 1;	/* Self ref. */
3476 		jseg->js_size = size;
3477 		jseg->js_seq = jblocks->jb_nextseq++;
3478 		if (jblocks->jb_oldestseg == NULL)
3479 			jblocks->jb_oldestseg = jseg;
3480 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3481 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3482 		if (jblocks->jb_writeseg == NULL)
3483 			jblocks->jb_writeseg = jseg;
3484 		/*
3485 		 * Start filling in records from the pending list.
3486 		 */
3487 		data = bp->b_data;
3488 		off = 0;
3489 
3490 		/*
3491 		 * Always put a header on the first block.
3492 		 * XXX As with below, there might not be a chance to get
3493 		 * into the loop.  Ensure that something valid is written.
3494 		 */
3495 		jseg_write(ump, jseg, data);
3496 		off += JREC_SIZE;
3497 		data = bp->b_data + off;
3498 
3499 		/*
3500 		 * XXX Something is wrong here.  There's no work to do,
3501 		 * but we need to perform and I/O and allow it to complete
3502 		 * anyways.
3503 		 */
3504 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3505 			stat_emptyjblocks++;
3506 
3507 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3508 		    != NULL) {
3509 			if (cnt == 0)
3510 				break;
3511 			/* Place a segment header on every device block. */
3512 			if ((off % devbsize) == 0) {
3513 				jseg_write(ump, jseg, data);
3514 				off += JREC_SIZE;
3515 				data = bp->b_data + off;
3516 			}
3517 			if (wk == needwk)
3518 				needwk = NULL;
3519 			remove_from_journal(wk);
3520 			wk->wk_state |= INPROGRESS;
3521 			WORKLIST_INSERT(&jseg->js_entries, wk);
3522 			switch (wk->wk_type) {
3523 			case D_JADDREF:
3524 				jaddref_write(WK_JADDREF(wk), jseg, data);
3525 				break;
3526 			case D_JREMREF:
3527 				jremref_write(WK_JREMREF(wk), jseg, data);
3528 				break;
3529 			case D_JMVREF:
3530 				jmvref_write(WK_JMVREF(wk), jseg, data);
3531 				break;
3532 			case D_JNEWBLK:
3533 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3534 				break;
3535 			case D_JFREEBLK:
3536 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3537 				break;
3538 			case D_JFREEFRAG:
3539 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3540 				break;
3541 			case D_JTRUNC:
3542 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3543 				break;
3544 			case D_JFSYNC:
3545 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3546 				break;
3547 			default:
3548 				panic("process_journal: Unknown type %s",
3549 				    TYPENAME(wk->wk_type));
3550 				/* NOTREACHED */
3551 			}
3552 			off += JREC_SIZE;
3553 			data = bp->b_data + off;
3554 			cnt--;
3555 		}
3556 
3557 		/* Clear any remaining space so we don't leak kernel data */
3558 		if (size > off)
3559 			bzero(data, size - off);
3560 
3561 		/*
3562 		 * Write this one buffer and continue.
3563 		 */
3564 		segwritten = 1;
3565 		jblocks->jb_needseg = 0;
3566 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3567 		FREE_LOCK(ump);
3568 		pbgetvp(ump->um_devvp, bp);
3569 		/*
3570 		 * We only do the blocking wait once we find the journal
3571 		 * entry we're looking for.
3572 		 */
3573 		if (needwk == NULL && flags == MNT_WAIT)
3574 			bwrite(bp);
3575 		else
3576 			bawrite(bp);
3577 		ACQUIRE_LOCK(ump);
3578 	}
3579 	/*
3580 	 * If we wrote a segment issue a synchronize cache so the journal
3581 	 * is reflected on disk before the data is written.  Since reclaiming
3582 	 * journal space also requires writing a journal record this
3583 	 * process also enforces a barrier before reclamation.
3584 	 */
3585 	if (segwritten && shouldflush) {
3586 		softdep_synchronize(bio, ump,
3587 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3588 	} else if (bio)
3589 		g_destroy_bio(bio);
3590 	/*
3591 	 * If we've suspended the filesystem because we ran out of journal
3592 	 * space either try to sync it here to make some progress or
3593 	 * unsuspend it if we already have.
3594 	 */
3595 	if (flags == 0 && jblocks->jb_suspended) {
3596 		if (journal_unsuspend(ump))
3597 			return;
3598 		FREE_LOCK(ump);
3599 		VFS_SYNC(mp, MNT_NOWAIT);
3600 		ffs_sbupdate(ump, MNT_WAIT, 0);
3601 		ACQUIRE_LOCK(ump);
3602 	}
3603 }
3604 
3605 /*
3606  * Complete a jseg, allowing all dependencies awaiting journal writes
3607  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3608  * structures so that the journal segment can be freed to reclaim space.
3609  */
3610 static void
3611 complete_jseg(jseg)
3612 	struct jseg *jseg;
3613 {
3614 	struct worklist *wk;
3615 	struct jmvref *jmvref;
3616 #ifdef INVARIANTS
3617 	int i = 0;
3618 #endif
3619 
3620 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3621 		WORKLIST_REMOVE(wk);
3622 		wk->wk_state &= ~INPROGRESS;
3623 		wk->wk_state |= COMPLETE;
3624 		KASSERT(i++ < jseg->js_cnt,
3625 		    ("handle_written_jseg: overflow %d >= %d",
3626 		    i - 1, jseg->js_cnt));
3627 		switch (wk->wk_type) {
3628 		case D_JADDREF:
3629 			handle_written_jaddref(WK_JADDREF(wk));
3630 			break;
3631 		case D_JREMREF:
3632 			handle_written_jremref(WK_JREMREF(wk));
3633 			break;
3634 		case D_JMVREF:
3635 			rele_jseg(jseg);	/* No jsegdep. */
3636 			jmvref = WK_JMVREF(wk);
3637 			LIST_REMOVE(jmvref, jm_deps);
3638 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3639 				free_pagedep(jmvref->jm_pagedep);
3640 			WORKITEM_FREE(jmvref, D_JMVREF);
3641 			break;
3642 		case D_JNEWBLK:
3643 			handle_written_jnewblk(WK_JNEWBLK(wk));
3644 			break;
3645 		case D_JFREEBLK:
3646 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3647 			break;
3648 		case D_JTRUNC:
3649 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3650 			break;
3651 		case D_JFSYNC:
3652 			rele_jseg(jseg);	/* No jsegdep. */
3653 			WORKITEM_FREE(wk, D_JFSYNC);
3654 			break;
3655 		case D_JFREEFRAG:
3656 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3657 			break;
3658 		default:
3659 			panic("handle_written_jseg: Unknown type %s",
3660 			    TYPENAME(wk->wk_type));
3661 			/* NOTREACHED */
3662 		}
3663 	}
3664 	/* Release the self reference so the structure may be freed. */
3665 	rele_jseg(jseg);
3666 }
3667 
3668 /*
3669  * Determine which jsegs are ready for completion processing.  Waits for
3670  * synchronize cache to complete as well as forcing in-order completion
3671  * of journal entries.
3672  */
3673 static void
3674 complete_jsegs(jseg)
3675 	struct jseg *jseg;
3676 {
3677 	struct jblocks *jblocks;
3678 	struct jseg *jsegn;
3679 
3680 	jblocks = jseg->js_jblocks;
3681 	/*
3682 	 * Don't allow out of order completions.  If this isn't the first
3683 	 * block wait for it to write before we're done.
3684 	 */
3685 	if (jseg != jblocks->jb_writeseg)
3686 		return;
3687 	/* Iterate through available jsegs processing their entries. */
3688 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3689 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3690 		jsegn = TAILQ_NEXT(jseg, js_next);
3691 		complete_jseg(jseg);
3692 		jseg = jsegn;
3693 	}
3694 	jblocks->jb_writeseg = jseg;
3695 	/*
3696 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3697 	 */
3698 	free_jsegs(jblocks);
3699 }
3700 
3701 /*
3702  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3703  * the final completions.
3704  */
3705 static void
3706 handle_written_jseg(jseg, bp)
3707 	struct jseg *jseg;
3708 	struct buf *bp;
3709 {
3710 
3711 	if (jseg->js_refs == 0)
3712 		panic("handle_written_jseg: No self-reference on %p", jseg);
3713 	jseg->js_state |= DEPCOMPLETE;
3714 	/*
3715 	 * We'll never need this buffer again, set flags so it will be
3716 	 * discarded.
3717 	 */
3718 	bp->b_flags |= B_INVAL | B_NOCACHE;
3719 	pbrelvp(bp);
3720 	complete_jsegs(jseg);
3721 }
3722 
3723 static inline struct jsegdep *
3724 inoref_jseg(inoref)
3725 	struct inoref *inoref;
3726 {
3727 	struct jsegdep *jsegdep;
3728 
3729 	jsegdep = inoref->if_jsegdep;
3730 	inoref->if_jsegdep = NULL;
3731 
3732 	return (jsegdep);
3733 }
3734 
3735 /*
3736  * Called once a jremref has made it to stable store.  The jremref is marked
3737  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3738  * for the jremref to complete will be awoken by free_jremref.
3739  */
3740 static void
3741 handle_written_jremref(jremref)
3742 	struct jremref *jremref;
3743 {
3744 	struct inodedep *inodedep;
3745 	struct jsegdep *jsegdep;
3746 	struct dirrem *dirrem;
3747 
3748 	/* Grab the jsegdep. */
3749 	jsegdep = inoref_jseg(&jremref->jr_ref);
3750 	/*
3751 	 * Remove us from the inoref list.
3752 	 */
3753 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3754 	    0, &inodedep) == 0)
3755 		panic("handle_written_jremref: Lost inodedep");
3756 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3757 	/*
3758 	 * Complete the dirrem.
3759 	 */
3760 	dirrem = jremref->jr_dirrem;
3761 	jremref->jr_dirrem = NULL;
3762 	LIST_REMOVE(jremref, jr_deps);
3763 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3764 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3765 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3766 	    (dirrem->dm_state & COMPLETE) != 0)
3767 		add_to_worklist(&dirrem->dm_list, 0);
3768 	free_jremref(jremref);
3769 }
3770 
3771 /*
3772  * Called once a jaddref has made it to stable store.  The dependency is
3773  * marked complete and any dependent structures are added to the inode
3774  * bufwait list to be completed as soon as it is written.  If a bitmap write
3775  * depends on this entry we move the inode into the inodedephd of the
3776  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3777  */
3778 static void
3779 handle_written_jaddref(jaddref)
3780 	struct jaddref *jaddref;
3781 {
3782 	struct jsegdep *jsegdep;
3783 	struct inodedep *inodedep;
3784 	struct diradd *diradd;
3785 	struct mkdir *mkdir;
3786 
3787 	/* Grab the jsegdep. */
3788 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3789 	mkdir = NULL;
3790 	diradd = NULL;
3791 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3792 	    0, &inodedep) == 0)
3793 		panic("handle_written_jaddref: Lost inodedep.");
3794 	if (jaddref->ja_diradd == NULL)
3795 		panic("handle_written_jaddref: No dependency");
3796 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3797 		diradd = jaddref->ja_diradd;
3798 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3799 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3800 		mkdir = jaddref->ja_mkdir;
3801 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3802 	} else if (jaddref->ja_state & MKDIR_BODY)
3803 		mkdir = jaddref->ja_mkdir;
3804 	else
3805 		panic("handle_written_jaddref: Unknown dependency %p",
3806 		    jaddref->ja_diradd);
3807 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3808 	/*
3809 	 * Remove us from the inode list.
3810 	 */
3811 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3812 	/*
3813 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3814 	 */
3815 	if (mkdir) {
3816 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3817 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3818 		    TYPENAME(mkdir->md_list.wk_type)));
3819 		mkdir->md_jaddref = NULL;
3820 		diradd = mkdir->md_diradd;
3821 		mkdir->md_state |= DEPCOMPLETE;
3822 		complete_mkdir(mkdir);
3823 	}
3824 	jwork_insert(&diradd->da_jwork, jsegdep);
3825 	if (jaddref->ja_state & NEWBLOCK) {
3826 		inodedep->id_state |= ONDEPLIST;
3827 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3828 		    inodedep, id_deps);
3829 	}
3830 	free_jaddref(jaddref);
3831 }
3832 
3833 /*
3834  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3835  * is placed in the bmsafemap to await notification of a written bitmap.  If
3836  * the operation was canceled we add the segdep to the appropriate
3837  * dependency to free the journal space once the canceling operation
3838  * completes.
3839  */
3840 static void
3841 handle_written_jnewblk(jnewblk)
3842 	struct jnewblk *jnewblk;
3843 {
3844 	struct bmsafemap *bmsafemap;
3845 	struct freefrag *freefrag;
3846 	struct freework *freework;
3847 	struct jsegdep *jsegdep;
3848 	struct newblk *newblk;
3849 
3850 	/* Grab the jsegdep. */
3851 	jsegdep = jnewblk->jn_jsegdep;
3852 	jnewblk->jn_jsegdep = NULL;
3853 	if (jnewblk->jn_dep == NULL)
3854 		panic("handle_written_jnewblk: No dependency for the segdep.");
3855 	switch (jnewblk->jn_dep->wk_type) {
3856 	case D_NEWBLK:
3857 	case D_ALLOCDIRECT:
3858 	case D_ALLOCINDIR:
3859 		/*
3860 		 * Add the written block to the bmsafemap so it can
3861 		 * be notified when the bitmap is on disk.
3862 		 */
3863 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3864 		newblk->nb_jnewblk = NULL;
3865 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3866 			bmsafemap = newblk->nb_bmsafemap;
3867 			newblk->nb_state |= ONDEPLIST;
3868 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3869 			    nb_deps);
3870 		}
3871 		jwork_insert(&newblk->nb_jwork, jsegdep);
3872 		break;
3873 	case D_FREEFRAG:
3874 		/*
3875 		 * A newblock being removed by a freefrag when replaced by
3876 		 * frag extension.
3877 		 */
3878 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3879 		freefrag->ff_jdep = NULL;
3880 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3881 		break;
3882 	case D_FREEWORK:
3883 		/*
3884 		 * A direct block was removed by truncate.
3885 		 */
3886 		freework = WK_FREEWORK(jnewblk->jn_dep);
3887 		freework->fw_jnewblk = NULL;
3888 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3889 		break;
3890 	default:
3891 		panic("handle_written_jnewblk: Unknown type %d.",
3892 		    jnewblk->jn_dep->wk_type);
3893 	}
3894 	jnewblk->jn_dep = NULL;
3895 	free_jnewblk(jnewblk);
3896 }
3897 
3898 /*
3899  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3900  * an in-flight allocation that has not yet been committed.  Divorce us
3901  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3902  * to the worklist.
3903  */
3904 static void
3905 cancel_jfreefrag(jfreefrag)
3906 	struct jfreefrag *jfreefrag;
3907 {
3908 	struct freefrag *freefrag;
3909 
3910 	if (jfreefrag->fr_jsegdep) {
3911 		free_jsegdep(jfreefrag->fr_jsegdep);
3912 		jfreefrag->fr_jsegdep = NULL;
3913 	}
3914 	freefrag = jfreefrag->fr_freefrag;
3915 	jfreefrag->fr_freefrag = NULL;
3916 	free_jfreefrag(jfreefrag);
3917 	freefrag->ff_state |= DEPCOMPLETE;
3918 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3919 }
3920 
3921 /*
3922  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3923  */
3924 static void
3925 free_jfreefrag(jfreefrag)
3926 	struct jfreefrag *jfreefrag;
3927 {
3928 
3929 	if (jfreefrag->fr_state & INPROGRESS)
3930 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3931 	else if (jfreefrag->fr_state & ONWORKLIST)
3932 		remove_from_journal(&jfreefrag->fr_list);
3933 	if (jfreefrag->fr_freefrag != NULL)
3934 		panic("free_jfreefrag:  Still attached to a freefrag.");
3935 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3936 }
3937 
3938 /*
3939  * Called when the journal write for a jfreefrag completes.  The parent
3940  * freefrag is added to the worklist if this completes its dependencies.
3941  */
3942 static void
3943 handle_written_jfreefrag(jfreefrag)
3944 	struct jfreefrag *jfreefrag;
3945 {
3946 	struct jsegdep *jsegdep;
3947 	struct freefrag *freefrag;
3948 
3949 	/* Grab the jsegdep. */
3950 	jsegdep = jfreefrag->fr_jsegdep;
3951 	jfreefrag->fr_jsegdep = NULL;
3952 	freefrag = jfreefrag->fr_freefrag;
3953 	if (freefrag == NULL)
3954 		panic("handle_written_jfreefrag: No freefrag.");
3955 	freefrag->ff_state |= DEPCOMPLETE;
3956 	freefrag->ff_jdep = NULL;
3957 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3958 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3959 		add_to_worklist(&freefrag->ff_list, 0);
3960 	jfreefrag->fr_freefrag = NULL;
3961 	free_jfreefrag(jfreefrag);
3962 }
3963 
3964 /*
3965  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3966  * is removed from the freeblks list of pending journal writes and the
3967  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3968  * have been reclaimed.
3969  */
3970 static void
3971 handle_written_jblkdep(jblkdep)
3972 	struct jblkdep *jblkdep;
3973 {
3974 	struct freeblks *freeblks;
3975 	struct jsegdep *jsegdep;
3976 
3977 	/* Grab the jsegdep. */
3978 	jsegdep = jblkdep->jb_jsegdep;
3979 	jblkdep->jb_jsegdep = NULL;
3980 	freeblks = jblkdep->jb_freeblks;
3981 	LIST_REMOVE(jblkdep, jb_deps);
3982 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3983 	/*
3984 	 * If the freeblks is all journaled, we can add it to the worklist.
3985 	 */
3986 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3987 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3988 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3989 
3990 	free_jblkdep(jblkdep);
3991 }
3992 
3993 static struct jsegdep *
3994 newjsegdep(struct worklist *wk)
3995 {
3996 	struct jsegdep *jsegdep;
3997 
3998 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3999 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4000 	jsegdep->jd_seg = NULL;
4001 
4002 	return (jsegdep);
4003 }
4004 
4005 static struct jmvref *
4006 newjmvref(dp, ino, oldoff, newoff)
4007 	struct inode *dp;
4008 	ino_t ino;
4009 	off_t oldoff;
4010 	off_t newoff;
4011 {
4012 	struct jmvref *jmvref;
4013 
4014 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4015 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4016 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4017 	jmvref->jm_parent = dp->i_number;
4018 	jmvref->jm_ino = ino;
4019 	jmvref->jm_oldoff = oldoff;
4020 	jmvref->jm_newoff = newoff;
4021 
4022 	return (jmvref);
4023 }
4024 
4025 /*
4026  * Allocate a new jremref that tracks the removal of ip from dp with the
4027  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4028  * DEPCOMPLETE as we have all the information required for the journal write
4029  * and the directory has already been removed from the buffer.  The caller
4030  * is responsible for linking the jremref into the pagedep and adding it
4031  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4032  * a DOTDOT addition so handle_workitem_remove() can properly assign
4033  * the jsegdep when we're done.
4034  */
4035 static struct jremref *
4036 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4037     off_t diroff, nlink_t nlink)
4038 {
4039 	struct jremref *jremref;
4040 
4041 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4042 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4043 	jremref->jr_state = ATTACHED;
4044 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4045 	   nlink, ip->i_mode);
4046 	jremref->jr_dirrem = dirrem;
4047 
4048 	return (jremref);
4049 }
4050 
4051 static inline void
4052 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4053     nlink_t nlink, uint16_t mode)
4054 {
4055 
4056 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4057 	inoref->if_diroff = diroff;
4058 	inoref->if_ino = ino;
4059 	inoref->if_parent = parent;
4060 	inoref->if_nlink = nlink;
4061 	inoref->if_mode = mode;
4062 }
4063 
4064 /*
4065  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4066  * directory offset may not be known until later.  The caller is responsible
4067  * adding the entry to the journal when this information is available.  nlink
4068  * should be the link count prior to the addition and mode is only required
4069  * to have the correct FMT.
4070  */
4071 static struct jaddref *
4072 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4073     uint16_t mode)
4074 {
4075 	struct jaddref *jaddref;
4076 
4077 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4078 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4079 	jaddref->ja_state = ATTACHED;
4080 	jaddref->ja_mkdir = NULL;
4081 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4082 
4083 	return (jaddref);
4084 }
4085 
4086 /*
4087  * Create a new free dependency for a freework.  The caller is responsible
4088  * for adjusting the reference count when it has the lock held.  The freedep
4089  * will track an outstanding bitmap write that will ultimately clear the
4090  * freework to continue.
4091  */
4092 static struct freedep *
4093 newfreedep(struct freework *freework)
4094 {
4095 	struct freedep *freedep;
4096 
4097 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4098 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4099 	freedep->fd_freework = freework;
4100 
4101 	return (freedep);
4102 }
4103 
4104 /*
4105  * Free a freedep structure once the buffer it is linked to is written.  If
4106  * this is the last reference to the freework schedule it for completion.
4107  */
4108 static void
4109 free_freedep(freedep)
4110 	struct freedep *freedep;
4111 {
4112 	struct freework *freework;
4113 
4114 	freework = freedep->fd_freework;
4115 	freework->fw_freeblks->fb_cgwait--;
4116 	if (--freework->fw_ref == 0)
4117 		freework_enqueue(freework);
4118 	WORKITEM_FREE(freedep, D_FREEDEP);
4119 }
4120 
4121 /*
4122  * Allocate a new freework structure that may be a level in an indirect
4123  * when parent is not NULL or a top level block when it is.  The top level
4124  * freework structures are allocated without the per-filesystem lock held
4125  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4126  */
4127 static struct freework *
4128 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4129 	struct ufsmount *ump;
4130 	struct freeblks *freeblks;
4131 	struct freework *parent;
4132 	ufs_lbn_t lbn;
4133 	ufs2_daddr_t nb;
4134 	int frags;
4135 	int off;
4136 	int journal;
4137 {
4138 	struct freework *freework;
4139 
4140 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4141 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4142 	freework->fw_state = ATTACHED;
4143 	freework->fw_jnewblk = NULL;
4144 	freework->fw_freeblks = freeblks;
4145 	freework->fw_parent = parent;
4146 	freework->fw_lbn = lbn;
4147 	freework->fw_blkno = nb;
4148 	freework->fw_frags = frags;
4149 	freework->fw_indir = NULL;
4150 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4151 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4152 	freework->fw_start = freework->fw_off = off;
4153 	if (journal)
4154 		newjfreeblk(freeblks, lbn, nb, frags);
4155 	if (parent == NULL) {
4156 		ACQUIRE_LOCK(ump);
4157 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4158 		freeblks->fb_ref++;
4159 		FREE_LOCK(ump);
4160 	}
4161 
4162 	return (freework);
4163 }
4164 
4165 /*
4166  * Eliminate a jfreeblk for a block that does not need journaling.
4167  */
4168 static void
4169 cancel_jfreeblk(freeblks, blkno)
4170 	struct freeblks *freeblks;
4171 	ufs2_daddr_t blkno;
4172 {
4173 	struct jfreeblk *jfreeblk;
4174 	struct jblkdep *jblkdep;
4175 
4176 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4177 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4178 			continue;
4179 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4180 		if (jfreeblk->jf_blkno == blkno)
4181 			break;
4182 	}
4183 	if (jblkdep == NULL)
4184 		return;
4185 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4186 	free_jsegdep(jblkdep->jb_jsegdep);
4187 	LIST_REMOVE(jblkdep, jb_deps);
4188 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4189 }
4190 
4191 /*
4192  * Allocate a new jfreeblk to journal top level block pointer when truncating
4193  * a file.  The caller must add this to the worklist when the per-filesystem
4194  * lock is held.
4195  */
4196 static struct jfreeblk *
4197 newjfreeblk(freeblks, lbn, blkno, frags)
4198 	struct freeblks *freeblks;
4199 	ufs_lbn_t lbn;
4200 	ufs2_daddr_t blkno;
4201 	int frags;
4202 {
4203 	struct jfreeblk *jfreeblk;
4204 
4205 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4206 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4207 	    freeblks->fb_list.wk_mp);
4208 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4209 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4210 	jfreeblk->jf_ino = freeblks->fb_inum;
4211 	jfreeblk->jf_lbn = lbn;
4212 	jfreeblk->jf_blkno = blkno;
4213 	jfreeblk->jf_frags = frags;
4214 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4215 
4216 	return (jfreeblk);
4217 }
4218 
4219 /*
4220  * The journal is only prepared to handle full-size block numbers, so we
4221  * have to adjust the record to reflect the change to a full-size block.
4222  * For example, suppose we have a block made up of fragments 8-15 and
4223  * want to free its last two fragments. We are given a request that says:
4224  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4225  * where frags are the number of fragments to free and oldfrags are the
4226  * number of fragments to keep. To block align it, we have to change it to
4227  * have a valid full-size blkno, so it becomes:
4228  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4229  */
4230 static void
4231 adjust_newfreework(freeblks, frag_offset)
4232 	struct freeblks *freeblks;
4233 	int frag_offset;
4234 {
4235 	struct jfreeblk *jfreeblk;
4236 
4237 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4238 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4239 	    ("adjust_newfreework: Missing freeblks dependency"));
4240 
4241 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4242 	jfreeblk->jf_blkno -= frag_offset;
4243 	jfreeblk->jf_frags += frag_offset;
4244 }
4245 
4246 /*
4247  * Allocate a new jtrunc to track a partial truncation.
4248  */
4249 static struct jtrunc *
4250 newjtrunc(freeblks, size, extsize)
4251 	struct freeblks *freeblks;
4252 	off_t size;
4253 	int extsize;
4254 {
4255 	struct jtrunc *jtrunc;
4256 
4257 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4258 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4259 	    freeblks->fb_list.wk_mp);
4260 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4261 	jtrunc->jt_dep.jb_freeblks = freeblks;
4262 	jtrunc->jt_ino = freeblks->fb_inum;
4263 	jtrunc->jt_size = size;
4264 	jtrunc->jt_extsize = extsize;
4265 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4266 
4267 	return (jtrunc);
4268 }
4269 
4270 /*
4271  * If we're canceling a new bitmap we have to search for another ref
4272  * to move into the bmsafemap dep.  This might be better expressed
4273  * with another structure.
4274  */
4275 static void
4276 move_newblock_dep(jaddref, inodedep)
4277 	struct jaddref *jaddref;
4278 	struct inodedep *inodedep;
4279 {
4280 	struct inoref *inoref;
4281 	struct jaddref *jaddrefn;
4282 
4283 	jaddrefn = NULL;
4284 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4285 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4286 		if ((jaddref->ja_state & NEWBLOCK) &&
4287 		    inoref->if_list.wk_type == D_JADDREF) {
4288 			jaddrefn = (struct jaddref *)inoref;
4289 			break;
4290 		}
4291 	}
4292 	if (jaddrefn == NULL)
4293 		return;
4294 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4295 	jaddrefn->ja_state |= jaddref->ja_state &
4296 	    (ATTACHED | UNDONE | NEWBLOCK);
4297 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4298 	jaddref->ja_state |= ATTACHED;
4299 	LIST_REMOVE(jaddref, ja_bmdeps);
4300 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4301 	    ja_bmdeps);
4302 }
4303 
4304 /*
4305  * Cancel a jaddref either before it has been written or while it is being
4306  * written.  This happens when a link is removed before the add reaches
4307  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4308  * and inode to prevent the link count or bitmap from reaching the disk
4309  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4310  * required.
4311  *
4312  * Returns 1 if the canceled addref requires journaling of the remove and
4313  * 0 otherwise.
4314  */
4315 static int
4316 cancel_jaddref(jaddref, inodedep, wkhd)
4317 	struct jaddref *jaddref;
4318 	struct inodedep *inodedep;
4319 	struct workhead *wkhd;
4320 {
4321 	struct inoref *inoref;
4322 	struct jsegdep *jsegdep;
4323 	int needsj;
4324 
4325 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4326 	    ("cancel_jaddref: Canceling complete jaddref"));
4327 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4328 		needsj = 1;
4329 	else
4330 		needsj = 0;
4331 	if (inodedep == NULL)
4332 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4333 		    0, &inodedep) == 0)
4334 			panic("cancel_jaddref: Lost inodedep");
4335 	/*
4336 	 * We must adjust the nlink of any reference operation that follows
4337 	 * us so that it is consistent with the in-memory reference.  This
4338 	 * ensures that inode nlink rollbacks always have the correct link.
4339 	 */
4340 	if (needsj == 0) {
4341 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4342 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4343 			if (inoref->if_state & GOINGAWAY)
4344 				break;
4345 			inoref->if_nlink--;
4346 		}
4347 	}
4348 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4349 	if (jaddref->ja_state & NEWBLOCK)
4350 		move_newblock_dep(jaddref, inodedep);
4351 	wake_worklist(&jaddref->ja_list);
4352 	jaddref->ja_mkdir = NULL;
4353 	if (jaddref->ja_state & INPROGRESS) {
4354 		jaddref->ja_state &= ~INPROGRESS;
4355 		WORKLIST_REMOVE(&jaddref->ja_list);
4356 		jwork_insert(wkhd, jsegdep);
4357 	} else {
4358 		free_jsegdep(jsegdep);
4359 		if (jaddref->ja_state & DEPCOMPLETE)
4360 			remove_from_journal(&jaddref->ja_list);
4361 	}
4362 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4363 	/*
4364 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4365 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4366 	 * no longer need this addref attached to the inoreflst and it
4367 	 * will incorrectly adjust nlink if we leave it.
4368 	 */
4369 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4370 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4371 		    if_deps);
4372 		jaddref->ja_state |= COMPLETE;
4373 		free_jaddref(jaddref);
4374 		return (needsj);
4375 	}
4376 	/*
4377 	 * Leave the head of the list for jsegdeps for fast merging.
4378 	 */
4379 	if (LIST_FIRST(wkhd) != NULL) {
4380 		jaddref->ja_state |= ONWORKLIST;
4381 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4382 	} else
4383 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4384 
4385 	return (needsj);
4386 }
4387 
4388 /*
4389  * Attempt to free a jaddref structure when some work completes.  This
4390  * should only succeed once the entry is written and all dependencies have
4391  * been notified.
4392  */
4393 static void
4394 free_jaddref(jaddref)
4395 	struct jaddref *jaddref;
4396 {
4397 
4398 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4399 		return;
4400 	if (jaddref->ja_ref.if_jsegdep)
4401 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4402 		    jaddref, jaddref->ja_state);
4403 	if (jaddref->ja_state & NEWBLOCK)
4404 		LIST_REMOVE(jaddref, ja_bmdeps);
4405 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4406 		panic("free_jaddref: Bad state %p(0x%X)",
4407 		    jaddref, jaddref->ja_state);
4408 	if (jaddref->ja_mkdir != NULL)
4409 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4410 	WORKITEM_FREE(jaddref, D_JADDREF);
4411 }
4412 
4413 /*
4414  * Free a jremref structure once it has been written or discarded.
4415  */
4416 static void
4417 free_jremref(jremref)
4418 	struct jremref *jremref;
4419 {
4420 
4421 	if (jremref->jr_ref.if_jsegdep)
4422 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4423 	if (jremref->jr_state & INPROGRESS)
4424 		panic("free_jremref: IO still pending");
4425 	WORKITEM_FREE(jremref, D_JREMREF);
4426 }
4427 
4428 /*
4429  * Free a jnewblk structure.
4430  */
4431 static void
4432 free_jnewblk(jnewblk)
4433 	struct jnewblk *jnewblk;
4434 {
4435 
4436 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4437 		return;
4438 	LIST_REMOVE(jnewblk, jn_deps);
4439 	if (jnewblk->jn_dep != NULL)
4440 		panic("free_jnewblk: Dependency still attached.");
4441 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4442 }
4443 
4444 /*
4445  * Cancel a jnewblk which has been been made redundant by frag extension.
4446  */
4447 static void
4448 cancel_jnewblk(jnewblk, wkhd)
4449 	struct jnewblk *jnewblk;
4450 	struct workhead *wkhd;
4451 {
4452 	struct jsegdep *jsegdep;
4453 
4454 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4455 	jsegdep = jnewblk->jn_jsegdep;
4456 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4457 		panic("cancel_jnewblk: Invalid state");
4458 	jnewblk->jn_jsegdep  = NULL;
4459 	jnewblk->jn_dep = NULL;
4460 	jnewblk->jn_state |= GOINGAWAY;
4461 	if (jnewblk->jn_state & INPROGRESS) {
4462 		jnewblk->jn_state &= ~INPROGRESS;
4463 		WORKLIST_REMOVE(&jnewblk->jn_list);
4464 		jwork_insert(wkhd, jsegdep);
4465 	} else {
4466 		free_jsegdep(jsegdep);
4467 		remove_from_journal(&jnewblk->jn_list);
4468 	}
4469 	wake_worklist(&jnewblk->jn_list);
4470 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4471 }
4472 
4473 static void
4474 free_jblkdep(jblkdep)
4475 	struct jblkdep *jblkdep;
4476 {
4477 
4478 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4479 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4480 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4481 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4482 	else
4483 		panic("free_jblkdep: Unexpected type %s",
4484 		    TYPENAME(jblkdep->jb_list.wk_type));
4485 }
4486 
4487 /*
4488  * Free a single jseg once it is no longer referenced in memory or on
4489  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4490  * to disappear.
4491  */
4492 static void
4493 free_jseg(jseg, jblocks)
4494 	struct jseg *jseg;
4495 	struct jblocks *jblocks;
4496 {
4497 	struct freework *freework;
4498 
4499 	/*
4500 	 * Free freework structures that were lingering to indicate freed
4501 	 * indirect blocks that forced journal write ordering on reallocate.
4502 	 */
4503 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4504 		indirblk_remove(freework);
4505 	if (jblocks->jb_oldestseg == jseg)
4506 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4507 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4508 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4509 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4510 	    ("free_jseg: Freed jseg has valid entries."));
4511 	WORKITEM_FREE(jseg, D_JSEG);
4512 }
4513 
4514 /*
4515  * Free all jsegs that meet the criteria for being reclaimed and update
4516  * oldestseg.
4517  */
4518 static void
4519 free_jsegs(jblocks)
4520 	struct jblocks *jblocks;
4521 {
4522 	struct jseg *jseg;
4523 
4524 	/*
4525 	 * Free only those jsegs which have none allocated before them to
4526 	 * preserve the journal space ordering.
4527 	 */
4528 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4529 		/*
4530 		 * Only reclaim space when nothing depends on this journal
4531 		 * set and another set has written that it is no longer
4532 		 * valid.
4533 		 */
4534 		if (jseg->js_refs != 0) {
4535 			jblocks->jb_oldestseg = jseg;
4536 			return;
4537 		}
4538 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4539 			break;
4540 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4541 			break;
4542 		/*
4543 		 * We can free jsegs that didn't write entries when
4544 		 * oldestwrseq == js_seq.
4545 		 */
4546 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4547 		    jseg->js_cnt != 0)
4548 			break;
4549 		free_jseg(jseg, jblocks);
4550 	}
4551 	/*
4552 	 * If we exited the loop above we still must discover the
4553 	 * oldest valid segment.
4554 	 */
4555 	if (jseg)
4556 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4557 		     jseg = TAILQ_NEXT(jseg, js_next))
4558 			if (jseg->js_refs != 0)
4559 				break;
4560 	jblocks->jb_oldestseg = jseg;
4561 	/*
4562 	 * The journal has no valid records but some jsegs may still be
4563 	 * waiting on oldestwrseq to advance.  We force a small record
4564 	 * out to permit these lingering records to be reclaimed.
4565 	 */
4566 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4567 		jblocks->jb_needseg = 1;
4568 }
4569 
4570 /*
4571  * Release one reference to a jseg and free it if the count reaches 0.  This
4572  * should eventually reclaim journal space as well.
4573  */
4574 static void
4575 rele_jseg(jseg)
4576 	struct jseg *jseg;
4577 {
4578 
4579 	KASSERT(jseg->js_refs > 0,
4580 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4581 	if (--jseg->js_refs != 0)
4582 		return;
4583 	free_jsegs(jseg->js_jblocks);
4584 }
4585 
4586 /*
4587  * Release a jsegdep and decrement the jseg count.
4588  */
4589 static void
4590 free_jsegdep(jsegdep)
4591 	struct jsegdep *jsegdep;
4592 {
4593 
4594 	if (jsegdep->jd_seg)
4595 		rele_jseg(jsegdep->jd_seg);
4596 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4597 }
4598 
4599 /*
4600  * Wait for a journal item to make it to disk.  Initiate journal processing
4601  * if required.
4602  */
4603 static int
4604 jwait(wk, waitfor)
4605 	struct worklist *wk;
4606 	int waitfor;
4607 {
4608 
4609 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4610 	/*
4611 	 * Blocking journal waits cause slow synchronous behavior.  Record
4612 	 * stats on the frequency of these blocking operations.
4613 	 */
4614 	if (waitfor == MNT_WAIT) {
4615 		stat_journal_wait++;
4616 		switch (wk->wk_type) {
4617 		case D_JREMREF:
4618 		case D_JMVREF:
4619 			stat_jwait_filepage++;
4620 			break;
4621 		case D_JTRUNC:
4622 		case D_JFREEBLK:
4623 			stat_jwait_freeblks++;
4624 			break;
4625 		case D_JNEWBLK:
4626 			stat_jwait_newblk++;
4627 			break;
4628 		case D_JADDREF:
4629 			stat_jwait_inode++;
4630 			break;
4631 		default:
4632 			break;
4633 		}
4634 	}
4635 	/*
4636 	 * If IO has not started we process the journal.  We can't mark the
4637 	 * worklist item as IOWAITING because we drop the lock while
4638 	 * processing the journal and the worklist entry may be freed after
4639 	 * this point.  The caller may call back in and re-issue the request.
4640 	 */
4641 	if ((wk->wk_state & INPROGRESS) == 0) {
4642 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4643 		if (waitfor != MNT_WAIT)
4644 			return (EBUSY);
4645 		return (0);
4646 	}
4647 	if (waitfor != MNT_WAIT)
4648 		return (EBUSY);
4649 	wait_worklist(wk, "jwait");
4650 	return (0);
4651 }
4652 
4653 /*
4654  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4655  * appropriate.  This is a convenience function to reduce duplicate code
4656  * for the setup and revert functions below.
4657  */
4658 static struct inodedep *
4659 inodedep_lookup_ip(ip)
4660 	struct inode *ip;
4661 {
4662 	struct inodedep *inodedep;
4663 
4664 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4665 	    ("inodedep_lookup_ip: bad delta"));
4666 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4667 	    &inodedep);
4668 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4669 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4670 
4671 	return (inodedep);
4672 }
4673 
4674 /*
4675  * Called prior to creating a new inode and linking it to a directory.  The
4676  * jaddref structure must already be allocated by softdep_setup_inomapdep
4677  * and it is discovered here so we can initialize the mode and update
4678  * nlinkdelta.
4679  */
4680 void
4681 softdep_setup_create(dp, ip)
4682 	struct inode *dp;
4683 	struct inode *ip;
4684 {
4685 	struct inodedep *inodedep;
4686 	struct jaddref *jaddref;
4687 	struct vnode *dvp;
4688 
4689 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4690 	    ("softdep_setup_create called on non-softdep filesystem"));
4691 	KASSERT(ip->i_nlink == 1,
4692 	    ("softdep_setup_create: Invalid link count."));
4693 	dvp = ITOV(dp);
4694 	ACQUIRE_LOCK(ITOUMP(dp));
4695 	inodedep = inodedep_lookup_ip(ip);
4696 	if (DOINGSUJ(dvp)) {
4697 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4698 		    inoreflst);
4699 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4700 		    ("softdep_setup_create: No addref structure present."));
4701 	}
4702 	softdep_prelink(dvp, NULL);
4703 	FREE_LOCK(ITOUMP(dp));
4704 }
4705 
4706 /*
4707  * Create a jaddref structure to track the addition of a DOTDOT link when
4708  * we are reparenting an inode as part of a rename.  This jaddref will be
4709  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4710  * non-journaling softdep.
4711  */
4712 void
4713 softdep_setup_dotdot_link(dp, ip)
4714 	struct inode *dp;
4715 	struct inode *ip;
4716 {
4717 	struct inodedep *inodedep;
4718 	struct jaddref *jaddref;
4719 	struct vnode *dvp;
4720 
4721 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4722 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4723 	dvp = ITOV(dp);
4724 	jaddref = NULL;
4725 	/*
4726 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4727 	 * is used as a normal link would be.
4728 	 */
4729 	if (DOINGSUJ(dvp))
4730 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4731 		    dp->i_effnlink - 1, dp->i_mode);
4732 	ACQUIRE_LOCK(ITOUMP(dp));
4733 	inodedep = inodedep_lookup_ip(dp);
4734 	if (jaddref)
4735 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4736 		    if_deps);
4737 	softdep_prelink(dvp, ITOV(ip));
4738 	FREE_LOCK(ITOUMP(dp));
4739 }
4740 
4741 /*
4742  * Create a jaddref structure to track a new link to an inode.  The directory
4743  * offset is not known until softdep_setup_directory_add or
4744  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4745  * softdep.
4746  */
4747 void
4748 softdep_setup_link(dp, ip)
4749 	struct inode *dp;
4750 	struct inode *ip;
4751 {
4752 	struct inodedep *inodedep;
4753 	struct jaddref *jaddref;
4754 	struct vnode *dvp;
4755 
4756 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4757 	    ("softdep_setup_link called on non-softdep filesystem"));
4758 	dvp = ITOV(dp);
4759 	jaddref = NULL;
4760 	if (DOINGSUJ(dvp))
4761 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4762 		    ip->i_mode);
4763 	ACQUIRE_LOCK(ITOUMP(dp));
4764 	inodedep = inodedep_lookup_ip(ip);
4765 	if (jaddref)
4766 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4767 		    if_deps);
4768 	softdep_prelink(dvp, ITOV(ip));
4769 	FREE_LOCK(ITOUMP(dp));
4770 }
4771 
4772 /*
4773  * Called to create the jaddref structures to track . and .. references as
4774  * well as lookup and further initialize the incomplete jaddref created
4775  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4776  * nlinkdelta for non-journaling softdep.
4777  */
4778 void
4779 softdep_setup_mkdir(dp, ip)
4780 	struct inode *dp;
4781 	struct inode *ip;
4782 {
4783 	struct inodedep *inodedep;
4784 	struct jaddref *dotdotaddref;
4785 	struct jaddref *dotaddref;
4786 	struct jaddref *jaddref;
4787 	struct vnode *dvp;
4788 
4789 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4790 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4791 	dvp = ITOV(dp);
4792 	dotaddref = dotdotaddref = NULL;
4793 	if (DOINGSUJ(dvp)) {
4794 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4795 		    ip->i_mode);
4796 		dotaddref->ja_state |= MKDIR_BODY;
4797 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4798 		    dp->i_effnlink - 1, dp->i_mode);
4799 		dotdotaddref->ja_state |= MKDIR_PARENT;
4800 	}
4801 	ACQUIRE_LOCK(ITOUMP(dp));
4802 	inodedep = inodedep_lookup_ip(ip);
4803 	if (DOINGSUJ(dvp)) {
4804 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4805 		    inoreflst);
4806 		KASSERT(jaddref != NULL,
4807 		    ("softdep_setup_mkdir: No addref structure present."));
4808 		KASSERT(jaddref->ja_parent == dp->i_number,
4809 		    ("softdep_setup_mkdir: bad parent %ju",
4810 		    (uintmax_t)jaddref->ja_parent));
4811 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4812 		    if_deps);
4813 	}
4814 	inodedep = inodedep_lookup_ip(dp);
4815 	if (DOINGSUJ(dvp))
4816 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4817 		    &dotdotaddref->ja_ref, if_deps);
4818 	softdep_prelink(ITOV(dp), NULL);
4819 	FREE_LOCK(ITOUMP(dp));
4820 }
4821 
4822 /*
4823  * Called to track nlinkdelta of the inode and parent directories prior to
4824  * unlinking a directory.
4825  */
4826 void
4827 softdep_setup_rmdir(dp, ip)
4828 	struct inode *dp;
4829 	struct inode *ip;
4830 {
4831 	struct vnode *dvp;
4832 
4833 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4834 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4835 	dvp = ITOV(dp);
4836 	ACQUIRE_LOCK(ITOUMP(dp));
4837 	(void) inodedep_lookup_ip(ip);
4838 	(void) inodedep_lookup_ip(dp);
4839 	softdep_prelink(dvp, ITOV(ip));
4840 	FREE_LOCK(ITOUMP(dp));
4841 }
4842 
4843 /*
4844  * Called to track nlinkdelta of the inode and parent directories prior to
4845  * unlink.
4846  */
4847 void
4848 softdep_setup_unlink(dp, ip)
4849 	struct inode *dp;
4850 	struct inode *ip;
4851 {
4852 	struct vnode *dvp;
4853 
4854 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4855 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4856 	dvp = ITOV(dp);
4857 	ACQUIRE_LOCK(ITOUMP(dp));
4858 	(void) inodedep_lookup_ip(ip);
4859 	(void) inodedep_lookup_ip(dp);
4860 	softdep_prelink(dvp, ITOV(ip));
4861 	FREE_LOCK(ITOUMP(dp));
4862 }
4863 
4864 /*
4865  * Called to release the journal structures created by a failed non-directory
4866  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4867  */
4868 void
4869 softdep_revert_create(dp, ip)
4870 	struct inode *dp;
4871 	struct inode *ip;
4872 {
4873 	struct inodedep *inodedep;
4874 	struct jaddref *jaddref;
4875 	struct vnode *dvp;
4876 
4877 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4878 	    ("softdep_revert_create called on non-softdep filesystem"));
4879 	dvp = ITOV(dp);
4880 	ACQUIRE_LOCK(ITOUMP(dp));
4881 	inodedep = inodedep_lookup_ip(ip);
4882 	if (DOINGSUJ(dvp)) {
4883 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4884 		    inoreflst);
4885 		KASSERT(jaddref->ja_parent == dp->i_number,
4886 		    ("softdep_revert_create: addref parent mismatch"));
4887 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4888 	}
4889 	FREE_LOCK(ITOUMP(dp));
4890 }
4891 
4892 /*
4893  * Called to release the journal structures created by a failed link
4894  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4895  */
4896 void
4897 softdep_revert_link(dp, ip)
4898 	struct inode *dp;
4899 	struct inode *ip;
4900 {
4901 	struct inodedep *inodedep;
4902 	struct jaddref *jaddref;
4903 	struct vnode *dvp;
4904 
4905 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4906 	    ("softdep_revert_link called on non-softdep filesystem"));
4907 	dvp = ITOV(dp);
4908 	ACQUIRE_LOCK(ITOUMP(dp));
4909 	inodedep = inodedep_lookup_ip(ip);
4910 	if (DOINGSUJ(dvp)) {
4911 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4912 		    inoreflst);
4913 		KASSERT(jaddref->ja_parent == dp->i_number,
4914 		    ("softdep_revert_link: addref parent mismatch"));
4915 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4916 	}
4917 	FREE_LOCK(ITOUMP(dp));
4918 }
4919 
4920 /*
4921  * Called to release the journal structures created by a failed mkdir
4922  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4923  */
4924 void
4925 softdep_revert_mkdir(dp, ip)
4926 	struct inode *dp;
4927 	struct inode *ip;
4928 {
4929 	struct inodedep *inodedep;
4930 	struct jaddref *jaddref;
4931 	struct jaddref *dotaddref;
4932 	struct vnode *dvp;
4933 
4934 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4935 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4936 	dvp = ITOV(dp);
4937 
4938 	ACQUIRE_LOCK(ITOUMP(dp));
4939 	inodedep = inodedep_lookup_ip(dp);
4940 	if (DOINGSUJ(dvp)) {
4941 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4942 		    inoreflst);
4943 		KASSERT(jaddref->ja_parent == ip->i_number,
4944 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4945 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4946 	}
4947 	inodedep = inodedep_lookup_ip(ip);
4948 	if (DOINGSUJ(dvp)) {
4949 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4950 		    inoreflst);
4951 		KASSERT(jaddref->ja_parent == dp->i_number,
4952 		    ("softdep_revert_mkdir: addref parent mismatch"));
4953 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4954 		    inoreflst, if_deps);
4955 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4956 		KASSERT(dotaddref->ja_parent == ip->i_number,
4957 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4958 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4959 	}
4960 	FREE_LOCK(ITOUMP(dp));
4961 }
4962 
4963 /*
4964  * Called to correct nlinkdelta after a failed rmdir.
