1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/limits.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mount.h> 67 #include <sys/mutex.h> 68 #include <sys/namei.h> 69 #include <sys/priv.h> 70 #include <sys/proc.h> 71 #include <sys/stat.h> 72 #include <sys/sysctl.h> 73 #include <sys/syslog.h> 74 #include <sys/vnode.h> 75 #include <sys/conf.h> 76 77 #include <ufs/ufs/dir.h> 78 #include <ufs/ufs/extattr.h> 79 #include <ufs/ufs/quota.h> 80 #include <ufs/ufs/inode.h> 81 #include <ufs/ufs/ufsmount.h> 82 #include <ufs/ffs/fs.h> 83 #include <ufs/ffs/softdep.h> 84 #include <ufs/ffs/ffs_extern.h> 85 #include <ufs/ufs/ufs_extern.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_object.h> 90 91 #include <ddb/ddb.h> 92 93 #ifndef SOFTUPDATES 94 95 int 96 softdep_flushfiles(oldmnt, flags, td) 97 struct mount *oldmnt; 98 int flags; 99 struct thread *td; 100 { 101 102 panic("softdep_flushfiles called"); 103 } 104 105 int 106 softdep_mount(devvp, mp, fs, cred) 107 struct vnode *devvp; 108 struct mount *mp; 109 struct fs *fs; 110 struct ucred *cred; 111 { 112 113 return (0); 114 } 115 116 void 117 softdep_initialize() 118 { 119 120 return; 121 } 122 123 void 124 softdep_uninitialize() 125 { 126 127 return; 128 } 129 130 void 131 softdep_unmount(mp) 132 struct mount *mp; 133 { 134 135 } 136 137 void 138 softdep_setup_sbupdate(ump, fs, bp) 139 struct ufsmount *ump; 140 struct fs *fs; 141 struct buf *bp; 142 { 143 } 144 145 void 146 softdep_setup_inomapdep(bp, ip, newinum, mode) 147 struct buf *bp; 148 struct inode *ip; 149 ino_t newinum; 150 int mode; 151 { 152 153 panic("softdep_setup_inomapdep called"); 154 } 155 156 void 157 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 158 struct buf *bp; 159 struct mount *mp; 160 ufs2_daddr_t newblkno; 161 int frags; 162 int oldfrags; 163 { 164 165 panic("softdep_setup_blkmapdep called"); 166 } 167 168 void 169 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 170 struct inode *ip; 171 ufs_lbn_t lbn; 172 ufs2_daddr_t newblkno; 173 ufs2_daddr_t oldblkno; 174 long newsize; 175 long oldsize; 176 struct buf *bp; 177 { 178 179 panic("softdep_setup_allocdirect called"); 180 } 181 182 void 183 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 184 struct inode *ip; 185 ufs_lbn_t lbn; 186 ufs2_daddr_t newblkno; 187 ufs2_daddr_t oldblkno; 188 long newsize; 189 long oldsize; 190 struct buf *bp; 191 { 192 193 panic("softdep_setup_allocext called"); 194 } 195 196 void 197 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 198 struct inode *ip; 199 ufs_lbn_t lbn; 200 struct buf *bp; 201 int ptrno; 202 ufs2_daddr_t newblkno; 203 ufs2_daddr_t oldblkno; 204 struct buf *nbp; 205 { 206 207 panic("softdep_setup_allocindir_page called"); 208 } 209 210 void 211 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 212 struct buf *nbp; 213 struct inode *ip; 214 struct buf *bp; 215 int ptrno; 216 ufs2_daddr_t newblkno; 217 { 218 219 panic("softdep_setup_allocindir_meta called"); 220 } 221 222 void 223 softdep_journal_freeblocks(ip, cred, length, flags) 224 struct inode *ip; 225 struct ucred *cred; 226 off_t length; 227 int flags; 228 { 229 230 panic("softdep_journal_freeblocks called"); 231 } 232 233 void 234 softdep_journal_fsync(ip) 235 struct inode *ip; 236 { 237 238 panic("softdep_journal_fsync called"); 239 } 240 241 void 242 softdep_setup_freeblocks(ip, length, flags) 243 struct inode *ip; 244 off_t length; 245 int flags; 246 { 247 248 panic("softdep_setup_freeblocks called"); 249 } 250 251 void 252 softdep_freefile(pvp, ino, mode) 253 struct vnode *pvp; 254 ino_t ino; 255 int mode; 256 { 257 258 panic("softdep_freefile called"); 259 } 260 261 int 262 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 263 struct buf *bp; 264 struct inode *dp; 265 off_t diroffset; 266 ino_t newinum; 267 struct buf *newdirbp; 268 int isnewblk; 269 { 270 271 panic("softdep_setup_directory_add called"); 272 } 273 274 void 275 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 276 struct buf *bp; 277 struct inode *dp; 278 caddr_t base; 279 caddr_t oldloc; 280 caddr_t newloc; 281 int entrysize; 282 { 283 284 panic("softdep_change_directoryentry_offset called"); 285 } 286 287 void 288 softdep_setup_remove(bp, dp, ip, isrmdir) 289 struct buf *bp; 290 struct inode *dp; 291 struct inode *ip; 292 int isrmdir; 293 { 294 295 panic("softdep_setup_remove called"); 296 } 297 298 void 299 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 300 struct buf *bp; 301 struct inode *dp; 302 struct inode *ip; 303 ino_t newinum; 304 int isrmdir; 305 { 306 307 panic("softdep_setup_directory_change called"); 308 } 309 310 void 311 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 312 struct mount *mp; 313 struct buf *bp; 314 ufs2_daddr_t blkno; 315 int frags; 316 struct workhead *wkhd; 317 { 318 319 panic("%s called", __FUNCTION__); 320 } 321 322 void 323 softdep_setup_inofree(mp, bp, ino, wkhd) 324 struct mount *mp; 325 struct buf *bp; 326 ino_t ino; 327 struct workhead *wkhd; 328 { 329 330 panic("%s called", __FUNCTION__); 331 } 332 333 void 334 softdep_setup_unlink(dp, ip) 335 struct inode *dp; 336 struct inode *ip; 337 { 338 339 panic("%s called", __FUNCTION__); 340 } 341 342 void 343 softdep_setup_link(dp, ip) 344 struct inode *dp; 345 struct inode *ip; 346 { 347 348 panic("%s called", __FUNCTION__); 349 } 350 351 void 352 softdep_revert_link(dp, ip) 353 struct inode *dp; 354 struct inode *ip; 355 { 356 357 panic("%s called", __FUNCTION__); 358 } 359 360 void 361 softdep_setup_rmdir(dp, ip) 362 struct inode *dp; 363 struct inode *ip; 364 { 365 366 panic("%s called", __FUNCTION__); 367 } 368 369 void 370 softdep_revert_rmdir(dp, ip) 371 struct inode *dp; 372 struct inode *ip; 373 { 374 375 panic("%s called", __FUNCTION__); 376 } 377 378 void 379 softdep_setup_create(dp, ip) 380 struct inode *dp; 381 struct inode *ip; 382 { 383 384 panic("%s called", __FUNCTION__); 385 } 386 387 void 388 softdep_revert_create(dp, ip) 389 struct inode *dp; 390 struct inode *ip; 391 { 392 393 panic("%s called", __FUNCTION__); 394 } 395 396 void 397 softdep_setup_mkdir(dp, ip) 398 struct inode *dp; 399 struct inode *ip; 400 { 401 402 panic("%s called", __FUNCTION__); 403 } 404 405 void 406 softdep_revert_mkdir(dp, ip) 407 struct inode *dp; 408 struct inode *ip; 409 { 410 411 panic("%s called", __FUNCTION__); 412 } 413 414 void 415 softdep_setup_dotdot_link(dp, ip) 416 struct inode *dp; 417 struct inode *ip; 418 { 419 420 panic("%s called", __FUNCTION__); 421 } 422 423 int 424 softdep_prealloc(vp, waitok) 425 struct vnode *vp; 426 int waitok; 427 { 428 429 panic("%s called", __FUNCTION__); 430 431 return (0); 432 } 433 434 int 435 softdep_journal_lookup(mp, vpp) 436 struct mount *mp; 437 struct vnode **vpp; 438 { 439 440 return (ENOENT); 441 } 442 443 void 444 softdep_change_linkcnt(ip) 445 struct inode *ip; 446 { 447 448 panic("softdep_change_linkcnt called"); 449 } 450 451 void 452 softdep_load_inodeblock(ip) 453 struct inode *ip; 454 { 455 456 panic("softdep_load_inodeblock called"); 457 } 458 459 void 460 softdep_update_inodeblock(ip, bp, waitfor) 461 struct inode *ip; 462 struct buf *bp; 463 int waitfor; 464 { 465 466 panic("softdep_update_inodeblock called"); 467 } 468 469 int 470 softdep_fsync(vp) 471 struct vnode *vp; /* the "in_core" copy of the inode */ 472 { 473 474 return (0); 475 } 476 477 void 478 softdep_fsync_mountdev(vp) 479 struct vnode *vp; 480 { 481 482 return; 483 } 484 485 int 486 softdep_flushworklist(oldmnt, countp, td) 487 struct mount *oldmnt; 488 int *countp; 489 struct thread *td; 490 { 491 492 *countp = 0; 493 return (0); 494 } 495 496 int 497 softdep_sync_metadata(struct vnode *vp) 498 { 499 500 return (0); 501 } 502 503 int 504 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 505 { 506 507 return (0); 508 } 509 510 int 511 softdep_slowdown(vp) 512 struct vnode *vp; 513 { 514 515 panic("softdep_slowdown called"); 516 } 517 518 void 519 softdep_releasefile(ip) 520 struct inode *ip; /* inode with the zero effective link count */ 521 { 522 523 panic("softdep_releasefile called"); 524 } 525 526 int 527 softdep_request_cleanup(fs, vp, cred, resource) 528 struct fs *fs; 529 struct vnode *vp; 530 struct ucred *cred; 531 int resource; 532 { 533 534 return (0); 535 } 536 537 int 538 softdep_check_suspend(struct mount *mp, 539 struct vnode *devvp, 540 int softdep_deps, 541 int softdep_accdeps, 542 int secondary_writes, 543 int secondary_accwrites) 544 { 545 struct bufobj *bo; 546 int error; 547 548 (void) softdep_deps, 549 (void) softdep_accdeps; 550 551 bo = &devvp->v_bufobj; 552 ASSERT_BO_LOCKED(bo); 553 554 MNT_ILOCK(mp); 555 while (mp->mnt_secondary_writes != 0) { 556 BO_UNLOCK(bo); 557 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 558 (PUSER - 1) | PDROP, "secwr", 0); 559 BO_LOCK(bo); 560 MNT_ILOCK(mp); 561 } 562 563 /* 564 * Reasons for needing more work before suspend: 565 * - Dirty buffers on devvp. 566 * - Secondary writes occurred after start of vnode sync loop 567 */ 568 error = 0; 569 if (bo->bo_numoutput > 0 || 570 bo->bo_dirty.bv_cnt > 0 || 571 secondary_writes != 0 || 572 mp->mnt_secondary_writes != 0 || 573 secondary_accwrites != mp->mnt_secondary_accwrites) 574 error = EAGAIN; 575 BO_UNLOCK(bo); 576 return (error); 577 } 578 579 void 580 softdep_get_depcounts(struct mount *mp, 581 int *softdepactivep, 582 int *softdepactiveaccp) 583 { 584 (void) mp; 585 *softdepactivep = 0; 586 *softdepactiveaccp = 0; 587 } 588 589 void 590 softdep_buf_append(bp, wkhd) 591 struct buf *bp; 592 struct workhead *wkhd; 593 { 594 595 panic("softdep_buf_appendwork called"); 596 } 597 598 void 599 softdep_inode_append(ip, cred, wkhd) 600 struct inode *ip; 601 struct ucred *cred; 602 struct workhead *wkhd; 603 { 604 605 panic("softdep_inode_appendwork called"); 606 } 607 608 void 609 softdep_freework(wkhd) 610 struct workhead *wkhd; 611 { 612 613 panic("softdep_freework called"); 614 } 615 616 #else 617 618 FEATURE(softupdates, "FFS soft-updates support"); 619 620 /* 621 * These definitions need to be adapted to the system to which 622 * this file is being ported. 623 */ 624 625 #define M_SOFTDEP_FLAGS (M_WAITOK) 626 627 #define D_PAGEDEP 0 628 #define D_INODEDEP 1 629 #define D_BMSAFEMAP 2 630 #define D_NEWBLK 3 631 #define D_ALLOCDIRECT 4 632 #define D_INDIRDEP 5 633 #define D_ALLOCINDIR 6 634 #define D_FREEFRAG 7 635 #define D_FREEBLKS 8 636 #define D_FREEFILE 9 637 #define D_DIRADD 10 638 #define D_MKDIR 11 639 #define D_DIRREM 12 640 #define D_NEWDIRBLK 13 641 #define D_FREEWORK 14 642 #define D_FREEDEP 15 643 #define D_JADDREF 16 644 #define D_JREMREF 17 645 #define D_JMVREF 18 646 #define D_JNEWBLK 19 647 #define D_JFREEBLK 20 648 #define D_JFREEFRAG 21 649 #define D_JSEG 22 650 #define D_JSEGDEP 23 651 #define D_SBDEP 24 652 #define D_JTRUNC 25 653 #define D_JFSYNC 26 654 #define D_SENTINAL 27 655 #define D_LAST D_SENTINAL 656 657 unsigned long dep_current[D_LAST + 1]; 658 unsigned long dep_total[D_LAST + 1]; 659 unsigned long dep_write[D_LAST + 1]; 660 661 662 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 663 "soft updates stats"); 664 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 665 "total dependencies allocated"); 666 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 667 "current dependencies allocated"); 668 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 669 "current dependencies written"); 670 671 #define SOFTDEP_TYPE(type, str, long) \ 672 static MALLOC_DEFINE(M_ ## type, #str, long); \ 673 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 674 &dep_total[D_ ## type], 0, ""); \ 675 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 676 &dep_current[D_ ## type], 0, ""); \ 677 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 678 &dep_write[D_ ## type], 0, ""); 679 680 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 681 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 682 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 683 "Block or frag allocated from cyl group map"); 684 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 685 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 686 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 687 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 688 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 689 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 690 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 691 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 692 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 693 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 694 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 695 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 696 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 697 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 698 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 699 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 700 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 701 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 702 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 703 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 704 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 705 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 706 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 707 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 708 709 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 710 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 711 712 /* 713 * translate from workitem type to memory type 714 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 715 */ 716 static struct malloc_type *memtype[] = { 717 M_PAGEDEP, 718 M_INODEDEP, 719 M_BMSAFEMAP, 720 M_NEWBLK, 721 M_ALLOCDIRECT, 722 M_INDIRDEP, 723 M_ALLOCINDIR, 724 M_FREEFRAG, 725 M_FREEBLKS, 726 M_FREEFILE, 727 M_DIRADD, 728 M_MKDIR, 729 M_DIRREM, 730 M_NEWDIRBLK, 731 M_FREEWORK, 732 M_FREEDEP, 733 M_JADDREF, 734 M_JREMREF, 735 M_JMVREF, 736 M_JNEWBLK, 737 M_JFREEBLK, 738 M_JFREEFRAG, 739 M_JSEG, 740 M_JSEGDEP, 741 M_SBDEP, 742 M_JTRUNC, 743 M_JFSYNC 744 }; 745 746 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd; 747 748 #define DtoM(type) (memtype[type]) 749 750 /* 751 * Names of malloc types. 752 */ 753 #define TYPENAME(type) \ 754 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 755 /* 756 * End system adaptation definitions. 757 */ 758 759 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 760 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 761 762 /* 763 * Forward declarations. 764 */ 765 struct inodedep_hashhead; 766 struct newblk_hashhead; 767 struct pagedep_hashhead; 768 struct bmsafemap_hashhead; 769 770 /* 771 * Internal function prototypes. 772 */ 773 static void softdep_error(char *, int); 774 static void drain_output(struct vnode *); 775 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 776 static void clear_remove(void); 777 static void clear_inodedeps(void); 778 static void unlinked_inodedep(struct mount *, struct inodedep *); 779 static void clear_unlinked_inodedep(struct inodedep *); 780 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 781 static int flush_pagedep_deps(struct vnode *, struct mount *, 782 struct diraddhd *); 783 static int free_pagedep(struct pagedep *); 784 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 785 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 786 static int flush_deplist(struct allocdirectlst *, int, int *); 787 static int sync_cgs(struct mount *, int); 788 static int handle_written_filepage(struct pagedep *, struct buf *); 789 static int handle_written_sbdep(struct sbdep *, struct buf *); 790 static void initiate_write_sbdep(struct sbdep *); 791 static void diradd_inode_written(struct diradd *, struct inodedep *); 792 static int handle_written_indirdep(struct indirdep *, struct buf *, 793 struct buf**); 794 static int handle_written_inodeblock(struct inodedep *, struct buf *); 795 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 796 uint8_t *); 797 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *); 798 static void handle_written_jaddref(struct jaddref *); 799 static void handle_written_jremref(struct jremref *); 800 static void handle_written_jseg(struct jseg *, struct buf *); 801 static void handle_written_jnewblk(struct jnewblk *); 802 static void handle_written_jblkdep(struct jblkdep *); 803 static void handle_written_jfreefrag(struct jfreefrag *); 804 static void complete_jseg(struct jseg *); 805 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 806 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 807 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 808 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 809 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 810 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 811 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 812 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 813 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 814 static inline void inoref_write(struct inoref *, struct jseg *, 815 struct jrefrec *); 816 static void handle_allocdirect_partdone(struct allocdirect *, 817 struct workhead *); 818 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 819 struct workhead *); 820 static void indirdep_complete(struct indirdep *); 821 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 822 static void indirblk_insert(struct freework *); 823 static void indirblk_remove(struct freework *); 824 static void handle_allocindir_partdone(struct allocindir *); 825 static void initiate_write_filepage(struct pagedep *, struct buf *); 826 static void initiate_write_indirdep(struct indirdep*, struct buf *); 827 static void handle_written_mkdir(struct mkdir *, int); 828 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 829 uint8_t *); 830 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 831 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 832 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 833 static void handle_workitem_freefile(struct freefile *); 834 static int handle_workitem_remove(struct dirrem *, int); 835 static struct dirrem *newdirrem(struct buf *, struct inode *, 836 struct inode *, int, struct dirrem **); 837 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 838 struct buf *); 839 static void cancel_indirdep(struct indirdep *, struct buf *, 840 struct freeblks *); 841 static void free_indirdep(struct indirdep *); 842 static void free_diradd(struct diradd *, struct workhead *); 843 static void merge_diradd(struct inodedep *, struct diradd *); 844 static void complete_diradd(struct diradd *); 845 static struct diradd *diradd_lookup(struct pagedep *, int); 846 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 847 struct jremref *); 848 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 849 struct jremref *); 850 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 851 struct jremref *, struct jremref *); 852 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 853 struct jremref *); 854 static void cancel_allocindir(struct allocindir *, struct buf *bp, 855 struct freeblks *, int); 856 static int setup_trunc_indir(struct freeblks *, struct inode *, 857 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 858 static void complete_trunc_indir(struct freework *); 859 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 860 int); 861 static void complete_mkdir(struct mkdir *); 862 static void free_newdirblk(struct newdirblk *); 863 static void free_jremref(struct jremref *); 864 static void free_jaddref(struct jaddref *); 865 static void free_jsegdep(struct jsegdep *); 866 static void free_jsegs(struct jblocks *); 867 static void rele_jseg(struct jseg *); 868 static void free_jseg(struct jseg *, struct jblocks *); 869 static void free_jnewblk(struct jnewblk *); 870 static void free_jblkdep(struct jblkdep *); 871 static void free_jfreefrag(struct jfreefrag *); 872 static void free_freedep(struct freedep *); 873 static void journal_jremref(struct dirrem *, struct jremref *, 874 struct inodedep *); 875 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 876 static int cancel_jaddref(struct jaddref *, struct inodedep *, 877 struct workhead *); 878 static void cancel_jfreefrag(struct jfreefrag *); 879 static inline void setup_freedirect(struct freeblks *, struct inode *, 880 int, int); 881 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 882 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 883 ufs_lbn_t, int); 884 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 885 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 886 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 887 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 888 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 889 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 890 int, int); 891 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 892 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 893 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 894 static void newblk_freefrag(struct newblk*); 895 static void free_newblk(struct newblk *); 896 static void cancel_allocdirect(struct allocdirectlst *, 897 struct allocdirect *, struct freeblks *); 898 static int check_inode_unwritten(struct inodedep *); 899 static int free_inodedep(struct inodedep *); 900 static void freework_freeblock(struct freework *); 901 static void freework_enqueue(struct freework *); 902 static int handle_workitem_freeblocks(struct freeblks *, int); 903 static int handle_complete_freeblocks(struct freeblks *, int); 904 static void handle_workitem_indirblk(struct freework *); 905 static void handle_written_freework(struct freework *); 906 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 907 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 908 struct workhead *); 909 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 910 struct inodedep *, struct allocindir *, ufs_lbn_t); 911 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 912 ufs2_daddr_t, ufs_lbn_t); 913 static void handle_workitem_freefrag(struct freefrag *); 914 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 915 ufs_lbn_t); 916 static void allocdirect_merge(struct allocdirectlst *, 917 struct allocdirect *, struct allocdirect *); 918 static struct freefrag *allocindir_merge(struct allocindir *, 919 struct allocindir *); 920 static int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int, 921 struct bmsafemap **); 922 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 923 int cg); 924 static int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t, 925 int, struct newblk **); 926 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 927 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 928 struct inodedep **); 929 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 930 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 931 int, struct pagedep **); 932 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 933 struct mount *mp, int, struct pagedep **); 934 static void pause_timer(void *); 935 static int request_cleanup(struct mount *, int); 936 static int process_worklist_item(struct mount *, int, int); 937 static void process_removes(struct vnode *); 938 static void process_truncates(struct vnode *); 939 static void jwork_move(struct workhead *, struct workhead *); 940 static void jwork_insert(struct workhead *, struct jsegdep *); 941 static void add_to_worklist(struct worklist *, int); 942 static void wake_worklist(struct worklist *); 943 static void wait_worklist(struct worklist *, char *); 944 static void remove_from_worklist(struct worklist *); 945 static void softdep_flush(void); 946 static void softdep_flushjournal(struct mount *); 947 static int softdep_speedup(void); 948 static void worklist_speedup(void); 949 static int journal_mount(struct mount *, struct fs *, struct ucred *); 950 static void journal_unmount(struct mount *); 951 static int journal_space(struct ufsmount *, int); 952 static void journal_suspend(struct ufsmount *); 953 static int journal_unsuspend(struct ufsmount *ump); 954 static void softdep_prelink(struct vnode *, struct vnode *); 955 static void add_to_journal(struct worklist *); 956 static void remove_from_journal(struct worklist *); 957 static void softdep_process_journal(struct mount *, struct worklist *, int); 958 static struct jremref *newjremref(struct dirrem *, struct inode *, 959 struct inode *ip, off_t, nlink_t); 960 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 961 uint16_t); 962 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 963 uint16_t); 964 static inline struct jsegdep *inoref_jseg(struct inoref *); 965 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 966 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 967 ufs2_daddr_t, int); 968 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 969 static void move_newblock_dep(struct jaddref *, struct inodedep *); 970 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 971 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 972 ufs2_daddr_t, long, ufs_lbn_t); 973 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 974 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 975 static int jwait(struct worklist *, int); 976 static struct inodedep *inodedep_lookup_ip(struct inode *); 977 static int bmsafemap_rollbacks(struct bmsafemap *); 978 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 979 static void handle_jwork(struct workhead *); 980 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 981 struct mkdir **); 982 static struct jblocks *jblocks_create(void); 983 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 984 static void jblocks_free(struct jblocks *, struct mount *, int); 985 static void jblocks_destroy(struct jblocks *); 986 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 987 988 /* 989 * Exported softdep operations. 990 */ 991 static void softdep_disk_io_initiation(struct buf *); 992 static void softdep_disk_write_complete(struct buf *); 993 static void softdep_deallocate_dependencies(struct buf *); 994 static int softdep_count_dependencies(struct buf *bp, int); 995 996 static struct mtx lk; 997 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 998 999 #define TRY_ACQUIRE_LOCK(lk) mtx_trylock(lk) 1000 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 1001 #define FREE_LOCK(lk) mtx_unlock(lk) 1002 1003 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1004 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1005 1006 /* 1007 * Worklist queue management. 1008 * These routines require that the lock be held. 1009 */ 1010 #ifndef /* NOT */ DEBUG 1011 #define WORKLIST_INSERT(head, item) do { \ 1012 (item)->wk_state |= ONWORKLIST; \ 1013 LIST_INSERT_HEAD(head, item, wk_list); \ 1014 } while (0) 1015 #define WORKLIST_REMOVE(item) do { \ 1016 (item)->wk_state &= ~ONWORKLIST; \ 1017 LIST_REMOVE(item, wk_list); \ 1018 } while (0) 1019 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1020 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1021 1022 #else /* DEBUG */ 1023 static void worklist_insert(struct workhead *, struct worklist *, int); 1024 static void worklist_remove(struct worklist *, int); 1025 1026 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1027 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1028 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1029 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1030 1031 static void 1032 worklist_insert(head, item, locked) 1033 struct workhead *head; 1034 struct worklist *item; 1035 int locked; 1036 { 1037 1038 if (locked) 1039 mtx_assert(&lk, MA_OWNED); 1040 if (item->wk_state & ONWORKLIST) 1041 panic("worklist_insert: %p %s(0x%X) already on list", 1042 item, TYPENAME(item->wk_type), item->wk_state); 1043 item->wk_state |= ONWORKLIST; 1044 LIST_INSERT_HEAD(head, item, wk_list); 1045 } 1046 1047 static void 1048 worklist_remove(item, locked) 1049 struct worklist *item; 1050 int locked; 1051 { 1052 1053 if (locked) 1054 mtx_assert(&lk, MA_OWNED); 1055 if ((item->wk_state & ONWORKLIST) == 0) 1056 panic("worklist_remove: %p %s(0x%X) not on list", 1057 item, TYPENAME(item->wk_type), item->wk_state); 1058 item->wk_state &= ~ONWORKLIST; 1059 LIST_REMOVE(item, wk_list); 1060 } 1061 #endif /* DEBUG */ 1062 1063 /* 1064 * Merge two jsegdeps keeping only the oldest one as newer references 1065 * can't be discarded until after older references. 1066 */ 1067 static inline struct jsegdep * 1068 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1069 { 1070 struct jsegdep *swp; 1071 1072 if (two == NULL) 1073 return (one); 1074 1075 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1076 swp = one; 1077 one = two; 1078 two = swp; 1079 } 1080 WORKLIST_REMOVE(&two->jd_list); 1081 free_jsegdep(two); 1082 1083 return (one); 1084 } 1085 1086 /* 1087 * If two freedeps are compatible free one to reduce list size. 1088 */ 1089 static inline struct freedep * 1090 freedep_merge(struct freedep *one, struct freedep *two) 1091 { 1092 if (two == NULL) 1093 return (one); 1094 1095 if (one->fd_freework == two->fd_freework) { 1096 WORKLIST_REMOVE(&two->fd_list); 1097 free_freedep(two); 1098 } 1099 return (one); 1100 } 1101 1102 /* 1103 * Move journal work from one list to another. Duplicate freedeps and 1104 * jsegdeps are coalesced to keep the lists as small as possible. 1105 */ 1106 static void 1107 jwork_move(dst, src) 1108 struct workhead *dst; 1109 struct workhead *src; 1110 { 1111 struct freedep *freedep; 1112 struct jsegdep *jsegdep; 1113 struct worklist *wkn; 1114 struct worklist *wk; 1115 1116 KASSERT(dst != src, 1117 ("jwork_move: dst == src")); 1118 freedep = NULL; 1119 jsegdep = NULL; 1120 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1121 if (wk->wk_type == D_JSEGDEP) 1122 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1123 if (wk->wk_type == D_FREEDEP) 1124 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1125 } 1126 1127 mtx_assert(&lk, MA_OWNED); 1128 while ((wk = LIST_FIRST(src)) != NULL) { 1129 WORKLIST_REMOVE(wk); 1130 WORKLIST_INSERT(dst, wk); 1131 if (wk->wk_type == D_JSEGDEP) { 1132 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1133 continue; 1134 } 1135 if (wk->wk_type == D_FREEDEP) 1136 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1137 } 1138 } 1139 1140 static void 1141 jwork_insert(dst, jsegdep) 1142 struct workhead *dst; 1143 struct jsegdep *jsegdep; 1144 { 1145 struct jsegdep *jsegdepn; 1146 struct worklist *wk; 1147 1148 LIST_FOREACH(wk, dst, wk_list) 1149 if (wk->wk_type == D_JSEGDEP) 1150 break; 1151 if (wk == NULL) { 1152 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1153 return; 1154 } 1155 jsegdepn = WK_JSEGDEP(wk); 1156 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1157 WORKLIST_REMOVE(wk); 1158 free_jsegdep(jsegdepn); 1159 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1160 } else 1161 free_jsegdep(jsegdep); 1162 } 1163 1164 /* 1165 * Routines for tracking and managing workitems. 1166 */ 1167 static void workitem_free(struct worklist *, int); 1168 static void workitem_alloc(struct worklist *, int, struct mount *); 1169 1170 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type)) 1171 1172 static void 1173 workitem_free(item, type) 1174 struct worklist *item; 1175 int type; 1176 { 1177 struct ufsmount *ump; 1178 mtx_assert(&lk, MA_OWNED); 1179 1180 #ifdef DEBUG 1181 if (item->wk_state & ONWORKLIST) 1182 panic("workitem_free: %s(0x%X) still on list", 1183 TYPENAME(item->wk_type), item->wk_state); 1184 if (item->wk_type != type) 1185 panic("workitem_free: type mismatch %s != %s", 1186 TYPENAME(item->wk_type), TYPENAME(type)); 1187 #endif 1188 if (item->wk_state & IOWAITING) 1189 wakeup(item); 1190 ump = VFSTOUFS(item->wk_mp); 1191 if (--ump->softdep_deps == 0 && ump->softdep_req) 1192 wakeup(&ump->softdep_deps); 1193 dep_current[type]--; 1194 free(item, DtoM(type)); 1195 } 1196 1197 static void 1198 workitem_alloc(item, type, mp) 1199 struct worklist *item; 1200 int type; 1201 struct mount *mp; 1202 { 1203 struct ufsmount *ump; 1204 1205 item->wk_type = type; 1206 item->wk_mp = mp; 1207 item->wk_state = 0; 1208 1209 ump = VFSTOUFS(mp); 1210 ACQUIRE_LOCK(&lk); 1211 dep_current[type]++; 1212 dep_total[type]++; 1213 ump->softdep_deps++; 1214 ump->softdep_accdeps++; 1215 FREE_LOCK(&lk); 1216 } 1217 1218 /* 1219 * Workitem queue management 1220 */ 1221 static int max_softdeps; /* maximum number of structs before slowdown */ 1222 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 1223 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1224 static int proc_waiting; /* tracks whether we have a timeout posted */ 1225 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1226 static struct callout softdep_callout; 1227 static int req_pending; 1228 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1229 static int req_clear_remove; /* syncer process flush some freeblks */ 1230 1231 /* 1232 * runtime statistics 1233 */ 1234 static int stat_worklist_push; /* number of worklist cleanups */ 1235 static int stat_blk_limit_push; /* number of times block limit neared */ 1236 static int stat_ino_limit_push; /* number of times inode limit neared */ 1237 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1238 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1239 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1240 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1241 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1242 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1243 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1244 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1245 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1246 static int stat_journal_min; /* Times hit journal min threshold */ 1247 static int stat_journal_low; /* Times hit journal low threshold */ 1248 static int stat_journal_wait; /* Times blocked in jwait(). */ 1249 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1250 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1251 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1252 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1253 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1254 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1255 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1256 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1257 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1258 1259 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1260 &max_softdeps, 0, ""); 1261 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1262 &tickdelay, 0, ""); 1263 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW, 1264 &maxindirdeps, 0, ""); 1265 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1266 &stat_worklist_push, 0,""); 1267 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1268 &stat_blk_limit_push, 0,""); 1269 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1270 &stat_ino_limit_push, 0,""); 1271 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1272 &stat_blk_limit_hit, 0, ""); 1273 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1274 &stat_ino_limit_hit, 0, ""); 1275 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1276 &stat_sync_limit_hit, 0, ""); 1277 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1278 &stat_indir_blk_ptrs, 0, ""); 1279 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1280 &stat_inode_bitmap, 0, ""); 1281 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1282 &stat_direct_blk_ptrs, 0, ""); 1283 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1284 &stat_dir_entry, 0, ""); 1285 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1286 &stat_jaddref, 0, ""); 1287 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1288 &stat_jnewblk, 0, ""); 1289 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1290 &stat_journal_low, 0, ""); 1291 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1292 &stat_journal_min, 0, ""); 1293 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1294 &stat_journal_wait, 0, ""); 1295 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1296 &stat_jwait_filepage, 0, ""); 1297 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1298 &stat_jwait_freeblks, 0, ""); 1299 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1300 &stat_jwait_inode, 0, ""); 1301 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1302 &stat_jwait_newblk, 0, ""); 1303 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1304 &stat_cleanup_blkrequests, 0, ""); 1305 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1306 &stat_cleanup_inorequests, 0, ""); 1307 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1308 &stat_cleanup_high_delay, 0, ""); 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1310 &stat_cleanup_retries, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1312 &stat_cleanup_failures, 0, ""); 1313 1314 SYSCTL_DECL(_vfs_ffs); 1315 1316 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl; 1317 static u_long bmsafemap_hash; /* size of hash table - 1 */ 1318 1319 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 1320 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1321 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1322 1323 static struct proc *softdepproc; 1324 static struct kproc_desc softdep_kp = { 1325 "softdepflush", 1326 softdep_flush, 1327 &softdepproc 1328 }; 1329 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, 1330 &softdep_kp); 1331 1332 static void 1333 softdep_flush(void) 1334 { 1335 struct mount *nmp; 1336 struct mount *mp; 1337 struct ufsmount *ump; 1338 struct thread *td; 1339 int remaining; 1340 int progress; 1341 int vfslocked; 1342 1343 td = curthread; 1344 td->td_pflags |= TDP_NORUNNINGBUF; 1345 1346 for (;;) { 1347 kproc_suspend_check(softdepproc); 1348 vfslocked = VFS_LOCK_GIANT((struct mount *)NULL); 1349 ACQUIRE_LOCK(&lk); 1350 /* 1351 * If requested, try removing inode or removal dependencies. 1352 */ 1353 if (req_clear_inodedeps) { 1354 clear_inodedeps(); 1355 req_clear_inodedeps -= 1; 1356 wakeup_one(&proc_waiting); 1357 } 1358 if (req_clear_remove) { 1359 clear_remove(); 1360 req_clear_remove -= 1; 1361 wakeup_one(&proc_waiting); 1362 } 1363 FREE_LOCK(&lk); 1364 VFS_UNLOCK_GIANT(vfslocked); 1365 remaining = progress = 0; 1366 mtx_lock(&mountlist_mtx); 1367 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1368 nmp = TAILQ_NEXT(mp, mnt_list); 1369 if (MOUNTEDSOFTDEP(mp) == 0) 1370 continue; 1371 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 1372 continue; 1373 vfslocked = VFS_LOCK_GIANT(mp); 1374 progress += softdep_process_worklist(mp, 0); 1375 ump = VFSTOUFS(mp); 1376 remaining += ump->softdep_on_worklist; 1377 VFS_UNLOCK_GIANT(vfslocked); 1378 mtx_lock(&mountlist_mtx); 1379 nmp = TAILQ_NEXT(mp, mnt_list); 1380 vfs_unbusy(mp); 1381 } 1382 mtx_unlock(&mountlist_mtx); 1383 if (remaining && progress) 1384 continue; 1385 ACQUIRE_LOCK(&lk); 1386 if (!req_pending) 1387 msleep(&req_pending, &lk, PVM, "sdflush", hz); 1388 req_pending = 0; 1389 FREE_LOCK(&lk); 1390 } 1391 } 1392 1393 static void 1394 worklist_speedup(void) 1395 { 1396 mtx_assert(&lk, MA_OWNED); 1397 if (req_pending == 0) { 1398 req_pending = 1; 1399 wakeup(&req_pending); 1400 } 1401 } 1402 1403 static int 1404 softdep_speedup(void) 1405 { 1406 1407 worklist_speedup(); 1408 bd_speedup(); 1409 return speedup_syncer(); 1410 } 1411 1412 /* 1413 * Add an item to the end of the work queue. 1414 * This routine requires that the lock be held. 1415 * This is the only routine that adds items to the list. 1416 * The following routine is the only one that removes items 1417 * and does so in order from first to last. 1418 */ 1419 1420 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1421 #define WK_NODELAY 0x0002 /* Process immediately. */ 1422 1423 static void 1424 add_to_worklist(wk, flags) 1425 struct worklist *wk; 1426 int flags; 1427 { 1428 struct ufsmount *ump; 1429 1430 mtx_assert(&lk, MA_OWNED); 1431 ump = VFSTOUFS(wk->wk_mp); 1432 if (wk->wk_state & ONWORKLIST) 1433 panic("add_to_worklist: %s(0x%X) already on list", 1434 TYPENAME(wk->wk_type), wk->wk_state); 1435 wk->wk_state |= ONWORKLIST; 1436 if (ump->softdep_on_worklist == 0) { 1437 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1438 ump->softdep_worklist_tail = wk; 1439 } else if (flags & WK_HEAD) { 1440 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1441 } else { 1442 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1443 ump->softdep_worklist_tail = wk; 1444 } 1445 ump->softdep_on_worklist += 1; 1446 if (flags & WK_NODELAY) 1447 worklist_speedup(); 1448 } 1449 1450 /* 1451 * Remove the item to be processed. If we are removing the last 1452 * item on the list, we need to recalculate the tail pointer. 1453 */ 1454 static void 1455 remove_from_worklist(wk) 1456 struct worklist *wk; 1457 { 1458 struct ufsmount *ump; 1459 1460 ump = VFSTOUFS(wk->wk_mp); 1461 WORKLIST_REMOVE(wk); 1462 if (ump->softdep_worklist_tail == wk) 1463 ump->softdep_worklist_tail = 1464 (struct worklist *)wk->wk_list.le_prev; 1465 ump->softdep_on_worklist -= 1; 1466 } 1467 1468 static void 1469 wake_worklist(wk) 1470 struct worklist *wk; 1471 { 1472 if (wk->wk_state & IOWAITING) { 1473 wk->wk_state &= ~IOWAITING; 1474 wakeup(wk); 1475 } 1476 } 1477 1478 static void 1479 wait_worklist(wk, wmesg) 1480 struct worklist *wk; 1481 char *wmesg; 1482 { 1483 1484 wk->wk_state |= IOWAITING; 1485 msleep(wk, &lk, PVM, wmesg, 0); 1486 } 1487 1488 /* 1489 * Process that runs once per second to handle items in the background queue. 1490 * 1491 * Note that we ensure that everything is done in the order in which they 1492 * appear in the queue. The code below depends on this property to ensure 1493 * that blocks of a file are freed before the inode itself is freed. This 1494 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1495 * until all the old ones have been purged from the dependency lists. 1496 */ 1497 int 1498 softdep_process_worklist(mp, full) 1499 struct mount *mp; 1500 int full; 1501 { 1502 int cnt, matchcnt; 1503 struct ufsmount *ump; 1504 long starttime; 1505 1506 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1507 /* 1508 * Record the process identifier of our caller so that we can give 1509 * this process preferential treatment in request_cleanup below. 1510 */ 1511 matchcnt = 0; 1512 ump = VFSTOUFS(mp); 1513 ACQUIRE_LOCK(&lk); 1514 starttime = time_second; 1515 softdep_process_journal(mp, NULL, full?MNT_WAIT:0); 1516 while (ump->softdep_on_worklist > 0) { 1517 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1518 break; 1519 else 1520 matchcnt += cnt; 1521 /* 1522 * If requested, try removing inode or removal dependencies. 1523 */ 1524 if (req_clear_inodedeps) { 1525 clear_inodedeps(); 1526 req_clear_inodedeps -= 1; 1527 wakeup_one(&proc_waiting); 1528 } 1529 if (req_clear_remove) { 1530 clear_remove(); 1531 req_clear_remove -= 1; 1532 wakeup_one(&proc_waiting); 1533 } 1534 /* 1535 * We do not generally want to stop for buffer space, but if 1536 * we are really being a buffer hog, we will stop and wait. 1537 */ 1538 if (should_yield()) { 1539 FREE_LOCK(&lk); 1540 kern_yield(PRI_UNCHANGED); 1541 bwillwrite(); 1542 ACQUIRE_LOCK(&lk); 1543 } 1544 /* 1545 * Never allow processing to run for more than one 1546 * second. Otherwise the other mountpoints may get 1547 * excessively backlogged. 1548 */ 1549 if (!full && starttime != time_second) 1550 break; 1551 } 1552 if (full == 0) 1553 journal_unsuspend(ump); 1554 FREE_LOCK(&lk); 1555 return (matchcnt); 1556 } 1557 1558 /* 1559 * Process all removes associated with a vnode if we are running out of 1560 * journal space. Any other process which attempts to flush these will 1561 * be unable as we have the vnodes locked. 1562 */ 1563 static void 1564 process_removes(vp) 1565 struct vnode *vp; 1566 { 1567 struct inodedep *inodedep; 1568 struct dirrem *dirrem; 1569 struct mount *mp; 1570 ino_t inum; 1571 1572 mtx_assert(&lk, MA_OWNED); 1573 1574 mp = vp->v_mount; 1575 inum = VTOI(vp)->i_number; 1576 for (;;) { 1577 top: 1578 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1579 return; 1580 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1581 /* 1582 * If another thread is trying to lock this vnode 1583 * it will fail but we must wait for it to do so 1584 * before we can proceed. 1585 */ 1586 if (dirrem->dm_state & INPROGRESS) { 1587 wait_worklist(&dirrem->dm_list, "pwrwait"); 1588 goto top; 1589 } 1590 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1591 (COMPLETE | ONWORKLIST)) 1592 break; 1593 } 1594 if (dirrem == NULL) 1595 return; 1596 remove_from_worklist(&dirrem->dm_list); 1597 FREE_LOCK(&lk); 1598 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1599 panic("process_removes: suspended filesystem"); 1600 handle_workitem_remove(dirrem, 0); 1601 vn_finished_secondary_write(mp); 1602 ACQUIRE_LOCK(&lk); 1603 } 1604 } 1605 1606 /* 1607 * Process all truncations associated with a vnode if we are running out 1608 * of journal space. This is called when the vnode lock is already held 1609 * and no other process can clear the truncation. This function returns 1610 * a value greater than zero if it did any work. 1611 */ 1612 static void 1613 process_truncates(vp) 1614 struct vnode *vp; 1615 { 1616 struct inodedep *inodedep; 1617 struct freeblks *freeblks; 1618 struct mount *mp; 1619 ino_t inum; 1620 int cgwait; 1621 1622 mtx_assert(&lk, MA_OWNED); 1623 1624 mp = vp->v_mount; 1625 inum = VTOI(vp)->i_number; 1626 for (;;) { 1627 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1628 return; 1629 cgwait = 0; 1630 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1631 /* Journal entries not yet written. */ 1632 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1633 jwait(&LIST_FIRST( 1634 &freeblks->fb_jblkdephd)->jb_list, 1635 MNT_WAIT); 1636 break; 1637 } 1638 /* Another thread is executing this item. */ 1639 if (freeblks->fb_state & INPROGRESS) { 1640 wait_worklist(&freeblks->fb_list, "ptrwait"); 1641 break; 1642 } 1643 /* Freeblks is waiting on a inode write. */ 1644 if ((freeblks->fb_state & COMPLETE) == 0) { 1645 FREE_LOCK(&lk); 1646 ffs_update(vp, 1); 1647 ACQUIRE_LOCK(&lk); 1648 break; 1649 } 1650 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1651 (ALLCOMPLETE | ONWORKLIST)) { 1652 remove_from_worklist(&freeblks->fb_list); 1653 freeblks->fb_state |= INPROGRESS; 1654 FREE_LOCK(&lk); 1655 if (vn_start_secondary_write(NULL, &mp, 1656 V_NOWAIT)) 1657 panic("process_truncates: " 1658 "suspended filesystem"); 1659 handle_workitem_freeblocks(freeblks, 0); 1660 vn_finished_secondary_write(mp); 1661 ACQUIRE_LOCK(&lk); 1662 break; 1663 } 1664 if (freeblks->fb_cgwait) 1665 cgwait++; 1666 } 1667 if (cgwait) { 1668 FREE_LOCK(&lk); 1669 sync_cgs(mp, MNT_WAIT); 1670 ffs_sync_snap(mp, MNT_WAIT); 1671 ACQUIRE_LOCK(&lk); 1672 continue; 1673 } 1674 if (freeblks == NULL) 1675 break; 1676 } 1677 return; 1678 } 1679 1680 /* 1681 * Process one item on the worklist. 1682 */ 1683 static int 1684 process_worklist_item(mp, target, flags) 1685 struct mount *mp; 1686 int target; 1687 int flags; 1688 { 1689 struct worklist sintenel; 1690 struct worklist *wk; 1691 struct ufsmount *ump; 1692 int matchcnt; 1693 int error; 1694 1695 mtx_assert(&lk, MA_OWNED); 1696 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1697 /* 1698 * If we are being called because of a process doing a 1699 * copy-on-write, then it is not safe to write as we may 1700 * recurse into the copy-on-write routine. 1701 */ 1702 if (curthread->td_pflags & TDP_COWINPROGRESS) 1703 return (-1); 1704 PHOLD(curproc); /* Don't let the stack go away. */ 1705 ump = VFSTOUFS(mp); 1706 matchcnt = 0; 1707 sintenel.wk_mp = NULL; 1708 sintenel.wk_type = D_SENTINAL; 1709 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list); 1710 for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL; 1711 wk = LIST_NEXT(&sintenel, wk_list)) { 1712 if (wk->wk_type == D_SENTINAL) { 1713 LIST_REMOVE(&sintenel, wk_list); 1714 LIST_INSERT_AFTER(wk, &sintenel, wk_list); 1715 continue; 1716 } 1717 if (wk->wk_state & INPROGRESS) 1718 panic("process_worklist_item: %p already in progress.", 1719 wk); 1720 wk->wk_state |= INPROGRESS; 1721 remove_from_worklist(wk); 1722 FREE_LOCK(&lk); 1723 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1724 panic("process_worklist_item: suspended filesystem"); 1725 switch (wk->wk_type) { 1726 case D_DIRREM: 1727 /* removal of a directory entry */ 1728 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1729 break; 1730 1731 case D_FREEBLKS: 1732 /* releasing blocks and/or fragments from a file */ 1733 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1734 flags); 1735 break; 1736 1737 case D_FREEFRAG: 1738 /* releasing a fragment when replaced as a file grows */ 1739 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1740 error = 0; 1741 break; 1742 1743 case D_FREEFILE: 1744 /* releasing an inode when its link count drops to 0 */ 1745 handle_workitem_freefile(WK_FREEFILE(wk)); 1746 error = 0; 1747 break; 1748 1749 default: 1750 panic("%s_process_worklist: Unknown type %s", 1751 "softdep", TYPENAME(wk->wk_type)); 1752 /* NOTREACHED */ 1753 } 1754 vn_finished_secondary_write(mp); 1755 ACQUIRE_LOCK(&lk); 1756 if (error == 0) { 1757 if (++matchcnt == target) 1758 break; 1759 continue; 1760 } 1761 /* 1762 * We have to retry the worklist item later. Wake up any 1763 * waiters who may be able to complete it immediately and 1764 * add the item back to the head so we don't try to execute 1765 * it again. 1766 */ 1767 wk->wk_state &= ~INPROGRESS; 1768 wake_worklist(wk); 1769 add_to_worklist(wk, WK_HEAD); 1770 } 1771 LIST_REMOVE(&sintenel, wk_list); 1772 /* Sentinal could've become the tail from remove_from_worklist. */ 1773 if (ump->softdep_worklist_tail == &sintenel) 1774 ump->softdep_worklist_tail = 1775 (struct worklist *)sintenel.wk_list.le_prev; 1776 PRELE(curproc); 1777 return (matchcnt); 1778 } 1779 1780 /* 1781 * Move dependencies from one buffer to another. 1782 */ 1783 int 1784 softdep_move_dependencies(oldbp, newbp) 1785 struct buf *oldbp; 1786 struct buf *newbp; 1787 { 1788 struct worklist *wk, *wktail; 1789 int dirty; 1790 1791 dirty = 0; 1792 wktail = NULL; 1793 ACQUIRE_LOCK(&lk); 1794 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1795 LIST_REMOVE(wk, wk_list); 1796 if (wk->wk_type == D_BMSAFEMAP && 1797 bmsafemap_rollbacks(WK_BMSAFEMAP(wk))) 1798 dirty = 1; 1799 if (wktail == 0) 1800 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1801 else 1802 LIST_INSERT_AFTER(wktail, wk, wk_list); 1803 wktail = wk; 1804 } 1805 FREE_LOCK(&lk); 1806 1807 return (dirty); 1808 } 1809 1810 /* 1811 * Purge the work list of all items associated with a particular mount point. 1812 */ 1813 int 1814 softdep_flushworklist(oldmnt, countp, td) 1815 struct mount *oldmnt; 1816 int *countp; 1817 struct thread *td; 1818 { 1819 struct vnode *devvp; 1820 int count, error = 0; 1821 struct ufsmount *ump; 1822 1823 /* 1824 * Alternately flush the block device associated with the mount 1825 * point and process any dependencies that the flushing 1826 * creates. We continue until no more worklist dependencies 1827 * are found. 1828 */ 1829 *countp = 0; 1830 ump = VFSTOUFS(oldmnt); 1831 devvp = ump->um_devvp; 1832 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1833 *countp += count; 1834 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1835 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1836 VOP_UNLOCK(devvp, 0); 1837 if (error) 1838 break; 1839 } 1840 return (error); 1841 } 1842 1843 int 1844 softdep_waitidle(struct mount *mp) 1845 { 1846 struct ufsmount *ump; 1847 int error; 1848 int i; 1849 1850 ump = VFSTOUFS(mp); 1851 ACQUIRE_LOCK(&lk); 1852 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1853 ump->softdep_req = 1; 1854 if (ump->softdep_on_worklist) 1855 panic("softdep_waitidle: work added after flush."); 1856 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1); 1857 } 1858 ump->softdep_req = 0; 1859 FREE_LOCK(&lk); 1860 error = 0; 1861 if (i == 10) { 1862 error = EBUSY; 1863 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1864 mp); 1865 } 1866 1867 return (error); 1868 } 1869 1870 /* 1871 * Flush all vnodes and worklist items associated with a specified mount point. 1872 */ 1873 int 1874 softdep_flushfiles(oldmnt, flags, td) 1875 struct mount *oldmnt; 1876 int flags; 1877 struct thread *td; 1878 { 1879 int error, depcount, loopcnt, retry_flush_count, retry; 1880 1881 loopcnt = 10; 1882 retry_flush_count = 3; 1883 retry_flush: 1884 error = 0; 1885 1886 /* 1887 * Alternately flush the vnodes associated with the mount 1888 * point and process any dependencies that the flushing 1889 * creates. In theory, this loop can happen at most twice, 1890 * but we give it a few extra just to be sure. 1891 */ 1892 for (; loopcnt > 0; loopcnt--) { 1893 /* 1894 * Do another flush in case any vnodes were brought in 1895 * as part of the cleanup operations. 1896 */ 1897 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 1898 break; 1899 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1900 depcount == 0) 1901 break; 1902 } 1903 /* 1904 * If we are unmounting then it is an error to fail. If we 1905 * are simply trying to downgrade to read-only, then filesystem 1906 * activity can keep us busy forever, so we just fail with EBUSY. 