xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 641a6cfb86023499caafe26a4d821a0b885cf00b)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/limits.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/mount.h>
67 #include <sys/mutex.h>
68 #include <sys/namei.h>
69 #include <sys/priv.h>
70 #include <sys/proc.h>
71 #include <sys/stat.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/vnode.h>
75 #include <sys/conf.h>
76 
77 #include <ufs/ufs/dir.h>
78 #include <ufs/ufs/extattr.h>
79 #include <ufs/ufs/quota.h>
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #include <ufs/ffs/fs.h>
83 #include <ufs/ffs/softdep.h>
84 #include <ufs/ffs/ffs_extern.h>
85 #include <ufs/ufs/ufs_extern.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_object.h>
90 
91 #include <ddb/ddb.h>
92 
93 #ifndef SOFTUPDATES
94 
95 int
96 softdep_flushfiles(oldmnt, flags, td)
97 	struct mount *oldmnt;
98 	int flags;
99 	struct thread *td;
100 {
101 
102 	panic("softdep_flushfiles called");
103 }
104 
105 int
106 softdep_mount(devvp, mp, fs, cred)
107 	struct vnode *devvp;
108 	struct mount *mp;
109 	struct fs *fs;
110 	struct ucred *cred;
111 {
112 
113 	return (0);
114 }
115 
116 void
117 softdep_initialize()
118 {
119 
120 	return;
121 }
122 
123 void
124 softdep_uninitialize()
125 {
126 
127 	return;
128 }
129 
130 void
131 softdep_unmount(mp)
132 	struct mount *mp;
133 {
134 
135 }
136 
137 void
138 softdep_setup_sbupdate(ump, fs, bp)
139 	struct ufsmount *ump;
140 	struct fs *fs;
141 	struct buf *bp;
142 {
143 }
144 
145 void
146 softdep_setup_inomapdep(bp, ip, newinum, mode)
147 	struct buf *bp;
148 	struct inode *ip;
149 	ino_t newinum;
150 	int mode;
151 {
152 
153 	panic("softdep_setup_inomapdep called");
154 }
155 
156 void
157 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
158 	struct buf *bp;
159 	struct mount *mp;
160 	ufs2_daddr_t newblkno;
161 	int frags;
162 	int oldfrags;
163 {
164 
165 	panic("softdep_setup_blkmapdep called");
166 }
167 
168 void
169 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
170 	struct inode *ip;
171 	ufs_lbn_t lbn;
172 	ufs2_daddr_t newblkno;
173 	ufs2_daddr_t oldblkno;
174 	long newsize;
175 	long oldsize;
176 	struct buf *bp;
177 {
178 
179 	panic("softdep_setup_allocdirect called");
180 }
181 
182 void
183 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
184 	struct inode *ip;
185 	ufs_lbn_t lbn;
186 	ufs2_daddr_t newblkno;
187 	ufs2_daddr_t oldblkno;
188 	long newsize;
189 	long oldsize;
190 	struct buf *bp;
191 {
192 
193 	panic("softdep_setup_allocext called");
194 }
195 
196 void
197 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
198 	struct inode *ip;
199 	ufs_lbn_t lbn;
200 	struct buf *bp;
201 	int ptrno;
202 	ufs2_daddr_t newblkno;
203 	ufs2_daddr_t oldblkno;
204 	struct buf *nbp;
205 {
206 
207 	panic("softdep_setup_allocindir_page called");
208 }
209 
210 void
211 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
212 	struct buf *nbp;
213 	struct inode *ip;
214 	struct buf *bp;
215 	int ptrno;
216 	ufs2_daddr_t newblkno;
217 {
218 
219 	panic("softdep_setup_allocindir_meta called");
220 }
221 
222 void
223 softdep_journal_freeblocks(ip, cred, length, flags)
224 	struct inode *ip;
225 	struct ucred *cred;
226 	off_t length;
227 	int flags;
228 {
229 
230 	panic("softdep_journal_freeblocks called");
231 }
232 
233 void
234 softdep_journal_fsync(ip)
235 	struct inode *ip;
236 {
237 
238 	panic("softdep_journal_fsync called");
239 }
240 
241 void
242 softdep_setup_freeblocks(ip, length, flags)
243 	struct inode *ip;
244 	off_t length;
245 	int flags;
246 {
247 
248 	panic("softdep_setup_freeblocks called");
249 }
250 
251 void
252 softdep_freefile(pvp, ino, mode)
253 		struct vnode *pvp;
254 		ino_t ino;
255 		int mode;
256 {
257 
258 	panic("softdep_freefile called");
259 }
260 
261 int
262 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
263 	struct buf *bp;
264 	struct inode *dp;
265 	off_t diroffset;
266 	ino_t newinum;
267 	struct buf *newdirbp;
268 	int isnewblk;
269 {
270 
271 	panic("softdep_setup_directory_add called");
272 }
273 
274 void
275 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
276 	struct buf *bp;
277 	struct inode *dp;
278 	caddr_t base;
279 	caddr_t oldloc;
280 	caddr_t newloc;
281 	int entrysize;
282 {
283 
284 	panic("softdep_change_directoryentry_offset called");
285 }
286 
287 void
288 softdep_setup_remove(bp, dp, ip, isrmdir)
289 	struct buf *bp;
290 	struct inode *dp;
291 	struct inode *ip;
292 	int isrmdir;
293 {
294 
295 	panic("softdep_setup_remove called");
296 }
297 
298 void
299 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
300 	struct buf *bp;
301 	struct inode *dp;
302 	struct inode *ip;
303 	ino_t newinum;
304 	int isrmdir;
305 {
306 
307 	panic("softdep_setup_directory_change called");
308 }
309 
310 void
311 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
312 	struct mount *mp;
313 	struct buf *bp;
314 	ufs2_daddr_t blkno;
315 	int frags;
316 	struct workhead *wkhd;
317 {
318 
319 	panic("%s called", __FUNCTION__);
320 }
321 
322 void
323 softdep_setup_inofree(mp, bp, ino, wkhd)
324 	struct mount *mp;
325 	struct buf *bp;
326 	ino_t ino;
327 	struct workhead *wkhd;
328 {
329 
330 	panic("%s called", __FUNCTION__);
331 }
332 
333 void
334 softdep_setup_unlink(dp, ip)
335 	struct inode *dp;
336 	struct inode *ip;
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_link(dp, ip)
344 	struct inode *dp;
345 	struct inode *ip;
346 {
347 
348 	panic("%s called", __FUNCTION__);
349 }
350 
351 void
352 softdep_revert_link(dp, ip)
353 	struct inode *dp;
354 	struct inode *ip;
355 {
356 
357 	panic("%s called", __FUNCTION__);
358 }
359 
360 void
361 softdep_setup_rmdir(dp, ip)
362 	struct inode *dp;
363 	struct inode *ip;
364 {
365 
366 	panic("%s called", __FUNCTION__);
367 }
368 
369 void
370 softdep_revert_rmdir(dp, ip)
371 	struct inode *dp;
372 	struct inode *ip;
373 {
374 
375 	panic("%s called", __FUNCTION__);
376 }
377 
378 void
379 softdep_setup_create(dp, ip)
380 	struct inode *dp;
381 	struct inode *ip;
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 void
388 softdep_revert_create(dp, ip)
389 	struct inode *dp;
390 	struct inode *ip;
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 void
397 softdep_setup_mkdir(dp, ip)
398 	struct inode *dp;
399 	struct inode *ip;
400 {
401 
402 	panic("%s called", __FUNCTION__);
403 }
404 
405 void
406 softdep_revert_mkdir(dp, ip)
407 	struct inode *dp;
408 	struct inode *ip;
409 {
410 
411 	panic("%s called", __FUNCTION__);
412 }
413 
414 void
415 softdep_setup_dotdot_link(dp, ip)
416 	struct inode *dp;
417 	struct inode *ip;
418 {
419 
420 	panic("%s called", __FUNCTION__);
421 }
422 
423 int
424 softdep_prealloc(vp, waitok)
425 	struct vnode *vp;
426 	int waitok;
427 {
428 
429 	panic("%s called", __FUNCTION__);
430 
431 	return (0);
432 }
433 
434 int
435 softdep_journal_lookup(mp, vpp)
436 	struct mount *mp;
437 	struct vnode **vpp;
438 {
439 
440 	return (ENOENT);
441 }
442 
443 void
444 softdep_change_linkcnt(ip)
445 	struct inode *ip;
446 {
447 
448 	panic("softdep_change_linkcnt called");
449 }
450 
451 void
452 softdep_load_inodeblock(ip)
453 	struct inode *ip;
454 {
455 
456 	panic("softdep_load_inodeblock called");
457 }
458 
459 void
460 softdep_update_inodeblock(ip, bp, waitfor)
461 	struct inode *ip;
462 	struct buf *bp;
463 	int waitfor;
464 {
465 
466 	panic("softdep_update_inodeblock called");
467 }
468 
469 int
470 softdep_fsync(vp)
471 	struct vnode *vp;	/* the "in_core" copy of the inode */
472 {
473 
474 	return (0);
475 }
476 
477 void
478 softdep_fsync_mountdev(vp)
479 	struct vnode *vp;
480 {
481 
482 	return;
483 }
484 
485 int
486 softdep_flushworklist(oldmnt, countp, td)
487 	struct mount *oldmnt;
488 	int *countp;
489 	struct thread *td;
490 {
491 
492 	*countp = 0;
493 	return (0);
494 }
495 
496 int
497 softdep_sync_metadata(struct vnode *vp)
498 {
499 
500 	return (0);
501 }
502 
503 int
504 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
505 {
506 
507 	return (0);
508 }
509 
510 int
511 softdep_slowdown(vp)
512 	struct vnode *vp;
513 {
514 
515 	panic("softdep_slowdown called");
516 }
517 
518 void
519 softdep_releasefile(ip)
520 	struct inode *ip;	/* inode with the zero effective link count */
521 {
522 
523 	panic("softdep_releasefile called");
524 }
525 
526 int
527 softdep_request_cleanup(fs, vp, cred, resource)
528 	struct fs *fs;
529 	struct vnode *vp;
530 	struct ucred *cred;
531 	int resource;
532 {
533 
534 	return (0);
535 }
536 
537 int
538 softdep_check_suspend(struct mount *mp,
539 		      struct vnode *devvp,
540 		      int softdep_deps,
541 		      int softdep_accdeps,
542 		      int secondary_writes,
543 		      int secondary_accwrites)
544 {
545 	struct bufobj *bo;
546 	int error;
547 
548 	(void) softdep_deps,
549 	(void) softdep_accdeps;
550 
551 	bo = &devvp->v_bufobj;
552 	ASSERT_BO_LOCKED(bo);
553 
554 	MNT_ILOCK(mp);
555 	while (mp->mnt_secondary_writes != 0) {
556 		BO_UNLOCK(bo);
557 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
558 		    (PUSER - 1) | PDROP, "secwr", 0);
559 		BO_LOCK(bo);
560 		MNT_ILOCK(mp);
561 	}
562 
563 	/*
564 	 * Reasons for needing more work before suspend:
565 	 * - Dirty buffers on devvp.
566 	 * - Secondary writes occurred after start of vnode sync loop
567 	 */
568 	error = 0;
569 	if (bo->bo_numoutput > 0 ||
570 	    bo->bo_dirty.bv_cnt > 0 ||
571 	    secondary_writes != 0 ||
572 	    mp->mnt_secondary_writes != 0 ||
573 	    secondary_accwrites != mp->mnt_secondary_accwrites)
574 		error = EAGAIN;
575 	BO_UNLOCK(bo);
576 	return (error);
577 }
578 
579 void
580 softdep_get_depcounts(struct mount *mp,
581 		      int *softdepactivep,
582 		      int *softdepactiveaccp)
583 {
584 	(void) mp;
585 	*softdepactivep = 0;
586 	*softdepactiveaccp = 0;
587 }
588 
589 void
590 softdep_buf_append(bp, wkhd)
591 	struct buf *bp;
592 	struct workhead *wkhd;
593 {
594 
595 	panic("softdep_buf_appendwork called");
596 }
597 
598 void
599 softdep_inode_append(ip, cred, wkhd)
600 	struct inode *ip;
601 	struct ucred *cred;
602 	struct workhead *wkhd;
603 {
604 
605 	panic("softdep_inode_appendwork called");
606 }
607 
608 void
609 softdep_freework(wkhd)
610 	struct workhead *wkhd;
611 {
612 
613 	panic("softdep_freework called");
614 }
615 
616 #else
617 
618 FEATURE(softupdates, "FFS soft-updates support");
619 
620 /*
621  * These definitions need to be adapted to the system to which
622  * this file is being ported.
623  */
624 
625 #define M_SOFTDEP_FLAGS	(M_WAITOK)
626 
627 #define	D_PAGEDEP	0
628 #define	D_INODEDEP	1
629 #define	D_BMSAFEMAP	2
630 #define	D_NEWBLK	3
631 #define	D_ALLOCDIRECT	4
632 #define	D_INDIRDEP	5
633 #define	D_ALLOCINDIR	6
634 #define	D_FREEFRAG	7
635 #define	D_FREEBLKS	8
636 #define	D_FREEFILE	9
637 #define	D_DIRADD	10
638 #define	D_MKDIR		11
639 #define	D_DIRREM	12
640 #define	D_NEWDIRBLK	13
641 #define	D_FREEWORK	14
642 #define	D_FREEDEP	15
643 #define	D_JADDREF	16
644 #define	D_JREMREF	17
645 #define	D_JMVREF	18
646 #define	D_JNEWBLK	19
647 #define	D_JFREEBLK	20
648 #define	D_JFREEFRAG	21
649 #define	D_JSEG		22
650 #define	D_JSEGDEP	23
651 #define	D_SBDEP		24
652 #define	D_JTRUNC	25
653 #define	D_JFSYNC	26
654 #define	D_SENTINAL	27
655 #define	D_LAST		D_SENTINAL
656 
657 unsigned long dep_current[D_LAST + 1];
658 unsigned long dep_total[D_LAST + 1];
659 unsigned long dep_write[D_LAST + 1];
660 
661 
662 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
663     "soft updates stats");
664 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
665     "total dependencies allocated");
666 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
667     "current dependencies allocated");
668 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
669     "current dependencies written");
670 
671 #define	SOFTDEP_TYPE(type, str, long)					\
672     static MALLOC_DEFINE(M_ ## type, #str, long);			\
673     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
674 	&dep_total[D_ ## type], 0, "");					\
675     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
676 	&dep_current[D_ ## type], 0, "");				\
677     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
678 	&dep_write[D_ ## type], 0, "");
679 
680 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
681 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
682 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
683     "Block or frag allocated from cyl group map");
684 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
685 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
686 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
687 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
688 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
689 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
690 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
691 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
692 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
693 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
694 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
695 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
696 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
697 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
698 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
699 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
700 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
701 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
702 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
703 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
704 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
705 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
706 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
707 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
708 
709 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
710 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
711 
712 /*
713  * translate from workitem type to memory type
714  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
715  */
716 static struct malloc_type *memtype[] = {
717 	M_PAGEDEP,
718 	M_INODEDEP,
719 	M_BMSAFEMAP,
720 	M_NEWBLK,
721 	M_ALLOCDIRECT,
722 	M_INDIRDEP,
723 	M_ALLOCINDIR,
724 	M_FREEFRAG,
725 	M_FREEBLKS,
726 	M_FREEFILE,
727 	M_DIRADD,
728 	M_MKDIR,
729 	M_DIRREM,
730 	M_NEWDIRBLK,
731 	M_FREEWORK,
732 	M_FREEDEP,
733 	M_JADDREF,
734 	M_JREMREF,
735 	M_JMVREF,
736 	M_JNEWBLK,
737 	M_JFREEBLK,
738 	M_JFREEFRAG,
739 	M_JSEG,
740 	M_JSEGDEP,
741 	M_SBDEP,
742 	M_JTRUNC,
743 	M_JFSYNC
744 };
745 
746 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
747 
748 #define DtoM(type) (memtype[type])
749 
750 /*
751  * Names of malloc types.
752  */
753 #define TYPENAME(type)  \
754 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
755 /*
756  * End system adaptation definitions.
757  */
758 
759 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
760 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
761 
762 /*
763  * Forward declarations.
764  */
765 struct inodedep_hashhead;
766 struct newblk_hashhead;
767 struct pagedep_hashhead;
768 struct bmsafemap_hashhead;
769 
770 /*
771  * Internal function prototypes.
772  */
773 static	void softdep_error(char *, int);
774 static	void drain_output(struct vnode *);
775 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
776 static	void clear_remove(void);
777 static	void clear_inodedeps(void);
778 static	void unlinked_inodedep(struct mount *, struct inodedep *);
779 static	void clear_unlinked_inodedep(struct inodedep *);
780 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
781 static	int flush_pagedep_deps(struct vnode *, struct mount *,
782 	    struct diraddhd *);
783 static	int free_pagedep(struct pagedep *);
784 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
785 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
786 static	int flush_deplist(struct allocdirectlst *, int, int *);
787 static	int sync_cgs(struct mount *, int);
788 static	int handle_written_filepage(struct pagedep *, struct buf *);
789 static	int handle_written_sbdep(struct sbdep *, struct buf *);
790 static	void initiate_write_sbdep(struct sbdep *);
791 static  void diradd_inode_written(struct diradd *, struct inodedep *);
792 static	int handle_written_indirdep(struct indirdep *, struct buf *,
793 	    struct buf**);
794 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
795 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
796 	    uint8_t *);
797 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
798 static	void handle_written_jaddref(struct jaddref *);
799 static	void handle_written_jremref(struct jremref *);
800 static	void handle_written_jseg(struct jseg *, struct buf *);
801 static	void handle_written_jnewblk(struct jnewblk *);
802 static	void handle_written_jblkdep(struct jblkdep *);
803 static	void handle_written_jfreefrag(struct jfreefrag *);
804 static	void complete_jseg(struct jseg *);
805 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
806 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
807 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
808 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
809 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
810 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
811 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
812 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
813 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
814 static	inline void inoref_write(struct inoref *, struct jseg *,
815 	    struct jrefrec *);
816 static	void handle_allocdirect_partdone(struct allocdirect *,
817 	    struct workhead *);
818 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
819 	    struct workhead *);
820 static	void indirdep_complete(struct indirdep *);
821 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
822 static	void indirblk_insert(struct freework *);
823 static	void indirblk_remove(struct freework *);
824 static	void handle_allocindir_partdone(struct allocindir *);
825 static	void initiate_write_filepage(struct pagedep *, struct buf *);
826 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
827 static	void handle_written_mkdir(struct mkdir *, int);
828 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
829 	    uint8_t *);
830 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
831 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
832 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
833 static	void handle_workitem_freefile(struct freefile *);
834 static	int handle_workitem_remove(struct dirrem *, int);
835 static	struct dirrem *newdirrem(struct buf *, struct inode *,
836 	    struct inode *, int, struct dirrem **);
837 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
838 	    struct buf *);
839 static	void cancel_indirdep(struct indirdep *, struct buf *,
840 	    struct freeblks *);
841 static	void free_indirdep(struct indirdep *);
842 static	void free_diradd(struct diradd *, struct workhead *);
843 static	void merge_diradd(struct inodedep *, struct diradd *);
844 static	void complete_diradd(struct diradd *);
845 static	struct diradd *diradd_lookup(struct pagedep *, int);
846 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
847 	    struct jremref *);
848 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
849 	    struct jremref *);
850 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
851 	    struct jremref *, struct jremref *);
852 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
853 	    struct jremref *);
854 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
855 	    struct freeblks *, int);
856 static	int setup_trunc_indir(struct freeblks *, struct inode *,
857 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
858 static	void complete_trunc_indir(struct freework *);
859 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
860 	    int);
861 static	void complete_mkdir(struct mkdir *);
862 static	void free_newdirblk(struct newdirblk *);
863 static	void free_jremref(struct jremref *);
864 static	void free_jaddref(struct jaddref *);
865 static	void free_jsegdep(struct jsegdep *);
866 static	void free_jsegs(struct jblocks *);
867 static	void rele_jseg(struct jseg *);
868 static	void free_jseg(struct jseg *, struct jblocks *);
869 static	void free_jnewblk(struct jnewblk *);
870 static	void free_jblkdep(struct jblkdep *);
871 static	void free_jfreefrag(struct jfreefrag *);
872 static	void free_freedep(struct freedep *);
873 static	void journal_jremref(struct dirrem *, struct jremref *,
874 	    struct inodedep *);
875 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
876 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
877 	    struct workhead *);
878 static	void cancel_jfreefrag(struct jfreefrag *);
879 static	inline void setup_freedirect(struct freeblks *, struct inode *,
880 	    int, int);
881 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
882 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
883 	    ufs_lbn_t, int);
884 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
885 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
886 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
887 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
888 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
889 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
890 	    int, int);
891 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
892 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
893 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
894 static	void newblk_freefrag(struct newblk*);
895 static	void free_newblk(struct newblk *);
896 static	void cancel_allocdirect(struct allocdirectlst *,
897 	    struct allocdirect *, struct freeblks *);
898 static	int check_inode_unwritten(struct inodedep *);
899 static	int free_inodedep(struct inodedep *);
900 static	void freework_freeblock(struct freework *);
901 static	void freework_enqueue(struct freework *);
902 static	int handle_workitem_freeblocks(struct freeblks *, int);
903 static	int handle_complete_freeblocks(struct freeblks *, int);
904 static	void handle_workitem_indirblk(struct freework *);
905 static	void handle_written_freework(struct freework *);
906 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
907 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
908 	    struct workhead *);
909 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
910 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
911 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
912 	    ufs2_daddr_t, ufs_lbn_t);
913 static	void handle_workitem_freefrag(struct freefrag *);
914 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
915 	    ufs_lbn_t);
916 static	void allocdirect_merge(struct allocdirectlst *,
917 	    struct allocdirect *, struct allocdirect *);
918 static	struct freefrag *allocindir_merge(struct allocindir *,
919 	    struct allocindir *);
920 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
921 	    struct bmsafemap **);
922 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
923 	    int cg, struct bmsafemap *);
924 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
925 	    int, struct newblk **);
926 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
927 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
928 	    struct inodedep **);
929 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
930 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
931 	    int, struct pagedep **);
932 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
933 	    struct mount *mp, int, struct pagedep **);
934 static	void pause_timer(void *);
935 static	int request_cleanup(struct mount *, int);
936 static	int process_worklist_item(struct mount *, int, int);
937 static	void process_removes(struct vnode *);
938 static	void process_truncates(struct vnode *);
939 static	void jwork_move(struct workhead *, struct workhead *);
940 static	void jwork_insert(struct workhead *, struct jsegdep *);
941 static	void add_to_worklist(struct worklist *, int);
942 static	void wake_worklist(struct worklist *);
943 static	void wait_worklist(struct worklist *, char *);
944 static	void remove_from_worklist(struct worklist *);
945 static	void softdep_flush(void);
946 static	void softdep_flushjournal(struct mount *);
947 static	int softdep_speedup(void);
948 static	void worklist_speedup(void);
949 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
950 static	void journal_unmount(struct mount *);
951 static	int journal_space(struct ufsmount *, int);
952 static	void journal_suspend(struct ufsmount *);
953 static	int journal_unsuspend(struct ufsmount *ump);
954 static	void softdep_prelink(struct vnode *, struct vnode *);
955 static	void add_to_journal(struct worklist *);
956 static	void remove_from_journal(struct worklist *);
957 static	void softdep_process_journal(struct mount *, struct worklist *, int);
958 static	struct jremref *newjremref(struct dirrem *, struct inode *,
959 	    struct inode *ip, off_t, nlink_t);
960 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
961 	    uint16_t);
962 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
963 	    uint16_t);
964 static	inline struct jsegdep *inoref_jseg(struct inoref *);
965 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
966 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
967 	    ufs2_daddr_t, int);
968 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
969 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
970 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
971 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
972 	    ufs2_daddr_t, long, ufs_lbn_t);
973 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
974 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
975 static	int jwait(struct worklist *, int);
976 static	struct inodedep *inodedep_lookup_ip(struct inode *);
977 static	int bmsafemap_rollbacks(struct bmsafemap *);
978 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
979 static	void handle_jwork(struct workhead *);
980 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
981 	    struct mkdir **);
982 static	struct jblocks *jblocks_create(void);
983 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
984 static	void jblocks_free(struct jblocks *, struct mount *, int);
985 static	void jblocks_destroy(struct jblocks *);
986 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
987 
988 /*
989  * Exported softdep operations.
990  */
991 static	void softdep_disk_io_initiation(struct buf *);
992 static	void softdep_disk_write_complete(struct buf *);
993 static	void softdep_deallocate_dependencies(struct buf *);
994 static	int softdep_count_dependencies(struct buf *bp, int);
995 
996 static struct mtx lk;
997 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
998 
999 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
1000 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
1001 #define FREE_LOCK(lk)			mtx_unlock(lk)
1002 
1003 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1004 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1005 
1006 /*
1007  * Worklist queue management.
1008  * These routines require that the lock be held.
1009  */
1010 #ifndef /* NOT */ DEBUG
1011 #define WORKLIST_INSERT(head, item) do {	\
1012 	(item)->wk_state |= ONWORKLIST;		\
1013 	LIST_INSERT_HEAD(head, item, wk_list);	\
1014 } while (0)
1015 #define WORKLIST_REMOVE(item) do {		\
1016 	(item)->wk_state &= ~ONWORKLIST;	\
1017 	LIST_REMOVE(item, wk_list);		\
1018 } while (0)
1019 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1020 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1021 
1022 #else /* DEBUG */
1023 static	void worklist_insert(struct workhead *, struct worklist *, int);
1024 static	void worklist_remove(struct worklist *, int);
1025 
1026 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1027 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1028 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1029 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1030 
1031 static void
1032 worklist_insert(head, item, locked)
1033 	struct workhead *head;
1034 	struct worklist *item;
1035 	int locked;
1036 {
1037 
1038 	if (locked)
1039 		mtx_assert(&lk, MA_OWNED);
1040 	if (item->wk_state & ONWORKLIST)
1041 		panic("worklist_insert: %p %s(0x%X) already on list",
1042 		    item, TYPENAME(item->wk_type), item->wk_state);
1043 	item->wk_state |= ONWORKLIST;
1044 	LIST_INSERT_HEAD(head, item, wk_list);
1045 }
1046 
1047 static void
1048 worklist_remove(item, locked)
1049 	struct worklist *item;
1050 	int locked;
1051 {
1052 
1053 	if (locked)
1054 		mtx_assert(&lk, MA_OWNED);
1055 	if ((item->wk_state & ONWORKLIST) == 0)
1056 		panic("worklist_remove: %p %s(0x%X) not on list",
1057 		    item, TYPENAME(item->wk_type), item->wk_state);
1058 	item->wk_state &= ~ONWORKLIST;
1059 	LIST_REMOVE(item, wk_list);
1060 }
1061 #endif /* DEBUG */
1062 
1063 /*
1064  * Merge two jsegdeps keeping only the oldest one as newer references
1065  * can't be discarded until after older references.
1066  */
1067 static inline struct jsegdep *
1068 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1069 {
1070 	struct jsegdep *swp;
1071 
1072 	if (two == NULL)
1073 		return (one);
1074 
1075 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1076 		swp = one;
1077 		one = two;
1078 		two = swp;
1079 	}
1080 	WORKLIST_REMOVE(&two->jd_list);
1081 	free_jsegdep(two);
1082 
1083 	return (one);
1084 }
1085 
1086 /*
1087  * If two freedeps are compatible free one to reduce list size.
1088  */
1089 static inline struct freedep *
1090 freedep_merge(struct freedep *one, struct freedep *two)
1091 {
1092 	if (two == NULL)
1093 		return (one);
1094 
1095 	if (one->fd_freework == two->fd_freework) {
1096 		WORKLIST_REMOVE(&two->fd_list);
1097 		free_freedep(two);
1098 	}
1099 	return (one);
1100 }
1101 
1102 /*
1103  * Move journal work from one list to another.  Duplicate freedeps and
1104  * jsegdeps are coalesced to keep the lists as small as possible.
1105  */
1106 static void
1107 jwork_move(dst, src)
1108 	struct workhead *dst;
1109 	struct workhead *src;
1110 {
1111 	struct freedep *freedep;
1112 	struct jsegdep *jsegdep;
1113 	struct worklist *wkn;
1114 	struct worklist *wk;
1115 
1116 	KASSERT(dst != src,
1117 	    ("jwork_move: dst == src"));
1118 	freedep = NULL;
1119 	jsegdep = NULL;
1120 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1121 		if (wk->wk_type == D_JSEGDEP)
1122 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1123 		if (wk->wk_type == D_FREEDEP)
1124 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1125 	}
1126 
1127 	mtx_assert(&lk, MA_OWNED);
1128 	while ((wk = LIST_FIRST(src)) != NULL) {
1129 		WORKLIST_REMOVE(wk);
1130 		WORKLIST_INSERT(dst, wk);
1131 		if (wk->wk_type == D_JSEGDEP) {
1132 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1133 			continue;
1134 		}
1135 		if (wk->wk_type == D_FREEDEP)
1136 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1137 	}
1138 }
1139 
1140 static void
1141 jwork_insert(dst, jsegdep)
1142 	struct workhead *dst;
1143 	struct jsegdep *jsegdep;
1144 {
1145 	struct jsegdep *jsegdepn;
1146 	struct worklist *wk;
1147 
1148 	LIST_FOREACH(wk, dst, wk_list)
1149 		if (wk->wk_type == D_JSEGDEP)
1150 			break;
1151 	if (wk == NULL) {
1152 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1153 		return;
1154 	}
1155 	jsegdepn = WK_JSEGDEP(wk);
1156 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1157 		WORKLIST_REMOVE(wk);
1158 		free_jsegdep(jsegdepn);
1159 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1160 	} else
1161 		free_jsegdep(jsegdep);
1162 }
1163 
1164 /*
1165  * Routines for tracking and managing workitems.
1166  */
1167 static	void workitem_free(struct worklist *, int);
1168 static	void workitem_alloc(struct worklist *, int, struct mount *);
1169 
1170 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1171 
1172 static void
1173 workitem_free(item, type)
1174 	struct worklist *item;
1175 	int type;
1176 {
1177 	struct ufsmount *ump;
1178 	mtx_assert(&lk, MA_OWNED);
1179 
1180 #ifdef DEBUG
1181 	if (item->wk_state & ONWORKLIST)
1182 		panic("workitem_free: %s(0x%X) still on list",
1183 		    TYPENAME(item->wk_type), item->wk_state);
1184 	if (item->wk_type != type)
1185 		panic("workitem_free: type mismatch %s != %s",
1186 		    TYPENAME(item->wk_type), TYPENAME(type));
1187 #endif
1188 	if (item->wk_state & IOWAITING)
1189 		wakeup(item);
1190 	ump = VFSTOUFS(item->wk_mp);
1191 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1192 		wakeup(&ump->softdep_deps);
1193 	dep_current[type]--;
1194 	free(item, DtoM(type));
1195 }
1196 
1197 static void
1198 workitem_alloc(item, type, mp)
1199 	struct worklist *item;
1200 	int type;
1201 	struct mount *mp;
1202 {
1203 	struct ufsmount *ump;
1204 
1205 	item->wk_type = type;
1206 	item->wk_mp = mp;
1207 	item->wk_state = 0;
1208 
1209 	ump = VFSTOUFS(mp);
1210 	ACQUIRE_LOCK(&lk);
1211 	dep_current[type]++;
1212 	dep_total[type]++;
1213 	ump->softdep_deps++;
1214 	ump->softdep_accdeps++;
1215 	FREE_LOCK(&lk);
1216 }
1217 
1218 /*
1219  * Workitem queue management
1220  */
1221 static int max_softdeps;	/* maximum number of structs before slowdown */
1222 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1223 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1224 static int proc_waiting;	/* tracks whether we have a timeout posted */
1225 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1226 static struct callout softdep_callout;
1227 static int req_pending;
1228 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1229 static int req_clear_remove;	/* syncer process flush some freeblks */
1230 
1231 /*
1232  * runtime statistics
1233  */
1234 static int stat_worklist_push;	/* number of worklist cleanups */
1235 static int stat_blk_limit_push;	/* number of times block limit neared */
1236 static int stat_ino_limit_push;	/* number of times inode limit neared */
1237 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1238 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1239 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1240 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1241 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1242 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1243 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1244 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1245 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1246 static int stat_journal_min;	/* Times hit journal min threshold */
1247 static int stat_journal_low;	/* Times hit journal low threshold */
1248 static int stat_journal_wait;	/* Times blocked in jwait(). */
1249 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1250 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1251 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1252 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1253 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1254 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1255 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1256 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1257 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1258 
1259 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1260     &max_softdeps, 0, "");
1261 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1262     &tickdelay, 0, "");
1263 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1264     &maxindirdeps, 0, "");
1265 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1266     &stat_worklist_push, 0,"");
1267 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1268     &stat_blk_limit_push, 0,"");
1269 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1270     &stat_ino_limit_push, 0,"");
1271 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1272     &stat_blk_limit_hit, 0, "");
1273 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1274     &stat_ino_limit_hit, 0, "");
1275 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1276     &stat_sync_limit_hit, 0, "");
1277 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1278     &stat_indir_blk_ptrs, 0, "");
1279 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1280     &stat_inode_bitmap, 0, "");
1281 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1282     &stat_direct_blk_ptrs, 0, "");
1283 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1284     &stat_dir_entry, 0, "");
1285 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1286     &stat_jaddref, 0, "");
1287 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1288     &stat_jnewblk, 0, "");
1289 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1290     &stat_journal_low, 0, "");
1291 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1292     &stat_journal_min, 0, "");
1293 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1294     &stat_journal_wait, 0, "");
1295 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1296     &stat_jwait_filepage, 0, "");
1297 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1298     &stat_jwait_freeblks, 0, "");
1299 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1300     &stat_jwait_inode, 0, "");
1301 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1302     &stat_jwait_newblk, 0, "");
1303 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1304     &stat_cleanup_blkrequests, 0, "");
1305 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1306     &stat_cleanup_inorequests, 0, "");
1307 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1308     &stat_cleanup_high_delay, 0, "");
1309 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1310     &stat_cleanup_retries, 0, "");
1311 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1312     &stat_cleanup_failures, 0, "");
1313 
1314 SYSCTL_DECL(_vfs_ffs);
1315 
1316 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1317 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1318 
1319 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1320 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1321 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1322 
1323 static struct proc *softdepproc;
1324 static struct kproc_desc softdep_kp = {
1325 	"softdepflush",
1326 	softdep_flush,
1327 	&softdepproc
1328 };
1329 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1330     &softdep_kp);
1331 
1332 static void
1333 softdep_flush(void)
1334 {
1335 	struct mount *nmp;
1336 	struct mount *mp;
1337 	struct ufsmount *ump;
1338 	struct thread *td;
1339 	int remaining;
1340 	int progress;
1341 	int vfslocked;
1342 
1343 	td = curthread;
1344 	td->td_pflags |= TDP_NORUNNINGBUF;
1345 
1346 	for (;;) {
1347 		kproc_suspend_check(softdepproc);
1348 		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1349 		ACQUIRE_LOCK(&lk);
1350 		/*
1351 		 * If requested, try removing inode or removal dependencies.
1352 		 */
1353 		if (req_clear_inodedeps) {
1354 			clear_inodedeps();
1355 			req_clear_inodedeps -= 1;
1356 			wakeup_one(&proc_waiting);
1357 		}
1358 		if (req_clear_remove) {
1359 			clear_remove();
1360 			req_clear_remove -= 1;
1361 			wakeup_one(&proc_waiting);
1362 		}
1363 		FREE_LOCK(&lk);
1364 		VFS_UNLOCK_GIANT(vfslocked);
1365 		remaining = progress = 0;
1366 		mtx_lock(&mountlist_mtx);
1367 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1368 			nmp = TAILQ_NEXT(mp, mnt_list);
1369 			if (MOUNTEDSOFTDEP(mp) == 0)
1370 				continue;
1371 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1372 				continue;
1373 			vfslocked = VFS_LOCK_GIANT(mp);
1374 			progress += softdep_process_worklist(mp, 0);
1375 			ump = VFSTOUFS(mp);
1376 			remaining += ump->softdep_on_worklist;
1377 			VFS_UNLOCK_GIANT(vfslocked);
1378 			mtx_lock(&mountlist_mtx);
1379 			nmp = TAILQ_NEXT(mp, mnt_list);
1380 			vfs_unbusy(mp);
1381 		}
1382 		mtx_unlock(&mountlist_mtx);
1383 		if (remaining && progress)
1384 			continue;
1385 		ACQUIRE_LOCK(&lk);
1386 		if (!req_pending)
1387 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1388 		req_pending = 0;
1389 		FREE_LOCK(&lk);
1390 	}
1391 }
1392 
1393 static void
1394 worklist_speedup(void)
1395 {
1396 	mtx_assert(&lk, MA_OWNED);
1397 	if (req_pending == 0) {
1398 		req_pending = 1;
1399 		wakeup(&req_pending);
1400 	}
1401 }
1402 
1403 static int
1404 softdep_speedup(void)
1405 {
1406 
1407 	worklist_speedup();
1408 	bd_speedup();
1409 	return speedup_syncer();
1410 }
1411 
1412 /*
1413  * Add an item to the end of the work queue.
1414  * This routine requires that the lock be held.
1415  * This is the only routine that adds items to the list.
1416  * The following routine is the only one that removes items
1417  * and does so in order from first to last.
1418  */
1419 
1420 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1421 #define	WK_NODELAY	0x0002	/* Process immediately. */
1422 
1423 static void
1424 add_to_worklist(wk, flags)
1425 	struct worklist *wk;
1426 	int flags;
1427 {
1428 	struct ufsmount *ump;
1429 
1430 	mtx_assert(&lk, MA_OWNED);
1431 	ump = VFSTOUFS(wk->wk_mp);
1432 	if (wk->wk_state & ONWORKLIST)
1433 		panic("add_to_worklist: %s(0x%X) already on list",
1434 		    TYPENAME(wk->wk_type), wk->wk_state);
1435 	wk->wk_state |= ONWORKLIST;
1436 	if (ump->softdep_on_worklist == 0) {
1437 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1438 		ump->softdep_worklist_tail = wk;
1439 	} else if (flags & WK_HEAD) {
1440 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1441 	} else {
1442 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1443 		ump->softdep_worklist_tail = wk;
1444 	}
1445 	ump->softdep_on_worklist += 1;
1446 	if (flags & WK_NODELAY)
1447 		worklist_speedup();
1448 }
1449 
1450 /*
1451  * Remove the item to be processed. If we are removing the last
1452  * item on the list, we need to recalculate the tail pointer.
1453  */
1454 static void
1455 remove_from_worklist(wk)
1456 	struct worklist *wk;
1457 {
1458 	struct ufsmount *ump;
1459 
1460 	ump = VFSTOUFS(wk->wk_mp);
1461 	WORKLIST_REMOVE(wk);
1462 	if (ump->softdep_worklist_tail == wk)
1463 		ump->softdep_worklist_tail =
1464 		    (struct worklist *)wk->wk_list.le_prev;
1465 	ump->softdep_on_worklist -= 1;
1466 }
1467 
1468 static void
1469 wake_worklist(wk)
1470 	struct worklist *wk;
1471 {
1472 	if (wk->wk_state & IOWAITING) {
1473 		wk->wk_state &= ~IOWAITING;
1474 		wakeup(wk);
1475 	}
1476 }
1477 
1478 static void
1479 wait_worklist(wk, wmesg)
1480 	struct worklist *wk;
1481 	char *wmesg;
1482 {
1483 
1484 	wk->wk_state |= IOWAITING;
1485 	msleep(wk, &lk, PVM, wmesg, 0);
1486 }
1487 
1488 /*
1489  * Process that runs once per second to handle items in the background queue.
1490  *
1491  * Note that we ensure that everything is done in the order in which they
1492  * appear in the queue. The code below depends on this property to ensure
1493  * that blocks of a file are freed before the inode itself is freed. This
1494  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1495  * until all the old ones have been purged from the dependency lists.
1496  */
1497 int
1498 softdep_process_worklist(mp, full)
1499 	struct mount *mp;
1500 	int full;
1501 {
1502 	int cnt, matchcnt;
1503 	struct ufsmount *ump;
1504 	long starttime;
1505 
1506 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1507 	/*
1508 	 * Record the process identifier of our caller so that we can give
1509 	 * this process preferential treatment in request_cleanup below.
1510 	 */
1511 	matchcnt = 0;
1512 	ump = VFSTOUFS(mp);
1513 	ACQUIRE_LOCK(&lk);
1514 	starttime = time_second;
1515 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1516 	while (ump->softdep_on_worklist > 0) {
1517 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1518 			break;
1519 		else
1520 			matchcnt += cnt;
1521 		/*
1522 		 * If requested, try removing inode or removal dependencies.
1523 		 */
1524 		if (req_clear_inodedeps) {
1525 			clear_inodedeps();
1526 			req_clear_inodedeps -= 1;
1527 			wakeup_one(&proc_waiting);
1528 		}
1529 		if (req_clear_remove) {
1530 			clear_remove();
1531 			req_clear_remove -= 1;
1532 			wakeup_one(&proc_waiting);
1533 		}
1534 		/*
1535 		 * We do not generally want to stop for buffer space, but if
1536 		 * we are really being a buffer hog, we will stop and wait.
1537 		 */
1538 		if (should_yield()) {
1539 			FREE_LOCK(&lk);
1540 			kern_yield(PRI_UNCHANGED);
1541 			bwillwrite();
1542 			ACQUIRE_LOCK(&lk);
1543 		}
1544 		/*
1545 		 * Never allow processing to run for more than one
1546 		 * second. Otherwise the other mountpoints may get
1547 		 * excessively backlogged.
1548 		 */
1549 		if (!full && starttime != time_second)
1550 			break;
1551 	}
1552 	if (full == 0)
1553 		journal_unsuspend(ump);
1554 	FREE_LOCK(&lk);
1555 	return (matchcnt);
1556 }
1557 
1558 /*
1559  * Process all removes associated with a vnode if we are running out of
1560  * journal space.  Any other process which attempts to flush these will
1561  * be unable as we have the vnodes locked.
1562  */
1563 static void
1564 process_removes(vp)
1565 	struct vnode *vp;
1566 {
1567 	struct inodedep *inodedep;
1568 	struct dirrem *dirrem;
1569 	struct mount *mp;
1570 	ino_t inum;
1571 
1572 	mtx_assert(&lk, MA_OWNED);
1573 
1574 	mp = vp->v_mount;
1575 	inum = VTOI(vp)->i_number;
1576 	for (;;) {
1577 top:
1578 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1579 			return;
1580 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1581 			/*
1582 			 * If another thread is trying to lock this vnode
1583 			 * it will fail but we must wait for it to do so
1584 			 * before we can proceed.
1585 			 */
1586 			if (dirrem->dm_state & INPROGRESS) {
1587 				wait_worklist(&dirrem->dm_list, "pwrwait");
1588 				goto top;
1589 			}
1590 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1591 			    (COMPLETE | ONWORKLIST))
1592 				break;
1593 		}
1594 		if (dirrem == NULL)
1595 			return;
1596 		remove_from_worklist(&dirrem->dm_list);
1597 		FREE_LOCK(&lk);
1598 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1599 			panic("process_removes: suspended filesystem");
1600 		handle_workitem_remove(dirrem, 0);
1601 		vn_finished_secondary_write(mp);
1602 		ACQUIRE_LOCK(&lk);
1603 	}
1604 }
1605 
1606 /*
1607  * Process all truncations associated with a vnode if we are running out
1608  * of journal space.  This is called when the vnode lock is already held
1609  * and no other process can clear the truncation.  This function returns
1610  * a value greater than zero if it did any work.
1611  */
1612 static void
1613 process_truncates(vp)
1614 	struct vnode *vp;
1615 {
1616 	struct inodedep *inodedep;
1617 	struct freeblks *freeblks;
1618 	struct mount *mp;
1619 	ino_t inum;
1620 	int cgwait;
1621 
1622 	mtx_assert(&lk, MA_OWNED);
1623 
1624 	mp = vp->v_mount;
1625 	inum = VTOI(vp)->i_number;
1626 	for (;;) {
1627 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1628 			return;
1629 		cgwait = 0;
1630 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1631 			/* Journal entries not yet written.  */
1632 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1633 				jwait(&LIST_FIRST(
1634 				    &freeblks->fb_jblkdephd)->jb_list,
1635 				    MNT_WAIT);
1636 				break;
1637 			}
1638 			/* Another thread is executing this item. */
1639 			if (freeblks->fb_state & INPROGRESS) {
1640 				wait_worklist(&freeblks->fb_list, "ptrwait");
1641 				break;
1642 			}
1643 			/* Freeblks is waiting on a inode write. */
1644 			if ((freeblks->fb_state & COMPLETE) == 0) {
1645 				FREE_LOCK(&lk);
1646 				ffs_update(vp, 1);
1647 				ACQUIRE_LOCK(&lk);
1648 				break;
1649 			}
1650 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1651 			    (ALLCOMPLETE | ONWORKLIST)) {
1652 				remove_from_worklist(&freeblks->fb_list);
1653 				freeblks->fb_state |= INPROGRESS;
1654 				FREE_LOCK(&lk);
1655 				if (vn_start_secondary_write(NULL, &mp,
1656 				    V_NOWAIT))
1657 					panic("process_truncates: "
1658 					    "suspended filesystem");
1659 				handle_workitem_freeblocks(freeblks, 0);
1660 				vn_finished_secondary_write(mp);
1661 				ACQUIRE_LOCK(&lk);
1662 				break;
1663 			}
1664 			if (freeblks->fb_cgwait)
1665 				cgwait++;
1666 		}
1667 		if (cgwait) {
1668 			FREE_LOCK(&lk);
1669 			sync_cgs(mp, MNT_WAIT);
1670 			ffs_sync_snap(mp, MNT_WAIT);
1671 			ACQUIRE_LOCK(&lk);
1672 			continue;
1673 		}
1674 		if (freeblks == NULL)
1675 			break;
1676 	}
1677 	return;
1678 }
1679 
1680 /*
1681  * Process one item on the worklist.
1682  */
1683 static int
1684 process_worklist_item(mp, target, flags)
1685 	struct mount *mp;
1686 	int target;
1687 	int flags;
1688 {
1689 	struct worklist sintenel;
1690 	struct worklist *wk;
1691 	struct ufsmount *ump;
1692 	int matchcnt;
1693 	int error;
1694 
1695 	mtx_assert(&lk, MA_OWNED);
1696 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1697 	/*
1698 	 * If we are being called because of a process doing a
1699 	 * copy-on-write, then it is not safe to write as we may
1700 	 * recurse into the copy-on-write routine.
1701 	 */
1702 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1703 		return (-1);
1704 	PHOLD(curproc);	/* Don't let the stack go away. */
1705 	ump = VFSTOUFS(mp);
1706 	matchcnt = 0;
1707 	sintenel.wk_mp = NULL;
1708 	sintenel.wk_type = D_SENTINAL;
1709 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list);
1710 	for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL;
1711 	    wk = LIST_NEXT(&sintenel, wk_list)) {
1712 		if (wk->wk_type == D_SENTINAL) {
1713 			LIST_REMOVE(&sintenel, wk_list);
1714 			LIST_INSERT_AFTER(wk, &sintenel, wk_list);
1715 			continue;
1716 		}
1717 		if (wk->wk_state & INPROGRESS)
1718 			panic("process_worklist_item: %p already in progress.",
1719 			    wk);
1720 		wk->wk_state |= INPROGRESS;
1721 		remove_from_worklist(wk);
1722 		FREE_LOCK(&lk);
1723 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1724 			panic("process_worklist_item: suspended filesystem");
1725 		switch (wk->wk_type) {
1726 		case D_DIRREM:
1727 			/* removal of a directory entry */
1728 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1729 			break;
1730 
1731 		case D_FREEBLKS:
1732 			/* releasing blocks and/or fragments from a file */
1733 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1734 			    flags);
1735 			break;
1736 
1737 		case D_FREEFRAG:
1738 			/* releasing a fragment when replaced as a file grows */
1739 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1740 			error = 0;
1741 			break;
1742 
1743 		case D_FREEFILE:
1744 			/* releasing an inode when its link count drops to 0 */
1745 			handle_workitem_freefile(WK_FREEFILE(wk));
1746 			error = 0;
1747 			break;
1748 
1749 		default:
1750 			panic("%s_process_worklist: Unknown type %s",
1751 			    "softdep", TYPENAME(wk->wk_type));
1752 			/* NOTREACHED */
1753 		}
1754 		vn_finished_secondary_write(mp);
1755 		ACQUIRE_LOCK(&lk);
1756 		if (error == 0) {
1757 			if (++matchcnt == target)
1758 				break;
1759 			continue;
1760 		}
1761 		/*
1762 		 * We have to retry the worklist item later.  Wake up any
1763 		 * waiters who may be able to complete it immediately and
1764 		 * add the item back to the head so we don't try to execute
1765 		 * it again.
1766 		 */
1767 		wk->wk_state &= ~INPROGRESS;
1768 		wake_worklist(wk);
1769 		add_to_worklist(wk, WK_HEAD);
1770 	}
1771 	LIST_REMOVE(&sintenel, wk_list);
1772 	/* Sentinal could've become the tail from remove_from_worklist. */
1773 	if (ump->softdep_worklist_tail == &sintenel)
1774 		ump->softdep_worklist_tail =
1775 		    (struct worklist *)sintenel.wk_list.le_prev;
1776 	PRELE(curproc);
1777 	return (matchcnt);
1778 }
1779 
1780 /*
1781  * Move dependencies from one buffer to another.
1782  */
1783 int
1784 softdep_move_dependencies(oldbp, newbp)
1785 	struct buf *oldbp;
1786 	struct buf *newbp;
1787 {
1788 	struct worklist *wk, *wktail;
1789 	int dirty;
1790 
1791 	dirty = 0;
1792 	wktail = NULL;
1793 	ACQUIRE_LOCK(&lk);
1794 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1795 		LIST_REMOVE(wk, wk_list);
1796 		if (wk->wk_type == D_BMSAFEMAP &&
1797 		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1798 			dirty = 1;
1799 		if (wktail == 0)
1800 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1801 		else
1802 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1803 		wktail = wk;
1804 	}
1805 	FREE_LOCK(&lk);
1806 
1807 	return (dirty);
1808 }
1809 
1810 /*
1811  * Purge the work list of all items associated with a particular mount point.
1812  */
1813 int
1814 softdep_flushworklist(oldmnt, countp, td)
1815 	struct mount *oldmnt;
1816 	int *countp;
1817 	struct thread *td;
1818 {
1819 	struct vnode *devvp;
1820 	int count, error = 0;
1821 	struct ufsmount *ump;
1822 
1823 	/*
1824 	 * Alternately flush the block device associated with the mount
1825 	 * point and process any dependencies that the flushing
1826 	 * creates. We continue until no more worklist dependencies
1827 	 * are found.
1828 	 */
1829 	*countp = 0;
1830 	ump = VFSTOUFS(oldmnt);
1831 	devvp = ump->um_devvp;
1832 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1833 		*countp += count;
1834 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1835 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1836 		VOP_UNLOCK(devvp, 0);
1837 		if (error)
1838 			break;
1839 	}
1840 	return (error);
1841 }
1842 
1843 int
1844 softdep_waitidle(struct mount *mp)
1845 {
1846 	struct ufsmount *ump;
1847 	int error;
1848 	int i;
1849 
1850 	ump = VFSTOUFS(mp);
1851 	ACQUIRE_LOCK(&lk);
1852 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1853 		ump->softdep_req = 1;
1854 		if (ump->softdep_on_worklist)
1855 			panic("softdep_waitidle: work added after flush.");
1856 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1857 	}
1858 	ump->softdep_req = 0;
1859 	FREE_LOCK(&lk);
1860 	error = 0;
1861 	if (i == 10) {
1862 		error = EBUSY;
1863 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1864 		    mp);
1865 	}
1866 
1867 	return (error);
1868 }
1869 
1870 /*
1871  * Flush all vnodes and worklist items associated with a specified mount point.
1872  */
1873 int
1874 softdep_flushfiles(oldmnt, flags, td)
1875 	struct mount *oldmnt;
1876 	int flags;
1877 	struct thread *td;
1878 {
1879 	int error, depcount, loopcnt, retry_flush_count, retry;
1880 
1881 	loopcnt = 10;
1882 	retry_flush_count = 3;
1883 retry_flush:
1884 	error = 0;
1885 
1886 	/*
1887 	 * Alternately flush the vnodes associated with the mount
1888 	 * point and process any dependencies that the flushing
1889 	 * creates. In theory, this loop can happen at most twice,
1890 	 * but we give it a few extra just to be sure.
1891 	 */
1892 	for (; loopcnt > 0; loopcnt--) {
1893 		/*
1894 		 * Do another flush in case any vnodes were brought in
1895 		 * as part of the cleanup operations.
1896 		 */
1897 		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1898 			break;
1899 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1900 		    depcount == 0)
1901 			break;
1902 	}
1903 	/*
1904 	 * If we are unmounting then it is an error to fail. If we
1905 	 * are simply trying to downgrade to read-only, then filesystem
1906 	 * activity can keep us busy forever, so we just fail with EBUSY.
1907 	 */
1908 	if (loopcnt == 0) {
1909 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1910 			panic("softdep_flushfiles: looping");
1911 		error = EBUSY;
1912 	}
1913 	if (!error)
1914 		error = softdep_waitidle(oldmnt);
1915 	if (!error) {
1916 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1917 			retry = 0;
1918 			MNT_ILOCK(oldmnt);
1919 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1920 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1921 			if (oldmnt->mnt_nvnodelistsize > 0) {
1922 				if (--retry_flush_count > 0) {
1923 					retry = 1;
1924 					loopcnt = 3;
1925 				} else
1926 					error = EBUSY;
1927 			}
1928 			MNT_IUNLOCK(oldmnt);
1929 			if (retry)
1930 				goto retry_flush;
1931 		}
1932 	}
1933 	return (error);
1934 }
1935 
1936 /*
1937  * Structure hashing.
1938  *
1939  * There are three types of structures that can be looked up:
1940  *	1) pagedep structures identified by mount point, inode number,
1941  *	   and logical block.
1942  *	2) inodedep structures identified by mount point and inode number.
1943  *	3) newblk structures identified by mount point and
1944  *	   physical block number.
1945  *
1946  * The "pagedep" and "inodedep" dependency structures are hashed
1947  * separately from the file blocks and inodes to which they correspond.
1948  * This separation helps when the in-memory copy of an inode or
1949  * file block must be replaced. It also obviates the need to access
1950  * an inode or file page when simply updating (or de-allocating)
1951  * dependency structures. Lookup of newblk structures is needed to
1952  * find newly allocated blocks when trying to associate them with
1953  * their allocdirect or allocindir structure.
1954  *
1955  * The lookup routines optionally create and hash a new instance when
1956  * an existing entry is not found.
1957  */
1958 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1959 #define NODELAY		0x0002	/* cannot do background work */
1960 
1961 /*
1962  * Structures and routines associated with pagedep caching.
1963  */
1964 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1965 u_long	pagedep_hash;		/* size of hash table - 1 */
1966 #define	PAGEDEP_HASH(mp, inum, lbn) \
1967 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1968 	    pagedep_hash])
1969 
1970 static int
1971 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1972 	struct pagedep_hashhead *pagedephd;
1973 	ino_t ino;
1974 	ufs_lbn_t lbn;
1975 	struct mount *mp;
1976 	int flags;
1977 	struct pagedep **pagedeppp;
1978 {
1979 	struct pagedep *pagedep;
1980 
1981 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
1982 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
1983 		    mp == pagedep->pd_list.wk_mp) {
1984 			*pagedeppp = pagedep;
1985 			return (1);
1986 		}
1987 	}
1988 	*pagedeppp = NULL;
1989 	return (0);
1990 }
1991 /*
1992  * Look up a pagedep. Return 1 if found, 0 otherwise.
1993  * If not found, allocate if DEPALLOC flag is passed.
1994  * Found or allocated entry is returned in pagedeppp.
1995  * This routine must be called with splbio interrupts blocked.
