xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 5b381db8cc67dd85695c49a85893ac7a5a612f42)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/rwlock.h>
73 #include <sys/stat.h>
74 #include <sys/sysctl.h>
75 #include <sys/syslog.h>
76 #include <sys/vnode.h>
77 #include <sys/conf.h>
78 
79 #include <ufs/ufs/dir.h>
80 #include <ufs/ufs/extattr.h>
81 #include <ufs/ufs/quota.h>
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ffs/fs.h>
85 #include <ufs/ffs/softdep.h>
86 #include <ufs/ffs/ffs_extern.h>
87 #include <ufs/ufs/ufs_extern.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_object.h>
92 
93 #include <geom/geom.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98 
99 #ifndef SOFTUPDATES
100 
101 int
102 softdep_flushfiles(oldmnt, flags, td)
103 	struct mount *oldmnt;
104 	int flags;
105 	struct thread *td;
106 {
107 
108 	panic("softdep_flushfiles called");
109 }
110 
111 int
112 softdep_mount(devvp, mp, fs, cred)
113 	struct vnode *devvp;
114 	struct mount *mp;
115 	struct fs *fs;
116 	struct ucred *cred;
117 {
118 
119 	return (0);
120 }
121 
122 void
123 softdep_initialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_uninitialize()
131 {
132 
133 	return;
134 }
135 
136 void
137 softdep_unmount(mp)
138 	struct mount *mp;
139 {
140 
141 	panic("softdep_unmount called");
142 }
143 
144 void
145 softdep_setup_sbupdate(ump, fs, bp)
146 	struct ufsmount *ump;
147 	struct fs *fs;
148 	struct buf *bp;
149 {
150 
151 	panic("softdep_setup_sbupdate called");
152 }
153 
154 void
155 softdep_setup_inomapdep(bp, ip, newinum, mode)
156 	struct buf *bp;
157 	struct inode *ip;
158 	ino_t newinum;
159 	int mode;
160 {
161 
162 	panic("softdep_setup_inomapdep called");
163 }
164 
165 void
166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167 	struct buf *bp;
168 	struct mount *mp;
169 	ufs2_daddr_t newblkno;
170 	int frags;
171 	int oldfrags;
172 {
173 
174 	panic("softdep_setup_blkmapdep called");
175 }
176 
177 void
178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179 	struct inode *ip;
180 	ufs_lbn_t lbn;
181 	ufs2_daddr_t newblkno;
182 	ufs2_daddr_t oldblkno;
183 	long newsize;
184 	long oldsize;
185 	struct buf *bp;
186 {
187 
188 	panic("softdep_setup_allocdirect called");
189 }
190 
191 void
192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193 	struct inode *ip;
194 	ufs_lbn_t lbn;
195 	ufs2_daddr_t newblkno;
196 	ufs2_daddr_t oldblkno;
197 	long newsize;
198 	long oldsize;
199 	struct buf *bp;
200 {
201 
202 	panic("softdep_setup_allocext called");
203 }
204 
205 void
206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207 	struct inode *ip;
208 	ufs_lbn_t lbn;
209 	struct buf *bp;
210 	int ptrno;
211 	ufs2_daddr_t newblkno;
212 	ufs2_daddr_t oldblkno;
213 	struct buf *nbp;
214 {
215 
216 	panic("softdep_setup_allocindir_page called");
217 }
218 
219 void
220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221 	struct buf *nbp;
222 	struct inode *ip;
223 	struct buf *bp;
224 	int ptrno;
225 	ufs2_daddr_t newblkno;
226 {
227 
228 	panic("softdep_setup_allocindir_meta called");
229 }
230 
231 void
232 softdep_journal_freeblocks(ip, cred, length, flags)
233 	struct inode *ip;
234 	struct ucred *cred;
235 	off_t length;
236 	int flags;
237 {
238 
239 	panic("softdep_journal_freeblocks called");
240 }
241 
242 void
243 softdep_journal_fsync(ip)
244 	struct inode *ip;
245 {
246 
247 	panic("softdep_journal_fsync called");
248 }
249 
250 void
251 softdep_setup_freeblocks(ip, length, flags)
252 	struct inode *ip;
253 	off_t length;
254 	int flags;
255 {
256 
257 	panic("softdep_setup_freeblocks called");
258 }
259 
260 void
261 softdep_freefile(pvp, ino, mode)
262 		struct vnode *pvp;
263 		ino_t ino;
264 		int mode;
265 {
266 
267 	panic("softdep_freefile called");
268 }
269 
270 int
271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272 	struct buf *bp;
273 	struct inode *dp;
274 	off_t diroffset;
275 	ino_t newinum;
276 	struct buf *newdirbp;
277 	int isnewblk;
278 {
279 
280 	panic("softdep_setup_directory_add called");
281 }
282 
283 void
284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285 	struct buf *bp;
286 	struct inode *dp;
287 	caddr_t base;
288 	caddr_t oldloc;
289 	caddr_t newloc;
290 	int entrysize;
291 {
292 
293 	panic("softdep_change_directoryentry_offset called");
294 }
295 
296 void
297 softdep_setup_remove(bp, dp, ip, isrmdir)
298 	struct buf *bp;
299 	struct inode *dp;
300 	struct inode *ip;
301 	int isrmdir;
302 {
303 
304 	panic("softdep_setup_remove called");
305 }
306 
307 void
308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309 	struct buf *bp;
310 	struct inode *dp;
311 	struct inode *ip;
312 	ino_t newinum;
313 	int isrmdir;
314 {
315 
316 	panic("softdep_setup_directory_change called");
317 }
318 
319 void
320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321 	struct mount *mp;
322 	struct buf *bp;
323 	ufs2_daddr_t blkno;
324 	int frags;
325 	struct workhead *wkhd;
326 {
327 
328 	panic("%s called", __FUNCTION__);
329 }
330 
331 void
332 softdep_setup_inofree(mp, bp, ino, wkhd)
333 	struct mount *mp;
334 	struct buf *bp;
335 	ino_t ino;
336 	struct workhead *wkhd;
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_unlink(dp, ip)
344 	struct inode *dp;
345 	struct inode *ip;
346 {
347 
348 	panic("%s called", __FUNCTION__);
349 }
350 
351 void
352 softdep_setup_link(dp, ip)
353 	struct inode *dp;
354 	struct inode *ip;
355 {
356 
357 	panic("%s called", __FUNCTION__);
358 }
359 
360 void
361 softdep_revert_link(dp, ip)
362 	struct inode *dp;
363 	struct inode *ip;
364 {
365 
366 	panic("%s called", __FUNCTION__);
367 }
368 
369 void
370 softdep_setup_rmdir(dp, ip)
371 	struct inode *dp;
372 	struct inode *ip;
373 {
374 
375 	panic("%s called", __FUNCTION__);
376 }
377 
378 void
379 softdep_revert_rmdir(dp, ip)
380 	struct inode *dp;
381 	struct inode *ip;
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 void
388 softdep_setup_create(dp, ip)
389 	struct inode *dp;
390 	struct inode *ip;
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 void
397 softdep_revert_create(dp, ip)
398 	struct inode *dp;
399 	struct inode *ip;
400 {
401 
402 	panic("%s called", __FUNCTION__);
403 }
404 
405 void
406 softdep_setup_mkdir(dp, ip)
407 	struct inode *dp;
408 	struct inode *ip;
409 {
410 
411 	panic("%s called", __FUNCTION__);
412 }
413 
414 void
415 softdep_revert_mkdir(dp, ip)
416 	struct inode *dp;
417 	struct inode *ip;
418 {
419 
420 	panic("%s called", __FUNCTION__);
421 }
422 
423 void
424 softdep_setup_dotdot_link(dp, ip)
425 	struct inode *dp;
426 	struct inode *ip;
427 {
428 
429 	panic("%s called", __FUNCTION__);
430 }
431 
432 int
433 softdep_prealloc(vp, waitok)
434 	struct vnode *vp;
435 	int waitok;
436 {
437 
438 	panic("%s called", __FUNCTION__);
439 }
440 
441 int
442 softdep_journal_lookup(mp, vpp)
443 	struct mount *mp;
444 	struct vnode **vpp;
445 {
446 
447 	return (ENOENT);
448 }
449 
450 void
451 softdep_change_linkcnt(ip)
452 	struct inode *ip;
453 {
454 
455 	panic("softdep_change_linkcnt called");
456 }
457 
458 void
459 softdep_load_inodeblock(ip)
460 	struct inode *ip;
461 {
462 
463 	panic("softdep_load_inodeblock called");
464 }
465 
466 void
467 softdep_update_inodeblock(ip, bp, waitfor)
468 	struct inode *ip;
469 	struct buf *bp;
470 	int waitfor;
471 {
472 
473 	panic("softdep_update_inodeblock called");
474 }
475 
476 int
477 softdep_fsync(vp)
478 	struct vnode *vp;	/* the "in_core" copy of the inode */
479 {
480 
481 	return (0);
482 }
483 
484 void
485 softdep_fsync_mountdev(vp)
486 	struct vnode *vp;
487 {
488 
489 	return;
490 }
491 
492 int
493 softdep_flushworklist(oldmnt, countp, td)
494 	struct mount *oldmnt;
495 	int *countp;
496 	struct thread *td;
497 {
498 
499 	*countp = 0;
500 	return (0);
501 }
502 
503 int
504 softdep_sync_metadata(struct vnode *vp)
505 {
506 
507 	panic("softdep_sync_metadata called");
508 }
509 
510 int
511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512 {
513 
514 	panic("softdep_sync_buf called");
515 }
516 
517 int
518 softdep_slowdown(vp)
519 	struct vnode *vp;
520 {
521 
522 	panic("softdep_slowdown called");
523 }
524 
525 int
526 softdep_request_cleanup(fs, vp, cred, resource)
527 	struct fs *fs;
528 	struct vnode *vp;
529 	struct ucred *cred;
530 	int resource;
531 {
532 
533 	return (0);
534 }
535 
536 int
537 softdep_check_suspend(struct mount *mp,
538 		      struct vnode *devvp,
539 		      int softdep_depcnt,
540 		      int softdep_accdepcnt,
541 		      int secondary_writes,
542 		      int secondary_accwrites)
543 {
544 	struct bufobj *bo;
545 	int error;
546 
547 	(void) softdep_depcnt,
548 	(void) softdep_accdepcnt;
549 
550 	bo = &devvp->v_bufobj;
551 	ASSERT_BO_WLOCKED(bo);
552 
553 	MNT_ILOCK(mp);
554 	while (mp->mnt_secondary_writes != 0) {
555 		BO_UNLOCK(bo);
556 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557 		    (PUSER - 1) | PDROP, "secwr", 0);
558 		BO_LOCK(bo);
559 		MNT_ILOCK(mp);
560 	}
561 
562 	/*
563 	 * Reasons for needing more work before suspend:
564 	 * - Dirty buffers on devvp.
565 	 * - Secondary writes occurred after start of vnode sync loop
566 	 */
567 	error = 0;
568 	if (bo->bo_numoutput > 0 ||
569 	    bo->bo_dirty.bv_cnt > 0 ||
570 	    secondary_writes != 0 ||
571 	    mp->mnt_secondary_writes != 0 ||
572 	    secondary_accwrites != mp->mnt_secondary_accwrites)
573 		error = EAGAIN;
574 	BO_UNLOCK(bo);
575 	return (error);
576 }
577 
578 void
579 softdep_get_depcounts(struct mount *mp,
580 		      int *softdepactivep,
581 		      int *softdepactiveaccp)
582 {
583 	(void) mp;
584 	*softdepactivep = 0;
585 	*softdepactiveaccp = 0;
586 }
587 
588 void
589 softdep_buf_append(bp, wkhd)
590 	struct buf *bp;
591 	struct workhead *wkhd;
592 {
593 
594 	panic("softdep_buf_appendwork called");
595 }
596 
597 void
598 softdep_inode_append(ip, cred, wkhd)
599 	struct inode *ip;
600 	struct ucred *cred;
601 	struct workhead *wkhd;
602 {
603 
604 	panic("softdep_inode_appendwork called");
605 }
606 
607 void
608 softdep_freework(wkhd)
609 	struct workhead *wkhd;
610 {
611 
612 	panic("softdep_freework called");
613 }
614 
615 #else
616 
617 FEATURE(softupdates, "FFS soft-updates support");
618 
619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620     "soft updates stats");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622     "total dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624     "high use dependencies allocated");
625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626     "current dependencies allocated");
627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628     "current dependencies written");
629 
630 unsigned long dep_current[D_LAST + 1];
631 unsigned long dep_highuse[D_LAST + 1];
632 unsigned long dep_total[D_LAST + 1];
633 unsigned long dep_write[D_LAST + 1];
634 
635 #define	SOFTDEP_TYPE(type, str, long)					\
636     static MALLOC_DEFINE(M_ ## type, #str, long);			\
637     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638 	&dep_total[D_ ## type], 0, "");					\
639     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_current[D_ ## type], 0, "");				\
641     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642 	&dep_highuse[D_ ## type], 0, "");				\
643     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644 	&dep_write[D_ ## type], 0, "");
645 
646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649     "Block or frag allocated from cyl group map");
650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674 
675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676 
677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680 
681 #define M_SOFTDEP_FLAGS	(M_WAITOK)
682 
683 /*
684  * translate from workitem type to memory type
685  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686  */
687 static struct malloc_type *memtype[] = {
688 	M_PAGEDEP,
689 	M_INODEDEP,
690 	M_BMSAFEMAP,
691 	M_NEWBLK,
692 	M_ALLOCDIRECT,
693 	M_INDIRDEP,
694 	M_ALLOCINDIR,
695 	M_FREEFRAG,
696 	M_FREEBLKS,
697 	M_FREEFILE,
698 	M_DIRADD,
699 	M_MKDIR,
700 	M_DIRREM,
701 	M_NEWDIRBLK,
702 	M_FREEWORK,
703 	M_FREEDEP,
704 	M_JADDREF,
705 	M_JREMREF,
706 	M_JMVREF,
707 	M_JNEWBLK,
708 	M_JFREEBLK,
709 	M_JFREEFRAG,
710 	M_JSEG,
711 	M_JSEGDEP,
712 	M_SBDEP,
713 	M_JTRUNC,
714 	M_JFSYNC,
715 	M_SENTINEL
716 };
717 
718 #define DtoM(type) (memtype[type])
719 
720 /*
721  * Names of malloc types.
722  */
723 #define TYPENAME(type)  \
724 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725 /*
726  * End system adaptation definitions.
727  */
728 
729 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731 
732 /*
733  * Internal function prototypes.
734  */
735 static	void check_clear_deps(struct mount *);
736 static	void softdep_error(char *, int);
737 static	int softdep_process_worklist(struct mount *, int);
738 static	int softdep_waitidle(struct mount *, int);
739 static	void drain_output(struct vnode *);
740 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741 static	int check_inodedep_free(struct inodedep *);
742 static	void clear_remove(struct mount *);
743 static	void clear_inodedeps(struct mount *);
744 static	void unlinked_inodedep(struct mount *, struct inodedep *);
745 static	void clear_unlinked_inodedep(struct inodedep *);
746 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
747 static	int flush_pagedep_deps(struct vnode *, struct mount *,
748 	    struct diraddhd *);
749 static	int free_pagedep(struct pagedep *);
750 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
751 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
752 static	int flush_deplist(struct allocdirectlst *, int, int *);
753 static	int sync_cgs(struct mount *, int);
754 static	int handle_written_filepage(struct pagedep *, struct buf *);
755 static	int handle_written_sbdep(struct sbdep *, struct buf *);
756 static	void initiate_write_sbdep(struct sbdep *);
757 static	void diradd_inode_written(struct diradd *, struct inodedep *);
758 static	int handle_written_indirdep(struct indirdep *, struct buf *,
759 	    struct buf**);
760 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
761 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
762 	    uint8_t *);
763 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
764 static	void handle_written_jaddref(struct jaddref *);
765 static	void handle_written_jremref(struct jremref *);
766 static	void handle_written_jseg(struct jseg *, struct buf *);
767 static	void handle_written_jnewblk(struct jnewblk *);
768 static	void handle_written_jblkdep(struct jblkdep *);
769 static	void handle_written_jfreefrag(struct jfreefrag *);
770 static	void complete_jseg(struct jseg *);
771 static	void complete_jsegs(struct jseg *);
772 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
773 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
774 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
775 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
776 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
777 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
778 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
779 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
780 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
781 static	inline void inoref_write(struct inoref *, struct jseg *,
782 	    struct jrefrec *);
783 static	void handle_allocdirect_partdone(struct allocdirect *,
784 	    struct workhead *);
785 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
786 	    struct workhead *);
787 static	void indirdep_complete(struct indirdep *);
788 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
789 static	void indirblk_insert(struct freework *);
790 static	void indirblk_remove(struct freework *);
791 static	void handle_allocindir_partdone(struct allocindir *);
792 static	void initiate_write_filepage(struct pagedep *, struct buf *);
793 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
794 static	void handle_written_mkdir(struct mkdir *, int);
795 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
796 	    uint8_t *);
797 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
798 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
799 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
800 static	void handle_workitem_freefile(struct freefile *);
801 static	int handle_workitem_remove(struct dirrem *, int);
802 static	struct dirrem *newdirrem(struct buf *, struct inode *,
803 	    struct inode *, int, struct dirrem **);
804 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
805 	    struct buf *);
806 static	void cancel_indirdep(struct indirdep *, struct buf *,
807 	    struct freeblks *);
808 static	void free_indirdep(struct indirdep *);
809 static	void free_diradd(struct diradd *, struct workhead *);
810 static	void merge_diradd(struct inodedep *, struct diradd *);
811 static	void complete_diradd(struct diradd *);
812 static	struct diradd *diradd_lookup(struct pagedep *, int);
813 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
814 	    struct jremref *);
815 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
816 	    struct jremref *);
817 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
818 	    struct jremref *, struct jremref *);
819 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
820 	    struct jremref *);
821 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
822 	    struct freeblks *, int);
823 static	int setup_trunc_indir(struct freeblks *, struct inode *,
824 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
825 static	void complete_trunc_indir(struct freework *);
826 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
827 	    int);
828 static	void complete_mkdir(struct mkdir *);
829 static	void free_newdirblk(struct newdirblk *);
830 static	void free_jremref(struct jremref *);
831 static	void free_jaddref(struct jaddref *);
832 static	void free_jsegdep(struct jsegdep *);
833 static	void free_jsegs(struct jblocks *);
834 static	void rele_jseg(struct jseg *);
835 static	void free_jseg(struct jseg *, struct jblocks *);
836 static	void free_jnewblk(struct jnewblk *);
837 static	void free_jblkdep(struct jblkdep *);
838 static	void free_jfreefrag(struct jfreefrag *);
839 static	void free_freedep(struct freedep *);
840 static	void journal_jremref(struct dirrem *, struct jremref *,
841 	    struct inodedep *);
842 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
843 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
844 	    struct workhead *);
845 static	void cancel_jfreefrag(struct jfreefrag *);
846 static	inline void setup_freedirect(struct freeblks *, struct inode *,
847 	    int, int);
848 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
849 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
850 	    ufs_lbn_t, int);
851 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
852 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
853 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
854 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
855 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
856 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
857 	    int, int);
858 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
859 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
860 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
861 static	void newblk_freefrag(struct newblk*);
862 static	void free_newblk(struct newblk *);
863 static	void cancel_allocdirect(struct allocdirectlst *,
864 	    struct allocdirect *, struct freeblks *);
865 static	int check_inode_unwritten(struct inodedep *);
866 static	int free_inodedep(struct inodedep *);
867 static	void freework_freeblock(struct freework *);
868 static	void freework_enqueue(struct freework *);
869 static	int handle_workitem_freeblocks(struct freeblks *, int);
870 static	int handle_complete_freeblocks(struct freeblks *, int);
871 static	void handle_workitem_indirblk(struct freework *);
872 static	void handle_written_freework(struct freework *);
873 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
874 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
875 	    struct workhead *);
876 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
877 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
878 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
879 	    ufs2_daddr_t, ufs_lbn_t);
880 static	void handle_workitem_freefrag(struct freefrag *);
881 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
882 	    ufs_lbn_t);
883 static	void allocdirect_merge(struct allocdirectlst *,
884 	    struct allocdirect *, struct allocdirect *);
885 static	struct freefrag *allocindir_merge(struct allocindir *,
886 	    struct allocindir *);
887 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
888 	    struct bmsafemap **);
889 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
890 	    int cg, struct bmsafemap *);
891 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
892 	    struct newblk **);
893 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
894 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
895 	    struct inodedep **);
896 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
897 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
898 	    int, struct pagedep **);
899 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
900 	    struct pagedep **);
901 static	void pause_timer(void *);
902 static	int request_cleanup(struct mount *, int);
903 static	void schedule_cleanup(struct mount *);
904 static void softdep_ast_cleanup_proc(void);
905 static	int process_worklist_item(struct mount *, int, int);
906 static	void process_removes(struct vnode *);
907 static	void process_truncates(struct vnode *);
908 static	void jwork_move(struct workhead *, struct workhead *);
909 static	void jwork_insert(struct workhead *, struct jsegdep *);
910 static	void add_to_worklist(struct worklist *, int);
911 static	void wake_worklist(struct worklist *);
912 static	void wait_worklist(struct worklist *, char *);
913 static	void remove_from_worklist(struct worklist *);
914 static	void softdep_flush(void *);
915 static	void softdep_flushjournal(struct mount *);
916 static	int softdep_speedup(struct ufsmount *);
917 static	void worklist_speedup(struct mount *);
918 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
919 static	void journal_unmount(struct ufsmount *);
920 static	int journal_space(struct ufsmount *, int);
921 static	void journal_suspend(struct ufsmount *);
922 static	int journal_unsuspend(struct ufsmount *ump);
923 static	void softdep_prelink(struct vnode *, struct vnode *);
924 static	void add_to_journal(struct worklist *);
925 static	void remove_from_journal(struct worklist *);
926 static	bool softdep_excess_inodes(struct ufsmount *);
927 static	bool softdep_excess_dirrem(struct ufsmount *);
928 static	void softdep_process_journal(struct mount *, struct worklist *, int);
929 static	struct jremref *newjremref(struct dirrem *, struct inode *,
930 	    struct inode *ip, off_t, nlink_t);
931 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
932 	    uint16_t);
933 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
934 	    uint16_t);
935 static	inline struct jsegdep *inoref_jseg(struct inoref *);
936 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
937 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
938 	    ufs2_daddr_t, int);
939 static	void adjust_newfreework(struct freeblks *, int);
940 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
941 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
942 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
943 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
944 	    ufs2_daddr_t, long, ufs_lbn_t);
945 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
946 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
947 static	int jwait(struct worklist *, int);
948 static	struct inodedep *inodedep_lookup_ip(struct inode *);
949 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
950 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
951 static	void handle_jwork(struct workhead *);
952 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
953 	    struct mkdir **);
954 static	struct jblocks *jblocks_create(void);
955 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
956 static	void jblocks_free(struct jblocks *, struct mount *, int);
957 static	void jblocks_destroy(struct jblocks *);
958 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
959 
960 /*
961  * Exported softdep operations.
962  */
963 static	void softdep_disk_io_initiation(struct buf *);
964 static	void softdep_disk_write_complete(struct buf *);
965 static	void softdep_deallocate_dependencies(struct buf *);
966 static	int softdep_count_dependencies(struct buf *bp, int);
967 
968 /*
969  * Global lock over all of soft updates.
970  */
971 static struct mtx lk;
972 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
973 
974 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
975 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
976 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
977 
978 /*
979  * Per-filesystem soft-updates locking.
980  */
981 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
982 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
983 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
984 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
985 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
986 				    RA_WLOCKED)
987 
988 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
989 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
990 
991 /*
992  * Worklist queue management.
993  * These routines require that the lock be held.
994  */
995 #ifndef /* NOT */ DEBUG
996 #define WORKLIST_INSERT(head, item) do {	\
997 	(item)->wk_state |= ONWORKLIST;		\
998 	LIST_INSERT_HEAD(head, item, wk_list);	\
999 } while (0)
1000 #define WORKLIST_REMOVE(item) do {		\
1001 	(item)->wk_state &= ~ONWORKLIST;	\
1002 	LIST_REMOVE(item, wk_list);		\
1003 } while (0)
1004 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1005 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1006 
1007 #else /* DEBUG */
1008 static	void worklist_insert(struct workhead *, struct worklist *, int);
1009 static	void worklist_remove(struct worklist *, int);
1010 
1011 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1012 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1013 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1014 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1015 
1016 static void
1017 worklist_insert(head, item, locked)
1018 	struct workhead *head;
1019 	struct worklist *item;
1020 	int locked;
1021 {
1022 
1023 	if (locked)
1024 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1025 	if (item->wk_state & ONWORKLIST)
1026 		panic("worklist_insert: %p %s(0x%X) already on list",
1027 		    item, TYPENAME(item->wk_type), item->wk_state);
1028 	item->wk_state |= ONWORKLIST;
1029 	LIST_INSERT_HEAD(head, item, wk_list);
1030 }
1031 
1032 static void
1033 worklist_remove(item, locked)
1034 	struct worklist *item;
1035 	int locked;
1036 {
1037 
1038 	if (locked)
1039 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1040 	if ((item->wk_state & ONWORKLIST) == 0)
1041 		panic("worklist_remove: %p %s(0x%X) not on list",
1042 		    item, TYPENAME(item->wk_type), item->wk_state);
1043 	item->wk_state &= ~ONWORKLIST;
1044 	LIST_REMOVE(item, wk_list);
1045 }
1046 #endif /* DEBUG */
1047 
1048 /*
1049  * Merge two jsegdeps keeping only the oldest one as newer references
1050  * can't be discarded until after older references.
1051  */
1052 static inline struct jsegdep *
1053 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1054 {
1055 	struct jsegdep *swp;
1056 
1057 	if (two == NULL)
1058 		return (one);
1059 
1060 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1061 		swp = one;
1062 		one = two;
1063 		two = swp;
1064 	}
1065 	WORKLIST_REMOVE(&two->jd_list);
1066 	free_jsegdep(two);
1067 
1068 	return (one);
1069 }
1070 
1071 /*
1072  * If two freedeps are compatible free one to reduce list size.
1073  */
1074 static inline struct freedep *
1075 freedep_merge(struct freedep *one, struct freedep *two)
1076 {
1077 	if (two == NULL)
1078 		return (one);
1079 
1080 	if (one->fd_freework == two->fd_freework) {
1081 		WORKLIST_REMOVE(&two->fd_list);
1082 		free_freedep(two);
1083 	}
1084 	return (one);
1085 }
1086 
1087 /*
1088  * Move journal work from one list to another.  Duplicate freedeps and
1089  * jsegdeps are coalesced to keep the lists as small as possible.
1090  */
1091 static void
1092 jwork_move(dst, src)
1093 	struct workhead *dst;
1094 	struct workhead *src;
1095 {
1096 	struct freedep *freedep;
1097 	struct jsegdep *jsegdep;
1098 	struct worklist *wkn;
1099 	struct worklist *wk;
1100 
1101 	KASSERT(dst != src,
1102 	    ("jwork_move: dst == src"));
1103 	freedep = NULL;
1104 	jsegdep = NULL;
1105 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1106 		if (wk->wk_type == D_JSEGDEP)
1107 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1108 		else if (wk->wk_type == D_FREEDEP)
1109 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1110 	}
1111 
1112 	while ((wk = LIST_FIRST(src)) != NULL) {
1113 		WORKLIST_REMOVE(wk);
1114 		WORKLIST_INSERT(dst, wk);
1115 		if (wk->wk_type == D_JSEGDEP) {
1116 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1117 			continue;
1118 		}
1119 		if (wk->wk_type == D_FREEDEP)
1120 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1121 	}
1122 }
1123 
1124 static void
1125 jwork_insert(dst, jsegdep)
1126 	struct workhead *dst;
1127 	struct jsegdep *jsegdep;
1128 {
1129 	struct jsegdep *jsegdepn;
1130 	struct worklist *wk;
1131 
1132 	LIST_FOREACH(wk, dst, wk_list)
1133 		if (wk->wk_type == D_JSEGDEP)
1134 			break;
1135 	if (wk == NULL) {
1136 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1137 		return;
1138 	}
1139 	jsegdepn = WK_JSEGDEP(wk);
1140 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1141 		WORKLIST_REMOVE(wk);
1142 		free_jsegdep(jsegdepn);
1143 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1144 	} else
1145 		free_jsegdep(jsegdep);
1146 }
1147 
1148 /*
1149  * Routines for tracking and managing workitems.
1150  */
1151 static	void workitem_free(struct worklist *, int);
1152 static	void workitem_alloc(struct worklist *, int, struct mount *);
1153 static	void workitem_reassign(struct worklist *, int);
1154 
1155 #define	WORKITEM_FREE(item, type) \
1156 	workitem_free((struct worklist *)(item), (type))
1157 #define	WORKITEM_REASSIGN(item, type) \
1158 	workitem_reassign((struct worklist *)(item), (type))
1159 
1160 static void
1161 workitem_free(item, type)
1162 	struct worklist *item;
1163 	int type;
1164 {
1165 	struct ufsmount *ump;
1166 
1167 #ifdef DEBUG
1168 	if (item->wk_state & ONWORKLIST)
1169 		panic("workitem_free: %s(0x%X) still on list",
1170 		    TYPENAME(item->wk_type), item->wk_state);
1171 	if (item->wk_type != type && type != D_NEWBLK)
1172 		panic("workitem_free: type mismatch %s != %s",
1173 		    TYPENAME(item->wk_type), TYPENAME(type));
1174 #endif
1175 	if (item->wk_state & IOWAITING)
1176 		wakeup(item);
1177 	ump = VFSTOUFS(item->wk_mp);
1178 	LOCK_OWNED(ump);
1179 	KASSERT(ump->softdep_deps > 0,
1180 	    ("workitem_free: %s: softdep_deps going negative",
1181 	    ump->um_fs->fs_fsmnt));
1182 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1183 		wakeup(&ump->softdep_deps);
1184 	KASSERT(dep_current[item->wk_type] > 0,
1185 	    ("workitem_free: %s: dep_current[%s] going negative",
1186 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1187 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1188 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1189 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1190 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1191 	ump->softdep_curdeps[item->wk_type] -= 1;
1192 	free(item, DtoM(type));
1193 }
1194 
1195 static void
1196 workitem_alloc(item, type, mp)
1197 	struct worklist *item;
1198 	int type;
1199 	struct mount *mp;
1200 {
1201 	struct ufsmount *ump;
1202 
1203 	item->wk_type = type;
1204 	item->wk_mp = mp;
1205 	item->wk_state = 0;
1206 
1207 	ump = VFSTOUFS(mp);
1208 	ACQUIRE_GBLLOCK(&lk);
1209 	dep_current[type]++;
1210 	if (dep_current[type] > dep_highuse[type])
1211 		dep_highuse[type] = dep_current[type];
1212 	dep_total[type]++;
1213 	FREE_GBLLOCK(&lk);
1214 	ACQUIRE_LOCK(ump);
1215 	ump->softdep_curdeps[type] += 1;
1216 	ump->softdep_deps++;
1217 	ump->softdep_accdeps++;
1218 	FREE_LOCK(ump);
1219 }
1220 
1221 static void
1222 workitem_reassign(item, newtype)
1223 	struct worklist *item;
1224 	int newtype;
1225 {
1226 	struct ufsmount *ump;
1227 
1228 	ump = VFSTOUFS(item->wk_mp);
1229 	LOCK_OWNED(ump);
1230 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1231 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1232 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1233 	ump->softdep_curdeps[item->wk_type] -= 1;
1234 	ump->softdep_curdeps[newtype] += 1;
1235 	KASSERT(dep_current[item->wk_type] > 0,
1236 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1237 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1238 	ACQUIRE_GBLLOCK(&lk);
1239 	dep_current[newtype]++;
1240 	dep_current[item->wk_type]--;
1241 	if (dep_current[newtype] > dep_highuse[newtype])
1242 		dep_highuse[newtype] = dep_current[newtype];
1243 	dep_total[newtype]++;
1244 	FREE_GBLLOCK(&lk);
1245 	item->wk_type = newtype;
1246 }
1247 
1248 /*
1249  * Workitem queue management
1250  */
1251 static int max_softdeps;	/* maximum number of structs before slowdown */
1252 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1253 static int proc_waiting;	/* tracks whether we have a timeout posted */
1254 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1255 static struct callout softdep_callout;
1256 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1257 static int req_clear_remove;	/* syncer process flush some freeblks */
1258 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1259 
1260 /*
1261  * runtime statistics
1262  */
1263 static int stat_flush_threads;	/* number of softdep flushing threads */
1264 static int stat_worklist_push;	/* number of worklist cleanups */
1265 static int stat_blk_limit_push;	/* number of times block limit neared */
1266 static int stat_ino_limit_push;	/* number of times inode limit neared */
1267 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1268 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1269 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1270 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1271 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1272 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1273 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1274 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1275 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1276 static int stat_journal_min;	/* Times hit journal min threshold */
1277 static int stat_journal_low;	/* Times hit journal low threshold */
1278 static int stat_journal_wait;	/* Times blocked in jwait(). */
1279 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1280 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1281 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1282 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1283 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1284 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1285 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1286 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1287 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1288 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1289 
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1291     &max_softdeps, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1293     &tickdelay, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1295     &stat_flush_threads, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1297     &stat_worklist_push, 0,"");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1299     &stat_blk_limit_push, 0,"");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1301     &stat_ino_limit_push, 0,"");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1303     &stat_blk_limit_hit, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1305     &stat_ino_limit_hit, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1307     &stat_sync_limit_hit, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1309     &stat_indir_blk_ptrs, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1311     &stat_inode_bitmap, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1313     &stat_direct_blk_ptrs, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1315     &stat_dir_entry, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1317     &stat_jaddref, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1319     &stat_jnewblk, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1321     &stat_journal_low, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1323     &stat_journal_min, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1325     &stat_journal_wait, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1327     &stat_jwait_filepage, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1329     &stat_jwait_freeblks, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1331     &stat_jwait_inode, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1333     &stat_jwait_newblk, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1335     &stat_cleanup_blkrequests, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1337     &stat_cleanup_inorequests, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1339     &stat_cleanup_high_delay, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1341     &stat_cleanup_retries, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1343     &stat_cleanup_failures, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1345     &softdep_flushcache, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1347     &stat_emptyjblocks, 0, "");
1348 
1349 SYSCTL_DECL(_vfs_ffs);
1350 
1351 /* Whether to recompute the summary at mount time */
1352 static int compute_summary_at_mount = 0;
1353 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1354 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1355 static int print_threads = 0;
1356 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1357     &print_threads, 0, "Notify flusher thread start/stop");
1358 
1359 /* List of all filesystems mounted with soft updates */
1360 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1361 
1362 /*
1363  * This function cleans the worklist for a filesystem.
1364  * Each filesystem running with soft dependencies gets its own
1365  * thread to run in this function. The thread is started up in
1366  * softdep_mount and shutdown in softdep_unmount. They show up
1367  * as part of the kernel "bufdaemon" process whose process
1368  * entry is available in bufdaemonproc.
1369  */
1370 static int searchfailed;
1371 extern struct proc *bufdaemonproc;
1372 static void
1373 softdep_flush(addr)
1374 	void *addr;
1375 {
1376 	struct mount *mp;
1377 	struct thread *td;
1378 	struct ufsmount *ump;
1379 
1380 	td = curthread;
1381 	td->td_pflags |= TDP_NORUNNINGBUF;
1382 	mp = (struct mount *)addr;
1383 	ump = VFSTOUFS(mp);
1384 	atomic_add_int(&stat_flush_threads, 1);
1385 	ACQUIRE_LOCK(ump);
1386 	ump->softdep_flags &= ~FLUSH_STARTING;
1387 	wakeup(&ump->softdep_flushtd);
1388 	FREE_LOCK(ump);
1389 	if (print_threads) {
1390 		if (stat_flush_threads == 1)
1391 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1392 			    bufdaemonproc->p_pid);
1393 		printf("Start thread %s\n", td->td_name);
1394 	}
1395 	for (;;) {
1396 		while (softdep_process_worklist(mp, 0) > 0 ||
1397 		    (MOUNTEDSUJ(mp) &&
1398 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1399 			kthread_suspend_check();
1400 		ACQUIRE_LOCK(ump);
1401 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1402 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1403 			    "sdflush", hz / 2);
1404 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1405 		/*
1406 		 * Check to see if we are done and need to exit.
1407 		 */
1408 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1409 			FREE_LOCK(ump);
1410 			continue;
1411 		}
1412 		ump->softdep_flags &= ~FLUSH_EXIT;
1413 		FREE_LOCK(ump);
1414 		wakeup(&ump->softdep_flags);
1415 		if (print_threads)
1416 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1417 		atomic_subtract_int(&stat_flush_threads, 1);
1418 		kthread_exit();
1419 		panic("kthread_exit failed\n");
1420 	}
1421 }
1422 
1423 static void
1424 worklist_speedup(mp)
1425 	struct mount *mp;
1426 {
1427 	struct ufsmount *ump;
1428 
1429 	ump = VFSTOUFS(mp);
1430 	LOCK_OWNED(ump);
1431 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1432 		ump->softdep_flags |= FLUSH_CLEANUP;
1433 	wakeup(&ump->softdep_flushtd);
1434 }
1435 
1436 static int
1437 softdep_speedup(ump)
1438 	struct ufsmount *ump;
1439 {
1440 	struct ufsmount *altump;
1441 	struct mount_softdeps *sdp;
1442 
1443 	LOCK_OWNED(ump);
1444 	worklist_speedup(ump->um_mountp);
1445 	bd_speedup();
1446 	/*
1447 	 * If we have global shortages, then we need other
1448 	 * filesystems to help with the cleanup. Here we wakeup a
1449 	 * flusher thread for a filesystem that is over its fair
1450 	 * share of resources.
1451 	 */
1452 	if (req_clear_inodedeps || req_clear_remove) {
1453 		ACQUIRE_GBLLOCK(&lk);
1454 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1455 			if ((altump = sdp->sd_ump) == ump)
1456 				continue;
1457 			if (((req_clear_inodedeps &&
1458 			    altump->softdep_curdeps[D_INODEDEP] >
1459 			    max_softdeps / stat_flush_threads) ||
1460 			    (req_clear_remove &&
1461 			    altump->softdep_curdeps[D_DIRREM] >
1462 			    (max_softdeps / 2) / stat_flush_threads)) &&
1463 			    TRY_ACQUIRE_LOCK(altump))
1464 				break;
1465 		}
1466 		if (sdp == NULL) {
1467 			searchfailed++;
1468 			FREE_GBLLOCK(&lk);
1469 		} else {
1470 			/*
1471 			 * Move to the end of the list so we pick a
1472 			 * different one on out next try.
1473 			 */
1474 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1475 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1476 			FREE_GBLLOCK(&lk);
1477 			if ((altump->softdep_flags &
1478 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1479 				altump->softdep_flags |= FLUSH_CLEANUP;
1480 			altump->um_softdep->sd_cleanups++;
1481 			wakeup(&altump->softdep_flushtd);
1482 			FREE_LOCK(altump);
1483 		}
1484 	}
1485 	return (speedup_syncer());
1486 }
1487 
1488 /*
1489  * Add an item to the end of the work queue.
1490  * This routine requires that the lock be held.
1491  * This is the only routine that adds items to the list.
1492  * The following routine is the only one that removes items
1493  * and does so in order from first to last.
1494  */
1495 
1496 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1497 #define	WK_NODELAY	0x0002	/* Process immediately. */
1498 
1499 static void
1500 add_to_worklist(wk, flags)
1501 	struct worklist *wk;
1502 	int flags;
1503 {
1504 	struct ufsmount *ump;
1505 
1506 	ump = VFSTOUFS(wk->wk_mp);
1507 	LOCK_OWNED(ump);
1508 	if (wk->wk_state & ONWORKLIST)
1509 		panic("add_to_worklist: %s(0x%X) already on list",
1510 		    TYPENAME(wk->wk_type), wk->wk_state);
1511 	wk->wk_state |= ONWORKLIST;
1512 	if (ump->softdep_on_worklist == 0) {
1513 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1514 		ump->softdep_worklist_tail = wk;
1515 	} else if (flags & WK_HEAD) {
1516 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1517 	} else {
1518 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1519 		ump->softdep_worklist_tail = wk;
1520 	}
1521 	ump->softdep_on_worklist += 1;
1522 	if (flags & WK_NODELAY)
1523 		worklist_speedup(wk->wk_mp);
1524 }
1525 
1526 /*
1527  * Remove the item to be processed. If we are removing the last
1528  * item on the list, we need to recalculate the tail pointer.
1529  */
1530 static void
1531 remove_from_worklist(wk)
1532 	struct worklist *wk;
1533 {
1534 	struct ufsmount *ump;
1535 
1536 	ump = VFSTOUFS(wk->wk_mp);
1537 	WORKLIST_REMOVE(wk);
1538 	if (ump->softdep_worklist_tail == wk)
1539 		ump->softdep_worklist_tail =
1540 		    (struct worklist *)wk->wk_list.le_prev;
1541 	ump->softdep_on_worklist -= 1;
1542 }
1543 
1544 static void
1545 wake_worklist(wk)
1546 	struct worklist *wk;
1547 {
1548 	if (wk->wk_state & IOWAITING) {
1549 		wk->wk_state &= ~IOWAITING;
1550 		wakeup(wk);
1551 	}
1552 }
1553 
1554 static void
1555 wait_worklist(wk, wmesg)
1556 	struct worklist *wk;
1557 	char *wmesg;
1558 {
1559 	struct ufsmount *ump;
1560 
1561 	ump = VFSTOUFS(wk->wk_mp);
1562 	wk->wk_state |= IOWAITING;
1563 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1564 }
1565 
1566 /*
1567  * Process that runs once per second to handle items in the background queue.
1568  *
1569  * Note that we ensure that everything is done in the order in which they
1570  * appear in the queue. The code below depends on this property to ensure
1571  * that blocks of a file are freed before the inode itself is freed. This
1572  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1573  * until all the old ones have been purged from the dependency lists.
1574  */
1575 static int
1576 softdep_process_worklist(mp, full)
1577 	struct mount *mp;
1578 	int full;
1579 {
1580 	int cnt, matchcnt;
1581 	struct ufsmount *ump;
1582 	long starttime;
1583 
1584 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1585 	if (MOUNTEDSOFTDEP(mp) == 0)
1586 		return (0);
1587 	matchcnt = 0;
1588 	ump = VFSTOUFS(mp);
1589 	ACQUIRE_LOCK(ump);
1590 	starttime = time_second;
1591 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1592 	check_clear_deps(mp);
1593 	while (ump->softdep_on_worklist > 0) {
1594 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1595 			break;
1596 		else
1597 			matchcnt += cnt;
1598 		check_clear_deps(mp);
1599 		/*
1600 		 * We do not generally want to stop for buffer space, but if
1601 		 * we are really being a buffer hog, we will stop and wait.
1602 		 */
1603 		if (should_yield()) {
1604 			FREE_LOCK(ump);
1605 			kern_yield(PRI_USER);
1606 			bwillwrite();
1607 			ACQUIRE_LOCK(ump);
1608 		}
1609 		/*
1610 		 * Never allow processing to run for more than one
1611 		 * second. This gives the syncer thread the opportunity
1612 		 * to pause if appropriate.
1613 		 */
1614 		if (!full && starttime != time_second)
1615 			break;
1616 	}
1617 	if (full == 0)
1618 		journal_unsuspend(ump);
1619 	FREE_LOCK(ump);
1620 	return (matchcnt);
1621 }
1622 
1623 /*
1624  * Process all removes associated with a vnode if we are running out of
1625  * journal space.  Any other process which attempts to flush these will
1626  * be unable as we have the vnodes locked.
1627  */
1628 static void
1629 process_removes(vp)
1630 	struct vnode *vp;
1631 {
1632 	struct inodedep *inodedep;
1633 	struct dirrem *dirrem;
1634 	struct ufsmount *ump;
1635 	struct mount *mp;
1636 	ino_t inum;
1637 
1638 	mp = vp->v_mount;
1639 	ump = VFSTOUFS(mp);
1640 	LOCK_OWNED(ump);
1641 	inum = VTOI(vp)->i_number;
1642 	for (;;) {
1643 top:
1644 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1645 			return;
1646 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1647 			/*
1648 			 * If another thread is trying to lock this vnode
1649 			 * it will fail but we must wait for it to do so
1650 			 * before we can proceed.
1651 			 */
1652 			if (dirrem->dm_state & INPROGRESS) {
1653 				wait_worklist(&dirrem->dm_list, "pwrwait");
1654 				goto top;
1655 			}
1656 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1657 			    (COMPLETE | ONWORKLIST))
1658 				break;
1659 		}
1660 		if (dirrem == NULL)
1661 			return;
1662 		remove_from_worklist(&dirrem->dm_list);
1663 		FREE_LOCK(ump);
1664 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1665 			panic("process_removes: suspended filesystem");
1666 		handle_workitem_remove(dirrem, 0);
1667 		vn_finished_secondary_write(mp);
1668 		ACQUIRE_LOCK(ump);
1669 	}
1670 }
1671 
1672 /*
1673  * Process all truncations associated with a vnode if we are running out
1674  * of journal space.  This is called when the vnode lock is already held
1675  * and no other process can clear the truncation.  This function returns
1676  * a value greater than zero if it did any work.
1677  */
1678 static void
1679 process_truncates(vp)
1680 	struct vnode *vp;
1681 {
1682 	struct inodedep *inodedep;
1683 	struct freeblks *freeblks;
1684 	struct ufsmount *ump;
1685 	struct mount *mp;
1686 	ino_t inum;
1687 	int cgwait;
1688 
1689 	mp = vp->v_mount;
1690 	ump = VFSTOUFS(mp);
1691 	LOCK_OWNED(ump);
1692 	inum = VTOI(vp)->i_number;
1693 	for (;;) {
1694 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1695 			return;
1696 		cgwait = 0;
1697 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1698 			/* Journal entries not yet written.  */
1699 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1700 				jwait(&LIST_FIRST(
1701 				    &freeblks->fb_jblkdephd)->jb_list,
1702 				    MNT_WAIT);
1703 				break;
1704 			}
1705 			/* Another thread is executing this item. */
1706 			if (freeblks->fb_state & INPROGRESS) {
1707 				wait_worklist(&freeblks->fb_list, "ptrwait");
1708 				break;
1709 			}
1710 			/* Freeblks is waiting on a inode write. */
1711 			if ((freeblks->fb_state & COMPLETE) == 0) {
1712 				FREE_LOCK(ump);
1713 				ffs_update(vp, 1);
1714 				ACQUIRE_LOCK(ump);
1715 				break;
1716 			}
1717 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1718 			    (ALLCOMPLETE | ONWORKLIST)) {
1719 				remove_from_worklist(&freeblks->fb_list);
1720 				freeblks->fb_state |= INPROGRESS;
1721 				FREE_LOCK(ump);
1722 				if (vn_start_secondary_write(NULL, &mp,
1723 				    V_NOWAIT))
1724 					panic("process_truncates: "
1725 					    "suspended filesystem");
1726 				handle_workitem_freeblocks(freeblks, 0);
1727 				vn_finished_secondary_write(mp);
1728 				ACQUIRE_LOCK(ump);
1729 				break;
1730 			}
1731 			if (freeblks->fb_cgwait)
1732 				cgwait++;
1733 		}
1734 		if (cgwait) {
1735 			FREE_LOCK(ump);
1736 			sync_cgs(mp, MNT_WAIT);
1737 			ffs_sync_snap(mp, MNT_WAIT);
1738 			ACQUIRE_LOCK(ump);
1739 			continue;
1740 		}
1741 		if (freeblks == NULL)
1742 			break;
1743 	}
1744 	return;
1745 }
1746 
1747 /*
1748  * Process one item on the worklist.
1749  */
1750 static int
1751 process_worklist_item(mp, target, flags)
1752 	struct mount *mp;
1753 	int target;
1754 	int flags;
1755 {
1756 	struct worklist sentinel;
1757 	struct worklist *wk;
1758 	struct ufsmount *ump;
1759 	int matchcnt;
1760 	int error;
1761 
1762 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1763 	/*
1764 	 * If we are being called because of a process doing a
1765 	 * copy-on-write, then it is not safe to write as we may
1766 	 * recurse into the copy-on-write routine.
1767 	 */
1768 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1769 		return (-1);
1770 	PHOLD(curproc);	/* Don't let the stack go away. */
1771 	ump = VFSTOUFS(mp);
1772 	LOCK_OWNED(ump);
1773 	matchcnt = 0;
1774 	sentinel.wk_mp = NULL;
1775 	sentinel.wk_type = D_SENTINEL;
1776 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1777 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1778 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1779 		if (wk->wk_type == D_SENTINEL) {
1780 			LIST_REMOVE(&sentinel, wk_list);
1781 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1782 			continue;
1783 		}
1784 		if (wk->wk_state & INPROGRESS)
1785 			panic("process_worklist_item: %p already in progress.",
1786 			    wk);
1787 		wk->wk_state |= INPROGRESS;
1788 		remove_from_worklist(wk);
1789 		FREE_LOCK(ump);
1790 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1791 			panic("process_worklist_item: suspended filesystem");
1792 		switch (wk->wk_type) {
1793 		case D_DIRREM:
1794 			/* removal of a directory entry */
1795 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1796 			break;
1797 
1798 		case D_FREEBLKS:
1799 			/* releasing blocks and/or fragments from a file */
1800 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1801 			    flags);
1802 			break;
1803 
1804 		case D_FREEFRAG:
1805 			/* releasing a fragment when replaced as a file grows */
1806 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1807 			error = 0;
1808 			break;
1809 
1810 		case D_FREEFILE:
1811 			/* releasing an inode when its link count drops to 0 */
1812 			handle_workitem_freefile(WK_FREEFILE(wk));
1813 			error = 0;
1814 			break;
1815 
1816 		default:
1817 			panic("%s_process_worklist: Unknown type %s",
1818 			    "softdep", TYPENAME(wk->wk_type));
1819 			/* NOTREACHED */
1820 		}
1821 		vn_finished_secondary_write(mp);
1822 		ACQUIRE_LOCK(ump);
1823 		if (error == 0) {
1824 			if (++matchcnt == target)
1825 				break;
1826 			continue;
1827 		}
1828 		/*
1829 		 * We have to retry the worklist item later.  Wake up any
1830 		 * waiters who may be able to complete it immediately and
1831 		 * add the item back to the head so we don't try to execute
1832 		 * it again.
1833 		 */
1834 		wk->wk_state &= ~INPROGRESS;
1835 		wake_worklist(wk);
1836 		add_to_worklist(wk, WK_HEAD);
1837 	}
1838 	LIST_REMOVE(&sentinel, wk_list);
1839 	/* Sentinal could've become the tail from remove_from_worklist. */
1840 	if (ump->softdep_worklist_tail == &sentinel)
1841 		ump->softdep_worklist_tail =
1842 		    (struct worklist *)sentinel.wk_list.le_prev;
1843 	PRELE(curproc);
1844 	return (matchcnt);
1845 }
1846 
1847 /*
1848  * Move dependencies from one buffer to another.
1849  */
1850 int
1851 softdep_move_dependencies(oldbp, newbp)
1852 	struct buf *oldbp;
1853 	struct buf *newbp;
1854 {
1855 	struct worklist *wk, *wktail;
1856 	struct ufsmount *ump;
1857 	int dirty;
1858 
1859 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1860 		return (0);
1861 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1862 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1863 	dirty = 0;
1864 	wktail = NULL;
1865 	ump = VFSTOUFS(wk->wk_mp);
1866 	ACQUIRE_LOCK(ump);
1867 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1868 		LIST_REMOVE(wk, wk_list);
1869 		if (wk->wk_type == D_BMSAFEMAP &&
1870 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1871 			dirty = 1;
1872 		if (wktail == 0)
1873 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1874 		else
1875 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1876 		wktail = wk;
1877 	}
1878 	FREE_LOCK(ump);
1879 
1880 	return (dirty);
1881 }
1882 
1883 /*
1884  * Purge the work list of all items associated with a particular mount point.
1885  */
1886 int
1887 softdep_flushworklist(oldmnt, countp, td)
1888 	struct mount *oldmnt;
1889 	int *countp;
1890 	struct thread *td;
1891 {
1892 	struct vnode *devvp;
1893 	struct ufsmount *ump;
1894 	int count, error;
1895 
1896 	/*
1897 	 * Alternately flush the block device associated with the mount
1898 	 * point and process any dependencies that the flushing
1899 	 * creates. We continue until no more worklist dependencies
1900 	 * are found.
1901 	 */
1902 	*countp = 0;
1903 	error = 0;
1904 	ump = VFSTOUFS(oldmnt);
1905 	devvp = ump->um_devvp;
1906 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1907 		*countp += count;
1908 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1909 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1910 		VOP_UNLOCK(devvp, 0);
1911 		if (error != 0)
1912 			break;
1913 	}
1914 	return (error);
1915 }
1916 
1917 #define	SU_WAITIDLE_RETRIES	20
1918 static int
1919 softdep_waitidle(struct mount *mp, int flags __unused)
1920 {
1921 	struct ufsmount *ump;
1922 	struct vnode *devvp;
1923 	struct thread *td;
1924 	int error, i;
1925 
1926 	ump = VFSTOUFS(mp);
1927 	devvp = ump->um_devvp;
1928 	td = curthread;
1929 	error = 0;
1930 	ACQUIRE_LOCK(ump);
1931 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1932 		ump->softdep_req = 1;
1933 		KASSERT((flags & FORCECLOSE) == 0 ||
1934 		    ump->softdep_on_worklist == 0,
1935 		    ("softdep_waitidle: work added after flush"));
1936 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1937 		    "softdeps", 10 * hz);
1938 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1939 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1940 		VOP_UNLOCK(devvp, 0);
1941 		if (error != 0)
1942 			break;
1943 		ACQUIRE_LOCK(ump);
1944 	}
1945 	ump->softdep_req = 0;
1946 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1947 		error = EBUSY;
1948 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1949 		    mp);
1950 	}
1951 	FREE_LOCK(ump);
1952 	return (error);
1953 }
1954 
1955 /*
1956  * Flush all vnodes and worklist items associated with a specified mount point.
1957  */
1958 int
1959 softdep_flushfiles(oldmnt, flags, td)
1960 	struct mount *oldmnt;
1961 	int flags;
1962 	struct thread *td;
1963 {
1964 #ifdef QUOTA
1965 	struct ufsmount *ump;
1966 	int i;
1967 #endif
1968 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1969 	int morework;
1970 
1971 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1972 	    ("softdep_flushfiles called on non-softdep filesystem"));
1973 	loopcnt = 10;
1974 	retry_flush_count = 3;
1975 retry_flush:
1976 	error = 0;
1977 
1978 	/*
1979 	 * Alternately flush the vnodes associated with the mount
1980 	 * point and process any dependencies that the flushing
1981 	 * creates. In theory, this loop can happen at most twice,
1982 	 * but we give it a few extra just to be sure.
1983 	 */
1984 	for (; loopcnt > 0; loopcnt--) {
1985 		/*
1986 		 * Do another flush in case any vnodes were brought in
1987 		 * as part of the cleanup operations.
1988 		 */
1989 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1990 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1991 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1992 			break;
1993 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1994 		    depcount == 0)
1995 			break;
1996 	}
1997 	/*
1998 	 * If we are unmounting then it is an error to fail. If we
1999 	 * are simply trying to downgrade to read-only, then filesystem
2000 	 * activity can keep us busy forever, so we just fail with EBUSY.
2001 	 */
2002 	if (loopcnt == 0) {
2003 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2004 			panic("softdep_flushfiles: looping");
2005 		error = EBUSY;
2006 	}
2007 	if (!error)
2008 		error = softdep_waitidle(oldmnt, flags);
2009 	if (!error) {
2010 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2011 			retry = 0;
2012 			MNT_ILOCK(oldmnt);
2013 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2014 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2015 			morework = oldmnt->mnt_nvnodelistsize > 0;
2016 #ifdef QUOTA
2017 			ump = VFSTOUFS(oldmnt);
2018 			UFS_LOCK(ump);
2019 			for (i = 0; i < MAXQUOTAS; i++) {
2020 				if (ump->um_quotas[i] != NULLVP)
2021 					morework = 1;
2022 			}
2023 			UFS_UNLOCK(ump);
2024 #endif
2025 			if (morework) {
2026 				if (--retry_flush_count > 0) {
2027 					retry = 1;
2028 					loopcnt = 3;
2029 				} else
2030 					error = EBUSY;
2031 			}
2032 			MNT_IUNLOCK(oldmnt);
2033 			if (retry)
2034 				goto retry_flush;
2035 		}
2036 	}
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Structure hashing.
2042  *
2043  * There are four types of structures that can be looked up:
2044  *	1) pagedep structures identified by mount point, inode number,
2045  *	   and logical block.
2046  *	2) inodedep structures identified by mount point and inode number.
2047  *	3) newblk structures identified by mount point and
2048  *	   physical block number.
2049  *	4) bmsafemap structures identified by mount point and
2050  *	   cylinder group number.
2051  *
2052  * The "pagedep" and "inodedep" dependency structures are hashed
2053  * separately from the file blocks and inodes to which they correspond.
2054  * This separation helps when the in-memory copy of an inode or
2055  * file block must be replaced. It also obviates the need to access
2056  * an inode or file page when simply updating (or de-allocating)
2057  * dependency structures. Lookup of newblk structures is needed to
2058  * find newly allocated blocks when trying to associate them with
2059  * their allocdirect or allocindir structure.
2060  *
2061  * The lookup routines optionally create and hash a new instance when
2062  * an existing entry is not found. The bmsafemap lookup routine always
2063  * allocates a new structure if an existing one is not found.
2064  */
2065 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2066 
2067 /*
2068  * Structures and routines associated with pagedep caching.
2069  */
2070 #define	PAGEDEP_HASH(ump, inum, lbn) \
2071 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2072 
2073 static int
2074 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2075 	struct pagedep_hashhead *pagedephd;
2076 	ino_t ino;
2077 	ufs_lbn_t lbn;
2078 	struct pagedep **pagedeppp;
2079 {
2080 	struct pagedep *pagedep;
2081 
2082 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2083 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2084 			*pagedeppp = pagedep;
2085 			return (1);
2086 		}
2087 	}
2088 	*pagedeppp = NULL;
2089 	return (0);
2090 }
2091 /*
2092  * Look up a pagedep. Return 1 if found, 0 otherwise.
2093  * If not found, allocate if DEPALLOC flag is passed.
2094  * Found or allocated entry is returned in pagedeppp.
2095  * This routine must be called with splbio interrupts blocked.