1907 */ 1908 if (loopcnt == 0) { 1909 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1910 panic("softdep_flushfiles: looping"); 1911 error = EBUSY; 1912 } 1913 if (!error) 1914 error = softdep_waitidle(oldmnt); 1915 if (!error) { 1916 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 1917 retry = 0; 1918 MNT_ILOCK(oldmnt); 1919 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 1920 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 1921 if (oldmnt->mnt_nvnodelistsize > 0) { 1922 if (--retry_flush_count > 0) { 1923 retry = 1; 1924 loopcnt = 3; 1925 } else 1926 error = EBUSY; 1927 } 1928 MNT_IUNLOCK(oldmnt); 1929 if (retry) 1930 goto retry_flush; 1931 } 1932 } 1933 return (error); 1934 } 1935 1936 /* 1937 * Structure hashing. 1938 * 1939 * There are three types of structures that can be looked up: 1940 * 1) pagedep structures identified by mount point, inode number, 1941 * and logical block. 1942 * 2) inodedep structures identified by mount point and inode number. 1943 * 3) newblk structures identified by mount point and 1944 * physical block number. 1945 * 1946 * The "pagedep" and "inodedep" dependency structures are hashed 1947 * separately from the file blocks and inodes to which they correspond. 1948 * This separation helps when the in-memory copy of an inode or 1949 * file block must be replaced. It also obviates the need to access 1950 * an inode or file page when simply updating (or de-allocating) 1951 * dependency structures. Lookup of newblk structures is needed to 1952 * find newly allocated blocks when trying to associate them with 1953 * their allocdirect or allocindir structure. 1954 * 1955 * The lookup routines optionally create and hash a new instance when 1956 * an existing entry is not found. 1957 */ 1958 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1959 #define NODELAY 0x0002 /* cannot do background work */ 1960 1961 /* 1962 * Structures and routines associated with pagedep caching. 1963 */ 1964 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 1965 u_long pagedep_hash; /* size of hash table - 1 */ 1966 #define PAGEDEP_HASH(mp, inum, lbn) \ 1967 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 1968 pagedep_hash]) 1969 1970 static int 1971 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 1972 struct pagedep_hashhead *pagedephd; 1973 ino_t ino; 1974 ufs_lbn_t lbn; 1975 struct mount *mp; 1976 int flags; 1977 struct pagedep **pagedeppp; 1978 { 1979 struct pagedep *pagedep; 1980 1981 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 1982 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn && 1983 mp == pagedep->pd_list.wk_mp) { 1984 *pagedeppp = pagedep; 1985 return (1); 1986 } 1987 } 1988 *pagedeppp = NULL; 1989 return (0); 1990 } 1991 /* 1992 * Look up a pagedep. Return 1 if found, 0 otherwise. 1993 * If not found, allocate if DEPALLOC flag is passed. 1994 * Found or allocated entry is returned in pagedeppp. 1995 * This routine must be called with splbio interrupts blocked. 1996 */ 1997 static int 1998 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 1999 struct mount *mp; 2000 struct buf *bp; 2001 ino_t ino; 2002 ufs_lbn_t lbn; 2003 int flags; 2004 struct pagedep **pagedeppp; 2005 { 2006 struct pagedep *pagedep; 2007 struct pagedep_hashhead *pagedephd; 2008 struct worklist *wk; 2009 int ret; 2010 int i; 2011 2012 mtx_assert(&lk, MA_OWNED); 2013 if (bp) { 2014 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2015 if (wk->wk_type == D_PAGEDEP) { 2016 *pagedeppp = WK_PAGEDEP(wk); 2017 return (1); 2018 } 2019 } 2020 } 2021 pagedephd = PAGEDEP_HASH(mp, ino, lbn); 2022 ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp); 2023 if (ret) { 2024 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2025 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2026 return (1); 2027 } 2028 if ((flags & DEPALLOC) == 0) 2029 return (0); 2030 FREE_LOCK(&lk); 2031 pagedep = malloc(sizeof(struct pagedep), 2032 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2033 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2034 ACQUIRE_LOCK(&lk); 2035 ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp); 2036 if (*pagedeppp) { 2037 /* 2038 * This should never happen since we only create pagedeps 2039 * with the vnode lock held. Could be an assert. 2040 */ 2041 WORKITEM_FREE(pagedep, D_PAGEDEP); 2042 return (ret); 2043 } 2044 pagedep->pd_ino = ino; 2045 pagedep->pd_lbn = lbn; 2046 LIST_INIT(&pagedep->pd_dirremhd); 2047 LIST_INIT(&pagedep->pd_pendinghd); 2048 for (i = 0; i < DAHASHSZ; i++) 2049 LIST_INIT(&pagedep->pd_diraddhd[i]); 2050 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2051 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2052 *pagedeppp = pagedep; 2053 return (0); 2054 } 2055 2056 /* 2057 * Structures and routines associated with inodedep caching. 2058 */ 2059 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 2060 static u_long inodedep_hash; /* size of hash table - 1 */ 2061 #define INODEDEP_HASH(fs, inum) \ 2062 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 2063 2064 static int 2065 inodedep_find(inodedephd, fs, inum, inodedeppp) 2066 struct inodedep_hashhead *inodedephd; 2067 struct fs *fs; 2068 ino_t inum; 2069 struct inodedep **inodedeppp; 2070 { 2071 struct inodedep *inodedep; 2072 2073 LIST_FOREACH(inodedep, inodedephd, id_hash) 2074 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 2075 break; 2076 if (inodedep) { 2077 *inodedeppp = inodedep; 2078 return (1); 2079 } 2080 *inodedeppp = NULL; 2081 2082 return (0); 2083 } 2084 /* 2085 * Look up an inodedep. Return 1 if found, 0 if not found. 2086 * If not found, allocate if DEPALLOC flag is passed. 2087 * Found or allocated entry is returned in inodedeppp. 2088 * This routine must be called with splbio interrupts blocked. 2089 */ 2090 static int 2091 inodedep_lookup(mp, inum, flags, inodedeppp) 2092 struct mount *mp; 2093 ino_t inum; 2094 int flags; 2095 struct inodedep **inodedeppp; 2096 { 2097 struct inodedep *inodedep; 2098 struct inodedep_hashhead *inodedephd; 2099 struct fs *fs; 2100 2101 mtx_assert(&lk, MA_OWNED); 2102 fs = VFSTOUFS(mp)->um_fs; 2103 inodedephd = INODEDEP_HASH(fs, inum); 2104 2105 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 2106 return (1); 2107 if ((flags & DEPALLOC) == 0) 2108 return (0); 2109 /* 2110 * If we are over our limit, try to improve the situation. 2111 */ 2112 if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0) 2113 request_cleanup(mp, FLUSH_INODES); 2114 FREE_LOCK(&lk); 2115 inodedep = malloc(sizeof(struct inodedep), 2116 M_INODEDEP, M_SOFTDEP_FLAGS); 2117 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2118 ACQUIRE_LOCK(&lk); 2119 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 2120 WORKITEM_FREE(inodedep, D_INODEDEP); 2121 return (1); 2122 } 2123 inodedep->id_fs = fs; 2124 inodedep->id_ino = inum; 2125 inodedep->id_state = ALLCOMPLETE; 2126 inodedep->id_nlinkdelta = 0; 2127 inodedep->id_savedino1 = NULL; 2128 inodedep->id_savedsize = -1; 2129 inodedep->id_savedextsize = -1; 2130 inodedep->id_savednlink = -1; 2131 inodedep->id_bmsafemap = NULL; 2132 inodedep->id_mkdiradd = NULL; 2133 LIST_INIT(&inodedep->id_dirremhd); 2134 LIST_INIT(&inodedep->id_pendinghd); 2135 LIST_INIT(&inodedep->id_inowait); 2136 LIST_INIT(&inodedep->id_bufwait); 2137 TAILQ_INIT(&inodedep->id_inoreflst); 2138 TAILQ_INIT(&inodedep->id_inoupdt); 2139 TAILQ_INIT(&inodedep->id_newinoupdt); 2140 TAILQ_INIT(&inodedep->id_extupdt); 2141 TAILQ_INIT(&inodedep->id_newextupdt); 2142 TAILQ_INIT(&inodedep->id_freeblklst); 2143 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2144 *inodedeppp = inodedep; 2145 return (0); 2146 } 2147 2148 /* 2149 * Structures and routines associated with newblk caching. 2150 */ 2151 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 2152 u_long newblk_hash; /* size of hash table - 1 */ 2153 #define NEWBLK_HASH(fs, inum) \ 2154 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 2155 2156 static int 2157 newblk_find(newblkhd, mp, newblkno, flags, newblkpp) 2158 struct newblk_hashhead *newblkhd; 2159 struct mount *mp; 2160 ufs2_daddr_t newblkno; 2161 int flags; 2162 struct newblk **newblkpp; 2163 { 2164 struct newblk *newblk; 2165 2166 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2167 if (newblkno != newblk->nb_newblkno) 2168 continue; 2169 if (mp != newblk->nb_list.wk_mp) 2170 continue; 2171 /* 2172 * If we're creating a new dependency don't match those that 2173 * have already been converted to allocdirects. This is for 2174 * a frag extend. 2175 */ 2176 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2177 continue; 2178 break; 2179 } 2180 if (newblk) { 2181 *newblkpp = newblk; 2182 return (1); 2183 } 2184 *newblkpp = NULL; 2185 return (0); 2186 } 2187 2188 /* 2189 * Look up a newblk. Return 1 if found, 0 if not found. 2190 * If not found, allocate if DEPALLOC flag is passed. 2191 * Found or allocated entry is returned in newblkpp. 2192 */ 2193 static int 2194 newblk_lookup(mp, newblkno, flags, newblkpp) 2195 struct mount *mp; 2196 ufs2_daddr_t newblkno; 2197 int flags; 2198 struct newblk **newblkpp; 2199 { 2200 struct newblk *newblk; 2201 struct newblk_hashhead *newblkhd; 2202 2203 newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno); 2204 if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) 2205 return (1); 2206 if ((flags & DEPALLOC) == 0) 2207 return (0); 2208 FREE_LOCK(&lk); 2209 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2210 M_SOFTDEP_FLAGS | M_ZERO); 2211 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2212 ACQUIRE_LOCK(&lk); 2213 if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) { 2214 WORKITEM_FREE(newblk, D_NEWBLK); 2215 return (1); 2216 } 2217 newblk->nb_freefrag = NULL; 2218 LIST_INIT(&newblk->nb_indirdeps); 2219 LIST_INIT(&newblk->nb_newdirblk); 2220 LIST_INIT(&newblk->nb_jwork); 2221 newblk->nb_state = ATTACHED; 2222 newblk->nb_newblkno = newblkno; 2223 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2224 *newblkpp = newblk; 2225 return (0); 2226 } 2227 2228 /* 2229 * Structures and routines associated with freed indirect block caching. 2230 */ 2231 struct freeworklst *indir_hashtbl; 2232 u_long indir_hash; /* size of hash table - 1 */ 2233 #define INDIR_HASH(mp, blkno) \ 2234 (&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash]) 2235 2236 /* 2237 * Lookup an indirect block in the indir hash table. The freework is 2238 * removed and potentially freed. The caller must do a blocking journal 2239 * write before writing to the blkno. 2240 */ 2241 static int 2242 indirblk_lookup(mp, blkno) 2243 struct mount *mp; 2244 ufs2_daddr_t blkno; 2245 { 2246 struct freework *freework; 2247 struct freeworklst *wkhd; 2248 2249 wkhd = INDIR_HASH(mp, blkno); 2250 TAILQ_FOREACH(freework, wkhd, fw_next) { 2251 if (freework->fw_blkno != blkno) 2252 continue; 2253 if (freework->fw_list.wk_mp != mp) 2254 continue; 2255 indirblk_remove(freework); 2256 return (1); 2257 } 2258 return (0); 2259 } 2260 2261 /* 2262 * Insert an indirect block represented by freework into the indirblk 2263 * hash table so that it may prevent the block from being re-used prior 2264 * to the journal being written. 2265 */ 2266 static void 2267 indirblk_insert(freework) 2268 struct freework *freework; 2269 { 2270 struct freeblks *freeblks; 2271 struct jsegdep *jsegdep; 2272 struct worklist *wk; 2273 2274 freeblks = freework->fw_freeblks; 2275 LIST_FOREACH(wk, &freeblks->fb_jwork, wk_list) 2276 if (wk->wk_type == D_JSEGDEP) 2277 break; 2278 if (wk == NULL) 2279 return; 2280 2281 jsegdep = WK_JSEGDEP(wk); 2282 LIST_INSERT_HEAD(&jsegdep->jd_seg->js_indirs, freework, fw_segs); 2283 TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp, 2284 freework->fw_blkno), freework, fw_next); 2285 freework->fw_state &= ~DEPCOMPLETE; 2286 } 2287 2288 static void 2289 indirblk_remove(freework) 2290 struct freework *freework; 2291 { 2292 2293 LIST_REMOVE(freework, fw_segs); 2294 TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp, 2295 freework->fw_blkno), freework, fw_next); 2296 freework->fw_state |= DEPCOMPLETE; 2297 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2298 WORKITEM_FREE(freework, D_FREEWORK); 2299 } 2300 2301 /* 2302 * Executed during filesystem system initialization before 2303 * mounting any filesystems. 2304 */ 2305 void 2306 softdep_initialize() 2307 { 2308 int i; 2309 2310 LIST_INIT(&mkdirlisthd); 2311 max_softdeps = desiredvnodes * 4; 2312 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash); 2313 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 2314 newblk_hashtbl = hashinit(desiredvnodes / 5, M_NEWBLK, &newblk_hash); 2315 bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash); 2316 i = 1 << (ffs(desiredvnodes / 10) - 1); 2317 indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK, 2318 M_WAITOK); 2319 indir_hash = i - 1; 2320 for (i = 0; i <= indir_hash; i++) 2321 TAILQ_INIT(&indir_hashtbl[i]); 2322 2323 /* initialise bioops hack */ 2324 bioops.io_start = softdep_disk_io_initiation; 2325 bioops.io_complete = softdep_disk_write_complete; 2326 bioops.io_deallocate = softdep_deallocate_dependencies; 2327 bioops.io_countdeps = softdep_count_dependencies; 2328 2329 /* Initialize the callout with an mtx. */ 2330 callout_init_mtx(&softdep_callout, &lk, 0); 2331 } 2332 2333 /* 2334 * Executed after all filesystems have been unmounted during 2335 * filesystem module unload. 2336 */ 2337 void 2338 softdep_uninitialize() 2339 { 2340 2341 callout_drain(&softdep_callout); 2342 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 2343 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 2344 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 2345 hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash); 2346 free(indir_hashtbl, M_FREEWORK); 2347 } 2348 2349 /* 2350 * Called at mount time to notify the dependency code that a 2351 * filesystem wishes to use it. 2352 */ 2353 int 2354 softdep_mount(devvp, mp, fs, cred) 2355 struct vnode *devvp; 2356 struct mount *mp; 2357 struct fs *fs; 2358 struct ucred *cred; 2359 { 2360 struct csum_total cstotal; 2361 struct ufsmount *ump; 2362 struct cg *cgp; 2363 struct buf *bp; 2364 int error, cyl; 2365 2366 MNT_ILOCK(mp); 2367 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2368 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2369 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2370 MNTK_SOFTDEP | MNTK_NOASYNC; 2371 } 2372 MNT_IUNLOCK(mp); 2373 ump = VFSTOUFS(mp); 2374 LIST_INIT(&ump->softdep_workitem_pending); 2375 LIST_INIT(&ump->softdep_journal_pending); 2376 TAILQ_INIT(&ump->softdep_unlinked); 2377 LIST_INIT(&ump->softdep_dirtycg); 2378 ump->softdep_worklist_tail = NULL; 2379 ump->softdep_on_worklist = 0; 2380 ump->softdep_deps = 0; 2381 if ((fs->fs_flags & FS_SUJ) && 2382 (error = journal_mount(mp, fs, cred)) != 0) { 2383 printf("Failed to start journal: %d\n", error); 2384 return (error); 2385 } 2386 /* 2387 * When doing soft updates, the counters in the 2388 * superblock may have gotten out of sync. Recomputation 2389 * can take a long time and can be deferred for background 2390 * fsck. However, the old behavior of scanning the cylinder 2391 * groups and recalculating them at mount time is available 2392 * by setting vfs.ffs.compute_summary_at_mount to one. 2393 */ 2394 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2395 return (0); 2396 bzero(&cstotal, sizeof cstotal); 2397 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2398 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2399 fs->fs_cgsize, cred, &bp)) != 0) { 2400 brelse(bp); 2401 return (error); 2402 } 2403 cgp = (struct cg *)bp->b_data; 2404 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2405 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2406 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2407 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2408 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2409 brelse(bp); 2410 } 2411 #ifdef DEBUG 2412 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2413 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2414 #endif 2415 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2416 return (0); 2417 } 2418 2419 void 2420 softdep_unmount(mp) 2421 struct mount *mp; 2422 { 2423 2424 MNT_ILOCK(mp); 2425 mp->mnt_flag &= ~MNT_SOFTDEP; 2426 if (MOUNTEDSUJ(mp) == 0) { 2427 MNT_IUNLOCK(mp); 2428 return; 2429 } 2430 mp->mnt_flag &= ~MNT_SUJ; 2431 MNT_IUNLOCK(mp); 2432 journal_unmount(mp); 2433 } 2434 2435 struct jblocks { 2436 struct jseglst jb_segs; /* TAILQ of current segments. */ 2437 struct jseg *jb_writeseg; /* Next write to complete. */ 2438 struct jseg *jb_oldestseg; /* Oldest segment with valid entries. */ 2439 struct jextent *jb_extent; /* Extent array. */ 2440 uint64_t jb_nextseq; /* Next sequence number. */ 2441 uint64_t jb_oldestwrseq; /* Oldest written sequence number. */ 2442 uint8_t jb_needseg; /* Need a forced segment. */ 2443 uint8_t jb_suspended; /* Did journal suspend writes? */ 2444 int jb_avail; /* Available extents. */ 2445 int jb_used; /* Last used extent. */ 2446 int jb_head; /* Allocator head. */ 2447 int jb_off; /* Allocator extent offset. */ 2448 int jb_blocks; /* Total disk blocks covered. */ 2449 int jb_free; /* Total disk blocks free. */ 2450 int jb_min; /* Minimum free space. */ 2451 int jb_low; /* Low on space. */ 2452 int jb_age; /* Insertion time of oldest rec. */ 2453 }; 2454 2455 struct jextent { 2456 ufs2_daddr_t je_daddr; /* Disk block address. */ 2457 int je_blocks; /* Disk block count. */ 2458 }; 2459 2460 static struct jblocks * 2461 jblocks_create(void) 2462 { 2463 struct jblocks *jblocks; 2464 2465 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2466 TAILQ_INIT(&jblocks->jb_segs); 2467 jblocks->jb_avail = 10; 2468 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2469 M_JBLOCKS, M_WAITOK | M_ZERO); 2470 2471 return (jblocks); 2472 } 2473 2474 static ufs2_daddr_t 2475 jblocks_alloc(jblocks, bytes, actual) 2476 struct jblocks *jblocks; 2477 int bytes; 2478 int *actual; 2479 { 2480 ufs2_daddr_t daddr; 2481 struct jextent *jext; 2482 int freecnt; 2483 int blocks; 2484 2485 blocks = bytes / DEV_BSIZE; 2486 jext = &jblocks->jb_extent[jblocks->jb_head]; 2487 freecnt = jext->je_blocks - jblocks->jb_off; 2488 if (freecnt == 0) { 2489 jblocks->jb_off = 0; 2490 if (++jblocks->jb_head > jblocks->jb_used) 2491 jblocks->jb_head = 0; 2492 jext = &jblocks->jb_extent[jblocks->jb_head]; 2493 freecnt = jext->je_blocks; 2494 } 2495 if (freecnt > blocks) 2496 freecnt = blocks; 2497 *actual = freecnt * DEV_BSIZE; 2498 daddr = jext->je_daddr + jblocks->jb_off; 2499 jblocks->jb_off += freecnt; 2500 jblocks->jb_free -= freecnt; 2501 2502 return (daddr); 2503 } 2504 2505 static void 2506 jblocks_free(jblocks, mp, bytes) 2507 struct jblocks *jblocks; 2508 struct mount *mp; 2509 int bytes; 2510 { 2511 2512 jblocks->jb_free += bytes / DEV_BSIZE; 2513 if (jblocks->jb_suspended) 2514 worklist_speedup(); 2515 wakeup(jblocks); 2516 } 2517 2518 static void 2519 jblocks_destroy(jblocks) 2520 struct jblocks *jblocks; 2521 { 2522 2523 if (jblocks->jb_extent) 2524 free(jblocks->jb_extent, M_JBLOCKS); 2525 free(jblocks, M_JBLOCKS); 2526 } 2527 2528 static void 2529 jblocks_add(jblocks, daddr, blocks) 2530 struct jblocks *jblocks; 2531 ufs2_daddr_t daddr; 2532 int blocks; 2533 { 2534 struct jextent *jext; 2535 2536 jblocks->jb_blocks += blocks; 2537 jblocks->jb_free += blocks; 2538 jext = &jblocks->jb_extent[jblocks->jb_used]; 2539 /* Adding the first block. */ 2540 if (jext->je_daddr == 0) { 2541 jext->je_daddr = daddr; 2542 jext->je_blocks = blocks; 2543 return; 2544 } 2545 /* Extending the last extent. */ 2546 if (jext->je_daddr + jext->je_blocks == daddr) { 2547 jext->je_blocks += blocks; 2548 return; 2549 } 2550 /* Adding a new extent. */ 2551 if (++jblocks->jb_used == jblocks->jb_avail) { 2552 jblocks->jb_avail *= 2; 2553 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2554 M_JBLOCKS, M_WAITOK | M_ZERO); 2555 memcpy(jext, jblocks->jb_extent, 2556 sizeof(struct jextent) * jblocks->jb_used); 2557 free(jblocks->jb_extent, M_JBLOCKS); 2558 jblocks->jb_extent = jext; 2559 } 2560 jext = &jblocks->jb_extent[jblocks->jb_used]; 2561 jext->je_daddr = daddr; 2562 jext->je_blocks = blocks; 2563 return; 2564 } 2565 2566 int 2567 softdep_journal_lookup(mp, vpp) 2568 struct mount *mp; 2569 struct vnode **vpp; 2570 { 2571 struct componentname cnp; 2572 struct vnode *dvp; 2573 ino_t sujournal; 2574 int error; 2575 2576 error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp); 2577 if (error) 2578 return (error); 2579 bzero(&cnp, sizeof(cnp)); 2580 cnp.cn_nameiop = LOOKUP; 2581 cnp.cn_flags = ISLASTCN; 2582 cnp.cn_thread = curthread; 2583 cnp.cn_cred = curthread->td_ucred; 2584 cnp.cn_pnbuf = SUJ_FILE; 2585 cnp.cn_nameptr = SUJ_FILE; 2586 cnp.cn_namelen = strlen(SUJ_FILE); 2587 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2588 vput(dvp); 2589 if (error != 0) 2590 return (error); 2591 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2592 return (error); 2593 } 2594 2595 /* 2596 * Open and verify the journal file. 2597 */ 2598 static int 2599 journal_mount(mp, fs, cred) 2600 struct mount *mp; 2601 struct fs *fs; 2602 struct ucred *cred; 2603 { 2604 struct jblocks *jblocks; 2605 struct vnode *vp; 2606 struct inode *ip; 2607 ufs2_daddr_t blkno; 2608 int bcount; 2609 int error; 2610 int i; 2611 2612 error = softdep_journal_lookup(mp, &vp); 2613 if (error != 0) { 2614 printf("Failed to find journal. Use tunefs to create one\n"); 2615 return (error); 2616 } 2617 ip = VTOI(vp); 2618 if (ip->i_size < SUJ_MIN) { 2619 error = ENOSPC; 2620 goto out; 2621 } 2622 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2623 jblocks = jblocks_create(); 2624 for (i = 0; i < bcount; i++) { 2625 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2626 if (error) 2627 break; 2628 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2629 } 2630 if (error) { 2631 jblocks_destroy(jblocks); 2632 goto out; 2633 } 2634 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2635 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2636 VFSTOUFS(mp)->softdep_jblocks = jblocks; 2637 out: 2638 if (error == 0) { 2639 MNT_ILOCK(mp); 2640 mp->mnt_flag |= MNT_SUJ; 2641 mp->mnt_flag &= ~MNT_SOFTDEP; 2642 MNT_IUNLOCK(mp); 2643 /* 2644 * Only validate the journal contents if the 2645 * filesystem is clean, otherwise we write the logs 2646 * but they'll never be used. If the filesystem was 2647 * still dirty when we mounted it the journal is 2648 * invalid and a new journal can only be valid if it 2649 * starts from a clean mount. 2650 */ 2651 if (fs->fs_clean) { 2652 DIP_SET(ip, i_modrev, fs->fs_mtime); 2653 ip->i_flags |= IN_MODIFIED; 2654 ffs_update(vp, 1); 2655 } 2656 } 2657 vput(vp); 2658 return (error); 2659 } 2660 2661 static void 2662 journal_unmount(mp) 2663 struct mount *mp; 2664 { 2665 struct ufsmount *ump; 2666 2667 ump = VFSTOUFS(mp); 2668 if (ump->softdep_jblocks) 2669 jblocks_destroy(ump->softdep_jblocks); 2670 ump->softdep_jblocks = NULL; 2671 } 2672 2673 /* 2674 * Called when a journal record is ready to be written. Space is allocated 2675 * and the journal entry is created when the journal is flushed to stable 2676 * store. 2677 */ 2678 static void 2679 add_to_journal(wk) 2680 struct worklist *wk; 2681 { 2682 struct ufsmount *ump; 2683 2684 mtx_assert(&lk, MA_OWNED); 2685 ump = VFSTOUFS(wk->wk_mp); 2686 if (wk->wk_state & ONWORKLIST) 2687 panic("add_to_journal: %s(0x%X) already on list", 2688 TYPENAME(wk->wk_type), wk->wk_state); 2689 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2690 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2691 ump->softdep_jblocks->jb_age = ticks; 2692 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2693 } else 2694 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2695 ump->softdep_journal_tail = wk; 2696 ump->softdep_on_journal += 1; 2697 } 2698 2699 /* 2700 * Remove an arbitrary item for the journal worklist maintain the tail 2701 * pointer. This happens when a new operation obviates the need to 2702 * journal an old operation. 2703 */ 2704 static void 2705 remove_from_journal(wk) 2706 struct worklist *wk; 2707 { 2708 struct ufsmount *ump; 2709 2710 mtx_assert(&lk, MA_OWNED); 2711 ump = VFSTOUFS(wk->wk_mp); 2712 #ifdef SUJ_DEBUG 2713 { 2714 struct worklist *wkn; 2715 2716 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2717 if (wkn == wk) 2718 break; 2719 if (wkn == NULL) 2720 panic("remove_from_journal: %p is not in journal", wk); 2721 } 2722 #endif 2723 /* 2724 * We emulate a TAILQ to save space in most structures which do not 2725 * require TAILQ semantics. Here we must update the tail position 2726 * when removing the tail which is not the final entry. This works 2727 * only if the worklist linkage are at the beginning of the structure. 2728 */ 2729 if (ump->softdep_journal_tail == wk) 2730 ump->softdep_journal_tail = 2731 (struct worklist *)wk->wk_list.le_prev; 2732 2733 WORKLIST_REMOVE(wk); 2734 ump->softdep_on_journal -= 1; 2735 } 2736 2737 /* 2738 * Check for journal space as well as dependency limits so the prelink 2739 * code can throttle both journaled and non-journaled filesystems. 2740 * Threshold is 0 for low and 1 for min. 2741 */ 2742 static int 2743 journal_space(ump, thresh) 2744 struct ufsmount *ump; 2745 int thresh; 2746 { 2747 struct jblocks *jblocks; 2748 int avail; 2749 2750 jblocks = ump->softdep_jblocks; 2751 if (jblocks == NULL) 2752 return (1); 2753 /* 2754 * We use a tighter restriction here to prevent request_cleanup() 2755 * running in threads from running into locks we currently hold. 2756 */ 2757 if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9) 2758 return (0); 2759 if (thresh) 2760 thresh = jblocks->jb_min; 2761 else 2762 thresh = jblocks->jb_low; 2763 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2764 avail = jblocks->jb_free - avail; 2765 2766 return (avail > thresh); 2767 } 2768 2769 static void 2770 journal_suspend(ump) 2771 struct ufsmount *ump; 2772 { 2773 struct jblocks *jblocks; 2774 struct mount *mp; 2775 2776 mp = UFSTOVFS(ump); 2777 jblocks = ump->softdep_jblocks; 2778 MNT_ILOCK(mp); 2779 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2780 stat_journal_min++; 2781 mp->mnt_kern_flag |= MNTK_SUSPEND; 2782 mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc); 2783 } 2784 jblocks->jb_suspended = 1; 2785 MNT_IUNLOCK(mp); 2786 } 2787 2788 static int 2789 journal_unsuspend(struct ufsmount *ump) 2790 { 2791 struct jblocks *jblocks; 2792 struct mount *mp; 2793 2794 mp = UFSTOVFS(ump); 2795 jblocks = ump->softdep_jblocks; 2796 2797 if (jblocks != NULL && jblocks->jb_suspended && 2798 journal_space(ump, jblocks->jb_min)) { 2799 jblocks->jb_suspended = 0; 2800 FREE_LOCK(&lk); 2801 mp->mnt_susp_owner = curthread; 2802 vfs_write_resume(mp); 2803 ACQUIRE_LOCK(&lk); 2804 return (1); 2805 } 2806 return (0); 2807 } 2808 2809 /* 2810 * Called before any allocation function to be certain that there is 2811 * sufficient space in the journal prior to creating any new records. 2812 * Since in the case of block allocation we may have multiple locked 2813 * buffers at the time of the actual allocation we can not block 2814 * when the journal records are created. Doing so would create a deadlock 2815 * if any of these buffers needed to be flushed to reclaim space. Instead 2816 * we require a sufficiently large amount of available space such that 2817 * each thread in the system could have passed this allocation check and 2818 * still have sufficient free space. With 20% of a minimum journal size 2819 * of 1MB we have 6553 records available. 2820 */ 2821 int 2822 softdep_prealloc(vp, waitok) 2823 struct vnode *vp; 2824 int waitok; 2825 { 2826 struct ufsmount *ump; 2827 2828 /* 2829 * Nothing to do if we are not running journaled soft updates. 2830 * If we currently hold the snapshot lock, we must avoid handling 2831 * other resources that could cause deadlock. 2832 */ 2833 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp))) 2834 return (0); 2835 ump = VFSTOUFS(vp->v_mount); 2836 ACQUIRE_LOCK(&lk); 2837 if (journal_space(ump, 0)) { 2838 FREE_LOCK(&lk); 2839 return (0); 2840 } 2841 stat_journal_low++; 2842 FREE_LOCK(&lk); 2843 if (waitok == MNT_NOWAIT) 2844 return (ENOSPC); 2845 /* 2846 * Attempt to sync this vnode once to flush any journal 2847 * work attached to it. 2848 */ 2849 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 2850 ffs_syncvnode(vp, waitok, 0); 2851 ACQUIRE_LOCK(&lk); 2852 process_removes(vp); 2853 process_truncates(vp); 2854 if (journal_space(ump, 0) == 0) { 2855 softdep_speedup(); 2856 if (journal_space(ump, 1) == 0) 2857 journal_suspend(ump); 2858 } 2859 FREE_LOCK(&lk); 2860 2861 return (0); 2862 } 2863 2864 /* 2865 * Before adjusting a link count on a vnode verify that we have sufficient 2866 * journal space. If not, process operations that depend on the currently 2867 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 2868 * and softdep flush threads can not acquire these locks to reclaim space. 2869 */ 2870 static void 2871 softdep_prelink(dvp, vp) 2872 struct vnode *dvp; 2873 struct vnode *vp; 2874 { 2875 struct ufsmount *ump; 2876 2877 ump = VFSTOUFS(dvp->v_mount); 2878 mtx_assert(&lk, MA_OWNED); 2879 /* 2880 * Nothing to do if we have sufficient journal space. 2881 * If we currently hold the snapshot lock, we must avoid 2882 * handling other resources that could cause deadlock. 2883 */ 2884 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 2885 return; 2886 stat_journal_low++; 2887 FREE_LOCK(&lk); 2888 if (vp) 2889 ffs_syncvnode(vp, MNT_NOWAIT, 0); 2890 ffs_syncvnode(dvp, MNT_WAIT, 0); 2891 ACQUIRE_LOCK(&lk); 2892 /* Process vp before dvp as it may create .. removes. */ 2893 if (vp) { 2894 process_removes(vp); 2895 process_truncates(vp); 2896 } 2897 process_removes(dvp); 2898 process_truncates(dvp); 2899 softdep_speedup(); 2900 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 2901 if (journal_space(ump, 0) == 0) { 2902 softdep_speedup(); 2903 if (journal_space(ump, 1) == 0) 2904 journal_suspend(ump); 2905 } 2906 } 2907 2908 static void 2909 jseg_write(ump, jseg, data) 2910 struct ufsmount *ump; 2911 struct jseg *jseg; 2912 uint8_t *data; 2913 { 2914 struct jsegrec *rec; 2915 2916 rec = (struct jsegrec *)data; 2917 rec->jsr_seq = jseg->js_seq; 2918 rec->jsr_oldest = jseg->js_oldseq; 2919 rec->jsr_cnt = jseg->js_cnt; 2920 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 2921 rec->jsr_crc = 0; 2922 rec->jsr_time = ump->um_fs->fs_mtime; 2923 } 2924 2925 static inline void 2926 inoref_write(inoref, jseg, rec) 2927 struct inoref *inoref; 2928 struct jseg *jseg; 2929 struct jrefrec *rec; 2930 { 2931 2932 inoref->if_jsegdep->jd_seg = jseg; 2933 rec->jr_ino = inoref->if_ino; 2934 rec->jr_parent = inoref->if_parent; 2935 rec->jr_nlink = inoref->if_nlink; 2936 rec->jr_mode = inoref->if_mode; 2937 rec->jr_diroff = inoref->if_diroff; 2938 } 2939 2940 static void 2941 jaddref_write(jaddref, jseg, data) 2942 struct jaddref *jaddref; 2943 struct jseg *jseg; 2944 uint8_t *data; 2945 { 2946 struct jrefrec *rec; 2947 2948 rec = (struct jrefrec *)data; 2949 rec->jr_op = JOP_ADDREF; 2950 inoref_write(&jaddref->ja_ref, jseg, rec); 2951 } 2952 2953 static void 2954 jremref_write(jremref, jseg, data) 2955 struct jremref *jremref; 2956 struct jseg *jseg; 2957 uint8_t *data; 2958 { 2959 struct jrefrec *rec; 2960 2961 rec = (struct jrefrec *)data; 2962 rec->jr_op = JOP_REMREF; 2963 inoref_write(&jremref->jr_ref, jseg, rec); 2964 } 2965 2966 static void 2967 jmvref_write(jmvref, jseg, data) 2968 struct jmvref *jmvref; 2969 struct jseg *jseg; 2970 uint8_t *data; 2971 { 2972 struct jmvrec *rec; 2973 2974 rec = (struct jmvrec *)data; 2975 rec->jm_op = JOP_MVREF; 2976 rec->jm_ino = jmvref->jm_ino; 2977 rec->jm_parent = jmvref->jm_parent; 2978 rec->jm_oldoff = jmvref->jm_oldoff; 2979 rec->jm_newoff = jmvref->jm_newoff; 2980 } 2981 2982 static void 2983 jnewblk_write(jnewblk, jseg, data) 2984 struct jnewblk *jnewblk; 2985 struct jseg *jseg; 2986 uint8_t *data; 2987 { 2988 struct jblkrec *rec; 2989 2990 jnewblk->jn_jsegdep->jd_seg = jseg; 2991 rec = (struct jblkrec *)data; 2992 rec->jb_op = JOP_NEWBLK; 2993 rec->jb_ino = jnewblk->jn_ino; 2994 rec->jb_blkno = jnewblk->jn_blkno; 2995 rec->jb_lbn = jnewblk->jn_lbn; 2996 rec->jb_frags = jnewblk->jn_frags; 2997 rec->jb_oldfrags = jnewblk->jn_oldfrags; 2998 } 2999 3000 static void 3001 jfreeblk_write(jfreeblk, jseg, data) 3002 struct jfreeblk *jfreeblk; 3003 struct jseg *jseg; 3004 uint8_t *data; 3005 { 3006 struct jblkrec *rec; 3007 3008 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3009 rec = (struct jblkrec *)data; 3010 rec->jb_op = JOP_FREEBLK; 3011 rec->jb_ino = jfreeblk->jf_ino; 3012 rec->jb_blkno = jfreeblk->jf_blkno; 3013 rec->jb_lbn = jfreeblk->jf_lbn; 3014 rec->jb_frags = jfreeblk->jf_frags; 3015 rec->jb_oldfrags = 0; 3016 } 3017 3018 static void 3019 jfreefrag_write(jfreefrag, jseg, data) 3020 struct jfreefrag *jfreefrag; 3021 struct jseg *jseg; 3022 uint8_t *data; 3023 { 3024 struct jblkrec *rec; 3025 3026 jfreefrag->fr_jsegdep->jd_seg = jseg; 3027 rec = (struct jblkrec *)data; 3028 rec->jb_op = JOP_FREEBLK; 3029 rec->jb_ino = jfreefrag->fr_ino; 3030 rec->jb_blkno = jfreefrag->fr_blkno; 3031 rec->jb_lbn = jfreefrag->fr_lbn; 3032 rec->jb_frags = jfreefrag->fr_frags; 3033 rec->jb_oldfrags = 0; 3034 } 3035 3036 static void 3037 jtrunc_write(jtrunc, jseg, data) 3038 struct jtrunc *jtrunc; 3039 struct jseg *jseg; 3040 uint8_t *data; 3041 { 3042 struct jtrncrec *rec; 3043 3044 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3045 rec = (struct jtrncrec *)data; 3046 rec->jt_op = JOP_TRUNC; 3047 rec->jt_ino = jtrunc->jt_ino; 3048 rec->jt_size = jtrunc->jt_size; 3049 rec->jt_extsize = jtrunc->jt_extsize; 3050 } 3051 3052 static void 3053 jfsync_write(jfsync, jseg, data) 3054 struct jfsync *jfsync; 3055 struct jseg *jseg; 3056 uint8_t *data; 3057 { 3058 struct jtrncrec *rec; 3059 3060 rec = (struct jtrncrec *)data; 3061 rec->jt_op = JOP_SYNC; 3062 rec->jt_ino = jfsync->jfs_ino; 3063 rec->jt_size = jfsync->jfs_size; 3064 rec->jt_extsize = jfsync->jfs_extsize; 3065 } 3066 3067 static void 3068 softdep_flushjournal(mp) 3069 struct mount *mp; 3070 { 3071 struct jblocks *jblocks; 3072 struct ufsmount *ump; 3073 3074 if (MOUNTEDSUJ(mp) == 0) 3075 return; 3076 ump = VFSTOUFS(mp); 3077 jblocks = ump->softdep_jblocks; 3078 ACQUIRE_LOCK(&lk); 3079 while (ump->softdep_on_journal) { 3080 jblocks->jb_needseg = 1; 3081 softdep_process_journal(mp, NULL, MNT_WAIT); 3082 } 3083 FREE_LOCK(&lk); 3084 } 3085 3086 /* 3087 * Flush some journal records to disk. 3088 */ 3089 static void 3090 softdep_process_journal(mp, needwk, flags) 3091 struct mount *mp; 3092 struct worklist *needwk; 3093 int flags; 3094 { 3095 struct jblocks *jblocks; 3096 struct ufsmount *ump; 3097 struct worklist *wk; 3098 struct jseg *jseg; 3099 struct buf *bp; 3100 uint8_t *data; 3101 struct fs *fs; 3102 int segwritten; 3103 int jrecmin; /* Minimum records per block. */ 3104 int jrecmax; /* Maximum records per block. */ 3105 int size; 3106 int cnt; 3107 int off; 3108 int devbsize; 3109 3110 if (MOUNTEDSUJ(mp) == 0) 3111 return; 3112 ump = VFSTOUFS(mp); 3113 fs = ump->um_fs; 3114 jblocks = ump->softdep_jblocks; 3115 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3116 /* 3117 * We write anywhere between a disk block and fs block. The upper 3118 * bound is picked to prevent buffer cache fragmentation and limit 3119 * processing time per I/O. 3120 */ 3121 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3122 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3123 segwritten = 0; 3124 for (;;) { 3125 cnt = ump->softdep_on_journal; 3126 /* 3127 * Criteria for writing a segment: 3128 * 1) We have a full block. 3129 * 2) We're called from jwait() and haven't found the 3130 * journal item yet. 3131 * 3) Always write if needseg is set. 3132 * 4) If we are called from process_worklist and have 3133 * not yet written anything we write a partial block 3134 * to enforce a 1 second maximum latency on journal 3135 * entries. 3136 */ 3137 if (cnt < (jrecmax - 1) && needwk == NULL && 3138 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3139 break; 3140 cnt++; 3141 /* 3142 * Verify some free journal space. softdep_prealloc() should 3143 * guarantee that we don't run out so this is indicative of 3144 * a problem with the flow control. Try to recover 3145 * gracefully in any event. 3146 */ 3147 while (jblocks->jb_free == 0) { 3148 if (flags != MNT_WAIT) 3149 break; 3150 printf("softdep: Out of journal space!\n"); 3151 softdep_speedup(); 3152 msleep(jblocks, &lk, PRIBIO, "jblocks", hz); 3153 } 3154 FREE_LOCK(&lk); 3155 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3156 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3157 LIST_INIT(&jseg->js_entries); 3158 LIST_INIT(&jseg->js_indirs); 3159 jseg->js_state = ATTACHED; 3160 jseg->js_jblocks = jblocks; 3161 bp = geteblk(fs->fs_bsize, 0); 3162 ACQUIRE_LOCK(&lk); 3163 /* 3164 * If there was a race while we were allocating the block 3165 * and jseg the entry we care about was likely written. 3166 * We bail out in both the WAIT and NOWAIT case and assume 3167 * the caller will loop if the entry it cares about is 3168 * not written. 3169 */ 3170 cnt = ump->softdep_on_journal; 3171 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3172 bp->b_flags |= B_INVAL | B_NOCACHE; 3173 WORKITEM_FREE(jseg, D_JSEG); 3174 FREE_LOCK(&lk); 3175 brelse(bp); 3176 ACQUIRE_LOCK(&lk); 3177 break; 3178 } 3179 /* 3180 * Calculate the disk block size required for the available 3181 * records rounded to the min size. 3182 */ 3183 if (cnt == 0) 3184 size = devbsize; 3185 else if (cnt < jrecmax) 3186 size = howmany(cnt, jrecmin) * devbsize; 3187 else 3188 size = fs->fs_bsize; 3189 /* 3190 * Allocate a disk block for this journal data and account 3191 * for truncation of the requested size if enough contiguous 3192 * space was not available. 3193 */ 3194 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3195 bp->b_lblkno = bp->b_blkno; 3196 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3197 bp->b_bcount = size; 3198 bp->b_bufobj = &ump->um_devvp->v_bufobj; 3199 bp->b_flags &= ~B_INVAL; 3200 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3201 /* 3202 * Initialize our jseg with cnt records. Assign the next 3203 * sequence number to it and link it in-order. 3204 */ 3205 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3206 jseg->js_buf = bp; 3207 jseg->js_cnt = cnt; 3208 jseg->js_refs = cnt + 1; /* Self ref. */ 3209 jseg->js_size = size; 3210 jseg->js_seq = jblocks->jb_nextseq++; 3211 if (jblocks->jb_oldestseg == NULL) 3212 jblocks->jb_oldestseg = jseg; 3213 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3214 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3215 if (jblocks->jb_writeseg == NULL) 3216 jblocks->jb_writeseg = jseg; 3217 /* 3218 * Start filling in records from the pending list. 3219 */ 3220 data = bp->b_data; 3221 off = 0; 3222 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3223 != NULL) { 3224 if (cnt == 0) 3225 break; 3226 /* Place a segment header on every device block. */ 3227 if ((off % devbsize) == 0) { 3228 jseg_write(ump, jseg, data); 3229 off += JREC_SIZE; 3230 data = bp->b_data + off; 3231 } 3232 if (wk == needwk) 3233 needwk = NULL; 3234 remove_from_journal(wk); 3235 wk->wk_state |= INPROGRESS; 3236 WORKLIST_INSERT(&jseg->js_entries, wk); 3237 switch (wk->wk_type) { 3238 case D_JADDREF: 3239 jaddref_write(WK_JADDREF(wk), jseg, data); 3240 break; 3241 case D_JREMREF: 3242 jremref_write(WK_JREMREF(wk), jseg, data); 3243 break; 3244 case D_JMVREF: 3245 jmvref_write(WK_JMVREF(wk), jseg, data); 3246 break; 3247 case D_JNEWBLK: 3248 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3249 break; 3250 case D_JFREEBLK: 3251 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3252 break; 3253 case D_JFREEFRAG: 3254 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3255 break; 3256 case D_JTRUNC: 3257 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3258 break; 3259 case D_JFSYNC: 3260 jfsync_write(WK_JFSYNC(wk), jseg, data); 3261 break; 3262 default: 3263 panic("process_journal: Unknown type %s", 3264 TYPENAME(wk->wk_type)); 3265 /* NOTREACHED */ 3266 } 3267 off += JREC_SIZE; 3268 data = bp->b_data + off; 3269 cnt--; 3270 } 3271 /* 3272 * Write this one buffer and continue. 3273 */ 3274 segwritten = 1; 3275 jblocks->jb_needseg = 0; 3276 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3277 FREE_LOCK(&lk); 3278 BO_LOCK(bp->b_bufobj); 3279 bgetvp(ump->um_devvp, bp); 3280 BO_UNLOCK(bp->b_bufobj); 3281 /* 3282 * We only do the blocking wait once we find the journal 3283 * entry we're looking for. 3284 */ 3285 if (needwk == NULL && flags == MNT_WAIT) 3286 bwrite(bp); 3287 else 3288 bawrite(bp); 3289 ACQUIRE_LOCK(&lk); 3290 } 3291 /* 3292 * If we've suspended the filesystem because we ran out of journal 3293 * space either try to sync it here to make some progress or 3294 * unsuspend it if we already have. 3295 */ 3296 if (flags == 0 && jblocks->jb_suspended) { 3297 if (journal_unsuspend(ump)) 3298 return; 3299 FREE_LOCK(&lk); 3300 VFS_SYNC(mp, MNT_NOWAIT); 3301 ffs_sbupdate(ump, MNT_WAIT, 0); 3302 ACQUIRE_LOCK(&lk); 3303 } 3304 } 3305 3306 /* 3307 * Complete a jseg, allowing all dependencies awaiting journal writes 3308 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3309 * structures so that the journal segment can be freed to reclaim space. 3310 */ 3311 static void 3312 complete_jseg(jseg) 3313 struct jseg *jseg; 3314 { 3315 struct worklist *wk; 3316 struct jmvref *jmvref; 3317 int waiting; 3318 #ifdef INVARIANTS 3319 int i = 0; 3320 #endif 3321 3322 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3323 WORKLIST_REMOVE(wk); 3324 waiting = wk->wk_state & IOWAITING; 3325 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3326 wk->wk_state |= COMPLETE; 3327 KASSERT(i++ < jseg->js_cnt, 3328 ("handle_written_jseg: overflow %d >= %d", 3329 i - 1, jseg->js_cnt)); 3330 switch (wk->wk_type) { 3331 case D_JADDREF: 3332 handle_written_jaddref(WK_JADDREF(wk)); 3333 break; 3334 case D_JREMREF: 3335 handle_written_jremref(WK_JREMREF(wk)); 3336 break; 3337 case D_JMVREF: 3338 rele_jseg(jseg); /* No jsegdep. */ 3339 jmvref = WK_JMVREF(wk); 3340 LIST_REMOVE(jmvref, jm_deps); 3341 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3342 free_pagedep(jmvref->jm_pagedep); 3343 WORKITEM_FREE(jmvref, D_JMVREF); 3344 break; 3345 case D_JNEWBLK: 3346 handle_written_jnewblk(WK_JNEWBLK(wk)); 3347 break; 3348 case D_JFREEBLK: 3349 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3350 break; 3351 case D_JTRUNC: 3352 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3353 break; 3354 case D_JFSYNC: 3355 rele_jseg(jseg); /* No jsegdep. */ 3356 WORKITEM_FREE(wk, D_JFSYNC); 3357 break; 3358 case D_JFREEFRAG: 3359 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3360 break; 3361 default: 3362 panic("handle_written_jseg: Unknown type %s", 3363 TYPENAME(wk->wk_type)); 3364 /* NOTREACHED */ 3365 } 3366 if (waiting) 3367 wakeup(wk); 3368 } 3369 /* Release the self reference so the structure may be freed. */ 3370 rele_jseg(jseg); 3371 } 3372 3373 /* 3374 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Handle jseg 3375 * completions in order only. 3376 */ 3377 static void 3378 handle_written_jseg(jseg, bp) 3379 struct jseg *jseg; 3380 struct buf *bp; 3381 { 3382 struct jblocks *jblocks; 3383 struct jseg *jsegn; 3384 3385 if (jseg->js_refs == 0) 3386 panic("handle_written_jseg: No self-reference on %p", jseg); 3387 jseg->js_state |= DEPCOMPLETE; 3388 /* 3389 * We'll never need this buffer again, set flags so it will be 3390 * discarded. 3391 */ 3392 bp->b_flags |= B_INVAL | B_NOCACHE; 3393 jblocks = jseg->js_jblocks; 3394 /* 3395 * Don't allow out of order completions. If this isn't the first 3396 * block wait for it to write before we're done. 3397 */ 3398 if (jseg != jblocks->jb_writeseg) 3399 return; 3400 /* Iterate through available jsegs processing their entries. */ 3401 do { 3402 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3403 jsegn = TAILQ_NEXT(jseg, js_next); 3404 complete_jseg(jseg); 3405 jseg = jsegn; 3406 } while (jseg && jseg->js_state & DEPCOMPLETE); 3407 jblocks->jb_writeseg = jseg; 3408 /* 3409 * Attempt to free jsegs now that oldestwrseq may have advanced. 3410 */ 3411 free_jsegs(jblocks); 3412 } 3413 3414 static inline struct jsegdep * 3415 inoref_jseg(inoref) 3416 struct inoref *inoref; 3417 { 3418 struct jsegdep *jsegdep; 3419 3420 jsegdep = inoref->if_jsegdep; 3421 inoref->if_jsegdep = NULL; 3422 3423 return (jsegdep); 3424 } 3425 3426 /* 3427 * Called once a jremref has made it to stable store. The jremref is marked 3428 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3429 * for the jremref to complete will be awoken by free_jremref. 3430 */ 3431 static void 3432 handle_written_jremref(jremref) 3433 struct jremref *jremref; 3434 { 3435 struct inodedep *inodedep; 3436 struct jsegdep *jsegdep; 3437 struct dirrem *dirrem; 3438 3439 /* Grab the jsegdep. */ 3440 jsegdep = inoref_jseg(&jremref->jr_ref); 3441 /* 3442 * Remove us from the inoref list. 3443 */ 3444 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3445 0, &inodedep) == 0) 3446 panic("handle_written_jremref: Lost inodedep"); 3447 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3448 /* 3449 * Complete the dirrem. 3450 */ 3451 dirrem = jremref->jr_dirrem; 3452 jremref->jr_dirrem = NULL; 3453 LIST_REMOVE(jremref, jr_deps); 3454 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3455 jwork_insert(&dirrem->dm_jwork, jsegdep); 3456 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3457 (dirrem->dm_state & COMPLETE) != 0) 3458 add_to_worklist(&dirrem->dm_list, 0); 3459 free_jremref(jremref); 3460 } 3461 3462 /* 3463 * Called once a jaddref has made it to stable store. The dependency is 3464 * marked complete and any dependent structures are added to the inode 3465 * bufwait list to be completed as soon as it is written. If a bitmap write 3466 * depends on this entry we move the inode into the inodedephd of the 3467 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3468 */ 3469 static void 3470 handle_written_jaddref(jaddref) 3471 struct jaddref *jaddref; 3472 { 3473 struct jsegdep *jsegdep; 3474 struct inodedep *inodedep; 3475 struct diradd *diradd; 3476 struct mkdir *mkdir; 3477 3478 /* Grab the jsegdep. */ 3479 jsegdep = inoref_jseg(&jaddref->ja_ref); 3480 mkdir = NULL; 3481 diradd = NULL; 3482 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3483 0, &inodedep) == 0) 3484 panic("handle_written_jaddref: Lost inodedep."); 3485 if (jaddref->ja_diradd == NULL) 3486 panic("handle_written_jaddref: No dependency"); 3487 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3488 diradd = jaddref->ja_diradd; 3489 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3490 } else if (jaddref->ja_state & MKDIR_PARENT) { 3491 mkdir = jaddref->ja_mkdir; 3492 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3493 } else if (jaddref->ja_state & MKDIR_BODY) 3494 mkdir = jaddref->ja_mkdir; 3495 else 3496 panic("handle_written_jaddref: Unknown dependency %p", 3497 jaddref->ja_diradd); 3498 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3499 /* 3500 * Remove us from the inode list. 3501 */ 3502 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3503 /* 3504 * The mkdir may be waiting on the jaddref to clear before freeing. 3505 */ 3506 if (mkdir) { 3507 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3508 ("handle_written_jaddref: Incorrect type for mkdir %s", 3509 TYPENAME(mkdir->md_list.wk_type))); 3510 mkdir->md_jaddref = NULL; 3511 diradd = mkdir->md_diradd; 3512 mkdir->md_state |= DEPCOMPLETE; 3513 complete_mkdir(mkdir); 3514 } 3515 jwork_insert(&diradd->da_jwork, jsegdep); 3516 if (jaddref->ja_state & NEWBLOCK) { 3517 inodedep->id_state |= ONDEPLIST; 3518 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3519 inodedep, id_deps); 3520 } 3521 free_jaddref(jaddref); 3522 } 3523 3524 /* 3525 * Called once a jnewblk journal is written. The allocdirect or allocindir 3526 * is placed in the bmsafemap to await notification of a written bitmap. If 3527 * the operation was canceled we add the segdep to the appropriate 3528 * dependency to free the journal space once the canceling operation 3529 * completes. 3530 */ 3531 static void 3532 handle_written_jnewblk(jnewblk) 3533 struct jnewblk *jnewblk; 3534 { 3535 struct bmsafemap *bmsafemap; 3536 struct freefrag *freefrag; 3537 struct freework *freework; 3538 struct jsegdep *jsegdep; 3539 struct newblk *newblk; 3540 3541 /* Grab the jsegdep. */ 3542 jsegdep = jnewblk->jn_jsegdep; 3543 jnewblk->jn_jsegdep = NULL; 3544 if (jnewblk->jn_dep == NULL) 3545 panic("handle_written_jnewblk: No dependency for the segdep."); 3546 switch (jnewblk->jn_dep->wk_type) { 3547 case D_NEWBLK: 3548 case D_ALLOCDIRECT: 3549 case D_ALLOCINDIR: 3550 /* 3551 * Add the written block to the bmsafemap so it can 3552 * be notified when the bitmap is on disk. 3553 */ 3554 newblk = WK_NEWBLK(jnewblk->jn_dep); 3555 newblk->nb_jnewblk = NULL; 3556 if ((newblk->nb_state & GOINGAWAY) == 0) { 3557 bmsafemap = newblk->nb_bmsafemap; 3558 newblk->nb_state |= ONDEPLIST; 3559 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3560 nb_deps); 3561 } 3562 jwork_insert(&newblk->nb_jwork, jsegdep); 3563 break; 3564 case D_FREEFRAG: 3565 /* 3566 * A newblock being removed by a freefrag when replaced by 3567 * frag extension. 3568 */ 3569 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3570 freefrag->ff_jdep = NULL; 3571 WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list); 3572 break; 3573 case D_FREEWORK: 3574 /* 3575 * A direct block was removed by truncate. 3576 */ 3577 freework = WK_FREEWORK(jnewblk->jn_dep); 3578 freework->fw_jnewblk = NULL; 3579 WORKLIST_INSERT(&freework->fw_freeblks->fb_jwork, 3580 &jsegdep->jd_list); 3581 break; 3582 default: 3583 panic("handle_written_jnewblk: Unknown type %d.", 3584 jnewblk->jn_dep->wk_type); 3585 } 3586 jnewblk->jn_dep = NULL; 3587 free_jnewblk(jnewblk); 3588 } 3589 3590 /* 3591 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3592 * an in-flight allocation that has not yet been committed. Divorce us 3593 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3594 * to the worklist. 3595 */ 3596 static void 3597 cancel_jfreefrag(jfreefrag) 3598 struct jfreefrag *jfreefrag; 3599 { 3600 struct freefrag *freefrag; 3601 3602 if (jfreefrag->fr_jsegdep) { 3603 free_jsegdep(jfreefrag->fr_jsegdep); 3604 jfreefrag->fr_jsegdep = NULL; 3605 } 3606 freefrag = jfreefrag->fr_freefrag; 3607 jfreefrag->fr_freefrag = NULL; 3608 free_jfreefrag(jfreefrag); 3609 freefrag->ff_state |= DEPCOMPLETE; 3610 } 3611 3612 /* 3613 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3614 */ 3615 static void 3616 free_jfreefrag(jfreefrag) 3617 struct jfreefrag *jfreefrag; 3618 { 3619 3620 if (jfreefrag->fr_state & INPROGRESS) 3621 WORKLIST_REMOVE(&jfreefrag->fr_list); 3622 else if (jfreefrag->fr_state & ONWORKLIST) 3623 remove_from_journal(&jfreefrag->fr_list); 3624 if (jfreefrag->fr_freefrag != NULL) 3625 panic("free_jfreefrag: Still attached to a freefrag."); 3626 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3627 } 3628 3629 /* 3630 * Called when the journal write for a jfreefrag completes. The parent 3631 * freefrag is added to the worklist if this completes its dependencies. 3632 */ 3633 static void 3634 handle_written_jfreefrag(jfreefrag) 3635 struct jfreefrag *jfreefrag; 3636 { 3637 struct jsegdep *jsegdep; 3638 struct freefrag *freefrag; 3639 3640 /* Grab the jsegdep. */ 3641 jsegdep = jfreefrag->fr_jsegdep; 3642 jfreefrag->fr_jsegdep = NULL; 3643 freefrag = jfreefrag->fr_freefrag; 3644 if (freefrag == NULL) 3645 panic("handle_written_jfreefrag: No freefrag."); 3646 freefrag->ff_state |= DEPCOMPLETE; 3647 freefrag->ff_jdep = NULL; 3648 jwork_insert(&freefrag->ff_jwork, jsegdep); 3649 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3650 add_to_worklist(&freefrag->ff_list, 0); 3651 jfreefrag->fr_freefrag = NULL; 3652 free_jfreefrag(jfreefrag); 3653 } 3654 3655 /* 3656 * Called when the journal write for a jfreeblk completes. The jfreeblk 3657 * is removed from the freeblks list of pending journal writes and the 3658 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3659 * have been reclaimed. 3660 */ 3661 static void 3662 handle_written_jblkdep(jblkdep) 3663 struct jblkdep *jblkdep; 3664 { 3665 struct freeblks *freeblks; 3666 struct jsegdep *jsegdep; 3667 3668 /* Grab the jsegdep. */ 3669 jsegdep = jblkdep->jb_jsegdep; 3670 jblkdep->jb_jsegdep = NULL; 3671 freeblks = jblkdep->jb_freeblks; 3672 LIST_REMOVE(jblkdep, jb_deps); 3673 WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list); 3674 /* 3675 * If the freeblks is all journaled, we can add it to the worklist. 