4965  */
4966 void
4967 softdep_revert_rmdir(dp, ip)
4968 	struct inode *dp;
4969 	struct inode *ip;
4970 {
4971 
4972 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4973 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4974 	ACQUIRE_LOCK(ITOUMP(dp));
4975 	(void) inodedep_lookup_ip(ip);
4976 	(void) inodedep_lookup_ip(dp);
4977 	FREE_LOCK(ITOUMP(dp));
4978 }
4979 
4980 /*
4981  * Protecting the freemaps (or bitmaps).
4982  *
4983  * To eliminate the need to execute fsck before mounting a filesystem
4984  * after a power failure, one must (conservatively) guarantee that the
4985  * on-disk copy of the bitmaps never indicate that a live inode or block is
4986  * free.  So, when a block or inode is allocated, the bitmap should be
4987  * updated (on disk) before any new pointers.  When a block or inode is
4988  * freed, the bitmap should not be updated until all pointers have been
4989  * reset.  The latter dependency is handled by the delayed de-allocation
4990  * approach described below for block and inode de-allocation.  The former
4991  * dependency is handled by calling the following procedure when a block or
4992  * inode is allocated. When an inode is allocated an "inodedep" is created
4993  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4994  * Each "inodedep" is also inserted into the hash indexing structure so
4995  * that any additional link additions can be made dependent on the inode
4996  * allocation.
4997  *
4998  * The ufs filesystem maintains a number of free block counts (e.g., per
4999  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5000  * in addition to the bitmaps.  These counts are used to improve efficiency
5001  * during allocation and therefore must be consistent with the bitmaps.
5002  * There is no convenient way to guarantee post-crash consistency of these
5003  * counts with simple update ordering, for two main reasons: (1) The counts
5004  * and bitmaps for a single cylinder group block are not in the same disk
5005  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5006  * be written and the other not.  (2) Some of the counts are located in the
5007  * superblock rather than the cylinder group block. So, we focus our soft
5008  * updates implementation on protecting the bitmaps. When mounting a
5009  * filesystem, we recompute the auxiliary counts from the bitmaps.
5010  */
5011 
5012 /*
5013  * Called just after updating the cylinder group block to allocate an inode.
5014  */
5015 void
5016 softdep_setup_inomapdep(bp, ip, newinum, mode)
5017 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5018 	struct inode *ip;	/* inode related to allocation */
5019 	ino_t newinum;		/* new inode number being allocated */
5020 	int mode;
5021 {
5022 	struct inodedep *inodedep;
5023 	struct bmsafemap *bmsafemap;
5024 	struct jaddref *jaddref;
5025 	struct mount *mp;
5026 	struct fs *fs;
5027 
5028 	mp = ITOVFS(ip);
5029 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5030 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5031 	fs = VFSTOUFS(mp)->um_fs;
5032 	jaddref = NULL;
5033 
5034 	/*
5035 	 * Allocate the journal reference add structure so that the bitmap
5036 	 * can be dependent on it.
5037 	 */
5038 	if (MOUNTEDSUJ(mp)) {
5039 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5040 		jaddref->ja_state |= NEWBLOCK;
5041 	}
5042 
5043 	/*
5044 	 * Create a dependency for the newly allocated inode.
5045 	 * Panic if it already exists as something is seriously wrong.
5046 	 * Otherwise add it to the dependency list for the buffer holding
5047 	 * the cylinder group map from which it was allocated.
5048 	 *
5049 	 * We have to preallocate a bmsafemap entry in case it is needed
5050 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5051 	 * have to finish initializing it before we can FREE_LOCK().
5052 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5053 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5054 	 * creating the inodedep as it can be freed during the time
5055 	 * that we FREE_LOCK() while allocating the inodedep. We must
5056 	 * call workitem_alloc() before entering the locked section as
5057 	 * it also acquires the lock and we must avoid trying doing so
5058 	 * recursively.
5059 	 */
5060 	bmsafemap = malloc(sizeof(struct bmsafemap),
5061 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5062 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5063 	ACQUIRE_LOCK(ITOUMP(ip));
5064 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5065 		panic("softdep_setup_inomapdep: dependency %p for new"
5066 		    "inode already exists", inodedep);
5067 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5068 	if (jaddref) {
5069 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5070 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5071 		    if_deps);
5072 	} else {
5073 		inodedep->id_state |= ONDEPLIST;
5074 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5075 	}
5076 	inodedep->id_bmsafemap = bmsafemap;
5077 	inodedep->id_state &= ~DEPCOMPLETE;
5078 	FREE_LOCK(ITOUMP(ip));
5079 }
5080 
5081 /*
5082  * Called just after updating the cylinder group block to
5083  * allocate block or fragment.
5084  */
5085 void
5086 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5087 	struct buf *bp;		/* buffer for cylgroup block with block map */
5088 	struct mount *mp;	/* filesystem doing allocation */
5089 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5090 	int frags;		/* Number of fragments. */
5091 	int oldfrags;		/* Previous number of fragments for extend. */
5092 {
5093 	struct newblk *newblk;
5094 	struct bmsafemap *bmsafemap;
5095 	struct jnewblk *jnewblk;
5096 	struct ufsmount *ump;
5097 	struct fs *fs;
5098 
5099 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5100 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5101 	ump = VFSTOUFS(mp);
5102 	fs = ump->um_fs;
5103 	jnewblk = NULL;
5104 	/*
5105 	 * Create a dependency for the newly allocated block.
5106 	 * Add it to the dependency list for the buffer holding
5107 	 * the cylinder group map from which it was allocated.
5108 	 */
5109 	if (MOUNTEDSUJ(mp)) {
5110 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5111 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5112 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5113 		jnewblk->jn_state = ATTACHED;
5114 		jnewblk->jn_blkno = newblkno;
5115 		jnewblk->jn_frags = frags;
5116 		jnewblk->jn_oldfrags = oldfrags;
5117 #ifdef INVARIANTS
5118 		{
5119 			struct cg *cgp;
5120 			uint8_t *blksfree;
5121 			long bno;
5122 			int i;
5123 
5124 			cgp = (struct cg *)bp->b_data;
5125 			blksfree = cg_blksfree(cgp);
5126 			bno = dtogd(fs, jnewblk->jn_blkno);
5127 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5128 			    i++) {
5129 				if (isset(blksfree, bno + i))
5130 					panic("softdep_setup_blkmapdep: "
5131 					    "free fragment %d from %d-%d "
5132 					    "state 0x%X dep %p", i,
5133 					    jnewblk->jn_oldfrags,
5134 					    jnewblk->jn_frags,
5135 					    jnewblk->jn_state,
5136 					    jnewblk->jn_dep);
5137 			}
5138 		}
5139 #endif
5140 	}
5141 
5142 	CTR3(KTR_SUJ,
5143 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5144 	    newblkno, frags, oldfrags);
5145 	ACQUIRE_LOCK(ump);
5146 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5147 		panic("softdep_setup_blkmapdep: found block");
5148 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5149 	    dtog(fs, newblkno), NULL);
5150 	if (jnewblk) {
5151 		jnewblk->jn_dep = (struct worklist *)newblk;
5152 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5153 	} else {
5154 		newblk->nb_state |= ONDEPLIST;
5155 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5156 	}
5157 	newblk->nb_bmsafemap = bmsafemap;
5158 	newblk->nb_jnewblk = jnewblk;
5159 	FREE_LOCK(ump);
5160 }
5161 
5162 #define	BMSAFEMAP_HASH(ump, cg) \
5163       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5164 
5165 static int
5166 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5167 	struct bmsafemap_hashhead *bmsafemaphd;
5168 	int cg;
5169 	struct bmsafemap **bmsafemapp;
5170 {
5171 	struct bmsafemap *bmsafemap;
5172 
5173 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5174 		if (bmsafemap->sm_cg == cg)
5175 			break;
5176 	if (bmsafemap) {
5177 		*bmsafemapp = bmsafemap;
5178 		return (1);
5179 	}
5180 	*bmsafemapp = NULL;
5181 
5182 	return (0);
5183 }
5184 
5185 /*
5186  * Find the bmsafemap associated with a cylinder group buffer.
5187  * If none exists, create one. The buffer must be locked when
5188  * this routine is called and this routine must be called with
5189  * the softdep lock held. To avoid giving up the lock while
5190  * allocating a new bmsafemap, a preallocated bmsafemap may be
5191  * provided. If it is provided but not needed, it is freed.
5192  */
5193 static struct bmsafemap *
5194 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5195 	struct mount *mp;
5196 	struct buf *bp;
5197 	int cg;
5198 	struct bmsafemap *newbmsafemap;
5199 {
5200 	struct bmsafemap_hashhead *bmsafemaphd;
5201 	struct bmsafemap *bmsafemap, *collision;
5202 	struct worklist *wk;
5203 	struct ufsmount *ump;
5204 
5205 	ump = VFSTOUFS(mp);
5206 	LOCK_OWNED(ump);
5207 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5208 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5209 		if (wk->wk_type == D_BMSAFEMAP) {
5210 			if (newbmsafemap)
5211 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5212 			return (WK_BMSAFEMAP(wk));
5213 		}
5214 	}
5215 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5216 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5217 		if (newbmsafemap)
5218 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5219 		return (bmsafemap);
5220 	}
5221 	if (newbmsafemap) {
5222 		bmsafemap = newbmsafemap;
5223 	} else {
5224 		FREE_LOCK(ump);
5225 		bmsafemap = malloc(sizeof(struct bmsafemap),
5226 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5227 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5228 		ACQUIRE_LOCK(ump);
5229 	}
5230 	bmsafemap->sm_buf = bp;
5231 	LIST_INIT(&bmsafemap->sm_inodedephd);
5232 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5233 	LIST_INIT(&bmsafemap->sm_newblkhd);
5234 	LIST_INIT(&bmsafemap->sm_newblkwr);
5235 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5236 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5237 	LIST_INIT(&bmsafemap->sm_freehd);
5238 	LIST_INIT(&bmsafemap->sm_freewr);
5239 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5240 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5241 		return (collision);
5242 	}
5243 	bmsafemap->sm_cg = cg;
5244 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5245 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5246 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5247 	return (bmsafemap);
5248 }
5249 
5250 /*
5251  * Direct block allocation dependencies.
5252  *
5253  * When a new block is allocated, the corresponding disk locations must be
5254  * initialized (with zeros or new data) before the on-disk inode points to
5255  * them.  Also, the freemap from which the block was allocated must be
5256  * updated (on disk) before the inode's pointer. These two dependencies are
5257  * independent of each other and are needed for all file blocks and indirect
5258  * blocks that are pointed to directly by the inode.  Just before the
5259  * "in-core" version of the inode is updated with a newly allocated block
5260  * number, a procedure (below) is called to setup allocation dependency
5261  * structures.  These structures are removed when the corresponding
5262  * dependencies are satisfied or when the block allocation becomes obsolete
5263  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5264  * fragment that gets upgraded).  All of these cases are handled in
5265  * procedures described later.
5266  *
5267  * When a file extension causes a fragment to be upgraded, either to a larger
5268  * fragment or to a full block, the on-disk location may change (if the
5269  * previous fragment could not simply be extended). In this case, the old
5270  * fragment must be de-allocated, but not until after the inode's pointer has
5271  * been updated. In most cases, this is handled by later procedures, which
5272  * will construct a "freefrag" structure to be added to the workitem queue
5273  * when the inode update is complete (or obsolete).  The main exception to
5274  * this is when an allocation occurs while a pending allocation dependency
5275  * (for the same block pointer) remains.  This case is handled in the main
5276  * allocation dependency setup procedure by immediately freeing the
5277  * unreferenced fragments.
5278  */
5279 void
5280 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5281 	struct inode *ip;	/* inode to which block is being added */
5282 	ufs_lbn_t off;		/* block pointer within inode */
5283 	ufs2_daddr_t newblkno;	/* disk block number being added */
5284 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5285 	long newsize;		/* size of new block */
5286 	long oldsize;		/* size of new block */
5287 	struct buf *bp;		/* bp for allocated block */
5288 {
5289 	struct allocdirect *adp, *oldadp;
5290 	struct allocdirectlst *adphead;
5291 	struct freefrag *freefrag;
5292 	struct inodedep *inodedep;
5293 	struct pagedep *pagedep;
5294 	struct jnewblk *jnewblk;
5295 	struct newblk *newblk;
5296 	struct mount *mp;
5297 	ufs_lbn_t lbn;
5298 
5299 	lbn = bp->b_lblkno;
5300 	mp = ITOVFS(ip);
5301 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5302 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5303 	if (oldblkno && oldblkno != newblkno)
5304 		/*
5305 		 * The usual case is that a smaller fragment that
5306 		 * was just allocated has been replaced with a bigger
5307 		 * fragment or a full-size block. If it is marked as
5308 		 * B_DELWRI, the current contents have not been written
5309 		 * to disk. It is possible that the block was written
5310 		 * earlier, but very uncommon. If the block has never
5311 		 * been written, there is no need to send a BIO_DELETE
5312 		 * for it when it is freed. The gain from avoiding the
5313 		 * TRIMs for the common case of unwritten blocks far
5314 		 * exceeds the cost of the write amplification for the
5315 		 * uncommon case of failing to send a TRIM for a block
5316 		 * that had been written.
5317 		 */
5318 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5319 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5320 	else
5321 		freefrag = NULL;
5322 
5323 	CTR6(KTR_SUJ,
5324 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5325 	    "off %jd newsize %ld oldsize %d",
5326 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5327 	ACQUIRE_LOCK(ITOUMP(ip));
5328 	if (off >= UFS_NDADDR) {
5329 		if (lbn > 0)
5330 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5331 			    lbn, off);
5332 		/* allocating an indirect block */
5333 		if (oldblkno != 0)
5334 			panic("softdep_setup_allocdirect: non-zero indir");
5335 	} else {
5336 		if (off != lbn)
5337 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5338 			    lbn, off);
5339 		/*
5340 		 * Allocating a direct block.
5341 		 *
5342 		 * If we are allocating a directory block, then we must
5343 		 * allocate an associated pagedep to track additions and
5344 		 * deletions.
5345 		 */
5346 		if ((ip->i_mode & IFMT) == IFDIR)
5347 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5348 			    &pagedep);
5349 	}
5350 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5351 		panic("softdep_setup_allocdirect: lost block");
5352 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5353 	    ("softdep_setup_allocdirect: newblk already initialized"));
5354 	/*
5355 	 * Convert the newblk to an allocdirect.
5356 	 */
5357 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5358 	adp = (struct allocdirect *)newblk;
5359 	newblk->nb_freefrag = freefrag;
5360 	adp->ad_offset = off;
5361 	adp->ad_oldblkno = oldblkno;
5362 	adp->ad_newsize = newsize;
5363 	adp->ad_oldsize = oldsize;
5364 
5365 	/*
5366 	 * Finish initializing the journal.
5367 	 */
5368 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5369 		jnewblk->jn_ino = ip->i_number;
5370 		jnewblk->jn_lbn = lbn;
5371 		add_to_journal(&jnewblk->jn_list);
5372 	}
5373 	if (freefrag && freefrag->ff_jdep != NULL &&
5374 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5375 		add_to_journal(freefrag->ff_jdep);
5376 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5377 	adp->ad_inodedep = inodedep;
5378 
5379 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5380 	/*
5381 	 * The list of allocdirects must be kept in sorted and ascending
5382 	 * order so that the rollback routines can quickly determine the
5383 	 * first uncommitted block (the size of the file stored on disk
5384 	 * ends at the end of the lowest committed fragment, or if there
5385 	 * are no fragments, at the end of the highest committed block).
5386 	 * Since files generally grow, the typical case is that the new
5387 	 * block is to be added at the end of the list. We speed this
5388 	 * special case by checking against the last allocdirect in the
5389 	 * list before laboriously traversing the list looking for the
5390 	 * insertion point.
5391 	 */
5392 	adphead = &inodedep->id_newinoupdt;
5393 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5394 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5395 		/* insert at end of list */
5396 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5397 		if (oldadp != NULL && oldadp->ad_offset == off)
5398 			allocdirect_merge(adphead, adp, oldadp);
5399 		FREE_LOCK(ITOUMP(ip));
5400 		return;
5401 	}
5402 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5403 		if (oldadp->ad_offset >= off)
5404 			break;
5405 	}
5406 	if (oldadp == NULL)
5407 		panic("softdep_setup_allocdirect: lost entry");
5408 	/* insert in middle of list */
5409 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5410 	if (oldadp->ad_offset == off)
5411 		allocdirect_merge(adphead, adp, oldadp);
5412 
5413 	FREE_LOCK(ITOUMP(ip));
5414 }
5415 
5416 /*
5417  * Merge a newer and older journal record to be stored either in a
5418  * newblock or freefrag.  This handles aggregating journal records for
5419  * fragment allocation into a second record as well as replacing a
5420  * journal free with an aborted journal allocation.  A segment for the
5421  * oldest record will be placed on wkhd if it has been written.  If not
5422  * the segment for the newer record will suffice.
5423  */
5424 static struct worklist *
5425 jnewblk_merge(new, old, wkhd)
5426 	struct worklist *new;
5427 	struct worklist *old;
5428 	struct workhead *wkhd;
5429 {
5430 	struct jnewblk *njnewblk;
5431 	struct jnewblk *jnewblk;
5432 
5433 	/* Handle NULLs to simplify callers. */
5434 	if (new == NULL)
5435 		return (old);
5436 	if (old == NULL)
5437 		return (new);
5438 	/* Replace a jfreefrag with a jnewblk. */
5439 	if (new->wk_type == D_JFREEFRAG) {
5440 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5441 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5442 			    old, new);
5443 		cancel_jfreefrag(WK_JFREEFRAG(new));
5444 		return (old);
5445 	}
5446 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5447 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5448 		    old->wk_type, new->wk_type);
5449 	/*
5450 	 * Handle merging of two jnewblk records that describe
5451 	 * different sets of fragments in the same block.
5452 	 */
5453 	jnewblk = WK_JNEWBLK(old);
5454 	njnewblk = WK_JNEWBLK(new);
5455 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5456 		panic("jnewblk_merge: Merging disparate blocks.");
5457 	/*
5458 	 * The record may be rolled back in the cg.
5459 	 */
5460 	if (jnewblk->jn_state & UNDONE) {
5461 		jnewblk->jn_state &= ~UNDONE;
5462 		njnewblk->jn_state |= UNDONE;
5463 		njnewblk->jn_state &= ~ATTACHED;
5464 	}
5465 	/*
5466 	 * We modify the newer addref and free the older so that if neither
5467 	 * has been written the most up-to-date copy will be on disk.  If
5468 	 * both have been written but rolled back we only temporarily need
5469 	 * one of them to fix the bits when the cg write completes.
5470 	 */
5471 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5472 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5473 	cancel_jnewblk(jnewblk, wkhd);
5474 	WORKLIST_REMOVE(&jnewblk->jn_list);
5475 	free_jnewblk(jnewblk);
5476 	return (new);
5477 }
5478 
5479 /*
5480  * Replace an old allocdirect dependency with a newer one.
5481  * This routine must be called with splbio interrupts blocked.
5482  */
5483 static void
5484 allocdirect_merge(adphead, newadp, oldadp)
5485 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5486 	struct allocdirect *newadp;	/* allocdirect being added */
5487 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5488 {
5489 	struct worklist *wk;
5490 	struct freefrag *freefrag;
5491 
5492 	freefrag = NULL;
5493 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5494 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5495 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5496 	    newadp->ad_offset >= UFS_NDADDR)
5497 		panic("%s %jd != new %jd || old size %ld != new %ld",
5498 		    "allocdirect_merge: old blkno",
5499 		    (intmax_t)newadp->ad_oldblkno,
5500 		    (intmax_t)oldadp->ad_newblkno,
5501 		    newadp->ad_oldsize, oldadp->ad_newsize);
5502 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5503 	newadp->ad_oldsize = oldadp->ad_oldsize;
5504 	/*
5505 	 * If the old dependency had a fragment to free or had never
5506 	 * previously had a block allocated, then the new dependency
5507 	 * can immediately post its freefrag and adopt the old freefrag.
5508 	 * This action is done by swapping the freefrag dependencies.
5509 	 * The new dependency gains the old one's freefrag, and the
5510 	 * old one gets the new one and then immediately puts it on
5511 	 * the worklist when it is freed by free_newblk. It is
5512 	 * not possible to do this swap when the old dependency had a
5513 	 * non-zero size but no previous fragment to free. This condition
5514 	 * arises when the new block is an extension of the old block.
5515 	 * Here, the first part of the fragment allocated to the new
5516 	 * dependency is part of the block currently claimed on disk by
5517 	 * the old dependency, so cannot legitimately be freed until the
5518 	 * conditions for the new dependency are fulfilled.
5519 	 */
5520 	freefrag = newadp->ad_freefrag;
5521 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5522 		newadp->ad_freefrag = oldadp->ad_freefrag;
5523 		oldadp->ad_freefrag = freefrag;
5524 	}
5525 	/*
5526 	 * If we are tracking a new directory-block allocation,
5527 	 * move it from the old allocdirect to the new allocdirect.
5528 	 */
5529 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5530 		WORKLIST_REMOVE(wk);
5531 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5532 			panic("allocdirect_merge: extra newdirblk");
5533 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5534 	}
5535 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5536 	/*
5537 	 * We need to move any journal dependencies over to the freefrag
5538 	 * that releases this block if it exists.  Otherwise we are
5539 	 * extending an existing block and we'll wait until that is
5540 	 * complete to release the journal space and extend the
5541 	 * new journal to cover this old space as well.
5542 	 */
5543 	if (freefrag == NULL) {
5544 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5545 			panic("allocdirect_merge: %jd != %jd",
5546 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5547 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5548 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5549 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5550 		    &newadp->ad_block.nb_jwork);
5551 		oldadp->ad_block.nb_jnewblk = NULL;
5552 		cancel_newblk(&oldadp->ad_block, NULL,
5553 		    &newadp->ad_block.nb_jwork);
5554 	} else {
5555 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5556 		    &freefrag->ff_list, &freefrag->ff_jwork);
5557 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5558 		    &freefrag->ff_jwork);
5559 	}
5560 	free_newblk(&oldadp->ad_block);
5561 }
5562 
5563 /*
5564  * Allocate a jfreefrag structure to journal a single block free.
5565  */
5566 static struct jfreefrag *
5567 newjfreefrag(freefrag, ip, blkno, size, lbn)
5568 	struct freefrag *freefrag;
5569 	struct inode *ip;
5570 	ufs2_daddr_t blkno;
5571 	long size;
5572 	ufs_lbn_t lbn;
5573 {
5574 	struct jfreefrag *jfreefrag;
5575 	struct fs *fs;
5576 
5577 	fs = ITOFS(ip);
5578 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5579 	    M_SOFTDEP_FLAGS);
5580 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5581 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5582 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5583 	jfreefrag->fr_ino = ip->i_number;
5584 	jfreefrag->fr_lbn = lbn;
5585 	jfreefrag->fr_blkno = blkno;
5586 	jfreefrag->fr_frags = numfrags(fs, size);
5587 	jfreefrag->fr_freefrag = freefrag;
5588 
5589 	return (jfreefrag);
5590 }
5591 
5592 /*
5593  * Allocate a new freefrag structure.
5594  */
5595 static struct freefrag *
5596 newfreefrag(ip, blkno, size, lbn, key)
5597 	struct inode *ip;
5598 	ufs2_daddr_t blkno;
5599 	long size;
5600 	ufs_lbn_t lbn;
5601 	u_long key;
5602 {
5603 	struct freefrag *freefrag;
5604 	struct ufsmount *ump;
5605 	struct fs *fs;
5606 
5607 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5608 	    ip->i_number, blkno, size, lbn);
5609 	ump = ITOUMP(ip);
5610 	fs = ump->um_fs;
5611 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5612 		panic("newfreefrag: frag size");
5613 	freefrag = malloc(sizeof(struct freefrag),
5614 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5615 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5616 	freefrag->ff_state = ATTACHED;
5617 	LIST_INIT(&freefrag->ff_jwork);
5618 	freefrag->ff_inum = ip->i_number;
5619 	freefrag->ff_vtype = ITOV(ip)->v_type;
5620 	freefrag->ff_blkno = blkno;
5621 	freefrag->ff_fragsize = size;
5622 	freefrag->ff_key = key;
5623 
5624 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5625 		freefrag->ff_jdep = (struct worklist *)
5626 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5627 	} else {
5628 		freefrag->ff_state |= DEPCOMPLETE;
5629 		freefrag->ff_jdep = NULL;
5630 	}
5631 
5632 	return (freefrag);
5633 }
5634 
5635 /*
5636  * This workitem de-allocates fragments that were replaced during
5637  * file block allocation.
5638  */
5639 static void
5640 handle_workitem_freefrag(freefrag)
5641 	struct freefrag *freefrag;
5642 {
5643 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5644 	struct workhead wkhd;
5645 
5646 	CTR3(KTR_SUJ,
5647 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5648 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5649 	/*
5650 	 * It would be illegal to add new completion items to the
5651 	 * freefrag after it was schedule to be done so it must be
5652 	 * safe to modify the list head here.
5653 	 */
5654 	LIST_INIT(&wkhd);
5655 	ACQUIRE_LOCK(ump);
5656 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5657 	/*
5658 	 * If the journal has not been written we must cancel it here.
5659 	 */
5660 	if (freefrag->ff_jdep) {
5661 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5662 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5663 			    freefrag->ff_jdep->wk_type);
5664 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5665 	}
5666 	FREE_LOCK(ump);
5667 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5668 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5669 	   &wkhd, freefrag->ff_key);
5670 	ACQUIRE_LOCK(ump);
5671 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5672 	FREE_LOCK(ump);
5673 }
5674 
5675 /*
5676  * Set up a dependency structure for an external attributes data block.
5677  * This routine follows much of the structure of softdep_setup_allocdirect.
5678  * See the description of softdep_setup_allocdirect above for details.
5679  */
5680 void
5681 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5682 	struct inode *ip;
5683 	ufs_lbn_t off;
5684 	ufs2_daddr_t newblkno;
5685 	ufs2_daddr_t oldblkno;
5686 	long newsize;
5687 	long oldsize;
5688 	struct buf *bp;
5689 {
5690 	struct allocdirect *adp, *oldadp;
5691 	struct allocdirectlst *adphead;
5692 	struct freefrag *freefrag;
5693 	struct inodedep *inodedep;
5694 	struct jnewblk *jnewblk;
5695 	struct newblk *newblk;
5696 	struct mount *mp;
5697 	struct ufsmount *ump;
5698 	ufs_lbn_t lbn;
5699 
5700 	mp = ITOVFS(ip);
5701 	ump = VFSTOUFS(mp);
5702 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5703 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5704 	KASSERT(off < UFS_NXADDR,
5705 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5706 
5707 	lbn = bp->b_lblkno;
5708 	if (oldblkno && oldblkno != newblkno)
5709 		/*
5710 		 * The usual case is that a smaller fragment that
5711 		 * was just allocated has been replaced with a bigger
5712 		 * fragment or a full-size block. If it is marked as
5713 		 * B_DELWRI, the current contents have not been written
5714 		 * to disk. It is possible that the block was written
5715 		 * earlier, but very uncommon. If the block has never
5716 		 * been written, there is no need to send a BIO_DELETE
5717 		 * for it when it is freed. The gain from avoiding the
5718 		 * TRIMs for the common case of unwritten blocks far
5719 		 * exceeds the cost of the write amplification for the
5720 		 * uncommon case of failing to send a TRIM for a block
5721 		 * that had been written.
5722 		 */
5723 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5724 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5725 	else
5726 		freefrag = NULL;
5727 
5728 	ACQUIRE_LOCK(ump);
5729 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5730 		panic("softdep_setup_allocext: lost block");
5731 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5732 	    ("softdep_setup_allocext: newblk already initialized"));
5733 	/*
5734 	 * Convert the newblk to an allocdirect.
5735 	 */
5736 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5737 	adp = (struct allocdirect *)newblk;
5738 	newblk->nb_freefrag = freefrag;
5739 	adp->ad_offset = off;
5740 	adp->ad_oldblkno = oldblkno;
5741 	adp->ad_newsize = newsize;
5742 	adp->ad_oldsize = oldsize;
5743 	adp->ad_state |=  EXTDATA;
5744 
5745 	/*
5746 	 * Finish initializing the journal.
5747 	 */
5748 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5749 		jnewblk->jn_ino = ip->i_number;
5750 		jnewblk->jn_lbn = lbn;
5751 		add_to_journal(&jnewblk->jn_list);
5752 	}
5753 	if (freefrag && freefrag->ff_jdep != NULL &&
5754 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5755 		add_to_journal(freefrag->ff_jdep);
5756 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5757 	adp->ad_inodedep = inodedep;
5758 
5759 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5760 	/*
5761 	 * The list of allocdirects must be kept in sorted and ascending
5762 	 * order so that the rollback routines can quickly determine the
5763 	 * first uncommitted block (the size of the file stored on disk
5764 	 * ends at the end of the lowest committed fragment, or if there
5765 	 * are no fragments, at the end of the highest committed block).
5766 	 * Since files generally grow, the typical case is that the new
5767 	 * block is to be added at the end of the list. We speed this
5768 	 * special case by checking against the last allocdirect in the
5769 	 * list before laboriously traversing the list looking for the
5770 	 * insertion point.
5771 	 */
5772 	adphead = &inodedep->id_newextupdt;
5773 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5774 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5775 		/* insert at end of list */
5776 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5777 		if (oldadp != NULL && oldadp->ad_offset == off)
5778 			allocdirect_merge(adphead, adp, oldadp);
5779 		FREE_LOCK(ump);
5780 		return;
5781 	}
5782 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5783 		if (oldadp->ad_offset >= off)
5784 			break;
5785 	}
5786 	if (oldadp == NULL)
5787 		panic("softdep_setup_allocext: lost entry");
5788 	/* insert in middle of list */
5789 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5790 	if (oldadp->ad_offset == off)
5791 		allocdirect_merge(adphead, adp, oldadp);
5792 	FREE_LOCK(ump);
5793 }
5794 
5795 /*
5796  * Indirect block allocation dependencies.
5797  *
5798  * The same dependencies that exist for a direct block also exist when
5799  * a new block is allocated and pointed to by an entry in a block of
5800  * indirect pointers. The undo/redo states described above are also
5801  * used here. Because an indirect block contains many pointers that
5802  * may have dependencies, a second copy of the entire in-memory indirect
5803  * block is kept. The buffer cache copy is always completely up-to-date.
5804  * The second copy, which is used only as a source for disk writes,
5805  * contains only the safe pointers (i.e., those that have no remaining
5806  * update dependencies). The second copy is freed when all pointers
5807  * are safe. The cache is not allowed to replace indirect blocks with
5808  * pending update dependencies. If a buffer containing an indirect
5809  * block with dependencies is written, these routines will mark it
5810  * dirty again. It can only be successfully written once all the
5811  * dependencies are removed. The ffs_fsync routine in conjunction with
5812  * softdep_sync_metadata work together to get all the dependencies
5813  * removed so that a file can be successfully written to disk. Three
5814  * procedures are used when setting up indirect block pointer
5815  * dependencies. The division is necessary because of the organization
5816  * of the "balloc" routine and because of the distinction between file
5817  * pages and file metadata blocks.
5818  */
5819 
5820 /*
5821  * Allocate a new allocindir structure.
5822  */
5823 static struct allocindir *
5824 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5825 	struct inode *ip;	/* inode for file being extended */
5826 	int ptrno;		/* offset of pointer in indirect block */
5827 	ufs2_daddr_t newblkno;	/* disk block number being added */
5828 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5829 	ufs_lbn_t lbn;
5830 {
5831 	struct newblk *newblk;
5832 	struct allocindir *aip;
5833 	struct freefrag *freefrag;
5834 	struct jnewblk *jnewblk;
5835 
5836 	if (oldblkno)
5837 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
5838 		    SINGLETON_KEY);
5839 	else
5840 		freefrag = NULL;
5841 	ACQUIRE_LOCK(ITOUMP(ip));
5842 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5843 		panic("new_allocindir: lost block");
5844 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5845 	    ("newallocindir: newblk already initialized"));
5846 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5847 	newblk->nb_freefrag = freefrag;
5848 	aip = (struct allocindir *)newblk;
5849 	aip->ai_offset = ptrno;
5850 	aip->ai_oldblkno = oldblkno;
5851 	aip->ai_lbn = lbn;
5852 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5853 		jnewblk->jn_ino = ip->i_number;
5854 		jnewblk->jn_lbn = lbn;
5855 		add_to_journal(&jnewblk->jn_list);
5856 	}
5857 	if (freefrag && freefrag->ff_jdep != NULL &&
5858 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5859 		add_to_journal(freefrag->ff_jdep);
5860 	return (aip);
5861 }
5862 
5863 /*
5864  * Called just before setting an indirect block pointer
5865  * to a newly allocated file page.
5866  */
5867 void
5868 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5869 	struct inode *ip;	/* inode for file being extended */
5870 	ufs_lbn_t lbn;		/* allocated block number within file */
5871 	struct buf *bp;		/* buffer with indirect blk referencing page */
5872 	int ptrno;		/* offset of pointer in indirect block */
5873 	ufs2_daddr_t newblkno;	/* disk block number being added */
5874 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5875 	struct buf *nbp;	/* buffer holding allocated page */
5876 {
5877 	struct inodedep *inodedep;
5878 	struct freefrag *freefrag;
5879 	struct allocindir *aip;
5880 	struct pagedep *pagedep;
5881 	struct mount *mp;
5882 	struct ufsmount *ump;
5883 
5884 	mp = ITOVFS(ip);
5885 	ump = VFSTOUFS(mp);
5886 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5887 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5888 	KASSERT(lbn == nbp->b_lblkno,
5889 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5890 	    lbn, bp->b_lblkno));
5891 	CTR4(KTR_SUJ,
5892 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5893 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5894 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5895 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5896 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5897 	/*
5898 	 * If we are allocating a directory page, then we must
5899 	 * allocate an associated pagedep to track additions and
5900 	 * deletions.
5901 	 */
5902 	if ((ip->i_mode & IFMT) == IFDIR)
5903 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5904 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5905 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5906 	FREE_LOCK(ump);
5907 	if (freefrag)
5908 		handle_workitem_freefrag(freefrag);
5909 }
5910 
5911 /*
5912  * Called just before setting an indirect block pointer to a
5913  * newly allocated indirect block.
5914  */
5915 void
5916 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5917 	struct buf *nbp;	/* newly allocated indirect block */
5918 	struct inode *ip;	/* inode for file being extended */
5919 	struct buf *bp;		/* indirect block referencing allocated block */
5920 	int ptrno;		/* offset of pointer in indirect block */
5921 	ufs2_daddr_t newblkno;	/* disk block number being added */
5922 {
5923 	struct inodedep *inodedep;
5924 	struct allocindir *aip;
5925 	struct ufsmount *ump;
5926 	ufs_lbn_t lbn;
5927 
5928 	ump = ITOUMP(ip);
5929 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5930 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5931 	CTR3(KTR_SUJ,
5932 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5933 	    ip->i_number, newblkno, ptrno);
5934 	lbn = nbp->b_lblkno;
5935 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5936 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5937 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5938 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5939 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5940 		panic("softdep_setup_allocindir_meta: Block already existed");
5941 	FREE_LOCK(ump);
5942 }
5943 
5944 static void
5945 indirdep_complete(indirdep)
5946 	struct indirdep *indirdep;
5947 {
5948 	struct allocindir *aip;
5949 
5950 	LIST_REMOVE(indirdep, ir_next);
5951 	indirdep->ir_state |= DEPCOMPLETE;
5952 
5953 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5954 		LIST_REMOVE(aip, ai_next);
5955 		free_newblk(&aip->ai_block);
5956 	}
5957 	/*
5958 	 * If this indirdep is not attached to a buf it was simply waiting
5959 	 * on completion to clear completehd.  free_indirdep() asserts
5960 	 * that nothing is dangling.
5961 	 */
5962 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5963 		free_indirdep(indirdep);
5964 }
5965 
5966 static struct indirdep *
5967 indirdep_lookup(mp, ip, bp)
5968 	struct mount *mp;
5969 	struct inode *ip;
5970 	struct buf *bp;
5971 {
5972 	struct indirdep *indirdep, *newindirdep;
5973 	struct newblk *newblk;
5974 	struct ufsmount *ump;
5975 	struct worklist *wk;
5976 	struct fs *fs;
5977 	ufs2_daddr_t blkno;
5978 
5979 	ump = VFSTOUFS(mp);
5980 	LOCK_OWNED(ump);
5981 	indirdep = NULL;
5982 	newindirdep = NULL;
5983 	fs = ump->um_fs;
5984 	for (;;) {
5985 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5986 			if (wk->wk_type != D_INDIRDEP)
5987 				continue;
5988 			indirdep = WK_INDIRDEP(wk);
5989 			break;
5990 		}
5991 		/* Found on the buffer worklist, no new structure to free. */
5992 		if (indirdep != NULL && newindirdep == NULL)
5993 			return (indirdep);
5994 		if (indirdep != NULL && newindirdep != NULL)
5995 			panic("indirdep_lookup: simultaneous create");
5996 		/* None found on the buffer and a new structure is ready. */
5997 		if (indirdep == NULL && newindirdep != NULL)
5998 			break;
5999 		/* None found and no new structure available. */
6000 		FREE_LOCK(ump);
6001 		newindirdep = malloc(sizeof(struct indirdep),
6002 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6003 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6004 		newindirdep->ir_state = ATTACHED;
6005 		if (I_IS_UFS1(ip))
6006 			newindirdep->ir_state |= UFS1FMT;
6007 		TAILQ_INIT(&newindirdep->ir_trunc);
6008 		newindirdep->ir_saveddata = NULL;
6009 		LIST_INIT(&newindirdep->ir_deplisthd);
6010 		LIST_INIT(&newindirdep->ir_donehd);
6011 		LIST_INIT(&newindirdep->ir_writehd);
6012 		LIST_INIT(&newindirdep->ir_completehd);
6013 		if (bp->b_blkno == bp->b_lblkno) {
6014 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6015 			    NULL, NULL);
6016 			bp->b_blkno = blkno;
6017 		}
6018 		newindirdep->ir_freeblks = NULL;
6019 		newindirdep->ir_savebp =
6020 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6021 		newindirdep->ir_bp = bp;
6022 		BUF_KERNPROC(newindirdep->ir_savebp);
6023 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6024 		ACQUIRE_LOCK(ump);
6025 	}
6026 	indirdep = newindirdep;
6027 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6028 	/*
6029 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6030 	 * that we don't free dependencies until the pointers are valid.
6031 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6032 	 * than using the hash.
6033 	 */
6034 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6035 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6036 	else
6037 		indirdep->ir_state |= DEPCOMPLETE;
6038 	return (indirdep);
6039 }
6040 
6041 /*
6042  * Called to finish the allocation of the "aip" allocated
6043  * by one of the two routines above.
6044  */
6045 static struct freefrag *
6046 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6047 	struct buf *bp;		/* in-memory copy of the indirect block */
6048 	struct inode *ip;	/* inode for file being extended */
6049 	struct inodedep *inodedep; /* Inodedep for ip */
6050 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6051 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6052 {
6053 	struct fs *fs;
6054 	struct indirdep *indirdep;
6055 	struct allocindir *oldaip;
6056 	struct freefrag *freefrag;
6057 	struct mount *mp;
6058 	struct ufsmount *ump;
6059 
6060 	mp = ITOVFS(ip);
6061 	ump = VFSTOUFS(mp);
6062 	LOCK_OWNED(ump);
6063 	fs = ump->um_fs;
6064 	if (bp->b_lblkno >= 0)
6065 		panic("setup_allocindir_phase2: not indir blk");
6066 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6067 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6068 	indirdep = indirdep_lookup(mp, ip, bp);
6069 	KASSERT(indirdep->ir_savebp != NULL,
6070 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6071 	aip->ai_indirdep = indirdep;
6072 	/*
6073 	 * Check for an unwritten dependency for this indirect offset.  If
6074 	 * there is, merge the old dependency into the new one.  This happens
6075 	 * as a result of reallocblk only.
6076 	 */
6077 	freefrag = NULL;
6078 	if (aip->ai_oldblkno != 0) {
6079 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6080 			if (oldaip->ai_offset == aip->ai_offset) {
6081 				freefrag = allocindir_merge(aip, oldaip);
6082 				goto done;
6083 			}
6084 		}
6085 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6086 			if (oldaip->ai_offset == aip->ai_offset) {
6087 				freefrag = allocindir_merge(aip, oldaip);
6088 				goto done;
6089 			}
6090 		}
6091 	}
6092 done:
6093 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6094 	return (freefrag);
6095 }
6096 
6097 /*
6098  * Merge two allocindirs which refer to the same block.  Move newblock
6099  * dependencies and setup the freefrags appropriately.
6100  */
6101 static struct freefrag *
6102 allocindir_merge(aip, oldaip)
6103 	struct allocindir *aip;
6104 	struct allocindir *oldaip;
6105 {
6106 	struct freefrag *freefrag;
6107 	struct worklist *wk;
6108 
6109 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6110 		panic("allocindir_merge: blkno");
6111 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6112 	freefrag = aip->ai_freefrag;
6113 	aip->ai_freefrag = oldaip->ai_freefrag;
6114 	oldaip->ai_freefrag = NULL;
6115 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6116 	/*
6117 	 * If we are tracking a new directory-block allocation,
6118 	 * move it from the old allocindir to the new allocindir.
6119 	 */
6120 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6121 		WORKLIST_REMOVE(wk);
6122 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6123 			panic("allocindir_merge: extra newdirblk");
6124 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6125 	}
6126 	/*
6127 	 * We can skip journaling for this freefrag and just complete
6128 	 * any pending journal work for the allocindir that is being
6129 	 * removed after the freefrag completes.
6130 	 */
6131 	if (freefrag->ff_jdep)
6132 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6133 	LIST_REMOVE(oldaip, ai_next);
6134 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6135 	    &freefrag->ff_list, &freefrag->ff_jwork);
6136 	free_newblk(&oldaip->ai_block);
6137 
6138 	return (freefrag);
6139 }
6140 
6141 static inline void
6142 setup_freedirect(freeblks, ip, i, needj)
6143 	struct freeblks *freeblks;
6144 	struct inode *ip;
6145 	int i;
6146 	int needj;
6147 {
6148 	struct ufsmount *ump;
6149 	ufs2_daddr_t blkno;
6150 	int frags;
6151 
6152 	blkno = DIP(ip, i_db[i]);
6153 	if (blkno == 0)
6154 		return;
6155 	DIP_SET(ip, i_db[i], 0);
6156 	ump = ITOUMP(ip);
6157 	frags = sblksize(ump->um_fs, ip->i_size, i);
6158 	frags = numfrags(ump->um_fs, frags);
6159 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6160 }
6161 
6162 static inline void
6163 setup_freeext(freeblks, ip, i, needj)
6164 	struct freeblks *freeblks;
6165 	struct inode *ip;
6166 	int i;
6167 	int needj;
6168 {
6169 	struct ufsmount *ump;
6170 	ufs2_daddr_t blkno;
6171 	int frags;
6172 
6173 	blkno = ip->i_din2->di_extb[i];
6174 	if (blkno == 0)
6175 		return;
6176 	ip->i_din2->di_extb[i] = 0;
6177 	ump = ITOUMP(ip);
6178 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6179 	frags = numfrags(ump->um_fs, frags);
6180 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6181 }
6182 
6183 static inline void
6184 setup_freeindir(freeblks, ip, i, lbn, needj)
6185 	struct freeblks *freeblks;
6186 	struct inode *ip;
6187 	int i;
6188 	ufs_lbn_t lbn;
6189 	int needj;
6190 {
6191 	struct ufsmount *ump;
6192 	ufs2_daddr_t blkno;
6193 
6194 	blkno = DIP(ip, i_ib[i]);
6195 	if (blkno == 0)
6196 		return;
6197 	DIP_SET(ip, i_ib[i], 0);
6198 	ump = ITOUMP(ip);
6199 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6200 	    0, needj);
6201 }
6202 
6203 static inline struct freeblks *
6204 newfreeblks(mp, ip)
6205 	struct mount *mp;
6206 	struct inode *ip;
6207 {
6208 	struct freeblks *freeblks;
6209 
6210 	freeblks = malloc(sizeof(struct freeblks),
6211 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6212 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6213 	LIST_INIT(&freeblks->fb_jblkdephd);
6214 	LIST_INIT(&freeblks->fb_jwork);
6215 	freeblks->fb_ref = 0;
6216 	freeblks->fb_cgwait = 0;
6217 	freeblks->fb_state = ATTACHED;
6218 	freeblks->fb_uid = ip->i_uid;
6219 	freeblks->fb_inum = ip->i_number;
6220 	freeblks->fb_vtype = ITOV(ip)->v_type;
6221 	freeblks->fb_modrev = DIP(ip, i_modrev);
6222 	freeblks->fb_devvp = ITODEVVP(ip);
6223 	freeblks->fb_chkcnt = 0;
6224 	freeblks->fb_len = 0;
6225 
6226 	return (freeblks);
6227 }
6228 
6229 static void
6230 trunc_indirdep(indirdep, freeblks, bp, off)
6231 	struct indirdep *indirdep;
6232 	struct freeblks *freeblks;
6233 	struct buf *bp;
6234 	int off;
6235 {
6236 	struct allocindir *aip, *aipn;
6237 
6238 	/*
6239 	 * The first set of allocindirs won't be in savedbp.
6240 	 */
6241 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6242 		if (aip->ai_offset > off)
6243 			cancel_allocindir(aip, bp, freeblks, 1);
6244 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6245 		if (aip->ai_offset > off)
6246 			cancel_allocindir(aip, bp, freeblks, 1);
6247 	/*
6248 	 * These will exist in savedbp.
6249 	 */
6250 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6251 		if (aip->ai_offset > off)
6252 			cancel_allocindir(aip, NULL, freeblks, 0);
6253 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6254 		if (aip->ai_offset > off)
6255 			cancel_allocindir(aip, NULL, freeblks, 0);
6256 }
6257 
6258 /*
6259  * Follow the chain of indirects down to lastlbn creating a freework
6260  * structure for each.  This will be used to start indir_trunc() at
6261  * the right offset and create the journal records for the parrtial
6262  * truncation.  A second step will handle the truncated dependencies.
