1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/stat.h> 73 #include <sys/sysctl.h> 74 #include <sys/syslog.h> 75 #include <sys/vnode.h> 76 #include <sys/conf.h> 77 78 #include <ufs/ufs/dir.h> 79 #include <ufs/ufs/extattr.h> 80 #include <ufs/ufs/quota.h> 81 #include <ufs/ufs/inode.h> 82 #include <ufs/ufs/ufsmount.h> 83 #include <ufs/ffs/fs.h> 84 #include <ufs/ffs/softdep.h> 85 #include <ufs/ffs/ffs_extern.h> 86 #include <ufs/ufs/ufs_extern.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_extern.h> 90 #include <vm/vm_object.h> 91 92 #include <geom/geom.h> 93 94 #include <ddb/ddb.h> 95 96 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 97 98 #ifndef SOFTUPDATES 99 100 int 101 softdep_flushfiles(oldmnt, flags, td) 102 struct mount *oldmnt; 103 int flags; 104 struct thread *td; 105 { 106 107 panic("softdep_flushfiles called"); 108 } 109 110 int 111 softdep_mount(devvp, mp, fs, cred) 112 struct vnode *devvp; 113 struct mount *mp; 114 struct fs *fs; 115 struct ucred *cred; 116 { 117 118 return (0); 119 } 120 121 void 122 softdep_initialize() 123 { 124 125 return; 126 } 127 128 void 129 softdep_uninitialize() 130 { 131 132 return; 133 } 134 135 void 136 softdep_unmount(mp) 137 struct mount *mp; 138 { 139 140 } 141 142 void 143 softdep_setup_sbupdate(ump, fs, bp) 144 struct ufsmount *ump; 145 struct fs *fs; 146 struct buf *bp; 147 { 148 } 149 150 void 151 softdep_setup_inomapdep(bp, ip, newinum, mode) 152 struct buf *bp; 153 struct inode *ip; 154 ino_t newinum; 155 int mode; 156 { 157 158 panic("softdep_setup_inomapdep called"); 159 } 160 161 void 162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 163 struct buf *bp; 164 struct mount *mp; 165 ufs2_daddr_t newblkno; 166 int frags; 167 int oldfrags; 168 { 169 170 panic("softdep_setup_blkmapdep called"); 171 } 172 173 void 174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 175 struct inode *ip; 176 ufs_lbn_t lbn; 177 ufs2_daddr_t newblkno; 178 ufs2_daddr_t oldblkno; 179 long newsize; 180 long oldsize; 181 struct buf *bp; 182 { 183 184 panic("softdep_setup_allocdirect called"); 185 } 186 187 void 188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 189 struct inode *ip; 190 ufs_lbn_t lbn; 191 ufs2_daddr_t newblkno; 192 ufs2_daddr_t oldblkno; 193 long newsize; 194 long oldsize; 195 struct buf *bp; 196 { 197 198 panic("softdep_setup_allocext called"); 199 } 200 201 void 202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 203 struct inode *ip; 204 ufs_lbn_t lbn; 205 struct buf *bp; 206 int ptrno; 207 ufs2_daddr_t newblkno; 208 ufs2_daddr_t oldblkno; 209 struct buf *nbp; 210 { 211 212 panic("softdep_setup_allocindir_page called"); 213 } 214 215 void 216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 217 struct buf *nbp; 218 struct inode *ip; 219 struct buf *bp; 220 int ptrno; 221 ufs2_daddr_t newblkno; 222 { 223 224 panic("softdep_setup_allocindir_meta called"); 225 } 226 227 void 228 softdep_journal_freeblocks(ip, cred, length, flags) 229 struct inode *ip; 230 struct ucred *cred; 231 off_t length; 232 int flags; 233 { 234 235 panic("softdep_journal_freeblocks called"); 236 } 237 238 void 239 softdep_journal_fsync(ip) 240 struct inode *ip; 241 { 242 243 panic("softdep_journal_fsync called"); 244 } 245 246 void 247 softdep_setup_freeblocks(ip, length, flags) 248 struct inode *ip; 249 off_t length; 250 int flags; 251 { 252 253 panic("softdep_setup_freeblocks called"); 254 } 255 256 void 257 softdep_freefile(pvp, ino, mode) 258 struct vnode *pvp; 259 ino_t ino; 260 int mode; 261 { 262 263 panic("softdep_freefile called"); 264 } 265 266 int 267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 268 struct buf *bp; 269 struct inode *dp; 270 off_t diroffset; 271 ino_t newinum; 272 struct buf *newdirbp; 273 int isnewblk; 274 { 275 276 panic("softdep_setup_directory_add called"); 277 } 278 279 void 280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 281 struct buf *bp; 282 struct inode *dp; 283 caddr_t base; 284 caddr_t oldloc; 285 caddr_t newloc; 286 int entrysize; 287 { 288 289 panic("softdep_change_directoryentry_offset called"); 290 } 291 292 void 293 softdep_setup_remove(bp, dp, ip, isrmdir) 294 struct buf *bp; 295 struct inode *dp; 296 struct inode *ip; 297 int isrmdir; 298 { 299 300 panic("softdep_setup_remove called"); 301 } 302 303 void 304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 305 struct buf *bp; 306 struct inode *dp; 307 struct inode *ip; 308 ino_t newinum; 309 int isrmdir; 310 { 311 312 panic("softdep_setup_directory_change called"); 313 } 314 315 void 316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 317 struct mount *mp; 318 struct buf *bp; 319 ufs2_daddr_t blkno; 320 int frags; 321 struct workhead *wkhd; 322 { 323 324 panic("%s called", __FUNCTION__); 325 } 326 327 void 328 softdep_setup_inofree(mp, bp, ino, wkhd) 329 struct mount *mp; 330 struct buf *bp; 331 ino_t ino; 332 struct workhead *wkhd; 333 { 334 335 panic("%s called", __FUNCTION__); 336 } 337 338 void 339 softdep_setup_unlink(dp, ip) 340 struct inode *dp; 341 struct inode *ip; 342 { 343 344 panic("%s called", __FUNCTION__); 345 } 346 347 void 348 softdep_setup_link(dp, ip) 349 struct inode *dp; 350 struct inode *ip; 351 { 352 353 panic("%s called", __FUNCTION__); 354 } 355 356 void 357 softdep_revert_link(dp, ip) 358 struct inode *dp; 359 struct inode *ip; 360 { 361 362 panic("%s called", __FUNCTION__); 363 } 364 365 void 366 softdep_setup_rmdir(dp, ip) 367 struct inode *dp; 368 struct inode *ip; 369 { 370 371 panic("%s called", __FUNCTION__); 372 } 373 374 void 375 softdep_revert_rmdir(dp, ip) 376 struct inode *dp; 377 struct inode *ip; 378 { 379 380 panic("%s called", __FUNCTION__); 381 } 382 383 void 384 softdep_setup_create(dp, ip) 385 struct inode *dp; 386 struct inode *ip; 387 { 388 389 panic("%s called", __FUNCTION__); 390 } 391 392 void 393 softdep_revert_create(dp, ip) 394 struct inode *dp; 395 struct inode *ip; 396 { 397 398 panic("%s called", __FUNCTION__); 399 } 400 401 void 402 softdep_setup_mkdir(dp, ip) 403 struct inode *dp; 404 struct inode *ip; 405 { 406 407 panic("%s called", __FUNCTION__); 408 } 409 410 void 411 softdep_revert_mkdir(dp, ip) 412 struct inode *dp; 413 struct inode *ip; 414 { 415 416 panic("%s called", __FUNCTION__); 417 } 418 419 void 420 softdep_setup_dotdot_link(dp, ip) 421 struct inode *dp; 422 struct inode *ip; 423 { 424 425 panic("%s called", __FUNCTION__); 426 } 427 428 int 429 softdep_prealloc(vp, waitok) 430 struct vnode *vp; 431 int waitok; 432 { 433 434 panic("%s called", __FUNCTION__); 435 436 return (0); 437 } 438 439 int 440 softdep_journal_lookup(mp, vpp) 441 struct mount *mp; 442 struct vnode **vpp; 443 { 444 445 return (ENOENT); 446 } 447 448 void 449 softdep_change_linkcnt(ip) 450 struct inode *ip; 451 { 452 453 panic("softdep_change_linkcnt called"); 454 } 455 456 void 457 softdep_load_inodeblock(ip) 458 struct inode *ip; 459 { 460 461 panic("softdep_load_inodeblock called"); 462 } 463 464 void 465 softdep_update_inodeblock(ip, bp, waitfor) 466 struct inode *ip; 467 struct buf *bp; 468 int waitfor; 469 { 470 471 panic("softdep_update_inodeblock called"); 472 } 473 474 int 475 softdep_fsync(vp) 476 struct vnode *vp; /* the "in_core" copy of the inode */ 477 { 478 479 return (0); 480 } 481 482 void 483 softdep_fsync_mountdev(vp) 484 struct vnode *vp; 485 { 486 487 return; 488 } 489 490 int 491 softdep_flushworklist(oldmnt, countp, td) 492 struct mount *oldmnt; 493 int *countp; 494 struct thread *td; 495 { 496 497 *countp = 0; 498 return (0); 499 } 500 501 int 502 softdep_sync_metadata(struct vnode *vp) 503 { 504 505 return (0); 506 } 507 508 int 509 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 510 { 511 512 return (0); 513 } 514 515 int 516 softdep_slowdown(vp) 517 struct vnode *vp; 518 { 519 520 panic("softdep_slowdown called"); 521 } 522 523 void 524 softdep_releasefile(ip) 525 struct inode *ip; /* inode with the zero effective link count */ 526 { 527 528 panic("softdep_releasefile called"); 529 } 530 531 int 532 softdep_request_cleanup(fs, vp, cred, resource) 533 struct fs *fs; 534 struct vnode *vp; 535 struct ucred *cred; 536 int resource; 537 { 538 539 return (0); 540 } 541 542 int 543 softdep_check_suspend(struct mount *mp, 544 struct vnode *devvp, 545 int softdep_deps, 546 int softdep_accdeps, 547 int secondary_writes, 548 int secondary_accwrites) 549 { 550 struct bufobj *bo; 551 int error; 552 553 (void) softdep_deps, 554 (void) softdep_accdeps; 555 556 bo = &devvp->v_bufobj; 557 ASSERT_BO_LOCKED(bo); 558 559 MNT_ILOCK(mp); 560 while (mp->mnt_secondary_writes != 0) { 561 BO_UNLOCK(bo); 562 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 563 (PUSER - 1) | PDROP, "secwr", 0); 564 BO_LOCK(bo); 565 MNT_ILOCK(mp); 566 } 567 568 /* 569 * Reasons for needing more work before suspend: 570 * - Dirty buffers on devvp. 571 * - Secondary writes occurred after start of vnode sync loop 572 */ 573 error = 0; 574 if (bo->bo_numoutput > 0 || 575 bo->bo_dirty.bv_cnt > 0 || 576 secondary_writes != 0 || 577 mp->mnt_secondary_writes != 0 || 578 secondary_accwrites != mp->mnt_secondary_accwrites) 579 error = EAGAIN; 580 BO_UNLOCK(bo); 581 return (error); 582 } 583 584 void 585 softdep_get_depcounts(struct mount *mp, 586 int *softdepactivep, 587 int *softdepactiveaccp) 588 { 589 (void) mp; 590 *softdepactivep = 0; 591 *softdepactiveaccp = 0; 592 } 593 594 void 595 softdep_buf_append(bp, wkhd) 596 struct buf *bp; 597 struct workhead *wkhd; 598 { 599 600 panic("softdep_buf_appendwork called"); 601 } 602 603 void 604 softdep_inode_append(ip, cred, wkhd) 605 struct inode *ip; 606 struct ucred *cred; 607 struct workhead *wkhd; 608 { 609 610 panic("softdep_inode_appendwork called"); 611 } 612 613 void 614 softdep_freework(wkhd) 615 struct workhead *wkhd; 616 { 617 618 panic("softdep_freework called"); 619 } 620 621 #else 622 623 FEATURE(softupdates, "FFS soft-updates support"); 624 625 /* 626 * These definitions need to be adapted to the system to which 627 * this file is being ported. 628 */ 629 630 #define M_SOFTDEP_FLAGS (M_WAITOK) 631 632 #define D_PAGEDEP 0 633 #define D_INODEDEP 1 634 #define D_BMSAFEMAP 2 635 #define D_NEWBLK 3 636 #define D_ALLOCDIRECT 4 637 #define D_INDIRDEP 5 638 #define D_ALLOCINDIR 6 639 #define D_FREEFRAG 7 640 #define D_FREEBLKS 8 641 #define D_FREEFILE 9 642 #define D_DIRADD 10 643 #define D_MKDIR 11 644 #define D_DIRREM 12 645 #define D_NEWDIRBLK 13 646 #define D_FREEWORK 14 647 #define D_FREEDEP 15 648 #define D_JADDREF 16 649 #define D_JREMREF 17 650 #define D_JMVREF 18 651 #define D_JNEWBLK 19 652 #define D_JFREEBLK 20 653 #define D_JFREEFRAG 21 654 #define D_JSEG 22 655 #define D_JSEGDEP 23 656 #define D_SBDEP 24 657 #define D_JTRUNC 25 658 #define D_JFSYNC 26 659 #define D_SENTINEL 27 660 #define D_LAST D_SENTINEL 661 662 unsigned long dep_current[D_LAST + 1]; 663 unsigned long dep_total[D_LAST + 1]; 664 unsigned long dep_write[D_LAST + 1]; 665 666 667 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 668 "soft updates stats"); 669 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 670 "total dependencies allocated"); 671 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 672 "current dependencies allocated"); 673 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 674 "current dependencies written"); 675 676 #define SOFTDEP_TYPE(type, str, long) \ 677 static MALLOC_DEFINE(M_ ## type, #str, long); \ 678 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 679 &dep_total[D_ ## type], 0, ""); \ 680 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 681 &dep_current[D_ ## type], 0, ""); \ 682 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 683 &dep_write[D_ ## type], 0, ""); 684 685 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 686 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 687 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 688 "Block or frag allocated from cyl group map"); 689 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 690 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 691 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 692 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 693 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 694 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 695 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 696 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 697 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 698 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 699 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 700 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 701 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 702 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 703 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 704 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 705 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 706 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 707 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 708 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 709 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 710 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 711 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 712 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 713 714 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 715 716 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 717 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 718 719 /* 720 * translate from workitem type to memory type 721 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 722 */ 723 static struct malloc_type *memtype[] = { 724 M_PAGEDEP, 725 M_INODEDEP, 726 M_BMSAFEMAP, 727 M_NEWBLK, 728 M_ALLOCDIRECT, 729 M_INDIRDEP, 730 M_ALLOCINDIR, 731 M_FREEFRAG, 732 M_FREEBLKS, 733 M_FREEFILE, 734 M_DIRADD, 735 M_MKDIR, 736 M_DIRREM, 737 M_NEWDIRBLK, 738 M_FREEWORK, 739 M_FREEDEP, 740 M_JADDREF, 741 M_JREMREF, 742 M_JMVREF, 743 M_JNEWBLK, 744 M_JFREEBLK, 745 M_JFREEFRAG, 746 M_JSEG, 747 M_JSEGDEP, 748 M_SBDEP, 749 M_JTRUNC, 750 M_JFSYNC, 751 M_SENTINEL 752 }; 753 754 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd; 755 756 #define DtoM(type) (memtype[type]) 757 758 /* 759 * Names of malloc types. 760 */ 761 #define TYPENAME(type) \ 762 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 763 /* 764 * End system adaptation definitions. 765 */ 766 767 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 768 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 769 770 /* 771 * Forward declarations. 772 */ 773 struct inodedep_hashhead; 774 struct newblk_hashhead; 775 struct pagedep_hashhead; 776 struct bmsafemap_hashhead; 777 778 /* 779 * Private journaling structures. 780 */ 781 struct jblocks { 782 struct jseglst jb_segs; /* TAILQ of current segments. */ 783 struct jseg *jb_writeseg; /* Next write to complete. */ 784 struct jseg *jb_oldestseg; /* Oldest segment with valid entries. */ 785 struct jextent *jb_extent; /* Extent array. */ 786 uint64_t jb_nextseq; /* Next sequence number. */ 787 uint64_t jb_oldestwrseq; /* Oldest written sequence number. */ 788 uint8_t jb_needseg; /* Need a forced segment. */ 789 uint8_t jb_suspended; /* Did journal suspend writes? */ 790 int jb_avail; /* Available extents. */ 791 int jb_used; /* Last used extent. */ 792 int jb_head; /* Allocator head. */ 793 int jb_off; /* Allocator extent offset. */ 794 int jb_blocks; /* Total disk blocks covered. */ 795 int jb_free; /* Total disk blocks free. */ 796 int jb_min; /* Minimum free space. */ 797 int jb_low; /* Low on space. */ 798 int jb_age; /* Insertion time of oldest rec. */ 799 }; 800 801 struct jextent { 802 ufs2_daddr_t je_daddr; /* Disk block address. */ 803 int je_blocks; /* Disk block count. */ 804 }; 805 806 /* 807 * Internal function prototypes. 808 */ 809 static void softdep_error(char *, int); 810 static void drain_output(struct vnode *); 811 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 812 static void clear_remove(void); 813 static void clear_inodedeps(void); 814 static void unlinked_inodedep(struct mount *, struct inodedep *); 815 static void clear_unlinked_inodedep(struct inodedep *); 816 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 817 static int flush_pagedep_deps(struct vnode *, struct mount *, 818 struct diraddhd *); 819 static int free_pagedep(struct pagedep *); 820 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 821 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 822 static int flush_deplist(struct allocdirectlst *, int, int *); 823 static int sync_cgs(struct mount *, int); 824 static int handle_written_filepage(struct pagedep *, struct buf *); 825 static int handle_written_sbdep(struct sbdep *, struct buf *); 826 static void initiate_write_sbdep(struct sbdep *); 827 static void diradd_inode_written(struct diradd *, struct inodedep *); 828 static int handle_written_indirdep(struct indirdep *, struct buf *, 829 struct buf**); 830 static int handle_written_inodeblock(struct inodedep *, struct buf *); 831 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 832 uint8_t *); 833 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *); 834 static void handle_written_jaddref(struct jaddref *); 835 static void handle_written_jremref(struct jremref *); 836 static void handle_written_jseg(struct jseg *, struct buf *); 837 static void handle_written_jnewblk(struct jnewblk *); 838 static void handle_written_jblkdep(struct jblkdep *); 839 static void handle_written_jfreefrag(struct jfreefrag *); 840 static void complete_jseg(struct jseg *); 841 static void complete_jsegs(struct jseg *); 842 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 843 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 844 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 845 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 846 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 847 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 848 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 849 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 850 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 851 static inline void inoref_write(struct inoref *, struct jseg *, 852 struct jrefrec *); 853 static void handle_allocdirect_partdone(struct allocdirect *, 854 struct workhead *); 855 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 856 struct workhead *); 857 static void indirdep_complete(struct indirdep *); 858 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 859 static void indirblk_insert(struct freework *); 860 static void indirblk_remove(struct freework *); 861 static void handle_allocindir_partdone(struct allocindir *); 862 static void initiate_write_filepage(struct pagedep *, struct buf *); 863 static void initiate_write_indirdep(struct indirdep*, struct buf *); 864 static void handle_written_mkdir(struct mkdir *, int); 865 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 866 uint8_t *); 867 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 868 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 869 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 870 static void handle_workitem_freefile(struct freefile *); 871 static int handle_workitem_remove(struct dirrem *, int); 872 static struct dirrem *newdirrem(struct buf *, struct inode *, 873 struct inode *, int, struct dirrem **); 874 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 875 struct buf *); 876 static void cancel_indirdep(struct indirdep *, struct buf *, 877 struct freeblks *); 878 static void free_indirdep(struct indirdep *); 879 static void free_diradd(struct diradd *, struct workhead *); 880 static void merge_diradd(struct inodedep *, struct diradd *); 881 static void complete_diradd(struct diradd *); 882 static struct diradd *diradd_lookup(struct pagedep *, int); 883 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 884 struct jremref *); 885 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 886 struct jremref *); 887 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 888 struct jremref *, struct jremref *); 889 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 890 struct jremref *); 891 static void cancel_allocindir(struct allocindir *, struct buf *bp, 892 struct freeblks *, int); 893 static int setup_trunc_indir(struct freeblks *, struct inode *, 894 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 895 static void complete_trunc_indir(struct freework *); 896 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 897 int); 898 static void complete_mkdir(struct mkdir *); 899 static void free_newdirblk(struct newdirblk *); 900 static void free_jremref(struct jremref *); 901 static void free_jaddref(struct jaddref *); 902 static void free_jsegdep(struct jsegdep *); 903 static void free_jsegs(struct jblocks *); 904 static void rele_jseg(struct jseg *); 905 static void free_jseg(struct jseg *, struct jblocks *); 906 static void free_jnewblk(struct jnewblk *); 907 static void free_jblkdep(struct jblkdep *); 908 static void free_jfreefrag(struct jfreefrag *); 909 static void free_freedep(struct freedep *); 910 static void journal_jremref(struct dirrem *, struct jremref *, 911 struct inodedep *); 912 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 913 static int cancel_jaddref(struct jaddref *, struct inodedep *, 914 struct workhead *); 915 static void cancel_jfreefrag(struct jfreefrag *); 916 static inline void setup_freedirect(struct freeblks *, struct inode *, 917 int, int); 918 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 919 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 920 ufs_lbn_t, int); 921 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 922 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 923 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 924 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 925 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 926 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 927 int, int); 928 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 929 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 930 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 931 static void newblk_freefrag(struct newblk*); 932 static void free_newblk(struct newblk *); 933 static void cancel_allocdirect(struct allocdirectlst *, 934 struct allocdirect *, struct freeblks *); 935 static int check_inode_unwritten(struct inodedep *); 936 static int free_inodedep(struct inodedep *); 937 static void freework_freeblock(struct freework *); 938 static void freework_enqueue(struct freework *); 939 static int handle_workitem_freeblocks(struct freeblks *, int); 940 static int handle_complete_freeblocks(struct freeblks *, int); 941 static void handle_workitem_indirblk(struct freework *); 942 static void handle_written_freework(struct freework *); 943 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 944 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 945 struct workhead *); 946 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 947 struct inodedep *, struct allocindir *, ufs_lbn_t); 948 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 949 ufs2_daddr_t, ufs_lbn_t); 950 static void handle_workitem_freefrag(struct freefrag *); 951 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 952 ufs_lbn_t); 953 static void allocdirect_merge(struct allocdirectlst *, 954 struct allocdirect *, struct allocdirect *); 955 static struct freefrag *allocindir_merge(struct allocindir *, 956 struct allocindir *); 957 static int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int, 958 struct bmsafemap **); 959 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 960 int cg, struct bmsafemap *); 961 static int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t, 962 int, struct newblk **); 963 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 964 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 965 struct inodedep **); 966 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 967 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 968 int, struct pagedep **); 969 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 970 struct mount *mp, int, struct pagedep **); 971 static void pause_timer(void *); 972 static int request_cleanup(struct mount *, int); 973 static int process_worklist_item(struct mount *, int, int); 974 static void process_removes(struct vnode *); 975 static void process_truncates(struct vnode *); 976 static void jwork_move(struct workhead *, struct workhead *); 977 static void jwork_insert(struct workhead *, struct jsegdep *); 978 static void add_to_worklist(struct worklist *, int); 979 static void wake_worklist(struct worklist *); 980 static void wait_worklist(struct worklist *, char *); 981 static void remove_from_worklist(struct worklist *); 982 static void softdep_flush(void); 983 static void softdep_flushjournal(struct mount *); 984 static int softdep_speedup(void); 985 static void worklist_speedup(void); 986 static int journal_mount(struct mount *, struct fs *, struct ucred *); 987 static void journal_unmount(struct mount *); 988 static int journal_space(struct ufsmount *, int); 989 static void journal_suspend(struct ufsmount *); 990 static int journal_unsuspend(struct ufsmount *ump); 991 static void softdep_prelink(struct vnode *, struct vnode *); 992 static void add_to_journal(struct worklist *); 993 static void remove_from_journal(struct worklist *); 994 static void softdep_process_journal(struct mount *, struct worklist *, int); 995 static struct jremref *newjremref(struct dirrem *, struct inode *, 996 struct inode *ip, off_t, nlink_t); 997 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 998 uint16_t); 999 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 1000 uint16_t); 1001 static inline struct jsegdep *inoref_jseg(struct inoref *); 1002 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 1003 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 1004 ufs2_daddr_t, int); 1005 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 1006 static void move_newblock_dep(struct jaddref *, struct inodedep *); 1007 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 1008 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 1009 ufs2_daddr_t, long, ufs_lbn_t); 1010 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 1011 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 1012 static int jwait(struct worklist *, int); 1013 static struct inodedep *inodedep_lookup_ip(struct inode *); 1014 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 1015 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 1016 static void handle_jwork(struct workhead *); 1017 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 1018 struct mkdir **); 1019 static struct jblocks *jblocks_create(void); 1020 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 1021 static void jblocks_free(struct jblocks *, struct mount *, int); 1022 static void jblocks_destroy(struct jblocks *); 1023 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 1024 1025 /* 1026 * Exported softdep operations. 1027 */ 1028 static void softdep_disk_io_initiation(struct buf *); 1029 static void softdep_disk_write_complete(struct buf *); 1030 static void softdep_deallocate_dependencies(struct buf *); 1031 static int softdep_count_dependencies(struct buf *bp, int); 1032 1033 static struct mtx lk; 1034 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 1035 1036 #define TRY_ACQUIRE_LOCK(lk) mtx_trylock(lk) 1037 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 1038 #define FREE_LOCK(lk) mtx_unlock(lk) 1039 1040 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1041 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1042 1043 /* 1044 * Worklist queue management. 1045 * These routines require that the lock be held. 1046 */ 1047 #ifndef /* NOT */ DEBUG 1048 #define WORKLIST_INSERT(head, item) do { \ 1049 (item)->wk_state |= ONWORKLIST; \ 1050 LIST_INSERT_HEAD(head, item, wk_list); \ 1051 } while (0) 1052 #define WORKLIST_REMOVE(item) do { \ 1053 (item)->wk_state &= ~ONWORKLIST; \ 1054 LIST_REMOVE(item, wk_list); \ 1055 } while (0) 1056 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1057 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1058 1059 #else /* DEBUG */ 1060 static void worklist_insert(struct workhead *, struct worklist *, int); 1061 static void worklist_remove(struct worklist *, int); 1062 1063 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1064 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1065 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1066 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1067 1068 static void 1069 worklist_insert(head, item, locked) 1070 struct workhead *head; 1071 struct worklist *item; 1072 int locked; 1073 { 1074 1075 if (locked) 1076 mtx_assert(&lk, MA_OWNED); 1077 if (item->wk_state & ONWORKLIST) 1078 panic("worklist_insert: %p %s(0x%X) already on list", 1079 item, TYPENAME(item->wk_type), item->wk_state); 1080 item->wk_state |= ONWORKLIST; 1081 LIST_INSERT_HEAD(head, item, wk_list); 1082 } 1083 1084 static void 1085 worklist_remove(item, locked) 1086 struct worklist *item; 1087 int locked; 1088 { 1089 1090 if (locked) 1091 mtx_assert(&lk, MA_OWNED); 1092 if ((item->wk_state & ONWORKLIST) == 0) 1093 panic("worklist_remove: %p %s(0x%X) not on list", 1094 item, TYPENAME(item->wk_type), item->wk_state); 1095 item->wk_state &= ~ONWORKLIST; 1096 LIST_REMOVE(item, wk_list); 1097 } 1098 #endif /* DEBUG */ 1099 1100 /* 1101 * Merge two jsegdeps keeping only the oldest one as newer references 1102 * can't be discarded until after older references. 1103 */ 1104 static inline struct jsegdep * 1105 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1106 { 1107 struct jsegdep *swp; 1108 1109 if (two == NULL) 1110 return (one); 1111 1112 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1113 swp = one; 1114 one = two; 1115 two = swp; 1116 } 1117 WORKLIST_REMOVE(&two->jd_list); 1118 free_jsegdep(two); 1119 1120 return (one); 1121 } 1122 1123 /* 1124 * If two freedeps are compatible free one to reduce list size. 1125 */ 1126 static inline struct freedep * 1127 freedep_merge(struct freedep *one, struct freedep *two) 1128 { 1129 if (two == NULL) 1130 return (one); 1131 1132 if (one->fd_freework == two->fd_freework) { 1133 WORKLIST_REMOVE(&two->fd_list); 1134 free_freedep(two); 1135 } 1136 return (one); 1137 } 1138 1139 /* 1140 * Move journal work from one list to another. Duplicate freedeps and 1141 * jsegdeps are coalesced to keep the lists as small as possible. 1142 */ 1143 static void 1144 jwork_move(dst, src) 1145 struct workhead *dst; 1146 struct workhead *src; 1147 { 1148 struct freedep *freedep; 1149 struct jsegdep *jsegdep; 1150 struct worklist *wkn; 1151 struct worklist *wk; 1152 1153 KASSERT(dst != src, 1154 ("jwork_move: dst == src")); 1155 freedep = NULL; 1156 jsegdep = NULL; 1157 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1158 if (wk->wk_type == D_JSEGDEP) 1159 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1160 if (wk->wk_type == D_FREEDEP) 1161 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1162 } 1163 1164 mtx_assert(&lk, MA_OWNED); 1165 while ((wk = LIST_FIRST(src)) != NULL) { 1166 WORKLIST_REMOVE(wk); 1167 WORKLIST_INSERT(dst, wk); 1168 if (wk->wk_type == D_JSEGDEP) { 1169 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1170 continue; 1171 } 1172 if (wk->wk_type == D_FREEDEP) 1173 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1174 } 1175 } 1176 1177 static void 1178 jwork_insert(dst, jsegdep) 1179 struct workhead *dst; 1180 struct jsegdep *jsegdep; 1181 { 1182 struct jsegdep *jsegdepn; 1183 struct worklist *wk; 1184 1185 LIST_FOREACH(wk, dst, wk_list) 1186 if (wk->wk_type == D_JSEGDEP) 1187 break; 1188 if (wk == NULL) { 1189 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1190 return; 1191 } 1192 jsegdepn = WK_JSEGDEP(wk); 1193 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1194 WORKLIST_REMOVE(wk); 1195 free_jsegdep(jsegdepn); 1196 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1197 } else 1198 free_jsegdep(jsegdep); 1199 } 1200 1201 /* 1202 * Routines for tracking and managing workitems. 1203 */ 1204 static void workitem_free(struct worklist *, int); 1205 static void workitem_alloc(struct worklist *, int, struct mount *); 1206 1207 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type)) 1208 1209 static void 1210 workitem_free(item, type) 1211 struct worklist *item; 1212 int type; 1213 { 1214 struct ufsmount *ump; 1215 mtx_assert(&lk, MA_OWNED); 1216 1217 #ifdef DEBUG 1218 if (item->wk_state & ONWORKLIST) 1219 panic("workitem_free: %s(0x%X) still on list", 1220 TYPENAME(item->wk_type), item->wk_state); 1221 if (item->wk_type != type) 1222 panic("workitem_free: type mismatch %s != %s", 1223 TYPENAME(item->wk_type), TYPENAME(type)); 1224 #endif 1225 if (item->wk_state & IOWAITING) 1226 wakeup(item); 1227 ump = VFSTOUFS(item->wk_mp); 1228 if (--ump->softdep_deps == 0 && ump->softdep_req) 1229 wakeup(&ump->softdep_deps); 1230 dep_current[type]--; 1231 free(item, DtoM(type)); 1232 } 1233 1234 static void 1235 workitem_alloc(item, type, mp) 1236 struct worklist *item; 1237 int type; 1238 struct mount *mp; 1239 { 1240 struct ufsmount *ump; 1241 1242 item->wk_type = type; 1243 item->wk_mp = mp; 1244 item->wk_state = 0; 1245 1246 ump = VFSTOUFS(mp); 1247 ACQUIRE_LOCK(&lk); 1248 dep_current[type]++; 1249 dep_total[type]++; 1250 ump->softdep_deps++; 1251 ump->softdep_accdeps++; 1252 FREE_LOCK(&lk); 1253 } 1254 1255 /* 1256 * Workitem queue management 1257 */ 1258 static int max_softdeps; /* maximum number of structs before slowdown */ 1259 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 1260 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1261 static int proc_waiting; /* tracks whether we have a timeout posted */ 1262 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1263 static struct callout softdep_callout; 1264 static int req_pending; 1265 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1266 static int req_clear_remove; /* syncer process flush some freeblks */ 1267 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1268 1269 /* 1270 * runtime statistics 1271 */ 1272 static int stat_worklist_push; /* number of worklist cleanups */ 1273 static int stat_blk_limit_push; /* number of times block limit neared */ 1274 static int stat_ino_limit_push; /* number of times inode limit neared */ 1275 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1276 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1277 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1278 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1279 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1280 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1281 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1282 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1283 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1284 static int stat_journal_min; /* Times hit journal min threshold */ 1285 static int stat_journal_low; /* Times hit journal low threshold */ 1286 static int stat_journal_wait; /* Times blocked in jwait(). */ 1287 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1288 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1289 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1290 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1291 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1292 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1293 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1294 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1295 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1296 1297 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1298 &max_softdeps, 0, ""); 1299 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1300 &tickdelay, 0, ""); 1301 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW, 1302 &maxindirdeps, 0, ""); 1303 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1304 &stat_worklist_push, 0,""); 1305 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1306 &stat_blk_limit_push, 0,""); 1307 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1308 &stat_ino_limit_push, 0,""); 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1310 &stat_blk_limit_hit, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1312 &stat_ino_limit_hit, 0, ""); 1313 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1314 &stat_sync_limit_hit, 0, ""); 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1316 &stat_indir_blk_ptrs, 0, ""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1318 &stat_inode_bitmap, 0, ""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1320 &stat_direct_blk_ptrs, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1322 &stat_dir_entry, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1324 &stat_jaddref, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1326 &stat_jnewblk, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1328 &stat_journal_low, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1330 &stat_journal_min, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1332 &stat_journal_wait, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1334 &stat_jwait_filepage, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1336 &stat_jwait_freeblks, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1338 &stat_jwait_inode, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1340 &stat_jwait_newblk, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1342 &stat_cleanup_blkrequests, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1344 &stat_cleanup_inorequests, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1346 &stat_cleanup_high_delay, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1348 &stat_cleanup_retries, 0, ""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1350 &stat_cleanup_failures, 0, ""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1352 &softdep_flushcache, 0, ""); 1353 1354 SYSCTL_DECL(_vfs_ffs); 1355 1356 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl; 1357 static u_long bmsafemap_hash; /* size of hash table - 1 */ 1358 1359 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 1360 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1361 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1362 1363 static struct proc *softdepproc; 1364 static struct kproc_desc softdep_kp = { 1365 "softdepflush", 1366 softdep_flush, 1367 &softdepproc 1368 }; 1369 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, 1370 &softdep_kp); 1371 1372 static void 1373 softdep_flush(void) 1374 { 1375 struct mount *nmp; 1376 struct mount *mp; 1377 struct ufsmount *ump; 1378 struct thread *td; 1379 int remaining; 1380 int progress; 1381 1382 td = curthread; 1383 td->td_pflags |= TDP_NORUNNINGBUF; 1384 1385 for (;;) { 1386 kproc_suspend_check(softdepproc); 1387 ACQUIRE_LOCK(&lk); 1388 /* 1389 * If requested, try removing inode or removal dependencies. 1390 */ 1391 if (req_clear_inodedeps) { 1392 clear_inodedeps(); 1393 req_clear_inodedeps -= 1; 1394 wakeup_one(&proc_waiting); 1395 } 1396 if (req_clear_remove) { 1397 clear_remove(); 1398 req_clear_remove -= 1; 1399 wakeup_one(&proc_waiting); 1400 } 1401 FREE_LOCK(&lk); 1402 remaining = progress = 0; 1403 mtx_lock(&mountlist_mtx); 1404 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1405 nmp = TAILQ_NEXT(mp, mnt_list); 1406 if (MOUNTEDSOFTDEP(mp) == 0) 1407 continue; 1408 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 1409 continue; 1410 progress += softdep_process_worklist(mp, 0); 1411 ump = VFSTOUFS(mp); 1412 remaining += ump->softdep_on_worklist; 1413 mtx_lock(&mountlist_mtx); 1414 nmp = TAILQ_NEXT(mp, mnt_list); 1415 vfs_unbusy(mp); 1416 } 1417 mtx_unlock(&mountlist_mtx); 1418 if (remaining && progress) 1419 continue; 1420 ACQUIRE_LOCK(&lk); 1421 if (!req_pending) 1422 msleep(&req_pending, &lk, PVM, "sdflush", hz); 1423 req_pending = 0; 1424 FREE_LOCK(&lk); 1425 } 1426 } 1427 1428 static void 1429 worklist_speedup(void) 1430 { 1431 mtx_assert(&lk, MA_OWNED); 1432 if (req_pending == 0) { 1433 req_pending = 1; 1434 wakeup(&req_pending); 1435 } 1436 } 1437 1438 static int 1439 softdep_speedup(void) 1440 { 1441 1442 worklist_speedup(); 1443 bd_speedup(); 1444 return speedup_syncer(); 1445 } 1446 1447 /* 1448 * Add an item to the end of the work queue. 1449 * This routine requires that the lock be held. 1450 * This is the only routine that adds items to the list. 1451 * The following routine is the only one that removes items 1452 * and does so in order from first to last. 1453 */ 1454 1455 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1456 #define WK_NODELAY 0x0002 /* Process immediately. */ 1457 1458 static void 1459 add_to_worklist(wk, flags) 1460 struct worklist *wk; 1461 int flags; 1462 { 1463 struct ufsmount *ump; 1464 1465 mtx_assert(&lk, MA_OWNED); 1466 ump = VFSTOUFS(wk->wk_mp); 1467 if (wk->wk_state & ONWORKLIST) 1468 panic("add_to_worklist: %s(0x%X) already on list", 1469 TYPENAME(wk->wk_type), wk->wk_state); 1470 wk->wk_state |= ONWORKLIST; 1471 if (ump->softdep_on_worklist == 0) { 1472 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1473 ump->softdep_worklist_tail = wk; 1474 } else if (flags & WK_HEAD) { 1475 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1476 } else { 1477 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1478 ump->softdep_worklist_tail = wk; 1479 } 1480 ump->softdep_on_worklist += 1; 1481 if (flags & WK_NODELAY) 1482 worklist_speedup(); 1483 } 1484 1485 /* 1486 * Remove the item to be processed. If we are removing the last 1487 * item on the list, we need to recalculate the tail pointer. 1488 */ 1489 static void 1490 remove_from_worklist(wk) 1491 struct worklist *wk; 1492 { 1493 struct ufsmount *ump; 1494 1495 ump = VFSTOUFS(wk->wk_mp); 1496 WORKLIST_REMOVE(wk); 1497 if (ump->softdep_worklist_tail == wk) 1498 ump->softdep_worklist_tail = 1499 (struct worklist *)wk->wk_list.le_prev; 1500 ump->softdep_on_worklist -= 1; 1501 } 1502 1503 static void 1504 wake_worklist(wk) 1505 struct worklist *wk; 1506 { 1507 if (wk->wk_state & IOWAITING) { 1508 wk->wk_state &= ~IOWAITING; 1509 wakeup(wk); 1510 } 1511 } 1512 1513 static void 1514 wait_worklist(wk, wmesg) 1515 struct worklist *wk; 1516 char *wmesg; 1517 { 1518 1519 wk->wk_state |= IOWAITING; 1520 msleep(wk, &lk, PVM, wmesg, 0); 1521 } 1522 1523 /* 1524 * Process that runs once per second to handle items in the background queue. 1525 * 1526 * Note that we ensure that everything is done in the order in which they 1527 * appear in the queue. The code below depends on this property to ensure 1528 * that blocks of a file are freed before the inode itself is freed. This 1529 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1530 * until all the old ones have been purged from the dependency lists. 1531 */ 1532 int 1533 softdep_process_worklist(mp, full) 1534 struct mount *mp; 1535 int full; 1536 { 1537 int cnt, matchcnt; 1538 struct ufsmount *ump; 1539 long starttime; 1540 1541 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1542 /* 1543 * Record the process identifier of our caller so that we can give 1544 * this process preferential treatment in request_cleanup below. 1545 */ 1546 matchcnt = 0; 1547 ump = VFSTOUFS(mp); 1548 ACQUIRE_LOCK(&lk); 1549 starttime = time_second; 1550 softdep_process_journal(mp, NULL, full?MNT_WAIT:0); 1551 while (ump->softdep_on_worklist > 0) { 1552 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1553 break; 1554 else 1555 matchcnt += cnt; 1556 /* 1557 * If requested, try removing inode or removal dependencies. 1558 */ 1559 if (req_clear_inodedeps) { 1560 clear_inodedeps(); 1561 req_clear_inodedeps -= 1; 1562 wakeup_one(&proc_waiting); 1563 } 1564 if (req_clear_remove) { 1565 clear_remove(); 1566 req_clear_remove -= 1; 1567 wakeup_one(&proc_waiting); 1568 } 1569 /* 1570 * We do not generally want to stop for buffer space, but if 1571 * we are really being a buffer hog, we will stop and wait. 1572 */ 1573 if (should_yield()) { 1574 FREE_LOCK(&lk); 1575 kern_yield(PRI_USER); 1576 bwillwrite(); 1577 ACQUIRE_LOCK(&lk); 1578 } 1579 /* 1580 * Never allow processing to run for more than one 1581 * second. Otherwise the other mountpoints may get 1582 * excessively backlogged. 1583 */ 1584 if (!full && starttime != time_second) 1585 break; 1586 } 1587 if (full == 0) 1588 journal_unsuspend(ump); 1589 FREE_LOCK(&lk); 1590 return (matchcnt); 1591 } 1592 1593 /* 1594 * Process all removes associated with a vnode if we are running out of 1595 * journal space. Any other process which attempts to flush these will 1596 * be unable as we have the vnodes locked. 1597 */ 1598 static void 1599 process_removes(vp) 1600 struct vnode *vp; 1601 { 1602 struct inodedep *inodedep; 1603 struct dirrem *dirrem; 1604 struct mount *mp; 1605 ino_t inum; 1606 1607 mtx_assert(&lk, MA_OWNED); 1608 1609 mp = vp->v_mount; 1610 inum = VTOI(vp)->i_number; 1611 for (;;) { 1612 top: 1613 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1614 return; 1615 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1616 /* 1617 * If another thread is trying to lock this vnode 1618 * it will fail but we must wait for it to do so 1619 * before we can proceed. 1620 */ 1621 if (dirrem->dm_state & INPROGRESS) { 1622 wait_worklist(&dirrem->dm_list, "pwrwait"); 1623 goto top; 1624 } 1625 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1626 (COMPLETE | ONWORKLIST)) 1627 break; 1628 } 1629 if (dirrem == NULL) 1630 return; 1631 remove_from_worklist(&dirrem->dm_list); 1632 FREE_LOCK(&lk); 1633 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1634 panic("process_removes: suspended filesystem"); 1635 handle_workitem_remove(dirrem, 0); 1636 vn_finished_secondary_write(mp); 1637 ACQUIRE_LOCK(&lk); 1638 } 1639 } 1640 1641 /* 1642 * Process all truncations associated with a vnode if we are running out 1643 * of journal space. This is called when the vnode lock is already held 1644 * and no other process can clear the truncation. This function returns 1645 * a value greater than zero if it did any work. 1646 */ 1647 static void 1648 process_truncates(vp) 1649 struct vnode *vp; 1650 { 1651 struct inodedep *inodedep; 1652 struct freeblks *freeblks; 1653 struct mount *mp; 1654 ino_t inum; 1655 int cgwait; 1656 1657 mtx_assert(&lk, MA_OWNED); 1658 1659 mp = vp->v_mount; 1660 inum = VTOI(vp)->i_number; 1661 for (;;) { 1662 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1663 return; 1664 cgwait = 0; 1665 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1666 /* Journal entries not yet written. */ 1667 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1668 jwait(&LIST_FIRST( 1669 &freeblks->fb_jblkdephd)->jb_list, 1670 MNT_WAIT); 1671 break; 1672 } 1673 /* Another thread is executing this item. */ 1674 if (freeblks->fb_state & INPROGRESS) { 1675 wait_worklist(&freeblks->fb_list, "ptrwait"); 1676 break; 1677 } 1678 /* Freeblks is waiting on a inode write. */ 1679 if ((freeblks->fb_state & COMPLETE) == 0) { 1680 FREE_LOCK(&lk); 1681 ffs_update(vp, 1); 1682 ACQUIRE_LOCK(&lk); 1683 break; 1684 } 1685 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1686 (ALLCOMPLETE | ONWORKLIST)) { 1687 remove_from_worklist(&freeblks->fb_list); 1688 freeblks->fb_state |= INPROGRESS; 1689 FREE_LOCK(&lk); 1690 if (vn_start_secondary_write(NULL, &mp, 1691 V_NOWAIT)) 1692 panic("process_truncates: " 1693 "suspended filesystem"); 1694 handle_workitem_freeblocks(freeblks, 0); 1695 vn_finished_secondary_write(mp); 1696 ACQUIRE_LOCK(&lk); 1697 break; 1698 } 1699 if (freeblks->fb_cgwait) 1700 cgwait++; 1701 } 1702 if (cgwait) { 1703 FREE_LOCK(&lk); 1704 sync_cgs(mp, MNT_WAIT); 1705 ffs_sync_snap(mp, MNT_WAIT); 1706 ACQUIRE_LOCK(&lk); 1707 continue; 1708 } 1709 if (freeblks == NULL) 1710 break; 1711 } 1712 return; 1713 } 1714 1715 /* 1716 * Process one item on the worklist. 1717 */ 1718 static int 1719 process_worklist_item(mp, target, flags) 1720 struct mount *mp; 1721 int target; 1722 int flags; 1723 { 1724 struct worklist sentinel; 1725 struct worklist *wk; 1726 struct ufsmount *ump; 1727 int matchcnt; 1728 int error; 1729 1730 mtx_assert(&lk, MA_OWNED); 1731 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1732 /* 1733 * If we are being called because of a process doing a 1734 * copy-on-write, then it is not safe to write as we may 1735 * recurse into the copy-on-write routine. 1736 */ 1737 if (curthread->td_pflags & TDP_COWINPROGRESS) 1738 return (-1); 1739 PHOLD(curproc); /* Don't let the stack go away. */ 1740 ump = VFSTOUFS(mp); 1741 matchcnt = 0; 1742 sentinel.wk_mp = NULL; 1743 sentinel.wk_type = D_SENTINEL; 1744 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1745 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1746 wk = LIST_NEXT(&sentinel, wk_list)) { 1747 if (wk->wk_type == D_SENTINEL) { 1748 LIST_REMOVE(&sentinel, wk_list); 1749 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1750 continue; 1751 } 1752 if (wk->wk_state & INPROGRESS) 1753 panic("process_worklist_item: %p already in progress.", 1754 wk); 1755 wk->wk_state |= INPROGRESS; 1756 remove_from_worklist(wk); 1757 FREE_LOCK(&lk); 1758 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1759 panic("process_worklist_item: suspended filesystem"); 1760 switch (wk->wk_type) { 1761 case D_DIRREM: 1762 /* removal of a directory entry */ 1763 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1764 break; 1765 1766 case D_FREEBLKS: 1767 /* releasing blocks and/or fragments from a file */ 1768 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1769 flags); 1770 break; 1771 1772 case D_FREEFRAG: 1773 /* releasing a fragment when replaced as a file grows */ 1774 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1775 error = 0; 1776 break; 1777 1778 case D_FREEFILE: 1779 /* releasing an inode when its link count drops to 0 */ 1780 handle_workitem_freefile(WK_FREEFILE(wk)); 1781 error = 0; 1782 break; 1783 1784 default: 1785 panic("%s_process_worklist: Unknown type %s", 1786 "softdep", TYPENAME(wk->wk_type)); 1787 /* NOTREACHED */ 1788 } 1789 vn_finished_secondary_write(mp); 1790 ACQUIRE_LOCK(&lk); 1791 if (error == 0) { 1792 if (++matchcnt == target) 1793 break; 1794 continue; 1795 } 1796 /* 1797 * We have to retry the worklist item later. Wake up any 1798 * waiters who may be able to complete it immediately and 1799 * add the item back to the head so we don't try to execute 1800 * it again. 1801 */ 1802 wk->wk_state &= ~INPROGRESS; 1803 wake_worklist(wk); 1804 add_to_worklist(wk, WK_HEAD); 1805 } 1806 LIST_REMOVE(&sentinel, wk_list); 1807 /* Sentinal could've become the tail from remove_from_worklist. */ 1808 if (ump->softdep_worklist_tail == &sentinel) 1809 ump->softdep_worklist_tail = 1810 (struct worklist *)sentinel.wk_list.le_prev; 1811 PRELE(curproc); 1812 return (matchcnt); 1813 } 1814 1815 /* 1816 * Move dependencies from one buffer to another. 1817 */ 1818 int 1819 softdep_move_dependencies(oldbp, newbp) 1820 struct buf *oldbp; 1821 struct buf *newbp; 1822 { 1823 struct worklist *wk, *wktail; 1824 int dirty; 1825 1826 dirty = 0; 1827 wktail = NULL; 1828 ACQUIRE_LOCK(&lk); 1829 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1830 LIST_REMOVE(wk, wk_list); 1831 if (wk->wk_type == D_BMSAFEMAP && 1832 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1833 dirty = 1; 1834 if (wktail == 0) 1835 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1836 else 1837 LIST_INSERT_AFTER(wktail, wk, wk_list); 1838 wktail = wk; 1839 } 1840 FREE_LOCK(&lk); 1841 1842 return (dirty); 1843 } 1844 1845 /* 1846 * Purge the work list of all items associated with a particular mount point. 1847 */ 1848 int 1849 softdep_flushworklist(oldmnt, countp, td) 1850 struct mount *oldmnt; 1851 int *countp; 1852 struct thread *td; 1853 { 1854 struct vnode *devvp; 1855 int count, error = 0; 1856 struct ufsmount *ump; 1857 1858 /* 1859 * Alternately flush the block device associated with the mount 1860 * point and process any dependencies that the flushing 1861 * creates. We continue until no more worklist dependencies 1862 * are found. 1863 */ 1864 *countp = 0; 1865 ump = VFSTOUFS(oldmnt); 1866 devvp = ump->um_devvp; 1867 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1868 *countp += count; 1869 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1870 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1871 VOP_UNLOCK(devvp, 0); 1872 if (error) 1873 break; 1874 } 1875 return (error); 1876 } 1877 1878 int 1879 softdep_waitidle(struct mount *mp) 1880 { 1881 struct ufsmount *ump; 1882 int error; 1883 int i; 1884 1885 ump = VFSTOUFS(mp); 1886 ACQUIRE_LOCK(&lk); 1887 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1888 ump->softdep_req = 1; 1889 if (ump->softdep_on_worklist) 1890 panic("softdep_waitidle: work added after flush."); 1891 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1); 1892 } 1893 ump->softdep_req = 0; 1894 FREE_LOCK(&lk); 1895 error = 0; 1896 if (i == 10) { 1897 error = EBUSY; 1898 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1899 mp); 1900 } 1901 1902 return (error); 1903 } 1904 1905 /* 1906 * Flush all vnodes and worklist items associated with a specified mount point. 1907 */ 1908 int 1909 softdep_flushfiles(oldmnt, flags, td) 1910 struct mount *oldmnt; 1911 int flags; 1912 struct thread *td; 1913 { 1914 #ifdef QUOTA 1915 struct ufsmount *ump; 1916 int i; 1917 #endif 1918 int error, early, depcount, loopcnt, retry_flush_count, retry; 1919 int morework; 1920 1921 loopcnt = 10; 1922 retry_flush_count = 3; 1923 retry_flush: 1924 error = 0; 1925 1926 /* 1927 * Alternately flush the vnodes associated with the mount 1928 * point and process any dependencies that the flushing 1929 * creates. In theory, this loop can happen at most twice, 1930 * but we give it a few extra just to be sure. 1931 */ 1932 for (; loopcnt > 0; loopcnt--) { 1933 /* 1934 * Do another flush in case any vnodes were brought in 1935 * as part of the cleanup operations. 1936 */ 1937 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1938 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1939 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1940 break; 1941 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1942 depcount == 0) 1943 break; 1944 } 1945 /* 1946 * If we are unmounting then it is an error to fail. If we 1947 * are simply trying to downgrade to read-only, then filesystem 1948 * activity can keep us busy forever, so we just fail with EBUSY. 