3676 */ 3677 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3678 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3679 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3680 3681 free_jblkdep(jblkdep); 3682 } 3683 3684 static struct jsegdep * 3685 newjsegdep(struct worklist *wk) 3686 { 3687 struct jsegdep *jsegdep; 3688 3689 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3690 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3691 jsegdep->jd_seg = NULL; 3692 3693 return (jsegdep); 3694 } 3695 3696 static struct jmvref * 3697 newjmvref(dp, ino, oldoff, newoff) 3698 struct inode *dp; 3699 ino_t ino; 3700 off_t oldoff; 3701 off_t newoff; 3702 { 3703 struct jmvref *jmvref; 3704 3705 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3706 workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump)); 3707 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3708 jmvref->jm_parent = dp->i_number; 3709 jmvref->jm_ino = ino; 3710 jmvref->jm_oldoff = oldoff; 3711 jmvref->jm_newoff = newoff; 3712 3713 return (jmvref); 3714 } 3715 3716 /* 3717 * Allocate a new jremref that tracks the removal of ip from dp with the 3718 * directory entry offset of diroff. Mark the entry as ATTACHED and 3719 * DEPCOMPLETE as we have all the information required for the journal write 3720 * and the directory has already been removed from the buffer. The caller 3721 * is responsible for linking the jremref into the pagedep and adding it 3722 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 3723 * a DOTDOT addition so handle_workitem_remove() can properly assign 3724 * the jsegdep when we're done. 3725 */ 3726 static struct jremref * 3727 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 3728 off_t diroff, nlink_t nlink) 3729 { 3730 struct jremref *jremref; 3731 3732 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 3733 workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump)); 3734 jremref->jr_state = ATTACHED; 3735 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 3736 nlink, ip->i_mode); 3737 jremref->jr_dirrem = dirrem; 3738 3739 return (jremref); 3740 } 3741 3742 static inline void 3743 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 3744 nlink_t nlink, uint16_t mode) 3745 { 3746 3747 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 3748 inoref->if_diroff = diroff; 3749 inoref->if_ino = ino; 3750 inoref->if_parent = parent; 3751 inoref->if_nlink = nlink; 3752 inoref->if_mode = mode; 3753 } 3754 3755 /* 3756 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 3757 * directory offset may not be known until later. The caller is responsible 3758 * adding the entry to the journal when this information is available. nlink 3759 * should be the link count prior to the addition and mode is only required 3760 * to have the correct FMT. 3761 */ 3762 static struct jaddref * 3763 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 3764 uint16_t mode) 3765 { 3766 struct jaddref *jaddref; 3767 3768 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 3769 workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump)); 3770 jaddref->ja_state = ATTACHED; 3771 jaddref->ja_mkdir = NULL; 3772 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 3773 3774 return (jaddref); 3775 } 3776 3777 /* 3778 * Create a new free dependency for a freework. The caller is responsible 3779 * for adjusting the reference count when it has the lock held. The freedep 3780 * will track an outstanding bitmap write that will ultimately clear the 3781 * freework to continue. 3782 */ 3783 static struct freedep * 3784 newfreedep(struct freework *freework) 3785 { 3786 struct freedep *freedep; 3787 3788 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 3789 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 3790 freedep->fd_freework = freework; 3791 3792 return (freedep); 3793 } 3794 3795 /* 3796 * Free a freedep structure once the buffer it is linked to is written. If 3797 * this is the last reference to the freework schedule it for completion. 3798 */ 3799 static void 3800 free_freedep(freedep) 3801 struct freedep *freedep; 3802 { 3803 struct freework *freework; 3804 3805 freework = freedep->fd_freework; 3806 freework->fw_freeblks->fb_cgwait--; 3807 if (--freework->fw_ref == 0) 3808 freework_enqueue(freework); 3809 WORKITEM_FREE(freedep, D_FREEDEP); 3810 } 3811 3812 /* 3813 * Allocate a new freework structure that may be a level in an indirect 3814 * when parent is not NULL or a top level block when it is. The top level 3815 * freework structures are allocated without lk held and before the freeblks 3816 * is visible outside of softdep_setup_freeblocks(). 3817 */ 3818 static struct freework * 3819 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 3820 struct ufsmount *ump; 3821 struct freeblks *freeblks; 3822 struct freework *parent; 3823 ufs_lbn_t lbn; 3824 ufs2_daddr_t nb; 3825 int frags; 3826 int off; 3827 int journal; 3828 { 3829 struct freework *freework; 3830 3831 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 3832 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 3833 freework->fw_state = ATTACHED; 3834 freework->fw_jnewblk = NULL; 3835 freework->fw_freeblks = freeblks; 3836 freework->fw_parent = parent; 3837 freework->fw_lbn = lbn; 3838 freework->fw_blkno = nb; 3839 freework->fw_frags = frags; 3840 freework->fw_indir = NULL; 3841 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR) 3842 ? 0 : NINDIR(ump->um_fs) + 1; 3843 freework->fw_start = freework->fw_off = off; 3844 if (journal) 3845 newjfreeblk(freeblks, lbn, nb, frags); 3846 if (parent == NULL) { 3847 ACQUIRE_LOCK(&lk); 3848 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 3849 freeblks->fb_ref++; 3850 FREE_LOCK(&lk); 3851 } 3852 3853 return (freework); 3854 } 3855 3856 /* 3857 * Eliminate a jfreeblk for a block that does not need journaling. 3858 */ 3859 static void 3860 cancel_jfreeblk(freeblks, blkno) 3861 struct freeblks *freeblks; 3862 ufs2_daddr_t blkno; 3863 { 3864 struct jfreeblk *jfreeblk; 3865 struct jblkdep *jblkdep; 3866 3867 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 3868 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 3869 continue; 3870 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 3871 if (jfreeblk->jf_blkno == blkno) 3872 break; 3873 } 3874 if (jblkdep == NULL) 3875 return; 3876 free_jsegdep(jblkdep->jb_jsegdep); 3877 LIST_REMOVE(jblkdep, jb_deps); 3878 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 3879 } 3880 3881 /* 3882 * Allocate a new jfreeblk to journal top level block pointer when truncating 3883 * a file. The caller must add this to the worklist when lk is held. 3884 */ 3885 static struct jfreeblk * 3886 newjfreeblk(freeblks, lbn, blkno, frags) 3887 struct freeblks *freeblks; 3888 ufs_lbn_t lbn; 3889 ufs2_daddr_t blkno; 3890 int frags; 3891 { 3892 struct jfreeblk *jfreeblk; 3893 3894 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 3895 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 3896 freeblks->fb_list.wk_mp); 3897 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 3898 jfreeblk->jf_dep.jb_freeblks = freeblks; 3899 jfreeblk->jf_ino = freeblks->fb_inum; 3900 jfreeblk->jf_lbn = lbn; 3901 jfreeblk->jf_blkno = blkno; 3902 jfreeblk->jf_frags = frags; 3903 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 3904 3905 return (jfreeblk); 3906 } 3907 3908 /* 3909 * Allocate a new jtrunc to track a partial truncation. 3910 */ 3911 static struct jtrunc * 3912 newjtrunc(freeblks, size, extsize) 3913 struct freeblks *freeblks; 3914 off_t size; 3915 int extsize; 3916 { 3917 struct jtrunc *jtrunc; 3918 3919 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 3920 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 3921 freeblks->fb_list.wk_mp); 3922 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 3923 jtrunc->jt_dep.jb_freeblks = freeblks; 3924 jtrunc->jt_ino = freeblks->fb_inum; 3925 jtrunc->jt_size = size; 3926 jtrunc->jt_extsize = extsize; 3927 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 3928 3929 return (jtrunc); 3930 } 3931 3932 /* 3933 * If we're canceling a new bitmap we have to search for another ref 3934 * to move into the bmsafemap dep. This might be better expressed 3935 * with another structure. 3936 */ 3937 static void 3938 move_newblock_dep(jaddref, inodedep) 3939 struct jaddref *jaddref; 3940 struct inodedep *inodedep; 3941 { 3942 struct inoref *inoref; 3943 struct jaddref *jaddrefn; 3944 3945 jaddrefn = NULL; 3946 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 3947 inoref = TAILQ_NEXT(inoref, if_deps)) { 3948 if ((jaddref->ja_state & NEWBLOCK) && 3949 inoref->if_list.wk_type == D_JADDREF) { 3950 jaddrefn = (struct jaddref *)inoref; 3951 break; 3952 } 3953 } 3954 if (jaddrefn == NULL) 3955 return; 3956 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 3957 jaddrefn->ja_state |= jaddref->ja_state & 3958 (ATTACHED | UNDONE | NEWBLOCK); 3959 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 3960 jaddref->ja_state |= ATTACHED; 3961 LIST_REMOVE(jaddref, ja_bmdeps); 3962 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 3963 ja_bmdeps); 3964 } 3965 3966 /* 3967 * Cancel a jaddref either before it has been written or while it is being 3968 * written. This happens when a link is removed before the add reaches 3969 * the disk. The jaddref dependency is kept linked into the bmsafemap 3970 * and inode to prevent the link count or bitmap from reaching the disk 3971 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 3972 * required. 3973 * 3974 * Returns 1 if the canceled addref requires journaling of the remove and 3975 * 0 otherwise. 3976 */ 3977 static int 3978 cancel_jaddref(jaddref, inodedep, wkhd) 3979 struct jaddref *jaddref; 3980 struct inodedep *inodedep; 3981 struct workhead *wkhd; 3982 { 3983 struct inoref *inoref; 3984 struct jsegdep *jsegdep; 3985 int needsj; 3986 3987 KASSERT((jaddref->ja_state & COMPLETE) == 0, 3988 ("cancel_jaddref: Canceling complete jaddref")); 3989 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 3990 needsj = 1; 3991 else 3992 needsj = 0; 3993 if (inodedep == NULL) 3994 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3995 0, &inodedep) == 0) 3996 panic("cancel_jaddref: Lost inodedep"); 3997 /* 3998 * We must adjust the nlink of any reference operation that follows 3999 * us so that it is consistent with the in-memory reference. This 4000 * ensures that inode nlink rollbacks always have the correct link. 4001 */ 4002 if (needsj == 0) { 4003 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4004 inoref = TAILQ_NEXT(inoref, if_deps)) { 4005 if (inoref->if_state & GOINGAWAY) 4006 break; 4007 inoref->if_nlink--; 4008 } 4009 } 4010 jsegdep = inoref_jseg(&jaddref->ja_ref); 4011 if (jaddref->ja_state & NEWBLOCK) 4012 move_newblock_dep(jaddref, inodedep); 4013 wake_worklist(&jaddref->ja_list); 4014 jaddref->ja_mkdir = NULL; 4015 if (jaddref->ja_state & INPROGRESS) { 4016 jaddref->ja_state &= ~INPROGRESS; 4017 WORKLIST_REMOVE(&jaddref->ja_list); 4018 jwork_insert(wkhd, jsegdep); 4019 } else { 4020 free_jsegdep(jsegdep); 4021 if (jaddref->ja_state & DEPCOMPLETE) 4022 remove_from_journal(&jaddref->ja_list); 4023 } 4024 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4025 /* 4026 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4027 * can arrange for them to be freed with the bitmap. Otherwise we 4028 * no longer need this addref attached to the inoreflst and it 4029 * will incorrectly adjust nlink if we leave it. 4030 */ 4031 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4032 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4033 if_deps); 4034 jaddref->ja_state |= COMPLETE; 4035 free_jaddref(jaddref); 4036 return (needsj); 4037 } 4038 /* 4039 * Leave the head of the list for jsegdeps for fast merging. 4040 */ 4041 if (LIST_FIRST(wkhd) != NULL) { 4042 jaddref->ja_state |= ONWORKLIST; 4043 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4044 } else 4045 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4046 4047 return (needsj); 4048 } 4049 4050 /* 4051 * Attempt to free a jaddref structure when some work completes. This 4052 * should only succeed once the entry is written and all dependencies have 4053 * been notified. 4054 */ 4055 static void 4056 free_jaddref(jaddref) 4057 struct jaddref *jaddref; 4058 { 4059 4060 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4061 return; 4062 if (jaddref->ja_ref.if_jsegdep) 4063 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4064 jaddref, jaddref->ja_state); 4065 if (jaddref->ja_state & NEWBLOCK) 4066 LIST_REMOVE(jaddref, ja_bmdeps); 4067 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4068 panic("free_jaddref: Bad state %p(0x%X)", 4069 jaddref, jaddref->ja_state); 4070 if (jaddref->ja_mkdir != NULL) 4071 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4072 WORKITEM_FREE(jaddref, D_JADDREF); 4073 } 4074 4075 /* 4076 * Free a jremref structure once it has been written or discarded. 4077 */ 4078 static void 4079 free_jremref(jremref) 4080 struct jremref *jremref; 4081 { 4082 4083 if (jremref->jr_ref.if_jsegdep) 4084 free_jsegdep(jremref->jr_ref.if_jsegdep); 4085 if (jremref->jr_state & INPROGRESS) 4086 panic("free_jremref: IO still pending"); 4087 WORKITEM_FREE(jremref, D_JREMREF); 4088 } 4089 4090 /* 4091 * Free a jnewblk structure. 4092 */ 4093 static void 4094 free_jnewblk(jnewblk) 4095 struct jnewblk *jnewblk; 4096 { 4097 4098 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4099 return; 4100 LIST_REMOVE(jnewblk, jn_deps); 4101 if (jnewblk->jn_dep != NULL) 4102 panic("free_jnewblk: Dependency still attached."); 4103 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4104 } 4105 4106 /* 4107 * Cancel a jnewblk which has been been made redundant by frag extension. 4108 */ 4109 static void 4110 cancel_jnewblk(jnewblk, wkhd) 4111 struct jnewblk *jnewblk; 4112 struct workhead *wkhd; 4113 { 4114 struct jsegdep *jsegdep; 4115 4116 jsegdep = jnewblk->jn_jsegdep; 4117 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4118 panic("cancel_jnewblk: Invalid state"); 4119 jnewblk->jn_jsegdep = NULL; 4120 jnewblk->jn_dep = NULL; 4121 jnewblk->jn_state |= GOINGAWAY; 4122 if (jnewblk->jn_state & INPROGRESS) { 4123 jnewblk->jn_state &= ~INPROGRESS; 4124 WORKLIST_REMOVE(&jnewblk->jn_list); 4125 jwork_insert(wkhd, jsegdep); 4126 } else { 4127 free_jsegdep(jsegdep); 4128 remove_from_journal(&jnewblk->jn_list); 4129 } 4130 wake_worklist(&jnewblk->jn_list); 4131 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4132 } 4133 4134 static void 4135 free_jblkdep(jblkdep) 4136 struct jblkdep *jblkdep; 4137 { 4138 4139 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4140 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4141 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4142 WORKITEM_FREE(jblkdep, D_JTRUNC); 4143 else 4144 panic("free_jblkdep: Unexpected type %s", 4145 TYPENAME(jblkdep->jb_list.wk_type)); 4146 } 4147 4148 /* 4149 * Free a single jseg once it is no longer referenced in memory or on 4150 * disk. Reclaim journal blocks and dependencies waiting for the segment 4151 * to disappear. 4152 */ 4153 static void 4154 free_jseg(jseg, jblocks) 4155 struct jseg *jseg; 4156 struct jblocks *jblocks; 4157 { 4158 struct freework *freework; 4159 4160 /* 4161 * Free freework structures that were lingering to indicate freed 4162 * indirect blocks that forced journal write ordering on reallocate. 4163 */ 4164 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4165 indirblk_remove(freework); 4166 if (jblocks->jb_oldestseg == jseg) 4167 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4168 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4169 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4170 KASSERT(LIST_EMPTY(&jseg->js_entries), 4171 ("free_jseg: Freed jseg has valid entries.")); 4172 WORKITEM_FREE(jseg, D_JSEG); 4173 } 4174 4175 /* 4176 * Free all jsegs that meet the criteria for being reclaimed and update 4177 * oldestseg. 4178 */ 4179 static void 4180 free_jsegs(jblocks) 4181 struct jblocks *jblocks; 4182 { 4183 struct jseg *jseg; 4184 4185 /* 4186 * Free only those jsegs which have none allocated before them to 4187 * preserve the journal space ordering. 4188 */ 4189 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4190 /* 4191 * Only reclaim space when nothing depends on this journal 4192 * set and another set has written that it is no longer 4193 * valid. 4194 */ 4195 if (jseg->js_refs != 0) { 4196 jblocks->jb_oldestseg = jseg; 4197 return; 4198 } 4199 if (!LIST_EMPTY(&jseg->js_indirs) && 4200 jseg->js_seq >= jblocks->jb_oldestwrseq) 4201 break; 4202 free_jseg(jseg, jblocks); 4203 } 4204 /* 4205 * If we exited the loop above we still must discover the 4206 * oldest valid segment. 4207 */ 4208 if (jseg) 4209 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4210 jseg = TAILQ_NEXT(jseg, js_next)) 4211 if (jseg->js_refs != 0) 4212 break; 4213 jblocks->jb_oldestseg = jseg; 4214 /* 4215 * The journal has no valid records but some jsegs may still be 4216 * waiting on oldestwrseq to advance. We force a small record 4217 * out to permit these lingering records to be reclaimed. 4218 */ 4219 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4220 jblocks->jb_needseg = 1; 4221 } 4222 4223 /* 4224 * Release one reference to a jseg and free it if the count reaches 0. This 4225 * should eventually reclaim journal space as well. 4226 */ 4227 static void 4228 rele_jseg(jseg) 4229 struct jseg *jseg; 4230 { 4231 4232 KASSERT(jseg->js_refs > 0, 4233 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4234 if (--jseg->js_refs != 0) 4235 return; 4236 free_jsegs(jseg->js_jblocks); 4237 } 4238 4239 /* 4240 * Release a jsegdep and decrement the jseg count. 4241 */ 4242 static void 4243 free_jsegdep(jsegdep) 4244 struct jsegdep *jsegdep; 4245 { 4246 4247 if (jsegdep->jd_seg) 4248 rele_jseg(jsegdep->jd_seg); 4249 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4250 } 4251 4252 /* 4253 * Wait for a journal item to make it to disk. Initiate journal processing 4254 * if required. 4255 */ 4256 static int 4257 jwait(wk, waitfor) 4258 struct worklist *wk; 4259 int waitfor; 4260 { 4261 4262 /* 4263 * Blocking journal waits cause slow synchronous behavior. Record 4264 * stats on the frequency of these blocking operations. 4265 */ 4266 if (waitfor == MNT_WAIT) { 4267 stat_journal_wait++; 4268 switch (wk->wk_type) { 4269 case D_JREMREF: 4270 case D_JMVREF: 4271 stat_jwait_filepage++; 4272 break; 4273 case D_JTRUNC: 4274 case D_JFREEBLK: 4275 stat_jwait_freeblks++; 4276 break; 4277 case D_JNEWBLK: 4278 stat_jwait_newblk++; 4279 break; 4280 case D_JADDREF: 4281 stat_jwait_inode++; 4282 break; 4283 default: 4284 break; 4285 } 4286 } 4287 /* 4288 * If IO has not started we process the journal. We can't mark the 4289 * worklist item as IOWAITING because we drop the lock while 4290 * processing the journal and the worklist entry may be freed after 4291 * this point. The caller may call back in and re-issue the request. 4292 */ 4293 if ((wk->wk_state & INPROGRESS) == 0) { 4294 softdep_process_journal(wk->wk_mp, wk, waitfor); 4295 if (waitfor != MNT_WAIT) 4296 return (EBUSY); 4297 return (0); 4298 } 4299 if (waitfor != MNT_WAIT) 4300 return (EBUSY); 4301 wait_worklist(wk, "jwait"); 4302 return (0); 4303 } 4304 4305 /* 4306 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4307 * appropriate. This is a convenience function to reduce duplicate code 4308 * for the setup and revert functions below. 4309 */ 4310 static struct inodedep * 4311 inodedep_lookup_ip(ip) 4312 struct inode *ip; 4313 { 4314 struct inodedep *inodedep; 4315 int dflags; 4316 4317 KASSERT(ip->i_nlink >= ip->i_effnlink, 4318 ("inodedep_lookup_ip: bad delta")); 4319 dflags = DEPALLOC; 4320 if (IS_SNAPSHOT(ip)) 4321 dflags |= NODELAY; 4322 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, 4323 &inodedep); 4324 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4325 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4326 4327 return (inodedep); 4328 } 4329 4330 /* 4331 * Called prior to creating a new inode and linking it to a directory. The 4332 * jaddref structure must already be allocated by softdep_setup_inomapdep 4333 * and it is discovered here so we can initialize the mode and update 4334 * nlinkdelta. 4335 */ 4336 void 4337 softdep_setup_create(dp, ip) 4338 struct inode *dp; 4339 struct inode *ip; 4340 { 4341 struct inodedep *inodedep; 4342 struct jaddref *jaddref; 4343 struct vnode *dvp; 4344 4345 KASSERT(ip->i_nlink == 1, 4346 ("softdep_setup_create: Invalid link count.")); 4347 dvp = ITOV(dp); 4348 ACQUIRE_LOCK(&lk); 4349 inodedep = inodedep_lookup_ip(ip); 4350 if (DOINGSUJ(dvp)) { 4351 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4352 inoreflst); 4353 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4354 ("softdep_setup_create: No addref structure present.")); 4355 } 4356 softdep_prelink(dvp, NULL); 4357 FREE_LOCK(&lk); 4358 } 4359 4360 /* 4361 * Create a jaddref structure to track the addition of a DOTDOT link when 4362 * we are reparenting an inode as part of a rename. This jaddref will be 4363 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4364 * non-journaling softdep. 4365 */ 4366 void 4367 softdep_setup_dotdot_link(dp, ip) 4368 struct inode *dp; 4369 struct inode *ip; 4370 { 4371 struct inodedep *inodedep; 4372 struct jaddref *jaddref; 4373 struct vnode *dvp; 4374 struct vnode *vp; 4375 4376 dvp = ITOV(dp); 4377 vp = ITOV(ip); 4378 jaddref = NULL; 4379 /* 4380 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4381 * is used as a normal link would be. 4382 */ 4383 if (DOINGSUJ(dvp)) 4384 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4385 dp->i_effnlink - 1, dp->i_mode); 4386 ACQUIRE_LOCK(&lk); 4387 inodedep = inodedep_lookup_ip(dp); 4388 if (jaddref) 4389 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4390 if_deps); 4391 softdep_prelink(dvp, ITOV(ip)); 4392 FREE_LOCK(&lk); 4393 } 4394 4395 /* 4396 * Create a jaddref structure to track a new link to an inode. The directory 4397 * offset is not known until softdep_setup_directory_add or 4398 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4399 * softdep. 4400 */ 4401 void 4402 softdep_setup_link(dp, ip) 4403 struct inode *dp; 4404 struct inode *ip; 4405 { 4406 struct inodedep *inodedep; 4407 struct jaddref *jaddref; 4408 struct vnode *dvp; 4409 4410 dvp = ITOV(dp); 4411 jaddref = NULL; 4412 if (DOINGSUJ(dvp)) 4413 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4414 ip->i_mode); 4415 ACQUIRE_LOCK(&lk); 4416 inodedep = inodedep_lookup_ip(ip); 4417 if (jaddref) 4418 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4419 if_deps); 4420 softdep_prelink(dvp, ITOV(ip)); 4421 FREE_LOCK(&lk); 4422 } 4423 4424 /* 4425 * Called to create the jaddref structures to track . and .. references as 4426 * well as lookup and further initialize the incomplete jaddref created 4427 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4428 * nlinkdelta for non-journaling softdep. 4429 */ 4430 void 4431 softdep_setup_mkdir(dp, ip) 4432 struct inode *dp; 4433 struct inode *ip; 4434 { 4435 struct inodedep *inodedep; 4436 struct jaddref *dotdotaddref; 4437 struct jaddref *dotaddref; 4438 struct jaddref *jaddref; 4439 struct vnode *dvp; 4440 4441 dvp = ITOV(dp); 4442 dotaddref = dotdotaddref = NULL; 4443 if (DOINGSUJ(dvp)) { 4444 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4445 ip->i_mode); 4446 dotaddref->ja_state |= MKDIR_BODY; 4447 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4448 dp->i_effnlink - 1, dp->i_mode); 4449 dotdotaddref->ja_state |= MKDIR_PARENT; 4450 } 4451 ACQUIRE_LOCK(&lk); 4452 inodedep = inodedep_lookup_ip(ip); 4453 if (DOINGSUJ(dvp)) { 4454 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4455 inoreflst); 4456 KASSERT(jaddref != NULL, 4457 ("softdep_setup_mkdir: No addref structure present.")); 4458 KASSERT(jaddref->ja_parent == dp->i_number, 4459 ("softdep_setup_mkdir: bad parent %d", 4460 jaddref->ja_parent)); 4461 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4462 if_deps); 4463 } 4464 inodedep = inodedep_lookup_ip(dp); 4465 if (DOINGSUJ(dvp)) 4466 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4467 &dotdotaddref->ja_ref, if_deps); 4468 softdep_prelink(ITOV(dp), NULL); 4469 FREE_LOCK(&lk); 4470 } 4471 4472 /* 4473 * Called to track nlinkdelta of the inode and parent directories prior to 4474 * unlinking a directory. 4475 */ 4476 void 4477 softdep_setup_rmdir(dp, ip) 4478 struct inode *dp; 4479 struct inode *ip; 4480 { 4481 struct vnode *dvp; 4482 4483 dvp = ITOV(dp); 4484 ACQUIRE_LOCK(&lk); 4485 (void) inodedep_lookup_ip(ip); 4486 (void) inodedep_lookup_ip(dp); 4487 softdep_prelink(dvp, ITOV(ip)); 4488 FREE_LOCK(&lk); 4489 } 4490 4491 /* 4492 * Called to track nlinkdelta of the inode and parent directories prior to 4493 * unlink. 4494 */ 4495 void 4496 softdep_setup_unlink(dp, ip) 4497 struct inode *dp; 4498 struct inode *ip; 4499 { 4500 struct vnode *dvp; 4501 4502 dvp = ITOV(dp); 4503 ACQUIRE_LOCK(&lk); 4504 (void) inodedep_lookup_ip(ip); 4505 (void) inodedep_lookup_ip(dp); 4506 softdep_prelink(dvp, ITOV(ip)); 4507 FREE_LOCK(&lk); 4508 } 4509 4510 /* 4511 * Called to release the journal structures created by a failed non-directory 4512 * creation. Adjusts nlinkdelta for non-journaling softdep. 4513 */ 4514 void 4515 softdep_revert_create(dp, ip) 4516 struct inode *dp; 4517 struct inode *ip; 4518 { 4519 struct inodedep *inodedep; 4520 struct jaddref *jaddref; 4521 struct vnode *dvp; 4522 4523 dvp = ITOV(dp); 4524 ACQUIRE_LOCK(&lk); 4525 inodedep = inodedep_lookup_ip(ip); 4526 if (DOINGSUJ(dvp)) { 4527 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4528 inoreflst); 4529 KASSERT(jaddref->ja_parent == dp->i_number, 4530 ("softdep_revert_create: addref parent mismatch")); 4531 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4532 } 4533 FREE_LOCK(&lk); 4534 } 4535 4536 /* 4537 * Called to release the journal structures created by a failed dotdot link 4538 * creation. Adjusts nlinkdelta for non-journaling softdep. 4539 */ 4540 void 4541 softdep_revert_dotdot_link(dp, ip) 4542 struct inode *dp; 4543 struct inode *ip; 4544 { 4545 struct inodedep *inodedep; 4546 struct jaddref *jaddref; 4547 struct vnode *dvp; 4548 4549 dvp = ITOV(dp); 4550 ACQUIRE_LOCK(&lk); 4551 inodedep = inodedep_lookup_ip(dp); 4552 if (DOINGSUJ(dvp)) { 4553 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4554 inoreflst); 4555 KASSERT(jaddref->ja_parent == ip->i_number, 4556 ("softdep_revert_dotdot_link: addref parent mismatch")); 4557 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4558 } 4559 FREE_LOCK(&lk); 4560 } 4561 4562 /* 4563 * Called to release the journal structures created by a failed link 4564 * addition. Adjusts nlinkdelta for non-journaling softdep. 4565 */ 4566 void 4567 softdep_revert_link(dp, ip) 4568 struct inode *dp; 4569 struct inode *ip; 4570 { 4571 struct inodedep *inodedep; 4572 struct jaddref *jaddref; 4573 struct vnode *dvp; 4574 4575 dvp = ITOV(dp); 4576 ACQUIRE_LOCK(&lk); 4577 inodedep = inodedep_lookup_ip(ip); 4578 if (DOINGSUJ(dvp)) { 4579 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4580 inoreflst); 4581 KASSERT(jaddref->ja_parent == dp->i_number, 4582 ("softdep_revert_link: addref parent mismatch")); 4583 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4584 } 4585 FREE_LOCK(&lk); 4586 } 4587 4588 /* 4589 * Called to release the journal structures created by a failed mkdir 4590 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4591 */ 4592 void 4593 softdep_revert_mkdir(dp, ip) 4594 struct inode *dp; 4595 struct inode *ip; 4596 { 4597 struct inodedep *inodedep; 4598 struct jaddref *jaddref; 4599 struct jaddref *dotaddref; 4600 struct vnode *dvp; 4601 4602 dvp = ITOV(dp); 4603 4604 ACQUIRE_LOCK(&lk); 4605 inodedep = inodedep_lookup_ip(dp); 4606 if (DOINGSUJ(dvp)) { 4607 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4608 inoreflst); 4609 KASSERT(jaddref->ja_parent == ip->i_number, 4610 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4611 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4612 } 4613 inodedep = inodedep_lookup_ip(ip); 4614 if (DOINGSUJ(dvp)) { 4615 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4616 inoreflst); 4617 KASSERT(jaddref->ja_parent == dp->i_number, 4618 ("softdep_revert_mkdir: addref parent mismatch")); 4619 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4620 inoreflst, if_deps); 4621 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4622 KASSERT(dotaddref->ja_parent == ip->i_number, 4623 ("softdep_revert_mkdir: dot addref parent mismatch")); 4624 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4625 } 4626 FREE_LOCK(&lk); 4627 } 4628 4629 /* 4630 * Called to correct nlinkdelta after a failed rmdir. 4631 */ 4632 void 4633 softdep_revert_rmdir(dp, ip) 4634 struct inode *dp; 4635 struct inode *ip; 4636 { 4637 4638 ACQUIRE_LOCK(&lk); 4639 (void) inodedep_lookup_ip(ip); 4640 (void) inodedep_lookup_ip(dp); 4641 FREE_LOCK(&lk); 4642 } 4643 4644 /* 4645 * Protecting the freemaps (or bitmaps). 4646 * 4647 * To eliminate the need to execute fsck before mounting a filesystem 4648 * after a power failure, one must (conservatively) guarantee that the 4649 * on-disk copy of the bitmaps never indicate that a live inode or block is 4650 * free. So, when a block or inode is allocated, the bitmap should be 4651 * updated (on disk) before any new pointers. When a block or inode is 4652 * freed, the bitmap should not be updated until all pointers have been 4653 * reset. The latter dependency is handled by the delayed de-allocation 4654 * approach described below for block and inode de-allocation. The former 4655 * dependency is handled by calling the following procedure when a block or 4656 * inode is allocated. When an inode is allocated an "inodedep" is created 4657 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4658 * Each "inodedep" is also inserted into the hash indexing structure so 4659 * that any additional link additions can be made dependent on the inode 4660 * allocation. 4661 * 4662 * The ufs filesystem maintains a number of free block counts (e.g., per 4663 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4664 * in addition to the bitmaps. These counts are used to improve efficiency 4665 * during allocation and therefore must be consistent with the bitmaps. 4666 * There is no convenient way to guarantee post-crash consistency of these 4667 * counts with simple update ordering, for two main reasons: (1) The counts 4668 * and bitmaps for a single cylinder group block are not in the same disk 4669 * sector. If a disk write is interrupted (e.g., by power failure), one may 4670 * be written and the other not. (2) Some of the counts are located in the 4671 * superblock rather than the cylinder group block. So, we focus our soft 4672 * updates implementation on protecting the bitmaps. When mounting a 4673 * filesystem, we recompute the auxiliary counts from the bitmaps. 4674 */ 4675 4676 /* 4677 * Called just after updating the cylinder group block to allocate an inode. 4678 */ 4679 void 4680 softdep_setup_inomapdep(bp, ip, newinum, mode) 4681 struct buf *bp; /* buffer for cylgroup block with inode map */ 4682 struct inode *ip; /* inode related to allocation */ 4683 ino_t newinum; /* new inode number being allocated */ 4684 int mode; 4685 { 4686 struct inodedep *inodedep; 4687 struct bmsafemap *bmsafemap; 4688 struct jaddref *jaddref; 4689 struct mount *mp; 4690 struct fs *fs; 4691 4692 mp = UFSTOVFS(ip->i_ump); 4693 fs = ip->i_ump->um_fs; 4694 jaddref = NULL; 4695 4696 /* 4697 * Allocate the journal reference add structure so that the bitmap 4698 * can be dependent on it. 4699 */ 4700 if (MOUNTEDSUJ(mp)) { 4701 jaddref = newjaddref(ip, newinum, 0, 0, mode); 4702 jaddref->ja_state |= NEWBLOCK; 4703 } 4704 4705 /* 4706 * Create a dependency for the newly allocated inode. 4707 * Panic if it already exists as something is seriously wrong. 4708 * Otherwise add it to the dependency list for the buffer holding 4709 * the cylinder group map from which it was allocated. 4710 */ 4711 ACQUIRE_LOCK(&lk); 4712 if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep))) 4713 panic("softdep_setup_inomapdep: dependency %p for new" 4714 "inode already exists", inodedep); 4715 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum)); 4716 if (jaddref) { 4717 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 4718 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4719 if_deps); 4720 } else { 4721 inodedep->id_state |= ONDEPLIST; 4722 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 4723 } 4724 inodedep->id_bmsafemap = bmsafemap; 4725 inodedep->id_state &= ~DEPCOMPLETE; 4726 FREE_LOCK(&lk); 4727 } 4728 4729 /* 4730 * Called just after updating the cylinder group block to 4731 * allocate block or fragment. 4732 */ 4733 void 4734 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 4735 struct buf *bp; /* buffer for cylgroup block with block map */ 4736 struct mount *mp; /* filesystem doing allocation */ 4737 ufs2_daddr_t newblkno; /* number of newly allocated block */ 4738 int frags; /* Number of fragments. */ 4739 int oldfrags; /* Previous number of fragments for extend. */ 4740 { 4741 struct newblk *newblk; 4742 struct bmsafemap *bmsafemap; 4743 struct jnewblk *jnewblk; 4744 struct fs *fs; 4745 4746 fs = VFSTOUFS(mp)->um_fs; 4747 jnewblk = NULL; 4748 /* 4749 * Create a dependency for the newly allocated block. 4750 * Add it to the dependency list for the buffer holding 4751 * the cylinder group map from which it was allocated. 4752 */ 4753 if (MOUNTEDSUJ(mp)) { 4754 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 4755 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 4756 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 4757 jnewblk->jn_state = ATTACHED; 4758 jnewblk->jn_blkno = newblkno; 4759 jnewblk->jn_frags = frags; 4760 jnewblk->jn_oldfrags = oldfrags; 4761 #ifdef SUJ_DEBUG 4762 { 4763 struct cg *cgp; 4764 uint8_t *blksfree; 4765 long bno; 4766 int i; 4767 4768 cgp = (struct cg *)bp->b_data; 4769 blksfree = cg_blksfree(cgp); 4770 bno = dtogd(fs, jnewblk->jn_blkno); 4771 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 4772 i++) { 4773 if (isset(blksfree, bno + i)) 4774 panic("softdep_setup_blkmapdep: " 4775 "free fragment %d from %d-%d " 4776 "state 0x%X dep %p", i, 4777 jnewblk->jn_oldfrags, 4778 jnewblk->jn_frags, 4779 jnewblk->jn_state, 4780 jnewblk->jn_dep); 4781 } 4782 } 4783 #endif 4784 } 4785 ACQUIRE_LOCK(&lk); 4786 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 4787 panic("softdep_setup_blkmapdep: found block"); 4788 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 4789 dtog(fs, newblkno)); 4790 if (jnewblk) { 4791 jnewblk->jn_dep = (struct worklist *)newblk; 4792 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 4793 } else { 4794 newblk->nb_state |= ONDEPLIST; 4795 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 4796 } 4797 newblk->nb_bmsafemap = bmsafemap; 4798 newblk->nb_jnewblk = jnewblk; 4799 FREE_LOCK(&lk); 4800 } 4801 4802 #define BMSAFEMAP_HASH(fs, cg) \ 4803 (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash]) 4804 4805 static int 4806 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp) 4807 struct bmsafemap_hashhead *bmsafemaphd; 4808 struct mount *mp; 4809 int cg; 4810 struct bmsafemap **bmsafemapp; 4811 { 4812 struct bmsafemap *bmsafemap; 4813 4814 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 4815 if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg) 4816 break; 4817 if (bmsafemap) { 4818 *bmsafemapp = bmsafemap; 4819 return (1); 4820 } 4821 *bmsafemapp = NULL; 4822 4823 return (0); 4824 } 4825 4826 /* 4827 * Find the bmsafemap associated with a cylinder group buffer. 4828 * If none exists, create one. The buffer must be locked when 4829 * this routine is called and this routine must be called with 4830 * splbio interrupts blocked. 4831 */ 4832 static struct bmsafemap * 4833 bmsafemap_lookup(mp, bp, cg) 4834 struct mount *mp; 4835 struct buf *bp; 4836 int cg; 4837 { 4838 struct bmsafemap_hashhead *bmsafemaphd; 4839 struct bmsafemap *bmsafemap, *collision; 4840 struct worklist *wk; 4841 struct fs *fs; 4842 4843 mtx_assert(&lk, MA_OWNED); 4844 if (bp) 4845 LIST_FOREACH(wk, &bp->b_dep, wk_list) 4846 if (wk->wk_type == D_BMSAFEMAP) 4847 return (WK_BMSAFEMAP(wk)); 4848 fs = VFSTOUFS(mp)->um_fs; 4849 bmsafemaphd = BMSAFEMAP_HASH(fs, cg); 4850 if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) 4851 return (bmsafemap); 4852 FREE_LOCK(&lk); 4853 bmsafemap = malloc(sizeof(struct bmsafemap), 4854 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 4855 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 4856 bmsafemap->sm_buf = bp; 4857 LIST_INIT(&bmsafemap->sm_inodedephd); 4858 LIST_INIT(&bmsafemap->sm_inodedepwr); 4859 LIST_INIT(&bmsafemap->sm_newblkhd); 4860 LIST_INIT(&bmsafemap->sm_newblkwr); 4861 LIST_INIT(&bmsafemap->sm_jaddrefhd); 4862 LIST_INIT(&bmsafemap->sm_jnewblkhd); 4863 LIST_INIT(&bmsafemap->sm_freehd); 4864 LIST_INIT(&bmsafemap->sm_freewr); 4865 ACQUIRE_LOCK(&lk); 4866 if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) { 4867 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4868 return (collision); 4869 } 4870 bmsafemap->sm_cg = cg; 4871 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 4872 LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next); 4873 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 4874 return (bmsafemap); 4875 } 4876 4877 /* 4878 * Direct block allocation dependencies. 4879 * 4880 * When a new block is allocated, the corresponding disk locations must be 4881 * initialized (with zeros or new data) before the on-disk inode points to 4882 * them. Also, the freemap from which the block was allocated must be 4883 * updated (on disk) before the inode's pointer. These two dependencies are 4884 * independent of each other and are needed for all file blocks and indirect 4885 * blocks that are pointed to directly by the inode. Just before the 4886 * "in-core" version of the inode is updated with a newly allocated block 4887 * number, a procedure (below) is called to setup allocation dependency 4888 * structures. These structures are removed when the corresponding 4889 * dependencies are satisfied or when the block allocation becomes obsolete 4890 * (i.e., the file is deleted, the block is de-allocated, or the block is a 4891 * fragment that gets upgraded). All of these cases are handled in 4892 * procedures described later. 4893 * 4894 * When a file extension causes a fragment to be upgraded, either to a larger 4895 * fragment or to a full block, the on-disk location may change (if the 4896 * previous fragment could not simply be extended). In this case, the old 4897 * fragment must be de-allocated, but not until after the inode's pointer has 4898 * been updated. In most cases, this is handled by later procedures, which 4899 * will construct a "freefrag" structure to be added to the workitem queue 4900 * when the inode update is complete (or obsolete). The main exception to 4901 * this is when an allocation occurs while a pending allocation dependency 4902 * (for the same block pointer) remains. This case is handled in the main 4903 * allocation dependency setup procedure by immediately freeing the 4904 * unreferenced fragments. 4905 */ 4906 void 4907 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 4908 struct inode *ip; /* inode to which block is being added */ 4909 ufs_lbn_t off; /* block pointer within inode */ 4910 ufs2_daddr_t newblkno; /* disk block number being added */ 4911 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 4912 long newsize; /* size of new block */ 4913 long oldsize; /* size of new block */ 4914 struct buf *bp; /* bp for allocated block */ 4915 { 4916 struct allocdirect *adp, *oldadp; 4917 struct allocdirectlst *adphead; 4918 struct freefrag *freefrag; 4919 struct inodedep *inodedep; 4920 struct pagedep *pagedep; 4921 struct jnewblk *jnewblk; 4922 struct newblk *newblk; 4923 struct mount *mp; 4924 ufs_lbn_t lbn; 4925 4926 lbn = bp->b_lblkno; 4927 mp = UFSTOVFS(ip->i_ump); 4928 if (oldblkno && oldblkno != newblkno) 4929 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 4930 else 4931 freefrag = NULL; 4932 4933 ACQUIRE_LOCK(&lk); 4934 if (off >= NDADDR) { 4935 if (lbn > 0) 4936 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 4937 lbn, off); 4938 /* allocating an indirect block */ 4939 if (oldblkno != 0) 4940 panic("softdep_setup_allocdirect: non-zero indir"); 4941 } else { 4942 if (off != lbn) 4943 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 4944 lbn, off); 4945 /* 4946 * Allocating a direct block. 4947 * 4948 * If we are allocating a directory block, then we must 4949 * allocate an associated pagedep to track additions and 4950 * deletions. 4951 */ 4952 if ((ip->i_mode & IFMT) == IFDIR) 4953 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 4954 &pagedep); 4955 } 4956 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 4957 panic("softdep_setup_allocdirect: lost block"); 4958 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 4959 ("softdep_setup_allocdirect: newblk already initialized")); 4960 /* 4961 * Convert the newblk to an allocdirect. 4962 */ 4963 newblk->nb_list.wk_type = D_ALLOCDIRECT; 4964 adp = (struct allocdirect *)newblk; 4965 newblk->nb_freefrag = freefrag; 4966 adp->ad_offset = off; 4967 adp->ad_oldblkno = oldblkno; 4968 adp->ad_newsize = newsize; 4969 adp->ad_oldsize = oldsize; 4970 4971 /* 4972 * Finish initializing the journal. 4973 */ 4974 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 4975 jnewblk->jn_ino = ip->i_number; 4976 jnewblk->jn_lbn = lbn; 4977 add_to_journal(&jnewblk->jn_list); 4978 } 4979 if (freefrag && freefrag->ff_jdep != NULL && 4980 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 4981 add_to_journal(freefrag->ff_jdep); 4982 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 4983 adp->ad_inodedep = inodedep; 4984 4985 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 4986 /* 4987 * The list of allocdirects must be kept in sorted and ascending 4988 * order so that the rollback routines can quickly determine the 4989 * first uncommitted block (the size of the file stored on disk 4990 * ends at the end of the lowest committed fragment, or if there 4991 * are no fragments, at the end of the highest committed block). 4992 * Since files generally grow, the typical case is that the new 4993 * block is to be added at the end of the list. We speed this 4994 * special case by checking against the last allocdirect in the 4995 * list before laboriously traversing the list looking for the 4996 * insertion point. 4997 */ 4998 adphead = &inodedep->id_newinoupdt; 4999 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5000 if (oldadp == NULL || oldadp->ad_offset <= off) { 5001 /* insert at end of list */ 5002 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5003 if (oldadp != NULL && oldadp->ad_offset == off) 5004 allocdirect_merge(adphead, adp, oldadp); 5005 FREE_LOCK(&lk); 5006 return; 5007 } 5008 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5009 if (oldadp->ad_offset >= off) 5010 break; 5011 } 5012 if (oldadp == NULL) 5013 panic("softdep_setup_allocdirect: lost entry"); 5014 /* insert in middle of list */ 5015 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5016 if (oldadp->ad_offset == off) 5017 allocdirect_merge(adphead, adp, oldadp); 5018 5019 FREE_LOCK(&lk); 5020 } 5021 5022 /* 5023 * Merge a newer and older journal record to be stored either in a 5024 * newblock or freefrag. This handles aggregating journal records for 5025 * fragment allocation into a second record as well as replacing a 5026 * journal free with an aborted journal allocation. A segment for the 5027 * oldest record will be placed on wkhd if it has been written. If not 5028 * the segment for the newer record will suffice. 5029 */ 5030 static struct worklist * 5031 jnewblk_merge(new, old, wkhd) 5032 struct worklist *new; 5033 struct worklist *old; 5034 struct workhead *wkhd; 5035 { 5036 struct jnewblk *njnewblk; 5037 struct jnewblk *jnewblk; 5038 5039 /* Handle NULLs to simplify callers. */ 5040 if (new == NULL) 5041 return (old); 5042 if (old == NULL) 5043 return (new); 5044 /* Replace a jfreefrag with a jnewblk. */ 5045 if (new->wk_type == D_JFREEFRAG) { 5046 cancel_jfreefrag(WK_JFREEFRAG(new)); 5047 return (old); 5048 } 5049 /* 5050 * Handle merging of two jnewblk records that describe 5051 * different sets of fragments in the same block. 5052 */ 5053 jnewblk = WK_JNEWBLK(old); 5054 njnewblk = WK_JNEWBLK(new); 5055 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5056 panic("jnewblk_merge: Merging disparate blocks."); 5057 /* 5058 * The record may be rolled back in the cg. 5059 */ 5060 if (jnewblk->jn_state & UNDONE) { 5061 jnewblk->jn_state &= ~UNDONE; 5062 njnewblk->jn_state |= UNDONE; 5063 njnewblk->jn_state &= ~ATTACHED; 5064 } 5065 /* 5066 * We modify the newer addref and free the older so that if neither 5067 * has been written the most up-to-date copy will be on disk. If 5068 * both have been written but rolled back we only temporarily need 5069 * one of them to fix the bits when the cg write completes. 5070 */ 5071 jnewblk->jn_state |= ATTACHED | COMPLETE; 5072 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5073 cancel_jnewblk(jnewblk, wkhd); 5074 WORKLIST_REMOVE(&jnewblk->jn_list); 5075 free_jnewblk(jnewblk); 5076 return (new); 5077 } 5078 5079 /* 5080 * Replace an old allocdirect dependency with a newer one. 5081 * This routine must be called with splbio interrupts blocked. 5082 */ 5083 static void 5084 allocdirect_merge(adphead, newadp, oldadp) 5085 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5086 struct allocdirect *newadp; /* allocdirect being added */ 5087 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5088 { 5089 struct worklist *wk; 5090 struct freefrag *freefrag; 5091 5092 freefrag = NULL; 5093 mtx_assert(&lk, MA_OWNED); 5094 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5095 newadp->ad_oldsize != oldadp->ad_newsize || 5096 newadp->ad_offset >= NDADDR) 5097 panic("%s %jd != new %jd || old size %ld != new %ld", 5098 "allocdirect_merge: old blkno", 5099 (intmax_t)newadp->ad_oldblkno, 5100 (intmax_t)oldadp->ad_newblkno, 5101 newadp->ad_oldsize, oldadp->ad_newsize); 5102 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5103 newadp->ad_oldsize = oldadp->ad_oldsize; 5104 /* 5105 * If the old dependency had a fragment to free or had never 5106 * previously had a block allocated, then the new dependency 5107 * can immediately post its freefrag and adopt the old freefrag. 5108 * This action is done by swapping the freefrag dependencies. 5109 * The new dependency gains the old one's freefrag, and the 5110 * old one gets the new one and then immediately puts it on 5111 * the worklist when it is freed by free_newblk. It is 5112 * not possible to do this swap when the old dependency had a 5113 * non-zero size but no previous fragment to free. This condition 5114 * arises when the new block is an extension of the old block. 5115 * Here, the first part of the fragment allocated to the new 5116 * dependency is part of the block currently claimed on disk by 5117 * the old dependency, so cannot legitimately be freed until the 5118 * conditions for the new dependency are fulfilled. 5119 */ 5120 freefrag = newadp->ad_freefrag; 5121 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5122 newadp->ad_freefrag = oldadp->ad_freefrag; 5123 oldadp->ad_freefrag = freefrag; 5124 } 5125 /* 5126 * If we are tracking a new directory-block allocation, 5127 * move it from the old allocdirect to the new allocdirect. 5128 */ 5129 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5130 WORKLIST_REMOVE(wk); 5131 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5132 panic("allocdirect_merge: extra newdirblk"); 5133 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5134 } 5135 TAILQ_REMOVE(adphead, oldadp, ad_next); 5136 /* 5137 * We need to move any journal dependencies over to the freefrag 5138 * that releases this block if it exists. Otherwise we are 5139 * extending an existing block and we'll wait until that is 5140 * complete to release the journal space and extend the 5141 * new journal to cover this old space as well. 5142 */ 5143 if (freefrag == NULL) { 5144 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5145 panic("allocdirect_merge: %jd != %jd", 5146 oldadp->ad_newblkno, newadp->ad_newblkno); 5147 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5148 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5149 &oldadp->ad_block.nb_jnewblk->jn_list, 5150 &newadp->ad_block.nb_jwork); 5151 oldadp->ad_block.nb_jnewblk = NULL; 5152 cancel_newblk(&oldadp->ad_block, NULL, 5153 &newadp->ad_block.nb_jwork); 5154 } else { 5155 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5156 &freefrag->ff_list, &freefrag->ff_jwork); 5157 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5158 &freefrag->ff_jwork); 5159 } 5160 free_newblk(&oldadp->ad_block); 5161 } 5162 5163 /* 5164 * Allocate a jfreefrag structure to journal a single block free. 5165 */ 5166 static struct jfreefrag * 5167 newjfreefrag(freefrag, ip, blkno, size, lbn) 5168 struct freefrag *freefrag; 5169 struct inode *ip; 5170 ufs2_daddr_t blkno; 5171 long size; 5172 ufs_lbn_t lbn; 5173 { 5174 struct jfreefrag *jfreefrag; 5175 struct fs *fs; 5176 5177 fs = ip->i_fs; 5178 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5179 M_SOFTDEP_FLAGS); 5180 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump)); 5181 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5182 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5183 jfreefrag->fr_ino = ip->i_number; 5184 jfreefrag->fr_lbn = lbn; 5185 jfreefrag->fr_blkno = blkno; 5186 jfreefrag->fr_frags = numfrags(fs, size); 5187 jfreefrag->fr_freefrag = freefrag; 5188 5189 return (jfreefrag); 5190 } 5191 5192 /* 5193 * Allocate a new freefrag structure. 5194 */ 5195 static struct freefrag * 5196 newfreefrag(ip, blkno, size, lbn) 5197 struct inode *ip; 5198 ufs2_daddr_t blkno; 5199 long size; 5200 ufs_lbn_t lbn; 5201 { 5202 struct freefrag *freefrag; 5203 struct fs *fs; 5204 5205 fs = ip->i_fs; 5206 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5207 panic("newfreefrag: frag size"); 5208 freefrag = malloc(sizeof(struct freefrag), 5209 M_FREEFRAG, M_SOFTDEP_FLAGS); 5210 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 5211 freefrag->ff_state = ATTACHED; 5212 LIST_INIT(&freefrag->ff_jwork); 5213 freefrag->ff_inum = ip->i_number; 5214 freefrag->ff_vtype = ITOV(ip)->v_type; 5215 freefrag->ff_blkno = blkno; 5216 freefrag->ff_fragsize = size; 5217 5218 if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) { 5219 freefrag->ff_jdep = (struct worklist *) 5220 newjfreefrag(freefrag, ip, blkno, size, lbn); 5221 } else { 5222 freefrag->ff_state |= DEPCOMPLETE; 5223 freefrag->ff_jdep = NULL; 5224 } 5225 5226 return (freefrag); 5227 } 5228 5229 /* 5230 * This workitem de-allocates fragments that were replaced during 5231 * file block allocation. 5232 */ 5233 static void 5234 handle_workitem_freefrag(freefrag) 5235 struct freefrag *freefrag; 5236 { 5237 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5238 struct workhead wkhd; 5239 5240 /* 5241 * It would be illegal to add new completion items to the 5242 * freefrag after it was schedule to be done so it must be 5243 * safe to modify the list head here. 5244 */ 5245 LIST_INIT(&wkhd); 5246 ACQUIRE_LOCK(&lk); 5247 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5248 /* 5249 * If the journal has not been written we must cancel it here. 5250 */ 5251 if (freefrag->ff_jdep) { 5252 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5253 panic("handle_workitem_freefrag: Unexpected type %d\n", 5254 freefrag->ff_jdep->wk_type); 5255 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5256 } 5257 FREE_LOCK(&lk); 5258 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5259 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5260 ACQUIRE_LOCK(&lk); 5261 WORKITEM_FREE(freefrag, D_FREEFRAG); 5262 FREE_LOCK(&lk); 5263 } 5264 5265 /* 5266 * Set up a dependency structure for an external attributes data block. 5267 * This routine follows much of the structure of softdep_setup_allocdirect. 5268 * See the description of softdep_setup_allocdirect above for details. 5269 */ 5270 void 5271 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5272 struct inode *ip; 5273 ufs_lbn_t off; 5274 ufs2_daddr_t newblkno; 5275 ufs2_daddr_t oldblkno; 5276 long newsize; 5277 long oldsize; 5278 struct buf *bp; 5279 { 5280 struct allocdirect *adp, *oldadp; 5281 struct allocdirectlst *adphead; 5282 struct freefrag *freefrag; 5283 struct inodedep *inodedep; 5284 struct jnewblk *jnewblk; 5285 struct newblk *newblk; 5286 struct mount *mp; 5287 ufs_lbn_t lbn; 5288 5289 if (off >= NXADDR) 5290 panic("softdep_setup_allocext: lbn %lld > NXADDR", 5291 (long long)off); 5292 5293 lbn = bp->b_lblkno; 5294 mp = UFSTOVFS(ip->i_ump); 5295 if (oldblkno && oldblkno != newblkno) 5296 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5297 else 5298 freefrag = NULL; 5299 5300 ACQUIRE_LOCK(&lk); 5301 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5302 panic("softdep_setup_allocext: lost block"); 5303 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5304 ("softdep_setup_allocext: newblk already initialized")); 5305 /* 5306 * Convert the newblk to an allocdirect. 5307 */ 5308 newblk->nb_list.wk_type = D_ALLOCDIRECT; 5309 adp = (struct allocdirect *)newblk; 5310 newblk->nb_freefrag = freefrag; 5311 adp->ad_offset = off; 5312 adp->ad_oldblkno = oldblkno; 5313 adp->ad_newsize = newsize; 5314 adp->ad_oldsize = oldsize; 5315 adp->ad_state |= EXTDATA; 5316 5317 /* 5318 * Finish initializing the journal. 5319 */ 5320 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5321 jnewblk->jn_ino = ip->i_number; 5322 jnewblk->jn_lbn = lbn; 5323 add_to_journal(&jnewblk->jn_list); 5324 } 5325 if (freefrag && freefrag->ff_jdep != NULL && 5326 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5327 add_to_journal(freefrag->ff_jdep); 5328 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5329 adp->ad_inodedep = inodedep; 5330 5331 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5332 /* 5333 * The list of allocdirects must be kept in sorted and ascending 5334 * order so that the rollback routines can quickly determine the 5335 * first uncommitted block (the size of the file stored on disk 5336 * ends at the end of the lowest committed fragment, or if there 5337 * are no fragments, at the end of the highest committed block). 