2096  */
2097 static int
2098 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2099 	struct mount *mp;
2100 	struct buf *bp;
2101 	ino_t ino;
2102 	ufs_lbn_t lbn;
2103 	int flags;
2104 	struct pagedep **pagedeppp;
2105 {
2106 	struct pagedep *pagedep;
2107 	struct pagedep_hashhead *pagedephd;
2108 	struct worklist *wk;
2109 	struct ufsmount *ump;
2110 	int ret;
2111 	int i;
2112 
2113 	ump = VFSTOUFS(mp);
2114 	LOCK_OWNED(ump);
2115 	if (bp) {
2116 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2117 			if (wk->wk_type == D_PAGEDEP) {
2118 				*pagedeppp = WK_PAGEDEP(wk);
2119 				return (1);
2120 			}
2121 		}
2122 	}
2123 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2124 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2125 	if (ret) {
2126 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2127 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2128 		return (1);
2129 	}
2130 	if ((flags & DEPALLOC) == 0)
2131 		return (0);
2132 	FREE_LOCK(ump);
2133 	pagedep = malloc(sizeof(struct pagedep),
2134 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2135 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2136 	ACQUIRE_LOCK(ump);
2137 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2138 	if (*pagedeppp) {
2139 		/*
2140 		 * This should never happen since we only create pagedeps
2141 		 * with the vnode lock held.  Could be an assert.
2142 		 */
2143 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2144 		return (ret);
2145 	}
2146 	pagedep->pd_ino = ino;
2147 	pagedep->pd_lbn = lbn;
2148 	LIST_INIT(&pagedep->pd_dirremhd);
2149 	LIST_INIT(&pagedep->pd_pendinghd);
2150 	for (i = 0; i < DAHASHSZ; i++)
2151 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2152 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2153 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2154 	*pagedeppp = pagedep;
2155 	return (0);
2156 }
2157 
2158 /*
2159  * Structures and routines associated with inodedep caching.
2160  */
2161 #define	INODEDEP_HASH(ump, inum) \
2162       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2163 
2164 static int
2165 inodedep_find(inodedephd, inum, inodedeppp)
2166 	struct inodedep_hashhead *inodedephd;
2167 	ino_t inum;
2168 	struct inodedep **inodedeppp;
2169 {
2170 	struct inodedep *inodedep;
2171 
2172 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2173 		if (inum == inodedep->id_ino)
2174 			break;
2175 	if (inodedep) {
2176 		*inodedeppp = inodedep;
2177 		return (1);
2178 	}
2179 	*inodedeppp = NULL;
2180 
2181 	return (0);
2182 }
2183 /*
2184  * Look up an inodedep. Return 1 if found, 0 if not found.
2185  * If not found, allocate if DEPALLOC flag is passed.
2186  * Found or allocated entry is returned in inodedeppp.
2187  * This routine must be called with splbio interrupts blocked.
2188  */
2189 static int
2190 inodedep_lookup(mp, inum, flags, inodedeppp)
2191 	struct mount *mp;
2192 	ino_t inum;
2193 	int flags;
2194 	struct inodedep **inodedeppp;
2195 {
2196 	struct inodedep *inodedep;
2197 	struct inodedep_hashhead *inodedephd;
2198 	struct ufsmount *ump;
2199 	struct fs *fs;
2200 
2201 	ump = VFSTOUFS(mp);
2202 	LOCK_OWNED(ump);
2203 	fs = ump->um_fs;
2204 	inodedephd = INODEDEP_HASH(ump, inum);
2205 
2206 	if (inodedep_find(inodedephd, inum, inodedeppp))
2207 		return (1);
2208 	if ((flags & DEPALLOC) == 0)
2209 		return (0);
2210 	/*
2211 	 * If the system is over its limit and our filesystem is
2212 	 * responsible for more than our share of that usage and
2213 	 * we are not in a rush, request some inodedep cleanup.
2214 	 */
2215 	if (softdep_excess_inodes(ump))
2216 		schedule_cleanup(mp);
2217 	else
2218 		FREE_LOCK(ump);
2219 	inodedep = malloc(sizeof(struct inodedep),
2220 		M_INODEDEP, M_SOFTDEP_FLAGS);
2221 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2222 	ACQUIRE_LOCK(ump);
2223 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2224 		WORKITEM_FREE(inodedep, D_INODEDEP);
2225 		return (1);
2226 	}
2227 	inodedep->id_fs = fs;
2228 	inodedep->id_ino = inum;
2229 	inodedep->id_state = ALLCOMPLETE;
2230 	inodedep->id_nlinkdelta = 0;
2231 	inodedep->id_savedino1 = NULL;
2232 	inodedep->id_savedsize = -1;
2233 	inodedep->id_savedextsize = -1;
2234 	inodedep->id_savednlink = -1;
2235 	inodedep->id_bmsafemap = NULL;
2236 	inodedep->id_mkdiradd = NULL;
2237 	LIST_INIT(&inodedep->id_dirremhd);
2238 	LIST_INIT(&inodedep->id_pendinghd);
2239 	LIST_INIT(&inodedep->id_inowait);
2240 	LIST_INIT(&inodedep->id_bufwait);
2241 	TAILQ_INIT(&inodedep->id_inoreflst);
2242 	TAILQ_INIT(&inodedep->id_inoupdt);
2243 	TAILQ_INIT(&inodedep->id_newinoupdt);
2244 	TAILQ_INIT(&inodedep->id_extupdt);
2245 	TAILQ_INIT(&inodedep->id_newextupdt);
2246 	TAILQ_INIT(&inodedep->id_freeblklst);
2247 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2248 	*inodedeppp = inodedep;
2249 	return (0);
2250 }
2251 
2252 /*
2253  * Structures and routines associated with newblk caching.
2254  */
2255 #define	NEWBLK_HASH(ump, inum) \
2256 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2257 
2258 static int
2259 newblk_find(newblkhd, newblkno, flags, newblkpp)
2260 	struct newblk_hashhead *newblkhd;
2261 	ufs2_daddr_t newblkno;
2262 	int flags;
2263 	struct newblk **newblkpp;
2264 {
2265 	struct newblk *newblk;
2266 
2267 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2268 		if (newblkno != newblk->nb_newblkno)
2269 			continue;
2270 		/*
2271 		 * If we're creating a new dependency don't match those that
2272 		 * have already been converted to allocdirects.  This is for
2273 		 * a frag extend.
2274 		 */
2275 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2276 			continue;
2277 		break;
2278 	}
2279 	if (newblk) {
2280 		*newblkpp = newblk;
2281 		return (1);
2282 	}
2283 	*newblkpp = NULL;
2284 	return (0);
2285 }
2286 
2287 /*
2288  * Look up a newblk. Return 1 if found, 0 if not found.
2289  * If not found, allocate if DEPALLOC flag is passed.
2290  * Found or allocated entry is returned in newblkpp.
2291  */
2292 static int
2293 newblk_lookup(mp, newblkno, flags, newblkpp)
2294 	struct mount *mp;
2295 	ufs2_daddr_t newblkno;
2296 	int flags;
2297 	struct newblk **newblkpp;
2298 {
2299 	struct newblk *newblk;
2300 	struct newblk_hashhead *newblkhd;
2301 	struct ufsmount *ump;
2302 
2303 	ump = VFSTOUFS(mp);
2304 	LOCK_OWNED(ump);
2305 	newblkhd = NEWBLK_HASH(ump, newblkno);
2306 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2307 		return (1);
2308 	if ((flags & DEPALLOC) == 0)
2309 		return (0);
2310 	FREE_LOCK(ump);
2311 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2312 	    M_SOFTDEP_FLAGS | M_ZERO);
2313 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2314 	ACQUIRE_LOCK(ump);
2315 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2316 		WORKITEM_FREE(newblk, D_NEWBLK);
2317 		return (1);
2318 	}
2319 	newblk->nb_freefrag = NULL;
2320 	LIST_INIT(&newblk->nb_indirdeps);
2321 	LIST_INIT(&newblk->nb_newdirblk);
2322 	LIST_INIT(&newblk->nb_jwork);
2323 	newblk->nb_state = ATTACHED;
2324 	newblk->nb_newblkno = newblkno;
2325 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2326 	*newblkpp = newblk;
2327 	return (0);
2328 }
2329 
2330 /*
2331  * Structures and routines associated with freed indirect block caching.
2332  */
2333 #define	INDIR_HASH(ump, blkno) \
2334 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2335 
2336 /*
2337  * Lookup an indirect block in the indir hash table.  The freework is
2338  * removed and potentially freed.  The caller must do a blocking journal
2339  * write before writing to the blkno.
2340  */
2341 static int
2342 indirblk_lookup(mp, blkno)
2343 	struct mount *mp;
2344 	ufs2_daddr_t blkno;
2345 {
2346 	struct freework *freework;
2347 	struct indir_hashhead *wkhd;
2348 	struct ufsmount *ump;
2349 
2350 	ump = VFSTOUFS(mp);
2351 	wkhd = INDIR_HASH(ump, blkno);
2352 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2353 		if (freework->fw_blkno != blkno)
2354 			continue;
2355 		indirblk_remove(freework);
2356 		return (1);
2357 	}
2358 	return (0);
2359 }
2360 
2361 /*
2362  * Insert an indirect block represented by freework into the indirblk
2363  * hash table so that it may prevent the block from being re-used prior
2364  * to the journal being written.
2365  */
2366 static void
2367 indirblk_insert(freework)
2368 	struct freework *freework;
2369 {
2370 	struct jblocks *jblocks;
2371 	struct jseg *jseg;
2372 	struct ufsmount *ump;
2373 
2374 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2375 	jblocks = ump->softdep_jblocks;
2376 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2377 	if (jseg == NULL)
2378 		return;
2379 
2380 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2381 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2382 	    fw_next);
2383 	freework->fw_state &= ~DEPCOMPLETE;
2384 }
2385 
2386 static void
2387 indirblk_remove(freework)
2388 	struct freework *freework;
2389 {
2390 	struct ufsmount *ump;
2391 
2392 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2393 	LIST_REMOVE(freework, fw_segs);
2394 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2395 	freework->fw_state |= DEPCOMPLETE;
2396 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2397 		WORKITEM_FREE(freework, D_FREEWORK);
2398 }
2399 
2400 /*
2401  * Executed during filesystem system initialization before
2402  * mounting any filesystems.
2403  */
2404 void
2405 softdep_initialize()
2406 {
2407 
2408 	TAILQ_INIT(&softdepmounts);
2409 	max_softdeps = desiredvnodes * 4;
2410 
2411 	/* initialise bioops hack */
2412 	bioops.io_start = softdep_disk_io_initiation;
2413 	bioops.io_complete = softdep_disk_write_complete;
2414 	bioops.io_deallocate = softdep_deallocate_dependencies;
2415 	bioops.io_countdeps = softdep_count_dependencies;
2416 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2417 
2418 	/* Initialize the callout with an mtx. */
2419 	callout_init_mtx(&softdep_callout, &lk, 0);
2420 }
2421 
2422 /*
2423  * Executed after all filesystems have been unmounted during
2424  * filesystem module unload.
2425  */
2426 void
2427 softdep_uninitialize()
2428 {
2429 
2430 	/* clear bioops hack */
2431 	bioops.io_start = NULL;
2432 	bioops.io_complete = NULL;
2433 	bioops.io_deallocate = NULL;
2434 	bioops.io_countdeps = NULL;
2435 	softdep_ast_cleanup = NULL;
2436 
2437 	callout_drain(&softdep_callout);
2438 }
2439 
2440 /*
2441  * Called at mount time to notify the dependency code that a
2442  * filesystem wishes to use it.
2443  */
2444 int
2445 softdep_mount(devvp, mp, fs, cred)
2446 	struct vnode *devvp;
2447 	struct mount *mp;
2448 	struct fs *fs;
2449 	struct ucred *cred;
2450 {
2451 	struct csum_total cstotal;
2452 	struct mount_softdeps *sdp;
2453 	struct ufsmount *ump;
2454 	struct cg *cgp;
2455 	struct buf *bp;
2456 	int i, error, cyl;
2457 
2458 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2459 	    M_WAITOK | M_ZERO);
2460 	MNT_ILOCK(mp);
2461 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2462 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2463 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2464 			MNTK_SOFTDEP | MNTK_NOASYNC;
2465 	}
2466 	ump = VFSTOUFS(mp);
2467 	ump->um_softdep = sdp;
2468 	MNT_IUNLOCK(mp);
2469 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2470 	sdp->sd_ump = ump;
2471 	LIST_INIT(&ump->softdep_workitem_pending);
2472 	LIST_INIT(&ump->softdep_journal_pending);
2473 	TAILQ_INIT(&ump->softdep_unlinked);
2474 	LIST_INIT(&ump->softdep_dirtycg);
2475 	ump->softdep_worklist_tail = NULL;
2476 	ump->softdep_on_worklist = 0;
2477 	ump->softdep_deps = 0;
2478 	LIST_INIT(&ump->softdep_mkdirlisthd);
2479 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2480 	    &ump->pagedep_hash_size);
2481 	ump->pagedep_nextclean = 0;
2482 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2483 	    &ump->inodedep_hash_size);
2484 	ump->inodedep_nextclean = 0;
2485 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2486 	    &ump->newblk_hash_size);
2487 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2488 	    &ump->bmsafemap_hash_size);
2489 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2490 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2491 	    M_FREEWORK, M_WAITOK);
2492 	ump->indir_hash_size = i - 1;
2493 	for (i = 0; i <= ump->indir_hash_size; i++)
2494 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2495 	ACQUIRE_GBLLOCK(&lk);
2496 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2497 	FREE_GBLLOCK(&lk);
2498 	if ((fs->fs_flags & FS_SUJ) &&
2499 	    (error = journal_mount(mp, fs, cred)) != 0) {
2500 		printf("Failed to start journal: %d\n", error);
2501 		softdep_unmount(mp);
2502 		return (error);
2503 	}
2504 	/*
2505 	 * Start our flushing thread in the bufdaemon process.
2506 	 */
2507 	ACQUIRE_LOCK(ump);
2508 	ump->softdep_flags |= FLUSH_STARTING;
2509 	FREE_LOCK(ump);
2510 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2511 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2512 	    mp->mnt_stat.f_mntonname);
2513 	ACQUIRE_LOCK(ump);
2514 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2515 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2516 		    hz / 2);
2517 	}
2518 	FREE_LOCK(ump);
2519 	/*
2520 	 * When doing soft updates, the counters in the
2521 	 * superblock may have gotten out of sync. Recomputation
2522 	 * can take a long time and can be deferred for background
2523 	 * fsck.  However, the old behavior of scanning the cylinder
2524 	 * groups and recalculating them at mount time is available
2525 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2526 	 */
2527 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2528 		return (0);
2529 	bzero(&cstotal, sizeof cstotal);
2530 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2531 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2532 		    fs->fs_cgsize, cred, &bp)) != 0) {
2533 			brelse(bp);
2534 			softdep_unmount(mp);
2535 			return (error);
2536 		}
2537 		cgp = (struct cg *)bp->b_data;
2538 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2539 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2540 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2541 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2542 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2543 		brelse(bp);
2544 	}
2545 #ifdef DEBUG
2546 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2547 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2548 #endif
2549 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2550 	return (0);
2551 }
2552 
2553 void
2554 softdep_unmount(mp)
2555 	struct mount *mp;
2556 {
2557 	struct ufsmount *ump;
2558 #ifdef INVARIANTS
2559 	int i;
2560 #endif
2561 
2562 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2563 	    ("softdep_unmount called on non-softdep filesystem"));
2564 	ump = VFSTOUFS(mp);
2565 	MNT_ILOCK(mp);
2566 	mp->mnt_flag &= ~MNT_SOFTDEP;
2567 	if (MOUNTEDSUJ(mp) == 0) {
2568 		MNT_IUNLOCK(mp);
2569 	} else {
2570 		mp->mnt_flag &= ~MNT_SUJ;
2571 		MNT_IUNLOCK(mp);
2572 		journal_unmount(ump);
2573 	}
2574 	/*
2575 	 * Shut down our flushing thread. Check for NULL is if
2576 	 * softdep_mount errors out before the thread has been created.
2577 	 */
2578 	if (ump->softdep_flushtd != NULL) {
2579 		ACQUIRE_LOCK(ump);
2580 		ump->softdep_flags |= FLUSH_EXIT;
2581 		wakeup(&ump->softdep_flushtd);
2582 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2583 		    "sdwait", 0);
2584 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2585 		    ("Thread shutdown failed"));
2586 	}
2587 	/*
2588 	 * Free up our resources.
2589 	 */
2590 	ACQUIRE_GBLLOCK(&lk);
2591 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2592 	FREE_GBLLOCK(&lk);
2593 	rw_destroy(LOCK_PTR(ump));
2594 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2595 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2596 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2597 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2598 	    ump->bmsafemap_hash_size);
2599 	free(ump->indir_hashtbl, M_FREEWORK);
2600 #ifdef INVARIANTS
2601 	for (i = 0; i <= D_LAST; i++)
2602 		KASSERT(ump->softdep_curdeps[i] == 0,
2603 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2604 		    TYPENAME(i), ump->softdep_curdeps[i]));
2605 #endif
2606 	free(ump->um_softdep, M_MOUNTDATA);
2607 }
2608 
2609 static struct jblocks *
2610 jblocks_create(void)
2611 {
2612 	struct jblocks *jblocks;
2613 
2614 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2615 	TAILQ_INIT(&jblocks->jb_segs);
2616 	jblocks->jb_avail = 10;
2617 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2618 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2619 
2620 	return (jblocks);
2621 }
2622 
2623 static ufs2_daddr_t
2624 jblocks_alloc(jblocks, bytes, actual)
2625 	struct jblocks *jblocks;
2626 	int bytes;
2627 	int *actual;
2628 {
2629 	ufs2_daddr_t daddr;
2630 	struct jextent *jext;
2631 	int freecnt;
2632 	int blocks;
2633 
2634 	blocks = bytes / DEV_BSIZE;
2635 	jext = &jblocks->jb_extent[jblocks->jb_head];
2636 	freecnt = jext->je_blocks - jblocks->jb_off;
2637 	if (freecnt == 0) {
2638 		jblocks->jb_off = 0;
2639 		if (++jblocks->jb_head > jblocks->jb_used)
2640 			jblocks->jb_head = 0;
2641 		jext = &jblocks->jb_extent[jblocks->jb_head];
2642 		freecnt = jext->je_blocks;
2643 	}
2644 	if (freecnt > blocks)
2645 		freecnt = blocks;
2646 	*actual = freecnt * DEV_BSIZE;
2647 	daddr = jext->je_daddr + jblocks->jb_off;
2648 	jblocks->jb_off += freecnt;
2649 	jblocks->jb_free -= freecnt;
2650 
2651 	return (daddr);
2652 }
2653 
2654 static void
2655 jblocks_free(jblocks, mp, bytes)
2656 	struct jblocks *jblocks;
2657 	struct mount *mp;
2658 	int bytes;
2659 {
2660 
2661 	LOCK_OWNED(VFSTOUFS(mp));
2662 	jblocks->jb_free += bytes / DEV_BSIZE;
2663 	if (jblocks->jb_suspended)
2664 		worklist_speedup(mp);
2665 	wakeup(jblocks);
2666 }
2667 
2668 static void
2669 jblocks_destroy(jblocks)
2670 	struct jblocks *jblocks;
2671 {
2672 
2673 	if (jblocks->jb_extent)
2674 		free(jblocks->jb_extent, M_JBLOCKS);
2675 	free(jblocks, M_JBLOCKS);
2676 }
2677 
2678 static void
2679 jblocks_add(jblocks, daddr, blocks)
2680 	struct jblocks *jblocks;
2681 	ufs2_daddr_t daddr;
2682 	int blocks;
2683 {
2684 	struct jextent *jext;
2685 
2686 	jblocks->jb_blocks += blocks;
2687 	jblocks->jb_free += blocks;
2688 	jext = &jblocks->jb_extent[jblocks->jb_used];
2689 	/* Adding the first block. */
2690 	if (jext->je_daddr == 0) {
2691 		jext->je_daddr = daddr;
2692 		jext->je_blocks = blocks;
2693 		return;
2694 	}
2695 	/* Extending the last extent. */
2696 	if (jext->je_daddr + jext->je_blocks == daddr) {
2697 		jext->je_blocks += blocks;
2698 		return;
2699 	}
2700 	/* Adding a new extent. */
2701 	if (++jblocks->jb_used == jblocks->jb_avail) {
2702 		jblocks->jb_avail *= 2;
2703 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2704 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2705 		memcpy(jext, jblocks->jb_extent,
2706 		    sizeof(struct jextent) * jblocks->jb_used);
2707 		free(jblocks->jb_extent, M_JBLOCKS);
2708 		jblocks->jb_extent = jext;
2709 	}
2710 	jext = &jblocks->jb_extent[jblocks->jb_used];
2711 	jext->je_daddr = daddr;
2712 	jext->je_blocks = blocks;
2713 	return;
2714 }
2715 
2716 int
2717 softdep_journal_lookup(mp, vpp)
2718 	struct mount *mp;
2719 	struct vnode **vpp;
2720 {
2721 	struct componentname cnp;
2722 	struct vnode *dvp;
2723 	ino_t sujournal;
2724 	int error;
2725 
2726 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2727 	if (error)
2728 		return (error);
2729 	bzero(&cnp, sizeof(cnp));
2730 	cnp.cn_nameiop = LOOKUP;
2731 	cnp.cn_flags = ISLASTCN;
2732 	cnp.cn_thread = curthread;
2733 	cnp.cn_cred = curthread->td_ucred;
2734 	cnp.cn_pnbuf = SUJ_FILE;
2735 	cnp.cn_nameptr = SUJ_FILE;
2736 	cnp.cn_namelen = strlen(SUJ_FILE);
2737 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2738 	vput(dvp);
2739 	if (error != 0)
2740 		return (error);
2741 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2742 	return (error);
2743 }
2744 
2745 /*
2746  * Open and verify the journal file.
2747  */
2748 static int
2749 journal_mount(mp, fs, cred)
2750 	struct mount *mp;
2751 	struct fs *fs;
2752 	struct ucred *cred;
2753 {
2754 	struct jblocks *jblocks;
2755 	struct ufsmount *ump;
2756 	struct vnode *vp;
2757 	struct inode *ip;
2758 	ufs2_daddr_t blkno;
2759 	int bcount;
2760 	int error;
2761 	int i;
2762 
2763 	ump = VFSTOUFS(mp);
2764 	ump->softdep_journal_tail = NULL;
2765 	ump->softdep_on_journal = 0;
2766 	ump->softdep_accdeps = 0;
2767 	ump->softdep_req = 0;
2768 	ump->softdep_jblocks = NULL;
2769 	error = softdep_journal_lookup(mp, &vp);
2770 	if (error != 0) {
2771 		printf("Failed to find journal.  Use tunefs to create one\n");
2772 		return (error);
2773 	}
2774 	ip = VTOI(vp);
2775 	if (ip->i_size < SUJ_MIN) {
2776 		error = ENOSPC;
2777 		goto out;
2778 	}
2779 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2780 	jblocks = jblocks_create();
2781 	for (i = 0; i < bcount; i++) {
2782 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2783 		if (error)
2784 			break;
2785 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2786 	}
2787 	if (error) {
2788 		jblocks_destroy(jblocks);
2789 		goto out;
2790 	}
2791 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2792 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2793 	ump->softdep_jblocks = jblocks;
2794 out:
2795 	if (error == 0) {
2796 		MNT_ILOCK(mp);
2797 		mp->mnt_flag |= MNT_SUJ;
2798 		mp->mnt_flag &= ~MNT_SOFTDEP;
2799 		MNT_IUNLOCK(mp);
2800 		/*
2801 		 * Only validate the journal contents if the
2802 		 * filesystem is clean, otherwise we write the logs
2803 		 * but they'll never be used.  If the filesystem was
2804 		 * still dirty when we mounted it the journal is
2805 		 * invalid and a new journal can only be valid if it
2806 		 * starts from a clean mount.
2807 		 */
2808 		if (fs->fs_clean) {
2809 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2810 			ip->i_flags |= IN_MODIFIED;
2811 			ffs_update(vp, 1);
2812 		}
2813 	}
2814 	vput(vp);
2815 	return (error);
2816 }
2817 
2818 static void
2819 journal_unmount(ump)
2820 	struct ufsmount *ump;
2821 {
2822 
2823 	if (ump->softdep_jblocks)
2824 		jblocks_destroy(ump->softdep_jblocks);
2825 	ump->softdep_jblocks = NULL;
2826 }
2827 
2828 /*
2829  * Called when a journal record is ready to be written.  Space is allocated
2830  * and the journal entry is created when the journal is flushed to stable
2831  * store.
2832  */
2833 static void
2834 add_to_journal(wk)
2835 	struct worklist *wk;
2836 {
2837 	struct ufsmount *ump;
2838 
2839 	ump = VFSTOUFS(wk->wk_mp);
2840 	LOCK_OWNED(ump);
2841 	if (wk->wk_state & ONWORKLIST)
2842 		panic("add_to_journal: %s(0x%X) already on list",
2843 		    TYPENAME(wk->wk_type), wk->wk_state);
2844 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2845 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2846 		ump->softdep_jblocks->jb_age = ticks;
2847 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2848 	} else
2849 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2850 	ump->softdep_journal_tail = wk;
2851 	ump->softdep_on_journal += 1;
2852 }
2853 
2854 /*
2855  * Remove an arbitrary item for the journal worklist maintain the tail
2856  * pointer.  This happens when a new operation obviates the need to
2857  * journal an old operation.
2858  */
2859 static void
2860 remove_from_journal(wk)
2861 	struct worklist *wk;
2862 {
2863 	struct ufsmount *ump;
2864 
2865 	ump = VFSTOUFS(wk->wk_mp);
2866 	LOCK_OWNED(ump);
2867 #ifdef SUJ_DEBUG
2868 	{
2869 		struct worklist *wkn;
2870 
2871 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2872 			if (wkn == wk)
2873 				break;
2874 		if (wkn == NULL)
2875 			panic("remove_from_journal: %p is not in journal", wk);
2876 	}
2877 #endif
2878 	/*
2879 	 * We emulate a TAILQ to save space in most structures which do not
2880 	 * require TAILQ semantics.  Here we must update the tail position
2881 	 * when removing the tail which is not the final entry. This works
2882 	 * only if the worklist linkage are at the beginning of the structure.
2883 	 */
2884 	if (ump->softdep_journal_tail == wk)
2885 		ump->softdep_journal_tail =
2886 		    (struct worklist *)wk->wk_list.le_prev;
2887 
2888 	WORKLIST_REMOVE(wk);
2889 	ump->softdep_on_journal -= 1;
2890 }
2891 
2892 /*
2893  * Check for journal space as well as dependency limits so the prelink
2894  * code can throttle both journaled and non-journaled filesystems.
2895  * Threshold is 0 for low and 1 for min.
2896  */
2897 static int
2898 journal_space(ump, thresh)
2899 	struct ufsmount *ump;
2900 	int thresh;
2901 {
2902 	struct jblocks *jblocks;
2903 	int limit, avail;
2904 
2905 	jblocks = ump->softdep_jblocks;
2906 	if (jblocks == NULL)
2907 		return (1);
2908 	/*
2909 	 * We use a tighter restriction here to prevent request_cleanup()
2910 	 * running in threads from running into locks we currently hold.
2911 	 * We have to be over the limit and our filesystem has to be
2912 	 * responsible for more than our share of that usage.
2913 	 */
2914 	limit = (max_softdeps / 10) * 9;
2915 	if (dep_current[D_INODEDEP] > limit &&
2916 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2917 		return (0);
2918 	if (thresh)
2919 		thresh = jblocks->jb_min;
2920 	else
2921 		thresh = jblocks->jb_low;
2922 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2923 	avail = jblocks->jb_free - avail;
2924 
2925 	return (avail > thresh);
2926 }
2927 
2928 static void
2929 journal_suspend(ump)
2930 	struct ufsmount *ump;
2931 {
2932 	struct jblocks *jblocks;
2933 	struct mount *mp;
2934 
2935 	mp = UFSTOVFS(ump);
2936 	jblocks = ump->softdep_jblocks;
2937 	MNT_ILOCK(mp);
2938 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2939 		stat_journal_min++;
2940 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2941 		mp->mnt_susp_owner = ump->softdep_flushtd;
2942 	}
2943 	jblocks->jb_suspended = 1;
2944 	MNT_IUNLOCK(mp);
2945 }
2946 
2947 static int
2948 journal_unsuspend(struct ufsmount *ump)
2949 {
2950 	struct jblocks *jblocks;
2951 	struct mount *mp;
2952 
2953 	mp = UFSTOVFS(ump);
2954 	jblocks = ump->softdep_jblocks;
2955 
2956 	if (jblocks != NULL && jblocks->jb_suspended &&
2957 	    journal_space(ump, jblocks->jb_min)) {
2958 		jblocks->jb_suspended = 0;
2959 		FREE_LOCK(ump);
2960 		mp->mnt_susp_owner = curthread;
2961 		vfs_write_resume(mp, 0);
2962 		ACQUIRE_LOCK(ump);
2963 		return (1);
2964 	}
2965 	return (0);
2966 }
2967 
2968 /*
2969  * Called before any allocation function to be certain that there is
2970  * sufficient space in the journal prior to creating any new records.
2971  * Since in the case of block allocation we may have multiple locked
2972  * buffers at the time of the actual allocation we can not block
2973  * when the journal records are created.  Doing so would create a deadlock
2974  * if any of these buffers needed to be flushed to reclaim space.  Instead
2975  * we require a sufficiently large amount of available space such that
2976  * each thread in the system could have passed this allocation check and
2977  * still have sufficient free space.  With 20% of a minimum journal size
2978  * of 1MB we have 6553 records available.
2979  */
2980 int
2981 softdep_prealloc(vp, waitok)
2982 	struct vnode *vp;
2983 	int waitok;
2984 {
2985 	struct ufsmount *ump;
2986 
2987 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2988 	    ("softdep_prealloc called on non-softdep filesystem"));
2989 	/*
2990 	 * Nothing to do if we are not running journaled soft updates.
2991 	 * If we currently hold the snapshot lock, we must avoid handling
2992 	 * other resources that could cause deadlock.
2993 	 */
2994 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2995 		return (0);
2996 	ump = VFSTOUFS(vp->v_mount);
2997 	ACQUIRE_LOCK(ump);
2998 	if (journal_space(ump, 0)) {
2999 		FREE_LOCK(ump);
3000 		return (0);
3001 	}
3002 	stat_journal_low++;
3003 	FREE_LOCK(ump);
3004 	if (waitok == MNT_NOWAIT)
3005 		return (ENOSPC);
3006 	/*
3007 	 * Attempt to sync this vnode once to flush any journal
3008 	 * work attached to it.
3009 	 */
3010 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3011 		ffs_syncvnode(vp, waitok, 0);
3012 	ACQUIRE_LOCK(ump);
3013 	process_removes(vp);
3014 	process_truncates(vp);
3015 	if (journal_space(ump, 0) == 0) {
3016 		softdep_speedup(ump);
3017 		if (journal_space(ump, 1) == 0)
3018 			journal_suspend(ump);
3019 	}
3020 	FREE_LOCK(ump);
3021 
3022 	return (0);
3023 }
3024 
3025 /*
3026  * Before adjusting a link count on a vnode verify that we have sufficient
3027  * journal space.  If not, process operations that depend on the currently
3028  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3029  * and softdep flush threads can not acquire these locks to reclaim space.
3030  */
3031 static void
3032 softdep_prelink(dvp, vp)
3033 	struct vnode *dvp;
3034 	struct vnode *vp;
3035 {
3036 	struct ufsmount *ump;
3037 
3038 	ump = VFSTOUFS(dvp->v_mount);
3039 	LOCK_OWNED(ump);
3040 	/*
3041 	 * Nothing to do if we have sufficient journal space.
3042 	 * If we currently hold the snapshot lock, we must avoid
3043 	 * handling other resources that could cause deadlock.
3044 	 */
3045 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3046 		return;
3047 	stat_journal_low++;
3048 	FREE_LOCK(ump);
3049 	if (vp)
3050 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3051 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3052 	ACQUIRE_LOCK(ump);
3053 	/* Process vp before dvp as it may create .. removes. */
3054 	if (vp) {
3055 		process_removes(vp);
3056 		process_truncates(vp);
3057 	}
3058 	process_removes(dvp);
3059 	process_truncates(dvp);
3060 	softdep_speedup(ump);
3061 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3062 	if (journal_space(ump, 0) == 0) {
3063 		softdep_speedup(ump);
3064 		if (journal_space(ump, 1) == 0)
3065 			journal_suspend(ump);
3066 	}
3067 }
3068 
3069 static void
3070 jseg_write(ump, jseg, data)
3071 	struct ufsmount *ump;
3072 	struct jseg *jseg;
3073 	uint8_t *data;
3074 {
3075 	struct jsegrec *rec;
3076 
3077 	rec = (struct jsegrec *)data;
3078 	rec->jsr_seq = jseg->js_seq;
3079 	rec->jsr_oldest = jseg->js_oldseq;
3080 	rec->jsr_cnt = jseg->js_cnt;
3081 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3082 	rec->jsr_crc = 0;
3083 	rec->jsr_time = ump->um_fs->fs_mtime;
3084 }
3085 
3086 static inline void
3087 inoref_write(inoref, jseg, rec)
3088 	struct inoref *inoref;
3089 	struct jseg *jseg;
3090 	struct jrefrec *rec;
3091 {
3092 
3093 	inoref->if_jsegdep->jd_seg = jseg;
3094 	rec->jr_ino = inoref->if_ino;
3095 	rec->jr_parent = inoref->if_parent;
3096 	rec->jr_nlink = inoref->if_nlink;
3097 	rec->jr_mode = inoref->if_mode;
3098 	rec->jr_diroff = inoref->if_diroff;
3099 }
3100 
3101 static void
3102 jaddref_write(jaddref, jseg, data)
3103 	struct jaddref *jaddref;
3104 	struct jseg *jseg;
3105 	uint8_t *data;
3106 {
3107 	struct jrefrec *rec;
3108 
3109 	rec = (struct jrefrec *)data;
3110 	rec->jr_op = JOP_ADDREF;
3111 	inoref_write(&jaddref->ja_ref, jseg, rec);
3112 }
3113 
3114 static void
3115 jremref_write(jremref, jseg, data)
3116 	struct jremref *jremref;
3117 	struct jseg *jseg;
3118 	uint8_t *data;
3119 {
3120 	struct jrefrec *rec;
3121 
3122 	rec = (struct jrefrec *)data;
3123 	rec->jr_op = JOP_REMREF;
3124 	inoref_write(&jremref->jr_ref, jseg, rec);
3125 }
3126 
3127 static void
3128 jmvref_write(jmvref, jseg, data)
3129 	struct jmvref *jmvref;
3130 	struct jseg *jseg;
3131 	uint8_t *data;
3132 {
3133 	struct jmvrec *rec;
3134 
3135 	rec = (struct jmvrec *)data;
3136 	rec->jm_op = JOP_MVREF;
3137 	rec->jm_ino = jmvref->jm_ino;
3138 	rec->jm_parent = jmvref->jm_parent;
3139 	rec->jm_oldoff = jmvref->jm_oldoff;
3140 	rec->jm_newoff = jmvref->jm_newoff;
3141 }
3142 
3143 static void
3144 jnewblk_write(jnewblk, jseg, data)
3145 	struct jnewblk *jnewblk;
3146 	struct jseg *jseg;
3147 	uint8_t *data;
3148 {
3149 	struct jblkrec *rec;
3150 
3151 	jnewblk->jn_jsegdep->jd_seg = jseg;
3152 	rec = (struct jblkrec *)data;
3153 	rec->jb_op = JOP_NEWBLK;
3154 	rec->jb_ino = jnewblk->jn_ino;
3155 	rec->jb_blkno = jnewblk->jn_blkno;
3156 	rec->jb_lbn = jnewblk->jn_lbn;
3157 	rec->jb_frags = jnewblk->jn_frags;
3158 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3159 }
3160 
3161 static void
3162 jfreeblk_write(jfreeblk, jseg, data)
3163 	struct jfreeblk *jfreeblk;
3164 	struct jseg *jseg;
3165 	uint8_t *data;
3166 {
3167 	struct jblkrec *rec;
3168 
3169 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3170 	rec = (struct jblkrec *)data;
3171 	rec->jb_op = JOP_FREEBLK;
3172 	rec->jb_ino = jfreeblk->jf_ino;
3173 	rec->jb_blkno = jfreeblk->jf_blkno;
3174 	rec->jb_lbn = jfreeblk->jf_lbn;
3175 	rec->jb_frags = jfreeblk->jf_frags;
3176 	rec->jb_oldfrags = 0;
3177 }
3178 
3179 static void
3180 jfreefrag_write(jfreefrag, jseg, data)
3181 	struct jfreefrag *jfreefrag;
3182 	struct jseg *jseg;
3183 	uint8_t *data;
3184 {
3185 	struct jblkrec *rec;
3186 
3187 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3188 	rec = (struct jblkrec *)data;
3189 	rec->jb_op = JOP_FREEBLK;
3190 	rec->jb_ino = jfreefrag->fr_ino;
3191 	rec->jb_blkno = jfreefrag->fr_blkno;
3192 	rec->jb_lbn = jfreefrag->fr_lbn;
3193 	rec->jb_frags = jfreefrag->fr_frags;
3194 	rec->jb_oldfrags = 0;
3195 }
3196 
3197 static void
3198 jtrunc_write(jtrunc, jseg, data)
3199 	struct jtrunc *jtrunc;
3200 	struct jseg *jseg;
3201 	uint8_t *data;
3202 {
3203 	struct jtrncrec *rec;
3204 
3205 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3206 	rec = (struct jtrncrec *)data;
3207 	rec->jt_op = JOP_TRUNC;
3208 	rec->jt_ino = jtrunc->jt_ino;
3209 	rec->jt_size = jtrunc->jt_size;
3210 	rec->jt_extsize = jtrunc->jt_extsize;
3211 }
3212 
3213 static void
3214 jfsync_write(jfsync, jseg, data)
3215 	struct jfsync *jfsync;
3216 	struct jseg *jseg;
3217 	uint8_t *data;
3218 {
3219 	struct jtrncrec *rec;
3220 
3221 	rec = (struct jtrncrec *)data;
3222 	rec->jt_op = JOP_SYNC;
3223 	rec->jt_ino = jfsync->jfs_ino;
3224 	rec->jt_size = jfsync->jfs_size;
3225 	rec->jt_extsize = jfsync->jfs_extsize;
3226 }
3227 
3228 static void
3229 softdep_flushjournal(mp)
3230 	struct mount *mp;
3231 {
3232 	struct jblocks *jblocks;
3233 	struct ufsmount *ump;
3234 
3235 	if (MOUNTEDSUJ(mp) == 0)
3236 		return;
3237 	ump = VFSTOUFS(mp);
3238 	jblocks = ump->softdep_jblocks;
3239 	ACQUIRE_LOCK(ump);
3240 	while (ump->softdep_on_journal) {
3241 		jblocks->jb_needseg = 1;
3242 		softdep_process_journal(mp, NULL, MNT_WAIT);
3243 	}
3244 	FREE_LOCK(ump);
3245 }
3246 
3247 static void softdep_synchronize_completed(struct bio *);
3248 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3249 
3250 static void
3251 softdep_synchronize_completed(bp)
3252         struct bio *bp;
3253 {
3254 	struct jseg *oldest;
3255 	struct jseg *jseg;
3256 	struct ufsmount *ump;
3257 
3258 	/*
3259 	 * caller1 marks the last segment written before we issued the
3260 	 * synchronize cache.
3261 	 */
3262 	jseg = bp->bio_caller1;
3263 	if (jseg == NULL) {
3264 		g_destroy_bio(bp);
3265 		return;
3266 	}
3267 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3268 	ACQUIRE_LOCK(ump);
3269 	oldest = NULL;
3270 	/*
3271 	 * Mark all the journal entries waiting on the synchronize cache
3272 	 * as completed so they may continue on.
3273 	 */
3274 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3275 		jseg->js_state |= COMPLETE;
3276 		oldest = jseg;
3277 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3278 	}
3279 	/*
3280 	 * Restart deferred journal entry processing from the oldest
3281 	 * completed jseg.
3282 	 */
3283 	if (oldest)
3284 		complete_jsegs(oldest);
3285 
3286 	FREE_LOCK(ump);
3287 	g_destroy_bio(bp);
3288 }
3289 
3290 /*
3291  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3292  * barriers.  The journal must be written prior to any blocks that depend
3293  * on it and the journal can not be released until the blocks have be
3294  * written.  This code handles both barriers simultaneously.
3295  */
3296 static void
3297 softdep_synchronize(bp, ump, caller1)
3298 	struct bio *bp;
3299 	struct ufsmount *ump;
3300 	void *caller1;
3301 {
3302 
3303 	bp->bio_cmd = BIO_FLUSH;
3304 	bp->bio_flags |= BIO_ORDERED;
3305 	bp->bio_data = NULL;
3306 	bp->bio_offset = ump->um_cp->provider->mediasize;
3307 	bp->bio_length = 0;
3308 	bp->bio_done = softdep_synchronize_completed;
3309 	bp->bio_caller1 = caller1;
3310 	g_io_request(bp,
3311 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3312 }
3313 
3314 /*
3315  * Flush some journal records to disk.
3316  */
3317 static void
3318 softdep_process_journal(mp, needwk, flags)
3319 	struct mount *mp;
3320 	struct worklist *needwk;
3321 	int flags;
3322 {
3323 	struct jblocks *jblocks;
3324 	struct ufsmount *ump;
3325 	struct worklist *wk;
3326 	struct jseg *jseg;
3327 	struct buf *bp;
3328 	struct bio *bio;
3329 	uint8_t *data;
3330 	struct fs *fs;
3331 	int shouldflush;
3332 	int segwritten;
3333 	int jrecmin;	/* Minimum records per block. */
3334 	int jrecmax;	/* Maximum records per block. */
3335 	int size;
3336 	int cnt;
3337 	int off;
3338 	int devbsize;
3339 
3340 	if (MOUNTEDSUJ(mp) == 0)
3341 		return;
3342 	shouldflush = softdep_flushcache;
3343 	bio = NULL;
3344 	jseg = NULL;
3345 	ump = VFSTOUFS(mp);
3346 	LOCK_OWNED(ump);
3347 	fs = ump->um_fs;
3348 	jblocks = ump->softdep_jblocks;
3349 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3350 	/*
3351 	 * We write anywhere between a disk block and fs block.  The upper
3352 	 * bound is picked to prevent buffer cache fragmentation and limit
3353 	 * processing time per I/O.
3354 	 */
3355 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3356 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3357 	segwritten = 0;
3358 	for (;;) {
3359 		cnt = ump->softdep_on_journal;
3360 		/*
3361 		 * Criteria for writing a segment:
3362 		 * 1) We have a full block.
3363 		 * 2) We're called from jwait() and haven't found the
3364 		 *    journal item yet.
3365 		 * 3) Always write if needseg is set.
3366 		 * 4) If we are called from process_worklist and have
3367 		 *    not yet written anything we write a partial block
3368 		 *    to enforce a 1 second maximum latency on journal
3369 		 *    entries.
3370 		 */
3371 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3372 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3373 			break;
3374 		cnt++;
3375 		/*
3376 		 * Verify some free journal space.  softdep_prealloc() should
3377 		 * guarantee that we don't run out so this is indicative of
3378 		 * a problem with the flow control.  Try to recover
3379 		 * gracefully in any event.
3380 		 */
3381 		while (jblocks->jb_free == 0) {
3382 			if (flags != MNT_WAIT)
3383 				break;
3384 			printf("softdep: Out of journal space!\n");
3385 			softdep_speedup(ump);
3386 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3387 		}
3388 		FREE_LOCK(ump);
3389 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3390 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3391 		LIST_INIT(&jseg->js_entries);
3392 		LIST_INIT(&jseg->js_indirs);
3393 		jseg->js_state = ATTACHED;
3394 		if (shouldflush == 0)
3395 			jseg->js_state |= COMPLETE;
3396 		else if (bio == NULL)
3397 			bio = g_alloc_bio();
3398 		jseg->js_jblocks = jblocks;
3399 		bp = geteblk(fs->fs_bsize, 0);
3400 		ACQUIRE_LOCK(ump);
3401 		/*
3402 		 * If there was a race while we were allocating the block
3403 		 * and jseg the entry we care about was likely written.
3404 		 * We bail out in both the WAIT and NOWAIT case and assume
3405 		 * the caller will loop if the entry it cares about is
3406 		 * not written.
3407 		 */
3408 		cnt = ump->softdep_on_journal;
3409 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3410 			bp->b_flags |= B_INVAL | B_NOCACHE;
3411 			WORKITEM_FREE(jseg, D_JSEG);
3412 			FREE_LOCK(ump);
3413 			brelse(bp);
3414 			ACQUIRE_LOCK(ump);
3415 			break;
3416 		}
3417 		/*
3418 		 * Calculate the disk block size required for the available
3419 		 * records rounded to the min size.
3420 		 */
3421 		if (cnt == 0)
3422 			size = devbsize;
3423 		else if (cnt < jrecmax)
3424 			size = howmany(cnt, jrecmin) * devbsize;
3425 		else
3426 			size = fs->fs_bsize;
3427 		/*
3428 		 * Allocate a disk block for this journal data and account
3429 		 * for truncation of the requested size if enough contiguous
3430 		 * space was not available.
3431 		 */
3432 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3433 		bp->b_lblkno = bp->b_blkno;
3434 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3435 		bp->b_bcount = size;
3436 		bp->b_flags &= ~B_INVAL;
3437 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3438 		/*
3439 		 * Initialize our jseg with cnt records.  Assign the next
3440 		 * sequence number to it and link it in-order.
3441 		 */
3442 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3443 		jseg->js_buf = bp;
3444 		jseg->js_cnt = cnt;
3445 		jseg->js_refs = cnt + 1;	/* Self ref. */
3446 		jseg->js_size = size;
3447 		jseg->js_seq = jblocks->jb_nextseq++;
3448 		if (jblocks->jb_oldestseg == NULL)
3449 			jblocks->jb_oldestseg = jseg;
3450 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3451 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3452 		if (jblocks->jb_writeseg == NULL)
3453 			jblocks->jb_writeseg = jseg;
3454 		/*
3455 		 * Start filling in records from the pending list.
3456 		 */
3457 		data = bp->b_data;
3458 		off = 0;
3459 
3460 		/*
3461 		 * Always put a header on the first block.
3462 		 * XXX As with below, there might not be a chance to get
3463 		 * into the loop.  Ensure that something valid is written.
3464 		 */
3465 		jseg_write(ump, jseg, data);
3466 		off += JREC_SIZE;
3467 		data = bp->b_data + off;
3468 
3469 		/*
3470 		 * XXX Something is wrong here.  There's no work to do,
3471 		 * but we need to perform and I/O and allow it to complete
3472 		 * anyways.
3473 		 */
3474 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3475 			stat_emptyjblocks++;
3476 
3477 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3478 		    != NULL) {
3479 			if (cnt == 0)
3480 				break;
3481 			/* Place a segment header on every device block. */
3482 			if ((off % devbsize) == 0) {
3483 				jseg_write(ump, jseg, data);
3484 				off += JREC_SIZE;
3485 				data = bp->b_data + off;
3486 			}
3487 			if (wk == needwk)
3488 				needwk = NULL;
3489 			remove_from_journal(wk);
3490 			wk->wk_state |= INPROGRESS;
3491 			WORKLIST_INSERT(&jseg->js_entries, wk);
3492 			switch (wk->wk_type) {
3493 			case D_JADDREF:
3494 				jaddref_write(WK_JADDREF(wk), jseg, data);
3495 				break;
3496 			case D_JREMREF:
3497 				jremref_write(WK_JREMREF(wk), jseg, data);
3498 				break;
3499 			case D_JMVREF:
3500 				jmvref_write(WK_JMVREF(wk), jseg, data);
3501 				break;
3502 			case D_JNEWBLK:
3503 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3504 				break;
3505 			case D_JFREEBLK:
3506 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3507 				break;
3508 			case D_JFREEFRAG:
3509 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3510 				break;
3511 			case D_JTRUNC:
3512 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3513 				break;
3514 			case D_JFSYNC:
3515 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3516 				break;
3517 			default:
3518 				panic("process_journal: Unknown type %s",
3519 				    TYPENAME(wk->wk_type));
3520 				/* NOTREACHED */
3521 			}
3522 			off += JREC_SIZE;
3523 			data = bp->b_data + off;
3524 			cnt--;
3525 		}
3526 
3527 		/* Clear any remaining space so we don't leak kernel data */
3528 		if (size > off)
3529 			bzero(data, size - off);
3530 
3531 		/*
3532 		 * Write this one buffer and continue.
3533 		 */
3534 		segwritten = 1;
3535 		jblocks->jb_needseg = 0;
3536 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3537 		FREE_LOCK(ump);
3538 		pbgetvp(ump->um_devvp, bp);
3539 		/*
3540 		 * We only do the blocking wait once we find the journal
3541 		 * entry we're looking for.
3542 		 */
3543 		if (needwk == NULL && flags == MNT_WAIT)
3544 			bwrite(bp);
3545 		else
3546 			bawrite(bp);
3547 		ACQUIRE_LOCK(ump);
3548 	}
3549 	/*
3550 	 * If we wrote a segment issue a synchronize cache so the journal
3551 	 * is reflected on disk before the data is written.  Since reclaiming
3552 	 * journal space also requires writing a journal record this
3553 	 * process also enforces a barrier before reclamation.
3554 	 */
3555 	if (segwritten && shouldflush) {
3556 		softdep_synchronize(bio, ump,
3557 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3558 	} else if (bio)
3559 		g_destroy_bio(bio);
3560 	/*
3561 	 * If we've suspended the filesystem because we ran out of journal
3562 	 * space either try to sync it here to make some progress or
3563 	 * unsuspend it if we already have.
3564 	 */
3565 	if (flags == 0 && jblocks->jb_suspended) {
3566 		if (journal_unsuspend(ump))
3567 			return;
3568 		FREE_LOCK(ump);
3569 		VFS_SYNC(mp, MNT_NOWAIT);
3570 		ffs_sbupdate(ump, MNT_WAIT, 0);
3571 		ACQUIRE_LOCK(ump);
3572 	}
3573 }
3574 
3575 /*
3576  * Complete a jseg, allowing all dependencies awaiting journal writes
3577  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3578  * structures so that the journal segment can be freed to reclaim space.
3579  */
3580 static void
3581 complete_jseg(jseg)
3582 	struct jseg *jseg;
3583 {
3584 	struct worklist *wk;
3585 	struct jmvref *jmvref;
3586 	int waiting;
3587 #ifdef INVARIANTS
3588 	int i = 0;
3589 #endif
3590 
3591 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3592 		WORKLIST_REMOVE(wk);
3593 		waiting = wk->wk_state & IOWAITING;
3594 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3595 		wk->wk_state |= COMPLETE;
3596 		KASSERT(i++ < jseg->js_cnt,
3597 		    ("handle_written_jseg: overflow %d >= %d",
3598 		    i - 1, jseg->js_cnt));
3599 		switch (wk->wk_type) {
3600 		case D_JADDREF:
3601 			handle_written_jaddref(WK_JADDREF(wk));
3602 			break;
3603 		case D_JREMREF:
3604 			handle_written_jremref(WK_JREMREF(wk));
3605 			break;
3606 		case D_JMVREF:
3607 			rele_jseg(jseg);	/* No jsegdep. */
3608 			jmvref = WK_JMVREF(wk);
3609 			LIST_REMOVE(jmvref, jm_deps);
3610 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3611 				free_pagedep(jmvref->jm_pagedep);
3612 			WORKITEM_FREE(jmvref, D_JMVREF);
3613 			break;
3614 		case D_JNEWBLK:
3615 			handle_written_jnewblk(WK_JNEWBLK(wk));
3616 			break;
3617 		case D_JFREEBLK:
3618 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3619 			break;
3620 		case D_JTRUNC:
3621 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3622 			break;
3623 		case D_JFSYNC:
3624 			rele_jseg(jseg);	/* No jsegdep. */
3625 			WORKITEM_FREE(wk, D_JFSYNC);
3626 			break;
3627 		case D_JFREEFRAG:
3628 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3629 			break;
3630 		default:
3631 			panic("handle_written_jseg: Unknown type %s",
3632 			    TYPENAME(wk->wk_type));
3633 			/* NOTREACHED */
3634 		}
3635 		if (waiting)
3636 			wakeup(wk);
3637 	}
3638 	/* Release the self reference so the structure may be freed. */
3639 	rele_jseg(jseg);
3640 }
3641 
3642 /*
3643  * Determine which jsegs are ready for completion processing.  Waits for
3644  * synchronize cache to complete as well as forcing in-order completion
3645  * of journal entries.
3646  */
3647 static void
3648 complete_jsegs(jseg)
3649 	struct jseg *jseg;
3650 {
3651 	struct jblocks *jblocks;
3652 	struct jseg *jsegn;
3653 
3654 	jblocks = jseg->js_jblocks;
3655 	/*
3656 	 * Don't allow out of order completions.  If this isn't the first
3657 	 * block wait for it to write before we're done.
3658 	 */
3659 	if (jseg != jblocks->jb_writeseg)
3660 		return;
3661 	/* Iterate through available jsegs processing their entries. */
3662 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3663 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3664 		jsegn = TAILQ_NEXT(jseg, js_next);
3665 		complete_jseg(jseg);
3666 		jseg = jsegn;
3667 	}
3668 	jblocks->jb_writeseg = jseg;
3669 	/*
3670 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3671 	 */
3672 	free_jsegs(jblocks);
3673 }
3674 
3675 /*
3676  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3677  * the final completions.
3678  */
3679 static void
3680 handle_written_jseg(jseg, bp)
3681 	struct jseg *jseg;
3682 	struct buf *bp;
3683 {
3684 
3685 	if (jseg->js_refs == 0)
3686 		panic("handle_written_jseg: No self-reference on %p", jseg);
3687 	jseg->js_state |= DEPCOMPLETE;
3688 	/*
3689 	 * We'll never need this buffer again, set flags so it will be
3690 	 * discarded.
3691 	 */
3692 	bp->b_flags |= B_INVAL | B_NOCACHE;
3693 	pbrelvp(bp);
3694 	complete_jsegs(jseg);
3695 }
3696 
3697 static inline struct jsegdep *
3698 inoref_jseg(inoref)
3699 	struct inoref *inoref;
3700 {
3701 	struct jsegdep *jsegdep;
3702 
3703 	jsegdep = inoref->if_jsegdep;
3704 	inoref->if_jsegdep = NULL;
3705 
3706 	return (jsegdep);
3707 }
3708 
3709 /*
3710  * Called once a jremref has made it to stable store.  The jremref is marked
3711  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3712  * for the jremref to complete will be awoken by free_jremref.
3713  */
3714 static void
3715 handle_written_jremref(jremref)
3716 	struct jremref *jremref;
3717 {
3718 	struct inodedep *inodedep;
3719 	struct jsegdep *jsegdep;
3720 	struct dirrem *dirrem;
3721 
3722 	/* Grab the jsegdep. */
3723 	jsegdep = inoref_jseg(&jremref->jr_ref);
3724 	/*
3725 	 * Remove us from the inoref list.
3726 	 */
3727 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3728 	    0, &inodedep) == 0)
3729 		panic("handle_written_jremref: Lost inodedep");
3730 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3731 	/*
3732 	 * Complete the dirrem.
3733 	 */
3734 	dirrem = jremref->jr_dirrem;
3735 	jremref->jr_dirrem = NULL;
3736 	LIST_REMOVE(jremref, jr_deps);
3737 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3738 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3739 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3740 	    (dirrem->dm_state & COMPLETE) != 0)
3741 		add_to_worklist(&dirrem->dm_list, 0);
3742 	free_jremref(jremref);
3743 }
3744 
3745 /*
3746  * Called once a jaddref has made it to stable store.  The dependency is
3747  * marked complete and any dependent structures are added to the inode
3748  * bufwait list to be completed as soon as it is written.  If a bitmap write
3749  * depends on this entry we move the inode into the inodedephd of the
3750  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3751  */
3752 static void
3753 handle_written_jaddref(jaddref)
3754 	struct jaddref *jaddref;
3755 {
3756 	struct jsegdep *jsegdep;
3757 	struct inodedep *inodedep;
3758 	struct diradd *diradd;
3759 	struct mkdir *mkdir;
3760 
3761 	/* Grab the jsegdep. */
3762 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3763 	mkdir = NULL;
3764 	diradd = NULL;
3765 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3766 	    0, &inodedep) == 0)
3767 		panic("handle_written_jaddref: Lost inodedep.");
3768 	if (jaddref->ja_diradd == NULL)
3769 		panic("handle_written_jaddref: No dependency");
3770 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3771 		diradd = jaddref->ja_diradd;
3772 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3773 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3774 		mkdir = jaddref->ja_mkdir;
3775 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3776 	} else if (jaddref->ja_state & MKDIR_BODY)
3777 		mkdir = jaddref->ja_mkdir;
3778 	else
3779 		panic("handle_written_jaddref: Unknown dependency %p",
3780 		    jaddref->ja_diradd);
3781 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3782 	/*
3783 	 * Remove us from the inode list.
3784 	 */
3785 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3786 	/*
3787 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3788 	 */
3789 	if (mkdir) {
3790 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3791 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3792 		    TYPENAME(mkdir->md_list.wk_type)));
3793 		mkdir->md_jaddref = NULL;
3794 		diradd = mkdir->md_diradd;
3795 		mkdir->md_state |= DEPCOMPLETE;
3796 		complete_mkdir(mkdir);
3797 	}
3798 	jwork_insert(&diradd->da_jwork, jsegdep);
3799 	if (jaddref->ja_state & NEWBLOCK) {
3800 		inodedep->id_state |= ONDEPLIST;
3801 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3802 		    inodedep, id_deps);
3803 	}
3804 	free_jaddref(jaddref);
3805 }
3806 
3807 /*
3808  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3809  * is placed in the bmsafemap to await notification of a written bitmap.  If
3810  * the operation was canceled we add the segdep to the appropriate
3811  * dependency to free the journal space once the canceling operation
3812  * completes.
3813  */
3814 static void
3815 handle_written_jnewblk(jnewblk)
3816 	struct jnewblk *jnewblk;
3817 {
3818 	struct bmsafemap *bmsafemap;
3819 	struct freefrag *freefrag;
3820 	struct freework *freework;
3821 	struct jsegdep *jsegdep;
3822 	struct newblk *newblk;
3823 
3824 	/* Grab the jsegdep. */
3825 	jsegdep = jnewblk->jn_jsegdep;
3826 	jnewblk->jn_jsegdep = NULL;
3827 	if (jnewblk->jn_dep == NULL)
3828 		panic("handle_written_jnewblk: No dependency for the segdep.");
3829 	switch (jnewblk->jn_dep->wk_type) {
3830 	case D_NEWBLK:
3831 	case D_ALLOCDIRECT:
3832 	case D_ALLOCINDIR:
3833 		/*
3834 		 * Add the written block to the bmsafemap so it can
3835 		 * be notified when the bitmap is on disk.