1996  */
1997 static int
1998 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
1999 	struct mount *mp;
2000 	struct buf *bp;
2001 	ino_t ino;
2002 	ufs_lbn_t lbn;
2003 	int flags;
2004 	struct pagedep **pagedeppp;
2005 {
2006 	struct pagedep *pagedep;
2007 	struct pagedep_hashhead *pagedephd;
2008 	struct worklist *wk;
2009 	int ret;
2010 	int i;
2011 
2012 	mtx_assert(&lk, MA_OWNED);
2013 	if (bp) {
2014 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2015 			if (wk->wk_type == D_PAGEDEP) {
2016 				*pagedeppp = WK_PAGEDEP(wk);
2017 				return (1);
2018 			}
2019 		}
2020 	}
2021 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2022 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2023 	if (ret) {
2024 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2025 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2026 		return (1);
2027 	}
2028 	if ((flags & DEPALLOC) == 0)
2029 		return (0);
2030 	FREE_LOCK(&lk);
2031 	pagedep = malloc(sizeof(struct pagedep),
2032 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2033 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2034 	ACQUIRE_LOCK(&lk);
2035 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2036 	if (*pagedeppp) {
2037 		/*
2038 		 * This should never happen since we only create pagedeps
2039 		 * with the vnode lock held.  Could be an assert.
2040 		 */
2041 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2042 		return (ret);
2043 	}
2044 	pagedep->pd_ino = ino;
2045 	pagedep->pd_lbn = lbn;
2046 	LIST_INIT(&pagedep->pd_dirremhd);
2047 	LIST_INIT(&pagedep->pd_pendinghd);
2048 	for (i = 0; i < DAHASHSZ; i++)
2049 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2050 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2051 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2052 	*pagedeppp = pagedep;
2053 	return (0);
2054 }
2055 
2056 /*
2057  * Structures and routines associated with inodedep caching.
2058  */
2059 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2060 static u_long	inodedep_hash;	/* size of hash table - 1 */
2061 #define	INODEDEP_HASH(fs, inum) \
2062       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2063 
2064 static int
2065 inodedep_find(inodedephd, fs, inum, inodedeppp)
2066 	struct inodedep_hashhead *inodedephd;
2067 	struct fs *fs;
2068 	ino_t inum;
2069 	struct inodedep **inodedeppp;
2070 {
2071 	struct inodedep *inodedep;
2072 
2073 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2074 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2075 			break;
2076 	if (inodedep) {
2077 		*inodedeppp = inodedep;
2078 		return (1);
2079 	}
2080 	*inodedeppp = NULL;
2081 
2082 	return (0);
2083 }
2084 /*
2085  * Look up an inodedep. Return 1 if found, 0 if not found.
2086  * If not found, allocate if DEPALLOC flag is passed.
2087  * Found or allocated entry is returned in inodedeppp.
2088  * This routine must be called with splbio interrupts blocked.
2089  */
2090 static int
2091 inodedep_lookup(mp, inum, flags, inodedeppp)
2092 	struct mount *mp;
2093 	ino_t inum;
2094 	int flags;
2095 	struct inodedep **inodedeppp;
2096 {
2097 	struct inodedep *inodedep;
2098 	struct inodedep_hashhead *inodedephd;
2099 	struct fs *fs;
2100 
2101 	mtx_assert(&lk, MA_OWNED);
2102 	fs = VFSTOUFS(mp)->um_fs;
2103 	inodedephd = INODEDEP_HASH(fs, inum);
2104 
2105 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2106 		return (1);
2107 	if ((flags & DEPALLOC) == 0)
2108 		return (0);
2109 	/*
2110 	 * If we are over our limit, try to improve the situation.
2111 	 */
2112 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2113 		request_cleanup(mp, FLUSH_INODES);
2114 	FREE_LOCK(&lk);
2115 	inodedep = malloc(sizeof(struct inodedep),
2116 		M_INODEDEP, M_SOFTDEP_FLAGS);
2117 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2118 	ACQUIRE_LOCK(&lk);
2119 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2120 		WORKITEM_FREE(inodedep, D_INODEDEP);
2121 		return (1);
2122 	}
2123 	inodedep->id_fs = fs;
2124 	inodedep->id_ino = inum;
2125 	inodedep->id_state = ALLCOMPLETE;
2126 	inodedep->id_nlinkdelta = 0;
2127 	inodedep->id_savedino1 = NULL;
2128 	inodedep->id_savedsize = -1;
2129 	inodedep->id_savedextsize = -1;
2130 	inodedep->id_savednlink = -1;
2131 	inodedep->id_bmsafemap = NULL;
2132 	inodedep->id_mkdiradd = NULL;
2133 	LIST_INIT(&inodedep->id_dirremhd);
2134 	LIST_INIT(&inodedep->id_pendinghd);
2135 	LIST_INIT(&inodedep->id_inowait);
2136 	LIST_INIT(&inodedep->id_bufwait);
2137 	TAILQ_INIT(&inodedep->id_inoreflst);
2138 	TAILQ_INIT(&inodedep->id_inoupdt);
2139 	TAILQ_INIT(&inodedep->id_newinoupdt);
2140 	TAILQ_INIT(&inodedep->id_extupdt);
2141 	TAILQ_INIT(&inodedep->id_newextupdt);
2142 	TAILQ_INIT(&inodedep->id_freeblklst);
2143 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2144 	*inodedeppp = inodedep;
2145 	return (0);
2146 }
2147 
2148 /*
2149  * Structures and routines associated with newblk caching.
2150  */
2151 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2152 u_long	newblk_hash;		/* size of hash table - 1 */
2153 #define	NEWBLK_HASH(fs, inum) \
2154 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2155 
2156 static int
2157 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2158 	struct newblk_hashhead *newblkhd;
2159 	struct mount *mp;
2160 	ufs2_daddr_t newblkno;
2161 	int flags;
2162 	struct newblk **newblkpp;
2163 {
2164 	struct newblk *newblk;
2165 
2166 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2167 		if (newblkno != newblk->nb_newblkno)
2168 			continue;
2169 		if (mp != newblk->nb_list.wk_mp)
2170 			continue;
2171 		/*
2172 		 * If we're creating a new dependency don't match those that
2173 		 * have already been converted to allocdirects.  This is for
2174 		 * a frag extend.
2175 		 */
2176 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2177 			continue;
2178 		break;
2179 	}
2180 	if (newblk) {
2181 		*newblkpp = newblk;
2182 		return (1);
2183 	}
2184 	*newblkpp = NULL;
2185 	return (0);
2186 }
2187 
2188 /*
2189  * Look up a newblk. Return 1 if found, 0 if not found.
2190  * If not found, allocate if DEPALLOC flag is passed.
2191  * Found or allocated entry is returned in newblkpp.
2192  */
2193 static int
2194 newblk_lookup(mp, newblkno, flags, newblkpp)
2195 	struct mount *mp;
2196 	ufs2_daddr_t newblkno;
2197 	int flags;
2198 	struct newblk **newblkpp;
2199 {
2200 	struct newblk *newblk;
2201 	struct newblk_hashhead *newblkhd;
2202 
2203 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2204 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2205 		return (1);
2206 	if ((flags & DEPALLOC) == 0)
2207 		return (0);
2208 	FREE_LOCK(&lk);
2209 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2210 	    M_SOFTDEP_FLAGS | M_ZERO);
2211 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2212 	ACQUIRE_LOCK(&lk);
2213 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2214 		WORKITEM_FREE(newblk, D_NEWBLK);
2215 		return (1);
2216 	}
2217 	newblk->nb_freefrag = NULL;
2218 	LIST_INIT(&newblk->nb_indirdeps);
2219 	LIST_INIT(&newblk->nb_newdirblk);
2220 	LIST_INIT(&newblk->nb_jwork);
2221 	newblk->nb_state = ATTACHED;
2222 	newblk->nb_newblkno = newblkno;
2223 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2224 	*newblkpp = newblk;
2225 	return (0);
2226 }
2227 
2228 /*
2229  * Structures and routines associated with freed indirect block caching.
2230  */
2231 struct freeworklst *indir_hashtbl;
2232 u_long	indir_hash;		/* size of hash table - 1 */
2233 #define	INDIR_HASH(mp, blkno) \
2234 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2235 
2236 /*
2237  * Lookup an indirect block in the indir hash table.  The freework is
2238  * removed and potentially freed.  The caller must do a blocking journal
2239  * write before writing to the blkno.
2240  */
2241 static int
2242 indirblk_lookup(mp, blkno)
2243 	struct mount *mp;
2244 	ufs2_daddr_t blkno;
2245 {
2246 	struct freework *freework;
2247 	struct freeworklst *wkhd;
2248 
2249 	wkhd = INDIR_HASH(mp, blkno);
2250 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2251 		if (freework->fw_blkno != blkno)
2252 			continue;
2253 		if (freework->fw_list.wk_mp != mp)
2254 			continue;
2255 		indirblk_remove(freework);
2256 		return (1);
2257 	}
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Insert an indirect block represented by freework into the indirblk
2263  * hash table so that it may prevent the block from being re-used prior
2264  * to the journal being written.
2265  */
2266 static void
2267 indirblk_insert(freework)
2268 	struct freework *freework;
2269 {
2270 	struct freeblks *freeblks;
2271 	struct jsegdep *jsegdep;
2272 	struct worklist *wk;
2273 
2274 	freeblks = freework->fw_freeblks;
2275 	LIST_FOREACH(wk, &freeblks->fb_jwork, wk_list)
2276 		if (wk->wk_type == D_JSEGDEP)
2277 			break;
2278 	if (wk == NULL)
2279 		return;
2280 
2281 	jsegdep = WK_JSEGDEP(wk);
2282 	LIST_INSERT_HEAD(&jsegdep->jd_seg->js_indirs, freework, fw_segs);
2283 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2284 	    freework->fw_blkno), freework, fw_next);
2285 	freework->fw_state &= ~DEPCOMPLETE;
2286 }
2287 
2288 static void
2289 indirblk_remove(freework)
2290 	struct freework *freework;
2291 {
2292 
2293 	LIST_REMOVE(freework, fw_segs);
2294 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2295 	    freework->fw_blkno), freework, fw_next);
2296 	freework->fw_state |= DEPCOMPLETE;
2297 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2298 		WORKITEM_FREE(freework, D_FREEWORK);
2299 }
2300 
2301 /*
2302  * Executed during filesystem system initialization before
2303  * mounting any filesystems.
2304  */
2305 void
2306 softdep_initialize()
2307 {
2308 	int i;
2309 
2310 	LIST_INIT(&mkdirlisthd);
2311 	max_softdeps = desiredvnodes * 4;
2312 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2313 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2314 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2315 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2316 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2317 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2318 	    M_WAITOK);
2319 	indir_hash = i - 1;
2320 	for (i = 0; i <= indir_hash; i++)
2321 		TAILQ_INIT(&indir_hashtbl[i]);
2322 
2323 	/* initialise bioops hack */
2324 	bioops.io_start = softdep_disk_io_initiation;
2325 	bioops.io_complete = softdep_disk_write_complete;
2326 	bioops.io_deallocate = softdep_deallocate_dependencies;
2327 	bioops.io_countdeps = softdep_count_dependencies;
2328 
2329 	/* Initialize the callout with an mtx. */
2330 	callout_init_mtx(&softdep_callout, &lk, 0);
2331 }
2332 
2333 /*
2334  * Executed after all filesystems have been unmounted during
2335  * filesystem module unload.
2336  */
2337 void
2338 softdep_uninitialize()
2339 {
2340 
2341 	callout_drain(&softdep_callout);
2342 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2343 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2344 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2345 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2346 	free(indir_hashtbl, M_FREEWORK);
2347 }
2348 
2349 /*
2350  * Called at mount time to notify the dependency code that a
2351  * filesystem wishes to use it.
2352  */
2353 int
2354 softdep_mount(devvp, mp, fs, cred)
2355 	struct vnode *devvp;
2356 	struct mount *mp;
2357 	struct fs *fs;
2358 	struct ucred *cred;
2359 {
2360 	struct csum_total cstotal;
2361 	struct ufsmount *ump;
2362 	struct cg *cgp;
2363 	struct buf *bp;
2364 	int error, cyl;
2365 
2366 	MNT_ILOCK(mp);
2367 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2368 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2369 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2370 			MNTK_SOFTDEP | MNTK_NOASYNC;
2371 	}
2372 	MNT_IUNLOCK(mp);
2373 	ump = VFSTOUFS(mp);
2374 	LIST_INIT(&ump->softdep_workitem_pending);
2375 	LIST_INIT(&ump->softdep_journal_pending);
2376 	TAILQ_INIT(&ump->softdep_unlinked);
2377 	LIST_INIT(&ump->softdep_dirtycg);
2378 	ump->softdep_worklist_tail = NULL;
2379 	ump->softdep_on_worklist = 0;
2380 	ump->softdep_deps = 0;
2381 	if ((fs->fs_flags & FS_SUJ) &&
2382 	    (error = journal_mount(mp, fs, cred)) != 0) {
2383 		printf("Failed to start journal: %d\n", error);
2384 		return (error);
2385 	}
2386 	/*
2387 	 * When doing soft updates, the counters in the
2388 	 * superblock may have gotten out of sync. Recomputation
2389 	 * can take a long time and can be deferred for background
2390 	 * fsck.  However, the old behavior of scanning the cylinder
2391 	 * groups and recalculating them at mount time is available
2392 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2393 	 */
2394 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2395 		return (0);
2396 	bzero(&cstotal, sizeof cstotal);
2397 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2398 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2399 		    fs->fs_cgsize, cred, &bp)) != 0) {
2400 			brelse(bp);
2401 			return (error);
2402 		}
2403 		cgp = (struct cg *)bp->b_data;
2404 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2405 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2406 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2407 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2408 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2409 		brelse(bp);
2410 	}
2411 #ifdef DEBUG
2412 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2413 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2414 #endif
2415 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2416 	return (0);
2417 }
2418 
2419 void
2420 softdep_unmount(mp)
2421 	struct mount *mp;
2422 {
2423 
2424 	MNT_ILOCK(mp);
2425 	mp->mnt_flag &= ~MNT_SOFTDEP;
2426 	if (MOUNTEDSUJ(mp) == 0) {
2427 		MNT_IUNLOCK(mp);
2428 		return;
2429 	}
2430 	mp->mnt_flag &= ~MNT_SUJ;
2431 	MNT_IUNLOCK(mp);
2432 	journal_unmount(mp);
2433 }
2434 
2435 struct jblocks {
2436 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2437 	struct jseg	*jb_writeseg;	/* Next write to complete. */
2438 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
2439 	struct jextent	*jb_extent;	/* Extent array. */
2440 	uint64_t	jb_nextseq;	/* Next sequence number. */
2441 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
2442 	uint8_t		jb_needseg;	/* Need a forced segment. */
2443 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
2444 	int		jb_avail;	/* Available extents. */
2445 	int		jb_used;	/* Last used extent. */
2446 	int		jb_head;	/* Allocator head. */
2447 	int		jb_off;		/* Allocator extent offset. */
2448 	int		jb_blocks;	/* Total disk blocks covered. */
2449 	int		jb_free;	/* Total disk blocks free. */
2450 	int		jb_min;		/* Minimum free space. */
2451 	int		jb_low;		/* Low on space. */
2452 	int		jb_age;		/* Insertion time of oldest rec. */
2453 };
2454 
2455 struct jextent {
2456 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2457 	int		je_blocks;	/* Disk block count. */
2458 };
2459 
2460 static struct jblocks *
2461 jblocks_create(void)
2462 {
2463 	struct jblocks *jblocks;
2464 
2465 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2466 	TAILQ_INIT(&jblocks->jb_segs);
2467 	jblocks->jb_avail = 10;
2468 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2469 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2470 
2471 	return (jblocks);
2472 }
2473 
2474 static ufs2_daddr_t
2475 jblocks_alloc(jblocks, bytes, actual)
2476 	struct jblocks *jblocks;
2477 	int bytes;
2478 	int *actual;
2479 {
2480 	ufs2_daddr_t daddr;
2481 	struct jextent *jext;
2482 	int freecnt;
2483 	int blocks;
2484 
2485 	blocks = bytes / DEV_BSIZE;
2486 	jext = &jblocks->jb_extent[jblocks->jb_head];
2487 	freecnt = jext->je_blocks - jblocks->jb_off;
2488 	if (freecnt == 0) {
2489 		jblocks->jb_off = 0;
2490 		if (++jblocks->jb_head > jblocks->jb_used)
2491 			jblocks->jb_head = 0;
2492 		jext = &jblocks->jb_extent[jblocks->jb_head];
2493 		freecnt = jext->je_blocks;
2494 	}
2495 	if (freecnt > blocks)
2496 		freecnt = blocks;
2497 	*actual = freecnt * DEV_BSIZE;
2498 	daddr = jext->je_daddr + jblocks->jb_off;
2499 	jblocks->jb_off += freecnt;
2500 	jblocks->jb_free -= freecnt;
2501 
2502 	return (daddr);
2503 }
2504 
2505 static void
2506 jblocks_free(jblocks, mp, bytes)
2507 	struct jblocks *jblocks;
2508 	struct mount *mp;
2509 	int bytes;
2510 {
2511 
2512 	jblocks->jb_free += bytes / DEV_BSIZE;
2513 	if (jblocks->jb_suspended)
2514 		worklist_speedup();
2515 	wakeup(jblocks);
2516 }
2517 
2518 static void
2519 jblocks_destroy(jblocks)
2520 	struct jblocks *jblocks;
2521 {
2522 
2523 	if (jblocks->jb_extent)
2524 		free(jblocks->jb_extent, M_JBLOCKS);
2525 	free(jblocks, M_JBLOCKS);
2526 }
2527 
2528 static void
2529 jblocks_add(jblocks, daddr, blocks)
2530 	struct jblocks *jblocks;
2531 	ufs2_daddr_t daddr;
2532 	int blocks;
2533 {
2534 	struct jextent *jext;
2535 
2536 	jblocks->jb_blocks += blocks;
2537 	jblocks->jb_free += blocks;
2538 	jext = &jblocks->jb_extent[jblocks->jb_used];
2539 	/* Adding the first block. */
2540 	if (jext->je_daddr == 0) {
2541 		jext->je_daddr = daddr;
2542 		jext->je_blocks = blocks;
2543 		return;
2544 	}
2545 	/* Extending the last extent. */
2546 	if (jext->je_daddr + jext->je_blocks == daddr) {
2547 		jext->je_blocks += blocks;
2548 		return;
2549 	}
2550 	/* Adding a new extent. */
2551 	if (++jblocks->jb_used == jblocks->jb_avail) {
2552 		jblocks->jb_avail *= 2;
2553 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2554 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2555 		memcpy(jext, jblocks->jb_extent,
2556 		    sizeof(struct jextent) * jblocks->jb_used);
2557 		free(jblocks->jb_extent, M_JBLOCKS);
2558 		jblocks->jb_extent = jext;
2559 	}
2560 	jext = &jblocks->jb_extent[jblocks->jb_used];
2561 	jext->je_daddr = daddr;
2562 	jext->je_blocks = blocks;
2563 	return;
2564 }
2565 
2566 int
2567 softdep_journal_lookup(mp, vpp)
2568 	struct mount *mp;
2569 	struct vnode **vpp;
2570 {
2571 	struct componentname cnp;
2572 	struct vnode *dvp;
2573 	ino_t sujournal;
2574 	int error;
2575 
2576 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2577 	if (error)
2578 		return (error);
2579 	bzero(&cnp, sizeof(cnp));
2580 	cnp.cn_nameiop = LOOKUP;
2581 	cnp.cn_flags = ISLASTCN;
2582 	cnp.cn_thread = curthread;
2583 	cnp.cn_cred = curthread->td_ucred;
2584 	cnp.cn_pnbuf = SUJ_FILE;
2585 	cnp.cn_nameptr = SUJ_FILE;
2586 	cnp.cn_namelen = strlen(SUJ_FILE);
2587 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2588 	vput(dvp);
2589 	if (error != 0)
2590 		return (error);
2591 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2592 	return (error);
2593 }
2594 
2595 /*
2596  * Open and verify the journal file.
2597  */
2598 static int
2599 journal_mount(mp, fs, cred)
2600 	struct mount *mp;
2601 	struct fs *fs;
2602 	struct ucred *cred;
2603 {
2604 	struct jblocks *jblocks;
2605 	struct vnode *vp;
2606 	struct inode *ip;
2607 	ufs2_daddr_t blkno;
2608 	int bcount;
2609 	int error;
2610 	int i;
2611 
2612 	error = softdep_journal_lookup(mp, &vp);
2613 	if (error != 0) {
2614 		printf("Failed to find journal.  Use tunefs to create one\n");
2615 		return (error);
2616 	}
2617 	ip = VTOI(vp);
2618 	if (ip->i_size < SUJ_MIN) {
2619 		error = ENOSPC;
2620 		goto out;
2621 	}
2622 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2623 	jblocks = jblocks_create();
2624 	for (i = 0; i < bcount; i++) {
2625 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2626 		if (error)
2627 			break;
2628 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2629 	}
2630 	if (error) {
2631 		jblocks_destroy(jblocks);
2632 		goto out;
2633 	}
2634 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2635 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2636 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2637 out:
2638 	if (error == 0) {
2639 		MNT_ILOCK(mp);
2640 		mp->mnt_flag |= MNT_SUJ;
2641 		mp->mnt_flag &= ~MNT_SOFTDEP;
2642 		MNT_IUNLOCK(mp);
2643 		/*
2644 		 * Only validate the journal contents if the
2645 		 * filesystem is clean, otherwise we write the logs
2646 		 * but they'll never be used.  If the filesystem was
2647 		 * still dirty when we mounted it the journal is
2648 		 * invalid and a new journal can only be valid if it
2649 		 * starts from a clean mount.
2650 		 */
2651 		if (fs->fs_clean) {
2652 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2653 			ip->i_flags |= IN_MODIFIED;
2654 			ffs_update(vp, 1);
2655 		}
2656 	}
2657 	vput(vp);
2658 	return (error);
2659 }
2660 
2661 static void
2662 journal_unmount(mp)
2663 	struct mount *mp;
2664 {
2665 	struct ufsmount *ump;
2666 
2667 	ump = VFSTOUFS(mp);
2668 	if (ump->softdep_jblocks)
2669 		jblocks_destroy(ump->softdep_jblocks);
2670 	ump->softdep_jblocks = NULL;
2671 }
2672 
2673 /*
2674  * Called when a journal record is ready to be written.  Space is allocated
2675  * and the journal entry is created when the journal is flushed to stable
2676  * store.
2677  */
2678 static void
2679 add_to_journal(wk)
2680 	struct worklist *wk;
2681 {
2682 	struct ufsmount *ump;
2683 
2684 	mtx_assert(&lk, MA_OWNED);
2685 	ump = VFSTOUFS(wk->wk_mp);
2686 	if (wk->wk_state & ONWORKLIST)
2687 		panic("add_to_journal: %s(0x%X) already on list",
2688 		    TYPENAME(wk->wk_type), wk->wk_state);
2689 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2690 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2691 		ump->softdep_jblocks->jb_age = ticks;
2692 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2693 	} else
2694 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2695 	ump->softdep_journal_tail = wk;
2696 	ump->softdep_on_journal += 1;
2697 }
2698 
2699 /*
2700  * Remove an arbitrary item for the journal worklist maintain the tail
2701  * pointer.  This happens when a new operation obviates the need to
2702  * journal an old operation.
2703  */
2704 static void
2705 remove_from_journal(wk)
2706 	struct worklist *wk;
2707 {
2708 	struct ufsmount *ump;
2709 
2710 	mtx_assert(&lk, MA_OWNED);
2711 	ump = VFSTOUFS(wk->wk_mp);
2712 #ifdef SUJ_DEBUG
2713 	{
2714 		struct worklist *wkn;
2715 
2716 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2717 			if (wkn == wk)
2718 				break;
2719 		if (wkn == NULL)
2720 			panic("remove_from_journal: %p is not in journal", wk);
2721 	}
2722 #endif
2723 	/*
2724 	 * We emulate a TAILQ to save space in most structures which do not
2725 	 * require TAILQ semantics.  Here we must update the tail position
2726 	 * when removing the tail which is not the final entry. This works
2727 	 * only if the worklist linkage are at the beginning of the structure.
2728 	 */
2729 	if (ump->softdep_journal_tail == wk)
2730 		ump->softdep_journal_tail =
2731 		    (struct worklist *)wk->wk_list.le_prev;
2732 
2733 	WORKLIST_REMOVE(wk);
2734 	ump->softdep_on_journal -= 1;
2735 }
2736 
2737 /*
2738  * Check for journal space as well as dependency limits so the prelink
2739  * code can throttle both journaled and non-journaled filesystems.
2740  * Threshold is 0 for low and 1 for min.
2741  */
2742 static int
2743 journal_space(ump, thresh)
2744 	struct ufsmount *ump;
2745 	int thresh;
2746 {
2747 	struct jblocks *jblocks;
2748 	int avail;
2749 
2750 	jblocks = ump->softdep_jblocks;
2751 	if (jblocks == NULL)
2752 		return (1);
2753 	/*
2754 	 * We use a tighter restriction here to prevent request_cleanup()
2755 	 * running in threads from running into locks we currently hold.
2756 	 */
2757 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2758 		return (0);
2759 	if (thresh)
2760 		thresh = jblocks->jb_min;
2761 	else
2762 		thresh = jblocks->jb_low;
2763 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2764 	avail = jblocks->jb_free - avail;
2765 
2766 	return (avail > thresh);
2767 }
2768 
2769 static void
2770 journal_suspend(ump)
2771 	struct ufsmount *ump;
2772 {
2773 	struct jblocks *jblocks;
2774 	struct mount *mp;
2775 
2776 	mp = UFSTOVFS(ump);
2777 	jblocks = ump->softdep_jblocks;
2778 	MNT_ILOCK(mp);
2779 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2780 		stat_journal_min++;
2781 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2782 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2783 	}
2784 	jblocks->jb_suspended = 1;
2785 	MNT_IUNLOCK(mp);
2786 }
2787 
2788 static int
2789 journal_unsuspend(struct ufsmount *ump)
2790 {
2791 	struct jblocks *jblocks;
2792 	struct mount *mp;
2793 
2794 	mp = UFSTOVFS(ump);
2795 	jblocks = ump->softdep_jblocks;
2796 
2797 	if (jblocks != NULL && jblocks->jb_suspended &&
2798 	    journal_space(ump, jblocks->jb_min)) {
2799 		jblocks->jb_suspended = 0;
2800 		FREE_LOCK(&lk);
2801 		mp->mnt_susp_owner = curthread;
2802 		vfs_write_resume(mp);
2803 		ACQUIRE_LOCK(&lk);
2804 		return (1);
2805 	}
2806 	return (0);
2807 }
2808 
2809 /*
2810  * Called before any allocation function to be certain that there is
2811  * sufficient space in the journal prior to creating any new records.
2812  * Since in the case of block allocation we may have multiple locked
2813  * buffers at the time of the actual allocation we can not block
2814  * when the journal records are created.  Doing so would create a deadlock
2815  * if any of these buffers needed to be flushed to reclaim space.  Instead
2816  * we require a sufficiently large amount of available space such that
2817  * each thread in the system could have passed this allocation check and
2818  * still have sufficient free space.  With 20% of a minimum journal size
2819  * of 1MB we have 6553 records available.
2820  */
2821 int
2822 softdep_prealloc(vp, waitok)
2823 	struct vnode *vp;
2824 	int waitok;
2825 {
2826 	struct ufsmount *ump;
2827 
2828 	/*
2829 	 * Nothing to do if we are not running journaled soft updates.
2830 	 * If we currently hold the snapshot lock, we must avoid handling
2831 	 * other resources that could cause deadlock.
2832 	 */
2833 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2834 		return (0);
2835 	ump = VFSTOUFS(vp->v_mount);
2836 	ACQUIRE_LOCK(&lk);
2837 	if (journal_space(ump, 0)) {
2838 		FREE_LOCK(&lk);
2839 		return (0);
2840 	}
2841 	stat_journal_low++;
2842 	FREE_LOCK(&lk);
2843 	if (waitok == MNT_NOWAIT)
2844 		return (ENOSPC);
2845 	/*
2846 	 * Attempt to sync this vnode once to flush any journal
2847 	 * work attached to it.
2848 	 */
2849 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2850 		ffs_syncvnode(vp, waitok, 0);
2851 	ACQUIRE_LOCK(&lk);
2852 	process_removes(vp);
2853 	process_truncates(vp);
2854 	if (journal_space(ump, 0) == 0) {
2855 		softdep_speedup();
2856 		if (journal_space(ump, 1) == 0)
2857 			journal_suspend(ump);
2858 	}
2859 	FREE_LOCK(&lk);
2860 
2861 	return (0);
2862 }
2863 
2864 /*
2865  * Before adjusting a link count on a vnode verify that we have sufficient
2866  * journal space.  If not, process operations that depend on the currently
2867  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2868  * and softdep flush threads can not acquire these locks to reclaim space.
2869  */
2870 static void
2871 softdep_prelink(dvp, vp)
2872 	struct vnode *dvp;
2873 	struct vnode *vp;
2874 {
2875 	struct ufsmount *ump;
2876 
2877 	ump = VFSTOUFS(dvp->v_mount);
2878 	mtx_assert(&lk, MA_OWNED);
2879 	/*
2880 	 * Nothing to do if we have sufficient journal space.
2881 	 * If we currently hold the snapshot lock, we must avoid
2882 	 * handling other resources that could cause deadlock.
2883 	 */
2884 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2885 		return;
2886 	stat_journal_low++;
2887 	FREE_LOCK(&lk);
2888 	if (vp)
2889 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2890 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2891 	ACQUIRE_LOCK(&lk);
2892 	/* Process vp before dvp as it may create .. removes. */
2893 	if (vp) {
2894 		process_removes(vp);
2895 		process_truncates(vp);
2896 	}
2897 	process_removes(dvp);
2898 	process_truncates(dvp);
2899 	softdep_speedup();
2900 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2901 	if (journal_space(ump, 0) == 0) {
2902 		softdep_speedup();
2903 		if (journal_space(ump, 1) == 0)
2904 			journal_suspend(ump);
2905 	}
2906 }
2907 
2908 static void
2909 jseg_write(ump, jseg, data)
2910 	struct ufsmount *ump;
2911 	struct jseg *jseg;
2912 	uint8_t *data;
2913 {
2914 	struct jsegrec *rec;
2915 
2916 	rec = (struct jsegrec *)data;
2917 	rec->jsr_seq = jseg->js_seq;
2918 	rec->jsr_oldest = jseg->js_oldseq;
2919 	rec->jsr_cnt = jseg->js_cnt;
2920 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2921 	rec->jsr_crc = 0;
2922 	rec->jsr_time = ump->um_fs->fs_mtime;
2923 }
2924 
2925 static inline void
2926 inoref_write(inoref, jseg, rec)
2927 	struct inoref *inoref;
2928 	struct jseg *jseg;
2929 	struct jrefrec *rec;
2930 {
2931 
2932 	inoref->if_jsegdep->jd_seg = jseg;
2933 	rec->jr_ino = inoref->if_ino;
2934 	rec->jr_parent = inoref->if_parent;
2935 	rec->jr_nlink = inoref->if_nlink;
2936 	rec->jr_mode = inoref->if_mode;
2937 	rec->jr_diroff = inoref->if_diroff;
2938 }
2939 
2940 static void
2941 jaddref_write(jaddref, jseg, data)
2942 	struct jaddref *jaddref;
2943 	struct jseg *jseg;
2944 	uint8_t *data;
2945 {
2946 	struct jrefrec *rec;
2947 
2948 	rec = (struct jrefrec *)data;
2949 	rec->jr_op = JOP_ADDREF;
2950 	inoref_write(&jaddref->ja_ref, jseg, rec);
2951 }
2952 
2953 static void
2954 jremref_write(jremref, jseg, data)
2955 	struct jremref *jremref;
2956 	struct jseg *jseg;
2957 	uint8_t *data;
2958 {
2959 	struct jrefrec *rec;
2960 
2961 	rec = (struct jrefrec *)data;
2962 	rec->jr_op = JOP_REMREF;
2963 	inoref_write(&jremref->jr_ref, jseg, rec);
2964 }
2965 
2966 static void
2967 jmvref_write(jmvref, jseg, data)
2968 	struct jmvref *jmvref;
2969 	struct jseg *jseg;
2970 	uint8_t *data;
2971 {
2972 	struct jmvrec *rec;
2973 
2974 	rec = (struct jmvrec *)data;
2975 	rec->jm_op = JOP_MVREF;
2976 	rec->jm_ino = jmvref->jm_ino;
2977 	rec->jm_parent = jmvref->jm_parent;
2978 	rec->jm_oldoff = jmvref->jm_oldoff;
2979 	rec->jm_newoff = jmvref->jm_newoff;
2980 }
2981 
2982 static void
2983 jnewblk_write(jnewblk, jseg, data)
2984 	struct jnewblk *jnewblk;
2985 	struct jseg *jseg;
2986 	uint8_t *data;
2987 {
2988 	struct jblkrec *rec;
2989 
2990 	jnewblk->jn_jsegdep->jd_seg = jseg;
2991 	rec = (struct jblkrec *)data;
2992 	rec->jb_op = JOP_NEWBLK;
2993 	rec->jb_ino = jnewblk->jn_ino;
2994 	rec->jb_blkno = jnewblk->jn_blkno;
2995 	rec->jb_lbn = jnewblk->jn_lbn;
2996 	rec->jb_frags = jnewblk->jn_frags;
2997 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2998 }
2999 
3000 static void
3001 jfreeblk_write(jfreeblk, jseg, data)
3002 	struct jfreeblk *jfreeblk;
3003 	struct jseg *jseg;
3004 	uint8_t *data;
3005 {
3006 	struct jblkrec *rec;
3007 
3008 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3009 	rec = (struct jblkrec *)data;
3010 	rec->jb_op = JOP_FREEBLK;
3011 	rec->jb_ino = jfreeblk->jf_ino;
3012 	rec->jb_blkno = jfreeblk->jf_blkno;
3013 	rec->jb_lbn = jfreeblk->jf_lbn;
3014 	rec->jb_frags = jfreeblk->jf_frags;
3015 	rec->jb_oldfrags = 0;
3016 }
3017 
3018 static void
3019 jfreefrag_write(jfreefrag, jseg, data)
3020 	struct jfreefrag *jfreefrag;
3021 	struct jseg *jseg;
3022 	uint8_t *data;
3023 {
3024 	struct jblkrec *rec;
3025 
3026 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3027 	rec = (struct jblkrec *)data;
3028 	rec->jb_op = JOP_FREEBLK;
3029 	rec->jb_ino = jfreefrag->fr_ino;
3030 	rec->jb_blkno = jfreefrag->fr_blkno;
3031 	rec->jb_lbn = jfreefrag->fr_lbn;
3032 	rec->jb_frags = jfreefrag->fr_frags;
3033 	rec->jb_oldfrags = 0;
3034 }
3035 
3036 static void
3037 jtrunc_write(jtrunc, jseg, data)
3038 	struct jtrunc *jtrunc;
3039 	struct jseg *jseg;
3040 	uint8_t *data;
3041 {
3042 	struct jtrncrec *rec;
3043 
3044 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3045 	rec = (struct jtrncrec *)data;
3046 	rec->jt_op = JOP_TRUNC;
3047 	rec->jt_ino = jtrunc->jt_ino;
3048 	rec->jt_size = jtrunc->jt_size;
3049 	rec->jt_extsize = jtrunc->jt_extsize;
3050 }
3051 
3052 static void
3053 jfsync_write(jfsync, jseg, data)
3054 	struct jfsync *jfsync;
3055 	struct jseg *jseg;
3056 	uint8_t *data;
3057 {
3058 	struct jtrncrec *rec;
3059 
3060 	rec = (struct jtrncrec *)data;
3061 	rec->jt_op = JOP_SYNC;
3062 	rec->jt_ino = jfsync->jfs_ino;
3063 	rec->jt_size = jfsync->jfs_size;
3064 	rec->jt_extsize = jfsync->jfs_extsize;
3065 }
3066 
3067 static void
3068 softdep_flushjournal(mp)
3069 	struct mount *mp;
3070 {
3071 	struct jblocks *jblocks;
3072 	struct ufsmount *ump;
3073 
3074 	if (MOUNTEDSUJ(mp) == 0)
3075 		return;
3076 	ump = VFSTOUFS(mp);
3077 	jblocks = ump->softdep_jblocks;
3078 	ACQUIRE_LOCK(&lk);
3079 	while (ump->softdep_on_journal) {
3080 		jblocks->jb_needseg = 1;
3081 		softdep_process_journal(mp, NULL, MNT_WAIT);
3082 	}
3083 	FREE_LOCK(&lk);
3084 }
3085 
3086 /*
3087  * Flush some journal records to disk.
3088  */
3089 static void
3090 softdep_process_journal(mp, needwk, flags)
3091 	struct mount *mp;
3092 	struct worklist *needwk;
3093 	int flags;
3094 {
3095 	struct jblocks *jblocks;
3096 	struct ufsmount *ump;
3097 	struct worklist *wk;
3098 	struct jseg *jseg;
3099 	struct buf *bp;
3100 	uint8_t *data;
3101 	struct fs *fs;
3102 	int segwritten;
3103 	int jrecmin;	/* Minimum records per block. */
3104 	int jrecmax;	/* Maximum records per block. */
3105 	int size;
3106 	int cnt;
3107 	int off;
3108 	int devbsize;
3109 
3110 	if (MOUNTEDSUJ(mp) == 0)
3111 		return;
3112 	ump = VFSTOUFS(mp);
3113 	fs = ump->um_fs;
3114 	jblocks = ump->softdep_jblocks;
3115 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3116 	/*
3117 	 * We write anywhere between a disk block and fs block.  The upper
3118 	 * bound is picked to prevent buffer cache fragmentation and limit
3119 	 * processing time per I/O.
3120 	 */
3121 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3122 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3123 	segwritten = 0;
3124 	for (;;) {
3125 		cnt = ump->softdep_on_journal;
3126 		/*
3127 		 * Criteria for writing a segment:
3128 		 * 1) We have a full block.
3129 		 * 2) We're called from jwait() and haven't found the
3130 		 *    journal item yet.
3131 		 * 3) Always write if needseg is set.
3132 		 * 4) If we are called from process_worklist and have
3133 		 *    not yet written anything we write a partial block
3134 		 *    to enforce a 1 second maximum latency on journal
3135 		 *    entries.
3136 		 */
3137 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3138 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3139 			break;
3140 		cnt++;
3141 		/*
3142 		 * Verify some free journal space.  softdep_prealloc() should
3143 	 	 * guarantee that we don't run out so this is indicative of
3144 		 * a problem with the flow control.  Try to recover
3145 		 * gracefully in any event.
3146 		 */
3147 		while (jblocks->jb_free == 0) {
3148 			if (flags != MNT_WAIT)
3149 				break;
3150 			printf("softdep: Out of journal space!\n");
3151 			softdep_speedup();
3152 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3153 		}
3154 		FREE_LOCK(&lk);
3155 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3156 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3157 		LIST_INIT(&jseg->js_entries);
3158 		LIST_INIT(&jseg->js_indirs);
3159 		jseg->js_state = ATTACHED;
3160 		jseg->js_jblocks = jblocks;
3161 		bp = geteblk(fs->fs_bsize, 0);
3162 		ACQUIRE_LOCK(&lk);
3163 		/*
3164 		 * If there was a race while we were allocating the block
3165 		 * and jseg the entry we care about was likely written.
3166 		 * We bail out in both the WAIT and NOWAIT case and assume
3167 		 * the caller will loop if the entry it cares about is
3168 		 * not written.
3169 		 */
3170 		cnt = ump->softdep_on_journal;
3171 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3172 			bp->b_flags |= B_INVAL | B_NOCACHE;
3173 			WORKITEM_FREE(jseg, D_JSEG);
3174 			FREE_LOCK(&lk);
3175 			brelse(bp);
3176 			ACQUIRE_LOCK(&lk);
3177 			break;
3178 		}
3179 		/*
3180 		 * Calculate the disk block size required for the available
3181 		 * records rounded to the min size.
3182 		 */
3183 		if (cnt == 0)
3184 			size = devbsize;
3185 		else if (cnt < jrecmax)
3186 			size = howmany(cnt, jrecmin) * devbsize;
3187 		else
3188 			size = fs->fs_bsize;
3189 		/*
3190 		 * Allocate a disk block for this journal data and account
3191 		 * for truncation of the requested size if enough contiguous
3192 		 * space was not available.
3193 		 */
3194 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3195 		bp->b_lblkno = bp->b_blkno;
3196 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3197 		bp->b_bcount = size;
3198 		bp->b_bufobj = &ump->um_devvp->v_bufobj;
3199 		bp->b_flags &= ~B_INVAL;
3200 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3201 		/*
3202 		 * Initialize our jseg with cnt records.  Assign the next
3203 		 * sequence number to it and link it in-order.
3204 		 */
3205 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3206 		jseg->js_buf = bp;
3207 		jseg->js_cnt = cnt;
3208 		jseg->js_refs = cnt + 1;	/* Self ref. */
3209 		jseg->js_size = size;
3210 		jseg->js_seq = jblocks->jb_nextseq++;
3211 		if (jblocks->jb_oldestseg == NULL)
3212 			jblocks->jb_oldestseg = jseg;
3213 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3214 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3215 		if (jblocks->jb_writeseg == NULL)
3216 			jblocks->jb_writeseg = jseg;
3217 		/*
3218 		 * Start filling in records from the pending list.
3219 		 */
3220 		data = bp->b_data;
3221 		off = 0;
3222 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3223 		    != NULL) {
3224 			if (cnt == 0)
3225 				break;
3226 			/* Place a segment header on every device block. */
3227 			if ((off % devbsize) == 0) {
3228 				jseg_write(ump, jseg, data);
3229 				off += JREC_SIZE;
3230 				data = bp->b_data + off;
3231 			}
3232 			if (wk == needwk)
3233 				needwk = NULL;
3234 			remove_from_journal(wk);
3235 			wk->wk_state |= INPROGRESS;
3236 			WORKLIST_INSERT(&jseg->js_entries, wk);
3237 			switch (wk->wk_type) {
3238 			case D_JADDREF:
3239 				jaddref_write(WK_JADDREF(wk), jseg, data);
3240 				break;
3241 			case D_JREMREF:
3242 				jremref_write(WK_JREMREF(wk), jseg, data);
3243 				break;
3244 			case D_JMVREF:
3245 				jmvref_write(WK_JMVREF(wk), jseg, data);
3246 				break;
3247 			case D_JNEWBLK:
3248 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3249 				break;
3250 			case D_JFREEBLK:
3251 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3252 				break;
3253 			case D_JFREEFRAG:
3254 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3255 				break;
3256 			case D_JTRUNC:
3257 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3258 				break;
3259 			case D_JFSYNC:
3260 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3261 				break;
3262 			default:
3263 				panic("process_journal: Unknown type %s",
3264 				    TYPENAME(wk->wk_type));
3265 				/* NOTREACHED */
3266 			}
3267 			off += JREC_SIZE;
3268 			data = bp->b_data + off;
3269 			cnt--;
3270 		}
3271 		/*
3272 		 * Write this one buffer and continue.
3273 		 */
3274 		segwritten = 1;
3275 		jblocks->jb_needseg = 0;
3276 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3277 		FREE_LOCK(&lk);
3278 		BO_LOCK(bp->b_bufobj);
3279 		bgetvp(ump->um_devvp, bp);
3280 		BO_UNLOCK(bp->b_bufobj);
3281 		/*
3282 		 * We only do the blocking wait once we find the journal
3283 		 * entry we're looking for.
3284 		 */
3285 		if (needwk == NULL && flags == MNT_WAIT)
3286 			bwrite(bp);
3287 		else
3288 			bawrite(bp);
3289 		ACQUIRE_LOCK(&lk);
3290 	}
3291 	/*
3292 	 * If we've suspended the filesystem because we ran out of journal
3293 	 * space either try to sync it here to make some progress or
3294 	 * unsuspend it if we already have.
3295 	 */
3296 	if (flags == 0 && jblocks->jb_suspended) {
3297 		if (journal_unsuspend(ump))
3298 			return;
3299 		FREE_LOCK(&lk);
3300 		VFS_SYNC(mp, MNT_NOWAIT);
3301 		ffs_sbupdate(ump, MNT_WAIT, 0);
3302 		ACQUIRE_LOCK(&lk);
3303 	}
3304 }
3305 
3306 /*
3307  * Complete a jseg, allowing all dependencies awaiting journal writes
3308  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3309  * structures so that the journal segment can be freed to reclaim space.
3310  */
3311 static void
3312 complete_jseg(jseg)
3313 	struct jseg *jseg;
3314 {
3315 	struct worklist *wk;
3316 	struct jmvref *jmvref;
3317 	int waiting;
3318 #ifdef INVARIANTS
3319 	int i = 0;
3320 #endif
3321 
3322 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3323 		WORKLIST_REMOVE(wk);
3324 		waiting = wk->wk_state & IOWAITING;
3325 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3326 		wk->wk_state |= COMPLETE;
3327 		KASSERT(i++ < jseg->js_cnt,
3328 		    ("handle_written_jseg: overflow %d >= %d",
3329 		    i - 1, jseg->js_cnt));
3330 		switch (wk->wk_type) {
3331 		case D_JADDREF:
3332 			handle_written_jaddref(WK_JADDREF(wk));
3333 			break;
3334 		case D_JREMREF:
3335 			handle_written_jremref(WK_JREMREF(wk));
3336 			break;
3337 		case D_JMVREF:
3338 			rele_jseg(jseg);	/* No jsegdep. */
3339 			jmvref = WK_JMVREF(wk);
3340 			LIST_REMOVE(jmvref, jm_deps);
3341 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3342 				free_pagedep(jmvref->jm_pagedep);
3343 			WORKITEM_FREE(jmvref, D_JMVREF);
3344 			break;
3345 		case D_JNEWBLK:
3346 			handle_written_jnewblk(WK_JNEWBLK(wk));
3347 			break;
3348 		case D_JFREEBLK:
3349 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3350 			break;
3351 		case D_JTRUNC:
3352 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3353 			break;
3354 		case D_JFSYNC:
3355 			rele_jseg(jseg);	/* No jsegdep. */
3356 			WORKITEM_FREE(wk, D_JFSYNC);
3357 			break;
3358 		case D_JFREEFRAG:
3359 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3360 			break;
3361 		default:
3362 			panic("handle_written_jseg: Unknown type %s",
3363 			    TYPENAME(wk->wk_type));
3364 			/* NOTREACHED */
3365 		}
3366 		if (waiting)
3367 			wakeup(wk);
3368 	}
3369 	/* Release the self reference so the structure may be freed. */
3370 	rele_jseg(jseg);
3371 }
3372 
3373 /*
3374  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
3375  * completions in order only.
3376  */
3377 static void
3378 handle_written_jseg(jseg, bp)
3379 	struct jseg *jseg;
3380 	struct buf *bp;
3381 {
3382 	struct jblocks *jblocks;
3383 	struct jseg *jsegn;
3384 
3385 	if (jseg->js_refs == 0)
3386 		panic("handle_written_jseg: No self-reference on %p", jseg);
3387 	jseg->js_state |= DEPCOMPLETE;
3388 	/*
3389 	 * We'll never need this buffer again, set flags so it will be
3390 	 * discarded.
3391 	 */
3392 	bp->b_flags |= B_INVAL | B_NOCACHE;
3393 	jblocks = jseg->js_jblocks;
3394 	/*
3395 	 * Don't allow out of order completions.  If this isn't the first
3396 	 * block wait for it to write before we're done.
3397 	 */
3398 	if (jseg != jblocks->jb_writeseg)
3399 		return;
3400 	/* Iterate through available jsegs processing their entries. */
3401 	do {
3402 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3403 		jsegn = TAILQ_NEXT(jseg, js_next);
3404 		complete_jseg(jseg);
3405 		jseg = jsegn;
3406 	} while (jseg && jseg->js_state & DEPCOMPLETE);
3407 	jblocks->jb_writeseg = jseg;
3408 	/*
3409 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3410 	 */
3411 	free_jsegs(jblocks);
3412 }
3413 
3414 static inline struct jsegdep *
3415 inoref_jseg(inoref)
3416 	struct inoref *inoref;
3417 {
3418 	struct jsegdep *jsegdep;
3419 
3420 	jsegdep = inoref->if_jsegdep;
3421 	inoref->if_jsegdep = NULL;
3422 
3423 	return (jsegdep);
3424 }
3425 
3426 /*
3427  * Called once a jremref has made it to stable store.  The jremref is marked
3428  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3429  * for the jremref to complete will be awoken by free_jremref.
3430  */
3431 static void
3432 handle_written_jremref(jremref)
3433 	struct jremref *jremref;
3434 {
3435 	struct inodedep *inodedep;
3436 	struct jsegdep *jsegdep;
3437 	struct dirrem *dirrem;
3438 
3439 	/* Grab the jsegdep. */
3440 	jsegdep = inoref_jseg(&jremref->jr_ref);
3441 	/*
3442 	 * Remove us from the inoref list.
3443 	 */
3444 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3445 	    0, &inodedep) == 0)
3446 		panic("handle_written_jremref: Lost inodedep");
3447 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3448 	/*
3449 	 * Complete the dirrem.
3450 	 */
3451 	dirrem = jremref->jr_dirrem;
3452 	jremref->jr_dirrem = NULL;
3453 	LIST_REMOVE(jremref, jr_deps);
3454 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3455 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3456 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3457 	    (dirrem->dm_state & COMPLETE) != 0)
3458 		add_to_worklist(&dirrem->dm_list, 0);
3459 	free_jremref(jremref);
3460 }
3461 
3462 /*
3463  * Called once a jaddref has made it to stable store.  The dependency is
3464  * marked complete and any dependent structures are added to the inode
3465  * bufwait list to be completed as soon as it is written.  If a bitmap write
3466  * depends on this entry we move the inode into the inodedephd of the
3467  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3468  */
3469 static void
3470 handle_written_jaddref(jaddref)
3471 	struct jaddref *jaddref;
3472 {
3473 	struct jsegdep *jsegdep;
3474 	struct inodedep *inodedep;
3475 	struct diradd *diradd;
3476 	struct mkdir *mkdir;
3477 
3478 	/* Grab the jsegdep. */
3479 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3480 	mkdir = NULL;
3481 	diradd = NULL;
3482 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3483 	    0, &inodedep) == 0)
3484 		panic("handle_written_jaddref: Lost inodedep.");
3485 	if (jaddref->ja_diradd == NULL)
3486 		panic("handle_written_jaddref: No dependency");
3487 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3488 		diradd = jaddref->ja_diradd;
3489 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3490 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3491 		mkdir = jaddref->ja_mkdir;
3492 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3493 	} else if (jaddref->ja_state & MKDIR_BODY)
3494 		mkdir = jaddref->ja_mkdir;
3495 	else
3496 		panic("handle_written_jaddref: Unknown dependency %p",
3497 		    jaddref->ja_diradd);
3498 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3499 	/*
3500 	 * Remove us from the inode list.
3501 	 */
3502 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3503 	/*
3504 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3505 	 */
3506 	if (mkdir) {
3507 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3508 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3509 		    TYPENAME(mkdir->md_list.wk_type)));
3510 		mkdir->md_jaddref = NULL;
3511 		diradd = mkdir->md_diradd;
3512 		mkdir->md_state |= DEPCOMPLETE;
3513 		complete_mkdir(mkdir);
3514 	}
3515 	jwork_insert(&diradd->da_jwork, jsegdep);
3516 	if (jaddref->ja_state & NEWBLOCK) {
3517 		inodedep->id_state |= ONDEPLIST;
3518 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3519 		    inodedep, id_deps);
3520 	}
3521 	free_jaddref(jaddref);
3522 }
3523 
3524 /*
3525  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3526  * is placed in the bmsafemap to await notification of a written bitmap.  If
3527  * the operation was canceled we add the segdep to the appropriate
3528  * dependency to free the journal space once the canceling operation
3529  * completes.
3530  */
3531 static void
3532 handle_written_jnewblk(jnewblk)
3533 	struct jnewblk *jnewblk;
3534 {
3535 	struct bmsafemap *bmsafemap;
3536 	struct freefrag *freefrag;
3537 	struct freework *freework;
3538 	struct jsegdep *jsegdep;
3539 	struct newblk *newblk;
3540 
3541 	/* Grab the jsegdep. */
3542 	jsegdep = jnewblk->jn_jsegdep;
3543 	jnewblk->jn_jsegdep = NULL;
3544 	if (jnewblk->jn_dep == NULL)
3545 		panic("handle_written_jnewblk: No dependency for the segdep.");
3546 	switch (jnewblk->jn_dep->wk_type) {
3547 	case D_NEWBLK:
3548 	case D_ALLOCDIRECT:
3549 	case D_ALLOCINDIR:
3550 		/*
3551 		 * Add the written block to the bmsafemap so it can
3552 		 * be notified when the bitmap is on disk.
3553 		 */
3554 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3555 		newblk->nb_jnewblk = NULL;
3556 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3557 			bmsafemap = newblk->nb_bmsafemap;
3558 			newblk->nb_state |= ONDEPLIST;
3559 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3560 			    nb_deps);
3561 		}
3562 		jwork_insert(&newblk->nb_jwork, jsegdep);
3563 		break;
3564 	case D_FREEFRAG:
3565 		/*
3566 		 * A newblock being removed by a freefrag when replaced by
3567 		 * frag extension.
3568 		 */
3569 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3570 		freefrag->ff_jdep = NULL;
3571 		WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3572 		break;
3573 	case D_FREEWORK:
3574 		/*
3575 		 * A direct block was removed by truncate.
3576 		 */
3577 		freework = WK_FREEWORK(jnewblk->jn_dep);
3578 		freework->fw_jnewblk = NULL;
3579 		WORKLIST_INSERT(&freework->fw_freeblks->fb_jwork,
3580 		    &jsegdep->jd_list);
3581 		break;
3582 	default:
3583 		panic("handle_written_jnewblk: Unknown type %d.",
3584 		    jnewblk->jn_dep->wk_type);
3585 	}
3586 	jnewblk->jn_dep = NULL;
3587 	free_jnewblk(jnewblk);
3588 }
3589 
3590 /*
3591  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3592  * an in-flight allocation that has not yet been committed.  Divorce us
3593  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3594  * to the worklist.
3595  */
3596 static void
3597 cancel_jfreefrag(jfreefrag)
3598 	struct jfreefrag *jfreefrag;
3599 {
3600 	struct freefrag *freefrag;
3601 
3602 	if (jfreefrag->fr_jsegdep) {
3603 		free_jsegdep(jfreefrag->fr_jsegdep);
3604 		jfreefrag->fr_jsegdep = NULL;
3605 	}
3606 	freefrag = jfreefrag->fr_freefrag;
3607 	jfreefrag->fr_freefrag = NULL;
3608 	free_jfreefrag(jfreefrag);
3609 	freefrag->ff_state |= DEPCOMPLETE;
3610 }
3611 
3612 /*
3613  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3614  */
3615 static void
3616 free_jfreefrag(jfreefrag)
3617 	struct jfreefrag *jfreefrag;
3618 {
3619 
3620 	if (jfreefrag->fr_state & INPROGRESS)
3621 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3622 	else if (jfreefrag->fr_state & ONWORKLIST)
3623 		remove_from_journal(&jfreefrag->fr_list);
3624 	if (jfreefrag->fr_freefrag != NULL)
3625 		panic("free_jfreefrag:  Still attached to a freefrag.");
3626 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3627 }
3628 
3629 /*
3630  * Called when the journal write for a jfreefrag completes.  The parent
3631  * freefrag is added to the worklist if this completes its dependencies.
3632  */
3633 static void
3634 handle_written_jfreefrag(jfreefrag)
3635 	struct jfreefrag *jfreefrag;
3636 {
3637 	struct jsegdep *jsegdep;
3638 	struct freefrag *freefrag;
3639 
3640 	/* Grab the jsegdep. */
3641 	jsegdep = jfreefrag->fr_jsegdep;
3642 	jfreefrag->fr_jsegdep = NULL;
3643 	freefrag = jfreefrag->fr_freefrag;
3644 	if (freefrag == NULL)
3645 		panic("handle_written_jfreefrag: No freefrag.");
3646 	freefrag->ff_state |= DEPCOMPLETE;
3647 	freefrag->ff_jdep = NULL;
3648 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3649 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3650 		add_to_worklist(&freefrag->ff_list, 0);
3651 	jfreefrag->fr_freefrag = NULL;
3652 	free_jfreefrag(jfreefrag);
3653 }
3654 
3655 /*
3656  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3657  * is removed from the freeblks list of pending journal writes and the
3658  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3659  * have been reclaimed.