5338 * Since files generally grow, the typical case is that the new 5339 * block is to be added at the end of the list. We speed this 5340 * special case by checking against the last allocdirect in the 5341 * list before laboriously traversing the list looking for the 5342 * insertion point. 5343 */ 5344 adphead = &inodedep->id_newextupdt; 5345 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5346 if (oldadp == NULL || oldadp->ad_offset <= off) { 5347 /* insert at end of list */ 5348 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5349 if (oldadp != NULL && oldadp->ad_offset == off) 5350 allocdirect_merge(adphead, adp, oldadp); 5351 FREE_LOCK(&lk); 5352 return; 5353 } 5354 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5355 if (oldadp->ad_offset >= off) 5356 break; 5357 } 5358 if (oldadp == NULL) 5359 panic("softdep_setup_allocext: lost entry"); 5360 /* insert in middle of list */ 5361 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5362 if (oldadp->ad_offset == off) 5363 allocdirect_merge(adphead, adp, oldadp); 5364 FREE_LOCK(&lk); 5365 } 5366 5367 /* 5368 * Indirect block allocation dependencies. 5369 * 5370 * The same dependencies that exist for a direct block also exist when 5371 * a new block is allocated and pointed to by an entry in a block of 5372 * indirect pointers. The undo/redo states described above are also 5373 * used here. Because an indirect block contains many pointers that 5374 * may have dependencies, a second copy of the entire in-memory indirect 5375 * block is kept. The buffer cache copy is always completely up-to-date. 5376 * The second copy, which is used only as a source for disk writes, 5377 * contains only the safe pointers (i.e., those that have no remaining 5378 * update dependencies). The second copy is freed when all pointers 5379 * are safe. The cache is not allowed to replace indirect blocks with 5380 * pending update dependencies. If a buffer containing an indirect 5381 * block with dependencies is written, these routines will mark it 5382 * dirty again. It can only be successfully written once all the 5383 * dependencies are removed. The ffs_fsync routine in conjunction with 5384 * softdep_sync_metadata work together to get all the dependencies 5385 * removed so that a file can be successfully written to disk. Three 5386 * procedures are used when setting up indirect block pointer 5387 * dependencies. The division is necessary because of the organization 5388 * of the "balloc" routine and because of the distinction between file 5389 * pages and file metadata blocks. 5390 */ 5391 5392 /* 5393 * Allocate a new allocindir structure. 5394 */ 5395 static struct allocindir * 5396 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5397 struct inode *ip; /* inode for file being extended */ 5398 int ptrno; /* offset of pointer in indirect block */ 5399 ufs2_daddr_t newblkno; /* disk block number being added */ 5400 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5401 ufs_lbn_t lbn; 5402 { 5403 struct newblk *newblk; 5404 struct allocindir *aip; 5405 struct freefrag *freefrag; 5406 struct jnewblk *jnewblk; 5407 5408 if (oldblkno) 5409 freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn); 5410 else 5411 freefrag = NULL; 5412 ACQUIRE_LOCK(&lk); 5413 if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0) 5414 panic("new_allocindir: lost block"); 5415 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5416 ("newallocindir: newblk already initialized")); 5417 newblk->nb_list.wk_type = D_ALLOCINDIR; 5418 newblk->nb_freefrag = freefrag; 5419 aip = (struct allocindir *)newblk; 5420 aip->ai_offset = ptrno; 5421 aip->ai_oldblkno = oldblkno; 5422 aip->ai_lbn = lbn; 5423 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5424 jnewblk->jn_ino = ip->i_number; 5425 jnewblk->jn_lbn = lbn; 5426 add_to_journal(&jnewblk->jn_list); 5427 } 5428 if (freefrag && freefrag->ff_jdep != NULL && 5429 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5430 add_to_journal(freefrag->ff_jdep); 5431 return (aip); 5432 } 5433 5434 /* 5435 * Called just before setting an indirect block pointer 5436 * to a newly allocated file page. 5437 */ 5438 void 5439 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5440 struct inode *ip; /* inode for file being extended */ 5441 ufs_lbn_t lbn; /* allocated block number within file */ 5442 struct buf *bp; /* buffer with indirect blk referencing page */ 5443 int ptrno; /* offset of pointer in indirect block */ 5444 ufs2_daddr_t newblkno; /* disk block number being added */ 5445 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5446 struct buf *nbp; /* buffer holding allocated page */ 5447 { 5448 struct inodedep *inodedep; 5449 struct freefrag *freefrag; 5450 struct allocindir *aip; 5451 struct pagedep *pagedep; 5452 struct mount *mp; 5453 int dflags; 5454 5455 if (lbn != nbp->b_lblkno) 5456 panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5457 lbn, bp->b_lblkno); 5458 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5459 mp = UFSTOVFS(ip->i_ump); 5460 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5461 dflags = DEPALLOC; 5462 if (IS_SNAPSHOT(ip)) 5463 dflags |= NODELAY; 5464 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 5465 /* 5466 * If we are allocating a directory page, then we must 5467 * allocate an associated pagedep to track additions and 5468 * deletions. 5469 */ 5470 if ((ip->i_mode & IFMT) == IFDIR) 5471 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5472 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5473 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5474 FREE_LOCK(&lk); 5475 if (freefrag) 5476 handle_workitem_freefrag(freefrag); 5477 } 5478 5479 /* 5480 * Called just before setting an indirect block pointer to a 5481 * newly allocated indirect block. 5482 */ 5483 void 5484 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5485 struct buf *nbp; /* newly allocated indirect block */ 5486 struct inode *ip; /* inode for file being extended */ 5487 struct buf *bp; /* indirect block referencing allocated block */ 5488 int ptrno; /* offset of pointer in indirect block */ 5489 ufs2_daddr_t newblkno; /* disk block number being added */ 5490 { 5491 struct inodedep *inodedep; 5492 struct allocindir *aip; 5493 ufs_lbn_t lbn; 5494 int dflags; 5495 5496 lbn = nbp->b_lblkno; 5497 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5498 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5499 dflags = DEPALLOC; 5500 if (IS_SNAPSHOT(ip)) 5501 dflags |= NODELAY; 5502 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 5503 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5504 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5505 panic("softdep_setup_allocindir_meta: Block already existed"); 5506 FREE_LOCK(&lk); 5507 } 5508 5509 static void 5510 indirdep_complete(indirdep) 5511 struct indirdep *indirdep; 5512 { 5513 struct allocindir *aip; 5514 5515 LIST_REMOVE(indirdep, ir_next); 5516 indirdep->ir_state |= DEPCOMPLETE; 5517 5518 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5519 LIST_REMOVE(aip, ai_next); 5520 free_newblk(&aip->ai_block); 5521 } 5522 /* 5523 * If this indirdep is not attached to a buf it was simply waiting 5524 * on completion to clear completehd. free_indirdep() asserts 5525 * that nothing is dangling. 5526 */ 5527 if ((indirdep->ir_state & ONWORKLIST) == 0) 5528 free_indirdep(indirdep); 5529 } 5530 5531 static struct indirdep * 5532 indirdep_lookup(mp, ip, bp) 5533 struct mount *mp; 5534 struct inode *ip; 5535 struct buf *bp; 5536 { 5537 struct indirdep *indirdep, *newindirdep; 5538 struct newblk *newblk; 5539 struct worklist *wk; 5540 struct fs *fs; 5541 ufs2_daddr_t blkno; 5542 5543 mtx_assert(&lk, MA_OWNED); 5544 indirdep = NULL; 5545 newindirdep = NULL; 5546 fs = ip->i_fs; 5547 for (;;) { 5548 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5549 if (wk->wk_type != D_INDIRDEP) 5550 continue; 5551 indirdep = WK_INDIRDEP(wk); 5552 break; 5553 } 5554 /* Found on the buffer worklist, no new structure to free. */ 5555 if (indirdep != NULL && newindirdep == NULL) 5556 return (indirdep); 5557 if (indirdep != NULL && newindirdep != NULL) 5558 panic("indirdep_lookup: simultaneous create"); 5559 /* None found on the buffer and a new structure is ready. */ 5560 if (indirdep == NULL && newindirdep != NULL) 5561 break; 5562 /* None found and no new structure available. */ 5563 FREE_LOCK(&lk); 5564 newindirdep = malloc(sizeof(struct indirdep), 5565 M_INDIRDEP, M_SOFTDEP_FLAGS); 5566 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5567 newindirdep->ir_state = ATTACHED; 5568 if (ip->i_ump->um_fstype == UFS1) 5569 newindirdep->ir_state |= UFS1FMT; 5570 TAILQ_INIT(&newindirdep->ir_trunc); 5571 newindirdep->ir_saveddata = NULL; 5572 LIST_INIT(&newindirdep->ir_deplisthd); 5573 LIST_INIT(&newindirdep->ir_donehd); 5574 LIST_INIT(&newindirdep->ir_writehd); 5575 LIST_INIT(&newindirdep->ir_completehd); 5576 if (bp->b_blkno == bp->b_lblkno) { 5577 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5578 NULL, NULL); 5579 bp->b_blkno = blkno; 5580 } 5581 newindirdep->ir_freeblks = NULL; 5582 newindirdep->ir_savebp = 5583 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5584 newindirdep->ir_bp = bp; 5585 BUF_KERNPROC(newindirdep->ir_savebp); 5586 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5587 ACQUIRE_LOCK(&lk); 5588 } 5589 indirdep = newindirdep; 5590 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5591 /* 5592 * If the block is not yet allocated we don't set DEPCOMPLETE so 5593 * that we don't free dependencies until the pointers are valid. 5594 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5595 * than using the hash. 5596 */ 5597 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5598 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5599 else 5600 indirdep->ir_state |= DEPCOMPLETE; 5601 return (indirdep); 5602 } 5603 5604 /* 5605 * Called to finish the allocation of the "aip" allocated 5606 * by one of the two routines above. 5607 */ 5608 static struct freefrag * 5609 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5610 struct buf *bp; /* in-memory copy of the indirect block */ 5611 struct inode *ip; /* inode for file being extended */ 5612 struct inodedep *inodedep; /* Inodedep for ip */ 5613 struct allocindir *aip; /* allocindir allocated by the above routines */ 5614 ufs_lbn_t lbn; /* Logical block number for this block. */ 5615 { 5616 struct fs *fs; 5617 struct indirdep *indirdep; 5618 struct allocindir *oldaip; 5619 struct freefrag *freefrag; 5620 struct mount *mp; 5621 5622 mtx_assert(&lk, MA_OWNED); 5623 mp = UFSTOVFS(ip->i_ump); 5624 fs = ip->i_fs; 5625 if (bp->b_lblkno >= 0) 5626 panic("setup_allocindir_phase2: not indir blk"); 5627 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 5628 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 5629 indirdep = indirdep_lookup(mp, ip, bp); 5630 KASSERT(indirdep->ir_savebp != NULL, 5631 ("setup_allocindir_phase2 NULL ir_savebp")); 5632 aip->ai_indirdep = indirdep; 5633 /* 5634 * Check for an unwritten dependency for this indirect offset. If 5635 * there is, merge the old dependency into the new one. This happens 5636 * as a result of reallocblk only. 5637 */ 5638 freefrag = NULL; 5639 if (aip->ai_oldblkno != 0) { 5640 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 5641 if (oldaip->ai_offset == aip->ai_offset) { 5642 freefrag = allocindir_merge(aip, oldaip); 5643 goto done; 5644 } 5645 } 5646 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 5647 if (oldaip->ai_offset == aip->ai_offset) { 5648 freefrag = allocindir_merge(aip, oldaip); 5649 goto done; 5650 } 5651 } 5652 } 5653 done: 5654 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 5655 return (freefrag); 5656 } 5657 5658 /* 5659 * Merge two allocindirs which refer to the same block. Move newblock 5660 * dependencies and setup the freefrags appropriately. 5661 */ 5662 static struct freefrag * 5663 allocindir_merge(aip, oldaip) 5664 struct allocindir *aip; 5665 struct allocindir *oldaip; 5666 { 5667 struct freefrag *freefrag; 5668 struct worklist *wk; 5669 5670 if (oldaip->ai_newblkno != aip->ai_oldblkno) 5671 panic("allocindir_merge: blkno"); 5672 aip->ai_oldblkno = oldaip->ai_oldblkno; 5673 freefrag = aip->ai_freefrag; 5674 aip->ai_freefrag = oldaip->ai_freefrag; 5675 oldaip->ai_freefrag = NULL; 5676 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 5677 /* 5678 * If we are tracking a new directory-block allocation, 5679 * move it from the old allocindir to the new allocindir. 5680 */ 5681 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 5682 WORKLIST_REMOVE(wk); 5683 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 5684 panic("allocindir_merge: extra newdirblk"); 5685 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 5686 } 5687 /* 5688 * We can skip journaling for this freefrag and just complete 5689 * any pending journal work for the allocindir that is being 5690 * removed after the freefrag completes. 5691 */ 5692 if (freefrag->ff_jdep) 5693 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 5694 LIST_REMOVE(oldaip, ai_next); 5695 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 5696 &freefrag->ff_list, &freefrag->ff_jwork); 5697 free_newblk(&oldaip->ai_block); 5698 5699 return (freefrag); 5700 } 5701 5702 static inline void 5703 setup_freedirect(freeblks, ip, i, needj) 5704 struct freeblks *freeblks; 5705 struct inode *ip; 5706 int i; 5707 int needj; 5708 { 5709 ufs2_daddr_t blkno; 5710 int frags; 5711 5712 blkno = DIP(ip, i_db[i]); 5713 if (blkno == 0) 5714 return; 5715 DIP_SET(ip, i_db[i], 0); 5716 frags = sblksize(ip->i_fs, ip->i_size, i); 5717 frags = numfrags(ip->i_fs, frags); 5718 newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj); 5719 } 5720 5721 static inline void 5722 setup_freeext(freeblks, ip, i, needj) 5723 struct freeblks *freeblks; 5724 struct inode *ip; 5725 int i; 5726 int needj; 5727 { 5728 ufs2_daddr_t blkno; 5729 int frags; 5730 5731 blkno = ip->i_din2->di_extb[i]; 5732 if (blkno == 0) 5733 return; 5734 ip->i_din2->di_extb[i] = 0; 5735 frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i); 5736 frags = numfrags(ip->i_fs, frags); 5737 newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 5738 } 5739 5740 static inline void 5741 setup_freeindir(freeblks, ip, i, lbn, needj) 5742 struct freeblks *freeblks; 5743 struct inode *ip; 5744 int i; 5745 ufs_lbn_t lbn; 5746 int needj; 5747 { 5748 ufs2_daddr_t blkno; 5749 5750 blkno = DIP(ip, i_ib[i]); 5751 if (blkno == 0) 5752 return; 5753 DIP_SET(ip, i_ib[i], 0); 5754 newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag, 5755 0, needj); 5756 } 5757 5758 static inline struct freeblks * 5759 newfreeblks(mp, ip) 5760 struct mount *mp; 5761 struct inode *ip; 5762 { 5763 struct freeblks *freeblks; 5764 5765 freeblks = malloc(sizeof(struct freeblks), 5766 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 5767 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 5768 LIST_INIT(&freeblks->fb_jblkdephd); 5769 LIST_INIT(&freeblks->fb_jwork); 5770 freeblks->fb_ref = 0; 5771 freeblks->fb_cgwait = 0; 5772 freeblks->fb_state = ATTACHED; 5773 freeblks->fb_uid = ip->i_uid; 5774 freeblks->fb_inum = ip->i_number; 5775 freeblks->fb_vtype = ITOV(ip)->v_type; 5776 freeblks->fb_modrev = DIP(ip, i_modrev); 5777 freeblks->fb_devvp = ip->i_devvp; 5778 freeblks->fb_chkcnt = 0; 5779 freeblks->fb_len = 0; 5780 5781 return (freeblks); 5782 } 5783 5784 static void 5785 trunc_indirdep(indirdep, freeblks, bp, off) 5786 struct indirdep *indirdep; 5787 struct freeblks *freeblks; 5788 struct buf *bp; 5789 int off; 5790 { 5791 struct allocindir *aip, *aipn; 5792 5793 /* 5794 * The first set of allocindirs won't be in savedbp. 5795 */ 5796 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 5797 if (aip->ai_offset > off) 5798 cancel_allocindir(aip, bp, freeblks, 1); 5799 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 5800 if (aip->ai_offset > off) 5801 cancel_allocindir(aip, bp, freeblks, 1); 5802 /* 5803 * These will exist in savedbp. 5804 */ 5805 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 5806 if (aip->ai_offset > off) 5807 cancel_allocindir(aip, NULL, freeblks, 0); 5808 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 5809 if (aip->ai_offset > off) 5810 cancel_allocindir(aip, NULL, freeblks, 0); 5811 } 5812 5813 /* 5814 * Follow the chain of indirects down to lastlbn creating a freework 5815 * structure for each. This will be used to start indir_trunc() at 5816 * the right offset and create the journal records for the parrtial 5817 * truncation. A second step will handle the truncated dependencies. 5818 */ 5819 static int 5820 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 5821 struct freeblks *freeblks; 5822 struct inode *ip; 5823 ufs_lbn_t lbn; 5824 ufs_lbn_t lastlbn; 5825 ufs2_daddr_t blkno; 5826 { 5827 struct indirdep *indirdep; 5828 struct indirdep *indirn; 5829 struct freework *freework; 5830 struct newblk *newblk; 5831 struct mount *mp; 5832 struct buf *bp; 5833 uint8_t *start; 5834 uint8_t *end; 5835 ufs_lbn_t lbnadd; 5836 int level; 5837 int error; 5838 int off; 5839 5840 5841 freework = NULL; 5842 if (blkno == 0) 5843 return (0); 5844 mp = freeblks->fb_list.wk_mp; 5845 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 5846 if ((bp->b_flags & B_CACHE) == 0) { 5847 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 5848 bp->b_iocmd = BIO_READ; 5849 bp->b_flags &= ~B_INVAL; 5850 bp->b_ioflags &= ~BIO_ERROR; 5851 vfs_busy_pages(bp, 0); 5852 bp->b_iooffset = dbtob(bp->b_blkno); 5853 bstrategy(bp); 5854 curthread->td_ru.ru_inblock++; 5855 error = bufwait(bp); 5856 if (error) { 5857 brelse(bp); 5858 return (error); 5859 } 5860 } 5861 level = lbn_level(lbn); 5862 lbnadd = lbn_offset(ip->i_fs, level); 5863 /* 5864 * Compute the offset of the last block we want to keep. Store 5865 * in the freework the first block we want to completely free. 5866 */ 5867 off = (lastlbn - -(lbn + level)) / lbnadd; 5868 if (off + 1 == NINDIR(ip->i_fs)) 5869 goto nowork; 5870 freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1, 5871 0); 5872 /* 5873 * Link the freework into the indirdep. This will prevent any new 5874 * allocations from proceeding until we are finished with the 5875 * truncate and the block is written. 5876 */ 5877 ACQUIRE_LOCK(&lk); 5878 indirdep = indirdep_lookup(mp, ip, bp); 5879 if (indirdep->ir_freeblks) 5880 panic("setup_trunc_indir: indirdep already truncated."); 5881 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 5882 freework->fw_indir = indirdep; 5883 /* 5884 * Cancel any allocindirs that will not make it to disk. 5885 * We have to do this for all copies of the indirdep that 5886 * live on this newblk. 5887 */ 5888 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 5889 newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk); 5890 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 5891 trunc_indirdep(indirn, freeblks, bp, off); 5892 } else 5893 trunc_indirdep(indirdep, freeblks, bp, off); 5894 FREE_LOCK(&lk); 5895 /* 5896 * Creation is protected by the buf lock. The saveddata is only 5897 * needed if a full truncation follows a partial truncation but it 5898 * is difficult to allocate in that case so we fetch it anyway. 5899 */ 5900 if (indirdep->ir_saveddata == NULL) 5901 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 5902 M_SOFTDEP_FLAGS); 5903 nowork: 5904 /* Fetch the blkno of the child and the zero start offset. */ 5905 if (ip->i_ump->um_fstype == UFS1) { 5906 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 5907 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 5908 } else { 5909 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 5910 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 5911 } 5912 if (freework) { 5913 /* Zero the truncated pointers. */ 5914 end = bp->b_data + bp->b_bcount; 5915 bzero(start, end - start); 5916 bdwrite(bp); 5917 } else 5918 bqrelse(bp); 5919 if (level == 0) 5920 return (0); 5921 lbn++; /* adjust level */ 5922 lbn -= (off * lbnadd); 5923 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 5924 } 5925 5926 /* 5927 * Complete the partial truncation of an indirect block setup by 5928 * setup_trunc_indir(). This zeros the truncated pointers in the saved 5929 * copy and writes them to disk before the freeblks is allowed to complete. 5930 */ 5931 static void 5932 complete_trunc_indir(freework) 5933 struct freework *freework; 5934 { 5935 struct freework *fwn; 5936 struct indirdep *indirdep; 5937 struct buf *bp; 5938 uintptr_t start; 5939 int count; 5940 5941 indirdep = freework->fw_indir; 5942 for (;;) { 5943 bp = indirdep->ir_bp; 5944 /* See if the block was discarded. */ 5945 if (bp == NULL) 5946 break; 5947 /* Inline part of getdirtybuf(). We dont want bremfree. */ 5948 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 5949 break; 5950 if (BUF_LOCK(bp, 5951 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0) 5952 BUF_UNLOCK(bp); 5953 ACQUIRE_LOCK(&lk); 5954 } 5955 mtx_assert(&lk, MA_OWNED); 5956 freework->fw_state |= DEPCOMPLETE; 5957 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 5958 /* 5959 * Zero the pointers in the saved copy. 5960 */ 5961 if (indirdep->ir_state & UFS1FMT) 5962 start = sizeof(ufs1_daddr_t); 5963 else 5964 start = sizeof(ufs2_daddr_t); 5965 start *= freework->fw_start; 5966 count = indirdep->ir_savebp->b_bcount - start; 5967 start += (uintptr_t)indirdep->ir_savebp->b_data; 5968 bzero((char *)start, count); 5969 /* 5970 * We need to start the next truncation in the list if it has not 5971 * been started yet. 5972 */ 5973 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 5974 if (fwn != NULL) { 5975 if (fwn->fw_freeblks == indirdep->ir_freeblks) 5976 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 5977 if ((fwn->fw_state & ONWORKLIST) == 0) 5978 freework_enqueue(fwn); 5979 } 5980 /* 5981 * If bp is NULL the block was fully truncated, restore 5982 * the saved block list otherwise free it if it is no 5983 * longer needed. 5984 */ 5985 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 5986 if (bp == NULL) 5987 bcopy(indirdep->ir_saveddata, 5988 indirdep->ir_savebp->b_data, 5989 indirdep->ir_savebp->b_bcount); 5990 free(indirdep->ir_saveddata, M_INDIRDEP); 5991 indirdep->ir_saveddata = NULL; 5992 } 5993 /* 5994 * When bp is NULL there is a full truncation pending. We 5995 * must wait for this full truncation to be journaled before 5996 * we can release this freework because the disk pointers will 5997 * never be written as zero. 5998 */ 5999 if (bp == NULL) { 6000 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6001 handle_written_freework(freework); 6002 else 6003 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6004 &freework->fw_list); 6005 } else { 6006 /* Complete when the real copy is written. */ 6007 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6008 BUF_UNLOCK(bp); 6009 } 6010 } 6011 6012 /* 6013 * Calculate the number of blocks we are going to release where datablocks 6014 * is the current total and length is the new file size. 6015 */ 6016 ufs2_daddr_t 6017 blkcount(fs, datablocks, length) 6018 struct fs *fs; 6019 ufs2_daddr_t datablocks; 6020 off_t length; 6021 { 6022 off_t totblks, numblks; 6023 6024 totblks = 0; 6025 numblks = howmany(length, fs->fs_bsize); 6026 if (numblks <= NDADDR) { 6027 totblks = howmany(length, fs->fs_fsize); 6028 goto out; 6029 } 6030 totblks = blkstofrags(fs, numblks); 6031 numblks -= NDADDR; 6032 /* 6033 * Count all single, then double, then triple indirects required. 6034 * Subtracting one indirects worth of blocks for each pass 6035 * acknowledges one of each pointed to by the inode. 6036 */ 6037 for (;;) { 6038 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6039 numblks -= NINDIR(fs); 6040 if (numblks <= 0) 6041 break; 6042 numblks = howmany(numblks, NINDIR(fs)); 6043 } 6044 out: 6045 totblks = fsbtodb(fs, totblks); 6046 /* 6047 * Handle sparse files. We can't reclaim more blocks than the inode 6048 * references. We will correct it later in handle_complete_freeblks() 6049 * when we know the real count. 6050 */ 6051 if (totblks > datablocks) 6052 return (0); 6053 return (datablocks - totblks); 6054 } 6055 6056 /* 6057 * Handle freeblocks for journaled softupdate filesystems. 6058 * 6059 * Contrary to normal softupdates, we must preserve the block pointers in 6060 * indirects until their subordinates are free. This is to avoid journaling 6061 * every block that is freed which may consume more space than the journal 6062 * itself. The recovery program will see the free block journals at the 6063 * base of the truncated area and traverse them to reclaim space. The 6064 * pointers in the inode may be cleared immediately after the journal 6065 * records are written because each direct and indirect pointer in the 6066 * inode is recorded in a journal. This permits full truncation to proceed 6067 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6068 * 6069 * The algorithm is as follows: 6070 * 1) Traverse the in-memory state and create journal entries to release 6071 * the relevant blocks and full indirect trees. 6072 * 2) Traverse the indirect block chain adding partial truncation freework 6073 * records to indirects in the path to lastlbn. The freework will 6074 * prevent new allocation dependencies from being satisfied in this 6075 * indirect until the truncation completes. 6076 * 3) Read and lock the inode block, performing an update with the new size 6077 * and pointers. This prevents truncated data from becoming valid on 6078 * disk through step 4. 6079 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6080 * eliminate journal work for those records that do not require it. 6081 * 5) Schedule the journal records to be written followed by the inode block. 6082 * 6) Allocate any necessary frags for the end of file. 6083 * 7) Zero any partially truncated blocks. 6084 * 6085 * From this truncation proceeds asynchronously using the freework and 6086 * indir_trunc machinery. The file will not be extended again into a 6087 * partially truncated indirect block until all work is completed but 6088 * the normal dependency mechanism ensures that it is rolled back/forward 6089 * as appropriate. Further truncation may occur without delay and is 6090 * serialized in indir_trunc(). 6091 */ 6092 void 6093 softdep_journal_freeblocks(ip, cred, length, flags) 6094 struct inode *ip; /* The inode whose length is to be reduced */ 6095 struct ucred *cred; 6096 off_t length; /* The new length for the file */ 6097 int flags; /* IO_EXT and/or IO_NORMAL */ 6098 { 6099 struct freeblks *freeblks, *fbn; 6100 struct inodedep *inodedep; 6101 struct jblkdep *jblkdep; 6102 struct allocdirect *adp, *adpn; 6103 struct fs *fs; 6104 struct buf *bp; 6105 struct vnode *vp; 6106 struct mount *mp; 6107 ufs2_daddr_t extblocks, datablocks; 6108 ufs_lbn_t tmpval, lbn, lastlbn; 6109 int frags, lastoff, iboff, allocblock, needj, dflags, error, i; 6110 6111 fs = ip->i_fs; 6112 mp = UFSTOVFS(ip->i_ump); 6113 vp = ITOV(ip); 6114 needj = 1; 6115 iboff = -1; 6116 allocblock = 0; 6117 extblocks = 0; 6118 datablocks = 0; 6119 frags = 0; 6120 freeblks = newfreeblks(mp, ip); 6121 ACQUIRE_LOCK(&lk); 6122 /* 6123 * If we're truncating a removed file that will never be written 6124 * we don't need to journal the block frees. The canceled journals 6125 * for the allocations will suffice. 6126 */ 6127 dflags = DEPALLOC; 6128 if (IS_SNAPSHOT(ip)) 6129 dflags |= NODELAY; 6130 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6131 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6132 length == 0) 6133 needj = 0; 6134 FREE_LOCK(&lk); 6135 /* 6136 * Calculate the lbn that we are truncating to. This results in -1 6137 * if we're truncating the 0 bytes. So it is the last lbn we want 6138 * to keep, not the first lbn we want to truncate. 6139 */ 6140 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6141 lastoff = blkoff(fs, length); 6142 /* 6143 * Compute frags we are keeping in lastlbn. 0 means all. 6144 */ 6145 if (lastlbn >= 0 && lastlbn < NDADDR) { 6146 frags = fragroundup(fs, lastoff); 6147 /* adp offset of last valid allocdirect. */ 6148 iboff = lastlbn; 6149 } else if (lastlbn > 0) 6150 iboff = NDADDR; 6151 if (fs->fs_magic == FS_UFS2_MAGIC) 6152 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6153 /* 6154 * Handle normal data blocks and indirects. This section saves 6155 * values used after the inode update to complete frag and indirect 6156 * truncation. 6157 */ 6158 if ((flags & IO_NORMAL) != 0) { 6159 /* 6160 * Handle truncation of whole direct and indirect blocks. 6161 */ 6162 for (i = iboff + 1; i < NDADDR; i++) 6163 setup_freedirect(freeblks, ip, i, needj); 6164 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6165 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6166 /* Release a whole indirect tree. */ 6167 if (lbn > lastlbn) { 6168 setup_freeindir(freeblks, ip, i, -lbn -i, 6169 needj); 6170 continue; 6171 } 6172 iboff = i + NDADDR; 6173 /* 6174 * Traverse partially truncated indirect tree. 6175 */ 6176 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6177 setup_trunc_indir(freeblks, ip, -lbn - i, 6178 lastlbn, DIP(ip, i_ib[i])); 6179 } 6180 /* 6181 * Handle partial truncation to a frag boundary. 6182 */ 6183 if (frags) { 6184 ufs2_daddr_t blkno; 6185 long oldfrags; 6186 6187 oldfrags = blksize(fs, ip, lastlbn); 6188 blkno = DIP(ip, i_db[lastlbn]); 6189 if (blkno && oldfrags != frags) { 6190 oldfrags -= frags; 6191 oldfrags = numfrags(ip->i_fs, oldfrags); 6192 blkno += numfrags(ip->i_fs, frags); 6193 newfreework(ip->i_ump, freeblks, NULL, lastlbn, 6194 blkno, oldfrags, 0, needj); 6195 } else if (blkno == 0) 6196 allocblock = 1; 6197 } 6198 /* 6199 * Add a journal record for partial truncate if we are 6200 * handling indirect blocks. Non-indirects need no extra 6201 * journaling. 6202 */ 6203 if (length != 0 && lastlbn >= NDADDR) { 6204 ip->i_flag |= IN_TRUNCATED; 6205 newjtrunc(freeblks, length, 0); 6206 } 6207 ip->i_size = length; 6208 DIP_SET(ip, i_size, ip->i_size); 6209 datablocks = DIP(ip, i_blocks) - extblocks; 6210 if (length != 0) 6211 datablocks = blkcount(ip->i_fs, datablocks, length); 6212 freeblks->fb_len = length; 6213 } 6214 if ((flags & IO_EXT) != 0) { 6215 for (i = 0; i < NXADDR; i++) 6216 setup_freeext(freeblks, ip, i, needj); 6217 ip->i_din2->di_extsize = 0; 6218 datablocks += extblocks; 6219 } 6220 #ifdef QUOTA 6221 /* Reference the quotas in case the block count is wrong in the end. */ 6222 quotaref(vp, freeblks->fb_quota); 6223 (void) chkdq(ip, -datablocks, NOCRED, 0); 6224 #endif 6225 freeblks->fb_chkcnt = -datablocks; 6226 UFS_LOCK(ip->i_ump); 6227 fs->fs_pendingblocks += datablocks; 6228 UFS_UNLOCK(ip->i_ump); 6229 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6230 /* 6231 * Handle truncation of incomplete alloc direct dependencies. We 6232 * hold the inode block locked to prevent incomplete dependencies 6233 * from reaching the disk while we are eliminating those that 6234 * have been truncated. This is a partially inlined ffs_update(). 6235 */ 6236 ufs_itimes(vp); 6237 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6238 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6239 (int)fs->fs_bsize, cred, &bp); 6240 if (error) { 6241 brelse(bp); 6242 softdep_error("softdep_journal_freeblocks", error); 6243 return; 6244 } 6245 if (bp->b_bufsize == fs->fs_bsize) 6246 bp->b_flags |= B_CLUSTEROK; 6247 softdep_update_inodeblock(ip, bp, 0); 6248 if (ip->i_ump->um_fstype == UFS1) 6249 *((struct ufs1_dinode *)bp->b_data + 6250 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6251 else 6252 *((struct ufs2_dinode *)bp->b_data + 6253 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6254 ACQUIRE_LOCK(&lk); 6255 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6256 if ((inodedep->id_state & IOSTARTED) != 0) 6257 panic("softdep_setup_freeblocks: inode busy"); 6258 /* 6259 * Add the freeblks structure to the list of operations that 6260 * must await the zero'ed inode being written to disk. If we 6261 * still have a bitmap dependency (needj), then the inode 6262 * has never been written to disk, so we can process the 6263 * freeblks below once we have deleted the dependencies. 6264 */ 6265 if (needj) 6266 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6267 else 6268 freeblks->fb_state |= COMPLETE; 6269 if ((flags & IO_NORMAL) != 0) { 6270 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6271 if (adp->ad_offset > iboff) 6272 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6273 freeblks); 6274 /* 6275 * Truncate the allocdirect. We could eliminate 6276 * or modify journal records as well. 6277 */ 6278 else if (adp->ad_offset == iboff && frags) 6279 adp->ad_newsize = frags; 6280 } 6281 } 6282 if ((flags & IO_EXT) != 0) 6283 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6284 cancel_allocdirect(&inodedep->id_extupdt, adp, 6285 freeblks); 6286 /* 6287 * Add journal work. 6288 */ 6289 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6290 add_to_journal(&jblkdep->jb_list); 6291 FREE_LOCK(&lk); 6292 bdwrite(bp); 6293 /* 6294 * Truncate dependency structures beyond length. 6295 */ 6296 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6297 /* 6298 * This is only set when we need to allocate a fragment because 6299 * none existed at the end of a frag-sized file. It handles only 6300 * allocating a new, zero filled block. 6301 */ 6302 if (allocblock) { 6303 ip->i_size = length - lastoff; 6304 DIP_SET(ip, i_size, ip->i_size); 6305 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6306 if (error != 0) { 6307 softdep_error("softdep_journal_freeblks", error); 6308 return; 6309 } 6310 ip->i_size = length; 6311 DIP_SET(ip, i_size, length); 6312 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6313 allocbuf(bp, frags); 6314 ffs_update(vp, 0); 6315 bawrite(bp); 6316 } else if (lastoff != 0 && vp->v_type != VDIR) { 6317 int size; 6318 6319 /* 6320 * Zero the end of a truncated frag or block. 6321 */ 6322 size = sblksize(fs, length, lastlbn); 6323 error = bread(vp, lastlbn, size, cred, &bp); 6324 if (error) { 6325 softdep_error("softdep_journal_freeblks", error); 6326 return; 6327 } 6328 bzero((char *)bp->b_data + lastoff, size - lastoff); 6329 bawrite(bp); 6330 6331 } 6332 ACQUIRE_LOCK(&lk); 6333 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6334 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6335 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6336 /* 6337 * We zero earlier truncations so they don't erroneously 6338 * update i_blocks. 6339 */ 6340 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6341 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6342 fbn->fb_len = 0; 6343 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6344 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6345 freeblks->fb_state |= INPROGRESS; 6346 else 6347 freeblks = NULL; 6348 FREE_LOCK(&lk); 6349 if (freeblks) 6350 handle_workitem_freeblocks(freeblks, 0); 6351 trunc_pages(ip, length, extblocks, flags); 6352 6353 } 6354 6355 /* 6356 * Flush a JOP_SYNC to the journal. 6357 */ 6358 void 6359 softdep_journal_fsync(ip) 6360 struct inode *ip; 6361 { 6362 struct jfsync *jfsync; 6363 6364 if ((ip->i_flag & IN_TRUNCATED) == 0) 6365 return; 6366 ip->i_flag &= ~IN_TRUNCATED; 6367 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6368 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump)); 6369 jfsync->jfs_size = ip->i_size; 6370 jfsync->jfs_ino = ip->i_number; 6371 ACQUIRE_LOCK(&lk); 6372 add_to_journal(&jfsync->jfs_list); 6373 jwait(&jfsync->jfs_list, MNT_WAIT); 6374 FREE_LOCK(&lk); 6375 } 6376 6377 /* 6378 * Block de-allocation dependencies. 6379 * 6380 * When blocks are de-allocated, the on-disk pointers must be nullified before 6381 * the blocks are made available for use by other files. (The true 6382 * requirement is that old pointers must be nullified before new on-disk 6383 * pointers are set. We chose this slightly more stringent requirement to 6384 * reduce complexity.) Our implementation handles this dependency by updating 6385 * the inode (or indirect block) appropriately but delaying the actual block 6386 * de-allocation (i.e., freemap and free space count manipulation) until 6387 * after the updated versions reach stable storage. After the disk is 6388 * updated, the blocks can be safely de-allocated whenever it is convenient. 6389 * This implementation handles only the common case of reducing a file's 6390 * length to zero. Other cases are handled by the conventional synchronous 6391 * write approach. 6392 * 6393 * The ffs implementation with which we worked double-checks 6394 * the state of the block pointers and file size as it reduces 6395 * a file's length. Some of this code is replicated here in our 6396 * soft updates implementation. The freeblks->fb_chkcnt field is 6397 * used to transfer a part of this information to the procedure 6398 * that eventually de-allocates the blocks. 6399 * 6400 * This routine should be called from the routine that shortens 6401 * a file's length, before the inode's size or block pointers 6402 * are modified. It will save the block pointer information for 6403 * later release and zero the inode so that the calling routine 6404 * can release it. 6405 */ 6406 void 6407 softdep_setup_freeblocks(ip, length, flags) 6408 struct inode *ip; /* The inode whose length is to be reduced */ 6409 off_t length; /* The new length for the file */ 6410 int flags; /* IO_EXT and/or IO_NORMAL */ 6411 { 6412 struct ufs1_dinode *dp1; 6413 struct ufs2_dinode *dp2; 6414 struct freeblks *freeblks; 6415 struct inodedep *inodedep; 6416 struct allocdirect *adp; 6417 struct buf *bp; 6418 struct fs *fs; 6419 ufs2_daddr_t extblocks, datablocks; 6420 struct mount *mp; 6421 int i, delay, error, dflags; 6422 ufs_lbn_t tmpval; 6423 ufs_lbn_t lbn; 6424 6425 fs = ip->i_fs; 6426 mp = UFSTOVFS(ip->i_ump); 6427 if (length != 0) 6428 panic("softdep_setup_freeblocks: non-zero length"); 6429 freeblks = newfreeblks(mp, ip); 6430 extblocks = 0; 6431 datablocks = 0; 6432 if (fs->fs_magic == FS_UFS2_MAGIC) 6433 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6434 if ((flags & IO_NORMAL) != 0) { 6435 for (i = 0; i < NDADDR; i++) 6436 setup_freedirect(freeblks, ip, i, 0); 6437 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6438 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6439 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6440 ip->i_size = 0; 6441 DIP_SET(ip, i_size, 0); 6442 datablocks = DIP(ip, i_blocks) - extblocks; 6443 } 6444 if ((flags & IO_EXT) != 0) { 6445 for (i = 0; i < NXADDR; i++) 6446 setup_freeext(freeblks, ip, i, 0); 6447 ip->i_din2->di_extsize = 0; 6448 datablocks += extblocks; 6449 } 6450 #ifdef QUOTA 6451 /* Reference the quotas in case the block count is wrong in the end. */ 6452 quotaref(ITOV(ip), freeblks->fb_quota); 6453 (void) chkdq(ip, -datablocks, NOCRED, 0); 6454 #endif 6455 freeblks->fb_chkcnt = -datablocks; 6456 UFS_LOCK(ip->i_ump); 6457 fs->fs_pendingblocks += datablocks; 6458 UFS_UNLOCK(ip->i_ump); 6459 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6460 /* 6461 * Push the zero'ed inode to to its disk buffer so that we are free 6462 * to delete its dependencies below. Once the dependencies are gone 6463 * the buffer can be safely released. 6464 */ 6465 if ((error = bread(ip->i_devvp, 6466 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6467 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6468 brelse(bp); 6469 softdep_error("softdep_setup_freeblocks", error); 6470 } 6471 if (ip->i_ump->um_fstype == UFS1) { 6472 dp1 = ((struct ufs1_dinode *)bp->b_data + 6473 ino_to_fsbo(fs, ip->i_number)); 6474 ip->i_din1->di_freelink = dp1->di_freelink; 6475 *dp1 = *ip->i_din1; 6476 } else { 6477 dp2 = ((struct ufs2_dinode *)bp->b_data + 6478 ino_to_fsbo(fs, ip->i_number)); 6479 ip->i_din2->di_freelink = dp2->di_freelink; 6480 *dp2 = *ip->i_din2; 6481 } 6482 /* 6483 * Find and eliminate any inode dependencies. 6484 */ 6485 ACQUIRE_LOCK(&lk); 6486 dflags = DEPALLOC; 6487 if (IS_SNAPSHOT(ip)) 6488 dflags |= NODELAY; 6489 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6490 if ((inodedep->id_state & IOSTARTED) != 0) 6491 panic("softdep_setup_freeblocks: inode busy"); 6492 /* 6493 * Add the freeblks structure to the list of operations that 6494 * must await the zero'ed inode being written to disk. If we 6495 * still have a bitmap dependency (delay == 0), then the inode 6496 * has never been written to disk, so we can process the 6497 * freeblks below once we have deleted the dependencies. 6498 */ 6499 delay = (inodedep->id_state & DEPCOMPLETE); 6500 if (delay) 6501 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6502 else 6503 freeblks->fb_state |= COMPLETE; 6504 /* 6505 * Because the file length has been truncated to zero, any 6506 * pending block allocation dependency structures associated 6507 * with this inode are obsolete and can simply be de-allocated. 6508 * We must first merge the two dependency lists to get rid of 6509 * any duplicate freefrag structures, then purge the merged list. 6510 * If we still have a bitmap dependency, then the inode has never 6511 * been written to disk, so we can free any fragments without delay. 6512 */ 6513 if (flags & IO_NORMAL) { 6514 merge_inode_lists(&inodedep->id_newinoupdt, 6515 &inodedep->id_inoupdt); 6516 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 6517 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6518 freeblks); 6519 } 6520 if (flags & IO_EXT) { 6521 merge_inode_lists(&inodedep->id_newextupdt, 6522 &inodedep->id_extupdt); 6523 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6524 cancel_allocdirect(&inodedep->id_extupdt, adp, 6525 freeblks); 6526 } 6527 FREE_LOCK(&lk); 6528 bdwrite(bp); 6529 trunc_dependencies(ip, freeblks, -1, 0, flags); 6530 ACQUIRE_LOCK(&lk); 6531 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6532 (void) free_inodedep(inodedep); 6533 freeblks->fb_state |= DEPCOMPLETE; 6534 /* 6535 * If the inode with zeroed block pointers is now on disk 6536 * we can start freeing blocks. 6537 */ 6538 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6539 freeblks->fb_state |= INPROGRESS; 6540 else 6541 freeblks = NULL; 6542 FREE_LOCK(&lk); 6543 if (freeblks) 6544 handle_workitem_freeblocks(freeblks, 0); 6545 trunc_pages(ip, length, extblocks, flags); 6546 } 6547 6548 /* 6549 * Eliminate pages from the page cache that back parts of this inode and 6550 * adjust the vnode pager's idea of our size. This prevents stale data 6551 * from hanging around in the page cache. 6552 */ 6553 static void 6554 trunc_pages(ip, length, extblocks, flags) 6555 struct inode *ip; 6556 off_t length; 6557 ufs2_daddr_t extblocks; 6558 int flags; 6559 { 6560 struct vnode *vp; 6561 struct fs *fs; 6562 ufs_lbn_t lbn; 6563 off_t end, extend; 6564 6565 vp = ITOV(ip); 6566 fs = ip->i_fs; 6567 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 6568 if ((flags & IO_EXT) != 0) 6569 vn_pages_remove(vp, extend, 0); 6570 if ((flags & IO_NORMAL) == 0) 6571 return; 6572 BO_LOCK(&vp->v_bufobj); 6573 drain_output(vp); 6574 BO_UNLOCK(&vp->v_bufobj); 6575 /* 6576 * The vnode pager eliminates file pages we eliminate indirects 6577 * below. 6578 */ 6579 vnode_pager_setsize(vp, length); 6580 /* 6581 * Calculate the end based on the last indirect we want to keep. If 6582 * the block extends into indirects we can just use the negative of 6583 * its lbn. Doubles and triples exist at lower numbers so we must 6584 * be careful not to remove those, if they exist. double and triple 6585 * indirect lbns do not overlap with others so it is not important 6586 * to verify how many levels are required. 6587 */ 6588 lbn = lblkno(fs, length); 6589 if (lbn >= NDADDR) { 6590 /* Calculate the virtual lbn of the triple indirect. */ 6591 lbn = -lbn - (NIADDR - 1); 6592 end = OFF_TO_IDX(lblktosize(fs, lbn)); 6593 } else 6594 end = extend; 6595 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 6596 } 6597 6598 /* 6599 * See if the buf bp is in the range eliminated by truncation. 6600 */ 6601 static int 6602 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 6603 struct buf *bp; 6604 int *blkoffp; 6605 ufs_lbn_t lastlbn; 6606 int lastoff; 6607 int flags; 6608 { 6609 ufs_lbn_t lbn; 6610 6611 *blkoffp = 0; 6612 /* Only match ext/normal blocks as appropriate. */ 6613 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 6614 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 6615 return (0); 6616 /* ALTDATA is always a full truncation. */ 6617 if ((bp->b_xflags & BX_ALTDATA) != 0) 6618 return (1); 6619 /* -1 is full truncation. */ 6620 if (lastlbn == -1) 6621 return (1); 6622 /* 6623 * If this is a partial truncate we only want those 6624 * blocks and indirect blocks that cover the range 6625 * we're after. 6626 */ 6627 lbn = bp->b_lblkno; 6628 if (lbn < 0) 6629 lbn = -(lbn + lbn_level(lbn)); 6630 if (lbn < lastlbn) 6631 return (0); 6632 /* Here we only truncate lblkno if it's partial. */ 6633 if (lbn == lastlbn) { 6634 if (lastoff == 0) 6635 return (0); 6636 *blkoffp = lastoff; 6637 } 6638 return (1); 6639 } 6640 6641 /* 6642 * Eliminate any dependencies that exist in memory beyond lblkno:off 6643 */ 6644 static void 6645 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 6646 struct inode *ip; 6647 struct freeblks *freeblks; 6648 ufs_lbn_t lastlbn; 6649 int lastoff; 6650 int flags; 6651 { 6652 struct bufobj *bo; 6653 struct vnode *vp; 6654 struct buf *bp; 6655 struct fs *fs; 6656 int blkoff; 6657 6658 /* 6659 * We must wait for any I/O in progress to finish so that 6660 * all potential buffers on the dirty list will be visible. 6661 * Once they are all there, walk the list and get rid of 6662 * any dependencies. 6663 */ 6664 fs = ip->i_fs; 6665 vp = ITOV(ip); 6666 bo = &vp->v_bufobj; 6667 BO_LOCK(bo); 6668 drain_output(vp); 6669 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 6670 bp->b_vflags &= ~BV_SCANNED; 6671 restart: 6672 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 6673 if (bp->b_vflags & BV_SCANNED) 6674 continue; 6675 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6676 bp->b_vflags |= BV_SCANNED; 6677 continue; 6678 } 6679 if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL) 6680 goto restart; 6681 BO_UNLOCK(bo); 6682 if (deallocate_dependencies(bp, freeblks, blkoff)) 6683 bqrelse(bp); 6684 else 6685 brelse(bp); 6686 BO_LOCK(bo); 6687 goto restart; 6688 } 6689 /* 6690 * Now do the work of vtruncbuf while also matching indirect blocks. 6691 */ 6692 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 6693 bp->b_vflags &= ~BV_SCANNED; 6694 cleanrestart: 6695 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 6696 if (bp->b_vflags & BV_SCANNED) 6697 continue; 6698 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6699 bp->b_vflags |= BV_SCANNED; 6700 continue; 6701 } 6702 if (BUF_LOCK(bp, 6703 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6704 BO_MTX(bo)) == ENOLCK) { 6705 BO_LOCK(bo); 6706 goto cleanrestart; 6707 } 6708 bp->b_vflags |= BV_SCANNED; 6709 BO_LOCK(bo); 6710 bremfree(bp); 6711 BO_UNLOCK(bo); 6712 if (blkoff != 0) { 6713 allocbuf(bp, blkoff); 6714 bqrelse(bp); 6715 } else { 6716 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 6717 brelse(bp); 6718 } 6719 BO_LOCK(bo); 6720 goto cleanrestart; 6721 } 6722 drain_output(vp); 6723 BO_UNLOCK(bo); 6724 } 6725 6726 static int 6727 cancel_pagedep(pagedep, freeblks, blkoff) 6728 struct pagedep *pagedep; 6729 struct freeblks *freeblks; 6730 int blkoff; 6731 { 6732 struct jremref *jremref; 6733 struct jmvref *jmvref; 6734 struct dirrem *dirrem, *tmp; 6735 int i; 6736 6737 /* 6738 * Copy any directory remove dependencies to the list 6739 * to be processed after the freeblks proceeds. If 6740 * directory entry never made it to disk they 6741 * can be dumped directly onto the work list. 6742 */ 6743 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 6744 /* Skip this directory removal if it is intended to remain. */ 6745 if (dirrem->dm_offset < blkoff) 6746 continue; 6747 /* 6748 * If there are any dirrems we wait for the journal write 6749 * to complete and then restart the buf scan as the lock 6750 * has been dropped. 6751 */ 6752 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 6753 jwait(&jremref->jr_list, MNT_WAIT); 6754 return (ERESTART); 6755 } 6756 LIST_REMOVE(dirrem, dm_next); 6757 dirrem->dm_dirinum = pagedep->pd_ino; 6758 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 6759 } 6760 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 6761 jwait(&jmvref->jm_list, MNT_WAIT); 6762 return (ERESTART); 6763 } 6764 /* 6765 * When we're partially truncating a pagedep we just want to flush 6766 * journal entries and return. There can not be any adds in the 6767 * truncated portion of the directory and newblk must remain if 6768 * part of the block remains. 6769 */ 6770 if (blkoff != 0) { 6771 struct diradd *dap; 6772 6773 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 6774 if (dap->da_offset > blkoff) 6775 panic("cancel_pagedep: diradd %p off %d > %d", 6776 dap, dap->da_offset, blkoff); 6777 for (i = 0; i < DAHASHSZ; i++) 6778 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 6779 if (dap->da_offset > blkoff) 6780 panic("cancel_pagedep: diradd %p off %d > %d", 6781 dap, dap->da_offset, blkoff); 6782 return (0); 6783 } 6784 /* 6785 * There should be no directory add dependencies present 6786 * as the directory could not be truncated until all 6787 * children were removed. 6788 */ 6789 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 6790 ("deallocate_dependencies: pendinghd != NULL")); 6791 for (i = 0; i < DAHASHSZ; i++) 6792 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 6793 ("deallocate_dependencies: diraddhd != NULL")); 6794 if ((pagedep->pd_state & NEWBLOCK) != 0) 6795 free_newdirblk(pagedep->pd_newdirblk); 6796 if (free_pagedep(pagedep) == 0) 6797 panic("Failed to free pagedep %p", pagedep); 6798 return (0); 6799 } 6800 6801 /* 6802 * Reclaim any dependency structures from a buffer that is about to 6803 * be reallocated to a new vnode. The buffer must be locked, thus, 6804 * no I/O completion operations can occur while we are manipulating 6805 * its associated dependencies. The mutex is held so that other I/O's 6806 * associated with related dependencies do not occur. 6807 */ 6808 static int 6809 deallocate_dependencies(bp, freeblks, off) 6810 struct buf *bp; 6811 struct freeblks *freeblks; 6812 int off; 6813 { 6814 struct indirdep *indirdep; 6815 struct pagedep *pagedep; 6816 struct allocdirect *adp; 6817 struct worklist *wk, *wkn; 6818 6819 ACQUIRE_LOCK(&lk); 6820 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 6821 switch (wk->wk_type) { 6822 case D_INDIRDEP: 6823 indirdep = WK_INDIRDEP(wk); 6824 if (bp->b_lblkno >= 0 || 6825 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 6826 panic("deallocate_dependencies: not indir"); 6827 cancel_indirdep(indirdep, bp, freeblks); 6828 continue; 6829 6830 case D_PAGEDEP: 6831 pagedep = WK_PAGEDEP(wk); 6832 if (cancel_pagedep(pagedep, freeblks, off)) { 6833 FREE_LOCK(&lk); 6834 return (ERESTART); 6835 } 6836 continue; 6837 6838 case D_ALLOCINDIR: 6839 /* 6840 * Simply remove the allocindir, we'll find it via 6841 * the indirdep where we can clear pointers if 6842 * needed. 6843 */ 6844 WORKLIST_REMOVE(wk); 6845 continue; 6846 6847 case D_FREEWORK: 6848 /* 6849 * A truncation is waiting for the zero'd pointers 6850 * to be written. It can be freed when the freeblks 6851 * is journaled. 6852 */ 6853 WORKLIST_REMOVE(wk); 6854 wk->wk_state |= ONDEPLIST; 6855 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6856 break; 6857 6858 case D_ALLOCDIRECT: 6859 adp = WK_ALLOCDIRECT(wk); 6860 if (off != 0) 6861 continue; 6862 /* FALLTHROUGH */ 6863 default: 6864 panic("deallocate_dependencies: Unexpected type %s", 6865 TYPENAME(wk->wk_type)); 6866 /* NOTREACHED */ 6867 } 6868 } 6869 FREE_LOCK(&lk); 6870 /* 6871 * Don't throw away this buf, we were partially truncating and 6872 * some deps may always remain. 6873 */ 6874 if (off) { 6875 allocbuf(bp, off); 6876 bp->b_vflags |= BV_SCANNED; 6877 return (EBUSY); 6878 } 6879 bp->b_flags |= B_INVAL | B_NOCACHE; 6880 6881 return (0); 6882 } 6883 6884 /* 6885 * An allocdirect is being canceled due to a truncate. We must make sure 6886 * the journal entry is released in concert with the blkfree that releases 6887 * the storage. Completed journal entries must not be released until the 6888 * space is no longer pointed to by the inode or in the bitmap. 6889 */ 6890 static void 6891 cancel_allocdirect(adphead, adp, freeblks) 6892 struct allocdirectlst *adphead; 6893 struct allocdirect *adp; 6894 struct freeblks *freeblks; 6895 { 6896 struct freework *freework; 6897 struct newblk *newblk; 6898 struct worklist *wk; 6899 6900 TAILQ_REMOVE(adphead, adp, ad_next); 6901 newblk = (struct newblk *)adp; 6902 freework = NULL; 6903 /* 6904 * Find the correct freework structure. 