xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(oldmnt, flags, td)
100 	struct mount *oldmnt;
101 	int flags;
102 	struct thread *td;
103 {
104 
105 	panic("softdep_flushfiles called");
106 }
107 
108 int
109 softdep_mount(devvp, mp, fs, cred)
110 	struct vnode *devvp;
111 	struct mount *mp;
112 	struct fs *fs;
113 	struct ucred *cred;
114 {
115 
116 	return (0);
117 }
118 
119 void
120 softdep_initialize()
121 {
122 
123 	return;
124 }
125 
126 void
127 softdep_uninitialize()
128 {
129 
130 	return;
131 }
132 
133 void
134 softdep_unmount(mp)
135 	struct mount *mp;
136 {
137 
138 	panic("softdep_unmount called");
139 }
140 
141 void
142 softdep_setup_sbupdate(ump, fs, bp)
143 	struct ufsmount *ump;
144 	struct fs *fs;
145 	struct buf *bp;
146 {
147 
148 	panic("softdep_setup_sbupdate called");
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 }
437 
438 int
439 softdep_journal_lookup(mp, vpp)
440 	struct mount *mp;
441 	struct vnode **vpp;
442 {
443 
444 	return (ENOENT);
445 }
446 
447 void
448 softdep_change_linkcnt(ip)
449 	struct inode *ip;
450 {
451 
452 	panic("softdep_change_linkcnt called");
453 }
454 
455 void
456 softdep_load_inodeblock(ip)
457 	struct inode *ip;
458 {
459 
460 	panic("softdep_load_inodeblock called");
461 }
462 
463 void
464 softdep_update_inodeblock(ip, bp, waitfor)
465 	struct inode *ip;
466 	struct buf *bp;
467 	int waitfor;
468 {
469 
470 	panic("softdep_update_inodeblock called");
471 }
472 
473 int
474 softdep_fsync(vp)
475 	struct vnode *vp;	/* the "in_core" copy of the inode */
476 {
477 
478 	return (0);
479 }
480 
481 void
482 softdep_fsync_mountdev(vp)
483 	struct vnode *vp;
484 {
485 
486 	return;
487 }
488 
489 int
490 softdep_flushworklist(oldmnt, countp, td)
491 	struct mount *oldmnt;
492 	int *countp;
493 	struct thread *td;
494 {
495 
496 	*countp = 0;
497 	return (0);
498 }
499 
500 int
501 softdep_sync_metadata(struct vnode *vp)
502 {
503 
504 	panic("softdep_sync_metadata called");
505 }
506 
507 int
508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
509 {
510 
511 	panic("softdep_sync_buf called");
512 }
513 
514 int
515 softdep_slowdown(vp)
516 	struct vnode *vp;
517 {
518 
519 	panic("softdep_slowdown called");
520 }
521 
522 int
523 softdep_request_cleanup(fs, vp, cred, resource)
524 	struct fs *fs;
525 	struct vnode *vp;
526 	struct ucred *cred;
527 	int resource;
528 {
529 
530 	return (0);
531 }
532 
533 int
534 softdep_check_suspend(struct mount *mp,
535 		      struct vnode *devvp,
536 		      int softdep_depcnt,
537 		      int softdep_accdepcnt,
538 		      int secondary_writes,
539 		      int secondary_accwrites)
540 {
541 	struct bufobj *bo;
542 	int error;
543 
544 	(void) softdep_depcnt,
545 	(void) softdep_accdepcnt;
546 
547 	bo = &devvp->v_bufobj;
548 	ASSERT_BO_WLOCKED(bo);
549 
550 	MNT_ILOCK(mp);
551 	while (mp->mnt_secondary_writes != 0) {
552 		BO_UNLOCK(bo);
553 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
554 		    (PUSER - 1) | PDROP, "secwr", 0);
555 		BO_LOCK(bo);
556 		MNT_ILOCK(mp);
557 	}
558 
559 	/*
560 	 * Reasons for needing more work before suspend:
561 	 * - Dirty buffers on devvp.
562 	 * - Secondary writes occurred after start of vnode sync loop
563 	 */
564 	error = 0;
565 	if (bo->bo_numoutput > 0 ||
566 	    bo->bo_dirty.bv_cnt > 0 ||
567 	    secondary_writes != 0 ||
568 	    mp->mnt_secondary_writes != 0 ||
569 	    secondary_accwrites != mp->mnt_secondary_accwrites)
570 		error = EAGAIN;
571 	BO_UNLOCK(bo);
572 	return (error);
573 }
574 
575 void
576 softdep_get_depcounts(struct mount *mp,
577 		      int *softdepactivep,
578 		      int *softdepactiveaccp)
579 {
580 	(void) mp;
581 	*softdepactivep = 0;
582 	*softdepactiveaccp = 0;
583 }
584 
585 void
586 softdep_buf_append(bp, wkhd)
587 	struct buf *bp;
588 	struct workhead *wkhd;
589 {
590 
591 	panic("softdep_buf_appendwork called");
592 }
593 
594 void
595 softdep_inode_append(ip, cred, wkhd)
596 	struct inode *ip;
597 	struct ucred *cred;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_inode_appendwork called");
602 }
603 
604 void
605 softdep_freework(wkhd)
606 	struct workhead *wkhd;
607 {
608 
609 	panic("softdep_freework called");
610 }
611 
612 int
613 softdep_prerename(fdvp, fvp, tdvp, tvp)
614 	struct vnode *fdvp;
615 	struct vnode *fvp;
616 	struct vnode *tdvp;
617 	struct vnode *tvp;
618 {
619 
620 	panic("softdep_prerename called");
621 }
622 
623 int
624 softdep_prelink(dvp, vp, cnp)
625 	struct vnode *dvp;
626 	struct vnode *vp;
627 	struct componentname *cnp;
628 {
629 
630 	panic("softdep_prelink called");
631 }
632 
633 #else
634 
635 FEATURE(softupdates, "FFS soft-updates support");
636 
637 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
638     "soft updates stats");
639 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
640     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
641     "total dependencies allocated");
642 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
643     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
644     "high use dependencies allocated");
645 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
646     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
647     "current dependencies allocated");
648 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
649     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
650     "current dependencies written");
651 
652 unsigned long dep_current[D_LAST + 1];
653 unsigned long dep_highuse[D_LAST + 1];
654 unsigned long dep_total[D_LAST + 1];
655 unsigned long dep_write[D_LAST + 1];
656 
657 #define	SOFTDEP_TYPE(type, str, long)					\
658     static MALLOC_DEFINE(M_ ## type, #str, long);			\
659     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
660 	&dep_total[D_ ## type], 0, "");					\
661     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
662 	&dep_current[D_ ## type], 0, "");				\
663     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
664 	&dep_highuse[D_ ## type], 0, "");				\
665     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
666 	&dep_write[D_ ## type], 0, "");
667 
668 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
669 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
670 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
671     "Block or frag allocated from cyl group map");
672 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
673 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
674 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
675 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
676 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
677 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
678 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
679 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
680 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
681 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
682 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
683 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
684 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
685 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
686 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
687 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
688 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
689 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
690 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
691 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
692 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
693 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
694 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
695 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
696 
697 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
698 
699 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
700 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
701 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
702 
703 #define M_SOFTDEP_FLAGS	(M_WAITOK)
704 
705 /*
706  * translate from workitem type to memory type
707  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
708  */
709 static struct malloc_type *memtype[] = {
710 	NULL,
711 	M_PAGEDEP,
712 	M_INODEDEP,
713 	M_BMSAFEMAP,
714 	M_NEWBLK,
715 	M_ALLOCDIRECT,
716 	M_INDIRDEP,
717 	M_ALLOCINDIR,
718 	M_FREEFRAG,
719 	M_FREEBLKS,
720 	M_FREEFILE,
721 	M_DIRADD,
722 	M_MKDIR,
723 	M_DIRREM,
724 	M_NEWDIRBLK,
725 	M_FREEWORK,
726 	M_FREEDEP,
727 	M_JADDREF,
728 	M_JREMREF,
729 	M_JMVREF,
730 	M_JNEWBLK,
731 	M_JFREEBLK,
732 	M_JFREEFRAG,
733 	M_JSEG,
734 	M_JSEGDEP,
735 	M_SBDEP,
736 	M_JTRUNC,
737 	M_JFSYNC,
738 	M_SENTINEL
739 };
740 
741 #define DtoM(type) (memtype[type])
742 
743 /*
744  * Names of malloc types.
745  */
746 #define TYPENAME(type)  \
747 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
748 	memtype[type]->ks_shortdesc : "???")
749 /*
750  * End system adaptation definitions.
751  */
752 
753 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
754 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
755 
756 /*
757  * Internal function prototypes.
758  */
759 static	void check_clear_deps(struct mount *);
760 static	void softdep_error(char *, int);
761 static	int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
762 static	int softdep_process_worklist(struct mount *, int);
763 static	int softdep_waitidle(struct mount *, int);
764 static	void drain_output(struct vnode *);
765 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
766 static	int check_inodedep_free(struct inodedep *);
767 static	void clear_remove(struct mount *);
768 static	void clear_inodedeps(struct mount *);
769 static	void unlinked_inodedep(struct mount *, struct inodedep *);
770 static	void clear_unlinked_inodedep(struct inodedep *);
771 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
772 static	int flush_pagedep_deps(struct vnode *, struct mount *,
773 	    struct diraddhd *, struct buf *);
774 static	int free_pagedep(struct pagedep *);
775 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
776 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
777 static	int flush_deplist(struct allocdirectlst *, int, int *);
778 static	int sync_cgs(struct mount *, int);
779 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
780 static	int handle_written_sbdep(struct sbdep *, struct buf *);
781 static	void initiate_write_sbdep(struct sbdep *);
782 static	void diradd_inode_written(struct diradd *, struct inodedep *);
783 static	int handle_written_indirdep(struct indirdep *, struct buf *,
784 	    struct buf**, int);
785 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
786 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
787 	    uint8_t *);
788 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
789 static	void handle_written_jaddref(struct jaddref *);
790 static	void handle_written_jremref(struct jremref *);
791 static	void handle_written_jseg(struct jseg *, struct buf *);
792 static	void handle_written_jnewblk(struct jnewblk *);
793 static	void handle_written_jblkdep(struct jblkdep *);
794 static	void handle_written_jfreefrag(struct jfreefrag *);
795 static	void complete_jseg(struct jseg *);
796 static	void complete_jsegs(struct jseg *);
797 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
798 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
799 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
800 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
801 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
802 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
803 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
804 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
805 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
806 static	inline void inoref_write(struct inoref *, struct jseg *,
807 	    struct jrefrec *);
808 static	void handle_allocdirect_partdone(struct allocdirect *,
809 	    struct workhead *);
810 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
811 	    struct workhead *);
812 static	void indirdep_complete(struct indirdep *);
813 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
814 static	void indirblk_insert(struct freework *);
815 static	void indirblk_remove(struct freework *);
816 static	void handle_allocindir_partdone(struct allocindir *);
817 static	void initiate_write_filepage(struct pagedep *, struct buf *);
818 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
819 static	void handle_written_mkdir(struct mkdir *, int);
820 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
821 	    uint8_t *);
822 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
823 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
824 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
825 static	void handle_workitem_freefile(struct freefile *);
826 static	int handle_workitem_remove(struct dirrem *, int);
827 static	struct dirrem *newdirrem(struct buf *, struct inode *,
828 	    struct inode *, int, struct dirrem **);
829 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
830 	    struct buf *);
831 static	void cancel_indirdep(struct indirdep *, struct buf *,
832 	    struct freeblks *);
833 static	void free_indirdep(struct indirdep *);
834 static	void free_diradd(struct diradd *, struct workhead *);
835 static	void merge_diradd(struct inodedep *, struct diradd *);
836 static	void complete_diradd(struct diradd *);
837 static	struct diradd *diradd_lookup(struct pagedep *, int);
838 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
839 	    struct jremref *);
840 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
841 	    struct jremref *);
842 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
843 	    struct jremref *, struct jremref *);
844 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
845 	    struct jremref *);
846 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
847 	    struct freeblks *, int);
848 static	int setup_trunc_indir(struct freeblks *, struct inode *,
849 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
850 static	void complete_trunc_indir(struct freework *);
851 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
852 	    int);
853 static	void complete_mkdir(struct mkdir *);
854 static	void free_newdirblk(struct newdirblk *);
855 static	void free_jremref(struct jremref *);
856 static	void free_jaddref(struct jaddref *);
857 static	void free_jsegdep(struct jsegdep *);
858 static	void free_jsegs(struct jblocks *);
859 static	void rele_jseg(struct jseg *);
860 static	void free_jseg(struct jseg *, struct jblocks *);
861 static	void free_jnewblk(struct jnewblk *);
862 static	void free_jblkdep(struct jblkdep *);
863 static	void free_jfreefrag(struct jfreefrag *);
864 static	void free_freedep(struct freedep *);
865 static	void journal_jremref(struct dirrem *, struct jremref *,
866 	    struct inodedep *);
867 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
868 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
869 	    struct workhead *);
870 static	void cancel_jfreefrag(struct jfreefrag *);
871 static	inline void setup_freedirect(struct freeblks *, struct inode *,
872 	    int, int);
873 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
874 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
875 	    ufs_lbn_t, int);
876 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
877 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
878 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
879 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
880 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
881 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
882 	    int, int);
883 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
884 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
885 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
886 static	void newblk_freefrag(struct newblk*);
887 static	void free_newblk(struct newblk *);
888 static	void cancel_allocdirect(struct allocdirectlst *,
889 	    struct allocdirect *, struct freeblks *);
890 static	int check_inode_unwritten(struct inodedep *);
891 static	int free_inodedep(struct inodedep *);
892 static	void freework_freeblock(struct freework *, u_long);
893 static	void freework_enqueue(struct freework *);
894 static	int handle_workitem_freeblocks(struct freeblks *, int);
895 static	int handle_complete_freeblocks(struct freeblks *, int);
896 static	void handle_workitem_indirblk(struct freework *);
897 static	void handle_written_freework(struct freework *);
898 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
899 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
900 	    struct workhead *);
901 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
902 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
903 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
904 	    ufs2_daddr_t, ufs_lbn_t);
905 static	void handle_workitem_freefrag(struct freefrag *);
906 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
907 	    ufs_lbn_t, u_long);
908 static	void allocdirect_merge(struct allocdirectlst *,
909 	    struct allocdirect *, struct allocdirect *);
910 static	struct freefrag *allocindir_merge(struct allocindir *,
911 	    struct allocindir *);
912 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
913 	    struct bmsafemap **);
914 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
915 	    int cg, struct bmsafemap *);
916 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
917 	    struct newblk **);
918 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
919 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
920 	    struct inodedep **);
921 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
922 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
923 	    int, struct pagedep **);
924 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
925 	    struct pagedep **);
926 static	void pause_timer(void *);
927 static	int request_cleanup(struct mount *, int);
928 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
929 static	void schedule_cleanup(struct mount *);
930 static void softdep_ast_cleanup_proc(struct thread *);
931 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
932 static	int process_worklist_item(struct mount *, int, int);
933 static	void process_removes(struct vnode *);
934 static	void process_truncates(struct vnode *);
935 static	void jwork_move(struct workhead *, struct workhead *);
936 static	void jwork_insert(struct workhead *, struct jsegdep *);
937 static	void add_to_worklist(struct worklist *, int);
938 static	void wake_worklist(struct worklist *);
939 static	void wait_worklist(struct worklist *, char *);
940 static	void remove_from_worklist(struct worklist *);
941 static	void softdep_flush(void *);
942 static	void softdep_flushjournal(struct mount *);
943 static	int softdep_speedup(struct ufsmount *);
944 static	void worklist_speedup(struct mount *);
945 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
946 static	void journal_unmount(struct ufsmount *);
947 static	int journal_space(struct ufsmount *, int);
948 static	void journal_suspend(struct ufsmount *);
949 static	int journal_unsuspend(struct ufsmount *ump);
950 static	void add_to_journal(struct worklist *);
951 static	void remove_from_journal(struct worklist *);
952 static	bool softdep_excess_items(struct ufsmount *, int);
953 static	void softdep_process_journal(struct mount *, struct worklist *, int);
954 static	struct jremref *newjremref(struct dirrem *, struct inode *,
955 	    struct inode *ip, off_t, nlink_t);
956 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
957 	    uint16_t);
958 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
959 	    uint16_t);
960 static	inline struct jsegdep *inoref_jseg(struct inoref *);
961 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
962 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
963 	    ufs2_daddr_t, int);
964 static	void adjust_newfreework(struct freeblks *, int);
965 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
966 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
967 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
968 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
969 	    ufs2_daddr_t, long, ufs_lbn_t);
970 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
971 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
972 static	int jwait(struct worklist *, int);
973 static	struct inodedep *inodedep_lookup_ip(struct inode *);
974 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
975 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
976 static	void handle_jwork(struct workhead *);
977 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
978 	    struct mkdir **);
979 static	struct jblocks *jblocks_create(void);
980 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
981 static	void jblocks_free(struct jblocks *, struct mount *, int);
982 static	void jblocks_destroy(struct jblocks *);
983 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
984 
985 /*
986  * Exported softdep operations.
987  */
988 static	void softdep_disk_io_initiation(struct buf *);
989 static	void softdep_disk_write_complete(struct buf *);
990 static	void softdep_deallocate_dependencies(struct buf *);
991 static	int softdep_count_dependencies(struct buf *bp, int);
992 
993 /*
994  * Global lock over all of soft updates.
995  */
996 static struct mtx lk;
997 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
998 
999 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
1000 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
1001 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
1002 
1003 /*
1004  * Per-filesystem soft-updates locking.
1005  */
1006 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
1007 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
1008 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
1009 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
1010 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
1011 				    RA_WLOCKED)
1012 
1013 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
1014 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
1015 
1016 /*
1017  * Worklist queue management.
1018  * These routines require that the lock be held.
1019  */
1020 #ifndef /* NOT */ INVARIANTS
1021 #define WORKLIST_INSERT(head, item) do {	\
1022 	(item)->wk_state |= ONWORKLIST;		\
1023 	LIST_INSERT_HEAD(head, item, wk_list);	\
1024 } while (0)
1025 #define WORKLIST_REMOVE(item) do {		\
1026 	(item)->wk_state &= ~ONWORKLIST;	\
1027 	LIST_REMOVE(item, wk_list);		\
1028 } while (0)
1029 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1030 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1031 
1032 #else /* INVARIANTS */
1033 static	void worklist_insert(struct workhead *, struct worklist *, int,
1034 	const char *, int);
1035 static	void worklist_remove(struct worklist *, int, const char *, int);
1036 
1037 #define WORKLIST_INSERT(head, item) \
1038 	worklist_insert(head, item, 1, __func__, __LINE__)
1039 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1040 	worklist_insert(head, item, 0, __func__, __LINE__)
1041 #define WORKLIST_REMOVE(item)\
1042 	worklist_remove(item, 1, __func__, __LINE__)
1043 #define WORKLIST_REMOVE_UNLOCKED(item)\
1044 	worklist_remove(item, 0, __func__, __LINE__)
1045 
1046 static void
1047 worklist_insert(head, item, locked, func, line)
1048 	struct workhead *head;
1049 	struct worklist *item;
1050 	int locked;
1051 	const char *func;
1052 	int line;
1053 {
1054 
1055 	if (locked)
1056 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1057 	if (item->wk_state & ONWORKLIST)
1058 		panic("worklist_insert: %p %s(0x%X) already on list, "
1059 		    "added in function %s at line %d",
1060 		    item, TYPENAME(item->wk_type), item->wk_state,
1061 		    item->wk_func, item->wk_line);
1062 	item->wk_state |= ONWORKLIST;
1063 	item->wk_func = func;
1064 	item->wk_line = line;
1065 	LIST_INSERT_HEAD(head, item, wk_list);
1066 }
1067 
1068 static void
1069 worklist_remove(item, locked, func, line)
1070 	struct worklist *item;
1071 	int locked;
1072 	const char *func;
1073 	int line;
1074 {
1075 
1076 	if (locked)
1077 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1078 	if ((item->wk_state & ONWORKLIST) == 0)
1079 		panic("worklist_remove: %p %s(0x%X) not on list, "
1080 		    "removed in function %s at line %d",
1081 		    item, TYPENAME(item->wk_type), item->wk_state,
1082 		    item->wk_func, item->wk_line);
1083 	item->wk_state &= ~ONWORKLIST;
1084 	item->wk_func = func;
1085 	item->wk_line = line;
1086 	LIST_REMOVE(item, wk_list);
1087 }
1088 #endif /* INVARIANTS */
1089 
1090 /*
1091  * Merge two jsegdeps keeping only the oldest one as newer references
1092  * can't be discarded until after older references.
1093  */
1094 static inline struct jsegdep *
1095 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1096 {
1097 	struct jsegdep *swp;
1098 
1099 	if (two == NULL)
1100 		return (one);
1101 
1102 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1103 		swp = one;
1104 		one = two;
1105 		two = swp;
1106 	}
1107 	WORKLIST_REMOVE(&two->jd_list);
1108 	free_jsegdep(two);
1109 
1110 	return (one);
1111 }
1112 
1113 /*
1114  * If two freedeps are compatible free one to reduce list size.
1115  */
1116 static inline struct freedep *
1117 freedep_merge(struct freedep *one, struct freedep *two)
1118 {
1119 	if (two == NULL)
1120 		return (one);
1121 
1122 	if (one->fd_freework == two->fd_freework) {
1123 		WORKLIST_REMOVE(&two->fd_list);
1124 		free_freedep(two);
1125 	}
1126 	return (one);
1127 }
1128 
1129 /*
1130  * Move journal work from one list to another.  Duplicate freedeps and
1131  * jsegdeps are coalesced to keep the lists as small as possible.
1132  */
1133 static void
1134 jwork_move(dst, src)
1135 	struct workhead *dst;
1136 	struct workhead *src;
1137 {
1138 	struct freedep *freedep;
1139 	struct jsegdep *jsegdep;
1140 	struct worklist *wkn;
1141 	struct worklist *wk;
1142 
1143 	KASSERT(dst != src,
1144 	    ("jwork_move: dst == src"));
1145 	freedep = NULL;
1146 	jsegdep = NULL;
1147 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1148 		if (wk->wk_type == D_JSEGDEP)
1149 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1150 		else if (wk->wk_type == D_FREEDEP)
1151 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1152 	}
1153 
1154 	while ((wk = LIST_FIRST(src)) != NULL) {
1155 		WORKLIST_REMOVE(wk);
1156 		WORKLIST_INSERT(dst, wk);
1157 		if (wk->wk_type == D_JSEGDEP) {
1158 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1159 			continue;
1160 		}
1161 		if (wk->wk_type == D_FREEDEP)
1162 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1163 	}
1164 }
1165 
1166 static void
1167 jwork_insert(dst, jsegdep)
1168 	struct workhead *dst;
1169 	struct jsegdep *jsegdep;
1170 {
1171 	struct jsegdep *jsegdepn;
1172 	struct worklist *wk;
1173 
1174 	LIST_FOREACH(wk, dst, wk_list)
1175 		if (wk->wk_type == D_JSEGDEP)
1176 			break;
1177 	if (wk == NULL) {
1178 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1179 		return;
1180 	}
1181 	jsegdepn = WK_JSEGDEP(wk);
1182 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1183 		WORKLIST_REMOVE(wk);
1184 		free_jsegdep(jsegdepn);
1185 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1186 	} else
1187 		free_jsegdep(jsegdep);
1188 }
1189 
1190 /*
1191  * Routines for tracking and managing workitems.
1192  */
1193 static	void workitem_free(struct worklist *, int);
1194 static	void workitem_alloc(struct worklist *, int, struct mount *);
1195 static	void workitem_reassign(struct worklist *, int);
1196 
1197 #define	WORKITEM_FREE(item, type) \
1198 	workitem_free((struct worklist *)(item), (type))
1199 #define	WORKITEM_REASSIGN(item, type) \
1200 	workitem_reassign((struct worklist *)(item), (type))
1201 
1202 static void
1203 workitem_free(item, type)
1204 	struct worklist *item;
1205 	int type;
1206 {
1207 	struct ufsmount *ump;
1208 
1209 #ifdef INVARIANTS
1210 	if (item->wk_state & ONWORKLIST)
1211 		panic("workitem_free: %s(0x%X) still on list, "
1212 		    "added in function %s at line %d",
1213 		    TYPENAME(item->wk_type), item->wk_state,
1214 		    item->wk_func, item->wk_line);
1215 	if (item->wk_type != type && type != D_NEWBLK)
1216 		panic("workitem_free: type mismatch %s != %s",
1217 		    TYPENAME(item->wk_type), TYPENAME(type));
1218 #endif
1219 	if (item->wk_state & IOWAITING)
1220 		wakeup(item);
1221 	ump = VFSTOUFS(item->wk_mp);
1222 	LOCK_OWNED(ump);
1223 	KASSERT(ump->softdep_deps > 0,
1224 	    ("workitem_free: %s: softdep_deps going negative",
1225 	    ump->um_fs->fs_fsmnt));
1226 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1227 		wakeup(&ump->softdep_deps);
1228 	KASSERT(dep_current[item->wk_type] > 0,
1229 	    ("workitem_free: %s: dep_current[%s] going negative",
1230 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1231 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1232 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1233 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1234 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1235 	ump->softdep_curdeps[item->wk_type] -= 1;
1236 #ifdef INVARIANTS
1237 	LIST_REMOVE(item, wk_all);
1238 #endif
1239 	free(item, DtoM(type));
1240 }
1241 
1242 static void
1243 workitem_alloc(item, type, mp)
1244 	struct worklist *item;
1245 	int type;
1246 	struct mount *mp;
1247 {
1248 	struct ufsmount *ump;
1249 
1250 	item->wk_type = type;
1251 	item->wk_mp = mp;
1252 	item->wk_state = 0;
1253 
1254 	ump = VFSTOUFS(mp);
1255 	ACQUIRE_GBLLOCK(&lk);
1256 	dep_current[type]++;
1257 	if (dep_current[type] > dep_highuse[type])
1258 		dep_highuse[type] = dep_current[type];
1259 	dep_total[type]++;
1260 	FREE_GBLLOCK(&lk);
1261 	ACQUIRE_LOCK(ump);
1262 	ump->softdep_curdeps[type] += 1;
1263 	ump->softdep_deps++;
1264 	ump->softdep_accdeps++;
1265 #ifdef INVARIANTS
1266 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1267 #endif
1268 	FREE_LOCK(ump);
1269 }
1270 
1271 static void
1272 workitem_reassign(item, newtype)
1273 	struct worklist *item;
1274 	int newtype;
1275 {
1276 	struct ufsmount *ump;
1277 
1278 	ump = VFSTOUFS(item->wk_mp);
1279 	LOCK_OWNED(ump);
1280 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1281 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1282 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1283 	ump->softdep_curdeps[item->wk_type] -= 1;
1284 	ump->softdep_curdeps[newtype] += 1;
1285 	KASSERT(dep_current[item->wk_type] > 0,
1286 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1287 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1288 	ACQUIRE_GBLLOCK(&lk);
1289 	dep_current[newtype]++;
1290 	dep_current[item->wk_type]--;
1291 	if (dep_current[newtype] > dep_highuse[newtype])
1292 		dep_highuse[newtype] = dep_current[newtype];
1293 	dep_total[newtype]++;
1294 	FREE_GBLLOCK(&lk);
1295 	item->wk_type = newtype;
1296 }
1297 
1298 /*
1299  * Workitem queue management
1300  */
1301 static int max_softdeps;	/* maximum number of structs before slowdown */
1302 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1303 static int proc_waiting;	/* tracks whether we have a timeout posted */
1304 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1305 static struct callout softdep_callout;
1306 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1307 static int req_clear_remove;	/* syncer process flush some freeblks */
1308 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1309 
1310 /*
1311  * runtime statistics
1312  */
1313 static int stat_flush_threads;	/* number of softdep flushing threads */
1314 static int stat_worklist_push;	/* number of worklist cleanups */
1315 static int stat_delayed_inact;	/* number of delayed inactivation cleanups */
1316 static int stat_blk_limit_push;	/* number of times block limit neared */
1317 static int stat_ino_limit_push;	/* number of times inode limit neared */
1318 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1319 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1320 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1321 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1322 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1323 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1324 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1325 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1326 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1327 static int stat_journal_min;	/* Times hit journal min threshold */
1328 static int stat_journal_low;	/* Times hit journal low threshold */
1329 static int stat_journal_wait;	/* Times blocked in jwait(). */
1330 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1331 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1332 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1333 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1334 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1335 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1336 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1337 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1338 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1339 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1340 
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1342     &max_softdeps, 0, "");
1343 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1344     &tickdelay, 0, "");
1345 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1346     &stat_flush_threads, 0, "");
1347 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1348     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1349 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1350     &stat_delayed_inact, 0, "");
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1352     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1353 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1354     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1355 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1356     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1357 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1358     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1359 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1360     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1361 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1362     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1363 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1364     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1365 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1366     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1367 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1368     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1369 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1370     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1371 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1372     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1373 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1374     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1375 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1376     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1377 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1378     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1379 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1380     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1381 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1382     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1383 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1384     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1385 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1386     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1387 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1388     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1389 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1390     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1391 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1392     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1393 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1394     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1395 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1396     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1397 
1398 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1399     &softdep_flushcache, 0, "");
1400 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1401     &stat_emptyjblocks, 0, "");
1402 
1403 SYSCTL_DECL(_vfs_ffs);
1404 
1405 /* Whether to recompute the summary at mount time */
1406 static int compute_summary_at_mount = 0;
1407 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1408 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1409 static int print_threads = 0;
1410 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1411     &print_threads, 0, "Notify flusher thread start/stop");
1412 
1413 /* List of all filesystems mounted with soft updates */
1414 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1415 
1416 static void
1417 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp,
1418     struct diraddhd *diraddhdp, struct diraddhd *unfinishedp)
1419 {
1420 	struct diradd *dap;
1421 
1422 	/*
1423 	 * Requeue unfinished dependencies before
1424 	 * unlocking buffer, which could make
1425 	 * diraddhdp invalid.
1426 	 */
1427 	ACQUIRE_LOCK(VFSTOUFS(mp));
1428 	while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1429 		LIST_REMOVE(dap, da_pdlist);
1430 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1431 	}
1432 	FREE_LOCK(VFSTOUFS(mp));
1433 
1434 	bp->b_vflags &= ~BV_SCANNED;
1435 	BUF_NOREC(bp);
1436 	BUF_UNLOCK(bp);
1437 }
1438 
1439 /*
1440  * This function fetches inode inum on mount point mp.  We already
1441  * hold a locked vnode vp, and might have a locked buffer bp belonging
1442  * to vp.
1443 
1444  * We must not block on acquiring the new inode lock as we will get
1445  * into a lock-order reversal with the buffer lock and possibly get a
1446  * deadlock.  Thus if we cannot instantiate the requested vnode
1447  * without sleeping on its lock, we must unlock the vnode and the
1448  * buffer before doing a blocking on the vnode lock.  We return
1449  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
1450  * that the caller can reassess its state.
1451  *
1452  * Top-level VFS code (for syscalls and other consumers, e.g. callers
1453  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1454  * point.
1455  *
1456  * Since callers expect to operate on fully constructed vnode, we also
1457  * recheck v_data after relock, and return ENOENT if NULL.
1458  *
1459  * If unlocking bp, we must unroll dequeueing its unfinished
1460  * dependencies, and clear scan flag, before unlocking.  If unlocking
1461  * vp while it is under deactivation, we re-queue deactivation.
1462  */
1463 static int
1464 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp,
1465     struct diraddhd *diraddhdp, struct diraddhd *unfinishedp,
1466     struct vnode **rvp)
1467 {
1468 	struct vnode *pvp;
1469 	int error;
1470 	bool bplocked;
1471 
1472 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1473 	for (bplocked = true, pvp = NULL;;) {
1474 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1475 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1476 		if (error == 0) {
1477 			/*
1478 			 * Since we could have unlocked vp, the inode
1479 			 * number could no longer indicate a
1480 			 * constructed node.  In this case, we must
1481 			 * restart the syscall.
1482 			 */
1483 			if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1484 				if (bp != NULL && bplocked)
1485 					get_parent_vp_unlock_bp(mp, bp,
1486 					    diraddhdp, unfinishedp);
1487 				if (VTOI(pvp)->i_mode == 0)
1488 					vgone(pvp);
1489 				error = ERELOOKUP;
1490 				goto out2;
1491 			}
1492 			goto out1;
1493 		}
1494 		if (bp != NULL && bplocked) {
1495 			get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1496 			bplocked = false;
1497 		}
1498 
1499 		/*
1500 		 * Do not drop vnode lock while inactivating during
1501 		 * vunref.  This would result in leaks of the VI flags
1502 		 * and reclaiming of non-truncated vnode.  Instead,
1503 		 * re-schedule inactivation hoping that we would be
1504 		 * able to sync inode later.
1505 		 */
1506 		if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1507 		    (vp->v_vflag & VV_UNREF) != 0) {
1508 			VI_LOCK(vp);
1509 			vp->v_iflag |= VI_OWEINACT;
1510 			VI_UNLOCK(vp);
1511 			return (ERELOOKUP);
1512 		}
1513 
1514 		VOP_UNLOCK(vp);
1515 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1516 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1517 		if (error != 0) {
1518 			MPASS(error != ERELOOKUP);
1519 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1520 			break;
1521 		}
1522 		if (VTOI(pvp)->i_mode == 0) {
1523 			vgone(pvp);
1524 			vput(pvp);
1525 			pvp = NULL;
1526 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1527 			error = ERELOOKUP;
1528 			break;
1529 		}
1530 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1531 		if (error == 0)
1532 			break;
1533 		vput(pvp);
1534 		pvp = NULL;
1535 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1536 		if (vp->v_data == NULL) {
1537 			error = ENOENT;
1538 			break;
1539 		}
1540 	}
1541 	if (bp != NULL) {
1542 		MPASS(!bplocked);
1543 		error = ERELOOKUP;
1544 	}
1545 out2:
1546 	if (error != 0 && pvp != NULL) {
1547 		vput(pvp);
1548 		pvp = NULL;
1549 	}
1550 out1:
1551 	*rvp = pvp;
1552 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1553 	return (error);
1554 }
1555 
1556 /*
1557  * This function cleans the worklist for a filesystem.
1558  * Each filesystem running with soft dependencies gets its own
1559  * thread to run in this function. The thread is started up in
1560  * softdep_mount and shutdown in softdep_unmount. They show up
1561  * as part of the kernel "bufdaemon" process whose process
1562  * entry is available in bufdaemonproc.
1563  */
1564 static int searchfailed;
1565 extern struct proc *bufdaemonproc;
1566 static void
1567 softdep_flush(addr)
1568 	void *addr;
1569 {
1570 	struct mount *mp;
1571 	struct thread *td;
1572 	struct ufsmount *ump;
1573 	int cleanups;
1574 
1575 	td = curthread;
1576 	td->td_pflags |= TDP_NORUNNINGBUF;
1577 	mp = (struct mount *)addr;
1578 	ump = VFSTOUFS(mp);
1579 	atomic_add_int(&stat_flush_threads, 1);
1580 	ACQUIRE_LOCK(ump);
1581 	ump->softdep_flags &= ~FLUSH_STARTING;
1582 	wakeup(&ump->softdep_flushtd);
1583 	FREE_LOCK(ump);
1584 	if (print_threads) {
1585 		if (stat_flush_threads == 1)
1586 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1587 			    bufdaemonproc->p_pid);
1588 		printf("Start thread %s\n", td->td_name);
1589 	}
1590 	for (;;) {
1591 		while (softdep_process_worklist(mp, 0) > 0 ||
1592 		    (MOUNTEDSUJ(mp) &&
1593 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1594 			kthread_suspend_check();
1595 		ACQUIRE_LOCK(ump);
1596 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1597 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1598 			    "sdflush", hz / 2);
1599 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1600 		/*
1601 		 * Check to see if we are done and need to exit.
1602 		 */
1603 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1604 			FREE_LOCK(ump);
1605 			continue;
1606 		}
1607 		ump->softdep_flags &= ~FLUSH_EXIT;
1608 		cleanups = ump->um_softdep->sd_cleanups;
1609 		FREE_LOCK(ump);
1610 		wakeup(&ump->softdep_flags);
1611 		if (print_threads) {
1612 			printf("Stop thread %s: searchfailed %d, "
1613 			    "did cleanups %d\n",
1614 			    td->td_name, searchfailed, cleanups);
1615 		}
1616 		atomic_subtract_int(&stat_flush_threads, 1);
1617 		kthread_exit();
1618 		panic("kthread_exit failed\n");
1619 	}
1620 }
1621 
1622 static void
1623 worklist_speedup(mp)
1624 	struct mount *mp;
1625 {
1626 	struct ufsmount *ump;
1627 
1628 	ump = VFSTOUFS(mp);
1629 	LOCK_OWNED(ump);
1630 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1631 		ump->softdep_flags |= FLUSH_CLEANUP;
1632 	wakeup(&ump->softdep_flushtd);
1633 }
1634 
1635 static void
1636 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags)
1637 {
1638 	struct buf *bp;
1639 
1640 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1641 		return;
1642 
1643 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1644 	bp->b_iocmd = BIO_SPEEDUP;
1645 	bp->b_ioflags = flags;
1646 	bp->b_bcount = omin(shortage, LONG_MAX);
1647 	g_vfs_strategy(ump->um_bo, bp);
1648 	bufwait(bp);
1649 	free(bp, M_TRIM);
1650 }
1651 
1652 static int
1653 softdep_speedup(ump)
1654 	struct ufsmount *ump;
1655 {
1656 	struct ufsmount *altump;
1657 	struct mount_softdeps *sdp;
1658 
1659 	LOCK_OWNED(ump);
1660 	worklist_speedup(ump->um_mountp);
1661 	bd_speedup();
1662 	/*
1663 	 * If we have global shortages, then we need other
1664 	 * filesystems to help with the cleanup. Here we wakeup a
1665 	 * flusher thread for a filesystem that is over its fair
1666 	 * share of resources.
1667 	 */
1668 	if (req_clear_inodedeps || req_clear_remove) {
1669 		ACQUIRE_GBLLOCK(&lk);
1670 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1671 			if ((altump = sdp->sd_ump) == ump)
1672 				continue;
1673 			if (((req_clear_inodedeps &&
1674 			    altump->softdep_curdeps[D_INODEDEP] >
1675 			    max_softdeps / stat_flush_threads) ||
1676 			    (req_clear_remove &&
1677 			    altump->softdep_curdeps[D_DIRREM] >
1678 			    (max_softdeps / 2) / stat_flush_threads)) &&
1679 			    TRY_ACQUIRE_LOCK(altump))
1680 				break;
1681 		}
1682 		if (sdp == NULL) {
1683 			searchfailed++;
1684 			FREE_GBLLOCK(&lk);
1685 		} else {
1686 			/*
1687 			 * Move to the end of the list so we pick a
1688 			 * different one on out next try.
1689 			 */
1690 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1691 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1692 			FREE_GBLLOCK(&lk);
1693 			if ((altump->softdep_flags &
1694 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1695 				altump->softdep_flags |= FLUSH_CLEANUP;
1696 			altump->um_softdep->sd_cleanups++;
1697 			wakeup(&altump->softdep_flushtd);
1698 			FREE_LOCK(altump);
1699 		}
1700 	}
1701 	return (speedup_syncer());
1702 }
1703 
1704 /*
1705  * Add an item to the end of the work queue.
1706  * This routine requires that the lock be held.
1707  * This is the only routine that adds items to the list.
1708  * The following routine is the only one that removes items
1709  * and does so in order from first to last.
1710  */
1711 
1712 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1713 #define	WK_NODELAY	0x0002	/* Process immediately. */
1714 
1715 static void
1716 add_to_worklist(wk, flags)
1717 	struct worklist *wk;
1718 	int flags;
1719 {
1720 	struct ufsmount *ump;
1721 
1722 	ump = VFSTOUFS(wk->wk_mp);
1723 	LOCK_OWNED(ump);
1724 	if (wk->wk_state & ONWORKLIST)
1725 		panic("add_to_worklist: %s(0x%X) already on list",
1726 		    TYPENAME(wk->wk_type), wk->wk_state);
1727 	wk->wk_state |= ONWORKLIST;
1728 	if (ump->softdep_on_worklist == 0) {
1729 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1730 		ump->softdep_worklist_tail = wk;
1731 	} else if (flags & WK_HEAD) {
1732 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1733 	} else {
1734 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1735 		ump->softdep_worklist_tail = wk;
1736 	}
1737 	ump->softdep_on_worklist += 1;
1738 	if (flags & WK_NODELAY)
1739 		worklist_speedup(wk->wk_mp);
1740 }
1741 
1742 /*
1743  * Remove the item to be processed. If we are removing the last
1744  * item on the list, we need to recalculate the tail pointer.
1745  */
1746 static void
1747 remove_from_worklist(wk)
1748 	struct worklist *wk;
1749 {
1750 	struct ufsmount *ump;
1751 
1752 	ump = VFSTOUFS(wk->wk_mp);
1753 	if (ump->softdep_worklist_tail == wk)
1754 		ump->softdep_worklist_tail =
1755 		    (struct worklist *)wk->wk_list.le_prev;
1756 	WORKLIST_REMOVE(wk);
1757 	ump->softdep_on_worklist -= 1;
1758 }
1759 
1760 static void
1761 wake_worklist(wk)
1762 	struct worklist *wk;
1763 {
1764 	if (wk->wk_state & IOWAITING) {
1765 		wk->wk_state &= ~IOWAITING;
1766 		wakeup(wk);
1767 	}
1768 }
1769 
1770 static void
1771 wait_worklist(wk, wmesg)
1772 	struct worklist *wk;
1773 	char *wmesg;
1774 {
1775 	struct ufsmount *ump;
1776 
1777 	ump = VFSTOUFS(wk->wk_mp);
1778 	wk->wk_state |= IOWAITING;
1779 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1780 }
1781 
1782 /*
1783  * Process that runs once per second to handle items in the background queue.
1784  *
1785  * Note that we ensure that everything is done in the order in which they
1786  * appear in the queue. The code below depends on this property to ensure
1787  * that blocks of a file are freed before the inode itself is freed. This
1788  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1789  * until all the old ones have been purged from the dependency lists.
1790  */
1791 static int
1792 softdep_process_worklist(mp, full)
1793 	struct mount *mp;
1794 	int full;
1795 {
1796 	int cnt, matchcnt;
1797 	struct ufsmount *ump;
1798 	long starttime;
1799 
1800 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1801 	ump = VFSTOUFS(mp);
1802 	if (ump->um_softdep == NULL)
1803 		return (0);
1804 	matchcnt = 0;
1805 	ACQUIRE_LOCK(ump);
1806 	starttime = time_second;
1807 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1808 	check_clear_deps(mp);
1809 	while (ump->softdep_on_worklist > 0) {
1810 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1811 			break;
1812 		else
1813 			matchcnt += cnt;
1814 		check_clear_deps(mp);
1815 		/*
1816 		 * We do not generally want to stop for buffer space, but if
1817 		 * we are really being a buffer hog, we will stop and wait.
1818 		 */
1819 		if (should_yield()) {
1820 			FREE_LOCK(ump);
1821 			kern_yield(PRI_USER);
1822 			bwillwrite();
1823 			ACQUIRE_LOCK(ump);
1824 		}
1825 		/*
1826 		 * Never allow processing to run for more than one
1827 		 * second. This gives the syncer thread the opportunity
1828 		 * to pause if appropriate.
1829 		 */
1830 		if (!full && starttime != time_second)
1831 			break;
1832 	}
1833 	if (full == 0)
1834 		journal_unsuspend(ump);
1835 	FREE_LOCK(ump);
1836 	return (matchcnt);
1837 }
1838 
1839 /*
1840  * Process all removes associated with a vnode if we are running out of
1841  * journal space.  Any other process which attempts to flush these will
1842  * be unable as we have the vnodes locked.
1843  */
1844 static void
1845 process_removes(vp)
1846 	struct vnode *vp;
1847 {
1848 	struct inodedep *inodedep;
1849 	struct dirrem *dirrem;
1850 	struct ufsmount *ump;
1851 	struct mount *mp;
1852 	ino_t inum;
1853 
1854 	mp = vp->v_mount;
1855 	ump = VFSTOUFS(mp);
1856 	LOCK_OWNED(ump);
1857 	inum = VTOI(vp)->i_number;
1858 	for (;;) {
1859 top:
1860 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1861 			return;
1862 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1863 			/*
1864 			 * If another thread is trying to lock this vnode
1865 			 * it will fail but we must wait for it to do so
1866 			 * before we can proceed.
1867 			 */
1868 			if (dirrem->dm_state & INPROGRESS) {
1869 				wait_worklist(&dirrem->dm_list, "pwrwait");
1870 				goto top;
1871 			}
1872 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1873 			    (COMPLETE | ONWORKLIST))
1874 				break;
1875 		}
1876 		if (dirrem == NULL)
1877 			return;
1878 		remove_from_worklist(&dirrem->dm_list);
1879 		FREE_LOCK(ump);
1880 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1881 			panic("process_removes: suspended filesystem");
1882 		handle_workitem_remove(dirrem, 0);
1883 		vn_finished_secondary_write(mp);
1884 		ACQUIRE_LOCK(ump);
1885 	}
1886 }
1887 
1888 /*
1889  * Process all truncations associated with a vnode if we are running out
1890  * of journal space.  This is called when the vnode lock is already held
1891  * and no other process can clear the truncation.  This function returns
1892  * a value greater than zero if it did any work.
1893  */
1894 static void
1895 process_truncates(vp)
1896 	struct vnode *vp;
1897 {
1898 	struct inodedep *inodedep;
1899 	struct freeblks *freeblks;
1900 	struct ufsmount *ump;
1901 	struct mount *mp;
1902 	ino_t inum;
1903 	int cgwait;
1904 
1905 	mp = vp->v_mount;
1906 	ump = VFSTOUFS(mp);
1907 	LOCK_OWNED(ump);
1908 	inum = VTOI(vp)->i_number;
1909 	for (;;) {
1910 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1911 			return;
1912 		cgwait = 0;
1913 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1914 			/* Journal entries not yet written.  */
1915 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1916 				jwait(&LIST_FIRST(
1917 				    &freeblks->fb_jblkdephd)->jb_list,
1918 				    MNT_WAIT);
1919 				break;
1920 			}
1921 			/* Another thread is executing this item. */
1922 			if (freeblks->fb_state & INPROGRESS) {
1923 				wait_worklist(&freeblks->fb_list, "ptrwait");
1924 				break;
1925 			}
1926 			/* Freeblks is waiting on a inode write. */
1927 			if ((freeblks->fb_state & COMPLETE) == 0) {
1928 				FREE_LOCK(ump);
1929 				ffs_update(vp, 1);
1930 				ACQUIRE_LOCK(ump);
1931 				break;
1932 			}
1933 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1934 			    (ALLCOMPLETE | ONWORKLIST)) {
1935 				remove_from_worklist(&freeblks->fb_list);
1936 				freeblks->fb_state |= INPROGRESS;
1937 				FREE_LOCK(ump);
1938 				if (vn_start_secondary_write(NULL, &mp,
1939 				    V_NOWAIT))
1940 					panic("process_truncates: "
1941 					    "suspended filesystem");
1942 				handle_workitem_freeblocks(freeblks, 0);
1943 				vn_finished_secondary_write(mp);
1944 				ACQUIRE_LOCK(ump);
1945 				break;
1946 			}
1947 			if (freeblks->fb_cgwait)
1948 				cgwait++;
1949 		}
1950 		if (cgwait) {
1951 			FREE_LOCK(ump);
1952 			sync_cgs(mp, MNT_WAIT);
1953 			ffs_sync_snap(mp, MNT_WAIT);
1954 			ACQUIRE_LOCK(ump);
1955 			continue;
1956 		}
1957 		if (freeblks == NULL)
1958 			break;
1959 	}
1960 	return;
1961 }
1962 
1963 /*
1964  * Process one item on the worklist.
1965  */
1966 static int
1967 process_worklist_item(mp, target, flags)
1968 	struct mount *mp;
1969 	int target;
1970 	int flags;
1971 {
1972 	struct worklist sentinel;
1973 	struct worklist *wk;
1974 	struct ufsmount *ump;
1975 	int matchcnt;
1976 	int error;
1977 
1978 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1979 	/*
1980 	 * If we are being called because of a process doing a
1981 	 * copy-on-write, then it is not safe to write as we may
1982 	 * recurse into the copy-on-write routine.
1983 	 */
1984 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1985 		return (-1);
1986 	PHOLD(curproc);	/* Don't let the stack go away. */
1987 	ump = VFSTOUFS(mp);
1988 	LOCK_OWNED(ump);
1989 	matchcnt = 0;
1990 	sentinel.wk_mp = NULL;
1991 	sentinel.wk_type = D_SENTINEL;
1992 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1993 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1994 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1995 		if (wk->wk_type == D_SENTINEL) {
1996 			LIST_REMOVE(&sentinel, wk_list);
1997 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1998 			continue;
1999 		}
2000 		if (wk->wk_state & INPROGRESS)
2001 			panic("process_worklist_item: %p already in progress.",
2002 			    wk);
2003 		wk->wk_state |= INPROGRESS;
2004 		remove_from_worklist(wk);
2005 		FREE_LOCK(ump);
2006 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
2007 			panic("process_worklist_item: suspended filesystem");
2008 		switch (wk->wk_type) {
2009 		case D_DIRREM:
2010 			/* removal of a directory entry */
2011 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
2012 			break;
2013 
2014 		case D_FREEBLKS:
2015 			/* releasing blocks and/or fragments from a file */
2016 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
2017 			    flags);
2018 			break;
2019 
2020 		case D_FREEFRAG:
2021 			/* releasing a fragment when replaced as a file grows */
2022 			handle_workitem_freefrag(WK_FREEFRAG(wk));
2023 			error = 0;
2024 			break;
2025 
2026 		case D_FREEFILE:
2027 			/* releasing an inode when its link count drops to 0 */
2028 			handle_workitem_freefile(WK_FREEFILE(wk));
2029 			error = 0;
2030 			break;
2031 
2032 		default:
2033 			panic("%s_process_worklist: Unknown type %s",
2034 			    "softdep", TYPENAME(wk->wk_type));
2035 			/* NOTREACHED */
2036 		}
2037 		vn_finished_secondary_write(mp);
2038 		ACQUIRE_LOCK(ump);
2039 		if (error == 0) {
2040 			if (++matchcnt == target)
2041 				break;
2042 			continue;
2043 		}
2044 		/*
2045 		 * We have to retry the worklist item later.  Wake up any
2046 		 * waiters who may be able to complete it immediately and
2047 		 * add the item back to the head so we don't try to execute
2048 		 * it again.
2049 		 */
2050 		wk->wk_state &= ~INPROGRESS;
2051 		wake_worklist(wk);
2052 		add_to_worklist(wk, WK_HEAD);
2053 	}
2054 	/* Sentinal could've become the tail from remove_from_worklist. */
2055 	if (ump->softdep_worklist_tail == &sentinel)
2056 		ump->softdep_worklist_tail =
2057 		    (struct worklist *)sentinel.wk_list.le_prev;
2058 	LIST_REMOVE(&sentinel, wk_list);
2059 	PRELE(curproc);
2060 	return (matchcnt);
2061 }
2062 
2063 /*
2064  * Move dependencies from one buffer to another.
2065  */
2066 int
2067 softdep_move_dependencies(oldbp, newbp)
2068 	struct buf *oldbp;
2069 	struct buf *newbp;
2070 {
2071 	struct worklist *wk, *wktail;
2072 	struct ufsmount *ump;
2073 	int dirty;
2074 
2075 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
2076 		return (0);
2077 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
2078 	    ("softdep_move_dependencies called on non-softdep filesystem"));
2079 	dirty = 0;
2080 	wktail = NULL;
2081 	ump = VFSTOUFS(wk->wk_mp);
2082 	ACQUIRE_LOCK(ump);
2083 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2084 		LIST_REMOVE(wk, wk_list);
2085 		if (wk->wk_type == D_BMSAFEMAP &&
2086 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2087 			dirty = 1;
2088 		if (wktail == NULL)
2089 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2090 		else
2091 			LIST_INSERT_AFTER(wktail, wk, wk_list);
2092 		wktail = wk;
2093 	}
2094 	FREE_LOCK(ump);
2095 
2096 	return (dirty);
2097 }
2098 
2099 /*
2100  * Purge the work list of all items associated with a particular mount point.
2101  */
2102 int
2103 softdep_flushworklist(oldmnt, countp, td)
2104 	struct mount *oldmnt;
2105 	int *countp;
2106 	struct thread *td;
2107 {
2108 	struct vnode *devvp;
2109 	struct ufsmount *ump;
2110 	int count, error;
2111 
2112 	/*
2113 	 * Alternately flush the block device associated with the mount
2114 	 * point and process any dependencies that the flushing
2115 	 * creates. We continue until no more worklist dependencies
2116 	 * are found.
2117 	 */
2118 	*countp = 0;
2119 	error = 0;
2120 	ump = VFSTOUFS(oldmnt);
2121 	devvp = ump->um_devvp;
2122 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2123 		*countp += count;
2124 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2125 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2126 		VOP_UNLOCK(devvp);
2127 		if (error != 0)
2128 			break;
2129 	}
2130 	return (error);
2131 }
2132 
2133 #define	SU_WAITIDLE_RETRIES	20
2134 static int
2135 softdep_waitidle(struct mount *mp, int flags __unused)
2136 {
2137 	struct ufsmount *ump;
2138 	struct vnode *devvp;
2139 	struct thread *td;
2140 	int error, i;
2141 
2142 	ump = VFSTOUFS(mp);
2143 	KASSERT(ump->um_softdep != NULL,
2144 	    ("softdep_waitidle called on non-softdep filesystem"));
2145 	devvp = ump->um_devvp;
2146 	td = curthread;
2147 	error = 0;
2148 	ACQUIRE_LOCK(ump);
2149 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2150 		ump->softdep_req = 1;
2151 		KASSERT((flags & FORCECLOSE) == 0 ||
2152 		    ump->softdep_on_worklist == 0,
2153 		    ("softdep_waitidle: work added after flush"));
2154 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2155 		    "softdeps", 10 * hz);
2156 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2157 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2158 		VOP_UNLOCK(devvp);
2159 		ACQUIRE_LOCK(ump);
2160 		if (error != 0)
2161 			break;
2162 	}
2163 	ump->softdep_req = 0;
2164 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2165 		error = EBUSY;
2166 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
2167 		    mp);
2168 	}
2169 	FREE_LOCK(ump);
2170 	return (error);
2171 }
2172 
2173 /*
2174  * Flush all vnodes and worklist items associated with a specified mount point.
2175  */
2176 int
2177 softdep_flushfiles(oldmnt, flags, td)
2178 	struct mount *oldmnt;
2179 	int flags;
2180 	struct thread *td;
2181 {
2182 	struct ufsmount *ump;
2183 #ifdef QUOTA
2184 	int i;
2185 #endif
2186 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2187 	int morework;
2188 
2189 	ump = VFSTOUFS(oldmnt);
2190 	KASSERT(ump->um_softdep != NULL,
2191 	    ("softdep_flushfiles called on non-softdep filesystem"));
2192 	loopcnt = 10;
2193 	retry_flush_count = 3;
2194 retry_flush:
2195 	error = 0;
2196 
2197 	/*
2198 	 * Alternately flush the vnodes associated with the mount
2199 	 * point and process any dependencies that the flushing
2200 	 * creates. In theory, this loop can happen at most twice,
2201 	 * but we give it a few extra just to be sure.
2202 	 */
2203 	for (; loopcnt > 0; loopcnt--) {
2204 		/*
2205 		 * Do another flush in case any vnodes were brought in
2206 		 * as part of the cleanup operations.
2207 		 */
2208 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2209 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2210 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2211 			break;
2212 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2213 		    depcount == 0)
2214 			break;
2215 	}
2216 	/*
2217 	 * If we are unmounting then it is an error to fail. If we
2218 	 * are simply trying to downgrade to read-only, then filesystem
2219 	 * activity can keep us busy forever, so we just fail with EBUSY.
2220 	 */
2221 	if (loopcnt == 0) {
2222 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2223 			panic("softdep_flushfiles: looping");
2224 		error = EBUSY;
2225 	}
2226 	if (!error)
2227 		error = softdep_waitidle(oldmnt, flags);
2228 	if (!error) {
2229 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2230 			retry = 0;
2231 			MNT_ILOCK(oldmnt);
2232 			morework = oldmnt->mnt_nvnodelistsize > 0;
2233 #ifdef QUOTA
2234 			UFS_LOCK(ump);
2235 			for (i = 0; i < MAXQUOTAS; i++) {
2236 				if (ump->um_quotas[i] != NULLVP)
2237 					morework = 1;
2238 			}
2239 			UFS_UNLOCK(ump);
2240 #endif
2241 			if (morework) {
2242 				if (--retry_flush_count > 0) {
2243 					retry = 1;
2244 					loopcnt = 3;
2245 				} else
2246 					error = EBUSY;
2247 			}
2248 			MNT_IUNLOCK(oldmnt);
2249 			if (retry)
2250 				goto retry_flush;
2251 		}
2252 	}
2253 	return (error);
2254 }
2255 
2256 /*
2257  * Structure hashing.
2258  *
2259  * There are four types of structures that can be looked up:
2260  *	1) pagedep structures identified by mount point, inode number,
2261  *	   and logical block.
2262  *	2) inodedep structures identified by mount point and inode number.
2263  *	3) newblk structures identified by mount point and
2264  *	   physical block number.
2265  *	4) bmsafemap structures identified by mount point and
2266  *	   cylinder group number.
2267  *
2268  * The "pagedep" and "inodedep" dependency structures are hashed
2269  * separately from the file blocks and inodes to which they correspond.
2270  * This separation helps when the in-memory copy of an inode or
2271  * file block must be replaced. It also obviates the need to access
2272  * an inode or file page when simply updating (or de-allocating)
2273  * dependency structures. Lookup of newblk structures is needed to
2274  * find newly allocated blocks when trying to associate them with
2275  * their allocdirect or allocindir structure.
2276  *
2277  * The lookup routines optionally create and hash a new instance when
2278  * an existing entry is not found. The bmsafemap lookup routine always
2279  * allocates a new structure if an existing one is not found.
2280  */
2281 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2282 
2283 /*
2284  * Structures and routines associated with pagedep caching.
2285  */
2286 #define	PAGEDEP_HASH(ump, inum, lbn) \
2287 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2288 
2289 static int
2290 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2291 	struct pagedep_hashhead *pagedephd;
2292 	ino_t ino;
2293 	ufs_lbn_t lbn;
2294 	struct pagedep **pagedeppp;
2295 {
2296 	struct pagedep *pagedep;
2297 
2298 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2299 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2300 			*pagedeppp = pagedep;
2301 			return (1);
2302 		}
2303 	}
2304 	*pagedeppp = NULL;
2305 	return (0);
2306 }
2307 /*
2308  * Look up a pagedep. Return 1 if found, 0 otherwise.
2309  * If not found, allocate if DEPALLOC flag is passed.
2310  * Found or allocated entry is returned in pagedeppp.
2311  */
2312 static int
2313 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2314 	struct mount *mp;
2315 	struct buf *bp;
2316 	ino_t ino;
2317 	ufs_lbn_t lbn;
2318 	int flags;
2319 	struct pagedep **pagedeppp;
2320 {
2321 	struct pagedep *pagedep;
2322 	struct pagedep_hashhead *pagedephd;
2323 	struct worklist *wk;
2324 	struct ufsmount *ump;
2325 	int ret;
2326 	int i;
2327 
2328 	ump = VFSTOUFS(mp);
2329 	LOCK_OWNED(ump);
2330 	if (bp) {
2331 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2332 			if (wk->wk_type == D_PAGEDEP) {
2333 				*pagedeppp = WK_PAGEDEP(wk);
2334 				return (1);
2335 			}
2336 		}
2337 	}
2338 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2339 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2340 	if (ret) {
2341 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2342 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2343 		return (1);
2344 	}
2345 	if ((flags & DEPALLOC) == 0)
2346 		return (0);
2347 	FREE_LOCK(ump);
2348 	pagedep = malloc(sizeof(struct pagedep),
2349 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2350 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2351 	ACQUIRE_LOCK(ump);
2352 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2353 	if (*pagedeppp) {
2354 		/*
2355 		 * This should never happen since we only create pagedeps
2356 		 * with the vnode lock held.  Could be an assert.
2357 		 */
2358 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2359 		return (ret);
2360 	}
2361 	pagedep->pd_ino = ino;
2362 	pagedep->pd_lbn = lbn;
2363 	LIST_INIT(&pagedep->pd_dirremhd);
2364 	LIST_INIT(&pagedep->pd_pendinghd);
2365 	for (i = 0; i < DAHASHSZ; i++)
2366 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2367 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2368 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2369 	*pagedeppp = pagedep;
2370 	return (0);
2371 }
2372 
2373 /*
2374  * Structures and routines associated with inodedep caching.
2375  */
2376 #define	INODEDEP_HASH(ump, inum) \
2377       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2378 
2379 static int
2380 inodedep_find(inodedephd, inum, inodedeppp)
2381 	struct inodedep_hashhead *inodedephd;
2382 	ino_t inum;
2383 	struct inodedep **inodedeppp;
2384 {
2385 	struct inodedep *inodedep;
2386 
2387 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2388 		if (inum == inodedep->id_ino)
2389 			break;
2390 	if (inodedep) {
2391 		*inodedeppp = inodedep;
2392 		return (1);
2393 	}
2394 	*inodedeppp = NULL;
2395 
2396 	return (0);
2397 }
2398 /*
2399  * Look up an inodedep. Return 1 if found, 0 if not found.
2400  * If not found, allocate if DEPALLOC flag is passed.
2401  * Found or allocated entry is returned in inodedeppp.
2402  */
2403 static int
2404 inodedep_lookup(mp, inum, flags, inodedeppp)
2405 	struct mount *mp;
2406 	ino_t inum;
2407 	int flags;
2408 	struct inodedep **inodedeppp;
2409 {
2410 	struct inodedep *inodedep;
2411 	struct inodedep_hashhead *inodedephd;
2412 	struct ufsmount *ump;
2413 	struct fs *fs;
2414 
2415 	ump = VFSTOUFS(mp);
2416 	LOCK_OWNED(ump);
2417 	fs = ump->um_fs;
2418 	inodedephd = INODEDEP_HASH(ump, inum);
2419 
2420 	if (inodedep_find(inodedephd, inum, inodedeppp))
2421 		return (1);
2422 	if ((flags & DEPALLOC) == 0)
2423 		return (0);
2424 	/*
2425 	 * If the system is over its limit and our filesystem is
2426 	 * responsible for more than our share of that usage and
2427 	 * we are not in a rush, request some inodedep cleanup.