3660  */
3661 static void
3662 handle_written_jblkdep(jblkdep)
3663 	struct jblkdep *jblkdep;
3664 {
3665 	struct freeblks *freeblks;
3666 	struct jsegdep *jsegdep;
3667 
3668 	/* Grab the jsegdep. */
3669 	jsegdep = jblkdep->jb_jsegdep;
3670 	jblkdep->jb_jsegdep = NULL;
3671 	freeblks = jblkdep->jb_freeblks;
3672 	LIST_REMOVE(jblkdep, jb_deps);
3673 	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3674 	/*
3675 	 * If the freeblks is all journaled, we can add it to the worklist.
3676 	 */
3677 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3678 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3679 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3680 
3681 	free_jblkdep(jblkdep);
3682 }
3683 
3684 static struct jsegdep *
3685 newjsegdep(struct worklist *wk)
3686 {
3687 	struct jsegdep *jsegdep;
3688 
3689 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3690 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3691 	jsegdep->jd_seg = NULL;
3692 
3693 	return (jsegdep);
3694 }
3695 
3696 static struct jmvref *
3697 newjmvref(dp, ino, oldoff, newoff)
3698 	struct inode *dp;
3699 	ino_t ino;
3700 	off_t oldoff;
3701 	off_t newoff;
3702 {
3703 	struct jmvref *jmvref;
3704 
3705 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3706 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3707 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3708 	jmvref->jm_parent = dp->i_number;
3709 	jmvref->jm_ino = ino;
3710 	jmvref->jm_oldoff = oldoff;
3711 	jmvref->jm_newoff = newoff;
3712 
3713 	return (jmvref);
3714 }
3715 
3716 /*
3717  * Allocate a new jremref that tracks the removal of ip from dp with the
3718  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3719  * DEPCOMPLETE as we have all the information required for the journal write
3720  * and the directory has already been removed from the buffer.  The caller
3721  * is responsible for linking the jremref into the pagedep and adding it
3722  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3723  * a DOTDOT addition so handle_workitem_remove() can properly assign
3724  * the jsegdep when we're done.
3725  */
3726 static struct jremref *
3727 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3728     off_t diroff, nlink_t nlink)
3729 {
3730 	struct jremref *jremref;
3731 
3732 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3733 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3734 	jremref->jr_state = ATTACHED;
3735 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3736 	   nlink, ip->i_mode);
3737 	jremref->jr_dirrem = dirrem;
3738 
3739 	return (jremref);
3740 }
3741 
3742 static inline void
3743 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3744     nlink_t nlink, uint16_t mode)
3745 {
3746 
3747 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3748 	inoref->if_diroff = diroff;
3749 	inoref->if_ino = ino;
3750 	inoref->if_parent = parent;
3751 	inoref->if_nlink = nlink;
3752 	inoref->if_mode = mode;
3753 }
3754 
3755 /*
3756  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3757  * directory offset may not be known until later.  The caller is responsible
3758  * adding the entry to the journal when this information is available.  nlink
3759  * should be the link count prior to the addition and mode is only required
3760  * to have the correct FMT.
3761  */
3762 static struct jaddref *
3763 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3764     uint16_t mode)
3765 {
3766 	struct jaddref *jaddref;
3767 
3768 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3769 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3770 	jaddref->ja_state = ATTACHED;
3771 	jaddref->ja_mkdir = NULL;
3772 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3773 
3774 	return (jaddref);
3775 }
3776 
3777 /*
3778  * Create a new free dependency for a freework.  The caller is responsible
3779  * for adjusting the reference count when it has the lock held.  The freedep
3780  * will track an outstanding bitmap write that will ultimately clear the
3781  * freework to continue.
3782  */
3783 static struct freedep *
3784 newfreedep(struct freework *freework)
3785 {
3786 	struct freedep *freedep;
3787 
3788 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3789 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3790 	freedep->fd_freework = freework;
3791 
3792 	return (freedep);
3793 }
3794 
3795 /*
3796  * Free a freedep structure once the buffer it is linked to is written.  If
3797  * this is the last reference to the freework schedule it for completion.
3798  */
3799 static void
3800 free_freedep(freedep)
3801 	struct freedep *freedep;
3802 {
3803 	struct freework *freework;
3804 
3805 	freework = freedep->fd_freework;
3806 	freework->fw_freeblks->fb_cgwait--;
3807 	if (--freework->fw_ref == 0)
3808 		freework_enqueue(freework);
3809 	WORKITEM_FREE(freedep, D_FREEDEP);
3810 }
3811 
3812 /*
3813  * Allocate a new freework structure that may be a level in an indirect
3814  * when parent is not NULL or a top level block when it is.  The top level
3815  * freework structures are allocated without lk held and before the freeblks
3816  * is visible outside of softdep_setup_freeblocks().
3817  */
3818 static struct freework *
3819 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3820 	struct ufsmount *ump;
3821 	struct freeblks *freeblks;
3822 	struct freework *parent;
3823 	ufs_lbn_t lbn;
3824 	ufs2_daddr_t nb;
3825 	int frags;
3826 	int off;
3827 	int journal;
3828 {
3829 	struct freework *freework;
3830 
3831 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3832 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3833 	freework->fw_state = ATTACHED;
3834 	freework->fw_jnewblk = NULL;
3835 	freework->fw_freeblks = freeblks;
3836 	freework->fw_parent = parent;
3837 	freework->fw_lbn = lbn;
3838 	freework->fw_blkno = nb;
3839 	freework->fw_frags = frags;
3840 	freework->fw_indir = NULL;
3841 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3842 		? 0 : NINDIR(ump->um_fs) + 1;
3843 	freework->fw_start = freework->fw_off = off;
3844 	if (journal)
3845 		newjfreeblk(freeblks, lbn, nb, frags);
3846 	if (parent == NULL) {
3847 		ACQUIRE_LOCK(&lk);
3848 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3849 		freeblks->fb_ref++;
3850 		FREE_LOCK(&lk);
3851 	}
3852 
3853 	return (freework);
3854 }
3855 
3856 /*
3857  * Eliminate a jfreeblk for a block that does not need journaling.
3858  */
3859 static void
3860 cancel_jfreeblk(freeblks, blkno)
3861 	struct freeblks *freeblks;
3862 	ufs2_daddr_t blkno;
3863 {
3864 	struct jfreeblk *jfreeblk;
3865 	struct jblkdep *jblkdep;
3866 
3867 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3868 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3869 			continue;
3870 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3871 		if (jfreeblk->jf_blkno == blkno)
3872 			break;
3873 	}
3874 	if (jblkdep == NULL)
3875 		return;
3876 	free_jsegdep(jblkdep->jb_jsegdep);
3877 	LIST_REMOVE(jblkdep, jb_deps);
3878 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3879 }
3880 
3881 /*
3882  * Allocate a new jfreeblk to journal top level block pointer when truncating
3883  * a file.  The caller must add this to the worklist when lk is held.
3884  */
3885 static struct jfreeblk *
3886 newjfreeblk(freeblks, lbn, blkno, frags)
3887 	struct freeblks *freeblks;
3888 	ufs_lbn_t lbn;
3889 	ufs2_daddr_t blkno;
3890 	int frags;
3891 {
3892 	struct jfreeblk *jfreeblk;
3893 
3894 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3895 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
3896 	    freeblks->fb_list.wk_mp);
3897 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
3898 	jfreeblk->jf_dep.jb_freeblks = freeblks;
3899 	jfreeblk->jf_ino = freeblks->fb_inum;
3900 	jfreeblk->jf_lbn = lbn;
3901 	jfreeblk->jf_blkno = blkno;
3902 	jfreeblk->jf_frags = frags;
3903 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
3904 
3905 	return (jfreeblk);
3906 }
3907 
3908 /*
3909  * Allocate a new jtrunc to track a partial truncation.
3910  */
3911 static struct jtrunc *
3912 newjtrunc(freeblks, size, extsize)
3913 	struct freeblks *freeblks;
3914 	off_t size;
3915 	int extsize;
3916 {
3917 	struct jtrunc *jtrunc;
3918 
3919 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3920 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
3921 	    freeblks->fb_list.wk_mp);
3922 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
3923 	jtrunc->jt_dep.jb_freeblks = freeblks;
3924 	jtrunc->jt_ino = freeblks->fb_inum;
3925 	jtrunc->jt_size = size;
3926 	jtrunc->jt_extsize = extsize;
3927 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
3928 
3929 	return (jtrunc);
3930 }
3931 
3932 /*
3933  * If we're canceling a new bitmap we have to search for another ref
3934  * to move into the bmsafemap dep.  This might be better expressed
3935  * with another structure.
3936  */
3937 static void
3938 move_newblock_dep(jaddref, inodedep)
3939 	struct jaddref *jaddref;
3940 	struct inodedep *inodedep;
3941 {
3942 	struct inoref *inoref;
3943 	struct jaddref *jaddrefn;
3944 
3945 	jaddrefn = NULL;
3946 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3947 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3948 		if ((jaddref->ja_state & NEWBLOCK) &&
3949 		    inoref->if_list.wk_type == D_JADDREF) {
3950 			jaddrefn = (struct jaddref *)inoref;
3951 			break;
3952 		}
3953 	}
3954 	if (jaddrefn == NULL)
3955 		return;
3956 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3957 	jaddrefn->ja_state |= jaddref->ja_state &
3958 	    (ATTACHED | UNDONE | NEWBLOCK);
3959 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3960 	jaddref->ja_state |= ATTACHED;
3961 	LIST_REMOVE(jaddref, ja_bmdeps);
3962 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3963 	    ja_bmdeps);
3964 }
3965 
3966 /*
3967  * Cancel a jaddref either before it has been written or while it is being
3968  * written.  This happens when a link is removed before the add reaches
3969  * the disk.  The jaddref dependency is kept linked into the bmsafemap
3970  * and inode to prevent the link count or bitmap from reaching the disk
3971  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3972  * required.
3973  *
3974  * Returns 1 if the canceled addref requires journaling of the remove and
3975  * 0 otherwise.
3976  */
3977 static int
3978 cancel_jaddref(jaddref, inodedep, wkhd)
3979 	struct jaddref *jaddref;
3980 	struct inodedep *inodedep;
3981 	struct workhead *wkhd;
3982 {
3983 	struct inoref *inoref;
3984 	struct jsegdep *jsegdep;
3985 	int needsj;
3986 
3987 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3988 	    ("cancel_jaddref: Canceling complete jaddref"));
3989 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
3990 		needsj = 1;
3991 	else
3992 		needsj = 0;
3993 	if (inodedep == NULL)
3994 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3995 		    0, &inodedep) == 0)
3996 			panic("cancel_jaddref: Lost inodedep");
3997 	/*
3998 	 * We must adjust the nlink of any reference operation that follows
3999 	 * us so that it is consistent with the in-memory reference.  This
4000 	 * ensures that inode nlink rollbacks always have the correct link.
4001 	 */
4002 	if (needsj == 0) {
4003 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4004 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4005 			if (inoref->if_state & GOINGAWAY)
4006 				break;
4007 			inoref->if_nlink--;
4008 		}
4009 	}
4010 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4011 	if (jaddref->ja_state & NEWBLOCK)
4012 		move_newblock_dep(jaddref, inodedep);
4013 	wake_worklist(&jaddref->ja_list);
4014 	jaddref->ja_mkdir = NULL;
4015 	if (jaddref->ja_state & INPROGRESS) {
4016 		jaddref->ja_state &= ~INPROGRESS;
4017 		WORKLIST_REMOVE(&jaddref->ja_list);
4018 		jwork_insert(wkhd, jsegdep);
4019 	} else {
4020 		free_jsegdep(jsegdep);
4021 		if (jaddref->ja_state & DEPCOMPLETE)
4022 			remove_from_journal(&jaddref->ja_list);
4023 	}
4024 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4025 	/*
4026 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4027 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4028 	 * no longer need this addref attached to the inoreflst and it
4029 	 * will incorrectly adjust nlink if we leave it.
4030 	 */
4031 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4032 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4033 		    if_deps);
4034 		jaddref->ja_state |= COMPLETE;
4035 		free_jaddref(jaddref);
4036 		return (needsj);
4037 	}
4038 	/*
4039 	 * Leave the head of the list for jsegdeps for fast merging.
4040 	 */
4041 	if (LIST_FIRST(wkhd) != NULL) {
4042 		jaddref->ja_state |= ONWORKLIST;
4043 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4044 	} else
4045 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4046 
4047 	return (needsj);
4048 }
4049 
4050 /*
4051  * Attempt to free a jaddref structure when some work completes.  This
4052  * should only succeed once the entry is written and all dependencies have
4053  * been notified.
4054  */
4055 static void
4056 free_jaddref(jaddref)
4057 	struct jaddref *jaddref;
4058 {
4059 
4060 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4061 		return;
4062 	if (jaddref->ja_ref.if_jsegdep)
4063 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4064 		    jaddref, jaddref->ja_state);
4065 	if (jaddref->ja_state & NEWBLOCK)
4066 		LIST_REMOVE(jaddref, ja_bmdeps);
4067 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4068 		panic("free_jaddref: Bad state %p(0x%X)",
4069 		    jaddref, jaddref->ja_state);
4070 	if (jaddref->ja_mkdir != NULL)
4071 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4072 	WORKITEM_FREE(jaddref, D_JADDREF);
4073 }
4074 
4075 /*
4076  * Free a jremref structure once it has been written or discarded.
4077  */
4078 static void
4079 free_jremref(jremref)
4080 	struct jremref *jremref;
4081 {
4082 
4083 	if (jremref->jr_ref.if_jsegdep)
4084 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4085 	if (jremref->jr_state & INPROGRESS)
4086 		panic("free_jremref: IO still pending");
4087 	WORKITEM_FREE(jremref, D_JREMREF);
4088 }
4089 
4090 /*
4091  * Free a jnewblk structure.
4092  */
4093 static void
4094 free_jnewblk(jnewblk)
4095 	struct jnewblk *jnewblk;
4096 {
4097 
4098 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4099 		return;
4100 	LIST_REMOVE(jnewblk, jn_deps);
4101 	if (jnewblk->jn_dep != NULL)
4102 		panic("free_jnewblk: Dependency still attached.");
4103 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4104 }
4105 
4106 /*
4107  * Cancel a jnewblk which has been been made redundant by frag extension.
4108  */
4109 static void
4110 cancel_jnewblk(jnewblk, wkhd)
4111 	struct jnewblk *jnewblk;
4112 	struct workhead *wkhd;
4113 {
4114 	struct jsegdep *jsegdep;
4115 
4116 	jsegdep = jnewblk->jn_jsegdep;
4117 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4118 		panic("cancel_jnewblk: Invalid state");
4119 	jnewblk->jn_jsegdep  = NULL;
4120 	jnewblk->jn_dep = NULL;
4121 	jnewblk->jn_state |= GOINGAWAY;
4122 	if (jnewblk->jn_state & INPROGRESS) {
4123 		jnewblk->jn_state &= ~INPROGRESS;
4124 		WORKLIST_REMOVE(&jnewblk->jn_list);
4125 		jwork_insert(wkhd, jsegdep);
4126 	} else {
4127 		free_jsegdep(jsegdep);
4128 		remove_from_journal(&jnewblk->jn_list);
4129 	}
4130 	wake_worklist(&jnewblk->jn_list);
4131 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4132 }
4133 
4134 static void
4135 free_jblkdep(jblkdep)
4136 	struct jblkdep *jblkdep;
4137 {
4138 
4139 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4140 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4141 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4142 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4143 	else
4144 		panic("free_jblkdep: Unexpected type %s",
4145 		    TYPENAME(jblkdep->jb_list.wk_type));
4146 }
4147 
4148 /*
4149  * Free a single jseg once it is no longer referenced in memory or on
4150  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4151  * to disappear.
4152  */
4153 static void
4154 free_jseg(jseg, jblocks)
4155 	struct jseg *jseg;
4156 	struct jblocks *jblocks;
4157 {
4158 	struct freework *freework;
4159 
4160 	/*
4161 	 * Free freework structures that were lingering to indicate freed
4162 	 * indirect blocks that forced journal write ordering on reallocate.
4163 	 */
4164 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4165 		indirblk_remove(freework);
4166 	if (jblocks->jb_oldestseg == jseg)
4167 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4168 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4169 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4170 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4171 	    ("free_jseg: Freed jseg has valid entries."));
4172 	WORKITEM_FREE(jseg, D_JSEG);
4173 }
4174 
4175 /*
4176  * Free all jsegs that meet the criteria for being reclaimed and update
4177  * oldestseg.
4178  */
4179 static void
4180 free_jsegs(jblocks)
4181 	struct jblocks *jblocks;
4182 {
4183 	struct jseg *jseg;
4184 
4185 	/*
4186 	 * Free only those jsegs which have none allocated before them to
4187 	 * preserve the journal space ordering.
4188 	 */
4189 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4190 		/*
4191 		 * Only reclaim space when nothing depends on this journal
4192 		 * set and another set has written that it is no longer
4193 		 * valid.
4194 		 */
4195 		if (jseg->js_refs != 0) {
4196 			jblocks->jb_oldestseg = jseg;
4197 			return;
4198 		}
4199 		if (!LIST_EMPTY(&jseg->js_indirs) &&
4200 		    jseg->js_seq >= jblocks->jb_oldestwrseq)
4201 			break;
4202 		free_jseg(jseg, jblocks);
4203 	}
4204 	/*
4205 	 * If we exited the loop above we still must discover the
4206 	 * oldest valid segment.
4207 	 */
4208 	if (jseg)
4209 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4210 		     jseg = TAILQ_NEXT(jseg, js_next))
4211 			if (jseg->js_refs != 0)
4212 				break;
4213 	jblocks->jb_oldestseg = jseg;
4214 	/*
4215 	 * The journal has no valid records but some jsegs may still be
4216 	 * waiting on oldestwrseq to advance.  We force a small record
4217 	 * out to permit these lingering records to be reclaimed.
4218 	 */
4219 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4220 		jblocks->jb_needseg = 1;
4221 }
4222 
4223 /*
4224  * Release one reference to a jseg and free it if the count reaches 0.  This
4225  * should eventually reclaim journal space as well.
4226  */
4227 static void
4228 rele_jseg(jseg)
4229 	struct jseg *jseg;
4230 {
4231 
4232 	KASSERT(jseg->js_refs > 0,
4233 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4234 	if (--jseg->js_refs != 0)
4235 		return;
4236 	free_jsegs(jseg->js_jblocks);
4237 }
4238 
4239 /*
4240  * Release a jsegdep and decrement the jseg count.
4241  */
4242 static void
4243 free_jsegdep(jsegdep)
4244 	struct jsegdep *jsegdep;
4245 {
4246 
4247 	if (jsegdep->jd_seg)
4248 		rele_jseg(jsegdep->jd_seg);
4249 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4250 }
4251 
4252 /*
4253  * Wait for a journal item to make it to disk.  Initiate journal processing
4254  * if required.
4255  */
4256 static int
4257 jwait(wk, waitfor)
4258 	struct worklist *wk;
4259 	int waitfor;
4260 {
4261 
4262 	/*
4263 	 * Blocking journal waits cause slow synchronous behavior.  Record
4264 	 * stats on the frequency of these blocking operations.
4265 	 */
4266 	if (waitfor == MNT_WAIT) {
4267 		stat_journal_wait++;
4268 		switch (wk->wk_type) {
4269 		case D_JREMREF:
4270 		case D_JMVREF:
4271 			stat_jwait_filepage++;
4272 			break;
4273 		case D_JTRUNC:
4274 		case D_JFREEBLK:
4275 			stat_jwait_freeblks++;
4276 			break;
4277 		case D_JNEWBLK:
4278 			stat_jwait_newblk++;
4279 			break;
4280 		case D_JADDREF:
4281 			stat_jwait_inode++;
4282 			break;
4283 		default:
4284 			break;
4285 		}
4286 	}
4287 	/*
4288 	 * If IO has not started we process the journal.  We can't mark the
4289 	 * worklist item as IOWAITING because we drop the lock while
4290 	 * processing the journal and the worklist entry may be freed after
4291 	 * this point.  The caller may call back in and re-issue the request.
4292 	 */
4293 	if ((wk->wk_state & INPROGRESS) == 0) {
4294 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4295 		if (waitfor != MNT_WAIT)
4296 			return (EBUSY);
4297 		return (0);
4298 	}
4299 	if (waitfor != MNT_WAIT)
4300 		return (EBUSY);
4301 	wait_worklist(wk, "jwait");
4302 	return (0);
4303 }
4304 
4305 /*
4306  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4307  * appropriate.  This is a convenience function to reduce duplicate code
4308  * for the setup and revert functions below.
4309  */
4310 static struct inodedep *
4311 inodedep_lookup_ip(ip)
4312 	struct inode *ip;
4313 {
4314 	struct inodedep *inodedep;
4315 	int dflags;
4316 
4317 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4318 	    ("inodedep_lookup_ip: bad delta"));
4319 	dflags = DEPALLOC;
4320 	if (IS_SNAPSHOT(ip))
4321 		dflags |= NODELAY;
4322 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4323 	    &inodedep);
4324 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4325 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4326 
4327 	return (inodedep);
4328 }
4329 
4330 /*
4331  * Called prior to creating a new inode and linking it to a directory.  The
4332  * jaddref structure must already be allocated by softdep_setup_inomapdep
4333  * and it is discovered here so we can initialize the mode and update
4334  * nlinkdelta.
4335  */
4336 void
4337 softdep_setup_create(dp, ip)
4338 	struct inode *dp;
4339 	struct inode *ip;
4340 {
4341 	struct inodedep *inodedep;
4342 	struct jaddref *jaddref;
4343 	struct vnode *dvp;
4344 
4345 	KASSERT(ip->i_nlink == 1,
4346 	    ("softdep_setup_create: Invalid link count."));
4347 	dvp = ITOV(dp);
4348 	ACQUIRE_LOCK(&lk);
4349 	inodedep = inodedep_lookup_ip(ip);
4350 	if (DOINGSUJ(dvp)) {
4351 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4352 		    inoreflst);
4353 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4354 		    ("softdep_setup_create: No addref structure present."));
4355 	}
4356 	softdep_prelink(dvp, NULL);
4357 	FREE_LOCK(&lk);
4358 }
4359 
4360 /*
4361  * Create a jaddref structure to track the addition of a DOTDOT link when
4362  * we are reparenting an inode as part of a rename.  This jaddref will be
4363  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4364  * non-journaling softdep.
4365  */
4366 void
4367 softdep_setup_dotdot_link(dp, ip)
4368 	struct inode *dp;
4369 	struct inode *ip;
4370 {
4371 	struct inodedep *inodedep;
4372 	struct jaddref *jaddref;
4373 	struct vnode *dvp;
4374 	struct vnode *vp;
4375 
4376 	dvp = ITOV(dp);
4377 	vp = ITOV(ip);
4378 	jaddref = NULL;
4379 	/*
4380 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4381 	 * is used as a normal link would be.
4382 	 */
4383 	if (DOINGSUJ(dvp))
4384 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4385 		    dp->i_effnlink - 1, dp->i_mode);
4386 	ACQUIRE_LOCK(&lk);
4387 	inodedep = inodedep_lookup_ip(dp);
4388 	if (jaddref)
4389 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4390 		    if_deps);
4391 	softdep_prelink(dvp, ITOV(ip));
4392 	FREE_LOCK(&lk);
4393 }
4394 
4395 /*
4396  * Create a jaddref structure to track a new link to an inode.  The directory
4397  * offset is not known until softdep_setup_directory_add or
4398  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4399  * softdep.
4400  */
4401 void
4402 softdep_setup_link(dp, ip)
4403 	struct inode *dp;
4404 	struct inode *ip;
4405 {
4406 	struct inodedep *inodedep;
4407 	struct jaddref *jaddref;
4408 	struct vnode *dvp;
4409 
4410 	dvp = ITOV(dp);
4411 	jaddref = NULL;
4412 	if (DOINGSUJ(dvp))
4413 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4414 		    ip->i_mode);
4415 	ACQUIRE_LOCK(&lk);
4416 	inodedep = inodedep_lookup_ip(ip);
4417 	if (jaddref)
4418 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4419 		    if_deps);
4420 	softdep_prelink(dvp, ITOV(ip));
4421 	FREE_LOCK(&lk);
4422 }
4423 
4424 /*
4425  * Called to create the jaddref structures to track . and .. references as
4426  * well as lookup and further initialize the incomplete jaddref created
4427  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4428  * nlinkdelta for non-journaling softdep.
4429  */
4430 void
4431 softdep_setup_mkdir(dp, ip)
4432 	struct inode *dp;
4433 	struct inode *ip;
4434 {
4435 	struct inodedep *inodedep;
4436 	struct jaddref *dotdotaddref;
4437 	struct jaddref *dotaddref;
4438 	struct jaddref *jaddref;
4439 	struct vnode *dvp;
4440 
4441 	dvp = ITOV(dp);
4442 	dotaddref = dotdotaddref = NULL;
4443 	if (DOINGSUJ(dvp)) {
4444 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4445 		    ip->i_mode);
4446 		dotaddref->ja_state |= MKDIR_BODY;
4447 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4448 		    dp->i_effnlink - 1, dp->i_mode);
4449 		dotdotaddref->ja_state |= MKDIR_PARENT;
4450 	}
4451 	ACQUIRE_LOCK(&lk);
4452 	inodedep = inodedep_lookup_ip(ip);
4453 	if (DOINGSUJ(dvp)) {
4454 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4455 		    inoreflst);
4456 		KASSERT(jaddref != NULL,
4457 		    ("softdep_setup_mkdir: No addref structure present."));
4458 		KASSERT(jaddref->ja_parent == dp->i_number,
4459 		    ("softdep_setup_mkdir: bad parent %d",
4460 		    jaddref->ja_parent));
4461 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4462 		    if_deps);
4463 	}
4464 	inodedep = inodedep_lookup_ip(dp);
4465 	if (DOINGSUJ(dvp))
4466 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4467 		    &dotdotaddref->ja_ref, if_deps);
4468 	softdep_prelink(ITOV(dp), NULL);
4469 	FREE_LOCK(&lk);
4470 }
4471 
4472 /*
4473  * Called to track nlinkdelta of the inode and parent directories prior to
4474  * unlinking a directory.
4475  */
4476 void
4477 softdep_setup_rmdir(dp, ip)
4478 	struct inode *dp;
4479 	struct inode *ip;
4480 {
4481 	struct vnode *dvp;
4482 
4483 	dvp = ITOV(dp);
4484 	ACQUIRE_LOCK(&lk);
4485 	(void) inodedep_lookup_ip(ip);
4486 	(void) inodedep_lookup_ip(dp);
4487 	softdep_prelink(dvp, ITOV(ip));
4488 	FREE_LOCK(&lk);
4489 }
4490 
4491 /*
4492  * Called to track nlinkdelta of the inode and parent directories prior to
4493  * unlink.
4494  */
4495 void
4496 softdep_setup_unlink(dp, ip)
4497 	struct inode *dp;
4498 	struct inode *ip;
4499 {
4500 	struct vnode *dvp;
4501 
4502 	dvp = ITOV(dp);
4503 	ACQUIRE_LOCK(&lk);
4504 	(void) inodedep_lookup_ip(ip);
4505 	(void) inodedep_lookup_ip(dp);
4506 	softdep_prelink(dvp, ITOV(ip));
4507 	FREE_LOCK(&lk);
4508 }
4509 
4510 /*
4511  * Called to release the journal structures created by a failed non-directory
4512  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4513  */
4514 void
4515 softdep_revert_create(dp, ip)
4516 	struct inode *dp;
4517 	struct inode *ip;
4518 {
4519 	struct inodedep *inodedep;
4520 	struct jaddref *jaddref;
4521 	struct vnode *dvp;
4522 
4523 	dvp = ITOV(dp);
4524 	ACQUIRE_LOCK(&lk);
4525 	inodedep = inodedep_lookup_ip(ip);
4526 	if (DOINGSUJ(dvp)) {
4527 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4528 		    inoreflst);
4529 		KASSERT(jaddref->ja_parent == dp->i_number,
4530 		    ("softdep_revert_create: addref parent mismatch"));
4531 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4532 	}
4533 	FREE_LOCK(&lk);
4534 }
4535 
4536 /*
4537  * Called to release the journal structures created by a failed dotdot link
4538  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4539  */
4540 void
4541 softdep_revert_dotdot_link(dp, ip)
4542 	struct inode *dp;
4543 	struct inode *ip;
4544 {
4545 	struct inodedep *inodedep;
4546 	struct jaddref *jaddref;
4547 	struct vnode *dvp;
4548 
4549 	dvp = ITOV(dp);
4550 	ACQUIRE_LOCK(&lk);
4551 	inodedep = inodedep_lookup_ip(dp);
4552 	if (DOINGSUJ(dvp)) {
4553 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4554 		    inoreflst);
4555 		KASSERT(jaddref->ja_parent == ip->i_number,
4556 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4557 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4558 	}
4559 	FREE_LOCK(&lk);
4560 }
4561 
4562 /*
4563  * Called to release the journal structures created by a failed link
4564  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4565  */
4566 void
4567 softdep_revert_link(dp, ip)
4568 	struct inode *dp;
4569 	struct inode *ip;
4570 {
4571 	struct inodedep *inodedep;
4572 	struct jaddref *jaddref;
4573 	struct vnode *dvp;
4574 
4575 	dvp = ITOV(dp);
4576 	ACQUIRE_LOCK(&lk);
4577 	inodedep = inodedep_lookup_ip(ip);
4578 	if (DOINGSUJ(dvp)) {
4579 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4580 		    inoreflst);
4581 		KASSERT(jaddref->ja_parent == dp->i_number,
4582 		    ("softdep_revert_link: addref parent mismatch"));
4583 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4584 	}
4585 	FREE_LOCK(&lk);
4586 }
4587 
4588 /*
4589  * Called to release the journal structures created by a failed mkdir
4590  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4591  */
4592 void
4593 softdep_revert_mkdir(dp, ip)
4594 	struct inode *dp;
4595 	struct inode *ip;
4596 {
4597 	struct inodedep *inodedep;
4598 	struct jaddref *jaddref;
4599 	struct jaddref *dotaddref;
4600 	struct vnode *dvp;
4601 
4602 	dvp = ITOV(dp);
4603 
4604 	ACQUIRE_LOCK(&lk);
4605 	inodedep = inodedep_lookup_ip(dp);
4606 	if (DOINGSUJ(dvp)) {
4607 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4608 		    inoreflst);
4609 		KASSERT(jaddref->ja_parent == ip->i_number,
4610 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4611 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4612 	}
4613 	inodedep = inodedep_lookup_ip(ip);
4614 	if (DOINGSUJ(dvp)) {
4615 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4616 		    inoreflst);
4617 		KASSERT(jaddref->ja_parent == dp->i_number,
4618 		    ("softdep_revert_mkdir: addref parent mismatch"));
4619 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4620 		    inoreflst, if_deps);
4621 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4622 		KASSERT(dotaddref->ja_parent == ip->i_number,
4623 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4624 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4625 	}
4626 	FREE_LOCK(&lk);
4627 }
4628 
4629 /*
4630  * Called to correct nlinkdelta after a failed rmdir.
4631  */
4632 void
4633 softdep_revert_rmdir(dp, ip)
4634 	struct inode *dp;
4635 	struct inode *ip;
4636 {
4637 
4638 	ACQUIRE_LOCK(&lk);
4639 	(void) inodedep_lookup_ip(ip);
4640 	(void) inodedep_lookup_ip(dp);
4641 	FREE_LOCK(&lk);
4642 }
4643 
4644 /*
4645  * Protecting the freemaps (or bitmaps).
4646  *
4647  * To eliminate the need to execute fsck before mounting a filesystem
4648  * after a power failure, one must (conservatively) guarantee that the
4649  * on-disk copy of the bitmaps never indicate that a live inode or block is
4650  * free.  So, when a block or inode is allocated, the bitmap should be
4651  * updated (on disk) before any new pointers.  When a block or inode is
4652  * freed, the bitmap should not be updated until all pointers have been
4653  * reset.  The latter dependency is handled by the delayed de-allocation
4654  * approach described below for block and inode de-allocation.  The former
4655  * dependency is handled by calling the following procedure when a block or
4656  * inode is allocated. When an inode is allocated an "inodedep" is created
4657  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4658  * Each "inodedep" is also inserted into the hash indexing structure so
4659  * that any additional link additions can be made dependent on the inode
4660  * allocation.
4661  *
4662  * The ufs filesystem maintains a number of free block counts (e.g., per
4663  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4664  * in addition to the bitmaps.  These counts are used to improve efficiency
4665  * during allocation and therefore must be consistent with the bitmaps.
4666  * There is no convenient way to guarantee post-crash consistency of these
4667  * counts with simple update ordering, for two main reasons: (1) The counts
4668  * and bitmaps for a single cylinder group block are not in the same disk
4669  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4670  * be written and the other not.  (2) Some of the counts are located in the
4671  * superblock rather than the cylinder group block. So, we focus our soft
4672  * updates implementation on protecting the bitmaps. When mounting a
4673  * filesystem, we recompute the auxiliary counts from the bitmaps.
4674  */
4675 
4676 /*
4677  * Called just after updating the cylinder group block to allocate an inode.
4678  */
4679 void
4680 softdep_setup_inomapdep(bp, ip, newinum, mode)
4681 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4682 	struct inode *ip;	/* inode related to allocation */
4683 	ino_t newinum;		/* new inode number being allocated */
4684 	int mode;
4685 {
4686 	struct inodedep *inodedep;
4687 	struct bmsafemap *bmsafemap;
4688 	struct jaddref *jaddref;
4689 	struct mount *mp;
4690 	struct fs *fs;
4691 
4692 	mp = UFSTOVFS(ip->i_ump);
4693 	fs = ip->i_ump->um_fs;
4694 	jaddref = NULL;
4695 
4696 	/*
4697 	 * Allocate the journal reference add structure so that the bitmap
4698 	 * can be dependent on it.
4699 	 */
4700 	if (MOUNTEDSUJ(mp)) {
4701 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4702 		jaddref->ja_state |= NEWBLOCK;
4703 	}
4704 
4705 	/*
4706 	 * Create a dependency for the newly allocated inode.
4707 	 * Panic if it already exists as something is seriously wrong.
4708 	 * Otherwise add it to the dependency list for the buffer holding
4709 	 * the cylinder group map from which it was allocated.
4710 	 *
4711 	 * We have to preallocate a bmsafemap entry in case it is needed
4712 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4713 	 * have to finish initializing it before we can FREE_LOCK().
4714 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4715 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4716 	 * creating the inodedep as it can be freed during the time
4717 	 * that we FREE_LOCK() while allocating the inodedep. We must
4718 	 * call workitem_alloc() before entering the locked section as
4719 	 * it also acquires the lock and we must avoid trying doing so
4720 	 * recursively.
4721 	 */
4722 	bmsafemap = malloc(sizeof(struct bmsafemap),
4723 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4724 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4725 	ACQUIRE_LOCK(&lk);
4726 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4727 		panic("softdep_setup_inomapdep: dependency %p for new"
4728 		    "inode already exists", inodedep);
4729 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4730 	if (jaddref) {
4731 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4732 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4733 		    if_deps);
4734 	} else {
4735 		inodedep->id_state |= ONDEPLIST;
4736 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4737 	}
4738 	inodedep->id_bmsafemap = bmsafemap;
4739 	inodedep->id_state &= ~DEPCOMPLETE;
4740 	FREE_LOCK(&lk);
4741 }
4742 
4743 /*
4744  * Called just after updating the cylinder group block to
4745  * allocate block or fragment.
4746  */
4747 void
4748 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4749 	struct buf *bp;		/* buffer for cylgroup block with block map */
4750 	struct mount *mp;	/* filesystem doing allocation */
4751 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4752 	int frags;		/* Number of fragments. */
4753 	int oldfrags;		/* Previous number of fragments for extend. */
4754 {
4755 	struct newblk *newblk;
4756 	struct bmsafemap *bmsafemap;
4757 	struct jnewblk *jnewblk;
4758 	struct fs *fs;
4759 
4760 	fs = VFSTOUFS(mp)->um_fs;
4761 	jnewblk = NULL;
4762 	/*
4763 	 * Create a dependency for the newly allocated block.
4764 	 * Add it to the dependency list for the buffer holding
4765 	 * the cylinder group map from which it was allocated.
4766 	 */
4767 	if (MOUNTEDSUJ(mp)) {
4768 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4769 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4770 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4771 		jnewblk->jn_state = ATTACHED;
4772 		jnewblk->jn_blkno = newblkno;
4773 		jnewblk->jn_frags = frags;
4774 		jnewblk->jn_oldfrags = oldfrags;
4775 #ifdef SUJ_DEBUG
4776 		{
4777 			struct cg *cgp;
4778 			uint8_t *blksfree;
4779 			long bno;
4780 			int i;
4781 
4782 			cgp = (struct cg *)bp->b_data;
4783 			blksfree = cg_blksfree(cgp);
4784 			bno = dtogd(fs, jnewblk->jn_blkno);
4785 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4786 			    i++) {
4787 				if (isset(blksfree, bno + i))
4788 					panic("softdep_setup_blkmapdep: "
4789 					    "free fragment %d from %d-%d "
4790 					    "state 0x%X dep %p", i,
4791 					    jnewblk->jn_oldfrags,
4792 					    jnewblk->jn_frags,
4793 					    jnewblk->jn_state,
4794 					    jnewblk->jn_dep);
4795 			}
4796 		}
4797 #endif
4798 	}
4799 	ACQUIRE_LOCK(&lk);
4800 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4801 		panic("softdep_setup_blkmapdep: found block");
4802 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4803 	    dtog(fs, newblkno), NULL);
4804 	if (jnewblk) {
4805 		jnewblk->jn_dep = (struct worklist *)newblk;
4806 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4807 	} else {
4808 		newblk->nb_state |= ONDEPLIST;
4809 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4810 	}
4811 	newblk->nb_bmsafemap = bmsafemap;
4812 	newblk->nb_jnewblk = jnewblk;
4813 	FREE_LOCK(&lk);
4814 }
4815 
4816 #define	BMSAFEMAP_HASH(fs, cg) \
4817       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4818 
4819 static int
4820 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4821 	struct bmsafemap_hashhead *bmsafemaphd;
4822 	struct mount *mp;
4823 	int cg;
4824 	struct bmsafemap **bmsafemapp;
4825 {
4826 	struct bmsafemap *bmsafemap;
4827 
4828 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4829 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4830 			break;
4831 	if (bmsafemap) {
4832 		*bmsafemapp = bmsafemap;
4833 		return (1);
4834 	}
4835 	*bmsafemapp = NULL;
4836 
4837 	return (0);
4838 }
4839 
4840 /*
4841  * Find the bmsafemap associated with a cylinder group buffer.
4842  * If none exists, create one. The buffer must be locked when
4843  * this routine is called and this routine must be called with
4844  * the softdep lock held. To avoid giving up the lock while
4845  * allocating a new bmsafemap, a preallocated bmsafemap may be
4846  * provided. If it is provided but not needed, it is freed.
4847  */
4848 static struct bmsafemap *
4849 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
4850 	struct mount *mp;
4851 	struct buf *bp;
4852 	int cg;
4853 	struct bmsafemap *newbmsafemap;
4854 {
4855 	struct bmsafemap_hashhead *bmsafemaphd;
4856 	struct bmsafemap *bmsafemap, *collision;
4857 	struct worklist *wk;
4858 	struct fs *fs;
4859 
4860 	mtx_assert(&lk, MA_OWNED);
4861 	if (bp)
4862 		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4863 			if (wk->wk_type == D_BMSAFEMAP) {
4864 				if (newbmsafemap)
4865 					WORKITEM_FREE(newbmsafemap,D_BMSAFEMAP);
4866 				return (WK_BMSAFEMAP(wk));
4867 			}
4868 	fs = VFSTOUFS(mp)->um_fs;
4869 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4870 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) {
4871 		if (newbmsafemap)
4872 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
4873 		return (bmsafemap);
4874 	}
4875 	if (newbmsafemap) {
4876 		bmsafemap = newbmsafemap;
4877 	} else {
4878 		FREE_LOCK(&lk);
4879 		bmsafemap = malloc(sizeof(struct bmsafemap),
4880 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4881 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4882 		ACQUIRE_LOCK(&lk);
4883 	}
4884 	bmsafemap->sm_buf = bp;
4885 	LIST_INIT(&bmsafemap->sm_inodedephd);
4886 	LIST_INIT(&bmsafemap->sm_inodedepwr);
4887 	LIST_INIT(&bmsafemap->sm_newblkhd);
4888 	LIST_INIT(&bmsafemap->sm_newblkwr);
4889 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4890 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4891 	LIST_INIT(&bmsafemap->sm_freehd);
4892 	LIST_INIT(&bmsafemap->sm_freewr);
4893 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4894 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4895 		return (collision);
4896 	}
4897 	bmsafemap->sm_cg = cg;
4898 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4899 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
4900 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4901 	return (bmsafemap);
4902 }
4903 
4904 /*
4905  * Direct block allocation dependencies.
4906  *
4907  * When a new block is allocated, the corresponding disk locations must be
4908  * initialized (with zeros or new data) before the on-disk inode points to
4909  * them.  Also, the freemap from which the block was allocated must be
4910  * updated (on disk) before the inode's pointer. These two dependencies are
4911  * independent of each other and are needed for all file blocks and indirect
4912  * blocks that are pointed to directly by the inode.  Just before the
4913  * "in-core" version of the inode is updated with a newly allocated block
4914  * number, a procedure (below) is called to setup allocation dependency
4915  * structures.  These structures are removed when the corresponding
4916  * dependencies are satisfied or when the block allocation becomes obsolete
4917  * (i.e., the file is deleted, the block is de-allocated, or the block is a
4918  * fragment that gets upgraded).  All of these cases are handled in
4919  * procedures described later.
4920  *
4921  * When a file extension causes a fragment to be upgraded, either to a larger
4922  * fragment or to a full block, the on-disk location may change (if the
4923  * previous fragment could not simply be extended). In this case, the old
4924  * fragment must be de-allocated, but not until after the inode's pointer has
4925  * been updated. In most cases, this is handled by later procedures, which
4926  * will construct a "freefrag" structure to be added to the workitem queue
4927  * when the inode update is complete (or obsolete).  The main exception to
4928  * this is when an allocation occurs while a pending allocation dependency
4929  * (for the same block pointer) remains.  This case is handled in the main
4930  * allocation dependency setup procedure by immediately freeing the
4931  * unreferenced fragments.
4932  */
4933 void
4934 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4935 	struct inode *ip;	/* inode to which block is being added */
4936 	ufs_lbn_t off;		/* block pointer within inode */
4937 	ufs2_daddr_t newblkno;	/* disk block number being added */
4938 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4939 	long newsize;		/* size of new block */
4940 	long oldsize;		/* size of new block */
4941 	struct buf *bp;		/* bp for allocated block */
4942 {
4943 	struct allocdirect *adp, *oldadp;
4944 	struct allocdirectlst *adphead;
4945 	struct freefrag *freefrag;
4946 	struct inodedep *inodedep;
4947 	struct pagedep *pagedep;
4948 	struct jnewblk *jnewblk;
4949 	struct newblk *newblk;
4950 	struct mount *mp;
4951 	ufs_lbn_t lbn;
4952 
4953 	lbn = bp->b_lblkno;
4954 	mp = UFSTOVFS(ip->i_ump);
4955 	if (oldblkno && oldblkno != newblkno)
4956 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4957 	else
4958 		freefrag = NULL;
4959 
4960 	ACQUIRE_LOCK(&lk);
4961 	if (off >= NDADDR) {
4962 		if (lbn > 0)
4963 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4964 			    lbn, off);
4965 		/* allocating an indirect block */
4966 		if (oldblkno != 0)
4967 			panic("softdep_setup_allocdirect: non-zero indir");
4968 	} else {
4969 		if (off != lbn)
4970 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4971 			    lbn, off);
4972 		/*
4973 		 * Allocating a direct block.
4974 		 *
4975 		 * If we are allocating a directory block, then we must
4976 		 * allocate an associated pagedep to track additions and
4977 		 * deletions.
4978 		 */
4979 		if ((ip->i_mode & IFMT) == IFDIR)
4980 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
4981 			    &pagedep);
4982 	}
4983 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4984 		panic("softdep_setup_allocdirect: lost block");
4985 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4986 	    ("softdep_setup_allocdirect: newblk already initialized"));
4987 	/*
4988 	 * Convert the newblk to an allocdirect.
4989 	 */
4990 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4991 	adp = (struct allocdirect *)newblk;
4992 	newblk->nb_freefrag = freefrag;
4993 	adp->ad_offset = off;
4994 	adp->ad_oldblkno = oldblkno;
4995 	adp->ad_newsize = newsize;
4996 	adp->ad_oldsize = oldsize;
4997 
4998 	/*
4999 	 * Finish initializing the journal.
5000 	 */
5001 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5002 		jnewblk->jn_ino = ip->i_number;
5003 		jnewblk->jn_lbn = lbn;
5004 		add_to_journal(&jnewblk->jn_list);
5005 	}
5006 	if (freefrag && freefrag->ff_jdep != NULL &&
5007 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5008 		add_to_journal(freefrag->ff_jdep);
5009 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5010 	adp->ad_inodedep = inodedep;
5011 
5012 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5013 	/*
5014 	 * The list of allocdirects must be kept in sorted and ascending
5015 	 * order so that the rollback routines can quickly determine the
5016 	 * first uncommitted block (the size of the file stored on disk
5017 	 * ends at the end of the lowest committed fragment, or if there
5018 	 * are no fragments, at the end of the highest committed block).
5019 	 * Since files generally grow, the typical case is that the new
5020 	 * block is to be added at the end of the list. We speed this
5021 	 * special case by checking against the last allocdirect in the
5022 	 * list before laboriously traversing the list looking for the
5023 	 * insertion point.
5024 	 */
5025 	adphead = &inodedep->id_newinoupdt;
5026 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5027 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5028 		/* insert at end of list */
5029 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5030 		if (oldadp != NULL && oldadp->ad_offset == off)
5031 			allocdirect_merge(adphead, adp, oldadp);
5032 		FREE_LOCK(&lk);
5033 		return;
5034 	}
5035 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5036 		if (oldadp->ad_offset >= off)
5037 			break;
5038 	}
5039 	if (oldadp == NULL)
5040 		panic("softdep_setup_allocdirect: lost entry");
5041 	/* insert in middle of list */
5042 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5043 	if (oldadp->ad_offset == off)
5044 		allocdirect_merge(adphead, adp, oldadp);
5045 
5046 	FREE_LOCK(&lk);
5047 }
5048 
5049 /*
5050  * Merge a newer and older journal record to be stored either in a
5051  * newblock or freefrag.  This handles aggregating journal records for
5052  * fragment allocation into a second record as well as replacing a
5053  * journal free with an aborted journal allocation.  A segment for the
5054  * oldest record will be placed on wkhd if it has been written.  If not
5055  * the segment for the newer record will suffice.
5056  */
5057 static struct worklist *
5058 jnewblk_merge(new, old, wkhd)
5059 	struct worklist *new;
5060 	struct worklist *old;
5061 	struct workhead *wkhd;
5062 {
5063 	struct jnewblk *njnewblk;
5064 	struct jnewblk *jnewblk;
5065 
5066 	/* Handle NULLs to simplify callers. */
5067 	if (new == NULL)
5068 		return (old);
5069 	if (old == NULL)
5070 		return (new);
5071 	/* Replace a jfreefrag with a jnewblk. */
5072 	if (new->wk_type == D_JFREEFRAG) {
5073 		cancel_jfreefrag(WK_JFREEFRAG(new));
5074 		return (old);
5075 	}
5076 	/*
5077 	 * Handle merging of two jnewblk records that describe
5078 	 * different sets of fragments in the same block.
5079 	 */
5080 	jnewblk = WK_JNEWBLK(old);
5081 	njnewblk = WK_JNEWBLK(new);
5082 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5083 		panic("jnewblk_merge: Merging disparate blocks.");
5084 	/*
5085 	 * The record may be rolled back in the cg.
5086 	 */
5087 	if (jnewblk->jn_state & UNDONE) {
5088 		jnewblk->jn_state &= ~UNDONE;
5089 		njnewblk->jn_state |= UNDONE;
5090 		njnewblk->jn_state &= ~ATTACHED;
5091 	}
5092 	/*
5093 	 * We modify the newer addref and free the older so that if neither
5094 	 * has been written the most up-to-date copy will be on disk.  If
5095 	 * both have been written but rolled back we only temporarily need
5096 	 * one of them to fix the bits when the cg write completes.
5097 	 */
5098 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5099 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5100 	cancel_jnewblk(jnewblk, wkhd);
5101 	WORKLIST_REMOVE(&jnewblk->jn_list);
5102 	free_jnewblk(jnewblk);
5103 	return (new);
5104 }
5105 
5106 /*
5107  * Replace an old allocdirect dependency with a newer one.
5108  * This routine must be called with splbio interrupts blocked.
5109  */
5110 static void
5111 allocdirect_merge(adphead, newadp, oldadp)
5112 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5113 	struct allocdirect *newadp;	/* allocdirect being added */
5114 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5115 {
5116 	struct worklist *wk;
5117 	struct freefrag *freefrag;
5118 
5119 	freefrag = NULL;
5120 	mtx_assert(&lk, MA_OWNED);
5121 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5122 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5123 	    newadp->ad_offset >= NDADDR)
5124 		panic("%s %jd != new %jd || old size %ld != new %ld",
5125 		    "allocdirect_merge: old blkno",
5126 		    (intmax_t)newadp->ad_oldblkno,
5127 		    (intmax_t)oldadp->ad_newblkno,
5128 		    newadp->ad_oldsize, oldadp->ad_newsize);
5129 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5130 	newadp->ad_oldsize = oldadp->ad_oldsize;
5131 	/*
5132 	 * If the old dependency had a fragment to free or had never
5133 	 * previously had a block allocated, then the new dependency
5134 	 * can immediately post its freefrag and adopt the old freefrag.
5135 	 * This action is done by swapping the freefrag dependencies.
5136 	 * The new dependency gains the old one's freefrag, and the
5137 	 * old one gets the new one and then immediately puts it on
5138 	 * the worklist when it is freed by free_newblk. It is
5139 	 * not possible to do this swap when the old dependency had a
5140 	 * non-zero size but no previous fragment to free. This condition
5141 	 * arises when the new block is an extension of the old block.
5142 	 * Here, the first part of the fragment allocated to the new
5143 	 * dependency is part of the block currently claimed on disk by
5144 	 * the old dependency, so cannot legitimately be freed until the
5145 	 * conditions for the new dependency are fulfilled.
5146 	 */
5147 	freefrag = newadp->ad_freefrag;
5148 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5149 		newadp->ad_freefrag = oldadp->ad_freefrag;
5150 		oldadp->ad_freefrag = freefrag;
5151 	}
5152 	/*
5153 	 * If we are tracking a new directory-block allocation,
5154 	 * move it from the old allocdirect to the new allocdirect.
5155 	 */
5156 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5157 		WORKLIST_REMOVE(wk);
5158 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5159 			panic("allocdirect_merge: extra newdirblk");
5160 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5161 	}
5162 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5163 	/*
5164 	 * We need to move any journal dependencies over to the freefrag
5165 	 * that releases this block if it exists.  Otherwise we are
5166 	 * extending an existing block and we'll wait until that is
5167 	 * complete to release the journal space and extend the
5168 	 * new journal to cover this old space as well.
5169 	 */
5170 	if (freefrag == NULL) {
5171 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5172 			panic("allocdirect_merge: %jd != %jd",
5173 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5174 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5175 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5176 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5177 		    &newadp->ad_block.nb_jwork);
5178 		oldadp->ad_block.nb_jnewblk = NULL;
5179 		cancel_newblk(&oldadp->ad_block, NULL,
5180 		    &newadp->ad_block.nb_jwork);
5181 	} else {
5182 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5183 		    &freefrag->ff_list, &freefrag->ff_jwork);
5184 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5185 		    &freefrag->ff_jwork);
5186 	}
5187 	free_newblk(&oldadp->ad_block);
5188 }
5189 
5190 /*
5191  * Allocate a jfreefrag structure to journal a single block free.
5192  */
5193 static struct jfreefrag *
5194 newjfreefrag(freefrag, ip, blkno, size, lbn)
5195 	struct freefrag *freefrag;
5196 	struct inode *ip;
5197 	ufs2_daddr_t blkno;
5198 	long size;
5199 	ufs_lbn_t lbn;
5200 {
5201 	struct jfreefrag *jfreefrag;
5202 	struct fs *fs;
5203 
5204 	fs = ip->i_fs;
5205 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5206 	    M_SOFTDEP_FLAGS);
5207 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5208 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5209 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5210 	jfreefrag->fr_ino = ip->i_number;
5211 	jfreefrag->fr_lbn = lbn;
5212 	jfreefrag->fr_blkno = blkno;
5213 	jfreefrag->fr_frags = numfrags(fs, size);
5214 	jfreefrag->fr_freefrag = freefrag;
5215 
5216 	return (jfreefrag);
5217 }
5218 
5219 /*
5220  * Allocate a new freefrag structure.
5221  */
5222 static struct freefrag *
5223 newfreefrag(ip, blkno, size, lbn)
5224 	struct inode *ip;
5225 	ufs2_daddr_t blkno;
5226 	long size;
5227 	ufs_lbn_t lbn;
5228 {
5229 	struct freefrag *freefrag;
5230 	struct fs *fs;
5231 
5232 	fs = ip->i_fs;
5233 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5234 		panic("newfreefrag: frag size");
5235 	freefrag = malloc(sizeof(struct freefrag),
5236 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5237 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5238 	freefrag->ff_state = ATTACHED;
5239 	LIST_INIT(&freefrag->ff_jwork);
5240 	freefrag->ff_inum = ip->i_number;
5241 	freefrag->ff_vtype = ITOV(ip)->v_type;
5242 	freefrag->ff_blkno = blkno;
5243 	freefrag->ff_fragsize = size;
5244 
5245 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5246 		freefrag->ff_jdep = (struct worklist *)
5247 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5248 	} else {
5249 		freefrag->ff_state |= DEPCOMPLETE;
5250 		freefrag->ff_jdep = NULL;
5251 	}
5252 
5253 	return (freefrag);
5254 }
5255 
5256 /*
5257  * This workitem de-allocates fragments that were replaced during
5258  * file block allocation.
5259  */
5260 static void
5261 handle_workitem_freefrag(freefrag)
5262 	struct freefrag *freefrag;
5263 {
5264 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5265 	struct workhead wkhd;
5266 
5267 	/*
5268 	 * It would be illegal to add new completion items to the
5269 	 * freefrag after it was schedule to be done so it must be
5270 	 * safe to modify the list head here.
5271 	 */
5272 	LIST_INIT(&wkhd);
5273 	ACQUIRE_LOCK(&lk);
5274 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5275 	/*
5276 	 * If the journal has not been written we must cancel it here.
5277 	 */
5278 	if (freefrag->ff_jdep) {
5279 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5280 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5281 			    freefrag->ff_jdep->wk_type);
5282 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5283 	}
5284 	FREE_LOCK(&lk);
5285 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5286 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5287 	ACQUIRE_LOCK(&lk);
5288 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5289 	FREE_LOCK(&lk);
5290 }
5291 
5292 /*
5293  * Set up a dependency structure for an external attributes data block.
5294  * This routine follows much of the structure of softdep_setup_allocdirect.
5295  * See the description of softdep_setup_allocdirect above for details.
5296  */
5297 void
5298 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5299 	struct inode *ip;
5300 	ufs_lbn_t off;
5301 	ufs2_daddr_t newblkno;
5302 	ufs2_daddr_t oldblkno;
5303 	long newsize;
5304 	long oldsize;
5305 	struct buf *bp;
5306 {
5307 	struct allocdirect *adp, *oldadp;
5308 	struct allocdirectlst *adphead;
5309 	struct freefrag *freefrag;
5310 	struct inodedep *inodedep;
5311 	struct jnewblk *jnewblk;
5312 	struct newblk *newblk;
5313 	struct mount *mp;
5314 	ufs_lbn_t lbn;
5315 
5316 	if (off >= NXADDR)
5317 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5318 		    (long long)off);
5319 
5320 	lbn = bp->b_lblkno;
5321 	mp = UFSTOVFS(ip->i_ump);
5322 	if (oldblkno && oldblkno != newblkno)
5323 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5324 	else
5325 		freefrag = NULL;
5326 
5327 	ACQUIRE_LOCK(&lk);
5328 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5329 		panic("softdep_setup_allocext: lost block");
5330 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5331 	    ("softdep_setup_allocext: newblk already initialized"));
5332 	/*
5333 	 * Convert the newblk to an allocdirect.