6905 */ 6906 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 6907 if (wk->wk_type != D_FREEWORK) 6908 continue; 6909 freework = WK_FREEWORK(wk); 6910 if (freework->fw_blkno == newblk->nb_newblkno) 6911 break; 6912 } 6913 if (freework == NULL) 6914 panic("cancel_allocdirect: Freework not found"); 6915 /* 6916 * If a newblk exists at all we still have the journal entry that 6917 * initiated the allocation so we do not need to journal the free. 6918 */ 6919 cancel_jfreeblk(freeblks, freework->fw_blkno); 6920 /* 6921 * If the journal hasn't been written the jnewblk must be passed 6922 * to the call to ffs_blkfree that reclaims the space. We accomplish 6923 * this by linking the journal dependency into the freework to be 6924 * freed when freework_freeblock() is called. If the journal has 6925 * been written we can simply reclaim the journal space when the 6926 * freeblks work is complete. 6927 */ 6928 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 6929 &freeblks->fb_jwork); 6930 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 6931 } 6932 6933 6934 /* 6935 * Cancel a new block allocation. May be an indirect or direct block. We 6936 * remove it from various lists and return any journal record that needs to 6937 * be resolved by the caller. 6938 * 6939 * A special consideration is made for indirects which were never pointed 6940 * at on disk and will never be found once this block is released. 6941 */ 6942 static struct jnewblk * 6943 cancel_newblk(newblk, wk, wkhd) 6944 struct newblk *newblk; 6945 struct worklist *wk; 6946 struct workhead *wkhd; 6947 { 6948 struct jnewblk *jnewblk; 6949 6950 newblk->nb_state |= GOINGAWAY; 6951 /* 6952 * Previously we traversed the completedhd on each indirdep 6953 * attached to this newblk to cancel them and gather journal 6954 * work. Since we need only the oldest journal segment and 6955 * the lowest point on the tree will always have the oldest 6956 * journal segment we are free to release the segments 6957 * of any subordinates and may leave the indirdep list to 6958 * indirdep_complete() when this newblk is freed. 6959 */ 6960 if (newblk->nb_state & ONDEPLIST) { 6961 newblk->nb_state &= ~ONDEPLIST; 6962 LIST_REMOVE(newblk, nb_deps); 6963 } 6964 if (newblk->nb_state & ONWORKLIST) 6965 WORKLIST_REMOVE(&newblk->nb_list); 6966 /* 6967 * If the journal entry hasn't been written we save a pointer to 6968 * the dependency that frees it until it is written or the 6969 * superseding operation completes. 6970 */ 6971 jnewblk = newblk->nb_jnewblk; 6972 if (jnewblk != NULL && wk != NULL) { 6973 newblk->nb_jnewblk = NULL; 6974 jnewblk->jn_dep = wk; 6975 } 6976 if (!LIST_EMPTY(&newblk->nb_jwork)) 6977 jwork_move(wkhd, &newblk->nb_jwork); 6978 /* 6979 * When truncating we must free the newdirblk early to remove 6980 * the pagedep from the hash before returning. 6981 */ 6982 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 6983 free_newdirblk(WK_NEWDIRBLK(wk)); 6984 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 6985 panic("cancel_newblk: extra newdirblk"); 6986 6987 return (jnewblk); 6988 } 6989 6990 /* 6991 * Schedule the freefrag associated with a newblk to be released once 6992 * the pointers are written and the previous block is no longer needed. 6993 */ 6994 static void 6995 newblk_freefrag(newblk) 6996 struct newblk *newblk; 6997 { 6998 struct freefrag *freefrag; 6999 7000 if (newblk->nb_freefrag == NULL) 7001 return; 7002 freefrag = newblk->nb_freefrag; 7003 newblk->nb_freefrag = NULL; 7004 freefrag->ff_state |= COMPLETE; 7005 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7006 add_to_worklist(&freefrag->ff_list, 0); 7007 } 7008 7009 /* 7010 * Free a newblk. Generate a new freefrag work request if appropriate. 7011 * This must be called after the inode pointer and any direct block pointers 7012 * are valid or fully removed via truncate or frag extension. 7013 */ 7014 static void 7015 free_newblk(newblk) 7016 struct newblk *newblk; 7017 { 7018 struct indirdep *indirdep; 7019 struct worklist *wk; 7020 7021 KASSERT(newblk->nb_jnewblk == NULL, 7022 ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk)); 7023 mtx_assert(&lk, MA_OWNED); 7024 newblk_freefrag(newblk); 7025 if (newblk->nb_state & ONDEPLIST) 7026 LIST_REMOVE(newblk, nb_deps); 7027 if (newblk->nb_state & ONWORKLIST) 7028 WORKLIST_REMOVE(&newblk->nb_list); 7029 LIST_REMOVE(newblk, nb_hash); 7030 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7031 free_newdirblk(WK_NEWDIRBLK(wk)); 7032 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7033 panic("free_newblk: extra newdirblk"); 7034 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7035 indirdep_complete(indirdep); 7036 handle_jwork(&newblk->nb_jwork); 7037 newblk->nb_list.wk_type = D_NEWBLK; 7038 WORKITEM_FREE(newblk, D_NEWBLK); 7039 } 7040 7041 /* 7042 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7043 * This routine must be called with splbio interrupts blocked. 7044 */ 7045 static void 7046 free_newdirblk(newdirblk) 7047 struct newdirblk *newdirblk; 7048 { 7049 struct pagedep *pagedep; 7050 struct diradd *dap; 7051 struct worklist *wk; 7052 7053 mtx_assert(&lk, MA_OWNED); 7054 WORKLIST_REMOVE(&newdirblk->db_list); 7055 /* 7056 * If the pagedep is still linked onto the directory buffer 7057 * dependency chain, then some of the entries on the 7058 * pd_pendinghd list may not be committed to disk yet. In 7059 * this case, we will simply clear the NEWBLOCK flag and 7060 * let the pd_pendinghd list be processed when the pagedep 7061 * is next written. If the pagedep is no longer on the buffer 7062 * dependency chain, then all the entries on the pd_pending 7063 * list are committed to disk and we can free them here. 7064 */ 7065 pagedep = newdirblk->db_pagedep; 7066 pagedep->pd_state &= ~NEWBLOCK; 7067 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7068 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7069 free_diradd(dap, NULL); 7070 /* 7071 * If no dependencies remain, the pagedep will be freed. 7072 */ 7073 free_pagedep(pagedep); 7074 } 7075 /* Should only ever be one item in the list. */ 7076 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7077 WORKLIST_REMOVE(wk); 7078 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7079 } 7080 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7081 } 7082 7083 /* 7084 * Prepare an inode to be freed. The actual free operation is not 7085 * done until the zero'ed inode has been written to disk. 7086 */ 7087 void 7088 softdep_freefile(pvp, ino, mode) 7089 struct vnode *pvp; 7090 ino_t ino; 7091 int mode; 7092 { 7093 struct inode *ip = VTOI(pvp); 7094 struct inodedep *inodedep; 7095 struct freefile *freefile; 7096 struct freeblks *freeblks; 7097 7098 /* 7099 * This sets up the inode de-allocation dependency. 7100 */ 7101 freefile = malloc(sizeof(struct freefile), 7102 M_FREEFILE, M_SOFTDEP_FLAGS); 7103 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7104 freefile->fx_mode = mode; 7105 freefile->fx_oldinum = ino; 7106 freefile->fx_devvp = ip->i_devvp; 7107 LIST_INIT(&freefile->fx_jwork); 7108 UFS_LOCK(ip->i_ump); 7109 ip->i_fs->fs_pendinginodes += 1; 7110 UFS_UNLOCK(ip->i_ump); 7111 7112 /* 7113 * If the inodedep does not exist, then the zero'ed inode has 7114 * been written to disk. If the allocated inode has never been 7115 * written to disk, then the on-disk inode is zero'ed. In either 7116 * case we can free the file immediately. If the journal was 7117 * canceled before being written the inode will never make it to 7118 * disk and we must send the canceled journal entrys to 7119 * ffs_freefile() to be cleared in conjunction with the bitmap. 7120 * Any blocks waiting on the inode to write can be safely freed 7121 * here as it will never been written. 7122 */ 7123 ACQUIRE_LOCK(&lk); 7124 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7125 if (inodedep) { 7126 /* 7127 * Clear out freeblks that no longer need to reference 7128 * this inode. 7129 */ 7130 while ((freeblks = 7131 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7132 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7133 fb_next); 7134 freeblks->fb_state &= ~ONDEPLIST; 7135 } 7136 /* 7137 * Remove this inode from the unlinked list. 7138 */ 7139 if (inodedep->id_state & UNLINKED) { 7140 /* 7141 * Save the journal work to be freed with the bitmap 7142 * before we clear UNLINKED. Otherwise it can be lost 7143 * if the inode block is written. 7144 */ 7145 handle_bufwait(inodedep, &freefile->fx_jwork); 7146 clear_unlinked_inodedep(inodedep); 7147 /* Re-acquire inodedep as we've dropped lk. */ 7148 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7149 } 7150 } 7151 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7152 FREE_LOCK(&lk); 7153 handle_workitem_freefile(freefile); 7154 return; 7155 } 7156 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7157 inodedep->id_state |= GOINGAWAY; 7158 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7159 FREE_LOCK(&lk); 7160 if (ip->i_number == ino) 7161 ip->i_flag |= IN_MODIFIED; 7162 } 7163 7164 /* 7165 * Check to see if an inode has never been written to disk. If 7166 * so free the inodedep and return success, otherwise return failure. 7167 * This routine must be called with splbio interrupts blocked. 7168 * 7169 * If we still have a bitmap dependency, then the inode has never 7170 * been written to disk. Drop the dependency as it is no longer 7171 * necessary since the inode is being deallocated. We set the 7172 * ALLCOMPLETE flags since the bitmap now properly shows that the 7173 * inode is not allocated. Even if the inode is actively being 7174 * written, it has been rolled back to its zero'ed state, so we 7175 * are ensured that a zero inode is what is on the disk. For short 7176 * lived files, this change will usually result in removing all the 7177 * dependencies from the inode so that it can be freed immediately. 7178 */ 7179 static int 7180 check_inode_unwritten(inodedep) 7181 struct inodedep *inodedep; 7182 { 7183 7184 mtx_assert(&lk, MA_OWNED); 7185 7186 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7187 !LIST_EMPTY(&inodedep->id_dirremhd) || 7188 !LIST_EMPTY(&inodedep->id_pendinghd) || 7189 !LIST_EMPTY(&inodedep->id_bufwait) || 7190 !LIST_EMPTY(&inodedep->id_inowait) || 7191 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7192 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7193 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7194 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7195 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7196 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7197 inodedep->id_mkdiradd != NULL || 7198 inodedep->id_nlinkdelta != 0) 7199 return (0); 7200 /* 7201 * Another process might be in initiate_write_inodeblock_ufs[12] 7202 * trying to allocate memory without holding "Softdep Lock". 7203 */ 7204 if ((inodedep->id_state & IOSTARTED) != 0 && 7205 inodedep->id_savedino1 == NULL) 7206 return (0); 7207 7208 if (inodedep->id_state & ONDEPLIST) 7209 LIST_REMOVE(inodedep, id_deps); 7210 inodedep->id_state &= ~ONDEPLIST; 7211 inodedep->id_state |= ALLCOMPLETE; 7212 inodedep->id_bmsafemap = NULL; 7213 if (inodedep->id_state & ONWORKLIST) 7214 WORKLIST_REMOVE(&inodedep->id_list); 7215 if (inodedep->id_savedino1 != NULL) { 7216 free(inodedep->id_savedino1, M_SAVEDINO); 7217 inodedep->id_savedino1 = NULL; 7218 } 7219 if (free_inodedep(inodedep) == 0) 7220 panic("check_inode_unwritten: busy inode"); 7221 return (1); 7222 } 7223 7224 /* 7225 * Try to free an inodedep structure. Return 1 if it could be freed. 7226 */ 7227 static int 7228 free_inodedep(inodedep) 7229 struct inodedep *inodedep; 7230 { 7231 7232 mtx_assert(&lk, MA_OWNED); 7233 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7234 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7235 !LIST_EMPTY(&inodedep->id_dirremhd) || 7236 !LIST_EMPTY(&inodedep->id_pendinghd) || 7237 !LIST_EMPTY(&inodedep->id_bufwait) || 7238 !LIST_EMPTY(&inodedep->id_inowait) || 7239 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7240 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7241 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7242 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7243 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7244 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7245 inodedep->id_mkdiradd != NULL || 7246 inodedep->id_nlinkdelta != 0 || 7247 inodedep->id_savedino1 != NULL) 7248 return (0); 7249 if (inodedep->id_state & ONDEPLIST) 7250 LIST_REMOVE(inodedep, id_deps); 7251 LIST_REMOVE(inodedep, id_hash); 7252 WORKITEM_FREE(inodedep, D_INODEDEP); 7253 return (1); 7254 } 7255 7256 /* 7257 * Free the block referenced by a freework structure. The parent freeblks 7258 * structure is released and completed when the final cg bitmap reaches 7259 * the disk. This routine may be freeing a jnewblk which never made it to 7260 * disk in which case we do not have to wait as the operation is undone 7261 * in memory immediately. 7262 */ 7263 static void 7264 freework_freeblock(freework) 7265 struct freework *freework; 7266 { 7267 struct freeblks *freeblks; 7268 struct jnewblk *jnewblk; 7269 struct ufsmount *ump; 7270 struct workhead wkhd; 7271 struct fs *fs; 7272 int bsize; 7273 int needj; 7274 7275 mtx_assert(&lk, MA_OWNED); 7276 /* 7277 * Handle partial truncate separately. 7278 */ 7279 if (freework->fw_indir) { 7280 complete_trunc_indir(freework); 7281 return; 7282 } 7283 freeblks = freework->fw_freeblks; 7284 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7285 fs = ump->um_fs; 7286 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7287 bsize = lfragtosize(fs, freework->fw_frags); 7288 LIST_INIT(&wkhd); 7289 /* 7290 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7291 * on the indirblk hashtable and prevents premature freeing. 7292 */ 7293 freework->fw_state |= DEPCOMPLETE; 7294 /* 7295 * SUJ needs to wait for the segment referencing freed indirect 7296 * blocks to expire so that we know the checker will not confuse 7297 * a re-allocated indirect block with its old contents. 7298 */ 7299 if (needj && freework->fw_lbn <= -NDADDR) 7300 indirblk_insert(freework); 7301 /* 7302 * If we are canceling an existing jnewblk pass it to the free 7303 * routine, otherwise pass the freeblk which will ultimately 7304 * release the freeblks. If we're not journaling, we can just 7305 * free the freeblks immediately. 7306 */ 7307 jnewblk = freework->fw_jnewblk; 7308 if (jnewblk != NULL) { 7309 cancel_jnewblk(jnewblk, &wkhd); 7310 needj = 0; 7311 } else if (needj) { 7312 freework->fw_state |= DELAYEDFREE; 7313 freeblks->fb_cgwait++; 7314 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7315 } 7316 FREE_LOCK(&lk); 7317 freeblks_free(ump, freeblks, btodb(bsize)); 7318 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7319 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7320 ACQUIRE_LOCK(&lk); 7321 /* 7322 * The jnewblk will be discarded and the bits in the map never 7323 * made it to disk. We can immediately free the freeblk. 7324 */ 7325 if (needj == 0) 7326 handle_written_freework(freework); 7327 } 7328 7329 /* 7330 * We enqueue freework items that need processing back on the freeblks and 7331 * add the freeblks to the worklist. This makes it easier to find all work 7332 * required to flush a truncation in process_truncates(). 7333 */ 7334 static void 7335 freework_enqueue(freework) 7336 struct freework *freework; 7337 { 7338 struct freeblks *freeblks; 7339 7340 freeblks = freework->fw_freeblks; 7341 if ((freework->fw_state & INPROGRESS) == 0) 7342 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7343 if ((freeblks->fb_state & 7344 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7345 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7346 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7347 } 7348 7349 /* 7350 * Start, continue, or finish the process of freeing an indirect block tree. 7351 * The free operation may be paused at any point with fw_off containing the 7352 * offset to restart from. This enables us to implement some flow control 7353 * for large truncates which may fan out and generate a huge number of 7354 * dependencies. 7355 */ 7356 static void 7357 handle_workitem_indirblk(freework) 7358 struct freework *freework; 7359 { 7360 struct freeblks *freeblks; 7361 struct ufsmount *ump; 7362 struct fs *fs; 7363 7364 freeblks = freework->fw_freeblks; 7365 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7366 fs = ump->um_fs; 7367 if (freework->fw_state & DEPCOMPLETE) { 7368 handle_written_freework(freework); 7369 return; 7370 } 7371 if (freework->fw_off == NINDIR(fs)) { 7372 freework_freeblock(freework); 7373 return; 7374 } 7375 freework->fw_state |= INPROGRESS; 7376 FREE_LOCK(&lk); 7377 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7378 freework->fw_lbn); 7379 ACQUIRE_LOCK(&lk); 7380 } 7381 7382 /* 7383 * Called when a freework structure attached to a cg buf is written. The 7384 * ref on either the parent or the freeblks structure is released and 7385 * the freeblks is added back to the worklist if there is more work to do. 7386 */ 7387 static void 7388 handle_written_freework(freework) 7389 struct freework *freework; 7390 { 7391 struct freeblks *freeblks; 7392 struct freework *parent; 7393 7394 freeblks = freework->fw_freeblks; 7395 parent = freework->fw_parent; 7396 if (freework->fw_state & DELAYEDFREE) 7397 freeblks->fb_cgwait--; 7398 freework->fw_state |= COMPLETE; 7399 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7400 WORKITEM_FREE(freework, D_FREEWORK); 7401 if (parent) { 7402 if (--parent->fw_ref == 0) 7403 freework_enqueue(parent); 7404 return; 7405 } 7406 if (--freeblks->fb_ref != 0) 7407 return; 7408 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7409 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7410 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7411 } 7412 7413 /* 7414 * This workitem routine performs the block de-allocation. 7415 * The workitem is added to the pending list after the updated 7416 * inode block has been written to disk. As mentioned above, 7417 * checks regarding the number of blocks de-allocated (compared 7418 * to the number of blocks allocated for the file) are also 7419 * performed in this function. 7420 */ 7421 static int 7422 handle_workitem_freeblocks(freeblks, flags) 7423 struct freeblks *freeblks; 7424 int flags; 7425 { 7426 struct freework *freework; 7427 struct newblk *newblk; 7428 struct allocindir *aip; 7429 struct ufsmount *ump; 7430 struct worklist *wk; 7431 7432 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7433 ("handle_workitem_freeblocks: Journal entries not written.")); 7434 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7435 ACQUIRE_LOCK(&lk); 7436 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7437 WORKLIST_REMOVE(wk); 7438 switch (wk->wk_type) { 7439 case D_DIRREM: 7440 wk->wk_state |= COMPLETE; 7441 add_to_worklist(wk, 0); 7442 continue; 7443 7444 case D_ALLOCDIRECT: 7445 free_newblk(WK_NEWBLK(wk)); 7446 continue; 7447 7448 case D_ALLOCINDIR: 7449 aip = WK_ALLOCINDIR(wk); 7450 freework = NULL; 7451 if (aip->ai_state & DELAYEDFREE) { 7452 FREE_LOCK(&lk); 7453 freework = newfreework(ump, freeblks, NULL, 7454 aip->ai_lbn, aip->ai_newblkno, 7455 ump->um_fs->fs_frag, 0, 0); 7456 ACQUIRE_LOCK(&lk); 7457 } 7458 newblk = WK_NEWBLK(wk); 7459 if (newblk->nb_jnewblk) { 7460 freework->fw_jnewblk = newblk->nb_jnewblk; 7461 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7462 newblk->nb_jnewblk = NULL; 7463 } 7464 free_newblk(newblk); 7465 continue; 7466 7467 case D_FREEWORK: 7468 freework = WK_FREEWORK(wk); 7469 if (freework->fw_lbn <= -NDADDR) 7470 handle_workitem_indirblk(freework); 7471 else 7472 freework_freeblock(freework); 7473 continue; 7474 default: 7475 panic("handle_workitem_freeblocks: Unknown type %s", 7476 TYPENAME(wk->wk_type)); 7477 } 7478 } 7479 if (freeblks->fb_ref != 0) { 7480 freeblks->fb_state &= ~INPROGRESS; 7481 wake_worklist(&freeblks->fb_list); 7482 freeblks = NULL; 7483 } 7484 FREE_LOCK(&lk); 7485 if (freeblks) 7486 return handle_complete_freeblocks(freeblks, flags); 7487 return (0); 7488 } 7489 7490 /* 7491 * Handle completion of block free via truncate. This allows fs_pending 7492 * to track the actual free block count more closely than if we only updated 7493 * it at the end. We must be careful to handle cases where the block count 7494 * on free was incorrect. 7495 */ 7496 static void 7497 freeblks_free(ump, freeblks, blocks) 7498 struct ufsmount *ump; 7499 struct freeblks *freeblks; 7500 int blocks; 7501 { 7502 struct fs *fs; 7503 ufs2_daddr_t remain; 7504 7505 UFS_LOCK(ump); 7506 remain = -freeblks->fb_chkcnt; 7507 freeblks->fb_chkcnt += blocks; 7508 if (remain > 0) { 7509 if (remain < blocks) 7510 blocks = remain; 7511 fs = ump->um_fs; 7512 fs->fs_pendingblocks -= blocks; 7513 } 7514 UFS_UNLOCK(ump); 7515 } 7516 7517 /* 7518 * Once all of the freework workitems are complete we can retire the 7519 * freeblocks dependency and any journal work awaiting completion. This 7520 * can not be called until all other dependencies are stable on disk. 7521 */ 7522 static int 7523 handle_complete_freeblocks(freeblks, flags) 7524 struct freeblks *freeblks; 7525 int flags; 7526 { 7527 struct inodedep *inodedep; 7528 struct inode *ip; 7529 struct vnode *vp; 7530 struct fs *fs; 7531 struct ufsmount *ump; 7532 ufs2_daddr_t spare; 7533 7534 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7535 fs = ump->um_fs; 7536 flags = LK_EXCLUSIVE | flags; 7537 spare = freeblks->fb_chkcnt; 7538 7539 /* 7540 * If we did not release the expected number of blocks we may have 7541 * to adjust the inode block count here. Only do so if it wasn't 7542 * a truncation to zero and the modrev still matches. 7543 */ 7544 if (spare && freeblks->fb_len != 0) { 7545 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7546 flags, &vp, FFSV_FORCEINSMQ) != 0) 7547 return (EBUSY); 7548 ip = VTOI(vp); 7549 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 7550 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 7551 ip->i_flag |= IN_CHANGE; 7552 /* 7553 * We must wait so this happens before the 7554 * journal is reclaimed. 7555 */ 7556 ffs_update(vp, 1); 7557 } 7558 vput(vp); 7559 } 7560 if (spare < 0) { 7561 UFS_LOCK(ump); 7562 fs->fs_pendingblocks += spare; 7563 UFS_UNLOCK(ump); 7564 } 7565 #ifdef QUOTA 7566 /* Handle spare. */ 7567 if (spare) 7568 quotaadj(freeblks->fb_quota, ump, -spare); 7569 quotarele(freeblks->fb_quota); 7570 #endif 7571 ACQUIRE_LOCK(&lk); 7572 if (freeblks->fb_state & ONDEPLIST) { 7573 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7574 0, &inodedep); 7575 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 7576 freeblks->fb_state &= ~ONDEPLIST; 7577 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 7578 free_inodedep(inodedep); 7579 } 7580 /* 7581 * All of the freeblock deps must be complete prior to this call 7582 * so it's now safe to complete earlier outstanding journal entries. 7583 */ 7584 handle_jwork(&freeblks->fb_jwork); 7585 WORKITEM_FREE(freeblks, D_FREEBLKS); 7586 FREE_LOCK(&lk); 7587 return (0); 7588 } 7589 7590 /* 7591 * Release blocks associated with the freeblks and stored in the indirect 7592 * block dbn. If level is greater than SINGLE, the block is an indirect block 7593 * and recursive calls to indirtrunc must be used to cleanse other indirect 7594 * blocks. 7595 * 7596 * This handles partial and complete truncation of blocks. Partial is noted 7597 * with goingaway == 0. In this case the freework is completed after the 7598 * zero'd indirects are written to disk. For full truncation the freework 7599 * is completed after the block is freed. 7600 */ 7601 static void 7602 indir_trunc(freework, dbn, lbn) 7603 struct freework *freework; 7604 ufs2_daddr_t dbn; 7605 ufs_lbn_t lbn; 7606 { 7607 struct freework *nfreework; 7608 struct workhead wkhd; 7609 struct freeblks *freeblks; 7610 struct buf *bp; 7611 struct fs *fs; 7612 struct indirdep *indirdep; 7613 struct ufsmount *ump; 7614 ufs1_daddr_t *bap1 = 0; 7615 ufs2_daddr_t nb, nnb, *bap2 = 0; 7616 ufs_lbn_t lbnadd, nlbn; 7617 int i, nblocks, ufs1fmt; 7618 int freedblocks; 7619 int goingaway; 7620 int freedeps; 7621 int needj; 7622 int level; 7623 int cnt; 7624 7625 freeblks = freework->fw_freeblks; 7626 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7627 fs = ump->um_fs; 7628 /* 7629 * Get buffer of block pointers to be freed. There are three cases: 7630 * 7631 * 1) Partial truncate caches the indirdep pointer in the freework 7632 * which provides us a back copy to the save bp which holds the 7633 * pointers we want to clear. When this completes the zero 7634 * pointers are written to the real copy. 7635 * 2) The indirect is being completely truncated, cancel_indirdep() 7636 * eliminated the real copy and placed the indirdep on the saved 7637 * copy. The indirdep and buf are discarded when this completes. 7638 * 3) The indirect was not in memory, we read a copy off of the disk 7639 * using the devvp and drop and invalidate the buffer when we're 7640 * done. 7641 */ 7642 goingaway = 1; 7643 indirdep = NULL; 7644 if (freework->fw_indir != NULL) { 7645 goingaway = 0; 7646 indirdep = freework->fw_indir; 7647 bp = indirdep->ir_savebp; 7648 if (bp == NULL || bp->b_blkno != dbn) 7649 panic("indir_trunc: Bad saved buf %p blkno %jd", 7650 bp, (intmax_t)dbn); 7651 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 7652 /* 7653 * The lock prevents the buf dep list from changing and 7654 * indirects on devvp should only ever have one dependency. 7655 */ 7656 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 7657 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 7658 panic("indir_trunc: Bad indirdep %p from buf %p", 7659 indirdep, bp); 7660 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 7661 NOCRED, &bp) != 0) { 7662 brelse(bp); 7663 return; 7664 } 7665 ACQUIRE_LOCK(&lk); 7666 /* Protects against a race with complete_trunc_indir(). */ 7667 freework->fw_state &= ~INPROGRESS; 7668 /* 7669 * If we have an indirdep we need to enforce the truncation order 7670 * and discard it when it is complete. 7671 */ 7672 if (indirdep) { 7673 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 7674 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 7675 /* 7676 * Add the complete truncate to the list on the 7677 * indirdep to enforce in-order processing. 7678 */ 7679 if (freework->fw_indir == NULL) 7680 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 7681 freework, fw_next); 7682 FREE_LOCK(&lk); 7683 return; 7684 } 7685 /* 7686 * If we're goingaway, free the indirdep. Otherwise it will 7687 * linger until the write completes. 7688 */ 7689 if (goingaway) { 7690 free_indirdep(indirdep); 7691 ump->um_numindirdeps -= 1; 7692 } 7693 } 7694 FREE_LOCK(&lk); 7695 /* Initialize pointers depending on block size. */ 7696 if (ump->um_fstype == UFS1) { 7697 bap1 = (ufs1_daddr_t *)bp->b_data; 7698 nb = bap1[freework->fw_off]; 7699 ufs1fmt = 1; 7700 } else { 7701 bap2 = (ufs2_daddr_t *)bp->b_data; 7702 nb = bap2[freework->fw_off]; 7703 ufs1fmt = 0; 7704 } 7705 level = lbn_level(lbn); 7706 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 7707 lbnadd = lbn_offset(fs, level); 7708 nblocks = btodb(fs->fs_bsize); 7709 nfreework = freework; 7710 freedeps = 0; 7711 cnt = 0; 7712 /* 7713 * Reclaim blocks. Traverses into nested indirect levels and 7714 * arranges for the current level to be freed when subordinates 7715 * are free when journaling. 7716 */ 7717 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 7718 if (i != NINDIR(fs) - 1) { 7719 if (ufs1fmt) 7720 nnb = bap1[i+1]; 7721 else 7722 nnb = bap2[i+1]; 7723 } else 7724 nnb = 0; 7725 if (nb == 0) 7726 continue; 7727 cnt++; 7728 if (level != 0) { 7729 nlbn = (lbn + 1) - (i * lbnadd); 7730 if (needj != 0) { 7731 nfreework = newfreework(ump, freeblks, freework, 7732 nlbn, nb, fs->fs_frag, 0, 0); 7733 freedeps++; 7734 } 7735 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 7736 } else { 7737 struct freedep *freedep; 7738 7739 /* 7740 * Attempt to aggregate freedep dependencies for 7741 * all blocks being released to the same CG. 7742 */ 7743 LIST_INIT(&wkhd); 7744 if (needj != 0 && 7745 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 7746 freedep = newfreedep(freework); 7747 WORKLIST_INSERT_UNLOCKED(&wkhd, 7748 &freedep->fd_list); 7749 freedeps++; 7750 } 7751 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 7752 fs->fs_bsize, freeblks->fb_inum, 7753 freeblks->fb_vtype, &wkhd); 7754 } 7755 } 7756 if (goingaway) { 7757 bp->b_flags |= B_INVAL | B_NOCACHE; 7758 brelse(bp); 7759 } 7760 freedblocks = 0; 7761 if (level == 0) 7762 freedblocks = (nblocks * cnt); 7763 if (needj == 0) 7764 freedblocks += nblocks; 7765 freeblks_free(ump, freeblks, freedblocks); 7766 /* 7767 * If we are journaling set up the ref counts and offset so this 7768 * indirect can be completed when its children are free. 7769 */ 7770 if (needj) { 7771 ACQUIRE_LOCK(&lk); 7772 freework->fw_off = i; 7773 freework->fw_ref += freedeps; 7774 freework->fw_ref -= NINDIR(fs) + 1; 7775 if (level == 0) 7776 freeblks->fb_cgwait += freedeps; 7777 if (freework->fw_ref == 0) 7778 freework_freeblock(freework); 7779 FREE_LOCK(&lk); 7780 return; 7781 } 7782 /* 7783 * If we're not journaling we can free the indirect now. 7784 */ 7785 dbn = dbtofsb(fs, dbn); 7786 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 7787 freeblks->fb_inum, freeblks->fb_vtype, NULL); 7788 /* Non SUJ softdep does single-threaded truncations. */ 7789 if (freework->fw_blkno == dbn) { 7790 freework->fw_state |= ALLCOMPLETE; 7791 ACQUIRE_LOCK(&lk); 7792 handle_written_freework(freework); 7793 FREE_LOCK(&lk); 7794 } 7795 return; 7796 } 7797 7798 /* 7799 * Cancel an allocindir when it is removed via truncation. When bp is not 7800 * NULL the indirect never appeared on disk and is scheduled to be freed 7801 * independently of the indir so we can more easily track journal work. 7802 */ 7803 static void 7804 cancel_allocindir(aip, bp, freeblks, trunc) 7805 struct allocindir *aip; 7806 struct buf *bp; 7807 struct freeblks *freeblks; 7808 int trunc; 7809 { 7810 struct indirdep *indirdep; 7811 struct freefrag *freefrag; 7812 struct newblk *newblk; 7813 7814 newblk = (struct newblk *)aip; 7815 LIST_REMOVE(aip, ai_next); 7816 /* 7817 * We must eliminate the pointer in bp if it must be freed on its 7818 * own due to partial truncate or pending journal work. 7819 */ 7820 if (bp && (trunc || newblk->nb_jnewblk)) { 7821 /* 7822 * Clear the pointer and mark the aip to be freed 7823 * directly if it never existed on disk. 7824 */ 7825 aip->ai_state |= DELAYEDFREE; 7826 indirdep = aip->ai_indirdep; 7827 if (indirdep->ir_state & UFS1FMT) 7828 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 7829 else 7830 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 7831 } 7832 /* 7833 * When truncating the previous pointer will be freed via 7834 * savedbp. Eliminate the freefrag which would dup free. 7835 */ 7836 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 7837 newblk->nb_freefrag = NULL; 7838 if (freefrag->ff_jdep) 7839 cancel_jfreefrag( 7840 WK_JFREEFRAG(freefrag->ff_jdep)); 7841 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 7842 WORKITEM_FREE(freefrag, D_FREEFRAG); 7843 } 7844 /* 7845 * If the journal hasn't been written the jnewblk must be passed 7846 * to the call to ffs_blkfree that reclaims the space. We accomplish 7847 * this by leaving the journal dependency on the newblk to be freed 7848 * when a freework is created in handle_workitem_freeblocks(). 7849 */ 7850 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 7851 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7852 } 7853 7854 /* 7855 * Create the mkdir dependencies for . and .. in a new directory. Link them 7856 * in to a newdirblk so any subsequent additions are tracked properly. The 7857 * caller is responsible for adding the mkdir1 dependency to the journal 7858 * and updating id_mkdiradd. This function returns with lk held. 7859 */ 7860 static struct mkdir * 7861 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 7862 struct diradd *dap; 7863 ino_t newinum; 7864 ino_t dinum; 7865 struct buf *newdirbp; 7866 struct mkdir **mkdirp; 7867 { 7868 struct newblk *newblk; 7869 struct pagedep *pagedep; 7870 struct inodedep *inodedep; 7871 struct newdirblk *newdirblk = 0; 7872 struct mkdir *mkdir1, *mkdir2; 7873 struct worklist *wk; 7874 struct jaddref *jaddref; 7875 struct mount *mp; 7876 7877 mp = dap->da_list.wk_mp; 7878 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 7879 M_SOFTDEP_FLAGS); 7880 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 7881 LIST_INIT(&newdirblk->db_mkdir); 7882 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 7883 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 7884 mkdir1->md_state = ATTACHED | MKDIR_BODY; 7885 mkdir1->md_diradd = dap; 7886 mkdir1->md_jaddref = NULL; 7887 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 7888 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 7889 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 7890 mkdir2->md_diradd = dap; 7891 mkdir2->md_jaddref = NULL; 7892 if (MOUNTEDSUJ(mp) == 0) { 7893 mkdir1->md_state |= DEPCOMPLETE; 7894 mkdir2->md_state |= DEPCOMPLETE; 7895 } 7896 /* 7897 * Dependency on "." and ".." being written to disk. 7898 */ 7899 mkdir1->md_buf = newdirbp; 7900 ACQUIRE_LOCK(&lk); 7901 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 7902 /* 7903 * We must link the pagedep, allocdirect, and newdirblk for 7904 * the initial file page so the pointer to the new directory 7905 * is not written until the directory contents are live and 7906 * any subsequent additions are not marked live until the 7907 * block is reachable via the inode. 7908 */ 7909 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 7910 panic("setup_newdir: lost pagedep"); 7911 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 7912 if (wk->wk_type == D_ALLOCDIRECT) 7913 break; 7914 if (wk == NULL) 7915 panic("setup_newdir: lost allocdirect"); 7916 if (pagedep->pd_state & NEWBLOCK) 7917 panic("setup_newdir: NEWBLOCK already set"); 7918 newblk = WK_NEWBLK(wk); 7919 pagedep->pd_state |= NEWBLOCK; 7920 pagedep->pd_newdirblk = newdirblk; 7921 newdirblk->db_pagedep = pagedep; 7922 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 7923 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 7924 /* 7925 * Look up the inodedep for the parent directory so that we 7926 * can link mkdir2 into the pending dotdot jaddref or 7927 * the inode write if there is none. If the inode is 7928 * ALLCOMPLETE and no jaddref is present all dependencies have 7929 * been satisfied and mkdir2 can be freed. 7930 */ 7931 inodedep_lookup(mp, dinum, 0, &inodedep); 7932 if (MOUNTEDSUJ(mp)) { 7933 if (inodedep == NULL) 7934 panic("setup_newdir: Lost parent."); 7935 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 7936 inoreflst); 7937 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 7938 (jaddref->ja_state & MKDIR_PARENT), 7939 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 7940 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 7941 mkdir2->md_jaddref = jaddref; 7942 jaddref->ja_mkdir = mkdir2; 7943 } else if (inodedep == NULL || 7944 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 7945 dap->da_state &= ~MKDIR_PARENT; 7946 WORKITEM_FREE(mkdir2, D_MKDIR); 7947 } else { 7948 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 7949 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 7950 } 7951 *mkdirp = mkdir2; 7952 7953 return (mkdir1); 7954 } 7955 7956 /* 7957 * Directory entry addition dependencies. 7958 * 7959 * When adding a new directory entry, the inode (with its incremented link 7960 * count) must be written to disk before the directory entry's pointer to it. 7961 * Also, if the inode is newly allocated, the corresponding freemap must be 7962 * updated (on disk) before the directory entry's pointer. These requirements 7963 * are met via undo/redo on the directory entry's pointer, which consists 7964 * simply of the inode number. 7965 * 7966 * As directory entries are added and deleted, the free space within a 7967 * directory block can become fragmented. The ufs filesystem will compact 7968 * a fragmented directory block to make space for a new entry. When this 7969 * occurs, the offsets of previously added entries change. Any "diradd" 7970 * dependency structures corresponding to these entries must be updated with 7971 * the new offsets. 7972 */ 7973 7974 /* 7975 * This routine is called after the in-memory inode's link 7976 * count has been incremented, but before the directory entry's 7977 * pointer to the inode has been set. 7978 */ 7979 int 7980 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 7981 struct buf *bp; /* buffer containing directory block */ 7982 struct inode *dp; /* inode for directory */ 7983 off_t diroffset; /* offset of new entry in directory */ 7984 ino_t newinum; /* inode referenced by new directory entry */ 7985 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 7986 int isnewblk; /* entry is in a newly allocated block */ 7987 { 7988 int offset; /* offset of new entry within directory block */ 7989 ufs_lbn_t lbn; /* block in directory containing new entry */ 7990 struct fs *fs; 7991 struct diradd *dap; 7992 struct newblk *newblk; 7993 struct pagedep *pagedep; 7994 struct inodedep *inodedep; 7995 struct newdirblk *newdirblk = 0; 7996 struct mkdir *mkdir1, *mkdir2; 7997 struct jaddref *jaddref; 7998 struct mount *mp; 7999 int isindir; 8000 8001 /* 8002 * Whiteouts have no dependencies. 8003 */ 8004 if (newinum == WINO) { 8005 if (newdirbp != NULL) 8006 bdwrite(newdirbp); 8007 return (0); 8008 } 8009 jaddref = NULL; 8010 mkdir1 = mkdir2 = NULL; 8011 mp = UFSTOVFS(dp->i_ump); 8012 fs = dp->i_fs; 8013 lbn = lblkno(fs, diroffset); 8014 offset = blkoff(fs, diroffset); 8015 dap = malloc(sizeof(struct diradd), M_DIRADD, 8016 M_SOFTDEP_FLAGS|M_ZERO); 8017 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8018 dap->da_offset = offset; 8019 dap->da_newinum = newinum; 8020 dap->da_state = ATTACHED; 8021 LIST_INIT(&dap->da_jwork); 8022 isindir = bp->b_lblkno >= NDADDR; 8023 if (isnewblk && 8024 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8025 newdirblk = malloc(sizeof(struct newdirblk), 8026 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8027 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8028 LIST_INIT(&newdirblk->db_mkdir); 8029 } 8030 /* 8031 * If we're creating a new directory setup the dependencies and set 8032 * the dap state to wait for them. Otherwise it's COMPLETE and 8033 * we can move on. 8034 */ 8035 if (newdirbp == NULL) { 8036 dap->da_state |= DEPCOMPLETE; 8037 ACQUIRE_LOCK(&lk); 8038 } else { 8039 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8040 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8041 &mkdir2); 8042 } 8043 /* 8044 * Link into parent directory pagedep to await its being written. 8045 */ 8046 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8047 #ifdef DEBUG 8048 if (diradd_lookup(pagedep, offset) != NULL) 8049 panic("softdep_setup_directory_add: %p already at off %d\n", 8050 diradd_lookup(pagedep, offset), offset); 8051 #endif 8052 dap->da_pagedep = pagedep; 8053 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8054 da_pdlist); 8055 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8056 /* 8057 * If we're journaling, link the diradd into the jaddref so it 8058 * may be completed after the journal entry is written. Otherwise, 8059 * link the diradd into its inodedep. If the inode is not yet 8060 * written place it on the bufwait list, otherwise do the post-inode 8061 * write processing to put it on the id_pendinghd list. 8062 */ 8063 if (MOUNTEDSUJ(mp)) { 8064 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8065 inoreflst); 8066 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8067 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8068 jaddref->ja_diroff = diroffset; 8069 jaddref->ja_diradd = dap; 8070 add_to_journal(&jaddref->ja_list); 8071 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8072 diradd_inode_written(dap, inodedep); 8073 else 8074 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8075 /* 8076 * Add the journal entries for . and .. links now that the primary 8077 * link is written. 8078 */ 8079 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8080 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8081 inoreflst, if_deps); 8082 KASSERT(jaddref != NULL && 8083 jaddref->ja_ino == jaddref->ja_parent && 8084 (jaddref->ja_state & MKDIR_BODY), 8085 ("softdep_setup_directory_add: bad dot jaddref %p", 8086 jaddref)); 8087 mkdir1->md_jaddref = jaddref; 8088 jaddref->ja_mkdir = mkdir1; 8089 /* 8090 * It is important that the dotdot journal entry 8091 * is added prior to the dot entry since dot writes 8092 * both the dot and dotdot links. These both must 8093 * be added after the primary link for the journal 8094 * to remain consistent. 8095 */ 8096 add_to_journal(&mkdir2->md_jaddref->ja_list); 8097 add_to_journal(&jaddref->ja_list); 8098 } 8099 /* 8100 * If we are adding a new directory remember this diradd so that if 8101 * we rename it we can keep the dot and dotdot dependencies. If 8102 * we are adding a new name for an inode that has a mkdiradd we 8103 * must be in rename and we have to move the dot and dotdot 8104 * dependencies to this new name. The old name is being orphaned 8105 * soon. 8106 */ 8107 if (mkdir1 != NULL) { 8108 if (inodedep->id_mkdiradd != NULL) 8109 panic("softdep_setup_directory_add: Existing mkdir"); 8110 inodedep->id_mkdiradd = dap; 8111 } else if (inodedep->id_mkdiradd) 8112 merge_diradd(inodedep, dap); 8113 if (newdirblk) { 8114 /* 8115 * There is nothing to do if we are already tracking 8116 * this block. 8117 */ 8118 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8119 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8120 FREE_LOCK(&lk); 8121 return (0); 8122 } 8123 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8124 == 0) 8125 panic("softdep_setup_directory_add: lost entry"); 8126 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8127 pagedep->pd_state |= NEWBLOCK; 8128 pagedep->pd_newdirblk = newdirblk; 8129 newdirblk->db_pagedep = pagedep; 8130 FREE_LOCK(&lk); 8131 /* 8132 * If we extended into an indirect signal direnter to sync. 8133 */ 8134 if (isindir) 8135 return (1); 8136 return (0); 8137 } 8138 FREE_LOCK(&lk); 8139 return (0); 8140 } 8141 8142 /* 8143 * This procedure is called to change the offset of a directory 8144 * entry when compacting a directory block which must be owned 8145 * exclusively by the caller. Note that the actual entry movement 8146 * must be done in this procedure to ensure that no I/O completions 8147 * occur while the move is in progress. 8148 */ 8149 void 8150 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8151 struct buf *bp; /* Buffer holding directory block. */ 8152 struct inode *dp; /* inode for directory */ 8153 caddr_t base; /* address of dp->i_offset */ 8154 caddr_t oldloc; /* address of old directory location */ 8155 caddr_t newloc; /* address of new directory location */ 8156 int entrysize; /* size of directory entry */ 8157 { 8158 int offset, oldoffset, newoffset; 8159 struct pagedep *pagedep; 8160 struct jmvref *jmvref; 8161 struct diradd *dap; 8162 struct direct *de; 8163 struct mount *mp; 8164 ufs_lbn_t lbn; 8165 int flags; 8166 8167 mp = UFSTOVFS(dp->i_ump); 8168 de = (struct direct *)oldloc; 8169 jmvref = NULL; 8170 flags = 0; 8171 /* 8172 * Moves are always journaled as it would be too complex to 8173 * determine if any affected adds or removes are present in the 8174 * journal. 8175 */ 8176 if (MOUNTEDSUJ(mp)) { 8177 flags = DEPALLOC; 8178 jmvref = newjmvref(dp, de->d_ino, 8179 dp->i_offset + (oldloc - base), 8180 dp->i_offset + (newloc - base)); 8181 } 8182 lbn = lblkno(dp->i_fs, dp->i_offset); 8183 offset = blkoff(dp->i_fs, dp->i_offset); 8184 oldoffset = offset + (oldloc - base); 8185 newoffset = offset + (newloc - base); 8186 ACQUIRE_LOCK(&lk); 8187 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8188 goto done; 8189 dap = diradd_lookup(pagedep, oldoffset); 8190 if (dap) { 8191 dap->da_offset = newoffset; 8192 newoffset = DIRADDHASH(newoffset); 8193 oldoffset = DIRADDHASH(oldoffset); 8194 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8195 newoffset != oldoffset) { 8196 LIST_REMOVE(dap, da_pdlist); 8197 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8198 dap, da_pdlist); 8199 } 8200 } 8201 done: 8202 if (jmvref) { 8203 jmvref->jm_pagedep = pagedep; 8204 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8205 add_to_journal(&jmvref->jm_list); 8206 } 8207 bcopy(oldloc, newloc, entrysize); 8208 FREE_LOCK(&lk); 8209 } 8210 8211 /* 8212 * Move the mkdir dependencies and journal work from one diradd to another 8213 * when renaming a directory. The new name must depend on the mkdir deps 8214 * completing as the old name did. Directories can only have one valid link 8215 * at a time so one must be canonical. 8216 */ 8217 static void 8218 merge_diradd(inodedep, newdap) 8219 struct inodedep *inodedep; 8220 struct diradd *newdap; 8221 { 8222 struct diradd *olddap; 8223 struct mkdir *mkdir, *nextmd; 8224 short state; 8225 8226 olddap = inodedep->id_mkdiradd; 8227 inodedep->id_mkdiradd = newdap; 8228 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8229 newdap->da_state &= ~DEPCOMPLETE; 8230 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 8231 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8232 if (mkdir->md_diradd != olddap) 8233 continue; 8234 mkdir->md_diradd = newdap; 8235 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8236 newdap->da_state |= state; 8237 olddap->da_state &= ~state; 8238 if ((olddap->da_state & 8239 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8240 break; 8241 } 8242 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8243 panic("merge_diradd: unfound ref"); 8244 } 8245 /* 8246 * Any mkdir related journal items are not safe to be freed until 8247 * the new name is stable. 8248 */ 8249 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8250 olddap->da_state |= DEPCOMPLETE; 8251 complete_diradd(olddap); 8252 } 8253 8254 /* 8255 * Move the diradd to the pending list when all diradd dependencies are 8256 * complete. 8257 */ 8258 static void 8259 complete_diradd(dap) 8260 struct diradd *dap; 8261 { 8262 struct pagedep *pagedep; 8263 8264 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8265 if (dap->da_state & DIRCHG) 8266 pagedep = dap->da_previous->dm_pagedep; 8267 else 8268 pagedep = dap->da_pagedep; 8269 LIST_REMOVE(dap, da_pdlist); 8270 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8271 } 8272 } 8273 8274 /* 8275 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8276 * add entries and conditonally journal the remove. 8277 */ 8278 static void 8279 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8280 struct diradd *dap; 8281 struct dirrem *dirrem; 8282 struct jremref *jremref; 8283 struct jremref *dotremref; 8284 struct jremref *dotdotremref; 8285 { 8286 struct inodedep *inodedep; 8287 struct jaddref *jaddref; 8288 struct inoref *inoref; 8289 struct mkdir *mkdir; 8290 8291 /* 8292 * If no remove references were allocated we're on a non-journaled 8293 * filesystem and can skip the cancel step. 8294 */ 8295 if (jremref == NULL) { 8296 free_diradd(dap, NULL); 8297 return; 8298 } 8299 /* 8300 * Cancel the primary name an free it if it does not require 8301 * journaling. 8302 */ 8303 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8304 0, &inodedep) != 0) { 8305 /* Abort the addref that reference this diradd. */ 8306 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8307 if (inoref->if_list.wk_type != D_JADDREF) 8308 continue; 8309 jaddref = (struct jaddref *)inoref; 8310 if (jaddref->ja_diradd != dap) 8311 continue; 8312 if (cancel_jaddref(jaddref, inodedep, 8313 &dirrem->dm_jwork) == 0) { 8314 free_jremref(jremref); 8315 jremref = NULL; 8316 } 8317 break; 8318 } 8319 } 8320 /* 8321 * Cancel subordinate names and free them if they do not require 8322 * journaling. 8323 */ 8324 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8325 LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) { 8326 if (mkdir->md_diradd != dap) 8327 continue; 8328 if ((jaddref = mkdir->md_jaddref) == NULL) 8329 continue; 8330 mkdir->md_jaddref = NULL; 8331 if (mkdir->md_state & MKDIR_PARENT) { 8332 if (cancel_jaddref(jaddref, NULL, 8333 &dirrem->dm_jwork) == 0) { 8334 free_jremref(dotdotremref); 8335 dotdotremref = NULL; 8336 } 8337 } else { 8338 if (cancel_jaddref(jaddref, inodedep, 8339 &dirrem->dm_jwork) == 0) { 8340 free_jremref(dotremref); 8341 dotremref = NULL; 8342 } 8343 } 8344 } 8345 } 8346 8347 if (jremref) 8348 journal_jremref(dirrem, jremref, inodedep); 8349 if (dotremref) 8350 journal_jremref(dirrem, dotremref, inodedep); 8351 if (dotdotremref) 8352 journal_jremref(dirrem, dotdotremref, NULL); 8353 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8354 free_diradd(dap, &dirrem->dm_jwork); 8355 } 8356 8357 /* 8358 * Free a diradd dependency structure. This routine must be called 8359 * with splbio interrupts blocked. 8360 */ 8361 static void 8362 free_diradd(dap, wkhd) 8363 struct diradd *dap; 8364 struct workhead *wkhd; 8365 { 8366 struct dirrem *dirrem; 8367 struct pagedep *pagedep; 8368 struct inodedep *inodedep; 8369 struct mkdir *mkdir, *nextmd; 8370 8371 mtx_assert(&lk, MA_OWNED); 8372 LIST_REMOVE(dap, da_pdlist); 8373 if (dap->da_state & ONWORKLIST) 8374 WORKLIST_REMOVE(&dap->da_list); 8375 if ((dap->da_state & DIRCHG) == 0) { 8376 pagedep = dap->da_pagedep; 8377 } else { 8378 dirrem = dap->da_previous; 8379 pagedep = dirrem->dm_pagedep; 8380 dirrem->dm_dirinum = pagedep->pd_ino; 8381 dirrem->dm_state |= COMPLETE; 8382 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8383 add_to_worklist(&dirrem->dm_list, 0); 8384 } 8385 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8386 0, &inodedep) != 0) 8387 if (inodedep->id_mkdiradd == dap) 8388 inodedep->id_mkdiradd = NULL; 8389 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8390 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 8391 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8392 if (mkdir->md_diradd != dap) 8393 continue; 8394 dap->da_state &= 8395 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8396 LIST_REMOVE(mkdir, md_mkdirs); 8397 if (mkdir->md_state & ONWORKLIST) 8398 WORKLIST_REMOVE(&mkdir->md_list); 8399 if (mkdir->md_jaddref != NULL) 8400 panic("free_diradd: Unexpected jaddref"); 8401 WORKITEM_FREE(mkdir, D_MKDIR); 8402 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8403 break; 8404 } 8405 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8406 panic("free_diradd: unfound ref"); 8407 } 8408 if (inodedep) 8409 free_inodedep(inodedep); 8410 /* 8411 * Free any journal segments waiting for the directory write. 8412 */ 8413 handle_jwork(&dap->da_jwork); 8414 WORKITEM_FREE(dap, D_DIRADD); 8415 } 8416 8417 /* 8418 * Directory entry removal dependencies. 8419 * 8420 * When removing a directory entry, the entry's inode pointer must be 8421 * zero'ed on disk before the corresponding inode's link count is decremented 8422 * (possibly freeing the inode for re-use). This dependency is handled by 8423 * updating the directory entry but delaying the inode count reduction until 8424 * after the directory block has been written to disk. After this point, the 8425 * inode count can be decremented whenever it is convenient. 8426 */ 8427 8428 /* 8429 * This routine should be called immediately after removing 8430 * a directory entry. The inode's link count should not be 8431 * decremented by the calling procedure -- the soft updates 8432 * code will do this task when it is safe. 8433 */ 8434 void 8435 softdep_setup_remove(bp, dp, ip, isrmdir) 8436 struct buf *bp; /* buffer containing directory block */ 8437 struct inode *dp; /* inode for the directory being modified */ 8438 struct inode *ip; /* inode for directory entry being removed */ 8439 int isrmdir; /* indicates if doing RMDIR */ 8440 { 8441 struct dirrem *dirrem, *prevdirrem; 8442 struct inodedep *inodedep; 8443 int direct; 8444 8445 /* 8446 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8447 * newdirrem() to setup the full directory remove which requires 8448 * isrmdir > 1. 8449 */ 8450 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8451 /* 8452 * Add the dirrem to the inodedep's pending remove list for quick 8453 * discovery later. 8454 */ 8455 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8456 &inodedep) == 0) 8457 panic("softdep_setup_remove: Lost inodedep."); 8458 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8459 dirrem->dm_state |= ONDEPLIST; 8460 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8461 8462 /* 8463 * If the COMPLETE flag is clear, then there were no active 8464 * entries and we want to roll back to a zeroed entry until 8465 * the new inode is committed to disk. If the COMPLETE flag is 8466 * set then we have deleted an entry that never made it to 8467 * disk. If the entry we deleted resulted from a name change, 8468 * then the old name still resides on disk. We cannot delete 8469 * its inode (returned to us in prevdirrem) until the zeroed 8470 * directory entry gets to disk. The new inode has never been 8471 * referenced on the disk, so can be deleted immediately. 8472 */ 8473 if ((dirrem->dm_state & COMPLETE) == 0) { 8474 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8475 dm_next); 8476 FREE_LOCK(&lk); 8477 } else { 8478 if (prevdirrem != NULL) 8479 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8480 prevdirrem, dm_next); 8481 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8482 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8483 FREE_LOCK(&lk); 8484 if (direct) 8485 handle_workitem_remove(dirrem, 0); 8486 } 8487 } 8488 8489 /* 8490 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8491 * pd_pendinghd list of a pagedep. 