3836 		 */
3837 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3838 		newblk->nb_jnewblk = NULL;
3839 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3840 			bmsafemap = newblk->nb_bmsafemap;
3841 			newblk->nb_state |= ONDEPLIST;
3842 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3843 			    nb_deps);
3844 		}
3845 		jwork_insert(&newblk->nb_jwork, jsegdep);
3846 		break;
3847 	case D_FREEFRAG:
3848 		/*
3849 		 * A newblock being removed by a freefrag when replaced by
3850 		 * frag extension.
3851 		 */
3852 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3853 		freefrag->ff_jdep = NULL;
3854 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3855 		break;
3856 	case D_FREEWORK:
3857 		/*
3858 		 * A direct block was removed by truncate.
3859 		 */
3860 		freework = WK_FREEWORK(jnewblk->jn_dep);
3861 		freework->fw_jnewblk = NULL;
3862 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3863 		break;
3864 	default:
3865 		panic("handle_written_jnewblk: Unknown type %d.",
3866 		    jnewblk->jn_dep->wk_type);
3867 	}
3868 	jnewblk->jn_dep = NULL;
3869 	free_jnewblk(jnewblk);
3870 }
3871 
3872 /*
3873  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3874  * an in-flight allocation that has not yet been committed.  Divorce us
3875  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3876  * to the worklist.
3877  */
3878 static void
3879 cancel_jfreefrag(jfreefrag)
3880 	struct jfreefrag *jfreefrag;
3881 {
3882 	struct freefrag *freefrag;
3883 
3884 	if (jfreefrag->fr_jsegdep) {
3885 		free_jsegdep(jfreefrag->fr_jsegdep);
3886 		jfreefrag->fr_jsegdep = NULL;
3887 	}
3888 	freefrag = jfreefrag->fr_freefrag;
3889 	jfreefrag->fr_freefrag = NULL;
3890 	free_jfreefrag(jfreefrag);
3891 	freefrag->ff_state |= DEPCOMPLETE;
3892 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3893 }
3894 
3895 /*
3896  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3897  */
3898 static void
3899 free_jfreefrag(jfreefrag)
3900 	struct jfreefrag *jfreefrag;
3901 {
3902 
3903 	if (jfreefrag->fr_state & INPROGRESS)
3904 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3905 	else if (jfreefrag->fr_state & ONWORKLIST)
3906 		remove_from_journal(&jfreefrag->fr_list);
3907 	if (jfreefrag->fr_freefrag != NULL)
3908 		panic("free_jfreefrag:  Still attached to a freefrag.");
3909 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3910 }
3911 
3912 /*
3913  * Called when the journal write for a jfreefrag completes.  The parent
3914  * freefrag is added to the worklist if this completes its dependencies.
3915  */
3916 static void
3917 handle_written_jfreefrag(jfreefrag)
3918 	struct jfreefrag *jfreefrag;
3919 {
3920 	struct jsegdep *jsegdep;
3921 	struct freefrag *freefrag;
3922 
3923 	/* Grab the jsegdep. */
3924 	jsegdep = jfreefrag->fr_jsegdep;
3925 	jfreefrag->fr_jsegdep = NULL;
3926 	freefrag = jfreefrag->fr_freefrag;
3927 	if (freefrag == NULL)
3928 		panic("handle_written_jfreefrag: No freefrag.");
3929 	freefrag->ff_state |= DEPCOMPLETE;
3930 	freefrag->ff_jdep = NULL;
3931 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3932 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3933 		add_to_worklist(&freefrag->ff_list, 0);
3934 	jfreefrag->fr_freefrag = NULL;
3935 	free_jfreefrag(jfreefrag);
3936 }
3937 
3938 /*
3939  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3940  * is removed from the freeblks list of pending journal writes and the
3941  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3942  * have been reclaimed.
3943  */
3944 static void
3945 handle_written_jblkdep(jblkdep)
3946 	struct jblkdep *jblkdep;
3947 {
3948 	struct freeblks *freeblks;
3949 	struct jsegdep *jsegdep;
3950 
3951 	/* Grab the jsegdep. */
3952 	jsegdep = jblkdep->jb_jsegdep;
3953 	jblkdep->jb_jsegdep = NULL;
3954 	freeblks = jblkdep->jb_freeblks;
3955 	LIST_REMOVE(jblkdep, jb_deps);
3956 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3957 	/*
3958 	 * If the freeblks is all journaled, we can add it to the worklist.
3959 	 */
3960 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3961 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3962 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3963 
3964 	free_jblkdep(jblkdep);
3965 }
3966 
3967 static struct jsegdep *
3968 newjsegdep(struct worklist *wk)
3969 {
3970 	struct jsegdep *jsegdep;
3971 
3972 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3973 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3974 	jsegdep->jd_seg = NULL;
3975 
3976 	return (jsegdep);
3977 }
3978 
3979 static struct jmvref *
3980 newjmvref(dp, ino, oldoff, newoff)
3981 	struct inode *dp;
3982 	ino_t ino;
3983 	off_t oldoff;
3984 	off_t newoff;
3985 {
3986 	struct jmvref *jmvref;
3987 
3988 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3989 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3990 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3991 	jmvref->jm_parent = dp->i_number;
3992 	jmvref->jm_ino = ino;
3993 	jmvref->jm_oldoff = oldoff;
3994 	jmvref->jm_newoff = newoff;
3995 
3996 	return (jmvref);
3997 }
3998 
3999 /*
4000  * Allocate a new jremref that tracks the removal of ip from dp with the
4001  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4002  * DEPCOMPLETE as we have all the information required for the journal write
4003  * and the directory has already been removed from the buffer.  The caller
4004  * is responsible for linking the jremref into the pagedep and adding it
4005  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4006  * a DOTDOT addition so handle_workitem_remove() can properly assign
4007  * the jsegdep when we're done.
4008  */
4009 static struct jremref *
4010 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4011     off_t diroff, nlink_t nlink)
4012 {
4013 	struct jremref *jremref;
4014 
4015 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4016 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
4017 	jremref->jr_state = ATTACHED;
4018 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4019 	   nlink, ip->i_mode);
4020 	jremref->jr_dirrem = dirrem;
4021 
4022 	return (jremref);
4023 }
4024 
4025 static inline void
4026 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4027     nlink_t nlink, uint16_t mode)
4028 {
4029 
4030 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4031 	inoref->if_diroff = diroff;
4032 	inoref->if_ino = ino;
4033 	inoref->if_parent = parent;
4034 	inoref->if_nlink = nlink;
4035 	inoref->if_mode = mode;
4036 }
4037 
4038 /*
4039  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4040  * directory offset may not be known until later.  The caller is responsible
4041  * adding the entry to the journal when this information is available.  nlink
4042  * should be the link count prior to the addition and mode is only required
4043  * to have the correct FMT.
4044  */
4045 static struct jaddref *
4046 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4047     uint16_t mode)
4048 {
4049 	struct jaddref *jaddref;
4050 
4051 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4052 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4053 	jaddref->ja_state = ATTACHED;
4054 	jaddref->ja_mkdir = NULL;
4055 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4056 
4057 	return (jaddref);
4058 }
4059 
4060 /*
4061  * Create a new free dependency for a freework.  The caller is responsible
4062  * for adjusting the reference count when it has the lock held.  The freedep
4063  * will track an outstanding bitmap write that will ultimately clear the
4064  * freework to continue.
4065  */
4066 static struct freedep *
4067 newfreedep(struct freework *freework)
4068 {
4069 	struct freedep *freedep;
4070 
4071 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4072 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4073 	freedep->fd_freework = freework;
4074 
4075 	return (freedep);
4076 }
4077 
4078 /*
4079  * Free a freedep structure once the buffer it is linked to is written.  If
4080  * this is the last reference to the freework schedule it for completion.
4081  */
4082 static void
4083 free_freedep(freedep)
4084 	struct freedep *freedep;
4085 {
4086 	struct freework *freework;
4087 
4088 	freework = freedep->fd_freework;
4089 	freework->fw_freeblks->fb_cgwait--;
4090 	if (--freework->fw_ref == 0)
4091 		freework_enqueue(freework);
4092 	WORKITEM_FREE(freedep, D_FREEDEP);
4093 }
4094 
4095 /*
4096  * Allocate a new freework structure that may be a level in an indirect
4097  * when parent is not NULL or a top level block when it is.  The top level
4098  * freework structures are allocated without the per-filesystem lock held
4099  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4100  */
4101 static struct freework *
4102 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4103 	struct ufsmount *ump;
4104 	struct freeblks *freeblks;
4105 	struct freework *parent;
4106 	ufs_lbn_t lbn;
4107 	ufs2_daddr_t nb;
4108 	int frags;
4109 	int off;
4110 	int journal;
4111 {
4112 	struct freework *freework;
4113 
4114 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4115 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4116 	freework->fw_state = ATTACHED;
4117 	freework->fw_jnewblk = NULL;
4118 	freework->fw_freeblks = freeblks;
4119 	freework->fw_parent = parent;
4120 	freework->fw_lbn = lbn;
4121 	freework->fw_blkno = nb;
4122 	freework->fw_frags = frags;
4123 	freework->fw_indir = NULL;
4124 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4125 		? 0 : NINDIR(ump->um_fs) + 1;
4126 	freework->fw_start = freework->fw_off = off;
4127 	if (journal)
4128 		newjfreeblk(freeblks, lbn, nb, frags);
4129 	if (parent == NULL) {
4130 		ACQUIRE_LOCK(ump);
4131 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4132 		freeblks->fb_ref++;
4133 		FREE_LOCK(ump);
4134 	}
4135 
4136 	return (freework);
4137 }
4138 
4139 /*
4140  * Eliminate a jfreeblk for a block that does not need journaling.
4141  */
4142 static void
4143 cancel_jfreeblk(freeblks, blkno)
4144 	struct freeblks *freeblks;
4145 	ufs2_daddr_t blkno;
4146 {
4147 	struct jfreeblk *jfreeblk;
4148 	struct jblkdep *jblkdep;
4149 
4150 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4151 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4152 			continue;
4153 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4154 		if (jfreeblk->jf_blkno == blkno)
4155 			break;
4156 	}
4157 	if (jblkdep == NULL)
4158 		return;
4159 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4160 	free_jsegdep(jblkdep->jb_jsegdep);
4161 	LIST_REMOVE(jblkdep, jb_deps);
4162 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4163 }
4164 
4165 /*
4166  * Allocate a new jfreeblk to journal top level block pointer when truncating
4167  * a file.  The caller must add this to the worklist when the per-filesystem
4168  * lock is held.
4169  */
4170 static struct jfreeblk *
4171 newjfreeblk(freeblks, lbn, blkno, frags)
4172 	struct freeblks *freeblks;
4173 	ufs_lbn_t lbn;
4174 	ufs2_daddr_t blkno;
4175 	int frags;
4176 {
4177 	struct jfreeblk *jfreeblk;
4178 
4179 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4180 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4181 	    freeblks->fb_list.wk_mp);
4182 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4183 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4184 	jfreeblk->jf_ino = freeblks->fb_inum;
4185 	jfreeblk->jf_lbn = lbn;
4186 	jfreeblk->jf_blkno = blkno;
4187 	jfreeblk->jf_frags = frags;
4188 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4189 
4190 	return (jfreeblk);
4191 }
4192 
4193 /*
4194  * The journal is only prepared to handle full-size block numbers, so we
4195  * have to adjust the record to reflect the change to a full-size block.
4196  * For example, suppose we have a block made up of fragments 8-15 and
4197  * want to free its last two fragments. We are given a request that says:
4198  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4199  * where frags are the number of fragments to free and oldfrags are the
4200  * number of fragments to keep. To block align it, we have to change it to
4201  * have a valid full-size blkno, so it becomes:
4202  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4203  */
4204 static void
4205 adjust_newfreework(freeblks, frag_offset)
4206 	struct freeblks *freeblks;
4207 	int frag_offset;
4208 {
4209 	struct jfreeblk *jfreeblk;
4210 
4211 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4212 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4213 	    ("adjust_newfreework: Missing freeblks dependency"));
4214 
4215 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4216 	jfreeblk->jf_blkno -= frag_offset;
4217 	jfreeblk->jf_frags += frag_offset;
4218 }
4219 
4220 /*
4221  * Allocate a new jtrunc to track a partial truncation.
4222  */
4223 static struct jtrunc *
4224 newjtrunc(freeblks, size, extsize)
4225 	struct freeblks *freeblks;
4226 	off_t size;
4227 	int extsize;
4228 {
4229 	struct jtrunc *jtrunc;
4230 
4231 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4232 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4233 	    freeblks->fb_list.wk_mp);
4234 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4235 	jtrunc->jt_dep.jb_freeblks = freeblks;
4236 	jtrunc->jt_ino = freeblks->fb_inum;
4237 	jtrunc->jt_size = size;
4238 	jtrunc->jt_extsize = extsize;
4239 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4240 
4241 	return (jtrunc);
4242 }
4243 
4244 /*
4245  * If we're canceling a new bitmap we have to search for another ref
4246  * to move into the bmsafemap dep.  This might be better expressed
4247  * with another structure.
4248  */
4249 static void
4250 move_newblock_dep(jaddref, inodedep)
4251 	struct jaddref *jaddref;
4252 	struct inodedep *inodedep;
4253 {
4254 	struct inoref *inoref;
4255 	struct jaddref *jaddrefn;
4256 
4257 	jaddrefn = NULL;
4258 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4259 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4260 		if ((jaddref->ja_state & NEWBLOCK) &&
4261 		    inoref->if_list.wk_type == D_JADDREF) {
4262 			jaddrefn = (struct jaddref *)inoref;
4263 			break;
4264 		}
4265 	}
4266 	if (jaddrefn == NULL)
4267 		return;
4268 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4269 	jaddrefn->ja_state |= jaddref->ja_state &
4270 	    (ATTACHED | UNDONE | NEWBLOCK);
4271 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4272 	jaddref->ja_state |= ATTACHED;
4273 	LIST_REMOVE(jaddref, ja_bmdeps);
4274 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4275 	    ja_bmdeps);
4276 }
4277 
4278 /*
4279  * Cancel a jaddref either before it has been written or while it is being
4280  * written.  This happens when a link is removed before the add reaches
4281  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4282  * and inode to prevent the link count or bitmap from reaching the disk
4283  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4284  * required.
4285  *
4286  * Returns 1 if the canceled addref requires journaling of the remove and
4287  * 0 otherwise.
4288  */
4289 static int
4290 cancel_jaddref(jaddref, inodedep, wkhd)
4291 	struct jaddref *jaddref;
4292 	struct inodedep *inodedep;
4293 	struct workhead *wkhd;
4294 {
4295 	struct inoref *inoref;
4296 	struct jsegdep *jsegdep;
4297 	int needsj;
4298 
4299 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4300 	    ("cancel_jaddref: Canceling complete jaddref"));
4301 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4302 		needsj = 1;
4303 	else
4304 		needsj = 0;
4305 	if (inodedep == NULL)
4306 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4307 		    0, &inodedep) == 0)
4308 			panic("cancel_jaddref: Lost inodedep");
4309 	/*
4310 	 * We must adjust the nlink of any reference operation that follows
4311 	 * us so that it is consistent with the in-memory reference.  This
4312 	 * ensures that inode nlink rollbacks always have the correct link.
4313 	 */
4314 	if (needsj == 0) {
4315 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4316 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4317 			if (inoref->if_state & GOINGAWAY)
4318 				break;
4319 			inoref->if_nlink--;
4320 		}
4321 	}
4322 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4323 	if (jaddref->ja_state & NEWBLOCK)
4324 		move_newblock_dep(jaddref, inodedep);
4325 	wake_worklist(&jaddref->ja_list);
4326 	jaddref->ja_mkdir = NULL;
4327 	if (jaddref->ja_state & INPROGRESS) {
4328 		jaddref->ja_state &= ~INPROGRESS;
4329 		WORKLIST_REMOVE(&jaddref->ja_list);
4330 		jwork_insert(wkhd, jsegdep);
4331 	} else {
4332 		free_jsegdep(jsegdep);
4333 		if (jaddref->ja_state & DEPCOMPLETE)
4334 			remove_from_journal(&jaddref->ja_list);
4335 	}
4336 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4337 	/*
4338 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4339 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4340 	 * no longer need this addref attached to the inoreflst and it
4341 	 * will incorrectly adjust nlink if we leave it.
4342 	 */
4343 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4344 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4345 		    if_deps);
4346 		jaddref->ja_state |= COMPLETE;
4347 		free_jaddref(jaddref);
4348 		return (needsj);
4349 	}
4350 	/*
4351 	 * Leave the head of the list for jsegdeps for fast merging.
4352 	 */
4353 	if (LIST_FIRST(wkhd) != NULL) {
4354 		jaddref->ja_state |= ONWORKLIST;
4355 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4356 	} else
4357 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4358 
4359 	return (needsj);
4360 }
4361 
4362 /*
4363  * Attempt to free a jaddref structure when some work completes.  This
4364  * should only succeed once the entry is written and all dependencies have
4365  * been notified.
4366  */
4367 static void
4368 free_jaddref(jaddref)
4369 	struct jaddref *jaddref;
4370 {
4371 
4372 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4373 		return;
4374 	if (jaddref->ja_ref.if_jsegdep)
4375 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4376 		    jaddref, jaddref->ja_state);
4377 	if (jaddref->ja_state & NEWBLOCK)
4378 		LIST_REMOVE(jaddref, ja_bmdeps);
4379 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4380 		panic("free_jaddref: Bad state %p(0x%X)",
4381 		    jaddref, jaddref->ja_state);
4382 	if (jaddref->ja_mkdir != NULL)
4383 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4384 	WORKITEM_FREE(jaddref, D_JADDREF);
4385 }
4386 
4387 /*
4388  * Free a jremref structure once it has been written or discarded.
4389  */
4390 static void
4391 free_jremref(jremref)
4392 	struct jremref *jremref;
4393 {
4394 
4395 	if (jremref->jr_ref.if_jsegdep)
4396 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4397 	if (jremref->jr_state & INPROGRESS)
4398 		panic("free_jremref: IO still pending");
4399 	WORKITEM_FREE(jremref, D_JREMREF);
4400 }
4401 
4402 /*
4403  * Free a jnewblk structure.
4404  */
4405 static void
4406 free_jnewblk(jnewblk)
4407 	struct jnewblk *jnewblk;
4408 {
4409 
4410 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4411 		return;
4412 	LIST_REMOVE(jnewblk, jn_deps);
4413 	if (jnewblk->jn_dep != NULL)
4414 		panic("free_jnewblk: Dependency still attached.");
4415 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4416 }
4417 
4418 /*
4419  * Cancel a jnewblk which has been been made redundant by frag extension.
4420  */
4421 static void
4422 cancel_jnewblk(jnewblk, wkhd)
4423 	struct jnewblk *jnewblk;
4424 	struct workhead *wkhd;
4425 {
4426 	struct jsegdep *jsegdep;
4427 
4428 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4429 	jsegdep = jnewblk->jn_jsegdep;
4430 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4431 		panic("cancel_jnewblk: Invalid state");
4432 	jnewblk->jn_jsegdep  = NULL;
4433 	jnewblk->jn_dep = NULL;
4434 	jnewblk->jn_state |= GOINGAWAY;
4435 	if (jnewblk->jn_state & INPROGRESS) {
4436 		jnewblk->jn_state &= ~INPROGRESS;
4437 		WORKLIST_REMOVE(&jnewblk->jn_list);
4438 		jwork_insert(wkhd, jsegdep);
4439 	} else {
4440 		free_jsegdep(jsegdep);
4441 		remove_from_journal(&jnewblk->jn_list);
4442 	}
4443 	wake_worklist(&jnewblk->jn_list);
4444 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4445 }
4446 
4447 static void
4448 free_jblkdep(jblkdep)
4449 	struct jblkdep *jblkdep;
4450 {
4451 
4452 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4453 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4454 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4455 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4456 	else
4457 		panic("free_jblkdep: Unexpected type %s",
4458 		    TYPENAME(jblkdep->jb_list.wk_type));
4459 }
4460 
4461 /*
4462  * Free a single jseg once it is no longer referenced in memory or on
4463  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4464  * to disappear.
4465  */
4466 static void
4467 free_jseg(jseg, jblocks)
4468 	struct jseg *jseg;
4469 	struct jblocks *jblocks;
4470 {
4471 	struct freework *freework;
4472 
4473 	/*
4474 	 * Free freework structures that were lingering to indicate freed
4475 	 * indirect blocks that forced journal write ordering on reallocate.
4476 	 */
4477 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4478 		indirblk_remove(freework);
4479 	if (jblocks->jb_oldestseg == jseg)
4480 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4481 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4482 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4483 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4484 	    ("free_jseg: Freed jseg has valid entries."));
4485 	WORKITEM_FREE(jseg, D_JSEG);
4486 }
4487 
4488 /*
4489  * Free all jsegs that meet the criteria for being reclaimed and update
4490  * oldestseg.
4491  */
4492 static void
4493 free_jsegs(jblocks)
4494 	struct jblocks *jblocks;
4495 {
4496 	struct jseg *jseg;
4497 
4498 	/*
4499 	 * Free only those jsegs which have none allocated before them to
4500 	 * preserve the journal space ordering.
4501 	 */
4502 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4503 		/*
4504 		 * Only reclaim space when nothing depends on this journal
4505 		 * set and another set has written that it is no longer
4506 		 * valid.
4507 		 */
4508 		if (jseg->js_refs != 0) {
4509 			jblocks->jb_oldestseg = jseg;
4510 			return;
4511 		}
4512 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4513 			break;
4514 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4515 			break;
4516 		/*
4517 		 * We can free jsegs that didn't write entries when
4518 		 * oldestwrseq == js_seq.
4519 		 */
4520 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4521 		    jseg->js_cnt != 0)
4522 			break;
4523 		free_jseg(jseg, jblocks);
4524 	}
4525 	/*
4526 	 * If we exited the loop above we still must discover the
4527 	 * oldest valid segment.
4528 	 */
4529 	if (jseg)
4530 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4531 		     jseg = TAILQ_NEXT(jseg, js_next))
4532 			if (jseg->js_refs != 0)
4533 				break;
4534 	jblocks->jb_oldestseg = jseg;
4535 	/*
4536 	 * The journal has no valid records but some jsegs may still be
4537 	 * waiting on oldestwrseq to advance.  We force a small record
4538 	 * out to permit these lingering records to be reclaimed.
4539 	 */
4540 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4541 		jblocks->jb_needseg = 1;
4542 }
4543 
4544 /*
4545  * Release one reference to a jseg and free it if the count reaches 0.  This
4546  * should eventually reclaim journal space as well.
4547  */
4548 static void
4549 rele_jseg(jseg)
4550 	struct jseg *jseg;
4551 {
4552 
4553 	KASSERT(jseg->js_refs > 0,
4554 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4555 	if (--jseg->js_refs != 0)
4556 		return;
4557 	free_jsegs(jseg->js_jblocks);
4558 }
4559 
4560 /*
4561  * Release a jsegdep and decrement the jseg count.
4562  */
4563 static void
4564 free_jsegdep(jsegdep)
4565 	struct jsegdep *jsegdep;
4566 {
4567 
4568 	if (jsegdep->jd_seg)
4569 		rele_jseg(jsegdep->jd_seg);
4570 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4571 }
4572 
4573 /*
4574  * Wait for a journal item to make it to disk.  Initiate journal processing
4575  * if required.
4576  */
4577 static int
4578 jwait(wk, waitfor)
4579 	struct worklist *wk;
4580 	int waitfor;
4581 {
4582 
4583 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4584 	/*
4585 	 * Blocking journal waits cause slow synchronous behavior.  Record
4586 	 * stats on the frequency of these blocking operations.
4587 	 */
4588 	if (waitfor == MNT_WAIT) {
4589 		stat_journal_wait++;
4590 		switch (wk->wk_type) {
4591 		case D_JREMREF:
4592 		case D_JMVREF:
4593 			stat_jwait_filepage++;
4594 			break;
4595 		case D_JTRUNC:
4596 		case D_JFREEBLK:
4597 			stat_jwait_freeblks++;
4598 			break;
4599 		case D_JNEWBLK:
4600 			stat_jwait_newblk++;
4601 			break;
4602 		case D_JADDREF:
4603 			stat_jwait_inode++;
4604 			break;
4605 		default:
4606 			break;
4607 		}
4608 	}
4609 	/*
4610 	 * If IO has not started we process the journal.  We can't mark the
4611 	 * worklist item as IOWAITING because we drop the lock while
4612 	 * processing the journal and the worklist entry may be freed after
4613 	 * this point.  The caller may call back in and re-issue the request.
4614 	 */
4615 	if ((wk->wk_state & INPROGRESS) == 0) {
4616 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4617 		if (waitfor != MNT_WAIT)
4618 			return (EBUSY);
4619 		return (0);
4620 	}
4621 	if (waitfor != MNT_WAIT)
4622 		return (EBUSY);
4623 	wait_worklist(wk, "jwait");
4624 	return (0);
4625 }
4626 
4627 /*
4628  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4629  * appropriate.  This is a convenience function to reduce duplicate code
4630  * for the setup and revert functions below.
4631  */
4632 static struct inodedep *
4633 inodedep_lookup_ip(ip)
4634 	struct inode *ip;
4635 {
4636 	struct inodedep *inodedep;
4637 
4638 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4639 	    ("inodedep_lookup_ip: bad delta"));
4640 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
4641 	    &inodedep);
4642 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4643 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4644 
4645 	return (inodedep);
4646 }
4647 
4648 /*
4649  * Called prior to creating a new inode and linking it to a directory.  The
4650  * jaddref structure must already be allocated by softdep_setup_inomapdep
4651  * and it is discovered here so we can initialize the mode and update
4652  * nlinkdelta.
4653  */
4654 void
4655 softdep_setup_create(dp, ip)
4656 	struct inode *dp;
4657 	struct inode *ip;
4658 {
4659 	struct inodedep *inodedep;
4660 	struct jaddref *jaddref;
4661 	struct vnode *dvp;
4662 
4663 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4664 	    ("softdep_setup_create called on non-softdep filesystem"));
4665 	KASSERT(ip->i_nlink == 1,
4666 	    ("softdep_setup_create: Invalid link count."));
4667 	dvp = ITOV(dp);
4668 	ACQUIRE_LOCK(dp->i_ump);
4669 	inodedep = inodedep_lookup_ip(ip);
4670 	if (DOINGSUJ(dvp)) {
4671 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4672 		    inoreflst);
4673 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4674 		    ("softdep_setup_create: No addref structure present."));
4675 	}
4676 	softdep_prelink(dvp, NULL);
4677 	FREE_LOCK(dp->i_ump);
4678 }
4679 
4680 /*
4681  * Create a jaddref structure to track the addition of a DOTDOT link when
4682  * we are reparenting an inode as part of a rename.  This jaddref will be
4683  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4684  * non-journaling softdep.
4685  */
4686 void
4687 softdep_setup_dotdot_link(dp, ip)
4688 	struct inode *dp;
4689 	struct inode *ip;
4690 {
4691 	struct inodedep *inodedep;
4692 	struct jaddref *jaddref;
4693 	struct vnode *dvp;
4694 
4695 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4696 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4697 	dvp = ITOV(dp);
4698 	jaddref = NULL;
4699 	/*
4700 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4701 	 * is used as a normal link would be.
4702 	 */
4703 	if (DOINGSUJ(dvp))
4704 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4705 		    dp->i_effnlink - 1, dp->i_mode);
4706 	ACQUIRE_LOCK(dp->i_ump);
4707 	inodedep = inodedep_lookup_ip(dp);
4708 	if (jaddref)
4709 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4710 		    if_deps);
4711 	softdep_prelink(dvp, ITOV(ip));
4712 	FREE_LOCK(dp->i_ump);
4713 }
4714 
4715 /*
4716  * Create a jaddref structure to track a new link to an inode.  The directory
4717  * offset is not known until softdep_setup_directory_add or
4718  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4719  * softdep.
4720  */
4721 void
4722 softdep_setup_link(dp, ip)
4723 	struct inode *dp;
4724 	struct inode *ip;
4725 {
4726 	struct inodedep *inodedep;
4727 	struct jaddref *jaddref;
4728 	struct vnode *dvp;
4729 
4730 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4731 	    ("softdep_setup_link called on non-softdep filesystem"));
4732 	dvp = ITOV(dp);
4733 	jaddref = NULL;
4734 	if (DOINGSUJ(dvp))
4735 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4736 		    ip->i_mode);
4737 	ACQUIRE_LOCK(dp->i_ump);
4738 	inodedep = inodedep_lookup_ip(ip);
4739 	if (jaddref)
4740 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4741 		    if_deps);
4742 	softdep_prelink(dvp, ITOV(ip));
4743 	FREE_LOCK(dp->i_ump);
4744 }
4745 
4746 /*
4747  * Called to create the jaddref structures to track . and .. references as
4748  * well as lookup and further initialize the incomplete jaddref created
4749  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4750  * nlinkdelta for non-journaling softdep.
4751  */
4752 void
4753 softdep_setup_mkdir(dp, ip)
4754 	struct inode *dp;
4755 	struct inode *ip;
4756 {
4757 	struct inodedep *inodedep;
4758 	struct jaddref *dotdotaddref;
4759 	struct jaddref *dotaddref;
4760 	struct jaddref *jaddref;
4761 	struct vnode *dvp;
4762 
4763 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4764 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4765 	dvp = ITOV(dp);
4766 	dotaddref = dotdotaddref = NULL;
4767 	if (DOINGSUJ(dvp)) {
4768 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4769 		    ip->i_mode);
4770 		dotaddref->ja_state |= MKDIR_BODY;
4771 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4772 		    dp->i_effnlink - 1, dp->i_mode);
4773 		dotdotaddref->ja_state |= MKDIR_PARENT;
4774 	}
4775 	ACQUIRE_LOCK(dp->i_ump);
4776 	inodedep = inodedep_lookup_ip(ip);
4777 	if (DOINGSUJ(dvp)) {
4778 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4779 		    inoreflst);
4780 		KASSERT(jaddref != NULL,
4781 		    ("softdep_setup_mkdir: No addref structure present."));
4782 		KASSERT(jaddref->ja_parent == dp->i_number,
4783 		    ("softdep_setup_mkdir: bad parent %ju",
4784 		    (uintmax_t)jaddref->ja_parent));
4785 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4786 		    if_deps);
4787 	}
4788 	inodedep = inodedep_lookup_ip(dp);
4789 	if (DOINGSUJ(dvp))
4790 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4791 		    &dotdotaddref->ja_ref, if_deps);
4792 	softdep_prelink(ITOV(dp), NULL);
4793 	FREE_LOCK(dp->i_ump);
4794 }
4795 
4796 /*
4797  * Called to track nlinkdelta of the inode and parent directories prior to
4798  * unlinking a directory.
4799  */
4800 void
4801 softdep_setup_rmdir(dp, ip)
4802 	struct inode *dp;
4803 	struct inode *ip;
4804 {
4805 	struct vnode *dvp;
4806 
4807 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4808 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4809 	dvp = ITOV(dp);
4810 	ACQUIRE_LOCK(dp->i_ump);
4811 	(void) inodedep_lookup_ip(ip);
4812 	(void) inodedep_lookup_ip(dp);
4813 	softdep_prelink(dvp, ITOV(ip));
4814 	FREE_LOCK(dp->i_ump);
4815 }
4816 
4817 /*
4818  * Called to track nlinkdelta of the inode and parent directories prior to
4819  * unlink.
4820  */
4821 void
4822 softdep_setup_unlink(dp, ip)
4823 	struct inode *dp;
4824 	struct inode *ip;
4825 {
4826 	struct vnode *dvp;
4827 
4828 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4829 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4830 	dvp = ITOV(dp);
4831 	ACQUIRE_LOCK(dp->i_ump);
4832 	(void) inodedep_lookup_ip(ip);
4833 	(void) inodedep_lookup_ip(dp);
4834 	softdep_prelink(dvp, ITOV(ip));
4835 	FREE_LOCK(dp->i_ump);
4836 }
4837 
4838 /*
4839  * Called to release the journal structures created by a failed non-directory
4840  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4841  */
4842 void
4843 softdep_revert_create(dp, ip)
4844 	struct inode *dp;
4845 	struct inode *ip;
4846 {
4847 	struct inodedep *inodedep;
4848 	struct jaddref *jaddref;
4849 	struct vnode *dvp;
4850 
4851 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4852 	    ("softdep_revert_create called on non-softdep filesystem"));
4853 	dvp = ITOV(dp);
4854 	ACQUIRE_LOCK(dp->i_ump);
4855 	inodedep = inodedep_lookup_ip(ip);
4856 	if (DOINGSUJ(dvp)) {
4857 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4858 		    inoreflst);
4859 		KASSERT(jaddref->ja_parent == dp->i_number,
4860 		    ("softdep_revert_create: addref parent mismatch"));
4861 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4862 	}
4863 	FREE_LOCK(dp->i_ump);
4864 }
4865 
4866 /*
4867  * Called to release the journal structures created by a failed link
4868  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4869  */
4870 void
4871 softdep_revert_link(dp, ip)
4872 	struct inode *dp;
4873 	struct inode *ip;
4874 {
4875 	struct inodedep *inodedep;
4876 	struct jaddref *jaddref;
4877 	struct vnode *dvp;
4878 
4879 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4880 	    ("softdep_revert_link called on non-softdep filesystem"));
4881 	dvp = ITOV(dp);
4882 	ACQUIRE_LOCK(dp->i_ump);
4883 	inodedep = inodedep_lookup_ip(ip);
4884 	if (DOINGSUJ(dvp)) {
4885 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4886 		    inoreflst);
4887 		KASSERT(jaddref->ja_parent == dp->i_number,
4888 		    ("softdep_revert_link: addref parent mismatch"));
4889 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4890 	}
4891 	FREE_LOCK(dp->i_ump);
4892 }
4893 
4894 /*
4895  * Called to release the journal structures created by a failed mkdir
4896  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4897  */
4898 void
4899 softdep_revert_mkdir(dp, ip)
4900 	struct inode *dp;
4901 	struct inode *ip;
4902 {
4903 	struct inodedep *inodedep;
4904 	struct jaddref *jaddref;
4905 	struct jaddref *dotaddref;
4906 	struct vnode *dvp;
4907 
4908 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4909 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4910 	dvp = ITOV(dp);
4911 
4912 	ACQUIRE_LOCK(dp->i_ump);
4913 	inodedep = inodedep_lookup_ip(dp);
4914 	if (DOINGSUJ(dvp)) {
4915 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4916 		    inoreflst);
4917 		KASSERT(jaddref->ja_parent == ip->i_number,
4918 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4919 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4920 	}
4921 	inodedep = inodedep_lookup_ip(ip);
4922 	if (DOINGSUJ(dvp)) {
4923 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4924 		    inoreflst);
4925 		KASSERT(jaddref->ja_parent == dp->i_number,
4926 		    ("softdep_revert_mkdir: addref parent mismatch"));
4927 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4928 		    inoreflst, if_deps);
4929 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4930 		KASSERT(dotaddref->ja_parent == ip->i_number,
4931 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4932 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4933 	}
4934 	FREE_LOCK(dp->i_ump);
4935 }
4936 
4937 /*
4938  * Called to correct nlinkdelta after a failed rmdir.
4939  */
4940 void
4941 softdep_revert_rmdir(dp, ip)
4942 	struct inode *dp;
4943 	struct inode *ip;
4944 {
4945 
4946 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4947 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4948 	ACQUIRE_LOCK(dp->i_ump);
4949 	(void) inodedep_lookup_ip(ip);
4950 	(void) inodedep_lookup_ip(dp);
4951 	FREE_LOCK(dp->i_ump);
4952 }
4953 
4954 /*
4955  * Protecting the freemaps (or bitmaps).
4956  *
4957  * To eliminate the need to execute fsck before mounting a filesystem
4958  * after a power failure, one must (conservatively) guarantee that the
4959  * on-disk copy of the bitmaps never indicate that a live inode or block is
4960  * free.  So, when a block or inode is allocated, the bitmap should be
4961  * updated (on disk) before any new pointers.  When a block or inode is
4962  * freed, the bitmap should not be updated until all pointers have been
4963  * reset.  The latter dependency is handled by the delayed de-allocation
4964  * approach described below for block and inode de-allocation.  The former
4965  * dependency is handled by calling the following procedure when a block or
4966  * inode is allocated. When an inode is allocated an "inodedep" is created
4967  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4968  * Each "inodedep" is also inserted into the hash indexing structure so
4969  * that any additional link additions can be made dependent on the inode
4970  * allocation.
4971  *
4972  * The ufs filesystem maintains a number of free block counts (e.g., per
4973  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4974  * in addition to the bitmaps.  These counts are used to improve efficiency
4975  * during allocation and therefore must be consistent with the bitmaps.
4976  * There is no convenient way to guarantee post-crash consistency of these
4977  * counts with simple update ordering, for two main reasons: (1) The counts
4978  * and bitmaps for a single cylinder group block are not in the same disk
4979  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4980  * be written and the other not.  (2) Some of the counts are located in the
4981  * superblock rather than the cylinder group block. So, we focus our soft
4982  * updates implementation on protecting the bitmaps. When mounting a
4983  * filesystem, we recompute the auxiliary counts from the bitmaps.
4984  */
4985 
4986 /*
4987  * Called just after updating the cylinder group block to allocate an inode.
4988  */
4989 void
4990 softdep_setup_inomapdep(bp, ip, newinum, mode)
4991 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4992 	struct inode *ip;	/* inode related to allocation */
4993 	ino_t newinum;		/* new inode number being allocated */
4994 	int mode;
4995 {
4996 	struct inodedep *inodedep;
4997 	struct bmsafemap *bmsafemap;
4998 	struct jaddref *jaddref;
4999 	struct mount *mp;
5000 	struct fs *fs;
5001 
5002 	mp = UFSTOVFS(ip->i_ump);
5003 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5004 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5005 	fs = ip->i_ump->um_fs;
5006 	jaddref = NULL;
5007 
5008 	/*
5009 	 * Allocate the journal reference add structure so that the bitmap
5010 	 * can be dependent on it.
5011 	 */
5012 	if (MOUNTEDSUJ(mp)) {
5013 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5014 		jaddref->ja_state |= NEWBLOCK;
5015 	}
5016 
5017 	/*
5018 	 * Create a dependency for the newly allocated inode.
5019 	 * Panic if it already exists as something is seriously wrong.
5020 	 * Otherwise add it to the dependency list for the buffer holding
5021 	 * the cylinder group map from which it was allocated.
5022 	 *
5023 	 * We have to preallocate a bmsafemap entry in case it is needed
5024 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5025 	 * have to finish initializing it before we can FREE_LOCK().
5026 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5027 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5028 	 * creating the inodedep as it can be freed during the time
5029 	 * that we FREE_LOCK() while allocating the inodedep. We must
5030 	 * call workitem_alloc() before entering the locked section as
5031 	 * it also acquires the lock and we must avoid trying doing so
5032 	 * recursively.
5033 	 */
5034 	bmsafemap = malloc(sizeof(struct bmsafemap),
5035 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5036 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5037 	ACQUIRE_LOCK(ip->i_ump);
5038 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5039 		panic("softdep_setup_inomapdep: dependency %p for new"
5040 		    "inode already exists", inodedep);
5041 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5042 	if (jaddref) {
5043 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5044 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5045 		    if_deps);
5046 	} else {
5047 		inodedep->id_state |= ONDEPLIST;
5048 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5049 	}
5050 	inodedep->id_bmsafemap = bmsafemap;
5051 	inodedep->id_state &= ~DEPCOMPLETE;
5052 	FREE_LOCK(ip->i_ump);
5053 }
5054 
5055 /*
5056  * Called just after updating the cylinder group block to
5057  * allocate block or fragment.
5058  */
5059 void
5060 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5061 	struct buf *bp;		/* buffer for cylgroup block with block map */
5062 	struct mount *mp;	/* filesystem doing allocation */
5063 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5064 	int frags;		/* Number of fragments. */
5065 	int oldfrags;		/* Previous number of fragments for extend. */
5066 {
5067 	struct newblk *newblk;
5068 	struct bmsafemap *bmsafemap;
5069 	struct jnewblk *jnewblk;
5070 	struct ufsmount *ump;
5071 	struct fs *fs;
5072 
5073 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5074 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5075 	ump = VFSTOUFS(mp);
5076 	fs = ump->um_fs;
5077 	jnewblk = NULL;
5078 	/*
5079 	 * Create a dependency for the newly allocated block.
5080 	 * Add it to the dependency list for the buffer holding
5081 	 * the cylinder group map from which it was allocated.
5082 	 */
5083 	if (MOUNTEDSUJ(mp)) {
5084 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5085 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5086 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5087 		jnewblk->jn_state = ATTACHED;
5088 		jnewblk->jn_blkno = newblkno;
5089 		jnewblk->jn_frags = frags;
5090 		jnewblk->jn_oldfrags = oldfrags;
5091 #ifdef SUJ_DEBUG
5092 		{
5093 			struct cg *cgp;
5094 			uint8_t *blksfree;
5095 			long bno;
5096 			int i;
5097 
5098 			cgp = (struct cg *)bp->b_data;
5099 			blksfree = cg_blksfree(cgp);
5100 			bno = dtogd(fs, jnewblk->jn_blkno);
5101 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5102 			    i++) {
5103 				if (isset(blksfree, bno + i))
5104 					panic("softdep_setup_blkmapdep: "
5105 					    "free fragment %d from %d-%d "
5106 					    "state 0x%X dep %p", i,
5107 					    jnewblk->jn_oldfrags,
5108 					    jnewblk->jn_frags,
5109 					    jnewblk->jn_state,
5110 					    jnewblk->jn_dep);
5111 			}
5112 		}
5113 #endif
5114 	}
5115 
5116 	CTR3(KTR_SUJ,
5117 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5118 	    newblkno, frags, oldfrags);
5119 	ACQUIRE_LOCK(ump);
5120 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5121 		panic("softdep_setup_blkmapdep: found block");
5122 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5123 	    dtog(fs, newblkno), NULL);
5124 	if (jnewblk) {
5125 		jnewblk->jn_dep = (struct worklist *)newblk;
5126 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5127 	} else {
5128 		newblk->nb_state |= ONDEPLIST;
5129 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5130 	}
5131 	newblk->nb_bmsafemap = bmsafemap;
5132 	newblk->nb_jnewblk = jnewblk;
5133 	FREE_LOCK(ump);
5134 }
5135 
5136 #define	BMSAFEMAP_HASH(ump, cg) \
5137       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5138 
5139 static int
5140 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5141 	struct bmsafemap_hashhead *bmsafemaphd;
5142 	int cg;
5143 	struct bmsafemap **bmsafemapp;
5144 {
5145 	struct bmsafemap *bmsafemap;
5146 
5147 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5148 		if (bmsafemap->sm_cg == cg)
5149 			break;
5150 	if (bmsafemap) {
5151 		*bmsafemapp = bmsafemap;
5152 		return (1);
5153 	}
5154 	*bmsafemapp = NULL;
5155 
5156 	return (0);
5157 }
5158 
5159 /*
5160  * Find the bmsafemap associated with a cylinder group buffer.
5161  * If none exists, create one. The buffer must be locked when
5162  * this routine is called and this routine must be called with
5163  * the softdep lock held. To avoid giving up the lock while
5164  * allocating a new bmsafemap, a preallocated bmsafemap may be
5165  * provided. If it is provided but not needed, it is freed.
5166  */
5167 static struct bmsafemap *
5168 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5169 	struct mount *mp;
5170 	struct buf *bp;
5171 	int cg;
5172 	struct bmsafemap *newbmsafemap;
5173 {
5174 	struct bmsafemap_hashhead *bmsafemaphd;
5175 	struct bmsafemap *bmsafemap, *collision;
5176 	struct worklist *wk;
5177 	struct ufsmount *ump;
5178 
5179 	ump = VFSTOUFS(mp);
5180 	LOCK_OWNED(ump);
5181 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5182 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5183 		if (wk->wk_type == D_BMSAFEMAP) {
5184 			if (newbmsafemap)
5185 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5186 			return (WK_BMSAFEMAP(wk));
5187 		}
5188 	}
5189 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5190 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5191 		if (newbmsafemap)
5192 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5193 		return (bmsafemap);
5194 	}
5195 	if (newbmsafemap) {
5196 		bmsafemap = newbmsafemap;
5197 	} else {
5198 		FREE_LOCK(ump);
5199 		bmsafemap = malloc(sizeof(struct bmsafemap),
5200 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5201 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5202 		ACQUIRE_LOCK(ump);
5203 	}
5204 	bmsafemap->sm_buf = bp;
5205 	LIST_INIT(&bmsafemap->sm_inodedephd);
5206 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5207 	LIST_INIT(&bmsafemap->sm_newblkhd);
5208 	LIST_INIT(&bmsafemap->sm_newblkwr);
5209 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5210 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5211 	LIST_INIT(&bmsafemap->sm_freehd);
5212 	LIST_INIT(&bmsafemap->sm_freewr);
5213 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5214 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5215 		return (collision);
5216 	}
5217 	bmsafemap->sm_cg = cg;
5218 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5219 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5220 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5221 	return (bmsafemap);
5222 }
5223 
5224 /*
5225  * Direct block allocation dependencies.
5226  *
5227  * When a new block is allocated, the corresponding disk locations must be
5228  * initialized (with zeros or new data) before the on-disk inode points to
5229  * them.  Also, the freemap from which the block was allocated must be
5230  * updated (on disk) before the inode's pointer. These two dependencies are
5231  * independent of each other and are needed for all file blocks and indirect
5232  * blocks that are pointed to directly by the inode.  Just before the
5233  * "in-core" version of the inode is updated with a newly allocated block
5234  * number, a procedure (below) is called to setup allocation dependency
5235  * structures.  These structures are removed when the corresponding
5236  * dependencies are satisfied or when the block allocation becomes obsolete
5237  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5238  * fragment that gets upgraded).  All of these cases are handled in
5239  * procedures described later.
5240  *
5241  * When a file extension causes a fragment to be upgraded, either to a larger
5242  * fragment or to a full block, the on-disk location may change (if the
5243  * previous fragment could not simply be extended). In this case, the old
5244  * fragment must be de-allocated, but not until after the inode's pointer has
5245  * been updated. In most cases, this is handled by later procedures, which
5246  * will construct a "freefrag" structure to be added to the workitem queue
5247  * when the inode update is complete (or obsolete).  The main exception to
5248  * this is when an allocation occurs while a pending allocation dependency
5249  * (for the same block pointer) remains.  This case is handled in the main
5250  * allocation dependency setup procedure by immediately freeing the
5251  * unreferenced fragments.
5252  */
5253 void
5254 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5255 	struct inode *ip;	/* inode to which block is being added */
5256 	ufs_lbn_t off;		/* block pointer within inode */
5257 	ufs2_daddr_t newblkno;	/* disk block number being added */
5258 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5259 	long newsize;		/* size of new block */
5260 	long oldsize;		/* size of new block */
5261 	struct buf *bp;		/* bp for allocated block */
5262 {
5263 	struct allocdirect *adp, *oldadp;
5264 	struct allocdirectlst *adphead;
5265 	struct freefrag *freefrag;
5266 	struct inodedep *inodedep;
5267 	struct pagedep *pagedep;
5268 	struct jnewblk *jnewblk;
5269 	struct newblk *newblk;
5270 	struct mount *mp;
5271 	ufs_lbn_t lbn;
5272 
5273 	lbn = bp->b_lblkno;
5274 	mp = UFSTOVFS(ip->i_ump);
5275 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5276 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5277 	if (oldblkno && oldblkno != newblkno)
5278 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5279 	else
5280 		freefrag = NULL;
5281 
5282 	CTR6(KTR_SUJ,
5283 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5284 	    "off %jd newsize %ld oldsize %d",
5285 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5286 	ACQUIRE_LOCK(ip->i_ump);
5287 	if (off >= NDADDR) {
5288 		if (lbn > 0)
5289 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5290 			    lbn, off);
5291 		/* allocating an indirect block */
5292 		if (oldblkno != 0)
5293 			panic("softdep_setup_allocdirect: non-zero indir");
5294 	} else {
5295 		if (off != lbn)
5296 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5297 			    lbn, off);
5298 		/*
5299 		 * Allocating a direct block.
5300 		 *
5301 		 * If we are allocating a directory block, then we must
5302 		 * allocate an associated pagedep to track additions and
5303 		 * deletions.
5304 		 */
5305 		if ((ip->i_mode & IFMT) == IFDIR)
5306 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5307 			    &pagedep);
5308 	}
5309 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5310 		panic("softdep_setup_allocdirect: lost block");
5311 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5312 	    ("softdep_setup_allocdirect: newblk already initialized"));
5313 	/*
5314 	 * Convert the newblk to an allocdirect.
5315 	 */
5316 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5317 	adp = (struct allocdirect *)newblk;
5318 	newblk->nb_freefrag = freefrag;
5319 	adp->ad_offset = off;
5320 	adp->ad_oldblkno = oldblkno;
5321 	adp->ad_newsize = newsize;
5322 	adp->ad_oldsize = oldsize;
5323 
5324 	/*
5325 	 * Finish initializing the journal.
5326 	 */
5327 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5328 		jnewblk->jn_ino = ip->i_number;
5329 		jnewblk->jn_lbn = lbn;
5330 		add_to_journal(&jnewblk->jn_list);
5331 	}
5332 	if (freefrag && freefrag->ff_jdep != NULL &&
5333 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5334 		add_to_journal(freefrag->ff_jdep);
5335 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5336 	adp->ad_inodedep = inodedep;
5337 
5338 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5339 	/*
5340 	 * The list of allocdirects must be kept in sorted and ascending
5341 	 * order so that the rollback routines can quickly determine the
5342 	 * first uncommitted block (the size of the file stored on disk
5343 	 * ends at the end of the lowest committed fragment, or if there
5344 	 * are no fragments, at the end of the highest committed block).
5345 	 * Since files generally grow, the typical case is that the new
5346 	 * block is to be added at the end of the list. We speed this
5347 	 * special case by checking against the last allocdirect in the
5348 	 * list before laboriously traversing the list looking for the
5349 	 * insertion point.
5350 	 */
5351 	adphead = &inodedep->id_newinoupdt;
5352 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5353 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5354 		/* insert at end of list */
5355 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5356 		if (oldadp != NULL && oldadp->ad_offset == off)
5357 			allocdirect_merge(adphead, adp, oldadp);
5358 		FREE_LOCK(ip->i_ump);
5359 		return;
5360 	}
5361 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5362 		if (oldadp->ad_offset >= off)
5363 			break;
5364 	}
5365 	if (oldadp == NULL)
5366 		panic("softdep_setup_allocdirect: lost entry");
5367 	/* insert in middle of list */
5368 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5369 	if (oldadp->ad_offset == off)
5370 		allocdirect_merge(adphead, adp, oldadp);
5371 
5372 	FREE_LOCK(ip->i_ump);
5373 }
5374 
5375 /*
5376  * Merge a newer and older journal record to be stored either in a
5377  * newblock or freefrag.  This handles aggregating journal records for
5378  * fragment allocation into a second record as well as replacing a
5379  * journal free with an aborted journal allocation.  A segment for the
5380  * oldest record will be placed on wkhd if it has been written.  If not
5381  * the segment for the newer record will suffice.
5382  */
5383 static struct worklist *
5384 jnewblk_merge(new, old, wkhd)
5385 	struct worklist *new;
5386 	struct worklist *old;
5387 	struct workhead *wkhd;
5388 {
5389 	struct jnewblk *njnewblk;
5390 	struct jnewblk *jnewblk;
5391 
5392 	/* Handle NULLs to simplify callers. */
5393 	if (new == NULL)
5394 		return (old);
5395 	if (old == NULL)
5396 		return (new);
5397 	/* Replace a jfreefrag with a jnewblk. */
5398 	if (new->wk_type == D_JFREEFRAG) {
5399 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5400 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5401 			    old, new);
5402 		cancel_jfreefrag(WK_JFREEFRAG(new));
5403 		return (old);
5404 	}
5405 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5406 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5407 		    old->wk_type, new->wk_type);
5408 	/*
5409 	 * Handle merging of two jnewblk records that describe
5410 	 * different sets of fragments in the same block.
5411 	 */
5412 	jnewblk = WK_JNEWBLK(old);
5413 	njnewblk = WK_JNEWBLK(new);
5414 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5415 		panic("jnewblk_merge: Merging disparate blocks.");
5416 	/*
5417 	 * The record may be rolled back in the cg.
5418 	 */
5419 	if (jnewblk->jn_state & UNDONE) {
5420 		jnewblk->jn_state &= ~UNDONE;
5421 		njnewblk->jn_state |= UNDONE;
5422 		njnewblk->jn_state &= ~ATTACHED;
5423 	}
5424 	/*
5425 	 * We modify the newer addref and free the older so that if neither
5426 	 * has been written the most up-to-date copy will be on disk.  If
5427 	 * both have been written but rolled back we only temporarily need
5428 	 * one of them to fix the bits when the cg write completes.
5429 	 */
5430 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5431 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5432 	cancel_jnewblk(jnewblk, wkhd);
5433 	WORKLIST_REMOVE(&jnewblk->jn_list);
5434 	free_jnewblk(jnewblk);
5435 	return (new);
5436 }
5437 
5438 /*
5439  * Replace an old allocdirect dependency with a newer one.
5440  * This routine must be called with splbio interrupts blocked.
5441  */
5442 static void
5443 allocdirect_merge(adphead, newadp, oldadp)
5444 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5445 	struct allocdirect *newadp;	/* allocdirect being added */
5446 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5447 {
5448 	struct worklist *wk;
5449 	struct freefrag *freefrag;
5450 
5451 	freefrag = NULL;
5452 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5453 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5454 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5455 	    newadp->ad_offset >= NDADDR)
5456 		panic("%s %jd != new %jd || old size %ld != new %ld",
5457 		    "allocdirect_merge: old blkno",
5458 		    (intmax_t)newadp->ad_oldblkno,
5459 		    (intmax_t)oldadp->ad_newblkno,
5460 		    newadp->ad_oldsize, oldadp->ad_newsize);
5461 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5462 	newadp->ad_oldsize = oldadp->ad_oldsize;
5463 	/*
5464 	 * If the old dependency had a fragment to free or had never
5465 	 * previously had a block allocated, then the new dependency
5466 	 * can immediately post its freefrag and adopt the old freefrag.
5467 	 * This action is done by swapping the freefrag dependencies.
5468 	 * The new dependency gains the old one's freefrag, and the
5469 	 * old one gets the new one and then immediately puts it on
5470 	 * the worklist when it is freed by free_newblk. It is
5471 	 * not possible to do this swap when the old dependency had a
5472 	 * non-zero size but no previous fragment to free. This condition
5473 	 * arises when the new block is an extension of the old block.
5474 	 * Here, the first part of the fragment allocated to the new
5475 	 * dependency is part of the block currently claimed on disk by
5476 	 * the old dependency, so cannot legitimately be freed until the
5477 	 * conditions for the new dependency are fulfilled.
5478 	 */
5479 	freefrag = newadp->ad_freefrag;
5480 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5481 		newadp->ad_freefrag = oldadp->ad_freefrag;
5482 		oldadp->ad_freefrag = freefrag;
5483 	}
5484 	/*
5485 	 * If we are tracking a new directory-block allocation,
5486 	 * move it from the old allocdirect to the new allocdirect.
5487 	 */
5488 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5489 		WORKLIST_REMOVE(wk);
5490 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5491 			panic("allocdirect_merge: extra newdirblk");
5492 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5493 	}
5494 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5495 	/*
5496 	 * We need to move any journal dependencies over to the freefrag
5497 	 * that releases this block if it exists.  Otherwise we are
5498 	 * extending an existing block and we'll wait until that is
5499 	 * complete to release the journal space and extend the
5500 	 * new journal to cover this old space as well.
5501 	 */
5502 	if (freefrag == NULL) {
5503 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5504 			panic("allocdirect_merge: %jd != %jd",
5505 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5506 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5507 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5508 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5509 		    &newadp->ad_block.nb_jwork);
5510 		oldadp->ad_block.nb_jnewblk = NULL;
5511 		cancel_newblk(&oldadp->ad_block, NULL,
5512 		    &newadp->ad_block.nb_jwork);
5513 	} else {
5514 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5515 		    &freefrag->ff_list, &freefrag->ff_jwork);
5516 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5517 		    &freefrag->ff_jwork);
5518 	}
5519 	free_newblk(&oldadp->ad_block);
5520 }
5521 
5522 /*
5523  * Allocate a jfreefrag structure to journal a single block free.
5524  */
5525 static struct jfreefrag *
5526 newjfreefrag(freefrag, ip, blkno, size, lbn)
5527 	struct freefrag *freefrag;
5528 	struct inode *ip;
5529 	ufs2_daddr_t blkno;
5530 	long size;
5531 	ufs_lbn_t lbn;
5532 {
5533 	struct jfreefrag *jfreefrag;
5534 	struct fs *fs;
5535 
5536 	fs = ip->i_fs;
5537 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5538 	    M_SOFTDEP_FLAGS);
5539 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5540 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5541 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5542 	jfreefrag->fr_ino = ip->i_number;
5543 	jfreefrag->fr_lbn = lbn;
5544 	jfreefrag->fr_blkno = blkno;
5545 	jfreefrag->fr_frags = numfrags(fs, size);
5546 	jfreefrag->fr_freefrag = freefrag;
5547 
5548 	return (jfreefrag);
5549 }
5550 
5551 /*
5552  * Allocate a new freefrag structure.
5553  */
5554 static struct freefrag *
5555 newfreefrag(ip, blkno, size, lbn)
5556 	struct inode *ip;
5557 	ufs2_daddr_t blkno;
5558 	long size;
5559 	ufs_lbn_t lbn;
5560 {
5561 	struct freefrag *freefrag;
5562 	struct fs *fs;
5563 
5564 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5565 	    ip->i_number, blkno, size, lbn);
5566 	fs = ip->i_fs;
5567 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5568 		panic("newfreefrag: frag size");
5569 	freefrag = malloc(sizeof(struct freefrag),
5570 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5571 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5572 	freefrag->ff_state = ATTACHED;
5573 	LIST_INIT(&freefrag->ff_jwork);
5574 	freefrag->ff_inum = ip->i_number;
5575 	freefrag->ff_vtype = ITOV(ip)->v_type;
5576 	freefrag->ff_blkno = blkno;
5577 	freefrag->ff_fragsize = size;
5578 
5579 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5580 		freefrag->ff_jdep = (struct worklist *)
5581 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5582 	} else {
5583 		freefrag->ff_state |= DEPCOMPLETE;
5584 		freefrag->ff_jdep = NULL;
5585 	}
5586 
5587 	return (freefrag);
5588 }
5589 
5590 /*
5591  * This workitem de-allocates fragments that were replaced during
5592  * file block allocation.
5593  */
5594 static void
5595 handle_workitem_freefrag(freefrag)
5596 	struct freefrag *freefrag;
5597 {
5598 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5599 	struct workhead wkhd;
5600 
5601 	CTR3(KTR_SUJ,
5602 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5603 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5604 	/*
5605 	 * It would be illegal to add new completion items to the
5606 	 * freefrag after it was schedule to be done so it must be
5607 	 * safe to modify the list head here.