5334 	 */
5335 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5336 	adp = (struct allocdirect *)newblk;
5337 	newblk->nb_freefrag = freefrag;
5338 	adp->ad_offset = off;
5339 	adp->ad_oldblkno = oldblkno;
5340 	adp->ad_newsize = newsize;
5341 	adp->ad_oldsize = oldsize;
5342 	adp->ad_state |=  EXTDATA;
5343 
5344 	/*
5345 	 * Finish initializing the journal.
5346 	 */
5347 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5348 		jnewblk->jn_ino = ip->i_number;
5349 		jnewblk->jn_lbn = lbn;
5350 		add_to_journal(&jnewblk->jn_list);
5351 	}
5352 	if (freefrag && freefrag->ff_jdep != NULL &&
5353 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5354 		add_to_journal(freefrag->ff_jdep);
5355 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5356 	adp->ad_inodedep = inodedep;
5357 
5358 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5359 	/*
5360 	 * The list of allocdirects must be kept in sorted and ascending
5361 	 * order so that the rollback routines can quickly determine the
5362 	 * first uncommitted block (the size of the file stored on disk
5363 	 * ends at the end of the lowest committed fragment, or if there
5364 	 * are no fragments, at the end of the highest committed block).
5365 	 * Since files generally grow, the typical case is that the new
5366 	 * block is to be added at the end of the list. We speed this
5367 	 * special case by checking against the last allocdirect in the
5368 	 * list before laboriously traversing the list looking for the
5369 	 * insertion point.
5370 	 */
5371 	adphead = &inodedep->id_newextupdt;
5372 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5373 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5374 		/* insert at end of list */
5375 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5376 		if (oldadp != NULL && oldadp->ad_offset == off)
5377 			allocdirect_merge(adphead, adp, oldadp);
5378 		FREE_LOCK(&lk);
5379 		return;
5380 	}
5381 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5382 		if (oldadp->ad_offset >= off)
5383 			break;
5384 	}
5385 	if (oldadp == NULL)
5386 		panic("softdep_setup_allocext: lost entry");
5387 	/* insert in middle of list */
5388 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5389 	if (oldadp->ad_offset == off)
5390 		allocdirect_merge(adphead, adp, oldadp);
5391 	FREE_LOCK(&lk);
5392 }
5393 
5394 /*
5395  * Indirect block allocation dependencies.
5396  *
5397  * The same dependencies that exist for a direct block also exist when
5398  * a new block is allocated and pointed to by an entry in a block of
5399  * indirect pointers. The undo/redo states described above are also
5400  * used here. Because an indirect block contains many pointers that
5401  * may have dependencies, a second copy of the entire in-memory indirect
5402  * block is kept. The buffer cache copy is always completely up-to-date.
5403  * The second copy, which is used only as a source for disk writes,
5404  * contains only the safe pointers (i.e., those that have no remaining
5405  * update dependencies). The second copy is freed when all pointers
5406  * are safe. The cache is not allowed to replace indirect blocks with
5407  * pending update dependencies. If a buffer containing an indirect
5408  * block with dependencies is written, these routines will mark it
5409  * dirty again. It can only be successfully written once all the
5410  * dependencies are removed. The ffs_fsync routine in conjunction with
5411  * softdep_sync_metadata work together to get all the dependencies
5412  * removed so that a file can be successfully written to disk. Three
5413  * procedures are used when setting up indirect block pointer
5414  * dependencies. The division is necessary because of the organization
5415  * of the "balloc" routine and because of the distinction between file
5416  * pages and file metadata blocks.
5417  */
5418 
5419 /*
5420  * Allocate a new allocindir structure.
5421  */
5422 static struct allocindir *
5423 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5424 	struct inode *ip;	/* inode for file being extended */
5425 	int ptrno;		/* offset of pointer in indirect block */
5426 	ufs2_daddr_t newblkno;	/* disk block number being added */
5427 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5428 	ufs_lbn_t lbn;
5429 {
5430 	struct newblk *newblk;
5431 	struct allocindir *aip;
5432 	struct freefrag *freefrag;
5433 	struct jnewblk *jnewblk;
5434 
5435 	if (oldblkno)
5436 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5437 	else
5438 		freefrag = NULL;
5439 	ACQUIRE_LOCK(&lk);
5440 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5441 		panic("new_allocindir: lost block");
5442 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5443 	    ("newallocindir: newblk already initialized"));
5444 	newblk->nb_list.wk_type = D_ALLOCINDIR;
5445 	newblk->nb_freefrag = freefrag;
5446 	aip = (struct allocindir *)newblk;
5447 	aip->ai_offset = ptrno;
5448 	aip->ai_oldblkno = oldblkno;
5449 	aip->ai_lbn = lbn;
5450 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5451 		jnewblk->jn_ino = ip->i_number;
5452 		jnewblk->jn_lbn = lbn;
5453 		add_to_journal(&jnewblk->jn_list);
5454 	}
5455 	if (freefrag && freefrag->ff_jdep != NULL &&
5456 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5457 		add_to_journal(freefrag->ff_jdep);
5458 	return (aip);
5459 }
5460 
5461 /*
5462  * Called just before setting an indirect block pointer
5463  * to a newly allocated file page.
5464  */
5465 void
5466 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5467 	struct inode *ip;	/* inode for file being extended */
5468 	ufs_lbn_t lbn;		/* allocated block number within file */
5469 	struct buf *bp;		/* buffer with indirect blk referencing page */
5470 	int ptrno;		/* offset of pointer in indirect block */
5471 	ufs2_daddr_t newblkno;	/* disk block number being added */
5472 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5473 	struct buf *nbp;	/* buffer holding allocated page */
5474 {
5475 	struct inodedep *inodedep;
5476 	struct freefrag *freefrag;
5477 	struct allocindir *aip;
5478 	struct pagedep *pagedep;
5479 	struct mount *mp;
5480 	int dflags;
5481 
5482 	if (lbn != nbp->b_lblkno)
5483 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5484 		    lbn, bp->b_lblkno);
5485 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5486 	mp = UFSTOVFS(ip->i_ump);
5487 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5488 	dflags = DEPALLOC;
5489 	if (IS_SNAPSHOT(ip))
5490 		dflags |= NODELAY;
5491 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5492 	/*
5493 	 * If we are allocating a directory page, then we must
5494 	 * allocate an associated pagedep to track additions and
5495 	 * deletions.
5496 	 */
5497 	if ((ip->i_mode & IFMT) == IFDIR)
5498 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5499 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5500 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5501 	FREE_LOCK(&lk);
5502 	if (freefrag)
5503 		handle_workitem_freefrag(freefrag);
5504 }
5505 
5506 /*
5507  * Called just before setting an indirect block pointer to a
5508  * newly allocated indirect block.
5509  */
5510 void
5511 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5512 	struct buf *nbp;	/* newly allocated indirect block */
5513 	struct inode *ip;	/* inode for file being extended */
5514 	struct buf *bp;		/* indirect block referencing allocated block */
5515 	int ptrno;		/* offset of pointer in indirect block */
5516 	ufs2_daddr_t newblkno;	/* disk block number being added */
5517 {
5518 	struct inodedep *inodedep;
5519 	struct allocindir *aip;
5520 	ufs_lbn_t lbn;
5521 	int dflags;
5522 
5523 	lbn = nbp->b_lblkno;
5524 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5525 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5526 	dflags = DEPALLOC;
5527 	if (IS_SNAPSHOT(ip))
5528 		dflags |= NODELAY;
5529 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5530 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5531 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5532 		panic("softdep_setup_allocindir_meta: Block already existed");
5533 	FREE_LOCK(&lk);
5534 }
5535 
5536 static void
5537 indirdep_complete(indirdep)
5538 	struct indirdep *indirdep;
5539 {
5540 	struct allocindir *aip;
5541 
5542 	LIST_REMOVE(indirdep, ir_next);
5543 	indirdep->ir_state |= DEPCOMPLETE;
5544 
5545 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5546 		LIST_REMOVE(aip, ai_next);
5547 		free_newblk(&aip->ai_block);
5548 	}
5549 	/*
5550 	 * If this indirdep is not attached to a buf it was simply waiting
5551 	 * on completion to clear completehd.  free_indirdep() asserts
5552 	 * that nothing is dangling.
5553 	 */
5554 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5555 		free_indirdep(indirdep);
5556 }
5557 
5558 static struct indirdep *
5559 indirdep_lookup(mp, ip, bp)
5560 	struct mount *mp;
5561 	struct inode *ip;
5562 	struct buf *bp;
5563 {
5564 	struct indirdep *indirdep, *newindirdep;
5565 	struct newblk *newblk;
5566 	struct worklist *wk;
5567 	struct fs *fs;
5568 	ufs2_daddr_t blkno;
5569 
5570 	mtx_assert(&lk, MA_OWNED);
5571 	indirdep = NULL;
5572 	newindirdep = NULL;
5573 	fs = ip->i_fs;
5574 	for (;;) {
5575 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5576 			if (wk->wk_type != D_INDIRDEP)
5577 				continue;
5578 			indirdep = WK_INDIRDEP(wk);
5579 			break;
5580 		}
5581 		/* Found on the buffer worklist, no new structure to free. */
5582 		if (indirdep != NULL && newindirdep == NULL)
5583 			return (indirdep);
5584 		if (indirdep != NULL && newindirdep != NULL)
5585 			panic("indirdep_lookup: simultaneous create");
5586 		/* None found on the buffer and a new structure is ready. */
5587 		if (indirdep == NULL && newindirdep != NULL)
5588 			break;
5589 		/* None found and no new structure available. */
5590 		FREE_LOCK(&lk);
5591 		newindirdep = malloc(sizeof(struct indirdep),
5592 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5593 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5594 		newindirdep->ir_state = ATTACHED;
5595 		if (ip->i_ump->um_fstype == UFS1)
5596 			newindirdep->ir_state |= UFS1FMT;
5597 		TAILQ_INIT(&newindirdep->ir_trunc);
5598 		newindirdep->ir_saveddata = NULL;
5599 		LIST_INIT(&newindirdep->ir_deplisthd);
5600 		LIST_INIT(&newindirdep->ir_donehd);
5601 		LIST_INIT(&newindirdep->ir_writehd);
5602 		LIST_INIT(&newindirdep->ir_completehd);
5603 		if (bp->b_blkno == bp->b_lblkno) {
5604 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5605 			    NULL, NULL);
5606 			bp->b_blkno = blkno;
5607 		}
5608 		newindirdep->ir_freeblks = NULL;
5609 		newindirdep->ir_savebp =
5610 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5611 		newindirdep->ir_bp = bp;
5612 		BUF_KERNPROC(newindirdep->ir_savebp);
5613 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5614 		ACQUIRE_LOCK(&lk);
5615 	}
5616 	indirdep = newindirdep;
5617 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5618 	/*
5619 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5620 	 * that we don't free dependencies until the pointers are valid.
5621 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5622 	 * than using the hash.
5623 	 */
5624 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5625 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5626 	else
5627 		indirdep->ir_state |= DEPCOMPLETE;
5628 	return (indirdep);
5629 }
5630 
5631 /*
5632  * Called to finish the allocation of the "aip" allocated
5633  * by one of the two routines above.
5634  */
5635 static struct freefrag *
5636 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5637 	struct buf *bp;		/* in-memory copy of the indirect block */
5638 	struct inode *ip;	/* inode for file being extended */
5639 	struct inodedep *inodedep; /* Inodedep for ip */
5640 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5641 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5642 {
5643 	struct fs *fs;
5644 	struct indirdep *indirdep;
5645 	struct allocindir *oldaip;
5646 	struct freefrag *freefrag;
5647 	struct mount *mp;
5648 
5649 	mtx_assert(&lk, MA_OWNED);
5650 	mp = UFSTOVFS(ip->i_ump);
5651 	fs = ip->i_fs;
5652 	if (bp->b_lblkno >= 0)
5653 		panic("setup_allocindir_phase2: not indir blk");
5654 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5655 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5656 	indirdep = indirdep_lookup(mp, ip, bp);
5657 	KASSERT(indirdep->ir_savebp != NULL,
5658 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5659 	aip->ai_indirdep = indirdep;
5660 	/*
5661 	 * Check for an unwritten dependency for this indirect offset.  If
5662 	 * there is, merge the old dependency into the new one.  This happens
5663 	 * as a result of reallocblk only.
5664 	 */
5665 	freefrag = NULL;
5666 	if (aip->ai_oldblkno != 0) {
5667 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5668 			if (oldaip->ai_offset == aip->ai_offset) {
5669 				freefrag = allocindir_merge(aip, oldaip);
5670 				goto done;
5671 			}
5672 		}
5673 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5674 			if (oldaip->ai_offset == aip->ai_offset) {
5675 				freefrag = allocindir_merge(aip, oldaip);
5676 				goto done;
5677 			}
5678 		}
5679 	}
5680 done:
5681 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5682 	return (freefrag);
5683 }
5684 
5685 /*
5686  * Merge two allocindirs which refer to the same block.  Move newblock
5687  * dependencies and setup the freefrags appropriately.
5688  */
5689 static struct freefrag *
5690 allocindir_merge(aip, oldaip)
5691 	struct allocindir *aip;
5692 	struct allocindir *oldaip;
5693 {
5694 	struct freefrag *freefrag;
5695 	struct worklist *wk;
5696 
5697 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5698 		panic("allocindir_merge: blkno");
5699 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5700 	freefrag = aip->ai_freefrag;
5701 	aip->ai_freefrag = oldaip->ai_freefrag;
5702 	oldaip->ai_freefrag = NULL;
5703 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5704 	/*
5705 	 * If we are tracking a new directory-block allocation,
5706 	 * move it from the old allocindir to the new allocindir.
5707 	 */
5708 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5709 		WORKLIST_REMOVE(wk);
5710 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5711 			panic("allocindir_merge: extra newdirblk");
5712 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5713 	}
5714 	/*
5715 	 * We can skip journaling for this freefrag and just complete
5716 	 * any pending journal work for the allocindir that is being
5717 	 * removed after the freefrag completes.
5718 	 */
5719 	if (freefrag->ff_jdep)
5720 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5721 	LIST_REMOVE(oldaip, ai_next);
5722 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5723 	    &freefrag->ff_list, &freefrag->ff_jwork);
5724 	free_newblk(&oldaip->ai_block);
5725 
5726 	return (freefrag);
5727 }
5728 
5729 static inline void
5730 setup_freedirect(freeblks, ip, i, needj)
5731 	struct freeblks *freeblks;
5732 	struct inode *ip;
5733 	int i;
5734 	int needj;
5735 {
5736 	ufs2_daddr_t blkno;
5737 	int frags;
5738 
5739 	blkno = DIP(ip, i_db[i]);
5740 	if (blkno == 0)
5741 		return;
5742 	DIP_SET(ip, i_db[i], 0);
5743 	frags = sblksize(ip->i_fs, ip->i_size, i);
5744 	frags = numfrags(ip->i_fs, frags);
5745 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5746 }
5747 
5748 static inline void
5749 setup_freeext(freeblks, ip, i, needj)
5750 	struct freeblks *freeblks;
5751 	struct inode *ip;
5752 	int i;
5753 	int needj;
5754 {
5755 	ufs2_daddr_t blkno;
5756 	int frags;
5757 
5758 	blkno = ip->i_din2->di_extb[i];
5759 	if (blkno == 0)
5760 		return;
5761 	ip->i_din2->di_extb[i] = 0;
5762 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5763 	frags = numfrags(ip->i_fs, frags);
5764 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5765 }
5766 
5767 static inline void
5768 setup_freeindir(freeblks, ip, i, lbn, needj)
5769 	struct freeblks *freeblks;
5770 	struct inode *ip;
5771 	int i;
5772 	ufs_lbn_t lbn;
5773 	int needj;
5774 {
5775 	ufs2_daddr_t blkno;
5776 
5777 	blkno = DIP(ip, i_ib[i]);
5778 	if (blkno == 0)
5779 		return;
5780 	DIP_SET(ip, i_ib[i], 0);
5781 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5782 	    0, needj);
5783 }
5784 
5785 static inline struct freeblks *
5786 newfreeblks(mp, ip)
5787 	struct mount *mp;
5788 	struct inode *ip;
5789 {
5790 	struct freeblks *freeblks;
5791 
5792 	freeblks = malloc(sizeof(struct freeblks),
5793 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5794 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5795 	LIST_INIT(&freeblks->fb_jblkdephd);
5796 	LIST_INIT(&freeblks->fb_jwork);
5797 	freeblks->fb_ref = 0;
5798 	freeblks->fb_cgwait = 0;
5799 	freeblks->fb_state = ATTACHED;
5800 	freeblks->fb_uid = ip->i_uid;
5801 	freeblks->fb_inum = ip->i_number;
5802 	freeblks->fb_vtype = ITOV(ip)->v_type;
5803 	freeblks->fb_modrev = DIP(ip, i_modrev);
5804 	freeblks->fb_devvp = ip->i_devvp;
5805 	freeblks->fb_chkcnt = 0;
5806 	freeblks->fb_len = 0;
5807 
5808 	return (freeblks);
5809 }
5810 
5811 static void
5812 trunc_indirdep(indirdep, freeblks, bp, off)
5813 	struct indirdep *indirdep;
5814 	struct freeblks *freeblks;
5815 	struct buf *bp;
5816 	int off;
5817 {
5818 	struct allocindir *aip, *aipn;
5819 
5820 	/*
5821 	 * The first set of allocindirs won't be in savedbp.
5822 	 */
5823 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5824 		if (aip->ai_offset > off)
5825 			cancel_allocindir(aip, bp, freeblks, 1);
5826 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5827 		if (aip->ai_offset > off)
5828 			cancel_allocindir(aip, bp, freeblks, 1);
5829 	/*
5830 	 * These will exist in savedbp.
5831 	 */
5832 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5833 		if (aip->ai_offset > off)
5834 			cancel_allocindir(aip, NULL, freeblks, 0);
5835 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5836 		if (aip->ai_offset > off)
5837 			cancel_allocindir(aip, NULL, freeblks, 0);
5838 }
5839 
5840 /*
5841  * Follow the chain of indirects down to lastlbn creating a freework
5842  * structure for each.  This will be used to start indir_trunc() at
5843  * the right offset and create the journal records for the parrtial
5844  * truncation.  A second step will handle the truncated dependencies.
5845  */
5846 static int
5847 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
5848 	struct freeblks *freeblks;
5849 	struct inode *ip;
5850 	ufs_lbn_t lbn;
5851 	ufs_lbn_t lastlbn;
5852 	ufs2_daddr_t blkno;
5853 {
5854 	struct indirdep *indirdep;
5855 	struct indirdep *indirn;
5856 	struct freework *freework;
5857 	struct newblk *newblk;
5858 	struct mount *mp;
5859 	struct buf *bp;
5860 	uint8_t *start;
5861 	uint8_t *end;
5862 	ufs_lbn_t lbnadd;
5863 	int level;
5864 	int error;
5865 	int off;
5866 
5867 
5868 	freework = NULL;
5869 	if (blkno == 0)
5870 		return (0);
5871 	mp = freeblks->fb_list.wk_mp;
5872 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
5873 	if ((bp->b_flags & B_CACHE) == 0) {
5874 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
5875 		bp->b_iocmd = BIO_READ;
5876 		bp->b_flags &= ~B_INVAL;
5877 		bp->b_ioflags &= ~BIO_ERROR;
5878 		vfs_busy_pages(bp, 0);
5879 		bp->b_iooffset = dbtob(bp->b_blkno);
5880 		bstrategy(bp);
5881 		curthread->td_ru.ru_inblock++;
5882 		error = bufwait(bp);
5883 		if (error) {
5884 			brelse(bp);
5885 			return (error);
5886 		}
5887 	}
5888 	level = lbn_level(lbn);
5889 	lbnadd = lbn_offset(ip->i_fs, level);
5890 	/*
5891 	 * Compute the offset of the last block we want to keep.  Store
5892 	 * in the freework the first block we want to completely free.
5893 	 */
5894 	off = (lastlbn - -(lbn + level)) / lbnadd;
5895 	if (off + 1 == NINDIR(ip->i_fs))
5896 		goto nowork;
5897 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
5898 	    0);
5899 	/*
5900 	 * Link the freework into the indirdep.  This will prevent any new
5901 	 * allocations from proceeding until we are finished with the
5902 	 * truncate and the block is written.
5903 	 */
5904 	ACQUIRE_LOCK(&lk);
5905 	indirdep = indirdep_lookup(mp, ip, bp);
5906 	if (indirdep->ir_freeblks)
5907 		panic("setup_trunc_indir: indirdep already truncated.");
5908 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
5909 	freework->fw_indir = indirdep;
5910 	/*
5911 	 * Cancel any allocindirs that will not make it to disk.
5912 	 * We have to do this for all copies of the indirdep that
5913 	 * live on this newblk.
5914 	 */
5915 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
5916 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
5917 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
5918 			trunc_indirdep(indirn, freeblks, bp, off);
5919 	} else
5920 		trunc_indirdep(indirdep, freeblks, bp, off);
5921 	FREE_LOCK(&lk);
5922 	/*
5923 	 * Creation is protected by the buf lock. The saveddata is only
5924 	 * needed if a full truncation follows a partial truncation but it
5925 	 * is difficult to allocate in that case so we fetch it anyway.
5926 	 */
5927 	if (indirdep->ir_saveddata == NULL)
5928 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
5929 		    M_SOFTDEP_FLAGS);
5930 nowork:
5931 	/* Fetch the blkno of the child and the zero start offset. */
5932 	if (ip->i_ump->um_fstype == UFS1) {
5933 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
5934 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
5935 	} else {
5936 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
5937 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
5938 	}
5939 	if (freework) {
5940 		/* Zero the truncated pointers. */
5941 		end = bp->b_data + bp->b_bcount;
5942 		bzero(start, end - start);
5943 		bdwrite(bp);
5944 	} else
5945 		bqrelse(bp);
5946 	if (level == 0)
5947 		return (0);
5948 	lbn++; /* adjust level */
5949 	lbn -= (off * lbnadd);
5950 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
5951 }
5952 
5953 /*
5954  * Complete the partial truncation of an indirect block setup by
5955  * setup_trunc_indir().  This zeros the truncated pointers in the saved
5956  * copy and writes them to disk before the freeblks is allowed to complete.
5957  */
5958 static void
5959 complete_trunc_indir(freework)
5960 	struct freework *freework;
5961 {
5962 	struct freework *fwn;
5963 	struct indirdep *indirdep;
5964 	struct buf *bp;
5965 	uintptr_t start;
5966 	int count;
5967 
5968 	indirdep = freework->fw_indir;
5969 	for (;;) {
5970 		bp = indirdep->ir_bp;
5971 		/* See if the block was discarded. */
5972 		if (bp == NULL)
5973 			break;
5974 		/* Inline part of getdirtybuf().  We dont want bremfree. */
5975 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
5976 			break;
5977 		if (BUF_LOCK(bp,
5978 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
5979 			BUF_UNLOCK(bp);
5980 		ACQUIRE_LOCK(&lk);
5981 	}
5982 	mtx_assert(&lk, MA_OWNED);
5983 	freework->fw_state |= DEPCOMPLETE;
5984 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
5985 	/*
5986 	 * Zero the pointers in the saved copy.
5987 	 */
5988 	if (indirdep->ir_state & UFS1FMT)
5989 		start = sizeof(ufs1_daddr_t);
5990 	else
5991 		start = sizeof(ufs2_daddr_t);
5992 	start *= freework->fw_start;
5993 	count = indirdep->ir_savebp->b_bcount - start;
5994 	start += (uintptr_t)indirdep->ir_savebp->b_data;
5995 	bzero((char *)start, count);
5996 	/*
5997 	 * We need to start the next truncation in the list if it has not
5998 	 * been started yet.
5999 	 */
6000 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6001 	if (fwn != NULL) {
6002 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6003 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6004 		if ((fwn->fw_state & ONWORKLIST) == 0)
6005 			freework_enqueue(fwn);
6006 	}
6007 	/*
6008 	 * If bp is NULL the block was fully truncated, restore
6009 	 * the saved block list otherwise free it if it is no
6010 	 * longer needed.
6011 	 */
6012 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6013 		if (bp == NULL)
6014 			bcopy(indirdep->ir_saveddata,
6015 			    indirdep->ir_savebp->b_data,
6016 			    indirdep->ir_savebp->b_bcount);
6017 		free(indirdep->ir_saveddata, M_INDIRDEP);
6018 		indirdep->ir_saveddata = NULL;
6019 	}
6020 	/*
6021 	 * When bp is NULL there is a full truncation pending.  We
6022 	 * must wait for this full truncation to be journaled before
6023 	 * we can release this freework because the disk pointers will
6024 	 * never be written as zero.
6025 	 */
6026 	if (bp == NULL)  {
6027 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6028 			handle_written_freework(freework);
6029 		else
6030 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6031 			   &freework->fw_list);
6032 	} else {
6033 		/* Complete when the real copy is written. */
6034 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6035 		BUF_UNLOCK(bp);
6036 	}
6037 }
6038 
6039 /*
6040  * Calculate the number of blocks we are going to release where datablocks
6041  * is the current total and length is the new file size.
6042  */
6043 ufs2_daddr_t
6044 blkcount(fs, datablocks, length)
6045 	struct fs *fs;
6046 	ufs2_daddr_t datablocks;
6047 	off_t length;
6048 {
6049 	off_t totblks, numblks;
6050 
6051 	totblks = 0;
6052 	numblks = howmany(length, fs->fs_bsize);
6053 	if (numblks <= NDADDR) {
6054 		totblks = howmany(length, fs->fs_fsize);
6055 		goto out;
6056 	}
6057         totblks = blkstofrags(fs, numblks);
6058 	numblks -= NDADDR;
6059 	/*
6060 	 * Count all single, then double, then triple indirects required.
6061 	 * Subtracting one indirects worth of blocks for each pass
6062 	 * acknowledges one of each pointed to by the inode.
6063 	 */
6064 	for (;;) {
6065 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6066 		numblks -= NINDIR(fs);
6067 		if (numblks <= 0)
6068 			break;
6069 		numblks = howmany(numblks, NINDIR(fs));
6070 	}
6071 out:
6072 	totblks = fsbtodb(fs, totblks);
6073 	/*
6074 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6075 	 * references.  We will correct it later in handle_complete_freeblks()
6076 	 * when we know the real count.
6077 	 */
6078 	if (totblks > datablocks)
6079 		return (0);
6080 	return (datablocks - totblks);
6081 }
6082 
6083 /*
6084  * Handle freeblocks for journaled softupdate filesystems.
6085  *
6086  * Contrary to normal softupdates, we must preserve the block pointers in
6087  * indirects until their subordinates are free.  This is to avoid journaling
6088  * every block that is freed which may consume more space than the journal
6089  * itself.  The recovery program will see the free block journals at the
6090  * base of the truncated area and traverse them to reclaim space.  The
6091  * pointers in the inode may be cleared immediately after the journal
6092  * records are written because each direct and indirect pointer in the
6093  * inode is recorded in a journal.  This permits full truncation to proceed
6094  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6095  *
6096  * The algorithm is as follows:
6097  * 1) Traverse the in-memory state and create journal entries to release
6098  *    the relevant blocks and full indirect trees.
6099  * 2) Traverse the indirect block chain adding partial truncation freework
6100  *    records to indirects in the path to lastlbn.  The freework will
6101  *    prevent new allocation dependencies from being satisfied in this
6102  *    indirect until the truncation completes.
6103  * 3) Read and lock the inode block, performing an update with the new size
6104  *    and pointers.  This prevents truncated data from becoming valid on
6105  *    disk through step 4.
6106  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6107  *    eliminate journal work for those records that do not require it.
6108  * 5) Schedule the journal records to be written followed by the inode block.
6109  * 6) Allocate any necessary frags for the end of file.
6110  * 7) Zero any partially truncated blocks.
6111  *
6112  * From this truncation proceeds asynchronously using the freework and
6113  * indir_trunc machinery.  The file will not be extended again into a
6114  * partially truncated indirect block until all work is completed but
6115  * the normal dependency mechanism ensures that it is rolled back/forward
6116  * as appropriate.  Further truncation may occur without delay and is
6117  * serialized in indir_trunc().
6118  */
6119 void
6120 softdep_journal_freeblocks(ip, cred, length, flags)
6121 	struct inode *ip;	/* The inode whose length is to be reduced */
6122 	struct ucred *cred;
6123 	off_t length;		/* The new length for the file */
6124 	int flags;		/* IO_EXT and/or IO_NORMAL */
6125 {
6126 	struct freeblks *freeblks, *fbn;
6127 	struct inodedep *inodedep;
6128 	struct jblkdep *jblkdep;
6129 	struct allocdirect *adp, *adpn;
6130 	struct fs *fs;
6131 	struct buf *bp;
6132 	struct vnode *vp;
6133 	struct mount *mp;
6134 	ufs2_daddr_t extblocks, datablocks;
6135 	ufs_lbn_t tmpval, lbn, lastlbn;
6136 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6137 
6138 	fs = ip->i_fs;
6139 	mp = UFSTOVFS(ip->i_ump);
6140 	vp = ITOV(ip);
6141 	needj = 1;
6142 	iboff = -1;
6143 	allocblock = 0;
6144 	extblocks = 0;
6145 	datablocks = 0;
6146 	frags = 0;
6147 	freeblks = newfreeblks(mp, ip);
6148 	ACQUIRE_LOCK(&lk);
6149 	/*
6150 	 * If we're truncating a removed file that will never be written
6151 	 * we don't need to journal the block frees.  The canceled journals
6152 	 * for the allocations will suffice.
6153 	 */
6154 	dflags = DEPALLOC;
6155 	if (IS_SNAPSHOT(ip))
6156 		dflags |= NODELAY;
6157 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6158 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6159 	    length == 0)
6160 		needj = 0;
6161 	FREE_LOCK(&lk);
6162 	/*
6163 	 * Calculate the lbn that we are truncating to.  This results in -1
6164 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6165 	 * to keep, not the first lbn we want to truncate.
6166 	 */
6167 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6168 	lastoff = blkoff(fs, length);
6169 	/*
6170 	 * Compute frags we are keeping in lastlbn.  0 means all.
6171 	 */
6172 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6173 		frags = fragroundup(fs, lastoff);
6174 		/* adp offset of last valid allocdirect. */
6175 		iboff = lastlbn;
6176 	} else if (lastlbn > 0)
6177 		iboff = NDADDR;
6178 	if (fs->fs_magic == FS_UFS2_MAGIC)
6179 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6180 	/*
6181 	 * Handle normal data blocks and indirects.  This section saves
6182 	 * values used after the inode update to complete frag and indirect
6183 	 * truncation.
6184 	 */
6185 	if ((flags & IO_NORMAL) != 0) {
6186 		/*
6187 		 * Handle truncation of whole direct and indirect blocks.
6188 		 */
6189 		for (i = iboff + 1; i < NDADDR; i++)
6190 			setup_freedirect(freeblks, ip, i, needj);
6191 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6192 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6193 			/* Release a whole indirect tree. */
6194 			if (lbn > lastlbn) {
6195 				setup_freeindir(freeblks, ip, i, -lbn -i,
6196 				    needj);
6197 				continue;
6198 			}
6199 			iboff = i + NDADDR;
6200 			/*
6201 			 * Traverse partially truncated indirect tree.
6202 			 */
6203 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6204 				setup_trunc_indir(freeblks, ip, -lbn - i,
6205 				    lastlbn, DIP(ip, i_ib[i]));
6206 		}
6207 		/*
6208 		 * Handle partial truncation to a frag boundary.
6209 		 */
6210 		if (frags) {
6211 			ufs2_daddr_t blkno;
6212 			long oldfrags;
6213 
6214 			oldfrags = blksize(fs, ip, lastlbn);
6215 			blkno = DIP(ip, i_db[lastlbn]);
6216 			if (blkno && oldfrags != frags) {
6217 				oldfrags -= frags;
6218 				oldfrags = numfrags(ip->i_fs, oldfrags);
6219 				blkno += numfrags(ip->i_fs, frags);
6220 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6221 				    blkno, oldfrags, 0, needj);
6222 			} else if (blkno == 0)
6223 				allocblock = 1;
6224 		}
6225 		/*
6226 		 * Add a journal record for partial truncate if we are
6227 		 * handling indirect blocks.  Non-indirects need no extra
6228 		 * journaling.
6229 		 */
6230 		if (length != 0 && lastlbn >= NDADDR) {
6231 			ip->i_flag |= IN_TRUNCATED;
6232 			newjtrunc(freeblks, length, 0);
6233 		}
6234 		ip->i_size = length;
6235 		DIP_SET(ip, i_size, ip->i_size);
6236 		datablocks = DIP(ip, i_blocks) - extblocks;
6237 		if (length != 0)
6238 			datablocks = blkcount(ip->i_fs, datablocks, length);
6239 		freeblks->fb_len = length;
6240 	}
6241 	if ((flags & IO_EXT) != 0) {
6242 		for (i = 0; i < NXADDR; i++)
6243 			setup_freeext(freeblks, ip, i, needj);
6244 		ip->i_din2->di_extsize = 0;
6245 		datablocks += extblocks;
6246 	}
6247 #ifdef QUOTA
6248 	/* Reference the quotas in case the block count is wrong in the end. */
6249 	quotaref(vp, freeblks->fb_quota);
6250 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6251 #endif
6252 	freeblks->fb_chkcnt = -datablocks;
6253 	UFS_LOCK(ip->i_ump);
6254 	fs->fs_pendingblocks += datablocks;
6255 	UFS_UNLOCK(ip->i_ump);
6256 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6257 	/*
6258 	 * Handle truncation of incomplete alloc direct dependencies.  We
6259 	 * hold the inode block locked to prevent incomplete dependencies
6260 	 * from reaching the disk while we are eliminating those that
6261 	 * have been truncated.  This is a partially inlined ffs_update().
6262 	 */
6263 	ufs_itimes(vp);
6264 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6265 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6266 	    (int)fs->fs_bsize, cred, &bp);
6267 	if (error) {
6268 		brelse(bp);
6269 		softdep_error("softdep_journal_freeblocks", error);
6270 		return;
6271 	}
6272 	if (bp->b_bufsize == fs->fs_bsize)
6273 		bp->b_flags |= B_CLUSTEROK;
6274 	softdep_update_inodeblock(ip, bp, 0);
6275 	if (ip->i_ump->um_fstype == UFS1)
6276 		*((struct ufs1_dinode *)bp->b_data +
6277 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6278 	else
6279 		*((struct ufs2_dinode *)bp->b_data +
6280 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6281 	ACQUIRE_LOCK(&lk);
6282 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6283 	if ((inodedep->id_state & IOSTARTED) != 0)
6284 		panic("softdep_setup_freeblocks: inode busy");
6285 	/*
6286 	 * Add the freeblks structure to the list of operations that
6287 	 * must await the zero'ed inode being written to disk. If we
6288 	 * still have a bitmap dependency (needj), then the inode
6289 	 * has never been written to disk, so we can process the
6290 	 * freeblks below once we have deleted the dependencies.
6291 	 */
6292 	if (needj)
6293 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6294 	else
6295 		freeblks->fb_state |= COMPLETE;
6296 	if ((flags & IO_NORMAL) != 0) {
6297 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6298 			if (adp->ad_offset > iboff)
6299 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6300 				    freeblks);
6301 			/*
6302 			 * Truncate the allocdirect.  We could eliminate
6303 			 * or modify journal records as well.
6304 			 */
6305 			else if (adp->ad_offset == iboff && frags)
6306 				adp->ad_newsize = frags;
6307 		}
6308 	}
6309 	if ((flags & IO_EXT) != 0)
6310 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6311 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6312 			    freeblks);
6313 	/*
6314 	 * Add journal work.
6315 	 */
6316 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6317 		add_to_journal(&jblkdep->jb_list);
6318 	FREE_LOCK(&lk);
6319 	bdwrite(bp);
6320 	/*
6321 	 * Truncate dependency structures beyond length.
6322 	 */
6323 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6324 	/*
6325 	 * This is only set when we need to allocate a fragment because
6326 	 * none existed at the end of a frag-sized file.  It handles only
6327 	 * allocating a new, zero filled block.
6328 	 */
6329 	if (allocblock) {
6330 		ip->i_size = length - lastoff;
6331 		DIP_SET(ip, i_size, ip->i_size);
6332 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6333 		if (error != 0) {
6334 			softdep_error("softdep_journal_freeblks", error);
6335 			return;
6336 		}
6337 		ip->i_size = length;
6338 		DIP_SET(ip, i_size, length);
6339 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6340 		allocbuf(bp, frags);
6341 		ffs_update(vp, 0);
6342 		bawrite(bp);
6343 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6344 		int size;
6345 
6346 		/*
6347 		 * Zero the end of a truncated frag or block.
6348 		 */
6349 		size = sblksize(fs, length, lastlbn);
6350 		error = bread(vp, lastlbn, size, cred, &bp);
6351 		if (error) {
6352 			softdep_error("softdep_journal_freeblks", error);
6353 			return;
6354 		}
6355 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6356 		bawrite(bp);
6357 
6358 	}
6359 	ACQUIRE_LOCK(&lk);
6360 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6361 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6362 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6363 	/*
6364 	 * We zero earlier truncations so they don't erroneously
6365 	 * update i_blocks.
6366 	 */
6367 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6368 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6369 			fbn->fb_len = 0;
6370 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6371 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6372 		freeblks->fb_state |= INPROGRESS;
6373 	else
6374 		freeblks = NULL;
6375 	FREE_LOCK(&lk);
6376 	if (freeblks)
6377 		handle_workitem_freeblocks(freeblks, 0);
6378 	trunc_pages(ip, length, extblocks, flags);
6379 
6380 }
6381 
6382 /*
6383  * Flush a JOP_SYNC to the journal.
6384  */
6385 void
6386 softdep_journal_fsync(ip)
6387 	struct inode *ip;
6388 {
6389 	struct jfsync *jfsync;
6390 
6391 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6392 		return;
6393 	ip->i_flag &= ~IN_TRUNCATED;
6394 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6395 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6396 	jfsync->jfs_size = ip->i_size;
6397 	jfsync->jfs_ino = ip->i_number;
6398 	ACQUIRE_LOCK(&lk);
6399 	add_to_journal(&jfsync->jfs_list);
6400 	jwait(&jfsync->jfs_list, MNT_WAIT);
6401 	FREE_LOCK(&lk);
6402 }
6403 
6404 /*
6405  * Block de-allocation dependencies.
6406  *
6407  * When blocks are de-allocated, the on-disk pointers must be nullified before
6408  * the blocks are made available for use by other files.  (The true
6409  * requirement is that old pointers must be nullified before new on-disk
6410  * pointers are set.  We chose this slightly more stringent requirement to
6411  * reduce complexity.) Our implementation handles this dependency by updating
6412  * the inode (or indirect block) appropriately but delaying the actual block
6413  * de-allocation (i.e., freemap and free space count manipulation) until
6414  * after the updated versions reach stable storage.  After the disk is
6415  * updated, the blocks can be safely de-allocated whenever it is convenient.
6416  * This implementation handles only the common case of reducing a file's
6417  * length to zero. Other cases are handled by the conventional synchronous
6418  * write approach.
6419  *
6420  * The ffs implementation with which we worked double-checks
6421  * the state of the block pointers and file size as it reduces
6422  * a file's length.  Some of this code is replicated here in our
6423  * soft updates implementation.  The freeblks->fb_chkcnt field is
6424  * used to transfer a part of this information to the procedure
6425  * that eventually de-allocates the blocks.
6426  *
6427  * This routine should be called from the routine that shortens
6428  * a file's length, before the inode's size or block pointers
6429  * are modified. It will save the block pointer information for
6430  * later release and zero the inode so that the calling routine
6431  * can release it.
6432  */
6433 void
6434 softdep_setup_freeblocks(ip, length, flags)
6435 	struct inode *ip;	/* The inode whose length is to be reduced */
6436 	off_t length;		/* The new length for the file */
6437 	int flags;		/* IO_EXT and/or IO_NORMAL */
6438 {
6439 	struct ufs1_dinode *dp1;
6440 	struct ufs2_dinode *dp2;
6441 	struct freeblks *freeblks;
6442 	struct inodedep *inodedep;
6443 	struct allocdirect *adp;
6444 	struct buf *bp;
6445 	struct fs *fs;
6446 	ufs2_daddr_t extblocks, datablocks;
6447 	struct mount *mp;
6448 	int i, delay, error, dflags;
6449 	ufs_lbn_t tmpval;
6450 	ufs_lbn_t lbn;
6451 
6452 	fs = ip->i_fs;
6453 	mp = UFSTOVFS(ip->i_ump);
6454 	if (length != 0)
6455 		panic("softdep_setup_freeblocks: non-zero length");
6456 	freeblks = newfreeblks(mp, ip);
6457 	extblocks = 0;
6458 	datablocks = 0;
6459 	if (fs->fs_magic == FS_UFS2_MAGIC)
6460 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6461 	if ((flags & IO_NORMAL) != 0) {
6462 		for (i = 0; i < NDADDR; i++)
6463 			setup_freedirect(freeblks, ip, i, 0);
6464 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6465 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6466 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6467 		ip->i_size = 0;
6468 		DIP_SET(ip, i_size, 0);
6469 		datablocks = DIP(ip, i_blocks) - extblocks;
6470 	}
6471 	if ((flags & IO_EXT) != 0) {
6472 		for (i = 0; i < NXADDR; i++)
6473 			setup_freeext(freeblks, ip, i, 0);
6474 		ip->i_din2->di_extsize = 0;
6475 		datablocks += extblocks;
6476 	}
6477 #ifdef QUOTA
6478 	/* Reference the quotas in case the block count is wrong in the end. */
6479 	quotaref(ITOV(ip), freeblks->fb_quota);
6480 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6481 #endif
6482 	freeblks->fb_chkcnt = -datablocks;
6483 	UFS_LOCK(ip->i_ump);
6484 	fs->fs_pendingblocks += datablocks;
6485 	UFS_UNLOCK(ip->i_ump);
6486 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6487 	/*
6488 	 * Push the zero'ed inode to to its disk buffer so that we are free
6489 	 * to delete its dependencies below. Once the dependencies are gone
6490 	 * the buffer can be safely released.
6491 	 */
6492 	if ((error = bread(ip->i_devvp,
6493 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6494 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6495 		brelse(bp);
6496 		softdep_error("softdep_setup_freeblocks", error);
6497 	}
6498 	if (ip->i_ump->um_fstype == UFS1) {
6499 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6500 		    ino_to_fsbo(fs, ip->i_number));
6501 		ip->i_din1->di_freelink = dp1->di_freelink;
6502 		*dp1 = *ip->i_din1;
6503 	} else {
6504 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6505 		    ino_to_fsbo(fs, ip->i_number));
6506 		ip->i_din2->di_freelink = dp2->di_freelink;
6507 		*dp2 = *ip->i_din2;
6508 	}
6509 	/*
6510 	 * Find and eliminate any inode dependencies.
6511 	 */
6512 	ACQUIRE_LOCK(&lk);
6513 	dflags = DEPALLOC;
6514 	if (IS_SNAPSHOT(ip))
6515 		dflags |= NODELAY;
6516 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6517 	if ((inodedep->id_state & IOSTARTED) != 0)
6518 		panic("softdep_setup_freeblocks: inode busy");
6519 	/*
6520 	 * Add the freeblks structure to the list of operations that
6521 	 * must await the zero'ed inode being written to disk. If we
6522 	 * still have a bitmap dependency (delay == 0), then the inode
6523 	 * has never been written to disk, so we can process the
6524 	 * freeblks below once we have deleted the dependencies.
6525 	 */
6526 	delay = (inodedep->id_state & DEPCOMPLETE);
6527 	if (delay)
6528 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6529 	else
6530 		freeblks->fb_state |= COMPLETE;
6531 	/*
6532 	 * Because the file length has been truncated to zero, any
6533 	 * pending block allocation dependency structures associated
6534 	 * with this inode are obsolete and can simply be de-allocated.
6535 	 * We must first merge the two dependency lists to get rid of
6536 	 * any duplicate freefrag structures, then purge the merged list.
6537 	 * If we still have a bitmap dependency, then the inode has never
6538 	 * been written to disk, so we can free any fragments without delay.
6539 	 */
6540 	if (flags & IO_NORMAL) {
6541 		merge_inode_lists(&inodedep->id_newinoupdt,
6542 		    &inodedep->id_inoupdt);
6543 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6544 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6545 			    freeblks);
6546 	}
6547 	if (flags & IO_EXT) {
6548 		merge_inode_lists(&inodedep->id_newextupdt,
6549 		    &inodedep->id_extupdt);
6550 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6551 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6552 			    freeblks);
6553 	}
6554 	FREE_LOCK(&lk);
6555 	bdwrite(bp);
6556 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6557 	ACQUIRE_LOCK(&lk);
6558 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6559 		(void) free_inodedep(inodedep);
6560 	freeblks->fb_state |= DEPCOMPLETE;
6561 	/*
6562 	 * If the inode with zeroed block pointers is now on disk
6563 	 * we can start freeing blocks.
6564 	 */
6565 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6566 		freeblks->fb_state |= INPROGRESS;
6567 	else
6568 		freeblks = NULL;
6569 	FREE_LOCK(&lk);
6570 	if (freeblks)
6571 		handle_workitem_freeblocks(freeblks, 0);
6572 	trunc_pages(ip, length, extblocks, flags);
6573 }
6574 
6575 /*
6576  * Eliminate pages from the page cache that back parts of this inode and
6577  * adjust the vnode pager's idea of our size.  This prevents stale data
6578  * from hanging around in the page cache.
6579  */
6580 static void
6581 trunc_pages(ip, length, extblocks, flags)
6582 	struct inode *ip;
6583 	off_t length;
6584 	ufs2_daddr_t extblocks;
6585 	int flags;
6586 {
6587 	struct vnode *vp;
6588 	struct fs *fs;
6589 	ufs_lbn_t lbn;
6590 	off_t end, extend;
6591 
6592 	vp = ITOV(ip);
6593 	fs = ip->i_fs;
6594 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6595 	if ((flags & IO_EXT) != 0)
6596 		vn_pages_remove(vp, extend, 0);
6597 	if ((flags & IO_NORMAL) == 0)
6598 		return;
6599 	BO_LOCK(&vp->v_bufobj);
6600 	drain_output(vp);
6601 	BO_UNLOCK(&vp->v_bufobj);
6602 	/*
6603 	 * The vnode pager eliminates file pages we eliminate indirects
6604 	 * below.
6605 	 */
6606 	vnode_pager_setsize(vp, length);
6607 	/*
6608 	 * Calculate the end based on the last indirect we want to keep.  If
6609 	 * the block extends into indirects we can just use the negative of
6610 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6611 	 * be careful not to remove those, if they exist.  double and triple
6612 	 * indirect lbns do not overlap with others so it is not important
6613 	 * to verify how many levels are required.
6614 	 */
6615 	lbn = lblkno(fs, length);
6616 	if (lbn >= NDADDR) {
6617 		/* Calculate the virtual lbn of the triple indirect. */
6618 		lbn = -lbn - (NIADDR - 1);
6619 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6620 	} else
6621 		end = extend;
6622 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6623 }
6624 
6625 /*
6626  * See if the buf bp is in the range eliminated by truncation.
6627  */
6628 static int
6629 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6630 	struct buf *bp;
6631 	int *blkoffp;
6632 	ufs_lbn_t lastlbn;
6633 	int lastoff;
6634 	int flags;
6635 {
6636 	ufs_lbn_t lbn;
6637 
6638 	*blkoffp = 0;
6639 	/* Only match ext/normal blocks as appropriate. */
6640 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6641 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6642 		return (0);
6643 	/* ALTDATA is always a full truncation. */
6644 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6645 		return (1);
6646 	/* -1 is full truncation. */
6647 	if (lastlbn == -1)
6648 		return (1);
6649 	/*
6650 	 * If this is a partial truncate we only want those
6651 	 * blocks and indirect blocks that cover the range
6652 	 * we're after.
6653 	 */
6654 	lbn = bp->b_lblkno;
6655 	if (lbn < 0)
6656 		lbn = -(lbn + lbn_level(lbn));
6657 	if (lbn < lastlbn)
6658 		return (0);
6659 	/* Here we only truncate lblkno if it's partial. */
6660 	if (lbn == lastlbn) {
6661 		if (lastoff == 0)
6662 			return (0);
6663 		*blkoffp = lastoff;
6664 	}
6665 	return (1);
6666 }
6667 
6668 /*
6669  * Eliminate any dependencies that exist in memory beyond lblkno:off
6670  */
6671 static void
6672 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6673 	struct inode *ip;
6674 	struct freeblks *freeblks;
6675 	ufs_lbn_t lastlbn;
6676 	int lastoff;
6677 	int flags;
6678 {
6679 	struct bufobj *bo;
6680 	struct vnode *vp;
6681 	struct buf *bp;
6682 	struct fs *fs;
6683 	int blkoff;
6684 
6685 	/*
6686 	 * We must wait for any I/O in progress to finish so that
6687 	 * all potential buffers on the dirty list will be visible.
6688 	 * Once they are all there, walk the list and get rid of
6689 	 * any dependencies.
6690 	 */
6691 	fs = ip->i_fs;
6692 	vp = ITOV(ip);
6693 	bo = &vp->v_bufobj;
6694 	BO_LOCK(bo);
6695 	drain_output(vp);
6696 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6697 		bp->b_vflags &= ~BV_SCANNED;
6698 restart:
6699 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6700 		if (bp->b_vflags & BV_SCANNED)
6701 			continue;
6702 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6703 			bp->b_vflags |= BV_SCANNED;
6704 			continue;
6705 		}
6706 		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
6707 			goto restart;
6708 		BO_UNLOCK(bo);
6709 		if (deallocate_dependencies(bp, freeblks, blkoff))
6710 			bqrelse(bp);
6711 		else
6712 			brelse(bp);
6713 		BO_LOCK(bo);
6714 		goto restart;
6715 	}
6716 	/*
6717 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6718 	 */
6719 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6720 		bp->b_vflags &= ~BV_SCANNED;
6721 cleanrestart:
6722 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6723 		if (bp->b_vflags & BV_SCANNED)
6724 			continue;
6725 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6726 			bp->b_vflags |= BV_SCANNED;
6727 			continue;
6728 		}
6729 		if (BUF_LOCK(bp,
6730 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6731 		    BO_MTX(bo)) == ENOLCK) {
6732 			BO_LOCK(bo);
6733 			goto cleanrestart;
6734 		}
6735 		bp->b_vflags |= BV_SCANNED;
6736 		BO_LOCK(bo);
6737 		bremfree(bp);
6738 		BO_UNLOCK(bo);
6739 		if (blkoff != 0) {
6740 			allocbuf(bp, blkoff);
6741 			bqrelse(bp);
6742 		} else {
6743 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6744 			brelse(bp);
6745 		}
6746 		BO_LOCK(bo);
6747 		goto cleanrestart;
6748 	}
6749 	drain_output(vp);
6750 	BO_UNLOCK(bo);
6751 }
6752 
6753 static int
6754 cancel_pagedep(pagedep, freeblks, blkoff)
6755 	struct pagedep *pagedep;
6756 	struct freeblks *freeblks;
6757 	int blkoff;
6758 {
6759 	struct jremref *jremref;
6760 	struct jmvref *jmvref;
6761 	struct dirrem *dirrem, *tmp;
6762 	int i;
6763 
6764 	/*
6765 	 * Copy any directory remove dependencies to the list
6766 	 * to be processed after the freeblks proceeds.  If
6767 	 * directory entry never made it to disk they
6768 	 * can be dumped directly onto the work list.
6769 	 */
6770 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6771 		/* Skip this directory removal if it is intended to remain. */
6772 		if (dirrem->dm_offset < blkoff)
6773 			continue;
6774 		/*
6775 		 * If there are any dirrems we wait for the journal write
6776 		 * to complete and then restart the buf scan as the lock
6777 		 * has been dropped.
6778 		 */
6779 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6780 			jwait(&jremref->jr_list, MNT_WAIT);
6781 			return (ERESTART);
6782 		}
6783 		LIST_REMOVE(dirrem, dm_next);
6784 		dirrem->dm_dirinum = pagedep->pd_ino;
6785 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6786 	}
6787 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6788 		jwait(&jmvref->jm_list, MNT_WAIT);
6789 		return (ERESTART);
6790 	}
6791 	/*
6792 	 * When we're partially truncating a pagedep we just want to flush
6793 	 * journal entries and return.  There can not be any adds in the
6794 	 * truncated portion of the directory and newblk must remain if
6795 	 * part of the block remains.
6796 	 */
6797 	if (blkoff != 0) {
6798 		struct diradd *dap;
6799 
6800 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6801 			if (dap->da_offset > blkoff)
6802 				panic("cancel_pagedep: diradd %p off %d > %d",
6803 				    dap, dap->da_offset, blkoff);
6804 		for (i = 0; i < DAHASHSZ; i++)
6805 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6806 				if (dap->da_offset > blkoff)
6807 					panic("cancel_pagedep: diradd %p off %d > %d",
6808 					    dap, dap->da_offset, blkoff);
6809 		return (0);
6810 	}
6811 	/*
6812 	 * There should be no directory add dependencies present
6813 	 * as the directory could not be truncated until all
6814 	 * children were removed.
6815 	 */
6816 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6817 	    ("deallocate_dependencies: pendinghd != NULL"));
6818 	for (i = 0; i < DAHASHSZ; i++)
6819 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6820 		    ("deallocate_dependencies: diraddhd != NULL"));
6821 	if ((pagedep->pd_state & NEWBLOCK) != 0)
6822 		free_newdirblk(pagedep->pd_newdirblk);
6823 	if (free_pagedep(pagedep) == 0)
6824 		panic("Failed to free pagedep %p", pagedep);
6825 	return (0);
6826 }
6827 
6828 /*
6829  * Reclaim any dependency structures from a buffer that is about to
6830  * be reallocated to a new vnode. The buffer must be locked, thus,
6831  * no I/O completion operations can occur while we are manipulating
6832  * its associated dependencies. The mutex is held so that other I/O's
6833  * associated with related dependencies do not occur.
6834  */
6835 static int
6836 deallocate_dependencies(bp, freeblks, off)
6837 	struct buf *bp;
6838 	struct freeblks *freeblks;
6839 	int off;
6840 {
6841 	struct indirdep *indirdep;
6842 	struct pagedep *pagedep;
6843 	struct allocdirect *adp;
6844 	struct worklist *wk, *wkn;
6845 
6846 	ACQUIRE_LOCK(&lk);
6847 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
6848 		switch (wk->wk_type) {
6849 		case D_INDIRDEP:
6850 			indirdep = WK_INDIRDEP(wk);
6851 			if (bp->b_lblkno >= 0 ||
6852 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
6853 				panic("deallocate_dependencies: not indir");
6854 			cancel_indirdep(indirdep, bp, freeblks);
6855 			continue;
6856 
6857 		case D_PAGEDEP:
6858 			pagedep = WK_PAGEDEP(wk);
6859 			if (cancel_pagedep(pagedep, freeblks, off)) {
6860 				FREE_LOCK(&lk);
6861 				return (ERESTART);
6862 			}
6863 			continue;
6864 
6865 		case D_ALLOCINDIR:
6866 			/*
6867 			 * Simply remove the allocindir, we'll find it via
6868 			 * the indirdep where we can clear pointers if
6869 			 * needed.
6870 			 */
6871 			WORKLIST_REMOVE(wk);
6872 			continue;
6873 
6874 		case D_FREEWORK:
6875 			/*
6876 			 * A truncation is waiting for the zero'd pointers
6877 			 * to be written.  It can be freed when the freeblks
6878 			 * is journaled.