1949 */ 1950 if (loopcnt == 0) { 1951 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1952 panic("softdep_flushfiles: looping"); 1953 error = EBUSY; 1954 } 1955 if (!error) 1956 error = softdep_waitidle(oldmnt); 1957 if (!error) { 1958 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 1959 retry = 0; 1960 MNT_ILOCK(oldmnt); 1961 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 1962 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 1963 morework = oldmnt->mnt_nvnodelistsize > 0; 1964 #ifdef QUOTA 1965 ump = VFSTOUFS(oldmnt); 1966 UFS_LOCK(ump); 1967 for (i = 0; i < MAXQUOTAS; i++) { 1968 if (ump->um_quotas[i] != NULLVP) 1969 morework = 1; 1970 } 1971 UFS_UNLOCK(ump); 1972 #endif 1973 if (morework) { 1974 if (--retry_flush_count > 0) { 1975 retry = 1; 1976 loopcnt = 3; 1977 } else 1978 error = EBUSY; 1979 } 1980 MNT_IUNLOCK(oldmnt); 1981 if (retry) 1982 goto retry_flush; 1983 } 1984 } 1985 return (error); 1986 } 1987 1988 /* 1989 * Structure hashing. 1990 * 1991 * There are three types of structures that can be looked up: 1992 * 1) pagedep structures identified by mount point, inode number, 1993 * and logical block. 1994 * 2) inodedep structures identified by mount point and inode number. 1995 * 3) newblk structures identified by mount point and 1996 * physical block number. 1997 * 1998 * The "pagedep" and "inodedep" dependency structures are hashed 1999 * separately from the file blocks and inodes to which they correspond. 2000 * This separation helps when the in-memory copy of an inode or 2001 * file block must be replaced. It also obviates the need to access 2002 * an inode or file page when simply updating (or de-allocating) 2003 * dependency structures. Lookup of newblk structures is needed to 2004 * find newly allocated blocks when trying to associate them with 2005 * their allocdirect or allocindir structure. 2006 * 2007 * The lookup routines optionally create and hash a new instance when 2008 * an existing entry is not found. 2009 */ 2010 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2011 #define NODELAY 0x0002 /* cannot do background work */ 2012 2013 /* 2014 * Structures and routines associated with pagedep caching. 2015 */ 2016 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 2017 u_long pagedep_hash; /* size of hash table - 1 */ 2018 #define PAGEDEP_HASH(mp, inum, lbn) \ 2019 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 2020 pagedep_hash]) 2021 2022 static int 2023 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 2024 struct pagedep_hashhead *pagedephd; 2025 ino_t ino; 2026 ufs_lbn_t lbn; 2027 struct mount *mp; 2028 int flags; 2029 struct pagedep **pagedeppp; 2030 { 2031 struct pagedep *pagedep; 2032 2033 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2034 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn && 2035 mp == pagedep->pd_list.wk_mp) { 2036 *pagedeppp = pagedep; 2037 return (1); 2038 } 2039 } 2040 *pagedeppp = NULL; 2041 return (0); 2042 } 2043 /* 2044 * Look up a pagedep. Return 1 if found, 0 otherwise. 2045 * If not found, allocate if DEPALLOC flag is passed. 2046 * Found or allocated entry is returned in pagedeppp. 2047 * This routine must be called with splbio interrupts blocked. 2048 */ 2049 static int 2050 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2051 struct mount *mp; 2052 struct buf *bp; 2053 ino_t ino; 2054 ufs_lbn_t lbn; 2055 int flags; 2056 struct pagedep **pagedeppp; 2057 { 2058 struct pagedep *pagedep; 2059 struct pagedep_hashhead *pagedephd; 2060 struct worklist *wk; 2061 int ret; 2062 int i; 2063 2064 mtx_assert(&lk, MA_OWNED); 2065 if (bp) { 2066 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2067 if (wk->wk_type == D_PAGEDEP) { 2068 *pagedeppp = WK_PAGEDEP(wk); 2069 return (1); 2070 } 2071 } 2072 } 2073 pagedephd = PAGEDEP_HASH(mp, ino, lbn); 2074 ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp); 2075 if (ret) { 2076 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2077 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2078 return (1); 2079 } 2080 if ((flags & DEPALLOC) == 0) 2081 return (0); 2082 FREE_LOCK(&lk); 2083 pagedep = malloc(sizeof(struct pagedep), 2084 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2085 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2086 ACQUIRE_LOCK(&lk); 2087 ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp); 2088 if (*pagedeppp) { 2089 /* 2090 * This should never happen since we only create pagedeps 2091 * with the vnode lock held. Could be an assert. 2092 */ 2093 WORKITEM_FREE(pagedep, D_PAGEDEP); 2094 return (ret); 2095 } 2096 pagedep->pd_ino = ino; 2097 pagedep->pd_lbn = lbn; 2098 LIST_INIT(&pagedep->pd_dirremhd); 2099 LIST_INIT(&pagedep->pd_pendinghd); 2100 for (i = 0; i < DAHASHSZ; i++) 2101 LIST_INIT(&pagedep->pd_diraddhd[i]); 2102 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2103 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2104 *pagedeppp = pagedep; 2105 return (0); 2106 } 2107 2108 /* 2109 * Structures and routines associated with inodedep caching. 2110 */ 2111 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 2112 static u_long inodedep_hash; /* size of hash table - 1 */ 2113 #define INODEDEP_HASH(fs, inum) \ 2114 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 2115 2116 static int 2117 inodedep_find(inodedephd, fs, inum, inodedeppp) 2118 struct inodedep_hashhead *inodedephd; 2119 struct fs *fs; 2120 ino_t inum; 2121 struct inodedep **inodedeppp; 2122 { 2123 struct inodedep *inodedep; 2124 2125 LIST_FOREACH(inodedep, inodedephd, id_hash) 2126 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 2127 break; 2128 if (inodedep) { 2129 *inodedeppp = inodedep; 2130 return (1); 2131 } 2132 *inodedeppp = NULL; 2133 2134 return (0); 2135 } 2136 /* 2137 * Look up an inodedep. Return 1 if found, 0 if not found. 2138 * If not found, allocate if DEPALLOC flag is passed. 2139 * Found or allocated entry is returned in inodedeppp. 2140 * This routine must be called with splbio interrupts blocked. 2141 */ 2142 static int 2143 inodedep_lookup(mp, inum, flags, inodedeppp) 2144 struct mount *mp; 2145 ino_t inum; 2146 int flags; 2147 struct inodedep **inodedeppp; 2148 { 2149 struct inodedep *inodedep; 2150 struct inodedep_hashhead *inodedephd; 2151 struct fs *fs; 2152 2153 mtx_assert(&lk, MA_OWNED); 2154 fs = VFSTOUFS(mp)->um_fs; 2155 inodedephd = INODEDEP_HASH(fs, inum); 2156 2157 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 2158 return (1); 2159 if ((flags & DEPALLOC) == 0) 2160 return (0); 2161 /* 2162 * If we are over our limit, try to improve the situation. 2163 */ 2164 if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0) 2165 request_cleanup(mp, FLUSH_INODES); 2166 FREE_LOCK(&lk); 2167 inodedep = malloc(sizeof(struct inodedep), 2168 M_INODEDEP, M_SOFTDEP_FLAGS); 2169 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2170 ACQUIRE_LOCK(&lk); 2171 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 2172 WORKITEM_FREE(inodedep, D_INODEDEP); 2173 return (1); 2174 } 2175 inodedep->id_fs = fs; 2176 inodedep->id_ino = inum; 2177 inodedep->id_state = ALLCOMPLETE; 2178 inodedep->id_nlinkdelta = 0; 2179 inodedep->id_savedino1 = NULL; 2180 inodedep->id_savedsize = -1; 2181 inodedep->id_savedextsize = -1; 2182 inodedep->id_savednlink = -1; 2183 inodedep->id_bmsafemap = NULL; 2184 inodedep->id_mkdiradd = NULL; 2185 LIST_INIT(&inodedep->id_dirremhd); 2186 LIST_INIT(&inodedep->id_pendinghd); 2187 LIST_INIT(&inodedep->id_inowait); 2188 LIST_INIT(&inodedep->id_bufwait); 2189 TAILQ_INIT(&inodedep->id_inoreflst); 2190 TAILQ_INIT(&inodedep->id_inoupdt); 2191 TAILQ_INIT(&inodedep->id_newinoupdt); 2192 TAILQ_INIT(&inodedep->id_extupdt); 2193 TAILQ_INIT(&inodedep->id_newextupdt); 2194 TAILQ_INIT(&inodedep->id_freeblklst); 2195 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2196 *inodedeppp = inodedep; 2197 return (0); 2198 } 2199 2200 /* 2201 * Structures and routines associated with newblk caching. 2202 */ 2203 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 2204 u_long newblk_hash; /* size of hash table - 1 */ 2205 #define NEWBLK_HASH(fs, inum) \ 2206 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 2207 2208 static int 2209 newblk_find(newblkhd, mp, newblkno, flags, newblkpp) 2210 struct newblk_hashhead *newblkhd; 2211 struct mount *mp; 2212 ufs2_daddr_t newblkno; 2213 int flags; 2214 struct newblk **newblkpp; 2215 { 2216 struct newblk *newblk; 2217 2218 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2219 if (newblkno != newblk->nb_newblkno) 2220 continue; 2221 if (mp != newblk->nb_list.wk_mp) 2222 continue; 2223 /* 2224 * If we're creating a new dependency don't match those that 2225 * have already been converted to allocdirects. This is for 2226 * a frag extend. 2227 */ 2228 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2229 continue; 2230 break; 2231 } 2232 if (newblk) { 2233 *newblkpp = newblk; 2234 return (1); 2235 } 2236 *newblkpp = NULL; 2237 return (0); 2238 } 2239 2240 /* 2241 * Look up a newblk. Return 1 if found, 0 if not found. 2242 * If not found, allocate if DEPALLOC flag is passed. 2243 * Found or allocated entry is returned in newblkpp. 2244 */ 2245 static int 2246 newblk_lookup(mp, newblkno, flags, newblkpp) 2247 struct mount *mp; 2248 ufs2_daddr_t newblkno; 2249 int flags; 2250 struct newblk **newblkpp; 2251 { 2252 struct newblk *newblk; 2253 struct newblk_hashhead *newblkhd; 2254 2255 newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno); 2256 if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) 2257 return (1); 2258 if ((flags & DEPALLOC) == 0) 2259 return (0); 2260 FREE_LOCK(&lk); 2261 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2262 M_SOFTDEP_FLAGS | M_ZERO); 2263 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2264 ACQUIRE_LOCK(&lk); 2265 if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) { 2266 WORKITEM_FREE(newblk, D_NEWBLK); 2267 return (1); 2268 } 2269 newblk->nb_freefrag = NULL; 2270 LIST_INIT(&newblk->nb_indirdeps); 2271 LIST_INIT(&newblk->nb_newdirblk); 2272 LIST_INIT(&newblk->nb_jwork); 2273 newblk->nb_state = ATTACHED; 2274 newblk->nb_newblkno = newblkno; 2275 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2276 *newblkpp = newblk; 2277 return (0); 2278 } 2279 2280 /* 2281 * Structures and routines associated with freed indirect block caching. 2282 */ 2283 struct freeworklst *indir_hashtbl; 2284 u_long indir_hash; /* size of hash table - 1 */ 2285 #define INDIR_HASH(mp, blkno) \ 2286 (&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash]) 2287 2288 /* 2289 * Lookup an indirect block in the indir hash table. The freework is 2290 * removed and potentially freed. The caller must do a blocking journal 2291 * write before writing to the blkno. 2292 */ 2293 static int 2294 indirblk_lookup(mp, blkno) 2295 struct mount *mp; 2296 ufs2_daddr_t blkno; 2297 { 2298 struct freework *freework; 2299 struct freeworklst *wkhd; 2300 2301 wkhd = INDIR_HASH(mp, blkno); 2302 TAILQ_FOREACH(freework, wkhd, fw_next) { 2303 if (freework->fw_blkno != blkno) 2304 continue; 2305 if (freework->fw_list.wk_mp != mp) 2306 continue; 2307 indirblk_remove(freework); 2308 return (1); 2309 } 2310 return (0); 2311 } 2312 2313 /* 2314 * Insert an indirect block represented by freework into the indirblk 2315 * hash table so that it may prevent the block from being re-used prior 2316 * to the journal being written. 2317 */ 2318 static void 2319 indirblk_insert(freework) 2320 struct freework *freework; 2321 { 2322 struct jblocks *jblocks; 2323 struct jseg *jseg; 2324 2325 jblocks = VFSTOUFS(freework->fw_list.wk_mp)->softdep_jblocks; 2326 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2327 if (jseg == NULL) 2328 return; 2329 2330 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2331 TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp, 2332 freework->fw_blkno), freework, fw_next); 2333 freework->fw_state &= ~DEPCOMPLETE; 2334 } 2335 2336 static void 2337 indirblk_remove(freework) 2338 struct freework *freework; 2339 { 2340 2341 LIST_REMOVE(freework, fw_segs); 2342 TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp, 2343 freework->fw_blkno), freework, fw_next); 2344 freework->fw_state |= DEPCOMPLETE; 2345 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2346 WORKITEM_FREE(freework, D_FREEWORK); 2347 } 2348 2349 /* 2350 * Executed during filesystem system initialization before 2351 * mounting any filesystems. 2352 */ 2353 void 2354 softdep_initialize() 2355 { 2356 int i; 2357 2358 LIST_INIT(&mkdirlisthd); 2359 max_softdeps = desiredvnodes * 4; 2360 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash); 2361 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 2362 newblk_hashtbl = hashinit(desiredvnodes / 5, M_NEWBLK, &newblk_hash); 2363 bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash); 2364 i = 1 << (ffs(desiredvnodes / 10) - 1); 2365 indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK, 2366 M_WAITOK); 2367 indir_hash = i - 1; 2368 for (i = 0; i <= indir_hash; i++) 2369 TAILQ_INIT(&indir_hashtbl[i]); 2370 2371 /* initialise bioops hack */ 2372 bioops.io_start = softdep_disk_io_initiation; 2373 bioops.io_complete = softdep_disk_write_complete; 2374 bioops.io_deallocate = softdep_deallocate_dependencies; 2375 bioops.io_countdeps = softdep_count_dependencies; 2376 2377 /* Initialize the callout with an mtx. */ 2378 callout_init_mtx(&softdep_callout, &lk, 0); 2379 } 2380 2381 /* 2382 * Executed after all filesystems have been unmounted during 2383 * filesystem module unload. 2384 */ 2385 void 2386 softdep_uninitialize() 2387 { 2388 2389 callout_drain(&softdep_callout); 2390 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 2391 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 2392 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 2393 hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash); 2394 free(indir_hashtbl, M_FREEWORK); 2395 } 2396 2397 /* 2398 * Called at mount time to notify the dependency code that a 2399 * filesystem wishes to use it. 2400 */ 2401 int 2402 softdep_mount(devvp, mp, fs, cred) 2403 struct vnode *devvp; 2404 struct mount *mp; 2405 struct fs *fs; 2406 struct ucred *cred; 2407 { 2408 struct csum_total cstotal; 2409 struct ufsmount *ump; 2410 struct cg *cgp; 2411 struct buf *bp; 2412 int error, cyl; 2413 2414 MNT_ILOCK(mp); 2415 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2416 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2417 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2418 MNTK_SOFTDEP | MNTK_NOASYNC; 2419 } 2420 MNT_IUNLOCK(mp); 2421 ump = VFSTOUFS(mp); 2422 LIST_INIT(&ump->softdep_workitem_pending); 2423 LIST_INIT(&ump->softdep_journal_pending); 2424 TAILQ_INIT(&ump->softdep_unlinked); 2425 LIST_INIT(&ump->softdep_dirtycg); 2426 ump->softdep_worklist_tail = NULL; 2427 ump->softdep_on_worklist = 0; 2428 ump->softdep_deps = 0; 2429 if ((fs->fs_flags & FS_SUJ) && 2430 (error = journal_mount(mp, fs, cred)) != 0) { 2431 printf("Failed to start journal: %d\n", error); 2432 return (error); 2433 } 2434 /* 2435 * When doing soft updates, the counters in the 2436 * superblock may have gotten out of sync. Recomputation 2437 * can take a long time and can be deferred for background 2438 * fsck. However, the old behavior of scanning the cylinder 2439 * groups and recalculating them at mount time is available 2440 * by setting vfs.ffs.compute_summary_at_mount to one. 2441 */ 2442 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2443 return (0); 2444 bzero(&cstotal, sizeof cstotal); 2445 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2446 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2447 fs->fs_cgsize, cred, &bp)) != 0) { 2448 brelse(bp); 2449 return (error); 2450 } 2451 cgp = (struct cg *)bp->b_data; 2452 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2453 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2454 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2455 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2456 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2457 brelse(bp); 2458 } 2459 #ifdef DEBUG 2460 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2461 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2462 #endif 2463 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2464 return (0); 2465 } 2466 2467 void 2468 softdep_unmount(mp) 2469 struct mount *mp; 2470 { 2471 2472 MNT_ILOCK(mp); 2473 mp->mnt_flag &= ~MNT_SOFTDEP; 2474 if (MOUNTEDSUJ(mp) == 0) { 2475 MNT_IUNLOCK(mp); 2476 return; 2477 } 2478 mp->mnt_flag &= ~MNT_SUJ; 2479 MNT_IUNLOCK(mp); 2480 journal_unmount(mp); 2481 } 2482 2483 static struct jblocks * 2484 jblocks_create(void) 2485 { 2486 struct jblocks *jblocks; 2487 2488 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2489 TAILQ_INIT(&jblocks->jb_segs); 2490 jblocks->jb_avail = 10; 2491 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2492 M_JBLOCKS, M_WAITOK | M_ZERO); 2493 2494 return (jblocks); 2495 } 2496 2497 static ufs2_daddr_t 2498 jblocks_alloc(jblocks, bytes, actual) 2499 struct jblocks *jblocks; 2500 int bytes; 2501 int *actual; 2502 { 2503 ufs2_daddr_t daddr; 2504 struct jextent *jext; 2505 int freecnt; 2506 int blocks; 2507 2508 blocks = bytes / DEV_BSIZE; 2509 jext = &jblocks->jb_extent[jblocks->jb_head]; 2510 freecnt = jext->je_blocks - jblocks->jb_off; 2511 if (freecnt == 0) { 2512 jblocks->jb_off = 0; 2513 if (++jblocks->jb_head > jblocks->jb_used) 2514 jblocks->jb_head = 0; 2515 jext = &jblocks->jb_extent[jblocks->jb_head]; 2516 freecnt = jext->je_blocks; 2517 } 2518 if (freecnt > blocks) 2519 freecnt = blocks; 2520 *actual = freecnt * DEV_BSIZE; 2521 daddr = jext->je_daddr + jblocks->jb_off; 2522 jblocks->jb_off += freecnt; 2523 jblocks->jb_free -= freecnt; 2524 2525 return (daddr); 2526 } 2527 2528 static void 2529 jblocks_free(jblocks, mp, bytes) 2530 struct jblocks *jblocks; 2531 struct mount *mp; 2532 int bytes; 2533 { 2534 2535 jblocks->jb_free += bytes / DEV_BSIZE; 2536 if (jblocks->jb_suspended) 2537 worklist_speedup(); 2538 wakeup(jblocks); 2539 } 2540 2541 static void 2542 jblocks_destroy(jblocks) 2543 struct jblocks *jblocks; 2544 { 2545 2546 if (jblocks->jb_extent) 2547 free(jblocks->jb_extent, M_JBLOCKS); 2548 free(jblocks, M_JBLOCKS); 2549 } 2550 2551 static void 2552 jblocks_add(jblocks, daddr, blocks) 2553 struct jblocks *jblocks; 2554 ufs2_daddr_t daddr; 2555 int blocks; 2556 { 2557 struct jextent *jext; 2558 2559 jblocks->jb_blocks += blocks; 2560 jblocks->jb_free += blocks; 2561 jext = &jblocks->jb_extent[jblocks->jb_used]; 2562 /* Adding the first block. */ 2563 if (jext->je_daddr == 0) { 2564 jext->je_daddr = daddr; 2565 jext->je_blocks = blocks; 2566 return; 2567 } 2568 /* Extending the last extent. */ 2569 if (jext->je_daddr + jext->je_blocks == daddr) { 2570 jext->je_blocks += blocks; 2571 return; 2572 } 2573 /* Adding a new extent. */ 2574 if (++jblocks->jb_used == jblocks->jb_avail) { 2575 jblocks->jb_avail *= 2; 2576 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2577 M_JBLOCKS, M_WAITOK | M_ZERO); 2578 memcpy(jext, jblocks->jb_extent, 2579 sizeof(struct jextent) * jblocks->jb_used); 2580 free(jblocks->jb_extent, M_JBLOCKS); 2581 jblocks->jb_extent = jext; 2582 } 2583 jext = &jblocks->jb_extent[jblocks->jb_used]; 2584 jext->je_daddr = daddr; 2585 jext->je_blocks = blocks; 2586 return; 2587 } 2588 2589 int 2590 softdep_journal_lookup(mp, vpp) 2591 struct mount *mp; 2592 struct vnode **vpp; 2593 { 2594 struct componentname cnp; 2595 struct vnode *dvp; 2596 ino_t sujournal; 2597 int error; 2598 2599 error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp); 2600 if (error) 2601 return (error); 2602 bzero(&cnp, sizeof(cnp)); 2603 cnp.cn_nameiop = LOOKUP; 2604 cnp.cn_flags = ISLASTCN; 2605 cnp.cn_thread = curthread; 2606 cnp.cn_cred = curthread->td_ucred; 2607 cnp.cn_pnbuf = SUJ_FILE; 2608 cnp.cn_nameptr = SUJ_FILE; 2609 cnp.cn_namelen = strlen(SUJ_FILE); 2610 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2611 vput(dvp); 2612 if (error != 0) 2613 return (error); 2614 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2615 return (error); 2616 } 2617 2618 /* 2619 * Open and verify the journal file. 2620 */ 2621 static int 2622 journal_mount(mp, fs, cred) 2623 struct mount *mp; 2624 struct fs *fs; 2625 struct ucred *cred; 2626 { 2627 struct jblocks *jblocks; 2628 struct vnode *vp; 2629 struct inode *ip; 2630 ufs2_daddr_t blkno; 2631 int bcount; 2632 int error; 2633 int i; 2634 2635 error = softdep_journal_lookup(mp, &vp); 2636 if (error != 0) { 2637 printf("Failed to find journal. Use tunefs to create one\n"); 2638 return (error); 2639 } 2640 ip = VTOI(vp); 2641 if (ip->i_size < SUJ_MIN) { 2642 error = ENOSPC; 2643 goto out; 2644 } 2645 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2646 jblocks = jblocks_create(); 2647 for (i = 0; i < bcount; i++) { 2648 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2649 if (error) 2650 break; 2651 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2652 } 2653 if (error) { 2654 jblocks_destroy(jblocks); 2655 goto out; 2656 } 2657 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2658 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2659 VFSTOUFS(mp)->softdep_jblocks = jblocks; 2660 out: 2661 if (error == 0) { 2662 MNT_ILOCK(mp); 2663 mp->mnt_flag |= MNT_SUJ; 2664 mp->mnt_flag &= ~MNT_SOFTDEP; 2665 MNT_IUNLOCK(mp); 2666 /* 2667 * Only validate the journal contents if the 2668 * filesystem is clean, otherwise we write the logs 2669 * but they'll never be used. If the filesystem was 2670 * still dirty when we mounted it the journal is 2671 * invalid and a new journal can only be valid if it 2672 * starts from a clean mount. 2673 */ 2674 if (fs->fs_clean) { 2675 DIP_SET(ip, i_modrev, fs->fs_mtime); 2676 ip->i_flags |= IN_MODIFIED; 2677 ffs_update(vp, 1); 2678 } 2679 } 2680 vput(vp); 2681 return (error); 2682 } 2683 2684 static void 2685 journal_unmount(mp) 2686 struct mount *mp; 2687 { 2688 struct ufsmount *ump; 2689 2690 ump = VFSTOUFS(mp); 2691 if (ump->softdep_jblocks) 2692 jblocks_destroy(ump->softdep_jblocks); 2693 ump->softdep_jblocks = NULL; 2694 } 2695 2696 /* 2697 * Called when a journal record is ready to be written. Space is allocated 2698 * and the journal entry is created when the journal is flushed to stable 2699 * store. 2700 */ 2701 static void 2702 add_to_journal(wk) 2703 struct worklist *wk; 2704 { 2705 struct ufsmount *ump; 2706 2707 mtx_assert(&lk, MA_OWNED); 2708 ump = VFSTOUFS(wk->wk_mp); 2709 if (wk->wk_state & ONWORKLIST) 2710 panic("add_to_journal: %s(0x%X) already on list", 2711 TYPENAME(wk->wk_type), wk->wk_state); 2712 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2713 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2714 ump->softdep_jblocks->jb_age = ticks; 2715 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2716 } else 2717 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2718 ump->softdep_journal_tail = wk; 2719 ump->softdep_on_journal += 1; 2720 } 2721 2722 /* 2723 * Remove an arbitrary item for the journal worklist maintain the tail 2724 * pointer. This happens when a new operation obviates the need to 2725 * journal an old operation. 2726 */ 2727 static void 2728 remove_from_journal(wk) 2729 struct worklist *wk; 2730 { 2731 struct ufsmount *ump; 2732 2733 mtx_assert(&lk, MA_OWNED); 2734 ump = VFSTOUFS(wk->wk_mp); 2735 #ifdef SUJ_DEBUG 2736 { 2737 struct worklist *wkn; 2738 2739 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2740 if (wkn == wk) 2741 break; 2742 if (wkn == NULL) 2743 panic("remove_from_journal: %p is not in journal", wk); 2744 } 2745 #endif 2746 /* 2747 * We emulate a TAILQ to save space in most structures which do not 2748 * require TAILQ semantics. Here we must update the tail position 2749 * when removing the tail which is not the final entry. This works 2750 * only if the worklist linkage are at the beginning of the structure. 2751 */ 2752 if (ump->softdep_journal_tail == wk) 2753 ump->softdep_journal_tail = 2754 (struct worklist *)wk->wk_list.le_prev; 2755 2756 WORKLIST_REMOVE(wk); 2757 ump->softdep_on_journal -= 1; 2758 } 2759 2760 /* 2761 * Check for journal space as well as dependency limits so the prelink 2762 * code can throttle both journaled and non-journaled filesystems. 2763 * Threshold is 0 for low and 1 for min. 2764 */ 2765 static int 2766 journal_space(ump, thresh) 2767 struct ufsmount *ump; 2768 int thresh; 2769 { 2770 struct jblocks *jblocks; 2771 int avail; 2772 2773 jblocks = ump->softdep_jblocks; 2774 if (jblocks == NULL) 2775 return (1); 2776 /* 2777 * We use a tighter restriction here to prevent request_cleanup() 2778 * running in threads from running into locks we currently hold. 2779 */ 2780 if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9) 2781 return (0); 2782 if (thresh) 2783 thresh = jblocks->jb_min; 2784 else 2785 thresh = jblocks->jb_low; 2786 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2787 avail = jblocks->jb_free - avail; 2788 2789 return (avail > thresh); 2790 } 2791 2792 static void 2793 journal_suspend(ump) 2794 struct ufsmount *ump; 2795 { 2796 struct jblocks *jblocks; 2797 struct mount *mp; 2798 2799 mp = UFSTOVFS(ump); 2800 jblocks = ump->softdep_jblocks; 2801 MNT_ILOCK(mp); 2802 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2803 stat_journal_min++; 2804 mp->mnt_kern_flag |= MNTK_SUSPEND; 2805 mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc); 2806 } 2807 jblocks->jb_suspended = 1; 2808 MNT_IUNLOCK(mp); 2809 } 2810 2811 static int 2812 journal_unsuspend(struct ufsmount *ump) 2813 { 2814 struct jblocks *jblocks; 2815 struct mount *mp; 2816 2817 mp = UFSTOVFS(ump); 2818 jblocks = ump->softdep_jblocks; 2819 2820 if (jblocks != NULL && jblocks->jb_suspended && 2821 journal_space(ump, jblocks->jb_min)) { 2822 jblocks->jb_suspended = 0; 2823 FREE_LOCK(&lk); 2824 mp->mnt_susp_owner = curthread; 2825 vfs_write_resume(mp, 0); 2826 ACQUIRE_LOCK(&lk); 2827 return (1); 2828 } 2829 return (0); 2830 } 2831 2832 /* 2833 * Called before any allocation function to be certain that there is 2834 * sufficient space in the journal prior to creating any new records. 2835 * Since in the case of block allocation we may have multiple locked 2836 * buffers at the time of the actual allocation we can not block 2837 * when the journal records are created. Doing so would create a deadlock 2838 * if any of these buffers needed to be flushed to reclaim space. Instead 2839 * we require a sufficiently large amount of available space such that 2840 * each thread in the system could have passed this allocation check and 2841 * still have sufficient free space. With 20% of a minimum journal size 2842 * of 1MB we have 6553 records available. 2843 */ 2844 int 2845 softdep_prealloc(vp, waitok) 2846 struct vnode *vp; 2847 int waitok; 2848 { 2849 struct ufsmount *ump; 2850 2851 /* 2852 * Nothing to do if we are not running journaled soft updates. 2853 * If we currently hold the snapshot lock, we must avoid handling 2854 * other resources that could cause deadlock. 2855 */ 2856 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp))) 2857 return (0); 2858 ump = VFSTOUFS(vp->v_mount); 2859 ACQUIRE_LOCK(&lk); 2860 if (journal_space(ump, 0)) { 2861 FREE_LOCK(&lk); 2862 return (0); 2863 } 2864 stat_journal_low++; 2865 FREE_LOCK(&lk); 2866 if (waitok == MNT_NOWAIT) 2867 return (ENOSPC); 2868 /* 2869 * Attempt to sync this vnode once to flush any journal 2870 * work attached to it. 2871 */ 2872 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 2873 ffs_syncvnode(vp, waitok, 0); 2874 ACQUIRE_LOCK(&lk); 2875 process_removes(vp); 2876 process_truncates(vp); 2877 if (journal_space(ump, 0) == 0) { 2878 softdep_speedup(); 2879 if (journal_space(ump, 1) == 0) 2880 journal_suspend(ump); 2881 } 2882 FREE_LOCK(&lk); 2883 2884 return (0); 2885 } 2886 2887 /* 2888 * Before adjusting a link count on a vnode verify that we have sufficient 2889 * journal space. If not, process operations that depend on the currently 2890 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 2891 * and softdep flush threads can not acquire these locks to reclaim space. 2892 */ 2893 static void 2894 softdep_prelink(dvp, vp) 2895 struct vnode *dvp; 2896 struct vnode *vp; 2897 { 2898 struct ufsmount *ump; 2899 2900 ump = VFSTOUFS(dvp->v_mount); 2901 mtx_assert(&lk, MA_OWNED); 2902 /* 2903 * Nothing to do if we have sufficient journal space. 2904 * If we currently hold the snapshot lock, we must avoid 2905 * handling other resources that could cause deadlock. 2906 */ 2907 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 2908 return; 2909 stat_journal_low++; 2910 FREE_LOCK(&lk); 2911 if (vp) 2912 ffs_syncvnode(vp, MNT_NOWAIT, 0); 2913 ffs_syncvnode(dvp, MNT_WAIT, 0); 2914 ACQUIRE_LOCK(&lk); 2915 /* Process vp before dvp as it may create .. removes. */ 2916 if (vp) { 2917 process_removes(vp); 2918 process_truncates(vp); 2919 } 2920 process_removes(dvp); 2921 process_truncates(dvp); 2922 softdep_speedup(); 2923 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 2924 if (journal_space(ump, 0) == 0) { 2925 softdep_speedup(); 2926 if (journal_space(ump, 1) == 0) 2927 journal_suspend(ump); 2928 } 2929 } 2930 2931 static void 2932 jseg_write(ump, jseg, data) 2933 struct ufsmount *ump; 2934 struct jseg *jseg; 2935 uint8_t *data; 2936 { 2937 struct jsegrec *rec; 2938 2939 rec = (struct jsegrec *)data; 2940 rec->jsr_seq = jseg->js_seq; 2941 rec->jsr_oldest = jseg->js_oldseq; 2942 rec->jsr_cnt = jseg->js_cnt; 2943 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 2944 rec->jsr_crc = 0; 2945 rec->jsr_time = ump->um_fs->fs_mtime; 2946 } 2947 2948 static inline void 2949 inoref_write(inoref, jseg, rec) 2950 struct inoref *inoref; 2951 struct jseg *jseg; 2952 struct jrefrec *rec; 2953 { 2954 2955 inoref->if_jsegdep->jd_seg = jseg; 2956 rec->jr_ino = inoref->if_ino; 2957 rec->jr_parent = inoref->if_parent; 2958 rec->jr_nlink = inoref->if_nlink; 2959 rec->jr_mode = inoref->if_mode; 2960 rec->jr_diroff = inoref->if_diroff; 2961 } 2962 2963 static void 2964 jaddref_write(jaddref, jseg, data) 2965 struct jaddref *jaddref; 2966 struct jseg *jseg; 2967 uint8_t *data; 2968 { 2969 struct jrefrec *rec; 2970 2971 rec = (struct jrefrec *)data; 2972 rec->jr_op = JOP_ADDREF; 2973 inoref_write(&jaddref->ja_ref, jseg, rec); 2974 } 2975 2976 static void 2977 jremref_write(jremref, jseg, data) 2978 struct jremref *jremref; 2979 struct jseg *jseg; 2980 uint8_t *data; 2981 { 2982 struct jrefrec *rec; 2983 2984 rec = (struct jrefrec *)data; 2985 rec->jr_op = JOP_REMREF; 2986 inoref_write(&jremref->jr_ref, jseg, rec); 2987 } 2988 2989 static void 2990 jmvref_write(jmvref, jseg, data) 2991 struct jmvref *jmvref; 2992 struct jseg *jseg; 2993 uint8_t *data; 2994 { 2995 struct jmvrec *rec; 2996 2997 rec = (struct jmvrec *)data; 2998 rec->jm_op = JOP_MVREF; 2999 rec->jm_ino = jmvref->jm_ino; 3000 rec->jm_parent = jmvref->jm_parent; 3001 rec->jm_oldoff = jmvref->jm_oldoff; 3002 rec->jm_newoff = jmvref->jm_newoff; 3003 } 3004 3005 static void 3006 jnewblk_write(jnewblk, jseg, data) 3007 struct jnewblk *jnewblk; 3008 struct jseg *jseg; 3009 uint8_t *data; 3010 { 3011 struct jblkrec *rec; 3012 3013 jnewblk->jn_jsegdep->jd_seg = jseg; 3014 rec = (struct jblkrec *)data; 3015 rec->jb_op = JOP_NEWBLK; 3016 rec->jb_ino = jnewblk->jn_ino; 3017 rec->jb_blkno = jnewblk->jn_blkno; 3018 rec->jb_lbn = jnewblk->jn_lbn; 3019 rec->jb_frags = jnewblk->jn_frags; 3020 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3021 } 3022 3023 static void 3024 jfreeblk_write(jfreeblk, jseg, data) 3025 struct jfreeblk *jfreeblk; 3026 struct jseg *jseg; 3027 uint8_t *data; 3028 { 3029 struct jblkrec *rec; 3030 3031 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3032 rec = (struct jblkrec *)data; 3033 rec->jb_op = JOP_FREEBLK; 3034 rec->jb_ino = jfreeblk->jf_ino; 3035 rec->jb_blkno = jfreeblk->jf_blkno; 3036 rec->jb_lbn = jfreeblk->jf_lbn; 3037 rec->jb_frags = jfreeblk->jf_frags; 3038 rec->jb_oldfrags = 0; 3039 } 3040 3041 static void 3042 jfreefrag_write(jfreefrag, jseg, data) 3043 struct jfreefrag *jfreefrag; 3044 struct jseg *jseg; 3045 uint8_t *data; 3046 { 3047 struct jblkrec *rec; 3048 3049 jfreefrag->fr_jsegdep->jd_seg = jseg; 3050 rec = (struct jblkrec *)data; 3051 rec->jb_op = JOP_FREEBLK; 3052 rec->jb_ino = jfreefrag->fr_ino; 3053 rec->jb_blkno = jfreefrag->fr_blkno; 3054 rec->jb_lbn = jfreefrag->fr_lbn; 3055 rec->jb_frags = jfreefrag->fr_frags; 3056 rec->jb_oldfrags = 0; 3057 } 3058 3059 static void 3060 jtrunc_write(jtrunc, jseg, data) 3061 struct jtrunc *jtrunc; 3062 struct jseg *jseg; 3063 uint8_t *data; 3064 { 3065 struct jtrncrec *rec; 3066 3067 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3068 rec = (struct jtrncrec *)data; 3069 rec->jt_op = JOP_TRUNC; 3070 rec->jt_ino = jtrunc->jt_ino; 3071 rec->jt_size = jtrunc->jt_size; 3072 rec->jt_extsize = jtrunc->jt_extsize; 3073 } 3074 3075 static void 3076 jfsync_write(jfsync, jseg, data) 3077 struct jfsync *jfsync; 3078 struct jseg *jseg; 3079 uint8_t *data; 3080 { 3081 struct jtrncrec *rec; 3082 3083 rec = (struct jtrncrec *)data; 3084 rec->jt_op = JOP_SYNC; 3085 rec->jt_ino = jfsync->jfs_ino; 3086 rec->jt_size = jfsync->jfs_size; 3087 rec->jt_extsize = jfsync->jfs_extsize; 3088 } 3089 3090 static void 3091 softdep_flushjournal(mp) 3092 struct mount *mp; 3093 { 3094 struct jblocks *jblocks; 3095 struct ufsmount *ump; 3096 3097 if (MOUNTEDSUJ(mp) == 0) 3098 return; 3099 ump = VFSTOUFS(mp); 3100 jblocks = ump->softdep_jblocks; 3101 ACQUIRE_LOCK(&lk); 3102 while (ump->softdep_on_journal) { 3103 jblocks->jb_needseg = 1; 3104 softdep_process_journal(mp, NULL, MNT_WAIT); 3105 } 3106 FREE_LOCK(&lk); 3107 } 3108 3109 static void softdep_synchronize_completed(struct bio *); 3110 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3111 3112 static void 3113 softdep_synchronize_completed(bp) 3114 struct bio *bp; 3115 { 3116 struct jseg *oldest; 3117 struct jseg *jseg; 3118 3119 /* 3120 * caller1 marks the last segment written before we issued the 3121 * synchronize cache. 3122 */ 3123 jseg = bp->bio_caller1; 3124 oldest = NULL; 3125 ACQUIRE_LOCK(&lk); 3126 /* 3127 * Mark all the journal entries waiting on the synchronize cache 3128 * as completed so they may continue on. 3129 */ 3130 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3131 jseg->js_state |= COMPLETE; 3132 oldest = jseg; 3133 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3134 } 3135 /* 3136 * Restart deferred journal entry processing from the oldest 3137 * completed jseg. 3138 */ 3139 if (oldest) 3140 complete_jsegs(oldest); 3141 3142 FREE_LOCK(&lk); 3143 g_destroy_bio(bp); 3144 } 3145 3146 /* 3147 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3148 * barriers. The journal must be written prior to any blocks that depend 3149 * on it and the journal can not be released until the blocks have be 3150 * written. This code handles both barriers simultaneously. 3151 */ 3152 static void 3153 softdep_synchronize(bp, ump, caller1) 3154 struct bio *bp; 3155 struct ufsmount *ump; 3156 void *caller1; 3157 { 3158 3159 bp->bio_cmd = BIO_FLUSH; 3160 bp->bio_flags |= BIO_ORDERED; 3161 bp->bio_data = NULL; 3162 bp->bio_offset = ump->um_cp->provider->mediasize; 3163 bp->bio_length = 0; 3164 bp->bio_done = softdep_synchronize_completed; 3165 bp->bio_caller1 = caller1; 3166 g_io_request(bp, 3167 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3168 } 3169 3170 /* 3171 * Flush some journal records to disk. 3172 */ 3173 static void 3174 softdep_process_journal(mp, needwk, flags) 3175 struct mount *mp; 3176 struct worklist *needwk; 3177 int flags; 3178 { 3179 struct jblocks *jblocks; 3180 struct ufsmount *ump; 3181 struct worklist *wk; 3182 struct jseg *jseg; 3183 struct buf *bp; 3184 struct bio *bio; 3185 uint8_t *data; 3186 struct fs *fs; 3187 int shouldflush; 3188 int segwritten; 3189 int jrecmin; /* Minimum records per block. */ 3190 int jrecmax; /* Maximum records per block. */ 3191 int size; 3192 int cnt; 3193 int off; 3194 int devbsize; 3195 3196 if (MOUNTEDSUJ(mp) == 0) 3197 return; 3198 shouldflush = softdep_flushcache; 3199 bio = NULL; 3200 jseg = NULL; 3201 ump = VFSTOUFS(mp); 3202 fs = ump->um_fs; 3203 jblocks = ump->softdep_jblocks; 3204 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3205 /* 3206 * We write anywhere between a disk block and fs block. The upper 3207 * bound is picked to prevent buffer cache fragmentation and limit 3208 * processing time per I/O. 3209 */ 3210 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3211 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3212 segwritten = 0; 3213 for (;;) { 3214 cnt = ump->softdep_on_journal; 3215 /* 3216 * Criteria for writing a segment: 3217 * 1) We have a full block. 3218 * 2) We're called from jwait() and haven't found the 3219 * journal item yet. 3220 * 3) Always write if needseg is set. 3221 * 4) If we are called from process_worklist and have 3222 * not yet written anything we write a partial block 3223 * to enforce a 1 second maximum latency on journal 3224 * entries. 3225 */ 3226 if (cnt < (jrecmax - 1) && needwk == NULL && 3227 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3228 break; 3229 cnt++; 3230 /* 3231 * Verify some free journal space. softdep_prealloc() should 3232 * guarantee that we don't run out so this is indicative of 3233 * a problem with the flow control. Try to recover 3234 * gracefully in any event. 3235 */ 3236 while (jblocks->jb_free == 0) { 3237 if (flags != MNT_WAIT) 3238 break; 3239 printf("softdep: Out of journal space!\n"); 3240 softdep_speedup(); 3241 msleep(jblocks, &lk, PRIBIO, "jblocks", hz); 3242 } 3243 FREE_LOCK(&lk); 3244 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3245 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3246 LIST_INIT(&jseg->js_entries); 3247 LIST_INIT(&jseg->js_indirs); 3248 jseg->js_state = ATTACHED; 3249 if (shouldflush == 0) 3250 jseg->js_state |= COMPLETE; 3251 else if (bio == NULL) 3252 bio = g_alloc_bio(); 3253 jseg->js_jblocks = jblocks; 3254 bp = geteblk(fs->fs_bsize, 0); 3255 ACQUIRE_LOCK(&lk); 3256 /* 3257 * If there was a race while we were allocating the block 3258 * and jseg the entry we care about was likely written. 3259 * We bail out in both the WAIT and NOWAIT case and assume 3260 * the caller will loop if the entry it cares about is 3261 * not written. 3262 */ 3263 cnt = ump->softdep_on_journal; 3264 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3265 bp->b_flags |= B_INVAL | B_NOCACHE; 3266 WORKITEM_FREE(jseg, D_JSEG); 3267 FREE_LOCK(&lk); 3268 brelse(bp); 3269 ACQUIRE_LOCK(&lk); 3270 break; 3271 } 3272 /* 3273 * Calculate the disk block size required for the available 3274 * records rounded to the min size. 3275 */ 3276 if (cnt == 0) 3277 size = devbsize; 3278 else if (cnt < jrecmax) 3279 size = howmany(cnt, jrecmin) * devbsize; 3280 else 3281 size = fs->fs_bsize; 3282 /* 3283 * Allocate a disk block for this journal data and account 3284 * for truncation of the requested size if enough contiguous 3285 * space was not available. 3286 */ 3287 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3288 bp->b_lblkno = bp->b_blkno; 3289 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3290 bp->b_bcount = size; 3291 bp->b_flags &= ~B_INVAL; 3292 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3293 /* 3294 * Initialize our jseg with cnt records. Assign the next 3295 * sequence number to it and link it in-order. 3296 */ 3297 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3298 jseg->js_buf = bp; 3299 jseg->js_cnt = cnt; 3300 jseg->js_refs = cnt + 1; /* Self ref. */ 3301 jseg->js_size = size; 3302 jseg->js_seq = jblocks->jb_nextseq++; 3303 if (jblocks->jb_oldestseg == NULL) 3304 jblocks->jb_oldestseg = jseg; 3305 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3306 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3307 if (jblocks->jb_writeseg == NULL) 3308 jblocks->jb_writeseg = jseg; 3309 /* 3310 * Start filling in records from the pending list. 3311 */ 3312 data = bp->b_data; 3313 off = 0; 3314 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3315 != NULL) { 3316 if (cnt == 0) 3317 break; 3318 /* Place a segment header on every device block. */ 3319 if ((off % devbsize) == 0) { 3320 jseg_write(ump, jseg, data); 3321 off += JREC_SIZE; 3322 data = bp->b_data + off; 3323 } 3324 if (wk == needwk) 3325 needwk = NULL; 3326 remove_from_journal(wk); 3327 wk->wk_state |= INPROGRESS; 3328 WORKLIST_INSERT(&jseg->js_entries, wk); 3329 switch (wk->wk_type) { 3330 case D_JADDREF: 3331 jaddref_write(WK_JADDREF(wk), jseg, data); 3332 break; 3333 case D_JREMREF: 3334 jremref_write(WK_JREMREF(wk), jseg, data); 3335 break; 3336 case D_JMVREF: 3337 jmvref_write(WK_JMVREF(wk), jseg, data); 3338 break; 3339 case D_JNEWBLK: 3340 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3341 break; 3342 case D_JFREEBLK: 3343 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3344 break; 3345 case D_JFREEFRAG: 3346 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3347 break; 3348 case D_JTRUNC: 3349 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3350 break; 3351 case D_JFSYNC: 3352 jfsync_write(WK_JFSYNC(wk), jseg, data); 3353 break; 3354 default: 3355 panic("process_journal: Unknown type %s", 3356 TYPENAME(wk->wk_type)); 3357 /* NOTREACHED */ 3358 } 3359 off += JREC_SIZE; 3360 data = bp->b_data + off; 3361 cnt--; 3362 } 3363 /* 3364 * Write this one buffer and continue. 3365 */ 3366 segwritten = 1; 3367 jblocks->jb_needseg = 0; 3368 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3369 FREE_LOCK(&lk); 3370 pbgetvp(ump->um_devvp, bp); 3371 /* 3372 * We only do the blocking wait once we find the journal 3373 * entry we're looking for. 3374 */ 3375 if (needwk == NULL && flags == MNT_WAIT) 3376 bwrite(bp); 3377 else 3378 bawrite(bp); 3379 ACQUIRE_LOCK(&lk); 3380 } 3381 /* 3382 * If we wrote a segment issue a synchronize cache so the journal 3383 * is reflected on disk before the data is written. Since reclaiming 3384 * journal space also requires writing a journal record this 3385 * process also enforces a barrier before reclamation. 3386 */ 3387 if (segwritten && shouldflush) { 3388 softdep_synchronize(bio, ump, 3389 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3390 } else if (bio) 3391 g_destroy_bio(bio); 3392 /* 3393 * If we've suspended the filesystem because we ran out of journal 3394 * space either try to sync it here to make some progress or 3395 * unsuspend it if we already have. 3396 */ 3397 if (flags == 0 && jblocks->jb_suspended) { 3398 if (journal_unsuspend(ump)) 3399 return; 3400 FREE_LOCK(&lk); 3401 VFS_SYNC(mp, MNT_NOWAIT); 3402 ffs_sbupdate(ump, MNT_WAIT, 0); 3403 ACQUIRE_LOCK(&lk); 3404 } 3405 } 3406 3407 /* 3408 * Complete a jseg, allowing all dependencies awaiting journal writes 3409 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3410 * structures so that the journal segment can be freed to reclaim space. 3411 */ 3412 static void 3413 complete_jseg(jseg) 3414 struct jseg *jseg; 3415 { 3416 struct worklist *wk; 3417 struct jmvref *jmvref; 3418 int waiting; 3419 #ifdef INVARIANTS 3420 int i = 0; 3421 #endif 3422 3423 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3424 WORKLIST_REMOVE(wk); 3425 waiting = wk->wk_state & IOWAITING; 3426 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3427 wk->wk_state |= COMPLETE; 3428 KASSERT(i++ < jseg->js_cnt, 3429 ("handle_written_jseg: overflow %d >= %d", 3430 i - 1, jseg->js_cnt)); 3431 switch (wk->wk_type) { 3432 case D_JADDREF: 3433 handle_written_jaddref(WK_JADDREF(wk)); 3434 break; 3435 case D_JREMREF: 3436 handle_written_jremref(WK_JREMREF(wk)); 3437 break; 3438 case D_JMVREF: 3439 rele_jseg(jseg); /* No jsegdep. */ 3440 jmvref = WK_JMVREF(wk); 3441 LIST_REMOVE(jmvref, jm_deps); 3442 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3443 free_pagedep(jmvref->jm_pagedep); 3444 WORKITEM_FREE(jmvref, D_JMVREF); 3445 break; 3446 case D_JNEWBLK: 3447 handle_written_jnewblk(WK_JNEWBLK(wk)); 3448 break; 3449 case D_JFREEBLK: 3450 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3451 break; 3452 case D_JTRUNC: 3453 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3454 break; 3455 case D_JFSYNC: 3456 rele_jseg(jseg); /* No jsegdep. */ 3457 WORKITEM_FREE(wk, D_JFSYNC); 3458 break; 3459 case D_JFREEFRAG: 3460 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3461 break; 3462 default: 3463 panic("handle_written_jseg: Unknown type %s", 3464 TYPENAME(wk->wk_type)); 3465 /* NOTREACHED */ 3466 } 3467 if (waiting) 3468 wakeup(wk); 3469 } 3470 /* Release the self reference so the structure may be freed. */ 3471 rele_jseg(jseg); 3472 } 3473 3474 /* 3475 * Determine which jsegs are ready for completion processing. Waits for 3476 * synchronize cache to complete as well as forcing in-order completion 3477 * of journal entries. 3478 */ 3479 static void 3480 complete_jsegs(jseg) 3481 struct jseg *jseg; 3482 { 3483 struct jblocks *jblocks; 3484 struct jseg *jsegn; 3485 3486 jblocks = jseg->js_jblocks; 3487 /* 3488 * Don't allow out of order completions. If this isn't the first 3489 * block wait for it to write before we're done. 3490 */ 3491 if (jseg != jblocks->jb_writeseg) 3492 return; 3493 /* Iterate through available jsegs processing their entries. */ 3494 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3495 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3496 jsegn = TAILQ_NEXT(jseg, js_next); 3497 complete_jseg(jseg); 3498 jseg = jsegn; 3499 } 3500 jblocks->jb_writeseg = jseg; 3501 /* 3502 * Attempt to free jsegs now that oldestwrseq may have advanced. 3503 */ 3504 free_jsegs(jblocks); 3505 } 3506 3507 /* 3508 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3509 * the final completions. 3510 */ 3511 static void 3512 handle_written_jseg(jseg, bp) 3513 struct jseg *jseg; 3514 struct buf *bp; 3515 { 3516 3517 if (jseg->js_refs == 0) 3518 panic("handle_written_jseg: No self-reference on %p", jseg); 3519 jseg->js_state |= DEPCOMPLETE; 3520 /* 3521 * We'll never need this buffer again, set flags so it will be 3522 * discarded. 3523 */ 3524 bp->b_flags |= B_INVAL | B_NOCACHE; 3525 pbrelvp(bp); 3526 complete_jsegs(jseg); 3527 } 3528 3529 static inline struct jsegdep * 3530 inoref_jseg(inoref) 3531 struct inoref *inoref; 3532 { 3533 struct jsegdep *jsegdep; 3534 3535 jsegdep = inoref->if_jsegdep; 3536 inoref->if_jsegdep = NULL; 3537 3538 return (jsegdep); 3539 } 3540 3541 /* 3542 * Called once a jremref has made it to stable store. The jremref is marked 3543 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3544 * for the jremref to complete will be awoken by free_jremref. 3545 */ 3546 static void 3547 handle_written_jremref(jremref) 3548 struct jremref *jremref; 3549 { 3550 struct inodedep *inodedep; 3551 struct jsegdep *jsegdep; 3552 struct dirrem *dirrem; 3553 3554 /* Grab the jsegdep. */ 3555 jsegdep = inoref_jseg(&jremref->jr_ref); 3556 /* 3557 * Remove us from the inoref list. 3558 */ 3559 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3560 0, &inodedep) == 0) 3561 panic("handle_written_jremref: Lost inodedep"); 3562 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3563 /* 3564 * Complete the dirrem. 3565 */ 3566 dirrem = jremref->jr_dirrem; 3567 jremref->jr_dirrem = NULL; 3568 LIST_REMOVE(jremref, jr_deps); 3569 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3570 jwork_insert(&dirrem->dm_jwork, jsegdep); 3571 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3572 (dirrem->dm_state & COMPLETE) != 0) 3573 add_to_worklist(&dirrem->dm_list, 0); 3574 free_jremref(jremref); 3575 } 3576 3577 /* 3578 * Called once a jaddref has made it to stable store. The dependency is 3579 * marked complete and any dependent structures are added to the inode 3580 * bufwait list to be completed as soon as it is written. If a bitmap write 3581 * depends on this entry we move the inode into the inodedephd of the 3582 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3583 */ 3584 static void 3585 handle_written_jaddref(jaddref) 3586 struct jaddref *jaddref; 3587 { 3588 struct jsegdep *jsegdep; 3589 struct inodedep *inodedep; 3590 struct diradd *diradd; 3591 struct mkdir *mkdir; 3592 3593 /* Grab the jsegdep. */ 3594 jsegdep = inoref_jseg(&jaddref->ja_ref); 3595 mkdir = NULL; 3596 diradd = NULL; 3597 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3598 0, &inodedep) == 0) 3599 panic("handle_written_jaddref: Lost inodedep."); 3600 if (jaddref->ja_diradd == NULL) 3601 panic("handle_written_jaddref: No dependency"); 3602 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3603 diradd = jaddref->ja_diradd; 3604 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3605 } else if (jaddref->ja_state & MKDIR_PARENT) { 3606 mkdir = jaddref->ja_mkdir; 3607 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3608 } else if (jaddref->ja_state & MKDIR_BODY) 3609 mkdir = jaddref->ja_mkdir; 3610 else 3611 panic("handle_written_jaddref: Unknown dependency %p", 3612 jaddref->ja_diradd); 3613 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3614 /* 3615 * Remove us from the inode list. 3616 */ 3617 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3618 /* 3619 * The mkdir may be waiting on the jaddref to clear before freeing. 3620 */ 3621 if (mkdir) { 3622 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3623 ("handle_written_jaddref: Incorrect type for mkdir %s", 3624 TYPENAME(mkdir->md_list.wk_type))); 3625 mkdir->md_jaddref = NULL; 3626 diradd = mkdir->md_diradd; 3627 mkdir->md_state |= DEPCOMPLETE; 3628 complete_mkdir(mkdir); 3629 } 3630 jwork_insert(&diradd->da_jwork, jsegdep); 3631 if (jaddref->ja_state & NEWBLOCK) { 3632 inodedep->id_state |= ONDEPLIST; 3633 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3634 inodedep, id_deps); 3635 } 3636 free_jaddref(jaddref); 3637 } 3638 3639 /* 3640 * Called once a jnewblk journal is written. The allocdirect or allocindir 3641 * is placed in the bmsafemap to await notification of a written bitmap. If 3642 * the operation was canceled we add the segdep to the appropriate 3643 * dependency to free the journal space once the canceling operation 3644 * completes. 3645 */ 3646 static void 3647 handle_written_jnewblk(jnewblk) 3648 struct jnewblk *jnewblk; 3649 { 3650 struct bmsafemap *bmsafemap; 3651 struct freefrag *freefrag; 3652 struct freework *freework; 3653 struct jsegdep *jsegdep; 3654 struct newblk *newblk; 3655 3656 /* Grab the jsegdep. */ 3657 jsegdep = jnewblk->jn_jsegdep; 3658 jnewblk->jn_jsegdep = NULL; 3659 if (jnewblk->jn_dep == NULL) 3660 panic("handle_written_jnewblk: No dependency for the segdep."); 3661 switch (jnewblk->jn_dep->wk_type) { 3662 case D_NEWBLK: 3663 case D_ALLOCDIRECT: 3664 case D_ALLOCINDIR: 3665 /* 3666 * Add the written block to the bmsafemap so it can 3667 * be notified when the bitmap is on disk. 3668 */ 3669 newblk = WK_NEWBLK(jnewblk->jn_dep); 3670 newblk->nb_jnewblk = NULL; 3671 if ((newblk->nb_state & GOINGAWAY) == 0) { 3672 bmsafemap = newblk->nb_bmsafemap; 3673 newblk->nb_state |= ONDEPLIST; 3674 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3675 nb_deps); 3676 } 3677 jwork_insert(&newblk->nb_jwork, jsegdep); 3678 break; 3679 case D_FREEFRAG: 3680 /* 3681 * A newblock being removed by a freefrag when replaced by 3682 * frag extension. 3683 */ 3684 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3685 freefrag->ff_jdep = NULL; 3686 jwork_insert(&freefrag->ff_jwork, jsegdep); 3687 break; 3688 case D_FREEWORK: 3689 /* 3690 * A direct block was removed by truncate. 3691 */ 3692 freework = WK_FREEWORK(jnewblk->jn_dep); 3693 freework->fw_jnewblk = NULL; 3694 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3695 break; 3696 default: 3697 panic("handle_written_jnewblk: Unknown type %d.", 3698 jnewblk->jn_dep->wk_type); 3699 } 3700 jnewblk->jn_dep = NULL; 3701 free_jnewblk(jnewblk); 3702 } 3703 3704 /* 3705 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3706 * an in-flight allocation that has not yet been committed. Divorce us 3707 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3708 * to the worklist. 3709 */ 3710 static void 3711 cancel_jfreefrag(jfreefrag) 3712 struct jfreefrag *jfreefrag; 3713 { 3714 struct freefrag *freefrag; 3715 3716 if (jfreefrag->fr_jsegdep) { 3717 free_jsegdep(jfreefrag->fr_jsegdep); 3718 jfreefrag->fr_jsegdep = NULL; 3719 } 3720 freefrag = jfreefrag->fr_freefrag; 3721 jfreefrag->fr_freefrag = NULL; 3722 free_jfreefrag(jfreefrag); 3723 freefrag->ff_state |= DEPCOMPLETE; 3724 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3725 } 3726 3727 /* 3728 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3729 */ 3730 static void 3731 free_jfreefrag(jfreefrag) 3732 struct jfreefrag *jfreefrag; 3733 { 3734 3735 if (jfreefrag->fr_state & INPROGRESS) 3736 WORKLIST_REMOVE(&jfreefrag->fr_list); 3737 else if (jfreefrag->fr_state & ONWORKLIST) 3738 remove_from_journal(&jfreefrag->fr_list); 3739 if (jfreefrag->fr_freefrag != NULL) 3740 panic("free_jfreefrag: Still attached to a freefrag."); 3741 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3742 } 3743 3744 /* 3745 * Called when the journal write for a jfreefrag completes. The parent 3746 * freefrag is added to the worklist if this completes its dependencies. 3747 */ 3748 static void 3749 handle_written_jfreefrag(jfreefrag) 3750 struct jfreefrag *jfreefrag; 3751 { 3752 struct jsegdep *jsegdep; 3753 struct freefrag *freefrag; 3754 3755 /* Grab the jsegdep. */ 3756 jsegdep = jfreefrag->fr_jsegdep; 3757 jfreefrag->fr_jsegdep = NULL; 3758 freefrag = jfreefrag->fr_freefrag; 3759 if (freefrag == NULL) 3760 panic("handle_written_jfreefrag: No freefrag."); 3761 freefrag->ff_state |= DEPCOMPLETE; 3762 freefrag->ff_jdep = NULL; 3763 jwork_insert(&freefrag->ff_jwork, jsegdep); 3764 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3765 add_to_worklist(&freefrag->ff_list, 0); 3766 jfreefrag->fr_freefrag = NULL; 3767 free_jfreefrag(jfreefrag); 3768 } 3769 3770 /* 3771 * Called when the journal write for a jfreeblk completes. The jfreeblk 3772 * is removed from the freeblks list of pending journal writes and the 3773 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3774 * have been reclaimed. 3775 */ 3776 static void 3777 handle_written_jblkdep(jblkdep) 3778 struct jblkdep *jblkdep; 3779 { 3780 struct freeblks *freeblks; 3781 struct jsegdep *jsegdep; 3782 3783 /* Grab the jsegdep. */ 3784 jsegdep = jblkdep->jb_jsegdep; 3785 jblkdep->jb_jsegdep = NULL; 3786 freeblks = jblkdep->jb_freeblks; 3787 LIST_REMOVE(jblkdep, jb_deps); 3788 jwork_insert(&freeblks->fb_jwork, jsegdep); 3789 /* 3790 * If the freeblks is all journaled, we can add it to the worklist. 