6263  */
6264 static int
6265 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6266 	struct freeblks *freeblks;
6267 	struct inode *ip;
6268 	ufs_lbn_t lbn;
6269 	ufs_lbn_t lastlbn;
6270 	ufs2_daddr_t blkno;
6271 {
6272 	struct indirdep *indirdep;
6273 	struct indirdep *indirn;
6274 	struct freework *freework;
6275 	struct newblk *newblk;
6276 	struct mount *mp;
6277 	struct ufsmount *ump;
6278 	struct buf *bp;
6279 	uint8_t *start;
6280 	uint8_t *end;
6281 	ufs_lbn_t lbnadd;
6282 	int level;
6283 	int error;
6284 	int off;
6285 
6286 
6287 	freework = NULL;
6288 	if (blkno == 0)
6289 		return (0);
6290 	mp = freeblks->fb_list.wk_mp;
6291 	ump = VFSTOUFS(mp);
6292 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6293 	if ((bp->b_flags & B_CACHE) == 0) {
6294 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6295 		bp->b_iocmd = BIO_READ;
6296 		bp->b_flags &= ~B_INVAL;
6297 		bp->b_ioflags &= ~BIO_ERROR;
6298 		vfs_busy_pages(bp, 0);
6299 		bp->b_iooffset = dbtob(bp->b_blkno);
6300 		bstrategy(bp);
6301 #ifdef RACCT
6302 		if (racct_enable) {
6303 			PROC_LOCK(curproc);
6304 			racct_add_buf(curproc, bp, 0);
6305 			PROC_UNLOCK(curproc);
6306 		}
6307 #endif /* RACCT */
6308 		curthread->td_ru.ru_inblock++;
6309 		error = bufwait(bp);
6310 		if (error) {
6311 			brelse(bp);
6312 			return (error);
6313 		}
6314 	}
6315 	level = lbn_level(lbn);
6316 	lbnadd = lbn_offset(ump->um_fs, level);
6317 	/*
6318 	 * Compute the offset of the last block we want to keep.  Store
6319 	 * in the freework the first block we want to completely free.
6320 	 */
6321 	off = (lastlbn - -(lbn + level)) / lbnadd;
6322 	if (off + 1 == NINDIR(ump->um_fs))
6323 		goto nowork;
6324 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6325 	/*
6326 	 * Link the freework into the indirdep.  This will prevent any new
6327 	 * allocations from proceeding until we are finished with the
6328 	 * truncate and the block is written.
6329 	 */
6330 	ACQUIRE_LOCK(ump);
6331 	indirdep = indirdep_lookup(mp, ip, bp);
6332 	if (indirdep->ir_freeblks)
6333 		panic("setup_trunc_indir: indirdep already truncated.");
6334 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6335 	freework->fw_indir = indirdep;
6336 	/*
6337 	 * Cancel any allocindirs that will not make it to disk.
6338 	 * We have to do this for all copies of the indirdep that
6339 	 * live on this newblk.
6340 	 */
6341 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6342 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6343 		    &newblk) == 0)
6344 			panic("setup_trunc_indir: lost block");
6345 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6346 			trunc_indirdep(indirn, freeblks, bp, off);
6347 	} else
6348 		trunc_indirdep(indirdep, freeblks, bp, off);
6349 	FREE_LOCK(ump);
6350 	/*
6351 	 * Creation is protected by the buf lock. The saveddata is only
6352 	 * needed if a full truncation follows a partial truncation but it
6353 	 * is difficult to allocate in that case so we fetch it anyway.
6354 	 */
6355 	if (indirdep->ir_saveddata == NULL)
6356 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6357 		    M_SOFTDEP_FLAGS);
6358 nowork:
6359 	/* Fetch the blkno of the child and the zero start offset. */
6360 	if (I_IS_UFS1(ip)) {
6361 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6362 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6363 	} else {
6364 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6365 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6366 	}
6367 	if (freework) {
6368 		/* Zero the truncated pointers. */
6369 		end = bp->b_data + bp->b_bcount;
6370 		bzero(start, end - start);
6371 		bdwrite(bp);
6372 	} else
6373 		bqrelse(bp);
6374 	if (level == 0)
6375 		return (0);
6376 	lbn++; /* adjust level */
6377 	lbn -= (off * lbnadd);
6378 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6379 }
6380 
6381 /*
6382  * Complete the partial truncation of an indirect block setup by
6383  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6384  * copy and writes them to disk before the freeblks is allowed to complete.
6385  */
6386 static void
6387 complete_trunc_indir(freework)
6388 	struct freework *freework;
6389 {
6390 	struct freework *fwn;
6391 	struct indirdep *indirdep;
6392 	struct ufsmount *ump;
6393 	struct buf *bp;
6394 	uintptr_t start;
6395 	int count;
6396 
6397 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6398 	LOCK_OWNED(ump);
6399 	indirdep = freework->fw_indir;
6400 	for (;;) {
6401 		bp = indirdep->ir_bp;
6402 		/* See if the block was discarded. */
6403 		if (bp == NULL)
6404 			break;
6405 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6406 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6407 			break;
6408 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6409 		    LOCK_PTR(ump)) == 0)
6410 			BUF_UNLOCK(bp);
6411 		ACQUIRE_LOCK(ump);
6412 	}
6413 	freework->fw_state |= DEPCOMPLETE;
6414 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6415 	/*
6416 	 * Zero the pointers in the saved copy.
6417 	 */
6418 	if (indirdep->ir_state & UFS1FMT)
6419 		start = sizeof(ufs1_daddr_t);
6420 	else
6421 		start = sizeof(ufs2_daddr_t);
6422 	start *= freework->fw_start;
6423 	count = indirdep->ir_savebp->b_bcount - start;
6424 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6425 	bzero((char *)start, count);
6426 	/*
6427 	 * We need to start the next truncation in the list if it has not
6428 	 * been started yet.
6429 	 */
6430 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6431 	if (fwn != NULL) {
6432 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6433 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6434 		if ((fwn->fw_state & ONWORKLIST) == 0)
6435 			freework_enqueue(fwn);
6436 	}
6437 	/*
6438 	 * If bp is NULL the block was fully truncated, restore
6439 	 * the saved block list otherwise free it if it is no
6440 	 * longer needed.
6441 	 */
6442 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6443 		if (bp == NULL)
6444 			bcopy(indirdep->ir_saveddata,
6445 			    indirdep->ir_savebp->b_data,
6446 			    indirdep->ir_savebp->b_bcount);
6447 		free(indirdep->ir_saveddata, M_INDIRDEP);
6448 		indirdep->ir_saveddata = NULL;
6449 	}
6450 	/*
6451 	 * When bp is NULL there is a full truncation pending.  We
6452 	 * must wait for this full truncation to be journaled before
6453 	 * we can release this freework because the disk pointers will
6454 	 * never be written as zero.
6455 	 */
6456 	if (bp == NULL)  {
6457 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6458 			handle_written_freework(freework);
6459 		else
6460 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6461 			   &freework->fw_list);
6462 	} else {
6463 		/* Complete when the real copy is written. */
6464 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6465 		BUF_UNLOCK(bp);
6466 	}
6467 }
6468 
6469 /*
6470  * Calculate the number of blocks we are going to release where datablocks
6471  * is the current total and length is the new file size.
6472  */
6473 static ufs2_daddr_t
6474 blkcount(fs, datablocks, length)
6475 	struct fs *fs;
6476 	ufs2_daddr_t datablocks;
6477 	off_t length;
6478 {
6479 	off_t totblks, numblks;
6480 
6481 	totblks = 0;
6482 	numblks = howmany(length, fs->fs_bsize);
6483 	if (numblks <= UFS_NDADDR) {
6484 		totblks = howmany(length, fs->fs_fsize);
6485 		goto out;
6486 	}
6487         totblks = blkstofrags(fs, numblks);
6488 	numblks -= UFS_NDADDR;
6489 	/*
6490 	 * Count all single, then double, then triple indirects required.
6491 	 * Subtracting one indirects worth of blocks for each pass
6492 	 * acknowledges one of each pointed to by the inode.
6493 	 */
6494 	for (;;) {
6495 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6496 		numblks -= NINDIR(fs);
6497 		if (numblks <= 0)
6498 			break;
6499 		numblks = howmany(numblks, NINDIR(fs));
6500 	}
6501 out:
6502 	totblks = fsbtodb(fs, totblks);
6503 	/*
6504 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6505 	 * references.  We will correct it later in handle_complete_freeblks()
6506 	 * when we know the real count.
6507 	 */
6508 	if (totblks > datablocks)
6509 		return (0);
6510 	return (datablocks - totblks);
6511 }
6512 
6513 /*
6514  * Handle freeblocks for journaled softupdate filesystems.
6515  *
6516  * Contrary to normal softupdates, we must preserve the block pointers in
6517  * indirects until their subordinates are free.  This is to avoid journaling
6518  * every block that is freed which may consume more space than the journal
6519  * itself.  The recovery program will see the free block journals at the
6520  * base of the truncated area and traverse them to reclaim space.  The
6521  * pointers in the inode may be cleared immediately after the journal
6522  * records are written because each direct and indirect pointer in the
6523  * inode is recorded in a journal.  This permits full truncation to proceed
6524  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6525  *
6526  * The algorithm is as follows:
6527  * 1) Traverse the in-memory state and create journal entries to release
6528  *    the relevant blocks and full indirect trees.
6529  * 2) Traverse the indirect block chain adding partial truncation freework
6530  *    records to indirects in the path to lastlbn.  The freework will
6531  *    prevent new allocation dependencies from being satisfied in this
6532  *    indirect until the truncation completes.
6533  * 3) Read and lock the inode block, performing an update with the new size
6534  *    and pointers.  This prevents truncated data from becoming valid on
6535  *    disk through step 4.
6536  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6537  *    eliminate journal work for those records that do not require it.
6538  * 5) Schedule the journal records to be written followed by the inode block.
6539  * 6) Allocate any necessary frags for the end of file.
6540  * 7) Zero any partially truncated blocks.
6541  *
6542  * From this truncation proceeds asynchronously using the freework and
6543  * indir_trunc machinery.  The file will not be extended again into a
6544  * partially truncated indirect block until all work is completed but
6545  * the normal dependency mechanism ensures that it is rolled back/forward
6546  * as appropriate.  Further truncation may occur without delay and is
6547  * serialized in indir_trunc().
6548  */
6549 void
6550 softdep_journal_freeblocks(ip, cred, length, flags)
6551 	struct inode *ip;	/* The inode whose length is to be reduced */
6552 	struct ucred *cred;
6553 	off_t length;		/* The new length for the file */
6554 	int flags;		/* IO_EXT and/or IO_NORMAL */
6555 {
6556 	struct freeblks *freeblks, *fbn;
6557 	struct worklist *wk, *wkn;
6558 	struct inodedep *inodedep;
6559 	struct jblkdep *jblkdep;
6560 	struct allocdirect *adp, *adpn;
6561 	struct ufsmount *ump;
6562 	struct fs *fs;
6563 	struct buf *bp;
6564 	struct vnode *vp;
6565 	struct mount *mp;
6566 	ufs2_daddr_t extblocks, datablocks;
6567 	ufs_lbn_t tmpval, lbn, lastlbn;
6568 	int frags, lastoff, iboff, allocblock, needj, error, i;
6569 
6570 	ump = ITOUMP(ip);
6571 	mp = UFSTOVFS(ump);
6572 	fs = ump->um_fs;
6573 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6574 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6575 	vp = ITOV(ip);
6576 	needj = 1;
6577 	iboff = -1;
6578 	allocblock = 0;
6579 	extblocks = 0;
6580 	datablocks = 0;
6581 	frags = 0;
6582 	freeblks = newfreeblks(mp, ip);
6583 	ACQUIRE_LOCK(ump);
6584 	/*
6585 	 * If we're truncating a removed file that will never be written
6586 	 * we don't need to journal the block frees.  The canceled journals
6587 	 * for the allocations will suffice.
6588 	 */
6589 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6590 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6591 	    length == 0)
6592 		needj = 0;
6593 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6594 	    ip->i_number, length, needj);
6595 	FREE_LOCK(ump);
6596 	/*
6597 	 * Calculate the lbn that we are truncating to.  This results in -1
6598 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6599 	 * to keep, not the first lbn we want to truncate.
6600 	 */
6601 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6602 	lastoff = blkoff(fs, length);
6603 	/*
6604 	 * Compute frags we are keeping in lastlbn.  0 means all.
6605 	 */
6606 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6607 		frags = fragroundup(fs, lastoff);
6608 		/* adp offset of last valid allocdirect. */
6609 		iboff = lastlbn;
6610 	} else if (lastlbn > 0)
6611 		iboff = UFS_NDADDR;
6612 	if (fs->fs_magic == FS_UFS2_MAGIC)
6613 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6614 	/*
6615 	 * Handle normal data blocks and indirects.  This section saves
6616 	 * values used after the inode update to complete frag and indirect
6617 	 * truncation.
6618 	 */
6619 	if ((flags & IO_NORMAL) != 0) {
6620 		/*
6621 		 * Handle truncation of whole direct and indirect blocks.
6622 		 */
6623 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6624 			setup_freedirect(freeblks, ip, i, needj);
6625 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6626 		    i < UFS_NIADDR;
6627 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6628 			/* Release a whole indirect tree. */
6629 			if (lbn > lastlbn) {
6630 				setup_freeindir(freeblks, ip, i, -lbn -i,
6631 				    needj);
6632 				continue;
6633 			}
6634 			iboff = i + UFS_NDADDR;
6635 			/*
6636 			 * Traverse partially truncated indirect tree.
6637 			 */
6638 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6639 				setup_trunc_indir(freeblks, ip, -lbn - i,
6640 				    lastlbn, DIP(ip, i_ib[i]));
6641 		}
6642 		/*
6643 		 * Handle partial truncation to a frag boundary.
6644 		 */
6645 		if (frags) {
6646 			ufs2_daddr_t blkno;
6647 			long oldfrags;
6648 
6649 			oldfrags = blksize(fs, ip, lastlbn);
6650 			blkno = DIP(ip, i_db[lastlbn]);
6651 			if (blkno && oldfrags != frags) {
6652 				oldfrags -= frags;
6653 				oldfrags = numfrags(fs, oldfrags);
6654 				blkno += numfrags(fs, frags);
6655 				newfreework(ump, freeblks, NULL, lastlbn,
6656 				    blkno, oldfrags, 0, needj);
6657 				if (needj)
6658 					adjust_newfreework(freeblks,
6659 					    numfrags(fs, frags));
6660 			} else if (blkno == 0)
6661 				allocblock = 1;
6662 		}
6663 		/*
6664 		 * Add a journal record for partial truncate if we are
6665 		 * handling indirect blocks.  Non-indirects need no extra
6666 		 * journaling.
6667 		 */
6668 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6669 			ip->i_flag |= IN_TRUNCATED;
6670 			newjtrunc(freeblks, length, 0);
6671 		}
6672 		ip->i_size = length;
6673 		DIP_SET(ip, i_size, ip->i_size);
6674 		datablocks = DIP(ip, i_blocks) - extblocks;
6675 		if (length != 0)
6676 			datablocks = blkcount(fs, datablocks, length);
6677 		freeblks->fb_len = length;
6678 	}
6679 	if ((flags & IO_EXT) != 0) {
6680 		for (i = 0; i < UFS_NXADDR; i++)
6681 			setup_freeext(freeblks, ip, i, needj);
6682 		ip->i_din2->di_extsize = 0;
6683 		datablocks += extblocks;
6684 	}
6685 #ifdef QUOTA
6686 	/* Reference the quotas in case the block count is wrong in the end. */
6687 	quotaref(vp, freeblks->fb_quota);
6688 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6689 #endif
6690 	freeblks->fb_chkcnt = -datablocks;
6691 	UFS_LOCK(ump);
6692 	fs->fs_pendingblocks += datablocks;
6693 	UFS_UNLOCK(ump);
6694 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6695 	/*
6696 	 * Handle truncation of incomplete alloc direct dependencies.  We
6697 	 * hold the inode block locked to prevent incomplete dependencies
6698 	 * from reaching the disk while we are eliminating those that
6699 	 * have been truncated.  This is a partially inlined ffs_update().
6700 	 */
6701 	ufs_itimes(vp);
6702 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6703 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6704 	    (int)fs->fs_bsize, cred, &bp);
6705 	if (error) {
6706 		brelse(bp);
6707 		softdep_error("softdep_journal_freeblocks", error);
6708 		return;
6709 	}
6710 	if (bp->b_bufsize == fs->fs_bsize)
6711 		bp->b_flags |= B_CLUSTEROK;
6712 	softdep_update_inodeblock(ip, bp, 0);
6713 	if (ump->um_fstype == UFS1) {
6714 		*((struct ufs1_dinode *)bp->b_data +
6715 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6716 	} else {
6717 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6718 		*((struct ufs2_dinode *)bp->b_data +
6719 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6720 	}
6721 	ACQUIRE_LOCK(ump);
6722 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6723 	if ((inodedep->id_state & IOSTARTED) != 0)
6724 		panic("softdep_setup_freeblocks: inode busy");
6725 	/*
6726 	 * Add the freeblks structure to the list of operations that
6727 	 * must await the zero'ed inode being written to disk. If we
6728 	 * still have a bitmap dependency (needj), then the inode
6729 	 * has never been written to disk, so we can process the
6730 	 * freeblks below once we have deleted the dependencies.
6731 	 */
6732 	if (needj)
6733 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6734 	else
6735 		freeblks->fb_state |= COMPLETE;
6736 	if ((flags & IO_NORMAL) != 0) {
6737 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6738 			if (adp->ad_offset > iboff)
6739 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6740 				    freeblks);
6741 			/*
6742 			 * Truncate the allocdirect.  We could eliminate
6743 			 * or modify journal records as well.
6744 			 */
6745 			else if (adp->ad_offset == iboff && frags)
6746 				adp->ad_newsize = frags;
6747 		}
6748 	}
6749 	if ((flags & IO_EXT) != 0)
6750 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6751 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6752 			    freeblks);
6753 	/*
6754 	 * Scan the bufwait list for newblock dependencies that will never
6755 	 * make it to disk.
6756 	 */
6757 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6758 		if (wk->wk_type != D_ALLOCDIRECT)
6759 			continue;
6760 		adp = WK_ALLOCDIRECT(wk);
6761 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6762 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6763 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6764 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6765 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6766 		}
6767 	}
6768 	/*
6769 	 * Add journal work.
6770 	 */
6771 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6772 		add_to_journal(&jblkdep->jb_list);
6773 	FREE_LOCK(ump);
6774 	bdwrite(bp);
6775 	/*
6776 	 * Truncate dependency structures beyond length.
6777 	 */
6778 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6779 	/*
6780 	 * This is only set when we need to allocate a fragment because
6781 	 * none existed at the end of a frag-sized file.  It handles only
6782 	 * allocating a new, zero filled block.
6783 	 */
6784 	if (allocblock) {
6785 		ip->i_size = length - lastoff;
6786 		DIP_SET(ip, i_size, ip->i_size);
6787 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6788 		if (error != 0) {
6789 			softdep_error("softdep_journal_freeblks", error);
6790 			return;
6791 		}
6792 		ip->i_size = length;
6793 		DIP_SET(ip, i_size, length);
6794 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6795 		allocbuf(bp, frags);
6796 		ffs_update(vp, 0);
6797 		bawrite(bp);
6798 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6799 		int size;
6800 
6801 		/*
6802 		 * Zero the end of a truncated frag or block.
6803 		 */
6804 		size = sblksize(fs, length, lastlbn);
6805 		error = bread(vp, lastlbn, size, cred, &bp);
6806 		if (error) {
6807 			softdep_error("softdep_journal_freeblks", error);
6808 			return;
6809 		}
6810 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6811 		bawrite(bp);
6812 
6813 	}
6814 	ACQUIRE_LOCK(ump);
6815 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6816 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6817 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6818 	/*
6819 	 * We zero earlier truncations so they don't erroneously
6820 	 * update i_blocks.
6821 	 */
6822 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6823 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6824 			fbn->fb_len = 0;
6825 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6826 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6827 		freeblks->fb_state |= INPROGRESS;
6828 	else
6829 		freeblks = NULL;
6830 	FREE_LOCK(ump);
6831 	if (freeblks)
6832 		handle_workitem_freeblocks(freeblks, 0);
6833 	trunc_pages(ip, length, extblocks, flags);
6834 
6835 }
6836 
6837 /*
6838  * Flush a JOP_SYNC to the journal.
6839  */
6840 void
6841 softdep_journal_fsync(ip)
6842 	struct inode *ip;
6843 {
6844 	struct jfsync *jfsync;
6845 	struct ufsmount *ump;
6846 
6847 	ump = ITOUMP(ip);
6848 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6849 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6850 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6851 		return;
6852 	ip->i_flag &= ~IN_TRUNCATED;
6853 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6854 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6855 	jfsync->jfs_size = ip->i_size;
6856 	jfsync->jfs_ino = ip->i_number;
6857 	ACQUIRE_LOCK(ump);
6858 	add_to_journal(&jfsync->jfs_list);
6859 	jwait(&jfsync->jfs_list, MNT_WAIT);
6860 	FREE_LOCK(ump);
6861 }
6862 
6863 /*
6864  * Block de-allocation dependencies.
6865  *
6866  * When blocks are de-allocated, the on-disk pointers must be nullified before
6867  * the blocks are made available for use by other files.  (The true
6868  * requirement is that old pointers must be nullified before new on-disk
6869  * pointers are set.  We chose this slightly more stringent requirement to
6870  * reduce complexity.) Our implementation handles this dependency by updating
6871  * the inode (or indirect block) appropriately but delaying the actual block
6872  * de-allocation (i.e., freemap and free space count manipulation) until
6873  * after the updated versions reach stable storage.  After the disk is
6874  * updated, the blocks can be safely de-allocated whenever it is convenient.
6875  * This implementation handles only the common case of reducing a file's
6876  * length to zero. Other cases are handled by the conventional synchronous
6877  * write approach.
6878  *
6879  * The ffs implementation with which we worked double-checks
6880  * the state of the block pointers and file size as it reduces
6881  * a file's length.  Some of this code is replicated here in our
6882  * soft updates implementation.  The freeblks->fb_chkcnt field is
6883  * used to transfer a part of this information to the procedure
6884  * that eventually de-allocates the blocks.
6885  *
6886  * This routine should be called from the routine that shortens
6887  * a file's length, before the inode's size or block pointers
6888  * are modified. It will save the block pointer information for
6889  * later release and zero the inode so that the calling routine
6890  * can release it.
6891  */
6892 void
6893 softdep_setup_freeblocks(ip, length, flags)
6894 	struct inode *ip;	/* The inode whose length is to be reduced */
6895 	off_t length;		/* The new length for the file */
6896 	int flags;		/* IO_EXT and/or IO_NORMAL */
6897 {
6898 	struct ufs1_dinode *dp1;
6899 	struct ufs2_dinode *dp2;
6900 	struct freeblks *freeblks;
6901 	struct inodedep *inodedep;
6902 	struct allocdirect *adp;
6903 	struct ufsmount *ump;
6904 	struct buf *bp;
6905 	struct fs *fs;
6906 	ufs2_daddr_t extblocks, datablocks;
6907 	struct mount *mp;
6908 	int i, delay, error;
6909 	ufs_lbn_t tmpval;
6910 	ufs_lbn_t lbn;
6911 
6912 	ump = ITOUMP(ip);
6913 	mp = UFSTOVFS(ump);
6914 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6915 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6916 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6917 	    ip->i_number, length);
6918 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6919 	fs = ump->um_fs;
6920 	if ((error = bread(ump->um_devvp,
6921 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6922 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6923 		brelse(bp);
6924 		softdep_error("softdep_setup_freeblocks", error);
6925 		return;
6926 	}
6927 	freeblks = newfreeblks(mp, ip);
6928 	extblocks = 0;
6929 	datablocks = 0;
6930 	if (fs->fs_magic == FS_UFS2_MAGIC)
6931 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6932 	if ((flags & IO_NORMAL) != 0) {
6933 		for (i = 0; i < UFS_NDADDR; i++)
6934 			setup_freedirect(freeblks, ip, i, 0);
6935 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6936 		    i < UFS_NIADDR;
6937 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6938 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6939 		ip->i_size = 0;
6940 		DIP_SET(ip, i_size, 0);
6941 		datablocks = DIP(ip, i_blocks) - extblocks;
6942 	}
6943 	if ((flags & IO_EXT) != 0) {
6944 		for (i = 0; i < UFS_NXADDR; i++)
6945 			setup_freeext(freeblks, ip, i, 0);
6946 		ip->i_din2->di_extsize = 0;
6947 		datablocks += extblocks;
6948 	}
6949 #ifdef QUOTA
6950 	/* Reference the quotas in case the block count is wrong in the end. */
6951 	quotaref(ITOV(ip), freeblks->fb_quota);
6952 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6953 #endif
6954 	freeblks->fb_chkcnt = -datablocks;
6955 	UFS_LOCK(ump);
6956 	fs->fs_pendingblocks += datablocks;
6957 	UFS_UNLOCK(ump);
6958 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6959 	/*
6960 	 * Push the zero'ed inode to its disk buffer so that we are free
6961 	 * to delete its dependencies below. Once the dependencies are gone
6962 	 * the buffer can be safely released.
6963 	 */
6964 	if (ump->um_fstype == UFS1) {
6965 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6966 		    ino_to_fsbo(fs, ip->i_number));
6967 		ip->i_din1->di_freelink = dp1->di_freelink;
6968 		*dp1 = *ip->i_din1;
6969 	} else {
6970 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6971 		    ino_to_fsbo(fs, ip->i_number));
6972 		ip->i_din2->di_freelink = dp2->di_freelink;
6973 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6974 		*dp2 = *ip->i_din2;
6975 	}
6976 	/*
6977 	 * Find and eliminate any inode dependencies.
6978 	 */
6979 	ACQUIRE_LOCK(ump);
6980 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6981 	if ((inodedep->id_state & IOSTARTED) != 0)
6982 		panic("softdep_setup_freeblocks: inode busy");
6983 	/*
6984 	 * Add the freeblks structure to the list of operations that
6985 	 * must await the zero'ed inode being written to disk. If we
6986 	 * still have a bitmap dependency (delay == 0), then the inode
6987 	 * has never been written to disk, so we can process the
6988 	 * freeblks below once we have deleted the dependencies.
6989 	 */
6990 	delay = (inodedep->id_state & DEPCOMPLETE);
6991 	if (delay)
6992 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6993 	else
6994 		freeblks->fb_state |= COMPLETE;
6995 	/*
6996 	 * Because the file length has been truncated to zero, any
6997 	 * pending block allocation dependency structures associated
6998 	 * with this inode are obsolete and can simply be de-allocated.
6999 	 * We must first merge the two dependency lists to get rid of
7000 	 * any duplicate freefrag structures, then purge the merged list.
7001 	 * If we still have a bitmap dependency, then the inode has never
7002 	 * been written to disk, so we can free any fragments without delay.
7003 	 */
7004 	if (flags & IO_NORMAL) {
7005 		merge_inode_lists(&inodedep->id_newinoupdt,
7006 		    &inodedep->id_inoupdt);
7007 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7008 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7009 			    freeblks);
7010 	}
7011 	if (flags & IO_EXT) {
7012 		merge_inode_lists(&inodedep->id_newextupdt,
7013 		    &inodedep->id_extupdt);
7014 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7015 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7016 			    freeblks);
7017 	}
7018 	FREE_LOCK(ump);
7019 	bdwrite(bp);
7020 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7021 	ACQUIRE_LOCK(ump);
7022 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7023 		(void) free_inodedep(inodedep);
7024 	freeblks->fb_state |= DEPCOMPLETE;
7025 	/*
7026 	 * If the inode with zeroed block pointers is now on disk
7027 	 * we can start freeing blocks.
7028 	 */
7029 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7030 		freeblks->fb_state |= INPROGRESS;
7031 	else
7032 		freeblks = NULL;
7033 	FREE_LOCK(ump);
7034 	if (freeblks)
7035 		handle_workitem_freeblocks(freeblks, 0);
7036 	trunc_pages(ip, length, extblocks, flags);
7037 }
7038 
7039 /*
7040  * Eliminate pages from the page cache that back parts of this inode and
7041  * adjust the vnode pager's idea of our size.  This prevents stale data
7042  * from hanging around in the page cache.
7043  */
7044 static void
7045 trunc_pages(ip, length, extblocks, flags)
7046 	struct inode *ip;
7047 	off_t length;
7048 	ufs2_daddr_t extblocks;
7049 	int flags;
7050 {
7051 	struct vnode *vp;
7052 	struct fs *fs;
7053 	ufs_lbn_t lbn;
7054 	off_t end, extend;
7055 
7056 	vp = ITOV(ip);
7057 	fs = ITOFS(ip);
7058 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7059 	if ((flags & IO_EXT) != 0)
7060 		vn_pages_remove(vp, extend, 0);
7061 	if ((flags & IO_NORMAL) == 0)
7062 		return;
7063 	BO_LOCK(&vp->v_bufobj);
7064 	drain_output(vp);
7065 	BO_UNLOCK(&vp->v_bufobj);
7066 	/*
7067 	 * The vnode pager eliminates file pages we eliminate indirects
7068 	 * below.
7069 	 */
7070 	vnode_pager_setsize(vp, length);
7071 	/*
7072 	 * Calculate the end based on the last indirect we want to keep.  If
7073 	 * the block extends into indirects we can just use the negative of
7074 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7075 	 * be careful not to remove those, if they exist.  double and triple
7076 	 * indirect lbns do not overlap with others so it is not important
7077 	 * to verify how many levels are required.
7078 	 */
7079 	lbn = lblkno(fs, length);
7080 	if (lbn >= UFS_NDADDR) {
7081 		/* Calculate the virtual lbn of the triple indirect. */
7082 		lbn = -lbn - (UFS_NIADDR - 1);
7083 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7084 	} else
7085 		end = extend;
7086 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7087 }
7088 
7089 /*
7090  * See if the buf bp is in the range eliminated by truncation.
7091  */
7092 static int
7093 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7094 	struct buf *bp;
7095 	int *blkoffp;
7096 	ufs_lbn_t lastlbn;
7097 	int lastoff;
7098 	int flags;
7099 {
7100 	ufs_lbn_t lbn;
7101 
7102 	*blkoffp = 0;
7103 	/* Only match ext/normal blocks as appropriate. */
7104 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7105 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7106 		return (0);
7107 	/* ALTDATA is always a full truncation. */
7108 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7109 		return (1);
7110 	/* -1 is full truncation. */
7111 	if (lastlbn == -1)
7112 		return (1);
7113 	/*
7114 	 * If this is a partial truncate we only want those
7115 	 * blocks and indirect blocks that cover the range
7116 	 * we're after.
7117 	 */
7118 	lbn = bp->b_lblkno;
7119 	if (lbn < 0)
7120 		lbn = -(lbn + lbn_level(lbn));
7121 	if (lbn < lastlbn)
7122 		return (0);
7123 	/* Here we only truncate lblkno if it's partial. */
7124 	if (lbn == lastlbn) {
7125 		if (lastoff == 0)
7126 			return (0);
7127 		*blkoffp = lastoff;
7128 	}
7129 	return (1);
7130 }
7131 
7132 /*
7133  * Eliminate any dependencies that exist in memory beyond lblkno:off
7134  */
7135 static void
7136 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7137 	struct inode *ip;
7138 	struct freeblks *freeblks;
7139 	ufs_lbn_t lastlbn;
7140 	int lastoff;
7141 	int flags;
7142 {
7143 	struct bufobj *bo;
7144 	struct vnode *vp;
7145 	struct buf *bp;
7146 	int blkoff;
7147 
7148 	/*
7149 	 * We must wait for any I/O in progress to finish so that
7150 	 * all potential buffers on the dirty list will be visible.
7151 	 * Once they are all there, walk the list and get rid of
7152 	 * any dependencies.
7153 	 */
7154 	vp = ITOV(ip);
7155 	bo = &vp->v_bufobj;
7156 	BO_LOCK(bo);
7157 	drain_output(vp);
7158 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7159 		bp->b_vflags &= ~BV_SCANNED;
7160 restart:
7161 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7162 		if (bp->b_vflags & BV_SCANNED)
7163 			continue;
7164 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7165 			bp->b_vflags |= BV_SCANNED;
7166 			continue;
7167 		}
7168 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7169 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7170 			goto restart;
7171 		BO_UNLOCK(bo);
7172 		if (deallocate_dependencies(bp, freeblks, blkoff))
7173 			bqrelse(bp);
7174 		else
7175 			brelse(bp);
7176 		BO_LOCK(bo);
7177 		goto restart;
7178 	}
7179 	/*
7180 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7181 	 */
7182 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7183 		bp->b_vflags &= ~BV_SCANNED;
7184 cleanrestart:
7185 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7186 		if (bp->b_vflags & BV_SCANNED)
7187 			continue;
7188 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7189 			bp->b_vflags |= BV_SCANNED;
7190 			continue;
7191 		}
7192 		if (BUF_LOCK(bp,
7193 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7194 		    BO_LOCKPTR(bo)) == ENOLCK) {
7195 			BO_LOCK(bo);
7196 			goto cleanrestart;
7197 		}
7198 		bp->b_vflags |= BV_SCANNED;
7199 		bremfree(bp);
7200 		if (blkoff != 0) {
7201 			allocbuf(bp, blkoff);
7202 			bqrelse(bp);
7203 		} else {
7204 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7205 			brelse(bp);
7206 		}
7207 		BO_LOCK(bo);
7208 		goto cleanrestart;
7209 	}
7210 	drain_output(vp);
7211 	BO_UNLOCK(bo);
7212 }
7213 
7214 static int
7215 cancel_pagedep(pagedep, freeblks, blkoff)
7216 	struct pagedep *pagedep;
7217 	struct freeblks *freeblks;
7218 	int blkoff;
7219 {
7220 	struct jremref *jremref;
7221 	struct jmvref *jmvref;
7222 	struct dirrem *dirrem, *tmp;
7223 	int i;
7224 
7225 	/*
7226 	 * Copy any directory remove dependencies to the list
7227 	 * to be processed after the freeblks proceeds.  If
7228 	 * directory entry never made it to disk they
7229 	 * can be dumped directly onto the work list.
7230 	 */
7231 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7232 		/* Skip this directory removal if it is intended to remain. */
7233 		if (dirrem->dm_offset < blkoff)
7234 			continue;
7235 		/*
7236 		 * If there are any dirrems we wait for the journal write
7237 		 * to complete and then restart the buf scan as the lock
7238 		 * has been dropped.
7239 		 */
7240 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7241 			jwait(&jremref->jr_list, MNT_WAIT);
7242 			return (ERESTART);
7243 		}
7244 		LIST_REMOVE(dirrem, dm_next);
7245 		dirrem->dm_dirinum = pagedep->pd_ino;
7246 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7247 	}
7248 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7249 		jwait(&jmvref->jm_list, MNT_WAIT);
7250 		return (ERESTART);
7251 	}
7252 	/*
7253 	 * When we're partially truncating a pagedep we just want to flush
7254 	 * journal entries and return.  There can not be any adds in the
7255 	 * truncated portion of the directory and newblk must remain if
7256 	 * part of the block remains.
7257 	 */
7258 	if (blkoff != 0) {
7259 		struct diradd *dap;
7260 
7261 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7262 			if (dap->da_offset > blkoff)
7263 				panic("cancel_pagedep: diradd %p off %d > %d",
7264 				    dap, dap->da_offset, blkoff);
7265 		for (i = 0; i < DAHASHSZ; i++)
7266 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7267 				if (dap->da_offset > blkoff)
7268 					panic("cancel_pagedep: diradd %p off %d > %d",
7269 					    dap, dap->da_offset, blkoff);
7270 		return (0);
7271 	}
7272 	/*
7273 	 * There should be no directory add dependencies present
7274 	 * as the directory could not be truncated until all
7275 	 * children were removed.
7276 	 */
7277 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7278 	    ("deallocate_dependencies: pendinghd != NULL"));
7279 	for (i = 0; i < DAHASHSZ; i++)
7280 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7281 		    ("deallocate_dependencies: diraddhd != NULL"));
7282 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7283 		free_newdirblk(pagedep->pd_newdirblk);
7284 	if (free_pagedep(pagedep) == 0)
7285 		panic("Failed to free pagedep %p", pagedep);
7286 	return (0);
7287 }
7288 
7289 /*
7290  * Reclaim any dependency structures from a buffer that is about to
7291  * be reallocated to a new vnode. The buffer must be locked, thus,
7292  * no I/O completion operations can occur while we are manipulating
7293  * its associated dependencies. The mutex is held so that other I/O's
7294  * associated with related dependencies do not occur.
7295  */
7296 static int
7297 deallocate_dependencies(bp, freeblks, off)
7298 	struct buf *bp;
7299 	struct freeblks *freeblks;
7300 	int off;
7301 {
7302 	struct indirdep *indirdep;
7303 	struct pagedep *pagedep;
7304 	struct worklist *wk, *wkn;
7305 	struct ufsmount *ump;
7306 
7307 	ump = softdep_bp_to_mp(bp);
7308 	if (ump == NULL)
7309 		goto done;
7310 	ACQUIRE_LOCK(ump);
7311 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7312 		switch (wk->wk_type) {
7313 		case D_INDIRDEP:
7314 			indirdep = WK_INDIRDEP(wk);
7315 			if (bp->b_lblkno >= 0 ||
7316 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7317 				panic("deallocate_dependencies: not indir");
7318 			cancel_indirdep(indirdep, bp, freeblks);
7319 			continue;
7320 
7321 		case D_PAGEDEP:
7322 			pagedep = WK_PAGEDEP(wk);
7323 			if (cancel_pagedep(pagedep, freeblks, off)) {
7324 				FREE_LOCK(ump);
7325 				return (ERESTART);
7326 			}
7327 			continue;
7328 
7329 		case D_ALLOCINDIR:
7330 			/*
7331 			 * Simply remove the allocindir, we'll find it via
7332 			 * the indirdep where we can clear pointers if
7333 			 * needed.
7334 			 */
7335 			WORKLIST_REMOVE(wk);
7336 			continue;
7337 
7338 		case D_FREEWORK:
7339 			/*
7340 			 * A truncation is waiting for the zero'd pointers
7341 			 * to be written.  It can be freed when the freeblks
7342 			 * is journaled.
7343 			 */
7344 			WORKLIST_REMOVE(wk);
7345 			wk->wk_state |= ONDEPLIST;
7346 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7347 			break;
7348 
7349 		case D_ALLOCDIRECT:
7350 			if (off != 0)
7351 				continue;
7352 			/* FALLTHROUGH */
7353 		default:
7354 			panic("deallocate_dependencies: Unexpected type %s",
7355 			    TYPENAME(wk->wk_type));
7356 			/* NOTREACHED */
7357 		}
7358 	}
7359 	FREE_LOCK(ump);
7360 done:
7361 	/*
7362 	 * Don't throw away this buf, we were partially truncating and
7363 	 * some deps may always remain.
7364 	 */
7365 	if (off) {
7366 		allocbuf(bp, off);
7367 		bp->b_vflags |= BV_SCANNED;
7368 		return (EBUSY);
7369 	}
7370 	bp->b_flags |= B_INVAL | B_NOCACHE;
7371 
7372 	return (0);
7373 }
7374 
7375 /*
7376  * An allocdirect is being canceled due to a truncate.  We must make sure
7377  * the journal entry is released in concert with the blkfree that releases
7378  * the storage.  Completed journal entries must not be released until the
7379  * space is no longer pointed to by the inode or in the bitmap.
7380  */
7381 static void
7382 cancel_allocdirect(adphead, adp, freeblks)
7383 	struct allocdirectlst *adphead;
7384 	struct allocdirect *adp;
7385 	struct freeblks *freeblks;
7386 {
7387 	struct freework *freework;
7388 	struct newblk *newblk;
7389 	struct worklist *wk;
7390 
7391 	TAILQ_REMOVE(adphead, adp, ad_next);
7392 	newblk = (struct newblk *)adp;
7393 	freework = NULL;
7394 	/*
7395 	 * Find the correct freework structure.
7396 	 */
7397 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7398 		if (wk->wk_type != D_FREEWORK)
7399 			continue;
7400 		freework = WK_FREEWORK(wk);
7401 		if (freework->fw_blkno == newblk->nb_newblkno)
7402 			break;
7403 	}
7404 	if (freework == NULL)
7405 		panic("cancel_allocdirect: Freework not found");
7406 	/*
7407 	 * If a newblk exists at all we still have the journal entry that
7408 	 * initiated the allocation so we do not need to journal the free.
7409 	 */
7410 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7411 	/*
7412 	 * If the journal hasn't been written the jnewblk must be passed
7413 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7414 	 * this by linking the journal dependency into the freework to be
7415 	 * freed when freework_freeblock() is called.  If the journal has
7416 	 * been written we can simply reclaim the journal space when the
7417 	 * freeblks work is complete.
7418 	 */
7419 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7420 	    &freeblks->fb_jwork);
7421 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7422 }
7423 
7424 
7425 /*
7426  * Cancel a new block allocation.  May be an indirect or direct block.  We
7427  * remove it from various lists and return any journal record that needs to
7428  * be resolved by the caller.
7429  *
7430  * A special consideration is made for indirects which were never pointed
7431  * at on disk and will never be found once this block is released.
7432  */
7433 static struct jnewblk *
7434 cancel_newblk(newblk, wk, wkhd)
7435 	struct newblk *newblk;
7436 	struct worklist *wk;
7437 	struct workhead *wkhd;
7438 {
7439 	struct jnewblk *jnewblk;
7440 
7441 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7442 
7443 	newblk->nb_state |= GOINGAWAY;
7444 	/*
7445 	 * Previously we traversed the completedhd on each indirdep
7446 	 * attached to this newblk to cancel them and gather journal
7447 	 * work.  Since we need only the oldest journal segment and
7448 	 * the lowest point on the tree will always have the oldest
7449 	 * journal segment we are free to release the segments
7450 	 * of any subordinates and may leave the indirdep list to
7451 	 * indirdep_complete() when this newblk is freed.
7452 	 */
7453 	if (newblk->nb_state & ONDEPLIST) {
7454 		newblk->nb_state &= ~ONDEPLIST;
7455 		LIST_REMOVE(newblk, nb_deps);
7456 	}
7457 	if (newblk->nb_state & ONWORKLIST)
7458 		WORKLIST_REMOVE(&newblk->nb_list);
7459 	/*
7460 	 * If the journal entry hasn't been written we save a pointer to
7461 	 * the dependency that frees it until it is written or the
7462 	 * superseding operation completes.
7463 	 */
7464 	jnewblk = newblk->nb_jnewblk;
7465 	if (jnewblk != NULL && wk != NULL) {
7466 		newblk->nb_jnewblk = NULL;
7467 		jnewblk->jn_dep = wk;
7468 	}
7469 	if (!LIST_EMPTY(&newblk->nb_jwork))
7470 		jwork_move(wkhd, &newblk->nb_jwork);
7471 	/*
7472 	 * When truncating we must free the newdirblk early to remove
7473 	 * the pagedep from the hash before returning.
7474 	 */
7475 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7476 		free_newdirblk(WK_NEWDIRBLK(wk));
7477 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7478 		panic("cancel_newblk: extra newdirblk");
7479 
7480 	return (jnewblk);
7481 }
7482 
7483 /*
7484  * Schedule the freefrag associated with a newblk to be released once
7485  * the pointers are written and the previous block is no longer needed.
7486  */
7487 static void
7488 newblk_freefrag(newblk)
7489 	struct newblk *newblk;
7490 {
7491 	struct freefrag *freefrag;
7492 
7493 	if (newblk->nb_freefrag == NULL)
7494 		return;
7495 	freefrag = newblk->nb_freefrag;
7496 	newblk->nb_freefrag = NULL;
7497 	freefrag->ff_state |= COMPLETE;
7498 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7499 		add_to_worklist(&freefrag->ff_list, 0);
7500 }
7501 
7502 /*
7503  * Free a newblk. Generate a new freefrag work request if appropriate.
7504  * This must be called after the inode pointer and any direct block pointers
7505  * are valid or fully removed via truncate or frag extension.
7506  */
7507 static void
7508 free_newblk(newblk)
7509 	struct newblk *newblk;
7510 {
7511 	struct indirdep *indirdep;
7512 	struct worklist *wk;
7513 
7514 	KASSERT(newblk->nb_jnewblk == NULL,
7515 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7516 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7517 	    ("free_newblk: unclaimed newblk"));
7518 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7519 	newblk_freefrag(newblk);
7520 	if (newblk->nb_state & ONDEPLIST)
7521 		LIST_REMOVE(newblk, nb_deps);
7522 	if (newblk->nb_state & ONWORKLIST)
7523 		WORKLIST_REMOVE(&newblk->nb_list);
7524 	LIST_REMOVE(newblk, nb_hash);
7525 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7526 		free_newdirblk(WK_NEWDIRBLK(wk));
7527 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7528 		panic("free_newblk: extra newdirblk");
7529 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7530 		indirdep_complete(indirdep);
7531 	handle_jwork(&newblk->nb_jwork);
7532 	WORKITEM_FREE(newblk, D_NEWBLK);
7533 }
7534 
7535 /*
7536  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7537  * This routine must be called with splbio interrupts blocked.
7538  */
7539 static void
7540 free_newdirblk(newdirblk)
7541 	struct newdirblk *newdirblk;
7542 {
7543 	struct pagedep *pagedep;
7544 	struct diradd *dap;
7545 	struct worklist *wk;
7546 
7547 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7548 	WORKLIST_REMOVE(&newdirblk->db_list);
7549 	/*
7550 	 * If the pagedep is still linked onto the directory buffer
7551 	 * dependency chain, then some of the entries on the
7552 	 * pd_pendinghd list may not be committed to disk yet. In
7553 	 * this case, we will simply clear the NEWBLOCK flag and
7554 	 * let the pd_pendinghd list be processed when the pagedep
7555 	 * is next written. If the pagedep is no longer on the buffer
7556 	 * dependency chain, then all the entries on the pd_pending
7557 	 * list are committed to disk and we can free them here.
7558 	 */
7559 	pagedep = newdirblk->db_pagedep;
7560 	pagedep->pd_state &= ~NEWBLOCK;
7561 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7562 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7563 			free_diradd(dap, NULL);
7564 		/*
7565 		 * If no dependencies remain, the pagedep will be freed.
7566 		 */
7567 		free_pagedep(pagedep);
7568 	}
7569 	/* Should only ever be one item in the list. */
7570 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7571 		WORKLIST_REMOVE(wk);
7572 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7573 	}
7574 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7575 }
7576 
7577 /*
7578  * Prepare an inode to be freed. The actual free operation is not
7579  * done until the zero'ed inode has been written to disk.
7580  */
7581 void
7582 softdep_freefile(pvp, ino, mode)
7583 	struct vnode *pvp;
7584 	ino_t ino;
7585 	int mode;
7586 {
7587 	struct inode *ip = VTOI(pvp);
7588 	struct inodedep *inodedep;
7589 	struct freefile *freefile;
7590 	struct freeblks *freeblks;
7591 	struct ufsmount *ump;
7592 
7593 	ump = ITOUMP(ip);
7594 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7595 	    ("softdep_freefile called on non-softdep filesystem"));
7596 	/*
7597 	 * This sets up the inode de-allocation dependency.
7598 	 */
7599 	freefile = malloc(sizeof(struct freefile),
7600 		M_FREEFILE, M_SOFTDEP_FLAGS);
7601 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7602 	freefile->fx_mode = mode;
7603 	freefile->fx_oldinum = ino;
7604 	freefile->fx_devvp = ump->um_devvp;
7605 	LIST_INIT(&freefile->fx_jwork);
7606 	UFS_LOCK(ump);
7607 	ump->um_fs->fs_pendinginodes += 1;
7608 	UFS_UNLOCK(ump);
7609 
7610 	/*
7611 	 * If the inodedep does not exist, then the zero'ed inode has
7612 	 * been written to disk. If the allocated inode has never been
7613 	 * written to disk, then the on-disk inode is zero'ed. In either
7614 	 * case we can free the file immediately.  If the journal was
7615 	 * canceled before being written the inode will never make it to
7616 	 * disk and we must send the canceled journal entrys to
7617 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7618 	 * Any blocks waiting on the inode to write can be safely freed
7619 	 * here as it will never been written.