2428 	 */
2429 	if (softdep_excess_items(ump, D_INODEDEP))
2430 		schedule_cleanup(mp);
2431 	else
2432 		FREE_LOCK(ump);
2433 	inodedep = malloc(sizeof(struct inodedep),
2434 		M_INODEDEP, M_SOFTDEP_FLAGS);
2435 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2436 	ACQUIRE_LOCK(ump);
2437 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2438 		WORKITEM_FREE(inodedep, D_INODEDEP);
2439 		return (1);
2440 	}
2441 	inodedep->id_fs = fs;
2442 	inodedep->id_ino = inum;
2443 	inodedep->id_state = ALLCOMPLETE;
2444 	inodedep->id_nlinkdelta = 0;
2445 	inodedep->id_nlinkwrote = -1;
2446 	inodedep->id_savedino1 = NULL;
2447 	inodedep->id_savedsize = -1;
2448 	inodedep->id_savedextsize = -1;
2449 	inodedep->id_savednlink = -1;
2450 	inodedep->id_bmsafemap = NULL;
2451 	inodedep->id_mkdiradd = NULL;
2452 	LIST_INIT(&inodedep->id_dirremhd);
2453 	LIST_INIT(&inodedep->id_pendinghd);
2454 	LIST_INIT(&inodedep->id_inowait);
2455 	LIST_INIT(&inodedep->id_bufwait);
2456 	TAILQ_INIT(&inodedep->id_inoreflst);
2457 	TAILQ_INIT(&inodedep->id_inoupdt);
2458 	TAILQ_INIT(&inodedep->id_newinoupdt);
2459 	TAILQ_INIT(&inodedep->id_extupdt);
2460 	TAILQ_INIT(&inodedep->id_newextupdt);
2461 	TAILQ_INIT(&inodedep->id_freeblklst);
2462 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2463 	*inodedeppp = inodedep;
2464 	return (0);
2465 }
2466 
2467 /*
2468  * Structures and routines associated with newblk caching.
2469  */
2470 #define	NEWBLK_HASH(ump, inum) \
2471 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2472 
2473 static int
2474 newblk_find(newblkhd, newblkno, flags, newblkpp)
2475 	struct newblk_hashhead *newblkhd;
2476 	ufs2_daddr_t newblkno;
2477 	int flags;
2478 	struct newblk **newblkpp;
2479 {
2480 	struct newblk *newblk;
2481 
2482 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2483 		if (newblkno != newblk->nb_newblkno)
2484 			continue;
2485 		/*
2486 		 * If we're creating a new dependency don't match those that
2487 		 * have already been converted to allocdirects.  This is for
2488 		 * a frag extend.
2489 		 */
2490 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2491 			continue;
2492 		break;
2493 	}
2494 	if (newblk) {
2495 		*newblkpp = newblk;
2496 		return (1);
2497 	}
2498 	*newblkpp = NULL;
2499 	return (0);
2500 }
2501 
2502 /*
2503  * Look up a newblk. Return 1 if found, 0 if not found.
2504  * If not found, allocate if DEPALLOC flag is passed.
2505  * Found or allocated entry is returned in newblkpp.
2506  */
2507 static int
2508 newblk_lookup(mp, newblkno, flags, newblkpp)
2509 	struct mount *mp;
2510 	ufs2_daddr_t newblkno;
2511 	int flags;
2512 	struct newblk **newblkpp;
2513 {
2514 	struct newblk *newblk;
2515 	struct newblk_hashhead *newblkhd;
2516 	struct ufsmount *ump;
2517 
2518 	ump = VFSTOUFS(mp);
2519 	LOCK_OWNED(ump);
2520 	newblkhd = NEWBLK_HASH(ump, newblkno);
2521 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2522 		return (1);
2523 	if ((flags & DEPALLOC) == 0)
2524 		return (0);
2525 	if (softdep_excess_items(ump, D_NEWBLK) ||
2526 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2527 	    softdep_excess_items(ump, D_ALLOCINDIR))
2528 		schedule_cleanup(mp);
2529 	else
2530 		FREE_LOCK(ump);
2531 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2532 	    M_SOFTDEP_FLAGS | M_ZERO);
2533 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2534 	ACQUIRE_LOCK(ump);
2535 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2536 		WORKITEM_FREE(newblk, D_NEWBLK);
2537 		return (1);
2538 	}
2539 	newblk->nb_freefrag = NULL;
2540 	LIST_INIT(&newblk->nb_indirdeps);
2541 	LIST_INIT(&newblk->nb_newdirblk);
2542 	LIST_INIT(&newblk->nb_jwork);
2543 	newblk->nb_state = ATTACHED;
2544 	newblk->nb_newblkno = newblkno;
2545 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2546 	*newblkpp = newblk;
2547 	return (0);
2548 }
2549 
2550 /*
2551  * Structures and routines associated with freed indirect block caching.
2552  */
2553 #define	INDIR_HASH(ump, blkno) \
2554 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2555 
2556 /*
2557  * Lookup an indirect block in the indir hash table.  The freework is
2558  * removed and potentially freed.  The caller must do a blocking journal
2559  * write before writing to the blkno.
2560  */
2561 static int
2562 indirblk_lookup(mp, blkno)
2563 	struct mount *mp;
2564 	ufs2_daddr_t blkno;
2565 {
2566 	struct freework *freework;
2567 	struct indir_hashhead *wkhd;
2568 	struct ufsmount *ump;
2569 
2570 	ump = VFSTOUFS(mp);
2571 	wkhd = INDIR_HASH(ump, blkno);
2572 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2573 		if (freework->fw_blkno != blkno)
2574 			continue;
2575 		indirblk_remove(freework);
2576 		return (1);
2577 	}
2578 	return (0);
2579 }
2580 
2581 /*
2582  * Insert an indirect block represented by freework into the indirblk
2583  * hash table so that it may prevent the block from being re-used prior
2584  * to the journal being written.
2585  */
2586 static void
2587 indirblk_insert(freework)
2588 	struct freework *freework;
2589 {
2590 	struct jblocks *jblocks;
2591 	struct jseg *jseg;
2592 	struct ufsmount *ump;
2593 
2594 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2595 	jblocks = ump->softdep_jblocks;
2596 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2597 	if (jseg == NULL)
2598 		return;
2599 
2600 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2601 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2602 	    fw_next);
2603 	freework->fw_state &= ~DEPCOMPLETE;
2604 }
2605 
2606 static void
2607 indirblk_remove(freework)
2608 	struct freework *freework;
2609 {
2610 	struct ufsmount *ump;
2611 
2612 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2613 	LIST_REMOVE(freework, fw_segs);
2614 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2615 	freework->fw_state |= DEPCOMPLETE;
2616 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2617 		WORKITEM_FREE(freework, D_FREEWORK);
2618 }
2619 
2620 /*
2621  * Executed during filesystem system initialization before
2622  * mounting any filesystems.
2623  */
2624 void
2625 softdep_initialize()
2626 {
2627 
2628 	TAILQ_INIT(&softdepmounts);
2629 #ifdef __LP64__
2630 	max_softdeps = desiredvnodes * 4;
2631 #else
2632 	max_softdeps = desiredvnodes * 2;
2633 #endif
2634 
2635 	/* initialise bioops hack */
2636 	bioops.io_start = softdep_disk_io_initiation;
2637 	bioops.io_complete = softdep_disk_write_complete;
2638 	bioops.io_deallocate = softdep_deallocate_dependencies;
2639 	bioops.io_countdeps = softdep_count_dependencies;
2640 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2641 
2642 	/* Initialize the callout with an mtx. */
2643 	callout_init_mtx(&softdep_callout, &lk, 0);
2644 }
2645 
2646 /*
2647  * Executed after all filesystems have been unmounted during
2648  * filesystem module unload.
2649  */
2650 void
2651 softdep_uninitialize()
2652 {
2653 
2654 	/* clear bioops hack */
2655 	bioops.io_start = NULL;
2656 	bioops.io_complete = NULL;
2657 	bioops.io_deallocate = NULL;
2658 	bioops.io_countdeps = NULL;
2659 	softdep_ast_cleanup = NULL;
2660 
2661 	callout_drain(&softdep_callout);
2662 }
2663 
2664 /*
2665  * Called at mount time to notify the dependency code that a
2666  * filesystem wishes to use it.
2667  */
2668 int
2669 softdep_mount(devvp, mp, fs, cred)
2670 	struct vnode *devvp;
2671 	struct mount *mp;
2672 	struct fs *fs;
2673 	struct ucred *cred;
2674 {
2675 	struct csum_total cstotal;
2676 	struct mount_softdeps *sdp;
2677 	struct ufsmount *ump;
2678 	struct cg *cgp;
2679 	struct buf *bp;
2680 	u_int cyl, i;
2681 	int error;
2682 
2683 	ump = VFSTOUFS(mp);
2684 
2685 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2686 	    M_WAITOK | M_ZERO);
2687 	rw_init(&sdp->sd_fslock, "SUrw");
2688 	sdp->sd_ump = ump;
2689 	LIST_INIT(&sdp->sd_workitem_pending);
2690 	LIST_INIT(&sdp->sd_journal_pending);
2691 	TAILQ_INIT(&sdp->sd_unlinked);
2692 	LIST_INIT(&sdp->sd_dirtycg);
2693 	sdp->sd_worklist_tail = NULL;
2694 	sdp->sd_on_worklist = 0;
2695 	sdp->sd_deps = 0;
2696 	LIST_INIT(&sdp->sd_mkdirlisthd);
2697 	sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2698 	    &sdp->sd_pdhashsize);
2699 	sdp->sd_pdnextclean = 0;
2700 	sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2701 	    &sdp->sd_idhashsize);
2702 	sdp->sd_idnextclean = 0;
2703 	sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
2704 	    &sdp->sd_newblkhashsize);
2705 	sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2706 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2707 	sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2708 	    M_FREEWORK, M_WAITOK);
2709 	sdp->sd_indirhashsize = i - 1;
2710 	for (i = 0; i <= sdp->sd_indirhashsize; i++)
2711 		TAILQ_INIT(&sdp->sd_indirhash[i]);
2712 #ifdef INVARIANTS
2713 	for (i = 0; i <= D_LAST; i++)
2714 		LIST_INIT(&sdp->sd_alldeps[i]);
2715 #endif
2716 	ACQUIRE_GBLLOCK(&lk);
2717 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2718 	FREE_GBLLOCK(&lk);
2719 
2720 	ump->um_softdep = sdp;
2721 	MNT_ILOCK(mp);
2722 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2723 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2724 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2725 		    MNTK_SOFTDEP | MNTK_NOASYNC;
2726 	}
2727 	MNT_IUNLOCK(mp);
2728 
2729 	if ((fs->fs_flags & FS_SUJ) &&
2730 	    (error = journal_mount(mp, fs, cred)) != 0) {
2731 		printf("Failed to start journal: %d\n", error);
2732 		softdep_unmount(mp);
2733 		return (error);
2734 	}
2735 	/*
2736 	 * Start our flushing thread in the bufdaemon process.
2737 	 */
2738 	ACQUIRE_LOCK(ump);
2739 	ump->softdep_flags |= FLUSH_STARTING;
2740 	FREE_LOCK(ump);
2741 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2742 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2743 	    mp->mnt_stat.f_mntonname);
2744 	ACQUIRE_LOCK(ump);
2745 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2746 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2747 		    hz / 2);
2748 	}
2749 	FREE_LOCK(ump);
2750 	/*
2751 	 * When doing soft updates, the counters in the
2752 	 * superblock may have gotten out of sync. Recomputation
2753 	 * can take a long time and can be deferred for background
2754 	 * fsck.  However, the old behavior of scanning the cylinder
2755 	 * groups and recalculating them at mount time is available
2756 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2757 	 */
2758 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2759 		return (0);
2760 	bzero(&cstotal, sizeof cstotal);
2761 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2762 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2763 		    fs->fs_cgsize, cred, &bp)) != 0) {
2764 			brelse(bp);
2765 			softdep_unmount(mp);
2766 			return (error);
2767 		}
2768 		cgp = (struct cg *)bp->b_data;
2769 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2770 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2771 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2772 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2773 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2774 		brelse(bp);
2775 	}
2776 #ifdef INVARIANTS
2777 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2778 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2779 #endif
2780 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2781 	return (0);
2782 }
2783 
2784 void
2785 softdep_unmount(mp)
2786 	struct mount *mp;
2787 {
2788 	struct ufsmount *ump;
2789 	struct mount_softdeps *ums;
2790 
2791 	ump = VFSTOUFS(mp);
2792 	KASSERT(ump->um_softdep != NULL,
2793 	    ("softdep_unmount called on non-softdep filesystem"));
2794 	MNT_ILOCK(mp);
2795 	mp->mnt_flag &= ~MNT_SOFTDEP;
2796 	if ((mp->mnt_flag & MNT_SUJ) == 0) {
2797 		MNT_IUNLOCK(mp);
2798 	} else {
2799 		mp->mnt_flag &= ~MNT_SUJ;
2800 		MNT_IUNLOCK(mp);
2801 		journal_unmount(ump);
2802 	}
2803 	/*
2804 	 * Shut down our flushing thread. Check for NULL is if
2805 	 * softdep_mount errors out before the thread has been created.
2806 	 */
2807 	if (ump->softdep_flushtd != NULL) {
2808 		ACQUIRE_LOCK(ump);
2809 		ump->softdep_flags |= FLUSH_EXIT;
2810 		wakeup(&ump->softdep_flushtd);
2811 		while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2812 			msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2813 			    "sdwait", 0);
2814 		}
2815 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2816 		    ("Thread shutdown failed"));
2817 		FREE_LOCK(ump);
2818 	}
2819 
2820 	/*
2821 	 * We are no longer have softdep structure attached to ump.
2822 	 */
2823 	ums = ump->um_softdep;
2824 	ACQUIRE_GBLLOCK(&lk);
2825 	TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2826 	FREE_GBLLOCK(&lk);
2827 	ump->um_softdep = NULL;
2828 
2829 	KASSERT(ums->sd_on_journal == 0,
2830 	    ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2831 	KASSERT(ums->sd_on_worklist == 0,
2832 	    ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2833 	KASSERT(ums->sd_deps == 0,
2834 	    ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2835 
2836 	/*
2837 	 * Free up our resources.
2838 	 */
2839 	rw_destroy(&ums->sd_fslock);
2840 	hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2841 	hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2842 	hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2843 	hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2844 	free(ums->sd_indirhash, M_FREEWORK);
2845 #ifdef INVARIANTS
2846 	for (int i = 0; i <= D_LAST; i++) {
2847 		KASSERT(ums->sd_curdeps[i] == 0,
2848 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2849 		    TYPENAME(i), ums->sd_curdeps[i]));
2850 		KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2851 		    ("Unmount %s: Dep type %s not empty (%p)",
2852 		    ump->um_fs->fs_fsmnt,
2853 		    TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2854 	}
2855 #endif
2856 	free(ums, M_MOUNTDATA);
2857 }
2858 
2859 static struct jblocks *
2860 jblocks_create(void)
2861 {
2862 	struct jblocks *jblocks;
2863 
2864 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2865 	TAILQ_INIT(&jblocks->jb_segs);
2866 	jblocks->jb_avail = 10;
2867 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2868 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2869 
2870 	return (jblocks);
2871 }
2872 
2873 static ufs2_daddr_t
2874 jblocks_alloc(jblocks, bytes, actual)
2875 	struct jblocks *jblocks;
2876 	int bytes;
2877 	int *actual;
2878 {
2879 	ufs2_daddr_t daddr;
2880 	struct jextent *jext;
2881 	int freecnt;
2882 	int blocks;
2883 
2884 	blocks = bytes / DEV_BSIZE;
2885 	jext = &jblocks->jb_extent[jblocks->jb_head];
2886 	freecnt = jext->je_blocks - jblocks->jb_off;
2887 	if (freecnt == 0) {
2888 		jblocks->jb_off = 0;
2889 		if (++jblocks->jb_head > jblocks->jb_used)
2890 			jblocks->jb_head = 0;
2891 		jext = &jblocks->jb_extent[jblocks->jb_head];
2892 		freecnt = jext->je_blocks;
2893 	}
2894 	if (freecnt > blocks)
2895 		freecnt = blocks;
2896 	*actual = freecnt * DEV_BSIZE;
2897 	daddr = jext->je_daddr + jblocks->jb_off;
2898 	jblocks->jb_off += freecnt;
2899 	jblocks->jb_free -= freecnt;
2900 
2901 	return (daddr);
2902 }
2903 
2904 static void
2905 jblocks_free(jblocks, mp, bytes)
2906 	struct jblocks *jblocks;
2907 	struct mount *mp;
2908 	int bytes;
2909 {
2910 
2911 	LOCK_OWNED(VFSTOUFS(mp));
2912 	jblocks->jb_free += bytes / DEV_BSIZE;
2913 	if (jblocks->jb_suspended)
2914 		worklist_speedup(mp);
2915 	wakeup(jblocks);
2916 }
2917 
2918 static void
2919 jblocks_destroy(jblocks)
2920 	struct jblocks *jblocks;
2921 {
2922 
2923 	if (jblocks->jb_extent)
2924 		free(jblocks->jb_extent, M_JBLOCKS);
2925 	free(jblocks, M_JBLOCKS);
2926 }
2927 
2928 static void
2929 jblocks_add(jblocks, daddr, blocks)
2930 	struct jblocks *jblocks;
2931 	ufs2_daddr_t daddr;
2932 	int blocks;
2933 {
2934 	struct jextent *jext;
2935 
2936 	jblocks->jb_blocks += blocks;
2937 	jblocks->jb_free += blocks;
2938 	jext = &jblocks->jb_extent[jblocks->jb_used];
2939 	/* Adding the first block. */
2940 	if (jext->je_daddr == 0) {
2941 		jext->je_daddr = daddr;
2942 		jext->je_blocks = blocks;
2943 		return;
2944 	}
2945 	/* Extending the last extent. */
2946 	if (jext->je_daddr + jext->je_blocks == daddr) {
2947 		jext->je_blocks += blocks;
2948 		return;
2949 	}
2950 	/* Adding a new extent. */
2951 	if (++jblocks->jb_used == jblocks->jb_avail) {
2952 		jblocks->jb_avail *= 2;
2953 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2954 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2955 		memcpy(jext, jblocks->jb_extent,
2956 		    sizeof(struct jextent) * jblocks->jb_used);
2957 		free(jblocks->jb_extent, M_JBLOCKS);
2958 		jblocks->jb_extent = jext;
2959 	}
2960 	jext = &jblocks->jb_extent[jblocks->jb_used];
2961 	jext->je_daddr = daddr;
2962 	jext->je_blocks = blocks;
2963 	return;
2964 }
2965 
2966 int
2967 softdep_journal_lookup(mp, vpp)
2968 	struct mount *mp;
2969 	struct vnode **vpp;
2970 {
2971 	struct componentname cnp;
2972 	struct vnode *dvp;
2973 	ino_t sujournal;
2974 	int error;
2975 
2976 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2977 	if (error)
2978 		return (error);
2979 	bzero(&cnp, sizeof(cnp));
2980 	cnp.cn_nameiop = LOOKUP;
2981 	cnp.cn_flags = ISLASTCN;
2982 	cnp.cn_thread = curthread;
2983 	cnp.cn_cred = curthread->td_ucred;
2984 	cnp.cn_pnbuf = SUJ_FILE;
2985 	cnp.cn_nameptr = SUJ_FILE;
2986 	cnp.cn_namelen = strlen(SUJ_FILE);
2987 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2988 	vput(dvp);
2989 	if (error != 0)
2990 		return (error);
2991 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2992 	return (error);
2993 }
2994 
2995 /*
2996  * Open and verify the journal file.
2997  */
2998 static int
2999 journal_mount(mp, fs, cred)
3000 	struct mount *mp;
3001 	struct fs *fs;
3002 	struct ucred *cred;
3003 {
3004 	struct jblocks *jblocks;
3005 	struct ufsmount *ump;
3006 	struct vnode *vp;
3007 	struct inode *ip;
3008 	ufs2_daddr_t blkno;
3009 	int bcount;
3010 	int error;
3011 	int i;
3012 
3013 	ump = VFSTOUFS(mp);
3014 	ump->softdep_journal_tail = NULL;
3015 	ump->softdep_on_journal = 0;
3016 	ump->softdep_accdeps = 0;
3017 	ump->softdep_req = 0;
3018 	ump->softdep_jblocks = NULL;
3019 	error = softdep_journal_lookup(mp, &vp);
3020 	if (error != 0) {
3021 		printf("Failed to find journal.  Use tunefs to create one\n");
3022 		return (error);
3023 	}
3024 	ip = VTOI(vp);
3025 	if (ip->i_size < SUJ_MIN) {
3026 		error = ENOSPC;
3027 		goto out;
3028 	}
3029 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
3030 	jblocks = jblocks_create();
3031 	for (i = 0; i < bcount; i++) {
3032 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
3033 		if (error)
3034 			break;
3035 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
3036 	}
3037 	if (error) {
3038 		jblocks_destroy(jblocks);
3039 		goto out;
3040 	}
3041 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
3042 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
3043 	ump->softdep_jblocks = jblocks;
3044 
3045 	MNT_ILOCK(mp);
3046 	mp->mnt_flag |= MNT_SUJ;
3047 	MNT_IUNLOCK(mp);
3048 
3049 	/*
3050 	 * Only validate the journal contents if the
3051 	 * filesystem is clean, otherwise we write the logs
3052 	 * but they'll never be used.  If the filesystem was
3053 	 * still dirty when we mounted it the journal is
3054 	 * invalid and a new journal can only be valid if it
3055 	 * starts from a clean mount.
3056 	 */
3057 	if (fs->fs_clean) {
3058 		DIP_SET(ip, i_modrev, fs->fs_mtime);
3059 		ip->i_flags |= IN_MODIFIED;
3060 		ffs_update(vp, 1);
3061 	}
3062 out:
3063 	vput(vp);
3064 	return (error);
3065 }
3066 
3067 static void
3068 journal_unmount(ump)
3069 	struct ufsmount *ump;
3070 {
3071 
3072 	if (ump->softdep_jblocks)
3073 		jblocks_destroy(ump->softdep_jblocks);
3074 	ump->softdep_jblocks = NULL;
3075 }
3076 
3077 /*
3078  * Called when a journal record is ready to be written.  Space is allocated
3079  * and the journal entry is created when the journal is flushed to stable
3080  * store.
3081  */
3082 static void
3083 add_to_journal(wk)
3084 	struct worklist *wk;
3085 {
3086 	struct ufsmount *ump;
3087 
3088 	ump = VFSTOUFS(wk->wk_mp);
3089 	LOCK_OWNED(ump);
3090 	if (wk->wk_state & ONWORKLIST)
3091 		panic("add_to_journal: %s(0x%X) already on list",
3092 		    TYPENAME(wk->wk_type), wk->wk_state);
3093 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
3094 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
3095 		ump->softdep_jblocks->jb_age = ticks;
3096 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
3097 	} else
3098 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
3099 	ump->softdep_journal_tail = wk;
3100 	ump->softdep_on_journal += 1;
3101 }
3102 
3103 /*
3104  * Remove an arbitrary item for the journal worklist maintain the tail
3105  * pointer.  This happens when a new operation obviates the need to
3106  * journal an old operation.
3107  */
3108 static void
3109 remove_from_journal(wk)
3110 	struct worklist *wk;
3111 {
3112 	struct ufsmount *ump;
3113 
3114 	ump = VFSTOUFS(wk->wk_mp);
3115 	LOCK_OWNED(ump);
3116 #ifdef INVARIANTS
3117 	{
3118 		struct worklist *wkn;
3119 
3120 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3121 			if (wkn == wk)
3122 				break;
3123 		if (wkn == NULL)
3124 			panic("remove_from_journal: %p is not in journal", wk);
3125 	}
3126 #endif
3127 	/*
3128 	 * We emulate a TAILQ to save space in most structures which do not
3129 	 * require TAILQ semantics.  Here we must update the tail position
3130 	 * when removing the tail which is not the final entry. This works
3131 	 * only if the worklist linkage are at the beginning of the structure.
3132 	 */
3133 	if (ump->softdep_journal_tail == wk)
3134 		ump->softdep_journal_tail =
3135 		    (struct worklist *)wk->wk_list.le_prev;
3136 	WORKLIST_REMOVE(wk);
3137 	ump->softdep_on_journal -= 1;
3138 }
3139 
3140 /*
3141  * Check for journal space as well as dependency limits so the prelink
3142  * code can throttle both journaled and non-journaled filesystems.
3143  * Threshold is 0 for low and 1 for min.
3144  */
3145 static int
3146 journal_space(ump, thresh)
3147 	struct ufsmount *ump;
3148 	int thresh;
3149 {
3150 	struct jblocks *jblocks;
3151 	int limit, avail;
3152 
3153 	jblocks = ump->softdep_jblocks;
3154 	if (jblocks == NULL)
3155 		return (1);
3156 	/*
3157 	 * We use a tighter restriction here to prevent request_cleanup()
3158 	 * running in threads from running into locks we currently hold.
3159 	 * We have to be over the limit and our filesystem has to be
3160 	 * responsible for more than our share of that usage.
3161 	 */
3162 	limit = (max_softdeps / 10) * 9;
3163 	if (dep_current[D_INODEDEP] > limit &&
3164 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3165 		return (0);
3166 	if (thresh)
3167 		thresh = jblocks->jb_min;
3168 	else
3169 		thresh = jblocks->jb_low;
3170 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3171 	avail = jblocks->jb_free - avail;
3172 
3173 	return (avail > thresh);
3174 }
3175 
3176 static void
3177 journal_suspend(ump)
3178 	struct ufsmount *ump;
3179 {
3180 	struct jblocks *jblocks;
3181 	struct mount *mp;
3182 	bool set;
3183 
3184 	mp = UFSTOVFS(ump);
3185 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3186 		return;
3187 
3188 	jblocks = ump->softdep_jblocks;
3189 	vfs_op_enter(mp);
3190 	set = false;
3191 	MNT_ILOCK(mp);
3192 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3193 		stat_journal_min++;
3194 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3195 		mp->mnt_susp_owner = ump->softdep_flushtd;
3196 		set = true;
3197 	}
3198 	jblocks->jb_suspended = 1;
3199 	MNT_IUNLOCK(mp);
3200 	if (!set)
3201 		vfs_op_exit(mp);
3202 }
3203 
3204 static int
3205 journal_unsuspend(struct ufsmount *ump)
3206 {
3207 	struct jblocks *jblocks;
3208 	struct mount *mp;
3209 
3210 	mp = UFSTOVFS(ump);
3211 	jblocks = ump->softdep_jblocks;
3212 
3213 	if (jblocks != NULL && jblocks->jb_suspended &&
3214 	    journal_space(ump, jblocks->jb_min)) {
3215 		jblocks->jb_suspended = 0;
3216 		FREE_LOCK(ump);
3217 		mp->mnt_susp_owner = curthread;
3218 		vfs_write_resume(mp, 0);
3219 		ACQUIRE_LOCK(ump);
3220 		return (1);
3221 	}
3222 	return (0);
3223 }
3224 
3225 static void
3226 journal_check_space(ump)
3227 	struct ufsmount *ump;
3228 {
3229 	struct mount *mp;
3230 
3231 	LOCK_OWNED(ump);
3232 
3233 	if (journal_space(ump, 0) == 0) {
3234 		softdep_speedup(ump);
3235 		mp = UFSTOVFS(ump);
3236 		FREE_LOCK(ump);
3237 		VFS_SYNC(mp, MNT_NOWAIT);
3238 		ffs_sbupdate(ump, MNT_WAIT, 0);
3239 		ACQUIRE_LOCK(ump);
3240 		if (journal_space(ump, 1) == 0)
3241 			journal_suspend(ump);
3242 	}
3243 }
3244 
3245 /*
3246  * Called before any allocation function to be certain that there is
3247  * sufficient space in the journal prior to creating any new records.
3248  * Since in the case of block allocation we may have multiple locked
3249  * buffers at the time of the actual allocation we can not block
3250  * when the journal records are created.  Doing so would create a deadlock
3251  * if any of these buffers needed to be flushed to reclaim space.  Instead
3252  * we require a sufficiently large amount of available space such that
3253  * each thread in the system could have passed this allocation check and
3254  * still have sufficient free space.  With 20% of a minimum journal size
3255  * of 1MB we have 6553 records available.
3256  */
3257 int
3258 softdep_prealloc(vp, waitok)
3259 	struct vnode *vp;
3260 	int waitok;
3261 {
3262 	struct ufsmount *ump;
3263 
3264 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3265 	    ("softdep_prealloc called on non-softdep filesystem"));
3266 	/*
3267 	 * Nothing to do if we are not running journaled soft updates.
3268 	 * If we currently hold the snapshot lock, we must avoid
3269 	 * handling other resources that could cause deadlock.  Do not
3270 	 * touch quotas vnode since it is typically recursed with
3271 	 * other vnode locks held.
3272 	 */
3273 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3274 	    (vp->v_vflag & VV_SYSTEM) != 0)
3275 		return (0);
3276 	ump = VFSTOUFS(vp->v_mount);
3277 	ACQUIRE_LOCK(ump);
3278 	if (journal_space(ump, 0)) {
3279 		FREE_LOCK(ump);
3280 		return (0);
3281 	}
3282 	stat_journal_low++;
3283 	FREE_LOCK(ump);
3284 	if (waitok == MNT_NOWAIT)
3285 		return (ENOSPC);
3286 	/*
3287 	 * Attempt to sync this vnode once to flush any journal
3288 	 * work attached to it.
3289 	 */
3290 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3291 		ffs_syncvnode(vp, waitok, 0);
3292 	ACQUIRE_LOCK(ump);
3293 	process_removes(vp);
3294 	process_truncates(vp);
3295 	journal_check_space(ump);
3296 	FREE_LOCK(ump);
3297 
3298 	return (0);
3299 }
3300 
3301 /*
3302  * Try hard to sync all data and metadata for the vnode, and workitems
3303  * flushing which might conflict with the vnode lock.  This is a
3304  * helper for softdep_prerename().
3305  */
3306 static int
3307 softdep_prerename_vnode(ump, vp)
3308 	struct ufsmount *ump;
3309 	struct vnode *vp;
3310 {
3311 	int error;
3312 
3313 	ASSERT_VOP_ELOCKED(vp, "prehandle");
3314 	if (vp->v_data == NULL)
3315 		return (0);
3316 	error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3317 	if (error != 0)
3318 		return (error);
3319 	ACQUIRE_LOCK(ump);
3320 	process_removes(vp);
3321 	process_truncates(vp);
3322 	FREE_LOCK(ump);
3323 	return (0);
3324 }
3325 
3326 /*
3327  * Must be called from VOP_RENAME() after all vnodes are locked.
3328  * Ensures that there is enough journal space for rename.  It is
3329  * sufficiently different from softdep_prelink() by having to handle
3330  * four vnodes.
3331  */
3332 int
3333 softdep_prerename(fdvp, fvp, tdvp, tvp)
3334 	struct vnode *fdvp;
3335 	struct vnode *fvp;
3336 	struct vnode *tdvp;
3337 	struct vnode *tvp;
3338 {
3339 	struct ufsmount *ump;
3340 	int error;
3341 
3342 	ump = VFSTOUFS(fdvp->v_mount);
3343 
3344 	if (journal_space(ump, 0))
3345 		return (0);
3346 
3347 	VOP_UNLOCK(tdvp);
3348 	VOP_UNLOCK(fvp);
3349 	if (tvp != NULL && tvp != tdvp)
3350 		VOP_UNLOCK(tvp);
3351 
3352 	error = softdep_prerename_vnode(ump, fdvp);
3353 	VOP_UNLOCK(fdvp);
3354 	if (error != 0)
3355 		return (error);
3356 
3357 	VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3358 	error = softdep_prerename_vnode(ump, fvp);
3359 	VOP_UNLOCK(fvp);
3360 	if (error != 0)
3361 		return (error);
3362 
3363 	if (tdvp != fdvp) {
3364 		VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3365 		error = softdep_prerename_vnode(ump, tdvp);
3366 		VOP_UNLOCK(tdvp);
3367 		if (error != 0)
3368 			return (error);
3369 	}
3370 
3371 	if (tvp != fvp && tvp != NULL) {
3372 		VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3373 		error = softdep_prerename_vnode(ump, tvp);
3374 		VOP_UNLOCK(tvp);
3375 		if (error != 0)
3376 			return (error);
3377 	}
3378 
3379 	ACQUIRE_LOCK(ump);
3380 	softdep_speedup(ump);
3381 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3382 	journal_check_space(ump);
3383 	FREE_LOCK(ump);
3384 	return (ERELOOKUP);
3385 }
3386 
3387 /*
3388  * Before adjusting a link count on a vnode verify that we have sufficient
3389  * journal space.  If not, process operations that depend on the currently
3390  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3391  * and softdep flush threads can not acquire these locks to reclaim space.
3392  *
3393  * Returns 0 if all owned locks are still valid and were not dropped
3394  * in the process, in other case it returns either an error from sync,
3395  * or ERELOOKUP if any of the locks were re-acquired.  In the later
3396  * case, the state of the vnodes cannot be relied upon and our VFS
3397  * syscall must be restarted at top level from the lookup.
3398  */
3399 int
3400 softdep_prelink(dvp, vp, cnp)
3401 	struct vnode *dvp;
3402 	struct vnode *vp;
3403 	struct componentname *cnp;
3404 {
3405 	struct ufsmount *ump;
3406 	struct nameidata *ndp;
3407 
3408 	ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3409 	if (vp != NULL)
3410 		ASSERT_VOP_ELOCKED(vp, "prelink vp");
3411 	ump = VFSTOUFS(dvp->v_mount);
3412 
3413 	/*
3414 	 * Nothing to do if we have sufficient journal space.  We skip
3415 	 * flushing when vp is a snapshot to avoid deadlock where
3416 	 * another thread is trying to update the inodeblock for dvp
3417 	 * and is waiting on snaplk that vp holds.
3418 	 */
3419 	if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3420 		return (0);
3421 
3422 	/*
3423 	 * Check if the journal space consumption can in theory be
3424 	 * accounted on dvp and vp.  If the vnodes metadata was not
3425 	 * changed comparing with the previous round-trip into
3426 	 * softdep_prelink(), as indicated by the seqc generation
3427 	 * recorded in the nameidata, then there is no point in
3428 	 * starting the sync.
3429 	 */
3430 	ndp = __containerof(cnp, struct nameidata, ni_cnd);
3431 	if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
3432 	    vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
3433 	    (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
3434 	    vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
3435 		return (0);
3436 
3437 	stat_journal_low++;
3438 	if (vp != NULL) {
3439 		VOP_UNLOCK(dvp);
3440 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3441 		vn_lock_pair(dvp, false, vp, true);
3442 		if (dvp->v_data == NULL)
3443 			goto out;
3444 	}
3445 	if (vp != NULL)
3446 		VOP_UNLOCK(vp);
3447 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3448 	/* Process vp before dvp as it may create .. removes. */
3449 	if (vp != NULL) {
3450 		VOP_UNLOCK(dvp);
3451 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3452 		if (vp->v_data == NULL) {
3453 			vn_lock_pair(dvp, false, vp, true);
3454 			goto out;
3455 		}
3456 		ACQUIRE_LOCK(ump);
3457 		process_removes(vp);
3458 		process_truncates(vp);
3459 		FREE_LOCK(ump);
3460 		VOP_UNLOCK(vp);
3461 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3462 		if (dvp->v_data == NULL) {
3463 			vn_lock_pair(dvp, true, vp, false);
3464 			goto out;
3465 		}
3466 	}
3467 
3468 	ACQUIRE_LOCK(ump);
3469 	process_removes(dvp);
3470 	process_truncates(dvp);
3471 	VOP_UNLOCK(dvp);
3472 	softdep_speedup(ump);
3473 
3474 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3475 	journal_check_space(ump);
3476 	FREE_LOCK(ump);
3477 
3478 	vn_lock_pair(dvp, false, vp, false);
3479 out:
3480 	ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
3481 	if (vp != NULL)
3482 		ndp->ni_vp_seqc = vn_seqc_read_any(vp);
3483 	return (ERELOOKUP);
3484 }
3485 
3486 static void
3487 jseg_write(ump, jseg, data)
3488 	struct ufsmount *ump;
3489 	struct jseg *jseg;
3490 	uint8_t *data;
3491 {
3492 	struct jsegrec *rec;
3493 
3494 	rec = (struct jsegrec *)data;
3495 	rec->jsr_seq = jseg->js_seq;
3496 	rec->jsr_oldest = jseg->js_oldseq;
3497 	rec->jsr_cnt = jseg->js_cnt;
3498 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3499 	rec->jsr_crc = 0;
3500 	rec->jsr_time = ump->um_fs->fs_mtime;
3501 }
3502 
3503 static inline void
3504 inoref_write(inoref, jseg, rec)
3505 	struct inoref *inoref;
3506 	struct jseg *jseg;
3507 	struct jrefrec *rec;
3508 {
3509 
3510 	inoref->if_jsegdep->jd_seg = jseg;
3511 	rec->jr_ino = inoref->if_ino;
3512 	rec->jr_parent = inoref->if_parent;
3513 	rec->jr_nlink = inoref->if_nlink;
3514 	rec->jr_mode = inoref->if_mode;
3515 	rec->jr_diroff = inoref->if_diroff;
3516 }
3517 
3518 static void
3519 jaddref_write(jaddref, jseg, data)
3520 	struct jaddref *jaddref;
3521 	struct jseg *jseg;
3522 	uint8_t *data;
3523 {
3524 	struct jrefrec *rec;
3525 
3526 	rec = (struct jrefrec *)data;
3527 	rec->jr_op = JOP_ADDREF;
3528 	inoref_write(&jaddref->ja_ref, jseg, rec);
3529 }
3530 
3531 static void
3532 jremref_write(jremref, jseg, data)
3533 	struct jremref *jremref;
3534 	struct jseg *jseg;
3535 	uint8_t *data;
3536 {
3537 	struct jrefrec *rec;
3538 
3539 	rec = (struct jrefrec *)data;
3540 	rec->jr_op = JOP_REMREF;
3541 	inoref_write(&jremref->jr_ref, jseg, rec);
3542 }
3543 
3544 static void
3545 jmvref_write(jmvref, jseg, data)
3546 	struct jmvref *jmvref;
3547 	struct jseg *jseg;
3548 	uint8_t *data;
3549 {
3550 	struct jmvrec *rec;
3551 
3552 	rec = (struct jmvrec *)data;
3553 	rec->jm_op = JOP_MVREF;
3554 	rec->jm_ino = jmvref->jm_ino;
3555 	rec->jm_parent = jmvref->jm_parent;
3556 	rec->jm_oldoff = jmvref->jm_oldoff;
3557 	rec->jm_newoff = jmvref->jm_newoff;
3558 }
3559 
3560 static void
3561 jnewblk_write(jnewblk, jseg, data)
3562 	struct jnewblk *jnewblk;
3563 	struct jseg *jseg;
3564 	uint8_t *data;
3565 {
3566 	struct jblkrec *rec;
3567 
3568 	jnewblk->jn_jsegdep->jd_seg = jseg;
3569 	rec = (struct jblkrec *)data;
3570 	rec->jb_op = JOP_NEWBLK;
3571 	rec->jb_ino = jnewblk->jn_ino;
3572 	rec->jb_blkno = jnewblk->jn_blkno;
3573 	rec->jb_lbn = jnewblk->jn_lbn;
3574 	rec->jb_frags = jnewblk->jn_frags;
3575 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3576 }
3577 
3578 static void
3579 jfreeblk_write(jfreeblk, jseg, data)
3580 	struct jfreeblk *jfreeblk;
3581 	struct jseg *jseg;
3582 	uint8_t *data;
3583 {
3584 	struct jblkrec *rec;
3585 
3586 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3587 	rec = (struct jblkrec *)data;
3588 	rec->jb_op = JOP_FREEBLK;
3589 	rec->jb_ino = jfreeblk->jf_ino;
3590 	rec->jb_blkno = jfreeblk->jf_blkno;
3591 	rec->jb_lbn = jfreeblk->jf_lbn;
3592 	rec->jb_frags = jfreeblk->jf_frags;
3593 	rec->jb_oldfrags = 0;
3594 }
3595 
3596 static void
3597 jfreefrag_write(jfreefrag, jseg, data)
3598 	struct jfreefrag *jfreefrag;
3599 	struct jseg *jseg;
3600 	uint8_t *data;
3601 {
3602 	struct jblkrec *rec;
3603 
3604 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3605 	rec = (struct jblkrec *)data;
3606 	rec->jb_op = JOP_FREEBLK;
3607 	rec->jb_ino = jfreefrag->fr_ino;
3608 	rec->jb_blkno = jfreefrag->fr_blkno;
3609 	rec->jb_lbn = jfreefrag->fr_lbn;
3610 	rec->jb_frags = jfreefrag->fr_frags;
3611 	rec->jb_oldfrags = 0;
3612 }
3613 
3614 static void
3615 jtrunc_write(jtrunc, jseg, data)
3616 	struct jtrunc *jtrunc;
3617 	struct jseg *jseg;
3618 	uint8_t *data;
3619 {
3620 	struct jtrncrec *rec;
3621 
3622 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3623 	rec = (struct jtrncrec *)data;
3624 	rec->jt_op = JOP_TRUNC;
3625 	rec->jt_ino = jtrunc->jt_ino;
3626 	rec->jt_size = jtrunc->jt_size;
3627 	rec->jt_extsize = jtrunc->jt_extsize;
3628 }
3629 
3630 static void
3631 jfsync_write(jfsync, jseg, data)
3632 	struct jfsync *jfsync;
3633 	struct jseg *jseg;
3634 	uint8_t *data;
3635 {
3636 	struct jtrncrec *rec;
3637 
3638 	rec = (struct jtrncrec *)data;
3639 	rec->jt_op = JOP_SYNC;
3640 	rec->jt_ino = jfsync->jfs_ino;
3641 	rec->jt_size = jfsync->jfs_size;
3642 	rec->jt_extsize = jfsync->jfs_extsize;
3643 }
3644 
3645 static void
3646 softdep_flushjournal(mp)
3647 	struct mount *mp;
3648 {
3649 	struct jblocks *jblocks;
3650 	struct ufsmount *ump;
3651 
3652 	if (MOUNTEDSUJ(mp) == 0)
3653 		return;
3654 	ump = VFSTOUFS(mp);
3655 	jblocks = ump->softdep_jblocks;
3656 	ACQUIRE_LOCK(ump);
3657 	while (ump->softdep_on_journal) {
3658 		jblocks->jb_needseg = 1;
3659 		softdep_process_journal(mp, NULL, MNT_WAIT);
3660 	}
3661 	FREE_LOCK(ump);
3662 }
3663 
3664 static void softdep_synchronize_completed(struct bio *);
3665 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3666 
3667 static void
3668 softdep_synchronize_completed(bp)
3669         struct bio *bp;
3670 {
3671 	struct jseg *oldest;
3672 	struct jseg *jseg;
3673 	struct ufsmount *ump;
3674 
3675 	/*
3676 	 * caller1 marks the last segment written before we issued the
3677 	 * synchronize cache.
3678 	 */
3679 	jseg = bp->bio_caller1;
3680 	if (jseg == NULL) {
3681 		g_destroy_bio(bp);
3682 		return;
3683 	}
3684 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3685 	ACQUIRE_LOCK(ump);
3686 	oldest = NULL;
3687 	/*
3688 	 * Mark all the journal entries waiting on the synchronize cache
3689 	 * as completed so they may continue on.
3690 	 */
3691 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3692 		jseg->js_state |= COMPLETE;
3693 		oldest = jseg;
3694 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3695 	}
3696 	/*
3697 	 * Restart deferred journal entry processing from the oldest
3698 	 * completed jseg.
3699 	 */
3700 	if (oldest)
3701 		complete_jsegs(oldest);
3702 
3703 	FREE_LOCK(ump);
3704 	g_destroy_bio(bp);
3705 }
3706 
3707 /*
3708  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3709  * barriers.  The journal must be written prior to any blocks that depend
3710  * on it and the journal can not be released until the blocks have be
3711  * written.  This code handles both barriers simultaneously.
3712  */
3713 static void
3714 softdep_synchronize(bp, ump, caller1)
3715 	struct bio *bp;
3716 	struct ufsmount *ump;
3717 	void *caller1;
3718 {
3719 
3720 	bp->bio_cmd = BIO_FLUSH;
3721 	bp->bio_flags |= BIO_ORDERED;
3722 	bp->bio_data = NULL;
3723 	bp->bio_offset = ump->um_cp->provider->mediasize;
3724 	bp->bio_length = 0;
3725 	bp->bio_done = softdep_synchronize_completed;
3726 	bp->bio_caller1 = caller1;
3727 	g_io_request(bp, ump->um_cp);
3728 }
3729 
3730 /*
3731  * Flush some journal records to disk.
3732  */
3733 static void
3734 softdep_process_journal(mp, needwk, flags)
3735 	struct mount *mp;
3736 	struct worklist *needwk;
3737 	int flags;
3738 {
3739 	struct jblocks *jblocks;
3740 	struct ufsmount *ump;
3741 	struct worklist *wk;
3742 	struct jseg *jseg;
3743 	struct buf *bp;
3744 	struct bio *bio;
3745 	uint8_t *data;
3746 	struct fs *fs;
3747 	int shouldflush;
3748 	int segwritten;
3749 	int jrecmin;	/* Minimum records per block. */
3750 	int jrecmax;	/* Maximum records per block. */
3751 	int size;
3752 	int cnt;
3753 	int off;
3754 	int devbsize;
3755 
3756 	ump = VFSTOUFS(mp);
3757 	if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3758 		return;
3759 	shouldflush = softdep_flushcache;
3760 	bio = NULL;
3761 	jseg = NULL;
3762 	LOCK_OWNED(ump);
3763 	fs = ump->um_fs;
3764 	jblocks = ump->softdep_jblocks;
3765 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3766 	/*
3767 	 * We write anywhere between a disk block and fs block.  The upper
3768 	 * bound is picked to prevent buffer cache fragmentation and limit
3769 	 * processing time per I/O.
3770 	 */
3771 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3772 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3773 	segwritten = 0;
3774 	for (;;) {
3775 		cnt = ump->softdep_on_journal;
3776 		/*
3777 		 * Criteria for writing a segment:
3778 		 * 1) We have a full block.
3779 		 * 2) We're called from jwait() and haven't found the
3780 		 *    journal item yet.
3781 		 * 3) Always write if needseg is set.
3782 		 * 4) If we are called from process_worklist and have
3783 		 *    not yet written anything we write a partial block
3784 		 *    to enforce a 1 second maximum latency on journal
3785 		 *    entries.
3786 		 */
3787 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3788 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3789 			break;
3790 		cnt++;
3791 		/*
3792 		 * Verify some free journal space.  softdep_prealloc() should
3793 		 * guarantee that we don't run out so this is indicative of
3794 		 * a problem with the flow control.  Try to recover
3795 		 * gracefully in any event.
3796 		 */
3797 		while (jblocks->jb_free == 0) {
3798 			if (flags != MNT_WAIT)
3799 				break;
3800 			printf("softdep: Out of journal space!\n");
3801 			softdep_speedup(ump);
3802 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3803 		}
3804 		FREE_LOCK(ump);
3805 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3806 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3807 		LIST_INIT(&jseg->js_entries);
3808 		LIST_INIT(&jseg->js_indirs);
3809 		jseg->js_state = ATTACHED;
3810 		if (shouldflush == 0)
3811 			jseg->js_state |= COMPLETE;
3812 		else if (bio == NULL)
3813 			bio = g_alloc_bio();
3814 		jseg->js_jblocks = jblocks;
3815 		bp = geteblk(fs->fs_bsize, 0);
3816 		ACQUIRE_LOCK(ump);
3817 		/*
3818 		 * If there was a race while we were allocating the block
3819 		 * and jseg the entry we care about was likely written.
3820 		 * We bail out in both the WAIT and NOWAIT case and assume
3821 		 * the caller will loop if the entry it cares about is
3822 		 * not written.
3823 		 */
3824 		cnt = ump->softdep_on_journal;
3825 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3826 			bp->b_flags |= B_INVAL | B_NOCACHE;
3827 			WORKITEM_FREE(jseg, D_JSEG);
3828 			FREE_LOCK(ump);
3829 			brelse(bp);
3830 			ACQUIRE_LOCK(ump);
3831 			break;
3832 		}
3833 		/*
3834 		 * Calculate the disk block size required for the available
3835 		 * records rounded to the min size.
3836 		 */
3837 		if (cnt == 0)
3838 			size = devbsize;
3839 		else if (cnt < jrecmax)
3840 			size = howmany(cnt, jrecmin) * devbsize;
3841 		else
3842 			size = fs->fs_bsize;
3843 		/*
3844 		 * Allocate a disk block for this journal data and account
3845 		 * for truncation of the requested size if enough contiguous
3846 		 * space was not available.
3847 		 */
3848 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3849 		bp->b_lblkno = bp->b_blkno;
3850 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3851 		bp->b_bcount = size;
3852 		bp->b_flags &= ~B_INVAL;
3853 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3854 		/*
3855 		 * Initialize our jseg with cnt records.  Assign the next
3856 		 * sequence number to it and link it in-order.
3857 		 */
3858 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3859 		jseg->js_buf = bp;
3860 		jseg->js_cnt = cnt;
3861 		jseg->js_refs = cnt + 1;	/* Self ref. */
3862 		jseg->js_size = size;
3863 		jseg->js_seq = jblocks->jb_nextseq++;
3864 		if (jblocks->jb_oldestseg == NULL)
3865 			jblocks->jb_oldestseg = jseg;
3866 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3867 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3868 		if (jblocks->jb_writeseg == NULL)
3869 			jblocks->jb_writeseg = jseg;
3870 		/*
3871 		 * Start filling in records from the pending list.
3872 		 */
3873 		data = bp->b_data;
3874 		off = 0;
3875 
3876 		/*
3877 		 * Always put a header on the first block.
3878 		 * XXX As with below, there might not be a chance to get
3879 		 * into the loop.  Ensure that something valid is written.
3880 		 */
3881 		jseg_write(ump, jseg, data);
3882 		off += JREC_SIZE;
3883 		data = bp->b_data + off;
3884 
3885 		/*
3886 		 * XXX Something is wrong here.  There's no work to do,
3887 		 * but we need to perform and I/O and allow it to complete
3888 		 * anyways.
3889 		 */
3890 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3891 			stat_emptyjblocks++;
3892 
3893 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3894 		    != NULL) {
3895 			if (cnt == 0)
3896 				break;
3897 			/* Place a segment header on every device block. */
3898 			if ((off % devbsize) == 0) {
3899 				jseg_write(ump, jseg, data);
3900 				off += JREC_SIZE;
3901 				data = bp->b_data + off;
3902 			}
3903 			if (wk == needwk)
3904 				needwk = NULL;
3905 			remove_from_journal(wk);
3906 			wk->wk_state |= INPROGRESS;
3907 			WORKLIST_INSERT(&jseg->js_entries, wk);
3908 			switch (wk->wk_type) {
3909 			case D_JADDREF:
3910 				jaddref_write(WK_JADDREF(wk), jseg, data);
3911 				break;
3912 			case D_JREMREF:
3913 				jremref_write(WK_JREMREF(wk), jseg, data);
3914 				break;
3915 			case D_JMVREF:
3916 				jmvref_write(WK_JMVREF(wk), jseg, data);
3917 				break;
3918 			case D_JNEWBLK:
3919 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3920 				break;
3921 			case D_JFREEBLK:
3922 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3923 				break;
3924 			case D_JFREEFRAG:
3925 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3926 				break;
3927 			case D_JTRUNC:
3928 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3929 				break;
3930 			case D_JFSYNC:
3931 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3932 				break;
3933 			default:
3934 				panic("process_journal: Unknown type %s",
3935 				    TYPENAME(wk->wk_type));
3936 				/* NOTREACHED */
3937 			}
3938 			off += JREC_SIZE;
3939 			data = bp->b_data + off;
3940 			cnt--;
3941 		}
3942 
3943 		/* Clear any remaining space so we don't leak kernel data */
3944 		if (size > off)
3945 			bzero(data, size - off);
3946 
3947 		/*
3948 		 * Write this one buffer and continue.
3949 		 */
3950 		segwritten = 1;
3951 		jblocks->jb_needseg = 0;
3952 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3953 		FREE_LOCK(ump);
3954 		bp->b_xflags |= BX_CVTENXIO;
3955 		pbgetvp(ump->um_devvp, bp);
3956 		/*
3957 		 * We only do the blocking wait once we find the journal
3958 		 * entry we're looking for.
3959 		 */
3960 		if (needwk == NULL && flags == MNT_WAIT)
3961 			bwrite(bp);
3962 		else
3963 			bawrite(bp);
3964 		ACQUIRE_LOCK(ump);
3965 	}
3966 	/*
3967 	 * If we wrote a segment issue a synchronize cache so the journal
3968 	 * is reflected on disk before the data is written.  Since reclaiming
3969 	 * journal space also requires writing a journal record this
3970 	 * process also enforces a barrier before reclamation.
3971 	 */
3972 	if (segwritten && shouldflush) {
3973 		softdep_synchronize(bio, ump,
3974 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3975 	} else if (bio)
3976 		g_destroy_bio(bio);
3977 	/*
3978 	 * If we've suspended the filesystem because we ran out of journal
3979 	 * space either try to sync it here to make some progress or
3980 	 * unsuspend it if we already have.
3981 	 */
3982 	if (flags == 0 && jblocks->jb_suspended) {
3983 		if (journal_unsuspend(ump))
3984 			return;
3985 		FREE_LOCK(ump);
3986 		VFS_SYNC(mp, MNT_NOWAIT);
3987 		ffs_sbupdate(ump, MNT_WAIT, 0);
3988 		ACQUIRE_LOCK(ump);
3989 	}
3990 }
3991 
3992 /*
3993  * Complete a jseg, allowing all dependencies awaiting journal writes
3994  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3995  * structures so that the journal segment can be freed to reclaim space.
3996  */
3997 static void
3998 complete_jseg(jseg)
3999 	struct jseg *jseg;
4000 {
4001 	struct worklist *wk;
4002 	struct jmvref *jmvref;
4003 #ifdef INVARIANTS
4004 	int i = 0;
4005 #endif
4006 
4007 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
4008 		WORKLIST_REMOVE(wk);
4009 		wk->wk_state &= ~INPROGRESS;
4010 		wk->wk_state |= COMPLETE;
4011 		KASSERT(i++ < jseg->js_cnt,
4012 		    ("handle_written_jseg: overflow %d >= %d",
4013 		    i - 1, jseg->js_cnt));
4014 		switch (wk->wk_type) {
4015 		case D_JADDREF:
4016 			handle_written_jaddref(WK_JADDREF(wk));
4017 			break;
4018 		case D_JREMREF:
4019 			handle_written_jremref(WK_JREMREF(wk));
4020 			break;
4021 		case D_JMVREF:
4022 			rele_jseg(jseg);	/* No jsegdep. */
4023 			jmvref = WK_JMVREF(wk);
4024 			LIST_REMOVE(jmvref, jm_deps);
4025 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
4026 				free_pagedep(jmvref->jm_pagedep);
4027 			WORKITEM_FREE(jmvref, D_JMVREF);
4028 			break;
4029 		case D_JNEWBLK:
4030 			handle_written_jnewblk(WK_JNEWBLK(wk));
4031 			break;
4032 		case D_JFREEBLK:
4033 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
4034 			break;
4035 		case D_JTRUNC:
4036 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
4037 			break;
4038 		case D_JFSYNC:
4039 			rele_jseg(jseg);	/* No jsegdep. */
4040 			WORKITEM_FREE(wk, D_JFSYNC);
4041 			break;
4042 		case D_JFREEFRAG:
4043 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
4044 			break;
4045 		default:
4046 			panic("handle_written_jseg: Unknown type %s",
4047 			    TYPENAME(wk->wk_type));
4048 			/* NOTREACHED */
4049 		}
4050 	}
4051 	/* Release the self reference so the structure may be freed. */
4052 	rele_jseg(jseg);
4053 }
4054 
4055 /*
4056  * Determine which jsegs are ready for completion processing.  Waits for
4057  * synchronize cache to complete as well as forcing in-order completion
4058  * of journal entries.
4059  */
4060 static void
4061 complete_jsegs(jseg)
4062 	struct jseg *jseg;
4063 {
4064 	struct jblocks *jblocks;
4065 	struct jseg *jsegn;
4066 
4067 	jblocks = jseg->js_jblocks;
4068 	/*
4069 	 * Don't allow out of order completions.  If this isn't the first
4070 	 * block wait for it to write before we're done.
4071 	 */
4072 	if (jseg != jblocks->jb_writeseg)
4073 		return;
4074 	/* Iterate through available jsegs processing their entries. */
4075 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
4076 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
4077 		jsegn = TAILQ_NEXT(jseg, js_next);
4078 		complete_jseg(jseg);
4079 		jseg = jsegn;
4080 	}
4081 	jblocks->jb_writeseg = jseg;
4082 	/*
4083 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
4084 	 */
4085 	free_jsegs(jblocks);
4086 }
4087 
4088 /*
4089  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
4090  * the final completions.
4091  */
4092 static void
4093 handle_written_jseg(jseg, bp)
4094 	struct jseg *jseg;
4095 	struct buf *bp;
4096 {
4097 
4098 	if (jseg->js_refs == 0)
4099 		panic("handle_written_jseg: No self-reference on %p", jseg);
4100 	jseg->js_state |= DEPCOMPLETE;
4101 	/*
4102 	 * We'll never need this buffer again, set flags so it will be
4103 	 * discarded.
4104 	 */
4105 	bp->b_flags |= B_INVAL | B_NOCACHE;
4106 	pbrelvp(bp);
4107 	complete_jsegs(jseg);
4108 }
4109 
4110 static inline struct jsegdep *
4111 inoref_jseg(inoref)
4112 	struct inoref *inoref;
4113 {
4114 	struct jsegdep *jsegdep;
4115 
4116 	jsegdep = inoref->if_jsegdep;
4117 	inoref->if_jsegdep = NULL;
4118 
4119 	return (jsegdep);
4120 }
4121 
4122 /*
4123  * Called once a jremref has made it to stable store.  The jremref is marked
4124  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
4125  * for the jremref to complete will be awoken by free_jremref.
4126  */
4127 static void
4128 handle_written_jremref(jremref)
4129 	struct jremref *jremref;
4130 {
4131 	struct inodedep *inodedep;
4132 	struct jsegdep *jsegdep;
4133 	struct dirrem *dirrem;
4134 
4135 	/* Grab the jsegdep. */
4136 	jsegdep = inoref_jseg(&jremref->jr_ref);
4137 	/*
4138 	 * Remove us from the inoref list.
4139 	 */
4140 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4141 	    0, &inodedep) == 0)
4142 		panic("handle_written_jremref: Lost inodedep");
4143 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4144 	/*
4145 	 * Complete the dirrem.
4146 	 */
4147 	dirrem = jremref->jr_dirrem;
4148 	jremref->jr_dirrem = NULL;
4149 	LIST_REMOVE(jremref, jr_deps);
4150 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4151 	jwork_insert(&dirrem->dm_jwork, jsegdep);
4152 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4153 	    (dirrem->dm_state & COMPLETE) != 0)
4154 		add_to_worklist(&dirrem->dm_list, 0);
4155 	free_jremref(jremref);
4156 }
4157 
4158 /*
4159  * Called once a jaddref has made it to stable store.  The dependency is
4160  * marked complete and any dependent structures are added to the inode
4161  * bufwait list to be completed as soon as it is written.  If a bitmap write
4162  * depends on this entry we move the inode into the inodedephd of the
4163  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4164  */
4165 static void
4166 handle_written_jaddref(jaddref)
4167 	struct jaddref *jaddref;
4168 {
4169 	struct jsegdep *jsegdep;
4170 	struct inodedep *inodedep;
4171 	struct diradd *diradd;
4172 	struct mkdir *mkdir;
4173 
4174 	/* Grab the jsegdep. */
4175 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4176 	mkdir = NULL;
4177 	diradd = NULL;
4178 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4179 	    0, &inodedep) == 0)
4180 		panic("handle_written_jaddref: Lost inodedep.");
4181 	if (jaddref->ja_diradd == NULL)
4182 		panic("handle_written_jaddref: No dependency");
4183 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4184 		diradd = jaddref->ja_diradd;
4185 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4186 	} else if (jaddref->ja_state & MKDIR_PARENT) {
4187 		mkdir = jaddref->ja_mkdir;
4188 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4189 	} else if (jaddref->ja_state & MKDIR_BODY)
4190 		mkdir = jaddref->ja_mkdir;
4191 	else
4192 		panic("handle_written_jaddref: Unknown dependency %p",
4193 		    jaddref->ja_diradd);
4194 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
4195 	/*
4196 	 * Remove us from the inode list.
4197 	 */
4198 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4199 	/*
4200 	 * The mkdir may be waiting on the jaddref to clear before freeing.
4201 	 */
4202 	if (mkdir) {
4203 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4204 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
4205 		    TYPENAME(mkdir->md_list.wk_type)));
4206 		mkdir->md_jaddref = NULL;
4207 		diradd = mkdir->md_diradd;
4208 		mkdir->md_state |= DEPCOMPLETE;
4209 		complete_mkdir(mkdir);
4210 	}
4211 	jwork_insert(&diradd->da_jwork, jsegdep);
4212 	if (jaddref->ja_state & NEWBLOCK) {
4213 		inodedep->id_state |= ONDEPLIST;
4214 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4215 		    inodedep, id_deps);
4216 	}
4217 	free_jaddref(jaddref);
4218 }
4219 
4220 /*
4221  * Called once a jnewblk journal is written.  The allocdirect or allocindir
4222  * is placed in the bmsafemap to await notification of a written bitmap.  If
4223  * the operation was canceled we add the segdep to the appropriate
4224  * dependency to free the journal space once the canceling operation
4225  * completes.
4226  */
4227 static void
4228 handle_written_jnewblk(jnewblk)
4229 	struct jnewblk *jnewblk;
4230 {
4231 	struct bmsafemap *bmsafemap;
4232 	struct freefrag *freefrag;
4233 	struct freework *freework;
4234 	struct jsegdep *jsegdep;
4235 	struct newblk *newblk;
4236 
4237 	/* Grab the jsegdep. */
4238 	jsegdep = jnewblk->jn_jsegdep;
4239 	jnewblk->jn_jsegdep = NULL;
4240 	if (jnewblk->jn_dep == NULL)
4241 		panic("handle_written_jnewblk: No dependency for the segdep.");
4242 	switch (jnewblk->jn_dep->wk_type) {
4243 	case D_NEWBLK:
4244 	case D_ALLOCDIRECT:
4245 	case D_ALLOCINDIR:
4246 		/*
4247 		 * Add the written block to the bmsafemap so it can
4248 		 * be notified when the bitmap is on disk.