3791 */ 3792 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3793 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3794 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3795 3796 free_jblkdep(jblkdep); 3797 } 3798 3799 static struct jsegdep * 3800 newjsegdep(struct worklist *wk) 3801 { 3802 struct jsegdep *jsegdep; 3803 3804 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3805 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3806 jsegdep->jd_seg = NULL; 3807 3808 return (jsegdep); 3809 } 3810 3811 static struct jmvref * 3812 newjmvref(dp, ino, oldoff, newoff) 3813 struct inode *dp; 3814 ino_t ino; 3815 off_t oldoff; 3816 off_t newoff; 3817 { 3818 struct jmvref *jmvref; 3819 3820 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3821 workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump)); 3822 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3823 jmvref->jm_parent = dp->i_number; 3824 jmvref->jm_ino = ino; 3825 jmvref->jm_oldoff = oldoff; 3826 jmvref->jm_newoff = newoff; 3827 3828 return (jmvref); 3829 } 3830 3831 /* 3832 * Allocate a new jremref that tracks the removal of ip from dp with the 3833 * directory entry offset of diroff. Mark the entry as ATTACHED and 3834 * DEPCOMPLETE as we have all the information required for the journal write 3835 * and the directory has already been removed from the buffer. The caller 3836 * is responsible for linking the jremref into the pagedep and adding it 3837 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 3838 * a DOTDOT addition so handle_workitem_remove() can properly assign 3839 * the jsegdep when we're done. 3840 */ 3841 static struct jremref * 3842 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 3843 off_t diroff, nlink_t nlink) 3844 { 3845 struct jremref *jremref; 3846 3847 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 3848 workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump)); 3849 jremref->jr_state = ATTACHED; 3850 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 3851 nlink, ip->i_mode); 3852 jremref->jr_dirrem = dirrem; 3853 3854 return (jremref); 3855 } 3856 3857 static inline void 3858 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 3859 nlink_t nlink, uint16_t mode) 3860 { 3861 3862 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 3863 inoref->if_diroff = diroff; 3864 inoref->if_ino = ino; 3865 inoref->if_parent = parent; 3866 inoref->if_nlink = nlink; 3867 inoref->if_mode = mode; 3868 } 3869 3870 /* 3871 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 3872 * directory offset may not be known until later. The caller is responsible 3873 * adding the entry to the journal when this information is available. nlink 3874 * should be the link count prior to the addition and mode is only required 3875 * to have the correct FMT. 3876 */ 3877 static struct jaddref * 3878 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 3879 uint16_t mode) 3880 { 3881 struct jaddref *jaddref; 3882 3883 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 3884 workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump)); 3885 jaddref->ja_state = ATTACHED; 3886 jaddref->ja_mkdir = NULL; 3887 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 3888 3889 return (jaddref); 3890 } 3891 3892 /* 3893 * Create a new free dependency for a freework. The caller is responsible 3894 * for adjusting the reference count when it has the lock held. The freedep 3895 * will track an outstanding bitmap write that will ultimately clear the 3896 * freework to continue. 3897 */ 3898 static struct freedep * 3899 newfreedep(struct freework *freework) 3900 { 3901 struct freedep *freedep; 3902 3903 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 3904 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 3905 freedep->fd_freework = freework; 3906 3907 return (freedep); 3908 } 3909 3910 /* 3911 * Free a freedep structure once the buffer it is linked to is written. If 3912 * this is the last reference to the freework schedule it for completion. 3913 */ 3914 static void 3915 free_freedep(freedep) 3916 struct freedep *freedep; 3917 { 3918 struct freework *freework; 3919 3920 freework = freedep->fd_freework; 3921 freework->fw_freeblks->fb_cgwait--; 3922 if (--freework->fw_ref == 0) 3923 freework_enqueue(freework); 3924 WORKITEM_FREE(freedep, D_FREEDEP); 3925 } 3926 3927 /* 3928 * Allocate a new freework structure that may be a level in an indirect 3929 * when parent is not NULL or a top level block when it is. The top level 3930 * freework structures are allocated without lk held and before the freeblks 3931 * is visible outside of softdep_setup_freeblocks(). 3932 */ 3933 static struct freework * 3934 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 3935 struct ufsmount *ump; 3936 struct freeblks *freeblks; 3937 struct freework *parent; 3938 ufs_lbn_t lbn; 3939 ufs2_daddr_t nb; 3940 int frags; 3941 int off; 3942 int journal; 3943 { 3944 struct freework *freework; 3945 3946 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 3947 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 3948 freework->fw_state = ATTACHED; 3949 freework->fw_jnewblk = NULL; 3950 freework->fw_freeblks = freeblks; 3951 freework->fw_parent = parent; 3952 freework->fw_lbn = lbn; 3953 freework->fw_blkno = nb; 3954 freework->fw_frags = frags; 3955 freework->fw_indir = NULL; 3956 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR) 3957 ? 0 : NINDIR(ump->um_fs) + 1; 3958 freework->fw_start = freework->fw_off = off; 3959 if (journal) 3960 newjfreeblk(freeblks, lbn, nb, frags); 3961 if (parent == NULL) { 3962 ACQUIRE_LOCK(&lk); 3963 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 3964 freeblks->fb_ref++; 3965 FREE_LOCK(&lk); 3966 } 3967 3968 return (freework); 3969 } 3970 3971 /* 3972 * Eliminate a jfreeblk for a block that does not need journaling. 3973 */ 3974 static void 3975 cancel_jfreeblk(freeblks, blkno) 3976 struct freeblks *freeblks; 3977 ufs2_daddr_t blkno; 3978 { 3979 struct jfreeblk *jfreeblk; 3980 struct jblkdep *jblkdep; 3981 3982 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 3983 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 3984 continue; 3985 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 3986 if (jfreeblk->jf_blkno == blkno) 3987 break; 3988 } 3989 if (jblkdep == NULL) 3990 return; 3991 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 3992 free_jsegdep(jblkdep->jb_jsegdep); 3993 LIST_REMOVE(jblkdep, jb_deps); 3994 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 3995 } 3996 3997 /* 3998 * Allocate a new jfreeblk to journal top level block pointer when truncating 3999 * a file. The caller must add this to the worklist when lk is held. 4000 */ 4001 static struct jfreeblk * 4002 newjfreeblk(freeblks, lbn, blkno, frags) 4003 struct freeblks *freeblks; 4004 ufs_lbn_t lbn; 4005 ufs2_daddr_t blkno; 4006 int frags; 4007 { 4008 struct jfreeblk *jfreeblk; 4009 4010 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4011 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4012 freeblks->fb_list.wk_mp); 4013 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4014 jfreeblk->jf_dep.jb_freeblks = freeblks; 4015 jfreeblk->jf_ino = freeblks->fb_inum; 4016 jfreeblk->jf_lbn = lbn; 4017 jfreeblk->jf_blkno = blkno; 4018 jfreeblk->jf_frags = frags; 4019 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4020 4021 return (jfreeblk); 4022 } 4023 4024 /* 4025 * Allocate a new jtrunc to track a partial truncation. 4026 */ 4027 static struct jtrunc * 4028 newjtrunc(freeblks, size, extsize) 4029 struct freeblks *freeblks; 4030 off_t size; 4031 int extsize; 4032 { 4033 struct jtrunc *jtrunc; 4034 4035 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4036 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4037 freeblks->fb_list.wk_mp); 4038 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4039 jtrunc->jt_dep.jb_freeblks = freeblks; 4040 jtrunc->jt_ino = freeblks->fb_inum; 4041 jtrunc->jt_size = size; 4042 jtrunc->jt_extsize = extsize; 4043 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4044 4045 return (jtrunc); 4046 } 4047 4048 /* 4049 * If we're canceling a new bitmap we have to search for another ref 4050 * to move into the bmsafemap dep. This might be better expressed 4051 * with another structure. 4052 */ 4053 static void 4054 move_newblock_dep(jaddref, inodedep) 4055 struct jaddref *jaddref; 4056 struct inodedep *inodedep; 4057 { 4058 struct inoref *inoref; 4059 struct jaddref *jaddrefn; 4060 4061 jaddrefn = NULL; 4062 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4063 inoref = TAILQ_NEXT(inoref, if_deps)) { 4064 if ((jaddref->ja_state & NEWBLOCK) && 4065 inoref->if_list.wk_type == D_JADDREF) { 4066 jaddrefn = (struct jaddref *)inoref; 4067 break; 4068 } 4069 } 4070 if (jaddrefn == NULL) 4071 return; 4072 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4073 jaddrefn->ja_state |= jaddref->ja_state & 4074 (ATTACHED | UNDONE | NEWBLOCK); 4075 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4076 jaddref->ja_state |= ATTACHED; 4077 LIST_REMOVE(jaddref, ja_bmdeps); 4078 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4079 ja_bmdeps); 4080 } 4081 4082 /* 4083 * Cancel a jaddref either before it has been written or while it is being 4084 * written. This happens when a link is removed before the add reaches 4085 * the disk. The jaddref dependency is kept linked into the bmsafemap 4086 * and inode to prevent the link count or bitmap from reaching the disk 4087 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4088 * required. 4089 * 4090 * Returns 1 if the canceled addref requires journaling of the remove and 4091 * 0 otherwise. 4092 */ 4093 static int 4094 cancel_jaddref(jaddref, inodedep, wkhd) 4095 struct jaddref *jaddref; 4096 struct inodedep *inodedep; 4097 struct workhead *wkhd; 4098 { 4099 struct inoref *inoref; 4100 struct jsegdep *jsegdep; 4101 int needsj; 4102 4103 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4104 ("cancel_jaddref: Canceling complete jaddref")); 4105 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4106 needsj = 1; 4107 else 4108 needsj = 0; 4109 if (inodedep == NULL) 4110 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4111 0, &inodedep) == 0) 4112 panic("cancel_jaddref: Lost inodedep"); 4113 /* 4114 * We must adjust the nlink of any reference operation that follows 4115 * us so that it is consistent with the in-memory reference. This 4116 * ensures that inode nlink rollbacks always have the correct link. 4117 */ 4118 if (needsj == 0) { 4119 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4120 inoref = TAILQ_NEXT(inoref, if_deps)) { 4121 if (inoref->if_state & GOINGAWAY) 4122 break; 4123 inoref->if_nlink--; 4124 } 4125 } 4126 jsegdep = inoref_jseg(&jaddref->ja_ref); 4127 if (jaddref->ja_state & NEWBLOCK) 4128 move_newblock_dep(jaddref, inodedep); 4129 wake_worklist(&jaddref->ja_list); 4130 jaddref->ja_mkdir = NULL; 4131 if (jaddref->ja_state & INPROGRESS) { 4132 jaddref->ja_state &= ~INPROGRESS; 4133 WORKLIST_REMOVE(&jaddref->ja_list); 4134 jwork_insert(wkhd, jsegdep); 4135 } else { 4136 free_jsegdep(jsegdep); 4137 if (jaddref->ja_state & DEPCOMPLETE) 4138 remove_from_journal(&jaddref->ja_list); 4139 } 4140 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4141 /* 4142 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4143 * can arrange for them to be freed with the bitmap. Otherwise we 4144 * no longer need this addref attached to the inoreflst and it 4145 * will incorrectly adjust nlink if we leave it. 4146 */ 4147 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4148 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4149 if_deps); 4150 jaddref->ja_state |= COMPLETE; 4151 free_jaddref(jaddref); 4152 return (needsj); 4153 } 4154 /* 4155 * Leave the head of the list for jsegdeps for fast merging. 4156 */ 4157 if (LIST_FIRST(wkhd) != NULL) { 4158 jaddref->ja_state |= ONWORKLIST; 4159 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4160 } else 4161 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4162 4163 return (needsj); 4164 } 4165 4166 /* 4167 * Attempt to free a jaddref structure when some work completes. This 4168 * should only succeed once the entry is written and all dependencies have 4169 * been notified. 4170 */ 4171 static void 4172 free_jaddref(jaddref) 4173 struct jaddref *jaddref; 4174 { 4175 4176 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4177 return; 4178 if (jaddref->ja_ref.if_jsegdep) 4179 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4180 jaddref, jaddref->ja_state); 4181 if (jaddref->ja_state & NEWBLOCK) 4182 LIST_REMOVE(jaddref, ja_bmdeps); 4183 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4184 panic("free_jaddref: Bad state %p(0x%X)", 4185 jaddref, jaddref->ja_state); 4186 if (jaddref->ja_mkdir != NULL) 4187 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4188 WORKITEM_FREE(jaddref, D_JADDREF); 4189 } 4190 4191 /* 4192 * Free a jremref structure once it has been written or discarded. 4193 */ 4194 static void 4195 free_jremref(jremref) 4196 struct jremref *jremref; 4197 { 4198 4199 if (jremref->jr_ref.if_jsegdep) 4200 free_jsegdep(jremref->jr_ref.if_jsegdep); 4201 if (jremref->jr_state & INPROGRESS) 4202 panic("free_jremref: IO still pending"); 4203 WORKITEM_FREE(jremref, D_JREMREF); 4204 } 4205 4206 /* 4207 * Free a jnewblk structure. 4208 */ 4209 static void 4210 free_jnewblk(jnewblk) 4211 struct jnewblk *jnewblk; 4212 { 4213 4214 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4215 return; 4216 LIST_REMOVE(jnewblk, jn_deps); 4217 if (jnewblk->jn_dep != NULL) 4218 panic("free_jnewblk: Dependency still attached."); 4219 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4220 } 4221 4222 /* 4223 * Cancel a jnewblk which has been been made redundant by frag extension. 4224 */ 4225 static void 4226 cancel_jnewblk(jnewblk, wkhd) 4227 struct jnewblk *jnewblk; 4228 struct workhead *wkhd; 4229 { 4230 struct jsegdep *jsegdep; 4231 4232 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4233 jsegdep = jnewblk->jn_jsegdep; 4234 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4235 panic("cancel_jnewblk: Invalid state"); 4236 jnewblk->jn_jsegdep = NULL; 4237 jnewblk->jn_dep = NULL; 4238 jnewblk->jn_state |= GOINGAWAY; 4239 if (jnewblk->jn_state & INPROGRESS) { 4240 jnewblk->jn_state &= ~INPROGRESS; 4241 WORKLIST_REMOVE(&jnewblk->jn_list); 4242 jwork_insert(wkhd, jsegdep); 4243 } else { 4244 free_jsegdep(jsegdep); 4245 remove_from_journal(&jnewblk->jn_list); 4246 } 4247 wake_worklist(&jnewblk->jn_list); 4248 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4249 } 4250 4251 static void 4252 free_jblkdep(jblkdep) 4253 struct jblkdep *jblkdep; 4254 { 4255 4256 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4257 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4258 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4259 WORKITEM_FREE(jblkdep, D_JTRUNC); 4260 else 4261 panic("free_jblkdep: Unexpected type %s", 4262 TYPENAME(jblkdep->jb_list.wk_type)); 4263 } 4264 4265 /* 4266 * Free a single jseg once it is no longer referenced in memory or on 4267 * disk. Reclaim journal blocks and dependencies waiting for the segment 4268 * to disappear. 4269 */ 4270 static void 4271 free_jseg(jseg, jblocks) 4272 struct jseg *jseg; 4273 struct jblocks *jblocks; 4274 { 4275 struct freework *freework; 4276 4277 /* 4278 * Free freework structures that were lingering to indicate freed 4279 * indirect blocks that forced journal write ordering on reallocate. 4280 */ 4281 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4282 indirblk_remove(freework); 4283 if (jblocks->jb_oldestseg == jseg) 4284 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4285 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4286 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4287 KASSERT(LIST_EMPTY(&jseg->js_entries), 4288 ("free_jseg: Freed jseg has valid entries.")); 4289 WORKITEM_FREE(jseg, D_JSEG); 4290 } 4291 4292 /* 4293 * Free all jsegs that meet the criteria for being reclaimed and update 4294 * oldestseg. 4295 */ 4296 static void 4297 free_jsegs(jblocks) 4298 struct jblocks *jblocks; 4299 { 4300 struct jseg *jseg; 4301 4302 /* 4303 * Free only those jsegs which have none allocated before them to 4304 * preserve the journal space ordering. 4305 */ 4306 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4307 /* 4308 * Only reclaim space when nothing depends on this journal 4309 * set and another set has written that it is no longer 4310 * valid. 4311 */ 4312 if (jseg->js_refs != 0) { 4313 jblocks->jb_oldestseg = jseg; 4314 return; 4315 } 4316 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4317 break; 4318 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4319 break; 4320 /* 4321 * We can free jsegs that didn't write entries when 4322 * oldestwrseq == js_seq. 4323 */ 4324 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4325 jseg->js_cnt != 0) 4326 break; 4327 free_jseg(jseg, jblocks); 4328 } 4329 /* 4330 * If we exited the loop above we still must discover the 4331 * oldest valid segment. 4332 */ 4333 if (jseg) 4334 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4335 jseg = TAILQ_NEXT(jseg, js_next)) 4336 if (jseg->js_refs != 0) 4337 break; 4338 jblocks->jb_oldestseg = jseg; 4339 /* 4340 * The journal has no valid records but some jsegs may still be 4341 * waiting on oldestwrseq to advance. We force a small record 4342 * out to permit these lingering records to be reclaimed. 4343 */ 4344 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4345 jblocks->jb_needseg = 1; 4346 } 4347 4348 /* 4349 * Release one reference to a jseg and free it if the count reaches 0. This 4350 * should eventually reclaim journal space as well. 4351 */ 4352 static void 4353 rele_jseg(jseg) 4354 struct jseg *jseg; 4355 { 4356 4357 KASSERT(jseg->js_refs > 0, 4358 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4359 if (--jseg->js_refs != 0) 4360 return; 4361 free_jsegs(jseg->js_jblocks); 4362 } 4363 4364 /* 4365 * Release a jsegdep and decrement the jseg count. 4366 */ 4367 static void 4368 free_jsegdep(jsegdep) 4369 struct jsegdep *jsegdep; 4370 { 4371 4372 if (jsegdep->jd_seg) 4373 rele_jseg(jsegdep->jd_seg); 4374 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4375 } 4376 4377 /* 4378 * Wait for a journal item to make it to disk. Initiate journal processing 4379 * if required. 4380 */ 4381 static int 4382 jwait(wk, waitfor) 4383 struct worklist *wk; 4384 int waitfor; 4385 { 4386 4387 /* 4388 * Blocking journal waits cause slow synchronous behavior. Record 4389 * stats on the frequency of these blocking operations. 4390 */ 4391 if (waitfor == MNT_WAIT) { 4392 stat_journal_wait++; 4393 switch (wk->wk_type) { 4394 case D_JREMREF: 4395 case D_JMVREF: 4396 stat_jwait_filepage++; 4397 break; 4398 case D_JTRUNC: 4399 case D_JFREEBLK: 4400 stat_jwait_freeblks++; 4401 break; 4402 case D_JNEWBLK: 4403 stat_jwait_newblk++; 4404 break; 4405 case D_JADDREF: 4406 stat_jwait_inode++; 4407 break; 4408 default: 4409 break; 4410 } 4411 } 4412 /* 4413 * If IO has not started we process the journal. We can't mark the 4414 * worklist item as IOWAITING because we drop the lock while 4415 * processing the journal and the worklist entry may be freed after 4416 * this point. The caller may call back in and re-issue the request. 4417 */ 4418 if ((wk->wk_state & INPROGRESS) == 0) { 4419 softdep_process_journal(wk->wk_mp, wk, waitfor); 4420 if (waitfor != MNT_WAIT) 4421 return (EBUSY); 4422 return (0); 4423 } 4424 if (waitfor != MNT_WAIT) 4425 return (EBUSY); 4426 wait_worklist(wk, "jwait"); 4427 return (0); 4428 } 4429 4430 /* 4431 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4432 * appropriate. This is a convenience function to reduce duplicate code 4433 * for the setup and revert functions below. 4434 */ 4435 static struct inodedep * 4436 inodedep_lookup_ip(ip) 4437 struct inode *ip; 4438 { 4439 struct inodedep *inodedep; 4440 int dflags; 4441 4442 KASSERT(ip->i_nlink >= ip->i_effnlink, 4443 ("inodedep_lookup_ip: bad delta")); 4444 dflags = DEPALLOC; 4445 if (IS_SNAPSHOT(ip)) 4446 dflags |= NODELAY; 4447 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, 4448 &inodedep); 4449 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4450 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4451 4452 return (inodedep); 4453 } 4454 4455 /* 4456 * Called prior to creating a new inode and linking it to a directory. The 4457 * jaddref structure must already be allocated by softdep_setup_inomapdep 4458 * and it is discovered here so we can initialize the mode and update 4459 * nlinkdelta. 4460 */ 4461 void 4462 softdep_setup_create(dp, ip) 4463 struct inode *dp; 4464 struct inode *ip; 4465 { 4466 struct inodedep *inodedep; 4467 struct jaddref *jaddref; 4468 struct vnode *dvp; 4469 4470 KASSERT(ip->i_nlink == 1, 4471 ("softdep_setup_create: Invalid link count.")); 4472 dvp = ITOV(dp); 4473 ACQUIRE_LOCK(&lk); 4474 inodedep = inodedep_lookup_ip(ip); 4475 if (DOINGSUJ(dvp)) { 4476 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4477 inoreflst); 4478 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4479 ("softdep_setup_create: No addref structure present.")); 4480 } 4481 softdep_prelink(dvp, NULL); 4482 FREE_LOCK(&lk); 4483 } 4484 4485 /* 4486 * Create a jaddref structure to track the addition of a DOTDOT link when 4487 * we are reparenting an inode as part of a rename. This jaddref will be 4488 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4489 * non-journaling softdep. 4490 */ 4491 void 4492 softdep_setup_dotdot_link(dp, ip) 4493 struct inode *dp; 4494 struct inode *ip; 4495 { 4496 struct inodedep *inodedep; 4497 struct jaddref *jaddref; 4498 struct vnode *dvp; 4499 struct vnode *vp; 4500 4501 dvp = ITOV(dp); 4502 vp = ITOV(ip); 4503 jaddref = NULL; 4504 /* 4505 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4506 * is used as a normal link would be. 4507 */ 4508 if (DOINGSUJ(dvp)) 4509 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4510 dp->i_effnlink - 1, dp->i_mode); 4511 ACQUIRE_LOCK(&lk); 4512 inodedep = inodedep_lookup_ip(dp); 4513 if (jaddref) 4514 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4515 if_deps); 4516 softdep_prelink(dvp, ITOV(ip)); 4517 FREE_LOCK(&lk); 4518 } 4519 4520 /* 4521 * Create a jaddref structure to track a new link to an inode. The directory 4522 * offset is not known until softdep_setup_directory_add or 4523 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4524 * softdep. 4525 */ 4526 void 4527 softdep_setup_link(dp, ip) 4528 struct inode *dp; 4529 struct inode *ip; 4530 { 4531 struct inodedep *inodedep; 4532 struct jaddref *jaddref; 4533 struct vnode *dvp; 4534 4535 dvp = ITOV(dp); 4536 jaddref = NULL; 4537 if (DOINGSUJ(dvp)) 4538 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4539 ip->i_mode); 4540 ACQUIRE_LOCK(&lk); 4541 inodedep = inodedep_lookup_ip(ip); 4542 if (jaddref) 4543 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4544 if_deps); 4545 softdep_prelink(dvp, ITOV(ip)); 4546 FREE_LOCK(&lk); 4547 } 4548 4549 /* 4550 * Called to create the jaddref structures to track . and .. references as 4551 * well as lookup and further initialize the incomplete jaddref created 4552 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4553 * nlinkdelta for non-journaling softdep. 4554 */ 4555 void 4556 softdep_setup_mkdir(dp, ip) 4557 struct inode *dp; 4558 struct inode *ip; 4559 { 4560 struct inodedep *inodedep; 4561 struct jaddref *dotdotaddref; 4562 struct jaddref *dotaddref; 4563 struct jaddref *jaddref; 4564 struct vnode *dvp; 4565 4566 dvp = ITOV(dp); 4567 dotaddref = dotdotaddref = NULL; 4568 if (DOINGSUJ(dvp)) { 4569 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4570 ip->i_mode); 4571 dotaddref->ja_state |= MKDIR_BODY; 4572 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4573 dp->i_effnlink - 1, dp->i_mode); 4574 dotdotaddref->ja_state |= MKDIR_PARENT; 4575 } 4576 ACQUIRE_LOCK(&lk); 4577 inodedep = inodedep_lookup_ip(ip); 4578 if (DOINGSUJ(dvp)) { 4579 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4580 inoreflst); 4581 KASSERT(jaddref != NULL, 4582 ("softdep_setup_mkdir: No addref structure present.")); 4583 KASSERT(jaddref->ja_parent == dp->i_number, 4584 ("softdep_setup_mkdir: bad parent %ju", 4585 (uintmax_t)jaddref->ja_parent)); 4586 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4587 if_deps); 4588 } 4589 inodedep = inodedep_lookup_ip(dp); 4590 if (DOINGSUJ(dvp)) 4591 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4592 &dotdotaddref->ja_ref, if_deps); 4593 softdep_prelink(ITOV(dp), NULL); 4594 FREE_LOCK(&lk); 4595 } 4596 4597 /* 4598 * Called to track nlinkdelta of the inode and parent directories prior to 4599 * unlinking a directory. 4600 */ 4601 void 4602 softdep_setup_rmdir(dp, ip) 4603 struct inode *dp; 4604 struct inode *ip; 4605 { 4606 struct vnode *dvp; 4607 4608 dvp = ITOV(dp); 4609 ACQUIRE_LOCK(&lk); 4610 (void) inodedep_lookup_ip(ip); 4611 (void) inodedep_lookup_ip(dp); 4612 softdep_prelink(dvp, ITOV(ip)); 4613 FREE_LOCK(&lk); 4614 } 4615 4616 /* 4617 * Called to track nlinkdelta of the inode and parent directories prior to 4618 * unlink. 4619 */ 4620 void 4621 softdep_setup_unlink(dp, ip) 4622 struct inode *dp; 4623 struct inode *ip; 4624 { 4625 struct vnode *dvp; 4626 4627 dvp = ITOV(dp); 4628 ACQUIRE_LOCK(&lk); 4629 (void) inodedep_lookup_ip(ip); 4630 (void) inodedep_lookup_ip(dp); 4631 softdep_prelink(dvp, ITOV(ip)); 4632 FREE_LOCK(&lk); 4633 } 4634 4635 /* 4636 * Called to release the journal structures created by a failed non-directory 4637 * creation. Adjusts nlinkdelta for non-journaling softdep. 4638 */ 4639 void 4640 softdep_revert_create(dp, ip) 4641 struct inode *dp; 4642 struct inode *ip; 4643 { 4644 struct inodedep *inodedep; 4645 struct jaddref *jaddref; 4646 struct vnode *dvp; 4647 4648 dvp = ITOV(dp); 4649 ACQUIRE_LOCK(&lk); 4650 inodedep = inodedep_lookup_ip(ip); 4651 if (DOINGSUJ(dvp)) { 4652 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4653 inoreflst); 4654 KASSERT(jaddref->ja_parent == dp->i_number, 4655 ("softdep_revert_create: addref parent mismatch")); 4656 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4657 } 4658 FREE_LOCK(&lk); 4659 } 4660 4661 /* 4662 * Called to release the journal structures created by a failed dotdot link 4663 * creation. Adjusts nlinkdelta for non-journaling softdep. 4664 */ 4665 void 4666 softdep_revert_dotdot_link(dp, ip) 4667 struct inode *dp; 4668 struct inode *ip; 4669 { 4670 struct inodedep *inodedep; 4671 struct jaddref *jaddref; 4672 struct vnode *dvp; 4673 4674 dvp = ITOV(dp); 4675 ACQUIRE_LOCK(&lk); 4676 inodedep = inodedep_lookup_ip(dp); 4677 if (DOINGSUJ(dvp)) { 4678 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4679 inoreflst); 4680 KASSERT(jaddref->ja_parent == ip->i_number, 4681 ("softdep_revert_dotdot_link: addref parent mismatch")); 4682 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4683 } 4684 FREE_LOCK(&lk); 4685 } 4686 4687 /* 4688 * Called to release the journal structures created by a failed link 4689 * addition. Adjusts nlinkdelta for non-journaling softdep. 4690 */ 4691 void 4692 softdep_revert_link(dp, ip) 4693 struct inode *dp; 4694 struct inode *ip; 4695 { 4696 struct inodedep *inodedep; 4697 struct jaddref *jaddref; 4698 struct vnode *dvp; 4699 4700 dvp = ITOV(dp); 4701 ACQUIRE_LOCK(&lk); 4702 inodedep = inodedep_lookup_ip(ip); 4703 if (DOINGSUJ(dvp)) { 4704 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4705 inoreflst); 4706 KASSERT(jaddref->ja_parent == dp->i_number, 4707 ("softdep_revert_link: addref parent mismatch")); 4708 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4709 } 4710 FREE_LOCK(&lk); 4711 } 4712 4713 /* 4714 * Called to release the journal structures created by a failed mkdir 4715 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4716 */ 4717 void 4718 softdep_revert_mkdir(dp, ip) 4719 struct inode *dp; 4720 struct inode *ip; 4721 { 4722 struct inodedep *inodedep; 4723 struct jaddref *jaddref; 4724 struct jaddref *dotaddref; 4725 struct vnode *dvp; 4726 4727 dvp = ITOV(dp); 4728 4729 ACQUIRE_LOCK(&lk); 4730 inodedep = inodedep_lookup_ip(dp); 4731 if (DOINGSUJ(dvp)) { 4732 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4733 inoreflst); 4734 KASSERT(jaddref->ja_parent == ip->i_number, 4735 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4736 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4737 } 4738 inodedep = inodedep_lookup_ip(ip); 4739 if (DOINGSUJ(dvp)) { 4740 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4741 inoreflst); 4742 KASSERT(jaddref->ja_parent == dp->i_number, 4743 ("softdep_revert_mkdir: addref parent mismatch")); 4744 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4745 inoreflst, if_deps); 4746 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4747 KASSERT(dotaddref->ja_parent == ip->i_number, 4748 ("softdep_revert_mkdir: dot addref parent mismatch")); 4749 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4750 } 4751 FREE_LOCK(&lk); 4752 } 4753 4754 /* 4755 * Called to correct nlinkdelta after a failed rmdir. 4756 */ 4757 void 4758 softdep_revert_rmdir(dp, ip) 4759 struct inode *dp; 4760 struct inode *ip; 4761 { 4762 4763 ACQUIRE_LOCK(&lk); 4764 (void) inodedep_lookup_ip(ip); 4765 (void) inodedep_lookup_ip(dp); 4766 FREE_LOCK(&lk); 4767 } 4768 4769 /* 4770 * Protecting the freemaps (or bitmaps). 4771 * 4772 * To eliminate the need to execute fsck before mounting a filesystem 4773 * after a power failure, one must (conservatively) guarantee that the 4774 * on-disk copy of the bitmaps never indicate that a live inode or block is 4775 * free. So, when a block or inode is allocated, the bitmap should be 4776 * updated (on disk) before any new pointers. When a block or inode is 4777 * freed, the bitmap should not be updated until all pointers have been 4778 * reset. The latter dependency is handled by the delayed de-allocation 4779 * approach described below for block and inode de-allocation. The former 4780 * dependency is handled by calling the following procedure when a block or 4781 * inode is allocated. When an inode is allocated an "inodedep" is created 4782 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4783 * Each "inodedep" is also inserted into the hash indexing structure so 4784 * that any additional link additions can be made dependent on the inode 4785 * allocation. 4786 * 4787 * The ufs filesystem maintains a number of free block counts (e.g., per 4788 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4789 * in addition to the bitmaps. These counts are used to improve efficiency 4790 * during allocation and therefore must be consistent with the bitmaps. 4791 * There is no convenient way to guarantee post-crash consistency of these 4792 * counts with simple update ordering, for two main reasons: (1) The counts 4793 * and bitmaps for a single cylinder group block are not in the same disk 4794 * sector. If a disk write is interrupted (e.g., by power failure), one may 4795 * be written and the other not. (2) Some of the counts are located in the 4796 * superblock rather than the cylinder group block. So, we focus our soft 4797 * updates implementation on protecting the bitmaps. When mounting a 4798 * filesystem, we recompute the auxiliary counts from the bitmaps. 4799 */ 4800 4801 /* 4802 * Called just after updating the cylinder group block to allocate an inode. 4803 */ 4804 void 4805 softdep_setup_inomapdep(bp, ip, newinum, mode) 4806 struct buf *bp; /* buffer for cylgroup block with inode map */ 4807 struct inode *ip; /* inode related to allocation */ 4808 ino_t newinum; /* new inode number being allocated */ 4809 int mode; 4810 { 4811 struct inodedep *inodedep; 4812 struct bmsafemap *bmsafemap; 4813 struct jaddref *jaddref; 4814 struct mount *mp; 4815 struct fs *fs; 4816 4817 mp = UFSTOVFS(ip->i_ump); 4818 fs = ip->i_ump->um_fs; 4819 jaddref = NULL; 4820 4821 /* 4822 * Allocate the journal reference add structure so that the bitmap 4823 * can be dependent on it. 4824 */ 4825 if (MOUNTEDSUJ(mp)) { 4826 jaddref = newjaddref(ip, newinum, 0, 0, mode); 4827 jaddref->ja_state |= NEWBLOCK; 4828 } 4829 4830 /* 4831 * Create a dependency for the newly allocated inode. 4832 * Panic if it already exists as something is seriously wrong. 4833 * Otherwise add it to the dependency list for the buffer holding 4834 * the cylinder group map from which it was allocated. 4835 * 4836 * We have to preallocate a bmsafemap entry in case it is needed 4837 * in bmsafemap_lookup since once we allocate the inodedep, we 4838 * have to finish initializing it before we can FREE_LOCK(). 4839 * By preallocating, we avoid FREE_LOCK() while doing a malloc 4840 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 4841 * creating the inodedep as it can be freed during the time 4842 * that we FREE_LOCK() while allocating the inodedep. We must 4843 * call workitem_alloc() before entering the locked section as 4844 * it also acquires the lock and we must avoid trying doing so 4845 * recursively. 4846 */ 4847 bmsafemap = malloc(sizeof(struct bmsafemap), 4848 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 4849 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 4850 ACQUIRE_LOCK(&lk); 4851 if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep))) 4852 panic("softdep_setup_inomapdep: dependency %p for new" 4853 "inode already exists", inodedep); 4854 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 4855 if (jaddref) { 4856 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 4857 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4858 if_deps); 4859 } else { 4860 inodedep->id_state |= ONDEPLIST; 4861 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 4862 } 4863 inodedep->id_bmsafemap = bmsafemap; 4864 inodedep->id_state &= ~DEPCOMPLETE; 4865 FREE_LOCK(&lk); 4866 } 4867 4868 /* 4869 * Called just after updating the cylinder group block to 4870 * allocate block or fragment. 4871 */ 4872 void 4873 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 4874 struct buf *bp; /* buffer for cylgroup block with block map */ 4875 struct mount *mp; /* filesystem doing allocation */ 4876 ufs2_daddr_t newblkno; /* number of newly allocated block */ 4877 int frags; /* Number of fragments. */ 4878 int oldfrags; /* Previous number of fragments for extend. */ 4879 { 4880 struct newblk *newblk; 4881 struct bmsafemap *bmsafemap; 4882 struct jnewblk *jnewblk; 4883 struct fs *fs; 4884 4885 fs = VFSTOUFS(mp)->um_fs; 4886 jnewblk = NULL; 4887 /* 4888 * Create a dependency for the newly allocated block. 4889 * Add it to the dependency list for the buffer holding 4890 * the cylinder group map from which it was allocated. 4891 */ 4892 if (MOUNTEDSUJ(mp)) { 4893 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 4894 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 4895 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 4896 jnewblk->jn_state = ATTACHED; 4897 jnewblk->jn_blkno = newblkno; 4898 jnewblk->jn_frags = frags; 4899 jnewblk->jn_oldfrags = oldfrags; 4900 #ifdef SUJ_DEBUG 4901 { 4902 struct cg *cgp; 4903 uint8_t *blksfree; 4904 long bno; 4905 int i; 4906 4907 cgp = (struct cg *)bp->b_data; 4908 blksfree = cg_blksfree(cgp); 4909 bno = dtogd(fs, jnewblk->jn_blkno); 4910 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 4911 i++) { 4912 if (isset(blksfree, bno + i)) 4913 panic("softdep_setup_blkmapdep: " 4914 "free fragment %d from %d-%d " 4915 "state 0x%X dep %p", i, 4916 jnewblk->jn_oldfrags, 4917 jnewblk->jn_frags, 4918 jnewblk->jn_state, 4919 jnewblk->jn_dep); 4920 } 4921 } 4922 #endif 4923 } 4924 4925 CTR3(KTR_SUJ, 4926 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 4927 newblkno, frags, oldfrags); 4928 ACQUIRE_LOCK(&lk); 4929 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 4930 panic("softdep_setup_blkmapdep: found block"); 4931 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 4932 dtog(fs, newblkno), NULL); 4933 if (jnewblk) { 4934 jnewblk->jn_dep = (struct worklist *)newblk; 4935 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 4936 } else { 4937 newblk->nb_state |= ONDEPLIST; 4938 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 4939 } 4940 newblk->nb_bmsafemap = bmsafemap; 4941 newblk->nb_jnewblk = jnewblk; 4942 FREE_LOCK(&lk); 4943 } 4944 4945 #define BMSAFEMAP_HASH(fs, cg) \ 4946 (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash]) 4947 4948 static int 4949 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp) 4950 struct bmsafemap_hashhead *bmsafemaphd; 4951 struct mount *mp; 4952 int cg; 4953 struct bmsafemap **bmsafemapp; 4954 { 4955 struct bmsafemap *bmsafemap; 4956 4957 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 4958 if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg) 4959 break; 4960 if (bmsafemap) { 4961 *bmsafemapp = bmsafemap; 4962 return (1); 4963 } 4964 *bmsafemapp = NULL; 4965 4966 return (0); 4967 } 4968 4969 /* 4970 * Find the bmsafemap associated with a cylinder group buffer. 4971 * If none exists, create one. The buffer must be locked when 4972 * this routine is called and this routine must be called with 4973 * the softdep lock held. To avoid giving up the lock while 4974 * allocating a new bmsafemap, a preallocated bmsafemap may be 4975 * provided. If it is provided but not needed, it is freed. 4976 */ 4977 static struct bmsafemap * 4978 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 4979 struct mount *mp; 4980 struct buf *bp; 4981 int cg; 4982 struct bmsafemap *newbmsafemap; 4983 { 4984 struct bmsafemap_hashhead *bmsafemaphd; 4985 struct bmsafemap *bmsafemap, *collision; 4986 struct worklist *wk; 4987 struct fs *fs; 4988 4989 mtx_assert(&lk, MA_OWNED); 4990 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 4991 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 4992 if (wk->wk_type == D_BMSAFEMAP) { 4993 if (newbmsafemap) 4994 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 4995 return (WK_BMSAFEMAP(wk)); 4996 } 4997 } 4998 fs = VFSTOUFS(mp)->um_fs; 4999 bmsafemaphd = BMSAFEMAP_HASH(fs, cg); 5000 if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) { 5001 if (newbmsafemap) 5002 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5003 return (bmsafemap); 5004 } 5005 if (newbmsafemap) { 5006 bmsafemap = newbmsafemap; 5007 } else { 5008 FREE_LOCK(&lk); 5009 bmsafemap = malloc(sizeof(struct bmsafemap), 5010 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5011 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5012 ACQUIRE_LOCK(&lk); 5013 } 5014 bmsafemap->sm_buf = bp; 5015 LIST_INIT(&bmsafemap->sm_inodedephd); 5016 LIST_INIT(&bmsafemap->sm_inodedepwr); 5017 LIST_INIT(&bmsafemap->sm_newblkhd); 5018 LIST_INIT(&bmsafemap->sm_newblkwr); 5019 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5020 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5021 LIST_INIT(&bmsafemap->sm_freehd); 5022 LIST_INIT(&bmsafemap->sm_freewr); 5023 if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) { 5024 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5025 return (collision); 5026 } 5027 bmsafemap->sm_cg = cg; 5028 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5029 LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next); 5030 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5031 return (bmsafemap); 5032 } 5033 5034 /* 5035 * Direct block allocation dependencies. 5036 * 5037 * When a new block is allocated, the corresponding disk locations must be 5038 * initialized (with zeros or new data) before the on-disk inode points to 5039 * them. Also, the freemap from which the block was allocated must be 5040 * updated (on disk) before the inode's pointer. These two dependencies are 5041 * independent of each other and are needed for all file blocks and indirect 5042 * blocks that are pointed to directly by the inode. Just before the 5043 * "in-core" version of the inode is updated with a newly allocated block 5044 * number, a procedure (below) is called to setup allocation dependency 5045 * structures. These structures are removed when the corresponding 5046 * dependencies are satisfied or when the block allocation becomes obsolete 5047 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5048 * fragment that gets upgraded). All of these cases are handled in 5049 * procedures described later. 5050 * 5051 * When a file extension causes a fragment to be upgraded, either to a larger 5052 * fragment or to a full block, the on-disk location may change (if the 5053 * previous fragment could not simply be extended). In this case, the old 5054 * fragment must be de-allocated, but not until after the inode's pointer has 5055 * been updated. In most cases, this is handled by later procedures, which 5056 * will construct a "freefrag" structure to be added to the workitem queue 5057 * when the inode update is complete (or obsolete). The main exception to 5058 * this is when an allocation occurs while a pending allocation dependency 5059 * (for the same block pointer) remains. This case is handled in the main 5060 * allocation dependency setup procedure by immediately freeing the 5061 * unreferenced fragments. 5062 */ 5063 void 5064 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5065 struct inode *ip; /* inode to which block is being added */ 5066 ufs_lbn_t off; /* block pointer within inode */ 5067 ufs2_daddr_t newblkno; /* disk block number being added */ 5068 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5069 long newsize; /* size of new block */ 5070 long oldsize; /* size of new block */ 5071 struct buf *bp; /* bp for allocated block */ 5072 { 5073 struct allocdirect *adp, *oldadp; 5074 struct allocdirectlst *adphead; 5075 struct freefrag *freefrag; 5076 struct inodedep *inodedep; 5077 struct pagedep *pagedep; 5078 struct jnewblk *jnewblk; 5079 struct newblk *newblk; 5080 struct mount *mp; 5081 ufs_lbn_t lbn; 5082 5083 lbn = bp->b_lblkno; 5084 mp = UFSTOVFS(ip->i_ump); 5085 if (oldblkno && oldblkno != newblkno) 5086 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5087 else 5088 freefrag = NULL; 5089 5090 CTR6(KTR_SUJ, 5091 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5092 "off %jd newsize %ld oldsize %d", 5093 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5094 ACQUIRE_LOCK(&lk); 5095 if (off >= NDADDR) { 5096 if (lbn > 0) 5097 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5098 lbn, off); 5099 /* allocating an indirect block */ 5100 if (oldblkno != 0) 5101 panic("softdep_setup_allocdirect: non-zero indir"); 5102 } else { 5103 if (off != lbn) 5104 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5105 lbn, off); 5106 /* 5107 * Allocating a direct block. 5108 * 5109 * If we are allocating a directory block, then we must 5110 * allocate an associated pagedep to track additions and 5111 * deletions. 5112 */ 5113 if ((ip->i_mode & IFMT) == IFDIR) 5114 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5115 &pagedep); 5116 } 5117 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5118 panic("softdep_setup_allocdirect: lost block"); 5119 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5120 ("softdep_setup_allocdirect: newblk already initialized")); 5121 /* 5122 * Convert the newblk to an allocdirect. 5123 */ 5124 newblk->nb_list.wk_type = D_ALLOCDIRECT; 5125 adp = (struct allocdirect *)newblk; 5126 newblk->nb_freefrag = freefrag; 5127 adp->ad_offset = off; 5128 adp->ad_oldblkno = oldblkno; 5129 adp->ad_newsize = newsize; 5130 adp->ad_oldsize = oldsize; 5131 5132 /* 5133 * Finish initializing the journal. 5134 */ 5135 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5136 jnewblk->jn_ino = ip->i_number; 5137 jnewblk->jn_lbn = lbn; 5138 add_to_journal(&jnewblk->jn_list); 5139 } 5140 if (freefrag && freefrag->ff_jdep != NULL && 5141 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5142 add_to_journal(freefrag->ff_jdep); 5143 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5144 adp->ad_inodedep = inodedep; 5145 5146 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5147 /* 5148 * The list of allocdirects must be kept in sorted and ascending 5149 * order so that the rollback routines can quickly determine the 5150 * first uncommitted block (the size of the file stored on disk 5151 * ends at the end of the lowest committed fragment, or if there 5152 * are no fragments, at the end of the highest committed block). 5153 * Since files generally grow, the typical case is that the new 5154 * block is to be added at the end of the list. We speed this 5155 * special case by checking against the last allocdirect in the 5156 * list before laboriously traversing the list looking for the 5157 * insertion point. 5158 */ 5159 adphead = &inodedep->id_newinoupdt; 5160 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5161 if (oldadp == NULL || oldadp->ad_offset <= off) { 5162 /* insert at end of list */ 5163 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5164 if (oldadp != NULL && oldadp->ad_offset == off) 5165 allocdirect_merge(adphead, adp, oldadp); 5166 FREE_LOCK(&lk); 5167 return; 5168 } 5169 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5170 if (oldadp->ad_offset >= off) 5171 break; 5172 } 5173 if (oldadp == NULL) 5174 panic("softdep_setup_allocdirect: lost entry"); 5175 /* insert in middle of list */ 5176 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5177 if (oldadp->ad_offset == off) 5178 allocdirect_merge(adphead, adp, oldadp); 5179 5180 FREE_LOCK(&lk); 5181 } 5182 5183 /* 5184 * Merge a newer and older journal record to be stored either in a 5185 * newblock or freefrag. This handles aggregating journal records for 5186 * fragment allocation into a second record as well as replacing a 5187 * journal free with an aborted journal allocation. A segment for the 5188 * oldest record will be placed on wkhd if it has been written. If not 5189 * the segment for the newer record will suffice. 5190 */ 5191 static struct worklist * 5192 jnewblk_merge(new, old, wkhd) 5193 struct worklist *new; 5194 struct worklist *old; 5195 struct workhead *wkhd; 5196 { 5197 struct jnewblk *njnewblk; 5198 struct jnewblk *jnewblk; 5199 5200 /* Handle NULLs to simplify callers. */ 5201 if (new == NULL) 5202 return (old); 5203 if (old == NULL) 5204 return (new); 5205 /* Replace a jfreefrag with a jnewblk. */ 5206 if (new->wk_type == D_JFREEFRAG) { 5207 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5208 panic("jnewblk_merge: blkno mismatch: %p, %p", 5209 old, new); 5210 cancel_jfreefrag(WK_JFREEFRAG(new)); 5211 return (old); 5212 } 5213 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5214 panic("jnewblk_merge: Bad type: old %d new %d\n", 5215 old->wk_type, new->wk_type); 5216 /* 5217 * Handle merging of two jnewblk records that describe 5218 * different sets of fragments in the same block. 5219 */ 5220 jnewblk = WK_JNEWBLK(old); 5221 njnewblk = WK_JNEWBLK(new); 5222 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5223 panic("jnewblk_merge: Merging disparate blocks."); 5224 /* 5225 * The record may be rolled back in the cg. 5226 */ 5227 if (jnewblk->jn_state & UNDONE) { 5228 jnewblk->jn_state &= ~UNDONE; 5229 njnewblk->jn_state |= UNDONE; 5230 njnewblk->jn_state &= ~ATTACHED; 5231 } 5232 /* 5233 * We modify the newer addref and free the older so that if neither 5234 * has been written the most up-to-date copy will be on disk. If 5235 * both have been written but rolled back we only temporarily need 5236 * one of them to fix the bits when the cg write completes. 5237 */ 5238 jnewblk->jn_state |= ATTACHED | COMPLETE; 5239 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5240 cancel_jnewblk(jnewblk, wkhd); 5241 WORKLIST_REMOVE(&jnewblk->jn_list); 5242 free_jnewblk(jnewblk); 5243 return (new); 5244 } 5245 5246 /* 5247 * Replace an old allocdirect dependency with a newer one. 5248 * This routine must be called with splbio interrupts blocked. 5249 */ 5250 static void 5251 allocdirect_merge(adphead, newadp, oldadp) 5252 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5253 struct allocdirect *newadp; /* allocdirect being added */ 5254 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5255 { 5256 struct worklist *wk; 5257 struct freefrag *freefrag; 5258 5259 freefrag = NULL; 5260 mtx_assert(&lk, MA_OWNED); 5261 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5262 newadp->ad_oldsize != oldadp->ad_newsize || 5263 newadp->ad_offset >= NDADDR) 5264 panic("%s %jd != new %jd || old size %ld != new %ld", 5265 "allocdirect_merge: old blkno", 5266 (intmax_t)newadp->ad_oldblkno, 5267 (intmax_t)oldadp->ad_newblkno, 5268 newadp->ad_oldsize, oldadp->ad_newsize); 5269 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5270 newadp->ad_oldsize = oldadp->ad_oldsize; 5271 /* 5272 * If the old dependency had a fragment to free or had never 5273 * previously had a block allocated, then the new dependency 5274 * can immediately post its freefrag and adopt the old freefrag. 5275 * This action is done by swapping the freefrag dependencies. 5276 * The new dependency gains the old one's freefrag, and the 5277 * old one gets the new one and then immediately puts it on 5278 * the worklist when it is freed by free_newblk. It is 5279 * not possible to do this swap when the old dependency had a 5280 * non-zero size but no previous fragment to free. This condition 5281 * arises when the new block is an extension of the old block. 5282 * Here, the first part of the fragment allocated to the new 5283 * dependency is part of the block currently claimed on disk by 5284 * the old dependency, so cannot legitimately be freed until the 5285 * conditions for the new dependency are fulfilled. 5286 */ 5287 freefrag = newadp->ad_freefrag; 5288 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5289 newadp->ad_freefrag = oldadp->ad_freefrag; 5290 oldadp->ad_freefrag = freefrag; 5291 } 5292 /* 5293 * If we are tracking a new directory-block allocation, 5294 * move it from the old allocdirect to the new allocdirect. 5295 */ 5296 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5297 WORKLIST_REMOVE(wk); 5298 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5299 panic("allocdirect_merge: extra newdirblk"); 5300 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5301 } 5302 TAILQ_REMOVE(adphead, oldadp, ad_next); 5303 /* 5304 * We need to move any journal dependencies over to the freefrag 5305 * that releases this block if it exists. Otherwise we are 5306 * extending an existing block and we'll wait until that is 5307 * complete to release the journal space and extend the 5308 * new journal to cover this old space as well. 5309 */ 5310 if (freefrag == NULL) { 5311 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5312 panic("allocdirect_merge: %jd != %jd", 5313 oldadp->ad_newblkno, newadp->ad_newblkno); 5314 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5315 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5316 &oldadp->ad_block.nb_jnewblk->jn_list, 5317 &newadp->ad_block.nb_jwork); 5318 oldadp->ad_block.nb_jnewblk = NULL; 5319 cancel_newblk(&oldadp->ad_block, NULL, 5320 &newadp->ad_block.nb_jwork); 5321 } else { 5322 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5323 &freefrag->ff_list, &freefrag->ff_jwork); 5324 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5325 &freefrag->ff_jwork); 5326 } 5327 free_newblk(&oldadp->ad_block); 5328 } 5329 5330 /* 5331 * Allocate a jfreefrag structure to journal a single block free. 5332 */ 5333 static struct jfreefrag * 5334 newjfreefrag(freefrag, ip, blkno, size, lbn) 5335 struct freefrag *freefrag; 5336 struct inode *ip; 5337 ufs2_daddr_t blkno; 5338 long size; 5339 ufs_lbn_t lbn; 5340 { 5341 struct jfreefrag *jfreefrag; 5342 struct fs *fs; 5343 5344 fs = ip->i_fs; 5345 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5346 M_SOFTDEP_FLAGS); 5347 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump)); 5348 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5349 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5350 jfreefrag->fr_ino = ip->i_number; 5351 jfreefrag->fr_lbn = lbn; 5352 jfreefrag->fr_blkno = blkno; 5353 jfreefrag->fr_frags = numfrags(fs, size); 5354 jfreefrag->fr_freefrag = freefrag; 5355 5356 return (jfreefrag); 5357 } 5358 5359 /* 5360 * Allocate a new freefrag structure. 5361 */ 5362 static struct freefrag * 5363 newfreefrag(ip, blkno, size, lbn) 5364 struct inode *ip; 5365 ufs2_daddr_t blkno; 5366 long size; 5367 ufs_lbn_t lbn; 5368 { 5369 struct freefrag *freefrag; 5370 struct fs *fs; 5371 5372 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5373 ip->i_number, blkno, size, lbn); 5374 fs = ip->i_fs; 5375 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5376 panic("newfreefrag: frag size"); 5377 freefrag = malloc(sizeof(struct freefrag), 5378 M_FREEFRAG, M_SOFTDEP_FLAGS); 5379 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 5380 freefrag->ff_state = ATTACHED; 5381 LIST_INIT(&freefrag->ff_jwork); 5382 freefrag->ff_inum = ip->i_number; 5383 freefrag->ff_vtype = ITOV(ip)->v_type; 5384 freefrag->ff_blkno = blkno; 5385 freefrag->ff_fragsize = size; 5386 5387 if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) { 5388 freefrag->ff_jdep = (struct worklist *) 5389 newjfreefrag(freefrag, ip, blkno, size, lbn); 5390 } else { 5391 freefrag->ff_state |= DEPCOMPLETE; 5392 freefrag->ff_jdep = NULL; 5393 } 5394 5395 return (freefrag); 5396 } 5397 5398 /* 5399 * This workitem de-allocates fragments that were replaced during 5400 * file block allocation. 5401 */ 5402 static void 5403 handle_workitem_freefrag(freefrag) 5404 struct freefrag *freefrag; 5405 { 5406 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5407 struct workhead wkhd; 5408 5409 CTR3(KTR_SUJ, 5410 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5411 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5412 /* 5413 * It would be illegal to add new completion items to the 5414 * freefrag after it was schedule to be done so it must be 5415 * safe to modify the list head here. 5416 */ 5417 LIST_INIT(&wkhd); 5418 ACQUIRE_LOCK(&lk); 5419 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5420 /* 5421 * If the journal has not been written we must cancel it here. 5422 */ 5423 if (freefrag->ff_jdep) { 5424 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5425 panic("handle_workitem_freefrag: Unexpected type %d\n", 5426 freefrag->ff_jdep->wk_type); 5427 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5428 } 5429 FREE_LOCK(&lk); 5430 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5431 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5432 ACQUIRE_LOCK(&lk); 5433 WORKITEM_FREE(freefrag, D_FREEFRAG); 5434 FREE_LOCK(&lk); 5435 } 5436 5437 /* 5438 * Set up a dependency structure for an external attributes data block. 