8492 */ 8493 static struct diradd * 8494 diradd_lookup(pagedep, offset) 8495 struct pagedep *pagedep; 8496 int offset; 8497 { 8498 struct diradd *dap; 8499 8500 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8501 if (dap->da_offset == offset) 8502 return (dap); 8503 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8504 if (dap->da_offset == offset) 8505 return (dap); 8506 return (NULL); 8507 } 8508 8509 /* 8510 * Search for a .. diradd dependency in a directory that is being removed. 8511 * If the directory was renamed to a new parent we have a diradd rather 8512 * than a mkdir for the .. entry. We need to cancel it now before 8513 * it is found in truncate(). 8514 */ 8515 static struct jremref * 8516 cancel_diradd_dotdot(ip, dirrem, jremref) 8517 struct inode *ip; 8518 struct dirrem *dirrem; 8519 struct jremref *jremref; 8520 { 8521 struct pagedep *pagedep; 8522 struct diradd *dap; 8523 struct worklist *wk; 8524 8525 if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0, 8526 &pagedep) == 0) 8527 return (jremref); 8528 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 8529 if (dap == NULL) 8530 return (jremref); 8531 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 8532 /* 8533 * Mark any journal work as belonging to the parent so it is freed 8534 * with the .. reference. 8535 */ 8536 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8537 wk->wk_state |= MKDIR_PARENT; 8538 return (NULL); 8539 } 8540 8541 /* 8542 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 8543 * replace it with a dirrem/diradd pair as a result of re-parenting a 8544 * directory. This ensures that we don't simultaneously have a mkdir and 8545 * a diradd for the same .. entry. 8546 */ 8547 static struct jremref * 8548 cancel_mkdir_dotdot(ip, dirrem, jremref) 8549 struct inode *ip; 8550 struct dirrem *dirrem; 8551 struct jremref *jremref; 8552 { 8553 struct inodedep *inodedep; 8554 struct jaddref *jaddref; 8555 struct mkdir *mkdir; 8556 struct diradd *dap; 8557 8558 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8559 &inodedep) == 0) 8560 panic("cancel_mkdir_dotdot: Lost inodedep"); 8561 dap = inodedep->id_mkdiradd; 8562 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 8563 return (jremref); 8564 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; 8565 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 8566 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 8567 break; 8568 if (mkdir == NULL) 8569 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 8570 if ((jaddref = mkdir->md_jaddref) != NULL) { 8571 mkdir->md_jaddref = NULL; 8572 jaddref->ja_state &= ~MKDIR_PARENT; 8573 if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0, 8574 &inodedep) == 0) 8575 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 8576 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 8577 journal_jremref(dirrem, jremref, inodedep); 8578 jremref = NULL; 8579 } 8580 } 8581 if (mkdir->md_state & ONWORKLIST) 8582 WORKLIST_REMOVE(&mkdir->md_list); 8583 mkdir->md_state |= ALLCOMPLETE; 8584 complete_mkdir(mkdir); 8585 return (jremref); 8586 } 8587 8588 static void 8589 journal_jremref(dirrem, jremref, inodedep) 8590 struct dirrem *dirrem; 8591 struct jremref *jremref; 8592 struct inodedep *inodedep; 8593 { 8594 8595 if (inodedep == NULL) 8596 if (inodedep_lookup(jremref->jr_list.wk_mp, 8597 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 8598 panic("journal_jremref: Lost inodedep"); 8599 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 8600 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 8601 add_to_journal(&jremref->jr_list); 8602 } 8603 8604 static void 8605 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 8606 struct dirrem *dirrem; 8607 struct jremref *jremref; 8608 struct jremref *dotremref; 8609 struct jremref *dotdotremref; 8610 { 8611 struct inodedep *inodedep; 8612 8613 8614 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 8615 &inodedep) == 0) 8616 panic("dirrem_journal: Lost inodedep"); 8617 journal_jremref(dirrem, jremref, inodedep); 8618 if (dotremref) 8619 journal_jremref(dirrem, dotremref, inodedep); 8620 if (dotdotremref) 8621 journal_jremref(dirrem, dotdotremref, NULL); 8622 } 8623 8624 /* 8625 * Allocate a new dirrem if appropriate and return it along with 8626 * its associated pagedep. Called without a lock, returns with lock. 8627 */ 8628 static struct dirrem * 8629 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 8630 struct buf *bp; /* buffer containing directory block */ 8631 struct inode *dp; /* inode for the directory being modified */ 8632 struct inode *ip; /* inode for directory entry being removed */ 8633 int isrmdir; /* indicates if doing RMDIR */ 8634 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 8635 { 8636 int offset; 8637 ufs_lbn_t lbn; 8638 struct diradd *dap; 8639 struct dirrem *dirrem; 8640 struct pagedep *pagedep; 8641 struct jremref *jremref; 8642 struct jremref *dotremref; 8643 struct jremref *dotdotremref; 8644 struct vnode *dvp; 8645 8646 /* 8647 * Whiteouts have no deletion dependencies. 8648 */ 8649 if (ip == NULL) 8650 panic("newdirrem: whiteout"); 8651 dvp = ITOV(dp); 8652 /* 8653 * If we are over our limit, try to improve the situation. 8654 * Limiting the number of dirrem structures will also limit 8655 * the number of freefile and freeblks structures. 8656 */ 8657 ACQUIRE_LOCK(&lk); 8658 if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2) 8659 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS); 8660 FREE_LOCK(&lk); 8661 dirrem = malloc(sizeof(struct dirrem), 8662 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 8663 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 8664 LIST_INIT(&dirrem->dm_jremrefhd); 8665 LIST_INIT(&dirrem->dm_jwork); 8666 dirrem->dm_state = isrmdir ? RMDIR : 0; 8667 dirrem->dm_oldinum = ip->i_number; 8668 *prevdirremp = NULL; 8669 /* 8670 * Allocate remove reference structures to track journal write 8671 * dependencies. We will always have one for the link and 8672 * when doing directories we will always have one more for dot. 8673 * When renaming a directory we skip the dotdot link change so 8674 * this is not needed. 8675 */ 8676 jremref = dotremref = dotdotremref = NULL; 8677 if (DOINGSUJ(dvp)) { 8678 if (isrmdir) { 8679 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8680 ip->i_effnlink + 2); 8681 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 8682 ip->i_effnlink + 1); 8683 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 8684 dp->i_effnlink + 1); 8685 dotdotremref->jr_state |= MKDIR_PARENT; 8686 } else 8687 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8688 ip->i_effnlink + 1); 8689 } 8690 ACQUIRE_LOCK(&lk); 8691 lbn = lblkno(dp->i_fs, dp->i_offset); 8692 offset = blkoff(dp->i_fs, dp->i_offset); 8693 pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC, 8694 &pagedep); 8695 dirrem->dm_pagedep = pagedep; 8696 dirrem->dm_offset = offset; 8697 /* 8698 * If we're renaming a .. link to a new directory, cancel any 8699 * existing MKDIR_PARENT mkdir. If it has already been canceled 8700 * the jremref is preserved for any potential diradd in this 8701 * location. This can not coincide with a rmdir. 8702 */ 8703 if (dp->i_offset == DOTDOT_OFFSET) { 8704 if (isrmdir) 8705 panic("newdirrem: .. directory change during remove?"); 8706 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 8707 } 8708 /* 8709 * If we're removing a directory search for the .. dependency now and 8710 * cancel it. Any pending journal work will be added to the dirrem 8711 * to be completed when the workitem remove completes. 8712 */ 8713 if (isrmdir) 8714 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 8715 /* 8716 * Check for a diradd dependency for the same directory entry. 8717 * If present, then both dependencies become obsolete and can 8718 * be de-allocated. 8719 */ 8720 dap = diradd_lookup(pagedep, offset); 8721 if (dap == NULL) { 8722 /* 8723 * Link the jremref structures into the dirrem so they are 8724 * written prior to the pagedep. 8725 */ 8726 if (jremref) 8727 dirrem_journal(dirrem, jremref, dotremref, 8728 dotdotremref); 8729 return (dirrem); 8730 } 8731 /* 8732 * Must be ATTACHED at this point. 8733 */ 8734 if ((dap->da_state & ATTACHED) == 0) 8735 panic("newdirrem: not ATTACHED"); 8736 if (dap->da_newinum != ip->i_number) 8737 panic("newdirrem: inum %d should be %d", 8738 ip->i_number, dap->da_newinum); 8739 /* 8740 * If we are deleting a changed name that never made it to disk, 8741 * then return the dirrem describing the previous inode (which 8742 * represents the inode currently referenced from this entry on disk). 8743 */ 8744 if ((dap->da_state & DIRCHG) != 0) { 8745 *prevdirremp = dap->da_previous; 8746 dap->da_state &= ~DIRCHG; 8747 dap->da_pagedep = pagedep; 8748 } 8749 /* 8750 * We are deleting an entry that never made it to disk. 8751 * Mark it COMPLETE so we can delete its inode immediately. 8752 */ 8753 dirrem->dm_state |= COMPLETE; 8754 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 8755 #ifdef SUJ_DEBUG 8756 if (isrmdir == 0) { 8757 struct worklist *wk; 8758 8759 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8760 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 8761 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 8762 } 8763 #endif 8764 8765 return (dirrem); 8766 } 8767 8768 /* 8769 * Directory entry change dependencies. 8770 * 8771 * Changing an existing directory entry requires that an add operation 8772 * be completed first followed by a deletion. The semantics for the addition 8773 * are identical to the description of adding a new entry above except 8774 * that the rollback is to the old inode number rather than zero. Once 8775 * the addition dependency is completed, the removal is done as described 8776 * in the removal routine above. 8777 */ 8778 8779 /* 8780 * This routine should be called immediately after changing 8781 * a directory entry. The inode's link count should not be 8782 * decremented by the calling procedure -- the soft updates 8783 * code will perform this task when it is safe. 8784 */ 8785 void 8786 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 8787 struct buf *bp; /* buffer containing directory block */ 8788 struct inode *dp; /* inode for the directory being modified */ 8789 struct inode *ip; /* inode for directory entry being removed */ 8790 ino_t newinum; /* new inode number for changed entry */ 8791 int isrmdir; /* indicates if doing RMDIR */ 8792 { 8793 int offset; 8794 struct diradd *dap = NULL; 8795 struct dirrem *dirrem, *prevdirrem; 8796 struct pagedep *pagedep; 8797 struct inodedep *inodedep; 8798 struct jaddref *jaddref; 8799 struct mount *mp; 8800 8801 offset = blkoff(dp->i_fs, dp->i_offset); 8802 mp = UFSTOVFS(dp->i_ump); 8803 8804 /* 8805 * Whiteouts do not need diradd dependencies. 8806 */ 8807 if (newinum != WINO) { 8808 dap = malloc(sizeof(struct diradd), 8809 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 8810 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8811 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 8812 dap->da_offset = offset; 8813 dap->da_newinum = newinum; 8814 LIST_INIT(&dap->da_jwork); 8815 } 8816 8817 /* 8818 * Allocate a new dirrem and ACQUIRE_LOCK. 8819 */ 8820 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8821 pagedep = dirrem->dm_pagedep; 8822 /* 8823 * The possible values for isrmdir: 8824 * 0 - non-directory file rename 8825 * 1 - directory rename within same directory 8826 * inum - directory rename to new directory of given inode number 8827 * When renaming to a new directory, we are both deleting and 8828 * creating a new directory entry, so the link count on the new 8829 * directory should not change. Thus we do not need the followup 8830 * dirrem which is usually done in handle_workitem_remove. We set 8831 * the DIRCHG flag to tell handle_workitem_remove to skip the 8832 * followup dirrem. 8833 */ 8834 if (isrmdir > 1) 8835 dirrem->dm_state |= DIRCHG; 8836 8837 /* 8838 * Whiteouts have no additional dependencies, 8839 * so just put the dirrem on the correct list. 8840 */ 8841 if (newinum == WINO) { 8842 if ((dirrem->dm_state & COMPLETE) == 0) { 8843 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 8844 dm_next); 8845 } else { 8846 dirrem->dm_dirinum = pagedep->pd_ino; 8847 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8848 add_to_worklist(&dirrem->dm_list, 0); 8849 } 8850 FREE_LOCK(&lk); 8851 return; 8852 } 8853 /* 8854 * Add the dirrem to the inodedep's pending remove list for quick 8855 * discovery later. A valid nlinkdelta ensures that this lookup 8856 * will not fail. 8857 */ 8858 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 8859 panic("softdep_setup_directory_change: Lost inodedep."); 8860 dirrem->dm_state |= ONDEPLIST; 8861 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8862 8863 /* 8864 * If the COMPLETE flag is clear, then there were no active 8865 * entries and we want to roll back to the previous inode until 8866 * the new inode is committed to disk. If the COMPLETE flag is 8867 * set, then we have deleted an entry that never made it to disk. 8868 * If the entry we deleted resulted from a name change, then the old 8869 * inode reference still resides on disk. Any rollback that we do 8870 * needs to be to that old inode (returned to us in prevdirrem). If 8871 * the entry we deleted resulted from a create, then there is 8872 * no entry on the disk, so we want to roll back to zero rather 8873 * than the uncommitted inode. In either of the COMPLETE cases we 8874 * want to immediately free the unwritten and unreferenced inode. 8875 */ 8876 if ((dirrem->dm_state & COMPLETE) == 0) { 8877 dap->da_previous = dirrem; 8878 } else { 8879 if (prevdirrem != NULL) { 8880 dap->da_previous = prevdirrem; 8881 } else { 8882 dap->da_state &= ~DIRCHG; 8883 dap->da_pagedep = pagedep; 8884 } 8885 dirrem->dm_dirinum = pagedep->pd_ino; 8886 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8887 add_to_worklist(&dirrem->dm_list, 0); 8888 } 8889 /* 8890 * Lookup the jaddref for this journal entry. We must finish 8891 * initializing it and make the diradd write dependent on it. 8892 * If we're not journaling, put it on the id_bufwait list if the 8893 * inode is not yet written. If it is written, do the post-inode 8894 * write processing to put it on the id_pendinghd list. 8895 */ 8896 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8897 if (MOUNTEDSUJ(mp)) { 8898 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8899 inoreflst); 8900 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8901 ("softdep_setup_directory_change: bad jaddref %p", 8902 jaddref)); 8903 jaddref->ja_diroff = dp->i_offset; 8904 jaddref->ja_diradd = dap; 8905 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 8906 dap, da_pdlist); 8907 add_to_journal(&jaddref->ja_list); 8908 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8909 dap->da_state |= COMPLETE; 8910 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8911 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 8912 } else { 8913 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 8914 dap, da_pdlist); 8915 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8916 } 8917 /* 8918 * If we're making a new name for a directory that has not been 8919 * committed when need to move the dot and dotdot references to 8920 * this new name. 8921 */ 8922 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 8923 merge_diradd(inodedep, dap); 8924 FREE_LOCK(&lk); 8925 } 8926 8927 /* 8928 * Called whenever the link count on an inode is changed. 8929 * It creates an inode dependency so that the new reference(s) 8930 * to the inode cannot be committed to disk until the updated 8931 * inode has been written. 8932 */ 8933 void 8934 softdep_change_linkcnt(ip) 8935 struct inode *ip; /* the inode with the increased link count */ 8936 { 8937 struct inodedep *inodedep; 8938 int dflags; 8939 8940 ACQUIRE_LOCK(&lk); 8941 dflags = DEPALLOC; 8942 if (IS_SNAPSHOT(ip)) 8943 dflags |= NODELAY; 8944 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 8945 if (ip->i_nlink < ip->i_effnlink) 8946 panic("softdep_change_linkcnt: bad delta"); 8947 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 8948 FREE_LOCK(&lk); 8949 } 8950 8951 /* 8952 * Attach a sbdep dependency to the superblock buf so that we can keep 8953 * track of the head of the linked list of referenced but unlinked inodes. 8954 */ 8955 void 8956 softdep_setup_sbupdate(ump, fs, bp) 8957 struct ufsmount *ump; 8958 struct fs *fs; 8959 struct buf *bp; 8960 { 8961 struct sbdep *sbdep; 8962 struct worklist *wk; 8963 8964 if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0) 8965 return; 8966 LIST_FOREACH(wk, &bp->b_dep, wk_list) 8967 if (wk->wk_type == D_SBDEP) 8968 break; 8969 if (wk != NULL) 8970 return; 8971 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 8972 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 8973 sbdep->sb_fs = fs; 8974 sbdep->sb_ump = ump; 8975 ACQUIRE_LOCK(&lk); 8976 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 8977 FREE_LOCK(&lk); 8978 } 8979 8980 /* 8981 * Return the first unlinked inodedep which is ready to be the head of the 8982 * list. The inodedep and all those after it must have valid next pointers. 8983 */ 8984 static struct inodedep * 8985 first_unlinked_inodedep(ump) 8986 struct ufsmount *ump; 8987 { 8988 struct inodedep *inodedep; 8989 struct inodedep *idp; 8990 8991 mtx_assert(&lk, MA_OWNED); 8992 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 8993 inodedep; inodedep = idp) { 8994 if ((inodedep->id_state & UNLINKNEXT) == 0) 8995 return (NULL); 8996 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 8997 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 8998 break; 8999 if ((inodedep->id_state & UNLINKPREV) == 0) 9000 break; 9001 } 9002 return (inodedep); 9003 } 9004 9005 /* 9006 * Set the sujfree unlinked head pointer prior to writing a superblock. 9007 */ 9008 static void 9009 initiate_write_sbdep(sbdep) 9010 struct sbdep *sbdep; 9011 { 9012 struct inodedep *inodedep; 9013 struct fs *bpfs; 9014 struct fs *fs; 9015 9016 bpfs = sbdep->sb_fs; 9017 fs = sbdep->sb_ump->um_fs; 9018 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9019 if (inodedep) { 9020 fs->fs_sujfree = inodedep->id_ino; 9021 inodedep->id_state |= UNLINKPREV; 9022 } else 9023 fs->fs_sujfree = 0; 9024 bpfs->fs_sujfree = fs->fs_sujfree; 9025 } 9026 9027 /* 9028 * After a superblock is written determine whether it must be written again 9029 * due to a changing unlinked list head. 9030 */ 9031 static int 9032 handle_written_sbdep(sbdep, bp) 9033 struct sbdep *sbdep; 9034 struct buf *bp; 9035 { 9036 struct inodedep *inodedep; 9037 struct mount *mp; 9038 struct fs *fs; 9039 9040 mtx_assert(&lk, MA_OWNED); 9041 fs = sbdep->sb_fs; 9042 mp = UFSTOVFS(sbdep->sb_ump); 9043 /* 9044 * If the superblock doesn't match the in-memory list start over. 9045 */ 9046 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9047 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9048 (inodedep == NULL && fs->fs_sujfree != 0)) { 9049 bdirty(bp); 9050 return (1); 9051 } 9052 WORKITEM_FREE(sbdep, D_SBDEP); 9053 if (fs->fs_sujfree == 0) 9054 return (0); 9055 /* 9056 * Now that we have a record of this inode in stable store allow it 9057 * to be written to free up pending work. Inodes may see a lot of 9058 * write activity after they are unlinked which we must not hold up. 9059 */ 9060 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9061 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9062 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9063 inodedep, inodedep->id_state); 9064 if (inodedep->id_state & UNLINKONLIST) 9065 break; 9066 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9067 } 9068 9069 return (0); 9070 } 9071 9072 /* 9073 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9074 */ 9075 static void 9076 unlinked_inodedep(mp, inodedep) 9077 struct mount *mp; 9078 struct inodedep *inodedep; 9079 { 9080 struct ufsmount *ump; 9081 9082 mtx_assert(&lk, MA_OWNED); 9083 if (MOUNTEDSUJ(mp) == 0) 9084 return; 9085 ump = VFSTOUFS(mp); 9086 ump->um_fs->fs_fmod = 1; 9087 if (inodedep->id_state & UNLINKED) 9088 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9089 inodedep->id_state |= UNLINKED; 9090 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9091 } 9092 9093 /* 9094 * Remove an inodedep from the unlinked inodedep list. This may require 9095 * disk writes if the inode has made it that far. 9096 */ 9097 static void 9098 clear_unlinked_inodedep(inodedep) 9099 struct inodedep *inodedep; 9100 { 9101 struct ufsmount *ump; 9102 struct inodedep *idp; 9103 struct inodedep *idn; 9104 struct fs *fs; 9105 struct buf *bp; 9106 ino_t ino; 9107 ino_t nino; 9108 ino_t pino; 9109 int error; 9110 9111 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9112 fs = ump->um_fs; 9113 ino = inodedep->id_ino; 9114 error = 0; 9115 for (;;) { 9116 mtx_assert(&lk, MA_OWNED); 9117 KASSERT((inodedep->id_state & UNLINKED) != 0, 9118 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9119 inodedep)); 9120 /* 9121 * If nothing has yet been written simply remove us from 9122 * the in memory list and return. This is the most common 9123 * case where handle_workitem_remove() loses the final 9124 * reference. 9125 */ 9126 if ((inodedep->id_state & UNLINKLINKS) == 0) 9127 break; 9128 /* 9129 * If we have a NEXT pointer and no PREV pointer we can simply 9130 * clear NEXT's PREV and remove ourselves from the list. Be 9131 * careful not to clear PREV if the superblock points at 9132 * next as well. 9133 */ 9134 idn = TAILQ_NEXT(inodedep, id_unlinked); 9135 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9136 if (idn && fs->fs_sujfree != idn->id_ino) 9137 idn->id_state &= ~UNLINKPREV; 9138 break; 9139 } 9140 /* 9141 * Here we have an inodedep which is actually linked into 9142 * the list. We must remove it by forcing a write to the 9143 * link before us, whether it be the superblock or an inode. 9144 * Unfortunately the list may change while we're waiting 9145 * on the buf lock for either resource so we must loop until 9146 * we lock the right one. If both the superblock and an 9147 * inode point to this inode we must clear the inode first 9148 * followed by the superblock. 9149 */ 9150 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9151 pino = 0; 9152 if (idp && (idp->id_state & UNLINKNEXT)) 9153 pino = idp->id_ino; 9154 FREE_LOCK(&lk); 9155 if (pino == 0) 9156 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9157 (int)fs->fs_sbsize, 0, 0, 0); 9158 else 9159 error = bread(ump->um_devvp, 9160 fsbtodb(fs, ino_to_fsba(fs, pino)), 9161 (int)fs->fs_bsize, NOCRED, &bp); 9162 ACQUIRE_LOCK(&lk); 9163 if (error) 9164 break; 9165 /* If the list has changed restart the loop. */ 9166 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9167 nino = 0; 9168 if (idp && (idp->id_state & UNLINKNEXT)) 9169 nino = idp->id_ino; 9170 if (nino != pino || 9171 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9172 FREE_LOCK(&lk); 9173 brelse(bp); 9174 ACQUIRE_LOCK(&lk); 9175 continue; 9176 } 9177 nino = 0; 9178 idn = TAILQ_NEXT(inodedep, id_unlinked); 9179 if (idn) 9180 nino = idn->id_ino; 9181 /* 9182 * Remove us from the in memory list. After this we cannot 9183 * access the inodedep. 9184 */ 9185 KASSERT((inodedep->id_state & UNLINKED) != 0, 9186 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9187 inodedep)); 9188 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9189 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9190 FREE_LOCK(&lk); 9191 /* 9192 * The predecessor's next pointer is manually updated here 9193 * so that the NEXT flag is never cleared for an element 9194 * that is in the list. 9195 */ 9196 if (pino == 0) { 9197 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9198 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9199 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9200 bp); 9201 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9202 ((struct ufs1_dinode *)bp->b_data + 9203 ino_to_fsbo(fs, pino))->di_freelink = nino; 9204 else 9205 ((struct ufs2_dinode *)bp->b_data + 9206 ino_to_fsbo(fs, pino))->di_freelink = nino; 9207 /* 9208 * If the bwrite fails we have no recourse to recover. The 9209 * filesystem is corrupted already. 9210 */ 9211 bwrite(bp); 9212 ACQUIRE_LOCK(&lk); 9213 /* 9214 * If the superblock pointer still needs to be cleared force 9215 * a write here. 9216 */ 9217 if (fs->fs_sujfree == ino) { 9218 FREE_LOCK(&lk); 9219 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9220 (int)fs->fs_sbsize, 0, 0, 0); 9221 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9222 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9223 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9224 bp); 9225 bwrite(bp); 9226 ACQUIRE_LOCK(&lk); 9227 } 9228 9229 if (fs->fs_sujfree != ino) 9230 return; 9231 panic("clear_unlinked_inodedep: Failed to clear free head"); 9232 } 9233 if (inodedep->id_ino == fs->fs_sujfree) 9234 panic("clear_unlinked_inodedep: Freeing head of free list"); 9235 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9236 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9237 return; 9238 } 9239 9240 /* 9241 * This workitem decrements the inode's link count. 9242 * If the link count reaches zero, the file is removed. 9243 */ 9244 static int 9245 handle_workitem_remove(dirrem, flags) 9246 struct dirrem *dirrem; 9247 int flags; 9248 { 9249 struct inodedep *inodedep; 9250 struct workhead dotdotwk; 9251 struct worklist *wk; 9252 struct ufsmount *ump; 9253 struct mount *mp; 9254 struct vnode *vp; 9255 struct inode *ip; 9256 ino_t oldinum; 9257 9258 if (dirrem->dm_state & ONWORKLIST) 9259 panic("handle_workitem_remove: dirrem %p still on worklist", 9260 dirrem); 9261 oldinum = dirrem->dm_oldinum; 9262 mp = dirrem->dm_list.wk_mp; 9263 ump = VFSTOUFS(mp); 9264 flags |= LK_EXCLUSIVE; 9265 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9266 return (EBUSY); 9267 ip = VTOI(vp); 9268 ACQUIRE_LOCK(&lk); 9269 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9270 panic("handle_workitem_remove: lost inodedep"); 9271 if (dirrem->dm_state & ONDEPLIST) 9272 LIST_REMOVE(dirrem, dm_inonext); 9273 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9274 ("handle_workitem_remove: Journal entries not written.")); 9275 9276 /* 9277 * Move all dependencies waiting on the remove to complete 9278 * from the dirrem to the inode inowait list to be completed 9279 * after the inode has been updated and written to disk. Any 9280 * marked MKDIR_PARENT are saved to be completed when the .. ref 9281 * is removed. 9282 */ 9283 LIST_INIT(&dotdotwk); 9284 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9285 WORKLIST_REMOVE(wk); 9286 if (wk->wk_state & MKDIR_PARENT) { 9287 wk->wk_state &= ~MKDIR_PARENT; 9288 WORKLIST_INSERT(&dotdotwk, wk); 9289 continue; 9290 } 9291 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9292 } 9293 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9294 /* 9295 * Normal file deletion. 9296 */ 9297 if ((dirrem->dm_state & RMDIR) == 0) { 9298 ip->i_nlink--; 9299 DIP_SET(ip, i_nlink, ip->i_nlink); 9300 ip->i_flag |= IN_CHANGE; 9301 if (ip->i_nlink < ip->i_effnlink) 9302 panic("handle_workitem_remove: bad file delta"); 9303 if (ip->i_nlink == 0) 9304 unlinked_inodedep(mp, inodedep); 9305 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9306 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9307 ("handle_workitem_remove: worklist not empty. %s", 9308 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9309 WORKITEM_FREE(dirrem, D_DIRREM); 9310 FREE_LOCK(&lk); 9311 goto out; 9312 } 9313 /* 9314 * Directory deletion. Decrement reference count for both the 9315 * just deleted parent directory entry and the reference for ".". 9316 * Arrange to have the reference count on the parent decremented 9317 * to account for the loss of "..". 9318 */ 9319 ip->i_nlink -= 2; 9320 DIP_SET(ip, i_nlink, ip->i_nlink); 9321 ip->i_flag |= IN_CHANGE; 9322 if (ip->i_nlink < ip->i_effnlink) 9323 panic("handle_workitem_remove: bad dir delta"); 9324 if (ip->i_nlink == 0) 9325 unlinked_inodedep(mp, inodedep); 9326 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9327 /* 9328 * Rename a directory to a new parent. Since, we are both deleting 9329 * and creating a new directory entry, the link count on the new 9330 * directory should not change. Thus we skip the followup dirrem. 9331 */ 9332 if (dirrem->dm_state & DIRCHG) { 9333 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9334 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9335 WORKITEM_FREE(dirrem, D_DIRREM); 9336 FREE_LOCK(&lk); 9337 goto out; 9338 } 9339 dirrem->dm_state = ONDEPLIST; 9340 dirrem->dm_oldinum = dirrem->dm_dirinum; 9341 /* 9342 * Place the dirrem on the parent's diremhd list. 9343 */ 9344 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9345 panic("handle_workitem_remove: lost dir inodedep"); 9346 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9347 /* 9348 * If the allocated inode has never been written to disk, then 9349 * the on-disk inode is zero'ed and we can remove the file 9350 * immediately. When journaling if the inode has been marked 9351 * unlinked and not DEPCOMPLETE we know it can never be written. 9352 */ 9353 inodedep_lookup(mp, oldinum, 0, &inodedep); 9354 if (inodedep == NULL || 9355 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9356 check_inode_unwritten(inodedep)) { 9357 FREE_LOCK(&lk); 9358 vput(vp); 9359 return handle_workitem_remove(dirrem, flags); 9360 } 9361 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9362 FREE_LOCK(&lk); 9363 ip->i_flag |= IN_CHANGE; 9364 out: 9365 ffs_update(vp, 0); 9366 vput(vp); 9367 return (0); 9368 } 9369 9370 /* 9371 * Inode de-allocation dependencies. 9372 * 9373 * When an inode's link count is reduced to zero, it can be de-allocated. We 9374 * found it convenient to postpone de-allocation until after the inode is 9375 * written to disk with its new link count (zero). At this point, all of the 9376 * on-disk inode's block pointers are nullified and, with careful dependency 9377 * list ordering, all dependencies related to the inode will be satisfied and 9378 * the corresponding dependency structures de-allocated. So, if/when the 9379 * inode is reused, there will be no mixing of old dependencies with new 9380 * ones. This artificial dependency is set up by the block de-allocation 9381 * procedure above (softdep_setup_freeblocks) and completed by the 9382 * following procedure. 9383 */ 9384 static void 9385 handle_workitem_freefile(freefile) 9386 struct freefile *freefile; 9387 { 9388 struct workhead wkhd; 9389 struct fs *fs; 9390 struct inodedep *idp; 9391 struct ufsmount *ump; 9392 int error; 9393 9394 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9395 fs = ump->um_fs; 9396 #ifdef DEBUG 9397 ACQUIRE_LOCK(&lk); 9398 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9399 FREE_LOCK(&lk); 9400 if (error) 9401 panic("handle_workitem_freefile: inodedep %p survived", idp); 9402 #endif 9403 UFS_LOCK(ump); 9404 fs->fs_pendinginodes -= 1; 9405 UFS_UNLOCK(ump); 9406 LIST_INIT(&wkhd); 9407 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9408 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9409 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9410 softdep_error("handle_workitem_freefile", error); 9411 ACQUIRE_LOCK(&lk); 9412 WORKITEM_FREE(freefile, D_FREEFILE); 9413 FREE_LOCK(&lk); 9414 } 9415 9416 9417 /* 9418 * Helper function which unlinks marker element from work list and returns 9419 * the next element on the list. 9420 */ 9421 static __inline struct worklist * 9422 markernext(struct worklist *marker) 9423 { 9424 struct worklist *next; 9425 9426 next = LIST_NEXT(marker, wk_list); 9427 LIST_REMOVE(marker, wk_list); 9428 return next; 9429 } 9430 9431 /* 9432 * Disk writes. 9433 * 9434 * The dependency structures constructed above are most actively used when file 9435 * system blocks are written to disk. No constraints are placed on when a 9436 * block can be written, but unsatisfied update dependencies are made safe by 9437 * modifying (or replacing) the source memory for the duration of the disk 9438 * write. When the disk write completes, the memory block is again brought 9439 * up-to-date. 9440 * 9441 * In-core inode structure reclamation. 9442 * 9443 * Because there are a finite number of "in-core" inode structures, they are 9444 * reused regularly. By transferring all inode-related dependencies to the 9445 * in-memory inode block and indexing them separately (via "inodedep"s), we 9446 * can allow "in-core" inode structures to be reused at any time and avoid 9447 * any increase in contention. 9448 * 9449 * Called just before entering the device driver to initiate a new disk I/O. 9450 * The buffer must be locked, thus, no I/O completion operations can occur 9451 * while we are manipulating its associated dependencies. 9452 */ 9453 static void 9454 softdep_disk_io_initiation(bp) 9455 struct buf *bp; /* structure describing disk write to occur */ 9456 { 9457 struct worklist *wk; 9458 struct worklist marker; 9459 struct inodedep *inodedep; 9460 struct freeblks *freeblks; 9461 struct jblkdep *jblkdep; 9462 struct newblk *newblk; 9463 9464 /* 9465 * We only care about write operations. There should never 9466 * be dependencies for reads. 9467 */ 9468 if (bp->b_iocmd != BIO_WRITE) 9469 panic("softdep_disk_io_initiation: not write"); 9470 9471 if (bp->b_vflags & BV_BKGRDINPROG) 9472 panic("softdep_disk_io_initiation: Writing buffer with " 9473 "background write in progress: %p", bp); 9474 9475 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9476 PHOLD(curproc); /* Don't swap out kernel stack */ 9477 9478 ACQUIRE_LOCK(&lk); 9479 /* 9480 * Do any necessary pre-I/O processing. 9481 */ 9482 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9483 wk = markernext(&marker)) { 9484 LIST_INSERT_AFTER(wk, &marker, wk_list); 9485 switch (wk->wk_type) { 9486 9487 case D_PAGEDEP: 9488 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9489 continue; 9490 9491 case D_INODEDEP: 9492 inodedep = WK_INODEDEP(wk); 9493 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9494 initiate_write_inodeblock_ufs1(inodedep, bp); 9495 else 9496 initiate_write_inodeblock_ufs2(inodedep, bp); 9497 continue; 9498 9499 case D_INDIRDEP: 9500 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 9501 continue; 9502 9503 case D_BMSAFEMAP: 9504 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 9505 continue; 9506 9507 case D_JSEG: 9508 WK_JSEG(wk)->js_buf = NULL; 9509 continue; 9510 9511 case D_FREEBLKS: 9512 freeblks = WK_FREEBLKS(wk); 9513 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 9514 /* 9515 * We have to wait for the freeblks to be journaled 9516 * before we can write an inodeblock with updated 9517 * pointers. Be careful to arrange the marker so 9518 * we revisit the freeblks if it's not removed by 9519 * the first jwait(). 9520 */ 9521 if (jblkdep != NULL) { 9522 LIST_REMOVE(&marker, wk_list); 9523 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9524 jwait(&jblkdep->jb_list, MNT_WAIT); 9525 } 9526 continue; 9527 case D_ALLOCDIRECT: 9528 case D_ALLOCINDIR: 9529 /* 9530 * We have to wait for the jnewblk to be journaled 9531 * before we can write to a block if the contents 9532 * may be confused with an earlier file's indirect 9533 * at recovery time. Handle the marker as described 9534 * above. 9535 */ 9536 newblk = WK_NEWBLK(wk); 9537 if (newblk->nb_jnewblk != NULL && 9538 indirblk_lookup(newblk->nb_list.wk_mp, 9539 newblk->nb_newblkno)) { 9540 LIST_REMOVE(&marker, wk_list); 9541 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9542 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 9543 } 9544 continue; 9545 9546 case D_SBDEP: 9547 initiate_write_sbdep(WK_SBDEP(wk)); 9548 continue; 9549 9550 case D_MKDIR: 9551 case D_FREEWORK: 9552 case D_FREEDEP: 9553 case D_JSEGDEP: 9554 continue; 9555 9556 default: 9557 panic("handle_disk_io_initiation: Unexpected type %s", 9558 TYPENAME(wk->wk_type)); 9559 /* NOTREACHED */ 9560 } 9561 } 9562 FREE_LOCK(&lk); 9563 PRELE(curproc); /* Allow swapout of kernel stack */ 9564 } 9565 9566 /* 9567 * Called from within the procedure above to deal with unsatisfied 9568 * allocation dependencies in a directory. The buffer must be locked, 9569 * thus, no I/O completion operations can occur while we are 9570 * manipulating its associated dependencies. 9571 */ 9572 static void 9573 initiate_write_filepage(pagedep, bp) 9574 struct pagedep *pagedep; 9575 struct buf *bp; 9576 { 9577 struct jremref *jremref; 9578 struct jmvref *jmvref; 9579 struct dirrem *dirrem; 9580 struct diradd *dap; 9581 struct direct *ep; 9582 int i; 9583 9584 if (pagedep->pd_state & IOSTARTED) { 9585 /* 9586 * This can only happen if there is a driver that does not 9587 * understand chaining. Here biodone will reissue the call 9588 * to strategy for the incomplete buffers. 9589 */ 9590 printf("initiate_write_filepage: already started\n"); 9591 return; 9592 } 9593 pagedep->pd_state |= IOSTARTED; 9594 /* 9595 * Wait for all journal remove dependencies to hit the disk. 9596 * We can not allow any potentially conflicting directory adds 9597 * to be visible before removes and rollback is too difficult. 9598 * lk may be dropped and re-acquired, however we hold the buf 9599 * locked so the dependency can not go away. 9600 */ 9601 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 9602 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 9603 jwait(&jremref->jr_list, MNT_WAIT); 9604 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 9605 jwait(&jmvref->jm_list, MNT_WAIT); 9606 for (i = 0; i < DAHASHSZ; i++) { 9607 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 9608 ep = (struct direct *) 9609 ((char *)bp->b_data + dap->da_offset); 9610 if (ep->d_ino != dap->da_newinum) 9611 panic("%s: dir inum %d != new %d", 9612 "initiate_write_filepage", 9613 ep->d_ino, dap->da_newinum); 9614 if (dap->da_state & DIRCHG) 9615 ep->d_ino = dap->da_previous->dm_oldinum; 9616 else 9617 ep->d_ino = 0; 9618 dap->da_state &= ~ATTACHED; 9619 dap->da_state |= UNDONE; 9620 } 9621 } 9622 } 9623 9624 /* 9625 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 9626 * Note that any bug fixes made to this routine must be done in the 9627 * version found below. 9628 * 9629 * Called from within the procedure above to deal with unsatisfied 9630 * allocation dependencies in an inodeblock. The buffer must be 9631 * locked, thus, no I/O completion operations can occur while we 9632 * are manipulating its associated dependencies. 9633 */ 9634 static void 9635 initiate_write_inodeblock_ufs1(inodedep, bp) 9636 struct inodedep *inodedep; 9637 struct buf *bp; /* The inode block */ 9638 { 9639 struct allocdirect *adp, *lastadp; 9640 struct ufs1_dinode *dp; 9641 struct ufs1_dinode *sip; 9642 struct inoref *inoref; 9643 struct fs *fs; 9644 ufs_lbn_t i; 9645 #ifdef INVARIANTS 9646 ufs_lbn_t prevlbn = 0; 9647 #endif 9648 int deplist; 9649 9650 if (inodedep->id_state & IOSTARTED) 9651 panic("initiate_write_inodeblock_ufs1: already started"); 9652 inodedep->id_state |= IOSTARTED; 9653 fs = inodedep->id_fs; 9654 dp = (struct ufs1_dinode *)bp->b_data + 9655 ino_to_fsbo(fs, inodedep->id_ino); 9656 9657 /* 9658 * If we're on the unlinked list but have not yet written our 9659 * next pointer initialize it here. 9660 */ 9661 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 9662 struct inodedep *inon; 9663 9664 inon = TAILQ_NEXT(inodedep, id_unlinked); 9665 dp->di_freelink = inon ? inon->id_ino : 0; 9666 } 9667 /* 9668 * If the bitmap is not yet written, then the allocated 9669 * inode cannot be written to disk. 9670 */ 9671 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 9672 if (inodedep->id_savedino1 != NULL) 9673 panic("initiate_write_inodeblock_ufs1: I/O underway"); 9674 FREE_LOCK(&lk); 9675 sip = malloc(sizeof(struct ufs1_dinode), 9676 M_SAVEDINO, M_SOFTDEP_FLAGS); 9677 ACQUIRE_LOCK(&lk); 9678 inodedep->id_savedino1 = sip; 9679 *inodedep->id_savedino1 = *dp; 9680 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 9681 dp->di_gen = inodedep->id_savedino1->di_gen; 9682 dp->di_freelink = inodedep->id_savedino1->di_freelink; 9683 return; 9684 } 9685 /* 9686 * If no dependencies, then there is nothing to roll back. 9687 */ 9688 inodedep->id_savedsize = dp->di_size; 9689 inodedep->id_savedextsize = 0; 9690 inodedep->id_savednlink = dp->di_nlink; 9691 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 9692 TAILQ_EMPTY(&inodedep->id_inoreflst)) 9693 return; 9694 /* 9695 * Revert the link count to that of the first unwritten journal entry. 9696 */ 9697 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 9698 if (inoref) 9699 dp->di_nlink = inoref->if_nlink; 9700 /* 9701 * Set the dependencies to busy. 9702 */ 9703 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9704 adp = TAILQ_NEXT(adp, ad_next)) { 9705 #ifdef INVARIANTS 9706 if (deplist != 0 && prevlbn >= adp->ad_offset) 9707 panic("softdep_write_inodeblock: lbn order"); 9708 prevlbn = adp->ad_offset; 9709 if (adp->ad_offset < NDADDR && 9710 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 9711 panic("%s: direct pointer #%jd mismatch %d != %jd", 9712 "softdep_write_inodeblock", 9713 (intmax_t)adp->ad_offset, 9714 dp->di_db[adp->ad_offset], 9715 (intmax_t)adp->ad_newblkno); 9716 if (adp->ad_offset >= NDADDR && 9717 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 9718 panic("%s: indirect pointer #%jd mismatch %d != %jd", 9719 "softdep_write_inodeblock", 9720 (intmax_t)adp->ad_offset - NDADDR, 9721 dp->di_ib[adp->ad_offset - NDADDR], 9722 (intmax_t)adp->ad_newblkno); 9723 deplist |= 1 << adp->ad_offset; 9724 if ((adp->ad_state & ATTACHED) == 0) 9725 panic("softdep_write_inodeblock: Unknown state 0x%x", 9726 adp->ad_state); 9727 #endif /* INVARIANTS */ 9728 adp->ad_state &= ~ATTACHED; 9729 adp->ad_state |= UNDONE; 9730 } 9731 /* 9732 * The on-disk inode cannot claim to be any larger than the last 9733 * fragment that has been written. Otherwise, the on-disk inode 9734 * might have fragments that were not the last block in the file 9735 * which would corrupt the filesystem. 9736 */ 9737 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9738 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 9739 if (adp->ad_offset >= NDADDR) 9740 break; 9741 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 9742 /* keep going until hitting a rollback to a frag */ 9743 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 9744 continue; 9745 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 9746 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 9747 #ifdef INVARIANTS 9748 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 9749 panic("softdep_write_inodeblock: lost dep1"); 9750 #endif /* INVARIANTS */ 9751 dp->di_db[i] = 0; 9752 } 9753 for (i = 0; i < NIADDR; i++) { 9754 #ifdef INVARIANTS 9755 if (dp->di_ib[i] != 0 && 9756 (deplist & ((1 << NDADDR) << i)) == 0) 9757 panic("softdep_write_inodeblock: lost dep2"); 9758 #endif /* INVARIANTS */ 9759 dp->di_ib[i] = 0; 9760 } 9761 return; 9762 } 9763 /* 9764 * If we have zero'ed out the last allocated block of the file, 9765 * roll back the size to the last currently allocated block. 9766 * We know that this last allocated block is a full-sized as 9767 * we already checked for fragments in the loop above. 9768 */ 9769 if (lastadp != NULL && 9770 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 9771 for (i = lastadp->ad_offset; i >= 0; i--) 9772 if (dp->di_db[i] != 0) 9773 break; 9774 dp->di_size = (i + 1) * fs->fs_bsize; 9775 } 9776 /* 9777 * The only dependencies are for indirect blocks. 9778 * 9779 * The file size for indirect block additions is not guaranteed. 9780 * Such a guarantee would be non-trivial to achieve. The conventional 9781 * synchronous write implementation also does not make this guarantee. 9782 * Fsck should catch and fix discrepancies. Arguably, the file size 9783 * can be over-estimated without destroying integrity when the file 9784 * moves into the indirect blocks (i.e., is large). If we want to 9785 * postpone fsck, we are stuck with this argument. 9786 */ 9787 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 9788 dp->di_ib[adp->ad_offset - NDADDR] = 0; 9789 } 9790 9791 /* 9792 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 9793 * Note that any bug fixes made to this routine must be done in the 9794 * version found above. 9795 * 9796 * Called from within the procedure above to deal with unsatisfied 9797 * allocation dependencies in an inodeblock. The buffer must be 9798 * locked, thus, no I/O completion operations can occur while we 9799 * are manipulating its associated dependencies. 9800 */ 9801 static void 9802 initiate_write_inodeblock_ufs2(inodedep, bp) 9803 struct inodedep *inodedep; 9804 struct buf *bp; /* The inode block */ 9805 { 9806 struct allocdirect *adp, *lastadp; 9807 struct ufs2_dinode *dp; 9808 struct ufs2_dinode *sip; 9809 struct inoref *inoref; 9810 struct fs *fs; 9811 ufs_lbn_t i; 9812 #ifdef INVARIANTS 9813 ufs_lbn_t prevlbn = 0; 9814 #endif 9815 int deplist; 9816 9817 if (inodedep->id_state & IOSTARTED) 9818 panic("initiate_write_inodeblock_ufs2: already started"); 9819 inodedep->id_state |= IOSTARTED; 9820 fs = inodedep->id_fs; 9821 dp = (struct ufs2_dinode *)bp->b_data + 9822 ino_to_fsbo(fs, inodedep->id_ino); 9823 9824 /* 9825 * If we're on the unlinked list but have not yet written our 9826 * next pointer initialize it here. 9827 */ 9828 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 9829 struct inodedep *inon; 9830 9831 inon = TAILQ_NEXT(inodedep, id_unlinked); 9832 dp->di_freelink = inon ? inon->id_ino : 0; 9833 } 9834 /* 9835 * If the bitmap is not yet written, then the allocated 9836 * inode cannot be written to disk. 9837 */ 9838 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 9839 if (inodedep->id_savedino2 != NULL) 9840 panic("initiate_write_inodeblock_ufs2: I/O underway"); 9841 FREE_LOCK(&lk); 9842 sip = malloc(sizeof(struct ufs2_dinode), 9843 M_SAVEDINO, M_SOFTDEP_FLAGS); 9844 ACQUIRE_LOCK(&lk); 9845 inodedep->id_savedino2 = sip; 9846 *inodedep->id_savedino2 = *dp; 9847 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 9848 dp->di_gen = inodedep->id_savedino2->di_gen; 9849 dp->di_freelink = inodedep->id_savedino2->di_freelink; 9850 return; 9851 } 9852 /* 9853 * If no dependencies, then there is nothing to roll back. 9854 */ 9855 inodedep->id_savedsize = dp->di_size; 9856 inodedep->id_savedextsize = dp->di_extsize; 9857 inodedep->id_savednlink = dp->di_nlink; 9858 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 9859 TAILQ_EMPTY(&inodedep->id_extupdt) && 9860 TAILQ_EMPTY(&inodedep->id_inoreflst)) 9861 return; 9862 /* 9863 * Revert the link count to that of the first unwritten journal entry. 9864 */ 9865 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 9866 if (inoref) 9867 dp->di_nlink = inoref->if_nlink; 9868 9869 /* 9870 * Set the ext data dependencies to busy. 9871 */ 9872 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 9873 adp = TAILQ_NEXT(adp, ad_next)) { 9874 #ifdef INVARIANTS 9875 if (deplist != 0 && prevlbn >= adp->ad_offset) 9876 panic("softdep_write_inodeblock: lbn order"); 9877 prevlbn = adp->ad_offset; 9878 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 9879 panic("%s: direct pointer #%jd mismatch %jd != %jd", 9880 "softdep_write_inodeblock", 9881 (intmax_t)adp->ad_offset, 9882 (intmax_t)dp->di_extb[adp->ad_offset], 9883 (intmax_t)adp->ad_newblkno); 9884 deplist |= 1 << adp->ad_offset; 9885 if ((adp->ad_state & ATTACHED) == 0) 9886 panic("softdep_write_inodeblock: Unknown state 0x%x", 9887 adp->ad_state); 9888 #endif /* INVARIANTS */ 9889 adp->ad_state &= ~ATTACHED; 9890 adp->ad_state |= UNDONE; 9891 } 9892 /* 9893 * The on-disk inode cannot claim to be any larger than the last 9894 * fragment that has been written. Otherwise, the on-disk inode 9895 * might have fragments that were not the last block in the ext 9896 * data which would corrupt the filesystem. 9897 */ 9898 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 9899 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 9900 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 9901 /* keep going until hitting a rollback to a frag */ 9902 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 9903 continue; 9904 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 9905 for (i = adp->ad_offset + 1; i < NXADDR; i++) { 9906 #ifdef INVARIANTS 9907 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 9908 panic("softdep_write_inodeblock: lost dep1"); 9909 #endif /* INVARIANTS */ 9910 dp->di_extb[i] = 0; 9911 } 9912 lastadp = NULL; 9913 break; 9914 } 9915 /* 9916 * If we have zero'ed out the last allocated block of the ext 9917 * data, roll back the size to the last currently allocated block. 9918 * We know that this last allocated block is a full-sized as 9919 * we already checked for fragments in the loop above. 9920 */ 9921 if (lastadp != NULL && 9922 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 9923 for (i = lastadp->ad_offset; i >= 0; i--) 9924 if (dp->di_extb[i] != 0) 9925 break; 9926 dp->di_extsize = (i + 1) * fs->fs_bsize; 9927 } 9928 /* 9929 * Set the file data dependencies to busy. 9930 */ 9931 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9932 adp = TAILQ_NEXT(adp, ad_next)) { 9933 #ifdef INVARIANTS 9934 if (deplist != 0 && prevlbn >= adp->ad_offset) 9935 panic("softdep_write_inodeblock: lbn order"); 9936 if ((adp->ad_state & ATTACHED) == 0) 9937 panic("inodedep %p and adp %p not attached", inodedep, adp); 9938 prevlbn = adp->ad_offset; 9939 if (adp->ad_offset < NDADDR && 9940 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 9941 panic("%s: direct pointer #%jd mismatch %jd != %jd", 9942 "softdep_write_inodeblock", 9943 (intmax_t)adp->ad_offset, 9944 (intmax_t)dp->di_db[adp->ad_offset], 9945 (intmax_t)adp->ad_newblkno); 9946 if (adp->ad_offset >= NDADDR && 9947 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 9948 panic("%s indirect pointer #%jd mismatch %jd != %jd", 9949 "softdep_write_inodeblock:", 9950 (intmax_t)adp->ad_offset - NDADDR, 9951 (intmax_t)dp->di_ib[adp->ad_offset - NDADDR], 9952 (intmax_t)adp->ad_newblkno); 9953 deplist |= 1 << adp->ad_offset; 9954 if ((adp->ad_state & ATTACHED) == 0) 9955 panic("softdep_write_inodeblock: Unknown state 0x%x", 9956 adp->ad_state); 9957 #endif /* INVARIANTS */ 9958 adp->ad_state &= ~ATTACHED; 9959 adp->ad_state |= UNDONE; 9960 } 9961 /* 9962 * The on-disk inode cannot claim to be any larger than the last 9963 * fragment that has been written. Otherwise, the on-disk inode 9964 * might have fragments that were not the last block in the file 9965 * which would corrupt the filesystem. 9966 */ 9967 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9968 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 9969 if (adp->ad_offset >= NDADDR) 9970 break; 9971 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 9972 /* keep going until hitting a rollback to a frag */ 9973 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 9974 continue; 9975 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 9976 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 9977 #ifdef INVARIANTS 9978 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 9979 panic("softdep_write_inodeblock: lost dep2"); 9980 #endif /* INVARIANTS */ 9981 dp->di_db[i] = 0; 9982 } 9983 for (i = 0; i < NIADDR; i++) { 9984 #ifdef INVARIANTS 9985 if (dp->di_ib[i] != 0 && 9986 (deplist & ((1 << NDADDR) << i)) == 0) 9987 panic("softdep_write_inodeblock: lost dep3"); 9988 #endif /* INVARIANTS */ 9989 dp->di_ib[i] = 0; 9990 } 9991 return; 9992 } 9993 /* 9994 * If we have zero'ed out the last allocated block of the file, 9995 * roll back the size to the last currently allocated block. 9996 * We know that this last allocated block is a full-sized as 9997 * we already checked for fragments in the loop above. 9998 */ 9999 if (lastadp != NULL && 10000 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10001 for (i = lastadp->ad_offset; i >= 0; i--) 10002 if (dp->di_db[i] != 0) 10003 break; 10004 dp->di_size = (i + 1) * fs->fs_bsize; 10005 } 10006 /* 10007 * The only dependencies are for indirect blocks. 10008 * 10009 * The file size for indirect block additions is not guaranteed. 10010 * Such a guarantee would be non-trivial to achieve. The conventional 10011 * synchronous write implementation also does not make this guarantee. 10012 * Fsck should catch and fix discrepancies. Arguably, the file size 10013 * can be over-estimated without destroying integrity when the file 10014 * moves into the indirect blocks (i.e., is large). If we want to 10015 * postpone fsck, we are stuck with this argument. 