4249 		 */
4250 		newblk = WK_NEWBLK(jnewblk->jn_dep);
4251 		newblk->nb_jnewblk = NULL;
4252 		if ((newblk->nb_state & GOINGAWAY) == 0) {
4253 			bmsafemap = newblk->nb_bmsafemap;
4254 			newblk->nb_state |= ONDEPLIST;
4255 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4256 			    nb_deps);
4257 		}
4258 		jwork_insert(&newblk->nb_jwork, jsegdep);
4259 		break;
4260 	case D_FREEFRAG:
4261 		/*
4262 		 * A newblock being removed by a freefrag when replaced by
4263 		 * frag extension.
4264 		 */
4265 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4266 		freefrag->ff_jdep = NULL;
4267 		jwork_insert(&freefrag->ff_jwork, jsegdep);
4268 		break;
4269 	case D_FREEWORK:
4270 		/*
4271 		 * A direct block was removed by truncate.
4272 		 */
4273 		freework = WK_FREEWORK(jnewblk->jn_dep);
4274 		freework->fw_jnewblk = NULL;
4275 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4276 		break;
4277 	default:
4278 		panic("handle_written_jnewblk: Unknown type %d.",
4279 		    jnewblk->jn_dep->wk_type);
4280 	}
4281 	jnewblk->jn_dep = NULL;
4282 	free_jnewblk(jnewblk);
4283 }
4284 
4285 /*
4286  * Cancel a jfreefrag that won't be needed, probably due to colliding with
4287  * an in-flight allocation that has not yet been committed.  Divorce us
4288  * from the freefrag and mark it DEPCOMPLETE so that it may be added
4289  * to the worklist.
4290  */
4291 static void
4292 cancel_jfreefrag(jfreefrag)
4293 	struct jfreefrag *jfreefrag;
4294 {
4295 	struct freefrag *freefrag;
4296 
4297 	if (jfreefrag->fr_jsegdep) {
4298 		free_jsegdep(jfreefrag->fr_jsegdep);
4299 		jfreefrag->fr_jsegdep = NULL;
4300 	}
4301 	freefrag = jfreefrag->fr_freefrag;
4302 	jfreefrag->fr_freefrag = NULL;
4303 	free_jfreefrag(jfreefrag);
4304 	freefrag->ff_state |= DEPCOMPLETE;
4305 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4306 }
4307 
4308 /*
4309  * Free a jfreefrag when the parent freefrag is rendered obsolete.
4310  */
4311 static void
4312 free_jfreefrag(jfreefrag)
4313 	struct jfreefrag *jfreefrag;
4314 {
4315 
4316 	if (jfreefrag->fr_state & INPROGRESS)
4317 		WORKLIST_REMOVE(&jfreefrag->fr_list);
4318 	else if (jfreefrag->fr_state & ONWORKLIST)
4319 		remove_from_journal(&jfreefrag->fr_list);
4320 	if (jfreefrag->fr_freefrag != NULL)
4321 		panic("free_jfreefrag:  Still attached to a freefrag.");
4322 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4323 }
4324 
4325 /*
4326  * Called when the journal write for a jfreefrag completes.  The parent
4327  * freefrag is added to the worklist if this completes its dependencies.
4328  */
4329 static void
4330 handle_written_jfreefrag(jfreefrag)
4331 	struct jfreefrag *jfreefrag;
4332 {
4333 	struct jsegdep *jsegdep;
4334 	struct freefrag *freefrag;
4335 
4336 	/* Grab the jsegdep. */
4337 	jsegdep = jfreefrag->fr_jsegdep;
4338 	jfreefrag->fr_jsegdep = NULL;
4339 	freefrag = jfreefrag->fr_freefrag;
4340 	if (freefrag == NULL)
4341 		panic("handle_written_jfreefrag: No freefrag.");
4342 	freefrag->ff_state |= DEPCOMPLETE;
4343 	freefrag->ff_jdep = NULL;
4344 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4345 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4346 		add_to_worklist(&freefrag->ff_list, 0);
4347 	jfreefrag->fr_freefrag = NULL;
4348 	free_jfreefrag(jfreefrag);
4349 }
4350 
4351 /*
4352  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4353  * is removed from the freeblks list of pending journal writes and the
4354  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4355  * have been reclaimed.
4356  */
4357 static void
4358 handle_written_jblkdep(jblkdep)
4359 	struct jblkdep *jblkdep;
4360 {
4361 	struct freeblks *freeblks;
4362 	struct jsegdep *jsegdep;
4363 
4364 	/* Grab the jsegdep. */
4365 	jsegdep = jblkdep->jb_jsegdep;
4366 	jblkdep->jb_jsegdep = NULL;
4367 	freeblks = jblkdep->jb_freeblks;
4368 	LIST_REMOVE(jblkdep, jb_deps);
4369 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4370 	/*
4371 	 * If the freeblks is all journaled, we can add it to the worklist.
4372 	 */
4373 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4374 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4375 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4376 
4377 	free_jblkdep(jblkdep);
4378 }
4379 
4380 static struct jsegdep *
4381 newjsegdep(struct worklist *wk)
4382 {
4383 	struct jsegdep *jsegdep;
4384 
4385 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4386 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4387 	jsegdep->jd_seg = NULL;
4388 
4389 	return (jsegdep);
4390 }
4391 
4392 static struct jmvref *
4393 newjmvref(dp, ino, oldoff, newoff)
4394 	struct inode *dp;
4395 	ino_t ino;
4396 	off_t oldoff;
4397 	off_t newoff;
4398 {
4399 	struct jmvref *jmvref;
4400 
4401 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4402 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4403 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4404 	jmvref->jm_parent = dp->i_number;
4405 	jmvref->jm_ino = ino;
4406 	jmvref->jm_oldoff = oldoff;
4407 	jmvref->jm_newoff = newoff;
4408 
4409 	return (jmvref);
4410 }
4411 
4412 /*
4413  * Allocate a new jremref that tracks the removal of ip from dp with the
4414  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4415  * DEPCOMPLETE as we have all the information required for the journal write
4416  * and the directory has already been removed from the buffer.  The caller
4417  * is responsible for linking the jremref into the pagedep and adding it
4418  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4419  * a DOTDOT addition so handle_workitem_remove() can properly assign
4420  * the jsegdep when we're done.
4421  */
4422 static struct jremref *
4423 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4424     off_t diroff, nlink_t nlink)
4425 {
4426 	struct jremref *jremref;
4427 
4428 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4429 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4430 	jremref->jr_state = ATTACHED;
4431 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4432 	   nlink, ip->i_mode);
4433 	jremref->jr_dirrem = dirrem;
4434 
4435 	return (jremref);
4436 }
4437 
4438 static inline void
4439 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4440     nlink_t nlink, uint16_t mode)
4441 {
4442 
4443 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4444 	inoref->if_diroff = diroff;
4445 	inoref->if_ino = ino;
4446 	inoref->if_parent = parent;
4447 	inoref->if_nlink = nlink;
4448 	inoref->if_mode = mode;
4449 }
4450 
4451 /*
4452  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4453  * directory offset may not be known until later.  The caller is responsible
4454  * adding the entry to the journal when this information is available.  nlink
4455  * should be the link count prior to the addition and mode is only required
4456  * to have the correct FMT.
4457  */
4458 static struct jaddref *
4459 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4460     uint16_t mode)
4461 {
4462 	struct jaddref *jaddref;
4463 
4464 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4465 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4466 	jaddref->ja_state = ATTACHED;
4467 	jaddref->ja_mkdir = NULL;
4468 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4469 
4470 	return (jaddref);
4471 }
4472 
4473 /*
4474  * Create a new free dependency for a freework.  The caller is responsible
4475  * for adjusting the reference count when it has the lock held.  The freedep
4476  * will track an outstanding bitmap write that will ultimately clear the
4477  * freework to continue.
4478  */
4479 static struct freedep *
4480 newfreedep(struct freework *freework)
4481 {
4482 	struct freedep *freedep;
4483 
4484 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4485 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4486 	freedep->fd_freework = freework;
4487 
4488 	return (freedep);
4489 }
4490 
4491 /*
4492  * Free a freedep structure once the buffer it is linked to is written.  If
4493  * this is the last reference to the freework schedule it for completion.
4494  */
4495 static void
4496 free_freedep(freedep)
4497 	struct freedep *freedep;
4498 {
4499 	struct freework *freework;
4500 
4501 	freework = freedep->fd_freework;
4502 	freework->fw_freeblks->fb_cgwait--;
4503 	if (--freework->fw_ref == 0)
4504 		freework_enqueue(freework);
4505 	WORKITEM_FREE(freedep, D_FREEDEP);
4506 }
4507 
4508 /*
4509  * Allocate a new freework structure that may be a level in an indirect
4510  * when parent is not NULL or a top level block when it is.  The top level
4511  * freework structures are allocated without the per-filesystem lock held
4512  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4513  */
4514 static struct freework *
4515 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4516 	struct ufsmount *ump;
4517 	struct freeblks *freeblks;
4518 	struct freework *parent;
4519 	ufs_lbn_t lbn;
4520 	ufs2_daddr_t nb;
4521 	int frags;
4522 	int off;
4523 	int journal;
4524 {
4525 	struct freework *freework;
4526 
4527 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4528 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4529 	freework->fw_state = ATTACHED;
4530 	freework->fw_jnewblk = NULL;
4531 	freework->fw_freeblks = freeblks;
4532 	freework->fw_parent = parent;
4533 	freework->fw_lbn = lbn;
4534 	freework->fw_blkno = nb;
4535 	freework->fw_frags = frags;
4536 	freework->fw_indir = NULL;
4537 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4538 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4539 	freework->fw_start = freework->fw_off = off;
4540 	if (journal)
4541 		newjfreeblk(freeblks, lbn, nb, frags);
4542 	if (parent == NULL) {
4543 		ACQUIRE_LOCK(ump);
4544 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4545 		freeblks->fb_ref++;
4546 		FREE_LOCK(ump);
4547 	}
4548 
4549 	return (freework);
4550 }
4551 
4552 /*
4553  * Eliminate a jfreeblk for a block that does not need journaling.
4554  */
4555 static void
4556 cancel_jfreeblk(freeblks, blkno)
4557 	struct freeblks *freeblks;
4558 	ufs2_daddr_t blkno;
4559 {
4560 	struct jfreeblk *jfreeblk;
4561 	struct jblkdep *jblkdep;
4562 
4563 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4564 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4565 			continue;
4566 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4567 		if (jfreeblk->jf_blkno == blkno)
4568 			break;
4569 	}
4570 	if (jblkdep == NULL)
4571 		return;
4572 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4573 	free_jsegdep(jblkdep->jb_jsegdep);
4574 	LIST_REMOVE(jblkdep, jb_deps);
4575 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4576 }
4577 
4578 /*
4579  * Allocate a new jfreeblk to journal top level block pointer when truncating
4580  * a file.  The caller must add this to the worklist when the per-filesystem
4581  * lock is held.
4582  */
4583 static struct jfreeblk *
4584 newjfreeblk(freeblks, lbn, blkno, frags)
4585 	struct freeblks *freeblks;
4586 	ufs_lbn_t lbn;
4587 	ufs2_daddr_t blkno;
4588 	int frags;
4589 {
4590 	struct jfreeblk *jfreeblk;
4591 
4592 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4593 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4594 	    freeblks->fb_list.wk_mp);
4595 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4596 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4597 	jfreeblk->jf_ino = freeblks->fb_inum;
4598 	jfreeblk->jf_lbn = lbn;
4599 	jfreeblk->jf_blkno = blkno;
4600 	jfreeblk->jf_frags = frags;
4601 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4602 
4603 	return (jfreeblk);
4604 }
4605 
4606 /*
4607  * The journal is only prepared to handle full-size block numbers, so we
4608  * have to adjust the record to reflect the change to a full-size block.
4609  * For example, suppose we have a block made up of fragments 8-15 and
4610  * want to free its last two fragments. We are given a request that says:
4611  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4612  * where frags are the number of fragments to free and oldfrags are the
4613  * number of fragments to keep. To block align it, we have to change it to
4614  * have a valid full-size blkno, so it becomes:
4615  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4616  */
4617 static void
4618 adjust_newfreework(freeblks, frag_offset)
4619 	struct freeblks *freeblks;
4620 	int frag_offset;
4621 {
4622 	struct jfreeblk *jfreeblk;
4623 
4624 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4625 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4626 	    ("adjust_newfreework: Missing freeblks dependency"));
4627 
4628 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4629 	jfreeblk->jf_blkno -= frag_offset;
4630 	jfreeblk->jf_frags += frag_offset;
4631 }
4632 
4633 /*
4634  * Allocate a new jtrunc to track a partial truncation.
4635  */
4636 static struct jtrunc *
4637 newjtrunc(freeblks, size, extsize)
4638 	struct freeblks *freeblks;
4639 	off_t size;
4640 	int extsize;
4641 {
4642 	struct jtrunc *jtrunc;
4643 
4644 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4645 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4646 	    freeblks->fb_list.wk_mp);
4647 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4648 	jtrunc->jt_dep.jb_freeblks = freeblks;
4649 	jtrunc->jt_ino = freeblks->fb_inum;
4650 	jtrunc->jt_size = size;
4651 	jtrunc->jt_extsize = extsize;
4652 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4653 
4654 	return (jtrunc);
4655 }
4656 
4657 /*
4658  * If we're canceling a new bitmap we have to search for another ref
4659  * to move into the bmsafemap dep.  This might be better expressed
4660  * with another structure.
4661  */
4662 static void
4663 move_newblock_dep(jaddref, inodedep)
4664 	struct jaddref *jaddref;
4665 	struct inodedep *inodedep;
4666 {
4667 	struct inoref *inoref;
4668 	struct jaddref *jaddrefn;
4669 
4670 	jaddrefn = NULL;
4671 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4672 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4673 		if ((jaddref->ja_state & NEWBLOCK) &&
4674 		    inoref->if_list.wk_type == D_JADDREF) {
4675 			jaddrefn = (struct jaddref *)inoref;
4676 			break;
4677 		}
4678 	}
4679 	if (jaddrefn == NULL)
4680 		return;
4681 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4682 	jaddrefn->ja_state |= jaddref->ja_state &
4683 	    (ATTACHED | UNDONE | NEWBLOCK);
4684 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4685 	jaddref->ja_state |= ATTACHED;
4686 	LIST_REMOVE(jaddref, ja_bmdeps);
4687 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4688 	    ja_bmdeps);
4689 }
4690 
4691 /*
4692  * Cancel a jaddref either before it has been written or while it is being
4693  * written.  This happens when a link is removed before the add reaches
4694  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4695  * and inode to prevent the link count or bitmap from reaching the disk
4696  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4697  * required.
4698  *
4699  * Returns 1 if the canceled addref requires journaling of the remove and
4700  * 0 otherwise.
4701  */
4702 static int
4703 cancel_jaddref(jaddref, inodedep, wkhd)
4704 	struct jaddref *jaddref;
4705 	struct inodedep *inodedep;
4706 	struct workhead *wkhd;
4707 {
4708 	struct inoref *inoref;
4709 	struct jsegdep *jsegdep;
4710 	int needsj;
4711 
4712 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4713 	    ("cancel_jaddref: Canceling complete jaddref"));
4714 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4715 		needsj = 1;
4716 	else
4717 		needsj = 0;
4718 	if (inodedep == NULL)
4719 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4720 		    0, &inodedep) == 0)
4721 			panic("cancel_jaddref: Lost inodedep");
4722 	/*
4723 	 * We must adjust the nlink of any reference operation that follows
4724 	 * us so that it is consistent with the in-memory reference.  This
4725 	 * ensures that inode nlink rollbacks always have the correct link.
4726 	 */
4727 	if (needsj == 0) {
4728 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4729 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4730 			if (inoref->if_state & GOINGAWAY)
4731 				break;
4732 			inoref->if_nlink--;
4733 		}
4734 	}
4735 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4736 	if (jaddref->ja_state & NEWBLOCK)
4737 		move_newblock_dep(jaddref, inodedep);
4738 	wake_worklist(&jaddref->ja_list);
4739 	jaddref->ja_mkdir = NULL;
4740 	if (jaddref->ja_state & INPROGRESS) {
4741 		jaddref->ja_state &= ~INPROGRESS;
4742 		WORKLIST_REMOVE(&jaddref->ja_list);
4743 		jwork_insert(wkhd, jsegdep);
4744 	} else {
4745 		free_jsegdep(jsegdep);
4746 		if (jaddref->ja_state & DEPCOMPLETE)
4747 			remove_from_journal(&jaddref->ja_list);
4748 	}
4749 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4750 	/*
4751 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4752 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4753 	 * no longer need this addref attached to the inoreflst and it
4754 	 * will incorrectly adjust nlink if we leave it.
4755 	 */
4756 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4757 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4758 		    if_deps);
4759 		jaddref->ja_state |= COMPLETE;
4760 		free_jaddref(jaddref);
4761 		return (needsj);
4762 	}
4763 	/*
4764 	 * Leave the head of the list for jsegdeps for fast merging.
4765 	 */
4766 	if (LIST_FIRST(wkhd) != NULL) {
4767 		jaddref->ja_state |= ONWORKLIST;
4768 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4769 	} else
4770 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4771 
4772 	return (needsj);
4773 }
4774 
4775 /*
4776  * Attempt to free a jaddref structure when some work completes.  This
4777  * should only succeed once the entry is written and all dependencies have
4778  * been notified.
4779  */
4780 static void
4781 free_jaddref(jaddref)
4782 	struct jaddref *jaddref;
4783 {
4784 
4785 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4786 		return;
4787 	if (jaddref->ja_ref.if_jsegdep)
4788 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4789 		    jaddref, jaddref->ja_state);
4790 	if (jaddref->ja_state & NEWBLOCK)
4791 		LIST_REMOVE(jaddref, ja_bmdeps);
4792 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4793 		panic("free_jaddref: Bad state %p(0x%X)",
4794 		    jaddref, jaddref->ja_state);
4795 	if (jaddref->ja_mkdir != NULL)
4796 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4797 	WORKITEM_FREE(jaddref, D_JADDREF);
4798 }
4799 
4800 /*
4801  * Free a jremref structure once it has been written or discarded.
4802  */
4803 static void
4804 free_jremref(jremref)
4805 	struct jremref *jremref;
4806 {
4807 
4808 	if (jremref->jr_ref.if_jsegdep)
4809 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4810 	if (jremref->jr_state & INPROGRESS)
4811 		panic("free_jremref: IO still pending");
4812 	WORKITEM_FREE(jremref, D_JREMREF);
4813 }
4814 
4815 /*
4816  * Free a jnewblk structure.
4817  */
4818 static void
4819 free_jnewblk(jnewblk)
4820 	struct jnewblk *jnewblk;
4821 {
4822 
4823 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4824 		return;
4825 	LIST_REMOVE(jnewblk, jn_deps);
4826 	if (jnewblk->jn_dep != NULL)
4827 		panic("free_jnewblk: Dependency still attached.");
4828 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4829 }
4830 
4831 /*
4832  * Cancel a jnewblk which has been been made redundant by frag extension.
4833  */
4834 static void
4835 cancel_jnewblk(jnewblk, wkhd)
4836 	struct jnewblk *jnewblk;
4837 	struct workhead *wkhd;
4838 {
4839 	struct jsegdep *jsegdep;
4840 
4841 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4842 	jsegdep = jnewblk->jn_jsegdep;
4843 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4844 		panic("cancel_jnewblk: Invalid state");
4845 	jnewblk->jn_jsegdep  = NULL;
4846 	jnewblk->jn_dep = NULL;
4847 	jnewblk->jn_state |= GOINGAWAY;
4848 	if (jnewblk->jn_state & INPROGRESS) {
4849 		jnewblk->jn_state &= ~INPROGRESS;
4850 		WORKLIST_REMOVE(&jnewblk->jn_list);
4851 		jwork_insert(wkhd, jsegdep);
4852 	} else {
4853 		free_jsegdep(jsegdep);
4854 		remove_from_journal(&jnewblk->jn_list);
4855 	}
4856 	wake_worklist(&jnewblk->jn_list);
4857 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4858 }
4859 
4860 static void
4861 free_jblkdep(jblkdep)
4862 	struct jblkdep *jblkdep;
4863 {
4864 
4865 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4866 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4867 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4868 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4869 	else
4870 		panic("free_jblkdep: Unexpected type %s",
4871 		    TYPENAME(jblkdep->jb_list.wk_type));
4872 }
4873 
4874 /*
4875  * Free a single jseg once it is no longer referenced in memory or on
4876  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4877  * to disappear.
4878  */
4879 static void
4880 free_jseg(jseg, jblocks)
4881 	struct jseg *jseg;
4882 	struct jblocks *jblocks;
4883 {
4884 	struct freework *freework;
4885 
4886 	/*
4887 	 * Free freework structures that were lingering to indicate freed
4888 	 * indirect blocks that forced journal write ordering on reallocate.
4889 	 */
4890 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4891 		indirblk_remove(freework);
4892 	if (jblocks->jb_oldestseg == jseg)
4893 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4894 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4895 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4896 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4897 	    ("free_jseg: Freed jseg has valid entries."));
4898 	WORKITEM_FREE(jseg, D_JSEG);
4899 }
4900 
4901 /*
4902  * Free all jsegs that meet the criteria for being reclaimed and update
4903  * oldestseg.
4904  */
4905 static void
4906 free_jsegs(jblocks)
4907 	struct jblocks *jblocks;
4908 {
4909 	struct jseg *jseg;
4910 
4911 	/*
4912 	 * Free only those jsegs which have none allocated before them to
4913 	 * preserve the journal space ordering.
4914 	 */
4915 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4916 		/*
4917 		 * Only reclaim space when nothing depends on this journal
4918 		 * set and another set has written that it is no longer
4919 		 * valid.
4920 		 */
4921 		if (jseg->js_refs != 0) {
4922 			jblocks->jb_oldestseg = jseg;
4923 			return;
4924 		}
4925 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4926 			break;
4927 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4928 			break;
4929 		/*
4930 		 * We can free jsegs that didn't write entries when
4931 		 * oldestwrseq == js_seq.
4932 		 */
4933 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4934 		    jseg->js_cnt != 0)
4935 			break;
4936 		free_jseg(jseg, jblocks);
4937 	}
4938 	/*
4939 	 * If we exited the loop above we still must discover the
4940 	 * oldest valid segment.
4941 	 */
4942 	if (jseg)
4943 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4944 		     jseg = TAILQ_NEXT(jseg, js_next))
4945 			if (jseg->js_refs != 0)
4946 				break;
4947 	jblocks->jb_oldestseg = jseg;
4948 	/*
4949 	 * The journal has no valid records but some jsegs may still be
4950 	 * waiting on oldestwrseq to advance.  We force a small record
4951 	 * out to permit these lingering records to be reclaimed.
4952 	 */
4953 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4954 		jblocks->jb_needseg = 1;
4955 }
4956 
4957 /*
4958  * Release one reference to a jseg and free it if the count reaches 0.  This
4959  * should eventually reclaim journal space as well.
4960  */
4961 static void
4962 rele_jseg(jseg)
4963 	struct jseg *jseg;
4964 {
4965 
4966 	KASSERT(jseg->js_refs > 0,
4967 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4968 	if (--jseg->js_refs != 0)
4969 		return;
4970 	free_jsegs(jseg->js_jblocks);
4971 }
4972 
4973 /*
4974  * Release a jsegdep and decrement the jseg count.
4975  */
4976 static void
4977 free_jsegdep(jsegdep)
4978 	struct jsegdep *jsegdep;
4979 {
4980 
4981 	if (jsegdep->jd_seg)
4982 		rele_jseg(jsegdep->jd_seg);
4983 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4984 }
4985 
4986 /*
4987  * Wait for a journal item to make it to disk.  Initiate journal processing
4988  * if required.
4989  */
4990 static int
4991 jwait(wk, waitfor)
4992 	struct worklist *wk;
4993 	int waitfor;
4994 {
4995 
4996 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4997 	/*
4998 	 * Blocking journal waits cause slow synchronous behavior.  Record
4999 	 * stats on the frequency of these blocking operations.
5000 	 */
5001 	if (waitfor == MNT_WAIT) {
5002 		stat_journal_wait++;
5003 		switch (wk->wk_type) {
5004 		case D_JREMREF:
5005 		case D_JMVREF:
5006 			stat_jwait_filepage++;
5007 			break;
5008 		case D_JTRUNC:
5009 		case D_JFREEBLK:
5010 			stat_jwait_freeblks++;
5011 			break;
5012 		case D_JNEWBLK:
5013 			stat_jwait_newblk++;
5014 			break;
5015 		case D_JADDREF:
5016 			stat_jwait_inode++;
5017 			break;
5018 		default:
5019 			break;
5020 		}
5021 	}
5022 	/*
5023 	 * If IO has not started we process the journal.  We can't mark the
5024 	 * worklist item as IOWAITING because we drop the lock while
5025 	 * processing the journal and the worklist entry may be freed after
5026 	 * this point.  The caller may call back in and re-issue the request.
5027 	 */
5028 	if ((wk->wk_state & INPROGRESS) == 0) {
5029 		softdep_process_journal(wk->wk_mp, wk, waitfor);
5030 		if (waitfor != MNT_WAIT)
5031 			return (EBUSY);
5032 		return (0);
5033 	}
5034 	if (waitfor != MNT_WAIT)
5035 		return (EBUSY);
5036 	wait_worklist(wk, "jwait");
5037 	return (0);
5038 }
5039 
5040 /*
5041  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
5042  * appropriate.  This is a convenience function to reduce duplicate code
5043  * for the setup and revert functions below.
5044  */
5045 static struct inodedep *
5046 inodedep_lookup_ip(ip)
5047 	struct inode *ip;
5048 {
5049 	struct inodedep *inodedep;
5050 
5051 	KASSERT(ip->i_nlink >= ip->i_effnlink,
5052 	    ("inodedep_lookup_ip: bad delta"));
5053 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
5054 	    &inodedep);
5055 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
5056 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
5057 
5058 	return (inodedep);
5059 }
5060 
5061 /*
5062  * Called prior to creating a new inode and linking it to a directory.  The
5063  * jaddref structure must already be allocated by softdep_setup_inomapdep
5064  * and it is discovered here so we can initialize the mode and update
5065  * nlinkdelta.
5066  */
5067 void
5068 softdep_setup_create(dp, ip)
5069 	struct inode *dp;
5070 	struct inode *ip;
5071 {
5072 	struct inodedep *inodedep;
5073 	struct jaddref *jaddref;
5074 	struct vnode *dvp;
5075 
5076 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5077 	    ("softdep_setup_create called on non-softdep filesystem"));
5078 	KASSERT(ip->i_nlink == 1,
5079 	    ("softdep_setup_create: Invalid link count."));
5080 	dvp = ITOV(dp);
5081 	ACQUIRE_LOCK(ITOUMP(dp));
5082 	inodedep = inodedep_lookup_ip(ip);
5083 	if (DOINGSUJ(dvp)) {
5084 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5085 		    inoreflst);
5086 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
5087 		    ("softdep_setup_create: No addref structure present."));
5088 	}
5089 	FREE_LOCK(ITOUMP(dp));
5090 }
5091 
5092 /*
5093  * Create a jaddref structure to track the addition of a DOTDOT link when
5094  * we are reparenting an inode as part of a rename.  This jaddref will be
5095  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
5096  * non-journaling softdep.
5097  */
5098 void
5099 softdep_setup_dotdot_link(dp, ip)
5100 	struct inode *dp;
5101 	struct inode *ip;
5102 {
5103 	struct inodedep *inodedep;
5104 	struct jaddref *jaddref;
5105 	struct vnode *dvp;
5106 
5107 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5108 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
5109 	dvp = ITOV(dp);
5110 	jaddref = NULL;
5111 	/*
5112 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
5113 	 * is used as a normal link would be.
5114 	 */
5115 	if (DOINGSUJ(dvp))
5116 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5117 		    dp->i_effnlink - 1, dp->i_mode);
5118 	ACQUIRE_LOCK(ITOUMP(dp));
5119 	inodedep = inodedep_lookup_ip(dp);
5120 	if (jaddref)
5121 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5122 		    if_deps);
5123 	FREE_LOCK(ITOUMP(dp));
5124 }
5125 
5126 /*
5127  * Create a jaddref structure to track a new link to an inode.  The directory
5128  * offset is not known until softdep_setup_directory_add or
5129  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
5130  * softdep.
5131  */
5132 void
5133 softdep_setup_link(dp, ip)
5134 	struct inode *dp;
5135 	struct inode *ip;
5136 {
5137 	struct inodedep *inodedep;
5138 	struct jaddref *jaddref;
5139 	struct vnode *dvp;
5140 
5141 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5142 	    ("softdep_setup_link called on non-softdep filesystem"));
5143 	dvp = ITOV(dp);
5144 	jaddref = NULL;
5145 	if (DOINGSUJ(dvp))
5146 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
5147 		    ip->i_mode);
5148 	ACQUIRE_LOCK(ITOUMP(dp));
5149 	inodedep = inodedep_lookup_ip(ip);
5150 	if (jaddref)
5151 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5152 		    if_deps);
5153 	FREE_LOCK(ITOUMP(dp));
5154 }
5155 
5156 /*
5157  * Called to create the jaddref structures to track . and .. references as
5158  * well as lookup and further initialize the incomplete jaddref created
5159  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
5160  * nlinkdelta for non-journaling softdep.
5161  */
5162 void
5163 softdep_setup_mkdir(dp, ip)
5164 	struct inode *dp;
5165 	struct inode *ip;
5166 {
5167 	struct inodedep *inodedep;
5168 	struct jaddref *dotdotaddref;
5169 	struct jaddref *dotaddref;
5170 	struct jaddref *jaddref;
5171 	struct vnode *dvp;
5172 
5173 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5174 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
5175 	dvp = ITOV(dp);
5176 	dotaddref = dotdotaddref = NULL;
5177 	if (DOINGSUJ(dvp)) {
5178 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5179 		    ip->i_mode);
5180 		dotaddref->ja_state |= MKDIR_BODY;
5181 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5182 		    dp->i_effnlink - 1, dp->i_mode);
5183 		dotdotaddref->ja_state |= MKDIR_PARENT;
5184 	}
5185 	ACQUIRE_LOCK(ITOUMP(dp));
5186 	inodedep = inodedep_lookup_ip(ip);
5187 	if (DOINGSUJ(dvp)) {
5188 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5189 		    inoreflst);
5190 		KASSERT(jaddref != NULL,
5191 		    ("softdep_setup_mkdir: No addref structure present."));
5192 		KASSERT(jaddref->ja_parent == dp->i_number,
5193 		    ("softdep_setup_mkdir: bad parent %ju",
5194 		    (uintmax_t)jaddref->ja_parent));
5195 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5196 		    if_deps);
5197 	}
5198 	inodedep = inodedep_lookup_ip(dp);
5199 	if (DOINGSUJ(dvp))
5200 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5201 		    &dotdotaddref->ja_ref, if_deps);
5202 	FREE_LOCK(ITOUMP(dp));
5203 }
5204 
5205 /*
5206  * Called to track nlinkdelta of the inode and parent directories prior to
5207  * unlinking a directory.
5208  */
5209 void
5210 softdep_setup_rmdir(dp, ip)
5211 	struct inode *dp;
5212 	struct inode *ip;
5213 {
5214 	struct vnode *dvp;
5215 
5216 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5217 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
5218 	dvp = ITOV(dp);
5219 	ACQUIRE_LOCK(ITOUMP(dp));
5220 	(void) inodedep_lookup_ip(ip);
5221 	(void) inodedep_lookup_ip(dp);
5222 	FREE_LOCK(ITOUMP(dp));
5223 }
5224 
5225 /*
5226  * Called to track nlinkdelta of the inode and parent directories prior to
5227  * unlink.
5228  */
5229 void
5230 softdep_setup_unlink(dp, ip)
5231 	struct inode *dp;
5232 	struct inode *ip;
5233 {
5234 	struct vnode *dvp;
5235 
5236 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5237 	    ("softdep_setup_unlink called on non-softdep filesystem"));
5238 	dvp = ITOV(dp);
5239 	ACQUIRE_LOCK(ITOUMP(dp));
5240 	(void) inodedep_lookup_ip(ip);
5241 	(void) inodedep_lookup_ip(dp);
5242 	FREE_LOCK(ITOUMP(dp));
5243 }
5244 
5245 /*
5246  * Called to release the journal structures created by a failed non-directory
5247  * creation.  Adjusts nlinkdelta for non-journaling softdep.
5248  */
5249 void
5250 softdep_revert_create(dp, ip)
5251 	struct inode *dp;
5252 	struct inode *ip;
5253 {
5254 	struct inodedep *inodedep;
5255 	struct jaddref *jaddref;
5256 	struct vnode *dvp;
5257 
5258 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5259 	    ("softdep_revert_create called on non-softdep filesystem"));
5260 	dvp = ITOV(dp);
5261 	ACQUIRE_LOCK(ITOUMP(dp));
5262 	inodedep = inodedep_lookup_ip(ip);
5263 	if (DOINGSUJ(dvp)) {
5264 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5265 		    inoreflst);
5266 		KASSERT(jaddref->ja_parent == dp->i_number,
5267 		    ("softdep_revert_create: addref parent mismatch"));
5268 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5269 	}
5270 	FREE_LOCK(ITOUMP(dp));
5271 }
5272 
5273 /*
5274  * Called to release the journal structures created by a failed link
5275  * addition.  Adjusts nlinkdelta for non-journaling softdep.
5276  */
5277 void
5278 softdep_revert_link(dp, ip)
5279 	struct inode *dp;
5280 	struct inode *ip;
5281 {
5282 	struct inodedep *inodedep;
5283 	struct jaddref *jaddref;
5284 	struct vnode *dvp;
5285 
5286 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5287 	    ("softdep_revert_link called on non-softdep filesystem"));
5288 	dvp = ITOV(dp);
5289 	ACQUIRE_LOCK(ITOUMP(dp));
5290 	inodedep = inodedep_lookup_ip(ip);
5291 	if (DOINGSUJ(dvp)) {
5292 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5293 		    inoreflst);
5294 		KASSERT(jaddref->ja_parent == dp->i_number,
5295 		    ("softdep_revert_link: addref parent mismatch"));
5296 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5297 	}
5298 	FREE_LOCK(ITOUMP(dp));
5299 }
5300 
5301 /*
5302  * Called to release the journal structures created by a failed mkdir
5303  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
5304  */
5305 void
5306 softdep_revert_mkdir(dp, ip)
5307 	struct inode *dp;
5308 	struct inode *ip;
5309 {
5310 	struct inodedep *inodedep;
5311 	struct jaddref *jaddref;
5312 	struct jaddref *dotaddref;
5313 	struct vnode *dvp;
5314 
5315 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5316 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
5317 	dvp = ITOV(dp);
5318 
5319 	ACQUIRE_LOCK(ITOUMP(dp));
5320 	inodedep = inodedep_lookup_ip(dp);
5321 	if (DOINGSUJ(dvp)) {
5322 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5323 		    inoreflst);
5324 		KASSERT(jaddref->ja_parent == ip->i_number,
5325 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
5326 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5327 	}
5328 	inodedep = inodedep_lookup_ip(ip);
5329 	if (DOINGSUJ(dvp)) {
5330 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5331 		    inoreflst);
5332 		KASSERT(jaddref->ja_parent == dp->i_number,
5333 		    ("softdep_revert_mkdir: addref parent mismatch"));
5334 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5335 		    inoreflst, if_deps);
5336 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5337 		KASSERT(dotaddref->ja_parent == ip->i_number,
5338 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5339 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5340 	}
5341 	FREE_LOCK(ITOUMP(dp));
5342 }
5343 
5344 /*
5345  * Called to correct nlinkdelta after a failed rmdir.
5346  */
5347 void
5348 softdep_revert_rmdir(dp, ip)
5349 	struct inode *dp;
5350 	struct inode *ip;
5351 {
5352 
5353 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5354 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5355 	ACQUIRE_LOCK(ITOUMP(dp));
5356 	(void) inodedep_lookup_ip(ip);
5357 	(void) inodedep_lookup_ip(dp);
5358 	FREE_LOCK(ITOUMP(dp));
5359 }
5360 
5361 /*
5362  * Protecting the freemaps (or bitmaps).
5363  *
5364  * To eliminate the need to execute fsck before mounting a filesystem
5365  * after a power failure, one must (conservatively) guarantee that the
5366  * on-disk copy of the bitmaps never indicate that a live inode or block is
5367  * free.  So, when a block or inode is allocated, the bitmap should be
5368  * updated (on disk) before any new pointers.  When a block or inode is
5369  * freed, the bitmap should not be updated until all pointers have been
5370  * reset.  The latter dependency is handled by the delayed de-allocation
5371  * approach described below for block and inode de-allocation.  The former
5372  * dependency is handled by calling the following procedure when a block or
5373  * inode is allocated. When an inode is allocated an "inodedep" is created
5374  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5375  * Each "inodedep" is also inserted into the hash indexing structure so
5376  * that any additional link additions can be made dependent on the inode
5377  * allocation.
5378  *
5379  * The ufs filesystem maintains a number of free block counts (e.g., per
5380  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5381  * in addition to the bitmaps.  These counts are used to improve efficiency
5382  * during allocation and therefore must be consistent with the bitmaps.
5383  * There is no convenient way to guarantee post-crash consistency of these
5384  * counts with simple update ordering, for two main reasons: (1) The counts
5385  * and bitmaps for a single cylinder group block are not in the same disk
5386  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5387  * be written and the other not.  (2) Some of the counts are located in the
5388  * superblock rather than the cylinder group block. So, we focus our soft
5389  * updates implementation on protecting the bitmaps. When mounting a
5390  * filesystem, we recompute the auxiliary counts from the bitmaps.
5391  */
5392 
5393 /*
5394  * Called just after updating the cylinder group block to allocate an inode.
5395  */
5396 void
5397 softdep_setup_inomapdep(bp, ip, newinum, mode)
5398 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5399 	struct inode *ip;	/* inode related to allocation */
5400 	ino_t newinum;		/* new inode number being allocated */
5401 	int mode;
5402 {
5403 	struct inodedep *inodedep;
5404 	struct bmsafemap *bmsafemap;
5405 	struct jaddref *jaddref;
5406 	struct mount *mp;
5407 	struct fs *fs;
5408 
5409 	mp = ITOVFS(ip);
5410 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5411 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5412 	fs = VFSTOUFS(mp)->um_fs;
5413 	jaddref = NULL;
5414 
5415 	/*
5416 	 * Allocate the journal reference add structure so that the bitmap
5417 	 * can be dependent on it.
5418 	 */
5419 	if (MOUNTEDSUJ(mp)) {
5420 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5421 		jaddref->ja_state |= NEWBLOCK;
5422 	}
5423 
5424 	/*
5425 	 * Create a dependency for the newly allocated inode.
5426 	 * Panic if it already exists as something is seriously wrong.
5427 	 * Otherwise add it to the dependency list for the buffer holding
5428 	 * the cylinder group map from which it was allocated.
5429 	 *
5430 	 * We have to preallocate a bmsafemap entry in case it is needed
5431 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5432 	 * have to finish initializing it before we can FREE_LOCK().
5433 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5434 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5435 	 * creating the inodedep as it can be freed during the time
5436 	 * that we FREE_LOCK() while allocating the inodedep. We must
5437 	 * call workitem_alloc() before entering the locked section as
5438 	 * it also acquires the lock and we must avoid trying doing so
5439 	 * recursively.
5440 	 */
5441 	bmsafemap = malloc(sizeof(struct bmsafemap),
5442 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5443 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5444 	ACQUIRE_LOCK(ITOUMP(ip));
5445 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5446 		panic("softdep_setup_inomapdep: dependency %p for new"
5447 		    "inode already exists", inodedep);
5448 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5449 	if (jaddref) {
5450 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5451 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5452 		    if_deps);
5453 	} else {
5454 		inodedep->id_state |= ONDEPLIST;
5455 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5456 	}
5457 	inodedep->id_bmsafemap = bmsafemap;
5458 	inodedep->id_state &= ~DEPCOMPLETE;
5459 	FREE_LOCK(ITOUMP(ip));
5460 }
5461 
5462 /*
5463  * Called just after updating the cylinder group block to
5464  * allocate block or fragment.
5465  */
5466 void
5467 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5468 	struct buf *bp;		/* buffer for cylgroup block with block map */
5469 	struct mount *mp;	/* filesystem doing allocation */
5470 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5471 	int frags;		/* Number of fragments. */
5472 	int oldfrags;		/* Previous number of fragments for extend. */
5473 {
5474 	struct newblk *newblk;
5475 	struct bmsafemap *bmsafemap;
5476 	struct jnewblk *jnewblk;
5477 	struct ufsmount *ump;
5478 	struct fs *fs;
5479 
5480 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5481 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5482 	ump = VFSTOUFS(mp);
5483 	fs = ump->um_fs;
5484 	jnewblk = NULL;
5485 	/*
5486 	 * Create a dependency for the newly allocated block.
5487 	 * Add it to the dependency list for the buffer holding
5488 	 * the cylinder group map from which it was allocated.
5489 	 */
5490 	if (MOUNTEDSUJ(mp)) {
5491 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5492 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5493 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5494 		jnewblk->jn_state = ATTACHED;
5495 		jnewblk->jn_blkno = newblkno;
5496 		jnewblk->jn_frags = frags;
5497 		jnewblk->jn_oldfrags = oldfrags;
5498 #ifdef INVARIANTS
5499 		{
5500 			struct cg *cgp;
5501 			uint8_t *blksfree;
5502 			long bno;
5503 			int i;
5504 
5505 			cgp = (struct cg *)bp->b_data;
5506 			blksfree = cg_blksfree(cgp);
5507 			bno = dtogd(fs, jnewblk->jn_blkno);
5508 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5509 			    i++) {
5510 				if (isset(blksfree, bno + i))
5511 					panic("softdep_setup_blkmapdep: "
5512 					    "free fragment %d from %d-%d "
5513 					    "state 0x%X dep %p", i,
5514 					    jnewblk->jn_oldfrags,
5515 					    jnewblk->jn_frags,
5516 					    jnewblk->jn_state,
5517 					    jnewblk->jn_dep);
5518 			}
5519 		}
5520 #endif
5521 	}
5522 
5523 	CTR3(KTR_SUJ,
5524 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5525 	    newblkno, frags, oldfrags);
5526 	ACQUIRE_LOCK(ump);
5527 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5528 		panic("softdep_setup_blkmapdep: found block");
5529 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5530 	    dtog(fs, newblkno), NULL);
5531 	if (jnewblk) {
5532 		jnewblk->jn_dep = (struct worklist *)newblk;
5533 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5534 	} else {
5535 		newblk->nb_state |= ONDEPLIST;
5536 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5537 	}
5538 	newblk->nb_bmsafemap = bmsafemap;
5539 	newblk->nb_jnewblk = jnewblk;
5540 	FREE_LOCK(ump);
5541 }
5542 
5543 #define	BMSAFEMAP_HASH(ump, cg) \
5544       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5545 
5546 static int
5547 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5548 	struct bmsafemap_hashhead *bmsafemaphd;
5549 	int cg;
5550 	struct bmsafemap **bmsafemapp;
5551 {
5552 	struct bmsafemap *bmsafemap;
5553 
5554 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5555 		if (bmsafemap->sm_cg == cg)
5556 			break;
5557 	if (bmsafemap) {
5558 		*bmsafemapp = bmsafemap;
5559 		return (1);
5560 	}
5561 	*bmsafemapp = NULL;
5562 
5563 	return (0);
5564 }
5565 
5566 /*
5567  * Find the bmsafemap associated with a cylinder group buffer.
5568  * If none exists, create one. The buffer must be locked when
5569  * this routine is called and this routine must be called with
5570  * the softdep lock held. To avoid giving up the lock while
5571  * allocating a new bmsafemap, a preallocated bmsafemap may be
5572  * provided. If it is provided but not needed, it is freed.
5573  */
5574 static struct bmsafemap *
5575 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5576 	struct mount *mp;
5577 	struct buf *bp;
5578 	int cg;
5579 	struct bmsafemap *newbmsafemap;
5580 {
5581 	struct bmsafemap_hashhead *bmsafemaphd;
5582 	struct bmsafemap *bmsafemap, *collision;
5583 	struct worklist *wk;
5584 	struct ufsmount *ump;
5585 
5586 	ump = VFSTOUFS(mp);
5587 	LOCK_OWNED(ump);
5588 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5589 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5590 		if (wk->wk_type == D_BMSAFEMAP) {
5591 			if (newbmsafemap)
5592 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5593 			return (WK_BMSAFEMAP(wk));
5594 		}
5595 	}
5596 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5597 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5598 		if (newbmsafemap)
5599 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5600 		return (bmsafemap);
5601 	}
5602 	if (newbmsafemap) {
5603 		bmsafemap = newbmsafemap;
5604 	} else {
5605 		FREE_LOCK(ump);
5606 		bmsafemap = malloc(sizeof(struct bmsafemap),
5607 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5608 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5609 		ACQUIRE_LOCK(ump);
5610 	}
5611 	bmsafemap->sm_buf = bp;
5612 	LIST_INIT(&bmsafemap->sm_inodedephd);
5613 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5614 	LIST_INIT(&bmsafemap->sm_newblkhd);
5615 	LIST_INIT(&bmsafemap->sm_newblkwr);
5616 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5617 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5618 	LIST_INIT(&bmsafemap->sm_freehd);
5619 	LIST_INIT(&bmsafemap->sm_freewr);
5620 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5621 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5622 		return (collision);
5623 	}
5624 	bmsafemap->sm_cg = cg;
5625 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5626 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5627 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5628 	return (bmsafemap);
5629 }
5630 
5631 /*
5632  * Direct block allocation dependencies.
5633  *
5634  * When a new block is allocated, the corresponding disk locations must be
5635  * initialized (with zeros or new data) before the on-disk inode points to
5636  * them.  Also, the freemap from which the block was allocated must be
5637  * updated (on disk) before the inode's pointer. These two dependencies are
5638  * independent of each other and are needed for all file blocks and indirect
5639  * blocks that are pointed to directly by the inode.  Just before the
5640  * "in-core" version of the inode is updated with a newly allocated block
5641  * number, a procedure (below) is called to setup allocation dependency
5642  * structures.  These structures are removed when the corresponding
5643  * dependencies are satisfied or when the block allocation becomes obsolete
5644  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5645  * fragment that gets upgraded).  All of these cases are handled in
5646  * procedures described later.
5647  *
5648  * When a file extension causes a fragment to be upgraded, either to a larger
5649  * fragment or to a full block, the on-disk location may change (if the
5650  * previous fragment could not simply be extended). In this case, the old
5651  * fragment must be de-allocated, but not until after the inode's pointer has
5652  * been updated. In most cases, this is handled by later procedures, which
5653  * will construct a "freefrag" structure to be added to the workitem queue
5654  * when the inode update is complete (or obsolete).  The main exception to
5655  * this is when an allocation occurs while a pending allocation dependency
5656  * (for the same block pointer) remains.  This case is handled in the main
5657  * allocation dependency setup procedure by immediately freeing the
5658  * unreferenced fragments.
5659  */
5660 void
5661 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5662 	struct inode *ip;	/* inode to which block is being added */
5663 	ufs_lbn_t off;		/* block pointer within inode */
5664 	ufs2_daddr_t newblkno;	/* disk block number being added */
5665 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5666 	long newsize;		/* size of new block */
5667 	long oldsize;		/* size of new block */
5668 	struct buf *bp;		/* bp for allocated block */
5669 {
5670 	struct allocdirect *adp, *oldadp;
5671 	struct allocdirectlst *adphead;
5672 	struct freefrag *freefrag;
5673 	struct inodedep *inodedep;
5674 	struct pagedep *pagedep;
5675 	struct jnewblk *jnewblk;
5676 	struct newblk *newblk;
5677 	struct mount *mp;
5678 	ufs_lbn_t lbn;
5679 
5680 	lbn = bp->b_lblkno;
5681 	mp = ITOVFS(ip);
5682 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5683 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5684 	if (oldblkno && oldblkno != newblkno)
5685 		/*
5686 		 * The usual case is that a smaller fragment that
5687 		 * was just allocated has been replaced with a bigger
5688 		 * fragment or a full-size block. If it is marked as
5689 		 * B_DELWRI, the current contents have not been written
5690 		 * to disk. It is possible that the block was written
5691 		 * earlier, but very uncommon. If the block has never
5692 		 * been written, there is no need to send a BIO_DELETE
5693 		 * for it when it is freed. The gain from avoiding the
5694 		 * TRIMs for the common case of unwritten blocks far
5695 		 * exceeds the cost of the write amplification for the
5696 		 * uncommon case of failing to send a TRIM for a block
5697 		 * that had been written.
5698 		 */
5699 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5700 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5701 	else
5702 		freefrag = NULL;
5703 
5704 	CTR6(KTR_SUJ,
5705 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5706 	    "off %jd newsize %ld oldsize %d",
5707 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5708 	ACQUIRE_LOCK(ITOUMP(ip));
5709 	if (off >= UFS_NDADDR) {
5710 		if (lbn > 0)
5711 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5712 			    lbn, off);
5713 		/* allocating an indirect block */
5714 		if (oldblkno != 0)
5715 			panic("softdep_setup_allocdirect: non-zero indir");
5716 	} else {
5717 		if (off != lbn)
5718 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5719 			    lbn, off);
5720 		/*
5721 		 * Allocating a direct block.
5722 		 *
5723 		 * If we are allocating a directory block, then we must
5724 		 * allocate an associated pagedep to track additions and
5725 		 * deletions.
5726 		 */
5727 		if ((ip->i_mode & IFMT) == IFDIR)
5728 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5729 			    &pagedep);
5730 	}
5731 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5732 		panic("softdep_setup_allocdirect: lost block");
5733 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5734 	    ("softdep_setup_allocdirect: newblk already initialized"));
5735 	/*
5736 	 * Convert the newblk to an allocdirect.
5737 	 */
5738 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5739 	adp = (struct allocdirect *)newblk;
5740 	newblk->nb_freefrag = freefrag;
5741 	adp->ad_offset = off;
5742 	adp->ad_oldblkno = oldblkno;
5743 	adp->ad_newsize = newsize;
5744 	adp->ad_oldsize = oldsize;
5745 
5746 	/*
5747 	 * Finish initializing the journal.
5748 	 */
5749 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5750 		jnewblk->jn_ino = ip->i_number;
5751 		jnewblk->jn_lbn = lbn;
5752 		add_to_journal(&jnewblk->jn_list);
5753 	}
5754 	if (freefrag && freefrag->ff_jdep != NULL &&
5755 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5756 		add_to_journal(freefrag->ff_jdep);
5757 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5758 	adp->ad_inodedep = inodedep;
5759 
5760 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5761 	/*
5762 	 * The list of allocdirects must be kept in sorted and ascending
5763 	 * order so that the rollback routines can quickly determine the
5764 	 * first uncommitted block (the size of the file stored on disk
5765 	 * ends at the end of the lowest committed fragment, or if there
5766 	 * are no fragments, at the end of the highest committed block).
5767 	 * Since files generally grow, the typical case is that the new
5768 	 * block is to be added at the end of the list. We speed this
5769 	 * special case by checking against the last allocdirect in the
5770 	 * list before laboriously traversing the list looking for the
5771 	 * insertion point.
5772 	 */
5773 	adphead = &inodedep->id_newinoupdt;
5774 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5775 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5776 		/* insert at end of list */
5777 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5778 		if (oldadp != NULL && oldadp->ad_offset == off)
5779 			allocdirect_merge(adphead, adp, oldadp);
5780 		FREE_LOCK(ITOUMP(ip));
5781 		return;
5782 	}
5783 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5784 		if (oldadp->ad_offset >= off)
5785 			break;
5786 	}
5787 	if (oldadp == NULL)
5788 		panic("softdep_setup_allocdirect: lost entry");
5789 	/* insert in middle of list */
5790 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5791 	if (oldadp->ad_offset == off)
5792 		allocdirect_merge(adphead, adp, oldadp);
5793 
5794 	FREE_LOCK(ITOUMP(ip));
5795 }
5796 
5797 /*
5798  * Merge a newer and older journal record to be stored either in a
5799  * newblock or freefrag.  This handles aggregating journal records for
5800  * fragment allocation into a second record as well as replacing a
5801  * journal free with an aborted journal allocation.  A segment for the
5802  * oldest record will be placed on wkhd if it has been written.  If not
5803  * the segment for the newer record will suffice.
5804  */
5805 static struct worklist *
5806 jnewblk_merge(new, old, wkhd)
5807 	struct worklist *new;
5808 	struct worklist *old;
5809 	struct workhead *wkhd;
5810 {
5811 	struct jnewblk *njnewblk;
5812 	struct jnewblk *jnewblk;
5813 
5814 	/* Handle NULLs to simplify callers. */
5815 	if (new == NULL)
5816 		return (old);
5817 	if (old == NULL)
5818 		return (new);
5819 	/* Replace a jfreefrag with a jnewblk. */
5820 	if (new->wk_type == D_JFREEFRAG) {
5821 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5822 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5823 			    old, new);
5824 		cancel_jfreefrag(WK_JFREEFRAG(new));
5825 		return (old);
5826 	}
5827 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5828 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5829 		    old->wk_type, new->wk_type);
5830 	/*
5831 	 * Handle merging of two jnewblk records that describe
5832 	 * different sets of fragments in the same block.
5833 	 */
5834 	jnewblk = WK_JNEWBLK(old);
5835 	njnewblk = WK_JNEWBLK(new);
5836 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5837 		panic("jnewblk_merge: Merging disparate blocks.");
5838 	/*
5839 	 * The record may be rolled back in the cg.
5840 	 */
5841 	if (jnewblk->jn_state & UNDONE) {
5842 		jnewblk->jn_state &= ~UNDONE;
5843 		njnewblk->jn_state |= UNDONE;
5844 		njnewblk->jn_state &= ~ATTACHED;
5845 	}
5846 	/*
5847 	 * We modify the newer addref and free the older so that if neither
5848 	 * has been written the most up-to-date copy will be on disk.  If
5849 	 * both have been written but rolled back we only temporarily need
5850 	 * one of them to fix the bits when the cg write completes.
5851 	 */
5852 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5853 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5854 	cancel_jnewblk(jnewblk, wkhd);
5855 	WORKLIST_REMOVE(&jnewblk->jn_list);
5856 	free_jnewblk(jnewblk);
5857 	return (new);
5858 }
5859 
5860 /*
5861  * Replace an old allocdirect dependency with a newer one.
5862  */
5863 static void
5864 allocdirect_merge(adphead, newadp, oldadp)
5865 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5866 	struct allocdirect *newadp;	/* allocdirect being added */
5867 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5868 {
5869 	struct worklist *wk;
5870 	struct freefrag *freefrag;
5871 
5872 	freefrag = NULL;
5873 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5874 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5875 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5876 	    newadp->ad_offset >= UFS_NDADDR)
5877 		panic("%s %jd != new %jd || old size %ld != new %ld",
5878 		    "allocdirect_merge: old blkno",
5879 		    (intmax_t)newadp->ad_oldblkno,
5880 		    (intmax_t)oldadp->ad_newblkno,
5881 		    newadp->ad_oldsize, oldadp->ad_newsize);
5882 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5883 	newadp->ad_oldsize = oldadp->ad_oldsize;
5884 	/*
5885 	 * If the old dependency had a fragment to free or had never
5886 	 * previously had a block allocated, then the new dependency
5887 	 * can immediately post its freefrag and adopt the old freefrag.
5888 	 * This action is done by swapping the freefrag dependencies.
5889 	 * The new dependency gains the old one's freefrag, and the
5890 	 * old one gets the new one and then immediately puts it on
5891 	 * the worklist when it is freed by free_newblk. It is
5892 	 * not possible to do this swap when the old dependency had a
5893 	 * non-zero size but no previous fragment to free. This condition
5894 	 * arises when the new block is an extension of the old block.
5895 	 * Here, the first part of the fragment allocated to the new
5896 	 * dependency is part of the block currently claimed on disk by
5897 	 * the old dependency, so cannot legitimately be freed until the
5898 	 * conditions for the new dependency are fulfilled.
5899 	 */
5900 	freefrag = newadp->ad_freefrag;
5901 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5902 		newadp->ad_freefrag = oldadp->ad_freefrag;
5903 		oldadp->ad_freefrag = freefrag;
5904 	}
5905 	/*
5906 	 * If we are tracking a new directory-block allocation,
5907 	 * move it from the old allocdirect to the new allocdirect.
5908 	 */
5909 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5910 		WORKLIST_REMOVE(wk);
5911 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5912 			panic("allocdirect_merge: extra newdirblk");
5913 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5914 	}
5915 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5916 	/*
5917 	 * We need to move any journal dependencies over to the freefrag
5918 	 * that releases this block if it exists.  Otherwise we are
5919 	 * extending an existing block and we'll wait until that is
5920 	 * complete to release the journal space and extend the
5921 	 * new journal to cover this old space as well.
5922 	 */
5923 	if (freefrag == NULL) {
5924 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5925 			panic("allocdirect_merge: %jd != %jd",
5926 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5927 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5928 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5929 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5930 		    &newadp->ad_block.nb_jwork);
5931 		oldadp->ad_block.nb_jnewblk = NULL;
5932 		cancel_newblk(&oldadp->ad_block, NULL,
5933 		    &newadp->ad_block.nb_jwork);
5934 	} else {
5935 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5936 		    &freefrag->ff_list, &freefrag->ff_jwork);
5937 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5938 		    &freefrag->ff_jwork);
5939 	}
5940 	free_newblk(&oldadp->ad_block);
5941 }
5942 
5943 /*
5944  * Allocate a jfreefrag structure to journal a single block free.
5945  */
5946 static struct jfreefrag *
5947 newjfreefrag(freefrag, ip, blkno, size, lbn)
5948 	struct freefrag *freefrag;
5949 	struct inode *ip;
5950 	ufs2_daddr_t blkno;
5951 	long size;
5952 	ufs_lbn_t lbn;
5953 {
5954 	struct jfreefrag *jfreefrag;
5955 	struct fs *fs;
5956 
5957 	fs = ITOFS(ip);
5958 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5959 	    M_SOFTDEP_FLAGS);
5960 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5961 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5962 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5963 	jfreefrag->fr_ino = ip->i_number;
5964 	jfreefrag->fr_lbn = lbn;
5965 	jfreefrag->fr_blkno = blkno;
5966 	jfreefrag->fr_frags = numfrags(fs, size);
5967 	jfreefrag->fr_freefrag = freefrag;
5968 
5969 	return (jfreefrag);
5970 }
5971 
5972 /*
5973  * Allocate a new freefrag structure.
5974  */
5975 static struct freefrag *
5976 newfreefrag(ip, blkno, size, lbn, key)
5977 	struct inode *ip;
5978 	ufs2_daddr_t blkno;
5979 	long size;
5980 	ufs_lbn_t lbn;
5981 	u_long key;
5982 {
5983 	struct freefrag *freefrag;
5984 	struct ufsmount *ump;
5985 	struct fs *fs;
5986 
5987 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5988 	    ip->i_number, blkno, size, lbn);
5989 	ump = ITOUMP(ip);
5990 	fs = ump->um_fs;
5991 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5992 		panic("newfreefrag: frag size");
5993 	freefrag = malloc(sizeof(struct freefrag),
5994 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5995 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5996 	freefrag->ff_state = ATTACHED;
5997 	LIST_INIT(&freefrag->ff_jwork);
5998 	freefrag->ff_inum = ip->i_number;
5999 	freefrag->ff_vtype = ITOV(ip)->v_type;
6000 	freefrag->ff_blkno = blkno;
6001 	freefrag->ff_fragsize = size;
6002 	freefrag->ff_key = key;
6003 
6004 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
6005 		freefrag->ff_jdep = (struct worklist *)
6006 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
6007 	} else {
6008 		freefrag->ff_state |= DEPCOMPLETE;
6009 		freefrag->ff_jdep = NULL;
6010 	}
6011 
6012 	return (freefrag);
6013 }
6014 
6015 /*
6016  * This workitem de-allocates fragments that were replaced during
6017  * file block allocation.
6018  */
6019 static void
6020 handle_workitem_freefrag(freefrag)
6021 	struct freefrag *freefrag;
6022 {
6023 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
6024 	struct workhead wkhd;
6025 
6026 	CTR3(KTR_SUJ,
6027 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
6028 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
6029 	/*
6030 	 * It would be illegal to add new completion items to the
6031 	 * freefrag after it was schedule to be done so it must be
6032 	 * safe to modify the list head here.
6033 	 */
6034 	LIST_INIT(&wkhd);
6035 	ACQUIRE_LOCK(ump);
6036 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
6037 	/*
6038 	 * If the journal has not been written we must cancel it here.
6039 	 */
6040 	if (freefrag->ff_jdep) {
6041 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
6042 			panic("handle_workitem_freefrag: Unexpected type %d\n",
6043 			    freefrag->ff_jdep->wk_type);
6044 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
6045 	}
6046 	FREE_LOCK(ump);
6047 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
6048 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
6049 	   &wkhd, freefrag->ff_key);
6050 	ACQUIRE_LOCK(ump);
6051 	WORKITEM_FREE(freefrag, D_FREEFRAG);
6052 	FREE_LOCK(ump);
6053 }
6054 
6055 /*
6056  * Set up a dependency structure for an external attributes data block.
6057  * This routine follows much of the structure of softdep_setup_allocdirect.
6058  * See the description of softdep_setup_allocdirect above for details.
6059  */
6060 void
6061 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
6062 	struct inode *ip;
6063 	ufs_lbn_t off;
6064 	ufs2_daddr_t newblkno;
6065 	ufs2_daddr_t oldblkno;
6066 	long newsize;
6067 	long oldsize;
6068 	struct buf *bp;
6069 {
6070 	struct allocdirect *adp, *oldadp;
6071 	struct allocdirectlst *adphead;
6072 	struct freefrag *freefrag;
6073 	struct inodedep *inodedep;
6074 	struct jnewblk *jnewblk;
6075 	struct newblk *newblk;
6076 	struct mount *mp;
6077 	struct ufsmount *ump;
6078 	ufs_lbn_t lbn;
6079 
6080 	mp = ITOVFS(ip);
6081 	ump = VFSTOUFS(mp);
6082 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6083 	    ("softdep_setup_allocext called on non-softdep filesystem"));
6084 	KASSERT(off < UFS_NXADDR,
6085 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
6086 
6087 	lbn = bp->b_lblkno;
6088 	if (oldblkno && oldblkno != newblkno)
6089 		/*
6090 		 * The usual case is that a smaller fragment that
6091 		 * was just allocated has been replaced with a bigger
6092 		 * fragment or a full-size block. If it is marked as
6093 		 * B_DELWRI, the current contents have not been written
6094 		 * to disk. It is possible that the block was written
6095 		 * earlier, but very uncommon. If the block has never
6096 		 * been written, there is no need to send a BIO_DELETE
6097 		 * for it when it is freed. The gain from avoiding the
6098 		 * TRIMs for the common case of unwritten blocks far
6099 		 * exceeds the cost of the write amplification for the
6100 		 * uncommon case of failing to send a TRIM for a block
6101 		 * that had been written.