5439 * This routine follows much of the structure of softdep_setup_allocdirect. 5440 * See the description of softdep_setup_allocdirect above for details. 5441 */ 5442 void 5443 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5444 struct inode *ip; 5445 ufs_lbn_t off; 5446 ufs2_daddr_t newblkno; 5447 ufs2_daddr_t oldblkno; 5448 long newsize; 5449 long oldsize; 5450 struct buf *bp; 5451 { 5452 struct allocdirect *adp, *oldadp; 5453 struct allocdirectlst *adphead; 5454 struct freefrag *freefrag; 5455 struct inodedep *inodedep; 5456 struct jnewblk *jnewblk; 5457 struct newblk *newblk; 5458 struct mount *mp; 5459 ufs_lbn_t lbn; 5460 5461 if (off >= NXADDR) 5462 panic("softdep_setup_allocext: lbn %lld > NXADDR", 5463 (long long)off); 5464 5465 lbn = bp->b_lblkno; 5466 mp = UFSTOVFS(ip->i_ump); 5467 if (oldblkno && oldblkno != newblkno) 5468 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5469 else 5470 freefrag = NULL; 5471 5472 ACQUIRE_LOCK(&lk); 5473 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5474 panic("softdep_setup_allocext: lost block"); 5475 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5476 ("softdep_setup_allocext: newblk already initialized")); 5477 /* 5478 * Convert the newblk to an allocdirect. 5479 */ 5480 newblk->nb_list.wk_type = D_ALLOCDIRECT; 5481 adp = (struct allocdirect *)newblk; 5482 newblk->nb_freefrag = freefrag; 5483 adp->ad_offset = off; 5484 adp->ad_oldblkno = oldblkno; 5485 adp->ad_newsize = newsize; 5486 adp->ad_oldsize = oldsize; 5487 adp->ad_state |= EXTDATA; 5488 5489 /* 5490 * Finish initializing the journal. 5491 */ 5492 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5493 jnewblk->jn_ino = ip->i_number; 5494 jnewblk->jn_lbn = lbn; 5495 add_to_journal(&jnewblk->jn_list); 5496 } 5497 if (freefrag && freefrag->ff_jdep != NULL && 5498 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5499 add_to_journal(freefrag->ff_jdep); 5500 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5501 adp->ad_inodedep = inodedep; 5502 5503 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5504 /* 5505 * The list of allocdirects must be kept in sorted and ascending 5506 * order so that the rollback routines can quickly determine the 5507 * first uncommitted block (the size of the file stored on disk 5508 * ends at the end of the lowest committed fragment, or if there 5509 * are no fragments, at the end of the highest committed block). 5510 * Since files generally grow, the typical case is that the new 5511 * block is to be added at the end of the list. We speed this 5512 * special case by checking against the last allocdirect in the 5513 * list before laboriously traversing the list looking for the 5514 * insertion point. 5515 */ 5516 adphead = &inodedep->id_newextupdt; 5517 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5518 if (oldadp == NULL || oldadp->ad_offset <= off) { 5519 /* insert at end of list */ 5520 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5521 if (oldadp != NULL && oldadp->ad_offset == off) 5522 allocdirect_merge(adphead, adp, oldadp); 5523 FREE_LOCK(&lk); 5524 return; 5525 } 5526 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5527 if (oldadp->ad_offset >= off) 5528 break; 5529 } 5530 if (oldadp == NULL) 5531 panic("softdep_setup_allocext: lost entry"); 5532 /* insert in middle of list */ 5533 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5534 if (oldadp->ad_offset == off) 5535 allocdirect_merge(adphead, adp, oldadp); 5536 FREE_LOCK(&lk); 5537 } 5538 5539 /* 5540 * Indirect block allocation dependencies. 5541 * 5542 * The same dependencies that exist for a direct block also exist when 5543 * a new block is allocated and pointed to by an entry in a block of 5544 * indirect pointers. The undo/redo states described above are also 5545 * used here. Because an indirect block contains many pointers that 5546 * may have dependencies, a second copy of the entire in-memory indirect 5547 * block is kept. The buffer cache copy is always completely up-to-date. 5548 * The second copy, which is used only as a source for disk writes, 5549 * contains only the safe pointers (i.e., those that have no remaining 5550 * update dependencies). The second copy is freed when all pointers 5551 * are safe. The cache is not allowed to replace indirect blocks with 5552 * pending update dependencies. If a buffer containing an indirect 5553 * block with dependencies is written, these routines will mark it 5554 * dirty again. It can only be successfully written once all the 5555 * dependencies are removed. The ffs_fsync routine in conjunction with 5556 * softdep_sync_metadata work together to get all the dependencies 5557 * removed so that a file can be successfully written to disk. Three 5558 * procedures are used when setting up indirect block pointer 5559 * dependencies. The division is necessary because of the organization 5560 * of the "balloc" routine and because of the distinction between file 5561 * pages and file metadata blocks. 5562 */ 5563 5564 /* 5565 * Allocate a new allocindir structure. 5566 */ 5567 static struct allocindir * 5568 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5569 struct inode *ip; /* inode for file being extended */ 5570 int ptrno; /* offset of pointer in indirect block */ 5571 ufs2_daddr_t newblkno; /* disk block number being added */ 5572 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5573 ufs_lbn_t lbn; 5574 { 5575 struct newblk *newblk; 5576 struct allocindir *aip; 5577 struct freefrag *freefrag; 5578 struct jnewblk *jnewblk; 5579 5580 if (oldblkno) 5581 freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn); 5582 else 5583 freefrag = NULL; 5584 ACQUIRE_LOCK(&lk); 5585 if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0) 5586 panic("new_allocindir: lost block"); 5587 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5588 ("newallocindir: newblk already initialized")); 5589 newblk->nb_list.wk_type = D_ALLOCINDIR; 5590 newblk->nb_freefrag = freefrag; 5591 aip = (struct allocindir *)newblk; 5592 aip->ai_offset = ptrno; 5593 aip->ai_oldblkno = oldblkno; 5594 aip->ai_lbn = lbn; 5595 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5596 jnewblk->jn_ino = ip->i_number; 5597 jnewblk->jn_lbn = lbn; 5598 add_to_journal(&jnewblk->jn_list); 5599 } 5600 if (freefrag && freefrag->ff_jdep != NULL && 5601 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5602 add_to_journal(freefrag->ff_jdep); 5603 return (aip); 5604 } 5605 5606 /* 5607 * Called just before setting an indirect block pointer 5608 * to a newly allocated file page. 5609 */ 5610 void 5611 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5612 struct inode *ip; /* inode for file being extended */ 5613 ufs_lbn_t lbn; /* allocated block number within file */ 5614 struct buf *bp; /* buffer with indirect blk referencing page */ 5615 int ptrno; /* offset of pointer in indirect block */ 5616 ufs2_daddr_t newblkno; /* disk block number being added */ 5617 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5618 struct buf *nbp; /* buffer holding allocated page */ 5619 { 5620 struct inodedep *inodedep; 5621 struct freefrag *freefrag; 5622 struct allocindir *aip; 5623 struct pagedep *pagedep; 5624 struct mount *mp; 5625 int dflags; 5626 5627 if (lbn != nbp->b_lblkno) 5628 panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5629 lbn, bp->b_lblkno); 5630 CTR4(KTR_SUJ, 5631 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5632 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5633 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5634 mp = UFSTOVFS(ip->i_ump); 5635 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5636 dflags = DEPALLOC; 5637 if (IS_SNAPSHOT(ip)) 5638 dflags |= NODELAY; 5639 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 5640 /* 5641 * If we are allocating a directory page, then we must 5642 * allocate an associated pagedep to track additions and 5643 * deletions. 5644 */ 5645 if ((ip->i_mode & IFMT) == IFDIR) 5646 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5647 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5648 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5649 FREE_LOCK(&lk); 5650 if (freefrag) 5651 handle_workitem_freefrag(freefrag); 5652 } 5653 5654 /* 5655 * Called just before setting an indirect block pointer to a 5656 * newly allocated indirect block. 5657 */ 5658 void 5659 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5660 struct buf *nbp; /* newly allocated indirect block */ 5661 struct inode *ip; /* inode for file being extended */ 5662 struct buf *bp; /* indirect block referencing allocated block */ 5663 int ptrno; /* offset of pointer in indirect block */ 5664 ufs2_daddr_t newblkno; /* disk block number being added */ 5665 { 5666 struct inodedep *inodedep; 5667 struct allocindir *aip; 5668 ufs_lbn_t lbn; 5669 int dflags; 5670 5671 CTR3(KTR_SUJ, 5672 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5673 ip->i_number, newblkno, ptrno); 5674 lbn = nbp->b_lblkno; 5675 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5676 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5677 dflags = DEPALLOC; 5678 if (IS_SNAPSHOT(ip)) 5679 dflags |= NODELAY; 5680 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 5681 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5682 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5683 panic("softdep_setup_allocindir_meta: Block already existed"); 5684 FREE_LOCK(&lk); 5685 } 5686 5687 static void 5688 indirdep_complete(indirdep) 5689 struct indirdep *indirdep; 5690 { 5691 struct allocindir *aip; 5692 5693 LIST_REMOVE(indirdep, ir_next); 5694 indirdep->ir_state |= DEPCOMPLETE; 5695 5696 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5697 LIST_REMOVE(aip, ai_next); 5698 free_newblk(&aip->ai_block); 5699 } 5700 /* 5701 * If this indirdep is not attached to a buf it was simply waiting 5702 * on completion to clear completehd. free_indirdep() asserts 5703 * that nothing is dangling. 5704 */ 5705 if ((indirdep->ir_state & ONWORKLIST) == 0) 5706 free_indirdep(indirdep); 5707 } 5708 5709 static struct indirdep * 5710 indirdep_lookup(mp, ip, bp) 5711 struct mount *mp; 5712 struct inode *ip; 5713 struct buf *bp; 5714 { 5715 struct indirdep *indirdep, *newindirdep; 5716 struct newblk *newblk; 5717 struct worklist *wk; 5718 struct fs *fs; 5719 ufs2_daddr_t blkno; 5720 5721 mtx_assert(&lk, MA_OWNED); 5722 indirdep = NULL; 5723 newindirdep = NULL; 5724 fs = ip->i_fs; 5725 for (;;) { 5726 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5727 if (wk->wk_type != D_INDIRDEP) 5728 continue; 5729 indirdep = WK_INDIRDEP(wk); 5730 break; 5731 } 5732 /* Found on the buffer worklist, no new structure to free. */ 5733 if (indirdep != NULL && newindirdep == NULL) 5734 return (indirdep); 5735 if (indirdep != NULL && newindirdep != NULL) 5736 panic("indirdep_lookup: simultaneous create"); 5737 /* None found on the buffer and a new structure is ready. */ 5738 if (indirdep == NULL && newindirdep != NULL) 5739 break; 5740 /* None found and no new structure available. */ 5741 FREE_LOCK(&lk); 5742 newindirdep = malloc(sizeof(struct indirdep), 5743 M_INDIRDEP, M_SOFTDEP_FLAGS); 5744 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5745 newindirdep->ir_state = ATTACHED; 5746 if (ip->i_ump->um_fstype == UFS1) 5747 newindirdep->ir_state |= UFS1FMT; 5748 TAILQ_INIT(&newindirdep->ir_trunc); 5749 newindirdep->ir_saveddata = NULL; 5750 LIST_INIT(&newindirdep->ir_deplisthd); 5751 LIST_INIT(&newindirdep->ir_donehd); 5752 LIST_INIT(&newindirdep->ir_writehd); 5753 LIST_INIT(&newindirdep->ir_completehd); 5754 if (bp->b_blkno == bp->b_lblkno) { 5755 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5756 NULL, NULL); 5757 bp->b_blkno = blkno; 5758 } 5759 newindirdep->ir_freeblks = NULL; 5760 newindirdep->ir_savebp = 5761 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5762 newindirdep->ir_bp = bp; 5763 BUF_KERNPROC(newindirdep->ir_savebp); 5764 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5765 ACQUIRE_LOCK(&lk); 5766 } 5767 indirdep = newindirdep; 5768 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5769 /* 5770 * If the block is not yet allocated we don't set DEPCOMPLETE so 5771 * that we don't free dependencies until the pointers are valid. 5772 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5773 * than using the hash. 5774 */ 5775 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5776 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5777 else 5778 indirdep->ir_state |= DEPCOMPLETE; 5779 return (indirdep); 5780 } 5781 5782 /* 5783 * Called to finish the allocation of the "aip" allocated 5784 * by one of the two routines above. 5785 */ 5786 static struct freefrag * 5787 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5788 struct buf *bp; /* in-memory copy of the indirect block */ 5789 struct inode *ip; /* inode for file being extended */ 5790 struct inodedep *inodedep; /* Inodedep for ip */ 5791 struct allocindir *aip; /* allocindir allocated by the above routines */ 5792 ufs_lbn_t lbn; /* Logical block number for this block. */ 5793 { 5794 struct fs *fs; 5795 struct indirdep *indirdep; 5796 struct allocindir *oldaip; 5797 struct freefrag *freefrag; 5798 struct mount *mp; 5799 5800 mtx_assert(&lk, MA_OWNED); 5801 mp = UFSTOVFS(ip->i_ump); 5802 fs = ip->i_fs; 5803 if (bp->b_lblkno >= 0) 5804 panic("setup_allocindir_phase2: not indir blk"); 5805 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 5806 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 5807 indirdep = indirdep_lookup(mp, ip, bp); 5808 KASSERT(indirdep->ir_savebp != NULL, 5809 ("setup_allocindir_phase2 NULL ir_savebp")); 5810 aip->ai_indirdep = indirdep; 5811 /* 5812 * Check for an unwritten dependency for this indirect offset. If 5813 * there is, merge the old dependency into the new one. This happens 5814 * as a result of reallocblk only. 5815 */ 5816 freefrag = NULL; 5817 if (aip->ai_oldblkno != 0) { 5818 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 5819 if (oldaip->ai_offset == aip->ai_offset) { 5820 freefrag = allocindir_merge(aip, oldaip); 5821 goto done; 5822 } 5823 } 5824 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 5825 if (oldaip->ai_offset == aip->ai_offset) { 5826 freefrag = allocindir_merge(aip, oldaip); 5827 goto done; 5828 } 5829 } 5830 } 5831 done: 5832 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 5833 return (freefrag); 5834 } 5835 5836 /* 5837 * Merge two allocindirs which refer to the same block. Move newblock 5838 * dependencies and setup the freefrags appropriately. 5839 */ 5840 static struct freefrag * 5841 allocindir_merge(aip, oldaip) 5842 struct allocindir *aip; 5843 struct allocindir *oldaip; 5844 { 5845 struct freefrag *freefrag; 5846 struct worklist *wk; 5847 5848 if (oldaip->ai_newblkno != aip->ai_oldblkno) 5849 panic("allocindir_merge: blkno"); 5850 aip->ai_oldblkno = oldaip->ai_oldblkno; 5851 freefrag = aip->ai_freefrag; 5852 aip->ai_freefrag = oldaip->ai_freefrag; 5853 oldaip->ai_freefrag = NULL; 5854 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 5855 /* 5856 * If we are tracking a new directory-block allocation, 5857 * move it from the old allocindir to the new allocindir. 5858 */ 5859 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 5860 WORKLIST_REMOVE(wk); 5861 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 5862 panic("allocindir_merge: extra newdirblk"); 5863 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 5864 } 5865 /* 5866 * We can skip journaling for this freefrag and just complete 5867 * any pending journal work for the allocindir that is being 5868 * removed after the freefrag completes. 5869 */ 5870 if (freefrag->ff_jdep) 5871 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 5872 LIST_REMOVE(oldaip, ai_next); 5873 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 5874 &freefrag->ff_list, &freefrag->ff_jwork); 5875 free_newblk(&oldaip->ai_block); 5876 5877 return (freefrag); 5878 } 5879 5880 static inline void 5881 setup_freedirect(freeblks, ip, i, needj) 5882 struct freeblks *freeblks; 5883 struct inode *ip; 5884 int i; 5885 int needj; 5886 { 5887 ufs2_daddr_t blkno; 5888 int frags; 5889 5890 blkno = DIP(ip, i_db[i]); 5891 if (blkno == 0) 5892 return; 5893 DIP_SET(ip, i_db[i], 0); 5894 frags = sblksize(ip->i_fs, ip->i_size, i); 5895 frags = numfrags(ip->i_fs, frags); 5896 newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj); 5897 } 5898 5899 static inline void 5900 setup_freeext(freeblks, ip, i, needj) 5901 struct freeblks *freeblks; 5902 struct inode *ip; 5903 int i; 5904 int needj; 5905 { 5906 ufs2_daddr_t blkno; 5907 int frags; 5908 5909 blkno = ip->i_din2->di_extb[i]; 5910 if (blkno == 0) 5911 return; 5912 ip->i_din2->di_extb[i] = 0; 5913 frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i); 5914 frags = numfrags(ip->i_fs, frags); 5915 newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 5916 } 5917 5918 static inline void 5919 setup_freeindir(freeblks, ip, i, lbn, needj) 5920 struct freeblks *freeblks; 5921 struct inode *ip; 5922 int i; 5923 ufs_lbn_t lbn; 5924 int needj; 5925 { 5926 ufs2_daddr_t blkno; 5927 5928 blkno = DIP(ip, i_ib[i]); 5929 if (blkno == 0) 5930 return; 5931 DIP_SET(ip, i_ib[i], 0); 5932 newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag, 5933 0, needj); 5934 } 5935 5936 static inline struct freeblks * 5937 newfreeblks(mp, ip) 5938 struct mount *mp; 5939 struct inode *ip; 5940 { 5941 struct freeblks *freeblks; 5942 5943 freeblks = malloc(sizeof(struct freeblks), 5944 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 5945 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 5946 LIST_INIT(&freeblks->fb_jblkdephd); 5947 LIST_INIT(&freeblks->fb_jwork); 5948 freeblks->fb_ref = 0; 5949 freeblks->fb_cgwait = 0; 5950 freeblks->fb_state = ATTACHED; 5951 freeblks->fb_uid = ip->i_uid; 5952 freeblks->fb_inum = ip->i_number; 5953 freeblks->fb_vtype = ITOV(ip)->v_type; 5954 freeblks->fb_modrev = DIP(ip, i_modrev); 5955 freeblks->fb_devvp = ip->i_devvp; 5956 freeblks->fb_chkcnt = 0; 5957 freeblks->fb_len = 0; 5958 5959 return (freeblks); 5960 } 5961 5962 static void 5963 trunc_indirdep(indirdep, freeblks, bp, off) 5964 struct indirdep *indirdep; 5965 struct freeblks *freeblks; 5966 struct buf *bp; 5967 int off; 5968 { 5969 struct allocindir *aip, *aipn; 5970 5971 /* 5972 * The first set of allocindirs won't be in savedbp. 5973 */ 5974 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 5975 if (aip->ai_offset > off) 5976 cancel_allocindir(aip, bp, freeblks, 1); 5977 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 5978 if (aip->ai_offset > off) 5979 cancel_allocindir(aip, bp, freeblks, 1); 5980 /* 5981 * These will exist in savedbp. 5982 */ 5983 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 5984 if (aip->ai_offset > off) 5985 cancel_allocindir(aip, NULL, freeblks, 0); 5986 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 5987 if (aip->ai_offset > off) 5988 cancel_allocindir(aip, NULL, freeblks, 0); 5989 } 5990 5991 /* 5992 * Follow the chain of indirects down to lastlbn creating a freework 5993 * structure for each. This will be used to start indir_trunc() at 5994 * the right offset and create the journal records for the parrtial 5995 * truncation. A second step will handle the truncated dependencies. 5996 */ 5997 static int 5998 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 5999 struct freeblks *freeblks; 6000 struct inode *ip; 6001 ufs_lbn_t lbn; 6002 ufs_lbn_t lastlbn; 6003 ufs2_daddr_t blkno; 6004 { 6005 struct indirdep *indirdep; 6006 struct indirdep *indirn; 6007 struct freework *freework; 6008 struct newblk *newblk; 6009 struct mount *mp; 6010 struct buf *bp; 6011 uint8_t *start; 6012 uint8_t *end; 6013 ufs_lbn_t lbnadd; 6014 int level; 6015 int error; 6016 int off; 6017 6018 6019 freework = NULL; 6020 if (blkno == 0) 6021 return (0); 6022 mp = freeblks->fb_list.wk_mp; 6023 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6024 if ((bp->b_flags & B_CACHE) == 0) { 6025 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6026 bp->b_iocmd = BIO_READ; 6027 bp->b_flags &= ~B_INVAL; 6028 bp->b_ioflags &= ~BIO_ERROR; 6029 vfs_busy_pages(bp, 0); 6030 bp->b_iooffset = dbtob(bp->b_blkno); 6031 bstrategy(bp); 6032 curthread->td_ru.ru_inblock++; 6033 error = bufwait(bp); 6034 if (error) { 6035 brelse(bp); 6036 return (error); 6037 } 6038 } 6039 level = lbn_level(lbn); 6040 lbnadd = lbn_offset(ip->i_fs, level); 6041 /* 6042 * Compute the offset of the last block we want to keep. Store 6043 * in the freework the first block we want to completely free. 6044 */ 6045 off = (lastlbn - -(lbn + level)) / lbnadd; 6046 if (off + 1 == NINDIR(ip->i_fs)) 6047 goto nowork; 6048 freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1, 6049 0); 6050 /* 6051 * Link the freework into the indirdep. This will prevent any new 6052 * allocations from proceeding until we are finished with the 6053 * truncate and the block is written. 6054 */ 6055 ACQUIRE_LOCK(&lk); 6056 indirdep = indirdep_lookup(mp, ip, bp); 6057 if (indirdep->ir_freeblks) 6058 panic("setup_trunc_indir: indirdep already truncated."); 6059 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6060 freework->fw_indir = indirdep; 6061 /* 6062 * Cancel any allocindirs that will not make it to disk. 6063 * We have to do this for all copies of the indirdep that 6064 * live on this newblk. 6065 */ 6066 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6067 newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk); 6068 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6069 trunc_indirdep(indirn, freeblks, bp, off); 6070 } else 6071 trunc_indirdep(indirdep, freeblks, bp, off); 6072 FREE_LOCK(&lk); 6073 /* 6074 * Creation is protected by the buf lock. The saveddata is only 6075 * needed if a full truncation follows a partial truncation but it 6076 * is difficult to allocate in that case so we fetch it anyway. 6077 */ 6078 if (indirdep->ir_saveddata == NULL) 6079 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6080 M_SOFTDEP_FLAGS); 6081 nowork: 6082 /* Fetch the blkno of the child and the zero start offset. */ 6083 if (ip->i_ump->um_fstype == UFS1) { 6084 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6085 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6086 } else { 6087 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6088 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6089 } 6090 if (freework) { 6091 /* Zero the truncated pointers. */ 6092 end = bp->b_data + bp->b_bcount; 6093 bzero(start, end - start); 6094 bdwrite(bp); 6095 } else 6096 bqrelse(bp); 6097 if (level == 0) 6098 return (0); 6099 lbn++; /* adjust level */ 6100 lbn -= (off * lbnadd); 6101 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6102 } 6103 6104 /* 6105 * Complete the partial truncation of an indirect block setup by 6106 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6107 * copy and writes them to disk before the freeblks is allowed to complete. 6108 */ 6109 static void 6110 complete_trunc_indir(freework) 6111 struct freework *freework; 6112 { 6113 struct freework *fwn; 6114 struct indirdep *indirdep; 6115 struct buf *bp; 6116 uintptr_t start; 6117 int count; 6118 6119 indirdep = freework->fw_indir; 6120 for (;;) { 6121 bp = indirdep->ir_bp; 6122 /* See if the block was discarded. */ 6123 if (bp == NULL) 6124 break; 6125 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6126 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6127 break; 6128 if (BUF_LOCK(bp, 6129 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0) 6130 BUF_UNLOCK(bp); 6131 ACQUIRE_LOCK(&lk); 6132 } 6133 mtx_assert(&lk, MA_OWNED); 6134 freework->fw_state |= DEPCOMPLETE; 6135 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6136 /* 6137 * Zero the pointers in the saved copy. 6138 */ 6139 if (indirdep->ir_state & UFS1FMT) 6140 start = sizeof(ufs1_daddr_t); 6141 else 6142 start = sizeof(ufs2_daddr_t); 6143 start *= freework->fw_start; 6144 count = indirdep->ir_savebp->b_bcount - start; 6145 start += (uintptr_t)indirdep->ir_savebp->b_data; 6146 bzero((char *)start, count); 6147 /* 6148 * We need to start the next truncation in the list if it has not 6149 * been started yet. 6150 */ 6151 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6152 if (fwn != NULL) { 6153 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6154 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6155 if ((fwn->fw_state & ONWORKLIST) == 0) 6156 freework_enqueue(fwn); 6157 } 6158 /* 6159 * If bp is NULL the block was fully truncated, restore 6160 * the saved block list otherwise free it if it is no 6161 * longer needed. 6162 */ 6163 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6164 if (bp == NULL) 6165 bcopy(indirdep->ir_saveddata, 6166 indirdep->ir_savebp->b_data, 6167 indirdep->ir_savebp->b_bcount); 6168 free(indirdep->ir_saveddata, M_INDIRDEP); 6169 indirdep->ir_saveddata = NULL; 6170 } 6171 /* 6172 * When bp is NULL there is a full truncation pending. We 6173 * must wait for this full truncation to be journaled before 6174 * we can release this freework because the disk pointers will 6175 * never be written as zero. 6176 */ 6177 if (bp == NULL) { 6178 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6179 handle_written_freework(freework); 6180 else 6181 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6182 &freework->fw_list); 6183 } else { 6184 /* Complete when the real copy is written. */ 6185 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6186 BUF_UNLOCK(bp); 6187 } 6188 } 6189 6190 /* 6191 * Calculate the number of blocks we are going to release where datablocks 6192 * is the current total and length is the new file size. 6193 */ 6194 ufs2_daddr_t 6195 blkcount(fs, datablocks, length) 6196 struct fs *fs; 6197 ufs2_daddr_t datablocks; 6198 off_t length; 6199 { 6200 off_t totblks, numblks; 6201 6202 totblks = 0; 6203 numblks = howmany(length, fs->fs_bsize); 6204 if (numblks <= NDADDR) { 6205 totblks = howmany(length, fs->fs_fsize); 6206 goto out; 6207 } 6208 totblks = blkstofrags(fs, numblks); 6209 numblks -= NDADDR; 6210 /* 6211 * Count all single, then double, then triple indirects required. 6212 * Subtracting one indirects worth of blocks for each pass 6213 * acknowledges one of each pointed to by the inode. 6214 */ 6215 for (;;) { 6216 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6217 numblks -= NINDIR(fs); 6218 if (numblks <= 0) 6219 break; 6220 numblks = howmany(numblks, NINDIR(fs)); 6221 } 6222 out: 6223 totblks = fsbtodb(fs, totblks); 6224 /* 6225 * Handle sparse files. We can't reclaim more blocks than the inode 6226 * references. We will correct it later in handle_complete_freeblks() 6227 * when we know the real count. 6228 */ 6229 if (totblks > datablocks) 6230 return (0); 6231 return (datablocks - totblks); 6232 } 6233 6234 /* 6235 * Handle freeblocks for journaled softupdate filesystems. 6236 * 6237 * Contrary to normal softupdates, we must preserve the block pointers in 6238 * indirects until their subordinates are free. This is to avoid journaling 6239 * every block that is freed which may consume more space than the journal 6240 * itself. The recovery program will see the free block journals at the 6241 * base of the truncated area and traverse them to reclaim space. The 6242 * pointers in the inode may be cleared immediately after the journal 6243 * records are written because each direct and indirect pointer in the 6244 * inode is recorded in a journal. This permits full truncation to proceed 6245 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6246 * 6247 * The algorithm is as follows: 6248 * 1) Traverse the in-memory state and create journal entries to release 6249 * the relevant blocks and full indirect trees. 6250 * 2) Traverse the indirect block chain adding partial truncation freework 6251 * records to indirects in the path to lastlbn. The freework will 6252 * prevent new allocation dependencies from being satisfied in this 6253 * indirect until the truncation completes. 6254 * 3) Read and lock the inode block, performing an update with the new size 6255 * and pointers. This prevents truncated data from becoming valid on 6256 * disk through step 4. 6257 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6258 * eliminate journal work for those records that do not require it. 6259 * 5) Schedule the journal records to be written followed by the inode block. 6260 * 6) Allocate any necessary frags for the end of file. 6261 * 7) Zero any partially truncated blocks. 6262 * 6263 * From this truncation proceeds asynchronously using the freework and 6264 * indir_trunc machinery. The file will not be extended again into a 6265 * partially truncated indirect block until all work is completed but 6266 * the normal dependency mechanism ensures that it is rolled back/forward 6267 * as appropriate. Further truncation may occur without delay and is 6268 * serialized in indir_trunc(). 6269 */ 6270 void 6271 softdep_journal_freeblocks(ip, cred, length, flags) 6272 struct inode *ip; /* The inode whose length is to be reduced */ 6273 struct ucred *cred; 6274 off_t length; /* The new length for the file */ 6275 int flags; /* IO_EXT and/or IO_NORMAL */ 6276 { 6277 struct freeblks *freeblks, *fbn; 6278 struct worklist *wk, *wkn; 6279 struct inodedep *inodedep; 6280 struct jblkdep *jblkdep; 6281 struct allocdirect *adp, *adpn; 6282 struct fs *fs; 6283 struct buf *bp; 6284 struct vnode *vp; 6285 struct mount *mp; 6286 ufs2_daddr_t extblocks, datablocks; 6287 ufs_lbn_t tmpval, lbn, lastlbn; 6288 int frags, lastoff, iboff, allocblock, needj, dflags, error, i; 6289 6290 fs = ip->i_fs; 6291 mp = UFSTOVFS(ip->i_ump); 6292 vp = ITOV(ip); 6293 needj = 1; 6294 iboff = -1; 6295 allocblock = 0; 6296 extblocks = 0; 6297 datablocks = 0; 6298 frags = 0; 6299 freeblks = newfreeblks(mp, ip); 6300 ACQUIRE_LOCK(&lk); 6301 /* 6302 * If we're truncating a removed file that will never be written 6303 * we don't need to journal the block frees. The canceled journals 6304 * for the allocations will suffice. 6305 */ 6306 dflags = DEPALLOC; 6307 if (IS_SNAPSHOT(ip)) 6308 dflags |= NODELAY; 6309 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6310 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6311 length == 0) 6312 needj = 0; 6313 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6314 ip->i_number, length, needj); 6315 FREE_LOCK(&lk); 6316 /* 6317 * Calculate the lbn that we are truncating to. This results in -1 6318 * if we're truncating the 0 bytes. So it is the last lbn we want 6319 * to keep, not the first lbn we want to truncate. 6320 */ 6321 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6322 lastoff = blkoff(fs, length); 6323 /* 6324 * Compute frags we are keeping in lastlbn. 0 means all. 6325 */ 6326 if (lastlbn >= 0 && lastlbn < NDADDR) { 6327 frags = fragroundup(fs, lastoff); 6328 /* adp offset of last valid allocdirect. */ 6329 iboff = lastlbn; 6330 } else if (lastlbn > 0) 6331 iboff = NDADDR; 6332 if (fs->fs_magic == FS_UFS2_MAGIC) 6333 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6334 /* 6335 * Handle normal data blocks and indirects. This section saves 6336 * values used after the inode update to complete frag and indirect 6337 * truncation. 6338 */ 6339 if ((flags & IO_NORMAL) != 0) { 6340 /* 6341 * Handle truncation of whole direct and indirect blocks. 6342 */ 6343 for (i = iboff + 1; i < NDADDR; i++) 6344 setup_freedirect(freeblks, ip, i, needj); 6345 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6346 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6347 /* Release a whole indirect tree. */ 6348 if (lbn > lastlbn) { 6349 setup_freeindir(freeblks, ip, i, -lbn -i, 6350 needj); 6351 continue; 6352 } 6353 iboff = i + NDADDR; 6354 /* 6355 * Traverse partially truncated indirect tree. 6356 */ 6357 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6358 setup_trunc_indir(freeblks, ip, -lbn - i, 6359 lastlbn, DIP(ip, i_ib[i])); 6360 } 6361 /* 6362 * Handle partial truncation to a frag boundary. 6363 */ 6364 if (frags) { 6365 ufs2_daddr_t blkno; 6366 long oldfrags; 6367 6368 oldfrags = blksize(fs, ip, lastlbn); 6369 blkno = DIP(ip, i_db[lastlbn]); 6370 if (blkno && oldfrags != frags) { 6371 oldfrags -= frags; 6372 oldfrags = numfrags(ip->i_fs, oldfrags); 6373 blkno += numfrags(ip->i_fs, frags); 6374 newfreework(ip->i_ump, freeblks, NULL, lastlbn, 6375 blkno, oldfrags, 0, needj); 6376 } else if (blkno == 0) 6377 allocblock = 1; 6378 } 6379 /* 6380 * Add a journal record for partial truncate if we are 6381 * handling indirect blocks. Non-indirects need no extra 6382 * journaling. 6383 */ 6384 if (length != 0 && lastlbn >= NDADDR) { 6385 ip->i_flag |= IN_TRUNCATED; 6386 newjtrunc(freeblks, length, 0); 6387 } 6388 ip->i_size = length; 6389 DIP_SET(ip, i_size, ip->i_size); 6390 datablocks = DIP(ip, i_blocks) - extblocks; 6391 if (length != 0) 6392 datablocks = blkcount(ip->i_fs, datablocks, length); 6393 freeblks->fb_len = length; 6394 } 6395 if ((flags & IO_EXT) != 0) { 6396 for (i = 0; i < NXADDR; i++) 6397 setup_freeext(freeblks, ip, i, needj); 6398 ip->i_din2->di_extsize = 0; 6399 datablocks += extblocks; 6400 } 6401 #ifdef QUOTA 6402 /* Reference the quotas in case the block count is wrong in the end. */ 6403 quotaref(vp, freeblks->fb_quota); 6404 (void) chkdq(ip, -datablocks, NOCRED, 0); 6405 #endif 6406 freeblks->fb_chkcnt = -datablocks; 6407 UFS_LOCK(ip->i_ump); 6408 fs->fs_pendingblocks += datablocks; 6409 UFS_UNLOCK(ip->i_ump); 6410 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6411 /* 6412 * Handle truncation of incomplete alloc direct dependencies. We 6413 * hold the inode block locked to prevent incomplete dependencies 6414 * from reaching the disk while we are eliminating those that 6415 * have been truncated. This is a partially inlined ffs_update(). 6416 */ 6417 ufs_itimes(vp); 6418 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6419 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6420 (int)fs->fs_bsize, cred, &bp); 6421 if (error) { 6422 brelse(bp); 6423 softdep_error("softdep_journal_freeblocks", error); 6424 return; 6425 } 6426 if (bp->b_bufsize == fs->fs_bsize) 6427 bp->b_flags |= B_CLUSTEROK; 6428 softdep_update_inodeblock(ip, bp, 0); 6429 if (ip->i_ump->um_fstype == UFS1) 6430 *((struct ufs1_dinode *)bp->b_data + 6431 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6432 else 6433 *((struct ufs2_dinode *)bp->b_data + 6434 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6435 ACQUIRE_LOCK(&lk); 6436 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6437 if ((inodedep->id_state & IOSTARTED) != 0) 6438 panic("softdep_setup_freeblocks: inode busy"); 6439 /* 6440 * Add the freeblks structure to the list of operations that 6441 * must await the zero'ed inode being written to disk. If we 6442 * still have a bitmap dependency (needj), then the inode 6443 * has never been written to disk, so we can process the 6444 * freeblks below once we have deleted the dependencies. 6445 */ 6446 if (needj) 6447 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6448 else 6449 freeblks->fb_state |= COMPLETE; 6450 if ((flags & IO_NORMAL) != 0) { 6451 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6452 if (adp->ad_offset > iboff) 6453 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6454 freeblks); 6455 /* 6456 * Truncate the allocdirect. We could eliminate 6457 * or modify journal records as well. 6458 */ 6459 else if (adp->ad_offset == iboff && frags) 6460 adp->ad_newsize = frags; 6461 } 6462 } 6463 if ((flags & IO_EXT) != 0) 6464 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6465 cancel_allocdirect(&inodedep->id_extupdt, adp, 6466 freeblks); 6467 /* 6468 * Scan the bufwait list for newblock dependencies that will never 6469 * make it to disk. 6470 */ 6471 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6472 if (wk->wk_type != D_ALLOCDIRECT) 6473 continue; 6474 adp = WK_ALLOCDIRECT(wk); 6475 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6476 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6477 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6478 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6479 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6480 } 6481 } 6482 /* 6483 * Add journal work. 6484 */ 6485 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6486 add_to_journal(&jblkdep->jb_list); 6487 FREE_LOCK(&lk); 6488 bdwrite(bp); 6489 /* 6490 * Truncate dependency structures beyond length. 6491 */ 6492 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6493 /* 6494 * This is only set when we need to allocate a fragment because 6495 * none existed at the end of a frag-sized file. It handles only 6496 * allocating a new, zero filled block. 6497 */ 6498 if (allocblock) { 6499 ip->i_size = length - lastoff; 6500 DIP_SET(ip, i_size, ip->i_size); 6501 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6502 if (error != 0) { 6503 softdep_error("softdep_journal_freeblks", error); 6504 return; 6505 } 6506 ip->i_size = length; 6507 DIP_SET(ip, i_size, length); 6508 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6509 allocbuf(bp, frags); 6510 ffs_update(vp, 0); 6511 bawrite(bp); 6512 } else if (lastoff != 0 && vp->v_type != VDIR) { 6513 int size; 6514 6515 /* 6516 * Zero the end of a truncated frag or block. 6517 */ 6518 size = sblksize(fs, length, lastlbn); 6519 error = bread(vp, lastlbn, size, cred, &bp); 6520 if (error) { 6521 softdep_error("softdep_journal_freeblks", error); 6522 return; 6523 } 6524 bzero((char *)bp->b_data + lastoff, size - lastoff); 6525 bawrite(bp); 6526 6527 } 6528 ACQUIRE_LOCK(&lk); 6529 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6530 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6531 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6532 /* 6533 * We zero earlier truncations so they don't erroneously 6534 * update i_blocks. 6535 */ 6536 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6537 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6538 fbn->fb_len = 0; 6539 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6540 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6541 freeblks->fb_state |= INPROGRESS; 6542 else 6543 freeblks = NULL; 6544 FREE_LOCK(&lk); 6545 if (freeblks) 6546 handle_workitem_freeblocks(freeblks, 0); 6547 trunc_pages(ip, length, extblocks, flags); 6548 6549 } 6550 6551 /* 6552 * Flush a JOP_SYNC to the journal. 6553 */ 6554 void 6555 softdep_journal_fsync(ip) 6556 struct inode *ip; 6557 { 6558 struct jfsync *jfsync; 6559 6560 if ((ip->i_flag & IN_TRUNCATED) == 0) 6561 return; 6562 ip->i_flag &= ~IN_TRUNCATED; 6563 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6564 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump)); 6565 jfsync->jfs_size = ip->i_size; 6566 jfsync->jfs_ino = ip->i_number; 6567 ACQUIRE_LOCK(&lk); 6568 add_to_journal(&jfsync->jfs_list); 6569 jwait(&jfsync->jfs_list, MNT_WAIT); 6570 FREE_LOCK(&lk); 6571 } 6572 6573 /* 6574 * Block de-allocation dependencies. 6575 * 6576 * When blocks are de-allocated, the on-disk pointers must be nullified before 6577 * the blocks are made available for use by other files. (The true 6578 * requirement is that old pointers must be nullified before new on-disk 6579 * pointers are set. We chose this slightly more stringent requirement to 6580 * reduce complexity.) Our implementation handles this dependency by updating 6581 * the inode (or indirect block) appropriately but delaying the actual block 6582 * de-allocation (i.e., freemap and free space count manipulation) until 6583 * after the updated versions reach stable storage. After the disk is 6584 * updated, the blocks can be safely de-allocated whenever it is convenient. 6585 * This implementation handles only the common case of reducing a file's 6586 * length to zero. Other cases are handled by the conventional synchronous 6587 * write approach. 6588 * 6589 * The ffs implementation with which we worked double-checks 6590 * the state of the block pointers and file size as it reduces 6591 * a file's length. Some of this code is replicated here in our 6592 * soft updates implementation. The freeblks->fb_chkcnt field is 6593 * used to transfer a part of this information to the procedure 6594 * that eventually de-allocates the blocks. 6595 * 6596 * This routine should be called from the routine that shortens 6597 * a file's length, before the inode's size or block pointers 6598 * are modified. It will save the block pointer information for 6599 * later release and zero the inode so that the calling routine 6600 * can release it. 6601 */ 6602 void 6603 softdep_setup_freeblocks(ip, length, flags) 6604 struct inode *ip; /* The inode whose length is to be reduced */ 6605 off_t length; /* The new length for the file */ 6606 int flags; /* IO_EXT and/or IO_NORMAL */ 6607 { 6608 struct ufs1_dinode *dp1; 6609 struct ufs2_dinode *dp2; 6610 struct freeblks *freeblks; 6611 struct inodedep *inodedep; 6612 struct allocdirect *adp; 6613 struct buf *bp; 6614 struct fs *fs; 6615 ufs2_daddr_t extblocks, datablocks; 6616 struct mount *mp; 6617 int i, delay, error, dflags; 6618 ufs_lbn_t tmpval; 6619 ufs_lbn_t lbn; 6620 6621 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6622 ip->i_number, length); 6623 fs = ip->i_fs; 6624 mp = UFSTOVFS(ip->i_ump); 6625 if (length != 0) 6626 panic("softdep_setup_freeblocks: non-zero length"); 6627 freeblks = newfreeblks(mp, ip); 6628 extblocks = 0; 6629 datablocks = 0; 6630 if (fs->fs_magic == FS_UFS2_MAGIC) 6631 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6632 if ((flags & IO_NORMAL) != 0) { 6633 for (i = 0; i < NDADDR; i++) 6634 setup_freedirect(freeblks, ip, i, 0); 6635 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6636 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6637 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6638 ip->i_size = 0; 6639 DIP_SET(ip, i_size, 0); 6640 datablocks = DIP(ip, i_blocks) - extblocks; 6641 } 6642 if ((flags & IO_EXT) != 0) { 6643 for (i = 0; i < NXADDR; i++) 6644 setup_freeext(freeblks, ip, i, 0); 6645 ip->i_din2->di_extsize = 0; 6646 datablocks += extblocks; 6647 } 6648 #ifdef QUOTA 6649 /* Reference the quotas in case the block count is wrong in the end. */ 6650 quotaref(ITOV(ip), freeblks->fb_quota); 6651 (void) chkdq(ip, -datablocks, NOCRED, 0); 6652 #endif 6653 freeblks->fb_chkcnt = -datablocks; 6654 UFS_LOCK(ip->i_ump); 6655 fs->fs_pendingblocks += datablocks; 6656 UFS_UNLOCK(ip->i_ump); 6657 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6658 /* 6659 * Push the zero'ed inode to to its disk buffer so that we are free 6660 * to delete its dependencies below. Once the dependencies are gone 6661 * the buffer can be safely released. 6662 */ 6663 if ((error = bread(ip->i_devvp, 6664 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6665 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6666 brelse(bp); 6667 softdep_error("softdep_setup_freeblocks", error); 6668 } 6669 if (ip->i_ump->um_fstype == UFS1) { 6670 dp1 = ((struct ufs1_dinode *)bp->b_data + 6671 ino_to_fsbo(fs, ip->i_number)); 6672 ip->i_din1->di_freelink = dp1->di_freelink; 6673 *dp1 = *ip->i_din1; 6674 } else { 6675 dp2 = ((struct ufs2_dinode *)bp->b_data + 6676 ino_to_fsbo(fs, ip->i_number)); 6677 ip->i_din2->di_freelink = dp2->di_freelink; 6678 *dp2 = *ip->i_din2; 6679 } 6680 /* 6681 * Find and eliminate any inode dependencies. 6682 */ 6683 ACQUIRE_LOCK(&lk); 6684 dflags = DEPALLOC; 6685 if (IS_SNAPSHOT(ip)) 6686 dflags |= NODELAY; 6687 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6688 if ((inodedep->id_state & IOSTARTED) != 0) 6689 panic("softdep_setup_freeblocks: inode busy"); 6690 /* 6691 * Add the freeblks structure to the list of operations that 6692 * must await the zero'ed inode being written to disk. If we 6693 * still have a bitmap dependency (delay == 0), then the inode 6694 * has never been written to disk, so we can process the 6695 * freeblks below once we have deleted the dependencies. 6696 */ 6697 delay = (inodedep->id_state & DEPCOMPLETE); 6698 if (delay) 6699 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6700 else 6701 freeblks->fb_state |= COMPLETE; 6702 /* 6703 * Because the file length has been truncated to zero, any 6704 * pending block allocation dependency structures associated 6705 * with this inode are obsolete and can simply be de-allocated. 6706 * We must first merge the two dependency lists to get rid of 6707 * any duplicate freefrag structures, then purge the merged list. 6708 * If we still have a bitmap dependency, then the inode has never 6709 * been written to disk, so we can free any fragments without delay. 6710 */ 6711 if (flags & IO_NORMAL) { 6712 merge_inode_lists(&inodedep->id_newinoupdt, 6713 &inodedep->id_inoupdt); 6714 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 6715 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6716 freeblks); 6717 } 6718 if (flags & IO_EXT) { 6719 merge_inode_lists(&inodedep->id_newextupdt, 6720 &inodedep->id_extupdt); 6721 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6722 cancel_allocdirect(&inodedep->id_extupdt, adp, 6723 freeblks); 6724 } 6725 FREE_LOCK(&lk); 6726 bdwrite(bp); 6727 trunc_dependencies(ip, freeblks, -1, 0, flags); 6728 ACQUIRE_LOCK(&lk); 6729 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6730 (void) free_inodedep(inodedep); 6731 freeblks->fb_state |= DEPCOMPLETE; 6732 /* 6733 * If the inode with zeroed block pointers is now on disk 6734 * we can start freeing blocks. 6735 */ 6736 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6737 freeblks->fb_state |= INPROGRESS; 6738 else 6739 freeblks = NULL; 6740 FREE_LOCK(&lk); 6741 if (freeblks) 6742 handle_workitem_freeblocks(freeblks, 0); 6743 trunc_pages(ip, length, extblocks, flags); 6744 } 6745 6746 /* 6747 * Eliminate pages from the page cache that back parts of this inode and 6748 * adjust the vnode pager's idea of our size. This prevents stale data 6749 * from hanging around in the page cache. 6750 */ 6751 static void 6752 trunc_pages(ip, length, extblocks, flags) 6753 struct inode *ip; 6754 off_t length; 6755 ufs2_daddr_t extblocks; 6756 int flags; 6757 { 6758 struct vnode *vp; 6759 struct fs *fs; 6760 ufs_lbn_t lbn; 6761 off_t end, extend; 6762 6763 vp = ITOV(ip); 6764 fs = ip->i_fs; 6765 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 6766 if ((flags & IO_EXT) != 0) 6767 vn_pages_remove(vp, extend, 0); 6768 if ((flags & IO_NORMAL) == 0) 6769 return; 6770 BO_LOCK(&vp->v_bufobj); 6771 drain_output(vp); 6772 BO_UNLOCK(&vp->v_bufobj); 6773 /* 6774 * The vnode pager eliminates file pages we eliminate indirects 6775 * below. 6776 */ 6777 vnode_pager_setsize(vp, length); 6778 /* 6779 * Calculate the end based on the last indirect we want to keep. If 6780 * the block extends into indirects we can just use the negative of 6781 * its lbn. Doubles and triples exist at lower numbers so we must 6782 * be careful not to remove those, if they exist. double and triple 6783 * indirect lbns do not overlap with others so it is not important 6784 * to verify how many levels are required. 6785 */ 6786 lbn = lblkno(fs, length); 6787 if (lbn >= NDADDR) { 6788 /* Calculate the virtual lbn of the triple indirect. */ 6789 lbn = -lbn - (NIADDR - 1); 6790 end = OFF_TO_IDX(lblktosize(fs, lbn)); 6791 } else 6792 end = extend; 6793 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 6794 } 6795 6796 /* 6797 * See if the buf bp is in the range eliminated by truncation. 6798 */ 6799 static int 6800 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 6801 struct buf *bp; 6802 int *blkoffp; 6803 ufs_lbn_t lastlbn; 6804 int lastoff; 6805 int flags; 6806 { 6807 ufs_lbn_t lbn; 6808 6809 *blkoffp = 0; 6810 /* Only match ext/normal blocks as appropriate. */ 6811 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 6812 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 6813 return (0); 6814 /* ALTDATA is always a full truncation. */ 6815 if ((bp->b_xflags & BX_ALTDATA) != 0) 6816 return (1); 6817 /* -1 is full truncation. */ 6818 if (lastlbn == -1) 6819 return (1); 6820 /* 6821 * If this is a partial truncate we only want those 6822 * blocks and indirect blocks that cover the range 6823 * we're after. 6824 */ 6825 lbn = bp->b_lblkno; 6826 if (lbn < 0) 6827 lbn = -(lbn + lbn_level(lbn)); 6828 if (lbn < lastlbn) 6829 return (0); 6830 /* Here we only truncate lblkno if it's partial. */ 6831 if (lbn == lastlbn) { 6832 if (lastoff == 0) 6833 return (0); 6834 *blkoffp = lastoff; 6835 } 6836 return (1); 6837 } 6838 6839 /* 6840 * Eliminate any dependencies that exist in memory beyond lblkno:off 6841 */ 6842 static void 6843 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 6844 struct inode *ip; 6845 struct freeblks *freeblks; 6846 ufs_lbn_t lastlbn; 6847 int lastoff; 6848 int flags; 6849 { 6850 struct bufobj *bo; 6851 struct vnode *vp; 6852 struct buf *bp; 6853 struct fs *fs; 6854 int blkoff; 6855 6856 /* 6857 * We must wait for any I/O in progress to finish so that 6858 * all potential buffers on the dirty list will be visible. 6859 * Once they are all there, walk the list and get rid of 6860 * any dependencies. 6861 */ 6862 fs = ip->i_fs; 6863 vp = ITOV(ip); 6864 bo = &vp->v_bufobj; 6865 BO_LOCK(bo); 6866 drain_output(vp); 6867 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 6868 bp->b_vflags &= ~BV_SCANNED; 6869 restart: 6870 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 6871 if (bp->b_vflags & BV_SCANNED) 6872 continue; 6873 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6874 bp->b_vflags |= BV_SCANNED; 6875 continue; 6876 } 6877 if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL) 6878 goto restart; 6879 BO_UNLOCK(bo); 6880 if (deallocate_dependencies(bp, freeblks, blkoff)) 6881 bqrelse(bp); 6882 else 6883 brelse(bp); 6884 BO_LOCK(bo); 6885 goto restart; 6886 } 6887 /* 6888 * Now do the work of vtruncbuf while also matching indirect blocks. 6889 */ 6890 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 6891 bp->b_vflags &= ~BV_SCANNED; 6892 cleanrestart: 6893 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 6894 if (bp->b_vflags & BV_SCANNED) 6895 continue; 6896 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6897 bp->b_vflags |= BV_SCANNED; 6898 continue; 6899 } 6900 if (BUF_LOCK(bp, 6901 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6902 BO_MTX(bo)) == ENOLCK) { 6903 BO_LOCK(bo); 6904 goto cleanrestart; 6905 } 6906 bp->b_vflags |= BV_SCANNED; 6907 BO_LOCK(bo); 6908 bremfree(bp); 6909 BO_UNLOCK(bo); 6910 if (blkoff != 0) { 6911 allocbuf(bp, blkoff); 6912 bqrelse(bp); 6913 } else { 6914 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 6915 brelse(bp); 6916 } 6917 BO_LOCK(bo); 6918 goto cleanrestart; 6919 } 6920 drain_output(vp); 6921 BO_UNLOCK(bo); 6922 } 6923 6924 static int 6925 cancel_pagedep(pagedep, freeblks, blkoff) 6926 struct pagedep *pagedep; 6927 struct freeblks *freeblks; 6928 int blkoff; 6929 { 6930 struct jremref *jremref; 6931 struct jmvref *jmvref; 6932 struct dirrem *dirrem, *tmp; 6933 int i; 6934 6935 /* 6936 * Copy any directory remove dependencies to the list 6937 * to be processed after the freeblks proceeds. If 6938 * directory entry never made it to disk they 6939 * can be dumped directly onto the work list. 6940 */ 6941 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 6942 /* Skip this directory removal if it is intended to remain. */ 6943 if (dirrem->dm_offset < blkoff) 6944 continue; 6945 /* 6946 * If there are any dirrems we wait for the journal write 6947 * to complete and then restart the buf scan as the lock 6948 * has been dropped. 6949 */ 6950 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 6951 jwait(&jremref->jr_list, MNT_WAIT); 6952 return (ERESTART); 6953 } 6954 LIST_REMOVE(dirrem, dm_next); 6955 dirrem->dm_dirinum = pagedep->pd_ino; 6956 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 6957 } 6958 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 6959 jwait(&jmvref->jm_list, MNT_WAIT); 6960 return (ERESTART); 6961 } 6962 /* 6963 * When we're partially truncating a pagedep we just want to flush 6964 * journal entries and return. There can not be any adds in the 6965 * truncated portion of the directory and newblk must remain if 6966 * part of the block remains. 6967 */ 6968 if (blkoff != 0) { 6969 struct diradd *dap; 6970 6971 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 6972 if (dap->da_offset > blkoff) 6973 panic("cancel_pagedep: diradd %p off %d > %d", 6974 dap, dap->da_offset, blkoff); 6975 for (i = 0; i < DAHASHSZ; i++) 6976 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 6977 if (dap->da_offset > blkoff) 6978 panic("cancel_pagedep: diradd %p off %d > %d", 6979 dap, dap->da_offset, blkoff); 6980 return (0); 6981 } 6982 /* 6983 * There should be no directory add dependencies present 6984 * as the directory could not be truncated until all 6985 * children were removed. 6986 */ 6987 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 6988 ("deallocate_dependencies: pendinghd != NULL")); 6989 for (i = 0; i < DAHASHSZ; i++) 6990 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 6991 ("deallocate_dependencies: diraddhd != NULL")); 6992 if ((pagedep->pd_state & NEWBLOCK) != 0) 6993 free_newdirblk(pagedep->pd_newdirblk); 6994 if (free_pagedep(pagedep) == 0) 6995 panic("Failed to free pagedep %p", pagedep); 6996 return (0); 6997 } 6998 6999 /* 7000 * Reclaim any dependency structures from a buffer that is about to 7001 * be reallocated to a new vnode. The buffer must be locked, thus, 7002 * no I/O completion operations can occur while we are manipulating 7003 * its associated dependencies. The mutex is held so that other I/O's 7004 * associated with related dependencies do not occur. 7005 */ 7006 static int 7007 deallocate_dependencies(bp, freeblks, off) 7008 struct buf *bp; 7009 struct freeblks *freeblks; 7010 int off; 7011 { 7012 struct indirdep *indirdep; 7013 struct pagedep *pagedep; 7014 struct allocdirect *adp; 7015 struct worklist *wk, *wkn; 7016 7017 ACQUIRE_LOCK(&lk); 7018 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7019 switch (wk->wk_type) { 7020 case D_INDIRDEP: 7021 indirdep = WK_INDIRDEP(wk); 7022 if (bp->b_lblkno >= 0 || 7023 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7024 panic("deallocate_dependencies: not indir"); 7025 cancel_indirdep(indirdep, bp, freeblks); 7026 continue; 7027 7028 case D_PAGEDEP: 7029 pagedep = WK_PAGEDEP(wk); 7030 if (cancel_pagedep(pagedep, freeblks, off)) { 7031 FREE_LOCK(&lk); 7032 return (ERESTART); 7033 } 7034 continue; 7035 7036 case D_ALLOCINDIR: 7037 /* 7038 * Simply remove the allocindir, we'll find it via 7039 * the indirdep where we can clear pointers if 7040 * needed. 