5608 	 */
5609 	LIST_INIT(&wkhd);
5610 	ACQUIRE_LOCK(ump);
5611 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5612 	/*
5613 	 * If the journal has not been written we must cancel it here.
5614 	 */
5615 	if (freefrag->ff_jdep) {
5616 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5617 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5618 			    freefrag->ff_jdep->wk_type);
5619 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5620 	}
5621 	FREE_LOCK(ump);
5622 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5623 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5624 	ACQUIRE_LOCK(ump);
5625 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5626 	FREE_LOCK(ump);
5627 }
5628 
5629 /*
5630  * Set up a dependency structure for an external attributes data block.
5631  * This routine follows much of the structure of softdep_setup_allocdirect.
5632  * See the description of softdep_setup_allocdirect above for details.
5633  */
5634 void
5635 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5636 	struct inode *ip;
5637 	ufs_lbn_t off;
5638 	ufs2_daddr_t newblkno;
5639 	ufs2_daddr_t oldblkno;
5640 	long newsize;
5641 	long oldsize;
5642 	struct buf *bp;
5643 {
5644 	struct allocdirect *adp, *oldadp;
5645 	struct allocdirectlst *adphead;
5646 	struct freefrag *freefrag;
5647 	struct inodedep *inodedep;
5648 	struct jnewblk *jnewblk;
5649 	struct newblk *newblk;
5650 	struct mount *mp;
5651 	ufs_lbn_t lbn;
5652 
5653 	mp = UFSTOVFS(ip->i_ump);
5654 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5655 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5656 	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5657 		    (long long)off));
5658 
5659 	lbn = bp->b_lblkno;
5660 	if (oldblkno && oldblkno != newblkno)
5661 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5662 	else
5663 		freefrag = NULL;
5664 
5665 	ACQUIRE_LOCK(ip->i_ump);
5666 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5667 		panic("softdep_setup_allocext: lost block");
5668 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5669 	    ("softdep_setup_allocext: newblk already initialized"));
5670 	/*
5671 	 * Convert the newblk to an allocdirect.
5672 	 */
5673 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5674 	adp = (struct allocdirect *)newblk;
5675 	newblk->nb_freefrag = freefrag;
5676 	adp->ad_offset = off;
5677 	adp->ad_oldblkno = oldblkno;
5678 	adp->ad_newsize = newsize;
5679 	adp->ad_oldsize = oldsize;
5680 	adp->ad_state |=  EXTDATA;
5681 
5682 	/*
5683 	 * Finish initializing the journal.
5684 	 */
5685 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5686 		jnewblk->jn_ino = ip->i_number;
5687 		jnewblk->jn_lbn = lbn;
5688 		add_to_journal(&jnewblk->jn_list);
5689 	}
5690 	if (freefrag && freefrag->ff_jdep != NULL &&
5691 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5692 		add_to_journal(freefrag->ff_jdep);
5693 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5694 	adp->ad_inodedep = inodedep;
5695 
5696 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5697 	/*
5698 	 * The list of allocdirects must be kept in sorted and ascending
5699 	 * order so that the rollback routines can quickly determine the
5700 	 * first uncommitted block (the size of the file stored on disk
5701 	 * ends at the end of the lowest committed fragment, or if there
5702 	 * are no fragments, at the end of the highest committed block).
5703 	 * Since files generally grow, the typical case is that the new
5704 	 * block is to be added at the end of the list. We speed this
5705 	 * special case by checking against the last allocdirect in the
5706 	 * list before laboriously traversing the list looking for the
5707 	 * insertion point.
5708 	 */
5709 	adphead = &inodedep->id_newextupdt;
5710 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5711 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5712 		/* insert at end of list */
5713 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5714 		if (oldadp != NULL && oldadp->ad_offset == off)
5715 			allocdirect_merge(adphead, adp, oldadp);
5716 		FREE_LOCK(ip->i_ump);
5717 		return;
5718 	}
5719 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5720 		if (oldadp->ad_offset >= off)
5721 			break;
5722 	}
5723 	if (oldadp == NULL)
5724 		panic("softdep_setup_allocext: lost entry");
5725 	/* insert in middle of list */
5726 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5727 	if (oldadp->ad_offset == off)
5728 		allocdirect_merge(adphead, adp, oldadp);
5729 	FREE_LOCK(ip->i_ump);
5730 }
5731 
5732 /*
5733  * Indirect block allocation dependencies.
5734  *
5735  * The same dependencies that exist for a direct block also exist when
5736  * a new block is allocated and pointed to by an entry in a block of
5737  * indirect pointers. The undo/redo states described above are also
5738  * used here. Because an indirect block contains many pointers that
5739  * may have dependencies, a second copy of the entire in-memory indirect
5740  * block is kept. The buffer cache copy is always completely up-to-date.
5741  * The second copy, which is used only as a source for disk writes,
5742  * contains only the safe pointers (i.e., those that have no remaining
5743  * update dependencies). The second copy is freed when all pointers
5744  * are safe. The cache is not allowed to replace indirect blocks with
5745  * pending update dependencies. If a buffer containing an indirect
5746  * block with dependencies is written, these routines will mark it
5747  * dirty again. It can only be successfully written once all the
5748  * dependencies are removed. The ffs_fsync routine in conjunction with
5749  * softdep_sync_metadata work together to get all the dependencies
5750  * removed so that a file can be successfully written to disk. Three
5751  * procedures are used when setting up indirect block pointer
5752  * dependencies. The division is necessary because of the organization
5753  * of the "balloc" routine and because of the distinction between file
5754  * pages and file metadata blocks.
5755  */
5756 
5757 /*
5758  * Allocate a new allocindir structure.
5759  */
5760 static struct allocindir *
5761 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5762 	struct inode *ip;	/* inode for file being extended */
5763 	int ptrno;		/* offset of pointer in indirect block */
5764 	ufs2_daddr_t newblkno;	/* disk block number being added */
5765 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5766 	ufs_lbn_t lbn;
5767 {
5768 	struct newblk *newblk;
5769 	struct allocindir *aip;
5770 	struct freefrag *freefrag;
5771 	struct jnewblk *jnewblk;
5772 
5773 	if (oldblkno)
5774 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5775 	else
5776 		freefrag = NULL;
5777 	ACQUIRE_LOCK(ip->i_ump);
5778 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5779 		panic("new_allocindir: lost block");
5780 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5781 	    ("newallocindir: newblk already initialized"));
5782 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5783 	newblk->nb_freefrag = freefrag;
5784 	aip = (struct allocindir *)newblk;
5785 	aip->ai_offset = ptrno;
5786 	aip->ai_oldblkno = oldblkno;
5787 	aip->ai_lbn = lbn;
5788 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5789 		jnewblk->jn_ino = ip->i_number;
5790 		jnewblk->jn_lbn = lbn;
5791 		add_to_journal(&jnewblk->jn_list);
5792 	}
5793 	if (freefrag && freefrag->ff_jdep != NULL &&
5794 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5795 		add_to_journal(freefrag->ff_jdep);
5796 	return (aip);
5797 }
5798 
5799 /*
5800  * Called just before setting an indirect block pointer
5801  * to a newly allocated file page.
5802  */
5803 void
5804 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5805 	struct inode *ip;	/* inode for file being extended */
5806 	ufs_lbn_t lbn;		/* allocated block number within file */
5807 	struct buf *bp;		/* buffer with indirect blk referencing page */
5808 	int ptrno;		/* offset of pointer in indirect block */
5809 	ufs2_daddr_t newblkno;	/* disk block number being added */
5810 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5811 	struct buf *nbp;	/* buffer holding allocated page */
5812 {
5813 	struct inodedep *inodedep;
5814 	struct freefrag *freefrag;
5815 	struct allocindir *aip;
5816 	struct pagedep *pagedep;
5817 	struct mount *mp;
5818 
5819 	mp = UFSTOVFS(ip->i_ump);
5820 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5821 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5822 	KASSERT(lbn == nbp->b_lblkno,
5823 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5824 	    lbn, bp->b_lblkno));
5825 	CTR4(KTR_SUJ,
5826 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5827 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5828 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5829 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5830 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5831 	/*
5832 	 * If we are allocating a directory page, then we must
5833 	 * allocate an associated pagedep to track additions and
5834 	 * deletions.
5835 	 */
5836 	if ((ip->i_mode & IFMT) == IFDIR)
5837 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5838 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5839 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5840 	FREE_LOCK(ip->i_ump);
5841 	if (freefrag)
5842 		handle_workitem_freefrag(freefrag);
5843 }
5844 
5845 /*
5846  * Called just before setting an indirect block pointer to a
5847  * newly allocated indirect block.
5848  */
5849 void
5850 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5851 	struct buf *nbp;	/* newly allocated indirect block */
5852 	struct inode *ip;	/* inode for file being extended */
5853 	struct buf *bp;		/* indirect block referencing allocated block */
5854 	int ptrno;		/* offset of pointer in indirect block */
5855 	ufs2_daddr_t newblkno;	/* disk block number being added */
5856 {
5857 	struct inodedep *inodedep;
5858 	struct allocindir *aip;
5859 	ufs_lbn_t lbn;
5860 
5861 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5862 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5863 	CTR3(KTR_SUJ,
5864 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5865 	    ip->i_number, newblkno, ptrno);
5866 	lbn = nbp->b_lblkno;
5867 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5868 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5869 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
5870 	    &inodedep);
5871 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5872 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5873 		panic("softdep_setup_allocindir_meta: Block already existed");
5874 	FREE_LOCK(ip->i_ump);
5875 }
5876 
5877 static void
5878 indirdep_complete(indirdep)
5879 	struct indirdep *indirdep;
5880 {
5881 	struct allocindir *aip;
5882 
5883 	LIST_REMOVE(indirdep, ir_next);
5884 	indirdep->ir_state |= DEPCOMPLETE;
5885 
5886 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5887 		LIST_REMOVE(aip, ai_next);
5888 		free_newblk(&aip->ai_block);
5889 	}
5890 	/*
5891 	 * If this indirdep is not attached to a buf it was simply waiting
5892 	 * on completion to clear completehd.  free_indirdep() asserts
5893 	 * that nothing is dangling.
5894 	 */
5895 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5896 		free_indirdep(indirdep);
5897 }
5898 
5899 static struct indirdep *
5900 indirdep_lookup(mp, ip, bp)
5901 	struct mount *mp;
5902 	struct inode *ip;
5903 	struct buf *bp;
5904 {
5905 	struct indirdep *indirdep, *newindirdep;
5906 	struct newblk *newblk;
5907 	struct ufsmount *ump;
5908 	struct worklist *wk;
5909 	struct fs *fs;
5910 	ufs2_daddr_t blkno;
5911 
5912 	ump = VFSTOUFS(mp);
5913 	LOCK_OWNED(ump);
5914 	indirdep = NULL;
5915 	newindirdep = NULL;
5916 	fs = ip->i_fs;
5917 	for (;;) {
5918 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5919 			if (wk->wk_type != D_INDIRDEP)
5920 				continue;
5921 			indirdep = WK_INDIRDEP(wk);
5922 			break;
5923 		}
5924 		/* Found on the buffer worklist, no new structure to free. */
5925 		if (indirdep != NULL && newindirdep == NULL)
5926 			return (indirdep);
5927 		if (indirdep != NULL && newindirdep != NULL)
5928 			panic("indirdep_lookup: simultaneous create");
5929 		/* None found on the buffer and a new structure is ready. */
5930 		if (indirdep == NULL && newindirdep != NULL)
5931 			break;
5932 		/* None found and no new structure available. */
5933 		FREE_LOCK(ump);
5934 		newindirdep = malloc(sizeof(struct indirdep),
5935 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5936 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5937 		newindirdep->ir_state = ATTACHED;
5938 		if (ip->i_ump->um_fstype == UFS1)
5939 			newindirdep->ir_state |= UFS1FMT;
5940 		TAILQ_INIT(&newindirdep->ir_trunc);
5941 		newindirdep->ir_saveddata = NULL;
5942 		LIST_INIT(&newindirdep->ir_deplisthd);
5943 		LIST_INIT(&newindirdep->ir_donehd);
5944 		LIST_INIT(&newindirdep->ir_writehd);
5945 		LIST_INIT(&newindirdep->ir_completehd);
5946 		if (bp->b_blkno == bp->b_lblkno) {
5947 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5948 			    NULL, NULL);
5949 			bp->b_blkno = blkno;
5950 		}
5951 		newindirdep->ir_freeblks = NULL;
5952 		newindirdep->ir_savebp =
5953 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5954 		newindirdep->ir_bp = bp;
5955 		BUF_KERNPROC(newindirdep->ir_savebp);
5956 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5957 		ACQUIRE_LOCK(ump);
5958 	}
5959 	indirdep = newindirdep;
5960 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5961 	/*
5962 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5963 	 * that we don't free dependencies until the pointers are valid.
5964 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5965 	 * than using the hash.
5966 	 */
5967 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5968 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5969 	else
5970 		indirdep->ir_state |= DEPCOMPLETE;
5971 	return (indirdep);
5972 }
5973 
5974 /*
5975  * Called to finish the allocation of the "aip" allocated
5976  * by one of the two routines above.
5977  */
5978 static struct freefrag *
5979 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5980 	struct buf *bp;		/* in-memory copy of the indirect block */
5981 	struct inode *ip;	/* inode for file being extended */
5982 	struct inodedep *inodedep; /* Inodedep for ip */
5983 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5984 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5985 {
5986 	struct fs *fs;
5987 	struct indirdep *indirdep;
5988 	struct allocindir *oldaip;
5989 	struct freefrag *freefrag;
5990 	struct mount *mp;
5991 
5992 	LOCK_OWNED(ip->i_ump);
5993 	mp = UFSTOVFS(ip->i_ump);
5994 	fs = ip->i_fs;
5995 	if (bp->b_lblkno >= 0)
5996 		panic("setup_allocindir_phase2: not indir blk");
5997 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5998 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5999 	indirdep = indirdep_lookup(mp, ip, bp);
6000 	KASSERT(indirdep->ir_savebp != NULL,
6001 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6002 	aip->ai_indirdep = indirdep;
6003 	/*
6004 	 * Check for an unwritten dependency for this indirect offset.  If
6005 	 * there is, merge the old dependency into the new one.  This happens
6006 	 * as a result of reallocblk only.
6007 	 */
6008 	freefrag = NULL;
6009 	if (aip->ai_oldblkno != 0) {
6010 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6011 			if (oldaip->ai_offset == aip->ai_offset) {
6012 				freefrag = allocindir_merge(aip, oldaip);
6013 				goto done;
6014 			}
6015 		}
6016 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6017 			if (oldaip->ai_offset == aip->ai_offset) {
6018 				freefrag = allocindir_merge(aip, oldaip);
6019 				goto done;
6020 			}
6021 		}
6022 	}
6023 done:
6024 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6025 	return (freefrag);
6026 }
6027 
6028 /*
6029  * Merge two allocindirs which refer to the same block.  Move newblock
6030  * dependencies and setup the freefrags appropriately.
6031  */
6032 static struct freefrag *
6033 allocindir_merge(aip, oldaip)
6034 	struct allocindir *aip;
6035 	struct allocindir *oldaip;
6036 {
6037 	struct freefrag *freefrag;
6038 	struct worklist *wk;
6039 
6040 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6041 		panic("allocindir_merge: blkno");
6042 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6043 	freefrag = aip->ai_freefrag;
6044 	aip->ai_freefrag = oldaip->ai_freefrag;
6045 	oldaip->ai_freefrag = NULL;
6046 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6047 	/*
6048 	 * If we are tracking a new directory-block allocation,
6049 	 * move it from the old allocindir to the new allocindir.
6050 	 */
6051 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6052 		WORKLIST_REMOVE(wk);
6053 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6054 			panic("allocindir_merge: extra newdirblk");
6055 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6056 	}
6057 	/*
6058 	 * We can skip journaling for this freefrag and just complete
6059 	 * any pending journal work for the allocindir that is being
6060 	 * removed after the freefrag completes.
6061 	 */
6062 	if (freefrag->ff_jdep)
6063 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6064 	LIST_REMOVE(oldaip, ai_next);
6065 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6066 	    &freefrag->ff_list, &freefrag->ff_jwork);
6067 	free_newblk(&oldaip->ai_block);
6068 
6069 	return (freefrag);
6070 }
6071 
6072 static inline void
6073 setup_freedirect(freeblks, ip, i, needj)
6074 	struct freeblks *freeblks;
6075 	struct inode *ip;
6076 	int i;
6077 	int needj;
6078 {
6079 	ufs2_daddr_t blkno;
6080 	int frags;
6081 
6082 	blkno = DIP(ip, i_db[i]);
6083 	if (blkno == 0)
6084 		return;
6085 	DIP_SET(ip, i_db[i], 0);
6086 	frags = sblksize(ip->i_fs, ip->i_size, i);
6087 	frags = numfrags(ip->i_fs, frags);
6088 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6089 }
6090 
6091 static inline void
6092 setup_freeext(freeblks, ip, i, needj)
6093 	struct freeblks *freeblks;
6094 	struct inode *ip;
6095 	int i;
6096 	int needj;
6097 {
6098 	ufs2_daddr_t blkno;
6099 	int frags;
6100 
6101 	blkno = ip->i_din2->di_extb[i];
6102 	if (blkno == 0)
6103 		return;
6104 	ip->i_din2->di_extb[i] = 0;
6105 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6106 	frags = numfrags(ip->i_fs, frags);
6107 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6108 }
6109 
6110 static inline void
6111 setup_freeindir(freeblks, ip, i, lbn, needj)
6112 	struct freeblks *freeblks;
6113 	struct inode *ip;
6114 	int i;
6115 	ufs_lbn_t lbn;
6116 	int needj;
6117 {
6118 	ufs2_daddr_t blkno;
6119 
6120 	blkno = DIP(ip, i_ib[i]);
6121 	if (blkno == 0)
6122 		return;
6123 	DIP_SET(ip, i_ib[i], 0);
6124 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6125 	    0, needj);
6126 }
6127 
6128 static inline struct freeblks *
6129 newfreeblks(mp, ip)
6130 	struct mount *mp;
6131 	struct inode *ip;
6132 {
6133 	struct freeblks *freeblks;
6134 
6135 	freeblks = malloc(sizeof(struct freeblks),
6136 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6137 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6138 	LIST_INIT(&freeblks->fb_jblkdephd);
6139 	LIST_INIT(&freeblks->fb_jwork);
6140 	freeblks->fb_ref = 0;
6141 	freeblks->fb_cgwait = 0;
6142 	freeblks->fb_state = ATTACHED;
6143 	freeblks->fb_uid = ip->i_uid;
6144 	freeblks->fb_inum = ip->i_number;
6145 	freeblks->fb_vtype = ITOV(ip)->v_type;
6146 	freeblks->fb_modrev = DIP(ip, i_modrev);
6147 	freeblks->fb_devvp = ip->i_devvp;
6148 	freeblks->fb_chkcnt = 0;
6149 	freeblks->fb_len = 0;
6150 
6151 	return (freeblks);
6152 }
6153 
6154 static void
6155 trunc_indirdep(indirdep, freeblks, bp, off)
6156 	struct indirdep *indirdep;
6157 	struct freeblks *freeblks;
6158 	struct buf *bp;
6159 	int off;
6160 {
6161 	struct allocindir *aip, *aipn;
6162 
6163 	/*
6164 	 * The first set of allocindirs won't be in savedbp.
6165 	 */
6166 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6167 		if (aip->ai_offset > off)
6168 			cancel_allocindir(aip, bp, freeblks, 1);
6169 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6170 		if (aip->ai_offset > off)
6171 			cancel_allocindir(aip, bp, freeblks, 1);
6172 	/*
6173 	 * These will exist in savedbp.
6174 	 */
6175 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6176 		if (aip->ai_offset > off)
6177 			cancel_allocindir(aip, NULL, freeblks, 0);
6178 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6179 		if (aip->ai_offset > off)
6180 			cancel_allocindir(aip, NULL, freeblks, 0);
6181 }
6182 
6183 /*
6184  * Follow the chain of indirects down to lastlbn creating a freework
6185  * structure for each.  This will be used to start indir_trunc() at
6186  * the right offset and create the journal records for the parrtial
6187  * truncation.  A second step will handle the truncated dependencies.
6188  */
6189 static int
6190 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6191 	struct freeblks *freeblks;
6192 	struct inode *ip;
6193 	ufs_lbn_t lbn;
6194 	ufs_lbn_t lastlbn;
6195 	ufs2_daddr_t blkno;
6196 {
6197 	struct indirdep *indirdep;
6198 	struct indirdep *indirn;
6199 	struct freework *freework;
6200 	struct newblk *newblk;
6201 	struct mount *mp;
6202 	struct buf *bp;
6203 	uint8_t *start;
6204 	uint8_t *end;
6205 	ufs_lbn_t lbnadd;
6206 	int level;
6207 	int error;
6208 	int off;
6209 
6210 
6211 	freework = NULL;
6212 	if (blkno == 0)
6213 		return (0);
6214 	mp = freeblks->fb_list.wk_mp;
6215 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6216 	if ((bp->b_flags & B_CACHE) == 0) {
6217 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6218 		bp->b_iocmd = BIO_READ;
6219 		bp->b_flags &= ~B_INVAL;
6220 		bp->b_ioflags &= ~BIO_ERROR;
6221 		vfs_busy_pages(bp, 0);
6222 		bp->b_iooffset = dbtob(bp->b_blkno);
6223 		bstrategy(bp);
6224 		curthread->td_ru.ru_inblock++;
6225 		error = bufwait(bp);
6226 		if (error) {
6227 			brelse(bp);
6228 			return (error);
6229 		}
6230 	}
6231 	level = lbn_level(lbn);
6232 	lbnadd = lbn_offset(ip->i_fs, level);
6233 	/*
6234 	 * Compute the offset of the last block we want to keep.  Store
6235 	 * in the freework the first block we want to completely free.
6236 	 */
6237 	off = (lastlbn - -(lbn + level)) / lbnadd;
6238 	if (off + 1 == NINDIR(ip->i_fs))
6239 		goto nowork;
6240 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6241 	    0);
6242 	/*
6243 	 * Link the freework into the indirdep.  This will prevent any new
6244 	 * allocations from proceeding until we are finished with the
6245 	 * truncate and the block is written.
6246 	 */
6247 	ACQUIRE_LOCK(ip->i_ump);
6248 	indirdep = indirdep_lookup(mp, ip, bp);
6249 	if (indirdep->ir_freeblks)
6250 		panic("setup_trunc_indir: indirdep already truncated.");
6251 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6252 	freework->fw_indir = indirdep;
6253 	/*
6254 	 * Cancel any allocindirs that will not make it to disk.
6255 	 * We have to do this for all copies of the indirdep that
6256 	 * live on this newblk.
6257 	 */
6258 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6259 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6260 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6261 			trunc_indirdep(indirn, freeblks, bp, off);
6262 	} else
6263 		trunc_indirdep(indirdep, freeblks, bp, off);
6264 	FREE_LOCK(ip->i_ump);
6265 	/*
6266 	 * Creation is protected by the buf lock. The saveddata is only
6267 	 * needed if a full truncation follows a partial truncation but it
6268 	 * is difficult to allocate in that case so we fetch it anyway.
6269 	 */
6270 	if (indirdep->ir_saveddata == NULL)
6271 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6272 		    M_SOFTDEP_FLAGS);
6273 nowork:
6274 	/* Fetch the blkno of the child and the zero start offset. */
6275 	if (ip->i_ump->um_fstype == UFS1) {
6276 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6277 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6278 	} else {
6279 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6280 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6281 	}
6282 	if (freework) {
6283 		/* Zero the truncated pointers. */
6284 		end = bp->b_data + bp->b_bcount;
6285 		bzero(start, end - start);
6286 		bdwrite(bp);
6287 	} else
6288 		bqrelse(bp);
6289 	if (level == 0)
6290 		return (0);
6291 	lbn++; /* adjust level */
6292 	lbn -= (off * lbnadd);
6293 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6294 }
6295 
6296 /*
6297  * Complete the partial truncation of an indirect block setup by
6298  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6299  * copy and writes them to disk before the freeblks is allowed to complete.
6300  */
6301 static void
6302 complete_trunc_indir(freework)
6303 	struct freework *freework;
6304 {
6305 	struct freework *fwn;
6306 	struct indirdep *indirdep;
6307 	struct ufsmount *ump;
6308 	struct buf *bp;
6309 	uintptr_t start;
6310 	int count;
6311 
6312 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6313 	LOCK_OWNED(ump);
6314 	indirdep = freework->fw_indir;
6315 	for (;;) {
6316 		bp = indirdep->ir_bp;
6317 		/* See if the block was discarded. */
6318 		if (bp == NULL)
6319 			break;
6320 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6321 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6322 			break;
6323 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6324 		    LOCK_PTR(ump)) == 0)
6325 			BUF_UNLOCK(bp);
6326 		ACQUIRE_LOCK(ump);
6327 	}
6328 	freework->fw_state |= DEPCOMPLETE;
6329 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6330 	/*
6331 	 * Zero the pointers in the saved copy.
6332 	 */
6333 	if (indirdep->ir_state & UFS1FMT)
6334 		start = sizeof(ufs1_daddr_t);
6335 	else
6336 		start = sizeof(ufs2_daddr_t);
6337 	start *= freework->fw_start;
6338 	count = indirdep->ir_savebp->b_bcount - start;
6339 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6340 	bzero((char *)start, count);
6341 	/*
6342 	 * We need to start the next truncation in the list if it has not
6343 	 * been started yet.
6344 	 */
6345 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6346 	if (fwn != NULL) {
6347 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6348 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6349 		if ((fwn->fw_state & ONWORKLIST) == 0)
6350 			freework_enqueue(fwn);
6351 	}
6352 	/*
6353 	 * If bp is NULL the block was fully truncated, restore
6354 	 * the saved block list otherwise free it if it is no
6355 	 * longer needed.
6356 	 */
6357 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6358 		if (bp == NULL)
6359 			bcopy(indirdep->ir_saveddata,
6360 			    indirdep->ir_savebp->b_data,
6361 			    indirdep->ir_savebp->b_bcount);
6362 		free(indirdep->ir_saveddata, M_INDIRDEP);
6363 		indirdep->ir_saveddata = NULL;
6364 	}
6365 	/*
6366 	 * When bp is NULL there is a full truncation pending.  We
6367 	 * must wait for this full truncation to be journaled before
6368 	 * we can release this freework because the disk pointers will
6369 	 * never be written as zero.
6370 	 */
6371 	if (bp == NULL)  {
6372 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6373 			handle_written_freework(freework);
6374 		else
6375 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6376 			   &freework->fw_list);
6377 	} else {
6378 		/* Complete when the real copy is written. */
6379 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6380 		BUF_UNLOCK(bp);
6381 	}
6382 }
6383 
6384 /*
6385  * Calculate the number of blocks we are going to release where datablocks
6386  * is the current total and length is the new file size.
6387  */
6388 static ufs2_daddr_t
6389 blkcount(fs, datablocks, length)
6390 	struct fs *fs;
6391 	ufs2_daddr_t datablocks;
6392 	off_t length;
6393 {
6394 	off_t totblks, numblks;
6395 
6396 	totblks = 0;
6397 	numblks = howmany(length, fs->fs_bsize);
6398 	if (numblks <= NDADDR) {
6399 		totblks = howmany(length, fs->fs_fsize);
6400 		goto out;
6401 	}
6402         totblks = blkstofrags(fs, numblks);
6403 	numblks -= NDADDR;
6404 	/*
6405 	 * Count all single, then double, then triple indirects required.
6406 	 * Subtracting one indirects worth of blocks for each pass
6407 	 * acknowledges one of each pointed to by the inode.
6408 	 */
6409 	for (;;) {
6410 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6411 		numblks -= NINDIR(fs);
6412 		if (numblks <= 0)
6413 			break;
6414 		numblks = howmany(numblks, NINDIR(fs));
6415 	}
6416 out:
6417 	totblks = fsbtodb(fs, totblks);
6418 	/*
6419 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6420 	 * references.  We will correct it later in handle_complete_freeblks()
6421 	 * when we know the real count.
6422 	 */
6423 	if (totblks > datablocks)
6424 		return (0);
6425 	return (datablocks - totblks);
6426 }
6427 
6428 /*
6429  * Handle freeblocks for journaled softupdate filesystems.
6430  *
6431  * Contrary to normal softupdates, we must preserve the block pointers in
6432  * indirects until their subordinates are free.  This is to avoid journaling
6433  * every block that is freed which may consume more space than the journal
6434  * itself.  The recovery program will see the free block journals at the
6435  * base of the truncated area and traverse them to reclaim space.  The
6436  * pointers in the inode may be cleared immediately after the journal
6437  * records are written because each direct and indirect pointer in the
6438  * inode is recorded in a journal.  This permits full truncation to proceed
6439  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6440  *
6441  * The algorithm is as follows:
6442  * 1) Traverse the in-memory state and create journal entries to release
6443  *    the relevant blocks and full indirect trees.
6444  * 2) Traverse the indirect block chain adding partial truncation freework
6445  *    records to indirects in the path to lastlbn.  The freework will
6446  *    prevent new allocation dependencies from being satisfied in this
6447  *    indirect until the truncation completes.
6448  * 3) Read and lock the inode block, performing an update with the new size
6449  *    and pointers.  This prevents truncated data from becoming valid on
6450  *    disk through step 4.
6451  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6452  *    eliminate journal work for those records that do not require it.
6453  * 5) Schedule the journal records to be written followed by the inode block.
6454  * 6) Allocate any necessary frags for the end of file.
6455  * 7) Zero any partially truncated blocks.
6456  *
6457  * From this truncation proceeds asynchronously using the freework and
6458  * indir_trunc machinery.  The file will not be extended again into a
6459  * partially truncated indirect block until all work is completed but
6460  * the normal dependency mechanism ensures that it is rolled back/forward
6461  * as appropriate.  Further truncation may occur without delay and is
6462  * serialized in indir_trunc().
6463  */
6464 void
6465 softdep_journal_freeblocks(ip, cred, length, flags)
6466 	struct inode *ip;	/* The inode whose length is to be reduced */
6467 	struct ucred *cred;
6468 	off_t length;		/* The new length for the file */
6469 	int flags;		/* IO_EXT and/or IO_NORMAL */
6470 {
6471 	struct freeblks *freeblks, *fbn;
6472 	struct worklist *wk, *wkn;
6473 	struct inodedep *inodedep;
6474 	struct jblkdep *jblkdep;
6475 	struct allocdirect *adp, *adpn;
6476 	struct ufsmount *ump;
6477 	struct fs *fs;
6478 	struct buf *bp;
6479 	struct vnode *vp;
6480 	struct mount *mp;
6481 	ufs2_daddr_t extblocks, datablocks;
6482 	ufs_lbn_t tmpval, lbn, lastlbn;
6483 	int frags, lastoff, iboff, allocblock, needj, error, i;
6484 
6485 	fs = ip->i_fs;
6486 	ump = ip->i_ump;
6487 	mp = UFSTOVFS(ump);
6488 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6489 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6490 	vp = ITOV(ip);
6491 	needj = 1;
6492 	iboff = -1;
6493 	allocblock = 0;
6494 	extblocks = 0;
6495 	datablocks = 0;
6496 	frags = 0;
6497 	freeblks = newfreeblks(mp, ip);
6498 	ACQUIRE_LOCK(ump);
6499 	/*
6500 	 * If we're truncating a removed file that will never be written
6501 	 * we don't need to journal the block frees.  The canceled journals
6502 	 * for the allocations will suffice.
6503 	 */
6504 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6505 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6506 	    length == 0)
6507 		needj = 0;
6508 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6509 	    ip->i_number, length, needj);
6510 	FREE_LOCK(ump);
6511 	/*
6512 	 * Calculate the lbn that we are truncating to.  This results in -1
6513 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6514 	 * to keep, not the first lbn we want to truncate.
6515 	 */
6516 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6517 	lastoff = blkoff(fs, length);
6518 	/*
6519 	 * Compute frags we are keeping in lastlbn.  0 means all.
6520 	 */
6521 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6522 		frags = fragroundup(fs, lastoff);
6523 		/* adp offset of last valid allocdirect. */
6524 		iboff = lastlbn;
6525 	} else if (lastlbn > 0)
6526 		iboff = NDADDR;
6527 	if (fs->fs_magic == FS_UFS2_MAGIC)
6528 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6529 	/*
6530 	 * Handle normal data blocks and indirects.  This section saves
6531 	 * values used after the inode update to complete frag and indirect
6532 	 * truncation.
6533 	 */
6534 	if ((flags & IO_NORMAL) != 0) {
6535 		/*
6536 		 * Handle truncation of whole direct and indirect blocks.
6537 		 */
6538 		for (i = iboff + 1; i < NDADDR; i++)
6539 			setup_freedirect(freeblks, ip, i, needj);
6540 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6541 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6542 			/* Release a whole indirect tree. */
6543 			if (lbn > lastlbn) {
6544 				setup_freeindir(freeblks, ip, i, -lbn -i,
6545 				    needj);
6546 				continue;
6547 			}
6548 			iboff = i + NDADDR;
6549 			/*
6550 			 * Traverse partially truncated indirect tree.
6551 			 */
6552 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6553 				setup_trunc_indir(freeblks, ip, -lbn - i,
6554 				    lastlbn, DIP(ip, i_ib[i]));
6555 		}
6556 		/*
6557 		 * Handle partial truncation to a frag boundary.
6558 		 */
6559 		if (frags) {
6560 			ufs2_daddr_t blkno;
6561 			long oldfrags;
6562 
6563 			oldfrags = blksize(fs, ip, lastlbn);
6564 			blkno = DIP(ip, i_db[lastlbn]);
6565 			if (blkno && oldfrags != frags) {
6566 				oldfrags -= frags;
6567 				oldfrags = numfrags(ip->i_fs, oldfrags);
6568 				blkno += numfrags(ip->i_fs, frags);
6569 				newfreework(ump, freeblks, NULL, lastlbn,
6570 				    blkno, oldfrags, 0, needj);
6571 				if (needj)
6572 					adjust_newfreework(freeblks,
6573 					    numfrags(ip->i_fs, frags));
6574 			} else if (blkno == 0)
6575 				allocblock = 1;
6576 		}
6577 		/*
6578 		 * Add a journal record for partial truncate if we are
6579 		 * handling indirect blocks.  Non-indirects need no extra
6580 		 * journaling.
6581 		 */
6582 		if (length != 0 && lastlbn >= NDADDR) {
6583 			ip->i_flag |= IN_TRUNCATED;
6584 			newjtrunc(freeblks, length, 0);
6585 		}
6586 		ip->i_size = length;
6587 		DIP_SET(ip, i_size, ip->i_size);
6588 		datablocks = DIP(ip, i_blocks) - extblocks;
6589 		if (length != 0)
6590 			datablocks = blkcount(ip->i_fs, datablocks, length);
6591 		freeblks->fb_len = length;
6592 	}
6593 	if ((flags & IO_EXT) != 0) {
6594 		for (i = 0; i < NXADDR; i++)
6595 			setup_freeext(freeblks, ip, i, needj);
6596 		ip->i_din2->di_extsize = 0;
6597 		datablocks += extblocks;
6598 	}
6599 #ifdef QUOTA
6600 	/* Reference the quotas in case the block count is wrong in the end. */
6601 	quotaref(vp, freeblks->fb_quota);
6602 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6603 #endif
6604 	freeblks->fb_chkcnt = -datablocks;
6605 	UFS_LOCK(ump);
6606 	fs->fs_pendingblocks += datablocks;
6607 	UFS_UNLOCK(ump);
6608 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6609 	/*
6610 	 * Handle truncation of incomplete alloc direct dependencies.  We
6611 	 * hold the inode block locked to prevent incomplete dependencies
6612 	 * from reaching the disk while we are eliminating those that
6613 	 * have been truncated.  This is a partially inlined ffs_update().
6614 	 */
6615 	ufs_itimes(vp);
6616 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6617 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6618 	    (int)fs->fs_bsize, cred, &bp);
6619 	if (error) {
6620 		brelse(bp);
6621 		softdep_error("softdep_journal_freeblocks", error);
6622 		return;
6623 	}
6624 	if (bp->b_bufsize == fs->fs_bsize)
6625 		bp->b_flags |= B_CLUSTEROK;
6626 	softdep_update_inodeblock(ip, bp, 0);
6627 	if (ump->um_fstype == UFS1)
6628 		*((struct ufs1_dinode *)bp->b_data +
6629 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6630 	else
6631 		*((struct ufs2_dinode *)bp->b_data +
6632 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6633 	ACQUIRE_LOCK(ump);
6634 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6635 	if ((inodedep->id_state & IOSTARTED) != 0)
6636 		panic("softdep_setup_freeblocks: inode busy");
6637 	/*
6638 	 * Add the freeblks structure to the list of operations that
6639 	 * must await the zero'ed inode being written to disk. If we
6640 	 * still have a bitmap dependency (needj), then the inode
6641 	 * has never been written to disk, so we can process the
6642 	 * freeblks below once we have deleted the dependencies.
6643 	 */
6644 	if (needj)
6645 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6646 	else
6647 		freeblks->fb_state |= COMPLETE;
6648 	if ((flags & IO_NORMAL) != 0) {
6649 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6650 			if (adp->ad_offset > iboff)
6651 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6652 				    freeblks);
6653 			/*
6654 			 * Truncate the allocdirect.  We could eliminate
6655 			 * or modify journal records as well.
6656 			 */
6657 			else if (adp->ad_offset == iboff && frags)
6658 				adp->ad_newsize = frags;
6659 		}
6660 	}
6661 	if ((flags & IO_EXT) != 0)
6662 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6663 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6664 			    freeblks);
6665 	/*
6666 	 * Scan the bufwait list for newblock dependencies that will never
6667 	 * make it to disk.
6668 	 */
6669 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6670 		if (wk->wk_type != D_ALLOCDIRECT)
6671 			continue;
6672 		adp = WK_ALLOCDIRECT(wk);
6673 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6674 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6675 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6676 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6677 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6678 		}
6679 	}
6680 	/*
6681 	 * Add journal work.
6682 	 */
6683 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6684 		add_to_journal(&jblkdep->jb_list);
6685 	FREE_LOCK(ump);
6686 	bdwrite(bp);
6687 	/*
6688 	 * Truncate dependency structures beyond length.
6689 	 */
6690 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6691 	/*
6692 	 * This is only set when we need to allocate a fragment because
6693 	 * none existed at the end of a frag-sized file.  It handles only
6694 	 * allocating a new, zero filled block.
6695 	 */
6696 	if (allocblock) {
6697 		ip->i_size = length - lastoff;
6698 		DIP_SET(ip, i_size, ip->i_size);
6699 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6700 		if (error != 0) {
6701 			softdep_error("softdep_journal_freeblks", error);
6702 			return;
6703 		}
6704 		ip->i_size = length;
6705 		DIP_SET(ip, i_size, length);
6706 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6707 		allocbuf(bp, frags);
6708 		ffs_update(vp, 0);
6709 		bawrite(bp);
6710 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6711 		int size;
6712 
6713 		/*
6714 		 * Zero the end of a truncated frag or block.
6715 		 */
6716 		size = sblksize(fs, length, lastlbn);
6717 		error = bread(vp, lastlbn, size, cred, &bp);
6718 		if (error) {
6719 			softdep_error("softdep_journal_freeblks", error);
6720 			return;
6721 		}
6722 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6723 		bawrite(bp);
6724 
6725 	}
6726 	ACQUIRE_LOCK(ump);
6727 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6728 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6729 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6730 	/*
6731 	 * We zero earlier truncations so they don't erroneously
6732 	 * update i_blocks.
6733 	 */
6734 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6735 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6736 			fbn->fb_len = 0;
6737 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6738 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6739 		freeblks->fb_state |= INPROGRESS;
6740 	else
6741 		freeblks = NULL;
6742 	FREE_LOCK(ump);
6743 	if (freeblks)
6744 		handle_workitem_freeblocks(freeblks, 0);
6745 	trunc_pages(ip, length, extblocks, flags);
6746 
6747 }
6748 
6749 /*
6750  * Flush a JOP_SYNC to the journal.
6751  */
6752 void
6753 softdep_journal_fsync(ip)
6754 	struct inode *ip;
6755 {
6756 	struct jfsync *jfsync;
6757 
6758 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6759 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6760 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6761 		return;
6762 	ip->i_flag &= ~IN_TRUNCATED;
6763 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6764 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6765 	jfsync->jfs_size = ip->i_size;
6766 	jfsync->jfs_ino = ip->i_number;
6767 	ACQUIRE_LOCK(ip->i_ump);
6768 	add_to_journal(&jfsync->jfs_list);
6769 	jwait(&jfsync->jfs_list, MNT_WAIT);
6770 	FREE_LOCK(ip->i_ump);
6771 }
6772 
6773 /*
6774  * Block de-allocation dependencies.
6775  *
6776  * When blocks are de-allocated, the on-disk pointers must be nullified before
6777  * the blocks are made available for use by other files.  (The true
6778  * requirement is that old pointers must be nullified before new on-disk
6779  * pointers are set.  We chose this slightly more stringent requirement to
6780  * reduce complexity.) Our implementation handles this dependency by updating
6781  * the inode (or indirect block) appropriately but delaying the actual block
6782  * de-allocation (i.e., freemap and free space count manipulation) until
6783  * after the updated versions reach stable storage.  After the disk is
6784  * updated, the blocks can be safely de-allocated whenever it is convenient.
6785  * This implementation handles only the common case of reducing a file's
6786  * length to zero. Other cases are handled by the conventional synchronous
6787  * write approach.
6788  *
6789  * The ffs implementation with which we worked double-checks
6790  * the state of the block pointers and file size as it reduces
6791  * a file's length.  Some of this code is replicated here in our
6792  * soft updates implementation.  The freeblks->fb_chkcnt field is
6793  * used to transfer a part of this information to the procedure
6794  * that eventually de-allocates the blocks.
6795  *
6796  * This routine should be called from the routine that shortens
6797  * a file's length, before the inode's size or block pointers
6798  * are modified. It will save the block pointer information for
6799  * later release and zero the inode so that the calling routine
6800  * can release it.
6801  */
6802 void
6803 softdep_setup_freeblocks(ip, length, flags)
6804 	struct inode *ip;	/* The inode whose length is to be reduced */
6805 	off_t length;		/* The new length for the file */
6806 	int flags;		/* IO_EXT and/or IO_NORMAL */
6807 {
6808 	struct ufs1_dinode *dp1;
6809 	struct ufs2_dinode *dp2;
6810 	struct freeblks *freeblks;
6811 	struct inodedep *inodedep;
6812 	struct allocdirect *adp;
6813 	struct ufsmount *ump;
6814 	struct buf *bp;
6815 	struct fs *fs;
6816 	ufs2_daddr_t extblocks, datablocks;
6817 	struct mount *mp;
6818 	int i, delay, error;
6819 	ufs_lbn_t tmpval;
6820 	ufs_lbn_t lbn;
6821 
6822 	ump = ip->i_ump;
6823 	mp = UFSTOVFS(ump);
6824 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6825 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6826 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6827 	    ip->i_number, length);
6828 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6829 	fs = ip->i_fs;
6830 	freeblks = newfreeblks(mp, ip);
6831 	extblocks = 0;
6832 	datablocks = 0;
6833 	if (fs->fs_magic == FS_UFS2_MAGIC)
6834 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6835 	if ((flags & IO_NORMAL) != 0) {
6836 		for (i = 0; i < NDADDR; i++)
6837 			setup_freedirect(freeblks, ip, i, 0);
6838 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6839 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6840 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6841 		ip->i_size = 0;
6842 		DIP_SET(ip, i_size, 0);
6843 		datablocks = DIP(ip, i_blocks) - extblocks;
6844 	}
6845 	if ((flags & IO_EXT) != 0) {
6846 		for (i = 0; i < NXADDR; i++)
6847 			setup_freeext(freeblks, ip, i, 0);
6848 		ip->i_din2->di_extsize = 0;
6849 		datablocks += extblocks;
6850 	}
6851 #ifdef QUOTA
6852 	/* Reference the quotas in case the block count is wrong in the end. */
6853 	quotaref(ITOV(ip), freeblks->fb_quota);
6854 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6855 #endif
6856 	freeblks->fb_chkcnt = -datablocks;
6857 	UFS_LOCK(ump);
6858 	fs->fs_pendingblocks += datablocks;
6859 	UFS_UNLOCK(ump);
6860 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6861 	/*
6862 	 * Push the zero'ed inode to to its disk buffer so that we are free
6863 	 * to delete its dependencies below. Once the dependencies are gone
6864 	 * the buffer can be safely released.
6865 	 */
6866 	if ((error = bread(ip->i_devvp,
6867 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6868 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6869 		brelse(bp);
6870 		softdep_error("softdep_setup_freeblocks", error);
6871 	}
6872 	if (ump->um_fstype == UFS1) {
6873 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6874 		    ino_to_fsbo(fs, ip->i_number));
6875 		ip->i_din1->di_freelink = dp1->di_freelink;
6876 		*dp1 = *ip->i_din1;
6877 	} else {
6878 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6879 		    ino_to_fsbo(fs, ip->i_number));
6880 		ip->i_din2->di_freelink = dp2->di_freelink;
6881 		*dp2 = *ip->i_din2;
6882 	}
6883 	/*
6884 	 * Find and eliminate any inode dependencies.
6885 	 */
6886 	ACQUIRE_LOCK(ump);
6887 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6888 	if ((inodedep->id_state & IOSTARTED) != 0)
6889 		panic("softdep_setup_freeblocks: inode busy");
6890 	/*
6891 	 * Add the freeblks structure to the list of operations that
6892 	 * must await the zero'ed inode being written to disk. If we
6893 	 * still have a bitmap dependency (delay == 0), then the inode
6894 	 * has never been written to disk, so we can process the
6895 	 * freeblks below once we have deleted the dependencies.
6896 	 */
6897 	delay = (inodedep->id_state & DEPCOMPLETE);
6898 	if (delay)
6899 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6900 	else
6901 		freeblks->fb_state |= COMPLETE;
6902 	/*
6903 	 * Because the file length has been truncated to zero, any
6904 	 * pending block allocation dependency structures associated
6905 	 * with this inode are obsolete and can simply be de-allocated.
6906 	 * We must first merge the two dependency lists to get rid of
6907 	 * any duplicate freefrag structures, then purge the merged list.
6908 	 * If we still have a bitmap dependency, then the inode has never
6909 	 * been written to disk, so we can free any fragments without delay.
6910 	 */
6911 	if (flags & IO_NORMAL) {
6912 		merge_inode_lists(&inodedep->id_newinoupdt,
6913 		    &inodedep->id_inoupdt);
6914 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6915 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6916 			    freeblks);
6917 	}
6918 	if (flags & IO_EXT) {
6919 		merge_inode_lists(&inodedep->id_newextupdt,
6920 		    &inodedep->id_extupdt);
6921 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6922 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6923 			    freeblks);
6924 	}
6925 	FREE_LOCK(ump);
6926 	bdwrite(bp);
6927 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6928 	ACQUIRE_LOCK(ump);
6929 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6930 		(void) free_inodedep(inodedep);
6931 	freeblks->fb_state |= DEPCOMPLETE;
6932 	/*
6933 	 * If the inode with zeroed block pointers is now on disk
6934 	 * we can start freeing blocks.
6935 	 */
6936 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6937 		freeblks->fb_state |= INPROGRESS;
6938 	else
6939 		freeblks = NULL;
6940 	FREE_LOCK(ump);
6941 	if (freeblks)
6942 		handle_workitem_freeblocks(freeblks, 0);
6943 	trunc_pages(ip, length, extblocks, flags);
6944 }
6945 
6946 /*
6947  * Eliminate pages from the page cache that back parts of this inode and
6948  * adjust the vnode pager's idea of our size.  This prevents stale data
6949  * from hanging around in the page cache.
6950  */
6951 static void
6952 trunc_pages(ip, length, extblocks, flags)
6953 	struct inode *ip;
6954 	off_t length;
6955 	ufs2_daddr_t extblocks;
6956 	int flags;
6957 {
6958 	struct vnode *vp;
6959 	struct fs *fs;
6960 	ufs_lbn_t lbn;
6961 	off_t end, extend;
6962 
6963 	vp = ITOV(ip);
6964 	fs = ip->i_fs;
6965 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6966 	if ((flags & IO_EXT) != 0)
6967 		vn_pages_remove(vp, extend, 0);
6968 	if ((flags & IO_NORMAL) == 0)
6969 		return;
6970 	BO_LOCK(&vp->v_bufobj);
6971 	drain_output(vp);
6972 	BO_UNLOCK(&vp->v_bufobj);
6973 	/*
6974 	 * The vnode pager eliminates file pages we eliminate indirects
6975 	 * below.
6976 	 */
6977 	vnode_pager_setsize(vp, length);
6978 	/*
6979 	 * Calculate the end based on the last indirect we want to keep.  If
6980 	 * the block extends into indirects we can just use the negative of
6981 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6982 	 * be careful not to remove those, if they exist.  double and triple
6983 	 * indirect lbns do not overlap with others so it is not important
6984 	 * to verify how many levels are required.
6985 	 */
6986 	lbn = lblkno(fs, length);
6987 	if (lbn >= NDADDR) {
6988 		/* Calculate the virtual lbn of the triple indirect. */
6989 		lbn = -lbn - (NIADDR - 1);
6990 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6991 	} else
6992 		end = extend;
6993 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6994 }
6995 
6996 /*
6997  * See if the buf bp is in the range eliminated by truncation.
6998  */
6999 static int
7000 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7001 	struct buf *bp;
7002 	int *blkoffp;
7003 	ufs_lbn_t lastlbn;
7004 	int lastoff;
7005 	int flags;
7006 {
7007 	ufs_lbn_t lbn;
7008 
7009 	*blkoffp = 0;
7010 	/* Only match ext/normal blocks as appropriate. */
7011 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7012 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7013 		return (0);
7014 	/* ALTDATA is always a full truncation. */
7015 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7016 		return (1);
7017 	/* -1 is full truncation. */
7018 	if (lastlbn == -1)
7019 		return (1);
7020 	/*
7021 	 * If this is a partial truncate we only want those
7022 	 * blocks and indirect blocks that cover the range
7023 	 * we're after.
7024 	 */
7025 	lbn = bp->b_lblkno;
7026 	if (lbn < 0)
7027 		lbn = -(lbn + lbn_level(lbn));
7028 	if (lbn < lastlbn)
7029 		return (0);
7030 	/* Here we only truncate lblkno if it's partial. */
7031 	if (lbn == lastlbn) {
7032 		if (lastoff == 0)
7033 			return (0);
7034 		*blkoffp = lastoff;
7035 	}
7036 	return (1);
7037 }
7038 
7039 /*
7040  * Eliminate any dependencies that exist in memory beyond lblkno:off
7041  */
7042 static void
7043 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7044 	struct inode *ip;
7045 	struct freeblks *freeblks;
7046 	ufs_lbn_t lastlbn;
7047 	int lastoff;
7048 	int flags;
7049 {
7050 	struct bufobj *bo;
7051 	struct vnode *vp;
7052 	struct buf *bp;
7053 	int blkoff;
7054 
7055 	/*
7056 	 * We must wait for any I/O in progress to finish so that
7057 	 * all potential buffers on the dirty list will be visible.
7058 	 * Once they are all there, walk the list and get rid of
7059 	 * any dependencies.
7060 	 */
7061 	vp = ITOV(ip);
7062 	bo = &vp->v_bufobj;
7063 	BO_LOCK(bo);
7064 	drain_output(vp);
7065 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7066 		bp->b_vflags &= ~BV_SCANNED;
7067 restart:
7068 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7069 		if (bp->b_vflags & BV_SCANNED)
7070 			continue;
7071 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7072 			bp->b_vflags |= BV_SCANNED;
7073 			continue;
7074 		}
7075 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7076 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7077 			goto restart;
7078 		BO_UNLOCK(bo);
7079 		if (deallocate_dependencies(bp, freeblks, blkoff))
7080 			bqrelse(bp);
7081 		else
7082 			brelse(bp);
7083 		BO_LOCK(bo);
7084 		goto restart;
7085 	}
7086 	/*
7087 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7088 	 */
7089 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7090 		bp->b_vflags &= ~BV_SCANNED;
7091 cleanrestart:
7092 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7093 		if (bp->b_vflags & BV_SCANNED)
7094 			continue;
7095 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7096 			bp->b_vflags |= BV_SCANNED;
7097 			continue;
7098 		}
7099 		if (BUF_LOCK(bp,
7100 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7101 		    BO_LOCKPTR(bo)) == ENOLCK) {
7102 			BO_LOCK(bo);
7103 			goto cleanrestart;
7104 		}
7105 		bp->b_vflags |= BV_SCANNED;
7106 		bremfree(bp);
7107 		if (blkoff != 0) {
7108 			allocbuf(bp, blkoff);
7109 			bqrelse(bp);
7110 		} else {
7111 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7112 			brelse(bp);
7113 		}
7114 		BO_LOCK(bo);
7115 		goto cleanrestart;
7116 	}
7117 	drain_output(vp);
7118 	BO_UNLOCK(bo);
7119 }
7120 
7121 static int
7122 cancel_pagedep(pagedep, freeblks, blkoff)
7123 	struct pagedep *pagedep;
7124 	struct freeblks *freeblks;
7125 	int blkoff;
7126 {
7127 	struct jremref *jremref;
7128 	struct jmvref *jmvref;
7129 	struct dirrem *dirrem, *tmp;
7130 	int i;
7131 
7132 	/*
7133 	 * Copy any directory remove dependencies to the list
7134 	 * to be processed after the freeblks proceeds.  If
7135 	 * directory entry never made it to disk they
7136 	 * can be dumped directly onto the work list.
7137 	 */
7138 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7139 		/* Skip this directory removal if it is intended to remain. */
7140 		if (dirrem->dm_offset < blkoff)
7141 			continue;
7142 		/*
7143 		 * If there are any dirrems we wait for the journal write
7144 		 * to complete and then restart the buf scan as the lock
7145 		 * has been dropped.
7146 		 */
7147 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7148 			jwait(&jremref->jr_list, MNT_WAIT);
7149 			return (ERESTART);
7150 		}
7151 		LIST_REMOVE(dirrem, dm_next);
7152 		dirrem->dm_dirinum = pagedep->pd_ino;
7153 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7154 	}
7155 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7156 		jwait(&jmvref->jm_list, MNT_WAIT);
7157 		return (ERESTART);
7158 	}
7159 	/*
7160 	 * When we're partially truncating a pagedep we just want to flush
7161 	 * journal entries and return.  There can not be any adds in the
7162 	 * truncated portion of the directory and newblk must remain if
7163 	 * part of the block remains.
7164 	 */
7165 	if (blkoff != 0) {
7166 		struct diradd *dap;
7167 
7168 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7169 			if (dap->da_offset > blkoff)
7170 				panic("cancel_pagedep: diradd %p off %d > %d",
7171 				    dap, dap->da_offset, blkoff);
7172 		for (i = 0; i < DAHASHSZ; i++)
7173 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7174 				if (dap->da_offset > blkoff)
7175 					panic("cancel_pagedep: diradd %p off %d > %d",
7176 					    dap, dap->da_offset, blkoff);
7177 		return (0);
7178 	}
7179 	/*
7180 	 * There should be no directory add dependencies present
7181 	 * as the directory could not be truncated until all
7182 	 * children were removed.
7183 	 */
7184 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7185 	    ("deallocate_dependencies: pendinghd != NULL"));
7186 	for (i = 0; i < DAHASHSZ; i++)
7187 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7188 		    ("deallocate_dependencies: diraddhd != NULL"));
7189 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7190 		free_newdirblk(pagedep->pd_newdirblk);
7191 	if (free_pagedep(pagedep) == 0)
7192 		panic("Failed to free pagedep %p", pagedep);
7193 	return (0);
7194 }
7195 
7196 /*
7197  * Reclaim any dependency structures from a buffer that is about to
7198  * be reallocated to a new vnode. The buffer must be locked, thus,
7199  * no I/O completion operations can occur while we are manipulating
7200  * its associated dependencies. The mutex is held so that other I/O's
7201  * associated with related dependencies do not occur.
7202  */
7203 static int
7204 deallocate_dependencies(bp, freeblks, off)
7205 	struct buf *bp;
7206 	struct freeblks *freeblks;
7207 	int off;
7208 {
7209 	struct indirdep *indirdep;
7210 	struct pagedep *pagedep;
7211 	struct worklist *wk, *wkn;
7212 	struct ufsmount *ump;
7213 
7214 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7215 		goto done;
7216 	ump = VFSTOUFS(wk->wk_mp);
7217 	ACQUIRE_LOCK(ump);
7218 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7219 		switch (wk->wk_type) {
7220 		case D_INDIRDEP:
7221 			indirdep = WK_INDIRDEP(wk);
7222 			if (bp->b_lblkno >= 0 ||
7223 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7224 				panic("deallocate_dependencies: not indir");
7225 			cancel_indirdep(indirdep, bp, freeblks);
7226 			continue;
7227 
7228 		case D_PAGEDEP:
7229 			pagedep = WK_PAGEDEP(wk);
7230 			if (cancel_pagedep(pagedep, freeblks, off)) {
7231 				FREE_LOCK(ump);
7232 				return (ERESTART);
7233 			}
7234 			continue;
7235 
7236 		case D_ALLOCINDIR:
7237 			/*
7238 			 * Simply remove the allocindir, we'll find it via
7239 			 * the indirdep where we can clear pointers if
7240 			 * needed.
7241 			 */
7242 			WORKLIST_REMOVE(wk);
7243 			continue;
7244 
7245 		case D_FREEWORK:
7246 			/*
7247 			 * A truncation is waiting for the zero'd pointers
7248 			 * to be written.  It can be freed when the freeblks
7249 			 * is journaled.
7250 			 */
7251 			WORKLIST_REMOVE(wk);
7252 			wk->wk_state |= ONDEPLIST;
7253 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7254 			break;
7255 
7256 		case D_ALLOCDIRECT:
7257 			if (off != 0)
7258 				continue;
7259 			/* FALLTHROUGH */
7260 		default:
7261 			panic("deallocate_dependencies: Unexpected type %s",
7262 			    TYPENAME(wk->wk_type));
7263 			/* NOTREACHED */
7264 		}
7265 	}
7266 	FREE_LOCK(ump);
7267 done:
7268 	/*
7269 	 * Don't throw away this buf, we were partially truncating and
7270 	 * some deps may always remain.
7271 	 */
7272 	if (off) {
7273 		allocbuf(bp, off);
7274 		bp->b_vflags |= BV_SCANNED;
7275 		return (EBUSY);
7276 	}
7277 	bp->b_flags |= B_INVAL | B_NOCACHE;
7278 
7279 	return (0);
7280 }
7281 
7282 /*
7283  * An allocdirect is being canceled due to a truncate.  We must make sure
7284  * the journal entry is released in concert with the blkfree that releases
7285  * the storage.  Completed journal entries must not be released until the
7286  * space is no longer pointed to by the inode or in the bitmap.