6102 		 */
6103 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
6104 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
6105 	else
6106 		freefrag = NULL;
6107 
6108 	ACQUIRE_LOCK(ump);
6109 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
6110 		panic("softdep_setup_allocext: lost block");
6111 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6112 	    ("softdep_setup_allocext: newblk already initialized"));
6113 	/*
6114 	 * Convert the newblk to an allocdirect.
6115 	 */
6116 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
6117 	adp = (struct allocdirect *)newblk;
6118 	newblk->nb_freefrag = freefrag;
6119 	adp->ad_offset = off;
6120 	adp->ad_oldblkno = oldblkno;
6121 	adp->ad_newsize = newsize;
6122 	adp->ad_oldsize = oldsize;
6123 	adp->ad_state |=  EXTDATA;
6124 
6125 	/*
6126 	 * Finish initializing the journal.
6127 	 */
6128 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6129 		jnewblk->jn_ino = ip->i_number;
6130 		jnewblk->jn_lbn = lbn;
6131 		add_to_journal(&jnewblk->jn_list);
6132 	}
6133 	if (freefrag && freefrag->ff_jdep != NULL &&
6134 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6135 		add_to_journal(freefrag->ff_jdep);
6136 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6137 	adp->ad_inodedep = inodedep;
6138 
6139 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
6140 	/*
6141 	 * The list of allocdirects must be kept in sorted and ascending
6142 	 * order so that the rollback routines can quickly determine the
6143 	 * first uncommitted block (the size of the file stored on disk
6144 	 * ends at the end of the lowest committed fragment, or if there
6145 	 * are no fragments, at the end of the highest committed block).
6146 	 * Since files generally grow, the typical case is that the new
6147 	 * block is to be added at the end of the list. We speed this
6148 	 * special case by checking against the last allocdirect in the
6149 	 * list before laboriously traversing the list looking for the
6150 	 * insertion point.
6151 	 */
6152 	adphead = &inodedep->id_newextupdt;
6153 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
6154 	if (oldadp == NULL || oldadp->ad_offset <= off) {
6155 		/* insert at end of list */
6156 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
6157 		if (oldadp != NULL && oldadp->ad_offset == off)
6158 			allocdirect_merge(adphead, adp, oldadp);
6159 		FREE_LOCK(ump);
6160 		return;
6161 	}
6162 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
6163 		if (oldadp->ad_offset >= off)
6164 			break;
6165 	}
6166 	if (oldadp == NULL)
6167 		panic("softdep_setup_allocext: lost entry");
6168 	/* insert in middle of list */
6169 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
6170 	if (oldadp->ad_offset == off)
6171 		allocdirect_merge(adphead, adp, oldadp);
6172 	FREE_LOCK(ump);
6173 }
6174 
6175 /*
6176  * Indirect block allocation dependencies.
6177  *
6178  * The same dependencies that exist for a direct block also exist when
6179  * a new block is allocated and pointed to by an entry in a block of
6180  * indirect pointers. The undo/redo states described above are also
6181  * used here. Because an indirect block contains many pointers that
6182  * may have dependencies, a second copy of the entire in-memory indirect
6183  * block is kept. The buffer cache copy is always completely up-to-date.
6184  * The second copy, which is used only as a source for disk writes,
6185  * contains only the safe pointers (i.e., those that have no remaining
6186  * update dependencies). The second copy is freed when all pointers
6187  * are safe. The cache is not allowed to replace indirect blocks with
6188  * pending update dependencies. If a buffer containing an indirect
6189  * block with dependencies is written, these routines will mark it
6190  * dirty again. It can only be successfully written once all the
6191  * dependencies are removed. The ffs_fsync routine in conjunction with
6192  * softdep_sync_metadata work together to get all the dependencies
6193  * removed so that a file can be successfully written to disk. Three
6194  * procedures are used when setting up indirect block pointer
6195  * dependencies. The division is necessary because of the organization
6196  * of the "balloc" routine and because of the distinction between file
6197  * pages and file metadata blocks.
6198  */
6199 
6200 /*
6201  * Allocate a new allocindir structure.
6202  */
6203 static struct allocindir *
6204 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
6205 	struct inode *ip;	/* inode for file being extended */
6206 	int ptrno;		/* offset of pointer in indirect block */
6207 	ufs2_daddr_t newblkno;	/* disk block number being added */
6208 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
6209 	ufs_lbn_t lbn;
6210 {
6211 	struct newblk *newblk;
6212 	struct allocindir *aip;
6213 	struct freefrag *freefrag;
6214 	struct jnewblk *jnewblk;
6215 
6216 	if (oldblkno)
6217 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6218 		    SINGLETON_KEY);
6219 	else
6220 		freefrag = NULL;
6221 	ACQUIRE_LOCK(ITOUMP(ip));
6222 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6223 		panic("new_allocindir: lost block");
6224 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6225 	    ("newallocindir: newblk already initialized"));
6226 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6227 	newblk->nb_freefrag = freefrag;
6228 	aip = (struct allocindir *)newblk;
6229 	aip->ai_offset = ptrno;
6230 	aip->ai_oldblkno = oldblkno;
6231 	aip->ai_lbn = lbn;
6232 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6233 		jnewblk->jn_ino = ip->i_number;
6234 		jnewblk->jn_lbn = lbn;
6235 		add_to_journal(&jnewblk->jn_list);
6236 	}
6237 	if (freefrag && freefrag->ff_jdep != NULL &&
6238 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6239 		add_to_journal(freefrag->ff_jdep);
6240 	return (aip);
6241 }
6242 
6243 /*
6244  * Called just before setting an indirect block pointer
6245  * to a newly allocated file page.
6246  */
6247 void
6248 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
6249 	struct inode *ip;	/* inode for file being extended */
6250 	ufs_lbn_t lbn;		/* allocated block number within file */
6251 	struct buf *bp;		/* buffer with indirect blk referencing page */
6252 	int ptrno;		/* offset of pointer in indirect block */
6253 	ufs2_daddr_t newblkno;	/* disk block number being added */
6254 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
6255 	struct buf *nbp;	/* buffer holding allocated page */
6256 {
6257 	struct inodedep *inodedep;
6258 	struct freefrag *freefrag;
6259 	struct allocindir *aip;
6260 	struct pagedep *pagedep;
6261 	struct mount *mp;
6262 	struct ufsmount *ump;
6263 
6264 	mp = ITOVFS(ip);
6265 	ump = VFSTOUFS(mp);
6266 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6267 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
6268 	KASSERT(lbn == nbp->b_lblkno,
6269 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6270 	    lbn, bp->b_lblkno));
6271 	CTR4(KTR_SUJ,
6272 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6273 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6274 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6275 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6276 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6277 	/*
6278 	 * If we are allocating a directory page, then we must
6279 	 * allocate an associated pagedep to track additions and
6280 	 * deletions.
6281 	 */
6282 	if ((ip->i_mode & IFMT) == IFDIR)
6283 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6284 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6285 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6286 	FREE_LOCK(ump);
6287 	if (freefrag)
6288 		handle_workitem_freefrag(freefrag);
6289 }
6290 
6291 /*
6292  * Called just before setting an indirect block pointer to a
6293  * newly allocated indirect block.
6294  */
6295 void
6296 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
6297 	struct buf *nbp;	/* newly allocated indirect block */
6298 	struct inode *ip;	/* inode for file being extended */
6299 	struct buf *bp;		/* indirect block referencing allocated block */
6300 	int ptrno;		/* offset of pointer in indirect block */
6301 	ufs2_daddr_t newblkno;	/* disk block number being added */
6302 {
6303 	struct inodedep *inodedep;
6304 	struct allocindir *aip;
6305 	struct ufsmount *ump;
6306 	ufs_lbn_t lbn;
6307 
6308 	ump = ITOUMP(ip);
6309 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6310 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6311 	CTR3(KTR_SUJ,
6312 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6313 	    ip->i_number, newblkno, ptrno);
6314 	lbn = nbp->b_lblkno;
6315 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6316 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6317 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6318 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6319 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6320 		panic("softdep_setup_allocindir_meta: Block already existed");
6321 	FREE_LOCK(ump);
6322 }
6323 
6324 static void
6325 indirdep_complete(indirdep)
6326 	struct indirdep *indirdep;
6327 {
6328 	struct allocindir *aip;
6329 
6330 	LIST_REMOVE(indirdep, ir_next);
6331 	indirdep->ir_state |= DEPCOMPLETE;
6332 
6333 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6334 		LIST_REMOVE(aip, ai_next);
6335 		free_newblk(&aip->ai_block);
6336 	}
6337 	/*
6338 	 * If this indirdep is not attached to a buf it was simply waiting
6339 	 * on completion to clear completehd.  free_indirdep() asserts
6340 	 * that nothing is dangling.
6341 	 */
6342 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6343 		free_indirdep(indirdep);
6344 }
6345 
6346 static struct indirdep *
6347 indirdep_lookup(mp, ip, bp)
6348 	struct mount *mp;
6349 	struct inode *ip;
6350 	struct buf *bp;
6351 {
6352 	struct indirdep *indirdep, *newindirdep;
6353 	struct newblk *newblk;
6354 	struct ufsmount *ump;
6355 	struct worklist *wk;
6356 	struct fs *fs;
6357 	ufs2_daddr_t blkno;
6358 
6359 	ump = VFSTOUFS(mp);
6360 	LOCK_OWNED(ump);
6361 	indirdep = NULL;
6362 	newindirdep = NULL;
6363 	fs = ump->um_fs;
6364 	for (;;) {
6365 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6366 			if (wk->wk_type != D_INDIRDEP)
6367 				continue;
6368 			indirdep = WK_INDIRDEP(wk);
6369 			break;
6370 		}
6371 		/* Found on the buffer worklist, no new structure to free. */
6372 		if (indirdep != NULL && newindirdep == NULL)
6373 			return (indirdep);
6374 		if (indirdep != NULL && newindirdep != NULL)
6375 			panic("indirdep_lookup: simultaneous create");
6376 		/* None found on the buffer and a new structure is ready. */
6377 		if (indirdep == NULL && newindirdep != NULL)
6378 			break;
6379 		/* None found and no new structure available. */
6380 		FREE_LOCK(ump);
6381 		newindirdep = malloc(sizeof(struct indirdep),
6382 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6383 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6384 		newindirdep->ir_state = ATTACHED;
6385 		if (I_IS_UFS1(ip))
6386 			newindirdep->ir_state |= UFS1FMT;
6387 		TAILQ_INIT(&newindirdep->ir_trunc);
6388 		newindirdep->ir_saveddata = NULL;
6389 		LIST_INIT(&newindirdep->ir_deplisthd);
6390 		LIST_INIT(&newindirdep->ir_donehd);
6391 		LIST_INIT(&newindirdep->ir_writehd);
6392 		LIST_INIT(&newindirdep->ir_completehd);
6393 		if (bp->b_blkno == bp->b_lblkno) {
6394 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6395 			    NULL, NULL);
6396 			bp->b_blkno = blkno;
6397 		}
6398 		newindirdep->ir_freeblks = NULL;
6399 		newindirdep->ir_savebp =
6400 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6401 		newindirdep->ir_bp = bp;
6402 		BUF_KERNPROC(newindirdep->ir_savebp);
6403 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6404 		ACQUIRE_LOCK(ump);
6405 	}
6406 	indirdep = newindirdep;
6407 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6408 	/*
6409 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6410 	 * that we don't free dependencies until the pointers are valid.
6411 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6412 	 * than using the hash.
6413 	 */
6414 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6415 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6416 	else
6417 		indirdep->ir_state |= DEPCOMPLETE;
6418 	return (indirdep);
6419 }
6420 
6421 /*
6422  * Called to finish the allocation of the "aip" allocated
6423  * by one of the two routines above.
6424  */
6425 static struct freefrag *
6426 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6427 	struct buf *bp;		/* in-memory copy of the indirect block */
6428 	struct inode *ip;	/* inode for file being extended */
6429 	struct inodedep *inodedep; /* Inodedep for ip */
6430 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6431 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6432 {
6433 	struct fs *fs;
6434 	struct indirdep *indirdep;
6435 	struct allocindir *oldaip;
6436 	struct freefrag *freefrag;
6437 	struct mount *mp;
6438 	struct ufsmount *ump;
6439 
6440 	mp = ITOVFS(ip);
6441 	ump = VFSTOUFS(mp);
6442 	LOCK_OWNED(ump);
6443 	fs = ump->um_fs;
6444 	if (bp->b_lblkno >= 0)
6445 		panic("setup_allocindir_phase2: not indir blk");
6446 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6447 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6448 	indirdep = indirdep_lookup(mp, ip, bp);
6449 	KASSERT(indirdep->ir_savebp != NULL,
6450 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6451 	aip->ai_indirdep = indirdep;
6452 	/*
6453 	 * Check for an unwritten dependency for this indirect offset.  If
6454 	 * there is, merge the old dependency into the new one.  This happens
6455 	 * as a result of reallocblk only.
6456 	 */
6457 	freefrag = NULL;
6458 	if (aip->ai_oldblkno != 0) {
6459 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6460 			if (oldaip->ai_offset == aip->ai_offset) {
6461 				freefrag = allocindir_merge(aip, oldaip);
6462 				goto done;
6463 			}
6464 		}
6465 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6466 			if (oldaip->ai_offset == aip->ai_offset) {
6467 				freefrag = allocindir_merge(aip, oldaip);
6468 				goto done;
6469 			}
6470 		}
6471 	}
6472 done:
6473 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6474 	return (freefrag);
6475 }
6476 
6477 /*
6478  * Merge two allocindirs which refer to the same block.  Move newblock
6479  * dependencies and setup the freefrags appropriately.
6480  */
6481 static struct freefrag *
6482 allocindir_merge(aip, oldaip)
6483 	struct allocindir *aip;
6484 	struct allocindir *oldaip;
6485 {
6486 	struct freefrag *freefrag;
6487 	struct worklist *wk;
6488 
6489 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6490 		panic("allocindir_merge: blkno");
6491 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6492 	freefrag = aip->ai_freefrag;
6493 	aip->ai_freefrag = oldaip->ai_freefrag;
6494 	oldaip->ai_freefrag = NULL;
6495 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6496 	/*
6497 	 * If we are tracking a new directory-block allocation,
6498 	 * move it from the old allocindir to the new allocindir.
6499 	 */
6500 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6501 		WORKLIST_REMOVE(wk);
6502 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6503 			panic("allocindir_merge: extra newdirblk");
6504 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6505 	}
6506 	/*
6507 	 * We can skip journaling for this freefrag and just complete
6508 	 * any pending journal work for the allocindir that is being
6509 	 * removed after the freefrag completes.
6510 	 */
6511 	if (freefrag->ff_jdep)
6512 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6513 	LIST_REMOVE(oldaip, ai_next);
6514 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6515 	    &freefrag->ff_list, &freefrag->ff_jwork);
6516 	free_newblk(&oldaip->ai_block);
6517 
6518 	return (freefrag);
6519 }
6520 
6521 static inline void
6522 setup_freedirect(freeblks, ip, i, needj)
6523 	struct freeblks *freeblks;
6524 	struct inode *ip;
6525 	int i;
6526 	int needj;
6527 {
6528 	struct ufsmount *ump;
6529 	ufs2_daddr_t blkno;
6530 	int frags;
6531 
6532 	blkno = DIP(ip, i_db[i]);
6533 	if (blkno == 0)
6534 		return;
6535 	DIP_SET(ip, i_db[i], 0);
6536 	ump = ITOUMP(ip);
6537 	frags = sblksize(ump->um_fs, ip->i_size, i);
6538 	frags = numfrags(ump->um_fs, frags);
6539 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6540 }
6541 
6542 static inline void
6543 setup_freeext(freeblks, ip, i, needj)
6544 	struct freeblks *freeblks;
6545 	struct inode *ip;
6546 	int i;
6547 	int needj;
6548 {
6549 	struct ufsmount *ump;
6550 	ufs2_daddr_t blkno;
6551 	int frags;
6552 
6553 	blkno = ip->i_din2->di_extb[i];
6554 	if (blkno == 0)
6555 		return;
6556 	ip->i_din2->di_extb[i] = 0;
6557 	ump = ITOUMP(ip);
6558 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6559 	frags = numfrags(ump->um_fs, frags);
6560 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6561 }
6562 
6563 static inline void
6564 setup_freeindir(freeblks, ip, i, lbn, needj)
6565 	struct freeblks *freeblks;
6566 	struct inode *ip;
6567 	int i;
6568 	ufs_lbn_t lbn;
6569 	int needj;
6570 {
6571 	struct ufsmount *ump;
6572 	ufs2_daddr_t blkno;
6573 
6574 	blkno = DIP(ip, i_ib[i]);
6575 	if (blkno == 0)
6576 		return;
6577 	DIP_SET(ip, i_ib[i], 0);
6578 	ump = ITOUMP(ip);
6579 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6580 	    0, needj);
6581 }
6582 
6583 static inline struct freeblks *
6584 newfreeblks(mp, ip)
6585 	struct mount *mp;
6586 	struct inode *ip;
6587 {
6588 	struct freeblks *freeblks;
6589 
6590 	freeblks = malloc(sizeof(struct freeblks),
6591 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6592 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6593 	LIST_INIT(&freeblks->fb_jblkdephd);
6594 	LIST_INIT(&freeblks->fb_jwork);
6595 	freeblks->fb_ref = 0;
6596 	freeblks->fb_cgwait = 0;
6597 	freeblks->fb_state = ATTACHED;
6598 	freeblks->fb_uid = ip->i_uid;
6599 	freeblks->fb_inum = ip->i_number;
6600 	freeblks->fb_vtype = ITOV(ip)->v_type;
6601 	freeblks->fb_modrev = DIP(ip, i_modrev);
6602 	freeblks->fb_devvp = ITODEVVP(ip);
6603 	freeblks->fb_chkcnt = 0;
6604 	freeblks->fb_len = 0;
6605 
6606 	return (freeblks);
6607 }
6608 
6609 static void
6610 trunc_indirdep(indirdep, freeblks, bp, off)
6611 	struct indirdep *indirdep;
6612 	struct freeblks *freeblks;
6613 	struct buf *bp;
6614 	int off;
6615 {
6616 	struct allocindir *aip, *aipn;
6617 
6618 	/*
6619 	 * The first set of allocindirs won't be in savedbp.
6620 	 */
6621 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6622 		if (aip->ai_offset > off)
6623 			cancel_allocindir(aip, bp, freeblks, 1);
6624 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6625 		if (aip->ai_offset > off)
6626 			cancel_allocindir(aip, bp, freeblks, 1);
6627 	/*
6628 	 * These will exist in savedbp.
6629 	 */
6630 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6631 		if (aip->ai_offset > off)
6632 			cancel_allocindir(aip, NULL, freeblks, 0);
6633 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6634 		if (aip->ai_offset > off)
6635 			cancel_allocindir(aip, NULL, freeblks, 0);
6636 }
6637 
6638 /*
6639  * Follow the chain of indirects down to lastlbn creating a freework
6640  * structure for each.  This will be used to start indir_trunc() at
6641  * the right offset and create the journal records for the parrtial
6642  * truncation.  A second step will handle the truncated dependencies.
6643  */
6644 static int
6645 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6646 	struct freeblks *freeblks;
6647 	struct inode *ip;
6648 	ufs_lbn_t lbn;
6649 	ufs_lbn_t lastlbn;
6650 	ufs2_daddr_t blkno;
6651 {
6652 	struct indirdep *indirdep;
6653 	struct indirdep *indirn;
6654 	struct freework *freework;
6655 	struct newblk *newblk;
6656 	struct mount *mp;
6657 	struct ufsmount *ump;
6658 	struct buf *bp;
6659 	uint8_t *start;
6660 	uint8_t *end;
6661 	ufs_lbn_t lbnadd;
6662 	int level;
6663 	int error;
6664 	int off;
6665 
6666 	freework = NULL;
6667 	if (blkno == 0)
6668 		return (0);
6669 	mp = freeblks->fb_list.wk_mp;
6670 	ump = VFSTOUFS(mp);
6671 	/*
6672 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6673 	 * the on-disk address, so we just pass it to bread() instead of
6674 	 * having bread() attempt to calculate it using VOP_BMAP().
6675 	 */
6676 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6677 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6678 	if (error)
6679 		return (error);
6680 	level = lbn_level(lbn);
6681 	lbnadd = lbn_offset(ump->um_fs, level);
6682 	/*
6683 	 * Compute the offset of the last block we want to keep.  Store
6684 	 * in the freework the first block we want to completely free.
6685 	 */
6686 	off = (lastlbn - -(lbn + level)) / lbnadd;
6687 	if (off + 1 == NINDIR(ump->um_fs))
6688 		goto nowork;
6689 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6690 	/*
6691 	 * Link the freework into the indirdep.  This will prevent any new
6692 	 * allocations from proceeding until we are finished with the
6693 	 * truncate and the block is written.
6694 	 */
6695 	ACQUIRE_LOCK(ump);
6696 	indirdep = indirdep_lookup(mp, ip, bp);
6697 	if (indirdep->ir_freeblks)
6698 		panic("setup_trunc_indir: indirdep already truncated.");
6699 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6700 	freework->fw_indir = indirdep;
6701 	/*
6702 	 * Cancel any allocindirs that will not make it to disk.
6703 	 * We have to do this for all copies of the indirdep that
6704 	 * live on this newblk.
6705 	 */
6706 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6707 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6708 		    &newblk) == 0)
6709 			panic("setup_trunc_indir: lost block");
6710 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6711 			trunc_indirdep(indirn, freeblks, bp, off);
6712 	} else
6713 		trunc_indirdep(indirdep, freeblks, bp, off);
6714 	FREE_LOCK(ump);
6715 	/*
6716 	 * Creation is protected by the buf lock. The saveddata is only
6717 	 * needed if a full truncation follows a partial truncation but it
6718 	 * is difficult to allocate in that case so we fetch it anyway.
6719 	 */
6720 	if (indirdep->ir_saveddata == NULL)
6721 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6722 		    M_SOFTDEP_FLAGS);
6723 nowork:
6724 	/* Fetch the blkno of the child and the zero start offset. */
6725 	if (I_IS_UFS1(ip)) {
6726 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6727 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6728 	} else {
6729 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6730 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6731 	}
6732 	if (freework) {
6733 		/* Zero the truncated pointers. */
6734 		end = bp->b_data + bp->b_bcount;
6735 		bzero(start, end - start);
6736 		bdwrite(bp);
6737 	} else
6738 		bqrelse(bp);
6739 	if (level == 0)
6740 		return (0);
6741 	lbn++; /* adjust level */
6742 	lbn -= (off * lbnadd);
6743 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6744 }
6745 
6746 /*
6747  * Complete the partial truncation of an indirect block setup by
6748  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6749  * copy and writes them to disk before the freeblks is allowed to complete.
6750  */
6751 static void
6752 complete_trunc_indir(freework)
6753 	struct freework *freework;
6754 {
6755 	struct freework *fwn;
6756 	struct indirdep *indirdep;
6757 	struct ufsmount *ump;
6758 	struct buf *bp;
6759 	uintptr_t start;
6760 	int count;
6761 
6762 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6763 	LOCK_OWNED(ump);
6764 	indirdep = freework->fw_indir;
6765 	for (;;) {
6766 		bp = indirdep->ir_bp;
6767 		/* See if the block was discarded. */
6768 		if (bp == NULL)
6769 			break;
6770 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6771 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6772 			break;
6773 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6774 		    LOCK_PTR(ump)) == 0)
6775 			BUF_UNLOCK(bp);
6776 		ACQUIRE_LOCK(ump);
6777 	}
6778 	freework->fw_state |= DEPCOMPLETE;
6779 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6780 	/*
6781 	 * Zero the pointers in the saved copy.
6782 	 */
6783 	if (indirdep->ir_state & UFS1FMT)
6784 		start = sizeof(ufs1_daddr_t);
6785 	else
6786 		start = sizeof(ufs2_daddr_t);
6787 	start *= freework->fw_start;
6788 	count = indirdep->ir_savebp->b_bcount - start;
6789 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6790 	bzero((char *)start, count);
6791 	/*
6792 	 * We need to start the next truncation in the list if it has not
6793 	 * been started yet.
6794 	 */
6795 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6796 	if (fwn != NULL) {
6797 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6798 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6799 		if ((fwn->fw_state & ONWORKLIST) == 0)
6800 			freework_enqueue(fwn);
6801 	}
6802 	/*
6803 	 * If bp is NULL the block was fully truncated, restore
6804 	 * the saved block list otherwise free it if it is no
6805 	 * longer needed.
6806 	 */
6807 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6808 		if (bp == NULL)
6809 			bcopy(indirdep->ir_saveddata,
6810 			    indirdep->ir_savebp->b_data,
6811 			    indirdep->ir_savebp->b_bcount);
6812 		free(indirdep->ir_saveddata, M_INDIRDEP);
6813 		indirdep->ir_saveddata = NULL;
6814 	}
6815 	/*
6816 	 * When bp is NULL there is a full truncation pending.  We
6817 	 * must wait for this full truncation to be journaled before
6818 	 * we can release this freework because the disk pointers will
6819 	 * never be written as zero.
6820 	 */
6821 	if (bp == NULL)  {
6822 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6823 			handle_written_freework(freework);
6824 		else
6825 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6826 			   &freework->fw_list);
6827 		if (fwn == NULL) {
6828 			freework->fw_indir = (void *)0x0000deadbeef0000;
6829 			bp = indirdep->ir_savebp;
6830 			indirdep->ir_savebp = NULL;
6831 			free_indirdep(indirdep);
6832 			FREE_LOCK(ump);
6833 			brelse(bp);
6834 			ACQUIRE_LOCK(ump);
6835 		}
6836 	} else {
6837 		/* Complete when the real copy is written. */
6838 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6839 		BUF_UNLOCK(bp);
6840 	}
6841 }
6842 
6843 /*
6844  * Calculate the number of blocks we are going to release where datablocks
6845  * is the current total and length is the new file size.
6846  */
6847 static ufs2_daddr_t
6848 blkcount(fs, datablocks, length)
6849 	struct fs *fs;
6850 	ufs2_daddr_t datablocks;
6851 	off_t length;
6852 {
6853 	off_t totblks, numblks;
6854 
6855 	totblks = 0;
6856 	numblks = howmany(length, fs->fs_bsize);
6857 	if (numblks <= UFS_NDADDR) {
6858 		totblks = howmany(length, fs->fs_fsize);
6859 		goto out;
6860 	}
6861         totblks = blkstofrags(fs, numblks);
6862 	numblks -= UFS_NDADDR;
6863 	/*
6864 	 * Count all single, then double, then triple indirects required.
6865 	 * Subtracting one indirects worth of blocks for each pass
6866 	 * acknowledges one of each pointed to by the inode.
6867 	 */
6868 	for (;;) {
6869 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6870 		numblks -= NINDIR(fs);
6871 		if (numblks <= 0)
6872 			break;
6873 		numblks = howmany(numblks, NINDIR(fs));
6874 	}
6875 out:
6876 	totblks = fsbtodb(fs, totblks);
6877 	/*
6878 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6879 	 * references.  We will correct it later in handle_complete_freeblks()
6880 	 * when we know the real count.
6881 	 */
6882 	if (totblks > datablocks)
6883 		return (0);
6884 	return (datablocks - totblks);
6885 }
6886 
6887 /*
6888  * Handle freeblocks for journaled softupdate filesystems.
6889  *
6890  * Contrary to normal softupdates, we must preserve the block pointers in
6891  * indirects until their subordinates are free.  This is to avoid journaling
6892  * every block that is freed which may consume more space than the journal
6893  * itself.  The recovery program will see the free block journals at the
6894  * base of the truncated area and traverse them to reclaim space.  The
6895  * pointers in the inode may be cleared immediately after the journal
6896  * records are written because each direct and indirect pointer in the
6897  * inode is recorded in a journal.  This permits full truncation to proceed
6898  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6899  *
6900  * The algorithm is as follows:
6901  * 1) Traverse the in-memory state and create journal entries to release
6902  *    the relevant blocks and full indirect trees.
6903  * 2) Traverse the indirect block chain adding partial truncation freework
6904  *    records to indirects in the path to lastlbn.  The freework will
6905  *    prevent new allocation dependencies from being satisfied in this
6906  *    indirect until the truncation completes.
6907  * 3) Read and lock the inode block, performing an update with the new size
6908  *    and pointers.  This prevents truncated data from becoming valid on
6909  *    disk through step 4.
6910  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6911  *    eliminate journal work for those records that do not require it.
6912  * 5) Schedule the journal records to be written followed by the inode block.
6913  * 6) Allocate any necessary frags for the end of file.
6914  * 7) Zero any partially truncated blocks.
6915  *
6916  * From this truncation proceeds asynchronously using the freework and
6917  * indir_trunc machinery.  The file will not be extended again into a
6918  * partially truncated indirect block until all work is completed but
6919  * the normal dependency mechanism ensures that it is rolled back/forward
6920  * as appropriate.  Further truncation may occur without delay and is
6921  * serialized in indir_trunc().
6922  */
6923 void
6924 softdep_journal_freeblocks(ip, cred, length, flags)
6925 	struct inode *ip;	/* The inode whose length is to be reduced */
6926 	struct ucred *cred;
6927 	off_t length;		/* The new length for the file */
6928 	int flags;		/* IO_EXT and/or IO_NORMAL */
6929 {
6930 	struct freeblks *freeblks, *fbn;
6931 	struct worklist *wk, *wkn;
6932 	struct inodedep *inodedep;
6933 	struct jblkdep *jblkdep;
6934 	struct allocdirect *adp, *adpn;
6935 	struct ufsmount *ump;
6936 	struct fs *fs;
6937 	struct buf *bp;
6938 	struct vnode *vp;
6939 	struct mount *mp;
6940 	daddr_t dbn;
6941 	ufs2_daddr_t extblocks, datablocks;
6942 	ufs_lbn_t tmpval, lbn, lastlbn;
6943 	int frags, lastoff, iboff, allocblock, needj, error, i;
6944 
6945 	ump = ITOUMP(ip);
6946 	mp = UFSTOVFS(ump);
6947 	fs = ump->um_fs;
6948 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6949 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6950 	vp = ITOV(ip);
6951 	needj = 1;
6952 	iboff = -1;
6953 	allocblock = 0;
6954 	extblocks = 0;
6955 	datablocks = 0;
6956 	frags = 0;
6957 	freeblks = newfreeblks(mp, ip);
6958 	ACQUIRE_LOCK(ump);
6959 	/*
6960 	 * If we're truncating a removed file that will never be written
6961 	 * we don't need to journal the block frees.  The canceled journals
6962 	 * for the allocations will suffice.
6963 	 */
6964 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6965 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6966 	    length == 0)
6967 		needj = 0;
6968 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6969 	    ip->i_number, length, needj);
6970 	FREE_LOCK(ump);
6971 	/*
6972 	 * Calculate the lbn that we are truncating to.  This results in -1
6973 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6974 	 * to keep, not the first lbn we want to truncate.
6975 	 */
6976 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6977 	lastoff = blkoff(fs, length);
6978 	/*
6979 	 * Compute frags we are keeping in lastlbn.  0 means all.
6980 	 */
6981 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6982 		frags = fragroundup(fs, lastoff);
6983 		/* adp offset of last valid allocdirect. */
6984 		iboff = lastlbn;
6985 	} else if (lastlbn > 0)
6986 		iboff = UFS_NDADDR;
6987 	if (fs->fs_magic == FS_UFS2_MAGIC)
6988 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6989 	/*
6990 	 * Handle normal data blocks and indirects.  This section saves
6991 	 * values used after the inode update to complete frag and indirect
6992 	 * truncation.
6993 	 */
6994 	if ((flags & IO_NORMAL) != 0) {
6995 		/*
6996 		 * Handle truncation of whole direct and indirect blocks.
6997 		 */
6998 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6999 			setup_freedirect(freeblks, ip, i, needj);
7000 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7001 		    i < UFS_NIADDR;
7002 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
7003 			/* Release a whole indirect tree. */
7004 			if (lbn > lastlbn) {
7005 				setup_freeindir(freeblks, ip, i, -lbn -i,
7006 				    needj);
7007 				continue;
7008 			}
7009 			iboff = i + UFS_NDADDR;
7010 			/*
7011 			 * Traverse partially truncated indirect tree.
7012 			 */
7013 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
7014 				setup_trunc_indir(freeblks, ip, -lbn - i,
7015 				    lastlbn, DIP(ip, i_ib[i]));
7016 		}
7017 		/*
7018 		 * Handle partial truncation to a frag boundary.
7019 		 */
7020 		if (frags) {
7021 			ufs2_daddr_t blkno;
7022 			long oldfrags;
7023 
7024 			oldfrags = blksize(fs, ip, lastlbn);
7025 			blkno = DIP(ip, i_db[lastlbn]);
7026 			if (blkno && oldfrags != frags) {
7027 				oldfrags -= frags;
7028 				oldfrags = numfrags(fs, oldfrags);
7029 				blkno += numfrags(fs, frags);
7030 				newfreework(ump, freeblks, NULL, lastlbn,
7031 				    blkno, oldfrags, 0, needj);
7032 				if (needj)
7033 					adjust_newfreework(freeblks,
7034 					    numfrags(fs, frags));
7035 			} else if (blkno == 0)
7036 				allocblock = 1;
7037 		}
7038 		/*
7039 		 * Add a journal record for partial truncate if we are
7040 		 * handling indirect blocks.  Non-indirects need no extra
7041 		 * journaling.
7042 		 */
7043 		if (length != 0 && lastlbn >= UFS_NDADDR) {
7044 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
7045 			newjtrunc(freeblks, length, 0);
7046 		}
7047 		ip->i_size = length;
7048 		DIP_SET(ip, i_size, ip->i_size);
7049 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7050 		datablocks = DIP(ip, i_blocks) - extblocks;
7051 		if (length != 0)
7052 			datablocks = blkcount(fs, datablocks, length);
7053 		freeblks->fb_len = length;
7054 	}
7055 	if ((flags & IO_EXT) != 0) {
7056 		for (i = 0; i < UFS_NXADDR; i++)
7057 			setup_freeext(freeblks, ip, i, needj);
7058 		ip->i_din2->di_extsize = 0;
7059 		datablocks += extblocks;
7060 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7061 	}
7062 #ifdef QUOTA
7063 	/* Reference the quotas in case the block count is wrong in the end. */
7064 	quotaref(vp, freeblks->fb_quota);
7065 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7066 #endif
7067 	freeblks->fb_chkcnt = -datablocks;
7068 	UFS_LOCK(ump);
7069 	fs->fs_pendingblocks += datablocks;
7070 	UFS_UNLOCK(ump);
7071 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7072 	/*
7073 	 * Handle truncation of incomplete alloc direct dependencies.  We
7074 	 * hold the inode block locked to prevent incomplete dependencies
7075 	 * from reaching the disk while we are eliminating those that
7076 	 * have been truncated.  This is a partially inlined ffs_update().
7077 	 */
7078 	ufs_itimes(vp);
7079 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
7080 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
7081 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
7082 	    NULL, NULL, 0, cred, 0, NULL, &bp);
7083 	if (error) {
7084 		softdep_error("softdep_journal_freeblocks", error);
7085 		return;
7086 	}
7087 	if (bp->b_bufsize == fs->fs_bsize)
7088 		bp->b_flags |= B_CLUSTEROK;
7089 	softdep_update_inodeblock(ip, bp, 0);
7090 	if (ump->um_fstype == UFS1) {
7091 		*((struct ufs1_dinode *)bp->b_data +
7092 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
7093 	} else {
7094 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7095 		*((struct ufs2_dinode *)bp->b_data +
7096 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
7097 	}
7098 	ACQUIRE_LOCK(ump);
7099 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7100 	if ((inodedep->id_state & IOSTARTED) != 0)
7101 		panic("softdep_setup_freeblocks: inode busy");
7102 	/*
7103 	 * Add the freeblks structure to the list of operations that
7104 	 * must await the zero'ed inode being written to disk. If we
7105 	 * still have a bitmap dependency (needj), then the inode
7106 	 * has never been written to disk, so we can process the
7107 	 * freeblks below once we have deleted the dependencies.
7108 	 */
7109 	if (needj)
7110 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7111 	else
7112 		freeblks->fb_state |= COMPLETE;
7113 	if ((flags & IO_NORMAL) != 0) {
7114 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
7115 			if (adp->ad_offset > iboff)
7116 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
7117 				    freeblks);
7118 			/*
7119 			 * Truncate the allocdirect.  We could eliminate
7120 			 * or modify journal records as well.
7121 			 */
7122 			else if (adp->ad_offset == iboff && frags)
7123 				adp->ad_newsize = frags;
7124 		}
7125 	}
7126 	if ((flags & IO_EXT) != 0)
7127 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7128 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7129 			    freeblks);
7130 	/*
7131 	 * Scan the bufwait list for newblock dependencies that will never
7132 	 * make it to disk.
7133 	 */
7134 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
7135 		if (wk->wk_type != D_ALLOCDIRECT)
7136 			continue;
7137 		adp = WK_ALLOCDIRECT(wk);
7138 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
7139 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
7140 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
7141 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
7142 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7143 		}
7144 	}
7145 	/*
7146 	 * Add journal work.
7147 	 */
7148 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
7149 		add_to_journal(&jblkdep->jb_list);
7150 	FREE_LOCK(ump);
7151 	bdwrite(bp);
7152 	/*
7153 	 * Truncate dependency structures beyond length.
7154 	 */
7155 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
7156 	/*
7157 	 * This is only set when we need to allocate a fragment because
7158 	 * none existed at the end of a frag-sized file.  It handles only
7159 	 * allocating a new, zero filled block.
7160 	 */
7161 	if (allocblock) {
7162 		ip->i_size = length - lastoff;
7163 		DIP_SET(ip, i_size, ip->i_size);
7164 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
7165 		if (error != 0) {
7166 			softdep_error("softdep_journal_freeblks", error);
7167 			return;
7168 		}
7169 		ip->i_size = length;
7170 		DIP_SET(ip, i_size, length);
7171 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
7172 		allocbuf(bp, frags);
7173 		ffs_update(vp, 0);
7174 		bawrite(bp);
7175 	} else if (lastoff != 0 && vp->v_type != VDIR) {
7176 		int size;
7177 
7178 		/*
7179 		 * Zero the end of a truncated frag or block.
7180 		 */
7181 		size = sblksize(fs, length, lastlbn);
7182 		error = bread(vp, lastlbn, size, cred, &bp);
7183 		if (error == 0) {
7184 			bzero((char *)bp->b_data + lastoff, size - lastoff);
7185 			bawrite(bp);
7186 		} else if (!ffs_fsfail_cleanup(ump, error)) {
7187 			softdep_error("softdep_journal_freeblks", error);
7188 			return;
7189 		}
7190 	}
7191 	ACQUIRE_LOCK(ump);
7192 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7193 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7194 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7195 	/*
7196 	 * We zero earlier truncations so they don't erroneously
7197 	 * update i_blocks.
7198 	 */
7199 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7200 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7201 			fbn->fb_len = 0;
7202 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7203 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7204 		freeblks->fb_state |= INPROGRESS;
7205 	else
7206 		freeblks = NULL;
7207 	FREE_LOCK(ump);
7208 	if (freeblks)
7209 		handle_workitem_freeblocks(freeblks, 0);
7210 	trunc_pages(ip, length, extblocks, flags);
7211 
7212 }
7213 
7214 /*
7215  * Flush a JOP_SYNC to the journal.
7216  */
7217 void
7218 softdep_journal_fsync(ip)
7219 	struct inode *ip;
7220 {
7221 	struct jfsync *jfsync;
7222 	struct ufsmount *ump;
7223 
7224 	ump = ITOUMP(ip);
7225 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7226 	    ("softdep_journal_fsync called on non-softdep filesystem"));
7227 	if ((ip->i_flag & IN_TRUNCATED) == 0)
7228 		return;
7229 	ip->i_flag &= ~IN_TRUNCATED;
7230 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7231 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7232 	jfsync->jfs_size = ip->i_size;
7233 	jfsync->jfs_ino = ip->i_number;
7234 	ACQUIRE_LOCK(ump);
7235 	add_to_journal(&jfsync->jfs_list);
7236 	jwait(&jfsync->jfs_list, MNT_WAIT);
7237 	FREE_LOCK(ump);
7238 }
7239 
7240 /*
7241  * Block de-allocation dependencies.
7242  *
7243  * When blocks are de-allocated, the on-disk pointers must be nullified before
7244  * the blocks are made available for use by other files.  (The true
7245  * requirement is that old pointers must be nullified before new on-disk
7246  * pointers are set.  We chose this slightly more stringent requirement to
7247  * reduce complexity.) Our implementation handles this dependency by updating
7248  * the inode (or indirect block) appropriately but delaying the actual block
7249  * de-allocation (i.e., freemap and free space count manipulation) until
7250  * after the updated versions reach stable storage.  After the disk is
7251  * updated, the blocks can be safely de-allocated whenever it is convenient.
7252  * This implementation handles only the common case of reducing a file's
7253  * length to zero. Other cases are handled by the conventional synchronous
7254  * write approach.
7255  *
7256  * The ffs implementation with which we worked double-checks
7257  * the state of the block pointers and file size as it reduces
7258  * a file's length.  Some of this code is replicated here in our
7259  * soft updates implementation.  The freeblks->fb_chkcnt field is
7260  * used to transfer a part of this information to the procedure
7261  * that eventually de-allocates the blocks.
7262  *
7263  * This routine should be called from the routine that shortens
7264  * a file's length, before the inode's size or block pointers
7265  * are modified. It will save the block pointer information for
7266  * later release and zero the inode so that the calling routine
7267  * can release it.
7268  */
7269 void
7270 softdep_setup_freeblocks(ip, length, flags)
7271 	struct inode *ip;	/* The inode whose length is to be reduced */
7272 	off_t length;		/* The new length for the file */
7273 	int flags;		/* IO_EXT and/or IO_NORMAL */
7274 {
7275 	struct ufs1_dinode *dp1;
7276 	struct ufs2_dinode *dp2;
7277 	struct freeblks *freeblks;
7278 	struct inodedep *inodedep;
7279 	struct allocdirect *adp;
7280 	struct ufsmount *ump;
7281 	struct buf *bp;
7282 	struct fs *fs;
7283 	ufs2_daddr_t extblocks, datablocks;
7284 	struct mount *mp;
7285 	int i, delay, error;
7286 	ufs_lbn_t tmpval;
7287 	ufs_lbn_t lbn;
7288 
7289 	ump = ITOUMP(ip);
7290 	mp = UFSTOVFS(ump);
7291 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7292 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
7293 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7294 	    ip->i_number, length);
7295 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7296 	fs = ump->um_fs;
7297 	if ((error = bread(ump->um_devvp,
7298 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7299 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7300 		if (!ffs_fsfail_cleanup(ump, error))
7301 			softdep_error("softdep_setup_freeblocks", error);
7302 		return;
7303 	}
7304 	freeblks = newfreeblks(mp, ip);
7305 	extblocks = 0;
7306 	datablocks = 0;
7307 	if (fs->fs_magic == FS_UFS2_MAGIC)
7308 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7309 	if ((flags & IO_NORMAL) != 0) {
7310 		for (i = 0; i < UFS_NDADDR; i++)
7311 			setup_freedirect(freeblks, ip, i, 0);
7312 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7313 		    i < UFS_NIADDR;
7314 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
7315 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7316 		ip->i_size = 0;
7317 		DIP_SET(ip, i_size, 0);
7318 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7319 		datablocks = DIP(ip, i_blocks) - extblocks;
7320 	}
7321 	if ((flags & IO_EXT) != 0) {
7322 		for (i = 0; i < UFS_NXADDR; i++)
7323 			setup_freeext(freeblks, ip, i, 0);
7324 		ip->i_din2->di_extsize = 0;
7325 		datablocks += extblocks;
7326 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7327 	}
7328 #ifdef QUOTA
7329 	/* Reference the quotas in case the block count is wrong in the end. */
7330 	quotaref(ITOV(ip), freeblks->fb_quota);
7331 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7332 #endif
7333 	freeblks->fb_chkcnt = -datablocks;
7334 	UFS_LOCK(ump);
7335 	fs->fs_pendingblocks += datablocks;
7336 	UFS_UNLOCK(ump);
7337 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7338 	/*
7339 	 * Push the zero'ed inode to its disk buffer so that we are free
7340 	 * to delete its dependencies below. Once the dependencies are gone
7341 	 * the buffer can be safely released.
7342 	 */
7343 	if (ump->um_fstype == UFS1) {
7344 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7345 		    ino_to_fsbo(fs, ip->i_number));
7346 		ip->i_din1->di_freelink = dp1->di_freelink;
7347 		*dp1 = *ip->i_din1;
7348 	} else {
7349 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7350 		    ino_to_fsbo(fs, ip->i_number));
7351 		ip->i_din2->di_freelink = dp2->di_freelink;
7352 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7353 		*dp2 = *ip->i_din2;
7354 	}
7355 	/*
7356 	 * Find and eliminate any inode dependencies.
7357 	 */
7358 	ACQUIRE_LOCK(ump);
7359 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7360 	if ((inodedep->id_state & IOSTARTED) != 0)
7361 		panic("softdep_setup_freeblocks: inode busy");
7362 	/*
7363 	 * Add the freeblks structure to the list of operations that
7364 	 * must await the zero'ed inode being written to disk. If we
7365 	 * still have a bitmap dependency (delay == 0), then the inode
7366 	 * has never been written to disk, so we can process the
7367 	 * freeblks below once we have deleted the dependencies.
7368 	 */
7369 	delay = (inodedep->id_state & DEPCOMPLETE);
7370 	if (delay)
7371 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7372 	else
7373 		freeblks->fb_state |= COMPLETE;
7374 	/*
7375 	 * Because the file length has been truncated to zero, any
7376 	 * pending block allocation dependency structures associated
7377 	 * with this inode are obsolete and can simply be de-allocated.
7378 	 * We must first merge the two dependency lists to get rid of
7379 	 * any duplicate freefrag structures, then purge the merged list.
7380 	 * If we still have a bitmap dependency, then the inode has never
7381 	 * been written to disk, so we can free any fragments without delay.
7382 	 */
7383 	if (flags & IO_NORMAL) {
7384 		merge_inode_lists(&inodedep->id_newinoupdt,
7385 		    &inodedep->id_inoupdt);
7386 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7387 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7388 			    freeblks);
7389 	}
7390 	if (flags & IO_EXT) {
7391 		merge_inode_lists(&inodedep->id_newextupdt,
7392 		    &inodedep->id_extupdt);
7393 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7394 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7395 			    freeblks);
7396 	}
7397 	FREE_LOCK(ump);
7398 	bdwrite(bp);
7399 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7400 	ACQUIRE_LOCK(ump);
7401 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7402 		(void) free_inodedep(inodedep);
7403 	freeblks->fb_state |= DEPCOMPLETE;
7404 	/*
7405 	 * If the inode with zeroed block pointers is now on disk
7406 	 * we can start freeing blocks.
7407 	 */
7408 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7409 		freeblks->fb_state |= INPROGRESS;
7410 	else
7411 		freeblks = NULL;
7412 	FREE_LOCK(ump);
7413 	if (freeblks)
7414 		handle_workitem_freeblocks(freeblks, 0);
7415 	trunc_pages(ip, length, extblocks, flags);
7416 }
7417 
7418 /*
7419  * Eliminate pages from the page cache that back parts of this inode and
7420  * adjust the vnode pager's idea of our size.  This prevents stale data
7421  * from hanging around in the page cache.
7422  */
7423 static void
7424 trunc_pages(ip, length, extblocks, flags)
7425 	struct inode *ip;
7426 	off_t length;
7427 	ufs2_daddr_t extblocks;
7428 	int flags;
7429 {
7430 	struct vnode *vp;
7431 	struct fs *fs;
7432 	ufs_lbn_t lbn;
7433 	off_t end, extend;
7434 
7435 	vp = ITOV(ip);
7436 	fs = ITOFS(ip);
7437 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7438 	if ((flags & IO_EXT) != 0)
7439 		vn_pages_remove(vp, extend, 0);
7440 	if ((flags & IO_NORMAL) == 0)
7441 		return;
7442 	BO_LOCK(&vp->v_bufobj);
7443 	drain_output(vp);
7444 	BO_UNLOCK(&vp->v_bufobj);
7445 	/*
7446 	 * The vnode pager eliminates file pages we eliminate indirects
7447 	 * below.
7448 	 */
7449 	vnode_pager_setsize(vp, length);
7450 	/*
7451 	 * Calculate the end based on the last indirect we want to keep.  If
7452 	 * the block extends into indirects we can just use the negative of
7453 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7454 	 * be careful not to remove those, if they exist.  double and triple
7455 	 * indirect lbns do not overlap with others so it is not important
7456 	 * to verify how many levels are required.
7457 	 */
7458 	lbn = lblkno(fs, length);
7459 	if (lbn >= UFS_NDADDR) {
7460 		/* Calculate the virtual lbn of the triple indirect. */
7461 		lbn = -lbn - (UFS_NIADDR - 1);
7462 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7463 	} else
7464 		end = extend;
7465 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7466 }
7467 
7468 /*
7469  * See if the buf bp is in the range eliminated by truncation.
7470  */
7471 static int
7472 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7473 	struct buf *bp;
7474 	int *blkoffp;
7475 	ufs_lbn_t lastlbn;
7476 	int lastoff;
7477 	int flags;
7478 {
7479 	ufs_lbn_t lbn;
7480 
7481 	*blkoffp = 0;
7482 	/* Only match ext/normal blocks as appropriate. */
7483 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7484 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7485 		return (0);
7486 	/* ALTDATA is always a full truncation. */
7487 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7488 		return (1);
7489 	/* -1 is full truncation. */
7490 	if (lastlbn == -1)
7491 		return (1);
7492 	/*
7493 	 * If this is a partial truncate we only want those
7494 	 * blocks and indirect blocks that cover the range
7495 	 * we're after.
7496 	 */
7497 	lbn = bp->b_lblkno;
7498 	if (lbn < 0)
7499 		lbn = -(lbn + lbn_level(lbn));
7500 	if (lbn < lastlbn)
7501 		return (0);
7502 	/* Here we only truncate lblkno if it's partial. */
7503 	if (lbn == lastlbn) {
7504 		if (lastoff == 0)
7505 			return (0);
7506 		*blkoffp = lastoff;
7507 	}
7508 	return (1);
7509 }
7510 
7511 /*
7512  * Eliminate any dependencies that exist in memory beyond lblkno:off
7513  */
7514 static void
7515 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7516 	struct inode *ip;
7517 	struct freeblks *freeblks;
7518 	ufs_lbn_t lastlbn;
7519 	int lastoff;
7520 	int flags;
7521 {
7522 	struct bufobj *bo;
7523 	struct vnode *vp;
7524 	struct buf *bp;
7525 	int blkoff;
7526 
7527 	/*
7528 	 * We must wait for any I/O in progress to finish so that
7529 	 * all potential buffers on the dirty list will be visible.
7530 	 * Once they are all there, walk the list and get rid of
7531 	 * any dependencies.
7532 	 */
7533 	vp = ITOV(ip);
7534 	bo = &vp->v_bufobj;
7535 	BO_LOCK(bo);
7536 	drain_output(vp);
7537 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7538 		bp->b_vflags &= ~BV_SCANNED;
7539 restart:
7540 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7541 		if (bp->b_vflags & BV_SCANNED)
7542 			continue;
7543 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7544 			bp->b_vflags |= BV_SCANNED;
7545 			continue;
7546 		}
7547 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7548 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7549 			goto restart;
7550 		BO_UNLOCK(bo);
7551 		if (deallocate_dependencies(bp, freeblks, blkoff))
7552 			bqrelse(bp);
7553 		else
7554 			brelse(bp);
7555 		BO_LOCK(bo);
7556 		goto restart;
7557 	}
7558 	/*
7559 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7560 	 */
7561 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7562 		bp->b_vflags &= ~BV_SCANNED;
7563 cleanrestart:
7564 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7565 		if (bp->b_vflags & BV_SCANNED)
7566 			continue;
7567 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7568 			bp->b_vflags |= BV_SCANNED;
7569 			continue;
7570 		}
7571 		if (BUF_LOCK(bp,
7572 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7573 		    BO_LOCKPTR(bo)) == ENOLCK) {
7574 			BO_LOCK(bo);
7575 			goto cleanrestart;
7576 		}
7577 		BO_LOCK(bo);
7578 		bp->b_vflags |= BV_SCANNED;
7579 		BO_UNLOCK(bo);
7580 		bremfree(bp);
7581 		if (blkoff != 0) {
7582 			allocbuf(bp, blkoff);
7583 			bqrelse(bp);
7584 		} else {
7585 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7586 			brelse(bp);
7587 		}
7588 		BO_LOCK(bo);
7589 		goto cleanrestart;
7590 	}
7591 	drain_output(vp);
7592 	BO_UNLOCK(bo);
7593 }
7594 
7595 static int
7596 cancel_pagedep(pagedep, freeblks, blkoff)
7597 	struct pagedep *pagedep;
7598 	struct freeblks *freeblks;
7599 	int blkoff;
7600 {
7601 	struct jremref *jremref;
7602 	struct jmvref *jmvref;
7603 	struct dirrem *dirrem, *tmp;
7604 	int i;
7605 
7606 	/*
7607 	 * Copy any directory remove dependencies to the list
7608 	 * to be processed after the freeblks proceeds.  If
7609 	 * directory entry never made it to disk they
7610 	 * can be dumped directly onto the work list.
7611 	 */
7612 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7613 		/* Skip this directory removal if it is intended to remain. */
7614 		if (dirrem->dm_offset < blkoff)
7615 			continue;
7616 		/*
7617 		 * If there are any dirrems we wait for the journal write
7618 		 * to complete and then restart the buf scan as the lock
7619 		 * has been dropped.
7620 		 */
7621 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7622 			jwait(&jremref->jr_list, MNT_WAIT);
7623 			return (ERESTART);
7624 		}
7625 		LIST_REMOVE(dirrem, dm_next);
7626 		dirrem->dm_dirinum = pagedep->pd_ino;
7627 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7628 	}
7629 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7630 		jwait(&jmvref->jm_list, MNT_WAIT);
7631 		return (ERESTART);
7632 	}
7633 	/*
7634 	 * When we're partially truncating a pagedep we just want to flush
7635 	 * journal entries and return.  There can not be any adds in the
7636 	 * truncated portion of the directory and newblk must remain if
7637 	 * part of the block remains.
7638 	 */
7639 	if (blkoff != 0) {
7640 		struct diradd *dap;
7641 
7642 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7643 			if (dap->da_offset > blkoff)
7644 				panic("cancel_pagedep: diradd %p off %d > %d",
7645 				    dap, dap->da_offset, blkoff);
7646 		for (i = 0; i < DAHASHSZ; i++)
7647 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7648 				if (dap->da_offset > blkoff)
7649 					panic("cancel_pagedep: diradd %p off %d > %d",
7650 					    dap, dap->da_offset, blkoff);
7651 		return (0);
7652 	}
7653 	/*
7654 	 * There should be no directory add dependencies present
7655 	 * as the directory could not be truncated until all
7656 	 * children were removed.
7657 	 */
7658 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7659 	    ("deallocate_dependencies: pendinghd != NULL"));
7660 	for (i = 0; i < DAHASHSZ; i++)
7661 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7662 		    ("deallocate_dependencies: diraddhd != NULL"));
7663 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7664 		free_newdirblk(pagedep->pd_newdirblk);
7665 	if (free_pagedep(pagedep) == 0)
7666 		panic("Failed to free pagedep %p", pagedep);
7667 	return (0);
7668 }
7669 
7670 /*
7671  * Reclaim any dependency structures from a buffer that is about to
7672  * be reallocated to a new vnode. The buffer must be locked, thus,
7673  * no I/O completion operations can occur while we are manipulating
7674  * its associated dependencies. The mutex is held so that other I/O's
7675  * associated with related dependencies do not occur.
7676  */
7677 static int
7678 deallocate_dependencies(bp, freeblks, off)
7679 	struct buf *bp;
7680 	struct freeblks *freeblks;
7681 	int off;
7682 {
7683 	struct indirdep *indirdep;
7684 	struct pagedep *pagedep;
7685 	struct worklist *wk, *wkn;
7686 	struct ufsmount *ump;
7687 
7688 	ump = softdep_bp_to_mp(bp);
7689 	if (ump == NULL)
7690 		goto done;
7691 	ACQUIRE_LOCK(ump);
7692 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7693 		switch (wk->wk_type) {
7694 		case D_INDIRDEP:
7695 			indirdep = WK_INDIRDEP(wk);
7696 			if (bp->b_lblkno >= 0 ||
7697 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7698 				panic("deallocate_dependencies: not indir");
7699 			cancel_indirdep(indirdep, bp, freeblks);
7700 			continue;
7701 
7702 		case D_PAGEDEP:
7703 			pagedep = WK_PAGEDEP(wk);
7704 			if (cancel_pagedep(pagedep, freeblks, off)) {
7705 				FREE_LOCK(ump);
7706 				return (ERESTART);
7707 			}
7708 			continue;
7709 
7710 		case D_ALLOCINDIR:
7711 			/*
7712 			 * Simply remove the allocindir, we'll find it via
7713 			 * the indirdep where we can clear pointers if
7714 			 * needed.
7715 			 */
7716 			WORKLIST_REMOVE(wk);
7717 			continue;
7718 
7719 		case D_FREEWORK:
7720 			/*
7721 			 * A truncation is waiting for the zero'd pointers
7722 			 * to be written.  It can be freed when the freeblks
7723 			 * is journaled.
7724 			 */
7725 			WORKLIST_REMOVE(wk);
7726 			wk->wk_state |= ONDEPLIST;
7727 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7728 			break;
7729 
7730 		case D_ALLOCDIRECT:
7731 			if (off != 0)
7732 				continue;
7733 			/* FALLTHROUGH */
7734 		default:
7735 			panic("deallocate_dependencies: Unexpected type %s",
7736 			    TYPENAME(wk->wk_type));
7737 			/* NOTREACHED */
7738 		}
7739 	}
7740 	FREE_LOCK(ump);
7741 done:
7742 	/*
7743 	 * Don't throw away this buf, we were partially truncating and
7744 	 * some deps may always remain.
7745 	 */
7746 	if (off) {
7747 		allocbuf(bp, off);
7748 		bp->b_vflags |= BV_SCANNED;
7749 		return (EBUSY);
7750 	}
7751 	bp->b_flags |= B_INVAL | B_NOCACHE;
7752 
7753 	return (0);
7754 }
7755 
7756 /*
7757  * An allocdirect is being canceled due to a truncate.  We must make sure
7758  * the journal entry is released in concert with the blkfree that releases
7759  * the storage.  Completed journal entries must not be released until the
7760  * space is no longer pointed to by the inode or in the bitmap.
7761  */
7762 static void
7763 cancel_allocdirect(adphead, adp, freeblks)
7764 	struct allocdirectlst *adphead;
7765 	struct allocdirect *adp;
7766 	struct freeblks *freeblks;
7767 {
7768 	struct freework *freework;
7769 	struct newblk *newblk;
7770 	struct worklist *wk;
7771 
7772 	TAILQ_REMOVE(adphead, adp, ad_next);
7773 	newblk = (struct newblk *)adp;
7774 	freework = NULL;
7775 	/*
7776 	 * Find the correct freework structure.
7777 	 */
7778 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7779 		if (wk->wk_type != D_FREEWORK)
7780 			continue;
7781 		freework = WK_FREEWORK(wk);
7782 		if (freework->fw_blkno == newblk->nb_newblkno)
7783 			break;
7784 	}
7785 	if (freework == NULL)
7786 		panic("cancel_allocdirect: Freework not found");
7787 	/*
7788 	 * If a newblk exists at all we still have the journal entry that
7789 	 * initiated the allocation so we do not need to journal the free.
7790 	 */
7791 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7792 	/*
7793 	 * If the journal hasn't been written the jnewblk must be passed
7794 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7795 	 * this by linking the journal dependency into the freework to be
7796 	 * freed when freework_freeblock() is called.  If the journal has
7797 	 * been written we can simply reclaim the journal space when the
7798 	 * freeblks work is complete.
7799 	 */
7800 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7801 	    &freeblks->fb_jwork);
7802 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7803 }
7804 
7805 /*
7806  * Cancel a new block allocation.  May be an indirect or direct block.  We
7807  * remove it from various lists and return any journal record that needs to
7808  * be resolved by the caller.
7809  *
7810  * A special consideration is made for indirects which were never pointed
7811  * at on disk and will never be found once this block is released.
7812  */
7813 static struct jnewblk *
7814 cancel_newblk(newblk, wk, wkhd)
7815 	struct newblk *newblk;
7816 	struct worklist *wk;
7817 	struct workhead *wkhd;
7818 {
7819 	struct jnewblk *jnewblk;
7820 
7821 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7822 
7823 	newblk->nb_state |= GOINGAWAY;
7824 	/*
7825 	 * Previously we traversed the completedhd on each indirdep
7826 	 * attached to this newblk to cancel them and gather journal
7827 	 * work.  Since we need only the oldest journal segment and
7828 	 * the lowest point on the tree will always have the oldest
7829 	 * journal segment we are free to release the segments
7830 	 * of any subordinates and may leave the indirdep list to
7831 	 * indirdep_complete() when this newblk is freed.
7832 	 */
7833 	if (newblk->nb_state & ONDEPLIST) {
7834 		newblk->nb_state &= ~ONDEPLIST;
7835 		LIST_REMOVE(newblk, nb_deps);
7836 	}
7837 	if (newblk->nb_state & ONWORKLIST)
7838 		WORKLIST_REMOVE(&newblk->nb_list);
7839 	/*
7840 	 * If the journal entry hasn't been written we save a pointer to
7841 	 * the dependency that frees it until it is written or the
7842 	 * superseding operation completes.
7843 	 */
7844 	jnewblk = newblk->nb_jnewblk;
7845 	if (jnewblk != NULL && wk != NULL) {
7846 		newblk->nb_jnewblk = NULL;
7847 		jnewblk->jn_dep = wk;
7848 	}
7849 	if (!LIST_EMPTY(&newblk->nb_jwork))
7850 		jwork_move(wkhd, &newblk->nb_jwork);
7851 	/*
7852 	 * When truncating we must free the newdirblk early to remove
7853 	 * the pagedep from the hash before returning.