10016 */ 10017 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10018 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10019 } 10020 10021 /* 10022 * Cancel an indirdep as a result of truncation. Release all of the 10023 * children allocindirs and place their journal work on the appropriate 10024 * list. 10025 */ 10026 static void 10027 cancel_indirdep(indirdep, bp, freeblks) 10028 struct indirdep *indirdep; 10029 struct buf *bp; 10030 struct freeblks *freeblks; 10031 { 10032 struct allocindir *aip; 10033 10034 /* 10035 * None of the indirect pointers will ever be visible, 10036 * so they can simply be tossed. GOINGAWAY ensures 10037 * that allocated pointers will be saved in the buffer 10038 * cache until they are freed. Note that they will 10039 * only be able to be found by their physical address 10040 * since the inode mapping the logical address will 10041 * be gone. The save buffer used for the safe copy 10042 * was allocated in setup_allocindir_phase2 using 10043 * the physical address so it could be used for this 10044 * purpose. Hence we swap the safe copy with the real 10045 * copy, allowing the safe copy to be freed and holding 10046 * on to the real copy for later use in indir_trunc. 10047 */ 10048 if (indirdep->ir_state & GOINGAWAY) 10049 panic("cancel_indirdep: already gone"); 10050 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10051 indirdep->ir_state |= DEPCOMPLETE; 10052 LIST_REMOVE(indirdep, ir_next); 10053 } 10054 indirdep->ir_state |= GOINGAWAY; 10055 VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1; 10056 /* 10057 * Pass in bp for blocks still have journal writes 10058 * pending so we can cancel them on their own. 10059 */ 10060 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 10061 cancel_allocindir(aip, bp, freeblks, 0); 10062 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) 10063 cancel_allocindir(aip, NULL, freeblks, 0); 10064 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) 10065 cancel_allocindir(aip, NULL, freeblks, 0); 10066 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0) 10067 cancel_allocindir(aip, NULL, freeblks, 0); 10068 /* 10069 * If there are pending partial truncations we need to keep the 10070 * old block copy around until they complete. This is because 10071 * the current b_data is not a perfect superset of the available 10072 * blocks. 10073 */ 10074 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10075 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10076 else 10077 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10078 WORKLIST_REMOVE(&indirdep->ir_list); 10079 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10080 indirdep->ir_bp = NULL; 10081 indirdep->ir_freeblks = freeblks; 10082 } 10083 10084 /* 10085 * Free an indirdep once it no longer has new pointers to track. 10086 */ 10087 static void 10088 free_indirdep(indirdep) 10089 struct indirdep *indirdep; 10090 { 10091 10092 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10093 ("free_indirdep: Indir trunc list not empty.")); 10094 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10095 ("free_indirdep: Complete head not empty.")); 10096 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10097 ("free_indirdep: write head not empty.")); 10098 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10099 ("free_indirdep: done head not empty.")); 10100 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10101 ("free_indirdep: deplist head not empty.")); 10102 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10103 ("free_indirdep: %p still on newblk list.", indirdep)); 10104 KASSERT(indirdep->ir_saveddata == NULL, 10105 ("free_indirdep: %p still has saved data.", indirdep)); 10106 if (indirdep->ir_state & ONWORKLIST) 10107 WORKLIST_REMOVE(&indirdep->ir_list); 10108 WORKITEM_FREE(indirdep, D_INDIRDEP); 10109 } 10110 10111 /* 10112 * Called before a write to an indirdep. This routine is responsible for 10113 * rolling back pointers to a safe state which includes only those 10114 * allocindirs which have been completed. 10115 */ 10116 static void 10117 initiate_write_indirdep(indirdep, bp) 10118 struct indirdep *indirdep; 10119 struct buf *bp; 10120 { 10121 10122 indirdep->ir_state |= IOSTARTED; 10123 if (indirdep->ir_state & GOINGAWAY) 10124 panic("disk_io_initiation: indirdep gone"); 10125 /* 10126 * If there are no remaining dependencies, this will be writing 10127 * the real pointers. 10128 */ 10129 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10130 TAILQ_EMPTY(&indirdep->ir_trunc)) 10131 return; 10132 /* 10133 * Replace up-to-date version with safe version. 10134 */ 10135 if (indirdep->ir_saveddata == NULL) { 10136 FREE_LOCK(&lk); 10137 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10138 M_SOFTDEP_FLAGS); 10139 ACQUIRE_LOCK(&lk); 10140 } 10141 indirdep->ir_state &= ~ATTACHED; 10142 indirdep->ir_state |= UNDONE; 10143 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10144 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10145 bp->b_bcount); 10146 } 10147 10148 /* 10149 * Called when an inode has been cleared in a cg bitmap. This finally 10150 * eliminates any canceled jaddrefs 10151 */ 10152 void 10153 softdep_setup_inofree(mp, bp, ino, wkhd) 10154 struct mount *mp; 10155 struct buf *bp; 10156 ino_t ino; 10157 struct workhead *wkhd; 10158 { 10159 struct worklist *wk, *wkn; 10160 struct inodedep *inodedep; 10161 uint8_t *inosused; 10162 struct cg *cgp; 10163 struct fs *fs; 10164 10165 ACQUIRE_LOCK(&lk); 10166 fs = VFSTOUFS(mp)->um_fs; 10167 cgp = (struct cg *)bp->b_data; 10168 inosused = cg_inosused(cgp); 10169 if (isset(inosused, ino % fs->fs_ipg)) 10170 panic("softdep_setup_inofree: inode %d not freed.", ino); 10171 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10172 panic("softdep_setup_inofree: ino %d has existing inodedep %p", 10173 ino, inodedep); 10174 if (wkhd) { 10175 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10176 if (wk->wk_type != D_JADDREF) 10177 continue; 10178 WORKLIST_REMOVE(wk); 10179 /* 10180 * We can free immediately even if the jaddref 10181 * isn't attached in a background write as now 10182 * the bitmaps are reconciled. 10183 */ 10184 wk->wk_state |= COMPLETE | ATTACHED; 10185 free_jaddref(WK_JADDREF(wk)); 10186 } 10187 jwork_move(&bp->b_dep, wkhd); 10188 } 10189 FREE_LOCK(&lk); 10190 } 10191 10192 10193 /* 10194 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10195 * map. Any dependencies waiting for the write to clear are added to the 10196 * buf's list and any jnewblks that are being canceled are discarded 10197 * immediately. 10198 */ 10199 void 10200 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10201 struct mount *mp; 10202 struct buf *bp; 10203 ufs2_daddr_t blkno; 10204 int frags; 10205 struct workhead *wkhd; 10206 { 10207 struct bmsafemap *bmsafemap; 10208 struct jnewblk *jnewblk; 10209 struct worklist *wk; 10210 struct fs *fs; 10211 #ifdef SUJ_DEBUG 10212 uint8_t *blksfree; 10213 struct cg *cgp; 10214 ufs2_daddr_t jstart; 10215 ufs2_daddr_t jend; 10216 ufs2_daddr_t end; 10217 long bno; 10218 int i; 10219 #endif 10220 10221 ACQUIRE_LOCK(&lk); 10222 /* Lookup the bmsafemap so we track when it is dirty. */ 10223 fs = VFSTOUFS(mp)->um_fs; 10224 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno)); 10225 /* 10226 * Detach any jnewblks which have been canceled. They must linger 10227 * until the bitmap is cleared again by ffs_blkfree() to prevent 10228 * an unjournaled allocation from hitting the disk. 10229 */ 10230 if (wkhd) { 10231 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10232 WORKLIST_REMOVE(wk); 10233 if (wk->wk_type != D_JNEWBLK) { 10234 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10235 continue; 10236 } 10237 jnewblk = WK_JNEWBLK(wk); 10238 KASSERT(jnewblk->jn_state & GOINGAWAY, 10239 ("softdep_setup_blkfree: jnewblk not canceled.")); 10240 #ifdef SUJ_DEBUG 10241 /* 10242 * Assert that this block is free in the bitmap 10243 * before we discard the jnewblk. 10244 */ 10245 cgp = (struct cg *)bp->b_data; 10246 blksfree = cg_blksfree(cgp); 10247 bno = dtogd(fs, jnewblk->jn_blkno); 10248 for (i = jnewblk->jn_oldfrags; 10249 i < jnewblk->jn_frags; i++) { 10250 if (isset(blksfree, bno + i)) 10251 continue; 10252 panic("softdep_setup_blkfree: not free"); 10253 } 10254 #endif 10255 /* 10256 * Even if it's not attached we can free immediately 10257 * as the new bitmap is correct. 10258 */ 10259 wk->wk_state |= COMPLETE | ATTACHED; 10260 free_jnewblk(jnewblk); 10261 } 10262 } 10263 10264 #ifdef SUJ_DEBUG 10265 /* 10266 * Assert that we are not freeing a block which has an outstanding 10267 * allocation dependency. 10268 */ 10269 fs = VFSTOUFS(mp)->um_fs; 10270 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno)); 10271 end = blkno + frags; 10272 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10273 /* 10274 * Don't match against blocks that will be freed when the 10275 * background write is done. 10276 */ 10277 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10278 (COMPLETE | DEPCOMPLETE)) 10279 continue; 10280 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10281 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10282 if ((blkno >= jstart && blkno < jend) || 10283 (end > jstart && end <= jend)) { 10284 printf("state 0x%X %jd - %d %d dep %p\n", 10285 jnewblk->jn_state, jnewblk->jn_blkno, 10286 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10287 jnewblk->jn_dep); 10288 panic("softdep_setup_blkfree: " 10289 "%jd-%jd(%d) overlaps with %jd-%jd", 10290 blkno, end, frags, jstart, jend); 10291 } 10292 } 10293 #endif 10294 FREE_LOCK(&lk); 10295 } 10296 10297 /* 10298 * Revert a block allocation when the journal record that describes it 10299 * is not yet written. 10300 */ 10301 int 10302 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10303 struct jnewblk *jnewblk; 10304 struct fs *fs; 10305 struct cg *cgp; 10306 uint8_t *blksfree; 10307 { 10308 ufs1_daddr_t fragno; 10309 long cgbno, bbase; 10310 int frags, blk; 10311 int i; 10312 10313 frags = 0; 10314 cgbno = dtogd(fs, jnewblk->jn_blkno); 10315 /* 10316 * We have to test which frags need to be rolled back. We may 10317 * be operating on a stale copy when doing background writes. 10318 */ 10319 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10320 if (isclr(blksfree, cgbno + i)) 10321 frags++; 10322 if (frags == 0) 10323 return (0); 10324 /* 10325 * This is mostly ffs_blkfree() sans some validation and 10326 * superblock updates. 10327 */ 10328 if (frags == fs->fs_frag) { 10329 fragno = fragstoblks(fs, cgbno); 10330 ffs_setblock(fs, blksfree, fragno); 10331 ffs_clusteracct(fs, cgp, fragno, 1); 10332 cgp->cg_cs.cs_nbfree++; 10333 } else { 10334 cgbno += jnewblk->jn_oldfrags; 10335 bbase = cgbno - fragnum(fs, cgbno); 10336 /* Decrement the old frags. */ 10337 blk = blkmap(fs, blksfree, bbase); 10338 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10339 /* Deallocate the fragment */ 10340 for (i = 0; i < frags; i++) 10341 setbit(blksfree, cgbno + i); 10342 cgp->cg_cs.cs_nffree += frags; 10343 /* Add back in counts associated with the new frags */ 10344 blk = blkmap(fs, blksfree, bbase); 10345 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10346 /* If a complete block has been reassembled, account for it. */ 10347 fragno = fragstoblks(fs, bbase); 10348 if (ffs_isblock(fs, blksfree, fragno)) { 10349 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10350 ffs_clusteracct(fs, cgp, fragno, 1); 10351 cgp->cg_cs.cs_nbfree++; 10352 } 10353 } 10354 stat_jnewblk++; 10355 jnewblk->jn_state &= ~ATTACHED; 10356 jnewblk->jn_state |= UNDONE; 10357 10358 return (frags); 10359 } 10360 10361 static void 10362 initiate_write_bmsafemap(bmsafemap, bp) 10363 struct bmsafemap *bmsafemap; 10364 struct buf *bp; /* The cg block. */ 10365 { 10366 struct jaddref *jaddref; 10367 struct jnewblk *jnewblk; 10368 uint8_t *inosused; 10369 uint8_t *blksfree; 10370 struct cg *cgp; 10371 struct fs *fs; 10372 ino_t ino; 10373 10374 if (bmsafemap->sm_state & IOSTARTED) 10375 panic("initiate_write_bmsafemap: Already started\n"); 10376 bmsafemap->sm_state |= IOSTARTED; 10377 /* 10378 * Clear any inode allocations which are pending journal writes. 10379 */ 10380 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10381 cgp = (struct cg *)bp->b_data; 10382 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10383 inosused = cg_inosused(cgp); 10384 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10385 ino = jaddref->ja_ino % fs->fs_ipg; 10386 /* 10387 * If this is a background copy the inode may not 10388 * be marked used yet. 10389 */ 10390 if (isset(inosused, ino)) { 10391 if ((jaddref->ja_mode & IFMT) == IFDIR) 10392 cgp->cg_cs.cs_ndir--; 10393 cgp->cg_cs.cs_nifree++; 10394 clrbit(inosused, ino); 10395 jaddref->ja_state &= ~ATTACHED; 10396 jaddref->ja_state |= UNDONE; 10397 stat_jaddref++; 10398 } else if ((bp->b_xflags & BX_BKGRDMARKER) == 0) 10399 panic("initiate_write_bmsafemap: inode %d " 10400 "marked free", jaddref->ja_ino); 10401 } 10402 } 10403 /* 10404 * Clear any block allocations which are pending journal writes. 10405 */ 10406 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10407 cgp = (struct cg *)bp->b_data; 10408 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10409 blksfree = cg_blksfree(cgp); 10410 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10411 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10412 continue; 10413 if ((bp->b_xflags & BX_BKGRDMARKER) == 0) 10414 panic("initiate_write_bmsafemap: block %jd " 10415 "marked free", jnewblk->jn_blkno); 10416 } 10417 } 10418 /* 10419 * Move allocation lists to the written lists so they can be 10420 * cleared once the block write is complete. 10421 */ 10422 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10423 inodedep, id_deps); 10424 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10425 newblk, nb_deps); 10426 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10427 wk_list); 10428 } 10429 10430 /* 10431 * This routine is called during the completion interrupt 10432 * service routine for a disk write (from the procedure called 10433 * by the device driver to inform the filesystem caches of 10434 * a request completion). It should be called early in this 10435 * procedure, before the block is made available to other 10436 * processes or other routines are called. 10437 * 10438 */ 10439 static void 10440 softdep_disk_write_complete(bp) 10441 struct buf *bp; /* describes the completed disk write */ 10442 { 10443 struct worklist *wk; 10444 struct worklist *owk; 10445 struct workhead reattach; 10446 struct freeblks *freeblks; 10447 struct buf *sbp; 10448 10449 /* 10450 * If an error occurred while doing the write, then the data 10451 * has not hit the disk and the dependencies cannot be unrolled. 10452 */ 10453 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 10454 return; 10455 LIST_INIT(&reattach); 10456 /* 10457 * This lock must not be released anywhere in this code segment. 10458 */ 10459 sbp = NULL; 10460 owk = NULL; 10461 ACQUIRE_LOCK(&lk); 10462 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 10463 WORKLIST_REMOVE(wk); 10464 dep_write[wk->wk_type]++; 10465 if (wk == owk) 10466 panic("duplicate worklist: %p\n", wk); 10467 owk = wk; 10468 switch (wk->wk_type) { 10469 10470 case D_PAGEDEP: 10471 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 10472 WORKLIST_INSERT(&reattach, wk); 10473 continue; 10474 10475 case D_INODEDEP: 10476 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 10477 WORKLIST_INSERT(&reattach, wk); 10478 continue; 10479 10480 case D_BMSAFEMAP: 10481 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp)) 10482 WORKLIST_INSERT(&reattach, wk); 10483 continue; 10484 10485 case D_MKDIR: 10486 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 10487 continue; 10488 10489 case D_ALLOCDIRECT: 10490 wk->wk_state |= COMPLETE; 10491 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 10492 continue; 10493 10494 case D_ALLOCINDIR: 10495 wk->wk_state |= COMPLETE; 10496 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 10497 continue; 10498 10499 case D_INDIRDEP: 10500 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp)) 10501 WORKLIST_INSERT(&reattach, wk); 10502 continue; 10503 10504 case D_FREEBLKS: 10505 wk->wk_state |= COMPLETE; 10506 freeblks = WK_FREEBLKS(wk); 10507 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 10508 LIST_EMPTY(&freeblks->fb_jblkdephd)) 10509 add_to_worklist(wk, WK_NODELAY); 10510 continue; 10511 10512 case D_FREEWORK: 10513 handle_written_freework(WK_FREEWORK(wk)); 10514 break; 10515 10516 case D_JSEGDEP: 10517 free_jsegdep(WK_JSEGDEP(wk)); 10518 continue; 10519 10520 case D_JSEG: 10521 handle_written_jseg(WK_JSEG(wk), bp); 10522 continue; 10523 10524 case D_SBDEP: 10525 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 10526 WORKLIST_INSERT(&reattach, wk); 10527 continue; 10528 10529 case D_FREEDEP: 10530 free_freedep(WK_FREEDEP(wk)); 10531 continue; 10532 10533 default: 10534 panic("handle_disk_write_complete: Unknown type %s", 10535 TYPENAME(wk->wk_type)); 10536 /* NOTREACHED */ 10537 } 10538 } 10539 /* 10540 * Reattach any requests that must be redone. 10541 */ 10542 while ((wk = LIST_FIRST(&reattach)) != NULL) { 10543 WORKLIST_REMOVE(wk); 10544 WORKLIST_INSERT(&bp->b_dep, wk); 10545 } 10546 FREE_LOCK(&lk); 10547 if (sbp) 10548 brelse(sbp); 10549 } 10550 10551 /* 10552 * Called from within softdep_disk_write_complete above. Note that 10553 * this routine is always called from interrupt level with further 10554 * splbio interrupts blocked. 10555 */ 10556 static void 10557 handle_allocdirect_partdone(adp, wkhd) 10558 struct allocdirect *adp; /* the completed allocdirect */ 10559 struct workhead *wkhd; /* Work to do when inode is writtne. */ 10560 { 10561 struct allocdirectlst *listhead; 10562 struct allocdirect *listadp; 10563 struct inodedep *inodedep; 10564 long bsize; 10565 10566 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10567 return; 10568 /* 10569 * The on-disk inode cannot claim to be any larger than the last 10570 * fragment that has been written. Otherwise, the on-disk inode 10571 * might have fragments that were not the last block in the file 10572 * which would corrupt the filesystem. Thus, we cannot free any 10573 * allocdirects after one whose ad_oldblkno claims a fragment as 10574 * these blocks must be rolled back to zero before writing the inode. 10575 * We check the currently active set of allocdirects in id_inoupdt 10576 * or id_extupdt as appropriate. 10577 */ 10578 inodedep = adp->ad_inodedep; 10579 bsize = inodedep->id_fs->fs_bsize; 10580 if (adp->ad_state & EXTDATA) 10581 listhead = &inodedep->id_extupdt; 10582 else 10583 listhead = &inodedep->id_inoupdt; 10584 TAILQ_FOREACH(listadp, listhead, ad_next) { 10585 /* found our block */ 10586 if (listadp == adp) 10587 break; 10588 /* continue if ad_oldlbn is not a fragment */ 10589 if (listadp->ad_oldsize == 0 || 10590 listadp->ad_oldsize == bsize) 10591 continue; 10592 /* hit a fragment */ 10593 return; 10594 } 10595 /* 10596 * If we have reached the end of the current list without 10597 * finding the just finished dependency, then it must be 10598 * on the future dependency list. Future dependencies cannot 10599 * be freed until they are moved to the current list. 10600 */ 10601 if (listadp == NULL) { 10602 #ifdef DEBUG 10603 if (adp->ad_state & EXTDATA) 10604 listhead = &inodedep->id_newextupdt; 10605 else 10606 listhead = &inodedep->id_newinoupdt; 10607 TAILQ_FOREACH(listadp, listhead, ad_next) 10608 /* found our block */ 10609 if (listadp == adp) 10610 break; 10611 if (listadp == NULL) 10612 panic("handle_allocdirect_partdone: lost dep"); 10613 #endif /* DEBUG */ 10614 return; 10615 } 10616 /* 10617 * If we have found the just finished dependency, then queue 10618 * it along with anything that follows it that is complete. 10619 * Since the pointer has not yet been written in the inode 10620 * as the dependency prevents it, place the allocdirect on the 10621 * bufwait list where it will be freed once the pointer is 10622 * valid. 10623 */ 10624 if (wkhd == NULL) 10625 wkhd = &inodedep->id_bufwait; 10626 for (; adp; adp = listadp) { 10627 listadp = TAILQ_NEXT(adp, ad_next); 10628 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10629 return; 10630 TAILQ_REMOVE(listhead, adp, ad_next); 10631 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 10632 } 10633 } 10634 10635 /* 10636 * Called from within softdep_disk_write_complete above. This routine 10637 * completes successfully written allocindirs. 10638 */ 10639 static void 10640 handle_allocindir_partdone(aip) 10641 struct allocindir *aip; /* the completed allocindir */ 10642 { 10643 struct indirdep *indirdep; 10644 10645 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 10646 return; 10647 indirdep = aip->ai_indirdep; 10648 LIST_REMOVE(aip, ai_next); 10649 /* 10650 * Don't set a pointer while the buffer is undergoing IO or while 10651 * we have active truncations. 10652 */ 10653 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 10654 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 10655 return; 10656 } 10657 if (indirdep->ir_state & UFS1FMT) 10658 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10659 aip->ai_newblkno; 10660 else 10661 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10662 aip->ai_newblkno; 10663 /* 10664 * Await the pointer write before freeing the allocindir. 10665 */ 10666 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 10667 } 10668 10669 /* 10670 * Release segments held on a jwork list. 10671 */ 10672 static void 10673 handle_jwork(wkhd) 10674 struct workhead *wkhd; 10675 { 10676 struct worklist *wk; 10677 10678 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10679 WORKLIST_REMOVE(wk); 10680 switch (wk->wk_type) { 10681 case D_JSEGDEP: 10682 free_jsegdep(WK_JSEGDEP(wk)); 10683 continue; 10684 case D_FREEDEP: 10685 free_freedep(WK_FREEDEP(wk)); 10686 continue; 10687 case D_FREEFRAG: 10688 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 10689 WORKITEM_FREE(wk, D_FREEFRAG); 10690 case D_FREEWORK: 10691 handle_written_freework(WK_FREEWORK(wk)); 10692 continue; 10693 default: 10694 panic("handle_jwork: Unknown type %s\n", 10695 TYPENAME(wk->wk_type)); 10696 } 10697 } 10698 } 10699 10700 /* 10701 * Handle the bufwait list on an inode when it is safe to release items 10702 * held there. This normally happens after an inode block is written but 10703 * may be delayed and handled later if there are pending journal items that 10704 * are not yet safe to be released. 10705 */ 10706 static struct freefile * 10707 handle_bufwait(inodedep, refhd) 10708 struct inodedep *inodedep; 10709 struct workhead *refhd; 10710 { 10711 struct jaddref *jaddref; 10712 struct freefile *freefile; 10713 struct worklist *wk; 10714 10715 freefile = NULL; 10716 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 10717 WORKLIST_REMOVE(wk); 10718 switch (wk->wk_type) { 10719 case D_FREEFILE: 10720 /* 10721 * We defer adding freefile to the worklist 10722 * until all other additions have been made to 10723 * ensure that it will be done after all the 10724 * old blocks have been freed. 10725 */ 10726 if (freefile != NULL) 10727 panic("handle_bufwait: freefile"); 10728 freefile = WK_FREEFILE(wk); 10729 continue; 10730 10731 case D_MKDIR: 10732 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 10733 continue; 10734 10735 case D_DIRADD: 10736 diradd_inode_written(WK_DIRADD(wk), inodedep); 10737 continue; 10738 10739 case D_FREEFRAG: 10740 wk->wk_state |= COMPLETE; 10741 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 10742 add_to_worklist(wk, 0); 10743 continue; 10744 10745 case D_DIRREM: 10746 wk->wk_state |= COMPLETE; 10747 add_to_worklist(wk, 0); 10748 continue; 10749 10750 case D_ALLOCDIRECT: 10751 case D_ALLOCINDIR: 10752 free_newblk(WK_NEWBLK(wk)); 10753 continue; 10754 10755 case D_JNEWBLK: 10756 wk->wk_state |= COMPLETE; 10757 free_jnewblk(WK_JNEWBLK(wk)); 10758 continue; 10759 10760 /* 10761 * Save freed journal segments and add references on 10762 * the supplied list which will delay their release 10763 * until the cg bitmap is cleared on disk. 10764 */ 10765 case D_JSEGDEP: 10766 if (refhd == NULL) 10767 free_jsegdep(WK_JSEGDEP(wk)); 10768 else 10769 WORKLIST_INSERT(refhd, wk); 10770 continue; 10771 10772 case D_JADDREF: 10773 jaddref = WK_JADDREF(wk); 10774 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 10775 if_deps); 10776 /* 10777 * Transfer any jaddrefs to the list to be freed with 10778 * the bitmap if we're handling a removed file. 10779 */ 10780 if (refhd == NULL) { 10781 wk->wk_state |= COMPLETE; 10782 free_jaddref(jaddref); 10783 } else 10784 WORKLIST_INSERT(refhd, wk); 10785 continue; 10786 10787 default: 10788 panic("handle_bufwait: Unknown type %p(%s)", 10789 wk, TYPENAME(wk->wk_type)); 10790 /* NOTREACHED */ 10791 } 10792 } 10793 return (freefile); 10794 } 10795 /* 10796 * Called from within softdep_disk_write_complete above to restore 10797 * in-memory inode block contents to their most up-to-date state. Note 10798 * that this routine is always called from interrupt level with further 10799 * splbio interrupts blocked. 10800 */ 10801 static int 10802 handle_written_inodeblock(inodedep, bp) 10803 struct inodedep *inodedep; 10804 struct buf *bp; /* buffer containing the inode block */ 10805 { 10806 struct freefile *freefile; 10807 struct allocdirect *adp, *nextadp; 10808 struct ufs1_dinode *dp1 = NULL; 10809 struct ufs2_dinode *dp2 = NULL; 10810 struct workhead wkhd; 10811 int hadchanges, fstype; 10812 ino_t freelink; 10813 10814 LIST_INIT(&wkhd); 10815 hadchanges = 0; 10816 freefile = NULL; 10817 if ((inodedep->id_state & IOSTARTED) == 0) 10818 panic("handle_written_inodeblock: not started"); 10819 inodedep->id_state &= ~IOSTARTED; 10820 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 10821 fstype = UFS1; 10822 dp1 = (struct ufs1_dinode *)bp->b_data + 10823 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 10824 freelink = dp1->di_freelink; 10825 } else { 10826 fstype = UFS2; 10827 dp2 = (struct ufs2_dinode *)bp->b_data + 10828 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 10829 freelink = dp2->di_freelink; 10830 } 10831 /* 10832 * Leave this inodeblock dirty until it's in the list. 10833 */ 10834 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) { 10835 struct inodedep *inon; 10836 10837 inon = TAILQ_NEXT(inodedep, id_unlinked); 10838 if ((inon == NULL && freelink == 0) || 10839 (inon && inon->id_ino == freelink)) { 10840 if (inon) 10841 inon->id_state |= UNLINKPREV; 10842 inodedep->id_state |= UNLINKNEXT; 10843 } 10844 hadchanges = 1; 10845 } 10846 /* 10847 * If we had to rollback the inode allocation because of 10848 * bitmaps being incomplete, then simply restore it. 10849 * Keep the block dirty so that it will not be reclaimed until 10850 * all associated dependencies have been cleared and the 10851 * corresponding updates written to disk. 10852 */ 10853 if (inodedep->id_savedino1 != NULL) { 10854 hadchanges = 1; 10855 if (fstype == UFS1) 10856 *dp1 = *inodedep->id_savedino1; 10857 else 10858 *dp2 = *inodedep->id_savedino2; 10859 free(inodedep->id_savedino1, M_SAVEDINO); 10860 inodedep->id_savedino1 = NULL; 10861 if ((bp->b_flags & B_DELWRI) == 0) 10862 stat_inode_bitmap++; 10863 bdirty(bp); 10864 /* 10865 * If the inode is clear here and GOINGAWAY it will never 10866 * be written. Process the bufwait and clear any pending 10867 * work which may include the freefile. 10868 */ 10869 if (inodedep->id_state & GOINGAWAY) 10870 goto bufwait; 10871 return (1); 10872 } 10873 inodedep->id_state |= COMPLETE; 10874 /* 10875 * Roll forward anything that had to be rolled back before 10876 * the inode could be updated. 10877 */ 10878 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 10879 nextadp = TAILQ_NEXT(adp, ad_next); 10880 if (adp->ad_state & ATTACHED) 10881 panic("handle_written_inodeblock: new entry"); 10882 if (fstype == UFS1) { 10883 if (adp->ad_offset < NDADDR) { 10884 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 10885 panic("%s %s #%jd mismatch %d != %jd", 10886 "handle_written_inodeblock:", 10887 "direct pointer", 10888 (intmax_t)adp->ad_offset, 10889 dp1->di_db[adp->ad_offset], 10890 (intmax_t)adp->ad_oldblkno); 10891 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 10892 } else { 10893 if (dp1->di_ib[adp->ad_offset - NDADDR] != 0) 10894 panic("%s: %s #%jd allocated as %d", 10895 "handle_written_inodeblock", 10896 "indirect pointer", 10897 (intmax_t)adp->ad_offset - NDADDR, 10898 dp1->di_ib[adp->ad_offset - NDADDR]); 10899 dp1->di_ib[adp->ad_offset - NDADDR] = 10900 adp->ad_newblkno; 10901 } 10902 } else { 10903 if (adp->ad_offset < NDADDR) { 10904 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 10905 panic("%s: %s #%jd %s %jd != %jd", 10906 "handle_written_inodeblock", 10907 "direct pointer", 10908 (intmax_t)adp->ad_offset, "mismatch", 10909 (intmax_t)dp2->di_db[adp->ad_offset], 10910 (intmax_t)adp->ad_oldblkno); 10911 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 10912 } else { 10913 if (dp2->di_ib[adp->ad_offset - NDADDR] != 0) 10914 panic("%s: %s #%jd allocated as %jd", 10915 "handle_written_inodeblock", 10916 "indirect pointer", 10917 (intmax_t)adp->ad_offset - NDADDR, 10918 (intmax_t) 10919 dp2->di_ib[adp->ad_offset - NDADDR]); 10920 dp2->di_ib[adp->ad_offset - NDADDR] = 10921 adp->ad_newblkno; 10922 } 10923 } 10924 adp->ad_state &= ~UNDONE; 10925 adp->ad_state |= ATTACHED; 10926 hadchanges = 1; 10927 } 10928 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 10929 nextadp = TAILQ_NEXT(adp, ad_next); 10930 if (adp->ad_state & ATTACHED) 10931 panic("handle_written_inodeblock: new entry"); 10932 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 10933 panic("%s: direct pointers #%jd %s %jd != %jd", 10934 "handle_written_inodeblock", 10935 (intmax_t)adp->ad_offset, "mismatch", 10936 (intmax_t)dp2->di_extb[adp->ad_offset], 10937 (intmax_t)adp->ad_oldblkno); 10938 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 10939 adp->ad_state &= ~UNDONE; 10940 adp->ad_state |= ATTACHED; 10941 hadchanges = 1; 10942 } 10943 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 10944 stat_direct_blk_ptrs++; 10945 /* 10946 * Reset the file size to its most up-to-date value. 10947 */ 10948 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 10949 panic("handle_written_inodeblock: bad size"); 10950 if (inodedep->id_savednlink > LINK_MAX) 10951 panic("handle_written_inodeblock: Invalid link count " 10952 "%d for inodedep %p", inodedep->id_savednlink, inodedep); 10953 if (fstype == UFS1) { 10954 if (dp1->di_nlink != inodedep->id_savednlink) { 10955 dp1->di_nlink = inodedep->id_savednlink; 10956 hadchanges = 1; 10957 } 10958 if (dp1->di_size != inodedep->id_savedsize) { 10959 dp1->di_size = inodedep->id_savedsize; 10960 hadchanges = 1; 10961 } 10962 } else { 10963 if (dp2->di_nlink != inodedep->id_savednlink) { 10964 dp2->di_nlink = inodedep->id_savednlink; 10965 hadchanges = 1; 10966 } 10967 if (dp2->di_size != inodedep->id_savedsize) { 10968 dp2->di_size = inodedep->id_savedsize; 10969 hadchanges = 1; 10970 } 10971 if (dp2->di_extsize != inodedep->id_savedextsize) { 10972 dp2->di_extsize = inodedep->id_savedextsize; 10973 hadchanges = 1; 10974 } 10975 } 10976 inodedep->id_savedsize = -1; 10977 inodedep->id_savedextsize = -1; 10978 inodedep->id_savednlink = -1; 10979 /* 10980 * If there were any rollbacks in the inode block, then it must be 10981 * marked dirty so that its will eventually get written back in 10982 * its correct form. 10983 */ 10984 if (hadchanges) 10985 bdirty(bp); 10986 bufwait: 10987 /* 10988 * Process any allocdirects that completed during the update. 10989 */ 10990 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 10991 handle_allocdirect_partdone(adp, &wkhd); 10992 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 10993 handle_allocdirect_partdone(adp, &wkhd); 10994 /* 10995 * Process deallocations that were held pending until the 10996 * inode had been written to disk. Freeing of the inode 10997 * is delayed until after all blocks have been freed to 10998 * avoid creation of new <vfsid, inum, lbn> triples 10999 * before the old ones have been deleted. Completely 11000 * unlinked inodes are not processed until the unlinked 11001 * inode list is written or the last reference is removed. 11002 */ 11003 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11004 freefile = handle_bufwait(inodedep, NULL); 11005 if (freefile && !LIST_EMPTY(&wkhd)) { 11006 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11007 freefile = NULL; 11008 } 11009 } 11010 /* 11011 * Move rolled forward dependency completions to the bufwait list 11012 * now that those that were already written have been processed. 11013 */ 11014 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11015 panic("handle_written_inodeblock: bufwait but no changes"); 11016 jwork_move(&inodedep->id_bufwait, &wkhd); 11017 11018 if (freefile != NULL) { 11019 /* 11020 * If the inode is goingaway it was never written. Fake up 11021 * the state here so free_inodedep() can succeed. 11022 */ 11023 if (inodedep->id_state & GOINGAWAY) 11024 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11025 if (free_inodedep(inodedep) == 0) 11026 panic("handle_written_inodeblock: live inodedep %p", 11027 inodedep); 11028 add_to_worklist(&freefile->fx_list, 0); 11029 return (0); 11030 } 11031 11032 /* 11033 * If no outstanding dependencies, free it. 11034 */ 11035 if (free_inodedep(inodedep) || 11036 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11037 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11038 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11039 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11040 return (0); 11041 return (hadchanges); 11042 } 11043 11044 static int 11045 handle_written_indirdep(indirdep, bp, bpp) 11046 struct indirdep *indirdep; 11047 struct buf *bp; 11048 struct buf **bpp; 11049 { 11050 struct allocindir *aip; 11051 struct buf *sbp; 11052 int chgs; 11053 11054 if (indirdep->ir_state & GOINGAWAY) 11055 panic("handle_written_indirdep: indirdep gone"); 11056 if ((indirdep->ir_state & IOSTARTED) == 0) 11057 panic("handle_written_indirdep: IO not started"); 11058 chgs = 0; 11059 /* 11060 * If there were rollbacks revert them here. 11061 */ 11062 if (indirdep->ir_saveddata) { 11063 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11064 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11065 free(indirdep->ir_saveddata, M_INDIRDEP); 11066 indirdep->ir_saveddata = NULL; 11067 } 11068 chgs = 1; 11069 } 11070 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11071 indirdep->ir_state |= ATTACHED; 11072 /* 11073 * Move allocindirs with written pointers to the completehd if 11074 * the indirdep's pointer is not yet written. Otherwise 11075 * free them here. 11076 */ 11077 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) { 11078 LIST_REMOVE(aip, ai_next); 11079 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11080 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11081 ai_next); 11082 newblk_freefrag(&aip->ai_block); 11083 continue; 11084 } 11085 free_newblk(&aip->ai_block); 11086 } 11087 /* 11088 * Move allocindirs that have finished dependency processing from 11089 * the done list to the write list after updating the pointers. 11090 */ 11091 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11092 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 11093 handle_allocindir_partdone(aip); 11094 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11095 panic("disk_write_complete: not gone"); 11096 chgs = 1; 11097 } 11098 } 11099 /* 11100 * Preserve the indirdep if there were any changes or if it is not 11101 * yet valid on disk. 11102 */ 11103 if (chgs) { 11104 stat_indir_blk_ptrs++; 11105 bdirty(bp); 11106 return (1); 11107 } 11108 /* 11109 * If there were no changes we can discard the savedbp and detach 11110 * ourselves from the buf. We are only carrying completed pointers 11111 * in this case. 11112 */ 11113 sbp = indirdep->ir_savebp; 11114 sbp->b_flags |= B_INVAL | B_NOCACHE; 11115 indirdep->ir_savebp = NULL; 11116 indirdep->ir_bp = NULL; 11117 if (*bpp != NULL) 11118 panic("handle_written_indirdep: bp already exists."); 11119 *bpp = sbp; 11120 /* 11121 * The indirdep may not be freed until its parent points at it. 11122 */ 11123 if (indirdep->ir_state & DEPCOMPLETE) 11124 free_indirdep(indirdep); 11125 11126 return (0); 11127 } 11128 11129 /* 11130 * Process a diradd entry after its dependent inode has been written. 11131 * This routine must be called with splbio interrupts blocked. 11132 */ 11133 static void 11134 diradd_inode_written(dap, inodedep) 11135 struct diradd *dap; 11136 struct inodedep *inodedep; 11137 { 11138 11139 dap->da_state |= COMPLETE; 11140 complete_diradd(dap); 11141 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11142 } 11143 11144 /* 11145 * Returns true if the bmsafemap will have rollbacks when written. Must 11146 * only be called with lk and the buf lock on the cg held. 11147 */ 11148 static int 11149 bmsafemap_rollbacks(bmsafemap) 11150 struct bmsafemap *bmsafemap; 11151 { 11152 11153 return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11154 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd)); 11155 } 11156 11157 /* 11158 * Re-apply an allocation when a cg write is complete. 11159 */ 11160 static int 11161 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11162 struct jnewblk *jnewblk; 11163 struct fs *fs; 11164 struct cg *cgp; 11165 uint8_t *blksfree; 11166 { 11167 ufs1_daddr_t fragno; 11168 ufs2_daddr_t blkno; 11169 long cgbno, bbase; 11170 int frags, blk; 11171 int i; 11172 11173 frags = 0; 11174 cgbno = dtogd(fs, jnewblk->jn_blkno); 11175 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11176 if (isclr(blksfree, cgbno + i)) 11177 panic("jnewblk_rollforward: re-allocated fragment"); 11178 frags++; 11179 } 11180 if (frags == fs->fs_frag) { 11181 blkno = fragstoblks(fs, cgbno); 11182 ffs_clrblock(fs, blksfree, (long)blkno); 11183 ffs_clusteracct(fs, cgp, blkno, -1); 11184 cgp->cg_cs.cs_nbfree--; 11185 } else { 11186 bbase = cgbno - fragnum(fs, cgbno); 11187 cgbno += jnewblk->jn_oldfrags; 11188 /* If a complete block had been reassembled, account for it. */ 11189 fragno = fragstoblks(fs, bbase); 11190 if (ffs_isblock(fs, blksfree, fragno)) { 11191 cgp->cg_cs.cs_nffree += fs->fs_frag; 11192 ffs_clusteracct(fs, cgp, fragno, -1); 11193 cgp->cg_cs.cs_nbfree--; 11194 } 11195 /* Decrement the old frags. */ 11196 blk = blkmap(fs, blksfree, bbase); 11197 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11198 /* Allocate the fragment */ 11199 for (i = 0; i < frags; i++) 11200 clrbit(blksfree, cgbno + i); 11201 cgp->cg_cs.cs_nffree -= frags; 11202 /* Add back in counts associated with the new frags */ 11203 blk = blkmap(fs, blksfree, bbase); 11204 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11205 } 11206 return (frags); 11207 } 11208 11209 /* 11210 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11211 * changes if it's not a background write. Set all written dependencies 11212 * to DEPCOMPLETE and free the structure if possible. 11213 */ 11214 static int 11215 handle_written_bmsafemap(bmsafemap, bp) 11216 struct bmsafemap *bmsafemap; 11217 struct buf *bp; 11218 { 11219 struct newblk *newblk; 11220 struct inodedep *inodedep; 11221 struct jaddref *jaddref, *jatmp; 11222 struct jnewblk *jnewblk, *jntmp; 11223 struct ufsmount *ump; 11224 uint8_t *inosused; 11225 uint8_t *blksfree; 11226 struct cg *cgp; 11227 struct fs *fs; 11228 ino_t ino; 11229 int chgs; 11230 11231 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11232 panic("initiate_write_bmsafemap: Not started\n"); 11233 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11234 chgs = 0; 11235 bmsafemap->sm_state &= ~IOSTARTED; 11236 /* 11237 * Release journal work that was waiting on the write. 11238 */ 11239 handle_jwork(&bmsafemap->sm_freewr); 11240 11241 /* 11242 * Restore unwritten inode allocation pending jaddref writes. 11243 */ 11244 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11245 cgp = (struct cg *)bp->b_data; 11246 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11247 inosused = cg_inosused(cgp); 11248 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11249 ja_bmdeps, jatmp) { 11250 if ((jaddref->ja_state & UNDONE) == 0) 11251 continue; 11252 ino = jaddref->ja_ino % fs->fs_ipg; 11253 if (isset(inosused, ino)) 11254 panic("handle_written_bmsafemap: " 11255 "re-allocated inode"); 11256 if ((bp->b_xflags & BX_BKGRDMARKER) == 0) { 11257 if ((jaddref->ja_mode & IFMT) == IFDIR) 11258 cgp->cg_cs.cs_ndir++; 11259 cgp->cg_cs.cs_nifree--; 11260 setbit(inosused, ino); 11261 chgs = 1; 11262 } 11263 jaddref->ja_state &= ~UNDONE; 11264 jaddref->ja_state |= ATTACHED; 11265 free_jaddref(jaddref); 11266 } 11267 } 11268 /* 11269 * Restore any block allocations which are pending journal writes. 11270 */ 11271 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11272 cgp = (struct cg *)bp->b_data; 11273 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11274 blksfree = cg_blksfree(cgp); 11275 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11276 jntmp) { 11277 if ((jnewblk->jn_state & UNDONE) == 0) 11278 continue; 11279 if ((bp->b_xflags & BX_BKGRDMARKER) == 0 && 11280 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11281 chgs = 1; 11282 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11283 jnewblk->jn_state |= ATTACHED; 11284 free_jnewblk(jnewblk); 11285 } 11286 } 11287 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11288 newblk->nb_state |= DEPCOMPLETE; 11289 newblk->nb_state &= ~ONDEPLIST; 11290 newblk->nb_bmsafemap = NULL; 11291 LIST_REMOVE(newblk, nb_deps); 11292 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11293 handle_allocdirect_partdone( 11294 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11295 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11296 handle_allocindir_partdone( 11297 WK_ALLOCINDIR(&newblk->nb_list)); 11298 else if (newblk->nb_list.wk_type != D_NEWBLK) 11299 panic("handle_written_bmsafemap: Unexpected type: %s", 11300 TYPENAME(newblk->nb_list.wk_type)); 11301 } 11302 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11303 inodedep->id_state |= DEPCOMPLETE; 11304 inodedep->id_state &= ~ONDEPLIST; 11305 LIST_REMOVE(inodedep, id_deps); 11306 inodedep->id_bmsafemap = NULL; 11307 } 11308 LIST_REMOVE(bmsafemap, sm_next); 11309 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11310 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11311 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11312 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11313 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11314 LIST_REMOVE(bmsafemap, sm_hash); 11315 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11316 return (0); 11317 } 11318 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11319 bdirty(bp); 11320 return (1); 11321 } 11322 11323 /* 11324 * Try to free a mkdir dependency. 11325 */ 11326 static void 11327 complete_mkdir(mkdir) 11328 struct mkdir *mkdir; 11329 { 11330 struct diradd *dap; 11331 11332 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11333 return; 11334 LIST_REMOVE(mkdir, md_mkdirs); 11335 dap = mkdir->md_diradd; 11336 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11337 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11338 dap->da_state |= DEPCOMPLETE; 11339 complete_diradd(dap); 11340 } 11341 WORKITEM_FREE(mkdir, D_MKDIR); 11342 } 11343 11344 /* 11345 * Handle the completion of a mkdir dependency. 11346 */ 11347 static void 11348 handle_written_mkdir(mkdir, type) 11349 struct mkdir *mkdir; 11350 int type; 11351 { 11352 11353 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 11354 panic("handle_written_mkdir: bad type"); 11355 mkdir->md_state |= COMPLETE; 11356 complete_mkdir(mkdir); 11357 } 11358 11359 static int 11360 free_pagedep(pagedep) 11361 struct pagedep *pagedep; 11362 { 11363 int i; 11364 11365 if (pagedep->pd_state & NEWBLOCK) 11366 return (0); 11367 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 11368 return (0); 11369 for (i = 0; i < DAHASHSZ; i++) 11370 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 11371 return (0); 11372 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 11373 return (0); 11374 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 11375 return (0); 11376 if (pagedep->pd_state & ONWORKLIST) 11377 WORKLIST_REMOVE(&pagedep->pd_list); 11378 LIST_REMOVE(pagedep, pd_hash); 11379 WORKITEM_FREE(pagedep, D_PAGEDEP); 11380 11381 return (1); 11382 } 11383 11384 /* 11385 * Called from within softdep_disk_write_complete above. 11386 * A write operation was just completed. Removed inodes can 11387 * now be freed and associated block pointers may be committed. 11388 * Note that this routine is always called from interrupt level 11389 * with further splbio interrupts blocked. 11390 */ 11391 static int 11392 handle_written_filepage(pagedep, bp) 11393 struct pagedep *pagedep; 11394 struct buf *bp; /* buffer containing the written page */ 11395 { 11396 struct dirrem *dirrem; 11397 struct diradd *dap, *nextdap; 11398 struct direct *ep; 11399 int i, chgs; 11400 11401 if ((pagedep->pd_state & IOSTARTED) == 0) 11402 panic("handle_written_filepage: not started"); 11403 pagedep->pd_state &= ~IOSTARTED; 11404 /* 11405 * Process any directory removals that have been committed. 11406 */ 11407 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 11408 LIST_REMOVE(dirrem, dm_next); 11409 dirrem->dm_state |= COMPLETE; 11410 dirrem->dm_dirinum = pagedep->pd_ino; 11411 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 11412 ("handle_written_filepage: Journal entries not written.")); 11413 add_to_worklist(&dirrem->dm_list, 0); 11414 } 11415 /* 11416 * Free any directory additions that have been committed. 11417 * If it is a newly allocated block, we have to wait until 11418 * the on-disk directory inode claims the new block. 11419 */ 11420 if ((pagedep->pd_state & NEWBLOCK) == 0) 11421 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 11422 free_diradd(dap, NULL); 11423 /* 11424 * Uncommitted directory entries must be restored. 11425 */ 11426 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 11427 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 11428 dap = nextdap) { 11429 nextdap = LIST_NEXT(dap, da_pdlist); 11430 if (dap->da_state & ATTACHED) 11431 panic("handle_written_filepage: attached"); 11432 ep = (struct direct *) 11433 ((char *)bp->b_data + dap->da_offset); 11434 ep->d_ino = dap->da_newinum; 11435 dap->da_state &= ~UNDONE; 11436 dap->da_state |= ATTACHED; 11437 chgs = 1; 11438 /* 11439 * If the inode referenced by the directory has 11440 * been written out, then the dependency can be 11441 * moved to the pending list. 11442 */ 11443 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 11444 LIST_REMOVE(dap, da_pdlist); 11445 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 11446 da_pdlist); 11447 } 11448 } 11449 } 11450 /* 11451 * If there were any rollbacks in the directory, then it must be 11452 * marked dirty so that its will eventually get written back in 11453 * its correct form. 11454 */ 11455 if (chgs) { 11456 if ((bp->b_flags & B_DELWRI) == 0) 11457 stat_dir_entry++; 11458 bdirty(bp); 11459 return (1); 11460 } 11461 /* 11462 * If we are not waiting for a new directory block to be 11463 * claimed by its inode, then the pagedep will be freed. 11464 * Otherwise it will remain to track any new entries on 11465 * the page in case they are fsync'ed. 11466 */ 11467 free_pagedep(pagedep); 11468 return (0); 11469 } 11470 11471 /* 11472 * Writing back in-core inode structures. 11473 * 11474 * The filesystem only accesses an inode's contents when it occupies an 11475 * "in-core" inode structure. These "in-core" structures are separate from 11476 * the page frames used to cache inode blocks. Only the latter are 11477 * transferred to/from the disk. So, when the updated contents of the 11478 * "in-core" inode structure are copied to the corresponding in-memory inode 11479 * block, the dependencies are also transferred. The following procedure is 11480 * called when copying a dirty "in-core" inode to a cached inode block. 11481 */ 11482 11483 /* 11484 * Called when an inode is loaded from disk. If the effective link count 11485 * differed from the actual link count when it was last flushed, then we 11486 * need to ensure that the correct effective link count is put back. 11487 */ 11488 void 11489 softdep_load_inodeblock(ip) 11490 struct inode *ip; /* the "in_core" copy of the inode */ 11491 { 11492 struct inodedep *inodedep; 11493 11494 /* 11495 * Check for alternate nlink count. 11496 */ 11497 ip->i_effnlink = ip->i_nlink; 11498 ACQUIRE_LOCK(&lk); 11499 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 11500 &inodedep) == 0) { 11501 FREE_LOCK(&lk); 11502 return; 11503 } 11504 ip->i_effnlink -= inodedep->id_nlinkdelta; 11505 FREE_LOCK(&lk); 11506 } 11507 11508 /* 11509 * This routine is called just before the "in-core" inode 11510 * information is to be copied to the in-memory inode block. 11511 * Recall that an inode block contains several inodes. If 11512 * the force flag is set, then the dependencies will be 11513 * cleared so that the update can always be made. Note that 11514 * the buffer is locked when this routine is called, so we 11515 * will never be in the middle of writing the inode block 11516 * to disk. 11517 */ 11518 void 11519 softdep_update_inodeblock(ip, bp, waitfor) 11520 struct inode *ip; /* the "in_core" copy of the inode */ 11521 struct buf *bp; /* the buffer containing the inode block */ 11522 int waitfor; /* nonzero => update must be allowed */ 11523 { 11524 struct inodedep *inodedep; 11525 struct inoref *inoref; 11526 struct worklist *wk; 11527 struct mount *mp; 11528 struct buf *ibp; 11529 struct fs *fs; 11530 int error; 11531 11532 mp = UFSTOVFS(ip->i_ump); 11533 fs = ip->i_fs; 11534 /* 11535 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 11536 * does not have access to the in-core ip so must write directly into 11537 * the inode block buffer when setting freelink. 11538 */ 11539 if (fs->fs_magic == FS_UFS1_MAGIC) 11540 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 11541 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11542 else 11543 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 11544 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11545 /* 11546 * If the effective link count is not equal to the actual link 11547 * count, then we must track the difference in an inodedep while 11548 * the inode is (potentially) tossed out of the cache. Otherwise, 11549 * if there is no existing inodedep, then there are no dependencies 11550 * to track. 11551 */ 11552 ACQUIRE_LOCK(&lk); 11553 again: 11554 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11555 FREE_LOCK(&lk); 11556 if (ip->i_effnlink != ip->i_nlink) 11557 panic("softdep_update_inodeblock: bad link count"); 11558 return; 11559 } 11560 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 11561 panic("softdep_update_inodeblock: bad delta"); 11562 /* 11563 * If we're flushing all dependencies we must also move any waiting 11564 * for journal writes onto the bufwait list prior to I/O. 11565 */ 11566 if (waitfor) { 11567 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11568 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11569 == DEPCOMPLETE) { 11570 jwait(&inoref->if_list, MNT_WAIT); 11571 goto again; 11572 } 11573 } 11574 } 11575 /* 11576 * Changes have been initiated. Anything depending on these 11577 * changes cannot occur until this inode has been written. 11578 */ 11579 inodedep->id_state &= ~COMPLETE; 11580 if ((inodedep->id_state & ONWORKLIST) == 0) 11581 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 11582 /* 11583 * Any new dependencies associated with the incore inode must 11584 * now be moved to the list associated with the buffer holding 11585 * the in-memory copy of the inode. Once merged process any 11586 * allocdirects that are completed by the merger. 11587 */ 11588 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 11589 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 11590 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 11591 NULL); 11592 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 11593 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 11594 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 11595 NULL); 11596 /* 11597 * Now that the inode has been pushed into the buffer, the 11598 * operations dependent on the inode being written to disk 11599 * can be moved to the id_bufwait so that they will be 11600 * processed when the buffer I/O completes. 11601 */ 11602 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 11603 WORKLIST_REMOVE(wk); 11604 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 11605 } 11606 /* 11607 * Newly allocated inodes cannot be written until the bitmap 11608 * that allocates them have been written (indicated by 11609 * DEPCOMPLETE being set in id_state). If we are doing a 11610 * forced sync (e.g., an fsync on a file), we force the bitmap 11611 * to be written so that the update can be done. 11612 */ 11613 if (waitfor == 0) { 11614 FREE_LOCK(&lk); 11615 return; 11616 } 11617 retry: 11618 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 11619 FREE_LOCK(&lk); 11620 return; 11621 } 11622 ibp = inodedep->id_bmsafemap->sm_buf; 11623 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 11624 if (ibp == NULL) { 11625 /* 11626 * If ibp came back as NULL, the dependency could have been 11627 * freed while we slept. Look it up again, and check to see 11628 * that it has completed. 11629 */ 11630 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 11631 goto retry; 11632 FREE_LOCK(&lk); 11633 return; 11634 } 11635 FREE_LOCK(&lk); 11636 if ((error = bwrite(ibp)) != 0) 11637 softdep_error("softdep_update_inodeblock: bwrite", error); 11638 } 11639 11640 /* 11641 * Merge the a new inode dependency list (such as id_newinoupdt) into an 11642 * old inode dependency list (such as id_inoupdt). This routine must be 11643 * called with splbio interrupts blocked. 