7287  */
7288 static void
7289 cancel_allocdirect(adphead, adp, freeblks)
7290 	struct allocdirectlst *adphead;
7291 	struct allocdirect *adp;
7292 	struct freeblks *freeblks;
7293 {
7294 	struct freework *freework;
7295 	struct newblk *newblk;
7296 	struct worklist *wk;
7297 
7298 	TAILQ_REMOVE(adphead, adp, ad_next);
7299 	newblk = (struct newblk *)adp;
7300 	freework = NULL;
7301 	/*
7302 	 * Find the correct freework structure.
7303 	 */
7304 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7305 		if (wk->wk_type != D_FREEWORK)
7306 			continue;
7307 		freework = WK_FREEWORK(wk);
7308 		if (freework->fw_blkno == newblk->nb_newblkno)
7309 			break;
7310 	}
7311 	if (freework == NULL)
7312 		panic("cancel_allocdirect: Freework not found");
7313 	/*
7314 	 * If a newblk exists at all we still have the journal entry that
7315 	 * initiated the allocation so we do not need to journal the free.
7316 	 */
7317 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7318 	/*
7319 	 * If the journal hasn't been written the jnewblk must be passed
7320 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7321 	 * this by linking the journal dependency into the freework to be
7322 	 * freed when freework_freeblock() is called.  If the journal has
7323 	 * been written we can simply reclaim the journal space when the
7324 	 * freeblks work is complete.
7325 	 */
7326 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7327 	    &freeblks->fb_jwork);
7328 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7329 }
7330 
7331 
7332 /*
7333  * Cancel a new block allocation.  May be an indirect or direct block.  We
7334  * remove it from various lists and return any journal record that needs to
7335  * be resolved by the caller.
7336  *
7337  * A special consideration is made for indirects which were never pointed
7338  * at on disk and will never be found once this block is released.
7339  */
7340 static struct jnewblk *
7341 cancel_newblk(newblk, wk, wkhd)
7342 	struct newblk *newblk;
7343 	struct worklist *wk;
7344 	struct workhead *wkhd;
7345 {
7346 	struct jnewblk *jnewblk;
7347 
7348 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7349 
7350 	newblk->nb_state |= GOINGAWAY;
7351 	/*
7352 	 * Previously we traversed the completedhd on each indirdep
7353 	 * attached to this newblk to cancel them and gather journal
7354 	 * work.  Since we need only the oldest journal segment and
7355 	 * the lowest point on the tree will always have the oldest
7356 	 * journal segment we are free to release the segments
7357 	 * of any subordinates and may leave the indirdep list to
7358 	 * indirdep_complete() when this newblk is freed.
7359 	 */
7360 	if (newblk->nb_state & ONDEPLIST) {
7361 		newblk->nb_state &= ~ONDEPLIST;
7362 		LIST_REMOVE(newblk, nb_deps);
7363 	}
7364 	if (newblk->nb_state & ONWORKLIST)
7365 		WORKLIST_REMOVE(&newblk->nb_list);
7366 	/*
7367 	 * If the journal entry hasn't been written we save a pointer to
7368 	 * the dependency that frees it until it is written or the
7369 	 * superseding operation completes.
7370 	 */
7371 	jnewblk = newblk->nb_jnewblk;
7372 	if (jnewblk != NULL && wk != NULL) {
7373 		newblk->nb_jnewblk = NULL;
7374 		jnewblk->jn_dep = wk;
7375 	}
7376 	if (!LIST_EMPTY(&newblk->nb_jwork))
7377 		jwork_move(wkhd, &newblk->nb_jwork);
7378 	/*
7379 	 * When truncating we must free the newdirblk early to remove
7380 	 * the pagedep from the hash before returning.
7381 	 */
7382 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7383 		free_newdirblk(WK_NEWDIRBLK(wk));
7384 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7385 		panic("cancel_newblk: extra newdirblk");
7386 
7387 	return (jnewblk);
7388 }
7389 
7390 /*
7391  * Schedule the freefrag associated with a newblk to be released once
7392  * the pointers are written and the previous block is no longer needed.
7393  */
7394 static void
7395 newblk_freefrag(newblk)
7396 	struct newblk *newblk;
7397 {
7398 	struct freefrag *freefrag;
7399 
7400 	if (newblk->nb_freefrag == NULL)
7401 		return;
7402 	freefrag = newblk->nb_freefrag;
7403 	newblk->nb_freefrag = NULL;
7404 	freefrag->ff_state |= COMPLETE;
7405 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7406 		add_to_worklist(&freefrag->ff_list, 0);
7407 }
7408 
7409 /*
7410  * Free a newblk. Generate a new freefrag work request if appropriate.
7411  * This must be called after the inode pointer and any direct block pointers
7412  * are valid or fully removed via truncate or frag extension.
7413  */
7414 static void
7415 free_newblk(newblk)
7416 	struct newblk *newblk;
7417 {
7418 	struct indirdep *indirdep;
7419 	struct worklist *wk;
7420 
7421 	KASSERT(newblk->nb_jnewblk == NULL,
7422 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7423 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7424 	    ("free_newblk: unclaimed newblk"));
7425 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7426 	newblk_freefrag(newblk);
7427 	if (newblk->nb_state & ONDEPLIST)
7428 		LIST_REMOVE(newblk, nb_deps);
7429 	if (newblk->nb_state & ONWORKLIST)
7430 		WORKLIST_REMOVE(&newblk->nb_list);
7431 	LIST_REMOVE(newblk, nb_hash);
7432 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7433 		free_newdirblk(WK_NEWDIRBLK(wk));
7434 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7435 		panic("free_newblk: extra newdirblk");
7436 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7437 		indirdep_complete(indirdep);
7438 	handle_jwork(&newblk->nb_jwork);
7439 	WORKITEM_FREE(newblk, D_NEWBLK);
7440 }
7441 
7442 /*
7443  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7444  * This routine must be called with splbio interrupts blocked.
7445  */
7446 static void
7447 free_newdirblk(newdirblk)
7448 	struct newdirblk *newdirblk;
7449 {
7450 	struct pagedep *pagedep;
7451 	struct diradd *dap;
7452 	struct worklist *wk;
7453 
7454 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7455 	WORKLIST_REMOVE(&newdirblk->db_list);
7456 	/*
7457 	 * If the pagedep is still linked onto the directory buffer
7458 	 * dependency chain, then some of the entries on the
7459 	 * pd_pendinghd list may not be committed to disk yet. In
7460 	 * this case, we will simply clear the NEWBLOCK flag and
7461 	 * let the pd_pendinghd list be processed when the pagedep
7462 	 * is next written. If the pagedep is no longer on the buffer
7463 	 * dependency chain, then all the entries on the pd_pending
7464 	 * list are committed to disk and we can free them here.
7465 	 */
7466 	pagedep = newdirblk->db_pagedep;
7467 	pagedep->pd_state &= ~NEWBLOCK;
7468 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7469 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7470 			free_diradd(dap, NULL);
7471 		/*
7472 		 * If no dependencies remain, the pagedep will be freed.
7473 		 */
7474 		free_pagedep(pagedep);
7475 	}
7476 	/* Should only ever be one item in the list. */
7477 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7478 		WORKLIST_REMOVE(wk);
7479 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7480 	}
7481 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7482 }
7483 
7484 /*
7485  * Prepare an inode to be freed. The actual free operation is not
7486  * done until the zero'ed inode has been written to disk.
7487  */
7488 void
7489 softdep_freefile(pvp, ino, mode)
7490 	struct vnode *pvp;
7491 	ino_t ino;
7492 	int mode;
7493 {
7494 	struct inode *ip = VTOI(pvp);
7495 	struct inodedep *inodedep;
7496 	struct freefile *freefile;
7497 	struct freeblks *freeblks;
7498 	struct ufsmount *ump;
7499 
7500 	ump = ip->i_ump;
7501 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7502 	    ("softdep_freefile called on non-softdep filesystem"));
7503 	/*
7504 	 * This sets up the inode de-allocation dependency.
7505 	 */
7506 	freefile = malloc(sizeof(struct freefile),
7507 		M_FREEFILE, M_SOFTDEP_FLAGS);
7508 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7509 	freefile->fx_mode = mode;
7510 	freefile->fx_oldinum = ino;
7511 	freefile->fx_devvp = ip->i_devvp;
7512 	LIST_INIT(&freefile->fx_jwork);
7513 	UFS_LOCK(ump);
7514 	ip->i_fs->fs_pendinginodes += 1;
7515 	UFS_UNLOCK(ump);
7516 
7517 	/*
7518 	 * If the inodedep does not exist, then the zero'ed inode has
7519 	 * been written to disk. If the allocated inode has never been
7520 	 * written to disk, then the on-disk inode is zero'ed. In either
7521 	 * case we can free the file immediately.  If the journal was
7522 	 * canceled before being written the inode will never make it to
7523 	 * disk and we must send the canceled journal entrys to
7524 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7525 	 * Any blocks waiting on the inode to write can be safely freed
7526 	 * here as it will never been written.
7527 	 */
7528 	ACQUIRE_LOCK(ump);
7529 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7530 	if (inodedep) {
7531 		/*
7532 		 * Clear out freeblks that no longer need to reference
7533 		 * this inode.
7534 		 */
7535 		while ((freeblks =
7536 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7537 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7538 			    fb_next);
7539 			freeblks->fb_state &= ~ONDEPLIST;
7540 		}
7541 		/*
7542 		 * Remove this inode from the unlinked list.
7543 		 */
7544 		if (inodedep->id_state & UNLINKED) {
7545 			/*
7546 			 * Save the journal work to be freed with the bitmap
7547 			 * before we clear UNLINKED.  Otherwise it can be lost
7548 			 * if the inode block is written.
7549 			 */
7550 			handle_bufwait(inodedep, &freefile->fx_jwork);
7551 			clear_unlinked_inodedep(inodedep);
7552 			/*
7553 			 * Re-acquire inodedep as we've dropped the
7554 			 * per-filesystem lock in clear_unlinked_inodedep().
7555 			 */
7556 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7557 		}
7558 	}
7559 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7560 		FREE_LOCK(ump);
7561 		handle_workitem_freefile(freefile);
7562 		return;
7563 	}
7564 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7565 		inodedep->id_state |= GOINGAWAY;
7566 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7567 	FREE_LOCK(ump);
7568 	if (ip->i_number == ino)
7569 		ip->i_flag |= IN_MODIFIED;
7570 }
7571 
7572 /*
7573  * Check to see if an inode has never been written to disk. If
7574  * so free the inodedep and return success, otherwise return failure.
7575  * This routine must be called with splbio interrupts blocked.
7576  *
7577  * If we still have a bitmap dependency, then the inode has never
7578  * been written to disk. Drop the dependency as it is no longer
7579  * necessary since the inode is being deallocated. We set the
7580  * ALLCOMPLETE flags since the bitmap now properly shows that the
7581  * inode is not allocated. Even if the inode is actively being
7582  * written, it has been rolled back to its zero'ed state, so we
7583  * are ensured that a zero inode is what is on the disk. For short
7584  * lived files, this change will usually result in removing all the
7585  * dependencies from the inode so that it can be freed immediately.
7586  */
7587 static int
7588 check_inode_unwritten(inodedep)
7589 	struct inodedep *inodedep;
7590 {
7591 
7592 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7593 
7594 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7595 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7596 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7597 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7598 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7599 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7600 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7601 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7602 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7603 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7604 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7605 	    inodedep->id_mkdiradd != NULL ||
7606 	    inodedep->id_nlinkdelta != 0)
7607 		return (0);
7608 	/*
7609 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7610 	 * trying to allocate memory without holding "Softdep Lock".
7611 	 */
7612 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7613 	    inodedep->id_savedino1 == NULL)
7614 		return (0);
7615 
7616 	if (inodedep->id_state & ONDEPLIST)
7617 		LIST_REMOVE(inodedep, id_deps);
7618 	inodedep->id_state &= ~ONDEPLIST;
7619 	inodedep->id_state |= ALLCOMPLETE;
7620 	inodedep->id_bmsafemap = NULL;
7621 	if (inodedep->id_state & ONWORKLIST)
7622 		WORKLIST_REMOVE(&inodedep->id_list);
7623 	if (inodedep->id_savedino1 != NULL) {
7624 		free(inodedep->id_savedino1, M_SAVEDINO);
7625 		inodedep->id_savedino1 = NULL;
7626 	}
7627 	if (free_inodedep(inodedep) == 0)
7628 		panic("check_inode_unwritten: busy inode");
7629 	return (1);
7630 }
7631 
7632 static int
7633 check_inodedep_free(inodedep)
7634 	struct inodedep *inodedep;
7635 {
7636 
7637 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7638 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7639 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7640 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7641 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7642 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7643 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7644 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7645 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7646 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7647 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7648 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7649 	    inodedep->id_mkdiradd != NULL ||
7650 	    inodedep->id_nlinkdelta != 0 ||
7651 	    inodedep->id_savedino1 != NULL)
7652 		return (0);
7653 	return (1);
7654 }
7655 
7656 /*
7657  * Try to free an inodedep structure. Return 1 if it could be freed.
7658  */
7659 static int
7660 free_inodedep(inodedep)
7661 	struct inodedep *inodedep;
7662 {
7663 
7664 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7665 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7666 	    !check_inodedep_free(inodedep))
7667 		return (0);
7668 	if (inodedep->id_state & ONDEPLIST)
7669 		LIST_REMOVE(inodedep, id_deps);
7670 	LIST_REMOVE(inodedep, id_hash);
7671 	WORKITEM_FREE(inodedep, D_INODEDEP);
7672 	return (1);
7673 }
7674 
7675 /*
7676  * Free the block referenced by a freework structure.  The parent freeblks
7677  * structure is released and completed when the final cg bitmap reaches
7678  * the disk.  This routine may be freeing a jnewblk which never made it to
7679  * disk in which case we do not have to wait as the operation is undone
7680  * in memory immediately.
7681  */
7682 static void
7683 freework_freeblock(freework)
7684 	struct freework *freework;
7685 {
7686 	struct freeblks *freeblks;
7687 	struct jnewblk *jnewblk;
7688 	struct ufsmount *ump;
7689 	struct workhead wkhd;
7690 	struct fs *fs;
7691 	int bsize;
7692 	int needj;
7693 
7694 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7695 	LOCK_OWNED(ump);
7696 	/*
7697 	 * Handle partial truncate separately.
7698 	 */
7699 	if (freework->fw_indir) {
7700 		complete_trunc_indir(freework);
7701 		return;
7702 	}
7703 	freeblks = freework->fw_freeblks;
7704 	fs = ump->um_fs;
7705 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7706 	bsize = lfragtosize(fs, freework->fw_frags);
7707 	LIST_INIT(&wkhd);
7708 	/*
7709 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7710 	 * on the indirblk hashtable and prevents premature freeing.
7711 	 */
7712 	freework->fw_state |= DEPCOMPLETE;
7713 	/*
7714 	 * SUJ needs to wait for the segment referencing freed indirect
7715 	 * blocks to expire so that we know the checker will not confuse
7716 	 * a re-allocated indirect block with its old contents.
7717 	 */
7718 	if (needj && freework->fw_lbn <= -NDADDR)
7719 		indirblk_insert(freework);
7720 	/*
7721 	 * If we are canceling an existing jnewblk pass it to the free
7722 	 * routine, otherwise pass the freeblk which will ultimately
7723 	 * release the freeblks.  If we're not journaling, we can just
7724 	 * free the freeblks immediately.
7725 	 */
7726 	jnewblk = freework->fw_jnewblk;
7727 	if (jnewblk != NULL) {
7728 		cancel_jnewblk(jnewblk, &wkhd);
7729 		needj = 0;
7730 	} else if (needj) {
7731 		freework->fw_state |= DELAYEDFREE;
7732 		freeblks->fb_cgwait++;
7733 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7734 	}
7735 	FREE_LOCK(ump);
7736 	freeblks_free(ump, freeblks, btodb(bsize));
7737 	CTR4(KTR_SUJ,
7738 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7739 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7740 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7741 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7742 	ACQUIRE_LOCK(ump);
7743 	/*
7744 	 * The jnewblk will be discarded and the bits in the map never
7745 	 * made it to disk.  We can immediately free the freeblk.
7746 	 */
7747 	if (needj == 0)
7748 		handle_written_freework(freework);
7749 }
7750 
7751 /*
7752  * We enqueue freework items that need processing back on the freeblks and
7753  * add the freeblks to the worklist.  This makes it easier to find all work
7754  * required to flush a truncation in process_truncates().
7755  */
7756 static void
7757 freework_enqueue(freework)
7758 	struct freework *freework;
7759 {
7760 	struct freeblks *freeblks;
7761 
7762 	freeblks = freework->fw_freeblks;
7763 	if ((freework->fw_state & INPROGRESS) == 0)
7764 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7765 	if ((freeblks->fb_state &
7766 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7767 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7768 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7769 }
7770 
7771 /*
7772  * Start, continue, or finish the process of freeing an indirect block tree.
7773  * The free operation may be paused at any point with fw_off containing the
7774  * offset to restart from.  This enables us to implement some flow control
7775  * for large truncates which may fan out and generate a huge number of
7776  * dependencies.
7777  */
7778 static void
7779 handle_workitem_indirblk(freework)
7780 	struct freework *freework;
7781 {
7782 	struct freeblks *freeblks;
7783 	struct ufsmount *ump;
7784 	struct fs *fs;
7785 
7786 	freeblks = freework->fw_freeblks;
7787 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7788 	fs = ump->um_fs;
7789 	if (freework->fw_state & DEPCOMPLETE) {
7790 		handle_written_freework(freework);
7791 		return;
7792 	}
7793 	if (freework->fw_off == NINDIR(fs)) {
7794 		freework_freeblock(freework);
7795 		return;
7796 	}
7797 	freework->fw_state |= INPROGRESS;
7798 	FREE_LOCK(ump);
7799 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7800 	    freework->fw_lbn);
7801 	ACQUIRE_LOCK(ump);
7802 }
7803 
7804 /*
7805  * Called when a freework structure attached to a cg buf is written.  The
7806  * ref on either the parent or the freeblks structure is released and
7807  * the freeblks is added back to the worklist if there is more work to do.
7808  */
7809 static void
7810 handle_written_freework(freework)
7811 	struct freework *freework;
7812 {
7813 	struct freeblks *freeblks;
7814 	struct freework *parent;
7815 
7816 	freeblks = freework->fw_freeblks;
7817 	parent = freework->fw_parent;
7818 	if (freework->fw_state & DELAYEDFREE)
7819 		freeblks->fb_cgwait--;
7820 	freework->fw_state |= COMPLETE;
7821 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7822 		WORKITEM_FREE(freework, D_FREEWORK);
7823 	if (parent) {
7824 		if (--parent->fw_ref == 0)
7825 			freework_enqueue(parent);
7826 		return;
7827 	}
7828 	if (--freeblks->fb_ref != 0)
7829 		return;
7830 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7831 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7832 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7833 }
7834 
7835 /*
7836  * This workitem routine performs the block de-allocation.
7837  * The workitem is added to the pending list after the updated
7838  * inode block has been written to disk.  As mentioned above,
7839  * checks regarding the number of blocks de-allocated (compared
7840  * to the number of blocks allocated for the file) are also
7841  * performed in this function.
7842  */
7843 static int
7844 handle_workitem_freeblocks(freeblks, flags)
7845 	struct freeblks *freeblks;
7846 	int flags;
7847 {
7848 	struct freework *freework;
7849 	struct newblk *newblk;
7850 	struct allocindir *aip;
7851 	struct ufsmount *ump;
7852 	struct worklist *wk;
7853 
7854 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7855 	    ("handle_workitem_freeblocks: Journal entries not written."));
7856 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7857 	ACQUIRE_LOCK(ump);
7858 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7859 		WORKLIST_REMOVE(wk);
7860 		switch (wk->wk_type) {
7861 		case D_DIRREM:
7862 			wk->wk_state |= COMPLETE;
7863 			add_to_worklist(wk, 0);
7864 			continue;
7865 
7866 		case D_ALLOCDIRECT:
7867 			free_newblk(WK_NEWBLK(wk));
7868 			continue;
7869 
7870 		case D_ALLOCINDIR:
7871 			aip = WK_ALLOCINDIR(wk);
7872 			freework = NULL;
7873 			if (aip->ai_state & DELAYEDFREE) {
7874 				FREE_LOCK(ump);
7875 				freework = newfreework(ump, freeblks, NULL,
7876 				    aip->ai_lbn, aip->ai_newblkno,
7877 				    ump->um_fs->fs_frag, 0, 0);
7878 				ACQUIRE_LOCK(ump);
7879 			}
7880 			newblk = WK_NEWBLK(wk);
7881 			if (newblk->nb_jnewblk) {
7882 				freework->fw_jnewblk = newblk->nb_jnewblk;
7883 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7884 				newblk->nb_jnewblk = NULL;
7885 			}
7886 			free_newblk(newblk);
7887 			continue;
7888 
7889 		case D_FREEWORK:
7890 			freework = WK_FREEWORK(wk);
7891 			if (freework->fw_lbn <= -NDADDR)
7892 				handle_workitem_indirblk(freework);
7893 			else
7894 				freework_freeblock(freework);
7895 			continue;
7896 		default:
7897 			panic("handle_workitem_freeblocks: Unknown type %s",
7898 			    TYPENAME(wk->wk_type));
7899 		}
7900 	}
7901 	if (freeblks->fb_ref != 0) {
7902 		freeblks->fb_state &= ~INPROGRESS;
7903 		wake_worklist(&freeblks->fb_list);
7904 		freeblks = NULL;
7905 	}
7906 	FREE_LOCK(ump);
7907 	if (freeblks)
7908 		return handle_complete_freeblocks(freeblks, flags);
7909 	return (0);
7910 }
7911 
7912 /*
7913  * Handle completion of block free via truncate.  This allows fs_pending
7914  * to track the actual free block count more closely than if we only updated
7915  * it at the end.  We must be careful to handle cases where the block count
7916  * on free was incorrect.
7917  */
7918 static void
7919 freeblks_free(ump, freeblks, blocks)
7920 	struct ufsmount *ump;
7921 	struct freeblks *freeblks;
7922 	int blocks;
7923 {
7924 	struct fs *fs;
7925 	ufs2_daddr_t remain;
7926 
7927 	UFS_LOCK(ump);
7928 	remain = -freeblks->fb_chkcnt;
7929 	freeblks->fb_chkcnt += blocks;
7930 	if (remain > 0) {
7931 		if (remain < blocks)
7932 			blocks = remain;
7933 		fs = ump->um_fs;
7934 		fs->fs_pendingblocks -= blocks;
7935 	}
7936 	UFS_UNLOCK(ump);
7937 }
7938 
7939 /*
7940  * Once all of the freework workitems are complete we can retire the
7941  * freeblocks dependency and any journal work awaiting completion.  This
7942  * can not be called until all other dependencies are stable on disk.
7943  */
7944 static int
7945 handle_complete_freeblocks(freeblks, flags)
7946 	struct freeblks *freeblks;
7947 	int flags;
7948 {
7949 	struct inodedep *inodedep;
7950 	struct inode *ip;
7951 	struct vnode *vp;
7952 	struct fs *fs;
7953 	struct ufsmount *ump;
7954 	ufs2_daddr_t spare;
7955 
7956 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7957 	fs = ump->um_fs;
7958 	flags = LK_EXCLUSIVE | flags;
7959 	spare = freeblks->fb_chkcnt;
7960 
7961 	/*
7962 	 * If we did not release the expected number of blocks we may have
7963 	 * to adjust the inode block count here.  Only do so if it wasn't
7964 	 * a truncation to zero and the modrev still matches.
7965 	 */
7966 	if (spare && freeblks->fb_len != 0) {
7967 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7968 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7969 			return (EBUSY);
7970 		ip = VTOI(vp);
7971 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7972 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7973 			ip->i_flag |= IN_CHANGE;
7974 			/*
7975 			 * We must wait so this happens before the
7976 			 * journal is reclaimed.
7977 			 */
7978 			ffs_update(vp, 1);
7979 		}
7980 		vput(vp);
7981 	}
7982 	if (spare < 0) {
7983 		UFS_LOCK(ump);
7984 		fs->fs_pendingblocks += spare;
7985 		UFS_UNLOCK(ump);
7986 	}
7987 #ifdef QUOTA
7988 	/* Handle spare. */
7989 	if (spare)
7990 		quotaadj(freeblks->fb_quota, ump, -spare);
7991 	quotarele(freeblks->fb_quota);
7992 #endif
7993 	ACQUIRE_LOCK(ump);
7994 	if (freeblks->fb_state & ONDEPLIST) {
7995 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7996 		    0, &inodedep);
7997 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7998 		freeblks->fb_state &= ~ONDEPLIST;
7999 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8000 			free_inodedep(inodedep);
8001 	}
8002 	/*
8003 	 * All of the freeblock deps must be complete prior to this call
8004 	 * so it's now safe to complete earlier outstanding journal entries.
8005 	 */
8006 	handle_jwork(&freeblks->fb_jwork);
8007 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8008 	FREE_LOCK(ump);
8009 	return (0);
8010 }
8011 
8012 /*
8013  * Release blocks associated with the freeblks and stored in the indirect
8014  * block dbn. If level is greater than SINGLE, the block is an indirect block
8015  * and recursive calls to indirtrunc must be used to cleanse other indirect
8016  * blocks.
8017  *
8018  * This handles partial and complete truncation of blocks.  Partial is noted
8019  * with goingaway == 0.  In this case the freework is completed after the
8020  * zero'd indirects are written to disk.  For full truncation the freework
8021  * is completed after the block is freed.
8022  */
8023 static void
8024 indir_trunc(freework, dbn, lbn)
8025 	struct freework *freework;
8026 	ufs2_daddr_t dbn;
8027 	ufs_lbn_t lbn;
8028 {
8029 	struct freework *nfreework;
8030 	struct workhead wkhd;
8031 	struct freeblks *freeblks;
8032 	struct buf *bp;
8033 	struct fs *fs;
8034 	struct indirdep *indirdep;
8035 	struct ufsmount *ump;
8036 	ufs1_daddr_t *bap1 = 0;
8037 	ufs2_daddr_t nb, nnb, *bap2 = 0;
8038 	ufs_lbn_t lbnadd, nlbn;
8039 	int i, nblocks, ufs1fmt;
8040 	int freedblocks;
8041 	int goingaway;
8042 	int freedeps;
8043 	int needj;
8044 	int level;
8045 	int cnt;
8046 
8047 	freeblks = freework->fw_freeblks;
8048 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8049 	fs = ump->um_fs;
8050 	/*
8051 	 * Get buffer of block pointers to be freed.  There are three cases:
8052 	 *
8053 	 * 1) Partial truncate caches the indirdep pointer in the freework
8054 	 *    which provides us a back copy to the save bp which holds the
8055 	 *    pointers we want to clear.  When this completes the zero
8056 	 *    pointers are written to the real copy.
8057 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8058 	 *    eliminated the real copy and placed the indirdep on the saved
8059 	 *    copy.  The indirdep and buf are discarded when this completes.
8060 	 * 3) The indirect was not in memory, we read a copy off of the disk
8061 	 *    using the devvp and drop and invalidate the buffer when we're
8062 	 *    done.
8063 	 */
8064 	goingaway = 1;
8065 	indirdep = NULL;
8066 	if (freework->fw_indir != NULL) {
8067 		goingaway = 0;
8068 		indirdep = freework->fw_indir;
8069 		bp = indirdep->ir_savebp;
8070 		if (bp == NULL || bp->b_blkno != dbn)
8071 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8072 			    bp, (intmax_t)dbn);
8073 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8074 		/*
8075 		 * The lock prevents the buf dep list from changing and
8076 	 	 * indirects on devvp should only ever have one dependency.
8077 		 */
8078 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8079 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8080 			panic("indir_trunc: Bad indirdep %p from buf %p",
8081 			    indirdep, bp);
8082 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8083 	    NOCRED, &bp) != 0) {
8084 		brelse(bp);
8085 		return;
8086 	}
8087 	ACQUIRE_LOCK(ump);
8088 	/* Protects against a race with complete_trunc_indir(). */
8089 	freework->fw_state &= ~INPROGRESS;
8090 	/*
8091 	 * If we have an indirdep we need to enforce the truncation order
8092 	 * and discard it when it is complete.
8093 	 */
8094 	if (indirdep) {
8095 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8096 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8097 			/*
8098 			 * Add the complete truncate to the list on the
8099 			 * indirdep to enforce in-order processing.
8100 			 */
8101 			if (freework->fw_indir == NULL)
8102 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8103 				    freework, fw_next);
8104 			FREE_LOCK(ump);
8105 			return;
8106 		}
8107 		/*
8108 		 * If we're goingaway, free the indirdep.  Otherwise it will
8109 		 * linger until the write completes.
8110 		 */
8111 		if (goingaway)
8112 			free_indirdep(indirdep);
8113 	}
8114 	FREE_LOCK(ump);
8115 	/* Initialize pointers depending on block size. */
8116 	if (ump->um_fstype == UFS1) {
8117 		bap1 = (ufs1_daddr_t *)bp->b_data;
8118 		nb = bap1[freework->fw_off];
8119 		ufs1fmt = 1;
8120 	} else {
8121 		bap2 = (ufs2_daddr_t *)bp->b_data;
8122 		nb = bap2[freework->fw_off];
8123 		ufs1fmt = 0;
8124 	}
8125 	level = lbn_level(lbn);
8126 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8127 	lbnadd = lbn_offset(fs, level);
8128 	nblocks = btodb(fs->fs_bsize);
8129 	nfreework = freework;
8130 	freedeps = 0;
8131 	cnt = 0;
8132 	/*
8133 	 * Reclaim blocks.  Traverses into nested indirect levels and
8134 	 * arranges for the current level to be freed when subordinates
8135 	 * are free when journaling.
8136 	 */
8137 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8138 		if (i != NINDIR(fs) - 1) {
8139 			if (ufs1fmt)
8140 				nnb = bap1[i+1];
8141 			else
8142 				nnb = bap2[i+1];
8143 		} else
8144 			nnb = 0;
8145 		if (nb == 0)
8146 			continue;
8147 		cnt++;
8148 		if (level != 0) {
8149 			nlbn = (lbn + 1) - (i * lbnadd);
8150 			if (needj != 0) {
8151 				nfreework = newfreework(ump, freeblks, freework,
8152 				    nlbn, nb, fs->fs_frag, 0, 0);
8153 				freedeps++;
8154 			}
8155 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8156 		} else {
8157 			struct freedep *freedep;
8158 
8159 			/*
8160 			 * Attempt to aggregate freedep dependencies for
8161 			 * all blocks being released to the same CG.
8162 			 */
8163 			LIST_INIT(&wkhd);
8164 			if (needj != 0 &&
8165 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8166 				freedep = newfreedep(freework);
8167 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8168 				    &freedep->fd_list);
8169 				freedeps++;
8170 			}
8171 			CTR3(KTR_SUJ,
8172 			    "indir_trunc: ino %d blkno %jd size %ld",
8173 			    freeblks->fb_inum, nb, fs->fs_bsize);
8174 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8175 			    fs->fs_bsize, freeblks->fb_inum,
8176 			    freeblks->fb_vtype, &wkhd);
8177 		}
8178 	}
8179 	if (goingaway) {
8180 		bp->b_flags |= B_INVAL | B_NOCACHE;
8181 		brelse(bp);
8182 	}
8183 	freedblocks = 0;
8184 	if (level == 0)
8185 		freedblocks = (nblocks * cnt);
8186 	if (needj == 0)
8187 		freedblocks += nblocks;
8188 	freeblks_free(ump, freeblks, freedblocks);
8189 	/*
8190 	 * If we are journaling set up the ref counts and offset so this
8191 	 * indirect can be completed when its children are free.
8192 	 */
8193 	if (needj) {
8194 		ACQUIRE_LOCK(ump);
8195 		freework->fw_off = i;
8196 		freework->fw_ref += freedeps;
8197 		freework->fw_ref -= NINDIR(fs) + 1;
8198 		if (level == 0)
8199 			freeblks->fb_cgwait += freedeps;
8200 		if (freework->fw_ref == 0)
8201 			freework_freeblock(freework);
8202 		FREE_LOCK(ump);
8203 		return;
8204 	}
8205 	/*
8206 	 * If we're not journaling we can free the indirect now.
8207 	 */
8208 	dbn = dbtofsb(fs, dbn);
8209 	CTR3(KTR_SUJ,
8210 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8211 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8212 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8213 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8214 	/* Non SUJ softdep does single-threaded truncations. */
8215 	if (freework->fw_blkno == dbn) {
8216 		freework->fw_state |= ALLCOMPLETE;
8217 		ACQUIRE_LOCK(ump);
8218 		handle_written_freework(freework);
8219 		FREE_LOCK(ump);
8220 	}
8221 	return;
8222 }
8223 
8224 /*
8225  * Cancel an allocindir when it is removed via truncation.  When bp is not
8226  * NULL the indirect never appeared on disk and is scheduled to be freed
8227  * independently of the indir so we can more easily track journal work.
8228  */
8229 static void
8230 cancel_allocindir(aip, bp, freeblks, trunc)
8231 	struct allocindir *aip;
8232 	struct buf *bp;
8233 	struct freeblks *freeblks;
8234 	int trunc;
8235 {
8236 	struct indirdep *indirdep;
8237 	struct freefrag *freefrag;
8238 	struct newblk *newblk;
8239 
8240 	newblk = (struct newblk *)aip;
8241 	LIST_REMOVE(aip, ai_next);
8242 	/*
8243 	 * We must eliminate the pointer in bp if it must be freed on its
8244 	 * own due to partial truncate or pending journal work.
8245 	 */
8246 	if (bp && (trunc || newblk->nb_jnewblk)) {
8247 		/*
8248 		 * Clear the pointer and mark the aip to be freed
8249 		 * directly if it never existed on disk.
8250 		 */
8251 		aip->ai_state |= DELAYEDFREE;
8252 		indirdep = aip->ai_indirdep;
8253 		if (indirdep->ir_state & UFS1FMT)
8254 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8255 		else
8256 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8257 	}
8258 	/*
8259 	 * When truncating the previous pointer will be freed via
8260 	 * savedbp.  Eliminate the freefrag which would dup free.
8261 	 */
8262 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8263 		newblk->nb_freefrag = NULL;
8264 		if (freefrag->ff_jdep)
8265 			cancel_jfreefrag(
8266 			    WK_JFREEFRAG(freefrag->ff_jdep));
8267 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8268 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8269 	}
8270 	/*
8271 	 * If the journal hasn't been written the jnewblk must be passed
8272 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8273 	 * this by leaving the journal dependency on the newblk to be freed
8274 	 * when a freework is created in handle_workitem_freeblocks().
8275 	 */
8276 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8277 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8278 }
8279 
8280 /*
8281  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8282  * in to a newdirblk so any subsequent additions are tracked properly.  The
8283  * caller is responsible for adding the mkdir1 dependency to the journal
8284  * and updating id_mkdiradd.  This function returns with the per-filesystem
8285  * lock held.
8286  */
8287 static struct mkdir *
8288 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8289 	struct diradd *dap;
8290 	ino_t newinum;
8291 	ino_t dinum;
8292 	struct buf *newdirbp;
8293 	struct mkdir **mkdirp;
8294 {
8295 	struct newblk *newblk;
8296 	struct pagedep *pagedep;
8297 	struct inodedep *inodedep;
8298 	struct newdirblk *newdirblk = 0;
8299 	struct mkdir *mkdir1, *mkdir2;
8300 	struct worklist *wk;
8301 	struct jaddref *jaddref;
8302 	struct ufsmount *ump;
8303 	struct mount *mp;
8304 
8305 	mp = dap->da_list.wk_mp;
8306 	ump = VFSTOUFS(mp);
8307 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8308 	    M_SOFTDEP_FLAGS);
8309 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8310 	LIST_INIT(&newdirblk->db_mkdir);
8311 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8312 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8313 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8314 	mkdir1->md_diradd = dap;
8315 	mkdir1->md_jaddref = NULL;
8316 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8317 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8318 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8319 	mkdir2->md_diradd = dap;
8320 	mkdir2->md_jaddref = NULL;
8321 	if (MOUNTEDSUJ(mp) == 0) {
8322 		mkdir1->md_state |= DEPCOMPLETE;
8323 		mkdir2->md_state |= DEPCOMPLETE;
8324 	}
8325 	/*
8326 	 * Dependency on "." and ".." being written to disk.
8327 	 */
8328 	mkdir1->md_buf = newdirbp;
8329 	ACQUIRE_LOCK(VFSTOUFS(mp));
8330 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8331 	/*
8332 	 * We must link the pagedep, allocdirect, and newdirblk for
8333 	 * the initial file page so the pointer to the new directory
8334 	 * is not written until the directory contents are live and
8335 	 * any subsequent additions are not marked live until the
8336 	 * block is reachable via the inode.
8337 	 */
8338 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8339 		panic("setup_newdir: lost pagedep");
8340 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8341 		if (wk->wk_type == D_ALLOCDIRECT)
8342 			break;
8343 	if (wk == NULL)
8344 		panic("setup_newdir: lost allocdirect");
8345 	if (pagedep->pd_state & NEWBLOCK)
8346 		panic("setup_newdir: NEWBLOCK already set");
8347 	newblk = WK_NEWBLK(wk);
8348 	pagedep->pd_state |= NEWBLOCK;
8349 	pagedep->pd_newdirblk = newdirblk;
8350 	newdirblk->db_pagedep = pagedep;
8351 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8352 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8353 	/*
8354 	 * Look up the inodedep for the parent directory so that we
8355 	 * can link mkdir2 into the pending dotdot jaddref or
8356 	 * the inode write if there is none.  If the inode is
8357 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8358 	 * been satisfied and mkdir2 can be freed.
8359 	 */
8360 	inodedep_lookup(mp, dinum, 0, &inodedep);
8361 	if (MOUNTEDSUJ(mp)) {
8362 		if (inodedep == NULL)
8363 			panic("setup_newdir: Lost parent.");
8364 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8365 		    inoreflst);
8366 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8367 		    (jaddref->ja_state & MKDIR_PARENT),
8368 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8369 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8370 		mkdir2->md_jaddref = jaddref;
8371 		jaddref->ja_mkdir = mkdir2;
8372 	} else if (inodedep == NULL ||
8373 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8374 		dap->da_state &= ~MKDIR_PARENT;
8375 		WORKITEM_FREE(mkdir2, D_MKDIR);
8376 		mkdir2 = NULL;
8377 	} else {
8378 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8379 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8380 	}
8381 	*mkdirp = mkdir2;
8382 
8383 	return (mkdir1);
8384 }
8385 
8386 /*
8387  * Directory entry addition dependencies.
8388  *
8389  * When adding a new directory entry, the inode (with its incremented link
8390  * count) must be written to disk before the directory entry's pointer to it.
8391  * Also, if the inode is newly allocated, the corresponding freemap must be
8392  * updated (on disk) before the directory entry's pointer. These requirements
8393  * are met via undo/redo on the directory entry's pointer, which consists
8394  * simply of the inode number.
8395  *
8396  * As directory entries are added and deleted, the free space within a
8397  * directory block can become fragmented.  The ufs filesystem will compact
8398  * a fragmented directory block to make space for a new entry. When this
8399  * occurs, the offsets of previously added entries change. Any "diradd"
8400  * dependency structures corresponding to these entries must be updated with
8401  * the new offsets.
8402  */
8403 
8404 /*
8405  * This routine is called after the in-memory inode's link
8406  * count has been incremented, but before the directory entry's
8407  * pointer to the inode has been set.
8408  */
8409 int
8410 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8411 	struct buf *bp;		/* buffer containing directory block */
8412 	struct inode *dp;	/* inode for directory */
8413 	off_t diroffset;	/* offset of new entry in directory */
8414 	ino_t newinum;		/* inode referenced by new directory entry */
8415 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8416 	int isnewblk;		/* entry is in a newly allocated block */
8417 {
8418 	int offset;		/* offset of new entry within directory block */
8419 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8420 	struct fs *fs;
8421 	struct diradd *dap;
8422 	struct newblk *newblk;
8423 	struct pagedep *pagedep;
8424 	struct inodedep *inodedep;
8425 	struct newdirblk *newdirblk = 0;
8426 	struct mkdir *mkdir1, *mkdir2;
8427 	struct jaddref *jaddref;
8428 	struct ufsmount *ump;
8429 	struct mount *mp;
8430 	int isindir;
8431 
8432 	ump = dp->i_ump;
8433 	mp = UFSTOVFS(ump);
8434 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8435 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8436 	/*
8437 	 * Whiteouts have no dependencies.
8438 	 */
8439 	if (newinum == WINO) {
8440 		if (newdirbp != NULL)
8441 			bdwrite(newdirbp);
8442 		return (0);
8443 	}
8444 	jaddref = NULL;
8445 	mkdir1 = mkdir2 = NULL;
8446 	fs = dp->i_fs;
8447 	lbn = lblkno(fs, diroffset);
8448 	offset = blkoff(fs, diroffset);
8449 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8450 		M_SOFTDEP_FLAGS|M_ZERO);
8451 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8452 	dap->da_offset = offset;
8453 	dap->da_newinum = newinum;
8454 	dap->da_state = ATTACHED;
8455 	LIST_INIT(&dap->da_jwork);
8456 	isindir = bp->b_lblkno >= NDADDR;
8457 	if (isnewblk &&
8458 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8459 		newdirblk = malloc(sizeof(struct newdirblk),
8460 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8461 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8462 		LIST_INIT(&newdirblk->db_mkdir);
8463 	}
8464 	/*
8465 	 * If we're creating a new directory setup the dependencies and set
8466 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8467 	 * we can move on.
8468 	 */
8469 	if (newdirbp == NULL) {
8470 		dap->da_state |= DEPCOMPLETE;
8471 		ACQUIRE_LOCK(ump);
8472 	} else {
8473 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8474 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8475 		    &mkdir2);
8476 	}
8477 	/*
8478 	 * Link into parent directory pagedep to await its being written.
8479 	 */
8480 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8481 #ifdef DEBUG
8482 	if (diradd_lookup(pagedep, offset) != NULL)
8483 		panic("softdep_setup_directory_add: %p already at off %d\n",
8484 		    diradd_lookup(pagedep, offset), offset);
8485 #endif
8486 	dap->da_pagedep = pagedep;
8487 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8488 	    da_pdlist);
8489 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8490 	/*
8491 	 * If we're journaling, link the diradd into the jaddref so it
8492 	 * may be completed after the journal entry is written.  Otherwise,
8493 	 * link the diradd into its inodedep.  If the inode is not yet
8494 	 * written place it on the bufwait list, otherwise do the post-inode
8495 	 * write processing to put it on the id_pendinghd list.
8496 	 */
8497 	if (MOUNTEDSUJ(mp)) {
8498 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8499 		    inoreflst);
8500 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8501 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8502 		jaddref->ja_diroff = diroffset;
8503 		jaddref->ja_diradd = dap;
8504 		add_to_journal(&jaddref->ja_list);
8505 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8506 		diradd_inode_written(dap, inodedep);
8507 	else
8508 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8509 	/*
8510 	 * Add the journal entries for . and .. links now that the primary
8511 	 * link is written.
8512 	 */
8513 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8514 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8515 		    inoreflst, if_deps);
8516 		KASSERT(jaddref != NULL &&
8517 		    jaddref->ja_ino == jaddref->ja_parent &&
8518 		    (jaddref->ja_state & MKDIR_BODY),
8519 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8520 		    jaddref));
8521 		mkdir1->md_jaddref = jaddref;
8522 		jaddref->ja_mkdir = mkdir1;
8523 		/*
8524 		 * It is important that the dotdot journal entry
8525 		 * is added prior to the dot entry since dot writes
8526 		 * both the dot and dotdot links.  These both must
8527 		 * be added after the primary link for the journal
8528 		 * to remain consistent.
8529 		 */
8530 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8531 		add_to_journal(&jaddref->ja_list);
8532 	}
8533 	/*
8534 	 * If we are adding a new directory remember this diradd so that if
8535 	 * we rename it we can keep the dot and dotdot dependencies.  If
8536 	 * we are adding a new name for an inode that has a mkdiradd we
8537 	 * must be in rename and we have to move the dot and dotdot
8538 	 * dependencies to this new name.  The old name is being orphaned
8539 	 * soon.
8540 	 */
8541 	if (mkdir1 != NULL) {
8542 		if (inodedep->id_mkdiradd != NULL)
8543 			panic("softdep_setup_directory_add: Existing mkdir");
8544 		inodedep->id_mkdiradd = dap;
8545 	} else if (inodedep->id_mkdiradd)
8546 		merge_diradd(inodedep, dap);
8547 	if (newdirblk) {
8548 		/*
8549 		 * There is nothing to do if we are already tracking
8550 		 * this block.
8551 		 */
8552 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8553 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8554 			FREE_LOCK(ump);
8555 			return (0);
8556 		}
8557 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8558 		    == 0)
8559 			panic("softdep_setup_directory_add: lost entry");
8560 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8561 		pagedep->pd_state |= NEWBLOCK;
8562 		pagedep->pd_newdirblk = newdirblk;
8563 		newdirblk->db_pagedep = pagedep;
8564 		FREE_LOCK(ump);
8565 		/*
8566 		 * If we extended into an indirect signal direnter to sync.
8567 		 */
8568 		if (isindir)
8569 			return (1);
8570 		return (0);
8571 	}
8572 	FREE_LOCK(ump);
8573 	return (0);
8574 }
8575 
8576 /*
8577  * This procedure is called to change the offset of a directory
8578  * entry when compacting a directory block which must be owned
8579  * exclusively by the caller. Note that the actual entry movement
8580  * must be done in this procedure to ensure that no I/O completions
8581  * occur while the move is in progress.
8582  */
8583 void
8584 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8585 	struct buf *bp;		/* Buffer holding directory block. */
8586 	struct inode *dp;	/* inode for directory */
8587 	caddr_t base;		/* address of dp->i_offset */
8588 	caddr_t oldloc;		/* address of old directory location */
8589 	caddr_t newloc;		/* address of new directory location */
8590 	int entrysize;		/* size of directory entry */
8591 {
8592 	int offset, oldoffset, newoffset;
8593 	struct pagedep *pagedep;
8594 	struct jmvref *jmvref;
8595 	struct diradd *dap;
8596 	struct direct *de;
8597 	struct mount *mp;
8598 	ufs_lbn_t lbn;
8599 	int flags;
8600 
8601 	mp = UFSTOVFS(dp->i_ump);
8602 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8603 	    ("softdep_change_directoryentry_offset called on "
8604 	     "non-softdep filesystem"));
8605 	de = (struct direct *)oldloc;
8606 	jmvref = NULL;
8607 	flags = 0;
8608 	/*
8609 	 * Moves are always journaled as it would be too complex to
8610 	 * determine if any affected adds or removes are present in the
8611 	 * journal.
8612 	 */
8613 	if (MOUNTEDSUJ(mp)) {
8614 		flags = DEPALLOC;
8615 		jmvref = newjmvref(dp, de->d_ino,
8616 		    dp->i_offset + (oldloc - base),
8617 		    dp->i_offset + (newloc - base));
8618 	}
8619 	lbn = lblkno(dp->i_fs, dp->i_offset);
8620 	offset = blkoff(dp->i_fs, dp->i_offset);
8621 	oldoffset = offset + (oldloc - base);
8622 	newoffset = offset + (newloc - base);
8623 	ACQUIRE_LOCK(dp->i_ump);
8624 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8625 		goto done;
8626 	dap = diradd_lookup(pagedep, oldoffset);
8627 	if (dap) {
8628 		dap->da_offset = newoffset;
8629 		newoffset = DIRADDHASH(newoffset);
8630 		oldoffset = DIRADDHASH(oldoffset);
8631 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8632 		    newoffset != oldoffset) {
8633 			LIST_REMOVE(dap, da_pdlist);
8634 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8635 			    dap, da_pdlist);
8636 		}
8637 	}
8638 done:
8639 	if (jmvref) {
8640 		jmvref->jm_pagedep = pagedep;
8641 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8642 		add_to_journal(&jmvref->jm_list);
8643 	}
8644 	bcopy(oldloc, newloc, entrysize);
8645 	FREE_LOCK(dp->i_ump);
8646 }
8647 
8648 /*
8649  * Move the mkdir dependencies and journal work from one diradd to another
8650  * when renaming a directory.  The new name must depend on the mkdir deps
8651  * completing as the old name did.  Directories can only have one valid link
8652  * at a time so one must be canonical.
8653  */
8654 static void
8655 merge_diradd(inodedep, newdap)
8656 	struct inodedep *inodedep;
8657 	struct diradd *newdap;
8658 {
8659 	struct diradd *olddap;
8660 	struct mkdir *mkdir, *nextmd;
8661 	struct ufsmount *ump;
8662 	short state;
8663 
8664 	olddap = inodedep->id_mkdiradd;
8665 	inodedep->id_mkdiradd = newdap;
8666 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8667 		newdap->da_state &= ~DEPCOMPLETE;
8668 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8669 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8670 		     mkdir = nextmd) {
8671 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8672 			if (mkdir->md_diradd != olddap)
8673 				continue;
8674 			mkdir->md_diradd = newdap;
8675 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8676 			newdap->da_state |= state;
8677 			olddap->da_state &= ~state;
8678 			if ((olddap->da_state &
8679 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8680 				break;
8681 		}
8682 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8683 			panic("merge_diradd: unfound ref");
8684 	}
8685 	/*
8686 	 * Any mkdir related journal items are not safe to be freed until
8687 	 * the new name is stable.
8688 	 */
8689 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8690 	olddap->da_state |= DEPCOMPLETE;
8691 	complete_diradd(olddap);
8692 }
8693 
8694 /*
8695  * Move the diradd to the pending list when all diradd dependencies are
8696  * complete.
8697  */
8698 static void
8699 complete_diradd(dap)
8700 	struct diradd *dap;
8701 {
8702 	struct pagedep *pagedep;
8703 
8704 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8705 		if (dap->da_state & DIRCHG)
8706 			pagedep = dap->da_previous->dm_pagedep;
8707 		else
8708 			pagedep = dap->da_pagedep;
8709 		LIST_REMOVE(dap, da_pdlist);
8710 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8711 	}
8712 }
8713 
8714 /*
8715  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8716  * add entries and conditonally journal the remove.
8717  */
8718 static void
8719 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8720 	struct diradd *dap;
8721 	struct dirrem *dirrem;
8722 	struct jremref *jremref;
8723 	struct jremref *dotremref;
8724 	struct jremref *dotdotremref;
8725 {
8726 	struct inodedep *inodedep;
8727 	struct jaddref *jaddref;
8728 	struct inoref *inoref;
8729 	struct ufsmount *ump;
8730 	struct mkdir *mkdir;
8731 
8732 	/*
8733 	 * If no remove references were allocated we're on a non-journaled
8734 	 * filesystem and can skip the cancel step.
8735 	 */
8736 	if (jremref == NULL) {
8737 		free_diradd(dap, NULL);
8738 		return;
8739 	}
8740 	/*
8741 	 * Cancel the primary name an free it if it does not require
8742 	 * journaling.
8743 	 */
8744 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8745 	    0, &inodedep) != 0) {
8746 		/* Abort the addref that reference this diradd.  */
8747 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8748 			if (inoref->if_list.wk_type != D_JADDREF)
8749 				continue;
8750 			jaddref = (struct jaddref *)inoref;
8751 			if (jaddref->ja_diradd != dap)
8752 				continue;
8753 			if (cancel_jaddref(jaddref, inodedep,
8754 			    &dirrem->dm_jwork) == 0) {
8755 				free_jremref(jremref);
8756 				jremref = NULL;
8757 			}
8758 			break;
8759 		}
8760 	}
8761 	/*
8762 	 * Cancel subordinate names and free them if they do not require
8763 	 * journaling.
8764 	 */
8765 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8766 		ump = VFSTOUFS(dap->da_list.wk_mp);
8767 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8768 			if (mkdir->md_diradd != dap)
8769 				continue;
8770 			if ((jaddref = mkdir->md_jaddref) == NULL)
8771 				continue;
8772 			mkdir->md_jaddref = NULL;
8773 			if (mkdir->md_state & MKDIR_PARENT) {
8774 				if (cancel_jaddref(jaddref, NULL,
8775 				    &dirrem->dm_jwork) == 0) {
8776 					free_jremref(dotdotremref);
8777 					dotdotremref = NULL;
8778 				}
8779 			} else {
8780 				if (cancel_jaddref(jaddref, inodedep,
8781 				    &dirrem->dm_jwork) == 0) {
8782 					free_jremref(dotremref);
8783 					dotremref = NULL;
8784 				}
8785 			}
8786 		}
8787 	}
8788 
8789 	if (jremref)
8790 		journal_jremref(dirrem, jremref, inodedep);
8791 	if (dotremref)
8792 		journal_jremref(dirrem, dotremref, inodedep);
8793 	if (dotdotremref)
8794 		journal_jremref(dirrem, dotdotremref, NULL);
8795 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8796 	free_diradd(dap, &dirrem->dm_jwork);
8797 }
8798 
8799 /*
8800  * Free a diradd dependency structure. This routine must be called
8801  * with splbio interrupts blocked.
8802  */
8803 static void
8804 free_diradd(dap, wkhd)
8805 	struct diradd *dap;
8806 	struct workhead *wkhd;
8807 {
8808 	struct dirrem *dirrem;
8809 	struct pagedep *pagedep;
8810 	struct inodedep *inodedep;
8811 	struct mkdir *mkdir, *nextmd;
8812 	struct ufsmount *ump;
8813 
8814 	ump = VFSTOUFS(dap->da_list.wk_mp);
8815 	LOCK_OWNED(ump);
8816 	LIST_REMOVE(dap, da_pdlist);
8817 	if (dap->da_state & ONWORKLIST)
8818 		WORKLIST_REMOVE(&dap->da_list);
8819 	if ((dap->da_state & DIRCHG) == 0) {
8820 		pagedep = dap->da_pagedep;
8821 	} else {
8822 		dirrem = dap->da_previous;
8823 		pagedep = dirrem->dm_pagedep;
8824 		dirrem->dm_dirinum = pagedep->pd_ino;
8825 		dirrem->dm_state |= COMPLETE;
8826 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8827 			add_to_worklist(&dirrem->dm_list, 0);
8828 	}
8829 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8830 	    0, &inodedep) != 0)
8831 		if (inodedep->id_mkdiradd == dap)
8832 			inodedep->id_mkdiradd = NULL;
8833 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8834 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8835 		     mkdir = nextmd) {
8836 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8837 			if (mkdir->md_diradd != dap)
8838 				continue;
8839 			dap->da_state &=
8840 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8841 			LIST_REMOVE(mkdir, md_mkdirs);
8842 			if (mkdir->md_state & ONWORKLIST)
8843 				WORKLIST_REMOVE(&mkdir->md_list);
8844 			if (mkdir->md_jaddref != NULL)
8845 				panic("free_diradd: Unexpected jaddref");
8846 			WORKITEM_FREE(mkdir, D_MKDIR);
8847 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8848 				break;
8849 		}
8850 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8851 			panic("free_diradd: unfound ref");
8852 	}
8853 	if (inodedep)
8854 		free_inodedep(inodedep);
8855 	/*
8856 	 * Free any journal segments waiting for the directory write.
8857 	 */
8858 	handle_jwork(&dap->da_jwork);
8859 	WORKITEM_FREE(dap, D_DIRADD);
8860 }
8861 
8862 /*
8863  * Directory entry removal dependencies.
8864  *
8865  * When removing a directory entry, the entry's inode pointer must be
8866  * zero'ed on disk before the corresponding inode's link count is decremented
8867  * (possibly freeing the inode for re-use). This dependency is handled by
8868  * updating the directory entry but delaying the inode count reduction until
8869  * after the directory block has been written to disk. After this point, the
8870  * inode count can be decremented whenever it is convenient.
8871  */
8872 
8873 /*
8874  * This routine should be called immediately after removing
8875  * a directory entry.  The inode's link count should not be
8876  * decremented by the calling procedure -- the soft updates
8877  * code will do this task when it is safe.
8878  */
8879 void
8880 softdep_setup_remove(bp, dp, ip, isrmdir)
8881 	struct buf *bp;		/* buffer containing directory block */
8882 	struct inode *dp;	/* inode for the directory being modified */
8883 	struct inode *ip;	/* inode for directory entry being removed */
8884 	int isrmdir;		/* indicates if doing RMDIR */
8885 {
8886 	struct dirrem *dirrem, *prevdirrem;
8887 	struct inodedep *inodedep;
8888 	int direct;
8889 
8890 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8891 	    ("softdep_setup_remove called on non-softdep filesystem"));
8892 	/*
8893 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8894 	 * newdirrem() to setup the full directory remove which requires
8895 	 * isrmdir > 1.
8896 	 */
8897 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8898 	/*
8899 	 * Add the dirrem to the inodedep's pending remove list for quick
8900 	 * discovery later.
8901 	 */
8902 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8903 	    &inodedep) == 0)
8904 		panic("softdep_setup_remove: Lost inodedep.");
8905 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8906 	dirrem->dm_state |= ONDEPLIST;
8907 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8908 
8909 	/*
8910 	 * If the COMPLETE flag is clear, then there were no active
8911 	 * entries and we want to roll back to a zeroed entry until
8912 	 * the new inode is committed to disk. If the COMPLETE flag is
8913 	 * set then we have deleted an entry that never made it to
8914 	 * disk. If the entry we deleted resulted from a name change,
8915 	 * then the old name still resides on disk. We cannot delete
8916 	 * its inode (returned to us in prevdirrem) until the zeroed
8917 	 * directory entry gets to disk. The new inode has never been
8918 	 * referenced on the disk, so can be deleted immediately.
8919 	 */
8920 	if ((dirrem->dm_state & COMPLETE) == 0) {
8921 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8922 		    dm_next);
8923 		FREE_LOCK(ip->i_ump);
8924 	} else {
8925 		if (prevdirrem != NULL)
8926 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8927 			    prevdirrem, dm_next);
8928 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8929 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8930 		FREE_LOCK(ip->i_ump);
8931 		if (direct)
8932 			handle_workitem_remove(dirrem, 0);
8933 	}
8934 }
8935 
8936 /*
8937  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8938  * pd_pendinghd list of a pagedep.
8939  */
8940 static struct diradd *
8941 diradd_lookup(pagedep, offset)
8942 	struct pagedep *pagedep;
8943 	int offset;
8944 {
8945 	struct diradd *dap;
8946 
8947 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8948 		if (dap->da_offset == offset)
8949 			return (dap);
8950 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8951 		if (dap->da_offset == offset)
8952 			return (dap);
8953 	return (NULL);
8954 }
8955 
8956 /*
8957  * Search for a .. diradd dependency in a directory that is being removed.