7854 	 */
7855 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7856 		free_newdirblk(WK_NEWDIRBLK(wk));
7857 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7858 		panic("cancel_newblk: extra newdirblk");
7859 
7860 	return (jnewblk);
7861 }
7862 
7863 /*
7864  * Schedule the freefrag associated with a newblk to be released once
7865  * the pointers are written and the previous block is no longer needed.
7866  */
7867 static void
7868 newblk_freefrag(newblk)
7869 	struct newblk *newblk;
7870 {
7871 	struct freefrag *freefrag;
7872 
7873 	if (newblk->nb_freefrag == NULL)
7874 		return;
7875 	freefrag = newblk->nb_freefrag;
7876 	newblk->nb_freefrag = NULL;
7877 	freefrag->ff_state |= COMPLETE;
7878 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7879 		add_to_worklist(&freefrag->ff_list, 0);
7880 }
7881 
7882 /*
7883  * Free a newblk. Generate a new freefrag work request if appropriate.
7884  * This must be called after the inode pointer and any direct block pointers
7885  * are valid or fully removed via truncate or frag extension.
7886  */
7887 static void
7888 free_newblk(newblk)
7889 	struct newblk *newblk;
7890 {
7891 	struct indirdep *indirdep;
7892 	struct worklist *wk;
7893 
7894 	KASSERT(newblk->nb_jnewblk == NULL,
7895 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7896 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7897 	    ("free_newblk: unclaimed newblk"));
7898 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7899 	newblk_freefrag(newblk);
7900 	if (newblk->nb_state & ONDEPLIST)
7901 		LIST_REMOVE(newblk, nb_deps);
7902 	if (newblk->nb_state & ONWORKLIST)
7903 		WORKLIST_REMOVE(&newblk->nb_list);
7904 	LIST_REMOVE(newblk, nb_hash);
7905 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7906 		free_newdirblk(WK_NEWDIRBLK(wk));
7907 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7908 		panic("free_newblk: extra newdirblk");
7909 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7910 		indirdep_complete(indirdep);
7911 	handle_jwork(&newblk->nb_jwork);
7912 	WORKITEM_FREE(newblk, D_NEWBLK);
7913 }
7914 
7915 /*
7916  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7917  */
7918 static void
7919 free_newdirblk(newdirblk)
7920 	struct newdirblk *newdirblk;
7921 {
7922 	struct pagedep *pagedep;
7923 	struct diradd *dap;
7924 	struct worklist *wk;
7925 
7926 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7927 	WORKLIST_REMOVE(&newdirblk->db_list);
7928 	/*
7929 	 * If the pagedep is still linked onto the directory buffer
7930 	 * dependency chain, then some of the entries on the
7931 	 * pd_pendinghd list may not be committed to disk yet. In
7932 	 * this case, we will simply clear the NEWBLOCK flag and
7933 	 * let the pd_pendinghd list be processed when the pagedep
7934 	 * is next written. If the pagedep is no longer on the buffer
7935 	 * dependency chain, then all the entries on the pd_pending
7936 	 * list are committed to disk and we can free them here.
7937 	 */
7938 	pagedep = newdirblk->db_pagedep;
7939 	pagedep->pd_state &= ~NEWBLOCK;
7940 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7941 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7942 			free_diradd(dap, NULL);
7943 		/*
7944 		 * If no dependencies remain, the pagedep will be freed.
7945 		 */
7946 		free_pagedep(pagedep);
7947 	}
7948 	/* Should only ever be one item in the list. */
7949 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7950 		WORKLIST_REMOVE(wk);
7951 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7952 	}
7953 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7954 }
7955 
7956 /*
7957  * Prepare an inode to be freed. The actual free operation is not
7958  * done until the zero'ed inode has been written to disk.
7959  */
7960 void
7961 softdep_freefile(pvp, ino, mode)
7962 	struct vnode *pvp;
7963 	ino_t ino;
7964 	int mode;
7965 {
7966 	struct inode *ip = VTOI(pvp);
7967 	struct inodedep *inodedep;
7968 	struct freefile *freefile;
7969 	struct freeblks *freeblks;
7970 	struct ufsmount *ump;
7971 
7972 	ump = ITOUMP(ip);
7973 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7974 	    ("softdep_freefile called on non-softdep filesystem"));
7975 	/*
7976 	 * This sets up the inode de-allocation dependency.
7977 	 */
7978 	freefile = malloc(sizeof(struct freefile),
7979 		M_FREEFILE, M_SOFTDEP_FLAGS);
7980 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7981 	freefile->fx_mode = mode;
7982 	freefile->fx_oldinum = ino;
7983 	freefile->fx_devvp = ump->um_devvp;
7984 	LIST_INIT(&freefile->fx_jwork);
7985 	UFS_LOCK(ump);
7986 	ump->um_fs->fs_pendinginodes += 1;
7987 	UFS_UNLOCK(ump);
7988 
7989 	/*
7990 	 * If the inodedep does not exist, then the zero'ed inode has
7991 	 * been written to disk. If the allocated inode has never been
7992 	 * written to disk, then the on-disk inode is zero'ed. In either
7993 	 * case we can free the file immediately.  If the journal was
7994 	 * canceled before being written the inode will never make it to
7995 	 * disk and we must send the canceled journal entrys to
7996 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7997 	 * Any blocks waiting on the inode to write can be safely freed
7998 	 * here as it will never been written.
7999 	 */
8000 	ACQUIRE_LOCK(ump);
8001 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
8002 	if (inodedep) {
8003 		/*
8004 		 * Clear out freeblks that no longer need to reference
8005 		 * this inode.
8006 		 */
8007 		while ((freeblks =
8008 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
8009 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
8010 			    fb_next);
8011 			freeblks->fb_state &= ~ONDEPLIST;
8012 		}
8013 		/*
8014 		 * Remove this inode from the unlinked list.
8015 		 */
8016 		if (inodedep->id_state & UNLINKED) {
8017 			/*
8018 			 * Save the journal work to be freed with the bitmap
8019 			 * before we clear UNLINKED.  Otherwise it can be lost
8020 			 * if the inode block is written.
8021 			 */
8022 			handle_bufwait(inodedep, &freefile->fx_jwork);
8023 			clear_unlinked_inodedep(inodedep);
8024 			/*
8025 			 * Re-acquire inodedep as we've dropped the
8026 			 * per-filesystem lock in clear_unlinked_inodedep().
8027 			 */
8028 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
8029 		}
8030 	}
8031 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
8032 		FREE_LOCK(ump);
8033 		handle_workitem_freefile(freefile);
8034 		return;
8035 	}
8036 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
8037 		inodedep->id_state |= GOINGAWAY;
8038 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
8039 	FREE_LOCK(ump);
8040 	if (ip->i_number == ino)
8041 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
8042 }
8043 
8044 /*
8045  * Check to see if an inode has never been written to disk. If
8046  * so free the inodedep and return success, otherwise return failure.
8047  *
8048  * If we still have a bitmap dependency, then the inode has never
8049  * been written to disk. Drop the dependency as it is no longer
8050  * necessary since the inode is being deallocated. We set the
8051  * ALLCOMPLETE flags since the bitmap now properly shows that the
8052  * inode is not allocated. Even if the inode is actively being
8053  * written, it has been rolled back to its zero'ed state, so we
8054  * are ensured that a zero inode is what is on the disk. For short
8055  * lived files, this change will usually result in removing all the
8056  * dependencies from the inode so that it can be freed immediately.
8057  */
8058 static int
8059 check_inode_unwritten(inodedep)
8060 	struct inodedep *inodedep;
8061 {
8062 
8063 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8064 
8065 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
8066 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
8067 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
8068 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
8069 	    !LIST_EMPTY(&inodedep->id_inowait) ||
8070 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
8071 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
8072 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
8073 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
8074 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
8075 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
8076 	    inodedep->id_mkdiradd != NULL ||
8077 	    inodedep->id_nlinkdelta != 0)
8078 		return (0);
8079 	/*
8080 	 * Another process might be in initiate_write_inodeblock_ufs[12]
8081 	 * trying to allocate memory without holding "Softdep Lock".
8082 	 */
8083 	if ((inodedep->id_state & IOSTARTED) != 0 &&
8084 	    inodedep->id_savedino1 == NULL)
8085 		return (0);
8086 
8087 	if (inodedep->id_state & ONDEPLIST)
8088 		LIST_REMOVE(inodedep, id_deps);
8089 	inodedep->id_state &= ~ONDEPLIST;
8090 	inodedep->id_state |= ALLCOMPLETE;
8091 	inodedep->id_bmsafemap = NULL;
8092 	if (inodedep->id_state & ONWORKLIST)
8093 		WORKLIST_REMOVE(&inodedep->id_list);
8094 	if (inodedep->id_savedino1 != NULL) {
8095 		free(inodedep->id_savedino1, M_SAVEDINO);
8096 		inodedep->id_savedino1 = NULL;
8097 	}
8098 	if (free_inodedep(inodedep) == 0)
8099 		panic("check_inode_unwritten: busy inode");
8100 	return (1);
8101 }
8102 
8103 static int
8104 check_inodedep_free(inodedep)
8105 	struct inodedep *inodedep;
8106 {
8107 
8108 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8109 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
8110 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
8111 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
8112 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
8113 	    !LIST_EMPTY(&inodedep->id_inowait) ||
8114 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
8115 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
8116 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
8117 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
8118 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
8119 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
8120 	    inodedep->id_mkdiradd != NULL ||
8121 	    inodedep->id_nlinkdelta != 0 ||
8122 	    inodedep->id_savedino1 != NULL)
8123 		return (0);
8124 	return (1);
8125 }
8126 
8127 /*
8128  * Try to free an inodedep structure. Return 1 if it could be freed.
8129  */
8130 static int
8131 free_inodedep(inodedep)
8132 	struct inodedep *inodedep;
8133 {
8134 
8135 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8136 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
8137 	    !check_inodedep_free(inodedep))
8138 		return (0);
8139 	if (inodedep->id_state & ONDEPLIST)
8140 		LIST_REMOVE(inodedep, id_deps);
8141 	LIST_REMOVE(inodedep, id_hash);
8142 	WORKITEM_FREE(inodedep, D_INODEDEP);
8143 	return (1);
8144 }
8145 
8146 /*
8147  * Free the block referenced by a freework structure.  The parent freeblks
8148  * structure is released and completed when the final cg bitmap reaches
8149  * the disk.  This routine may be freeing a jnewblk which never made it to
8150  * disk in which case we do not have to wait as the operation is undone
8151  * in memory immediately.
8152  */
8153 static void
8154 freework_freeblock(freework, key)
8155 	struct freework *freework;
8156 	u_long key;
8157 {
8158 	struct freeblks *freeblks;
8159 	struct jnewblk *jnewblk;
8160 	struct ufsmount *ump;
8161 	struct workhead wkhd;
8162 	struct fs *fs;
8163 	int bsize;
8164 	int needj;
8165 
8166 	ump = VFSTOUFS(freework->fw_list.wk_mp);
8167 	LOCK_OWNED(ump);
8168 	/*
8169 	 * Handle partial truncate separately.
8170 	 */
8171 	if (freework->fw_indir) {
8172 		complete_trunc_indir(freework);
8173 		return;
8174 	}
8175 	freeblks = freework->fw_freeblks;
8176 	fs = ump->um_fs;
8177 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
8178 	bsize = lfragtosize(fs, freework->fw_frags);
8179 	LIST_INIT(&wkhd);
8180 	/*
8181 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
8182 	 * on the indirblk hashtable and prevents premature freeing.
8183 	 */
8184 	freework->fw_state |= DEPCOMPLETE;
8185 	/*
8186 	 * SUJ needs to wait for the segment referencing freed indirect
8187 	 * blocks to expire so that we know the checker will not confuse
8188 	 * a re-allocated indirect block with its old contents.
8189 	 */
8190 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
8191 		indirblk_insert(freework);
8192 	/*
8193 	 * If we are canceling an existing jnewblk pass it to the free
8194 	 * routine, otherwise pass the freeblk which will ultimately
8195 	 * release the freeblks.  If we're not journaling, we can just
8196 	 * free the freeblks immediately.
8197 	 */
8198 	jnewblk = freework->fw_jnewblk;
8199 	if (jnewblk != NULL) {
8200 		cancel_jnewblk(jnewblk, &wkhd);
8201 		needj = 0;
8202 	} else if (needj) {
8203 		freework->fw_state |= DELAYEDFREE;
8204 		freeblks->fb_cgwait++;
8205 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
8206 	}
8207 	FREE_LOCK(ump);
8208 	freeblks_free(ump, freeblks, btodb(bsize));
8209 	CTR4(KTR_SUJ,
8210 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8211 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8212 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8213 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8214 	ACQUIRE_LOCK(ump);
8215 	/*
8216 	 * The jnewblk will be discarded and the bits in the map never
8217 	 * made it to disk.  We can immediately free the freeblk.
8218 	 */
8219 	if (needj == 0)
8220 		handle_written_freework(freework);
8221 }
8222 
8223 /*
8224  * We enqueue freework items that need processing back on the freeblks and
8225  * add the freeblks to the worklist.  This makes it easier to find all work
8226  * required to flush a truncation in process_truncates().
8227  */
8228 static void
8229 freework_enqueue(freework)
8230 	struct freework *freework;
8231 {
8232 	struct freeblks *freeblks;
8233 
8234 	freeblks = freework->fw_freeblks;
8235 	if ((freework->fw_state & INPROGRESS) == 0)
8236 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8237 	if ((freeblks->fb_state &
8238 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8239 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
8240 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8241 }
8242 
8243 /*
8244  * Start, continue, or finish the process of freeing an indirect block tree.
8245  * The free operation may be paused at any point with fw_off containing the
8246  * offset to restart from.  This enables us to implement some flow control
8247  * for large truncates which may fan out and generate a huge number of
8248  * dependencies.
8249  */
8250 static void
8251 handle_workitem_indirblk(freework)
8252 	struct freework *freework;
8253 {
8254 	struct freeblks *freeblks;
8255 	struct ufsmount *ump;
8256 	struct fs *fs;
8257 
8258 	freeblks = freework->fw_freeblks;
8259 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8260 	fs = ump->um_fs;
8261 	if (freework->fw_state & DEPCOMPLETE) {
8262 		handle_written_freework(freework);
8263 		return;
8264 	}
8265 	if (freework->fw_off == NINDIR(fs)) {
8266 		freework_freeblock(freework, SINGLETON_KEY);
8267 		return;
8268 	}
8269 	freework->fw_state |= INPROGRESS;
8270 	FREE_LOCK(ump);
8271 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8272 	    freework->fw_lbn);
8273 	ACQUIRE_LOCK(ump);
8274 }
8275 
8276 /*
8277  * Called when a freework structure attached to a cg buf is written.  The
8278  * ref on either the parent or the freeblks structure is released and
8279  * the freeblks is added back to the worklist if there is more work to do.
8280  */
8281 static void
8282 handle_written_freework(freework)
8283 	struct freework *freework;
8284 {
8285 	struct freeblks *freeblks;
8286 	struct freework *parent;
8287 
8288 	freeblks = freework->fw_freeblks;
8289 	parent = freework->fw_parent;
8290 	if (freework->fw_state & DELAYEDFREE)
8291 		freeblks->fb_cgwait--;
8292 	freework->fw_state |= COMPLETE;
8293 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8294 		WORKITEM_FREE(freework, D_FREEWORK);
8295 	if (parent) {
8296 		if (--parent->fw_ref == 0)
8297 			freework_enqueue(parent);
8298 		return;
8299 	}
8300 	if (--freeblks->fb_ref != 0)
8301 		return;
8302 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8303 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8304 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8305 }
8306 
8307 /*
8308  * This workitem routine performs the block de-allocation.
8309  * The workitem is added to the pending list after the updated
8310  * inode block has been written to disk.  As mentioned above,
8311  * checks regarding the number of blocks de-allocated (compared
8312  * to the number of blocks allocated for the file) are also
8313  * performed in this function.
8314  */
8315 static int
8316 handle_workitem_freeblocks(freeblks, flags)
8317 	struct freeblks *freeblks;
8318 	int flags;
8319 {
8320 	struct freework *freework;
8321 	struct newblk *newblk;
8322 	struct allocindir *aip;
8323 	struct ufsmount *ump;
8324 	struct worklist *wk;
8325 	u_long key;
8326 
8327 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8328 	    ("handle_workitem_freeblocks: Journal entries not written."));
8329 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8330 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8331 	ACQUIRE_LOCK(ump);
8332 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8333 		WORKLIST_REMOVE(wk);
8334 		switch (wk->wk_type) {
8335 		case D_DIRREM:
8336 			wk->wk_state |= COMPLETE;
8337 			add_to_worklist(wk, 0);
8338 			continue;
8339 
8340 		case D_ALLOCDIRECT:
8341 			free_newblk(WK_NEWBLK(wk));
8342 			continue;
8343 
8344 		case D_ALLOCINDIR:
8345 			aip = WK_ALLOCINDIR(wk);
8346 			freework = NULL;
8347 			if (aip->ai_state & DELAYEDFREE) {
8348 				FREE_LOCK(ump);
8349 				freework = newfreework(ump, freeblks, NULL,
8350 				    aip->ai_lbn, aip->ai_newblkno,
8351 				    ump->um_fs->fs_frag, 0, 0);
8352 				ACQUIRE_LOCK(ump);
8353 			}
8354 			newblk = WK_NEWBLK(wk);
8355 			if (newblk->nb_jnewblk) {
8356 				freework->fw_jnewblk = newblk->nb_jnewblk;
8357 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8358 				newblk->nb_jnewblk = NULL;
8359 			}
8360 			free_newblk(newblk);
8361 			continue;
8362 
8363 		case D_FREEWORK:
8364 			freework = WK_FREEWORK(wk);
8365 			if (freework->fw_lbn <= -UFS_NDADDR)
8366 				handle_workitem_indirblk(freework);
8367 			else
8368 				freework_freeblock(freework, key);
8369 			continue;
8370 		default:
8371 			panic("handle_workitem_freeblocks: Unknown type %s",
8372 			    TYPENAME(wk->wk_type));
8373 		}
8374 	}
8375 	if (freeblks->fb_ref != 0) {
8376 		freeblks->fb_state &= ~INPROGRESS;
8377 		wake_worklist(&freeblks->fb_list);
8378 		freeblks = NULL;
8379 	}
8380 	FREE_LOCK(ump);
8381 	ffs_blkrelease_finish(ump, key);
8382 	if (freeblks)
8383 		return handle_complete_freeblocks(freeblks, flags);
8384 	return (0);
8385 }
8386 
8387 /*
8388  * Handle completion of block free via truncate.  This allows fs_pending
8389  * to track the actual free block count more closely than if we only updated
8390  * it at the end.  We must be careful to handle cases where the block count
8391  * on free was incorrect.
8392  */
8393 static void
8394 freeblks_free(ump, freeblks, blocks)
8395 	struct ufsmount *ump;
8396 	struct freeblks *freeblks;
8397 	int blocks;
8398 {
8399 	struct fs *fs;
8400 	ufs2_daddr_t remain;
8401 
8402 	UFS_LOCK(ump);
8403 	remain = -freeblks->fb_chkcnt;
8404 	freeblks->fb_chkcnt += blocks;
8405 	if (remain > 0) {
8406 		if (remain < blocks)
8407 			blocks = remain;
8408 		fs = ump->um_fs;
8409 		fs->fs_pendingblocks -= blocks;
8410 	}
8411 	UFS_UNLOCK(ump);
8412 }
8413 
8414 /*
8415  * Once all of the freework workitems are complete we can retire the
8416  * freeblocks dependency and any journal work awaiting completion.  This
8417  * can not be called until all other dependencies are stable on disk.
8418  */
8419 static int
8420 handle_complete_freeblocks(freeblks, flags)
8421 	struct freeblks *freeblks;
8422 	int flags;
8423 {
8424 	struct inodedep *inodedep;
8425 	struct inode *ip;
8426 	struct vnode *vp;
8427 	struct fs *fs;
8428 	struct ufsmount *ump;
8429 	ufs2_daddr_t spare;
8430 
8431 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8432 	fs = ump->um_fs;
8433 	flags = LK_EXCLUSIVE | flags;
8434 	spare = freeblks->fb_chkcnt;
8435 
8436 	/*
8437 	 * If we did not release the expected number of blocks we may have
8438 	 * to adjust the inode block count here.  Only do so if it wasn't
8439 	 * a truncation to zero and the modrev still matches.
8440 	 */
8441 	if (spare && freeblks->fb_len != 0) {
8442 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8443 		    flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8444 			return (EBUSY);
8445 		ip = VTOI(vp);
8446 		if (ip->i_mode == 0) {
8447 			vgone(vp);
8448 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8449 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8450 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8451 			/*
8452 			 * We must wait so this happens before the
8453 			 * journal is reclaimed.
8454 			 */
8455 			ffs_update(vp, 1);
8456 		}
8457 		vput(vp);
8458 	}
8459 	if (spare < 0) {
8460 		UFS_LOCK(ump);
8461 		fs->fs_pendingblocks += spare;
8462 		UFS_UNLOCK(ump);
8463 	}
8464 #ifdef QUOTA
8465 	/* Handle spare. */
8466 	if (spare)
8467 		quotaadj(freeblks->fb_quota, ump, -spare);
8468 	quotarele(freeblks->fb_quota);
8469 #endif
8470 	ACQUIRE_LOCK(ump);
8471 	if (freeblks->fb_state & ONDEPLIST) {
8472 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8473 		    0, &inodedep);
8474 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8475 		freeblks->fb_state &= ~ONDEPLIST;
8476 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8477 			free_inodedep(inodedep);
8478 	}
8479 	/*
8480 	 * All of the freeblock deps must be complete prior to this call
8481 	 * so it's now safe to complete earlier outstanding journal entries.
8482 	 */
8483 	handle_jwork(&freeblks->fb_jwork);
8484 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8485 	FREE_LOCK(ump);
8486 	return (0);
8487 }
8488 
8489 /*
8490  * Release blocks associated with the freeblks and stored in the indirect
8491  * block dbn. If level is greater than SINGLE, the block is an indirect block
8492  * and recursive calls to indirtrunc must be used to cleanse other indirect
8493  * blocks.
8494  *
8495  * This handles partial and complete truncation of blocks.  Partial is noted
8496  * with goingaway == 0.  In this case the freework is completed after the
8497  * zero'd indirects are written to disk.  For full truncation the freework
8498  * is completed after the block is freed.
8499  */
8500 static void
8501 indir_trunc(freework, dbn, lbn)
8502 	struct freework *freework;
8503 	ufs2_daddr_t dbn;
8504 	ufs_lbn_t lbn;
8505 {
8506 	struct freework *nfreework;
8507 	struct workhead wkhd;
8508 	struct freeblks *freeblks;
8509 	struct buf *bp;
8510 	struct fs *fs;
8511 	struct indirdep *indirdep;
8512 	struct mount *mp;
8513 	struct ufsmount *ump;
8514 	ufs1_daddr_t *bap1;
8515 	ufs2_daddr_t nb, nnb, *bap2;
8516 	ufs_lbn_t lbnadd, nlbn;
8517 	u_long key;
8518 	int nblocks, ufs1fmt, freedblocks;
8519 	int goingaway, freedeps, needj, level, cnt, i, error;
8520 
8521 	freeblks = freework->fw_freeblks;
8522 	mp = freeblks->fb_list.wk_mp;
8523 	ump = VFSTOUFS(mp);
8524 	fs = ump->um_fs;
8525 	/*
8526 	 * Get buffer of block pointers to be freed.  There are three cases:
8527 	 *
8528 	 * 1) Partial truncate caches the indirdep pointer in the freework
8529 	 *    which provides us a back copy to the save bp which holds the
8530 	 *    pointers we want to clear.  When this completes the zero
8531 	 *    pointers are written to the real copy.
8532 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8533 	 *    eliminated the real copy and placed the indirdep on the saved
8534 	 *    copy.  The indirdep and buf are discarded when this completes.
8535 	 * 3) The indirect was not in memory, we read a copy off of the disk
8536 	 *    using the devvp and drop and invalidate the buffer when we're
8537 	 *    done.
8538 	 */
8539 	goingaway = 1;
8540 	indirdep = NULL;
8541 	if (freework->fw_indir != NULL) {
8542 		goingaway = 0;
8543 		indirdep = freework->fw_indir;
8544 		bp = indirdep->ir_savebp;
8545 		if (bp == NULL || bp->b_blkno != dbn)
8546 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8547 			    bp, (intmax_t)dbn);
8548 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8549 		/*
8550 		 * The lock prevents the buf dep list from changing and
8551 	 	 * indirects on devvp should only ever have one dependency.
8552 		 */
8553 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8554 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8555 			panic("indir_trunc: Bad indirdep %p from buf %p",
8556 			    indirdep, bp);
8557 	} else {
8558 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8559 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8560 		if (error)
8561 			return;
8562 	}
8563 	ACQUIRE_LOCK(ump);
8564 	/* Protects against a race with complete_trunc_indir(). */
8565 	freework->fw_state &= ~INPROGRESS;
8566 	/*
8567 	 * If we have an indirdep we need to enforce the truncation order
8568 	 * and discard it when it is complete.
8569 	 */
8570 	if (indirdep) {
8571 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8572 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8573 			/*
8574 			 * Add the complete truncate to the list on the
8575 			 * indirdep to enforce in-order processing.
8576 			 */
8577 			if (freework->fw_indir == NULL)
8578 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8579 				    freework, fw_next);
8580 			FREE_LOCK(ump);
8581 			return;
8582 		}
8583 		/*
8584 		 * If we're goingaway, free the indirdep.  Otherwise it will
8585 		 * linger until the write completes.
8586 		 */
8587 		if (goingaway) {
8588 			KASSERT(indirdep->ir_savebp == bp,
8589 			    ("indir_trunc: losing ir_savebp %p",
8590 			    indirdep->ir_savebp));
8591 			indirdep->ir_savebp = NULL;
8592 			free_indirdep(indirdep);
8593 		}
8594 	}
8595 	FREE_LOCK(ump);
8596 	/* Initialize pointers depending on block size. */
8597 	if (ump->um_fstype == UFS1) {
8598 		bap1 = (ufs1_daddr_t *)bp->b_data;
8599 		nb = bap1[freework->fw_off];
8600 		ufs1fmt = 1;
8601 		bap2 = NULL;
8602 	} else {
8603 		bap2 = (ufs2_daddr_t *)bp->b_data;
8604 		nb = bap2[freework->fw_off];
8605 		ufs1fmt = 0;
8606 		bap1 = NULL;
8607 	}
8608 	level = lbn_level(lbn);
8609 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8610 	lbnadd = lbn_offset(fs, level);
8611 	nblocks = btodb(fs->fs_bsize);
8612 	nfreework = freework;
8613 	freedeps = 0;
8614 	cnt = 0;
8615 	/*
8616 	 * Reclaim blocks.  Traverses into nested indirect levels and
8617 	 * arranges for the current level to be freed when subordinates
8618 	 * are free when journaling.
8619 	 */
8620 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8621 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8622 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8623 		    fs->fs_bsize) != 0)
8624 			nb = 0;
8625 		if (i != NINDIR(fs) - 1) {
8626 			if (ufs1fmt)
8627 				nnb = bap1[i+1];
8628 			else
8629 				nnb = bap2[i+1];
8630 		} else
8631 			nnb = 0;
8632 		if (nb == 0)
8633 			continue;
8634 		cnt++;
8635 		if (level != 0) {
8636 			nlbn = (lbn + 1) - (i * lbnadd);
8637 			if (needj != 0) {
8638 				nfreework = newfreework(ump, freeblks, freework,
8639 				    nlbn, nb, fs->fs_frag, 0, 0);
8640 				freedeps++;
8641 			}
8642 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8643 		} else {
8644 			struct freedep *freedep;
8645 
8646 			/*
8647 			 * Attempt to aggregate freedep dependencies for
8648 			 * all blocks being released to the same CG.
8649 			 */
8650 			LIST_INIT(&wkhd);
8651 			if (needj != 0 &&
8652 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8653 				freedep = newfreedep(freework);
8654 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8655 				    &freedep->fd_list);
8656 				freedeps++;
8657 			}
8658 			CTR3(KTR_SUJ,
8659 			    "indir_trunc: ino %jd blkno %jd size %d",
8660 			    freeblks->fb_inum, nb, fs->fs_bsize);
8661 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8662 			    fs->fs_bsize, freeblks->fb_inum,
8663 			    freeblks->fb_vtype, &wkhd, key);
8664 		}
8665 	}
8666 	ffs_blkrelease_finish(ump, key);
8667 	if (goingaway) {
8668 		bp->b_flags |= B_INVAL | B_NOCACHE;
8669 		brelse(bp);
8670 	}
8671 	freedblocks = 0;
8672 	if (level == 0)
8673 		freedblocks = (nblocks * cnt);
8674 	if (needj == 0)
8675 		freedblocks += nblocks;
8676 	freeblks_free(ump, freeblks, freedblocks);
8677 	/*
8678 	 * If we are journaling set up the ref counts and offset so this
8679 	 * indirect can be completed when its children are free.
8680 	 */
8681 	if (needj) {
8682 		ACQUIRE_LOCK(ump);
8683 		freework->fw_off = i;
8684 		freework->fw_ref += freedeps;
8685 		freework->fw_ref -= NINDIR(fs) + 1;
8686 		if (level == 0)
8687 			freeblks->fb_cgwait += freedeps;
8688 		if (freework->fw_ref == 0)
8689 			freework_freeblock(freework, SINGLETON_KEY);
8690 		FREE_LOCK(ump);
8691 		return;
8692 	}
8693 	/*
8694 	 * If we're not journaling we can free the indirect now.
8695 	 */
8696 	dbn = dbtofsb(fs, dbn);
8697 	CTR3(KTR_SUJ,
8698 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8699 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8700 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8701 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8702 	/* Non SUJ softdep does single-threaded truncations. */
8703 	if (freework->fw_blkno == dbn) {
8704 		freework->fw_state |= ALLCOMPLETE;
8705 		ACQUIRE_LOCK(ump);
8706 		handle_written_freework(freework);
8707 		FREE_LOCK(ump);
8708 	}
8709 	return;
8710 }
8711 
8712 /*
8713  * Cancel an allocindir when it is removed via truncation.  When bp is not
8714  * NULL the indirect never appeared on disk and is scheduled to be freed
8715  * independently of the indir so we can more easily track journal work.
8716  */
8717 static void
8718 cancel_allocindir(aip, bp, freeblks, trunc)
8719 	struct allocindir *aip;
8720 	struct buf *bp;
8721 	struct freeblks *freeblks;
8722 	int trunc;
8723 {
8724 	struct indirdep *indirdep;
8725 	struct freefrag *freefrag;
8726 	struct newblk *newblk;
8727 
8728 	newblk = (struct newblk *)aip;
8729 	LIST_REMOVE(aip, ai_next);
8730 	/*
8731 	 * We must eliminate the pointer in bp if it must be freed on its
8732 	 * own due to partial truncate or pending journal work.
8733 	 */
8734 	if (bp && (trunc || newblk->nb_jnewblk)) {
8735 		/*
8736 		 * Clear the pointer and mark the aip to be freed
8737 		 * directly if it never existed on disk.
8738 		 */
8739 		aip->ai_state |= DELAYEDFREE;
8740 		indirdep = aip->ai_indirdep;
8741 		if (indirdep->ir_state & UFS1FMT)
8742 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8743 		else
8744 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8745 	}
8746 	/*
8747 	 * When truncating the previous pointer will be freed via
8748 	 * savedbp.  Eliminate the freefrag which would dup free.
8749 	 */
8750 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8751 		newblk->nb_freefrag = NULL;
8752 		if (freefrag->ff_jdep)
8753 			cancel_jfreefrag(
8754 			    WK_JFREEFRAG(freefrag->ff_jdep));
8755 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8756 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8757 	}
8758 	/*
8759 	 * If the journal hasn't been written the jnewblk must be passed
8760 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8761 	 * this by leaving the journal dependency on the newblk to be freed
8762 	 * when a freework is created in handle_workitem_freeblocks().
8763 	 */
8764 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8765 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8766 }
8767 
8768 /*
8769  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8770  * in to a newdirblk so any subsequent additions are tracked properly.  The
8771  * caller is responsible for adding the mkdir1 dependency to the journal
8772  * and updating id_mkdiradd.  This function returns with the per-filesystem
8773  * lock held.
8774  */
8775 static struct mkdir *
8776 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8777 	struct diradd *dap;
8778 	ino_t newinum;
8779 	ino_t dinum;
8780 	struct buf *newdirbp;
8781 	struct mkdir **mkdirp;
8782 {
8783 	struct newblk *newblk;
8784 	struct pagedep *pagedep;
8785 	struct inodedep *inodedep;
8786 	struct newdirblk *newdirblk;
8787 	struct mkdir *mkdir1, *mkdir2;
8788 	struct worklist *wk;
8789 	struct jaddref *jaddref;
8790 	struct ufsmount *ump;
8791 	struct mount *mp;
8792 
8793 	mp = dap->da_list.wk_mp;
8794 	ump = VFSTOUFS(mp);
8795 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8796 	    M_SOFTDEP_FLAGS);
8797 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8798 	LIST_INIT(&newdirblk->db_mkdir);
8799 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8800 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8801 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8802 	mkdir1->md_diradd = dap;
8803 	mkdir1->md_jaddref = NULL;
8804 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8805 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8806 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8807 	mkdir2->md_diradd = dap;
8808 	mkdir2->md_jaddref = NULL;
8809 	if (MOUNTEDSUJ(mp) == 0) {
8810 		mkdir1->md_state |= DEPCOMPLETE;
8811 		mkdir2->md_state |= DEPCOMPLETE;
8812 	}
8813 	/*
8814 	 * Dependency on "." and ".." being written to disk.
8815 	 */
8816 	mkdir1->md_buf = newdirbp;
8817 	ACQUIRE_LOCK(VFSTOUFS(mp));
8818 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8819 	/*
8820 	 * We must link the pagedep, allocdirect, and newdirblk for
8821 	 * the initial file page so the pointer to the new directory
8822 	 * is not written until the directory contents are live and
8823 	 * any subsequent additions are not marked live until the
8824 	 * block is reachable via the inode.
8825 	 */
8826 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8827 		panic("setup_newdir: lost pagedep");
8828 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8829 		if (wk->wk_type == D_ALLOCDIRECT)
8830 			break;
8831 	if (wk == NULL)
8832 		panic("setup_newdir: lost allocdirect");
8833 	if (pagedep->pd_state & NEWBLOCK)
8834 		panic("setup_newdir: NEWBLOCK already set");
8835 	newblk = WK_NEWBLK(wk);
8836 	pagedep->pd_state |= NEWBLOCK;
8837 	pagedep->pd_newdirblk = newdirblk;
8838 	newdirblk->db_pagedep = pagedep;
8839 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8840 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8841 	/*
8842 	 * Look up the inodedep for the parent directory so that we
8843 	 * can link mkdir2 into the pending dotdot jaddref or
8844 	 * the inode write if there is none.  If the inode is
8845 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8846 	 * been satisfied and mkdir2 can be freed.
8847 	 */
8848 	inodedep_lookup(mp, dinum, 0, &inodedep);
8849 	if (MOUNTEDSUJ(mp)) {
8850 		if (inodedep == NULL)
8851 			panic("setup_newdir: Lost parent.");
8852 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8853 		    inoreflst);
8854 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8855 		    (jaddref->ja_state & MKDIR_PARENT),
8856 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8857 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8858 		mkdir2->md_jaddref = jaddref;
8859 		jaddref->ja_mkdir = mkdir2;
8860 	} else if (inodedep == NULL ||
8861 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8862 		dap->da_state &= ~MKDIR_PARENT;
8863 		WORKITEM_FREE(mkdir2, D_MKDIR);
8864 		mkdir2 = NULL;
8865 	} else {
8866 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8867 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8868 	}
8869 	*mkdirp = mkdir2;
8870 
8871 	return (mkdir1);
8872 }
8873 
8874 /*
8875  * Directory entry addition dependencies.
8876  *
8877  * When adding a new directory entry, the inode (with its incremented link
8878  * count) must be written to disk before the directory entry's pointer to it.
8879  * Also, if the inode is newly allocated, the corresponding freemap must be
8880  * updated (on disk) before the directory entry's pointer. These requirements
8881  * are met via undo/redo on the directory entry's pointer, which consists
8882  * simply of the inode number.
8883  *
8884  * As directory entries are added and deleted, the free space within a
8885  * directory block can become fragmented.  The ufs filesystem will compact
8886  * a fragmented directory block to make space for a new entry. When this
8887  * occurs, the offsets of previously added entries change. Any "diradd"
8888  * dependency structures corresponding to these entries must be updated with
8889  * the new offsets.
8890  */
8891 
8892 /*
8893  * This routine is called after the in-memory inode's link
8894  * count has been incremented, but before the directory entry's
8895  * pointer to the inode has been set.
8896  */
8897 int
8898 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8899 	struct buf *bp;		/* buffer containing directory block */
8900 	struct inode *dp;	/* inode for directory */
8901 	off_t diroffset;	/* offset of new entry in directory */
8902 	ino_t newinum;		/* inode referenced by new directory entry */
8903 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8904 	int isnewblk;		/* entry is in a newly allocated block */
8905 {
8906 	int offset;		/* offset of new entry within directory block */
8907 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8908 	struct fs *fs;
8909 	struct diradd *dap;
8910 	struct newblk *newblk;
8911 	struct pagedep *pagedep;
8912 	struct inodedep *inodedep;
8913 	struct newdirblk *newdirblk;
8914 	struct mkdir *mkdir1, *mkdir2;
8915 	struct jaddref *jaddref;
8916 	struct ufsmount *ump;
8917 	struct mount *mp;
8918 	int isindir;
8919 
8920 	mp = ITOVFS(dp);
8921 	ump = VFSTOUFS(mp);
8922 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8923 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8924 	/*
8925 	 * Whiteouts have no dependencies.
8926 	 */
8927 	if (newinum == UFS_WINO) {
8928 		if (newdirbp != NULL)
8929 			bdwrite(newdirbp);
8930 		return (0);
8931 	}
8932 	jaddref = NULL;
8933 	mkdir1 = mkdir2 = NULL;
8934 	fs = ump->um_fs;
8935 	lbn = lblkno(fs, diroffset);
8936 	offset = blkoff(fs, diroffset);
8937 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8938 		M_SOFTDEP_FLAGS|M_ZERO);
8939 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8940 	dap->da_offset = offset;
8941 	dap->da_newinum = newinum;
8942 	dap->da_state = ATTACHED;
8943 	LIST_INIT(&dap->da_jwork);
8944 	isindir = bp->b_lblkno >= UFS_NDADDR;
8945 	newdirblk = NULL;
8946 	if (isnewblk &&
8947 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8948 		newdirblk = malloc(sizeof(struct newdirblk),
8949 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8950 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8951 		LIST_INIT(&newdirblk->db_mkdir);
8952 	}
8953 	/*
8954 	 * If we're creating a new directory setup the dependencies and set
8955 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8956 	 * we can move on.
8957 	 */
8958 	if (newdirbp == NULL) {
8959 		dap->da_state |= DEPCOMPLETE;
8960 		ACQUIRE_LOCK(ump);
8961 	} else {
8962 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8963 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8964 		    &mkdir2);
8965 	}
8966 	/*
8967 	 * Link into parent directory pagedep to await its being written.
8968 	 */
8969 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8970 #ifdef INVARIANTS
8971 	if (diradd_lookup(pagedep, offset) != NULL)
8972 		panic("softdep_setup_directory_add: %p already at off %d\n",
8973 		    diradd_lookup(pagedep, offset), offset);
8974 #endif
8975 	dap->da_pagedep = pagedep;
8976 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8977 	    da_pdlist);
8978 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8979 	/*
8980 	 * If we're journaling, link the diradd into the jaddref so it
8981 	 * may be completed after the journal entry is written.  Otherwise,
8982 	 * link the diradd into its inodedep.  If the inode is not yet
8983 	 * written place it on the bufwait list, otherwise do the post-inode
8984 	 * write processing to put it on the id_pendinghd list.
8985 	 */
8986 	if (MOUNTEDSUJ(mp)) {
8987 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8988 		    inoreflst);
8989 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8990 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8991 		jaddref->ja_diroff = diroffset;
8992 		jaddref->ja_diradd = dap;
8993 		add_to_journal(&jaddref->ja_list);
8994 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8995 		diradd_inode_written(dap, inodedep);
8996 	else
8997 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8998 	/*
8999 	 * Add the journal entries for . and .. links now that the primary
9000 	 * link is written.
9001 	 */
9002 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
9003 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
9004 		    inoreflst, if_deps);
9005 		KASSERT(jaddref != NULL &&
9006 		    jaddref->ja_ino == jaddref->ja_parent &&
9007 		    (jaddref->ja_state & MKDIR_BODY),
9008 		    ("softdep_setup_directory_add: bad dot jaddref %p",
9009 		    jaddref));
9010 		mkdir1->md_jaddref = jaddref;
9011 		jaddref->ja_mkdir = mkdir1;
9012 		/*
9013 		 * It is important that the dotdot journal entry
9014 		 * is added prior to the dot entry since dot writes
9015 		 * both the dot and dotdot links.  These both must
9016 		 * be added after the primary link for the journal
9017 		 * to remain consistent.
9018 		 */
9019 		add_to_journal(&mkdir2->md_jaddref->ja_list);
9020 		add_to_journal(&jaddref->ja_list);
9021 	}
9022 	/*
9023 	 * If we are adding a new directory remember this diradd so that if
9024 	 * we rename it we can keep the dot and dotdot dependencies.  If
9025 	 * we are adding a new name for an inode that has a mkdiradd we
9026 	 * must be in rename and we have to move the dot and dotdot
9027 	 * dependencies to this new name.  The old name is being orphaned
9028 	 * soon.
9029 	 */
9030 	if (mkdir1 != NULL) {
9031 		if (inodedep->id_mkdiradd != NULL)
9032 			panic("softdep_setup_directory_add: Existing mkdir");
9033 		inodedep->id_mkdiradd = dap;
9034 	} else if (inodedep->id_mkdiradd)
9035 		merge_diradd(inodedep, dap);
9036 	if (newdirblk != NULL) {
9037 		/*
9038 		 * There is nothing to do if we are already tracking
9039 		 * this block.
9040 		 */
9041 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
9042 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
9043 			FREE_LOCK(ump);
9044 			return (0);
9045 		}
9046 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
9047 		    == 0)
9048 			panic("softdep_setup_directory_add: lost entry");
9049 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
9050 		pagedep->pd_state |= NEWBLOCK;
9051 		pagedep->pd_newdirblk = newdirblk;
9052 		newdirblk->db_pagedep = pagedep;
9053 		FREE_LOCK(ump);
9054 		/*
9055 		 * If we extended into an indirect signal direnter to sync.
9056 		 */
9057 		if (isindir)
9058 			return (1);
9059 		return (0);
9060 	}
9061 	FREE_LOCK(ump);
9062 	return (0);
9063 }
9064 
9065 /*
9066  * This procedure is called to change the offset of a directory
9067  * entry when compacting a directory block which must be owned
9068  * exclusively by the caller. Note that the actual entry movement
9069  * must be done in this procedure to ensure that no I/O completions
9070  * occur while the move is in progress.
9071  */
9072 void
9073 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
9074 	struct buf *bp;		/* Buffer holding directory block. */
9075 	struct inode *dp;	/* inode for directory */
9076 	caddr_t base;		/* address of dp->i_offset */
9077 	caddr_t oldloc;		/* address of old directory location */
9078 	caddr_t newloc;		/* address of new directory location */
9079 	int entrysize;		/* size of directory entry */
9080 {
9081 	int offset, oldoffset, newoffset;
9082 	struct pagedep *pagedep;
9083 	struct jmvref *jmvref;
9084 	struct diradd *dap;
9085 	struct direct *de;
9086 	struct mount *mp;
9087 	struct ufsmount *ump;
9088 	ufs_lbn_t lbn;
9089 	int flags;
9090 
9091 	mp = ITOVFS(dp);
9092 	ump = VFSTOUFS(mp);
9093 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9094 	    ("softdep_change_directoryentry_offset called on "
9095 	     "non-softdep filesystem"));
9096 	de = (struct direct *)oldloc;
9097 	jmvref = NULL;
9098 	flags = 0;
9099 	/*
9100 	 * Moves are always journaled as it would be too complex to
9101 	 * determine if any affected adds or removes are present in the
9102 	 * journal.
9103 	 */
9104 	if (MOUNTEDSUJ(mp)) {
9105 		flags = DEPALLOC;
9106 		jmvref = newjmvref(dp, de->d_ino,
9107 		    I_OFFSET(dp) + (oldloc - base),
9108 		    I_OFFSET(dp) + (newloc - base));
9109 	}
9110 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9111 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9112 	oldoffset = offset + (oldloc - base);
9113 	newoffset = offset + (newloc - base);
9114 	ACQUIRE_LOCK(ump);
9115 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
9116 		goto done;
9117 	dap = diradd_lookup(pagedep, oldoffset);
9118 	if (dap) {
9119 		dap->da_offset = newoffset;
9120 		newoffset = DIRADDHASH(newoffset);
9121 		oldoffset = DIRADDHASH(oldoffset);
9122 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
9123 		    newoffset != oldoffset) {
9124 			LIST_REMOVE(dap, da_pdlist);
9125 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
9126 			    dap, da_pdlist);
9127 		}
9128 	}
9129 done:
9130 	if (jmvref) {
9131 		jmvref->jm_pagedep = pagedep;
9132 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
9133 		add_to_journal(&jmvref->jm_list);
9134 	}
9135 	bcopy(oldloc, newloc, entrysize);
9136 	FREE_LOCK(ump);
9137 }
9138 
9139 /*
9140  * Move the mkdir dependencies and journal work from one diradd to another
9141  * when renaming a directory.  The new name must depend on the mkdir deps
9142  * completing as the old name did.  Directories can only have one valid link
9143  * at a time so one must be canonical.
9144  */
9145 static void
9146 merge_diradd(inodedep, newdap)
9147 	struct inodedep *inodedep;
9148 	struct diradd *newdap;
9149 {
9150 	struct diradd *olddap;
9151 	struct mkdir *mkdir, *nextmd;
9152 	struct ufsmount *ump;
9153 	short state;
9154 
9155 	olddap = inodedep->id_mkdiradd;
9156 	inodedep->id_mkdiradd = newdap;
9157 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9158 		newdap->da_state &= ~DEPCOMPLETE;
9159 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
9160 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9161 		     mkdir = nextmd) {
9162 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9163 			if (mkdir->md_diradd != olddap)
9164 				continue;
9165 			mkdir->md_diradd = newdap;
9166 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
9167 			newdap->da_state |= state;
9168 			olddap->da_state &= ~state;
9169 			if ((olddap->da_state &
9170 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
9171 				break;
9172 		}
9173 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9174 			panic("merge_diradd: unfound ref");
9175 	}
9176 	/*
9177 	 * Any mkdir related journal items are not safe to be freed until
9178 	 * the new name is stable.
9179 	 */
9180 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
9181 	olddap->da_state |= DEPCOMPLETE;
9182 	complete_diradd(olddap);
9183 }
9184 
9185 /*
9186  * Move the diradd to the pending list when all diradd dependencies are
9187  * complete.
9188  */
9189 static void
9190 complete_diradd(dap)
9191 	struct diradd *dap;
9192 {
9193 	struct pagedep *pagedep;
9194 
9195 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
9196 		if (dap->da_state & DIRCHG)
9197 			pagedep = dap->da_previous->dm_pagedep;
9198 		else
9199 			pagedep = dap->da_pagedep;
9200 		LIST_REMOVE(dap, da_pdlist);
9201 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9202 	}
9203 }
9204 
9205 /*
9206  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
9207  * add entries and conditonally journal the remove.
9208  */
9209 static void
9210 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
9211 	struct diradd *dap;
9212 	struct dirrem *dirrem;
9213 	struct jremref *jremref;
9214 	struct jremref *dotremref;
9215 	struct jremref *dotdotremref;
9216 {
9217 	struct inodedep *inodedep;
9218 	struct jaddref *jaddref;
9219 	struct inoref *inoref;
9220 	struct ufsmount *ump;
9221 	struct mkdir *mkdir;
9222 
9223 	/*
9224 	 * If no remove references were allocated we're on a non-journaled
9225 	 * filesystem and can skip the cancel step.
9226 	 */
9227 	if (jremref == NULL) {
9228 		free_diradd(dap, NULL);
9229 		return;
9230 	}
9231 	/*
9232 	 * Cancel the primary name an free it if it does not require
9233 	 * journaling.
9234 	 */
9235 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9236 	    0, &inodedep) != 0) {
9237 		/* Abort the addref that reference this diradd.  */
9238 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9239 			if (inoref->if_list.wk_type != D_JADDREF)
9240 				continue;
9241 			jaddref = (struct jaddref *)inoref;
9242 			if (jaddref->ja_diradd != dap)
9243 				continue;
9244 			if (cancel_jaddref(jaddref, inodedep,
9245 			    &dirrem->dm_jwork) == 0) {
9246 				free_jremref(jremref);
9247 				jremref = NULL;
9248 			}
9249 			break;
9250 		}
9251 	}
9252 	/*
9253 	 * Cancel subordinate names and free them if they do not require
9254 	 * journaling.
9255 	 */
9256 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9257 		ump = VFSTOUFS(dap->da_list.wk_mp);
9258 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9259 			if (mkdir->md_diradd != dap)
9260 				continue;
9261 			if ((jaddref = mkdir->md_jaddref) == NULL)
9262 				continue;
9263 			mkdir->md_jaddref = NULL;
9264 			if (mkdir->md_state & MKDIR_PARENT) {
9265 				if (cancel_jaddref(jaddref, NULL,
9266 				    &dirrem->dm_jwork) == 0) {
9267 					free_jremref(dotdotremref);
9268 					dotdotremref = NULL;
9269 				}
9270 			} else {
9271 				if (cancel_jaddref(jaddref, inodedep,
9272 				    &dirrem->dm_jwork) == 0) {
9273 					free_jremref(dotremref);
9274 					dotremref = NULL;
9275 				}
9276 			}
9277 		}
9278 	}
9279 
9280 	if (jremref)
9281 		journal_jremref(dirrem, jremref, inodedep);
9282 	if (dotremref)
9283 		journal_jremref(dirrem, dotremref, inodedep);
9284 	if (dotdotremref)
9285 		journal_jremref(dirrem, dotdotremref, NULL);
9286 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9287 	free_diradd(dap, &dirrem->dm_jwork);
9288 }
9289 
9290 /*
9291  * Free a diradd dependency structure.
9292  */
9293 static void
9294 free_diradd(dap, wkhd)
9295 	struct diradd *dap;
9296 	struct workhead *wkhd;
9297 {
9298 	struct dirrem *dirrem;
9299 	struct pagedep *pagedep;
9300 	struct inodedep *inodedep;
9301 	struct mkdir *mkdir, *nextmd;
9302 	struct ufsmount *ump;
9303 
9304 	ump = VFSTOUFS(dap->da_list.wk_mp);
9305 	LOCK_OWNED(ump);
9306 	LIST_REMOVE(dap, da_pdlist);
9307 	if (dap->da_state & ONWORKLIST)
9308 		WORKLIST_REMOVE(&dap->da_list);
9309 	if ((dap->da_state & DIRCHG) == 0) {
9310 		pagedep = dap->da_pagedep;
9311 	} else {
9312 		dirrem = dap->da_previous;
9313 		pagedep = dirrem->dm_pagedep;
9314 		dirrem->dm_dirinum = pagedep->pd_ino;
9315 		dirrem->dm_state |= COMPLETE;
9316 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9317 			add_to_worklist(&dirrem->dm_list, 0);
9318 	}
9319 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9320 	    0, &inodedep) != 0)
9321 		if (inodedep->id_mkdiradd == dap)
9322 			inodedep->id_mkdiradd = NULL;
9323 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9324 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9325 		     mkdir = nextmd) {
9326 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9327 			if (mkdir->md_diradd != dap)
9328 				continue;
9329 			dap->da_state &=
9330 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9331 			LIST_REMOVE(mkdir, md_mkdirs);
9332 			if (mkdir->md_state & ONWORKLIST)
9333 				WORKLIST_REMOVE(&mkdir->md_list);
9334 			if (mkdir->md_jaddref != NULL)
9335 				panic("free_diradd: Unexpected jaddref");
9336 			WORKITEM_FREE(mkdir, D_MKDIR);
9337 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9338 				break;
9339 		}
9340 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9341 			panic("free_diradd: unfound ref");
9342 	}
9343 	if (inodedep)
9344 		free_inodedep(inodedep);
9345 	/*
9346 	 * Free any journal segments waiting for the directory write.
9347 	 */
9348 	handle_jwork(&dap->da_jwork);
9349 	WORKITEM_FREE(dap, D_DIRADD);
9350 }
9351 
9352 /*
9353  * Directory entry removal dependencies.
9354  *
9355  * When removing a directory entry, the entry's inode pointer must be
9356  * zero'ed on disk before the corresponding inode's link count is decremented
9357  * (possibly freeing the inode for re-use). This dependency is handled by
9358  * updating the directory entry but delaying the inode count reduction until
9359  * after the directory block has been written to disk. After this point, the
9360  * inode count can be decremented whenever it is convenient.
9361  */
9362 
9363 /*
9364  * This routine should be called immediately after removing
9365  * a directory entry.  The inode's link count should not be
9366  * decremented by the calling procedure -- the soft updates
9367  * code will do this task when it is safe.
9368  */
9369 void
9370 softdep_setup_remove(bp, dp, ip, isrmdir)
9371 	struct buf *bp;		/* buffer containing directory block */
9372 	struct inode *dp;	/* inode for the directory being modified */
9373 	struct inode *ip;	/* inode for directory entry being removed */
9374 	int isrmdir;		/* indicates if doing RMDIR */
9375 {
9376 	struct dirrem *dirrem, *prevdirrem;
9377 	struct inodedep *inodedep;
9378 	struct ufsmount *ump;
9379 	int direct;
9380 
9381 	ump = ITOUMP(ip);
9382 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9383 	    ("softdep_setup_remove called on non-softdep filesystem"));
9384 	/*
9385 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9386 	 * newdirrem() to setup the full directory remove which requires
9387 	 * isrmdir > 1.
9388 	 */
9389 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9390 	/*
9391 	 * Add the dirrem to the inodedep's pending remove list for quick
9392 	 * discovery later.
9393 	 */
9394 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9395 		panic("softdep_setup_remove: Lost inodedep.");
9396 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9397 	dirrem->dm_state |= ONDEPLIST;
9398 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9399 
9400 	/*
9401 	 * If the COMPLETE flag is clear, then there were no active
9402 	 * entries and we want to roll back to a zeroed entry until
9403 	 * the new inode is committed to disk. If the COMPLETE flag is
9404 	 * set then we have deleted an entry that never made it to
9405 	 * disk. If the entry we deleted resulted from a name change,
9406 	 * then the old name still resides on disk. We cannot delete
9407 	 * its inode (returned to us in prevdirrem) until the zeroed
9408 	 * directory entry gets to disk. The new inode has never been
9409 	 * referenced on the disk, so can be deleted immediately.
9410 	 */
9411 	if ((dirrem->dm_state & COMPLETE) == 0) {
9412 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9413 		    dm_next);
9414 		FREE_LOCK(ump);
9415 	} else {
9416 		if (prevdirrem != NULL)
9417 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9418 			    prevdirrem, dm_next);
9419 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9420 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9421 		FREE_LOCK(ump);
9422 		if (direct)
9423 			handle_workitem_remove(dirrem, 0);
9424 	}
9425 }
9426 
9427 /*
9428  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9429  * pd_pendinghd list of a pagedep.
9430  */
9431 static struct diradd *
9432 diradd_lookup(pagedep, offset)
9433 	struct pagedep *pagedep;
9434 	int offset;
9435 {
9436 	struct diradd *dap;
9437 
9438 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9439 		if (dap->da_offset == offset)
9440 			return (dap);
9441 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9442 		if (dap->da_offset == offset)
9443 			return (dap);
9444 	return (NULL);
9445 }
9446 
9447 /*
9448  * Search for a .. diradd dependency in a directory that is being removed.
9449  * If the directory was renamed to a new parent we have a diradd rather
9450  * than a mkdir for the .. entry.  We need to cancel it now before
9451  * it is found in truncate().
9452  */
9453 static struct jremref *
9454 cancel_diradd_dotdot(ip, dirrem, jremref)
9455 	struct inode *ip;
9456 	struct dirrem *dirrem;
9457 	struct jremref *jremref;
9458 {
9459 	struct pagedep *pagedep;
9460 	struct diradd *dap;
9461 	struct worklist *wk;
9462 
9463 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9464 		return (jremref);
9465 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9466 	if (dap == NULL)
9467 		return (jremref);
9468 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9469 	/*
9470 	 * Mark any journal work as belonging to the parent so it is freed
9471 	 * with the .. reference.
9472 	 */
9473 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9474 		wk->wk_state |= MKDIR_PARENT;
9475 	return (NULL);
9476 }
9477 
9478 /*
9479  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9480  * replace it with a dirrem/diradd pair as a result of re-parenting a
9481  * directory.  This ensures that we don't simultaneously have a mkdir and
9482  * a diradd for the same .. entry.
9483  */
9484 static struct jremref *
9485 cancel_mkdir_dotdot(ip, dirrem, jremref)
9486 	struct inode *ip;
9487 	struct dirrem *dirrem;
9488 	struct jremref *jremref;
9489 {
9490 	struct inodedep *inodedep;
9491 	struct jaddref *jaddref;
9492 	struct ufsmount *ump;
9493 	struct mkdir *mkdir;
9494 	struct diradd *dap;
9495 	struct mount *mp;
9496 
9497 	mp = ITOVFS(ip);
9498 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9499 		return (jremref);
9500 	dap = inodedep->id_mkdiradd;
9501 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9502 		return (jremref);
9503 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9504 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9505 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9506 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9507 			break;
9508 	if (mkdir == NULL)
9509 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9510 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9511 		mkdir->md_jaddref = NULL;
9512 		jaddref->ja_state &= ~MKDIR_PARENT;
9513 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9514 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9515 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9516 			journal_jremref(dirrem, jremref, inodedep);
9517 			jremref = NULL;
9518 		}
9519 	}
9520 	if (mkdir->md_state & ONWORKLIST)
9521 		WORKLIST_REMOVE(&mkdir->md_list);
9522 	mkdir->md_state |= ALLCOMPLETE;
9523 	complete_mkdir(mkdir);
9524 	return (jremref);
9525 }
9526 
9527 static void
9528 journal_jremref(dirrem, jremref, inodedep)
9529 	struct dirrem *dirrem;
9530 	struct jremref *jremref;
9531 	struct inodedep *inodedep;
9532 {
9533 
9534 	if (inodedep == NULL)
9535 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9536 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9537 			panic("journal_jremref: Lost inodedep");
9538 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9539 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9540 	add_to_journal(&jremref->jr_list);
9541 }
9542 
9543 static void
9544 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9545 	struct dirrem *dirrem;
9546 	struct jremref *jremref;
9547 	struct jremref *dotremref;
9548 	struct jremref *dotdotremref;
9549 {
9550 	struct inodedep *inodedep;
9551 
9552 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9553 	    &inodedep) == 0)
9554 		panic("dirrem_journal: Lost inodedep");
9555 	journal_jremref(dirrem, jremref, inodedep);
9556 	if (dotremref)
9557 		journal_jremref(dirrem, dotremref, inodedep);
9558 	if (dotdotremref)
9559 		journal_jremref(dirrem, dotdotremref, NULL);
9560 }
9561 
9562 /*
9563  * Allocate a new dirrem if appropriate and return it along with
9564  * its associated pagedep. Called without a lock, returns with lock.
9565  */
9566 static struct dirrem *
9567 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9568 	struct buf *bp;		/* buffer containing directory block */
9569 	struct inode *dp;	/* inode for the directory being modified */
9570 	struct inode *ip;	/* inode for directory entry being removed */
9571 	int isrmdir;		/* indicates if doing RMDIR */
9572 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9573 {
9574 	int offset;
9575 	ufs_lbn_t lbn;
9576 	struct diradd *dap;
9577 	struct dirrem *dirrem;
9578 	struct pagedep *pagedep;
9579 	struct jremref *jremref;
9580 	struct jremref *dotremref;
9581 	struct jremref *dotdotremref;
9582 	struct vnode *dvp;
9583 	struct ufsmount *ump;
9584 
9585 	/*
9586 	 * Whiteouts have no deletion dependencies.
9587 	 */
9588 	if (ip == NULL)
9589 		panic("newdirrem: whiteout");
9590 	dvp = ITOV(dp);
9591 	ump = ITOUMP(dp);
9592 
9593 	/*
9594 	 * If the system is over its limit and our filesystem is
9595 	 * responsible for more than our share of that usage and
9596 	 * we are not a snapshot, request some inodedep cleanup.
9597 	 * Limiting the number of dirrem structures will also limit
9598 	 * the number of freefile and freeblks structures.
9599 	 */
9600 	ACQUIRE_LOCK(ump);
9601 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9602 		schedule_cleanup(UFSTOVFS(ump));
9603 	else
9604 		FREE_LOCK(ump);
9605 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9606 	    M_ZERO);
9607 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9608 	LIST_INIT(&dirrem->dm_jremrefhd);
9609 	LIST_INIT(&dirrem->dm_jwork);
9610 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9611 	dirrem->dm_oldinum = ip->i_number;
9612 	*prevdirremp = NULL;
9613 	/*
9614 	 * Allocate remove reference structures to track journal write
9615 	 * dependencies.  We will always have one for the link and
9616 	 * when doing directories we will always have one more for dot.
9617 	 * When renaming a directory we skip the dotdot link change so
9618 	 * this is not needed.
9619 	 */
9620 	jremref = dotremref = dotdotremref = NULL;
9621 	if (DOINGSUJ(dvp)) {
9622 		if (isrmdir) {
9623 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9624 			    ip->i_effnlink + 2);
9625 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9626 			    ip->i_effnlink + 1);
9627 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9628 			    dp->i_effnlink + 1);
9629 			dotdotremref->jr_state |= MKDIR_PARENT;
9630 		} else
9631 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9632 			    ip->i_effnlink + 1);
9633 	}
9634 	ACQUIRE_LOCK(ump);
9635 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9636 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9637 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9638 	    &pagedep);
9639 	dirrem->dm_pagedep = pagedep;
9640 	dirrem->dm_offset = offset;
9641 	/*
9642 	 * If we're renaming a .. link to a new directory, cancel any
9643 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9644 	 * the jremref is preserved for any potential diradd in this
9645 	 * location.  This can not coincide with a rmdir.