6879 			 */
6880 			WORKLIST_REMOVE(wk);
6881 			wk->wk_state |= ONDEPLIST;
6882 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6883 			break;
6884 
6885 		case D_ALLOCDIRECT:
6886 			adp = WK_ALLOCDIRECT(wk);
6887 			if (off != 0)
6888 				continue;
6889 			/* FALLTHROUGH */
6890 		default:
6891 			panic("deallocate_dependencies: Unexpected type %s",
6892 			    TYPENAME(wk->wk_type));
6893 			/* NOTREACHED */
6894 		}
6895 	}
6896 	FREE_LOCK(&lk);
6897 	/*
6898 	 * Don't throw away this buf, we were partially truncating and
6899 	 * some deps may always remain.
6900 	 */
6901 	if (off) {
6902 		allocbuf(bp, off);
6903 		bp->b_vflags |= BV_SCANNED;
6904 		return (EBUSY);
6905 	}
6906 	bp->b_flags |= B_INVAL | B_NOCACHE;
6907 
6908 	return (0);
6909 }
6910 
6911 /*
6912  * An allocdirect is being canceled due to a truncate.  We must make sure
6913  * the journal entry is released in concert with the blkfree that releases
6914  * the storage.  Completed journal entries must not be released until the
6915  * space is no longer pointed to by the inode or in the bitmap.
6916  */
6917 static void
6918 cancel_allocdirect(adphead, adp, freeblks)
6919 	struct allocdirectlst *adphead;
6920 	struct allocdirect *adp;
6921 	struct freeblks *freeblks;
6922 {
6923 	struct freework *freework;
6924 	struct newblk *newblk;
6925 	struct worklist *wk;
6926 
6927 	TAILQ_REMOVE(adphead, adp, ad_next);
6928 	newblk = (struct newblk *)adp;
6929 	freework = NULL;
6930 	/*
6931 	 * Find the correct freework structure.
6932 	 */
6933 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
6934 		if (wk->wk_type != D_FREEWORK)
6935 			continue;
6936 		freework = WK_FREEWORK(wk);
6937 		if (freework->fw_blkno == newblk->nb_newblkno)
6938 			break;
6939 	}
6940 	if (freework == NULL)
6941 		panic("cancel_allocdirect: Freework not found");
6942 	/*
6943 	 * If a newblk exists at all we still have the journal entry that
6944 	 * initiated the allocation so we do not need to journal the free.
6945 	 */
6946 	cancel_jfreeblk(freeblks, freework->fw_blkno);
6947 	/*
6948 	 * If the journal hasn't been written the jnewblk must be passed
6949 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
6950 	 * this by linking the journal dependency into the freework to be
6951 	 * freed when freework_freeblock() is called.  If the journal has
6952 	 * been written we can simply reclaim the journal space when the
6953 	 * freeblks work is complete.
6954 	 */
6955 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
6956 	    &freeblks->fb_jwork);
6957 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
6958 }
6959 
6960 
6961 /*
6962  * Cancel a new block allocation.  May be an indirect or direct block.  We
6963  * remove it from various lists and return any journal record that needs to
6964  * be resolved by the caller.
6965  *
6966  * A special consideration is made for indirects which were never pointed
6967  * at on disk and will never be found once this block is released.
6968  */
6969 static struct jnewblk *
6970 cancel_newblk(newblk, wk, wkhd)
6971 	struct newblk *newblk;
6972 	struct worklist *wk;
6973 	struct workhead *wkhd;
6974 {
6975 	struct jnewblk *jnewblk;
6976 
6977 	newblk->nb_state |= GOINGAWAY;
6978 	/*
6979 	 * Previously we traversed the completedhd on each indirdep
6980 	 * attached to this newblk to cancel them and gather journal
6981 	 * work.  Since we need only the oldest journal segment and
6982 	 * the lowest point on the tree will always have the oldest
6983 	 * journal segment we are free to release the segments
6984 	 * of any subordinates and may leave the indirdep list to
6985 	 * indirdep_complete() when this newblk is freed.
6986 	 */
6987 	if (newblk->nb_state & ONDEPLIST) {
6988 		newblk->nb_state &= ~ONDEPLIST;
6989 		LIST_REMOVE(newblk, nb_deps);
6990 	}
6991 	if (newblk->nb_state & ONWORKLIST)
6992 		WORKLIST_REMOVE(&newblk->nb_list);
6993 	/*
6994 	 * If the journal entry hasn't been written we save a pointer to
6995 	 * the dependency that frees it until it is written or the
6996 	 * superseding operation completes.
6997 	 */
6998 	jnewblk = newblk->nb_jnewblk;
6999 	if (jnewblk != NULL && wk != NULL) {
7000 		newblk->nb_jnewblk = NULL;
7001 		jnewblk->jn_dep = wk;
7002 	}
7003 	if (!LIST_EMPTY(&newblk->nb_jwork))
7004 		jwork_move(wkhd, &newblk->nb_jwork);
7005 	/*
7006 	 * When truncating we must free the newdirblk early to remove
7007 	 * the pagedep from the hash before returning.
7008 	 */
7009 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7010 		free_newdirblk(WK_NEWDIRBLK(wk));
7011 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7012 		panic("cancel_newblk: extra newdirblk");
7013 
7014 	return (jnewblk);
7015 }
7016 
7017 /*
7018  * Schedule the freefrag associated with a newblk to be released once
7019  * the pointers are written and the previous block is no longer needed.
7020  */
7021 static void
7022 newblk_freefrag(newblk)
7023 	struct newblk *newblk;
7024 {
7025 	struct freefrag *freefrag;
7026 
7027 	if (newblk->nb_freefrag == NULL)
7028 		return;
7029 	freefrag = newblk->nb_freefrag;
7030 	newblk->nb_freefrag = NULL;
7031 	freefrag->ff_state |= COMPLETE;
7032 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7033 		add_to_worklist(&freefrag->ff_list, 0);
7034 }
7035 
7036 /*
7037  * Free a newblk. Generate a new freefrag work request if appropriate.
7038  * This must be called after the inode pointer and any direct block pointers
7039  * are valid or fully removed via truncate or frag extension.
7040  */
7041 static void
7042 free_newblk(newblk)
7043 	struct newblk *newblk;
7044 {
7045 	struct indirdep *indirdep;
7046 	struct worklist *wk;
7047 
7048 	KASSERT(newblk->nb_jnewblk == NULL,
7049 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
7050 	mtx_assert(&lk, MA_OWNED);
7051 	newblk_freefrag(newblk);
7052 	if (newblk->nb_state & ONDEPLIST)
7053 		LIST_REMOVE(newblk, nb_deps);
7054 	if (newblk->nb_state & ONWORKLIST)
7055 		WORKLIST_REMOVE(&newblk->nb_list);
7056 	LIST_REMOVE(newblk, nb_hash);
7057 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7058 		free_newdirblk(WK_NEWDIRBLK(wk));
7059 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7060 		panic("free_newblk: extra newdirblk");
7061 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7062 		indirdep_complete(indirdep);
7063 	handle_jwork(&newblk->nb_jwork);
7064 	newblk->nb_list.wk_type = D_NEWBLK;
7065 	WORKITEM_FREE(newblk, D_NEWBLK);
7066 }
7067 
7068 /*
7069  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7070  * This routine must be called with splbio interrupts blocked.
7071  */
7072 static void
7073 free_newdirblk(newdirblk)
7074 	struct newdirblk *newdirblk;
7075 {
7076 	struct pagedep *pagedep;
7077 	struct diradd *dap;
7078 	struct worklist *wk;
7079 
7080 	mtx_assert(&lk, MA_OWNED);
7081 	WORKLIST_REMOVE(&newdirblk->db_list);
7082 	/*
7083 	 * If the pagedep is still linked onto the directory buffer
7084 	 * dependency chain, then some of the entries on the
7085 	 * pd_pendinghd list may not be committed to disk yet. In
7086 	 * this case, we will simply clear the NEWBLOCK flag and
7087 	 * let the pd_pendinghd list be processed when the pagedep
7088 	 * is next written. If the pagedep is no longer on the buffer
7089 	 * dependency chain, then all the entries on the pd_pending
7090 	 * list are committed to disk and we can free them here.
7091 	 */
7092 	pagedep = newdirblk->db_pagedep;
7093 	pagedep->pd_state &= ~NEWBLOCK;
7094 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7095 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7096 			free_diradd(dap, NULL);
7097 		/*
7098 		 * If no dependencies remain, the pagedep will be freed.
7099 		 */
7100 		free_pagedep(pagedep);
7101 	}
7102 	/* Should only ever be one item in the list. */
7103 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7104 		WORKLIST_REMOVE(wk);
7105 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7106 	}
7107 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7108 }
7109 
7110 /*
7111  * Prepare an inode to be freed. The actual free operation is not
7112  * done until the zero'ed inode has been written to disk.
7113  */
7114 void
7115 softdep_freefile(pvp, ino, mode)
7116 	struct vnode *pvp;
7117 	ino_t ino;
7118 	int mode;
7119 {
7120 	struct inode *ip = VTOI(pvp);
7121 	struct inodedep *inodedep;
7122 	struct freefile *freefile;
7123 	struct freeblks *freeblks;
7124 
7125 	/*
7126 	 * This sets up the inode de-allocation dependency.
7127 	 */
7128 	freefile = malloc(sizeof(struct freefile),
7129 		M_FREEFILE, M_SOFTDEP_FLAGS);
7130 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7131 	freefile->fx_mode = mode;
7132 	freefile->fx_oldinum = ino;
7133 	freefile->fx_devvp = ip->i_devvp;
7134 	LIST_INIT(&freefile->fx_jwork);
7135 	UFS_LOCK(ip->i_ump);
7136 	ip->i_fs->fs_pendinginodes += 1;
7137 	UFS_UNLOCK(ip->i_ump);
7138 
7139 	/*
7140 	 * If the inodedep does not exist, then the zero'ed inode has
7141 	 * been written to disk. If the allocated inode has never been
7142 	 * written to disk, then the on-disk inode is zero'ed. In either
7143 	 * case we can free the file immediately.  If the journal was
7144 	 * canceled before being written the inode will never make it to
7145 	 * disk and we must send the canceled journal entrys to
7146 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7147 	 * Any blocks waiting on the inode to write can be safely freed
7148 	 * here as it will never been written.
7149 	 */
7150 	ACQUIRE_LOCK(&lk);
7151 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7152 	if (inodedep) {
7153 		/*
7154 		 * Clear out freeblks that no longer need to reference
7155 		 * this inode.
7156 		 */
7157 		while ((freeblks =
7158 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7159 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7160 			    fb_next);
7161 			freeblks->fb_state &= ~ONDEPLIST;
7162 		}
7163 		/*
7164 		 * Remove this inode from the unlinked list.
7165 		 */
7166 		if (inodedep->id_state & UNLINKED) {
7167 			/*
7168 			 * Save the journal work to be freed with the bitmap
7169 			 * before we clear UNLINKED.  Otherwise it can be lost
7170 			 * if the inode block is written.
7171 			 */
7172 			handle_bufwait(inodedep, &freefile->fx_jwork);
7173 			clear_unlinked_inodedep(inodedep);
7174 			/* Re-acquire inodedep as we've dropped lk. */
7175 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7176 		}
7177 	}
7178 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7179 		FREE_LOCK(&lk);
7180 		handle_workitem_freefile(freefile);
7181 		return;
7182 	}
7183 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7184 		inodedep->id_state |= GOINGAWAY;
7185 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7186 	FREE_LOCK(&lk);
7187 	if (ip->i_number == ino)
7188 		ip->i_flag |= IN_MODIFIED;
7189 }
7190 
7191 /*
7192  * Check to see if an inode has never been written to disk. If
7193  * so free the inodedep and return success, otherwise return failure.
7194  * This routine must be called with splbio interrupts blocked.
7195  *
7196  * If we still have a bitmap dependency, then the inode has never
7197  * been written to disk. Drop the dependency as it is no longer
7198  * necessary since the inode is being deallocated. We set the
7199  * ALLCOMPLETE flags since the bitmap now properly shows that the
7200  * inode is not allocated. Even if the inode is actively being
7201  * written, it has been rolled back to its zero'ed state, so we
7202  * are ensured that a zero inode is what is on the disk. For short
7203  * lived files, this change will usually result in removing all the
7204  * dependencies from the inode so that it can be freed immediately.
7205  */
7206 static int
7207 check_inode_unwritten(inodedep)
7208 	struct inodedep *inodedep;
7209 {
7210 
7211 	mtx_assert(&lk, MA_OWNED);
7212 
7213 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7214 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7215 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7216 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7217 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7218 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7219 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7220 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7221 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7222 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7223 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7224 	    inodedep->id_mkdiradd != NULL ||
7225 	    inodedep->id_nlinkdelta != 0)
7226 		return (0);
7227 	/*
7228 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7229 	 * trying to allocate memory without holding "Softdep Lock".
7230 	 */
7231 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7232 	    inodedep->id_savedino1 == NULL)
7233 		return (0);
7234 
7235 	if (inodedep->id_state & ONDEPLIST)
7236 		LIST_REMOVE(inodedep, id_deps);
7237 	inodedep->id_state &= ~ONDEPLIST;
7238 	inodedep->id_state |= ALLCOMPLETE;
7239 	inodedep->id_bmsafemap = NULL;
7240 	if (inodedep->id_state & ONWORKLIST)
7241 		WORKLIST_REMOVE(&inodedep->id_list);
7242 	if (inodedep->id_savedino1 != NULL) {
7243 		free(inodedep->id_savedino1, M_SAVEDINO);
7244 		inodedep->id_savedino1 = NULL;
7245 	}
7246 	if (free_inodedep(inodedep) == 0)
7247 		panic("check_inode_unwritten: busy inode");
7248 	return (1);
7249 }
7250 
7251 /*
7252  * Try to free an inodedep structure. Return 1 if it could be freed.
7253  */
7254 static int
7255 free_inodedep(inodedep)
7256 	struct inodedep *inodedep;
7257 {
7258 
7259 	mtx_assert(&lk, MA_OWNED);
7260 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7261 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7262 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7263 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7264 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7265 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7266 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7267 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7268 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7269 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7270 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7271 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7272 	    inodedep->id_mkdiradd != NULL ||
7273 	    inodedep->id_nlinkdelta != 0 ||
7274 	    inodedep->id_savedino1 != NULL)
7275 		return (0);
7276 	if (inodedep->id_state & ONDEPLIST)
7277 		LIST_REMOVE(inodedep, id_deps);
7278 	LIST_REMOVE(inodedep, id_hash);
7279 	WORKITEM_FREE(inodedep, D_INODEDEP);
7280 	return (1);
7281 }
7282 
7283 /*
7284  * Free the block referenced by a freework structure.  The parent freeblks
7285  * structure is released and completed when the final cg bitmap reaches
7286  * the disk.  This routine may be freeing a jnewblk which never made it to
7287  * disk in which case we do not have to wait as the operation is undone
7288  * in memory immediately.
7289  */
7290 static void
7291 freework_freeblock(freework)
7292 	struct freework *freework;
7293 {
7294 	struct freeblks *freeblks;
7295 	struct jnewblk *jnewblk;
7296 	struct ufsmount *ump;
7297 	struct workhead wkhd;
7298 	struct fs *fs;
7299 	int bsize;
7300 	int needj;
7301 
7302 	mtx_assert(&lk, MA_OWNED);
7303 	/*
7304 	 * Handle partial truncate separately.
7305 	 */
7306 	if (freework->fw_indir) {
7307 		complete_trunc_indir(freework);
7308 		return;
7309 	}
7310 	freeblks = freework->fw_freeblks;
7311 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7312 	fs = ump->um_fs;
7313 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7314 	bsize = lfragtosize(fs, freework->fw_frags);
7315 	LIST_INIT(&wkhd);
7316 	/*
7317 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7318 	 * on the indirblk hashtable and prevents premature freeing.
7319 	 */
7320 	freework->fw_state |= DEPCOMPLETE;
7321 	/*
7322 	 * SUJ needs to wait for the segment referencing freed indirect
7323 	 * blocks to expire so that we know the checker will not confuse
7324 	 * a re-allocated indirect block with its old contents.
7325 	 */
7326 	if (needj && freework->fw_lbn <= -NDADDR)
7327 		indirblk_insert(freework);
7328 	/*
7329 	 * If we are canceling an existing jnewblk pass it to the free
7330 	 * routine, otherwise pass the freeblk which will ultimately
7331 	 * release the freeblks.  If we're not journaling, we can just
7332 	 * free the freeblks immediately.
7333 	 */
7334 	jnewblk = freework->fw_jnewblk;
7335 	if (jnewblk != NULL) {
7336 		cancel_jnewblk(jnewblk, &wkhd);
7337 		needj = 0;
7338 	} else if (needj) {
7339 		freework->fw_state |= DELAYEDFREE;
7340 		freeblks->fb_cgwait++;
7341 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7342 	}
7343 	FREE_LOCK(&lk);
7344 	freeblks_free(ump, freeblks, btodb(bsize));
7345 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7346 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7347 	ACQUIRE_LOCK(&lk);
7348 	/*
7349 	 * The jnewblk will be discarded and the bits in the map never
7350 	 * made it to disk.  We can immediately free the freeblk.
7351 	 */
7352 	if (needj == 0)
7353 		handle_written_freework(freework);
7354 }
7355 
7356 /*
7357  * We enqueue freework items that need processing back on the freeblks and
7358  * add the freeblks to the worklist.  This makes it easier to find all work
7359  * required to flush a truncation in process_truncates().
7360  */
7361 static void
7362 freework_enqueue(freework)
7363 	struct freework *freework;
7364 {
7365 	struct freeblks *freeblks;
7366 
7367 	freeblks = freework->fw_freeblks;
7368 	if ((freework->fw_state & INPROGRESS) == 0)
7369 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7370 	if ((freeblks->fb_state &
7371 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7372 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7373 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7374 }
7375 
7376 /*
7377  * Start, continue, or finish the process of freeing an indirect block tree.
7378  * The free operation may be paused at any point with fw_off containing the
7379  * offset to restart from.  This enables us to implement some flow control
7380  * for large truncates which may fan out and generate a huge number of
7381  * dependencies.
7382  */
7383 static void
7384 handle_workitem_indirblk(freework)
7385 	struct freework *freework;
7386 {
7387 	struct freeblks *freeblks;
7388 	struct ufsmount *ump;
7389 	struct fs *fs;
7390 
7391 	freeblks = freework->fw_freeblks;
7392 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7393 	fs = ump->um_fs;
7394 	if (freework->fw_state & DEPCOMPLETE) {
7395 		handle_written_freework(freework);
7396 		return;
7397 	}
7398 	if (freework->fw_off == NINDIR(fs)) {
7399 		freework_freeblock(freework);
7400 		return;
7401 	}
7402 	freework->fw_state |= INPROGRESS;
7403 	FREE_LOCK(&lk);
7404 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7405 	    freework->fw_lbn);
7406 	ACQUIRE_LOCK(&lk);
7407 }
7408 
7409 /*
7410  * Called when a freework structure attached to a cg buf is written.  The
7411  * ref on either the parent or the freeblks structure is released and
7412  * the freeblks is added back to the worklist if there is more work to do.
7413  */
7414 static void
7415 handle_written_freework(freework)
7416 	struct freework *freework;
7417 {
7418 	struct freeblks *freeblks;
7419 	struct freework *parent;
7420 
7421 	freeblks = freework->fw_freeblks;
7422 	parent = freework->fw_parent;
7423 	if (freework->fw_state & DELAYEDFREE)
7424 		freeblks->fb_cgwait--;
7425 	freework->fw_state |= COMPLETE;
7426 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7427 		WORKITEM_FREE(freework, D_FREEWORK);
7428 	if (parent) {
7429 		if (--parent->fw_ref == 0)
7430 			freework_enqueue(parent);
7431 		return;
7432 	}
7433 	if (--freeblks->fb_ref != 0)
7434 		return;
7435 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7436 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7437 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7438 }
7439 
7440 /*
7441  * This workitem routine performs the block de-allocation.
7442  * The workitem is added to the pending list after the updated
7443  * inode block has been written to disk.  As mentioned above,
7444  * checks regarding the number of blocks de-allocated (compared
7445  * to the number of blocks allocated for the file) are also
7446  * performed in this function.
7447  */
7448 static int
7449 handle_workitem_freeblocks(freeblks, flags)
7450 	struct freeblks *freeblks;
7451 	int flags;
7452 {
7453 	struct freework *freework;
7454 	struct newblk *newblk;
7455 	struct allocindir *aip;
7456 	struct ufsmount *ump;
7457 	struct worklist *wk;
7458 
7459 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7460 	    ("handle_workitem_freeblocks: Journal entries not written."));
7461 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7462 	ACQUIRE_LOCK(&lk);
7463 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7464 		WORKLIST_REMOVE(wk);
7465 		switch (wk->wk_type) {
7466 		case D_DIRREM:
7467 			wk->wk_state |= COMPLETE;
7468 			add_to_worklist(wk, 0);
7469 			continue;
7470 
7471 		case D_ALLOCDIRECT:
7472 			free_newblk(WK_NEWBLK(wk));
7473 			continue;
7474 
7475 		case D_ALLOCINDIR:
7476 			aip = WK_ALLOCINDIR(wk);
7477 			freework = NULL;
7478 			if (aip->ai_state & DELAYEDFREE) {
7479 				FREE_LOCK(&lk);
7480 				freework = newfreework(ump, freeblks, NULL,
7481 				    aip->ai_lbn, aip->ai_newblkno,
7482 				    ump->um_fs->fs_frag, 0, 0);
7483 				ACQUIRE_LOCK(&lk);
7484 			}
7485 			newblk = WK_NEWBLK(wk);
7486 			if (newblk->nb_jnewblk) {
7487 				freework->fw_jnewblk = newblk->nb_jnewblk;
7488 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7489 				newblk->nb_jnewblk = NULL;
7490 			}
7491 			free_newblk(newblk);
7492 			continue;
7493 
7494 		case D_FREEWORK:
7495 			freework = WK_FREEWORK(wk);
7496 			if (freework->fw_lbn <= -NDADDR)
7497 				handle_workitem_indirblk(freework);
7498 			else
7499 				freework_freeblock(freework);
7500 			continue;
7501 		default:
7502 			panic("handle_workitem_freeblocks: Unknown type %s",
7503 			    TYPENAME(wk->wk_type));
7504 		}
7505 	}
7506 	if (freeblks->fb_ref != 0) {
7507 		freeblks->fb_state &= ~INPROGRESS;
7508 		wake_worklist(&freeblks->fb_list);
7509 		freeblks = NULL;
7510 	}
7511 	FREE_LOCK(&lk);
7512 	if (freeblks)
7513 		return handle_complete_freeblocks(freeblks, flags);
7514 	return (0);
7515 }
7516 
7517 /*
7518  * Handle completion of block free via truncate.  This allows fs_pending
7519  * to track the actual free block count more closely than if we only updated
7520  * it at the end.  We must be careful to handle cases where the block count
7521  * on free was incorrect.
7522  */
7523 static void
7524 freeblks_free(ump, freeblks, blocks)
7525 	struct ufsmount *ump;
7526 	struct freeblks *freeblks;
7527 	int blocks;
7528 {
7529 	struct fs *fs;
7530 	ufs2_daddr_t remain;
7531 
7532 	UFS_LOCK(ump);
7533 	remain = -freeblks->fb_chkcnt;
7534 	freeblks->fb_chkcnt += blocks;
7535 	if (remain > 0) {
7536 		if (remain < blocks)
7537 			blocks = remain;
7538 		fs = ump->um_fs;
7539 		fs->fs_pendingblocks -= blocks;
7540 	}
7541 	UFS_UNLOCK(ump);
7542 }
7543 
7544 /*
7545  * Once all of the freework workitems are complete we can retire the
7546  * freeblocks dependency and any journal work awaiting completion.  This
7547  * can not be called until all other dependencies are stable on disk.
7548  */
7549 static int
7550 handle_complete_freeblocks(freeblks, flags)
7551 	struct freeblks *freeblks;
7552 	int flags;
7553 {
7554 	struct inodedep *inodedep;
7555 	struct inode *ip;
7556 	struct vnode *vp;
7557 	struct fs *fs;
7558 	struct ufsmount *ump;
7559 	ufs2_daddr_t spare;
7560 
7561 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7562 	fs = ump->um_fs;
7563 	flags = LK_EXCLUSIVE | flags;
7564 	spare = freeblks->fb_chkcnt;
7565 
7566 	/*
7567 	 * If we did not release the expected number of blocks we may have
7568 	 * to adjust the inode block count here.  Only do so if it wasn't
7569 	 * a truncation to zero and the modrev still matches.
7570 	 */
7571 	if (spare && freeblks->fb_len != 0) {
7572 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7573 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7574 			return (EBUSY);
7575 		ip = VTOI(vp);
7576 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7577 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7578 			ip->i_flag |= IN_CHANGE;
7579 			/*
7580 			 * We must wait so this happens before the
7581 			 * journal is reclaimed.
7582 			 */
7583 			ffs_update(vp, 1);
7584 		}
7585 		vput(vp);
7586 	}
7587 	if (spare < 0) {
7588 		UFS_LOCK(ump);
7589 		fs->fs_pendingblocks += spare;
7590 		UFS_UNLOCK(ump);
7591 	}
7592 #ifdef QUOTA
7593 	/* Handle spare. */
7594 	if (spare)
7595 		quotaadj(freeblks->fb_quota, ump, -spare);
7596 	quotarele(freeblks->fb_quota);
7597 #endif
7598 	ACQUIRE_LOCK(&lk);
7599 	if (freeblks->fb_state & ONDEPLIST) {
7600 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7601 		    0, &inodedep);
7602 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7603 		freeblks->fb_state &= ~ONDEPLIST;
7604 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7605 			free_inodedep(inodedep);
7606 	}
7607 	/*
7608 	 * All of the freeblock deps must be complete prior to this call
7609 	 * so it's now safe to complete earlier outstanding journal entries.
7610 	 */
7611 	handle_jwork(&freeblks->fb_jwork);
7612 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7613 	FREE_LOCK(&lk);
7614 	return (0);
7615 }
7616 
7617 /*
7618  * Release blocks associated with the freeblks and stored in the indirect
7619  * block dbn. If level is greater than SINGLE, the block is an indirect block
7620  * and recursive calls to indirtrunc must be used to cleanse other indirect
7621  * blocks.
7622  *
7623  * This handles partial and complete truncation of blocks.  Partial is noted
7624  * with goingaway == 0.  In this case the freework is completed after the
7625  * zero'd indirects are written to disk.  For full truncation the freework
7626  * is completed after the block is freed.
7627  */
7628 static void
7629 indir_trunc(freework, dbn, lbn)
7630 	struct freework *freework;
7631 	ufs2_daddr_t dbn;
7632 	ufs_lbn_t lbn;
7633 {
7634 	struct freework *nfreework;
7635 	struct workhead wkhd;
7636 	struct freeblks *freeblks;
7637 	struct buf *bp;
7638 	struct fs *fs;
7639 	struct indirdep *indirdep;
7640 	struct ufsmount *ump;
7641 	ufs1_daddr_t *bap1 = 0;
7642 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7643 	ufs_lbn_t lbnadd, nlbn;
7644 	int i, nblocks, ufs1fmt;
7645 	int freedblocks;
7646 	int goingaway;
7647 	int freedeps;
7648 	int needj;
7649 	int level;
7650 	int cnt;
7651 
7652 	freeblks = freework->fw_freeblks;
7653 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7654 	fs = ump->um_fs;
7655 	/*
7656 	 * Get buffer of block pointers to be freed.  There are three cases:
7657 	 *
7658 	 * 1) Partial truncate caches the indirdep pointer in the freework
7659 	 *    which provides us a back copy to the save bp which holds the
7660 	 *    pointers we want to clear.  When this completes the zero
7661 	 *    pointers are written to the real copy.
7662 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7663 	 *    eliminated the real copy and placed the indirdep on the saved
7664 	 *    copy.  The indirdep and buf are discarded when this completes.
7665 	 * 3) The indirect was not in memory, we read a copy off of the disk
7666 	 *    using the devvp and drop and invalidate the buffer when we're
7667 	 *    done.
7668 	 */
7669 	goingaway = 1;
7670 	indirdep = NULL;
7671 	if (freework->fw_indir != NULL) {
7672 		goingaway = 0;
7673 		indirdep = freework->fw_indir;
7674 		bp = indirdep->ir_savebp;
7675 		if (bp == NULL || bp->b_blkno != dbn)
7676 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7677 			    bp, (intmax_t)dbn);
7678 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7679 		/*
7680 		 * The lock prevents the buf dep list from changing and
7681 	 	 * indirects on devvp should only ever have one dependency.
7682 		 */
7683 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7684 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7685 			panic("indir_trunc: Bad indirdep %p from buf %p",
7686 			    indirdep, bp);
7687 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7688 	    NOCRED, &bp) != 0) {
7689 		brelse(bp);
7690 		return;
7691 	}
7692 	ACQUIRE_LOCK(&lk);
7693 	/* Protects against a race with complete_trunc_indir(). */
7694 	freework->fw_state &= ~INPROGRESS;
7695 	/*
7696 	 * If we have an indirdep we need to enforce the truncation order
7697 	 * and discard it when it is complete.
7698 	 */
7699 	if (indirdep) {
7700 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7701 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7702 			/*
7703 			 * Add the complete truncate to the list on the
7704 			 * indirdep to enforce in-order processing.
7705 			 */
7706 			if (freework->fw_indir == NULL)
7707 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7708 				    freework, fw_next);
7709 			FREE_LOCK(&lk);
7710 			return;
7711 		}
7712 		/*
7713 		 * If we're goingaway, free the indirdep.  Otherwise it will
7714 		 * linger until the write completes.
7715 		 */
7716 		if (goingaway) {
7717 			free_indirdep(indirdep);
7718 			ump->um_numindirdeps -= 1;
7719 		}
7720 	}
7721 	FREE_LOCK(&lk);
7722 	/* Initialize pointers depending on block size. */
7723 	if (ump->um_fstype == UFS1) {
7724 		bap1 = (ufs1_daddr_t *)bp->b_data;
7725 		nb = bap1[freework->fw_off];
7726 		ufs1fmt = 1;
7727 	} else {
7728 		bap2 = (ufs2_daddr_t *)bp->b_data;
7729 		nb = bap2[freework->fw_off];
7730 		ufs1fmt = 0;
7731 	}
7732 	level = lbn_level(lbn);
7733 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7734 	lbnadd = lbn_offset(fs, level);
7735 	nblocks = btodb(fs->fs_bsize);
7736 	nfreework = freework;
7737 	freedeps = 0;
7738 	cnt = 0;
7739 	/*
7740 	 * Reclaim blocks.  Traverses into nested indirect levels and
7741 	 * arranges for the current level to be freed when subordinates
7742 	 * are free when journaling.
7743 	 */
7744 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7745 		if (i != NINDIR(fs) - 1) {
7746 			if (ufs1fmt)
7747 				nnb = bap1[i+1];
7748 			else
7749 				nnb = bap2[i+1];
7750 		} else
7751 			nnb = 0;
7752 		if (nb == 0)
7753 			continue;
7754 		cnt++;
7755 		if (level != 0) {
7756 			nlbn = (lbn + 1) - (i * lbnadd);
7757 			if (needj != 0) {
7758 				nfreework = newfreework(ump, freeblks, freework,
7759 				    nlbn, nb, fs->fs_frag, 0, 0);
7760 				freedeps++;
7761 			}
7762 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7763 		} else {
7764 			struct freedep *freedep;
7765 
7766 			/*
7767 			 * Attempt to aggregate freedep dependencies for
7768 			 * all blocks being released to the same CG.
7769 			 */
7770 			LIST_INIT(&wkhd);
7771 			if (needj != 0 &&
7772 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7773 				freedep = newfreedep(freework);
7774 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7775 				    &freedep->fd_list);
7776 				freedeps++;
7777 			}
7778 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7779 			    fs->fs_bsize, freeblks->fb_inum,
7780 			    freeblks->fb_vtype, &wkhd);
7781 		}
7782 	}
7783 	if (goingaway) {
7784 		bp->b_flags |= B_INVAL | B_NOCACHE;
7785 		brelse(bp);
7786 	}
7787 	freedblocks = 0;
7788 	if (level == 0)
7789 		freedblocks = (nblocks * cnt);
7790 	if (needj == 0)
7791 		freedblocks += nblocks;
7792 	freeblks_free(ump, freeblks, freedblocks);
7793 	/*
7794 	 * If we are journaling set up the ref counts and offset so this
7795 	 * indirect can be completed when its children are free.
7796 	 */
7797 	if (needj) {
7798 		ACQUIRE_LOCK(&lk);
7799 		freework->fw_off = i;
7800 		freework->fw_ref += freedeps;
7801 		freework->fw_ref -= NINDIR(fs) + 1;
7802 		if (level == 0)
7803 			freeblks->fb_cgwait += freedeps;
7804 		if (freework->fw_ref == 0)
7805 			freework_freeblock(freework);
7806 		FREE_LOCK(&lk);
7807 		return;
7808 	}
7809 	/*
7810 	 * If we're not journaling we can free the indirect now.
7811 	 */
7812 	dbn = dbtofsb(fs, dbn);
7813 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7814 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7815 	/* Non SUJ softdep does single-threaded truncations. */
7816 	if (freework->fw_blkno == dbn) {
7817 		freework->fw_state |= ALLCOMPLETE;
7818 		ACQUIRE_LOCK(&lk);
7819 		handle_written_freework(freework);
7820 		FREE_LOCK(&lk);
7821 	}
7822 	return;
7823 }
7824 
7825 /*
7826  * Cancel an allocindir when it is removed via truncation.  When bp is not
7827  * NULL the indirect never appeared on disk and is scheduled to be freed
7828  * independently of the indir so we can more easily track journal work.
7829  */
7830 static void
7831 cancel_allocindir(aip, bp, freeblks, trunc)
7832 	struct allocindir *aip;
7833 	struct buf *bp;
7834 	struct freeblks *freeblks;
7835 	int trunc;
7836 {
7837 	struct indirdep *indirdep;
7838 	struct freefrag *freefrag;
7839 	struct newblk *newblk;
7840 
7841 	newblk = (struct newblk *)aip;
7842 	LIST_REMOVE(aip, ai_next);
7843 	/*
7844 	 * We must eliminate the pointer in bp if it must be freed on its
7845 	 * own due to partial truncate or pending journal work.
7846 	 */
7847 	if (bp && (trunc || newblk->nb_jnewblk)) {
7848 		/*
7849 		 * Clear the pointer and mark the aip to be freed
7850 		 * directly if it never existed on disk.
7851 		 */
7852 		aip->ai_state |= DELAYEDFREE;
7853 		indirdep = aip->ai_indirdep;
7854 		if (indirdep->ir_state & UFS1FMT)
7855 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7856 		else
7857 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7858 	}
7859 	/*
7860 	 * When truncating the previous pointer will be freed via
7861 	 * savedbp.  Eliminate the freefrag which would dup free.
7862 	 */
7863 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
7864 		newblk->nb_freefrag = NULL;
7865 		if (freefrag->ff_jdep)
7866 			cancel_jfreefrag(
7867 			    WK_JFREEFRAG(freefrag->ff_jdep));
7868 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
7869 		WORKITEM_FREE(freefrag, D_FREEFRAG);
7870 	}
7871 	/*
7872 	 * If the journal hasn't been written the jnewblk must be passed
7873 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7874 	 * this by leaving the journal dependency on the newblk to be freed
7875 	 * when a freework is created in handle_workitem_freeblocks().
7876 	 */
7877 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
7878 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7879 }
7880 
7881 /*
7882  * Create the mkdir dependencies for . and .. in a new directory.  Link them
7883  * in to a newdirblk so any subsequent additions are tracked properly.  The
7884  * caller is responsible for adding the mkdir1 dependency to the journal
7885  * and updating id_mkdiradd.  This function returns with lk held.
7886  */
7887 static struct mkdir *
7888 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
7889 	struct diradd *dap;
7890 	ino_t newinum;
7891 	ino_t dinum;
7892 	struct buf *newdirbp;
7893 	struct mkdir **mkdirp;
7894 {
7895 	struct newblk *newblk;
7896 	struct pagedep *pagedep;
7897 	struct inodedep *inodedep;
7898 	struct newdirblk *newdirblk = 0;
7899 	struct mkdir *mkdir1, *mkdir2;
7900 	struct worklist *wk;
7901 	struct jaddref *jaddref;
7902 	struct mount *mp;
7903 
7904 	mp = dap->da_list.wk_mp;
7905 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
7906 	    M_SOFTDEP_FLAGS);
7907 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
7908 	LIST_INIT(&newdirblk->db_mkdir);
7909 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7910 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
7911 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
7912 	mkdir1->md_diradd = dap;
7913 	mkdir1->md_jaddref = NULL;
7914 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7915 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
7916 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
7917 	mkdir2->md_diradd = dap;
7918 	mkdir2->md_jaddref = NULL;
7919 	if (MOUNTEDSUJ(mp) == 0) {
7920 		mkdir1->md_state |= DEPCOMPLETE;
7921 		mkdir2->md_state |= DEPCOMPLETE;
7922 	}
7923 	/*
7924 	 * Dependency on "." and ".." being written to disk.
7925 	 */
7926 	mkdir1->md_buf = newdirbp;
7927 	ACQUIRE_LOCK(&lk);
7928 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
7929 	/*
7930 	 * We must link the pagedep, allocdirect, and newdirblk for
7931 	 * the initial file page so the pointer to the new directory
7932 	 * is not written until the directory contents are live and
7933 	 * any subsequent additions are not marked live until the
7934 	 * block is reachable via the inode.
7935 	 */
7936 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
7937 		panic("setup_newdir: lost pagedep");
7938 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
7939 		if (wk->wk_type == D_ALLOCDIRECT)
7940 			break;
7941 	if (wk == NULL)
7942 		panic("setup_newdir: lost allocdirect");
7943 	if (pagedep->pd_state & NEWBLOCK)
7944 		panic("setup_newdir: NEWBLOCK already set");
7945 	newblk = WK_NEWBLK(wk);
7946 	pagedep->pd_state |= NEWBLOCK;
7947 	pagedep->pd_newdirblk = newdirblk;
7948 	newdirblk->db_pagedep = pagedep;
7949 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
7950 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
7951 	/*
7952 	 * Look up the inodedep for the parent directory so that we
7953 	 * can link mkdir2 into the pending dotdot jaddref or
7954 	 * the inode write if there is none.  If the inode is
7955 	 * ALLCOMPLETE and no jaddref is present all dependencies have
7956 	 * been satisfied and mkdir2 can be freed.
7957 	 */
7958 	inodedep_lookup(mp, dinum, 0, &inodedep);
7959 	if (MOUNTEDSUJ(mp)) {
7960 		if (inodedep == NULL)
7961 			panic("setup_newdir: Lost parent.");
7962 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7963 		    inoreflst);
7964 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
7965 		    (jaddref->ja_state & MKDIR_PARENT),
7966 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
7967 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7968 		mkdir2->md_jaddref = jaddref;
7969 		jaddref->ja_mkdir = mkdir2;
7970 	} else if (inodedep == NULL ||
7971 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7972 		dap->da_state &= ~MKDIR_PARENT;
7973 		WORKITEM_FREE(mkdir2, D_MKDIR);
7974 	} else {
7975 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7976 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
7977 	}
7978 	*mkdirp = mkdir2;
7979 
7980 	return (mkdir1);
7981 }
7982 
7983 /*
7984  * Directory entry addition dependencies.
7985  *
7986  * When adding a new directory entry, the inode (with its incremented link
7987  * count) must be written to disk before the directory entry's pointer to it.
7988  * Also, if the inode is newly allocated, the corresponding freemap must be
7989  * updated (on disk) before the directory entry's pointer. These requirements
7990  * are met via undo/redo on the directory entry's pointer, which consists
7991  * simply of the inode number.
7992  *
7993  * As directory entries are added and deleted, the free space within a
7994  * directory block can become fragmented.  The ufs filesystem will compact
7995  * a fragmented directory block to make space for a new entry. When this
7996  * occurs, the offsets of previously added entries change. Any "diradd"
7997  * dependency structures corresponding to these entries must be updated with
7998  * the new offsets.
7999  */
8000 
8001 /*
8002  * This routine is called after the in-memory inode's link
8003  * count has been incremented, but before the directory entry's
8004  * pointer to the inode has been set.
8005  */
8006 int
8007 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8008 	struct buf *bp;		/* buffer containing directory block */
8009 	struct inode *dp;	/* inode for directory */
8010 	off_t diroffset;	/* offset of new entry in directory */
8011 	ino_t newinum;		/* inode referenced by new directory entry */
8012 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8013 	int isnewblk;		/* entry is in a newly allocated block */
8014 {
8015 	int offset;		/* offset of new entry within directory block */
8016 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8017 	struct fs *fs;
8018 	struct diradd *dap;
8019 	struct newblk *newblk;
8020 	struct pagedep *pagedep;
8021 	struct inodedep *inodedep;
8022 	struct newdirblk *newdirblk = 0;
8023 	struct mkdir *mkdir1, *mkdir2;
8024 	struct jaddref *jaddref;
8025 	struct mount *mp;
8026 	int isindir;
8027 
8028 	/*
8029 	 * Whiteouts have no dependencies.
8030 	 */
8031 	if (newinum == WINO) {
8032 		if (newdirbp != NULL)
8033 			bdwrite(newdirbp);
8034 		return (0);
8035 	}
8036 	jaddref = NULL;
8037 	mkdir1 = mkdir2 = NULL;
8038 	mp = UFSTOVFS(dp->i_ump);
8039 	fs = dp->i_fs;
8040 	lbn = lblkno(fs, diroffset);
8041 	offset = blkoff(fs, diroffset);
8042 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8043 		M_SOFTDEP_FLAGS|M_ZERO);
8044 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8045 	dap->da_offset = offset;
8046 	dap->da_newinum = newinum;
8047 	dap->da_state = ATTACHED;
8048 	LIST_INIT(&dap->da_jwork);
8049 	isindir = bp->b_lblkno >= NDADDR;
8050 	if (isnewblk &&
8051 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8052 		newdirblk = malloc(sizeof(struct newdirblk),
8053 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8054 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8055 		LIST_INIT(&newdirblk->db_mkdir);
8056 	}
8057 	/*
8058 	 * If we're creating a new directory setup the dependencies and set
8059 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8060 	 * we can move on.
8061 	 */
8062 	if (newdirbp == NULL) {
8063 		dap->da_state |= DEPCOMPLETE;
8064 		ACQUIRE_LOCK(&lk);
8065 	} else {
8066 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8067 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8068 		    &mkdir2);
8069 	}
8070 	/*
8071 	 * Link into parent directory pagedep to await its being written.
8072 	 */
8073 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8074 #ifdef DEBUG
8075 	if (diradd_lookup(pagedep, offset) != NULL)
8076 		panic("softdep_setup_directory_add: %p already at off %d\n",
8077 		    diradd_lookup(pagedep, offset), offset);
8078 #endif
8079 	dap->da_pagedep = pagedep;
8080 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8081 	    da_pdlist);
8082 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8083 	/*
8084 	 * If we're journaling, link the diradd into the jaddref so it
8085 	 * may be completed after the journal entry is written.  Otherwise,
8086 	 * link the diradd into its inodedep.  If the inode is not yet
8087 	 * written place it on the bufwait list, otherwise do the post-inode
8088 	 * write processing to put it on the id_pendinghd list.
8089 	 */
8090 	if (MOUNTEDSUJ(mp)) {
8091 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8092 		    inoreflst);
8093 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8094 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8095 		jaddref->ja_diroff = diroffset;
8096 		jaddref->ja_diradd = dap;
8097 		add_to_journal(&jaddref->ja_list);
8098 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8099 		diradd_inode_written(dap, inodedep);
8100 	else
8101 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8102 	/*
8103 	 * Add the journal entries for . and .. links now that the primary
8104 	 * link is written.
8105 	 */
8106 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8107 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8108 		    inoreflst, if_deps);
8109 		KASSERT(jaddref != NULL &&
8110 		    jaddref->ja_ino == jaddref->ja_parent &&
8111 		    (jaddref->ja_state & MKDIR_BODY),
8112 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8113 		    jaddref));
8114 		mkdir1->md_jaddref = jaddref;
8115 		jaddref->ja_mkdir = mkdir1;
8116 		/*
8117 		 * It is important that the dotdot journal entry
8118 		 * is added prior to the dot entry since dot writes
8119 		 * both the dot and dotdot links.  These both must
8120 		 * be added after the primary link for the journal
8121 		 * to remain consistent.
8122 		 */
8123 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8124 		add_to_journal(&jaddref->ja_list);
8125 	}
8126 	/*
8127 	 * If we are adding a new directory remember this diradd so that if
8128 	 * we rename it we can keep the dot and dotdot dependencies.  If
8129 	 * we are adding a new name for an inode that has a mkdiradd we
8130 	 * must be in rename and we have to move the dot and dotdot
8131 	 * dependencies to this new name.  The old name is being orphaned
8132 	 * soon.
8133 	 */
8134 	if (mkdir1 != NULL) {
8135 		if (inodedep->id_mkdiradd != NULL)
8136 			panic("softdep_setup_directory_add: Existing mkdir");
8137 		inodedep->id_mkdiradd = dap;
8138 	} else if (inodedep->id_mkdiradd)
8139 		merge_diradd(inodedep, dap);
8140 	if (newdirblk) {
8141 		/*
8142 		 * There is nothing to do if we are already tracking
8143 		 * this block.
8144 		 */
8145 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8146 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8147 			FREE_LOCK(&lk);
8148 			return (0);
8149 		}
8150 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8151 		    == 0)
8152 			panic("softdep_setup_directory_add: lost entry");
8153 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8154 		pagedep->pd_state |= NEWBLOCK;
8155 		pagedep->pd_newdirblk = newdirblk;
8156 		newdirblk->db_pagedep = pagedep;
8157 		FREE_LOCK(&lk);
8158 		/*
8159 		 * If we extended into an indirect signal direnter to sync.
8160 		 */
8161 		if (isindir)
8162 			return (1);
8163 		return (0);
8164 	}
8165 	FREE_LOCK(&lk);
8166 	return (0);
8167 }
8168 
8169 /*
8170  * This procedure is called to change the offset of a directory
8171  * entry when compacting a directory block which must be owned
8172  * exclusively by the caller. Note that the actual entry movement
8173  * must be done in this procedure to ensure that no I/O completions
8174  * occur while the move is in progress.
8175  */
8176 void
8177 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8178 	struct buf *bp;		/* Buffer holding directory block. */
8179 	struct inode *dp;	/* inode for directory */
8180 	caddr_t base;		/* address of dp->i_offset */
8181 	caddr_t oldloc;		/* address of old directory location */
8182 	caddr_t newloc;		/* address of new directory location */
8183 	int entrysize;		/* size of directory entry */
8184 {
8185 	int offset, oldoffset, newoffset;
8186 	struct pagedep *pagedep;
8187 	struct jmvref *jmvref;
8188 	struct diradd *dap;
8189 	struct direct *de;
8190 	struct mount *mp;
8191 	ufs_lbn_t lbn;
8192 	int flags;
8193 
8194 	mp = UFSTOVFS(dp->i_ump);
8195 	de = (struct direct *)oldloc;
8196 	jmvref = NULL;
8197 	flags = 0;
8198 	/*
8199 	 * Moves are always journaled as it would be too complex to
8200 	 * determine if any affected adds or removes are present in the
8201 	 * journal.
8202 	 */
8203 	if (MOUNTEDSUJ(mp)) {
8204 		flags = DEPALLOC;
8205 		jmvref = newjmvref(dp, de->d_ino,
8206 		    dp->i_offset + (oldloc - base),
8207 		    dp->i_offset + (newloc - base));
8208 	}
8209 	lbn = lblkno(dp->i_fs, dp->i_offset);
8210 	offset = blkoff(dp->i_fs, dp->i_offset);
8211 	oldoffset = offset + (oldloc - base);
8212 	newoffset = offset + (newloc - base);
8213 	ACQUIRE_LOCK(&lk);
8214 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8215 		goto done;
8216 	dap = diradd_lookup(pagedep, oldoffset);
8217 	if (dap) {
8218 		dap->da_offset = newoffset;
8219 		newoffset = DIRADDHASH(newoffset);
8220 		oldoffset = DIRADDHASH(oldoffset);
8221 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8222 		    newoffset != oldoffset) {
8223 			LIST_REMOVE(dap, da_pdlist);
8224 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8225 			    dap, da_pdlist);
8226 		}
8227 	}
8228 done:
8229 	if (jmvref) {
8230 		jmvref->jm_pagedep = pagedep;
8231 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8232 		add_to_journal(&jmvref->jm_list);
8233 	}
8234 	bcopy(oldloc, newloc, entrysize);
8235 	FREE_LOCK(&lk);
8236 }
8237 
8238 /*
8239  * Move the mkdir dependencies and journal work from one diradd to another
8240  * when renaming a directory.  The new name must depend on the mkdir deps
8241  * completing as the old name did.  Directories can only have one valid link
8242  * at a time so one must be canonical.
8243  */
8244 static void
8245 merge_diradd(inodedep, newdap)
8246 	struct inodedep *inodedep;
8247 	struct diradd *newdap;
8248 {
8249 	struct diradd *olddap;
8250 	struct mkdir *mkdir, *nextmd;
8251 	short state;
8252 
8253 	olddap = inodedep->id_mkdiradd;
8254 	inodedep->id_mkdiradd = newdap;
8255 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8256 		newdap->da_state &= ~DEPCOMPLETE;
8257 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8258 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8259 			if (mkdir->md_diradd != olddap)
8260 				continue;
8261 			mkdir->md_diradd = newdap;
8262 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8263 			newdap->da_state |= state;
8264 			olddap->da_state &= ~state;
8265 			if ((olddap->da_state &
8266 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8267 				break;
8268 		}
8269 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8270 			panic("merge_diradd: unfound ref");
8271 	}
8272 	/*
8273 	 * Any mkdir related journal items are not safe to be freed until
8274 	 * the new name is stable.
8275 	 */
8276 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8277 	olddap->da_state |= DEPCOMPLETE;
8278 	complete_diradd(olddap);
8279 }
8280 
8281 /*
8282  * Move the diradd to the pending list when all diradd dependencies are
8283  * complete.
8284  */
8285 static void
8286 complete_diradd(dap)
8287 	struct diradd *dap;
8288 {
8289 	struct pagedep *pagedep;
8290 
8291 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8292 		if (dap->da_state & DIRCHG)
8293 			pagedep = dap->da_previous->dm_pagedep;
8294 		else
8295 			pagedep = dap->da_pagedep;
8296 		LIST_REMOVE(dap, da_pdlist);
8297 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8298 	}
8299 }
8300 
8301 /*
8302  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8303  * add entries and conditonally journal the remove.
8304  */
8305 static void
8306 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8307 	struct diradd *dap;
8308 	struct dirrem *dirrem;
8309 	struct jremref *jremref;
8310 	struct jremref *dotremref;
8311 	struct jremref *dotdotremref;
8312 {
8313 	struct inodedep *inodedep;
8314 	struct jaddref *jaddref;
8315 	struct inoref *inoref;
8316 	struct mkdir *mkdir;
8317 
8318 	/*
8319 	 * If no remove references were allocated we're on a non-journaled
8320 	 * filesystem and can skip the cancel step.
8321 	 */
8322 	if (jremref == NULL) {
8323 		free_diradd(dap, NULL);
8324 		return;
8325 	}
8326 	/*
8327 	 * Cancel the primary name an free it if it does not require
8328 	 * journaling.
8329 	 */
8330 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8331 	    0, &inodedep) != 0) {
8332 		/* Abort the addref that reference this diradd.  */
8333 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8334 			if (inoref->if_list.wk_type != D_JADDREF)
8335 				continue;
8336 			jaddref = (struct jaddref *)inoref;
8337 			if (jaddref->ja_diradd != dap)
8338 				continue;
8339 			if (cancel_jaddref(jaddref, inodedep,
8340 			    &dirrem->dm_jwork) == 0) {
8341 				free_jremref(jremref);
8342 				jremref = NULL;
8343 			}
8344 			break;
8345 		}
8346 	}
8347 	/*
8348 	 * Cancel subordinate names and free them if they do not require
8349 	 * journaling.
8350 	 */
8351 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8352 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8353 			if (mkdir->md_diradd != dap)
8354 				continue;
8355 			if ((jaddref = mkdir->md_jaddref) == NULL)
8356 				continue;
8357 			mkdir->md_jaddref = NULL;
8358 			if (mkdir->md_state & MKDIR_PARENT) {
8359 				if (cancel_jaddref(jaddref, NULL,
8360 				    &dirrem->dm_jwork) == 0) {
8361 					free_jremref(dotdotremref);
8362 					dotdotremref = NULL;
8363 				}
8364 			} else {
8365 				if (cancel_jaddref(jaddref, inodedep,
8366 				    &dirrem->dm_jwork) == 0) {
8367 					free_jremref(dotremref);
8368 					dotremref = NULL;
8369 				}
8370 			}
8371 		}
8372 	}
8373 
8374 	if (jremref)
8375 		journal_jremref(dirrem, jremref, inodedep);
8376 	if (dotremref)
8377 		journal_jremref(dirrem, dotremref, inodedep);
8378 	if (dotdotremref)
8379 		journal_jremref(dirrem, dotdotremref, NULL);
8380 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8381 	free_diradd(dap, &dirrem->dm_jwork);
8382 }
8383 
8384 /*
8385  * Free a diradd dependency structure. This routine must be called
8386  * with splbio interrupts blocked.
8387  */
8388 static void
8389 free_diradd(dap, wkhd)
8390 	struct diradd *dap;
8391 	struct workhead *wkhd;
8392 {
8393 	struct dirrem *dirrem;
8394 	struct pagedep *pagedep;
8395 	struct inodedep *inodedep;
8396 	struct mkdir *mkdir, *nextmd;
8397 
8398 	mtx_assert(&lk, MA_OWNED);
8399 	LIST_REMOVE(dap, da_pdlist);
8400 	if (dap->da_state & ONWORKLIST)
8401 		WORKLIST_REMOVE(&dap->da_list);
8402 	if ((dap->da_state & DIRCHG) == 0) {
8403 		pagedep = dap->da_pagedep;
8404 	} else {
8405 		dirrem = dap->da_previous;
8406 		pagedep = dirrem->dm_pagedep;
8407 		dirrem->dm_dirinum = pagedep->pd_ino;
8408 		dirrem->dm_state |= COMPLETE;
8409 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8410 			add_to_worklist(&dirrem->dm_list, 0);
8411 	}
8412 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8413 	    0, &inodedep) != 0)
8414 		if (inodedep->id_mkdiradd == dap)
8415 			inodedep->id_mkdiradd = NULL;
8416 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8417 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8418 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8419 			if (mkdir->md_diradd != dap)
8420 				continue;
8421 			dap->da_state &=
8422 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8423 			LIST_REMOVE(mkdir, md_mkdirs);
8424 			if (mkdir->md_state & ONWORKLIST)
8425 				WORKLIST_REMOVE(&mkdir->md_list);
8426 			if (mkdir->md_jaddref != NULL)
8427 				panic("free_diradd: Unexpected jaddref");
8428 			WORKITEM_FREE(mkdir, D_MKDIR);
8429 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8430 				break;
8431 		}
8432 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8433 			panic("free_diradd: unfound ref");
8434 	}
8435 	if (inodedep)
8436 		free_inodedep(inodedep);
8437 	/*
8438 	 * Free any journal segments waiting for the directory write.
8439 	 */
8440 	handle_jwork(&dap->da_jwork);
8441 	WORKITEM_FREE(dap, D_DIRADD);
8442 }
8443 
8444 /*
8445  * Directory entry removal dependencies.
8446  *
8447  * When removing a directory entry, the entry's inode pointer must be
8448  * zero'ed on disk before the corresponding inode's link count is decremented
8449  * (possibly freeing the inode for re-use). This dependency is handled by
8450  * updating the directory entry but delaying the inode count reduction until
8451  * after the directory block has been written to disk. After this point, the
8452  * inode count can be decremented whenever it is convenient.
8453  */
8454 
8455 /*
8456  * This routine should be called immediately after removing
8457  * a directory entry.  The inode's link count should not be
8458  * decremented by the calling procedure -- the soft updates
8459  * code will do this task when it is safe.