8958  * If the directory was renamed to a new parent we have a diradd rather
8959  * than a mkdir for the .. entry.  We need to cancel it now before
8960  * it is found in truncate().
8961  */
8962 static struct jremref *
8963 cancel_diradd_dotdot(ip, dirrem, jremref)
8964 	struct inode *ip;
8965 	struct dirrem *dirrem;
8966 	struct jremref *jremref;
8967 {
8968 	struct pagedep *pagedep;
8969 	struct diradd *dap;
8970 	struct worklist *wk;
8971 
8972 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8973 	    &pagedep) == 0)
8974 		return (jremref);
8975 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8976 	if (dap == NULL)
8977 		return (jremref);
8978 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8979 	/*
8980 	 * Mark any journal work as belonging to the parent so it is freed
8981 	 * with the .. reference.
8982 	 */
8983 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8984 		wk->wk_state |= MKDIR_PARENT;
8985 	return (NULL);
8986 }
8987 
8988 /*
8989  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8990  * replace it with a dirrem/diradd pair as a result of re-parenting a
8991  * directory.  This ensures that we don't simultaneously have a mkdir and
8992  * a diradd for the same .. entry.
8993  */
8994 static struct jremref *
8995 cancel_mkdir_dotdot(ip, dirrem, jremref)
8996 	struct inode *ip;
8997 	struct dirrem *dirrem;
8998 	struct jremref *jremref;
8999 {
9000 	struct inodedep *inodedep;
9001 	struct jaddref *jaddref;
9002 	struct ufsmount *ump;
9003 	struct mkdir *mkdir;
9004 	struct diradd *dap;
9005 
9006 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9007 	    &inodedep) == 0)
9008 		return (jremref);
9009 	dap = inodedep->id_mkdiradd;
9010 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9011 		return (jremref);
9012 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9013 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9014 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9015 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9016 			break;
9017 	if (mkdir == NULL)
9018 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9019 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9020 		mkdir->md_jaddref = NULL;
9021 		jaddref->ja_state &= ~MKDIR_PARENT;
9022 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9023 		    &inodedep) == 0)
9024 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9025 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9026 			journal_jremref(dirrem, jremref, inodedep);
9027 			jremref = NULL;
9028 		}
9029 	}
9030 	if (mkdir->md_state & ONWORKLIST)
9031 		WORKLIST_REMOVE(&mkdir->md_list);
9032 	mkdir->md_state |= ALLCOMPLETE;
9033 	complete_mkdir(mkdir);
9034 	return (jremref);
9035 }
9036 
9037 static void
9038 journal_jremref(dirrem, jremref, inodedep)
9039 	struct dirrem *dirrem;
9040 	struct jremref *jremref;
9041 	struct inodedep *inodedep;
9042 {
9043 
9044 	if (inodedep == NULL)
9045 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9046 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9047 			panic("journal_jremref: Lost inodedep");
9048 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9049 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9050 	add_to_journal(&jremref->jr_list);
9051 }
9052 
9053 static void
9054 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9055 	struct dirrem *dirrem;
9056 	struct jremref *jremref;
9057 	struct jremref *dotremref;
9058 	struct jremref *dotdotremref;
9059 {
9060 	struct inodedep *inodedep;
9061 
9062 
9063 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9064 	    &inodedep) == 0)
9065 		panic("dirrem_journal: Lost inodedep");
9066 	journal_jremref(dirrem, jremref, inodedep);
9067 	if (dotremref)
9068 		journal_jremref(dirrem, dotremref, inodedep);
9069 	if (dotdotremref)
9070 		journal_jremref(dirrem, dotdotremref, NULL);
9071 }
9072 
9073 /*
9074  * Allocate a new dirrem if appropriate and return it along with
9075  * its associated pagedep. Called without a lock, returns with lock.
9076  */
9077 static struct dirrem *
9078 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9079 	struct buf *bp;		/* buffer containing directory block */
9080 	struct inode *dp;	/* inode for the directory being modified */
9081 	struct inode *ip;	/* inode for directory entry being removed */
9082 	int isrmdir;		/* indicates if doing RMDIR */
9083 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9084 {
9085 	int offset;
9086 	ufs_lbn_t lbn;
9087 	struct diradd *dap;
9088 	struct dirrem *dirrem;
9089 	struct pagedep *pagedep;
9090 	struct jremref *jremref;
9091 	struct jremref *dotremref;
9092 	struct jremref *dotdotremref;
9093 	struct vnode *dvp;
9094 
9095 	/*
9096 	 * Whiteouts have no deletion dependencies.
9097 	 */
9098 	if (ip == NULL)
9099 		panic("newdirrem: whiteout");
9100 	dvp = ITOV(dp);
9101 	/*
9102 	 * If the system is over its limit and our filesystem is
9103 	 * responsible for more than our share of that usage and
9104 	 * we are not a snapshot, request some inodedep cleanup.
9105 	 * Limiting the number of dirrem structures will also limit
9106 	 * the number of freefile and freeblks structures.
9107 	 */
9108 	ACQUIRE_LOCK(ip->i_ump);
9109 	if (!IS_SNAPSHOT(ip) && softdep_excess_dirrem(ip->i_ump))
9110 		schedule_cleanup(ITOV(dp)->v_mount);
9111 	else
9112 		FREE_LOCK(ip->i_ump);
9113 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9114 	    M_ZERO);
9115 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9116 	LIST_INIT(&dirrem->dm_jremrefhd);
9117 	LIST_INIT(&dirrem->dm_jwork);
9118 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9119 	dirrem->dm_oldinum = ip->i_number;
9120 	*prevdirremp = NULL;
9121 	/*
9122 	 * Allocate remove reference structures to track journal write
9123 	 * dependencies.  We will always have one for the link and
9124 	 * when doing directories we will always have one more for dot.
9125 	 * When renaming a directory we skip the dotdot link change so
9126 	 * this is not needed.
9127 	 */
9128 	jremref = dotremref = dotdotremref = NULL;
9129 	if (DOINGSUJ(dvp)) {
9130 		if (isrmdir) {
9131 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9132 			    ip->i_effnlink + 2);
9133 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9134 			    ip->i_effnlink + 1);
9135 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9136 			    dp->i_effnlink + 1);
9137 			dotdotremref->jr_state |= MKDIR_PARENT;
9138 		} else
9139 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9140 			    ip->i_effnlink + 1);
9141 	}
9142 	ACQUIRE_LOCK(ip->i_ump);
9143 	lbn = lblkno(dp->i_fs, dp->i_offset);
9144 	offset = blkoff(dp->i_fs, dp->i_offset);
9145 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9146 	    &pagedep);
9147 	dirrem->dm_pagedep = pagedep;
9148 	dirrem->dm_offset = offset;
9149 	/*
9150 	 * If we're renaming a .. link to a new directory, cancel any
9151 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9152 	 * the jremref is preserved for any potential diradd in this
9153 	 * location.  This can not coincide with a rmdir.
9154 	 */
9155 	if (dp->i_offset == DOTDOT_OFFSET) {
9156 		if (isrmdir)
9157 			panic("newdirrem: .. directory change during remove?");
9158 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9159 	}
9160 	/*
9161 	 * If we're removing a directory search for the .. dependency now and
9162 	 * cancel it.  Any pending journal work will be added to the dirrem
9163 	 * to be completed when the workitem remove completes.
9164 	 */
9165 	if (isrmdir)
9166 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9167 	/*
9168 	 * Check for a diradd dependency for the same directory entry.
9169 	 * If present, then both dependencies become obsolete and can
9170 	 * be de-allocated.
9171 	 */
9172 	dap = diradd_lookup(pagedep, offset);
9173 	if (dap == NULL) {
9174 		/*
9175 		 * Link the jremref structures into the dirrem so they are
9176 		 * written prior to the pagedep.
9177 		 */
9178 		if (jremref)
9179 			dirrem_journal(dirrem, jremref, dotremref,
9180 			    dotdotremref);
9181 		return (dirrem);
9182 	}
9183 	/*
9184 	 * Must be ATTACHED at this point.
9185 	 */
9186 	if ((dap->da_state & ATTACHED) == 0)
9187 		panic("newdirrem: not ATTACHED");
9188 	if (dap->da_newinum != ip->i_number)
9189 		panic("newdirrem: inum %ju should be %ju",
9190 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9191 	/*
9192 	 * If we are deleting a changed name that never made it to disk,
9193 	 * then return the dirrem describing the previous inode (which
9194 	 * represents the inode currently referenced from this entry on disk).
9195 	 */
9196 	if ((dap->da_state & DIRCHG) != 0) {
9197 		*prevdirremp = dap->da_previous;
9198 		dap->da_state &= ~DIRCHG;
9199 		dap->da_pagedep = pagedep;
9200 	}
9201 	/*
9202 	 * We are deleting an entry that never made it to disk.
9203 	 * Mark it COMPLETE so we can delete its inode immediately.
9204 	 */
9205 	dirrem->dm_state |= COMPLETE;
9206 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9207 #ifdef SUJ_DEBUG
9208 	if (isrmdir == 0) {
9209 		struct worklist *wk;
9210 
9211 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9212 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9213 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9214 	}
9215 #endif
9216 
9217 	return (dirrem);
9218 }
9219 
9220 /*
9221  * Directory entry change dependencies.
9222  *
9223  * Changing an existing directory entry requires that an add operation
9224  * be completed first followed by a deletion. The semantics for the addition
9225  * are identical to the description of adding a new entry above except
9226  * that the rollback is to the old inode number rather than zero. Once
9227  * the addition dependency is completed, the removal is done as described
9228  * in the removal routine above.
9229  */
9230 
9231 /*
9232  * This routine should be called immediately after changing
9233  * a directory entry.  The inode's link count should not be
9234  * decremented by the calling procedure -- the soft updates
9235  * code will perform this task when it is safe.
9236  */
9237 void
9238 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9239 	struct buf *bp;		/* buffer containing directory block */
9240 	struct inode *dp;	/* inode for the directory being modified */
9241 	struct inode *ip;	/* inode for directory entry being removed */
9242 	ino_t newinum;		/* new inode number for changed entry */
9243 	int isrmdir;		/* indicates if doing RMDIR */
9244 {
9245 	int offset;
9246 	struct diradd *dap = NULL;
9247 	struct dirrem *dirrem, *prevdirrem;
9248 	struct pagedep *pagedep;
9249 	struct inodedep *inodedep;
9250 	struct jaddref *jaddref;
9251 	struct mount *mp;
9252 
9253 	offset = blkoff(dp->i_fs, dp->i_offset);
9254 	mp = UFSTOVFS(dp->i_ump);
9255 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9256 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9257 
9258 	/*
9259 	 * Whiteouts do not need diradd dependencies.
9260 	 */
9261 	if (newinum != WINO) {
9262 		dap = malloc(sizeof(struct diradd),
9263 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9264 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9265 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9266 		dap->da_offset = offset;
9267 		dap->da_newinum = newinum;
9268 		LIST_INIT(&dap->da_jwork);
9269 	}
9270 
9271 	/*
9272 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9273 	 */
9274 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9275 	pagedep = dirrem->dm_pagedep;
9276 	/*
9277 	 * The possible values for isrmdir:
9278 	 *	0 - non-directory file rename
9279 	 *	1 - directory rename within same directory
9280 	 *   inum - directory rename to new directory of given inode number
9281 	 * When renaming to a new directory, we are both deleting and
9282 	 * creating a new directory entry, so the link count on the new
9283 	 * directory should not change. Thus we do not need the followup
9284 	 * dirrem which is usually done in handle_workitem_remove. We set
9285 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9286 	 * followup dirrem.
9287 	 */
9288 	if (isrmdir > 1)
9289 		dirrem->dm_state |= DIRCHG;
9290 
9291 	/*
9292 	 * Whiteouts have no additional dependencies,
9293 	 * so just put the dirrem on the correct list.
9294 	 */
9295 	if (newinum == WINO) {
9296 		if ((dirrem->dm_state & COMPLETE) == 0) {
9297 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9298 			    dm_next);
9299 		} else {
9300 			dirrem->dm_dirinum = pagedep->pd_ino;
9301 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9302 				add_to_worklist(&dirrem->dm_list, 0);
9303 		}
9304 		FREE_LOCK(dp->i_ump);
9305 		return;
9306 	}
9307 	/*
9308 	 * Add the dirrem to the inodedep's pending remove list for quick
9309 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9310 	 * will not fail.
9311 	 */
9312 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9313 		panic("softdep_setup_directory_change: Lost inodedep.");
9314 	dirrem->dm_state |= ONDEPLIST;
9315 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9316 
9317 	/*
9318 	 * If the COMPLETE flag is clear, then there were no active
9319 	 * entries and we want to roll back to the previous inode until
9320 	 * the new inode is committed to disk. If the COMPLETE flag is
9321 	 * set, then we have deleted an entry that never made it to disk.
9322 	 * If the entry we deleted resulted from a name change, then the old
9323 	 * inode reference still resides on disk. Any rollback that we do
9324 	 * needs to be to that old inode (returned to us in prevdirrem). If
9325 	 * the entry we deleted resulted from a create, then there is
9326 	 * no entry on the disk, so we want to roll back to zero rather
9327 	 * than the uncommitted inode. In either of the COMPLETE cases we
9328 	 * want to immediately free the unwritten and unreferenced inode.
9329 	 */
9330 	if ((dirrem->dm_state & COMPLETE) == 0) {
9331 		dap->da_previous = dirrem;
9332 	} else {
9333 		if (prevdirrem != NULL) {
9334 			dap->da_previous = prevdirrem;
9335 		} else {
9336 			dap->da_state &= ~DIRCHG;
9337 			dap->da_pagedep = pagedep;
9338 		}
9339 		dirrem->dm_dirinum = pagedep->pd_ino;
9340 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9341 			add_to_worklist(&dirrem->dm_list, 0);
9342 	}
9343 	/*
9344 	 * Lookup the jaddref for this journal entry.  We must finish
9345 	 * initializing it and make the diradd write dependent on it.
9346 	 * If we're not journaling, put it on the id_bufwait list if the
9347 	 * inode is not yet written. If it is written, do the post-inode
9348 	 * write processing to put it on the id_pendinghd list.
9349 	 */
9350 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9351 	if (MOUNTEDSUJ(mp)) {
9352 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9353 		    inoreflst);
9354 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9355 		    ("softdep_setup_directory_change: bad jaddref %p",
9356 		    jaddref));
9357 		jaddref->ja_diroff = dp->i_offset;
9358 		jaddref->ja_diradd = dap;
9359 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9360 		    dap, da_pdlist);
9361 		add_to_journal(&jaddref->ja_list);
9362 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9363 		dap->da_state |= COMPLETE;
9364 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9365 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9366 	} else {
9367 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9368 		    dap, da_pdlist);
9369 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9370 	}
9371 	/*
9372 	 * If we're making a new name for a directory that has not been
9373 	 * committed when need to move the dot and dotdot references to
9374 	 * this new name.
9375 	 */
9376 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9377 		merge_diradd(inodedep, dap);
9378 	FREE_LOCK(dp->i_ump);
9379 }
9380 
9381 /*
9382  * Called whenever the link count on an inode is changed.
9383  * It creates an inode dependency so that the new reference(s)
9384  * to the inode cannot be committed to disk until the updated
9385  * inode has been written.
9386  */
9387 void
9388 softdep_change_linkcnt(ip)
9389 	struct inode *ip;	/* the inode with the increased link count */
9390 {
9391 	struct inodedep *inodedep;
9392 
9393 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9394 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9395 	ACQUIRE_LOCK(ip->i_ump);
9396 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
9397 	    &inodedep);
9398 	if (ip->i_nlink < ip->i_effnlink)
9399 		panic("softdep_change_linkcnt: bad delta");
9400 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9401 	FREE_LOCK(ip->i_ump);
9402 }
9403 
9404 /*
9405  * Attach a sbdep dependency to the superblock buf so that we can keep
9406  * track of the head of the linked list of referenced but unlinked inodes.
9407  */
9408 void
9409 softdep_setup_sbupdate(ump, fs, bp)
9410 	struct ufsmount *ump;
9411 	struct fs *fs;
9412 	struct buf *bp;
9413 {
9414 	struct sbdep *sbdep;
9415 	struct worklist *wk;
9416 
9417 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9418 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9419 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9420 		if (wk->wk_type == D_SBDEP)
9421 			break;
9422 	if (wk != NULL)
9423 		return;
9424 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9425 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9426 	sbdep->sb_fs = fs;
9427 	sbdep->sb_ump = ump;
9428 	ACQUIRE_LOCK(ump);
9429 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9430 	FREE_LOCK(ump);
9431 }
9432 
9433 /*
9434  * Return the first unlinked inodedep which is ready to be the head of the
9435  * list.  The inodedep and all those after it must have valid next pointers.
9436  */
9437 static struct inodedep *
9438 first_unlinked_inodedep(ump)
9439 	struct ufsmount *ump;
9440 {
9441 	struct inodedep *inodedep;
9442 	struct inodedep *idp;
9443 
9444 	LOCK_OWNED(ump);
9445 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9446 	    inodedep; inodedep = idp) {
9447 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9448 			return (NULL);
9449 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9450 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9451 			break;
9452 		if ((inodedep->id_state & UNLINKPREV) == 0)
9453 			break;
9454 	}
9455 	return (inodedep);
9456 }
9457 
9458 /*
9459  * Set the sujfree unlinked head pointer prior to writing a superblock.
9460  */
9461 static void
9462 initiate_write_sbdep(sbdep)
9463 	struct sbdep *sbdep;
9464 {
9465 	struct inodedep *inodedep;
9466 	struct fs *bpfs;
9467 	struct fs *fs;
9468 
9469 	bpfs = sbdep->sb_fs;
9470 	fs = sbdep->sb_ump->um_fs;
9471 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9472 	if (inodedep) {
9473 		fs->fs_sujfree = inodedep->id_ino;
9474 		inodedep->id_state |= UNLINKPREV;
9475 	} else
9476 		fs->fs_sujfree = 0;
9477 	bpfs->fs_sujfree = fs->fs_sujfree;
9478 }
9479 
9480 /*
9481  * After a superblock is written determine whether it must be written again
9482  * due to a changing unlinked list head.
9483  */
9484 static int
9485 handle_written_sbdep(sbdep, bp)
9486 	struct sbdep *sbdep;
9487 	struct buf *bp;
9488 {
9489 	struct inodedep *inodedep;
9490 	struct fs *fs;
9491 
9492 	LOCK_OWNED(sbdep->sb_ump);
9493 	fs = sbdep->sb_fs;
9494 	/*
9495 	 * If the superblock doesn't match the in-memory list start over.
9496 	 */
9497 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9498 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9499 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9500 		bdirty(bp);
9501 		return (1);
9502 	}
9503 	WORKITEM_FREE(sbdep, D_SBDEP);
9504 	if (fs->fs_sujfree == 0)
9505 		return (0);
9506 	/*
9507 	 * Now that we have a record of this inode in stable store allow it
9508 	 * to be written to free up pending work.  Inodes may see a lot of
9509 	 * write activity after they are unlinked which we must not hold up.
9510 	 */
9511 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9512 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9513 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9514 			    inodedep, inodedep->id_state);
9515 		if (inodedep->id_state & UNLINKONLIST)
9516 			break;
9517 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9518 	}
9519 
9520 	return (0);
9521 }
9522 
9523 /*
9524  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9525  */
9526 static void
9527 unlinked_inodedep(mp, inodedep)
9528 	struct mount *mp;
9529 	struct inodedep *inodedep;
9530 {
9531 	struct ufsmount *ump;
9532 
9533 	ump = VFSTOUFS(mp);
9534 	LOCK_OWNED(ump);
9535 	if (MOUNTEDSUJ(mp) == 0)
9536 		return;
9537 	ump->um_fs->fs_fmod = 1;
9538 	if (inodedep->id_state & UNLINKED)
9539 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9540 	inodedep->id_state |= UNLINKED;
9541 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9542 }
9543 
9544 /*
9545  * Remove an inodedep from the unlinked inodedep list.  This may require
9546  * disk writes if the inode has made it that far.
9547  */
9548 static void
9549 clear_unlinked_inodedep(inodedep)
9550 	struct inodedep *inodedep;
9551 {
9552 	struct ufsmount *ump;
9553 	struct inodedep *idp;
9554 	struct inodedep *idn;
9555 	struct fs *fs;
9556 	struct buf *bp;
9557 	ino_t ino;
9558 	ino_t nino;
9559 	ino_t pino;
9560 	int error;
9561 
9562 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9563 	fs = ump->um_fs;
9564 	ino = inodedep->id_ino;
9565 	error = 0;
9566 	for (;;) {
9567 		LOCK_OWNED(ump);
9568 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9569 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9570 		    inodedep));
9571 		/*
9572 		 * If nothing has yet been written simply remove us from
9573 		 * the in memory list and return.  This is the most common
9574 		 * case where handle_workitem_remove() loses the final
9575 		 * reference.
9576 		 */
9577 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9578 			break;
9579 		/*
9580 		 * If we have a NEXT pointer and no PREV pointer we can simply
9581 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9582 		 * careful not to clear PREV if the superblock points at
9583 		 * next as well.
9584 		 */
9585 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9586 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9587 			if (idn && fs->fs_sujfree != idn->id_ino)
9588 				idn->id_state &= ~UNLINKPREV;
9589 			break;
9590 		}
9591 		/*
9592 		 * Here we have an inodedep which is actually linked into
9593 		 * the list.  We must remove it by forcing a write to the
9594 		 * link before us, whether it be the superblock or an inode.
9595 		 * Unfortunately the list may change while we're waiting
9596 		 * on the buf lock for either resource so we must loop until
9597 		 * we lock the right one.  If both the superblock and an
9598 		 * inode point to this inode we must clear the inode first
9599 		 * followed by the superblock.
9600 		 */
9601 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9602 		pino = 0;
9603 		if (idp && (idp->id_state & UNLINKNEXT))
9604 			pino = idp->id_ino;
9605 		FREE_LOCK(ump);
9606 		if (pino == 0) {
9607 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9608 			    (int)fs->fs_sbsize, 0, 0, 0);
9609 		} else {
9610 			error = bread(ump->um_devvp,
9611 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9612 			    (int)fs->fs_bsize, NOCRED, &bp);
9613 			if (error)
9614 				brelse(bp);
9615 		}
9616 		ACQUIRE_LOCK(ump);
9617 		if (error)
9618 			break;
9619 		/* If the list has changed restart the loop. */
9620 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9621 		nino = 0;
9622 		if (idp && (idp->id_state & UNLINKNEXT))
9623 			nino = idp->id_ino;
9624 		if (nino != pino ||
9625 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9626 			FREE_LOCK(ump);
9627 			brelse(bp);
9628 			ACQUIRE_LOCK(ump);
9629 			continue;
9630 		}
9631 		nino = 0;
9632 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9633 		if (idn)
9634 			nino = idn->id_ino;
9635 		/*
9636 		 * Remove us from the in memory list.  After this we cannot
9637 		 * access the inodedep.
9638 		 */
9639 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9640 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9641 		    inodedep));
9642 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9643 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9644 		FREE_LOCK(ump);
9645 		/*
9646 		 * The predecessor's next pointer is manually updated here
9647 		 * so that the NEXT flag is never cleared for an element
9648 		 * that is in the list.
9649 		 */
9650 		if (pino == 0) {
9651 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9652 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9653 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9654 			    bp);
9655 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9656 			((struct ufs1_dinode *)bp->b_data +
9657 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9658 		else
9659 			((struct ufs2_dinode *)bp->b_data +
9660 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9661 		/*
9662 		 * If the bwrite fails we have no recourse to recover.  The
9663 		 * filesystem is corrupted already.
9664 		 */
9665 		bwrite(bp);
9666 		ACQUIRE_LOCK(ump);
9667 		/*
9668 		 * If the superblock pointer still needs to be cleared force
9669 		 * a write here.
9670 		 */
9671 		if (fs->fs_sujfree == ino) {
9672 			FREE_LOCK(ump);
9673 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9674 			    (int)fs->fs_sbsize, 0, 0, 0);
9675 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9676 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9677 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9678 			    bp);
9679 			bwrite(bp);
9680 			ACQUIRE_LOCK(ump);
9681 		}
9682 
9683 		if (fs->fs_sujfree != ino)
9684 			return;
9685 		panic("clear_unlinked_inodedep: Failed to clear free head");
9686 	}
9687 	if (inodedep->id_ino == fs->fs_sujfree)
9688 		panic("clear_unlinked_inodedep: Freeing head of free list");
9689 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9690 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9691 	return;
9692 }
9693 
9694 /*
9695  * This workitem decrements the inode's link count.
9696  * If the link count reaches zero, the file is removed.
9697  */
9698 static int
9699 handle_workitem_remove(dirrem, flags)
9700 	struct dirrem *dirrem;
9701 	int flags;
9702 {
9703 	struct inodedep *inodedep;
9704 	struct workhead dotdotwk;
9705 	struct worklist *wk;
9706 	struct ufsmount *ump;
9707 	struct mount *mp;
9708 	struct vnode *vp;
9709 	struct inode *ip;
9710 	ino_t oldinum;
9711 
9712 	if (dirrem->dm_state & ONWORKLIST)
9713 		panic("handle_workitem_remove: dirrem %p still on worklist",
9714 		    dirrem);
9715 	oldinum = dirrem->dm_oldinum;
9716 	mp = dirrem->dm_list.wk_mp;
9717 	ump = VFSTOUFS(mp);
9718 	flags |= LK_EXCLUSIVE;
9719 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9720 		return (EBUSY);
9721 	ip = VTOI(vp);
9722 	ACQUIRE_LOCK(ump);
9723 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9724 		panic("handle_workitem_remove: lost inodedep");
9725 	if (dirrem->dm_state & ONDEPLIST)
9726 		LIST_REMOVE(dirrem, dm_inonext);
9727 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9728 	    ("handle_workitem_remove:  Journal entries not written."));
9729 
9730 	/*
9731 	 * Move all dependencies waiting on the remove to complete
9732 	 * from the dirrem to the inode inowait list to be completed
9733 	 * after the inode has been updated and written to disk.  Any
9734 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9735 	 * is removed.
9736 	 */
9737 	LIST_INIT(&dotdotwk);
9738 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9739 		WORKLIST_REMOVE(wk);
9740 		if (wk->wk_state & MKDIR_PARENT) {
9741 			wk->wk_state &= ~MKDIR_PARENT;
9742 			WORKLIST_INSERT(&dotdotwk, wk);
9743 			continue;
9744 		}
9745 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9746 	}
9747 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9748 	/*
9749 	 * Normal file deletion.
9750 	 */
9751 	if ((dirrem->dm_state & RMDIR) == 0) {
9752 		ip->i_nlink--;
9753 		DIP_SET(ip, i_nlink, ip->i_nlink);
9754 		ip->i_flag |= IN_CHANGE;
9755 		if (ip->i_nlink < ip->i_effnlink)
9756 			panic("handle_workitem_remove: bad file delta");
9757 		if (ip->i_nlink == 0)
9758 			unlinked_inodedep(mp, inodedep);
9759 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9760 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9761 		    ("handle_workitem_remove: worklist not empty. %s",
9762 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9763 		WORKITEM_FREE(dirrem, D_DIRREM);
9764 		FREE_LOCK(ump);
9765 		goto out;
9766 	}
9767 	/*
9768 	 * Directory deletion. Decrement reference count for both the
9769 	 * just deleted parent directory entry and the reference for ".".
9770 	 * Arrange to have the reference count on the parent decremented
9771 	 * to account for the loss of "..".
9772 	 */
9773 	ip->i_nlink -= 2;
9774 	DIP_SET(ip, i_nlink, ip->i_nlink);
9775 	ip->i_flag |= IN_CHANGE;
9776 	if (ip->i_nlink < ip->i_effnlink)
9777 		panic("handle_workitem_remove: bad dir delta");
9778 	if (ip->i_nlink == 0)
9779 		unlinked_inodedep(mp, inodedep);
9780 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9781 	/*
9782 	 * Rename a directory to a new parent. Since, we are both deleting
9783 	 * and creating a new directory entry, the link count on the new
9784 	 * directory should not change. Thus we skip the followup dirrem.
9785 	 */
9786 	if (dirrem->dm_state & DIRCHG) {
9787 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9788 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9789 		WORKITEM_FREE(dirrem, D_DIRREM);
9790 		FREE_LOCK(ump);
9791 		goto out;
9792 	}
9793 	dirrem->dm_state = ONDEPLIST;
9794 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9795 	/*
9796 	 * Place the dirrem on the parent's diremhd list.
9797 	 */
9798 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9799 		panic("handle_workitem_remove: lost dir inodedep");
9800 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9801 	/*
9802 	 * If the allocated inode has never been written to disk, then
9803 	 * the on-disk inode is zero'ed and we can remove the file
9804 	 * immediately.  When journaling if the inode has been marked
9805 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9806 	 */
9807 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9808 	if (inodedep == NULL ||
9809 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9810 	    check_inode_unwritten(inodedep)) {
9811 		FREE_LOCK(ump);
9812 		vput(vp);
9813 		return handle_workitem_remove(dirrem, flags);
9814 	}
9815 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9816 	FREE_LOCK(ump);
9817 	ip->i_flag |= IN_CHANGE;
9818 out:
9819 	ffs_update(vp, 0);
9820 	vput(vp);
9821 	return (0);
9822 }
9823 
9824 /*
9825  * Inode de-allocation dependencies.
9826  *
9827  * When an inode's link count is reduced to zero, it can be de-allocated. We
9828  * found it convenient to postpone de-allocation until after the inode is
9829  * written to disk with its new link count (zero).  At this point, all of the
9830  * on-disk inode's block pointers are nullified and, with careful dependency
9831  * list ordering, all dependencies related to the inode will be satisfied and
9832  * the corresponding dependency structures de-allocated.  So, if/when the
9833  * inode is reused, there will be no mixing of old dependencies with new
9834  * ones.  This artificial dependency is set up by the block de-allocation
9835  * procedure above (softdep_setup_freeblocks) and completed by the
9836  * following procedure.
9837  */
9838 static void
9839 handle_workitem_freefile(freefile)
9840 	struct freefile *freefile;
9841 {
9842 	struct workhead wkhd;
9843 	struct fs *fs;
9844 	struct inodedep *idp;
9845 	struct ufsmount *ump;
9846 	int error;
9847 
9848 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9849 	fs = ump->um_fs;
9850 #ifdef DEBUG
9851 	ACQUIRE_LOCK(ump);
9852 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9853 	FREE_LOCK(ump);
9854 	if (error)
9855 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9856 #endif
9857 	UFS_LOCK(ump);
9858 	fs->fs_pendinginodes -= 1;
9859 	UFS_UNLOCK(ump);
9860 	LIST_INIT(&wkhd);
9861 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9862 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9863 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9864 		softdep_error("handle_workitem_freefile", error);
9865 	ACQUIRE_LOCK(ump);
9866 	WORKITEM_FREE(freefile, D_FREEFILE);
9867 	FREE_LOCK(ump);
9868 }
9869 
9870 
9871 /*
9872  * Helper function which unlinks marker element from work list and returns
9873  * the next element on the list.
9874  */
9875 static __inline struct worklist *
9876 markernext(struct worklist *marker)
9877 {
9878 	struct worklist *next;
9879 
9880 	next = LIST_NEXT(marker, wk_list);
9881 	LIST_REMOVE(marker, wk_list);
9882 	return next;
9883 }
9884 
9885 /*
9886  * Disk writes.
9887  *
9888  * The dependency structures constructed above are most actively used when file
9889  * system blocks are written to disk.  No constraints are placed on when a
9890  * block can be written, but unsatisfied update dependencies are made safe by
9891  * modifying (or replacing) the source memory for the duration of the disk
9892  * write.  When the disk write completes, the memory block is again brought
9893  * up-to-date.
9894  *
9895  * In-core inode structure reclamation.
9896  *
9897  * Because there are a finite number of "in-core" inode structures, they are
9898  * reused regularly.  By transferring all inode-related dependencies to the
9899  * in-memory inode block and indexing them separately (via "inodedep"s), we
9900  * can allow "in-core" inode structures to be reused at any time and avoid
9901  * any increase in contention.
9902  *
9903  * Called just before entering the device driver to initiate a new disk I/O.
9904  * The buffer must be locked, thus, no I/O completion operations can occur
9905  * while we are manipulating its associated dependencies.
9906  */
9907 static void
9908 softdep_disk_io_initiation(bp)
9909 	struct buf *bp;		/* structure describing disk write to occur */
9910 {
9911 	struct worklist *wk;
9912 	struct worklist marker;
9913 	struct inodedep *inodedep;
9914 	struct freeblks *freeblks;
9915 	struct jblkdep *jblkdep;
9916 	struct newblk *newblk;
9917 	struct ufsmount *ump;
9918 
9919 	/*
9920 	 * We only care about write operations. There should never
9921 	 * be dependencies for reads.
9922 	 */
9923 	if (bp->b_iocmd != BIO_WRITE)
9924 		panic("softdep_disk_io_initiation: not write");
9925 
9926 	if (bp->b_vflags & BV_BKGRDINPROG)
9927 		panic("softdep_disk_io_initiation: Writing buffer with "
9928 		    "background write in progress: %p", bp);
9929 
9930 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9931 		return;
9932 	ump = VFSTOUFS(wk->wk_mp);
9933 
9934 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9935 	PHOLD(curproc);			/* Don't swap out kernel stack */
9936 	ACQUIRE_LOCK(ump);
9937 	/*
9938 	 * Do any necessary pre-I/O processing.
9939 	 */
9940 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9941 	     wk = markernext(&marker)) {
9942 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9943 		switch (wk->wk_type) {
9944 
9945 		case D_PAGEDEP:
9946 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9947 			continue;
9948 
9949 		case D_INODEDEP:
9950 			inodedep = WK_INODEDEP(wk);
9951 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9952 				initiate_write_inodeblock_ufs1(inodedep, bp);
9953 			else
9954 				initiate_write_inodeblock_ufs2(inodedep, bp);
9955 			continue;
9956 
9957 		case D_INDIRDEP:
9958 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9959 			continue;
9960 
9961 		case D_BMSAFEMAP:
9962 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9963 			continue;
9964 
9965 		case D_JSEG:
9966 			WK_JSEG(wk)->js_buf = NULL;
9967 			continue;
9968 
9969 		case D_FREEBLKS:
9970 			freeblks = WK_FREEBLKS(wk);
9971 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9972 			/*
9973 			 * We have to wait for the freeblks to be journaled
9974 			 * before we can write an inodeblock with updated
9975 			 * pointers.  Be careful to arrange the marker so
9976 			 * we revisit the freeblks if it's not removed by
9977 			 * the first jwait().
9978 			 */
9979 			if (jblkdep != NULL) {
9980 				LIST_REMOVE(&marker, wk_list);
9981 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9982 				jwait(&jblkdep->jb_list, MNT_WAIT);
9983 			}
9984 			continue;
9985 		case D_ALLOCDIRECT:
9986 		case D_ALLOCINDIR:
9987 			/*
9988 			 * We have to wait for the jnewblk to be journaled
9989 			 * before we can write to a block if the contents
9990 			 * may be confused with an earlier file's indirect
9991 			 * at recovery time.  Handle the marker as described
9992 			 * above.
9993 			 */
9994 			newblk = WK_NEWBLK(wk);
9995 			if (newblk->nb_jnewblk != NULL &&
9996 			    indirblk_lookup(newblk->nb_list.wk_mp,
9997 			    newblk->nb_newblkno)) {
9998 				LIST_REMOVE(&marker, wk_list);
9999 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10000 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10001 			}
10002 			continue;
10003 
10004 		case D_SBDEP:
10005 			initiate_write_sbdep(WK_SBDEP(wk));
10006 			continue;
10007 
10008 		case D_MKDIR:
10009 		case D_FREEWORK:
10010 		case D_FREEDEP:
10011 		case D_JSEGDEP:
10012 			continue;
10013 
10014 		default:
10015 			panic("handle_disk_io_initiation: Unexpected type %s",
10016 			    TYPENAME(wk->wk_type));
10017 			/* NOTREACHED */
10018 		}
10019 	}
10020 	FREE_LOCK(ump);
10021 	PRELE(curproc);			/* Allow swapout of kernel stack */
10022 }
10023 
10024 /*
10025  * Called from within the procedure above to deal with unsatisfied
10026  * allocation dependencies in a directory. The buffer must be locked,
10027  * thus, no I/O completion operations can occur while we are
10028  * manipulating its associated dependencies.
10029  */
10030 static void
10031 initiate_write_filepage(pagedep, bp)
10032 	struct pagedep *pagedep;
10033 	struct buf *bp;
10034 {
10035 	struct jremref *jremref;
10036 	struct jmvref *jmvref;
10037 	struct dirrem *dirrem;
10038 	struct diradd *dap;
10039 	struct direct *ep;
10040 	int i;
10041 
10042 	if (pagedep->pd_state & IOSTARTED) {
10043 		/*
10044 		 * This can only happen if there is a driver that does not
10045 		 * understand chaining. Here biodone will reissue the call
10046 		 * to strategy for the incomplete buffers.
10047 		 */
10048 		printf("initiate_write_filepage: already started\n");
10049 		return;
10050 	}
10051 	pagedep->pd_state |= IOSTARTED;
10052 	/*
10053 	 * Wait for all journal remove dependencies to hit the disk.
10054 	 * We can not allow any potentially conflicting directory adds
10055 	 * to be visible before removes and rollback is too difficult.
10056 	 * The per-filesystem lock may be dropped and re-acquired, however
10057 	 * we hold the buf locked so the dependency can not go away.
10058 	 */
10059 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10060 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10061 			jwait(&jremref->jr_list, MNT_WAIT);
10062 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10063 		jwait(&jmvref->jm_list, MNT_WAIT);
10064 	for (i = 0; i < DAHASHSZ; i++) {
10065 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10066 			ep = (struct direct *)
10067 			    ((char *)bp->b_data + dap->da_offset);
10068 			if (ep->d_ino != dap->da_newinum)
10069 				panic("%s: dir inum %ju != new %ju",
10070 				    "initiate_write_filepage",
10071 				    (uintmax_t)ep->d_ino,
10072 				    (uintmax_t)dap->da_newinum);
10073 			if (dap->da_state & DIRCHG)
10074 				ep->d_ino = dap->da_previous->dm_oldinum;
10075 			else
10076 				ep->d_ino = 0;
10077 			dap->da_state &= ~ATTACHED;
10078 			dap->da_state |= UNDONE;
10079 		}
10080 	}
10081 }
10082 
10083 /*
10084  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10085  * Note that any bug fixes made to this routine must be done in the
10086  * version found below.
10087  *
10088  * Called from within the procedure above to deal with unsatisfied
10089  * allocation dependencies in an inodeblock. The buffer must be
10090  * locked, thus, no I/O completion operations can occur while we
10091  * are manipulating its associated dependencies.
10092  */
10093 static void
10094 initiate_write_inodeblock_ufs1(inodedep, bp)
10095 	struct inodedep *inodedep;
10096 	struct buf *bp;			/* The inode block */
10097 {
10098 	struct allocdirect *adp, *lastadp;
10099 	struct ufs1_dinode *dp;
10100 	struct ufs1_dinode *sip;
10101 	struct inoref *inoref;
10102 	struct ufsmount *ump;
10103 	struct fs *fs;
10104 	ufs_lbn_t i;
10105 #ifdef INVARIANTS
10106 	ufs_lbn_t prevlbn = 0;
10107 #endif
10108 	int deplist;
10109 
10110 	if (inodedep->id_state & IOSTARTED)
10111 		panic("initiate_write_inodeblock_ufs1: already started");
10112 	inodedep->id_state |= IOSTARTED;
10113 	fs = inodedep->id_fs;
10114 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10115 	LOCK_OWNED(ump);
10116 	dp = (struct ufs1_dinode *)bp->b_data +
10117 	    ino_to_fsbo(fs, inodedep->id_ino);
10118 
10119 	/*
10120 	 * If we're on the unlinked list but have not yet written our
10121 	 * next pointer initialize it here.
10122 	 */
10123 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10124 		struct inodedep *inon;
10125 
10126 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10127 		dp->di_freelink = inon ? inon->id_ino : 0;
10128 	}
10129 	/*
10130 	 * If the bitmap is not yet written, then the allocated
10131 	 * inode cannot be written to disk.
10132 	 */
10133 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10134 		if (inodedep->id_savedino1 != NULL)
10135 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10136 		FREE_LOCK(ump);
10137 		sip = malloc(sizeof(struct ufs1_dinode),
10138 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10139 		ACQUIRE_LOCK(ump);
10140 		inodedep->id_savedino1 = sip;
10141 		*inodedep->id_savedino1 = *dp;
10142 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10143 		dp->di_gen = inodedep->id_savedino1->di_gen;
10144 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10145 		return;
10146 	}
10147 	/*
10148 	 * If no dependencies, then there is nothing to roll back.
10149 	 */
10150 	inodedep->id_savedsize = dp->di_size;
10151 	inodedep->id_savedextsize = 0;
10152 	inodedep->id_savednlink = dp->di_nlink;
10153 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10154 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10155 		return;
10156 	/*
10157 	 * Revert the link count to that of the first unwritten journal entry.
10158 	 */
10159 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10160 	if (inoref)
10161 		dp->di_nlink = inoref->if_nlink;
10162 	/*
10163 	 * Set the dependencies to busy.
10164 	 */
10165 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10166 	     adp = TAILQ_NEXT(adp, ad_next)) {
10167 #ifdef INVARIANTS
10168 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10169 			panic("softdep_write_inodeblock: lbn order");
10170 		prevlbn = adp->ad_offset;
10171 		if (adp->ad_offset < NDADDR &&
10172 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10173 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10174 			    "softdep_write_inodeblock",
10175 			    (intmax_t)adp->ad_offset,
10176 			    dp->di_db[adp->ad_offset],
10177 			    (intmax_t)adp->ad_newblkno);
10178 		if (adp->ad_offset >= NDADDR &&
10179 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10180 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10181 			    "softdep_write_inodeblock",
10182 			    (intmax_t)adp->ad_offset - NDADDR,
10183 			    dp->di_ib[adp->ad_offset - NDADDR],
10184 			    (intmax_t)adp->ad_newblkno);
10185 		deplist |= 1 << adp->ad_offset;
10186 		if ((adp->ad_state & ATTACHED) == 0)
10187 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10188 			    adp->ad_state);
10189 #endif /* INVARIANTS */
10190 		adp->ad_state &= ~ATTACHED;
10191 		adp->ad_state |= UNDONE;
10192 	}
10193 	/*
10194 	 * The on-disk inode cannot claim to be any larger than the last
10195 	 * fragment that has been written. Otherwise, the on-disk inode
10196 	 * might have fragments that were not the last block in the file
10197 	 * which would corrupt the filesystem.
10198 	 */
10199 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10200 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10201 		if (adp->ad_offset >= NDADDR)
10202 			break;
10203 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10204 		/* keep going until hitting a rollback to a frag */
10205 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10206 			continue;
10207 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10208 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10209 #ifdef INVARIANTS
10210 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10211 				panic("softdep_write_inodeblock: lost dep1");
10212 #endif /* INVARIANTS */
10213 			dp->di_db[i] = 0;
10214 		}
10215 		for (i = 0; i < NIADDR; i++) {
10216 #ifdef INVARIANTS
10217 			if (dp->di_ib[i] != 0 &&
10218 			    (deplist & ((1 << NDADDR) << i)) == 0)
10219 				panic("softdep_write_inodeblock: lost dep2");
10220 #endif /* INVARIANTS */
10221 			dp->di_ib[i] = 0;
10222 		}
10223 		return;
10224 	}
10225 	/*
10226 	 * If we have zero'ed out the last allocated block of the file,
10227 	 * roll back the size to the last currently allocated block.
10228 	 * We know that this last allocated block is a full-sized as
10229 	 * we already checked for fragments in the loop above.
10230 	 */
10231 	if (lastadp != NULL &&
10232 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10233 		for (i = lastadp->ad_offset; i >= 0; i--)
10234 			if (dp->di_db[i] != 0)
10235 				break;
10236 		dp->di_size = (i + 1) * fs->fs_bsize;
10237 	}
10238 	/*
10239 	 * The only dependencies are for indirect blocks.
10240 	 *
10241 	 * The file size for indirect block additions is not guaranteed.
10242 	 * Such a guarantee would be non-trivial to achieve. The conventional
10243 	 * synchronous write implementation also does not make this guarantee.
10244 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10245 	 * can be over-estimated without destroying integrity when the file
10246 	 * moves into the indirect blocks (i.e., is large). If we want to
10247 	 * postpone fsck, we are stuck with this argument.
10248 	 */
10249 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10250 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10251 }
10252 
10253 /*
10254  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10255  * Note that any bug fixes made to this routine must be done in the
10256  * version found above.
10257  *
10258  * Called from within the procedure above to deal with unsatisfied
10259  * allocation dependencies in an inodeblock. The buffer must be
10260  * locked, thus, no I/O completion operations can occur while we
10261  * are manipulating its associated dependencies.
10262  */
10263 static void
10264 initiate_write_inodeblock_ufs2(inodedep, bp)
10265 	struct inodedep *inodedep;
10266 	struct buf *bp;			/* The inode block */
10267 {
10268 	struct allocdirect *adp, *lastadp;
10269 	struct ufs2_dinode *dp;
10270 	struct ufs2_dinode *sip;
10271 	struct inoref *inoref;
10272 	struct ufsmount *ump;
10273 	struct fs *fs;
10274 	ufs_lbn_t i;
10275 #ifdef INVARIANTS
10276 	ufs_lbn_t prevlbn = 0;
10277 #endif
10278 	int deplist;
10279 
10280 	if (inodedep->id_state & IOSTARTED)
10281 		panic("initiate_write_inodeblock_ufs2: already started");
10282 	inodedep->id_state |= IOSTARTED;
10283 	fs = inodedep->id_fs;
10284 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10285 	LOCK_OWNED(ump);
10286 	dp = (struct ufs2_dinode *)bp->b_data +
10287 	    ino_to_fsbo(fs, inodedep->id_ino);
10288 
10289 	/*
10290 	 * If we're on the unlinked list but have not yet written our
10291 	 * next pointer initialize it here.
10292 	 */
10293 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10294 		struct inodedep *inon;
10295 
10296 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10297 		dp->di_freelink = inon ? inon->id_ino : 0;
10298 	}
10299 	/*
10300 	 * If the bitmap is not yet written, then the allocated
10301 	 * inode cannot be written to disk.
10302 	 */
10303 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10304 		if (inodedep->id_savedino2 != NULL)
10305 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10306 		FREE_LOCK(ump);
10307 		sip = malloc(sizeof(struct ufs2_dinode),
10308 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10309 		ACQUIRE_LOCK(ump);
10310 		inodedep->id_savedino2 = sip;
10311 		*inodedep->id_savedino2 = *dp;
10312 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10313 		dp->di_gen = inodedep->id_savedino2->di_gen;
10314 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10315 		return;
10316 	}
10317 	/*
10318 	 * If no dependencies, then there is nothing to roll back.
10319 	 */
10320 	inodedep->id_savedsize = dp->di_size;
10321 	inodedep->id_savedextsize = dp->di_extsize;
10322 	inodedep->id_savednlink = dp->di_nlink;
10323 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10324 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10325 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10326 		return;
10327 	/*
10328 	 * Revert the link count to that of the first unwritten journal entry.
10329 	 */
10330 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10331 	if (inoref)
10332 		dp->di_nlink = inoref->if_nlink;
10333 
10334 	/*
10335 	 * Set the ext data dependencies to busy.
10336 	 */
10337 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10338 	     adp = TAILQ_NEXT(adp, ad_next)) {
10339 #ifdef INVARIANTS
10340 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10341 			panic("softdep_write_inodeblock: lbn order");
10342 		prevlbn = adp->ad_offset;
10343 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10344 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10345 			    "softdep_write_inodeblock",
10346 			    (intmax_t)adp->ad_offset,
10347 			    (intmax_t)dp->di_extb[adp->ad_offset],
10348 			    (intmax_t)adp->ad_newblkno);
10349 		deplist |= 1 << adp->ad_offset;
10350 		if ((adp->ad_state & ATTACHED) == 0)
10351 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10352 			    adp->ad_state);
10353 #endif /* INVARIANTS */
10354 		adp->ad_state &= ~ATTACHED;
10355 		adp->ad_state |= UNDONE;
10356 	}
10357 	/*
10358 	 * The on-disk inode cannot claim to be any larger than the last
10359 	 * fragment that has been written. Otherwise, the on-disk inode
10360 	 * might have fragments that were not the last block in the ext
10361 	 * data which would corrupt the filesystem.
10362 	 */
10363 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10364 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10365 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10366 		/* keep going until hitting a rollback to a frag */
10367 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10368 			continue;
10369 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10370 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10371 #ifdef INVARIANTS
10372 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10373 				panic("softdep_write_inodeblock: lost dep1");
10374 #endif /* INVARIANTS */
10375 			dp->di_extb[i] = 0;
10376 		}
10377 		lastadp = NULL;
10378 		break;
10379 	}
10380 	/*
10381 	 * If we have zero'ed out the last allocated block of the ext
10382 	 * data, roll back the size to the last currently allocated block.
10383 	 * We know that this last allocated block is a full-sized as
10384 	 * we already checked for fragments in the loop above.
10385 	 */
10386 	if (lastadp != NULL &&
10387 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10388 		for (i = lastadp->ad_offset; i >= 0; i--)
10389 			if (dp->di_extb[i] != 0)
10390 				break;
10391 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10392 	}
10393 	/*
10394 	 * Set the file data dependencies to busy.
10395 	 */
10396 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10397 	     adp = TAILQ_NEXT(adp, ad_next)) {
10398 #ifdef INVARIANTS
10399 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10400 			panic("softdep_write_inodeblock: lbn order");
10401 		if ((adp->ad_state & ATTACHED) == 0)
10402 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10403 		prevlbn = adp->ad_offset;
10404 		if (adp->ad_offset < NDADDR &&
10405 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10406 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10407 			    "softdep_write_inodeblock",
10408 			    (intmax_t)adp->ad_offset,
10409 			    (intmax_t)dp->di_db[adp->ad_offset],
10410 			    (intmax_t)adp->ad_newblkno);
10411 		if (adp->ad_offset >= NDADDR &&
10412 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10413 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10414 			    "softdep_write_inodeblock:",
10415 			    (intmax_t)adp->ad_offset - NDADDR,
10416 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10417 			    (intmax_t)adp->ad_newblkno);
10418 		deplist |= 1 << adp->ad_offset;
10419 		if ((adp->ad_state & ATTACHED) == 0)
10420 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10421 			    adp->ad_state);
10422 #endif /* INVARIANTS */
10423 		adp->ad_state &= ~ATTACHED;
10424 		adp->ad_state |= UNDONE;
10425 	}
10426 	/*
10427 	 * The on-disk inode cannot claim to be any larger than the last
10428 	 * fragment that has been written. Otherwise, the on-disk inode
10429 	 * might have fragments that were not the last block in the file
10430 	 * which would corrupt the filesystem.
10431 	 */
10432 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10433 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10434 		if (adp->ad_offset >= NDADDR)
10435 			break;
10436 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10437 		/* keep going until hitting a rollback to a frag */
10438 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10439 			continue;
10440 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10441 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10442 #ifdef INVARIANTS
10443 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10444 				panic("softdep_write_inodeblock: lost dep2");
10445 #endif /* INVARIANTS */
10446 			dp->di_db[i] = 0;
10447 		}
10448 		for (i = 0; i < NIADDR; i++) {
10449 #ifdef INVARIANTS
10450 			if (dp->di_ib[i] != 0 &&
10451 			    (deplist & ((1 << NDADDR) << i)) == 0)
10452 				panic("softdep_write_inodeblock: lost dep3");
10453 #endif /* INVARIANTS */
10454 			dp->di_ib[i] = 0;
10455 		}
10456 		return;
10457 	}
10458 	/*
10459 	 * If we have zero'ed out the last allocated block of the file,
10460 	 * roll back the size to the last currently allocated block.
10461 	 * We know that this last allocated block is a full-sized as
10462 	 * we already checked for fragments in the loop above.
10463 	 */
10464 	if (lastadp != NULL &&
10465 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10466 		for (i = lastadp->ad_offset; i >= 0; i--)
10467 			if (dp->di_db[i] != 0)
10468 				break;
10469 		dp->di_size = (i + 1) * fs->fs_bsize;
10470 	}
10471 	/*
10472 	 * The only dependencies are for indirect blocks.
10473 	 *
10474 	 * The file size for indirect block additions is not guaranteed.
10475 	 * Such a guarantee would be non-trivial to achieve. The conventional
10476 	 * synchronous write implementation also does not make this guarantee.
10477 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10478 	 * can be over-estimated without destroying integrity when the file
10479 	 * moves into the indirect blocks (i.e., is large). If we want to
10480 	 * postpone fsck, we are stuck with this argument.
10481 	 */
10482 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10483 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10484 }
10485 
10486 /*
10487  * Cancel an indirdep as a result of truncation.  Release all of the
10488  * children allocindirs and place their journal work on the appropriate
10489  * list.
10490  */
10491 static void
10492 cancel_indirdep(indirdep, bp, freeblks)
10493 	struct indirdep *indirdep;
10494 	struct buf *bp;
10495 	struct freeblks *freeblks;
10496 {
10497 	struct allocindir *aip;
10498 
10499 	/*
10500 	 * None of the indirect pointers will ever be visible,
10501 	 * so they can simply be tossed. GOINGAWAY ensures
10502 	 * that allocated pointers will be saved in the buffer
10503 	 * cache until they are freed. Note that they will
10504 	 * only be able to be found by their physical address
10505 	 * since the inode mapping the logical address will
10506 	 * be gone. The save buffer used for the safe copy
10507 	 * was allocated in setup_allocindir_phase2 using
10508 	 * the physical address so it could be used for this
10509 	 * purpose. Hence we swap the safe copy with the real
10510 	 * copy, allowing the safe copy to be freed and holding
10511 	 * on to the real copy for later use in indir_trunc.
10512 	 */
10513 	if (indirdep->ir_state & GOINGAWAY)
10514 		panic("cancel_indirdep: already gone");
10515 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10516 		indirdep->ir_state |= DEPCOMPLETE;
10517 		LIST_REMOVE(indirdep, ir_next);
10518 	}
10519 	indirdep->ir_state |= GOINGAWAY;
10520 	/*
10521 	 * Pass in bp for blocks still have journal writes
10522 	 * pending so we can cancel them on their own.
10523 	 */
10524 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10525 		cancel_allocindir(aip, bp, freeblks, 0);
10526 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10527 		cancel_allocindir(aip, NULL, freeblks, 0);
10528 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10529 		cancel_allocindir(aip, NULL, freeblks, 0);
10530 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10531 		cancel_allocindir(aip, NULL, freeblks, 0);
10532 	/*
10533 	 * If there are pending partial truncations we need to keep the
10534 	 * old block copy around until they complete.  This is because
10535 	 * the current b_data is not a perfect superset of the available
10536 	 * blocks.
10537 	 */
10538 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10539 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10540 	else
10541 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10542 	WORKLIST_REMOVE(&indirdep->ir_list);
10543 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10544 	indirdep->ir_bp = NULL;
10545 	indirdep->ir_freeblks = freeblks;
10546 }
10547 
10548 /*
10549  * Free an indirdep once it no longer has new pointers to track.
10550  */
10551 static void
10552 free_indirdep(indirdep)
10553 	struct indirdep *indirdep;
10554 {
10555 
10556 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10557 	    ("free_indirdep: Indir trunc list not empty."));
10558 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10559 	    ("free_indirdep: Complete head not empty."));
10560 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10561 	    ("free_indirdep: write head not empty."));
10562 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10563 	    ("free_indirdep: done head not empty."));
10564 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10565 	    ("free_indirdep: deplist head not empty."));
10566 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10567 	    ("free_indirdep: %p still on newblk list.", indirdep));
10568 	KASSERT(indirdep->ir_saveddata == NULL,
10569 	    ("free_indirdep: %p still has saved data.", indirdep));
10570 	if (indirdep->ir_state & ONWORKLIST)
10571 		WORKLIST_REMOVE(&indirdep->ir_list);
10572 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10573 }
10574 
10575 /*
10576  * Called before a write to an indirdep.  This routine is responsible for
10577  * rolling back pointers to a safe state which includes only those
10578  * allocindirs which have been completed.
10579  */
10580 static void
10581 initiate_write_indirdep(indirdep, bp)
10582 	struct indirdep *indirdep;
10583 	struct buf *bp;
10584 {
10585 	struct ufsmount *ump;
10586 
10587 	indirdep->ir_state |= IOSTARTED;
10588 	if (indirdep->ir_state & GOINGAWAY)
10589 		panic("disk_io_initiation: indirdep gone");
10590 	/*
10591 	 * If there are no remaining dependencies, this will be writing
10592 	 * the real pointers.
10593 	 */
10594 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10595 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10596 		return;
10597 	/*
10598 	 * Replace up-to-date version with safe version.
10599 	 */
10600 	if (indirdep->ir_saveddata == NULL) {
10601 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10602 		LOCK_OWNED(ump);
10603 		FREE_LOCK(ump);
10604 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10605 		    M_SOFTDEP_FLAGS);
10606 		ACQUIRE_LOCK(ump);
10607 	}
10608 	indirdep->ir_state &= ~ATTACHED;
10609 	indirdep->ir_state |= UNDONE;
10610 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10611 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10612 	    bp->b_bcount);
10613 }
10614 
10615 /*
10616  * Called when an inode has been cleared in a cg bitmap.  This finally
10617  * eliminates any canceled jaddrefs
10618  */
10619 void
10620 softdep_setup_inofree(mp, bp, ino, wkhd)
10621 	struct mount *mp;
10622 	struct buf *bp;
10623 	ino_t ino;
10624 	struct workhead *wkhd;
10625 {
10626 	struct worklist *wk, *wkn;
10627 	struct inodedep *inodedep;
10628 	struct ufsmount *ump;
10629 	uint8_t *inosused;
10630 	struct cg *cgp;
10631 	struct fs *fs;
10632 
10633 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10634 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10635 	ump = VFSTOUFS(mp);
10636 	ACQUIRE_LOCK(ump);
10637 	fs = ump->um_fs;
10638 	cgp = (struct cg *)bp->b_data;
10639 	inosused = cg_inosused(cgp);
10640 	if (isset(inosused, ino % fs->fs_ipg))
10641 		panic("softdep_setup_inofree: inode %ju not freed.",
10642 		    (uintmax_t)ino);
10643 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10644 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10645 		    (uintmax_t)ino, inodedep);
10646 	if (wkhd) {
10647 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10648 			if (wk->wk_type != D_JADDREF)
10649 				continue;
10650 			WORKLIST_REMOVE(wk);
10651 			/*
10652 			 * We can free immediately even if the jaddref
10653 			 * isn't attached in a background write as now
10654 			 * the bitmaps are reconciled.