7620 	 */
7621 	ACQUIRE_LOCK(ump);
7622 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7623 	if (inodedep) {
7624 		/*
7625 		 * Clear out freeblks that no longer need to reference
7626 		 * this inode.
7627 		 */
7628 		while ((freeblks =
7629 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7630 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7631 			    fb_next);
7632 			freeblks->fb_state &= ~ONDEPLIST;
7633 		}
7634 		/*
7635 		 * Remove this inode from the unlinked list.
7636 		 */
7637 		if (inodedep->id_state & UNLINKED) {
7638 			/*
7639 			 * Save the journal work to be freed with the bitmap
7640 			 * before we clear UNLINKED.  Otherwise it can be lost
7641 			 * if the inode block is written.
7642 			 */
7643 			handle_bufwait(inodedep, &freefile->fx_jwork);
7644 			clear_unlinked_inodedep(inodedep);
7645 			/*
7646 			 * Re-acquire inodedep as we've dropped the
7647 			 * per-filesystem lock in clear_unlinked_inodedep().
7648 			 */
7649 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7650 		}
7651 	}
7652 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7653 		FREE_LOCK(ump);
7654 		handle_workitem_freefile(freefile);
7655 		return;
7656 	}
7657 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7658 		inodedep->id_state |= GOINGAWAY;
7659 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7660 	FREE_LOCK(ump);
7661 	if (ip->i_number == ino)
7662 		ip->i_flag |= IN_MODIFIED;
7663 }
7664 
7665 /*
7666  * Check to see if an inode has never been written to disk. If
7667  * so free the inodedep and return success, otherwise return failure.
7668  * This routine must be called with splbio interrupts blocked.
7669  *
7670  * If we still have a bitmap dependency, then the inode has never
7671  * been written to disk. Drop the dependency as it is no longer
7672  * necessary since the inode is being deallocated. We set the
7673  * ALLCOMPLETE flags since the bitmap now properly shows that the
7674  * inode is not allocated. Even if the inode is actively being
7675  * written, it has been rolled back to its zero'ed state, so we
7676  * are ensured that a zero inode is what is on the disk. For short
7677  * lived files, this change will usually result in removing all the
7678  * dependencies from the inode so that it can be freed immediately.
7679  */
7680 static int
7681 check_inode_unwritten(inodedep)
7682 	struct inodedep *inodedep;
7683 {
7684 
7685 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7686 
7687 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7688 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7689 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7690 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7691 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7692 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7693 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7694 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7695 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7696 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7697 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7698 	    inodedep->id_mkdiradd != NULL ||
7699 	    inodedep->id_nlinkdelta != 0)
7700 		return (0);
7701 	/*
7702 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7703 	 * trying to allocate memory without holding "Softdep Lock".
7704 	 */
7705 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7706 	    inodedep->id_savedino1 == NULL)
7707 		return (0);
7708 
7709 	if (inodedep->id_state & ONDEPLIST)
7710 		LIST_REMOVE(inodedep, id_deps);
7711 	inodedep->id_state &= ~ONDEPLIST;
7712 	inodedep->id_state |= ALLCOMPLETE;
7713 	inodedep->id_bmsafemap = NULL;
7714 	if (inodedep->id_state & ONWORKLIST)
7715 		WORKLIST_REMOVE(&inodedep->id_list);
7716 	if (inodedep->id_savedino1 != NULL) {
7717 		free(inodedep->id_savedino1, M_SAVEDINO);
7718 		inodedep->id_savedino1 = NULL;
7719 	}
7720 	if (free_inodedep(inodedep) == 0)
7721 		panic("check_inode_unwritten: busy inode");
7722 	return (1);
7723 }
7724 
7725 static int
7726 check_inodedep_free(inodedep)
7727 	struct inodedep *inodedep;
7728 {
7729 
7730 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7731 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7732 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7733 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7734 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7735 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7736 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7737 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7738 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7739 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7740 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7741 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7742 	    inodedep->id_mkdiradd != NULL ||
7743 	    inodedep->id_nlinkdelta != 0 ||
7744 	    inodedep->id_savedino1 != NULL)
7745 		return (0);
7746 	return (1);
7747 }
7748 
7749 /*
7750  * Try to free an inodedep structure. Return 1 if it could be freed.
7751  */
7752 static int
7753 free_inodedep(inodedep)
7754 	struct inodedep *inodedep;
7755 {
7756 
7757 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7758 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7759 	    !check_inodedep_free(inodedep))
7760 		return (0);
7761 	if (inodedep->id_state & ONDEPLIST)
7762 		LIST_REMOVE(inodedep, id_deps);
7763 	LIST_REMOVE(inodedep, id_hash);
7764 	WORKITEM_FREE(inodedep, D_INODEDEP);
7765 	return (1);
7766 }
7767 
7768 /*
7769  * Free the block referenced by a freework structure.  The parent freeblks
7770  * structure is released and completed when the final cg bitmap reaches
7771  * the disk.  This routine may be freeing a jnewblk which never made it to
7772  * disk in which case we do not have to wait as the operation is undone
7773  * in memory immediately.
7774  */
7775 static void
7776 freework_freeblock(freework, key)
7777 	struct freework *freework;
7778 	u_long key;
7779 {
7780 	struct freeblks *freeblks;
7781 	struct jnewblk *jnewblk;
7782 	struct ufsmount *ump;
7783 	struct workhead wkhd;
7784 	struct fs *fs;
7785 	int bsize;
7786 	int needj;
7787 
7788 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7789 	LOCK_OWNED(ump);
7790 	/*
7791 	 * Handle partial truncate separately.
7792 	 */
7793 	if (freework->fw_indir) {
7794 		complete_trunc_indir(freework);
7795 		return;
7796 	}
7797 	freeblks = freework->fw_freeblks;
7798 	fs = ump->um_fs;
7799 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7800 	bsize = lfragtosize(fs, freework->fw_frags);
7801 	LIST_INIT(&wkhd);
7802 	/*
7803 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7804 	 * on the indirblk hashtable and prevents premature freeing.
7805 	 */
7806 	freework->fw_state |= DEPCOMPLETE;
7807 	/*
7808 	 * SUJ needs to wait for the segment referencing freed indirect
7809 	 * blocks to expire so that we know the checker will not confuse
7810 	 * a re-allocated indirect block with its old contents.
7811 	 */
7812 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7813 		indirblk_insert(freework);
7814 	/*
7815 	 * If we are canceling an existing jnewblk pass it to the free
7816 	 * routine, otherwise pass the freeblk which will ultimately
7817 	 * release the freeblks.  If we're not journaling, we can just
7818 	 * free the freeblks immediately.
7819 	 */
7820 	jnewblk = freework->fw_jnewblk;
7821 	if (jnewblk != NULL) {
7822 		cancel_jnewblk(jnewblk, &wkhd);
7823 		needj = 0;
7824 	} else if (needj) {
7825 		freework->fw_state |= DELAYEDFREE;
7826 		freeblks->fb_cgwait++;
7827 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7828 	}
7829 	FREE_LOCK(ump);
7830 	freeblks_free(ump, freeblks, btodb(bsize));
7831 	CTR4(KTR_SUJ,
7832 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
7833 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7834 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7835 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
7836 	ACQUIRE_LOCK(ump);
7837 	/*
7838 	 * The jnewblk will be discarded and the bits in the map never
7839 	 * made it to disk.  We can immediately free the freeblk.
7840 	 */
7841 	if (needj == 0)
7842 		handle_written_freework(freework);
7843 }
7844 
7845 /*
7846  * We enqueue freework items that need processing back on the freeblks and
7847  * add the freeblks to the worklist.  This makes it easier to find all work
7848  * required to flush a truncation in process_truncates().
7849  */
7850 static void
7851 freework_enqueue(freework)
7852 	struct freework *freework;
7853 {
7854 	struct freeblks *freeblks;
7855 
7856 	freeblks = freework->fw_freeblks;
7857 	if ((freework->fw_state & INPROGRESS) == 0)
7858 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7859 	if ((freeblks->fb_state &
7860 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7861 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7862 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7863 }
7864 
7865 /*
7866  * Start, continue, or finish the process of freeing an indirect block tree.
7867  * The free operation may be paused at any point with fw_off containing the
7868  * offset to restart from.  This enables us to implement some flow control
7869  * for large truncates which may fan out and generate a huge number of
7870  * dependencies.
7871  */
7872 static void
7873 handle_workitem_indirblk(freework)
7874 	struct freework *freework;
7875 {
7876 	struct freeblks *freeblks;
7877 	struct ufsmount *ump;
7878 	struct fs *fs;
7879 
7880 	freeblks = freework->fw_freeblks;
7881 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7882 	fs = ump->um_fs;
7883 	if (freework->fw_state & DEPCOMPLETE) {
7884 		handle_written_freework(freework);
7885 		return;
7886 	}
7887 	if (freework->fw_off == NINDIR(fs)) {
7888 		freework_freeblock(freework, SINGLETON_KEY);
7889 		return;
7890 	}
7891 	freework->fw_state |= INPROGRESS;
7892 	FREE_LOCK(ump);
7893 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7894 	    freework->fw_lbn);
7895 	ACQUIRE_LOCK(ump);
7896 }
7897 
7898 /*
7899  * Called when a freework structure attached to a cg buf is written.  The
7900  * ref on either the parent or the freeblks structure is released and
7901  * the freeblks is added back to the worklist if there is more work to do.
7902  */
7903 static void
7904 handle_written_freework(freework)
7905 	struct freework *freework;
7906 {
7907 	struct freeblks *freeblks;
7908 	struct freework *parent;
7909 
7910 	freeblks = freework->fw_freeblks;
7911 	parent = freework->fw_parent;
7912 	if (freework->fw_state & DELAYEDFREE)
7913 		freeblks->fb_cgwait--;
7914 	freework->fw_state |= COMPLETE;
7915 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7916 		WORKITEM_FREE(freework, D_FREEWORK);
7917 	if (parent) {
7918 		if (--parent->fw_ref == 0)
7919 			freework_enqueue(parent);
7920 		return;
7921 	}
7922 	if (--freeblks->fb_ref != 0)
7923 		return;
7924 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7925 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7926 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7927 }
7928 
7929 /*
7930  * This workitem routine performs the block de-allocation.
7931  * The workitem is added to the pending list after the updated
7932  * inode block has been written to disk.  As mentioned above,
7933  * checks regarding the number of blocks de-allocated (compared
7934  * to the number of blocks allocated for the file) are also
7935  * performed in this function.
7936  */
7937 static int
7938 handle_workitem_freeblocks(freeblks, flags)
7939 	struct freeblks *freeblks;
7940 	int flags;
7941 {
7942 	struct freework *freework;
7943 	struct newblk *newblk;
7944 	struct allocindir *aip;
7945 	struct ufsmount *ump;
7946 	struct worklist *wk;
7947 	u_long key;
7948 
7949 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7950 	    ("handle_workitem_freeblocks: Journal entries not written."));
7951 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7952 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
7953 	ACQUIRE_LOCK(ump);
7954 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7955 		WORKLIST_REMOVE(wk);
7956 		switch (wk->wk_type) {
7957 		case D_DIRREM:
7958 			wk->wk_state |= COMPLETE;
7959 			add_to_worklist(wk, 0);
7960 			continue;
7961 
7962 		case D_ALLOCDIRECT:
7963 			free_newblk(WK_NEWBLK(wk));
7964 			continue;
7965 
7966 		case D_ALLOCINDIR:
7967 			aip = WK_ALLOCINDIR(wk);
7968 			freework = NULL;
7969 			if (aip->ai_state & DELAYEDFREE) {
7970 				FREE_LOCK(ump);
7971 				freework = newfreework(ump, freeblks, NULL,
7972 				    aip->ai_lbn, aip->ai_newblkno,
7973 				    ump->um_fs->fs_frag, 0, 0);
7974 				ACQUIRE_LOCK(ump);
7975 			}
7976 			newblk = WK_NEWBLK(wk);
7977 			if (newblk->nb_jnewblk) {
7978 				freework->fw_jnewblk = newblk->nb_jnewblk;
7979 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7980 				newblk->nb_jnewblk = NULL;
7981 			}
7982 			free_newblk(newblk);
7983 			continue;
7984 
7985 		case D_FREEWORK:
7986 			freework = WK_FREEWORK(wk);
7987 			if (freework->fw_lbn <= -UFS_NDADDR)
7988 				handle_workitem_indirblk(freework);
7989 			else
7990 				freework_freeblock(freework, key);
7991 			continue;
7992 		default:
7993 			panic("handle_workitem_freeblocks: Unknown type %s",
7994 			    TYPENAME(wk->wk_type));
7995 		}
7996 	}
7997 	if (freeblks->fb_ref != 0) {
7998 		freeblks->fb_state &= ~INPROGRESS;
7999 		wake_worklist(&freeblks->fb_list);
8000 		freeblks = NULL;
8001 	}
8002 	FREE_LOCK(ump);
8003 	ffs_blkrelease_finish(ump, key);
8004 	if (freeblks)
8005 		return handle_complete_freeblocks(freeblks, flags);
8006 	return (0);
8007 }
8008 
8009 /*
8010  * Handle completion of block free via truncate.  This allows fs_pending
8011  * to track the actual free block count more closely than if we only updated
8012  * it at the end.  We must be careful to handle cases where the block count
8013  * on free was incorrect.
8014  */
8015 static void
8016 freeblks_free(ump, freeblks, blocks)
8017 	struct ufsmount *ump;
8018 	struct freeblks *freeblks;
8019 	int blocks;
8020 {
8021 	struct fs *fs;
8022 	ufs2_daddr_t remain;
8023 
8024 	UFS_LOCK(ump);
8025 	remain = -freeblks->fb_chkcnt;
8026 	freeblks->fb_chkcnt += blocks;
8027 	if (remain > 0) {
8028 		if (remain < blocks)
8029 			blocks = remain;
8030 		fs = ump->um_fs;
8031 		fs->fs_pendingblocks -= blocks;
8032 	}
8033 	UFS_UNLOCK(ump);
8034 }
8035 
8036 /*
8037  * Once all of the freework workitems are complete we can retire the
8038  * freeblocks dependency and any journal work awaiting completion.  This
8039  * can not be called until all other dependencies are stable on disk.
8040  */
8041 static int
8042 handle_complete_freeblocks(freeblks, flags)
8043 	struct freeblks *freeblks;
8044 	int flags;
8045 {
8046 	struct inodedep *inodedep;
8047 	struct inode *ip;
8048 	struct vnode *vp;
8049 	struct fs *fs;
8050 	struct ufsmount *ump;
8051 	ufs2_daddr_t spare;
8052 
8053 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8054 	fs = ump->um_fs;
8055 	flags = LK_EXCLUSIVE | flags;
8056 	spare = freeblks->fb_chkcnt;
8057 
8058 	/*
8059 	 * If we did not release the expected number of blocks we may have
8060 	 * to adjust the inode block count here.  Only do so if it wasn't
8061 	 * a truncation to zero and the modrev still matches.
8062 	 */
8063 	if (spare && freeblks->fb_len != 0) {
8064 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8065 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8066 			return (EBUSY);
8067 		ip = VTOI(vp);
8068 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8069 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8070 			ip->i_flag |= IN_CHANGE;
8071 			/*
8072 			 * We must wait so this happens before the
8073 			 * journal is reclaimed.
8074 			 */
8075 			ffs_update(vp, 1);
8076 		}
8077 		vput(vp);
8078 	}
8079 	if (spare < 0) {
8080 		UFS_LOCK(ump);
8081 		fs->fs_pendingblocks += spare;
8082 		UFS_UNLOCK(ump);
8083 	}
8084 #ifdef QUOTA
8085 	/* Handle spare. */
8086 	if (spare)
8087 		quotaadj(freeblks->fb_quota, ump, -spare);
8088 	quotarele(freeblks->fb_quota);
8089 #endif
8090 	ACQUIRE_LOCK(ump);
8091 	if (freeblks->fb_state & ONDEPLIST) {
8092 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8093 		    0, &inodedep);
8094 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8095 		freeblks->fb_state &= ~ONDEPLIST;
8096 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8097 			free_inodedep(inodedep);
8098 	}
8099 	/*
8100 	 * All of the freeblock deps must be complete prior to this call
8101 	 * so it's now safe to complete earlier outstanding journal entries.
8102 	 */
8103 	handle_jwork(&freeblks->fb_jwork);
8104 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8105 	FREE_LOCK(ump);
8106 	return (0);
8107 }
8108 
8109 /*
8110  * Release blocks associated with the freeblks and stored in the indirect
8111  * block dbn. If level is greater than SINGLE, the block is an indirect block
8112  * and recursive calls to indirtrunc must be used to cleanse other indirect
8113  * blocks.
8114  *
8115  * This handles partial and complete truncation of blocks.  Partial is noted
8116  * with goingaway == 0.  In this case the freework is completed after the
8117  * zero'd indirects are written to disk.  For full truncation the freework
8118  * is completed after the block is freed.
8119  */
8120 static void
8121 indir_trunc(freework, dbn, lbn)
8122 	struct freework *freework;
8123 	ufs2_daddr_t dbn;
8124 	ufs_lbn_t lbn;
8125 {
8126 	struct freework *nfreework;
8127 	struct workhead wkhd;
8128 	struct freeblks *freeblks;
8129 	struct buf *bp;
8130 	struct fs *fs;
8131 	struct indirdep *indirdep;
8132 	struct ufsmount *ump;
8133 	ufs1_daddr_t *bap1;
8134 	ufs2_daddr_t nb, nnb, *bap2;
8135 	ufs_lbn_t lbnadd, nlbn;
8136 	u_long key;
8137 	int nblocks, ufs1fmt, freedblocks;
8138 	int goingaway, freedeps, needj, level, cnt, i;
8139 
8140 	freeblks = freework->fw_freeblks;
8141 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8142 	fs = ump->um_fs;
8143 	/*
8144 	 * Get buffer of block pointers to be freed.  There are three cases:
8145 	 *
8146 	 * 1) Partial truncate caches the indirdep pointer in the freework
8147 	 *    which provides us a back copy to the save bp which holds the
8148 	 *    pointers we want to clear.  When this completes the zero
8149 	 *    pointers are written to the real copy.
8150 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8151 	 *    eliminated the real copy and placed the indirdep on the saved
8152 	 *    copy.  The indirdep and buf are discarded when this completes.
8153 	 * 3) The indirect was not in memory, we read a copy off of the disk
8154 	 *    using the devvp and drop and invalidate the buffer when we're
8155 	 *    done.
8156 	 */
8157 	goingaway = 1;
8158 	indirdep = NULL;
8159 	if (freework->fw_indir != NULL) {
8160 		goingaway = 0;
8161 		indirdep = freework->fw_indir;
8162 		bp = indirdep->ir_savebp;
8163 		if (bp == NULL || bp->b_blkno != dbn)
8164 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8165 			    bp, (intmax_t)dbn);
8166 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8167 		/*
8168 		 * The lock prevents the buf dep list from changing and
8169 	 	 * indirects on devvp should only ever have one dependency.
8170 		 */
8171 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8172 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8173 			panic("indir_trunc: Bad indirdep %p from buf %p",
8174 			    indirdep, bp);
8175 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8176 	    NOCRED, &bp) != 0) {
8177 		brelse(bp);
8178 		return;
8179 	}
8180 	ACQUIRE_LOCK(ump);
8181 	/* Protects against a race with complete_trunc_indir(). */
8182 	freework->fw_state &= ~INPROGRESS;
8183 	/*
8184 	 * If we have an indirdep we need to enforce the truncation order
8185 	 * and discard it when it is complete.
8186 	 */
8187 	if (indirdep) {
8188 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8189 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8190 			/*
8191 			 * Add the complete truncate to the list on the
8192 			 * indirdep to enforce in-order processing.
8193 			 */
8194 			if (freework->fw_indir == NULL)
8195 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8196 				    freework, fw_next);
8197 			FREE_LOCK(ump);
8198 			return;
8199 		}
8200 		/*
8201 		 * If we're goingaway, free the indirdep.  Otherwise it will
8202 		 * linger until the write completes.
8203 		 */
8204 		if (goingaway)
8205 			free_indirdep(indirdep);
8206 	}
8207 	FREE_LOCK(ump);
8208 	/* Initialize pointers depending on block size. */
8209 	if (ump->um_fstype == UFS1) {
8210 		bap1 = (ufs1_daddr_t *)bp->b_data;
8211 		nb = bap1[freework->fw_off];
8212 		ufs1fmt = 1;
8213 		bap2 = NULL;
8214 	} else {
8215 		bap2 = (ufs2_daddr_t *)bp->b_data;
8216 		nb = bap2[freework->fw_off];
8217 		ufs1fmt = 0;
8218 		bap1 = NULL;
8219 	}
8220 	level = lbn_level(lbn);
8221 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8222 	lbnadd = lbn_offset(fs, level);
8223 	nblocks = btodb(fs->fs_bsize);
8224 	nfreework = freework;
8225 	freedeps = 0;
8226 	cnt = 0;
8227 	/*
8228 	 * Reclaim blocks.  Traverses into nested indirect levels and
8229 	 * arranges for the current level to be freed when subordinates
8230 	 * are free when journaling.
8231 	 */
8232 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8233 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8234 		if (i != NINDIR(fs) - 1) {
8235 			if (ufs1fmt)
8236 				nnb = bap1[i+1];
8237 			else
8238 				nnb = bap2[i+1];
8239 		} else
8240 			nnb = 0;
8241 		if (nb == 0)
8242 			continue;
8243 		cnt++;
8244 		if (level != 0) {
8245 			nlbn = (lbn + 1) - (i * lbnadd);
8246 			if (needj != 0) {
8247 				nfreework = newfreework(ump, freeblks, freework,
8248 				    nlbn, nb, fs->fs_frag, 0, 0);
8249 				freedeps++;
8250 			}
8251 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8252 		} else {
8253 			struct freedep *freedep;
8254 
8255 			/*
8256 			 * Attempt to aggregate freedep dependencies for
8257 			 * all blocks being released to the same CG.
8258 			 */
8259 			LIST_INIT(&wkhd);
8260 			if (needj != 0 &&
8261 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8262 				freedep = newfreedep(freework);
8263 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8264 				    &freedep->fd_list);
8265 				freedeps++;
8266 			}
8267 			CTR3(KTR_SUJ,
8268 			    "indir_trunc: ino %jd blkno %jd size %d",
8269 			    freeblks->fb_inum, nb, fs->fs_bsize);
8270 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8271 			    fs->fs_bsize, freeblks->fb_inum,
8272 			    freeblks->fb_vtype, &wkhd, key);
8273 		}
8274 	}
8275 	ffs_blkrelease_finish(ump, key);
8276 	if (goingaway) {
8277 		bp->b_flags |= B_INVAL | B_NOCACHE;
8278 		brelse(bp);
8279 	}
8280 	freedblocks = 0;
8281 	if (level == 0)
8282 		freedblocks = (nblocks * cnt);
8283 	if (needj == 0)
8284 		freedblocks += nblocks;
8285 	freeblks_free(ump, freeblks, freedblocks);
8286 	/*
8287 	 * If we are journaling set up the ref counts and offset so this
8288 	 * indirect can be completed when its children are free.
8289 	 */
8290 	if (needj) {
8291 		ACQUIRE_LOCK(ump);
8292 		freework->fw_off = i;
8293 		freework->fw_ref += freedeps;
8294 		freework->fw_ref -= NINDIR(fs) + 1;
8295 		if (level == 0)
8296 			freeblks->fb_cgwait += freedeps;
8297 		if (freework->fw_ref == 0)
8298 			freework_freeblock(freework, SINGLETON_KEY);
8299 		FREE_LOCK(ump);
8300 		return;
8301 	}
8302 	/*
8303 	 * If we're not journaling we can free the indirect now.
8304 	 */
8305 	dbn = dbtofsb(fs, dbn);
8306 	CTR3(KTR_SUJ,
8307 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8308 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8309 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8310 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8311 	/* Non SUJ softdep does single-threaded truncations. */
8312 	if (freework->fw_blkno == dbn) {
8313 		freework->fw_state |= ALLCOMPLETE;
8314 		ACQUIRE_LOCK(ump);
8315 		handle_written_freework(freework);
8316 		FREE_LOCK(ump);
8317 	}
8318 	return;
8319 }
8320 
8321 /*
8322  * Cancel an allocindir when it is removed via truncation.  When bp is not
8323  * NULL the indirect never appeared on disk and is scheduled to be freed
8324  * independently of the indir so we can more easily track journal work.
8325  */
8326 static void
8327 cancel_allocindir(aip, bp, freeblks, trunc)
8328 	struct allocindir *aip;
8329 	struct buf *bp;
8330 	struct freeblks *freeblks;
8331 	int trunc;
8332 {
8333 	struct indirdep *indirdep;
8334 	struct freefrag *freefrag;
8335 	struct newblk *newblk;
8336 
8337 	newblk = (struct newblk *)aip;
8338 	LIST_REMOVE(aip, ai_next);
8339 	/*
8340 	 * We must eliminate the pointer in bp if it must be freed on its
8341 	 * own due to partial truncate or pending journal work.
8342 	 */
8343 	if (bp && (trunc || newblk->nb_jnewblk)) {
8344 		/*
8345 		 * Clear the pointer and mark the aip to be freed
8346 		 * directly if it never existed on disk.
8347 		 */
8348 		aip->ai_state |= DELAYEDFREE;
8349 		indirdep = aip->ai_indirdep;
8350 		if (indirdep->ir_state & UFS1FMT)
8351 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8352 		else
8353 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8354 	}
8355 	/*
8356 	 * When truncating the previous pointer will be freed via
8357 	 * savedbp.  Eliminate the freefrag which would dup free.
8358 	 */
8359 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8360 		newblk->nb_freefrag = NULL;
8361 		if (freefrag->ff_jdep)
8362 			cancel_jfreefrag(
8363 			    WK_JFREEFRAG(freefrag->ff_jdep));
8364 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8365 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8366 	}
8367 	/*
8368 	 * If the journal hasn't been written the jnewblk must be passed
8369 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8370 	 * this by leaving the journal dependency on the newblk to be freed
8371 	 * when a freework is created in handle_workitem_freeblocks().
8372 	 */
8373 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8374 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8375 }
8376 
8377 /*
8378  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8379  * in to a newdirblk so any subsequent additions are tracked properly.  The
8380  * caller is responsible for adding the mkdir1 dependency to the journal
8381  * and updating id_mkdiradd.  This function returns with the per-filesystem
8382  * lock held.
8383  */
8384 static struct mkdir *
8385 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8386 	struct diradd *dap;
8387 	ino_t newinum;
8388 	ino_t dinum;
8389 	struct buf *newdirbp;
8390 	struct mkdir **mkdirp;
8391 {
8392 	struct newblk *newblk;
8393 	struct pagedep *pagedep;
8394 	struct inodedep *inodedep;
8395 	struct newdirblk *newdirblk;
8396 	struct mkdir *mkdir1, *mkdir2;
8397 	struct worklist *wk;
8398 	struct jaddref *jaddref;
8399 	struct ufsmount *ump;
8400 	struct mount *mp;
8401 
8402 	mp = dap->da_list.wk_mp;
8403 	ump = VFSTOUFS(mp);
8404 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8405 	    M_SOFTDEP_FLAGS);
8406 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8407 	LIST_INIT(&newdirblk->db_mkdir);
8408 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8409 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8410 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8411 	mkdir1->md_diradd = dap;
8412 	mkdir1->md_jaddref = NULL;
8413 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8414 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8415 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8416 	mkdir2->md_diradd = dap;
8417 	mkdir2->md_jaddref = NULL;
8418 	if (MOUNTEDSUJ(mp) == 0) {
8419 		mkdir1->md_state |= DEPCOMPLETE;
8420 		mkdir2->md_state |= DEPCOMPLETE;
8421 	}
8422 	/*
8423 	 * Dependency on "." and ".." being written to disk.
8424 	 */
8425 	mkdir1->md_buf = newdirbp;
8426 	ACQUIRE_LOCK(VFSTOUFS(mp));
8427 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8428 	/*
8429 	 * We must link the pagedep, allocdirect, and newdirblk for
8430 	 * the initial file page so the pointer to the new directory
8431 	 * is not written until the directory contents are live and
8432 	 * any subsequent additions are not marked live until the
8433 	 * block is reachable via the inode.
8434 	 */
8435 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8436 		panic("setup_newdir: lost pagedep");
8437 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8438 		if (wk->wk_type == D_ALLOCDIRECT)
8439 			break;
8440 	if (wk == NULL)
8441 		panic("setup_newdir: lost allocdirect");
8442 	if (pagedep->pd_state & NEWBLOCK)
8443 		panic("setup_newdir: NEWBLOCK already set");
8444 	newblk = WK_NEWBLK(wk);
8445 	pagedep->pd_state |= NEWBLOCK;
8446 	pagedep->pd_newdirblk = newdirblk;
8447 	newdirblk->db_pagedep = pagedep;
8448 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8449 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8450 	/*
8451 	 * Look up the inodedep for the parent directory so that we
8452 	 * can link mkdir2 into the pending dotdot jaddref or
8453 	 * the inode write if there is none.  If the inode is
8454 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8455 	 * been satisfied and mkdir2 can be freed.
8456 	 */
8457 	inodedep_lookup(mp, dinum, 0, &inodedep);
8458 	if (MOUNTEDSUJ(mp)) {
8459 		if (inodedep == NULL)
8460 			panic("setup_newdir: Lost parent.");
8461 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8462 		    inoreflst);
8463 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8464 		    (jaddref->ja_state & MKDIR_PARENT),
8465 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8466 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8467 		mkdir2->md_jaddref = jaddref;
8468 		jaddref->ja_mkdir = mkdir2;
8469 	} else if (inodedep == NULL ||
8470 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8471 		dap->da_state &= ~MKDIR_PARENT;
8472 		WORKITEM_FREE(mkdir2, D_MKDIR);
8473 		mkdir2 = NULL;
8474 	} else {
8475 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8476 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8477 	}
8478 	*mkdirp = mkdir2;
8479 
8480 	return (mkdir1);
8481 }
8482 
8483 /*
8484  * Directory entry addition dependencies.
8485  *
8486  * When adding a new directory entry, the inode (with its incremented link
8487  * count) must be written to disk before the directory entry's pointer to it.
8488  * Also, if the inode is newly allocated, the corresponding freemap must be
8489  * updated (on disk) before the directory entry's pointer. These requirements
8490  * are met via undo/redo on the directory entry's pointer, which consists
8491  * simply of the inode number.
8492  *
8493  * As directory entries are added and deleted, the free space within a
8494  * directory block can become fragmented.  The ufs filesystem will compact
8495  * a fragmented directory block to make space for a new entry. When this
8496  * occurs, the offsets of previously added entries change. Any "diradd"
8497  * dependency structures corresponding to these entries must be updated with
8498  * the new offsets.
8499  */
8500 
8501 /*
8502  * This routine is called after the in-memory inode's link
8503  * count has been incremented, but before the directory entry's
8504  * pointer to the inode has been set.
8505  */
8506 int
8507 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8508 	struct buf *bp;		/* buffer containing directory block */
8509 	struct inode *dp;	/* inode for directory */
8510 	off_t diroffset;	/* offset of new entry in directory */
8511 	ino_t newinum;		/* inode referenced by new directory entry */
8512 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8513 	int isnewblk;		/* entry is in a newly allocated block */
8514 {
8515 	int offset;		/* offset of new entry within directory block */
8516 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8517 	struct fs *fs;
8518 	struct diradd *dap;
8519 	struct newblk *newblk;
8520 	struct pagedep *pagedep;
8521 	struct inodedep *inodedep;
8522 	struct newdirblk *newdirblk;
8523 	struct mkdir *mkdir1, *mkdir2;
8524 	struct jaddref *jaddref;
8525 	struct ufsmount *ump;
8526 	struct mount *mp;
8527 	int isindir;
8528 
8529 	mp = ITOVFS(dp);
8530 	ump = VFSTOUFS(mp);
8531 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8532 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8533 	/*
8534 	 * Whiteouts have no dependencies.
8535 	 */
8536 	if (newinum == UFS_WINO) {
8537 		if (newdirbp != NULL)
8538 			bdwrite(newdirbp);
8539 		return (0);
8540 	}
8541 	jaddref = NULL;
8542 	mkdir1 = mkdir2 = NULL;
8543 	fs = ump->um_fs;
8544 	lbn = lblkno(fs, diroffset);
8545 	offset = blkoff(fs, diroffset);
8546 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8547 		M_SOFTDEP_FLAGS|M_ZERO);
8548 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8549 	dap->da_offset = offset;
8550 	dap->da_newinum = newinum;
8551 	dap->da_state = ATTACHED;
8552 	LIST_INIT(&dap->da_jwork);
8553 	isindir = bp->b_lblkno >= UFS_NDADDR;
8554 	newdirblk = NULL;
8555 	if (isnewblk &&
8556 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8557 		newdirblk = malloc(sizeof(struct newdirblk),
8558 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8559 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8560 		LIST_INIT(&newdirblk->db_mkdir);
8561 	}
8562 	/*
8563 	 * If we're creating a new directory setup the dependencies and set
8564 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8565 	 * we can move on.
8566 	 */
8567 	if (newdirbp == NULL) {
8568 		dap->da_state |= DEPCOMPLETE;
8569 		ACQUIRE_LOCK(ump);
8570 	} else {
8571 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8572 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8573 		    &mkdir2);
8574 	}
8575 	/*
8576 	 * Link into parent directory pagedep to await its being written.
8577 	 */
8578 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8579 #ifdef INVARIANTS
8580 	if (diradd_lookup(pagedep, offset) != NULL)
8581 		panic("softdep_setup_directory_add: %p already at off %d\n",
8582 		    diradd_lookup(pagedep, offset), offset);
8583 #endif
8584 	dap->da_pagedep = pagedep;
8585 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8586 	    da_pdlist);
8587 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8588 	/*
8589 	 * If we're journaling, link the diradd into the jaddref so it
8590 	 * may be completed after the journal entry is written.  Otherwise,
8591 	 * link the diradd into its inodedep.  If the inode is not yet
8592 	 * written place it on the bufwait list, otherwise do the post-inode
8593 	 * write processing to put it on the id_pendinghd list.
8594 	 */
8595 	if (MOUNTEDSUJ(mp)) {
8596 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8597 		    inoreflst);
8598 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8599 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8600 		jaddref->ja_diroff = diroffset;
8601 		jaddref->ja_diradd = dap;
8602 		add_to_journal(&jaddref->ja_list);
8603 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8604 		diradd_inode_written(dap, inodedep);
8605 	else
8606 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8607 	/*
8608 	 * Add the journal entries for . and .. links now that the primary
8609 	 * link is written.
8610 	 */
8611 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8612 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8613 		    inoreflst, if_deps);
8614 		KASSERT(jaddref != NULL &&
8615 		    jaddref->ja_ino == jaddref->ja_parent &&
8616 		    (jaddref->ja_state & MKDIR_BODY),
8617 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8618 		    jaddref));
8619 		mkdir1->md_jaddref = jaddref;
8620 		jaddref->ja_mkdir = mkdir1;
8621 		/*
8622 		 * It is important that the dotdot journal entry
8623 		 * is added prior to the dot entry since dot writes
8624 		 * both the dot and dotdot links.  These both must
8625 		 * be added after the primary link for the journal
8626 		 * to remain consistent.
8627 		 */
8628 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8629 		add_to_journal(&jaddref->ja_list);
8630 	}
8631 	/*
8632 	 * If we are adding a new directory remember this diradd so that if
8633 	 * we rename it we can keep the dot and dotdot dependencies.  If
8634 	 * we are adding a new name for an inode that has a mkdiradd we
8635 	 * must be in rename and we have to move the dot and dotdot
8636 	 * dependencies to this new name.  The old name is being orphaned
8637 	 * soon.
8638 	 */
8639 	if (mkdir1 != NULL) {
8640 		if (inodedep->id_mkdiradd != NULL)
8641 			panic("softdep_setup_directory_add: Existing mkdir");
8642 		inodedep->id_mkdiradd = dap;
8643 	} else if (inodedep->id_mkdiradd)
8644 		merge_diradd(inodedep, dap);
8645 	if (newdirblk != NULL) {
8646 		/*
8647 		 * There is nothing to do if we are already tracking
8648 		 * this block.
8649 		 */
8650 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8651 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8652 			FREE_LOCK(ump);
8653 			return (0);
8654 		}
8655 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8656 		    == 0)
8657 			panic("softdep_setup_directory_add: lost entry");
8658 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8659 		pagedep->pd_state |= NEWBLOCK;
8660 		pagedep->pd_newdirblk = newdirblk;
8661 		newdirblk->db_pagedep = pagedep;
8662 		FREE_LOCK(ump);
8663 		/*
8664 		 * If we extended into an indirect signal direnter to sync.
8665 		 */
8666 		if (isindir)
8667 			return (1);
8668 		return (0);
8669 	}
8670 	FREE_LOCK(ump);
8671 	return (0);
8672 }
8673 
8674 /*
8675  * This procedure is called to change the offset of a directory
8676  * entry when compacting a directory block which must be owned
8677  * exclusively by the caller. Note that the actual entry movement
8678  * must be done in this procedure to ensure that no I/O completions
8679  * occur while the move is in progress.
8680  */
8681 void
8682 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8683 	struct buf *bp;		/* Buffer holding directory block. */
8684 	struct inode *dp;	/* inode for directory */
8685 	caddr_t base;		/* address of dp->i_offset */
8686 	caddr_t oldloc;		/* address of old directory location */
8687 	caddr_t newloc;		/* address of new directory location */
8688 	int entrysize;		/* size of directory entry */
8689 {
8690 	int offset, oldoffset, newoffset;
8691 	struct pagedep *pagedep;
8692 	struct jmvref *jmvref;
8693 	struct diradd *dap;
8694 	struct direct *de;
8695 	struct mount *mp;
8696 	struct ufsmount *ump;
8697 	ufs_lbn_t lbn;
8698 	int flags;
8699 
8700 	mp = ITOVFS(dp);
8701 	ump = VFSTOUFS(mp);
8702 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8703 	    ("softdep_change_directoryentry_offset called on "
8704 	     "non-softdep filesystem"));
8705 	de = (struct direct *)oldloc;
8706 	jmvref = NULL;
8707 	flags = 0;
8708 	/*
8709 	 * Moves are always journaled as it would be too complex to
8710 	 * determine if any affected adds or removes are present in the
8711 	 * journal.
8712 	 */
8713 	if (MOUNTEDSUJ(mp)) {
8714 		flags = DEPALLOC;
8715 		jmvref = newjmvref(dp, de->d_ino,
8716 		    dp->i_offset + (oldloc - base),
8717 		    dp->i_offset + (newloc - base));
8718 	}
8719 	lbn = lblkno(ump->um_fs, dp->i_offset);
8720 	offset = blkoff(ump->um_fs, dp->i_offset);
8721 	oldoffset = offset + (oldloc - base);
8722 	newoffset = offset + (newloc - base);
8723 	ACQUIRE_LOCK(ump);
8724 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8725 		goto done;
8726 	dap = diradd_lookup(pagedep, oldoffset);
8727 	if (dap) {
8728 		dap->da_offset = newoffset;
8729 		newoffset = DIRADDHASH(newoffset);
8730 		oldoffset = DIRADDHASH(oldoffset);
8731 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8732 		    newoffset != oldoffset) {
8733 			LIST_REMOVE(dap, da_pdlist);
8734 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8735 			    dap, da_pdlist);
8736 		}
8737 	}
8738 done:
8739 	if (jmvref) {
8740 		jmvref->jm_pagedep = pagedep;
8741 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8742 		add_to_journal(&jmvref->jm_list);
8743 	}
8744 	bcopy(oldloc, newloc, entrysize);
8745 	FREE_LOCK(ump);
8746 }
8747 
8748 /*
8749  * Move the mkdir dependencies and journal work from one diradd to another
8750  * when renaming a directory.  The new name must depend on the mkdir deps
8751  * completing as the old name did.  Directories can only have one valid link
8752  * at a time so one must be canonical.
8753  */
8754 static void
8755 merge_diradd(inodedep, newdap)
8756 	struct inodedep *inodedep;
8757 	struct diradd *newdap;
8758 {
8759 	struct diradd *olddap;
8760 	struct mkdir *mkdir, *nextmd;
8761 	struct ufsmount *ump;
8762 	short state;
8763 
8764 	olddap = inodedep->id_mkdiradd;
8765 	inodedep->id_mkdiradd = newdap;
8766 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8767 		newdap->da_state &= ~DEPCOMPLETE;
8768 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8769 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8770 		     mkdir = nextmd) {
8771 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8772 			if (mkdir->md_diradd != olddap)
8773 				continue;
8774 			mkdir->md_diradd = newdap;
8775 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8776 			newdap->da_state |= state;
8777 			olddap->da_state &= ~state;
8778 			if ((olddap->da_state &
8779 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8780 				break;
8781 		}
8782 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8783 			panic("merge_diradd: unfound ref");
8784 	}
8785 	/*
8786 	 * Any mkdir related journal items are not safe to be freed until
8787 	 * the new name is stable.
8788 	 */
8789 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8790 	olddap->da_state |= DEPCOMPLETE;
8791 	complete_diradd(olddap);
8792 }
8793 
8794 /*
8795  * Move the diradd to the pending list when all diradd dependencies are
8796  * complete.
8797  */
8798 static void
8799 complete_diradd(dap)
8800 	struct diradd *dap;
8801 {
8802 	struct pagedep *pagedep;
8803 
8804 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8805 		if (dap->da_state & DIRCHG)
8806 			pagedep = dap->da_previous->dm_pagedep;
8807 		else
8808 			pagedep = dap->da_pagedep;
8809 		LIST_REMOVE(dap, da_pdlist);
8810 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8811 	}
8812 }
8813 
8814 /*
8815  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8816  * add entries and conditonally journal the remove.
8817  */
8818 static void
8819 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8820 	struct diradd *dap;
8821 	struct dirrem *dirrem;
8822 	struct jremref *jremref;
8823 	struct jremref *dotremref;
8824 	struct jremref *dotdotremref;
8825 {
8826 	struct inodedep *inodedep;
8827 	struct jaddref *jaddref;
8828 	struct inoref *inoref;
8829 	struct ufsmount *ump;
8830 	struct mkdir *mkdir;
8831 
8832 	/*
8833 	 * If no remove references were allocated we're on a non-journaled
8834 	 * filesystem and can skip the cancel step.
8835 	 */
8836 	if (jremref == NULL) {
8837 		free_diradd(dap, NULL);
8838 		return;
8839 	}
8840 	/*
8841 	 * Cancel the primary name an free it if it does not require
8842 	 * journaling.
8843 	 */
8844 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8845 	    0, &inodedep) != 0) {
8846 		/* Abort the addref that reference this diradd.  */
8847 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8848 			if (inoref->if_list.wk_type != D_JADDREF)
8849 				continue;
8850 			jaddref = (struct jaddref *)inoref;
8851 			if (jaddref->ja_diradd != dap)
8852 				continue;
8853 			if (cancel_jaddref(jaddref, inodedep,
8854 			    &dirrem->dm_jwork) == 0) {
8855 				free_jremref(jremref);
8856 				jremref = NULL;
8857 			}
8858 			break;
8859 		}
8860 	}
8861 	/*
8862 	 * Cancel subordinate names and free them if they do not require
8863 	 * journaling.
8864 	 */
8865 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8866 		ump = VFSTOUFS(dap->da_list.wk_mp);
8867 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8868 			if (mkdir->md_diradd != dap)
8869 				continue;
8870 			if ((jaddref = mkdir->md_jaddref) == NULL)
8871 				continue;
8872 			mkdir->md_jaddref = NULL;
8873 			if (mkdir->md_state & MKDIR_PARENT) {
8874 				if (cancel_jaddref(jaddref, NULL,
8875 				    &dirrem->dm_jwork) == 0) {
8876 					free_jremref(dotdotremref);
8877 					dotdotremref = NULL;
8878 				}
8879 			} else {
8880 				if (cancel_jaddref(jaddref, inodedep,
8881 				    &dirrem->dm_jwork) == 0) {
8882 					free_jremref(dotremref);
8883 					dotremref = NULL;
8884 				}
8885 			}
8886 		}
8887 	}
8888 
8889 	if (jremref)
8890 		journal_jremref(dirrem, jremref, inodedep);
8891 	if (dotremref)
8892 		journal_jremref(dirrem, dotremref, inodedep);
8893 	if (dotdotremref)
8894 		journal_jremref(dirrem, dotdotremref, NULL);
8895 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8896 	free_diradd(dap, &dirrem->dm_jwork);
8897 }
8898 
8899 /*
8900  * Free a diradd dependency structure. This routine must be called
8901  * with splbio interrupts blocked.
8902  */
8903 static void
8904 free_diradd(dap, wkhd)
8905 	struct diradd *dap;
8906 	struct workhead *wkhd;
8907 {
8908 	struct dirrem *dirrem;
8909 	struct pagedep *pagedep;
8910 	struct inodedep *inodedep;
8911 	struct mkdir *mkdir, *nextmd;
8912 	struct ufsmount *ump;
8913 
8914 	ump = VFSTOUFS(dap->da_list.wk_mp);
8915 	LOCK_OWNED(ump);
8916 	LIST_REMOVE(dap, da_pdlist);
8917 	if (dap->da_state & ONWORKLIST)
8918 		WORKLIST_REMOVE(&dap->da_list);
8919 	if ((dap->da_state & DIRCHG) == 0) {
8920 		pagedep = dap->da_pagedep;
8921 	} else {
8922 		dirrem = dap->da_previous;
8923 		pagedep = dirrem->dm_pagedep;
8924 		dirrem->dm_dirinum = pagedep->pd_ino;
8925 		dirrem->dm_state |= COMPLETE;
8926 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8927 			add_to_worklist(&dirrem->dm_list, 0);
8928 	}
8929 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8930 	    0, &inodedep) != 0)
8931 		if (inodedep->id_mkdiradd == dap)
8932 			inodedep->id_mkdiradd = NULL;
8933 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8934 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8935 		     mkdir = nextmd) {
8936 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8937 			if (mkdir->md_diradd != dap)
8938 				continue;
8939 			dap->da_state &=
8940 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8941 			LIST_REMOVE(mkdir, md_mkdirs);
8942 			if (mkdir->md_state & ONWORKLIST)
8943 				WORKLIST_REMOVE(&mkdir->md_list);
8944 			if (mkdir->md_jaddref != NULL)
8945 				panic("free_diradd: Unexpected jaddref");
8946 			WORKITEM_FREE(mkdir, D_MKDIR);
8947 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8948 				break;
8949 		}
8950 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8951 			panic("free_diradd: unfound ref");
8952 	}
8953 	if (inodedep)
8954 		free_inodedep(inodedep);
8955 	/*
8956 	 * Free any journal segments waiting for the directory write.
8957 	 */
8958 	handle_jwork(&dap->da_jwork);
8959 	WORKITEM_FREE(dap, D_DIRADD);
8960 }
8961 
8962 /*
8963  * Directory entry removal dependencies.
8964  *
8965  * When removing a directory entry, the entry's inode pointer must be
8966  * zero'ed on disk before the corresponding inode's link count is decremented
8967  * (possibly freeing the inode for re-use). This dependency is handled by
8968  * updating the directory entry but delaying the inode count reduction until
8969  * after the directory block has been written to disk. After this point, the
8970  * inode count can be decremented whenever it is convenient.
8971  */
8972 
8973 /*
8974  * This routine should be called immediately after removing
8975  * a directory entry.  The inode's link count should not be
8976  * decremented by the calling procedure -- the soft updates
8977  * code will do this task when it is safe.