8460  */
8461 void
8462 softdep_setup_remove(bp, dp, ip, isrmdir)
8463 	struct buf *bp;		/* buffer containing directory block */
8464 	struct inode *dp;	/* inode for the directory being modified */
8465 	struct inode *ip;	/* inode for directory entry being removed */
8466 	int isrmdir;		/* indicates if doing RMDIR */
8467 {
8468 	struct dirrem *dirrem, *prevdirrem;
8469 	struct inodedep *inodedep;
8470 	int direct;
8471 
8472 	/*
8473 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8474 	 * newdirrem() to setup the full directory remove which requires
8475 	 * isrmdir > 1.
8476 	 */
8477 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8478 	/*
8479 	 * Add the dirrem to the inodedep's pending remove list for quick
8480 	 * discovery later.
8481 	 */
8482 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8483 	    &inodedep) == 0)
8484 		panic("softdep_setup_remove: Lost inodedep.");
8485 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8486 	dirrem->dm_state |= ONDEPLIST;
8487 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8488 
8489 	/*
8490 	 * If the COMPLETE flag is clear, then there were no active
8491 	 * entries and we want to roll back to a zeroed entry until
8492 	 * the new inode is committed to disk. If the COMPLETE flag is
8493 	 * set then we have deleted an entry that never made it to
8494 	 * disk. If the entry we deleted resulted from a name change,
8495 	 * then the old name still resides on disk. We cannot delete
8496 	 * its inode (returned to us in prevdirrem) until the zeroed
8497 	 * directory entry gets to disk. The new inode has never been
8498 	 * referenced on the disk, so can be deleted immediately.
8499 	 */
8500 	if ((dirrem->dm_state & COMPLETE) == 0) {
8501 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8502 		    dm_next);
8503 		FREE_LOCK(&lk);
8504 	} else {
8505 		if (prevdirrem != NULL)
8506 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8507 			    prevdirrem, dm_next);
8508 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8509 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8510 		FREE_LOCK(&lk);
8511 		if (direct)
8512 			handle_workitem_remove(dirrem, 0);
8513 	}
8514 }
8515 
8516 /*
8517  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8518  * pd_pendinghd list of a pagedep.
8519  */
8520 static struct diradd *
8521 diradd_lookup(pagedep, offset)
8522 	struct pagedep *pagedep;
8523 	int offset;
8524 {
8525 	struct diradd *dap;
8526 
8527 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8528 		if (dap->da_offset == offset)
8529 			return (dap);
8530 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8531 		if (dap->da_offset == offset)
8532 			return (dap);
8533 	return (NULL);
8534 }
8535 
8536 /*
8537  * Search for a .. diradd dependency in a directory that is being removed.
8538  * If the directory was renamed to a new parent we have a diradd rather
8539  * than a mkdir for the .. entry.  We need to cancel it now before
8540  * it is found in truncate().
8541  */
8542 static struct jremref *
8543 cancel_diradd_dotdot(ip, dirrem, jremref)
8544 	struct inode *ip;
8545 	struct dirrem *dirrem;
8546 	struct jremref *jremref;
8547 {
8548 	struct pagedep *pagedep;
8549 	struct diradd *dap;
8550 	struct worklist *wk;
8551 
8552 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8553 	    &pagedep) == 0)
8554 		return (jremref);
8555 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8556 	if (dap == NULL)
8557 		return (jremref);
8558 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8559 	/*
8560 	 * Mark any journal work as belonging to the parent so it is freed
8561 	 * with the .. reference.
8562 	 */
8563 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8564 		wk->wk_state |= MKDIR_PARENT;
8565 	return (NULL);
8566 }
8567 
8568 /*
8569  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8570  * replace it with a dirrem/diradd pair as a result of re-parenting a
8571  * directory.  This ensures that we don't simultaneously have a mkdir and
8572  * a diradd for the same .. entry.
8573  */
8574 static struct jremref *
8575 cancel_mkdir_dotdot(ip, dirrem, jremref)
8576 	struct inode *ip;
8577 	struct dirrem *dirrem;
8578 	struct jremref *jremref;
8579 {
8580 	struct inodedep *inodedep;
8581 	struct jaddref *jaddref;
8582 	struct mkdir *mkdir;
8583 	struct diradd *dap;
8584 
8585 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8586 	    &inodedep) == 0)
8587 		panic("cancel_mkdir_dotdot: Lost inodedep");
8588 	dap = inodedep->id_mkdiradd;
8589 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8590 		return (jremref);
8591 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8592 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8593 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8594 			break;
8595 	if (mkdir == NULL)
8596 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8597 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8598 		mkdir->md_jaddref = NULL;
8599 		jaddref->ja_state &= ~MKDIR_PARENT;
8600 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8601 		    &inodedep) == 0)
8602 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8603 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8604 			journal_jremref(dirrem, jremref, inodedep);
8605 			jremref = NULL;
8606 		}
8607 	}
8608 	if (mkdir->md_state & ONWORKLIST)
8609 		WORKLIST_REMOVE(&mkdir->md_list);
8610 	mkdir->md_state |= ALLCOMPLETE;
8611 	complete_mkdir(mkdir);
8612 	return (jremref);
8613 }
8614 
8615 static void
8616 journal_jremref(dirrem, jremref, inodedep)
8617 	struct dirrem *dirrem;
8618 	struct jremref *jremref;
8619 	struct inodedep *inodedep;
8620 {
8621 
8622 	if (inodedep == NULL)
8623 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8624 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8625 			panic("journal_jremref: Lost inodedep");
8626 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8627 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8628 	add_to_journal(&jremref->jr_list);
8629 }
8630 
8631 static void
8632 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8633 	struct dirrem *dirrem;
8634 	struct jremref *jremref;
8635 	struct jremref *dotremref;
8636 	struct jremref *dotdotremref;
8637 {
8638 	struct inodedep *inodedep;
8639 
8640 
8641 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8642 	    &inodedep) == 0)
8643 		panic("dirrem_journal: Lost inodedep");
8644 	journal_jremref(dirrem, jremref, inodedep);
8645 	if (dotremref)
8646 		journal_jremref(dirrem, dotremref, inodedep);
8647 	if (dotdotremref)
8648 		journal_jremref(dirrem, dotdotremref, NULL);
8649 }
8650 
8651 /*
8652  * Allocate a new dirrem if appropriate and return it along with
8653  * its associated pagedep. Called without a lock, returns with lock.
8654  */
8655 static struct dirrem *
8656 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8657 	struct buf *bp;		/* buffer containing directory block */
8658 	struct inode *dp;	/* inode for the directory being modified */
8659 	struct inode *ip;	/* inode for directory entry being removed */
8660 	int isrmdir;		/* indicates if doing RMDIR */
8661 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8662 {
8663 	int offset;
8664 	ufs_lbn_t lbn;
8665 	struct diradd *dap;
8666 	struct dirrem *dirrem;
8667 	struct pagedep *pagedep;
8668 	struct jremref *jremref;
8669 	struct jremref *dotremref;
8670 	struct jremref *dotdotremref;
8671 	struct vnode *dvp;
8672 
8673 	/*
8674 	 * Whiteouts have no deletion dependencies.
8675 	 */
8676 	if (ip == NULL)
8677 		panic("newdirrem: whiteout");
8678 	dvp = ITOV(dp);
8679 	/*
8680 	 * If we are over our limit, try to improve the situation.
8681 	 * Limiting the number of dirrem structures will also limit
8682 	 * the number of freefile and freeblks structures.
8683 	 */
8684 	ACQUIRE_LOCK(&lk);
8685 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8686 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8687 	FREE_LOCK(&lk);
8688 	dirrem = malloc(sizeof(struct dirrem),
8689 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8690 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8691 	LIST_INIT(&dirrem->dm_jremrefhd);
8692 	LIST_INIT(&dirrem->dm_jwork);
8693 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8694 	dirrem->dm_oldinum = ip->i_number;
8695 	*prevdirremp = NULL;
8696 	/*
8697 	 * Allocate remove reference structures to track journal write
8698 	 * dependencies.  We will always have one for the link and
8699 	 * when doing directories we will always have one more for dot.
8700 	 * When renaming a directory we skip the dotdot link change so
8701 	 * this is not needed.
8702 	 */
8703 	jremref = dotremref = dotdotremref = NULL;
8704 	if (DOINGSUJ(dvp)) {
8705 		if (isrmdir) {
8706 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8707 			    ip->i_effnlink + 2);
8708 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8709 			    ip->i_effnlink + 1);
8710 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8711 			    dp->i_effnlink + 1);
8712 			dotdotremref->jr_state |= MKDIR_PARENT;
8713 		} else
8714 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8715 			    ip->i_effnlink + 1);
8716 	}
8717 	ACQUIRE_LOCK(&lk);
8718 	lbn = lblkno(dp->i_fs, dp->i_offset);
8719 	offset = blkoff(dp->i_fs, dp->i_offset);
8720 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8721 	    &pagedep);
8722 	dirrem->dm_pagedep = pagedep;
8723 	dirrem->dm_offset = offset;
8724 	/*
8725 	 * If we're renaming a .. link to a new directory, cancel any
8726 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8727 	 * the jremref is preserved for any potential diradd in this
8728 	 * location.  This can not coincide with a rmdir.
8729 	 */
8730 	if (dp->i_offset == DOTDOT_OFFSET) {
8731 		if (isrmdir)
8732 			panic("newdirrem: .. directory change during remove?");
8733 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8734 	}
8735 	/*
8736 	 * If we're removing a directory search for the .. dependency now and
8737 	 * cancel it.  Any pending journal work will be added to the dirrem
8738 	 * to be completed when the workitem remove completes.
8739 	 */
8740 	if (isrmdir)
8741 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8742 	/*
8743 	 * Check for a diradd dependency for the same directory entry.
8744 	 * If present, then both dependencies become obsolete and can
8745 	 * be de-allocated.
8746 	 */
8747 	dap = diradd_lookup(pagedep, offset);
8748 	if (dap == NULL) {
8749 		/*
8750 		 * Link the jremref structures into the dirrem so they are
8751 		 * written prior to the pagedep.
8752 		 */
8753 		if (jremref)
8754 			dirrem_journal(dirrem, jremref, dotremref,
8755 			    dotdotremref);
8756 		return (dirrem);
8757 	}
8758 	/*
8759 	 * Must be ATTACHED at this point.
8760 	 */
8761 	if ((dap->da_state & ATTACHED) == 0)
8762 		panic("newdirrem: not ATTACHED");
8763 	if (dap->da_newinum != ip->i_number)
8764 		panic("newdirrem: inum %d should be %d",
8765 		    ip->i_number, dap->da_newinum);
8766 	/*
8767 	 * If we are deleting a changed name that never made it to disk,
8768 	 * then return the dirrem describing the previous inode (which
8769 	 * represents the inode currently referenced from this entry on disk).
8770 	 */
8771 	if ((dap->da_state & DIRCHG) != 0) {
8772 		*prevdirremp = dap->da_previous;
8773 		dap->da_state &= ~DIRCHG;
8774 		dap->da_pagedep = pagedep;
8775 	}
8776 	/*
8777 	 * We are deleting an entry that never made it to disk.
8778 	 * Mark it COMPLETE so we can delete its inode immediately.
8779 	 */
8780 	dirrem->dm_state |= COMPLETE;
8781 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8782 #ifdef SUJ_DEBUG
8783 	if (isrmdir == 0) {
8784 		struct worklist *wk;
8785 
8786 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8787 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8788 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8789 	}
8790 #endif
8791 
8792 	return (dirrem);
8793 }
8794 
8795 /*
8796  * Directory entry change dependencies.
8797  *
8798  * Changing an existing directory entry requires that an add operation
8799  * be completed first followed by a deletion. The semantics for the addition
8800  * are identical to the description of adding a new entry above except
8801  * that the rollback is to the old inode number rather than zero. Once
8802  * the addition dependency is completed, the removal is done as described
8803  * in the removal routine above.
8804  */
8805 
8806 /*
8807  * This routine should be called immediately after changing
8808  * a directory entry.  The inode's link count should not be
8809  * decremented by the calling procedure -- the soft updates
8810  * code will perform this task when it is safe.
8811  */
8812 void
8813 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8814 	struct buf *bp;		/* buffer containing directory block */
8815 	struct inode *dp;	/* inode for the directory being modified */
8816 	struct inode *ip;	/* inode for directory entry being removed */
8817 	ino_t newinum;		/* new inode number for changed entry */
8818 	int isrmdir;		/* indicates if doing RMDIR */
8819 {
8820 	int offset;
8821 	struct diradd *dap = NULL;
8822 	struct dirrem *dirrem, *prevdirrem;
8823 	struct pagedep *pagedep;
8824 	struct inodedep *inodedep;
8825 	struct jaddref *jaddref;
8826 	struct mount *mp;
8827 
8828 	offset = blkoff(dp->i_fs, dp->i_offset);
8829 	mp = UFSTOVFS(dp->i_ump);
8830 
8831 	/*
8832 	 * Whiteouts do not need diradd dependencies.
8833 	 */
8834 	if (newinum != WINO) {
8835 		dap = malloc(sizeof(struct diradd),
8836 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
8837 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
8838 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
8839 		dap->da_offset = offset;
8840 		dap->da_newinum = newinum;
8841 		LIST_INIT(&dap->da_jwork);
8842 	}
8843 
8844 	/*
8845 	 * Allocate a new dirrem and ACQUIRE_LOCK.
8846 	 */
8847 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8848 	pagedep = dirrem->dm_pagedep;
8849 	/*
8850 	 * The possible values for isrmdir:
8851 	 *	0 - non-directory file rename
8852 	 *	1 - directory rename within same directory
8853 	 *   inum - directory rename to new directory of given inode number
8854 	 * When renaming to a new directory, we are both deleting and
8855 	 * creating a new directory entry, so the link count on the new
8856 	 * directory should not change. Thus we do not need the followup
8857 	 * dirrem which is usually done in handle_workitem_remove. We set
8858 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
8859 	 * followup dirrem.
8860 	 */
8861 	if (isrmdir > 1)
8862 		dirrem->dm_state |= DIRCHG;
8863 
8864 	/*
8865 	 * Whiteouts have no additional dependencies,
8866 	 * so just put the dirrem on the correct list.
8867 	 */
8868 	if (newinum == WINO) {
8869 		if ((dirrem->dm_state & COMPLETE) == 0) {
8870 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
8871 			    dm_next);
8872 		} else {
8873 			dirrem->dm_dirinum = pagedep->pd_ino;
8874 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8875 				add_to_worklist(&dirrem->dm_list, 0);
8876 		}
8877 		FREE_LOCK(&lk);
8878 		return;
8879 	}
8880 	/*
8881 	 * Add the dirrem to the inodedep's pending remove list for quick
8882 	 * discovery later.  A valid nlinkdelta ensures that this lookup
8883 	 * will not fail.
8884 	 */
8885 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
8886 		panic("softdep_setup_directory_change: Lost inodedep.");
8887 	dirrem->dm_state |= ONDEPLIST;
8888 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8889 
8890 	/*
8891 	 * If the COMPLETE flag is clear, then there were no active
8892 	 * entries and we want to roll back to the previous inode until
8893 	 * the new inode is committed to disk. If the COMPLETE flag is
8894 	 * set, then we have deleted an entry that never made it to disk.
8895 	 * If the entry we deleted resulted from a name change, then the old
8896 	 * inode reference still resides on disk. Any rollback that we do
8897 	 * needs to be to that old inode (returned to us in prevdirrem). If
8898 	 * the entry we deleted resulted from a create, then there is
8899 	 * no entry on the disk, so we want to roll back to zero rather
8900 	 * than the uncommitted inode. In either of the COMPLETE cases we
8901 	 * want to immediately free the unwritten and unreferenced inode.
8902 	 */
8903 	if ((dirrem->dm_state & COMPLETE) == 0) {
8904 		dap->da_previous = dirrem;
8905 	} else {
8906 		if (prevdirrem != NULL) {
8907 			dap->da_previous = prevdirrem;
8908 		} else {
8909 			dap->da_state &= ~DIRCHG;
8910 			dap->da_pagedep = pagedep;
8911 		}
8912 		dirrem->dm_dirinum = pagedep->pd_ino;
8913 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8914 			add_to_worklist(&dirrem->dm_list, 0);
8915 	}
8916 	/*
8917 	 * Lookup the jaddref for this journal entry.  We must finish
8918 	 * initializing it and make the diradd write dependent on it.
8919 	 * If we're not journaling, put it on the id_bufwait list if the
8920 	 * inode is not yet written. If it is written, do the post-inode
8921 	 * write processing to put it on the id_pendinghd list.
8922 	 */
8923 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8924 	if (MOUNTEDSUJ(mp)) {
8925 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8926 		    inoreflst);
8927 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8928 		    ("softdep_setup_directory_change: bad jaddref %p",
8929 		    jaddref));
8930 		jaddref->ja_diroff = dp->i_offset;
8931 		jaddref->ja_diradd = dap;
8932 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8933 		    dap, da_pdlist);
8934 		add_to_journal(&jaddref->ja_list);
8935 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8936 		dap->da_state |= COMPLETE;
8937 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8938 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
8939 	} else {
8940 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8941 		    dap, da_pdlist);
8942 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8943 	}
8944 	/*
8945 	 * If we're making a new name for a directory that has not been
8946 	 * committed when need to move the dot and dotdot references to
8947 	 * this new name.
8948 	 */
8949 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
8950 		merge_diradd(inodedep, dap);
8951 	FREE_LOCK(&lk);
8952 }
8953 
8954 /*
8955  * Called whenever the link count on an inode is changed.
8956  * It creates an inode dependency so that the new reference(s)
8957  * to the inode cannot be committed to disk until the updated
8958  * inode has been written.
8959  */
8960 void
8961 softdep_change_linkcnt(ip)
8962 	struct inode *ip;	/* the inode with the increased link count */
8963 {
8964 	struct inodedep *inodedep;
8965 	int dflags;
8966 
8967 	ACQUIRE_LOCK(&lk);
8968 	dflags = DEPALLOC;
8969 	if (IS_SNAPSHOT(ip))
8970 		dflags |= NODELAY;
8971 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
8972 	if (ip->i_nlink < ip->i_effnlink)
8973 		panic("softdep_change_linkcnt: bad delta");
8974 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
8975 	FREE_LOCK(&lk);
8976 }
8977 
8978 /*
8979  * Attach a sbdep dependency to the superblock buf so that we can keep
8980  * track of the head of the linked list of referenced but unlinked inodes.
8981  */
8982 void
8983 softdep_setup_sbupdate(ump, fs, bp)
8984 	struct ufsmount *ump;
8985 	struct fs *fs;
8986 	struct buf *bp;
8987 {
8988 	struct sbdep *sbdep;
8989 	struct worklist *wk;
8990 
8991 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
8992 		return;
8993 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
8994 		if (wk->wk_type == D_SBDEP)
8995 			break;
8996 	if (wk != NULL)
8997 		return;
8998 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
8999 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9000 	sbdep->sb_fs = fs;
9001 	sbdep->sb_ump = ump;
9002 	ACQUIRE_LOCK(&lk);
9003 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9004 	FREE_LOCK(&lk);
9005 }
9006 
9007 /*
9008  * Return the first unlinked inodedep which is ready to be the head of the
9009  * list.  The inodedep and all those after it must have valid next pointers.
9010  */
9011 static struct inodedep *
9012 first_unlinked_inodedep(ump)
9013 	struct ufsmount *ump;
9014 {
9015 	struct inodedep *inodedep;
9016 	struct inodedep *idp;
9017 
9018 	mtx_assert(&lk, MA_OWNED);
9019 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9020 	    inodedep; inodedep = idp) {
9021 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9022 			return (NULL);
9023 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9024 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9025 			break;
9026 		if ((inodedep->id_state & UNLINKPREV) == 0)
9027 			break;
9028 	}
9029 	return (inodedep);
9030 }
9031 
9032 /*
9033  * Set the sujfree unlinked head pointer prior to writing a superblock.
9034  */
9035 static void
9036 initiate_write_sbdep(sbdep)
9037 	struct sbdep *sbdep;
9038 {
9039 	struct inodedep *inodedep;
9040 	struct fs *bpfs;
9041 	struct fs *fs;
9042 
9043 	bpfs = sbdep->sb_fs;
9044 	fs = sbdep->sb_ump->um_fs;
9045 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9046 	if (inodedep) {
9047 		fs->fs_sujfree = inodedep->id_ino;
9048 		inodedep->id_state |= UNLINKPREV;
9049 	} else
9050 		fs->fs_sujfree = 0;
9051 	bpfs->fs_sujfree = fs->fs_sujfree;
9052 }
9053 
9054 /*
9055  * After a superblock is written determine whether it must be written again
9056  * due to a changing unlinked list head.
9057  */
9058 static int
9059 handle_written_sbdep(sbdep, bp)
9060 	struct sbdep *sbdep;
9061 	struct buf *bp;
9062 {
9063 	struct inodedep *inodedep;
9064 	struct mount *mp;
9065 	struct fs *fs;
9066 
9067 	mtx_assert(&lk, MA_OWNED);
9068 	fs = sbdep->sb_fs;
9069 	mp = UFSTOVFS(sbdep->sb_ump);
9070 	/*
9071 	 * If the superblock doesn't match the in-memory list start over.
9072 	 */
9073 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9074 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9075 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9076 		bdirty(bp);
9077 		return (1);
9078 	}
9079 	WORKITEM_FREE(sbdep, D_SBDEP);
9080 	if (fs->fs_sujfree == 0)
9081 		return (0);
9082 	/*
9083 	 * Now that we have a record of this inode in stable store allow it
9084 	 * to be written to free up pending work.  Inodes may see a lot of
9085 	 * write activity after they are unlinked which we must not hold up.
9086 	 */
9087 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9088 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9089 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9090 			    inodedep, inodedep->id_state);
9091 		if (inodedep->id_state & UNLINKONLIST)
9092 			break;
9093 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9094 	}
9095 
9096 	return (0);
9097 }
9098 
9099 /*
9100  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9101  */
9102 static void
9103 unlinked_inodedep(mp, inodedep)
9104 	struct mount *mp;
9105 	struct inodedep *inodedep;
9106 {
9107 	struct ufsmount *ump;
9108 
9109 	mtx_assert(&lk, MA_OWNED);
9110 	if (MOUNTEDSUJ(mp) == 0)
9111 		return;
9112 	ump = VFSTOUFS(mp);
9113 	ump->um_fs->fs_fmod = 1;
9114 	if (inodedep->id_state & UNLINKED)
9115 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9116 	inodedep->id_state |= UNLINKED;
9117 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9118 }
9119 
9120 /*
9121  * Remove an inodedep from the unlinked inodedep list.  This may require
9122  * disk writes if the inode has made it that far.
9123  */
9124 static void
9125 clear_unlinked_inodedep(inodedep)
9126 	struct inodedep *inodedep;
9127 {
9128 	struct ufsmount *ump;
9129 	struct inodedep *idp;
9130 	struct inodedep *idn;
9131 	struct fs *fs;
9132 	struct buf *bp;
9133 	ino_t ino;
9134 	ino_t nino;
9135 	ino_t pino;
9136 	int error;
9137 
9138 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9139 	fs = ump->um_fs;
9140 	ino = inodedep->id_ino;
9141 	error = 0;
9142 	for (;;) {
9143 		mtx_assert(&lk, MA_OWNED);
9144 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9145 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9146 		    inodedep));
9147 		/*
9148 		 * If nothing has yet been written simply remove us from
9149 		 * the in memory list and return.  This is the most common
9150 		 * case where handle_workitem_remove() loses the final
9151 		 * reference.
9152 		 */
9153 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9154 			break;
9155 		/*
9156 		 * If we have a NEXT pointer and no PREV pointer we can simply
9157 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9158 		 * careful not to clear PREV if the superblock points at
9159 		 * next as well.
9160 		 */
9161 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9162 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9163 			if (idn && fs->fs_sujfree != idn->id_ino)
9164 				idn->id_state &= ~UNLINKPREV;
9165 			break;
9166 		}
9167 		/*
9168 		 * Here we have an inodedep which is actually linked into
9169 		 * the list.  We must remove it by forcing a write to the
9170 		 * link before us, whether it be the superblock or an inode.
9171 		 * Unfortunately the list may change while we're waiting
9172 		 * on the buf lock for either resource so we must loop until
9173 		 * we lock the right one.  If both the superblock and an
9174 		 * inode point to this inode we must clear the inode first
9175 		 * followed by the superblock.
9176 		 */
9177 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9178 		pino = 0;
9179 		if (idp && (idp->id_state & UNLINKNEXT))
9180 			pino = idp->id_ino;
9181 		FREE_LOCK(&lk);
9182 		if (pino == 0)
9183 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9184 			    (int)fs->fs_sbsize, 0, 0, 0);
9185 		else
9186 			error = bread(ump->um_devvp,
9187 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9188 			    (int)fs->fs_bsize, NOCRED, &bp);
9189 		ACQUIRE_LOCK(&lk);
9190 		if (error)
9191 			break;
9192 		/* If the list has changed restart the loop. */
9193 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9194 		nino = 0;
9195 		if (idp && (idp->id_state & UNLINKNEXT))
9196 			nino = idp->id_ino;
9197 		if (nino != pino ||
9198 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9199 			FREE_LOCK(&lk);
9200 			brelse(bp);
9201 			ACQUIRE_LOCK(&lk);
9202 			continue;
9203 		}
9204 		nino = 0;
9205 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9206 		if (idn)
9207 			nino = idn->id_ino;
9208 		/*
9209 		 * Remove us from the in memory list.  After this we cannot
9210 		 * access the inodedep.
9211 		 */
9212 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9213 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9214 		    inodedep));
9215 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9216 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9217 		FREE_LOCK(&lk);
9218 		/*
9219 		 * The predecessor's next pointer is manually updated here
9220 		 * so that the NEXT flag is never cleared for an element
9221 		 * that is in the list.
9222 		 */
9223 		if (pino == 0) {
9224 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9225 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9226 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9227 			    bp);
9228 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9229 			((struct ufs1_dinode *)bp->b_data +
9230 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9231 		else
9232 			((struct ufs2_dinode *)bp->b_data +
9233 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9234 		/*
9235 		 * If the bwrite fails we have no recourse to recover.  The
9236 		 * filesystem is corrupted already.
9237 		 */
9238 		bwrite(bp);
9239 		ACQUIRE_LOCK(&lk);
9240 		/*
9241 		 * If the superblock pointer still needs to be cleared force
9242 		 * a write here.
9243 		 */
9244 		if (fs->fs_sujfree == ino) {
9245 			FREE_LOCK(&lk);
9246 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9247 			    (int)fs->fs_sbsize, 0, 0, 0);
9248 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9249 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9250 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9251 			    bp);
9252 			bwrite(bp);
9253 			ACQUIRE_LOCK(&lk);
9254 		}
9255 
9256 		if (fs->fs_sujfree != ino)
9257 			return;
9258 		panic("clear_unlinked_inodedep: Failed to clear free head");
9259 	}
9260 	if (inodedep->id_ino == fs->fs_sujfree)
9261 		panic("clear_unlinked_inodedep: Freeing head of free list");
9262 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9263 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9264 	return;
9265 }
9266 
9267 /*
9268  * This workitem decrements the inode's link count.
9269  * If the link count reaches zero, the file is removed.
9270  */
9271 static int
9272 handle_workitem_remove(dirrem, flags)
9273 	struct dirrem *dirrem;
9274 	int flags;
9275 {
9276 	struct inodedep *inodedep;
9277 	struct workhead dotdotwk;
9278 	struct worklist *wk;
9279 	struct ufsmount *ump;
9280 	struct mount *mp;
9281 	struct vnode *vp;
9282 	struct inode *ip;
9283 	ino_t oldinum;
9284 
9285 	if (dirrem->dm_state & ONWORKLIST)
9286 		panic("handle_workitem_remove: dirrem %p still on worklist",
9287 		    dirrem);
9288 	oldinum = dirrem->dm_oldinum;
9289 	mp = dirrem->dm_list.wk_mp;
9290 	ump = VFSTOUFS(mp);
9291 	flags |= LK_EXCLUSIVE;
9292 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9293 		return (EBUSY);
9294 	ip = VTOI(vp);
9295 	ACQUIRE_LOCK(&lk);
9296 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9297 		panic("handle_workitem_remove: lost inodedep");
9298 	if (dirrem->dm_state & ONDEPLIST)
9299 		LIST_REMOVE(dirrem, dm_inonext);
9300 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9301 	    ("handle_workitem_remove:  Journal entries not written."));
9302 
9303 	/*
9304 	 * Move all dependencies waiting on the remove to complete
9305 	 * from the dirrem to the inode inowait list to be completed
9306 	 * after the inode has been updated and written to disk.  Any
9307 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9308 	 * is removed.
9309 	 */
9310 	LIST_INIT(&dotdotwk);
9311 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9312 		WORKLIST_REMOVE(wk);
9313 		if (wk->wk_state & MKDIR_PARENT) {
9314 			wk->wk_state &= ~MKDIR_PARENT;
9315 			WORKLIST_INSERT(&dotdotwk, wk);
9316 			continue;
9317 		}
9318 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9319 	}
9320 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9321 	/*
9322 	 * Normal file deletion.
9323 	 */
9324 	if ((dirrem->dm_state & RMDIR) == 0) {
9325 		ip->i_nlink--;
9326 		DIP_SET(ip, i_nlink, ip->i_nlink);
9327 		ip->i_flag |= IN_CHANGE;
9328 		if (ip->i_nlink < ip->i_effnlink)
9329 			panic("handle_workitem_remove: bad file delta");
9330 		if (ip->i_nlink == 0)
9331 			unlinked_inodedep(mp, inodedep);
9332 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9333 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9334 		    ("handle_workitem_remove: worklist not empty. %s",
9335 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9336 		WORKITEM_FREE(dirrem, D_DIRREM);
9337 		FREE_LOCK(&lk);
9338 		goto out;
9339 	}
9340 	/*
9341 	 * Directory deletion. Decrement reference count for both the
9342 	 * just deleted parent directory entry and the reference for ".".
9343 	 * Arrange to have the reference count on the parent decremented
9344 	 * to account for the loss of "..".
9345 	 */
9346 	ip->i_nlink -= 2;
9347 	DIP_SET(ip, i_nlink, ip->i_nlink);
9348 	ip->i_flag |= IN_CHANGE;
9349 	if (ip->i_nlink < ip->i_effnlink)
9350 		panic("handle_workitem_remove: bad dir delta");
9351 	if (ip->i_nlink == 0)
9352 		unlinked_inodedep(mp, inodedep);
9353 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9354 	/*
9355 	 * Rename a directory to a new parent. Since, we are both deleting
9356 	 * and creating a new directory entry, the link count on the new
9357 	 * directory should not change. Thus we skip the followup dirrem.
9358 	 */
9359 	if (dirrem->dm_state & DIRCHG) {
9360 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9361 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9362 		WORKITEM_FREE(dirrem, D_DIRREM);
9363 		FREE_LOCK(&lk);
9364 		goto out;
9365 	}
9366 	dirrem->dm_state = ONDEPLIST;
9367 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9368 	/*
9369 	 * Place the dirrem on the parent's diremhd list.
9370 	 */
9371 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9372 		panic("handle_workitem_remove: lost dir inodedep");
9373 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9374 	/*
9375 	 * If the allocated inode has never been written to disk, then
9376 	 * the on-disk inode is zero'ed and we can remove the file
9377 	 * immediately.  When journaling if the inode has been marked
9378 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9379 	 */
9380 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9381 	if (inodedep == NULL ||
9382 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9383 	    check_inode_unwritten(inodedep)) {
9384 		FREE_LOCK(&lk);
9385 		vput(vp);
9386 		return handle_workitem_remove(dirrem, flags);
9387 	}
9388 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9389 	FREE_LOCK(&lk);
9390 	ip->i_flag |= IN_CHANGE;
9391 out:
9392 	ffs_update(vp, 0);
9393 	vput(vp);
9394 	return (0);
9395 }
9396 
9397 /*
9398  * Inode de-allocation dependencies.
9399  *
9400  * When an inode's link count is reduced to zero, it can be de-allocated. We
9401  * found it convenient to postpone de-allocation until after the inode is
9402  * written to disk with its new link count (zero).  At this point, all of the
9403  * on-disk inode's block pointers are nullified and, with careful dependency
9404  * list ordering, all dependencies related to the inode will be satisfied and
9405  * the corresponding dependency structures de-allocated.  So, if/when the
9406  * inode is reused, there will be no mixing of old dependencies with new
9407  * ones.  This artificial dependency is set up by the block de-allocation
9408  * procedure above (softdep_setup_freeblocks) and completed by the
9409  * following procedure.
9410  */
9411 static void
9412 handle_workitem_freefile(freefile)
9413 	struct freefile *freefile;
9414 {
9415 	struct workhead wkhd;
9416 	struct fs *fs;
9417 	struct inodedep *idp;
9418 	struct ufsmount *ump;
9419 	int error;
9420 
9421 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9422 	fs = ump->um_fs;
9423 #ifdef DEBUG
9424 	ACQUIRE_LOCK(&lk);
9425 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9426 	FREE_LOCK(&lk);
9427 	if (error)
9428 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9429 #endif
9430 	UFS_LOCK(ump);
9431 	fs->fs_pendinginodes -= 1;
9432 	UFS_UNLOCK(ump);
9433 	LIST_INIT(&wkhd);
9434 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9435 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9436 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9437 		softdep_error("handle_workitem_freefile", error);
9438 	ACQUIRE_LOCK(&lk);
9439 	WORKITEM_FREE(freefile, D_FREEFILE);
9440 	FREE_LOCK(&lk);
9441 }
9442 
9443 
9444 /*
9445  * Helper function which unlinks marker element from work list and returns
9446  * the next element on the list.
9447  */
9448 static __inline struct worklist *
9449 markernext(struct worklist *marker)
9450 {
9451 	struct worklist *next;
9452 
9453 	next = LIST_NEXT(marker, wk_list);
9454 	LIST_REMOVE(marker, wk_list);
9455 	return next;
9456 }
9457 
9458 /*
9459  * Disk writes.
9460  *
9461  * The dependency structures constructed above are most actively used when file
9462  * system blocks are written to disk.  No constraints are placed on when a
9463  * block can be written, but unsatisfied update dependencies are made safe by
9464  * modifying (or replacing) the source memory for the duration of the disk
9465  * write.  When the disk write completes, the memory block is again brought
9466  * up-to-date.
9467  *
9468  * In-core inode structure reclamation.
9469  *
9470  * Because there are a finite number of "in-core" inode structures, they are
9471  * reused regularly.  By transferring all inode-related dependencies to the
9472  * in-memory inode block and indexing them separately (via "inodedep"s), we
9473  * can allow "in-core" inode structures to be reused at any time and avoid
9474  * any increase in contention.
9475  *
9476  * Called just before entering the device driver to initiate a new disk I/O.
9477  * The buffer must be locked, thus, no I/O completion operations can occur
9478  * while we are manipulating its associated dependencies.
9479  */
9480 static void
9481 softdep_disk_io_initiation(bp)
9482 	struct buf *bp;		/* structure describing disk write to occur */
9483 {
9484 	struct worklist *wk;
9485 	struct worklist marker;
9486 	struct inodedep *inodedep;
9487 	struct freeblks *freeblks;
9488 	struct jblkdep *jblkdep;
9489 	struct newblk *newblk;
9490 
9491 	/*
9492 	 * We only care about write operations. There should never
9493 	 * be dependencies for reads.
9494 	 */
9495 	if (bp->b_iocmd != BIO_WRITE)
9496 		panic("softdep_disk_io_initiation: not write");
9497 
9498 	if (bp->b_vflags & BV_BKGRDINPROG)
9499 		panic("softdep_disk_io_initiation: Writing buffer with "
9500 		    "background write in progress: %p", bp);
9501 
9502 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9503 	PHOLD(curproc);			/* Don't swap out kernel stack */
9504 
9505 	ACQUIRE_LOCK(&lk);
9506 	/*
9507 	 * Do any necessary pre-I/O processing.
9508 	 */
9509 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9510 	     wk = markernext(&marker)) {
9511 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9512 		switch (wk->wk_type) {
9513 
9514 		case D_PAGEDEP:
9515 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9516 			continue;
9517 
9518 		case D_INODEDEP:
9519 			inodedep = WK_INODEDEP(wk);
9520 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9521 				initiate_write_inodeblock_ufs1(inodedep, bp);
9522 			else
9523 				initiate_write_inodeblock_ufs2(inodedep, bp);
9524 			continue;
9525 
9526 		case D_INDIRDEP:
9527 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9528 			continue;
9529 
9530 		case D_BMSAFEMAP:
9531 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9532 			continue;
9533 
9534 		case D_JSEG:
9535 			WK_JSEG(wk)->js_buf = NULL;
9536 			continue;
9537 
9538 		case D_FREEBLKS:
9539 			freeblks = WK_FREEBLKS(wk);
9540 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9541 			/*
9542 			 * We have to wait for the freeblks to be journaled
9543 			 * before we can write an inodeblock with updated
9544 			 * pointers.  Be careful to arrange the marker so
9545 			 * we revisit the freeblks if it's not removed by
9546 			 * the first jwait().
9547 			 */
9548 			if (jblkdep != NULL) {
9549 				LIST_REMOVE(&marker, wk_list);
9550 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9551 				jwait(&jblkdep->jb_list, MNT_WAIT);
9552 			}
9553 			continue;
9554 		case D_ALLOCDIRECT:
9555 		case D_ALLOCINDIR:
9556 			/*
9557 			 * We have to wait for the jnewblk to be journaled
9558 			 * before we can write to a block if the contents
9559 			 * may be confused with an earlier file's indirect
9560 			 * at recovery time.  Handle the marker as described
9561 			 * above.
9562 			 */
9563 			newblk = WK_NEWBLK(wk);
9564 			if (newblk->nb_jnewblk != NULL &&
9565 			    indirblk_lookup(newblk->nb_list.wk_mp,
9566 			    newblk->nb_newblkno)) {
9567 				LIST_REMOVE(&marker, wk_list);
9568 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9569 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9570 			}
9571 			continue;
9572 
9573 		case D_SBDEP:
9574 			initiate_write_sbdep(WK_SBDEP(wk));
9575 			continue;
9576 
9577 		case D_MKDIR:
9578 		case D_FREEWORK:
9579 		case D_FREEDEP:
9580 		case D_JSEGDEP:
9581 			continue;
9582 
9583 		default:
9584 			panic("handle_disk_io_initiation: Unexpected type %s",
9585 			    TYPENAME(wk->wk_type));
9586 			/* NOTREACHED */
9587 		}
9588 	}
9589 	FREE_LOCK(&lk);
9590 	PRELE(curproc);			/* Allow swapout of kernel stack */
9591 }
9592 
9593 /*
9594  * Called from within the procedure above to deal with unsatisfied
9595  * allocation dependencies in a directory. The buffer must be locked,
9596  * thus, no I/O completion operations can occur while we are
9597  * manipulating its associated dependencies.
9598  */
9599 static void
9600 initiate_write_filepage(pagedep, bp)
9601 	struct pagedep *pagedep;
9602 	struct buf *bp;
9603 {
9604 	struct jremref *jremref;
9605 	struct jmvref *jmvref;
9606 	struct dirrem *dirrem;
9607 	struct diradd *dap;
9608 	struct direct *ep;
9609 	int i;
9610 
9611 	if (pagedep->pd_state & IOSTARTED) {
9612 		/*
9613 		 * This can only happen if there is a driver that does not
9614 		 * understand chaining. Here biodone will reissue the call
9615 		 * to strategy for the incomplete buffers.
9616 		 */
9617 		printf("initiate_write_filepage: already started\n");
9618 		return;
9619 	}
9620 	pagedep->pd_state |= IOSTARTED;
9621 	/*
9622 	 * Wait for all journal remove dependencies to hit the disk.
9623 	 * We can not allow any potentially conflicting directory adds
9624 	 * to be visible before removes and rollback is too difficult.
9625 	 * lk may be dropped and re-acquired, however we hold the buf
9626 	 * locked so the dependency can not go away.
9627 	 */
9628 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9629 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9630 			jwait(&jremref->jr_list, MNT_WAIT);
9631 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9632 		jwait(&jmvref->jm_list, MNT_WAIT);
9633 	for (i = 0; i < DAHASHSZ; i++) {
9634 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9635 			ep = (struct direct *)
9636 			    ((char *)bp->b_data + dap->da_offset);
9637 			if (ep->d_ino != dap->da_newinum)
9638 				panic("%s: dir inum %d != new %d",
9639 				    "initiate_write_filepage",
9640 				    ep->d_ino, dap->da_newinum);
9641 			if (dap->da_state & DIRCHG)
9642 				ep->d_ino = dap->da_previous->dm_oldinum;
9643 			else
9644 				ep->d_ino = 0;
9645 			dap->da_state &= ~ATTACHED;
9646 			dap->da_state |= UNDONE;
9647 		}
9648 	}
9649 }
9650 
9651 /*
9652  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9653  * Note that any bug fixes made to this routine must be done in the
9654  * version found below.
9655  *
9656  * Called from within the procedure above to deal with unsatisfied
9657  * allocation dependencies in an inodeblock. The buffer must be
9658  * locked, thus, no I/O completion operations can occur while we
9659  * are manipulating its associated dependencies.
9660  */
9661 static void
9662 initiate_write_inodeblock_ufs1(inodedep, bp)
9663 	struct inodedep *inodedep;
9664 	struct buf *bp;			/* The inode block */
9665 {
9666 	struct allocdirect *adp, *lastadp;
9667 	struct ufs1_dinode *dp;
9668 	struct ufs1_dinode *sip;
9669 	struct inoref *inoref;
9670 	struct fs *fs;
9671 	ufs_lbn_t i;
9672 #ifdef INVARIANTS
9673 	ufs_lbn_t prevlbn = 0;
9674 #endif
9675 	int deplist;
9676 
9677 	if (inodedep->id_state & IOSTARTED)
9678 		panic("initiate_write_inodeblock_ufs1: already started");
9679 	inodedep->id_state |= IOSTARTED;
9680 	fs = inodedep->id_fs;
9681 	dp = (struct ufs1_dinode *)bp->b_data +
9682 	    ino_to_fsbo(fs, inodedep->id_ino);
9683 
9684 	/*
9685 	 * If we're on the unlinked list but have not yet written our
9686 	 * next pointer initialize it here.
9687 	 */
9688 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9689 		struct inodedep *inon;
9690 
9691 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9692 		dp->di_freelink = inon ? inon->id_ino : 0;
9693 	}
9694 	/*
9695 	 * If the bitmap is not yet written, then the allocated
9696 	 * inode cannot be written to disk.
9697 	 */
9698 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9699 		if (inodedep->id_savedino1 != NULL)
9700 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9701 		FREE_LOCK(&lk);
9702 		sip = malloc(sizeof(struct ufs1_dinode),
9703 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9704 		ACQUIRE_LOCK(&lk);
9705 		inodedep->id_savedino1 = sip;
9706 		*inodedep->id_savedino1 = *dp;
9707 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9708 		dp->di_gen = inodedep->id_savedino1->di_gen;
9709 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9710 		return;
9711 	}
9712 	/*
9713 	 * If no dependencies, then there is nothing to roll back.
9714 	 */
9715 	inodedep->id_savedsize = dp->di_size;
9716 	inodedep->id_savedextsize = 0;
9717 	inodedep->id_savednlink = dp->di_nlink;
9718 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9719 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9720 		return;
9721 	/*
9722 	 * Revert the link count to that of the first unwritten journal entry.
9723 	 */
9724 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9725 	if (inoref)
9726 		dp->di_nlink = inoref->if_nlink;
9727 	/*
9728 	 * Set the dependencies to busy.
9729 	 */
9730 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9731 	     adp = TAILQ_NEXT(adp, ad_next)) {
9732 #ifdef INVARIANTS
9733 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9734 			panic("softdep_write_inodeblock: lbn order");
9735 		prevlbn = adp->ad_offset;
9736 		if (adp->ad_offset < NDADDR &&
9737 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9738 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9739 			    "softdep_write_inodeblock",
9740 			    (intmax_t)adp->ad_offset,
9741 			    dp->di_db[adp->ad_offset],
9742 			    (intmax_t)adp->ad_newblkno);
9743 		if (adp->ad_offset >= NDADDR &&
9744 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9745 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9746 			    "softdep_write_inodeblock",
9747 			    (intmax_t)adp->ad_offset - NDADDR,
9748 			    dp->di_ib[adp->ad_offset - NDADDR],
9749 			    (intmax_t)adp->ad_newblkno);
9750 		deplist |= 1 << adp->ad_offset;
9751 		if ((adp->ad_state & ATTACHED) == 0)
9752 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9753 			    adp->ad_state);
9754 #endif /* INVARIANTS */
9755 		adp->ad_state &= ~ATTACHED;
9756 		adp->ad_state |= UNDONE;
9757 	}
9758 	/*
9759 	 * The on-disk inode cannot claim to be any larger than the last
9760 	 * fragment that has been written. Otherwise, the on-disk inode
9761 	 * might have fragments that were not the last block in the file
9762 	 * which would corrupt the filesystem.
9763 	 */
9764 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9765 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9766 		if (adp->ad_offset >= NDADDR)
9767 			break;
9768 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9769 		/* keep going until hitting a rollback to a frag */
9770 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9771 			continue;
9772 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9773 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9774 #ifdef INVARIANTS
9775 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9776 				panic("softdep_write_inodeblock: lost dep1");
9777 #endif /* INVARIANTS */
9778 			dp->di_db[i] = 0;
9779 		}
9780 		for (i = 0; i < NIADDR; i++) {
9781 #ifdef INVARIANTS
9782 			if (dp->di_ib[i] != 0 &&
9783 			    (deplist & ((1 << NDADDR) << i)) == 0)
9784 				panic("softdep_write_inodeblock: lost dep2");
9785 #endif /* INVARIANTS */
9786 			dp->di_ib[i] = 0;
9787 		}
9788 		return;
9789 	}
9790 	/*
9791 	 * If we have zero'ed out the last allocated block of the file,
9792 	 * roll back the size to the last currently allocated block.
9793 	 * We know that this last allocated block is a full-sized as
9794 	 * we already checked for fragments in the loop above.
9795 	 */
9796 	if (lastadp != NULL &&
9797 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9798 		for (i = lastadp->ad_offset; i >= 0; i--)
9799 			if (dp->di_db[i] != 0)
9800 				break;
9801 		dp->di_size = (i + 1) * fs->fs_bsize;
9802 	}
9803 	/*
9804 	 * The only dependencies are for indirect blocks.
9805 	 *
9806 	 * The file size for indirect block additions is not guaranteed.
9807 	 * Such a guarantee would be non-trivial to achieve. The conventional
9808 	 * synchronous write implementation also does not make this guarantee.
9809 	 * Fsck should catch and fix discrepancies. Arguably, the file size
9810 	 * can be over-estimated without destroying integrity when the file
9811 	 * moves into the indirect blocks (i.e., is large). If we want to
9812 	 * postpone fsck, we are stuck with this argument.
9813 	 */
9814 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
9815 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
9816 }
9817 
9818 /*
9819  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
9820  * Note that any bug fixes made to this routine must be done in the
9821  * version found above.
9822  *
9823  * Called from within the procedure above to deal with unsatisfied
9824  * allocation dependencies in an inodeblock. The buffer must be
9825  * locked, thus, no I/O completion operations can occur while we
9826  * are manipulating its associated dependencies.
9827  */
9828 static void
9829 initiate_write_inodeblock_ufs2(inodedep, bp)
9830 	struct inodedep *inodedep;
9831 	struct buf *bp;			/* The inode block */
9832 {
9833 	struct allocdirect *adp, *lastadp;
9834 	struct ufs2_dinode *dp;
9835 	struct ufs2_dinode *sip;
9836 	struct inoref *inoref;
9837 	struct fs *fs;
9838 	ufs_lbn_t i;
9839 #ifdef INVARIANTS
9840 	ufs_lbn_t prevlbn = 0;
9841 #endif
9842 	int deplist;
9843 
9844 	if (inodedep->id_state & IOSTARTED)
9845 		panic("initiate_write_inodeblock_ufs2: already started");
9846 	inodedep->id_state |= IOSTARTED;
9847 	fs = inodedep->id_fs;
9848 	dp = (struct ufs2_dinode *)bp->b_data +
9849 	    ino_to_fsbo(fs, inodedep->id_ino);
9850 
9851 	/*
9852 	 * If we're on the unlinked list but have not yet written our
9853 	 * next pointer initialize it here.
9854 	 */
9855 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9856 		struct inodedep *inon;
9857 
9858 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9859 		dp->di_freelink = inon ? inon->id_ino : 0;
9860 	}
9861 	/*
9862 	 * If the bitmap is not yet written, then the allocated
9863 	 * inode cannot be written to disk.
9864 	 */
9865 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9866 		if (inodedep->id_savedino2 != NULL)
9867 			panic("initiate_write_inodeblock_ufs2: I/O underway");
9868 		FREE_LOCK(&lk);
9869 		sip = malloc(sizeof(struct ufs2_dinode),
9870 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9871 		ACQUIRE_LOCK(&lk);
9872 		inodedep->id_savedino2 = sip;
9873 		*inodedep->id_savedino2 = *dp;
9874 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
9875 		dp->di_gen = inodedep->id_savedino2->di_gen;
9876 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
9877 		return;
9878 	}
9879 	/*
9880 	 * If no dependencies, then there is nothing to roll back.
9881 	 */
9882 	inodedep->id_savedsize = dp->di_size;
9883 	inodedep->id_savedextsize = dp->di_extsize;
9884 	inodedep->id_savednlink = dp->di_nlink;
9885 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9886 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
9887 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9888 		return;
9889 	/*
9890 	 * Revert the link count to that of the first unwritten journal entry.
9891 	 */
9892 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9893 	if (inoref)
9894 		dp->di_nlink = inoref->if_nlink;
9895 
9896 	/*
9897 	 * Set the ext data dependencies to busy.
9898 	 */
9899 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9900 	     adp = TAILQ_NEXT(adp, ad_next)) {
9901 #ifdef INVARIANTS
9902 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9903 			panic("softdep_write_inodeblock: lbn order");
9904 		prevlbn = adp->ad_offset;
9905 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
9906 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9907 			    "softdep_write_inodeblock",
9908 			    (intmax_t)adp->ad_offset,
9909 			    (intmax_t)dp->di_extb[adp->ad_offset],
9910 			    (intmax_t)adp->ad_newblkno);
9911 		deplist |= 1 << adp->ad_offset;
9912 		if ((adp->ad_state & ATTACHED) == 0)
9913 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9914 			    adp->ad_state);
9915 #endif /* INVARIANTS */
9916 		adp->ad_state &= ~ATTACHED;
9917 		adp->ad_state |= UNDONE;
9918 	}
9919 	/*
9920 	 * The on-disk inode cannot claim to be any larger than the last
9921 	 * fragment that has been written. Otherwise, the on-disk inode
9922 	 * might have fragments that were not the last block in the ext
9923 	 * data which would corrupt the filesystem.
9924 	 */
9925 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9926 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9927 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
9928 		/* keep going until hitting a rollback to a frag */
9929 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9930 			continue;
9931 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9932 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
9933 #ifdef INVARIANTS
9934 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
9935 				panic("softdep_write_inodeblock: lost dep1");
9936 #endif /* INVARIANTS */
9937 			dp->di_extb[i] = 0;
9938 		}
9939 		lastadp = NULL;
9940 		break;
9941 	}
9942 	/*
9943 	 * If we have zero'ed out the last allocated block of the ext
9944 	 * data, roll back the size to the last currently allocated block.
9945 	 * We know that this last allocated block is a full-sized as
9946 	 * we already checked for fragments in the loop above.
9947 	 */
9948 	if (lastadp != NULL &&
9949 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9950 		for (i = lastadp->ad_offset; i >= 0; i--)
9951 			if (dp->di_extb[i] != 0)
9952 				break;
9953 		dp->di_extsize = (i + 1) * fs->fs_bsize;
9954 	}
9955 	/*
9956 	 * Set the file data dependencies to busy.
9957 	 */
9958 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9959 	     adp = TAILQ_NEXT(adp, ad_next)) {
9960 #ifdef INVARIANTS
9961 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9962 			panic("softdep_write_inodeblock: lbn order");
9963 		if ((adp->ad_state & ATTACHED) == 0)
9964 			panic("inodedep %p and adp %p not attached", inodedep, adp);
9965 		prevlbn = adp->ad_offset;
9966 		if (adp->ad_offset < NDADDR &&
9967 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9968 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9969 			    "softdep_write_inodeblock",
9970 			    (intmax_t)adp->ad_offset,
9971 			    (intmax_t)dp->di_db[adp->ad_offset],
9972 			    (intmax_t)adp->ad_newblkno);
9973 		if (adp->ad_offset >= NDADDR &&
9974 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9975 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
9976 			    "softdep_write_inodeblock:",
9977 			    (intmax_t)adp->ad_offset - NDADDR,
9978 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
9979 			    (intmax_t)adp->ad_newblkno);
9980 		deplist |= 1 << adp->ad_offset;
9981 		if ((adp->ad_state & ATTACHED) == 0)
9982 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9983 			    adp->ad_state);
9984 #endif /* INVARIANTS */
9985 		adp->ad_state &= ~ATTACHED;
9986 		adp->ad_state |= UNDONE;
9987 	}
9988 	/*
9989 	 * The on-disk inode cannot claim to be any larger than the last
9990 	 * fragment that has been written. Otherwise, the on-disk inode
9991 	 * might have fragments that were not the last block in the file
9992 	 * which would corrupt the filesystem.
9993 	 */
9994 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9995 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9996 		if (adp->ad_offset >= NDADDR)
9997 			break;
9998 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9999 		/* keep going until hitting a rollback to a frag */
10000 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10001 			continue;
10002 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10003 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10004 #ifdef INVARIANTS
10005 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10006 				panic("softdep_write_inodeblock: lost dep2");
10007 #endif /* INVARIANTS */
10008 			dp->di_db[i] = 0;
10009 		}
10010 		for (i = 0; i < NIADDR; i++) {
10011 #ifdef INVARIANTS
10012 			if (dp->di_ib[i] != 0 &&
10013 			    (deplist & ((1 << NDADDR) << i)) == 0)
10014 				panic("softdep_write_inodeblock: lost dep3");
10015 #endif /* INVARIANTS */
10016 			dp->di_ib[i] = 0;
10017 		}
10018 		return;
10019 	}
10020 	/*
10021 	 * If we have zero'ed out the last allocated block of the file,
10022 	 * roll back the size to the last currently allocated block.
10023 	 * We know that this last allocated block is a full-sized as
10024 	 * we already checked for fragments in the loop above.
10025 	 */
10026 	if (lastadp != NULL &&
10027 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10028 		for (i = lastadp->ad_offset; i >= 0; i--)
10029 			if (dp->di_db[i] != 0)
10030 				break;
10031 		dp->di_size = (i + 1) * fs->fs_bsize;
10032 	}
10033 	/*
10034 	 * The only dependencies are for indirect blocks.
10035 	 *
10036 	 * The file size for indirect block additions is not guaranteed.
10037 	 * Such a guarantee would be non-trivial to achieve. The conventional
10038 	 * synchronous write implementation also does not make this guarantee.
10039 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10040 	 * can be over-estimated without destroying integrity when the file
10041 	 * moves into the indirect blocks (i.e., is large). If we want to
10042 	 * postpone fsck, we are stuck with this argument.
10043 	 */
10044 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10045 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10046 }
10047 
10048 /*
10049  * Cancel an indirdep as a result of truncation.  Release all of the
10050  * children allocindirs and place their journal work on the appropriate
10051  * list.
10052  */
10053 static void
10054 cancel_indirdep(indirdep, bp, freeblks)
10055 	struct indirdep *indirdep;
10056 	struct buf *bp;
10057 	struct freeblks *freeblks;
10058 {
10059 	struct allocindir *aip;
10060 
10061 	/*
10062 	 * None of the indirect pointers will ever be visible,
10063 	 * so they can simply be tossed. GOINGAWAY ensures
10064 	 * that allocated pointers will be saved in the buffer
10065 	 * cache until they are freed. Note that they will
10066 	 * only be able to be found by their physical address
10067 	 * since the inode mapping the logical address will
10068 	 * be gone. The save buffer used for the safe copy
10069 	 * was allocated in setup_allocindir_phase2 using
10070 	 * the physical address so it could be used for this
10071 	 * purpose. Hence we swap the safe copy with the real
10072 	 * copy, allowing the safe copy to be freed and holding
10073 	 * on to the real copy for later use in indir_trunc.