9646 	 */
9647 	if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9648 		if (isrmdir)
9649 			panic("newdirrem: .. directory change during remove?");
9650 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9651 	}
9652 	/*
9653 	 * If we're removing a directory search for the .. dependency now and
9654 	 * cancel it.  Any pending journal work will be added to the dirrem
9655 	 * to be completed when the workitem remove completes.
9656 	 */
9657 	if (isrmdir)
9658 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9659 	/*
9660 	 * Check for a diradd dependency for the same directory entry.
9661 	 * If present, then both dependencies become obsolete and can
9662 	 * be de-allocated.
9663 	 */
9664 	dap = diradd_lookup(pagedep, offset);
9665 	if (dap == NULL) {
9666 		/*
9667 		 * Link the jremref structures into the dirrem so they are
9668 		 * written prior to the pagedep.
9669 		 */
9670 		if (jremref)
9671 			dirrem_journal(dirrem, jremref, dotremref,
9672 			    dotdotremref);
9673 		return (dirrem);
9674 	}
9675 	/*
9676 	 * Must be ATTACHED at this point.
9677 	 */
9678 	if ((dap->da_state & ATTACHED) == 0)
9679 		panic("newdirrem: not ATTACHED");
9680 	if (dap->da_newinum != ip->i_number)
9681 		panic("newdirrem: inum %ju should be %ju",
9682 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9683 	/*
9684 	 * If we are deleting a changed name that never made it to disk,
9685 	 * then return the dirrem describing the previous inode (which
9686 	 * represents the inode currently referenced from this entry on disk).
9687 	 */
9688 	if ((dap->da_state & DIRCHG) != 0) {
9689 		*prevdirremp = dap->da_previous;
9690 		dap->da_state &= ~DIRCHG;
9691 		dap->da_pagedep = pagedep;
9692 	}
9693 	/*
9694 	 * We are deleting an entry that never made it to disk.
9695 	 * Mark it COMPLETE so we can delete its inode immediately.
9696 	 */
9697 	dirrem->dm_state |= COMPLETE;
9698 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9699 #ifdef INVARIANTS
9700 	if (isrmdir == 0) {
9701 		struct worklist *wk;
9702 
9703 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9704 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9705 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9706 	}
9707 #endif
9708 
9709 	return (dirrem);
9710 }
9711 
9712 /*
9713  * Directory entry change dependencies.
9714  *
9715  * Changing an existing directory entry requires that an add operation
9716  * be completed first followed by a deletion. The semantics for the addition
9717  * are identical to the description of adding a new entry above except
9718  * that the rollback is to the old inode number rather than zero. Once
9719  * the addition dependency is completed, the removal is done as described
9720  * in the removal routine above.
9721  */
9722 
9723 /*
9724  * This routine should be called immediately after changing
9725  * a directory entry.  The inode's link count should not be
9726  * decremented by the calling procedure -- the soft updates
9727  * code will perform this task when it is safe.
9728  */
9729 void
9730 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9731 	struct buf *bp;		/* buffer containing directory block */
9732 	struct inode *dp;	/* inode for the directory being modified */
9733 	struct inode *ip;	/* inode for directory entry being removed */
9734 	ino_t newinum;		/* new inode number for changed entry */
9735 	int isrmdir;		/* indicates if doing RMDIR */
9736 {
9737 	int offset;
9738 	struct diradd *dap = NULL;
9739 	struct dirrem *dirrem, *prevdirrem;
9740 	struct pagedep *pagedep;
9741 	struct inodedep *inodedep;
9742 	struct jaddref *jaddref;
9743 	struct mount *mp;
9744 	struct ufsmount *ump;
9745 
9746 	mp = ITOVFS(dp);
9747 	ump = VFSTOUFS(mp);
9748 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9749 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9750 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9751 
9752 	/*
9753 	 * Whiteouts do not need diradd dependencies.
9754 	 */
9755 	if (newinum != UFS_WINO) {
9756 		dap = malloc(sizeof(struct diradd),
9757 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9758 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9759 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9760 		dap->da_offset = offset;
9761 		dap->da_newinum = newinum;
9762 		LIST_INIT(&dap->da_jwork);
9763 	}
9764 
9765 	/*
9766 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9767 	 */
9768 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9769 	pagedep = dirrem->dm_pagedep;
9770 	/*
9771 	 * The possible values for isrmdir:
9772 	 *	0 - non-directory file rename
9773 	 *	1 - directory rename within same directory
9774 	 *   inum - directory rename to new directory of given inode number
9775 	 * When renaming to a new directory, we are both deleting and
9776 	 * creating a new directory entry, so the link count on the new
9777 	 * directory should not change. Thus we do not need the followup
9778 	 * dirrem which is usually done in handle_workitem_remove. We set
9779 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9780 	 * followup dirrem.
9781 	 */
9782 	if (isrmdir > 1)
9783 		dirrem->dm_state |= DIRCHG;
9784 
9785 	/*
9786 	 * Whiteouts have no additional dependencies,
9787 	 * so just put the dirrem on the correct list.
9788 	 */
9789 	if (newinum == UFS_WINO) {
9790 		if ((dirrem->dm_state & COMPLETE) == 0) {
9791 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9792 			    dm_next);
9793 		} else {
9794 			dirrem->dm_dirinum = pagedep->pd_ino;
9795 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9796 				add_to_worklist(&dirrem->dm_list, 0);
9797 		}
9798 		FREE_LOCK(ump);
9799 		return;
9800 	}
9801 	/*
9802 	 * Add the dirrem to the inodedep's pending remove list for quick
9803 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9804 	 * will not fail.
9805 	 */
9806 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9807 		panic("softdep_setup_directory_change: Lost inodedep.");
9808 	dirrem->dm_state |= ONDEPLIST;
9809 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9810 
9811 	/*
9812 	 * If the COMPLETE flag is clear, then there were no active
9813 	 * entries and we want to roll back to the previous inode until
9814 	 * the new inode is committed to disk. If the COMPLETE flag is
9815 	 * set, then we have deleted an entry that never made it to disk.
9816 	 * If the entry we deleted resulted from a name change, then the old
9817 	 * inode reference still resides on disk. Any rollback that we do
9818 	 * needs to be to that old inode (returned to us in prevdirrem). If
9819 	 * the entry we deleted resulted from a create, then there is
9820 	 * no entry on the disk, so we want to roll back to zero rather
9821 	 * than the uncommitted inode. In either of the COMPLETE cases we
9822 	 * want to immediately free the unwritten and unreferenced inode.
9823 	 */
9824 	if ((dirrem->dm_state & COMPLETE) == 0) {
9825 		dap->da_previous = dirrem;
9826 	} else {
9827 		if (prevdirrem != NULL) {
9828 			dap->da_previous = prevdirrem;
9829 		} else {
9830 			dap->da_state &= ~DIRCHG;
9831 			dap->da_pagedep = pagedep;
9832 		}
9833 		dirrem->dm_dirinum = pagedep->pd_ino;
9834 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9835 			add_to_worklist(&dirrem->dm_list, 0);
9836 	}
9837 	/*
9838 	 * Lookup the jaddref for this journal entry.  We must finish
9839 	 * initializing it and make the diradd write dependent on it.
9840 	 * If we're not journaling, put it on the id_bufwait list if the
9841 	 * inode is not yet written. If it is written, do the post-inode
9842 	 * write processing to put it on the id_pendinghd list.
9843 	 */
9844 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9845 	if (MOUNTEDSUJ(mp)) {
9846 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9847 		    inoreflst);
9848 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9849 		    ("softdep_setup_directory_change: bad jaddref %p",
9850 		    jaddref));
9851 		jaddref->ja_diroff = I_OFFSET(dp);
9852 		jaddref->ja_diradd = dap;
9853 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9854 		    dap, da_pdlist);
9855 		add_to_journal(&jaddref->ja_list);
9856 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9857 		dap->da_state |= COMPLETE;
9858 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9859 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9860 	} else {
9861 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9862 		    dap, da_pdlist);
9863 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9864 	}
9865 	/*
9866 	 * If we're making a new name for a directory that has not been
9867 	 * committed when need to move the dot and dotdot references to
9868 	 * this new name.
9869 	 */
9870 	if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9871 		merge_diradd(inodedep, dap);
9872 	FREE_LOCK(ump);
9873 }
9874 
9875 /*
9876  * Called whenever the link count on an inode is changed.
9877  * It creates an inode dependency so that the new reference(s)
9878  * to the inode cannot be committed to disk until the updated
9879  * inode has been written.
9880  */
9881 void
9882 softdep_change_linkcnt(ip)
9883 	struct inode *ip;	/* the inode with the increased link count */
9884 {
9885 	struct inodedep *inodedep;
9886 	struct ufsmount *ump;
9887 
9888 	ump = ITOUMP(ip);
9889 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9890 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9891 	ACQUIRE_LOCK(ump);
9892 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9893 	if (ip->i_nlink < ip->i_effnlink)
9894 		panic("softdep_change_linkcnt: bad delta");
9895 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9896 	FREE_LOCK(ump);
9897 }
9898 
9899 /*
9900  * Attach a sbdep dependency to the superblock buf so that we can keep
9901  * track of the head of the linked list of referenced but unlinked inodes.
9902  */
9903 void
9904 softdep_setup_sbupdate(ump, fs, bp)
9905 	struct ufsmount *ump;
9906 	struct fs *fs;
9907 	struct buf *bp;
9908 {
9909 	struct sbdep *sbdep;
9910 	struct worklist *wk;
9911 
9912 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9913 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9914 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9915 		if (wk->wk_type == D_SBDEP)
9916 			break;
9917 	if (wk != NULL)
9918 		return;
9919 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9920 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9921 	sbdep->sb_fs = fs;
9922 	sbdep->sb_ump = ump;
9923 	ACQUIRE_LOCK(ump);
9924 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9925 	FREE_LOCK(ump);
9926 }
9927 
9928 /*
9929  * Return the first unlinked inodedep which is ready to be the head of the
9930  * list.  The inodedep and all those after it must have valid next pointers.
9931  */
9932 static struct inodedep *
9933 first_unlinked_inodedep(ump)
9934 	struct ufsmount *ump;
9935 {
9936 	struct inodedep *inodedep;
9937 	struct inodedep *idp;
9938 
9939 	LOCK_OWNED(ump);
9940 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9941 	    inodedep; inodedep = idp) {
9942 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9943 			return (NULL);
9944 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9945 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9946 			break;
9947 		if ((inodedep->id_state & UNLINKPREV) == 0)
9948 			break;
9949 	}
9950 	return (inodedep);
9951 }
9952 
9953 /*
9954  * Set the sujfree unlinked head pointer prior to writing a superblock.
9955  */
9956 static void
9957 initiate_write_sbdep(sbdep)
9958 	struct sbdep *sbdep;
9959 {
9960 	struct inodedep *inodedep;
9961 	struct fs *bpfs;
9962 	struct fs *fs;
9963 
9964 	bpfs = sbdep->sb_fs;
9965 	fs = sbdep->sb_ump->um_fs;
9966 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9967 	if (inodedep) {
9968 		fs->fs_sujfree = inodedep->id_ino;
9969 		inodedep->id_state |= UNLINKPREV;
9970 	} else
9971 		fs->fs_sujfree = 0;
9972 	bpfs->fs_sujfree = fs->fs_sujfree;
9973 	/*
9974 	 * Because we have made changes to the superblock, we need to
9975 	 * recompute its check-hash.
9976 	 */
9977 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9978 }
9979 
9980 /*
9981  * After a superblock is written determine whether it must be written again
9982  * due to a changing unlinked list head.
9983  */
9984 static int
9985 handle_written_sbdep(sbdep, bp)
9986 	struct sbdep *sbdep;
9987 	struct buf *bp;
9988 {
9989 	struct inodedep *inodedep;
9990 	struct fs *fs;
9991 
9992 	LOCK_OWNED(sbdep->sb_ump);
9993 	fs = sbdep->sb_fs;
9994 	/*
9995 	 * If the superblock doesn't match the in-memory list start over.
9996 	 */
9997 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9998 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9999 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
10000 		bdirty(bp);
10001 		return (1);
10002 	}
10003 	WORKITEM_FREE(sbdep, D_SBDEP);
10004 	if (fs->fs_sujfree == 0)
10005 		return (0);
10006 	/*
10007 	 * Now that we have a record of this inode in stable store allow it
10008 	 * to be written to free up pending work.  Inodes may see a lot of
10009 	 * write activity after they are unlinked which we must not hold up.
10010 	 */
10011 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
10012 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
10013 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
10014 			    inodedep, inodedep->id_state);
10015 		if (inodedep->id_state & UNLINKONLIST)
10016 			break;
10017 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
10018 	}
10019 
10020 	return (0);
10021 }
10022 
10023 /*
10024  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
10025  */
10026 static void
10027 unlinked_inodedep(mp, inodedep)
10028 	struct mount *mp;
10029 	struct inodedep *inodedep;
10030 {
10031 	struct ufsmount *ump;
10032 
10033 	ump = VFSTOUFS(mp);
10034 	LOCK_OWNED(ump);
10035 	if (MOUNTEDSUJ(mp) == 0)
10036 		return;
10037 	ump->um_fs->fs_fmod = 1;
10038 	if (inodedep->id_state & UNLINKED)
10039 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
10040 	inodedep->id_state |= UNLINKED;
10041 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
10042 }
10043 
10044 /*
10045  * Remove an inodedep from the unlinked inodedep list.  This may require
10046  * disk writes if the inode has made it that far.
10047  */
10048 static void
10049 clear_unlinked_inodedep(inodedep)
10050 	struct inodedep *inodedep;
10051 {
10052 	struct ufs2_dinode *dip;
10053 	struct ufsmount *ump;
10054 	struct inodedep *idp;
10055 	struct inodedep *idn;
10056 	struct fs *fs, *bpfs;
10057 	struct buf *bp;
10058 	daddr_t dbn;
10059 	ino_t ino;
10060 	ino_t nino;
10061 	ino_t pino;
10062 	int error;
10063 
10064 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10065 	fs = ump->um_fs;
10066 	ino = inodedep->id_ino;
10067 	error = 0;
10068 	for (;;) {
10069 		LOCK_OWNED(ump);
10070 		KASSERT((inodedep->id_state & UNLINKED) != 0,
10071 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
10072 		    inodedep));
10073 		/*
10074 		 * If nothing has yet been written simply remove us from
10075 		 * the in memory list and return.  This is the most common
10076 		 * case where handle_workitem_remove() loses the final
10077 		 * reference.
10078 		 */
10079 		if ((inodedep->id_state & UNLINKLINKS) == 0)
10080 			break;
10081 		/*
10082 		 * If we have a NEXT pointer and no PREV pointer we can simply
10083 		 * clear NEXT's PREV and remove ourselves from the list.  Be
10084 		 * careful not to clear PREV if the superblock points at
10085 		 * next as well.
10086 		 */
10087 		idn = TAILQ_NEXT(inodedep, id_unlinked);
10088 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
10089 			if (idn && fs->fs_sujfree != idn->id_ino)
10090 				idn->id_state &= ~UNLINKPREV;
10091 			break;
10092 		}
10093 		/*
10094 		 * Here we have an inodedep which is actually linked into
10095 		 * the list.  We must remove it by forcing a write to the
10096 		 * link before us, whether it be the superblock or an inode.
10097 		 * Unfortunately the list may change while we're waiting
10098 		 * on the buf lock for either resource so we must loop until
10099 		 * we lock the right one.  If both the superblock and an
10100 		 * inode point to this inode we must clear the inode first
10101 		 * followed by the superblock.
10102 		 */
10103 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
10104 		pino = 0;
10105 		if (idp && (idp->id_state & UNLINKNEXT))
10106 			pino = idp->id_ino;
10107 		FREE_LOCK(ump);
10108 		if (pino == 0) {
10109 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
10110 			    (int)fs->fs_sbsize, 0, 0, 0);
10111 		} else {
10112 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
10113 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
10114 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
10115 			    &bp);
10116 		}
10117 		ACQUIRE_LOCK(ump);
10118 		if (error)
10119 			break;
10120 		/* If the list has changed restart the loop. */
10121 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
10122 		nino = 0;
10123 		if (idp && (idp->id_state & UNLINKNEXT))
10124 			nino = idp->id_ino;
10125 		if (nino != pino ||
10126 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
10127 			FREE_LOCK(ump);
10128 			brelse(bp);
10129 			ACQUIRE_LOCK(ump);
10130 			continue;
10131 		}
10132 		nino = 0;
10133 		idn = TAILQ_NEXT(inodedep, id_unlinked);
10134 		if (idn)
10135 			nino = idn->id_ino;
10136 		/*
10137 		 * Remove us from the in memory list.  After this we cannot
10138 		 * access the inodedep.
10139 		 */
10140 		KASSERT((inodedep->id_state & UNLINKED) != 0,
10141 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
10142 		    inodedep));
10143 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
10144 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
10145 		FREE_LOCK(ump);
10146 		/*
10147 		 * The predecessor's next pointer is manually updated here
10148 		 * so that the NEXT flag is never cleared for an element
10149 		 * that is in the list.
10150 		 */
10151 		if (pino == 0) {
10152 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
10153 			bpfs = (struct fs *)bp->b_data;
10154 			ffs_oldfscompat_write(bpfs, ump);
10155 			softdep_setup_sbupdate(ump, bpfs, bp);
10156 			/*
10157 			 * Because we may have made changes to the superblock,
10158 			 * we need to recompute its check-hash.
10159 			 */
10160 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
10161 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
10162 			((struct ufs1_dinode *)bp->b_data +
10163 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
10164 		} else {
10165 			dip = (struct ufs2_dinode *)bp->b_data +
10166 			    ino_to_fsbo(fs, pino);
10167 			dip->di_freelink = nino;
10168 			ffs_update_dinode_ckhash(fs, dip);
10169 		}
10170 		/*
10171 		 * If the bwrite fails we have no recourse to recover.  The
10172 		 * filesystem is corrupted already.
10173 		 */
10174 		bwrite(bp);
10175 		ACQUIRE_LOCK(ump);
10176 		/*
10177 		 * If the superblock pointer still needs to be cleared force
10178 		 * a write here.
10179 		 */
10180 		if (fs->fs_sujfree == ino) {
10181 			FREE_LOCK(ump);
10182 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
10183 			    (int)fs->fs_sbsize, 0, 0, 0);
10184 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
10185 			bpfs = (struct fs *)bp->b_data;
10186 			ffs_oldfscompat_write(bpfs, ump);
10187 			softdep_setup_sbupdate(ump, bpfs, bp);
10188 			/*
10189 			 * Because we may have made changes to the superblock,
10190 			 * we need to recompute its check-hash.
10191 			 */
10192 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
10193 			bwrite(bp);
10194 			ACQUIRE_LOCK(ump);
10195 		}
10196 
10197 		if (fs->fs_sujfree != ino)
10198 			return;
10199 		panic("clear_unlinked_inodedep: Failed to clear free head");
10200 	}
10201 	if (inodedep->id_ino == fs->fs_sujfree)
10202 		panic("clear_unlinked_inodedep: Freeing head of free list");
10203 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
10204 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
10205 	return;
10206 }
10207 
10208 /*
10209  * This workitem decrements the inode's link count.
10210  * If the link count reaches zero, the file is removed.
10211  */
10212 static int
10213 handle_workitem_remove(dirrem, flags)
10214 	struct dirrem *dirrem;
10215 	int flags;
10216 {
10217 	struct inodedep *inodedep;
10218 	struct workhead dotdotwk;
10219 	struct worklist *wk;
10220 	struct ufsmount *ump;
10221 	struct mount *mp;
10222 	struct vnode *vp;
10223 	struct inode *ip;
10224 	ino_t oldinum;
10225 
10226 	if (dirrem->dm_state & ONWORKLIST)
10227 		panic("handle_workitem_remove: dirrem %p still on worklist",
10228 		    dirrem);
10229 	oldinum = dirrem->dm_oldinum;
10230 	mp = dirrem->dm_list.wk_mp;
10231 	ump = VFSTOUFS(mp);
10232 	flags |= LK_EXCLUSIVE;
10233 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10234 	    FFSV_FORCEINODEDEP) != 0)
10235 		return (EBUSY);
10236 	ip = VTOI(vp);
10237 	MPASS(ip->i_mode != 0);
10238 	ACQUIRE_LOCK(ump);
10239 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10240 		panic("handle_workitem_remove: lost inodedep");
10241 	if (dirrem->dm_state & ONDEPLIST)
10242 		LIST_REMOVE(dirrem, dm_inonext);
10243 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10244 	    ("handle_workitem_remove:  Journal entries not written."));
10245 
10246 	/*
10247 	 * Move all dependencies waiting on the remove to complete
10248 	 * from the dirrem to the inode inowait list to be completed
10249 	 * after the inode has been updated and written to disk.
10250 	 *
10251 	 * Any marked MKDIR_PARENT are saved to be completed when the
10252 	 * dotdot ref is removed unless DIRCHG is specified.  For
10253 	 * directory change operations there will be no further
10254 	 * directory writes and the jsegdeps need to be moved along
10255 	 * with the rest to be completed when the inode is free or
10256 	 * stable in the inode free list.
10257 	 */
10258 	LIST_INIT(&dotdotwk);
10259 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10260 		WORKLIST_REMOVE(wk);
10261 		if ((dirrem->dm_state & DIRCHG) == 0 &&
10262 		    wk->wk_state & MKDIR_PARENT) {
10263 			wk->wk_state &= ~MKDIR_PARENT;
10264 			WORKLIST_INSERT(&dotdotwk, wk);
10265 			continue;
10266 		}
10267 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
10268 	}
10269 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10270 	/*
10271 	 * Normal file deletion.
10272 	 */
10273 	if ((dirrem->dm_state & RMDIR) == 0) {
10274 		ip->i_nlink--;
10275 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10276 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10277 		    ip->i_nlink));
10278 		DIP_SET(ip, i_nlink, ip->i_nlink);
10279 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10280 		if (ip->i_nlink < ip->i_effnlink)
10281 			panic("handle_workitem_remove: bad file delta");
10282 		if (ip->i_nlink == 0)
10283 			unlinked_inodedep(mp, inodedep);
10284 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10285 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10286 		    ("handle_workitem_remove: worklist not empty. %s",
10287 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10288 		WORKITEM_FREE(dirrem, D_DIRREM);
10289 		FREE_LOCK(ump);
10290 		goto out;
10291 	}
10292 	/*
10293 	 * Directory deletion. Decrement reference count for both the
10294 	 * just deleted parent directory entry and the reference for ".".
10295 	 * Arrange to have the reference count on the parent decremented
10296 	 * to account for the loss of "..".
10297 	 */
10298 	ip->i_nlink -= 2;
10299 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10300 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10301 	DIP_SET(ip, i_nlink, ip->i_nlink);
10302 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10303 	if (ip->i_nlink < ip->i_effnlink)
10304 		panic("handle_workitem_remove: bad dir delta");
10305 	if (ip->i_nlink == 0)
10306 		unlinked_inodedep(mp, inodedep);
10307 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10308 	/*
10309 	 * Rename a directory to a new parent. Since, we are both deleting
10310 	 * and creating a new directory entry, the link count on the new
10311 	 * directory should not change. Thus we skip the followup dirrem.
10312 	 */
10313 	if (dirrem->dm_state & DIRCHG) {
10314 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10315 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
10316 		WORKITEM_FREE(dirrem, D_DIRREM);
10317 		FREE_LOCK(ump);
10318 		goto out;
10319 	}
10320 	dirrem->dm_state = ONDEPLIST;
10321 	dirrem->dm_oldinum = dirrem->dm_dirinum;
10322 	/*
10323 	 * Place the dirrem on the parent's diremhd list.
10324 	 */
10325 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10326 		panic("handle_workitem_remove: lost dir inodedep");
10327 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10328 	/*
10329 	 * If the allocated inode has never been written to disk, then
10330 	 * the on-disk inode is zero'ed and we can remove the file
10331 	 * immediately.  When journaling if the inode has been marked
10332 	 * unlinked and not DEPCOMPLETE we know it can never be written.
10333 	 */
10334 	inodedep_lookup(mp, oldinum, 0, &inodedep);
10335 	if (inodedep == NULL ||
10336 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10337 	    check_inode_unwritten(inodedep)) {
10338 		FREE_LOCK(ump);
10339 		vput(vp);
10340 		return handle_workitem_remove(dirrem, flags);
10341 	}
10342 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10343 	FREE_LOCK(ump);
10344 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10345 out:
10346 	ffs_update(vp, 0);
10347 	vput(vp);
10348 	return (0);
10349 }
10350 
10351 /*
10352  * Inode de-allocation dependencies.
10353  *
10354  * When an inode's link count is reduced to zero, it can be de-allocated. We
10355  * found it convenient to postpone de-allocation until after the inode is
10356  * written to disk with its new link count (zero).  At this point, all of the
10357  * on-disk inode's block pointers are nullified and, with careful dependency
10358  * list ordering, all dependencies related to the inode will be satisfied and
10359  * the corresponding dependency structures de-allocated.  So, if/when the
10360  * inode is reused, there will be no mixing of old dependencies with new
10361  * ones.  This artificial dependency is set up by the block de-allocation
10362  * procedure above (softdep_setup_freeblocks) and completed by the
10363  * following procedure.
10364  */
10365 static void
10366 handle_workitem_freefile(freefile)
10367 	struct freefile *freefile;
10368 {
10369 	struct workhead wkhd;
10370 	struct fs *fs;
10371 	struct ufsmount *ump;
10372 	int error;
10373 #ifdef INVARIANTS
10374 	struct inodedep *idp;
10375 #endif
10376 
10377 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10378 	fs = ump->um_fs;
10379 #ifdef INVARIANTS
10380 	ACQUIRE_LOCK(ump);
10381 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10382 	FREE_LOCK(ump);
10383 	if (error)
10384 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10385 #endif
10386 	UFS_LOCK(ump);
10387 	fs->fs_pendinginodes -= 1;
10388 	UFS_UNLOCK(ump);
10389 	LIST_INIT(&wkhd);
10390 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10391 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10392 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10393 		softdep_error("handle_workitem_freefile", error);
10394 	ACQUIRE_LOCK(ump);
10395 	WORKITEM_FREE(freefile, D_FREEFILE);
10396 	FREE_LOCK(ump);
10397 }
10398 
10399 /*
10400  * Helper function which unlinks marker element from work list and returns
10401  * the next element on the list.
10402  */
10403 static __inline struct worklist *
10404 markernext(struct worklist *marker)
10405 {
10406 	struct worklist *next;
10407 
10408 	next = LIST_NEXT(marker, wk_list);
10409 	LIST_REMOVE(marker, wk_list);
10410 	return next;
10411 }
10412 
10413 /*
10414  * Disk writes.
10415  *
10416  * The dependency structures constructed above are most actively used when file
10417  * system blocks are written to disk.  No constraints are placed on when a
10418  * block can be written, but unsatisfied update dependencies are made safe by
10419  * modifying (or replacing) the source memory for the duration of the disk
10420  * write.  When the disk write completes, the memory block is again brought
10421  * up-to-date.
10422  *
10423  * In-core inode structure reclamation.
10424  *
10425  * Because there are a finite number of "in-core" inode structures, they are
10426  * reused regularly.  By transferring all inode-related dependencies to the
10427  * in-memory inode block and indexing them separately (via "inodedep"s), we
10428  * can allow "in-core" inode structures to be reused at any time and avoid
10429  * any increase in contention.
10430  *
10431  * Called just before entering the device driver to initiate a new disk I/O.
10432  * The buffer must be locked, thus, no I/O completion operations can occur
10433  * while we are manipulating its associated dependencies.
10434  */
10435 static void
10436 softdep_disk_io_initiation(bp)
10437 	struct buf *bp;		/* structure describing disk write to occur */
10438 {
10439 	struct worklist *wk;
10440 	struct worklist marker;
10441 	struct inodedep *inodedep;
10442 	struct freeblks *freeblks;
10443 	struct jblkdep *jblkdep;
10444 	struct newblk *newblk;
10445 	struct ufsmount *ump;
10446 
10447 	/*
10448 	 * We only care about write operations. There should never
10449 	 * be dependencies for reads.
10450 	 */
10451 	if (bp->b_iocmd != BIO_WRITE)
10452 		panic("softdep_disk_io_initiation: not write");
10453 
10454 	if (bp->b_vflags & BV_BKGRDINPROG)
10455 		panic("softdep_disk_io_initiation: Writing buffer with "
10456 		    "background write in progress: %p", bp);
10457 
10458 	ump = softdep_bp_to_mp(bp);
10459 	if (ump == NULL)
10460 		return;
10461 
10462 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10463 	PHOLD(curproc);			/* Don't swap out kernel stack */
10464 	ACQUIRE_LOCK(ump);
10465 	/*
10466 	 * Do any necessary pre-I/O processing.
10467 	 */
10468 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10469 	     wk = markernext(&marker)) {
10470 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10471 		switch (wk->wk_type) {
10472 		case D_PAGEDEP:
10473 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10474 			continue;
10475 
10476 		case D_INODEDEP:
10477 			inodedep = WK_INODEDEP(wk);
10478 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10479 				initiate_write_inodeblock_ufs1(inodedep, bp);
10480 			else
10481 				initiate_write_inodeblock_ufs2(inodedep, bp);
10482 			continue;
10483 
10484 		case D_INDIRDEP:
10485 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10486 			continue;
10487 
10488 		case D_BMSAFEMAP:
10489 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10490 			continue;
10491 
10492 		case D_JSEG:
10493 			WK_JSEG(wk)->js_buf = NULL;
10494 			continue;
10495 
10496 		case D_FREEBLKS:
10497 			freeblks = WK_FREEBLKS(wk);
10498 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10499 			/*
10500 			 * We have to wait for the freeblks to be journaled
10501 			 * before we can write an inodeblock with updated
10502 			 * pointers.  Be careful to arrange the marker so
10503 			 * we revisit the freeblks if it's not removed by
10504 			 * the first jwait().
10505 			 */
10506 			if (jblkdep != NULL) {
10507 				LIST_REMOVE(&marker, wk_list);
10508 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10509 				jwait(&jblkdep->jb_list, MNT_WAIT);
10510 			}
10511 			continue;
10512 		case D_ALLOCDIRECT:
10513 		case D_ALLOCINDIR:
10514 			/*
10515 			 * We have to wait for the jnewblk to be journaled
10516 			 * before we can write to a block if the contents
10517 			 * may be confused with an earlier file's indirect
10518 			 * at recovery time.  Handle the marker as described
10519 			 * above.
10520 			 */
10521 			newblk = WK_NEWBLK(wk);
10522 			if (newblk->nb_jnewblk != NULL &&
10523 			    indirblk_lookup(newblk->nb_list.wk_mp,
10524 			    newblk->nb_newblkno)) {
10525 				LIST_REMOVE(&marker, wk_list);
10526 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10527 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10528 			}
10529 			continue;
10530 
10531 		case D_SBDEP:
10532 			initiate_write_sbdep(WK_SBDEP(wk));
10533 			continue;
10534 
10535 		case D_MKDIR:
10536 		case D_FREEWORK:
10537 		case D_FREEDEP:
10538 		case D_JSEGDEP:
10539 			continue;
10540 
10541 		default:
10542 			panic("handle_disk_io_initiation: Unexpected type %s",
10543 			    TYPENAME(wk->wk_type));
10544 			/* NOTREACHED */
10545 		}
10546 	}
10547 	FREE_LOCK(ump);
10548 	PRELE(curproc);			/* Allow swapout of kernel stack */
10549 }
10550 
10551 /*
10552  * Called from within the procedure above to deal with unsatisfied
10553  * allocation dependencies in a directory. The buffer must be locked,
10554  * thus, no I/O completion operations can occur while we are
10555  * manipulating its associated dependencies.
10556  */
10557 static void
10558 initiate_write_filepage(pagedep, bp)
10559 	struct pagedep *pagedep;
10560 	struct buf *bp;
10561 {
10562 	struct jremref *jremref;
10563 	struct jmvref *jmvref;
10564 	struct dirrem *dirrem;
10565 	struct diradd *dap;
10566 	struct direct *ep;
10567 	int i;
10568 
10569 	if (pagedep->pd_state & IOSTARTED) {
10570 		/*
10571 		 * This can only happen if there is a driver that does not
10572 		 * understand chaining. Here biodone will reissue the call
10573 		 * to strategy for the incomplete buffers.
10574 		 */
10575 		printf("initiate_write_filepage: already started\n");
10576 		return;
10577 	}
10578 	pagedep->pd_state |= IOSTARTED;
10579 	/*
10580 	 * Wait for all journal remove dependencies to hit the disk.
10581 	 * We can not allow any potentially conflicting directory adds
10582 	 * to be visible before removes and rollback is too difficult.
10583 	 * The per-filesystem lock may be dropped and re-acquired, however
10584 	 * we hold the buf locked so the dependency can not go away.
10585 	 */
10586 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10587 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10588 			jwait(&jremref->jr_list, MNT_WAIT);
10589 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10590 		jwait(&jmvref->jm_list, MNT_WAIT);
10591 	for (i = 0; i < DAHASHSZ; i++) {
10592 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10593 			ep = (struct direct *)
10594 			    ((char *)bp->b_data + dap->da_offset);
10595 			if (ep->d_ino != dap->da_newinum)
10596 				panic("%s: dir inum %ju != new %ju",
10597 				    "initiate_write_filepage",
10598 				    (uintmax_t)ep->d_ino,
10599 				    (uintmax_t)dap->da_newinum);
10600 			if (dap->da_state & DIRCHG)
10601 				ep->d_ino = dap->da_previous->dm_oldinum;
10602 			else
10603 				ep->d_ino = 0;
10604 			dap->da_state &= ~ATTACHED;
10605 			dap->da_state |= UNDONE;
10606 		}
10607 	}
10608 }
10609 
10610 /*
10611  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10612  * Note that any bug fixes made to this routine must be done in the
10613  * version found below.
10614  *
10615  * Called from within the procedure above to deal with unsatisfied
10616  * allocation dependencies in an inodeblock. The buffer must be
10617  * locked, thus, no I/O completion operations can occur while we
10618  * are manipulating its associated dependencies.
10619  */
10620 static void
10621 initiate_write_inodeblock_ufs1(inodedep, bp)
10622 	struct inodedep *inodedep;
10623 	struct buf *bp;			/* The inode block */
10624 {
10625 	struct allocdirect *adp, *lastadp;
10626 	struct ufs1_dinode *dp;
10627 	struct ufs1_dinode *sip;
10628 	struct inoref *inoref;
10629 	struct ufsmount *ump;
10630 	struct fs *fs;
10631 	ufs_lbn_t i;
10632 #ifdef INVARIANTS
10633 	ufs_lbn_t prevlbn = 0;
10634 #endif
10635 	int deplist;
10636 
10637 	if (inodedep->id_state & IOSTARTED)
10638 		panic("initiate_write_inodeblock_ufs1: already started");
10639 	inodedep->id_state |= IOSTARTED;
10640 	fs = inodedep->id_fs;
10641 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10642 	LOCK_OWNED(ump);
10643 	dp = (struct ufs1_dinode *)bp->b_data +
10644 	    ino_to_fsbo(fs, inodedep->id_ino);
10645 
10646 	/*
10647 	 * If we're on the unlinked list but have not yet written our
10648 	 * next pointer initialize it here.
10649 	 */
10650 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10651 		struct inodedep *inon;
10652 
10653 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10654 		dp->di_freelink = inon ? inon->id_ino : 0;
10655 	}
10656 	/*
10657 	 * If the bitmap is not yet written, then the allocated
10658 	 * inode cannot be written to disk.
10659 	 */
10660 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10661 		if (inodedep->id_savedino1 != NULL)
10662 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10663 		FREE_LOCK(ump);
10664 		sip = malloc(sizeof(struct ufs1_dinode),
10665 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10666 		ACQUIRE_LOCK(ump);
10667 		inodedep->id_savedino1 = sip;
10668 		*inodedep->id_savedino1 = *dp;
10669 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10670 		dp->di_gen = inodedep->id_savedino1->di_gen;
10671 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10672 		return;
10673 	}
10674 	/*
10675 	 * If no dependencies, then there is nothing to roll back.
10676 	 */
10677 	inodedep->id_savedsize = dp->di_size;
10678 	inodedep->id_savedextsize = 0;
10679 	inodedep->id_savednlink = dp->di_nlink;
10680 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10681 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10682 		return;
10683 	/*
10684 	 * Revert the link count to that of the first unwritten journal entry.
10685 	 */
10686 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10687 	if (inoref)
10688 		dp->di_nlink = inoref->if_nlink;
10689 	/*
10690 	 * Set the dependencies to busy.
10691 	 */
10692 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10693 	     adp = TAILQ_NEXT(adp, ad_next)) {
10694 #ifdef INVARIANTS
10695 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10696 			panic("softdep_write_inodeblock: lbn order");
10697 		prevlbn = adp->ad_offset;
10698 		if (adp->ad_offset < UFS_NDADDR &&
10699 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10700 			panic("initiate_write_inodeblock_ufs1: "
10701 			    "direct pointer #%jd mismatch %d != %jd",
10702 			    (intmax_t)adp->ad_offset,
10703 			    dp->di_db[adp->ad_offset],
10704 			    (intmax_t)adp->ad_newblkno);
10705 		if (adp->ad_offset >= UFS_NDADDR &&
10706 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10707 			panic("initiate_write_inodeblock_ufs1: "
10708 			    "indirect pointer #%jd mismatch %d != %jd",
10709 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10710 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10711 			    (intmax_t)adp->ad_newblkno);
10712 		deplist |= 1 << adp->ad_offset;
10713 		if ((adp->ad_state & ATTACHED) == 0)
10714 			panic("initiate_write_inodeblock_ufs1: "
10715 			    "Unknown state 0x%x", adp->ad_state);
10716 #endif /* INVARIANTS */
10717 		adp->ad_state &= ~ATTACHED;
10718 		adp->ad_state |= UNDONE;
10719 	}
10720 	/*
10721 	 * The on-disk inode cannot claim to be any larger than the last
10722 	 * fragment that has been written. Otherwise, the on-disk inode
10723 	 * might have fragments that were not the last block in the file
10724 	 * which would corrupt the filesystem.
10725 	 */
10726 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10727 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10728 		if (adp->ad_offset >= UFS_NDADDR)
10729 			break;
10730 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10731 		/* keep going until hitting a rollback to a frag */
10732 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10733 			continue;
10734 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10735 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10736 #ifdef INVARIANTS
10737 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10738 				panic("initiate_write_inodeblock_ufs1: "
10739 				    "lost dep1");
10740 #endif /* INVARIANTS */
10741 			dp->di_db[i] = 0;
10742 		}
10743 		for (i = 0; i < UFS_NIADDR; i++) {
10744 #ifdef INVARIANTS
10745 			if (dp->di_ib[i] != 0 &&
10746 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10747 				panic("initiate_write_inodeblock_ufs1: "
10748 				    "lost dep2");
10749 #endif /* INVARIANTS */
10750 			dp->di_ib[i] = 0;
10751 		}
10752 		return;
10753 	}
10754 	/*
10755 	 * If we have zero'ed out the last allocated block of the file,
10756 	 * roll back the size to the last currently allocated block.
10757 	 * We know that this last allocated block is a full-sized as
10758 	 * we already checked for fragments in the loop above.
10759 	 */
10760 	if (lastadp != NULL &&
10761 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10762 		for (i = lastadp->ad_offset; i >= 0; i--)
10763 			if (dp->di_db[i] != 0)
10764 				break;
10765 		dp->di_size = (i + 1) * fs->fs_bsize;
10766 	}
10767 	/*
10768 	 * The only dependencies are for indirect blocks.
10769 	 *
10770 	 * The file size for indirect block additions is not guaranteed.
10771 	 * Such a guarantee would be non-trivial to achieve. The conventional
10772 	 * synchronous write implementation also does not make this guarantee.
10773 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10774 	 * can be over-estimated without destroying integrity when the file
10775 	 * moves into the indirect blocks (i.e., is large). If we want to
10776 	 * postpone fsck, we are stuck with this argument.
10777 	 */
10778 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10779 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10780 }
10781 
10782 /*
10783  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10784  * Note that any bug fixes made to this routine must be done in the
10785  * version found above.
10786  *
10787  * Called from within the procedure above to deal with unsatisfied
10788  * allocation dependencies in an inodeblock. The buffer must be
10789  * locked, thus, no I/O completion operations can occur while we
10790  * are manipulating its associated dependencies.
10791  */
10792 static void
10793 initiate_write_inodeblock_ufs2(inodedep, bp)
10794 	struct inodedep *inodedep;
10795 	struct buf *bp;			/* The inode block */
10796 {
10797 	struct allocdirect *adp, *lastadp;
10798 	struct ufs2_dinode *dp;
10799 	struct ufs2_dinode *sip;
10800 	struct inoref *inoref;
10801 	struct ufsmount *ump;
10802 	struct fs *fs;
10803 	ufs_lbn_t i;
10804 #ifdef INVARIANTS
10805 	ufs_lbn_t prevlbn = 0;
10806 #endif
10807 	int deplist;
10808 
10809 	if (inodedep->id_state & IOSTARTED)
10810 		panic("initiate_write_inodeblock_ufs2: already started");
10811 	inodedep->id_state |= IOSTARTED;
10812 	fs = inodedep->id_fs;
10813 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10814 	LOCK_OWNED(ump);
10815 	dp = (struct ufs2_dinode *)bp->b_data +
10816 	    ino_to_fsbo(fs, inodedep->id_ino);
10817 
10818 	/*
10819 	 * If we're on the unlinked list but have not yet written our
10820 	 * next pointer initialize it here.
10821 	 */
10822 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10823 		struct inodedep *inon;
10824 
10825 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10826 		dp->di_freelink = inon ? inon->id_ino : 0;
10827 		ffs_update_dinode_ckhash(fs, dp);
10828 	}
10829 	/*
10830 	 * If the bitmap is not yet written, then the allocated
10831 	 * inode cannot be written to disk.
10832 	 */
10833 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10834 		if (inodedep->id_savedino2 != NULL)
10835 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10836 		FREE_LOCK(ump);
10837 		sip = malloc(sizeof(struct ufs2_dinode),
10838 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10839 		ACQUIRE_LOCK(ump);
10840 		inodedep->id_savedino2 = sip;
10841 		*inodedep->id_savedino2 = *dp;
10842 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10843 		dp->di_gen = inodedep->id_savedino2->di_gen;
10844 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10845 		return;
10846 	}
10847 	/*
10848 	 * If no dependencies, then there is nothing to roll back.
10849 	 */
10850 	inodedep->id_savedsize = dp->di_size;
10851 	inodedep->id_savedextsize = dp->di_extsize;
10852 	inodedep->id_savednlink = dp->di_nlink;
10853 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10854 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10855 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10856 		return;
10857 	/*
10858 	 * Revert the link count to that of the first unwritten journal entry.
10859 	 */
10860 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10861 	if (inoref)
10862 		dp->di_nlink = inoref->if_nlink;
10863 
10864 	/*
10865 	 * Set the ext data dependencies to busy.
10866 	 */
10867 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10868 	     adp = TAILQ_NEXT(adp, ad_next)) {
10869 #ifdef INVARIANTS
10870 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10871 			panic("initiate_write_inodeblock_ufs2: lbn order");
10872 		prevlbn = adp->ad_offset;
10873 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10874 			panic("initiate_write_inodeblock_ufs2: "
10875 			    "ext pointer #%jd mismatch %jd != %jd",
10876 			    (intmax_t)adp->ad_offset,
10877 			    (intmax_t)dp->di_extb[adp->ad_offset],
10878 			    (intmax_t)adp->ad_newblkno);
10879 		deplist |= 1 << adp->ad_offset;
10880 		if ((adp->ad_state & ATTACHED) == 0)
10881 			panic("initiate_write_inodeblock_ufs2: Unknown "
10882 			    "state 0x%x", adp->ad_state);
10883 #endif /* INVARIANTS */
10884 		adp->ad_state &= ~ATTACHED;
10885 		adp->ad_state |= UNDONE;
10886 	}
10887 	/*
10888 	 * The on-disk inode cannot claim to be any larger than the last
10889 	 * fragment that has been written. Otherwise, the on-disk inode
10890 	 * might have fragments that were not the last block in the ext
10891 	 * data which would corrupt the filesystem.
10892 	 */
10893 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10894 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10895 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10896 		/* keep going until hitting a rollback to a frag */
10897 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10898 			continue;
10899 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10900 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10901 #ifdef INVARIANTS
10902 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10903 				panic("initiate_write_inodeblock_ufs2: "
10904 				    "lost dep1");
10905 #endif /* INVARIANTS */
10906 			dp->di_extb[i] = 0;
10907 		}
10908 		lastadp = NULL;
10909 		break;
10910 	}
10911 	/*
10912 	 * If we have zero'ed out the last allocated block of the ext
10913 	 * data, roll back the size to the last currently allocated block.
10914 	 * We know that this last allocated block is a full-sized as
10915 	 * we already checked for fragments in the loop above.
10916 	 */
10917 	if (lastadp != NULL &&
10918 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10919 		for (i = lastadp->ad_offset; i >= 0; i--)
10920 			if (dp->di_extb[i] != 0)
10921 				break;
10922 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10923 	}
10924 	/*
10925 	 * Set the file data dependencies to busy.
10926 	 */
10927 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10928 	     adp = TAILQ_NEXT(adp, ad_next)) {
10929 #ifdef INVARIANTS
10930 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10931 			panic("softdep_write_inodeblock: lbn order");
10932 		if ((adp->ad_state & ATTACHED) == 0)
10933 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10934 		prevlbn = adp->ad_offset;
10935 		if (!ffs_fsfail_cleanup(ump, 0) &&
10936 		    adp->ad_offset < UFS_NDADDR &&
10937 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10938 			panic("initiate_write_inodeblock_ufs2: "
10939 			    "direct pointer #%jd mismatch %jd != %jd",
10940 			    (intmax_t)adp->ad_offset,
10941 			    (intmax_t)dp->di_db[adp->ad_offset],
10942 			    (intmax_t)adp->ad_newblkno);
10943 		if (!ffs_fsfail_cleanup(ump, 0) &&
10944 		    adp->ad_offset >= UFS_NDADDR &&
10945 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10946 			panic("initiate_write_inodeblock_ufs2: "
10947 			    "indirect pointer #%jd mismatch %jd != %jd",
10948 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10949 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10950 			    (intmax_t)adp->ad_newblkno);
10951 		deplist |= 1 << adp->ad_offset;
10952 		if ((adp->ad_state & ATTACHED) == 0)
10953 			panic("initiate_write_inodeblock_ufs2: Unknown "
10954 			     "state 0x%x", adp->ad_state);
10955 #endif /* INVARIANTS */
10956 		adp->ad_state &= ~ATTACHED;
10957 		adp->ad_state |= UNDONE;
10958 	}
10959 	/*
10960 	 * The on-disk inode cannot claim to be any larger than the last
10961 	 * fragment that has been written. Otherwise, the on-disk inode
10962 	 * might have fragments that were not the last block in the file
10963 	 * which would corrupt the filesystem.
10964 	 */
10965 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10966 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10967 		if (adp->ad_offset >= UFS_NDADDR)
10968 			break;
10969 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10970 		/* keep going until hitting a rollback to a frag */
10971 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10972 			continue;
10973 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10974 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10975 #ifdef INVARIANTS
10976 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10977 				panic("initiate_write_inodeblock_ufs2: "
10978 				    "lost dep2");
10979 #endif /* INVARIANTS */
10980 			dp->di_db[i] = 0;
10981 		}
10982 		for (i = 0; i < UFS_NIADDR; i++) {
10983 #ifdef INVARIANTS
10984 			if (dp->di_ib[i] != 0 &&
10985 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10986 				panic("initiate_write_inodeblock_ufs2: "
10987 				    "lost dep3");
10988 #endif /* INVARIANTS */
10989 			dp->di_ib[i] = 0;
10990 		}
10991 		ffs_update_dinode_ckhash(fs, dp);
10992 		return;
10993 	}
10994 	/*
10995 	 * If we have zero'ed out the last allocated block of the file,
10996 	 * roll back the size to the last currently allocated block.
10997 	 * We know that this last allocated block is a full-sized as
10998 	 * we already checked for fragments in the loop above.
10999 	 */
11000 	if (lastadp != NULL &&
11001 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
11002 		for (i = lastadp->ad_offset; i >= 0; i--)
11003 			if (dp->di_db[i] != 0)
11004 				break;
11005 		dp->di_size = (i + 1) * fs->fs_bsize;
11006 	}
11007 	/*
11008 	 * The only dependencies are for indirect blocks.
11009 	 *
11010 	 * The file size for indirect block additions is not guaranteed.
11011 	 * Such a guarantee would be non-trivial to achieve. The conventional
11012 	 * synchronous write implementation also does not make this guarantee.
11013 	 * Fsck should catch and fix discrepancies. Arguably, the file size
11014 	 * can be over-estimated without destroying integrity when the file
11015 	 * moves into the indirect blocks (i.e., is large). If we want to
11016 	 * postpone fsck, we are stuck with this argument.
11017 	 */
11018 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
11019 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
11020 	ffs_update_dinode_ckhash(fs, dp);
11021 }
11022 
11023 /*
11024  * Cancel an indirdep as a result of truncation.  Release all of the
11025  * children allocindirs and place their journal work on the appropriate
11026  * list.
11027  */
11028 static void
11029 cancel_indirdep(indirdep, bp, freeblks)
11030 	struct indirdep *indirdep;
11031 	struct buf *bp;
11032 	struct freeblks *freeblks;
11033 {
11034 	struct allocindir *aip;
11035 
11036 	/*
11037 	 * None of the indirect pointers will ever be visible,
11038 	 * so they can simply be tossed. GOINGAWAY ensures
11039 	 * that allocated pointers will be saved in the buffer
11040 	 * cache until they are freed. Note that they will
11041 	 * only be able to be found by their physical address
11042 	 * since the inode mapping the logical address will
11043 	 * be gone. The save buffer used for the safe copy
11044 	 * was allocated in setup_allocindir_phase2 using
11045 	 * the physical address so it could be used for this
11046 	 * purpose. Hence we swap the safe copy with the real
11047 	 * copy, allowing the safe copy to be freed and holding
11048 	 * on to the real copy for later use in indir_trunc.
11049 	 */
11050 	if (indirdep->ir_state & GOINGAWAY)
11051 		panic("cancel_indirdep: already gone");
11052 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11053 		indirdep->ir_state |= DEPCOMPLETE;
11054 		LIST_REMOVE(indirdep, ir_next);
11055 	}
11056 	indirdep->ir_state |= GOINGAWAY;
11057 	/*
11058 	 * Pass in bp for blocks still have journal writes
11059 	 * pending so we can cancel them on their own.
11060 	 */
11061 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
11062 		cancel_allocindir(aip, bp, freeblks, 0);
11063 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
11064 		cancel_allocindir(aip, NULL, freeblks, 0);
11065 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
11066 		cancel_allocindir(aip, NULL, freeblks, 0);
11067 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
11068 		cancel_allocindir(aip, NULL, freeblks, 0);
11069 	/*
11070 	 * If there are pending partial truncations we need to keep the
11071 	 * old block copy around until they complete.  This is because
11072 	 * the current b_data is not a perfect superset of the available
11073 	 * blocks.
11074 	 */
11075 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
11076 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
11077 	else
11078 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
11079 	WORKLIST_REMOVE(&indirdep->ir_list);
11080 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
11081 	indirdep->ir_bp = NULL;
11082 	indirdep->ir_freeblks = freeblks;
11083 }
11084 
11085 /*
11086  * Free an indirdep once it no longer has new pointers to track.
11087  */
11088 static void
11089 free_indirdep(indirdep)
11090 	struct indirdep *indirdep;
11091 {
11092 
11093 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
11094 	    ("free_indirdep: Indir trunc list not empty."));
11095 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
11096 	    ("free_indirdep: Complete head not empty."));
11097 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
11098 	    ("free_indirdep: write head not empty."));
11099 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
11100 	    ("free_indirdep: done head not empty."));
11101 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
11102 	    ("free_indirdep: deplist head not empty."));
11103 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
11104 	    ("free_indirdep: %p still on newblk list.", indirdep));
11105 	KASSERT(indirdep->ir_saveddata == NULL,
11106 	    ("free_indirdep: %p still has saved data.", indirdep));
11107 	KASSERT(indirdep->ir_savebp == NULL,
11108 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
11109 	if (indirdep->ir_state & ONWORKLIST)
11110 		WORKLIST_REMOVE(&indirdep->ir_list);
11111 	WORKITEM_FREE(indirdep, D_INDIRDEP);
11112 }
11113 
11114 /*
11115  * Called before a write to an indirdep.  This routine is responsible for
11116  * rolling back pointers to a safe state which includes only those
11117  * allocindirs which have been completed.
11118  */
11119 static void
11120 initiate_write_indirdep(indirdep, bp)
11121 	struct indirdep *indirdep;
11122 	struct buf *bp;
11123 {
11124 	struct ufsmount *ump;
11125 
11126 	indirdep->ir_state |= IOSTARTED;
11127 	if (indirdep->ir_state & GOINGAWAY)
11128 		panic("disk_io_initiation: indirdep gone");
11129 	/*
11130 	 * If there are no remaining dependencies, this will be writing
11131 	 * the real pointers.
11132 	 */
11133 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
11134 	    TAILQ_EMPTY(&indirdep->ir_trunc))
11135 		return;
11136 	/*
11137 	 * Replace up-to-date version with safe version.
11138 	 */
11139 	if (indirdep->ir_saveddata == NULL) {
11140 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
11141 		LOCK_OWNED(ump);
11142 		FREE_LOCK(ump);
11143 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
11144 		    M_SOFTDEP_FLAGS);
11145 		ACQUIRE_LOCK(ump);
11146 	}
11147 	indirdep->ir_state &= ~ATTACHED;
11148 	indirdep->ir_state |= UNDONE;
11149 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
11150 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
11151 	    bp->b_bcount);
11152 }
11153 
11154 /*
11155  * Called when an inode has been cleared in a cg bitmap.  This finally
11156  * eliminates any canceled jaddrefs
11157  */
11158 void
11159 softdep_setup_inofree(mp, bp, ino, wkhd)
11160 	struct mount *mp;
11161 	struct buf *bp;
11162 	ino_t ino;
11163 	struct workhead *wkhd;
11164 {
11165 	struct worklist *wk, *wkn;
11166 	struct inodedep *inodedep;
11167 	struct ufsmount *ump;
11168 	uint8_t *inosused;
11169 	struct cg *cgp;
11170 	struct fs *fs;
11171 
11172 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
11173 	    ("softdep_setup_inofree called on non-softdep filesystem"));
11174 	ump = VFSTOUFS(mp);
11175 	ACQUIRE_LOCK(ump);
11176 	if (!ffs_fsfail_cleanup(ump, 0)) {
11177 		fs = ump->um_fs;
11178 		cgp = (struct cg *)bp->b_data;
11179 		inosused = cg_inosused(cgp);
11180 		if (isset(inosused, ino % fs->fs_ipg))
11181 			panic("softdep_setup_inofree: inode %ju not freed.",
11182 			    (uintmax_t)ino);
11183 	}
11184 	if (inodedep_lookup(mp, ino, 0, &inodedep))
11185 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
11186 		    (uintmax_t)ino, inodedep);
11187 	if (wkhd) {
11188 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
11189 			if (wk->wk_type != D_JADDREF)
11190 				continue;
11191 			WORKLIST_REMOVE(wk);
11192 			/*
11193 			 * We can free immediately even if the jaddref
11194 			 * isn't attached in a background write as now
11195 			 * the bitmaps are reconciled.
11196 			 */
11197 			wk->wk_state |= COMPLETE | ATTACHED;
11198 			free_jaddref(WK_JADDREF(wk));
11199 		}
11200 		jwork_move(&bp->b_dep, wkhd);
11201 	}
11202 	FREE_LOCK(ump);
11203 }
11204 
11205 /*
11206  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
11207  * map.  Any dependencies waiting for the write to clear are added to the
11208  * buf's list and any jnewblks that are being canceled are discarded
11209  * immediately.
11210  */
11211 void
11212 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
11213 	struct mount *mp;
11214 	struct buf *bp;
11215 	ufs2_daddr_t blkno;
11216 	int frags;
11217 	struct workhead *wkhd;
11218 {
11219 	struct bmsafemap *bmsafemap;
11220 	struct jnewblk *jnewblk;
11221 	struct ufsmount *ump;
11222 	struct worklist *wk;
11223 	struct fs *fs;
11224 #ifdef INVARIANTS
11225 	uint8_t *blksfree;
11226 	struct cg *cgp;
11227 	ufs2_daddr_t jstart;
11228 	ufs2_daddr_t jend;
11229 	ufs2_daddr_t end;
11230 	long bno;
11231 	int i;
11232 #endif
11233 
11234 	CTR3(KTR_SUJ,
11235 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11236 	    blkno, frags, wkhd);
11237 
11238 	ump = VFSTOUFS(mp);
11239 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11240 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
11241 	ACQUIRE_LOCK(ump);
11242 	/* Lookup the bmsafemap so we track when it is dirty. */
11243 	fs = ump->um_fs;
11244 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11245 	/*
11246 	 * Detach any jnewblks which have been canceled.  They must linger
11247 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
11248 	 * an unjournaled allocation from hitting the disk.
11249 	 */
11250 	if (wkhd) {
11251 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
11252 			CTR2(KTR_SUJ,
11253 			    "softdep_setup_blkfree: blkno %jd wk type %d",
11254 			    blkno, wk->wk_type);
11255 			WORKLIST_REMOVE(wk);
11256 			if (wk->wk_type != D_JNEWBLK) {
11257 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11258 				continue;
11259 			}
11260 			jnewblk = WK_JNEWBLK(wk);
11261 			KASSERT(jnewblk->jn_state & GOINGAWAY,
11262 			    ("softdep_setup_blkfree: jnewblk not canceled."));
11263 #ifdef INVARIANTS
11264 			/*
11265 			 * Assert that this block is free in the bitmap
11266 			 * before we discard the jnewblk.
11267 			 */
11268 			cgp = (struct cg *)bp->b_data;
11269 			blksfree = cg_blksfree(cgp);
11270 			bno = dtogd(fs, jnewblk->jn_blkno);
11271 			for (i = jnewblk->jn_oldfrags;
11272 			    i < jnewblk->jn_frags; i++) {
11273 				if (isset(blksfree, bno + i))
11274 					continue;
11275 				panic("softdep_setup_blkfree: not free");
11276 			}
11277 #endif
11278 			/*
11279 			 * Even if it's not attached we can free immediately
11280 			 * as the new bitmap is correct.
11281 			 */
11282 			wk->wk_state |= COMPLETE | ATTACHED;
11283 			free_jnewblk(jnewblk);
11284 		}
11285 	}
11286 
11287 #ifdef INVARIANTS
11288 	/*
11289 	 * Assert that we are not freeing a block which has an outstanding
11290 	 * allocation dependency.
11291 	 */
11292 	fs = VFSTOUFS(mp)->um_fs;
11293 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11294 	end = blkno + frags;
11295 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11296 		/*
11297 		 * Don't match against blocks that will be freed when the
11298 		 * background write is done.
11299 		 */
11300 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11301 		    (COMPLETE | DEPCOMPLETE))
11302 			continue;
11303 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11304 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11305 		if ((blkno >= jstart && blkno < jend) ||
11306 		    (end > jstart && end <= jend)) {
11307 			printf("state 0x%X %jd - %d %d dep %p\n",
11308 			    jnewblk->jn_state, jnewblk->jn_blkno,
11309 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
11310 			    jnewblk->jn_dep);
11311 			panic("softdep_setup_blkfree: "
11312 			    "%jd-%jd(%d) overlaps with %jd-%jd",
11313 			    blkno, end, frags, jstart, jend);
11314 		}
11315 	}
11316 #endif
11317 	FREE_LOCK(ump);
11318 }
11319 
11320 /*
11321  * Revert a block allocation when the journal record that describes it
11322  * is not yet written.
11323  */
11324 static int
11325 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
11326 	struct jnewblk *jnewblk;
11327 	struct fs *fs;
11328 	struct cg *cgp;
11329 	uint8_t *blksfree;
11330 {
11331 	ufs1_daddr_t fragno;
11332 	long cgbno, bbase;
11333 	int frags, blk;
11334 	int i;
11335 
11336 	frags = 0;
11337 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11338 	/*
11339 	 * We have to test which frags need to be rolled back.  We may
11340 	 * be operating on a stale copy when doing background writes.
11341 	 */
11342 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11343 		if (isclr(blksfree, cgbno + i))
11344 			frags++;
11345 	if (frags == 0)
11346 		return (0);
11347 	/*
11348 	 * This is mostly ffs_blkfree() sans some validation and
11349 	 * superblock updates.
11350 	 */
11351 	if (frags == fs->fs_frag) {
11352 		fragno = fragstoblks(fs, cgbno);
11353 		ffs_setblock(fs, blksfree, fragno);
11354 		ffs_clusteracct(fs, cgp, fragno, 1);
11355 		cgp->cg_cs.cs_nbfree++;
11356 	} else {
11357 		cgbno += jnewblk->jn_oldfrags;
11358 		bbase = cgbno - fragnum(fs, cgbno);
11359 		/* Decrement the old frags.  */
11360 		blk = blkmap(fs, blksfree, bbase);
11361 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11362 		/* Deallocate the fragment */
11363 		for (i = 0; i < frags; i++)
11364 			setbit(blksfree, cgbno + i);
11365 		cgp->cg_cs.cs_nffree += frags;
11366 		/* Add back in counts associated with the new frags */
11367 		blk = blkmap(fs, blksfree, bbase);
11368 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11369 		/* If a complete block has been reassembled, account for it. */
11370 		fragno = fragstoblks(fs, bbase);
11371 		if (ffs_isblock(fs, blksfree, fragno)) {
11372 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11373 			ffs_clusteracct(fs, cgp, fragno, 1);
11374 			cgp->cg_cs.cs_nbfree++;
11375 		}
11376 	}
11377 	stat_jnewblk++;
11378 	jnewblk->jn_state &= ~ATTACHED;
11379 	jnewblk->jn_state |= UNDONE;
11380 
11381 	return (frags);
11382 }
11383 
11384 static void
11385 initiate_write_bmsafemap(bmsafemap, bp)
11386 	struct bmsafemap *bmsafemap;
11387 	struct buf *bp;			/* The cg block. */
11388 {
11389 	struct jaddref *jaddref;
11390 	struct jnewblk *jnewblk;
11391 	uint8_t *inosused;
11392 	uint8_t *blksfree;
11393 	struct cg *cgp;
11394 	struct fs *fs;
11395 	ino_t ino;
11396 
11397 	/*
11398 	 * If this is a background write, we did this at the time that
11399 	 * the copy was made, so do not need to do it again.