8978  */
8979 void
8980 softdep_setup_remove(bp, dp, ip, isrmdir)
8981 	struct buf *bp;		/* buffer containing directory block */
8982 	struct inode *dp;	/* inode for the directory being modified */
8983 	struct inode *ip;	/* inode for directory entry being removed */
8984 	int isrmdir;		/* indicates if doing RMDIR */
8985 {
8986 	struct dirrem *dirrem, *prevdirrem;
8987 	struct inodedep *inodedep;
8988 	struct ufsmount *ump;
8989 	int direct;
8990 
8991 	ump = ITOUMP(ip);
8992 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
8993 	    ("softdep_setup_remove called on non-softdep filesystem"));
8994 	/*
8995 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8996 	 * newdirrem() to setup the full directory remove which requires
8997 	 * isrmdir > 1.
8998 	 */
8999 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9000 	/*
9001 	 * Add the dirrem to the inodedep's pending remove list for quick
9002 	 * discovery later.
9003 	 */
9004 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9005 		panic("softdep_setup_remove: Lost inodedep.");
9006 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9007 	dirrem->dm_state |= ONDEPLIST;
9008 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9009 
9010 	/*
9011 	 * If the COMPLETE flag is clear, then there were no active
9012 	 * entries and we want to roll back to a zeroed entry until
9013 	 * the new inode is committed to disk. If the COMPLETE flag is
9014 	 * set then we have deleted an entry that never made it to
9015 	 * disk. If the entry we deleted resulted from a name change,
9016 	 * then the old name still resides on disk. We cannot delete
9017 	 * its inode (returned to us in prevdirrem) until the zeroed
9018 	 * directory entry gets to disk. The new inode has never been
9019 	 * referenced on the disk, so can be deleted immediately.
9020 	 */
9021 	if ((dirrem->dm_state & COMPLETE) == 0) {
9022 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9023 		    dm_next);
9024 		FREE_LOCK(ump);
9025 	} else {
9026 		if (prevdirrem != NULL)
9027 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9028 			    prevdirrem, dm_next);
9029 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9030 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9031 		FREE_LOCK(ump);
9032 		if (direct)
9033 			handle_workitem_remove(dirrem, 0);
9034 	}
9035 }
9036 
9037 /*
9038  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9039  * pd_pendinghd list of a pagedep.
9040  */
9041 static struct diradd *
9042 diradd_lookup(pagedep, offset)
9043 	struct pagedep *pagedep;
9044 	int offset;
9045 {
9046 	struct diradd *dap;
9047 
9048 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9049 		if (dap->da_offset == offset)
9050 			return (dap);
9051 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9052 		if (dap->da_offset == offset)
9053 			return (dap);
9054 	return (NULL);
9055 }
9056 
9057 /*
9058  * Search for a .. diradd dependency in a directory that is being removed.
9059  * If the directory was renamed to a new parent we have a diradd rather
9060  * than a mkdir for the .. entry.  We need to cancel it now before
9061  * it is found in truncate().
9062  */
9063 static struct jremref *
9064 cancel_diradd_dotdot(ip, dirrem, jremref)
9065 	struct inode *ip;
9066 	struct dirrem *dirrem;
9067 	struct jremref *jremref;
9068 {
9069 	struct pagedep *pagedep;
9070 	struct diradd *dap;
9071 	struct worklist *wk;
9072 
9073 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9074 		return (jremref);
9075 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9076 	if (dap == NULL)
9077 		return (jremref);
9078 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9079 	/*
9080 	 * Mark any journal work as belonging to the parent so it is freed
9081 	 * with the .. reference.
9082 	 */
9083 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9084 		wk->wk_state |= MKDIR_PARENT;
9085 	return (NULL);
9086 }
9087 
9088 /*
9089  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9090  * replace it with a dirrem/diradd pair as a result of re-parenting a
9091  * directory.  This ensures that we don't simultaneously have a mkdir and
9092  * a diradd for the same .. entry.
9093  */
9094 static struct jremref *
9095 cancel_mkdir_dotdot(ip, dirrem, jremref)
9096 	struct inode *ip;
9097 	struct dirrem *dirrem;
9098 	struct jremref *jremref;
9099 {
9100 	struct inodedep *inodedep;
9101 	struct jaddref *jaddref;
9102 	struct ufsmount *ump;
9103 	struct mkdir *mkdir;
9104 	struct diradd *dap;
9105 	struct mount *mp;
9106 
9107 	mp = ITOVFS(ip);
9108 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9109 		return (jremref);
9110 	dap = inodedep->id_mkdiradd;
9111 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9112 		return (jremref);
9113 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9114 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9115 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9116 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9117 			break;
9118 	if (mkdir == NULL)
9119 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9120 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9121 		mkdir->md_jaddref = NULL;
9122 		jaddref->ja_state &= ~MKDIR_PARENT;
9123 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9124 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9125 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9126 			journal_jremref(dirrem, jremref, inodedep);
9127 			jremref = NULL;
9128 		}
9129 	}
9130 	if (mkdir->md_state & ONWORKLIST)
9131 		WORKLIST_REMOVE(&mkdir->md_list);
9132 	mkdir->md_state |= ALLCOMPLETE;
9133 	complete_mkdir(mkdir);
9134 	return (jremref);
9135 }
9136 
9137 static void
9138 journal_jremref(dirrem, jremref, inodedep)
9139 	struct dirrem *dirrem;
9140 	struct jremref *jremref;
9141 	struct inodedep *inodedep;
9142 {
9143 
9144 	if (inodedep == NULL)
9145 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9146 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9147 			panic("journal_jremref: Lost inodedep");
9148 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9149 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9150 	add_to_journal(&jremref->jr_list);
9151 }
9152 
9153 static void
9154 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9155 	struct dirrem *dirrem;
9156 	struct jremref *jremref;
9157 	struct jremref *dotremref;
9158 	struct jremref *dotdotremref;
9159 {
9160 	struct inodedep *inodedep;
9161 
9162 
9163 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9164 	    &inodedep) == 0)
9165 		panic("dirrem_journal: Lost inodedep");
9166 	journal_jremref(dirrem, jremref, inodedep);
9167 	if (dotremref)
9168 		journal_jremref(dirrem, dotremref, inodedep);
9169 	if (dotdotremref)
9170 		journal_jremref(dirrem, dotdotremref, NULL);
9171 }
9172 
9173 /*
9174  * Allocate a new dirrem if appropriate and return it along with
9175  * its associated pagedep. Called without a lock, returns with lock.
9176  */
9177 static struct dirrem *
9178 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9179 	struct buf *bp;		/* buffer containing directory block */
9180 	struct inode *dp;	/* inode for the directory being modified */
9181 	struct inode *ip;	/* inode for directory entry being removed */
9182 	int isrmdir;		/* indicates if doing RMDIR */
9183 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9184 {
9185 	int offset;
9186 	ufs_lbn_t lbn;
9187 	struct diradd *dap;
9188 	struct dirrem *dirrem;
9189 	struct pagedep *pagedep;
9190 	struct jremref *jremref;
9191 	struct jremref *dotremref;
9192 	struct jremref *dotdotremref;
9193 	struct vnode *dvp;
9194 	struct ufsmount *ump;
9195 
9196 	/*
9197 	 * Whiteouts have no deletion dependencies.
9198 	 */
9199 	if (ip == NULL)
9200 		panic("newdirrem: whiteout");
9201 	dvp = ITOV(dp);
9202 	ump = ITOUMP(dp);
9203 
9204 	/*
9205 	 * If the system is over its limit and our filesystem is
9206 	 * responsible for more than our share of that usage and
9207 	 * we are not a snapshot, request some inodedep cleanup.
9208 	 * Limiting the number of dirrem structures will also limit
9209 	 * the number of freefile and freeblks structures.
9210 	 */
9211 	ACQUIRE_LOCK(ump);
9212 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9213 		schedule_cleanup(UFSTOVFS(ump));
9214 	else
9215 		FREE_LOCK(ump);
9216 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9217 	    M_ZERO);
9218 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9219 	LIST_INIT(&dirrem->dm_jremrefhd);
9220 	LIST_INIT(&dirrem->dm_jwork);
9221 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9222 	dirrem->dm_oldinum = ip->i_number;
9223 	*prevdirremp = NULL;
9224 	/*
9225 	 * Allocate remove reference structures to track journal write
9226 	 * dependencies.  We will always have one for the link and
9227 	 * when doing directories we will always have one more for dot.
9228 	 * When renaming a directory we skip the dotdot link change so
9229 	 * this is not needed.
9230 	 */
9231 	jremref = dotremref = dotdotremref = NULL;
9232 	if (DOINGSUJ(dvp)) {
9233 		if (isrmdir) {
9234 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9235 			    ip->i_effnlink + 2);
9236 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9237 			    ip->i_effnlink + 1);
9238 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9239 			    dp->i_effnlink + 1);
9240 			dotdotremref->jr_state |= MKDIR_PARENT;
9241 		} else
9242 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9243 			    ip->i_effnlink + 1);
9244 	}
9245 	ACQUIRE_LOCK(ump);
9246 	lbn = lblkno(ump->um_fs, dp->i_offset);
9247 	offset = blkoff(ump->um_fs, dp->i_offset);
9248 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9249 	    &pagedep);
9250 	dirrem->dm_pagedep = pagedep;
9251 	dirrem->dm_offset = offset;
9252 	/*
9253 	 * If we're renaming a .. link to a new directory, cancel any
9254 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9255 	 * the jremref is preserved for any potential diradd in this
9256 	 * location.  This can not coincide with a rmdir.
9257 	 */
9258 	if (dp->i_offset == DOTDOT_OFFSET) {
9259 		if (isrmdir)
9260 			panic("newdirrem: .. directory change during remove?");
9261 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9262 	}
9263 	/*
9264 	 * If we're removing a directory search for the .. dependency now and
9265 	 * cancel it.  Any pending journal work will be added to the dirrem
9266 	 * to be completed when the workitem remove completes.
9267 	 */
9268 	if (isrmdir)
9269 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9270 	/*
9271 	 * Check for a diradd dependency for the same directory entry.
9272 	 * If present, then both dependencies become obsolete and can
9273 	 * be de-allocated.
9274 	 */
9275 	dap = diradd_lookup(pagedep, offset);
9276 	if (dap == NULL) {
9277 		/*
9278 		 * Link the jremref structures into the dirrem so they are
9279 		 * written prior to the pagedep.
9280 		 */
9281 		if (jremref)
9282 			dirrem_journal(dirrem, jremref, dotremref,
9283 			    dotdotremref);
9284 		return (dirrem);
9285 	}
9286 	/*
9287 	 * Must be ATTACHED at this point.
9288 	 */
9289 	if ((dap->da_state & ATTACHED) == 0)
9290 		panic("newdirrem: not ATTACHED");
9291 	if (dap->da_newinum != ip->i_number)
9292 		panic("newdirrem: inum %ju should be %ju",
9293 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9294 	/*
9295 	 * If we are deleting a changed name that never made it to disk,
9296 	 * then return the dirrem describing the previous inode (which
9297 	 * represents the inode currently referenced from this entry on disk).
9298 	 */
9299 	if ((dap->da_state & DIRCHG) != 0) {
9300 		*prevdirremp = dap->da_previous;
9301 		dap->da_state &= ~DIRCHG;
9302 		dap->da_pagedep = pagedep;
9303 	}
9304 	/*
9305 	 * We are deleting an entry that never made it to disk.
9306 	 * Mark it COMPLETE so we can delete its inode immediately.
9307 	 */
9308 	dirrem->dm_state |= COMPLETE;
9309 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9310 #ifdef INVARIANTS
9311 	if (isrmdir == 0) {
9312 		struct worklist *wk;
9313 
9314 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9315 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9316 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9317 	}
9318 #endif
9319 
9320 	return (dirrem);
9321 }
9322 
9323 /*
9324  * Directory entry change dependencies.
9325  *
9326  * Changing an existing directory entry requires that an add operation
9327  * be completed first followed by a deletion. The semantics for the addition
9328  * are identical to the description of adding a new entry above except
9329  * that the rollback is to the old inode number rather than zero. Once
9330  * the addition dependency is completed, the removal is done as described
9331  * in the removal routine above.
9332  */
9333 
9334 /*
9335  * This routine should be called immediately after changing
9336  * a directory entry.  The inode's link count should not be
9337  * decremented by the calling procedure -- the soft updates
9338  * code will perform this task when it is safe.
9339  */
9340 void
9341 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9342 	struct buf *bp;		/* buffer containing directory block */
9343 	struct inode *dp;	/* inode for the directory being modified */
9344 	struct inode *ip;	/* inode for directory entry being removed */
9345 	ino_t newinum;		/* new inode number for changed entry */
9346 	int isrmdir;		/* indicates if doing RMDIR */
9347 {
9348 	int offset;
9349 	struct diradd *dap = NULL;
9350 	struct dirrem *dirrem, *prevdirrem;
9351 	struct pagedep *pagedep;
9352 	struct inodedep *inodedep;
9353 	struct jaddref *jaddref;
9354 	struct mount *mp;
9355 	struct ufsmount *ump;
9356 
9357 	mp = ITOVFS(dp);
9358 	ump = VFSTOUFS(mp);
9359 	offset = blkoff(ump->um_fs, dp->i_offset);
9360 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9361 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9362 
9363 	/*
9364 	 * Whiteouts do not need diradd dependencies.
9365 	 */
9366 	if (newinum != UFS_WINO) {
9367 		dap = malloc(sizeof(struct diradd),
9368 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9369 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9370 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9371 		dap->da_offset = offset;
9372 		dap->da_newinum = newinum;
9373 		LIST_INIT(&dap->da_jwork);
9374 	}
9375 
9376 	/*
9377 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9378 	 */
9379 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9380 	pagedep = dirrem->dm_pagedep;
9381 	/*
9382 	 * The possible values for isrmdir:
9383 	 *	0 - non-directory file rename
9384 	 *	1 - directory rename within same directory
9385 	 *   inum - directory rename to new directory of given inode number
9386 	 * When renaming to a new directory, we are both deleting and
9387 	 * creating a new directory entry, so the link count on the new
9388 	 * directory should not change. Thus we do not need the followup
9389 	 * dirrem which is usually done in handle_workitem_remove. We set
9390 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9391 	 * followup dirrem.
9392 	 */
9393 	if (isrmdir > 1)
9394 		dirrem->dm_state |= DIRCHG;
9395 
9396 	/*
9397 	 * Whiteouts have no additional dependencies,
9398 	 * so just put the dirrem on the correct list.
9399 	 */
9400 	if (newinum == UFS_WINO) {
9401 		if ((dirrem->dm_state & COMPLETE) == 0) {
9402 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9403 			    dm_next);
9404 		} else {
9405 			dirrem->dm_dirinum = pagedep->pd_ino;
9406 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9407 				add_to_worklist(&dirrem->dm_list, 0);
9408 		}
9409 		FREE_LOCK(ump);
9410 		return;
9411 	}
9412 	/*
9413 	 * Add the dirrem to the inodedep's pending remove list for quick
9414 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9415 	 * will not fail.
9416 	 */
9417 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9418 		panic("softdep_setup_directory_change: Lost inodedep.");
9419 	dirrem->dm_state |= ONDEPLIST;
9420 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9421 
9422 	/*
9423 	 * If the COMPLETE flag is clear, then there were no active
9424 	 * entries and we want to roll back to the previous inode until
9425 	 * the new inode is committed to disk. If the COMPLETE flag is
9426 	 * set, then we have deleted an entry that never made it to disk.
9427 	 * If the entry we deleted resulted from a name change, then the old
9428 	 * inode reference still resides on disk. Any rollback that we do
9429 	 * needs to be to that old inode (returned to us in prevdirrem). If
9430 	 * the entry we deleted resulted from a create, then there is
9431 	 * no entry on the disk, so we want to roll back to zero rather
9432 	 * than the uncommitted inode. In either of the COMPLETE cases we
9433 	 * want to immediately free the unwritten and unreferenced inode.
9434 	 */
9435 	if ((dirrem->dm_state & COMPLETE) == 0) {
9436 		dap->da_previous = dirrem;
9437 	} else {
9438 		if (prevdirrem != NULL) {
9439 			dap->da_previous = prevdirrem;
9440 		} else {
9441 			dap->da_state &= ~DIRCHG;
9442 			dap->da_pagedep = pagedep;
9443 		}
9444 		dirrem->dm_dirinum = pagedep->pd_ino;
9445 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9446 			add_to_worklist(&dirrem->dm_list, 0);
9447 	}
9448 	/*
9449 	 * Lookup the jaddref for this journal entry.  We must finish
9450 	 * initializing it and make the diradd write dependent on it.
9451 	 * If we're not journaling, put it on the id_bufwait list if the
9452 	 * inode is not yet written. If it is written, do the post-inode
9453 	 * write processing to put it on the id_pendinghd list.
9454 	 */
9455 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9456 	if (MOUNTEDSUJ(mp)) {
9457 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9458 		    inoreflst);
9459 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9460 		    ("softdep_setup_directory_change: bad jaddref %p",
9461 		    jaddref));
9462 		jaddref->ja_diroff = dp->i_offset;
9463 		jaddref->ja_diradd = dap;
9464 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9465 		    dap, da_pdlist);
9466 		add_to_journal(&jaddref->ja_list);
9467 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9468 		dap->da_state |= COMPLETE;
9469 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9470 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9471 	} else {
9472 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9473 		    dap, da_pdlist);
9474 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9475 	}
9476 	/*
9477 	 * If we're making a new name for a directory that has not been
9478 	 * committed when need to move the dot and dotdot references to
9479 	 * this new name.
9480 	 */
9481 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9482 		merge_diradd(inodedep, dap);
9483 	FREE_LOCK(ump);
9484 }
9485 
9486 /*
9487  * Called whenever the link count on an inode is changed.
9488  * It creates an inode dependency so that the new reference(s)
9489  * to the inode cannot be committed to disk until the updated
9490  * inode has been written.
9491  */
9492 void
9493 softdep_change_linkcnt(ip)
9494 	struct inode *ip;	/* the inode with the increased link count */
9495 {
9496 	struct inodedep *inodedep;
9497 	struct ufsmount *ump;
9498 
9499 	ump = ITOUMP(ip);
9500 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9501 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9502 	ACQUIRE_LOCK(ump);
9503 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9504 	if (ip->i_nlink < ip->i_effnlink)
9505 		panic("softdep_change_linkcnt: bad delta");
9506 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9507 	FREE_LOCK(ump);
9508 }
9509 
9510 /*
9511  * Attach a sbdep dependency to the superblock buf so that we can keep
9512  * track of the head of the linked list of referenced but unlinked inodes.
9513  */
9514 void
9515 softdep_setup_sbupdate(ump, fs, bp)
9516 	struct ufsmount *ump;
9517 	struct fs *fs;
9518 	struct buf *bp;
9519 {
9520 	struct sbdep *sbdep;
9521 	struct worklist *wk;
9522 
9523 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9524 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9525 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9526 		if (wk->wk_type == D_SBDEP)
9527 			break;
9528 	if (wk != NULL)
9529 		return;
9530 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9531 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9532 	sbdep->sb_fs = fs;
9533 	sbdep->sb_ump = ump;
9534 	ACQUIRE_LOCK(ump);
9535 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9536 	FREE_LOCK(ump);
9537 }
9538 
9539 /*
9540  * Return the first unlinked inodedep which is ready to be the head of the
9541  * list.  The inodedep and all those after it must have valid next pointers.
9542  */
9543 static struct inodedep *
9544 first_unlinked_inodedep(ump)
9545 	struct ufsmount *ump;
9546 {
9547 	struct inodedep *inodedep;
9548 	struct inodedep *idp;
9549 
9550 	LOCK_OWNED(ump);
9551 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9552 	    inodedep; inodedep = idp) {
9553 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9554 			return (NULL);
9555 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9556 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9557 			break;
9558 		if ((inodedep->id_state & UNLINKPREV) == 0)
9559 			break;
9560 	}
9561 	return (inodedep);
9562 }
9563 
9564 /*
9565  * Set the sujfree unlinked head pointer prior to writing a superblock.
9566  */
9567 static void
9568 initiate_write_sbdep(sbdep)
9569 	struct sbdep *sbdep;
9570 {
9571 	struct inodedep *inodedep;
9572 	struct fs *bpfs;
9573 	struct fs *fs;
9574 
9575 	bpfs = sbdep->sb_fs;
9576 	fs = sbdep->sb_ump->um_fs;
9577 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9578 	if (inodedep) {
9579 		fs->fs_sujfree = inodedep->id_ino;
9580 		inodedep->id_state |= UNLINKPREV;
9581 	} else
9582 		fs->fs_sujfree = 0;
9583 	bpfs->fs_sujfree = fs->fs_sujfree;
9584 }
9585 
9586 /*
9587  * After a superblock is written determine whether it must be written again
9588  * due to a changing unlinked list head.
9589  */
9590 static int
9591 handle_written_sbdep(sbdep, bp)
9592 	struct sbdep *sbdep;
9593 	struct buf *bp;
9594 {
9595 	struct inodedep *inodedep;
9596 	struct fs *fs;
9597 
9598 	LOCK_OWNED(sbdep->sb_ump);
9599 	fs = sbdep->sb_fs;
9600 	/*
9601 	 * If the superblock doesn't match the in-memory list start over.
9602 	 */
9603 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9604 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9605 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9606 		bdirty(bp);
9607 		return (1);
9608 	}
9609 	WORKITEM_FREE(sbdep, D_SBDEP);
9610 	if (fs->fs_sujfree == 0)
9611 		return (0);
9612 	/*
9613 	 * Now that we have a record of this inode in stable store allow it
9614 	 * to be written to free up pending work.  Inodes may see a lot of
9615 	 * write activity after they are unlinked which we must not hold up.
9616 	 */
9617 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9618 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9619 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9620 			    inodedep, inodedep->id_state);
9621 		if (inodedep->id_state & UNLINKONLIST)
9622 			break;
9623 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9624 	}
9625 
9626 	return (0);
9627 }
9628 
9629 /*
9630  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9631  */
9632 static void
9633 unlinked_inodedep(mp, inodedep)
9634 	struct mount *mp;
9635 	struct inodedep *inodedep;
9636 {
9637 	struct ufsmount *ump;
9638 
9639 	ump = VFSTOUFS(mp);
9640 	LOCK_OWNED(ump);
9641 	if (MOUNTEDSUJ(mp) == 0)
9642 		return;
9643 	ump->um_fs->fs_fmod = 1;
9644 	if (inodedep->id_state & UNLINKED)
9645 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9646 	inodedep->id_state |= UNLINKED;
9647 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9648 }
9649 
9650 /*
9651  * Remove an inodedep from the unlinked inodedep list.  This may require
9652  * disk writes if the inode has made it that far.
9653  */
9654 static void
9655 clear_unlinked_inodedep(inodedep)
9656 	struct inodedep *inodedep;
9657 {
9658 	struct ufs2_dinode *dip;
9659 	struct ufsmount *ump;
9660 	struct inodedep *idp;
9661 	struct inodedep *idn;
9662 	struct fs *fs;
9663 	struct buf *bp;
9664 	ino_t ino;
9665 	ino_t nino;
9666 	ino_t pino;
9667 	int error;
9668 
9669 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9670 	fs = ump->um_fs;
9671 	ino = inodedep->id_ino;
9672 	error = 0;
9673 	for (;;) {
9674 		LOCK_OWNED(ump);
9675 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9676 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9677 		    inodedep));
9678 		/*
9679 		 * If nothing has yet been written simply remove us from
9680 		 * the in memory list and return.  This is the most common
9681 		 * case where handle_workitem_remove() loses the final
9682 		 * reference.
9683 		 */
9684 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9685 			break;
9686 		/*
9687 		 * If we have a NEXT pointer and no PREV pointer we can simply
9688 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9689 		 * careful not to clear PREV if the superblock points at
9690 		 * next as well.
9691 		 */
9692 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9693 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9694 			if (idn && fs->fs_sujfree != idn->id_ino)
9695 				idn->id_state &= ~UNLINKPREV;
9696 			break;
9697 		}
9698 		/*
9699 		 * Here we have an inodedep which is actually linked into
9700 		 * the list.  We must remove it by forcing a write to the
9701 		 * link before us, whether it be the superblock or an inode.
9702 		 * Unfortunately the list may change while we're waiting
9703 		 * on the buf lock for either resource so we must loop until
9704 		 * we lock the right one.  If both the superblock and an
9705 		 * inode point to this inode we must clear the inode first
9706 		 * followed by the superblock.
9707 		 */
9708 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9709 		pino = 0;
9710 		if (idp && (idp->id_state & UNLINKNEXT))
9711 			pino = idp->id_ino;
9712 		FREE_LOCK(ump);
9713 		if (pino == 0) {
9714 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9715 			    (int)fs->fs_sbsize, 0, 0, 0);
9716 		} else {
9717 			error = bread(ump->um_devvp,
9718 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9719 			    (int)fs->fs_bsize, NOCRED, &bp);
9720 			if (error)
9721 				brelse(bp);
9722 		}
9723 		ACQUIRE_LOCK(ump);
9724 		if (error)
9725 			break;
9726 		/* If the list has changed restart the loop. */
9727 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9728 		nino = 0;
9729 		if (idp && (idp->id_state & UNLINKNEXT))
9730 			nino = idp->id_ino;
9731 		if (nino != pino ||
9732 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9733 			FREE_LOCK(ump);
9734 			brelse(bp);
9735 			ACQUIRE_LOCK(ump);
9736 			continue;
9737 		}
9738 		nino = 0;
9739 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9740 		if (idn)
9741 			nino = idn->id_ino;
9742 		/*
9743 		 * Remove us from the in memory list.  After this we cannot
9744 		 * access the inodedep.
9745 		 */
9746 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9747 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9748 		    inodedep));
9749 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9750 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9751 		FREE_LOCK(ump);
9752 		/*
9753 		 * The predecessor's next pointer is manually updated here
9754 		 * so that the NEXT flag is never cleared for an element
9755 		 * that is in the list.
9756 		 */
9757 		if (pino == 0) {
9758 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9759 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9760 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9761 			    bp);
9762 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9763 			((struct ufs1_dinode *)bp->b_data +
9764 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9765 		} else {
9766 			dip = (struct ufs2_dinode *)bp->b_data +
9767 			    ino_to_fsbo(fs, pino);
9768 			dip->di_freelink = nino;
9769 			ffs_update_dinode_ckhash(fs, dip);
9770 		}
9771 		/*
9772 		 * If the bwrite fails we have no recourse to recover.  The
9773 		 * filesystem is corrupted already.
9774 		 */
9775 		bwrite(bp);
9776 		ACQUIRE_LOCK(ump);
9777 		/*
9778 		 * If the superblock pointer still needs to be cleared force
9779 		 * a write here.
9780 		 */
9781 		if (fs->fs_sujfree == ino) {
9782 			FREE_LOCK(ump);
9783 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9784 			    (int)fs->fs_sbsize, 0, 0, 0);
9785 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9786 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9787 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9788 			    bp);
9789 			bwrite(bp);
9790 			ACQUIRE_LOCK(ump);
9791 		}
9792 
9793 		if (fs->fs_sujfree != ino)
9794 			return;
9795 		panic("clear_unlinked_inodedep: Failed to clear free head");
9796 	}
9797 	if (inodedep->id_ino == fs->fs_sujfree)
9798 		panic("clear_unlinked_inodedep: Freeing head of free list");
9799 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9800 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9801 	return;
9802 }
9803 
9804 /*
9805  * This workitem decrements the inode's link count.
9806  * If the link count reaches zero, the file is removed.
9807  */
9808 static int
9809 handle_workitem_remove(dirrem, flags)
9810 	struct dirrem *dirrem;
9811 	int flags;
9812 {
9813 	struct inodedep *inodedep;
9814 	struct workhead dotdotwk;
9815 	struct worklist *wk;
9816 	struct ufsmount *ump;
9817 	struct mount *mp;
9818 	struct vnode *vp;
9819 	struct inode *ip;
9820 	ino_t oldinum;
9821 
9822 	if (dirrem->dm_state & ONWORKLIST)
9823 		panic("handle_workitem_remove: dirrem %p still on worklist",
9824 		    dirrem);
9825 	oldinum = dirrem->dm_oldinum;
9826 	mp = dirrem->dm_list.wk_mp;
9827 	ump = VFSTOUFS(mp);
9828 	flags |= LK_EXCLUSIVE;
9829 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9830 		return (EBUSY);
9831 	ip = VTOI(vp);
9832 	ACQUIRE_LOCK(ump);
9833 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9834 		panic("handle_workitem_remove: lost inodedep");
9835 	if (dirrem->dm_state & ONDEPLIST)
9836 		LIST_REMOVE(dirrem, dm_inonext);
9837 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9838 	    ("handle_workitem_remove:  Journal entries not written."));
9839 
9840 	/*
9841 	 * Move all dependencies waiting on the remove to complete
9842 	 * from the dirrem to the inode inowait list to be completed
9843 	 * after the inode has been updated and written to disk.  Any
9844 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9845 	 * is removed.
9846 	 */
9847 	LIST_INIT(&dotdotwk);
9848 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9849 		WORKLIST_REMOVE(wk);
9850 		if (wk->wk_state & MKDIR_PARENT) {
9851 			wk->wk_state &= ~MKDIR_PARENT;
9852 			WORKLIST_INSERT(&dotdotwk, wk);
9853 			continue;
9854 		}
9855 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9856 	}
9857 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9858 	/*
9859 	 * Normal file deletion.
9860 	 */
9861 	if ((dirrem->dm_state & RMDIR) == 0) {
9862 		ip->i_nlink--;
9863 		DIP_SET(ip, i_nlink, ip->i_nlink);
9864 		ip->i_flag |= IN_CHANGE;
9865 		if (ip->i_nlink < ip->i_effnlink)
9866 			panic("handle_workitem_remove: bad file delta");
9867 		if (ip->i_nlink == 0)
9868 			unlinked_inodedep(mp, inodedep);
9869 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9870 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9871 		    ("handle_workitem_remove: worklist not empty. %s",
9872 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9873 		WORKITEM_FREE(dirrem, D_DIRREM);
9874 		FREE_LOCK(ump);
9875 		goto out;
9876 	}
9877 	/*
9878 	 * Directory deletion. Decrement reference count for both the
9879 	 * just deleted parent directory entry and the reference for ".".
9880 	 * Arrange to have the reference count on the parent decremented
9881 	 * to account for the loss of "..".
9882 	 */
9883 	ip->i_nlink -= 2;
9884 	DIP_SET(ip, i_nlink, ip->i_nlink);
9885 	ip->i_flag |= IN_CHANGE;
9886 	if (ip->i_nlink < ip->i_effnlink)
9887 		panic("handle_workitem_remove: bad dir delta");
9888 	if (ip->i_nlink == 0)
9889 		unlinked_inodedep(mp, inodedep);
9890 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9891 	/*
9892 	 * Rename a directory to a new parent. Since, we are both deleting
9893 	 * and creating a new directory entry, the link count on the new
9894 	 * directory should not change. Thus we skip the followup dirrem.
9895 	 */
9896 	if (dirrem->dm_state & DIRCHG) {
9897 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9898 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9899 		WORKITEM_FREE(dirrem, D_DIRREM);
9900 		FREE_LOCK(ump);
9901 		goto out;
9902 	}
9903 	dirrem->dm_state = ONDEPLIST;
9904 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9905 	/*
9906 	 * Place the dirrem on the parent's diremhd list.
9907 	 */
9908 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9909 		panic("handle_workitem_remove: lost dir inodedep");
9910 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9911 	/*
9912 	 * If the allocated inode has never been written to disk, then
9913 	 * the on-disk inode is zero'ed and we can remove the file
9914 	 * immediately.  When journaling if the inode has been marked
9915 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9916 	 */
9917 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9918 	if (inodedep == NULL ||
9919 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9920 	    check_inode_unwritten(inodedep)) {
9921 		FREE_LOCK(ump);
9922 		vput(vp);
9923 		return handle_workitem_remove(dirrem, flags);
9924 	}
9925 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9926 	FREE_LOCK(ump);
9927 	ip->i_flag |= IN_CHANGE;
9928 out:
9929 	ffs_update(vp, 0);
9930 	vput(vp);
9931 	return (0);
9932 }
9933 
9934 /*
9935  * Inode de-allocation dependencies.
9936  *
9937  * When an inode's link count is reduced to zero, it can be de-allocated. We
9938  * found it convenient to postpone de-allocation until after the inode is
9939  * written to disk with its new link count (zero).  At this point, all of the
9940  * on-disk inode's block pointers are nullified and, with careful dependency
9941  * list ordering, all dependencies related to the inode will be satisfied and
9942  * the corresponding dependency structures de-allocated.  So, if/when the
9943  * inode is reused, there will be no mixing of old dependencies with new
9944  * ones.  This artificial dependency is set up by the block de-allocation
9945  * procedure above (softdep_setup_freeblocks) and completed by the
9946  * following procedure.
9947  */
9948 static void
9949 handle_workitem_freefile(freefile)
9950 	struct freefile *freefile;
9951 {
9952 	struct workhead wkhd;
9953 	struct fs *fs;
9954 	struct ufsmount *ump;
9955 	int error;
9956 #ifdef INVARIANTS
9957 	struct inodedep *idp;
9958 #endif
9959 
9960 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9961 	fs = ump->um_fs;
9962 #ifdef INVARIANTS
9963 	ACQUIRE_LOCK(ump);
9964 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9965 	FREE_LOCK(ump);
9966 	if (error)
9967 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9968 #endif
9969 	UFS_LOCK(ump);
9970 	fs->fs_pendinginodes -= 1;
9971 	UFS_UNLOCK(ump);
9972 	LIST_INIT(&wkhd);
9973 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9974 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9975 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9976 		softdep_error("handle_workitem_freefile", error);
9977 	ACQUIRE_LOCK(ump);
9978 	WORKITEM_FREE(freefile, D_FREEFILE);
9979 	FREE_LOCK(ump);
9980 }
9981 
9982 
9983 /*
9984  * Helper function which unlinks marker element from work list and returns
9985  * the next element on the list.
9986  */
9987 static __inline struct worklist *
9988 markernext(struct worklist *marker)
9989 {
9990 	struct worklist *next;
9991 
9992 	next = LIST_NEXT(marker, wk_list);
9993 	LIST_REMOVE(marker, wk_list);
9994 	return next;
9995 }
9996 
9997 /*
9998  * Disk writes.
9999  *
10000  * The dependency structures constructed above are most actively used when file
10001  * system blocks are written to disk.  No constraints are placed on when a
10002  * block can be written, but unsatisfied update dependencies are made safe by
10003  * modifying (or replacing) the source memory for the duration of the disk
10004  * write.  When the disk write completes, the memory block is again brought
10005  * up-to-date.
10006  *
10007  * In-core inode structure reclamation.
10008  *
10009  * Because there are a finite number of "in-core" inode structures, they are
10010  * reused regularly.  By transferring all inode-related dependencies to the
10011  * in-memory inode block and indexing them separately (via "inodedep"s), we
10012  * can allow "in-core" inode structures to be reused at any time and avoid
10013  * any increase in contention.
10014  *
10015  * Called just before entering the device driver to initiate a new disk I/O.
10016  * The buffer must be locked, thus, no I/O completion operations can occur
10017  * while we are manipulating its associated dependencies.
10018  */
10019 static void
10020 softdep_disk_io_initiation(bp)
10021 	struct buf *bp;		/* structure describing disk write to occur */
10022 {
10023 	struct worklist *wk;
10024 	struct worklist marker;
10025 	struct inodedep *inodedep;
10026 	struct freeblks *freeblks;
10027 	struct jblkdep *jblkdep;
10028 	struct newblk *newblk;
10029 	struct ufsmount *ump;
10030 
10031 	/*
10032 	 * We only care about write operations. There should never
10033 	 * be dependencies for reads.
10034 	 */
10035 	if (bp->b_iocmd != BIO_WRITE)
10036 		panic("softdep_disk_io_initiation: not write");
10037 
10038 	if (bp->b_vflags & BV_BKGRDINPROG)
10039 		panic("softdep_disk_io_initiation: Writing buffer with "
10040 		    "background write in progress: %p", bp);
10041 
10042 	ump = softdep_bp_to_mp(bp);
10043 	if (ump == NULL)
10044 		return;
10045 
10046 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10047 	PHOLD(curproc);			/* Don't swap out kernel stack */
10048 	ACQUIRE_LOCK(ump);
10049 	/*
10050 	 * Do any necessary pre-I/O processing.
10051 	 */
10052 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10053 	     wk = markernext(&marker)) {
10054 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10055 		switch (wk->wk_type) {
10056 
10057 		case D_PAGEDEP:
10058 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10059 			continue;
10060 
10061 		case D_INODEDEP:
10062 			inodedep = WK_INODEDEP(wk);
10063 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10064 				initiate_write_inodeblock_ufs1(inodedep, bp);
10065 			else
10066 				initiate_write_inodeblock_ufs2(inodedep, bp);
10067 			continue;
10068 
10069 		case D_INDIRDEP:
10070 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10071 			continue;
10072 
10073 		case D_BMSAFEMAP:
10074 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10075 			continue;
10076 
10077 		case D_JSEG:
10078 			WK_JSEG(wk)->js_buf = NULL;
10079 			continue;
10080 
10081 		case D_FREEBLKS:
10082 			freeblks = WK_FREEBLKS(wk);
10083 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10084 			/*
10085 			 * We have to wait for the freeblks to be journaled
10086 			 * before we can write an inodeblock with updated
10087 			 * pointers.  Be careful to arrange the marker so
10088 			 * we revisit the freeblks if it's not removed by
10089 			 * the first jwait().
10090 			 */
10091 			if (jblkdep != NULL) {
10092 				LIST_REMOVE(&marker, wk_list);
10093 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10094 				jwait(&jblkdep->jb_list, MNT_WAIT);
10095 			}
10096 			continue;
10097 		case D_ALLOCDIRECT:
10098 		case D_ALLOCINDIR:
10099 			/*
10100 			 * We have to wait for the jnewblk to be journaled
10101 			 * before we can write to a block if the contents
10102 			 * may be confused with an earlier file's indirect
10103 			 * at recovery time.  Handle the marker as described
10104 			 * above.
10105 			 */
10106 			newblk = WK_NEWBLK(wk);
10107 			if (newblk->nb_jnewblk != NULL &&
10108 			    indirblk_lookup(newblk->nb_list.wk_mp,
10109 			    newblk->nb_newblkno)) {
10110 				LIST_REMOVE(&marker, wk_list);
10111 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10112 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10113 			}
10114 			continue;
10115 
10116 		case D_SBDEP:
10117 			initiate_write_sbdep(WK_SBDEP(wk));
10118 			continue;
10119 
10120 		case D_MKDIR:
10121 		case D_FREEWORK:
10122 		case D_FREEDEP:
10123 		case D_JSEGDEP:
10124 			continue;
10125 
10126 		default:
10127 			panic("handle_disk_io_initiation: Unexpected type %s",
10128 			    TYPENAME(wk->wk_type));
10129 			/* NOTREACHED */
10130 		}
10131 	}
10132 	FREE_LOCK(ump);
10133 	PRELE(curproc);			/* Allow swapout of kernel stack */
10134 }
10135 
10136 /*
10137  * Called from within the procedure above to deal with unsatisfied
10138  * allocation dependencies in a directory. The buffer must be locked,
10139  * thus, no I/O completion operations can occur while we are
10140  * manipulating its associated dependencies.
10141  */
10142 static void
10143 initiate_write_filepage(pagedep, bp)
10144 	struct pagedep *pagedep;
10145 	struct buf *bp;
10146 {
10147 	struct jremref *jremref;
10148 	struct jmvref *jmvref;
10149 	struct dirrem *dirrem;
10150 	struct diradd *dap;
10151 	struct direct *ep;
10152 	int i;
10153 
10154 	if (pagedep->pd_state & IOSTARTED) {
10155 		/*
10156 		 * This can only happen if there is a driver that does not
10157 		 * understand chaining. Here biodone will reissue the call
10158 		 * to strategy for the incomplete buffers.
10159 		 */
10160 		printf("initiate_write_filepage: already started\n");
10161 		return;
10162 	}
10163 	pagedep->pd_state |= IOSTARTED;
10164 	/*
10165 	 * Wait for all journal remove dependencies to hit the disk.
10166 	 * We can not allow any potentially conflicting directory adds
10167 	 * to be visible before removes and rollback is too difficult.
10168 	 * The per-filesystem lock may be dropped and re-acquired, however
10169 	 * we hold the buf locked so the dependency can not go away.
10170 	 */
10171 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10172 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10173 			jwait(&jremref->jr_list, MNT_WAIT);
10174 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10175 		jwait(&jmvref->jm_list, MNT_WAIT);
10176 	for (i = 0; i < DAHASHSZ; i++) {
10177 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10178 			ep = (struct direct *)
10179 			    ((char *)bp->b_data + dap->da_offset);
10180 			if (ep->d_ino != dap->da_newinum)
10181 				panic("%s: dir inum %ju != new %ju",
10182 				    "initiate_write_filepage",
10183 				    (uintmax_t)ep->d_ino,
10184 				    (uintmax_t)dap->da_newinum);
10185 			if (dap->da_state & DIRCHG)
10186 				ep->d_ino = dap->da_previous->dm_oldinum;
10187 			else
10188 				ep->d_ino = 0;
10189 			dap->da_state &= ~ATTACHED;
10190 			dap->da_state |= UNDONE;
10191 		}
10192 	}
10193 }
10194 
10195 /*
10196  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10197  * Note that any bug fixes made to this routine must be done in the
10198  * version found below.
10199  *
10200  * Called from within the procedure above to deal with unsatisfied
10201  * allocation dependencies in an inodeblock. The buffer must be
10202  * locked, thus, no I/O completion operations can occur while we
10203  * are manipulating its associated dependencies.
10204  */
10205 static void
10206 initiate_write_inodeblock_ufs1(inodedep, bp)
10207 	struct inodedep *inodedep;
10208 	struct buf *bp;			/* The inode block */
10209 {
10210 	struct allocdirect *adp, *lastadp;
10211 	struct ufs1_dinode *dp;
10212 	struct ufs1_dinode *sip;
10213 	struct inoref *inoref;
10214 	struct ufsmount *ump;
10215 	struct fs *fs;
10216 	ufs_lbn_t i;
10217 #ifdef INVARIANTS
10218 	ufs_lbn_t prevlbn = 0;
10219 #endif
10220 	int deplist;
10221 
10222 	if (inodedep->id_state & IOSTARTED)
10223 		panic("initiate_write_inodeblock_ufs1: already started");
10224 	inodedep->id_state |= IOSTARTED;
10225 	fs = inodedep->id_fs;
10226 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10227 	LOCK_OWNED(ump);
10228 	dp = (struct ufs1_dinode *)bp->b_data +
10229 	    ino_to_fsbo(fs, inodedep->id_ino);
10230 
10231 	/*
10232 	 * If we're on the unlinked list but have not yet written our
10233 	 * next pointer initialize it here.
10234 	 */
10235 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10236 		struct inodedep *inon;
10237 
10238 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10239 		dp->di_freelink = inon ? inon->id_ino : 0;
10240 	}
10241 	/*
10242 	 * If the bitmap is not yet written, then the allocated
10243 	 * inode cannot be written to disk.
10244 	 */
10245 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10246 		if (inodedep->id_savedino1 != NULL)
10247 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10248 		FREE_LOCK(ump);
10249 		sip = malloc(sizeof(struct ufs1_dinode),
10250 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10251 		ACQUIRE_LOCK(ump);
10252 		inodedep->id_savedino1 = sip;
10253 		*inodedep->id_savedino1 = *dp;
10254 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10255 		dp->di_gen = inodedep->id_savedino1->di_gen;
10256 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10257 		return;
10258 	}
10259 	/*
10260 	 * If no dependencies, then there is nothing to roll back.
10261 	 */
10262 	inodedep->id_savedsize = dp->di_size;
10263 	inodedep->id_savedextsize = 0;
10264 	inodedep->id_savednlink = dp->di_nlink;
10265 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10266 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10267 		return;
10268 	/*
10269 	 * Revert the link count to that of the first unwritten journal entry.
10270 	 */
10271 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10272 	if (inoref)
10273 		dp->di_nlink = inoref->if_nlink;
10274 	/*
10275 	 * Set the dependencies to busy.
10276 	 */
10277 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10278 	     adp = TAILQ_NEXT(adp, ad_next)) {
10279 #ifdef INVARIANTS
10280 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10281 			panic("softdep_write_inodeblock: lbn order");
10282 		prevlbn = adp->ad_offset;
10283 		if (adp->ad_offset < UFS_NDADDR &&
10284 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10285 			panic("initiate_write_inodeblock_ufs1: "
10286 			    "direct pointer #%jd mismatch %d != %jd",
10287 			    (intmax_t)adp->ad_offset,
10288 			    dp->di_db[adp->ad_offset],
10289 			    (intmax_t)adp->ad_newblkno);
10290 		if (adp->ad_offset >= UFS_NDADDR &&
10291 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10292 			panic("initiate_write_inodeblock_ufs1: "
10293 			    "indirect pointer #%jd mismatch %d != %jd",
10294 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10295 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10296 			    (intmax_t)adp->ad_newblkno);
10297 		deplist |= 1 << adp->ad_offset;
10298 		if ((adp->ad_state & ATTACHED) == 0)
10299 			panic("initiate_write_inodeblock_ufs1: "
10300 			    "Unknown state 0x%x", adp->ad_state);
10301 #endif /* INVARIANTS */
10302 		adp->ad_state &= ~ATTACHED;
10303 		adp->ad_state |= UNDONE;
10304 	}
10305 	/*
10306 	 * The on-disk inode cannot claim to be any larger than the last
10307 	 * fragment that has been written. Otherwise, the on-disk inode
10308 	 * might have fragments that were not the last block in the file
10309 	 * which would corrupt the filesystem.
10310 	 */
10311 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10312 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10313 		if (adp->ad_offset >= UFS_NDADDR)
10314 			break;
10315 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10316 		/* keep going until hitting a rollback to a frag */
10317 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10318 			continue;
10319 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10320 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10321 #ifdef INVARIANTS
10322 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10323 				panic("initiate_write_inodeblock_ufs1: "
10324 				    "lost dep1");
10325 #endif /* INVARIANTS */
10326 			dp->di_db[i] = 0;
10327 		}
10328 		for (i = 0; i < UFS_NIADDR; i++) {
10329 #ifdef INVARIANTS
10330 			if (dp->di_ib[i] != 0 &&
10331 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10332 				panic("initiate_write_inodeblock_ufs1: "
10333 				    "lost dep2");
10334 #endif /* INVARIANTS */
10335 			dp->di_ib[i] = 0;
10336 		}
10337 		return;
10338 	}
10339 	/*
10340 	 * If we have zero'ed out the last allocated block of the file,
10341 	 * roll back the size to the last currently allocated block.
10342 	 * We know that this last allocated block is a full-sized as
10343 	 * we already checked for fragments in the loop above.
10344 	 */
10345 	if (lastadp != NULL &&
10346 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10347 		for (i = lastadp->ad_offset; i >= 0; i--)
10348 			if (dp->di_db[i] != 0)
10349 				break;
10350 		dp->di_size = (i + 1) * fs->fs_bsize;
10351 	}
10352 	/*
10353 	 * The only dependencies are for indirect blocks.
10354 	 *
10355 	 * The file size for indirect block additions is not guaranteed.
10356 	 * Such a guarantee would be non-trivial to achieve. The conventional
10357 	 * synchronous write implementation also does not make this guarantee.
10358 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10359 	 * can be over-estimated without destroying integrity when the file
10360 	 * moves into the indirect blocks (i.e., is large). If we want to
10361 	 * postpone fsck, we are stuck with this argument.