10074 	 */
10075 	if (indirdep->ir_state & GOINGAWAY)
10076 		panic("cancel_indirdep: already gone");
10077 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10078 		indirdep->ir_state |= DEPCOMPLETE;
10079 		LIST_REMOVE(indirdep, ir_next);
10080 	}
10081 	indirdep->ir_state |= GOINGAWAY;
10082 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10083 	/*
10084 	 * Pass in bp for blocks still have journal writes
10085 	 * pending so we can cancel them on their own.
10086 	 */
10087 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10088 		cancel_allocindir(aip, bp, freeblks, 0);
10089 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10090 		cancel_allocindir(aip, NULL, freeblks, 0);
10091 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10092 		cancel_allocindir(aip, NULL, freeblks, 0);
10093 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10094 		cancel_allocindir(aip, NULL, freeblks, 0);
10095 	/*
10096 	 * If there are pending partial truncations we need to keep the
10097 	 * old block copy around until they complete.  This is because
10098 	 * the current b_data is not a perfect superset of the available
10099 	 * blocks.
10100 	 */
10101 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10102 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10103 	else
10104 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10105 	WORKLIST_REMOVE(&indirdep->ir_list);
10106 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10107 	indirdep->ir_bp = NULL;
10108 	indirdep->ir_freeblks = freeblks;
10109 }
10110 
10111 /*
10112  * Free an indirdep once it no longer has new pointers to track.
10113  */
10114 static void
10115 free_indirdep(indirdep)
10116 	struct indirdep *indirdep;
10117 {
10118 
10119 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10120 	    ("free_indirdep: Indir trunc list not empty."));
10121 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10122 	    ("free_indirdep: Complete head not empty."));
10123 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10124 	    ("free_indirdep: write head not empty."));
10125 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10126 	    ("free_indirdep: done head not empty."));
10127 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10128 	    ("free_indirdep: deplist head not empty."));
10129 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10130 	    ("free_indirdep: %p still on newblk list.", indirdep));
10131 	KASSERT(indirdep->ir_saveddata == NULL,
10132 	    ("free_indirdep: %p still has saved data.", indirdep));
10133 	if (indirdep->ir_state & ONWORKLIST)
10134 		WORKLIST_REMOVE(&indirdep->ir_list);
10135 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10136 }
10137 
10138 /*
10139  * Called before a write to an indirdep.  This routine is responsible for
10140  * rolling back pointers to a safe state which includes only those
10141  * allocindirs which have been completed.
10142  */
10143 static void
10144 initiate_write_indirdep(indirdep, bp)
10145 	struct indirdep *indirdep;
10146 	struct buf *bp;
10147 {
10148 
10149 	indirdep->ir_state |= IOSTARTED;
10150 	if (indirdep->ir_state & GOINGAWAY)
10151 		panic("disk_io_initiation: indirdep gone");
10152 	/*
10153 	 * If there are no remaining dependencies, this will be writing
10154 	 * the real pointers.
10155 	 */
10156 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10157 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10158 		return;
10159 	/*
10160 	 * Replace up-to-date version with safe version.
10161 	 */
10162 	if (indirdep->ir_saveddata == NULL) {
10163 		FREE_LOCK(&lk);
10164 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10165 		    M_SOFTDEP_FLAGS);
10166 		ACQUIRE_LOCK(&lk);
10167 	}
10168 	indirdep->ir_state &= ~ATTACHED;
10169 	indirdep->ir_state |= UNDONE;
10170 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10171 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10172 	    bp->b_bcount);
10173 }
10174 
10175 /*
10176  * Called when an inode has been cleared in a cg bitmap.  This finally
10177  * eliminates any canceled jaddrefs
10178  */
10179 void
10180 softdep_setup_inofree(mp, bp, ino, wkhd)
10181 	struct mount *mp;
10182 	struct buf *bp;
10183 	ino_t ino;
10184 	struct workhead *wkhd;
10185 {
10186 	struct worklist *wk, *wkn;
10187 	struct inodedep *inodedep;
10188 	uint8_t *inosused;
10189 	struct cg *cgp;
10190 	struct fs *fs;
10191 
10192 	ACQUIRE_LOCK(&lk);
10193 	fs = VFSTOUFS(mp)->um_fs;
10194 	cgp = (struct cg *)bp->b_data;
10195 	inosused = cg_inosused(cgp);
10196 	if (isset(inosused, ino % fs->fs_ipg))
10197 		panic("softdep_setup_inofree: inode %d not freed.", ino);
10198 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10199 		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
10200 		    ino, inodedep);
10201 	if (wkhd) {
10202 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10203 			if (wk->wk_type != D_JADDREF)
10204 				continue;
10205 			WORKLIST_REMOVE(wk);
10206 			/*
10207 			 * We can free immediately even if the jaddref
10208 			 * isn't attached in a background write as now
10209 			 * the bitmaps are reconciled.
10210 		 	 */
10211 			wk->wk_state |= COMPLETE | ATTACHED;
10212 			free_jaddref(WK_JADDREF(wk));
10213 		}
10214 		jwork_move(&bp->b_dep, wkhd);
10215 	}
10216 	FREE_LOCK(&lk);
10217 }
10218 
10219 
10220 /*
10221  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10222  * map.  Any dependencies waiting for the write to clear are added to the
10223  * buf's list and any jnewblks that are being canceled are discarded
10224  * immediately.
10225  */
10226 void
10227 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10228 	struct mount *mp;
10229 	struct buf *bp;
10230 	ufs2_daddr_t blkno;
10231 	int frags;
10232 	struct workhead *wkhd;
10233 {
10234 	struct bmsafemap *bmsafemap;
10235 	struct jnewblk *jnewblk;
10236 	struct worklist *wk;
10237 	struct fs *fs;
10238 #ifdef SUJ_DEBUG
10239 	uint8_t *blksfree;
10240 	struct cg *cgp;
10241 	ufs2_daddr_t jstart;
10242 	ufs2_daddr_t jend;
10243 	ufs2_daddr_t end;
10244 	long bno;
10245 	int i;
10246 #endif
10247 
10248 	ACQUIRE_LOCK(&lk);
10249 	/* Lookup the bmsafemap so we track when it is dirty. */
10250 	fs = VFSTOUFS(mp)->um_fs;
10251 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10252 	/*
10253 	 * Detach any jnewblks which have been canceled.  They must linger
10254 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10255 	 * an unjournaled allocation from hitting the disk.
10256 	 */
10257 	if (wkhd) {
10258 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10259 			WORKLIST_REMOVE(wk);
10260 			if (wk->wk_type != D_JNEWBLK) {
10261 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10262 				continue;
10263 			}
10264 			jnewblk = WK_JNEWBLK(wk);
10265 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10266 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10267 #ifdef SUJ_DEBUG
10268 			/*
10269 			 * Assert that this block is free in the bitmap
10270 			 * before we discard the jnewblk.
10271 			 */
10272 			cgp = (struct cg *)bp->b_data;
10273 			blksfree = cg_blksfree(cgp);
10274 			bno = dtogd(fs, jnewblk->jn_blkno);
10275 			for (i = jnewblk->jn_oldfrags;
10276 			    i < jnewblk->jn_frags; i++) {
10277 				if (isset(blksfree, bno + i))
10278 					continue;
10279 				panic("softdep_setup_blkfree: not free");
10280 			}
10281 #endif
10282 			/*
10283 			 * Even if it's not attached we can free immediately
10284 			 * as the new bitmap is correct.
10285 			 */
10286 			wk->wk_state |= COMPLETE | ATTACHED;
10287 			free_jnewblk(jnewblk);
10288 		}
10289 	}
10290 
10291 #ifdef SUJ_DEBUG
10292 	/*
10293 	 * Assert that we are not freeing a block which has an outstanding
10294 	 * allocation dependency.
10295 	 */
10296 	fs = VFSTOUFS(mp)->um_fs;
10297 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10298 	end = blkno + frags;
10299 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10300 		/*
10301 		 * Don't match against blocks that will be freed when the
10302 		 * background write is done.
10303 		 */
10304 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10305 		    (COMPLETE | DEPCOMPLETE))
10306 			continue;
10307 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10308 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10309 		if ((blkno >= jstart && blkno < jend) ||
10310 		    (end > jstart && end <= jend)) {
10311 			printf("state 0x%X %jd - %d %d dep %p\n",
10312 			    jnewblk->jn_state, jnewblk->jn_blkno,
10313 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10314 			    jnewblk->jn_dep);
10315 			panic("softdep_setup_blkfree: "
10316 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10317 			    blkno, end, frags, jstart, jend);
10318 		}
10319 	}
10320 #endif
10321 	FREE_LOCK(&lk);
10322 }
10323 
10324 /*
10325  * Revert a block allocation when the journal record that describes it
10326  * is not yet written.
10327  */
10328 int
10329 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10330 	struct jnewblk *jnewblk;
10331 	struct fs *fs;
10332 	struct cg *cgp;
10333 	uint8_t *blksfree;
10334 {
10335 	ufs1_daddr_t fragno;
10336 	long cgbno, bbase;
10337 	int frags, blk;
10338 	int i;
10339 
10340 	frags = 0;
10341 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10342 	/*
10343 	 * We have to test which frags need to be rolled back.  We may
10344 	 * be operating on a stale copy when doing background writes.
10345 	 */
10346 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10347 		if (isclr(blksfree, cgbno + i))
10348 			frags++;
10349 	if (frags == 0)
10350 		return (0);
10351 	/*
10352 	 * This is mostly ffs_blkfree() sans some validation and
10353 	 * superblock updates.
10354 	 */
10355 	if (frags == fs->fs_frag) {
10356 		fragno = fragstoblks(fs, cgbno);
10357 		ffs_setblock(fs, blksfree, fragno);
10358 		ffs_clusteracct(fs, cgp, fragno, 1);
10359 		cgp->cg_cs.cs_nbfree++;
10360 	} else {
10361 		cgbno += jnewblk->jn_oldfrags;
10362 		bbase = cgbno - fragnum(fs, cgbno);
10363 		/* Decrement the old frags.  */
10364 		blk = blkmap(fs, blksfree, bbase);
10365 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10366 		/* Deallocate the fragment */
10367 		for (i = 0; i < frags; i++)
10368 			setbit(blksfree, cgbno + i);
10369 		cgp->cg_cs.cs_nffree += frags;
10370 		/* Add back in counts associated with the new frags */
10371 		blk = blkmap(fs, blksfree, bbase);
10372 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10373                 /* If a complete block has been reassembled, account for it. */
10374 		fragno = fragstoblks(fs, bbase);
10375 		if (ffs_isblock(fs, blksfree, fragno)) {
10376 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10377 			ffs_clusteracct(fs, cgp, fragno, 1);
10378 			cgp->cg_cs.cs_nbfree++;
10379 		}
10380 	}
10381 	stat_jnewblk++;
10382 	jnewblk->jn_state &= ~ATTACHED;
10383 	jnewblk->jn_state |= UNDONE;
10384 
10385 	return (frags);
10386 }
10387 
10388 static void
10389 initiate_write_bmsafemap(bmsafemap, bp)
10390 	struct bmsafemap *bmsafemap;
10391 	struct buf *bp;			/* The cg block. */
10392 {
10393 	struct jaddref *jaddref;
10394 	struct jnewblk *jnewblk;
10395 	uint8_t *inosused;
10396 	uint8_t *blksfree;
10397 	struct cg *cgp;
10398 	struct fs *fs;
10399 	ino_t ino;
10400 
10401 	if (bmsafemap->sm_state & IOSTARTED)
10402 		panic("initiate_write_bmsafemap: Already started\n");
10403 	bmsafemap->sm_state |= IOSTARTED;
10404 	/*
10405 	 * Clear any inode allocations which are pending journal writes.
10406 	 */
10407 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10408 		cgp = (struct cg *)bp->b_data;
10409 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10410 		inosused = cg_inosused(cgp);
10411 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10412 			ino = jaddref->ja_ino % fs->fs_ipg;
10413 			/*
10414 			 * If this is a background copy the inode may not
10415 			 * be marked used yet.
10416 			 */
10417 			if (isset(inosused, ino)) {
10418 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10419 					cgp->cg_cs.cs_ndir--;
10420 				cgp->cg_cs.cs_nifree++;
10421 				clrbit(inosused, ino);
10422 				jaddref->ja_state &= ~ATTACHED;
10423 				jaddref->ja_state |= UNDONE;
10424 				stat_jaddref++;
10425 			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10426 				panic("initiate_write_bmsafemap: inode %d "
10427 				    "marked free", jaddref->ja_ino);
10428 		}
10429 	}
10430 	/*
10431 	 * Clear any block allocations which are pending journal writes.
10432 	 */
10433 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10434 		cgp = (struct cg *)bp->b_data;
10435 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10436 		blksfree = cg_blksfree(cgp);
10437 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10438 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10439 				continue;
10440 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10441 				panic("initiate_write_bmsafemap: block %jd "
10442 				    "marked free", jnewblk->jn_blkno);
10443 		}
10444 	}
10445 	/*
10446 	 * Move allocation lists to the written lists so they can be
10447 	 * cleared once the block write is complete.
10448 	 */
10449 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10450 	    inodedep, id_deps);
10451 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10452 	    newblk, nb_deps);
10453 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10454 	    wk_list);
10455 }
10456 
10457 /*
10458  * This routine is called during the completion interrupt
10459  * service routine for a disk write (from the procedure called
10460  * by the device driver to inform the filesystem caches of
10461  * a request completion).  It should be called early in this
10462  * procedure, before the block is made available to other
10463  * processes or other routines are called.
10464  *
10465  */
10466 static void
10467 softdep_disk_write_complete(bp)
10468 	struct buf *bp;		/* describes the completed disk write */
10469 {
10470 	struct worklist *wk;
10471 	struct worklist *owk;
10472 	struct workhead reattach;
10473 	struct freeblks *freeblks;
10474 	struct buf *sbp;
10475 
10476 	/*
10477 	 * If an error occurred while doing the write, then the data
10478 	 * has not hit the disk and the dependencies cannot be unrolled.
10479 	 */
10480 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10481 		return;
10482 	LIST_INIT(&reattach);
10483 	/*
10484 	 * This lock must not be released anywhere in this code segment.
10485 	 */
10486 	sbp = NULL;
10487 	owk = NULL;
10488 	ACQUIRE_LOCK(&lk);
10489 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10490 		WORKLIST_REMOVE(wk);
10491 		dep_write[wk->wk_type]++;
10492 		if (wk == owk)
10493 			panic("duplicate worklist: %p\n", wk);
10494 		owk = wk;
10495 		switch (wk->wk_type) {
10496 
10497 		case D_PAGEDEP:
10498 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10499 				WORKLIST_INSERT(&reattach, wk);
10500 			continue;
10501 
10502 		case D_INODEDEP:
10503 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10504 				WORKLIST_INSERT(&reattach, wk);
10505 			continue;
10506 
10507 		case D_BMSAFEMAP:
10508 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10509 				WORKLIST_INSERT(&reattach, wk);
10510 			continue;
10511 
10512 		case D_MKDIR:
10513 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10514 			continue;
10515 
10516 		case D_ALLOCDIRECT:
10517 			wk->wk_state |= COMPLETE;
10518 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10519 			continue;
10520 
10521 		case D_ALLOCINDIR:
10522 			wk->wk_state |= COMPLETE;
10523 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10524 			continue;
10525 
10526 		case D_INDIRDEP:
10527 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10528 				WORKLIST_INSERT(&reattach, wk);
10529 			continue;
10530 
10531 		case D_FREEBLKS:
10532 			wk->wk_state |= COMPLETE;
10533 			freeblks = WK_FREEBLKS(wk);
10534 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10535 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10536 				add_to_worklist(wk, WK_NODELAY);
10537 			continue;
10538 
10539 		case D_FREEWORK:
10540 			handle_written_freework(WK_FREEWORK(wk));
10541 			break;
10542 
10543 		case D_JSEGDEP:
10544 			free_jsegdep(WK_JSEGDEP(wk));
10545 			continue;
10546 
10547 		case D_JSEG:
10548 			handle_written_jseg(WK_JSEG(wk), bp);
10549 			continue;
10550 
10551 		case D_SBDEP:
10552 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10553 				WORKLIST_INSERT(&reattach, wk);
10554 			continue;
10555 
10556 		case D_FREEDEP:
10557 			free_freedep(WK_FREEDEP(wk));
10558 			continue;
10559 
10560 		default:
10561 			panic("handle_disk_write_complete: Unknown type %s",
10562 			    TYPENAME(wk->wk_type));
10563 			/* NOTREACHED */
10564 		}
10565 	}
10566 	/*
10567 	 * Reattach any requests that must be redone.
10568 	 */
10569 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10570 		WORKLIST_REMOVE(wk);
10571 		WORKLIST_INSERT(&bp->b_dep, wk);
10572 	}
10573 	FREE_LOCK(&lk);
10574 	if (sbp)
10575 		brelse(sbp);
10576 }
10577 
10578 /*
10579  * Called from within softdep_disk_write_complete above. Note that
10580  * this routine is always called from interrupt level with further
10581  * splbio interrupts blocked.
10582  */
10583 static void
10584 handle_allocdirect_partdone(adp, wkhd)
10585 	struct allocdirect *adp;	/* the completed allocdirect */
10586 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10587 {
10588 	struct allocdirectlst *listhead;
10589 	struct allocdirect *listadp;
10590 	struct inodedep *inodedep;
10591 	long bsize;
10592 
10593 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10594 		return;
10595 	/*
10596 	 * The on-disk inode cannot claim to be any larger than the last
10597 	 * fragment that has been written. Otherwise, the on-disk inode
10598 	 * might have fragments that were not the last block in the file
10599 	 * which would corrupt the filesystem. Thus, we cannot free any
10600 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10601 	 * these blocks must be rolled back to zero before writing the inode.
10602 	 * We check the currently active set of allocdirects in id_inoupdt
10603 	 * or id_extupdt as appropriate.
10604 	 */
10605 	inodedep = adp->ad_inodedep;
10606 	bsize = inodedep->id_fs->fs_bsize;
10607 	if (adp->ad_state & EXTDATA)
10608 		listhead = &inodedep->id_extupdt;
10609 	else
10610 		listhead = &inodedep->id_inoupdt;
10611 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10612 		/* found our block */
10613 		if (listadp == adp)
10614 			break;
10615 		/* continue if ad_oldlbn is not a fragment */
10616 		if (listadp->ad_oldsize == 0 ||
10617 		    listadp->ad_oldsize == bsize)
10618 			continue;
10619 		/* hit a fragment */
10620 		return;
10621 	}
10622 	/*
10623 	 * If we have reached the end of the current list without
10624 	 * finding the just finished dependency, then it must be
10625 	 * on the future dependency list. Future dependencies cannot
10626 	 * be freed until they are moved to the current list.
10627 	 */
10628 	if (listadp == NULL) {
10629 #ifdef DEBUG
10630 		if (adp->ad_state & EXTDATA)
10631 			listhead = &inodedep->id_newextupdt;
10632 		else
10633 			listhead = &inodedep->id_newinoupdt;
10634 		TAILQ_FOREACH(listadp, listhead, ad_next)
10635 			/* found our block */
10636 			if (listadp == adp)
10637 				break;
10638 		if (listadp == NULL)
10639 			panic("handle_allocdirect_partdone: lost dep");
10640 #endif /* DEBUG */
10641 		return;
10642 	}
10643 	/*
10644 	 * If we have found the just finished dependency, then queue
10645 	 * it along with anything that follows it that is complete.
10646 	 * Since the pointer has not yet been written in the inode
10647 	 * as the dependency prevents it, place the allocdirect on the
10648 	 * bufwait list where it will be freed once the pointer is
10649 	 * valid.
10650 	 */
10651 	if (wkhd == NULL)
10652 		wkhd = &inodedep->id_bufwait;
10653 	for (; adp; adp = listadp) {
10654 		listadp = TAILQ_NEXT(adp, ad_next);
10655 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10656 			return;
10657 		TAILQ_REMOVE(listhead, adp, ad_next);
10658 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10659 	}
10660 }
10661 
10662 /*
10663  * Called from within softdep_disk_write_complete above.  This routine
10664  * completes successfully written allocindirs.
10665  */
10666 static void
10667 handle_allocindir_partdone(aip)
10668 	struct allocindir *aip;		/* the completed allocindir */
10669 {
10670 	struct indirdep *indirdep;
10671 
10672 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10673 		return;
10674 	indirdep = aip->ai_indirdep;
10675 	LIST_REMOVE(aip, ai_next);
10676 	/*
10677 	 * Don't set a pointer while the buffer is undergoing IO or while
10678 	 * we have active truncations.
10679 	 */
10680 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10681 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10682 		return;
10683 	}
10684 	if (indirdep->ir_state & UFS1FMT)
10685 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10686 		    aip->ai_newblkno;
10687 	else
10688 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10689 		    aip->ai_newblkno;
10690 	/*
10691 	 * Await the pointer write before freeing the allocindir.
10692 	 */
10693 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10694 }
10695 
10696 /*
10697  * Release segments held on a jwork list.
10698  */
10699 static void
10700 handle_jwork(wkhd)
10701 	struct workhead *wkhd;
10702 {
10703 	struct worklist *wk;
10704 
10705 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10706 		WORKLIST_REMOVE(wk);
10707 		switch (wk->wk_type) {
10708 		case D_JSEGDEP:
10709 			free_jsegdep(WK_JSEGDEP(wk));
10710 			continue;
10711 		case D_FREEDEP:
10712 			free_freedep(WK_FREEDEP(wk));
10713 			continue;
10714 		case D_FREEFRAG:
10715 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10716 			WORKITEM_FREE(wk, D_FREEFRAG);
10717 			continue;
10718 		case D_FREEWORK:
10719 			handle_written_freework(WK_FREEWORK(wk));
10720 			continue;
10721 		default:
10722 			panic("handle_jwork: Unknown type %s\n",
10723 			    TYPENAME(wk->wk_type));
10724 		}
10725 	}
10726 }
10727 
10728 /*
10729  * Handle the bufwait list on an inode when it is safe to release items
10730  * held there.  This normally happens after an inode block is written but
10731  * may be delayed and handled later if there are pending journal items that
10732  * are not yet safe to be released.
10733  */
10734 static struct freefile *
10735 handle_bufwait(inodedep, refhd)
10736 	struct inodedep *inodedep;
10737 	struct workhead *refhd;
10738 {
10739 	struct jaddref *jaddref;
10740 	struct freefile *freefile;
10741 	struct worklist *wk;
10742 
10743 	freefile = NULL;
10744 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10745 		WORKLIST_REMOVE(wk);
10746 		switch (wk->wk_type) {
10747 		case D_FREEFILE:
10748 			/*
10749 			 * We defer adding freefile to the worklist
10750 			 * until all other additions have been made to
10751 			 * ensure that it will be done after all the
10752 			 * old blocks have been freed.
10753 			 */
10754 			if (freefile != NULL)
10755 				panic("handle_bufwait: freefile");
10756 			freefile = WK_FREEFILE(wk);
10757 			continue;
10758 
10759 		case D_MKDIR:
10760 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10761 			continue;
10762 
10763 		case D_DIRADD:
10764 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10765 			continue;
10766 
10767 		case D_FREEFRAG:
10768 			wk->wk_state |= COMPLETE;
10769 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10770 				add_to_worklist(wk, 0);
10771 			continue;
10772 
10773 		case D_DIRREM:
10774 			wk->wk_state |= COMPLETE;
10775 			add_to_worklist(wk, 0);
10776 			continue;
10777 
10778 		case D_ALLOCDIRECT:
10779 		case D_ALLOCINDIR:
10780 			free_newblk(WK_NEWBLK(wk));
10781 			continue;
10782 
10783 		case D_JNEWBLK:
10784 			wk->wk_state |= COMPLETE;
10785 			free_jnewblk(WK_JNEWBLK(wk));
10786 			continue;
10787 
10788 		/*
10789 		 * Save freed journal segments and add references on
10790 		 * the supplied list which will delay their release
10791 		 * until the cg bitmap is cleared on disk.
10792 		 */
10793 		case D_JSEGDEP:
10794 			if (refhd == NULL)
10795 				free_jsegdep(WK_JSEGDEP(wk));
10796 			else
10797 				WORKLIST_INSERT(refhd, wk);
10798 			continue;
10799 
10800 		case D_JADDREF:
10801 			jaddref = WK_JADDREF(wk);
10802 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10803 			    if_deps);
10804 			/*
10805 			 * Transfer any jaddrefs to the list to be freed with
10806 			 * the bitmap if we're handling a removed file.
10807 			 */
10808 			if (refhd == NULL) {
10809 				wk->wk_state |= COMPLETE;
10810 				free_jaddref(jaddref);
10811 			} else
10812 				WORKLIST_INSERT(refhd, wk);
10813 			continue;
10814 
10815 		default:
10816 			panic("handle_bufwait: Unknown type %p(%s)",
10817 			    wk, TYPENAME(wk->wk_type));
10818 			/* NOTREACHED */
10819 		}
10820 	}
10821 	return (freefile);
10822 }
10823 /*
10824  * Called from within softdep_disk_write_complete above to restore
10825  * in-memory inode block contents to their most up-to-date state. Note
10826  * that this routine is always called from interrupt level with further
10827  * splbio interrupts blocked.
10828  */
10829 static int
10830 handle_written_inodeblock(inodedep, bp)
10831 	struct inodedep *inodedep;
10832 	struct buf *bp;		/* buffer containing the inode block */
10833 {
10834 	struct freefile *freefile;
10835 	struct allocdirect *adp, *nextadp;
10836 	struct ufs1_dinode *dp1 = NULL;
10837 	struct ufs2_dinode *dp2 = NULL;
10838 	struct workhead wkhd;
10839 	int hadchanges, fstype;
10840 	ino_t freelink;
10841 
10842 	LIST_INIT(&wkhd);
10843 	hadchanges = 0;
10844 	freefile = NULL;
10845 	if ((inodedep->id_state & IOSTARTED) == 0)
10846 		panic("handle_written_inodeblock: not started");
10847 	inodedep->id_state &= ~IOSTARTED;
10848 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
10849 		fstype = UFS1;
10850 		dp1 = (struct ufs1_dinode *)bp->b_data +
10851 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10852 		freelink = dp1->di_freelink;
10853 	} else {
10854 		fstype = UFS2;
10855 		dp2 = (struct ufs2_dinode *)bp->b_data +
10856 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10857 		freelink = dp2->di_freelink;
10858 	}
10859 	/*
10860 	 * Leave this inodeblock dirty until it's in the list.
10861 	 */
10862 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
10863 		struct inodedep *inon;
10864 
10865 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10866 		if ((inon == NULL && freelink == 0) ||
10867 		    (inon && inon->id_ino == freelink)) {
10868 			if (inon)
10869 				inon->id_state |= UNLINKPREV;
10870 			inodedep->id_state |= UNLINKNEXT;
10871 		}
10872 		hadchanges = 1;
10873 	}
10874 	/*
10875 	 * If we had to rollback the inode allocation because of
10876 	 * bitmaps being incomplete, then simply restore it.
10877 	 * Keep the block dirty so that it will not be reclaimed until
10878 	 * all associated dependencies have been cleared and the
10879 	 * corresponding updates written to disk.
10880 	 */
10881 	if (inodedep->id_savedino1 != NULL) {
10882 		hadchanges = 1;
10883 		if (fstype == UFS1)
10884 			*dp1 = *inodedep->id_savedino1;
10885 		else
10886 			*dp2 = *inodedep->id_savedino2;
10887 		free(inodedep->id_savedino1, M_SAVEDINO);
10888 		inodedep->id_savedino1 = NULL;
10889 		if ((bp->b_flags & B_DELWRI) == 0)
10890 			stat_inode_bitmap++;
10891 		bdirty(bp);
10892 		/*
10893 		 * If the inode is clear here and GOINGAWAY it will never
10894 		 * be written.  Process the bufwait and clear any pending
10895 		 * work which may include the freefile.
10896 		 */
10897 		if (inodedep->id_state & GOINGAWAY)
10898 			goto bufwait;
10899 		return (1);
10900 	}
10901 	inodedep->id_state |= COMPLETE;
10902 	/*
10903 	 * Roll forward anything that had to be rolled back before
10904 	 * the inode could be updated.
10905 	 */
10906 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
10907 		nextadp = TAILQ_NEXT(adp, ad_next);
10908 		if (adp->ad_state & ATTACHED)
10909 			panic("handle_written_inodeblock: new entry");
10910 		if (fstype == UFS1) {
10911 			if (adp->ad_offset < NDADDR) {
10912 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10913 					panic("%s %s #%jd mismatch %d != %jd",
10914 					    "handle_written_inodeblock:",
10915 					    "direct pointer",
10916 					    (intmax_t)adp->ad_offset,
10917 					    dp1->di_db[adp->ad_offset],
10918 					    (intmax_t)adp->ad_oldblkno);
10919 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
10920 			} else {
10921 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
10922 					panic("%s: %s #%jd allocated as %d",
10923 					    "handle_written_inodeblock",
10924 					    "indirect pointer",
10925 					    (intmax_t)adp->ad_offset - NDADDR,
10926 					    dp1->di_ib[adp->ad_offset - NDADDR]);
10927 				dp1->di_ib[adp->ad_offset - NDADDR] =
10928 				    adp->ad_newblkno;
10929 			}
10930 		} else {
10931 			if (adp->ad_offset < NDADDR) {
10932 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10933 					panic("%s: %s #%jd %s %jd != %jd",
10934 					    "handle_written_inodeblock",
10935 					    "direct pointer",
10936 					    (intmax_t)adp->ad_offset, "mismatch",
10937 					    (intmax_t)dp2->di_db[adp->ad_offset],
10938 					    (intmax_t)adp->ad_oldblkno);
10939 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
10940 			} else {
10941 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
10942 					panic("%s: %s #%jd allocated as %jd",
10943 					    "handle_written_inodeblock",
10944 					    "indirect pointer",
10945 					    (intmax_t)adp->ad_offset - NDADDR,
10946 					    (intmax_t)
10947 					    dp2->di_ib[adp->ad_offset - NDADDR]);
10948 				dp2->di_ib[adp->ad_offset - NDADDR] =
10949 				    adp->ad_newblkno;
10950 			}
10951 		}
10952 		adp->ad_state &= ~UNDONE;
10953 		adp->ad_state |= ATTACHED;
10954 		hadchanges = 1;
10955 	}
10956 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
10957 		nextadp = TAILQ_NEXT(adp, ad_next);
10958 		if (adp->ad_state & ATTACHED)
10959 			panic("handle_written_inodeblock: new entry");
10960 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
10961 			panic("%s: direct pointers #%jd %s %jd != %jd",
10962 			    "handle_written_inodeblock",
10963 			    (intmax_t)adp->ad_offset, "mismatch",
10964 			    (intmax_t)dp2->di_extb[adp->ad_offset],
10965 			    (intmax_t)adp->ad_oldblkno);
10966 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
10967 		adp->ad_state &= ~UNDONE;
10968 		adp->ad_state |= ATTACHED;
10969 		hadchanges = 1;
10970 	}
10971 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
10972 		stat_direct_blk_ptrs++;
10973 	/*
10974 	 * Reset the file size to its most up-to-date value.
10975 	 */
10976 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
10977 		panic("handle_written_inodeblock: bad size");
10978 	if (inodedep->id_savednlink > LINK_MAX)
10979 		panic("handle_written_inodeblock: Invalid link count "
10980 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
10981 	if (fstype == UFS1) {
10982 		if (dp1->di_nlink != inodedep->id_savednlink) {
10983 			dp1->di_nlink = inodedep->id_savednlink;
10984 			hadchanges = 1;
10985 		}
10986 		if (dp1->di_size != inodedep->id_savedsize) {
10987 			dp1->di_size = inodedep->id_savedsize;
10988 			hadchanges = 1;
10989 		}
10990 	} else {
10991 		if (dp2->di_nlink != inodedep->id_savednlink) {
10992 			dp2->di_nlink = inodedep->id_savednlink;
10993 			hadchanges = 1;
10994 		}
10995 		if (dp2->di_size != inodedep->id_savedsize) {
10996 			dp2->di_size = inodedep->id_savedsize;
10997 			hadchanges = 1;
10998 		}
10999 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11000 			dp2->di_extsize = inodedep->id_savedextsize;
11001 			hadchanges = 1;
11002 		}
11003 	}
11004 	inodedep->id_savedsize = -1;
11005 	inodedep->id_savedextsize = -1;
11006 	inodedep->id_savednlink = -1;
11007 	/*
11008 	 * If there were any rollbacks in the inode block, then it must be
11009 	 * marked dirty so that its will eventually get written back in
11010 	 * its correct form.
11011 	 */
11012 	if (hadchanges)
11013 		bdirty(bp);
11014 bufwait:
11015 	/*
11016 	 * Process any allocdirects that completed during the update.
11017 	 */
11018 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11019 		handle_allocdirect_partdone(adp, &wkhd);
11020 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11021 		handle_allocdirect_partdone(adp, &wkhd);
11022 	/*
11023 	 * Process deallocations that were held pending until the
11024 	 * inode had been written to disk. Freeing of the inode
11025 	 * is delayed until after all blocks have been freed to
11026 	 * avoid creation of new <vfsid, inum, lbn> triples
11027 	 * before the old ones have been deleted.  Completely
11028 	 * unlinked inodes are not processed until the unlinked
11029 	 * inode list is written or the last reference is removed.
11030 	 */
11031 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11032 		freefile = handle_bufwait(inodedep, NULL);
11033 		if (freefile && !LIST_EMPTY(&wkhd)) {
11034 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11035 			freefile = NULL;
11036 		}
11037 	}
11038 	/*
11039 	 * Move rolled forward dependency completions to the bufwait list
11040 	 * now that those that were already written have been processed.
11041 	 */
11042 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11043 		panic("handle_written_inodeblock: bufwait but no changes");
11044 	jwork_move(&inodedep->id_bufwait, &wkhd);
11045 
11046 	if (freefile != NULL) {
11047 		/*
11048 		 * If the inode is goingaway it was never written.  Fake up
11049 		 * the state here so free_inodedep() can succeed.
11050 		 */
11051 		if (inodedep->id_state & GOINGAWAY)
11052 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11053 		if (free_inodedep(inodedep) == 0)
11054 			panic("handle_written_inodeblock: live inodedep %p",
11055 			    inodedep);
11056 		add_to_worklist(&freefile->fx_list, 0);
11057 		return (0);
11058 	}
11059 
11060 	/*
11061 	 * If no outstanding dependencies, free it.
11062 	 */
11063 	if (free_inodedep(inodedep) ||
11064 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11065 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11066 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11067 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11068 		return (0);
11069 	return (hadchanges);
11070 }
11071 
11072 static int
11073 handle_written_indirdep(indirdep, bp, bpp)
11074 	struct indirdep *indirdep;
11075 	struct buf *bp;
11076 	struct buf **bpp;
11077 {
11078 	struct allocindir *aip;
11079 	struct buf *sbp;
11080 	int chgs;
11081 
11082 	if (indirdep->ir_state & GOINGAWAY)
11083 		panic("handle_written_indirdep: indirdep gone");
11084 	if ((indirdep->ir_state & IOSTARTED) == 0)
11085 		panic("handle_written_indirdep: IO not started");
11086 	chgs = 0;
11087 	/*
11088 	 * If there were rollbacks revert them here.
11089 	 */
11090 	if (indirdep->ir_saveddata) {
11091 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11092 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11093 			free(indirdep->ir_saveddata, M_INDIRDEP);
11094 			indirdep->ir_saveddata = NULL;
11095 		}
11096 		chgs = 1;
11097 	}
11098 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11099 	indirdep->ir_state |= ATTACHED;
11100 	/*
11101 	 * Move allocindirs with written pointers to the completehd if
11102 	 * the indirdep's pointer is not yet written.  Otherwise
11103 	 * free them here.
11104 	 */
11105 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11106 		LIST_REMOVE(aip, ai_next);
11107 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11108 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11109 			    ai_next);
11110 			newblk_freefrag(&aip->ai_block);
11111 			continue;
11112 		}
11113 		free_newblk(&aip->ai_block);
11114 	}
11115 	/*
11116 	 * Move allocindirs that have finished dependency processing from
11117 	 * the done list to the write list after updating the pointers.
11118 	 */
11119 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11120 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11121 			handle_allocindir_partdone(aip);
11122 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11123 				panic("disk_write_complete: not gone");
11124 			chgs = 1;
11125 		}
11126 	}
11127 	/*
11128 	 * Preserve the indirdep if there were any changes or if it is not
11129 	 * yet valid on disk.
11130 	 */
11131 	if (chgs) {
11132 		stat_indir_blk_ptrs++;
11133 		bdirty(bp);
11134 		return (1);
11135 	}
11136 	/*
11137 	 * If there were no changes we can discard the savedbp and detach
11138 	 * ourselves from the buf.  We are only carrying completed pointers
11139 	 * in this case.
11140 	 */
11141 	sbp = indirdep->ir_savebp;
11142 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11143 	indirdep->ir_savebp = NULL;
11144 	indirdep->ir_bp = NULL;
11145 	if (*bpp != NULL)
11146 		panic("handle_written_indirdep: bp already exists.");
11147 	*bpp = sbp;
11148 	/*
11149 	 * The indirdep may not be freed until its parent points at it.
11150 	 */
11151 	if (indirdep->ir_state & DEPCOMPLETE)
11152 		free_indirdep(indirdep);
11153 
11154 	return (0);
11155 }
11156 
11157 /*
11158  * Process a diradd entry after its dependent inode has been written.
11159  * This routine must be called with splbio interrupts blocked.
11160  */
11161 static void
11162 diradd_inode_written(dap, inodedep)
11163 	struct diradd *dap;
11164 	struct inodedep *inodedep;
11165 {
11166 
11167 	dap->da_state |= COMPLETE;
11168 	complete_diradd(dap);
11169 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11170 }
11171 
11172 /*
11173  * Returns true if the bmsafemap will have rollbacks when written.  Must
11174  * only be called with lk and the buf lock on the cg held.
11175  */
11176 static int
11177 bmsafemap_rollbacks(bmsafemap)
11178 	struct bmsafemap *bmsafemap;
11179 {
11180 
11181 	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11182 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
11183 }
11184 
11185 /*
11186  * Re-apply an allocation when a cg write is complete.
11187  */
11188 static int
11189 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11190 	struct jnewblk *jnewblk;
11191 	struct fs *fs;
11192 	struct cg *cgp;
11193 	uint8_t *blksfree;
11194 {
11195 	ufs1_daddr_t fragno;
11196 	ufs2_daddr_t blkno;
11197 	long cgbno, bbase;
11198 	int frags, blk;
11199 	int i;
11200 
11201 	frags = 0;
11202 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11203 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11204 		if (isclr(blksfree, cgbno + i))
11205 			panic("jnewblk_rollforward: re-allocated fragment");
11206 		frags++;
11207 	}
11208 	if (frags == fs->fs_frag) {
11209 		blkno = fragstoblks(fs, cgbno);
11210 		ffs_clrblock(fs, blksfree, (long)blkno);
11211 		ffs_clusteracct(fs, cgp, blkno, -1);
11212 		cgp->cg_cs.cs_nbfree--;
11213 	} else {
11214 		bbase = cgbno - fragnum(fs, cgbno);
11215 		cgbno += jnewblk->jn_oldfrags;
11216                 /* If a complete block had been reassembled, account for it. */
11217 		fragno = fragstoblks(fs, bbase);
11218 		if (ffs_isblock(fs, blksfree, fragno)) {
11219 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11220 			ffs_clusteracct(fs, cgp, fragno, -1);
11221 			cgp->cg_cs.cs_nbfree--;
11222 		}
11223 		/* Decrement the old frags.  */
11224 		blk = blkmap(fs, blksfree, bbase);
11225 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11226 		/* Allocate the fragment */
11227 		for (i = 0; i < frags; i++)
11228 			clrbit(blksfree, cgbno + i);
11229 		cgp->cg_cs.cs_nffree -= frags;
11230 		/* Add back in counts associated with the new frags */
11231 		blk = blkmap(fs, blksfree, bbase);
11232 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11233 	}
11234 	return (frags);
11235 }
11236 
11237 /*
11238  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11239  * changes if it's not a background write.  Set all written dependencies
11240  * to DEPCOMPLETE and free the structure if possible.
11241  */
11242 static int
11243 handle_written_bmsafemap(bmsafemap, bp)
11244 	struct bmsafemap *bmsafemap;
11245 	struct buf *bp;
11246 {
11247 	struct newblk *newblk;
11248 	struct inodedep *inodedep;
11249 	struct jaddref *jaddref, *jatmp;
11250 	struct jnewblk *jnewblk, *jntmp;
11251 	struct ufsmount *ump;
11252 	uint8_t *inosused;
11253 	uint8_t *blksfree;
11254 	struct cg *cgp;
11255 	struct fs *fs;
11256 	ino_t ino;
11257 	int chgs;
11258 
11259 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11260 		panic("initiate_write_bmsafemap: Not started\n");
11261 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11262 	chgs = 0;
11263 	bmsafemap->sm_state &= ~IOSTARTED;
11264 	/*
11265 	 * Release journal work that was waiting on the write.
11266 	 */
11267 	handle_jwork(&bmsafemap->sm_freewr);
11268 
11269 	/*
11270 	 * Restore unwritten inode allocation pending jaddref writes.
11271 	 */
11272 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11273 		cgp = (struct cg *)bp->b_data;
11274 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11275 		inosused = cg_inosused(cgp);
11276 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11277 		    ja_bmdeps, jatmp) {
11278 			if ((jaddref->ja_state & UNDONE) == 0)
11279 				continue;
11280 			ino = jaddref->ja_ino % fs->fs_ipg;
11281 			if (isset(inosused, ino))
11282 				panic("handle_written_bmsafemap: "
11283 				    "re-allocated inode");
11284 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
11285 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11286 					cgp->cg_cs.cs_ndir++;
11287 				cgp->cg_cs.cs_nifree--;
11288 				setbit(inosused, ino);
11289 				chgs = 1;
11290 			}
11291 			jaddref->ja_state &= ~UNDONE;
11292 			jaddref->ja_state |= ATTACHED;
11293 			free_jaddref(jaddref);
11294 		}
11295 	}
11296 	/*
11297 	 * Restore any block allocations which are pending journal writes.
11298 	 */
11299 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11300 		cgp = (struct cg *)bp->b_data;
11301 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11302 		blksfree = cg_blksfree(cgp);
11303 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11304 		    jntmp) {
11305 			if ((jnewblk->jn_state & UNDONE) == 0)
11306 				continue;
11307 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0 &&
11308 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11309 				chgs = 1;
11310 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11311 			jnewblk->jn_state |= ATTACHED;
11312 			free_jnewblk(jnewblk);
11313 		}
11314 	}
11315 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11316 		newblk->nb_state |= DEPCOMPLETE;
11317 		newblk->nb_state &= ~ONDEPLIST;
11318 		newblk->nb_bmsafemap = NULL;
11319 		LIST_REMOVE(newblk, nb_deps);
11320 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11321 			handle_allocdirect_partdone(
11322 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11323 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11324 			handle_allocindir_partdone(
11325 			    WK_ALLOCINDIR(&newblk->nb_list));
11326 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11327 			panic("handle_written_bmsafemap: Unexpected type: %s",
11328 			    TYPENAME(newblk->nb_list.wk_type));
11329 	}
11330 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11331 		inodedep->id_state |= DEPCOMPLETE;
11332 		inodedep->id_state &= ~ONDEPLIST;
11333 		LIST_REMOVE(inodedep, id_deps);
11334 		inodedep->id_bmsafemap = NULL;
11335 	}
11336 	LIST_REMOVE(bmsafemap, sm_next);
11337 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11338 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11339 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11340 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11341 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11342 		LIST_REMOVE(bmsafemap, sm_hash);
11343 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11344 		return (0);
11345 	}
11346 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11347 	bdirty(bp);
11348 	return (1);
11349 }
11350 
11351 /*
11352  * Try to free a mkdir dependency.
11353  */
11354 static void
11355 complete_mkdir(mkdir)
11356 	struct mkdir *mkdir;
11357 {
11358 	struct diradd *dap;
11359 
11360 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11361 		return;
11362 	LIST_REMOVE(mkdir, md_mkdirs);
11363 	dap = mkdir->md_diradd;
11364 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11365 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11366 		dap->da_state |= DEPCOMPLETE;
11367 		complete_diradd(dap);
11368 	}
11369 	WORKITEM_FREE(mkdir, D_MKDIR);
11370 }
11371 
11372 /*
11373  * Handle the completion of a mkdir dependency.
11374  */
11375 static void
11376 handle_written_mkdir(mkdir, type)
11377 	struct mkdir *mkdir;
11378 	int type;
11379 {
11380 
11381 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11382 		panic("handle_written_mkdir: bad type");
11383 	mkdir->md_state |= COMPLETE;
11384 	complete_mkdir(mkdir);
11385 }
11386 
11387 static int
11388 free_pagedep(pagedep)
11389 	struct pagedep *pagedep;
11390 {
11391 	int i;
11392 
11393 	if (pagedep->pd_state & NEWBLOCK)
11394 		return (0);
11395 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11396 		return (0);
11397 	for (i = 0; i < DAHASHSZ; i++)
11398 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11399 			return (0);
11400 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11401 		return (0);
11402 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11403 		return (0);
11404 	if (pagedep->pd_state & ONWORKLIST)
11405 		WORKLIST_REMOVE(&pagedep->pd_list);
11406 	LIST_REMOVE(pagedep, pd_hash);
11407 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11408 
11409 	return (1);
11410 }
11411 
11412 /*
11413  * Called from within softdep_disk_write_complete above.
11414  * A write operation was just completed. Removed inodes can
11415  * now be freed and associated block pointers may be committed.
11416  * Note that this routine is always called from interrupt level
11417  * with further splbio interrupts blocked.
11418  */
11419 static int
11420 handle_written_filepage(pagedep, bp)
11421 	struct pagedep *pagedep;
11422 	struct buf *bp;		/* buffer containing the written page */
11423 {
11424 	struct dirrem *dirrem;
11425 	struct diradd *dap, *nextdap;
11426 	struct direct *ep;
11427 	int i, chgs;
11428 
11429 	if ((pagedep->pd_state & IOSTARTED) == 0)
11430 		panic("handle_written_filepage: not started");
11431 	pagedep->pd_state &= ~IOSTARTED;
11432 	/*
11433 	 * Process any directory removals that have been committed.
11434 	 */
11435 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11436 		LIST_REMOVE(dirrem, dm_next);
11437 		dirrem->dm_state |= COMPLETE;
11438 		dirrem->dm_dirinum = pagedep->pd_ino;
11439 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11440 		    ("handle_written_filepage: Journal entries not written."));
11441 		add_to_worklist(&dirrem->dm_list, 0);
11442 	}
11443 	/*
11444 	 * Free any directory additions that have been committed.
11445 	 * If it is a newly allocated block, we have to wait until
11446 	 * the on-disk directory inode claims the new block.
11447 	 */
11448 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11449 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11450 			free_diradd(dap, NULL);
11451 	/*
11452 	 * Uncommitted directory entries must be restored.
11453 	 */
11454 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11455 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11456 		     dap = nextdap) {
11457 			nextdap = LIST_NEXT(dap, da_pdlist);
11458 			if (dap->da_state & ATTACHED)
11459 				panic("handle_written_filepage: attached");
11460 			ep = (struct direct *)
11461 			    ((char *)bp->b_data + dap->da_offset);
11462 			ep->d_ino = dap->da_newinum;
11463 			dap->da_state &= ~UNDONE;
11464 			dap->da_state |= ATTACHED;
11465 			chgs = 1;
11466 			/*
11467 			 * If the inode referenced by the directory has
11468 			 * been written out, then the dependency can be
11469 			 * moved to the pending list.
11470 			 */
11471 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11472 				LIST_REMOVE(dap, da_pdlist);
11473 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11474 				    da_pdlist);
11475 			}
11476 		}
11477 	}
11478 	/*
11479 	 * If there were any rollbacks in the directory, then it must be
11480 	 * marked dirty so that its will eventually get written back in
11481 	 * its correct form.
11482 	 */
11483 	if (chgs) {
11484 		if ((bp->b_flags & B_DELWRI) == 0)
11485 			stat_dir_entry++;
11486 		bdirty(bp);
11487 		return (1);
11488 	}
11489 	/*
11490 	 * If we are not waiting for a new directory block to be
11491 	 * claimed by its inode, then the pagedep will be freed.
11492 	 * Otherwise it will remain to track any new entries on
11493 	 * the page in case they are fsync'ed.
11494 	 */
11495 	free_pagedep(pagedep);
11496 	return (0);
11497 }
11498 
11499 /*
11500  * Writing back in-core inode structures.
11501  *
11502  * The filesystem only accesses an inode's contents when it occupies an
11503  * "in-core" inode structure.  These "in-core" structures are separate from
11504  * the page frames used to cache inode blocks.  Only the latter are
11505  * transferred to/from the disk.  So, when the updated contents of the
11506  * "in-core" inode structure are copied to the corresponding in-memory inode
11507  * block, the dependencies are also transferred.  The following procedure is
11508  * called when copying a dirty "in-core" inode to a cached inode block.
11509  */
11510 
11511 /*
11512  * Called when an inode is loaded from disk. If the effective link count
11513  * differed from the actual link count when it was last flushed, then we
11514  * need to ensure that the correct effective link count is put back.
11515  */
11516 void
11517 softdep_load_inodeblock(ip)
11518 	struct inode *ip;	/* the "in_core" copy of the inode */
11519 {
11520 	struct inodedep *inodedep;
11521 
11522 	/*
11523 	 * Check for alternate nlink count.
11524 	 */
11525 	ip->i_effnlink = ip->i_nlink;
11526 	ACQUIRE_LOCK(&lk);
11527 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11528 	    &inodedep) == 0) {
11529 		FREE_LOCK(&lk);
11530 		return;
11531 	}
11532 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11533 	FREE_LOCK(&lk);
11534 }
11535 
11536 /*
11537  * This routine is called just before the "in-core" inode
11538  * information is to be copied to the in-memory inode block.
11539  * Recall that an inode block contains several inodes. If
11540  * the force flag is set, then the dependencies will be
11541  * cleared so that the update can always be made. Note that
11542  * the buffer is locked when this routine is called, so we
11543  * will never be in the middle of writing the inode block
11544  * to disk.
11545  */
11546 void
11547 softdep_update_inodeblock(ip, bp, waitfor)
11548 	struct inode *ip;	/* the "in_core" copy of the inode */
11549 	struct buf *bp;		/* the buffer containing the inode block */
11550 	int waitfor;		/* nonzero => update must be allowed */
11551 {
11552 	struct inodedep *inodedep;
11553 	struct inoref *inoref;
11554 	struct worklist *wk;
11555 	struct mount *mp;
11556 	struct buf *ibp;
11557 	struct fs *fs;
11558 	int error;
11559 
11560 	mp = UFSTOVFS(ip->i_ump);
11561 	fs = ip->i_fs;
11562 	/*
11563 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11564 	 * does not have access to the in-core ip so must write directly into
11565 	 * the inode block buffer when setting freelink.
11566 	 */
11567 	if (fs->fs_magic == FS_UFS1_MAGIC)
11568 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11569 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11570 	else
11571 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11572 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11573 	/*
11574 	 * If the effective link count is not equal to the actual link
11575 	 * count, then we must track the difference in an inodedep while
11576 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11577 	 * if there is no existing inodedep, then there are no dependencies
11578 	 * to track.
11579 	 */
11580 	ACQUIRE_LOCK(&lk);
11581 again:
11582 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11583 		FREE_LOCK(&lk);
11584 		if (ip->i_effnlink != ip->i_nlink)
11585 			panic("softdep_update_inodeblock: bad link count");
11586 		return;
11587 	}
11588 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11589 		panic("softdep_update_inodeblock: bad delta");
11590 	/*
11591 	 * If we're flushing all dependencies we must also move any waiting
11592 	 * for journal writes onto the bufwait list prior to I/O.
11593 	 */
11594 	if (waitfor) {
11595 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11596 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11597 			    == DEPCOMPLETE) {
11598 				jwait(&inoref->if_list, MNT_WAIT);
11599 				goto again;
11600 			}
11601 		}
11602 	}
11603 	/*
11604 	 * Changes have been initiated. Anything depending on these
11605 	 * changes cannot occur until this inode has been written.
11606 	 */
11607 	inodedep->id_state &= ~COMPLETE;
11608 	if ((inodedep->id_state & ONWORKLIST) == 0)
11609 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11610 	/*
11611 	 * Any new dependencies associated with the incore inode must
11612 	 * now be moved to the list associated with the buffer holding
11613 	 * the in-memory copy of the inode. Once merged process any
11614 	 * allocdirects that are completed by the merger.
11615 	 */
11616 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11617 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11618 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11619 		    NULL);
11620 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11621 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11622 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11623 		    NULL);
11624 	/*
11625 	 * Now that the inode has been pushed into the buffer, the
11626 	 * operations dependent on the inode being written to disk
11627 	 * can be moved to the id_bufwait so that they will be
11628 	 * processed when the buffer I/O completes.
11629 	 */
11630 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11631 		WORKLIST_REMOVE(wk);
11632 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11633 	}
11634 	/*
11635 	 * Newly allocated inodes cannot be written until the bitmap
11636 	 * that allocates them have been written (indicated by
11637 	 * DEPCOMPLETE being set in id_state). If we are doing a
11638 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11639 	 * to be written so that the update can be done.
11640 	 */
11641 	if (waitfor == 0) {
11642 		FREE_LOCK(&lk);
11643 		return;
11644 	}
11645 retry:
11646 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11647 		FREE_LOCK(&lk);
11648 		return;
11649 	}
11650 	ibp = inodedep->id_bmsafemap->sm_buf;
11651 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11652 	if (ibp == NULL) {
11653 		/*
11654 		 * If ibp came back as NULL, the dependency could have been
11655 		 * freed while we slept.  Look it up again, and check to see
11656 		 * that it has completed.
11657 		 */
11658 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11659 			goto retry;
11660 		FREE_LOCK(&lk);
11661 		return;
11662 	}
11663 	FREE_LOCK(&lk);
11664 	if ((error = bwrite(ibp)) != 0)
11665 		softdep_error("softdep_update_inodeblock: bwrite", error);
11666 }
11667 
11668 /*
11669  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11670  * old inode dependency list (such as id_inoupdt). This routine must be
11671  * called with splbio interrupts blocked.
11672  */
11673 static void
11674 merge_inode_lists(newlisthead, oldlisthead)
11675 	struct allocdirectlst *newlisthead;
11676 	struct allocdirectlst *oldlisthead;
11677 {
11678 	struct allocdirect *listadp, *newadp;
11679 
11680 	newadp = TAILQ_FIRST(newlisthead);
11681 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11682 		if (listadp->ad_offset < newadp->ad_offset) {
11683 			listadp = TAILQ_NEXT(listadp, ad_next);
11684 			continue;
11685 		}
11686 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11687 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11688 		if (listadp->ad_offset == newadp->ad_offset) {
11689 			allocdirect_merge(oldlisthead, newadp,
11690 			    listadp);
11691 			listadp = newadp;
11692 		}
11693 		newadp = TAILQ_FIRST(newlisthead);
11694 	}
11695 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11696 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11697 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11698 	}
11699 }
11700 
11701 /*
11702  * If we are doing an fsync, then we must ensure that any directory
11703  * entries for the inode have been written after the inode gets to disk.
11704  */
11705 int
11706 softdep_fsync(vp)
11707 	struct vnode *vp;	/* the "in_core" copy of the inode */
11708 {
11709 	struct inodedep *inodedep;
11710 	struct pagedep *pagedep;
11711 	struct inoref *inoref;
11712 	struct worklist *wk;
11713 	struct diradd *dap;
11714 	struct mount *mp;
11715 	struct vnode *pvp;
11716 	struct inode *ip;
11717 	struct buf *bp;
11718 	struct fs *fs;
11719 	struct thread *td = curthread;
11720 	int error, flushparent, pagedep_new_block;
11721 	ino_t parentino;
11722 	ufs_lbn_t lbn;
11723 
11724 	ip = VTOI(vp);
11725 	fs = ip->i_fs;
11726 	mp = vp->v_mount;
11727 	ACQUIRE_LOCK(&lk);
11728 restart:
11729 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11730 		FREE_LOCK(&lk);
11731 		return (0);
11732 	}
11733 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11734 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11735 		    == DEPCOMPLETE) {
11736 			jwait(&inoref->if_list, MNT_WAIT);
11737 			goto restart;
11738 		}
11739 	}
11740 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11741 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11742 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11743 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11744 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11745 		panic("softdep_fsync: pending ops %p", inodedep);
11746 	for (error = 0, flushparent = 0; ; ) {
11747 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11748 			break;
11749 		if (wk->wk_type != D_DIRADD)
11750 			panic("softdep_fsync: Unexpected type %s",
11751 			    TYPENAME(wk->wk_type));
11752 		dap = WK_DIRADD(wk);
11753 		/*
11754 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11755 		 * dependency or is contained in a newly allocated block.