11400 	 */
11401 	if (bmsafemap->sm_state & IOSTARTED)
11402 		return;
11403 	bmsafemap->sm_state |= IOSTARTED;
11404 	/*
11405 	 * Clear any inode allocations which are pending journal writes.
11406 	 */
11407 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11408 		cgp = (struct cg *)bp->b_data;
11409 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11410 		inosused = cg_inosused(cgp);
11411 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11412 			ino = jaddref->ja_ino % fs->fs_ipg;
11413 			if (isset(inosused, ino)) {
11414 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11415 					cgp->cg_cs.cs_ndir--;
11416 				cgp->cg_cs.cs_nifree++;
11417 				clrbit(inosused, ino);
11418 				jaddref->ja_state &= ~ATTACHED;
11419 				jaddref->ja_state |= UNDONE;
11420 				stat_jaddref++;
11421 			} else
11422 				panic("initiate_write_bmsafemap: inode %ju "
11423 				    "marked free", (uintmax_t)jaddref->ja_ino);
11424 		}
11425 	}
11426 	/*
11427 	 * Clear any block allocations which are pending journal writes.
11428 	 */
11429 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11430 		cgp = (struct cg *)bp->b_data;
11431 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11432 		blksfree = cg_blksfree(cgp);
11433 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11434 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11435 				continue;
11436 			panic("initiate_write_bmsafemap: block %jd "
11437 			    "marked free", jnewblk->jn_blkno);
11438 		}
11439 	}
11440 	/*
11441 	 * Move allocation lists to the written lists so they can be
11442 	 * cleared once the block write is complete.
11443 	 */
11444 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11445 	    inodedep, id_deps);
11446 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11447 	    newblk, nb_deps);
11448 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11449 	    wk_list);
11450 }
11451 
11452 void
11453 softdep_handle_error(struct buf *bp)
11454 {
11455 	struct ufsmount *ump;
11456 
11457 	ump = softdep_bp_to_mp(bp);
11458 	if (ump == NULL)
11459 		return;
11460 
11461 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11462 		/*
11463 		 * No future writes will succeed, so the on-disk image is safe.
11464 		 * Pretend that this write succeeded so that the softdep state
11465 		 * will be cleaned up naturally.
11466 		 */
11467 		bp->b_ioflags &= ~BIO_ERROR;
11468 		bp->b_error = 0;
11469 	}
11470 }
11471 
11472 /*
11473  * This routine is called during the completion interrupt
11474  * service routine for a disk write (from the procedure called
11475  * by the device driver to inform the filesystem caches of
11476  * a request completion).  It should be called early in this
11477  * procedure, before the block is made available to other
11478  * processes or other routines are called.
11479  *
11480  */
11481 static void
11482 softdep_disk_write_complete(bp)
11483 	struct buf *bp;		/* describes the completed disk write */
11484 {
11485 	struct worklist *wk;
11486 	struct worklist *owk;
11487 	struct ufsmount *ump;
11488 	struct workhead reattach;
11489 	struct freeblks *freeblks;
11490 	struct buf *sbp;
11491 
11492 	ump = softdep_bp_to_mp(bp);
11493 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11494 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11495 	     "with outstanding dependencies for buffer %p", bp));
11496 	if (ump == NULL)
11497 		return;
11498 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11499 		softdep_handle_error(bp);
11500 	/*
11501 	 * If an error occurred while doing the write, then the data
11502 	 * has not hit the disk and the dependencies cannot be processed.
11503 	 * But we do have to go through and roll forward any dependencies
11504 	 * that were rolled back before the disk write.
11505 	 */
11506 	sbp = NULL;
11507 	ACQUIRE_LOCK(ump);
11508 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11509 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11510 			switch (wk->wk_type) {
11511 			case D_PAGEDEP:
11512 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11513 				continue;
11514 
11515 			case D_INODEDEP:
11516 				handle_written_inodeblock(WK_INODEDEP(wk),
11517 				    bp, 0);
11518 				continue;
11519 
11520 			case D_BMSAFEMAP:
11521 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11522 				    bp, 0);
11523 				continue;
11524 
11525 			case D_INDIRDEP:
11526 				handle_written_indirdep(WK_INDIRDEP(wk),
11527 				    bp, &sbp, 0);
11528 				continue;
11529 			default:
11530 				/* nothing to roll forward */
11531 				continue;
11532 			}
11533 		}
11534 		FREE_LOCK(ump);
11535 		if (sbp)
11536 			brelse(sbp);
11537 		return;
11538 	}
11539 	LIST_INIT(&reattach);
11540 
11541 	/*
11542 	 * Ump SU lock must not be released anywhere in this code segment.
11543 	 */
11544 	owk = NULL;
11545 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11546 		WORKLIST_REMOVE(wk);
11547 		atomic_add_long(&dep_write[wk->wk_type], 1);
11548 		if (wk == owk)
11549 			panic("duplicate worklist: %p\n", wk);
11550 		owk = wk;
11551 		switch (wk->wk_type) {
11552 		case D_PAGEDEP:
11553 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11554 			    WRITESUCCEEDED))
11555 				WORKLIST_INSERT(&reattach, wk);
11556 			continue;
11557 
11558 		case D_INODEDEP:
11559 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11560 			    WRITESUCCEEDED))
11561 				WORKLIST_INSERT(&reattach, wk);
11562 			continue;
11563 
11564 		case D_BMSAFEMAP:
11565 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11566 			    WRITESUCCEEDED))
11567 				WORKLIST_INSERT(&reattach, wk);
11568 			continue;
11569 
11570 		case D_MKDIR:
11571 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11572 			continue;
11573 
11574 		case D_ALLOCDIRECT:
11575 			wk->wk_state |= COMPLETE;
11576 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11577 			continue;
11578 
11579 		case D_ALLOCINDIR:
11580 			wk->wk_state |= COMPLETE;
11581 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11582 			continue;
11583 
11584 		case D_INDIRDEP:
11585 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11586 			    WRITESUCCEEDED))
11587 				WORKLIST_INSERT(&reattach, wk);
11588 			continue;
11589 
11590 		case D_FREEBLKS:
11591 			wk->wk_state |= COMPLETE;
11592 			freeblks = WK_FREEBLKS(wk);
11593 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11594 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11595 				add_to_worklist(wk, WK_NODELAY);
11596 			continue;
11597 
11598 		case D_FREEWORK:
11599 			handle_written_freework(WK_FREEWORK(wk));
11600 			break;
11601 
11602 		case D_JSEGDEP:
11603 			free_jsegdep(WK_JSEGDEP(wk));
11604 			continue;
11605 
11606 		case D_JSEG:
11607 			handle_written_jseg(WK_JSEG(wk), bp);
11608 			continue;
11609 
11610 		case D_SBDEP:
11611 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11612 				WORKLIST_INSERT(&reattach, wk);
11613 			continue;
11614 
11615 		case D_FREEDEP:
11616 			free_freedep(WK_FREEDEP(wk));
11617 			continue;
11618 
11619 		default:
11620 			panic("handle_disk_write_complete: Unknown type %s",
11621 			    TYPENAME(wk->wk_type));
11622 			/* NOTREACHED */
11623 		}
11624 	}
11625 	/*
11626 	 * Reattach any requests that must be redone.
11627 	 */
11628 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11629 		WORKLIST_REMOVE(wk);
11630 		WORKLIST_INSERT(&bp->b_dep, wk);
11631 	}
11632 	FREE_LOCK(ump);
11633 	if (sbp)
11634 		brelse(sbp);
11635 }
11636 
11637 /*
11638  * Called from within softdep_disk_write_complete above.
11639  */
11640 static void
11641 handle_allocdirect_partdone(adp, wkhd)
11642 	struct allocdirect *adp;	/* the completed allocdirect */
11643 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11644 {
11645 	struct allocdirectlst *listhead;
11646 	struct allocdirect *listadp;
11647 	struct inodedep *inodedep;
11648 	long bsize;
11649 
11650 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11651 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11652 		return;
11653 	/*
11654 	 * The on-disk inode cannot claim to be any larger than the last
11655 	 * fragment that has been written. Otherwise, the on-disk inode
11656 	 * might have fragments that were not the last block in the file
11657 	 * which would corrupt the filesystem. Thus, we cannot free any
11658 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11659 	 * these blocks must be rolled back to zero before writing the inode.
11660 	 * We check the currently active set of allocdirects in id_inoupdt
11661 	 * or id_extupdt as appropriate.
11662 	 */
11663 	inodedep = adp->ad_inodedep;
11664 	bsize = inodedep->id_fs->fs_bsize;
11665 	if (adp->ad_state & EXTDATA)
11666 		listhead = &inodedep->id_extupdt;
11667 	else
11668 		listhead = &inodedep->id_inoupdt;
11669 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11670 		/* found our block */
11671 		if (listadp == adp)
11672 			break;
11673 		/* continue if ad_oldlbn is not a fragment */
11674 		if (listadp->ad_oldsize == 0 ||
11675 		    listadp->ad_oldsize == bsize)
11676 			continue;
11677 		/* hit a fragment */
11678 		return;
11679 	}
11680 	/*
11681 	 * If we have reached the end of the current list without
11682 	 * finding the just finished dependency, then it must be
11683 	 * on the future dependency list. Future dependencies cannot
11684 	 * be freed until they are moved to the current list.
11685 	 */
11686 	if (listadp == NULL) {
11687 #ifdef INVARIANTS
11688 		if (adp->ad_state & EXTDATA)
11689 			listhead = &inodedep->id_newextupdt;
11690 		else
11691 			listhead = &inodedep->id_newinoupdt;
11692 		TAILQ_FOREACH(listadp, listhead, ad_next)
11693 			/* found our block */
11694 			if (listadp == adp)
11695 				break;
11696 		if (listadp == NULL)
11697 			panic("handle_allocdirect_partdone: lost dep");
11698 #endif /* INVARIANTS */
11699 		return;
11700 	}
11701 	/*
11702 	 * If we have found the just finished dependency, then queue
11703 	 * it along with anything that follows it that is complete.
11704 	 * Since the pointer has not yet been written in the inode
11705 	 * as the dependency prevents it, place the allocdirect on the
11706 	 * bufwait list where it will be freed once the pointer is
11707 	 * valid.
11708 	 */
11709 	if (wkhd == NULL)
11710 		wkhd = &inodedep->id_bufwait;
11711 	for (; adp; adp = listadp) {
11712 		listadp = TAILQ_NEXT(adp, ad_next);
11713 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11714 			return;
11715 		TAILQ_REMOVE(listhead, adp, ad_next);
11716 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11717 	}
11718 }
11719 
11720 /*
11721  * Called from within softdep_disk_write_complete above.  This routine
11722  * completes successfully written allocindirs.
11723  */
11724 static void
11725 handle_allocindir_partdone(aip)
11726 	struct allocindir *aip;		/* the completed allocindir */
11727 {
11728 	struct indirdep *indirdep;
11729 
11730 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11731 		return;
11732 	indirdep = aip->ai_indirdep;
11733 	LIST_REMOVE(aip, ai_next);
11734 	/*
11735 	 * Don't set a pointer while the buffer is undergoing IO or while
11736 	 * we have active truncations.
11737 	 */
11738 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11739 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11740 		return;
11741 	}
11742 	if (indirdep->ir_state & UFS1FMT)
11743 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11744 		    aip->ai_newblkno;
11745 	else
11746 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11747 		    aip->ai_newblkno;
11748 	/*
11749 	 * Await the pointer write before freeing the allocindir.
11750 	 */
11751 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11752 }
11753 
11754 /*
11755  * Release segments held on a jwork list.
11756  */
11757 static void
11758 handle_jwork(wkhd)
11759 	struct workhead *wkhd;
11760 {
11761 	struct worklist *wk;
11762 
11763 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11764 		WORKLIST_REMOVE(wk);
11765 		switch (wk->wk_type) {
11766 		case D_JSEGDEP:
11767 			free_jsegdep(WK_JSEGDEP(wk));
11768 			continue;
11769 		case D_FREEDEP:
11770 			free_freedep(WK_FREEDEP(wk));
11771 			continue;
11772 		case D_FREEFRAG:
11773 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11774 			WORKITEM_FREE(wk, D_FREEFRAG);
11775 			continue;
11776 		case D_FREEWORK:
11777 			handle_written_freework(WK_FREEWORK(wk));
11778 			continue;
11779 		default:
11780 			panic("handle_jwork: Unknown type %s\n",
11781 			    TYPENAME(wk->wk_type));
11782 		}
11783 	}
11784 }
11785 
11786 /*
11787  * Handle the bufwait list on an inode when it is safe to release items
11788  * held there.  This normally happens after an inode block is written but
11789  * may be delayed and handled later if there are pending journal items that
11790  * are not yet safe to be released.
11791  */
11792 static struct freefile *
11793 handle_bufwait(inodedep, refhd)
11794 	struct inodedep *inodedep;
11795 	struct workhead *refhd;
11796 {
11797 	struct jaddref *jaddref;
11798 	struct freefile *freefile;
11799 	struct worklist *wk;
11800 
11801 	freefile = NULL;
11802 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11803 		WORKLIST_REMOVE(wk);
11804 		switch (wk->wk_type) {
11805 		case D_FREEFILE:
11806 			/*
11807 			 * We defer adding freefile to the worklist
11808 			 * until all other additions have been made to
11809 			 * ensure that it will be done after all the
11810 			 * old blocks have been freed.
11811 			 */
11812 			if (freefile != NULL)
11813 				panic("handle_bufwait: freefile");
11814 			freefile = WK_FREEFILE(wk);
11815 			continue;
11816 
11817 		case D_MKDIR:
11818 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11819 			continue;
11820 
11821 		case D_DIRADD:
11822 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11823 			continue;
11824 
11825 		case D_FREEFRAG:
11826 			wk->wk_state |= COMPLETE;
11827 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11828 				add_to_worklist(wk, 0);
11829 			continue;
11830 
11831 		case D_DIRREM:
11832 			wk->wk_state |= COMPLETE;
11833 			add_to_worklist(wk, 0);
11834 			continue;
11835 
11836 		case D_ALLOCDIRECT:
11837 		case D_ALLOCINDIR:
11838 			free_newblk(WK_NEWBLK(wk));
11839 			continue;
11840 
11841 		case D_JNEWBLK:
11842 			wk->wk_state |= COMPLETE;
11843 			free_jnewblk(WK_JNEWBLK(wk));
11844 			continue;
11845 
11846 		/*
11847 		 * Save freed journal segments and add references on
11848 		 * the supplied list which will delay their release
11849 		 * until the cg bitmap is cleared on disk.
11850 		 */
11851 		case D_JSEGDEP:
11852 			if (refhd == NULL)
11853 				free_jsegdep(WK_JSEGDEP(wk));
11854 			else
11855 				WORKLIST_INSERT(refhd, wk);
11856 			continue;
11857 
11858 		case D_JADDREF:
11859 			jaddref = WK_JADDREF(wk);
11860 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11861 			    if_deps);
11862 			/*
11863 			 * Transfer any jaddrefs to the list to be freed with
11864 			 * the bitmap if we're handling a removed file.
11865 			 */
11866 			if (refhd == NULL) {
11867 				wk->wk_state |= COMPLETE;
11868 				free_jaddref(jaddref);
11869 			} else
11870 				WORKLIST_INSERT(refhd, wk);
11871 			continue;
11872 
11873 		default:
11874 			panic("handle_bufwait: Unknown type %p(%s)",
11875 			    wk, TYPENAME(wk->wk_type));
11876 			/* NOTREACHED */
11877 		}
11878 	}
11879 	return (freefile);
11880 }
11881 /*
11882  * Called from within softdep_disk_write_complete above to restore
11883  * in-memory inode block contents to their most up-to-date state. Note
11884  * that this routine is always called from interrupt level with further
11885  * interrupts from this device blocked.
11886  *
11887  * If the write did not succeed, we will do all the roll-forward
11888  * operations, but we will not take the actions that will allow its
11889  * dependencies to be processed.
11890  */
11891 static int
11892 handle_written_inodeblock(inodedep, bp, flags)
11893 	struct inodedep *inodedep;
11894 	struct buf *bp;		/* buffer containing the inode block */
11895 	int flags;
11896 {
11897 	struct freefile *freefile;
11898 	struct allocdirect *adp, *nextadp;
11899 	struct ufs1_dinode *dp1 = NULL;
11900 	struct ufs2_dinode *dp2 = NULL;
11901 	struct workhead wkhd;
11902 	int hadchanges, fstype;
11903 	ino_t freelink;
11904 
11905 	LIST_INIT(&wkhd);
11906 	hadchanges = 0;
11907 	freefile = NULL;
11908 	if ((inodedep->id_state & IOSTARTED) == 0)
11909 		panic("handle_written_inodeblock: not started");
11910 	inodedep->id_state &= ~IOSTARTED;
11911 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11912 		fstype = UFS1;
11913 		dp1 = (struct ufs1_dinode *)bp->b_data +
11914 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11915 		freelink = dp1->di_freelink;
11916 	} else {
11917 		fstype = UFS2;
11918 		dp2 = (struct ufs2_dinode *)bp->b_data +
11919 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11920 		freelink = dp2->di_freelink;
11921 	}
11922 	/*
11923 	 * Leave this inodeblock dirty until it's in the list.
11924 	 */
11925 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11926 	    (flags & WRITESUCCEEDED)) {
11927 		struct inodedep *inon;
11928 
11929 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11930 		if ((inon == NULL && freelink == 0) ||
11931 		    (inon && inon->id_ino == freelink)) {
11932 			if (inon)
11933 				inon->id_state |= UNLINKPREV;
11934 			inodedep->id_state |= UNLINKNEXT;
11935 		}
11936 		hadchanges = 1;
11937 	}
11938 	/*
11939 	 * If we had to rollback the inode allocation because of
11940 	 * bitmaps being incomplete, then simply restore it.
11941 	 * Keep the block dirty so that it will not be reclaimed until
11942 	 * all associated dependencies have been cleared and the
11943 	 * corresponding updates written to disk.
11944 	 */
11945 	if (inodedep->id_savedino1 != NULL) {
11946 		hadchanges = 1;
11947 		if (fstype == UFS1)
11948 			*dp1 = *inodedep->id_savedino1;
11949 		else
11950 			*dp2 = *inodedep->id_savedino2;
11951 		free(inodedep->id_savedino1, M_SAVEDINO);
11952 		inodedep->id_savedino1 = NULL;
11953 		if ((bp->b_flags & B_DELWRI) == 0)
11954 			stat_inode_bitmap++;
11955 		bdirty(bp);
11956 		/*
11957 		 * If the inode is clear here and GOINGAWAY it will never
11958 		 * be written.  Process the bufwait and clear any pending
11959 		 * work which may include the freefile.
11960 		 */
11961 		if (inodedep->id_state & GOINGAWAY)
11962 			goto bufwait;
11963 		return (1);
11964 	}
11965 	if (flags & WRITESUCCEEDED)
11966 		inodedep->id_state |= COMPLETE;
11967 	/*
11968 	 * Roll forward anything that had to be rolled back before
11969 	 * the inode could be updated.
11970 	 */
11971 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11972 		nextadp = TAILQ_NEXT(adp, ad_next);
11973 		if (adp->ad_state & ATTACHED)
11974 			panic("handle_written_inodeblock: new entry");
11975 		if (fstype == UFS1) {
11976 			if (adp->ad_offset < UFS_NDADDR) {
11977 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11978 					panic("%s %s #%jd mismatch %d != %jd",
11979 					    "handle_written_inodeblock:",
11980 					    "direct pointer",
11981 					    (intmax_t)adp->ad_offset,
11982 					    dp1->di_db[adp->ad_offset],
11983 					    (intmax_t)adp->ad_oldblkno);
11984 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11985 			} else {
11986 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11987 				    0)
11988 					panic("%s: %s #%jd allocated as %d",
11989 					    "handle_written_inodeblock",
11990 					    "indirect pointer",
11991 					    (intmax_t)adp->ad_offset -
11992 					    UFS_NDADDR,
11993 					    dp1->di_ib[adp->ad_offset -
11994 					    UFS_NDADDR]);
11995 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11996 				    adp->ad_newblkno;
11997 			}
11998 		} else {
11999 			if (adp->ad_offset < UFS_NDADDR) {
12000 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
12001 					panic("%s: %s #%jd %s %jd != %jd",
12002 					    "handle_written_inodeblock",
12003 					    "direct pointer",
12004 					    (intmax_t)adp->ad_offset, "mismatch",
12005 					    (intmax_t)dp2->di_db[adp->ad_offset],
12006 					    (intmax_t)adp->ad_oldblkno);
12007 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
12008 			} else {
12009 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
12010 				    0)
12011 					panic("%s: %s #%jd allocated as %jd",
12012 					    "handle_written_inodeblock",
12013 					    "indirect pointer",
12014 					    (intmax_t)adp->ad_offset -
12015 					    UFS_NDADDR,
12016 					    (intmax_t)
12017 					    dp2->di_ib[adp->ad_offset -
12018 					    UFS_NDADDR]);
12019 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
12020 				    adp->ad_newblkno;
12021 			}
12022 		}
12023 		adp->ad_state &= ~UNDONE;
12024 		adp->ad_state |= ATTACHED;
12025 		hadchanges = 1;
12026 	}
12027 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
12028 		nextadp = TAILQ_NEXT(adp, ad_next);
12029 		if (adp->ad_state & ATTACHED)
12030 			panic("handle_written_inodeblock: new entry");
12031 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
12032 			panic("%s: direct pointers #%jd %s %jd != %jd",
12033 			    "handle_written_inodeblock",
12034 			    (intmax_t)adp->ad_offset, "mismatch",
12035 			    (intmax_t)dp2->di_extb[adp->ad_offset],
12036 			    (intmax_t)adp->ad_oldblkno);
12037 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
12038 		adp->ad_state &= ~UNDONE;
12039 		adp->ad_state |= ATTACHED;
12040 		hadchanges = 1;
12041 	}
12042 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
12043 		stat_direct_blk_ptrs++;
12044 	/*
12045 	 * Reset the file size to its most up-to-date value.
12046 	 */
12047 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
12048 		panic("handle_written_inodeblock: bad size");
12049 	if (inodedep->id_savednlink > UFS_LINK_MAX)
12050 		panic("handle_written_inodeblock: Invalid link count "
12051 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
12052 		    inodedep);
12053 	if (fstype == UFS1) {
12054 		if (dp1->di_nlink != inodedep->id_savednlink) {
12055 			dp1->di_nlink = inodedep->id_savednlink;
12056 			hadchanges = 1;
12057 		}
12058 		if (dp1->di_size != inodedep->id_savedsize) {
12059 			dp1->di_size = inodedep->id_savedsize;
12060 			hadchanges = 1;
12061 		}
12062 	} else {
12063 		if (dp2->di_nlink != inodedep->id_savednlink) {
12064 			dp2->di_nlink = inodedep->id_savednlink;
12065 			hadchanges = 1;
12066 		}
12067 		if (dp2->di_size != inodedep->id_savedsize) {
12068 			dp2->di_size = inodedep->id_savedsize;
12069 			hadchanges = 1;
12070 		}
12071 		if (dp2->di_extsize != inodedep->id_savedextsize) {
12072 			dp2->di_extsize = inodedep->id_savedextsize;
12073 			hadchanges = 1;
12074 		}
12075 	}
12076 	inodedep->id_savedsize = -1;
12077 	inodedep->id_savedextsize = -1;
12078 	inodedep->id_savednlink = -1;
12079 	/*
12080 	 * If there were any rollbacks in the inode block, then it must be
12081 	 * marked dirty so that its will eventually get written back in
12082 	 * its correct form.
12083 	 */
12084 	if (hadchanges) {
12085 		if (fstype == UFS2)
12086 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
12087 		bdirty(bp);
12088 	}
12089 bufwait:
12090 	/*
12091 	 * If the write did not succeed, we have done all the roll-forward
12092 	 * operations, but we cannot take the actions that will allow its
12093 	 * dependencies to be processed.
12094 	 */
12095 	if ((flags & WRITESUCCEEDED) == 0)
12096 		return (hadchanges);
12097 	/*
12098 	 * Process any allocdirects that completed during the update.
12099 	 */
12100 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
12101 		handle_allocdirect_partdone(adp, &wkhd);
12102 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
12103 		handle_allocdirect_partdone(adp, &wkhd);
12104 	/*
12105 	 * Process deallocations that were held pending until the
12106 	 * inode had been written to disk. Freeing of the inode
12107 	 * is delayed until after all blocks have been freed to
12108 	 * avoid creation of new <vfsid, inum, lbn> triples
12109 	 * before the old ones have been deleted.  Completely
12110 	 * unlinked inodes are not processed until the unlinked
12111 	 * inode list is written or the last reference is removed.
12112 	 */
12113 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
12114 		freefile = handle_bufwait(inodedep, NULL);
12115 		if (freefile && !LIST_EMPTY(&wkhd)) {
12116 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
12117 			freefile = NULL;
12118 		}
12119 	}
12120 	/*
12121 	 * Move rolled forward dependency completions to the bufwait list
12122 	 * now that those that were already written have been processed.
12123 	 */
12124 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
12125 		panic("handle_written_inodeblock: bufwait but no changes");
12126 	jwork_move(&inodedep->id_bufwait, &wkhd);
12127 
12128 	if (freefile != NULL) {
12129 		/*
12130 		 * If the inode is goingaway it was never written.  Fake up
12131 		 * the state here so free_inodedep() can succeed.
12132 		 */
12133 		if (inodedep->id_state & GOINGAWAY)
12134 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
12135 		if (free_inodedep(inodedep) == 0)
12136 			panic("handle_written_inodeblock: live inodedep %p",
12137 			    inodedep);
12138 		add_to_worklist(&freefile->fx_list, 0);
12139 		return (0);
12140 	}
12141 
12142 	/*
12143 	 * If no outstanding dependencies, free it.
12144 	 */
12145 	if (free_inodedep(inodedep) ||
12146 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
12147 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
12148 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
12149 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
12150 		return (0);
12151 	return (hadchanges);
12152 }
12153 
12154 /*
12155  * Perform needed roll-forwards and kick off any dependencies that
12156  * can now be processed.
12157  *
12158  * If the write did not succeed, we will do all the roll-forward
12159  * operations, but we will not take the actions that will allow its
12160  * dependencies to be processed.
12161  */
12162 static int
12163 handle_written_indirdep(indirdep, bp, bpp, flags)
12164 	struct indirdep *indirdep;
12165 	struct buf *bp;
12166 	struct buf **bpp;
12167 	int flags;
12168 {
12169 	struct allocindir *aip;
12170 	struct buf *sbp;
12171 	int chgs;
12172 
12173 	if (indirdep->ir_state & GOINGAWAY)
12174 		panic("handle_written_indirdep: indirdep gone");
12175 	if ((indirdep->ir_state & IOSTARTED) == 0)
12176 		panic("handle_written_indirdep: IO not started");
12177 	chgs = 0;
12178 	/*
12179 	 * If there were rollbacks revert them here.
12180 	 */
12181 	if (indirdep->ir_saveddata) {
12182 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
12183 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
12184 			free(indirdep->ir_saveddata, M_INDIRDEP);
12185 			indirdep->ir_saveddata = NULL;
12186 		}
12187 		chgs = 1;
12188 	}
12189 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
12190 	indirdep->ir_state |= ATTACHED;
12191 	/*
12192 	 * If the write did not succeed, we have done all the roll-forward
12193 	 * operations, but we cannot take the actions that will allow its
12194 	 * dependencies to be processed.
12195 	 */
12196 	if ((flags & WRITESUCCEEDED) == 0) {
12197 		stat_indir_blk_ptrs++;
12198 		bdirty(bp);
12199 		return (1);
12200 	}
12201 	/*
12202 	 * Move allocindirs with written pointers to the completehd if
12203 	 * the indirdep's pointer is not yet written.  Otherwise
12204 	 * free them here.
12205 	 */
12206 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
12207 		LIST_REMOVE(aip, ai_next);
12208 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
12209 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
12210 			    ai_next);
12211 			newblk_freefrag(&aip->ai_block);
12212 			continue;
12213 		}
12214 		free_newblk(&aip->ai_block);
12215 	}
12216 	/*
12217 	 * Move allocindirs that have finished dependency processing from
12218 	 * the done list to the write list after updating the pointers.
12219 	 */
12220 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
12221 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
12222 			handle_allocindir_partdone(aip);
12223 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
12224 				panic("disk_write_complete: not gone");
12225 			chgs = 1;
12226 		}
12227 	}
12228 	/*
12229 	 * Preserve the indirdep if there were any changes or if it is not
12230 	 * yet valid on disk.
12231 	 */
12232 	if (chgs) {
12233 		stat_indir_blk_ptrs++;
12234 		bdirty(bp);
12235 		return (1);
12236 	}
12237 	/*
12238 	 * If there were no changes we can discard the savedbp and detach
12239 	 * ourselves from the buf.  We are only carrying completed pointers
12240 	 * in this case.
12241 	 */
12242 	sbp = indirdep->ir_savebp;
12243 	sbp->b_flags |= B_INVAL | B_NOCACHE;
12244 	indirdep->ir_savebp = NULL;
12245 	indirdep->ir_bp = NULL;
12246 	if (*bpp != NULL)
12247 		panic("handle_written_indirdep: bp already exists.");
12248 	*bpp = sbp;
12249 	/*
12250 	 * The indirdep may not be freed until its parent points at it.
12251 	 */
12252 	if (indirdep->ir_state & DEPCOMPLETE)
12253 		free_indirdep(indirdep);
12254 
12255 	return (0);
12256 }
12257 
12258 /*
12259  * Process a diradd entry after its dependent inode has been written.
12260  */
12261 static void
12262 diradd_inode_written(dap, inodedep)
12263 	struct diradd *dap;
12264 	struct inodedep *inodedep;
12265 {
12266 
12267 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12268 	dap->da_state |= COMPLETE;
12269 	complete_diradd(dap);
12270 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12271 }
12272 
12273 /*
12274  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12275  * be called with the per-filesystem lock and the buf lock on the cg held.
12276  */
12277 static int
12278 bmsafemap_backgroundwrite(bmsafemap, bp)
12279 	struct bmsafemap *bmsafemap;
12280 	struct buf *bp;
12281 {
12282 	int dirty;
12283 
12284 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12285 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12286 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12287 	/*
12288 	 * If we're initiating a background write we need to process the
12289 	 * rollbacks as they exist now, not as they exist when IO starts.
12290 	 * No other consumers will look at the contents of the shadowed
12291 	 * buf so this is safe to do here.
12292 	 */
12293 	if (bp->b_xflags & BX_BKGRDMARKER)
12294 		initiate_write_bmsafemap(bmsafemap, bp);
12295 
12296 	return (dirty);
12297 }
12298 
12299 /*
12300  * Re-apply an allocation when a cg write is complete.
12301  */
12302 static int
12303 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
12304 	struct jnewblk *jnewblk;
12305 	struct fs *fs;
12306 	struct cg *cgp;
12307 	uint8_t *blksfree;
12308 {
12309 	ufs1_daddr_t fragno;
12310 	ufs2_daddr_t blkno;
12311 	long cgbno, bbase;
12312 	int frags, blk;
12313 	int i;
12314 
12315 	frags = 0;
12316 	cgbno = dtogd(fs, jnewblk->jn_blkno);
12317 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12318 		if (isclr(blksfree, cgbno + i))
12319 			panic("jnewblk_rollforward: re-allocated fragment");
12320 		frags++;
12321 	}
12322 	if (frags == fs->fs_frag) {
12323 		blkno = fragstoblks(fs, cgbno);
12324 		ffs_clrblock(fs, blksfree, (long)blkno);
12325 		ffs_clusteracct(fs, cgp, blkno, -1);
12326 		cgp->cg_cs.cs_nbfree--;
12327 	} else {
12328 		bbase = cgbno - fragnum(fs, cgbno);
12329 		cgbno += jnewblk->jn_oldfrags;
12330                 /* If a complete block had been reassembled, account for it. */
12331 		fragno = fragstoblks(fs, bbase);
12332 		if (ffs_isblock(fs, blksfree, fragno)) {
12333 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12334 			ffs_clusteracct(fs, cgp, fragno, -1);
12335 			cgp->cg_cs.cs_nbfree--;
12336 		}
12337 		/* Decrement the old frags.  */
12338 		blk = blkmap(fs, blksfree, bbase);
12339 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12340 		/* Allocate the fragment */
12341 		for (i = 0; i < frags; i++)
12342 			clrbit(blksfree, cgbno + i);
12343 		cgp->cg_cs.cs_nffree -= frags;
12344 		/* Add back in counts associated with the new frags */
12345 		blk = blkmap(fs, blksfree, bbase);
12346 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12347 	}
12348 	return (frags);
12349 }
12350 
12351 /*
12352  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12353  * changes if it's not a background write.  Set all written dependencies
12354  * to DEPCOMPLETE and free the structure if possible.
12355  *
12356  * If the write did not succeed, we will do all the roll-forward
12357  * operations, but we will not take the actions that will allow its
12358  * dependencies to be processed.
12359  */
12360 static int
12361 handle_written_bmsafemap(bmsafemap, bp, flags)
12362 	struct bmsafemap *bmsafemap;
12363 	struct buf *bp;
12364 	int flags;
12365 {
12366 	struct newblk *newblk;
12367 	struct inodedep *inodedep;
12368 	struct jaddref *jaddref, *jatmp;
12369 	struct jnewblk *jnewblk, *jntmp;
12370 	struct ufsmount *ump;
12371 	uint8_t *inosused;
12372 	uint8_t *blksfree;
12373 	struct cg *cgp;
12374 	struct fs *fs;
12375 	ino_t ino;
12376 	int foreground;
12377 	int chgs;
12378 
12379 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12380 		panic("handle_written_bmsafemap: Not started\n");
12381 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12382 	chgs = 0;
12383 	bmsafemap->sm_state &= ~IOSTARTED;
12384 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12385 	/*
12386 	 * If write was successful, release journal work that was waiting
12387 	 * on the write. Otherwise move the work back.
12388 	 */
12389 	if (flags & WRITESUCCEEDED)
12390 		handle_jwork(&bmsafemap->sm_freewr);
12391 	else
12392 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12393 		    worklist, wk_list);
12394 
12395 	/*
12396 	 * Restore unwritten inode allocation pending jaddref writes.
12397 	 */
12398 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12399 		cgp = (struct cg *)bp->b_data;
12400 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12401 		inosused = cg_inosused(cgp);
12402 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12403 		    ja_bmdeps, jatmp) {
12404 			if ((jaddref->ja_state & UNDONE) == 0)
12405 				continue;
12406 			ino = jaddref->ja_ino % fs->fs_ipg;
12407 			if (isset(inosused, ino))
12408 				panic("handle_written_bmsafemap: "
12409 				    "re-allocated inode");
12410 			/* Do the roll-forward only if it's a real copy. */
12411 			if (foreground) {
12412 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12413 					cgp->cg_cs.cs_ndir++;
12414 				cgp->cg_cs.cs_nifree--;
12415 				setbit(inosused, ino);
12416 				chgs = 1;
12417 			}
12418 			jaddref->ja_state &= ~UNDONE;
12419 			jaddref->ja_state |= ATTACHED;
12420 			free_jaddref(jaddref);
12421 		}
12422 	}
12423 	/*
12424 	 * Restore any block allocations which are pending journal writes.
12425 	 */
12426 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12427 		cgp = (struct cg *)bp->b_data;
12428 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12429 		blksfree = cg_blksfree(cgp);
12430 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12431 		    jntmp) {
12432 			if ((jnewblk->jn_state & UNDONE) == 0)
12433 				continue;
12434 			/* Do the roll-forward only if it's a real copy. */
12435 			if (foreground &&
12436 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12437 				chgs = 1;
12438 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12439 			jnewblk->jn_state |= ATTACHED;
12440 			free_jnewblk(jnewblk);
12441 		}
12442 	}
12443 	/*
12444 	 * If the write did not succeed, we have done all the roll-forward
12445 	 * operations, but we cannot take the actions that will allow its
12446 	 * dependencies to be processed.
12447 	 */
12448 	if ((flags & WRITESUCCEEDED) == 0) {
12449 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12450 		    newblk, nb_deps);
12451 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12452 		    worklist, wk_list);
12453 		if (foreground)
12454 			bdirty(bp);
12455 		return (1);
12456 	}
12457 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12458 		newblk->nb_state |= DEPCOMPLETE;
12459 		newblk->nb_state &= ~ONDEPLIST;
12460 		newblk->nb_bmsafemap = NULL;
12461 		LIST_REMOVE(newblk, nb_deps);
12462 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12463 			handle_allocdirect_partdone(
12464 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12465 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12466 			handle_allocindir_partdone(
12467 			    WK_ALLOCINDIR(&newblk->nb_list));
12468 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12469 			panic("handle_written_bmsafemap: Unexpected type: %s",
12470 			    TYPENAME(newblk->nb_list.wk_type));
12471 	}
12472 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12473 		inodedep->id_state |= DEPCOMPLETE;
12474 		inodedep->id_state &= ~ONDEPLIST;
12475 		LIST_REMOVE(inodedep, id_deps);
12476 		inodedep->id_bmsafemap = NULL;
12477 	}
12478 	LIST_REMOVE(bmsafemap, sm_next);
12479 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12480 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12481 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12482 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12483 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12484 		LIST_REMOVE(bmsafemap, sm_hash);
12485 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12486 		return (0);
12487 	}
12488 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12489 	if (foreground)
12490 		bdirty(bp);
12491 	return (1);
12492 }
12493 
12494 /*
12495  * Try to free a mkdir dependency.
12496  */
12497 static void
12498 complete_mkdir(mkdir)
12499 	struct mkdir *mkdir;
12500 {
12501 	struct diradd *dap;
12502 
12503 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12504 		return;
12505 	LIST_REMOVE(mkdir, md_mkdirs);
12506 	dap = mkdir->md_diradd;
12507 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12508 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12509 		dap->da_state |= DEPCOMPLETE;
12510 		complete_diradd(dap);
12511 	}
12512 	WORKITEM_FREE(mkdir, D_MKDIR);
12513 }
12514 
12515 /*
12516  * Handle the completion of a mkdir dependency.
12517  */
12518 static void
12519 handle_written_mkdir(mkdir, type)
12520 	struct mkdir *mkdir;
12521 	int type;
12522 {
12523 
12524 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12525 		panic("handle_written_mkdir: bad type");
12526 	mkdir->md_state |= COMPLETE;
12527 	complete_mkdir(mkdir);
12528 }
12529 
12530 static int
12531 free_pagedep(pagedep)
12532 	struct pagedep *pagedep;
12533 {
12534 	int i;
12535 
12536 	if (pagedep->pd_state & NEWBLOCK)
12537 		return (0);
12538 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12539 		return (0);
12540 	for (i = 0; i < DAHASHSZ; i++)
12541 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12542 			return (0);
12543 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12544 		return (0);
12545 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12546 		return (0);
12547 	if (pagedep->pd_state & ONWORKLIST)
12548 		WORKLIST_REMOVE(&pagedep->pd_list);
12549 	LIST_REMOVE(pagedep, pd_hash);
12550 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12551 
12552 	return (1);
12553 }
12554 
12555 /*
12556  * Called from within softdep_disk_write_complete above.
12557  * A write operation was just completed. Removed inodes can
12558  * now be freed and associated block pointers may be committed.
12559  * Note that this routine is always called from interrupt level
12560  * with further interrupts from this device blocked.
12561  *
12562  * If the write did not succeed, we will do all the roll-forward
12563  * operations, but we will not take the actions that will allow its
12564  * dependencies to be processed.
12565  */
12566 static int
12567 handle_written_filepage(pagedep, bp, flags)
12568 	struct pagedep *pagedep;
12569 	struct buf *bp;		/* buffer containing the written page */
12570 	int flags;
12571 {
12572 	struct dirrem *dirrem;
12573 	struct diradd *dap, *nextdap;
12574 	struct direct *ep;
12575 	int i, chgs;
12576 
12577 	if ((pagedep->pd_state & IOSTARTED) == 0)
12578 		panic("handle_written_filepage: not started");
12579 	pagedep->pd_state &= ~IOSTARTED;
12580 	if ((flags & WRITESUCCEEDED) == 0)
12581 		goto rollforward;
12582 	/*
12583 	 * Process any directory removals that have been committed.
12584 	 */
12585 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12586 		LIST_REMOVE(dirrem, dm_next);
12587 		dirrem->dm_state |= COMPLETE;
12588 		dirrem->dm_dirinum = pagedep->pd_ino;
12589 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12590 		    ("handle_written_filepage: Journal entries not written."));
12591 		add_to_worklist(&dirrem->dm_list, 0);
12592 	}
12593 	/*
12594 	 * Free any directory additions that have been committed.
12595 	 * If it is a newly allocated block, we have to wait until
12596 	 * the on-disk directory inode claims the new block.
12597 	 */
12598 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12599 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12600 			free_diradd(dap, NULL);
12601 rollforward:
12602 	/*
12603 	 * Uncommitted directory entries must be restored.
12604 	 */
12605 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12606 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12607 		     dap = nextdap) {
12608 			nextdap = LIST_NEXT(dap, da_pdlist);
12609 			if (dap->da_state & ATTACHED)
12610 				panic("handle_written_filepage: attached");
12611 			ep = (struct direct *)
12612 			    ((char *)bp->b_data + dap->da_offset);
12613 			ep->d_ino = dap->da_newinum;
12614 			dap->da_state &= ~UNDONE;
12615 			dap->da_state |= ATTACHED;
12616 			chgs = 1;
12617 			/*
12618 			 * If the inode referenced by the directory has
12619 			 * been written out, then the dependency can be
12620 			 * moved to the pending list.
12621 			 */
12622 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12623 				LIST_REMOVE(dap, da_pdlist);
12624 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12625 				    da_pdlist);
12626 			}
12627 		}
12628 	}
12629 	/*
12630 	 * If there were any rollbacks in the directory, then it must be
12631 	 * marked dirty so that its will eventually get written back in
12632 	 * its correct form.
12633 	 */
12634 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12635 		if ((bp->b_flags & B_DELWRI) == 0)
12636 			stat_dir_entry++;
12637 		bdirty(bp);
12638 		return (1);
12639 	}
12640 	/*
12641 	 * If we are not waiting for a new directory block to be
12642 	 * claimed by its inode, then the pagedep will be freed.
12643 	 * Otherwise it will remain to track any new entries on
12644 	 * the page in case they are fsync'ed.
12645 	 */
12646 	free_pagedep(pagedep);
12647 	return (0);
12648 }
12649 
12650 /*
12651  * Writing back in-core inode structures.
12652  *
12653  * The filesystem only accesses an inode's contents when it occupies an
12654  * "in-core" inode structure.  These "in-core" structures are separate from
12655  * the page frames used to cache inode blocks.  Only the latter are
12656  * transferred to/from the disk.  So, when the updated contents of the
12657  * "in-core" inode structure are copied to the corresponding in-memory inode
12658  * block, the dependencies are also transferred.  The following procedure is
12659  * called when copying a dirty "in-core" inode to a cached inode block.
12660  */
12661 
12662 /*
12663  * Called when an inode is loaded from disk. If the effective link count
12664  * differed from the actual link count when it was last flushed, then we
12665  * need to ensure that the correct effective link count is put back.
12666  */
12667 void
12668 softdep_load_inodeblock(ip)
12669 	struct inode *ip;	/* the "in_core" copy of the inode */
12670 {
12671 	struct inodedep *inodedep;
12672 	struct ufsmount *ump;
12673 
12674 	ump = ITOUMP(ip);
12675 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12676 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12677 	/*
12678 	 * Check for alternate nlink count.
12679 	 */
12680 	ip->i_effnlink = ip->i_nlink;
12681 	ACQUIRE_LOCK(ump);
12682 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12683 		FREE_LOCK(ump);
12684 		return;
12685 	}
12686 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12687 	    inodedep->id_nlinkwrote != -1) {
12688 		KASSERT(ip->i_nlink == 0 &&
12689 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12690 		    ("read bad i_nlink value"));
12691 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12692 	}
12693 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12694 	KASSERT(ip->i_effnlink >= 0,
12695 	    ("softdep_load_inodeblock: negative i_effnlink"));
12696 	FREE_LOCK(ump);
12697 }
12698 
12699 /*
12700  * This routine is called just before the "in-core" inode
12701  * information is to be copied to the in-memory inode block.
12702  * Recall that an inode block contains several inodes. If
12703  * the force flag is set, then the dependencies will be
12704  * cleared so that the update can always be made. Note that
12705  * the buffer is locked when this routine is called, so we
12706  * will never be in the middle of writing the inode block
12707  * to disk.
12708  */
12709 void
12710 softdep_update_inodeblock(ip, bp, waitfor)
12711 	struct inode *ip;	/* the "in_core" copy of the inode */
12712 	struct buf *bp;		/* the buffer containing the inode block */
12713 	int waitfor;		/* nonzero => update must be allowed */
12714 {
12715 	struct inodedep *inodedep;
12716 	struct inoref *inoref;
12717 	struct ufsmount *ump;
12718 	struct worklist *wk;
12719 	struct mount *mp;
12720 	struct buf *ibp;
12721 	struct fs *fs;
12722 	int error;
12723 
12724 	ump = ITOUMP(ip);
12725 	mp = UFSTOVFS(ump);
12726 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12727 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12728 	fs = ump->um_fs;
12729 	/*
12730 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12731 	 * does not have access to the in-core ip so must write directly into
12732 	 * the inode block buffer when setting freelink.
12733 	 */
12734 	if (fs->fs_magic == FS_UFS1_MAGIC)
12735 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12736 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12737 	else
12738 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12739 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12740 	/*
12741 	 * If the effective link count is not equal to the actual link
12742 	 * count, then we must track the difference in an inodedep while
12743 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12744 	 * if there is no existing inodedep, then there are no dependencies
12745 	 * to track.
12746 	 */
12747 	ACQUIRE_LOCK(ump);
12748 again:
12749 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12750 		FREE_LOCK(ump);
12751 		if (ip->i_effnlink != ip->i_nlink)
12752 			panic("softdep_update_inodeblock: bad link count");
12753 		return;
12754 	}
12755 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12756 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12757 	    "inodedep %p id_nlinkdelta %jd",
12758 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12759 	inodedep->id_nlinkwrote = ip->i_nlink;
12760 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12761 		panic("softdep_update_inodeblock: bad delta");
12762 	/*
12763 	 * If we're flushing all dependencies we must also move any waiting
12764 	 * for journal writes onto the bufwait list prior to I/O.
12765 	 */
12766 	if (waitfor) {
12767 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12768 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12769 			    == DEPCOMPLETE) {
12770 				jwait(&inoref->if_list, MNT_WAIT);
12771 				goto again;
12772 			}
12773 		}
12774 	}
12775 	/*
12776 	 * Changes have been initiated. Anything depending on these
12777 	 * changes cannot occur until this inode has been written.
12778 	 */
12779 	inodedep->id_state &= ~COMPLETE;
12780 	if ((inodedep->id_state & ONWORKLIST) == 0)
12781 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12782 	/*
12783 	 * Any new dependencies associated with the incore inode must
12784 	 * now be moved to the list associated with the buffer holding
12785 	 * the in-memory copy of the inode. Once merged process any
12786 	 * allocdirects that are completed by the merger.
12787 	 */
12788 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12789 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12790 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12791 		    NULL);
12792 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12793 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12794 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12795 		    NULL);
12796 	/*
12797 	 * Now that the inode has been pushed into the buffer, the
12798 	 * operations dependent on the inode being written to disk
12799 	 * can be moved to the id_bufwait so that they will be
12800 	 * processed when the buffer I/O completes.
12801 	 */
12802 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12803 		WORKLIST_REMOVE(wk);
12804 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12805 	}
12806 	/*
12807 	 * Newly allocated inodes cannot be written until the bitmap
12808 	 * that allocates them have been written (indicated by
12809 	 * DEPCOMPLETE being set in id_state). If we are doing a
12810 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12811 	 * to be written so that the update can be done.
12812 	 */
12813 	if (waitfor == 0) {
12814 		FREE_LOCK(ump);
12815 		return;
12816 	}
12817 retry:
12818 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12819 		FREE_LOCK(ump);
12820 		return;
12821 	}
12822 	ibp = inodedep->id_bmsafemap->sm_buf;
12823 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12824 	if (ibp == NULL) {
12825 		/*
12826 		 * If ibp came back as NULL, the dependency could have been
12827 		 * freed while we slept.  Look it up again, and check to see
12828 		 * that it has completed.
12829 		 */
12830 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12831 			goto retry;
12832 		FREE_LOCK(ump);
12833 		return;
12834 	}
12835 	FREE_LOCK(ump);
12836 	if ((error = bwrite(ibp)) != 0)
12837 		softdep_error("softdep_update_inodeblock: bwrite", error);
12838 }
12839 
12840 /*
12841  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12842  * old inode dependency list (such as id_inoupdt).
12843  */
12844 static void
12845 merge_inode_lists(newlisthead, oldlisthead)
12846 	struct allocdirectlst *newlisthead;
12847 	struct allocdirectlst *oldlisthead;
12848 {
12849 	struct allocdirect *listadp, *newadp;
12850 
12851 	newadp = TAILQ_FIRST(newlisthead);
12852 	if (newadp != NULL)
12853 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12854 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12855 		if (listadp->ad_offset < newadp->ad_offset) {
12856 			listadp = TAILQ_NEXT(listadp, ad_next);
12857 			continue;
12858 		}
12859 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12860 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12861 		if (listadp->ad_offset == newadp->ad_offset) {
12862 			allocdirect_merge(oldlisthead, newadp,
12863 			    listadp);
12864 			listadp = newadp;
12865 		}
12866 		newadp = TAILQ_FIRST(newlisthead);
12867 	}
12868 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12869 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12870 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12871 	}
12872 }
12873 
12874 /*
12875  * If we are doing an fsync, then we must ensure that any directory
12876  * entries for the inode have been written after the inode gets to disk.
12877  */
12878 int
12879 softdep_fsync(vp)
12880 	struct vnode *vp;	/* the "in_core" copy of the inode */
12881 {
12882 	struct inodedep *inodedep;
12883 	struct pagedep *pagedep;
12884 	struct inoref *inoref;
12885 	struct ufsmount *ump;
12886 	struct worklist *wk;
12887 	struct diradd *dap;
12888 	struct mount *mp;
12889 	struct vnode *pvp;
12890 	struct inode *ip;
12891 	struct buf *bp;
12892 	struct fs *fs;
12893 	struct thread *td = curthread;
12894 	int error, flushparent, pagedep_new_block;
12895 	ino_t parentino;
12896 	ufs_lbn_t lbn;
12897 
12898 	ip = VTOI(vp);
12899 	mp = vp->v_mount;
12900 	ump = VFSTOUFS(mp);
12901 	fs = ump->um_fs;
12902 	if (MOUNTEDSOFTDEP(mp) == 0)
12903 		return (0);
12904 	ACQUIRE_LOCK(ump);
12905 restart:
12906 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12907 		FREE_LOCK(ump);
12908 		return (0);
12909 	}
12910 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12911 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12912 		    == DEPCOMPLETE) {
12913 			jwait(&inoref->if_list, MNT_WAIT);
12914 			goto restart;
12915 		}
12916 	}
12917 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12918 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12919 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12920 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12921 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12922 		panic("softdep_fsync: pending ops %p", inodedep);
12923 	for (error = 0, flushparent = 0; ; ) {
12924 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12925 			break;
12926 		if (wk->wk_type != D_DIRADD)
12927 			panic("softdep_fsync: Unexpected type %s",
12928 			    TYPENAME(wk->wk_type));
12929 		dap = WK_DIRADD(wk);
12930 		/*
12931 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12932 		 * dependency or is contained in a newly allocated block.
12933 		 */
12934 		if (dap->da_state & DIRCHG)
12935 			pagedep = dap->da_previous->dm_pagedep;
12936 		else
12937 			pagedep = dap->da_pagedep;
12938 		parentino = pagedep->pd_ino;
12939 		lbn = pagedep->pd_lbn;
12940 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12941 			panic("softdep_fsync: dirty");
12942 		if ((dap->da_state & MKDIR_PARENT) ||
12943 		    (pagedep->pd_state & NEWBLOCK))
12944 			flushparent = 1;
12945 		else
12946 			flushparent = 0;
12947 		/*
12948 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12949 		 * then we will not be able to release and recover the
12950 		 * vnode below, so we just have to give up on writing its
12951 		 * directory entry out. It will eventually be written, just
12952 		 * not now, but then the user was not asking to have it
12953 		 * written, so we are not breaking any promises.
12954 		 */
12955 		if (VN_IS_DOOMED(vp))
12956 			break;
12957 		/*
12958 		 * We prevent deadlock by always fetching inodes from the
12959 		 * root, moving down the directory tree. Thus, when fetching
12960 		 * our parent directory, we first try to get the lock. If
12961 		 * that fails, we must unlock ourselves before requesting
12962 		 * the lock on our parent. See the comment in ufs_lookup
12963 		 * for details on possible races.
12964 		 */
12965 		FREE_LOCK(ump);
12966 		error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12967 		    &pvp);
12968 		if (error == ERELOOKUP)
12969 			error = 0;
12970 		if (error != 0)
12971 			return (error);
12972 		/*
12973 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12974 		 * that are contained in direct blocks will be resolved by
12975 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12976 		 * may require a complete sync'ing of the directory. So, we
12977 		 * try the cheap and fast ffs_update first, and if that fails,
12978 		 * then we do the slower ffs_syncvnode of the directory.
12979 		 */
12980 		if (flushparent) {
12981 			int locked;
12982 
12983 			if ((error = ffs_update(pvp, 1)) != 0) {
12984 				vput(pvp);
12985 				return (error);
12986 			}
12987 			ACQUIRE_LOCK(ump);
12988 			locked = 1;
12989 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12990 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12991 					if (wk->wk_type != D_DIRADD)
12992 						panic("softdep_fsync: Unexpected type %s",
12993 						      TYPENAME(wk->wk_type));
12994 					dap = WK_DIRADD(wk);
12995 					if (dap->da_state & DIRCHG)
12996 						pagedep = dap->da_previous->dm_pagedep;
12997 					else
12998 						pagedep = dap->da_pagedep;
12999 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
13000 					FREE_LOCK(ump);
13001 					locked = 0;
13002 					if (pagedep_new_block && (error =
13003 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
13004 						vput(pvp);
13005 						return (error);
13006 					}
13007 				}
13008 			}
13009 			if (locked)
13010 				FREE_LOCK(ump);
13011 		}
13012 		/*
13013 		 * Flush directory page containing the inode's name.
13014 		 */
13015 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
13016 		    &bp);
13017 		if (error == 0)
13018 			error = bwrite(bp);
13019 		else
13020 			brelse(bp);
13021 		vput(pvp);
13022 		if (!ffs_fsfail_cleanup(ump, error))
13023 			return (error);
13024 		ACQUIRE_LOCK(ump);
13025 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
13026 			break;
13027 	}
13028 	FREE_LOCK(ump);
13029 	return (0);
13030 }
13031 
13032 /*
13033  * Flush all the dirty bitmaps associated with the block device
13034  * before flushing the rest of the dirty blocks so as to reduce
13035  * the number of dependencies that will have to be rolled back.
13036  *
13037  * XXX Unused?
13038  */
13039 void
13040 softdep_fsync_mountdev(vp)
13041 	struct vnode *vp;
13042 {
13043 	struct buf *bp, *nbp;
13044 	struct worklist *wk;
13045 	struct bufobj *bo;
13046 
13047 	if (!vn_isdisk(vp))
13048 		panic("softdep_fsync_mountdev: vnode not a disk");
13049 	bo = &vp->v_bufobj;
13050 restart:
13051 	BO_LOCK(bo);
13052 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
13053 		/*
13054 		 * If it is already scheduled, skip to the next buffer.
13055 		 */
13056 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
13057 			continue;
13058 
13059 		if ((bp->b_flags & B_DELWRI) == 0)
13060 			panic("softdep_fsync_mountdev: not dirty");
13061 		/*
13062 		 * We are only interested in bitmaps with outstanding
13063 		 * dependencies.
13064 		 */
13065 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
13066 		    wk->wk_type != D_BMSAFEMAP ||
13067 		    (bp->b_vflags & BV_BKGRDINPROG)) {
13068 			BUF_UNLOCK(bp);
13069 			continue;
13070 		}
13071 		BO_UNLOCK(bo);
13072 		bremfree(bp);
13073 		(void) bawrite(bp);
13074 		goto restart;
13075 	}
13076 	drain_output(vp);
13077 	BO_UNLOCK(bo);
13078 }
13079 
13080 /*
13081  * Sync all cylinder groups that were dirty at the time this function is
13082  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
13083  * is used to flush freedep activity that may be holding up writes to a
13084  * indirect block.
13085  */
13086 static int
13087 sync_cgs(mp, waitfor)
13088 	struct mount *mp;
13089 	int waitfor;
13090 {
13091 	struct bmsafemap *bmsafemap;
13092 	struct bmsafemap *sentinel;
13093 	struct ufsmount *ump;
13094 	struct buf *bp;
13095 	int error;
13096 
13097 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
13098 	sentinel->sm_cg = -1;
13099 	ump = VFSTOUFS(mp);
13100 	error = 0;
13101 	ACQUIRE_LOCK(ump);
13102 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
13103 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
13104 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
13105 		/* Skip sentinels and cgs with no work to release. */
13106 		if (bmsafemap->sm_cg == -1 ||
13107 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
13108 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
13109 			LIST_REMOVE(sentinel, sm_next);
13110 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
13111 			continue;
13112 		}
13113 		/*
13114 		 * If we don't get the lock and we're waiting try again, if
13115 		 * not move on to the next buf and try to sync it.
13116 		 */
13117 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
13118 		if (bp == NULL && waitfor == MNT_WAIT)
13119 			continue;
13120 		LIST_REMOVE(sentinel, sm_next);
13121 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
13122 		if (bp == NULL)
13123 			continue;
13124 		FREE_LOCK(ump);
13125 		if (waitfor == MNT_NOWAIT)
13126 			bawrite(bp);
13127 		else
13128 			error = bwrite(bp);
13129 		ACQUIRE_LOCK(ump);
13130 		if (error)
13131 			break;
13132 	}
13133 	LIST_REMOVE(sentinel, sm_next);
13134 	FREE_LOCK(ump);
13135 	free(sentinel, M_BMSAFEMAP);
13136 	return (error);
13137 }
13138 
13139 /*
13140  * This routine is called when we are trying to synchronously flush a
13141  * file. This routine must eliminate any filesystem metadata dependencies
13142  * so that the syncing routine can succeed.
13143  */
13144 int
13145 softdep_sync_metadata(struct vnode *vp)
13146 {
13147 	struct inode *ip;
13148 	int error;
13149 
13150 	ip = VTOI(vp);
13151 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13152 	    ("softdep_sync_metadata called on non-softdep filesystem"));
13153 	/*
13154 	 * Ensure that any direct block dependencies have been cleared,
13155 	 * truncations are started, and inode references are journaled.
13156 	 */
13157 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
13158 	/*
13159 	 * Write all journal records to prevent rollbacks on devvp.
13160 	 */
13161 	if (vp->v_type == VCHR)
13162 		softdep_flushjournal(vp->v_mount);
13163 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
13164 	/*
13165 	 * Ensure that all truncates are written so we won't find deps on
13166 	 * indirect blocks.
13167 	 */
13168 	process_truncates(vp);
13169 	FREE_LOCK(VFSTOUFS(vp->v_mount));
13170 
13171 	return (error);
13172 }
13173 
13174 /*
13175  * This routine is called when we are attempting to sync a buf with
13176  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
13177  * other IO it can but returns EBUSY if the buffer is not yet able to
13178  * be written.  Dependencies which will not cause rollbacks will always
13179  * return 0.
13180  */
13181 int
13182 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
13183 {
13184 	struct indirdep *indirdep;
13185 	struct pagedep *pagedep;
13186 	struct allocindir *aip;
13187 	struct newblk *newblk;
13188 	struct ufsmount *ump;
13189 	struct buf *nbp;
13190 	struct worklist *wk;
13191 	int i, error;
13192 
13193 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13194 	    ("softdep_sync_buf called on non-softdep filesystem"));
13195 	/*
13196 	 * For VCHR we just don't want to force flush any dependencies that
13197 	 * will cause rollbacks.
13198 	 */
13199 	if (vp->v_type == VCHR) {
13200 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
13201 			return (EBUSY);
13202 		return (0);
13203 	}
13204 	ump = VFSTOUFS(vp->v_mount);
13205 	ACQUIRE_LOCK(ump);
13206 	/*
13207 	 * As we hold the buffer locked, none of its dependencies
13208 	 * will disappear.
13209 	 */
13210 	error = 0;
13211 top:
13212 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13213 		switch (wk->wk_type) {
13214 		case D_ALLOCDIRECT:
13215 		case D_ALLOCINDIR:
13216 			newblk = WK_NEWBLK(wk);
13217 			if (newblk->nb_jnewblk != NULL) {
13218 				if (waitfor == MNT_NOWAIT) {
13219 					error = EBUSY;
13220 					goto out_unlock;
13221 				}
13222 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
13223 				goto top;
13224 			}
13225 			if (newblk->nb_state & DEPCOMPLETE ||
13226 			    waitfor == MNT_NOWAIT)
13227 				continue;
13228 			nbp = newblk->nb_bmsafemap->sm_buf;
13229 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13230 			if (nbp == NULL)
13231 				goto top;
13232 			FREE_LOCK(ump);
13233 			if ((error = bwrite(nbp)) != 0)
13234 				goto out;
13235 			ACQUIRE_LOCK(ump);
13236 			continue;
13237 
13238 		case D_INDIRDEP:
13239 			indirdep = WK_INDIRDEP(wk);
13240 			if (waitfor == MNT_NOWAIT) {
13241 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13242 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13243 					error = EBUSY;
13244 					goto out_unlock;
13245 				}
13246 			}
13247 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13248 				panic("softdep_sync_buf: truncation pending.");
13249 		restart:
13250 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13251 				newblk = (struct newblk *)aip;
13252 				if (newblk->nb_jnewblk != NULL) {
13253 					jwait(&newblk->nb_jnewblk->jn_list,
13254 					    waitfor);
13255 					goto restart;
13256 				}
13257 				if (newblk->nb_state & DEPCOMPLETE)
13258 					continue;
13259 				nbp = newblk->nb_bmsafemap->sm_buf;
13260 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13261 				if (nbp == NULL)
13262 					goto restart;
13263 				FREE_LOCK(ump);
13264 				if ((error = bwrite(nbp)) != 0)
13265 					goto out;
13266 				ACQUIRE_LOCK(ump);
13267 				goto restart;
13268 			}
13269 			continue;
13270 
13271 		case D_PAGEDEP:
13272 			/*
13273 			 * Only flush directory entries in synchronous passes.