7041 */ 7042 WORKLIST_REMOVE(wk); 7043 continue; 7044 7045 case D_FREEWORK: 7046 /* 7047 * A truncation is waiting for the zero'd pointers 7048 * to be written. It can be freed when the freeblks 7049 * is journaled. 7050 */ 7051 WORKLIST_REMOVE(wk); 7052 wk->wk_state |= ONDEPLIST; 7053 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7054 break; 7055 7056 case D_ALLOCDIRECT: 7057 adp = WK_ALLOCDIRECT(wk); 7058 if (off != 0) 7059 continue; 7060 /* FALLTHROUGH */ 7061 default: 7062 panic("deallocate_dependencies: Unexpected type %s", 7063 TYPENAME(wk->wk_type)); 7064 /* NOTREACHED */ 7065 } 7066 } 7067 FREE_LOCK(&lk); 7068 /* 7069 * Don't throw away this buf, we were partially truncating and 7070 * some deps may always remain. 7071 */ 7072 if (off) { 7073 allocbuf(bp, off); 7074 bp->b_vflags |= BV_SCANNED; 7075 return (EBUSY); 7076 } 7077 bp->b_flags |= B_INVAL | B_NOCACHE; 7078 7079 return (0); 7080 } 7081 7082 /* 7083 * An allocdirect is being canceled due to a truncate. We must make sure 7084 * the journal entry is released in concert with the blkfree that releases 7085 * the storage. Completed journal entries must not be released until the 7086 * space is no longer pointed to by the inode or in the bitmap. 7087 */ 7088 static void 7089 cancel_allocdirect(adphead, adp, freeblks) 7090 struct allocdirectlst *adphead; 7091 struct allocdirect *adp; 7092 struct freeblks *freeblks; 7093 { 7094 struct freework *freework; 7095 struct newblk *newblk; 7096 struct worklist *wk; 7097 7098 TAILQ_REMOVE(adphead, adp, ad_next); 7099 newblk = (struct newblk *)adp; 7100 freework = NULL; 7101 /* 7102 * Find the correct freework structure. 7103 */ 7104 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7105 if (wk->wk_type != D_FREEWORK) 7106 continue; 7107 freework = WK_FREEWORK(wk); 7108 if (freework->fw_blkno == newblk->nb_newblkno) 7109 break; 7110 } 7111 if (freework == NULL) 7112 panic("cancel_allocdirect: Freework not found"); 7113 /* 7114 * If a newblk exists at all we still have the journal entry that 7115 * initiated the allocation so we do not need to journal the free. 7116 */ 7117 cancel_jfreeblk(freeblks, freework->fw_blkno); 7118 /* 7119 * If the journal hasn't been written the jnewblk must be passed 7120 * to the call to ffs_blkfree that reclaims the space. We accomplish 7121 * this by linking the journal dependency into the freework to be 7122 * freed when freework_freeblock() is called. If the journal has 7123 * been written we can simply reclaim the journal space when the 7124 * freeblks work is complete. 7125 */ 7126 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7127 &freeblks->fb_jwork); 7128 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7129 } 7130 7131 7132 /* 7133 * Cancel a new block allocation. May be an indirect or direct block. We 7134 * remove it from various lists and return any journal record that needs to 7135 * be resolved by the caller. 7136 * 7137 * A special consideration is made for indirects which were never pointed 7138 * at on disk and will never be found once this block is released. 7139 */ 7140 static struct jnewblk * 7141 cancel_newblk(newblk, wk, wkhd) 7142 struct newblk *newblk; 7143 struct worklist *wk; 7144 struct workhead *wkhd; 7145 { 7146 struct jnewblk *jnewblk; 7147 7148 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7149 7150 newblk->nb_state |= GOINGAWAY; 7151 /* 7152 * Previously we traversed the completedhd on each indirdep 7153 * attached to this newblk to cancel them and gather journal 7154 * work. Since we need only the oldest journal segment and 7155 * the lowest point on the tree will always have the oldest 7156 * journal segment we are free to release the segments 7157 * of any subordinates and may leave the indirdep list to 7158 * indirdep_complete() when this newblk is freed. 7159 */ 7160 if (newblk->nb_state & ONDEPLIST) { 7161 newblk->nb_state &= ~ONDEPLIST; 7162 LIST_REMOVE(newblk, nb_deps); 7163 } 7164 if (newblk->nb_state & ONWORKLIST) 7165 WORKLIST_REMOVE(&newblk->nb_list); 7166 /* 7167 * If the journal entry hasn't been written we save a pointer to 7168 * the dependency that frees it until it is written or the 7169 * superseding operation completes. 7170 */ 7171 jnewblk = newblk->nb_jnewblk; 7172 if (jnewblk != NULL && wk != NULL) { 7173 newblk->nb_jnewblk = NULL; 7174 jnewblk->jn_dep = wk; 7175 } 7176 if (!LIST_EMPTY(&newblk->nb_jwork)) 7177 jwork_move(wkhd, &newblk->nb_jwork); 7178 /* 7179 * When truncating we must free the newdirblk early to remove 7180 * the pagedep from the hash before returning. 7181 */ 7182 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7183 free_newdirblk(WK_NEWDIRBLK(wk)); 7184 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7185 panic("cancel_newblk: extra newdirblk"); 7186 7187 return (jnewblk); 7188 } 7189 7190 /* 7191 * Schedule the freefrag associated with a newblk to be released once 7192 * the pointers are written and the previous block is no longer needed. 7193 */ 7194 static void 7195 newblk_freefrag(newblk) 7196 struct newblk *newblk; 7197 { 7198 struct freefrag *freefrag; 7199 7200 if (newblk->nb_freefrag == NULL) 7201 return; 7202 freefrag = newblk->nb_freefrag; 7203 newblk->nb_freefrag = NULL; 7204 freefrag->ff_state |= COMPLETE; 7205 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7206 add_to_worklist(&freefrag->ff_list, 0); 7207 } 7208 7209 /* 7210 * Free a newblk. Generate a new freefrag work request if appropriate. 7211 * This must be called after the inode pointer and any direct block pointers 7212 * are valid or fully removed via truncate or frag extension. 7213 */ 7214 static void 7215 free_newblk(newblk) 7216 struct newblk *newblk; 7217 { 7218 struct indirdep *indirdep; 7219 struct worklist *wk; 7220 7221 KASSERT(newblk->nb_jnewblk == NULL, 7222 ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk)); 7223 mtx_assert(&lk, MA_OWNED); 7224 newblk_freefrag(newblk); 7225 if (newblk->nb_state & ONDEPLIST) 7226 LIST_REMOVE(newblk, nb_deps); 7227 if (newblk->nb_state & ONWORKLIST) 7228 WORKLIST_REMOVE(&newblk->nb_list); 7229 LIST_REMOVE(newblk, nb_hash); 7230 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7231 free_newdirblk(WK_NEWDIRBLK(wk)); 7232 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7233 panic("free_newblk: extra newdirblk"); 7234 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7235 indirdep_complete(indirdep); 7236 handle_jwork(&newblk->nb_jwork); 7237 newblk->nb_list.wk_type = D_NEWBLK; 7238 WORKITEM_FREE(newblk, D_NEWBLK); 7239 } 7240 7241 /* 7242 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7243 * This routine must be called with splbio interrupts blocked. 7244 */ 7245 static void 7246 free_newdirblk(newdirblk) 7247 struct newdirblk *newdirblk; 7248 { 7249 struct pagedep *pagedep; 7250 struct diradd *dap; 7251 struct worklist *wk; 7252 7253 mtx_assert(&lk, MA_OWNED); 7254 WORKLIST_REMOVE(&newdirblk->db_list); 7255 /* 7256 * If the pagedep is still linked onto the directory buffer 7257 * dependency chain, then some of the entries on the 7258 * pd_pendinghd list may not be committed to disk yet. In 7259 * this case, we will simply clear the NEWBLOCK flag and 7260 * let the pd_pendinghd list be processed when the pagedep 7261 * is next written. If the pagedep is no longer on the buffer 7262 * dependency chain, then all the entries on the pd_pending 7263 * list are committed to disk and we can free them here. 7264 */ 7265 pagedep = newdirblk->db_pagedep; 7266 pagedep->pd_state &= ~NEWBLOCK; 7267 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7268 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7269 free_diradd(dap, NULL); 7270 /* 7271 * If no dependencies remain, the pagedep will be freed. 7272 */ 7273 free_pagedep(pagedep); 7274 } 7275 /* Should only ever be one item in the list. */ 7276 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7277 WORKLIST_REMOVE(wk); 7278 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7279 } 7280 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7281 } 7282 7283 /* 7284 * Prepare an inode to be freed. The actual free operation is not 7285 * done until the zero'ed inode has been written to disk. 7286 */ 7287 void 7288 softdep_freefile(pvp, ino, mode) 7289 struct vnode *pvp; 7290 ino_t ino; 7291 int mode; 7292 { 7293 struct inode *ip = VTOI(pvp); 7294 struct inodedep *inodedep; 7295 struct freefile *freefile; 7296 struct freeblks *freeblks; 7297 7298 /* 7299 * This sets up the inode de-allocation dependency. 7300 */ 7301 freefile = malloc(sizeof(struct freefile), 7302 M_FREEFILE, M_SOFTDEP_FLAGS); 7303 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7304 freefile->fx_mode = mode; 7305 freefile->fx_oldinum = ino; 7306 freefile->fx_devvp = ip->i_devvp; 7307 LIST_INIT(&freefile->fx_jwork); 7308 UFS_LOCK(ip->i_ump); 7309 ip->i_fs->fs_pendinginodes += 1; 7310 UFS_UNLOCK(ip->i_ump); 7311 7312 /* 7313 * If the inodedep does not exist, then the zero'ed inode has 7314 * been written to disk. If the allocated inode has never been 7315 * written to disk, then the on-disk inode is zero'ed. In either 7316 * case we can free the file immediately. If the journal was 7317 * canceled before being written the inode will never make it to 7318 * disk and we must send the canceled journal entrys to 7319 * ffs_freefile() to be cleared in conjunction with the bitmap. 7320 * Any blocks waiting on the inode to write can be safely freed 7321 * here as it will never been written. 7322 */ 7323 ACQUIRE_LOCK(&lk); 7324 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7325 if (inodedep) { 7326 /* 7327 * Clear out freeblks that no longer need to reference 7328 * this inode. 7329 */ 7330 while ((freeblks = 7331 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7332 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7333 fb_next); 7334 freeblks->fb_state &= ~ONDEPLIST; 7335 } 7336 /* 7337 * Remove this inode from the unlinked list. 7338 */ 7339 if (inodedep->id_state & UNLINKED) { 7340 /* 7341 * Save the journal work to be freed with the bitmap 7342 * before we clear UNLINKED. Otherwise it can be lost 7343 * if the inode block is written. 7344 */ 7345 handle_bufwait(inodedep, &freefile->fx_jwork); 7346 clear_unlinked_inodedep(inodedep); 7347 /* Re-acquire inodedep as we've dropped lk. */ 7348 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7349 } 7350 } 7351 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7352 FREE_LOCK(&lk); 7353 handle_workitem_freefile(freefile); 7354 return; 7355 } 7356 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7357 inodedep->id_state |= GOINGAWAY; 7358 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7359 FREE_LOCK(&lk); 7360 if (ip->i_number == ino) 7361 ip->i_flag |= IN_MODIFIED; 7362 } 7363 7364 /* 7365 * Check to see if an inode has never been written to disk. If 7366 * so free the inodedep and return success, otherwise return failure. 7367 * This routine must be called with splbio interrupts blocked. 7368 * 7369 * If we still have a bitmap dependency, then the inode has never 7370 * been written to disk. Drop the dependency as it is no longer 7371 * necessary since the inode is being deallocated. We set the 7372 * ALLCOMPLETE flags since the bitmap now properly shows that the 7373 * inode is not allocated. Even if the inode is actively being 7374 * written, it has been rolled back to its zero'ed state, so we 7375 * are ensured that a zero inode is what is on the disk. For short 7376 * lived files, this change will usually result in removing all the 7377 * dependencies from the inode so that it can be freed immediately. 7378 */ 7379 static int 7380 check_inode_unwritten(inodedep) 7381 struct inodedep *inodedep; 7382 { 7383 7384 mtx_assert(&lk, MA_OWNED); 7385 7386 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7387 !LIST_EMPTY(&inodedep->id_dirremhd) || 7388 !LIST_EMPTY(&inodedep->id_pendinghd) || 7389 !LIST_EMPTY(&inodedep->id_bufwait) || 7390 !LIST_EMPTY(&inodedep->id_inowait) || 7391 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7392 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7393 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7394 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7395 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7396 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7397 inodedep->id_mkdiradd != NULL || 7398 inodedep->id_nlinkdelta != 0) 7399 return (0); 7400 /* 7401 * Another process might be in initiate_write_inodeblock_ufs[12] 7402 * trying to allocate memory without holding "Softdep Lock". 7403 */ 7404 if ((inodedep->id_state & IOSTARTED) != 0 && 7405 inodedep->id_savedino1 == NULL) 7406 return (0); 7407 7408 if (inodedep->id_state & ONDEPLIST) 7409 LIST_REMOVE(inodedep, id_deps); 7410 inodedep->id_state &= ~ONDEPLIST; 7411 inodedep->id_state |= ALLCOMPLETE; 7412 inodedep->id_bmsafemap = NULL; 7413 if (inodedep->id_state & ONWORKLIST) 7414 WORKLIST_REMOVE(&inodedep->id_list); 7415 if (inodedep->id_savedino1 != NULL) { 7416 free(inodedep->id_savedino1, M_SAVEDINO); 7417 inodedep->id_savedino1 = NULL; 7418 } 7419 if (free_inodedep(inodedep) == 0) 7420 panic("check_inode_unwritten: busy inode"); 7421 return (1); 7422 } 7423 7424 /* 7425 * Try to free an inodedep structure. Return 1 if it could be freed. 7426 */ 7427 static int 7428 free_inodedep(inodedep) 7429 struct inodedep *inodedep; 7430 { 7431 7432 mtx_assert(&lk, MA_OWNED); 7433 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7434 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7435 !LIST_EMPTY(&inodedep->id_dirremhd) || 7436 !LIST_EMPTY(&inodedep->id_pendinghd) || 7437 !LIST_EMPTY(&inodedep->id_bufwait) || 7438 !LIST_EMPTY(&inodedep->id_inowait) || 7439 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7440 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7441 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7442 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7443 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7444 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7445 inodedep->id_mkdiradd != NULL || 7446 inodedep->id_nlinkdelta != 0 || 7447 inodedep->id_savedino1 != NULL) 7448 return (0); 7449 if (inodedep->id_state & ONDEPLIST) 7450 LIST_REMOVE(inodedep, id_deps); 7451 LIST_REMOVE(inodedep, id_hash); 7452 WORKITEM_FREE(inodedep, D_INODEDEP); 7453 return (1); 7454 } 7455 7456 /* 7457 * Free the block referenced by a freework structure. The parent freeblks 7458 * structure is released and completed when the final cg bitmap reaches 7459 * the disk. This routine may be freeing a jnewblk which never made it to 7460 * disk in which case we do not have to wait as the operation is undone 7461 * in memory immediately. 7462 */ 7463 static void 7464 freework_freeblock(freework) 7465 struct freework *freework; 7466 { 7467 struct freeblks *freeblks; 7468 struct jnewblk *jnewblk; 7469 struct ufsmount *ump; 7470 struct workhead wkhd; 7471 struct fs *fs; 7472 int bsize; 7473 int needj; 7474 7475 mtx_assert(&lk, MA_OWNED); 7476 /* 7477 * Handle partial truncate separately. 7478 */ 7479 if (freework->fw_indir) { 7480 complete_trunc_indir(freework); 7481 return; 7482 } 7483 freeblks = freework->fw_freeblks; 7484 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7485 fs = ump->um_fs; 7486 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7487 bsize = lfragtosize(fs, freework->fw_frags); 7488 LIST_INIT(&wkhd); 7489 /* 7490 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7491 * on the indirblk hashtable and prevents premature freeing. 7492 */ 7493 freework->fw_state |= DEPCOMPLETE; 7494 /* 7495 * SUJ needs to wait for the segment referencing freed indirect 7496 * blocks to expire so that we know the checker will not confuse 7497 * a re-allocated indirect block with its old contents. 7498 */ 7499 if (needj && freework->fw_lbn <= -NDADDR) 7500 indirblk_insert(freework); 7501 /* 7502 * If we are canceling an existing jnewblk pass it to the free 7503 * routine, otherwise pass the freeblk which will ultimately 7504 * release the freeblks. If we're not journaling, we can just 7505 * free the freeblks immediately. 7506 */ 7507 jnewblk = freework->fw_jnewblk; 7508 if (jnewblk != NULL) { 7509 cancel_jnewblk(jnewblk, &wkhd); 7510 needj = 0; 7511 } else if (needj) { 7512 freework->fw_state |= DELAYEDFREE; 7513 freeblks->fb_cgwait++; 7514 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7515 } 7516 FREE_LOCK(&lk); 7517 freeblks_free(ump, freeblks, btodb(bsize)); 7518 CTR4(KTR_SUJ, 7519 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7520 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7521 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7522 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7523 ACQUIRE_LOCK(&lk); 7524 /* 7525 * The jnewblk will be discarded and the bits in the map never 7526 * made it to disk. We can immediately free the freeblk. 7527 */ 7528 if (needj == 0) 7529 handle_written_freework(freework); 7530 } 7531 7532 /* 7533 * We enqueue freework items that need processing back on the freeblks and 7534 * add the freeblks to the worklist. This makes it easier to find all work 7535 * required to flush a truncation in process_truncates(). 7536 */ 7537 static void 7538 freework_enqueue(freework) 7539 struct freework *freework; 7540 { 7541 struct freeblks *freeblks; 7542 7543 freeblks = freework->fw_freeblks; 7544 if ((freework->fw_state & INPROGRESS) == 0) 7545 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7546 if ((freeblks->fb_state & 7547 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7548 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7549 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7550 } 7551 7552 /* 7553 * Start, continue, or finish the process of freeing an indirect block tree. 7554 * The free operation may be paused at any point with fw_off containing the 7555 * offset to restart from. This enables us to implement some flow control 7556 * for large truncates which may fan out and generate a huge number of 7557 * dependencies. 7558 */ 7559 static void 7560 handle_workitem_indirblk(freework) 7561 struct freework *freework; 7562 { 7563 struct freeblks *freeblks; 7564 struct ufsmount *ump; 7565 struct fs *fs; 7566 7567 freeblks = freework->fw_freeblks; 7568 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7569 fs = ump->um_fs; 7570 if (freework->fw_state & DEPCOMPLETE) { 7571 handle_written_freework(freework); 7572 return; 7573 } 7574 if (freework->fw_off == NINDIR(fs)) { 7575 freework_freeblock(freework); 7576 return; 7577 } 7578 freework->fw_state |= INPROGRESS; 7579 FREE_LOCK(&lk); 7580 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7581 freework->fw_lbn); 7582 ACQUIRE_LOCK(&lk); 7583 } 7584 7585 /* 7586 * Called when a freework structure attached to a cg buf is written. The 7587 * ref on either the parent or the freeblks structure is released and 7588 * the freeblks is added back to the worklist if there is more work to do. 7589 */ 7590 static void 7591 handle_written_freework(freework) 7592 struct freework *freework; 7593 { 7594 struct freeblks *freeblks; 7595 struct freework *parent; 7596 7597 freeblks = freework->fw_freeblks; 7598 parent = freework->fw_parent; 7599 if (freework->fw_state & DELAYEDFREE) 7600 freeblks->fb_cgwait--; 7601 freework->fw_state |= COMPLETE; 7602 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7603 WORKITEM_FREE(freework, D_FREEWORK); 7604 if (parent) { 7605 if (--parent->fw_ref == 0) 7606 freework_enqueue(parent); 7607 return; 7608 } 7609 if (--freeblks->fb_ref != 0) 7610 return; 7611 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7612 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7613 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7614 } 7615 7616 /* 7617 * This workitem routine performs the block de-allocation. 7618 * The workitem is added to the pending list after the updated 7619 * inode block has been written to disk. As mentioned above, 7620 * checks regarding the number of blocks de-allocated (compared 7621 * to the number of blocks allocated for the file) are also 7622 * performed in this function. 7623 */ 7624 static int 7625 handle_workitem_freeblocks(freeblks, flags) 7626 struct freeblks *freeblks; 7627 int flags; 7628 { 7629 struct freework *freework; 7630 struct newblk *newblk; 7631 struct allocindir *aip; 7632 struct ufsmount *ump; 7633 struct worklist *wk; 7634 7635 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7636 ("handle_workitem_freeblocks: Journal entries not written.")); 7637 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7638 ACQUIRE_LOCK(&lk); 7639 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7640 WORKLIST_REMOVE(wk); 7641 switch (wk->wk_type) { 7642 case D_DIRREM: 7643 wk->wk_state |= COMPLETE; 7644 add_to_worklist(wk, 0); 7645 continue; 7646 7647 case D_ALLOCDIRECT: 7648 free_newblk(WK_NEWBLK(wk)); 7649 continue; 7650 7651 case D_ALLOCINDIR: 7652 aip = WK_ALLOCINDIR(wk); 7653 freework = NULL; 7654 if (aip->ai_state & DELAYEDFREE) { 7655 FREE_LOCK(&lk); 7656 freework = newfreework(ump, freeblks, NULL, 7657 aip->ai_lbn, aip->ai_newblkno, 7658 ump->um_fs->fs_frag, 0, 0); 7659 ACQUIRE_LOCK(&lk); 7660 } 7661 newblk = WK_NEWBLK(wk); 7662 if (newblk->nb_jnewblk) { 7663 freework->fw_jnewblk = newblk->nb_jnewblk; 7664 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7665 newblk->nb_jnewblk = NULL; 7666 } 7667 free_newblk(newblk); 7668 continue; 7669 7670 case D_FREEWORK: 7671 freework = WK_FREEWORK(wk); 7672 if (freework->fw_lbn <= -NDADDR) 7673 handle_workitem_indirblk(freework); 7674 else 7675 freework_freeblock(freework); 7676 continue; 7677 default: 7678 panic("handle_workitem_freeblocks: Unknown type %s", 7679 TYPENAME(wk->wk_type)); 7680 } 7681 } 7682 if (freeblks->fb_ref != 0) { 7683 freeblks->fb_state &= ~INPROGRESS; 7684 wake_worklist(&freeblks->fb_list); 7685 freeblks = NULL; 7686 } 7687 FREE_LOCK(&lk); 7688 if (freeblks) 7689 return handle_complete_freeblocks(freeblks, flags); 7690 return (0); 7691 } 7692 7693 /* 7694 * Handle completion of block free via truncate. This allows fs_pending 7695 * to track the actual free block count more closely than if we only updated 7696 * it at the end. We must be careful to handle cases where the block count 7697 * on free was incorrect. 7698 */ 7699 static void 7700 freeblks_free(ump, freeblks, blocks) 7701 struct ufsmount *ump; 7702 struct freeblks *freeblks; 7703 int blocks; 7704 { 7705 struct fs *fs; 7706 ufs2_daddr_t remain; 7707 7708 UFS_LOCK(ump); 7709 remain = -freeblks->fb_chkcnt; 7710 freeblks->fb_chkcnt += blocks; 7711 if (remain > 0) { 7712 if (remain < blocks) 7713 blocks = remain; 7714 fs = ump->um_fs; 7715 fs->fs_pendingblocks -= blocks; 7716 } 7717 UFS_UNLOCK(ump); 7718 } 7719 7720 /* 7721 * Once all of the freework workitems are complete we can retire the 7722 * freeblocks dependency and any journal work awaiting completion. This 7723 * can not be called until all other dependencies are stable on disk. 7724 */ 7725 static int 7726 handle_complete_freeblocks(freeblks, flags) 7727 struct freeblks *freeblks; 7728 int flags; 7729 { 7730 struct inodedep *inodedep; 7731 struct inode *ip; 7732 struct vnode *vp; 7733 struct fs *fs; 7734 struct ufsmount *ump; 7735 ufs2_daddr_t spare; 7736 7737 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7738 fs = ump->um_fs; 7739 flags = LK_EXCLUSIVE | flags; 7740 spare = freeblks->fb_chkcnt; 7741 7742 /* 7743 * If we did not release the expected number of blocks we may have 7744 * to adjust the inode block count here. Only do so if it wasn't 7745 * a truncation to zero and the modrev still matches. 7746 */ 7747 if (spare && freeblks->fb_len != 0) { 7748 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7749 flags, &vp, FFSV_FORCEINSMQ) != 0) 7750 return (EBUSY); 7751 ip = VTOI(vp); 7752 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 7753 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 7754 ip->i_flag |= IN_CHANGE; 7755 /* 7756 * We must wait so this happens before the 7757 * journal is reclaimed. 7758 */ 7759 ffs_update(vp, 1); 7760 } 7761 vput(vp); 7762 } 7763 if (spare < 0) { 7764 UFS_LOCK(ump); 7765 fs->fs_pendingblocks += spare; 7766 UFS_UNLOCK(ump); 7767 } 7768 #ifdef QUOTA 7769 /* Handle spare. */ 7770 if (spare) 7771 quotaadj(freeblks->fb_quota, ump, -spare); 7772 quotarele(freeblks->fb_quota); 7773 #endif 7774 ACQUIRE_LOCK(&lk); 7775 if (freeblks->fb_state & ONDEPLIST) { 7776 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7777 0, &inodedep); 7778 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 7779 freeblks->fb_state &= ~ONDEPLIST; 7780 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 7781 free_inodedep(inodedep); 7782 } 7783 /* 7784 * All of the freeblock deps must be complete prior to this call 7785 * so it's now safe to complete earlier outstanding journal entries. 7786 */ 7787 handle_jwork(&freeblks->fb_jwork); 7788 WORKITEM_FREE(freeblks, D_FREEBLKS); 7789 FREE_LOCK(&lk); 7790 return (0); 7791 } 7792 7793 /* 7794 * Release blocks associated with the freeblks and stored in the indirect 7795 * block dbn. If level is greater than SINGLE, the block is an indirect block 7796 * and recursive calls to indirtrunc must be used to cleanse other indirect 7797 * blocks. 7798 * 7799 * This handles partial and complete truncation of blocks. Partial is noted 7800 * with goingaway == 0. In this case the freework is completed after the 7801 * zero'd indirects are written to disk. For full truncation the freework 7802 * is completed after the block is freed. 7803 */ 7804 static void 7805 indir_trunc(freework, dbn, lbn) 7806 struct freework *freework; 7807 ufs2_daddr_t dbn; 7808 ufs_lbn_t lbn; 7809 { 7810 struct freework *nfreework; 7811 struct workhead wkhd; 7812 struct freeblks *freeblks; 7813 struct buf *bp; 7814 struct fs *fs; 7815 struct indirdep *indirdep; 7816 struct ufsmount *ump; 7817 ufs1_daddr_t *bap1 = 0; 7818 ufs2_daddr_t nb, nnb, *bap2 = 0; 7819 ufs_lbn_t lbnadd, nlbn; 7820 int i, nblocks, ufs1fmt; 7821 int freedblocks; 7822 int goingaway; 7823 int freedeps; 7824 int needj; 7825 int level; 7826 int cnt; 7827 7828 freeblks = freework->fw_freeblks; 7829 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7830 fs = ump->um_fs; 7831 /* 7832 * Get buffer of block pointers to be freed. There are three cases: 7833 * 7834 * 1) Partial truncate caches the indirdep pointer in the freework 7835 * which provides us a back copy to the save bp which holds the 7836 * pointers we want to clear. When this completes the zero 7837 * pointers are written to the real copy. 7838 * 2) The indirect is being completely truncated, cancel_indirdep() 7839 * eliminated the real copy and placed the indirdep on the saved 7840 * copy. The indirdep and buf are discarded when this completes. 7841 * 3) The indirect was not in memory, we read a copy off of the disk 7842 * using the devvp and drop and invalidate the buffer when we're 7843 * done. 7844 */ 7845 goingaway = 1; 7846 indirdep = NULL; 7847 if (freework->fw_indir != NULL) { 7848 goingaway = 0; 7849 indirdep = freework->fw_indir; 7850 bp = indirdep->ir_savebp; 7851 if (bp == NULL || bp->b_blkno != dbn) 7852 panic("indir_trunc: Bad saved buf %p blkno %jd", 7853 bp, (intmax_t)dbn); 7854 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 7855 /* 7856 * The lock prevents the buf dep list from changing and 7857 * indirects on devvp should only ever have one dependency. 7858 */ 7859 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 7860 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 7861 panic("indir_trunc: Bad indirdep %p from buf %p", 7862 indirdep, bp); 7863 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 7864 NOCRED, &bp) != 0) { 7865 brelse(bp); 7866 return; 7867 } 7868 ACQUIRE_LOCK(&lk); 7869 /* Protects against a race with complete_trunc_indir(). */ 7870 freework->fw_state &= ~INPROGRESS; 7871 /* 7872 * If we have an indirdep we need to enforce the truncation order 7873 * and discard it when it is complete. 7874 */ 7875 if (indirdep) { 7876 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 7877 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 7878 /* 7879 * Add the complete truncate to the list on the 7880 * indirdep to enforce in-order processing. 7881 */ 7882 if (freework->fw_indir == NULL) 7883 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 7884 freework, fw_next); 7885 FREE_LOCK(&lk); 7886 return; 7887 } 7888 /* 7889 * If we're goingaway, free the indirdep. Otherwise it will 7890 * linger until the write completes. 7891 */ 7892 if (goingaway) { 7893 free_indirdep(indirdep); 7894 ump->um_numindirdeps -= 1; 7895 } 7896 } 7897 FREE_LOCK(&lk); 7898 /* Initialize pointers depending on block size. */ 7899 if (ump->um_fstype == UFS1) { 7900 bap1 = (ufs1_daddr_t *)bp->b_data; 7901 nb = bap1[freework->fw_off]; 7902 ufs1fmt = 1; 7903 } else { 7904 bap2 = (ufs2_daddr_t *)bp->b_data; 7905 nb = bap2[freework->fw_off]; 7906 ufs1fmt = 0; 7907 } 7908 level = lbn_level(lbn); 7909 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 7910 lbnadd = lbn_offset(fs, level); 7911 nblocks = btodb(fs->fs_bsize); 7912 nfreework = freework; 7913 freedeps = 0; 7914 cnt = 0; 7915 /* 7916 * Reclaim blocks. Traverses into nested indirect levels and 7917 * arranges for the current level to be freed when subordinates 7918 * are free when journaling. 7919 */ 7920 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 7921 if (i != NINDIR(fs) - 1) { 7922 if (ufs1fmt) 7923 nnb = bap1[i+1]; 7924 else 7925 nnb = bap2[i+1]; 7926 } else 7927 nnb = 0; 7928 if (nb == 0) 7929 continue; 7930 cnt++; 7931 if (level != 0) { 7932 nlbn = (lbn + 1) - (i * lbnadd); 7933 if (needj != 0) { 7934 nfreework = newfreework(ump, freeblks, freework, 7935 nlbn, nb, fs->fs_frag, 0, 0); 7936 freedeps++; 7937 } 7938 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 7939 } else { 7940 struct freedep *freedep; 7941 7942 /* 7943 * Attempt to aggregate freedep dependencies for 7944 * all blocks being released to the same CG. 7945 */ 7946 LIST_INIT(&wkhd); 7947 if (needj != 0 && 7948 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 7949 freedep = newfreedep(freework); 7950 WORKLIST_INSERT_UNLOCKED(&wkhd, 7951 &freedep->fd_list); 7952 freedeps++; 7953 } 7954 CTR3(KTR_SUJ, 7955 "indir_trunc: ino %d blkno %jd size %ld", 7956 freeblks->fb_inum, nb, fs->fs_bsize); 7957 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 7958 fs->fs_bsize, freeblks->fb_inum, 7959 freeblks->fb_vtype, &wkhd); 7960 } 7961 } 7962 if (goingaway) { 7963 bp->b_flags |= B_INVAL | B_NOCACHE; 7964 brelse(bp); 7965 } 7966 freedblocks = 0; 7967 if (level == 0) 7968 freedblocks = (nblocks * cnt); 7969 if (needj == 0) 7970 freedblocks += nblocks; 7971 freeblks_free(ump, freeblks, freedblocks); 7972 /* 7973 * If we are journaling set up the ref counts and offset so this 7974 * indirect can be completed when its children are free. 7975 */ 7976 if (needj) { 7977 ACQUIRE_LOCK(&lk); 7978 freework->fw_off = i; 7979 freework->fw_ref += freedeps; 7980 freework->fw_ref -= NINDIR(fs) + 1; 7981 if (level == 0) 7982 freeblks->fb_cgwait += freedeps; 7983 if (freework->fw_ref == 0) 7984 freework_freeblock(freework); 7985 FREE_LOCK(&lk); 7986 return; 7987 } 7988 /* 7989 * If we're not journaling we can free the indirect now. 7990 */ 7991 dbn = dbtofsb(fs, dbn); 7992 CTR3(KTR_SUJ, 7993 "indir_trunc 2: ino %d blkno %jd size %ld", 7994 freeblks->fb_inum, dbn, fs->fs_bsize); 7995 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 7996 freeblks->fb_inum, freeblks->fb_vtype, NULL); 7997 /* Non SUJ softdep does single-threaded truncations. */ 7998 if (freework->fw_blkno == dbn) { 7999 freework->fw_state |= ALLCOMPLETE; 8000 ACQUIRE_LOCK(&lk); 8001 handle_written_freework(freework); 8002 FREE_LOCK(&lk); 8003 } 8004 return; 8005 } 8006 8007 /* 8008 * Cancel an allocindir when it is removed via truncation. When bp is not 8009 * NULL the indirect never appeared on disk and is scheduled to be freed 8010 * independently of the indir so we can more easily track journal work. 8011 */ 8012 static void 8013 cancel_allocindir(aip, bp, freeblks, trunc) 8014 struct allocindir *aip; 8015 struct buf *bp; 8016 struct freeblks *freeblks; 8017 int trunc; 8018 { 8019 struct indirdep *indirdep; 8020 struct freefrag *freefrag; 8021 struct newblk *newblk; 8022 8023 newblk = (struct newblk *)aip; 8024 LIST_REMOVE(aip, ai_next); 8025 /* 8026 * We must eliminate the pointer in bp if it must be freed on its 8027 * own due to partial truncate or pending journal work. 8028 */ 8029 if (bp && (trunc || newblk->nb_jnewblk)) { 8030 /* 8031 * Clear the pointer and mark the aip to be freed 8032 * directly if it never existed on disk. 8033 */ 8034 aip->ai_state |= DELAYEDFREE; 8035 indirdep = aip->ai_indirdep; 8036 if (indirdep->ir_state & UFS1FMT) 8037 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8038 else 8039 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8040 } 8041 /* 8042 * When truncating the previous pointer will be freed via 8043 * savedbp. Eliminate the freefrag which would dup free. 8044 */ 8045 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8046 newblk->nb_freefrag = NULL; 8047 if (freefrag->ff_jdep) 8048 cancel_jfreefrag( 8049 WK_JFREEFRAG(freefrag->ff_jdep)); 8050 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8051 WORKITEM_FREE(freefrag, D_FREEFRAG); 8052 } 8053 /* 8054 * If the journal hasn't been written the jnewblk must be passed 8055 * to the call to ffs_blkfree that reclaims the space. We accomplish 8056 * this by leaving the journal dependency on the newblk to be freed 8057 * when a freework is created in handle_workitem_freeblocks(). 8058 */ 8059 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8060 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8061 } 8062 8063 /* 8064 * Create the mkdir dependencies for . and .. in a new directory. Link them 8065 * in to a newdirblk so any subsequent additions are tracked properly. The 8066 * caller is responsible for adding the mkdir1 dependency to the journal 8067 * and updating id_mkdiradd. This function returns with lk held. 8068 */ 8069 static struct mkdir * 8070 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8071 struct diradd *dap; 8072 ino_t newinum; 8073 ino_t dinum; 8074 struct buf *newdirbp; 8075 struct mkdir **mkdirp; 8076 { 8077 struct newblk *newblk; 8078 struct pagedep *pagedep; 8079 struct inodedep *inodedep; 8080 struct newdirblk *newdirblk = 0; 8081 struct mkdir *mkdir1, *mkdir2; 8082 struct worklist *wk; 8083 struct jaddref *jaddref; 8084 struct mount *mp; 8085 8086 mp = dap->da_list.wk_mp; 8087 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8088 M_SOFTDEP_FLAGS); 8089 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8090 LIST_INIT(&newdirblk->db_mkdir); 8091 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8092 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8093 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8094 mkdir1->md_diradd = dap; 8095 mkdir1->md_jaddref = NULL; 8096 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8097 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8098 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8099 mkdir2->md_diradd = dap; 8100 mkdir2->md_jaddref = NULL; 8101 if (MOUNTEDSUJ(mp) == 0) { 8102 mkdir1->md_state |= DEPCOMPLETE; 8103 mkdir2->md_state |= DEPCOMPLETE; 8104 } 8105 /* 8106 * Dependency on "." and ".." being written to disk. 8107 */ 8108 mkdir1->md_buf = newdirbp; 8109 ACQUIRE_LOCK(&lk); 8110 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 8111 /* 8112 * We must link the pagedep, allocdirect, and newdirblk for 8113 * the initial file page so the pointer to the new directory 8114 * is not written until the directory contents are live and 8115 * any subsequent additions are not marked live until the 8116 * block is reachable via the inode. 8117 */ 8118 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8119 panic("setup_newdir: lost pagedep"); 8120 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8121 if (wk->wk_type == D_ALLOCDIRECT) 8122 break; 8123 if (wk == NULL) 8124 panic("setup_newdir: lost allocdirect"); 8125 if (pagedep->pd_state & NEWBLOCK) 8126 panic("setup_newdir: NEWBLOCK already set"); 8127 newblk = WK_NEWBLK(wk); 8128 pagedep->pd_state |= NEWBLOCK; 8129 pagedep->pd_newdirblk = newdirblk; 8130 newdirblk->db_pagedep = pagedep; 8131 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8132 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8133 /* 8134 * Look up the inodedep for the parent directory so that we 8135 * can link mkdir2 into the pending dotdot jaddref or 8136 * the inode write if there is none. If the inode is 8137 * ALLCOMPLETE and no jaddref is present all dependencies have 8138 * been satisfied and mkdir2 can be freed. 8139 */ 8140 inodedep_lookup(mp, dinum, 0, &inodedep); 8141 if (MOUNTEDSUJ(mp)) { 8142 if (inodedep == NULL) 8143 panic("setup_newdir: Lost parent."); 8144 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8145 inoreflst); 8146 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8147 (jaddref->ja_state & MKDIR_PARENT), 8148 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8149 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 8150 mkdir2->md_jaddref = jaddref; 8151 jaddref->ja_mkdir = mkdir2; 8152 } else if (inodedep == NULL || 8153 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8154 dap->da_state &= ~MKDIR_PARENT; 8155 WORKITEM_FREE(mkdir2, D_MKDIR); 8156 mkdir2 = NULL; 8157 } else { 8158 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 8159 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8160 } 8161 *mkdirp = mkdir2; 8162 8163 return (mkdir1); 8164 } 8165 8166 /* 8167 * Directory entry addition dependencies. 8168 * 8169 * When adding a new directory entry, the inode (with its incremented link 8170 * count) must be written to disk before the directory entry's pointer to it. 8171 * Also, if the inode is newly allocated, the corresponding freemap must be 8172 * updated (on disk) before the directory entry's pointer. These requirements 8173 * are met via undo/redo on the directory entry's pointer, which consists 8174 * simply of the inode number. 8175 * 8176 * As directory entries are added and deleted, the free space within a 8177 * directory block can become fragmented. The ufs filesystem will compact 8178 * a fragmented directory block to make space for a new entry. When this 8179 * occurs, the offsets of previously added entries change. Any "diradd" 8180 * dependency structures corresponding to these entries must be updated with 8181 * the new offsets. 8182 */ 8183 8184 /* 8185 * This routine is called after the in-memory inode's link 8186 * count has been incremented, but before the directory entry's 8187 * pointer to the inode has been set. 8188 */ 8189 int 8190 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8191 struct buf *bp; /* buffer containing directory block */ 8192 struct inode *dp; /* inode for directory */ 8193 off_t diroffset; /* offset of new entry in directory */ 8194 ino_t newinum; /* inode referenced by new directory entry */ 8195 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8196 int isnewblk; /* entry is in a newly allocated block */ 8197 { 8198 int offset; /* offset of new entry within directory block */ 8199 ufs_lbn_t lbn; /* block in directory containing new entry */ 8200 struct fs *fs; 8201 struct diradd *dap; 8202 struct newblk *newblk; 8203 struct pagedep *pagedep; 8204 struct inodedep *inodedep; 8205 struct newdirblk *newdirblk = 0; 8206 struct mkdir *mkdir1, *mkdir2; 8207 struct jaddref *jaddref; 8208 struct mount *mp; 8209 int isindir; 8210 8211 /* 8212 * Whiteouts have no dependencies. 8213 */ 8214 if (newinum == WINO) { 8215 if (newdirbp != NULL) 8216 bdwrite(newdirbp); 8217 return (0); 8218 } 8219 jaddref = NULL; 8220 mkdir1 = mkdir2 = NULL; 8221 mp = UFSTOVFS(dp->i_ump); 8222 fs = dp->i_fs; 8223 lbn = lblkno(fs, diroffset); 8224 offset = blkoff(fs, diroffset); 8225 dap = malloc(sizeof(struct diradd), M_DIRADD, 8226 M_SOFTDEP_FLAGS|M_ZERO); 8227 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8228 dap->da_offset = offset; 8229 dap->da_newinum = newinum; 8230 dap->da_state = ATTACHED; 8231 LIST_INIT(&dap->da_jwork); 8232 isindir = bp->b_lblkno >= NDADDR; 8233 if (isnewblk && 8234 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8235 newdirblk = malloc(sizeof(struct newdirblk), 8236 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8237 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8238 LIST_INIT(&newdirblk->db_mkdir); 8239 } 8240 /* 8241 * If we're creating a new directory setup the dependencies and set 8242 * the dap state to wait for them. Otherwise it's COMPLETE and 8243 * we can move on. 8244 */ 8245 if (newdirbp == NULL) { 8246 dap->da_state |= DEPCOMPLETE; 8247 ACQUIRE_LOCK(&lk); 8248 } else { 8249 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8250 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8251 &mkdir2); 8252 } 8253 /* 8254 * Link into parent directory pagedep to await its being written. 8255 */ 8256 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8257 #ifdef DEBUG 8258 if (diradd_lookup(pagedep, offset) != NULL) 8259 panic("softdep_setup_directory_add: %p already at off %d\n", 8260 diradd_lookup(pagedep, offset), offset); 8261 #endif 8262 dap->da_pagedep = pagedep; 8263 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8264 da_pdlist); 8265 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8266 /* 8267 * If we're journaling, link the diradd into the jaddref so it 8268 * may be completed after the journal entry is written. Otherwise, 8269 * link the diradd into its inodedep. If the inode is not yet 8270 * written place it on the bufwait list, otherwise do the post-inode 8271 * write processing to put it on the id_pendinghd list. 8272 */ 8273 if (MOUNTEDSUJ(mp)) { 8274 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8275 inoreflst); 8276 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8277 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8278 jaddref->ja_diroff = diroffset; 8279 jaddref->ja_diradd = dap; 8280 add_to_journal(&jaddref->ja_list); 8281 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8282 diradd_inode_written(dap, inodedep); 8283 else 8284 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8285 /* 8286 * Add the journal entries for . and .. links now that the primary 8287 * link is written. 8288 */ 8289 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8290 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8291 inoreflst, if_deps); 8292 KASSERT(jaddref != NULL && 8293 jaddref->ja_ino == jaddref->ja_parent && 8294 (jaddref->ja_state & MKDIR_BODY), 8295 ("softdep_setup_directory_add: bad dot jaddref %p", 8296 jaddref)); 8297 mkdir1->md_jaddref = jaddref; 8298 jaddref->ja_mkdir = mkdir1; 8299 /* 8300 * It is important that the dotdot journal entry 8301 * is added prior to the dot entry since dot writes 8302 * both the dot and dotdot links. These both must 8303 * be added after the primary link for the journal 8304 * to remain consistent. 8305 */ 8306 add_to_journal(&mkdir2->md_jaddref->ja_list); 8307 add_to_journal(&jaddref->ja_list); 8308 } 8309 /* 8310 * If we are adding a new directory remember this diradd so that if 8311 * we rename it we can keep the dot and dotdot dependencies. If 8312 * we are adding a new name for an inode that has a mkdiradd we 8313 * must be in rename and we have to move the dot and dotdot 8314 * dependencies to this new name. The old name is being orphaned 8315 * soon. 8316 */ 8317 if (mkdir1 != NULL) { 8318 if (inodedep->id_mkdiradd != NULL) 8319 panic("softdep_setup_directory_add: Existing mkdir"); 8320 inodedep->id_mkdiradd = dap; 8321 } else if (inodedep->id_mkdiradd) 8322 merge_diradd(inodedep, dap); 8323 if (newdirblk) { 8324 /* 8325 * There is nothing to do if we are already tracking 8326 * this block. 8327 */ 8328 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8329 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8330 FREE_LOCK(&lk); 8331 return (0); 8332 } 8333 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8334 == 0) 8335 panic("softdep_setup_directory_add: lost entry"); 8336 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8337 pagedep->pd_state |= NEWBLOCK; 8338 pagedep->pd_newdirblk = newdirblk; 8339 newdirblk->db_pagedep = pagedep; 8340 FREE_LOCK(&lk); 8341 /* 8342 * If we extended into an indirect signal direnter to sync. 8343 */ 8344 if (isindir) 8345 return (1); 8346 return (0); 8347 } 8348 FREE_LOCK(&lk); 8349 return (0); 8350 } 8351 8352 /* 8353 * This procedure is called to change the offset of a directory 8354 * entry when compacting a directory block which must be owned 8355 * exclusively by the caller. Note that the actual entry movement 8356 * must be done in this procedure to ensure that no I/O completions 8357 * occur while the move is in progress. 8358 */ 8359 void 8360 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8361 struct buf *bp; /* Buffer holding directory block. */ 8362 struct inode *dp; /* inode for directory */ 8363 caddr_t base; /* address of dp->i_offset */ 8364 caddr_t oldloc; /* address of old directory location */ 8365 caddr_t newloc; /* address of new directory location */ 8366 int entrysize; /* size of directory entry */ 8367 { 8368 int offset, oldoffset, newoffset; 8369 struct pagedep *pagedep; 8370 struct jmvref *jmvref; 8371 struct diradd *dap; 8372 struct direct *de; 8373 struct mount *mp; 8374 ufs_lbn_t lbn; 8375 int flags; 8376 8377 mp = UFSTOVFS(dp->i_ump); 8378 de = (struct direct *)oldloc; 8379 jmvref = NULL; 8380 flags = 0; 8381 /* 8382 * Moves are always journaled as it would be too complex to 8383 * determine if any affected adds or removes are present in the 8384 * journal. 8385 */ 8386 if (MOUNTEDSUJ(mp)) { 8387 flags = DEPALLOC; 8388 jmvref = newjmvref(dp, de->d_ino, 8389 dp->i_offset + (oldloc - base), 8390 dp->i_offset + (newloc - base)); 8391 } 8392 lbn = lblkno(dp->i_fs, dp->i_offset); 8393 offset = blkoff(dp->i_fs, dp->i_offset); 8394 oldoffset = offset + (oldloc - base); 8395 newoffset = offset + (newloc - base); 8396 ACQUIRE_LOCK(&lk); 8397 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8398 goto done; 8399 dap = diradd_lookup(pagedep, oldoffset); 8400 if (dap) { 8401 dap->da_offset = newoffset; 8402 newoffset = DIRADDHASH(newoffset); 8403 oldoffset = DIRADDHASH(oldoffset); 8404 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8405 newoffset != oldoffset) { 8406 LIST_REMOVE(dap, da_pdlist); 8407 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8408 dap, da_pdlist); 8409 } 8410 } 8411 done: 8412 if (jmvref) { 8413 jmvref->jm_pagedep = pagedep; 8414 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8415 add_to_journal(&jmvref->jm_list); 8416 } 8417 bcopy(oldloc, newloc, entrysize); 8418 FREE_LOCK(&lk); 8419 } 8420 8421 /* 8422 * Move the mkdir dependencies and journal work from one diradd to another 8423 * when renaming a directory. The new name must depend on the mkdir deps 8424 * completing as the old name did. Directories can only have one valid link 8425 * at a time so one must be canonical. 8426 */ 8427 static void 8428 merge_diradd(inodedep, newdap) 8429 struct inodedep *inodedep; 8430 struct diradd *newdap; 8431 { 8432 struct diradd *olddap; 8433 struct mkdir *mkdir, *nextmd; 8434 short state; 8435 8436 olddap = inodedep->id_mkdiradd; 8437 inodedep->id_mkdiradd = newdap; 8438 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8439 newdap->da_state &= ~DEPCOMPLETE; 8440 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 8441 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8442 if (mkdir->md_diradd != olddap) 8443 continue; 8444 mkdir->md_diradd = newdap; 8445 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8446 newdap->da_state |= state; 8447 olddap->da_state &= ~state; 8448 if ((olddap->da_state & 8449 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8450 break; 8451 } 8452 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8453 panic("merge_diradd: unfound ref"); 8454 } 8455 /* 8456 * Any mkdir related journal items are not safe to be freed until 8457 * the new name is stable. 8458 */ 8459 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8460 olddap->da_state |= DEPCOMPLETE; 8461 complete_diradd(olddap); 8462 } 8463 8464 /* 8465 * Move the diradd to the pending list when all diradd dependencies are 8466 * complete. 8467 */ 8468 static void 8469 complete_diradd(dap) 8470 struct diradd *dap; 8471 { 8472 struct pagedep *pagedep; 8473 8474 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8475 if (dap->da_state & DIRCHG) 8476 pagedep = dap->da_previous->dm_pagedep; 8477 else 8478 pagedep = dap->da_pagedep; 8479 LIST_REMOVE(dap, da_pdlist); 8480 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8481 } 8482 } 8483 8484 /* 8485 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8486 * add entries and conditonally journal the remove. 8487 */ 8488 static void 8489 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8490 struct diradd *dap; 8491 struct dirrem *dirrem; 8492 struct jremref *jremref; 8493 struct jremref *dotremref; 8494 struct jremref *dotdotremref; 8495 { 8496 struct inodedep *inodedep; 8497 struct jaddref *jaddref; 8498 struct inoref *inoref; 8499 struct mkdir *mkdir; 8500 8501 /* 8502 * If no remove references were allocated we're on a non-journaled 8503 * filesystem and can skip the cancel step. 8504 */ 8505 if (jremref == NULL) { 8506 free_diradd(dap, NULL); 8507 return; 8508 } 8509 /* 8510 * Cancel the primary name an free it if it does not require 8511 * journaling. 8512 */ 8513 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8514 0, &inodedep) != 0) { 8515 /* Abort the addref that reference this diradd. */ 8516 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8517 if (inoref->if_list.wk_type != D_JADDREF) 8518 continue; 8519 jaddref = (struct jaddref *)inoref; 8520 if (jaddref->ja_diradd != dap) 8521 continue; 8522 if (cancel_jaddref(jaddref, inodedep, 8523 &dirrem->dm_jwork) == 0) { 8524 free_jremref(jremref); 8525 jremref = NULL; 8526 } 8527 break; 8528 } 8529 } 8530 /* 8531 * Cancel subordinate names and free them if they do not require 8532 * journaling. 8533 */ 8534 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8535 LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) { 8536 if (mkdir->md_diradd != dap) 8537 continue; 8538 if ((jaddref = mkdir->md_jaddref) == NULL) 8539 continue; 8540 mkdir->md_jaddref = NULL; 8541 if (mkdir->md_state & MKDIR_PARENT) { 8542 if (cancel_jaddref(jaddref, NULL, 8543 &dirrem->dm_jwork) == 0) { 8544 free_jremref(dotdotremref); 8545 dotdotremref = NULL; 8546 } 8547 } else { 8548 if (cancel_jaddref(jaddref, inodedep, 8549 &dirrem->dm_jwork) == 0) { 8550 free_jremref(dotremref); 8551 dotremref = NULL; 8552 } 8553 } 8554 } 8555 } 8556 8557 if (jremref) 8558 journal_jremref(dirrem, jremref, inodedep); 8559 if (dotremref) 8560 journal_jremref(dirrem, dotremref, inodedep); 8561 if (dotdotremref) 8562 journal_jremref(dirrem, dotdotremref, NULL); 8563 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8564 free_diradd(dap, &dirrem->dm_jwork); 8565 } 8566 8567 /* 8568 * Free a diradd dependency structure. This routine must be called 8569 * with splbio interrupts blocked. 8570 */ 8571 static void 8572 free_diradd(dap, wkhd) 8573 struct diradd *dap; 8574 struct workhead *wkhd; 8575 { 8576 struct dirrem *dirrem; 8577 struct pagedep *pagedep; 8578 struct inodedep *inodedep; 8579 struct mkdir *mkdir, *nextmd; 8580 8581 mtx_assert(&lk, MA_OWNED); 8582 LIST_REMOVE(dap, da_pdlist); 8583 if (dap->da_state & ONWORKLIST) 8584 WORKLIST_REMOVE(&dap->da_list); 8585 if ((dap->da_state & DIRCHG) == 0) { 8586 pagedep = dap->da_pagedep; 8587 } else { 8588 dirrem = dap->da_previous; 8589 pagedep = dirrem->dm_pagedep; 8590 dirrem->dm_dirinum = pagedep->pd_ino; 8591 dirrem->dm_state |= COMPLETE; 8592 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8593 add_to_worklist(&dirrem->dm_list, 0); 8594 } 8595 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8596 0, &inodedep) != 0) 8597 if (inodedep->id_mkdiradd == dap) 8598 inodedep->id_mkdiradd = NULL; 8599 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8600 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 8601 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8602 if (mkdir->md_diradd != dap) 8603 continue; 8604 dap->da_state &= 8605 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8606 LIST_REMOVE(mkdir, md_mkdirs); 8607 if (mkdir->md_state & ONWORKLIST) 8608 WORKLIST_REMOVE(&mkdir->md_list); 8609 if (mkdir->md_jaddref != NULL) 8610 panic("free_diradd: Unexpected jaddref"); 8611 WORKITEM_FREE(mkdir, D_MKDIR); 8612 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8613 break; 8614 } 8615 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8616 panic("free_diradd: unfound ref"); 8617 } 8618 if (inodedep) 8619 free_inodedep(inodedep); 8620 /* 8621 * Free any journal segments waiting for the directory write. 8622 */ 8623 handle_jwork(&dap->da_jwork); 8624 WORKITEM_FREE(dap, D_DIRADD); 8625 } 8626 8627 /* 8628 * Directory entry removal dependencies. 8629 * 8630 * When removing a directory entry, the entry's inode pointer must be 8631 * zero'ed on disk before the corresponding inode's link count is decremented 8632 * (possibly freeing the inode for re-use). This dependency is handled by 8633 * updating the directory entry but delaying the inode count reduction until 8634 * after the directory block has been written to disk. After this point, the 8635 * inode count can be decremented whenever it is convenient. 