11756 		 */
11757 		if (dap->da_state & DIRCHG)
11758 			pagedep = dap->da_previous->dm_pagedep;
11759 		else
11760 			pagedep = dap->da_pagedep;
11761 		parentino = pagedep->pd_ino;
11762 		lbn = pagedep->pd_lbn;
11763 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11764 			panic("softdep_fsync: dirty");
11765 		if ((dap->da_state & MKDIR_PARENT) ||
11766 		    (pagedep->pd_state & NEWBLOCK))
11767 			flushparent = 1;
11768 		else
11769 			flushparent = 0;
11770 		/*
11771 		 * If we are being fsync'ed as part of vgone'ing this vnode,
11772 		 * then we will not be able to release and recover the
11773 		 * vnode below, so we just have to give up on writing its
11774 		 * directory entry out. It will eventually be written, just
11775 		 * not now, but then the user was not asking to have it
11776 		 * written, so we are not breaking any promises.
11777 		 */
11778 		if (vp->v_iflag & VI_DOOMED)
11779 			break;
11780 		/*
11781 		 * We prevent deadlock by always fetching inodes from the
11782 		 * root, moving down the directory tree. Thus, when fetching
11783 		 * our parent directory, we first try to get the lock. If
11784 		 * that fails, we must unlock ourselves before requesting
11785 		 * the lock on our parent. See the comment in ufs_lookup
11786 		 * for details on possible races.
11787 		 */
11788 		FREE_LOCK(&lk);
11789 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11790 		    FFSV_FORCEINSMQ)) {
11791 			error = vfs_busy(mp, MBF_NOWAIT);
11792 			if (error != 0) {
11793 				vfs_ref(mp);
11794 				VOP_UNLOCK(vp, 0);
11795 				error = vfs_busy(mp, 0);
11796 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11797 				vfs_rel(mp);
11798 				if (error != 0)
11799 					return (ENOENT);
11800 				if (vp->v_iflag & VI_DOOMED) {
11801 					vfs_unbusy(mp);
11802 					return (ENOENT);
11803 				}
11804 			}
11805 			VOP_UNLOCK(vp, 0);
11806 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
11807 			    &pvp, FFSV_FORCEINSMQ);
11808 			vfs_unbusy(mp);
11809 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11810 			if (vp->v_iflag & VI_DOOMED) {
11811 				if (error == 0)
11812 					vput(pvp);
11813 				error = ENOENT;
11814 			}
11815 			if (error != 0)
11816 				return (error);
11817 		}
11818 		/*
11819 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
11820 		 * that are contained in direct blocks will be resolved by
11821 		 * doing a ffs_update. Pagedeps contained in indirect blocks
11822 		 * may require a complete sync'ing of the directory. So, we
11823 		 * try the cheap and fast ffs_update first, and if that fails,
11824 		 * then we do the slower ffs_syncvnode of the directory.
11825 		 */
11826 		if (flushparent) {
11827 			int locked;
11828 
11829 			if ((error = ffs_update(pvp, 1)) != 0) {
11830 				vput(pvp);
11831 				return (error);
11832 			}
11833 			ACQUIRE_LOCK(&lk);
11834 			locked = 1;
11835 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
11836 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
11837 					if (wk->wk_type != D_DIRADD)
11838 						panic("softdep_fsync: Unexpected type %s",
11839 						      TYPENAME(wk->wk_type));
11840 					dap = WK_DIRADD(wk);
11841 					if (dap->da_state & DIRCHG)
11842 						pagedep = dap->da_previous->dm_pagedep;
11843 					else
11844 						pagedep = dap->da_pagedep;
11845 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
11846 					FREE_LOCK(&lk);
11847 					locked = 0;
11848 					if (pagedep_new_block && (error =
11849 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
11850 						vput(pvp);
11851 						return (error);
11852 					}
11853 				}
11854 			}
11855 			if (locked)
11856 				FREE_LOCK(&lk);
11857 		}
11858 		/*
11859 		 * Flush directory page containing the inode's name.
11860 		 */
11861 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
11862 		    &bp);
11863 		if (error == 0)
11864 			error = bwrite(bp);
11865 		else
11866 			brelse(bp);
11867 		vput(pvp);
11868 		if (error != 0)
11869 			return (error);
11870 		ACQUIRE_LOCK(&lk);
11871 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
11872 			break;
11873 	}
11874 	FREE_LOCK(&lk);
11875 	return (0);
11876 }
11877 
11878 /*
11879  * Flush all the dirty bitmaps associated with the block device
11880  * before flushing the rest of the dirty blocks so as to reduce
11881  * the number of dependencies that will have to be rolled back.
11882  *
11883  * XXX Unused?
11884  */
11885 void
11886 softdep_fsync_mountdev(vp)
11887 	struct vnode *vp;
11888 {
11889 	struct buf *bp, *nbp;
11890 	struct worklist *wk;
11891 	struct bufobj *bo;
11892 
11893 	if (!vn_isdisk(vp, NULL))
11894 		panic("softdep_fsync_mountdev: vnode not a disk");
11895 	bo = &vp->v_bufobj;
11896 restart:
11897 	BO_LOCK(bo);
11898 	ACQUIRE_LOCK(&lk);
11899 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
11900 		/*
11901 		 * If it is already scheduled, skip to the next buffer.
11902 		 */
11903 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
11904 			continue;
11905 
11906 		if ((bp->b_flags & B_DELWRI) == 0)
11907 			panic("softdep_fsync_mountdev: not dirty");
11908 		/*
11909 		 * We are only interested in bitmaps with outstanding
11910 		 * dependencies.
11911 		 */
11912 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
11913 		    wk->wk_type != D_BMSAFEMAP ||
11914 		    (bp->b_vflags & BV_BKGRDINPROG)) {
11915 			BUF_UNLOCK(bp);
11916 			continue;
11917 		}
11918 		FREE_LOCK(&lk);
11919 		BO_UNLOCK(bo);
11920 		bremfree(bp);
11921 		(void) bawrite(bp);
11922 		goto restart;
11923 	}
11924 	FREE_LOCK(&lk);
11925 	drain_output(vp);
11926 	BO_UNLOCK(bo);
11927 }
11928 
11929 /*
11930  * Sync all cylinder groups that were dirty at the time this function is
11931  * called.  Newly dirtied cgs will be inserted before the sintenel.  This
11932  * is used to flush freedep activity that may be holding up writes to a
11933  * indirect block.
11934  */
11935 static int
11936 sync_cgs(mp, waitfor)
11937 	struct mount *mp;
11938 	int waitfor;
11939 {
11940 	struct bmsafemap *bmsafemap;
11941 	struct bmsafemap *sintenel;
11942 	struct ufsmount *ump;
11943 	struct buf *bp;
11944 	int error;
11945 
11946 	sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
11947 	sintenel->sm_cg = -1;
11948 	ump = VFSTOUFS(mp);
11949 	error = 0;
11950 	ACQUIRE_LOCK(&lk);
11951 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next);
11952 	for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL;
11953 	    bmsafemap = LIST_NEXT(sintenel, sm_next)) {
11954 		/* Skip sintenels and cgs with no work to release. */
11955 		if (bmsafemap->sm_cg == -1 ||
11956 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
11957 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
11958 			LIST_REMOVE(sintenel, sm_next);
11959 			LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11960 			continue;
11961 		}
11962 		/*
11963 		 * If we don't get the lock and we're waiting try again, if
11964 		 * not move on to the next buf and try to sync it.
11965 		 */
11966 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
11967 		if (bp == NULL && waitfor == MNT_WAIT)
11968 			continue;
11969 		LIST_REMOVE(sintenel, sm_next);
11970 		LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11971 		if (bp == NULL)
11972 			continue;
11973 		FREE_LOCK(&lk);
11974 		if (waitfor == MNT_NOWAIT)
11975 			bawrite(bp);
11976 		else
11977 			error = bwrite(bp);
11978 		ACQUIRE_LOCK(&lk);
11979 		if (error)
11980 			break;
11981 	}
11982 	LIST_REMOVE(sintenel, sm_next);
11983 	FREE_LOCK(&lk);
11984 	free(sintenel, M_BMSAFEMAP);
11985 	return (error);
11986 }
11987 
11988 /*
11989  * This routine is called when we are trying to synchronously flush a
11990  * file. This routine must eliminate any filesystem metadata dependencies
11991  * so that the syncing routine can succeed.
11992  */
11993 int
11994 softdep_sync_metadata(struct vnode *vp)
11995 {
11996 	int error;
11997 
11998 	/*
11999 	 * Ensure that any direct block dependencies have been cleared,
12000 	 * truncations are started, and inode references are journaled.
12001 	 */
12002 	ACQUIRE_LOCK(&lk);
12003 	/*
12004 	 * Write all journal records to prevent rollbacks on devvp.
12005 	 */
12006 	if (vp->v_type == VCHR)
12007 		softdep_flushjournal(vp->v_mount);
12008 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
12009 	/*
12010 	 * Ensure that all truncates are written so we won't find deps on
12011 	 * indirect blocks.
12012 	 */
12013 	process_truncates(vp);
12014 	FREE_LOCK(&lk);
12015 
12016 	return (error);
12017 }
12018 
12019 /*
12020  * This routine is called when we are attempting to sync a buf with
12021  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12022  * other IO it can but returns EBUSY if the buffer is not yet able to
12023  * be written.  Dependencies which will not cause rollbacks will always
12024  * return 0.
12025  */
12026 int
12027 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12028 {
12029 	struct indirdep *indirdep;
12030 	struct pagedep *pagedep;
12031 	struct allocindir *aip;
12032 	struct newblk *newblk;
12033 	struct buf *nbp;
12034 	struct worklist *wk;
12035 	int i, error;
12036 
12037 	/*
12038 	 * For VCHR we just don't want to force flush any dependencies that
12039 	 * will cause rollbacks.
12040 	 */
12041 	if (vp->v_type == VCHR) {
12042 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12043 			return (EBUSY);
12044 		return (0);
12045 	}
12046 	ACQUIRE_LOCK(&lk);
12047 	/*
12048 	 * As we hold the buffer locked, none of its dependencies
12049 	 * will disappear.
12050 	 */
12051 	error = 0;
12052 top:
12053 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12054 		switch (wk->wk_type) {
12055 
12056 		case D_ALLOCDIRECT:
12057 		case D_ALLOCINDIR:
12058 			newblk = WK_NEWBLK(wk);
12059 			if (newblk->nb_jnewblk != NULL) {
12060 				if (waitfor == MNT_NOWAIT) {
12061 					error = EBUSY;
12062 					goto out_unlock;
12063 				}
12064 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12065 				goto top;
12066 			}
12067 			if (newblk->nb_state & DEPCOMPLETE ||
12068 			    waitfor == MNT_NOWAIT)
12069 				continue;
12070 			nbp = newblk->nb_bmsafemap->sm_buf;
12071 			nbp = getdirtybuf(nbp, &lk, waitfor);
12072 			if (nbp == NULL)
12073 				goto top;
12074 			FREE_LOCK(&lk);
12075 			if ((error = bwrite(nbp)) != 0)
12076 				goto out;
12077 			ACQUIRE_LOCK(&lk);
12078 			continue;
12079 
12080 		case D_INDIRDEP:
12081 			indirdep = WK_INDIRDEP(wk);
12082 			if (waitfor == MNT_NOWAIT) {
12083 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12084 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12085 					error = EBUSY;
12086 					goto out_unlock;
12087 				}
12088 			}
12089 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12090 				panic("softdep_sync_buf: truncation pending.");
12091 		restart:
12092 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12093 				newblk = (struct newblk *)aip;
12094 				if (newblk->nb_jnewblk != NULL) {
12095 					jwait(&newblk->nb_jnewblk->jn_list,
12096 					    waitfor);
12097 					goto restart;
12098 				}
12099 				if (newblk->nb_state & DEPCOMPLETE)
12100 					continue;
12101 				nbp = newblk->nb_bmsafemap->sm_buf;
12102 				nbp = getdirtybuf(nbp, &lk, waitfor);
12103 				if (nbp == NULL)
12104 					goto restart;
12105 				FREE_LOCK(&lk);
12106 				if ((error = bwrite(nbp)) != 0)
12107 					goto out;
12108 				ACQUIRE_LOCK(&lk);
12109 				goto restart;
12110 			}
12111 			continue;
12112 
12113 		case D_PAGEDEP:
12114 			/*
12115 			 * Only flush directory entries in synchronous passes.
12116 			 */
12117 			if (waitfor != MNT_WAIT) {
12118 				error = EBUSY;
12119 				goto out_unlock;
12120 			}
12121 			/*
12122 			 * While syncing snapshots, we must allow recursive
12123 			 * lookups.
12124 			 */
12125 			BUF_AREC(bp);
12126 			/*
12127 			 * We are trying to sync a directory that may
12128 			 * have dependencies on both its own metadata
12129 			 * and/or dependencies on the inodes of any
12130 			 * recently allocated files. We walk its diradd
12131 			 * lists pushing out the associated inode.
12132 			 */
12133 			pagedep = WK_PAGEDEP(wk);
12134 			for (i = 0; i < DAHASHSZ; i++) {
12135 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12136 					continue;
12137 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12138 				    &pagedep->pd_diraddhd[i]))) {
12139 					BUF_NOREC(bp);
12140 					goto out_unlock;
12141 				}
12142 			}
12143 			BUF_NOREC(bp);
12144 			continue;
12145 
12146 		case D_FREEWORK:
12147 		case D_FREEDEP:
12148 		case D_JSEGDEP:
12149 		case D_JNEWBLK:
12150 			continue;
12151 
12152 		default:
12153 			panic("softdep_sync_buf: Unknown type %s",
12154 			    TYPENAME(wk->wk_type));
12155 			/* NOTREACHED */
12156 		}
12157 	}
12158 out_unlock:
12159 	FREE_LOCK(&lk);
12160 out:
12161 	return (error);
12162 }
12163 
12164 /*
12165  * Flush the dependencies associated with an inodedep.
12166  * Called with splbio blocked.
12167  */
12168 static int
12169 flush_inodedep_deps(vp, mp, ino)
12170 	struct vnode *vp;
12171 	struct mount *mp;
12172 	ino_t ino;
12173 {
12174 	struct inodedep *inodedep;
12175 	struct inoref *inoref;
12176 	int error, waitfor;
12177 
12178 	/*
12179 	 * This work is done in two passes. The first pass grabs most
12180 	 * of the buffers and begins asynchronously writing them. The
12181 	 * only way to wait for these asynchronous writes is to sleep
12182 	 * on the filesystem vnode which may stay busy for a long time
12183 	 * if the filesystem is active. So, instead, we make a second
12184 	 * pass over the dependencies blocking on each write. In the
12185 	 * usual case we will be blocking against a write that we
12186 	 * initiated, so when it is done the dependency will have been
12187 	 * resolved. Thus the second pass is expected to end quickly.
12188 	 * We give a brief window at the top of the loop to allow
12189 	 * any pending I/O to complete.
12190 	 */
12191 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12192 		if (error)
12193 			return (error);
12194 		FREE_LOCK(&lk);
12195 		ACQUIRE_LOCK(&lk);
12196 restart:
12197 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12198 			return (0);
12199 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12200 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12201 			    == DEPCOMPLETE) {
12202 				jwait(&inoref->if_list, MNT_WAIT);
12203 				goto restart;
12204 			}
12205 		}
12206 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12207 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12208 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12209 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12210 			continue;
12211 		/*
12212 		 * If pass2, we are done, otherwise do pass 2.
12213 		 */
12214 		if (waitfor == MNT_WAIT)
12215 			break;
12216 		waitfor = MNT_WAIT;
12217 	}
12218 	/*
12219 	 * Try freeing inodedep in case all dependencies have been removed.
12220 	 */
12221 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12222 		(void) free_inodedep(inodedep);
12223 	return (0);
12224 }
12225 
12226 /*
12227  * Flush an inode dependency list.
12228  * Called with splbio blocked.
12229  */
12230 static int
12231 flush_deplist(listhead, waitfor, errorp)
12232 	struct allocdirectlst *listhead;
12233 	int waitfor;
12234 	int *errorp;
12235 {
12236 	struct allocdirect *adp;
12237 	struct newblk *newblk;
12238 	struct buf *bp;
12239 
12240 	mtx_assert(&lk, MA_OWNED);
12241 	TAILQ_FOREACH(adp, listhead, ad_next) {
12242 		newblk = (struct newblk *)adp;
12243 		if (newblk->nb_jnewblk != NULL) {
12244 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12245 			return (1);
12246 		}
12247 		if (newblk->nb_state & DEPCOMPLETE)
12248 			continue;
12249 		bp = newblk->nb_bmsafemap->sm_buf;
12250 		bp = getdirtybuf(bp, &lk, waitfor);
12251 		if (bp == NULL) {
12252 			if (waitfor == MNT_NOWAIT)
12253 				continue;
12254 			return (1);
12255 		}
12256 		FREE_LOCK(&lk);
12257 		if (waitfor == MNT_NOWAIT)
12258 			bawrite(bp);
12259 		else
12260 			*errorp = bwrite(bp);
12261 		ACQUIRE_LOCK(&lk);
12262 		return (1);
12263 	}
12264 	return (0);
12265 }
12266 
12267 /*
12268  * Flush dependencies associated with an allocdirect block.
12269  */
12270 static int
12271 flush_newblk_dep(vp, mp, lbn)
12272 	struct vnode *vp;
12273 	struct mount *mp;
12274 	ufs_lbn_t lbn;
12275 {
12276 	struct newblk *newblk;
12277 	struct bufobj *bo;
12278 	struct inode *ip;
12279 	struct buf *bp;
12280 	ufs2_daddr_t blkno;
12281 	int error;
12282 
12283 	error = 0;
12284 	bo = &vp->v_bufobj;
12285 	ip = VTOI(vp);
12286 	blkno = DIP(ip, i_db[lbn]);
12287 	if (blkno == 0)
12288 		panic("flush_newblk_dep: Missing block");
12289 	ACQUIRE_LOCK(&lk);
12290 	/*
12291 	 * Loop until all dependencies related to this block are satisfied.
12292 	 * We must be careful to restart after each sleep in case a write
12293 	 * completes some part of this process for us.
12294 	 */
12295 	for (;;) {
12296 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12297 			FREE_LOCK(&lk);
12298 			break;
12299 		}
12300 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12301 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12302 		/*
12303 		 * Flush the journal.
12304 		 */
12305 		if (newblk->nb_jnewblk != NULL) {
12306 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12307 			continue;
12308 		}
12309 		/*
12310 		 * Write the bitmap dependency.
12311 		 */
12312 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12313 			bp = newblk->nb_bmsafemap->sm_buf;
12314 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12315 			if (bp == NULL)
12316 				continue;
12317 			FREE_LOCK(&lk);
12318 			error = bwrite(bp);
12319 			if (error)
12320 				break;
12321 			ACQUIRE_LOCK(&lk);
12322 			continue;
12323 		}
12324 		/*
12325 		 * Write the buffer.
12326 		 */
12327 		FREE_LOCK(&lk);
12328 		BO_LOCK(bo);
12329 		bp = gbincore(bo, lbn);
12330 		if (bp != NULL) {
12331 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12332 			    LK_INTERLOCK, BO_MTX(bo));
12333 			if (error == ENOLCK) {
12334 				ACQUIRE_LOCK(&lk);
12335 				continue; /* Slept, retry */
12336 			}
12337 			if (error != 0)
12338 				break;	/* Failed */
12339 			if (bp->b_flags & B_DELWRI) {
12340 				bremfree(bp);
12341 				error = bwrite(bp);
12342 				if (error)
12343 					break;
12344 			} else
12345 				BUF_UNLOCK(bp);
12346 		} else
12347 			BO_UNLOCK(bo);
12348 		/*
12349 		 * We have to wait for the direct pointers to
12350 		 * point at the newdirblk before the dependency
12351 		 * will go away.
12352 		 */
12353 		error = ffs_update(vp, 1);
12354 		if (error)
12355 			break;
12356 		ACQUIRE_LOCK(&lk);
12357 	}
12358 	return (error);
12359 }
12360 
12361 /*
12362  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12363  * Called with splbio blocked.
12364  */
12365 static int
12366 flush_pagedep_deps(pvp, mp, diraddhdp)
12367 	struct vnode *pvp;
12368 	struct mount *mp;
12369 	struct diraddhd *diraddhdp;
12370 {
12371 	struct inodedep *inodedep;
12372 	struct inoref *inoref;
12373 	struct ufsmount *ump;
12374 	struct diradd *dap;
12375 	struct vnode *vp;
12376 	int error = 0;
12377 	struct buf *bp;
12378 	ino_t inum;
12379 
12380 	ump = VFSTOUFS(mp);
12381 restart:
12382 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12383 		/*
12384 		 * Flush ourselves if this directory entry
12385 		 * has a MKDIR_PARENT dependency.
12386 		 */
12387 		if (dap->da_state & MKDIR_PARENT) {
12388 			FREE_LOCK(&lk);
12389 			if ((error = ffs_update(pvp, 1)) != 0)
12390 				break;
12391 			ACQUIRE_LOCK(&lk);
12392 			/*
12393 			 * If that cleared dependencies, go on to next.
12394 			 */
12395 			if (dap != LIST_FIRST(diraddhdp))
12396 				continue;
12397 			if (dap->da_state & MKDIR_PARENT)
12398 				panic("flush_pagedep_deps: MKDIR_PARENT");
12399 		}
12400 		/*
12401 		 * A newly allocated directory must have its "." and
12402 		 * ".." entries written out before its name can be
12403 		 * committed in its parent.
12404 		 */
12405 		inum = dap->da_newinum;
12406 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12407 			panic("flush_pagedep_deps: lost inode1");
12408 		/*
12409 		 * Wait for any pending journal adds to complete so we don't
12410 		 * cause rollbacks while syncing.
12411 		 */
12412 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12413 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12414 			    == DEPCOMPLETE) {
12415 				jwait(&inoref->if_list, MNT_WAIT);
12416 				goto restart;
12417 			}
12418 		}
12419 		if (dap->da_state & MKDIR_BODY) {
12420 			FREE_LOCK(&lk);
12421 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12422 			    FFSV_FORCEINSMQ)))
12423 				break;
12424 			error = flush_newblk_dep(vp, mp, 0);
12425 			/*
12426 			 * If we still have the dependency we might need to
12427 			 * update the vnode to sync the new link count to
12428 			 * disk.
12429 			 */
12430 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12431 				error = ffs_update(vp, 1);
12432 			vput(vp);
12433 			if (error != 0)
12434 				break;
12435 			ACQUIRE_LOCK(&lk);
12436 			/*
12437 			 * If that cleared dependencies, go on to next.
12438 			 */
12439 			if (dap != LIST_FIRST(diraddhdp))
12440 				continue;
12441 			if (dap->da_state & MKDIR_BODY) {
12442 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12443 				    &inodedep);
12444 				panic("flush_pagedep_deps: MKDIR_BODY "
12445 				    "inodedep %p dap %p vp %p",
12446 				    inodedep, dap, vp);
12447 			}
12448 		}
12449 		/*
12450 		 * Flush the inode on which the directory entry depends.
12451 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12452 		 * the only remaining dependency is that the updated inode
12453 		 * count must get pushed to disk. The inode has already
12454 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12455 		 * the time of the reference count change. So we need only
12456 		 * locate that buffer, ensure that there will be no rollback
12457 		 * caused by a bitmap dependency, then write the inode buffer.
12458 		 */
12459 retry:
12460 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12461 			panic("flush_pagedep_deps: lost inode");
12462 		/*
12463 		 * If the inode still has bitmap dependencies,
12464 		 * push them to disk.
12465 		 */
12466 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12467 			bp = inodedep->id_bmsafemap->sm_buf;
12468 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12469 			if (bp == NULL)
12470 				goto retry;
12471 			FREE_LOCK(&lk);
12472 			if ((error = bwrite(bp)) != 0)
12473 				break;
12474 			ACQUIRE_LOCK(&lk);
12475 			if (dap != LIST_FIRST(diraddhdp))
12476 				continue;
12477 		}
12478 		/*
12479 		 * If the inode is still sitting in a buffer waiting
12480 		 * to be written or waiting for the link count to be
12481 		 * adjusted update it here to flush it to disk.
12482 		 */
12483 		if (dap == LIST_FIRST(diraddhdp)) {
12484 			FREE_LOCK(&lk);
12485 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12486 			    FFSV_FORCEINSMQ)))
12487 				break;
12488 			error = ffs_update(vp, 1);
12489 			vput(vp);
12490 			if (error)
12491 				break;
12492 			ACQUIRE_LOCK(&lk);
12493 		}
12494 		/*
12495 		 * If we have failed to get rid of all the dependencies
12496 		 * then something is seriously wrong.
12497 		 */
12498 		if (dap == LIST_FIRST(diraddhdp)) {
12499 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12500 			panic("flush_pagedep_deps: failed to flush "
12501 			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
12502 		}
12503 	}
12504 	if (error)
12505 		ACQUIRE_LOCK(&lk);
12506 	return (error);
12507 }
12508 
12509 /*
12510  * A large burst of file addition or deletion activity can drive the
12511  * memory load excessively high. First attempt to slow things down
12512  * using the techniques below. If that fails, this routine requests
12513  * the offending operations to fall back to running synchronously
12514  * until the memory load returns to a reasonable level.
12515  */
12516 int
12517 softdep_slowdown(vp)
12518 	struct vnode *vp;
12519 {
12520 	struct ufsmount *ump;
12521 	int jlow;
12522 	int max_softdeps_hard;
12523 
12524 	ACQUIRE_LOCK(&lk);
12525 	jlow = 0;
12526 	/*
12527 	 * Check for journal space if needed.
12528 	 */
12529 	if (DOINGSUJ(vp)) {
12530 		ump = VFSTOUFS(vp->v_mount);
12531 		if (journal_space(ump, 0) == 0)
12532 			jlow = 1;
12533 	}
12534 	max_softdeps_hard = max_softdeps * 11 / 10;
12535 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12536 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12537 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12538 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12539 		FREE_LOCK(&lk);
12540   		return (0);
12541 	}
12542 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12543 		softdep_speedup();
12544 	stat_sync_limit_hit += 1;
12545 	FREE_LOCK(&lk);
12546 	if (DOINGSUJ(vp))
12547 		return (0);
12548 	return (1);
12549 }
12550 
12551 /*
12552  * Called by the allocation routines when they are about to fail
12553  * in the hope that we can free up the requested resource (inodes
12554  * or disk space).
12555  *
12556  * First check to see if the work list has anything on it. If it has,
12557  * clean up entries until we successfully free the requested resource.
12558  * Because this process holds inodes locked, we cannot handle any remove
12559  * requests that might block on a locked inode as that could lead to
12560  * deadlock. If the worklist yields none of the requested resource,
12561  * start syncing out vnodes to free up the needed space.
12562  */
12563 int
12564 softdep_request_cleanup(fs, vp, cred, resource)
12565 	struct fs *fs;
12566 	struct vnode *vp;
12567 	struct ucred *cred;
12568 	int resource;
12569 {
12570 	struct ufsmount *ump;
12571 	struct mount *mp;
12572 	struct vnode *lvp, *mvp;
12573 	long starttime;
12574 	ufs2_daddr_t needed;
12575 	int error;
12576 
12577 	/*
12578 	 * If we are being called because of a process doing a
12579 	 * copy-on-write, then it is not safe to process any
12580 	 * worklist items as we will recurse into the copyonwrite
12581 	 * routine.  This will result in an incoherent snapshot.
12582 	 * If the vnode that we hold is a snapshot, we must avoid
12583 	 * handling other resources that could cause deadlock.
12584 	 */
12585 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12586 		return (0);
12587 
12588 	if (resource == FLUSH_BLOCKS_WAIT)
12589 		stat_cleanup_blkrequests += 1;
12590 	else
12591 		stat_cleanup_inorequests += 1;
12592 
12593 	mp = vp->v_mount;
12594 	ump = VFSTOUFS(mp);
12595 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12596 	UFS_UNLOCK(ump);
12597 	error = ffs_update(vp, 1);
12598 	if (error != 0) {
12599 		UFS_LOCK(ump);
12600 		return (0);
12601 	}
12602 	/*
12603 	 * If we are in need of resources, consider pausing for
12604 	 * tickdelay to give ourselves some breathing room.
12605 	 */
12606 	ACQUIRE_LOCK(&lk);
12607 	process_removes(vp);
12608 	process_truncates(vp);
12609 	request_cleanup(UFSTOVFS(ump), resource);
12610 	FREE_LOCK(&lk);
12611 	/*
12612 	 * Now clean up at least as many resources as we will need.
12613 	 *
12614 	 * When requested to clean up inodes, the number that are needed
12615 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12616 	 * plus a bit of slop (2) in case some more writers show up while
12617 	 * we are cleaning.
12618 	 *
12619 	 * When requested to free up space, the amount of space that
12620 	 * we need is enough blocks to allocate a full-sized segment
12621 	 * (fs_contigsumsize). The number of such segments that will
12622 	 * be needed is set by the number of simultaneous writers
12623 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12624 	 * writers show up while we are cleaning.
12625 	 *
12626 	 * Additionally, if we are unpriviledged and allocating space,
12627 	 * we need to ensure that we clean up enough blocks to get the
12628 	 * needed number of blocks over the threshhold of the minimum
12629 	 * number of blocks required to be kept free by the filesystem
12630 	 * (fs_minfree).
12631 	 */
12632 	if (resource == FLUSH_INODES_WAIT) {
12633 		needed = vp->v_mount->mnt_writeopcount + 2;
12634 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12635 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12636 		    fs->fs_contigsumsize;
12637 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12638 			needed += fragstoblks(fs,
12639 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12640 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12641 	} else {
12642 		UFS_LOCK(ump);
12643 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12644 		    resource);
12645 		return (0);
12646 	}
12647 	starttime = time_second;
12648 retry:
12649 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12650 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12651 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12652 	    fs->fs_cstotal.cs_nifree <= needed)) {
12653 		ACQUIRE_LOCK(&lk);
12654 		if (ump->softdep_on_worklist > 0 &&
12655 		    process_worklist_item(UFSTOVFS(ump),
12656 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12657 			stat_worklist_push += 1;
12658 		FREE_LOCK(&lk);
12659 	}
12660 	/*
12661 	 * If we still need resources and there are no more worklist
12662 	 * entries to process to obtain them, we have to start flushing
12663 	 * the dirty vnodes to force the release of additional requests
12664 	 * to the worklist that we can then process to reap addition
12665 	 * resources. We walk the vnodes associated with the mount point
12666 	 * until we get the needed worklist requests that we can reap.
12667 	 */
12668 	if ((resource == FLUSH_BLOCKS_WAIT &&
12669 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12670 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12671 	     fs->fs_cstotal.cs_nifree <= needed)) {
12672 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
12673 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12674 				VI_UNLOCK(lvp);
12675 				continue;
12676 			}
12677 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12678 			    curthread))
12679 				continue;
12680 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12681 				vput(lvp);
12682 				continue;
12683 			}
12684 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
12685 			vput(lvp);
12686 		}
12687 		lvp = ump->um_devvp;
12688 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12689 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12690 			VOP_UNLOCK(lvp, 0);
12691 		}
12692 		if (ump->softdep_on_worklist > 0) {
12693 			stat_cleanup_retries += 1;
12694 			goto retry;
12695 		}
12696 		stat_cleanup_failures += 1;
12697 	}
12698 	if (time_second - starttime > stat_cleanup_high_delay)
12699 		stat_cleanup_high_delay = time_second - starttime;
12700 	UFS_LOCK(ump);
12701 	return (1);
12702 }
12703 
12704 /*
12705  * If memory utilization has gotten too high, deliberately slow things
12706  * down and speed up the I/O processing.
12707  */
12708 extern struct thread *syncertd;
12709 static int
12710 request_cleanup(mp, resource)
12711 	struct mount *mp;
12712 	int resource;
12713 {
12714 	struct thread *td = curthread;
12715 	struct ufsmount *ump;
12716 
12717 	mtx_assert(&lk, MA_OWNED);
12718 	/*
12719 	 * We never hold up the filesystem syncer or buf daemon.
12720 	 */
12721 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12722 		return (0);
12723 	ump = VFSTOUFS(mp);
12724 	/*
12725 	 * First check to see if the work list has gotten backlogged.
12726 	 * If it has, co-opt this process to help clean up two entries.
12727 	 * Because this process may hold inodes locked, we cannot
12728 	 * handle any remove requests that might block on a locked
12729 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12730 	 * to avoid recursively processing the worklist.
12731 	 */
12732 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12733 		td->td_pflags |= TDP_SOFTDEP;
12734 		process_worklist_item(mp, 2, LK_NOWAIT);
12735 		td->td_pflags &= ~TDP_SOFTDEP;
12736 		stat_worklist_push += 2;
12737 		return(1);
12738 	}
12739 	/*
12740 	 * Next, we attempt to speed up the syncer process. If that
12741 	 * is successful, then we allow the process to continue.
12742 	 */
12743 	if (softdep_speedup() &&
12744 	    resource != FLUSH_BLOCKS_WAIT &&
12745 	    resource != FLUSH_INODES_WAIT)
12746 		return(0);
12747 	/*
12748 	 * If we are resource constrained on inode dependencies, try
12749 	 * flushing some dirty inodes. Otherwise, we are constrained
12750 	 * by file deletions, so try accelerating flushes of directories
12751 	 * with removal dependencies. We would like to do the cleanup
12752 	 * here, but we probably hold an inode locked at this point and
12753 	 * that might deadlock against one that we try to clean. So,
12754 	 * the best that we can do is request the syncer daemon to do
12755 	 * the cleanup for us.
12756 	 */
12757 	switch (resource) {
12758 
12759 	case FLUSH_INODES:
12760 	case FLUSH_INODES_WAIT:
12761 		stat_ino_limit_push += 1;
12762 		req_clear_inodedeps += 1;
12763 		stat_countp = &stat_ino_limit_hit;
12764 		break;
12765 
12766 	case FLUSH_BLOCKS:
12767 	case FLUSH_BLOCKS_WAIT:
12768 		stat_blk_limit_push += 1;
12769 		req_clear_remove += 1;
12770 		stat_countp = &stat_blk_limit_hit;
12771 		break;
12772 
12773 	default:
12774 		panic("request_cleanup: unknown type");
12775 	}
12776 	/*
12777 	 * Hopefully the syncer daemon will catch up and awaken us.
12778 	 * We wait at most tickdelay before proceeding in any case.
12779 	 */
12780 	proc_waiting += 1;
12781 	if (callout_pending(&softdep_callout) == FALSE)
12782 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12783 		    pause_timer, 0);
12784 
12785 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12786 	proc_waiting -= 1;
12787 	return (1);
12788 }
12789 
12790 /*
12791  * Awaken processes pausing in request_cleanup and clear proc_waiting
12792  * to indicate that there is no longer a timer running.
12793  */
12794 static void
12795 pause_timer(arg)
12796 	void *arg;
12797 {
12798 
12799 	/*
12800 	 * The callout_ API has acquired mtx and will hold it around this
12801 	 * function call.
12802 	 */
12803 	*stat_countp += 1;
12804 	wakeup_one(&proc_waiting);
12805 	if (proc_waiting > 0)
12806 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12807 		    pause_timer, 0);
12808 }
12809 
12810 /*
12811  * Flush out a directory with at least one removal dependency in an effort to
12812  * reduce the number of dirrem, freefile, and freeblks dependency structures.
12813  */
12814 static void
12815 clear_remove(void)
12816 {
12817 	struct pagedep_hashhead *pagedephd;
12818 	struct pagedep *pagedep;
12819 	static int next = 0;
12820 	struct mount *mp;
12821 	struct vnode *vp;
12822 	struct bufobj *bo;
12823 	int error, cnt;
12824 	ino_t ino;
12825 
12826 	mtx_assert(&lk, MA_OWNED);
12827 
12828 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
12829 		pagedephd = &pagedep_hashtbl[next++];
12830 		if (next >= pagedep_hash)
12831 			next = 0;
12832 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
12833 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
12834 				continue;
12835 			mp = pagedep->pd_list.wk_mp;
12836 			ino = pagedep->pd_ino;
12837 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12838 				continue;
12839 			FREE_LOCK(&lk);
12840 
12841 			/*
12842 			 * Let unmount clear deps
12843 			 */
12844 			error = vfs_busy(mp, MBF_NOWAIT);
12845 			if (error != 0)
12846 				goto finish_write;
12847 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12848 			     FFSV_FORCEINSMQ);
12849 			vfs_unbusy(mp);
12850 			if (error != 0) {
12851 				softdep_error("clear_remove: vget", error);
12852 				goto finish_write;
12853 			}
12854 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
12855 				softdep_error("clear_remove: fsync", error);
12856 			bo = &vp->v_bufobj;
12857 			BO_LOCK(bo);
12858 			drain_output(vp);
12859 			BO_UNLOCK(bo);
12860 			vput(vp);
12861 		finish_write:
12862 			vn_finished_write(mp);
12863 			ACQUIRE_LOCK(&lk);
12864 			return;
12865 		}
12866 	}
12867 }
12868 
12869 /*
12870  * Clear out a block of dirty inodes in an effort to reduce
12871  * the number of inodedep dependency structures.
12872  */
12873 static void
12874 clear_inodedeps(void)
12875 {
12876 	struct inodedep_hashhead *inodedephd;
12877 	struct inodedep *inodedep;
12878 	static int next = 0;
12879 	struct mount *mp;
12880 	struct vnode *vp;
12881 	struct fs *fs;
12882 	int error, cnt;
12883 	ino_t firstino, lastino, ino;
12884 
12885 	mtx_assert(&lk, MA_OWNED);
12886 	/*
12887 	 * Pick a random inode dependency to be cleared.
12888 	 * We will then gather up all the inodes in its block
12889 	 * that have dependencies and flush them out.
12890 	 */
12891 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
12892 		inodedephd = &inodedep_hashtbl[next++];
12893 		if (next >= inodedep_hash)
12894 			next = 0;
12895 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
12896 			break;
12897 	}
12898 	if (inodedep == NULL)
12899 		return;
12900 	fs = inodedep->id_fs;
12901 	mp = inodedep->id_list.wk_mp;
12902 	/*
12903 	 * Find the last inode in the block with dependencies.
12904 	 */
12905 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
12906 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
12907 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
12908 			break;
12909 	/*
12910 	 * Asynchronously push all but the last inode with dependencies.
12911 	 * Synchronously push the last inode with dependencies to ensure
12912 	 * that the inode block gets written to free up the inodedeps.
12913 	 */
12914 	for (ino = firstino; ino <= lastino; ino++) {
12915 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12916 			continue;
12917 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12918 			continue;
12919 		FREE_LOCK(&lk);
12920 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
12921 		if (error != 0) {
12922 			vn_finished_write(mp);
12923 			ACQUIRE_LOCK(&lk);
12924 			return;
12925 		}
12926 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12927 		    FFSV_FORCEINSMQ)) != 0) {
12928 			softdep_error("clear_inodedeps: vget", error);
12929 			vfs_unbusy(mp);
12930 			vn_finished_write(mp);
12931 			ACQUIRE_LOCK(&lk);
12932 			return;
12933 		}
12934 		vfs_unbusy(mp);
12935 		if (ino == lastino) {
12936 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
12937 				softdep_error("clear_inodedeps: fsync1", error);
12938 		} else {
12939 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
12940 				softdep_error("clear_inodedeps: fsync2", error);
12941 			BO_LOCK(&vp->v_bufobj);
12942 			drain_output(vp);
12943 			BO_UNLOCK(&vp->v_bufobj);
12944 		}
12945 		vput(vp);
12946 		vn_finished_write(mp);
12947 		ACQUIRE_LOCK(&lk);
12948 	}
12949 }
12950 
12951 void
12952 softdep_buf_append(bp, wkhd)
12953 	struct buf *bp;
12954 	struct workhead *wkhd;
12955 {
12956 	struct worklist *wk;
12957 
12958 	ACQUIRE_LOCK(&lk);
12959 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
12960 		WORKLIST_REMOVE(wk);
12961 		WORKLIST_INSERT(&bp->b_dep, wk);
12962 	}
12963 	FREE_LOCK(&lk);
12964 
12965 }
12966 
12967 void
12968 softdep_inode_append(ip, cred, wkhd)
12969 	struct inode *ip;
12970 	struct ucred *cred;
12971 	struct workhead *wkhd;
12972 {
12973 	struct buf *bp;
12974 	struct fs *fs;
12975 	int error;
12976 
12977 	fs = ip->i_fs;
12978 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
12979 	    (int)fs->fs_bsize, cred, &bp);
12980 	if (error) {
12981 		softdep_freework(wkhd);
12982 		return;
12983 	}
12984 	softdep_buf_append(bp, wkhd);
12985 	bqrelse(bp);
12986 }
12987 
12988 void
12989 softdep_freework(wkhd)
12990 	struct workhead *wkhd;
12991 {
12992 
12993 	ACQUIRE_LOCK(&lk);
12994 	handle_jwork(wkhd);
12995 	FREE_LOCK(&lk);
12996 }
12997 
12998 /*
12999  * Function to determine if the buffer has outstanding dependencies
13000  * that will cause a roll-back if the buffer is written. If wantcount
13001  * is set, return number of dependencies, otherwise just yes or no.
13002  */
13003 static int
13004 softdep_count_dependencies(bp, wantcount)
13005 	struct buf *bp;
13006 	int wantcount;
13007 {
13008 	struct worklist *wk;
13009 	struct bmsafemap *bmsafemap;
13010 	struct freework *freework;
13011 	struct inodedep *inodedep;
13012 	struct indirdep *indirdep;
13013 	struct freeblks *freeblks;
13014 	struct allocindir *aip;
13015 	struct pagedep *pagedep;
13016 	struct dirrem *dirrem;
13017 	struct newblk *newblk;
13018 	struct mkdir *mkdir;
13019 	struct diradd *dap;
13020 	int i, retval;
13021 
13022 	retval = 0;
13023 	ACQUIRE_LOCK(&lk);
13024 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13025 		switch (wk->wk_type) {
13026 
13027 		case D_INODEDEP:
13028 			inodedep = WK_INODEDEP(wk);
13029 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13030 				/* bitmap allocation dependency */
13031 				retval += 1;
13032 				if (!wantcount)
13033 					goto out;
13034 			}
13035 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13036 				/* direct block pointer dependency */
13037 				retval += 1;
13038 				if (!wantcount)
13039 					goto out;
13040 			}
13041 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13042 				/* direct block pointer dependency */
13043 				retval += 1;
13044 				if (!wantcount)
13045 					goto out;
13046 			}
13047 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13048 				/* Add reference dependency. */
13049 				retval += 1;
13050 				if (!wantcount)
13051 					goto out;
13052 			}
13053 			continue;
13054 
13055 		case D_INDIRDEP:
13056 			indirdep = WK_INDIRDEP(wk);
13057 
13058 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13059 				/* indirect truncation dependency */
13060 				retval += 1;
13061 				if (!wantcount)
13062 					goto out;
13063 			}
13064 
13065 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13066 				/* indirect block pointer dependency */
13067 				retval += 1;
13068 				if (!wantcount)
13069 					goto out;
13070 			}
13071 			continue;
13072 
13073 		case D_PAGEDEP:
13074 			pagedep = WK_PAGEDEP(wk);
13075 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13076 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13077 					/* Journal remove ref dependency. */
13078 					retval += 1;
13079 					if (!wantcount)
13080 						goto out;
13081 				}
13082 			}
13083 			for (i = 0; i < DAHASHSZ; i++) {
13084 
13085 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13086 					/* directory entry dependency */
13087 					retval += 1;
13088 					if (!wantcount)
13089 						goto out;
13090 				}
13091 			}
13092 			continue;
13093 
13094 		case D_BMSAFEMAP:
13095 			bmsafemap = WK_BMSAFEMAP(wk);
13096 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13097 				/* Add reference dependency. */
13098 				retval += 1;
13099 				if (!wantcount)
13100 					goto out;
13101 			}
13102 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13103 				/* Allocate block dependency. */
13104 				retval += 1;
13105 				if (!wantcount)
13106 					goto out;
13107 			}
13108 			continue;
13109 
13110 		case D_FREEBLKS:
13111 			freeblks = WK_FREEBLKS(wk);
13112 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13113 				/* Freeblk journal dependency. */
13114 				retval += 1;
13115 				if (!wantcount)
13116 					goto out;
13117 			}
13118 			continue;
13119 
13120 		case D_ALLOCDIRECT:
13121 		case D_ALLOCINDIR:
13122 			newblk = WK_NEWBLK(wk);
13123 			if (newblk->nb_jnewblk) {
13124 				/* Journal allocate dependency. */
13125 				retval += 1;
13126 				if (!wantcount)
13127 					goto out;
13128 			}
13129 			continue;
13130 
13131 		case D_MKDIR:
13132 			mkdir = WK_MKDIR(wk);
13133 			if (mkdir->md_jaddref) {
13134 				/* Journal reference dependency. */
13135 				retval += 1;
13136 				if (!wantcount)
13137 					goto out;
13138 			}
13139 			continue;
13140 
13141 		case D_FREEWORK:
13142 		case D_FREEDEP:
13143 		case D_JSEGDEP:
13144 		case D_JSEG:
13145 		case D_SBDEP:
13146 			/* never a dependency on these blocks */
13147 			continue;
13148 
13149 		default:
13150 			panic("softdep_count_dependencies: Unexpected type %s",
13151 			    TYPENAME(wk->wk_type));
13152 			/* NOTREACHED */
13153 		}
13154 	}
13155 out:
13156 	FREE_LOCK(&lk);
13157 	return retval;
13158 }
13159 
13160 /*
13161  * Acquire exclusive access to a buffer.
13162  * Must be called with a locked mtx parameter.
13163  * Return acquired buffer or NULL on failure.
13164  */
13165 static struct buf *
13166 getdirtybuf(bp, mtx, waitfor)
13167 	struct buf *bp;
13168 	struct mtx *mtx;
13169 	int waitfor;
13170 {
13171 	int error;
13172 
13173 	mtx_assert(mtx, MA_OWNED);
13174 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13175 		if (waitfor != MNT_WAIT)
13176 			return (NULL);
13177 		error = BUF_LOCK(bp,
13178 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
13179 		/*
13180 		 * Even if we sucessfully acquire bp here, we have dropped
13181 		 * mtx, which may violates our guarantee.
13182 		 */
13183 		if (error == 0)
13184 			BUF_UNLOCK(bp);
13185 		else if (error != ENOLCK)
13186 			panic("getdirtybuf: inconsistent lock: %d", error);
13187 		mtx_lock(mtx);
13188 		return (NULL);
13189 	}
13190 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13191 		if (mtx == &lk && waitfor == MNT_WAIT) {
13192 			mtx_unlock(mtx);
13193 			BO_LOCK(bp->b_bufobj);
13194 			BUF_UNLOCK(bp);
13195 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13196 				bp->b_vflags |= BV_BKGRDWAIT;
13197 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
13198 				       PRIBIO | PDROP, "getbuf", 0);
13199 			} else
13200 				BO_UNLOCK(bp->b_bufobj);
13201 			mtx_lock(mtx);
13202 			return (NULL);
13203 		}
13204 		BUF_UNLOCK(bp);
13205 		if (waitfor != MNT_WAIT)
13206 			return (NULL);
13207 		/*
13208 		 * The mtx argument must be bp->b_vp's mutex in
13209 		 * this case.
13210 		 */
13211 #ifdef	DEBUG_VFS_LOCKS
13212 		if (bp->b_vp->v_type != VCHR)
13213 			ASSERT_BO_LOCKED(bp->b_bufobj);
13214 #endif
13215 		bp->b_vflags |= BV_BKGRDWAIT;
13216 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
13217 		return (NULL);
13218 	}
13219 	if ((bp->b_flags & B_DELWRI) == 0) {
13220 		BUF_UNLOCK(bp);
13221 		return (NULL);
13222 	}
13223 	bremfree(bp);
13224 	return (bp);
13225 }
13226 
13227 
13228 /*
13229  * Check if it is safe to suspend the file system now.  On entry,
13230  * the vnode interlock for devvp should be held.  Return 0 with
13231  * the mount interlock held if the file system can be suspended now,
13232  * otherwise return EAGAIN with the mount interlock held.
13233  */
13234 int
13235 softdep_check_suspend(struct mount *mp,
13236 		      struct vnode *devvp,
13237 		      int softdep_deps,
13238 		      int softdep_accdeps,
13239 		      int secondary_writes,
13240 		      int secondary_accwrites)
13241 {
13242 	struct bufobj *bo;
13243 	struct ufsmount *ump;
13244 	int error;
13245 
13246 	ump = VFSTOUFS(mp);
13247 	bo = &devvp->v_bufobj;
13248 	ASSERT_BO_LOCKED(bo);
13249 
13250 	for (;;) {
13251 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13252 			BO_UNLOCK(bo);
13253 			ACQUIRE_LOCK(&lk);
13254 			FREE_LOCK(&lk);
13255 			BO_LOCK(bo);
13256 			continue;
13257 		}
13258 		MNT_ILOCK(mp);
13259 		if (mp->mnt_secondary_writes != 0) {
13260 			FREE_LOCK(&lk);
13261 			BO_UNLOCK(bo);
13262 			msleep(&mp->mnt_secondary_writes,
13263 			       MNT_MTX(mp),
13264 			       (PUSER - 1) | PDROP, "secwr", 0);
13265 			BO_LOCK(bo);
13266 			continue;
13267 		}
13268 		break;
13269 	}
13270 
13271 	/*
13272 	 * Reasons for needing more work before suspend:
13273 	 * - Dirty buffers on devvp.
13274 	 * - Softdep activity occurred after start of vnode sync loop
13275 	 * - Secondary writes occurred after start of vnode sync loop
13276 	 */
13277 	error = 0;
13278 	if (bo->bo_numoutput > 0 ||
13279 	    bo->bo_dirty.bv_cnt > 0 ||
13280 	    softdep_deps != 0 ||
13281 	    ump->softdep_deps != 0 ||
13282 	    softdep_accdeps != ump->softdep_accdeps ||
13283 	    secondary_writes != 0 ||
13284 	    mp->mnt_secondary_writes != 0 ||
13285 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13286 		error = EAGAIN;
13287 	FREE_LOCK(&lk);
13288 	BO_UNLOCK(bo);
13289 	return (error);
13290 }
13291 
13292 
13293 /*
13294  * Get the number of dependency structures for the file system, both
13295  * the current number and the total number allocated.  These will
13296  * later be used to detect that softdep processing has occurred.
13297  */
13298 void
13299 softdep_get_depcounts(struct mount *mp,
13300 		      int *softdep_depsp,
13301 		      int *softdep_accdepsp)
13302 {
13303 	struct ufsmount *ump;
13304 
13305 	ump = VFSTOUFS(mp);
13306 	ACQUIRE_LOCK(&lk);
13307 	*softdep_depsp = ump->softdep_deps;
13308 	*softdep_accdepsp = ump->softdep_accdeps;
13309 	FREE_LOCK(&lk);
13310 }
13311 
13312 /*
13313  * Wait for pending output on a vnode to complete.
13314  * Must be called with vnode lock and interlock locked.
13315  *
13316  * XXX: Should just be a call to bufobj_wwait().
13317  */
13318 static void
13319 drain_output(vp)
13320 	struct vnode *vp;
13321 {
13322 	struct bufobj *bo;
13323 
13324 	bo = &vp->v_bufobj;
13325 	ASSERT_VOP_LOCKED(vp, "drain_output");
13326 	ASSERT_BO_LOCKED(bo);
13327 
13328 	while (bo->bo_numoutput) {
13329 		bo->bo_flag |= BO_WWAIT;
13330 		msleep((caddr_t)&bo->bo_numoutput,
13331 		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
13332 	}
13333 }
13334 
13335 /*
13336  * Called whenever a buffer that is being invalidated or reallocated
13337  * contains dependencies. This should only happen if an I/O error has
13338  * occurred. The routine is called with the buffer locked.
13339  */
13340 static void
13341 softdep_deallocate_dependencies(bp)
13342 	struct buf *bp;
13343 {
13344 
13345 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13346 		panic("softdep_deallocate_dependencies: dangling deps");
13347 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13348 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
13349 }
13350 
13351 /*
13352  * Function to handle asynchronous write errors in the filesystem.
13353  */
13354 static void
13355 softdep_error(func, error)
13356 	char *func;
13357 	int error;
13358 {
13359 
13360 	/* XXX should do something better! */
13361 	printf("%s: got error %d while accessing filesystem\n", func, error);
13362 }
13363 
13364 #ifdef DDB
13365 
13366 static void
13367 inodedep_print(struct inodedep *inodedep, int verbose)
13368 {
13369 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13370 	    " saveino %p\n",
13371 	    inodedep, inodedep->id_fs, inodedep->id_state,
13372 	    (intmax_t)inodedep->id_ino,
13373 	    (intmax_t)fsbtodb(inodedep->id_fs,
13374 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13375 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13376 	    inodedep->id_savedino1);
13377 
13378 	if (verbose == 0)
13379 		return;
13380 
13381 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13382 	    "mkdiradd %p\n",
13383 	    LIST_FIRST(&inodedep->id_pendinghd),
13384 	    LIST_FIRST(&inodedep->id_bufwait),
13385 	    LIST_FIRST(&inodedep->id_inowait),
13386 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13387 	    inodedep->id_mkdiradd);
13388 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13389 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13390 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13391 	    TAILQ_FIRST(&inodedep->id_extupdt),
13392 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13393 }
13394 
13395 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13396 {
13397 
13398 	if (have_addr == 0) {
13399 		db_printf("Address required\n");
13400 		return;
13401 	}
13402 	inodedep_print((struct inodedep*)addr, 1);
13403 }
13404 
13405 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13406 {
13407 	struct inodedep_hashhead *inodedephd;
13408 	struct inodedep *inodedep;
13409 	struct fs *fs;
13410 	int cnt;
13411 
13412 	fs = have_addr ? (struct fs *)addr : NULL;
13413 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13414 		inodedephd = &inodedep_hashtbl[cnt];
13415 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13416 			if (fs != NULL && fs != inodedep->id_fs)
13417 				continue;
13418 			inodedep_print(inodedep, 0);
13419 		}
13420 	}
13421 }
13422 
13423 DB_SHOW_COMMAND(worklist, db_show_worklist)
13424 {
13425 	struct worklist *wk;
13426 
13427 	if (have_addr == 0) {
13428 		db_printf("Address required\n");
13429 		return;
13430 	}
13431 	wk = (struct worklist *)addr;
13432 	printf("worklist: %p type %s state 0x%X\n",
13433 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13434 }
13435 
13436 DB_SHOW_COMMAND(workhead, db_show_workhead)
13437 {
13438 	struct workhead *wkhd;
13439 	struct worklist *wk;
13440 	int i;
13441 
13442 	if (have_addr == 0) {
13443 		db_printf("Address required\n");
13444 		return;
13445 	}
13446 	wkhd = (struct workhead *)addr;
13447 	wk = LIST_FIRST(wkhd);
13448 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13449 		db_printf("worklist: %p type %s state 0x%X",
13450 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13451 	if (i == 100)
13452 		db_printf("workhead overflow");
13453 	printf("\n");
13454 }
13455 
13456 
13457 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13458 {
13459 	struct jaddref *jaddref;
13460 	struct diradd *diradd;
13461 	struct mkdir *mkdir;
13462 
13463 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13464 		diradd = mkdir->md_diradd;
13465 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13466 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13467 		if ((jaddref = mkdir->md_jaddref) != NULL)
13468 			db_printf(" jaddref %p jaddref state 0x%X",
13469 			    jaddref, jaddref->ja_state);
13470 		db_printf("\n");
13471 	}
13472 }
13473 
13474 #endif /* DDB */
13475 
13476 #endif /* SOFTUPDATES */
13477