11644 */ 11645 static void 11646 merge_inode_lists(newlisthead, oldlisthead) 11647 struct allocdirectlst *newlisthead; 11648 struct allocdirectlst *oldlisthead; 11649 { 11650 struct allocdirect *listadp, *newadp; 11651 11652 newadp = TAILQ_FIRST(newlisthead); 11653 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 11654 if (listadp->ad_offset < newadp->ad_offset) { 11655 listadp = TAILQ_NEXT(listadp, ad_next); 11656 continue; 11657 } 11658 TAILQ_REMOVE(newlisthead, newadp, ad_next); 11659 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 11660 if (listadp->ad_offset == newadp->ad_offset) { 11661 allocdirect_merge(oldlisthead, newadp, 11662 listadp); 11663 listadp = newadp; 11664 } 11665 newadp = TAILQ_FIRST(newlisthead); 11666 } 11667 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 11668 TAILQ_REMOVE(newlisthead, newadp, ad_next); 11669 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 11670 } 11671 } 11672 11673 /* 11674 * If we are doing an fsync, then we must ensure that any directory 11675 * entries for the inode have been written after the inode gets to disk. 11676 */ 11677 int 11678 softdep_fsync(vp) 11679 struct vnode *vp; /* the "in_core" copy of the inode */ 11680 { 11681 struct inodedep *inodedep; 11682 struct pagedep *pagedep; 11683 struct inoref *inoref; 11684 struct worklist *wk; 11685 struct diradd *dap; 11686 struct mount *mp; 11687 struct vnode *pvp; 11688 struct inode *ip; 11689 struct buf *bp; 11690 struct fs *fs; 11691 struct thread *td = curthread; 11692 int error, flushparent, pagedep_new_block; 11693 ino_t parentino; 11694 ufs_lbn_t lbn; 11695 11696 ip = VTOI(vp); 11697 fs = ip->i_fs; 11698 mp = vp->v_mount; 11699 ACQUIRE_LOCK(&lk); 11700 restart: 11701 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11702 FREE_LOCK(&lk); 11703 return (0); 11704 } 11705 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11706 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11707 == DEPCOMPLETE) { 11708 jwait(&inoref->if_list, MNT_WAIT); 11709 goto restart; 11710 } 11711 } 11712 if (!LIST_EMPTY(&inodedep->id_inowait) || 11713 !TAILQ_EMPTY(&inodedep->id_extupdt) || 11714 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 11715 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 11716 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 11717 panic("softdep_fsync: pending ops %p", inodedep); 11718 for (error = 0, flushparent = 0; ; ) { 11719 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 11720 break; 11721 if (wk->wk_type != D_DIRADD) 11722 panic("softdep_fsync: Unexpected type %s", 11723 TYPENAME(wk->wk_type)); 11724 dap = WK_DIRADD(wk); 11725 /* 11726 * Flush our parent if this directory entry has a MKDIR_PARENT 11727 * dependency or is contained in a newly allocated block. 11728 */ 11729 if (dap->da_state & DIRCHG) 11730 pagedep = dap->da_previous->dm_pagedep; 11731 else 11732 pagedep = dap->da_pagedep; 11733 parentino = pagedep->pd_ino; 11734 lbn = pagedep->pd_lbn; 11735 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 11736 panic("softdep_fsync: dirty"); 11737 if ((dap->da_state & MKDIR_PARENT) || 11738 (pagedep->pd_state & NEWBLOCK)) 11739 flushparent = 1; 11740 else 11741 flushparent = 0; 11742 /* 11743 * If we are being fsync'ed as part of vgone'ing this vnode, 11744 * then we will not be able to release and recover the 11745 * vnode below, so we just have to give up on writing its 11746 * directory entry out. It will eventually be written, just 11747 * not now, but then the user was not asking to have it 11748 * written, so we are not breaking any promises. 11749 */ 11750 if (vp->v_iflag & VI_DOOMED) 11751 break; 11752 /* 11753 * We prevent deadlock by always fetching inodes from the 11754 * root, moving down the directory tree. Thus, when fetching 11755 * our parent directory, we first try to get the lock. If 11756 * that fails, we must unlock ourselves before requesting 11757 * the lock on our parent. See the comment in ufs_lookup 11758 * for details on possible races. 11759 */ 11760 FREE_LOCK(&lk); 11761 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 11762 FFSV_FORCEINSMQ)) { 11763 error = vfs_busy(mp, MBF_NOWAIT); 11764 if (error != 0) { 11765 vfs_ref(mp); 11766 VOP_UNLOCK(vp, 0); 11767 error = vfs_busy(mp, 0); 11768 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 11769 vfs_rel(mp); 11770 if (error != 0) 11771 return (ENOENT); 11772 if (vp->v_iflag & VI_DOOMED) { 11773 vfs_unbusy(mp); 11774 return (ENOENT); 11775 } 11776 } 11777 VOP_UNLOCK(vp, 0); 11778 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 11779 &pvp, FFSV_FORCEINSMQ); 11780 vfs_unbusy(mp); 11781 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 11782 if (vp->v_iflag & VI_DOOMED) { 11783 if (error == 0) 11784 vput(pvp); 11785 error = ENOENT; 11786 } 11787 if (error != 0) 11788 return (error); 11789 } 11790 /* 11791 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 11792 * that are contained in direct blocks will be resolved by 11793 * doing a ffs_update. Pagedeps contained in indirect blocks 11794 * may require a complete sync'ing of the directory. So, we 11795 * try the cheap and fast ffs_update first, and if that fails, 11796 * then we do the slower ffs_syncvnode of the directory. 11797 */ 11798 if (flushparent) { 11799 int locked; 11800 11801 if ((error = ffs_update(pvp, 1)) != 0) { 11802 vput(pvp); 11803 return (error); 11804 } 11805 ACQUIRE_LOCK(&lk); 11806 locked = 1; 11807 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 11808 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 11809 if (wk->wk_type != D_DIRADD) 11810 panic("softdep_fsync: Unexpected type %s", 11811 TYPENAME(wk->wk_type)); 11812 dap = WK_DIRADD(wk); 11813 if (dap->da_state & DIRCHG) 11814 pagedep = dap->da_previous->dm_pagedep; 11815 else 11816 pagedep = dap->da_pagedep; 11817 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 11818 FREE_LOCK(&lk); 11819 locked = 0; 11820 if (pagedep_new_block && (error = 11821 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 11822 vput(pvp); 11823 return (error); 11824 } 11825 } 11826 } 11827 if (locked) 11828 FREE_LOCK(&lk); 11829 } 11830 /* 11831 * Flush directory page containing the inode's name. 11832 */ 11833 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 11834 &bp); 11835 if (error == 0) 11836 error = bwrite(bp); 11837 else 11838 brelse(bp); 11839 vput(pvp); 11840 if (error != 0) 11841 return (error); 11842 ACQUIRE_LOCK(&lk); 11843 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 11844 break; 11845 } 11846 FREE_LOCK(&lk); 11847 return (0); 11848 } 11849 11850 /* 11851 * Flush all the dirty bitmaps associated with the block device 11852 * before flushing the rest of the dirty blocks so as to reduce 11853 * the number of dependencies that will have to be rolled back. 11854 * 11855 * XXX Unused? 11856 */ 11857 void 11858 softdep_fsync_mountdev(vp) 11859 struct vnode *vp; 11860 { 11861 struct buf *bp, *nbp; 11862 struct worklist *wk; 11863 struct bufobj *bo; 11864 11865 if (!vn_isdisk(vp, NULL)) 11866 panic("softdep_fsync_mountdev: vnode not a disk"); 11867 bo = &vp->v_bufobj; 11868 restart: 11869 BO_LOCK(bo); 11870 ACQUIRE_LOCK(&lk); 11871 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 11872 /* 11873 * If it is already scheduled, skip to the next buffer. 11874 */ 11875 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 11876 continue; 11877 11878 if ((bp->b_flags & B_DELWRI) == 0) 11879 panic("softdep_fsync_mountdev: not dirty"); 11880 /* 11881 * We are only interested in bitmaps with outstanding 11882 * dependencies. 11883 */ 11884 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 11885 wk->wk_type != D_BMSAFEMAP || 11886 (bp->b_vflags & BV_BKGRDINPROG)) { 11887 BUF_UNLOCK(bp); 11888 continue; 11889 } 11890 FREE_LOCK(&lk); 11891 BO_UNLOCK(bo); 11892 bremfree(bp); 11893 (void) bawrite(bp); 11894 goto restart; 11895 } 11896 FREE_LOCK(&lk); 11897 drain_output(vp); 11898 BO_UNLOCK(bo); 11899 } 11900 11901 /* 11902 * Sync all cylinder groups that were dirty at the time this function is 11903 * called. Newly dirtied cgs will be inserted before the sintenel. This 11904 * is used to flush freedep activity that may be holding up writes to a 11905 * indirect block. 11906 */ 11907 static int 11908 sync_cgs(mp, waitfor) 11909 struct mount *mp; 11910 int waitfor; 11911 { 11912 struct bmsafemap *bmsafemap; 11913 struct bmsafemap *sintenel; 11914 struct ufsmount *ump; 11915 struct buf *bp; 11916 int error; 11917 11918 sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 11919 sintenel->sm_cg = -1; 11920 ump = VFSTOUFS(mp); 11921 error = 0; 11922 ACQUIRE_LOCK(&lk); 11923 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next); 11924 for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL; 11925 bmsafemap = LIST_NEXT(sintenel, sm_next)) { 11926 /* Skip sintenels and cgs with no work to release. */ 11927 if (bmsafemap->sm_cg == -1 || 11928 (LIST_EMPTY(&bmsafemap->sm_freehd) && 11929 LIST_EMPTY(&bmsafemap->sm_freewr))) { 11930 LIST_REMOVE(sintenel, sm_next); 11931 LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next); 11932 continue; 11933 } 11934 /* 11935 * If we don't get the lock and we're waiting try again, if 11936 * not move on to the next buf and try to sync it. 11937 */ 11938 bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor); 11939 if (bp == NULL && waitfor == MNT_WAIT) 11940 continue; 11941 LIST_REMOVE(sintenel, sm_next); 11942 LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next); 11943 if (bp == NULL) 11944 continue; 11945 FREE_LOCK(&lk); 11946 if (waitfor == MNT_NOWAIT) 11947 bawrite(bp); 11948 else 11949 error = bwrite(bp); 11950 ACQUIRE_LOCK(&lk); 11951 if (error) 11952 break; 11953 } 11954 LIST_REMOVE(sintenel, sm_next); 11955 FREE_LOCK(&lk); 11956 free(sintenel, M_BMSAFEMAP); 11957 return (error); 11958 } 11959 11960 /* 11961 * This routine is called when we are trying to synchronously flush a 11962 * file. This routine must eliminate any filesystem metadata dependencies 11963 * so that the syncing routine can succeed. 11964 */ 11965 int 11966 softdep_sync_metadata(struct vnode *vp) 11967 { 11968 int error; 11969 11970 /* 11971 * Ensure that any direct block dependencies have been cleared, 11972 * truncations are started, and inode references are journaled. 11973 */ 11974 ACQUIRE_LOCK(&lk); 11975 /* 11976 * Write all journal records to prevent rollbacks on devvp. 11977 */ 11978 if (vp->v_type == VCHR) 11979 softdep_flushjournal(vp->v_mount); 11980 error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number); 11981 /* 11982 * Ensure that all truncates are written so we won't find deps on 11983 * indirect blocks. 11984 */ 11985 process_truncates(vp); 11986 FREE_LOCK(&lk); 11987 11988 return (error); 11989 } 11990 11991 /* 11992 * This routine is called when we are attempting to sync a buf with 11993 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 11994 * other IO it can but returns EBUSY if the buffer is not yet able to 11995 * be written. Dependencies which will not cause rollbacks will always 11996 * return 0. 11997 */ 11998 int 11999 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12000 { 12001 struct indirdep *indirdep; 12002 struct pagedep *pagedep; 12003 struct allocindir *aip; 12004 struct newblk *newblk; 12005 struct buf *nbp; 12006 struct worklist *wk; 12007 int i, error; 12008 12009 /* 12010 * For VCHR we just don't want to force flush any dependencies that 12011 * will cause rollbacks. 12012 */ 12013 if (vp->v_type == VCHR) { 12014 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12015 return (EBUSY); 12016 return (0); 12017 } 12018 ACQUIRE_LOCK(&lk); 12019 /* 12020 * As we hold the buffer locked, none of its dependencies 12021 * will disappear. 12022 */ 12023 error = 0; 12024 top: 12025 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12026 switch (wk->wk_type) { 12027 12028 case D_ALLOCDIRECT: 12029 case D_ALLOCINDIR: 12030 newblk = WK_NEWBLK(wk); 12031 if (newblk->nb_jnewblk != NULL) { 12032 if (waitfor == MNT_NOWAIT) { 12033 error = EBUSY; 12034 goto out_unlock; 12035 } 12036 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12037 goto top; 12038 } 12039 if (newblk->nb_state & DEPCOMPLETE || 12040 waitfor == MNT_NOWAIT) 12041 continue; 12042 nbp = newblk->nb_bmsafemap->sm_buf; 12043 nbp = getdirtybuf(nbp, &lk, waitfor); 12044 if (nbp == NULL) 12045 goto top; 12046 FREE_LOCK(&lk); 12047 if ((error = bwrite(nbp)) != 0) 12048 goto out; 12049 ACQUIRE_LOCK(&lk); 12050 continue; 12051 12052 case D_INDIRDEP: 12053 indirdep = WK_INDIRDEP(wk); 12054 if (waitfor == MNT_NOWAIT) { 12055 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12056 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12057 error = EBUSY; 12058 goto out_unlock; 12059 } 12060 } 12061 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12062 panic("softdep_sync_buf: truncation pending."); 12063 restart: 12064 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12065 newblk = (struct newblk *)aip; 12066 if (newblk->nb_jnewblk != NULL) { 12067 jwait(&newblk->nb_jnewblk->jn_list, 12068 waitfor); 12069 goto restart; 12070 } 12071 if (newblk->nb_state & DEPCOMPLETE) 12072 continue; 12073 nbp = newblk->nb_bmsafemap->sm_buf; 12074 nbp = getdirtybuf(nbp, &lk, waitfor); 12075 if (nbp == NULL) 12076 goto restart; 12077 FREE_LOCK(&lk); 12078 if ((error = bwrite(nbp)) != 0) 12079 goto out; 12080 ACQUIRE_LOCK(&lk); 12081 goto restart; 12082 } 12083 continue; 12084 12085 case D_PAGEDEP: 12086 /* 12087 * Only flush directory entries in synchronous passes. 12088 */ 12089 if (waitfor != MNT_WAIT) { 12090 error = EBUSY; 12091 goto out_unlock; 12092 } 12093 /* 12094 * While syncing snapshots, we must allow recursive 12095 * lookups. 12096 */ 12097 BUF_AREC(bp); 12098 /* 12099 * We are trying to sync a directory that may 12100 * have dependencies on both its own metadata 12101 * and/or dependencies on the inodes of any 12102 * recently allocated files. We walk its diradd 12103 * lists pushing out the associated inode. 12104 */ 12105 pagedep = WK_PAGEDEP(wk); 12106 for (i = 0; i < DAHASHSZ; i++) { 12107 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12108 continue; 12109 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12110 &pagedep->pd_diraddhd[i]))) { 12111 BUF_NOREC(bp); 12112 goto out_unlock; 12113 } 12114 } 12115 BUF_NOREC(bp); 12116 continue; 12117 12118 case D_FREEWORK: 12119 case D_FREEDEP: 12120 case D_JSEGDEP: 12121 case D_JNEWBLK: 12122 continue; 12123 12124 default: 12125 panic("softdep_sync_buf: Unknown type %s", 12126 TYPENAME(wk->wk_type)); 12127 /* NOTREACHED */ 12128 } 12129 } 12130 out_unlock: 12131 FREE_LOCK(&lk); 12132 out: 12133 return (error); 12134 } 12135 12136 /* 12137 * Flush the dependencies associated with an inodedep. 12138 * Called with splbio blocked. 12139 */ 12140 static int 12141 flush_inodedep_deps(vp, mp, ino) 12142 struct vnode *vp; 12143 struct mount *mp; 12144 ino_t ino; 12145 { 12146 struct inodedep *inodedep; 12147 struct inoref *inoref; 12148 int error, waitfor; 12149 12150 /* 12151 * This work is done in two passes. The first pass grabs most 12152 * of the buffers and begins asynchronously writing them. The 12153 * only way to wait for these asynchronous writes is to sleep 12154 * on the filesystem vnode which may stay busy for a long time 12155 * if the filesystem is active. So, instead, we make a second 12156 * pass over the dependencies blocking on each write. In the 12157 * usual case we will be blocking against a write that we 12158 * initiated, so when it is done the dependency will have been 12159 * resolved. Thus the second pass is expected to end quickly. 12160 * We give a brief window at the top of the loop to allow 12161 * any pending I/O to complete. 12162 */ 12163 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12164 if (error) 12165 return (error); 12166 FREE_LOCK(&lk); 12167 ACQUIRE_LOCK(&lk); 12168 restart: 12169 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12170 return (0); 12171 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12172 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12173 == DEPCOMPLETE) { 12174 jwait(&inoref->if_list, MNT_WAIT); 12175 goto restart; 12176 } 12177 } 12178 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12179 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12180 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12181 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12182 continue; 12183 /* 12184 * If pass2, we are done, otherwise do pass 2. 12185 */ 12186 if (waitfor == MNT_WAIT) 12187 break; 12188 waitfor = MNT_WAIT; 12189 } 12190 /* 12191 * Try freeing inodedep in case all dependencies have been removed. 12192 */ 12193 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12194 (void) free_inodedep(inodedep); 12195 return (0); 12196 } 12197 12198 /* 12199 * Flush an inode dependency list. 12200 * Called with splbio blocked. 12201 */ 12202 static int 12203 flush_deplist(listhead, waitfor, errorp) 12204 struct allocdirectlst *listhead; 12205 int waitfor; 12206 int *errorp; 12207 { 12208 struct allocdirect *adp; 12209 struct newblk *newblk; 12210 struct buf *bp; 12211 12212 mtx_assert(&lk, MA_OWNED); 12213 TAILQ_FOREACH(adp, listhead, ad_next) { 12214 newblk = (struct newblk *)adp; 12215 if (newblk->nb_jnewblk != NULL) { 12216 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12217 return (1); 12218 } 12219 if (newblk->nb_state & DEPCOMPLETE) 12220 continue; 12221 bp = newblk->nb_bmsafemap->sm_buf; 12222 bp = getdirtybuf(bp, &lk, waitfor); 12223 if (bp == NULL) { 12224 if (waitfor == MNT_NOWAIT) 12225 continue; 12226 return (1); 12227 } 12228 FREE_LOCK(&lk); 12229 if (waitfor == MNT_NOWAIT) 12230 bawrite(bp); 12231 else 12232 *errorp = bwrite(bp); 12233 ACQUIRE_LOCK(&lk); 12234 return (1); 12235 } 12236 return (0); 12237 } 12238 12239 /* 12240 * Flush dependencies associated with an allocdirect block. 12241 */ 12242 static int 12243 flush_newblk_dep(vp, mp, lbn) 12244 struct vnode *vp; 12245 struct mount *mp; 12246 ufs_lbn_t lbn; 12247 { 12248 struct newblk *newblk; 12249 struct bufobj *bo; 12250 struct inode *ip; 12251 struct buf *bp; 12252 ufs2_daddr_t blkno; 12253 int error; 12254 12255 error = 0; 12256 bo = &vp->v_bufobj; 12257 ip = VTOI(vp); 12258 blkno = DIP(ip, i_db[lbn]); 12259 if (blkno == 0) 12260 panic("flush_newblk_dep: Missing block"); 12261 ACQUIRE_LOCK(&lk); 12262 /* 12263 * Loop until all dependencies related to this block are satisfied. 12264 * We must be careful to restart after each sleep in case a write 12265 * completes some part of this process for us. 12266 */ 12267 for (;;) { 12268 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12269 FREE_LOCK(&lk); 12270 break; 12271 } 12272 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12273 panic("flush_newblk_deps: Bad newblk %p", newblk); 12274 /* 12275 * Flush the journal. 12276 */ 12277 if (newblk->nb_jnewblk != NULL) { 12278 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12279 continue; 12280 } 12281 /* 12282 * Write the bitmap dependency. 12283 */ 12284 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12285 bp = newblk->nb_bmsafemap->sm_buf; 12286 bp = getdirtybuf(bp, &lk, MNT_WAIT); 12287 if (bp == NULL) 12288 continue; 12289 FREE_LOCK(&lk); 12290 error = bwrite(bp); 12291 if (error) 12292 break; 12293 ACQUIRE_LOCK(&lk); 12294 continue; 12295 } 12296 /* 12297 * Write the buffer. 12298 */ 12299 FREE_LOCK(&lk); 12300 BO_LOCK(bo); 12301 bp = gbincore(bo, lbn); 12302 if (bp != NULL) { 12303 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12304 LK_INTERLOCK, BO_MTX(bo)); 12305 if (error == ENOLCK) { 12306 ACQUIRE_LOCK(&lk); 12307 continue; /* Slept, retry */ 12308 } 12309 if (error != 0) 12310 break; /* Failed */ 12311 if (bp->b_flags & B_DELWRI) { 12312 bremfree(bp); 12313 error = bwrite(bp); 12314 if (error) 12315 break; 12316 } else 12317 BUF_UNLOCK(bp); 12318 } else 12319 BO_UNLOCK(bo); 12320 /* 12321 * We have to wait for the direct pointers to 12322 * point at the newdirblk before the dependency 12323 * will go away. 12324 */ 12325 error = ffs_update(vp, 1); 12326 if (error) 12327 break; 12328 ACQUIRE_LOCK(&lk); 12329 } 12330 return (error); 12331 } 12332 12333 /* 12334 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 12335 * Called with splbio blocked. 12336 */ 12337 static int 12338 flush_pagedep_deps(pvp, mp, diraddhdp) 12339 struct vnode *pvp; 12340 struct mount *mp; 12341 struct diraddhd *diraddhdp; 12342 { 12343 struct inodedep *inodedep; 12344 struct inoref *inoref; 12345 struct ufsmount *ump; 12346 struct diradd *dap; 12347 struct vnode *vp; 12348 int error = 0; 12349 struct buf *bp; 12350 ino_t inum; 12351 12352 ump = VFSTOUFS(mp); 12353 restart: 12354 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 12355 /* 12356 * Flush ourselves if this directory entry 12357 * has a MKDIR_PARENT dependency. 12358 */ 12359 if (dap->da_state & MKDIR_PARENT) { 12360 FREE_LOCK(&lk); 12361 if ((error = ffs_update(pvp, 1)) != 0) 12362 break; 12363 ACQUIRE_LOCK(&lk); 12364 /* 12365 * If that cleared dependencies, go on to next. 12366 */ 12367 if (dap != LIST_FIRST(diraddhdp)) 12368 continue; 12369 if (dap->da_state & MKDIR_PARENT) 12370 panic("flush_pagedep_deps: MKDIR_PARENT"); 12371 } 12372 /* 12373 * A newly allocated directory must have its "." and 12374 * ".." entries written out before its name can be 12375 * committed in its parent. 12376 */ 12377 inum = dap->da_newinum; 12378 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12379 panic("flush_pagedep_deps: lost inode1"); 12380 /* 12381 * Wait for any pending journal adds to complete so we don't 12382 * cause rollbacks while syncing. 12383 */ 12384 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12385 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12386 == DEPCOMPLETE) { 12387 jwait(&inoref->if_list, MNT_WAIT); 12388 goto restart; 12389 } 12390 } 12391 if (dap->da_state & MKDIR_BODY) { 12392 FREE_LOCK(&lk); 12393 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12394 FFSV_FORCEINSMQ))) 12395 break; 12396 error = flush_newblk_dep(vp, mp, 0); 12397 /* 12398 * If we still have the dependency we might need to 12399 * update the vnode to sync the new link count to 12400 * disk. 12401 */ 12402 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 12403 error = ffs_update(vp, 1); 12404 vput(vp); 12405 if (error != 0) 12406 break; 12407 ACQUIRE_LOCK(&lk); 12408 /* 12409 * If that cleared dependencies, go on to next. 12410 */ 12411 if (dap != LIST_FIRST(diraddhdp)) 12412 continue; 12413 if (dap->da_state & MKDIR_BODY) { 12414 inodedep_lookup(UFSTOVFS(ump), inum, 0, 12415 &inodedep); 12416 panic("flush_pagedep_deps: MKDIR_BODY " 12417 "inodedep %p dap %p vp %p", 12418 inodedep, dap, vp); 12419 } 12420 } 12421 /* 12422 * Flush the inode on which the directory entry depends. 12423 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 12424 * the only remaining dependency is that the updated inode 12425 * count must get pushed to disk. The inode has already 12426 * been pushed into its inode buffer (via VOP_UPDATE) at 12427 * the time of the reference count change. So we need only 12428 * locate that buffer, ensure that there will be no rollback 12429 * caused by a bitmap dependency, then write the inode buffer. 12430 */ 12431 retry: 12432 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12433 panic("flush_pagedep_deps: lost inode"); 12434 /* 12435 * If the inode still has bitmap dependencies, 12436 * push them to disk. 12437 */ 12438 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 12439 bp = inodedep->id_bmsafemap->sm_buf; 12440 bp = getdirtybuf(bp, &lk, MNT_WAIT); 12441 if (bp == NULL) 12442 goto retry; 12443 FREE_LOCK(&lk); 12444 if ((error = bwrite(bp)) != 0) 12445 break; 12446 ACQUIRE_LOCK(&lk); 12447 if (dap != LIST_FIRST(diraddhdp)) 12448 continue; 12449 } 12450 /* 12451 * If the inode is still sitting in a buffer waiting 12452 * to be written or waiting for the link count to be 12453 * adjusted update it here to flush it to disk. 12454 */ 12455 if (dap == LIST_FIRST(diraddhdp)) { 12456 FREE_LOCK(&lk); 12457 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12458 FFSV_FORCEINSMQ))) 12459 break; 12460 error = ffs_update(vp, 1); 12461 vput(vp); 12462 if (error) 12463 break; 12464 ACQUIRE_LOCK(&lk); 12465 } 12466 /* 12467 * If we have failed to get rid of all the dependencies 12468 * then something is seriously wrong. 12469 */ 12470 if (dap == LIST_FIRST(diraddhdp)) { 12471 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 12472 panic("flush_pagedep_deps: failed to flush " 12473 "inodedep %p ino %d dap %p", inodedep, inum, dap); 12474 } 12475 } 12476 if (error) 12477 ACQUIRE_LOCK(&lk); 12478 return (error); 12479 } 12480 12481 /* 12482 * A large burst of file addition or deletion activity can drive the 12483 * memory load excessively high. First attempt to slow things down 12484 * using the techniques below. If that fails, this routine requests 12485 * the offending operations to fall back to running synchronously 12486 * until the memory load returns to a reasonable level. 12487 */ 12488 int 12489 softdep_slowdown(vp) 12490 struct vnode *vp; 12491 { 12492 struct ufsmount *ump; 12493 int jlow; 12494 int max_softdeps_hard; 12495 12496 ACQUIRE_LOCK(&lk); 12497 jlow = 0; 12498 /* 12499 * Check for journal space if needed. 12500 */ 12501 if (DOINGSUJ(vp)) { 12502 ump = VFSTOUFS(vp->v_mount); 12503 if (journal_space(ump, 0) == 0) 12504 jlow = 1; 12505 } 12506 max_softdeps_hard = max_softdeps * 11 / 10; 12507 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 12508 dep_current[D_INODEDEP] < max_softdeps_hard && 12509 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps && 12510 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) { 12511 FREE_LOCK(&lk); 12512 return (0); 12513 } 12514 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow) 12515 softdep_speedup(); 12516 stat_sync_limit_hit += 1; 12517 FREE_LOCK(&lk); 12518 if (DOINGSUJ(vp)) 12519 return (0); 12520 return (1); 12521 } 12522 12523 /* 12524 * Called by the allocation routines when they are about to fail 12525 * in the hope that we can free up the requested resource (inodes 12526 * or disk space). 12527 * 12528 * First check to see if the work list has anything on it. If it has, 12529 * clean up entries until we successfully free the requested resource. 12530 * Because this process holds inodes locked, we cannot handle any remove 12531 * requests that might block on a locked inode as that could lead to 12532 * deadlock. If the worklist yields none of the requested resource, 12533 * start syncing out vnodes to free up the needed space. 12534 */ 12535 int 12536 softdep_request_cleanup(fs, vp, cred, resource) 12537 struct fs *fs; 12538 struct vnode *vp; 12539 struct ucred *cred; 12540 int resource; 12541 { 12542 struct ufsmount *ump; 12543 struct mount *mp; 12544 struct vnode *lvp, *mvp; 12545 long starttime; 12546 ufs2_daddr_t needed; 12547 int error; 12548 12549 /* 12550 * If we are being called because of a process doing a 12551 * copy-on-write, then it is not safe to process any 12552 * worklist items as we will recurse into the copyonwrite 12553 * routine. This will result in an incoherent snapshot. 12554 * If the vnode that we hold is a snapshot, we must avoid 12555 * handling other resources that could cause deadlock. 12556 */ 12557 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 12558 return (0); 12559 12560 if (resource == FLUSH_BLOCKS_WAIT) 12561 stat_cleanup_blkrequests += 1; 12562 else 12563 stat_cleanup_inorequests += 1; 12564 12565 mp = vp->v_mount; 12566 ump = VFSTOUFS(mp); 12567 mtx_assert(UFS_MTX(ump), MA_OWNED); 12568 UFS_UNLOCK(ump); 12569 error = ffs_update(vp, 1); 12570 if (error != 0) { 12571 UFS_LOCK(ump); 12572 return (0); 12573 } 12574 /* 12575 * If we are in need of resources, consider pausing for 12576 * tickdelay to give ourselves some breathing room. 12577 */ 12578 ACQUIRE_LOCK(&lk); 12579 process_removes(vp); 12580 process_truncates(vp); 12581 request_cleanup(UFSTOVFS(ump), resource); 12582 FREE_LOCK(&lk); 12583 /* 12584 * Now clean up at least as many resources as we will need. 12585 * 12586 * When requested to clean up inodes, the number that are needed 12587 * is set by the number of simultaneous writers (mnt_writeopcount) 12588 * plus a bit of slop (2) in case some more writers show up while 12589 * we are cleaning. 12590 * 12591 * When requested to free up space, the amount of space that 12592 * we need is enough blocks to allocate a full-sized segment 12593 * (fs_contigsumsize). The number of such segments that will 12594 * be needed is set by the number of simultaneous writers 12595 * (mnt_writeopcount) plus a bit of slop (2) in case some more 12596 * writers show up while we are cleaning. 12597 * 12598 * Additionally, if we are unpriviledged and allocating space, 12599 * we need to ensure that we clean up enough blocks to get the 12600 * needed number of blocks over the threshhold of the minimum 12601 * number of blocks required to be kept free by the filesystem 12602 * (fs_minfree). 12603 */ 12604 if (resource == FLUSH_INODES_WAIT) { 12605 needed = vp->v_mount->mnt_writeopcount + 2; 12606 } else if (resource == FLUSH_BLOCKS_WAIT) { 12607 needed = (vp->v_mount->mnt_writeopcount + 2) * 12608 fs->fs_contigsumsize; 12609 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 12610 needed += fragstoblks(fs, 12611 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 12612 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 12613 } else { 12614 UFS_LOCK(ump); 12615 printf("softdep_request_cleanup: Unknown resource type %d\n", 12616 resource); 12617 return (0); 12618 } 12619 starttime = time_second; 12620 retry: 12621 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 12622 fs->fs_cstotal.cs_nbfree <= needed) || 12623 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 12624 fs->fs_cstotal.cs_nifree <= needed)) { 12625 ACQUIRE_LOCK(&lk); 12626 if (ump->softdep_on_worklist > 0 && 12627 process_worklist_item(UFSTOVFS(ump), 12628 ump->softdep_on_worklist, LK_NOWAIT) != 0) 12629 stat_worklist_push += 1; 12630 FREE_LOCK(&lk); 12631 } 12632 /* 12633 * If we still need resources and there are no more worklist 12634 * entries to process to obtain them, we have to start flushing 12635 * the dirty vnodes to force the release of additional requests 12636 * to the worklist that we can then process to reap addition 12637 * resources. We walk the vnodes associated with the mount point 12638 * until we get the needed worklist requests that we can reap. 12639 */ 12640 if ((resource == FLUSH_BLOCKS_WAIT && 12641 fs->fs_cstotal.cs_nbfree <= needed) || 12642 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 12643 fs->fs_cstotal.cs_nifree <= needed)) { 12644 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 12645 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 12646 VI_UNLOCK(lvp); 12647 continue; 12648 } 12649 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 12650 curthread)) 12651 continue; 12652 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 12653 vput(lvp); 12654 continue; 12655 } 12656 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 12657 vput(lvp); 12658 } 12659 lvp = ump->um_devvp; 12660 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 12661 VOP_FSYNC(lvp, MNT_NOWAIT, curthread); 12662 VOP_UNLOCK(lvp, 0); 12663 } 12664 if (ump->softdep_on_worklist > 0) { 12665 stat_cleanup_retries += 1; 12666 goto retry; 12667 } 12668 stat_cleanup_failures += 1; 12669 } 12670 if (time_second - starttime > stat_cleanup_high_delay) 12671 stat_cleanup_high_delay = time_second - starttime; 12672 UFS_LOCK(ump); 12673 return (1); 12674 } 12675 12676 /* 12677 * If memory utilization has gotten too high, deliberately slow things 12678 * down and speed up the I/O processing. 12679 */ 12680 extern struct thread *syncertd; 12681 static int 12682 request_cleanup(mp, resource) 12683 struct mount *mp; 12684 int resource; 12685 { 12686 struct thread *td = curthread; 12687 struct ufsmount *ump; 12688 12689 mtx_assert(&lk, MA_OWNED); 12690 /* 12691 * We never hold up the filesystem syncer or buf daemon. 12692 */ 12693 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 12694 return (0); 12695 ump = VFSTOUFS(mp); 12696 /* 12697 * First check to see if the work list has gotten backlogged. 12698 * If it has, co-opt this process to help clean up two entries. 12699 * Because this process may hold inodes locked, we cannot 12700 * handle any remove requests that might block on a locked 12701 * inode as that could lead to deadlock. We set TDP_SOFTDEP 12702 * to avoid recursively processing the worklist. 12703 */ 12704 if (ump->softdep_on_worklist > max_softdeps / 10) { 12705 td->td_pflags |= TDP_SOFTDEP; 12706 process_worklist_item(mp, 2, LK_NOWAIT); 12707 td->td_pflags &= ~TDP_SOFTDEP; 12708 stat_worklist_push += 2; 12709 return(1); 12710 } 12711 /* 12712 * Next, we attempt to speed up the syncer process. If that 12713 * is successful, then we allow the process to continue. 12714 */ 12715 if (softdep_speedup() && 12716 resource != FLUSH_BLOCKS_WAIT && 12717 resource != FLUSH_INODES_WAIT) 12718 return(0); 12719 /* 12720 * If we are resource constrained on inode dependencies, try 12721 * flushing some dirty inodes. Otherwise, we are constrained 12722 * by file deletions, so try accelerating flushes of directories 12723 * with removal dependencies. We would like to do the cleanup 12724 * here, but we probably hold an inode locked at this point and 12725 * that might deadlock against one that we try to clean. So, 12726 * the best that we can do is request the syncer daemon to do 12727 * the cleanup for us. 12728 */ 12729 switch (resource) { 12730 12731 case FLUSH_INODES: 12732 case FLUSH_INODES_WAIT: 12733 stat_ino_limit_push += 1; 12734 req_clear_inodedeps += 1; 12735 stat_countp = &stat_ino_limit_hit; 12736 break; 12737 12738 case FLUSH_BLOCKS: 12739 case FLUSH_BLOCKS_WAIT: 12740 stat_blk_limit_push += 1; 12741 req_clear_remove += 1; 12742 stat_countp = &stat_blk_limit_hit; 12743 break; 12744 12745 default: 12746 panic("request_cleanup: unknown type"); 12747 } 12748 /* 12749 * Hopefully the syncer daemon will catch up and awaken us. 12750 * We wait at most tickdelay before proceeding in any case. 12751 */ 12752 proc_waiting += 1; 12753 if (callout_pending(&softdep_callout) == FALSE) 12754 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 12755 pause_timer, 0); 12756 12757 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 12758 proc_waiting -= 1; 12759 return (1); 12760 } 12761 12762 /* 12763 * Awaken processes pausing in request_cleanup and clear proc_waiting 12764 * to indicate that there is no longer a timer running. 12765 */ 12766 static void 12767 pause_timer(arg) 12768 void *arg; 12769 { 12770 12771 /* 12772 * The callout_ API has acquired mtx and will hold it around this 12773 * function call. 12774 */ 12775 *stat_countp += 1; 12776 wakeup_one(&proc_waiting); 12777 if (proc_waiting > 0) 12778 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 12779 pause_timer, 0); 12780 } 12781 12782 /* 12783 * Flush out a directory with at least one removal dependency in an effort to 12784 * reduce the number of dirrem, freefile, and freeblks dependency structures. 12785 */ 12786 static void 12787 clear_remove(void) 12788 { 12789 struct pagedep_hashhead *pagedephd; 12790 struct pagedep *pagedep; 12791 static int next = 0; 12792 struct mount *mp; 12793 struct vnode *vp; 12794 struct bufobj *bo; 12795 int error, cnt; 12796 ino_t ino; 12797 12798 mtx_assert(&lk, MA_OWNED); 12799 12800 for (cnt = 0; cnt < pagedep_hash; cnt++) { 12801 pagedephd = &pagedep_hashtbl[next++]; 12802 if (next >= pagedep_hash) 12803 next = 0; 12804 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 12805 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 12806 continue; 12807 mp = pagedep->pd_list.wk_mp; 12808 ino = pagedep->pd_ino; 12809 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 12810 continue; 12811 FREE_LOCK(&lk); 12812 12813 /* 12814 * Let unmount clear deps 12815 */ 12816 error = vfs_busy(mp, MBF_NOWAIT); 12817 if (error != 0) 12818 goto finish_write; 12819 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 12820 FFSV_FORCEINSMQ); 12821 vfs_unbusy(mp); 12822 if (error != 0) { 12823 softdep_error("clear_remove: vget", error); 12824 goto finish_write; 12825 } 12826 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 12827 softdep_error("clear_remove: fsync", error); 12828 bo = &vp->v_bufobj; 12829 BO_LOCK(bo); 12830 drain_output(vp); 12831 BO_UNLOCK(bo); 12832 vput(vp); 12833 finish_write: 12834 vn_finished_write(mp); 12835 ACQUIRE_LOCK(&lk); 12836 return; 12837 } 12838 } 12839 } 12840 12841 /* 12842 * Clear out a block of dirty inodes in an effort to reduce 12843 * the number of inodedep dependency structures. 12844 */ 12845 static void 12846 clear_inodedeps(void) 12847 { 12848 struct inodedep_hashhead *inodedephd; 12849 struct inodedep *inodedep; 12850 static int next = 0; 12851 struct mount *mp; 12852 struct vnode *vp; 12853 struct fs *fs; 12854 int error, cnt; 12855 ino_t firstino, lastino, ino; 12856 12857 mtx_assert(&lk, MA_OWNED); 12858 /* 12859 * Pick a random inode dependency to be cleared. 12860 * We will then gather up all the inodes in its block 12861 * that have dependencies and flush them out. 12862 */ 12863 for (cnt = 0; cnt < inodedep_hash; cnt++) { 12864 inodedephd = &inodedep_hashtbl[next++]; 12865 if (next >= inodedep_hash) 12866 next = 0; 12867 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 12868 break; 12869 } 12870 if (inodedep == NULL) 12871 return; 12872 fs = inodedep->id_fs; 12873 mp = inodedep->id_list.wk_mp; 12874 /* 12875 * Find the last inode in the block with dependencies. 12876 */ 12877 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 12878 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 12879 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 12880 break; 12881 /* 12882 * Asynchronously push all but the last inode with dependencies. 12883 * Synchronously push the last inode with dependencies to ensure 12884 * that the inode block gets written to free up the inodedeps. 12885 */ 12886 for (ino = firstino; ino <= lastino; ino++) { 12887 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12888 continue; 12889 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 12890 continue; 12891 FREE_LOCK(&lk); 12892 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 12893 if (error != 0) { 12894 vn_finished_write(mp); 12895 ACQUIRE_LOCK(&lk); 12896 return; 12897 } 12898 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 12899 FFSV_FORCEINSMQ)) != 0) { 12900 softdep_error("clear_inodedeps: vget", error); 12901 vfs_unbusy(mp); 12902 vn_finished_write(mp); 12903 ACQUIRE_LOCK(&lk); 12904 return; 12905 } 12906 vfs_unbusy(mp); 12907 if (ino == lastino) { 12908 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 12909 softdep_error("clear_inodedeps: fsync1", error); 12910 } else { 12911 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 12912 softdep_error("clear_inodedeps: fsync2", error); 12913 BO_LOCK(&vp->v_bufobj); 12914 drain_output(vp); 12915 BO_UNLOCK(&vp->v_bufobj); 12916 } 12917 vput(vp); 12918 vn_finished_write(mp); 12919 ACQUIRE_LOCK(&lk); 12920 } 12921 } 12922 12923 void 12924 softdep_buf_append(bp, wkhd) 12925 struct buf *bp; 12926 struct workhead *wkhd; 12927 { 12928 struct worklist *wk; 12929 12930 ACQUIRE_LOCK(&lk); 12931 while ((wk = LIST_FIRST(wkhd)) != NULL) { 12932 WORKLIST_REMOVE(wk); 12933 WORKLIST_INSERT(&bp->b_dep, wk); 12934 } 12935 FREE_LOCK(&lk); 12936 12937 } 12938 12939 void 12940 softdep_inode_append(ip, cred, wkhd) 12941 struct inode *ip; 12942 struct ucred *cred; 12943 struct workhead *wkhd; 12944 { 12945 struct buf *bp; 12946 struct fs *fs; 12947 int error; 12948 12949 fs = ip->i_fs; 12950 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 12951 (int)fs->fs_bsize, cred, &bp); 12952 if (error) { 12953 softdep_freework(wkhd); 12954 return; 12955 } 12956 softdep_buf_append(bp, wkhd); 12957 bqrelse(bp); 12958 } 12959 12960 void 12961 softdep_freework(wkhd) 12962 struct workhead *wkhd; 12963 { 12964 12965 ACQUIRE_LOCK(&lk); 12966 handle_jwork(wkhd); 12967 FREE_LOCK(&lk); 12968 } 12969 12970 /* 12971 * Function to determine if the buffer has outstanding dependencies 12972 * that will cause a roll-back if the buffer is written. If wantcount 12973 * is set, return number of dependencies, otherwise just yes or no. 12974 */ 12975 static int 12976 softdep_count_dependencies(bp, wantcount) 12977 struct buf *bp; 12978 int wantcount; 12979 { 12980 struct worklist *wk; 12981 struct bmsafemap *bmsafemap; 12982 struct freework *freework; 12983 struct inodedep *inodedep; 12984 struct indirdep *indirdep; 12985 struct freeblks *freeblks; 12986 struct allocindir *aip; 12987 struct pagedep *pagedep; 12988 struct dirrem *dirrem; 12989 struct newblk *newblk; 12990 struct mkdir *mkdir; 12991 struct diradd *dap; 12992 int i, retval; 12993 12994 retval = 0; 12995 ACQUIRE_LOCK(&lk); 12996 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12997 switch (wk->wk_type) { 12998 12999 case D_INODEDEP: 13000 inodedep = WK_INODEDEP(wk); 13001 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13002 /* bitmap allocation dependency */ 13003 retval += 1; 13004 if (!wantcount) 13005 goto out; 13006 } 13007 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13008 /* direct block pointer dependency */ 13009 retval += 1; 13010 if (!wantcount) 13011 goto out; 13012 } 13013 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13014 /* direct block pointer dependency */ 13015 retval += 1; 13016 if (!wantcount) 13017 goto out; 13018 } 13019 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13020 /* Add reference dependency. */ 13021 retval += 1; 13022 if (!wantcount) 13023 goto out; 13024 } 13025 continue; 13026 13027 case D_INDIRDEP: 13028 indirdep = WK_INDIRDEP(wk); 13029 13030 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13031 /* indirect truncation dependency */ 13032 retval += 1; 13033 if (!wantcount) 13034 goto out; 13035 } 13036 13037 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13038 /* indirect block pointer dependency */ 13039 retval += 1; 13040 if (!wantcount) 13041 goto out; 13042 } 13043 continue; 13044 13045 case D_PAGEDEP: 13046 pagedep = WK_PAGEDEP(wk); 13047 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13048 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13049 /* Journal remove ref dependency. */ 13050 retval += 1; 13051 if (!wantcount) 13052 goto out; 13053 } 13054 } 13055 for (i = 0; i < DAHASHSZ; i++) { 13056 13057 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13058 /* directory entry dependency */ 13059 retval += 1; 13060 if (!wantcount) 13061 goto out; 13062 } 13063 } 13064 continue; 13065 13066 case D_BMSAFEMAP: 13067 bmsafemap = WK_BMSAFEMAP(wk); 13068 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 13069 /* Add reference dependency. */ 13070 retval += 1; 13071 if (!wantcount) 13072 goto out; 13073 } 13074 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 13075 /* Allocate block dependency. */ 13076 retval += 1; 13077 if (!wantcount) 13078 goto out; 13079 } 13080 continue; 13081 13082 case D_FREEBLKS: 13083 freeblks = WK_FREEBLKS(wk); 13084 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 13085 /* Freeblk journal dependency. */ 13086 retval += 1; 13087 if (!wantcount) 13088 goto out; 13089 } 13090 continue; 13091 13092 case D_ALLOCDIRECT: 13093 case D_ALLOCINDIR: 13094 newblk = WK_NEWBLK(wk); 13095 if (newblk->nb_jnewblk) { 13096 /* Journal allocate dependency. */ 13097 retval += 1; 13098 if (!wantcount) 13099 goto out; 13100 } 13101 continue; 13102 13103 case D_MKDIR: 13104 mkdir = WK_MKDIR(wk); 13105 if (mkdir->md_jaddref) { 13106 /* Journal reference dependency. */ 13107 retval += 1; 13108 if (!wantcount) 13109 goto out; 13110 } 13111 continue; 13112 13113 case D_FREEWORK: 13114 case D_FREEDEP: 13115 case D_JSEGDEP: 13116 case D_JSEG: 13117 case D_SBDEP: 13118 /* never a dependency on these blocks */ 13119 continue; 13120 13121 default: 13122 panic("softdep_count_dependencies: Unexpected type %s", 13123 TYPENAME(wk->wk_type)); 13124 /* NOTREACHED */ 13125 } 13126 } 13127 out: 13128 FREE_LOCK(&lk); 13129 return retval; 13130 } 13131 13132 /* 13133 * Acquire exclusive access to a buffer. 13134 * Must be called with a locked mtx parameter. 13135 * Return acquired buffer or NULL on failure. 13136 */ 13137 static struct buf * 13138 getdirtybuf(bp, mtx, waitfor) 13139 struct buf *bp; 13140 struct mtx *mtx; 13141 int waitfor; 13142 { 13143 int error; 13144 13145 mtx_assert(mtx, MA_OWNED); 13146 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 13147 if (waitfor != MNT_WAIT) 13148 return (NULL); 13149 error = BUF_LOCK(bp, 13150 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 13151 /* 13152 * Even if we sucessfully acquire bp here, we have dropped 13153 * mtx, which may violates our guarantee. 13154 */ 13155 if (error == 0) 13156 BUF_UNLOCK(bp); 13157 else if (error != ENOLCK) 13158 panic("getdirtybuf: inconsistent lock: %d", error); 13159 mtx_lock(mtx); 13160 return (NULL); 13161 } 13162 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13163 if (mtx == &lk && waitfor == MNT_WAIT) { 13164 mtx_unlock(mtx); 13165 BO_LOCK(bp->b_bufobj); 13166 BUF_UNLOCK(bp); 13167 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13168 bp->b_vflags |= BV_BKGRDWAIT; 13169 msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), 13170 PRIBIO | PDROP, "getbuf", 0); 13171 } else 13172 BO_UNLOCK(bp->b_bufobj); 13173 mtx_lock(mtx); 13174 return (NULL); 13175 } 13176 BUF_UNLOCK(bp); 13177 if (waitfor != MNT_WAIT) 13178 return (NULL); 13179 /* 13180 * The mtx argument must be bp->b_vp's mutex in 13181 * this case. 13182 */ 13183 #ifdef DEBUG_VFS_LOCKS 13184 if (bp->b_vp->v_type != VCHR) 13185 ASSERT_BO_LOCKED(bp->b_bufobj); 13186 #endif 13187 bp->b_vflags |= BV_BKGRDWAIT; 13188 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 13189 return (NULL); 13190 } 13191 if ((bp->b_flags & B_DELWRI) == 0) { 13192 BUF_UNLOCK(bp); 13193 return (NULL); 13194 } 13195 bremfree(bp); 13196 return (bp); 13197 } 13198 13199 13200 /* 13201 * Check if it is safe to suspend the file system now. On entry, 13202 * the vnode interlock for devvp should be held. Return 0 with 13203 * the mount interlock held if the file system can be suspended now, 13204 * otherwise return EAGAIN with the mount interlock held. 13205 */ 13206 int 13207 softdep_check_suspend(struct mount *mp, 13208 struct vnode *devvp, 13209 int softdep_deps, 13210 int softdep_accdeps, 13211 int secondary_writes, 13212 int secondary_accwrites) 13213 { 13214 struct bufobj *bo; 13215 struct ufsmount *ump; 13216 int error; 13217 13218 ump = VFSTOUFS(mp); 13219 bo = &devvp->v_bufobj; 13220 ASSERT_BO_LOCKED(bo); 13221 13222 for (;;) { 13223 if (!TRY_ACQUIRE_LOCK(&lk)) { 13224 BO_UNLOCK(bo); 13225 ACQUIRE_LOCK(&lk); 13226 FREE_LOCK(&lk); 13227 BO_LOCK(bo); 13228 continue; 13229 } 13230 MNT_ILOCK(mp); 13231 if (mp->mnt_secondary_writes != 0) { 13232 FREE_LOCK(&lk); 13233 BO_UNLOCK(bo); 13234 msleep(&mp->mnt_secondary_writes, 13235 MNT_MTX(mp), 13236 (PUSER - 1) | PDROP, "secwr", 0); 13237 BO_LOCK(bo); 13238 continue; 13239 } 13240 break; 13241 } 13242 13243 /* 13244 * Reasons for needing more work before suspend: 13245 * - Dirty buffers on devvp. 13246 * - Softdep activity occurred after start of vnode sync loop 13247 * - Secondary writes occurred after start of vnode sync loop 13248 */ 13249 error = 0; 13250 if (bo->bo_numoutput > 0 || 13251 bo->bo_dirty.bv_cnt > 0 || 13252 softdep_deps != 0 || 13253 ump->softdep_deps != 0 || 13254 softdep_accdeps != ump->softdep_accdeps || 13255 secondary_writes != 0 || 13256 mp->mnt_secondary_writes != 0 || 13257 secondary_accwrites != mp->mnt_secondary_accwrites) 13258 error = EAGAIN; 13259 FREE_LOCK(&lk); 13260 BO_UNLOCK(bo); 13261 return (error); 13262 } 13263 13264 13265 /* 13266 * Get the number of dependency structures for the file system, both 13267 * the current number and the total number allocated. These will 13268 * later be used to detect that softdep processing has occurred. 13269 */ 13270 void 13271 softdep_get_depcounts(struct mount *mp, 13272 int *softdep_depsp, 13273 int *softdep_accdepsp) 13274 { 13275 struct ufsmount *ump; 13276 13277 ump = VFSTOUFS(mp); 13278 ACQUIRE_LOCK(&lk); 13279 *softdep_depsp = ump->softdep_deps; 13280 *softdep_accdepsp = ump->softdep_accdeps; 13281 FREE_LOCK(&lk); 13282 } 13283 13284 /* 13285 * Wait for pending output on a vnode to complete. 13286 * Must be called with vnode lock and interlock locked. 13287 * 13288 * XXX: Should just be a call to bufobj_wwait(). 13289 */ 13290 static void 13291 drain_output(vp) 13292 struct vnode *vp; 13293 { 13294 struct bufobj *bo; 13295 13296 bo = &vp->v_bufobj; 13297 ASSERT_VOP_LOCKED(vp, "drain_output"); 13298 ASSERT_BO_LOCKED(bo); 13299 13300 while (bo->bo_numoutput) { 13301 bo->bo_flag |= BO_WWAIT; 13302 msleep((caddr_t)&bo->bo_numoutput, 13303 BO_MTX(bo), PRIBIO + 1, "drainvp", 0); 13304 } 13305 } 13306 13307 /* 13308 * Called whenever a buffer that is being invalidated or reallocated 13309 * contains dependencies. This should only happen if an I/O error has 13310 * occurred. The routine is called with the buffer locked. 13311 */ 13312 static void 13313 softdep_deallocate_dependencies(bp) 13314 struct buf *bp; 13315 { 13316 13317 if ((bp->b_ioflags & BIO_ERROR) == 0) 13318 panic("softdep_deallocate_dependencies: dangling deps"); 13319 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 13320 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 13321 } 13322 13323 /* 13324 * Function to handle asynchronous write errors in the filesystem. 13325 */ 13326 static void 13327 softdep_error(func, error) 13328 char *func; 13329 int error; 13330 { 13331 13332 /* XXX should do something better! */ 13333 printf("%s: got error %d while accessing filesystem\n", func, error); 13334 } 13335 13336 #ifdef DDB 13337 13338 static void 13339 inodedep_print(struct inodedep *inodedep, int verbose) 13340 { 13341 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d" 13342 " saveino %p\n", 13343 inodedep, inodedep->id_fs, inodedep->id_state, 13344 (intmax_t)inodedep->id_ino, 13345 (intmax_t)fsbtodb(inodedep->id_fs, 13346 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 13347 inodedep->id_nlinkdelta, inodedep->id_savednlink, 13348 inodedep->id_savedino1); 13349 13350 if (verbose == 0) 13351 return; 13352 13353 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 13354 "mkdiradd %p\n", 13355 LIST_FIRST(&inodedep->id_pendinghd), 13356 LIST_FIRST(&inodedep->id_bufwait), 13357 LIST_FIRST(&inodedep->id_inowait), 13358 TAILQ_FIRST(&inodedep->id_inoreflst), 13359 inodedep->id_mkdiradd); 13360 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 13361 TAILQ_FIRST(&inodedep->id_inoupdt), 13362 TAILQ_FIRST(&inodedep->id_newinoupdt), 13363 TAILQ_FIRST(&inodedep->id_extupdt), 13364 TAILQ_FIRST(&inodedep->id_newextupdt)); 13365 } 13366 13367 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 13368 { 13369 13370 if (have_addr == 0) { 13371 db_printf("Address required\n"); 13372 return; 13373 } 13374 inodedep_print((struct inodedep*)addr, 1); 13375 } 13376 13377 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 13378 { 13379 struct inodedep_hashhead *inodedephd; 13380 struct inodedep *inodedep; 13381 struct fs *fs; 13382 int cnt; 13383 13384 fs = have_addr ? (struct fs *)addr : NULL; 13385 for (cnt = 0; cnt < inodedep_hash; cnt++) { 13386 inodedephd = &inodedep_hashtbl[cnt]; 13387 LIST_FOREACH(inodedep, inodedephd, id_hash) { 13388 if (fs != NULL && fs != inodedep->id_fs) 13389 continue; 13390 inodedep_print(inodedep, 0); 13391 } 13392 } 13393 } 13394 13395 DB_SHOW_COMMAND(worklist, db_show_worklist) 13396 { 13397 struct worklist *wk; 13398 13399 if (have_addr == 0) { 13400 db_printf("Address required\n"); 13401 return; 13402 } 13403 wk = (struct worklist *)addr; 13404 printf("worklist: %p type %s state 0x%X\n", 13405 wk, TYPENAME(wk->wk_type), wk->wk_state); 13406 } 13407 13408 DB_SHOW_COMMAND(workhead, db_show_workhead) 13409 { 13410 struct workhead *wkhd; 13411 struct worklist *wk; 13412 int i; 13413 13414 if (have_addr == 0) { 13415 db_printf("Address required\n"); 13416 return; 13417 } 13418 wkhd = (struct workhead *)addr; 13419 wk = LIST_FIRST(wkhd); 13420 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 13421 db_printf("worklist: %p type %s state 0x%X", 13422 wk, TYPENAME(wk->wk_type), wk->wk_state); 13423 if (i == 100) 13424 db_printf("workhead overflow"); 13425 printf("\n"); 13426 } 13427 13428 13429 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 13430 { 13431 struct jaddref *jaddref; 13432 struct diradd *diradd; 13433 struct mkdir *mkdir; 13434 13435 LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) { 13436 diradd = mkdir->md_diradd; 13437 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 13438 mkdir, mkdir->md_state, diradd, diradd->da_state); 13439 if ((jaddref = mkdir->md_jaddref) != NULL) 13440 db_printf(" jaddref %p jaddref state 0x%X", 13441 jaddref, jaddref->ja_state); 13442 db_printf("\n"); 13443 } 13444 } 13445 13446 #endif /* DDB */ 13447 13448 #endif /* SOFTUPDATES */ 13449