8636 */ 8637 8638 /* 8639 * This routine should be called immediately after removing 8640 * a directory entry. The inode's link count should not be 8641 * decremented by the calling procedure -- the soft updates 8642 * code will do this task when it is safe. 8643 */ 8644 void 8645 softdep_setup_remove(bp, dp, ip, isrmdir) 8646 struct buf *bp; /* buffer containing directory block */ 8647 struct inode *dp; /* inode for the directory being modified */ 8648 struct inode *ip; /* inode for directory entry being removed */ 8649 int isrmdir; /* indicates if doing RMDIR */ 8650 { 8651 struct dirrem *dirrem, *prevdirrem; 8652 struct inodedep *inodedep; 8653 int direct; 8654 8655 /* 8656 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8657 * newdirrem() to setup the full directory remove which requires 8658 * isrmdir > 1. 8659 */ 8660 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8661 /* 8662 * Add the dirrem to the inodedep's pending remove list for quick 8663 * discovery later. 8664 */ 8665 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8666 &inodedep) == 0) 8667 panic("softdep_setup_remove: Lost inodedep."); 8668 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8669 dirrem->dm_state |= ONDEPLIST; 8670 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8671 8672 /* 8673 * If the COMPLETE flag is clear, then there were no active 8674 * entries and we want to roll back to a zeroed entry until 8675 * the new inode is committed to disk. If the COMPLETE flag is 8676 * set then we have deleted an entry that never made it to 8677 * disk. If the entry we deleted resulted from a name change, 8678 * then the old name still resides on disk. We cannot delete 8679 * its inode (returned to us in prevdirrem) until the zeroed 8680 * directory entry gets to disk. The new inode has never been 8681 * referenced on the disk, so can be deleted immediately. 8682 */ 8683 if ((dirrem->dm_state & COMPLETE) == 0) { 8684 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8685 dm_next); 8686 FREE_LOCK(&lk); 8687 } else { 8688 if (prevdirrem != NULL) 8689 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8690 prevdirrem, dm_next); 8691 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8692 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8693 FREE_LOCK(&lk); 8694 if (direct) 8695 handle_workitem_remove(dirrem, 0); 8696 } 8697 } 8698 8699 /* 8700 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8701 * pd_pendinghd list of a pagedep. 8702 */ 8703 static struct diradd * 8704 diradd_lookup(pagedep, offset) 8705 struct pagedep *pagedep; 8706 int offset; 8707 { 8708 struct diradd *dap; 8709 8710 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8711 if (dap->da_offset == offset) 8712 return (dap); 8713 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8714 if (dap->da_offset == offset) 8715 return (dap); 8716 return (NULL); 8717 } 8718 8719 /* 8720 * Search for a .. diradd dependency in a directory that is being removed. 8721 * If the directory was renamed to a new parent we have a diradd rather 8722 * than a mkdir for the .. entry. We need to cancel it now before 8723 * it is found in truncate(). 8724 */ 8725 static struct jremref * 8726 cancel_diradd_dotdot(ip, dirrem, jremref) 8727 struct inode *ip; 8728 struct dirrem *dirrem; 8729 struct jremref *jremref; 8730 { 8731 struct pagedep *pagedep; 8732 struct diradd *dap; 8733 struct worklist *wk; 8734 8735 if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0, 8736 &pagedep) == 0) 8737 return (jremref); 8738 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 8739 if (dap == NULL) 8740 return (jremref); 8741 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 8742 /* 8743 * Mark any journal work as belonging to the parent so it is freed 8744 * with the .. reference. 8745 */ 8746 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8747 wk->wk_state |= MKDIR_PARENT; 8748 return (NULL); 8749 } 8750 8751 /* 8752 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 8753 * replace it with a dirrem/diradd pair as a result of re-parenting a 8754 * directory. This ensures that we don't simultaneously have a mkdir and 8755 * a diradd for the same .. entry. 8756 */ 8757 static struct jremref * 8758 cancel_mkdir_dotdot(ip, dirrem, jremref) 8759 struct inode *ip; 8760 struct dirrem *dirrem; 8761 struct jremref *jremref; 8762 { 8763 struct inodedep *inodedep; 8764 struct jaddref *jaddref; 8765 struct mkdir *mkdir; 8766 struct diradd *dap; 8767 8768 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8769 &inodedep) == 0) 8770 return (jremref); 8771 dap = inodedep->id_mkdiradd; 8772 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 8773 return (jremref); 8774 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; 8775 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 8776 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 8777 break; 8778 if (mkdir == NULL) 8779 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 8780 if ((jaddref = mkdir->md_jaddref) != NULL) { 8781 mkdir->md_jaddref = NULL; 8782 jaddref->ja_state &= ~MKDIR_PARENT; 8783 if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0, 8784 &inodedep) == 0) 8785 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 8786 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 8787 journal_jremref(dirrem, jremref, inodedep); 8788 jremref = NULL; 8789 } 8790 } 8791 if (mkdir->md_state & ONWORKLIST) 8792 WORKLIST_REMOVE(&mkdir->md_list); 8793 mkdir->md_state |= ALLCOMPLETE; 8794 complete_mkdir(mkdir); 8795 return (jremref); 8796 } 8797 8798 static void 8799 journal_jremref(dirrem, jremref, inodedep) 8800 struct dirrem *dirrem; 8801 struct jremref *jremref; 8802 struct inodedep *inodedep; 8803 { 8804 8805 if (inodedep == NULL) 8806 if (inodedep_lookup(jremref->jr_list.wk_mp, 8807 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 8808 panic("journal_jremref: Lost inodedep"); 8809 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 8810 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 8811 add_to_journal(&jremref->jr_list); 8812 } 8813 8814 static void 8815 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 8816 struct dirrem *dirrem; 8817 struct jremref *jremref; 8818 struct jremref *dotremref; 8819 struct jremref *dotdotremref; 8820 { 8821 struct inodedep *inodedep; 8822 8823 8824 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 8825 &inodedep) == 0) 8826 panic("dirrem_journal: Lost inodedep"); 8827 journal_jremref(dirrem, jremref, inodedep); 8828 if (dotremref) 8829 journal_jremref(dirrem, dotremref, inodedep); 8830 if (dotdotremref) 8831 journal_jremref(dirrem, dotdotremref, NULL); 8832 } 8833 8834 /* 8835 * Allocate a new dirrem if appropriate and return it along with 8836 * its associated pagedep. Called without a lock, returns with lock. 8837 */ 8838 static struct dirrem * 8839 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 8840 struct buf *bp; /* buffer containing directory block */ 8841 struct inode *dp; /* inode for the directory being modified */ 8842 struct inode *ip; /* inode for directory entry being removed */ 8843 int isrmdir; /* indicates if doing RMDIR */ 8844 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 8845 { 8846 int offset; 8847 ufs_lbn_t lbn; 8848 struct diradd *dap; 8849 struct dirrem *dirrem; 8850 struct pagedep *pagedep; 8851 struct jremref *jremref; 8852 struct jremref *dotremref; 8853 struct jremref *dotdotremref; 8854 struct vnode *dvp; 8855 8856 /* 8857 * Whiteouts have no deletion dependencies. 8858 */ 8859 if (ip == NULL) 8860 panic("newdirrem: whiteout"); 8861 dvp = ITOV(dp); 8862 /* 8863 * If we are over our limit, try to improve the situation. 8864 * Limiting the number of dirrem structures will also limit 8865 * the number of freefile and freeblks structures. 8866 */ 8867 ACQUIRE_LOCK(&lk); 8868 if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2) 8869 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS); 8870 FREE_LOCK(&lk); 8871 dirrem = malloc(sizeof(struct dirrem), 8872 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 8873 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 8874 LIST_INIT(&dirrem->dm_jremrefhd); 8875 LIST_INIT(&dirrem->dm_jwork); 8876 dirrem->dm_state = isrmdir ? RMDIR : 0; 8877 dirrem->dm_oldinum = ip->i_number; 8878 *prevdirremp = NULL; 8879 /* 8880 * Allocate remove reference structures to track journal write 8881 * dependencies. We will always have one for the link and 8882 * when doing directories we will always have one more for dot. 8883 * When renaming a directory we skip the dotdot link change so 8884 * this is not needed. 8885 */ 8886 jremref = dotremref = dotdotremref = NULL; 8887 if (DOINGSUJ(dvp)) { 8888 if (isrmdir) { 8889 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8890 ip->i_effnlink + 2); 8891 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 8892 ip->i_effnlink + 1); 8893 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 8894 dp->i_effnlink + 1); 8895 dotdotremref->jr_state |= MKDIR_PARENT; 8896 } else 8897 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8898 ip->i_effnlink + 1); 8899 } 8900 ACQUIRE_LOCK(&lk); 8901 lbn = lblkno(dp->i_fs, dp->i_offset); 8902 offset = blkoff(dp->i_fs, dp->i_offset); 8903 pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC, 8904 &pagedep); 8905 dirrem->dm_pagedep = pagedep; 8906 dirrem->dm_offset = offset; 8907 /* 8908 * If we're renaming a .. link to a new directory, cancel any 8909 * existing MKDIR_PARENT mkdir. If it has already been canceled 8910 * the jremref is preserved for any potential diradd in this 8911 * location. This can not coincide with a rmdir. 8912 */ 8913 if (dp->i_offset == DOTDOT_OFFSET) { 8914 if (isrmdir) 8915 panic("newdirrem: .. directory change during remove?"); 8916 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 8917 } 8918 /* 8919 * If we're removing a directory search for the .. dependency now and 8920 * cancel it. Any pending journal work will be added to the dirrem 8921 * to be completed when the workitem remove completes. 8922 */ 8923 if (isrmdir) 8924 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 8925 /* 8926 * Check for a diradd dependency for the same directory entry. 8927 * If present, then both dependencies become obsolete and can 8928 * be de-allocated. 8929 */ 8930 dap = diradd_lookup(pagedep, offset); 8931 if (dap == NULL) { 8932 /* 8933 * Link the jremref structures into the dirrem so they are 8934 * written prior to the pagedep. 8935 */ 8936 if (jremref) 8937 dirrem_journal(dirrem, jremref, dotremref, 8938 dotdotremref); 8939 return (dirrem); 8940 } 8941 /* 8942 * Must be ATTACHED at this point. 8943 */ 8944 if ((dap->da_state & ATTACHED) == 0) 8945 panic("newdirrem: not ATTACHED"); 8946 if (dap->da_newinum != ip->i_number) 8947 panic("newdirrem: inum %ju should be %ju", 8948 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 8949 /* 8950 * If we are deleting a changed name that never made it to disk, 8951 * then return the dirrem describing the previous inode (which 8952 * represents the inode currently referenced from this entry on disk). 8953 */ 8954 if ((dap->da_state & DIRCHG) != 0) { 8955 *prevdirremp = dap->da_previous; 8956 dap->da_state &= ~DIRCHG; 8957 dap->da_pagedep = pagedep; 8958 } 8959 /* 8960 * We are deleting an entry that never made it to disk. 8961 * Mark it COMPLETE so we can delete its inode immediately. 8962 */ 8963 dirrem->dm_state |= COMPLETE; 8964 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 8965 #ifdef SUJ_DEBUG 8966 if (isrmdir == 0) { 8967 struct worklist *wk; 8968 8969 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8970 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 8971 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 8972 } 8973 #endif 8974 8975 return (dirrem); 8976 } 8977 8978 /* 8979 * Directory entry change dependencies. 8980 * 8981 * Changing an existing directory entry requires that an add operation 8982 * be completed first followed by a deletion. The semantics for the addition 8983 * are identical to the description of adding a new entry above except 8984 * that the rollback is to the old inode number rather than zero. Once 8985 * the addition dependency is completed, the removal is done as described 8986 * in the removal routine above. 8987 */ 8988 8989 /* 8990 * This routine should be called immediately after changing 8991 * a directory entry. The inode's link count should not be 8992 * decremented by the calling procedure -- the soft updates 8993 * code will perform this task when it is safe. 8994 */ 8995 void 8996 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 8997 struct buf *bp; /* buffer containing directory block */ 8998 struct inode *dp; /* inode for the directory being modified */ 8999 struct inode *ip; /* inode for directory entry being removed */ 9000 ino_t newinum; /* new inode number for changed entry */ 9001 int isrmdir; /* indicates if doing RMDIR */ 9002 { 9003 int offset; 9004 struct diradd *dap = NULL; 9005 struct dirrem *dirrem, *prevdirrem; 9006 struct pagedep *pagedep; 9007 struct inodedep *inodedep; 9008 struct jaddref *jaddref; 9009 struct mount *mp; 9010 9011 offset = blkoff(dp->i_fs, dp->i_offset); 9012 mp = UFSTOVFS(dp->i_ump); 9013 9014 /* 9015 * Whiteouts do not need diradd dependencies. 9016 */ 9017 if (newinum != WINO) { 9018 dap = malloc(sizeof(struct diradd), 9019 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9020 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9021 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9022 dap->da_offset = offset; 9023 dap->da_newinum = newinum; 9024 LIST_INIT(&dap->da_jwork); 9025 } 9026 9027 /* 9028 * Allocate a new dirrem and ACQUIRE_LOCK. 9029 */ 9030 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9031 pagedep = dirrem->dm_pagedep; 9032 /* 9033 * The possible values for isrmdir: 9034 * 0 - non-directory file rename 9035 * 1 - directory rename within same directory 9036 * inum - directory rename to new directory of given inode number 9037 * When renaming to a new directory, we are both deleting and 9038 * creating a new directory entry, so the link count on the new 9039 * directory should not change. Thus we do not need the followup 9040 * dirrem which is usually done in handle_workitem_remove. We set 9041 * the DIRCHG flag to tell handle_workitem_remove to skip the 9042 * followup dirrem. 9043 */ 9044 if (isrmdir > 1) 9045 dirrem->dm_state |= DIRCHG; 9046 9047 /* 9048 * Whiteouts have no additional dependencies, 9049 * so just put the dirrem on the correct list. 9050 */ 9051 if (newinum == WINO) { 9052 if ((dirrem->dm_state & COMPLETE) == 0) { 9053 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9054 dm_next); 9055 } else { 9056 dirrem->dm_dirinum = pagedep->pd_ino; 9057 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9058 add_to_worklist(&dirrem->dm_list, 0); 9059 } 9060 FREE_LOCK(&lk); 9061 return; 9062 } 9063 /* 9064 * Add the dirrem to the inodedep's pending remove list for quick 9065 * discovery later. A valid nlinkdelta ensures that this lookup 9066 * will not fail. 9067 */ 9068 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9069 panic("softdep_setup_directory_change: Lost inodedep."); 9070 dirrem->dm_state |= ONDEPLIST; 9071 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9072 9073 /* 9074 * If the COMPLETE flag is clear, then there were no active 9075 * entries and we want to roll back to the previous inode until 9076 * the new inode is committed to disk. If the COMPLETE flag is 9077 * set, then we have deleted an entry that never made it to disk. 9078 * If the entry we deleted resulted from a name change, then the old 9079 * inode reference still resides on disk. Any rollback that we do 9080 * needs to be to that old inode (returned to us in prevdirrem). If 9081 * the entry we deleted resulted from a create, then there is 9082 * no entry on the disk, so we want to roll back to zero rather 9083 * than the uncommitted inode. In either of the COMPLETE cases we 9084 * want to immediately free the unwritten and unreferenced inode. 9085 */ 9086 if ((dirrem->dm_state & COMPLETE) == 0) { 9087 dap->da_previous = dirrem; 9088 } else { 9089 if (prevdirrem != NULL) { 9090 dap->da_previous = prevdirrem; 9091 } else { 9092 dap->da_state &= ~DIRCHG; 9093 dap->da_pagedep = pagedep; 9094 } 9095 dirrem->dm_dirinum = pagedep->pd_ino; 9096 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9097 add_to_worklist(&dirrem->dm_list, 0); 9098 } 9099 /* 9100 * Lookup the jaddref for this journal entry. We must finish 9101 * initializing it and make the diradd write dependent on it. 9102 * If we're not journaling, put it on the id_bufwait list if the 9103 * inode is not yet written. If it is written, do the post-inode 9104 * write processing to put it on the id_pendinghd list. 9105 */ 9106 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 9107 if (MOUNTEDSUJ(mp)) { 9108 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9109 inoreflst); 9110 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9111 ("softdep_setup_directory_change: bad jaddref %p", 9112 jaddref)); 9113 jaddref->ja_diroff = dp->i_offset; 9114 jaddref->ja_diradd = dap; 9115 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9116 dap, da_pdlist); 9117 add_to_journal(&jaddref->ja_list); 9118 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9119 dap->da_state |= COMPLETE; 9120 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9121 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9122 } else { 9123 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9124 dap, da_pdlist); 9125 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9126 } 9127 /* 9128 * If we're making a new name for a directory that has not been 9129 * committed when need to move the dot and dotdot references to 9130 * this new name. 9131 */ 9132 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9133 merge_diradd(inodedep, dap); 9134 FREE_LOCK(&lk); 9135 } 9136 9137 /* 9138 * Called whenever the link count on an inode is changed. 9139 * It creates an inode dependency so that the new reference(s) 9140 * to the inode cannot be committed to disk until the updated 9141 * inode has been written. 9142 */ 9143 void 9144 softdep_change_linkcnt(ip) 9145 struct inode *ip; /* the inode with the increased link count */ 9146 { 9147 struct inodedep *inodedep; 9148 int dflags; 9149 9150 ACQUIRE_LOCK(&lk); 9151 dflags = DEPALLOC; 9152 if (IS_SNAPSHOT(ip)) 9153 dflags |= NODELAY; 9154 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 9155 if (ip->i_nlink < ip->i_effnlink) 9156 panic("softdep_change_linkcnt: bad delta"); 9157 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9158 FREE_LOCK(&lk); 9159 } 9160 9161 /* 9162 * Attach a sbdep dependency to the superblock buf so that we can keep 9163 * track of the head of the linked list of referenced but unlinked inodes. 9164 */ 9165 void 9166 softdep_setup_sbupdate(ump, fs, bp) 9167 struct ufsmount *ump; 9168 struct fs *fs; 9169 struct buf *bp; 9170 { 9171 struct sbdep *sbdep; 9172 struct worklist *wk; 9173 9174 if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0) 9175 return; 9176 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9177 if (wk->wk_type == D_SBDEP) 9178 break; 9179 if (wk != NULL) 9180 return; 9181 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9182 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9183 sbdep->sb_fs = fs; 9184 sbdep->sb_ump = ump; 9185 ACQUIRE_LOCK(&lk); 9186 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9187 FREE_LOCK(&lk); 9188 } 9189 9190 /* 9191 * Return the first unlinked inodedep which is ready to be the head of the 9192 * list. The inodedep and all those after it must have valid next pointers. 9193 */ 9194 static struct inodedep * 9195 first_unlinked_inodedep(ump) 9196 struct ufsmount *ump; 9197 { 9198 struct inodedep *inodedep; 9199 struct inodedep *idp; 9200 9201 mtx_assert(&lk, MA_OWNED); 9202 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9203 inodedep; inodedep = idp) { 9204 if ((inodedep->id_state & UNLINKNEXT) == 0) 9205 return (NULL); 9206 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9207 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9208 break; 9209 if ((inodedep->id_state & UNLINKPREV) == 0) 9210 break; 9211 } 9212 return (inodedep); 9213 } 9214 9215 /* 9216 * Set the sujfree unlinked head pointer prior to writing a superblock. 9217 */ 9218 static void 9219 initiate_write_sbdep(sbdep) 9220 struct sbdep *sbdep; 9221 { 9222 struct inodedep *inodedep; 9223 struct fs *bpfs; 9224 struct fs *fs; 9225 9226 bpfs = sbdep->sb_fs; 9227 fs = sbdep->sb_ump->um_fs; 9228 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9229 if (inodedep) { 9230 fs->fs_sujfree = inodedep->id_ino; 9231 inodedep->id_state |= UNLINKPREV; 9232 } else 9233 fs->fs_sujfree = 0; 9234 bpfs->fs_sujfree = fs->fs_sujfree; 9235 } 9236 9237 /* 9238 * After a superblock is written determine whether it must be written again 9239 * due to a changing unlinked list head. 9240 */ 9241 static int 9242 handle_written_sbdep(sbdep, bp) 9243 struct sbdep *sbdep; 9244 struct buf *bp; 9245 { 9246 struct inodedep *inodedep; 9247 struct mount *mp; 9248 struct fs *fs; 9249 9250 mtx_assert(&lk, MA_OWNED); 9251 fs = sbdep->sb_fs; 9252 mp = UFSTOVFS(sbdep->sb_ump); 9253 /* 9254 * If the superblock doesn't match the in-memory list start over. 9255 */ 9256 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9257 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9258 (inodedep == NULL && fs->fs_sujfree != 0)) { 9259 bdirty(bp); 9260 return (1); 9261 } 9262 WORKITEM_FREE(sbdep, D_SBDEP); 9263 if (fs->fs_sujfree == 0) 9264 return (0); 9265 /* 9266 * Now that we have a record of this inode in stable store allow it 9267 * to be written to free up pending work. Inodes may see a lot of 9268 * write activity after they are unlinked which we must not hold up. 9269 */ 9270 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9271 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9272 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9273 inodedep, inodedep->id_state); 9274 if (inodedep->id_state & UNLINKONLIST) 9275 break; 9276 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9277 } 9278 9279 return (0); 9280 } 9281 9282 /* 9283 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9284 */ 9285 static void 9286 unlinked_inodedep(mp, inodedep) 9287 struct mount *mp; 9288 struct inodedep *inodedep; 9289 { 9290 struct ufsmount *ump; 9291 9292 mtx_assert(&lk, MA_OWNED); 9293 if (MOUNTEDSUJ(mp) == 0) 9294 return; 9295 ump = VFSTOUFS(mp); 9296 ump->um_fs->fs_fmod = 1; 9297 if (inodedep->id_state & UNLINKED) 9298 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9299 inodedep->id_state |= UNLINKED; 9300 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9301 } 9302 9303 /* 9304 * Remove an inodedep from the unlinked inodedep list. This may require 9305 * disk writes if the inode has made it that far. 9306 */ 9307 static void 9308 clear_unlinked_inodedep(inodedep) 9309 struct inodedep *inodedep; 9310 { 9311 struct ufsmount *ump; 9312 struct inodedep *idp; 9313 struct inodedep *idn; 9314 struct fs *fs; 9315 struct buf *bp; 9316 ino_t ino; 9317 ino_t nino; 9318 ino_t pino; 9319 int error; 9320 9321 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9322 fs = ump->um_fs; 9323 ino = inodedep->id_ino; 9324 error = 0; 9325 for (;;) { 9326 mtx_assert(&lk, MA_OWNED); 9327 KASSERT((inodedep->id_state & UNLINKED) != 0, 9328 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9329 inodedep)); 9330 /* 9331 * If nothing has yet been written simply remove us from 9332 * the in memory list and return. This is the most common 9333 * case where handle_workitem_remove() loses the final 9334 * reference. 9335 */ 9336 if ((inodedep->id_state & UNLINKLINKS) == 0) 9337 break; 9338 /* 9339 * If we have a NEXT pointer and no PREV pointer we can simply 9340 * clear NEXT's PREV and remove ourselves from the list. Be 9341 * careful not to clear PREV if the superblock points at 9342 * next as well. 9343 */ 9344 idn = TAILQ_NEXT(inodedep, id_unlinked); 9345 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9346 if (idn && fs->fs_sujfree != idn->id_ino) 9347 idn->id_state &= ~UNLINKPREV; 9348 break; 9349 } 9350 /* 9351 * Here we have an inodedep which is actually linked into 9352 * the list. We must remove it by forcing a write to the 9353 * link before us, whether it be the superblock or an inode. 9354 * Unfortunately the list may change while we're waiting 9355 * on the buf lock for either resource so we must loop until 9356 * we lock the right one. If both the superblock and an 9357 * inode point to this inode we must clear the inode first 9358 * followed by the superblock. 9359 */ 9360 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9361 pino = 0; 9362 if (idp && (idp->id_state & UNLINKNEXT)) 9363 pino = idp->id_ino; 9364 FREE_LOCK(&lk); 9365 if (pino == 0) { 9366 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9367 (int)fs->fs_sbsize, 0, 0, 0); 9368 } else { 9369 error = bread(ump->um_devvp, 9370 fsbtodb(fs, ino_to_fsba(fs, pino)), 9371 (int)fs->fs_bsize, NOCRED, &bp); 9372 if (error) 9373 brelse(bp); 9374 } 9375 ACQUIRE_LOCK(&lk); 9376 if (error) 9377 break; 9378 /* If the list has changed restart the loop. */ 9379 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9380 nino = 0; 9381 if (idp && (idp->id_state & UNLINKNEXT)) 9382 nino = idp->id_ino; 9383 if (nino != pino || 9384 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9385 FREE_LOCK(&lk); 9386 brelse(bp); 9387 ACQUIRE_LOCK(&lk); 9388 continue; 9389 } 9390 nino = 0; 9391 idn = TAILQ_NEXT(inodedep, id_unlinked); 9392 if (idn) 9393 nino = idn->id_ino; 9394 /* 9395 * Remove us from the in memory list. After this we cannot 9396 * access the inodedep. 9397 */ 9398 KASSERT((inodedep->id_state & UNLINKED) != 0, 9399 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9400 inodedep)); 9401 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9402 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9403 FREE_LOCK(&lk); 9404 /* 9405 * The predecessor's next pointer is manually updated here 9406 * so that the NEXT flag is never cleared for an element 9407 * that is in the list. 9408 */ 9409 if (pino == 0) { 9410 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9411 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9412 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9413 bp); 9414 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9415 ((struct ufs1_dinode *)bp->b_data + 9416 ino_to_fsbo(fs, pino))->di_freelink = nino; 9417 else 9418 ((struct ufs2_dinode *)bp->b_data + 9419 ino_to_fsbo(fs, pino))->di_freelink = nino; 9420 /* 9421 * If the bwrite fails we have no recourse to recover. The 9422 * filesystem is corrupted already. 9423 */ 9424 bwrite(bp); 9425 ACQUIRE_LOCK(&lk); 9426 /* 9427 * If the superblock pointer still needs to be cleared force 9428 * a write here. 9429 */ 9430 if (fs->fs_sujfree == ino) { 9431 FREE_LOCK(&lk); 9432 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9433 (int)fs->fs_sbsize, 0, 0, 0); 9434 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9435 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9436 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9437 bp); 9438 bwrite(bp); 9439 ACQUIRE_LOCK(&lk); 9440 } 9441 9442 if (fs->fs_sujfree != ino) 9443 return; 9444 panic("clear_unlinked_inodedep: Failed to clear free head"); 9445 } 9446 if (inodedep->id_ino == fs->fs_sujfree) 9447 panic("clear_unlinked_inodedep: Freeing head of free list"); 9448 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9449 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9450 return; 9451 } 9452 9453 /* 9454 * This workitem decrements the inode's link count. 9455 * If the link count reaches zero, the file is removed. 9456 */ 9457 static int 9458 handle_workitem_remove(dirrem, flags) 9459 struct dirrem *dirrem; 9460 int flags; 9461 { 9462 struct inodedep *inodedep; 9463 struct workhead dotdotwk; 9464 struct worklist *wk; 9465 struct ufsmount *ump; 9466 struct mount *mp; 9467 struct vnode *vp; 9468 struct inode *ip; 9469 ino_t oldinum; 9470 9471 if (dirrem->dm_state & ONWORKLIST) 9472 panic("handle_workitem_remove: dirrem %p still on worklist", 9473 dirrem); 9474 oldinum = dirrem->dm_oldinum; 9475 mp = dirrem->dm_list.wk_mp; 9476 ump = VFSTOUFS(mp); 9477 flags |= LK_EXCLUSIVE; 9478 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9479 return (EBUSY); 9480 ip = VTOI(vp); 9481 ACQUIRE_LOCK(&lk); 9482 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9483 panic("handle_workitem_remove: lost inodedep"); 9484 if (dirrem->dm_state & ONDEPLIST) 9485 LIST_REMOVE(dirrem, dm_inonext); 9486 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9487 ("handle_workitem_remove: Journal entries not written.")); 9488 9489 /* 9490 * Move all dependencies waiting on the remove to complete 9491 * from the dirrem to the inode inowait list to be completed 9492 * after the inode has been updated and written to disk. Any 9493 * marked MKDIR_PARENT are saved to be completed when the .. ref 9494 * is removed. 9495 */ 9496 LIST_INIT(&dotdotwk); 9497 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9498 WORKLIST_REMOVE(wk); 9499 if (wk->wk_state & MKDIR_PARENT) { 9500 wk->wk_state &= ~MKDIR_PARENT; 9501 WORKLIST_INSERT(&dotdotwk, wk); 9502 continue; 9503 } 9504 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9505 } 9506 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9507 /* 9508 * Normal file deletion. 9509 */ 9510 if ((dirrem->dm_state & RMDIR) == 0) { 9511 ip->i_nlink--; 9512 DIP_SET(ip, i_nlink, ip->i_nlink); 9513 ip->i_flag |= IN_CHANGE; 9514 if (ip->i_nlink < ip->i_effnlink) 9515 panic("handle_workitem_remove: bad file delta"); 9516 if (ip->i_nlink == 0) 9517 unlinked_inodedep(mp, inodedep); 9518 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9519 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9520 ("handle_workitem_remove: worklist not empty. %s", 9521 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9522 WORKITEM_FREE(dirrem, D_DIRREM); 9523 FREE_LOCK(&lk); 9524 goto out; 9525 } 9526 /* 9527 * Directory deletion. Decrement reference count for both the 9528 * just deleted parent directory entry and the reference for ".". 9529 * Arrange to have the reference count on the parent decremented 9530 * to account for the loss of "..". 9531 */ 9532 ip->i_nlink -= 2; 9533 DIP_SET(ip, i_nlink, ip->i_nlink); 9534 ip->i_flag |= IN_CHANGE; 9535 if (ip->i_nlink < ip->i_effnlink) 9536 panic("handle_workitem_remove: bad dir delta"); 9537 if (ip->i_nlink == 0) 9538 unlinked_inodedep(mp, inodedep); 9539 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9540 /* 9541 * Rename a directory to a new parent. Since, we are both deleting 9542 * and creating a new directory entry, the link count on the new 9543 * directory should not change. Thus we skip the followup dirrem. 9544 */ 9545 if (dirrem->dm_state & DIRCHG) { 9546 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9547 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9548 WORKITEM_FREE(dirrem, D_DIRREM); 9549 FREE_LOCK(&lk); 9550 goto out; 9551 } 9552 dirrem->dm_state = ONDEPLIST; 9553 dirrem->dm_oldinum = dirrem->dm_dirinum; 9554 /* 9555 * Place the dirrem on the parent's diremhd list. 9556 */ 9557 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9558 panic("handle_workitem_remove: lost dir inodedep"); 9559 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9560 /* 9561 * If the allocated inode has never been written to disk, then 9562 * the on-disk inode is zero'ed and we can remove the file 9563 * immediately. When journaling if the inode has been marked 9564 * unlinked and not DEPCOMPLETE we know it can never be written. 9565 */ 9566 inodedep_lookup(mp, oldinum, 0, &inodedep); 9567 if (inodedep == NULL || 9568 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9569 check_inode_unwritten(inodedep)) { 9570 FREE_LOCK(&lk); 9571 vput(vp); 9572 return handle_workitem_remove(dirrem, flags); 9573 } 9574 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9575 FREE_LOCK(&lk); 9576 ip->i_flag |= IN_CHANGE; 9577 out: 9578 ffs_update(vp, 0); 9579 vput(vp); 9580 return (0); 9581 } 9582 9583 /* 9584 * Inode de-allocation dependencies. 9585 * 9586 * When an inode's link count is reduced to zero, it can be de-allocated. We 9587 * found it convenient to postpone de-allocation until after the inode is 9588 * written to disk with its new link count (zero). At this point, all of the 9589 * on-disk inode's block pointers are nullified and, with careful dependency 9590 * list ordering, all dependencies related to the inode will be satisfied and 9591 * the corresponding dependency structures de-allocated. So, if/when the 9592 * inode is reused, there will be no mixing of old dependencies with new 9593 * ones. This artificial dependency is set up by the block de-allocation 9594 * procedure above (softdep_setup_freeblocks) and completed by the 9595 * following procedure. 9596 */ 9597 static void 9598 handle_workitem_freefile(freefile) 9599 struct freefile *freefile; 9600 { 9601 struct workhead wkhd; 9602 struct fs *fs; 9603 struct inodedep *idp; 9604 struct ufsmount *ump; 9605 int error; 9606 9607 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9608 fs = ump->um_fs; 9609 #ifdef DEBUG 9610 ACQUIRE_LOCK(&lk); 9611 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9612 FREE_LOCK(&lk); 9613 if (error) 9614 panic("handle_workitem_freefile: inodedep %p survived", idp); 9615 #endif 9616 UFS_LOCK(ump); 9617 fs->fs_pendinginodes -= 1; 9618 UFS_UNLOCK(ump); 9619 LIST_INIT(&wkhd); 9620 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9621 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9622 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9623 softdep_error("handle_workitem_freefile", error); 9624 ACQUIRE_LOCK(&lk); 9625 WORKITEM_FREE(freefile, D_FREEFILE); 9626 FREE_LOCK(&lk); 9627 } 9628 9629 9630 /* 9631 * Helper function which unlinks marker element from work list and returns 9632 * the next element on the list. 9633 */ 9634 static __inline struct worklist * 9635 markernext(struct worklist *marker) 9636 { 9637 struct worklist *next; 9638 9639 next = LIST_NEXT(marker, wk_list); 9640 LIST_REMOVE(marker, wk_list); 9641 return next; 9642 } 9643 9644 /* 9645 * Disk writes. 9646 * 9647 * The dependency structures constructed above are most actively used when file 9648 * system blocks are written to disk. No constraints are placed on when a 9649 * block can be written, but unsatisfied update dependencies are made safe by 9650 * modifying (or replacing) the source memory for the duration of the disk 9651 * write. When the disk write completes, the memory block is again brought 9652 * up-to-date. 9653 * 9654 * In-core inode structure reclamation. 9655 * 9656 * Because there are a finite number of "in-core" inode structures, they are 9657 * reused regularly. By transferring all inode-related dependencies to the 9658 * in-memory inode block and indexing them separately (via "inodedep"s), we 9659 * can allow "in-core" inode structures to be reused at any time and avoid 9660 * any increase in contention. 9661 * 9662 * Called just before entering the device driver to initiate a new disk I/O. 9663 * The buffer must be locked, thus, no I/O completion operations can occur 9664 * while we are manipulating its associated dependencies. 9665 */ 9666 static void 9667 softdep_disk_io_initiation(bp) 9668 struct buf *bp; /* structure describing disk write to occur */ 9669 { 9670 struct worklist *wk; 9671 struct worklist marker; 9672 struct inodedep *inodedep; 9673 struct freeblks *freeblks; 9674 struct jblkdep *jblkdep; 9675 struct newblk *newblk; 9676 9677 /* 9678 * We only care about write operations. There should never 9679 * be dependencies for reads. 9680 */ 9681 if (bp->b_iocmd != BIO_WRITE) 9682 panic("softdep_disk_io_initiation: not write"); 9683 9684 if (bp->b_vflags & BV_BKGRDINPROG) 9685 panic("softdep_disk_io_initiation: Writing buffer with " 9686 "background write in progress: %p", bp); 9687 9688 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9689 PHOLD(curproc); /* Don't swap out kernel stack */ 9690 9691 ACQUIRE_LOCK(&lk); 9692 /* 9693 * Do any necessary pre-I/O processing. 9694 */ 9695 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9696 wk = markernext(&marker)) { 9697 LIST_INSERT_AFTER(wk, &marker, wk_list); 9698 switch (wk->wk_type) { 9699 9700 case D_PAGEDEP: 9701 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9702 continue; 9703 9704 case D_INODEDEP: 9705 inodedep = WK_INODEDEP(wk); 9706 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9707 initiate_write_inodeblock_ufs1(inodedep, bp); 9708 else 9709 initiate_write_inodeblock_ufs2(inodedep, bp); 9710 continue; 9711 9712 case D_INDIRDEP: 9713 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 9714 continue; 9715 9716 case D_BMSAFEMAP: 9717 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 9718 continue; 9719 9720 case D_JSEG: 9721 WK_JSEG(wk)->js_buf = NULL; 9722 continue; 9723 9724 case D_FREEBLKS: 9725 freeblks = WK_FREEBLKS(wk); 9726 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 9727 /* 9728 * We have to wait for the freeblks to be journaled 9729 * before we can write an inodeblock with updated 9730 * pointers. Be careful to arrange the marker so 9731 * we revisit the freeblks if it's not removed by 9732 * the first jwait(). 9733 */ 9734 if (jblkdep != NULL) { 9735 LIST_REMOVE(&marker, wk_list); 9736 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9737 jwait(&jblkdep->jb_list, MNT_WAIT); 9738 } 9739 continue; 9740 case D_ALLOCDIRECT: 9741 case D_ALLOCINDIR: 9742 /* 9743 * We have to wait for the jnewblk to be journaled 9744 * before we can write to a block if the contents 9745 * may be confused with an earlier file's indirect 9746 * at recovery time. Handle the marker as described 9747 * above. 9748 */ 9749 newblk = WK_NEWBLK(wk); 9750 if (newblk->nb_jnewblk != NULL && 9751 indirblk_lookup(newblk->nb_list.wk_mp, 9752 newblk->nb_newblkno)) { 9753 LIST_REMOVE(&marker, wk_list); 9754 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9755 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 9756 } 9757 continue; 9758 9759 case D_SBDEP: 9760 initiate_write_sbdep(WK_SBDEP(wk)); 9761 continue; 9762 9763 case D_MKDIR: 9764 case D_FREEWORK: 9765 case D_FREEDEP: 9766 case D_JSEGDEP: 9767 continue; 9768 9769 default: 9770 panic("handle_disk_io_initiation: Unexpected type %s", 9771 TYPENAME(wk->wk_type)); 9772 /* NOTREACHED */ 9773 } 9774 } 9775 FREE_LOCK(&lk); 9776 PRELE(curproc); /* Allow swapout of kernel stack */ 9777 } 9778 9779 /* 9780 * Called from within the procedure above to deal with unsatisfied 9781 * allocation dependencies in a directory. The buffer must be locked, 9782 * thus, no I/O completion operations can occur while we are 9783 * manipulating its associated dependencies. 9784 */ 9785 static void 9786 initiate_write_filepage(pagedep, bp) 9787 struct pagedep *pagedep; 9788 struct buf *bp; 9789 { 9790 struct jremref *jremref; 9791 struct jmvref *jmvref; 9792 struct dirrem *dirrem; 9793 struct diradd *dap; 9794 struct direct *ep; 9795 int i; 9796 9797 if (pagedep->pd_state & IOSTARTED) { 9798 /* 9799 * This can only happen if there is a driver that does not 9800 * understand chaining. Here biodone will reissue the call 9801 * to strategy for the incomplete buffers. 9802 */ 9803 printf("initiate_write_filepage: already started\n"); 9804 return; 9805 } 9806 pagedep->pd_state |= IOSTARTED; 9807 /* 9808 * Wait for all journal remove dependencies to hit the disk. 9809 * We can not allow any potentially conflicting directory adds 9810 * to be visible before removes and rollback is too difficult. 9811 * lk may be dropped and re-acquired, however we hold the buf 9812 * locked so the dependency can not go away. 9813 */ 9814 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 9815 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 9816 jwait(&jremref->jr_list, MNT_WAIT); 9817 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 9818 jwait(&jmvref->jm_list, MNT_WAIT); 9819 for (i = 0; i < DAHASHSZ; i++) { 9820 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 9821 ep = (struct direct *) 9822 ((char *)bp->b_data + dap->da_offset); 9823 if (ep->d_ino != dap->da_newinum) 9824 panic("%s: dir inum %ju != new %ju", 9825 "initiate_write_filepage", 9826 (uintmax_t)ep->d_ino, 9827 (uintmax_t)dap->da_newinum); 9828 if (dap->da_state & DIRCHG) 9829 ep->d_ino = dap->da_previous->dm_oldinum; 9830 else 9831 ep->d_ino = 0; 9832 dap->da_state &= ~ATTACHED; 9833 dap->da_state |= UNDONE; 9834 } 9835 } 9836 } 9837 9838 /* 9839 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 9840 * Note that any bug fixes made to this routine must be done in the 9841 * version found below. 9842 * 9843 * Called from within the procedure above to deal with unsatisfied 9844 * allocation dependencies in an inodeblock. The buffer must be 9845 * locked, thus, no I/O completion operations can occur while we 9846 * are manipulating its associated dependencies. 9847 */ 9848 static void 9849 initiate_write_inodeblock_ufs1(inodedep, bp) 9850 struct inodedep *inodedep; 9851 struct buf *bp; /* The inode block */ 9852 { 9853 struct allocdirect *adp, *lastadp; 9854 struct ufs1_dinode *dp; 9855 struct ufs1_dinode *sip; 9856 struct inoref *inoref; 9857 struct fs *fs; 9858 ufs_lbn_t i; 9859 #ifdef INVARIANTS 9860 ufs_lbn_t prevlbn = 0; 9861 #endif 9862 int deplist; 9863 9864 if (inodedep->id_state & IOSTARTED) 9865 panic("initiate_write_inodeblock_ufs1: already started"); 9866 inodedep->id_state |= IOSTARTED; 9867 fs = inodedep->id_fs; 9868 dp = (struct ufs1_dinode *)bp->b_data + 9869 ino_to_fsbo(fs, inodedep->id_ino); 9870 9871 /* 9872 * If we're on the unlinked list but have not yet written our 9873 * next pointer initialize it here. 9874 */ 9875 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 9876 struct inodedep *inon; 9877 9878 inon = TAILQ_NEXT(inodedep, id_unlinked); 9879 dp->di_freelink = inon ? inon->id_ino : 0; 9880 } 9881 /* 9882 * If the bitmap is not yet written, then the allocated 9883 * inode cannot be written to disk. 9884 */ 9885 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 9886 if (inodedep->id_savedino1 != NULL) 9887 panic("initiate_write_inodeblock_ufs1: I/O underway"); 9888 FREE_LOCK(&lk); 9889 sip = malloc(sizeof(struct ufs1_dinode), 9890 M_SAVEDINO, M_SOFTDEP_FLAGS); 9891 ACQUIRE_LOCK(&lk); 9892 inodedep->id_savedino1 = sip; 9893 *inodedep->id_savedino1 = *dp; 9894 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 9895 dp->di_gen = inodedep->id_savedino1->di_gen; 9896 dp->di_freelink = inodedep->id_savedino1->di_freelink; 9897 return; 9898 } 9899 /* 9900 * If no dependencies, then there is nothing to roll back. 9901 */ 9902 inodedep->id_savedsize = dp->di_size; 9903 inodedep->id_savedextsize = 0; 9904 inodedep->id_savednlink = dp->di_nlink; 9905 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 9906 TAILQ_EMPTY(&inodedep->id_inoreflst)) 9907 return; 9908 /* 9909 * Revert the link count to that of the first unwritten journal entry. 9910 */ 9911 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 9912 if (inoref) 9913 dp->di_nlink = inoref->if_nlink; 9914 /* 9915 * Set the dependencies to busy. 9916 */ 9917 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9918 adp = TAILQ_NEXT(adp, ad_next)) { 9919 #ifdef INVARIANTS 9920 if (deplist != 0 && prevlbn >= adp->ad_offset) 9921 panic("softdep_write_inodeblock: lbn order"); 9922 prevlbn = adp->ad_offset; 9923 if (adp->ad_offset < NDADDR && 9924 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 9925 panic("%s: direct pointer #%jd mismatch %d != %jd", 9926 "softdep_write_inodeblock", 9927 (intmax_t)adp->ad_offset, 9928 dp->di_db[adp->ad_offset], 9929 (intmax_t)adp->ad_newblkno); 9930 if (adp->ad_offset >= NDADDR && 9931 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 9932 panic("%s: indirect pointer #%jd mismatch %d != %jd", 9933 "softdep_write_inodeblock", 9934 (intmax_t)adp->ad_offset - NDADDR, 9935 dp->di_ib[adp->ad_offset - NDADDR], 9936 (intmax_t)adp->ad_newblkno); 9937 deplist |= 1 << adp->ad_offset; 9938 if ((adp->ad_state & ATTACHED) == 0) 9939 panic("softdep_write_inodeblock: Unknown state 0x%x", 9940 adp->ad_state); 9941 #endif /* INVARIANTS */ 9942 adp->ad_state &= ~ATTACHED; 9943 adp->ad_state |= UNDONE; 9944 } 9945 /* 9946 * The on-disk inode cannot claim to be any larger than the last 9947 * fragment that has been written. Otherwise, the on-disk inode 9948 * might have fragments that were not the last block in the file 9949 * which would corrupt the filesystem. 9950 */ 9951 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9952 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 9953 if (adp->ad_offset >= NDADDR) 9954 break; 9955 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 9956 /* keep going until hitting a rollback to a frag */ 9957 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 9958 continue; 9959 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 9960 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 9961 #ifdef INVARIANTS 9962 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 9963 panic("softdep_write_inodeblock: lost dep1"); 9964 #endif /* INVARIANTS */ 9965 dp->di_db[i] = 0; 9966 } 9967 for (i = 0; i < NIADDR; i++) { 9968 #ifdef INVARIANTS 9969 if (dp->di_ib[i] != 0 && 9970 (deplist & ((1 << NDADDR) << i)) == 0) 9971 panic("softdep_write_inodeblock: lost dep2"); 9972 #endif /* INVARIANTS */ 9973 dp->di_ib[i] = 0; 9974 } 9975 return; 9976 } 9977 /* 9978 * If we have zero'ed out the last allocated block of the file, 9979 * roll back the size to the last currently allocated block. 9980 * We know that this last allocated block is a full-sized as 9981 * we already checked for fragments in the loop above. 9982 */ 9983 if (lastadp != NULL && 9984 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 9985 for (i = lastadp->ad_offset; i >= 0; i--) 9986 if (dp->di_db[i] != 0) 9987 break; 9988 dp->di_size = (i + 1) * fs->fs_bsize; 9989 } 9990 /* 9991 * The only dependencies are for indirect blocks. 9992 * 9993 * The file size for indirect block additions is not guaranteed. 9994 * Such a guarantee would be non-trivial to achieve. The conventional 9995 * synchronous write implementation also does not make this guarantee. 9996 * Fsck should catch and fix discrepancies. Arguably, the file size 9997 * can be over-estimated without destroying integrity when the file 9998 * moves into the indirect blocks (i.e., is large). If we want to 9999 * postpone fsck, we are stuck with this argument. 10000 */ 10001 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10002 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10003 } 10004 10005 /* 10006 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10007 * Note that any bug fixes made to this routine must be done in the 10008 * version found above. 10009 * 10010 * Called from within the procedure above to deal with unsatisfied 10011 * allocation dependencies in an inodeblock. The buffer must be 10012 * locked, thus, no I/O completion operations can occur while we 10013 * are manipulating its associated dependencies. 10014 */ 10015 static void 10016 initiate_write_inodeblock_ufs2(inodedep, bp) 10017 struct inodedep *inodedep; 10018 struct buf *bp; /* The inode block */ 10019 { 10020 struct allocdirect *adp, *lastadp; 10021 struct ufs2_dinode *dp; 10022 struct ufs2_dinode *sip; 10023 struct inoref *inoref; 10024 struct fs *fs; 10025 ufs_lbn_t i; 10026 #ifdef INVARIANTS 10027 ufs_lbn_t prevlbn = 0; 10028 #endif 10029 int deplist; 10030 10031 if (inodedep->id_state & IOSTARTED) 10032 panic("initiate_write_inodeblock_ufs2: already started"); 10033 inodedep->id_state |= IOSTARTED; 10034 fs = inodedep->id_fs; 10035 dp = (struct ufs2_dinode *)bp->b_data + 10036 ino_to_fsbo(fs, inodedep->id_ino); 10037 10038 /* 10039 * If we're on the unlinked list but have not yet written our 10040 * next pointer initialize it here. 10041 */ 10042 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10043 struct inodedep *inon; 10044 10045 inon = TAILQ_NEXT(inodedep, id_unlinked); 10046 dp->di_freelink = inon ? inon->id_ino : 0; 10047 } 10048 /* 10049 * If the bitmap is not yet written, then the allocated 10050 * inode cannot be written to disk. 10051 */ 10052 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10053 if (inodedep->id_savedino2 != NULL) 10054 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10055 FREE_LOCK(&lk); 10056 sip = malloc(sizeof(struct ufs2_dinode), 10057 M_SAVEDINO, M_SOFTDEP_FLAGS); 10058 ACQUIRE_LOCK(&lk); 10059 inodedep->id_savedino2 = sip; 10060 *inodedep->id_savedino2 = *dp; 10061 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10062 dp->di_gen = inodedep->id_savedino2->di_gen; 10063 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10064 return; 10065 } 10066 /* 10067 * If no dependencies, then there is nothing to roll back. 10068 */ 10069 inodedep->id_savedsize = dp->di_size; 10070 inodedep->id_savedextsize = dp->di_extsize; 10071 inodedep->id_savednlink = dp->di_nlink; 10072 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10073 TAILQ_EMPTY(&inodedep->id_extupdt) && 10074 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10075 return; 10076 /* 10077 * Revert the link count to that of the first unwritten journal entry. 10078 */ 10079 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10080 if (inoref) 10081 dp->di_nlink = inoref->if_nlink; 10082 10083 /* 10084 * Set the ext data dependencies to busy. 10085 */ 10086 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10087 adp = TAILQ_NEXT(adp, ad_next)) { 10088 #ifdef INVARIANTS 10089 if (deplist != 0 && prevlbn >= adp->ad_offset) 10090 panic("softdep_write_inodeblock: lbn order"); 10091 prevlbn = adp->ad_offset; 10092 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10093 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10094 "softdep_write_inodeblock", 10095 (intmax_t)adp->ad_offset, 10096 (intmax_t)dp->di_extb[adp->ad_offset], 10097 (intmax_t)adp->ad_newblkno); 10098 deplist |= 1 << adp->ad_offset; 10099 if ((adp->ad_state & ATTACHED) == 0) 10100 panic("softdep_write_inodeblock: Unknown state 0x%x", 10101 adp->ad_state); 10102 #endif /* INVARIANTS */ 10103 adp->ad_state &= ~ATTACHED; 10104 adp->ad_state |= UNDONE; 10105 } 10106 /* 10107 * The on-disk inode cannot claim to be any larger than the last 10108 * fragment that has been written. Otherwise, the on-disk inode 10109 * might have fragments that were not the last block in the ext 10110 * data which would corrupt the filesystem. 10111 */ 10112 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10113 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10114 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10115 /* keep going until hitting a rollback to a frag */ 10116 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10117 continue; 10118 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10119 for (i = adp->ad_offset + 1; i < NXADDR; i++) { 10120 #ifdef INVARIANTS 10121 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10122 panic("softdep_write_inodeblock: lost dep1"); 10123 #endif /* INVARIANTS */ 10124 dp->di_extb[i] = 0; 10125 } 10126 lastadp = NULL; 10127 break; 10128 } 10129 /* 10130 * If we have zero'ed out the last allocated block of the ext 10131 * data, roll back the size to the last currently allocated block. 10132 * We know that this last allocated block is a full-sized as 10133 * we already checked for fragments in the loop above. 10134 */ 10135 if (lastadp != NULL && 10136 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10137 for (i = lastadp->ad_offset; i >= 0; i--) 10138 if (dp->di_extb[i] != 0) 10139 break; 10140 dp->di_extsize = (i + 1) * fs->fs_bsize; 10141 } 10142 /* 10143 * Set the file data dependencies to busy. 10144 */ 10145 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10146 adp = TAILQ_NEXT(adp, ad_next)) { 10147 #ifdef INVARIANTS 10148 if (deplist != 0 && prevlbn >= adp->ad_offset) 10149 panic("softdep_write_inodeblock: lbn order"); 10150 if ((adp->ad_state & ATTACHED) == 0) 10151 panic("inodedep %p and adp %p not attached", inodedep, adp); 10152 prevlbn = adp->ad_offset; 10153 if (adp->ad_offset < NDADDR && 10154 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10155 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10156 "softdep_write_inodeblock", 10157 (intmax_t)adp->ad_offset, 10158 (intmax_t)dp->di_db[adp->ad_offset], 10159 (intmax_t)adp->ad_newblkno); 10160 if (adp->ad_offset >= NDADDR && 10161 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10162 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10163 "softdep_write_inodeblock:", 10164 (intmax_t)adp->ad_offset - NDADDR, 10165 (intmax_t)dp->di_ib[adp->ad_offset - NDADDR], 10166 (intmax_t)adp->ad_newblkno); 10167 deplist |= 1 << adp->ad_offset; 10168 if ((adp->ad_state & ATTACHED) == 0) 10169 panic("softdep_write_inodeblock: Unknown state 0x%x", 10170 adp->ad_state); 10171 #endif /* INVARIANTS */ 10172 adp->ad_state &= ~ATTACHED; 10173 adp->ad_state |= UNDONE; 10174 } 10175 /* 10176 * The on-disk inode cannot claim to be any larger than the last 10177 * fragment that has been written. Otherwise, the on-disk inode 10178 * might have fragments that were not the last block in the file 10179 * which would corrupt the filesystem. 10180 */ 10181 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10182 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10183 if (adp->ad_offset >= NDADDR) 10184 break; 10185 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10186 /* keep going until hitting a rollback to a frag */ 10187 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10188 continue; 10189 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10190 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10191 #ifdef INVARIANTS 10192 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10193 panic("softdep_write_inodeblock: lost dep2"); 10194 #endif /* INVARIANTS */ 10195 dp->di_db[i] = 0; 10196 } 10197 for (i = 0; i < NIADDR; i++) { 10198 #ifdef INVARIANTS 10199 if (dp->di_ib[i] != 0 && 10200 (deplist & ((1 << NDADDR) << i)) == 0) 10201 panic("softdep_write_inodeblock: lost dep3"); 10202 #endif /* INVARIANTS */ 10203 dp->di_ib[i] = 0; 10204 } 10205 return; 10206 } 10207 /* 10208 * If we have zero'ed out the last allocated block of the file, 10209 * roll back the size to the last currently allocated block. 10210 * We know that this last allocated block is a full-sized as 10211 * we already checked for fragments in the loop above. 10212 */ 10213 if (lastadp != NULL && 10214 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10215 for (i = lastadp->ad_offset; i >= 0; i--) 10216 if (dp->di_db[i] != 0) 10217 break; 10218 dp->di_size = (i + 1) * fs->fs_bsize; 10219 } 10220 /* 10221 * The only dependencies are for indirect blocks. 