10655 			 */
10656 			wk->wk_state |= COMPLETE | ATTACHED;
10657 			free_jaddref(WK_JADDREF(wk));
10658 		}
10659 		jwork_move(&bp->b_dep, wkhd);
10660 	}
10661 	FREE_LOCK(ump);
10662 }
10663 
10664 
10665 /*
10666  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10667  * map.  Any dependencies waiting for the write to clear are added to the
10668  * buf's list and any jnewblks that are being canceled are discarded
10669  * immediately.
10670  */
10671 void
10672 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10673 	struct mount *mp;
10674 	struct buf *bp;
10675 	ufs2_daddr_t blkno;
10676 	int frags;
10677 	struct workhead *wkhd;
10678 {
10679 	struct bmsafemap *bmsafemap;
10680 	struct jnewblk *jnewblk;
10681 	struct ufsmount *ump;
10682 	struct worklist *wk;
10683 	struct fs *fs;
10684 #ifdef SUJ_DEBUG
10685 	uint8_t *blksfree;
10686 	struct cg *cgp;
10687 	ufs2_daddr_t jstart;
10688 	ufs2_daddr_t jend;
10689 	ufs2_daddr_t end;
10690 	long bno;
10691 	int i;
10692 #endif
10693 
10694 	CTR3(KTR_SUJ,
10695 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10696 	    blkno, frags, wkhd);
10697 
10698 	ump = VFSTOUFS(mp);
10699 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10700 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10701 	ACQUIRE_LOCK(ump);
10702 	/* Lookup the bmsafemap so we track when it is dirty. */
10703 	fs = ump->um_fs;
10704 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10705 	/*
10706 	 * Detach any jnewblks which have been canceled.  They must linger
10707 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10708 	 * an unjournaled allocation from hitting the disk.
10709 	 */
10710 	if (wkhd) {
10711 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10712 			CTR2(KTR_SUJ,
10713 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10714 			    blkno, wk->wk_type);
10715 			WORKLIST_REMOVE(wk);
10716 			if (wk->wk_type != D_JNEWBLK) {
10717 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10718 				continue;
10719 			}
10720 			jnewblk = WK_JNEWBLK(wk);
10721 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10722 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10723 #ifdef SUJ_DEBUG
10724 			/*
10725 			 * Assert that this block is free in the bitmap
10726 			 * before we discard the jnewblk.
10727 			 */
10728 			cgp = (struct cg *)bp->b_data;
10729 			blksfree = cg_blksfree(cgp);
10730 			bno = dtogd(fs, jnewblk->jn_blkno);
10731 			for (i = jnewblk->jn_oldfrags;
10732 			    i < jnewblk->jn_frags; i++) {
10733 				if (isset(blksfree, bno + i))
10734 					continue;
10735 				panic("softdep_setup_blkfree: not free");
10736 			}
10737 #endif
10738 			/*
10739 			 * Even if it's not attached we can free immediately
10740 			 * as the new bitmap is correct.
10741 			 */
10742 			wk->wk_state |= COMPLETE | ATTACHED;
10743 			free_jnewblk(jnewblk);
10744 		}
10745 	}
10746 
10747 #ifdef SUJ_DEBUG
10748 	/*
10749 	 * Assert that we are not freeing a block which has an outstanding
10750 	 * allocation dependency.
10751 	 */
10752 	fs = VFSTOUFS(mp)->um_fs;
10753 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10754 	end = blkno + frags;
10755 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10756 		/*
10757 		 * Don't match against blocks that will be freed when the
10758 		 * background write is done.
10759 		 */
10760 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10761 		    (COMPLETE | DEPCOMPLETE))
10762 			continue;
10763 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10764 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10765 		if ((blkno >= jstart && blkno < jend) ||
10766 		    (end > jstart && end <= jend)) {
10767 			printf("state 0x%X %jd - %d %d dep %p\n",
10768 			    jnewblk->jn_state, jnewblk->jn_blkno,
10769 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10770 			    jnewblk->jn_dep);
10771 			panic("softdep_setup_blkfree: "
10772 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10773 			    blkno, end, frags, jstart, jend);
10774 		}
10775 	}
10776 #endif
10777 	FREE_LOCK(ump);
10778 }
10779 
10780 /*
10781  * Revert a block allocation when the journal record that describes it
10782  * is not yet written.
10783  */
10784 static int
10785 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10786 	struct jnewblk *jnewblk;
10787 	struct fs *fs;
10788 	struct cg *cgp;
10789 	uint8_t *blksfree;
10790 {
10791 	ufs1_daddr_t fragno;
10792 	long cgbno, bbase;
10793 	int frags, blk;
10794 	int i;
10795 
10796 	frags = 0;
10797 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10798 	/*
10799 	 * We have to test which frags need to be rolled back.  We may
10800 	 * be operating on a stale copy when doing background writes.
10801 	 */
10802 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10803 		if (isclr(blksfree, cgbno + i))
10804 			frags++;
10805 	if (frags == 0)
10806 		return (0);
10807 	/*
10808 	 * This is mostly ffs_blkfree() sans some validation and
10809 	 * superblock updates.
10810 	 */
10811 	if (frags == fs->fs_frag) {
10812 		fragno = fragstoblks(fs, cgbno);
10813 		ffs_setblock(fs, blksfree, fragno);
10814 		ffs_clusteracct(fs, cgp, fragno, 1);
10815 		cgp->cg_cs.cs_nbfree++;
10816 	} else {
10817 		cgbno += jnewblk->jn_oldfrags;
10818 		bbase = cgbno - fragnum(fs, cgbno);
10819 		/* Decrement the old frags.  */
10820 		blk = blkmap(fs, blksfree, bbase);
10821 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10822 		/* Deallocate the fragment */
10823 		for (i = 0; i < frags; i++)
10824 			setbit(blksfree, cgbno + i);
10825 		cgp->cg_cs.cs_nffree += frags;
10826 		/* Add back in counts associated with the new frags */
10827 		blk = blkmap(fs, blksfree, bbase);
10828 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10829 		/* If a complete block has been reassembled, account for it. */
10830 		fragno = fragstoblks(fs, bbase);
10831 		if (ffs_isblock(fs, blksfree, fragno)) {
10832 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10833 			ffs_clusteracct(fs, cgp, fragno, 1);
10834 			cgp->cg_cs.cs_nbfree++;
10835 		}
10836 	}
10837 	stat_jnewblk++;
10838 	jnewblk->jn_state &= ~ATTACHED;
10839 	jnewblk->jn_state |= UNDONE;
10840 
10841 	return (frags);
10842 }
10843 
10844 static void
10845 initiate_write_bmsafemap(bmsafemap, bp)
10846 	struct bmsafemap *bmsafemap;
10847 	struct buf *bp;			/* The cg block. */
10848 {
10849 	struct jaddref *jaddref;
10850 	struct jnewblk *jnewblk;
10851 	uint8_t *inosused;
10852 	uint8_t *blksfree;
10853 	struct cg *cgp;
10854 	struct fs *fs;
10855 	ino_t ino;
10856 
10857 	if (bmsafemap->sm_state & IOSTARTED)
10858 		return;
10859 	bmsafemap->sm_state |= IOSTARTED;
10860 	/*
10861 	 * Clear any inode allocations which are pending journal writes.
10862 	 */
10863 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10864 		cgp = (struct cg *)bp->b_data;
10865 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10866 		inosused = cg_inosused(cgp);
10867 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10868 			ino = jaddref->ja_ino % fs->fs_ipg;
10869 			if (isset(inosused, ino)) {
10870 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10871 					cgp->cg_cs.cs_ndir--;
10872 				cgp->cg_cs.cs_nifree++;
10873 				clrbit(inosused, ino);
10874 				jaddref->ja_state &= ~ATTACHED;
10875 				jaddref->ja_state |= UNDONE;
10876 				stat_jaddref++;
10877 			} else
10878 				panic("initiate_write_bmsafemap: inode %ju "
10879 				    "marked free", (uintmax_t)jaddref->ja_ino);
10880 		}
10881 	}
10882 	/*
10883 	 * Clear any block allocations which are pending journal writes.
10884 	 */
10885 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10886 		cgp = (struct cg *)bp->b_data;
10887 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10888 		blksfree = cg_blksfree(cgp);
10889 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10890 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10891 				continue;
10892 			panic("initiate_write_bmsafemap: block %jd "
10893 			    "marked free", jnewblk->jn_blkno);
10894 		}
10895 	}
10896 	/*
10897 	 * Move allocation lists to the written lists so they can be
10898 	 * cleared once the block write is complete.
10899 	 */
10900 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10901 	    inodedep, id_deps);
10902 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10903 	    newblk, nb_deps);
10904 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10905 	    wk_list);
10906 }
10907 
10908 /*
10909  * This routine is called during the completion interrupt
10910  * service routine for a disk write (from the procedure called
10911  * by the device driver to inform the filesystem caches of
10912  * a request completion).  It should be called early in this
10913  * procedure, before the block is made available to other
10914  * processes or other routines are called.
10915  *
10916  */
10917 static void
10918 softdep_disk_write_complete(bp)
10919 	struct buf *bp;		/* describes the completed disk write */
10920 {
10921 	struct worklist *wk;
10922 	struct worklist *owk;
10923 	struct ufsmount *ump;
10924 	struct workhead reattach;
10925 	struct freeblks *freeblks;
10926 	struct buf *sbp;
10927 
10928 	/*
10929 	 * If an error occurred while doing the write, then the data
10930 	 * has not hit the disk and the dependencies cannot be unrolled.
10931 	 */
10932 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10933 		return;
10934 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10935 		return;
10936 	ump = VFSTOUFS(wk->wk_mp);
10937 	LIST_INIT(&reattach);
10938 	/*
10939 	 * This lock must not be released anywhere in this code segment.
10940 	 */
10941 	sbp = NULL;
10942 	owk = NULL;
10943 	ACQUIRE_LOCK(ump);
10944 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10945 		WORKLIST_REMOVE(wk);
10946 		atomic_add_long(&dep_write[wk->wk_type], 1);
10947 		if (wk == owk)
10948 			panic("duplicate worklist: %p\n", wk);
10949 		owk = wk;
10950 		switch (wk->wk_type) {
10951 
10952 		case D_PAGEDEP:
10953 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10954 				WORKLIST_INSERT(&reattach, wk);
10955 			continue;
10956 
10957 		case D_INODEDEP:
10958 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10959 				WORKLIST_INSERT(&reattach, wk);
10960 			continue;
10961 
10962 		case D_BMSAFEMAP:
10963 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10964 				WORKLIST_INSERT(&reattach, wk);
10965 			continue;
10966 
10967 		case D_MKDIR:
10968 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10969 			continue;
10970 
10971 		case D_ALLOCDIRECT:
10972 			wk->wk_state |= COMPLETE;
10973 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10974 			continue;
10975 
10976 		case D_ALLOCINDIR:
10977 			wk->wk_state |= COMPLETE;
10978 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10979 			continue;
10980 
10981 		case D_INDIRDEP:
10982 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10983 				WORKLIST_INSERT(&reattach, wk);
10984 			continue;
10985 
10986 		case D_FREEBLKS:
10987 			wk->wk_state |= COMPLETE;
10988 			freeblks = WK_FREEBLKS(wk);
10989 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10990 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10991 				add_to_worklist(wk, WK_NODELAY);
10992 			continue;
10993 
10994 		case D_FREEWORK:
10995 			handle_written_freework(WK_FREEWORK(wk));
10996 			break;
10997 
10998 		case D_JSEGDEP:
10999 			free_jsegdep(WK_JSEGDEP(wk));
11000 			continue;
11001 
11002 		case D_JSEG:
11003 			handle_written_jseg(WK_JSEG(wk), bp);
11004 			continue;
11005 
11006 		case D_SBDEP:
11007 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11008 				WORKLIST_INSERT(&reattach, wk);
11009 			continue;
11010 
11011 		case D_FREEDEP:
11012 			free_freedep(WK_FREEDEP(wk));
11013 			continue;
11014 
11015 		default:
11016 			panic("handle_disk_write_complete: Unknown type %s",
11017 			    TYPENAME(wk->wk_type));
11018 			/* NOTREACHED */
11019 		}
11020 	}
11021 	/*
11022 	 * Reattach any requests that must be redone.
11023 	 */
11024 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11025 		WORKLIST_REMOVE(wk);
11026 		WORKLIST_INSERT(&bp->b_dep, wk);
11027 	}
11028 	FREE_LOCK(ump);
11029 	if (sbp)
11030 		brelse(sbp);
11031 }
11032 
11033 /*
11034  * Called from within softdep_disk_write_complete above. Note that
11035  * this routine is always called from interrupt level with further
11036  * splbio interrupts blocked.
11037  */
11038 static void
11039 handle_allocdirect_partdone(adp, wkhd)
11040 	struct allocdirect *adp;	/* the completed allocdirect */
11041 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11042 {
11043 	struct allocdirectlst *listhead;
11044 	struct allocdirect *listadp;
11045 	struct inodedep *inodedep;
11046 	long bsize;
11047 
11048 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11049 		return;
11050 	/*
11051 	 * The on-disk inode cannot claim to be any larger than the last
11052 	 * fragment that has been written. Otherwise, the on-disk inode
11053 	 * might have fragments that were not the last block in the file
11054 	 * which would corrupt the filesystem. Thus, we cannot free any
11055 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11056 	 * these blocks must be rolled back to zero before writing the inode.
11057 	 * We check the currently active set of allocdirects in id_inoupdt
11058 	 * or id_extupdt as appropriate.
11059 	 */
11060 	inodedep = adp->ad_inodedep;
11061 	bsize = inodedep->id_fs->fs_bsize;
11062 	if (adp->ad_state & EXTDATA)
11063 		listhead = &inodedep->id_extupdt;
11064 	else
11065 		listhead = &inodedep->id_inoupdt;
11066 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11067 		/* found our block */
11068 		if (listadp == adp)
11069 			break;
11070 		/* continue if ad_oldlbn is not a fragment */
11071 		if (listadp->ad_oldsize == 0 ||
11072 		    listadp->ad_oldsize == bsize)
11073 			continue;
11074 		/* hit a fragment */
11075 		return;
11076 	}
11077 	/*
11078 	 * If we have reached the end of the current list without
11079 	 * finding the just finished dependency, then it must be
11080 	 * on the future dependency list. Future dependencies cannot
11081 	 * be freed until they are moved to the current list.
11082 	 */
11083 	if (listadp == NULL) {
11084 #ifdef DEBUG
11085 		if (adp->ad_state & EXTDATA)
11086 			listhead = &inodedep->id_newextupdt;
11087 		else
11088 			listhead = &inodedep->id_newinoupdt;
11089 		TAILQ_FOREACH(listadp, listhead, ad_next)
11090 			/* found our block */
11091 			if (listadp == adp)
11092 				break;
11093 		if (listadp == NULL)
11094 			panic("handle_allocdirect_partdone: lost dep");
11095 #endif /* DEBUG */
11096 		return;
11097 	}
11098 	/*
11099 	 * If we have found the just finished dependency, then queue
11100 	 * it along with anything that follows it that is complete.
11101 	 * Since the pointer has not yet been written in the inode
11102 	 * as the dependency prevents it, place the allocdirect on the
11103 	 * bufwait list where it will be freed once the pointer is
11104 	 * valid.
11105 	 */
11106 	if (wkhd == NULL)
11107 		wkhd = &inodedep->id_bufwait;
11108 	for (; adp; adp = listadp) {
11109 		listadp = TAILQ_NEXT(adp, ad_next);
11110 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11111 			return;
11112 		TAILQ_REMOVE(listhead, adp, ad_next);
11113 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11114 	}
11115 }
11116 
11117 /*
11118  * Called from within softdep_disk_write_complete above.  This routine
11119  * completes successfully written allocindirs.
11120  */
11121 static void
11122 handle_allocindir_partdone(aip)
11123 	struct allocindir *aip;		/* the completed allocindir */
11124 {
11125 	struct indirdep *indirdep;
11126 
11127 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11128 		return;
11129 	indirdep = aip->ai_indirdep;
11130 	LIST_REMOVE(aip, ai_next);
11131 	/*
11132 	 * Don't set a pointer while the buffer is undergoing IO or while
11133 	 * we have active truncations.
11134 	 */
11135 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11136 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11137 		return;
11138 	}
11139 	if (indirdep->ir_state & UFS1FMT)
11140 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11141 		    aip->ai_newblkno;
11142 	else
11143 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11144 		    aip->ai_newblkno;
11145 	/*
11146 	 * Await the pointer write before freeing the allocindir.
11147 	 */
11148 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11149 }
11150 
11151 /*
11152  * Release segments held on a jwork list.
11153  */
11154 static void
11155 handle_jwork(wkhd)
11156 	struct workhead *wkhd;
11157 {
11158 	struct worklist *wk;
11159 
11160 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11161 		WORKLIST_REMOVE(wk);
11162 		switch (wk->wk_type) {
11163 		case D_JSEGDEP:
11164 			free_jsegdep(WK_JSEGDEP(wk));
11165 			continue;
11166 		case D_FREEDEP:
11167 			free_freedep(WK_FREEDEP(wk));
11168 			continue;
11169 		case D_FREEFRAG:
11170 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11171 			WORKITEM_FREE(wk, D_FREEFRAG);
11172 			continue;
11173 		case D_FREEWORK:
11174 			handle_written_freework(WK_FREEWORK(wk));
11175 			continue;
11176 		default:
11177 			panic("handle_jwork: Unknown type %s\n",
11178 			    TYPENAME(wk->wk_type));
11179 		}
11180 	}
11181 }
11182 
11183 /*
11184  * Handle the bufwait list on an inode when it is safe to release items
11185  * held there.  This normally happens after an inode block is written but
11186  * may be delayed and handled later if there are pending journal items that
11187  * are not yet safe to be released.
11188  */
11189 static struct freefile *
11190 handle_bufwait(inodedep, refhd)
11191 	struct inodedep *inodedep;
11192 	struct workhead *refhd;
11193 {
11194 	struct jaddref *jaddref;
11195 	struct freefile *freefile;
11196 	struct worklist *wk;
11197 
11198 	freefile = NULL;
11199 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11200 		WORKLIST_REMOVE(wk);
11201 		switch (wk->wk_type) {
11202 		case D_FREEFILE:
11203 			/*
11204 			 * We defer adding freefile to the worklist
11205 			 * until all other additions have been made to
11206 			 * ensure that it will be done after all the
11207 			 * old blocks have been freed.
11208 			 */
11209 			if (freefile != NULL)
11210 				panic("handle_bufwait: freefile");
11211 			freefile = WK_FREEFILE(wk);
11212 			continue;
11213 
11214 		case D_MKDIR:
11215 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11216 			continue;
11217 
11218 		case D_DIRADD:
11219 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11220 			continue;
11221 
11222 		case D_FREEFRAG:
11223 			wk->wk_state |= COMPLETE;
11224 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11225 				add_to_worklist(wk, 0);
11226 			continue;
11227 
11228 		case D_DIRREM:
11229 			wk->wk_state |= COMPLETE;
11230 			add_to_worklist(wk, 0);
11231 			continue;
11232 
11233 		case D_ALLOCDIRECT:
11234 		case D_ALLOCINDIR:
11235 			free_newblk(WK_NEWBLK(wk));
11236 			continue;
11237 
11238 		case D_JNEWBLK:
11239 			wk->wk_state |= COMPLETE;
11240 			free_jnewblk(WK_JNEWBLK(wk));
11241 			continue;
11242 
11243 		/*
11244 		 * Save freed journal segments and add references on
11245 		 * the supplied list which will delay their release
11246 		 * until the cg bitmap is cleared on disk.
11247 		 */
11248 		case D_JSEGDEP:
11249 			if (refhd == NULL)
11250 				free_jsegdep(WK_JSEGDEP(wk));
11251 			else
11252 				WORKLIST_INSERT(refhd, wk);
11253 			continue;
11254 
11255 		case D_JADDREF:
11256 			jaddref = WK_JADDREF(wk);
11257 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11258 			    if_deps);
11259 			/*
11260 			 * Transfer any jaddrefs to the list to be freed with
11261 			 * the bitmap if we're handling a removed file.
11262 			 */
11263 			if (refhd == NULL) {
11264 				wk->wk_state |= COMPLETE;
11265 				free_jaddref(jaddref);
11266 			} else
11267 				WORKLIST_INSERT(refhd, wk);
11268 			continue;
11269 
11270 		default:
11271 			panic("handle_bufwait: Unknown type %p(%s)",
11272 			    wk, TYPENAME(wk->wk_type));
11273 			/* NOTREACHED */
11274 		}
11275 	}
11276 	return (freefile);
11277 }
11278 /*
11279  * Called from within softdep_disk_write_complete above to restore
11280  * in-memory inode block contents to their most up-to-date state. Note
11281  * that this routine is always called from interrupt level with further
11282  * splbio interrupts blocked.
11283  */
11284 static int
11285 handle_written_inodeblock(inodedep, bp)
11286 	struct inodedep *inodedep;
11287 	struct buf *bp;		/* buffer containing the inode block */
11288 {
11289 	struct freefile *freefile;
11290 	struct allocdirect *adp, *nextadp;
11291 	struct ufs1_dinode *dp1 = NULL;
11292 	struct ufs2_dinode *dp2 = NULL;
11293 	struct workhead wkhd;
11294 	int hadchanges, fstype;
11295 	ino_t freelink;
11296 
11297 	LIST_INIT(&wkhd);
11298 	hadchanges = 0;
11299 	freefile = NULL;
11300 	if ((inodedep->id_state & IOSTARTED) == 0)
11301 		panic("handle_written_inodeblock: not started");
11302 	inodedep->id_state &= ~IOSTARTED;
11303 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11304 		fstype = UFS1;
11305 		dp1 = (struct ufs1_dinode *)bp->b_data +
11306 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11307 		freelink = dp1->di_freelink;
11308 	} else {
11309 		fstype = UFS2;
11310 		dp2 = (struct ufs2_dinode *)bp->b_data +
11311 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11312 		freelink = dp2->di_freelink;
11313 	}
11314 	/*
11315 	 * Leave this inodeblock dirty until it's in the list.
11316 	 */
11317 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11318 		struct inodedep *inon;
11319 
11320 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11321 		if ((inon == NULL && freelink == 0) ||
11322 		    (inon && inon->id_ino == freelink)) {
11323 			if (inon)
11324 				inon->id_state |= UNLINKPREV;
11325 			inodedep->id_state |= UNLINKNEXT;
11326 		}
11327 		hadchanges = 1;
11328 	}
11329 	/*
11330 	 * If we had to rollback the inode allocation because of
11331 	 * bitmaps being incomplete, then simply restore it.
11332 	 * Keep the block dirty so that it will not be reclaimed until
11333 	 * all associated dependencies have been cleared and the
11334 	 * corresponding updates written to disk.
11335 	 */
11336 	if (inodedep->id_savedino1 != NULL) {
11337 		hadchanges = 1;
11338 		if (fstype == UFS1)
11339 			*dp1 = *inodedep->id_savedino1;
11340 		else
11341 			*dp2 = *inodedep->id_savedino2;
11342 		free(inodedep->id_savedino1, M_SAVEDINO);
11343 		inodedep->id_savedino1 = NULL;
11344 		if ((bp->b_flags & B_DELWRI) == 0)
11345 			stat_inode_bitmap++;
11346 		bdirty(bp);
11347 		/*
11348 		 * If the inode is clear here and GOINGAWAY it will never
11349 		 * be written.  Process the bufwait and clear any pending
11350 		 * work which may include the freefile.
11351 		 */
11352 		if (inodedep->id_state & GOINGAWAY)
11353 			goto bufwait;
11354 		return (1);
11355 	}
11356 	inodedep->id_state |= COMPLETE;
11357 	/*
11358 	 * Roll forward anything that had to be rolled back before
11359 	 * the inode could be updated.
11360 	 */
11361 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11362 		nextadp = TAILQ_NEXT(adp, ad_next);
11363 		if (adp->ad_state & ATTACHED)
11364 			panic("handle_written_inodeblock: new entry");
11365 		if (fstype == UFS1) {
11366 			if (adp->ad_offset < NDADDR) {
11367 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11368 					panic("%s %s #%jd mismatch %d != %jd",
11369 					    "handle_written_inodeblock:",
11370 					    "direct pointer",
11371 					    (intmax_t)adp->ad_offset,
11372 					    dp1->di_db[adp->ad_offset],
11373 					    (intmax_t)adp->ad_oldblkno);
11374 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11375 			} else {
11376 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11377 					panic("%s: %s #%jd allocated as %d",
11378 					    "handle_written_inodeblock",
11379 					    "indirect pointer",
11380 					    (intmax_t)adp->ad_offset - NDADDR,
11381 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11382 				dp1->di_ib[adp->ad_offset - NDADDR] =
11383 				    adp->ad_newblkno;
11384 			}
11385 		} else {
11386 			if (adp->ad_offset < NDADDR) {
11387 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11388 					panic("%s: %s #%jd %s %jd != %jd",
11389 					    "handle_written_inodeblock",
11390 					    "direct pointer",
11391 					    (intmax_t)adp->ad_offset, "mismatch",
11392 					    (intmax_t)dp2->di_db[adp->ad_offset],
11393 					    (intmax_t)adp->ad_oldblkno);
11394 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11395 			} else {
11396 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11397 					panic("%s: %s #%jd allocated as %jd",
11398 					    "handle_written_inodeblock",
11399 					    "indirect pointer",
11400 					    (intmax_t)adp->ad_offset - NDADDR,
11401 					    (intmax_t)
11402 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11403 				dp2->di_ib[adp->ad_offset - NDADDR] =
11404 				    adp->ad_newblkno;
11405 			}
11406 		}
11407 		adp->ad_state &= ~UNDONE;
11408 		adp->ad_state |= ATTACHED;
11409 		hadchanges = 1;
11410 	}
11411 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11412 		nextadp = TAILQ_NEXT(adp, ad_next);
11413 		if (adp->ad_state & ATTACHED)
11414 			panic("handle_written_inodeblock: new entry");
11415 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11416 			panic("%s: direct pointers #%jd %s %jd != %jd",
11417 			    "handle_written_inodeblock",
11418 			    (intmax_t)adp->ad_offset, "mismatch",
11419 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11420 			    (intmax_t)adp->ad_oldblkno);
11421 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11422 		adp->ad_state &= ~UNDONE;
11423 		adp->ad_state |= ATTACHED;
11424 		hadchanges = 1;
11425 	}
11426 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11427 		stat_direct_blk_ptrs++;
11428 	/*
11429 	 * Reset the file size to its most up-to-date value.
11430 	 */
11431 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11432 		panic("handle_written_inodeblock: bad size");
11433 	if (inodedep->id_savednlink > LINK_MAX)
11434 		panic("handle_written_inodeblock: Invalid link count "
11435 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11436 	if (fstype == UFS1) {
11437 		if (dp1->di_nlink != inodedep->id_savednlink) {
11438 			dp1->di_nlink = inodedep->id_savednlink;
11439 			hadchanges = 1;
11440 		}
11441 		if (dp1->di_size != inodedep->id_savedsize) {
11442 			dp1->di_size = inodedep->id_savedsize;
11443 			hadchanges = 1;
11444 		}
11445 	} else {
11446 		if (dp2->di_nlink != inodedep->id_savednlink) {
11447 			dp2->di_nlink = inodedep->id_savednlink;
11448 			hadchanges = 1;
11449 		}
11450 		if (dp2->di_size != inodedep->id_savedsize) {
11451 			dp2->di_size = inodedep->id_savedsize;
11452 			hadchanges = 1;
11453 		}
11454 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11455 			dp2->di_extsize = inodedep->id_savedextsize;
11456 			hadchanges = 1;
11457 		}
11458 	}
11459 	inodedep->id_savedsize = -1;
11460 	inodedep->id_savedextsize = -1;
11461 	inodedep->id_savednlink = -1;
11462 	/*
11463 	 * If there were any rollbacks in the inode block, then it must be
11464 	 * marked dirty so that its will eventually get written back in
11465 	 * its correct form.
11466 	 */
11467 	if (hadchanges)
11468 		bdirty(bp);
11469 bufwait:
11470 	/*
11471 	 * Process any allocdirects that completed during the update.
11472 	 */
11473 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11474 		handle_allocdirect_partdone(adp, &wkhd);
11475 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11476 		handle_allocdirect_partdone(adp, &wkhd);
11477 	/*
11478 	 * Process deallocations that were held pending until the
11479 	 * inode had been written to disk. Freeing of the inode
11480 	 * is delayed until after all blocks have been freed to
11481 	 * avoid creation of new <vfsid, inum, lbn> triples
11482 	 * before the old ones have been deleted.  Completely
11483 	 * unlinked inodes are not processed until the unlinked
11484 	 * inode list is written or the last reference is removed.
11485 	 */
11486 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11487 		freefile = handle_bufwait(inodedep, NULL);
11488 		if (freefile && !LIST_EMPTY(&wkhd)) {
11489 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11490 			freefile = NULL;
11491 		}
11492 	}
11493 	/*
11494 	 * Move rolled forward dependency completions to the bufwait list
11495 	 * now that those that were already written have been processed.
11496 	 */
11497 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11498 		panic("handle_written_inodeblock: bufwait but no changes");
11499 	jwork_move(&inodedep->id_bufwait, &wkhd);
11500 
11501 	if (freefile != NULL) {
11502 		/*
11503 		 * If the inode is goingaway it was never written.  Fake up
11504 		 * the state here so free_inodedep() can succeed.
11505 		 */
11506 		if (inodedep->id_state & GOINGAWAY)
11507 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11508 		if (free_inodedep(inodedep) == 0)
11509 			panic("handle_written_inodeblock: live inodedep %p",
11510 			    inodedep);
11511 		add_to_worklist(&freefile->fx_list, 0);
11512 		return (0);
11513 	}
11514 
11515 	/*
11516 	 * If no outstanding dependencies, free it.
11517 	 */
11518 	if (free_inodedep(inodedep) ||
11519 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11520 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11521 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11522 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11523 		return (0);
11524 	return (hadchanges);
11525 }
11526 
11527 static int
11528 handle_written_indirdep(indirdep, bp, bpp)
11529 	struct indirdep *indirdep;
11530 	struct buf *bp;
11531 	struct buf **bpp;
11532 {
11533 	struct allocindir *aip;
11534 	struct buf *sbp;
11535 	int chgs;
11536 
11537 	if (indirdep->ir_state & GOINGAWAY)
11538 		panic("handle_written_indirdep: indirdep gone");
11539 	if ((indirdep->ir_state & IOSTARTED) == 0)
11540 		panic("handle_written_indirdep: IO not started");
11541 	chgs = 0;
11542 	/*
11543 	 * If there were rollbacks revert them here.
11544 	 */
11545 	if (indirdep->ir_saveddata) {
11546 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11547 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11548 			free(indirdep->ir_saveddata, M_INDIRDEP);
11549 			indirdep->ir_saveddata = NULL;
11550 		}
11551 		chgs = 1;
11552 	}
11553 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11554 	indirdep->ir_state |= ATTACHED;
11555 	/*
11556 	 * Move allocindirs with written pointers to the completehd if
11557 	 * the indirdep's pointer is not yet written.  Otherwise
11558 	 * free them here.
11559 	 */
11560 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11561 		LIST_REMOVE(aip, ai_next);
11562 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11563 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11564 			    ai_next);
11565 			newblk_freefrag(&aip->ai_block);
11566 			continue;
11567 		}
11568 		free_newblk(&aip->ai_block);
11569 	}
11570 	/*
11571 	 * Move allocindirs that have finished dependency processing from
11572 	 * the done list to the write list after updating the pointers.
11573 	 */
11574 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11575 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11576 			handle_allocindir_partdone(aip);
11577 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11578 				panic("disk_write_complete: not gone");
11579 			chgs = 1;
11580 		}
11581 	}
11582 	/*
11583 	 * Preserve the indirdep if there were any changes or if it is not
11584 	 * yet valid on disk.
11585 	 */
11586 	if (chgs) {
11587 		stat_indir_blk_ptrs++;
11588 		bdirty(bp);
11589 		return (1);
11590 	}
11591 	/*
11592 	 * If there were no changes we can discard the savedbp and detach
11593 	 * ourselves from the buf.  We are only carrying completed pointers
11594 	 * in this case.
11595 	 */
11596 	sbp = indirdep->ir_savebp;
11597 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11598 	indirdep->ir_savebp = NULL;
11599 	indirdep->ir_bp = NULL;
11600 	if (*bpp != NULL)
11601 		panic("handle_written_indirdep: bp already exists.");
11602 	*bpp = sbp;
11603 	/*
11604 	 * The indirdep may not be freed until its parent points at it.
11605 	 */
11606 	if (indirdep->ir_state & DEPCOMPLETE)
11607 		free_indirdep(indirdep);
11608 
11609 	return (0);
11610 }
11611 
11612 /*
11613  * Process a diradd entry after its dependent inode has been written.
11614  * This routine must be called with splbio interrupts blocked.
11615  */
11616 static void
11617 diradd_inode_written(dap, inodedep)
11618 	struct diradd *dap;
11619 	struct inodedep *inodedep;
11620 {
11621 
11622 	dap->da_state |= COMPLETE;
11623 	complete_diradd(dap);
11624 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11625 }
11626 
11627 /*
11628  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11629  * be called with the per-filesystem lock and the buf lock on the cg held.
11630  */
11631 static int
11632 bmsafemap_backgroundwrite(bmsafemap, bp)
11633 	struct bmsafemap *bmsafemap;
11634 	struct buf *bp;
11635 {
11636 	int dirty;
11637 
11638 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11639 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11640 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11641 	/*
11642 	 * If we're initiating a background write we need to process the
11643 	 * rollbacks as they exist now, not as they exist when IO starts.
11644 	 * No other consumers will look at the contents of the shadowed
11645 	 * buf so this is safe to do here.
11646 	 */
11647 	if (bp->b_xflags & BX_BKGRDMARKER)
11648 		initiate_write_bmsafemap(bmsafemap, bp);
11649 
11650 	return (dirty);
11651 }
11652 
11653 /*
11654  * Re-apply an allocation when a cg write is complete.
11655  */
11656 static int
11657 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11658 	struct jnewblk *jnewblk;
11659 	struct fs *fs;
11660 	struct cg *cgp;
11661 	uint8_t *blksfree;
11662 {
11663 	ufs1_daddr_t fragno;
11664 	ufs2_daddr_t blkno;
11665 	long cgbno, bbase;
11666 	int frags, blk;
11667 	int i;
11668 
11669 	frags = 0;
11670 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11671 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11672 		if (isclr(blksfree, cgbno + i))
11673 			panic("jnewblk_rollforward: re-allocated fragment");
11674 		frags++;
11675 	}
11676 	if (frags == fs->fs_frag) {
11677 		blkno = fragstoblks(fs, cgbno);
11678 		ffs_clrblock(fs, blksfree, (long)blkno);
11679 		ffs_clusteracct(fs, cgp, blkno, -1);
11680 		cgp->cg_cs.cs_nbfree--;
11681 	} else {
11682 		bbase = cgbno - fragnum(fs, cgbno);
11683 		cgbno += jnewblk->jn_oldfrags;
11684                 /* If a complete block had been reassembled, account for it. */
11685 		fragno = fragstoblks(fs, bbase);
11686 		if (ffs_isblock(fs, blksfree, fragno)) {
11687 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11688 			ffs_clusteracct(fs, cgp, fragno, -1);
11689 			cgp->cg_cs.cs_nbfree--;
11690 		}
11691 		/* Decrement the old frags.  */
11692 		blk = blkmap(fs, blksfree, bbase);
11693 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11694 		/* Allocate the fragment */
11695 		for (i = 0; i < frags; i++)
11696 			clrbit(blksfree, cgbno + i);
11697 		cgp->cg_cs.cs_nffree -= frags;
11698 		/* Add back in counts associated with the new frags */
11699 		blk = blkmap(fs, blksfree, bbase);
11700 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11701 	}
11702 	return (frags);
11703 }
11704 
11705 /*
11706  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11707  * changes if it's not a background write.  Set all written dependencies
11708  * to DEPCOMPLETE and free the structure if possible.
11709  */
11710 static int
11711 handle_written_bmsafemap(bmsafemap, bp)
11712 	struct bmsafemap *bmsafemap;
11713 	struct buf *bp;
11714 {
11715 	struct newblk *newblk;
11716 	struct inodedep *inodedep;
11717 	struct jaddref *jaddref, *jatmp;
11718 	struct jnewblk *jnewblk, *jntmp;
11719 	struct ufsmount *ump;
11720 	uint8_t *inosused;
11721 	uint8_t *blksfree;
11722 	struct cg *cgp;
11723 	struct fs *fs;
11724 	ino_t ino;
11725 	int foreground;
11726 	int chgs;
11727 
11728 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11729 		panic("initiate_write_bmsafemap: Not started\n");
11730 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11731 	chgs = 0;
11732 	bmsafemap->sm_state &= ~IOSTARTED;
11733 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11734 	/*
11735 	 * Release journal work that was waiting on the write.
11736 	 */
11737 	handle_jwork(&bmsafemap->sm_freewr);
11738 
11739 	/*
11740 	 * Restore unwritten inode allocation pending jaddref writes.
11741 	 */
11742 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11743 		cgp = (struct cg *)bp->b_data;
11744 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11745 		inosused = cg_inosused(cgp);
11746 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11747 		    ja_bmdeps, jatmp) {
11748 			if ((jaddref->ja_state & UNDONE) == 0)
11749 				continue;
11750 			ino = jaddref->ja_ino % fs->fs_ipg;
11751 			if (isset(inosused, ino))
11752 				panic("handle_written_bmsafemap: "
11753 				    "re-allocated inode");
11754 			/* Do the roll-forward only if it's a real copy. */
11755 			if (foreground) {
11756 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11757 					cgp->cg_cs.cs_ndir++;
11758 				cgp->cg_cs.cs_nifree--;
11759 				setbit(inosused, ino);
11760 				chgs = 1;
11761 			}
11762 			jaddref->ja_state &= ~UNDONE;
11763 			jaddref->ja_state |= ATTACHED;
11764 			free_jaddref(jaddref);
11765 		}
11766 	}
11767 	/*
11768 	 * Restore any block allocations which are pending journal writes.
11769 	 */
11770 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11771 		cgp = (struct cg *)bp->b_data;
11772 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11773 		blksfree = cg_blksfree(cgp);
11774 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11775 		    jntmp) {
11776 			if ((jnewblk->jn_state & UNDONE) == 0)
11777 				continue;
11778 			/* Do the roll-forward only if it's a real copy. */
11779 			if (foreground &&
11780 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11781 				chgs = 1;
11782 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11783 			jnewblk->jn_state |= ATTACHED;
11784 			free_jnewblk(jnewblk);
11785 		}
11786 	}
11787 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11788 		newblk->nb_state |= DEPCOMPLETE;
11789 		newblk->nb_state &= ~ONDEPLIST;
11790 		newblk->nb_bmsafemap = NULL;
11791 		LIST_REMOVE(newblk, nb_deps);
11792 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11793 			handle_allocdirect_partdone(
11794 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11795 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11796 			handle_allocindir_partdone(
11797 			    WK_ALLOCINDIR(&newblk->nb_list));
11798 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11799 			panic("handle_written_bmsafemap: Unexpected type: %s",
11800 			    TYPENAME(newblk->nb_list.wk_type));
11801 	}
11802 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11803 		inodedep->id_state |= DEPCOMPLETE;
11804 		inodedep->id_state &= ~ONDEPLIST;
11805 		LIST_REMOVE(inodedep, id_deps);
11806 		inodedep->id_bmsafemap = NULL;
11807 	}
11808 	LIST_REMOVE(bmsafemap, sm_next);
11809 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11810 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11811 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11812 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11813 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11814 		LIST_REMOVE(bmsafemap, sm_hash);
11815 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11816 		return (0);
11817 	}
11818 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11819 	if (foreground)
11820 		bdirty(bp);
11821 	return (1);
11822 }
11823 
11824 /*
11825  * Try to free a mkdir dependency.
11826  */
11827 static void
11828 complete_mkdir(mkdir)
11829 	struct mkdir *mkdir;
11830 {
11831 	struct diradd *dap;
11832 
11833 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11834 		return;
11835 	LIST_REMOVE(mkdir, md_mkdirs);
11836 	dap = mkdir->md_diradd;
11837 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11838 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11839 		dap->da_state |= DEPCOMPLETE;
11840 		complete_diradd(dap);
11841 	}
11842 	WORKITEM_FREE(mkdir, D_MKDIR);
11843 }
11844 
11845 /*
11846  * Handle the completion of a mkdir dependency.
11847  */
11848 static void
11849 handle_written_mkdir(mkdir, type)
11850 	struct mkdir *mkdir;
11851 	int type;
11852 {
11853 
11854 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11855 		panic("handle_written_mkdir: bad type");
11856 	mkdir->md_state |= COMPLETE;
11857 	complete_mkdir(mkdir);
11858 }
11859 
11860 static int
11861 free_pagedep(pagedep)
11862 	struct pagedep *pagedep;
11863 {
11864 	int i;
11865 
11866 	if (pagedep->pd_state & NEWBLOCK)
11867 		return (0);
11868 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11869 		return (0);
11870 	for (i = 0; i < DAHASHSZ; i++)
11871 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11872 			return (0);
11873 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11874 		return (0);
11875 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11876 		return (0);
11877 	if (pagedep->pd_state & ONWORKLIST)
11878 		WORKLIST_REMOVE(&pagedep->pd_list);
11879 	LIST_REMOVE(pagedep, pd_hash);
11880 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11881 
11882 	return (1);
11883 }
11884 
11885 /*
11886  * Called from within softdep_disk_write_complete above.
11887  * A write operation was just completed. Removed inodes can
11888  * now be freed and associated block pointers may be committed.
11889  * Note that this routine is always called from interrupt level
11890  * with further splbio interrupts blocked.
11891  */
11892 static int
11893 handle_written_filepage(pagedep, bp)
11894 	struct pagedep *pagedep;
11895 	struct buf *bp;		/* buffer containing the written page */
11896 {
11897 	struct dirrem *dirrem;
11898 	struct diradd *dap, *nextdap;
11899 	struct direct *ep;
11900 	int i, chgs;
11901 
11902 	if ((pagedep->pd_state & IOSTARTED) == 0)
11903 		panic("handle_written_filepage: not started");
11904 	pagedep->pd_state &= ~IOSTARTED;
11905 	/*
11906 	 * Process any directory removals that have been committed.
11907 	 */
11908 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11909 		LIST_REMOVE(dirrem, dm_next);
11910 		dirrem->dm_state |= COMPLETE;
11911 		dirrem->dm_dirinum = pagedep->pd_ino;
11912 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11913 		    ("handle_written_filepage: Journal entries not written."));
11914 		add_to_worklist(&dirrem->dm_list, 0);
11915 	}
11916 	/*
11917 	 * Free any directory additions that have been committed.
11918 	 * If it is a newly allocated block, we have to wait until
11919 	 * the on-disk directory inode claims the new block.
11920 	 */
11921 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11922 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11923 			free_diradd(dap, NULL);
11924 	/*
11925 	 * Uncommitted directory entries must be restored.
11926 	 */
11927 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11928 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11929 		     dap = nextdap) {
11930 			nextdap = LIST_NEXT(dap, da_pdlist);
11931 			if (dap->da_state & ATTACHED)
11932 				panic("handle_written_filepage: attached");
11933 			ep = (struct direct *)
11934 			    ((char *)bp->b_data + dap->da_offset);
11935 			ep->d_ino = dap->da_newinum;
11936 			dap->da_state &= ~UNDONE;
11937 			dap->da_state |= ATTACHED;
11938 			chgs = 1;
11939 			/*
11940 			 * If the inode referenced by the directory has
11941 			 * been written out, then the dependency can be
11942 			 * moved to the pending list.
11943 			 */
11944 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11945 				LIST_REMOVE(dap, da_pdlist);
11946 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11947 				    da_pdlist);
11948 			}
11949 		}
11950 	}
11951 	/*
11952 	 * If there were any rollbacks in the directory, then it must be
11953 	 * marked dirty so that its will eventually get written back in
11954 	 * its correct form.
11955 	 */
11956 	if (chgs) {
11957 		if ((bp->b_flags & B_DELWRI) == 0)
11958 			stat_dir_entry++;
11959 		bdirty(bp);
11960 		return (1);
11961 	}
11962 	/*
11963 	 * If we are not waiting for a new directory block to be
11964 	 * claimed by its inode, then the pagedep will be freed.
11965 	 * Otherwise it will remain to track any new entries on
11966 	 * the page in case they are fsync'ed.
11967 	 */
11968 	free_pagedep(pagedep);
11969 	return (0);
11970 }
11971 
11972 /*
11973  * Writing back in-core inode structures.
11974  *
11975  * The filesystem only accesses an inode's contents when it occupies an
11976  * "in-core" inode structure.  These "in-core" structures are separate from
11977  * the page frames used to cache inode blocks.  Only the latter are
11978  * transferred to/from the disk.  So, when the updated contents of the
11979  * "in-core" inode structure are copied to the corresponding in-memory inode
11980  * block, the dependencies are also transferred.  The following procedure is
11981  * called when copying a dirty "in-core" inode to a cached inode block.
11982  */
11983 
11984 /*
11985  * Called when an inode is loaded from disk. If the effective link count
11986  * differed from the actual link count when it was last flushed, then we
11987  * need to ensure that the correct effective link count is put back.
11988  */
11989 void
11990 softdep_load_inodeblock(ip)
11991 	struct inode *ip;	/* the "in_core" copy of the inode */
11992 {
11993 	struct inodedep *inodedep;
11994 
11995 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
11996 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
11997 	/*
11998 	 * Check for alternate nlink count.
11999 	 */
12000 	ip->i_effnlink = ip->i_nlink;
12001 	ACQUIRE_LOCK(ip->i_ump);
12002 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
12003 	    &inodedep) == 0) {
12004 		FREE_LOCK(ip->i_ump);
12005 		return;
12006 	}
12007 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12008 	FREE_LOCK(ip->i_ump);
12009 }
12010 
12011 /*
12012  * This routine is called just before the "in-core" inode
12013  * information is to be copied to the in-memory inode block.
12014  * Recall that an inode block contains several inodes. If
12015  * the force flag is set, then the dependencies will be
12016  * cleared so that the update can always be made. Note that
12017  * the buffer is locked when this routine is called, so we
12018  * will never be in the middle of writing the inode block
12019  * to disk.
12020  */
12021 void
12022 softdep_update_inodeblock(ip, bp, waitfor)
12023 	struct inode *ip;	/* the "in_core" copy of the inode */
12024 	struct buf *bp;		/* the buffer containing the inode block */
12025 	int waitfor;		/* nonzero => update must be allowed */
12026 {
12027 	struct inodedep *inodedep;
12028 	struct inoref *inoref;
12029 	struct ufsmount *ump;
12030 	struct worklist *wk;
12031 	struct mount *mp;
12032 	struct buf *ibp;
12033 	struct fs *fs;
12034 	int error;
12035 
12036 	ump = ip->i_ump;
12037 	mp = UFSTOVFS(ump);
12038 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12039 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12040 	fs = ip->i_fs;
12041 	/*
12042 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12043 	 * does not have access to the in-core ip so must write directly into
12044 	 * the inode block buffer when setting freelink.
12045 	 */
12046 	if (fs->fs_magic == FS_UFS1_MAGIC)
12047 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12048 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12049 	else
12050 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12051 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12052 	/*
12053 	 * If the effective link count is not equal to the actual link
12054 	 * count, then we must track the difference in an inodedep while
12055 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12056 	 * if there is no existing inodedep, then there are no dependencies
12057 	 * to track.
12058 	 */
12059 	ACQUIRE_LOCK(ump);
12060 again:
12061 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12062 		FREE_LOCK(ump);
12063 		if (ip->i_effnlink != ip->i_nlink)
12064 			panic("softdep_update_inodeblock: bad link count");
12065 		return;
12066 	}
12067 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12068 		panic("softdep_update_inodeblock: bad delta");
12069 	/*
12070 	 * If we're flushing all dependencies we must also move any waiting
12071 	 * for journal writes onto the bufwait list prior to I/O.
12072 	 */
12073 	if (waitfor) {
12074 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12075 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12076 			    == DEPCOMPLETE) {
12077 				jwait(&inoref->if_list, MNT_WAIT);
12078 				goto again;
12079 			}
12080 		}
12081 	}
12082 	/*
12083 	 * Changes have been initiated. Anything depending on these
12084 	 * changes cannot occur until this inode has been written.
12085 	 */
12086 	inodedep->id_state &= ~COMPLETE;
12087 	if ((inodedep->id_state & ONWORKLIST) == 0)
12088 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12089 	/*
12090 	 * Any new dependencies associated with the incore inode must
12091 	 * now be moved to the list associated with the buffer holding
12092 	 * the in-memory copy of the inode. Once merged process any
12093 	 * allocdirects that are completed by the merger.
12094 	 */
12095 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12096 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12097 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12098 		    NULL);
12099 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12100 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12101 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12102 		    NULL);
12103 	/*
12104 	 * Now that the inode has been pushed into the buffer, the
12105 	 * operations dependent on the inode being written to disk
12106 	 * can be moved to the id_bufwait so that they will be
12107 	 * processed when the buffer I/O completes.
12108 	 */
12109 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12110 		WORKLIST_REMOVE(wk);
12111 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12112 	}
12113 	/*
12114 	 * Newly allocated inodes cannot be written until the bitmap
12115 	 * that allocates them have been written (indicated by
12116 	 * DEPCOMPLETE being set in id_state). If we are doing a
12117 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12118 	 * to be written so that the update can be done.
12119 	 */
12120 	if (waitfor == 0) {
12121 		FREE_LOCK(ump);
12122 		return;
12123 	}
12124 retry:
12125 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12126 		FREE_LOCK(ump);
12127 		return;
12128 	}
12129 	ibp = inodedep->id_bmsafemap->sm_buf;
12130 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12131 	if (ibp == NULL) {
12132 		/*
12133 		 * If ibp came back as NULL, the dependency could have been
12134 		 * freed while we slept.  Look it up again, and check to see
12135 		 * that it has completed.
12136 		 */
12137 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12138 			goto retry;
12139 		FREE_LOCK(ump);
12140 		return;
12141 	}
12142 	FREE_LOCK(ump);
12143 	if ((error = bwrite(ibp)) != 0)
12144 		softdep_error("softdep_update_inodeblock: bwrite", error);
12145 }
12146 
12147 /*
12148  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12149  * old inode dependency list (such as id_inoupdt). This routine must be
12150  * called with splbio interrupts blocked.
12151  */
12152 static void
12153 merge_inode_lists(newlisthead, oldlisthead)
12154 	struct allocdirectlst *newlisthead;
12155 	struct allocdirectlst *oldlisthead;
12156 {
12157 	struct allocdirect *listadp, *newadp;
12158 
12159 	newadp = TAILQ_FIRST(newlisthead);
12160 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12161 		if (listadp->ad_offset < newadp->ad_offset) {
12162 			listadp = TAILQ_NEXT(listadp, ad_next);
12163 			continue;
12164 		}
12165 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12166 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12167 		if (listadp->ad_offset == newadp->ad_offset) {
12168 			allocdirect_merge(oldlisthead, newadp,
12169 			    listadp);
12170 			listadp = newadp;
12171 		}
12172 		newadp = TAILQ_FIRST(newlisthead);
12173 	}
12174 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12175 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12176 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12177 	}
12178 }
12179 
12180 /*
12181  * If we are doing an fsync, then we must ensure that any directory
12182  * entries for the inode have been written after the inode gets to disk.
12183  */
12184 int
12185 softdep_fsync(vp)
12186 	struct vnode *vp;	/* the "in_core" copy of the inode */
12187 {
12188 	struct inodedep *inodedep;
12189 	struct pagedep *pagedep;
12190 	struct inoref *inoref;
12191 	struct ufsmount *ump;
12192 	struct worklist *wk;
12193 	struct diradd *dap;
12194 	struct mount *mp;
12195 	struct vnode *pvp;
12196 	struct inode *ip;
12197 	struct buf *bp;
12198 	struct fs *fs;
12199 	struct thread *td = curthread;
12200 	int error, flushparent, pagedep_new_block;
12201 	ino_t parentino;
12202 	ufs_lbn_t lbn;
12203 
12204 	ip = VTOI(vp);
12205 	fs = ip->i_fs;
12206 	ump = ip->i_ump;
12207 	mp = vp->v_mount;
12208 	if (MOUNTEDSOFTDEP(mp) == 0)
12209 		return (0);
12210 	ACQUIRE_LOCK(ump);
12211 restart:
12212 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12213 		FREE_LOCK(ump);
12214 		return (0);
12215 	}
12216 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12217 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12218 		    == DEPCOMPLETE) {
12219 			jwait(&inoref->if_list, MNT_WAIT);
12220 			goto restart;
12221 		}
12222 	}
12223 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12224 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12225 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12226 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12227 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12228 		panic("softdep_fsync: pending ops %p", inodedep);
12229 	for (error = 0, flushparent = 0; ; ) {
12230 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12231 			break;
12232 		if (wk->wk_type != D_DIRADD)
12233 			panic("softdep_fsync: Unexpected type %s",
12234 			    TYPENAME(wk->wk_type));
12235 		dap = WK_DIRADD(wk);
12236 		/*
12237 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12238 		 * dependency or is contained in a newly allocated block.
12239 		 */
12240 		if (dap->da_state & DIRCHG)
12241 			pagedep = dap->da_previous->dm_pagedep;
12242 		else
12243 			pagedep = dap->da_pagedep;
12244 		parentino = pagedep->pd_ino;
12245 		lbn = pagedep->pd_lbn;
12246 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12247 			panic("softdep_fsync: dirty");
12248 		if ((dap->da_state & MKDIR_PARENT) ||
12249 		    (pagedep->pd_state & NEWBLOCK))
12250 			flushparent = 1;
12251 		else
12252 			flushparent = 0;
12253 		/*
12254 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12255 		 * then we will not be able to release and recover the
12256 		 * vnode below, so we just have to give up on writing its
12257 		 * directory entry out. It will eventually be written, just
12258 		 * not now, but then the user was not asking to have it
12259 		 * written, so we are not breaking any promises.
12260 		 */
12261 		if (vp->v_iflag & VI_DOOMED)
12262 			break;
12263 		/*
12264 		 * We prevent deadlock by always fetching inodes from the
12265 		 * root, moving down the directory tree. Thus, when fetching
12266 		 * our parent directory, we first try to get the lock. If
12267 		 * that fails, we must unlock ourselves before requesting
12268 		 * the lock on our parent. See the comment in ufs_lookup
12269 		 * for details on possible races.
12270 		 */
12271 		FREE_LOCK(ump);
12272 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12273 		    FFSV_FORCEINSMQ)) {
12274 			error = vfs_busy(mp, MBF_NOWAIT);
12275 			if (error != 0) {
12276 				vfs_ref(mp);
12277 				VOP_UNLOCK(vp, 0);
12278 				error = vfs_busy(mp, 0);
12279 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12280 				vfs_rel(mp);
12281 				if (error != 0)
12282 					return (ENOENT);
12283 				if (vp->v_iflag & VI_DOOMED) {
12284 					vfs_unbusy(mp);
12285 					return (ENOENT);
12286 				}
12287 			}
12288 			VOP_UNLOCK(vp, 0);
12289 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12290 			    &pvp, FFSV_FORCEINSMQ);
12291 			vfs_unbusy(mp);
12292 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12293 			if (vp->v_iflag & VI_DOOMED) {
12294 				if (error == 0)
12295 					vput(pvp);
12296 				error = ENOENT;
12297 			}
12298 			if (error != 0)
12299 				return (error);
12300 		}
12301 		/*
12302 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12303 		 * that are contained in direct blocks will be resolved by
12304 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12305 		 * may require a complete sync'ing of the directory. So, we
12306 		 * try the cheap and fast ffs_update first, and if that fails,
12307 		 * then we do the slower ffs_syncvnode of the directory.
12308 		 */
12309 		if (flushparent) {
12310 			int locked;
12311 
12312 			if ((error = ffs_update(pvp, 1)) != 0) {
12313 				vput(pvp);
12314 				return (error);
12315 			}
12316 			ACQUIRE_LOCK(ump);
12317 			locked = 1;
12318 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12319 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12320 					if (wk->wk_type != D_DIRADD)
12321 						panic("softdep_fsync: Unexpected type %s",
12322 						      TYPENAME(wk->wk_type));
12323 					dap = WK_DIRADD(wk);
12324 					if (dap->da_state & DIRCHG)
12325 						pagedep = dap->da_previous->dm_pagedep;
12326 					else
12327 						pagedep = dap->da_pagedep;
12328 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12329 					FREE_LOCK(ump);
12330 					locked = 0;
12331 					if (pagedep_new_block && (error =
12332 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12333 						vput(pvp);
12334 						return (error);
12335 					}
12336 				}
12337 			}
12338 			if (locked)
12339 				FREE_LOCK(ump);
12340 		}
12341 		/*
12342 		 * Flush directory page containing the inode's name.
12343 		 */
12344 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12345 		    &bp);
12346 		if (error == 0)
12347 			error = bwrite(bp);
12348 		else
12349 			brelse(bp);
12350 		vput(pvp);
12351 		if (error != 0)
12352 			return (error);
12353 		ACQUIRE_LOCK(ump);
12354 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12355 			break;
12356 	}
12357 	FREE_LOCK(ump);
12358 	return (0);
12359 }
12360 
12361 /*
12362  * Flush all the dirty bitmaps associated with the block device
12363  * before flushing the rest of the dirty blocks so as to reduce
12364  * the number of dependencies that will have to be rolled back.
12365  *
12366  * XXX Unused?
12367  */
12368 void
12369 softdep_fsync_mountdev(vp)
12370 	struct vnode *vp;
12371 {
12372 	struct buf *bp, *nbp;
12373 	struct worklist *wk;
12374 	struct bufobj *bo;
12375 
12376 	if (!vn_isdisk(vp, NULL))
12377 		panic("softdep_fsync_mountdev: vnode not a disk");
12378 	bo = &vp->v_bufobj;
12379 restart:
12380 	BO_LOCK(bo);
12381 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12382 		/*
12383 		 * If it is already scheduled, skip to the next buffer.
12384 		 */
12385 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12386 			continue;
12387 
12388 		if ((bp->b_flags & B_DELWRI) == 0)
12389 			panic("softdep_fsync_mountdev: not dirty");
12390 		/*
12391 		 * We are only interested in bitmaps with outstanding
12392 		 * dependencies.
12393 		 */
12394 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12395 		    wk->wk_type != D_BMSAFEMAP ||
12396 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12397 			BUF_UNLOCK(bp);
12398 			continue;
12399 		}
12400 		BO_UNLOCK(bo);
12401 		bremfree(bp);
12402 		(void) bawrite(bp);
12403 		goto restart;
12404 	}
12405 	drain_output(vp);
12406 	BO_UNLOCK(bo);
12407 }
12408 
12409 /*
12410  * Sync all cylinder groups that were dirty at the time this function is
12411  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12412  * is used to flush freedep activity that may be holding up writes to a
12413  * indirect block.