10362 	 */
10363 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10364 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10365 }
10366 
10367 /*
10368  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10369  * Note that any bug fixes made to this routine must be done in the
10370  * version found above.
10371  *
10372  * Called from within the procedure above to deal with unsatisfied
10373  * allocation dependencies in an inodeblock. The buffer must be
10374  * locked, thus, no I/O completion operations can occur while we
10375  * are manipulating its associated dependencies.
10376  */
10377 static void
10378 initiate_write_inodeblock_ufs2(inodedep, bp)
10379 	struct inodedep *inodedep;
10380 	struct buf *bp;			/* The inode block */
10381 {
10382 	struct allocdirect *adp, *lastadp;
10383 	struct ufs2_dinode *dp;
10384 	struct ufs2_dinode *sip;
10385 	struct inoref *inoref;
10386 	struct ufsmount *ump;
10387 	struct fs *fs;
10388 	ufs_lbn_t i;
10389 #ifdef INVARIANTS
10390 	ufs_lbn_t prevlbn = 0;
10391 #endif
10392 	int deplist;
10393 
10394 	if (inodedep->id_state & IOSTARTED)
10395 		panic("initiate_write_inodeblock_ufs2: already started");
10396 	inodedep->id_state |= IOSTARTED;
10397 	fs = inodedep->id_fs;
10398 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10399 	LOCK_OWNED(ump);
10400 	dp = (struct ufs2_dinode *)bp->b_data +
10401 	    ino_to_fsbo(fs, inodedep->id_ino);
10402 
10403 	/*
10404 	 * If we're on the unlinked list but have not yet written our
10405 	 * next pointer initialize it here.
10406 	 */
10407 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10408 		struct inodedep *inon;
10409 
10410 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10411 		dp->di_freelink = inon ? inon->id_ino : 0;
10412 		ffs_update_dinode_ckhash(fs, dp);
10413 	}
10414 	/*
10415 	 * If the bitmap is not yet written, then the allocated
10416 	 * inode cannot be written to disk.
10417 	 */
10418 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10419 		if (inodedep->id_savedino2 != NULL)
10420 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10421 		FREE_LOCK(ump);
10422 		sip = malloc(sizeof(struct ufs2_dinode),
10423 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10424 		ACQUIRE_LOCK(ump);
10425 		inodedep->id_savedino2 = sip;
10426 		*inodedep->id_savedino2 = *dp;
10427 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10428 		dp->di_gen = inodedep->id_savedino2->di_gen;
10429 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10430 		return;
10431 	}
10432 	/*
10433 	 * If no dependencies, then there is nothing to roll back.
10434 	 */
10435 	inodedep->id_savedsize = dp->di_size;
10436 	inodedep->id_savedextsize = dp->di_extsize;
10437 	inodedep->id_savednlink = dp->di_nlink;
10438 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10439 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10440 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10441 		return;
10442 	/*
10443 	 * Revert the link count to that of the first unwritten journal entry.
10444 	 */
10445 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10446 	if (inoref)
10447 		dp->di_nlink = inoref->if_nlink;
10448 
10449 	/*
10450 	 * Set the ext data dependencies to busy.
10451 	 */
10452 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10453 	     adp = TAILQ_NEXT(adp, ad_next)) {
10454 #ifdef INVARIANTS
10455 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10456 			panic("initiate_write_inodeblock_ufs2: lbn order");
10457 		prevlbn = adp->ad_offset;
10458 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10459 			panic("initiate_write_inodeblock_ufs2: "
10460 			    "ext pointer #%jd mismatch %jd != %jd",
10461 			    (intmax_t)adp->ad_offset,
10462 			    (intmax_t)dp->di_extb[adp->ad_offset],
10463 			    (intmax_t)adp->ad_newblkno);
10464 		deplist |= 1 << adp->ad_offset;
10465 		if ((adp->ad_state & ATTACHED) == 0)
10466 			panic("initiate_write_inodeblock_ufs2: Unknown "
10467 			    "state 0x%x", adp->ad_state);
10468 #endif /* INVARIANTS */
10469 		adp->ad_state &= ~ATTACHED;
10470 		adp->ad_state |= UNDONE;
10471 	}
10472 	/*
10473 	 * The on-disk inode cannot claim to be any larger than the last
10474 	 * fragment that has been written. Otherwise, the on-disk inode
10475 	 * might have fragments that were not the last block in the ext
10476 	 * data which would corrupt the filesystem.
10477 	 */
10478 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10479 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10480 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10481 		/* keep going until hitting a rollback to a frag */
10482 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10483 			continue;
10484 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10485 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10486 #ifdef INVARIANTS
10487 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10488 				panic("initiate_write_inodeblock_ufs2: "
10489 				    "lost dep1");
10490 #endif /* INVARIANTS */
10491 			dp->di_extb[i] = 0;
10492 		}
10493 		lastadp = NULL;
10494 		break;
10495 	}
10496 	/*
10497 	 * If we have zero'ed out the last allocated block of the ext
10498 	 * data, roll back the size to the last currently allocated block.
10499 	 * We know that this last allocated block is a full-sized as
10500 	 * we already checked for fragments in the loop above.
10501 	 */
10502 	if (lastadp != NULL &&
10503 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10504 		for (i = lastadp->ad_offset; i >= 0; i--)
10505 			if (dp->di_extb[i] != 0)
10506 				break;
10507 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10508 	}
10509 	/*
10510 	 * Set the file data dependencies to busy.
10511 	 */
10512 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10513 	     adp = TAILQ_NEXT(adp, ad_next)) {
10514 #ifdef INVARIANTS
10515 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10516 			panic("softdep_write_inodeblock: lbn order");
10517 		if ((adp->ad_state & ATTACHED) == 0)
10518 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10519 		prevlbn = adp->ad_offset;
10520 		if (adp->ad_offset < UFS_NDADDR &&
10521 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10522 			panic("initiate_write_inodeblock_ufs2: "
10523 			    "direct pointer #%jd mismatch %jd != %jd",
10524 			    (intmax_t)adp->ad_offset,
10525 			    (intmax_t)dp->di_db[adp->ad_offset],
10526 			    (intmax_t)adp->ad_newblkno);
10527 		if (adp->ad_offset >= UFS_NDADDR &&
10528 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10529 			panic("initiate_write_inodeblock_ufs2: "
10530 			    "indirect pointer #%jd mismatch %jd != %jd",
10531 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10532 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10533 			    (intmax_t)adp->ad_newblkno);
10534 		deplist |= 1 << adp->ad_offset;
10535 		if ((adp->ad_state & ATTACHED) == 0)
10536 			panic("initiate_write_inodeblock_ufs2: Unknown "
10537 			     "state 0x%x", adp->ad_state);
10538 #endif /* INVARIANTS */
10539 		adp->ad_state &= ~ATTACHED;
10540 		adp->ad_state |= UNDONE;
10541 	}
10542 	/*
10543 	 * The on-disk inode cannot claim to be any larger than the last
10544 	 * fragment that has been written. Otherwise, the on-disk inode
10545 	 * might have fragments that were not the last block in the file
10546 	 * which would corrupt the filesystem.
10547 	 */
10548 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10549 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10550 		if (adp->ad_offset >= UFS_NDADDR)
10551 			break;
10552 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10553 		/* keep going until hitting a rollback to a frag */
10554 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10555 			continue;
10556 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10557 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10558 #ifdef INVARIANTS
10559 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10560 				panic("initiate_write_inodeblock_ufs2: "
10561 				    "lost dep2");
10562 #endif /* INVARIANTS */
10563 			dp->di_db[i] = 0;
10564 		}
10565 		for (i = 0; i < UFS_NIADDR; i++) {
10566 #ifdef INVARIANTS
10567 			if (dp->di_ib[i] != 0 &&
10568 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10569 				panic("initiate_write_inodeblock_ufs2: "
10570 				    "lost dep3");
10571 #endif /* INVARIANTS */
10572 			dp->di_ib[i] = 0;
10573 		}
10574 		ffs_update_dinode_ckhash(fs, dp);
10575 		return;
10576 	}
10577 	/*
10578 	 * If we have zero'ed out the last allocated block of the file,
10579 	 * roll back the size to the last currently allocated block.
10580 	 * We know that this last allocated block is a full-sized as
10581 	 * we already checked for fragments in the loop above.
10582 	 */
10583 	if (lastadp != NULL &&
10584 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10585 		for (i = lastadp->ad_offset; i >= 0; i--)
10586 			if (dp->di_db[i] != 0)
10587 				break;
10588 		dp->di_size = (i + 1) * fs->fs_bsize;
10589 	}
10590 	/*
10591 	 * The only dependencies are for indirect blocks.
10592 	 *
10593 	 * The file size for indirect block additions is not guaranteed.
10594 	 * Such a guarantee would be non-trivial to achieve. The conventional
10595 	 * synchronous write implementation also does not make this guarantee.
10596 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10597 	 * can be over-estimated without destroying integrity when the file
10598 	 * moves into the indirect blocks (i.e., is large). If we want to
10599 	 * postpone fsck, we are stuck with this argument.
10600 	 */
10601 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10602 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10603 	ffs_update_dinode_ckhash(fs, dp);
10604 }
10605 
10606 /*
10607  * Cancel an indirdep as a result of truncation.  Release all of the
10608  * children allocindirs and place their journal work on the appropriate
10609  * list.
10610  */
10611 static void
10612 cancel_indirdep(indirdep, bp, freeblks)
10613 	struct indirdep *indirdep;
10614 	struct buf *bp;
10615 	struct freeblks *freeblks;
10616 {
10617 	struct allocindir *aip;
10618 
10619 	/*
10620 	 * None of the indirect pointers will ever be visible,
10621 	 * so they can simply be tossed. GOINGAWAY ensures
10622 	 * that allocated pointers will be saved in the buffer
10623 	 * cache until they are freed. Note that they will
10624 	 * only be able to be found by their physical address
10625 	 * since the inode mapping the logical address will
10626 	 * be gone. The save buffer used for the safe copy
10627 	 * was allocated in setup_allocindir_phase2 using
10628 	 * the physical address so it could be used for this
10629 	 * purpose. Hence we swap the safe copy with the real
10630 	 * copy, allowing the safe copy to be freed and holding
10631 	 * on to the real copy for later use in indir_trunc.
10632 	 */
10633 	if (indirdep->ir_state & GOINGAWAY)
10634 		panic("cancel_indirdep: already gone");
10635 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10636 		indirdep->ir_state |= DEPCOMPLETE;
10637 		LIST_REMOVE(indirdep, ir_next);
10638 	}
10639 	indirdep->ir_state |= GOINGAWAY;
10640 	/*
10641 	 * Pass in bp for blocks still have journal writes
10642 	 * pending so we can cancel them on their own.
10643 	 */
10644 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10645 		cancel_allocindir(aip, bp, freeblks, 0);
10646 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10647 		cancel_allocindir(aip, NULL, freeblks, 0);
10648 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10649 		cancel_allocindir(aip, NULL, freeblks, 0);
10650 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10651 		cancel_allocindir(aip, NULL, freeblks, 0);
10652 	/*
10653 	 * If there are pending partial truncations we need to keep the
10654 	 * old block copy around until they complete.  This is because
10655 	 * the current b_data is not a perfect superset of the available
10656 	 * blocks.
10657 	 */
10658 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10659 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10660 	else
10661 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10662 	WORKLIST_REMOVE(&indirdep->ir_list);
10663 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10664 	indirdep->ir_bp = NULL;
10665 	indirdep->ir_freeblks = freeblks;
10666 }
10667 
10668 /*
10669  * Free an indirdep once it no longer has new pointers to track.
10670  */
10671 static void
10672 free_indirdep(indirdep)
10673 	struct indirdep *indirdep;
10674 {
10675 
10676 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10677 	    ("free_indirdep: Indir trunc list not empty."));
10678 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10679 	    ("free_indirdep: Complete head not empty."));
10680 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10681 	    ("free_indirdep: write head not empty."));
10682 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10683 	    ("free_indirdep: done head not empty."));
10684 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10685 	    ("free_indirdep: deplist head not empty."));
10686 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10687 	    ("free_indirdep: %p still on newblk list.", indirdep));
10688 	KASSERT(indirdep->ir_saveddata == NULL,
10689 	    ("free_indirdep: %p still has saved data.", indirdep));
10690 	if (indirdep->ir_state & ONWORKLIST)
10691 		WORKLIST_REMOVE(&indirdep->ir_list);
10692 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10693 }
10694 
10695 /*
10696  * Called before a write to an indirdep.  This routine is responsible for
10697  * rolling back pointers to a safe state which includes only those
10698  * allocindirs which have been completed.
10699  */
10700 static void
10701 initiate_write_indirdep(indirdep, bp)
10702 	struct indirdep *indirdep;
10703 	struct buf *bp;
10704 {
10705 	struct ufsmount *ump;
10706 
10707 	indirdep->ir_state |= IOSTARTED;
10708 	if (indirdep->ir_state & GOINGAWAY)
10709 		panic("disk_io_initiation: indirdep gone");
10710 	/*
10711 	 * If there are no remaining dependencies, this will be writing
10712 	 * the real pointers.
10713 	 */
10714 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10715 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10716 		return;
10717 	/*
10718 	 * Replace up-to-date version with safe version.
10719 	 */
10720 	if (indirdep->ir_saveddata == NULL) {
10721 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10722 		LOCK_OWNED(ump);
10723 		FREE_LOCK(ump);
10724 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10725 		    M_SOFTDEP_FLAGS);
10726 		ACQUIRE_LOCK(ump);
10727 	}
10728 	indirdep->ir_state &= ~ATTACHED;
10729 	indirdep->ir_state |= UNDONE;
10730 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10731 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10732 	    bp->b_bcount);
10733 }
10734 
10735 /*
10736  * Called when an inode has been cleared in a cg bitmap.  This finally
10737  * eliminates any canceled jaddrefs
10738  */
10739 void
10740 softdep_setup_inofree(mp, bp, ino, wkhd)
10741 	struct mount *mp;
10742 	struct buf *bp;
10743 	ino_t ino;
10744 	struct workhead *wkhd;
10745 {
10746 	struct worklist *wk, *wkn;
10747 	struct inodedep *inodedep;
10748 	struct ufsmount *ump;
10749 	uint8_t *inosused;
10750 	struct cg *cgp;
10751 	struct fs *fs;
10752 
10753 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10754 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10755 	ump = VFSTOUFS(mp);
10756 	ACQUIRE_LOCK(ump);
10757 	fs = ump->um_fs;
10758 	cgp = (struct cg *)bp->b_data;
10759 	inosused = cg_inosused(cgp);
10760 	if (isset(inosused, ino % fs->fs_ipg))
10761 		panic("softdep_setup_inofree: inode %ju not freed.",
10762 		    (uintmax_t)ino);
10763 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10764 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10765 		    (uintmax_t)ino, inodedep);
10766 	if (wkhd) {
10767 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10768 			if (wk->wk_type != D_JADDREF)
10769 				continue;
10770 			WORKLIST_REMOVE(wk);
10771 			/*
10772 			 * We can free immediately even if the jaddref
10773 			 * isn't attached in a background write as now
10774 			 * the bitmaps are reconciled.
10775 			 */
10776 			wk->wk_state |= COMPLETE | ATTACHED;
10777 			free_jaddref(WK_JADDREF(wk));
10778 		}
10779 		jwork_move(&bp->b_dep, wkhd);
10780 	}
10781 	FREE_LOCK(ump);
10782 }
10783 
10784 
10785 /*
10786  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10787  * map.  Any dependencies waiting for the write to clear are added to the
10788  * buf's list and any jnewblks that are being canceled are discarded
10789  * immediately.
10790  */
10791 void
10792 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10793 	struct mount *mp;
10794 	struct buf *bp;
10795 	ufs2_daddr_t blkno;
10796 	int frags;
10797 	struct workhead *wkhd;
10798 {
10799 	struct bmsafemap *bmsafemap;
10800 	struct jnewblk *jnewblk;
10801 	struct ufsmount *ump;
10802 	struct worklist *wk;
10803 	struct fs *fs;
10804 #ifdef INVARIANTS
10805 	uint8_t *blksfree;
10806 	struct cg *cgp;
10807 	ufs2_daddr_t jstart;
10808 	ufs2_daddr_t jend;
10809 	ufs2_daddr_t end;
10810 	long bno;
10811 	int i;
10812 #endif
10813 
10814 	CTR3(KTR_SUJ,
10815 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10816 	    blkno, frags, wkhd);
10817 
10818 	ump = VFSTOUFS(mp);
10819 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10820 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10821 	ACQUIRE_LOCK(ump);
10822 	/* Lookup the bmsafemap so we track when it is dirty. */
10823 	fs = ump->um_fs;
10824 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10825 	/*
10826 	 * Detach any jnewblks which have been canceled.  They must linger
10827 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10828 	 * an unjournaled allocation from hitting the disk.
10829 	 */
10830 	if (wkhd) {
10831 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10832 			CTR2(KTR_SUJ,
10833 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10834 			    blkno, wk->wk_type);
10835 			WORKLIST_REMOVE(wk);
10836 			if (wk->wk_type != D_JNEWBLK) {
10837 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10838 				continue;
10839 			}
10840 			jnewblk = WK_JNEWBLK(wk);
10841 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10842 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10843 #ifdef INVARIANTS
10844 			/*
10845 			 * Assert that this block is free in the bitmap
10846 			 * before we discard the jnewblk.
10847 			 */
10848 			cgp = (struct cg *)bp->b_data;
10849 			blksfree = cg_blksfree(cgp);
10850 			bno = dtogd(fs, jnewblk->jn_blkno);
10851 			for (i = jnewblk->jn_oldfrags;
10852 			    i < jnewblk->jn_frags; i++) {
10853 				if (isset(blksfree, bno + i))
10854 					continue;
10855 				panic("softdep_setup_blkfree: not free");
10856 			}
10857 #endif
10858 			/*
10859 			 * Even if it's not attached we can free immediately
10860 			 * as the new bitmap is correct.
10861 			 */
10862 			wk->wk_state |= COMPLETE | ATTACHED;
10863 			free_jnewblk(jnewblk);
10864 		}
10865 	}
10866 
10867 #ifdef INVARIANTS
10868 	/*
10869 	 * Assert that we are not freeing a block which has an outstanding
10870 	 * allocation dependency.
10871 	 */
10872 	fs = VFSTOUFS(mp)->um_fs;
10873 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10874 	end = blkno + frags;
10875 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10876 		/*
10877 		 * Don't match against blocks that will be freed when the
10878 		 * background write is done.
10879 		 */
10880 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10881 		    (COMPLETE | DEPCOMPLETE))
10882 			continue;
10883 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10884 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10885 		if ((blkno >= jstart && blkno < jend) ||
10886 		    (end > jstart && end <= jend)) {
10887 			printf("state 0x%X %jd - %d %d dep %p\n",
10888 			    jnewblk->jn_state, jnewblk->jn_blkno,
10889 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10890 			    jnewblk->jn_dep);
10891 			panic("softdep_setup_blkfree: "
10892 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10893 			    blkno, end, frags, jstart, jend);
10894 		}
10895 	}
10896 #endif
10897 	FREE_LOCK(ump);
10898 }
10899 
10900 /*
10901  * Revert a block allocation when the journal record that describes it
10902  * is not yet written.
10903  */
10904 static int
10905 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10906 	struct jnewblk *jnewblk;
10907 	struct fs *fs;
10908 	struct cg *cgp;
10909 	uint8_t *blksfree;
10910 {
10911 	ufs1_daddr_t fragno;
10912 	long cgbno, bbase;
10913 	int frags, blk;
10914 	int i;
10915 
10916 	frags = 0;
10917 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10918 	/*
10919 	 * We have to test which frags need to be rolled back.  We may
10920 	 * be operating on a stale copy when doing background writes.
10921 	 */
10922 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10923 		if (isclr(blksfree, cgbno + i))
10924 			frags++;
10925 	if (frags == 0)
10926 		return (0);
10927 	/*
10928 	 * This is mostly ffs_blkfree() sans some validation and
10929 	 * superblock updates.
10930 	 */
10931 	if (frags == fs->fs_frag) {
10932 		fragno = fragstoblks(fs, cgbno);
10933 		ffs_setblock(fs, blksfree, fragno);
10934 		ffs_clusteracct(fs, cgp, fragno, 1);
10935 		cgp->cg_cs.cs_nbfree++;
10936 	} else {
10937 		cgbno += jnewblk->jn_oldfrags;
10938 		bbase = cgbno - fragnum(fs, cgbno);
10939 		/* Decrement the old frags.  */
10940 		blk = blkmap(fs, blksfree, bbase);
10941 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10942 		/* Deallocate the fragment */
10943 		for (i = 0; i < frags; i++)
10944 			setbit(blksfree, cgbno + i);
10945 		cgp->cg_cs.cs_nffree += frags;
10946 		/* Add back in counts associated with the new frags */
10947 		blk = blkmap(fs, blksfree, bbase);
10948 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10949 		/* If a complete block has been reassembled, account for it. */
10950 		fragno = fragstoblks(fs, bbase);
10951 		if (ffs_isblock(fs, blksfree, fragno)) {
10952 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10953 			ffs_clusteracct(fs, cgp, fragno, 1);
10954 			cgp->cg_cs.cs_nbfree++;
10955 		}
10956 	}
10957 	stat_jnewblk++;
10958 	jnewblk->jn_state &= ~ATTACHED;
10959 	jnewblk->jn_state |= UNDONE;
10960 
10961 	return (frags);
10962 }
10963 
10964 static void
10965 initiate_write_bmsafemap(bmsafemap, bp)
10966 	struct bmsafemap *bmsafemap;
10967 	struct buf *bp;			/* The cg block. */
10968 {
10969 	struct jaddref *jaddref;
10970 	struct jnewblk *jnewblk;
10971 	uint8_t *inosused;
10972 	uint8_t *blksfree;
10973 	struct cg *cgp;
10974 	struct fs *fs;
10975 	ino_t ino;
10976 
10977 	/*
10978 	 * If this is a background write, we did this at the time that
10979 	 * the copy was made, so do not need to do it again.
10980 	 */
10981 	if (bmsafemap->sm_state & IOSTARTED)
10982 		return;
10983 	bmsafemap->sm_state |= IOSTARTED;
10984 	/*
10985 	 * Clear any inode allocations which are pending journal writes.
10986 	 */
10987 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10988 		cgp = (struct cg *)bp->b_data;
10989 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10990 		inosused = cg_inosused(cgp);
10991 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10992 			ino = jaddref->ja_ino % fs->fs_ipg;
10993 			if (isset(inosused, ino)) {
10994 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10995 					cgp->cg_cs.cs_ndir--;
10996 				cgp->cg_cs.cs_nifree++;
10997 				clrbit(inosused, ino);
10998 				jaddref->ja_state &= ~ATTACHED;
10999 				jaddref->ja_state |= UNDONE;
11000 				stat_jaddref++;
11001 			} else
11002 				panic("initiate_write_bmsafemap: inode %ju "
11003 				    "marked free", (uintmax_t)jaddref->ja_ino);
11004 		}
11005 	}
11006 	/*
11007 	 * Clear any block allocations which are pending journal writes.
11008 	 */
11009 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11010 		cgp = (struct cg *)bp->b_data;
11011 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11012 		blksfree = cg_blksfree(cgp);
11013 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11014 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11015 				continue;
11016 			panic("initiate_write_bmsafemap: block %jd "
11017 			    "marked free", jnewblk->jn_blkno);
11018 		}
11019 	}
11020 	/*
11021 	 * Move allocation lists to the written lists so they can be
11022 	 * cleared once the block write is complete.
11023 	 */
11024 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11025 	    inodedep, id_deps);
11026 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11027 	    newblk, nb_deps);
11028 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11029 	    wk_list);
11030 }
11031 
11032 /*
11033  * This routine is called during the completion interrupt
11034  * service routine for a disk write (from the procedure called
11035  * by the device driver to inform the filesystem caches of
11036  * a request completion).  It should be called early in this
11037  * procedure, before the block is made available to other
11038  * processes or other routines are called.
11039  *
11040  */
11041 static void
11042 softdep_disk_write_complete(bp)
11043 	struct buf *bp;		/* describes the completed disk write */
11044 {
11045 	struct worklist *wk;
11046 	struct worklist *owk;
11047 	struct ufsmount *ump;
11048 	struct workhead reattach;
11049 	struct freeblks *freeblks;
11050 	struct buf *sbp;
11051 
11052 	ump = softdep_bp_to_mp(bp);
11053 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11054 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11055 	     "with outstanding dependencies for buffer %p", bp));
11056 	if (ump == NULL)
11057 		return;
11058 	/*
11059 	 * If an error occurred while doing the write, then the data
11060 	 * has not hit the disk and the dependencies cannot be processed.
11061 	 * But we do have to go through and roll forward any dependencies
11062 	 * that were rolled back before the disk write.
11063 	 */
11064 	sbp = NULL;
11065 	ACQUIRE_LOCK(ump);
11066 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11067 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11068 			switch (wk->wk_type) {
11069 
11070 			case D_PAGEDEP:
11071 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11072 				continue;
11073 
11074 			case D_INODEDEP:
11075 				handle_written_inodeblock(WK_INODEDEP(wk),
11076 				    bp, 0);
11077 				continue;
11078 
11079 			case D_BMSAFEMAP:
11080 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11081 				    bp, 0);
11082 				continue;
11083 
11084 			case D_INDIRDEP:
11085 				handle_written_indirdep(WK_INDIRDEP(wk),
11086 				    bp, &sbp, 0);
11087 				continue;
11088 			default:
11089 				/* nothing to roll forward */
11090 				continue;
11091 			}
11092 		}
11093 		FREE_LOCK(ump);
11094 		if (sbp)
11095 			brelse(sbp);
11096 		return;
11097 	}
11098 	LIST_INIT(&reattach);
11099 
11100 	/*
11101 	 * Ump SU lock must not be released anywhere in this code segment.
11102 	 */
11103 	owk = NULL;
11104 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11105 		WORKLIST_REMOVE(wk);
11106 		atomic_add_long(&dep_write[wk->wk_type], 1);
11107 		if (wk == owk)
11108 			panic("duplicate worklist: %p\n", wk);
11109 		owk = wk;
11110 		switch (wk->wk_type) {
11111 
11112 		case D_PAGEDEP:
11113 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11114 			    WRITESUCCEEDED))
11115 				WORKLIST_INSERT(&reattach, wk);
11116 			continue;
11117 
11118 		case D_INODEDEP:
11119 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11120 			    WRITESUCCEEDED))
11121 				WORKLIST_INSERT(&reattach, wk);
11122 			continue;
11123 
11124 		case D_BMSAFEMAP:
11125 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11126 			    WRITESUCCEEDED))
11127 				WORKLIST_INSERT(&reattach, wk);
11128 			continue;
11129 
11130 		case D_MKDIR:
11131 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11132 			continue;
11133 
11134 		case D_ALLOCDIRECT:
11135 			wk->wk_state |= COMPLETE;
11136 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11137 			continue;
11138 
11139 		case D_ALLOCINDIR:
11140 			wk->wk_state |= COMPLETE;
11141 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11142 			continue;
11143 
11144 		case D_INDIRDEP:
11145 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11146 			    WRITESUCCEEDED))
11147 				WORKLIST_INSERT(&reattach, wk);
11148 			continue;
11149 
11150 		case D_FREEBLKS:
11151 			wk->wk_state |= COMPLETE;
11152 			freeblks = WK_FREEBLKS(wk);
11153 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11154 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11155 				add_to_worklist(wk, WK_NODELAY);
11156 			continue;
11157 
11158 		case D_FREEWORK:
11159 			handle_written_freework(WK_FREEWORK(wk));
11160 			break;
11161 
11162 		case D_JSEGDEP:
11163 			free_jsegdep(WK_JSEGDEP(wk));
11164 			continue;
11165 
11166 		case D_JSEG:
11167 			handle_written_jseg(WK_JSEG(wk), bp);
11168 			continue;
11169 
11170 		case D_SBDEP:
11171 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11172 				WORKLIST_INSERT(&reattach, wk);
11173 			continue;
11174 
11175 		case D_FREEDEP:
11176 			free_freedep(WK_FREEDEP(wk));
11177 			continue;
11178 
11179 		default:
11180 			panic("handle_disk_write_complete: Unknown type %s",
11181 			    TYPENAME(wk->wk_type));
11182 			/* NOTREACHED */
11183 		}
11184 	}
11185 	/*
11186 	 * Reattach any requests that must be redone.
11187 	 */
11188 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11189 		WORKLIST_REMOVE(wk);
11190 		WORKLIST_INSERT(&bp->b_dep, wk);
11191 	}
11192 	FREE_LOCK(ump);
11193 	if (sbp)
11194 		brelse(sbp);
11195 }
11196 
11197 /*
11198  * Called from within softdep_disk_write_complete above. Note that
11199  * this routine is always called from interrupt level with further
11200  * splbio interrupts blocked.
11201  */
11202 static void
11203 handle_allocdirect_partdone(adp, wkhd)
11204 	struct allocdirect *adp;	/* the completed allocdirect */
11205 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11206 {
11207 	struct allocdirectlst *listhead;
11208 	struct allocdirect *listadp;
11209 	struct inodedep *inodedep;
11210 	long bsize;
11211 
11212 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11213 		return;
11214 	/*
11215 	 * The on-disk inode cannot claim to be any larger than the last
11216 	 * fragment that has been written. Otherwise, the on-disk inode
11217 	 * might have fragments that were not the last block in the file
11218 	 * which would corrupt the filesystem. Thus, we cannot free any
11219 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11220 	 * these blocks must be rolled back to zero before writing the inode.
11221 	 * We check the currently active set of allocdirects in id_inoupdt
11222 	 * or id_extupdt as appropriate.
11223 	 */
11224 	inodedep = adp->ad_inodedep;
11225 	bsize = inodedep->id_fs->fs_bsize;
11226 	if (adp->ad_state & EXTDATA)
11227 		listhead = &inodedep->id_extupdt;
11228 	else
11229 		listhead = &inodedep->id_inoupdt;
11230 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11231 		/* found our block */
11232 		if (listadp == adp)
11233 			break;
11234 		/* continue if ad_oldlbn is not a fragment */
11235 		if (listadp->ad_oldsize == 0 ||
11236 		    listadp->ad_oldsize == bsize)
11237 			continue;
11238 		/* hit a fragment */
11239 		return;
11240 	}
11241 	/*
11242 	 * If we have reached the end of the current list without
11243 	 * finding the just finished dependency, then it must be
11244 	 * on the future dependency list. Future dependencies cannot
11245 	 * be freed until they are moved to the current list.
11246 	 */
11247 	if (listadp == NULL) {
11248 #ifdef INVARIANTS
11249 		if (adp->ad_state & EXTDATA)
11250 			listhead = &inodedep->id_newextupdt;
11251 		else
11252 			listhead = &inodedep->id_newinoupdt;
11253 		TAILQ_FOREACH(listadp, listhead, ad_next)
11254 			/* found our block */
11255 			if (listadp == adp)
11256 				break;
11257 		if (listadp == NULL)
11258 			panic("handle_allocdirect_partdone: lost dep");
11259 #endif /* INVARIANTS */
11260 		return;
11261 	}
11262 	/*
11263 	 * If we have found the just finished dependency, then queue
11264 	 * it along with anything that follows it that is complete.
11265 	 * Since the pointer has not yet been written in the inode
11266 	 * as the dependency prevents it, place the allocdirect on the
11267 	 * bufwait list where it will be freed once the pointer is
11268 	 * valid.
11269 	 */
11270 	if (wkhd == NULL)
11271 		wkhd = &inodedep->id_bufwait;
11272 	for (; adp; adp = listadp) {
11273 		listadp = TAILQ_NEXT(adp, ad_next);
11274 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11275 			return;
11276 		TAILQ_REMOVE(listhead, adp, ad_next);
11277 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11278 	}
11279 }
11280 
11281 /*
11282  * Called from within softdep_disk_write_complete above.  This routine
11283  * completes successfully written allocindirs.
11284  */
11285 static void
11286 handle_allocindir_partdone(aip)
11287 	struct allocindir *aip;		/* the completed allocindir */
11288 {
11289 	struct indirdep *indirdep;
11290 
11291 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11292 		return;
11293 	indirdep = aip->ai_indirdep;
11294 	LIST_REMOVE(aip, ai_next);
11295 	/*
11296 	 * Don't set a pointer while the buffer is undergoing IO or while
11297 	 * we have active truncations.
11298 	 */
11299 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11300 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11301 		return;
11302 	}
11303 	if (indirdep->ir_state & UFS1FMT)
11304 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11305 		    aip->ai_newblkno;
11306 	else
11307 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11308 		    aip->ai_newblkno;
11309 	/*
11310 	 * Await the pointer write before freeing the allocindir.
11311 	 */
11312 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11313 }
11314 
11315 /*
11316  * Release segments held on a jwork list.
11317  */
11318 static void
11319 handle_jwork(wkhd)
11320 	struct workhead *wkhd;
11321 {
11322 	struct worklist *wk;
11323 
11324 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11325 		WORKLIST_REMOVE(wk);
11326 		switch (wk->wk_type) {
11327 		case D_JSEGDEP:
11328 			free_jsegdep(WK_JSEGDEP(wk));
11329 			continue;
11330 		case D_FREEDEP:
11331 			free_freedep(WK_FREEDEP(wk));
11332 			continue;
11333 		case D_FREEFRAG:
11334 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11335 			WORKITEM_FREE(wk, D_FREEFRAG);
11336 			continue;
11337 		case D_FREEWORK:
11338 			handle_written_freework(WK_FREEWORK(wk));
11339 			continue;
11340 		default:
11341 			panic("handle_jwork: Unknown type %s\n",
11342 			    TYPENAME(wk->wk_type));
11343 		}
11344 	}
11345 }
11346 
11347 /*
11348  * Handle the bufwait list on an inode when it is safe to release items
11349  * held there.  This normally happens after an inode block is written but
11350  * may be delayed and handled later if there are pending journal items that
11351  * are not yet safe to be released.
11352  */
11353 static struct freefile *
11354 handle_bufwait(inodedep, refhd)
11355 	struct inodedep *inodedep;
11356 	struct workhead *refhd;
11357 {
11358 	struct jaddref *jaddref;
11359 	struct freefile *freefile;
11360 	struct worklist *wk;
11361 
11362 	freefile = NULL;
11363 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11364 		WORKLIST_REMOVE(wk);
11365 		switch (wk->wk_type) {
11366 		case D_FREEFILE:
11367 			/*
11368 			 * We defer adding freefile to the worklist
11369 			 * until all other additions have been made to
11370 			 * ensure that it will be done after all the
11371 			 * old blocks have been freed.
11372 			 */
11373 			if (freefile != NULL)
11374 				panic("handle_bufwait: freefile");
11375 			freefile = WK_FREEFILE(wk);
11376 			continue;
11377 
11378 		case D_MKDIR:
11379 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11380 			continue;
11381 
11382 		case D_DIRADD:
11383 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11384 			continue;
11385 
11386 		case D_FREEFRAG:
11387 			wk->wk_state |= COMPLETE;
11388 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11389 				add_to_worklist(wk, 0);
11390 			continue;
11391 
11392 		case D_DIRREM:
11393 			wk->wk_state |= COMPLETE;
11394 			add_to_worklist(wk, 0);
11395 			continue;
11396 
11397 		case D_ALLOCDIRECT:
11398 		case D_ALLOCINDIR:
11399 			free_newblk(WK_NEWBLK(wk));
11400 			continue;
11401 
11402 		case D_JNEWBLK:
11403 			wk->wk_state |= COMPLETE;
11404 			free_jnewblk(WK_JNEWBLK(wk));
11405 			continue;
11406 
11407 		/*
11408 		 * Save freed journal segments and add references on
11409 		 * the supplied list which will delay their release
11410 		 * until the cg bitmap is cleared on disk.
11411 		 */
11412 		case D_JSEGDEP:
11413 			if (refhd == NULL)
11414 				free_jsegdep(WK_JSEGDEP(wk));
11415 			else
11416 				WORKLIST_INSERT(refhd, wk);
11417 			continue;
11418 
11419 		case D_JADDREF:
11420 			jaddref = WK_JADDREF(wk);
11421 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11422 			    if_deps);
11423 			/*
11424 			 * Transfer any jaddrefs to the list to be freed with
11425 			 * the bitmap if we're handling a removed file.
11426 			 */
11427 			if (refhd == NULL) {
11428 				wk->wk_state |= COMPLETE;
11429 				free_jaddref(jaddref);
11430 			} else
11431 				WORKLIST_INSERT(refhd, wk);
11432 			continue;
11433 
11434 		default:
11435 			panic("handle_bufwait: Unknown type %p(%s)",
11436 			    wk, TYPENAME(wk->wk_type));
11437 			/* NOTREACHED */
11438 		}
11439 	}
11440 	return (freefile);
11441 }
11442 /*
11443  * Called from within softdep_disk_write_complete above to restore
11444  * in-memory inode block contents to their most up-to-date state. Note
11445  * that this routine is always called from interrupt level with further
11446  * interrupts from this device blocked.
11447  *
11448  * If the write did not succeed, we will do all the roll-forward
11449  * operations, but we will not take the actions that will allow its
11450  * dependencies to be processed.
11451  */
11452 static int
11453 handle_written_inodeblock(inodedep, bp, flags)
11454 	struct inodedep *inodedep;
11455 	struct buf *bp;		/* buffer containing the inode block */
11456 	int flags;
11457 {
11458 	struct freefile *freefile;
11459 	struct allocdirect *adp, *nextadp;
11460 	struct ufs1_dinode *dp1 = NULL;
11461 	struct ufs2_dinode *dp2 = NULL;
11462 	struct workhead wkhd;
11463 	int hadchanges, fstype;
11464 	ino_t freelink;
11465 
11466 	LIST_INIT(&wkhd);
11467 	hadchanges = 0;
11468 	freefile = NULL;
11469 	if ((inodedep->id_state & IOSTARTED) == 0)
11470 		panic("handle_written_inodeblock: not started");
11471 	inodedep->id_state &= ~IOSTARTED;
11472 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11473 		fstype = UFS1;
11474 		dp1 = (struct ufs1_dinode *)bp->b_data +
11475 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11476 		freelink = dp1->di_freelink;
11477 	} else {
11478 		fstype = UFS2;
11479 		dp2 = (struct ufs2_dinode *)bp->b_data +
11480 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11481 		freelink = dp2->di_freelink;
11482 	}
11483 	/*
11484 	 * Leave this inodeblock dirty until it's in the list.
11485 	 */
11486 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11487 	    (flags & WRITESUCCEEDED)) {
11488 		struct inodedep *inon;
11489 
11490 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11491 		if ((inon == NULL && freelink == 0) ||
11492 		    (inon && inon->id_ino == freelink)) {
11493 			if (inon)
11494 				inon->id_state |= UNLINKPREV;
11495 			inodedep->id_state |= UNLINKNEXT;
11496 		}
11497 		hadchanges = 1;
11498 	}
11499 	/*
11500 	 * If we had to rollback the inode allocation because of
11501 	 * bitmaps being incomplete, then simply restore it.
11502 	 * Keep the block dirty so that it will not be reclaimed until
11503 	 * all associated dependencies have been cleared and the
11504 	 * corresponding updates written to disk.
11505 	 */
11506 	if (inodedep->id_savedino1 != NULL) {
11507 		hadchanges = 1;
11508 		if (fstype == UFS1)
11509 			*dp1 = *inodedep->id_savedino1;
11510 		else
11511 			*dp2 = *inodedep->id_savedino2;
11512 		free(inodedep->id_savedino1, M_SAVEDINO);
11513 		inodedep->id_savedino1 = NULL;
11514 		if ((bp->b_flags & B_DELWRI) == 0)
11515 			stat_inode_bitmap++;
11516 		bdirty(bp);
11517 		/*
11518 		 * If the inode is clear here and GOINGAWAY it will never
11519 		 * be written.  Process the bufwait and clear any pending
11520 		 * work which may include the freefile.
11521 		 */
11522 		if (inodedep->id_state & GOINGAWAY)
11523 			goto bufwait;
11524 		return (1);
11525 	}
11526 	if (flags & WRITESUCCEEDED)
11527 		inodedep->id_state |= COMPLETE;
11528 	/*
11529 	 * Roll forward anything that had to be rolled back before
11530 	 * the inode could be updated.
11531 	 */
11532 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11533 		nextadp = TAILQ_NEXT(adp, ad_next);
11534 		if (adp->ad_state & ATTACHED)
11535 			panic("handle_written_inodeblock: new entry");
11536 		if (fstype == UFS1) {
11537 			if (adp->ad_offset < UFS_NDADDR) {
11538 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11539 					panic("%s %s #%jd mismatch %d != %jd",
11540 					    "handle_written_inodeblock:",
11541 					    "direct pointer",
11542 					    (intmax_t)adp->ad_offset,
11543 					    dp1->di_db[adp->ad_offset],
11544 					    (intmax_t)adp->ad_oldblkno);
11545 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11546 			} else {
11547 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11548 				    0)
11549 					panic("%s: %s #%jd allocated as %d",
11550 					    "handle_written_inodeblock",
11551 					    "indirect pointer",
11552 					    (intmax_t)adp->ad_offset -
11553 					    UFS_NDADDR,
11554 					    dp1->di_ib[adp->ad_offset -
11555 					    UFS_NDADDR]);
11556 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11557 				    adp->ad_newblkno;
11558 			}
11559 		} else {
11560 			if (adp->ad_offset < UFS_NDADDR) {
11561 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11562 					panic("%s: %s #%jd %s %jd != %jd",
11563 					    "handle_written_inodeblock",
11564 					    "direct pointer",
11565 					    (intmax_t)adp->ad_offset, "mismatch",
11566 					    (intmax_t)dp2->di_db[adp->ad_offset],
11567 					    (intmax_t)adp->ad_oldblkno);
11568 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11569 			} else {
11570 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11571 				    0)
11572 					panic("%s: %s #%jd allocated as %jd",
11573 					    "handle_written_inodeblock",
11574 					    "indirect pointer",
11575 					    (intmax_t)adp->ad_offset -
11576 					    UFS_NDADDR,
11577 					    (intmax_t)
11578 					    dp2->di_ib[adp->ad_offset -
11579 					    UFS_NDADDR]);
11580 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11581 				    adp->ad_newblkno;
11582 			}
11583 		}
11584 		adp->ad_state &= ~UNDONE;
11585 		adp->ad_state |= ATTACHED;
11586 		hadchanges = 1;
11587 	}
11588 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11589 		nextadp = TAILQ_NEXT(adp, ad_next);
11590 		if (adp->ad_state & ATTACHED)
11591 			panic("handle_written_inodeblock: new entry");
11592 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11593 			panic("%s: direct pointers #%jd %s %jd != %jd",
11594 			    "handle_written_inodeblock",
11595 			    (intmax_t)adp->ad_offset, "mismatch",
11596 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11597 			    (intmax_t)adp->ad_oldblkno);
11598 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11599 		adp->ad_state &= ~UNDONE;
11600 		adp->ad_state |= ATTACHED;
11601 		hadchanges = 1;
11602 	}
11603 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11604 		stat_direct_blk_ptrs++;
11605 	/*
11606 	 * Reset the file size to its most up-to-date value.
11607 	 */
11608 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11609 		panic("handle_written_inodeblock: bad size");
11610 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11611 		panic("handle_written_inodeblock: Invalid link count "
11612 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11613 		    inodedep);
11614 	if (fstype == UFS1) {
11615 		if (dp1->di_nlink != inodedep->id_savednlink) {
11616 			dp1->di_nlink = inodedep->id_savednlink;
11617 			hadchanges = 1;
11618 		}
11619 		if (dp1->di_size != inodedep->id_savedsize) {
11620 			dp1->di_size = inodedep->id_savedsize;
11621 			hadchanges = 1;
11622 		}
11623 	} else {
11624 		if (dp2->di_nlink != inodedep->id_savednlink) {
11625 			dp2->di_nlink = inodedep->id_savednlink;
11626 			hadchanges = 1;
11627 		}
11628 		if (dp2->di_size != inodedep->id_savedsize) {
11629 			dp2->di_size = inodedep->id_savedsize;
11630 			hadchanges = 1;
11631 		}
11632 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11633 			dp2->di_extsize = inodedep->id_savedextsize;
11634 			hadchanges = 1;
11635 		}
11636 	}
11637 	inodedep->id_savedsize = -1;
11638 	inodedep->id_savedextsize = -1;
11639 	inodedep->id_savednlink = -1;
11640 	/*
11641 	 * If there were any rollbacks in the inode block, then it must be
11642 	 * marked dirty so that its will eventually get written back in
11643 	 * its correct form.
11644 	 */
11645 	if (hadchanges) {
11646 		if (fstype == UFS2)
11647 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11648 		bdirty(bp);
11649 	}
11650 bufwait:
11651 	/*
11652 	 * If the write did not succeed, we have done all the roll-forward
11653 	 * operations, but we cannot take the actions that will allow its
11654 	 * dependencies to be processed.
11655 	 */
11656 	if ((flags & WRITESUCCEEDED) == 0)
11657 		return (hadchanges);
11658 	/*
11659 	 * Process any allocdirects that completed during the update.
11660 	 */
11661 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11662 		handle_allocdirect_partdone(adp, &wkhd);
11663 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11664 		handle_allocdirect_partdone(adp, &wkhd);
11665 	/*
11666 	 * Process deallocations that were held pending until the
11667 	 * inode had been written to disk. Freeing of the inode
11668 	 * is delayed until after all blocks have been freed to
11669 	 * avoid creation of new <vfsid, inum, lbn> triples
11670 	 * before the old ones have been deleted.  Completely
11671 	 * unlinked inodes are not processed until the unlinked
11672 	 * inode list is written or the last reference is removed.
11673 	 */
11674 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11675 		freefile = handle_bufwait(inodedep, NULL);
11676 		if (freefile && !LIST_EMPTY(&wkhd)) {
11677 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11678 			freefile = NULL;
11679 		}
11680 	}
11681 	/*
11682 	 * Move rolled forward dependency completions to the bufwait list
11683 	 * now that those that were already written have been processed.
11684 	 */
11685 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11686 		panic("handle_written_inodeblock: bufwait but no changes");
11687 	jwork_move(&inodedep->id_bufwait, &wkhd);
11688 
11689 	if (freefile != NULL) {
11690 		/*
11691 		 * If the inode is goingaway it was never written.  Fake up
11692 		 * the state here so free_inodedep() can succeed.
11693 		 */
11694 		if (inodedep->id_state & GOINGAWAY)
11695 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11696 		if (free_inodedep(inodedep) == 0)
11697 			panic("handle_written_inodeblock: live inodedep %p",
11698 			    inodedep);
11699 		add_to_worklist(&freefile->fx_list, 0);
11700 		return (0);
11701 	}
11702 
11703 	/*
11704 	 * If no outstanding dependencies, free it.
11705 	 */
11706 	if (free_inodedep(inodedep) ||
11707 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11708 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11709 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11710 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11711 		return (0);
11712 	return (hadchanges);
11713 }
11714 
11715 /*
11716  * Perform needed roll-forwards and kick off any dependencies that
11717  * can now be processed.
11718  *
11719  * If the write did not succeed, we will do all the roll-forward
11720  * operations, but we will not take the actions that will allow its
11721  * dependencies to be processed.