10222 * 10223 * The file size for indirect block additions is not guaranteed. 10224 * Such a guarantee would be non-trivial to achieve. The conventional 10225 * synchronous write implementation also does not make this guarantee. 10226 * Fsck should catch and fix discrepancies. Arguably, the file size 10227 * can be over-estimated without destroying integrity when the file 10228 * moves into the indirect blocks (i.e., is large). If we want to 10229 * postpone fsck, we are stuck with this argument. 10230 */ 10231 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10232 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10233 } 10234 10235 /* 10236 * Cancel an indirdep as a result of truncation. Release all of the 10237 * children allocindirs and place their journal work on the appropriate 10238 * list. 10239 */ 10240 static void 10241 cancel_indirdep(indirdep, bp, freeblks) 10242 struct indirdep *indirdep; 10243 struct buf *bp; 10244 struct freeblks *freeblks; 10245 { 10246 struct allocindir *aip; 10247 10248 /* 10249 * None of the indirect pointers will ever be visible, 10250 * so they can simply be tossed. GOINGAWAY ensures 10251 * that allocated pointers will be saved in the buffer 10252 * cache until they are freed. Note that they will 10253 * only be able to be found by their physical address 10254 * since the inode mapping the logical address will 10255 * be gone. The save buffer used for the safe copy 10256 * was allocated in setup_allocindir_phase2 using 10257 * the physical address so it could be used for this 10258 * purpose. Hence we swap the safe copy with the real 10259 * copy, allowing the safe copy to be freed and holding 10260 * on to the real copy for later use in indir_trunc. 10261 */ 10262 if (indirdep->ir_state & GOINGAWAY) 10263 panic("cancel_indirdep: already gone"); 10264 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10265 indirdep->ir_state |= DEPCOMPLETE; 10266 LIST_REMOVE(indirdep, ir_next); 10267 } 10268 indirdep->ir_state |= GOINGAWAY; 10269 VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1; 10270 /* 10271 * Pass in bp for blocks still have journal writes 10272 * pending so we can cancel them on their own. 10273 */ 10274 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 10275 cancel_allocindir(aip, bp, freeblks, 0); 10276 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) 10277 cancel_allocindir(aip, NULL, freeblks, 0); 10278 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) 10279 cancel_allocindir(aip, NULL, freeblks, 0); 10280 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0) 10281 cancel_allocindir(aip, NULL, freeblks, 0); 10282 /* 10283 * If there are pending partial truncations we need to keep the 10284 * old block copy around until they complete. This is because 10285 * the current b_data is not a perfect superset of the available 10286 * blocks. 10287 */ 10288 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10289 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10290 else 10291 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10292 WORKLIST_REMOVE(&indirdep->ir_list); 10293 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10294 indirdep->ir_bp = NULL; 10295 indirdep->ir_freeblks = freeblks; 10296 } 10297 10298 /* 10299 * Free an indirdep once it no longer has new pointers to track. 10300 */ 10301 static void 10302 free_indirdep(indirdep) 10303 struct indirdep *indirdep; 10304 { 10305 10306 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10307 ("free_indirdep: Indir trunc list not empty.")); 10308 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10309 ("free_indirdep: Complete head not empty.")); 10310 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10311 ("free_indirdep: write head not empty.")); 10312 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10313 ("free_indirdep: done head not empty.")); 10314 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10315 ("free_indirdep: deplist head not empty.")); 10316 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10317 ("free_indirdep: %p still on newblk list.", indirdep)); 10318 KASSERT(indirdep->ir_saveddata == NULL, 10319 ("free_indirdep: %p still has saved data.", indirdep)); 10320 if (indirdep->ir_state & ONWORKLIST) 10321 WORKLIST_REMOVE(&indirdep->ir_list); 10322 WORKITEM_FREE(indirdep, D_INDIRDEP); 10323 } 10324 10325 /* 10326 * Called before a write to an indirdep. This routine is responsible for 10327 * rolling back pointers to a safe state which includes only those 10328 * allocindirs which have been completed. 10329 */ 10330 static void 10331 initiate_write_indirdep(indirdep, bp) 10332 struct indirdep *indirdep; 10333 struct buf *bp; 10334 { 10335 10336 indirdep->ir_state |= IOSTARTED; 10337 if (indirdep->ir_state & GOINGAWAY) 10338 panic("disk_io_initiation: indirdep gone"); 10339 /* 10340 * If there are no remaining dependencies, this will be writing 10341 * the real pointers. 10342 */ 10343 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10344 TAILQ_EMPTY(&indirdep->ir_trunc)) 10345 return; 10346 /* 10347 * Replace up-to-date version with safe version. 10348 */ 10349 if (indirdep->ir_saveddata == NULL) { 10350 FREE_LOCK(&lk); 10351 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10352 M_SOFTDEP_FLAGS); 10353 ACQUIRE_LOCK(&lk); 10354 } 10355 indirdep->ir_state &= ~ATTACHED; 10356 indirdep->ir_state |= UNDONE; 10357 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10358 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10359 bp->b_bcount); 10360 } 10361 10362 /* 10363 * Called when an inode has been cleared in a cg bitmap. This finally 10364 * eliminates any canceled jaddrefs 10365 */ 10366 void 10367 softdep_setup_inofree(mp, bp, ino, wkhd) 10368 struct mount *mp; 10369 struct buf *bp; 10370 ino_t ino; 10371 struct workhead *wkhd; 10372 { 10373 struct worklist *wk, *wkn; 10374 struct inodedep *inodedep; 10375 uint8_t *inosused; 10376 struct cg *cgp; 10377 struct fs *fs; 10378 10379 ACQUIRE_LOCK(&lk); 10380 fs = VFSTOUFS(mp)->um_fs; 10381 cgp = (struct cg *)bp->b_data; 10382 inosused = cg_inosused(cgp); 10383 if (isset(inosused, ino % fs->fs_ipg)) 10384 panic("softdep_setup_inofree: inode %ju not freed.", 10385 (uintmax_t)ino); 10386 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10387 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10388 (uintmax_t)ino, inodedep); 10389 if (wkhd) { 10390 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10391 if (wk->wk_type != D_JADDREF) 10392 continue; 10393 WORKLIST_REMOVE(wk); 10394 /* 10395 * We can free immediately even if the jaddref 10396 * isn't attached in a background write as now 10397 * the bitmaps are reconciled. 10398 */ 10399 wk->wk_state |= COMPLETE | ATTACHED; 10400 free_jaddref(WK_JADDREF(wk)); 10401 } 10402 jwork_move(&bp->b_dep, wkhd); 10403 } 10404 FREE_LOCK(&lk); 10405 } 10406 10407 10408 /* 10409 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10410 * map. Any dependencies waiting for the write to clear are added to the 10411 * buf's list and any jnewblks that are being canceled are discarded 10412 * immediately. 10413 */ 10414 void 10415 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10416 struct mount *mp; 10417 struct buf *bp; 10418 ufs2_daddr_t blkno; 10419 int frags; 10420 struct workhead *wkhd; 10421 { 10422 struct bmsafemap *bmsafemap; 10423 struct jnewblk *jnewblk; 10424 struct worklist *wk; 10425 struct fs *fs; 10426 #ifdef SUJ_DEBUG 10427 uint8_t *blksfree; 10428 struct cg *cgp; 10429 ufs2_daddr_t jstart; 10430 ufs2_daddr_t jend; 10431 ufs2_daddr_t end; 10432 long bno; 10433 int i; 10434 #endif 10435 10436 CTR3(KTR_SUJ, 10437 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10438 blkno, frags, wkhd); 10439 10440 ACQUIRE_LOCK(&lk); 10441 /* Lookup the bmsafemap so we track when it is dirty. */ 10442 fs = VFSTOUFS(mp)->um_fs; 10443 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10444 /* 10445 * Detach any jnewblks which have been canceled. They must linger 10446 * until the bitmap is cleared again by ffs_blkfree() to prevent 10447 * an unjournaled allocation from hitting the disk. 10448 */ 10449 if (wkhd) { 10450 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10451 CTR2(KTR_SUJ, 10452 "softdep_setup_blkfree: blkno %jd wk type %d", 10453 blkno, wk->wk_type); 10454 WORKLIST_REMOVE(wk); 10455 if (wk->wk_type != D_JNEWBLK) { 10456 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10457 continue; 10458 } 10459 jnewblk = WK_JNEWBLK(wk); 10460 KASSERT(jnewblk->jn_state & GOINGAWAY, 10461 ("softdep_setup_blkfree: jnewblk not canceled.")); 10462 #ifdef SUJ_DEBUG 10463 /* 10464 * Assert that this block is free in the bitmap 10465 * before we discard the jnewblk. 10466 */ 10467 cgp = (struct cg *)bp->b_data; 10468 blksfree = cg_blksfree(cgp); 10469 bno = dtogd(fs, jnewblk->jn_blkno); 10470 for (i = jnewblk->jn_oldfrags; 10471 i < jnewblk->jn_frags; i++) { 10472 if (isset(blksfree, bno + i)) 10473 continue; 10474 panic("softdep_setup_blkfree: not free"); 10475 } 10476 #endif 10477 /* 10478 * Even if it's not attached we can free immediately 10479 * as the new bitmap is correct. 10480 */ 10481 wk->wk_state |= COMPLETE | ATTACHED; 10482 free_jnewblk(jnewblk); 10483 } 10484 } 10485 10486 #ifdef SUJ_DEBUG 10487 /* 10488 * Assert that we are not freeing a block which has an outstanding 10489 * allocation dependency. 10490 */ 10491 fs = VFSTOUFS(mp)->um_fs; 10492 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10493 end = blkno + frags; 10494 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10495 /* 10496 * Don't match against blocks that will be freed when the 10497 * background write is done. 10498 */ 10499 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10500 (COMPLETE | DEPCOMPLETE)) 10501 continue; 10502 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10503 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10504 if ((blkno >= jstart && blkno < jend) || 10505 (end > jstart && end <= jend)) { 10506 printf("state 0x%X %jd - %d %d dep %p\n", 10507 jnewblk->jn_state, jnewblk->jn_blkno, 10508 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10509 jnewblk->jn_dep); 10510 panic("softdep_setup_blkfree: " 10511 "%jd-%jd(%d) overlaps with %jd-%jd", 10512 blkno, end, frags, jstart, jend); 10513 } 10514 } 10515 #endif 10516 FREE_LOCK(&lk); 10517 } 10518 10519 /* 10520 * Revert a block allocation when the journal record that describes it 10521 * is not yet written. 10522 */ 10523 int 10524 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10525 struct jnewblk *jnewblk; 10526 struct fs *fs; 10527 struct cg *cgp; 10528 uint8_t *blksfree; 10529 { 10530 ufs1_daddr_t fragno; 10531 long cgbno, bbase; 10532 int frags, blk; 10533 int i; 10534 10535 frags = 0; 10536 cgbno = dtogd(fs, jnewblk->jn_blkno); 10537 /* 10538 * We have to test which frags need to be rolled back. We may 10539 * be operating on a stale copy when doing background writes. 10540 */ 10541 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10542 if (isclr(blksfree, cgbno + i)) 10543 frags++; 10544 if (frags == 0) 10545 return (0); 10546 /* 10547 * This is mostly ffs_blkfree() sans some validation and 10548 * superblock updates. 10549 */ 10550 if (frags == fs->fs_frag) { 10551 fragno = fragstoblks(fs, cgbno); 10552 ffs_setblock(fs, blksfree, fragno); 10553 ffs_clusteracct(fs, cgp, fragno, 1); 10554 cgp->cg_cs.cs_nbfree++; 10555 } else { 10556 cgbno += jnewblk->jn_oldfrags; 10557 bbase = cgbno - fragnum(fs, cgbno); 10558 /* Decrement the old frags. */ 10559 blk = blkmap(fs, blksfree, bbase); 10560 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10561 /* Deallocate the fragment */ 10562 for (i = 0; i < frags; i++) 10563 setbit(blksfree, cgbno + i); 10564 cgp->cg_cs.cs_nffree += frags; 10565 /* Add back in counts associated with the new frags */ 10566 blk = blkmap(fs, blksfree, bbase); 10567 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10568 /* If a complete block has been reassembled, account for it. */ 10569 fragno = fragstoblks(fs, bbase); 10570 if (ffs_isblock(fs, blksfree, fragno)) { 10571 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10572 ffs_clusteracct(fs, cgp, fragno, 1); 10573 cgp->cg_cs.cs_nbfree++; 10574 } 10575 } 10576 stat_jnewblk++; 10577 jnewblk->jn_state &= ~ATTACHED; 10578 jnewblk->jn_state |= UNDONE; 10579 10580 return (frags); 10581 } 10582 10583 static void 10584 initiate_write_bmsafemap(bmsafemap, bp) 10585 struct bmsafemap *bmsafemap; 10586 struct buf *bp; /* The cg block. */ 10587 { 10588 struct jaddref *jaddref; 10589 struct jnewblk *jnewblk; 10590 uint8_t *inosused; 10591 uint8_t *blksfree; 10592 struct cg *cgp; 10593 struct fs *fs; 10594 ino_t ino; 10595 10596 if (bmsafemap->sm_state & IOSTARTED) 10597 return; 10598 bmsafemap->sm_state |= IOSTARTED; 10599 /* 10600 * Clear any inode allocations which are pending journal writes. 10601 */ 10602 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10603 cgp = (struct cg *)bp->b_data; 10604 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10605 inosused = cg_inosused(cgp); 10606 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10607 ino = jaddref->ja_ino % fs->fs_ipg; 10608 if (isset(inosused, ino)) { 10609 if ((jaddref->ja_mode & IFMT) == IFDIR) 10610 cgp->cg_cs.cs_ndir--; 10611 cgp->cg_cs.cs_nifree++; 10612 clrbit(inosused, ino); 10613 jaddref->ja_state &= ~ATTACHED; 10614 jaddref->ja_state |= UNDONE; 10615 stat_jaddref++; 10616 } else 10617 panic("initiate_write_bmsafemap: inode %ju " 10618 "marked free", (uintmax_t)jaddref->ja_ino); 10619 } 10620 } 10621 /* 10622 * Clear any block allocations which are pending journal writes. 10623 */ 10624 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10625 cgp = (struct cg *)bp->b_data; 10626 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10627 blksfree = cg_blksfree(cgp); 10628 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10629 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10630 continue; 10631 panic("initiate_write_bmsafemap: block %jd " 10632 "marked free", jnewblk->jn_blkno); 10633 } 10634 } 10635 /* 10636 * Move allocation lists to the written lists so they can be 10637 * cleared once the block write is complete. 10638 */ 10639 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10640 inodedep, id_deps); 10641 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10642 newblk, nb_deps); 10643 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10644 wk_list); 10645 } 10646 10647 /* 10648 * This routine is called during the completion interrupt 10649 * service routine for a disk write (from the procedure called 10650 * by the device driver to inform the filesystem caches of 10651 * a request completion). It should be called early in this 10652 * procedure, before the block is made available to other 10653 * processes or other routines are called. 10654 * 10655 */ 10656 static void 10657 softdep_disk_write_complete(bp) 10658 struct buf *bp; /* describes the completed disk write */ 10659 { 10660 struct worklist *wk; 10661 struct worklist *owk; 10662 struct workhead reattach; 10663 struct freeblks *freeblks; 10664 struct buf *sbp; 10665 10666 /* 10667 * If an error occurred while doing the write, then the data 10668 * has not hit the disk and the dependencies cannot be unrolled. 10669 */ 10670 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 10671 return; 10672 LIST_INIT(&reattach); 10673 /* 10674 * This lock must not be released anywhere in this code segment. 10675 */ 10676 sbp = NULL; 10677 owk = NULL; 10678 ACQUIRE_LOCK(&lk); 10679 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 10680 WORKLIST_REMOVE(wk); 10681 dep_write[wk->wk_type]++; 10682 if (wk == owk) 10683 panic("duplicate worklist: %p\n", wk); 10684 owk = wk; 10685 switch (wk->wk_type) { 10686 10687 case D_PAGEDEP: 10688 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 10689 WORKLIST_INSERT(&reattach, wk); 10690 continue; 10691 10692 case D_INODEDEP: 10693 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 10694 WORKLIST_INSERT(&reattach, wk); 10695 continue; 10696 10697 case D_BMSAFEMAP: 10698 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp)) 10699 WORKLIST_INSERT(&reattach, wk); 10700 continue; 10701 10702 case D_MKDIR: 10703 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 10704 continue; 10705 10706 case D_ALLOCDIRECT: 10707 wk->wk_state |= COMPLETE; 10708 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 10709 continue; 10710 10711 case D_ALLOCINDIR: 10712 wk->wk_state |= COMPLETE; 10713 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 10714 continue; 10715 10716 case D_INDIRDEP: 10717 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp)) 10718 WORKLIST_INSERT(&reattach, wk); 10719 continue; 10720 10721 case D_FREEBLKS: 10722 wk->wk_state |= COMPLETE; 10723 freeblks = WK_FREEBLKS(wk); 10724 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 10725 LIST_EMPTY(&freeblks->fb_jblkdephd)) 10726 add_to_worklist(wk, WK_NODELAY); 10727 continue; 10728 10729 case D_FREEWORK: 10730 handle_written_freework(WK_FREEWORK(wk)); 10731 break; 10732 10733 case D_JSEGDEP: 10734 free_jsegdep(WK_JSEGDEP(wk)); 10735 continue; 10736 10737 case D_JSEG: 10738 handle_written_jseg(WK_JSEG(wk), bp); 10739 continue; 10740 10741 case D_SBDEP: 10742 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 10743 WORKLIST_INSERT(&reattach, wk); 10744 continue; 10745 10746 case D_FREEDEP: 10747 free_freedep(WK_FREEDEP(wk)); 10748 continue; 10749 10750 default: 10751 panic("handle_disk_write_complete: Unknown type %s", 10752 TYPENAME(wk->wk_type)); 10753 /* NOTREACHED */ 10754 } 10755 } 10756 /* 10757 * Reattach any requests that must be redone. 10758 */ 10759 while ((wk = LIST_FIRST(&reattach)) != NULL) { 10760 WORKLIST_REMOVE(wk); 10761 WORKLIST_INSERT(&bp->b_dep, wk); 10762 } 10763 FREE_LOCK(&lk); 10764 if (sbp) 10765 brelse(sbp); 10766 } 10767 10768 /* 10769 * Called from within softdep_disk_write_complete above. Note that 10770 * this routine is always called from interrupt level with further 10771 * splbio interrupts blocked. 10772 */ 10773 static void 10774 handle_allocdirect_partdone(adp, wkhd) 10775 struct allocdirect *adp; /* the completed allocdirect */ 10776 struct workhead *wkhd; /* Work to do when inode is writtne. */ 10777 { 10778 struct allocdirectlst *listhead; 10779 struct allocdirect *listadp; 10780 struct inodedep *inodedep; 10781 long bsize; 10782 10783 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10784 return; 10785 /* 10786 * The on-disk inode cannot claim to be any larger than the last 10787 * fragment that has been written. Otherwise, the on-disk inode 10788 * might have fragments that were not the last block in the file 10789 * which would corrupt the filesystem. Thus, we cannot free any 10790 * allocdirects after one whose ad_oldblkno claims a fragment as 10791 * these blocks must be rolled back to zero before writing the inode. 10792 * We check the currently active set of allocdirects in id_inoupdt 10793 * or id_extupdt as appropriate. 10794 */ 10795 inodedep = adp->ad_inodedep; 10796 bsize = inodedep->id_fs->fs_bsize; 10797 if (adp->ad_state & EXTDATA) 10798 listhead = &inodedep->id_extupdt; 10799 else 10800 listhead = &inodedep->id_inoupdt; 10801 TAILQ_FOREACH(listadp, listhead, ad_next) { 10802 /* found our block */ 10803 if (listadp == adp) 10804 break; 10805 /* continue if ad_oldlbn is not a fragment */ 10806 if (listadp->ad_oldsize == 0 || 10807 listadp->ad_oldsize == bsize) 10808 continue; 10809 /* hit a fragment */ 10810 return; 10811 } 10812 /* 10813 * If we have reached the end of the current list without 10814 * finding the just finished dependency, then it must be 10815 * on the future dependency list. Future dependencies cannot 10816 * be freed until they are moved to the current list. 10817 */ 10818 if (listadp == NULL) { 10819 #ifdef DEBUG 10820 if (adp->ad_state & EXTDATA) 10821 listhead = &inodedep->id_newextupdt; 10822 else 10823 listhead = &inodedep->id_newinoupdt; 10824 TAILQ_FOREACH(listadp, listhead, ad_next) 10825 /* found our block */ 10826 if (listadp == adp) 10827 break; 10828 if (listadp == NULL) 10829 panic("handle_allocdirect_partdone: lost dep"); 10830 #endif /* DEBUG */ 10831 return; 10832 } 10833 /* 10834 * If we have found the just finished dependency, then queue 10835 * it along with anything that follows it that is complete. 10836 * Since the pointer has not yet been written in the inode 10837 * as the dependency prevents it, place the allocdirect on the 10838 * bufwait list where it will be freed once the pointer is 10839 * valid. 10840 */ 10841 if (wkhd == NULL) 10842 wkhd = &inodedep->id_bufwait; 10843 for (; adp; adp = listadp) { 10844 listadp = TAILQ_NEXT(adp, ad_next); 10845 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10846 return; 10847 TAILQ_REMOVE(listhead, adp, ad_next); 10848 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 10849 } 10850 } 10851 10852 /* 10853 * Called from within softdep_disk_write_complete above. This routine 10854 * completes successfully written allocindirs. 10855 */ 10856 static void 10857 handle_allocindir_partdone(aip) 10858 struct allocindir *aip; /* the completed allocindir */ 10859 { 10860 struct indirdep *indirdep; 10861 10862 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 10863 return; 10864 indirdep = aip->ai_indirdep; 10865 LIST_REMOVE(aip, ai_next); 10866 /* 10867 * Don't set a pointer while the buffer is undergoing IO or while 10868 * we have active truncations. 10869 */ 10870 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 10871 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 10872 return; 10873 } 10874 if (indirdep->ir_state & UFS1FMT) 10875 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10876 aip->ai_newblkno; 10877 else 10878 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10879 aip->ai_newblkno; 10880 /* 10881 * Await the pointer write before freeing the allocindir. 10882 */ 10883 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 10884 } 10885 10886 /* 10887 * Release segments held on a jwork list. 10888 */ 10889 static void 10890 handle_jwork(wkhd) 10891 struct workhead *wkhd; 10892 { 10893 struct worklist *wk; 10894 10895 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10896 WORKLIST_REMOVE(wk); 10897 switch (wk->wk_type) { 10898 case D_JSEGDEP: 10899 free_jsegdep(WK_JSEGDEP(wk)); 10900 continue; 10901 case D_FREEDEP: 10902 free_freedep(WK_FREEDEP(wk)); 10903 continue; 10904 case D_FREEFRAG: 10905 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 10906 WORKITEM_FREE(wk, D_FREEFRAG); 10907 continue; 10908 case D_FREEWORK: 10909 handle_written_freework(WK_FREEWORK(wk)); 10910 continue; 10911 default: 10912 panic("handle_jwork: Unknown type %s\n", 10913 TYPENAME(wk->wk_type)); 10914 } 10915 } 10916 } 10917 10918 /* 10919 * Handle the bufwait list on an inode when it is safe to release items 10920 * held there. This normally happens after an inode block is written but 10921 * may be delayed and handled later if there are pending journal items that 10922 * are not yet safe to be released. 10923 */ 10924 static struct freefile * 10925 handle_bufwait(inodedep, refhd) 10926 struct inodedep *inodedep; 10927 struct workhead *refhd; 10928 { 10929 struct jaddref *jaddref; 10930 struct freefile *freefile; 10931 struct worklist *wk; 10932 10933 freefile = NULL; 10934 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 10935 WORKLIST_REMOVE(wk); 10936 switch (wk->wk_type) { 10937 case D_FREEFILE: 10938 /* 10939 * We defer adding freefile to the worklist 10940 * until all other additions have been made to 10941 * ensure that it will be done after all the 10942 * old blocks have been freed. 10943 */ 10944 if (freefile != NULL) 10945 panic("handle_bufwait: freefile"); 10946 freefile = WK_FREEFILE(wk); 10947 continue; 10948 10949 case D_MKDIR: 10950 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 10951 continue; 10952 10953 case D_DIRADD: 10954 diradd_inode_written(WK_DIRADD(wk), inodedep); 10955 continue; 10956 10957 case D_FREEFRAG: 10958 wk->wk_state |= COMPLETE; 10959 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 10960 add_to_worklist(wk, 0); 10961 continue; 10962 10963 case D_DIRREM: 10964 wk->wk_state |= COMPLETE; 10965 add_to_worklist(wk, 0); 10966 continue; 10967 10968 case D_ALLOCDIRECT: 10969 case D_ALLOCINDIR: 10970 free_newblk(WK_NEWBLK(wk)); 10971 continue; 10972 10973 case D_JNEWBLK: 10974 wk->wk_state |= COMPLETE; 10975 free_jnewblk(WK_JNEWBLK(wk)); 10976 continue; 10977 10978 /* 10979 * Save freed journal segments and add references on 10980 * the supplied list which will delay their release 10981 * until the cg bitmap is cleared on disk. 10982 */ 10983 case D_JSEGDEP: 10984 if (refhd == NULL) 10985 free_jsegdep(WK_JSEGDEP(wk)); 10986 else 10987 WORKLIST_INSERT(refhd, wk); 10988 continue; 10989 10990 case D_JADDREF: 10991 jaddref = WK_JADDREF(wk); 10992 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 10993 if_deps); 10994 /* 10995 * Transfer any jaddrefs to the list to be freed with 10996 * the bitmap if we're handling a removed file. 10997 */ 10998 if (refhd == NULL) { 10999 wk->wk_state |= COMPLETE; 11000 free_jaddref(jaddref); 11001 } else 11002 WORKLIST_INSERT(refhd, wk); 11003 continue; 11004 11005 default: 11006 panic("handle_bufwait: Unknown type %p(%s)", 11007 wk, TYPENAME(wk->wk_type)); 11008 /* NOTREACHED */ 11009 } 11010 } 11011 return (freefile); 11012 } 11013 /* 11014 * Called from within softdep_disk_write_complete above to restore 11015 * in-memory inode block contents to their most up-to-date state. Note 11016 * that this routine is always called from interrupt level with further 11017 * splbio interrupts blocked. 11018 */ 11019 static int 11020 handle_written_inodeblock(inodedep, bp) 11021 struct inodedep *inodedep; 11022 struct buf *bp; /* buffer containing the inode block */ 11023 { 11024 struct freefile *freefile; 11025 struct allocdirect *adp, *nextadp; 11026 struct ufs1_dinode *dp1 = NULL; 11027 struct ufs2_dinode *dp2 = NULL; 11028 struct workhead wkhd; 11029 int hadchanges, fstype; 11030 ino_t freelink; 11031 11032 LIST_INIT(&wkhd); 11033 hadchanges = 0; 11034 freefile = NULL; 11035 if ((inodedep->id_state & IOSTARTED) == 0) 11036 panic("handle_written_inodeblock: not started"); 11037 inodedep->id_state &= ~IOSTARTED; 11038 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11039 fstype = UFS1; 11040 dp1 = (struct ufs1_dinode *)bp->b_data + 11041 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11042 freelink = dp1->di_freelink; 11043 } else { 11044 fstype = UFS2; 11045 dp2 = (struct ufs2_dinode *)bp->b_data + 11046 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11047 freelink = dp2->di_freelink; 11048 } 11049 /* 11050 * Leave this inodeblock dirty until it's in the list. 11051 */ 11052 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) { 11053 struct inodedep *inon; 11054 11055 inon = TAILQ_NEXT(inodedep, id_unlinked); 11056 if ((inon == NULL && freelink == 0) || 11057 (inon && inon->id_ino == freelink)) { 11058 if (inon) 11059 inon->id_state |= UNLINKPREV; 11060 inodedep->id_state |= UNLINKNEXT; 11061 } 11062 hadchanges = 1; 11063 } 11064 /* 11065 * If we had to rollback the inode allocation because of 11066 * bitmaps being incomplete, then simply restore it. 11067 * Keep the block dirty so that it will not be reclaimed until 11068 * all associated dependencies have been cleared and the 11069 * corresponding updates written to disk. 11070 */ 11071 if (inodedep->id_savedino1 != NULL) { 11072 hadchanges = 1; 11073 if (fstype == UFS1) 11074 *dp1 = *inodedep->id_savedino1; 11075 else 11076 *dp2 = *inodedep->id_savedino2; 11077 free(inodedep->id_savedino1, M_SAVEDINO); 11078 inodedep->id_savedino1 = NULL; 11079 if ((bp->b_flags & B_DELWRI) == 0) 11080 stat_inode_bitmap++; 11081 bdirty(bp); 11082 /* 11083 * If the inode is clear here and GOINGAWAY it will never 11084 * be written. Process the bufwait and clear any pending 11085 * work which may include the freefile. 11086 */ 11087 if (inodedep->id_state & GOINGAWAY) 11088 goto bufwait; 11089 return (1); 11090 } 11091 inodedep->id_state |= COMPLETE; 11092 /* 11093 * Roll forward anything that had to be rolled back before 11094 * the inode could be updated. 11095 */ 11096 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11097 nextadp = TAILQ_NEXT(adp, ad_next); 11098 if (adp->ad_state & ATTACHED) 11099 panic("handle_written_inodeblock: new entry"); 11100 if (fstype == UFS1) { 11101 if (adp->ad_offset < NDADDR) { 11102 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11103 panic("%s %s #%jd mismatch %d != %jd", 11104 "handle_written_inodeblock:", 11105 "direct pointer", 11106 (intmax_t)adp->ad_offset, 11107 dp1->di_db[adp->ad_offset], 11108 (intmax_t)adp->ad_oldblkno); 11109 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11110 } else { 11111 if (dp1->di_ib[adp->ad_offset - NDADDR] != 0) 11112 panic("%s: %s #%jd allocated as %d", 11113 "handle_written_inodeblock", 11114 "indirect pointer", 11115 (intmax_t)adp->ad_offset - NDADDR, 11116 dp1->di_ib[adp->ad_offset - NDADDR]); 11117 dp1->di_ib[adp->ad_offset - NDADDR] = 11118 adp->ad_newblkno; 11119 } 11120 } else { 11121 if (adp->ad_offset < NDADDR) { 11122 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11123 panic("%s: %s #%jd %s %jd != %jd", 11124 "handle_written_inodeblock", 11125 "direct pointer", 11126 (intmax_t)adp->ad_offset, "mismatch", 11127 (intmax_t)dp2->di_db[adp->ad_offset], 11128 (intmax_t)adp->ad_oldblkno); 11129 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11130 } else { 11131 if (dp2->di_ib[adp->ad_offset - NDADDR] != 0) 11132 panic("%s: %s #%jd allocated as %jd", 11133 "handle_written_inodeblock", 11134 "indirect pointer", 11135 (intmax_t)adp->ad_offset - NDADDR, 11136 (intmax_t) 11137 dp2->di_ib[adp->ad_offset - NDADDR]); 11138 dp2->di_ib[adp->ad_offset - NDADDR] = 11139 adp->ad_newblkno; 11140 } 11141 } 11142 adp->ad_state &= ~UNDONE; 11143 adp->ad_state |= ATTACHED; 11144 hadchanges = 1; 11145 } 11146 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11147 nextadp = TAILQ_NEXT(adp, ad_next); 11148 if (adp->ad_state & ATTACHED) 11149 panic("handle_written_inodeblock: new entry"); 11150 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11151 panic("%s: direct pointers #%jd %s %jd != %jd", 11152 "handle_written_inodeblock", 11153 (intmax_t)adp->ad_offset, "mismatch", 11154 (intmax_t)dp2->di_extb[adp->ad_offset], 11155 (intmax_t)adp->ad_oldblkno); 11156 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11157 adp->ad_state &= ~UNDONE; 11158 adp->ad_state |= ATTACHED; 11159 hadchanges = 1; 11160 } 11161 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11162 stat_direct_blk_ptrs++; 11163 /* 11164 * Reset the file size to its most up-to-date value. 11165 */ 11166 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11167 panic("handle_written_inodeblock: bad size"); 11168 if (inodedep->id_savednlink > LINK_MAX) 11169 panic("handle_written_inodeblock: Invalid link count " 11170 "%d for inodedep %p", inodedep->id_savednlink, inodedep); 11171 if (fstype == UFS1) { 11172 if (dp1->di_nlink != inodedep->id_savednlink) { 11173 dp1->di_nlink = inodedep->id_savednlink; 11174 hadchanges = 1; 11175 } 11176 if (dp1->di_size != inodedep->id_savedsize) { 11177 dp1->di_size = inodedep->id_savedsize; 11178 hadchanges = 1; 11179 } 11180 } else { 11181 if (dp2->di_nlink != inodedep->id_savednlink) { 11182 dp2->di_nlink = inodedep->id_savednlink; 11183 hadchanges = 1; 11184 } 11185 if (dp2->di_size != inodedep->id_savedsize) { 11186 dp2->di_size = inodedep->id_savedsize; 11187 hadchanges = 1; 11188 } 11189 if (dp2->di_extsize != inodedep->id_savedextsize) { 11190 dp2->di_extsize = inodedep->id_savedextsize; 11191 hadchanges = 1; 11192 } 11193 } 11194 inodedep->id_savedsize = -1; 11195 inodedep->id_savedextsize = -1; 11196 inodedep->id_savednlink = -1; 11197 /* 11198 * If there were any rollbacks in the inode block, then it must be 11199 * marked dirty so that its will eventually get written back in 11200 * its correct form. 11201 */ 11202 if (hadchanges) 11203 bdirty(bp); 11204 bufwait: 11205 /* 11206 * Process any allocdirects that completed during the update. 11207 */ 11208 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11209 handle_allocdirect_partdone(adp, &wkhd); 11210 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11211 handle_allocdirect_partdone(adp, &wkhd); 11212 /* 11213 * Process deallocations that were held pending until the 11214 * inode had been written to disk. Freeing of the inode 11215 * is delayed until after all blocks have been freed to 11216 * avoid creation of new <vfsid, inum, lbn> triples 11217 * before the old ones have been deleted. Completely 11218 * unlinked inodes are not processed until the unlinked 11219 * inode list is written or the last reference is removed. 11220 */ 11221 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11222 freefile = handle_bufwait(inodedep, NULL); 11223 if (freefile && !LIST_EMPTY(&wkhd)) { 11224 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11225 freefile = NULL; 11226 } 11227 } 11228 /* 11229 * Move rolled forward dependency completions to the bufwait list 11230 * now that those that were already written have been processed. 11231 */ 11232 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11233 panic("handle_written_inodeblock: bufwait but no changes"); 11234 jwork_move(&inodedep->id_bufwait, &wkhd); 11235 11236 if (freefile != NULL) { 11237 /* 11238 * If the inode is goingaway it was never written. Fake up 11239 * the state here so free_inodedep() can succeed. 11240 */ 11241 if (inodedep->id_state & GOINGAWAY) 11242 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11243 if (free_inodedep(inodedep) == 0) 11244 panic("handle_written_inodeblock: live inodedep %p", 11245 inodedep); 11246 add_to_worklist(&freefile->fx_list, 0); 11247 return (0); 11248 } 11249 11250 /* 11251 * If no outstanding dependencies, free it. 11252 */ 11253 if (free_inodedep(inodedep) || 11254 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11255 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11256 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11257 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11258 return (0); 11259 return (hadchanges); 11260 } 11261 11262 static int 11263 handle_written_indirdep(indirdep, bp, bpp) 11264 struct indirdep *indirdep; 11265 struct buf *bp; 11266 struct buf **bpp; 11267 { 11268 struct allocindir *aip; 11269 struct buf *sbp; 11270 int chgs; 11271 11272 if (indirdep->ir_state & GOINGAWAY) 11273 panic("handle_written_indirdep: indirdep gone"); 11274 if ((indirdep->ir_state & IOSTARTED) == 0) 11275 panic("handle_written_indirdep: IO not started"); 11276 chgs = 0; 11277 /* 11278 * If there were rollbacks revert them here. 11279 */ 11280 if (indirdep->ir_saveddata) { 11281 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11282 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11283 free(indirdep->ir_saveddata, M_INDIRDEP); 11284 indirdep->ir_saveddata = NULL; 11285 } 11286 chgs = 1; 11287 } 11288 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11289 indirdep->ir_state |= ATTACHED; 11290 /* 11291 * Move allocindirs with written pointers to the completehd if 11292 * the indirdep's pointer is not yet written. Otherwise 11293 * free them here. 11294 */ 11295 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) { 11296 LIST_REMOVE(aip, ai_next); 11297 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11298 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11299 ai_next); 11300 newblk_freefrag(&aip->ai_block); 11301 continue; 11302 } 11303 free_newblk(&aip->ai_block); 11304 } 11305 /* 11306 * Move allocindirs that have finished dependency processing from 11307 * the done list to the write list after updating the pointers. 11308 */ 11309 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11310 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 11311 handle_allocindir_partdone(aip); 11312 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11313 panic("disk_write_complete: not gone"); 11314 chgs = 1; 11315 } 11316 } 11317 /* 11318 * Preserve the indirdep if there were any changes or if it is not 11319 * yet valid on disk. 11320 */ 11321 if (chgs) { 11322 stat_indir_blk_ptrs++; 11323 bdirty(bp); 11324 return (1); 11325 } 11326 /* 11327 * If there were no changes we can discard the savedbp and detach 11328 * ourselves from the buf. We are only carrying completed pointers 11329 * in this case. 11330 */ 11331 sbp = indirdep->ir_savebp; 11332 sbp->b_flags |= B_INVAL | B_NOCACHE; 11333 indirdep->ir_savebp = NULL; 11334 indirdep->ir_bp = NULL; 11335 if (*bpp != NULL) 11336 panic("handle_written_indirdep: bp already exists."); 11337 *bpp = sbp; 11338 /* 11339 * The indirdep may not be freed until its parent points at it. 11340 */ 11341 if (indirdep->ir_state & DEPCOMPLETE) 11342 free_indirdep(indirdep); 11343 11344 return (0); 11345 } 11346 11347 /* 11348 * Process a diradd entry after its dependent inode has been written. 11349 * This routine must be called with splbio interrupts blocked. 11350 */ 11351 static void 11352 diradd_inode_written(dap, inodedep) 11353 struct diradd *dap; 11354 struct inodedep *inodedep; 11355 { 11356 11357 dap->da_state |= COMPLETE; 11358 complete_diradd(dap); 11359 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11360 } 11361 11362 /* 11363 * Returns true if the bmsafemap will have rollbacks when written. Must 11364 * only be called with lk and the buf lock on the cg held. 11365 */ 11366 static int 11367 bmsafemap_backgroundwrite(bmsafemap, bp) 11368 struct bmsafemap *bmsafemap; 11369 struct buf *bp; 11370 { 11371 int dirty; 11372 11373 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11374 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11375 /* 11376 * If we're initiating a background write we need to process the 11377 * rollbacks as they exist now, not as they exist when IO starts. 11378 * No other consumers will look at the contents of the shadowed 11379 * buf so this is safe to do here. 11380 */ 11381 if (bp->b_xflags & BX_BKGRDMARKER) 11382 initiate_write_bmsafemap(bmsafemap, bp); 11383 11384 return (dirty); 11385 } 11386 11387 /* 11388 * Re-apply an allocation when a cg write is complete. 11389 */ 11390 static int 11391 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11392 struct jnewblk *jnewblk; 11393 struct fs *fs; 11394 struct cg *cgp; 11395 uint8_t *blksfree; 11396 { 11397 ufs1_daddr_t fragno; 11398 ufs2_daddr_t blkno; 11399 long cgbno, bbase; 11400 int frags, blk; 11401 int i; 11402 11403 frags = 0; 11404 cgbno = dtogd(fs, jnewblk->jn_blkno); 11405 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11406 if (isclr(blksfree, cgbno + i)) 11407 panic("jnewblk_rollforward: re-allocated fragment"); 11408 frags++; 11409 } 11410 if (frags == fs->fs_frag) { 11411 blkno = fragstoblks(fs, cgbno); 11412 ffs_clrblock(fs, blksfree, (long)blkno); 11413 ffs_clusteracct(fs, cgp, blkno, -1); 11414 cgp->cg_cs.cs_nbfree--; 11415 } else { 11416 bbase = cgbno - fragnum(fs, cgbno); 11417 cgbno += jnewblk->jn_oldfrags; 11418 /* If a complete block had been reassembled, account for it. */ 11419 fragno = fragstoblks(fs, bbase); 11420 if (ffs_isblock(fs, blksfree, fragno)) { 11421 cgp->cg_cs.cs_nffree += fs->fs_frag; 11422 ffs_clusteracct(fs, cgp, fragno, -1); 11423 cgp->cg_cs.cs_nbfree--; 11424 } 11425 /* Decrement the old frags. */ 11426 blk = blkmap(fs, blksfree, bbase); 11427 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11428 /* Allocate the fragment */ 11429 for (i = 0; i < frags; i++) 11430 clrbit(blksfree, cgbno + i); 11431 cgp->cg_cs.cs_nffree -= frags; 11432 /* Add back in counts associated with the new frags */ 11433 blk = blkmap(fs, blksfree, bbase); 11434 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11435 } 11436 return (frags); 11437 } 11438 11439 /* 11440 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11441 * changes if it's not a background write. Set all written dependencies 11442 * to DEPCOMPLETE and free the structure if possible. 11443 */ 11444 static int 11445 handle_written_bmsafemap(bmsafemap, bp) 11446 struct bmsafemap *bmsafemap; 11447 struct buf *bp; 11448 { 11449 struct newblk *newblk; 11450 struct inodedep *inodedep; 11451 struct jaddref *jaddref, *jatmp; 11452 struct jnewblk *jnewblk, *jntmp; 11453 struct ufsmount *ump; 11454 uint8_t *inosused; 11455 uint8_t *blksfree; 11456 struct cg *cgp; 11457 struct fs *fs; 11458 ino_t ino; 11459 int foreground; 11460 int chgs; 11461 11462 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11463 panic("initiate_write_bmsafemap: Not started\n"); 11464 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11465 chgs = 0; 11466 bmsafemap->sm_state &= ~IOSTARTED; 11467 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11468 /* 11469 * Release journal work that was waiting on the write. 11470 */ 11471 handle_jwork(&bmsafemap->sm_freewr); 11472 11473 /* 11474 * Restore unwritten inode allocation pending jaddref writes. 11475 */ 11476 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11477 cgp = (struct cg *)bp->b_data; 11478 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11479 inosused = cg_inosused(cgp); 11480 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11481 ja_bmdeps, jatmp) { 11482 if ((jaddref->ja_state & UNDONE) == 0) 11483 continue; 11484 ino = jaddref->ja_ino % fs->fs_ipg; 11485 if (isset(inosused, ino)) 11486 panic("handle_written_bmsafemap: " 11487 "re-allocated inode"); 11488 /* Do the roll-forward only if it's a real copy. */ 11489 if (foreground) { 11490 if ((jaddref->ja_mode & IFMT) == IFDIR) 11491 cgp->cg_cs.cs_ndir++; 11492 cgp->cg_cs.cs_nifree--; 11493 setbit(inosused, ino); 11494 chgs = 1; 11495 } 11496 jaddref->ja_state &= ~UNDONE; 11497 jaddref->ja_state |= ATTACHED; 11498 free_jaddref(jaddref); 11499 } 11500 } 11501 /* 11502 * Restore any block allocations which are pending journal writes. 11503 */ 11504 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11505 cgp = (struct cg *)bp->b_data; 11506 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11507 blksfree = cg_blksfree(cgp); 11508 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11509 jntmp) { 11510 if ((jnewblk->jn_state & UNDONE) == 0) 11511 continue; 11512 /* Do the roll-forward only if it's a real copy. */ 11513 if (foreground && 11514 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11515 chgs = 1; 11516 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11517 jnewblk->jn_state |= ATTACHED; 11518 free_jnewblk(jnewblk); 11519 } 11520 } 11521 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11522 newblk->nb_state |= DEPCOMPLETE; 11523 newblk->nb_state &= ~ONDEPLIST; 11524 newblk->nb_bmsafemap = NULL; 11525 LIST_REMOVE(newblk, nb_deps); 11526 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11527 handle_allocdirect_partdone( 11528 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11529 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11530 handle_allocindir_partdone( 11531 WK_ALLOCINDIR(&newblk->nb_list)); 11532 else if (newblk->nb_list.wk_type != D_NEWBLK) 11533 panic("handle_written_bmsafemap: Unexpected type: %s", 11534 TYPENAME(newblk->nb_list.wk_type)); 11535 } 11536 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11537 inodedep->id_state |= DEPCOMPLETE; 11538 inodedep->id_state &= ~ONDEPLIST; 11539 LIST_REMOVE(inodedep, id_deps); 11540 inodedep->id_bmsafemap = NULL; 11541 } 11542 LIST_REMOVE(bmsafemap, sm_next); 11543 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11544 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11545 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11546 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11547 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11548 LIST_REMOVE(bmsafemap, sm_hash); 11549 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11550 return (0); 11551 } 11552 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11553 if (foreground) 11554 bdirty(bp); 11555 return (1); 11556 } 11557 11558 /* 11559 * Try to free a mkdir dependency. 11560 */ 11561 static void 11562 complete_mkdir(mkdir) 11563 struct mkdir *mkdir; 11564 { 11565 struct diradd *dap; 11566 11567 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11568 return; 11569 LIST_REMOVE(mkdir, md_mkdirs); 11570 dap = mkdir->md_diradd; 11571 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11572 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11573 dap->da_state |= DEPCOMPLETE; 11574 complete_diradd(dap); 11575 } 11576 WORKITEM_FREE(mkdir, D_MKDIR); 11577 } 11578 11579 /* 11580 * Handle the completion of a mkdir dependency. 11581 */ 11582 static void 11583 handle_written_mkdir(mkdir, type) 11584 struct mkdir *mkdir; 11585 int type; 11586 { 11587 11588 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 11589 panic("handle_written_mkdir: bad type"); 11590 mkdir->md_state |= COMPLETE; 11591 complete_mkdir(mkdir); 11592 } 11593 11594 static int 11595 free_pagedep(pagedep) 11596 struct pagedep *pagedep; 11597 { 11598 int i; 11599 11600 if (pagedep->pd_state & NEWBLOCK) 11601 return (0); 11602 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 11603 return (0); 11604 for (i = 0; i < DAHASHSZ; i++) 11605 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 11606 return (0); 11607 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 11608 return (0); 11609 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 11610 return (0); 11611 if (pagedep->pd_state & ONWORKLIST) 11612 WORKLIST_REMOVE(&pagedep->pd_list); 11613 LIST_REMOVE(pagedep, pd_hash); 11614 WORKITEM_FREE(pagedep, D_PAGEDEP); 11615 11616 return (1); 11617 } 11618 11619 /* 11620 * Called from within softdep_disk_write_complete above. 11621 * A write operation was just completed. Removed inodes can 11622 * now be freed and associated block pointers may be committed. 11623 * Note that this routine is always called from interrupt level 11624 * with further splbio interrupts blocked. 11625 */ 11626 static int 11627 handle_written_filepage(pagedep, bp) 11628 struct pagedep *pagedep; 11629 struct buf *bp; /* buffer containing the written page */ 11630 { 11631 struct dirrem *dirrem; 11632 struct diradd *dap, *nextdap; 11633 struct direct *ep; 11634 int i, chgs; 11635 11636 if ((pagedep->pd_state & IOSTARTED) == 0) 11637 panic("handle_written_filepage: not started"); 11638 pagedep->pd_state &= ~IOSTARTED; 11639 /* 11640 * Process any directory removals that have been committed. 11641 */ 11642 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 11643 LIST_REMOVE(dirrem, dm_next); 11644 dirrem->dm_state |= COMPLETE; 11645 dirrem->dm_dirinum = pagedep->pd_ino; 11646 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 11647 ("handle_written_filepage: Journal entries not written.")); 11648 add_to_worklist(&dirrem->dm_list, 0); 11649 } 11650 /* 11651 * Free any directory additions that have been committed. 11652 * If it is a newly allocated block, we have to wait until 11653 * the on-disk directory inode claims the new block. 11654 */ 11655 if ((pagedep->pd_state & NEWBLOCK) == 0) 11656 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 11657 free_diradd(dap, NULL); 11658 /* 11659 * Uncommitted directory entries must be restored. 11660 */ 11661 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 11662 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 11663 dap = nextdap) { 11664 nextdap = LIST_NEXT(dap, da_pdlist); 11665 if (dap->da_state & ATTACHED) 11666 panic("handle_written_filepage: attached"); 11667 ep = (struct direct *) 11668 ((char *)bp->b_data + dap->da_offset); 11669 ep->d_ino = dap->da_newinum; 11670 dap->da_state &= ~UNDONE; 11671 dap->da_state |= ATTACHED; 11672 chgs = 1; 11673 /* 11674 * If the inode referenced by the directory has 11675 * been written out, then the dependency can be 11676 * moved to the pending list. 11677 */ 11678 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 11679 LIST_REMOVE(dap, da_pdlist); 11680 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 11681 da_pdlist); 11682 } 11683 } 11684 } 11685 /* 11686 * If there were any rollbacks in the directory, then it must be 11687 * marked dirty so that its will eventually get written back in 11688 * its correct form. 11689 */ 11690 if (chgs) { 11691 if ((bp->b_flags & B_DELWRI) == 0) 11692 stat_dir_entry++; 11693 bdirty(bp); 11694 return (1); 11695 } 11696 /* 11697 * If we are not waiting for a new directory block to be 11698 * claimed by its inode, then the pagedep will be freed. 11699 * Otherwise it will remain to track any new entries on 11700 * the page in case they are fsync'ed. 11701 */ 11702 free_pagedep(pagedep); 11703 return (0); 11704 } 11705 11706 /* 11707 * Writing back in-core inode structures. 11708 * 11709 * The filesystem only accesses an inode's contents when it occupies an 11710 * "in-core" inode structure. These "in-core" structures are separate from 11711 * the page frames used to cache inode blocks. Only the latter are 11712 * transferred to/from the disk. So, when the updated contents of the 11713 * "in-core" inode structure are copied to the corresponding in-memory inode 11714 * block, the dependencies are also transferred. The following procedure is 11715 * called when copying a dirty "in-core" inode to a cached inode block. 11716 */ 11717 11718 /* 11719 * Called when an inode is loaded from disk. If the effective link count 11720 * differed from the actual link count when it was last flushed, then we 11721 * need to ensure that the correct effective link count is put back. 11722 */ 11723 void 11724 softdep_load_inodeblock(ip) 11725 struct inode *ip; /* the "in_core" copy of the inode */ 11726 { 11727 struct inodedep *inodedep; 11728 11729 /* 11730 * Check for alternate nlink count. 11731 */ 11732 ip->i_effnlink = ip->i_nlink; 11733 ACQUIRE_LOCK(&lk); 11734 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 11735 &inodedep) == 0) { 11736 FREE_LOCK(&lk); 11737 return; 11738 } 11739 ip->i_effnlink -= inodedep->id_nlinkdelta; 11740 FREE_LOCK(&lk); 11741 } 11742 11743 /* 11744 * This routine is called just before the "in-core" inode 11745 * information is to be copied to the in-memory inode block. 11746 * Recall that an inode block contains several inodes. If 11747 * the force flag is set, then the dependencies will be 11748 * cleared so that the update can always be made. Note that 11749 * the buffer is locked when this routine is called, so we 11750 * will never be in the middle of writing the inode block 11751 * to disk. 11752 */ 11753 void 11754 softdep_update_inodeblock(ip, bp, waitfor) 11755 struct inode *ip; /* the "in_core" copy of the inode */ 11756 struct buf *bp; /* the buffer containing the inode block */ 11757 int waitfor; /* nonzero => update must be allowed */ 11758 { 11759 struct inodedep *inodedep; 11760 struct inoref *inoref; 11761 struct worklist *wk; 11762 struct mount *mp; 11763 struct buf *ibp; 11764 struct fs *fs; 11765 int error; 11766 11767 mp = UFSTOVFS(ip->i_ump); 11768 fs = ip->i_fs; 11769 /* 11770 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 11771 * does not have access to the in-core ip so must write directly into 11772 * the inode block buffer when setting freelink. 11773 */ 11774 if (fs->fs_magic == FS_UFS1_MAGIC) 11775 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 11776 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11777 else 11778 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 11779 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11780 /* 11781 * If the effective link count is not equal to the actual link 11782 * count, then we must track the difference in an inodedep while 11783 * the inode is (potentially) tossed out of the cache. Otherwise, 11784 * if there is no existing inodedep, then there are no dependencies 11785 * to track. 11786 */ 11787 ACQUIRE_LOCK(&lk); 11788 again: 11789 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11790 FREE_LOCK(&lk); 11791 if (ip->i_effnlink != ip->i_nlink) 11792 panic("softdep_update_inodeblock: bad link count"); 11793 return; 11794 } 11795 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 11796 panic("softdep_update_inodeblock: bad delta"); 11797 /* 11798 * If we're flushing all dependencies we must also move any waiting 11799 * for journal writes onto the bufwait list prior to I/O. 11800 */ 11801 if (waitfor) { 11802 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11803 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11804 == DEPCOMPLETE) { 11805 jwait(&inoref->if_list, MNT_WAIT); 11806 goto again; 11807 } 11808 } 11809 } 11810 /* 11811 * Changes have been initiated. Anything depending on these 11812 * changes cannot occur until this inode has been written. 11813 */ 11814 inodedep->id_state &= ~COMPLETE; 11815 if ((inodedep->id_state & ONWORKLIST) == 0) 11816 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 11817 /* 11818 * Any new dependencies associated with the incore inode must 11819 * now be moved to the list associated with the buffer holding 11820 * the in-memory copy of the inode. Once merged process any 11821 * allocdirects that are completed by the merger. 11822 */ 11823 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 11824 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 11825 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 11826 NULL); 11827 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 11828 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 11829 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 11830 NULL); 11831 /* 11832 * Now that the inode has been pushed into the buffer, the 11833 * operations dependent on the inode being written to disk 11834 * can be moved to the id_bufwait so that they will be 11835 * processed when the buffer I/O completes. 