12414  */
12415 static int
12416 sync_cgs(mp, waitfor)
12417 	struct mount *mp;
12418 	int waitfor;
12419 {
12420 	struct bmsafemap *bmsafemap;
12421 	struct bmsafemap *sentinel;
12422 	struct ufsmount *ump;
12423 	struct buf *bp;
12424 	int error;
12425 
12426 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12427 	sentinel->sm_cg = -1;
12428 	ump = VFSTOUFS(mp);
12429 	error = 0;
12430 	ACQUIRE_LOCK(ump);
12431 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12432 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12433 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12434 		/* Skip sentinels and cgs with no work to release. */
12435 		if (bmsafemap->sm_cg == -1 ||
12436 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12437 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12438 			LIST_REMOVE(sentinel, sm_next);
12439 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12440 			continue;
12441 		}
12442 		/*
12443 		 * If we don't get the lock and we're waiting try again, if
12444 		 * not move on to the next buf and try to sync it.
12445 		 */
12446 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12447 		if (bp == NULL && waitfor == MNT_WAIT)
12448 			continue;
12449 		LIST_REMOVE(sentinel, sm_next);
12450 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12451 		if (bp == NULL)
12452 			continue;
12453 		FREE_LOCK(ump);
12454 		if (waitfor == MNT_NOWAIT)
12455 			bawrite(bp);
12456 		else
12457 			error = bwrite(bp);
12458 		ACQUIRE_LOCK(ump);
12459 		if (error)
12460 			break;
12461 	}
12462 	LIST_REMOVE(sentinel, sm_next);
12463 	FREE_LOCK(ump);
12464 	free(sentinel, M_BMSAFEMAP);
12465 	return (error);
12466 }
12467 
12468 /*
12469  * This routine is called when we are trying to synchronously flush a
12470  * file. This routine must eliminate any filesystem metadata dependencies
12471  * so that the syncing routine can succeed.
12472  */
12473 int
12474 softdep_sync_metadata(struct vnode *vp)
12475 {
12476 	struct inode *ip;
12477 	int error;
12478 
12479 	ip = VTOI(vp);
12480 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12481 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12482 	/*
12483 	 * Ensure that any direct block dependencies have been cleared,
12484 	 * truncations are started, and inode references are journaled.
12485 	 */
12486 	ACQUIRE_LOCK(ip->i_ump);
12487 	/*
12488 	 * Write all journal records to prevent rollbacks on devvp.
12489 	 */
12490 	if (vp->v_type == VCHR)
12491 		softdep_flushjournal(vp->v_mount);
12492 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12493 	/*
12494 	 * Ensure that all truncates are written so we won't find deps on
12495 	 * indirect blocks.
12496 	 */
12497 	process_truncates(vp);
12498 	FREE_LOCK(ip->i_ump);
12499 
12500 	return (error);
12501 }
12502 
12503 /*
12504  * This routine is called when we are attempting to sync a buf with
12505  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12506  * other IO it can but returns EBUSY if the buffer is not yet able to
12507  * be written.  Dependencies which will not cause rollbacks will always
12508  * return 0.
12509  */
12510 int
12511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12512 {
12513 	struct indirdep *indirdep;
12514 	struct pagedep *pagedep;
12515 	struct allocindir *aip;
12516 	struct newblk *newblk;
12517 	struct ufsmount *ump;
12518 	struct buf *nbp;
12519 	struct worklist *wk;
12520 	int i, error;
12521 
12522 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12523 	    ("softdep_sync_buf called on non-softdep filesystem"));
12524 	/*
12525 	 * For VCHR we just don't want to force flush any dependencies that
12526 	 * will cause rollbacks.
12527 	 */
12528 	if (vp->v_type == VCHR) {
12529 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12530 			return (EBUSY);
12531 		return (0);
12532 	}
12533 	ump = VTOI(vp)->i_ump;
12534 	ACQUIRE_LOCK(ump);
12535 	/*
12536 	 * As we hold the buffer locked, none of its dependencies
12537 	 * will disappear.
12538 	 */
12539 	error = 0;
12540 top:
12541 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12542 		switch (wk->wk_type) {
12543 
12544 		case D_ALLOCDIRECT:
12545 		case D_ALLOCINDIR:
12546 			newblk = WK_NEWBLK(wk);
12547 			if (newblk->nb_jnewblk != NULL) {
12548 				if (waitfor == MNT_NOWAIT) {
12549 					error = EBUSY;
12550 					goto out_unlock;
12551 				}
12552 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12553 				goto top;
12554 			}
12555 			if (newblk->nb_state & DEPCOMPLETE ||
12556 			    waitfor == MNT_NOWAIT)
12557 				continue;
12558 			nbp = newblk->nb_bmsafemap->sm_buf;
12559 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12560 			if (nbp == NULL)
12561 				goto top;
12562 			FREE_LOCK(ump);
12563 			if ((error = bwrite(nbp)) != 0)
12564 				goto out;
12565 			ACQUIRE_LOCK(ump);
12566 			continue;
12567 
12568 		case D_INDIRDEP:
12569 			indirdep = WK_INDIRDEP(wk);
12570 			if (waitfor == MNT_NOWAIT) {
12571 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12572 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12573 					error = EBUSY;
12574 					goto out_unlock;
12575 				}
12576 			}
12577 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12578 				panic("softdep_sync_buf: truncation pending.");
12579 		restart:
12580 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12581 				newblk = (struct newblk *)aip;
12582 				if (newblk->nb_jnewblk != NULL) {
12583 					jwait(&newblk->nb_jnewblk->jn_list,
12584 					    waitfor);
12585 					goto restart;
12586 				}
12587 				if (newblk->nb_state & DEPCOMPLETE)
12588 					continue;
12589 				nbp = newblk->nb_bmsafemap->sm_buf;
12590 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12591 				if (nbp == NULL)
12592 					goto restart;
12593 				FREE_LOCK(ump);
12594 				if ((error = bwrite(nbp)) != 0)
12595 					goto out;
12596 				ACQUIRE_LOCK(ump);
12597 				goto restart;
12598 			}
12599 			continue;
12600 
12601 		case D_PAGEDEP:
12602 			/*
12603 			 * Only flush directory entries in synchronous passes.
12604 			 */
12605 			if (waitfor != MNT_WAIT) {
12606 				error = EBUSY;
12607 				goto out_unlock;
12608 			}
12609 			/*
12610 			 * While syncing snapshots, we must allow recursive
12611 			 * lookups.
12612 			 */
12613 			BUF_AREC(bp);
12614 			/*
12615 			 * We are trying to sync a directory that may
12616 			 * have dependencies on both its own metadata
12617 			 * and/or dependencies on the inodes of any
12618 			 * recently allocated files. We walk its diradd
12619 			 * lists pushing out the associated inode.
12620 			 */
12621 			pagedep = WK_PAGEDEP(wk);
12622 			for (i = 0; i < DAHASHSZ; i++) {
12623 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12624 					continue;
12625 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12626 				    &pagedep->pd_diraddhd[i]))) {
12627 					BUF_NOREC(bp);
12628 					goto out_unlock;
12629 				}
12630 			}
12631 			BUF_NOREC(bp);
12632 			continue;
12633 
12634 		case D_FREEWORK:
12635 		case D_FREEDEP:
12636 		case D_JSEGDEP:
12637 		case D_JNEWBLK:
12638 			continue;
12639 
12640 		default:
12641 			panic("softdep_sync_buf: Unknown type %s",
12642 			    TYPENAME(wk->wk_type));
12643 			/* NOTREACHED */
12644 		}
12645 	}
12646 out_unlock:
12647 	FREE_LOCK(ump);
12648 out:
12649 	return (error);
12650 }
12651 
12652 /*
12653  * Flush the dependencies associated with an inodedep.
12654  * Called with splbio blocked.
12655  */
12656 static int
12657 flush_inodedep_deps(vp, mp, ino)
12658 	struct vnode *vp;
12659 	struct mount *mp;
12660 	ino_t ino;
12661 {
12662 	struct inodedep *inodedep;
12663 	struct inoref *inoref;
12664 	struct ufsmount *ump;
12665 	int error, waitfor;
12666 
12667 	/*
12668 	 * This work is done in two passes. The first pass grabs most
12669 	 * of the buffers and begins asynchronously writing them. The
12670 	 * only way to wait for these asynchronous writes is to sleep
12671 	 * on the filesystem vnode which may stay busy for a long time
12672 	 * if the filesystem is active. So, instead, we make a second
12673 	 * pass over the dependencies blocking on each write. In the
12674 	 * usual case we will be blocking against a write that we
12675 	 * initiated, so when it is done the dependency will have been
12676 	 * resolved. Thus the second pass is expected to end quickly.
12677 	 * We give a brief window at the top of the loop to allow
12678 	 * any pending I/O to complete.
12679 	 */
12680 	ump = VFSTOUFS(mp);
12681 	LOCK_OWNED(ump);
12682 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12683 		if (error)
12684 			return (error);
12685 		FREE_LOCK(ump);
12686 		ACQUIRE_LOCK(ump);
12687 restart:
12688 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12689 			return (0);
12690 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12691 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12692 			    == DEPCOMPLETE) {
12693 				jwait(&inoref->if_list, MNT_WAIT);
12694 				goto restart;
12695 			}
12696 		}
12697 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12698 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12699 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12700 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12701 			continue;
12702 		/*
12703 		 * If pass2, we are done, otherwise do pass 2.
12704 		 */
12705 		if (waitfor == MNT_WAIT)
12706 			break;
12707 		waitfor = MNT_WAIT;
12708 	}
12709 	/*
12710 	 * Try freeing inodedep in case all dependencies have been removed.
12711 	 */
12712 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12713 		(void) free_inodedep(inodedep);
12714 	return (0);
12715 }
12716 
12717 /*
12718  * Flush an inode dependency list.
12719  * Called with splbio blocked.
12720  */
12721 static int
12722 flush_deplist(listhead, waitfor, errorp)
12723 	struct allocdirectlst *listhead;
12724 	int waitfor;
12725 	int *errorp;
12726 {
12727 	struct allocdirect *adp;
12728 	struct newblk *newblk;
12729 	struct ufsmount *ump;
12730 	struct buf *bp;
12731 
12732 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12733 		return (0);
12734 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12735 	LOCK_OWNED(ump);
12736 	TAILQ_FOREACH(adp, listhead, ad_next) {
12737 		newblk = (struct newblk *)adp;
12738 		if (newblk->nb_jnewblk != NULL) {
12739 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12740 			return (1);
12741 		}
12742 		if (newblk->nb_state & DEPCOMPLETE)
12743 			continue;
12744 		bp = newblk->nb_bmsafemap->sm_buf;
12745 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12746 		if (bp == NULL) {
12747 			if (waitfor == MNT_NOWAIT)
12748 				continue;
12749 			return (1);
12750 		}
12751 		FREE_LOCK(ump);
12752 		if (waitfor == MNT_NOWAIT)
12753 			bawrite(bp);
12754 		else
12755 			*errorp = bwrite(bp);
12756 		ACQUIRE_LOCK(ump);
12757 		return (1);
12758 	}
12759 	return (0);
12760 }
12761 
12762 /*
12763  * Flush dependencies associated with an allocdirect block.
12764  */
12765 static int
12766 flush_newblk_dep(vp, mp, lbn)
12767 	struct vnode *vp;
12768 	struct mount *mp;
12769 	ufs_lbn_t lbn;
12770 {
12771 	struct newblk *newblk;
12772 	struct ufsmount *ump;
12773 	struct bufobj *bo;
12774 	struct inode *ip;
12775 	struct buf *bp;
12776 	ufs2_daddr_t blkno;
12777 	int error;
12778 
12779 	error = 0;
12780 	bo = &vp->v_bufobj;
12781 	ip = VTOI(vp);
12782 	blkno = DIP(ip, i_db[lbn]);
12783 	if (blkno == 0)
12784 		panic("flush_newblk_dep: Missing block");
12785 	ump = VFSTOUFS(mp);
12786 	ACQUIRE_LOCK(ump);
12787 	/*
12788 	 * Loop until all dependencies related to this block are satisfied.
12789 	 * We must be careful to restart after each sleep in case a write
12790 	 * completes some part of this process for us.
12791 	 */
12792 	for (;;) {
12793 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12794 			FREE_LOCK(ump);
12795 			break;
12796 		}
12797 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12798 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12799 		/*
12800 		 * Flush the journal.
12801 		 */
12802 		if (newblk->nb_jnewblk != NULL) {
12803 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12804 			continue;
12805 		}
12806 		/*
12807 		 * Write the bitmap dependency.
12808 		 */
12809 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12810 			bp = newblk->nb_bmsafemap->sm_buf;
12811 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12812 			if (bp == NULL)
12813 				continue;
12814 			FREE_LOCK(ump);
12815 			error = bwrite(bp);
12816 			if (error)
12817 				break;
12818 			ACQUIRE_LOCK(ump);
12819 			continue;
12820 		}
12821 		/*
12822 		 * Write the buffer.
12823 		 */
12824 		FREE_LOCK(ump);
12825 		BO_LOCK(bo);
12826 		bp = gbincore(bo, lbn);
12827 		if (bp != NULL) {
12828 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12829 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12830 			if (error == ENOLCK) {
12831 				ACQUIRE_LOCK(ump);
12832 				continue; /* Slept, retry */
12833 			}
12834 			if (error != 0)
12835 				break;	/* Failed */
12836 			if (bp->b_flags & B_DELWRI) {
12837 				bremfree(bp);
12838 				error = bwrite(bp);
12839 				if (error)
12840 					break;
12841 			} else
12842 				BUF_UNLOCK(bp);
12843 		} else
12844 			BO_UNLOCK(bo);
12845 		/*
12846 		 * We have to wait for the direct pointers to
12847 		 * point at the newdirblk before the dependency
12848 		 * will go away.
12849 		 */
12850 		error = ffs_update(vp, 1);
12851 		if (error)
12852 			break;
12853 		ACQUIRE_LOCK(ump);
12854 	}
12855 	return (error);
12856 }
12857 
12858 /*
12859  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12860  * Called with splbio blocked.
12861  */
12862 static int
12863 flush_pagedep_deps(pvp, mp, diraddhdp)
12864 	struct vnode *pvp;
12865 	struct mount *mp;
12866 	struct diraddhd *diraddhdp;
12867 {
12868 	struct inodedep *inodedep;
12869 	struct inoref *inoref;
12870 	struct ufsmount *ump;
12871 	struct diradd *dap;
12872 	struct vnode *vp;
12873 	int error = 0;
12874 	struct buf *bp;
12875 	ino_t inum;
12876 	struct diraddhd unfinished;
12877 
12878 	LIST_INIT(&unfinished);
12879 	ump = VFSTOUFS(mp);
12880 	LOCK_OWNED(ump);
12881 restart:
12882 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12883 		/*
12884 		 * Flush ourselves if this directory entry
12885 		 * has a MKDIR_PARENT dependency.
12886 		 */
12887 		if (dap->da_state & MKDIR_PARENT) {
12888 			FREE_LOCK(ump);
12889 			if ((error = ffs_update(pvp, 1)) != 0)
12890 				break;
12891 			ACQUIRE_LOCK(ump);
12892 			/*
12893 			 * If that cleared dependencies, go on to next.
12894 			 */
12895 			if (dap != LIST_FIRST(diraddhdp))
12896 				continue;
12897 			/*
12898 			 * All MKDIR_PARENT dependencies and all the
12899 			 * NEWBLOCK pagedeps that are contained in direct
12900 			 * blocks were resolved by doing above ffs_update.
12901 			 * Pagedeps contained in indirect blocks may
12902 			 * require a complete sync'ing of the directory.
12903 			 * We are in the midst of doing a complete sync,
12904 			 * so if they are not resolved in this pass we
12905 			 * defer them for now as they will be sync'ed by
12906 			 * our caller shortly.
12907 			 */
12908 			LIST_REMOVE(dap, da_pdlist);
12909 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12910 			continue;
12911 		}
12912 		/*
12913 		 * A newly allocated directory must have its "." and
12914 		 * ".." entries written out before its name can be
12915 		 * committed in its parent.
12916 		 */
12917 		inum = dap->da_newinum;
12918 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12919 			panic("flush_pagedep_deps: lost inode1");
12920 		/*
12921 		 * Wait for any pending journal adds to complete so we don't
12922 		 * cause rollbacks while syncing.
12923 		 */
12924 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12925 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12926 			    == DEPCOMPLETE) {
12927 				jwait(&inoref->if_list, MNT_WAIT);
12928 				goto restart;
12929 			}
12930 		}
12931 		if (dap->da_state & MKDIR_BODY) {
12932 			FREE_LOCK(ump);
12933 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12934 			    FFSV_FORCEINSMQ)))
12935 				break;
12936 			error = flush_newblk_dep(vp, mp, 0);
12937 			/*
12938 			 * If we still have the dependency we might need to
12939 			 * update the vnode to sync the new link count to
12940 			 * disk.
12941 			 */
12942 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12943 				error = ffs_update(vp, 1);
12944 			vput(vp);
12945 			if (error != 0)
12946 				break;
12947 			ACQUIRE_LOCK(ump);
12948 			/*
12949 			 * If that cleared dependencies, go on to next.
12950 			 */
12951 			if (dap != LIST_FIRST(diraddhdp))
12952 				continue;
12953 			if (dap->da_state & MKDIR_BODY) {
12954 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12955 				    &inodedep);
12956 				panic("flush_pagedep_deps: MKDIR_BODY "
12957 				    "inodedep %p dap %p vp %p",
12958 				    inodedep, dap, vp);
12959 			}
12960 		}
12961 		/*
12962 		 * Flush the inode on which the directory entry depends.
12963 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12964 		 * the only remaining dependency is that the updated inode
12965 		 * count must get pushed to disk. The inode has already
12966 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12967 		 * the time of the reference count change. So we need only
12968 		 * locate that buffer, ensure that there will be no rollback
12969 		 * caused by a bitmap dependency, then write the inode buffer.
12970 		 */
12971 retry:
12972 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12973 			panic("flush_pagedep_deps: lost inode");
12974 		/*
12975 		 * If the inode still has bitmap dependencies,
12976 		 * push them to disk.
12977 		 */
12978 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12979 			bp = inodedep->id_bmsafemap->sm_buf;
12980 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12981 			if (bp == NULL)
12982 				goto retry;
12983 			FREE_LOCK(ump);
12984 			if ((error = bwrite(bp)) != 0)
12985 				break;
12986 			ACQUIRE_LOCK(ump);
12987 			if (dap != LIST_FIRST(diraddhdp))
12988 				continue;
12989 		}
12990 		/*
12991 		 * If the inode is still sitting in a buffer waiting
12992 		 * to be written or waiting for the link count to be
12993 		 * adjusted update it here to flush it to disk.
12994 		 */
12995 		if (dap == LIST_FIRST(diraddhdp)) {
12996 			FREE_LOCK(ump);
12997 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12998 			    FFSV_FORCEINSMQ)))
12999 				break;
13000 			error = ffs_update(vp, 1);
13001 			vput(vp);
13002 			if (error)
13003 				break;
13004 			ACQUIRE_LOCK(ump);
13005 		}
13006 		/*
13007 		 * If we have failed to get rid of all the dependencies
13008 		 * then something is seriously wrong.
13009 		 */
13010 		if (dap == LIST_FIRST(diraddhdp)) {
13011 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13012 			panic("flush_pagedep_deps: failed to flush "
13013 			    "inodedep %p ino %ju dap %p",
13014 			    inodedep, (uintmax_t)inum, dap);
13015 		}
13016 	}
13017 	if (error)
13018 		ACQUIRE_LOCK(ump);
13019 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13020 		LIST_REMOVE(dap, da_pdlist);
13021 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13022 	}
13023 	return (error);
13024 }
13025 
13026 /*
13027  * A large burst of file addition or deletion activity can drive the
13028  * memory load excessively high. First attempt to slow things down
13029  * using the techniques below. If that fails, this routine requests
13030  * the offending operations to fall back to running synchronously
13031  * until the memory load returns to a reasonable level.
13032  */
13033 int
13034 softdep_slowdown(vp)
13035 	struct vnode *vp;
13036 {
13037 	struct ufsmount *ump;
13038 	int jlow;
13039 	int max_softdeps_hard;
13040 
13041 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13042 	    ("softdep_slowdown called on non-softdep filesystem"));
13043 	ump = VFSTOUFS(vp->v_mount);
13044 	ACQUIRE_LOCK(ump);
13045 	jlow = 0;
13046 	/*
13047 	 * Check for journal space if needed.
13048 	 */
13049 	if (DOINGSUJ(vp)) {
13050 		if (journal_space(ump, 0) == 0)
13051 			jlow = 1;
13052 	}
13053 	/*
13054 	 * If the system is under its limits and our filesystem is
13055 	 * not responsible for more than our share of the usage and
13056 	 * we are not low on journal space, then no need to slow down.
13057 	 */
13058 	max_softdeps_hard = max_softdeps * 11 / 10;
13059 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13060 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13061 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13062 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13063 	    ump->softdep_curdeps[D_DIRREM] <
13064 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13065 	    ump->softdep_curdeps[D_INODEDEP] <
13066 	    max_softdeps_hard / stat_flush_threads &&
13067 	    ump->softdep_curdeps[D_INDIRDEP] <
13068 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13069 	    ump->softdep_curdeps[D_FREEBLKS] <
13070 	    max_softdeps_hard / stat_flush_threads) {
13071 		FREE_LOCK(ump);
13072   		return (0);
13073 	}
13074 	/*
13075 	 * If the journal is low or our filesystem is over its limit
13076 	 * then speedup the cleanup.
13077 	 */
13078 	if (ump->softdep_curdeps[D_INDIRDEP] <
13079 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13080 		softdep_speedup(ump);
13081 	stat_sync_limit_hit += 1;
13082 	FREE_LOCK(ump);
13083 	/*
13084 	 * We only slow down the rate at which new dependencies are
13085 	 * generated if we are not using journaling. With journaling,
13086 	 * the cleanup should always be sufficient to keep things
13087 	 * under control.
13088 	 */
13089 	if (DOINGSUJ(vp))
13090 		return (0);
13091 	return (1);
13092 }
13093 
13094 /*
13095  * Called by the allocation routines when they are about to fail
13096  * in the hope that we can free up the requested resource (inodes
13097  * or disk space).
13098  *
13099  * First check to see if the work list has anything on it. If it has,
13100  * clean up entries until we successfully free the requested resource.
13101  * Because this process holds inodes locked, we cannot handle any remove
13102  * requests that might block on a locked inode as that could lead to
13103  * deadlock. If the worklist yields none of the requested resource,
13104  * start syncing out vnodes to free up the needed space.
13105  */
13106 int
13107 softdep_request_cleanup(fs, vp, cred, resource)
13108 	struct fs *fs;
13109 	struct vnode *vp;
13110 	struct ucred *cred;
13111 	int resource;
13112 {
13113 	struct ufsmount *ump;
13114 	struct mount *mp;
13115 	struct vnode *lvp, *mvp;
13116 	long starttime;
13117 	ufs2_daddr_t needed;
13118 	int error;
13119 
13120 	/*
13121 	 * If we are being called because of a process doing a
13122 	 * copy-on-write, then it is not safe to process any
13123 	 * worklist items as we will recurse into the copyonwrite
13124 	 * routine.  This will result in an incoherent snapshot.
13125 	 * If the vnode that we hold is a snapshot, we must avoid
13126 	 * handling other resources that could cause deadlock.
13127 	 */
13128 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13129 		return (0);
13130 
13131 	if (resource == FLUSH_BLOCKS_WAIT)
13132 		stat_cleanup_blkrequests += 1;
13133 	else
13134 		stat_cleanup_inorequests += 1;
13135 
13136 	mp = vp->v_mount;
13137 	ump = VFSTOUFS(mp);
13138 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13139 	UFS_UNLOCK(ump);
13140 	error = ffs_update(vp, 1);
13141 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13142 		UFS_LOCK(ump);
13143 		return (0);
13144 	}
13145 	/*
13146 	 * If we are in need of resources, start by cleaning up
13147 	 * any block removals associated with our inode.
13148 	 */
13149 	ACQUIRE_LOCK(ump);
13150 	process_removes(vp);
13151 	process_truncates(vp);
13152 	FREE_LOCK(ump);
13153 	/*
13154 	 * Now clean up at least as many resources as we will need.
13155 	 *
13156 	 * When requested to clean up inodes, the number that are needed
13157 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13158 	 * plus a bit of slop (2) in case some more writers show up while
13159 	 * we are cleaning.
13160 	 *
13161 	 * When requested to free up space, the amount of space that
13162 	 * we need is enough blocks to allocate a full-sized segment
13163 	 * (fs_contigsumsize). The number of such segments that will
13164 	 * be needed is set by the number of simultaneous writers
13165 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13166 	 * writers show up while we are cleaning.
13167 	 *
13168 	 * Additionally, if we are unpriviledged and allocating space,
13169 	 * we need to ensure that we clean up enough blocks to get the
13170 	 * needed number of blocks over the threshhold of the minimum
13171 	 * number of blocks required to be kept free by the filesystem
13172 	 * (fs_minfree).
13173 	 */
13174 	if (resource == FLUSH_INODES_WAIT) {
13175 		needed = vp->v_mount->mnt_writeopcount + 2;
13176 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13177 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13178 		    fs->fs_contigsumsize;
13179 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13180 			needed += fragstoblks(fs,
13181 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13182 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13183 	} else {
13184 		UFS_LOCK(ump);
13185 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13186 		    resource);
13187 		return (0);
13188 	}
13189 	starttime = time_second;
13190 retry:
13191 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13192 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13193 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13194 	    fs->fs_cstotal.cs_nifree <= needed)) {
13195 		ACQUIRE_LOCK(ump);
13196 		if (ump->softdep_on_worklist > 0 &&
13197 		    process_worklist_item(UFSTOVFS(ump),
13198 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13199 			stat_worklist_push += 1;
13200 		FREE_LOCK(ump);
13201 	}
13202 	/*
13203 	 * If we still need resources and there are no more worklist
13204 	 * entries to process to obtain them, we have to start flushing
13205 	 * the dirty vnodes to force the release of additional requests
13206 	 * to the worklist that we can then process to reap addition
13207 	 * resources. We walk the vnodes associated with the mount point
13208 	 * until we get the needed worklist requests that we can reap.
13209 	 */
13210 	if ((resource == FLUSH_BLOCKS_WAIT &&
13211 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13212 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13213 	     fs->fs_cstotal.cs_nifree <= needed)) {
13214 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13215 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13216 				VI_UNLOCK(lvp);
13217 				continue;
13218 			}
13219 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13220 			    curthread))
13221 				continue;
13222 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13223 				vput(lvp);
13224 				continue;
13225 			}
13226 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13227 			vput(lvp);
13228 		}
13229 		lvp = ump->um_devvp;
13230 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13231 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13232 			VOP_UNLOCK(lvp, 0);
13233 		}
13234 		if (ump->softdep_on_worklist > 0) {
13235 			stat_cleanup_retries += 1;
13236 			goto retry;
13237 		}
13238 		stat_cleanup_failures += 1;
13239 	}
13240 	if (time_second - starttime > stat_cleanup_high_delay)
13241 		stat_cleanup_high_delay = time_second - starttime;
13242 	UFS_LOCK(ump);
13243 	return (1);
13244 }
13245 
13246 static bool
13247 softdep_excess_inodes(struct ufsmount *ump)
13248 {
13249 
13250 	return (dep_current[D_INODEDEP] > max_softdeps &&
13251 	    ump->softdep_curdeps[D_INODEDEP] > max_softdeps /
13252 	    stat_flush_threads);
13253 }
13254 
13255 static bool
13256 softdep_excess_dirrem(struct ufsmount *ump)
13257 {
13258 
13259 	return (dep_current[D_DIRREM] > max_softdeps / 2 &&
13260 	    ump->softdep_curdeps[D_DIRREM] > (max_softdeps / 2) /
13261 	    stat_flush_threads);
13262 }
13263 
13264 static void
13265 schedule_cleanup(struct mount *mp)
13266 {
13267 	struct ufsmount *ump;
13268 	struct thread *td;
13269 
13270 	ump = VFSTOUFS(mp);
13271 	LOCK_OWNED(ump);
13272 	FREE_LOCK(ump);
13273 	td = curthread;
13274 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13275 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13276 		/*
13277 		 * No ast is delivered to kernel threads, so nobody
13278 		 * would deref the mp.  Some kernel threads
13279 		 * explicitely check for AST, e.g. NFS daemon does
13280 		 * this in the serving loop.
13281 		 */
13282 		return;
13283 	}
13284 	if (td->td_su != NULL)
13285 		vfs_rel(td->td_su);
13286 	vfs_ref(mp);
13287 	td->td_su = mp;
13288 	thread_lock(td);
13289 	td->td_flags |= TDF_ASTPENDING;
13290 	thread_unlock(td);
13291 }
13292 
13293 static void
13294 softdep_ast_cleanup_proc(void)
13295 {
13296 	struct thread *td;
13297 	struct mount *mp;
13298 	struct ufsmount *ump;
13299 	int error;
13300 	bool req;
13301 
13302 	td = curthread;
13303 	mp = td->td_su;
13304 	if (mp == NULL)
13305 		return;
13306 	td->td_su = NULL;
13307 	error = vfs_busy(mp, MBF_NOWAIT);
13308 	vfs_rel(mp);
13309 	if (error != 0)
13310 		return;
13311 	if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13312 		ump = VFSTOUFS(mp);
13313 		for (;;) {
13314 			req = false;
13315 			ACQUIRE_LOCK(ump);
13316 			if (softdep_excess_inodes(ump)) {
13317 				req = true;
13318 				request_cleanup(mp, FLUSH_INODES);
13319 			}
13320 			if (softdep_excess_dirrem(ump)) {
13321 				req = true;
13322 				request_cleanup(mp, FLUSH_BLOCKS);
13323 			}
13324 			FREE_LOCK(ump);
13325 			if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13326 				break;
13327 		}
13328 	}
13329 	vfs_unbusy(mp);
13330 }
13331 
13332 /*
13333  * If memory utilization has gotten too high, deliberately slow things
13334  * down and speed up the I/O processing.
13335  */
13336 static int
13337 request_cleanup(mp, resource)
13338 	struct mount *mp;
13339 	int resource;
13340 {
13341 	struct thread *td = curthread;
13342 	struct ufsmount *ump;
13343 
13344 	ump = VFSTOUFS(mp);
13345 	LOCK_OWNED(ump);
13346 	/*
13347 	 * We never hold up the filesystem syncer or buf daemon.
13348 	 */
13349 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13350 		return (0);
13351 	/*
13352 	 * First check to see if the work list has gotten backlogged.
13353 	 * If it has, co-opt this process to help clean up two entries.
13354 	 * Because this process may hold inodes locked, we cannot
13355 	 * handle any remove requests that might block on a locked
13356 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13357 	 * to avoid recursively processing the worklist.
13358 	 */
13359 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13360 		td->td_pflags |= TDP_SOFTDEP;
13361 		process_worklist_item(mp, 2, LK_NOWAIT);
13362 		td->td_pflags &= ~TDP_SOFTDEP;
13363 		stat_worklist_push += 2;
13364 		return(1);
13365 	}
13366 	/*
13367 	 * Next, we attempt to speed up the syncer process. If that
13368 	 * is successful, then we allow the process to continue.
13369 	 */
13370 	if (softdep_speedup(ump) &&
13371 	    resource != FLUSH_BLOCKS_WAIT &&
13372 	    resource != FLUSH_INODES_WAIT)
13373 		return(0);
13374 	/*
13375 	 * If we are resource constrained on inode dependencies, try
13376 	 * flushing some dirty inodes. Otherwise, we are constrained
13377 	 * by file deletions, so try accelerating flushes of directories
13378 	 * with removal dependencies. We would like to do the cleanup
13379 	 * here, but we probably hold an inode locked at this point and
13380 	 * that might deadlock against one that we try to clean. So,
13381 	 * the best that we can do is request the syncer daemon to do
13382 	 * the cleanup for us.
13383 	 */
13384 	switch (resource) {
13385 
13386 	case FLUSH_INODES:
13387 	case FLUSH_INODES_WAIT:
13388 		ACQUIRE_GBLLOCK(&lk);
13389 		stat_ino_limit_push += 1;
13390 		req_clear_inodedeps += 1;
13391 		FREE_GBLLOCK(&lk);
13392 		stat_countp = &stat_ino_limit_hit;
13393 		break;
13394 
13395 	case FLUSH_BLOCKS:
13396 	case FLUSH_BLOCKS_WAIT:
13397 		ACQUIRE_GBLLOCK(&lk);
13398 		stat_blk_limit_push += 1;
13399 		req_clear_remove += 1;
13400 		FREE_GBLLOCK(&lk);
13401 		stat_countp = &stat_blk_limit_hit;
13402 		break;
13403 
13404 	default:
13405 		panic("request_cleanup: unknown type");
13406 	}
13407 	/*
13408 	 * Hopefully the syncer daemon will catch up and awaken us.
13409 	 * We wait at most tickdelay before proceeding in any case.
13410 	 */
13411 	ACQUIRE_GBLLOCK(&lk);
13412 	FREE_LOCK(ump);
13413 	proc_waiting += 1;
13414 	if (callout_pending(&softdep_callout) == FALSE)
13415 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13416 		    pause_timer, 0);
13417 
13418 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13419 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13420 	proc_waiting -= 1;
13421 	FREE_GBLLOCK(&lk);
13422 	ACQUIRE_LOCK(ump);
13423 	return (1);
13424 }
13425 
13426 /*
13427  * Awaken processes pausing in request_cleanup and clear proc_waiting
13428  * to indicate that there is no longer a timer running. Pause_timer
13429  * will be called with the global softdep mutex (&lk) locked.
13430  */
13431 static void
13432 pause_timer(arg)
13433 	void *arg;
13434 {
13435 
13436 	GBLLOCK_OWNED(&lk);
13437 	/*
13438 	 * The callout_ API has acquired mtx and will hold it around this
13439 	 * function call.
13440 	 */
13441 	*stat_countp += proc_waiting;
13442 	wakeup(&proc_waiting);
13443 }
13444 
13445 /*
13446  * If requested, try removing inode or removal dependencies.
13447  */
13448 static void
13449 check_clear_deps(mp)
13450 	struct mount *mp;
13451 {
13452 
13453 	/*
13454 	 * If we are suspended, it may be because of our using
13455 	 * too many inodedeps, so help clear them out.
13456 	 */
13457 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13458 		clear_inodedeps(mp);
13459 	/*
13460 	 * General requests for cleanup of backed up dependencies
13461 	 */
13462 	ACQUIRE_GBLLOCK(&lk);
13463 	if (req_clear_inodedeps) {
13464 		req_clear_inodedeps -= 1;
13465 		FREE_GBLLOCK(&lk);
13466 		clear_inodedeps(mp);
13467 		ACQUIRE_GBLLOCK(&lk);
13468 		wakeup(&proc_waiting);
13469 	}
13470 	if (req_clear_remove) {
13471 		req_clear_remove -= 1;
13472 		FREE_GBLLOCK(&lk);
13473 		clear_remove(mp);
13474 		ACQUIRE_GBLLOCK(&lk);
13475 		wakeup(&proc_waiting);
13476 	}
13477 	FREE_GBLLOCK(&lk);
13478 }
13479 
13480 /*
13481  * Flush out a directory with at least one removal dependency in an effort to
13482  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13483  */
13484 static void
13485 clear_remove(mp)
13486 	struct mount *mp;
13487 {
13488 	struct pagedep_hashhead *pagedephd;
13489 	struct pagedep *pagedep;
13490 	struct ufsmount *ump;
13491 	struct vnode *vp;
13492 	struct bufobj *bo;
13493 	int error, cnt;
13494 	ino_t ino;
13495 
13496 	ump = VFSTOUFS(mp);
13497 	LOCK_OWNED(ump);
13498 
13499 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13500 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13501 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13502 			ump->pagedep_nextclean = 0;
13503 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13504 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13505 				continue;
13506 			ino = pagedep->pd_ino;
13507 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13508 				continue;
13509 			FREE_LOCK(ump);
13510 
13511 			/*
13512 			 * Let unmount clear deps
13513 			 */
13514 			error = vfs_busy(mp, MBF_NOWAIT);
13515 			if (error != 0)
13516 				goto finish_write;
13517 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13518 			     FFSV_FORCEINSMQ);
13519 			vfs_unbusy(mp);
13520 			if (error != 0) {
13521 				softdep_error("clear_remove: vget", error);
13522 				goto finish_write;
13523 			}
13524 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13525 				softdep_error("clear_remove: fsync", error);
13526 			bo = &vp->v_bufobj;
13527 			BO_LOCK(bo);
13528 			drain_output(vp);
13529 			BO_UNLOCK(bo);
13530 			vput(vp);
13531 		finish_write:
13532 			vn_finished_write(mp);
13533 			ACQUIRE_LOCK(ump);
13534 			return;
13535 		}
13536 	}
13537 }
13538 
13539 /*
13540  * Clear out a block of dirty inodes in an effort to reduce
13541  * the number of inodedep dependency structures.
13542  */
13543 static void
13544 clear_inodedeps(mp)
13545 	struct mount *mp;
13546 {
13547 	struct inodedep_hashhead *inodedephd;
13548 	struct inodedep *inodedep;
13549 	struct ufsmount *ump;
13550 	struct vnode *vp;
13551 	struct fs *fs;
13552 	int error, cnt;
13553 	ino_t firstino, lastino, ino;
13554 
13555 	ump = VFSTOUFS(mp);
13556 	fs = ump->um_fs;
13557 	LOCK_OWNED(ump);
13558 	/*
13559 	 * Pick a random inode dependency to be cleared.
13560 	 * We will then gather up all the inodes in its block
13561 	 * that have dependencies and flush them out.
13562 	 */
13563 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13564 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13565 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13566 			ump->inodedep_nextclean = 0;
13567 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13568 			break;
13569 	}
13570 	if (inodedep == NULL)
13571 		return;
13572 	/*
13573 	 * Find the last inode in the block with dependencies.
13574 	 */
13575 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13576 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13577 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13578 			break;
13579 	/*
13580 	 * Asynchronously push all but the last inode with dependencies.
13581 	 * Synchronously push the last inode with dependencies to ensure
13582 	 * that the inode block gets written to free up the inodedeps.
13583 	 */
13584 	for (ino = firstino; ino <= lastino; ino++) {
13585 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13586 			continue;
13587 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13588 			continue;
13589 		FREE_LOCK(ump);
13590 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13591 		if (error != 0) {
13592 			vn_finished_write(mp);
13593 			ACQUIRE_LOCK(ump);
13594 			return;
13595 		}
13596 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13597 		    FFSV_FORCEINSMQ)) != 0) {
13598 			softdep_error("clear_inodedeps: vget", error);
13599 			vfs_unbusy(mp);
13600 			vn_finished_write(mp);
13601 			ACQUIRE_LOCK(ump);
13602 			return;
13603 		}
13604 		vfs_unbusy(mp);
13605 		if (ino == lastino) {
13606 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13607 				softdep_error("clear_inodedeps: fsync1", error);
13608 		} else {
13609 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13610 				softdep_error("clear_inodedeps: fsync2", error);
13611 			BO_LOCK(&vp->v_bufobj);
13612 			drain_output(vp);
13613 			BO_UNLOCK(&vp->v_bufobj);
13614 		}
13615 		vput(vp);
13616 		vn_finished_write(mp);
13617 		ACQUIRE_LOCK(ump);
13618 	}
13619 }
13620 
13621 void
13622 softdep_buf_append(bp, wkhd)
13623 	struct buf *bp;
13624 	struct workhead *wkhd;
13625 {
13626 	struct worklist *wk;
13627 	struct ufsmount *ump;
13628 
13629 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13630 		return;
13631 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13632 	    ("softdep_buf_append called on non-softdep filesystem"));
13633 	ump = VFSTOUFS(wk->wk_mp);
13634 	ACQUIRE_LOCK(ump);
13635 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13636 		WORKLIST_REMOVE(wk);
13637 		WORKLIST_INSERT(&bp->b_dep, wk);
13638 	}
13639 	FREE_LOCK(ump);
13640 
13641 }
13642 
13643 void
13644 softdep_inode_append(ip, cred, wkhd)
13645 	struct inode *ip;
13646 	struct ucred *cred;
13647 	struct workhead *wkhd;
13648 {
13649 	struct buf *bp;
13650 	struct fs *fs;
13651 	int error;
13652 
13653 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13654 	    ("softdep_inode_append called on non-softdep filesystem"));
13655 	fs = ip->i_fs;
13656 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13657 	    (int)fs->fs_bsize, cred, &bp);
13658 	if (error) {
13659 		bqrelse(bp);
13660 		softdep_freework(wkhd);
13661 		return;
13662 	}
13663 	softdep_buf_append(bp, wkhd);
13664 	bqrelse(bp);
13665 }
13666 
13667 void
13668 softdep_freework(wkhd)
13669 	struct workhead *wkhd;
13670 {
13671 	struct worklist *wk;
13672 	struct ufsmount *ump;
13673 
13674 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13675 		return;
13676 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13677 	    ("softdep_freework called on non-softdep filesystem"));
13678 	ump = VFSTOUFS(wk->wk_mp);
13679 	ACQUIRE_LOCK(ump);
13680 	handle_jwork(wkhd);
13681 	FREE_LOCK(ump);
13682 }
13683 
13684 /*
13685  * Function to determine if the buffer has outstanding dependencies
13686  * that will cause a roll-back if the buffer is written. If wantcount
13687  * is set, return number of dependencies, otherwise just yes or no.
13688  */
13689 static int
13690 softdep_count_dependencies(bp, wantcount)
13691 	struct buf *bp;
13692 	int wantcount;
13693 {
13694 	struct worklist *wk;
13695 	struct ufsmount *ump;
13696 	struct bmsafemap *bmsafemap;
13697 	struct freework *freework;
13698 	struct inodedep *inodedep;
13699 	struct indirdep *indirdep;
13700 	struct freeblks *freeblks;
13701 	struct allocindir *aip;
13702 	struct pagedep *pagedep;
13703 	struct dirrem *dirrem;
13704 	struct newblk *newblk;
13705 	struct mkdir *mkdir;
13706 	struct diradd *dap;
13707 	int i, retval;
13708 
13709 	retval = 0;
13710 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13711 		return (0);
13712 	ump = VFSTOUFS(wk->wk_mp);
13713 	ACQUIRE_LOCK(ump);
13714 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13715 		switch (wk->wk_type) {
13716 
13717 		case D_INODEDEP:
13718 			inodedep = WK_INODEDEP(wk);
13719 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13720 				/* bitmap allocation dependency */
13721 				retval += 1;
13722 				if (!wantcount)
13723 					goto out;
13724 			}
13725 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13726 				/* direct block pointer dependency */
13727 				retval += 1;
13728 				if (!wantcount)
13729 					goto out;
13730 			}
13731 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13732 				/* direct block pointer dependency */
13733 				retval += 1;
13734 				if (!wantcount)
13735 					goto out;
13736 			}
13737 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13738 				/* Add reference dependency. */
13739 				retval += 1;
13740 				if (!wantcount)
13741 					goto out;
13742 			}
13743 			continue;
13744 
13745 		case D_INDIRDEP:
13746 			indirdep = WK_INDIRDEP(wk);
13747 
13748 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13749 				/* indirect truncation dependency */
13750 				retval += 1;
13751 				if (!wantcount)
13752 					goto out;
13753 			}
13754 
13755 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13756 				/* indirect block pointer dependency */
13757 				retval += 1;
13758 				if (!wantcount)
13759 					goto out;
13760 			}
13761 			continue;
13762 
13763 		case D_PAGEDEP:
13764 			pagedep = WK_PAGEDEP(wk);
13765 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13766 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13767 					/* Journal remove ref dependency. */
13768 					retval += 1;
13769 					if (!wantcount)
13770 						goto out;
13771 				}
13772 			}
13773 			for (i = 0; i < DAHASHSZ; i++) {
13774 
13775 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13776 					/* directory entry dependency */
13777 					retval += 1;
13778 					if (!wantcount)
13779 						goto out;
13780 				}
13781 			}
13782 			continue;
13783 
13784 		case D_BMSAFEMAP:
13785 			bmsafemap = WK_BMSAFEMAP(wk);
13786 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13787 				/* Add reference dependency. */
13788 				retval += 1;
13789 				if (!wantcount)
13790 					goto out;
13791 			}
13792 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13793 				/* Allocate block dependency. */
13794 				retval += 1;
13795 				if (!wantcount)
13796 					goto out;
13797 			}
13798 			continue;
13799 
13800 		case D_FREEBLKS:
13801 			freeblks = WK_FREEBLKS(wk);
13802 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13803 				/* Freeblk journal dependency. */
13804 				retval += 1;
13805 				if (!wantcount)
13806 					goto out;
13807 			}
13808 			continue;
13809 
13810 		case D_ALLOCDIRECT:
13811 		case D_ALLOCINDIR:
13812 			newblk = WK_NEWBLK(wk);
13813 			if (newblk->nb_jnewblk) {
13814 				/* Journal allocate dependency. */
13815 				retval += 1;
13816 				if (!wantcount)
13817 					goto out;
13818 			}
13819 			continue;
13820 
13821 		case D_MKDIR:
13822 			mkdir = WK_MKDIR(wk);
13823 			if (mkdir->md_jaddref) {
13824 				/* Journal reference dependency. */
13825 				retval += 1;
13826 				if (!wantcount)
13827 					goto out;
13828 			}
13829 			continue;
13830 
13831 		case D_FREEWORK:
13832 		case D_FREEDEP:
13833 		case D_JSEGDEP:
13834 		case D_JSEG:
13835 		case D_SBDEP:
13836 			/* never a dependency on these blocks */
13837 			continue;
13838 
13839 		default:
13840 			panic("softdep_count_dependencies: Unexpected type %s",
13841 			    TYPENAME(wk->wk_type));
13842 			/* NOTREACHED */
13843 		}
13844 	}
13845 out:
13846 	FREE_LOCK(ump);
13847 	return retval;
13848 }
13849 
13850 /*
13851  * Acquire exclusive access to a buffer.
13852  * Must be called with a locked mtx parameter.
13853  * Return acquired buffer or NULL on failure.
13854  */
13855 static struct buf *
13856 getdirtybuf(bp, lock, waitfor)
13857 	struct buf *bp;
13858 	struct rwlock *lock;
13859 	int waitfor;
13860 {
13861 	int error;
13862 
13863 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13864 		if (waitfor != MNT_WAIT)
13865 			return (NULL);
13866 		error = BUF_LOCK(bp,
13867 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13868 		/*
13869 		 * Even if we sucessfully acquire bp here, we have dropped
13870 		 * lock, which may violates our guarantee.
13871 		 */
13872 		if (error == 0)
13873 			BUF_UNLOCK(bp);
13874 		else if (error != ENOLCK)
13875 			panic("getdirtybuf: inconsistent lock: %d", error);
13876 		rw_wlock(lock);
13877 		return (NULL);
13878 	}
13879 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13880 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13881 			rw_wunlock(lock);
13882 			BO_LOCK(bp->b_bufobj);
13883 			BUF_UNLOCK(bp);
13884 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13885 				bp->b_vflags |= BV_BKGRDWAIT;
13886 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13887 				       PRIBIO | PDROP, "getbuf", 0);
13888 			} else
13889 				BO_UNLOCK(bp->b_bufobj);
13890 			rw_wlock(lock);
13891 			return (NULL);
13892 		}
13893 		BUF_UNLOCK(bp);
13894 		if (waitfor != MNT_WAIT)
13895 			return (NULL);
13896 		/*
13897 		 * The lock argument must be bp->b_vp's mutex in
13898 		 * this case.
13899 		 */
13900 #ifdef	DEBUG_VFS_LOCKS
13901 		if (bp->b_vp->v_type != VCHR)
13902 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13903 #endif
13904 		bp->b_vflags |= BV_BKGRDWAIT;
13905 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13906 		return (NULL);
13907 	}
13908 	if ((bp->b_flags & B_DELWRI) == 0) {
13909 		BUF_UNLOCK(bp);
13910 		return (NULL);
13911 	}
13912 	bremfree(bp);
13913 	return (bp);
13914 }
13915 
13916 
13917 /*
13918  * Check if it is safe to suspend the file system now.  On entry,
13919  * the vnode interlock for devvp should be held.  Return 0 with
13920  * the mount interlock held if the file system can be suspended now,
13921  * otherwise return EAGAIN with the mount interlock held.
13922  */
13923 int
13924 softdep_check_suspend(struct mount *mp,
13925 		      struct vnode *devvp,
13926 		      int softdep_depcnt,
13927 		      int softdep_accdepcnt,
13928 		      int secondary_writes,
13929 		      int secondary_accwrites)
13930 {
13931 	struct bufobj *bo;
13932 	struct ufsmount *ump;
13933 	struct inodedep *inodedep;
13934 	int error, unlinked;
13935 
13936 	bo = &devvp->v_bufobj;
13937 	ASSERT_BO_WLOCKED(bo);
13938 
13939 	/*
13940 	 * If we are not running with soft updates, then we need only
13941 	 * deal with secondary writes as we try to suspend.
13942 	 */
13943 	if (MOUNTEDSOFTDEP(mp) == 0) {
13944 		MNT_ILOCK(mp);
13945 		while (mp->mnt_secondary_writes != 0) {
13946 			BO_UNLOCK(bo);
13947 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13948 			    (PUSER - 1) | PDROP, "secwr", 0);
13949 			BO_LOCK(bo);
13950 			MNT_ILOCK(mp);
13951 		}
13952 
13953 		/*
13954 		 * Reasons for needing more work before suspend:
13955 		 * - Dirty buffers on devvp.
13956 		 * - Secondary writes occurred after start of vnode sync loop
13957 		 */
13958 		error = 0;
13959 		if (bo->bo_numoutput > 0 ||
13960 		    bo->bo_dirty.bv_cnt > 0 ||
13961 		    secondary_writes != 0 ||
13962 		    mp->mnt_secondary_writes != 0 ||
13963 		    secondary_accwrites != mp->mnt_secondary_accwrites)
13964 			error = EAGAIN;
13965 		BO_UNLOCK(bo);
13966 		return (error);
13967 	}
13968 
13969 	/*
13970 	 * If we are running with soft updates, then we need to coordinate
13971 	 * with them as we try to suspend.
13972 	 */
13973 	ump = VFSTOUFS(mp);
13974 	for (;;) {
13975 		if (!TRY_ACQUIRE_LOCK(ump)) {
13976 			BO_UNLOCK(bo);
13977 			ACQUIRE_LOCK(ump);
13978 			FREE_LOCK(ump);
13979 			BO_LOCK(bo);
13980 			continue;
13981 		}
13982 		MNT_ILOCK(mp);
13983 		if (mp->mnt_secondary_writes != 0) {
13984 			FREE_LOCK(ump);
13985 			BO_UNLOCK(bo);
13986 			msleep(&mp->mnt_secondary_writes,
13987 			       MNT_MTX(mp),
13988 			       (PUSER - 1) | PDROP, "secwr", 0);
13989 			BO_LOCK(bo);
13990 			continue;
13991 		}
13992 		break;
13993 	}
13994 
13995 	unlinked = 0;
13996 	if (MOUNTEDSUJ(mp)) {
13997 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
13998 		    inodedep != NULL;
13999 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14000 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14001 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14002 			    UNLINKONLIST) ||
14003 			    !check_inodedep_free(inodedep))
14004 				continue;
14005 			unlinked++;
14006 		}
14007 	}
14008 
14009 	/*
14010 	 * Reasons for needing more work before suspend:
14011 	 * - Dirty buffers on devvp.
14012 	 * - Softdep activity occurred after start of vnode sync loop
14013 	 * - Secondary writes occurred after start of vnode sync loop
14014 	 */
14015 	error = 0;
14016 	if (bo->bo_numoutput > 0 ||
14017 	    bo->bo_dirty.bv_cnt > 0 ||
14018 	    softdep_depcnt != unlinked ||
14019 	    ump->softdep_deps != unlinked ||
14020 	    softdep_accdepcnt != ump->softdep_accdeps ||
14021 	    secondary_writes != 0 ||
14022 	    mp->mnt_secondary_writes != 0 ||
14023 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14024 		error = EAGAIN;
14025 	FREE_LOCK(ump);
14026 	BO_UNLOCK(bo);
14027 	return (error);
14028 }
14029 
14030 
14031 /*
14032  * Get the number of dependency structures for the file system, both
14033  * the current number and the total number allocated.  These will
14034  * later be used to detect that softdep processing has occurred.
14035  */
14036 void
14037 softdep_get_depcounts(struct mount *mp,
14038 		      int *softdep_depsp,
14039 		      int *softdep_accdepsp)
14040 {
14041 	struct ufsmount *ump;
14042 
14043 	if (MOUNTEDSOFTDEP(mp) == 0) {
14044 		*softdep_depsp = 0;
14045 		*softdep_accdepsp = 0;
14046 		return;
14047 	}
14048 	ump = VFSTOUFS(mp);
14049 	ACQUIRE_LOCK(ump);
14050 	*softdep_depsp = ump->softdep_deps;
14051 	*softdep_accdepsp = ump->softdep_accdeps;
14052 	FREE_LOCK(ump);
14053 }
14054 
14055 /*
14056  * Wait for pending output on a vnode to complete.
14057  * Must be called with vnode lock and interlock locked.
14058  *
14059  * XXX: Should just be a call to bufobj_wwait().
14060  */
14061 static void
14062 drain_output(vp)
14063 	struct vnode *vp;
14064 {
14065 	struct bufobj *bo;
14066 
14067 	bo = &vp->v_bufobj;
14068 	ASSERT_VOP_LOCKED(vp, "drain_output");
14069 	ASSERT_BO_WLOCKED(bo);
14070 
14071 	while (bo->bo_numoutput) {
14072 		bo->bo_flag |= BO_WWAIT;
14073 		msleep((caddr_t)&bo->bo_numoutput,
14074 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
14075 	}
14076 }
14077 
14078 /*
14079  * Called whenever a buffer that is being invalidated or reallocated
14080  * contains dependencies. This should only happen if an I/O error has
14081  * occurred. The routine is called with the buffer locked.
14082  */
14083 static void
14084 softdep_deallocate_dependencies(bp)
14085 	struct buf *bp;
14086 {
14087 
14088 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14089 		panic("softdep_deallocate_dependencies: dangling deps");
14090 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14091 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14092 	else
14093 		printf("softdep_deallocate_dependencies: "
14094 		    "got error %d while accessing filesystem\n", bp->b_error);
14095 	if (bp->b_error != ENXIO)
14096 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14097 }
14098 
14099 /*
14100  * Function to handle asynchronous write errors in the filesystem.
14101  */
14102 static void
14103 softdep_error(func, error)
14104 	char *func;
14105 	int error;
14106 {
14107 
14108 	/* XXX should do something better! */
14109 	printf("%s: got error %d while accessing filesystem\n", func, error);
14110 }
14111 
14112 #ifdef DDB
14113 
14114 static void
14115 inodedep_print(struct inodedep *inodedep, int verbose)
14116 {
14117 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14118 	    " saveino %p\n",
14119 	    inodedep, inodedep->id_fs, inodedep->id_state,
14120 	    (intmax_t)inodedep->id_ino,
14121 	    (intmax_t)fsbtodb(inodedep->id_fs,
14122 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14123 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14124 	    inodedep->id_savedino1);
14125 
14126 	if (verbose == 0)
14127 		return;
14128 
14129 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14130 	    "mkdiradd %p\n",
14131 	    LIST_FIRST(&inodedep->id_pendinghd),
14132 	    LIST_FIRST(&inodedep->id_bufwait),
14133 	    LIST_FIRST(&inodedep->id_inowait),
14134 	    TAILQ_FIRST(&inodedep->id_inoreflst),
14135 	    inodedep->id_mkdiradd);
14136 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14137 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14138 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14139 	    TAILQ_FIRST(&inodedep->id_extupdt),
14140 	    TAILQ_FIRST(&inodedep->id_newextupdt));
14141 }
14142 
14143 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14144 {
14145 
14146 	if (have_addr == 0) {
14147 		db_printf("Address required\n");
14148 		return;
14149 	}
14150 	inodedep_print((struct inodedep*)addr, 1);
14151 }
14152 
14153 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14154 {
14155 	struct inodedep_hashhead *inodedephd;
14156 	struct inodedep *inodedep;
14157 	struct ufsmount *ump;
14158 	int cnt;
14159 
14160 	if (have_addr == 0) {
14161 		db_printf("Address required\n");
14162 		return;
14163 	}
14164 	ump = (struct ufsmount *)addr;
14165 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14166 		inodedephd = &ump->inodedep_hashtbl[cnt];
14167 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14168 			inodedep_print(inodedep, 0);
14169 		}
14170 	}
14171 }
14172 
14173 DB_SHOW_COMMAND(worklist, db_show_worklist)
14174 {
14175 	struct worklist *wk;
14176 
14177 	if (have_addr == 0) {
14178 		db_printf("Address required\n");
14179 		return;
14180 	}
14181 	wk = (struct worklist *)addr;
14182 	printf("worklist: %p type %s state 0x%X\n",
14183 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14184 }
14185 
14186 DB_SHOW_COMMAND(workhead, db_show_workhead)
14187 {
14188 	struct workhead *wkhd;
14189 	struct worklist *wk;
14190 	int i;
14191 
14192 	if (have_addr == 0) {
14193 		db_printf("Address required\n");
14194 		return;
14195 	}
14196 	wkhd = (struct workhead *)addr;
14197 	wk = LIST_FIRST(wkhd);
14198 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14199 		db_printf("worklist: %p type %s state 0x%X",
14200 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14201 	if (i == 100)
14202 		db_printf("workhead overflow");
14203 	printf("\n");
14204 }
14205 
14206 
14207 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14208 {
14209 	struct mkdirlist *mkdirlisthd;
14210 	struct jaddref *jaddref;
14211 	struct diradd *diradd;
14212 	struct mkdir *mkdir;
14213 
14214 	if (have_addr == 0) {
14215 		db_printf("Address required\n");
14216 		return;
14217 	}
14218 	mkdirlisthd = (struct mkdirlist *)addr;
14219 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14220 		diradd = mkdir->md_diradd;
14221 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14222 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14223 		if ((jaddref = mkdir->md_jaddref) != NULL)
14224 			db_printf(" jaddref %p jaddref state 0x%X",
14225 			    jaddref, jaddref->ja_state);
14226 		db_printf("\n");
14227 	}
14228 }
14229 
14230 /* exported to ffs_vfsops.c */
14231 extern void db_print_ffs(struct ufsmount *ump);
14232 void
14233 db_print_ffs(struct ufsmount *ump)
14234 {
14235 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14236 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14237 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14238 	    ump->softdep_deps, ump->softdep_req);
14239 }
14240 
14241 #endif /* DDB */
14242 
14243 #endif /* SOFTUPDATES */
14244