11722  */
11723 static int
11724 handle_written_indirdep(indirdep, bp, bpp, flags)
11725 	struct indirdep *indirdep;
11726 	struct buf *bp;
11727 	struct buf **bpp;
11728 	int flags;
11729 {
11730 	struct allocindir *aip;
11731 	struct buf *sbp;
11732 	int chgs;
11733 
11734 	if (indirdep->ir_state & GOINGAWAY)
11735 		panic("handle_written_indirdep: indirdep gone");
11736 	if ((indirdep->ir_state & IOSTARTED) == 0)
11737 		panic("handle_written_indirdep: IO not started");
11738 	chgs = 0;
11739 	/*
11740 	 * If there were rollbacks revert them here.
11741 	 */
11742 	if (indirdep->ir_saveddata) {
11743 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11744 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11745 			free(indirdep->ir_saveddata, M_INDIRDEP);
11746 			indirdep->ir_saveddata = NULL;
11747 		}
11748 		chgs = 1;
11749 	}
11750 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11751 	indirdep->ir_state |= ATTACHED;
11752 	/*
11753 	 * If the write did not succeed, we have done all the roll-forward
11754 	 * operations, but we cannot take the actions that will allow its
11755 	 * dependencies to be processed.
11756 	 */
11757 	if ((flags & WRITESUCCEEDED) == 0) {
11758 		stat_indir_blk_ptrs++;
11759 		bdirty(bp);
11760 		return (1);
11761 	}
11762 	/*
11763 	 * Move allocindirs with written pointers to the completehd if
11764 	 * the indirdep's pointer is not yet written.  Otherwise
11765 	 * free them here.
11766 	 */
11767 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11768 		LIST_REMOVE(aip, ai_next);
11769 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11770 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11771 			    ai_next);
11772 			newblk_freefrag(&aip->ai_block);
11773 			continue;
11774 		}
11775 		free_newblk(&aip->ai_block);
11776 	}
11777 	/*
11778 	 * Move allocindirs that have finished dependency processing from
11779 	 * the done list to the write list after updating the pointers.
11780 	 */
11781 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11782 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11783 			handle_allocindir_partdone(aip);
11784 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11785 				panic("disk_write_complete: not gone");
11786 			chgs = 1;
11787 		}
11788 	}
11789 	/*
11790 	 * Preserve the indirdep if there were any changes or if it is not
11791 	 * yet valid on disk.
11792 	 */
11793 	if (chgs) {
11794 		stat_indir_blk_ptrs++;
11795 		bdirty(bp);
11796 		return (1);
11797 	}
11798 	/*
11799 	 * If there were no changes we can discard the savedbp and detach
11800 	 * ourselves from the buf.  We are only carrying completed pointers
11801 	 * in this case.
11802 	 */
11803 	sbp = indirdep->ir_savebp;
11804 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11805 	indirdep->ir_savebp = NULL;
11806 	indirdep->ir_bp = NULL;
11807 	if (*bpp != NULL)
11808 		panic("handle_written_indirdep: bp already exists.");
11809 	*bpp = sbp;
11810 	/*
11811 	 * The indirdep may not be freed until its parent points at it.
11812 	 */
11813 	if (indirdep->ir_state & DEPCOMPLETE)
11814 		free_indirdep(indirdep);
11815 
11816 	return (0);
11817 }
11818 
11819 /*
11820  * Process a diradd entry after its dependent inode has been written.
11821  * This routine must be called with splbio interrupts blocked.
11822  */
11823 static void
11824 diradd_inode_written(dap, inodedep)
11825 	struct diradd *dap;
11826 	struct inodedep *inodedep;
11827 {
11828 
11829 	dap->da_state |= COMPLETE;
11830 	complete_diradd(dap);
11831 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11832 }
11833 
11834 /*
11835  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11836  * be called with the per-filesystem lock and the buf lock on the cg held.
11837  */
11838 static int
11839 bmsafemap_backgroundwrite(bmsafemap, bp)
11840 	struct bmsafemap *bmsafemap;
11841 	struct buf *bp;
11842 {
11843 	int dirty;
11844 
11845 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11846 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11847 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11848 	/*
11849 	 * If we're initiating a background write we need to process the
11850 	 * rollbacks as they exist now, not as they exist when IO starts.
11851 	 * No other consumers will look at the contents of the shadowed
11852 	 * buf so this is safe to do here.
11853 	 */
11854 	if (bp->b_xflags & BX_BKGRDMARKER)
11855 		initiate_write_bmsafemap(bmsafemap, bp);
11856 
11857 	return (dirty);
11858 }
11859 
11860 /*
11861  * Re-apply an allocation when a cg write is complete.
11862  */
11863 static int
11864 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11865 	struct jnewblk *jnewblk;
11866 	struct fs *fs;
11867 	struct cg *cgp;
11868 	uint8_t *blksfree;
11869 {
11870 	ufs1_daddr_t fragno;
11871 	ufs2_daddr_t blkno;
11872 	long cgbno, bbase;
11873 	int frags, blk;
11874 	int i;
11875 
11876 	frags = 0;
11877 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11878 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11879 		if (isclr(blksfree, cgbno + i))
11880 			panic("jnewblk_rollforward: re-allocated fragment");
11881 		frags++;
11882 	}
11883 	if (frags == fs->fs_frag) {
11884 		blkno = fragstoblks(fs, cgbno);
11885 		ffs_clrblock(fs, blksfree, (long)blkno);
11886 		ffs_clusteracct(fs, cgp, blkno, -1);
11887 		cgp->cg_cs.cs_nbfree--;
11888 	} else {
11889 		bbase = cgbno - fragnum(fs, cgbno);
11890 		cgbno += jnewblk->jn_oldfrags;
11891                 /* If a complete block had been reassembled, account for it. */
11892 		fragno = fragstoblks(fs, bbase);
11893 		if (ffs_isblock(fs, blksfree, fragno)) {
11894 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11895 			ffs_clusteracct(fs, cgp, fragno, -1);
11896 			cgp->cg_cs.cs_nbfree--;
11897 		}
11898 		/* Decrement the old frags.  */
11899 		blk = blkmap(fs, blksfree, bbase);
11900 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11901 		/* Allocate the fragment */
11902 		for (i = 0; i < frags; i++)
11903 			clrbit(blksfree, cgbno + i);
11904 		cgp->cg_cs.cs_nffree -= frags;
11905 		/* Add back in counts associated with the new frags */
11906 		blk = blkmap(fs, blksfree, bbase);
11907 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11908 	}
11909 	return (frags);
11910 }
11911 
11912 /*
11913  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11914  * changes if it's not a background write.  Set all written dependencies
11915  * to DEPCOMPLETE and free the structure if possible.
11916  *
11917  * If the write did not succeed, we will do all the roll-forward
11918  * operations, but we will not take the actions that will allow its
11919  * dependencies to be processed.
11920  */
11921 static int
11922 handle_written_bmsafemap(bmsafemap, bp, flags)
11923 	struct bmsafemap *bmsafemap;
11924 	struct buf *bp;
11925 	int flags;
11926 {
11927 	struct newblk *newblk;
11928 	struct inodedep *inodedep;
11929 	struct jaddref *jaddref, *jatmp;
11930 	struct jnewblk *jnewblk, *jntmp;
11931 	struct ufsmount *ump;
11932 	uint8_t *inosused;
11933 	uint8_t *blksfree;
11934 	struct cg *cgp;
11935 	struct fs *fs;
11936 	ino_t ino;
11937 	int foreground;
11938 	int chgs;
11939 
11940 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11941 		panic("handle_written_bmsafemap: Not started\n");
11942 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11943 	chgs = 0;
11944 	bmsafemap->sm_state &= ~IOSTARTED;
11945 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11946 	/*
11947 	 * If write was successful, release journal work that was waiting
11948 	 * on the write. Otherwise move the work back.
11949 	 */
11950 	if (flags & WRITESUCCEEDED)
11951 		handle_jwork(&bmsafemap->sm_freewr);
11952 	else
11953 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11954 		    worklist, wk_list);
11955 
11956 	/*
11957 	 * Restore unwritten inode allocation pending jaddref writes.
11958 	 */
11959 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11960 		cgp = (struct cg *)bp->b_data;
11961 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11962 		inosused = cg_inosused(cgp);
11963 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11964 		    ja_bmdeps, jatmp) {
11965 			if ((jaddref->ja_state & UNDONE) == 0)
11966 				continue;
11967 			ino = jaddref->ja_ino % fs->fs_ipg;
11968 			if (isset(inosused, ino))
11969 				panic("handle_written_bmsafemap: "
11970 				    "re-allocated inode");
11971 			/* Do the roll-forward only if it's a real copy. */
11972 			if (foreground) {
11973 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11974 					cgp->cg_cs.cs_ndir++;
11975 				cgp->cg_cs.cs_nifree--;
11976 				setbit(inosused, ino);
11977 				chgs = 1;
11978 			}
11979 			jaddref->ja_state &= ~UNDONE;
11980 			jaddref->ja_state |= ATTACHED;
11981 			free_jaddref(jaddref);
11982 		}
11983 	}
11984 	/*
11985 	 * Restore any block allocations which are pending journal writes.
11986 	 */
11987 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11988 		cgp = (struct cg *)bp->b_data;
11989 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11990 		blksfree = cg_blksfree(cgp);
11991 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11992 		    jntmp) {
11993 			if ((jnewblk->jn_state & UNDONE) == 0)
11994 				continue;
11995 			/* Do the roll-forward only if it's a real copy. */
11996 			if (foreground &&
11997 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11998 				chgs = 1;
11999 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12000 			jnewblk->jn_state |= ATTACHED;
12001 			free_jnewblk(jnewblk);
12002 		}
12003 	}
12004 	/*
12005 	 * If the write did not succeed, we have done all the roll-forward
12006 	 * operations, but we cannot take the actions that will allow its
12007 	 * dependencies to be processed.
12008 	 */
12009 	if ((flags & WRITESUCCEEDED) == 0) {
12010 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12011 		    newblk, nb_deps);
12012 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12013 		    worklist, wk_list);
12014 		if (foreground)
12015 			bdirty(bp);
12016 		return (1);
12017 	}
12018 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12019 		newblk->nb_state |= DEPCOMPLETE;
12020 		newblk->nb_state &= ~ONDEPLIST;
12021 		newblk->nb_bmsafemap = NULL;
12022 		LIST_REMOVE(newblk, nb_deps);
12023 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12024 			handle_allocdirect_partdone(
12025 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12026 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12027 			handle_allocindir_partdone(
12028 			    WK_ALLOCINDIR(&newblk->nb_list));
12029 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12030 			panic("handle_written_bmsafemap: Unexpected type: %s",
12031 			    TYPENAME(newblk->nb_list.wk_type));
12032 	}
12033 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12034 		inodedep->id_state |= DEPCOMPLETE;
12035 		inodedep->id_state &= ~ONDEPLIST;
12036 		LIST_REMOVE(inodedep, id_deps);
12037 		inodedep->id_bmsafemap = NULL;
12038 	}
12039 	LIST_REMOVE(bmsafemap, sm_next);
12040 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12041 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12042 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12043 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12044 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12045 		LIST_REMOVE(bmsafemap, sm_hash);
12046 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12047 		return (0);
12048 	}
12049 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12050 	if (foreground)
12051 		bdirty(bp);
12052 	return (1);
12053 }
12054 
12055 /*
12056  * Try to free a mkdir dependency.
12057  */
12058 static void
12059 complete_mkdir(mkdir)
12060 	struct mkdir *mkdir;
12061 {
12062 	struct diradd *dap;
12063 
12064 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12065 		return;
12066 	LIST_REMOVE(mkdir, md_mkdirs);
12067 	dap = mkdir->md_diradd;
12068 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12069 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12070 		dap->da_state |= DEPCOMPLETE;
12071 		complete_diradd(dap);
12072 	}
12073 	WORKITEM_FREE(mkdir, D_MKDIR);
12074 }
12075 
12076 /*
12077  * Handle the completion of a mkdir dependency.
12078  */
12079 static void
12080 handle_written_mkdir(mkdir, type)
12081 	struct mkdir *mkdir;
12082 	int type;
12083 {
12084 
12085 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12086 		panic("handle_written_mkdir: bad type");
12087 	mkdir->md_state |= COMPLETE;
12088 	complete_mkdir(mkdir);
12089 }
12090 
12091 static int
12092 free_pagedep(pagedep)
12093 	struct pagedep *pagedep;
12094 {
12095 	int i;
12096 
12097 	if (pagedep->pd_state & NEWBLOCK)
12098 		return (0);
12099 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12100 		return (0);
12101 	for (i = 0; i < DAHASHSZ; i++)
12102 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12103 			return (0);
12104 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12105 		return (0);
12106 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12107 		return (0);
12108 	if (pagedep->pd_state & ONWORKLIST)
12109 		WORKLIST_REMOVE(&pagedep->pd_list);
12110 	LIST_REMOVE(pagedep, pd_hash);
12111 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12112 
12113 	return (1);
12114 }
12115 
12116 /*
12117  * Called from within softdep_disk_write_complete above.
12118  * A write operation was just completed. Removed inodes can
12119  * now be freed and associated block pointers may be committed.
12120  * Note that this routine is always called from interrupt level
12121  * with further interrupts from this device blocked.
12122  *
12123  * If the write did not succeed, we will do all the roll-forward
12124  * operations, but we will not take the actions that will allow its
12125  * dependencies to be processed.
12126  */
12127 static int
12128 handle_written_filepage(pagedep, bp, flags)
12129 	struct pagedep *pagedep;
12130 	struct buf *bp;		/* buffer containing the written page */
12131 	int flags;
12132 {
12133 	struct dirrem *dirrem;
12134 	struct diradd *dap, *nextdap;
12135 	struct direct *ep;
12136 	int i, chgs;
12137 
12138 	if ((pagedep->pd_state & IOSTARTED) == 0)
12139 		panic("handle_written_filepage: not started");
12140 	pagedep->pd_state &= ~IOSTARTED;
12141 	if ((flags & WRITESUCCEEDED) == 0)
12142 		goto rollforward;
12143 	/*
12144 	 * Process any directory removals that have been committed.
12145 	 */
12146 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12147 		LIST_REMOVE(dirrem, dm_next);
12148 		dirrem->dm_state |= COMPLETE;
12149 		dirrem->dm_dirinum = pagedep->pd_ino;
12150 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12151 		    ("handle_written_filepage: Journal entries not written."));
12152 		add_to_worklist(&dirrem->dm_list, 0);
12153 	}
12154 	/*
12155 	 * Free any directory additions that have been committed.
12156 	 * If it is a newly allocated block, we have to wait until
12157 	 * the on-disk directory inode claims the new block.
12158 	 */
12159 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12160 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12161 			free_diradd(dap, NULL);
12162 rollforward:
12163 	/*
12164 	 * Uncommitted directory entries must be restored.
12165 	 */
12166 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12167 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12168 		     dap = nextdap) {
12169 			nextdap = LIST_NEXT(dap, da_pdlist);
12170 			if (dap->da_state & ATTACHED)
12171 				panic("handle_written_filepage: attached");
12172 			ep = (struct direct *)
12173 			    ((char *)bp->b_data + dap->da_offset);
12174 			ep->d_ino = dap->da_newinum;
12175 			dap->da_state &= ~UNDONE;
12176 			dap->da_state |= ATTACHED;
12177 			chgs = 1;
12178 			/*
12179 			 * If the inode referenced by the directory has
12180 			 * been written out, then the dependency can be
12181 			 * moved to the pending list.
12182 			 */
12183 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12184 				LIST_REMOVE(dap, da_pdlist);
12185 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12186 				    da_pdlist);
12187 			}
12188 		}
12189 	}
12190 	/*
12191 	 * If there were any rollbacks in the directory, then it must be
12192 	 * marked dirty so that its will eventually get written back in
12193 	 * its correct form.
12194 	 */
12195 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12196 		if ((bp->b_flags & B_DELWRI) == 0)
12197 			stat_dir_entry++;
12198 		bdirty(bp);
12199 		return (1);
12200 	}
12201 	/*
12202 	 * If we are not waiting for a new directory block to be
12203 	 * claimed by its inode, then the pagedep will be freed.
12204 	 * Otherwise it will remain to track any new entries on
12205 	 * the page in case they are fsync'ed.
12206 	 */
12207 	free_pagedep(pagedep);
12208 	return (0);
12209 }
12210 
12211 /*
12212  * Writing back in-core inode structures.
12213  *
12214  * The filesystem only accesses an inode's contents when it occupies an
12215  * "in-core" inode structure.  These "in-core" structures are separate from
12216  * the page frames used to cache inode blocks.  Only the latter are
12217  * transferred to/from the disk.  So, when the updated contents of the
12218  * "in-core" inode structure are copied to the corresponding in-memory inode
12219  * block, the dependencies are also transferred.  The following procedure is
12220  * called when copying a dirty "in-core" inode to a cached inode block.
12221  */
12222 
12223 /*
12224  * Called when an inode is loaded from disk. If the effective link count
12225  * differed from the actual link count when it was last flushed, then we
12226  * need to ensure that the correct effective link count is put back.
12227  */
12228 void
12229 softdep_load_inodeblock(ip)
12230 	struct inode *ip;	/* the "in_core" copy of the inode */
12231 {
12232 	struct inodedep *inodedep;
12233 	struct ufsmount *ump;
12234 
12235 	ump = ITOUMP(ip);
12236 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12237 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12238 	/*
12239 	 * Check for alternate nlink count.
12240 	 */
12241 	ip->i_effnlink = ip->i_nlink;
12242 	ACQUIRE_LOCK(ump);
12243 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12244 		FREE_LOCK(ump);
12245 		return;
12246 	}
12247 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12248 	FREE_LOCK(ump);
12249 }
12250 
12251 /*
12252  * This routine is called just before the "in-core" inode
12253  * information is to be copied to the in-memory inode block.
12254  * Recall that an inode block contains several inodes. If
12255  * the force flag is set, then the dependencies will be
12256  * cleared so that the update can always be made. Note that
12257  * the buffer is locked when this routine is called, so we
12258  * will never be in the middle of writing the inode block
12259  * to disk.
12260  */
12261 void
12262 softdep_update_inodeblock(ip, bp, waitfor)
12263 	struct inode *ip;	/* the "in_core" copy of the inode */
12264 	struct buf *bp;		/* the buffer containing the inode block */
12265 	int waitfor;		/* nonzero => update must be allowed */
12266 {
12267 	struct inodedep *inodedep;
12268 	struct inoref *inoref;
12269 	struct ufsmount *ump;
12270 	struct worklist *wk;
12271 	struct mount *mp;
12272 	struct buf *ibp;
12273 	struct fs *fs;
12274 	int error;
12275 
12276 	ump = ITOUMP(ip);
12277 	mp = UFSTOVFS(ump);
12278 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12279 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12280 	fs = ump->um_fs;
12281 	/*
12282 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12283 	 * does not have access to the in-core ip so must write directly into
12284 	 * the inode block buffer when setting freelink.
12285 	 */
12286 	if (fs->fs_magic == FS_UFS1_MAGIC)
12287 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12288 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12289 	else
12290 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12291 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12292 	/*
12293 	 * If the effective link count is not equal to the actual link
12294 	 * count, then we must track the difference in an inodedep while
12295 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12296 	 * if there is no existing inodedep, then there are no dependencies
12297 	 * to track.
12298 	 */
12299 	ACQUIRE_LOCK(ump);
12300 again:
12301 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12302 		FREE_LOCK(ump);
12303 		if (ip->i_effnlink != ip->i_nlink)
12304 			panic("softdep_update_inodeblock: bad link count");
12305 		return;
12306 	}
12307 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12308 		panic("softdep_update_inodeblock: bad delta");
12309 	/*
12310 	 * If we're flushing all dependencies we must also move any waiting
12311 	 * for journal writes onto the bufwait list prior to I/O.
12312 	 */
12313 	if (waitfor) {
12314 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12315 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12316 			    == DEPCOMPLETE) {
12317 				jwait(&inoref->if_list, MNT_WAIT);
12318 				goto again;
12319 			}
12320 		}
12321 	}
12322 	/*
12323 	 * Changes have been initiated. Anything depending on these
12324 	 * changes cannot occur until this inode has been written.
12325 	 */
12326 	inodedep->id_state &= ~COMPLETE;
12327 	if ((inodedep->id_state & ONWORKLIST) == 0)
12328 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12329 	/*
12330 	 * Any new dependencies associated with the incore inode must
12331 	 * now be moved to the list associated with the buffer holding
12332 	 * the in-memory copy of the inode. Once merged process any
12333 	 * allocdirects that are completed by the merger.
12334 	 */
12335 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12336 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12337 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12338 		    NULL);
12339 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12340 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12341 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12342 		    NULL);
12343 	/*
12344 	 * Now that the inode has been pushed into the buffer, the
12345 	 * operations dependent on the inode being written to disk
12346 	 * can be moved to the id_bufwait so that they will be
12347 	 * processed when the buffer I/O completes.
12348 	 */
12349 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12350 		WORKLIST_REMOVE(wk);
12351 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12352 	}
12353 	/*
12354 	 * Newly allocated inodes cannot be written until the bitmap
12355 	 * that allocates them have been written (indicated by
12356 	 * DEPCOMPLETE being set in id_state). If we are doing a
12357 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12358 	 * to be written so that the update can be done.
12359 	 */
12360 	if (waitfor == 0) {
12361 		FREE_LOCK(ump);
12362 		return;
12363 	}
12364 retry:
12365 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12366 		FREE_LOCK(ump);
12367 		return;
12368 	}
12369 	ibp = inodedep->id_bmsafemap->sm_buf;
12370 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12371 	if (ibp == NULL) {
12372 		/*
12373 		 * If ibp came back as NULL, the dependency could have been
12374 		 * freed while we slept.  Look it up again, and check to see
12375 		 * that it has completed.
12376 		 */
12377 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12378 			goto retry;
12379 		FREE_LOCK(ump);
12380 		return;
12381 	}
12382 	FREE_LOCK(ump);
12383 	if ((error = bwrite(ibp)) != 0)
12384 		softdep_error("softdep_update_inodeblock: bwrite", error);
12385 }
12386 
12387 /*
12388  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12389  * old inode dependency list (such as id_inoupdt). This routine must be
12390  * called with splbio interrupts blocked.
12391  */
12392 static void
12393 merge_inode_lists(newlisthead, oldlisthead)
12394 	struct allocdirectlst *newlisthead;
12395 	struct allocdirectlst *oldlisthead;
12396 {
12397 	struct allocdirect *listadp, *newadp;
12398 
12399 	newadp = TAILQ_FIRST(newlisthead);
12400 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12401 		if (listadp->ad_offset < newadp->ad_offset) {
12402 			listadp = TAILQ_NEXT(listadp, ad_next);
12403 			continue;
12404 		}
12405 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12406 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12407 		if (listadp->ad_offset == newadp->ad_offset) {
12408 			allocdirect_merge(oldlisthead, newadp,
12409 			    listadp);
12410 			listadp = newadp;
12411 		}
12412 		newadp = TAILQ_FIRST(newlisthead);
12413 	}
12414 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12415 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12416 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12417 	}
12418 }
12419 
12420 /*
12421  * If we are doing an fsync, then we must ensure that any directory
12422  * entries for the inode have been written after the inode gets to disk.
12423  */
12424 int
12425 softdep_fsync(vp)
12426 	struct vnode *vp;	/* the "in_core" copy of the inode */
12427 {
12428 	struct inodedep *inodedep;
12429 	struct pagedep *pagedep;
12430 	struct inoref *inoref;
12431 	struct ufsmount *ump;
12432 	struct worklist *wk;
12433 	struct diradd *dap;
12434 	struct mount *mp;
12435 	struct vnode *pvp;
12436 	struct inode *ip;
12437 	struct buf *bp;
12438 	struct fs *fs;
12439 	struct thread *td = curthread;
12440 	int error, flushparent, pagedep_new_block;
12441 	ino_t parentino;
12442 	ufs_lbn_t lbn;
12443 
12444 	ip = VTOI(vp);
12445 	mp = vp->v_mount;
12446 	ump = VFSTOUFS(mp);
12447 	fs = ump->um_fs;
12448 	if (MOUNTEDSOFTDEP(mp) == 0)
12449 		return (0);
12450 	ACQUIRE_LOCK(ump);
12451 restart:
12452 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12453 		FREE_LOCK(ump);
12454 		return (0);
12455 	}
12456 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12457 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12458 		    == DEPCOMPLETE) {
12459 			jwait(&inoref->if_list, MNT_WAIT);
12460 			goto restart;
12461 		}
12462 	}
12463 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12464 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12465 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12466 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12467 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12468 		panic("softdep_fsync: pending ops %p", inodedep);
12469 	for (error = 0, flushparent = 0; ; ) {
12470 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12471 			break;
12472 		if (wk->wk_type != D_DIRADD)
12473 			panic("softdep_fsync: Unexpected type %s",
12474 			    TYPENAME(wk->wk_type));
12475 		dap = WK_DIRADD(wk);
12476 		/*
12477 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12478 		 * dependency or is contained in a newly allocated block.
12479 		 */
12480 		if (dap->da_state & DIRCHG)
12481 			pagedep = dap->da_previous->dm_pagedep;
12482 		else
12483 			pagedep = dap->da_pagedep;
12484 		parentino = pagedep->pd_ino;
12485 		lbn = pagedep->pd_lbn;
12486 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12487 			panic("softdep_fsync: dirty");
12488 		if ((dap->da_state & MKDIR_PARENT) ||
12489 		    (pagedep->pd_state & NEWBLOCK))
12490 			flushparent = 1;
12491 		else
12492 			flushparent = 0;
12493 		/*
12494 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12495 		 * then we will not be able to release and recover the
12496 		 * vnode below, so we just have to give up on writing its
12497 		 * directory entry out. It will eventually be written, just
12498 		 * not now, but then the user was not asking to have it
12499 		 * written, so we are not breaking any promises.
12500 		 */
12501 		if (vp->v_iflag & VI_DOOMED)
12502 			break;
12503 		/*
12504 		 * We prevent deadlock by always fetching inodes from the
12505 		 * root, moving down the directory tree. Thus, when fetching
12506 		 * our parent directory, we first try to get the lock. If
12507 		 * that fails, we must unlock ourselves before requesting
12508 		 * the lock on our parent. See the comment in ufs_lookup
12509 		 * for details on possible races.
12510 		 */
12511 		FREE_LOCK(ump);
12512 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12513 		    FFSV_FORCEINSMQ)) {
12514 			error = vfs_busy(mp, MBF_NOWAIT);
12515 			if (error != 0) {
12516 				vfs_ref(mp);
12517 				VOP_UNLOCK(vp, 0);
12518 				error = vfs_busy(mp, 0);
12519 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12520 				vfs_rel(mp);
12521 				if (error != 0)
12522 					return (ENOENT);
12523 				if (vp->v_iflag & VI_DOOMED) {
12524 					vfs_unbusy(mp);
12525 					return (ENOENT);
12526 				}
12527 			}
12528 			VOP_UNLOCK(vp, 0);
12529 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12530 			    &pvp, FFSV_FORCEINSMQ);
12531 			vfs_unbusy(mp);
12532 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12533 			if (vp->v_iflag & VI_DOOMED) {
12534 				if (error == 0)
12535 					vput(pvp);
12536 				error = ENOENT;
12537 			}
12538 			if (error != 0)
12539 				return (error);
12540 		}
12541 		/*
12542 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12543 		 * that are contained in direct blocks will be resolved by
12544 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12545 		 * may require a complete sync'ing of the directory. So, we
12546 		 * try the cheap and fast ffs_update first, and if that fails,
12547 		 * then we do the slower ffs_syncvnode of the directory.
12548 		 */
12549 		if (flushparent) {
12550 			int locked;
12551 
12552 			if ((error = ffs_update(pvp, 1)) != 0) {
12553 				vput(pvp);
12554 				return (error);
12555 			}
12556 			ACQUIRE_LOCK(ump);
12557 			locked = 1;
12558 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12559 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12560 					if (wk->wk_type != D_DIRADD)
12561 						panic("softdep_fsync: Unexpected type %s",
12562 						      TYPENAME(wk->wk_type));
12563 					dap = WK_DIRADD(wk);
12564 					if (dap->da_state & DIRCHG)
12565 						pagedep = dap->da_previous->dm_pagedep;
12566 					else
12567 						pagedep = dap->da_pagedep;
12568 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12569 					FREE_LOCK(ump);
12570 					locked = 0;
12571 					if (pagedep_new_block && (error =
12572 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12573 						vput(pvp);
12574 						return (error);
12575 					}
12576 				}
12577 			}
12578 			if (locked)
12579 				FREE_LOCK(ump);
12580 		}
12581 		/*
12582 		 * Flush directory page containing the inode's name.
12583 		 */
12584 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12585 		    &bp);
12586 		if (error == 0)
12587 			error = bwrite(bp);
12588 		else
12589 			brelse(bp);
12590 		vput(pvp);
12591 		if (error != 0)
12592 			return (error);
12593 		ACQUIRE_LOCK(ump);
12594 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12595 			break;
12596 	}
12597 	FREE_LOCK(ump);
12598 	return (0);
12599 }
12600 
12601 /*
12602  * Flush all the dirty bitmaps associated with the block device
12603  * before flushing the rest of the dirty blocks so as to reduce
12604  * the number of dependencies that will have to be rolled back.
12605  *
12606  * XXX Unused?
12607  */
12608 void
12609 softdep_fsync_mountdev(vp)
12610 	struct vnode *vp;
12611 {
12612 	struct buf *bp, *nbp;
12613 	struct worklist *wk;
12614 	struct bufobj *bo;
12615 
12616 	if (!vn_isdisk(vp, NULL))
12617 		panic("softdep_fsync_mountdev: vnode not a disk");
12618 	bo = &vp->v_bufobj;
12619 restart:
12620 	BO_LOCK(bo);
12621 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12622 		/*
12623 		 * If it is already scheduled, skip to the next buffer.
12624 		 */
12625 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12626 			continue;
12627 
12628 		if ((bp->b_flags & B_DELWRI) == 0)
12629 			panic("softdep_fsync_mountdev: not dirty");
12630 		/*
12631 		 * We are only interested in bitmaps with outstanding
12632 		 * dependencies.
12633 		 */
12634 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12635 		    wk->wk_type != D_BMSAFEMAP ||
12636 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12637 			BUF_UNLOCK(bp);
12638 			continue;
12639 		}
12640 		BO_UNLOCK(bo);
12641 		bremfree(bp);
12642 		(void) bawrite(bp);
12643 		goto restart;
12644 	}
12645 	drain_output(vp);
12646 	BO_UNLOCK(bo);
12647 }
12648 
12649 /*
12650  * Sync all cylinder groups that were dirty at the time this function is
12651  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12652  * is used to flush freedep activity that may be holding up writes to a
12653  * indirect block.
12654  */
12655 static int
12656 sync_cgs(mp, waitfor)
12657 	struct mount *mp;
12658 	int waitfor;
12659 {
12660 	struct bmsafemap *bmsafemap;
12661 	struct bmsafemap *sentinel;
12662 	struct ufsmount *ump;
12663 	struct buf *bp;
12664 	int error;
12665 
12666 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12667 	sentinel->sm_cg = -1;
12668 	ump = VFSTOUFS(mp);
12669 	error = 0;
12670 	ACQUIRE_LOCK(ump);
12671 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12672 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12673 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12674 		/* Skip sentinels and cgs with no work to release. */
12675 		if (bmsafemap->sm_cg == -1 ||
12676 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12677 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12678 			LIST_REMOVE(sentinel, sm_next);
12679 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12680 			continue;
12681 		}
12682 		/*
12683 		 * If we don't get the lock and we're waiting try again, if
12684 		 * not move on to the next buf and try to sync it.
12685 		 */
12686 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12687 		if (bp == NULL && waitfor == MNT_WAIT)
12688 			continue;
12689 		LIST_REMOVE(sentinel, sm_next);
12690 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12691 		if (bp == NULL)
12692 			continue;
12693 		FREE_LOCK(ump);
12694 		if (waitfor == MNT_NOWAIT)
12695 			bawrite(bp);
12696 		else
12697 			error = bwrite(bp);
12698 		ACQUIRE_LOCK(ump);
12699 		if (error)
12700 			break;
12701 	}
12702 	LIST_REMOVE(sentinel, sm_next);
12703 	FREE_LOCK(ump);
12704 	free(sentinel, M_BMSAFEMAP);
12705 	return (error);
12706 }
12707 
12708 /*
12709  * This routine is called when we are trying to synchronously flush a
12710  * file. This routine must eliminate any filesystem metadata dependencies
12711  * so that the syncing routine can succeed.
12712  */
12713 int
12714 softdep_sync_metadata(struct vnode *vp)
12715 {
12716 	struct inode *ip;
12717 	int error;
12718 
12719 	ip = VTOI(vp);
12720 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12721 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12722 	/*
12723 	 * Ensure that any direct block dependencies have been cleared,
12724 	 * truncations are started, and inode references are journaled.
12725 	 */
12726 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12727 	/*
12728 	 * Write all journal records to prevent rollbacks on devvp.
12729 	 */
12730 	if (vp->v_type == VCHR)
12731 		softdep_flushjournal(vp->v_mount);
12732 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12733 	/*
12734 	 * Ensure that all truncates are written so we won't find deps on
12735 	 * indirect blocks.
12736 	 */
12737 	process_truncates(vp);
12738 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12739 
12740 	return (error);
12741 }
12742 
12743 /*
12744  * This routine is called when we are attempting to sync a buf with
12745  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12746  * other IO it can but returns EBUSY if the buffer is not yet able to
12747  * be written.  Dependencies which will not cause rollbacks will always
12748  * return 0.
12749  */
12750 int
12751 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12752 {
12753 	struct indirdep *indirdep;
12754 	struct pagedep *pagedep;
12755 	struct allocindir *aip;
12756 	struct newblk *newblk;
12757 	struct ufsmount *ump;
12758 	struct buf *nbp;
12759 	struct worklist *wk;
12760 	int i, error;
12761 
12762 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12763 	    ("softdep_sync_buf called on non-softdep filesystem"));
12764 	/*
12765 	 * For VCHR we just don't want to force flush any dependencies that
12766 	 * will cause rollbacks.
12767 	 */
12768 	if (vp->v_type == VCHR) {
12769 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12770 			return (EBUSY);
12771 		return (0);
12772 	}
12773 	ump = VFSTOUFS(vp->v_mount);
12774 	ACQUIRE_LOCK(ump);
12775 	/*
12776 	 * As we hold the buffer locked, none of its dependencies
12777 	 * will disappear.
12778 	 */
12779 	error = 0;
12780 top:
12781 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12782 		switch (wk->wk_type) {
12783 
12784 		case D_ALLOCDIRECT:
12785 		case D_ALLOCINDIR:
12786 			newblk = WK_NEWBLK(wk);
12787 			if (newblk->nb_jnewblk != NULL) {
12788 				if (waitfor == MNT_NOWAIT) {
12789 					error = EBUSY;
12790 					goto out_unlock;
12791 				}
12792 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12793 				goto top;
12794 			}
12795 			if (newblk->nb_state & DEPCOMPLETE ||
12796 			    waitfor == MNT_NOWAIT)
12797 				continue;
12798 			nbp = newblk->nb_bmsafemap->sm_buf;
12799 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12800 			if (nbp == NULL)
12801 				goto top;
12802 			FREE_LOCK(ump);
12803 			if ((error = bwrite(nbp)) != 0)
12804 				goto out;
12805 			ACQUIRE_LOCK(ump);
12806 			continue;
12807 
12808 		case D_INDIRDEP:
12809 			indirdep = WK_INDIRDEP(wk);
12810 			if (waitfor == MNT_NOWAIT) {
12811 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12812 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12813 					error = EBUSY;
12814 					goto out_unlock;
12815 				}
12816 			}
12817 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12818 				panic("softdep_sync_buf: truncation pending.");
12819 		restart:
12820 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12821 				newblk = (struct newblk *)aip;
12822 				if (newblk->nb_jnewblk != NULL) {
12823 					jwait(&newblk->nb_jnewblk->jn_list,
12824 					    waitfor);
12825 					goto restart;
12826 				}
12827 				if (newblk->nb_state & DEPCOMPLETE)
12828 					continue;
12829 				nbp = newblk->nb_bmsafemap->sm_buf;
12830 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12831 				if (nbp == NULL)
12832 					goto restart;
12833 				FREE_LOCK(ump);
12834 				if ((error = bwrite(nbp)) != 0)
12835 					goto out;
12836 				ACQUIRE_LOCK(ump);
12837 				goto restart;
12838 			}
12839 			continue;
12840 
12841 		case D_PAGEDEP:
12842 			/*
12843 			 * Only flush directory entries in synchronous passes.
12844 			 */
12845 			if (waitfor != MNT_WAIT) {
12846 				error = EBUSY;
12847 				goto out_unlock;
12848 			}
12849 			/*
12850 			 * While syncing snapshots, we must allow recursive
12851 			 * lookups.
12852 			 */
12853 			BUF_AREC(bp);
12854 			/*
12855 			 * We are trying to sync a directory that may
12856 			 * have dependencies on both its own metadata
12857 			 * and/or dependencies on the inodes of any
12858 			 * recently allocated files. We walk its diradd
12859 			 * lists pushing out the associated inode.
12860 			 */
12861 			pagedep = WK_PAGEDEP(wk);
12862 			for (i = 0; i < DAHASHSZ; i++) {
12863 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12864 					continue;
12865 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12866 				    &pagedep->pd_diraddhd[i]))) {
12867 					BUF_NOREC(bp);
12868 					goto out_unlock;
12869 				}
12870 			}
12871 			BUF_NOREC(bp);
12872 			continue;
12873 
12874 		case D_FREEWORK:
12875 		case D_FREEDEP:
12876 		case D_JSEGDEP:
12877 		case D_JNEWBLK:
12878 			continue;
12879 
12880 		default:
12881 			panic("softdep_sync_buf: Unknown type %s",
12882 			    TYPENAME(wk->wk_type));
12883 			/* NOTREACHED */
12884 		}
12885 	}
12886 out_unlock:
12887 	FREE_LOCK(ump);
12888 out:
12889 	return (error);
12890 }
12891 
12892 /*
12893  * Flush the dependencies associated with an inodedep.
12894  * Called with splbio blocked.
12895  */
12896 static int
12897 flush_inodedep_deps(vp, mp, ino)
12898 	struct vnode *vp;
12899 	struct mount *mp;
12900 	ino_t ino;
12901 {
12902 	struct inodedep *inodedep;
12903 	struct inoref *inoref;
12904 	struct ufsmount *ump;
12905 	int error, waitfor;
12906 
12907 	/*
12908 	 * This work is done in two passes. The first pass grabs most
12909 	 * of the buffers and begins asynchronously writing them. The
12910 	 * only way to wait for these asynchronous writes is to sleep
12911 	 * on the filesystem vnode which may stay busy for a long time
12912 	 * if the filesystem is active. So, instead, we make a second
12913 	 * pass over the dependencies blocking on each write. In the
12914 	 * usual case we will be blocking against a write that we
12915 	 * initiated, so when it is done the dependency will have been
12916 	 * resolved. Thus the second pass is expected to end quickly.
12917 	 * We give a brief window at the top of the loop to allow
12918 	 * any pending I/O to complete.
12919 	 */
12920 	ump = VFSTOUFS(mp);
12921 	LOCK_OWNED(ump);
12922 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12923 		if (error)
12924 			return (error);
12925 		FREE_LOCK(ump);
12926 		ACQUIRE_LOCK(ump);
12927 restart:
12928 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12929 			return (0);
12930 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12931 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12932 			    == DEPCOMPLETE) {
12933 				jwait(&inoref->if_list, MNT_WAIT);
12934 				goto restart;
12935 			}
12936 		}
12937 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12938 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12939 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12940 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12941 			continue;
12942 		/*
12943 		 * If pass2, we are done, otherwise do pass 2.
12944 		 */
12945 		if (waitfor == MNT_WAIT)
12946 			break;
12947 		waitfor = MNT_WAIT;
12948 	}
12949 	/*
12950 	 * Try freeing inodedep in case all dependencies have been removed.
12951 	 */
12952 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12953 		(void) free_inodedep(inodedep);
12954 	return (0);
12955 }
12956 
12957 /*
12958  * Flush an inode dependency list.
12959  * Called with splbio blocked.
12960  */
12961 static int
12962 flush_deplist(listhead, waitfor, errorp)
12963 	struct allocdirectlst *listhead;
12964 	int waitfor;
12965 	int *errorp;
12966 {
12967 	struct allocdirect *adp;
12968 	struct newblk *newblk;
12969 	struct ufsmount *ump;
12970 	struct buf *bp;
12971 
12972 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12973 		return (0);
12974 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12975 	LOCK_OWNED(ump);
12976 	TAILQ_FOREACH(adp, listhead, ad_next) {
12977 		newblk = (struct newblk *)adp;
12978 		if (newblk->nb_jnewblk != NULL) {
12979 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12980 			return (1);
12981 		}
12982 		if (newblk->nb_state & DEPCOMPLETE)
12983 			continue;
12984 		bp = newblk->nb_bmsafemap->sm_buf;
12985 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12986 		if (bp == NULL) {
12987 			if (waitfor == MNT_NOWAIT)
12988 				continue;
12989 			return (1);
12990 		}
12991 		FREE_LOCK(ump);
12992 		if (waitfor == MNT_NOWAIT)
12993 			bawrite(bp);
12994 		else
12995 			*errorp = bwrite(bp);
12996 		ACQUIRE_LOCK(ump);
12997 		return (1);
12998 	}
12999 	return (0);
13000 }
13001 
13002 /*
13003  * Flush dependencies associated with an allocdirect block.
13004  */
13005 static int
13006 flush_newblk_dep(vp, mp, lbn)
13007 	struct vnode *vp;
13008 	struct mount *mp;
13009 	ufs_lbn_t lbn;
13010 {
13011 	struct newblk *newblk;
13012 	struct ufsmount *ump;
13013 	struct bufobj *bo;
13014 	struct inode *ip;
13015 	struct buf *bp;
13016 	ufs2_daddr_t blkno;
13017 	int error;
13018 
13019 	error = 0;
13020 	bo = &vp->v_bufobj;
13021 	ip = VTOI(vp);
13022 	blkno = DIP(ip, i_db[lbn]);
13023 	if (blkno == 0)
13024 		panic("flush_newblk_dep: Missing block");
13025 	ump = VFSTOUFS(mp);
13026 	ACQUIRE_LOCK(ump);
13027 	/*
13028 	 * Loop until all dependencies related to this block are satisfied.
13029 	 * We must be careful to restart after each sleep in case a write
13030 	 * completes some part of this process for us.
13031 	 */
13032 	for (;;) {
13033 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13034 			FREE_LOCK(ump);
13035 			break;
13036 		}
13037 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13038 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13039 		/*
13040 		 * Flush the journal.
13041 		 */
13042 		if (newblk->nb_jnewblk != NULL) {
13043 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13044 			continue;
13045 		}
13046 		/*
13047 		 * Write the bitmap dependency.
13048 		 */
13049 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13050 			bp = newblk->nb_bmsafemap->sm_buf;
13051 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13052 			if (bp == NULL)
13053 				continue;
13054 			FREE_LOCK(ump);
13055 			error = bwrite(bp);
13056 			if (error)
13057 				break;
13058 			ACQUIRE_LOCK(ump);
13059 			continue;
13060 		}
13061 		/*
13062 		 * Write the buffer.
13063 		 */
13064 		FREE_LOCK(ump);
13065 		BO_LOCK(bo);
13066 		bp = gbincore(bo, lbn);
13067 		if (bp != NULL) {
13068 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13069 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13070 			if (error == ENOLCK) {
13071 				ACQUIRE_LOCK(ump);
13072 				error = 0;
13073 				continue; /* Slept, retry */
13074 			}
13075 			if (error != 0)
13076 				break;	/* Failed */
13077 			if (bp->b_flags & B_DELWRI) {
13078 				bremfree(bp);
13079 				error = bwrite(bp);
13080 				if (error)
13081 					break;
13082 			} else
13083 				BUF_UNLOCK(bp);
13084 		} else
13085 			BO_UNLOCK(bo);
13086 		/*
13087 		 * We have to wait for the direct pointers to
13088 		 * point at the newdirblk before the dependency
13089 		 * will go away.
13090 		 */
13091 		error = ffs_update(vp, 1);
13092 		if (error)
13093 			break;
13094 		ACQUIRE_LOCK(ump);
13095 	}
13096 	return (error);
13097 }
13098 
13099 /*
13100  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13101  * Called with splbio blocked.
13102  */
13103 static int
13104 flush_pagedep_deps(pvp, mp, diraddhdp)
13105 	struct vnode *pvp;
13106 	struct mount *mp;
13107 	struct diraddhd *diraddhdp;
13108 {
13109 	struct inodedep *inodedep;
13110 	struct inoref *inoref;
13111 	struct ufsmount *ump;
13112 	struct diradd *dap;
13113 	struct vnode *vp;
13114 	int error = 0;
13115 	struct buf *bp;
13116 	ino_t inum;
13117 	struct diraddhd unfinished;
13118 
13119 	LIST_INIT(&unfinished);
13120 	ump = VFSTOUFS(mp);
13121 	LOCK_OWNED(ump);
13122 restart:
13123 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13124 		/*
13125 		 * Flush ourselves if this directory entry
13126 		 * has a MKDIR_PARENT dependency.
13127 		 */
13128 		if (dap->da_state & MKDIR_PARENT) {
13129 			FREE_LOCK(ump);
13130 			if ((error = ffs_update(pvp, 1)) != 0)
13131 				break;
13132 			ACQUIRE_LOCK(ump);
13133 			/*
13134 			 * If that cleared dependencies, go on to next.
13135 			 */
13136 			if (dap != LIST_FIRST(diraddhdp))
13137 				continue;
13138 			/*
13139 			 * All MKDIR_PARENT dependencies and all the
13140 			 * NEWBLOCK pagedeps that are contained in direct
13141 			 * blocks were resolved by doing above ffs_update.
13142 			 * Pagedeps contained in indirect blocks may
13143 			 * require a complete sync'ing of the directory.
13144 			 * We are in the midst of doing a complete sync,
13145 			 * so if they are not resolved in this pass we
13146 			 * defer them for now as they will be sync'ed by
13147 			 * our caller shortly.
13148 			 */
13149 			LIST_REMOVE(dap, da_pdlist);
13150 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13151 			continue;
13152 		}
13153 		/*
13154 		 * A newly allocated directory must have its "." and
13155 		 * ".." entries written out before its name can be
13156 		 * committed in its parent.
13157 		 */
13158 		inum = dap->da_newinum;
13159 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13160 			panic("flush_pagedep_deps: lost inode1");
13161 		/*
13162 		 * Wait for any pending journal adds to complete so we don't
13163 		 * cause rollbacks while syncing.
13164 		 */
13165 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13166 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13167 			    == DEPCOMPLETE) {
13168 				jwait(&inoref->if_list, MNT_WAIT);
13169 				goto restart;
13170 			}
13171 		}
13172 		if (dap->da_state & MKDIR_BODY) {
13173 			FREE_LOCK(ump);
13174 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13175 			    FFSV_FORCEINSMQ)))
13176 				break;
13177 			error = flush_newblk_dep(vp, mp, 0);
13178 			/*
13179 			 * If we still have the dependency we might need to
13180 			 * update the vnode to sync the new link count to
13181 			 * disk.
13182 			 */
13183 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13184 				error = ffs_update(vp, 1);
13185 			vput(vp);
13186 			if (error != 0)
13187 				break;
13188 			ACQUIRE_LOCK(ump);
13189 			/*
13190 			 * If that cleared dependencies, go on to next.
13191 			 */
13192 			if (dap != LIST_FIRST(diraddhdp))
13193 				continue;
13194 			if (dap->da_state & MKDIR_BODY) {
13195 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13196 				    &inodedep);
13197 				panic("flush_pagedep_deps: MKDIR_BODY "
13198 				    "inodedep %p dap %p vp %p",
13199 				    inodedep, dap, vp);
13200 			}
13201 		}
13202 		/*
13203 		 * Flush the inode on which the directory entry depends.