11836 */ 11837 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 11838 WORKLIST_REMOVE(wk); 11839 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 11840 } 11841 /* 11842 * Newly allocated inodes cannot be written until the bitmap 11843 * that allocates them have been written (indicated by 11844 * DEPCOMPLETE being set in id_state). If we are doing a 11845 * forced sync (e.g., an fsync on a file), we force the bitmap 11846 * to be written so that the update can be done. 11847 */ 11848 if (waitfor == 0) { 11849 FREE_LOCK(&lk); 11850 return; 11851 } 11852 retry: 11853 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 11854 FREE_LOCK(&lk); 11855 return; 11856 } 11857 ibp = inodedep->id_bmsafemap->sm_buf; 11858 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 11859 if (ibp == NULL) { 11860 /* 11861 * If ibp came back as NULL, the dependency could have been 11862 * freed while we slept. Look it up again, and check to see 11863 * that it has completed. 11864 */ 11865 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 11866 goto retry; 11867 FREE_LOCK(&lk); 11868 return; 11869 } 11870 FREE_LOCK(&lk); 11871 if ((error = bwrite(ibp)) != 0) 11872 softdep_error("softdep_update_inodeblock: bwrite", error); 11873 } 11874 11875 /* 11876 * Merge the a new inode dependency list (such as id_newinoupdt) into an 11877 * old inode dependency list (such as id_inoupdt). This routine must be 11878 * called with splbio interrupts blocked. 11879 */ 11880 static void 11881 merge_inode_lists(newlisthead, oldlisthead) 11882 struct allocdirectlst *newlisthead; 11883 struct allocdirectlst *oldlisthead; 11884 { 11885 struct allocdirect *listadp, *newadp; 11886 11887 newadp = TAILQ_FIRST(newlisthead); 11888 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 11889 if (listadp->ad_offset < newadp->ad_offset) { 11890 listadp = TAILQ_NEXT(listadp, ad_next); 11891 continue; 11892 } 11893 TAILQ_REMOVE(newlisthead, newadp, ad_next); 11894 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 11895 if (listadp->ad_offset == newadp->ad_offset) { 11896 allocdirect_merge(oldlisthead, newadp, 11897 listadp); 11898 listadp = newadp; 11899 } 11900 newadp = TAILQ_FIRST(newlisthead); 11901 } 11902 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 11903 TAILQ_REMOVE(newlisthead, newadp, ad_next); 11904 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 11905 } 11906 } 11907 11908 /* 11909 * If we are doing an fsync, then we must ensure that any directory 11910 * entries for the inode have been written after the inode gets to disk. 11911 */ 11912 int 11913 softdep_fsync(vp) 11914 struct vnode *vp; /* the "in_core" copy of the inode */ 11915 { 11916 struct inodedep *inodedep; 11917 struct pagedep *pagedep; 11918 struct inoref *inoref; 11919 struct worklist *wk; 11920 struct diradd *dap; 11921 struct mount *mp; 11922 struct vnode *pvp; 11923 struct inode *ip; 11924 struct buf *bp; 11925 struct fs *fs; 11926 struct thread *td = curthread; 11927 int error, flushparent, pagedep_new_block; 11928 ino_t parentino; 11929 ufs_lbn_t lbn; 11930 11931 ip = VTOI(vp); 11932 fs = ip->i_fs; 11933 mp = vp->v_mount; 11934 ACQUIRE_LOCK(&lk); 11935 restart: 11936 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11937 FREE_LOCK(&lk); 11938 return (0); 11939 } 11940 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11941 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11942 == DEPCOMPLETE) { 11943 jwait(&inoref->if_list, MNT_WAIT); 11944 goto restart; 11945 } 11946 } 11947 if (!LIST_EMPTY(&inodedep->id_inowait) || 11948 !TAILQ_EMPTY(&inodedep->id_extupdt) || 11949 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 11950 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 11951 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 11952 panic("softdep_fsync: pending ops %p", inodedep); 11953 for (error = 0, flushparent = 0; ; ) { 11954 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 11955 break; 11956 if (wk->wk_type != D_DIRADD) 11957 panic("softdep_fsync: Unexpected type %s", 11958 TYPENAME(wk->wk_type)); 11959 dap = WK_DIRADD(wk); 11960 /* 11961 * Flush our parent if this directory entry has a MKDIR_PARENT 11962 * dependency or is contained in a newly allocated block. 11963 */ 11964 if (dap->da_state & DIRCHG) 11965 pagedep = dap->da_previous->dm_pagedep; 11966 else 11967 pagedep = dap->da_pagedep; 11968 parentino = pagedep->pd_ino; 11969 lbn = pagedep->pd_lbn; 11970 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 11971 panic("softdep_fsync: dirty"); 11972 if ((dap->da_state & MKDIR_PARENT) || 11973 (pagedep->pd_state & NEWBLOCK)) 11974 flushparent = 1; 11975 else 11976 flushparent = 0; 11977 /* 11978 * If we are being fsync'ed as part of vgone'ing this vnode, 11979 * then we will not be able to release and recover the 11980 * vnode below, so we just have to give up on writing its 11981 * directory entry out. It will eventually be written, just 11982 * not now, but then the user was not asking to have it 11983 * written, so we are not breaking any promises. 11984 */ 11985 if (vp->v_iflag & VI_DOOMED) 11986 break; 11987 /* 11988 * We prevent deadlock by always fetching inodes from the 11989 * root, moving down the directory tree. Thus, when fetching 11990 * our parent directory, we first try to get the lock. If 11991 * that fails, we must unlock ourselves before requesting 11992 * the lock on our parent. See the comment in ufs_lookup 11993 * for details on possible races. 11994 */ 11995 FREE_LOCK(&lk); 11996 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 11997 FFSV_FORCEINSMQ)) { 11998 error = vfs_busy(mp, MBF_NOWAIT); 11999 if (error != 0) { 12000 vfs_ref(mp); 12001 VOP_UNLOCK(vp, 0); 12002 error = vfs_busy(mp, 0); 12003 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12004 vfs_rel(mp); 12005 if (error != 0) 12006 return (ENOENT); 12007 if (vp->v_iflag & VI_DOOMED) { 12008 vfs_unbusy(mp); 12009 return (ENOENT); 12010 } 12011 } 12012 VOP_UNLOCK(vp, 0); 12013 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12014 &pvp, FFSV_FORCEINSMQ); 12015 vfs_unbusy(mp); 12016 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12017 if (vp->v_iflag & VI_DOOMED) { 12018 if (error == 0) 12019 vput(pvp); 12020 error = ENOENT; 12021 } 12022 if (error != 0) 12023 return (error); 12024 } 12025 /* 12026 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12027 * that are contained in direct blocks will be resolved by 12028 * doing a ffs_update. Pagedeps contained in indirect blocks 12029 * may require a complete sync'ing of the directory. So, we 12030 * try the cheap and fast ffs_update first, and if that fails, 12031 * then we do the slower ffs_syncvnode of the directory. 12032 */ 12033 if (flushparent) { 12034 int locked; 12035 12036 if ((error = ffs_update(pvp, 1)) != 0) { 12037 vput(pvp); 12038 return (error); 12039 } 12040 ACQUIRE_LOCK(&lk); 12041 locked = 1; 12042 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12043 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12044 if (wk->wk_type != D_DIRADD) 12045 panic("softdep_fsync: Unexpected type %s", 12046 TYPENAME(wk->wk_type)); 12047 dap = WK_DIRADD(wk); 12048 if (dap->da_state & DIRCHG) 12049 pagedep = dap->da_previous->dm_pagedep; 12050 else 12051 pagedep = dap->da_pagedep; 12052 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12053 FREE_LOCK(&lk); 12054 locked = 0; 12055 if (pagedep_new_block && (error = 12056 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12057 vput(pvp); 12058 return (error); 12059 } 12060 } 12061 } 12062 if (locked) 12063 FREE_LOCK(&lk); 12064 } 12065 /* 12066 * Flush directory page containing the inode's name. 12067 */ 12068 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12069 &bp); 12070 if (error == 0) 12071 error = bwrite(bp); 12072 else 12073 brelse(bp); 12074 vput(pvp); 12075 if (error != 0) 12076 return (error); 12077 ACQUIRE_LOCK(&lk); 12078 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12079 break; 12080 } 12081 FREE_LOCK(&lk); 12082 return (0); 12083 } 12084 12085 /* 12086 * Flush all the dirty bitmaps associated with the block device 12087 * before flushing the rest of the dirty blocks so as to reduce 12088 * the number of dependencies that will have to be rolled back. 12089 * 12090 * XXX Unused? 12091 */ 12092 void 12093 softdep_fsync_mountdev(vp) 12094 struct vnode *vp; 12095 { 12096 struct buf *bp, *nbp; 12097 struct worklist *wk; 12098 struct bufobj *bo; 12099 12100 if (!vn_isdisk(vp, NULL)) 12101 panic("softdep_fsync_mountdev: vnode not a disk"); 12102 bo = &vp->v_bufobj; 12103 restart: 12104 BO_LOCK(bo); 12105 ACQUIRE_LOCK(&lk); 12106 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12107 /* 12108 * If it is already scheduled, skip to the next buffer. 12109 */ 12110 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12111 continue; 12112 12113 if ((bp->b_flags & B_DELWRI) == 0) 12114 panic("softdep_fsync_mountdev: not dirty"); 12115 /* 12116 * We are only interested in bitmaps with outstanding 12117 * dependencies. 12118 */ 12119 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12120 wk->wk_type != D_BMSAFEMAP || 12121 (bp->b_vflags & BV_BKGRDINPROG)) { 12122 BUF_UNLOCK(bp); 12123 continue; 12124 } 12125 FREE_LOCK(&lk); 12126 BO_UNLOCK(bo); 12127 bremfree(bp); 12128 (void) bawrite(bp); 12129 goto restart; 12130 } 12131 FREE_LOCK(&lk); 12132 drain_output(vp); 12133 BO_UNLOCK(bo); 12134 } 12135 12136 /* 12137 * Sync all cylinder groups that were dirty at the time this function is 12138 * called. Newly dirtied cgs will be inserted before the sentinel. This 12139 * is used to flush freedep activity that may be holding up writes to a 12140 * indirect block. 12141 */ 12142 static int 12143 sync_cgs(mp, waitfor) 12144 struct mount *mp; 12145 int waitfor; 12146 { 12147 struct bmsafemap *bmsafemap; 12148 struct bmsafemap *sentinel; 12149 struct ufsmount *ump; 12150 struct buf *bp; 12151 int error; 12152 12153 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12154 sentinel->sm_cg = -1; 12155 ump = VFSTOUFS(mp); 12156 error = 0; 12157 ACQUIRE_LOCK(&lk); 12158 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12159 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12160 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12161 /* Skip sentinels and cgs with no work to release. */ 12162 if (bmsafemap->sm_cg == -1 || 12163 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12164 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12165 LIST_REMOVE(sentinel, sm_next); 12166 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12167 continue; 12168 } 12169 /* 12170 * If we don't get the lock and we're waiting try again, if 12171 * not move on to the next buf and try to sync it. 12172 */ 12173 bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor); 12174 if (bp == NULL && waitfor == MNT_WAIT) 12175 continue; 12176 LIST_REMOVE(sentinel, sm_next); 12177 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12178 if (bp == NULL) 12179 continue; 12180 FREE_LOCK(&lk); 12181 if (waitfor == MNT_NOWAIT) 12182 bawrite(bp); 12183 else 12184 error = bwrite(bp); 12185 ACQUIRE_LOCK(&lk); 12186 if (error) 12187 break; 12188 } 12189 LIST_REMOVE(sentinel, sm_next); 12190 FREE_LOCK(&lk); 12191 free(sentinel, M_BMSAFEMAP); 12192 return (error); 12193 } 12194 12195 /* 12196 * This routine is called when we are trying to synchronously flush a 12197 * file. This routine must eliminate any filesystem metadata dependencies 12198 * so that the syncing routine can succeed. 12199 */ 12200 int 12201 softdep_sync_metadata(struct vnode *vp) 12202 { 12203 int error; 12204 12205 /* 12206 * Ensure that any direct block dependencies have been cleared, 12207 * truncations are started, and inode references are journaled. 12208 */ 12209 ACQUIRE_LOCK(&lk); 12210 /* 12211 * Write all journal records to prevent rollbacks on devvp. 12212 */ 12213 if (vp->v_type == VCHR) 12214 softdep_flushjournal(vp->v_mount); 12215 error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number); 12216 /* 12217 * Ensure that all truncates are written so we won't find deps on 12218 * indirect blocks. 12219 */ 12220 process_truncates(vp); 12221 FREE_LOCK(&lk); 12222 12223 return (error); 12224 } 12225 12226 /* 12227 * This routine is called when we are attempting to sync a buf with 12228 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12229 * other IO it can but returns EBUSY if the buffer is not yet able to 12230 * be written. Dependencies which will not cause rollbacks will always 12231 * return 0. 12232 */ 12233 int 12234 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12235 { 12236 struct indirdep *indirdep; 12237 struct pagedep *pagedep; 12238 struct allocindir *aip; 12239 struct newblk *newblk; 12240 struct buf *nbp; 12241 struct worklist *wk; 12242 int i, error; 12243 12244 /* 12245 * For VCHR we just don't want to force flush any dependencies that 12246 * will cause rollbacks. 12247 */ 12248 if (vp->v_type == VCHR) { 12249 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12250 return (EBUSY); 12251 return (0); 12252 } 12253 ACQUIRE_LOCK(&lk); 12254 /* 12255 * As we hold the buffer locked, none of its dependencies 12256 * will disappear. 12257 */ 12258 error = 0; 12259 top: 12260 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12261 switch (wk->wk_type) { 12262 12263 case D_ALLOCDIRECT: 12264 case D_ALLOCINDIR: 12265 newblk = WK_NEWBLK(wk); 12266 if (newblk->nb_jnewblk != NULL) { 12267 if (waitfor == MNT_NOWAIT) { 12268 error = EBUSY; 12269 goto out_unlock; 12270 } 12271 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12272 goto top; 12273 } 12274 if (newblk->nb_state & DEPCOMPLETE || 12275 waitfor == MNT_NOWAIT) 12276 continue; 12277 nbp = newblk->nb_bmsafemap->sm_buf; 12278 nbp = getdirtybuf(nbp, &lk, waitfor); 12279 if (nbp == NULL) 12280 goto top; 12281 FREE_LOCK(&lk); 12282 if ((error = bwrite(nbp)) != 0) 12283 goto out; 12284 ACQUIRE_LOCK(&lk); 12285 continue; 12286 12287 case D_INDIRDEP: 12288 indirdep = WK_INDIRDEP(wk); 12289 if (waitfor == MNT_NOWAIT) { 12290 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12291 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12292 error = EBUSY; 12293 goto out_unlock; 12294 } 12295 } 12296 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12297 panic("softdep_sync_buf: truncation pending."); 12298 restart: 12299 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12300 newblk = (struct newblk *)aip; 12301 if (newblk->nb_jnewblk != NULL) { 12302 jwait(&newblk->nb_jnewblk->jn_list, 12303 waitfor); 12304 goto restart; 12305 } 12306 if (newblk->nb_state & DEPCOMPLETE) 12307 continue; 12308 nbp = newblk->nb_bmsafemap->sm_buf; 12309 nbp = getdirtybuf(nbp, &lk, waitfor); 12310 if (nbp == NULL) 12311 goto restart; 12312 FREE_LOCK(&lk); 12313 if ((error = bwrite(nbp)) != 0) 12314 goto out; 12315 ACQUIRE_LOCK(&lk); 12316 goto restart; 12317 } 12318 continue; 12319 12320 case D_PAGEDEP: 12321 /* 12322 * Only flush directory entries in synchronous passes. 12323 */ 12324 if (waitfor != MNT_WAIT) { 12325 error = EBUSY; 12326 goto out_unlock; 12327 } 12328 /* 12329 * While syncing snapshots, we must allow recursive 12330 * lookups. 12331 */ 12332 BUF_AREC(bp); 12333 /* 12334 * We are trying to sync a directory that may 12335 * have dependencies on both its own metadata 12336 * and/or dependencies on the inodes of any 12337 * recently allocated files. We walk its diradd 12338 * lists pushing out the associated inode. 12339 */ 12340 pagedep = WK_PAGEDEP(wk); 12341 for (i = 0; i < DAHASHSZ; i++) { 12342 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12343 continue; 12344 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12345 &pagedep->pd_diraddhd[i]))) { 12346 BUF_NOREC(bp); 12347 goto out_unlock; 12348 } 12349 } 12350 BUF_NOREC(bp); 12351 continue; 12352 12353 case D_FREEWORK: 12354 case D_FREEDEP: 12355 case D_JSEGDEP: 12356 case D_JNEWBLK: 12357 continue; 12358 12359 default: 12360 panic("softdep_sync_buf: Unknown type %s", 12361 TYPENAME(wk->wk_type)); 12362 /* NOTREACHED */ 12363 } 12364 } 12365 out_unlock: 12366 FREE_LOCK(&lk); 12367 out: 12368 return (error); 12369 } 12370 12371 /* 12372 * Flush the dependencies associated with an inodedep. 12373 * Called with splbio blocked. 12374 */ 12375 static int 12376 flush_inodedep_deps(vp, mp, ino) 12377 struct vnode *vp; 12378 struct mount *mp; 12379 ino_t ino; 12380 { 12381 struct inodedep *inodedep; 12382 struct inoref *inoref; 12383 int error, waitfor; 12384 12385 /* 12386 * This work is done in two passes. The first pass grabs most 12387 * of the buffers and begins asynchronously writing them. The 12388 * only way to wait for these asynchronous writes is to sleep 12389 * on the filesystem vnode which may stay busy for a long time 12390 * if the filesystem is active. So, instead, we make a second 12391 * pass over the dependencies blocking on each write. In the 12392 * usual case we will be blocking against a write that we 12393 * initiated, so when it is done the dependency will have been 12394 * resolved. Thus the second pass is expected to end quickly. 12395 * We give a brief window at the top of the loop to allow 12396 * any pending I/O to complete. 12397 */ 12398 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12399 if (error) 12400 return (error); 12401 FREE_LOCK(&lk); 12402 ACQUIRE_LOCK(&lk); 12403 restart: 12404 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12405 return (0); 12406 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12407 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12408 == DEPCOMPLETE) { 12409 jwait(&inoref->if_list, MNT_WAIT); 12410 goto restart; 12411 } 12412 } 12413 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12414 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12415 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12416 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12417 continue; 12418 /* 12419 * If pass2, we are done, otherwise do pass 2. 12420 */ 12421 if (waitfor == MNT_WAIT) 12422 break; 12423 waitfor = MNT_WAIT; 12424 } 12425 /* 12426 * Try freeing inodedep in case all dependencies have been removed. 12427 */ 12428 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12429 (void) free_inodedep(inodedep); 12430 return (0); 12431 } 12432 12433 /* 12434 * Flush an inode dependency list. 12435 * Called with splbio blocked. 12436 */ 12437 static int 12438 flush_deplist(listhead, waitfor, errorp) 12439 struct allocdirectlst *listhead; 12440 int waitfor; 12441 int *errorp; 12442 { 12443 struct allocdirect *adp; 12444 struct newblk *newblk; 12445 struct buf *bp; 12446 12447 mtx_assert(&lk, MA_OWNED); 12448 TAILQ_FOREACH(adp, listhead, ad_next) { 12449 newblk = (struct newblk *)adp; 12450 if (newblk->nb_jnewblk != NULL) { 12451 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12452 return (1); 12453 } 12454 if (newblk->nb_state & DEPCOMPLETE) 12455 continue; 12456 bp = newblk->nb_bmsafemap->sm_buf; 12457 bp = getdirtybuf(bp, &lk, waitfor); 12458 if (bp == NULL) { 12459 if (waitfor == MNT_NOWAIT) 12460 continue; 12461 return (1); 12462 } 12463 FREE_LOCK(&lk); 12464 if (waitfor == MNT_NOWAIT) 12465 bawrite(bp); 12466 else 12467 *errorp = bwrite(bp); 12468 ACQUIRE_LOCK(&lk); 12469 return (1); 12470 } 12471 return (0); 12472 } 12473 12474 /* 12475 * Flush dependencies associated with an allocdirect block. 12476 */ 12477 static int 12478 flush_newblk_dep(vp, mp, lbn) 12479 struct vnode *vp; 12480 struct mount *mp; 12481 ufs_lbn_t lbn; 12482 { 12483 struct newblk *newblk; 12484 struct bufobj *bo; 12485 struct inode *ip; 12486 struct buf *bp; 12487 ufs2_daddr_t blkno; 12488 int error; 12489 12490 error = 0; 12491 bo = &vp->v_bufobj; 12492 ip = VTOI(vp); 12493 blkno = DIP(ip, i_db[lbn]); 12494 if (blkno == 0) 12495 panic("flush_newblk_dep: Missing block"); 12496 ACQUIRE_LOCK(&lk); 12497 /* 12498 * Loop until all dependencies related to this block are satisfied. 12499 * We must be careful to restart after each sleep in case a write 12500 * completes some part of this process for us. 12501 */ 12502 for (;;) { 12503 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12504 FREE_LOCK(&lk); 12505 break; 12506 } 12507 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12508 panic("flush_newblk_deps: Bad newblk %p", newblk); 12509 /* 12510 * Flush the journal. 12511 */ 12512 if (newblk->nb_jnewblk != NULL) { 12513 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12514 continue; 12515 } 12516 /* 12517 * Write the bitmap dependency. 12518 */ 12519 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12520 bp = newblk->nb_bmsafemap->sm_buf; 12521 bp = getdirtybuf(bp, &lk, MNT_WAIT); 12522 if (bp == NULL) 12523 continue; 12524 FREE_LOCK(&lk); 12525 error = bwrite(bp); 12526 if (error) 12527 break; 12528 ACQUIRE_LOCK(&lk); 12529 continue; 12530 } 12531 /* 12532 * Write the buffer. 12533 */ 12534 FREE_LOCK(&lk); 12535 BO_LOCK(bo); 12536 bp = gbincore(bo, lbn); 12537 if (bp != NULL) { 12538 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12539 LK_INTERLOCK, BO_MTX(bo)); 12540 if (error == ENOLCK) { 12541 ACQUIRE_LOCK(&lk); 12542 continue; /* Slept, retry */ 12543 } 12544 if (error != 0) 12545 break; /* Failed */ 12546 if (bp->b_flags & B_DELWRI) { 12547 bremfree(bp); 12548 error = bwrite(bp); 12549 if (error) 12550 break; 12551 } else 12552 BUF_UNLOCK(bp); 12553 } else 12554 BO_UNLOCK(bo); 12555 /* 12556 * We have to wait for the direct pointers to 12557 * point at the newdirblk before the dependency 12558 * will go away. 12559 */ 12560 error = ffs_update(vp, 1); 12561 if (error) 12562 break; 12563 ACQUIRE_LOCK(&lk); 12564 } 12565 return (error); 12566 } 12567 12568 /* 12569 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 12570 * Called with splbio blocked. 12571 */ 12572 static int 12573 flush_pagedep_deps(pvp, mp, diraddhdp) 12574 struct vnode *pvp; 12575 struct mount *mp; 12576 struct diraddhd *diraddhdp; 12577 { 12578 struct inodedep *inodedep; 12579 struct inoref *inoref; 12580 struct ufsmount *ump; 12581 struct diradd *dap; 12582 struct vnode *vp; 12583 int error = 0; 12584 struct buf *bp; 12585 ino_t inum; 12586 12587 ump = VFSTOUFS(mp); 12588 restart: 12589 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 12590 /* 12591 * Flush ourselves if this directory entry 12592 * has a MKDIR_PARENT dependency. 12593 */ 12594 if (dap->da_state & MKDIR_PARENT) { 12595 FREE_LOCK(&lk); 12596 if ((error = ffs_update(pvp, 1)) != 0) 12597 break; 12598 ACQUIRE_LOCK(&lk); 12599 /* 12600 * If that cleared dependencies, go on to next. 12601 */ 12602 if (dap != LIST_FIRST(diraddhdp)) 12603 continue; 12604 if (dap->da_state & MKDIR_PARENT) 12605 panic("flush_pagedep_deps: MKDIR_PARENT"); 12606 } 12607 /* 12608 * A newly allocated directory must have its "." and 12609 * ".." entries written out before its name can be 12610 * committed in its parent. 12611 */ 12612 inum = dap->da_newinum; 12613 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12614 panic("flush_pagedep_deps: lost inode1"); 12615 /* 12616 * Wait for any pending journal adds to complete so we don't 12617 * cause rollbacks while syncing. 12618 */ 12619 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12620 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12621 == DEPCOMPLETE) { 12622 jwait(&inoref->if_list, MNT_WAIT); 12623 goto restart; 12624 } 12625 } 12626 if (dap->da_state & MKDIR_BODY) { 12627 FREE_LOCK(&lk); 12628 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12629 FFSV_FORCEINSMQ))) 12630 break; 12631 error = flush_newblk_dep(vp, mp, 0); 12632 /* 12633 * If we still have the dependency we might need to 12634 * update the vnode to sync the new link count to 12635 * disk. 12636 */ 12637 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 12638 error = ffs_update(vp, 1); 12639 vput(vp); 12640 if (error != 0) 12641 break; 12642 ACQUIRE_LOCK(&lk); 12643 /* 12644 * If that cleared dependencies, go on to next. 12645 */ 12646 if (dap != LIST_FIRST(diraddhdp)) 12647 continue; 12648 if (dap->da_state & MKDIR_BODY) { 12649 inodedep_lookup(UFSTOVFS(ump), inum, 0, 12650 &inodedep); 12651 panic("flush_pagedep_deps: MKDIR_BODY " 12652 "inodedep %p dap %p vp %p", 12653 inodedep, dap, vp); 12654 } 12655 } 12656 /* 12657 * Flush the inode on which the directory entry depends. 12658 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 12659 * the only remaining dependency is that the updated inode 12660 * count must get pushed to disk. The inode has already 12661 * been pushed into its inode buffer (via VOP_UPDATE) at 12662 * the time of the reference count change. So we need only 12663 * locate that buffer, ensure that there will be no rollback 12664 * caused by a bitmap dependency, then write the inode buffer. 12665 */ 12666 retry: 12667 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12668 panic("flush_pagedep_deps: lost inode"); 12669 /* 12670 * If the inode still has bitmap dependencies, 12671 * push them to disk. 12672 */ 12673 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 12674 bp = inodedep->id_bmsafemap->sm_buf; 12675 bp = getdirtybuf(bp, &lk, MNT_WAIT); 12676 if (bp == NULL) 12677 goto retry; 12678 FREE_LOCK(&lk); 12679 if ((error = bwrite(bp)) != 0) 12680 break; 12681 ACQUIRE_LOCK(&lk); 12682 if (dap != LIST_FIRST(diraddhdp)) 12683 continue; 12684 } 12685 /* 12686 * If the inode is still sitting in a buffer waiting 12687 * to be written or waiting for the link count to be 12688 * adjusted update it here to flush it to disk. 12689 */ 12690 if (dap == LIST_FIRST(diraddhdp)) { 12691 FREE_LOCK(&lk); 12692 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12693 FFSV_FORCEINSMQ))) 12694 break; 12695 error = ffs_update(vp, 1); 12696 vput(vp); 12697 if (error) 12698 break; 12699 ACQUIRE_LOCK(&lk); 12700 } 12701 /* 12702 * If we have failed to get rid of all the dependencies 12703 * then something is seriously wrong. 12704 */ 12705 if (dap == LIST_FIRST(diraddhdp)) { 12706 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 12707 panic("flush_pagedep_deps: failed to flush " 12708 "inodedep %p ino %ju dap %p", 12709 inodedep, (uintmax_t)inum, dap); 12710 } 12711 } 12712 if (error) 12713 ACQUIRE_LOCK(&lk); 12714 return (error); 12715 } 12716 12717 /* 12718 * A large burst of file addition or deletion activity can drive the 12719 * memory load excessively high. First attempt to slow things down 12720 * using the techniques below. If that fails, this routine requests 12721 * the offending operations to fall back to running synchronously 12722 * until the memory load returns to a reasonable level. 12723 */ 12724 int 12725 softdep_slowdown(vp) 12726 struct vnode *vp; 12727 { 12728 struct ufsmount *ump; 12729 int jlow; 12730 int max_softdeps_hard; 12731 12732 ACQUIRE_LOCK(&lk); 12733 jlow = 0; 12734 /* 12735 * Check for journal space if needed. 12736 */ 12737 if (DOINGSUJ(vp)) { 12738 ump = VFSTOUFS(vp->v_mount); 12739 if (journal_space(ump, 0) == 0) 12740 jlow = 1; 12741 } 12742 max_softdeps_hard = max_softdeps * 11 / 10; 12743 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 12744 dep_current[D_INODEDEP] < max_softdeps_hard && 12745 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps && 12746 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) { 12747 FREE_LOCK(&lk); 12748 return (0); 12749 } 12750 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow) 12751 softdep_speedup(); 12752 stat_sync_limit_hit += 1; 12753 FREE_LOCK(&lk); 12754 if (DOINGSUJ(vp)) 12755 return (0); 12756 return (1); 12757 } 12758 12759 /* 12760 * Called by the allocation routines when they are about to fail 12761 * in the hope that we can free up the requested resource (inodes 12762 * or disk space). 12763 * 12764 * First check to see if the work list has anything on it. If it has, 12765 * clean up entries until we successfully free the requested resource. 12766 * Because this process holds inodes locked, we cannot handle any remove 12767 * requests that might block on a locked inode as that could lead to 12768 * deadlock. If the worklist yields none of the requested resource, 12769 * start syncing out vnodes to free up the needed space. 12770 */ 12771 int 12772 softdep_request_cleanup(fs, vp, cred, resource) 12773 struct fs *fs; 12774 struct vnode *vp; 12775 struct ucred *cred; 12776 int resource; 12777 { 12778 struct ufsmount *ump; 12779 struct mount *mp; 12780 struct vnode *lvp, *mvp; 12781 long starttime; 12782 ufs2_daddr_t needed; 12783 int error; 12784 12785 /* 12786 * If we are being called because of a process doing a 12787 * copy-on-write, then it is not safe to process any 12788 * worklist items as we will recurse into the copyonwrite 12789 * routine. This will result in an incoherent snapshot. 12790 * If the vnode that we hold is a snapshot, we must avoid 12791 * handling other resources that could cause deadlock. 12792 */ 12793 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 12794 return (0); 12795 12796 if (resource == FLUSH_BLOCKS_WAIT) 12797 stat_cleanup_blkrequests += 1; 12798 else 12799 stat_cleanup_inorequests += 1; 12800 12801 mp = vp->v_mount; 12802 ump = VFSTOUFS(mp); 12803 mtx_assert(UFS_MTX(ump), MA_OWNED); 12804 UFS_UNLOCK(ump); 12805 error = ffs_update(vp, 1); 12806 if (error != 0) { 12807 UFS_LOCK(ump); 12808 return (0); 12809 } 12810 /* 12811 * If we are in need of resources, consider pausing for 12812 * tickdelay to give ourselves some breathing room. 12813 */ 12814 ACQUIRE_LOCK(&lk); 12815 process_removes(vp); 12816 process_truncates(vp); 12817 request_cleanup(UFSTOVFS(ump), resource); 12818 FREE_LOCK(&lk); 12819 /* 12820 * Now clean up at least as many resources as we will need. 12821 * 12822 * When requested to clean up inodes, the number that are needed 12823 * is set by the number of simultaneous writers (mnt_writeopcount) 12824 * plus a bit of slop (2) in case some more writers show up while 12825 * we are cleaning. 12826 * 12827 * When requested to free up space, the amount of space that 12828 * we need is enough blocks to allocate a full-sized segment 12829 * (fs_contigsumsize). The number of such segments that will 12830 * be needed is set by the number of simultaneous writers 12831 * (mnt_writeopcount) plus a bit of slop (2) in case some more 12832 * writers show up while we are cleaning. 12833 * 12834 * Additionally, if we are unpriviledged and allocating space, 12835 * we need to ensure that we clean up enough blocks to get the 12836 * needed number of blocks over the threshhold of the minimum 12837 * number of blocks required to be kept free by the filesystem 12838 * (fs_minfree). 12839 */ 12840 if (resource == FLUSH_INODES_WAIT) { 12841 needed = vp->v_mount->mnt_writeopcount + 2; 12842 } else if (resource == FLUSH_BLOCKS_WAIT) { 12843 needed = (vp->v_mount->mnt_writeopcount + 2) * 12844 fs->fs_contigsumsize; 12845 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 12846 needed += fragstoblks(fs, 12847 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 12848 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 12849 } else { 12850 UFS_LOCK(ump); 12851 printf("softdep_request_cleanup: Unknown resource type %d\n", 12852 resource); 12853 return (0); 12854 } 12855 starttime = time_second; 12856 retry: 12857 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 12858 fs->fs_cstotal.cs_nbfree <= needed) || 12859 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 12860 fs->fs_cstotal.cs_nifree <= needed)) { 12861 ACQUIRE_LOCK(&lk); 12862 if (ump->softdep_on_worklist > 0 && 12863 process_worklist_item(UFSTOVFS(ump), 12864 ump->softdep_on_worklist, LK_NOWAIT) != 0) 12865 stat_worklist_push += 1; 12866 FREE_LOCK(&lk); 12867 } 12868 /* 12869 * If we still need resources and there are no more worklist 12870 * entries to process to obtain them, we have to start flushing 12871 * the dirty vnodes to force the release of additional requests 12872 * to the worklist that we can then process to reap addition 12873 * resources. We walk the vnodes associated with the mount point 12874 * until we get the needed worklist requests that we can reap. 12875 */ 12876 if ((resource == FLUSH_BLOCKS_WAIT && 12877 fs->fs_cstotal.cs_nbfree <= needed) || 12878 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 12879 fs->fs_cstotal.cs_nifree <= needed)) { 12880 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 12881 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 12882 VI_UNLOCK(lvp); 12883 continue; 12884 } 12885 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 12886 curthread)) 12887 continue; 12888 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 12889 vput(lvp); 12890 continue; 12891 } 12892 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 12893 vput(lvp); 12894 } 12895 lvp = ump->um_devvp; 12896 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 12897 VOP_FSYNC(lvp, MNT_NOWAIT, curthread); 12898 VOP_UNLOCK(lvp, 0); 12899 } 12900 if (ump->softdep_on_worklist > 0) { 12901 stat_cleanup_retries += 1; 12902 goto retry; 12903 } 12904 stat_cleanup_failures += 1; 12905 } 12906 if (time_second - starttime > stat_cleanup_high_delay) 12907 stat_cleanup_high_delay = time_second - starttime; 12908 UFS_LOCK(ump); 12909 return (1); 12910 } 12911 12912 /* 12913 * If memory utilization has gotten too high, deliberately slow things 12914 * down and speed up the I/O processing. 12915 */ 12916 extern struct thread *syncertd; 12917 static int 12918 request_cleanup(mp, resource) 12919 struct mount *mp; 12920 int resource; 12921 { 12922 struct thread *td = curthread; 12923 struct ufsmount *ump; 12924 12925 mtx_assert(&lk, MA_OWNED); 12926 /* 12927 * We never hold up the filesystem syncer or buf daemon. 12928 */ 12929 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 12930 return (0); 12931 ump = VFSTOUFS(mp); 12932 /* 12933 * First check to see if the work list has gotten backlogged. 12934 * If it has, co-opt this process to help clean up two entries. 12935 * Because this process may hold inodes locked, we cannot 12936 * handle any remove requests that might block on a locked 12937 * inode as that could lead to deadlock. We set TDP_SOFTDEP 12938 * to avoid recursively processing the worklist. 12939 */ 12940 if (ump->softdep_on_worklist > max_softdeps / 10) { 12941 td->td_pflags |= TDP_SOFTDEP; 12942 process_worklist_item(mp, 2, LK_NOWAIT); 12943 td->td_pflags &= ~TDP_SOFTDEP; 12944 stat_worklist_push += 2; 12945 return(1); 12946 } 12947 /* 12948 * Next, we attempt to speed up the syncer process. If that 12949 * is successful, then we allow the process to continue. 12950 */ 12951 if (softdep_speedup() && 12952 resource != FLUSH_BLOCKS_WAIT && 12953 resource != FLUSH_INODES_WAIT) 12954 return(0); 12955 /* 12956 * If we are resource constrained on inode dependencies, try 12957 * flushing some dirty inodes. Otherwise, we are constrained 12958 * by file deletions, so try accelerating flushes of directories 12959 * with removal dependencies. We would like to do the cleanup 12960 * here, but we probably hold an inode locked at this point and 12961 * that might deadlock against one that we try to clean. So, 12962 * the best that we can do is request the syncer daemon to do 12963 * the cleanup for us. 12964 */ 12965 switch (resource) { 12966 12967 case FLUSH_INODES: 12968 case FLUSH_INODES_WAIT: 12969 stat_ino_limit_push += 1; 12970 req_clear_inodedeps += 1; 12971 stat_countp = &stat_ino_limit_hit; 12972 break; 12973 12974 case FLUSH_BLOCKS: 12975 case FLUSH_BLOCKS_WAIT: 12976 stat_blk_limit_push += 1; 12977 req_clear_remove += 1; 12978 stat_countp = &stat_blk_limit_hit; 12979 break; 12980 12981 default: 12982 panic("request_cleanup: unknown type"); 12983 } 12984 /* 12985 * Hopefully the syncer daemon will catch up and awaken us. 12986 * We wait at most tickdelay before proceeding in any case. 12987 */ 12988 proc_waiting += 1; 12989 if (callout_pending(&softdep_callout) == FALSE) 12990 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 12991 pause_timer, 0); 12992 12993 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 12994 proc_waiting -= 1; 12995 return (1); 12996 } 12997 12998 /* 12999 * Awaken processes pausing in request_cleanup and clear proc_waiting 13000 * to indicate that there is no longer a timer running. 13001 */ 13002 static void 13003 pause_timer(arg) 13004 void *arg; 13005 { 13006 13007 /* 13008 * The callout_ API has acquired mtx and will hold it around this 13009 * function call. 13010 */ 13011 *stat_countp += 1; 13012 wakeup_one(&proc_waiting); 13013 if (proc_waiting > 0) 13014 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13015 pause_timer, 0); 13016 } 13017 13018 /* 13019 * Flush out a directory with at least one removal dependency in an effort to 13020 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13021 */ 13022 static void 13023 clear_remove(void) 13024 { 13025 struct pagedep_hashhead *pagedephd; 13026 struct pagedep *pagedep; 13027 static int next = 0; 13028 struct mount *mp; 13029 struct vnode *vp; 13030 struct bufobj *bo; 13031 int error, cnt; 13032 ino_t ino; 13033 13034 mtx_assert(&lk, MA_OWNED); 13035 13036 for (cnt = 0; cnt <= pagedep_hash; cnt++) { 13037 pagedephd = &pagedep_hashtbl[next++]; 13038 if (next > pagedep_hash) 13039 next = 0; 13040 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13041 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13042 continue; 13043 mp = pagedep->pd_list.wk_mp; 13044 ino = pagedep->pd_ino; 13045 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13046 continue; 13047 FREE_LOCK(&lk); 13048 13049 /* 13050 * Let unmount clear deps 13051 */ 13052 error = vfs_busy(mp, MBF_NOWAIT); 13053 if (error != 0) 13054 goto finish_write; 13055 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13056 FFSV_FORCEINSMQ); 13057 vfs_unbusy(mp); 13058 if (error != 0) { 13059 softdep_error("clear_remove: vget", error); 13060 goto finish_write; 13061 } 13062 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13063 softdep_error("clear_remove: fsync", error); 13064 bo = &vp->v_bufobj; 13065 BO_LOCK(bo); 13066 drain_output(vp); 13067 BO_UNLOCK(bo); 13068 vput(vp); 13069 finish_write: 13070 vn_finished_write(mp); 13071 ACQUIRE_LOCK(&lk); 13072 return; 13073 } 13074 } 13075 } 13076 13077 /* 13078 * Clear out a block of dirty inodes in an effort to reduce 13079 * the number of inodedep dependency structures. 13080 */ 13081 static void 13082 clear_inodedeps(void) 13083 { 13084 struct inodedep_hashhead *inodedephd; 13085 struct inodedep *inodedep; 13086 static int next = 0; 13087 struct mount *mp; 13088 struct vnode *vp; 13089 struct fs *fs; 13090 int error, cnt; 13091 ino_t firstino, lastino, ino; 13092 13093 mtx_assert(&lk, MA_OWNED); 13094 /* 13095 * Pick a random inode dependency to be cleared. 13096 * We will then gather up all the inodes in its block 13097 * that have dependencies and flush them out. 13098 */ 13099 for (cnt = 0; cnt <= inodedep_hash; cnt++) { 13100 inodedephd = &inodedep_hashtbl[next++]; 13101 if (next > inodedep_hash) 13102 next = 0; 13103 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13104 break; 13105 } 13106 if (inodedep == NULL) 13107 return; 13108 fs = inodedep->id_fs; 13109 mp = inodedep->id_list.wk_mp; 13110 /* 13111 * Find the last inode in the block with dependencies. 13112 */ 13113 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 13114 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13115 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13116 break; 13117 /* 13118 * Asynchronously push all but the last inode with dependencies. 13119 * Synchronously push the last inode with dependencies to ensure 13120 * that the inode block gets written to free up the inodedeps. 13121 */ 13122 for (ino = firstino; ino <= lastino; ino++) { 13123 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13124 continue; 13125 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13126 continue; 13127 FREE_LOCK(&lk); 13128 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13129 if (error != 0) { 13130 vn_finished_write(mp); 13131 ACQUIRE_LOCK(&lk); 13132 return; 13133 } 13134 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13135 FFSV_FORCEINSMQ)) != 0) { 13136 softdep_error("clear_inodedeps: vget", error); 13137 vfs_unbusy(mp); 13138 vn_finished_write(mp); 13139 ACQUIRE_LOCK(&lk); 13140 return; 13141 } 13142 vfs_unbusy(mp); 13143 if (ino == lastino) { 13144 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13145 softdep_error("clear_inodedeps: fsync1", error); 13146 } else { 13147 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13148 softdep_error("clear_inodedeps: fsync2", error); 13149 BO_LOCK(&vp->v_bufobj); 13150 drain_output(vp); 13151 BO_UNLOCK(&vp->v_bufobj); 13152 } 13153 vput(vp); 13154 vn_finished_write(mp); 13155 ACQUIRE_LOCK(&lk); 13156 } 13157 } 13158 13159 void 13160 softdep_buf_append(bp, wkhd) 13161 struct buf *bp; 13162 struct workhead *wkhd; 13163 { 13164 struct worklist *wk; 13165 13166 ACQUIRE_LOCK(&lk); 13167 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13168 WORKLIST_REMOVE(wk); 13169 WORKLIST_INSERT(&bp->b_dep, wk); 13170 } 13171 FREE_LOCK(&lk); 13172 13173 } 13174 13175 void 13176 softdep_inode_append(ip, cred, wkhd) 13177 struct inode *ip; 13178 struct ucred *cred; 13179 struct workhead *wkhd; 13180 { 13181 struct buf *bp; 13182 struct fs *fs; 13183 int error; 13184 13185 fs = ip->i_fs; 13186 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13187 (int)fs->fs_bsize, cred, &bp); 13188 if (error) { 13189 bqrelse(bp); 13190 softdep_freework(wkhd); 13191 return; 13192 } 13193 softdep_buf_append(bp, wkhd); 13194 bqrelse(bp); 13195 } 13196 13197 void 13198 softdep_freework(wkhd) 13199 struct workhead *wkhd; 13200 { 13201 13202 ACQUIRE_LOCK(&lk); 13203 handle_jwork(wkhd); 13204 FREE_LOCK(&lk); 13205 } 13206 13207 /* 13208 * Function to determine if the buffer has outstanding dependencies 13209 * that will cause a roll-back if the buffer is written. If wantcount 13210 * is set, return number of dependencies, otherwise just yes or no. 13211 */ 13212 static int 13213 softdep_count_dependencies(bp, wantcount) 13214 struct buf *bp; 13215 int wantcount; 13216 { 13217 struct worklist *wk; 13218 struct bmsafemap *bmsafemap; 13219 struct freework *freework; 13220 struct inodedep *inodedep; 13221 struct indirdep *indirdep; 13222 struct freeblks *freeblks; 13223 struct allocindir *aip; 13224 struct pagedep *pagedep; 13225 struct dirrem *dirrem; 13226 struct newblk *newblk; 13227 struct mkdir *mkdir; 13228 struct diradd *dap; 13229 int i, retval; 13230 13231 retval = 0; 13232 ACQUIRE_LOCK(&lk); 13233 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13234 switch (wk->wk_type) { 13235 13236 case D_INODEDEP: 13237 inodedep = WK_INODEDEP(wk); 13238 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13239 /* bitmap allocation dependency */ 13240 retval += 1; 13241 if (!wantcount) 13242 goto out; 13243 } 13244 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13245 /* direct block pointer dependency */ 13246 retval += 1; 13247 if (!wantcount) 13248 goto out; 13249 } 13250 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13251 /* direct block pointer dependency */ 13252 retval += 1; 13253 if (!wantcount) 13254 goto out; 13255 } 13256 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13257 /* Add reference dependency. */ 13258 retval += 1; 13259 if (!wantcount) 13260 goto out; 13261 } 13262 continue; 13263 13264 case D_INDIRDEP: 13265 indirdep = WK_INDIRDEP(wk); 13266 13267 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13268 /* indirect truncation dependency */ 13269 retval += 1; 13270 if (!wantcount) 13271 goto out; 13272 } 13273 13274 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13275 /* indirect block pointer dependency */ 13276 retval += 1; 13277 if (!wantcount) 13278 goto out; 13279 } 13280 continue; 13281 13282 case D_PAGEDEP: 13283 pagedep = WK_PAGEDEP(wk); 13284 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13285 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13286 /* Journal remove ref dependency. */ 13287 retval += 1; 13288 if (!wantcount) 13289 goto out; 13290 } 13291 } 13292 for (i = 0; i < DAHASHSZ; i++) { 13293 13294 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13295 /* directory entry dependency */ 13296 retval += 1; 13297 if (!wantcount) 13298 goto out; 13299 } 13300 } 13301 continue; 13302 13303 case D_BMSAFEMAP: 13304 bmsafemap = WK_BMSAFEMAP(wk); 13305 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 13306 /* Add reference dependency. */ 13307 retval += 1; 13308 if (!wantcount) 13309 goto out; 13310 } 13311 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 13312 /* Allocate block dependency. */ 13313 retval += 1; 13314 if (!wantcount) 13315 goto out; 13316 } 13317 continue; 13318 13319 case D_FREEBLKS: 13320 freeblks = WK_FREEBLKS(wk); 13321 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 13322 /* Freeblk journal dependency. */ 13323 retval += 1; 13324 if (!wantcount) 13325 goto out; 13326 } 13327 continue; 13328 13329 case D_ALLOCDIRECT: 13330 case D_ALLOCINDIR: 13331 newblk = WK_NEWBLK(wk); 13332 if (newblk->nb_jnewblk) { 13333 /* Journal allocate dependency. */ 13334 retval += 1; 13335 if (!wantcount) 13336 goto out; 13337 } 13338 continue; 13339 13340 case D_MKDIR: 13341 mkdir = WK_MKDIR(wk); 13342 if (mkdir->md_jaddref) { 13343 /* Journal reference dependency. */ 13344 retval += 1; 13345 if (!wantcount) 13346 goto out; 13347 } 13348 continue; 13349 13350 case D_FREEWORK: 13351 case D_FREEDEP: 13352 case D_JSEGDEP: 13353 case D_JSEG: 13354 case D_SBDEP: 13355 /* never a dependency on these blocks */ 13356 continue; 13357 13358 default: 13359 panic("softdep_count_dependencies: Unexpected type %s", 13360 TYPENAME(wk->wk_type)); 13361 /* NOTREACHED */ 13362 } 13363 } 13364 out: 13365 FREE_LOCK(&lk); 13366 return retval; 13367 } 13368 13369 /* 13370 * Acquire exclusive access to a buffer. 13371 * Must be called with a locked mtx parameter. 13372 * Return acquired buffer or NULL on failure. 13373 */ 13374 static struct buf * 13375 getdirtybuf(bp, mtx, waitfor) 13376 struct buf *bp; 13377 struct mtx *mtx; 13378 int waitfor; 13379 { 13380 int error; 13381 13382 mtx_assert(mtx, MA_OWNED); 13383 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 13384 if (waitfor != MNT_WAIT) 13385 return (NULL); 13386 error = BUF_LOCK(bp, 13387 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 13388 /* 13389 * Even if we sucessfully acquire bp here, we have dropped 13390 * mtx, which may violates our guarantee. 13391 */ 13392 if (error == 0) 13393 BUF_UNLOCK(bp); 13394 else if (error != ENOLCK) 13395 panic("getdirtybuf: inconsistent lock: %d", error); 13396 mtx_lock(mtx); 13397 return (NULL); 13398 } 13399 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13400 if (mtx == &lk && waitfor == MNT_WAIT) { 13401 mtx_unlock(mtx); 13402 BO_LOCK(bp->b_bufobj); 13403 BUF_UNLOCK(bp); 13404 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13405 bp->b_vflags |= BV_BKGRDWAIT; 13406 msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), 13407 PRIBIO | PDROP, "getbuf", 0); 13408 } else 13409 BO_UNLOCK(bp->b_bufobj); 13410 mtx_lock(mtx); 13411 return (NULL); 13412 } 13413 BUF_UNLOCK(bp); 13414 if (waitfor != MNT_WAIT) 13415 return (NULL); 13416 /* 13417 * The mtx argument must be bp->b_vp's mutex in 13418 * this case. 13419 */ 13420 #ifdef DEBUG_VFS_LOCKS 13421 if (bp->b_vp->v_type != VCHR) 13422 ASSERT_BO_LOCKED(bp->b_bufobj); 13423 #endif 13424 bp->b_vflags |= BV_BKGRDWAIT; 13425 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 13426 return (NULL); 13427 } 13428 if ((bp->b_flags & B_DELWRI) == 0) { 13429 BUF_UNLOCK(bp); 13430 return (NULL); 13431 } 13432 bremfree(bp); 13433 return (bp); 13434 } 13435 13436 13437 /* 13438 * Check if it is safe to suspend the file system now. On entry, 13439 * the vnode interlock for devvp should be held. Return 0 with 13440 * the mount interlock held if the file system can be suspended now, 13441 * otherwise return EAGAIN with the mount interlock held. 13442 */ 13443 int 13444 softdep_check_suspend(struct mount *mp, 13445 struct vnode *devvp, 13446 int softdep_deps, 13447 int softdep_accdeps, 13448 int secondary_writes, 13449 int secondary_accwrites) 13450 { 13451 struct bufobj *bo; 13452 struct ufsmount *ump; 13453 int error; 13454 13455 ump = VFSTOUFS(mp); 13456 bo = &devvp->v_bufobj; 13457 ASSERT_BO_LOCKED(bo); 13458 13459 for (;;) { 13460 if (!TRY_ACQUIRE_LOCK(&lk)) { 13461 BO_UNLOCK(bo); 13462 ACQUIRE_LOCK(&lk); 13463 FREE_LOCK(&lk); 13464 BO_LOCK(bo); 13465 continue; 13466 } 13467 MNT_ILOCK(mp); 13468 if (mp->mnt_secondary_writes != 0) { 13469 FREE_LOCK(&lk); 13470 BO_UNLOCK(bo); 13471 msleep(&mp->mnt_secondary_writes, 13472 MNT_MTX(mp), 13473 (PUSER - 1) | PDROP, "secwr", 0); 13474 BO_LOCK(bo); 13475 continue; 13476 } 13477 break; 13478 } 13479 13480 /* 13481 * Reasons for needing more work before suspend: 13482 * - Dirty buffers on devvp. 13483 * - Softdep activity occurred after start of vnode sync loop 13484 * - Secondary writes occurred after start of vnode sync loop 13485 */ 13486 error = 0; 13487 if (bo->bo_numoutput > 0 || 13488 bo->bo_dirty.bv_cnt > 0 || 13489 softdep_deps != 0 || 13490 ump->softdep_deps != 0 || 13491 softdep_accdeps != ump->softdep_accdeps || 13492 secondary_writes != 0 || 13493 mp->mnt_secondary_writes != 0 || 13494 secondary_accwrites != mp->mnt_secondary_accwrites) 13495 error = EAGAIN; 13496 FREE_LOCK(&lk); 13497 BO_UNLOCK(bo); 13498 return (error); 13499 } 13500 13501 13502 /* 13503 * Get the number of dependency structures for the file system, both 13504 * the current number and the total number allocated. These will 13505 * later be used to detect that softdep processing has occurred. 13506 */ 13507 void 13508 softdep_get_depcounts(struct mount *mp, 13509 int *softdep_depsp, 13510 int *softdep_accdepsp) 13511 { 13512 struct ufsmount *ump; 13513 13514 ump = VFSTOUFS(mp); 13515 ACQUIRE_LOCK(&lk); 13516 *softdep_depsp = ump->softdep_deps; 13517 *softdep_accdepsp = ump->softdep_accdeps; 13518 FREE_LOCK(&lk); 13519 } 13520 13521 /* 13522 * Wait for pending output on a vnode to complete. 13523 * Must be called with vnode lock and interlock locked. 13524 * 13525 * XXX: Should just be a call to bufobj_wwait(). 13526 */ 13527 static void 13528 drain_output(vp) 13529 struct vnode *vp; 13530 { 13531 struct bufobj *bo; 13532 13533 bo = &vp->v_bufobj; 13534 ASSERT_VOP_LOCKED(vp, "drain_output"); 13535 ASSERT_BO_LOCKED(bo); 13536 13537 while (bo->bo_numoutput) { 13538 bo->bo_flag |= BO_WWAIT; 13539 msleep((caddr_t)&bo->bo_numoutput, 13540 BO_MTX(bo), PRIBIO + 1, "drainvp", 0); 13541 } 13542 } 13543 13544 /* 13545 * Called whenever a buffer that is being invalidated or reallocated 13546 * contains dependencies. This should only happen if an I/O error has 13547 * occurred. The routine is called with the buffer locked. 13548 */ 13549 static void 13550 softdep_deallocate_dependencies(bp) 13551 struct buf *bp; 13552 { 13553 13554 if ((bp->b_ioflags & BIO_ERROR) == 0) 13555 panic("softdep_deallocate_dependencies: dangling deps"); 13556 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 13557 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 13558 else 13559 printf("softdep_deallocate_dependencies: " 13560 "got error %d while accessing filesystem\n", bp->b_error); 13561 if (bp->b_error != ENXIO) 13562 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 13563 } 13564 13565 /* 13566 * Function to handle asynchronous write errors in the filesystem. 13567 */ 13568 static void 13569 softdep_error(func, error) 13570 char *func; 13571 int error; 13572 { 13573 13574 /* XXX should do something better! */ 13575 printf("%s: got error %d while accessing filesystem\n", func, error); 13576 } 13577 13578 #ifdef DDB 13579 13580 static void 13581 inodedep_print(struct inodedep *inodedep, int verbose) 13582 { 13583 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d" 13584 " saveino %p\n", 13585 inodedep, inodedep->id_fs, inodedep->id_state, 13586 (intmax_t)inodedep->id_ino, 13587 (intmax_t)fsbtodb(inodedep->id_fs, 13588 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 13589 inodedep->id_nlinkdelta, inodedep->id_savednlink, 13590 inodedep->id_savedino1); 13591 13592 if (verbose == 0) 13593 return; 13594 13595 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 13596 "mkdiradd %p\n", 13597 LIST_FIRST(&inodedep->id_pendinghd), 13598 LIST_FIRST(&inodedep->id_bufwait), 13599 LIST_FIRST(&inodedep->id_inowait), 13600 TAILQ_FIRST(&inodedep->id_inoreflst), 13601 inodedep->id_mkdiradd); 13602 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 13603 TAILQ_FIRST(&inodedep->id_inoupdt), 13604 TAILQ_FIRST(&inodedep->id_newinoupdt), 13605 TAILQ_FIRST(&inodedep->id_extupdt), 13606 TAILQ_FIRST(&inodedep->id_newextupdt)); 13607 } 13608 13609 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 13610 { 13611 13612 if (have_addr == 0) { 13613 db_printf("Address required\n"); 13614 return; 13615 } 13616 inodedep_print((struct inodedep*)addr, 1); 13617 } 13618 13619 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 13620 { 13621 struct inodedep_hashhead *inodedephd; 13622 struct inodedep *inodedep; 13623 struct fs *fs; 13624 int cnt; 13625 13626 fs = have_addr ? (struct fs *)addr : NULL; 13627 for (cnt = 0; cnt < inodedep_hash; cnt++) { 13628 inodedephd = &inodedep_hashtbl[cnt]; 13629 LIST_FOREACH(inodedep, inodedephd, id_hash) { 13630 if (fs != NULL && fs != inodedep->id_fs) 13631 continue; 13632 inodedep_print(inodedep, 0); 13633 } 13634 } 13635 } 13636 13637 DB_SHOW_COMMAND(worklist, db_show_worklist) 13638 { 13639 struct worklist *wk; 13640 13641 if (have_addr == 0) { 13642 db_printf("Address required\n"); 13643 return; 13644 } 13645 wk = (struct worklist *)addr; 13646 printf("worklist: %p type %s state 0x%X\n", 13647 wk, TYPENAME(wk->wk_type), wk->wk_state); 13648 } 13649 13650 DB_SHOW_COMMAND(workhead, db_show_workhead) 13651 { 13652 struct workhead *wkhd; 13653 struct worklist *wk; 13654 int i; 13655 13656 if (have_addr == 0) { 13657 db_printf("Address required\n"); 13658 return; 13659 } 13660 wkhd = (struct workhead *)addr; 13661 wk = LIST_FIRST(wkhd); 13662 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 13663 db_printf("worklist: %p type %s state 0x%X", 13664 wk, TYPENAME(wk->wk_type), wk->wk_state); 13665 if (i == 100) 13666 db_printf("workhead overflow"); 13667 printf("\n"); 13668 } 13669 13670 13671 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 13672 { 13673 struct jaddref *jaddref; 13674 struct diradd *diradd; 13675 struct mkdir *mkdir; 13676 13677 LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) { 13678 diradd = mkdir->md_diradd; 13679 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 13680 mkdir, mkdir->md_state, diradd, diradd->da_state); 13681 if ((jaddref = mkdir->md_jaddref) != NULL) 13682 db_printf(" jaddref %p jaddref state 0x%X", 13683 jaddref, jaddref->ja_state); 13684 db_printf("\n"); 13685 } 13686 } 13687 13688 #endif /* DDB */ 13689 13690 #endif /* SOFTUPDATES */ 13691