13274 			 */
13275 			if (waitfor != MNT_WAIT) {
13276 				error = EBUSY;
13277 				goto out_unlock;
13278 			}
13279 			/*
13280 			 * While syncing snapshots, we must allow recursive
13281 			 * lookups.
13282 			 */
13283 			BUF_AREC(bp);
13284 			/*
13285 			 * We are trying to sync a directory that may
13286 			 * have dependencies on both its own metadata
13287 			 * and/or dependencies on the inodes of any
13288 			 * recently allocated files. We walk its diradd
13289 			 * lists pushing out the associated inode.
13290 			 */
13291 			pagedep = WK_PAGEDEP(wk);
13292 			for (i = 0; i < DAHASHSZ; i++) {
13293 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13294 					continue;
13295 				error = flush_pagedep_deps(vp, wk->wk_mp,
13296 				    &pagedep->pd_diraddhd[i], bp);
13297 				if (error != 0) {
13298 					if (error != ERELOOKUP)
13299 						BUF_NOREC(bp);
13300 					goto out_unlock;
13301 				}
13302 			}
13303 			BUF_NOREC(bp);
13304 			continue;
13305 
13306 		case D_FREEWORK:
13307 		case D_FREEDEP:
13308 		case D_JSEGDEP:
13309 		case D_JNEWBLK:
13310 			continue;
13311 
13312 		default:
13313 			panic("softdep_sync_buf: Unknown type %s",
13314 			    TYPENAME(wk->wk_type));
13315 			/* NOTREACHED */
13316 		}
13317 	}
13318 out_unlock:
13319 	FREE_LOCK(ump);
13320 out:
13321 	return (error);
13322 }
13323 
13324 /*
13325  * Flush the dependencies associated with an inodedep.
13326  */
13327 static int
13328 flush_inodedep_deps(vp, mp, ino)
13329 	struct vnode *vp;
13330 	struct mount *mp;
13331 	ino_t ino;
13332 {
13333 	struct inodedep *inodedep;
13334 	struct inoref *inoref;
13335 	struct ufsmount *ump;
13336 	int error, waitfor;
13337 
13338 	/*
13339 	 * This work is done in two passes. The first pass grabs most
13340 	 * of the buffers and begins asynchronously writing them. The
13341 	 * only way to wait for these asynchronous writes is to sleep
13342 	 * on the filesystem vnode which may stay busy for a long time
13343 	 * if the filesystem is active. So, instead, we make a second
13344 	 * pass over the dependencies blocking on each write. In the
13345 	 * usual case we will be blocking against a write that we
13346 	 * initiated, so when it is done the dependency will have been
13347 	 * resolved. Thus the second pass is expected to end quickly.
13348 	 * We give a brief window at the top of the loop to allow
13349 	 * any pending I/O to complete.
13350 	 */
13351 	ump = VFSTOUFS(mp);
13352 	LOCK_OWNED(ump);
13353 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13354 		if (error)
13355 			return (error);
13356 		FREE_LOCK(ump);
13357 		ACQUIRE_LOCK(ump);
13358 restart:
13359 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13360 			return (0);
13361 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13362 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13363 			    == DEPCOMPLETE) {
13364 				jwait(&inoref->if_list, MNT_WAIT);
13365 				goto restart;
13366 			}
13367 		}
13368 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13369 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13370 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13371 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13372 			continue;
13373 		/*
13374 		 * If pass2, we are done, otherwise do pass 2.
13375 		 */
13376 		if (waitfor == MNT_WAIT)
13377 			break;
13378 		waitfor = MNT_WAIT;
13379 	}
13380 	/*
13381 	 * Try freeing inodedep in case all dependencies have been removed.
13382 	 */
13383 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13384 		(void) free_inodedep(inodedep);
13385 	return (0);
13386 }
13387 
13388 /*
13389  * Flush an inode dependency list.
13390  */
13391 static int
13392 flush_deplist(listhead, waitfor, errorp)
13393 	struct allocdirectlst *listhead;
13394 	int waitfor;
13395 	int *errorp;
13396 {
13397 	struct allocdirect *adp;
13398 	struct newblk *newblk;
13399 	struct ufsmount *ump;
13400 	struct buf *bp;
13401 
13402 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13403 		return (0);
13404 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13405 	LOCK_OWNED(ump);
13406 	TAILQ_FOREACH(adp, listhead, ad_next) {
13407 		newblk = (struct newblk *)adp;
13408 		if (newblk->nb_jnewblk != NULL) {
13409 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13410 			return (1);
13411 		}
13412 		if (newblk->nb_state & DEPCOMPLETE)
13413 			continue;
13414 		bp = newblk->nb_bmsafemap->sm_buf;
13415 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13416 		if (bp == NULL) {
13417 			if (waitfor == MNT_NOWAIT)
13418 				continue;
13419 			return (1);
13420 		}
13421 		FREE_LOCK(ump);
13422 		if (waitfor == MNT_NOWAIT)
13423 			bawrite(bp);
13424 		else
13425 			*errorp = bwrite(bp);
13426 		ACQUIRE_LOCK(ump);
13427 		return (1);
13428 	}
13429 	return (0);
13430 }
13431 
13432 /*
13433  * Flush dependencies associated with an allocdirect block.
13434  */
13435 static int
13436 flush_newblk_dep(vp, mp, lbn)
13437 	struct vnode *vp;
13438 	struct mount *mp;
13439 	ufs_lbn_t lbn;
13440 {
13441 	struct newblk *newblk;
13442 	struct ufsmount *ump;
13443 	struct bufobj *bo;
13444 	struct inode *ip;
13445 	struct buf *bp;
13446 	ufs2_daddr_t blkno;
13447 	int error;
13448 
13449 	error = 0;
13450 	bo = &vp->v_bufobj;
13451 	ip = VTOI(vp);
13452 	blkno = DIP(ip, i_db[lbn]);
13453 	if (blkno == 0)
13454 		panic("flush_newblk_dep: Missing block");
13455 	ump = VFSTOUFS(mp);
13456 	ACQUIRE_LOCK(ump);
13457 	/*
13458 	 * Loop until all dependencies related to this block are satisfied.
13459 	 * We must be careful to restart after each sleep in case a write
13460 	 * completes some part of this process for us.
13461 	 */
13462 	for (;;) {
13463 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13464 			FREE_LOCK(ump);
13465 			break;
13466 		}
13467 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13468 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13469 		/*
13470 		 * Flush the journal.
13471 		 */
13472 		if (newblk->nb_jnewblk != NULL) {
13473 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13474 			continue;
13475 		}
13476 		/*
13477 		 * Write the bitmap dependency.
13478 		 */
13479 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13480 			bp = newblk->nb_bmsafemap->sm_buf;
13481 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13482 			if (bp == NULL)
13483 				continue;
13484 			FREE_LOCK(ump);
13485 			error = bwrite(bp);
13486 			if (error)
13487 				break;
13488 			ACQUIRE_LOCK(ump);
13489 			continue;
13490 		}
13491 		/*
13492 		 * Write the buffer.
13493 		 */
13494 		FREE_LOCK(ump);
13495 		BO_LOCK(bo);
13496 		bp = gbincore(bo, lbn);
13497 		if (bp != NULL) {
13498 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13499 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13500 			if (error == ENOLCK) {
13501 				ACQUIRE_LOCK(ump);
13502 				error = 0;
13503 				continue; /* Slept, retry */
13504 			}
13505 			if (error != 0)
13506 				break;	/* Failed */
13507 			if (bp->b_flags & B_DELWRI) {
13508 				bremfree(bp);
13509 				error = bwrite(bp);
13510 				if (error)
13511 					break;
13512 			} else
13513 				BUF_UNLOCK(bp);
13514 		} else
13515 			BO_UNLOCK(bo);
13516 		/*
13517 		 * We have to wait for the direct pointers to
13518 		 * point at the newdirblk before the dependency
13519 		 * will go away.
13520 		 */
13521 		error = ffs_update(vp, 1);
13522 		if (error)
13523 			break;
13524 		ACQUIRE_LOCK(ump);
13525 	}
13526 	return (error);
13527 }
13528 
13529 /*
13530  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13531  */
13532 static int
13533 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp)
13534 	struct vnode *pvp;
13535 	struct mount *mp;
13536 	struct diraddhd *diraddhdp;
13537 	struct buf *locked_bp;
13538 {
13539 	struct inodedep *inodedep;
13540 	struct inoref *inoref;
13541 	struct ufsmount *ump;
13542 	struct diradd *dap;
13543 	struct vnode *vp;
13544 	int error = 0;
13545 	struct buf *bp;
13546 	ino_t inum;
13547 	struct diraddhd unfinished;
13548 
13549 	LIST_INIT(&unfinished);
13550 	ump = VFSTOUFS(mp);
13551 	LOCK_OWNED(ump);
13552 restart:
13553 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13554 		/*
13555 		 * Flush ourselves if this directory entry
13556 		 * has a MKDIR_PARENT dependency.
13557 		 */
13558 		if (dap->da_state & MKDIR_PARENT) {
13559 			FREE_LOCK(ump);
13560 			if ((error = ffs_update(pvp, 1)) != 0)
13561 				break;
13562 			ACQUIRE_LOCK(ump);
13563 			/*
13564 			 * If that cleared dependencies, go on to next.
13565 			 */
13566 			if (dap != LIST_FIRST(diraddhdp))
13567 				continue;
13568 			/*
13569 			 * All MKDIR_PARENT dependencies and all the
13570 			 * NEWBLOCK pagedeps that are contained in direct
13571 			 * blocks were resolved by doing above ffs_update.
13572 			 * Pagedeps contained in indirect blocks may
13573 			 * require a complete sync'ing of the directory.
13574 			 * We are in the midst of doing a complete sync,
13575 			 * so if they are not resolved in this pass we
13576 			 * defer them for now as they will be sync'ed by
13577 			 * our caller shortly.
13578 			 */
13579 			LIST_REMOVE(dap, da_pdlist);
13580 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13581 			continue;
13582 		}
13583 		/*
13584 		 * A newly allocated directory must have its "." and
13585 		 * ".." entries written out before its name can be
13586 		 * committed in its parent.
13587 		 */
13588 		inum = dap->da_newinum;
13589 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13590 			panic("flush_pagedep_deps: lost inode1");
13591 		/*
13592 		 * Wait for any pending journal adds to complete so we don't
13593 		 * cause rollbacks while syncing.
13594 		 */
13595 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13596 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13597 			    == DEPCOMPLETE) {
13598 				jwait(&inoref->if_list, MNT_WAIT);
13599 				goto restart;
13600 			}
13601 		}
13602 		if (dap->da_state & MKDIR_BODY) {
13603 			FREE_LOCK(ump);
13604 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13605 			    diraddhdp, &unfinished, &vp);
13606 			if (error != 0)
13607 				break;
13608 			error = flush_newblk_dep(vp, mp, 0);
13609 			/*
13610 			 * If we still have the dependency we might need to
13611 			 * update the vnode to sync the new link count to
13612 			 * disk.
13613 			 */
13614 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13615 				error = ffs_update(vp, 1);
13616 			vput(vp);
13617 			if (error != 0)
13618 				break;
13619 			ACQUIRE_LOCK(ump);
13620 			/*
13621 			 * If that cleared dependencies, go on to next.
13622 			 */
13623 			if (dap != LIST_FIRST(diraddhdp))
13624 				continue;
13625 			if (dap->da_state & MKDIR_BODY) {
13626 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13627 				    &inodedep);
13628 				panic("flush_pagedep_deps: MKDIR_BODY "
13629 				    "inodedep %p dap %p vp %p",
13630 				    inodedep, dap, vp);
13631 			}
13632 		}
13633 		/*
13634 		 * Flush the inode on which the directory entry depends.
13635 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13636 		 * the only remaining dependency is that the updated inode
13637 		 * count must get pushed to disk. The inode has already
13638 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13639 		 * the time of the reference count change. So we need only
13640 		 * locate that buffer, ensure that there will be no rollback
13641 		 * caused by a bitmap dependency, then write the inode buffer.
13642 		 */
13643 retry:
13644 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13645 			panic("flush_pagedep_deps: lost inode");
13646 		/*
13647 		 * If the inode still has bitmap dependencies,
13648 		 * push them to disk.
13649 		 */
13650 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13651 			bp = inodedep->id_bmsafemap->sm_buf;
13652 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13653 			if (bp == NULL)
13654 				goto retry;
13655 			FREE_LOCK(ump);
13656 			if ((error = bwrite(bp)) != 0)
13657 				break;
13658 			ACQUIRE_LOCK(ump);
13659 			if (dap != LIST_FIRST(diraddhdp))
13660 				continue;
13661 		}
13662 		/*
13663 		 * If the inode is still sitting in a buffer waiting
13664 		 * to be written or waiting for the link count to be
13665 		 * adjusted update it here to flush it to disk.
13666 		 */
13667 		if (dap == LIST_FIRST(diraddhdp)) {
13668 			FREE_LOCK(ump);
13669 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13670 			    diraddhdp, &unfinished, &vp);
13671 			if (error != 0)
13672 				break;
13673 			error = ffs_update(vp, 1);
13674 			vput(vp);
13675 			if (error)
13676 				break;
13677 			ACQUIRE_LOCK(ump);
13678 		}
13679 		/*
13680 		 * If we have failed to get rid of all the dependencies
13681 		 * then something is seriously wrong.
13682 		 */
13683 		if (dap == LIST_FIRST(diraddhdp)) {
13684 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13685 			panic("flush_pagedep_deps: failed to flush "
13686 			    "inodedep %p ino %ju dap %p",
13687 			    inodedep, (uintmax_t)inum, dap);
13688 		}
13689 	}
13690 	if (error)
13691 		ACQUIRE_LOCK(ump);
13692 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13693 		LIST_REMOVE(dap, da_pdlist);
13694 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13695 	}
13696 	return (error);
13697 }
13698 
13699 /*
13700  * A large burst of file addition or deletion activity can drive the
13701  * memory load excessively high. First attempt to slow things down
13702  * using the techniques below. If that fails, this routine requests
13703  * the offending operations to fall back to running synchronously
13704  * until the memory load returns to a reasonable level.
13705  */
13706 int
13707 softdep_slowdown(vp)
13708 	struct vnode *vp;
13709 {
13710 	struct ufsmount *ump;
13711 	int jlow;
13712 	int max_softdeps_hard;
13713 
13714 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13715 	    ("softdep_slowdown called on non-softdep filesystem"));
13716 	ump = VFSTOUFS(vp->v_mount);
13717 	ACQUIRE_LOCK(ump);
13718 	jlow = 0;
13719 	/*
13720 	 * Check for journal space if needed.
13721 	 */
13722 	if (DOINGSUJ(vp)) {
13723 		if (journal_space(ump, 0) == 0)
13724 			jlow = 1;
13725 	}
13726 	/*
13727 	 * If the system is under its limits and our filesystem is
13728 	 * not responsible for more than our share of the usage and
13729 	 * we are not low on journal space, then no need to slow down.
13730 	 */
13731 	max_softdeps_hard = max_softdeps * 11 / 10;
13732 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13733 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13734 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13735 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13736 	    ump->softdep_curdeps[D_DIRREM] <
13737 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13738 	    ump->softdep_curdeps[D_INODEDEP] <
13739 	    max_softdeps_hard / stat_flush_threads &&
13740 	    ump->softdep_curdeps[D_INDIRDEP] <
13741 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13742 	    ump->softdep_curdeps[D_FREEBLKS] <
13743 	    max_softdeps_hard / stat_flush_threads) {
13744 		FREE_LOCK(ump);
13745   		return (0);
13746 	}
13747 	/*
13748 	 * If the journal is low or our filesystem is over its limit
13749 	 * then speedup the cleanup.
13750 	 */
13751 	if (ump->softdep_curdeps[D_INDIRDEP] <
13752 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13753 		softdep_speedup(ump);
13754 	stat_sync_limit_hit += 1;
13755 	FREE_LOCK(ump);
13756 	/*
13757 	 * We only slow down the rate at which new dependencies are
13758 	 * generated if we are not using journaling. With journaling,
13759 	 * the cleanup should always be sufficient to keep things
13760 	 * under control.
13761 	 */
13762 	if (DOINGSUJ(vp))
13763 		return (0);
13764 	return (1);
13765 }
13766 
13767 static int
13768 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13769 {
13770 	return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13771 	    ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13772 }
13773 
13774 static void
13775 softdep_request_cleanup_inactivate(struct mount *mp)
13776 {
13777 	struct vnode *vp, *mvp;
13778 	int error;
13779 
13780 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13781 	    NULL) {
13782 		vholdl(vp);
13783 		vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13784 		VI_LOCK(vp);
13785 		if (vp->v_data != NULL && vp->v_usecount == 0) {
13786 			while ((vp->v_iflag & VI_OWEINACT) != 0) {
13787 				error = vinactive(vp);
13788 				if (error != 0 && error != ERELOOKUP)
13789 					break;
13790 			}
13791 			atomic_add_int(&stat_delayed_inact, 1);
13792 		}
13793 		VOP_UNLOCK(vp);
13794 		vdropl(vp);
13795 	}
13796 }
13797 
13798 /*
13799  * Called by the allocation routines when they are about to fail
13800  * in the hope that we can free up the requested resource (inodes
13801  * or disk space).
13802  *
13803  * First check to see if the work list has anything on it. If it has,
13804  * clean up entries until we successfully free the requested resource.
13805  * Because this process holds inodes locked, we cannot handle any remove
13806  * requests that might block on a locked inode as that could lead to
13807  * deadlock. If the worklist yields none of the requested resource,
13808  * start syncing out vnodes to free up the needed space.
13809  */
13810 int
13811 softdep_request_cleanup(fs, vp, cred, resource)
13812 	struct fs *fs;
13813 	struct vnode *vp;
13814 	struct ucred *cred;
13815 	int resource;
13816 {
13817 	struct ufsmount *ump;
13818 	struct mount *mp;
13819 	long starttime;
13820 	ufs2_daddr_t needed;
13821 	int error, failed_vnode;
13822 
13823 	/*
13824 	 * If we are being called because of a process doing a
13825 	 * copy-on-write, then it is not safe to process any
13826 	 * worklist items as we will recurse into the copyonwrite
13827 	 * routine.  This will result in an incoherent snapshot.
13828 	 * If the vnode that we hold is a snapshot, we must avoid
13829 	 * handling other resources that could cause deadlock.
13830 	 */
13831 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13832 		return (0);
13833 
13834 	if (resource == FLUSH_BLOCKS_WAIT)
13835 		stat_cleanup_blkrequests += 1;
13836 	else
13837 		stat_cleanup_inorequests += 1;
13838 
13839 	mp = vp->v_mount;
13840 	ump = VFSTOUFS(mp);
13841 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13842 	UFS_UNLOCK(ump);
13843 	error = ffs_update(vp, 1);
13844 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13845 		UFS_LOCK(ump);
13846 		return (0);
13847 	}
13848 	/*
13849 	 * If we are in need of resources, start by cleaning up
13850 	 * any block removals associated with our inode.
13851 	 */
13852 	ACQUIRE_LOCK(ump);
13853 	process_removes(vp);
13854 	process_truncates(vp);
13855 	FREE_LOCK(ump);
13856 	/*
13857 	 * Now clean up at least as many resources as we will need.
13858 	 *
13859 	 * When requested to clean up inodes, the number that are needed
13860 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13861 	 * plus a bit of slop (2) in case some more writers show up while
13862 	 * we are cleaning.
13863 	 *
13864 	 * When requested to free up space, the amount of space that
13865 	 * we need is enough blocks to allocate a full-sized segment
13866 	 * (fs_contigsumsize). The number of such segments that will
13867 	 * be needed is set by the number of simultaneous writers
13868 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13869 	 * writers show up while we are cleaning.
13870 	 *
13871 	 * Additionally, if we are unpriviledged and allocating space,
13872 	 * we need to ensure that we clean up enough blocks to get the
13873 	 * needed number of blocks over the threshold of the minimum
13874 	 * number of blocks required to be kept free by the filesystem
13875 	 * (fs_minfree).
13876 	 */
13877 	if (resource == FLUSH_INODES_WAIT) {
13878 		needed = vfs_mount_fetch_counter(vp->v_mount,
13879 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13880 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13881 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13882 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13883 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13884 			needed += fragstoblks(fs,
13885 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13886 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13887 	} else {
13888 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13889 		    resource);
13890 		UFS_LOCK(ump);
13891 		return (0);
13892 	}
13893 	starttime = time_second;
13894 retry:
13895 	if (resource == FLUSH_BLOCKS_WAIT &&
13896 	    fs->fs_cstotal.cs_nbfree <= needed)
13897 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13898 		    BIO_SPEEDUP_TRIM);
13899 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13900 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13901 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13902 	    fs->fs_cstotal.cs_nifree <= needed)) {
13903 		ACQUIRE_LOCK(ump);
13904 		if (ump->softdep_on_worklist > 0 &&
13905 		    process_worklist_item(UFSTOVFS(ump),
13906 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13907 			stat_worklist_push += 1;
13908 		FREE_LOCK(ump);
13909 	}
13910 
13911 	/*
13912 	 * Check that there are vnodes pending inactivation.  As they
13913 	 * have been unlinked, inactivating them will free up their
13914 	 * inodes.
13915 	 */
13916 	ACQUIRE_LOCK(ump);
13917 	if (resource == FLUSH_INODES_WAIT &&
13918 	    fs->fs_cstotal.cs_nifree <= needed &&
13919 	    fs->fs_pendinginodes <= needed) {
13920 		if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13921 			ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13922 			FREE_LOCK(ump);
13923 			softdep_request_cleanup_inactivate(mp);
13924 			ACQUIRE_LOCK(ump);
13925 			ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13926 			wakeup(&ump->um_softdep->sd_flags);
13927 		} else {
13928 			while ((ump->um_softdep->sd_flags &
13929 			    FLUSH_DI_ACTIVE) != 0) {
13930 				msleep(&ump->um_softdep->sd_flags,
13931 				    LOCK_PTR(ump), PVM, "ffsvina", hz);
13932 			}
13933 		}
13934 	}
13935 	FREE_LOCK(ump);
13936 
13937 	/*
13938 	 * If we still need resources and there are no more worklist
13939 	 * entries to process to obtain them, we have to start flushing
13940 	 * the dirty vnodes to force the release of additional requests
13941 	 * to the worklist that we can then process to reap addition
13942 	 * resources. We walk the vnodes associated with the mount point
13943 	 * until we get the needed worklist requests that we can reap.
13944 	 *
13945 	 * If there are several threads all needing to clean the same
13946 	 * mount point, only one is allowed to walk the mount list.
13947 	 * When several threads all try to walk the same mount list,
13948 	 * they end up competing with each other and often end up in
13949 	 * livelock. This approach ensures that forward progress is
13950 	 * made at the cost of occational ENOSPC errors being returned
13951 	 * that might otherwise have been avoided.
13952 	 */
13953 	error = 1;
13954 	if ((resource == FLUSH_BLOCKS_WAIT &&
13955 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13956 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13957 	     fs->fs_cstotal.cs_nifree <= needed)) {
13958 		ACQUIRE_LOCK(ump);
13959 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13960 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13961 			FREE_LOCK(ump);
13962 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13963 			ACQUIRE_LOCK(ump);
13964 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13965 			wakeup(&ump->um_softdep->sd_flags);
13966 			FREE_LOCK(ump);
13967 			if (ump->softdep_on_worklist > 0) {
13968 				stat_cleanup_retries += 1;
13969 				if (!failed_vnode)
13970 					goto retry;
13971 			}
13972 		} else {
13973 			while ((ump->um_softdep->sd_flags &
13974 			    FLUSH_RC_ACTIVE) != 0) {
13975 				msleep(&ump->um_softdep->sd_flags,
13976 				    LOCK_PTR(ump), PVM, "ffsrca", hz);
13977 			}
13978 			FREE_LOCK(ump);
13979 			error = 0;
13980 		}
13981 		stat_cleanup_failures += 1;
13982 	}
13983 	if (time_second - starttime > stat_cleanup_high_delay)
13984 		stat_cleanup_high_delay = time_second - starttime;
13985 	UFS_LOCK(ump);
13986 	return (error);
13987 }
13988 
13989 /*
13990  * Scan the vnodes for the specified mount point flushing out any
13991  * vnodes that can be locked without waiting. Finally, try to flush
13992  * the device associated with the mount point if it can be locked
13993  * without waiting.
13994  *
13995  * We return 0 if we were able to lock every vnode in our scan.
13996  * If we had to skip one or more vnodes, we return 1.
13997  */
13998 static int
13999 softdep_request_cleanup_flush(mp, ump)
14000 	struct mount *mp;
14001 	struct ufsmount *ump;
14002 {
14003 	struct thread *td;
14004 	struct vnode *lvp, *mvp;
14005 	int failed_vnode;
14006 
14007 	failed_vnode = 0;
14008 	td = curthread;
14009 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
14010 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
14011 			VI_UNLOCK(lvp);
14012 			continue;
14013 		}
14014 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
14015 			failed_vnode = 1;
14016 			continue;
14017 		}
14018 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
14019 			vput(lvp);
14020 			continue;
14021 		}
14022 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
14023 		vput(lvp);
14024 	}
14025 	lvp = ump->um_devvp;
14026 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
14027 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
14028 		VOP_UNLOCK(lvp);
14029 	}
14030 	return (failed_vnode);
14031 }
14032 
14033 static bool
14034 softdep_excess_items(struct ufsmount *ump, int item)
14035 {
14036 
14037 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
14038 	return (dep_current[item] > max_softdeps &&
14039 	    ump->softdep_curdeps[item] > max_softdeps /
14040 	    stat_flush_threads);
14041 }
14042 
14043 static void
14044 schedule_cleanup(struct mount *mp)
14045 {
14046 	struct ufsmount *ump;
14047 	struct thread *td;
14048 
14049 	ump = VFSTOUFS(mp);
14050 	LOCK_OWNED(ump);
14051 	FREE_LOCK(ump);
14052 	td = curthread;
14053 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
14054 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
14055 		/*
14056 		 * No ast is delivered to kernel threads, so nobody
14057 		 * would deref the mp.  Some kernel threads
14058 		 * explicitely check for AST, e.g. NFS daemon does
14059 		 * this in the serving loop.
14060 		 */
14061 		return;
14062 	}
14063 	if (td->td_su != NULL)
14064 		vfs_rel(td->td_su);
14065 	vfs_ref(mp);
14066 	td->td_su = mp;
14067 	thread_lock(td);
14068 	td->td_flags |= TDF_ASTPENDING;
14069 	thread_unlock(td);
14070 }
14071 
14072 static void
14073 softdep_ast_cleanup_proc(struct thread *td)
14074 {
14075 	struct mount *mp;
14076 	struct ufsmount *ump;
14077 	int error;
14078 	bool req;
14079 
14080 	while ((mp = td->td_su) != NULL) {
14081 		td->td_su = NULL;
14082 		error = vfs_busy(mp, MBF_NOWAIT);
14083 		vfs_rel(mp);
14084 		if (error != 0)
14085 			return;
14086 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
14087 			ump = VFSTOUFS(mp);
14088 			for (;;) {
14089 				req = false;
14090 				ACQUIRE_LOCK(ump);
14091 				if (softdep_excess_items(ump, D_INODEDEP)) {
14092 					req = true;
14093 					request_cleanup(mp, FLUSH_INODES);
14094 				}
14095 				if (softdep_excess_items(ump, D_DIRREM)) {
14096 					req = true;
14097 					request_cleanup(mp, FLUSH_BLOCKS);
14098 				}
14099 				FREE_LOCK(ump);
14100 				if (softdep_excess_items(ump, D_NEWBLK) ||
14101 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
14102 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
14103 					error = vn_start_write(NULL, &mp,
14104 					    V_WAIT);
14105 					if (error == 0) {
14106 						req = true;
14107 						VFS_SYNC(mp, MNT_WAIT);
14108 						vn_finished_write(mp);
14109 					}
14110 				}
14111 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
14112 					break;
14113 			}
14114 		}
14115 		vfs_unbusy(mp);
14116 	}
14117 	if ((mp = td->td_su) != NULL) {
14118 		td->td_su = NULL;
14119 		vfs_rel(mp);
14120 	}
14121 }
14122 
14123 /*
14124  * If memory utilization has gotten too high, deliberately slow things
14125  * down and speed up the I/O processing.
14126  */
14127 static int
14128 request_cleanup(mp, resource)
14129 	struct mount *mp;
14130 	int resource;
14131 {
14132 	struct thread *td = curthread;
14133 	struct ufsmount *ump;
14134 
14135 	ump = VFSTOUFS(mp);
14136 	LOCK_OWNED(ump);
14137 	/*
14138 	 * We never hold up the filesystem syncer or buf daemon.
14139 	 */
14140 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
14141 		return (0);
14142 	/*
14143 	 * First check to see if the work list has gotten backlogged.
14144 	 * If it has, co-opt this process to help clean up two entries.
14145 	 * Because this process may hold inodes locked, we cannot
14146 	 * handle any remove requests that might block on a locked
14147 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
14148 	 * to avoid recursively processing the worklist.
14149 	 */
14150 	if (ump->softdep_on_worklist > max_softdeps / 10) {
14151 		td->td_pflags |= TDP_SOFTDEP;
14152 		process_worklist_item(mp, 2, LK_NOWAIT);
14153 		td->td_pflags &= ~TDP_SOFTDEP;
14154 		stat_worklist_push += 2;
14155 		return(1);
14156 	}
14157 	/*
14158 	 * Next, we attempt to speed up the syncer process. If that
14159 	 * is successful, then we allow the process to continue.
14160 	 */
14161 	if (softdep_speedup(ump) &&
14162 	    resource != FLUSH_BLOCKS_WAIT &&
14163 	    resource != FLUSH_INODES_WAIT)
14164 		return(0);
14165 	/*
14166 	 * If we are resource constrained on inode dependencies, try
14167 	 * flushing some dirty inodes. Otherwise, we are constrained
14168 	 * by file deletions, so try accelerating flushes of directories
14169 	 * with removal dependencies. We would like to do the cleanup
14170 	 * here, but we probably hold an inode locked at this point and
14171 	 * that might deadlock against one that we try to clean. So,
14172 	 * the best that we can do is request the syncer daemon to do
14173 	 * the cleanup for us.
14174 	 */
14175 	switch (resource) {
14176 	case FLUSH_INODES:
14177 	case FLUSH_INODES_WAIT:
14178 		ACQUIRE_GBLLOCK(&lk);
14179 		stat_ino_limit_push += 1;
14180 		req_clear_inodedeps += 1;
14181 		FREE_GBLLOCK(&lk);
14182 		stat_countp = &stat_ino_limit_hit;
14183 		break;
14184 
14185 	case FLUSH_BLOCKS:
14186 	case FLUSH_BLOCKS_WAIT:
14187 		ACQUIRE_GBLLOCK(&lk);
14188 		stat_blk_limit_push += 1;
14189 		req_clear_remove += 1;
14190 		FREE_GBLLOCK(&lk);
14191 		stat_countp = &stat_blk_limit_hit;
14192 		break;
14193 
14194 	default:
14195 		panic("request_cleanup: unknown type");
14196 	}
14197 	/*
14198 	 * Hopefully the syncer daemon will catch up and awaken us.
14199 	 * We wait at most tickdelay before proceeding in any case.
14200 	 */
14201 	ACQUIRE_GBLLOCK(&lk);
14202 	FREE_LOCK(ump);
14203 	proc_waiting += 1;
14204 	if (callout_pending(&softdep_callout) == FALSE)
14205 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
14206 		    pause_timer, 0);
14207 
14208 	if ((td->td_pflags & TDP_KTHREAD) == 0)
14209 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
14210 	proc_waiting -= 1;
14211 	FREE_GBLLOCK(&lk);
14212 	ACQUIRE_LOCK(ump);
14213 	return (1);
14214 }
14215 
14216 /*
14217  * Awaken processes pausing in request_cleanup and clear proc_waiting
14218  * to indicate that there is no longer a timer running. Pause_timer
14219  * will be called with the global softdep mutex (&lk) locked.
14220  */
14221 static void
14222 pause_timer(arg)
14223 	void *arg;
14224 {
14225 
14226 	GBLLOCK_OWNED(&lk);
14227 	/*
14228 	 * The callout_ API has acquired mtx and will hold it around this
14229 	 * function call.
14230 	 */
14231 	*stat_countp += proc_waiting;
14232 	wakeup(&proc_waiting);
14233 }
14234 
14235 /*
14236  * If requested, try removing inode or removal dependencies.
14237  */
14238 static void
14239 check_clear_deps(mp)
14240 	struct mount *mp;
14241 {
14242 	struct ufsmount *ump;
14243 	bool suj_susp;
14244 
14245 	/*
14246 	 * Tell the lower layers that any TRIM or WRITE transactions that have
14247 	 * been delayed for performance reasons should proceed to help alleviate
14248 	 * the shortage faster. The race between checking req_* and the softdep
14249 	 * mutex (lk) is fine since this is an advisory operation that at most
14250 	 * causes deferred work to be done sooner.
14251 	 */
14252 	ump = VFSTOUFS(mp);
14253 	suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14254 	    ump->softdep_jblocks->jb_suspended;
14255 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14256 		FREE_LOCK(ump);
14257 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14258 		ACQUIRE_LOCK(ump);
14259 	}
14260 
14261 	/*
14262 	 * If we are suspended, it may be because of our using
14263 	 * too many inodedeps, so help clear them out.
14264 	 */
14265 	if (suj_susp)
14266 		clear_inodedeps(mp);
14267 
14268 	/*
14269 	 * General requests for cleanup of backed up dependencies
14270 	 */
14271 	ACQUIRE_GBLLOCK(&lk);
14272 	if (req_clear_inodedeps) {
14273 		req_clear_inodedeps -= 1;
14274 		FREE_GBLLOCK(&lk);
14275 		clear_inodedeps(mp);
14276 		ACQUIRE_GBLLOCK(&lk);
14277 		wakeup(&proc_waiting);
14278 	}
14279 	if (req_clear_remove) {
14280 		req_clear_remove -= 1;
14281 		FREE_GBLLOCK(&lk);
14282 		clear_remove(mp);
14283 		ACQUIRE_GBLLOCK(&lk);
14284 		wakeup(&proc_waiting);
14285 	}
14286 	FREE_GBLLOCK(&lk);
14287 }
14288 
14289 /*
14290  * Flush out a directory with at least one removal dependency in an effort to
14291  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14292  */
14293 static void
14294 clear_remove(mp)
14295 	struct mount *mp;
14296 {
14297 	struct pagedep_hashhead *pagedephd;
14298 	struct pagedep *pagedep;
14299 	struct ufsmount *ump;
14300 	struct vnode *vp;
14301 	struct bufobj *bo;
14302 	int error, cnt;
14303 	ino_t ino;
14304 
14305 	ump = VFSTOUFS(mp);
14306 	LOCK_OWNED(ump);
14307 
14308 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14309 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14310 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14311 			ump->pagedep_nextclean = 0;
14312 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14313 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
14314 				continue;
14315 			ino = pagedep->pd_ino;
14316 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14317 				continue;
14318 			FREE_LOCK(ump);
14319 
14320 			/*
14321 			 * Let unmount clear deps
14322 			 */
14323 			error = vfs_busy(mp, MBF_NOWAIT);
14324 			if (error != 0)
14325 				goto finish_write;
14326 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14327 			     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14328 			vfs_unbusy(mp);
14329 			if (error != 0) {
14330 				softdep_error("clear_remove: vget", error);
14331 				goto finish_write;
14332 			}
14333 			MPASS(VTOI(vp)->i_mode != 0);
14334 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14335 				softdep_error("clear_remove: fsync", error);
14336 			bo = &vp->v_bufobj;
14337 			BO_LOCK(bo);
14338 			drain_output(vp);
14339 			BO_UNLOCK(bo);
14340 			vput(vp);
14341 		finish_write:
14342 			vn_finished_write(mp);
14343 			ACQUIRE_LOCK(ump);
14344 			return;
14345 		}
14346 	}
14347 }
14348 
14349 /*
14350  * Clear out a block of dirty inodes in an effort to reduce
14351  * the number of inodedep dependency structures.
14352  */
14353 static void
14354 clear_inodedeps(mp)
14355 	struct mount *mp;
14356 {
14357 	struct inodedep_hashhead *inodedephd;
14358 	struct inodedep *inodedep;
14359 	struct ufsmount *ump;
14360 	struct vnode *vp;
14361 	struct fs *fs;
14362 	int error, cnt;
14363 	ino_t firstino, lastino, ino;
14364 
14365 	ump = VFSTOUFS(mp);
14366 	fs = ump->um_fs;
14367 	LOCK_OWNED(ump);
14368 	/*
14369 	 * Pick a random inode dependency to be cleared.
14370 	 * We will then gather up all the inodes in its block
14371 	 * that have dependencies and flush them out.
14372 	 */
14373 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14374 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14375 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14376 			ump->inodedep_nextclean = 0;
14377 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14378 			break;
14379 	}
14380 	if (inodedep == NULL)
14381 		return;
14382 	/*
14383 	 * Find the last inode in the block with dependencies.
14384 	 */
14385 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14386 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14387 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14388 			break;
14389 	/*
14390 	 * Asynchronously push all but the last inode with dependencies.
14391 	 * Synchronously push the last inode with dependencies to ensure
14392 	 * that the inode block gets written to free up the inodedeps.
14393 	 */
14394 	for (ino = firstino; ino <= lastino; ino++) {
14395 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14396 			continue;
14397 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14398 			continue;
14399 		FREE_LOCK(ump);
14400 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14401 		if (error != 0) {
14402 			vn_finished_write(mp);
14403 			ACQUIRE_LOCK(ump);
14404 			return;
14405 		}
14406 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14407 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14408 			softdep_error("clear_inodedeps: vget", error);
14409 			vfs_unbusy(mp);
14410 			vn_finished_write(mp);
14411 			ACQUIRE_LOCK(ump);
14412 			return;
14413 		}
14414 		vfs_unbusy(mp);
14415 		if (VTOI(vp)->i_mode == 0) {
14416 			vgone(vp);
14417 		} else if (ino == lastino) {
14418 			do {
14419 				error = ffs_syncvnode(vp, MNT_WAIT, 0);
14420 			} while (error == ERELOOKUP);
14421 			if (error != 0)
14422 				softdep_error("clear_inodedeps: fsync1", error);
14423 		} else {
14424 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14425 				softdep_error("clear_inodedeps: fsync2", error);
14426 			BO_LOCK(&vp->v_bufobj);
14427 			drain_output(vp);
14428 			BO_UNLOCK(&vp->v_bufobj);
14429 		}
14430 		vput(vp);
14431 		vn_finished_write(mp);
14432 		ACQUIRE_LOCK(ump);
14433 	}
14434 }
14435 
14436 void
14437 softdep_buf_append(bp, wkhd)
14438 	struct buf *bp;
14439 	struct workhead *wkhd;
14440 {
14441 	struct worklist *wk;
14442 	struct ufsmount *ump;
14443 
14444 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14445 		return;
14446 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14447 	    ("softdep_buf_append called on non-softdep filesystem"));
14448 	ump = VFSTOUFS(wk->wk_mp);
14449 	ACQUIRE_LOCK(ump);
14450 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14451 		WORKLIST_REMOVE(wk);
14452 		WORKLIST_INSERT(&bp->b_dep, wk);
14453 	}
14454 	FREE_LOCK(ump);
14455 
14456 }
14457 
14458 void
14459 softdep_inode_append(ip, cred, wkhd)
14460 	struct inode *ip;
14461 	struct ucred *cred;
14462 	struct workhead *wkhd;
14463 {
14464 	struct buf *bp;
14465 	struct fs *fs;
14466 	struct ufsmount *ump;
14467 	int error;
14468 
14469 	ump = ITOUMP(ip);
14470 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14471 	    ("softdep_inode_append called on non-softdep filesystem"));
14472 	fs = ump->um_fs;
14473 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14474 	    (int)fs->fs_bsize, cred, &bp);
14475 	if (error) {
14476 		bqrelse(bp);
14477 		softdep_freework(wkhd);
14478 		return;
14479 	}
14480 	softdep_buf_append(bp, wkhd);
14481 	bqrelse(bp);
14482 }
14483 
14484 void
14485 softdep_freework(wkhd)
14486 	struct workhead *wkhd;
14487 {
14488 	struct worklist *wk;
14489 	struct ufsmount *ump;
14490 
14491 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14492 		return;
14493 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14494 	    ("softdep_freework called on non-softdep filesystem"));
14495 	ump = VFSTOUFS(wk->wk_mp);
14496 	ACQUIRE_LOCK(ump);
14497 	handle_jwork(wkhd);
14498 	FREE_LOCK(ump);
14499 }
14500 
14501 static struct ufsmount *
14502 softdep_bp_to_mp(bp)
14503 	struct buf *bp;
14504 {
14505 	struct mount *mp;
14506 	struct vnode *vp;
14507 
14508 	if (LIST_EMPTY(&bp->b_dep))
14509 		return (NULL);
14510 	vp = bp->b_vp;
14511 	KASSERT(vp != NULL,
14512 	    ("%s, buffer with dependencies lacks vnode", __func__));
14513 
14514 	/*
14515 	 * The ump mount point is stable after we get a correct
14516 	 * pointer, since bp is locked and this prevents unmount from
14517 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14518 	 * head wk_mp, because we do not yet own SU ump lock and
14519 	 * workitem might be freed while dereferenced.
14520 	 */
14521 retry:
14522 	switch (vp->v_type) {
14523 	case VCHR:
14524 		VI_LOCK(vp);
14525 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14526 		VI_UNLOCK(vp);
14527 		if (mp == NULL)
14528 			goto retry;
14529 		break;
14530 	case VREG:
14531 	case VDIR:
14532 	case VLNK:
14533 	case VFIFO:
14534 	case VSOCK:
14535 		mp = vp->v_mount;
14536 		break;
14537 	case VBLK:
14538 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14539 		/* FALLTHROUGH */
14540 	case VNON:
14541 	case VBAD:
14542 	case VMARKER:
14543 		mp = NULL;
14544 		break;
14545 	default:
14546 		vn_printf(vp, "unknown vnode type");
14547 		mp = NULL;
14548 		break;
14549 	}
14550 	return (VFSTOUFS(mp));
14551 }
14552 
14553 /*
14554  * Function to determine if the buffer has outstanding dependencies
14555  * that will cause a roll-back if the buffer is written. If wantcount
14556  * is set, return number of dependencies, otherwise just yes or no.
14557  */
14558 static int
14559 softdep_count_dependencies(bp, wantcount)
14560 	struct buf *bp;
14561 	int wantcount;
14562 {
14563 	struct worklist *wk;
14564 	struct ufsmount *ump;
14565 	struct bmsafemap *bmsafemap;
14566 	struct freework *freework;
14567 	struct inodedep *inodedep;
14568 	struct indirdep *indirdep;
14569 	struct freeblks *freeblks;
14570 	struct allocindir *aip;
14571 	struct pagedep *pagedep;
14572 	struct dirrem *dirrem;
14573 	struct newblk *newblk;
14574 	struct mkdir *mkdir;
14575 	struct diradd *dap;
14576 	int i, retval;
14577 
14578 	ump = softdep_bp_to_mp(bp);
14579 	if (ump == NULL)
14580 		return (0);
14581 	retval = 0;
14582 	ACQUIRE_LOCK(ump);
14583 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14584 		switch (wk->wk_type) {
14585 		case D_INODEDEP:
14586 			inodedep = WK_INODEDEP(wk);
14587 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14588 				/* bitmap allocation dependency */
14589 				retval += 1;
14590 				if (!wantcount)
14591 					goto out;
14592 			}
14593 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14594 				/* direct block pointer dependency */
14595 				retval += 1;
14596 				if (!wantcount)
14597 					goto out;
14598 			}
14599 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14600 				/* direct block pointer dependency */
14601 				retval += 1;
14602 				if (!wantcount)
14603 					goto out;
14604 			}
14605 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14606 				/* Add reference dependency. */
14607 				retval += 1;
14608 				if (!wantcount)
14609 					goto out;
14610 			}
14611 			continue;
14612 
14613 		case D_INDIRDEP:
14614 			indirdep = WK_INDIRDEP(wk);
14615 
14616 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14617 				/* indirect truncation dependency */
14618 				retval += 1;
14619 				if (!wantcount)
14620 					goto out;
14621 			}
14622 
14623 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14624 				/* indirect block pointer dependency */
14625 				retval += 1;
14626 				if (!wantcount)
14627 					goto out;
14628 			}
14629 			continue;
14630 
14631 		case D_PAGEDEP:
14632 			pagedep = WK_PAGEDEP(wk);
14633 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14634 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14635 					/* Journal remove ref dependency. */
14636 					retval += 1;
14637 					if (!wantcount)
14638 						goto out;
14639 				}
14640 			}
14641 			for (i = 0; i < DAHASHSZ; i++) {
14642 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14643 					/* directory entry dependency */
14644 					retval += 1;
14645 					if (!wantcount)
14646 						goto out;
14647 				}
14648 			}
14649 			continue;
14650 
14651 		case D_BMSAFEMAP:
14652 			bmsafemap = WK_BMSAFEMAP(wk);
14653 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14654 				/* Add reference dependency. */
14655 				retval += 1;
14656 				if (!wantcount)
14657 					goto out;
14658 			}
14659 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14660 				/* Allocate block dependency. */
14661 				retval += 1;
14662 				if (!wantcount)
14663 					goto out;
14664 			}
14665 			continue;
14666 
14667 		case D_FREEBLKS:
14668 			freeblks = WK_FREEBLKS(wk);
14669 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14670 				/* Freeblk journal dependency. */
14671 				retval += 1;
14672 				if (!wantcount)
14673 					goto out;
14674 			}
14675 			continue;
14676 
14677 		case D_ALLOCDIRECT:
14678 		case D_ALLOCINDIR:
14679 			newblk = WK_NEWBLK(wk);
14680 			if (newblk->nb_jnewblk) {
14681 				/* Journal allocate dependency. */
14682 				retval += 1;
14683 				if (!wantcount)
14684 					goto out;
14685 			}
14686 			continue;
14687 
14688 		case D_MKDIR:
14689 			mkdir = WK_MKDIR(wk);
14690 			if (mkdir->md_jaddref) {
14691 				/* Journal reference dependency. */
14692 				retval += 1;
14693 				if (!wantcount)
14694 					goto out;
14695 			}
14696 			continue;
14697 
14698 		case D_FREEWORK:
14699 		case D_FREEDEP:
14700 		case D_JSEGDEP:
14701 		case D_JSEG:
14702 		case D_SBDEP:
14703 			/* never a dependency on these blocks */
14704 			continue;
14705 
14706 		default:
14707 			panic("softdep_count_dependencies: Unexpected type %s",
14708 			    TYPENAME(wk->wk_type));
14709 			/* NOTREACHED */
14710 		}
14711 	}
14712 out:
14713 	FREE_LOCK(ump);
14714 	return (retval);
14715 }
14716 
14717 /*
14718  * Acquire exclusive access to a buffer.
14719  * Must be called with a locked mtx parameter.
14720  * Return acquired buffer or NULL on failure.
14721  */
14722 static struct buf *
14723 getdirtybuf(bp, lock, waitfor)
14724 	struct buf *bp;
14725 	struct rwlock *lock;
14726 	int waitfor;
14727 {
14728 	int error;
14729 
14730 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14731 		if (waitfor != MNT_WAIT)
14732 			return (NULL);
14733 		error = BUF_LOCK(bp,
14734 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14735 		/*
14736 		 * Even if we successfully acquire bp here, we have dropped
14737 		 * lock, which may violates our guarantee.
14738 		 */
14739 		if (error == 0)
14740 			BUF_UNLOCK(bp);
14741 		else if (error != ENOLCK)
14742 			panic("getdirtybuf: inconsistent lock: %d", error);
14743 		rw_wlock(lock);
14744 		return (NULL);
14745 	}
14746 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14747 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14748 			rw_wunlock(lock);
14749 			BO_LOCK(bp->b_bufobj);
14750 			BUF_UNLOCK(bp);
14751 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14752 				bp->b_vflags |= BV_BKGRDWAIT;
14753 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14754 				       PRIBIO | PDROP, "getbuf", 0);
14755 			} else
14756 				BO_UNLOCK(bp->b_bufobj);
14757 			rw_wlock(lock);
14758 			return (NULL);
14759 		}
14760 		BUF_UNLOCK(bp);
14761 		if (waitfor != MNT_WAIT)
14762 			return (NULL);
14763 #ifdef DEBUG_VFS_LOCKS
14764 		if (bp->b_vp->v_type != VCHR)
14765 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14766 #endif
14767 		bp->b_vflags |= BV_BKGRDWAIT;
14768 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14769 		return (NULL);
14770 	}
14771 	if ((bp->b_flags & B_DELWRI) == 0) {
14772 		BUF_UNLOCK(bp);
14773 		return (NULL);
14774 	}
14775 	bremfree(bp);
14776 	return (bp);
14777 }
14778 
14779 /*
14780  * Check if it is safe to suspend the file system now.  On entry,
14781  * the vnode interlock for devvp should be held.  Return 0 with
14782  * the mount interlock held if the file system can be suspended now,
14783  * otherwise return EAGAIN with the mount interlock held.
14784  */
14785 int
14786 softdep_check_suspend(struct mount *mp,
14787 		      struct vnode *devvp,
14788 		      int softdep_depcnt,
14789 		      int softdep_accdepcnt,
14790 		      int secondary_writes,
14791 		      int secondary_accwrites)
14792 {
14793 	struct bufobj *bo;
14794 	struct ufsmount *ump;
14795 	struct inodedep *inodedep;
14796 	int error, unlinked;
14797 
14798 	bo = &devvp->v_bufobj;
14799 	ASSERT_BO_WLOCKED(bo);
14800 
14801 	/*
14802 	 * If we are not running with soft updates, then we need only
14803 	 * deal with secondary writes as we try to suspend.
14804 	 */
14805 	if (MOUNTEDSOFTDEP(mp) == 0) {
14806 		MNT_ILOCK(mp);
14807 		while (mp->mnt_secondary_writes != 0) {
14808 			BO_UNLOCK(bo);
14809 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14810 			    (PUSER - 1) | PDROP, "secwr", 0);
14811 			BO_LOCK(bo);
14812 			MNT_ILOCK(mp);
14813 		}
14814 
14815 		/*
14816 		 * Reasons for needing more work before suspend:
14817 		 * - Dirty buffers on devvp.
14818 		 * - Secondary writes occurred after start of vnode sync loop
14819 		 */
14820 		error = 0;
14821 		if (bo->bo_numoutput > 0 ||
14822 		    bo->bo_dirty.bv_cnt > 0 ||
14823 		    secondary_writes != 0 ||
14824 		    mp->mnt_secondary_writes != 0 ||
14825 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14826 			error = EAGAIN;
14827 		BO_UNLOCK(bo);
14828 		return (error);
14829 	}
14830 
14831 	/*
14832 	 * If we are running with soft updates, then we need to coordinate
14833 	 * with them as we try to suspend.
14834 	 */
14835 	ump = VFSTOUFS(mp);
14836 	for (;;) {
14837 		if (!TRY_ACQUIRE_LOCK(ump)) {
14838 			BO_UNLOCK(bo);
14839 			ACQUIRE_LOCK(ump);
14840 			FREE_LOCK(ump);
14841 			BO_LOCK(bo);
14842 			continue;
14843 		}
14844 		MNT_ILOCK(mp);
14845 		if (mp->mnt_secondary_writes != 0) {
14846 			FREE_LOCK(ump);
14847 			BO_UNLOCK(bo);
14848 			msleep(&mp->mnt_secondary_writes,
14849 			       MNT_MTX(mp),
14850 			       (PUSER - 1) | PDROP, "secwr", 0);
14851 			BO_LOCK(bo);
14852 			continue;
14853 		}
14854 		break;
14855 	}
14856 
14857 	unlinked = 0;
14858 	if (MOUNTEDSUJ(mp)) {
14859 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14860 		    inodedep != NULL;
14861 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14862 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14863 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14864 			    UNLINKONLIST) ||
14865 			    !check_inodedep_free(inodedep))
14866 				continue;
14867 			unlinked++;
14868 		}
14869 	}
14870 
14871 	/*
14872 	 * Reasons for needing more work before suspend:
14873 	 * - Dirty buffers on devvp.
14874 	 * - Softdep activity occurred after start of vnode sync loop
14875 	 * - Secondary writes occurred after start of vnode sync loop
14876 	 */
14877 	error = 0;
14878 	if (bo->bo_numoutput > 0 ||
14879 	    bo->bo_dirty.bv_cnt > 0 ||
14880 	    softdep_depcnt != unlinked ||
14881 	    ump->softdep_deps != unlinked ||
14882 	    softdep_accdepcnt != ump->softdep_accdeps ||
14883 	    secondary_writes != 0 ||
14884 	    mp->mnt_secondary_writes != 0 ||
14885 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14886 		error = EAGAIN;
14887 	FREE_LOCK(ump);
14888 	BO_UNLOCK(bo);
14889 	return (error);
14890 }
14891 
14892 /*
14893  * Get the number of dependency structures for the file system, both
14894  * the current number and the total number allocated.  These will
14895  * later be used to detect that softdep processing has occurred.
14896  */
14897 void
14898 softdep_get_depcounts(struct mount *mp,
14899 		      int *softdep_depsp,
14900 		      int *softdep_accdepsp)
14901 {
14902 	struct ufsmount *ump;
14903 
14904 	if (MOUNTEDSOFTDEP(mp) == 0) {
14905 		*softdep_depsp = 0;
14906 		*softdep_accdepsp = 0;
14907 		return;
14908 	}
14909 	ump = VFSTOUFS(mp);
14910 	ACQUIRE_LOCK(ump);
14911 	*softdep_depsp = ump->softdep_deps;
14912 	*softdep_accdepsp = ump->softdep_accdeps;
14913 	FREE_LOCK(ump);
14914 }
14915 
14916 /*
14917  * Wait for pending output on a vnode to complete.
14918  */
14919 static void
14920 drain_output(vp)
14921 	struct vnode *vp;
14922 {
14923 
14924 	ASSERT_VOP_LOCKED(vp, "drain_output");
14925 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14926 }
14927 
14928 /*
14929  * Called whenever a buffer that is being invalidated or reallocated
14930  * contains dependencies. This should only happen if an I/O error has
14931  * occurred. The routine is called with the buffer locked.
14932  */
14933 static void
14934 softdep_deallocate_dependencies(bp)
14935 	struct buf *bp;
14936 {
14937 
14938 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14939 		panic("softdep_deallocate_dependencies: dangling deps");
14940 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14941 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14942 	else
14943 		printf("softdep_deallocate_dependencies: "
14944 		    "got error %d while accessing filesystem\n", bp->b_error);
14945 	if (bp->b_error != ENXIO)
14946 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14947 }
14948 
14949 /*
14950  * Function to handle asynchronous write errors in the filesystem.
14951  */
14952 static void
14953 softdep_error(func, error)
14954 	char *func;
14955 	int error;
14956 {
14957 
14958 	/* XXX should do something better! */
14959 	printf("%s: got error %d while accessing filesystem\n", func, error);
14960 }
14961 
14962 #ifdef DDB
14963 
14964 /* exported to ffs_vfsops.c */
14965 extern void db_print_ffs(struct ufsmount *ump);
14966 void
14967 db_print_ffs(struct ufsmount *ump)
14968 {
14969 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14970 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14971 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14972 	    ump->um_fs, ump->softdep_on_worklist,
14973 	    ump->softdep_deps, ump->softdep_req);
14974 }
14975 
14976 static void
14977 worklist_print(struct worklist *wk, int verbose)
14978 {
14979 
14980 	if (!verbose) {
14981 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14982 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14983 		return;
14984 	}
14985 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14986 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14987 	    LIST_NEXT(wk, wk_list));
14988 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14989 }
14990 
14991 static void
14992 inodedep_print(struct inodedep *inodedep, int verbose)
14993 {
14994 
14995 	worklist_print(&inodedep->id_list, 0);
14996 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14997 	    inodedep->id_fs,
14998 	    (intmax_t)inodedep->id_ino,
14999 	    (intmax_t)fsbtodb(inodedep->id_fs,
15000 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
15001 	    (intmax_t)inodedep->id_nlinkdelta,
15002 	    (intmax_t)inodedep->id_savednlink);
15003 
15004 	if (verbose == 0)
15005 		return;
15006 
15007 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
15008 	    inodedep->id_bmsafemap,
15009 	    inodedep->id_mkdiradd,
15010 	    TAILQ_FIRST(&inodedep->id_inoreflst));
15011 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
15012 	    LIST_FIRST(&inodedep->id_dirremhd),
15013 	    LIST_FIRST(&inodedep->id_pendinghd),
15014 	    LIST_FIRST(&inodedep->id_bufwait));
15015 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
15016 	    LIST_FIRST(&inodedep->id_inowait),
15017 	    TAILQ_FIRST(&inodedep->id_inoupdt),
15018 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
15019 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
15020 	    TAILQ_FIRST(&inodedep->id_extupdt),
15021 	    TAILQ_FIRST(&inodedep->id_newextupdt),
15022 	    TAILQ_FIRST(&inodedep->id_freeblklst));
15023 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
15024 	    inodedep->id_savedino1,
15025 	    (intmax_t)inodedep->id_savedsize,
15026 	    (intmax_t)inodedep->id_savedextsize);
15027 }
15028 
15029 static void
15030 newblk_print(struct newblk *nbp)
15031 {
15032 
15033 	worklist_print(&nbp->nb_list, 0);
15034 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
15035 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
15036 	    &nbp->nb_jnewblk,
15037 	    &nbp->nb_bmsafemap,
15038 	    &nbp->nb_freefrag);
15039 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
15040 	    LIST_FIRST(&nbp->nb_indirdeps),
15041 	    LIST_FIRST(&nbp->nb_newdirblk),
15042 	    LIST_FIRST(&nbp->nb_jwork));
15043 }
15044 
15045 static void
15046 allocdirect_print(struct allocdirect *adp)
15047 {
15048 
15049 	newblk_print(&adp->ad_block);
15050 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
15051 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
15052 	db_printf("    offset %d, inodedep %p\n",
15053 	    adp->ad_offset, adp->ad_inodedep);
15054 }
15055 
15056 static void
15057 allocindir_print(struct allocindir *aip)
15058 {
15059 
15060 	newblk_print(&aip->ai_block);
15061 	db_printf("    oldblkno %jd, lbn %jd\n",
15062 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
15063 	db_printf("    offset %d, indirdep %p\n",
15064 	    aip->ai_offset, aip->ai_indirdep);
15065 }
15066 
15067 static void
15068 mkdir_print(struct mkdir *mkdir)
15069 {
15070 
15071 	worklist_print(&mkdir->md_list, 0);
15072 	db_printf("    diradd %p, jaddref %p, buf %p\n",
15073 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
15074 }
15075 
15076 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
15077 {
15078 
15079 	if (have_addr == 0) {
15080 		db_printf("inodedep address required\n");
15081 		return;
15082 	}
15083 	inodedep_print((struct inodedep*)addr, 1);
15084 }
15085 
15086 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
15087 {
15088 	struct inodedep_hashhead *inodedephd;
15089 	struct inodedep *inodedep;
15090 	struct ufsmount *ump;
15091 	int cnt;
15092 
15093 	if (have_addr == 0) {
15094 		db_printf("ufsmount address required\n");
15095 		return;
15096 	}
15097 	ump = (struct ufsmount *)addr;
15098 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
15099 		inodedephd = &ump->inodedep_hashtbl[cnt];
15100 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
15101 			inodedep_print(inodedep, 0);
15102 		}
15103 	}
15104 }
15105 
15106 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
15107 {
15108 
15109 	if (have_addr == 0) {
15110 		db_printf("worklist address required\n");
15111 		return;
15112 	}
15113 	worklist_print((struct worklist *)addr, 1);
15114 }
15115 
15116 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
15117 {
15118 	struct worklist *wk;
15119 	struct workhead *wkhd;
15120 
15121 	if (have_addr == 0) {
15122 		db_printf("worklist address required "
15123 		    "(for example value in bp->b_dep)\n");
15124 		return;
15125 	}
15126 	/*
15127 	 * We often do not have the address of the worklist head but
15128 	 * instead a pointer to its first entry (e.g., we have the
15129 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
15130 	 * pointer of bp->b_dep will point at the head of the list, so
15131 	 * we cheat and use that instead. If we are in the middle of
15132 	 * a list we will still get the same result, so nothing
15133 	 * unexpected will result.
15134 	 */
15135 	wk = (struct worklist *)addr;
15136 	if (wk == NULL)
15137 		return;
15138 	wkhd = (struct workhead *)wk->wk_list.le_prev;
15139 	LIST_FOREACH(wk, wkhd, wk_list) {
15140 		switch(wk->wk_type) {
15141 		case D_INODEDEP:
15142 			inodedep_print(WK_INODEDEP(wk), 0);
15143 			continue;
15144 		case D_ALLOCDIRECT:
15145 			allocdirect_print(WK_ALLOCDIRECT(wk));
15146 			continue;
15147 		case D_ALLOCINDIR:
15148 			allocindir_print(WK_ALLOCINDIR(wk));
15149 			continue;
15150 		case D_MKDIR:
15151 			mkdir_print(WK_MKDIR(wk));
15152 			continue;
15153 		default:
15154 			worklist_print(wk, 0);
15155 			continue;
15156 		}
15157 	}
15158 }
15159 
15160 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
15161 {
15162 	if (have_addr == 0) {
15163 		db_printf("mkdir address required\n");
15164 		return;
15165 	}
15166 	mkdir_print((struct mkdir *)addr);
15167 }
15168 
15169 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
15170 {
15171 	struct mkdirlist *mkdirlisthd;
15172 	struct mkdir *mkdir;
15173 
15174 	if (have_addr == 0) {
15175 		db_printf("mkdir listhead address required\n");
15176 		return;
15177 	}
15178 	mkdirlisthd = (struct mkdirlist *)addr;
15179 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
15180 		mkdir_print(mkdir);
15181 		if (mkdir->md_diradd != NULL) {
15182 			db_printf("    ");
15183 			worklist_print(&mkdir->md_diradd->da_list, 0);
15184 		}
15185 		if (mkdir->md_jaddref != NULL) {
15186 			db_printf("    ");
15187 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
15188 		}
15189 	}
15190 }
15191 
15192 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
15193 {
15194 	if (have_addr == 0) {
15195 		db_printf("allocdirect address required\n");
15196 		return;
15197 	}
15198 	allocdirect_print((struct allocdirect *)addr);
15199 }
15200 
15201 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
15202 {
15203 	if (have_addr == 0) {
15204 		db_printf("allocindir address required\n");
15205 		return;
15206 	}
15207 	allocindir_print((struct allocindir *)addr);
15208 }
15209 
15210 #endif /* DDB */
15211 
15212 #endif /* SOFTUPDATES */
15213