13204 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13205 		 * the only remaining dependency is that the updated inode
13206 		 * count must get pushed to disk. The inode has already
13207 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13208 		 * the time of the reference count change. So we need only
13209 		 * locate that buffer, ensure that there will be no rollback
13210 		 * caused by a bitmap dependency, then write the inode buffer.
13211 		 */
13212 retry:
13213 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13214 			panic("flush_pagedep_deps: lost inode");
13215 		/*
13216 		 * If the inode still has bitmap dependencies,
13217 		 * push them to disk.
13218 		 */
13219 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13220 			bp = inodedep->id_bmsafemap->sm_buf;
13221 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13222 			if (bp == NULL)
13223 				goto retry;
13224 			FREE_LOCK(ump);
13225 			if ((error = bwrite(bp)) != 0)
13226 				break;
13227 			ACQUIRE_LOCK(ump);
13228 			if (dap != LIST_FIRST(diraddhdp))
13229 				continue;
13230 		}
13231 		/*
13232 		 * If the inode is still sitting in a buffer waiting
13233 		 * to be written or waiting for the link count to be
13234 		 * adjusted update it here to flush it to disk.
13235 		 */
13236 		if (dap == LIST_FIRST(diraddhdp)) {
13237 			FREE_LOCK(ump);
13238 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13239 			    FFSV_FORCEINSMQ)))
13240 				break;
13241 			error = ffs_update(vp, 1);
13242 			vput(vp);
13243 			if (error)
13244 				break;
13245 			ACQUIRE_LOCK(ump);
13246 		}
13247 		/*
13248 		 * If we have failed to get rid of all the dependencies
13249 		 * then something is seriously wrong.
13250 		 */
13251 		if (dap == LIST_FIRST(diraddhdp)) {
13252 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13253 			panic("flush_pagedep_deps: failed to flush "
13254 			    "inodedep %p ino %ju dap %p",
13255 			    inodedep, (uintmax_t)inum, dap);
13256 		}
13257 	}
13258 	if (error)
13259 		ACQUIRE_LOCK(ump);
13260 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13261 		LIST_REMOVE(dap, da_pdlist);
13262 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13263 	}
13264 	return (error);
13265 }
13266 
13267 /*
13268  * A large burst of file addition or deletion activity can drive the
13269  * memory load excessively high. First attempt to slow things down
13270  * using the techniques below. If that fails, this routine requests
13271  * the offending operations to fall back to running synchronously
13272  * until the memory load returns to a reasonable level.
13273  */
13274 int
13275 softdep_slowdown(vp)
13276 	struct vnode *vp;
13277 {
13278 	struct ufsmount *ump;
13279 	int jlow;
13280 	int max_softdeps_hard;
13281 
13282 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13283 	    ("softdep_slowdown called on non-softdep filesystem"));
13284 	ump = VFSTOUFS(vp->v_mount);
13285 	ACQUIRE_LOCK(ump);
13286 	jlow = 0;
13287 	/*
13288 	 * Check for journal space if needed.
13289 	 */
13290 	if (DOINGSUJ(vp)) {
13291 		if (journal_space(ump, 0) == 0)
13292 			jlow = 1;
13293 	}
13294 	/*
13295 	 * If the system is under its limits and our filesystem is
13296 	 * not responsible for more than our share of the usage and
13297 	 * we are not low on journal space, then no need to slow down.
13298 	 */
13299 	max_softdeps_hard = max_softdeps * 11 / 10;
13300 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13301 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13302 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13303 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13304 	    ump->softdep_curdeps[D_DIRREM] <
13305 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13306 	    ump->softdep_curdeps[D_INODEDEP] <
13307 	    max_softdeps_hard / stat_flush_threads &&
13308 	    ump->softdep_curdeps[D_INDIRDEP] <
13309 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13310 	    ump->softdep_curdeps[D_FREEBLKS] <
13311 	    max_softdeps_hard / stat_flush_threads) {
13312 		FREE_LOCK(ump);
13313   		return (0);
13314 	}
13315 	/*
13316 	 * If the journal is low or our filesystem is over its limit
13317 	 * then speedup the cleanup.
13318 	 */
13319 	if (ump->softdep_curdeps[D_INDIRDEP] <
13320 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13321 		softdep_speedup(ump);
13322 	stat_sync_limit_hit += 1;
13323 	FREE_LOCK(ump);
13324 	/*
13325 	 * We only slow down the rate at which new dependencies are
13326 	 * generated if we are not using journaling. With journaling,
13327 	 * the cleanup should always be sufficient to keep things
13328 	 * under control.
13329 	 */
13330 	if (DOINGSUJ(vp))
13331 		return (0);
13332 	return (1);
13333 }
13334 
13335 /*
13336  * Called by the allocation routines when they are about to fail
13337  * in the hope that we can free up the requested resource (inodes
13338  * or disk space).
13339  *
13340  * First check to see if the work list has anything on it. If it has,
13341  * clean up entries until we successfully free the requested resource.
13342  * Because this process holds inodes locked, we cannot handle any remove
13343  * requests that might block on a locked inode as that could lead to
13344  * deadlock. If the worklist yields none of the requested resource,
13345  * start syncing out vnodes to free up the needed space.
13346  */
13347 int
13348 softdep_request_cleanup(fs, vp, cred, resource)
13349 	struct fs *fs;
13350 	struct vnode *vp;
13351 	struct ucred *cred;
13352 	int resource;
13353 {
13354 	struct ufsmount *ump;
13355 	struct mount *mp;
13356 	long starttime;
13357 	ufs2_daddr_t needed;
13358 	int error, failed_vnode;
13359 
13360 	/*
13361 	 * If we are being called because of a process doing a
13362 	 * copy-on-write, then it is not safe to process any
13363 	 * worklist items as we will recurse into the copyonwrite
13364 	 * routine.  This will result in an incoherent snapshot.
13365 	 * If the vnode that we hold is a snapshot, we must avoid
13366 	 * handling other resources that could cause deadlock.
13367 	 */
13368 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13369 		return (0);
13370 
13371 	if (resource == FLUSH_BLOCKS_WAIT)
13372 		stat_cleanup_blkrequests += 1;
13373 	else
13374 		stat_cleanup_inorequests += 1;
13375 
13376 	mp = vp->v_mount;
13377 	ump = VFSTOUFS(mp);
13378 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13379 	UFS_UNLOCK(ump);
13380 	error = ffs_update(vp, 1);
13381 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13382 		UFS_LOCK(ump);
13383 		return (0);
13384 	}
13385 	/*
13386 	 * If we are in need of resources, start by cleaning up
13387 	 * any block removals associated with our inode.
13388 	 */
13389 	ACQUIRE_LOCK(ump);
13390 	process_removes(vp);
13391 	process_truncates(vp);
13392 	FREE_LOCK(ump);
13393 	/*
13394 	 * Now clean up at least as many resources as we will need.
13395 	 *
13396 	 * When requested to clean up inodes, the number that are needed
13397 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13398 	 * plus a bit of slop (2) in case some more writers show up while
13399 	 * we are cleaning.
13400 	 *
13401 	 * When requested to free up space, the amount of space that
13402 	 * we need is enough blocks to allocate a full-sized segment
13403 	 * (fs_contigsumsize). The number of such segments that will
13404 	 * be needed is set by the number of simultaneous writers
13405 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13406 	 * writers show up while we are cleaning.
13407 	 *
13408 	 * Additionally, if we are unpriviledged and allocating space,
13409 	 * we need to ensure that we clean up enough blocks to get the
13410 	 * needed number of blocks over the threshold of the minimum
13411 	 * number of blocks required to be kept free by the filesystem
13412 	 * (fs_minfree).
13413 	 */
13414 	if (resource == FLUSH_INODES_WAIT) {
13415 		needed = vp->v_mount->mnt_writeopcount + 2;
13416 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13417 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13418 		    fs->fs_contigsumsize;
13419 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13420 			needed += fragstoblks(fs,
13421 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13422 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13423 	} else {
13424 		UFS_LOCK(ump);
13425 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13426 		    resource);
13427 		return (0);
13428 	}
13429 	starttime = time_second;
13430 retry:
13431 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13432 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13433 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13434 	    fs->fs_cstotal.cs_nifree <= needed)) {
13435 		ACQUIRE_LOCK(ump);
13436 		if (ump->softdep_on_worklist > 0 &&
13437 		    process_worklist_item(UFSTOVFS(ump),
13438 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13439 			stat_worklist_push += 1;
13440 		FREE_LOCK(ump);
13441 	}
13442 	/*
13443 	 * If we still need resources and there are no more worklist
13444 	 * entries to process to obtain them, we have to start flushing
13445 	 * the dirty vnodes to force the release of additional requests
13446 	 * to the worklist that we can then process to reap addition
13447 	 * resources. We walk the vnodes associated with the mount point
13448 	 * until we get the needed worklist requests that we can reap.
13449 	 *
13450 	 * If there are several threads all needing to clean the same
13451 	 * mount point, only one is allowed to walk the mount list.
13452 	 * When several threads all try to walk the same mount list,
13453 	 * they end up competing with each other and often end up in
13454 	 * livelock. This approach ensures that forward progress is
13455 	 * made at the cost of occational ENOSPC errors being returned
13456 	 * that might otherwise have been avoided.
13457 	 */
13458 	error = 1;
13459 	if ((resource == FLUSH_BLOCKS_WAIT &&
13460 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13461 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13462 	     fs->fs_cstotal.cs_nifree <= needed)) {
13463 		ACQUIRE_LOCK(ump);
13464 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13465 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13466 			FREE_LOCK(ump);
13467 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13468 			ACQUIRE_LOCK(ump);
13469 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13470 			FREE_LOCK(ump);
13471 			if (ump->softdep_on_worklist > 0) {
13472 				stat_cleanup_retries += 1;
13473 				if (!failed_vnode)
13474 					goto retry;
13475 			}
13476 		} else {
13477 			FREE_LOCK(ump);
13478 			error = 0;
13479 		}
13480 		stat_cleanup_failures += 1;
13481 	}
13482 	if (time_second - starttime > stat_cleanup_high_delay)
13483 		stat_cleanup_high_delay = time_second - starttime;
13484 	UFS_LOCK(ump);
13485 	return (error);
13486 }
13487 
13488 /*
13489  * Scan the vnodes for the specified mount point flushing out any
13490  * vnodes that can be locked without waiting. Finally, try to flush
13491  * the device associated with the mount point if it can be locked
13492  * without waiting.
13493  *
13494  * We return 0 if we were able to lock every vnode in our scan.
13495  * If we had to skip one or more vnodes, we return 1.
13496  */
13497 static int
13498 softdep_request_cleanup_flush(mp, ump)
13499 	struct mount *mp;
13500 	struct ufsmount *ump;
13501 {
13502 	struct thread *td;
13503 	struct vnode *lvp, *mvp;
13504 	int failed_vnode;
13505 
13506 	failed_vnode = 0;
13507 	td = curthread;
13508 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13509 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13510 			VI_UNLOCK(lvp);
13511 			continue;
13512 		}
13513 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13514 		    td) != 0) {
13515 			failed_vnode = 1;
13516 			continue;
13517 		}
13518 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13519 			vput(lvp);
13520 			continue;
13521 		}
13522 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13523 		vput(lvp);
13524 	}
13525 	lvp = ump->um_devvp;
13526 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13527 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13528 		VOP_UNLOCK(lvp, 0);
13529 	}
13530 	return (failed_vnode);
13531 }
13532 
13533 static bool
13534 softdep_excess_items(struct ufsmount *ump, int item)
13535 {
13536 
13537 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13538 	return (dep_current[item] > max_softdeps &&
13539 	    ump->softdep_curdeps[item] > max_softdeps /
13540 	    stat_flush_threads);
13541 }
13542 
13543 static void
13544 schedule_cleanup(struct mount *mp)
13545 {
13546 	struct ufsmount *ump;
13547 	struct thread *td;
13548 
13549 	ump = VFSTOUFS(mp);
13550 	LOCK_OWNED(ump);
13551 	FREE_LOCK(ump);
13552 	td = curthread;
13553 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13554 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13555 		/*
13556 		 * No ast is delivered to kernel threads, so nobody
13557 		 * would deref the mp.  Some kernel threads
13558 		 * explicitely check for AST, e.g. NFS daemon does
13559 		 * this in the serving loop.
13560 		 */
13561 		return;
13562 	}
13563 	if (td->td_su != NULL)
13564 		vfs_rel(td->td_su);
13565 	vfs_ref(mp);
13566 	td->td_su = mp;
13567 	thread_lock(td);
13568 	td->td_flags |= TDF_ASTPENDING;
13569 	thread_unlock(td);
13570 }
13571 
13572 static void
13573 softdep_ast_cleanup_proc(struct thread *td)
13574 {
13575 	struct mount *mp;
13576 	struct ufsmount *ump;
13577 	int error;
13578 	bool req;
13579 
13580 	while ((mp = td->td_su) != NULL) {
13581 		td->td_su = NULL;
13582 		error = vfs_busy(mp, MBF_NOWAIT);
13583 		vfs_rel(mp);
13584 		if (error != 0)
13585 			return;
13586 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13587 			ump = VFSTOUFS(mp);
13588 			for (;;) {
13589 				req = false;
13590 				ACQUIRE_LOCK(ump);
13591 				if (softdep_excess_items(ump, D_INODEDEP)) {
13592 					req = true;
13593 					request_cleanup(mp, FLUSH_INODES);
13594 				}
13595 				if (softdep_excess_items(ump, D_DIRREM)) {
13596 					req = true;
13597 					request_cleanup(mp, FLUSH_BLOCKS);
13598 				}
13599 				FREE_LOCK(ump);
13600 				if (softdep_excess_items(ump, D_NEWBLK) ||
13601 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13602 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13603 					error = vn_start_write(NULL, &mp,
13604 					    V_WAIT);
13605 					if (error == 0) {
13606 						req = true;
13607 						VFS_SYNC(mp, MNT_WAIT);
13608 						vn_finished_write(mp);
13609 					}
13610 				}
13611 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13612 					break;
13613 			}
13614 		}
13615 		vfs_unbusy(mp);
13616 	}
13617 	if ((mp = td->td_su) != NULL) {
13618 		td->td_su = NULL;
13619 		vfs_rel(mp);
13620 	}
13621 }
13622 
13623 /*
13624  * If memory utilization has gotten too high, deliberately slow things
13625  * down and speed up the I/O processing.
13626  */
13627 static int
13628 request_cleanup(mp, resource)
13629 	struct mount *mp;
13630 	int resource;
13631 {
13632 	struct thread *td = curthread;
13633 	struct ufsmount *ump;
13634 
13635 	ump = VFSTOUFS(mp);
13636 	LOCK_OWNED(ump);
13637 	/*
13638 	 * We never hold up the filesystem syncer or buf daemon.
13639 	 */
13640 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13641 		return (0);
13642 	/*
13643 	 * First check to see if the work list has gotten backlogged.
13644 	 * If it has, co-opt this process to help clean up two entries.
13645 	 * Because this process may hold inodes locked, we cannot
13646 	 * handle any remove requests that might block on a locked
13647 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13648 	 * to avoid recursively processing the worklist.
13649 	 */
13650 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13651 		td->td_pflags |= TDP_SOFTDEP;
13652 		process_worklist_item(mp, 2, LK_NOWAIT);
13653 		td->td_pflags &= ~TDP_SOFTDEP;
13654 		stat_worklist_push += 2;
13655 		return(1);
13656 	}
13657 	/*
13658 	 * Next, we attempt to speed up the syncer process. If that
13659 	 * is successful, then we allow the process to continue.
13660 	 */
13661 	if (softdep_speedup(ump) &&
13662 	    resource != FLUSH_BLOCKS_WAIT &&
13663 	    resource != FLUSH_INODES_WAIT)
13664 		return(0);
13665 	/*
13666 	 * If we are resource constrained on inode dependencies, try
13667 	 * flushing some dirty inodes. Otherwise, we are constrained
13668 	 * by file deletions, so try accelerating flushes of directories
13669 	 * with removal dependencies. We would like to do the cleanup
13670 	 * here, but we probably hold an inode locked at this point and
13671 	 * that might deadlock against one that we try to clean. So,
13672 	 * the best that we can do is request the syncer daemon to do
13673 	 * the cleanup for us.
13674 	 */
13675 	switch (resource) {
13676 
13677 	case FLUSH_INODES:
13678 	case FLUSH_INODES_WAIT:
13679 		ACQUIRE_GBLLOCK(&lk);
13680 		stat_ino_limit_push += 1;
13681 		req_clear_inodedeps += 1;
13682 		FREE_GBLLOCK(&lk);
13683 		stat_countp = &stat_ino_limit_hit;
13684 		break;
13685 
13686 	case FLUSH_BLOCKS:
13687 	case FLUSH_BLOCKS_WAIT:
13688 		ACQUIRE_GBLLOCK(&lk);
13689 		stat_blk_limit_push += 1;
13690 		req_clear_remove += 1;
13691 		FREE_GBLLOCK(&lk);
13692 		stat_countp = &stat_blk_limit_hit;
13693 		break;
13694 
13695 	default:
13696 		panic("request_cleanup: unknown type");
13697 	}
13698 	/*
13699 	 * Hopefully the syncer daemon will catch up and awaken us.
13700 	 * We wait at most tickdelay before proceeding in any case.
13701 	 */
13702 	ACQUIRE_GBLLOCK(&lk);
13703 	FREE_LOCK(ump);
13704 	proc_waiting += 1;
13705 	if (callout_pending(&softdep_callout) == FALSE)
13706 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13707 		    pause_timer, 0);
13708 
13709 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13710 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13711 	proc_waiting -= 1;
13712 	FREE_GBLLOCK(&lk);
13713 	ACQUIRE_LOCK(ump);
13714 	return (1);
13715 }
13716 
13717 /*
13718  * Awaken processes pausing in request_cleanup and clear proc_waiting
13719  * to indicate that there is no longer a timer running. Pause_timer
13720  * will be called with the global softdep mutex (&lk) locked.
13721  */
13722 static void
13723 pause_timer(arg)
13724 	void *arg;
13725 {
13726 
13727 	GBLLOCK_OWNED(&lk);
13728 	/*
13729 	 * The callout_ API has acquired mtx and will hold it around this
13730 	 * function call.
13731 	 */
13732 	*stat_countp += proc_waiting;
13733 	wakeup(&proc_waiting);
13734 }
13735 
13736 /*
13737  * If requested, try removing inode or removal dependencies.
13738  */
13739 static void
13740 check_clear_deps(mp)
13741 	struct mount *mp;
13742 {
13743 
13744 	/*
13745 	 * If we are suspended, it may be because of our using
13746 	 * too many inodedeps, so help clear them out.
13747 	 */
13748 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13749 		clear_inodedeps(mp);
13750 	/*
13751 	 * General requests for cleanup of backed up dependencies
13752 	 */
13753 	ACQUIRE_GBLLOCK(&lk);
13754 	if (req_clear_inodedeps) {
13755 		req_clear_inodedeps -= 1;
13756 		FREE_GBLLOCK(&lk);
13757 		clear_inodedeps(mp);
13758 		ACQUIRE_GBLLOCK(&lk);
13759 		wakeup(&proc_waiting);
13760 	}
13761 	if (req_clear_remove) {
13762 		req_clear_remove -= 1;
13763 		FREE_GBLLOCK(&lk);
13764 		clear_remove(mp);
13765 		ACQUIRE_GBLLOCK(&lk);
13766 		wakeup(&proc_waiting);
13767 	}
13768 	FREE_GBLLOCK(&lk);
13769 }
13770 
13771 /*
13772  * Flush out a directory with at least one removal dependency in an effort to
13773  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13774  */
13775 static void
13776 clear_remove(mp)
13777 	struct mount *mp;
13778 {
13779 	struct pagedep_hashhead *pagedephd;
13780 	struct pagedep *pagedep;
13781 	struct ufsmount *ump;
13782 	struct vnode *vp;
13783 	struct bufobj *bo;
13784 	int error, cnt;
13785 	ino_t ino;
13786 
13787 	ump = VFSTOUFS(mp);
13788 	LOCK_OWNED(ump);
13789 
13790 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13791 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13792 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13793 			ump->pagedep_nextclean = 0;
13794 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13795 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13796 				continue;
13797 			ino = pagedep->pd_ino;
13798 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13799 				continue;
13800 			FREE_LOCK(ump);
13801 
13802 			/*
13803 			 * Let unmount clear deps
13804 			 */
13805 			error = vfs_busy(mp, MBF_NOWAIT);
13806 			if (error != 0)
13807 				goto finish_write;
13808 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13809 			     FFSV_FORCEINSMQ);
13810 			vfs_unbusy(mp);
13811 			if (error != 0) {
13812 				softdep_error("clear_remove: vget", error);
13813 				goto finish_write;
13814 			}
13815 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13816 				softdep_error("clear_remove: fsync", error);
13817 			bo = &vp->v_bufobj;
13818 			BO_LOCK(bo);
13819 			drain_output(vp);
13820 			BO_UNLOCK(bo);
13821 			vput(vp);
13822 		finish_write:
13823 			vn_finished_write(mp);
13824 			ACQUIRE_LOCK(ump);
13825 			return;
13826 		}
13827 	}
13828 }
13829 
13830 /*
13831  * Clear out a block of dirty inodes in an effort to reduce
13832  * the number of inodedep dependency structures.
13833  */
13834 static void
13835 clear_inodedeps(mp)
13836 	struct mount *mp;
13837 {
13838 	struct inodedep_hashhead *inodedephd;
13839 	struct inodedep *inodedep;
13840 	struct ufsmount *ump;
13841 	struct vnode *vp;
13842 	struct fs *fs;
13843 	int error, cnt;
13844 	ino_t firstino, lastino, ino;
13845 
13846 	ump = VFSTOUFS(mp);
13847 	fs = ump->um_fs;
13848 	LOCK_OWNED(ump);
13849 	/*
13850 	 * Pick a random inode dependency to be cleared.
13851 	 * We will then gather up all the inodes in its block
13852 	 * that have dependencies and flush them out.
13853 	 */
13854 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13855 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13856 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13857 			ump->inodedep_nextclean = 0;
13858 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13859 			break;
13860 	}
13861 	if (inodedep == NULL)
13862 		return;
13863 	/*
13864 	 * Find the last inode in the block with dependencies.
13865 	 */
13866 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13867 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13868 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13869 			break;
13870 	/*
13871 	 * Asynchronously push all but the last inode with dependencies.
13872 	 * Synchronously push the last inode with dependencies to ensure
13873 	 * that the inode block gets written to free up the inodedeps.
13874 	 */
13875 	for (ino = firstino; ino <= lastino; ino++) {
13876 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13877 			continue;
13878 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13879 			continue;
13880 		FREE_LOCK(ump);
13881 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13882 		if (error != 0) {
13883 			vn_finished_write(mp);
13884 			ACQUIRE_LOCK(ump);
13885 			return;
13886 		}
13887 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13888 		    FFSV_FORCEINSMQ)) != 0) {
13889 			softdep_error("clear_inodedeps: vget", error);
13890 			vfs_unbusy(mp);
13891 			vn_finished_write(mp);
13892 			ACQUIRE_LOCK(ump);
13893 			return;
13894 		}
13895 		vfs_unbusy(mp);
13896 		if (ino == lastino) {
13897 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13898 				softdep_error("clear_inodedeps: fsync1", error);
13899 		} else {
13900 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13901 				softdep_error("clear_inodedeps: fsync2", error);
13902 			BO_LOCK(&vp->v_bufobj);
13903 			drain_output(vp);
13904 			BO_UNLOCK(&vp->v_bufobj);
13905 		}
13906 		vput(vp);
13907 		vn_finished_write(mp);
13908 		ACQUIRE_LOCK(ump);
13909 	}
13910 }
13911 
13912 void
13913 softdep_buf_append(bp, wkhd)
13914 	struct buf *bp;
13915 	struct workhead *wkhd;
13916 {
13917 	struct worklist *wk;
13918 	struct ufsmount *ump;
13919 
13920 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13921 		return;
13922 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13923 	    ("softdep_buf_append called on non-softdep filesystem"));
13924 	ump = VFSTOUFS(wk->wk_mp);
13925 	ACQUIRE_LOCK(ump);
13926 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13927 		WORKLIST_REMOVE(wk);
13928 		WORKLIST_INSERT(&bp->b_dep, wk);
13929 	}
13930 	FREE_LOCK(ump);
13931 
13932 }
13933 
13934 void
13935 softdep_inode_append(ip, cred, wkhd)
13936 	struct inode *ip;
13937 	struct ucred *cred;
13938 	struct workhead *wkhd;
13939 {
13940 	struct buf *bp;
13941 	struct fs *fs;
13942 	struct ufsmount *ump;
13943 	int error;
13944 
13945 	ump = ITOUMP(ip);
13946 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
13947 	    ("softdep_inode_append called on non-softdep filesystem"));
13948 	fs = ump->um_fs;
13949 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13950 	    (int)fs->fs_bsize, cred, &bp);
13951 	if (error) {
13952 		bqrelse(bp);
13953 		softdep_freework(wkhd);
13954 		return;
13955 	}
13956 	softdep_buf_append(bp, wkhd);
13957 	bqrelse(bp);
13958 }
13959 
13960 void
13961 softdep_freework(wkhd)
13962 	struct workhead *wkhd;
13963 {
13964 	struct worklist *wk;
13965 	struct ufsmount *ump;
13966 
13967 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13968 		return;
13969 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13970 	    ("softdep_freework called on non-softdep filesystem"));
13971 	ump = VFSTOUFS(wk->wk_mp);
13972 	ACQUIRE_LOCK(ump);
13973 	handle_jwork(wkhd);
13974 	FREE_LOCK(ump);
13975 }
13976 
13977 static struct ufsmount *
13978 softdep_bp_to_mp(bp)
13979 	struct buf *bp;
13980 {
13981 	struct mount *mp;
13982 	struct vnode *vp;
13983 
13984 	if (LIST_EMPTY(&bp->b_dep))
13985 		return (NULL);
13986 	vp = bp->b_vp;
13987 	KASSERT(vp != NULL,
13988 	    ("%s, buffer with dependencies lacks vnode", __func__));
13989 
13990 	/*
13991 	 * The ump mount point is stable after we get a correct
13992 	 * pointer, since bp is locked and this prevents unmount from
13993 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
13994 	 * head wk_mp, because we do not yet own SU ump lock and
13995 	 * workitem might be freed while dereferenced.
13996 	 */
13997 retry:
13998 	switch (vp->v_type) {
13999 	case VCHR:
14000 		VI_LOCK(vp);
14001 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14002 		VI_UNLOCK(vp);
14003 		if (mp == NULL)
14004 			goto retry;
14005 		break;
14006 	case VREG:
14007 	case VDIR:
14008 	case VLNK:
14009 	case VFIFO:
14010 	case VSOCK:
14011 		mp = vp->v_mount;
14012 		break;
14013 	case VBLK:
14014 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14015 		/* FALLTHROUGH */
14016 	case VNON:
14017 	case VBAD:
14018 	case VMARKER:
14019 		mp = NULL;
14020 		break;
14021 	default:
14022 		vn_printf(vp, "unknown vnode type");
14023 		mp = NULL;
14024 		break;
14025 	}
14026 	return (VFSTOUFS(mp));
14027 }
14028 
14029 /*
14030  * Function to determine if the buffer has outstanding dependencies
14031  * that will cause a roll-back if the buffer is written. If wantcount
14032  * is set, return number of dependencies, otherwise just yes or no.
14033  */
14034 static int
14035 softdep_count_dependencies(bp, wantcount)
14036 	struct buf *bp;
14037 	int wantcount;
14038 {
14039 	struct worklist *wk;
14040 	struct ufsmount *ump;
14041 	struct bmsafemap *bmsafemap;
14042 	struct freework *freework;
14043 	struct inodedep *inodedep;
14044 	struct indirdep *indirdep;
14045 	struct freeblks *freeblks;
14046 	struct allocindir *aip;
14047 	struct pagedep *pagedep;
14048 	struct dirrem *dirrem;
14049 	struct newblk *newblk;
14050 	struct mkdir *mkdir;
14051 	struct diradd *dap;
14052 	int i, retval;
14053 
14054 	ump = softdep_bp_to_mp(bp);
14055 	if (ump == NULL)
14056 		return (0);
14057 	retval = 0;
14058 	ACQUIRE_LOCK(ump);
14059 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14060 		switch (wk->wk_type) {
14061 
14062 		case D_INODEDEP:
14063 			inodedep = WK_INODEDEP(wk);
14064 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14065 				/* bitmap allocation dependency */
14066 				retval += 1;
14067 				if (!wantcount)
14068 					goto out;
14069 			}
14070 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14071 				/* direct block pointer dependency */
14072 				retval += 1;
14073 				if (!wantcount)
14074 					goto out;
14075 			}
14076 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14077 				/* direct block pointer dependency */
14078 				retval += 1;
14079 				if (!wantcount)
14080 					goto out;
14081 			}
14082 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14083 				/* Add reference dependency. */
14084 				retval += 1;
14085 				if (!wantcount)
14086 					goto out;
14087 			}
14088 			continue;
14089 
14090 		case D_INDIRDEP:
14091 			indirdep = WK_INDIRDEP(wk);
14092 
14093 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14094 				/* indirect truncation dependency */
14095 				retval += 1;
14096 				if (!wantcount)
14097 					goto out;
14098 			}
14099 
14100 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14101 				/* indirect block pointer dependency */
14102 				retval += 1;
14103 				if (!wantcount)
14104 					goto out;
14105 			}
14106 			continue;
14107 
14108 		case D_PAGEDEP:
14109 			pagedep = WK_PAGEDEP(wk);
14110 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14111 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14112 					/* Journal remove ref dependency. */
14113 					retval += 1;
14114 					if (!wantcount)
14115 						goto out;
14116 				}
14117 			}
14118 			for (i = 0; i < DAHASHSZ; i++) {
14119 
14120 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14121 					/* directory entry dependency */
14122 					retval += 1;
14123 					if (!wantcount)
14124 						goto out;
14125 				}
14126 			}
14127 			continue;
14128 
14129 		case D_BMSAFEMAP:
14130 			bmsafemap = WK_BMSAFEMAP(wk);
14131 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14132 				/* Add reference dependency. */
14133 				retval += 1;
14134 				if (!wantcount)
14135 					goto out;
14136 			}
14137 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14138 				/* Allocate block dependency. */
14139 				retval += 1;
14140 				if (!wantcount)
14141 					goto out;
14142 			}
14143 			continue;
14144 
14145 		case D_FREEBLKS:
14146 			freeblks = WK_FREEBLKS(wk);
14147 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14148 				/* Freeblk journal dependency. */
14149 				retval += 1;
14150 				if (!wantcount)
14151 					goto out;
14152 			}
14153 			continue;
14154 
14155 		case D_ALLOCDIRECT:
14156 		case D_ALLOCINDIR:
14157 			newblk = WK_NEWBLK(wk);
14158 			if (newblk->nb_jnewblk) {
14159 				/* Journal allocate dependency. */
14160 				retval += 1;
14161 				if (!wantcount)
14162 					goto out;
14163 			}
14164 			continue;
14165 
14166 		case D_MKDIR:
14167 			mkdir = WK_MKDIR(wk);
14168 			if (mkdir->md_jaddref) {
14169 				/* Journal reference dependency. */
14170 				retval += 1;
14171 				if (!wantcount)
14172 					goto out;
14173 			}
14174 			continue;
14175 
14176 		case D_FREEWORK:
14177 		case D_FREEDEP:
14178 		case D_JSEGDEP:
14179 		case D_JSEG:
14180 		case D_SBDEP:
14181 			/* never a dependency on these blocks */
14182 			continue;
14183 
14184 		default:
14185 			panic("softdep_count_dependencies: Unexpected type %s",
14186 			    TYPENAME(wk->wk_type));
14187 			/* NOTREACHED */
14188 		}
14189 	}
14190 out:
14191 	FREE_LOCK(ump);
14192 	return (retval);
14193 }
14194 
14195 /*
14196  * Acquire exclusive access to a buffer.
14197  * Must be called with a locked mtx parameter.
14198  * Return acquired buffer or NULL on failure.
14199  */
14200 static struct buf *
14201 getdirtybuf(bp, lock, waitfor)
14202 	struct buf *bp;
14203 	struct rwlock *lock;
14204 	int waitfor;
14205 {
14206 	int error;
14207 
14208 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14209 		if (waitfor != MNT_WAIT)
14210 			return (NULL);
14211 		error = BUF_LOCK(bp,
14212 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14213 		/*
14214 		 * Even if we successfully acquire bp here, we have dropped
14215 		 * lock, which may violates our guarantee.
14216 		 */
14217 		if (error == 0)
14218 			BUF_UNLOCK(bp);
14219 		else if (error != ENOLCK)
14220 			panic("getdirtybuf: inconsistent lock: %d", error);
14221 		rw_wlock(lock);
14222 		return (NULL);
14223 	}
14224 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14225 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14226 			rw_wunlock(lock);
14227 			BO_LOCK(bp->b_bufobj);
14228 			BUF_UNLOCK(bp);
14229 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14230 				bp->b_vflags |= BV_BKGRDWAIT;
14231 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14232 				       PRIBIO | PDROP, "getbuf", 0);
14233 			} else
14234 				BO_UNLOCK(bp->b_bufobj);
14235 			rw_wlock(lock);
14236 			return (NULL);
14237 		}
14238 		BUF_UNLOCK(bp);
14239 		if (waitfor != MNT_WAIT)
14240 			return (NULL);
14241 #ifdef DEBUG_VFS_LOCKS
14242 		if (bp->b_vp->v_type != VCHR)
14243 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14244 #endif
14245 		bp->b_vflags |= BV_BKGRDWAIT;
14246 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14247 		return (NULL);
14248 	}
14249 	if ((bp->b_flags & B_DELWRI) == 0) {
14250 		BUF_UNLOCK(bp);
14251 		return (NULL);
14252 	}
14253 	bremfree(bp);
14254 	return (bp);
14255 }
14256 
14257 
14258 /*
14259  * Check if it is safe to suspend the file system now.  On entry,
14260  * the vnode interlock for devvp should be held.  Return 0 with
14261  * the mount interlock held if the file system can be suspended now,
14262  * otherwise return EAGAIN with the mount interlock held.
14263  */
14264 int
14265 softdep_check_suspend(struct mount *mp,
14266 		      struct vnode *devvp,
14267 		      int softdep_depcnt,
14268 		      int softdep_accdepcnt,
14269 		      int secondary_writes,
14270 		      int secondary_accwrites)
14271 {
14272 	struct bufobj *bo;
14273 	struct ufsmount *ump;
14274 	struct inodedep *inodedep;
14275 	int error, unlinked;
14276 
14277 	bo = &devvp->v_bufobj;
14278 	ASSERT_BO_WLOCKED(bo);
14279 
14280 	/*
14281 	 * If we are not running with soft updates, then we need only
14282 	 * deal with secondary writes as we try to suspend.
14283 	 */
14284 	if (MOUNTEDSOFTDEP(mp) == 0) {
14285 		MNT_ILOCK(mp);
14286 		while (mp->mnt_secondary_writes != 0) {
14287 			BO_UNLOCK(bo);
14288 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14289 			    (PUSER - 1) | PDROP, "secwr", 0);
14290 			BO_LOCK(bo);
14291 			MNT_ILOCK(mp);
14292 		}
14293 
14294 		/*
14295 		 * Reasons for needing more work before suspend:
14296 		 * - Dirty buffers on devvp.
14297 		 * - Secondary writes occurred after start of vnode sync loop
14298 		 */
14299 		error = 0;
14300 		if (bo->bo_numoutput > 0 ||
14301 		    bo->bo_dirty.bv_cnt > 0 ||
14302 		    secondary_writes != 0 ||
14303 		    mp->mnt_secondary_writes != 0 ||
14304 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14305 			error = EAGAIN;
14306 		BO_UNLOCK(bo);
14307 		return (error);
14308 	}
14309 
14310 	/*
14311 	 * If we are running with soft updates, then we need to coordinate
14312 	 * with them as we try to suspend.
14313 	 */
14314 	ump = VFSTOUFS(mp);
14315 	for (;;) {
14316 		if (!TRY_ACQUIRE_LOCK(ump)) {
14317 			BO_UNLOCK(bo);
14318 			ACQUIRE_LOCK(ump);
14319 			FREE_LOCK(ump);
14320 			BO_LOCK(bo);
14321 			continue;
14322 		}
14323 		MNT_ILOCK(mp);
14324 		if (mp->mnt_secondary_writes != 0) {
14325 			FREE_LOCK(ump);
14326 			BO_UNLOCK(bo);
14327 			msleep(&mp->mnt_secondary_writes,
14328 			       MNT_MTX(mp),
14329 			       (PUSER - 1) | PDROP, "secwr", 0);
14330 			BO_LOCK(bo);
14331 			continue;
14332 		}
14333 		break;
14334 	}
14335 
14336 	unlinked = 0;
14337 	if (MOUNTEDSUJ(mp)) {
14338 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14339 		    inodedep != NULL;
14340 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14341 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14342 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14343 			    UNLINKONLIST) ||
14344 			    !check_inodedep_free(inodedep))
14345 				continue;
14346 			unlinked++;
14347 		}
14348 	}
14349 
14350 	/*
14351 	 * Reasons for needing more work before suspend:
14352 	 * - Dirty buffers on devvp.
14353 	 * - Softdep activity occurred after start of vnode sync loop
14354 	 * - Secondary writes occurred after start of vnode sync loop
14355 	 */
14356 	error = 0;
14357 	if (bo->bo_numoutput > 0 ||
14358 	    bo->bo_dirty.bv_cnt > 0 ||
14359 	    softdep_depcnt != unlinked ||
14360 	    ump->softdep_deps != unlinked ||
14361 	    softdep_accdepcnt != ump->softdep_accdeps ||
14362 	    secondary_writes != 0 ||
14363 	    mp->mnt_secondary_writes != 0 ||
14364 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14365 		error = EAGAIN;
14366 	FREE_LOCK(ump);
14367 	BO_UNLOCK(bo);
14368 	return (error);
14369 }
14370 
14371 
14372 /*
14373  * Get the number of dependency structures for the file system, both
14374  * the current number and the total number allocated.  These will
14375  * later be used to detect that softdep processing has occurred.
14376  */
14377 void
14378 softdep_get_depcounts(struct mount *mp,
14379 		      int *softdep_depsp,
14380 		      int *softdep_accdepsp)
14381 {
14382 	struct ufsmount *ump;
14383 
14384 	if (MOUNTEDSOFTDEP(mp) == 0) {
14385 		*softdep_depsp = 0;
14386 		*softdep_accdepsp = 0;
14387 		return;
14388 	}
14389 	ump = VFSTOUFS(mp);
14390 	ACQUIRE_LOCK(ump);
14391 	*softdep_depsp = ump->softdep_deps;
14392 	*softdep_accdepsp = ump->softdep_accdeps;
14393 	FREE_LOCK(ump);
14394 }
14395 
14396 /*
14397  * Wait for pending output on a vnode to complete.
14398  */
14399 static void
14400 drain_output(vp)
14401 	struct vnode *vp;
14402 {
14403 
14404 	ASSERT_VOP_LOCKED(vp, "drain_output");
14405 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14406 }
14407 
14408 /*
14409  * Called whenever a buffer that is being invalidated or reallocated
14410  * contains dependencies. This should only happen if an I/O error has
14411  * occurred. The routine is called with the buffer locked.
14412  */
14413 static void
14414 softdep_deallocate_dependencies(bp)
14415 	struct buf *bp;
14416 {
14417 
14418 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14419 		panic("softdep_deallocate_dependencies: dangling deps");
14420 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14421 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14422 	else
14423 		printf("softdep_deallocate_dependencies: "
14424 		    "got error %d while accessing filesystem\n", bp->b_error);
14425 	if (bp->b_error != ENXIO)
14426 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14427 }
14428 
14429 /*
14430  * Function to handle asynchronous write errors in the filesystem.
14431  */
14432 static void
14433 softdep_error(func, error)
14434 	char *func;
14435 	int error;
14436 {
14437 
14438 	/* XXX should do something better! */
14439 	printf("%s: got error %d while accessing filesystem\n", func, error);
14440 }
14441 
14442 #ifdef DDB
14443 
14444 /* exported to ffs_vfsops.c */
14445 extern void db_print_ffs(struct ufsmount *ump);
14446 void
14447 db_print_ffs(struct ufsmount *ump)
14448 {
14449 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14450 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14451 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14452 	    ump->um_fs, ump->softdep_on_worklist,
14453 	    ump->softdep_deps, ump->softdep_req);
14454 }
14455 
14456 static void
14457 worklist_print(struct worklist *wk, int verbose)
14458 {
14459 
14460 	if (!verbose) {
14461 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14462 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14463 		return;
14464 	}
14465 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14466 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14467 	    LIST_NEXT(wk, wk_list));
14468 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14469 }
14470 
14471 static void
14472 inodedep_print(struct inodedep *inodedep, int verbose)
14473 {
14474 
14475 	worklist_print(&inodedep->id_list, 0);
14476 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14477 	    inodedep->id_fs,
14478 	    (intmax_t)inodedep->id_ino,
14479 	    (intmax_t)fsbtodb(inodedep->id_fs,
14480 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14481 	    (intmax_t)inodedep->id_nlinkdelta,
14482 	    (intmax_t)inodedep->id_savednlink);
14483 
14484 	if (verbose == 0)
14485 		return;
14486 
14487 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14488 	    inodedep->id_bmsafemap,
14489 	    inodedep->id_mkdiradd,
14490 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14491 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14492 	    LIST_FIRST(&inodedep->id_dirremhd),
14493 	    LIST_FIRST(&inodedep->id_pendinghd),
14494 	    LIST_FIRST(&inodedep->id_bufwait));
14495 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14496 	    LIST_FIRST(&inodedep->id_inowait),
14497 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14498 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14499 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14500 	    TAILQ_FIRST(&inodedep->id_extupdt),
14501 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14502 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14503 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14504 	    inodedep->id_savedino1,
14505 	    (intmax_t)inodedep->id_savedsize,
14506 	    (intmax_t)inodedep->id_savedextsize);
14507 }
14508 
14509 static void
14510 newblk_print(struct newblk *nbp)
14511 {
14512 
14513 	worklist_print(&nbp->nb_list, 0);
14514 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14515 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14516 	    &nbp->nb_jnewblk,
14517 	    &nbp->nb_bmsafemap,
14518 	    &nbp->nb_freefrag);
14519 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14520 	    LIST_FIRST(&nbp->nb_indirdeps),
14521 	    LIST_FIRST(&nbp->nb_newdirblk),
14522 	    LIST_FIRST(&nbp->nb_jwork));
14523 }
14524 
14525 static void
14526 allocdirect_print(struct allocdirect *adp)
14527 {
14528 
14529 	newblk_print(&adp->ad_block);
14530 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14531 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14532 	db_printf("    offset %d, inodedep %p\n",
14533 	    adp->ad_offset, adp->ad_inodedep);
14534 }
14535 
14536 static void
14537 allocindir_print(struct allocindir *aip)
14538 {
14539 
14540 	newblk_print(&aip->ai_block);
14541 	db_printf("    oldblkno %jd, lbn %jd\n",
14542 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14543 	db_printf("    offset %d, indirdep %p\n",
14544 	    aip->ai_offset, aip->ai_indirdep);
14545 }
14546 
14547 static void
14548 mkdir_print(struct mkdir *mkdir)
14549 {
14550 
14551 	worklist_print(&mkdir->md_list, 0);
14552 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14553 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14554 }
14555 
14556 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14557 {
14558 
14559 	if (have_addr == 0) {
14560 		db_printf("inodedep address required\n");
14561 		return;
14562 	}
14563 	inodedep_print((struct inodedep*)addr, 1);
14564 }
14565 
14566 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14567 {
14568 	struct inodedep_hashhead *inodedephd;
14569 	struct inodedep *inodedep;
14570 	struct ufsmount *ump;
14571 	int cnt;
14572 
14573 	if (have_addr == 0) {
14574 		db_printf("ufsmount address required\n");
14575 		return;
14576 	}
14577 	ump = (struct ufsmount *)addr;
14578 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14579 		inodedephd = &ump->inodedep_hashtbl[cnt];
14580 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14581 			inodedep_print(inodedep, 0);
14582 		}
14583 	}
14584 }
14585 
14586 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14587 {
14588 
14589 	if (have_addr == 0) {
14590 		db_printf("worklist address required\n");
14591 		return;
14592 	}
14593 	worklist_print((struct worklist *)addr, 1);
14594 }
14595 
14596 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14597 {
14598 	struct worklist *wk;
14599 	struct workhead *wkhd;
14600 
14601 	if (have_addr == 0) {
14602 		db_printf("worklist address required "
14603 		    "(for example value in bp->b_dep)\n");
14604 		return;
14605 	}
14606 	/*
14607 	 * We often do not have the address of the worklist head but
14608 	 * instead a pointer to its first entry (e.g., we have the
14609 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14610 	 * pointer of bp->b_dep will point at the head of the list, so
14611 	 * we cheat and use that instead. If we are in the middle of
14612 	 * a list we will still get the same result, so nothing
14613 	 * unexpected will result.
14614 	 */
14615 	wk = (struct worklist *)addr;
14616 	if (wk == NULL)
14617 		return;
14618 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14619 	LIST_FOREACH(wk, wkhd, wk_list) {
14620 		switch(wk->wk_type) {
14621 		case D_INODEDEP:
14622 			inodedep_print(WK_INODEDEP(wk), 0);
14623 			continue;
14624 		case D_ALLOCDIRECT:
14625 			allocdirect_print(WK_ALLOCDIRECT(wk));
14626 			continue;
14627 		case D_ALLOCINDIR:
14628 			allocindir_print(WK_ALLOCINDIR(wk));
14629 			continue;
14630 		case D_MKDIR:
14631 			mkdir_print(WK_MKDIR(wk));
14632 			continue;
14633 		default:
14634 			worklist_print(wk, 0);
14635 			continue;
14636 		}
14637 	}
14638 }
14639 
14640 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14641 {
14642 	if (have_addr == 0) {
14643 		db_printf("mkdir address required\n");
14644 		return;
14645 	}
14646 	mkdir_print((struct mkdir *)addr);
14647 }
14648 
14649 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14650 {
14651 	struct mkdirlist *mkdirlisthd;
14652 	struct mkdir *mkdir;
14653 
14654 	if (have_addr == 0) {
14655 		db_printf("mkdir listhead address required\n");
14656 		return;
14657 	}
14658 	mkdirlisthd = (struct mkdirlist *)addr;
14659 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14660 		mkdir_print(mkdir);
14661 		if (mkdir->md_diradd != NULL) {
14662 			db_printf("    ");
14663 			worklist_print(&mkdir->md_diradd->da_list, 0);
14664 		}
14665 		if (mkdir->md_jaddref != NULL) {
14666 			db_printf("    ");
14667 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14668 		}
14669 	}
14670 }
14671 
14672 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14673 {
14674 	if (have_addr == 0) {
14675 		db_printf("allocdirect address required\n");
14676 		return;
14677 	}
14678 	allocdirect_print((struct allocdirect *)addr);
14679 }
14680 
14681 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14682 {
14683 	if (have_addr == 0) {
14684 		db_printf("allocindir address required\n");
14685 		return;
14686 	}
14687 	allocindir_print((struct allocindir *)addr);
14688 }
14689 
14690 #endif /* DDB */
14691 
14692 #endif /* SOFTUPDATES */
14693